Die Genese des Amethystganges von Maissau, Niederösterreich

Diplomarbeit

zur Erlangung des akademischen Grades eines Diplomingenieurs der Studienrichtung Angewandte Geowissenschaften

von

Christoph Johannes Piribauer

Betreuer

Ao.Univ.-Prof. Dr.phil. Oskar A. R. Thalhammer Ao.Univ.-Prof. Dr. Ronald J. Bakker

Department für Angewandte Geowissenschaften und Geophysik Lehrstuhl für Mineralogie und Petrologie Montanuniversität Leoben

Leoben, Juni 2007

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbständig und ohne fremde Hilfe verfasst, andere als die angegebenen Quellen nicht benützt und die den benutzten Quellen wörtlich oder inhaltlich entnommenen Stellen als solche kenntlich gemacht habe.

Leoben, Juni 2007

An dieser Stelle möchte ich allen Danken die mich im Laufe dieser Arbeit begleitet haben.

An erster Stelle möchte ich mich herzlich bei meinen Betreuern Herrn Ao. Univ.-Prof. Dr. phil. Oskar A. R. Thalhammer und Herrn Ao. Univ.-Prof. Dr. Ronald J. Bakker für die Anleitung und die Geduld während dieser langen Zeit bedanken.

Mein besonderer Dank geht an die Maissauer Amethyst Gesellschaft mbH, insbesonders an die Herren Peter Gallas und Dkfm. (FH) Josef Piller, ohne deren Unterstützung diese Arbeit nicht möglich gewesen wäre.

Herrn Dr. Peter Spindler von den Austrian Research Centers Seibersdorf und Herrn Ao. Univ.-Prof. Mag. rer. nat. Dr. mont. Thomas Meisel möchte ich ebenfall herzlich für die Hilfe bei den chemischen Analysen danken.

Natürlich möchte ich auch alle Personen des Departments nicht vergessen, die mir während meiner "Reise" zur Seite gestanden sind: Ao. Univ.-Prof. Dr.phil. Johann G. Raith für seine Unterstützung bei der Analyse der Dünnschliffe und sonstigen Problemen und Problemchen, Herrn Helmut Mühlhans für die Hilfe bei den Messungen mit der Mikrosonde und der Herstellung der Dünnschliffe, Frau Mag. Miriam Baumgartner und Herrn Ass. Prof. Dipl.-Ing. Dr. mont. Heinrich Mali für die kreativen Rauchpausen, den restlichen Mitgliedern des "Dreimäderlzimmers", Herrn Phillipp Hartlieb und Frau Angelika Ressler für die zwischenzeitliche Zerstreuung und Unterhaltung und auch nicht vergessen werden darf Frau Judith Bergthaler für die administrative Unterstützung.

Auch meine Familie und Freunde abseits des Departments sollen an dieser Stelle nicht vergessen werden.

Zu guter Letzt möchte ich noch all jenen Danken die mir während meiner Zeit hier hilfreich zur Seite gestanden sind oder mich wenigstens nicht gestört haben.

Inhaltsverzeichnis

1. Zusammenfassung	1
2. Abstract	3
3. Einleitung	5
4. Geologischer Überblick	6
5. Proben	11
5.1. Alterationszone und Granit	12
5.2. Amethystgang	18
6. Methodik	19
6.1. Anwendung der RFA Analytik für die vorliegende Arbeit	19
6.2. Anwendung der XRD Analytik für die vorliegende Arbeit	23
6.3. Die Elektronenstrahl-Mikrosonde	25
6.4. Anwendung der ICP-MS Analytik für die vorliegende Arbeit	28
6.5. Anwendung der Raman Spektroskopie für die vorliegende Arbeit	32
6.6. Mikrothermometrie	35
7. Präsentation der Ergebnisse	37
7.1. Chemie und Mineralogie der Alteratioszone	37
7.2. Chemie des Bänderamethysts	44
7.3. Flüssigkeitseinschlüsse	49
8. Diskussion der Ergebnisse	59
9. Literaturverzeichnis	65
10. Abbildungsverzeichnis	69
11. Anhang	74

1) Die Genese des Amethystganges von Maissau, Niederösterreich

Der Amethystgang von Maissau, welcher vor ca. 150 Jahren entdeckt wurde, liegt ca. 60 km nördlich von Wien. Das Muttergestein des Amethystes ist der Thaya Batholith, welcher während der Cadomischen Orogenese, vor ca. 550 – 580 Ma, intrudiert ist. Dieser schwach metamorphe präkambrische Granit ist Teil der Böhmischen Masse und tritt als domartige Intrusion auf. Der Amethystgang von Maissau hat eine bekannte streichende Erstreckung von ungefähr 400 m, eine maximale Breite von ca. zwei Metern und fällt fast vertikal nach SSW bzw. NNE ein. Der Gang ist von einer bis zu mehreren Metern mächtigen Alterationszone umgeben. Die Alterationszone ist durch eine Zunahme der Fe- und Si-Konzentrationen bei einer gleichzeitigen Abnahme der Aluminiumkonzentration in Richtung des Ganges charakterisiert.

Der Amethystgang zeigt eine charakteristische Bänderung im mm bis cm Bereich, welche durch unregelmäßige Bänder von Bergkristall, Rauchquarz, Milchquarz, unterschiedlich intensiv gefärbtem Amethyst und teilweise Morion definiert ist. Die Bänderung, die auch durch unterschiedlich intensive Färbungen im Amethyst auftritt, wurde mit der LA-ICP-MS Methode untersucht, wobei signifikante Variationen in den Fe, Al und Li Konzentration festgestellt wurden. Der dunklere Amethyst zeigt, im Vergleich zum helleren Amethyst, eine Zunahme des Eisens, bei einer gleichzeitigen Abnahme von Lithium und Aluminium.

Die unterschiedlichen Zonen sind weiters durch das unterschiedliche Auftreten von primären und (pseudo-) sekundären Flüssigkeitseinschlüssen charakterisiert. Die äußere Milchquarzzone enthält reichlich große Flüssigkeitseinschlüsse mit einem Durchmesser von bis zu 60 µm. Die Einschlüsse sind dunkel, haben eine unregelmäßige Form und ihr Inhalt konnte weder mit Mikrothermometrie noch mit Raman Spektroskopie bestimmt werden.

Die im nachfolgenden Rauchquarz und Bergkristall gefundenen Flüssigkeitseinschlüsse sind ähnlich. Der Rauchquarz ist klar und tritt als dünnes Band, welches den Bergkristall überwächst, auf. Die Einschlüsse haben regelmäßige, längliche bis halbregelmäßige rundlichere Formen mit einem Durchmesser von 1 bis 70 µm und werden als primäre Einschlüsse interpretiert. Sie enthalten eine Blase von ca. 10 Vol%, und eine schwach salinare wässrige Lösung ($T_{\rm m}$ (ice) \approx -3 °C). Einige dieser Einschlüsse enthalten zufällig eingeschlossene Sulfate von unterschiedlicher Größe. Die Homogenisierungstemperaturen (T_h) lassen sich in drei Temperaturbereiche gliedern:

- 220 230 °C
- 140 150 °C
- und $< 70 \,^{\circ}\mathrm{C}$

Dies lässt auf ein Einschlusswachstum im Zuge von mehreren Fluid – Pulsen unterschiedlicher Temperatur schließen. Sekundäre und pseudosekundäre Flüssigkeitseinschlüsse in diesen zwei Zonen, treten in gebogenen Linien auf. Sie zeigen eine regelmäßige Form mit einer Größe von 1 bis 10 µm. Sie sind ebenfalls schwach salinar, besitzen aber unterschiedliche Füllungsgrade. Innerhalb des Bergkristalls können wolkenförmige Milchquarzbereiche beobachtet werden. Diese Bereiche enthalten regelmäßige, längliche Einschlüsse. Die meisten Einschlüsse enthalten eine homogene wässrige Phase, welche ihre niedrigen Bildungsbedingungen widerspiegelt.

Die im Amethyst vorkommenden primären Flüssigkeitseinschlüsse enthalten eine höher salinare Lösung, $T_{\rm m \ (ice)}$ von –1 °C bis –12 °C. Die Homogenisierungstemperaturen liegen zwischen 80 °C und 130 °C und es konnte heterogenes "trapping" beobachtet werden. Die pseudosekundären Einschlüsse sind ebenfalls sehr heterogen. Innerhalb der unterschiedlichen Spuren sind die Einschlüsse allerdings homogen. Dies weist auf fluktuierende Bedingungen während der Bildung dieser Spuren hin.

Die vorliegenden Untersuchungen zeigen, dass die einzelnen Zonen des Amethysttanges von Maissau das Resultat von einzelnen, aufeinanderfolgenden Fluid – Pulsen sind. Die Fluid – Pulse unterscheiden sich hinsichtlich ihrer Temperatur und ihrer chemischen Zusammensetzung. Die Amethystzonen sind aus Fluid – Pulsen mit einer Temperatur zwischen 120 °C und 160 °C und durch höhere Gehalte an Fe, Al, und Li, verglichen mit klarem Quarz, charakterisiert.

2) The Origin of the Amethyst vein of Maissau (Austria)

The amethyst vein of Maissau, discovered around 150 years ago, is located approximately 60 km north of Vienna. The host rock of the amethyst vein is represented by the Thaya Batholite, which was emplaced during the Cadomian Orogeny, around 550 - 580 million years ago. This low metamorphic Precambrian granite, forms part of the basement of the Bohemian Massif and appears as a dome-like intrusion. The amethyst vein of Maissau has an extension of approximately 400 meters and has a maximum width of around two meters and dips almost vertically to SSW and NNE. The amethyst vein is accompanied by an alteration zone up to one meter in thickness. The alteration zone is characterised by increasing concentrations of Fe and Si, and a decrease of Al approaching the amethyst vein.

The amethyst vein shows a characteristic layering in the mm - to cm scale, which is defined by irregular layers of clear quartz, smoky quartz, milky quartz, variably intensively coloured amethyst and locally morion. This layering, particulary within the amethyst, has been investigated in detail using LA - ICP - MS technique, whereby significant variations in the Fe, Al, and Li concentrations were detected. Dark coloured amethyst layers are characterised by an increase in Fe and simultaneous decrease in Al and Li, compared to lighter amethyst.

The different zones are characterised by the occurrence of distinct types of primary and (pseudo-) secondary fluid inclusions. The outer milky quartz contains abundant large fluid inclusions up to 60 μ m in diameter. The inclusions are dark, irregularly shaped and their content could not be determined by microthermometry and Raman spectroscopy.

Similar types of fluid inclusions are found in the following smoky and clear quartz zones. The smoky quartz is clear and appears in a fine layer (~1 mm), overgrowing the clear quartz zone. The inclusions have regular, elongated and semi-irregular equant shapes with sizes between 1 and 70 μ m in diameter and are considered primary. They contain approximately 10 vol% vapour bubble and a slightly saline aqueous solution ($T_{m (ice)}$ mode at -3 °C). Some of these inclusions contain accidentially trapped sulphates, in various proportions.

Three temperature ranges can be distinguished on the basis of the total homogenisation temperatures (T_h):

- 220 230 °C
- 140 150 °C and
- < 70 °C

This illustrates the entrapment of inclusions during several fluid pulses of distinct temperatures. Secondary and pseudosecondary fluid inclusions in these two zones occur in curved trails, are regularly shaped and have sizes between 1 and 10 μ m. They are also slightly saline, but have highly variable filling degrees. Irregular clouds of milky quartz occur within the clear quartz, containing regular elongate fluid inclusions. Most of them contain a homogeneous aqueous phase indicating their low temperature origin.

Primary inclusions in amethyst contain a higher saline fluid, with $T_{\rm m}$ (ice) varying between -1 and -12 °C. Total homogenisation temperatures range from 80 °C to 130 °C and the remnants of hetergeneous trapping is observed. Pseudosecondary inclusions are also heterogeneous. Individual trails of pseudosecondary inclusions contain a homogeneous fluid, either with a constant filling degree or a homogeneous liquid phase, indicating fluctuating trapping conditions.

The present study shows that the amethyst vein of Maissau is the result of several subsequent fluid pulses. Each fluid pulse is clearly defined by distinct temperature and chemical composition. The amethyst zones were generated from fluid pulses with temperature between 120 °C and 160 °C and are characterised by higher accessory concentrations of Fe, Al, and Li, compared to those forming the clear quartz zones.

3) Einleitung

Diese Arbeit wurde unter der Betreuung von AO. Univ. Prof. Dr. O. A. R. Thalhammer, AO. Univ. Prof. Dr. R. J. Bakker und in Zusammenarbeit mit der Maissauer Amethyst GmbH am Dempartment Angewandte Geowissenschaften und Geophysik, Lehrstuhl Mineralogie und Petrologie, durchgeführt.

Ziel der Arbeit war die Ermittlung der Entstehung des Amethystganges, sowie eine detaillierte Zusammenstellung sämtlicher wissenschaftlicher Ergebnisse über das Amethystvorkommen in Maissau, ihre Präsentation im Ausstellungszentrum der Amethyst GmbH und die Erstellung von Unterlagen für verschiedene Besuchergruppen, die dem Ausstellungszentrum zur Verfügung gestellt werden.

Bei den wissenschaftlichen Untersuchungen wurden folgende Schwerpunkte gesetzt: 1) Zeitpunkt der Entstehung des Ganges, 2) die Art und Herkunft der Fluida, die den Gang gebildet haben, 3) die chemische und mineralogische Zusammensetzung des Granits, das Muttergestein des Maissauer Amethysts, 4) die Alterationszone, 5) die einzelnen Quarzvarietäten, die den Bänderamethyst aufbauen und 6) die P - T - X - Bedingungen derGangbildung.

4) Geologischer Überblick

Abb. 4.1, E Teil der Bömischen Masse (vereinfachte Skizze nach Matte et al., 1990, aus Frasl, 1991, Arbeitstagung Geol. B.-A.)

Der Thaya Pluton, das Muttergestein des Amethystes, ist Teil des Moravikums der Böhmischen Masse (Abb. 4.1 und Abb. 4.2). Die Böhmische Masse wir in zwei große Zonen unterteilt, die Moravische Zone und die Moldanubische Zone.

4.1) Die Moravische Zone

Die Moravische Zone besteht, in stratigraphischer Reihenfolge, aus dem Thaya Batholith, der Pleissing Decke und der Bittescher-Gneis –Decke (siehe Abb. 4.2).

Der Thaya Batholith ist ein Granitkomplex cadomischen Alters (567 ± 6 Ma; FRIEDL et al., 2004), welcher in ein Dach älterer Gesteine intrudierte. Er repräsentiert die tiefste strukturelle Einheit des Moravikums. Finger et al. (1989) unterscheidet innerhalb des Thaya Batholithes auf der Basis von Kartierungen und chemische Untersuchungen vier Lithologien.

Der Hauptgranit umfasst mittelkörnige, helle Granite bis Granodiorite mit geringem Biotitgehalt. Derartige Gesteine umfassen etwa zwei Drittel des gesamten Batholithen. Der Hauptgranit kann geochemisch in eine niedrig Sr und in eine Variante mit hohem Sr Gehalt untergliedert werden. (HÖCK & LEICHMANN, 1994).

Dem Gumpinger Typ werden mehr oder weniger vergneiste, biotitreiche Granodiorite und Quarzmonzodiorite mit großen Kalifeldspatkristallen und Amphibolen, die zu Biotit umgewandelt wurden, zugeordnet. Der Typ Gumping ist älter als der angrenzende Hauptgranit und ist auf den SW Teil des Batolithen beschränkt (HÖCK & LEICHMANN, 1994).

Der Passendorfer Typ umfaßt im wesentlichen feinkörnige bis mittelkörnige Tonalite bzw. Metatonalite mit einem Biotitgehalt von 10 bis 40%, aber nur untergeordnet Amphibol (HÖCK & LEICHMANN, 1994).

Der Gaudendorfer Typ ist ein feinkörniges, granitisches bis granodioritisches Gestein und enthält meist mehr Biotit als der Hauptgranit. Gänge dieses Typs schlagen gelegentlich durch den Hauptgranit (HÖCK & LEICHMANN, 1994).

Die im Hangenden des Thaya Plutons folgende E-vergente Pleißing-Decke besteht aus den stark tektonisierten Weitersdorfer Stengelgneisen, die intensiv mit Metasedimenten verfaltet sind. Als Alter wird spätes Proterozoikum vermutet (FRANK et al., 1990 in EBNER, 1997).

Die Bittescher-Gneis Decke, als hangenstes Schichtglied der Moravischen Zone, besteht aus stark verschieferten, porphyrischen Orthogneisen mit Einschaltung mächtiger Ampibolitlagen im Hangenden. Datierungen zeigen ein cadomisches Alter, wobei auch prä-cadomische Alter nicht ausgeschlossen werden können (KLÖTZLI et al., 1997 in EBNER, 1997). Die metamorphe Zonierung verläuft diskordant zu den lithologischen und tektonischen Grenzen (HÖCK et al., 1990; HÖCK et al., 1995 in EBNER, 1997).

4.2) Die Moldanubische Zone

Das Moldanubikum wird im Wald- und Weinviertel in das liegende Drosendorfer und in das hangende Gföhler Deckensystem unterteilt.

Den liegenden Anteil der Drosendorfer Decke stellt die Monotone Serie dar, welche aus migmatitischen Paragneisen, Kalksilikatgesteinen und vereinzelten Eklogiten besteht (EXNER, 1970 in EBNER, 1997). Zum Südböhmische Pluton hin besteht ein magmatischer Kontakt und am Ostrand der Monotonen Serie treten schmale Lamellen von Granuliten auf (FUCHS & SCHARBERT, 1979 in EBNER, 1997). Das Alter dieser an einem aktiven Kontinentalrand gebildeten Sedimente (LINNER, 1993) wird mit 450 – 650 Ma angegeben (KLÖTZLI et al., 1997). Den hangenden Anteil der Drosendorfer Decke bildet die Bunte Serie, an deren Basis der Dobra Gneis zu liegen kommt. Die Basis des Dobra Gneises stellt eine tektonische Hauptlinie dar, entlang der die Bunte Serie inklusive ihres Basiskristallins der Monotonen Serie aufgeschoben worden ist (KLÖTZLI et al., 1997 in EBNER, 1997). Neben dem Dobra Gneis, welcher ein I-Typ-Granodioritgneis mit einem Intrusionsalter von 1377±10 Ma ist, treten auch noch Biotit-Plagioklasgneise, Graphitgneise, Marmore, Kalksilikatgesteine, Augitgneise, Quarzite und Amphibolite auf (EBNER, 1997).

Im hangenden Anteil des Moldanubikums tritt die Gföhler Decke auf, welche paläozoische Protolithalter besitzt (ARNOLD & SCHARBERT, 1973; FRANK et al., 1989). Die Gföhler Decke

wird durch eine ozeanische Sutur von der Bunten Serie getrennt, die durch die Raabser Einheit repräsentiert ist. Die Raabser Einheit wird als eine tektonische Melange, bestehend aus einem Ophiolith und einer kalkalkalischen, andesitischen Suite gedeutet (FRITZ, 1996). Den hangende Teil der Gföhler Decke bildet der Gföhler Gneis und Granulite, welche zum Teil auch als zusammenhängende Decke angesehen werden (FRANKE, 1989; MATTE et al., 1990 in EBNER, 1997).

Der Südböhmische Pluton bildet das westliche Ende der Böhmischen Masse in Niederösterreich. Die Intrusion erfolgte nach der variszischen Deckenstapelung in mehreren Schüben. Er weist ein Bildungsalter von ca. 330 – 300 Ma auf (GERDES et al., 2003) und setzt sich aus S-Typ und hohen KI-Typ Graniteinheiten zusammen (FINGER et al., 1997).

4.3) Tektonische Geschichte

Die tektonische Geschichte der südöstlichen Böhmischen Masse kann durch Terrane Akkretion während der variszisches Orogenese erklärt werden. Das Modell von FRITZ (1996) beinhaltet zwei kontinentale Blöcke, die von der Raabser Serie (ozeanische Suturzone) getrennt werden (Abb. 4.3.1). Das proterozoische Terrane setzt sich aus dem Moravo-Silesischen Parautochton, den Moravischen Decken und basalen Anteilen des Moldanubikums (monotone Serie und Bunte Serie) zusammen. Das paläozoische Terrane umfasst den Moldanubischen Gföhler Gneis und den Gföhler Granulit (Abb. 3) (FRITZ, 1996).

Abb. 4.3.1, Darstellung des proterozoischen Terranes, des paläozoischen Terranes und der Raabser Serie vor der Deckenstapelung (FRITZ, 1996)

Beide Terrane wurden an der südöstlichen Küste des Gondwana Kontinentes gebildet und drifteten nach Norden wo sie an Europa angelandet wurden (TAIT et al., 1997; FRIEDL et al., 2000; WINCHESTER et al., 2002; STAMPFLI et al., 2001; VON RAUMER et al., 2002, 2003). Der Thaya Pluton, welcher aus cadomischen Granitoiden besteht, repräsentiert im Rahmen dieses plattentektonischen Konzeptes einen I-Typ Pluton des aktiven nördlichen Gondwana Kontinentalrandes (FINGER et al., 1995). Die Deckenstapelung der Böhmischen Masse erfolgte während der variszischen Orogenese durch die Kollision der beiden Terrane (proterozoisches und paläozoisches Terrane) nach der Schließung des Raabser Ozeans, der als ozeanische Suturzone repräsentiert ist.

5) Proben

Im Zuge dieser Arbeit wurden insgesamt 30 Proben genommen (Tabelle 5.1). Beprobt wurde der Amethystgang selbst, die Alterationszone, von der der Gang begleitet ist, sowie gering alterierter Granit aus der Umgebung von Maissau und mehrere Granite aus Limberg.

Probennummer	Ort	Art	Analysemethoden
			5
AZ-M-01	Maissau	Alterationszone; 64 – 70 cm vom Gang entfernt	RFA, ICP – MS, XRD
AZ-M-02	Maissau	Alterationszone; 47 – 50 cm vom Gang entfernt	RFA, ICP – MS, XRD
AZ-M-03	Maissau	Alterationszone; 32 – 38 cm vom Gang entfernt	RFA, ICP – MS, XRD
AZ-M-04	Maissau	Alterationszone; 16 – 20 cm vom Gang entfernt	RFA, ICP – MS, XRD
AZ-M-05	Maissau	Alterationszone; 8 – 11 cm vom Gang entfernt	RFA, ICP – MS, XRD
AZ-M-06	Maissau	Alterationszone; 0 – 5 cm vom Gang entfernt	RFA, ICP – MS, XRD
L1	Limberg	hydrothermal alterierter Granit	
L2	Limberg	rötlich alterierter Granit	ICP – MS
L3	Limberg	ähnliche Alteration wie L2	Mikroskopie
L4	Limberg	Granit mit Xenolith	Mikroskopie
L5	Limberg	Kaolinisierter Granit, ähnlich der Alteration in Maissau	Mikroskopie
L6	Limberg	Quartzgang innerhalb L5	Mikrothermometrie, RAMAN
L7	Limberg	unverwitterter Granit	Mikroskopie, ICP – MS
L8	Limberg	Material aus einem olivgrünen verwitterten Gang	Mikroskopie, ICP – MS, RFA
L9	Limberg	leicht alterierter Granit (chloritisierung an den Trennflächen)	Mikroskopie, RFA
Mal	Maissau	stark alterierter Granit	Mikroskopie, RFA
Ma2	Maissau	stark alterierter Granit	Mikroskopie
Ma3	Maissau	Alterationszone	Mikroskopie, RFA
Ma4	Maissau	Alterationszone	RFA
Fl1	Maissau	Amethyst, großer Kristall	Mikrothermometrie, RAMAN, LA – ICP – MS
F12	Maissau	Amethyst, großer Kristall	Mikrothermometrie, RAMAN, LA – ICP – MS
F13	Maissau	Amethyst, großer Kristall	RAMAN
Fl4	Maissau	Amethyst, großer Kristall	RAMAN
Qul	Maissau	Quarzzone Bänderamethyst	AAS (Fe, Mg, Al), ICP – MS
Am1	Maissau	Amethystzone Bänderamethyst	AAS (Fe, Mg, Al), ICP – MS

Tabelle 5.1, Überblick der genommenen Proben und die angewendeten Untersuchungsmethoden

RFA...Röntgenfluoreszenanalyse

(LA-)ICP-MS...(Laser Ablation-) Inductively Coupled Plasma - Mass Spectrometry, Massenspektrometrie mit induktiv gekoppeltem Plasma

XRD...Röntgendiffraktometrie

AAS... Atomabsorptionsspektrometrie

5.1) Alterationszone und Granit

Die Proben von der Alterationszone wurden direkt neben dem Amethystgang im Schaustollen der Amethystwelt genommen (Abb. 5.1.1). Die Gesamtlänge der Schlitzprobe beträgt ca. einen Meter. Von dieser Gesamtprobe wurden 6 Teilproben entnommen. Bei der Entnahme wurde auf den Abstand zum Gang und einige makroskopische Merkmale, wie Farbe, Korngröße, etc. geachtet. Im Folgenden werden die Proben aus der Alterationszone makroskopisch charakterisiert.

Abb. 5.1.1, Amethyststollen Maissau

Abb. 5.1.2, Amethystgang mit Alterationszone

Abb. 5.1.3, Plan der Amethystwelt Maissau mit der Lage der Grabungen 2004 und 2006

Die Probe AZ-M-01 wurde innerhalb des Schaustollens in einer Entfernung von ca. 64 bis 70 cm vom Amethystgang entnommen. Sie ist nahezu weiß und sehr feinkörnig. Es konnten einige wenige Quarzkörner beobachtet werden.

Die nachfolgende Probe AZ-M-02 ist 47 bis 50 cm vom Gang entfernt. Sie ist ebenfalls sehr stark alteriert, jedoch sind noch die Reste des ursprünglichen Gefüges zu erkennen. Einige Quarzkörner konnten beobachtet werden. Die Probe AZ-M-03 stammt aus einer Entfernung von 32 – 38 cm vom Amethystgang. Sie weist rein äußerlich starke Ähnlichkeiten zu der Probe AZ-M-02 auf.

d

Probe AZ-M-01, Alterationszone, Amethyststollen Maissau, 64 – 70 cm vom Gang entfernt

Probe AZ-M-03, Alterationszone, Amethyststollen Maissau, 32 – 38 cm vom Gang entfernt

e

Probe AZ-M-02, Alterationszone, Amethyststollen Maissau, 47 – 50 cm vom Gang entfernt

Probe AZ-M-04, Alterationszone, Amethyststollen Maissau, 16 – 20 cm vom Gang entfernt

Probe AZ-M-06, Alterationszone, Amethyststollen Maissau, 0-5 cm vom Gang entfernt

Probe AZ-M-05, Alterationszone, Amethyststollen

Maissau, 8 – 11 cm vom Gang entfernt

AZ-M-05

Bei den anderen Proben, welche in immer kürzerer Entfernung zum Amethystgang entnommen wurden, ist das ehemalige Gefüge nicht mehr zu erkennen. Sie bestehen aus einer nahezu homogenen feinkörnigen Masse von unterschiedlicher Färbung. Die Farbe der Proben reicht von rein weiß, über ockerfarben bis hin zu rot. Weiters sind einige größere Quarzkörner zu beobachten und Teile von feinen Amethystgängchen, die vom Hauptgang aus in die Alterationszone reichen.

Abb. 5.1.5, Probennahme im Amethyststollen

Die Proben Ma 1 und Ma 2 stellen einen stark alterierten Granit, ca. 5 - 6 m vom Amethystgang entfernt, dar. Das Gefüge ist noch sehr gut erkennbar. Die Alteration ist nicht so weit fortgeschritten wie in der unmittelbaren Umgebung des Ganges. Man kann im Handstück neben den Quarzen auch noch fleischfarbenen Alkalifeldspäte und Plagioklase erkennen. Die primären Glimmer sind nahezu komplett umgewandelt. An den Korngrenzen ist bereits Kaolinitisierung zu erkennen.

In Limberg, einer Nachbarortschaft von Maissau, wurden mehrere Proben in einem Granitsteinbruch (Abb. 5.1.4 und Abb. 5.1.5) genommen. Die Proben L1, L2, L3, L5 und L9 sind unterschiedlich stark alterierte Granite. L1, L2 und L3 zeigen eine rötliche Farbe.

Abb. 5.1.6, Steinbruch Limberg, oberste Etage, Blickrichtung Westen

Abb. 5.1.7, Steinbruch Limberg, Überblick

Abb. 5.1.8, Probe L1, Hydrothermal alterierter Granit, Limberg

Abb. 5.1.10, Probe L3, ähnliche Alteration wie L2, Limberg

Während Probe L1 stark zersetzt und zerbrochen (überwiegend in Stücken von 2 cm vorliegend) ist, ist bei Probe L2 und L3 das Gefüge noch sehr gut erhalten. Es sind noch alle für Granit typische Minerale makroskopisch zu erkennen, jedoch ist eine beginnende Kaolinitisierung zu beobachten. An den Trennflächen findet sich ein limonitischer Belag. Die Probe L5 ist komplett alteriert. Sie ist fast rein weiß und bis auf Quarz sind alle anderen Minerale bereits umgewandelt. Probe L5 zeigt eine Ähnlichkeit zu Proben aus der

Abb. 5.1.9, Probe L2, rötlich alterierter Granit, Limberg

Alterationszone um den Maissauer Amethystgang. Im Zentrum dieser Alteration tritt ein Quarzgang auf (Probe L6). Der Quarzgang ist von Milchquarz dominiert, zeigt jedoch stellenweise eine leicht violette Färbung.

Abb. 5.1.11., Probe L5, Kaolinisierter Granit, ähnlich der Alteration in Maissau, Limberg

Abb. 5.1.12, Probe L6, Quarzgang innerhalb L5, Limberg

Abb. 5.1.13, Quarzgang mit Alteration (Proben L5 und L6), Limberg

L9 ist ein frischer Granit, der auf Trennflächen eine grünliche Färbung aufweist. Diese Umwandlung reicht ca. 2 cm in den Granit hinein und wurde im Gelände als Chloritisierung angesprochen. Die Probe L7 zeigt einen unverwitterten Granit.

Abb. 5.1.14, Probe L7, unverwitterter Granit, Limberg

Abb. 5.1.15, Probe L9, leicht alterierter Granit (Chloritisierung an den Trennflächen), Limberg

Innerhalb des Granites konnten auch Xenolithe beobachtet werden. Probe L4 zeigt einen Kontakt zwischen einem Xenolith und dem Granit. Probe L8 repräsentiert olivgrüne Gänge, die den Granit durchschlagen. Die Gänge sind sehr stark alteriert und es können bis auf einige Glimmer (1 bis maximal 5 mm), keine anderen Minerale makroskopisch identifiziert werden.

Abb. 5.1.16, Probe L4, Granit mit Xenolith, Limberg

Abb. 5.1.17, Probe L8, Material aus einem olivgrünen verwitterten Gang

5.2) Amethystgang

Der Amethystgang selbst wurde im Zuge einer Grabung beprobt. Die Proben stammen nicht aus dem Schaustollen, sondern aus dem Bereich des heutigen Parkplatzes (siehe Abb. 5.1.2, Grabung 2004). Die meist schön zonierten Proben wurden mittels einer Säge in ihre einzelnen Zonen getrennt, um sie gesondert untersuchen zu können (Abb. 5.2.1).

Abb. 5.2.1, Position der Schliffe FL1 bis FL4

6) Methodik

6.1) Anwendung der RFA Analytik für die vorliegende Arbeit

Die Röntgenfluoreszenzanalyse wird zur qualitativen und zur quantitativen Bestimmung der Elemente einer Probe herangezogen. Die RFA ist weitgehend zerstörungsfrei und dringt nur in oberflächennahe Bereiche ein (2 – 50 μ m). Nahezu das gesamte Spektrum der Elemente (B bis U) kann mit ihr analysiert werden. Die Nachweisgrenze beträgt in den meisten Fällen 1 – 10 ppm (WEBER-DIEFENBACH, 2000).

Die Atome einer Probe können mit Hilfe von Elektronen-, Ionen-, Röntgen- und Gammastrahlen sowie Stoßprozessen zu ihrer charakteristischen Röntgenstrahlung angeregt werden. Da zwischen der chemischen Zusammensetzung und dem Spektrum der Fluoreszenzstrahlung ein direkter Zusammenhang besteht, kann dieser Effekt für die chemische Analytik genützt werden. Die von der energiereichen Strahlung induzierte Fluoreszenzstrahlung besteht aus sich überlagernden Anteilen des für die Elemente einer Probe charakteristischen Linienspektrums und des durch Abbremsen der angeregten Strahlung entstehenden Bremskontinuums (WEBER-DIEFENBACH, 2000).

Zur Erzeugung der Fluoreszenzstrahlung eines Atoms muss die Energie der anregenden Strahlung mindestens so groß sein wie die Bindungsenergie des betroffenen Elektrons. Das heißt, dass man zum Beispiel mit der charakteristischen Strahlung einer Cr – Röhre (Z = 24) die K – Linien von Fe (Z = 26) nicht anzuregen vermag (WEBER-DIEFENBACH, 2000).

6.1.1 Linienspektrum

Durch die Bestrahlung der Probe mit energiereicher Strahlung (Elektronen-, Ionen-, Röntgen- und Gammastrahlen), können aus den inneren Schalen des beschossenen Atoms, Elektronen herausgeschlagen werden. Diese dadurch entstehende Lücke wird in kurzer Zeit stufenweise durch Elektronen aus Schalen mit einer höheren Hauptquantenzahl wieder aufgefüllt. Die entstehende Energiedifferenz (Bindungsenergie der äußeren Schalen ist höher als die der inneren Schalen) wird in Form eines Röntgenquants abgegeben (WEBER-DIEFENBACH, 2000). Da diese entstehende Strahlung für das Element sowie auch für den Elektronenübergang charakteristisch ist, weist das Spektrum eines Elementes diskrete Intensitätsmaxima auf. Man bezeichnet sie als K-, L- oder M – Linien, entsprechend der Auffüllung einer Elektronenlücke in einer K-, L- oder M – Schale. Eine genauere Differenzierung dieser Serien besteht bei der genaueren Betrachtung aus welchem Orbital und Energieniveaus die auffüllenden Elektronen stammen (siehe Abb. 6.1.1.1). Die Intensität der einzelnen Linien nimmt von den K- über die L- zu den M – Linien ab (WEBER-DIEFENBACH, 2000).

Weiters wird nicht die gesamte freiwerdende Energie nach außen abgestrahlt. Es können mit dieser Energie Elektronen der äußeren Schalen angeregt werden und die Emission von Auger – Elektronen bewirken. Beim Augereffekt springt ein Elektron aus einem höheren Zustand eines Atoms oder Festkörpers in einen tiefen, freien Zustand. Die dabei freiwerdende Energie wird entweder zur Aussendung eines weiteren Elektrons, des Augerelektrons, verwendet oder als charakteristische Röntgenstrahlung abgegeben. Die dadurch verminderte Strahlung wird als Fluoreszenzausbeute bezeichnet. Sie hängt von der Ordnungszahl der Elemente ab (WEBER-DIEFENBACH, 2000).

Abb. 6.1.1.1, wichtigste Linien der Röntgenfluoreszenzstrahlung (WEBER-DIEFENBACH, 2000)

6.1.2 Kontinuum

Bei dem Eindringen eines Elektronenstrahls in die Materie wird dieser durch das Elektrische Feld der Atome abgebremst. Diese Energie wird ebenfalls stufenweise als Röngenstrahlung abgegeben. Dies passiert ebenfalls in der Röntgenröhre, sodaß hier neben der charakteristischen Röntgenstrahlung des Anodenmaterials auch die Kontinuumsstrahlung (Bremsstrahlung) emmitiert wird (WEBER-DIEFENBACH, 2000).

6.1.3 Aufbau

Bei der Röntgenfluoreszenzmethode muss zwischen zwei Arten unterschieden werden: der wellenlängendispersiven RFA (WDRFA) und der energiedispersiven RFA (EDRFA) (WEBER-DIEFENBACH, 2000).

Bei der WDRFA wird die von der Probe emmitierte Strahlung nach passieren eines Kollimators am Gitter eines Analysatorkristalles gebeugt bzw. reflektiert. Bei der Reflexion wird die Fluoreszenzstrahlung in ihre einzelnen Wellenlängen zerlegt und trifft nachdem sie noch einmal einen Kollimator passiert hat auf einen Detektor (WEBER-DIEFENBACH, 2000).

Bei der EDRFA treffen die Röntgenquanten direkt auf einen Halbleiterdetektor. Die Möglichkeit einer schnellen simultanen Analyse ist ein großer Vorteil der EDRFA (WEBER-DIEFENBACH, 2000).

Abb. 6.1.3.1, WDRFA und EDRFA (WEBER-DIEFENBACH, 2000)

In den Geowissenschaften kommt die RFA in erster Linie zur qualitativen und quantitativen Bestimmung der Haupt- und Spurenemente von Gesteinen zum Einsatz (WEBER-DIEFENBACH, 2000).

Es gibt zwei Hauptmöglichkeiten zur Probenpräparation: Pulverpresslinge und Schmelztabletten. Im Rahmen dieser Arbeit wurden Schmelztabletten hergestellt, wobei die aufgemahlene Probe zuerst getrocknet, dann geglüht und mit Lithiumtetraborat ($Li_2B_4O_7$) als Schmelzmittel geschmolzen wurde. Die in einem Platintigel geschmolzene Probe wurde in einer Pt – Abgießschale gegossen um eine glatte Oberfläche zu erhalten.

Für die Messungen am Institut für Allgemeine und Analytische Chemie an der Montanuniversität Leoben, wurde ein Wellenlängendispersives Röntgenfluoreszenzspektrometer der Firma ARL (ARL 8410) verwendet.

6.2) Anwendung der XRD Analytik für die vorliegende Arbeit

In den Geowissenschaften wird die Röntgenstrahl Diffraktometrie zur Identifizierung von kristallinen Mineralphasen, insbesondere Tonminerale, und zur Identifizierung des Kristallgitters bei der Einkristallsrukturanalyse verwendet.

Die Grundlage dieser Analytik bildet die Beugung von Röntgenstrahlen an dem Kristallgitter einer Probe. Die Bragg – Gleichung ist die zugrunde liegende mathematische Beziehung (William Henry Bragg, William Lawrence Bragg):

$$2d * \sin(\theta) = n * \lambda$$

Die zu untersuchende Substanz wird mit einem Röntgenstrahl der Wellenlänge λ bestrahlt. Bei einem Netzebenenabstand d wird dieser Strahl um 2 Θ abgelenkt, wenn der einfallende Strahl in einem Winkel von Θ eingefallen ist. n ist die Ordnung des Beugungsmaximums. Aus den bekannten oder gemessenen Größen n, λ und Θ wird der gesuchte Netzebenenabstand d_{hkl} berechnet. hkl bezeichnet die Gesamtzahl aller parallelen Netzebenen (Miller'sche Indizes). Aus dem Netzebenenabstand d_{hkl} lassen sich die Gitterkonstanten der kristallografischen Elementarzelle ableiten. Die Größe von d ist mineralspezifisch.

Abb. 6.2.1, Aufbau eins Röngendiffraktometers (aus Phillips Goniometer Handbuch)

Die zu messende Probe wird in einem Mörser oder einer Mühle zu einem Pulver zermahlen. Die besten Ergebnisse bei einer Gesamtgesteinsanalyse erhält man bei einer Korngröße von 5 bis 10 μ m (TUCKER, 1996). Die aufgemahlenen Proben werden als textur und texturfreie Präparate in einen Probenhalter eingebracht. Die Messung erfolgt dann mit einer CuK α Röntgenstrahlung. Der Winkel (Θ), mit dem die Strahlung auf die Probe einfällt wird mit einem Goniometer eingestellt, wobei die Probe gegen die Röntgenröhre gedreht wird. Die gebeugte Strahlung wird von einem Zählrohr aufgefangen und in einem Diffraktogramm aufgezeichnet.

