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Abstract

Hot work tool steels are exposed to high temperatures and are additionally mechanically
loaded. Suchlike cyclic load spectra with overlapping of thermal and mechanical loads
cause different damage mechanisms, as caused by only time dependent creep or time
independent fatigue mechanisms. This literature survey tasks with the microstructure of
hot work tool steels in general, the change of the same at thermo-mechanical loads, and
the resulting damage mechanisms. Using microstructure models, based on metal physics
as well as plasticity models, damage can be described and lifetime, i.e. cycles to failure,
can be calculated. Different approaches of microstructure and damage modelling as well
as simulation, like crystal plasticity, cellular automata and the Monte Carlo method,
are shown. Forward looking, in a PhD-thesis, hardening mechanisms, connected with
an increase of dislocation density and softening processes, which influence the material
properties, are going to be modelled by microplane and crystal plasticity methods.
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Kurzfassung

Werkzeuge, eingesetzt für Warmumformprozesse, werden bei erhöhten Temperaturen be-
ansprucht und sind zusätzlich mit mechanischen Lasten beaufschlagt. Aus zyklischen
Lastkollektiven mit Überlagerung von thermischen und mechanischen Beanspruchungen
resultieren andere Schädigungsverhalten als aus rein zeitabhängigem Kriechen oder zeitun-
abhängiger Ermüdungsbeanspruchung. Dieser Literaturüberblick beschäftigt sich mit
der Mikrostruktur von Warmarbeitsstählen allgemein, der Änderung derselben im Ein-
satz, und den sich daraus ergebenden Schädigungsmechanismen. Mittels Mikrostruktur-
modellen basierend auf metallpysikalischer Basis wie auch plastomechanischer Modelle
kann diese Schädigung beschrieben und die Lebensdauer bzw. Anzahl der Zyklen bis
zum Versagen berechnet werden. Verschiedene Ansätze zur Mikrostruktur- und Schädi-
gungsmodellierung sowie zue Simulation, wie z.B. die Kristallplastizitätstheorie, zelluläre
Automaten oder die Monte-Carlo Methode, werden vorgeschlagen. Zukünftig sollen in
einer Dissertation Verfestigungsmechanismen, verbunden mit einer Steigerung der Ver-
setzungsdichte und Entfestigungsmechanismen, welche die mechanischen Eigenschaften
beeinflussen, mittels Schnittebenenverfahren und kristallplastischen Ansätzen modelliert
werden.
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ṗ reaction rate of an individual moving dislocation [s−1]
Pp perimeter of a pore [m]
psg driving force of subgrain growth [Nm−2]
Δp driving force [N ]
Q activation energy [J ]
Qbulk activation energy for bulk diffusion [J ]
Qcross activation energy for cross slip (screw dislocations) [J ]
QSD activation energy for self diffusion [J ]
r isotropic hardening variable [1]
R body [-]
r0 initial pore size [m]
R0 body in reference configuration [-]
R1, R2 parts of a separated body R [-]
rc critical radius [m]
rf critical pore size [m]
Rh increase of the elastic limit due to hardening [s−1]
rp particle radius [m]
rp,max maximum axis length ratio of a particle [m]
rp,min minimum axis length ratio of a particle [m]
rsub subgrain radius [m]
RT ambient temperature [K]
rv radius, determining the distance between two disloca-

tions
[m]

S surface [m2]
S vector of all microstructure parameters [-]
SD surface of microcracks or microcavities [m2]
Si microstructure parameter [1]

XI



Symbol Meaning Unit

Sj
i temporal variation of Si due to the mechanism j [s−1]

Sp pore surface [m2]
t time [s]
T temperature [K]
t̂ characteristic time [s]
t0 initial time [s]
tcr time to creep induced fracture [s]
Δt time increment [s]
Tm melting temperature [K]
TF triaxiality factor [1]
u displacement vector [m]
uij partial derivations of the displacement vector u [m]
ukl partial derivations of the displacement vector u [m]
u̇n displacement rate [s−1]
v average dislocation glide velocity [ms−1]
V volume, activation volume [m3]

V̇ temporal derivation of the pore volume [m3s−1]
vl

c climb velocity due to diffusion of vacancies [ms−1]
vD rate of dislocation glide [s−1]
vg glide velocity of mobile dislocations [ms−1]
vclimb velocity of climb [ms−1]
vc,m climb velocity of mobile dislocations [ms−1]
vl

c,m climb velocity of mobile dislocations due to lattice dif-
fusion

[ms−1]

vp
c,m climb velocity of mobile dislocations [ms−1]

vc,s climb velocity of static dislocations [ms−1]
vl

c,s climb velocity of static dislocations due to lattice diffu-
sion

[ms−1]

vp
c,s climb velocity of static dislocations due to pipe diffusion [ms−1]

Vp pore volume [m3]
vsg velocity of subgrain boundary [ms−1]
vα average velocity of dislocations in the slip system α [ms−1]
wi weight factor [1]
Wmacro macroscopic virtual work [J ]
Wmicro work of all microstress components [J ]
ΔWT hysteresis energy [J ]
x variable [1]
x overstress [Pa]
Xbs back stress [Pa]
x̄i median of variables xi [1]
dX line element in reference configuration [1]
yc critical annihilation distance [m]
Z Zeldovich coefficient [1]

XII



Symbol Meaning Unit

Z matrix [1]
�Zα vertical matrix [1]
�ZT

α transposed matrix [1]

α slip system [-]
α∗ parameter, describes stress dependence of creep load [1]
αFR Taylor factor at active Frank-Read mechanism [1]
αi related kinematic hardening variable [1]
αm Taylor factor [1]
α[T ] temperature coefficient [K−1]
β∗ parameter, describes the damaging effect of compression

phases
[1]

βi constant, relating the internal spacing of dislocations i [1]
βw constant, relating the spacing of dislocations in cell walls

w
[1]

Γ hemisphere [-]
γ̇ shear rate [s−1]
γ∗ parameter, specifies the influence of the load character [1]
γ̇in inelastic shear strain rate [s−1]
γ

′
phase, commonly Ni3(Al, Ti, Nb) [-]

γgb grain boundary energy of the matrix material [Jm−2]
γip interface energy matrix/particle [Jm−2]
γs surface energy of the matrix material [Jm−2]
γSFE stacking fault energy [Jm−2]
γsg interface energy of a small angle grain boundary [Jm−2]
γsp interface energy particle/pore [Jm−2]
γ̇α glide rate on glide system α [s−1]
dγ slip rate on all active glide systems in the grain [s−1]
δ subgrain size [m]
δgb grain boundary thickness [m]
ε strain [1]
ε̇ strain rate [s−1]
ε̄ effective strain [1]
Δε strain increment [s−1]
εD deviatoric strain [1]
ε̇∞e equivalent strain rate in the grain interior [s−1]
εμ

e strain vector acting on the microplane [1]
εel elastic strain [1]
ε̇el elastic strain rate [s−1]
ε
′
f fatigue ductility coefficient [1]

ε̄f effective fracture strain [1]
εij macroscopic strain tensor [1]
εin inelastic (plastic) strain [1]

XIII



Symbol Meaning Unit

ε̇in inelastic strain rate [s−1]
ε̇n

in normalised inelastic strain rate [s−1]
ε̇s

in normalised inelastic shear strain rate [s−1]
ε̄M effective matrix strain [1]
εn critical nucleation strain [1]
εN normal strain [1]
εν volumetric strain [1]
ε̇ss steady state creep rate [s−1]
εth thermal strain [1]
ε̇th thermal strain rate [s−1]
εV volumetric strain [1]
θ misorientation [rad,◦]
λ jump width, i.e. mean spacing of obstacles [m]
λm distance between mobile dislocations [m]
λp distance between particle centres [m]
λs effective distance between particles [m]
μ median [1]
μ angle [rad,◦]
ν0 attack frequency [s−1]
ξt
j value of variable at time t and node j [1]

π constant [1]
ρ̇ evolution of dislocation density [s−1]
ρb related dislocation density in subgrains [m−2]
ρl

b related dislocation density defined as break-through
points per unit of length

[m−1]

ρc critical radius of curvature [m]
ρi dislocation density in the interior cells [m−2]
ρ̇−

i reduction rate of dislocation density inside the cells [s−1]
ρ̇+

i formation rate of dislocation density inside the cells [s−1]
ρm mobile dislocation density [m−2]
ρ̇−

m reduction rate of the mobile dislocation density [s−1]
ρw dislocation density in cell walls [m−2]
ρ̇+

w increase of dislocation density inside the cells [s−1]
ρ̇x evolution of dislocations [s−1]
ρ̇−

x reduction terms of dislocations [s−1]
ρ̇+

x production terms of dislocations [s−1]
ρα dislocation density in the glide system α [m−2]
ρ̇α evolution of dislocation density in the glide system α [s−1]
ρα

F forest dislocation density in the glide system α [m−2]
ρα

P density of parallel dislocations in the glide system α [m−2]
σ stress [Pa]
σ Cauchy stress tensor [Pa]
ΣI 1. Piola-Kirchhoff stress tensor [Pa]

XIV



Symbol Meaning Unit

ΣII 2. Piola-Kirchhoff stress tensor [Pa]
σD deviatoric stress [Pa]
σext external stress [Pa]
σ̂ effective stress on the remaining surface [Pa]
σeff,M Von Mises effective stress [Pa]
σeq Von Mises equivalent stress [Pa]
σf macroscopic flow stress [Pa]
σH hydrostatic stress [Pa]
σkk first stress invariant [Pa]
σ̄M effective stress on the matrix material [Pa]
σN normal stress [Pa]
σstandard standard deviation [-]
σV volumetric stress [Pa]
τ shear stress [Pa]
τ acting shear stress on the slip system α [Pa]
τ̂ athermal shear stress [Pa]
τc annihilation time [s]
τdc duration of one cycle [s]
τeff effective shear stress [Pa]
τeff,i effective shear stresses in the cell interiors [Pa]
τeff,w effective shear stresses in the cell walls [Pa]
τH,c twell time under compressive load [s]
τH,t twell time under tensile load [s]
τi effective shear stress in the cell interiors [Pa]

τ j
i sum of the internal stresses [Pa]

τm
i backstress due to mobile dislocations [Pa]

τloop line tension of a dislocation loop [Pa]
τor Orowan stress [Pa]
τp Peierls stress [Pa]
τα
pass passing stress [Pa]

τsc scale factor [1]
τth threshold stress [Pa]
τw effective shear stress in the cell walls [Pa]
ψ wetting angle of contact [rad,◦]
φ degree of buckling [rad,◦]
ω damage parameter [1]
Ωc macro continuum [-]
ωc creep damage [-]
ω̇c creep damage rate [s−1]
ωD material damage, damage function [-]
ωf fatigue damage [-]
ω̇f fatigue damage rate [s−1]

XV



1 Introduction

The alloying concept as well as the characteristic structure and mechanical properties of
hot work tool steels are described at the beginning and subsequently the microstructure
configuration is qualified. During application, the material is generally exposed to cyclic
mechanical and thermal loads, which has an influence on the structure. The material
hardening due to generation of dislocations (e.g. Frank-Read mechanism) and softening,
like recovery processes (annihilation of dislocations, subgrain formation and growth) is
described. These competing mechanisms have a lasting influence on the material struc-
ture and structure evolution. Cyclic mechanical and thermal loads can cause creep-fatigue
interaction, which is the dominating load mechanism acting on tools which are exposed
to accordant load conditions. Local damage and material defects such as micropores and
cracks are initiated in the material after a certain operation time at the highest thermal,
mechanical or thermo-mechanical loaded regions of the tool. In most cases regions of both
high thermal and mechanical loads are critical for failure. The nucleation, growth and
coagulation of pores to cracks are described extensively in chapter 5 and subsequently in
chapter 6 void based damage criteria according to McClintock, Rice and Tracey and yield
criteria based on void volume fraction, respectively, according to Gurson and Gurson-
Tvergaard-Needleman are mentioned as well as continuum damage mechanics criteria like
the effective stress concept according to LeMaitre and the model by Yeh and Krempl are
described. In the subsequent chapter 7, ideas of modelling the lifetime at cyclic mechan-
ical and thermal loading are mentioned. This can be done by empiric models which are
based on the principle of implementating a damage parameter (e.g. the accumulation of
creep damage, the strain rate modified accumulation of time dependent damage and the
frequency modified damage function model) , damage mechanic models (e.g. the damage
rate model and the modified damage rate model) which are based on the implementation
of a damage function, physical approaches and fracture mechanical methods, respectively.
Creep fatigue simulation especially, can be performed by finite element modelling (e.g. the
elastic-viscoplastic Chaboche model), crystal plasticity finite element modelling, which de-
tailly describes the dislocation mechanisms in one single crystal (i.e. grain or subgrain),
or the microplane method where the reaction forces on an ascertained microplane are
considered. Furthermore cellular automata based material models for finite element sim-
ulations, the representative volume element method and experimental simulations can be
arranged. Finally conclusions out of this literature survey are drawn and an outlook on
proceeding work is given.
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2 Hot Work Tool Steels

Common for the two manufacturing processes, hot forging and die casting, is that they
both have a die or a tool, which gives the product its final shape. These tools are usually
very complex and expensive and in order to lower the production costs, they need to last
for a long time. The materials used in the dies for hot forming are nowadays completely
made of a special type steel, called tool steels. The developement of tool steel history is
generally regarded to the evolution of steels in general, but the beginning of tool steel his-
tory is generally regarded to the year 1740 [1]. Much has happened in the developement
since then and today there exist numerous types of tool steels, but the desire to increase
the performance of the tool steels still remains.

The steels used for hot forming is a special type of tool steel, made to withstand a
combination of heat, pressure and abrasion and has been classified hot-work tool steel,
AISI type H. All hot work tool steels are used in a quenched and tempered condition.
The most essential properties for these types of steels are high levels of hot strength 2.1,
ductility, toughness, thermal conductivity, creep strength, temper resistance and also low
thermal expansion [2]. Steels that need to maintain their properties at high temperatures,
i.e. hot work tool steels require an increased temper resistance, so that an appropriate
strength can be achieved after tempering at 550 − 650◦C. The most convenient method
is to use a secondary hardening reaction involving the precipitation of alloy carbides [2, 3].

Figure 2.1: Tensile strength Rm and Rp0.2 as well as reduction in area vs. temperature for an
annealed W300 with an initial tensile strength of 1500 MPa (left diagram) and 1200 MPa [4].

2
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A good secondary hardening effect is achieved by strong carbide forming elements such
as chromium, molybdenum, tungsten and vanadium. These elements play an important
role when the tool steel is subjected to high temperatures, since they precipitate as fine
alloy carbides, which not only retards the softening but also increases the hardness.

The temperature of tools in use is permanently above 200◦C, thereby billets with tem-
peratures of about 400 to 1200◦C are converted. The contact times are from milliseconds
to minutes and the longer the contact with the hot billet lasts, and the shorter the relative
cooling time is, the higher becomes the surface temperature of tools, converging to the
billet temperature. For a good performance, hot work tool steels have to exhibit four
main properties [5]:

� A high tempering resistance to avoid a decrease in hardness due to thermal loads
during use, which is maintained by a deceleration of martensite dissolution by alloy-
ing elements, precipitation of secondary carbides (Cr, W, Mo, V) and special heat
treatment.

� A demanding hot strength, hardness and wear resistance at high temperatures to
ensure deformation and wear resistance. It is achieved by the mechanisms mentined
before and at temperatures above 600◦C only by solid solution strengthening and
precipitation of intermetallic compounds.

� A demanding toughness to prevent brittle fractures in zones with high concentrated
stresses. Homogeneity and purity as well as microstructure parameters are necessary
to be considered.

� Thermoshock resistance to avoid cracks caused by thermal alteration is improved
by a good thermal conductivity and low thermal expansion, high toughness, homo-
geneity and hot strength.

2.1 Alloying Concept

The category of hot work tool steels contains a multiplicity of steels, which makes a
classification not easy. According to the thermal loads, hot and high strength heat treat-
able steels with or without distinctive secondary hardness are in use. For extremly high
temperatures, hot strength high temperature corrosion resistable austenitic steels and Ni-
based alloys are demanded, which have a lower tendency to diffusion creep due to their
closer packed atoms. Depending on the properties, hot work tool steels can be classified
into following categories: impact resistant steels, wear resistant, ductile steels and high
temperature strength steels and alloys [2, 5]:

� Impact resistant steels are Ni alloyed CrMoV-heat treatable steels with 0.5 to 0.6%
C.

� Wear resistant, ductile steels are CrMoV or WCrV heat treatable steels with alloying
contents up to 8% and 0.3 to 0.4 % C and CoCrMo(W,V) heat treatable steels with
alloying contents more than 8% and up to 0.5% C.
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� high temperature strength steels and alloys which exhibit γ
′
hardening and Ni based

alloys like X 6 NiCrTi 26-15 and NiCr 20 Co 18 Ti.

Category Steel Application
low alloyed 56 NiCrMoV 7 die holder and ram for extrusion,

heat treatable steels hammer dies
medium alloyed X40 CrMoV 5-1 die casting and extrusion tools

CrMoV and WCrV X 32 CrMoV 3-3 for light and partly non-ferrous
steels X 30 WCrV 9-3 heavy metals, forging tools

high alloyed X 20 CoCrWMo 10-9 die casting and extrusion tools for
CoCrMo(W,V) X 45 CoCrWV 5-5-5 light and partly non- ferrous heavy

steels X 15 CrCoMoV 10-10-5 metals, tools for forging machines
at temperatures up to 700◦C

high temperature X 6 NiCrTi 26-15 liners for extrusion of copper and
strength steels X 50 NiCrWV 13-13 Cu-alloys for billet temperatures

and alloys NiCr 19 CoMo above 750◦C, die blocks for open
die forging with longer durations

Table 2.1: Typical steel categories and applications for hot work tool steels [5].

The steels of the CrMoV category have the greatest importance for the application as
materials for hot work tools which is because of their importance on extrusion and die
casting, where they perform very well. WCrV steels exhibit a higher deformation resis-
tance than CrMoV steels but they have a lower toughness, so their application is only
then advantageous when CrMoV steels, despite their good ability to cooling, indicate
insufficient deformation resistance. Typical steel categories and examples for application
are given above in Tab. 2.1.

Hot work tool steels can also be classified by the main alloying element, the AISI type H
steel is divided into three subgroups named after the dominant alloying element [2]:

Chromium hot work tool steels (types H10 to H19) are well adapted to hot work
of all kinds. Especially dies for the extrusion of aluminium and magnesium, but also as
die-casting dies, forging dies and hot shears.

Tungsten hot work tool steels (types H21 to H26) are used to make mandrels and
extrusion dies for high temperature applications, such as the extrusion of brass, nickel
alloys and steel. They are also suitable for use in hot-forging dies of rugged design.

Molybdenum hot work tool steels (types H42 and H43) are almost similar to tung-
sten hot work steels with almost identical characteristics and uses, but have their principal
advantage in their lower initial cost. These alloys, especially molybdenum and the low
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carbon content, make the steel more resistent to heat checking.

The properties of hot work tool steels result from the chemical composition and heat
treatment, which determines the microstructure of the steel. The main alloying elements
and their effectiveness are described in the following [5]:

Cr - increases hardenability
- secondary hardening maximum at higher contents
- inhibits high temperature corrosion and enhances wear resistance
- extends transformation inactive range between pearlite and bainite

W,Mo,V - increase hot strength, annealing and wear resistance (V) due to
precipitation of carbides in the secondary hardening maximum
- mechanism: MC (semi-coherent) − > M2C − > M6C, M7C3, M23C6 with
increasing annealing temperature
- precipitation effects of W and Mo beside secondary carbide formation due
to intermetallic compounds (IMC)
- W delays the precipitation of IMC to higher temperatures

Ni - enhances hardenability
- decreases A1 temperature and impedes spheroidise annealing and enables
lower austenitising temperatures, i.e. a finer structure after hardening

Co - delays carbide precipitation which leads to a finer distribution
- increases secondary hardness due to formation of IMC, but ductility
decreases
- enhances the temper resistance up to 600◦C
- advances the thermal conductivity
- below 5 % no influence on hardenability

Si - leads to higher strength at annealing temperatures of 200 to 600◦C in 5%
CrMoV steels
- enhances high temperature corrosion resistance and hardenability
- produces a finer grain structure but raises the affinity to segregation

Mn - increases hardenability at simultaneous restriction of toughness,
but a lower carbon content avoids this effect
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The chemical compositions of several hot work tool steels are given in Table 2.2:

Steel grade C Si Mn Cr Mo Ni V W others

W100 0.29 0.25 0.30 2.7 – – 0.35 8.5 –

W300 0.38 1.10 0.40 5.0 1.3 – 0.40 – –

W360 0.50 0.20 0.25 4.5 3.0 – 0.55 – –

W400 0.36 0.20 0.25 5.0 1.3 – 0.45 – –

W500 0.55 0.25 0.75 1.1 0.5 1.7 0.10 – –

W750 0.04 0.25 1.4 15.0 1.3 25.0 0.3 – Ti=2.7
Al=0.25
B=0.005

Table 2.2: Chemical compositions of selected Böhler hot work tool steels [6, 7].

2.2 Heat Treatment and Mechanical Properties

The initial state is generally soft-annealed with spheroidal carbides in a ferritic matrix.
Carbides like M23C6, M7C3, M6C and MC exist and the steel produced by Böhler Edel-
stahl GmbH is processed by the customer and heat treated afterwards (Fig. 2.2).

For low alloyed steels, hardening temperatures of about 830 to 900◦C and 1000 to
1080◦C for high alloyed steels are common. Adequate preheating steps reduce thermal
stresses in cross sectional variations and between edge and core of the component. Lower
hardening temperatures are adjusted at tools with high required toughness, complex ge-
ometries and small section thickness, higher hardening temperatures are common for
massive components [5].

The quenching medium, e.g. air, oil, warm bath, salt bath or nitrogen for vacuum
hardening, is dependend on the steel grade. Too low quenching rates cause pre-eutectoid
carbide precipitations or lead to high amounts of bainite whereas too rapid quenching
causes distortion and stress induced cracks.
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Figure 2.2: Heat treatment for the hot work tool steel Böhler W400, schematically [7].

At temperatures of about 500 to 600◦C the steels are tempered overall for one to two
hours, gerally in two or three separate steps. The influence of the tempering tempera-
ture on hardness is depicted in Fig. 2.3. The higher the tempering temperature is, the
more decreases the hardness due to resolution of martensite and the tougher the material
becomes.

