Einfluss unterschiedlicher RTM-Harze und Fasertypen auf das mechanische Eigenschaftsprofil von NCF-Composites

Diplomarbeit

von Wolfgang Kitzmüller erstellt an der

Polymer Competence Center Leoben GmbH

eingereicht am

Institut für Werkstoffkunde und Prüfung der Kunststoffe an der Montanuniversität Leoben

Betreuung: Dipl.-Ing. Dr.mont. Gerald Pinter **Begutachtung:** o.Univ.-Prof. Dipl.-Ing. Dr.mont. Reinhold W. Lang

Leoben, November 2007

Ich erkläre an Eides statt, dass die vorliegende Diplomarbeit von mir selbst verfasst wurde und dass ich dabei keine anderen Hilfsmittel als die angegebenen benutzt habe.

Leoben, November 2007

Wolfgang Kitzmüller

DANKSAGUNG

Die vorliegende Diplomarbeit wurde im K_{plus}-Projekt "Liquid moulding (LM) technology, fatigue design concept and repair technology in aircraft applications" (Projekt-Nr.: II 1.7) an der Polymer Competence Center Leoben GmbH im Rahmen des Kompetenzzentren-Programms K_{plus} des Bundesministeriums für Verkehr, Innovation und Technologie unter Beteiligung der Montanuniversität Leoben (Institut für Werkstoffkunde und Prüfung der Kunststoffe (IWPK)), der Airbus Deutschland GmbH (Bremen, D) und der Fischer Advanced Composites Components AG (FACC AG; Ried/Innkreis, A) erstellt und mit Mitteln des Bundes und der Länder Steiermark und Oberösterreich gefördert.

An dieser Stelle möchte ich mich beim Vorstand des IWPK, Herrn o.Univ.-Prof. Dipl.-Ing. Dr.mont. Reinhold W. Lang für die Ermöglichung, Durchsicht und Korrektur der vorliegenden Arbeit bedanken.

Ganz besonders möchte ich mich bei Herrn Dipl.-Ing. Dr.mont. Gerald Pinter für die Betreuung dieser Arbeit bedanken. Durch sein umfangreiches Fachwissen und seine Kenntnisse zum Verfassen von wissenschaftlichen Arbeiten, welches er mir in unzähligen Gesprächen vermittelte, gab er mir stets wertvolle Anhaltspunkte zum Interpretieren der Ergebnisse und Gelingen dieser Arbeit.

Bedanken möchte ich mich auch bei den Mitarbeitern des PCCL und des IWPK für das kollegiale Arbeitsklima und die zahlreichen Hilfestellungen. Speziell Herrn Dipl.-Ing. Markus Wolfahrt für die Hilfe bei der Literatursuche und Durchsicht der Ergebnisse und Herrn Mario Lintschinger für die motivierende Unterstützung möchte ich an dieser Stelle danken.

Einen weiteren Dank richte ich an die Mitarbeiter der FACC für die Erzeugung der Probekörper und im Einzelnen an Herrn Dipl.-Ing. Swen Zaremba für die stets kompetente Beantwortung meiner Fragen bezüglich Fertigung und Materialien.

Nicht zuletzt möchte ich mich bei meiner Familie und hier besonders bei meinem Vater, Wilfried Kitzmüller, bedanken. Er ermöglichte mir meinen gewählten Bildungsweg zu beschreiten und gab mir stets den nötigen Rückhalt.

KURZFASSUNG

Ziel dieser Arbeit war es verschiedene RTM-Laminate mechanisch zu charakterisieren. Als Faserhalbzeug dienten sogenannte Non-Crimp Fabrics (NCFs) aus Kohlenstofffasern. Es wurde der Einfluss unterschiedlicher Fasertypen, Matrix-Harzsysteme und Lagenaufbauten untersucht und dabei die wesentlichen Eigenschaften unter monotoner Zug- und Druckbelastung (Festigkeit und E-Modul) als auch das Ermüdungsverhalten unter wechselnder Last bestimmt.

Bei der Charakterisierung der Prüfkörper bezüglich ihrer Länge zeigte sich durchgehend eine um etwa 10 % höhere Zugfestigkeit für die ungelochten Kurzproben. Bezüglich E-Modul konnte kein Einfluss der Prüfkörperlänge ermittelt werden.

Die Untersuchungen der Fasertypen zeigten für die Proben mit dem Fasertyp HTS eine höhere Zugfestigkeit, was der höheren Festigkeit der Faser selbst entsprach. Die Probekörper mit der Faser HTA, hingegen, wiesen eine höhere Festigkeit auf Druck und auch ein etwas besseres Ermüdungsverhalten auf. Das wurde auf die Unterschiede in der Schlichte der beiden Fasern zurückgeführt. Bei den E-Modulwerten ergaben sich keine Unterschiede für beide Faservarianten.