Das, für die in dieser Arbeit durchgeführten Diffraktogramme, verwendete Gerät ist eine Phillips PW 1830/40 Anlage mit Monochromator und einer Röngenröhre, welche CuKα Strahlung erzeugt. Der Goniometervorschub bei allem Proben betrug 1° pro Minute, was einem Papiervorschub von einem Grad pro cm entspricht.

Die XRD – Analytik wurde in der vorliegenden Arbeit in erster Linie zur Identifikation von diagnostischen Mineralphasen innerhalb der Alterationszone um den Maissauer Amethystgang angewandt.

6.3) Die Elektronenstrahl-Mikrosonde

Die Mikrosonde ist eine Kombination aus Lichtmikroskop, Rasterelektronenmikroskop und Röntgenspektralanalysator. Die Elektronenstrahlmikroanalyse (ESMA) basiert auf der Messung des charakteristischen Röntgen-Spektrums, das von einer Festkörperprobe, die von einem fein fokussierten Elektronenstrahl angeregt wird, emmitiert (PAVIĆEVIĆ, 2000).

Die Vorteile der Untersuchung von Proben mit der Mikrosonde sind die Analyse von Mineralkörnern im Gesteinsverband, der Bedarf einer geringen Probenmenge (ein Mineralkorn) und die quantitative Erfassung der Variationen im Chemismus eines Mineralkorns. Die Mikrosonde eignet sich für die Analyse von Haupt- und Nebenelementen, wobei die Nachweisgrenze bei rund 10 ppm liegt. Das entspricht 0,01 bis 0,08 Mass%.

Durch den "Beschuss" der Oberfläche einer Probe kommt es zu Wechselwirkungen zwischen den einfallenden Elektronen und den Atomen der Probe welche in Abb. 6.3.1 dargestellt sind.

Abb. 6.3.1, Schematische Darstellung der Wechselwirkung zwischen Elektronenstrahl und Festkörperprobe (PAVIĆEVIĆ, 2000)

Der für die ESMA wichtigste Effekte ist die Entstehung der primären Röntgenstrahlung durch die Streuung der einfallenden Elektronen an den Atomkernen. Durch die Messung der Wellenlänge und der Intensität des charakteristischen Röntgenspektrums, können die Art und die Menge der vorhandenen Atome in der Probe bestimmt werden (PAVIĆEVIĆ, 2000).

Ein weiterer Effekt ist die unelastische Streuung der einfallenden Elektronen an den Elektronen der Atome in der Probe. Diese so genannten Sekundärelektronen ermöglichen Rückschlüsse auf die Topographie der Probe. Die Rückstreuung von Elektronen, welche durch einen einfachen elastischen Stoß an einem Atomkern entsteht, ist abhängig von der Ordnungszahl Z der Probe. Sie gibt somit Auskunft über das Gefüge einer Probe als Funktion der "mittleren" Ordnungszahl der Phasen ("Backscatterbild") (PAVIĆEVIĆ, 2000).

Die von der Probe ausgehenden Röntgenstrahlen können auf zwei unterschiedliche Arten analysiert werden:

Wellenlängendispersive Spektrometer (WDS) registrieren das Röntgenspektrum nach der Beugung an Analysatorkristallen mit einem Gasproportionalzählrohr. Für quantitative Analysen wird die Konzentration der Elemente des Probenmaterials mit der eines Standards verglichen. Bei Energiedispersiven Spektrometern (EDS) erfolgt die Analyse mit Hilfe von einem Halbleiterdetektor (PAVIĆEVIĆ, 2000).

Die ESMA wurde in der vorliegenden Arbeit vielfältig für chemische Zusammensetzung verschiedenster Mineralphasen angewandt. Es wurde eine ARL –SMQ-Mikrosonde, ausgestattet mit einem LINK – 860 EDS verwendet.

A - elektronische Versorgungsgeräte

- B Elektronenkanone
- C elektromagnetische Kondensor Linse
- D elektromagnetische Objektive Linse
- E Blenden
- F Elektronenstrahl
- G Probe

- H Rö-Strahlung
- I optisches Mikroskop J Rö-Spektrometer
- K elektronische Geräte des WDS L Flüssger Stickstoff
- M elektronische Geräte des EDS

N - Vakuum-Pumpen

Grundlegender 6.3.2, Abb. Aufbau einer Elektronenstrahl Mikrosonde (PAVIĆEVIĆ, 2000)

6.4) Anwendung der ICP-MS Analytik für die vorliegende Arbeit

Die Massenspektrometrie (MS) mit induktiv gekoppelter Plasmaionisation (ICP) kombiniert zwei analytische Methoden, die induktiv gekoppelte Plasmaionisation und die Massenspektrometrie (ICP-MS). In den Geowissenschaften wird diese Analytik u. a. für die Multielementspuren-Analyse verwendet (JOCHUM et al., 2000).

Abb. 6.3.1, Aufbau einer ICP-MS (JOCHUM et al., 2000)

Die Erzeugung eines induktiv gekoppelten Plasma geschieht mittels einer Plasmafackel, wenn Energie mittels einer Induktionsspule an ein Gas übertragen wird. Die in der ICP-MS benutzte Plasmafackel besteht aus drei konzentrischen Quarzröhren. Der obere Teil der Fackel ist von einer wassergekühlten Kupferspule umgeben, die mit einer Hochfrequenzspannungsquelle verbunden ist. Argongas wird in die Röhren geleitet und ein stabiles Argonplasma wird am offenen Ende der Fackel erzeugt (JOCHUM et al., 2000).

Abb. 6.3.2, Aufbau einer Fackel (JOCHUM et al., 2000)

Nach dem Einbringen der Probe in den Plasmastrom, auf das später noch genauer eingegangen wird, und der Ionisation, werden die Ionen mithilfe einer Ionenextraktionsschnittstelle vom Plasma getrennt. Diese Apparatur zur Extraktion der Ionen besteht aus einem konischen Probensammler, einem Abschöpfkegel (Skimmer) und einer Reihe elektrostatischer Linsen. Der Probensammler ist auf einer wassergekühlten Stirnplatte montiert und hat eine Mündung von 1 mm Durchmesser. Die gesammelten Ionen befinden sich in einem Bereich, der mechanisch auf 1 - 3 mbar heruntergepumpt wird. Der nachfolgende Abschöpfkegel hat einen Mündungsdurchmesser von 0,75 mm. Der Druck hinter dem Eintrittspunkt beträgt nur noch 10⁻⁴ mbar. Durch die schnelle Ausdehnung des Gases sinkt die Temperatur von anfänglich 7000 K rasch ab. Um so viele Ionen wie möglich zu sammeln, befindet sich hinter dem Abschöpfkegel, eine Reihe elektrostatischer Linsen, welche die Ionen zum Massenspektrometer hin fokussieren (JOCHUM et al., 2000).

Der im elekrtostatischem Linsensystem erzeugte Ionenstrahl enthält Ionen mit einer mittleren Energiebreite von 0 bis 30 eV (JOCHUM et al., 2000). Die Massentrennung geschieht mittels eines Quadrupolmassenfilters. Dieses Instrument besteht aus vier metallischen Stäben, welche mit hoher Genauigkeit ausgerichtet sind. Jedes Paar von gegenüberliegenden Stäben ist elektrisch verbunden, wobei eine positive Gleichspannung an das eine Paar und eine ebenso große negative Gleichspannung an das andere gelegt werden. Diese zwei Gleichspannungen werden von einem radiofrequentem Wechselspannungssignal überlagert

(GIJBELS & ADRIAENS, 2000). Die Ionen, die den Massenfilter verlassen, können dann mit einem Detektor gezählt werden (JOCHUM et al., 2000).

Das Einbringen der Proben in den Plasmastrom kann auf unterschiedliche Weise erfolgen. Die gebräuchlichste Methode ist das Zuführen als ein gastragendes Aerosol aus einem pneumatischen Zerstäuber. Hierbei wird der probetragende Gasstrom über die Öffnung einer Kapillarröhre geblasen, wobei die Probenlösung durch den Gasstrom eingesogen oder mit einer kleinen peristaltischen Pumpe eingepumpt wird. Diese Zerstäuber werden standardmäßig für die Analyse von Flüssigkeiten oder gelösten Festkörpern verwendet (JOCHUM et al., 2000).

Eine für die Festkörperanalyse attraktivere Methode ist die Laserablation. Dadurch, dass die Probe mithilfe des Lasers aufgeschlossen wird und das entstandene Gas direkt in die Plasmafackel gebracht wird, fallen die Gefahren einer Kontaminierung und der große Zeitaufwand während der Aufschlüsse weg. Ein weiterer Vorteil der LA-ICP-MS ist, dass die Atomisierung und die Ionisierung getrennt durchgeführt werden, was die getrennte Optimierung der zwei Prozesse erlaubt.

In der vorliegenden Arbeit wurden zwei Analysearten, bezogen auf die Einbringung der Probe in den Plasmastrom verwendet. Die Proben, welche am Lehrstuhl für Allgemeine und Analytische Chemie an der Montanuniversität Leoben, analysiert worden sind, wurden mithilfe eines Sinteraufschlusses vorbereitet und als Aerosol in den Plasmastrom eingebracht. Das verwendete Gerät ist ein induktiv gekoppeltes Quadrupol Plasma Massenspektrometer (ICP-QMS) der Firma Hewlett Packard (HP 4500).

Für den Sinteraufschluss wurden die Proben zuerst getrocknet und in einem Verhältnis von 1:6 mit Na₂O₂ (100 mg Probe + 600 mg Na₂O₂) gemischt. Nachdem die Proben im Ofen bei 480 °C 30 Minuten lang gesintert wurden, wurden sie mit Wasser aufgefüllt, zentrifugiert und der feste Rückstand mit HCl gelöst. Danach wurden sie mit Standards und Blindwerten analysiert.

Im Forschungszentrum Seibersdorf wurden mit der Unterstützung von Hr. Dr. Peter Spindler LA-ICP-MS Analysen der Amethyste durchgeführt. Als vorbereitete Proben dienten die zuvor angefertigten Dickschliffe aus der zonierten Amethystzone von Abb. 5.2.1. Es wurden

einzelne Messbereiche ausgesucht, über die Laser – Profile gelegt wurden. Das verwendete Gerät ist ein induktiv gekoppeltes Quadrupol Plasma Massenspektrometer der Firma PerkinElmer (ELAN 6100) mir einem LUV 266 Merchantek Laser mit 266 nm Wellenlänge.

6.5) Anwendung der Raman Spektroskopie für die vorliegende Arbeit

Die Raman Spektroskopie liefert Informationen über die Schwingungs- und Rotationszustände von Molekülen. Der Ramaneffekt entsteht durch Wechselwirkung von elektromagnetischer Strahlung und der Elektronenhülle der Moleküle. Die Probe wird mittels einer intensiven monochromatischen Laser – Strahlung, in einen energetisch angeregten Zustand gebracht. Ca. 99,99 % des Laserlichtes durchstrahlen die Probe, ein sehr kleiner Anteil wird elastisch gestreut (Rayleigh – Streuung) und ca. 10⁻⁶ % werden unelastisch gestreut (Raman – Streuung) (BURKE, 2001)

Die von der Probe emmitierten Photonen können eine längere Wellenlänge als der Laser (Stokes – Streuung) oder aber eine kürzere Wellenlänge (Anti – Stokes – Streuung) besitzen. Dies hängt davon ab, ob die Probe Energie vom Laser aufnimmt (Stokes – Streuung), oder ob bereits thermisch angeregte Moleküle Energie an den Laser abgeben (Anti – Stokes – Streuung). Dieser resultierende Frequenzunterschied wird in Wellenzahlen relativ zur Laserfrequenz angegeben (Raman Shift). Stokes und Anti – Stokes Strahlung besitzten den gleichen Raman Shift, nur mit umgekehrten Vorzeichen. Da die meisten Moleküle bei Raumtemperatur in einem Vibrations-Grundzustand sind, ist die Stokes – Streuung intensiver als die Anti – Stokes – Streuung.

Abb. 6.5.1, Unterschiedliche Energieniveaus bei der Raleigh – Streuung, bei der Raman – Streuung und der IR Absorption (http://www.plasma.de/de/plasma_wissenswertes/images/Disse_img_51.jpg)

Abb. 6.5.2, Aufbau des für die Messungen verwendeten LABRAM (ISA Jobin Yvon) Spektrometer (aus LABRAM Handbuch)

Die Messungen für diese Arbeit wurden mit einem LABRAM (ISA Jobin Yvon) Gerät durchgeführt. Das Laserlicht wird mithilfe eines Olympus BX 90 Mikroskops auf der Probe fokussiert. Der verwendete Laser ist ein 100 mW frequency-doubled Nd – YAG Laser mit 532 nm Wellenlänge (grünes Licht). Die Energie des Lasers wird auf 38 mW abgeschwächt. Das gestreute Licht wird durch das Mikroskop wieder aufgefangen, und auf eine Peltier gekühlte CCD Kamera gelenkt. Da die Raleigh – Streuung intensiver als die Raman – Streuung ist, wird sie durch optische Filter entfernt bevor das Licht die CCD Kamera erreicht. Die verwendeten Standards bei den Messungen sind Silizium, Kalzit und Diamant (BAKKER et al., 2005).

In der vorliegenden Arbeit wurde der Inhalt von Flüssigkeitseinschlüssen mit der Raman Spektroskopie analysiert (als Beispiel siehe Abb. 6.5.4). Ein weiterer Anwendungsschwerpunkt in den Geowissenschaften ist die Identifizierung von Mineralen.

Abb 6.5.6., Spektrum von reinem Wasser und von einer Salzlösung (BAKKER et al., 2005)

6.6) Mikrothermometrie

Die Mikrothermometrie basiert auf der Beobachtung von Phasenübergängen in Flüssigkeitseinschlüssen bei unterschiedlichen Temperaturen (SHEPHERD et al., 1985). Die zu beobachtenden Phasenübergänge sind das Schmelzen einer festen Phase. die Homogenisierung in die flüssige oder gasförmige Phase und die kritische Homogenisierung. Aus einer nachfolgenden Berechnung mithilfe experimenteller Daten lassen sich Hinweise auf die Bildungsbedingungen (Druck, Temperatur) ableiten. Auf der Basis der Schmelztemperaturen können auch Rückschlüsse auf die Zusammensetzung des eingeschlossenen Fluides getroffen werden.

Durch Erhitzen am Heiz – Kühltisch kann man Phasenübergänge innerhalb eines Systems herbeiführen (SHEPHERD et al., 1985). Die Homogenisierungstemperatur hängt von der Dichte der Phasen im Einschluss ab und stellt die minimale Bildungstemperatur dar. Die tatsächliche Bildungstemperatur kann aus der Homogenisierungstemperatur nur bestimmt werden, wenn aus anderen Analyseverfahren der Bildungsdruck bekannt ist.

Die Ermittlung der Schmelztemperatur erlaubt es Aussagen über die Zusammensetzung des eingeschlossenen Fluidums zu treffen (SHEPHERD et al., 1985). Salze setzen die Schmelztemperatur des Wassers in Abhängigkeit von der Art des Salzes, unterschiedlich herab und es können sich Salzhydrate bilden. Die Art und Zusammensetzung des Salzes kann mithilfe einer Kombination von Mikrothermometrie und Raman Spektroskopie ermittelt werden. Bei CO₂ oder CH₄ führenden Fluiden ist auch die Bildung von Clathraten wichtig. Weiters kann bei einer Schmelzpunkterniedrigung auch ein Rückschluss auf eventuell weitere getroffen vorhandene gelöste Phasen werden. Das initiale Schmelzen eines Flüssigkeitseinschlusses repräsentiert die eutektische Temperatur und kann ebenfalls Hinweise auf die Zusammensetzung des Einschlusses liefern.

Die vorliegenden mikrothermometrischen Untersuchungen wurden an einem LINKAM MDS 600 Heiz-Kühltisch durchgeführt. Der Heiz-Kühltisch wird in den Drehtisch eines Polarisationsmikroskopes (Olympus BX60 mit 5x, 10x, 20x, 50x und 100x Objektivlinsen) eingesetzt. Die Kühlung des Tisches erfolgt mit flüssigem Stickstoff, die Aufheizung erfolgt mittels Strom. Bei höheren Temperaturen kann eine Wasserkühlung zugeschalten werden.

Der LINKAM MDS 600 Heiz-Kühltisch erlaubt Temperaturmessungen von Phasenübergängen in einem Bereich von -196°C bis +600°C (SHEPHERD et al., 1985).

Abb. 6.6.1, Olympus BX60 Mikroskop mit LINKAM MDS 600 Heiz – Kühltisch

Abb. 6.6.2, Heiz - Kühltisch

Die Kalibrierung des Heiz-Kühltisches erfolgt durch die Messung synthetisch hergestellter Flüssigkeitseinschlüsse, welche definierte Phasenübergänge bei definierten Temperaturen aufweisen (SHEPHERD et al., 1985). Die verwendeten Standards waren der Schmelzpunkt von CO_2 bei -56,6 °C, der Schmelzpunkt von reinem Wasser bei 0 °C und die Homogenisierung von Wasser bei kritischer Dichte bei 374,0 °C.

Für mikrothermometrische Untersuchungen werden doppelt polierte Fluidschliffe verwendet. Die Fluidschliffe weisen im Gegensatz zu den normalen Dünnschliffen eine größere Dicke von ungefähr 100 µm auf. Nach einer genauen petrographischen Beschreibung, in welcher die unterschiedlichen Bereiche von Flüssigkeitseinschlüssen identifiziert worden sind, folgt eine erste Analyse der vorhandenen Phasen mithilfe der Raman Spektroskopie. Danach werden die Proben von dem Objektträger mit Aceton abgelöst und in kleine Teile zerbrochen. Die Messung der Phasenübergänge erfolgt danach mit der Mikrothermometrie, wobei versucht wurde bei jedem Flüssigkeitseinschluss Schmelzpunkt und Homogenisierungstemperatur zu bestimmen.

Zur Berechnung der Zusammensetzung, Dichte und Salinität der Flüssigkeitseinschlüsse wurde das Computerprogramm BULK (BAKKER, 2003) verwendet. Mit den daraus gewonnenen Ergebnissen konnten mit dem Programm ISOC (BAKKER, 2003) Isochoren berechnet werden, welche die Grundlage zur Interpretation der Bildungsbedingungen darstellen.

7) Präsentation der Ergebnisse

7.1) Mineralogie und Geochemie des Granits und der Alterationszone

Proben L9, L7, L2 und L3 sind repräsentativ für den unverwitterten Thaya Granit von Maissau (genommen aus dem Steinbruch Limberg, siehe Tab. 5.1).

Mikroskopisch konnten in Probe L9 die Minerale Quarz, Biotit, Plagioklas, Orthoklas, Mikroklin, Zirkon, Apatit, Klinozoisit, Epidot, Titanit und als opake Phasen Hämatit und Pyrit identifiziert werden. Quarz zeigt großteils undulöse Auslöschung, jedoch konnte keine Rekristallisation beobachtet werden. Biotit zeigt durchwegs grünen Pleochroismus, was auf Fe-reichen Biotit hinweist. Elektronenstrahl-Mikrosondenanalysen des Biotites aus der Probe L3 zeigen einen FeO-Gehalt von 33 Mass%, verglichen mit einem MgO-Gehalt von 7 Mass% (Tabelle 7.1.2). Biotit ist teilweise in Chlorit umgewandelt und häufig mit Hämatit assoziiert. Der Hämatit, der auch in feinen Gängchen im alterierten Biotit auftritt, wird als Alterationsprodukt während der Chloritisierung des Biotites angesehen. Die Plagioklase sind großteils stark bis völlig saussuritisiert (siehe Abb. 7.1.2). Als Füllung treten in erster Linie Serizit, untergeordnet Epidot, Apatit und Klinozoisit auf. Die Alkalifeldspäte zeigen pertitische Entmischung und teilweise beginnende Alteration. Die Zirkone sind meist euhedral und treten innerhalb der Feldspäte und Biotite auf (Abb. 7.1.3 und Abb. 7.1.6). Sie zeigen häufig amorphe Ränder, die als Strahlungssäume angesehen werden. Pyrit, Titanit und Monazit treten als Akzessorien auf. Stellenweise konnten Pseudomorphosen von Monazit und Epidot nach Allanit beobachtet werden. Das Gefüge der Probe L9 ist holokristallin ungeregelt. Abgesehen von den undulösen Quarzen sind keine Anzeichen einer deformativen Beanspruchung des Gesteines zu erkennen.

Probe L7 ist generell L9 sehr ähnlich, jedoch stärker alteriert. Die durchwegs undulösen Quarze zeigen beginnende Rekristallisation (Sammelkristallisation). Die Plagioklasleisten sind stärker saussuritisiert und die Alkalifeldspäte zeigen ebenfalls beginnende Alteration. Die Verdrängung des Biotit durch Chlorit und Hämatit ist ebenfalls weiter fortgeschritten als in Probe L9. In Probe L7 konnte kein Titanit beobachtet werden.

Abb. 7.1.1, Mikroskopaufnahme im Durchlicht unter gekreuzten Polarisatoren, Probe Ma1, Überblick

Abb. 7.1.2, Mikroskopaufnahme im Durchlicht unter gekreuzten Polarisatoren, Probe L3, saussuritisierter Plagioklas

Proben L2 und L3 sind in ihrer Mineralogie und ihrem Gefüge sehr ähnlich. Quarz, Biotit, Plagioklas, Alkalifeldspäte (Orthoklas und Mikroklin) stellen den dominierenden Mineralbestand dar. Apatit, Klinozoisit, Epidot, Serizit und Allanit treten untergeordnet auf. Chlorit ist als dominierendes Alterationsprodukt des Biotites zu beobachten. Die Plagioklase zeigen nahezu Albit-Zusammensetzung (Tabelle 7.1.1). Quarz zeigt undulöse Auslöschung und teilweise Rekristallisation. Plagioklas tritt in Form von Leisten auf und zeigt unterschiedlich starke Saussuritisierung (als Füllung sind Epidot, Apatit und Klinozoisit zu beobachten). Stellenweise sind noch Relikte von Allanit zu erkennen, die nahezu völlig in Epidot und Monazit umgewandelt sind (siehe Abb. 7.1.4). An manchen Stellen sind myrmekitische Verwachsungen zwischen Albit und Quarz zu beobachten (siehe Abb. 7.1.5). Weiters konnten feine, mit neu gebildetem Quarz gefüllte, Gängchen beobachtet werden.

Ausgewählte Elektronenstrahl-Mikrosondenanalysen sind in Tabelle 7.1.1 zusammengefasst.

Die geochemische Zusammensetzung bezüglich der Hauptelemente des frischen Thaya Granites (Probe L9) ist in Tabelle 7.1.2 illustriert. Der SiO₂-Gehalt liegt bei 73.5 Mass.%, Al₂O₃-Gehalte um 12.8 Mass.%, Fe₂O₃ bei 2 Mass.%, die Gehalte an Alkalien liegen bei 8 Mass.% (Tabelle 7.1.2).

	Na ₂ O	SiO ₂	Al_2O_3	CaO	MgO	FeO	K ₂ O	ZrO ₂	Summe
Zirkon	0.00	33.23	0.00	0.00	0.09	0.10	0.01	56.36	89.79
Alkalifeldspat	0.56	72.35	17.40	0.00	0.00	0.11	9.87	0.03	100.32
Biotit	0.00	32.15	19.46	0.54	7.14	32.98	1.08	0.00	93.35
Epidot	0.00	35.39	21.48	23.02	0.00	12.18	0.06	0.00	92.13
Albit	12.68	70.62	18.75	0.33	0.00	0.00	0.05	0.03	102.46

Tabelle 7.1.1, Mikrosondenanalysen ausgewählter Minerale in Mass.%, Schliff L3

Abb. 7.1.3, Mikroskopaufnahme im Durchlicht unter gekreuzten Polarisatoren, Probe L7, Zirkon in Plagioklas

Abb. 7.1.5, Mikroskopaufnahme im Durchlicht unter gekreuzten Polarisatoren, Probe L3, myrmekitische Verwachsung

Abb. 7.1.4, Mikroskopaufnahme im Auflicht, Probe L3, alterierter Allanitkristall mit Monazitneubildung

Abb. 7.1.6, Mikroskopaufnahme im Durchlicht unter paralleler Stellung der Polarisatoren, Probe Ma1, Strahlungssäume in Biotit

Die seltenen Erden (SEE) zeigen einen Chondrit-normierten La-Gehalt von maximal 120 dem unverwitterten Thaya Granit. In den Chondrit-normierten ppm bei Verteilungskurven der Proben L7 und L2 (Abb. 7.1.8) ergibt sich eine deutliche Abreicherung der leichten seltenen Erden (LSEE) im Vergleich zum USGS-G3 Standard für Granite.

Abb. 7.1.7, Chondrit-normierte Verteilungskurven der SEE im Granit

Die nähere geochemische Charakterisierung des Thaya Granites nach Chappell & White (1974) erbrachte kein eindeutiges Ergebnis. Die Gehalte an Alkalien der vorliegenden Proben des Thaya Granites erscheinen zu niedrig, woraus sich, entgegen den Ergebnissen von Höck & Leichmann (1994), ein "granitisches Mischmagma" aus S- und I-Typ Magma als Herkunftsquelle des Thaya Granites ergibt.

Im Folgenden werden die mineralogisch-petrographischen und geochemischen Charakteristika der Alterationszone um den Maissauer Amethystgang behandelt.

In weiterer Annäherung des Amethystganges nimmt die Chloritisierung des Biotites signifikant zu (Probe Ma1, Abb. 7.1.1), bis der Biotit und auch der Chlorit völlig verschwinden (Proben Ma2, Ma3). Weiters ist ein Rückgang des Plagioklases zu beobachten, dagegen nimmt der Gehalt an rekristallisiertem Quarz zu. Die Häufigkeit der Quarzgängchen nimmt ebenfalls von Probe Ma1 zu Ma3 deutlich zu.

Die Abbildungen 7.1.8 bis 7.1.13 zeigen Röntgendiffraktogramme, welche an den Proben der Alterationszone gemessen wurden. Es wurden bei jeder Probe jeweils ein Texturpräparat (a) und ein texturfreies Präparat (b) angefertigt und gemessen

Abb. 7.1.8, Röntgendiffraktogramm Probe AZ-M-01

Abb. 7.1.10, Röntgendiffraktogramm Probe AZ-M-03

Abb. 7.1.9, Röntgendiffraktogramm Probe AZ-M-02

Abb. 7.1.11, Röntgendiffraktogramm Probe AZ-M-04

Abb. 7.1.12, Röntgendiffraktogramm Probe AZ-M-05 Abl

Die Auswertung der Röntgendiffraktogramme an den Proben aus der Alterationszone ergab folgendes Ergebnis:

In allen Proben konnten die Minerale Quarz, Alkalifeldspat, Kalzit und Kaolinit identifiziert werden. Mit fortschreitender Alteration zum Amethystgang hin ist eine Zunahme des Illitgehaltes zu beobachten (Abb. 7.1.8 bis 7.1.13). Zusätzlich treten in Probe AZ-M-06 noch untergeordnet Spuren von quellfähigen Tonmineralen, Hämatit und Plagioklas auf (Abb. 7.1.13). Eine nähere Identifizierung/Unterscheidung der quellfähigen Tonminerale ist aufgrund der geringen Intensität der auftretenden Peaks nicht zu treffen. Das Auftreten von Hämatit erklärt den erhöhten Eisengehalt in dieser Probe, der durch die Ergebnisse in der Gesamtgesteinschemie (RFA) bestätigt wird (Abb. 7.1.14, Tabelle 7.1.2).

Das Verhalten der Hauptelemente innerhalb der Alterationszone ist in Abbildung 7.1.14 dargestellt. Mit Annäherung an den Amethystgang kann eine deutliche Anreicherung von Al und Fe, begleitet von einer Abreicherung der Elemente Na und Ca, bei nahezu gleichbleibenden Gehalten an SiO₂ und K₂O (Abbildung 7.1.14) beobachtet werden. Bemerkenswert ist, dass in der Geochemie der Hauptelemente kein signifikanter Unterschied zwischen unterschiedlich gefärbten, alterierten Proben (ziegelrote und stark kaolinitisierte, nahezu weiß gefärbte Proben) zu erkennen war.

Abb. 7.1.14, Verteilung der Hauptelemente (Ergebnisse der RFA) innerhalb der Alterationszone um den Maissauer Amethystgang

Probe	TiO ₂	Al_2O_3	Fe ₂ O _{3total}	SiO ₂	MgO	CaO	Na ₂ O	K ₂ O	P_2O_5	Summe
AZ-M-01	0.25	18.80	1.62	73.00	0.22	0.08	0.00	4.52	0.06	98.55
AZ-M-01	0.25	18.90	1.62	74.20	0.22	0.08	0.00	4.57	0.06	99.90
AZ-M-02	0.18	16.60	1.98	76.90	0.19	0.08	0.00	4.24	0.05	100.22
AZ-M-02	0.18	16.00	2.01	74.90	0.16	0.07	0.00	4.17	0.05	97.54
AZ-M-03	0.27	17.50	1.65	75.50	0.16	0.09	0.00	5.17	0.04	100.38
AZ-M-03	0.27	17.40	1.64	75.00	0.15	0.09	0.00	5.13	0.04	99.72
AZ-M-04	0.26	17.40	1.49	75.70	0.15	0.07	0.00	5.38	0.04	100.49
AZ-M-04	0.26	17.40	1.50	76.10	0.15	0.07	0.00	5.39	0.04	100.91
AZ-M-05	0.27	19.10	1.14	73.40	0.21	0.08	0.00	5.28	0.05	99.53
AZ-M-05	0.27	19.10	1.14	73.90	0.22	0.09	0.00	5.29	0.05	100.06
AZ-M-06	0.20	16.49	5.55	73.67	0.28	0.13	0.00	3.81	0.07	100.21
AZ-M-06	0.21	16.63	5.53	74.03	0.28	0.13	0.00	3.81	0.07	100.68
L9	0.19	12.86	1.98	73.50	0.28	0.66	3.99	4.08	0.04	93.59
MA1	0.21	13.70	2.24	73.00	0.25	0.98	3.96	4.39	0.06	94.83
MA3	0.19	13.50	0.58	74.50	0.07	0.20	4.32	4.05	0.02	93.11
MA4	0.26	13.31	7.01	70.35	0.18	0.12	0.00	3.73	0.07	95.03
L8*	2.44	13.88	8.77	51.79	7.27	4.40	1.45	7.09	2.70	98.33
L8*	2.47	14.08	8.84	52.54	7.37	4.46	1.02	7.11	2.71	99.58

* Probe L8 stammen aus dem Steinbruch Limberg und stellen mafische Gänge dar, die in den Thaya Granit intrudiert sind

Die Chondrit-normierten Verteilungskurven der See der alterierten Proben (Abb. 7.1.15) zeigen eine generell deutliche Anreicherung der LSEE, sowie eine schwache Anreicherung der HSEE (HSEE = schwere seltene Erdelemente) im Vergleich zum unalterierten Thaya Granit (Abbildung 7.1.7). Bei genauerer Betrachtung zeigt sich folgendes Bild:

In einer Entfernung von 70cm vom Amethystgang entfernt ist die deutlichste Anreicherung der LREE mit Chondrit-normierten La-Gehalten bis 560 ppm, sowie eine negative Ce-Anomalie zu beobachten. Über den Abschnitt zwischen 80 und 20cm in Annäherung zum Amethystgang ist eine kontinuierliche Abreicherung der LREE, bis zu einem normierten La-Gehalt von 200 ppm, zu erkennen (Abbildung 7.1.15). Am unmittelbaren Gangkontakt nimmt die Konzentration der LREE, bis zu einem normierten La-Gehalt von ca. 480 ppm wieder zu. Die HREE folgen dem gleichen Trend (siehe Abbildung 7.1.15).

Abb. 7.1.15, Condrit-normierte Verteilung der REE in der Alterationszone

7.2) Chemische Zusammensetzung des Bänderamethysts

Mineralogisch besteht der Bänderamethyst aus Quarz. Es wurden einige weitere Minerale, wie zum Beispiel Hämatit und einige Tonminerale, als Einschlüsse beschrieben, welche in den hier behandelten Proben nicht gefunden wurden. Im Rahmen der detaillierten Untersuchung des Bänderamethysts, wurde an mehreren repräsentativen Stücken aus dem Amethyst Stollen Maissau eine detaillierte Unterteilung in die einzelnen Wachstumszonen vorgenommen (Abb. 7.2.1).

Abb. 7.2.1, Unterteilung der Zonen im Bänderamethyst

Es wurden mehrere Dickschliffe angefertigt um die Mineralogie, die chemische Zusammensetzung und die Bildungsbedingungen anhand von Flüssigkeitseinschlüssen zu beschreiben. Die chemische Analytik wurde mithilfe LA-ICP-MS und AAS durchgeführt.

Die Spurenelemente, die für die Farbgebung des Amethysts von entscheidender Bedeutung sind, wurden mithilfe der AAS quantitativ analysiert. Dazu wurden die einzelnen Zonen des Bänderamethysts, wie in Abbildung 7.2.1 dargestellt, getrennt und die Elemente Eisen und Aluminium im Amethyst- bzw. Quarzband quantitativ gemessen. Die Analysen ergaben im Quarz 0,244 Mass% Al und 0,011 Mass% Fe. Im Amethyst verringert sich der Aluminiumgehalt auf 0,125 Mass% während der Eisengehalt auf Mass% steigt. Dieses AAS Ergebnis der Gesamtgesteinsanalyse des Amethyst- bzw. Quarzbandes spiegelt sich in der detaillierten LA-ICP-MS-Methode wieder. Mit der LA-ICP-MS wurden mehrere Profile über die Amethyst- und Quarzzonen gemessen (Abb. 7.2.2 bis Abb. 7.2.8).

Die chemische Zusammensetzung der einzelnen Zonen kann aufgrund der relativen Veränderung der analysierten Elemente quantifiziert werden.

LA-ICP-MS Messung Schliff FL1, Messung 1 zeigt den "Eindruck" des Laserstrahles während des Messvorganges (Länge 2mm)

а

Abb. 7.2.2, LA-ICP-MS Messung Schliff FL1, Messung 1 (Tabelle mit den Rohdaten im Anhang)

Die Messungen 1 und 2 in Schliff 1 (Abb. 7.2.2) zeigen den Übergang zwischen dem äußeren Milchquarz (Zone 1) und Zone 2. Der Laser trifft nach ungefähr 500 µm auf die äußerste Zone des Kristalls. Es zeigen sich relativ zum Rauchquarz erhöhte Al und Li Werte. Das Fe Signal ist sehr unruhig, zeigt aber ebenfalls ein Abfallen in Zone 2.

Abb. 7.2.3, LA-ICP-MS Messung Schliff FL1, Messung 3 (Tabelle mit den Rohdaten im Anhang)

Die Abbildung 7.2.3 zeigt den Übergang von Amethyst in reinen Quarz. Deutlich ist die Veränderung der "Farbgebenden" Elemente (Al, Li und Fe) am Beginn der Messung (linke Seite auf Abbildung 7.2.3 / b), bei einem gleich bleibenden Si Signal, zu erkennen.

"Eindrücke" des Laserstrahles während des Messvorganges (Länge 4mm)

а

Abb. 7.2.4, LA-ICP-MS Messung Schliff FL1, Messung 2 (Tabelle mit den Rohdaten im Anhang)

Die in den Abbildung 7.2.4 dargestellten Messungen zeigen den Übergang von "reinem" Quarz in Milchquarz innerhalb von Zone 3. Während im reinen Quarz die LA-ICP-MS Signale der einzelnen Elemente relativ stabil sind, zeigen sie im Milchquarz deutliche Unregelmäßigkeiten, wobei eine relative Anreicherung von Fe, unterschiedliche An- und schwache Abreicherungen von Al und eine Abreicherung von Li zu erkennen ist (Abb. 7.2.4 / b).

Abb. 7.2.5, LA-ICP-MS Messung Schliff FL1, Messung 3, relative Konzentration der Elemente Si, Na, Mg

Abbildung 7.2.5 zeigt die relativen Konzentrationen der Elemente Na und Mg im Vergleich zu Si. Die Messung entspricht den in Abbildung 7.2.4 / a dargestellten Übergang zwischen reinem Quarz und Milchquarz. Die signifikant erhöhte Konzentration von Na lässt

sich auf die vielen in dieser Zone befindlichen Flüssigkeitseinschlüsse zurückführen, die vom Laser während der Messung aufgebrochen worden sind. Der in Abbildung 7.2.5 zum Na nahezu identische, ansteigende Kurvenverlauf des Mg lässt auf die Anwesenheit von Mg in Flüssigkeitseinschlüssen schließen, obwohl mittels Raman Spektroskopie und den Mikrothermometrie kein Mg nachgewiesen werden konnte (siehe Kapitel 7.3).

Die Abbildungen 7.2.6 bis 7.2.8 zeigen Messungen innerhalb der Amethystzone. Darin treten hell violett und dunkel violett, intensiv gefärbte Bänder auf. Mithilfe von LA-ICP-MS Messungen sollen die Unterschiede in der chemischen Zusammensetzung dieser unterschiedlich gefärbten Zonen erfasst werden.

b

а

10 counts per second / a. u. 10 distance µm 4000

Messung Schliff FL2, Messung 1, LA-ICP-MS "Eindrücke" des Laserstrahles während der Messung (Länge 4mm)

Abb. 7.2.6, LA-ICP-MS Messung Schliff FL2, Messung 1 (Tabelle mit den Rohdaten im Anhang)

LA-ICP-MS Messung Schliff FL2, Messung 2 "Eindrücke" des Laserstrahles während der Messung (Länge 4mm)

Konzentration der Elemente Si, Al, Li, Fe über die in a gezeigten Distanz gezeigten Distanz

Abb. 7.2.7, LA-ICP-MS Messung Schliff FL2, Messung 2 (Tabelle mit den Rohdaten im Anhang)

а

LA-ICP-MS Messung Schliff FL2, Messung 3, "Eindrücke" des Laserstrahles während der Messung (Länge 4mm)

Abb. 7.2.8, LA-ICP-MS Messung Schliff FL2, Messung 3 (Tabelle mit den Rohdaten im Anhang)

Als besonders charakteristisch sind die Abbildungen 7.2.7 / b und 7.2.8 / b einzustufen. Sie zeigen den Übergang von hell violett zu dunkel violett gefärbtem Amethyst. Bei einem konstanten Si Signal können deutliche Veränderungen in der relativen Konzentration der Elemente Al, Li und Fe beobachtet werden. Im dunkleren Bereich (jeweils Abbildungsmitte) manifestiert sich eine deutliche Abnahme von Al und Li bei gleichzeitiger Zunahme von Fe.

b

7.3) Flüssigkeitseinschlüsse

Die in der Probenliste beschriebenen "Fluidschliffe" wurden von einem Amethyst Einkristall (Proben Fl1 bis Fl4) angefertigt. Die unterschiedlichen Zonen wurden petrographisch beschrieben und die auftretenden Flüssigkeitseinschlüsse mit Raman und Mikrothermometrie analysiert. Die damit gewonnenen Ergebnisse wurden zur Berechnung der minimalen Bildungsbedingungen herangezogen.

Die selektiert untersuchten Zone lassen sich, abgesehen von unterschiedlichen Konzentrationen in den akzessorischen Elementen, auch anhand der Flüssigkeitseinschlüsse charakterisieren. Die Einteilung der Flüssigkeitseinschlüsse nach ihrer Form wurde auf der Basis des Diagramms von Bakker&Diamond (2006) getroffen.

Abb. 7.3.1, Einteilung der Flüssigkeitseinschlüsse nach ihrer Form (BAKKER&DIAMOND, 2006)

Der Schliff Fil befindet sich wie in Abbildung 5.2.3 gezeigt am oberen Teil des Amethyst Einkristalls. In diesem Schliff lassen sich 4 Zonen unterscheiden:

- Zone 1: Milchquarzbelag
- Zone 2: äußere Rauchquarzschicht und klarer Quarz
- Zone 3: milchig trüber Teil in der darauf folgenden Quarzschicht
- Zone 4: Amethyst

Diese vier Zonen sind für die auffallende Farbbänderung des Maissauer Amethysts als repräsentativ anzusehen. Mit einer detaillierten Untersuchung der Flüssigkeitseinschlüsse sollte versucht werden, unterschiedliche Fluidpulse zu identifizieren, die für die Bildung der einzelnen Zonen verantwortlich zeichneten.

