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Abstract

The development of many modern products and processes is characterized by integration of
digital control systems. Computer-aided methods for modeling, simulation and design are in-
creasingly required; the reason are the increasing complexity and inter-relationship between the
design of the processes and control systems.
The aim of this diploma thesis was a Real- Time Simulation, in this case a Hardware in the
Loop Simulation for hydraulic control of mining machines and visualisation of these simula-
tion models.
The developed system can be used in the implementation phase to emulate the behavior of the
machines as a vehicle to test the control soft- and hardware.
The simulation was designed with two different function-block oriented, graphical program-
ming environments. After testing, a system with Matlab/Simulink and Real-Time Workshop
implemented on a programmable logic control (PLC) was chosen.
A complete real-time model was developed that is capable of simulating the essential properties
of the real system (kinematics, dynamic behavior of the hydraulic system and the mechanical
construction, further the cutting load force). The visualisation of the model is performed by
displaying selected images from a rendered simulation video.
The final system will be applied to test the automation software with the aim of improving the
cutting accuracy, before the machine prototype is available.
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Kurzfassung

Die Entwicklung vieler moderner Produkte und die dafür notwendigen Prozesse erfolgt
unter Einbindung von digitalen Automatisierungssystemen. Computergestütze Methoden zur
Modellbildung und Simulation werden immer häufiger eingesetzt auf Grund des hohen Grades
an Komplexität und Wechselwirkungen der Systeme miteinander.
Das Ziel der vorliegenden Arbeit war eine Real-Time Simulation, in diesen Fall Hardware in
the loop Simulation, der hydraulischen Schneidarmsteuerung einer Bergbaumaschine und die
Visualisierung eines durch die Simulation erhaltenen Modells.
Das fertige System kann dazu verwendet werden, in der Inbetriebnahmephase zum Testen der
Steuerungssoftware und -hardware die Funktionen der Maschine zu ersetzen.
Die Simulation wurde mit zwei verschiedenen funktionsblockorientierten, graphischen Pro-
grammiersystemen erstellt. Nach Auswertung der Tests wurde entschieden, ein System mit
Matlab/Simulink und Real-Time Workshop auf einer speicherprogammierbaren Steuerung
(SPS) zu implementieren.
Es wurde ein komplettes, echtzeitfähiges Modell entwickelt, das die wesentlichen Eigen-
schaften des realen Systems abbildet (Kinematik, Dynamik des hydraulischen und mech-
anischen Systems, sowie der Schneidlast). Die Visualisierung des Modells erfolgt durch
dynamische Auswahl eines Bildes aus einer gerenderten Video-Simulation.
Das fertige System wird eingesetzt werden, um die Automatisierungssoftware für bessere
Schneidgenauigkeit zu entwickeln und zu testen, bevor der Test am mechanischen Prototypen
erfolgt.
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Chapter 1

Theoretical Background

1.1 Real-time

1.1.1 Real-Time System

1.1.1.1 Definition

The system is real-time when the system can guarantee that an event will occur precisely after
a specified time period. It does not matter at all how big the time slice is. We use this to differ it
from theModel time which is the self-governing simulation runtime (in German: Laufzeit) from
the software. We speak of Real-time capable systems when the model time is synchronized to
the real time. In computer science, Real-time computing, is used to study hardware and software
systems which are subject to a ’real-time constraint’.
A real-time computer system is a system with which the correct operation of this system is not
only depend on logical results of the computation, but also on the physical instant which these
results are produced.
Real-time system are needed for applications that must determistically perform a critical task
without interruption from the other noncritical tasks.

1.1.1.2 Classification of Real-Time System

In following we classify the real-time from five different perspectives. The first two classifica-
tions from the point of view of the characteristics of the application are: at first hard real-time
vs. soft real-time, further fail-safe and fail-operational, i.e., on factor outside the computer sys-
tem. The other three classifications, guaranteed-timeliness and best-effort, resource-adequate
and resource-inadequate, event-triggered and time-triggered, are from the point of view of de-
sign and implementation, i.e., on factors inside the computer system. [15]
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CHAPTER 1. THEORETICAL BACKGROUND 2

1. Hard Real-Time System versus Soft Real-Time System A hard real-time (immediate real-
time) system it is important that it perform at the correct instant, the completion of an
operation after its deadline is considered useless. A soft real-time (on-line) system will
tolerate such lateness. In Table 1.1 shown some different between hare-time and soft
real-time [15]

characteristic hard real-time soft real-time
response time hard required soft required

peak-load performance predictable degraded
control of pace environment computer

safety often critical non-critical
size of data files small or medium large
redundancy type active checkpoint-recovery
data integrity short-term long-term
error detection automation user assisted

Table 1.1: hard real-time versus soft real-time

2. Fail-Safe versus Fail-Operational
If a safe state can be identified and reached upon the occurrence of a failure, then we call
the system fail-safe. Fail-safe is a characteristic of the controlled object, not the computer
system.
If a computer system must provide a minimal level of service to avoid a catastrophe even
in the case of a failure, then we call it Fail-operational.

3. Guaranteed-Response versus Best-Effort
If we start out with a specified fault- and load-hypothesis and deliver a design that makes
it possible to reason about the adequacy of the design without reference to probabilistic
arguments, even in the case of a peak load and fault scenario, we say this system is a
guaranteed response. And these systems required careful planning and extensive analysis
during the design phase.
We speak of a best-effort, when the analytic response guaranteed cannot given.

4. Resource-Adequate versus Resource-Inadequate
Guaranteed response systems are based on the principle of resource adequacy, i.e., there
are enough computing resources available to handle the specified peak load and the fault
scenario.

5. Event-Triggered versus Time-Triggered
In the event-triggered approach, all communication and processing activities are initiated
whenever a significant change of state is noted.
In the time-triggered approach, all communication and processing activities are initiated
at the predetermined points in time.
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1.1.1.3 Application

Today more and more processors are used to control the technical facilities or processes such as
machines, process plan and transportation are real-time systems. The reaction of these systems
does not depend on the technical processes –neither at normal nor at critical situation:

• In cars, the Airbag-control system is a real-time system. It muss work up the mess of
sensors and then decide if it should open the airbag and how strong it should be in the
shortest time. The reaction time is about 1ms;

• Anti lock brake system [ABS] is also a real-time system. The reaction time of it is under
1ms;

• The Patriot-rocket demand most for real-time system. The time limit should be hold in
nanosecond range, because of the high velocity (more than 1000m/s) and small hit radius
(should be less than 1 meter). So the reaction time is less than 1 ns;

1.1.2 Real-Time Simulation

1.1.2.1 Why Simulation

Simulation is an imitation of some real thing, state of affairs, or process.
Simulation is increasingly used in many fields, particular in the range of engineering, and it can
be used to show the eventual real effects of alternative conditions and courses of action.
There are some reasons why we apply it:

• It is maybe too complex and too expensive to research a real system, and it’s maybe also
too dangerous to do it. Example:

- Crash test
- Flight simulator to train the pilots.

• The real system does not exist till now.
• It’s not possible directly to observe the real system. For example, the real system work
too fast or too slow.

• It’s much more easy to modify a simulation model than the real system.
• The result is exactly repeatable.
• By way of comparison, it is safer and cheaper.
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1.1.2.2 Real-time Simulation

The development of many modern products and processes is characterised by integration of dig-
ital control systems. The integration can be performed by the components (hardware) and/or by
the functions (software). Now computer-aided methods for modeling, simulation and design are
more and more required, because of the increasing complexity and inter-relationship between
the design of the processes and the design of the control system.
With regard to the speed of the computation required, simulationmethods can be divide into [14]

i. Simulations without time limitations
some application:

- Basic investigation of behavior

- Verification of theoretical models

- Process design

- Control-system design

ii. Real-time simulations
some application:

• Process simulation:
- hardware in the loop simulation

- training of operators

• Controller simulation:
- testing of control algorithms (controller prototyping)

• Process and controller simulation
iii. Simulation which are faster than real-time

some application:

• Model-based control systems
- Predictive control

- Adaptive control

• On-line optimization
• Development of strategies,planning,scheduling
• Components for real-time simulation
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Here, real-time simulation means that the simulation of a component is performed such that
the input and output signals show the same time - dependent values as the real, dynamically
operating component. There are three different kinds of real-time simulation methods:

1. Real process but simulated control system
(control design control prototyping)

2. Simulated process and simulated control system
(control design software in the loop)

3. Simulated process but real control system
(hardware in the loop) discussed in section 1.2 in detail.

1.2 Hardware in the Loop

1.2.1 Embedded System

Embedded system (called ES for short) is a special purpose digital system embedded in the
environment. Due to the rapid development of digital-processor technology, ES is used in many
things in our daily life, for example: big things such as engine controllers in car, washing ma-
chine, small things such as mp3, PDA. And it is also used in many control system in industries.
Many of these systems operate in safety-critical situations and in most cases are very complex
such as land vehicles, satellite control system, spacecrafts,aircrafts, nuclear reactor controller.
This is one of the important reason why so much research effort is put into the development of
methodologies for the design, development, implementation and testing of embedded control
system. Another reason is the demand for minimizing the time to the market.
The Embedded system consists normally of four parts: embedded micro processor, peripheral
hardware devices, embedded operating system, and application program.
Compared with the general-purpose computer, ES have the following character:
An embedded system performs one or a few pre-defined tasks, usually with special require-
ments. Because of this, the system is smaller, high integrity and have low power dissipation,
high mobility. Hardware and software of Embedded system are design to be high efficient, in as
little as possible silicon wafer realize as much as possible the performance. In order to advance
performance speed and dependability of system,the software is normally fix in memory chip or
single board computer, not like general computer is in the carrier such as disks. The ES is also
not able to develop itself.
A lot of conventional mechanical or electronic control system within many products are re-
placed by an embedded real-time system. The embedded real-time system has the following
characteristics [15]:
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i. Mass Production

ii. Static Structure

iii. Verification of theoretical models

iv. Process design

v. Control-system design

History of Development

Looking back, there are four important phases during the development of embedded system.
First phase, embedded system is implemented in a single board computer without an operating
system the given function of the conventional control system. So it uses assembly language,
after stopping the memory will be immediately ridded to minimize the resource requirements.
In the second phase MPU, I/O devices, and RAM, ROM that are part of embedded system are
integrated in VLSI. And the products functionality is augmented adding software function to
improve the the utility of the intelligent products.
The third phase requires a redesign of the software. So the software designer needs to introduce
a software architecture and an operating systems.
Fourth phase, the embedded system is already part of a larger system that needs to communicate
with its environment.

Design Tools for Embedded Control System

The software tools can be classified in [25]:

• Real-time operating system:
For this kind of system the correct computation depends both on the results and on the
time when these results are available.

• Programming languages:
We need programming languages that are real-time friendly to ensure the use of high-
level constructs like information hiding and strong typing, but which at the same time are
efficient and resource-aware [6]. The following three are part of this kind of program-
ming language: Procedural Languages, functional and Logical Languages, Synchronous
languages:

• Middleware frameworks and design patterns:
The framework methodology does not widely apply to real-time system. In contrast to
this the design pattern approach is successfully applied.
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• Automatic code generation:
This kind of tools are embedded in control design software tools - like Matlab, which can
generate source/object code for different target control platforms.

• Verification tools:
There are two major verification methods, one is based on theorem provers, the other is
based on model checkers.

• Software analysis
• Testing tools
• Real-time supervisors, redundant and backup system.

1.2.2 Hardware in the Loop

One of the best definition of an Hardware in the loop (HIL) is given by Isermann [15]:
The simulated process can be operated with the real hardware.
The simulated process replaces either fully or partially the controlled process consisting of
actuator, physical process and sensors.
The purpose of HIL simulation is to develop and test the complex real-time embedded system.
Hardware in the loop simulation is a kind of real-time simulation in which the input and output
signal show the same time values as the real process. And it is characterized by the operation
of real components in connection with real-time simulated components.
The implementation strategy of Hardware in the loop is dependent on the project and resource.
Before anything is decided, we need to know the categorization of HIL which is shown in table
1.2 [15]. And from the table we notice that not all the combination are possible. Figure 1.1
shows all variations of the configurations.

Case Actuators Process Sensors
Real Sim. Real Sim. Real Sim.

1 yes yes yes
2 yes yes yes
3 yes yes yes
4 yes yes yes
5 yes yes yes
6 yes yes yes
7 yes yes yes
8 yes yes yes

Table 1.2: HIL categories by [15]

Configurations like 3,7 and 8 are impossible, because a simulated actuator which delivers
a physical output is a real actuator of the system, and similarly a simulated sensor which
reads physical inputs is a real sensor. Configuration 4 is the real working system in which
nothing is simulated and 5 is just the opposite to 4, it is a fully simulated system. This kind of
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Real Real

Embedded

Control

System Real

Simulated Simulated Simulated
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Interface

Physical

Figure 1.1: Architectures of HIL

configuration is called Full Simulation. It is a Partial Simulation when a real component is in
the simulation loop.

The reason why we do not connect the embedded system under test (SUT) to the real plan are
the follows:

• Duration: Tight development schedules are needed in most of development ranges, so it
does not allow to SUT to wait for prototype.

• Cost: in most cases, the plan is more expensive than the real-time simulator. And it needs
not to operate real process.

• Safety: can test SUT under extreme conditions.

In some cases it is not possible to build one prototype.

The SUT gives outputs to the process here which is replaced by simulator and the simulator give
the sensor date back to the SUT.In Figure 1.2 [26] shown the simulation environment and the
graphical presentation of the connection between SUT and HIL simulator. Actuator, process and
sensor constitute the controlled process which is simulated fully or partially. Normally, actuator
is real, process and the sensor are simulated. Because actuator and the control hardware are
formed in one integrated subsystem.
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Embedded System

Process
ActuatorsSensors

Digital&AnalogDigital&Analog

Hardware in loop Simulation

Figure 1.2: HIL simulation

1.2.3 HIL Simulation Hardware and Software

Computer Hardware

The hardware for HIL simulation needs [16]:

• A computer system that is able to perform the real-time requirements of the simulation
• Device on the computer which allows operator control of the simulation, simulation data
collection, storage, analysis and display

• Set of I/O interface between computer and SUT

I/O device

There are many different categories of I/O used in embedded system. I/O interfaces are
useable from several sources that support signal types like:

• Analog
• Discrete digital
• Serial
• Real-time data bus
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• Network

In opposition to a SUT with low I/O rate, for high I/O rate SUT, we need a performance simu-
lation computer system with following requirement [16]:

• Support for multiple high performance CPUs
• Support for real-time operations
• High data transfer rates
• Support for a variety of I/O devices

Simulation Software

The HIL simulation software has three basic parts [16]:

• Initialize the simulation software and hardware
• A dynamic loop including I/O, simulation model evaluation, date variable integration
• Shutdown of the simulation software and hardware

1.2.4 Implementation Tools of HIL

There are several combinations of software and hardware can realize the HIL simulation.In the
following chapter, some of these combinations will be introduced.

1. First possible combination [13]:

Hardware: real-time hardware of National Instruments
Software: LabView real-time Module of National Instruments

National Instruments offers integrated software and hardware products to create real-
time applications. Application will be developed in Windows with LabView Graphical
development and performed the applications on a real-time hardware target.
There are many real-time hardware target of National Instruments:

• Compact FieldPoint Real-Time Controllers (later will be described in detail): a
rugged real-time platform for industrial control and automation consisting of a real-
time processor with various I/O options and integrated signal conditioning.
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• CompactRIO Real-Time Controllers: integrate a real-time processor, FPGA tech-
nology, and I/O modules in an extremely rugged package. It is ideal to fill require-
ments of high speed control, utilize custom digital protocols, and monitor system in
harsh environment.

Figure 1.3: CompactRIO Real-Time Controllers1

• Desktop PCs: Here is Desktop or industry computer the real-time target and support
PCI hardware integration with NI data acquisition devices.

• PXI Real-Time Controllers: is a high-performance platform for test and control
applications, including compatibility for synchronization and triggering and a wide
array of I/O, shown in Figure 1.3

Figure 1.4: PXI Real-Time Controllers2

• Compact Vision Systems: is a platform for automated machine vision and inspection
systems with IEEE 1394 compatibility for up to three cameras, shown in Figure 1.5

1www.ni.com
2www.ni.com
3www.ni.com
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Figure 1.5: Compact Vision Systems3

Compact FieldPoint systems consist of a controller with an embedded processor running
an RTOS and a variety of I/O modules. These systems feature rugged hardware, designed
to operate in industrial environments. In addition the software structure of Compact Field-
Point systems implements a built-in publish/subscribe protocol, making these ideal for
creating distributed applications, shown in Figure 1.6 The reason why this hardware is
exactly described is that it will be applied in the following project.
Compact FieldPoint is an easy-to-use, highly expandable programmable automation con-
troller composed of rugged I/Omodules and intelligent communication interfaces. Down-
load LabView application to the embedded controller for reliable, stand-alone operation
and connect the sensors directly to high-accuracy analog and discrete I/O modules. The
Compact FieldPoint I/O modules filter, calibrate, and scale raw sensor signals to engi-
neering units and perform self-diagnostics to look for problems, such as an open ther-
mocouple. Compact FieldPoint network communication interfaces automatically publish
measurements with an Ethernet network. Access I/O points nearby or miles away on
the network using the same simple read/write software framework. Connect virtually any
sensor type with the wide variety of I/O modules. The most common sensor types include
thermocouples, RTDs, strain gauges, 4 to 20 mA sensors, and a variety of digital signals
from 5 to 30 VDC and 0 to 250 VAC.
With Compact FieldPoint and FieldPoint systems, powerful control and measurement
systems using LabView Real-Time can be fast developed and easily embedded into an
application on the intelligent controllers for reliable distributed or stand-alone deploy-
ment.