Beim Vergleich der vier Harzsysteme (RTM6, EPS 600, EPS 601 und 977-2) zeichneten sich prinzipiell keine großen Unterschiede ab. Das Harzsystem EPS 601 hatte tendenziell die höchsten Zugfestigkeitswerte aber etwas niedrigere Festigkeitswerte auf Druck. In Bezug auf den E-Modul konnte kein Unterschied bei den Harzen ermittelt werden. Das beste Ermüdungsergebnis zeigten die Proben mit dem zäh-modifizierten Harzsystem 977-2 der Firma Cytec.

Die Untersuchungen des Einflusses vom Lagenaufbau (biaxial und quasi-isotrop) ergaben wie erwartet deutlich höhere E-Modulwerte und Festigkeiten der 0°/90°-Proben, sowohl auf Zug als auch auf Druck. Ebenso war ein besseres Ermüdungsverhalten der biaxialen Proben festzustellen.

Zusammenfassend kann insbesondere hinsichtlich der unterschiedlichen Matrix-Harzsysteme gesagt werden, dass das untersuchte mechanische Eigenschaftsprofil nur geringe Unterschiede aufwies und somit zumindest in dieser Hinsicht sich Alternativen zum bereits in der Luftfahrt qualifizierten RTM-Harzsystem HexFlow RTM6 anbieten würden.

ABSTRACT

The aim of this work was the mechanical characterization of different RTMlaminates. The fibre preforms, so called non-crimp fabrics, were made of carbon fibres. The influence of different fibre-types, resins-systems and lay-ups had been analyzed and the significant properties under monotonic tensile and compression load (stiffness and strength) as well as the fatigue behaviour under alternating load were determined.

The characterisation of the test specimens concerning their length showed an increase in tesile strength of 10 % for the short specimens. With regard to stiffness (Young's modulus) there no influence of specimen geometry was detected.

Concerning the influence of fibre-type the HTS fibre showed a higher tensile strength, whereas the specimens with the HTA fibre gave a higher compression strength and slightly better result in the fatigue tests. No effect was noticed on the results for stiffness. The differences observed were explained based on stiffness and sizing of the fibres itself.

The comparision of the four different resin-systems (RTM6, EPS 600, EPS 601, 977-2) yielded no significant differences in their property profile. There was a tendency to the highest tensile strength and the smallest compression strength for EPS601. No differences could be measured for stiffness. The best fatigue results were achieved with the toughness modified resin 977-2 from the company Cytec.

As expectet the lay-up of the fibres showed a higher strength and stiffness for the biaxial lay-up, for both tensile and compression loads. Also a better fatigue performance was achieved with the biaxial samples.

Summerizing it can be concluded that there were just little differences in the mechanical property profile of the several resin-types investigated. Therefore, at least in this respect, alternative RTM-resin systems would be possible in addition to the only one qualified in civil aircraft (HexFlow RTM6).

INHALTSVERZEICHNIS

KU	RZFASSUNG	
AB	STRACT	IV
AB	BILDDUNGSSVERZEICHNIS	VII
1.	EINLEITUNG UND ZIELSETZUNG	1
2.	GRUNDLAGEN	3
2.1	Kohlenstofffaser	3
2.2 2. 2. 2.	Non-Crimp Fabric (NCF)	4 5 6 9
2.3	Spezielle Elastizitätsgesetze	9
2.4	Epoxidharze	12
3.	EXPERIMENTELLES	16
3.1 3. 3.	Werkstoffe	
3.2	Prüfkörper	
3.3 3. 3. 3. 3.4	Versuchsdurchführung .3.1 Zugeigenschaften .3.2 Druckeigenschaften .3.3 Ermüdungseigenschaften .3.3 Ermüdungseigenschaften	27 29 30 31 33
4.	ERGEBNISSE	37
4.1	Einfluss der Prüfkörpergeometrie	
4.2	Einfluss des Fasertyps	39
4.3	Einfluss des Matrix-Harz-Systems	45
4.4	Einfluss des Lagenaufbaus	50
5.	ZUSAMMENFASSUNG	56
6.	LITERATUR:	58

7. Al	NHANG	61
7.1 Ai	rbus Tabellen - Monotone Versuche	
7.1.1	001001 – RTM6 HTA Quasi-isotrop	
7.1.2	001002 – RTM6 HTS Quasi-isotrop	
7.1.3	001003 – RTM6 HTS BIAXIAL	
7.1.4	002002 – EPS601 HTS Quasi-isotrop	
7.1.5	003002 – EPS600 HTS Quasi-isotrop	
7.1.6	001002 – Cycom 977-2 HTS Quasi-isotrop	
7.2 Ai	rbus Tabellen - Dvnamische Versuche	
7.2.1	001001 – RTM6 HTA Quasi-isotrop	
7.2.2	001002 – RTM6 HTS Quasi-isotrop	
7.2.3	001003 – RTM6 HTS Biaxial	
7.2.4	002002 – EPS601 HTS Quasi-isotrop	
7.2.5	003002 – EPS600 HTS Quasi-isotrop	
7.2.6	001002 – Cycom 977-2 HTS Quasi-isotrop	111
7.3 Dy	ynamische Versuche - Einzelergebnisse	113
7.3.1	001001 – RTM6 HTA Quasi-isotrop	
7.3.2	001002 – RTM6 HTS Quasi-isotrop	
7.3.3	001003 – RTM6 HTS Biaxial (0°/90°)	117
7.3.4	002002 – EPS 601 HTS Quasi-isotrop	119
7.3.5	003002 – EPS 600 HTS Quasi-isotrop	
7.3.6	001002 – Cycom 977-2 HTS Quasi-isotrop	123