Zone 1

In Zone 1 herrschen große, unregelmäßige Einschlüsse vor, die einen sehr dunklen Farbeindruck vermitteln. Die Unterscheidung, ob es sich um feste oder um flüssige Phasen handelt, wurde mittels Raman Spektroskopie getroffen. Großteils handelt es sich um bereits offene, große Flüssigkeitseinschlüsse. Diese Zone ist sehr einschlussreich und wirkt dadurch fast porös.

Abb. 7.3.2, Milchquarzzone mit großen dunklen und teilweise geöffneten Einschlüssen

Zone 2

In der nachfolgenden Rauchquarzschicht existieren einige wenige, längliche primäre Einschlüsse, von denen die meisten bereits aufgebrochen sind. Die noch bestehenden Flüssigkeitseinschlüsse haben eine längliche Form und sind hinsichtlich der eingeschlossenen Phasen homogen. Es konnte überall eine flüssige und eine gasförmige Phase beobachtet werden. Die Zusammensetzung des eingeschlossenen Fluidums wurde mithilfe der Raman Spektrometrie bestimmt. Bei der flüssigen Phase handelt es sich um Salzwasser, die Gasphase ist Wasserdampf. Weiters wurden noch sekundäre und pseudosekundäre Einschlüsse beobachtet, die im Allgemeinen sehr inhomogen sind, jedoch dieselben Zusammensetzungen aufweisen.

Abb. 7.3.3, längliche Flüssigkeitseinschlüsse in Rauchquarz (Zone 2)

Abb. 7.3.4, Formen der Flüssigkeitseinschlüsse in Zone 2 nach BAKKER&DIAMOND (2006)

Abbildung 7.3.4 zeigt die Verteilung der auftretenden Formen der Flüssigkeitseinschlüsse in dieser Zone. Sie liegen in den Bereichen regular equant und regular elongate. Die Größe der beobachteten Einschlüsse variiert zwischen 10 und maximal 100 µm.

Der klare Quarz zeigt einige sehr große Einschlüsse, die homogen 2-phasig sind. Weiters konnten einige "trails" mit sekundären und pseudosekundären Einschlüssen identifiziert werden. Die in den "trails" auftretenden Einschlüsse sind in Abhängigkeit ihrer Füllung inhomogen. Die in dieser Zone auftretenden Einschlüsse weisen eine Größe von bis zu 50 µm auf.

Abb. 7.3.5, große längliche Flüssigkeitseinschlüsse in Zone 3

Abb. 7.3.6, equidimensionaler 2-phasige Einschluss in Zone 3

Zone 3

Innerhalb des Bergkristalls können wolkenförmige Milchquarzbereiche beobachtet werden. Der vorkommende Milchquarz ist sehr einschlussreich. Es gibt viele bereits geöffnete Einschlüsse. Die beobachteten Flüssigkeitseinschlüsse sind sehr inhomogen. Sie sind 1-phasig oder 2-phasig und es konnten ebenfalls feste Phasen beobachtet werden. Aufgrund der Menge und der Form der auftretenden Einschlüsse weist diese Zone Ähnlichkeiten zu Zone 1 auf. Die Einschlüsse treten teilweise gerichtet in kristallographischer Richtung nach der Wachstumszone des Quarzes auf. Untergeordnet konnten auch kleine pseudosekundäre Einschlüsse identifiziert werden. Der Kern dieser Zone ist einschlussreicher als der Rand. Weiters nimmt die Größe der Einschlüsse zum Rand hin ab.

Abb. 7.3.7, einschlussreicher Milchquarzbereich in Zone 3

Abb. 7.3.8 Formen der Flüssigkeitseinschlüsse in Zone 3 (Milchquarzbereich) nach BAKKER&DIAMOND (2006)

Die Verteilung der auftretenden Formen der Flüssigkeitseinschlüsse in der Milchquarzzone liegen in Abbildung 7.3.8 in dem Bereichen regular elongate. Die Größe der beobachteten Einschlüsse variiert zwischen 1 und maximal 20 µm.

Zone 4

Am Rand der Amethystzone treten längliche Einschlüsse auf, welche entlang der Wachstumsrichtung vorkommen. Sie sind relativ inhomogen, wobei 1-phasige Einschlüsse überwiegen. Die unterschiedlichen Spuren der vorkommenden pseudosekundären Einschlüsse sind ebenfalls sehr inhomogen. Innerhalb der Spuren sind sie jedoch homogen 1-phasige oder 2-phasig. Im Schliff FL 2, der einen größeren Bereich der Zone 4 umfasst, treten ähnlich große Einschlüsse wie in Zone 3 auf. In diesen großen Einschlüssen können hin und wieder

feste Phasen beobachtet werden. Die Ergebnisse der Raman Spektroskopie weisen auf Sulfate hin.

Abb. 7.3.9 pseudosekundäre Einschlüsse in Zone 4

3-phasiger Einschluss 7.3.10, primärer Abb. (Salzwasser, Wasserdampf und Sulfat) in Zone 4

Die Verteilung der auftretenden Formen der Flüssigkeitseinschlüsse in der Amethystzone kommen großteils in den Bereichen regular elongate und regular equant zu liegen (Abb. 7.3.11). Die Größe der beobachteten Einschlüsse variiert zwischen 10 und maximal 100 µm.

Für die mikrothermometrischen Messungen der Flüssigkeitseinschlüsse wurden zwei Zonen gewählt. Es wurden Flüssigkeitseinschlüsse in klarem Quarz und in der Amethystzone gemessen. Die Abbildungen 7.3.12 und 7.3.13 zeigen die Verteilung der gemessenen Schmelztemperaturen und der Homogenisierungstemperaturen.

Abb. 7.3.12, Gegenüberstellung der Homogenisierungstemperaturen (T_h) in Zone 2/3 (Rauchquarz und Bergkristall) und Zone 4 (Amethyst)

Die Verteilung der Homogenisierungstemperaturen zeigt drei Maxima in der Bergkristallzone (Zone 3) und ein Maxima in der Amethystzone (Zone 4). Auf der Basis dieser Temperaturen wurden die spezifischen Eigenschaften der Einschlüsse berechnet ("molar volume, density, amount of substance fractions, volume fractions", Tabelle 7.3.1).

Ein weiterer Unterschied zeigt sich auch in der Salinität der Einschlüsse. Die Einschlüsse im Amethyst sind großteils niedriger salinar als im Bergkristall. Jedoch konnten auch hochsalinare Einschlüsse im Amethyst indentifiziert werden, die im Bergkristall nicht zu beobachten waren (siehe Abbildung 7.3.13).

Tuberie 7.5.1, spezifische werte der Flassigkensemsemasse						
	"Molar	"Density"	"Substar	nce fractio	"Volume	
	Volume"	$[g/cm^3]$				fractions"
	$[cm^3 / mol]$		H ₂ O	Na ⁺	Cl	[vol %]
Quarz, T _h 80°C	18,72	0,99	0,972	0,014	0,014	$\varphi_{ m liq}$ 95,05 % $\varphi_{ m vap}$ 4,94 %
Quarz, T _h 150°C	19,58	0,95	0,972	0,014	0,014	$\varphi_{ m liq} 90,86 \% \\ \varphi_{ m vap} 9,13 \%$
Quarz, $T_{\rm h}$ 225°C	21,29	0,87	0,972	0,014	0,014	$\varphi_{ m liq} 83,59 \% \ \varphi_{ m vap} 16,41 \%$
Amethyst, $T_{\rm h}$ 75°C	18.59	0.99	0.985	0.007	0.007	φ_{liq} 96,34 % φ_{vap} 3,66 %
Amethyst, T _h 105°C	18.90	0.97	0.985	0.007	0.007	$\varphi_{ m liq}$ 94,76 % $\varphi_{ m vap}$ 5,24 %
Amethyst, $T_{\rm h}$ 125°C	19.16	0.96	0.985	0.007	0.007	$\varphi_{\text{liq}} 93,47 \%$ $\varphi_{\text{vap}} 6,53 \%$

Tabelle 7.3.1, spezifische Werte der Flüssigkeitseinschlüsse

Weiters wurden die "volume fractions" entsprechend der Methode von Bakker & Diamond (2006) berechnet. Die Abbildung 7.3.14 zeigt die Veränderung der Gesamtfläche und des Verhältnisses der Fläche der Gasblase zur Gesamtfläche bei der Rotation (restliche Messungen siehe Anhang).

+15°

Abb. 7.3.14, Volume Fraction estimation nach Bakker & Diamond (2006), Zone 3, Einschluss 2

Zusätzlich wurde die "Volume fraction" bei diesen Einschlüssen ebenfalls mit der Homogenisierungstemperatur berechnet. Die Abweichung beider Ergebnisse resultiert einerseits aus der Form der Einschlüsse (Z4Fi1 hat eine zu regelmäßige Form), andererseits auch durch "accidentially trapped crystalls" welche das Ergebnis ebenfalls verändern können.

Einschluss Nr.	"Volume fractions" berechnet	"Volume fractions" gemessen
Z2Fi1	$\varphi_{\rm liq}$ 94,60%	φ_{liq} 88,50%
	$\varphi_{\rm vap}$ 5,40%	$\varphi_{\rm vap}$ 11,50%
Z2Fi2	φ_{liq} 89,17%	$\varphi_{ m liq}$ 87,00%
	$\varphi_{\rm vap}$ 10,83	$\varphi_{\rm vap}$ 13,00%
Z2Fi3	$\varphi_{\rm liq}$ 91,49%	$\varphi_{ m liq}$ 86,00%
	$\varphi_{\rm vap}$ 8,51%	φ_{vap} 14,00%
Z4Fi1	$\varphi_{\rm liq}$ 67,27%	$\varphi_{\rm liq}$ 73,50%
	$\varphi_{\rm vap}$ 32,73%	φ_{vap} 26,50%
Z4Fi2	φ_{liq} 85,63%	$\varphi_{ m liq}$ 86,00%
	$\varphi_{\rm vap}$ 14,37%	φ_{vap} 14,00%
Z4Fi3	φ_{liq} 87,23%	φ_{liq} 88,5%
	$\varphi_{\rm vap}$ 12,77%	$\varphi_{\rm vap}$ 11,50%

Tabelle. 7.3.2, Vergleich "Volume Fractions" berechnet und "Volume Fractions" gemessen

8) Diskussion der Ergebnisse

Die bemerkenswerte farbliche Bänderung des Maissauer Amethystes tritt im mm- bis 10er cm-Massstab auf. In charakteristischer Art und Weise, wie repräsentativ auf Abbildung 7.2.1 dargestellt, ist der Zonarbau meist definiert durch (von außen nach innen eines Kristalls) Milchquarz (< 2 mm) - Rauchquarz - Milchquarz bis Bergkristall - Amethyst (in verschiedenster Farbgebung) - Milchquarz im Kern. Detaillierte Untersuchungen der chemischen Zusammensetzung dieser einzelnen Zonen ergaben in den Amethystzonen eine um 51% geringere Konzentration an Al und um 100% höhere Konzentrationen an Fe als in den reinen bzw. milchigen Quarzzonen. Auf der Basis von LA-ICP-MS Analysen konnte weiters die Veränderung der relativen Konzentrationen von Li, Al und Fe erfasst werden. Die Amethystzonen sind im Vergleich zu den Bergkristall-, Milchquarz- und Rauchquarzzonen durch eine signifikant höhere Konzentration an Fe bei gleichzeitiger Abnahme von Li und Al gekennzeichnet. Der Vergleich unterschiedlich intensiv gefärbter Amethystzonen führte zum gleichen Ergebnis. Damit kann klar geschlossen werden, dass die Amethystzonen, wie auch die Intensität der Amethystfärbung, eine Funktion des Fe-Gehaltes sind. Dies wird durch die Ergebnisse von Dedushenko (2004) bestätigt und steht im Einklang mit den theoretischen, kristallographischen Überlegungen über die Ursache der Amethystbildung (RYKART, 1995). Laut Rykart gibt es zwei Modelle, die die Amethystfärbung erklären.

1. Modell nach Lehmann und Bambauer

Fe ³⁺	+	Fe ³⁺	\rightarrow	Fe ⁴⁺	+	Fe ²⁺
auf Gitter- platz Si Elektronen- spender		auf Zwischen- gitterplatz Elektronen- empfänger	Ionisierende Strahlung	auf Gitter- platz Si Farbzentru m Defekt- elektronen- zentrum		auf Zwischen- gitterplatz Elektronen- zentrum

Abb. 8.1, Modell nach Lehmann und Bambauer (RYKART, 1995)

Dreiwertiges Eisen (Fe^{3+}) wird innerhalb der Quarzstruktur auf Gitterplätzen und auf Zwischengitterplätzen eingebaut. Durch natürliche ionisierende Strahlung wechselt nun ein Elektron von einem Fe auf einem Gitterplatz zu einem Fe auf einem Zwischengitterplatz, sodass nun auf dem Gitterplatz vierwertiges (Fe^{4+}) und auf dem Zwischengitterplatz

zweiwertiges Eisen (Fe^{2+}) sitzt. Zur optischen Absorption, welche die Amethystfärbung erzeugt, trägt ausschließlich das Fe^{4+} bei (RYKART, 1995).

2. Modell nach Cohen

Nach dem Modell von Cohen bildet sich mithilfe von einem Al^{3+} auf einem Gitterplatz und einem Na⁺ (oder Li⁺) auf einem Zwischengitterplatz, bei Bestrahlung ein Rauchquarzfarbzentrum. Die Amethystfärbung entsteht, indem ein Fe³⁺, welches auf einem Zwischengitterplatz sitzt, ein Elektron abgibt und zu einem Fe⁴⁺ wird. Das Elektron vermag nun das durch Al und Na (oder Li) gebildete Rauchquarzzentrum zu löschen und so die Amethystfarbe zu erzeugen (RYKART, 1995).

$Al - O^{-} \rightarrow Al - O^{0} + e^{-}$	Bildung eines Defektelektronenzentrums
$Na^+ (oder Li^+) + e^- \rightarrow Na^0 (oder Li^0)$	Bildung eines Rauchquarzfarbzentrums
$\mathrm{Fe}^{3+} \rightarrow \mathrm{Fe}^{4+} + \mathrm{e}^{-}$	Fe auf Zwischengitterplatz gibt ein Elektron ab
$Al - O^0 + e^- \rightarrow Al - O^-$	Löschung des Defektelektronenzentrums → Amethystfärbung

Abb. 8.2, Modell nach Cohen (RYKART, 1995)

Für die vorliegende Arbeit wird, auf der Basis der erhaltenen Daten, das Modell nach Cohen bevorzugt, da jeweils eine signifikante Änderung des Fe, Al und Li zu beobachten waren.

Die nächste Fragen, die sich stellen sind: Woher kamen die chemischen Beimengungen im Quarz? Wie unterscheiden sich die einzelnen Zonen hinsichtlich ihrer P-T-Bedingungen? Für eine Annäherung der ersten Fragestellung wurde die Alterationszone um den Maissauer Amethystgang detailliert mineralogisch und chemisch untersucht. Generell bedeutet das Vorhandensein einer Alterationszone um einen Gang, dass die Fluida, die für die Bildung des Ganges verantwortlich sind, eine deutliche Reaktion mit dem bereits verfestigten Nebengestein verursachen. Dies bedeutet, dass der Amethystgang grundsätzlich jünger als der Thayagranit ist. Die Alterationszone beträgt durchschnittlich 1 bis maximal 10 m (bei 10 m vom Amethystgang entfernt zeigt der Thaya Granit unalterierte, chemische und mineralogische Zusammensetzung). Die makroskopische Unterscheidung der einzelnen Zonen ist in Kapitel 5 beschrieben. Die Mineralogie zeigt eine Zunahme von Chlorit (Chloritisierung des Biotites) bis sowohl Biotit als auch Chlorit in Annäherung an den Amethystgang verschwinden. Plagioklas und Kalifeldspat treten zunehmend zurück, bei gleichzeitiger Anreicherung von Quarz, Hämatit, Illit und quellfähigen Tonmineralen. Eine signifikante Zunahme von Quarzgängchen konnte ebenso beobachtet werden.

In der Geochemie konnte eine Zunahme von Al, Fe und der LSEE bei gleichzeitiger Abnahme von Na und Ca beobachtet werden, während der Gehalt an Si nahezu gleich bleibt und sich auch nicht wesentlich von dem des nicht-alterierten Thayagranites unterscheidet. Daraus kann geschlossen werden, dass das SiO₂ des Ganges nicht aus der unmittelbaren Umgebung des Ganges mobilisiert worden ist. Daraus folgt weiters, dass angenommen werden muss, dass das Gangmaterial aus größerer Tiefe stammen muss. Die Zunahme an Al und Fe innerhalb der Alterationszone lässt vermuten, dass diese für die Amethystbildung so wichtigen Elemente, im Zuge der Fluid/Nebengesteins-Reaktion in die Fluida mobilisiert worden sind und damit als Basis zur Bildung der Amethystzonen zur Verfügung standen.

Nächste Frage sind die P/T - Bedingungen während der Bildung der einzelnen Zonen des Ganges. Auf der Basis der Messung der Homogenisierungstemperaturen, Schmelztemperaturen, sowie der Berechnung Dichte und der Salinität der Flüssigkeitseinschlüsse (Computerprogramm BULK, BAKKER, 2003) im Bergkristall (Zone 3) bzw. im Amethyst (Zone 4), konnten unterschiedliche Fluidpulse identifiziert werden.

Die Daten (Homogenisierungstemperatur und Dichte) der Flüssigkeitseinschlüsse in der Bergkristallzone (Zone 3) ergeben, wie in Abbildung 8.3 dargestellt, drei Isochoren bei T_h 80 °C, T_h 150 °C und T_h 225 °C. Dies lässt den Schluss zu, dass die untersuchte Bergkristallzone aus der Aktivität von drei unterschiedlichen Fluidpulsen gebildet worden ist. Nimmt man einen hydrostatischen geothermischen Gradienten von 35 °C / km an, ergeben sich minimale P/T Bildungsbedingungen für die drei "Fluidpulse" von ca. 120 °C und 90 MPa. Nimmt man einen hydrostatischen Geothermischen Gradienten von 100 °C / km an, ergeben sich für die drei Fluidpulse in der Bergkristallzone minimale P/T Bildungsbedingungen von ca. 90 °C und 25 MPa (Abb. 8.3). Die teilweise auftretenden 1-phasigen sekundären Einschlüsse lassen auf eine oberflächennahe Bildung schließen

Abb. 8.3, Berechnete Isochoren (*ISOC*, BAKKER, 2003) und berechnete hydrostatische geothermische Gradienten in Zone 3 (Bergkristallzone)

Innerhalb dieser Zone wurde ebenfalls "heterogeneous trapping" beobachtet. "Heterogeneous Trapping" entsteht durch Entmischung der bei der Bildung anwesenden Fluida.

Bei diesem Sonderfall entsprechen die Bildungsbedingungen den minimalen gemessenen Homogenisierungstemperaturen. Diese Temperatur kommt bei ca. 60 °C zu

liegen. Durch die geringe Salinität der Einschlüsse und der relativ geringen Bildungstemperatur kann ein oberflächennaher Bildungsbereich, mit einem erhöhten hydrostatischen geothermischen Gradienten (100 °C / km), angenommen werden, welcher sich gut mit den aus Abbildung 8.3 erhaltenen Werten deckt.

Im Amethyst konnte wie aus Abbildung 8.5 ersichtlich ist nur ein Fluidpuls identifiziert werden.

Abb. 8.5, Berechnete Isochoren (*ISOC*, BAKKER, 2003) und berechnete hydrostatische geothermische Gradienten in Zone 4 (Amethyst)

Die aus den Berechnungen erhaltenen Bildungsbedingungen liegen zwischen ca. 120 °C und 25 MPa (bei einem geothermischen Gradienten von 100 °C / km) und ca. 160 °C und 140 MPa (bei einem geothermischen Gradienten von 35 °C / km).

Zusammenfassend kann gesagt werden, dass tiefe SiO₂ gesättigte Fluida, bei einem erhöhten Geothermischen Gradienten (> 100 °C / km) zur oberflächennahen Bildung des Amethystganges geführt haben. Der erhöhte geothermische Gradient lässt sich durch die relativ hohen Temperaturen bei einer geringen Bildungstiefe des Maissauer Amethysts erklären.

Zusammenfassend lässt sich die Geschichte des Maissauer Amethyst wie folgt rekonstruieren:

1. Bildung des Thaya Granites während der cadomischen / panafrikanischen Gebirgsbildung

2. Öffnung von Spalten / Klüften während der Abkühlung bzw. des Aufstieges des Thaya Granitplutons

3. wiederholtes Eindringen von tiefen SiO_2 reichen, heißen Fluida mit leicht unterschiedlicher chemischer Zusammensetzung im Bezug auf Beimengungen von Fe, Al und Li. Diese Fluidpulse unterschieden sich auch in ihren P / T Bedingungen.

4. radioaktive Bestrahlung des Gesamten Gangsystems über einen bestimmten Zeitraum, in Abhängigkeit von der Stärke der radioaktiven Strahlung im Thaya Granit (Zirkon, Epidot, Allanit zeigen Spuren von Th, siehe Anhang) und Konzentrationen von akzessorischen Elementen wie Fe, Al, Li, Na führt zu charakteristischen hell – dunkel – violetten Bänderungen des Amethysts.

5. Finale Hebung des gesamten Thaya Granitplutons mit dem Maissauer Amethystgang

9) Literaturverzeichnis

- Arnold, A., Scharbert, H. G. (1973): Rb/Sr Altersbestimmungen an Granuliten der südlichen Böhmischen Masse in Österreich. – Schweiz. Miner. Petrogr. Mitt., vol. 53, pp. 61-78.
- Bakker, R. J. (2003): Package FLUIDS; 1, Computer programs for analysis of fluid inclusion data and for modelling bulk fluid properties Chemical Geology, vol. 194, pp. 3-23.
- Bakker, R. J., Piribauer C., Strauss V. (2005): Development of a high quality Raman spectral library for minerals and fluids. Mitteilungen der Österreichischen Mineralogischen Gesellschaft, vol. 151, pp. 25.
- Bakker, R. J., Diamond, L. W. (2006): Estimation of volume fractions of liquid and vapour phases in fluid inclusions, and definition of inclusion shapes. Amer. Mineralogist, vol. 91, pp. 635-657.
- Burke, E. A. J. (2001): Raman microspectrometry of fluid inclusions. Lithos, vol. 55, pp. 139-158.
- Cohen, A. J. (1975): On the Color centers of iron in Amethyst and Synthetic Quartz: A reply. Amer. Mineralogist, vol. 60, pp. 338-339.
- Cohen, A. J., Makar, L. N. (1975): Models for Color Centers in Smoky Quartz. phys. Stat. sol., vol. 73, pp. 539-596.
- Cohen, A. J. (1985): Amethyst color in quartz, the result of radiation protection involving iron. – Amer. Mineralogist, vol. 70, pp. 1180-1185.
- Dedushenko, S. K., Makhina, I. B., Mar'in, A. A., Mukhanov, V. A., Perfiliev, Yu., D. (2004): What Oxidation State of Iron Determines the Amethyst Colour? Hyperfine Interactions, vol. 156/157, pp. 417-422.
- Ebner, F. (1997): Die geologischen Einheiten Österreichs und ihre Rohstoffe. In: Weber, L. (eds.): Archiv für Lagerstättenforschung, vol. 19, pp. 49-229, Wien.
- Exner, Ch. (1970): Zur Rastenberger Granittektonik im Bereich der Kampkraftwerke (südliche Böhmische Masse). Mitt. Geol. Ges. Wien, vol. 61, pp. 9-39.
- Finger, F., Frasl, G., Hoeck, V., Steyrer, H. P. (1989): The granitoids of the Moravian zone of Northeast Austria; products of a Cadomian active continental margin? - Precambrian Research, vol. 45, pp. 235-245.
- Finger, F., von Quadt, A. (1995): U/Pb ages of zircons from a plagiogranite-gneiss in the southeastern Bohemian Massif, Austria. - further evidence for an important early Paleozoic rifting episode in the eastern Variscides. – Schweiz. Mineral. Petrogr. Mitt. vol. 75, pp. 265-270.
- Finger, F., Roberts, M. P., Haunschmid, B., Schermaier, A., Steyrer, H. P. (1997): Variscan granitoids of Central Europe; their typology, potential sources and tectonothermal relations. Mineralogy and Petrology, vol. 61, pp.67-96.

- Frank, W., Scharbert, S., Thöni, M., Popp, F., Hammer, S. (1990): Isotopen-geologische Neuergebnisse zur Entwicklunggeschschichte der Böhmischen Masse. – Österr. Beitr. Meteor. Geophysik, vol. 3, pp. 185-228.
- Franke, W. (1989): Tectonostratigraphic units in the Variscan belt of central Europe. Geol. Soc. Am. Spec., vol. 230, pp. 67-90.
- Frasl, G. (1991): Das Moravikum der Thaya-Kuppel als Teil der variszisch deformierten Randzone des Bruno-Vistulikums – eine Einführung – In: Roetzel, R. (eds.): Arbeitstagung der Geologischen Bundesanstalt, Geologie am Ostrand der Böhmischen Masse in Niederösterreich, pp. 49-62.
- Friedl, G., Finger, F., McNaughton, N. J., Fletcher, I. R (2000): Deducing the ancestry of terranes; SHRIMP evidence for South America-derived Gondwana fragments in Central Europe – Geology, vol. 28, pp.1035-1038.
- Friedl, G., Finger, F., Paquette, J. L., von Quadt, A., McNaughton, N. J, Fletcher, I. R. (2004): Pre-Variscan geological events in the Austrian part of the Bohemian Massif deduced from U-Pb zircon ages – International Journal of Earth Sciences (Geologische Rundschau), vol. 93, pp. 802-823.
- Fritz, H. (1996): Geodynamic and tectonic evolution of the southeastern Bohemian Massif: the Thaya section (Austria) Mineralogy and Petrology, vol. 58, pp. 253-278.
- Fuchs, G., Scharbert, H. (1979): Kleinere Granulitvorkommen im Niederösterreichischen Moldanubikum und ihre Bedeutung für die Granulitgenese. Verh. Geol. B.-A., pp. 29-49.
- Gerdes, A., Friedl, G., Parrish, R. R., Finger, F. (2003): High resolution geochronology of Variscan granite emplacement: the South Bohemian Batholith. J. Czech Geol. Soc., vol. 48, pp. 53.
- Gijbels, R., Adriaens, A. (2000): Einleitung zu den massenspektrometrischen Methoden. In: Pavićević, M. K., Amthauer, G. (eds.): Physikalisch-chemische Untersuchungsmethoden in den Geowissenschaften (Band 1). – pp. 159-170, E. Schweizerbart'sche Verlagsbuchhandlung (Nägele u. Obermiller), Stuttgard.
- Hassan, F. (1972): Amethyst Mineral. Record, vol. 3, pp. 221-225.
- Höck, V., Marschallinger, R., Topa, D. (1990): Granit-Biotit-Geothermometrie in Metapeliten der Moravischen Zone in Österreich. - Österr. Beitr. Meteor. Geophysik, vol. 3, pp. 149-167.
- Höck, V., Leichmann, J. (1994): Exkursion C: Das Moravikum der Thayakuppel. Mitt. Österr. Miner. Ges., vol. 139, pp. 407-427.
- Höck ,V. (1995): Metamorphic evolution in the Moravo-Silesian allochthonous units. In: Dallmeyer, R. D., Franke, W., Weber, K. (eds.): Pre-Permian geology of Central and Eastern Europa. – pp. 541-553, Springer International.

- Jochum, K.P., Gijbels, R., Adriaens, A. (2000): Multielementmassenspektrometrie (MMS) Massenspektrometrie mit induktiv gekoppelter Plasmaionisation (ICP-MS). – In: Pavićević, M. K., Amthauer, G. (eds.): Physikalisch-chemische Untersuchungsmethoden in den Geowissenschaften (Band 1). – pp. 188-203, E. Schweizerbart'sche Verlagsbuchhandlung (Nägele u. Obermiller), Stuttgard.
- Klötzli, U. S., Frank, W., Scharbert, S. (1997): Evolution of the SE Bohemian Massiv based on geochronological data. Geol. Rdsch.
- Lehmann, G., Bambauer, H. U. (1973): Quarzkristalle und ihre Farben. Angew. Chemie, vol. 85, pp. 281-289.
- Lehmann, G. (1975): On the Color centers of iron in Amethyst and Synthetic Quartz: A Discussion. Amer. Mineralogist, vol. 60, pp. 335-337.
- Linner, M. (1993): Zur Geochemie der Paragneise der Monotonen Serie. Mitt. Österr. Miner. Ges., vol. 138, pp. 223-225.
- Matte, P., Maluski, H., Rajlich, P., und Franke, W. (1990): Terrane boundaries in the Bohemian Massif: Results of large-scale Variscan shearing Tectonophysics, vol. 177, pp 151-170.
- Pavićević, M. K. (2000): Elektronenstrahlmikroanalyse (ESMA) In: Pavićević, M. K., Amthauer, G. (eds.): Physikalisch-chemische Untersuchungsmethoden in den Geowissenschaften (Band 1). – pp. 132-142, E. Schweizerbart'sche Verlagsbuchhandlung (Nägele u. Obermiller), Stuttgard.
- Rykart, R. (1995): Quarz Monographie. Die Eigenheiten von Bergkristall, Rauchquarz, Amethyst, Chalcedon, Achat, Opal und andere Varietäten. 462 S., Ott Verlag, Thun.
- Shepherd, T. J., Rankin, A. H., Alderton, D. H. M. (1985): A Practical guide to Fluid Inclusion Studies. 240 S., Blackie & Son Ltd..
- Stampfli, G. M., von Raumer, J. F., Borel, G. D., Bussy, F. (2001): Variscian and pre-Variscian evolution. – In: Stampfli, G. M. (eds.): Geology of the Western Swiss Alps – a guide book. – Mém. Géol. Lausanne, vol. 36, pp. 28-41.
- Tait, J. A., Bachtadse, V., Franke, W., Soffel, H. C. (1997): Geodynamic evolution of the European Variscian Fold belt: Palaeomagnetic and geological constrains. – Geol. Rundsch., vol. 86, pp. 585-598.
- Tucker, M. (1996): Methoden der Sedimentologie. 366 S., Ferdinand Enke Verlag, Stuttgart.
- Von Raumer, J. F., Stampfli, G. M., Borel, G. D., Bussy, F. (2002): Organization of pre-Variscian basement areas at the north-Gondwanan margin. – Int. J. Earth Sci., vol. 91, pp. 35-52.
- Von Raumer, J. F., Stampfli, G. M., Bussy, F. (2003): Gondwana-derived microcontinents; the constituents of the Variscian and Alpine collisional orogens. – In: Murphy, J. B., Keppie, J. D. (eds.): Collisional orogenesis in the geological record and modern analogues. – Tectonophysics, vol. 365, pp. 7-22.

- Weber-Diefenbach, K. (2000): Röntgenfluoreszenzanalyse (RFA) In: Pavićević, M. K., Amthauer, G. (eds.): Physikalisch-chemische Untersuchungsmethoden in den Geowissenschaften (Band 1). – pp. 115-132, E. Schweizerbart'sche Verlagsbuchhandlung (Nägele u. Obermiller), Stuttgart.
- Winchester, J. A., Pharaoh, T. C., Verniers, J. (2002): Palaeozoic amalgamation of central Europe. An introduction and synthesis of new results from recent geological and geophysical investigations. In: Winchester, J. A., Pharaoh, T. C., Verniers, J. (eds.): Paleozoic amalgamation of Central Europe. Geol. Soc. Lond. Spec. Publ., vol. 201, pp. 1-18.
10) Abbildungensverzeichnis

Abbildungen

Kapitel 4

- Abb. 4.1, E Teil der Bömischen Masse (vereinfachte Skizze nach Matte et al., 1990, aus Frasl, 1991, Arbeitstagung Geol. B.-A.)
- Abb. 4.2, Geologische Karte der Moravischen Zone (vereinfacht nach HÖCK & LEICHMANN, 1994)
- Abb. 4.3.1, Darstellung des proterozoischen Terranes, des paläozoischen Terranes und der Raabser Serie vor der Deckenstapelung (FRITZ, 1996)

Kapitel 5

Abb. 5.1.1, Amethyststollen Maissau

Abb. 5.1.2, Amethystgang mit Alterationszone

- Abb. 5.1.3, Plan der Amethystwelt Maissau mit der Lage der Grabungen 2004 und 2006
- Abb. 5.1.4, Proben der Alterationszone aus dem Amethyststollen in Maissau
- Abb. 5.1.5, Probennahme im Amethyststollen
- Abb. 5.1.6, Steinbruch Limberg, oberste Etage, Blickrichtung Westen
- Abb. 5.1.7, Steinbruch Limberg, Überblick
- Abb. 5.1.8, Probe L1, Hydrothermal alterierter Granit, Limberg
- Abb. 5.1.9, Probe L2, rötlich alterierter Granit, Limberg
- Abb. 5.1.10, Probe L3, ähnliche Alteration wie L2, Limberg
- Abb. 5.1.11., Probe L5, Kaolinisierter Granit, ähnlich der Alteration in Maissau, Limberg
- Abb. 5.1.12, Probe L6, Quartzgang innerhalb L5, Limberg
- Abb. 5.1.13, Quarzgang mit Alteration (Proben L5 und L6), Limberg
- Abb. 5.1.14, Probe L7, unverwitterter Granit, Limberg
- Abb. 5.1.15, Probe L9, leicht alterierter Granit (chloritisierung an den Trennflächen), Limberg

Abb. 5.1.16, Probe L4, Granit mit Xenolith, Limberg

Abb. 5.1.17, Probe L8, Material aus einem olivgrünen verwitterten Gang

Abb. 5.2.1, Position der Schliffe FL1 bis FL4

Kapitel 6

Abb. 6.1.1.1, wichtigste Linien der Röntgenfluoreszenzstrahlung (WEBER-DIEFENBACH, 2000)

Abb. 6.1.3.1, WDRFA und EDRFA (WEBER-DIEFENBACH, 2000)

- Abb. 6.2.1, Aufbau eins Röngendiffraktometers (aus Phillips Goniometer Handbuch)
- Abb. 6.3.1, Schematische Darstellung der Wechselwirkung zwischen Elektronenstrahl und Festkörperprobe (PAVIĆEVIĆ, 2000)
- Abb. 6.3.2, Grundlegender Aufbau einer Elektronenstrahl-Mikrosonde (Pavićević, 2000)
- Abb. 6.3.1, Aufbau einer ICP-MS (JOCHUM et al., 2000)
- Abb. 6.3.2, Aufbau einer Fackel (JOCHUM et al., 2000)
- Abb. 6.3.3, Ionenextraktionsschnittstelle (JOCHUM et al., 2000)
- Abb. 6.5.1, Unterschiedliche Energieniveaus bei der Raleigh Streuung, bei der Raman Streuung und der IR Absorption (http://www.plasma.de/de/plasma_wissenswertes/images/Disse_img_51.jpg)
- Abb. 6.5.2, Aufbau des für die Messungen verwendeten LABRAM (ISA Jobin Yvon) Spektroskops (aus LABRAM Handbuch)
- Abb 6.5.4., Spektren der verwendeten Standards (BAKKER et al., 2005)
- Abb 6.5.6., Spektrum von reinem Wasser und von einer Salzlösung (BAKKER et al., 2005)
- Abb. 6.6.1, Olympus BX60 Mikroskop mit LINKAM MDS 600 Heiz Kühltisch

Abb. 6.6.2, Heiz – Kühltisch

Kapitel 7

- Abb. 7.1.1, Mikroskopaufnahme im Durchlicht unter gekreuzten Polarisatoren, Probe Ma1, Überblick
- Abb. 7.1.2, Mikroskopaufnahme im Durchlicht unter gekreuzten Polarisatoren, Probe L3, saussuritisierter Plagioklas

- Abb. 7.1.3, Mikroskopaufnahme im Durch-licht unter gekreuzten Polarisatoren, Probe L7, Zirkon in Plagioklas
- Abb. 7.1.4, Mikroskopaufnahme im Auflicht, Probe L3, alterierter Allanitkristall mit Monazitneubildung
- Abb. 7.1.5, Mikroskopaufnahme im Durch-licht unter gekreuzten Polarisatoren, Probe L3, myrmekitische Verwachsung
- Abb. 7.1.6, Mikroskopaufnahme im Durch-licht unter paralleler Stellung der Polarisatoren, Probe Ma1, Strahlungssäume in Biotit
- Abb. 7.1.7, Verteilung der REE im Granit
- Abb. 7.1.8, Röntgendiffraktogramm Probe AZ-M-01
- Abb. 7.1.9, Röntgendiffraktogramm Probe AZ-M-02
- Abb. 7.1.10, Röntgendiffraktogramm Probe AZ-M-03
- Abb. 7.1.11, Röntgendiffraktogramm Probe AZ-M-04
- Abb. 7.1.12, Röntgendiffraktogramm Probe AZ-M-05
- Abb. 7.1.13, Röntgendiffraktogramm Probe AZ-M-06
- Abb. 7.1.14, Verteilung der Hauptelemente (Ergebnisse der RFA) innerhalb der Alterationszone um den Maissauer Amethystgang
- Abb. 7.1.15, Condrit-normierte Verteilung der REE in der Alterationszone
- Abb. 7.2.1, Unterteilung der Zonen im Bänderamethyst
- Abb. 7.2.2, LA-ICP-MS Messung Schliff FL1, Messung 1 (Tabelle mit den Rohdaten im Anhang)
- Abb. 7.2.3, LA-ICP-MS Messung Schliff FL1, Messung 3 (Tabelle mit den Rohdaten im Anhang)
- Abb. 7.2.4, LA-ICP-MS Messung Schliff FL1, Messung 2 (Tabelle mit den Rohdaten im Anhang)
- Abb. 7.2.5, LA-ICP-MS Messung Schliff FL1, Messung 3, relative Konzentration der Elemente Si, Na, Mg
- Abb. 7.2.6, LA-ICP-MS Messung Schliff FL2, Messung 1 (Tabelle mit den Rohdaten im Anhang)

- Abb. 7.2.7, LA-ICP-MS Messung Schliff FL2, Messung 2 (Tabelle mit den Rohdaten im Anhang)
- Abb. 7.2.8, LA-ICP-MS Messung Schliff FL2, Messung 3 (Tabelle mit den Rohdaten im Anhang)
- Abb. 7.3.1, Einteilung der Flüssigkeitseinschlüsse nach ihrer Form (BAKKER&DIAMOND, 2006)
- Abb. 7.3.2, Milchquarzzone mit großen dunklen und teilweise geöffneten Einschlüssen
- Abb. 7.3.3, längliche Flüssigkeitseinschlüsse in Rauchquarz (Zone 2)
- Abb. 7.3.4, Formen der Flüssigkeitseinschlüsse in Zone 2 nach BAKKER&DIAMOND (2006)
- Abb. 7.3.5, große längliche Flüssigkeitseinschlüsse in Zone 3
- Abb. 7.3.6, equidimensionaler 2-phasige Einschluss in Zone 3
- Abb. 7.3.7, einschlussreicher Milchquarzbereich in Zone 3
- Abb. 7.3.8 Formen der Flüssigkeitseinschlüsse in Zone 3 (Milchquarzbereich) nach BAKKER&DIAMOND (2006)
- Abb. 7.3.9 pseudosekundäre Einschlüsse in Zone 4
- Abb. 7.3.10, primärer 3-phasiger Einschluss (Salzwasser, Wasserdampf und Sulfat) in Zone 4
- Abb. 7.3.11, Formen der Flüssigkeitseinschlüsse in Zone 4 nach BAKKER&DIAMOND (2006)
- Abb. 7.3.12, Gegenüberstellung der Homogenisierungs-temperaturen (T_h) in Zone 2/3 (Rauchquarz und Bergkristall) und Zone 4 (Amethyst)
- Abb. 7.3.13, Gegenüberstellung der Schmelz-temperaturen $(T_{m (ice)})$ in Zone 2/3 (Rauchquarz und Bergkristall) und Zone 4 (Amethyst)
- Abb. 7.3.14, Volume Fraction estimation nach Bakker & Diamond (2006), Zone 3, Einschluss 2