Figure 2.3: Effect of tempering temperature on the hardness and fracture toughness KIc of
the vacuum-heat treated conventional hot work H11 tool steel (W300). [8].
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Steels with a low content of secondary carbide formers (e.g. 56 Ni CrMoV 6, in Fig. 2.4)
show a continuous decrease in hardness. High alloyed grades show a secondary hardening
maximum due to precipitation of secondary carbides, IMCs and residual austenite trans-
formation. The position of the secondary hardness maximum depends on the solution
state of the matrix. During annealing also transformations of established carbides occur
[5].

Figure 2.4: Temperature curves of several tool steels: The diagram depicts the Rockwell
harness (HRC) vs the annealing temperature (◦C) for the hot-work tool steels X 20 CoCrWMo
10-9, 56 NiCrMoV 7 and X 40 CrMoV 5-1 as well as for two high speed steels. [5].

In such types of steel, the most stable carbide is the VC-carbide, which also plays an
important role in the heat treatment. VC-carbides are responsible for pinning grain
boundaries in order to inhibit the grains from growing, which allows higher austenitising
temperatures without a significant grain growth. If the temperature is too high (about
1100◦C), i.e. high enough to dissolve the VC-carbide, the material experiences a rapid
grain growth (Fig. 2.5). If a relatively high austenitising temperature is applied in the
heat treatment, more of the primary carbides will be dissolved and thus increase the
secondary hardening effect.



2 Hot Work Tool Steels 9

Figure 2.5: Mean austenitic grain diameter after different austenitising temperatures investi-
gatet for the hot work tool steel DIEVAR [9].

It has been shown that V:C ratios close to stoichiometric gives a better secondary harden-
ing effect as well, simply because the amount of VC available for precipitation is greater
[3]. Consequently, the temper resistance is increased, which is also dependent on another
important feature such as the stability of the carbides. Studies have shown that decreas-
ing of the chromium and increasing the molybdenum content will generate more stable
carbides, because the chromium rich carbides M7C3 and M23C6 can easily coalesce and
coarsen with negative influence on mechanical properties. The microstructure in detail is
described in chapter 3.

To minimise wear rupture of dies, high quality hot work tool steels are in use and
in addition, several surface treatments, such as nitriding, are employed to increase wear
resistance of tools. Nitriding consists of introducing nitrogen into metallic materials to
improve their surface hardness, wear and corrosion resistance, as well as fatigue life. Dur-
ing nitriding of steels, two different structures are formed from surface to core, known as
the compound layer and diffusion region. The compound layer consists of iron nitrides
of the phase (ε-Fe2−3N), gamma phase (γ

′
-Fe4N) or of a mixed phase (ε+γ

′
) developed

at the surface. Wear characteristics of the compound layer depend on many factors such
as compound layer composition (epsilon/gamma), compound layer thickness, mode of
mechanical loading, etc. [10]. On the other hand, the diffusion region causes an im-
provement of fatigue strength when compared to an untreated material. In the material,
nitrogen atoms also dissolved interstitially in excess in the ferritic lattice, which provide
the formation of nitride precipitates [11].



3 Microstructure

In the following chapter, the microstructure of especially bcc-metals is described with
respect to several microstructure parameters, which finally have a basic influence on me-
chanical properties of the material.

Microstructural Parameters

The microstructure can be described by

� the grain size,

� the mobile dislocation density ρm,

� the subgrain-radius rsub,

� the distribution of subgrain size by the several distribution-parameters,

� the misorientation θ,

� the related dislocation density in subgrains ρb,

� as well as by the parameters for all occurring populations of precipitations fp
v and

rp.

3.1 Precipitations

Precipitation hardening is a basic mechanism in hot work tool steels to achieve reasonable
mechanical properties. It is described in the following, how to characterise them and their
influence onto material hardening is depicted.

Interface-Character of Precipitations

The nature of interface is important for the appreciation of interactions with dislocations
and topology of dislocations, and also for the selection of adequate models.

Characterisation of Precipitations

In general phases can be quantitatively described by:

10
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� The volume fraction fp
v ,

� the average particle radius rp or particle diameter dp,

� the number of precipitations per unit of volume Np
v

fp
v =

4

3
πr3

pN
p
v , (3.1)

� the number of precipitations per unit of area Np
s

Np
s = 2Np

v rp, (3.2)

� the distance between centres λp

λs = (Np
s )−1/2 (3.3)

in any cutting plane. Kocks, Foreman and Mecking (in [12]) mentioned that the
smallest distance between particles in a plane cannot describe the mechanical inter-
action of dislocations with particles. They obtained an effectual distance of particles
from their analysis of a random particle distribution

λs = 1.8(Np
s )−1/2 = 1.25rp

(
2π

3fp
v

)1/2

. (3.4)

� The aspect-ratio ar

ar =
rp,max

rp,min

(3.5)

is in proportion to the maximum to minimum axis-length ratio of a particle in a
cutting plane.

The parameters rp, ar, λs and Np
s distinguish second phases as means under condition of

a statistical distribution.

Commercial alloys are commonly heterogeneous, i.e., comprise second phases in a solid-
solution matrix. Dislocation motion in such systems has to take into account solid solution
hardening and precipitation hardening. Shearable precipitates essentially affect the yield
stress only, while the hardening behaviour of the respective alloy is akin to that of the
pure matrix materials or its solid solution. Non-shearable particles affect plastic flow
mainly in two ways. First, they increase the yield stress by the Orowan stress

τor =
Gb
√

fp
v

rp

, (3.6)
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and second, they drastically increase the hardening rate due to the plastic zone (geo-
metrically necessary dislocations) in the wake of the particles. The dislocation concept
introduced here does not lend itself easily to accommodate these physical processes, but
they can be accounted for qualitatively by the basic equations derived so far. A higher
yield stress can be represented by a larger glide resistance as expressed by a larger acti-
vation energy Q for glide (Eq. 4.28). The increased hardening rate is taken care of by
modification of the slip length, i.e., by incorporating the precipitate spacing

λp =
rp

fp
v

(3.7)

in the effective slip length as already accounted for in Eq. 4.32. In particular, for elevated-
temperature deformation, λp may depend on time, since precipitation and Ostwald ripen-
ing may occur during deformation. It is followed a concept proposed by Estrin and
co-workers [13] to account for this complication. For precipitate coarsening the change of
precipitate radius with time is given by

rp = c(t + t0)
1/k1 (3.8)

with Ck the kinetic constant, t the time, t0 the time prior to the test, and the parameter
k1 = 3 for ideal Ostwald ripening according to the Lifshitz-Slyozov-Wagner theory (LSW
theory). If concurrent precipitation occurs the precipitate volume fraction will change,
which can be described by an Avrami-type equation

fp
v =

⎧⎨
⎩1 − exp

[
−
(

t + t0

t̂

)m
]⎫⎬
⎭ f∞

v (3.9)

with an Avrami exponent m and the volume fraction f∞
v of precipitates in thermodynamic

equilibrium. The characteristic time is

t̂ =
A0

D
=

A0

D0

exp

(
Hm

kBT

)
(3.10)

with A0 a constant, D the respective diffusion coefficient comprising the pre-exponential
term D0 and the activation enthalpy Hm. The diffusion coefficients are taken for the main
alloy components. It is noted that this concept unlawfully mixes two kinetics, namely
precipitation and ripening kinetics. Since both processes operate on a different time scale,
however, the error introduced is small and mitigated by using effective kinetic constants,
e.g., an effective k1 in Eq. 3.8.

3.2 Dislocations

Dislocations are a main microstructure constituent and it is necessary to know how they
react and which mechanisms are operating when loads are applied. In bcc-Fe lattice
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Sliding plane at
Metal RT low T high T or low ε

Fe
{112} {110} {123}
{110} {112} {hkl}

Fe-3Si
{112} {110} {123}
{110} {112} {hkl}

Table 3.1: Sliding planes in bcc-metals at different temperatures [14].

dislocation slide occurs in the direction of the closed packed direction 〈111〉. Closed packed
layers in bcc-metals are from the type {110}. {123} planes and non crystallographic
planes {hkl} have been found in addition to the dominant sliding planes {110}, {112}.
With increasing temperature and/or decreasing strain rate, the dominated sliding plane
changes (according to Smoluchowsky and Opinsky, in [14]) as follows: {110}, {112}, {123}
and {hkl} as shown in table 3.2.

The non-crystallographic slide (hkl) at elevated temperatures and/or low strain rates
is declared by cross-sliding of screw dislocations. Electron microscope investigations at
low temperatures discovered long screw dislocations, which means that edge dislocations
are more mobile than screw dislocations, so screw dislocations determine slide character-
istics. Screw dislocations also have jogs with edge character. The concentration of jogs
in thermodynamic equilibrium ce

j , for example in the unit of jogs per defined length, can
be described by an approach of Arrhenius [15]

ce
j =

1

b
e
−

�H
f
j

kBT (3.11)

as a function of the formation energy of a jog

� Hf
j
∼= Gb3

K1

(3.12)

with K1=10..15 [16]. Pure metals with bcc lattice show a high Peierls-stress at ambient
temperatures. The plastic deformation is controlled by the movement of screw disloca-
tions, which transcend the Peierls-potential. With increasing temperature, i.e. thermal
activation, pairs of kinks are formed, which facilitate the transcendation of the Peierls
potential.

Precipitations inhibit dislocation gliding, i.e. the dislocation has to climb or cut the
precipitation. Incoherent particles are non-shearable, the only way to pass them is to go
around or climb. Climb can occur by local or general climb (Fig. 3.1).
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Figure 3.1: Imagination of passing particles by climbing, x denotes the direction of dislocation
motion [17].

Coherent particles can be passed by cutting or going around, depending on the particle
size. The energy for cutting small particles is much less than for cutting big ones which
are passed by going around, which is energetically more favourable.

Splitting up of Dislocations

The high stacking fault energy in Fe and ferritic Fe-alloys is a reason that stacking faults
cannot be observed in these materials. However, atomistic calculations found out that
screw-dislocations under passive state split up marginally. This is also a characteristic
caused by the high Peierls-stress. The conceptions on movement of a splittet, non-planar
screw dislocation are related to a crystallographic slide, where the core structure changes
before overpowering the Peierls barrier [18].

3.3 Subgrain Structure

Argon and Takeuchi [19] schematically outlined the developement of the substructure for
metals with distinctive affinity to formation of subgrains (Fig. 3.2). Due to recovery
during creep, the cellular structure is transformed into a substructure.
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Figure 3.2: Schematical evolution of the substructure during a primary and secondary creep.
Loading (a), early range (b) and late range (c) of primary creep and accumulated subgrain
structure (d) in the secondary creep range [19].

In contrary to perfect LED-structures (low energy dislocation structures) like subgrain
boundaries, the cell walls are an accumulation of dislocations which do not all take a
LED-position. Cell boarders or cell walls consist of dislocation dipoles which annihilate
during creep.

3.3.1 Dislocation Structure at Subgrain Boundaries

According to Orlova et al. [20], subgrains in α−Fe contain of a tilt as well as of a torsion
part. Besides dislocations of type a

2
〈111〉, also dislocations with the Burgers- vector 〈001〉

can be found. The formation of these dislocations is established by the reaction

1
2
[111] + 1

2
[111] → [100].

If two interacting dislocations are of screw type, a pure screw dislocation with the Burgers
vector [001] is the result.

The plane of the investigated sheet lies parallel to the plane of the network. Dingley
et al. [21] found out that the percentage of [100]-dislocations is about 20. Carrington,
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Hale and McLean (in [14]) investigated the dislocation structure of subgrain boundaries
at deformed and recovered α−Fe by thin-sheet experiments. It was possible to explicate
and correlate the form of subgrain boundaries and networks by a〈100〉-edge-dislocations.
Total concordance with the theory of Frank is given for some observed networks only for
the account that a〈110〉-dislocations are formed by cutting a〈100〉-dislocations. In the
case of only rotary boundaries, the fractions of dislocations which imply an acute angle,
react by the energy law. The sections of dislocations which imply an optuse angle would
react to an [110] dislocation. If the interbreeding dislocations do not lie in the rotary
plane, both reactions can occur [22].

Dislocation Density in the Subgrain Boundary

The density of interface dislocations is defined as length per unit of area or break-through-
points per unit of length. According to Gottstein and Argon [23], the density

ρl
b =

θ

b
=

1

hb

(3.13)

with [ρl
b] = [m−1] is a function of the misfit-angle θ and of the distance between the

dislocations in the subgrain boundary hb. Therefore θ ∼ sinθ and θ � 1 is assumed. If
the volume-density ρb of the subgrain boundary dislocations is considered, then

ρl
b = ρbDsub (3.14)

with Dsub as the subgrain diameter, is obtained. Introducing ρl
b results for the factor ρb

by

ρb =
1

hbDsub

. (3.15)

The assumption that the subgrain boundary generally only consists of two dislocation
families with distances of the same amount, the distance in the subgrain boundary, finally
results in

hb =
2

ρbDsub

=
1

ρbrsub

. (3.16)

Additionally to intrinsic dislocations, there is also an accumulation of dislocations at
the interface. This dislocations, immobilised after a gliding process, are defined as static
dislocations which do not adopt a LED-position and are comparable to dislocation dipoles
in cell walls. Due to the density of these static dislocations ρs, it is possible to describe
the change of nature of the substructure-interfaces during creep of cell walls to subgrain
boundaries.

Misorientation

The qualitative developing of misorientation with increasing deformation for various ma-
terials is known from literature facts. According to investigations of cubic metals, the
misorientation among subgrain boundaries increases with advanced strain, whereas in the
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investigation of pure iron, the distance between the dislocations hb and the angle be-
tween subgrain boundaries from a distinctive strain on, remains constant and embraces
significant smaller values 1.5◦ instead of > 3◦. Initiating at small values (∼ 10′..20′), the
devolution of θ as a function of time or strain shows a comparative linear rising in the pri-
mary and partly in the secondary creep range until a saturation value is approached. The
kinetics of misorientation is similar to, or dependent on the other kinetic distributions of
other microstructure parameters like dimensions of subgrains or dislocation density [22].

3.3.2 Subgrain Size Distribution

It is not adequate to describe the substructure via use of means. Non-linear effects
investigated by Orlova [20] are a reason for that. In addiction to the subgrain size,
mechanisms are operating in various extends, which provide a varying growth performance
of subgrains of differing size. The subgrain structure under creep loads can be described
by a log − normal distribution of the subgrain size

f(x) =
1√

2πσx
exp

[
−(ln(x) − μ)2

σ22

]
(3.17)

as a function of the median μ and the standard deviation σ. In the other hand, i.e. if the
distribution parameters σ and μ are allocated, a rough discretisation of the distribution
in n subgrain categories can be accomplished. The relative density Ni of the category i

Ni =

∫ Bi

Ai

f(x)dx (3.18)

with the boundaries Ai and Bi

xi =
Ai − Bi

2
(3.19)

results in the fraction of volume f i
v of the category i by

f i
v =

x3
i Ni∑n

i=1
x3

i Ni

. (3.20)



4 Structure Evolution during Cyclic
Thermo-Mechanical Loads

4.1 Hardening Processes

Hardening must be due mostly to the dislocations produced by the plastic deformation.
The point defects - e.g. vacancies and interstitial atoms - which are produced are too
mobile and too few in number to play an important role. Dislocations introduced into a
crystal can harden it in two ways:

1. They increase the internal stresses and thus can hinder, by elastic interactions, the
development of loops from active sources.

2. They increase the density of the forest of screw dislocations which pierce their slip
planes. Thus the development of the loops requires that proportinally more jogs are
formed.

Frank-Read Mechanism

When the elastic limit, which is the stress above the deformation, does not go back to
zero, i.e. the yield stress σy, which is usually of the order of 10−4G, is reached, a few
Frank-Read sources will start emitting loops as described in Fig. 4.1 from the beginning
on (1) to a complete loop (7).

Figure 4.1: Development of a Frank-Read source [24].

18
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In ductile crystals these will be the most favourably placed, i.e. in the slip system with
maximum resolved shear stress, of a great length, in regions where the Frank network
has an especially large size. Once developed over a region of large enough radius, these
loops should be able to cut across the whole crystal and disappear at the surface. This
is because, if the radius is large, the back stress of the loops on the emitting source will
be small. If a large number of loops is emitted under a small applied stress, the first of
these loops will be pushed through the denser parts of the Frank net with the help of the
other loops behind it [24].

If the crystal contains, before any deformation, sufficiently long dislocation lines AB,
they can be those of a Frank network with the free length l, which is equal to the distance
between nodes. The dislocation can leave the slip plane, or it is pinned down by impurity
atoms or precipitates 4.2.

Figure 4.2: Various possible modes of pinning Frank-Read sources [24].

Under the action of a shear stress in its slip plane, such a line AB bends. The curvature,
and therefore the shear stress which produces it, pass through a maximum when the loop
is a semi-circle of the diameter AB. Under this maximum shear stress τmax, a whole circle
of dislocation, of diameter 2r = AB = l would be in equilibrium. According to Eq. 4.1

τmax � 2τloop

lb
, (4.1)

where τloop is the line tension of the loop (τ ∼ Gb2). If the applied stress exceeds this
value, the line can increase beyond a semi-circle and develop into a complete loop C, at
the same time restoring the initial line AB. This mechanism produces a large number of
dislocation loops.

If n loops are produced in the same crystallographic plane and if they emerge at the
surface, the created step on the surface must be then parallel to the this glide plane. This
assumes that the dislocation lines, which end at the pinning points A and B of the source
(Fig. 4.2), have Burgers vectors parallel to this glide plane. For example, such will be
the case when the pinning is as shown in Fig. 4.2b and c, where the lines which end at
the points A and B are assumed of the same nature as that of the line AB. But it may
happen that, as in Fig. 4.2a, one of the pairs of lines ending in A or B will have Burgers
vectors with a non zero projection on the normal to the glide plane. Such an alteration
causes several types of Frank-Read sources 4.3:
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Figure 4.3: The three types of Frank-Read sources: (a) flat; (b) spatial; (c) spiral [24].

If the projections of the arcs ending on A and B are equal, the successive loops emitted
by the source find themselves on different glide planes at a certain distance from each
other (Fig. 4.3b). This configuration has been called by Seeger [25] a spatial source, in
contrast to the flat source (Fig. 4.3a) considered so far.

If the projections are unequal, two spirals develop, around each of the points A and
B. This is known as a spiral source (Fig. 4.3c). More exactly, after each turn of a spiral
source around A and B, the parts P and P ′ of the source (in Fig. 4.1) will be on planes
separated by one more interatomic distance. Three successive processes are expected,
descibed in Fig. 4.4:

Figure 4.4: Three successive stages for a spiral Frank-Read source [24].

At each of the few first turns, P and P ′ will recombine by fast climb. A row of point
defects will be produced along the length they recombine, and two jogs (j, j′) of increasing
length are formed at its ends (Fig. 4.4a).

After a few turns, the parts P and P ′ will be in planes too far away for rapid climb
to occur because of their strong elastic interactions, one expects a new dipole DD′ of
increasing height to be formed at each turn (Fig. 4.4b).

After many turns, the distance between their planes might become so large that the
parts P and P ′ can pass each other without forming a dipole. Two independent spirals
develop around A and B (Figs. 4.3c and 4.4c). For not too large applied stresses, the
kinetic energy of the dislocation is negligible and the maximum height h (Eq. 4.2) of the
dipoles thus formed is such that the applied stress pushes P and P ′ past each other:

h � Gb

2πσ
. (4.2)
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This is usually so large that a spiral source should stop acting much before the corre-
sponding number of turns, of the order of h/b, has been produced. The dipoles produced
harden the lattice locally, so that spiral sources should be anyway much less active than
flat or spatial ones. With spatial or spiral sources, slip is no longer concentrated on a well
defined plane, but is distributed uniformly in a small zone [26].

4.2 Softening Processes

4.2.1 Recovery

The state of a material under loads is basically instable, because the produced dislocation
structure is not in thermodynamic equilibrium. At respective low temperatures, the plas-
tic deformation maintains due to mechanical stability, because the dislocations remain in
a mechanical equilibrium of forces after withdrawal of loads. At higher temperatures this
mechanical stability can be overpowered by thermal activated processes, when disloca-
tions are able to resolve their inhibition by cross sliding of screw dislocations or climbing
of edge dislocations. Thereby dislocations can switch to other sliding planes and adopt
energetical advantageous positions, and they are able to annihilate one another or leave
the crystal. This procedure is known as recovery and causes a decrease of dislocation
density, and produces specific dislocation structures consisted of a network of small-angle
grain boundaries, which is defined as polygonisation. The recovery is based onto the
interaction of dislocations due to their wide ranged stress field. The interaction force F
of an edge dislocation with the Burgers vector b1 upon a parallel dislocation with the
Burgers vector b2 is

F = τb2 =
Gb1b2

2πrv(1 − ν)
cosΦcos2Φ (4.3)

whereas rv and Φ determine the position of the first dislocation in relation to the second,
and ν denotes the poisson ratio. If both dislocations have the same sign and maintain
on the same sliding plane, i.e. Φ = 90◦, the force is positive and they repel. If both
dislocations have antipodal signs, the force is negative, they attract, fuse and annihilate
one another. This procedure is responsible for a decrease of dislocation density. If the
dislocations with antipodal signs do not have the same sliding plane, but one inbetween, a
dislocation dipol is formed, which corresponds to a chain of vacancies and has a significant
lower engergy than both single dislocations and annihilation can result due to climbing
by the distance of one atomic layer. This annihilation also occurs by attraction and
manifold climbing over a couple of layer distances. If the sliding planes are far away, so
that Φ > 45◦, the sign changes according to Eq. 4.3 and anti-parallel dislocations repel,
whereas parallel dislocations attract each other. The position of equlibrium of two parallel
dislocations is reached when they are lying upon each other, then Φ = 90◦ and F = 0 in
Eq. 4.3. Every deflection out of this position finally ends up in the idle state. If many
dislocations arrange one upon the other, a significant minimisation of dislocation energy is
caused. Such a periodic arrangement of edge dislocations causes a dislocation interaction,
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which reduces the range Ra of the stress field to the magnitude of the dislocation distance
rv. If there are ρl

b dislocations per cm in this arrangement, the energy per unit of area is

γsg = ρl
b

[
Gb2

4π(1 − ν)
ln

rD

2b
+ EC

]
(4.4)

where EC denotes the energy of the dislocation core. The described arrangement ap-
proximates a small angle tilt grain boundary (SAGB) and γsg denotes the specific grain
boundary energy. The difference in the orientation Θ of the adjoining grains can be
described by

Θ =
b

rD

(4.5)

and 1/rD = Θ/b = ρl
b is the number of dislocations per cm in the small angle grain

boundary. Hence the specific energy of the SAGB results in:

γsg = Θ(K1 − K2lnΘ) (4.6)

where K1 and K2 are defined as

K1 =
EK

b
− K2ln2 (4.7)

and

K2 =
Gb

4π(1 − ν)
(4.8)

The same consideration can also be taken for screw and hybrid dislocations, which also
built similar networks of low energy. A complete regional network can be build up by
several small angle grain boundaries consisting of screw, edge and hybrid dislocations,
which has a much lower energy than randomly distributed dislocations. Grain boundaries
can be formed due to coalescense of several subgrain boundaries. Recovery is affected by
climbing and cross sliding, both processes are sensitively depending on the stacking fault
energy γSFE, in a way that climbing and cross sliding are benefited by higher stacking
fault energys. Materials with a high stacking fault energy show strong recovery like most
bcc metals and fcc aluminium. Ag, Cu and fcc alloys exhibit a low stacking fault energy
and show a lower tendency to recovery [27].