Figure 1.6: Compact FieldPoint4

4www.ni.com



CHAPTER 1. THEORETICAL BACKGROUND 13

Like what we referred to before, there are many products in the family of Compact
FieldPoint like controller, I/O modules, some of them we will need later for our project.
In following most of them will be introduced.

• Controller Interfaces:
for building embedded process control, distributed I/O, and data-logging intelligent
controls running LabView real-time.

• Network Interfaces: for adding Ethernet or Serial expansion I/O to any PAC or PC
with Compact FieldPoint network interfaces.

• I/O Modules: for connecting to industrial I/O, sensors, actuators, and other indus-
trial devices with analog, digital I/O, specialty, and combo modules.

• Backplanes: for setting Compact FieldPoint modules in rugged environments with
solid metal backplanes.

• Connectivity accessories: for connecting signals with integrated or DIN-rail-
mounted connector blocks, cables for serial ports, and covering for unused slots.

• Power Supplies and Power Distribution: for regulating, filtering, and distributing
power with DC supplies.

• Mounting: for choosing from panel-mounting, DIN-rail-mounting, and 19 in. rack-
mounting options.

• CompactFlash: for storing your downloaded application or performing embedded
data logging with CompactFlash cartridges, which contain solid-state nonvolatile
memory.

• FieldPoint: for creating Distributed I/O systems with FieldPoint Real-Time Con-
trollers or Ethernet/Serial network interfaces.

We will not need them all, the combination we need for such products is controller inter-
face, I/O modules and connectivity accessory. How they are set up is showed in Figure 1.7

I/O modules

Controller

Interface

Connectivity

Accessory

Figure 1.7: Compact FieldPoint5

5www.ni.com
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Before we talk much about hardware, now let us talk about the software.
The LabView real-time module extends the LabView development environment to deliver
deterministic, real-time performance. Use graphical programming or simulation tools to
develop the applications and download the applications to run on an independent hard-
ware target with real-time operating system (RTOS). The real-time modules can provide
commercial off-the-shelf hardware for the real-time target, so it is not necessary to spend
time verifying that the OS or code works on the hardware.
Except the real-time module, we will also need some other software function of LabView.
The real-timemodule can let the system to be real-time capable. If we use simulation tools
or Simulink software to write a program, the LabView Simulation Interface Toolkit is to
be interface with the simulation environment. In addition, the toolkit adds patented user
interface tools for monitoring and controlling data in the Simulink environment. And
it can perform off line simulations on a desktop or download the dynamic model to a
real-time system for HIL testing. The LabView Simulation Interface Toolkit brings the
amount of user interface functionality of LabView to instrument simulation models.

2. The second way of possible combination [3] [19]:

Hardware: The innovative industrial PC Automation PC 620 or Control System2003
from Bernecker & Rainer company (B & R for short)
Software: Real-Time Workshop (from The MathWorks company)

We will first talk about Control System 2003. The B & R System 2003 can be used as
both a complete control system as well as a remote I/O system for the expansion of in-
dustrial PCs and controllers from all B & R system families. Distributed systems can
also be created. Many different interfaces for field bus systems and networks guarantee
trouble-free communication.
CPUs of system 2003, shown in Figure 1.8. System 2003 central processing units cover
a wide performance spectrum. The optimal price/performance ratio is achieved by fine-
tuning processing power, memory capacity, integrated communication interfaces, and lo-
cal slots for I/O screw-in modules. Clearly arranged diagnostic LEDs have been imple-
mented to indicate the controller’s status. Programming is achieved in a uniform manner
using B & R Automation Studio.
I/O Modules, shown in Figure 1.9 for the System 2003, B & R offers a large number of
I/O modules in various designs. Analog values, digital signals, timers and counters allow
many process variables to be handled and various actuators to be controlled.
The new APC620, shown in Figure 1.10, relies on experience collected over many years
of industrial PC development and many applications. The result: the APC620 - providing
optimal adaptability and ergonomics. The mechanical design is based on the results of
extensive shock and vibration tests that place the highest demands on the materials. The
APC620’s main advantages are its modular design, the flexibility of the slots and the well
thought out arrangement of interfaces and drives.
The display units have also been updated with new technology. Modular interfaces allow
adjustments to be made to meet various requirements.

6 c©B&R 2007, courtesy of B&R
7 c©B&R 2007, courtesy of B & R company
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Figure 1.8: CUP of System 20036

Figure 1.9: Digital Mixed Modules of System20037

The APC620 with Intel Pentium M and Celeron M processors is available for high per-
formance applications that require a powerful processor. These processors, developed
especially for mobile computing, offer many advantages for industrial applications as
well. They combine a high computing capacity with low power consumption. The clock
rates range from 600 MHz to 1.8 GHz. The Intel 855GME chip set contains two inte-
grated graphic engines that provide optimal use of memory for the system and graphics.

Before we introduce Real-Time Workshop, let us first talk about Simulink. Because we
need it to design the models and systems.

Simulink is a platform for multi domain simulation and Model-Based Design for
dynamic systems. It offers an interactive graphical environment and a customizable set
of block libraries that let you accurately design, simulate, implement, and test control,
signal processing, communications, and other time-varying systems, and can be extended

8 c©B&R 2007, courtesy of B&R company
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Figure 1.10: Automation PC 620 8

for specialized applications.
Add-on products extend the Simulink environment with tools for specific modeling and
design tasks and for code generation, algorithm implementation, test, and verification.
Simulink is integrated with MATLAB, providing immediate access to an extensive range
of tools for algorithm development, data visualization, data analysis and access, and
numerical computation.
With Simulink, one can quickly create, model, and maintain a detailed block diagram
of system using a comprehensive set of predefined block. It offers tools for hierarchical
modeling, date management, and subsystem customization. And it makes easy to create
concise, accurate representations, regardless of system’s complexity.
after building your model in Simulink, you can simulate its dynamic behavior and
view the results live. Simulink provides several features and tools to ensure the speed
and accuracy of your simulation, including fixed-step and variable-step solvers and a
graphical debugger.
Now we will introduce Real-Time Workshop.

Real-Time Workshop generates and executes stand-alone C code for developing and test-
ing algorithms modeled in Simulink. The resulting code can be used for many real-time
and non-real-time applications, including simulation acceleration, rapid prototyping, and
hardware-in-the-loop testing. You can interactively tune and monitor the generated code
using Simulink blocks and built-in analysis capabilities, or run and interact with the code
outside the MATLAB and Simulink environment.
Real-Time Workshop is the foundation for Simulink code generation. It generates
ANSI/ISO-C compliant code for an entire model or for an individual subsystem,
enabling the code to run on any microprocessor or real-time operating system (RTOS).
Add-on products (available separately) extend Real-Time Workshop with additional code
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generation support and capabilities.
Real-Time Workshop is an integral part of the Simulink environment. You interact with
Real-Time Workshop using the Simulink Model Explorer graphical user interface, giving
you a single, consolidated place in Simulink to configure code generation settings. From
the Model Explorer you can:

• Generate code for your Simulink models or subsystems
• Select a Real-Time Workshop target
• Configure the target for code generation
• Manage multiple configuration sets

The Model Adviser in Simulink checks your model configuration and offers advice on
how to optimize or tune a configuration set based on your stated goals or style.
Real-Time Workshop intrinsically generates code and offers the most complete support
available for Simulink features and components, including:

• Model referencing, enabling incremental code generation
• Embedded MATLAB function blocks in Simulink and embedded MATLAB func-
tions in Stateflow

• Bus objects, enabling you to generate structures in your code
• Atomic subsystems, enabling code reuse via reentrant C functions
• Simulink S-functions, enabling you to simulate and interface with legacy code