Kapitel 8

- Abb. 8.1, Modell nach Lehmann und Bambauer (RYKART, 1995)
- Abb. 8.2, Modell nach Cohen (RYKART, 1995)

- Abb. 8.3, Berechnete Isochoren (ISOC, BAKKER, 2003) und berechnete hydrostatische geothermische Gradienten in Zone 3 (Bergkristallzone)
- Abb. 8.4, Beispiel für "Heterogeneous Trapping" in Zone 3 (Bergkristallzone)
- Abb. 8.5, Berechnete Isochoren (*ISOC*, BAKKER, 2003) und berechnete hydrostatische geothermische Gradienten in Zone 4 (Amethyst)

Tabellen

Kapitel 5

Tabelle 5.1, Überblick der genommenen Proben und die angewendeten Untersuchungsmethoden

Kapitel 7

Tabelle 7.1.1, Mikrosondenanalysen ausgewählter Minerale in Mass.%, Schliff L3

Tabelle 7.1.2, Ergebnisse der RFA Analysedaten in Mass.%

Tabelle 7.3.1, spezifische Werte der Flüssigkeitseinschlüsse

Tabelle. 7.3.2, Vergleich Volume Fractions berechnet und Volume Fractions gemessen

11) Anhang

+15°

Zone 2, Einschluss 1

Zone 2, Einschluss 2

Zone 2, Einschluss 3

Zone 3, Einschluss 1

Zone 3, Einschluss 3

Daten RFA

	AZ-M-01			AZ-M-02		
Elemente	G1	G2	Mittelwert	G3	G4	Mittelwert
Na2O	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1
MgO	0.22	0.22	0.22	0.19	0.16	0.175
Al2O3	18.8	18.9	18.85	16.6	16	16.3
SiO2	73	74.2	73.6	76.9	74.9	75.9
P2O5	0.06	0.06	0.06	0.05	0.05	0.05
K2O	4.52	4.57	4.545	4.24	4.17	4.205
CaO	0.08	0.08	0.08	0.08	0.07	0.075
TiO2	0.25	0.25	0.25	0.18	0.18	0.18
MnO	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01
Fe2O3	1.62	1.62	1.62	1.98	2.01	1.995
Cr2O3	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01

	AZ-M-03			AZ-M-04		
Elemente	G5	G6	Mittlewert	G7	G8	Mittelwert
Na2O	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1
MgO	0.16	0.15	0.155	0.15	0.15	0.15
Al2O3	17.5	17.4	17.45	17.4	17.4	17.4
SiO2	75.5	75	75.25	75.7	76.1	75.9
P2O5	0.04	0.04	0.04	0.04	0.04	0.04
K2O	5.17	5.13	5.15	5.38	5.39	5.385
CaO	0.09	0.09	0.09	0.07	0.07	0.07
TiO2	0.27	0.27	0.27	0.26	0.26	0.26
MnO	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01
Fe2O3	1.65	1.64	1.645	1.49	1.5	1.495
Cr2O3	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01

	AZ-M-05			AZ-M-06		
Elemente	G9	G10	Mittelwert	А	В	Mittelwert
Na2O	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1
MgO	0.21	0.22	0.215	0.279	0.282	0.2805
Al2O3	19.1	19.1	19.1	16.485	16.625	16.555
SiO2	73.4	73.9	73.65	73.674	74.028	73.851
P2O5	0.05	0.047	0.0485	0.073	0.073	0.073
K2O	5.28	5.29	5.285	3.808	3.806	3.807
CaO	0.08	0.09	0.085	0.13	0.127	0.1285
TiO2	0.27	0.27	0.27	0.204	0.208	0.206
MnO	<0,01	<0,01	<0,01	0.013	0.013	<0,01
Fe2O3	1.14	1.14	1.14	5.553	5.526	5.5395
Cr2O3	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01

Daten REE

Elemente/Probennummer	AZ-M-01	AZ-M-02	AZ-M-03	AZ-M-04	AZ-M-05	AZ-M-06
La	551.2	313.9	308.0	195.4	433.7	451.5
Ce	409.6	319.9	166.1	105.9	191.6	463.2
Pr	431.1	214.3	237.4	147.0	333.3	366.6
Nd	314.8	164.2	188.7	116.7	267.3	280.6
Sm	202.0	105.2	131.7	81.4	186.1	183.3
Eu	78.8	42.8	57.3	36.5	81.8	76.5
Gd	101.7	64.5	85.1	54.8	120.7	95.9
Tb	79.1	50.5	73.5	49.5	103.9	85.5
Dy	54.9	38.0	56.6	40.1	78.5	64.1
Но	39.1	30.1	44.9	33.5	61.2	50.1
Er	33.7	27.3	40.4	31.2	53.9	45.3
Tm	33.5	27.4	41.1	32.3	53.7	47.0
Yb	32.0	25.9	38.8	30.9	49.3	43.7
Lu	29.4	25.1	37.1	30.2	46.0	41.1

Daten Mikrosonde

Nummer:	1	
Beschreibung:	Zirkon	
Ort:	Kreis1	
Analyse:	Elemente	Mass %
	Na ₂ O	0.00
	SiO ₂	27.02
	Al ₂ O ₃	1.28
	CaO	0.57
	MgO	0.00
	FeO	1.49
	K ₂ O	0.05
	Cl	0.01
	ZrO ₂	45.43
	UO ₂	0.00
	ThO ₂	0.12
		75 97

Nummer:	2	
Beschreibung:	Zirkon	
Ort:	Kreis1	
Analyse	Elemente	Mass %
Anaryse.	No O	0.00
	Na ₂ O	0.00
	SiO ₂	33.23
	Al ₂ O ₃	0.00
	CaO	0.00
	MgO	0.09
	FeO	0.10
	K ₂ O	0.01
	Cl	0.00
	ZrO ₂	56.36
	UO ₂	0.00
	ThO ₂	0.00
		89.79

Nummer:	3	
Beschreibung:	Epidot	
Ort:	Kreis2	
Analyse:	Elemente	Mass %
	Na ₂ O	0.00
	SiO ₂	35.39
	Al ₂ O ₃	21.48
	CaO	23.02
	MgO	0.00
	FeO	12.18
	K ₂ O	0.06
	Cl	0.00
	ZrO ₂	0.00
	UO ₂	0.00
	ThO ₂	0.07
		92.20

Nummer:		4
Beschreibung:	Epidot	
Ort:	Kreis2	
Analyse:	Elemente	Mass %
	Na ₂ O	0.00
	SiO ₂	43.17
	Al ₂ O ₃	13.26
	CaO	19.58
	MgO	0.03
	FeO	8.26
	K ₂ O	0.05
	Cl	0.00
	ZrO ₂	0.00
	UO ₂	0.00
	ThO ₂	0.00
		84.35

Nummer:	5	
Beschreibung:	Apatit	
Ort:	Kreis2	-
Analyse:	Elemente	Mass %
	Na ₂ O	0.00
	SiO ₂	3.18
	Al ₂ O ₃	1.09
	CaO	51.43
	MgO	0.38
	FeO	1.59
	K ₂ O	0.57
	Cl	0.01
	ZrO ₂	0.00
	UO ₂	0.00
	ThO ₂	0.00
		58.25

Nummer:		6
Beschreibung:	Albit	
Ort:	Kreis2	
Analyse:	Elemente	Mass %
	Na ₂ O	12.68
	SiO ₂	70.62
	Al ₂ O ₃	18.75
	CaO	0.33
	MgO	0.00
	FeO	0.00
	K ₂ O	0.05
	Cl	0.01
	ZrO ₂	0.03
	UO ₂	0.00
	ThO ₂	0.04
		102.51

Nummer:	7	
Beschreibung:	Kalifeldspat	
Ort:	Kreis2	-
Analyse:	Elemente	Mass %
	Na ₂ O	0.38
	SiO ₂	50.46
	Al ₂ O ₃	34.06
	CaO	0.06
	MgO	0.35
	FeO	2.23
	K ₂ O	6.94
	Cl	0.00
	ZrO ₂	0.03
	UO ₂	0.00
	ThO ₂	0.04
		94.55

Nummer:	8		
Beschreibung:	Allanit, Kern aus Epidot		
Ort:	Kreis3	-	
Analyse:	Elemente	Mass %	
	Na ₂ O	0.00	
	SiO ₂	38.63	
	Al ₂ O ₃	19.60	
	CaO	1.08	
	MgO	1.02	
	FeO	33.03	
	K ₂ O	0.13	
	Cl	0.06	
	ZrO ₂	0.00	
	UO ₂	0.00	
	ThO ₂	0.15	
		93.70	

N		2							
Nummer:	2	9							
Beschreibung:	L3-K3-2, dunkle Phase								
Ort:	Kreis3								
Analyse:	Elemente	Mass %							
	Na ₂ O	0.00							
	SiO ₂	51.47							
	Al ₂ O ₃	22.33							
	CaO	1.57							
	MgO	2.72							
	FeO	4.95							
	K ₂ O	0.09							
	Cl	0.07							
	ZrO ₂	0.00							
	UO ₂	0.00							
	ThO ₂	0.04							
		83.24							

Nummer:		10	
Pasahraihungi	L3-K5-1,		
beschreibung:	Kisp.		
Ort:	Kreis5		
Analyse:	Elemente		Mass %
	Na ₂ O		0.56
	SiO ₂		72.35
	Al ₂ O ₃		17.40
	CaO		0.00
	MgO		0.00
	FeO		0.11
	K ₂ O		9.87
	Cl		0.01
	ZrO ₂		0.03
	UO ₂		0.00
	ThO ₂		0.00
			100.33

Nummer:	11							
Beschreibung:	L3-K5-2, perthitisch							
Ort:	Kreis5							
Analyse:	Elemente	Mass %						
	Na ₂ O	13.32						
	SiO ₂	72.42						
	Al ₂ O ₃	18.93						
	CaO	0.47						
	MgO	0.14						
	FeO	0.48						
	K ₂ O	0.08						
	Cl	0.03						
	ZrO ₂	0.00						
	UO ₂	0.00						
	ThO ₂	0.00						
		105.87						

Nummer:		12	
	L3-K1-3,		
Beschreibung:	Biotit		
Ort:	Kreis1		
Analyse:	Elemente		Mass %
	Na ₂ O		0.00
	SiO ₂		32.15
	Al ₂ O ₃		19.46
	CaO		0.54
	MgO		7.14
	FeO		32.98
	K ₂ O		1.08
	Cl		0.01
	ZrO ₂		0.00
	UO ₂		0.00
	ThO ₂		0.00
			93.36

Nummer:	13								
Beschreibung:	L3-K1-4, alterierter Allanit								
Ort:	Kreis1								
Analyse:	Elemente	Mass %							
	Na ₂ O	0.00							
	SiO ₂	32.46							
	Al ₂ O ₃	15.95							
	CaO	0.64							
	MgO	1.68							
	FeO	30.88							
	K ₂ O	0.05							
	Cl	0.04							
	ZrO ₂	0.00							
	UO ₂	0.00							
	ThO ₂	0.55							
		82.25							

Daten LA-ICP-MS

Schliff Fl1 Messung 1

Messpunkt	Messzeit	Strecke	Li	Na	Mg	Al	Si	K	Ca	Ti	Mn	Fe
	[sec]	[µm]										
18	15	123	188	4058166	532330	132020	124305	505509	4322	12552	1027	250
19	16	141	236	5858961	778432	196140	176413	733645	5839	17984	1097	292
20	17	158	215	5393746	695891	178355	164532	666563	5749	16438	1147	219
21	18	176	203	5651282	742216	195187	169432	708764	6002	17715	1167	774
22	19	194	156	5242600	722856	189476	164164	644850	5670	17074	1155	264
23	20	211	146	5410234	752796	192651	167105	675233	5784	17512	1084	571
24	20	229	162	5611631	762969	199555	168675	688869	6047	17927	1279	274
25	21	246	134	5169186	700800	184286	153539	636922	5712	16202	1013	219
26	22	264	94	4839806	678330	176847	148585	605344	5408	16032	966	214
27	23	282	98	4680416	663885	173268	141904	584536	5368	15733	970	292
28	24	299	105	4700830	640252	170456	138663	562223	5207	15063	1002	273
29	25	317	105	4581092	629093	173802	136029	560193	5033	15319	1412	255
30	26	334	152	4525737	633576	180995	140730	565660	5223	15434	1309	383
31	27	352	278	4368702	626989	185582	141031	535440	5018	15109	1106	571
32	27	370	417	4306674	621565	189455	144463	542887	4878	15016	1093	573
33	28	387	740	4156706	600202	192500	154460	527971	4918	15024	1094	614
34	29	405	861	3453976	543234	165417	145262	422988	4193	12629	925	506
35	30	422	903	2874911	426798	143874	131655	345566	3355	10352	812	442
36	31	440	1145	2555345	392865	134913	142907	312481	2973	9445	747	363
30	32	458	1280	1731306	266931	92758	1302/3	218764	2154	6500	640	328
38	32	430	1320	1092961	188530	70679	125302	1//858	1/65	/300	457	285
30	3.1	473	1320	740185	120024	55573	115066	83524	900	2085	3/0	108
40	35	510	2042	511233	77730	53504	132302	61546	660	2120	421	1608
40	25	528	2042	370600	54221	55200	132392	51921	460	1558	721	1008
41	26	546	2304	280767	47127	48004	120147	42970	250	1336	200	195
42	27	5(2	2749	280707	4/13/	46094	1279(0	42079	242	1027	101	121
43	3/	503	28/4	277234	30423	40890	12/800	5/485	343	1037	191	148
44	38	509	3505	205506	43333	51972	130980	52405	407	1309	10/	109
45	39	598	3297	393506	48978	518/2	112057	55495	424	1404	149	110
46	40	616	4625	609/11	85077	68365	145855	102267	/12	2247	234	112
4/	41	634	4468	6/6426	83452	64218	12/820	96/65	121	2228	199	86
48	42	651	4521	61/140	83180	64//0	126632	/8905	640	1982	264	122
49	42	669	4837	616361	/8042	6855/	129805	/9561	/12	2037	191	85
50	43	686	4886	510221	64136	61441	128864	66560	561	1/31	139	89
51	44	704	4637	492880	61501	58809	125342	65761	530	1573	175	52
52	45	722	4717	556050	78465	62742	129553	73199	647	1910	185	87
53	46	739	4326	649804	80943	65323	126107	78827	667	2156	202	91
54	47	151	3725	582175	83303	60523	122504	/512/	681	2013	197	99
55	48	774	3699	649731	83137	62891	134016	76733	717	2063	234	259
56	49	792	3196	716863	85349	62208	126543	84793	781	2123	344	188
57	49	810	3102	578623	/4263	58945	119754	/5460	587	1891	323	159
58	50	827	3368	430968	57146	70189	146831	60787	476	1577	320	222
59	51	845	2884	278172	38084	52238	121965	40188	362	994	303	192
60	52	862	3053	218290	26313	48218	130399	37576	287	863	480	251
61	53	880	2969	178707	22627	45656	136930	31307	254	799	441	400
62	54	898	2704	143466	18784	40929	127437	24422	218	619	360	234
63	55	915	3256	101643	14842	41994	141836	24361	165	611	330	228
64	56	933	2902	71544	8727	37141	126844	17893	162	362	267	123
65	57	950	3290	54143	7611	37019	130174	14691	79	324	211	123
66	57	968	3710	48366	7097	44582	138171	15569	89	291	245	135
67	58	986	3731	58017	5370	44363	128277	12028	96	224	215	78
68	59	1003	4339	39768	4326	46724	141577	11694	71	551	439	79
69	60	1021	4870	42918	4987	50070	148571	11833	72	273	158	123

Messpunkt	Messzeit	Strecke	Li	Na	Mg	Al	Si	K	Ca	Ti	Mn	Fe
	[sec]	[µm]										
70	61	1038	5249	37943	5680	52500	152420	12519	98	210	136	155
71	62	1056	4530	45235	5185	49932	136984	11391	107	321	140	182
72	63	1074	4270	53668	6890	44535	123875	11560	127	282	197	215
73	64	1091	4803	90902	10655	51457	144013	17338	183	558	458	428
74	64	1109	4845	113083	16036	51396	150066	20009	239	743	487	699
75	65	1126	4624	324062	45766	54586	156562	43571	456	1601	476	626
76	66	1144	3847	342777	47608	44948	128986	44645	456	1191	320	455
77	67	1162	3304	524287	64508	46416	133675	61107	628	1773	445	381
78	68	1179	3186	707441	85858	49343	137776	76295	795	2194	674	607
79	69	1197	3011	832676	111673	53416	141256	110846	965	2963	465	468
80	70	1214	2521	858194	115107	47843	126755	92853	998	2769	489	356
81	71	1232	2529	879001	117415	47338	138342	87507	979	2662	387	298
82	71	1250	2248	703908	91447	40676	124148	74259	740	2227	261	239
83	72	1267	2082	655619	84547	36654	129812	70210	691	2119	252	149
84	73	1285	1917	470723	62110	29819	125998	54653	508	1513	174	138
85	74	1302	1750	348862	45404	23777	124721	39228	356	1121	126	96
86	75	1320	1571	237969	30773	18883	126516	30186	253	854	1044	91
87	76	1338	1450	221768	31157	17537	141365	30653	242	905	86	88
88	77	1355	1008	176504	21995	13286	128229	21442	158	481	76	57
89	78	1373	799	172002	21643	12137	135005	18444	158	484	92	33
90	79	1390	717	191662	24456	11813	138247	29481	193	678	87	49
91	79	1408	469	157268	19118	8357	120013	19771	153	586	42	35
92	80	1426	557	98073	14833	6931	130344	14543	140	292	44	21
93	81	1443	702	72352	9052	5991	138185	11031	78	262	21	13
94	82	1461	854	60452	5612	6045	141481	9196	52	188	26	19
95	83	1478	1194	33763	5608	6061	152986	6995	46	142	24	15
96	84	1496	1332	26499	2874	6130	146074	4423	53	121	21	21
97	85	1514	1538	26058	3337	6888	151287	4258	28	82	33	12
98	86	1531	1758	18323	2238	7416	154986	3560	15	62	24	9
99	86	1549	1818	14624	1902	7291	154365	2741	29	56	11	8
100	87	1566	2183	14060	1718	8424	165290	3550	29	70	11	10
101	88	1584	2182	18323	1734	8583	164068	2779	20	63	15	13
102	89	1602	2306	11198	1189	8508	172892	3880	23	61	16	11
103	90	1619	2340	8908	829	8587	171002	2636	21	44	9	11
104	91	1637	2407	7036	730	8691	173342	1774	18	38	13	14
105	92	1654	2222	5484	501	8307	168115	3151	17	25	5	11
106	93	1672	2031	5357	457	7012	139748	1599	10	34	8	6
107	93	1690	2524	4391	327	8282	166887	1739	14	28	8	12
108	94	1707	2245	2909	346	7401	149042	1641	9	19	11	2
109	95	1725	2149	2395	288	7670	149370	2249	16	17	4	3
110	96	1742	2470	2736	204	8527	166559	1423	12	21	10	6
111	97	1760	2402	2557	137	7859	155136	1743	12	15	13	2
112	98	1778	2569	1946	139	8162	159558	1677	15	20	7	6
113	99	1795	2424	2215	92	8058	156576	1088	16	24	8	2
114	100	1813	2764	1694	122	9076	175621	2576	20	21	7	4
115	101	1830	2863	1264	92	8876	171411	1805	13	18	5	4
116	101	1848	2496	1527	136	8275	155013	1169	11	23	3	5
117	102	1866	2591	1543	72	8309	159066	1664	13	11	10	5
118	103	1883	2555	1406	65	9041	165324	1031	11	20	4	3
119	104	1901	2907	1071	378	9506	168368	1435	8	18	3	4
120	105	1918	2509	1297	28	8559	150059	1125	9	22	11	4
121	106	1936	2660	1147	39	9169	163761	1504	10	22	6	2
122	107	1954	2923	1039	49	9429	170920	1369	14	22	2	5
123	108	1971	2868	838	30	9219	167972	1264	24	68	5	6
124	108	1989	2979	1065	19	10095	185816	1019	12	22	5	3

Schliff Fl1 Messung 2

Messpunkt	Messzeit	Strecke	Li	Na	Mg	Al	Si	K	Ca	Ti	Mn	Fe
	[sec]	[µm]										
15	12	88	2479	5315	549	9437	146933	3651	27	84	337	315
16	13	106	2144	1938	480	7995	121071	1984	18	34	15	26
17	14	123	2308	2475	691	9064	141379	2854	38	295	8	25
18	15	141	2284	1747	303	9032	149015	2308	17	22	25	30
19	16	158	2189	1467	613	8413	138438	1540	20	23	12	21
20	17	176	2524	1996	94	9035	157490	2330	14	68	10	44
21	18	194	2516	1640	896	9083	157920	3526	14	27	5	21
22	19	211	2721	1915	37	9730	170449	1246	13	22	6	28
23	20	229	2564	1312	95	9238	162990	1655	16	31	10	19
24	20	246	2638	1617	47	9610	178249	1370	15	26	18	33
25	21	264	2450	1701	68	8792	162806	1928	10	81	14	21
26	22	282	2439	14/9	19	9036	159094	1488	12	17	9	27
27	23	299	2242	1445	482	8536	145903	1240	11	9	5	25
28	24	317	2526	2007	10	9121	168811	2007	8	27	6	24
29	25	334	2983	2009	42	10586	193541	2075	13	20	/	18
30	26	352	2728	1386	129	9/58	176918	1646	30	10	8	27
31	27	370	2775	2120	10	9650	1/5116	1222	25	19	8	33
32	27	387	2917	1917	10	10/08	194421	1566	10	18	9	30
33	28	405	2772	1290	/	9811	1/86/9	2315	14	31	11	34
34	29	422	2551	1396	60	9490	101777	3101	12	29	5	1/
35	30	440	2573	1495	4	9849	207074	1151	15	15	5	33
27	22	438	2028	1001	/	11140	207974	2220	0	20	10	25
20	32	4/3	2824	1382	20	10020	101562	2520	0	27	10	25
20	33	495 510	2834	1/22	30	0604	171057	2809	17	19	0	10
40	24	528	2735	1400	12	11604	104226	2449	17	25	12	25
40	25	546	2202	2200	12	11121	194320	1850	1/	23	12	20
41	35	563	3248	1025	3	10076	178685	1005	6	30	10	31
42	30	581	3248	2063	3	11306	186574	1750	12	17	10	20
43	38	508	3832	1749	3	13/33	22/32/	2220	12	30	10	40
45	30	616	3525	1540	5	12041	189563	1967	14	34	8	25
46	40	634	3573	1686	8	11967	194517	2191	17	27	7	41
47	41	651	3572	1602	4	11644	194490	2036	12	32	11	28
48	42	669	3776	1952	5	13459	198918	2380	15	23	7	44
49	42	686	3664	2554	14	11798	191815	3079	22	22	16	41
50	43	704	3583	4336	5	11423	184458	2352	5	25	8	35
51	44	722	3696	2219	24	12129	188853	1792	9	2.7	6	31
52	45	739	3614	2370	20	12931	193534	1715	17	28	12	28
53	46	757	3399	2736	12	11497	179149	1247	11	22	15	47
54	47	774	3717	2005	7	12718	198529	2531	15	30	13	31
55	48	792	3507	2331	9	11270	182172	1799	17	27	13	42
56	49	810	3717	2329	5	12543	196121	2061	17	37	7	39
57	49	827	3707	1833	34	12306	192367	10679	14	24	11	41
58	50	845	3904	2430	6	12977	202173	2657	16	20	11	67
59	51	862	3668	1857	12	11899	185994	2409	9	20	4	24
60	52	880	3482	1505	81	11428	171848	1317	13	27	6	29
61	53	898	3743	2204	23	12948	188949	1325	8	29	33	35

Messpunkt	Messzeit	Strecke	Li	Na	Mg	Al	Si	K	Ca	Ti	Mn	Fe
62	54	ريسي 915	3792	1883	24	12394	192545	1848	16	33	11	28
63	55	933	3737	1978	4	12602	179566	2905	12	25	10	38
64	56	950	3619	1745	96	11809	169255	3260	12	20	7	41
65	56	968	4431	2215	29	14892	208963	2735	16	25	12	43
66	57	986	3871	2072	97	12851	181094	2345	13	23	8	28
67	58	1003	4037	2203	8	13070	180958	1892	13	21	8	24
68	59	1021	3945	1781	88	13178	178058	1323	19	25	63	21
69	60	1038	3846	2043	14	13394	169957	1418	10	29	9	25
70	61	1056	4918	2161	19	16420	203040	2613	19	31	13	26
71	62	1074	4667	1850	51	16092	193138	1513	16	33	11	35
72	63	1091	4385	1856	128	15356	186813	1670	14	23	7	29
73	64	1109	4359	1919	26	15180	189262	3657	14	17	17	26
74	64	1126	4079	1843	32	14510	169111	1620	15	25	6	42
75	65	1144	4334	2607	20	15239	184506	2181	17	24	10	37
76	66	1162	4365	3755	24	15589	182630	1443	7	86	12	49
77	67	1179	4088	3291	27	14954	170080	1329	23	34	7	43
78	68	1197	4519	2983	26	15661	183073	1844	16	27	14	34
79	69	1214	4296	2886	9	14351	165188	1822	22	19	10	28
80	70	1232	4165	2739	6	14040	167242	1636	14	28	9	17
81	71	1250	4318	2701	551	14875	165590	2871	22	27	33	20
82	71	1267	4852	3441	31	16545	188369	1852	14	24	14	25
83	72	1285	4394	3285	9	16111	165713	1308	11	22	19	31
84	73	1302	4452	3454	39	16909	174468	1621	12	24	15	49
85	74	1320	4368	3823	24	15539	165645	2491	12	19	10	27
86	75	1338	5147	4972	32	18777	191351	3318	12	29	19	19
87	76	1355	4695	5017	19	16859	172530	1777	15	40	12	26
88	77	1373	4755	3930	10	16693	164369	2322	18	25	12	35
89	78	1390	5259	3241	76	17279	172728	1380	12	27	11	28
90	78	1408	5182	2871	22	18721	175362	1805	15	31	14	29
91	79	1426	5023	3266	40	17187	163502	1665	12	36	10	29
92	80	1443	5060	4242	37	18902	167569	1620	16	45	15	23
93	81	1461	5052	10806	78	22278	158480	2069	25	19	15	38
94	82	1478	5949	13000	57	25481	181340	2384	14	33	10	20
95	83	1496	6297	8955	40	24594	176290	1945	19	25	14	23
96	84	1514	6006	7313	24	23021	174147	1644	22	40	15	28
97	85	1531	6462	8502	23	24707	172892	2129	20	32	21	21
98	86	1549	6010	6285	60	23477	165065	1754	9	26	22	17
99	86	1566	6664	8965	56	24414	174366	2097	26	197	12	11
100	87	1584	6561	13613	46	25379	162533	1549	19	27	8	10
101	88	1602	6253	13349	69	25905	156378	1972	8	39	13	19
102	89	1619	6444	18703	89	27441	158445	1769	23	51	6	12
103	90	1637	6897	16832	62	27036	177785	1855	17	46	21	12
104	91	1654	6429	9326	51	24493	152863	2497	26	41	8	9
105	92	1672	6255	9839	26	25275	141160	1873	10	54	12	6
106	93	1690	6377	11367	33	27968	140853	1451	8	34	7	8
107	93	1707	7168	21279	14	34019	170797	1980	23	35	13	10
108	94	1725	6539	24070	35	31518	149472	3077	18	50	9	6
109	95	1742	7121	16909	50	26953	157845	2705	12	57	10	10
110	96	1760	6753	23144	344	28043	151103	2864	18	49	20	17
111	97	1778	6306	14524	46	25072	139891	2572	8	59	17	22

Messpunkt	Messzeit [sec]	Strecke [µm]	Li	Na	Mg	Al	Si	K	Ca	Ti	Mn	Fe
112	98	1795	6758	15630	412	26221	154372	2622	14	68	13	19
113	99	1813	6480	28413	1043	27101	152734	3044	31	74	24	13
114	100	1830	5876	22774	581	24187	133886	3463	23	80	10	82
115	100	1848	6210	24760	852	29876	154569	2578	26	49	28	31
116	101	1866	6470	41448	327	43493	168156	4243	20	87	51	66
117	102	1883	5911	48172	2931	37499	147937	10863	26	96	41	59
118	103	1901	5703	61219	1230	35420	145384	3804	29	98	30	59
119	104	1919	5872	51766	1288	42936	151198	5311	34	93	56	51
120	105	1936	6329	86142	1540	52103	164062	7294	26	134	51	46
121	106	1954	6083	75647	1718	45492	154993	6914	35	428	168	80
122	107	1971	6541	64495	1662	40667	161093	5127	54	145	61	68
123	108	1989	5467	67684	2666	35836	147937	6733	66	122	69	73
124	108	2007	5123	102796	3278	39397	155730	7494	39	315	62	63
125	109	2024	4885	98754	5892	40675	157285	9253	75	255	52	57
126	110	2042	4574	130848	10633	33818	141761	24930	91	385	53	43
127	111	2059	4803	164874	14693	32466	141870	14854	129	395	62	46
128	112	2077	5124	146171	14959	33935	136056	17425	128	442	71	86
129	113	2095	5617	123229	12021	28503	129717	13912	92	424	86	70
130	114	2112	5193	146373	14190	26461	125813	17147	127	459	37	44
131	115	2130	5700	141049	15796	30958	132603	19810	136	425	63	31
132	115	2147	6308	147655	14697	34749	147411	14748	131	408	46	40
133	116	2165	6296	165126	18134	40405	151355	23524	166	546	97	134
134	117	2183	5159	191631	18865	35622	139591	25689	167	523	78	66
135	118	2200	4542	143533	14500	36680	134678	21091	135	504	79	67
136	119	2218	4381	162531	12518	34422	130481	15701	126	304	66	81
137	120	2235	4399	111599	12048	36897	141529	15655	103	396	51	34
138	121	2253	4378	97809	8487	30114	133893	15510	105	291	68	29
139	122	2271	5188	133939	13032	31134	147254	19829	117	381	50	48
140	122	2288	4485	166825	22012	28891	127321	22283	217	521	225	33
141	123	2306	5829	232239	25331	34951	152236	26694	222	671	91	54
142	124	2323	4477	140160	18112	26557	124994	19542	123	530	68	33
143	125	2341	3694	121726	11946	26754	131702	14802	121	333	88	56
144	126	2359	3466	143484	14698	29597	142361	20093	143	540	107	80
145	127	2376	2677	155777	18220	26312	132951	19939	152	550	130	92
146	128	2394	2303	178148	21269	25418	142873	25132	216	640	147	120
147	129	2411	1886	237288	25801	25734	130822	28327	240	814	194	159
148	130	2429	2074	226345	25566	26436	132651	26047	233	748	276	237
149	130	2447	2500	202397	24956	27716	134248	24760	194	709	182	159
150	131	2464	3324	196465	21993	28079	133961	27077	260	792	340	211
151	132	2482	4068	307518	32669	35909	141829	36583	307	1102	319	259
152	133	2499	4154	349561	43030	39222	137325	45118	344	1118	230	207
153	134	2517	4750	341655	43753	36602	136622	40749	336	1172	208	158
154	135	2535	4467	255390	34586	29210	123732	32626	310	805	140	180
155	136	2552	4837	252016	30094	29978	125315	26837	237	771	120	113
156	137	2570	5252	188656	25927	34136	131313	24310	173	569	108	83
157	137	2587	5713	249084	26287	36054	141140	31852	257	840	121	75