4.2.2 Subgrain Formation

Basically the following mechanisms are responsible for subgrain growth [28]:

� Subgrain growth due to reduction of the whole interface energy, at varying specific
interface energy by recovery and knitting processes in the subgrain boundary or
regions close to the boundary,



4 Structure Evolution during Cyclic Thermo-Mechanical Loads 23

� nucleation of subgrains by transition of a critical dislocation density in the inner
subgrain,

� recovery of dislocations at the subgrain boundary, and

� knitting processes: knitting out and knitting in of dislocations

For a movement of subgrain boundaries, it is necessary that the dislocations in the sub-
grain boundary glide and climb. Climbing of dislocations is the slower and determining
step of the velocity. In gerneral it is known that the subgrain structure in metals with a
high stacking fault energy γSFE at homologous temperatures of about 0.3-0.4Tm is formed
due to energetical factors. The character of this two-dimensional dislocation structure
goes from ideal conceptions of a low energy dislocation structure (LEDS) to clews of
dislocations, which can be associated with cell walls. Following general statements it can
be formulated that [29]:

� In metals with a low stacking fault energy γSFE, which have no tendency to form
subgrains, recrystallisation can occur.

� The propability of a cell or network formation decreases with decreasing stacking
fault energy, which is a reason of advanced split-up of dislocations, which impedes a
cross sliding of screw dislocations. Solid solution generation decreases the stacking
fault energy and minimizes the affinity to cell creation.

� Generally the size of the cell expands in relation to the steady state with increasing
stacking fault energy.

� The subgrain size in Fe - based alloys is independent of the grain size.

4.2.3 Subgrain Growth

Subgrain growth can be considered, according to a partition in serveral material types,
like

� pure material,

� solid solution, and

� precipitation strengthened material.
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The velocity of a subgrain boundary υsg can be described by the attempt of Einstein (in
[30])

υsg = Msgpsg (4.9)

with Msg standing for the mobility ([Msg] = [m3/Ns]) of the subgrain boundary and psg

depicting the force ([psg] = [N/m2]) of the subgrain growth. Several models are related
to different formulations of the driving force psg due to energy minimisation by subgrain
growth. The specific interface energy γsg, according to Read and Shockley (in [31]), of a
small angle grain boundary is a function of the misfit θ

γsg = −E0θ(A + ln(θ)), (4.10)

with

E0 =
Gb

4π(1 − ν)
(4.11)

and

A = 1 + ln

(
b

2πr0

)
(4.12)

as a function of the cut-off radius. For the amount of the misfit θ, caused by the dis-
locations in the subgrain boundary with the dislocation density ρb, see Eqs. 4.11 and
4.12. The approaches by Sandström, Humphreys and Saetre [30, 32] can be adapted in
the case of creep by implication of the kinetics of the dislocation density in the subgrain
boundaries ρb and therefore with a non constant specific interface energy γsg.

4.2.4 Knitting Processes

TEM-investigations showed that subgrains interact in different ways with sliding disloca-
tions. Depending on the sign and the Burgers vector of the dislocations, it results in an
integration and also disassembling of dislocations in the dislocaton network of subgrain-
or cell boundaries. These mechanisms are defined according to TEM-images as knitting
mechanisms. Depending on the direction of movement of the dislocation knitting in or
knitting out can take place. In the model according to Ghoniem et al. [28] the region of
a subgrain consists of dislocations forming the subgrain boundary and static dislocations
accumulating into the subgrain. Knitting in of dislocations happens by static dislocations,
i.e. mobile dislocations that cross the subgrain boundary and that are immobilised and
subsequently integrated into the subgrain boundary by climbing.

The concept of knitting out is not exactly confining with the association of the knitting
in mechanism. In this case dislocations are not restored, which is energetically implausi-
bly, but new dislocations are formed similar to the Frank-Read mechanism. Argon and
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Takeuchi [19] assumed dislocations, which are not perfectly stored in the subgrain, as
dislocation sources. Such kind of dislocations is comparable to static dislocations and the
process is only operating by thermal activation.

Rate Equations

For a description of microstructure mechanisms, the principle of rate equations can be
introduced, especially to characterise thermally caused recovery of dislocations as well as
knitting mechanisms. A general microstructure parameter Si out of a certain amount of
parameters is considered. The variable Si(t) is demanded, whereas the temporal variation
of Si due to the mechanism j

Ṡj
i = f(S, σ, T, ..) (4.13)

is a function of the whole microstructure S, σ, T and other influences. The account of
an independent, parallel operating of several mechanisms on the considered parameter Si

leads to an addition of rate equations and the total temporal deviation Ṡi is derived by
addition of all Ṡj

i

Ṡi =
∑

j

Ṡj
i . (4.14)

The model according to Ghoniem et al. [28] demonstrates an approved formulation for
modelling such mechanisms. The basic microstructure parameters to describe the dis-
location structure are the mobile dislocation density ρm, the subrain radius rsub, the
dislocation density in the subgrain boundary ρb and the dislocation density ρs of the
stored dislocations next to the subgrain boundaries.

Based on the equation for static recovery due to lattice diffusion of vacancies,

dρ

dt
= −2ρ

τc

= −8ρ3/2vl
c. (4.15)

with τc as the annihilition time and vl
c the climb velocity due to diffusion of vacancies,

Ghoniem et al. assumed a thermal recovery for mobile and static dislocations

vc,m = vl
c,m + vp

c,m (4.16)

and
vc,s = vl

c,s + vp
c,s, (4.17)

with vc,m/vc,m as the climb velocity of mobile/static dislocations, vp
c,m/vp

c,s as the climb
velocity of mobile/static dislocations due to pipe diffusion and vl

c,m/vl
c,s denotes the climb

velocity of mobile/static dislocations via lattice diffusion. The differential equation for
thermal recovery of mobile dislocations results according to 4.15

dρm

dt
= −8ρ3/2

m vc,m. (4.18)

A comparison of measured saturated dislocation densities with calculated values showed
an appropriate conformity.
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4.3 Concept of Threshold

The strain and shear rate as well as the gliding speed υg of dislocations as a function of
the effective stress τeff results from

γ̇ = ρυg(τeff , ..)b. (4.19)

Generally the effective stress equals the applied stress σ and τ , respectively, is compen-
sated due to

� stress fields and bulging of dislocations,

� bulging of subgrain boundaries,

� the strengthening by a second phase and

� solid solution hardening

and thus is a function of the time dependent microstructure. In the following, the in-
fluence of dislocations and configurations of dislocations on the effective stress and their
contribution to the threshold stress τth respectively, is analysed.

The individual contributions of the microstructure elements, like mobile dislocations
and subgrain boundaries are added according to the principle of superposition

τth =
∑

j

τ j
i , (4.20)

and produce the total drag against deformation. τ j
i denotes sum of the inner stresses. The

approach by Taylor and Bacon [33], respectively, declares the constrained stress generated
by mobile dislocations as a function of the Taylor factor αm, the shear modulus G, the
Burgers vector b and the mobile dislocation density ρm

τm
i = αmGb

√
ρm. (4.21)

where τm
i denotes the backstress due to mobile dislocations and αm = 1 according to

Taylor and αm = 0.84 according to Bacon [33]. Orlova [34] founds an αm ≈ 0.52..0.78
αFR due to measured distributions of dislocation segment lengths, strong buckling of
dislocations and experimental values for τi. The parameter αFR is the Taylor factor at
active Frank-Read mechanism. The resulting instable point 2R = λ and λ = 1/

√
ρm from

experimental investigations could result for αFR = 1.2..1.8 for the analysed dislocation
networks, which would require a high strength of the dislocation joints. But according to
the investigations of Plüschl (in [34]), the dislocation joints formed during deformation
are weak barriers (αm = 0.25...0.45). The concept of a weak barrier is concerned as a
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marginal buckling between two barriers. The degree of buckling or the angle φ provides
the amount of the backstress which is not considered by Taylor. Approaches for a general
effect on the internal stress τi according to Friedel [24].

τi = cos

(
φ

2

)3/2
Gb

λ

lnλ

2π
(4.22)

and Hull and Bacon [33]

τi = cos

(
φ

2

)
Gb

λ
(4.23)

show a strong influence by φ. On the basis of these approaches the Taylor factor can be
calculated (Fig. 4.5).

Figure 4.5: Taylor factor αm against the angle φ and out of Literature according to Polcik
[35], Hull and Bacon [33], Schoeck (in [34]) and Friedel [24].

Glide Kinetics

The application of hot work tool steels often lies in the range of dislocation creep, that
means the plastic deformation occurs due to dislocation glide at adequate stresses. The
common relation between the steady state strain rate and stress is characterised by:
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� At low stresses, a stress exponent of n ≈ 1 arises in pure metals,

� with increasing stress, the stress exponent changes and obtains characteristic values
of n ≈ 3..5,

� and with advanced stress, the exponent gets values of about n ≈ 20 which is defined
as power-law-breakdown.

The conduction in the first stress range, i.e. at low stresses, also known as Harper-
Dorn-creep is associated with a collective migration of subgrains. The behaviour in the
high stress ranges with n ≥ 3..5 is accounted for the gliding of mobile dislocations (Fig.
4.6).

Figure 4.6: Diffusion counterbalanced steady state creep rate ε̇/Deff against the normalised
stress σ/E of α − Fe according to Ruano et al. [36]

The influence of precipitations on dislocations is described in section 3.1.
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4.4 Joint Theories

The Three-Internal-Variables Model[37]

An appropriate representation of the hardening behaviour has to be based on microstruc-
tural state variables, which are affected by the processing history of the material. There
are micromechanical models that contain explicit internal state variables, for example the
model according to Chaboche [38], which have been successfully implemented in finite el-
ement codes. Although such approaches do define evolutionary equations for the internal
state variables, the respective constants are commonly used as fit parameters and do not
relate to specific mechanisms of microstructure evolution.

There have been numerous attempts in the past to predict work-hardening behaviour
in terms of dislocation concepts, with limited success, however with regard to correctly
predicting hardening behaviour in a wide field of temperature, strain rate and material
chemistry. A model is presented, based on contemporary understanding of microstruc-
tural evolution and the interaction of dislocations with microstructural essentials. Such a
model gives a reasonable description of the hardening behaviour and accounts adequately
for changes of material chemistry, in particular for age-hardened alloys. The two effects,
namely dislocation-dislocation interaction and dislocation-precipitate interaction, are sep-
arated for properly testing both parts of the model. This was accomplished by using a
single-phase alloy that represents the matrix material of the corresponding precipitation-
hardened alloy.

In this model, the consideration is confined to cell/subgrain-forming metals and al-
loys, which includes most commercial aluminium alloys, copper and nickel alloys as well as
steels. With progressing strain, a cellular dislocation arrangement develops, composed of
cell walls with high dislocation density (ρw), which enclose cell interiors of low dislocation
density (ρi). Dislocation sources inside the material generate mobile dislocations (ρm),
which interact with dislocations in the cell interior and dislocations in the cell walls upon
their way through the crystal forced by the applied stress to accomodate the imposed
strain. This interaction can result in the formation of dislocation dipoles or even annihi-
lation of dislocations. Dipoles will finally be swept into the dislocation walls, where they
are subject to thermally activated recovery processes.

Interior dislocation sources will emit dislocation loops. If we consider the loops to be
of square shape with length 2L, we represent the loop expansion by the motion of one
of its segments, more specifically an edge dislocation segment. Hence, we have to keep
in mind that a slip length L corresponds to a total dislocation loop length of 8L and a
swept area of (2L)2. While in the real world a loop will percolate through its slip plane
and leave debris behind around circumvented impenetrable areas, we follow the classi-
cal analogon and assume instead that the considered dislocation segment will cease to
move after a slip length L. This slip length is determined by obstacles which the mobile
dislocations encounter on their way through the crystal. Such obstacles will be other
dislocations, grain boundaries or precipitates, each of which has a specific spacing Lobst

i .
There is no unique concept to treat the superposition of more than one obstacle type
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(hardening mechanism) but with increasing obstacle density (smaller obstacle spacing)
the slip length must decrease. This can be accounted for by the assumption

1

L
=
∑

i

wi

Lobst
i

(4.24)

(where wi is a weight factor), since this will adjust the slip length to be dominated by
the shortest spacing among the competing obstacles. Of course, this does not account
for different obstacle strength or the local dislocation arrangement due to the dislocation-
obstacle interaction (e.g., geometrically necessary dislocations next to non-deformable
particles), but it reflects an effective influence of the ensemble of obstacles.

All dislocation-hardening models are single-crystal models in their fundamental set-
up. The extension to polycrystal behaviour is accomplished by introduction of the Taylor
factor αm, which relates the macroscopically imposed strain dε to the total slip on all
active glide systems in the grains

∑
dγ, and thus the macroscopic flow stress σ to the

acting shear stress τ in the slip systems,

σf = αmτ =

∑
dγ

dε
τ. (4.25)

In polycrystals, besides the Taylor factor, the grain size is introduced in the effective slip
length equation (Eq. 4.24) to account for the limited crystallite dimensions.

Kinetic equation of state

The basic structure of the three-internal-variables model (3IVM) consists of a kinetic
equation of state and a set of equations for the structure evolution as do many other
dislocation models of crystal plasticity, but the 3IVM distinguishes three dislocation cat-
egories (according to Fig. 4.7): namely, mobile dislocations (ρm), immobile dislocations
in the cell interiors (ρi) and immobile dislocations in the cell walls (ρw). For each class of
dislocations an evolutionary law of the form

ρ̇x = ρ̇+
x − ρ̇−

x (4.26)

is derived below, where the index x assumes either m (mobile), i (cell interior) or w (cell
wall). The ρ̇+

x term represents one or more production terms of dislocations while ρ̇−
x

represents reduction terms. The kinetic equation of state is used to calculate the required
external stress σext to comply with the imposed strain rate ε̇ for a given structure and
temperature. Within the 3IVM, the Orowan equation

γ̇ = ε̇αm = ρmbv (4.27)

is used as kinetic equation of state. In Eq. 4.27, γ̇ is the shear rate, αm the Taylor factor
of the polycrystalline material for the imposed strain path, and b the magnitude of the
Burgers vector.
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Figure 4.7: Schematic drawing of the arrangement of the three dislocation classes considered
in the three-internal-variables model: mobile dislocations (ρm), immobile dislocations in the cell
interiors (ρi) and immobile dislocations in the cell walls (ρw) [37].

By use of the Taylor factor to relate the macroscopic strain rate to the dislocation be-
haviour in the crystals implies, of course, that the dislocation properties are considered
as population average values. The average dislocation glide velocity v depends on the
effective stress τeff = τ − τ̂ , where τ is the acting shear stress and τ̂ is the athermal flow
stress.

v = λν0exp

(
− Q

kBT

)
sinh

(
τeffV

kBT

)
, (4.28)

where λ is the jump width - i.e., the mean spacing of obstacles (the immobile forest
dislocations in this case), ν0 is the attack frequency, Q is the effective activation energy
for dislocation glide, and V is the activation volume. In commercial alloys the solute
atoms present in the matrix result in higher values for Q than those used for pure metals.
Substituting Eq. 4.28 into Eq. 4.27, Eq. 4.27 can be solved for τeff .

As the forest dislocation spacing is different in the cell interior and the cell walls, one
obtains two different values for the effective stress, τeff,i in the cell interiors and τeff,w in
the cell walls. In both cases the passing stress of dislocations has to be added to derive
the necessary resolved shear stress in the cell interior τi and in the cell walls τw

τx = τeff,x + αGb
√

ρx, (4.29)
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with the index x (x = i, w), α being a constant and G denotes the shear modulus, both
of which are mildly temperature-dependent. The required external stress can then be
calculated as

σext = αm(fiτi + fwτw), (4.30)

where αm is again the Taylor factor for polycrystalline material, which can be calculated
for arbitrary strain paths as a function of the total strain and fi, fw are the volume
fractions of cell interior and cell wall, respectively.

Structure evolution equations

While the kinetic equation of state determines the flow stress for a given structure, a set
of structure evolution laws is needed to calculate stress-strain curves. In the following
an evolution law is derived for each of the dislocation densities considered in the model
based on the underlying elementary dislocation processes. The mobile dislocations carry
the plastic strain. They are assumed to penetrate both dislocation walls and cell interiors.
Each mobile dislocation is supposed to travel a mean free path Leff before it is immobilised
or annihilated by one of the processes outlined below. A relationship between the imposed
strain and the mobile dislocation density is obtained if the Orowan equation is considered
on a larger time scale. In a time increment Δt, a dislocation density ρ̇+

mΔt is produced and
immobilised after travelling the distance Leff . This is associated with a strain increment,
Δε, so

Δε

Δt
� ε̇ = ρ̇+

mbLeff
1

αm

. (4.31)

Leff is determined by the effective grain size KG,eff , which is understood to be some
constant fraction of the true grain size, and three obstacle spacings:

� the forest dislocation spacing in the cell walls Lw,

� the forest dislocation spacing in the cell interior Li,

� and the spacing of the precipitates Lp.

The calculation of Lp and why it is introduced at this point is discussed separately below.
As outlined in the previous section, it is difficult to define an effective obstacle spacing
if more than a single obstacle type interacts with the moving dislocations with different
strength. From the reasons given before, we arrive at

1

Leff

=
βi

Li

+
βw

Lw

+
1

KG,eff

+
1

Lp(t)
, (4.32)

where βi and βw are constants, which relate the spacing of the respective dislocations (i,
w) to the slip length, if only this type of dislocation would determine the slip distance
Leff . We assume the mobile dislocation density to be reduced by three processes, namely,
by the formation of dislocation dipoles and dislocation locks as well as by annihilation.
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For each process a probability for the decrease of dislocation density can be derived, as
is shown below in detail for the annihilation process.

Figure 4.8: Geometrical set-up for calculating the annihilation probability [37].

Assuming that spontaneous annihilation takes place when two dislocations with an-
tiparallel Burgers vectors come closer to each other than a critical distance dannihil−c, the
probability for the event can be calculated according to Fig. 4.8. During a time increment
dt a mobile dislocation travels a distance ν dt. Thus, spontaneous annihilation will take
place if there is a suitable dislocation within the area 2dannihil−cv dt (shaded area in Fig.
4.8). The number dp of mobile dislocations to serve as reaction partner within this area
reads

dp = 2dannihil−cvdtρm. (4.33)

However, for an annihilation event to take place, it is required to find an antiparallel
dislocation; i.e., a dislocation on the same glide system. If the number of active glide
systems is denoted nGS, and one assumes an equal density of dislocations on all active
glide systems, this gives rise to a normalisation term 1/nGS for the probability calculation.
Taking into account the number of active glide systems renders the rate equations texture-
sensitive. Under the assumption of an equal density of positive and negative dislocations,
an additional term 1/2 must be considered as the two reacting dislocations have to be of
opposite sign. The reaction rate ṗ of an individual moving dislocation now reads

ṗ = 2dannihil−cνρm
1

2nGS

. (4.34)

The Orowan Eq. 4.27 can be used to substitute νρm to yield

ṗ = 2dannihil−c
ε̇αm

b

1

2nGS

. (4.35)
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For calculating the reduction rate ρ̇−
m of the mobile dislocation density due to annihilation,

one has to take into account that, with each annihilation event, two dislocations are
eliminated and that the density of mobile dislocations is ρm

ρ̇−
m(annihil) = 2ṗρm = 2dannihil−c

ε̇αm

b

1

n
ρm. (4.36)

The formation of dislocation locks can be derived analogously. For this, the critical dis-
tance for the spontaneous formation of locks becomes dlock instead of dannihil−c. Moreover,
since reaction partners can be dislocations on all other active glide systems, this leads to
a factor (n − 1)/n instead of 1/n. The reduction rate of the dislocation density ρ̇−

m due
to the formation of locks then reads

ρ̇−
m(lock) = 4dlock

ε̇αm

b

n − 1

n
ρm. (4.37)

The third process taken into account is the formation of dipoles. Again, the derivation is
very similar to that for annihilation. For a dipole to form the distance between the two
dislocations has to exceed the critical distance for annihilation dannihil−c but has to be
small enough to have the involved dislocations trap each other. For this to happen, the
acting resolved shear stress due to the external stress has to be balanced by the stress
field of the individual dislocations. This implies that the critical spacing for the formation
of dipoles (ddipol) scales inversely with the externally applied stress. The respective area
that has to be considered amounts to 2(ddipol − dannihil−c)v dt (shaded area in Fig. 4.9).

Figure 4.9: Geometrical set-up for calculating the probability for the formation of dipoles [37].

The reduction rate ρ̇−
m due to the formation of dipoles then reads
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ρ̇−
m(dipol) = 2(ddipol − dannihil−c)

ε̇αm

b

1

n
ρm. (4.38)

The second category of dislocations considered are the immobile dislocations in the cell
interiors ρi. The rate of increase of the dislocation density inside the cells ρ̇+

i is equal
to the decrease of mobile dislocations due to the formation of locks, which was derived
before (Eq. 4.37)

ρ̇+
i = ρ−

m(lock) = 4dlock
ε̇αm

b

n − 1

n
ρm. (4.39)

Since locks cannot glide, the only process to decrease the immobile dislocation density is
annihilation by dislocation climb. The velocity of climb vclimb is diffusion-controlled

vclimb =
D

kBT
τA, (4.40)

where D is the self-diffusion coefficient, and A the activation area. The rate equation for
this process is then given by

ρ̇−
i = 2vclimbdannihil−g

1

n
ρ2

i . (4.41)

The third class of dislocations are the immobile dislocations in the cell walls ρw. These
dislocations undergo the same processes as those in the cell interiors, but there is one
additional process, which contributes to the increase of this particular dislocation density.
According to a former proposed model, it can be assumed that all dislocation dipoles
finally end up and accumulate in the cell walls. As dipoles are created in the whole
volume, but stored in the walls only, the rate of increase amounts to

ρ̇+
w =

1

fw

ρ̇−
m(dipol) =

1

fw

2(ddipol − dannihil−c)
ε̇αm

b

1

n
ρm. (4.42)
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5.1 Load Mechanisms

Hot work tool steels are thermally and mechanically loaded during complex load cases.
Depending on the load type, the tool will exhibit a certain lifetime. High cyclic thermal
loads cause time dependent creep, cyclic mechanical loads cause time independent fatigue
mechanisms. One cycle can last splits of a second to minutes and lifetime is commonly
defined as number of cycles to failure. The interaction of these load cases can cause creep-
fatigue, which cause an earlier component failure than only creep or fatigue.