Real-Time Workshop also supports a wide range of applications, from algorithm
deployment with Stateflow, Simulink Fixed Point, and the Signal Processing Blockset to
real-time simulation of systems modeled with the Aerospace Blockset, SimMechanics,
SimPowerSystems, and other Simulink products.
And it can also generate code for Large-Scale applications. Real-Time Workshop
provides incremental code generation, enabling you to generate code for specific blocks
in your model without recoding the entire model. This component-based approach
streamlines the development of very large models and reduces code generation build
times.
For defining and controlling Data, Real-Time Workshop lets you control the way model
data appears in the generated code. It also enables you to manage your data by:

• Declaring data types using built-in block data types (integer, floating-point, and
fixed-point)

• Specifying storage to tune and calibrate parameters or constants
• Specifying storage to monitor and log signal data
• Reusing storage to minimize locally scoped data
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Real-Time Workshop generates code from data stored in the diagram or in a data
dictionary provided by the Simulink Model Explorer. This capability makes it easy to
redeploy code from a single model to different targets by incorporating different data
dictionary sets.
For executing code in a Real-Time environment, Real-Time Workshop provides a
complete framework for executing the generated code in real-time and incorporating it
into your execution environment. It generates single-rate or multi rate code based on
the periodic sample times specified in the model. Code is deployed with or without an
RTOS, and in single, multitasking, or asynchronous mode.
Simulink and Real-Time Workshop provide a complete set of target-independent
capabilities for real-time deployment. These include:

• The ability to specify priorities for each rate in your model
• Production-quality counters and timers for computing absolute and elapsed time
• A Rate Transition Block to specify data transfer mechanisms between rates (for
example, semaphore, mutex, and double buffering) to trade off data integrity, deter-
minism, and performance

• Overrun detection for incorporating error-handling logic for each rate

3. The third possible way of combination [19]:

Hardware: PC-compatible hardware
Software: xPC Target 3.2 (from The MathWorks company)

xPC Target provides a high-performance, host-target prototyping environment to enable
you to connect your Simulink and Stateflow models to physical systems and execute
them in real-time on PC-compatible hardware. xPC Target includes prove capabilities for
hardware-in-the-loop simulation of control systems. xPC Target enables you to add I/O
interface blocks to your models, automatically generate code with Real-Time Workshop
and Stateflow Coder (both available separately), and download the code to a second PC
running the xPC Target real-time kernel. You can use any PC with Intel or AMD 32-bit
processors as your real-time target. The target PC can be a desktop computer, an industrial
computer, PC/104, PC/104+, CompactPCI, all-in-one embedded PC, or any other PC-
compatible form factor (like the hardware we described from B&R ). Figure 1.11 showed
prototyping setup using a laptop PC as the host computer and a single-board computer as
a real-time target.
After introducing some features of xPC, we will now show how to work with it. With
a host computer running MATLAB, Simulink, Real-Time Workshop, xPC Target, and a
C compiler as your development environment, you can create real-time applications and
run them on a target PC using the xPC Target real-time kernel. You control execution
on the target PC from MATLAB, using either a graphical or a command-line interface,
supplied or custom host graphical user interfaces (GUIs), a standard Internet browser, or
the target PC command-line interface. You can tune model parameters, acquire and view

9www.mathworks.com
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Figure 1.11: example an host and target computer9

signals, and obtain signal and target status information directly from your target PC.
Using standard PC hardware and commercial off-the-shelf I/O boards, xPC Target
converts a standard PC into a real-time rapid prototyping or hardware-in-the-loop
system. High performance is achieved by booting the real-time kernel rather than DOS
or Windows.
Both interrupt-handling and polling modes are supported within the real-time kernel.
Interrupt mode provides the highest application flexibility. Polling mode runs with
less overhead, enabling you to achieve smaller sample times for applications. Using a
high-performance Intel or AMD processor, you can achieve sample rates approaching 50
KHz.
The communicating between the host and target computers is s single communications
link. Design your application on the host computer and download the real-time applica-
tion to the target PC. The same communications interface is also used to pass commands
and parameter changes to the target PC. You can choose either RS-232 or TCP/IP
communications. RS-232 communication uses a null modem cable and a standard PC
COM port on both the host and target PC, supporting rates of up to 115 kBaud. RS-232
communication provides the advantage of easier setup, without requiring an Ethernet
card. TCP/IP communication is faster, providing data rates up to 1 Gbit/sec over any
distance. xPC Target includes both an RS-232 cable and a PCI Ethernet card for the
target PC.
Accessing the Target Application, the communicate with the target PC via an object-
oriented, MATLAB command-line interface, which is used to pass commands to the
target. You can also include the commands in M-files for detailed batch testing. The
command-line interface consists of three function groups: target application control,
parameter tuning, and signal acquisition (data acquisition). Graphical user interfaces
(GUIs), built upon the command-line interface, can be used on the host or the target PC,
or through a standard Internet browser. xPC Target Explorer, the host GUI, enables you
to configure, control, and monitor operations of the target system, including access to
multiple targets running concurrently.

Here is one example using xPC Target for Hardware in the loop simulation.
Automatic transmission system that includes an event-driven controller will be used in
this example. First a non-real-time simulink model of the closed-loop system will be
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written and the results of running a simulation of this model in Simulink which is shown
in Figure 1.12.

Figure 1.12: Yellow blocks represent the plant, an automotive powertrain system.
Blue blocks represent the throttle and brake inputs to the powertrain system.
Green blocks represent the controller portion of the system and include an event-
driven controller and algorithmic calculations.
Red blocks represent the output oscilloscope displays. 11

We can modify the Simulink model to interface with prototype hardware or actual plant
hardware such as an engine or motor, or the controller hardware such as a prototype PC
or embedded control unit. This approach allows us to test the controller and/or plant in
real-time. The I/O device interface blocks used in the Simulink model are provided as
part of xPC Target. The real-time operating system and the tools to monitor the operation
of the application in real-time are also provided with xPC Target. Real-Time Workshop
is used to generate code directly from the Simulink model. This generated code includes
the needed driver interface code, derived from the xPC Target driver blocks used in the
Simulink model. The complete application, including the I/O interfaces, is compiled,
linked, and downloaded to xPC Target for real-time testing.
We can also modify the system so that the plant and controller are separate components
that communicate with each other using a CAN (controller area network) bus, shown
in Figure 1.13. This mimics the real system where a controller would be implemented
on an embedded control unit which would communicate through a CAN bus with the
actual hardware. This is done using CAN I/O blocks that are provided with xPC Target.
Real-Time Workshop is used to generate the C code that is automatically downloaded
and run on a dedicated target PC running the xPC Target real-time kernel.

11www.mathworks.com
12www.mathworks.com
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Figure 1.13: Control system architecture with CAN communication12

The Simulink diagram in Figure 1.14 represents the modified system including the CAN
blocks, shown in orange. The inputs are provided by physical brake and throttle pedals
connected to the target PC using an A/D (analog to digital) input board. The simulation
scopes are replaced with xPC Target Scope blocks, shown in red. These blocks allow
you to view signals in real-time on a monitor connected to the target PC. You can see that
this Simulink model is very similar to the original control architecture outlined above.

Figure 1.14: Real-time Simulink model with CAN communication13

13www.mathworks.com
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Now we can run the real-time simulation, blow is the step to run the simulation:

• Connect a second target PC configured with the needed I/O cards to your main host
PC using a standard Ethernet cable or RS-232 cable.

• Connect your pedals to the target PC through the A/D board input connection.
• Generate code from the real-time model and download it to the target PC using
Real-Time Workshop.

• Run the simulation and view the target screen outputs as you change the throttle
pedal input, all in real-time.

• Plot data logged from the simulation for additional analysis.
The hardware setup is shown in Figure 1.15. The blue box is the xPC TargetBox industrial
PC, which is being used as the target PC. The laptop serves as the host PC.

Figure 1.15: Host-target hardware setup14

4. The fourth possible way of combination [19]:

Hardware: Desktop or Laptop PC or Other real-time hardware
Software: Real-Time Windows Target 2.7 (from The MathWorks company)

Real-Time Windows Target lets you run Simulink and Stateflow models in real-time on
your desktop or laptop PC for rapid prototyping or hardware-in-the-loop simulation of
control system and signal processing algorithms. You can create and control a real-time
execution entirely through Simulink. Using Real-Time Workshop to generate C code,
compile it, and start real-time execution on Microsoft Windows while interfacing to real

14www.mathworks.com
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hardware using PC I/O boards. Other Windows applications can continue to run during
operation and can use all CPU cycles not needed by the real-time task.
Now we will introduce shortly how to work with Real-TimeWindows Target. In fig. 1.16
showed the exactly work flow.
The close integration with Simulink which we explained in detail before external mode
makes it easy to use Real-Time Windows Target with Simulink. You can run your
Simulink models in real-time and interface with physical devices. Using your desktop
computer, you can implement real-time control, hardware-in-the-loop simulation, and
other real-time applications from the Simulink environment.
And then Real-Time Workshop which was explained in detail already generates C code
and creates a binary file using the supplied C compiler. The resulting binary file is ready
to run in real-time on your Windows PC.
By selecting Simulink external mode, the Real-Time Windows Target kernel loads the
application file into memory and establishes a connection with Simulink. You can then
control model execution, data logging, parameter tuning, signal viewing, and starting or
stopping real-time execution from the Simulink toolbar.