158 138 2665 5530 291465 35586 35272 134,66 4080 275 9400 317 103 159 139 2623 4622 43362 4002 3073 12850 50460 450 1255 165 145 1215 165 7440 721 6673 74409 721 674 7440 721 674 7440 721 6743 7440 721 6743 7450 721 6743 7440 721 6743 7450 7201 1381 143 143 143 143 144 144 144 2711 6233 6537 6501 1543 4701 390 1521 1631 144 144 145 144 145 144 145 145 145 1450 1262 1233 141 145 126 133 120 121 145 126 133 120 121 145 121 <t< th=""><th>Messpunkt</th><th>Messzeit [sec]</th><th>Strecke</th><th>Li</th><th>Na</th><th>Mg</th><th>Al</th><th>Si</th><th>K</th><th>Са</th><th>Ti</th><th>Mn</th><th>Fe</th></t<>	Messpunkt	Messzeit [sec]	Strecke	Li	Na	Mg	Al	Si	K	Са	Ti	Mn	Fe
159 139 2623 4632 43342 49012 13073 12950 1640 450 1165 117 160 141 2684 3711 66437 7575 4002 11074 7840 721 219 2011 722 58 161 142 2675 2880 58702 67257 36694 13037 7426 563 1603 142 2011 722 583 1616 144 2711 2284 53584 57384 7316 1404 1001 1302 1303 159 3030 1616 144 2728 2227 32816 58584 38292 16344 40011 305 1303 1402 1265 180 1202 1415 1405 140 1265 180 1225 1415 1405 1301 1314 1405 1317 1416 1401 140 140 140 140 140 140 140	158	138	2605	5530	291465	35586	35272	134166	40630	275	940	317	103
160 140 2940 3711 64433 73576 40024 10774 7840 721 2159 185 74 161 141 2658 2280 652479 7220 18607 7186 663 1603 122 688 163 143 2693 2813 499057 66693 45633 136575 69267 531 1481 143 293 164 144 2728 2227 32261 53581 3352 12644 49031 390 1297 313 140 107 222 166 144 2781 2714 38938 44001 5930 5443 4411 1465 1237 206 166 144 2781 2714 38938 4490 3902 1415 1285 1285 1285 1285 1285 1281 1281 1281 1281 1281 1281 1281 1281 1281 1281 <td< td=""><td>159</td><td>139</td><td>2623</td><td>4632</td><td>433642</td><td>49012</td><td>35073</td><td>123950</td><td>50460</td><td>450</td><td>1365</td><td>165</td><td>117</td></td<>	159	139	2623	4632	433642	49012	35073	123950	50460	450	1365	165	117
161 141 2655 2680 587092 67257 36694 110597 74826 563 1603 1123 480 163 1441 2675 2680 587092 6533 1655 79267 531 1481 1415 122 68 164 144 2711 2228 433054 53955 47316 121644 49031 390 1297 134 100 166 144 2724 2276 431416 57997 6871 12880 54423 4411 1465 187 2025 168 147 2781 2714 38934 44001 49056 1233 4253 1413 145 380 1123 123 153 170 149 2816 3099 35151 5990 6621 12730 441 143 143 143 143 143 143 143 144 1453 141 1453 141 1	160	140	2640	3711	664373	75576	40024	130774	78409	721	2159	185	74
162 142 2675 2880 5727 3664 13097 74826 563 1603 123 4903 4003 164 144 2711 228 43304 5985 47316 121644 49031 300 127 134 400 166 144 2728 2227 322816 38881 3829 126346 49031 352 1033 159 340 166 145 2744 2880815 47075 50501 13484 4004 555 1233 400 722 167 148 2794 3336 330834 43094 4065 12320 4455 1133 200 176 170 149 2814 2844 12844 1804 384 100 122 153 171 150 2844 2403 35791 44661 21041 1304 2374 4384 143 142 153 171 <td>161</td> <td>141</td> <td>2658</td> <td>2828</td> <td>652479</td> <td>78229</td> <td>37299</td> <td>118607</td> <td>71181</td> <td>679</td> <td>2011</td> <td>172</td> <td>58</td>	161	141	2658	2828	652479	78229	37299	118607	71181	679	2011	172	58
163 143 2003 2813 49007 60093 4503 13675 6927 331 1481 143 593 164 144 2721 2222 2227 32281 3383 87316 3829 1264 3520 1264 3520 1264 3520 1264 3520 1264 3520 1264 3520 1264 3520 1264 3520 1264 3520 1264 3520 1264 46329 415 126 189 202 166 147 2781 2781 38934 4806 12330 4282 366 123 4003 399 1152 109 143 170 149 2816 2089 25112 40035 3284 12304 4282 309 311 143 143 143 143 143 143 143 143 143 143 143 143 143 143 143 143 143	162	142	2675	2680	587082	67257	36694	130597	74826	563	1603	122	68
164 144 2711 228 43304 53985 47316 121644 49031 390 1297 134 100 166 144 2728 2227 322816 38811 38702 1326 103 159 340 166 144 2764 2443 80815 4707 50501 134848 4001 355 1304 1207 222 167 146 2763 2576 431416 57997 66871 128809 54423 441 1465 1287 200 176 169 148 2709 3336 33084 4334 4806 12824 40141 348 4010 122 153 171 150 2816 2600 35147 4497 3764 12802 341 173 135 2144 12805 2177 1414 1401 122 153 171 150 2817 216 43539 42	163	143	2693	2813	499057	60693	45683	136575	69267	531	1481	143	59
165 144 2728 2221 32281 38291 26346 38290 352 1031 199 340 166 145 2746 2444 380815 47079 5050 134848 49014 355 1340 2702 167 146 2731 2714 389384 44601 50005 125124 46329 441 1405 189 202 169 148 2799 3336 336834 43394 48065 13330 42892 365 1233 209 176 110 150 2841 2842 3251 44970 37864 12802 4003 396 1102 153 171 150 2841 2849 35790 4496 3244 381 386 1100 1233 249 145 173 152 2887 2176 45210 5992 1101 13742 59137 460 1464 208 <	164	144	2711	2238	433054	53985	47316	121644	49031	390	1297	134	100
166 145 27.46 24.44 380815 4707 50501 13.48.48 49014 355 1304 207 2222 167 144 27.66 27.57 431416 57997 66871 12809 54423 4415 1265 1283 209 133 168 147 27.71 3330 330834 44001 50905 123.14 43292 435 123 209 176 170 149 2816 3059 15147 44970 378.44 12381 2384 1433 171 150 2848 2305 15181 3398 4266 27702 14154 4010 314 1173 204 125 172 153 2949 2353 4266 27702 14154 4010 314 1173 204 125 175 2353 2434 47518 60672 29294 126578 53770 450 1351 140	165	144	2728	2227	322816	38581	38292	126346	38290	352	1033	159	340
167 146 2763 2376 431416 5797 66871 128809 54423 4411 1465 187 205 168 147 2781 2714 389384 44661 50905 125124 46329 415 1265 1233 209 176 170 149 2816 3059 351475 44970 37864 12330 4282 305 1233 413 3145 386 1100 122 153 171 150 2834 2802 35710 44965 3284 12354 3845 386 1100 122 153 172 151 2887 2176 454210 53927 31101 13742 5370 460 441 202 401 1381 238 269 175 153 2904 2324 44718 60672 2924 12658 53170 526 1463 31747 160 1252 1277	166	145	2746	2444	380815	47079	50501	134848	49014	355	1304	207	222
168 147 2781 2714 389384 44001 50905 125124 46329 415 1265 189 202 169 148 2799 3336 330844 43394 48056 13233 42892 365 1233 200 175 170 149 2814 2802 357910 44965 32834 12351 3845 386 1100 122 153 1717 152 2869 2303 35338 42261 27702 14159 4101 1381 238 298 197 175 153 2904 2234 44718 60672 2924 12678 5370 506 1460 291 197 175 153 2904 2733 44326 5181 470 1582 197 1502 347 248 1430 588 155 1401 1622 347 268 176 155 2939 2753<	167	146	2763	2576	431416	57997	66871	128809	54423	441	1465	187	205
169 148 2799 3336 33083 4394 48056 132330 42802 355 1233 209 176 170 149 2816 3059 351475 44970 37864 128052 40043 399 1152 175 143 171 150 2851 2843 2802 35710 44965 32854 4043 399 1152 153 172 151 2860 2303 33389 42263 27702 141549 40120 314 1175 204 166 174 152 2860 2303 44718 600672 2924 16578 53770 566 1660 291 197 175 2352 42037 52244 3109 12528 53137 476 1464 208 226 1779 157 2323 51256 67157 4332 144320 58816 554 173 4732	168	147	2781	2714	389384	44601	50905	125124	46329	415	1265	189	202
170 149 2816 3059 351475 44970 37864 128052 40043 399 1152 175 143 171 150 2834 2820 35700 44965 32854 12341 38145 386 1100 122 153 172 151 2869 2203 35338 4226 27702 14154 4012 314 1173 204 238 269 175 153 2904 2224 447518 60672 29244 126578 53770 506 1400 291 177 176 154 2922 2930 490727 61170 31680 13024 5881 470 1528 147 1600 177 155 2930 2753 45334 15137 1414 12808 51317 476 1464 208 266 178 156 2957 2322 51278 52403 1529 3100	169	148	2799	3336	330834	43394	48056	132330	42892	365	1233	209	176
171 150 2834 2802 357910 44965 32854 123541 38145 386 1100 122 153 172 151 2851 2459 315161 35980 26221 127785 37247 330 958 135 141 173 152 2887 2176 454210 53927 1110 11744 9570 491 1381 238 269 175 153 2904 2024 447518 60672 29294 126578 53770 506 1460 291 197 176 154 2922 2900 490727 61170 31680 13024 5810 554 1901 672 268 177 155 2939 2753 45364 5137 3432 14420 5816 554 1901 672 2667 180 158 2902 1846 605614 73917 45298 137428 68413	170	149	2816	3059	351475	44970	37864	128052	40043	399	1152	175	143
172 151 2851 2459 315161 35980 26621 127785 37247 330 958 135 141 173 152 2869 2303 35389 42263 27702 14149 40120 314 1173 204 166 174 1552 2887 2176 454210 53927 31101 137742 53770 566 1460 221 197 176 154 2922 2930 490727 61170 31680 130242 56811 470 1528 177 160 177 155 2939 2753 43334 51357 3144 12868 53137 476 1464 208 226 178 156 2957 2232 42037 52204 3109 12328 58816 554 1910 672 697 180 158 2992 1446 605614 73729 53945 2253 6904	171	150	2834	2802	357910	44965	32854	123541	38145	386	1100	122	153
173 152 2869 2203 353389 42263 27702 141549 40120 314 1173 204 166 174 155 2887 2176 454210 53927 31101 13742 53707 491 1381 238 269 175 153 2904 2324 447518 6067 29294 12657 5370 506 1460 291 197 176 154 2922 2930 490727 61170 31680 130242 56811 470 1528 77 160 158 197 2352 420337 52204 31009 125827 52898 495 1652 347 268 179 157 2975 2322 131788 67157 3432 144320 58816 554 1901 672 697 180 158 2902 1846 60514 73917 45298 137428 68413 742 2444<	172	151	2851	2459	315161	35980	26621	127785	37247	330	958	135	141
174 152 2887 2176 454210 53927 31101 137742 53720 491 1381 238 269 175 153 2904 2324 447518 660672 29294 126578 53770 506 1460 291 1197 176 154 2922 2930 490727 61170 31680 130242 56811 470 1528 177 160 177 155 2939 2753 453364 51357 3214 12808 53137 4746 1464 208 226 178 156 2957 2332 512785 67157 3433 144320 58816 554 1901 672 697 180 158 2902 1846 605614 73917 45298 137428 68413 742 2244 753 870 181 159 3010 1398 132133 53205 1102 3488 1161	173	152	2869	2303	353389	42263	27702	141549	40120	314	1173	204	166
175 153 2904 2324 447518 60672 29294 126578 53770 506 1460 291 197 176 154 2922 2930 490727 61170 31680 130242 56811 470 1528 177 160 177 155 2939 2753 453364 51327 32144 128058 53137 476 1464 208 226 178 155 2957 2352 420337 52204 31000 12828 752898 495 1652 347 266 180 158 2992 1846 605614 73917 45298 137428 68413 742 2244 753 870 181 159 3007 1409 133401 169773 59017 14668 16257 1452 4663 1116 2231 183 160 3045 1245 131713 169856 57702 15729 <t< td=""><td>174</td><td>152</td><td>2887</td><td>2176</td><td>454210</td><td>53927</td><td>31101</td><td>137742</td><td>53720</td><td>491</td><td>1381</td><td>238</td><td>269</td></t<>	174	152	2887	2176	454210	53927	31101	137742	53720	491	1381	238	269
176 154 2922 2930 490727 61170 31680 130242 56811 470 1528 177 160 177 155 2939 2753 453364 51357 32144 128058 53137 476 1464 208 226 178 156 2957 2232 51278 67157 34332 144320 58816 554 1901 672 697 180 158 2992 1846 606614 73917 45298 137428 68413 742 2244 753 7670 181 159 3007 1409 133400 169773 59017 14681 16257 1459 4663 1116 2231 183 160 3045 1245 1317913 169856 59702 141959 16671 1462 4632 1852 5660 184 161 3063 1041 196666 28082 77805 15779	175	153	2904	2324	447518	60672	29294	126578	53770	506	1460	291	197
177 155 2939 2753 453364 51357 32144 128058 53137 476 1464 208 2266 178 156 2957 2322 420337 52204 31009 125827 52898 495 1652 347 268 179 157 2975 2232 512785 67157 34332 144320 58816 554 1901 672 697 180 158 2992 1846 605614 73917 45298 13723 68413 742 2244 753 870 181 159 3001 1398 97389 13213 5980 13520 122926 1102 3488 877 1690 182 159 30027 1409 13440 16973 59017 146681 162567 1459 4663 1116 2231 183 160 3045 1245 1317913 169856 59702 141959 16671 1462 4632 1852 5650 184 161 3	176	154	2922	2930	490727	61170	31680	130242	56811	470	1528	177	160
178 156 2957 2352 420337 52204 31009 125827 52898 495 1652 347 268 179 157 2975 2232 512785 67157 34332 144320 58816 554 1901 672 697 180 158 2992 1846 605614 73917 45298 137428 68413 742 2244 753 870 181 159 3010 1398 937889 132133 59907 146681 162567 1459 46632 1116 2231 183 160 3045 1245 1317913 169856 5702 141959 166761 1462 4632 1852 550 184 161 3063 885 228027 300120 81399 15273 282091 2372 7673 1383 2452 186 163 3098 904 188911 262290 69572 133231	177	155	2939	2753	453364	51357	32144	128058	53137	476	1464	208	226
179 157 2975 2232 512785 67157 34332 144320 58816 554 1901 672 6977 180 158 2992 1846 605614 73917 45298 137428 68413 742 2244 753 870 181 159 3010 1398 937889 132133 59807 132010 122926 1102 3488 877 1690 182 159 3027 1409 1334401 169773 59017 146681 162567 14452 4663 1116 2231 183 160 3045 1245 1317913 169856 59702 15772 23045 2253 6940 1729 5266 184 161 3063 885 228027 300120 81399 15273 28204 2318 2118 6125 931 1757 186 163 3098 904 1889911 262290 69572 <td>178</td> <td>156</td> <td>2957</td> <td>2352</td> <td>420337</td> <td>52204</td> <td>31009</td> <td>125827</td> <td>52898</td> <td>495</td> <td>1652</td> <td>347</td> <td>268</td>	178	156	2957	2352	420337	52204	31009	125827	52898	495	1652	347	268
180 158 2992 1846 605614 73917 45298 137428 68413 742 2244 753 870 181 159 3010 1398 93788 13213 5980 135210 122926 1102 3488 877 1690 182 159 3027 1409 1334401 169773 59017 14668 162567 1459 4663 1116 2231 183 160 3045 1245 1317913 169856 59702 141959 166761 1462 4632 1852 5650 184 161 3063 1041 1969606 282082 77805 15779 253045 2253 6940 1729 5266 185 162 3080 885 2280927 300120 81399 152973 282091 2372 7673 1383 2452 186 163 3115 11193 162523 229234 63654 1	179	157	2975	2232	512785	67157	34332	144320	58816	554	1901	672	697
181 159 3010 1398 937889 132133 5980 135210 12226 1102 3488 877 1690 182 159 3027 1400 1334401 169773 59017 146681 162567 1459 4663 1116 2231 183 160 3045 1245 1317913 169856 59702 141959 166761 1462 4632 1852 5650 184 161 3063 1041 1969606 282082 77805 157729 253045 2223 6940 1729 5266 185 162 3008 885 2280927 300120 81399 152973 282091 2372 7673 1383 2452 186 163 3198 044 1889911 262290 69572 133231 242358 2118 6117 839 1037 188 165 3131 1128 84872 12274 85197 <	180	158	2992	1846	605614	73917	45298	137428	68413	742	2244	753	870
182 159 3027 1409 1334401 169773 59017 146681 162567 1459 4663 1116 2231 183 160 3045 1245 1317913 169856 59702 141959 166761 1462 4632 1852 5550 184 161 3063 1041 1969606 282082 77805 157729 253045 2253 6940 1729 5266 185 162 3080 885 228097 300120 81399 152973 282091 2372 7673 1383 2452 186 163 3098 904 1889911 262290 69572 133231 242358 2118 6125 9911 1757 187 164 3115 1193 1624523 229234 63654 147527 203106 1718 5177 839 1037 188 165 3133 1236 1166767 161845 48156 127826 155197 1272 3890 646 1207 189 166 3151 1185 848772 122170 36118 125902 90956 917 3271 542 696 190 166 3168 1119 534623 73530 27958 124728 63539 639 2052 376 482 191 167 3186 1089 38636 52180 22068 12849 44513 <td< td=""><td>181</td><td>159</td><td>3010</td><td>1398</td><td>937889</td><td>132133</td><td>59890</td><td>135210</td><td>122926</td><td>1102</td><td>3488</td><td>877</td><td>1690</td></td<>	181	159	3010	1398	937889	132133	59890	135210	122926	1102	3488	877	1690
183160304512451317913169856597021419591667611462463218525550184161306310411969662820827780515772925304522536940172952661851623080885228092730012081399152973282091237276731383245218616330989041889911262206957213321242358211861259311757187164311511931624523229246365414752720310617185177839103718816531331236116676716184548156127826155197127238906461207189166315111858487721221703611812590290956917327154269661901663168111953462373530279581247263539639205237648219116731861089386360521802206812184944513489140727751319216832031124309561398361640212794935062367118431232219316932211069237368316951376134760320942891007388623194170 <t< td=""><td>182</td><td>159</td><td>3027</td><td>1409</td><td>1334401</td><td>169773</td><td>59017</td><td>146681</td><td>162567</td><td>1459</td><td>4663</td><td>1116</td><td>2231</td></t<>	182	159	3027	1409	1334401	169773	59017	146681	162567	1459	4663	1116	2231
184 161 3063 1041 1969606 282082 77805 157729 253045 2253 6940 1729 5266 185 162 3080 885 2280927 300120 81399 152973 282091 2372 7673 1383 2452 186 163 3098 904 1889911 262290 69572 133231 242358 2118 6125 931 1757 187 164 3115 1193 1624523 229234 63654 147527 203106 1718 5177 839 1037 188 165 3133 1236 1166767 161845 48156 127826 155197 1272 3890 646 1207 189 166 3151 1185 848772 122170 36118 125902 90956 917 3271 542 696 190 166 3168 1119 534623 73530 27958 <td< td=""><td>183</td><td>160</td><td>3045</td><td>1245</td><td>1317913</td><td>169856</td><td>59702</td><td>141959</td><td>166761</td><td>1462</td><td>4632</td><td>1852</td><td>5650</td></td<>	183	160	3045	1245	1317913	169856	59702	141959	166761	1462	4632	1852	5650
185 162 3080 885 2280927 300120 81399 152973 282091 2372 7673 1383 2452 186 163 3098 904 1889911 262290 69572 133231 24358 2118 6125 931 1757 187 164 3115 1193 1624523 229234 63654 147527 203106 1718 5177 839 1037 188 165 3133 1236 1166767 161845 48156 127826 155197 1272 3890 646 1207 189 166 3151 1185 848772 122170 36118 125902 90956 917 3271 542 696 190 166 3168 1119 534623 73530 27958 124728 63539 639 2052 376 482 191 167 3186 1089 386360 52180 2068 121849<	184	161	3063	1041	1969606	282082	77805	157729	253045	2253	6940	1729	5266
186 163 3098 904 1889911 262290 69572 133231 242358 2118 6125 931 1757 187 164 3115 1193 1624523 229234 63654 147527 203106 1718 5177 839 1037 188 165 3133 1236 1166767 161845 48156 127826 155197 1272 3890 646 1207 189 166 3151 1185 848772 122170 36118 125902 90956 917 3271 542 6966 190 166 3168 1119 534623 73530 27958 124728 63539 639 2052 376 482 191 167 3186 1089 386360 52180 22068 121849 44513 489 1407 277 513 192 168 3203 1124 309561 39836 16402 127949 35062 367 1184 312 3222 193 169 3221 1069 237368 31695 13786 134760 32094 289 1007 388 623 194 170 3229 839 225743 30535 12850 127608 29875 282 1341 473 595 195 171 3256 581 225234 29453 11979 108576 30063 300 1027	185	162	3080	885	2280927	300120	81399	152973	282091	2372	7673	1383	2452
187 164 3115 1193 1624523 229234 63654 147527 203106 1718 5177 839 1037 188 165 3133 1236 1166767 161845 48156 127826 155197 1272 3890 646 1207 189 166 3151 1185 848772 122170 36118 125902 90956 917 3271 542 696 190 166 3168 1119 534623 73530 27958 124728 63539 639 2052 376 482 191 167 3186 1089 386360 52180 22068 121849 44513 489 1407 277 513 192 168 3203 1124 309561 39836 16402 127949 35062 367 1184 312 322 193 169 3221 1069 237368 31695 13786 134760	186	163	3098	904	1889911	262290	69572	133231	242358	2118	6125	931	1757
188 165 3133 1236 1166767 161845 48156 127826 155197 1272 3890 646 1207 189 166 3151 1185 848772 122170 36118 125902 90956 917 3271 542 696 190 166 3168 1119 534623 73530 27958 124728 63539 639 2052 376 482 191 167 3186 1089 386360 52180 22068 121849 44513 489 1407 277 513 192 168 3203 1124 309561 39836 16402 127949 35062 367 1184 312 322 193 169 3221 1069 237368 31695 13786 134760 32094 289 1007 388 623 194 170 3239 839 225743 30535 12850 127608	187	164	3115	1193	1624523	229234	63654	147527	203106	1718	5177	839	1037
189 166 3151 1185 848772 122170 36118 125902 90956 917 3271 542 666 190 166 3168 1119 534623 73530 27958 124728 63539 639 2052 376 482 191 167 3186 1089 386360 52180 22068 121849 44513 489 1407 277 513 192 168 3203 1124 309561 39836 16402 127949 35062 367 1184 312 322 193 169 3221 1069 237368 31695 13786 134760 32094 289 1007 388 623 194 170 3239 839 225743 30535 12850 127608 29875 282 1341 473 595 195 171 3256 581 225234 29453 11979 108576 30	188	165	3133	1236	1166767	161845	48156	127826	155197	1272	3890	646	1207
190 166 3168 1119 534623 7330 27958 124728 63539 639 2052 376 442 191 167 3186 1089 386360 52180 22068 121849 44513 489 1407 277 513 192 168 3203 1124 309561 39836 16402 127949 35062 367 1184 312 322 193 169 3221 1069 237368 31695 13786 134760 32094 289 1007 388 623 194 170 3239 839 225743 30535 12850 127608 29875 282 1341 473 595 195 171 3256 581 225234 29453 11979 108576 30063 300 1027 305 506 196 172 3274 520 300734 39069 14409 126318 36918	189	166	3151	1185	848772	122170	36118	125902	90956	917	3271	542	696
191 167 3186 1089 386360 52180 22068 121849 44513 489 1407 277 513 192 168 3203 1124 309561 39836 16402 127949 35062 367 1184 312 322 193 169 3221 1069 237368 31695 13786 134760 32094 289 1007 388 623 194 170 3239 839 225743 30535 12850 127608 29875 282 1341 473 595 195 171 3256 581 225234 29453 11979 108576 30063 300 1027 305 506 196 172 3274 520 316695 38050 14430 118580 38996 348 1188 329 305 197 173 3291 520 300734 39069 14409 12618 36918 402 1357 437 370 198 174 3309	190	166	3168	1119	534623	73530	27958	124728	63539	639	2052	376	482
192 168 3203 1124 309561 39836 16402 127949 35062 367 1184 312 322 193 169 3221 1069 237368 31695 13786 134760 32094 289 1007 388 623 194 170 3239 839 225743 30535 12850 127608 29875 282 1341 473 595 195 171 3256 581 225234 29453 11979 108576 30063 300 1027 305 506 196 172 3274 520 316695 38050 14430 118580 38996 348 1188 329 305 197 173 3291 520 300734 39069 14409 126318 36918 402 1357 437 370 198 174 3309 500 322540 42249 16176 120265 39827 349 1264 472 419 199 174 3327	191	167	3186	1089	386360	52180	22068	121849	44513	489	1407	277	513
193 169 3221 1069 237388 31695 13786 13760 32094 289 1007 388 623 194 170 3239 839 225743 30535 12850 127608 29875 282 1341 473 595 195 171 3256 581 225234 29453 11979 108576 30063 300 1027 305 506 196 172 3274 520 316695 38050 14430 118580 38996 348 1188 329 305 197 173 3291 520 300734 39069 14409 126318 36918 402 1357 437 370 198 174 3309 500 322540 42249 16176 120265 39827 349 1264 472 419 199 174 3327 533 385833 52674 17964 129676 51392 <td>192</td> <td>168</td> <td>3203</td> <td>1124</td> <td>309561</td> <td>39836</td> <td>16402</td> <td>12/949</td> <td>35062</td> <td>367</td> <td>1184</td> <td>312</td> <td>322</td>	192	168	3203	1124	309561	39836	16402	12/949	35062	367	1184	312	322
194 170 3239 839 225743 30535 12850 127608 29875 282 1341 473 595 195 171 3256 581 225234 29453 11979 108576 30063 300 1027 305 506 196 172 3274 520 316695 38050 14430 118580 38996 348 1188 329 305 197 173 3291 520 300734 39069 14409 126318 36918 402 1357 437 370 198 174 3309 500 322540 42249 16176 120265 39827 349 1264 472 419 199 174 3327 533 385833 52674 17964 129676 51392 448 1656 366 333 200 175 3344 436 381017 46492 16992 114069 44899 452 1271 268 252 201 176 3362 <	193	169	3221	1069	23/368	31695	13/86	134/60	32094	289	1007	388	623
195 171 3256 381 225234 29435 11979 108576 30065 500 1027 305 306 196 172 3274 520 316695 38050 14430 118580 38996 348 1188 329 305 197 173 3291 520 300734 39069 14409 126318 36918 402 1357 437 370 198 174 3309 500 322540 42249 16176 120265 39827 349 1264 472 419 199 174 3327 533 385833 52674 17964 129676 51392 448 1656 366 333 200 175 3344 436 381017 46492 16992 114069 44899 452 1271 268 252 201 176 3362 370 371283 43391 16260 117720 43222 446 1432 385 360 202 177 3379 <	194	170	3239	591	225743	30535	12850	12/608	29875	282	1341	4/3	595
196 172 3274 320 316693 38030 14430 118380 36996 348 1188 329 303 197 173 3291 520 300734 39069 14409 126318 36918 402 1357 437 370 198 174 3309 500 322540 42249 16176 120265 39827 349 1264 472 419 199 174 3327 533 385833 52674 17964 129676 51392 448 1656 366 333 200 175 3344 436 381017 46492 16992 114069 44899 452 1271 268 252 201 176 3362 370 371283 43391 16260 117720 43222 446 1432 385 360 202 177 3379 353 350187 43092 14137 139209 50957 388 1132 457 446	195	1/1	3230	520	225254	29455	14420	118580	28006	248	1027	220	205
197 173 3221 320 300734 39009 14409 120318 30918 402 1357 437 370 198 174 3309 500 322540 42249 16176 120265 39827 349 1264 472 419 199 174 3327 533 385833 52674 17964 129676 51392 448 1656 366 333 200 175 3344 436 381017 46492 16992 114069 44899 452 1271 268 252 201 176 3362 370 371283 43391 16260 117720 43222 446 1432 385 360 202 177 3379 353 350187 43092 14137 139209 50957 388 1132 457 446	190	172	2201	520	300724	20060	14430	126210	26010	548 402	1188	529 127	270
196 174 3307 300 322340 42249 16176 120205 33827 349 1204 472 419 199 174 3327 533 385833 52674 17964 129676 51392 448 1656 366 333 200 175 3344 436 381017 46492 16992 114069 44899 452 1271 268 252 201 176 3362 370 371283 43391 16260 117720 43222 446 1432 385 360 202 177 3379 353 350187 43092 14137 139209 50957 388 1132 457 446 203 170 2327 247 2470 2470 2477 246	19/	1/3	2200	500	300/34	42240	14409	120318	20027	240	100/	43/	3/0
177 174 3327 333 383833 32074 17904 129070 51392 448 1050 366 3333 200 175 3344 436 381017 46492 16992 114069 44899 452 1271 268 252 201 176 3362 370 371283 43391 16260 117720 43222 446 1432 385 360 202 177 3379 353 350187 43092 14137 139209 50957 388 1132 457 446	198	1 /4	2227	500	305022	42249	101/0	120205	51202	549 110	1204	4/2	419
200 173 3344 430 381017 40492 10992 114009 44899 432 1271 208 232 201 176 3362 370 371283 43391 16260 117720 43222 446 1432 385 360 202 177 3379 353 350187 43092 14137 139209 50957 388 1132 457 446 203 170 2327 247 2452 1271 208 252	200	174	3327	JJJ 126	381017	J2074	16002	11/060	44900	440	1030	260	222
201 170 3302 370 371263 43371 10200 117720 43222 440 1432 385 360 202 177 3379 353 350187 43092 14137 139209 50957 388 1132 457 446 202 170 2307 267 21524 2565 12614 12625	200	175	3344	370	371292	/2201	16260	117720	44099 12777	432	1422	200	232
	201	170	3302	370	350187	43007	10200	130200	50057	388	1432	565 157	116
203 1 178 1 3397 1 367 1 315934 1 37065 1 13614 1 125056 1 38577 1 354 1 1050 1 504 1 335	202	178	3397	367	315934	37065	13614	125056	38577	354	1050	504	335

Messpunkt	Messzeit	Strecke	Li	Na	Mg	Al	Si	K	Ca	Ti	Mn	Fe
204	[sec]	[μm] 2415	525	457621	56044	19974	125800	54054	516	1662	400	249
204	1/9	3413	451	711765	80441	25506	13/521	77583	752	2278	348	318
205	181	3450	530	566075	72102	21256	121814	63128	626	1056	300	246
200	101	2450	791	450549	56551	10006	118246	52201	448	1202	277	240
207	182	3407	864	430348	53606	21554	130030	53460	502	1393	308	168
200	183	3503	1354	418614	51974	27208	128918	47619	471	1406	205	270
210	184	3520	1/190	619158	72876	50141	134500	68658	601	1780	324	2/0
210	185	3538	1351	519889	62755	38103	120859	59268	579	1673	284	291
211	186	3555	1414	528550	63857	43000	120005	63650	513	1723	280	258
212	187	3573	1563	460154	56125	31074	123664	64960	459	1521	200	198
213	188	3591	1694	357014	43728	26802	131116	41588	394	1345	243	220
215	188	3608	1560	240925	33848	17465	122354	29297	281	773	151	133
216	189	3626	1409	250722	30088	18070	140171	33863	278	843	187	250
217	190	3643	992	195882	26075	13676	118000	25691	218	1275	219	253
218	191	3661	988	202348	22569	11712	133606	22145	180	696	127	215
219	192	3679	803	149201	18866	10106	134568	21976	170	640	190	293
220	193	3696	662	178553	18283	12092	129096	19621	165	547	177	209
221	194	3714	589	137730	17590	15763	122046	19753	210	686	279	390
222	195	3731	626	146110	19723	12022	131204	20836	265	1389	1224	4262
223	196	3749	454	131210	18301	12059	117440	30567	255	1322	1277	5372
224	196	3767	602	251605	34491	15190	135769	32662	344	1300	1204	3854
225	197	3784	564	520514	62806	21987	128597	62419	584	2070	741	1809
226	198	3802	674	538389	66879	22724	128618	63537	603	1895	578	1389
227	199	3819	923	482427	59091	21663	129758	56153	598	1879	490	1010
228	200	3837	1158	385367	53046	18792	133306	47543	504	1394	416	811
229	201	3855	1418	279663	37667	16074	121733	35191	344	1030	472	662
230	202	3872	2140	217800	30188	16852	135415	26675	271	895	452	832
231	203	3890	2143	198735	22950	16138	136807	23819	251	838	342	501
232	203	3907	2144	206580	27380	16594	131068	28778	235	923	332	544
233	204	3925	1723	197213	23537	13511	110207	24833	247	848	225	413
234	205	3943	1768	270259	34857	16313	127144	34838	291	942	231	319
235	206	3960	1751	316106	38489	16397	124476	41222	326	1015	394	586
236	207	3978	1642	276773	35044	17051	116478	33746	268	890	323	455
237	208	3995	1727	322522	35658	19318	132719	34451	355	1196	551	389

Schliff Fl1 Messung 3

Messpunkt	Messzeit	Strecke	Li	Na	Mg	Al	Si	Κ	Ca	Ti	Mn	Fe
	[sec]	[µm]										
14	12	53	5216	101686	11290	20812	76488	11278	105	365	49	118
15	12	70	6232	26993	3676	20989	80342	3634	34	69	43	39
16	13	88	5823	15946	1397	19802	77149	2620	20	36	33	39
17	14	106	6845	15800	1163	25568	93141	1404	19	70	41	68
18	15	123	6421	13176	577	23721	90158	1228	13	29	25	24
19	16	141	6924	59968	7098	26396	117713	7103	80	230	31	24
20	17	158	7154	320909	37973	34142	131266	35887	335	1015	75	37