ABBILDUNGSVERZEICHNIS

Abb. 2.1:	Schematischer Aufbau der Fertigungsmaschine für NCF- Verbunde nach LIBA (LIBA, 2007).	6
Abb. 2.2:	Darstellung eines möglichen Schichtenaufbaus (LIBA, 2007)	6
Abb. 2.3:	Nahtarten durch die drei Stichverfahren (Gries, 2007)	7
Abb. 2.4:	Ablauf des Doppelsteppstich-Vorgangs (Gries, 2007).	8
Abb. 2.5:	Meso-Scale Welligkeit bei 0° Faser (Mattsson et al., 2005)	8
Abb. 2.6:	Beispiel für einen quasi-isotropen Aufbau aus UD-Lagen	12
Abb. 2.7:	Härtungsreaktion von EP-Harz mit Amin (Schwarz, 2000)	14
Abb. 2.8:	Viskosität in Abhängigkeit der Reaktionszeit beim RTM-Prozess (McHugh et al., 2001)	15
Abb. 3.2:	Zuschnittsplan der Einzelschichten (FACC, 2005)	23
Abb. 3.2:	Konstruktionszeichnung der Kurzprobe, wahlweise mit Bohrung, nach AITM 1-0008 Issue 3.	27
Abb. 3.3:	Konstruktionszeichnung der Langprobe, wahlweise mit Bohrung, nach AITM 1-0007 Issue 3	27
Abb. 3.4:	Hysteresisschleife im Spannungs-Dehnungs-Diagramm bei zyklischer Belastung	32
Abb. 3.5:	Versuchsplan für Ermüdungsversuche.	33
Abb. 4.1:	Gegenüberstellung der Zugfestigkeiten von Plain Tensile (PT), Short Plain Tensile (SPT), Open Hole Tensile (OHT) und Short Open Hole Tensile (SOHT) Proben mit unterschiedlichen Matrix-Harzen.	38
Abb. 4.2:	Gegenüberstellung der E-Moduli von Plain Tensile (PT) und Short Plain Tensile (SPT) Proben mit unterschiedlichen Matrix- Harzen.	39
Abb. 4.3:	Gegenüberstellung der Zugfestigkeiten von Plain Tensile (PT), Short Plain Tensile (SPT), Open Hole Tensile (OHT) und Short Open Hole Tensile (SOHT) Proben mit HTA- und HTS-Faser	40
Abb. 4.4:	Gegenüberstellung der Druckfestigkeiten von Plain Compression (PC) und Open Hole Compression (OHC) Proben mit HTA- und HTS Faser	41
Abb. 4.5:	Gegenüberstellung der E-Moduli von Plain Tensile (PT), Open Hole Tensile (OHT) und Plain Compression (PC) Proben mit HTA- und HTS-Faser.	42

Abb. 4.6:	Dynamischer E-Modul über Zykluszahl für Proben mit HTA und HTS Faser bei 30 % der Zug-Bruchfestigkeit	43
Abb. 4.7a:	Wöhlerdiagramm für Short Plain Proben mit HTA und HTS Fasern.	44
Abb. 4.7b:	Wöhlerdiagramm für Open Hole Proben mit HTA und HTS Fasern.	45
Abb. 4.8:	Gegenüberstellung der Zugfestigkeiten von Plain Tensile (PT) und Open Hole Tensile (OHT) Proben mit unterschiedlichen Harzsystemen.	46
Abb. 4.9:	Gegenüberstellung der Druckfestigkeiten von Plain Compres- sion (PC) und Open Hole Compression (OHC) Proben mit unterschiedlichen Harzsystemen	47
Abb. 4.10:	Gegenüberstellung der E-Moduli von Plain Tensile (PT) und Plain Compression (PC) Proben mit unterschiedlichen Harzsystemen.	47
Abb. 4.11a:	Wöhlerdiagramm für Short Plain Proben der vier Harzsysteme	49
Abb. 4.11b:	Wöhlerdiagramm für Short Open Hole Proben der vier Harzsysteme	49
Abb. 4.12:	Dynamischer E-Modul über Zykluszahl für die verschiedenen Harzsysteme bei 30 % der Zug-Bruchfestigkeit	50
Abb. 4.13:	Gegenüberstellung der Zugfestigkeiten von Plain Tensile (PT) und Open Hole Tensile (OHT) Proben mit quasi-isotropem und biaxialem Aufbau	51
Abb. 4.14:	Gegenüberstellung der Druckfestigkeiten von Plain Compression (PC) und Open Hole Compression (OHC) Proben mit quasi-isotropem und biaxialem Aufbau	52
Abb. 4.15:	Gegenüberstellung der E-Moduli von Plain Tensile (PT) und Plain Compression (PC) Proben mit quasi-isotropem und biaxialem Aufbau.	53
Abb. 4.16a:	Wöhlerdiagramm für Short Plain Proben mit biaxialem und quasi-isotropem Aufbau in normierten Werten dargestellt	54
Abb. 4.16b:	Wöhlerdiagramm für Open Hole Proben mit biaxialem und	
	quasi-isotropem Aufbau in normierten Werten dargestellt	54
Abb. 4.17:	Dynamischer E-Modul über der Zykluszahl für die Proben mit biaxialem und quasi-isotropem Aufbau bei 30 % der Zug- Bruchfestigkeit.	55