Hot work tool steels are applicable for a temperature field over 200◦C to 500◦C. If
the material is exposed to temperatures higher than 0.3 Tm, which means temperatures
above 350◦C to 400◦C, the tool steel will creep (Fig. 5.1).

Figure 5.1: Deformation mechanisms at different stresses and temperatures [39].

The creep mechanism is naturally determined by the temperature, stresses and strain-
rates, respectively. At high stresses and strain rates we can expect dislocation creep and
core diffusion, at lower stresses and high homologous temperatures, diffusion creep (Coble
creep via grain boundaries, and at even higher temperatures Nabarro-Herring creep via
the matrix) occurs (Fig. 5.2). According to calculations of Sommitsch et. al. [40, 41],
dislocation creep can be considered as the dominant creep mechanism in hot work tool
steels during use.

36



5 Initiation and Progress of Damage 37

Figure 5.2: Deformation mechanisms at different strain-rates and stresses [39].

Hot work tool steels, for example for extrusion processes are supposed to carry cyclic
mechanical loads, which peaks are above the elastic limit. As a consequence of these
cyclic loads, generating plastic deformations, the component is not able to sustain more
than 103 to 105 cycles, which is defined as low cycle fatigue.

5.1.1 Creep

At homologous temperatures of about 0.3-0.4 Tm for metals and 0.4-0.5 Tm for ceramics,
the material deforms continuously under mechanical load or constant stress. Immediately
after loading a certain amount of strain ε0 is received, then the range of primary creep
(creep I) or transition range occurs, in which the creep-rate decreases continuously. The
subsequent steady state creep range is characterised by a constant creep rate (creep II),
i.e. the strain increases proportional to the time. Finally the creep rate increases until a
creep fracture occurs (creep III) [27].

The steady state creep rate depends on deformation mechanisms, i.e. the applied
stress, the temperature and also on the material parameters, especially on the diffusion
coefficient and the stacking-fault energy. Phenomenologically the steady state creep rate
ε̇ss depending on temperature and stress can be described by

ε̇ss = Aσn, (5.1)

with A as a constant and n denotes the stress exponent, or more explicit

ε̇ss = A

(
σ

G

)n

exp

(
− Q

kT

)
, (5.2)
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The behaviour of solid materials under creep load is examined by uniaxial creep tests
under constant stress or load. The general creep equation describing the strain over a
time period is as follows:

dε

dt
=

Cσm1

db1
exp

(
− Q

kT

)
(5.3)

where C is a constant depending on the material and the particular creep mechanism, m1

and b1 are exponents only depending on the creep mechanism, Q is the activation energy
of the creep mechanism, σ is the applied stress, dG the grain size of the material, k the
Boltzmann’s constant and T is the temperature. At relatively high stresses in comparison
to the shear modulus, creep is controlled by the movement of dislocations. When a stress
is applied to a material, dislocations move in their slip plane and this causes plastic
deformation. For dislocation creep it is essential that Q = QSD, the activation energy for
self diffusion, m1 = 4−6, and b1 is 0. Therefore dislocation creep has a strong dependence
on the applied stress and no grain size dependence. Materials contain a variety of defects,
for example solute atoms, that act as obstacles to dislocation motion. Creep arises from
this because of the phenomenon of dislocation climb. At homologous temperatures above
0.3 Tm, vacancies in the crystal can diffuse easier to the location of a dislocation and cause
the dislocation to move to an adjacent slip plane. By climbing to adjacent slip planes,
dislocations can overcome obstacles to further gliding, allowing further deformation to
occur. Because it takes time for vacancies to diffuse to the location of a dislocation, this
results in time dependent strain or creep. The rate of dislocation glide υD, also known as
drift velocity is

υD =
D0

kT
τb, (5.4)

where D0 denotes the diffusion coefficient, τ the acting shear stress and b the Burgers
vector. The shear rate is according to Orowan [42]

γ̇ = ρbυD, (5.5)

since ρ is associated to τ by a root-law,

γ̇ =
τ 2

α2G2b2

Db2

kT
τ = AG

(
τ

G

)n
D0

kT
exp

(
−QSD

kT

)
. (5.6)

A high value of n requires adequate assumptions about details of dislocation glide which
imply the amount of dislocation splitting. At high homologous temperatures and relatively
low stresses creep mechanisms are investigated, which are not attributed to dislocation
slide, but diffusion flow. In this case the material in a grain, which is under compressive
stress, is transported to regions under tensile stresses and that is the reason why a material
elongates parallel to the tensile load direction. This diffusion creep can occur via the
matrix (Nabarro-Herring-Creep) or at lower temperatures via grain boundaries (Coble-
Creep).
Some alloys exhibit a very large stress exponent (n > 10), and this has typically been
explained by introducing a threshold stress, σth, below which creep can’t be measured.
The modified power law equation then results in
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dε

dt
= ε̇ = A(σ − σth)

nexp

(
− Q

RT

)
(5.7)

with 3 < n < 10 [27].

5.1.2 Creep-Fatigue Interaction

Creep-fatigue occurs due to overlapping of high thermal loads causing creep and cyclic
mechanical loads which cause fatigue. Creep can produce large strain deformation, stress
relaxation, and crack initiation and growth (Fig. 5.3). For materials under fatigue and
creep loading, the interaction of creep and fatigue has been observed to have different
effects on the creep-fatigue life of different materials. Creep-fatigue tests were performed
and found out that the creep-fatigue lifetime was significantly affected by initial creep
damage on metallic alloys [22].

Figure 5.3: Influence of several damage mechanisms on crack progression at high-temperature
alternating-deformation, whereas fatigue damage (a), creep-fatigue-alternation (b) or creep dam-
age (c) dominates [43].

High temperature components in energy- and propulsion technology are commonly ex-
posed to these combined thermo-mechanical load cases. Especially during run up or shut
down of gas turbines the temperature changes so quickly, that time incremental tem-
perature gradients inside one component develop. As a reason of different hot regions
which expand unequally, local thermal strains and stresses result from these thermal gra-
dients. They overlap with present mechanical loads and determine the lifetime of such
components. An important aspect is the chronological compliance of temperature and
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strain, if they are in phase or if they exhibit a phase shift. For example, an air cooled
turbine blade has a phase shift of about 180◦ between thermal and mechanical load at
the exterior side, when there is an in-phase load at the interior side. Without cooling,
the load case changes and this causes a phase shift of about +90◦ at the exterior and
−90◦ at the interior side. Under these complex high-temperature loads, mechanisms are
active which cause additional damage, compared to room temperature conditions. In this
case of high temperatures and mechanical loads, time dependent deformation mechanisms
occur. Despite of a low nominal stress in the supporting sections of the component, which
can cause time dependent global creep in only small amounts, notches or imperfections in
the material cause local superelevations of stress, which lead to intensified creep damage.
The material is also influenced by environmental conditions like oxidation and corrosion.
In addition to time dependent damage contributions, time independent fatigue damage
mechanisms in the high cycle fatigue (HCF)-range as a reason of high frequent vibrations,
as well as fatigue loads in the low cycle fatigue (LCF)-range as a reason of run up or shut
down and other low cyclic mechanical loads and thermal stresses due to fluctuation of
temperature, occur [44].

Hot work tool steels are commonly used for forging processes, extrusion of light alloys
and processing of several materials. They get in contact with the preheated raw mate-
rial, for example the billet, subsequently the forging or extrusion process is proceeded
and finally after ejection of the forged component, or finished extrusion, the next cycle
starts immediately, or after a process-related required operation. A preheating of dies is
demanded, not to cool down the billet too much during it is in contact with the dies.
This preheating is also contributing to low cycle fatigue. During the loading process,
the surface of the die is heated up rapidly with a certain amount of temperature, which
cause high temperature gradients and as it is constrained by the colder matrix, compres-
sive stresses occur at the surface and tensile stresses below in bulk. The manufacturing
process itself causes additional high mechanical stresses and strains in the component,
overlapping with thermal loads. At the end of the manufacturing cycle, the thermal and
mechanical loads, respectively, decrease and tensile stresses occur at the surface, which is
the critical region for failure initiation [44].

5.1.2.1 Thermal and Thermo-mechanical Fatigue Experiments

Thermal Fatigue Experiments

In laboratory experiments it is tried to investigate the effects of the coexistant time inde-
pendent and dependent loads during practical application of these high temperature ma-
terials with the aim of thermal and thermo-mechanical fatigue experiments. The thermal
fatigue experiments are arranged at specimens similar to components to achieve prefer-
ably realistic conditions. Strains and stresses are generated by temperature gradients
similar to the real component. Another possibility is that specimens are clamped while
cyclic heated and cooled, so compressive stresses occur during heating and tensile stresses
develop during thermal compression when cooling. Plastic strains arise because of the
permanently clamping of the specimen. Thermal fatigue experiments can simulate oper-
ating conditions near to reality, but have in common that the occurring stresses cannot
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be measured, only evaluated by FEM-simulations. Furthermore, the specified parameters
like total strain or plastic strain are hardly to control [44].

Thermo-mechanical Fatigue Experiments

Due to a three dimensional inhomogeneous tempereature distribution and resulting ther-
mal strains, a thermomechanical loaded specimen is strain controlled regulated in the
experiment. Hot regions are generally under compressive stresses, colder ones thereby
under tensile stresses. These stresses can relax during the manufacturing process due to
a high viscosity in hot regions and are reduced by inelastic deformations, which cause a
stress rearrangement. Several attempts were performed for the hot-work tool steel W400,
see [45].

In contrast to the afore described thermal fatigue experiments, only one volume frac-
tion of a real component with specific temperature and load distribution is considered.
In common such experiments are conducted on specimens with cylindrical or rectangular
cross sections in a servo-hydraulic test device, operating in a closed regulator circuit. The
specimens are exposed to a pre-defined mechanical load distribution (of stress, total strain
or plastic strain) and this distribution can be calibrated independently of periodic thermal
fluctuations, wherby user-defined interactions are possible. The total strain adjusted by
the thermal module or the plastic strain is used as control signal. This procedure allows
it to keep the value of the plastic strain as well as the plastic strain amplitude constant
during the experiment by applying a triangular reference value distribution. A constant
level of the plastic strain amplitude is advantageous for the interpretation of the measured
cycles to fracture, because the plastic strain amplitude determines the lifetime in the LCF-
range decisively. The usage of the plastic strain as control variable is also advantageous,
because isothermal and mechanical behaviour of alternating deformed specimens with the
same plastic strain rate can be compared. In principal, user defined load distributions and
phase shifts between mechanical and thermal cycles are possible. However in practical
experiments, triangular in-phase (IP) and out-of-phase (OP) specified values for strain
and temperature are chosen, which simulate the worst load cases in real components and
are defined as basic types of thermo-mechanical fatigue experiments.
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Figure 5.4: Schematical phase-distribution between temperature and strain at TME-load for
an IP and OP experimental guidance (a) and a DCW and DCCW load (b) [46].

In the case of an IP-experimental guidance, the maximum tensile strain coincides with
the maximum cyclic temperature, which means a phase shift of 0◦ between mechanical-
and thermal load. Whereas under OP experimental guidance, the maximum tensile strain
occurs at the minimum cyclic temperature, which conforms to a phase shift of 180◦ (Fig.
5.4). Beside these, TME experiments with a phase shift of ±90◦ between load and tem-
perature distribution are realised, which are known as diamond− clockwise (DCW) and
diamond − counterclockwise (DCCW) [44]. In the strain vs. temperature diagram, the
load distribution curves form a tetragon, which passes clockwise or counter-clockwise (Fig.
5.4). According to a fracture mechanical consideration by [47], creep-fatigue exists, if the
crack propagation rate is higher than the linear summation of the time dependent fatigue
and time dependent creep conditioned crack propagation rate. The distinctive interaction
of several damage mechanisms in TME-experiments is defined by a total damage, which
is not determined by the aim of a simple linear summation of single active damage mecha-
nisms. Difficulties due to the characterisation of material behaviour at thermomechanical
fatigue load are, that in the TME-experiment damage mechanisms can occur, which are
not observable in isothermal experiments. It can happen that the isothermal data, which
are based on lifetime rules, produce non-conservative results. To describe the char-
acteristical effects of damage mechanisms and interactions during TME-load on lifetime,
Nitta and Kuwabara [48] introduced a classification of material behaviour which consists
of four types (Figs. 5.5 and 5.6). This classification is based on evaluations of large
experimental data on several high-temperature materials under TME-conditions [44].

Type I arises, if an IP-load shows lower fracture load cycles in comparison to an
OP-load. Such a type I performance is investigated for the austenitic steel AISI 304
SS when the maximum cyclic temperature is in the region of more than 600◦C where
creep in style of nucleation of pores under tensile stresses plays a significant role. In this
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case, an OP-experimental guidance causes less damage, because the specimen is under
compressive stresses at high temperatures and no pores can come into existance. In the
out-of-phase experiment, transcrystalline fractures occur, whereas intercrystalline damage
reduces the lifetime under IP-load. If there are strong environmental effects like oxidation
or diffusion of gas like oxygen or hydrogen, the material behaves according to type O.
An OP-experimental guidance leads to higher damage than in-phase loading, which at-
tributes to significant differences in the number of cycles until crack initiation occurs (Fig.
5.5). Ferritic steels, for example 2,25 Cr-1Mo and 1Ni-1Mo-1V or the nickel-base-alloy IN
738LC show such a behaviour. The high tensile stresses affecting during the cold stage of
an OP-cycle promotes crack formation in the brittle oxyde layer, which leads to an accel-
erated initiation of a fatigue crack in the matrix material during out-of-phase conditions.
The characteristic for the material behaviour of type O is also a transcrystalline fracture
mode at both types of TME-loads.

Figure 5.5: IP-load causes the shortest lifetime of a component according to Type I, the main
damage mechanism is creep. OP-loads cause the shortest lifetimes according to Type O, the
main damage is caused by environmental conditions [48].

Similar investigations concerning the fracture character are observed for material be-
haviours according to type E, which is identified that nor creep damage neither environ-
mental conditions have a strong influence on lifetime. Independent of the load type (IP or
OP), nearly the same number of cycles to fracture are incorporated, which is determined
by the amount of the plastic strain amplitude and therewith by the dimension of fatigue
damage (Fig. 5.6). Nitta and Kuwabara [48] detected such a material behaviour for the
austenitic steel AISI 304 SS, when the maximum temperature is not too high (≤ 550◦C),
as well as for the iron-base alloy A 286 and the cobalt-base alloy FSX 414.
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Figure 5.6: IP- and OP load show nearly the same lifetime according to Type E, neither en-
vironmental conditions nor creep damage dominates. At high strain amplitudes an IP-load case
causes the shorter lifetime according to Type E′, creep only dominates at high load amplitudes
[48].

These investigations definitely demonstrated, that for many materials used in compo-
nents under high-temperature application, often a difficult overlapping of several damage
mechanisms under TME-conditions not only causes a lifetime dependence on the max-
imum temperature and stress- and strain amplitude, but also additionally the lifetime
dependence is controlled by the phase relation between the cyclic differing parameters
temperature, stress and strain respectively [44].

5.2 Damage Mechanisms

5.2.1 Pores

5.2.1.1 Nucleation of Pores

Damage initiated by pores can be considered in form of intra- and transgranular pores,
which differ in their nucleation behaviour.

Intragranular Nucleation

An intragranular pore nucleus is geometrically defined by its radius r and its wetting angle
of contact ψ. Also particles can be propable locations for nucleation. The wetting angle
of contact ψ for intragranular nucleation at grain boundaries results from the equilibrium
of the interface energy matrix/pore γs (surface energy of the matrix material) and the
grain boundary γgb [22].
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Figure 5.7: (a) Intragranular pore nucleus at a grain boundary and (b) at a cubic particle [49].

The angle φ for nucleation on a particle is defined by the interface energy matrix/particle
γip, matrix/pore γs and particle/pore γsp

cosφ =
γip − γsp

γs

. (5.8)

For a lentoid pore, the volume Vp, the surface Sp, the substitute grain boundary surface
Bp and the perimeter Pp

Vp = ρ3fV (ψ), (5.9)

Sp = ρ2fS(ψ), (5.10)

Bp = ρ2fB(ψ), (5.11)

Pp = ρfP (ψ) (5.12)

can be described as a function of the radius of curvature ρ and the form functions fi = f(ψ)

fVp(ψ) =
2π

3
(2 − cosψ + cos3ψ), (5.13)

fSp(ψ) = 4π(1 − cosψ), (5.14)

fBp(ψ) = πsinψ, (5.15)

fPp(ψ) = 2πsinψ. (5.16)

For a description of the seeds of pores at particles, the angles φ and μ are necessary to
be defined

fv(ψ′) =
4π

3
(2 − 3cosψ′ + cos3ψ′), (5.17)



5 Initiation and Progress of Damage 46

ψ′ =
(ψ + φ − μ)

2
. (5.18)

Based on the classical nucleation theories for condensation, and for phase transformation
in solid state [50], for a pore nucleus in a stress field with the stress σ, the critical radius
of curvature ρc amounts to

ρc =
2γs

σ
. (5.19)

The stress related to the critical state of a nucleus is declared as sintering stress σ = σ0.
The variation of the free energy through formation of a pore nucleus is

ΔGn = −σρ3fv(ψ
′) + 3γsρ

2fv(ψ
′), (5.20)

with σ as the normal stress at the grain boundary. For the case ψ′ < 0, a negative
radius of curvature ρc arises. As a consequence, the activation barrier ΔGc disappears
and spontaneous seeds are formed. The critical radius rc can be obtained from the grain
boundary surface and the circular area Ac with 4πr2

c

Bp = Ac, (5.21)

ρ2
nfb(ψ) = 4πr2

c (5.22)

and

rc =
γs

σ

(
fb(ψ)

π

)1/2

. (5.23)

During a descent of the effective stress at a pore with a critical radius of curvature ρc

below a critical value, analog to σ = 2γs/ρc, the pore becomes instable and shrinks, that
means the pore closes by sintering. The associated stress σ = σ0 to the condition ρ = ρc

is declared as sinter-stress.
Basically two related conceptions, in-depth described by Riedel [49], exist. They refer

to the presumption of a size distribution of pore nuclei and clusters consisted of diffusible
vacancies with a number of n, respectively. Raj and Ashby [51]formulated the steady state
nucleation rate Jss, established from the theory of homogeneous nucleation of precipitates
[52]

Jss = βN (5.24)

as a function of stress and free energy of a pore nucleus ΔGn. The absorption rate of
vacanies β is
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β = β(n) = fp

(
n

fv

)1/3
δgbDgb

Ω
exp

(
σΩ

kBT

)
(5.25)

with n = 80kBT/(σΩ). Dgb is the self-diffusion coefficient along the grain boundary
and δgb the thickness of the grain boundary. In this approach, the experimental noticed
influence of the strain rate ε̇ is not considered. This is also obtained for the formulation
of Jss based on the attempts of Fooker-Planck and Zeldovich (in [49]), with

Jss = βNZ (5.26)

with Z as the Zeldovich-coefficient

Z =
σΩ

4γs

fv

(
ψ′
)−1/2

. (5.27)

According to a theory related to the homogeneous nucleation of precipitates, the Zeldovich-
coefficient concerns the following [52]: In contrast to Becker and Döring, it was considered
that also overcritical pore nuclei with r > rc and ΔGn > ΔGn,c respectively, can be dis-
solved. That menas that the steady state seed distribution around pore nuclei with n > nc

and r > rc respectively, expands to an indiscriminately determined marginal radius r∗

and n∗. This was considered by the modified Zeldovich-coefficient Z

Z =

(
−1

2πkBT

∂2ΔGn

∂n2

)1/2

. (5.28)

The graphical interpretation of the distribution ΔGn vs. rn also demonstrates that the
magnitude of the nucleation energy barrier in the interval kBT below the maximum ΔGn,c

can be described by 1/Z.

Figure 5.8: (a) Schematical distribution of the free formation energy against the cluster or
nucleus radius rn and n as the number of vacancies in one nucleus. rc and nc denote the critical
values; (b) quasi-stationary cluster size distribution according to Volmer/Weber (V-W) and
Becker/Döring (B-D) [49].
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Transgranular Nucleation

Under influence of high stresses or high strains, transgranular pores accumulate. The
formation of transgranular pores at stresses above the yield strength and creep is always
observed only in combination to nucleation on particles. According to Martin [12], the
theories of nucleation at deformation above the yield strength σy can be splitted up into
three parts:

� Energy criteria,

� local strain criteria and

� local stress- and decohesion criteria.

In case of creep, different approaches were discussed by Goods and Brown [53]:

1. an energetical based criterion for the critical nucleation strain εn

εn ≥ 3γsp

μpb
. (5.29)

Here the possibility of relaxation around the particle is considered. Therefore it
was assumed that the plastic relaxation around the particle decays parabolically.
The factor μp denotes the shear modulus of the particle and γsp the specific surface
energy.

2. Nucleation during excess of decohesion stress causes a critical nucleation strain εn.
In comparison to the models at deformation above the yield strength σy, decohe-
sion stresses, for example for a maraging steel with TiC at σc � 1900[MPa] were
observed. At creep loading, the occurence of such high stresses is doubtful, because
stresses are reduced due to relaxation around the particle.

5.2.1.2 Growth of Pores

Besides the alteration in the damage mechanisms, characteristic growth mechanisms are
working, depending on the load cases and material conditions, which are systematically
shown in several V oid Growth Mechanism Maps. In use of the growth-models for
intragranular pores, Riedel [49] calculated the growth rates of different mechanisms and
generated a void growth map.



5 Initiation and Progress of Damage 49

Figure 5.9: Calculated cavity growth rates, schematically [49].