[se] [m] - 66 01 010 110 110 110 110 110 111 131 121 121 131 131 1310 113 131 131 131 131 131 131 131 131	Messpunkt	Messzeit	Strecke	Li	Na	Mg	Al	Si	K	Ca	Ti	Mn	Fe
118 176 6774 488108 5806 67208 78936 78945 682 2040 113 30 23 20 211 5405 514294 64171 35786 13984 57387 523 1468 111 54 24 20 229 5399 307659 38566 28932 113721 4442 324 863 454 21 25 212 264 5455 190337 26702 115012 23056 213 692 553 279 26 324 2090 49004 473786 65669 11101 11408 48012 4101 131 293 322 1404 1314 131 29 337 4891 4111 34 31 277 352 3070 61816 7330 35769 13050 6782 6411 1378 648 411 346 414 336 4101 436		[sec]	[µm]										
22 19 194 5405 64274 64171 3578 1234 682 2040 111 540 23 20 211 5405 15424 64171 3578 523 1468 111 54 24 294 5151 10837 26120 26573 118130 2206 221 662 5551 2056 224 706 50 355 27 223 2242 5161 31891 40535 27737 12204 36181 311 999 493 47754 29 225 311 4480 47212 5856 31846 13075 51225 492 1404 94 22 30 26 3341 4481 434018 57311 20908 16532 51225 4921 1404 148 1308 130 140 148 1418 368 130 140 140 148 363 140 14	21	18	176	6774	488108	58016	42506	128215	59907	543	1503	99	31
22 20 211 5402 5412* 7578* 123984 5738* 523 14863 544 211 25 21 246 5151 20598 37560 2566 213 262 213 692 55 29 26 22 224 5451 103357 277 12244 5818 311 999 83 36 27 222 225 5161 315891 40501 277 12264 440 1319 115 29 29 25 517 4680 472742 58565 31846 13095 51221 407 1489 111 34 31 27 352 3970 61446 7333 2070 12778 1444 1336 86 141 34 29 4905 46653 56499 32233 13585 52963 441 1336 86 141 34 405	22	19	194	5849	682708	75980	47993	131743	78045	682	2040	113	30
24 20 229 5399 30769 38850 2992 113721 34442 234 863 642 255 29 26 22 264 5455 190337 26780 25662 115932 23054 224 706 50 355 27 23 282 5161 315891 40353 27737 122044 5018 311 999 483 66 28 24 299 4909 427366 56966 31193 11198 11498 4011 344 310 23 407 14890 4401 1388 131 232 370 618146 7330 3707 14050 6702 4411 1388 101 188 33 28 387 38776 49061 32565 25707 1305 5913 1117 96 14 34 20 4452 27778 7305 212077 1323 458	23	20	211	5405	514294	64171	35786	123984	57387	523	1468	111	54
25 21 246 511 205783 26120 26562 15323 213 6020 55 29 26 222 264 45455 19037 2638 22044 224 706 50 35 27 233 282 5161 315891 40353 27737 122844 36181 311 999 83 36 28 24 200 4000 427846 56964 3193 131494 4002 240 1404 494 22 30 26 334 4481 434918 5711 29998 12032 51225 447 1489 111 34 31 27 370 4907 64903 3223 13474 4414 1368 101 18 33 283 387 3822 45653 56499 32231 13885 2933 4481 1336 66 411 178 66 440	24	20	229	5399	307659	38556	28932	113721	34542	324	863	54	21
26 22 264 545 19037 26780 2566 115932 2014 224 706 50 35 28 24 299 4990 42736 56406 31193 13148 48802 430 1319 115 29 20 25 317 4600 47712 8865 31846 130795 51221 467 1489 111 34 31 27 370 4607 44016 73730 35769 34080 67082 641 1978 137 668 33 28 387 38251 55635 5493 3435 5283 348 1336 68 411 136 66 411 1978 117 96 141 34 29 4065 342017 3283 3365 23674 12845 5030 335 1124 70 36 35 314 40052 237377 38133	25	21	246	5151	205783	26120	26573	118430	22066	213	692	55	29
27 23 282 5161 31580 27737 122804 3618 311 990 883 36 28 24 290 4900 427242 58565 31846 130795 51225 402 1404 94 222 30 26 334 4481 434918 57211 29998 16052 51221 467 1489 111 34 31 277 370 3697 449162 57578 27602 125731 47748 414 1368 101 188 33 28 387 3822 45653 56649 32231 15888 5983 481 1316 66 41 34 92 906 47207 68041 3297 1117 96 42 146 70 36 37 314 449 4022 217951 32131 21328 5072 336 325 578 331	26	22	264	5455	190337	26780	25662	115932	23054	224	706	50	35
28 24 290 490 42786 56496 31193 13148 4800 2430 1311 115 29 30 26 334 4481 434918 57211 2998 126352 51221 467 1489 111 34 31 27 352 3970 618146 73330 35769 126352 51221 467 1489 111 34 32 27 370 307 4060 37276 3522 3474 12844 4481 1366 86 411 33 28 387 3822 45653 56499 32233 13585 52983 481 1366 86 411 34 29 440 4052 326417 42803 4564 6569 235 709 66 26 26 26 333 1124 70 36 33 475 4582 4377 32233 21033	27	23	282	5161	315891	40353	27737	122804	36181	311	999	83	36
29 25 317 4680 472742 8856 31846 10795 51225 402 1404 94 122 30 26 334 4481 34018 57211 2998 126325 51221 467 1480 111 34 31 27 370 3607 449162 5758 27602 12571 47748 414 1368 101 18 33 28 387 3825 55768 92231 13585 52834 481 136 686 411 34 29 4005 4066 37276 49031 28664 138363 46822 377 1117 96 14 35 30 422 3855 527678 33565 29277 13335 5762 353 1124 70 36 37 32 458 4387 39512 52818 34008 140219 5445 423 1346 <td< td=""><td>28</td><td>24</td><td>299</td><td>4990</td><td>427386</td><td>56496</td><td>31193</td><td>131498</td><td>48902</td><td>430</td><td>1319</td><td>115</td><td>29</td></td<>	28	24	299	4990	427386	56496	31193	131498	48902	430	1319	115	29
30 26 334 448 1434 57211 20938 12635 5121 447 1489 111 34 31 27 370 3697 1449162 57578 27602 125731 47748 414 1366 101 188 33 28 387 3822 45635 56499 32233 135885 52983 481 1336 64 41 34 29 405 4066 372706 4931 28644 138363 46822 377 1117 96 14 35 30 422 3855 257678 3556 2674 128815 4052 333 114 70 36 36 31 440 4052 37471 13283 6706 333 114 20 36 82 39 39 34 493 4022 179979 3184 2038 1313 3615 15513 366	29	25	317	4680	472742	58565	31846	130795	51225	492	1404	94	22
31 27 352 3970 618146 73330 35769 134050 67062 641 1978 137 668 33 28 387 3822 45635 56499 32233 135885 5293 441 1366 866 411 34 29 405 4066 37706 3356 22674 128816 3500 75 799 62 266 36 31 440 4052 326417 4329 22077 132835 50762 353 1124 70 366 37 32 458 4387 395120 5218 3408 140219 54458 423 1346 99 34 40 34 5010 3662 21329 3109 20704 128045 29546 252 678 53 31 41 35 538 3563 30230 41178 29665 134070 43427 333 <	30	26	334	4481	434918	57211	29998	126352	51221	467	1489	111	34
32 27 370 3807 449162 575% 27602 123711 47748 414 1368 101 18 33 28 387 3822 45535 56409 32333 133885 52983 481 133.6 86 411 35 30 4422 3855 257678 33565 23674 120816 36000 235 769 62 26 36 31 440 4052 326417 43293 29277 132835 50762 235 1124 70 36 37 23 458 487 29737 3818 20333 13013 30077 316 958 62 39 39 34 493 4022 217953 32131 21304 22045 2254 6252 678 531 41 35 528 3586 302307 41178 20651 3373 1125 74 34 <td< td=""><td>31</td><td>27</td><td>352</td><td>3970</td><td>618146</td><td>73330</td><td>35769</td><td>134050</td><td>67082</td><td>641</td><td>1978</td><td>137</td><td>68</td></td<>	31	27	352	3970	618146	73330	35769	134050	67082	641	1978	137	68
33 28 387 3822 46633 56499 32233 135885 52983 481 1336 866 41 34 29 4055 40663 32706 49031 28664 138863 46822 377 1117 96 14 35 30 442 3855 257678 33555 2674 12845 50502 353 1124 700 36 37 32 458 4387 395120 52818 26030 139113 30027 316 958 52 39 39 34 493 4022 217953 32313 21312 133954 2764 229 659 61 31 40 34 510 3662 25129 3009 20704 128042 29546 252 678 57 31 41 35 528 3586 302230 31603 8330 373 1125 74 34	32	27	370	3697	449162	57578	27602	125731	47748	414	1368	101	18
34 29 406 37206 49031 28664 1381a3 46822 377 1117 96 14 35 30 422 3855 23767 13565 23674 128815 50762 335 1124 70 36 37 32 458 4387 395120 52818 34008 140219 54458 423 1346 99 34 38 33 475 4582 2717953 31313 21312 13121 3394 7644 239 659 61 31 40 34 510 3662 251329 31099 20704 128045 29546 252 678 57 31 41 35 528 3563 30219 41178 29665 13407 43427 343 1064 43 36 431 227 343 1064 43 38 581 4203 417 41 34 203	33	28	387	3822	456535	56499	32233	135885	52983	481	1336	86	41
35 30 422 3855 257.78 33565 23674 1268165 6500 235 769 62 266 36 31 440 4052 326417 43293 29277 13885 50762 353 1124 70 36 37 32 4458 4387 395120 528118 34008 140219 54458 423 1346 99 34 40 34 493 4022 217953 32313 21312 133954 27694 239 659 61 31 40 34 510 366 30230 31068 41379 126032 47241 298 835 86 33 41 35 528 3586 30230 91178 29665 134070 43427 343 1064 93 177 43 3750 3320379 41178 29665 134070 43427 343 1066 937	34	29	405	4066	372706	49031	28664	138363	46822	377	1117	96	14
36 31 440 4052 32417 42293 29277 132835 50762 333 1124 70 36 37 32 458 4387 395120 52818 34008 140219 54458 423 11346 99 34 38 33 4475 4552 29737 33213 21312 133954 27694 239 659 61 311 40 34 510 3662 25129 31099 20704 128045 29546 252 678 57 311 41 35 528 3586 302230 31068 41379 128045 29546 252 678 57 31 44 36 564 3683 368780 42566 50982 132064 8350 337 1125 74 34 43 37 563 3750 332079 41178 29665 134070 43427 343 1064 93 177 44 38 581 4203 440353 5433 32615 155723 48268 459 1328 94 27 446 40 616 9773 311063 38476 24661 159012 37385 366 1047 57 16 47 41 634 3386 232503 27346 19792 13348 147 358 33 111 49 42 661 <t< td=""><td>35</td><td>30</td><td>422</td><td>3855</td><td>257678</td><td>33565</td><td>23674</td><td>126816</td><td>36500</td><td>235</td><td>769</td><td>62</td><td>26</td></t<>	35	30	422	3855	257678	33565	23674	126816	36500	235	769	62	26
37 32 458 4387 395120 52818 34008 140219 54458 423 1346 99 34 38 33 475 4582 297397 38158 26383 139113 36027 316 958 822 39 30 34 493 4022 217953 32313 21312 133954 2764 239 659 61 31 41 35 528 5586 302203 31068 41379 126022 47241 298 85 86 33 42 36 546 3683 368780 42566 56988 132064 85350 373 1102 74 34 43 37 563 3750 32079 41178 29666 157020 36640 337 9128 94 277 44 38 581 4203 440353 55433 32615 15723 48268 459	36	31	440	4052	326417	43293	29277	132835	50762	353	1124	70	36
3833475458229737381582038313911336027316958823939344934022217953323132131213395427642296596131403451036622173233100920704128045295462526785731413552835863023031068413791260324724129883586334236546368336878042566569851320648550373112574344337563375033207941178296651570203964033798781222453959842143295334167824691159012373853061047571644446643733110633847624691159012373853061047571644426661397331106338476246911590123738530610475716444266613941260469325832150014576044852970561948426661292514238015162144961311021853814735833111504368629047393571031199314013010148<	37	32	458	4387	395120	52818	34008	140219	54458	423	1346	99	34
3934403402221933323132131213395427694223659613140345103662251329310084137912603247241298835678573141355528386630223031068413791260324724129883566334236546368336878042566569851320648535037311257434433756337503320794117829665134070434273431064931774438581420344035355433326151575734826845913289427745395984214129533416782676615792039640337987812246406163973311063384762469115901237385306104757164741634338623203273461979213466298222937205619484265134412040693288321500145760315147173331115043666290473357103119931401301014875170315514470426162463326191002315152472	38	33	475	4582	297397	38158	26383	139113	36027	316	958	82	39
40 34 510 3662 251329 31098 20704 128043 2926 252 678 57 31 41 35 528 3586 30230 31068 41379 126032 47241 298 835 86 33 42 36 546 563 3750 332079 41178 29665 134070 43427 343 1064 93 17 44 38 581 4203 440353 55433 32615 155723 48268 459 1328 94 27 45 39 598 4214 329533 41678 26766 157920 39406 337 987 81 22 46 40 616 3973 31103 38476 24501 159012 37385 306 1047 57 16 47 41 634 3386 23583 21500 145760 31514 272 <td< td=""><td>39</td><td>34</td><td>493</td><td>4022</td><td>217953</td><td>32313</td><td>21312</td><td>133954</td><td>27694</td><td>239</td><td>659</td><td>61</td><td>31</td></td<>	39	34	493	4022	217953	32313	21312	133954	27694	239	659	61	31
41 35 528 3586 30230 31068 41379 126032 47241 298 835 866 33 42 36 546 3683 368780 42266 56985 132064 8530 373 1125 74 34 43 37 5563 35207 41178 2666 134070 43427 343 1064 93 117 44 38 581 4203 440353 55433 32615 155723 48268 459 1328 94 27 45 39 598 4214 329533 41678 26766 157920 39640 337 987 81 22 46 40 616 3973 311063 38476 24691 159012 37385 306 1047 57 16 47 44 634 3386 232503 27346 19792 13446 2822 293 720 56 19 48 42 661 343 5162 14457	40	34	510	3662	251329	31099	20704	128045	29546	252	678	57	31
42 36 546 36873 30878 42266 56985 132064 85350 373 1125 74 344 43 37 563 3750 332079 41178 29665 134070 43427 343 1064 93 17 44 38 581 4203 440553 55433 32615 155723 48268 459 1328 94 27 45 39 598 4214 329533 41678 22676 157920 39640 337 987 81 222 46 400 616 3973 311063 38476 24691 159012 37385 306 1047 57 16 47 41 634 3386 232503 27346 19792 134466 29822 293 720 56 19 448 42 651 3441 260469 32583 21500 145760 31514 272 785 74 21 49 42 6561 2925 142380 1102 18538 147 358 33 111 50 43 686 2904 73935 7103 11993 140130 10148 75 170 31 5 51 444 704 2616 24633 2619 10023 15152 4726 31 67 12 44 52 45 722 2342 1982 <	41	35	528	3586	302230	31068	41379	126032	47241	298	835	86	33
43 37 563 3700 32079 41178 29665 134070 43427 343 1064 93 17 44 38 581 4203 440353 55433 32615 155723 48268 459 1328 94 27 45 39 598 4214 329533 41678 26766 157920 39464 337 987 81 22 46 40 616 3973 311063 38476 24691 159012 37385 306 1047 57 16 47 41 634 3386 232503 27346 19792 134466 29822 293 720 56 19 48 42 661 3441 260469 32583 21500 145760 31514 272 785 74 21 49 42 669 2925 142380 15162 14496 131102 18538 147 358 33 11 50 43 652 2924 19623	42	36	546	3683	368780	42566	56985	132064	85350	373	1125	74	34
44 38 581 4203 44033 53433 32615 155723 48208 499 1328 944 27 45 39 598 4214 329533 41678 26766 157920 39640 337 987 81 22 46 40 616 3973 311063 38476 24691 159012 37385 306 1047 57 166 47 41 634 3386 232503 27346 19792 134466 29822 293 720 56 19 48 422 651 3441 260469 32583 21500 145760 31514 272 785 74 211 49 42 669 2925 142380 15162 14496 131102 18538 147 358 33 111 50 433 686 2904 73935 7103 11993 140130 10148 75 170 31 5 51 444 704 2616 24633 2219 10023 15152 4726 31 67 12 44 52 45 722 23242 156078 4485 291 3361 21 40 111 2 53 46 739 2013 14008 1070 7347 159913 3361 21 40 111 2 53 46 772 1742 135	43	37	563	3750	332079	41178	29665	134070	43427	343	1064	93	17
45 39 598 4214 329533 41678 26766 157920 39640 537 987 81 222 46 40 616 3973 311063 38476 24691 159012 37385 306 1047 57 116 47 41 634 3386 232503 27346 19792 134466 29232 293 720 56 19 48 42 661 3441 20646 32583 21500 148760 31514 272 785 74 211 49 42 669 2925 14230 15162 14496 131102 18538 147 358 33 111 50 433 686 2904 73935 7103 11993 140130 10148 75 170 31 5 51 44 704 2616 24633 2619 10023 151526 4726 31 67 12 44 52 445 722 2342 19826 1823 9244 15078 4485 29 54 6 2 53 46 739 2013 14008 1070 7347 159913 3361 21 40 111 2 54 47 757 1742 13539 2152 6029 16792 3354 221 36 4 2 55 48 774 1514	44	38	581	4203	440353	55433	32615	155723	48268	459	1328	94	27
46 40 616 $39/3$ 311063 $384/6$ 24691 159012 $3/385$ 306 $104/$ 57 16 47 41 634 3386 232503 27346 19792 13466 29822 293 720 56 19 48 42 669 2922 142380 15162 144566 31514 272 785 74 21 49 42 669 2924 15162 14496 131102 18538 147 358 33 11 50 43 686 2904 73935 7103 11993 140130 10148 75 170 31 5 51 44 704 2616 24633 2619 10023 151526 4726 31 67 12 4 52 45 722 2342 19826 1823 9244 156078 4485 29 54 6 2 53 46 739 2013 14008 1070 7347 159913 3361 21 40 11 2 54 47 757 1742 13539 2152 6029 167392 3354 21 36 4 2 56 49 792 1159 12864 896 3816 163427 3886 16 344 5 2 57 49 810 910 11305 856 2947 157	45	39	598	4214	329533	41678	26766	157920	39640	337	987	81	22
47 41 654 3386 232503 27346 19792 134666 29822 2933 720 56 19 48 42 651 3441 260469 32583 21500 145760 31514 272 785 74 21 49 42 669 2925 142380 15162 14496 131102 18538 147 358 33 111 50 43 686 2904 73935 7103 11993 140130 10148 75 170 31 55 51 44 704 2616 24633 2619 10023 151526 4726 31 67 12 44 52 45 722 2342 19826 1823 9244 156078 4485 29 54 66 22 53 46 739 2013 14008 1070 7347 159913 3361 21 40 111 22 54 47 757 1742 13539 2152 6029 167392 3354 21 36 4 22 55 48 774 1514 14491 1043 5172 170360 4159 15 24 1 55 56 49 792 1159 12864 896 3816 163427 3886 16 34 5 2 57 49 810 910 11305 <th< td=""><td>46</td><td>40</td><td>616</td><td>39/3</td><td>311063</td><td>38476</td><td>24691</td><td>159012</td><td>37385</td><td>306</td><td>1047</td><td>57</td><td>16</td></th<>	46	40	616	39/3	311063	38476	24691	159012	37385	306	1047	57	16
48 42 651 3441 260469 32283 21500 145760 31514 272 785 74 21 49 42 669 2925 142380 11512 14496 131102 18538 1147 358 33 11 50 43 686 2904 73935 7103 11993 140130 10148 75 170 31 5 51 44 704 2616 24633 2619 10023 151526 4726 31 67 12 4 52 45 722 2342 19826 1823 9244 156078 4485 29 54 66 22 53 46 739 2013 14008 1070 7347 159913 3361 21 40 11 2 54 47 757 1742 13539 2152 6029 167392 3354 21 36 4 2 55 48 774 1514 14491 1043 5172 170360 4159 15 24 11 55 56 49 792 1159 12864 896 3816 163427 3886 16 34 5 2 57 49 810 910 11305 856 2947 15752 3382 22 25 8 44 58 50 827 880 11268 703	47	41	634	3386	232503	27346	19792	134466	29822	293	720	56	19
494266929214280151621449615110218381473583511504366629047393571031199314013010148751703155144704261624633261910023151526472631671124524572223421982618239244156078448529546253467392013140081070734715978336121401125447757174213539215260291673923354213642554487741514144911043517217036041591524155649792115912864896381616342738861634525749810910113058562947157552338222258458508278801126870327671729404521131510959518457131345866419721621443245202156605286254675924641779167501207716115216153898 <t< td=""><td>48</td><td>42</td><td>651</td><td>3441</td><td>260469</td><td>32583</td><td>21500</td><td>145760</td><td>31514</td><td>272</td><td>785</td><td>74</td><td>21</td></t<>	48	42	651	3441	260469	32583	21500	145760	31514	272	785	74	21
50 43 686 2904 7.3935 7103 11993 140130 10148 75 170 31 5 51 44 704 2616 24633 2619 10023 151526 4726 31 67 12 4 52 45 722 2342 19826 1823 9244 156078 4485 29 54 6 2 53 46 739 2013 14008 1070 7347 159913 3361 21 40 11 2 54 47 757 1742 13539 2152 6029 167392 3354 21 36 4 2 55 48 774 1514 14491 1043 5172 170360 4159 15 24 1 5 56 49 792 1159 12864 896 3816 163427 3886 16 34 5 2 57 49 810 910 11305 856 2947 157552 3382 22 25 8 4 58 50 827 880 11268 703 2767 172940 4521 13 15 10 9 59 51 845 713 13458 664 1972 162144 3245 20 21 5 6 60 52 862 546 7592 464 1779 167501 <	49	42	669	2925	142380	15162	14496	131102	18538	14/	358	33	11
51 44 704 2616 24633 2619 10023 151526 4726 31 67 12 4 52 45 722 2342 19826 1823 9244 156078 4485 29 54 6 2 53 46 739 2013 14008 1070 7347 159913 3361 21 40 111 2 54 477 757 1742 13539 2152 6029 167392 3354 21 36 4 2 55 48 774 1514 14491 1043 5172 170360 4159 15 24 1 5 56 49 792 1159 12864 896 3816 163427 3886 16 34 5 2 57 49 810 910 11305 856 2947 15752 3382 22 25 8 4 58 50 827 880 11268 703 2767 172940 4521 13 15 10 9 59 51 845 713 13458 664 1972 162144 3245 20 21 5 6 60 52 862 546 7592 464 1779 167501 2077 16 111 5 21 61 53 880 505 9001 378 1545 174250 <	50	43	686	2904	73935	7103	11993	140130	10148	75	170	31	5
52 43 722 2342 19826 1823 9244 $1500/8$ 4485 29 54 6 2 53 46 739 2013 14008 1070 7347 159913 3361 21 400 111 2 54 47 757 1742 13539 2152 6029 167392 3354 21 36 4 2 55 48 774 1514 14491 1043 5172 170360 4159 15 24 1 5 56 49 792 1159 12864 896 3816 163427 3886 16 34 5 2 57 49 810 910 11305 856 2947 157552 3382 22 25 8 4 58 50 827 880 11268 703 2767 172940 4521 13 15 10 9 59 51 845 713 13458 664 1972 162144 3245 20 21 5 6 60 52 862 546 7592 464 1779 167501 2077 16 11 5 211 61 53 880 505 9001 378 1545 174250 4282 14 92 2 9 62 54 898 477 7944 319 1254 164915	51	44	704	2616	24633	2619	10023	151526	4/26	31	6/	12	4
33 46 7.39 2013 14008 1070 7.347 159913 3361 211 400 111 2 54 47 757 1742 13539 2152 6029 167392 3354 21 36 4 2 55 48 774 1514 14491 1043 5172 170360 4159 15 24 1 5 56 49 792 1159 12864 896 3816 163427 3886 16 34 5 2 57 49 810 910 11305 856 2947 157552 3382 22 25 8 4 58 50 827 880 11268 703 2767 172940 4521 13 15 10 9 59 51 845 713 13458 664 1972 162144 3245 20 21 5 6 60 52 862 546 7592 464 1779 167501 2077 16 11 5 21 61 53 880 505 9001 378 1545 174250 4282 14 92 2 9 62 54 898 477 7944 319 1254 164915 2385 19 26 4 5 63 55 915 380 7282 300 1047 161018 2	52	45	722	2342	19820	1823	9244	150012	22(1	29	34	0	2
34 47 737 1742 13339 2152 6029 16732 3334 211 360 4 2 55 48 774 1514 14491 1043 5172 170360 4159 15 24 1 5 56 49 792 1159 12864 896 3816 163427 3886 16 34 5 2 57 49 810 910 11305 856 2947 157552 3382 22 25 8 4 58 50 827 880 11268 703 2767 172940 4521 13 15 10 9 59 51 845 713 13458 664 1972 162144 3245 20 21 5 6 60 52 862 546 7592 464 1779 167501 2077 16 111 5 21 61 53 880 505 9001 378 1545 174250 4282 14 92 2 9 62 54 898 477 7944 319 1254 164915 2385 19 26 4 5 63 55 915 380 7282 300 1047 161018 2905 12 9 4 15 64 56 933 395 6420 287 1041 173376 3214 <td>54</td> <td>40</td> <td>739</td> <td>1742</td> <td>12520</td> <td>2152</td> <td>(020</td> <td>167202</td> <td>2254</td> <td>21</td> <td>40</td> <td>11</td> <td>2</td>	54	40	739	1742	12520	2152	(020	167202	2254	21	40	11	2
33 48 $7/4$ 1314 14491 1043 3172 170300 4139 13 24 1 3 56 49 792 1159 12864 896 3816 163427 3886 16 34 5 2 57 49 810 910 11305 856 2947 157552 3382 22 25 8 4 58 50 827 880 11268 703 2767 172940 4521 13 15 10 9 59 51 845 713 13458 664 1972 162144 3245 20 21 5 6 60 52 862 546 7592 464 1779 167501 2077 16 111 5 21 61 53 880 505 9001 378 1545 174250 4282 14 92 2 9 62 54 898 477 7944 319 1254 164915 2385 19 26 4 5 63 55 915 380 7282 300 1047 161018 2905 12 9 4 15 64 56 933 395 6420 287 1041 173376 3214 20 14 6 15 65 56 950 336 5347 248 923 156767 2204 <t< td=""><td>55</td><td>4/</td><td>737</td><td>1/42</td><td>13339</td><td>1042</td><td>5172</td><td>170260</td><td>4150</td><td>15</td><td>24</td><td>4</td><td>2</td></t<>	55	4/	737	1/42	13339	1042	5172	170260	4150	15	24	4	2
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	56	40	7/4	1150	12964	806	2916	162427	2006	15	24	5	2
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	57	49	810	010	11305	856	2047	157552	3382	22	25	<u> </u>	2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	58	50	827	880	11268	703	2767	172940	4521	13	15	10	4
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	50	51	845	713	13458	664	1072	162144	3245	20	21	5	6
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	60	52	862	546	7592	464	1779	167501	2077	16	11	5	21
61 53 380 303 303 301 378 1343 174230 4282 14 32 2 2 3 62 54 898 477 7944 319 1254 164915 2385 19 26 4 5 63 55 915 380 7282 300 1047 161018 2905 12 9 4 15 64 56 933 395 6420 287 1041 173376 3214 20 14 6 15 65 56 950 336 5347 248 923 156767 2204 11 4 4 37 66 57 968 287 4201 155 831 154877 3516 12 11 5 16 67 58 986 295 3093 100 766 168238 2483 16 6 9 13 68 59 1003 265 3741 141 808 165181 2879 18 10 2 12 69 60 1021 259 3745 136 743 158411 2360 10 8 4 24 70 61 1038 245 2862 131 590 146210 3109 7 10 4 21	61	53	880	505	9001	378	1545	174250	4282	14	02	2	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	62	54	000	177	7044	210	1254	164015	7202	14	26		5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	62	54	015	300	7944	319	1234	161019	2383	19	20	4	3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	64	55	022	205	6420	200	1047	173376	3214	20	9 14	4	15
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	65	56	955	335	53/17	207	923	156767	2204	11	14 1	4	37
67 58 986 295 3093 100 766 168238 2483 16 6 9 13 68 59 1003 265 3741 141 808 165181 2879 18 10 2 12 69 60 1021 259 3745 136 743 158411 2360 10 8 4 24 70 61 1038 245 2862 131 590 146210 3109 7 10 4 21	66	57	968	287	4201	155	831	154877	3516	12	-4		16
68 59 1003 265 3741 141 808 165181 2879 18 10 2 12 69 60 1021 259 3745 136 743 158411 2360 10 8 4 24 70 61 1038 245 2862 131 590 146210 3109 7 10 4 21	67	58	986	207	3003	100	766	168238	2483	12	6	<u> </u>	13
69 60 1021 259 3745 136 743 158411 2360 10 8 4 24 70 61 1038 245 2862 131 590 146210 3109 7 10 4 21	68	50	1003	295	3741	141	808	165181	2703	18	10	2	13
70 61 1038 245 2862 131 590 146210 3109 7 10 4 21	69	60	1021	259	3745	136	743	158411	2360	10	8	4	24
	70	61	1038	245	2862	131	590	146210	3109	7	10	4	21

Messpunkt	Messzeit [sec]	Strecke	Li	Na	Mg	Al	Si	K	Ca	Ti	Mn	Fe
71	62	1056	238	2619	69	660	154801	3226	18	10	6	13
72	63	1074	249	2385	78	642	159913	3068	11	7	4	13
73	64	1091	252	2215	121	610	164314	2756	15	11	7	15
74	64	1109	238	1917	63	603	164635	2670	15	5	4	31
75	65	1126	226	1503	49	582	157081	2581	12	6	4	27
76	66	1144	260	2064	31	671	166157	12271	9	9	5	20
77	67	1162	202	1033	23	489	131996	1045	10	3	12	21
78	68	1179	220	2567	25	491	141283	2494	17	6	7	16
79	69	1197	215	1457	14	561	152857	2299	12	7	3	28
80	70	1214	256	1484	26	541	148619	2937	8	7	6	30
81	71	1232	281	2482	28	629	169309	1595	13	5	11	19
82	71	1250	232	2538	16	599	149001	4241	7	8	6	26
83	72	1267	224	1990	15	567	150857	2900	10	5	7	21
84	73	1285	260	1760	45	604	142778	1645	9	10	7	31
85	74	1302	243	1367	19	683	146633	1354	10	4	9	44
86	75	1320	266	624	16	639	145630	1443	9	9	5	24
87	76	1338	206	831	12	609	148926	4080	7	3	7	25
88	77	1355	264	1494	24	695	150605	2570	10	7	8	25
89	78	1373	226	688	20	696	153218	4065	14	5	7	39
90	78	1390	252	755	20	716	149281	2137	14	6	1	23
91	79	1408	295	1850	9	823	146585	3679	10	8	5	19
92	80	1426	341	1514	15	938	162499	2909	9	8	2	32
93	81	1443	311	1353	15	919	147500	2760	9	6	4	25
94	82	1461	277	941	13	874	149861	3358	15	6	14	29
95	83	1478	266	1475	15	791	152290	3240	14	8	8	28
96	84	1496	290	1212	15	752	137503	2509	10	6	5	33
97	85	1514	264	780	10	758	133947	3443	7	2	8	26
98	86	1531	244	1250	24	686	142436	2970	14	9	4	15
99	86	1549	239	1362	25	673	150700	1787	5	7	3	32
100	87	1566	221	1067	15	617	151894	1931	12	8	6	23
101	88	1584	241	690	8	577	153935	3366	6	16	3	20
102	89	1602	193	1386	7	515	140041	3458	14	5	10	11
103	90	1619	166	1466	9	456	132030	1205	12	4	6	17
104	91	1637	224	833	10	476	154010	2964	11	1	3	29
105	92	1654	227	1526	1	620	152379	1732	13	8	9	23
106	93	1672	227	975	16	563	149854	2646	11	5	5	16
107	93	1690	209	8/6	12	484	139939	3266	12	6	4	15
108	94	1707	210	790	12	349	145405	3001	14	10	12	23
110	95	1725	209	2214	106	403	120/02	2732	11	18	20	37
110	90	1742	220	1125	52	398	150005	2322	10	39	29	40
111	97	1700	280	1123	32	626	130903	3272	15	28	/	19
112	98	1778	233	938	159	663	1416/2	1434	21	22	10	26
113	99	1795	230	658	16	688	143105	2465	9	16	9	25
114	100	1813	249	1474	11	668	141099	2279	14	8	3	25
115	100	1830	284	1152	13	888	153928	4065	7	10	3	26
116	101	1848	338	1452	9	1057	169766	2921	9	5	6	19
117	102	1866	289	1133	12	862	138881	1462	8	19	6	22
118	103	1883	371	1114	28	962	154010	2364	11	15	9	28
119	104	1901	320	1428	150	1048	154365	4066	12	36	10	39

Messpunkt	Messzeit [sec]	Strecke [µm]	Li	Na	Mg	Al	Si	K	Ca	Ti	Mn	Fe
120	105	1919	355	1181	79	1079	148401	2649	10	32	10	35
121	106	1936	358	1436	32	1047	137332	2616	7	17	4	25
122	107	1954	380	1124	41	1101	139877	1117	10	11	11	33
123	108	1971	381	1108	60	1145	146824	1700	13	29	11	28
124	108	1989	409	713	24	1228	154140	2437	18	26	9	22
125	109	2007	362	1276	13	1190	145664	1770	7	12	16	21
126	110	2024	409	790	17	1299	157320	1984	10	20	8	42
127	111	2042	466	1488	17	1267	167221	3867	12	12	4	25
128	112	2059	425	1261	19	1286	161475	2868	12	19	10	29
129	113	2077	396	1380	69	1152	149745	2814	9	22	14	27
130	114	2095	359	1616	132	1393	135183	2211	14	35	16	39
131	115	2112	381	1680	72	1488	142928	2289	17	250	23	40
132	115	2130	408	1335	52	1270	141256	2427	10	27	11	36
133	116	2147	421	1795	178	1563	148687	2312	8	23	37	59
134	117	2165	368	2662	83	1642	152427	2601	20	40	15	47
135	118	2183	420	2345	84	1669	153532	2632	8	39	17	60
136	119	2200	374	1795	101	1538	146251	2352	9	30	11	54
137	120	2218	429	1817	76	1860	149370	2111	14	25	14	164
138	121	2235	3/6	4411	97	17/5	142164	2380	12	26	24	43
139	122	2253	406	2329	59	1/99	142935	2059	14	28	8	49
140	122	22/1	392	1512	62	1681	144061	1485	8	16	20	44
141	123	2288	388	1899	107	1452	142/3/	2342	19	27	15	43
142	124	2306	356	1648	31	1407	159797	1807	15	16	8	32
143	125	2323	409	1118	42	1407	156962	2528	19	23	12	30
144	120	2341	444	017	43	1320	130802	1011	14	20	12	32
145	127	2339	305	917	13	1203	138704	1530	10	20	13	31
140	120	2370	386	1783	23	1329	155354	2048	10	17	14	42
147	129	2394	378	1/03	20	1219	1/1699	2048	13	21	7	42
140	130	2411	422	1250	19	1215	151990	1501	8	20	, 11	39
150	131	2447	399	823	12	1247	145992	1586	9	12	6	35
151	132	2464	438	944	11	1217	147316	2827	13	16	11	25
152	133	2482	395	1192	4	1184	138055	6988	7	11	6	32
153	134	2499	419	919	4	1299	142798	2106	13	16	8	33
154	135	2517	378	1639	6	1215	131272	1603	17	10	1	36
155	136	2535	450	947	4	1262	147370	1705	6	17	13	23
156	137	2552	355	567	5	1147	135592	2082	9	13	11	19
157	137	2570	483	1227	11	1240	147793	1928	9	16	8	27
158	138	2587	461	966	6	1290	143972	2651	12	18	5	35
159	139	2605	406	874	7	1243	135572	3028	9	13	10	27
160	140	2623	354	1677	6	1252	136950	2518	10	13	7	14
161	141	2640	421	969	14	1201	140246	2048	14	12	3	35
162	142	2658	424	879	581	1319	142552	1771	10	15	5	30
163	143	2675	398	1188	3	1250	147254	1413	7	14	9	27
164	144	2693	389	1926	10	1160	144600	1986	13	14	11	35
165	144	2711	410	1419	16	1306	142457	2523	10	19	3	37

Messpunkt	Messzeit [sec]	Strecke [µm]	Li	Na	Mg	Al	Si	K	Ca	Ti	Mn	Fe
166	145	2728	421	1232	10	1436	147172	1555	13	17	3	24
167	146	2746	421	1564	4	1311	151294	2470	10	17	8	25
168	147	2763	371	1242	7	1179	135258	1862	10	10	9	20
169	148	2781	443	1136	8	1250	140205	1908	11	8	5	24
170	149	2799	413	1298	10	1194	133859	1857	15	5	4	34
171	150	2816	422	1671	6	1278	137196	1451	3	8	4	24
172	151	2834	439	2417	5	1319	151239	1147	10	23	7	26
173	152	2851	422	1284	13	1380	146442	2202	18	13	5	32
174	152	2869	408	1088	9	1256	142703	2947	11	13	2	22
175	153	2887	350	948	6	1151	131293	2885	9	13	5	36
176	154	2904	390	1663	7	1272	134916	2811	10	18	3	22
177	155	2922	427	1556	5	1234	147002	2856	10	18	7	22
178	156	2939	450	1133	1	1355	144736	1557	14	13	2	25
179	157	2957	435	1353	7	1348	137325	1836	15	16	5	18
180	158	2975	402	1719	0	1324	145951	2550	6	16	11	19
181	159	2992	431	1381	4	1264	145091	1975	13	17	7	32
182	159	3010	412	1187	6	1174	139181	1288	12	19	6	31
183	160	3027	416	1027	1	1339	149670	1509	6	19	6	27
184	161	3045	424	1456	3	1385	155457	1150	10	10	10	27
185	162	3063	398	1141	1	1261	137039	1276	10	14	10	38
186	163	3080	438	1422	3	1252	151826	2786	10	13	8	25
187	164	3098	428	833	1	1321	145323	1970	6	15	4	25
188	165	3115	472	941	5	1239	143030	1899	11	12	5	19
189	166	3133	343	882	16	1034	125759	1/85	13	16	4	22
190	166	3151	462	947	3	1396	155238	1881	9	9	4	28
191	169	2196	452	020	- 4	1340	133041	2241	18	13	5	21
192	160	2202	442	939	S	1105	149820	2143	20	17	4	22
193	109	3203	408	964	17	1195	128768	2218	20	10	3	22
194	170	3239	374	1111	5	122	141611	2077	6	11	2	23
195	171	3256	428	1456	107	1271	146353	4075	14	17	6	36
197	172	3274	407	640	8	1210	146319	2683	10	10	10	23
198	174	3291	386	1349	7	1417	141147	4131	11	15	8	31
199	174	3309	422	778	6	1255	150032	1815	9	15	9	36
200	175	3327	493	1388	5	1340	150461	5578	9	16	6	168
201	176	3344	454	882	4	1232	143153	3453	9	11	4	29
202	177	3362	433	1409	6	1298	143883	1749	15	13	5	24
203	178	3379	420	1619	2	1252	129266	1706	10	17	7	11
204	179	3397	435	741	3	1320	136909	1942	10	10	9	17
205	180	3415	447	1360	5	1211	140758	2090	11	13	5	16
206	181	3432	420	1494	1	1307	144852	2157	5	12	8	37
207	181	3450	<u>4</u> 67	<u>15</u> 64	4	<u>12</u> 56	138649	3682	12	13	8	27
208	182	3467	410	571	7	1035	122244	3495	7	13	4	21
209	183	3485	404	726	5	1151	136295	2116	9	12	5	25
210	184	3503	426	1047	4	1309	143221	1825	10	13	10	24
211	185	3520	412	1105	6	1322	144327	851	10	11	6	27

Messpunkt	Messzeit [sec]	Strecke [µm]	Li	Na	Mg	Al	Si	K	Ca	Ti	Mn	Fe
212	186	3538	464	696	1	1436	152454	1637	18	12	7	21
213	187	3555	497	830	3	1554	158814	2516	8	10	9	20
214	188	3573	438	898	2	1478	150079	1502	11	14	0	33
215	188	3591	441	955	3	1279	140799	2947	14	12	4	25
216	189	3608	412	804	4	1270	138363	1290	10	14	4	24
217	190	3626	366	846	8	1197	132514	3499	14	7	3	15
218	191	3643	377	2352	3	1260	124401	2393	8	16	10	19
219	192	3661	423	1096	2	1210	141317	1753	12	14	6	25
220	193	3679	460	1139	6	1340	147234	2662	8	20	5	29
221	194	3696	478	1318	6	1457	148360	1350	9	14	7	28
222	195	3714	418	631	9	1324	136077	1779	12	22	14	28
223	196	3731	466	778	5	1377	150182	1973	9	12	6	26
224	196	3749	443	873	2	1281	136343	2114	7	7	9	30
225	197	3767	458	1543	6	1256	148469	2187	14	18	3	15
226	198	3784	391	643	7	1253	129771	2374	12	8	3	26
227	199	3802	434	754	646	1280	146483	2019	13	13	4	26
228	200	3819	418	1152	13	1235	138881	1906	10	12	10	25
229	201	3837	455	5263	3	1202	137332	1362	9	11	4	23
230	202	3855	368	1532	3	1205	127813	1970	10	10	11	23
231	203	3872	322	401	8	1073	116041	5452	8	14	20	22
232	203	3890	450	904	2	1255	143146	1749	7	12	7	21
233	204	3907	418	793	2	1119	131204	2122	9	6	6	19
234	205	3925	426	601	4	1273	139755	2653	9	9	7	28
235	206	3943	397	561	3	1151	130194	926	16	12	7	26
236	207	3960	429	734	7	1176	130290	1397	9	17	7	39
237	208	3978	466	609	3	1327	150980	1873	11	11	8	25
238	209	3995	433	667	3	1241	131464	2681	9	14	5	24
239	210	4013	465	714	4	1383	137967	1893	11	12	5	16
240	210	4031	421	868	2	1274	128946	4645	16	7	10	28
241	211	4048	498	1238	3	1542	149281	2214	11	21	8	21
242	212	4066	597	1216	3	1780	160397	2348	18	11	5	12
243	213	4083	595	1007	2	1762	162014	2511	7	12	7	23
244	214	4101	590	404	5	1749	163366	1963	11	12	4	21
245	215	4119	519	577	2	1553	138779	1318	9	13	6	19
246	216	4136	582	846	5	1829	155784	2748	12	13	6	15
247	217	4154	639	624	221	1913	152372	4066	10	59	4	48
248	218	4171	581	960	13	1696	138192	2147	14	15	6	25
249	218	4189	602	858	46	1786	146579	2993	15	10	8	22
250	219	4207	592	1015	17	1830	154583	2626	15	10	8	10
251	220	4224	599	1338	3	1760	148237	1703	13	17	10	18
252	221	4242	582	477	44	1731	143753	1370	11	21	4	12
253	222	4259	609	1277	9	1850	157818	3004	12	14	7	22
254	223	4277	525	760	4	1513	130419	1753	10	13	3	14
255	224	4295	426	379	4	1247	115618	715	16	13	1	14
256	225	4312	381	1069	4	1308	124865	1831	12	15	2	18
257	225	4330	466	2522	7	1388	137489	1476	7	14	7	22

Messpunkt	Messzeit [sec]	Strecke [µm]	Li	Na	Mg	Al	Si	K	Ca	Ti	Mn	Fe
258	226	4347	470	781	3	1317	140246	1755	7	14	7	33
259	227	4365	519	918	10	1392	146777	1287	11	9	8	28
260	228	4383	482	2327	4	1567	154221	2439	13	19	7	19
261	229	4400	447	989	8	1354	140635	2224	11	22	5	22
262	230	4418	437	1050	0	1312	144054	2784	10	15	6	26
263	231	4435	432	1109	4	1223	140567	2890	12	18	3	23
264	232	4453	385	726	1	1088	125738	3903	7	11	2	18
265	232	4471	442	693	7	1190	127390	1809	11	12	5	22
266	233	4488	434	725	8	1184	134098	2035	9	15	6	24
267	234	4506	456	800	2	1281	149861	2115	15	12	5	35
268	235	4523	409	866	3	1190	143631	2148	9	23	4	29
269	236	4541	474	1611	2	1232	137864	2094	7	18	7	35
270	237	4559	359	609	8	1174	127758	2026	8	7	6	23
271	238	4576	305	957	3	917	86086	1636	6	13	4	23
272	239	4594	393	858	10	1249	138704	1739	15	11	7	29
273	240	4611	496	925	0	1454	156507	1835	14	14	6	26
274	240	4629	443	905	3	1762	147998	1186	12	14	8	27
275	241	4647	429	711	4	1185	138144	2270	17	15	2	24
276	242	4664	360	1632	5	1169	133415	1628	16	10	6	26
277	243	4682	432	2616	18	1111	139495	2544	14	16	4	29
278	244	4699	407	1179	15	1115	128795	1806	9	14	6	22
279	245	4717	379	602	9	1147	122497	740	15	14	9	24
280	246	4735	491	627	8	1223	141727	1875	17	12	7	33
281	247	4752	445	906	8	1370	148981	3612	14	13	6	24
282	247	4770	452	665	7	1215	141167	1817	17	24	4	24
283	248	4787	353	982	10	1156	123500	2040	11	14	6	16
284	249	4805	451	5/8	3	1280	142887	1622	19	21	5	23
285	250	4823	394	503	6	1046	112541	1225	11	15	1	19
286	251	4840	455	1270	7	1358	14/0/0	2216	/	12	6	19
207	252	4030	369	1127	7	1212	122101	1211	14	21	2	18
200	255	4873	401	748	2	1220	13/209	1311	/	14		27
209	255	4893	439	/40	6	1103	131102	2290	15	20	/	22
290	255	/1928	402	898	17	1407	147773	1619	13	16	8	25
291	255	4946	426	991	5	1301	132351	1461	18	6	2	34
293	250	4963	438	1210	8	1311	143460	1620	17	14	7	27
294	258	4981	433	731	7	1272	141058	1945	9	11	9	24
295	259	4999	402	795	13	1162	132207	1805	9	14	8	20
296	260	5016	415	613	12	1272	139502	2586	12	11	7	35
297	261	5034	402	844	13	1361	146708	2229	12	22	6	36
298	262	5051	396	597	13	1249	140430	2828	11	16	2	24
299	262	5069	373	1904	5	1071	116751	1790	13	12	9	29
300	263	5087	403	840	4	1078	134548	3396	15	13	4	19
301	264	5104	364	1341	7	1150	129839	2354	9	10	9	24
302	265	5122	473	576	4	1280	140560	1063	9	7	7	30
303	266	5139	401	894	2	1242	139550	1668	4	7	9	32

Messpunkt	Messzeit [sec]	Strecke [µm]	Li	Na	Mg	Al	Si	K	Са	Ti	Mn	Fe
304	267	5157	498	1655	5	1341	157156	2080	11	21	14	28
305	268	5175	438	790	11	1363	143665	2783	12	19	7	26
306	269	5192	452	1571	6	1391	146326	1945	10	12	7	21
307	269	5210	458	919	6	1160	127137	1492	10	13	5	25
308	270	5227	442	436	14	1289	129464	2652	10	17	5	18
309	271	5245	511	570	8	1435	140191	1703	8	16	3	22
310	272	5263	506	1450	3	1469	137919	1617	5	11	4	18
311	273	5280	474	902	6	1479	133559	3632	13	8	8	29
312	274	5298	512	810	4	1556	143460	2274	11	8	2	12
313	275	5315	534	531	3	1599	141986	1943	12	13	3	20
314	276	5333	522	901	5	1791	159496	1461	11	9	7	22
315	277	5351	506	1192	4	1656	148933	2569	11	15	5	21
316	277	5368	418	854	7	1248	125397	1579	14	9	6	15
317	278	5386	354	1222	3	1112	112902	2474	2	13	7	14
318	279	5403	418	764	7	1227	135005	975	9	11	7	19
319	280	5421	469	816	4	1270	143692	1053	19	12	5	23
320	281	5439	429	505	3	1139	137134	2606	12	9	7	22
321	282	5456	444	963	1	1198	140737	2066	7	14	6	24
322	283	5474	395	1317	3	1152	134623	1411	10	8	6	25
323	284	5491	390	1096	180	1106	13/98/	2058	12	13	4	33
324	284	5509	377	1147	2	1132	130699	8105	5	10	4	19
325	285	5527	369	888	4	1109	135203	2326	9	10	4	23
326	286	5544	405	1334	I	1143	132501	1691	5	10	4	28
327	287	5562	440	010	5	1297	151195	3190	13	12	10	19
328	288	55/9	433	1522	4	138/	131185	3306	11	15	10	18
329	289	5615	440	804	2	1226	145092	1/32	13	8	7	23
330	290	5632	400	054	5	1220	138356	1933	12	0	11	23
332	291	5650	306	850	9	1200	130161	1727	12	17	3	13
333	291	5667	454	1039	7	1311	140860	3158	12	11	4	18
334	292	5685	410	590	6	1227	137100	1504	13	19	6	18
335	293	5703	421	1309	5	1211	138520	1745	14	8	1	12
336	295	5720	520	1337	4	1455	153846	1731	15	10	9	558
337	296	5738	454	743	5	1337	150168	2002	14	11	9	18
338	297	5755	397	586	4	1305	133115	656	10	38	1	18
339	298	5773	391	894	6	1266	143651	1379	12	9	3	23
340	299	5791	413	900	3	1459	144620	3253	13	7	5	26
341	299	5808	482	1244	5	1328	146551	2701	14	12	9	15
342	300	5826	414	583	2	1184	133852	1535	10	11	3	18
343	301	5843	460	923	4	1397	152645	3066	7	13	43	22
344	302	5861	373	896	6	1235	133893	1093	9	14	6	26
345	303	5879	375	641	1	1082	133559	2324	13	19	8	24
346	304	5896	372	639	3	1045	128782	2464	8	10	5	19
347	305	5914	395	660	2	1085	144750	963	7	12	6	24
348	306	5931	450	1537	2	1171	165617	3052	11	20	7	32
349	306	5949	418	733	5	1091	156890	2412	13	22	3	25

Messpunkt	Messzeit [sec]	Strecke	Li	Na	Mg	Al	Si	K	Ca	Ti	Mn	Fe
350	307	5967	298	1082	8	866	120259	1547	12	13	2	35
351	308	5984	414	1070	5	1019	143951	1718	13	16	4	41
352	309	6002	323	823	12	894	138349	1490	16	16	10	34
353	310	6019	384	882	6	927	143542	2151	14	25	6	28
354	311	6037	310	857	10	824	137701	1059	11	15	4	26
355	312	6055	412	1398	7	1013	165426	3790	12	12	4	40
356	313	6072	333	1887	6	905	145057	2799	10	9	13	36
357	313	6090	339	813	6	758	119597	3748	11	13	60	29
358	314	6107	331	845	4	867	136152	1711	5	17	5	30
359	315	6125	305	1097	2	811	133033	1958	17	18	13	34
360	316	6143	293	779	5	655	113032	2766	11	14	3	28
361	317	6160	314	1088	8	715	124544	1850	12	17	8	28
362	318	6178	316	799	11	863	144497	1844	13	21	11	50
363	319	6195	336	2605	164	1140	154283	2965	15	34	16	57
364	320	6213	340	4198	794	1096	147159	2789	20	57	9	50
365	321	6231	338	1896	508	921	143829	1867	8	22	12	47
366	321	6248	358	1406	83	863	1413/9	4628	10	26	4	43
36/	322	6266	319	1481	59	922	1408/4	2538	14	26	15	49
368	323	6284	341	2212	128	1199	138847	3221	13	51	26	121
270	324	6301	305	1501	409	1895	121401	3309	18	51	106	142
271	325	6226	249	1052	200	1506	142771	2925	10	57	196	143
272	320	6254	348	1052	255	1396	142//1	2048	19	37	32	127
372	327	6372	383	1019	235	1/00	150312	1315	14	48	43	76
374	328	6389	377	1222	111	1499	149977	2699	13	28	23	67
375	329	6407	312	1162	193	1595	135933	1550	11	28	20	98
376	330	6424	336	1132	307	1682	138240	7567	18	24	16	121
377	331	6442	342	1031	178	1636	156296	2954	16	30	28	85
378	332	6460	374	830	192	1297	135572	1396	13	18	14	69
379	333	6477	445	632	97	1350	141147	2365	12	23	13	57
380	334	6495	368	1467	127	1256	147363	1853	18	16	13	61
381	335	6512	350	1283	156	1385	131818	2036	20	24	85	96
382	335	6530	414	1966	266	1718	155593	2295	24	90	129	158
383	336	6548	395	1216	127	1614	162635	2410	28	40	72	112
384	337	6565	319	1192	64	1103	131272	2546	15	26	26	54
385	338	6583	393	947	54	1204	151540	1680	14	24	21	42
386	339	6600	336	784	31	1080	118737	1625	12	17	13	41
387	340	6618	322	758	37	1050	124380	1406	15	23	10	30
388	341	6636	365	1782	26	1108	132289	2533	6	17	15	28
389	342	6653	472	1830	15	1285	162581	2591	38	18	17	35
390	343	6671	432	987	9	1279	153901	1324	14	14	7	30
391	343	6688	470	1634	10	1461	151894	2774	13	21	5	39
392	344	6706	482	884	8	1298	148544	1204	7	13	12	30
393	345	6724	439	875	15	1277	143481	1318	7	24	7	26
394	346	6741	502	1575	14	1371	154167	2415	15	10	10	33
395	347	6759	380	761	7	1069	123821	1375	9	14	8	26