1. EINLEITUNG UND ZIELSETZUNG

Verbundwerkstoffe (Composites) sind Materialien, die sich aus zwei oder mehreren unterschiedlichen Komponenten zusammensetzen und so gezielte Werkstoffeigenschaften erreichen. Bei Metallen die sich aus unterschiedlichen Mischkomponenten zusammensetzen ergibt eine Verbindung meist ein homogenes Gefüge und wird daher nicht als Verbundwerkstoff, sondern als Legierung bezeichnet. Wird bei Kunststoffen eine signifikante Änderung der Werkstoffeigenschaften gewünscht, müssen Materialien (wie Glas, Aramid oder Kohlenstoff) eingebracht werden, die einen heterogenen Verbund ergeben. Dabei wird, je nach Länge und Geometrie des Füll- bzw. Verstärkungsstoffes, zwischen teilchenverstärkten und faserverstärkten Kunststoffen unterschieden, wobei die Faser das Verstärkungsmittel und das verbindende Polymere die Matrix darstellt. Das immer stärkere Auftreten von Faserverbund-Kunststoffen ist nicht nur auf ihre mechanischen Eigenschaften zurückzuführen, sondern sie ermöglichen außerdem das Fertigen von komplexen Bauteilen aus einem Stück und bieten dabei eine hohe Formstabilität und Korrosionsbeständigkeit (Wörndle, 1996; Lang, 2005; Matsson, 2005).

Besonders im Flugzeugbau werden Strukturbauteile aus faserverstärkten Kunststoffen gefertigt und haben durch ihre hohen Modulwerte und Festigkeiten bei geringem Gewicht Materialien wie Stahl und Aluminium ergänzt und sogar teilweise ersetzt. So ist im Airbus 380 der Anteil der Strukturbauteile aus faserverstärkten Kunststoffen über 20 %, was einer Vervierfachung des Anteils seit Mitte der 1980er Jahre entspricht. Bei der Boeing 787 (Dreamliner) liegt der Gewichtsanteil an Composite-Komponenten sogar bei 50 % (Chambers, 2003; Lang, 2005; Stephan, 2007).

Um die einzelnen Fasern für Hochleistungs-Faser-Kunststoff-Verbunde verwenden zu können, müssen sie zu einem Flächengebilde verarbeitet werden. Hierfür sind mehrere Methoden bekannt, wobei sich in letzter Zeit das Verfahren der Gelege durch exzellente Eigenschaften in Faserrichtung und kostengünstige Fertigung auszeichnete. Diese Gelege sind bekannt als Non-Crimp Fabric (NCF), also als nicht gewellte (und somit nicht gewebte) Textilien (Mattsson, 2005). Die Eigenschaften der Verbunde werden besonders bei nicht in Faserrichtung wirkenden Beanspruchungen stark von der Matrix bestimmt. So sind Debonding (das Ablösen der Matrix von der Faser) und die darauf folgende Delamination (die Schichtentrennung im Laminat) Versagensarten, die auf die Matrix und deren Haftung an der Faser zurückzuführen sind (Wörndle, 1996; Ehrenstein, 2006).

Der Anlass und das Ziel dieser Arbeit war neuentwickelte Harzformulierungen für den Resin Transfer Moulding (RTM) Einsatz in Kombination mit unterschiedlichen NCF Kohlenstofffaserhalbzeugen zu charakterisieren. Es wurden sechs grundlegend verschiedene Verbundwerkstoffe festgelegt, bei denen sich die Proben in ihrem Aufbau (quasi-isotrop und biaxial), den zwei eingesetzten Fasertypen und vier verschiedenen Epoxid-Matrixharzen unterschieden. Für jeden der Werkstoffe wurden sechs verschiedene Probentypen definiert, die im monotonen Zug- und Druckversuch, sowie auf Ermüdung unter wechselnder Last untersucht wurden. Es kamen dabei gelochte (open hole) und ungelochte (plain) Proben zum Einsatz, die weiters in zwei Längen hergestellt wurden. Zur Charakterisierung wurden die Zug- und Druck-Eigenschaften wie Steifigkeit (E-Modulwerte) und Festigkeit ermittelt. Weiters wurde der Verlauf des dynamischen E-Moduls über der Zyklenzahl bei unterschiedlichen Lastniveaus untersucht und damit das Maß der Schädigung ermittelt.