Figure 1.16: You control Real-Time Windows Target through Simulink dialog boxes and
menus. You can generate and compile C code for your model (1), connect to
the target to load it into memory (2), and start real-time code execution (3).16
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5. The fifth possible way of combination [19] [13]

Hardware: real-time hardware of National Instruments and Real-Time Workshop
Software: LabView real-time Module of National Instruments

First we can write the model or system with Simulink and Real-Time Workshop in Mat-
lab. The real-time Module from LabView makes it possible to import the Matlab code to
LabView code and then the code can be download and run in real-time hardware. One
function called MATLAB Script (Windows, Not in Base Package) make this possible and
easy.
To execute external MATLAB scripts, you must have MATLAB installed on your com-
puter to use MATLAB Script Nodes because the script nodes invoke the MATLAB script
server to execute MATLAB scripts. Because LabView uses actives technology to imple-
ment MATLAB Script Nodes, they are available only on Windows.
Use this node to execute external scripts. Figure 1.17 shown the command in LabView.
Enter the script in the node or right-click the node border to import text into the node.
Right-click the node border to add input and output terminals. Right-click a terminal to
set its data type. When you create a MATLAB script, shown in 1.18 you must use an
acceptable data type.

16www.mathworks.com
17www.ni.com
18www.ni.com
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Figure 1.17: LabView command for Matlab script17

6. The last which to be introduced is the product from firm Dspace who is the producer of
engineering tools for developing and testing mechatronic control systems [7].
The software, for example, Automotive Simulation Models (ASM) are open to Simulink
(Matlab/Simulink) models for the real-time simulation of standard automotive applica-
tions like diesel engine, gasoline engines and vehicle dynamics. The models will typ-
ically be used on a dSPACE Simulator for hardware-in-the-loop testing of electronic
control units (ECUs) or during the design phase of controller algorithms for early val-
idation by off line simulation. They are complete and independent models that support all
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Figure 1.18: Matlab skript18

the relevant phases of the model-based development process. From hardware, they have
Hardware-in-the-loop simulators, shown in 1.19.

Figure 1.19: Dspace simulator19

19www.dspace.de



Chapter 2

Mining Machine Simulation

In this chapter we will write some basic information and knowledge about the relevant areas of
the mining machine what we will later simulate to understand and solve the problem. And then
we will also look for the important and necessary information for the simulations.

2.1 Introduction of the Mining Machine

The machine in details can be seen in Figure 2.1. The excavation work is done by a cutting
head on a telescopic boom which is independently movable in horizontal direction around the
turret and the vertical direction around the linkage between the turret and the telescopic boom.
The cutted materials fall down on the loading table which collect the materials and feed the
chain conveyor, and it transports the material through the machine to the back. The material
is reloaded onto the swiveling belt conveyer used to load. The rear stabilizer gives additional
support and stability to stabilize the miner during the whole operation.

2.1.1 The Cutting Process

Here we will describe the general process to cut a tunnel.
First the miner positioning itself to the right place by moving on the crawler, and then the
loading table and rear stabilizers are lowered so that the position of miner is fixed. The cutting
head cuts into the wall to form an initial penetration and to give depth, in the ’sump in’ process.
This is done with the boom fixed in horizontal and vertical direction, it only by extracting the
telescopic cylinder.
There are two phase of the cutting process. First is cutting, shown in Figure 2.2 and then
profiling. After the depth is reached , the mining machine moves forward on the crawler tracks

1 c©Sandvik 2007, courtesy of Sandvik
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Figure 2.1: Main Parts and Function of the Mining Machinen1
1 Cutter head with gearbox 6 Crawler Track

2 Telescopic cutter boom 7 Rear stabilizer with frame
3 Turret 8 Operator cab

4 Loading table 9 Swivel belt conveyer
5 Chain conveyor

and pulls back the telescopic boom. The process is performed with the retracted telescopic
boom in order to get a steadier cutting process with less wear of components. The cut cycle
is performed with horizontal movement, (swiveling) from one side to the other with a certain
cutting height. When the boom reaches the end point of each swiveling movement the boom is
raised or lowered to cut another.
After a complete phase we need to perform a profiling cut, to get a smoother profile. The boom
makes a movement around the contour of the phase to adjust the profile. This is usually done
with a higher oil flow which allows higher profiling speed. When a complete face is cut, the
miner sump-in again and repeats the procedure. There can also be additional profiling cuts
before the miner makes another sump-in to cut another phase. It is desirable to cut the tunnel
profile as accurate as possible when the cost of lining of the tunnel increases significantly if
the inaccuracy is large. The miners are today run by an operator placed on the machine who,
more or less, manually cuts the desired tunnel profile. The control system of the miner today
is relatively advanced and a fully automated operation could be a reality in the future. To be
able to fully automate the miner the performance of the miner has to be very accurate to get a
satisfying result.

2 c©Sandvik 2007, courtesy of Sandvik
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Figure 2.2: cutting process2

2.1.2 Profile Control System

The profile control system is designed to indicate when the boom has reached the pre-
programmed limit of the tunnel wall. The head is modeled as two spheres in the profile con-
trol system and an indication is given when the edge of the outer sphere has reached the pre-
programmed limit. This is optional equipment on the miners today but helps the operator to cut
an accurate tunnel profile.

2.1.3 Cutting Technology

Having the right geometry and speed of the cutting head, and the right power behind it is nec-
essary for the best utilization of the miner and to maintain the most economic durability.
The cutting head, shown in Figure 2.3 consists of water cooled picks mounted on the cutting
head body in a pattern optimized to get the best cutting performance and homogeneous material
size of the cut material. The picks are specially developed for optimal properties and cutting
performance.
The geometry and design of the cutting head is adapted to certain conditions, such as cutting
speed, slewing speed (horizontal movement) and the conditions of the rock. There are different
heads to choose from, with different numbers of picks and positions of these picks, depending
on the hardness of the rock.

3 c©Sandvik 2007, courtesy of Sandvik
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Figure 2.3: cutting head3

2.1.4 Kinematics

Definition to describe Kinematic

The simplest way to describe the series robot is two types of matrices [20] [8]:

• Transformation matrices and
• Coordinate mapping matrices

The transformation matrices mi describe the rotation of robot arms around its respective
rotations axis. So for one robot having p axis, it needs to have also exactly p transformation
matrices. The general formula is:

mi =

⎡
⎢⎢⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 cos(ui) −sin(ui)
0 0 sin(ui) cos(ui)

⎤
⎥⎥⎥⎥⎦

(2.1)

From this formula, we can notice that every axis rotation is describe as the rotation (with angle
u1) around the local x-axis.
The coordinate mapping matrices γi describe the coordinate transformation between two
coordinate systems. For calculating the robot with p axis, we need p - 1 coordinate mapping
matrices. But when the origin of the end-effector system is not the origin of the last axis of



CHAPTER 2. MINING MACHINE SIMULATION 31

robot - for example, Tool Center Point - then we need one more matrix. The general formula is:

γi =

⎡
⎢⎢⎣
1 0 0 0
di cos(αi) −sin(αi) 0
0 sin(αi) cos(αi) 0
ai 0 0 1

⎤
⎥⎥⎦ (2.2)

The parameters di, ai, αi are called Denavit-Hartenberg-Parameter.

Design of Mining Machine

For the design of the machine we will simulated we need the Denavit-Hartenberg-Parameter.
In the following, we will make one Kinematic model of it.
We can see in the Figure 2.4, it shows the basic geometric proportion of the mining machine to
describe the cutter boom and the coordinates systems. The z coordinates of every coordinates
system shown in the same direction in order to assume an application of coordinate mapping
matrices. The x coordinates show in the direction of rotation axis in order to enable the
application of transformation matrices.

Figure 2.4: kinematic model

For the further consideration we will take point C (center of the middle point of two cutting
heads) as the end-factor of model.
We will research the the geometry of the kinematic model with Denavit-Hartenberg-Paramete
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- shown in Table 2.1. It is used for axis 2 to define the end - effector coordinate system. The
result from it is the displacement of the a2.