Messpunkt	Messzeit	Strecke	Li	Na	Mg	Al	Si	K	Ca	Ti	Mn	Fe
396	348	6776	385	813	9	1125	135694	2334	8	17	11	25
397	349	6794	478	1386	6	1430	162444	2332	9	13	5	23
398	350	6812	448	683	11	1444	149875	2711	7	18	3	22
399	350	6829	545	1432	19	1430	170920	2348	13	15	7	26
400	351	6847	600	1145	7	1641	169773	3303	11	23	7	22
401	352	6864	465	985	8	1465	158541	2097	13	9	6	34
402	353	6882	467	834	7	1284	136547	3527	13	4	10	20
403	354	6900	454	1090	7	1396	149827	1739	11	14	4	25
404	355	6917	515	921	3	1331	147718	1497	14	11	6	16
405	356	6935	507	909	7	1446	160629	3889	14	12	9	32
406	357	6952	428	668	2	1264	133251	1208	13	13	6	22
407	357	6970	383	695	10	990	112568	1051	7	31	4	23
408	358	6988	402	814	5	1093	119829	1902	12	19	3	10

Schliff Fl2 Messung 1

Messpunkt	Messzeit [sec]	Strecke [µm]	Li	Na	Mg	Al	Si	K	Ca	Ti	Mn	Fe
13	11	35	1536	1443	16	5974	163495	2323	10	17	9	53
14	12	52	1268	1169	10	4529	149738	2980	8	26	2	37
15	12	70	1625	1096	7	5987	168818	1267	10	21	7	40
16	13	88	1655	1312	3	5837	166034	2677	6	18	7	46
17	14	105	1382	1580	1	5465	154126	2080	9	21	5	34
18	15	123	1450	1444	1	5337	149752	2308	7	20	13	43
19	16	140	1606	1417	2	6000	183455	3430	7	21	6	65
20	17	158	1632	1467	1	5941	175642	1590	9	31	8	53
21	18	176	1541	1247	2	5722	174530	2118	12	22	6	41
22	19	193	1720	1496	10	6233	187365	1753	5	22	8	48
23	20	211	1743	1661	5	6170	197021	1638	15	25	10	55
24	20	228	1732	1640	4	6111	200781	2592	7	29	6	63
25	21	246	1780	2379	7	6223	194073	4893	7	25	7	51
26	22	264	1558	1264	1	5552	180241	2330	10	18	6	56
27	23	281	1726	1438	11	6558	207994	2663	13	20	8	64
28	24	299	1782	2055	80	6473	208656	2342	14	31	10	65
29	25	316	1606	1263	22	5952	187652	1940	5	32	12	69
30	26	334	1483	1528	10	5593	178126	1493	6	34	9	49
31	27	352	1650	1337	8	5943	190150	1525	8	24	8	57
32	27	369	1600	1218	5	5754	180480	1931	7	19	5	52
33	28	387	1783	1674	14	6543	207694	1432	7	21	13	59
34	29	404	1829	1193	17	6229	201225	1146	14	22	4	70
35	30	422	1714	1707	11	6259	215371	2649	6	28	5	52
36	31	440	1592	1615	8	5541	185823	1543	11	23	6	55
37	32	457	1689	1587	11	5856	199942	2256	11	25	7	64
38	33	475	1714	1282	2	6074	203722	3352	13	26	11	67
39	34	492	1645	1322	59	5666	183346	4763	11	23	156	66
40	34	510	1625	2346	9	6032	199171	1841	10	28	12	87
41	35	528	1497	1940	16	5463	182159	1256	15	29	16	75
42	36	545	1640	2155	12	5939	196052	5566	14	21	10	69

Messpunkt	Messzeit	Strecke	Li	Na	Mg	Al	Si	K	Ca	Ti	Mn	Fe
43	37	563	1420	2310	4	5181	173247	3042	15	20	11	66
44	38	580	1519	2252	2	5367	181961	1888	9	29	10	51
45	39	598	1590	1657	6	5526	185598	2393	6	32	8	60
46	40	616	1762	1682	1	6260	209652	2948	6	30	17	78
47	41	633	1769	2022	9	6153	210144	2611	13	33	10	77
48	42	651	1375	1770	5	4827	162908	1530	10	25	15	64
49	42	668	1523	2540	10	5520	191323	2710	8	21	12	87
50	43	686	1579	1321	4	5630	182452	2572	8	33	9	69
51	44	704	1496	1574	3	5138	178412	2083	9	24	9	75
52	45	721	1486	1717	15	5394	183455	4547	9	23	7	67
53	46	739	1590	1985	12	5530	191603	1828	8	19	6	65
54	47	756	1512	1556	6	5010	178563	3089	9	29	4	63
55	48	774	1452	2156	6	5072	185441	1975	15	22	5	71
56	49	792	1667	1412	2	5662	200474	2409	8	22	8	76
57	49	809	1657	1708	3	5709	201102	2746	13	31	8	80
58	50	827	1887	2021	7	6119	232588	2333	14	24	6	796
59	51	844	1627	1524	6	5424	187556	2440	12	25	7	75
60	52	862	1563	1396	4	5445	178665	2299	8	34	4	62
61	53	880	1496	1440	5	5492	189385	1285	13	27	8	71
62	54	897	1777	3268	3	6247	200358	1748	11	25	8	55
63	55	915	1966	1900	0	7251	215528	2294	11	26	8	83
64	56	932	1883	1557	2	7106	217555	1723	7	21	11	77
65	56	950	1888	1340	0	6960	200938	2240	6	32	6	67
66	57	968	1637	2125	1	5635	180084	1575	9	22	5	60
67	58	985	1690	1460	7	5714	194326	1757	5	19	13	61
68	59	1003	1765	1744	0	6123	196489	1948	8	27	10	78
69	60	1020	1783	1515	3	6227	207721	2287	15	23	15	76
70	61	1038	1356	1516	2	4923	168995	3208	13	19	11	59
71	62	1056	1617	1999	3	5246	195220	2104	9	19	8	86
72	63	1073	1569	1349	3	5576	189556	1610	17	24	4	77
73	64	1091	1486	2203	9	4913	173404	1639	10	27	6	59
74	64	1108	1402	3296	7	4980	174427	3088	13	21	14	63
75	65	1126	1388	1226	2	4659	173076	3744	9	22	5	57
76	66	1144	1593	1735	6	5389	196168	2191	8	24	8	63
77	67	1161	1492	1918	0	5034	186178	4803	11	28	11	91
78	68	1179	1788	1738	5	5928	212095	1953	11	28	10	100
79	69	1196	1644	2974	2	5775	212594	2812	8	36	6	58
80	70	1214	1544	1515	7	5405	208465	1656	12	23	8	74
81	71	1232	1671	2517	1	5906	214777	2568	9	35	4	95
82	71	1249	1672	1561	1	5610	201976	984	11	32	18	70
83	72	1267	1648	1532	4	5713	202576	2568	16	23	2	86
84	73	1284	1749	2309	4	5654	204371	1546	14	31	10	60
85	74	1302	1501	1225	2	5315	190238	1757	10	25	7	52
86	75	1320	1490	1410	6	5349	189112	2623	8	23	8	47
87	76	1337	1355	1129	0	4863	178549	2814	9	29	7	64
88	77	1355	1369	1398	3	4742	174195	3360	12	25	11	44
89	78	1372	1525	1359	3	5351	187045	2217	3	21	8	55
90	78	1390	1615	1781	3	5287	192122	1882	13	19	6	52
91	79	1408	1459	1871	29	5147	190593	2538	10	28	8	63
92	80	1425	1392	1272	3	5083	185932	1401	13	27	13	68

Messpunkt	Messzeit [sec]	Strecke	Li	Na	Mg	Al	Si	K	Ca	Ti	Mn	Fe
93	81	1443	1345	1412	6	4582	165256	3123	8	22	10	73
94	82	1461	1465	1291	0	5150	184527	1901	13	22	5	56
95	83	1478	1550	1446	4	5444	200276	3273	6	25	2	61
96	84	1496	1494	1140	11	5240	187563	1608	11	15	9	53
97	85	1513	1363	1014	3	4855	181995	3307	7	21	2	59
98	86	1531	1514	1213	5	5394	198925	1850	6	25	10	54
99	86	1549	1738	1929	1	5998	206595	2064	8	25	10	61
100	87	1566	1525	1672	6	5408	194094	2304	8	32	5	70
101	88	1584	1726	1847	4	5930	214204	1859	11	20	11	77
102	89	1601	1500	1231	6	5148	178733	4039	11	25	5	57
103	90	1619	1530	1633	9	5148	174420	1760	11	26	4	57
104	91	1637	1494	1664	5	5253	177812	2085	6	24	7	81
105	92	1654	1612	2704	8	5711	190095	3362	18	23	13	75
106	93	16/2	1659	1848	68	5542	185/62	6138	18	52	28	192
107	93	1089	1562	2069	212	6190	185591	2590	24	53	81	183
108	94	1707	1903	4243	312	/150	224474	3413	38	8/	97	128
109	93	1723	1020	1927	03	4022	175(25	2510	10	24	30	128
110	96	1/42	14/6	1837	43	4923	1/5635	2510	10	27	23	68
111	97	1/60	1296	2280	48	4541	168920	3264	6	15	16	89
112	98	1777	1277	1972	31	4489	173451	2340	10	36	17	87
113	99	1795	1420	2070	21	4932	181674	3013	18	27	13	97
114	100	1813	1579	2299	39	5440	192333	2516	17	27	13	89
115	100	1830	1569	2059	33	5908	195486	2480	17	19	22	114
116	101	1848	1539	3590	105	5631	186103	1266	10	28	242	2726
117	102	1865	1564	9373	23	6479	193261	5660	8	17	10	90
118	103	1883	1577	2207	23	5842	184759	1785	10	26	24	85
119	104	1901	1844	2462	26	6360	191944	3089	15	28	10	108
120	105	1918	1749	2203	19	6337	181783	2198	13	22	20	82
121	106	1936	1922	3225	50	6980	211454	2804	15	31	22	86
122	107	1953	1882	2512	21	6603	201436	2871	11	30	18	100
123	108	1971	1869	3235	18	6789	194026	2250	14	21	15	95
124	108	1989	1829	2937	17	6475	202310	2894	8	34	7	120
125	109	2006	1940	2704	16	6940	197274	3232	14	31	14	115
125	110	2000	2026	14231	58	6967	207414	2705	10	27	11	121
120	111	2024	1638	2455	20	5021	191517	2703	0	27	12	08
127	111	2041	1038	2433	20	5(70	174025	2052	0	24	12	90
128	112	2059	1/06	2231	20	50/9	1/4025	2055	14	30	10	100
129	113	2077	18/6	3278	33	6355	185953	4216	/	22	15	106
130	114	2094	1969	2944	13	7335	194401	2120	17	31	17	111
131	115	2112	1841	3390	11	6078	184711	2736	11	20	13	84
132	115	2129	1808	2328	20	6152	177389	2851	9	28	17	104
133	116	2147	1787	2471	4	6114	182514	2138	8	12	12	115
134	117	2165	1646	2505	6	5646	178105	1791	11	28	13	76
135	118	2182	1680	3033	5	5655	170067	1337	11	26	7	73
136	119	2200	1996	3042	12	7055	200174	3135	9	25	18	92
137	120	2217	1850	3278	7	6334	185734	2333	7	33	6	88
138	121	2235	1776	2337	12	5714	174004	1811	3	23	8	83
139	122	2253	1962	2370	7	6711	205872	1752	12	27	8	91

Messpunkt	Messzeit [sec]	Strecke [µm]	Li	Na	Mg	Al	Si	K	Ca	Ti	Mn	Fe
140	122	2270	1798	2409	9	6282	185659	1345	13	29	11	92
141	123	2288	1615	1816	8	5571	180541	2890	13	23	11	80
142	124	2305	1427	1779	9	5278	160677	1610	10	29	7	76
143	125	2323	1615	2354	7	5952	185932	1942	9	14	17	77
144	126	2341	1483	1879	3	5429	172100	3244	12	26	8	84
145	127	2358	1627	1707	209	5825	192108	1519	11	29	4	80
146	128	2376	1606	2040	4	5726	191112	1693	8	29	7	91
147	129	2393	1514	1449	5	5147	188287	1666	8	28	13	76
148	130	2411	1250	1683	8	4194	171029	2441	12	17	5	55
149	130	2429	1351	1333	2	4179	189631	4451	13	23	5	737
150	131	2446	1000	1143	10	3386	166859	3330	6	19	7	58
151	132	2464	957	990	0	2920	156364	1577	6	13	10	40
152	133	2481	864	1113	5	2930	173001	1654	3	15	8	53
153	134	2499	905	1787	2	2776	186308	1579	11	15	9	54
154	135	2517	806	2365	1	2659	181906	4028	6	14	5	54
155	136	2534	1077	3715	5	3269	205886	2514	9	14	9	46
156	137	2552	1219	1443	5	4134	231087	4638	13	18	9	56
157	137	2569	1056	795	4	3481	181742	2059	14	13	9	33
158	138	2587	1427	1091	5	4806	200317	1899	5	15	5	34
159	139	2605	1440	720	5	4811	194735	2513	10	20	8	43
160	140	2622	1866	1310	5	6120	207837	1679	8	19	11	34
161	141	2640	1831	2208	2	6276	202562	2186	7	31	3	38
162	142	2657	2023	1285	3	7157	212116	1770	15	26	16	45
163	143	2675	2239	1069	9	7661	233366	2650	9	25	9	34
164	144	2693	2121	1000	7	7664	211550	4241	10	27	5	21
165	144	2710	2294	1037	3	7604	217664	2117	13	15	8	36
166	145	2728	2292	855	4	7821	219445	3234	7	26	8	37
167	146	2745	2261	1375	8	7561	210772	1958	10	25	6	40
168	147	2763	1846	947	2	6867	185939	1471	10	26	9	34
169	148	2781	2094	766	4	6885	195111	2017	6	17	12	33
170	149	2798	2178	1217	6	7588	206002	5597	7	20	9	40
171	150	2816	2133	1011	1	7142	194940	1930	7	16	15	38
172	151	2833	1798	1188	8	6360	176932	4041	9	17	10	31
173	152	2851	2024	932	4	6802	189140	2162	9	21	5	41
174	152	2869	1920	1114	8	6904	195404	1438	8	24	9	32
175	153	2886	1895	4461	1	6674	182363	1718	13	21	13	1410
176	154	2904	1828	976	0	5810	169248	2724	11	22	8	36
177	155	2921	1749	1577	0	5715	156658	1558	8	16	5	23
178	156	2939	1931	1016	4	6595	174891	2164	8	18	26	43
179	157	2957	1651	1823	0	5697	160240	2417	10	25	7	46
180	158	2974	1827	1066	2	6148	186458	2199	9	20	4	29
181	159	2992	1966	1110	10	6832	195575	18431	14	10	6	45
182	159	3009	1940	2676	4	6392	195807	2423	10	19	12	42
183	160	3027	1775	1014	3	6433	189658	2303	12	25	7	40
184	161	3045	1928	1290	2	6572	203067	2957	12	16	4	52
185	162	3062	1838	996	12	6486	198120	2350	9	27	9	36
Messpunkt	Messzeit [sec]	Strecke [um]	Li	Na	Mg	Al	Si	K	Ca	Ti	Mn	Fe
-----------	-------------------	-----------------	------	-------	-----	------	--------	-------	----	-----	----------	----------
186	163	3080	1945	1179	2	6417	208363	1854	9	22	3	51
187	164	3097	2080	1664	3	6811	214777	2395	17	30	10	62
188	165	3115	1876	1164	1	6405	217548	1889	13	22	8	55
189	166	3133	1963	14428	10	6462	206636	2094	16	18	1528	19455
190	166	3150	1809	3396	1	6039	202119	2030	10	38	11	623
191	167	3168	1753	1146	1	6001	200781	3934	11	27	7	48
192	168	3185	1455	1150	1	4814	171281	1312	14	22	13	61
193	169	3203	1347	883	7	4370	156378	791	15	20	13	44
194	170	3221	1327	1087	4	4624	173090	1059	5	18	7	58
195	171	3238	1534	2079	3	5110	170879	1289	7	20	5	56
196	172	3256	1582	1032	6	5408	184240	1377	8	14	7	56
197	173	3273	1722	1544	1	5650	194578	2428	12	23	5	56
198	174	3291	1749	1049	7	5929	195964	1835	7	27	6	63
199	174	3309	1778	1717	1	6246	208206	3249	7	26	6	61
200	175	3326	1858	1659	1	6092	203873	1729	11	24	8	70
201	176	3344	1542	1915	43	5499	188833	2530	15	33	11	60
202	1//	3361	1897	1505	3	5980	21/882	1468	9	23	9	/6
203	178	33/9	1800	2000	2	5652	194155	1247	12	28	6	69
204	1/9	3397	1528	2089	3	5212	181046	144 /	11	25	/	55
205	180	2422	1380	1214	4	4357	153962	1596	4	20	8	51
200	181	3432	1310	2200	0	4498	105051	11(0	10	19	0	44 50
207	181	3449	1197	2309	1	4086	14/302	2551	10	18	5	59
208	182	2407	1200	1343	2	4320	214668	2022	10	23	4	91 84
209	183	3463	1621	2772	0	5707	214008	2023	10	27	<u> </u>	04 79
210	185	3520	1774	1244	0	5732	212014	2267	12	33	8	61
211	186	3537	1617	1309	4	5225	196721	1812	13	20	5	79
212	187	3555	1509	1293	. 7	4695	179572	2437	12	26	7	66
214	188	3573	1595	1298	0	5154	200768	1152	10	23	4	59
215	188	3590	1675	1472	4	5256	201034	1557	11	38	8	72
216	189	3608	1445	1153	2	4637	186567	2660	9	21	8	55
217	190	3625	1400	1151	1	4413	184561	1548	6	414	6	617
218	191	3643	1627	1507	3	4955	207189	2186	8	28	1	56
219	192	3661	1568	1140	1	4874	191173	1505	11	26	7	64
220	193	3678	1476	1476	0	4689	187850	2176	11	29	7	64
221	194	3696	1483	1405	1	4334	186744	3316	8	21	12	46
222	195	3713	1647	1676	12	5039	205852	1966	12	20	8	63
223	196	3731	1638	1659	15	4816	195063	1957	7	23	5	52
224	196	3749	1706	917	5	4865	203818	1760	7	27	9	47
225	197	3766	1542	1444	10	4666	198727	2258	9	34	15	62
226	198	3784	1366	1185	8	4448	180978	2101	9	23	9	57
227	199	3801	1271	1117	4	4068	176884	2165	6	33	13	58
228	200	3819	1346	1351	2	4289	188048	3187	7	35	8	49
229	201	3837	1250	912	3	3805	168988	787	13	24	4	60
230	202	3854	1290	1118	3	4063	170224	2838	11	16	8	60
231	203	3872	1469	2099	2	4760	203190	2035	11	24	7	70

Messpunkt	Messzeit	Strecke	Li	Na	Mg	Al	Si	Κ	Ca	Ti	Mn	Fe
	[sec]	[µm]										
232	203	3889	1345	1295	3	4560	182152	2315	17	23	4	75
233	204	3907	1447	1978	1	4738	206950	1627	8	28	9	75
234	205	3925	1231	1656	2	3783	161803	2834	11	18	7	61
235	206	3942	1247	1823	5	4171	183742	1066	9	22	9	55
236	207	3960	1208	1963	2	3763	163884	1931	6	31	15	54
237	208	3977	1200	1772	4	3904	164778	1455	7	27	9	83
238	209	3995	1323	1548	3	4253	183046	4523	8	26	4	66

Schliff Fl2 Messung 2

Messpunkt	Messzeit	Strecke	Li	Na	Mg	Al	Si	Κ	Ca	Ti	Mn	Fe
	[sec]	[µm]										
16	13	88	799	1050	86	2659	113203	1217	14	11	11	43
17	14	105	743	1526	7	2473	109374	953	3	11	6	32
18	15	123	806	895	10	2674	115939	2650	6	14	6	41
19	16	140	770	1121	2	2794	122763	1433	9	19	9	43
20	17	158	805	1065	89	2521	108262	1754	9	17	6	27
21	18	176	876	1188	3	3024	132596	2170	6	14	6	35
22	19	193	982	1274	9	3062	146005	3226	15	24	5	51
23	20	211	760	805	2	2686	123445	1279	8	23	8	49
24	20	228	773	942	5	2602	121248	1206	12	16	4	43
25	21	246	716	938	2	2478	118512	2234	13	17	8	37
26	22	264	688	840	3	2521	122299	2530	14	13	6	33
27	23	281	759	914	2	2626	121262	1911	13	12	5	46
28	24	299	825	1389	0	2810	129328	1319	1	15	5	30
29	25	316	801	2061	4	2896	133968	1074	6	23	6	45
30	26	334	949	997	9	3349	160288	1730	7	13	7	56
31	27	352	889	1227	1	3066	144770	5534	12	19	5	53
32	27	369	884	1526	96	2935	138431	2862	7	21	9	46
33	28	387	893	1814	0	3157	148865	1465	5	20	15	54
34	29	404	953	1366	2	3301	145719	856	10	18	6	57
35	30	422	1070	1530	4	3577	157668	3736	10	15	9	56
36	31	440	992	1232	12	3606	166648	1942	12	31	10	53
37	32	457	1101	1660	10	3472	158050	1515	7	24	7	57
38	33	475	1027	1522	10	3251	152898	2424	8	20	10	47
39	34	492	938	1319	11	3354	146169	2858	5	18	6	46
40	34	510	1113	1621	7	3735	165228	1602	9	19	8	63
41	35	528	1004	1355	6	3536	159824	1963	6	17	9	52
42	36	545	1042	2168	3	3434	154522	2271	8	11	7	52
43	37	563	982	1412	3	3593	160534	1754	10	27	4	54
44	38	580	1004	1735	4	3534	164833	4071	8	32	4	72
45	39	598	982	1479	16	3628	159421	1535	12	25	6	73
46	40	616	1109	1807	6	3670	162410	1819	13	15	10	70
47	41	633	1031	2038	1	3418	158691	2267	8	27	4	58
48	42	651	951	1665	5	3495	158097	1254	5	19	9	52
49	42	668	1022	1312	1	3605	163987	2503	13	19	8	99
50	43	686	1022	1260	4	3351	157217	1724	10	13	5	59
51	44	704	1001	1138	3	3504	164471	2042	11	27	7	60
52	45	721	1136	1369	1	3975	167303	1955	9	19	10	77

Messpunkt	Messzeit	Strecke	Li	Na	Mg	Al	Si	K	Ca	Ti	Mn	Fe
53	[sec] 46	[μΠ] 739	1110	1554	5	3730	163345	2371	12	16	3	58
54	47	756	927	1466	4	3366	146790	1368	9	24	11	43
55	48	774	968	1605	4	3361	153744	1876	6	21	13	43
56	49	792	972	2520	1	3406	151744	1139	5	13	5	64
57	49	809	994	1549	7	3513	156037	2952	7	19	10	69
58	50	827	1052	1553	4	3596	162451	1780	6	19	10	51
59	51	844	1056	1331	0	3491	155422	1996	5	19	5	70
60	52	862	1106	2529	5	3677	166450	3156	2	21	17	53
61	53	880	994	1261	2	3574	160813	2800	13	20	11	59
62	54	897	984	1192	2	3443	150748	1639	11	20	10	56
63	55	915	1013	1613	2	3485	150502	1803	9	18	12	61
64	56	932	972	2024	1	3363	152236	2179	13	24	6	50
65	56	950	1051	1266	1	3612	158329	1130	10	19	5	59
66	57	968	935	1769	4	3486	142423	1312	11	19	5	61
67	58	985	984	1061	1	3491	145678	3190	7	18	7	62
68	59	1003	963	1465	0	3451	155839	2409	9	22	7	62
69	60	1020	1026	1118	3	3638	157436	1386	11	24	12	62
70	61	1038	1081	1502	1	3470	152741	2884	7	15	6	67
71	62	1056	933	1275	4	3279	141474	1309	9	22	4	49
72	63	1073	972	1130	4	3274	150659	1736	6	22	9	61
73	64	1091	1036	1473	6	3955	164771	1753	4	20	10	70
74	64	1108	954	1169	0	3371	150980	770	6	15	11	70
75	65	1126	992	1416	5	3471	160615	2237	10	21	13	61
76	66	1144	1042	1456	2	3630	158057	1714	3	22	8	61
77	67	1161	1025	1527	5	3595	158220	1905	8	20	6	69
78	68	1179	925	1209	1	3409	147316	1961	13	20	11	66
79	69	1196	988	1307	15	3351	149772	1837	5	126	9	74
80	70	1214	971	1320	1	3325	148837	1901	9	18	10	62
81	71	1232	843	1041	4	3087	146087	1469	12	19	3	57
82	71	1249	910	1166	4	3128	147568	1589	12	24	9	54
83	72	1267	861	1340	4	3044	142484	1015	10	22	7	41
84	73	1284	980	1308	7	3134	142825	1304	7	21	6	75
85	74	1302	982	12759	429	3385	155750	2266	25	52	1424	24251
86	75	1320	973	1582	13	3223	151560	1521	6	23	13	62
87	76	1337	1012	1579	19	3407	159462	1511	6	16	3	60
88	77	1355	1022	1700	6	3441	154645	2279	14	23	16	1218
89	78	1372	1089	1559	6	3397	154037	1348	10	27	8	58
90	78	1390	854	1103	5	2983	132460	2795	11	17	14	54
91	79	1408	995	1598	5	3364	151799	928	6	20	8	59
92	80	1425	970	1235	0	3271	151328	1657	11	31	10	51
93	81	1443	808	1082	1	2882	142307	1253	12	19	7	54
94	82	1461	911	1315	1	3116	141768	1054	11	19	9	59
95	83	1478	950	2193	3	3309	158097	3372	8	30	12	65
96	84	1496	954	1129	2	3311	152741	2549	6	45	4	57
97	85	1513	965	2127	2	3348	161080	4372	6	17	10	37
98	86	1531	900	1204	3	3104	155545	2479	4	15	3	64
99	86	1549	875	1499	5	2946	147370	1931	8	19	11	63
100	87	1566	854	1498	0	2699	143583	1878	9	13	6	64
101	88	1584	769	1335	12	2201	128304	2089	14	10	7	62
102	89	1601	738	1464	65	2278	156467	2407	4	9	11	78

Messpunkt	Messzeit [sec]	Strecke	Li	Na	Mg	Al	Si	K	Са	Ti	Mn	Fe
103	90	1619	762	1504	17	1965	154085	1646	7	14	103	75
104	91	1637	609	2119	19	1628	145862	2008	12	14	9	66
105	92	1654	563	1266	14	1496	147527	1797	10	10	6	75
106	93	1672	572	4668	15	1394	150461	2950	2	13	8	70
107	93	1689	581	1136	4	1198	148264	1848	7	10	11	77
108	94	1707	503	978	6	1202	150182	2181	6	5	2	86
109	95	1725	529	988	4	1058	140526	2704	5	10	9	88
110	96	1742	487	1167	4	1076	155839	1517	4	10	8	72
111	97	1760	539	1249	2	070	152/61	2010	12	14	0	98
112	98	1705	551 459	1348	3	970	144982	2022	13	161	8	94
113	100	1/95	436	759	3	909	122017	2035	4	101	4	94
114	100	1813	410	022	2	921	132917	1159	<u> </u>	14	3	00
115	100	1030	464	635	32	028	142410	1138	9	10	4	83
110	101	1040	407	1251	2	928	142430	1504	9	12	2	/9
117	102	1805	439	2412	4	949	145582	2877	10	13	<u> </u>	97
110	103	1001	309	1216	3	00/	129770	1020	9	1	2	00
119	104	1901	457	1316	4	855	138//9	1929	10	6	4	98
120	105	1918	470	/99	1	829	14/984	1643	13	13	5	83
121	106	1936	465	833	2	830	141665	3502	6	9	5	90
122	107	1953	489	1721	0	823	144279	1421	9	5	6	83
123	108	1971	437	1160	3	879	147732	1475	7	8	5	88
124	108	1989	436	1160	8	872	146449	2846	9	13	7	75
125	109	2006	432	820	4	852	144252	1667	7	6	5	88
126	110	2024	425	532	3	851	146435	3384	10	7	3	91
127	111	2041	461	936	2	787	142518	2061	7	11	4	79
128	112	2059	514	1227	5	832	160964	2115	6	8	5	95
129	113	2077	404	688	2	824	144463	3295	6	9	5	96
130	114	2094	469	867	2	809	150919	2659	7	29	4	80
131	115	2112	446	1252	3	853	142621	2789	8	10	6	76
132	115	2129	475	794	114	937	149069	3135	8	6	3	94
133	116	2147	451	991	3	806	151198	2186	10	5	0	106
134	117	2165	478	729	2	865	152249	1556	6	9	4	101
135	118	2182	479	1174	2	784	146674	1765	12	10	2	85
136	119	2200	450	2405	0	809	141229	7229	12	8	8	81
137	120	2217	439	1203	3	834	146428	3294	10	3	4	89
138	121	2235	466	599	3	819	152393	1143	7	9	5	76
139	122	2253	472	931	5	785	147896	1674	4	13	3	88
140	122	2270	481	1085	0	791	153218	1353	8	3	8	80
141	123	2288	442	943	0	763	141522	2595	10	3	9	71
142	124	2305	385	2566	3	706	135060	3781	6	6	7	79
143	125	2323	509	1421	0	867	149779	1335	13	8	3	117
144	126	2341	486	736	1	875	161346	1967	6	7	6	86
145	127	2358	473	866	3	868	162513	3201	9	7	5	89
146	128	2376	510	942	0	823	155327	2979	9	8	7	114
147	129	2393	466	2455	10	821	152031	2084	9	19	5	97
148	130	2411	428	2028	1	725	138451	1358	6	9	2	86
149	130	2429	404	758	3	779	140335	3019	11	12	7	100

Messpunkt	Messzeit [sec]	Strecke [µm]	Li	Na	Mg	Al	Si	K	Ca	Ti	Mn	Fe
150	131	2446	418	715	4	833	147841	1012	5	10	4	89
151	132	2464	480	877	1	814	154447	1146	13	8	8	102
152	133	2481	520	2471	1	1694	156146	5006	5	7	6	78
153	134	2499	453	1215	5	760	146715	1951	8	10	1	73
154	135	2517	430	1080	3	797	149950	1907	14	5	6	84
155	136	2534	534	728	5	793	141072	3368	7	8	0	89
156	137	2552	444	499	1	773	139181	1869	13	9	6	91
157	137	2569	490	1157	0	871	151997	1618	10	6	1	101
158	138	2587	478	1460	14	932	155204	2295	6	9	7	91
159	139	2605	437	1359	1	1015	151192	2554	9	5	16	93
160	140	2622	483	1524	2	974	148578	2440	13	8	5	96
161	141	2640	503	1069	4	799	135210	2330	2	7	11	79
162	142	2657	471	818	0	903	145855	1327	9	9	5	82
163	143	2675	501	1126	3	933	145814	3244	12	11	9	104
164	144	2693	472	1584	10	947	141010	3429	9	12	4	89
165	144	2710	511	1412	35	1189	145671	3390	6	13	24	95
166	145	2728	594	2182	69	1562	158207	1782	20	16	25	96
167	146	2745	701	1991	55	2000	160493	1810	14	19	24	103
168	147	2763	660	1744	36	2098	150905	2188	12	32	27	95
169	148	2781	816	1373	32	2608	165597	2770	14	18	13	85
170	149	2798	844	1337	34	2437	161127	2399	13	14	15	80
171	150	2816	805	1600	22	2419	155334	753	20	22	11	71
172	151	2833	832	1546	13	2481	153669	3451	16	13	8	74
173	152	2851	870	2598	17	2518	155839	2213	7	13	15	76
174	152	2869	951	1396	4	2819	161148	1788	14	9	11	-77
175	153	2886	1094	1787	9	3446	177955	2030	16	14	9	67
176	154	2904	1148	3115	8	3421	162240	999	6	14	11	81
177	155	2921	1253	1295	5	3889	16//26	1/25	10	19	9	54
1/8	150	2939	1210	2665	4	4076	164062	1410	10	25	16	55
1/9	157	2937	1219	2005		4007	167221	1792	10	21	/	40
181	150	2974	1237	1232	4	3910	167003	1785	6	22	11	40
182	159	3009	1325	2028	12	4437	177450	2195	10	14	7	51
183	160	3027	1105	1478	5	3858	167631	1678	21	22	, 8	57
184	161	3045	1246	1473	2	4072	172066	1426	8	18	12	49
185	162	3062	1062	1107	7	3480	146442	2323	9	25	14	25
186	163	3080	1137	1514	3	3899	161980	2965	10	16	6	59
187	164	3097	1204	906	11	3982	169173	2187	7	21	8	48
188	165	3115	1338	1218	17	4224	174775	3709	7	20	34	541
189	166	3133	1195	1230	6	3985	167262	1784	4	26	5	44
190	166	3150	1344	1285	7	4191	179798	1737	4	20	11	60
191	167	3168	1212	2184	5	4037	172646	1858	14	21	5	53
192	168	3185	1147	1272	9	3704	160615	4287	11	27	8	42
193	169	3203	1110	1080	7	3640	158425	1311	10	18	12	35
194	170	3221	1249	1002	4	3842	172926	1911	9	24	21	73
195	171	3238	1115	1209	25	3493	160841	2482	12	21	15	36

Messpunkt	Messzeit [sec]	Strecke [µm]	Li	Na	Mg	Al	Si	K	Ca	Ti	Mn	Fe
196	172	3256	1150	1142	47	3700	150782	1682	12	12	6	54
197	173	3273	1041	1022	2	3455	153628	2770	10	18	10	53
198	174	3291	1059	799	7	3533	156951	1561	6	20	11	49
199	174	3309	1018	874	32	3033	146299	2841	7	18	10	57
200	175	3326	995	1384	2	3194	155395	1608	5	12	10	55
201	176	3344	965	1906	3	3390	151997	1877	10	20	7	49
202	177	3361	1052	1361	9	3373	150461	2017	7	15	15	61
203	178	3379	1093	964	6	3476	162942	1991	14	20	11	53
204	179	3397	1065	1038	17	3250	151349	2597	13	17	7	49
205	180	3414	969	1940	14	3226	151383	1799	11	24	6	46
206	181	3432	1019	1829	7	3243	163181	3704	6	25	10	55
207	181	3449	1019	1139	7	3403	154501	1795	7	20	13	63
208	182	3467	975	1406	6	3241	161680	1042	11	25	6	51
209	183	3485	997	1291	6	3486	167842	1424	11	16	13	49
210	184	3502	989	2499	55	3282	163993	2162	26	23	8	57
211	185	3520	1064	1457	28	3411	162451	1320	12	46	9	46
212	186	3537	1050	1752	40	3256	163079	1783	11	39	14	57
213	187	3555	1078	1635	21	3212	158534	2391	8	36	5	48
214	188	3573	1018	1746	22	3454	170428	1422	6	32	9	58
215	188	3590	966	1322	16	3021	147630	1961	9	16	12	51
216	189	3608	888	1296	4	3166	142914	3209	10	13	9	48
217	190	3625	1065	1114	8	3539	163946	1949	9	25	8	67
218	191	3643	1045	1336	13	3459	155927	2053	20	36	11	53
219	192	3661	906	1556	8	3058	143467	1489	12	18	13	54
220	193	3678	1082	1237	8	3607	167460	1792	12	12	9	59
221	194	3696	1052	1179	12	3299	161168	2201	7	24	9	57
222	195	3713	974	1040	7	3053	146217	1138	7	21	4	50
223	196	3731	956	1060	7	3119	150693	1499	7	28	10	63
224	196	3749	962	1837	12	3141	148476	1947	5	23	7	57
225	197	3766	1078	1078	10	3284	155033	2724	18	25	5	53
226	198	3784	1108	1431	9	3656	160718	2071	9	23	10	72
227	199	3801	1171	993	6	3606	174025	1165	10	15	3	74
228	200	3819	1327	1252	9	4196	197042	3529	8	20	6	68
229	201	3837	1116	995	9	3487	159196	2820	17	18	10	64
230	202	3854	1205	1056	7	3634	172366	2218	6	21	11	53
231	203	3872	1215	1030	8	3708	170319	2319	19	16	10	65
232	203	3889	1106	1250	10	3548	166662	2918	12	19	10	54
233	204	3907	1084	1312	16	3558	161284	2226	12	14	4	43
234	205	3925	1241	1022	6	3760	167972	2649	8	26	11	37
235	206	3942	1083	1116	13	3447	162649	2104	15	26	5	59
236	207	3960	1066	1107	4	3518	158718	1674	9	22	9	61
237	208	3977	1164	1165	6	3847	163434	2729	11	23	7	59
238	209	3995	1043	1126	5	3394	154767	2861	12	20	11	62