Fig. 5.9 gives a simplified picture of the cavity growth rates calculated from various models
and it schematically shows the ranges in which different mechanisms predominate. Of
course, real materials do not necessarily exhibit all of the mechansms indicated depending
on material parameters and on the cavity size and spacing. If, for example the surface
diffusion coefficient is large, crack-like cavity growth may have no range of validity between
equilibrium diffusive growth and plastic hole growth. Fig. 5.10 summarises the times to
cavity coalescense calculated for instantaneous cavity nucleation at the beginning of a
test. In many cases, the time to cavity coalescence is approximately equal to the time to
rupture, but in the case of constrained growth, this relation is questionable.

Figure 5.10: Calculated lifetimes for instantaneous nucleation, schematically [49].
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� Intragranular Pore Growth

An intragranular pore with its characteristic geometric dimensions is shown in Fig. 5.11:

Figure 5.11: Intragranular pore with its characteristic geometric dimensions. σI denotes the
direction of the first principle stress [22].

According to Cocks/Ashby [54] and Riedel [49], the pore growth can be controlled by

� Diffusion along grain boundaries and void surfaces,

� power law creep

� and by a combined interaction of single mechanisms.

Growth by Grain Boundary Diffusion

Based on the theory for diffusion-creep, i.e. the consideration of the normal stress distri-
bution σn at a grain boundary with the displacement rate u̇n

∇2σn =
kBT

ΩδgbDgb

u̇n, (5.30)

Riedel derived a relation for the grain boundary diffusion controlled growth dr/dt

dr

dt
=

2ΩδgbDgb[σb − σ0(1 − ω)]

kBTh(ψ)q(ω)r2
, (5.31)

with

ω =

(
2r

λ

)2

, (5.32)

q(ω) = −2ln(ω) − (3 − ω)(1 − ω) (5.33)
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and

h(ψ) =
3

4π

fv(ψ)

sin(ψ)3
(5.34)

of an axisymmetric pore with the radius r. σb is the local stress at the grain boundary
and is named facet stress. λ denotes the distance between pores, ω the damaged area, Ω
the atomic volume and σ0 the sinter stress.

Combined Diffusion

Grain boundary and void surface diffusion are operating independently from each other.
Hence an additive rate attempt can be applied. Riedel [49] studied this case analytically.
Consecutively the equations for growth of pores are mentioned:

dr

dt
=

27ΩδsDsfγs

8kBTλ3Δ

{
(1 + QΣΔ)1/2 − 1

}3

Q3(1 − ω)3
, (5.35)

Σ =
2σλ

3γssin(ψ/2)
, (5.36)

Q =
3

4

√
ωq(ω)

(1 − ω)3
(5.37)

and

Δ =
δsDsf

δgbDgb

, (5.38)

where δs and δgb denote the thickness of interfaces and grain-boundaries, Dsf and Dgb the
self-diffusion-coefficient. At a high level of surface-diffusion the pore forms spherically,
while at high stresses no diffusive balance takes place and the pore shapes like a crack.

Growth by Power Law Creep

A defect similar to a crack under deformation in a volume was analysed by He and
Hutchinson [55]. This state approach was adapted by Riedel [49] for the case of power
law creep. The temporal derivation of the volume V of the pore is

V̇ = ε̇ed
3
g

(
1 +

3

n

)−1/2
σ∞

1 − σb

σ∞
e

. (5.39)

In contrast to the attempt by He and Hutchinson [55], the crack-length a was replaced
by the grain-size dg, and the stress σ∞

1 was replaced by the difference between the first
principal normal stress and the facet stress σ∞

1 -σb. The equivalent stress is denoted by
σ∞

e .
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Constrained Growth

The association for this theory is as follows: under influence of local stresses σb, pores
are growing in relation to Eq. 5.31 by grain boundary diffusion. A multiplication of this
equation with the number of pores at the facet of a grain boundary results in the rate of
volume V̇ . On the other hand the strain-rate ε̇∞e in the matrix causes a volume growth
rate of the crack, considered as grain boundary facet. Due to reasons of compatibility,
the volume-rates have to be equal. The local stress σb results by equating

σb = (1 − ω)σ0 +
σ∞

1 − (1 − ω)σ0

1 + 2ΩδDgbq′σ∞
e /[kBTq(ω)dgλ2ε̇0]

, (5.40)

where

q′ = π2

(
1 +

3

n

)1/2

. (5.41)

The growth equation for the radius of the pore can be obtained by introducing σb into
Eq. 5.31

dr

dt
=

σ∞
1 − (1 − ω)σ0

h(ψ)r2[q(ω)kBT/(2ΩδDgb) + q′σ∞
e /(dgλ2ε̇∞e )]

(5.42)

If the strain-rate ε̇∞e is very high, the volume generated by the diffusion process can
easily be accommodated, that means the growth equation is restricted to the diffusive
influence. This case is described as unconstrained growth. In contrast to constrained
growth, i.e. at lower strain rates ε̇∞e and σb → σ0, the growth rate is controlled by
ε̇∞e . Riedel [49] assumed that the (all of the same size) pores are evenly distributed and
described by a distance λ. The comparison of corresponing calculated results with data
of experiments on ferritic steels shows that the damage behaviour by an assumption of
continuous intragranular nucleation can be described very well by this model of growth.
In contrast to this, the model by Cocks and Ashby [54] is based on modified conceptions
by the point of view that pores do not form on all facetts, which lie perpendicular to the
first principal normal stress. By means of the compatibility condition, the strain rates
at the damaged facetts, and facetts exempt from pores, have to be the same. Therefore
a new variable L was introduced, which characterises the distance of the pore clusters
between the damaged facetts.

� Transgranular Pore Growth

Analogous to nucleation of transgranular pores, the growth by grain boundary or surface
diffusion is assumend to be not influenced by vacancies, because the transgranular pores
don’t have a connection to the grain boundaries. Cocks and Ashby [54] adapted a model
for intragranular pore growth at power-law-creep for transgranular pore growth (Fig.
5.12).
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Figure 5.12: Homogeneous distribution of transgranular pores [54].

The representative volume in this approach is supposed to be a disk with a thickness of
d = 2r. With the evolution equation of the damaged area

1

ε̇0

dfh

dt
= β

[
1

(1 − fh)n
− (1 − fh)

](
σe

σ0

)n

, (5.43)

it is possible to derive a relation for the temporal alteration of the pore radius by

dfh

dt
=

d

dt

[(
r

2λ

)n
]

=
4r

λ2

dr

dt
− 8r2

λ3

dλ

dt︸︷︷︸
=0

. (5.44)

Therefore a relation between dr/dt and dfh/dt is given by

dr

dt
=

dfh

dt

λ2

4r

=
βλ2

4r

[
1

(1 − fh)n
− (1 − fh)

]
ε̇e (5.45)

with β ∼ 0.6 at uniaxial tensile load.
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Damage caused by Pores

To make a precise prediction for the point in time when failure occurs, an indicator is
required. This indicator has to be described by the parameters like pore radius, pore
density and distance of pores for both, intra- and transgranular pores. The coagulation
of pores to cracks (see Fig. 5.13) is not considered in that way, but as an increase of
the stress due to reduction of area, which leads to the changeover to fracture mechanical
theory [22].

Figure 5.13: Coagulation of trans- and intragranular pores. (a), (b) and (c) illustrate the
growth and coalescence of transgranular pores, while in (d) the critical state of coagulation of
intragranular pores at a grain boundary is depicted [12].

5.2.2 Cracks

5.2.2.1 Initiation of Cracks by Coagulation of Pores

In the domain of tertiary creep (creep III), intragranular and transgranular pores coagulate
to micro cracks and these micro cracks form macro cracks. At damage by transgranular
failure σ > σy, the model according to Brown and Embury (in [12]) provides a suggestion
for the amount of strain, which is necessary to cause coagulation of pores. According to
this model, the transgranular pore seeds have reached the magnitude of the particle soon
after decohesion, on which the nucleation takes place. The strain, until coalescence arises,
amounts to
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ϕg =
1

C
ln(1 + εg) (5.46)

with C = 1..2 and

εg =
λ − 2r

2r
. (5.47)

By insertion for λ = λp, ϕg follows to

ϕg =
1

C
ln

⎛
⎜⎝
√

π

6fp
v
−
√

2

3

⎞
⎟⎠ . (5.48)

The distinctive elongation of pores in the direction of the first principal normal stress,
ivestigated by Brown and Embury, occurs at only a small value of triaxial stresses. With
increasing triaxiality, the transgranular pores form spherically.

The point is now, to find suitable failure criteria and an indicator to predict the
moment of failure. Therefore this critical state or indicator has to be described by available
parameters like pore radius, pore density and distance between intra- and transgranular
pores. The coagulation of pores into cracks was not considered, but the increase of stress
due to the diminution of cross section. At the time of coagulation of pores, it is necessary
to consider fracture mechanical theories [22].
If given parameters are applied, three different failure criteria can be implemented:

� To reach a critical stress,

� the excess of a critical damage-parameter Dcrit,

� and the coagulation of pores, if 2r ≥ λ.

5.2.2.2 Fatigue Crack Initiation

Polycrystalline metals have a variety of intrinsic stress concentration features, such as
grain boundaries, triple junctions and inclusions, which can rapidly initiate a crack under
an applied cyclic load. Therefore, even with a highly polished surface, cracks can still ini-
tiate in these regions so long as the resolved shear stresses in the vicinity of these inherent
microstructural defects are sufficiently high and aligned favourably along preferential slip
systems of the material crystal structure (e.g. 〈111〉{110} systems in face-centered cubic
(fcc), 〈110〉{111} in base centered cubic (bcc) metals). If considered at the sub-micron
level, lattice defects such as dislocations and the evolving dislocation structures ultimately
control the initiation process. There are additional considerations when analysing fatigue
behaviour, such as the material and shape of an engineering component, as well as, the
sequence, mode and magnitude of cyclic loading [56].

For early crack initiation studies, four point bending is a suitably convenient test setup
as is keeps the specimen geometry simple. The advantage lies in confining the study to
the surface microstructure, where a uniform tensile stress is applied to the surface under
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a bending load. The application of a relatively low load under high frequency also implies
that the local plasticity induced will be small in the early stages of testing. Hence, sur-
face grain interaction with suburface grains should have less influence so long as it can be
ensured that the average grain size of the specimen surface microstructure is larger than
the local regions of plastic deformation. If this is the case, only the surface microstructure
needs to be described, which considerably simplifies procedures involving microstructure
characterisation. Such two-dimensional analyses are now routinely conducted using EBSD
[56].

Experimental Study

For the four point bend setup, the bending moment is uniform along the inner fibre of
the beam, according to beam theory. On the top surface, where the investigations of this
study were made, the tensile stress is highest and also uniform across the with. This
raises the likelihood of fatigue cracks initiating on the surface and narrows the region to
be studied, which lies near the specimen mid-point on the top surface (Fig. 5.14). The
rectangular aluminium test piece had a purity of 99.99% [56].

Figure 5.14: Schematic diagram of the four-point bend test and specimen geometry for high-
cycle fatigue testing [56].

The initial microstructure of a representative section of the polished region is shown in
Fig. 5.15 and it is observed that the grains are equaxed and relatively large.
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Figure 5.15: Initial microstructure of a selected region of the electropolished specimen surface
[56].

After 5×105 cycles fatigue cracking became prominet, at which time the test was stopped.
Fig. 5.16 shows the region under low (a) and high (b) magnifications, where the forma-
tion of slip lines and bands, as well as early crack initiation and growth, are clearly seen.
Such cracks are typical of Stage I fatigue cracking, initiating at grain boundaries, triple
junctions and slip bands.

Figure 5.16: (a) Low and (b) high magnifications of the microstructure of a region after 5×105

fatigue cycles, emphasising the formation of slip bands, crack initiation and early crack growth
[56].

Crack growth was frequently observed to occur along slip bands, thus highlighting their
crystallographic nature. Crack growth was also confined to within grain boundaries and
observed to be arrested once an opposite grain boundary was reached. It was also observed
that the fatigue cracks were predominantly found in grains above the average grain size
[56].



6 Damage Models

A variety of damage models exists, for example plastic energy criteria (Freudenthal resp.
Clift [57, 58], Cockroft and Latham [59], Argon and Im [60, 61]), as well as integral
over effective strain criteria (Ayada [62], Oh and Kobayashi [63], Osakada [64, 65]), em-
pirical criteria (Kuhn [66], Sowerby [67, 68]), void based criteria (McClintock [69], Rice
and Tracey [70], Oyane [71, 72], Gosh [73]) Yield criteria based on void volume fraction
(Gurson [74], Gurson-Tvergaard-Needleman [75–77], Shima-Oyane [78], Green [79]) and
continuum damage mechanics criteria (Lemaitre [80, 81], Chaouadi [82], Tai and Yang
[83]). To describe creep and creep-fatigue damage, some exemplarily selected void based
criteria and continuum mechanical methods are presented in this chapter.

6.1 Void based Criteria

6.1.1 Model according to McClintock

The McClintock criterion [69] is an integral approach to describe failure by cylindrical
void initiation and growth followed by coalescense. The fracture should occur when one
of the damage variables Ci, like the void radius, void volume fraction or stress related
parameter, reaches a critical value. The criterion is as follows

Ci =

∫ ε̄f

0

⎡
⎣ √

3

2(1 − n)
sinh

(√
3(1 − n)

2
− σi + σj

σ̄

)
+

3

4

σi − σj

σ̄

⎤
⎦ dε̄ (6.1)

with i = 1,2,3; and j = 2,3,1. Important in this criterion is that there is a very strong
inverse dependence of fracture strain on hydrostatic tension in plastic material. A very
strong effect of triaxiality in reducing the fracture strain was observed, especially in non
hardening material. The damage rate depends on the average of the two transverse stresses
in non hardening materials, whereas it depends only on the stress normal to the fracture
plane in viscous materials.

6.1.2 Model according to Rice and Tracey

The approach according to Rice and Tracey [70] considers the ductile growth of voids
in continuum plasticity and also discussed related results, e.g. a long cylindrical void
considered by McClintock [69]. In this formulation, fracture occurs when the radius r of
the spherical cavities reaches a critical value rc:

ln

(
r

rc

)
= c1ε̄exp

(
c2σH

σ̄

)
(6.2)
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with c1 and c2 as material parameters, σ̄ denotes the Von Mises equivalent stress and σH

the hydrostatic (mean) stress.
A modified Rice and Tracey criterion [84] was introduced for application in finite

element programs for fracture analysis with the critical value C

C =

∫ ε̄f

0

exp

(
cmσH

σ̄

)
dε̄ (6.3)

with cm as material parameter.

6.1.3 Yield Criteria based on Void Volume Fraction

Gurson and Gurson-Tvergaard-Needleman Model

The following criteria define new flow rules for voided materials, which depend on the
current void volume fraction Cν ,

Cν =
V − VM

V
= 1 − VM

V
(6.4)

⇒ V =
VM

1 − Cν

and
dV

dCν

=
VM

(1 − Cν)2
(6.5)

with V denoting the volume and VM as the incompressible volume of the matrix material.
With the Eqs. 6.4 and 6.5 the change of the volumetric strain dεν can be obtained

dεν =
dV

V
=

dCν

(1 − Cν)
(6.6)

and the volumetric strain can also be calculated

dεν = dλ

(
9

2
CνσH

)
. (6.7)

Subsequently, an expression for the non-negative proportionality factor dλ is gained by
substituting Eq. 6.6 into Eq. 6.7:

dλ =
2dCν

9σHCν(1 − Cν)
(6.8)
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The change of the strain components dεi can be calculated with the proportionality fac-
tor dλ, the normal anisotropy strain ration r̄, the principal stress components σi, the
hydrostatic stress σH , and the current void volume action Cν ,

dε1 = dλ

{
1

1 + r̄
[2(1 + r̄)σ1 − 2r̄σ2 − 2σ3] +

3

2
CνσH

}
, (6.9)

dε2 = dλ

{
1

1 + r̄
[2(1 + r̄)σ2 − 2r̄σ1 − 2σ3] +

3

2
CνσH

}
, (6.10)

dε3 = dλ

{
1

1 + r̄
[−2σ1 − 2σ2 + 4σ3] +

3

2
CνσH

}
. (6.11)

dλ can also be expressed in the following form:

dλ =
1

2(1 − Cν

dε̄M

σ̄M

, (6.12)

and by substituting Eq. 6.8 into Eq. 6.12, an expression for the dependence of the effective
matrix strain ε̄M on the current void volume fraction is gained as

dε̄M

dCν

=
4σ̄M

9σHCν

. (6.13)

Different yield criteria exist, which provide the expressions for the effective stress on the
matrix material σ̄M . With dλ from Eq. 6.8, the principal strain components εi can be
calculated, and thereby also the volumetric strain εν . From this procedure, a dependence
of the strain on the void volume fraction is achieved and the fracture should occur when
a critical Cν value and therefore the corresponding critical strain is reached.

Gurson [74] proposed a yield function which is based on an upper bound solution
for spherically symmetric deformation of rigid perfectly plastic materials around a single
spherical void

σ̄2 = σ̄2
M(1 + C2

ν ) − 2Cν σ̄
2
Mcosh

3σH

2σ̄M

. (6.14)

Tvergaard and Needleman [75–77] analysed the beginning and growth of plastic flow
localisation for solids with initial imperfections numerically and modified Gursons model
which arises now to

σ̄2 = σ̄2
M(1 + q2

1C
2
ν ) − 2Cνq1σ̄

2
Mcosh

3q2σH

2σ̄M

, (6.15)

where q1 and q2 are fit parameters, introduced to drive the predictions of the model into
closer agreement with numerical analyses for deformations of materials with periodically
distributed circular cylindrical voids or sherical voids.

The modification of Gurson’s model by Tvergaard accounts in a global way for the
non-uniform stress field around each void and also for the interaction between neigh-
bouring voids [85]. Tvergaard also considered imperfections in the form of locally higher
concentrations of void nucleating particles. The material failure is not directly attributed
to the coalescence of voids, like it is assumed in Gurson’s model [74], but to the apparent
loss of active material volume.
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6.2 Continuum Damage Mechanics Criteria

6.2.1 Effective Stress Concept according to LeMaitre

The effective stress concept according to LeMaitre [80] describes the process of material
damage and resulting increase of stress due to diminution of the load carrying cross
section. If the representative volume element (the representative volume element method

is described more detailed in 8.3) of Fig. 6.1 is loaded by a force �F = �nF , the usual
uniaxial stress is:

σ =
F

S
. (6.16)

Figure 6.1: One-dimensional damaged element [80].

If all the defects are open in such a way that no microforces are acting on the surfaces of
microcracks or microcavities represented by SD, it is convenient to introduce an effective
stress σ̂ related to the surface that effectively resists the load, namely (S - SD):

σ̂ =
F

S − SD

, (6.17)

and introducing the damage variable ω = SD/ω,

σ̂ =
F

S
(
1 − SD

S

) , (6.18)

or
σ̂ =

σ

1 − ω
. (6.19)

This definition is valid for the effective stress on the material in tension. In compression,
if some defects close, the damage remaining unchanged, the surface that effectively resists
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the load is larger than S - SD. If all the defects close, the effective stress in compression
σ̂ is equal to the usual stress σ. The definition of the “effective” area of microcracks
δSD, “effective” has to be understood as “strength”, taking into account the microstress
concentrations and mutual interactions of defects loaded in tension or shear. Only mi-
cromechanics may give a precise meaning of this concept which will be taken into account
globally at the mesoscale through identification of the damage variable by means of its
coupling with elasticity or plasticity.

A way to avoid a micromechanical analysis for each type of defect and type of damage
is to postulate a principle at the mesoscale, which leads to the strain equivalence principle.
In thermodynamics, the method of local state assumes that the thermomechanical state
at a point is completely defined by the time values of a set of continuous state variables
depending upon the point considered. This postulate applied at the microscale imposes
that the constitutive equations for the strain of a microvolume element are not modified
by a neighbouring microvolume element containing a microcrack. Extrapolating to the
mesoscale, this means that the strain constitutive equations written for the surface δS -
δSD are not modified by the damage or that the true stress loading on the material is the
effective stress σ̂ and no longer σ. The following principle results [80]:
“Any strain constitutive equation for a damaged material may be derived in the same way
as for a virgin material except that the usual stress is replaced by the effective stress”

This means, that the undamaged material with D = 0 and ε = f(σ, ...) is from the
same derivation as the damaged material with 0 < ω < 1 and ε = f(σ/(1− ω), ...). This
statement is a principle because it has been demonstrated only in some particular cases
of damage through homogenisation techniques and can be applied either to elasticity or
plasticity.

6.2.2 Model by Yeh and Krempl

An incremental multiaxial life prediction law (IMLP) is proposed in this model which con-
sists of the three-dimensional thermoviscoplasticity theory based on overstress (TVBO)
combined with a multiaxial damage accumulation law (MDA) to compute the life-time or
cycles-to-crack initiation [86].

Thermoviscoplasticity Theory Based on Overstress (TVBO)

This theory developed by Lee and Krempl is for infinitesimal strain and orthotropy. It
is of unified type and does not use a yield criterion and loading/unloading conditions.
The elastic strain is formulated to be independent of thermomechanical path and the
inelastic strain rate is a function of overstress, the difference between the stress σ, and
the equilibrium stress g. The long-term asymptotic values of stress, equilibrium stress,
and kinematic stress rates, which can be obtained for a constant mechanical strain rate
and ultimately constant temperature, are assumed to be independent of thermal history
as are the ultimate levels of the rate-dependent overstress and of the rate-independent
contribution to the stress. Therefore, the material functions and constants can in princi-
ple be obtained from isothermal tests within the temperature range of interest.
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All material constants can be functions of temperature. This dependence is not ex-
plicitly displayed. The temperature dependence can be the usual Arrhenius relation or
can deviate from that model [86].

Flow laws

In the context of an infinitesimal theory, the total strain rate, dε/dt, is considered to be
the sum of elastic, dεel/dt, inelastic, dεin/dt, and the thermal strain rates, dεth/dt,

ε̇ = ε̇el + ε̇in + ε̇th (6.20)

For each strain rate, a constitutive equation is postulated. The elastic strain is assumed
to be independent of thermal history, therefore

ε̇el =
d

dt
(C−1σ) = C−1σ̇ + Ċ

−1
σ (6.21)

where C−1 is the compliance matrix. The additional term Ċ
−1

σ contributes to the total
strain rate for temperature-dependent elastic material properties. It insures that the
elastic behaviour is path-independent.