Axis i Distance ai Offset di Deflection-
[mm] [mm] angle αi [rad]

1 1200 2430 π
2

2 3894 0 0

Table 2.1: Denavit - Hartenberg - Parameter

Forward Kinematics

To describe the kinematics of the mining machine we need two coordinate mapping matrices
and two transformation matrices. The complete transformation matrix G is the product of the
matrices:

G= m1γ1m2γe (2.3)

Here γe describe every coordinate mapping matrices that point c needs to move on the axis 2.
The matrix G is then all the transformation matrices needed to describe the transformation one
points from the end - effector coordination system to fix frame coordinate system which is axis
1 in Figure 2.4.
Now we can describe point c in the fix frame coordinate system :

Crast =GCee (2.4)

cee is the position of point c in the end - effector coordination system which can be describe in
homogeneous coordinate:

Cee =

⎡
⎢⎢⎣
1
0
0
0

⎤
⎥⎥⎦ (2.5)

We can write crast after adoption of all the parameters:

Grast =

⎡
⎢⎢⎣

1
d1+ sin(u1)a2

−sin(u1)a1− sin(u1)cos(u2)a2
cos(u1)a1+ cos(u1)cos(u2)a2

⎤
⎥⎥⎦ (2.6)
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Inverse Kinematics

For the inverse kinematics we know one point with position and direction of end - effector
coordinate, and need from this to ensure the articular angle ui. So we have the Matrix of the
end position in fixed frame coordinate:

G0 =

⎡
⎢⎢⎣
1 0 0 0
xp 0 −1 0
yp 1 0 0
zp 0 0 1

⎤
⎥⎥⎦ (2.7)

The machine has two degree of freedom (u2 and u2),so that we need two coordinates (xp and
yp) to define it. But in the space we need the third coordinate zp which is necessary with xp
and yp to fix the position. And setting the matrix G0 is equal to matrix G, we get the ui as the
function of the xp and yp :

u1 = arcsin(− yp
(a1+ cos(u2)a2

) (2.8)

u2 = arcsin(−xp+d1
a2

) (2.9)

2.1.5 Hydraulic System

The cutter boom angles are controlled with hydraulic proportional valves. A load compensation
makes the oil flow independent from the pressures in the cylinder. A counterbalance valve
closes the meter-out side, if the load is overrunning. During still stand, these valves close and
provide safety against unexpected motion caused by tube rupture or other events.
When the system does not consume much oil, a load sensing pump reduces the supply pressure.

2.2 Simulation Requirement

For this project we need HIL simulation. We simulate the mining machine to test the control
systems. This system should be real-time capable with similar behavior like the real machine.
We need to simulate the essential properties of the real system: kinematics, dynamic behavior
of the hydraulic system and the mechanical construction, further the cutting load force. For
visualisation we will show the cutting load force and the video of the movement of the cutting
arm - changing x and y coordinate.
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2.3 Simulation Details

2.3.1 Hydraulic

The PID controller calculation

In an industrial process a PID controller attempts to correct the error between a measured pro-
cess variable and a desired set point by calculating and then outputting a corrective action that
can adjust the process accordingly.
The PID controller calculation (algorithm) involves three separate modes; the Proportional
mode, the Integral mode and Derivative mode. The proportional mode determines the reac-
tion to the current error, the integral mode determines the reaction based on recent errors and
the derivative mode determines the reaction based on the rate by which the error has been
changing. The weighted sum of the three modes is outputted as a corrective action to a control
element such as a control valve or heating element.

Valve Spool

The relative amplitude of the control piston (-1..0..1) alleges the gradation of the oil flow and
the opening of the piston chamber, shown in Figure 2.5. A normalised input signal is used so
that the simulation of every kind of valves is independent on the absolute valve of piston stroke:
the inertia of the spool is simulated with a rate limitation for the position change.
The normalised input is then expanded with a scale factor to the nominal value of the electric
input current. A backlash element regards the influence of the moving direction, see in Figure
2.6.

Directional Control Valve

With the position of the control piston the oil that flows over the respective edge is controlled.
The opening of the four orifices is modeled with look-up tables with the spool position as input.
The spool position is not represented in millimeters, but with the current needed for a certain
elongation. So the look-up table can be expressed with the measured valve characteristics (oil
flow over input current), shown in Figure 2.6.
Beside the opening k, the oil flow depends also on the pressure across the edge, see the equa-
tion 2.10.

q= k
qN√
PN

√
p (2.10)
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Figure 2.5: Control piston

qN ... nominal oil flow
PN ... pressure drop for nominal oil flow
k ... valve opening factor 0..1
Negative pressures may occur, which cause an oil flow into the opposite direction. To avoid a
negative argument for the square root, a modification must be done,see equation 2.11:

q= k
qN√
PN
sign(p)

√
|p| (2.11)

During operation it could happen, that the oil pressure tends to go below zero, which is not
possible in reality. A vacuum will occur, this is called cavitation. A saturation block inhibits
the pressure falling below zero.
In Figure 2.6 show the simulation model of hydraulic in horizontal and vertical direction.
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Figure 2.6: Hydraulic model in horizontal und vertical direction
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2.3.2 Cylinder

The model for a hydraulic cylinder is shown in Figure 2.7.

Figure 2.7: Simulation model of cylinder in horizontal and vertical direction
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The oil flows coming from the valve are inputs, whereas the pressures are outputs. The pressures
are calculated in the following way.
The Bulk modulus of a solid or liquidmaterial describes the volume change caused by a pressure
change and is defined in eqation 2.12:

E= −V ∂p
∂V

(2.12)

E ... Bulk modulus of the oil (approx. 1.4GN/m2)
V ... Volume of the oil
p ... pressure of the oil

Expanding with ∂t gives:

E= −V∂p
∂t

∂t
∂V

(2.13)

The oil volume inside the cylinder is decreased by the incoming oil and the motion of the piston.
This gives equation 2.14:

E= −V
.p

q−
.

xA
(2.14)

Solving for the pressure change gives the formula 2.15 for modeling the pressure in a cylinder
chamber, see Figure 2.7:

.p=
E
V

(q−
.

xA) (2.15)

The pressure is obtained by integrating over time.
Multiplication with the area gives the force applied to the piston, which is modeled with its
mass m. An additional input allows to apply the external load force to the piston of the cylinder.
After integrating the acceleration, the speed of the piston is obtained. When the piston reaches
its motion limits, this speed must be overridden and set to zero. In spite, motion in the opposite
direction must be allowed. These functions are performed inside the limitation block in the
model in Figure 2.7.
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2.3.3 Simulation of Mechanical System

Figure 2.8 shows the simplified geometric model of the cutting system of the mining machine. It
is a two-degree-freedom serial robot. The geometric of cutting arm can be simplified in Figure
2.9. In most situations, the motion of the machine is not combined, each direction is driven
separately. This allows a simplified simulation that neglects the Coriolis forces. Consequently
two separate simulation models for the vertical and horizontal motions without any coupling
are used.
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Figure 2.8: Simple geometric model
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Figure 2.9: Simplified geometric model of cutting arm

Figure 2.10 shows the model for the horizontal system. The cutting arm is characterised with
its moment of inertia Jhor. It is driven by the torque of a rotational spring, which represents the
elasticity of the steel construction. The force output for the cylinder model is calculated from
this torque. The momentum of an external cutting force is also added at this point. A model for
viscous friction lets oscillations vanish after some time.

Figure 2.10: Horizontal system in simulation
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The model for the vertical motion is shown in Figure 2.11. Additionally the gravitation force
has to be regarded.

Figure 2.11: Vertical system in simulation

For this model we also use law of cosine, see formula 2.16, to get the β, the vertical angle of
cutting head. We will explain it with the draft in Figure 2.12. With Xv and Yv the x and the
angle η1 can be calculated. x is a, rzyl is b and lmin+ hub is c, Now unknows of the law of cosine
which we need to calculate γ are completed. The maximal angle η which is in consequence of
the vertical swing area is also given. From this all, angle β can be calculated. In Figure 2.13
give the simulation model of law of cosine.

α2 = b2+ c2−2bccos(α) (2.16)
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d=270?

l1=1764
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Figure 2.12: Draft of Law of Cosine

Figure 2.13: Simulation model of Law of Cosine
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2.3.4 Kinematics

After solving the geometric problem, it means the horizontal and vertical angles can be
calculated, we can give the equation of motion which gives the end position of the cutting head
(forward kinematics).

x= −l2 sinα− l4 sinαsinβ− l3 sinαcosβ (2.17)

y= −l4 cosβ+ l3 sinβ (2.18)

In Figure 2.14 shown how to build and realize the kinematic model in the simulation.