2. Grundlagen

2.1 Kohlenstofffaser

Aufgrund ihrer hervorragenden mechanischen Eigenschaften ist die Kohlenstofffaser, oder C-Faser, die am häufigsten eingesetzte Faser bei hochbelasteten Bauteilen und kommt meist in Kombination mit einer polymeren Matrix zum Einsatz. Sie wird durch Pyrolyse und Verstreckung von Polyacrylnitril (PAN) oder anderen organischen Ausgangsstoffen erzeugt. Wichtig dabei ist, dass die Faser während des Fertigungsprozesses nicht schmilzt, da das zu einer Reduktion des Kohlenstoffgehaltes führen würde. Das Endprodukt ist dann eine Kohlenstofffaser mit einem Durchmesser zwischen 5 und 10 µm aus einer Modifikation von fast reinem Kohlenstoff, der in Längsrichtung orientiert ist (Lang et al., 1986; Bergmann 1992). Praktisch erfolgt das Erzeugen in zwei bzw. drei Schritten. Zuerst wird die Ausgangsfaser zu dem so genannten Precurser verstreckt und dann bei maximal 300°C unter Zugspannung dehydriert. Dadurch ist das Material soweit vorbehandelt, dass ein anschließendes Schmelzen verhindert wird. Es bildet sich eine Graphitstruktur in Leiterform, die in der zweiten Phase unter einer inerten Gasatmosphäre bei bis zu 1600°C zu einer graphitischen Schichtengruppe umgewandelt wird. Dabei bleibt die Zugspannung weiterhin aufrecht und aufgrund des bereits stark gereckten Ausgangsstoffes wird eine gute Ausrichtung der Kohlenstoffschichten längs der Streckachse erreicht. Dieser Vorgang wird als Streckgraphitisierung bezeichnet, der eine hochfeste Faser mit Zugfestigkeiten von über 5 GPa liefert, die als High Tenacity oder High Tension Fasern (HT-Fasern) bezeichnet werden. Im dritten Schritt wird die Graphitstruktur der HT-Faser durch eine Glühbehandlung bei 3000°C und eine weitere Verstreckung umgewandelt. Der Vorgang, Graphitierung genannt, liefert als Endprodukt eine Faser mit einem E-Modul der bis zu 400 GPa erreichen kann. Diese Fasern werden dann, je nach Modulwert, als High Modulus (HM) oder Ultra High Modulus (UHM) Fasern bezeichnet (Bergmann, 1992; Wörndle, 1996; Ehrenstein, 2006).

Mit steigender Glühtemperatur nimmt der E-Modul zu, während die Festigkeit ab einer gewissen Temperatur wieder abfällt. Weitere Entwicklungen der C-Fasern gehen in Richtung hohe Dehnung bei hoher Festigkeit mit Bruchdehnungen von 2 % und mehr. Diese Fasern werden als HTS-Fasern (High Strain and Tenacity) bezeichnet. Eine Kompromisslösung zwischen HT- und HM-Fasern stellt die Intermidiate Modulus (IM) Faser dar (Bergmann, 1992).

2.2 Non-Crimp Fabric (NCF)

Die Erzeugung von Fasern, wie in Abschnitt 2.1 beschrieben, liefert zunächst eine Elementarfaser, oder auch Filament genannt. Diese wird mit mehreren tausend weiteren Fasern zu einem Spinnfaden oder Garn zusammengefasst. Auf diesem Garn wird meist eine organische Substanz aufgebracht, um Schädigungen durch Scheuern bei der Verarbeitung zu minimieren. Diese Substanz wird als Schlichte bezeichnet und enthält Filmbildner, Gleitmittel und Antistatika. Weiters dient sie als Haftvermittler, da der Garn anschließend zu einem Strang (Roving) vereint wird. Nun kann daraus ein Flächengebilde entstehen. Dazu gibt es verschiedene Möglichkeiten, wobei die gebräuchlichsten die unidirektionalen Lagen (UD-Schichten), die aus UD-Schichten aufgebauten Gelege, Gewebe und Geflechte sind (Ehrenstein, 2006).