The inelastic strain rate is only a function of the overstress x. It denotes the difference
between the stress σ and the equilibrium stress g, a vector state variable of the theory.
Accordingly,

ε̇in = K−1x (6.22)

The viscosity matrix K−1 controls the rate dependence through the positive, decreasing
viscosity function k[Γ]. The thermal strain rate is given by

ε̇th = α[T ]Ṫ (6.23)

with α[T ] as the temperature-dependent coefficient of the thermal expansion vector. Ṫ is
the temperature difference from some datum temperature.

The Incremental, Multiaxial Damage Accumulation Law

The multiaxial damage accumulation law (MDA) is proposed based on the modification
of the incremental life prediction law for uniaxial creep-fatigue interaction. The model
includes the effect of hydrostatic stress on creep and fatigue damage. The importance
of hydrostatic stress on the low-cycle fatigue life has been acknowledged [87]. Ductile
materials can become brittle under hydrostatic tension, while brittle materials may be-
come ductile under hydrostatic pressure. To model the hydrostatic effects, a triaxiality
factor TF (=σkk/σeff,M) is used in the model, where σkk is the first stress invariant and
σeff,M is the Von Mises effective stress. The MDA is intended for the prediction of crack
initiation, which is assumed to occur along the plane of maximum inelastic shear strain
rate [88]. The creep damage is assumed to be of cavity type, which initiates on grain
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boundaries normal to the maximum principal tensile stress direction [89]. The proposed
incremental multiaxial damage accumulation law consists of a fatigue and a creep damage
rate equation ω̇f and ω̇c, respectively. Damage is only a counter and its evolution does
not influence the constitutive equations. Fatigue and creep damage are set to be zero
initially for a virgin or fully annealed material, and crack initiation occurs if the sum of
fatigue and creep damage reaches 1. The incremental law is then given as

ω̇f =
L±

f

Tf

| ε̇
s
in

ε̇f

|nf |σeff,M

σf

|mf MFf (6.24)

and

ω̇c =
L±

c

Tc

| ε̇
s
in

ε̇c

|nc |σeff,M

σc

|mcMFc, (6.25)

where
MFf = 1 + ak(1 − Tf )

mf (6.26)

and
MFc = 1 + bk(1 − Tc)

mc . (6.27)

Failure is said to occur when

ωf + ωc = 1. (6.28)

L±
f is the fatigue loading function which models the effects of multiaxial loading and

temperature T . It is assumed to be controlled by the ratio of ε̇n
in and ε̇s

in, where ε̇s
in is

the value of the normalised maximum inelastic shear strain rate, and ε̇n
in is the value of

the normalised inelastic strain rate perpendicular to the plane on which ε̇s
in acts [88, 89].

Normalised means, that the multiaxial strain rates are reduced in comparison to the
uniaxial value for uniaxial loading. Accordingly,

ε̇s
in =

2

3
|ε̇1

in − ε̇3
in| (6.29)

and
ε̇n

in = 2(ε̇1
in + ε̇3

in), (6.30)

where ε̇1
in, ε̇2

in and ε̇3
in are the principal inelastic strain rates with ε̇1

in ≥ ε̇2
in ≥ ε̇3

in. For an
axial and torsional considered load case, ε̇n

in=ε̇in and ε̇s
in=[(ε̇in)2 +4/9(γ̇in)2]1/2, where ε̇in

and γ̇in are the inelastic axial strain rate and inelastic shear strain rate, respectively. L±
c

is the creep loading function which represents the effects of the multiaxial loading and
temperature. It is a function of the ratio of maximum principal stress σI and the Von
Mises effective stress σeff,M [89]. L±

f and L±
c are defined as

L±
f ≡ L±

f [ω, T ] =

⎧⎨
⎩L+

f [T ] ω ≥ 0

L−
f [T ] ω < 0

(6.31)
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and

L±
c ≡ L±

c [β, T ] =

⎧⎨
⎩L+

c [T ] β ≥ 0

L−
c [T ] β < 0,

(6.32)

where

ω =
ε̇n

in

ε̇s
in

, β =
σI

σeff,M

(6.33)

L±
f > 0 is postulated and the fatigue damage always accumulates, but a negative creep

damage rate is allowed through L±
c , though it is, however, always positive. For instance,

L+
c =1 and L−

c =−1 are assumed for the uniaxial case in tension and compression, respec-
tively [90]. MFf and MFc are two multiaxiality factors, which are used to model the
hydrostatic effects on fatigue and creep damage, respectively. The constants Tf , Tc, ε̇f ,
and ε̇c in Eqs. 6.24 to 6.27, are introduced for dimensional considerations. They are set
equal to 1 in the appropriate units. The other constants, nf , mf , σf , nc, mc, ak and bk

must be determined from appropriate axial, torsional, and biaxial tests with and without
hold time. Methods with a close similarity are described in section 7.1.



7 Lifetime Prediction

7.1 Ideas of Modelling the Lifetime at Cyclic High

Temperature Loading

To acquire the complex interaction of pure fatigue, creep and environmental conditions
at practical relevant dimensioning of high temperature components, several methods and
approaches exist. According to Danzer [91], lifetime prediction methods can be classified
into four main groups:

� empiric models

� damage mechanism methods

� physical models

� fracture mechanical methods

7.1.1 Empiric Models

Fundamentally empiric methods to predict lifetime are based on the principle of imple-
mentating a damage parameter like strain, strain rate, stress, temperature and so on,
which is defined by correlation to experimental results. It is assumed that among a
damage parameter, which is variedly defined according to the method, and the time or
number of cycles to fracture respectively, there is a definite correlation which can be used
for lifetime prediction. At isothermal high temperature experiments, following models are
appropriate to describe the lifetime of a component:

Models concerning the the linear and non-linear partial damage accumulation, modi-
fications of the Coffin-Manson-rule [92, 93], the category of “Strain Range Partitioning”
(SRP)-methods [94], the “Strain Rate Modified Accumulation of Time Dependent Dam-
age” (SRM-model), or the “Frequency Modified Damage Function” (FMDF-method) [95].

The SRM- and FMDF-method are constructed onto results of basic experiments of
creep-fatigue-behaviour and enable the prediction of lifetime due to complex load cases.
The SRM-model is a modification of the “Accumulation of Creep Damage” (AC-model)
under continously varying stress σ(t) and temperature T (t). The number of cycles to
fracture (Nf,AC) according to the AC-model at periodic load is defined by

Nf,AC =
1

Dcr(τ)
=

⎡
⎢⎣

τ∫
0

1

tcr(σ(t), T (t))
dt

⎤
⎥⎦
−1

(7.1)
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at which τ denotes the duration of one cycle, Dcr the creep damage parameter and tcr(σ, T )
the time to creep induced fracture at the stress σ and temperature T . Towards integration
of Eq. 7.1, the simple expression for the number of load cycles at isothermal symmetric
loads results in

Nf,AC = α∗β∗γ∗ tcr(σt,T )

τt

(7.2)

in this formulation σt is the highest investigable tensile stress in the load cycle and τt

the time increment of the cycle, in which tensile stresses are effecting. The factor α∗

describes the stress dependence of the creep-law, β∗ the damaging effect of compression
phases and the parameter γ∗ specifies the influence of the load character. In the AC-model
the average damage produced during one load cycle, is replaced by the same amount of
creep damage, which is only possible if the damage mechanisms are quasi identic in the
fatigue- and creep experiments. Therefore Danzer [91] introduced a parameter r to predict
the material condition due to unsteady loads, which concerns the relation of the mean
values of the averaged inelastic deformation rate ε̇in during the tensile part of one cycle
and the steady state creep rate ε̇s, in each case with the same external stress:

r(t) =

t∫
0

ε̇in(σ(t′), T (t′), t′)dt′

t∫
0

ε̇s(σ(t′), T (t′))dt′
(7.3)

The use of the AC method is suggested if the the parameter satisfies the criteria of
rt < 10, but this linear accumulation of creep damage includes no fitting parameters,
determined by fatigue experiments. To consider the deviations in the material condition
at alternating load from those to steady state creep, i.e. at high rt values, the SRM-
method was propagated

Nf,SRM =

⎡
⎢⎣

τ∫
0

1

tcr(σ(t), T (t))

(
ε̇in

r0ε̇s

)ν∗

dt

⎤
⎥⎦
−1

(7.4)

with ν∗ as a fitting parameter and r0 equals to r in the creep experiment. Analogical to
the approximation in Eq. 7.1, the approximation of Eq. 7.4 results in

Nf,SRM = α∗β∗γ∗ tcr(σt,T )

τt

(
rt

r0

)−ν∗

= Nf,AC

(
rt

r0

)−ν∗

. (7.5)

In general the SRM as well as the AC model are based on creep-data and should be
restricted to near creep like material conditions. For a definition of the relation to creep,
the rt parameter is used. From experiences of less ductile, high strength materials (su-
peralloys), the application of the SRM-model for lifetime prediction at isothermal high-
temperature fatigue loading has produced satisfying results due to the condition rt < 106.

In difference to the SRM model, the FMDF model is based on fatigue data. This
method belongs to “semi-empiric” lifetime prediction methods, which acquire creep-
fatigue interactions by energetic attempts. The principle of the FMDF method is the
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association of a direct relation between the hysteresis energy ΔWT , defined by the area
of the hysteresis curve during the tensile period, and the material damage or lifetime.
The hysteresis energy can be approximated by a damage function (σmax.Δεpl), which is a
product of the plastic strain amplitude Δεpl and the maximum tensile stress σmax. The
lifetime can be defined by an exponential relation with the damage function

Nf = L(σmax.Δεpl)
−η, (7.6)

where L and η depict material parameters. This equation is not very different from the
Coffin-Manson-rule, only the extension in the base by the maximum occurring tensile
stress σmax in the load cycle is different.
At higher temperatures, time-dependent damage mechanisms occur in addition to the
time-independent fatigue damage. Due to this reason, the equation was modified by a
frequency term fk−1

Nf,FMDF = L(σmax.Δεpl)
−ηfk−1, (7.7)

where f denotes the experimental frequency and k a material parameter. For the reason
that positive mean stresses (σm) cause creep damage at high temperatures, they can have
a strong influence onto the fatigue lifetime. In the FMDF method, the mean stresses are
at least partly considered by the maximum stresses (σmax = σm+Δσ/2). It is also possible
to consider the influence of the cyclic profile onto the creep-fatigue lifetime with the help of
a frequency separation method, which was propagated for experiments with dwell times.
Here an additional creep damage is expected during dwell time combined with tensile
load and a heal up of pore damage at the dwell time under the compressive phase of the
load cycle. To consider the damaging influence onto high temperature fatigue lifetime by
the cyclic profiles in the dwell time expriments, a so called “equivalent” frequency f ∗ is
introduced which replaces the given experimental frequency f to acquire the quantitative
damaging and healing effects of dwell times. These equivalent frequency is f∗ = 1/(τdc +
τH,t−τH,c) for τH,t > τH,c and f ∗ = f = 1/τdc for τH,t ≤ τH,c, where τdc is the duration of a
cycle without dwell time and τH,t as well as τH,c denote the dwell time under tensile as well
as compressive load. Empiric models for lifetime prediction of thermo-mechanical fatigue
loading were used in many studies, and it was shown that also under TME conditions,
lifetime prediction models based on empiric methods can successfully be applied. But the
matter is that as a result of their lacking physical interpretability, there is no reliability
with the transmittance onto other load cases, because several other load cases are not
cosidered due to the evaluation of the model parameters. Particular attention should be
given to the verification of their scope of application.

7.1.2 Damage Mechanics

The works developed to characterise tertiary creep [96, 97] were decisive for the consti-
tution of damage mechanics, whereby the formation of pores and cracks was described
by continuum mechanical methods [98]. Since that time these ideas were transfused onto
several load cases like plastic deformation, high cycle fatigue or low cycle fatigue.

Many new methods are based on the implementation of a damage function ωD, which
indicates the proportion of cracks and pores, situated on the area perpendicular to the
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external stress direction (see 6.2.1), and thus determining the degree of material damage.
In a general view, the damage function characterises the diminution of strength in the
sense of an introduced concept of the effective stress σ̂. So it is assumed that starting from
the applied stress σ, the incremental damage enhances the effective mean stress onto the
remaining cross section according to σ̂/(1− ωD) and goes into the constitutive equations
of the material:

ε̇ =
dε

dt
= f(σ, T, ωD, ...) (7.8)

The dots in this equation stand for further inner variables (such as the internal stress),
where applicable. For a reasonable description of the damage behaviour, it is also neces-
sary to exactly know the material damage ωD at every point in time. Therefore, a kinetic
equation considering ωD is established:

ω̇D =
dωD

dt
= g(σ, T, ωD, ...). (7.9)

The determination of Eq. 7.9, which depends on the damage mechanism, is a serious
problem of damage mechanics. In principle the equations for the developement of damage
are to specify, by conformation of appropriate chosen functions, upon experimetal data.
If the kinetic equation of damage is based on a mathematical structure, which can be
assimilated by separation of variables, then the description in comparison to the linear
damage accumulation is equivalent.

During high-temperature fatigue conditions, damage mechanical methods can describe
the non-linear effects of damage accumulation, if the material damage is independent from
the nature of development, by one single parameter ωD. In this case it is possible to
separate the damage increment dωD

dωD =

(
∂ωD

∂N

)
dN +

(
∂ωD

∂t

)
dt = ff (Δσ, σm, ωD, ...)dN + fcr(σ, ωD, ...)dt (7.10)

into one term (∂ωD/∂N)dN , which depicts the increase of fatigue damage, and into one
term (∂ωD/∂t)dt, which describes the increase of creep and time-dependent damage. The
kinetic equations for the functions ff and fcr are evaluated by adaptation of respectively
pure fatigue or creep experiments. An overview of application possibilities of contin-
uum mechanical methods for a description of the interaction between creep and fatigue
processes can be found in the work of Murakami [99]. An interesting example for the
application of this procedure is the “Damage Rate Model” (DRM model) according to
Majumdar and Maiya [100]. This model is based on the assumption that high-temperature
fatigue is mainly a process of crack propagation and pore growth. Furthermore the crack
length a and the pore radius r are considered as characteristic parameters of accumulated
damage, and the lifetime is determined by growth and coagulation of initial micro cracks
and pores to a macro crack. If the macro crack achieves a critical amount af and rf , the
fracture suddenly occurs. In the DRM model independent growth of micro cracks and
pores is assumed. The kinetic equations of damage are as follows [100]:

da

dt
=

⎧⎨
⎩T ′.a.|εpl|p.|ε̇pl|kf for tensile loads

C ′.a.|εpl|p.|ε̇pl|kf for compressive loads
(7.11)
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and

dr

dt
=

⎧⎨
⎩G.r.|εpl|p.|ε̇pl|kr for tensile loads

−G.r.|εpl|p.|ε̇pl|kr for compressive loads
(7.12)

where T ′, C ′, G, p, kf and kr are all material parameters. The kinetic equations of damage
progression 7.11 and 7.12 represent the micro crack and pore growth rate as a function of
plastic deformation and the plastic deformation rate. Equation 7.11 shows that different
micro crack growth rates due to tensile or compressive load are required. In the kinetic
Eq. 7.12, the healing of pores at compressive loads is established, whereby the pore size
should not fall below the initial value.
As a fracture criteria due to creep-fatigue conditions the following equation is denoted
[100]:

ln(a/a0)

ln(af/a0)
+

ln(r/r0)

ln(rf/r0)
= 1 (7.13)

in which a0 and r0 are the initial crack length and pore size, af and rf the critical crack
length and pore size. The integration of equations 7.11 and 7.12 takes into account the
fracture criteria of Eq. 7.13, and delivers the lifetime estimation according to the DRM
model. The number of cycles to fracture Nf,DRM results from an isothermal symmetric
cyclic load with plastic strain amplitude Δεpl/2 and constant strain rate ε̇pl according to
[100]:

Nf,DRM =
p + 1

A
.
ε̇
1−kf

pl

Δε1+p
pl

(7.14)

with A = (T ′ + C ′)/[ln(af/a0)]. As mentioned before, the DRM method requires an
independet growth of micro cracks and pores. Isothermal fatigue experiments on several
materials resulted in the conclusion that this requirement is not always fulfilled, because
creep pores have a very strong influence onto the fatigue crack growth [101, 102]. A
modification of the DRM method (“Modified Damage Rate Model” or MDRM model)
[103, 104] tries to consider the complex interaction of creep and fatigue processes partly
by non-linear damage mechanics, as the fatigue crack growth is not specified independently
to the creep pore growth. The kinetic equation for the crack growth rate is converted and
defined [103]:

1

a

da

dt
=

⎧⎨
⎩T ′(1 + δlnr/r0)|εpl|p.|ε̇pl|kf

C ′(1 + δlnr/r0)|εpl|p.|ε̇pl|kf
(7.15)

where δ is a material parameter. The expression in brackets describes the acceleration of
crack growth caused by creep damage. The growth of creep pores in the MDRM method
is modelled analogically to the DRM method, if Eq. 7.12 is compared.

The description of the damage process in form of differential equations is advantageous
in comparison to common empiric procedures because the damage mechanic is then not
limited to one defined load case, but flexible and applicable onto complex load distribu-
tions. The coupling of equations for damage and strain rate enables the characterisation
of effects, which occur due to variable sequences of the load application, which can have
a strong influence onto the kinetics of the damage evolution, without additional mod-
ifications of the model. But it is necessary to choose an appropriate equation for the
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damage rate. The instruction of the analytical design of this equation and the fitting of
the included equation parameters onto the experimental data can be a great effort. As
Chaboche documented in [105], where examples for damage evolution are given, the first
damage is not experimentally detectable until 90% of lifetime or more passed over, which
is a reason that the determination of kinetic damage equations is not that easy. But the
accuracy of the lifetime prediction depends on the exact knowledge of this equation. That
is why damage mechanics have similar problems to solve, concerning the determination
of the analytical form of the kinetic equation and the fitting of model parameters, as the
empiric methods concerning the determination of damage parameters. A solution of these
problems could accommodate a precise physical appreciation of the damage mechanism.

7.1.3 Physical Approach

The precisest results for complex load cases should be obtained by physical models, which
means models describing the damage evolution on the basis of movement of atoms, va-
cancies and dislocations, because these models describe the damage evolution by taking
into account physically based functions. Physical methods to describe high-temperature
deformation were developed to model the pore growth during creep [54]. Although they
have no free fitting parameters, they describe the growth rate of pores in their applicable
range quite well. The occurring parameters in these models can be determined metal-
lographically (over distance between pores or grain size) or they are common physical
parameters like diffusion coefficient and atomic volume. Physical models for this kind of
damage are mentioned in section 5.2. For technical alloys, the damage mechanisms dur-
ing application conditions are not often known exactly. In general it is not known before,
at which load which damage mechanism occurs and which physical model is appropriate
to calculate the lifetime. But in some single cases it could be shown that some empiric
and damage mechanic models conform to physical models. Thus the meaning of physical
models for lifetime prediction at this time is to show the physical background for the
empiric and damage mechanic models. This can be useful to determine the load ranges,
which can be described by empiric models, and to define the limits of these methods [44].

7.1.4 Fracture Mechanical Methods

In operating components, cracks accumulate like in experimetal specimens, wherby the
crack initiation can be attributed to fatigue, corrosion or the coagulation of creep pores.
With the assistance of fracture mechanics, such a relevant loading parameter can be de-
termined for the material behaviour, which is characteristical for the stress field in the
area of the crack tip. When the knowledge about the stress field around the crack tip is
coupled with model assumptions of the damage evolution, the crack growth rate can be
calculated [44].

Fracture mechanical methods describe the crack growth from the initial size until a
critical, material depending parameter. These methods are commonly applicated, if there
are viable cracks or defects which act as crack seeds in the virginal material, or if cracks
develop within a short time or few cycles. At high-temperature fatigue, it is tried to
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make a difference between a cyclic dependent and a time dependent rate of crack growth.
Depending on the loading conditions (temperature, frequency, etc.), the cyclic dependent
or time dependent rate dominates [47].

In most cases, the methods based onto the linear summation of cyclic and time de-
pendent crack growth rates could be applied successfully for a lifetime prediction of high-
temperature fatigue conditions [106, 107]. It should also be mentioned that the application
of the linear summation leads to a significant undervaluation of the experimental lifetime,
which is attributed to a strong creep-fatigue interaction [47].

Riedel [49] determined the relevant loading parameters for several material categories
and mentioned the particular stress field in the crack tip zone. Depending on the material
behaviour the stress around the crack tip can be characterized by different loading pa-
rameters. At unsteady loading (fatigue), the cracks propagate due to periodic expanding
and compression of the crack tip which was described by Laird and Smith in 1962 [108].
Such developed cracks are known as fatigue cracks, the crack propagation per load cycle
is, according to the model of Laird and Smith, in the dimension of the crack openening
at the tip. By this procedure, the formation of microscopic investigable striations at the
fracture surface can be explained [44].
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8.1 Finite Element Methods

8.1.1 The Elastic-Viscoplastic Chaboche Model

Introduction

Cyclic viscoplastic constitutive equations are increasingly used for the inelastic analysis of
structures under severe thermomechanical conditions. In the following the classical mod-
els are modified in order to follow the general principles of thermodynamics with internal
variables. By using the restrictive framework of standard generalised materials, state
variables associated to various kinds of kinematic and isotropic hardening are selected.
The evolution equations for these internal variables are then formulated in a slightly less
restrictive form. For each hardening process, the separation of the total plastic work into
energy, dissipated as heat and energy stored in the material, is discussed.

Plastic and viscoplastic constitutive equations have been greatly developed over the
last decades, especially for application under cyclic loadings and high temperatures.
Though some of them do not consider directly the notion of back stresses, the cyclic
constitutive equations are generally based on linear and nonliear kinematic hardening.
Among these, a model developed at Onera is based on a work in which the so called
nonlinear kinematic hardening rule (NLK) was introduced. It uses the superposition of
several isotropic and kinematic hardening variables, each of the corresponding evolution
equations being in a hardening/dynamic-recovery/thermal-recovery format [38].

On the other hand, thermodynamics with internal variables offers a good framework
to introduce constitutive equations. It offers both a guideline and some constraints for
the choice of thermodynamically consistent evolution equations. A special form uses the
notion of standard generalised materials, where the complete thermoelastic-inelastic be-
haviour is defined from the knowledge of two potentials: the thermodynamic potential to
describe the present state, and the dissipative potential for the irreversible evolutions.The
constitutive equations developed in this model are thermodynamically consistent. It can
be shown, either in the framework of standard generalised materials, or without explicitly
using a dissipative potential.

Introducing mechanical constitutive models into a thermodynamic framework allows
the partition of the plastic work into the energy stored by the material and the one dissi-
pated as heat. It well known from previous works, that the stored energy is only a small
part of the total plastic work (between 5% and 50%) depending on the material and on
the strain level.