Figure 2.14: Kinematic model in simulation



Chapter 3

Hardware in the Loop Simulation with
LabView

In this chapter we have done the simulation with LabView, the Real-Time Module provides a
toolbox for simulation. It contains integrators and mathematical function that are required for
solving ordinary differential equation (ODE). Following we will present every detail needed in
simulation and all process of it.

3.1 Experiment Setup

We used the hardware and software from the National Instrument. Compact FieldPoint and
Real-Time module which was discussed in the section 1.2.4. Figure 3.1 shows the whole
setup for this simulation. The signal generator will create one signal as input or we can use
the joy stick to change signal manually. They are connected to analog input of Compact Field-
Point hardware with the cable. The output is connected to an oscilloscope. The connection
between processor (Compact FieldPoint) and computer is through TCP/IP which realize the
data exchange.

44
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Signal Generator

Joy StickOscilloscope

Figure 3.1: Setup for LabView simulation
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3.2 Configuration

NI offers a software called NI Measurement & Automation Explorer, see Figure 3.2, to
configurate the hardware (for us the Compact FieldPoint) and define the inputs and outputs.

Figure 3.2: NI Measurement & Automation Explorer

At the ´konfiguration´ window, pressing down the right mouse button at ´Netzwerkumgebung´
will display the Internet connect (IP Address). From this displayed window right-click the IP
Address you can find and choose ´Find Devices´, shown in Figure 3.3. In this you can define
all the input and output channels, their ranges and so on, shown in Figure 3.4. If there are some
old data still down in the processor, you can choose ´Dateitransfer´, see Figure 3.5, to rename
and delete it, shown in Figure 3.6.
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Figure 3.3: Find Devices in Measurement & Automation Explorer
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Figure 3.4: Configuration of input and output
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Figure 3.5: Dataitransfer in Measurement & Automation Explorer
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Figure 3.6: File Transfer and Startup
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3.3 Simulation Model and Process

The simulation model is designed with the LabView programming environment, the program
source code see Appendix A. But only the properties of mechanical construction and kinematics
which are considered already in detail in section 2.3 are built. The reason why we have not
made the simulation part of hydraulic and cylinder will be explained in the section 3.5.
Some important details for the LabView simulation will be introduced in the following.
After configuration of all the inputs and outputs, we can get the input signal through the Lab-
View function called FieldPoint Read, with which the input signal channel can be chosen, shown
in Figure 3.7 and 3.8.

Figure 3.7: Function FieldPoint read

Figure 3.8: FieldPoint read in simulation model

For the output the LabView provide a similar function called FieldPoint Write, shown in Figure
3.9, with this we also can choose through which output channel we want write our output,
shown in Figure 3.10.

Figure 3.9: Function FieldPoint write
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Figure 3.10: FieldPoint write in simulation model

For the simulation is also important how to exchange the data between simulation loops and
while loops [12].
It can be put into one or more ordinary While loops running in parallel with the Simulation
loop. Data can be exchanged between the loops using local variables. In the Figure 3.11 shown
for example the value of the vertical pivoting angle is generated in the while loop, being used
in the simulation loop via a local variable. Note how both loops are stopped by only one Stop
button. A local variable is used, and a boolean constant drawn to another local variable causes
the while loop to halt when the Stop button in the simulation diagram is pressed.

Figure 3.11: Data exchange between simulation loops and while loops

After building the simulation model, we need to run the ´RT communication wizard´, the win-
dow shown in Figure 3.12. The wizard removes controls in the top-level loop of VI and replace
them with RT FIFOs. The Wizard generates a normal priority parent VI to access the RT FIFOs
and share data with another TCP/IP, UDP, DataSocket, or Logos.
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Figure 3.12: RT Communication Wizard

Following is the process of the wizard.
In the window ´RT communication wizard´, the communication paths, the RT targets and the
time critical VI that will be simulated later should be selected, shown in Figure 3.12. At the
window ´RTCW Loop Selector´, the while or the simulation loop is chosen to compile, shown
in Figure 3.13. Like we introduced before, for the data exchange between this two loops, we
will choose the while loop. At last we can choose the control and indicators (in/output), shown
in Figure 3.14. After all this, there VIs (Virtual Instrument, a program part in LabView from
National Instrument) will be generated automatically - Host VI, Time-Critical priority Loop
(TCL) VI and Normal Priority Loop (NPL) VI. While the Host VI on the computer operates,
TCL and NPL are operating on the processor.

Figure 3.13: Selection of loop
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Figure 3.14: Select the control and indicator

There are three possibility to run a simulation:

1. The program is implemented on the PC and gets all outputs via the network from the
FieldPoint hardware. With this the simulation is not hard real-time, since it is executed
on the PC like a standard LabView application.

2. The program can be downloaded to the hardware and executed there. This program on the
hardware contains also the routines for data exchange and communication with the PC,
consequently there is no guarantee fro performance in real-time. And the result can be
monitored on PC through Host VI. But after a power-down, the program on the hardware
is lost and must be reloaded again.

3. The program can be implemented in setup.exe file that is started automatically after each
power.up of the hardware. In this case ,the program is permanently installed and needs
no further download from the PC. This is the way, how the FieldPoind hard- and software
may be used as an autonomous real-time automation system.
For the real-time simulation on the FieldPoint hardware, we need to download the pro-
gram to it. In NPL VI, we need to do ’Build Application or Shared Library’, shown
in Figure 3.15. After all the application is built, the simulation program can run on the
FieldPoint hardware, it is means the TCL and NPL VIs run on the processor. And if we
want to monitor the program and result on computer, we can open the Host VI.
The compiler generates three software objects from the project: A simulation loop run-
ning in real-time, further a communication process that exchanges data between the simu-
lation and the PC via network. The simulation loop on the hardware is a separate task that
does not directly communicate over the network, which maybe stalls the process execu-
tion (since TCP/IP is no real-time communication protocol). Finally, a LabView program
running on the PC for visualisation is the third part of the project.
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Figure 3.15: Build Application

3.4 Experiment Results

The simulation frame is a software loop dedicated for simulation blocks only. The properties
of this frame determine the solver for the ODEs, further the simulation times, which has to be
set to infinite for continuously running systems. With the experimental system in Figure 3.16,
several experiments were done. An important test is the response time of the simulation. For
this the waveform generator inputs a step signal to the analogue input. the reaction is monitor
on an analogue output an oscilloscope, shown in Figure 3.17.
Increasing the complexity of the simulation loop leads to problems, for example an initial time
delay of approximately four seconds, in Figure 3.17. It seems that the system has problems
to update the inputs when the calculation needs to much time. Since there is not feedback
possibility for the elapsed computing time in the simulation loop, this fact could not be proved.
Further there were matching problems with the different releases of hard-, firm- and software.
It was not possible to solve the problem until the end of this work.
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Figure 3.16: Test simulation model with LabView in horizontal direction

Figure 3.17: Delay in the simulation
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3.5 Conclusion

The FieldPoint hardware and the Real-Time module of LabView should allow to run a real-time
simulation on the hardware together with a comfortable visualisation and operation facility on
the PC Unfortunately it was not possible to obtain a proper implementation due to version
problems among the components until the end of this work.



Chapter 4

Hardware in the Loop Simulation with
Matlab

In the previous chapter a simulation systemwas constructed based on the LabView environment.
Alternatively a system was built and tested with Matlab/simulink.

4.1 Experiment Setup

We have used the hardware the Bernecker & Rainer (B&R) company and software of the Mat-
lab/Simulink - Real-Time Workshop from the Mathworks company which were already pre-
sented in chapter 1.2.4. In Figure 4.1 the whole setup for this simulation. Like the simulation
with LabView we also need a signal generator as input and a visualisatin was implemented.