Die Gewebe setzen sich aus sich rechtwinklig kreuzenden Kett- und Schussfäden zusammen (Spinnfäden und Rovings) und haben daher immer bidirektionale mechanische Eigenschaften. Je nach Webestil ergeben sich unterschiedliche Webemuster (Bindungen), wobei das Verhältnis des Fadengewichts von Kett- (0° Richtung) zu Schussfaden (90° Richtung) bis zu 20:1 betragen kann. Es entsteht so beinahe ein unidirektionales Gewebe. Allerdings kommt es aufgrund der Verwebung zu Einbußen der mechanischen Eigenschaften in 0° Richtung (Bergmann, 1992).

Die Geflechte (Braidings) sind relativ neue Flächengebilde, die es erlauben, die gewünschte Bauteilform bereits vorgeformt und sehr verschnittarm zu erzeugen. Aufgrund des komplexen Fertigungsprozesses ergibt sich eine multiaxiale Verstärkung, die hohe Festigkeit und Steifigkeit ergibt (Kruckenberg und Paton, 1998).

Unidirektionale (UD) Schichten stellen die einfachste Form der Hochleistungsverbunde dar, in der die Fasern parallel zueinander gerade ausgerichtet vorliegen und von der Matrix verbunden werden. Hier ergibt sich das höchste Maß an Anisotropie, wobei die Zugeigenschaften quer zur Faserrichtung niedriger sein können, als beim ungefüllten Matrixharz (Ehrenstein, 2006).

Diese UD-Schichten zeichnen sich durch ihre nicht gewellten Fasern über die ganze Länge aus und lassen sich zu einem Verbund mit unterschiedlichen Lagenwickeln verarbeiten, was zu einer bewussten Beeinflussung der Anisotropie führt. Diese Art Verbunde werden als Non-Crimp Fabrics, NCF, bezeichnet. Neben den exzellenten mechanischen Eigenschaften durch den unabgelenkten Kraftfluss, haben sich die NCF aufgrund ihrer kostengünstigen Fertigung in den letzten Jahren immer mehr in der praktischen Anwendung durchsetzen können (Mattsson, 2005; Ehrenstein, 2006).

2.2.1 Gelegeherstellung

Das vollautomatisierte Legen von Fasern stammt, so wie das Weben, Stricken und Flechten von Matten aus technischen Fasern, ursprünglich aus der Textilindustrie. Die Gelege können aus Glas-, Aramid- und Kohlenstofffasern (GFK, AFK und CFK) erzeugt werden. Es gibt mehrere Möglichkeiten einen NCF-Verbund zu erzeugen, aber am stärksten verbreitet ist das Verfahren der Firma LIBA Maschinenfabrik GmbH (Naila, D). Hier wird, wie in Abb. 2.1 dargestellt, der gesamte trockene Verbund auf einer Maschine gelegt und abschließend vernäht. Es können dabei bis zu sieben Schusslagen (in Modulen erweiterbar) mit Winkeln von +20° bis -20° durch jeweils ein Schuss-System gelegt werden, die mit einer oben liegenden 0° Schicht (den Stehfäden) verstärkt wird. Jede Schicht wird aus einzelnen Fasern aus dem Magazin mittels Legeköpfen in den gewünschten Winkel übereinander positioniert. Dabei erfolgt der Aufbau von unten nach oben. Nach der letzten Schussschicht wird die Stehfadenschicht gelegt und das noch unvernähte, trockene Gelege wird in der Schneideeinrichtung am Rand beschnitten (in der Abb. 2.1 rot dargestellt). Vor dem Vernähen kann oben und unten zusätzlich eine Fasermatte eingearbeitet werden. Abschließend wird das Faserhalbzeug vernäht, sodass die einzelnen Lagen miteinander fixiert sind und bei der späteren Formgebung die Fasern in den gewünschten Winkeln bleiben. Abb. 2.2 zeigt einen Gelgeverbund beim Vernähen. Am Ende der Maschine wird das Flächengebilde über ein Walzensystem abgezogen und aufgerollt (Kruckenberg und Paton, 1998; Leong et al., 2000; LIBA, 2007).

Abb. 2.1: Schematischer Aufbau der Fertigungsmaschine für NCF-Verbunde nach LIBA (LIBA, 2007).

Abb. 2.2: Darstellung eines möglichen Schichtenaufbaus (LIBA, 2007).

2.2.2 Nähen

Das Nähen erfolgt zum Schluss des Legeprozesses und sorgt für einen Kraftfluss in der Fügezone und eine lokale Verstärkung des Verbundes (besonders in z-Richtung). In der Praxis kommen momentan zwei Stichverfahren zum Einsatz: der Kettenstich (chain stitch) und der Steppstich (lock stitch). Ein noch unkonventionelles Verfahren, bei dem rechter und linker Nadelfaden auf einer Seite zusammengeführt werden, ist das einseitige Nähen (one-sided). Abb. 2.3 stellt die Nähte der drei Verfahren dar. Für die Nahtqualität und somit auch die Verbundqualität sind Nähparameter wie Nähgeschwindigkeit, Fadenzugkräfte, Stichdichte und Nahtanzahl, sowie der Einfluss der Nadel durch Spitzenform, Öhrdurchmesser und Nadelschaft von Bedeutung (Gries, 2007).