Schliff Fl2 Messung 3

15 12 70 564 709 12 2107 79501 3190 8 16 183 22 16 13 88 533 539 12 1933 81468 1088 11 18 7 22 17 114 105 660 818 6 2517 12344 1158 10 21 6 35 19 16 140 611 1002 15 248 11678 102 3 33 20 117 158 721 012 4 2208 11933 4 2459 119535 2245 8 15 9 300 21 240 722 766 6 2583 12548 1002 7 19 7 7 26 22 264 841 1106 3 2766 13514 111 10 116 4 4 40 43 <th>Messpunkt</th> <th>Messzeit [sec]</th> <th>Strecke [µm]</th> <th>Li</th> <th>Na</th> <th>Mg</th> <th>Al</th> <th>Si</th> <th>K</th> <th>Ca</th> <th>Ti</th> <th>Mn</th> <th>Fe</th>	Messpunkt	Messzeit [sec]	Strecke [µm]	Li	Na	Mg	Al	Si	K	Ca	Ti	Mn	Fe
16 13 88 533 539 12 1933 81468 1688 11 18 7 222 17 14 105 660 818 6 2022 87405 1017 20 16 6 375 18 115 123 681 603 6 217 1333 23 6 333 20 17 158 722 1012 15 2348 116933 1467 78 20 3 37 21 18 176 720 631 4 2350 11593 1193 11 14 26 22 20 218 773 756 6 2683 12548 1302 7 19 2 34 22 244 841 106 3 2797 1341 12 1266 124457 1302 7 19 2 34 22 224 <td>15</td> <td>12</td> <td>70</td> <td>564</td> <td>769</td> <td>12</td> <td>2107</td> <td>79501</td> <td>3190</td> <td>8</td> <td>16</td> <td>183</td> <td>22</td>	15	12	70	564	769	12	2107	79501	3190	8	16	183	22
171410566081862022874051017201666371815123681693625171234411810216351911614061910003213189819521323363320171587771012152348116083146782033721181767206314238111733224341593022202117391129323501153911981114262320228790942026631254521548215242410372622264841119632796132641302719744282429080376812566132641644813444292531677585922422147392385111113930263348109502272114023387242854931273527289061712474120703137511763331273527289061712474<	16	13	88	533	539	12	1933	81468	1688	11	18	7	22
18 115 123 681 693 6 2171 12394 1158 100 213 8840 952 13 323 6 33 20 171 155 727 1012 15 2434 11683 1467 8 20 3 37 21 18 176 720 631 4 2381 11733 2283 144 155 14 282 22 200 211 739 1179 3 2550 1539 1188 1<1	17	14	105	660	818	6	2022	87405	1017	20	16	6	37
19 16 140 619 1000 3 213 89810 952 13 323 6 33 20 177 158 772 1612 115 2348 116033 1467 8 20 3 33 21 188 176 720 631 4 2381 11733 2253 4 15 14 288 23 200 228 790 942 0 2663 15245 1302 7 14 4 4 25 21 2266 772 756 6 2883 12545 2152 4 24 10 37 26 22 264 841 1166 3 2766 13245 2152 4 24 10 34 29 25 316 775 879 2 2432 12794 138 11 10 33 20 26	18	15	123	681	693	6	2517	123944	1158	10	21	6	35
20 17 158 727 1012 15 2348 116983 1467 8 20 3 37 21 18 176 720 631 4 2381 11733 2283 4 15 9 30 22 19 193 741 1393 4 2459 11535 244 8 115 4 28 23 200 221 750 6 2583 12548 1120 7 34 25 21 246 727 756 6 2583 12548 1634 8 13 4 34 26 22 264 841 196 3 2796 13545 2142 9 40 29 43 34 34 34 34 10 935 2 2212 140328 8872 4 28 5 38 31 27 359 788	19	16	140	619	1000	3	2131	89810	952	13	323	6	33
21 18 176 720 631 44 2381 117433 2283 44 155 9 30 22 19 193 741 1393 44 2459 119555 2245 8 151 14 286 23 20 211 779 942 0 2663 125445 1302 7 19 7 34 25 21 246 772 756 6 2581 1515 142 9 140 0 455 26 22 2244 891 135 1 2618 134937 1830 12 12 9 40 28 24 299 803 768 1 2172 14032 3137 5 11 716 33 30 26 334 810 935 2 22721 140328 3137 5 11 766 33 3	20	17	158	727	1012	15	2348	116983	1467	8	20	3	37
22 19 193 741 1393 4 2459 119355 2245 8 15 14 28 23 20 221 1739 1129 3 2350 115930 1198 1 11 4 266 24 20 228 700 942 0 2663 125458 2152 4 424 100 37 26 22 264 771 1534 11 2596 13264 164 8 13 4 44 28 24 299 803 768 1 2518 1330 12 12 9 40 30 26 334 800 905 2 2121 141938 1475 9 15 5 44 31 27 369 708 703 12472 13498 1475 9 15 5 44 33 247 780 <td>21</td> <td>18</td> <td>176</td> <td>720</td> <td>631</td> <td>4</td> <td>2381</td> <td>117433</td> <td>2283</td> <td>4</td> <td>15</td> <td>9</td> <td>30</td>	21	18	176	720	631	4	2381	117433	2283	4	15	9	30
2320211739112932350119891198111414226242022879094202663125445130271973425212467757566258312548521524241003726222264841119632796135415214291441045272328175315341259613236416348813434282429908037681261813947183012129402925316775859224321272423885111113930263348109352272114032838724285383112735678012472131498147591155493328387797107421265213879201351844003429404802112712627144292430111694135304478331045125515192353122553631440803104512551519245	22	19	193	741	1393	4	2459	119535	2245	8	15	14	28
24 20 228 790 942 0 2663 125445 1302 7 19 7 34 25 21 246 772 756 6 2583 125458 2152 4 24 100 45 26 222 264 841 1196 3 2706 132364 1634 8 13 4 34 28 24 299 803 768 1 2618 134937 1830 12 12 29 40 30 26 334 810 935 2 2721 140238 3872 4 28 5 38 31 277 352 778 906 171 2472 13498 147 5 18 4 40 33 28 797 1074 21 2652 13499 141 16 9 141 34 290 440 </td <td>23</td> <td>20</td> <td>211</td> <td>739</td> <td>1129</td> <td>3</td> <td>2350</td> <td>115939</td> <td>1198</td> <td>1</td> <td>11</td> <td>4</td> <td>26</td>	23	20	211	739	1129	3	2350	115939	1198	1	11	4	26
2521246772756625831254821524242410372622264841119632796135415214291410452723228175315341250613544813434282442998037681261813493718301212940292531677585922422127942388511113930263348109352272114032838724228538312735272890617124741230703137511763332277369708780124721314981475915549332838779710742126521387920135312553631440803104512556137491909920334937324778351291227681391811241318549363347579411047262114175172910121214483633475794110472621 <td>24</td> <td>20</td> <td>228</td> <td>790</td> <td>942</td> <td>0</td> <td>2663</td> <td>125445</td> <td>1302</td> <td>7</td> <td>19</td> <td>7</td> <td>34</td>	24	20	228	790	942	0	2663	125445	1302	7	19	7	34
26 22 224 841 1196 3 2796 132415 2142 9 14 10 45 27 23 281 753 1534 1 2696 132464 1634 8 13 4 34 28 24 229 803 768 12 21224 2388 55 111 111 391 30 26 334 810 935 2 271 140328 3872 4 228 5 383 311 27 352 728 906 171 2474 123070 3137 5 111 76 333 32 27 369 708 780 12 2652 13879 2013 55 188 4 400 34 29 404 802 1127 1 2657 144299 2430 111 16 9 411 35 30 422 891 1341 1 2565 13748 1969 9 20 3 34 37 32 457 835 1291 2 2768 139318 1124 13 18 55 38 33 475 794 1104 7 $2c211$ 14795 12217 7 18 8 37 40 34 510 845 1100 1 2820 150066 1202 8 19 18 46	25	21	246	772	756	6	2583	125458	2152	4	24	10	37
27232817531534125961323641634813434282429980376812618134971830121204029253316775859224212127294238851111393026334810935227211403283872428538312735272890617124741230703137511176333227369708708124721387920135184403328337797107421265213879201353125536314408031045125661378919699203343732457835129122768137891124131854938334757441104726211417951127118483740345108451100128201508612028191846413552883610424227713793312237118504236545835107012819141710 <td< td=""><td>26</td><td>22</td><td>264</td><td>841</td><td>1196</td><td>3</td><td>2796</td><td>135415</td><td>2142</td><td>9</td><td>14</td><td>10</td><td>45</td></td<>	26	22	264	841	1196	3	2796	135415	2142	9	14	10	45
282429980376812618134937183012129402925316775859224321272423885111113930263348109152272114032883724853831273527289061712474123070313751117633322736970878012472131498147591554933283877971074212622138792013518440342940480211271262714429924301116941353042289113411303515215192353125536314408031045125561374891969920334332457835120122676139318112413185649383344757941104726114179510712124839344928341086225471493221217718851403451084511001282015038612028 <td>27</td> <td>23</td> <td>281</td> <td>753</td> <td>1534</td> <td>1</td> <td>2596</td> <td>132364</td> <td>1634</td> <td>8</td> <td>13</td> <td>4</td> <td>34</td>	27	23	281	753	1534	1	2596	132364	1634	8	13	4	34
29253167758592243212729423885111113930263348109352272114028387242.853831273527289061712474123070313751117633322736970878012247213149814759155443328387797107421265213877920135184403429404802112712627144299243011169413530422891134112355119235312553631440803104512555137481969920334373245783512912276813931811241318549383347579411047262114179517291012124839344928341006225471494521207819854135528836104242797137933122371184242365458351070128191417612211 <td>28</td> <td>24</td> <td>299</td> <td>803</td> <td>768</td> <td>1</td> <td>2618</td> <td>134937</td> <td>1830</td> <td>12</td> <td>12</td> <td>9</td> <td>40</td>	28	24	299	803	768	1	2618	134937	1830	12	12	9	40
3026334810995227211403283872428538312735272890617124741230703137511763332273697087801247213149814759155493328387797107421265213877201351844034294048021127126271442992430111169413530422891134113005152515192353125536314408031045125561374891969920334373245783512912276813931811241318549383344757941104726211417951729101212483934492834108622547149452121771883740345108451100128201500861202819184641355288361070128191476122111111850423654583510701281914761 <td>29</td> <td>25</td> <td>316</td> <td>775</td> <td>859</td> <td>2</td> <td>2432</td> <td>127294</td> <td>2388</td> <td>5</td> <td>11</td> <td>11</td> <td>39</td>	29	25	316	775	859	2	2432	127294	2388	5	11	11	39
31273527289061712474123070313751176333227369708780124721314981475915549332838779710742126521387792013518440342940480211271262714429924301116941353042289113411303515251519235312553631440803104512556137489196992033437324578351291227681391811241318549383347579411047262114179517291012122483934492834108622547149521217718837403451084511001282015008612028191846413552883610424279713793312237118504236545835107012819141761221111157494337765383094632779140653 </td <td>30</td> <td>26</td> <td>334</td> <td>810</td> <td>935</td> <td>2</td> <td>2721</td> <td>140328</td> <td>3872</td> <td>4</td> <td>28</td> <td>5</td> <td>38</td>	30	26	334	810	935	2	2721	140328	3872	4	28	5	38
32 27 369 708 780 1 2472 131498 1475 9 15 5 49 33 228 387 797 1074 21 2652 138779 2013 5 118 4 40 34 229 404 802 1127 11 2627 144299 2430 11 16 9 41 35 30 422 891 1341 1 3055 15215 1923 5 31 2 55 36 31 440 803 1045 11 2556 137489 1969 9 20 3 34 37 32 457 835 1291 2 2768 139318 1124 13 18 5 49 38 33 475 794 1104 7 $2c21$ 141795 1729 10 12 12 48 39 34 492 834 1006 1 2220 150066 1222 8 19 18 8 37 40 34 510 845 1100 1 2280 150066 1227 8 19 18 46 41 35 528 835 1070 11 2819 141761 2211 111 15 7 49 43 37 563 830 946 3 2779 146053 1499 14 <td>31</td> <td>27</td> <td>352</td> <td>728</td> <td>906</td> <td>171</td> <td>2474</td> <td>123070</td> <td>3137</td> <td>5</td> <td>11</td> <td>76</td> <td>33</td>	31	27	352	728	906	171	2474	123070	3137	5	11	76	33
332838779710742126521387792013518440342940480211271262714429243011169413530422891134113035152515192353125536314408031045125561374919699203343732457835129122768139318112413185493833475794110472621141795172910121248393449283410862254714945212177188374034510845110012820150861202819184641355288361042427971379331223711850423654583510701281914176122111115749433756383094632779146053149914138514438580874814725961467639244812547453959881518724286414917 <t< td=""><td>32</td><td>27</td><td>369</td><td>708</td><td>780</td><td>1</td><td>2472</td><td>131498</td><td>1475</td><td>9</td><td>15</td><td>5</td><td>49</td></t<>	32	27	369	708	780	1	2472	131498	1475	9	15	5	49
34 29 404 802 1127 1 2627 144299 2430 11 16 9 41 35 30 422 891 1341 1 3035 152515 1923 5 31 2 55 36 31 440 803 1045 1 2556 137489 1969 9 20 3 34 37 32 457 835 1291 2 2768 13318 1124 113 18 5 49 38 33 475 794 1104 7 2621 141795 1729 10 12 12 488 39 34 492 834 1086 2 2547 149452 1217 7 18 8 37 40 34 510 845 1100 1 2820 150086 1202 8 19 18 466 41 35 528 836 1042 4 2777 13733 1223 7 11 8 50 42 366 545 835 1070 11 2819 141761 2211 11 15 7 49 43 37 558 830 946 3 2779 146763 9244 8 12 5 47 45 39 598 815 1872 4 2864 149117 1016 11 17 <	33	28	387	797	1074	21	2652	138779	2013	5	18	4	40
353042289113411303515251519235312553631440803104512556137489196992033437324578351291227681393181124131854938334757941104726211417951729101212488393449283410862254714945212177188374034510845110012820150086120281918464135528836104242797137933122371185042365458351070128191417612211111574943375638309463277914605392448125474539598815187242864149117101611178424640616788964027601314161310112464947416337348574258313798715937139394842651823127722724139727 <td>34</td> <td>29</td> <td>404</td> <td>802</td> <td>1127</td> <td>1</td> <td>2627</td> <td>144299</td> <td>2430</td> <td>11</td> <td>16</td> <td>9</td> <td>41</td>	34	29	404	802	1127	1	2627	144299	2430	11	16	9	41
36 31 440 803 1045 1 2556 137489 1969 9 20 3 34 37 32 457 835 1291 2 2768 139318 1124 13 18 5 49 38 33 475 794 1104 7 2621 141795 1729 10 12 12 48 39 34 492 834 1086 2 2247 149452 1217 7 18 8 37 40 34 510 845 1100 1 2820 15086 1202 8 19 18 46 41 35 528 836 1042 4 2797 137933 1223 7 11 8 50 42 36 545 835 1070 1 2819 141761 2211 11 15 7 49 43 37 563 830 946 3 2779 146053 1499 14 13 8 51 44 38 580 874 814 7 2596 146763 9244 8 12 5 47 45 39 598 815 1872 4 2864 149117 1016 11 17 8 42 46 400 616 788 964 0 2702 13793 7 13 9 39 </td <td>35</td> <td>30</td> <td>422</td> <td>891</td> <td>1341</td> <td>1</td> <td>3035</td> <td>152515</td> <td>1923</td> <td>5</td> <td>31</td> <td>2</td> <td>55</td>	35	30	422	891	1341	1	3035	152515	1923	5	31	2	55
37 32 457 835 1291 2 2768 139318 1124 13 18 5 49 38 33 475 794 1104 7 2621 141795 1729 10 12 12 48 39 34 492 834 1086 2 2547 149452 1217 7 118 8 37 40 34 510 845 1100 1 2820 15086 1202 8 19 18 46 41 35 528 836 1042 4 2797 137933 1223 7 11 8 50 42 36 545 835 1070 1 2819 141761 2211 11 15 7 49 43 37 563 830 946 3 2779 146053 1499 14 13 8 511 44 38 580 874 814 7 2596 146763 9244 8 12 5 477 45 39 598 815 1872 4 2864 149117 1016 11 17 8 422 46 40 616 788 964 0 2760 131416 1310 11 24 6 49 47 41 633 734 857 4 2583 13797 1593 7 13	36	31	440	803	1045	1	2556	137489	1969	9	20	3	34
3833475794110472621141795172910121212483934492834108622547149452121771883740345108451100128201500861202819184641355288361042427971379331223711115749423654583510701281914605122111115749433756383094632779146053149914138514438580874814725961467639244812547453959881518724286414911710161117842464061678896402760131416131011246494741633734857425831379715937139394842651823127722724139727186541843849426687781062024901286251174712349504368679012840270	37	32	457	835	1291	2	2768	139318	1124	13	18	5	49
3934492834108622547149452121771883740345108451100128201500861202819184641355288361042427971379331223711850423654583510701281914176122111115749433756383094632779146053149914138514438580874814725961467639244812547453959881518724286414911710161117842464061678896402760131416131011246494741633734857425831379718654184384842661823127722724139727186541843850436867901284027071374621907713115351447048279493286814692715949105495245721922999330421598120	38	33	475	794	1104	7	2621	141795	1729	10	12	12	48
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	39	34	492	834	1086	2	2547	149452	1217	7	18	8	37
41 35 528 836 1042 4 2797 137933 1223 7 11 8 50 42 36 545 835 1070 1 2819 141761 2211 111 115 7 49 43 37 563 830 946 3 2779 146053 1499 14 113 8 51 44 38 580 874 814 7 2596 146763 9244 8 12 5 47 45 39 598 815 1872 4 2864 149117 1016 111 17 8 42 46 40 616 788 964 0 2760 131416 1310 111 24 6 49 47 41 633 734 857 4 2583 137987 1593 7 13 9 39 48 42 661 823 1277 2 2724 139727 1865 4 18 4 38 49 42 6668 778 1062 0 2490 128625 1174 7 12 3 49 50 43 686 790 1284 0 2707 137462 1907 7 13 11 53 51 44 704 827 949 3 2868 146927 1594 9 10	40	34	510	845	1100	1	2820	150086	1202	8	19	18	46
42 36 545 835 1070 1 2819 141761 2211 11 15 7 49 43 37 563 830 946 3 2779 146053 1499 14 13 8 51 44 38 580 874 814 7 2596 146763 9244 8 12 5 47 45 39 598 815 1872 4 2864 149117 1016 11 17 8 42 46 40 616 788 964 0 2760 131416 1310 11 24 6 49 47 41 633 734 857 4 2283 13797 1593 7 13 9 39 48 42 651 823 1277 2 2724 139727 1865 4 18 4 38 49 42 668 778 1062 0 2490 128625 1174 7 12 3 49 50 43 686 790 1284 0 2707 137462 1907 7 13 11 53 51 44 704 827 949 3 2868 146927 1594 9 10 5 49 52 45 721 922 999 3 3042 159981 2022 14 20 7 <td>41</td> <td>35</td> <td>528</td> <td>836</td> <td>1042</td> <td>4</td> <td>2797</td> <td>137933</td> <td>1223</td> <td>7</td> <td>11</td> <td>8</td> <td>50</td>	41	35	528	836	1042	4	2797	137933	1223	7	11	8	50
4337563830946327791460531499141385144385808748147259614676392448125474539598815187242864149117101611178424640616788964027601314161310112464947416337348574258313798715937139394842651823127722724139727186541843849426687781062024901286251174712349504368679012840270713746219077131153514470482794932868146927159491054952457219229993304215998120221420749534673984314984296614473619288127515447756796678102849137612739718847554877474510629266813939140	42	36	545	835	1070	1	2819	141761	2211	11	15	7	49
44 38 580 874 814 7 2296 146763 9244 8 12 5 47 45 39 598 815 1872 4 2864 149117 1016 11 117 8 42 46 40 616 788 964 0 2760 131416 1310 11 24 6 49 47 41 633 734 857 4 2583 137987 1593 7 113 9 39 48 42 651 823 1277 2 2724 139727 1865 4 118 4 38 49 42 668 778 1062 0 2490 128625 1174 7 112 3 49 50 43 686 790 1284 0 2707 137462 1907 7 113 111 53 51 44 704 827 949 3 2868 146927 1594 9 10 5 49 52 45 721 922 999 3 3042 159981 2022 14 20 7 49 53 46 739 843 1498 4 2966 144736 1928 8 12 7 51 54 47 756 796 678 10 2849 137612 739 7 18 8	43	37	563	830	946	3	2779	146053	1499	14	13	8	51
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	44	38	580	874	814	7	2596	146763	9244	8	12	5	47
46 40 616 788 964 0 2760 131416 1310 11 24 6 49 47 41 633 734 857 4 2583 137987 1593 7 13 9 39 48 422 651 823 1277 2 2724 139727 1865 4 18 4 38 49 42 668 778 1062 0 2490 128625 1174 7 12 3 49 50 43 686 790 1284 0 2707 137462 1907 7 13 11 53 51 44 704 827 949 3 2868 146927 1594 9 10 5 49 52 45 721 922 999 3 3042 159981 2022 14 20 7 49 53 46 739 843 1498 4 2966 144736 1928 8 12 7 51 54 47 756 796 678 10 2849 137612 739 7 18 8 47 55 48 774 745 1062 9 2668 139939 1400 7 15 15 36 56 49 792 797 1092 1 2537 128038 1906 7 13 7 <td>45</td> <td>39</td> <td>598</td> <td>815</td> <td>1872</td> <td>4</td> <td>2864</td> <td>149117</td> <td>1016</td> <td>11</td> <td>17</td> <td>8</td> <td>42</td>	45	39	598	815	1872	4	2864	149117	1016	11	17	8	42
47 41 633 734 857 4 2283 137987 1593 7 13 9 39 48 42 651 823 1277 2 2724 139727 1865 4 18 4 38 49 42 668 778 1062 0 2490 128625 1174 7 12 3 49 50 43 686 790 1284 0 2707 137462 1907 7 13 11 53 51 44 704 827 949 3 2868 146927 1594 9 10 5 49 52 45 721 922 999 3 3042 159981 2022 14 20 7 49 53 46 739 843 1498 4 2966 144736 1928 8 12 7 51 54 47 756 796 678 10 2849 137612 739 7 18 8 47 55 48 774 745 1062 9 2668 139939 1400 7 15 15 36 56 49 792 797 1092 1 2537 128038 1906 7 13 7 50 57 49 809 843 1088 4 2415 128775 2478 10 16 6 <td>46</td> <td>40</td> <td>616</td> <td>788</td> <td>964</td> <td>0</td> <td>2760</td> <td>131416</td> <td>1310</td> <td>11</td> <td>24</td> <td>6</td> <td>49</td>	46	40	616	788	964	0	2760	131416	1310	11	24	6	49
48 42 651 823 1277 2 2724 139727 1865 4 118 4 38 49 42 668 778 1062 0 2490 128625 1174 7 12 3 49 50 43 686 790 1284 0 2707 137462 1907 7 13 11 53 51 44 704 827 949 3 2868 146927 1594 9 10 5 49 52 45 721 922 999 3 3042 159981 2022 14 20 7 49 53 46 739 843 1498 4 2966 144736 1928 8 12 7 51 54 47 756 796 678 10 2849 137612 739 7 18 8 47 55 48 774 745 1062 9 2668 139939 1400 7 15 15 36 56 49 792 797 1092 1 2537 128038 1906 7 13 7 50 57 49 809 843 1088 4 2415 128775 2478 10 16 6 56 58 50 827 822 1628 1 2610 135879 1567 10 23 8	4/	41	633	/34	85/	4	2583	13/98/	1593	/	13	9	39
49 42 668 $7/8$ 1062 0 2490 128625 1174 7 12 3 49 50 43 686 790 1284 0 2707 137462 1907 7 13 11 53 51 44 704 827 949 3 2868 146927 1594 9 10 5 49 52 45 721 922 999 3 3042 159981 2022 14 20 7 49 53 46 739 843 1498 4 2966 144736 1928 8 12 7 51 54 47 756 796 678 10 2849 137612 739 7 18 8 47 55 48 774 745 1062 9 2668 139939 1400 7 15 15 36 56 49 792 797 1092 1 2537 128038 1906 7 13 7 50 57 49 809 843 1088 4 2415 128775 2478 10 16 6 56 58 50 827 822 1628 1 2610 135879 1567 10 23 8 53 59 51 844 835 804 1 2552 134609 1465 14 16 6 <	48	42	651	823	12//	2	2724	139/27	1865	4	18	4	38
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	49	42	008	7/8	1062	0	2490	128625	11/4	/	12	11	49 52
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	50	43	686	/90	1284	0	2/0/	13/462	1504	/	13		53
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	52	44	704	022	949	3	2808	140927	2022	9	20	5	49
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	52	43	721	922	1409	3	2066	139981	1022	0	12	7	49 51
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	53	40	759	706	679	10	2900	144/30	720	0 7	12	/	31
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	54	4/	730	745	1062	10	2047	13/012	1400	/ 7	10	0	4/
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	55	40	702	743	1002	7	2000	129939	1400	7	13	13	50
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	57	49	800	2/3	1092	1	2337	128775	2/78	10	15	6	56
50 50 627 622 1026 1 2010 1307 10 23 8 33 59 51 844 835 804 1 2552 134609 1465 14 16 6 45 60 52 862 832 1036 2 2648 134930 1274 4 21 5 37 61 53 880 815 872 0 2632 13659 2005 11 15 7 54	59	50	877	812	1628		2413	125870	1567	10	22	Q	53
60 52 862 832 1036 2 2648 134930 1274 4 21 5 37 61 52 880 815 872 0 2623 135858 2005 11 15 7 54	50	51	844	835	804	1	2510	134600	1/65	14	16	<u> </u>	33 15
61 52 900 915 970 0 2620 135050 12/4 4 21 5 57	60	57	862	832	1036	2	2552	134930	1274	4	21	5	37
אר דל דר דר בטעל האפאני אינע בער אינע בער אינע דער אינער ד	61	53	880	815	872	0	2632	135858	2005	11	15	7	54

62 54 897 843 781 2 2609 136957 2040 8 10 9 63 55 915 803 1000 1 2620 135087 1177 11 51 66 64 56 932 824 782 2 2632 138990 1965 8 15 4 65 56 950 776 866 1 2615 132392 1186 8 17 7 66 57 968 740 1068 0 2527 132822 2543 6 13 5 67 58 985 838 1088 1 2699 143201 1579 9 10 9 68 59 1003 696 1319 2 2208 128495 953 10 12 6 69 60 1020 727 887 2 2252 142593 3817 6 18 4 70 61 1038 649 1359 1 1944 127526 2903 11 10 4 71 62 1056 678 2410 3 1795 147220 1651 6 100 100 72 63 1073 603 1127 1 1638 139877 1492 13 12 7	45 47 42 44 48 43 35 49 41 56 71 49 66 57
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	47 42 44 43 35 49 41 56 71 49 66 57
64 56 932 824 782 2 2632 138990 1965 8 15 4 65 56 950 776 866 1 2615 132392 1186 8 17 7 66 57 968 740 1068 0 2527 132822 2543 6 13 5 67 58 985 838 1088 1 2699 143201 1579 9 100 9 68 59 1003 696 1319 2 2208 128495 953 100 122 6 69 60 1020 727 887 2 2252 142593 3817 6 18 4 70 61 1038 649 1359 1 1944 127526 2903 11 10 4 71 62 1056 678 2410 3 1795 <	42 44 48 43 35 49 41 56 71 49 66 57
65 56 950 776 866 1 2615 132392 1186 8 17 7 66 57 968 740 1068 0 2527 132822 2543 66 13 5 67 58 985 838 1088 1 2699 143201 1579 9 100 9 68 59 1003 696 1319 2 2208 128495 953 100 12 66 69 60 1020 727 887 2 2252 142593 3817 6 18 4 70 61 1038 649 1359 1 1944 127526 2903 11 10 4 71 62 1056 678 2410 3 1795 14720 1651 6 10 10 72 63 1073 603 1127 1 1638 139877 1492 13 12 7	44 48 43 35 49 41 56 71 49 66 57
66 57 968 740 1068 0 2527 132822 2543 6 13 5 67 58 985 838 1088 1 2699 143201 1579 9 10 9 68 59 1003 696 1319 2 2208 128495 953 10 12 6 69 60 1020 727 887 2 2252 142593 3817 6 18 4 70 61 1038 649 1359 1 1944 127526 2903 11 10 4 71 62 1056 678 2410 3 1795 147220 1651 6 10 10 72 63 1073 603 1127 1 1638 139877 1492 13 12 7	48 43 35 49 41 56 71 49 66 57
67 58 985 838 1088 1 2699 143201 1579 9 10 9 68 59 1003 696 1319 2 2208 128495 953 10 12 6 69 60 1020 727 887 2 2252 142593 3817 6 18 4 70 61 1038 649 1359 1 1944 127526 2903 11 10 4 71 62 1056 678 2410 3 1795 14720 1651 6 10 10 72 63 1073 603 1127 1 1638 139877 1492 13 12 7	43 35 49 41 56 71 49 66 57
68 59 1003 696 1319 2 2208 128495 953 10 12 6 69 60 1020 727 887 2 2252 142593 3817 6 18 4 70 61 1038 649 1359 1 1944 127526 2903 11 10 4 71 62 1056 678 2410 3 1795 14720 1651 6 10 10 72 63 1073 603 1127 1 1638 139877 1492 13 12 7	35 49 41 56 71 49 66 57
696010207278872225214259338176184706110386491359119441275262903111047162105667824103179514722016516101072631073603112711638139877149213127	49 41 56 71 49 66 57
70 61 1038 649 1359 1 1944 127526 2903 11 10 4 71 62 1056 678 2410 3 1795 147220 1651 6 10 10 72 63 1073 603 1127 1 1638 139877 1492 13 12 7	41 56 71 49 66 57
71 62 1056 678 2410 3 1795 147220 1651 6 10 10 72 63 1073 603 1127 1 1638 139877 1492 13 12 7	56 71 49 66 57
72 63 1073 603 1127 1 1638 139877 1492 13 12 7	71 49 66 57
	49 66 57
73 64 1091 498 1291 4 1506 141454 2507 1 7 1	66 57
74 64 1108 479 703 1 1384 137837 2534 8 5 6	57
75 65 1126 467 654 1 1192 140962 2370 6 14 5	
76 66 1144 428 1038 2 1023 128809 2713 10 10 3	64
77 67 1161 420 814 2 1041 129491 1592 8 10 7	79
78 68 1179 389 1026 1 938 130106 3477 8 7 14	64
79 69 1196 432 911 3 877 138922 1657 11 8 7	69
80 70 1214 424 1648 4 957 134882 2862 8 6 2	61
81 71 1232 431 893 0 896 138827 2914 16 5 14	72
82 71 1249 402 1207 2 845 134957 2832 9 6 5	68
83 72 1267 418 1577 0 985 148660 2601 5 10 5	71
84 73 1284 400 1601 2 764 136015 1839 13 3 4	77
85 74 1302 456 1358 5 902 141106 3315 9 6 6	77
86 75 1320 419 600 2 887 148257 3287 9 7 2	73
87 76 1337 420 1058 4 770 133524 785 6 13 15	79
88 77 1355 364 623 1 710 131040 2647 12 7 3	71
89 78 1372 359 738 4 816 134009 2267 7 4 10	78
90 78 1390 383 2388 2 784 134514 1605 12 5 2	70
91 79 1408 468 1567 5 840 148810 2066 8 4 3	75
92 80 1425 439 847 1 871 145091 1907 9 5 4	67
93 81 1443 395 1579 3 819 137046 1706 9 2 3	65
94 82 1461 392 1504 3 855 135108 1856 13 6 1	73
95 83 1478 402 1184 0 787 142088 2977 5 12 9	78
96 84 1496 375 846 1 737 130768 3005 12 4 8	60
97 85 1513 430 692 1 827 135155 2298 12 8 1	76
98 86 1531 378 970 0 827 136479 1448 6 9 5	68
99 86 1549 388 1181 6 724 131047 3117 14 1 9	69
100 87 1566 361 937 14 737 127608 2004 15 6 3	64
101 88 1584 358 1252 3 886 143037 1663 14 10 5	84
102 89 1601 415 1349 2 742 143064 2779 11 10 9	74
103 90 1619 358 558 4 834 138083 1806 13 9 6	72
104 91 1637 418 736 3 840 150475 1108 5 7 2	85
105 92 1654 387 921 3 848 139564 1756 6 8 6	64
106 93 1672 417 982 1 904 156801 2471 12 5 4	58
107 93 1689 398 1285 3 848 147070 2193 10 11 4	62
108 94 1707 449 599 1 849 150461 1770 9 7 7	73
109 95 1725 412 1591 3 776 143678 3081 5 10 12	71
110 96 1742 430 1296 1 861 153525 1568 7 13 3	72
111 97 1760 394 1514 1 738 132651 3253 4 6 3	

Messpunkt	Messzeit [sec]	Strecke [µm]	Li	Na	Mg	Al	Si	K	Ca	Ti	Mn	Fe
112	98	1777	426	987	5	798	148312	1642	10	6	4	63
113	99	1795	416	984	1	862	145910	1803	12	8	6	67
114	100	1813	428	1171	2	810	148878	1833	7	7	10	86
115	100	1830	361	1073	1	765	142068	2038	5	7	8	70
116	101	1848	439	672	2	813	146606	3333	6	5	8	87
117	102	1865	362	1494	7	770	138001	3119	13	5	5	70
118	103	1883	402	936	3	797	144791	21422	10	9	4	73
119	104	1901	411	697	6	878	144081	2538	6	5	3	72
120	105	1918	472	766	2	894	151894	1788	9	5	6	91
121	106	1936	379	1311	0	809	142477	2843	9	4	3	81
122	107	1953	374	1913	11	815	144504	2063	7	10	3	54
123	108	1971	430	698	1	795	143672	1231	9	6	5	84
124	108	1989	409	810	2	716	128584	2941	7	5	3	52
125	109	2006	418	2129	2	790	139086	1670	7	5	8	69
126	110	2024	399	756	0	783	140464	1825	5	6	3	72
12/	111	2041	393	1207	13	688	130392	2540	9	10	9	54
128	112	2059	439	(71	1	803	14/459	1583	6	8	/	88
129	113	2077	404	1272	3	916	150421	1061	9	5	10	28 92
130	114	2094	269	12/2	4	909	152224	1901	11	9	19	82 82
131	115	2112	308	747	5	055	155661	4296	10	9	1	62
132	115	2129	455	906	3	701	145330	5308	10	/ 0	2	70
133	117	2147	382	1567	1	791	143330	2954	5	14	6	70
134	117	2103	426	772	4	840	154174	2934	7	7	3	84
136	110	2200	408	844	2	838	153164	1116	, 8	9	6	62
130	120	2217	398	952	3	839	149329	2337	9	7	6	82
138	121	2235	411	1716	4	903	157913	1717	12	7	9	90
139	122	2253	372	936	13	803	143590	3935	7	12	3	72
140	122	2270	415	868	0	980	146592	3289	5	3	3	55
141	123	2288	438	1334	22	919	157313	1533	11	5	7	67
142	124	2305	423	1046	4	845	150755	1860	6	3	2	65
143	125	2323	414	1131	5	810	149636	2523	15	7	6	61
144	126	2341	374	1208	3	770	136657	2138	3	7	4	69
145	127	2358	370	792	2	795	152120	1770	9	7	10	77
146	128	2376	408	822	3	798	154535	4449	5	9	5	79
147	129	2393	435	1264	1	875	158718	2596	5	15	38	70
148	130	2411	433	1557	0	841	152509	2118	10	9	5	67
149	130	2429	407	1160	2	749	147336	1538	10	9	4	65
150	131	2446	385	943	5	859	144074	3211	6	10	2	68
151	132	2464	437	806	7	806	151519	3077	9	6	11	59
152	133	2481	405	2099	6	769	138335	1689	5	9	1	81
153	134	2499	442	1068	3	921	162465	2343	6	6	9	208
154	135	2517	411	2042	7	832	145814	1827	13	3	4	67
155	136	2534	378	1757	4	791	145582	5259	8	8	2	62
156	137	2552	447	1309	5	858	153143	2565	5	6	5	71
157	137	2569	373	830	3	843	161919	1035	9	13	3	83

Messpunkt	Messzeit [sec]	Strecke [µm]	Li	Na	Mg	Al	Si	K	Са	Ti	Mn	Fe
158	138	2587	352	1172	2	759	141229	2528	14	5	6	59
159	139	2605	372	860	1	753	138526	3136	10	4	4	76
160	140	2622	415	709	11	769	139932	2420	8	5	8	55
161	141	2640	457	881	0	849	149772	2216	9	4	6	84
162	142	2657	452	793	1	775	132439	1465	10	5	7	66
163	143	2675	398	701	2	775	134964	1690	8	9	2	61
164	144	2693	381	875	1	768	144354	1541	7	7	8	84
165	144	2710	380	881	1	732	135578	1941	9	9	1	62
166	145	2728	381	1358	3	747	143945	1760	14	7	4	73
167	146	2745	394	985	6	693	138110	1821	8	8	8	67
168	147	2763	406	970	1	767	147036	2177	16	10	6	71
169	148	2781	421	908	1	732	149390	5038	5	7	6	66
170	149	2798	402	1516	3	782	156187	1359	9	11	8	79
171	150	2816	448	1247	1	878	149950	1574	12	3	4	83
172	151	2833	388	652	4	685	142252	2603	2	8	2	64
173	152	2851	394	1495	1	743	141119	1414	9	167	4	63
174	152	2869	398	1375	1	775	151082	1238	12	11	8	69
175	153	2886	418	901	3	799	149574	2642	11	3	4	87
176	154	2904	420	1415	2	854	153614	2912	12	4	2	64
177	155	2921	392	1092	3	788	140294	4149	10	4	8	73
178	156	2939	410	768	3	832	152058	1976	14	8	6	73
179	157	2957	415	1271	2	822	150223	1249	4	5	4	81
180	158	2974	379	1981	363	714	134773	2058	9	9	5	51
181	159	2992	369	1170	2	804	148230	1629	9	10	4	71
182	159	3009	413	2906	3	847	152236	1304	9	9	4	69
183	160	3027	425	756	2	875	161892	2045	12	4	5	82
184	161	3045	359	792	1	741	131368	1065	8	5	9	71
185	162	3062	393	2278	3	714	142416	2014	9	11	5	65
186	163	3080	388	980	2	782	140765	1877	12	9	5	61
187	164	3097	425	1208	4	832	153962	1758	6	9	4	71
188	165	3115	388	961	106	810	146538	2268	7	8	6	83
189	166	3133	391	1022	10	817	148796	4611	8	7	4	77
190	166	3150	372	2394	5	867	152038	3712	8	13	3	69
191	167	3168	367	810	5	899	139891	1444	10	8	9	66
192	168	3185	417	988	3	1096	142191	3416	6	10	9	72
193	169	3203	572	1273	5	1533	148837	1747	9	8	5	58
194	170	3221	687	1033	6	1935	162192	3808	6	17	7	66
195	171	3238	709	1531	3	2016	154283	3314	9	6	1	57
196	172	3256	762	1098	4	2325	153628	2085	9	8	3	43
197	173	3273	887	1565	5	2622	157326	3043	8	11	5	49
198	174	3291	852	2362	2	2669	140853	2435	6	12	5	46
199	174	3309	883	862	2	2631	137298	1123	15	13	11	30
200	175	3326	995	1253	3	2826	147602	2507	10	7	9	35
201	176	3344	876	1567	2	2891	146408	2862	7	12	9	38
202	177	3361	925	1113	2	2794	138499	1614	15	18	5	35
203	178	3379	999	941	2	3320	163243	2180	4	13	6	38

Messpunkt	Messzeit [sec]	Strecke	Li	Na	Mg	Al	Si	K	Ca	Ti	Mn	Fe
204	179	3397	1058	1036	7	3303	169978	2459	21	21	3	45
205	180	3414	935	833	2	2929	143487	1081	8	20	13	209
206	181	3432	984	798	3	2952	152058	2107	17	14	10	32
207	181	3449	1010	740	7	3018	156255	1428	13	10	12	30
208	182	3467	1031	978	8	3282	164082	1579	8	15	153	29
209	183	3485	874	1537	3	2738	138854	1866	9	10	4	28
210	184	3502	1001	1077	6	3178	157504	2493	13	19	5	24
211	185	3520	1024	1278	8	3393	168231	3966	8	10	10	36
212	186	3537	949	1183	4	2965	152208	1256	8	14	7	35
213	187	3555	972	638	2	2911	151478	2658	8	10	6	28
214	188	3573	974	953	3	3163	152515	1353	13	13	7	37
215	188	3590	933	1060	8	2828	150291	2323	7	10	3	30
216	189	3608	999	1451	3	3225	161182	2878	10	19	12	33
217	190	3625	937	1306	9	2876	149956	1539	8	9	8	30
218	191	3643	821	773	4	2773	134282	1744	3	15	8	34
219	192	3661	1013	1668	4	3165	160383	1741	7	22	7	32
220	193	3678	868	727	4	2912	142436	1192	8	18	8	36
221	194	3696	861	929	3	2651	134050	1124	6	13	5	27
222	195	3713	902	827	4	2970	141474	2955	7	22	7	31
223	196	3731	838	763	5	2638	136001	1641	6	13	9	28
224	196	3749	920	1329	8	2983	155293	1284	13	17	9	44
225	197	3766	906	918	5	2890	152229	1857	10	25	5	35
226	198	3784	978	1342	5	3064	153498	2667	9	13	8	46
227	199	3801	843	1378	7	2880	152181	1427	7	14	4	23
228	200	3819	933	876	6	2987	159865	2534	8	13	12	37
229	201	3837	979	1068	5	3120	168975	2135	12	18	9	35
230	202	3854	990	1096	20	3137	174714	2044	9	21	11	57
231	203	3872	1013	1354	42	3341	173779	2373	8	21	11	39
232	203	3889	960	1268	31	2800	154665	4119	11	16	8	52
233	204	3907	858	996	32	2768	145180	1891	7	31	16	43
234	205	3925	881	683	41	2927	152461	1433	12	13	11	40
235	206	3942	955	1386	118	3260	162062	2341	6	43	44	227
236	207	3960	818	1656	103	2794	149404	1954	24	35	55	165
237	208	3977	842	1400	423	2781	142443	1813	15	118	32	114
238	209	3995	792	1102	316	2694	136158	1743	19	33	43	106