4.2 Simulation Model design and Visualisation

4.2.1 Model Design

The simulation model is designed with the Matlab/Simulink programming environments. The
code can be found in Appendix B. The data flow diagram in Figure 4.2 shown the process of
the model building. The complete model is developed with the essential properties of the real
system, kinematic, mechanical construction, and dynamic behavior of the hydraulic system
which already were considered in detail in chapter 2.3.
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Analog Input Analog Output

B & R Control System

Figure 4.1: Experiment setup

Model Design

with Simulik
B & R Compiler

C - Files PLC Program

Matlab

Real-Time

Workshop

Figure 4.2: Data flow diagram of the model building procedure

After the model is written with Simulink, it should be run in real-time workshop, shown in
Figure 4.3. As result we get some automatically generated files with C-language code. Then
the C-lauguage code will be compiled with B & R compiler, so at last we will get the PLC
program, shown in Figure 4.4.
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Figure 4.3: Real-Time Model build with Matlab
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Figure 4.4: B& R Automation Studio and Adjustment
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4.2.2 Visualisation

In the Figure 4.5 the data flow diagram of the process of visualisation is shown. For the visu-
alisation we need first to draw one cutting arm model with the animation software Cinema -
4D, shown in Figure 4.6, and then create a video of it. This video contains the images for all
possible positions: with the help of Macromedia Flash Professional a script program is added,
shown in Figure 4.7, which will select the the image of the video to be displayed according
to the machine arm coordinates. Then the publishing procedure generates a SWF file (shock
wave) and some auxiliary html files for display in a Web-browser. The html source codes can
be found in Appendix C.

Graphic made from

Cinema 4D Animation Flash Script

AVI Video
SWF - File

HTML - File

Import
Preview Publish

Figure 4.5: Data flow diagram of the Visualisation

Figure 4.6: Cinema 4D model of cutting arm
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Figure 4.7: Flash Action Script for the cutting arm visualisation
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4.3 Real-Time Process

The PLC program run on the B & R control system and perform the simulation in real-time.
The results - x and y coordinates can be monitored on the computer. Through the B & R web
server the data from PLc program - simulation results are sent to main html file to refresh the
flash video with the new coordinates of the cutting arm. Through one browser we can monitor
the flash video, which show the new position of the cutting arm every half second. In Figure
4.8 is the data flow diagram of the whole process. And in Figure 4.9 the web interface of the
visualisation is shown.

Input
Real-Time

Model

PLC -Program

B&R Web

Sever

Monitor Data HTML Files

Browser

Flash

Player

PLC PC

Position of

Machine

Figure 4.8: Data flow diagram of the teal-time process



CHAPTER 4. HARDWARE IN THE LOOP SIMULATION WITH MATLAB 65

Figure 4.9: Visualisation screen at run-time



Chapter 5

Summary and Outlook

The aim of this work was a Real- Time Simulation, in this case a Hardware in the Loop Simu-
lation for hydraulic control of mining machines and visualisation of these simulation models.
In the first chapter we introduced the Real - Time Simulation that the simulation of a compo-
nent is performed such that the input and output signals show the same time-dependent values
as the real, dynamically operating component. There are many reasons why we use Real - Time
Simulation. It may be too complex and too expensive to research a real system, and it’s may be
too dangerous. In many cases the real system does not exist yet. It’s much more easy to modify
a simulation model than the real system and so on. Then we introduced the category of the
Real - Time Simulation. There are three types of it – real process and simulated control system,
simulated process and simulated control system,simulated process and real control system. The
Hardware in the loop simulation is one of the Real - Time Simulation in which the process is
simulated and the control system is real. In the HIL simulation you can use the real actuator,
process and sensor or simulate them. For our model we simulate the process. Then we show
some ways - the combination of the hard- and software to realize the HIL simulation. We used
two ways of them for our simulation.
In the second chapter we introduced some details of the mining machine we need to simulate
and the simulation details. The simulation model includes kinematics, dynamic behavior of the
hydraulic system and the mechanical construction, further the cutting load force.
In the third and fourth chapter we program the simulation with two different function-block ori-
ented, graphical programming environments – LabView and Matlab/simulink. After testing, we
notice we failed to make a real-time capable model with LabView. And the model with Matlab
running on an industrie control hardware from Bernecker & Rainer is ready for use. The final
system will be applied to test the automation software with the aim of improving the cutting
accuracy, before the machine prototype is available.
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A.1 Whole Model

Figure A.1: Whole Model
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A.2 Mechanical Construction in Horizontal Direction

Figure A.2: Subsystem of Mechanical Construction in Horizontal Direction
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A.3 Mechanical Construction in Vertical Direction

Figure A.3: Subsystem of Mechanical Construction in Vertical Direction
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A.3.1 Law of Cosine

Figure A.4: Subsystem with Law of Cosine in the Vertical Direction
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A.4 Kinematic Model

Figure A.5: Kinematic Model
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B.1 Whole Model

Figure B.1: Whole Model
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B.2 Simulation Model in Vertical Direction

Figure B.2: Simulation Model in Vertical Direction
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B.2.1 load Compensation in Vertical Direction

Figure B.3: load Compensation in Horizontal Direction
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B.2.2 Valve in Vertical Direction

Figure B.4: Valve in Vertical Direction
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B.2.3 Cylinder in Vertical Direction

Figure B.5: Cylinder in Vertical Direction
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B.2.4 Mechanic Construction in Vertical Direction

Figure B.6: Mechanic Construction in Vertical Direction
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B.3 Simulation Model in Horizontal Direction

Figure B.7: Simulation Model in Horizontal Direction
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B.3.1 load Compensation in Horizontal Direction

Figure B.8: load Compensation in Horizontal Direction
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B.3.2 Valve in Horizontal Direction

Figure B.9: Valve in Horizontal Direction
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B.3.3 Cylinder in Horizontal Direction

Figure B.10: Cylinder in Horizontal Direction
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B.3.4 Mechanic Construction in Horizontal Direction

Figure B.11: Mechanic Construction in Horizontal Direction
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B.4 Kinematic Model

Figure B.12: Kinematic Model



Appendix C

HTML File

C.1 Main HTML File

<html>
<head>
<title>abk</title>

</head>
<frameset rows="500,*">

<frame name="banner3" scrolling="auto" src="vis1.html">
<frame name="banner" scrolling="auto" src="test2AA.html">

<noframes>
<body>
&nbsp;

<p>This page uses frames, but your browser doesn’t support them.
</p>
</body>
</noframes>
</frameset>

</html>
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C.2 HTML File of Flash

<HTML>
<HEAD>
<meta http-equiv=Content-Type content="text/html;
charset=ISO-8859-1">

<TITLE>vis1</TITLE>
</HEAD>

<BODY bgcolor="#FFFFFF">
<!-- URL’s used in the movie-->
<!-- text used in the movie-->
<OBJECT classid="clsid:D27CDB6E-AE6D-11cf-96B8-444553540000"
codebase=
"http://download.macromedia.com/
pub/shockwave/cabs/flash/swflash.cab#version=6,0,0,0"
WIDTH="550" HEIGHT="400" id="vis1" ALIGN="">
<PARAM NAME=movie VALUE="vis1.swf">
<PARAM NAME=quality VALUE=high>
<PARAM NAME=bgcolor VALUE=#FFFFFF>
<EMBED src="vis1.swf" quality=high bgcolor=#FFFFFF
WIDTH="550" HEIGHT="400" NAME="vis1" ALIGN=""
TYPE="application/x-shockwave-flash"
PLUGINSPAGE="http://www.macromedia.com/go/getflashplayer">

</EMBED>
</OBJECT>
</BODY>
</HTML>
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C.3 HTML File for catch X/Y Coordinates

<HTML>
<HEAD>
<meta http-equiv=Content-Type content="text/html;
charset=ISO-8859-1">

<meta HTTP-EQUIV="REFRESH" CONTENT="2">
<TITLE>test22</TITLE>
<SCRIPT LANGUAGE=’JAVASCRIPT’>
function mist(){
parent.frames[0].vis1.SetVariable
(’ver’,’<PVI>
ReadVar @/Pvi/LNINA2/COM2/PVITEST/CPU/verti</PVI>’);
parent.frames[0].vis1.SetVariable
(’hor’,’<PVI>
ReadVar @/Pvi/LNINA2/COM2/PVITEST/CPU/hori</PVI>’);
}
</SCRIPT>
</HEAD>
<BODY bgcolor="#FFFFFF" onload="mist()">

<p align="center">&nbsp;</p>

<h2 align="center">Aktuelle Werte</h2>

<p align="center">&nbsp;</p>
<div align="center"><center>

<table BORDER="1" CELLPADDING="3">
<tr>
<th>Variable</th>
<th>Type</th>
<th>Value</th>

</tr>

<tr>
<td>Alpha</td>
<td>[ ]</td>
<td ID="uff" ALIGN="RIGHT">
<PVI>
ReadVar @/Pvi/LNINA2/COM2/PVITEST/CPU/verti
</PVI></td>

</tr>

<tr>
<td>Beta</td>
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<td>[mV]</td>
<td ALIGN="RIGHT">
<PVI>
ReadVar @/Pvi/LNINA2/COM2/PVITEST/CPU/hori
</PVI></td>

</tr>

</table>
</center></div>
<p align="center"><br>

</BODY>
</HTML>