Abb. 2.3: Nahtarten durch die drei Stichverfahren (Gries, 2007).

Der Steppstich (genauer: Doppelsteppstich) hat sich durch seine Möglichkeit verschiedene Garne auf Ober- und Unterseite zu verwenden und seine gute Nahtfestigkeit in der Praxis am häufigsten durchgesetzt. Besonders wenn die Dicke des Verbundes variiert, zeichnet sich das Verfahren durch konstante Nahtfestigkeit und gute Handhabbarkeit aus. Weiters zeichnet sich dieser Stichtyp durch eine geringe Dehnung der Nähte im Vergleich zu anderen Verfahren aus, die nur mehr schwer aufgetrennt werden können, was bei der Vorbereitung von Faserhalbzeugen, besonders bei einem nachfolgendem Zuschnitt, wichtig ist um die Formgenauigkeit zu erhalten. Der Mechanismus des Nähens basiert auf dem Prinzip der Überkreuzung von Ober- und Unterfaden und gliedert sich in drei Schritte, wie in Abb. 2.4 zu sehen ist. Zuerst sticht die Nadel von oben ein und bildet bei der Aufwärtsbewegung eine Fadenschlaufe die vom Greifer (von unten) erfasst wird (Bild 1 und 2). Dieser weitet die Schlaufe auf und legt sie um die Spule (Bild 3 bis 5). Anschließend wird der Oberfaden wieder zurückgezogen und es kommt zur Fadenverkreuzung im Material (Bild 6) (Weimer, 2002; Gries, 2007).

Abb. 2.4: Ablauf des Doppelsteppstich-Vorgangs (Gries, 2007).

Obwohl das Vernähen der Laminate eine Verbesserung der Eigenschaften in z-Richtung bewirkt, so werden durch das Einstechen der Nadel die Fasern geschädigt, was zu einer Verschlechterung der Festigkeit in Ebenenrichtung führt (Gries, 2007).

Durch das Eindringen der Nadel werden Faserbündel geteilt und Fasern abgebrochen, oder es bilden sich Harznester zwischen den Fasern (Miller, 1996).

Weiters kann das Nähen eine Welligkeit der 0° Fasern hervorrufen. Besonders bei biaxialen Gelegen kommt es aufgrund von hohen Fadenzugkräften und einem Aufspalten der 0° Faserngarne zu Welligkeiten in und senkrecht zur Faser-Ebenenrichtung, wie in Abb. 2.5 zu sehen ist. Bei quasi-isotropen Laminaten ist der Effekt der Welligkeit praktisch nicht feststellbar (Mattsson et al., 2005).

Abb. 2.5: Meso-Scale Welligkeit bei 0° Faser (Mattsson et al., 2005).

2.2.3 Mechanische Eigenschaften

Die mechanischen Eigenschafen der Gelege unterscheiden sich von denen der Gewebe oder Geflechte deutlich. Dies kann auf die gerade Anordnung der Fasern zurückgeführt werden, aber auch auf die zusätzliche Versteifung durch die Vernähung. So zeigen sich bei NCF deutlich höhere Steifigkeiten besonders senkrecht zur Faserebene ("out-of-plane"). In der Faserebene ("in-plane") gibt es in der veröffentlichten Literatur unterschiedliche Ergebnisse und so kann nicht genau gesagt werden, ob der Nähprozess einen Einfluss auf die in-plane Eigenschaften hat (Mouritz et al., 1997; Tsai und Chen, 2005).

Die **Zugfestigkeiten** der NCF liegen im Allgemeinen niedriger als bei Gewebeproben mit gleichem Aufbau und Querschnitt (bis 35 %). Ursache hierfür liegt beim Vernähen der Schichten, wo es zu Schädigungen in der Faser durch die Nadel kommt. Die Steifigkeit liegt ebenfalls etwas niedriger und ist stark abhängig vom Faservolumengehalt und dem Anteil von Fasern in Zugrichtung und deren Welligkeit.

Ebenso liegt die **Druckfestigkeit** und -steifigkeit generell bei Gelegen niedriger als bei vergleichbaren Geweben. Auch hier streuen die Angaben in der Literatur, so dass keine allgemeine Aussage möglich ist. Zu den Haupteinflüssen zählt wieder der Faservolumengehalt und die Anzahl der Schichten in der jeweiligen Richtung (Godbehere, 1994; Bibo et al., 1997; Mattsson, 2005).