The intention is now to introduce the constitutive equations into the thermodynamic
framework, to discuss the various possibilities for the equations governing the different
hardening variables, and to show the corresponding partitioning of the total plastic work
between stored energy and energy disspated as heat.

73
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The Constitutive Equations

In a Cartesian reference configuration, the strain εij is taken to be composed of elastic εe
ij

(reversible, includes thermal strain) and inelastic or plastic εp
ij (irreversible) parts such

that
εij = εe

ij + εp
ij, (8.1)

and there is no inelastic strain in the stress-free virgin state. If the reversible elastic part
and thermal strain is considered separately, the equation looks like as follows:

ε = εe(σ) + εth(T ) + εin, εth(T ) = εth(T )1 (8.2)

where 1 denotes the unit tensor. The viscoplastic potential and the hardening variables
are developed in the framework of unified viscoplasticity, considering only one inelastic
strain. The existence of a viscoplastic potential in the stress space is assumed. Its position,
shape, and size is depend on the various hardening variables. It is limited to the case
where the potential is a given function of the viscous stress or overstress [38].

The Hookean law is now given by

σ = 2Gε
′
e +

E

3(1 − 2ν)
trεe1 (8.3)

with G denotes the shear modulus, E the Young’s modulus, ν the Poisson’s ratio and the
deviator of the elastic strain tensor ε

′
e.

For the lifetime prediction of highly stressed extrusion tools during service, taking into ac-
count the inelastic strain rate during a cycle, it is necessary to be able to assess the inelastic
stress-strain response of the material. The influence of the thermo-mechanical history on
the current stress-strain behaviour can be described with internal (non-measurable) vari-
ables, beside the measurable (external) variables of deformation, time, temperature and
stress. The evolution equations for the internal variables are given by flow and hardening
rules. In viscoplastic, i.e. unified inelastic, models, creep and plasticity are covered within
a single inelastic strain variable in order to describe creep-plasticity interaction. The flow
rule, i.e. the evolution equation for the inelastic strain is according to Chaboche [38]

ε̇in =
3

2

〈
J2(S − X) − (k + Rh)

K

〉n
S − X

J2(S − X)
, 〈y〉 :=

⎧⎨
⎩y , if y >0

0 , otherwise

(8.4)

with the applied stress deviator S and specifying k as the initial elastic limit, Rh as
the increase of the elastic limit due to hardening, X as the internal back stress tensor,
describing kinematic hardening and K as a material parameter. Olschewski et al. [109]
have proposed a certain type of a thermo-mechanical evolution equation for the isotropic
hardening variable R = Q(T )r in order to describe non-isothermal material behaviour, T
denotes the temperature:

Ṙh = Qṙ +
Rh

Q

dQ

dT
Ṫ (8.5)
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with Q as the saturation parameter of R at isothermal loading and r as the related
isotropic hardening variable with the evolution equation

ṙ = b

(
1 − Rh

Q

)
ṗ − f

Q

(
Rh

Q

)S

, r(t = 0) = 0 , ṗ :=

√
2

3
‖ε̇in‖ (8.6)

where b, f , s are material parameters adapting the isotropic hardening and static recov-
ery, respectively, and ṗ is the inelastic Mises equivalent strain-rate.

The rate equations for the kinematic hardening variables obey a unique format, where the
back stress Xbs is decomposed into independent variables Xi, each of them being of the
same rule. As shown in previous studies, two or three of such variables are suffiecient to
describe, very correctly, the real materials [40, 41]. For a consideration of two independent
variables, the applied formulas are as follows

Xbs = X1 + X2 , Xi =
2

3
ai(T )αi , i = 1, 2 (8.7)

where ai(T) are saturation parameters of the internal back-stresses Xi, and αi are related
kinematic hardening variables:

α̇i = ciε̇in − 3

2
ci

Xi

ai

ṗ − 3

2

di

ai

(
J2(Xi)

ai

)mi

Xi

J2(Xi)
, αi(t = 0) = 0 (8.8)

with ci, di, and mi as material parameters defining the kinematic hardening and the static
recovering, respectively.

The related hardening variables r and αi are describing the degree of hardening, that
corresponds in the material structure to the accumulation of immobile dislocations and
that causes certain internal stresses k+Rh and Xi, respectively, at a certain temperature.
For example, the isotropic variable r tends, at negligible static recovery, according to Eq.
8.6 for any temperature to its saturation value 1. Something similar is the case for the
kinematic variables αi according to Eq. 8.8 at proportional loading. Thus, the internal
stresses k+Rh and Xi vary at temperature changes according to Eqs. 8.5 and 8.7 at most
to their saturation levels (Q and 2/3 ai) at the current temperature [40].

8.2 Crystal Plasticity FEM

An adequate knowledge of the mechanical properties of metals is technically very im-
portant and therfore appropriate evaluation methods play a basic role in physical metal-
lurgy. The main focus is to describe plastic material behaviour with the aim of crystallite
deformation. On the experimental side, tensile and compressive tests as well as creep
experiments and hardness tests are appropriate to get values, describing the mechanical
behaviour of the material [110]. A polycrystal is understood as just an assembly of coupled
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single crystals with different crystallographic orientations, and the formulations of crystal
plasticity are applied to describe the behaviour of such single grains. The evolution of a
material model is based on two different strategies, which is based on phenomenological
aspects on the one hand and on the other hand based on physical approaches with both,
advantages and disadvantages.

8.2.1 Evolution of Dislocations

The interaction of multiplying dislocations influences the hardening rate of crystals. Ac-
cording to the fact, that dislocations are generated at the beginning of plastic deformation
and annihilated with progressive deformation, Kocks [111] proposed an approach for the
quantitative evolution of the whole dislocation density ρ in macroscopic models to describe
the isotropic hardening:

ρ̇ =
1

bL
ε̇ − k0ρε̇, (8.9)

where k0 is supposed to be a constant according to Kocks [111], which depends on the
strain rate ε̇ according to Estrin [112]. The mean free dislocation path length L is inverse
proportional to the square root of the whole dislocation density [113]:

L ∼ 1√
ρ
. (8.10)

In the microscopic scale, Essmann and Mughrabi [114] make a difference in the evolution of
dislocation densities on edge and screw dislocations with different free path lengths and
critical annihilation distances. Accordingly two evolution equations are derived, which
both have a similar construction to Eq. 8.9. Furthermore, the formation of dislocations on
single glide systems with different gliding is investigated, whereby a quantitative evolution
of dislocations results in

ρ̇α =
1

bLα

γ̇α − 2
yc

b
ραγ̇α, (8.11)

where ρα denotes the dislocation density on the glide sytem α, ρ̇α the dislocation density
evolution on α, b is the value of the Burgers vector and yc the critical annihilation distance
where dislocation annihilation occurs.
The dislocation formation and annihilation depend on glide characteristics. Teodosiu [115]
formulated the evolution of dislocation densities independently from the glide directions
and described the isotropic hardening of crystals based on Eq. 8.11:

ρ̇α =
1

bLα

|γ̇α| − 2
yc

b
ρα|γ̇α|, (8.12)

The free dislocation distance Lα of a system is inverse proportional to the square root of
ρ, as mentioned before, but the free distance Lα covered by new formed dislocations on
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a system until immobilising, is according to Essmann and Mughrabi [114] an algebraic
function, which is constant at single glide conditions and monotonously decreasing at
beginning multi glide, but this dependence on gliding is more of phenomenological na-
ture. Teodosiu [115] considers a short range interaction of dislocations and proposes the
following relation of the mean free distances on a system, which depend on the distance
between barriers during gliding:

Lα = K

⎛
⎝∑

b�=a

ρb

⎞
⎠−1/2

, (8.13)

where K depicts a model parameter. In this approach, the mean free distance is deter-
mined by the dislocation densities of the other gliding systems. In principal, dislocations
on the same gliding plane do not inhibit each other, so the immobilising of dislocations
happens due to wood dislocations. As a consequence, the summation is just over the
particular wood systems, which can be expressed by the index bs:

Lα = K

⎛
⎝∑

bs

ρbs

⎞
⎠−1/2

. (8.14)

This equation can be described with the aim of a vertical matrix �Zα and by the matrix
Z consisting the components 0 and 1

Z =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 1 1 1 1 1 1 1 1 1
0 0 0 1 1 1 1 1 1 1 1 1
0 0 0 1 1 1 1 1 1 1 1 1
1 1 1 0 0 0 1 1 1 1 1 1
1 1 1 0 0 0 1 1 1 1 1 1
1 1 1 0 0 0 1 1 1 1 1 1
1 1 1 1 1 1 0 0 0 1 1 1
1 1 1 1 1 1 0 0 0 1 1 1
1 1 1 1 1 1 0 0 0 1 1 1
1 1 1 1 1 1 1 1 1 0 0 0
1 1 1 1 1 1 1 1 1 0 0 0
1 1 1 1 1 1 1 1 1 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(8.15)

=:
(

�Z1, �Z1, �Z1, �Z2, �Z3, �Z4, �Z5, �Z6, �Z7, �Z8, �Z9, �Z10, �Z11, �Z12

)
.

Eq. 8.14 can be represented clearer now [116]:

Lα = K
(

�ZT
α �ρ
)−1/2

. (8.16)
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The vector �ρ includes 12 componets of dislocation densities at 12 glide systems, and �ZT
α is

the transposed matrix vector of �Zα. Such a description can be very useful for a numerical
transformation.

8.2.2 Constitutive Law based on Dislocation Density for BCC
Materials

The calculated Peierls stress for FCC crystals is much smaller than the measured critical
resolved stress as there exist close packed lattice planes and close packed lattice directions.
Therefore, it can be assumed, that the resistance for moving dislocations is determined
by the passing stress and the cutting stress due the other dislocations in the crystal
only. BCC single crystals, in contrast, have only densely-packed lattice directions but
no densely-packed lattice planes. 24-48 slip systems are reported to be activated to
accommodate the external plastic deformation in bcc materials. For this structure, the
Peierls stress is so large that one can assume that in order to move the mobile dislocations,
the external load has to overcome the resistance both, of the parallel dislocations and the
Peierls energy barrier, i.e. forest cuttings can be ignored. In the following, the introduced
model is adopted to the BCC crystal structure.

The deformation gradient F is multiplicative decomposited to separate the elastic
and plastic portions of the deformation for a kinematic description of plastic deformation
of crystalline materials. The elastic part Fe comprises the stretch and rotation of the
lattice, and the plastic part Fp corresponds to the unrecoverable deformation caused by
dislocation slip. For the reason that the plastic deformation gradient does not change
the lattice orientation, it is possible to use a constant stiffness tensor C for the stress
calculation. The elastic law is defined in the unloaded configuration. BCC crystals have
densely-packed lattice directions 〈111〉 but no densely-packed lattice planes. The most
densely-packed planes are the {110}, {112} and {123} lattice planes. There are at most
48 slip systems if the so-called pencil glide is not considered. As shown in Fig. 8.1, the
mobile dislocation experiences the slip resistance from forest and parallel dislocations,
and also from the Peierls energy barrier. The parallel dislocation density is defined ρα

P

and the forest dislocation density ρα
F [117].
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Figure 8.1: Schematic drawing of the slip mechanism for the BCC crystal structure: a mobile
dislocation is generated by a Frank-Read source. The external stress must help it to overcome
resistances of forest and parallel dislocations, as well as the Peierls energy barrier [117].

While in the FCC case the Peierls potential is so small that it can be neglected, it is much
higher for the BCC crystal structure. In fact it is so high, that in BCC structures the
forest cutting process can be neglected when formulating the dislocation velocity equation.
The plastic velocity gradient Lp can be calculated by using a standard crystal plasticity
finite element (CP-FEM) framework (see e.g. [118])

Lp =
48∑

α=1

γ̇αd̃α ⊗ ñα (8.17)

where γ̇α is the slip rate on the slip system α, d̃α expresses the slip direction, and ñα the
slip plane normal with respect to the undistorted configuration. In contrast to [118], a
dislocation density based constitutive law is used, so that the slip rates can be calculated
by use of the Orowan equation

γ̇α = ρα
Mbvα (8.18)

where vα is the average velocity of the mobile dislocations ρα
M and b the magnitude of the

respective Burgers vector. From previous investigations it is known that by applying the
principle of maximum plastic dissipation, for the external resolved shear stress during the
plastic deformation

∂γ̇α

∂ρα
M

= 0 (8.19)

a scaling relation can be derived for the mobile dislocation density ρα
M in the gliding

system α, which amounts to

ρα
M ≈ 2kBT

c1c3Gb4

√
ρα

P (8.20)

where c1, c3 are constants, G denotes the shear modulus, b the magnitude of the Burgers
vector, T the absolute temperature and kB the Boltzmann constant. If Eq. 8.20 is
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compared with FCC materials, the difference can easyly be recognised. Following an
approach used in [117], two different flow rules for bulk and for grain boundary elements
are distinguished.

� The flow rule for the bulk element

Integrating Eq. 8.20 into Eq. 8.18, the flow rule is derived based on the dislocation
slip mechanism. A reference shear rate is included, which is formulated as a function of
the dislocation density and temperature. The new flow rule amounts to

γ̇α = γ̇α
0 exp

⎡
⎣−QPei

kBT

(
1 − τα − τα

pass

τα
Pei

)⎤⎦ sign(τα), if |τα| > τα
pass (8.21)

and γ̇α = 0, if |τα| � τα
pass. γ̇α

0 is the upper limit of the shear rate, for the case that the
Boltzmann factor is equal to 1 in Eq. 8.21

γ̇α
0 =

kBTν0

c1c3Gb2

√
ρα

P (8.22)

where ν0 is the attack frequency and τα
pass the passing stress, caused by parallel dislocations

τα
pass = c1Gb

√
ρα

P (8.23)

In the Peierls stress, τα
Pei,

τα
Pei =

QPei

c3b3
(8.24)

QPei denotes the effective energy for the Peierls mechanism [117].

� The flow rule for the grain boundary element

Generally, in crystal plasticity FEM implementations the grain boundaries coincide with
element boundaries, but now a special grain boundary element, where one half of the
Gauss points belong to one crystal, while the others belong to the abutting crystal [117].
For the constitutive law of material points belonging to this element class, a modified flow
rule, where an effective activation energy for the slip process is introduced, which is based
on a conservation law for the Burgers vector during the slip penetration through a grain
boundary. Based on Eq. 8.21 for the BCC crystal structure, τα

Pei and QPei are modified
as follows:

Q
′
Pei = QPei + c9E

α
GB (8.25)
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and

τα
′

Pei =
Q

′
Pei

c3b3
, (8.26)

where c9 is a fit parameter, and Eα
GB is the activation energy for the penetration of a

grain boundary by a mobile dislocation with the length b [117].

There are four processes contributing to the evolution of the statistically stored disloca-
tion:

1. The lock formation mechanism between mobile dislocations and forest dislocations
and

2. the dipole mechanism between mobile dislocations with anti-parallel Burgers vector
determine the multiplication terms, while

3. the athermal annihilation of two parallel dislocations with anti-parallel Burgers
vector within a critical distance and

4. the thermal annihilation determine the annihilation terms.

The complete rate equation system for the immobile SSD combines these four processes.
For the details of these rate equations, it is referred to Ma and Roters [119]. The only
modification in the present model is, that the thermal annihilation by cross slip of screw
dislocations is assumed instead of climb of edge dislocations, so that the bulk diffusion
activation energy Qbulk has been replaced by Qcross. When orientation gradients are
present in a volume portion, GNDs must be introduced to preserve the continuity of the
lattice. In the upon described method the same equations are used for the evolution of
this kind of dislocation as given in [119].

8.3 Representative Volume Element Method

A homogenisation procedure to derive the kinematics of a macro continuum with a point
wise attached micro structure is shown in Fig. 8.2. The micro polycrystal structure
region of the representative volume element (RVE) is made up of an aggregate of well
defined crystal grains and it is very small compared with the dimension of the overall
macro continuum region Ωλsc

C , defined by a scale factor λsc � 1, which represents the
reciprocal order of the repetition. If the macro continuum body is subjected to a load
and contact forces at the boundaries, the resulting deformation and stress vary from point
to point and produce the heterogeneity in the micro polycrystal structure of the RVE [120].
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Figure 8.2: Macro continuum and micro polycrystal structures, and coordinates xi and yi

[120].

In order to describe the effects of heterogeneity in the microstructure, λsc can be
attached as the superscript to all the variables in the formulation if it is essential. Both,
a microscopic (yi) and macroscopic (xi) coordinate system is introduced so that physical
quantities are represented by two different length scales: x in the macroscopic region
Ωλsc

C and y (=x/λsc) in the microscopic region. The homogenisation method is employed
with the ambition to reflect the heterogeneous microscopic behaviour on the macroscopic
deformation [120]. This approach can be be considered for the main mechanisms of
ductile damage, such as nucleation, growth and coalescence of microcavities by large
plastic deformations. Therefore a relation between the isotropic damage variable ωD at
the mesoscale and the density of microvoids is derived as follows: A RVE at the mesoscale,
considered as a cube with the side length l containing n cavity cells of the dimension d3

(Fig. 8.3).

Figure 8.3: Micro-meso element for ductile damage [80].
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According to this very simple geometry, the balance of energy calculated from the growth
of cavities and from the damage concept can be established. After a certain calculation
path, ωD is obtained as

ωD = n
d2

l2
(8.27)

which is logically if Fig. 8.3 is regarded. Based on Eq. 8.27 the kinetic law of damage
evolution can be derived

ω̇D =
d2

l2
ṅ + 2n

dḋ

l2
, (8.28)

where the first term accounts for the increase in the number of cavities (ṅ signifies the
number of cavities per unit time), and the second term accounts for the cavity growth.

It is also possible to use this method considering other problems, for example to
describe the properties of multi phase materials or compounds. In hot-work tool steels, a
relation of two phases, namly the carbides and the softer matrix can be considered.

8.4 Microplane Model

For a wide class of materials, the assumption of isotropic material response yields suffi-
ciently accurate results. Nevertheless, for heterogeneous materials, e.g. concrete or other
composites, the assumption of isotrpy is no longer valid, since microcracks and microvoids
will develop anisotropically under increased loadding. Moreover, metallic materials may
show a an anisotropic response due to their crystalline microstructure.

The modeling of inelasstic isotropic material behaviour is nowadays well-understood,
especially because only a few material parameters are needed to simulate either dam-
age or plasticity (Lemaitre and Chaboche [98]). The costitutive modeling of anisotropy,
however, is far more difficult and the understanding and identification of material param-
eters is a sophisticated task (Carol et al. [121]). A general concept to model anisotropic
material behaviour has been proposed by Taylor [122], who suggested to consider the
uniaxial material response on several characteristc material planes. A clear advantage of
this concept is that the material properties can be directly related to the behaviour under
uniaxial loading. At first, Taylors ideas were only related to crystal plasticity, where plas-
tic sliding was assumed to take place on several slip planes, defined by the geometry of
the crystalline lattice. It was only during the last decade that the general idea of Taylor
was applied to continuum damage mechanics by Bažant and Prat [123] and Carol et al.
[124, 125]. The generic name “microplane theory” was agreed in order to demonstrate
that the concept of defining constitutive laws on characteristic material planes was not
restricted to plasticity but could be applied to any kind of material behaviour. The main
idea behind microplane models consists in developing the constitutive laws for the two-
or three-dimensional continuum starting from the behaviour of a plane of generic orien-
tation, which is then integrated over all possible directions in space. The main difference
between the microplane model and the previous similar models is the kinematic constraint
assumed, and the principle virtual work (PVW) applied to obtain the corresponding in-
tegral micro-macro relation for stresses [121, 126].
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Microplane Model under Application

The microplane model is numerically extremly demanding - computation of the stress ten-
sor in a single integration point involves the strain projection to microplanes, an evaluation
of local microplane constitutive laws (which may lead to iteration) on each microplane
and the homogenisation procedure for computing the overall stress tensor. Moreover, the
tangent stiffness matrix can be hardly obtained. For some microplane formulations, there
is no direct formula and the only possibility is to construct stiffness from its definition.
But this is a very expensive procedure. Due to the lack of tangent stiffness one can use the
initial elastic matrix for the whole analysis, but this will lead to a very poor convergence.
Therefore, the use of implicit methods, which require the stiffness matrix, is cumbersome,
due to an extremely slow iteration process.

An efficient computational scheme employs an explicit algorithm. If the damping is
expressed in a special form (for example one may use Rayleigh damping), one does not
need the stiffness matrix. Typically, the non-equibrilated internal forces are applied as
loading in the next time step. The use of the diagonal mass matrix leads to a very efficient
computational scheme, which can be parallelised in a straightforward way. The node-cut
and the element-cut techniques can be used to formulate efficient parallel algorithms.

The classical approach to the constitutive modeling is based on a direct relationship
between strain and stress tensors εij and σij and their invariants. In contrary to it, con-
stitutive relations of the microplane model are formulated in terms of strain- and stress
components on planes of arbitrary spatial orientations, so called microplanes. This ap-
proach excels in conceptual simplicity and allows straightforward modeling of anisotropy
and other processes conected with planes with different orientations. The penalty to
be paid is a great increase of computational effort. Althoug the microplane theory was
originally proposed for plastic behaviour of metals, it can be generally used for any type
of material including concrete. The relationship between micro- and macro level is ob-
tained by projecting the strain tensor to the particular microplanes (so-called kinematic
constraint) or by projecting stress tensor (static constraint). Then constitutive relations
between microstrains and corresponding microstresses are evaluated [126].

The missing link (between microstresses and macrostress for kinematic constraint,
and between micro- and macro strain for static constraint, respectively) is obtained by
application of the principle virtual work. Such kind of a material model is capable to
describe a triaxial nonlinear material behaviour including tensional and compressive soft-
ening, damage of the material, different types of loading, unloading or cyclic loading.

The key point of the microplane model is to characterise the material behaviour on
a set of microplanes in each material point. The orientation of each microplane can be
described by its unit normal ni. An infinite number of these microplanes can be imagi-
nated, i.e. an infinite set of normals in each material point. The present model [126] is
based on so-called kinematic constraint, in which the strain vector on the microplane εμ

i

is given as a projection of the macroscopic strain tensor εij. A microplane strain vector
can be obtained by this projection as

εμ
i = εijnj, (8.29)
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which can be decomposed into the corresponding normal and shear parts. The normal
strain on the microplane can be obtained as follows:

εN = niε
μ
i = niεijnj = Nijεij, (8.30)

where Nij is a symmetric tensor defined as Nij = ninj. The normal strain εN can be
further decomposed into volumetric εV and deviatoric εD parts. Assuming small strains,
volumetric and deviatoric parts are defined as

εV =
εkk

3
, (8.31)

εD = εN − εV . (8.32)

Components of the shear strain vector are then composed as

εT i = εμ
i − εNi = nkεik − ninjnkεjk = (δij − ninj)nkεjk. (8.33)

It is very convenient to express εTi in the local microplane coordinate system. Therefore
we define two vectors on the microplane. These two vectors are characterised by their
unit vectors m and l, respectively. It must be ensured that l = m × n. Magnitudes of
shear strains on microplane are then given by

εM = mi(εijnj) = Mijεij, (8.34)

εL = li(εijnj) = Lijεij, (8.35)

where the two symmetric tensors Mij and Lij are defined as

Mij =
minj + mjni

2
, (8.36)

Lij =
linj + ljni

2
. (8.37)

The definition of the microplane and corresponding microstrain components can be seen
in 8.4.

Figure 8.4: Definition of microplanes and microstrain components [126].
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Since kinematic constraint (projection of εij) was adopted, microplane stress components
cannot be, in genral, equal to the projection of the macrostress tensor σij. Static equiva-
lence between microstress and macrostress is ensured by means of the principal of virtual
work. For a better understanding, the exemplification of microstrain and - stress compo-
nents are demonstrated beneath (Fig. 8.5):

Figure 8.5: Strain and stress components on one microplane [126].

The virtual work of the macroscopic stress tensor working on virtual macrostrains within
the unit sphere Ω of volume (4/3π)

Wmacro =

∫
Ω

σijδεijdΩ =
4π

3
σijδεij (8.38)

must be equal to the work of all microstress components working on virtual microstrains
(normal and shear) integrated over the surface of the unit sphere, i.e. over all microplanes.
Taking into account the symmetry of projection tensors it is possible to calculate only
with the unit hemisphere Γ:

Wmicro =

∫
Γ

(σNδεN + σMδεM + σLδεL)dΓ. (8.39)

The equality of Eqs. 8.38 and 8.39 and introducing projection tensors for microstrains
yields the macroscopic stress tensor as

σij =
3

2π

∫
Γ

(σNNij + σMMij + σLLij)dΓ. (8.40)

It is also convenient to a work-conjugate formulation for volumetric stress analogically to
the formulation of the macrostress tensor σij. A relation for the volumetric stress is then
given by the equality of the virtual work of volumetric stress on the macro and on the
microlevel as

2π

3

σkk

3
δεmm =

∫
Γ

σV δεV dΓ. (8.41)

By introducing this formula into Eq. 8.40 the macroscopic stress tensor is obtained by

σij = σV δij +
3

2π

∫
Γ

⎛
⎝σD

(
Nij − δij

3

)
+ σMMij + σLLij

⎞
⎠ dΓ. (8.42)
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Constitutive relations between microstrains and microstresses can be defined in dif-
ferent ways. An intensive development in this area was undertaken by Bažant [123].
Originally, the constitutive relations were defined as smooth curves, but due to several
insufficiencies they were replaced by the concept so-called stress-strain boundaries. In
this concept, the stress is evaluated as a minimum of of the elastic prediction and the
boundary stress. Also other improvements, such as shear components on the microplane
and volumetric-deviatoric split of the normal stress have been introduced.

In the following a computational algorithm of the microplane model proposed by
Bažant is outlined:

1. The new macroscopic strain tensor εij and its increment Δεij and previous micros-
trains σp

N , σp
V , σp

L, σp
M for each microplane are given at the beginning of the load

step.
Then, for each microplane:

2. By using of projection tensors, ΔεN = NijΔεij, ΔεV = Δεkk

3
, ΔεD = ΔεN − ΔεV ,

ΔεL = LijΔεij, ΔεM = MijΔεij are obtained.

3. First, the volumetric stress is calculated. It is evaluated from elastic prediction
σe

V = σp
V +EV ΔεV , where EV is the elastic volumetric modulus, and from boundary

values for positive (σb+
V ) and negative (σb−

V ) strains. Volumetric stress is then given
by σ∗

V = min(max(σb
V , σe

V ), σb+
V ).

4. Analogically, the deviatoric stress is calculated as σD = min(max(σb−
D , σe

D), σb+
D ),

where σe
D = σp

D + EDΔεD, ED is the elastic deviatoric modulus, and σb−
D and σb+

D

are deviatoric boundary values.

5. The normal microstress is given by the summation of volumetric and deviatoric
parts as σ′

N = σ∗
V + σD.

6. The boundary for normal stress must be also checked and the normal stress recal-
culated as

σN = min(σ′
N , σb+

N ). (8.43)

7. After the normal stresses from all microplanes are known, compute the volumetric
stress as the mean microplane normal stress over the surface of the hemisphere, but
prevent this value to exceed its boundary as follows

σV = min

(
1

2π

∫
Γ

σNdΓ, σ∗
V

)
. (8.44)

8. For all microplanes recalculate

σD = σN + σV . (8.45)
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9. Compute shear stress components σT = min(|σb
T |, |σe

T |), where T means the direc-
tion L or M and σe

T = σp
T +ET ΔεT . ET is the elastic modulus for shear components

and σp
T is the boundary value.

10. Update all microplane values σV , σD, σL, σM .

11. Finally, the macroscopic stress tensor σij can be computed using Eq. 8.42.

Many aspects of these models put high requirements even on todays powerful computers.
Implicit methods are not suitable with respect to microplane models and lead to long
computational times. In contrast, explicit integration methods blend well with the mi-
croplane model concept. Computational times can be strongly reduced by parallelisation,
which can be implemented into an existing object oriented finite element environment
[127].

8.5 Cellular Automata

Cellular automata are synchronous algorithms that describe the discrete spatial and tem-
poral evolution of complex systems by applying local (or sometimes mid-range) determin-
istic or probabilistic transformation rules to lattice cells with local connectivity. Cellular
automata do not have restrictions in the type of elementary entities or rules they use.
They can map such different situations as the distribution of the values of state variables
in a finite difference simulation, the colors in a blending algorithm, the elements of fuzzy
sets, or growth and decay processes of cells [128].

The local interaction of neighboring lattice points in a cellular automaton is specified
through a set of transformation rules. While the original automata, proposed by Neu-
mann, were designed with deterministic transformation rules, probabilistic transforma-
tions are conceiveable as well. The value of an arbitrary state variable ξ assigned to
particular lattice site at a time (t + Δt) is determined by its present state (t0) (or its
last few states t0,t0 − Δt, etc.) and the state of its neighbours. Using the last two
time, steps for the evolution of a 1D cellular automaton, can be put formally by writing
ξt0+Δt
j = f(ξt0−Δt

j−1 , ξt0−Δt
j , ξt0−Δt

j+1 , ξt0
j−1, ξ

t0
j , ξt0

j+1) where ξt0
j is the value of the variable at

time t0 at node j. The positions (j + 1) and (j − 1) indicate the nodes in the neighbour-
hood of position j (in D). The function f specifies the set of transformation rules. If the
state of the node depends only on its nearest neighbours (NN) the array is referred to
as von Neumann neighbouring. If both the NN and the next-nearest neighbours (NNN)
determine the ensuring state of the node, the array is called Moore neighbouring.

One typical application of cellular automata for materials-related simulations consists
in mapping the values of relevant state variables onto the points of a lattice and using
the local finite difference formulations of the partial differential equations of the under-
lying model as transformation rules. The particular versatility of cellular automata for
microstructure simulations especially in the fields of recrystallisation, dendritic growth,
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grain growth and phase transformation phenomena is due to its flexibility in considering
a large variety of variables and transformations [128].

8.5.1 Cellular Automata based Material Model for FEM Simu-
lations

Thermo-mechanical simulations of metal-forming operations typically use the finite ele-
ment method to study the evolution of deformation variables e.g. stress, strain and tem-
perature. The relationship between the externally applied deformation and the internally
evolving variables can be captured by a material model that is expressed by physically
based equations. Such physically-based relations use the fundamental variables of dis-
location density (ρ), subgrain size (δ) and misorientation angle (θ) to capture the local
hardening and softening phenomena based on the externally applied deformation. The
local effects are summed at the global structural level to arrive at the structural stress
patterns. Recently, physically-based formulations have utilised the merits of artificial in-
telligence (AI) tools, particularly the concept of neuro-fuzzy (NF) architectures, to define
the material model.

NF models work well in situations where the experimental data on the evolution rates
of ρ, δ and θ are sparse or diffcult to obtain for the entire workable range of deforma-
tion conditions. To carry out simulation studies at the structural level, the physically-
based formulations need to be coded in situ within the finite element solver using user-
subroutines. A particular area of interest is the effect of the initial microstructure on the
evolution rates of ρ, δ and θ. Experimental evidence shows that the initial distribution
of grain size, particularly the grain boundaries, play an important role in defining the
evolution rules. An effcient method of capturing the initial and evolving microstructural
information is to use a combination of cellular automata (CA) and finite element (FE)
techniques, a result often termed CAFE. It uses the scale-invariant spatial characteristic
of CA to define the micro-feature and it links the CA cells to the integration point of a
finite element (Fig. 8.6) [129].
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Figure 8.6: Schematic diagram of the nf -CAFE model [129].

The concept of Cellular Automata was introduced by von Neumann in the early 1940s
for the simulation of self-reproducing automata and population evolution. Early devel-
opments in application were to the fields of fluid dynamics and biological processes, and
recently it has been applied to the simulation of material microstructure.

Figure 8.7: The physically-based model formulation and its linkage to each integration point
of a finite element. However, the linkage is made at each CA cell and its state, i.e. whether it
is a grain boundary or a grain interior [129].



8 Special Simulation Methods 91

In the CAFE framework, the material model is defined by the rate of evolution of ρ,
δ and θ at each time increment. The rate constants used in the evolution equations of ρ,
δ and θ are based on a neuro-fuzzy model. A schematic illustration of this approach is
shown in Fig. 8.7 for a single element highlighted in this concept [129].

8.5.2 Monte Carlo Method

The Monte Carlo Method as known in materials community is an adaption of a method
used primarily to study the statistical physics of phase equilibria. The name “Monte
Carlo” was coined by Metropolis during the Manhattan Project of World War II, because
of the similarity of statistical simulation to games of chance, and because Monte Carlo,
the capital of Monaco was a center for gambling. Monte Carlo now refers to any method
that utilises sequences of random numbers to perform statistical simulation. The main
requirement to use Monte Carlo method for simulation of a physical system is that it
must be possible to describe the system in terms of probability density function (PDF),
also called partition function (Z). Once the PDF or Z for a system is known, then the
simulation begins by random “sampling” from the PDF, and subsequently determining
the desired properties of the sample by conducting some kind of a “trial”. There must be
a rule available, based on some reasonable mathematical and/or physical thery, to decide
the outcome of such a trial. Many trials are conducted and outcomes of all of these trials
are recorded. The final step in the MC method is that the behaviour of the overall system
is obtained by computing the average of outcomes of the trails conducted.
The genesis of the Ising model lies in solid state physics community and the development
of models for ferromagnetic materials. The Ising model [130] represents a magnetised
materia as a collection of spins where only two states are possible, namelly up or down.
Potts [131] later generalised the Ising model and allowed for Q states for each particle
in the system, hence the term “Q-state Ising model”. It is the Potts model that has
been used most extensively to simulate mesoscopic (where the length scale is the order of
the grain size) behaviour of materials such as recrystallisation, grain growth and texture
evolution [128].

8.6 Experimental Simulation

Mechanical material data are commonly determined by uniaxial loading, but components
are exposured to multiaxial loads in general. For this reason stresses and strains cannot
be specified by a scalar value in a component part. To exactly describe stress and strain
conditions in a three dimensional continuum, tensors for the stress σ and strain ε have to
be introduced. Path- (ε and ε̇) and force (σ) dimensions are coupled through a material
law, in general formulation

ε̇p = ε̇p(σ, T, Si) (8.46)
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with a composition of evolution equations for the inner variables Si, (i = 1,...,n) which
denote microstructure parameter and

Ṡi = Ṡi(σ, T, Si), (8.47)

where Ṡi denotes the temporal variation of the microstructure parameters Si. In multi-
axially loaded componts these correlations have to be formulated with tensors [44].

Strain Rate Dependence

In the uniaxial tensile test, the technical strain ε is defined by the relation of the elon-
gation Δl to the initial length l0 of the specimen. At high strain rates, this relation is
insufficient for a reasonable description of the actual strain condition according to the
material response. For this reason, the true stress dε̂ is defined by the relation of the
differential elongation dl to the current specimen length l:

ε̂ =

l∫
l0

dl

l
= ln

l

l0
. (8.48)

A strain rate in a three-dimensional continuum requires the ability to define independent
elongations of a line element in all possible directions as well as variations of the angle of
such a line element. A definition of a continuum after Lagrange may be as follows: A place
in the deformed body R is denoted as reference configuration R0 due to his coordinates
x with relation to the coordinate system X. As reference configuration the idle state is
considered. The displacement vector u describes the displacement of the point P to P ′

x = X + u. (8.49)

A line element dX in the reference configuration changes due to the deformation of the
body into a line element dx with the following relation between dx and dX

dx =
∂x

∂X
dX = FdX. (8.50)

Hence the definition of the deformation gradient F results in

F =
∂x

∂X
. (8.51)

The length squares of the line elements dX and dx are defined by (dS)2 = dX.dX and
(ds)2 = dx.dx. The difference of these length squares (ds)2 − (dS)2 provides the basic for
the definition of the Green-Lagrange strain tensor E:

(ds)2 − (dS)2 = 2dXEdX, (8.52)
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where E can be expressed with the help of the deformation gradient F

E =
1

2
(F T F − I), (8.53)

as well as by partial derivations of the displacement vector u

Eij =
1

2
(ui,j + uj,i + uk,iuk,j). (8.54)

The term ui,j determines the derivation of the component ui by the coordinate Xj. The
strain tensor ε of the geometrically linear theory results due to negligence of the multi-
plication term in Eq. 8.54 in

εi,j =
1

2
(ui,j + uj,i). (8.55)

In the uniaxial tensile test, the component E11 of the Green-Lagrange strain tensor results
by

E11 = ε11 +
1

2
(ε11)

2 (8.56)

At strain rates of ε11 = 10%, the maximum deviation between the tecnical strain ε11, the
true strain ε̂ and the first component of the Green-Langrange strain tensor E according
to 8.48 is about 10% [44].

Stress Rate Dependence

In the uniaxial test there is a difference between the technical stress, where the power is
related to the initial cross section of the specimen and the true stress, defined as quotient
from power over the current cross section. Analogical to the strain rates, also dimensions
for the description of the stress condition in the three dimensional continuum have to be
declared. For this purpose, a body R is cutted into two parts R1 and R2. The influence
of R2 onto an infinitesimal surface element ΔA of the part R1 can be expressed by the
force Δp

Δp = tΔA. (8.57)

The force t related to the surface element is mentioned as stress vector. The partition of
the stress vector into the direction of the components of the normal vector n defines the
Cauchy stress tensor σ

t = nσ, (8.58)

which is related to the actual configuration R and represents the true stress of the de-
formed body. Sometimes it is advantageous to operate with stress tensors, defined in the
initial configuration R0. Suchlike stress dimension is the 1. Piola-Kirchhoff stress tensor

ΣI = det(F )F−1σ. (8.59)

As σ is a symmetric tensor, the asymmetry of the 1. Piola-Kirchhoff stress tensor results
from the asymmetry of F−1, which often is disadvantageous concerning the solution of
practical problems. For this reason, the 2. Piola-Kirchhoff stress tensor ΣII is introduced

ΣII = ΣI(F−1)T = det(F )F−1σ(F−1)T . (8.60)
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For the stress rates of a specimen with the initial cross section A0, resulting from the
force F during an uniaxial tensile test with the assumption of incompressible material
behaviour, results

σ11 =
F (ε11 + 1)

A0

, (8.61)

ΣI =
F

A0

, (8.62)

ΣII =
F

A0(ε11 + 1)
. (8.63)

At a strain of ε11 = 10%, a maximum deviation between the stress rates of about 20%
occurs. During the solution of mechanical problems, it is important to esteem that the
used strain- and stress tensors are conjugated ernergetically to each other. The Green-
Lagrange strain tensor E and the second Piola-Kirchhoff stress tensor ΣII satisfy this
criteria. By the reason of invariation of the components of ΣII against fixed body ro-
tation, the temporal derivation of the Green-Lagrange strain tensor Ė can be used as a
degree of the strain rate. Thereby the polar decomposition of the deformation gradient is
not necessary to perform [44].

High temperature fatigue is a very complex subject and involves the intervention of vari-
ous time dependent processes such as creep, oxidation, dynamic strain ageing, mechanical
instability, microstructural degradation, precipitation, etc. Furthermore, at elevated tem-
peratures, various factors such frequency, strain rate, wave form, hold position, hold
duration and strain range have been shown to exert greater influence on lifetime [132].

To represent material behaviour in a laboratory test, the thermal strains are replaced
by a mechanical strain, introduced and controlled under isothermal conditions. Start-up
and shut-down cycles are replaced by a symmetrical and continuous fatigue cycle of equal
strain rates in tension and compression (Fig. 8.8) with a hold period at a constant peak
strain to simulate the on-load perid, i.e. creep-fatigue interaction.
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Figure 8.8: Typical waveforms for strain controlled fatigue testing [132].

Slow-fast and fast-slow strain-time wave forms (Fig. 8.9) represent another category used
to evaluate creep-fatigue interaction effects [133]. In the slow-fast cycle, the tensile strain
rate is less than in the compression part of the cycle, while in the fast-slow cycle, the
compression strain rate is less than in tension. Tension hold alone, compression hold
alone, slow-fast and fast-slow wave forms are generally considered as unbalanced cycles.
Creep-fatigue interaction can also be evaluated using continuous cycling at low frequencies
or strain rates.

Figure 8.9: Typical waveforms for strain controlled fatigue testing [133].
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The purpose of such experiments is to review the phenomenological effects of various
strain-time wave forms on LCF and creep-fatigue interaction life.

Thermal and thermo-mechanical fatigue experiments to simulate creep and creep-
fatigue damage are described in section 5.1.2.1.



9 Conclusion and Future Work

The aim of this literature survey is to depict, select and describe methods which are
suitable for a characterisation of local damage in hot work tool steels in use. Due to the
alloying concept which is the basis for the evolution of a certain structure, the required
material properties can be adjusted by several heat treatment conditions. The most
important fact in such materials is the secondary hardenenig effect at tempering tem-
peratures of about 500-600◦C. The application of hot work tool steels and the adjusting
of required material properties by several treatment conditions as well as characteristic
phases are mentioned in chapter 2. Microstructural elements like precipitations, subgrain
structure and dislocations, respectively, specified by parameters, and the structure evo-
lution during cyclic thermo-mechanical loads is displayed in chapters 3 and 4. It is from
great importance to exactly know the influence of thermal and mechanical loads onto
the microstructure, on which the mechanical properties depend on. Several competing
hardening and softening mechanisms appear. The dominating damage mechanism in hot
work tool steels is creep-fatigue, ocurring due to an overlapping of thermal and mechan-
ical loads. This mechanism is worse than just pure fatigue, which cause cracks, or creep
which cause mainly pores, the combination of such influences leads to an earlier compo-
nent failure. Models to describe the damage were depicted in chapter 6. There exist void
based criteria like the model according to McClintock, which is an integral approach to
describe failure by void initiation and growth followed by coalescense, the Rice and Tracey
model considering the ductile growth of voids in continuum plasticity, and the modified
version for an application in FEM programs. The Gurson model, for example, is a yield
criterion which is based on the void volume fraction. Continuum damage mechanics cri-
teria (the concepts according to Lemaitre, Yeh and Krempl) are described in chapter 6.2.
The effective stress concept according to LeMaitre introduces a damage variable, which
describes the process of material damage and hence the increasing stress (i.e. effective
stress) due to the decrease of the load carrying cross section can be calculated. Yeh and
Krempl proposed an incremental multiaxial life prediction law based on a thermovicoplas-
ticity law combined with a multiaxial damage accumulation law. A variety of models to
determine the lifetime at cyclic high temperature loading exist, and they can be classified
into four main groups, namely empiric models which predict lifetime by implementat-
ing a damage parameter, damage mechanic methods which are commonly based on the
implementation of a whole damage function, physical approaches describing the damage
evolution considering the movement of atoms, vacancies and dislocations, and fracture
mechanical methods which describe the crack growth from an initial size until a critical,
material depending parameter. With the focus on creep-fatigue simulation, several meth-
ods generating reasonable results exist. With elastic-viscoplastic models (e.g. Chaboche)
coupled with FEM, the inelastic strain rate is calculated and damage accumulation can
be derived. Crystal plasticity consideres the phenomena ocurring in just one crystal (i.e.
grain, subgrain). Crystal plasticity coupled FEM is an application, where every finite
element is meant to be one single crystal with different orientation. The whole structure
is then a copound of these single crystals with resulting macroscopic response by calcula-
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tion of each connected single finite element. The representative volume element method
consideres a representative structure section, which can be understood as a procedure to
derive the kinetics of the macro continuum with a point wise attached microstructure. In
the cellular automata approach, different states of cells correspond to a different progress
in damage. Such structures could be taken from EBSD analysis and implemented into
the cellular automata framework. Several experimental simulation methods to evaluate
creep-fatigue interaction effects , e.g. under strain controlled test conditions are men-
tioned.

The future work is now to analyse the material behaviour of the four Böhler hot work
tool steels W300, W360, W400 and W750. These materials are tools for extrusion of
light metals as well as drop forging. Tools for extrusion have to withstand creep-fatigue
loads, whereas forging tools are exposured to shorter cycle times, which provides mainly
thermal fatigue. Additional experimental data of these four hot work tool steels have to
be ascertained. The difference in friction behaviour of nitrided tools in comparison to un-
nitrided ones should be evaluated by a conclusion of various measured forming pressures,
stresses in the container and temperatures, respectively, for nitrided/unnitrided tools. A
concept for an experimental test device simulating a forging process is required for the
verification and evaluation of boundary conditions implemented into FEM simulations.
To simulate the local load history of critical tool regions experimentally, the critical load
until cracks occur should be determined. Thereby the GOM/ARAMIS system can be ap-
plied to measure strains at the surface as well as cracks could be detected. An interesting
thing would be the investigation of damaged tool materials from industrial cooperators in
the extrusion and forging branch. The transfer of important data, like process parameters
and lifetime of tools would be very helpful to analyse and optimise industrial processes.
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