2.3 Spezielle Elastizitätsgesetze

Wird ein Körper einer Kraft ausgesetzt, verformt sich dieser mit einer, der Kraft entsprechenden, Dehnung. Wenn sich die Dehnung linear zur Kraft, bzw. der im Körper auftretenden Spannung verhält, wird dieser Bereich von dem verallgemeinerten Hooke'schen Gesetz beschrieben und der Körper ist vollkommen elastisch. Die Spannungen und Dehnungen bilden je einen Tensor zweiter Ordnung mit neun Komponenten. Für die Dehnungen lautet die Formel (Wörndle, 2007):

$$\underline{\underline{\varepsilon}} = \underline{\underline{\underline{C}}} * \underline{\underline{\underline{\sigma}}} + \underline{\underline{\alpha}} * \Delta T \tag{GI. 1}$$

wobei ϵ die Dehnung, C der Nachgiebigkeitstensor (6 x 6 Matrix), σ die Spannung, α der Temperaturausdehnungskoeffizient und ΔT die (eventuelle) Temperaturänderung in Matrizenschreibweise ist.

Je nach Lagenanordnung und Aufbau des Verbundes ergeben sich laut Schürmann (2004) unterschiedliche Eigenschaften, die sich mit nachfolgenden Gesetzmäßigkeiten erklären lassen.

Allgemeine Anisotropie:

Die allgemeine, oder trikline Anisotropie ist die allgemeinste Form der Anisotropie. Ein Material das vollständig Anisotrop ist, besitzt keine Symetrieebenen. Der Nachgiebigkeits- bzw. Steifigkeitstensor (s. Gl. 2) ist voll besetzt und daher weist das Material in unterschiedlichen Richtungen unterschiedliche Modulwerte auf. Es herrscht somit eine Kopplung der diversen Beanspruchungsarten, wie Zug, Biegung und Torsion. Dies ist zum Beispiel der Fall, wenn eine unidirektionale Faserschicht (UD-Schicht) außerhalb ihrer drei Hauptachsen belastet wird. Die Gleichung 2a zeigt die Beschreibung der wichtigsten Terme der Steifigkeitsmatrix. Diese haben für alle weiteren Materialgesetze Gültigkeit (Schürmann, 2004; Wörndle, 2007).

$$\underbrace{\underline{C}}_{=} = \begin{bmatrix} C_{11} & C_{12} & C_{13} & C_{14} & C_{15} & C_{16} \\ C_{21} & C_{22} & C_{23} & C_{24} & C_{25} & C_{26} \\ C_{31} & C_{32} & C_{33} & C_{34} & C_{35} & C_{36} \\ C_{41} & C_{42} & C_{43} & C_{44} & C_{45} & C_{46} \\ C_{51} & C_{52} & C_{53} & C_{54} & C_{55} & C_{56} \\ C_{61} & C_{62} & C_{63} & C_{64} & C_{65} & C_{66} \end{bmatrix}$$
(GI. 2)

$$C_{11} = \frac{1}{E_{X}} \qquad C_{12} = -\frac{v_{YX}}{E_{Y}} \qquad C_{13} = -\frac{v_{ZX}}{E_{Z}}$$

$$C_{21} = -\frac{v_{XY}}{E_{X}} \qquad C_{22} = \frac{1}{E_{Y}} \qquad C_{23} = -\frac{v_{ZY}}{E_{Z}}$$
mit
$$C_{31} = -\frac{v_{XZ}}{E_{X}} \qquad C_{32} = -\frac{v_{YZ}}{E_{Y}} \qquad C_{33} = \frac{1}{E_{Z}}$$

$$C_{44} = \frac{1}{G_{YZ}} \qquad C_{55} = \frac{1}{G_{ZX}} \qquad C_{66} = \frac{1}{G_{XY}}$$
(GI. 2a)

Rhombische Anisotropie (Orthotropie):

Die Orthoropie stellt einen Sonderfall der Anisotropie dar. Hier fallen die drei Hauptebenen der elastischen Eigenschaften mit den drei Koordinatenebenen zusammen. Es fallen die Kopplungen der Schubspannungen und Längsdehnungen und Schubspannungen untereinander weg (s. Gl. 3). Der E-Modul bleibt aber richtungsabhängig. In der Praxis treten meistens orthotrope Werkstoffe auf, so ist Stahl zwar isotrop (siehe später), allerdings aufgrund von Walzprozessen wird daraus ein orthotropes Material. Eine UD-Schicht ist durch ihre in eine Richtung orientierte Faser ebenfalls orthotrop (Schürmann, 2004; Wörndle, 2007).

$$\underbrace{\underline{C}}_{=} = \begin{bmatrix}
C_{11} & C_{12} & C_{13} & 0 & 0 & 0 \\
C_{21} & C_{22} & C_{23} & 0 & 0 & 0 \\
C_{31} & C_{32} & C_{33} & 0 & 0 & 0 \\
0 & 0 & 0 & C_{44} & 0 & 0 \\
0 & 0 & 0 & 0 & C_{55} & 0 \\
0 & 0 & 0 & 0 & 0 & C_{66}
\end{bmatrix}$$
(GI. 3)

Isotropie:

Die Isotropie ist ein Sonderfall der Orthotropie. Ist ein Material isotrop, so besitzt es in alle Richtungen gleiche elastische Eigenschaften. Dies zeigt sich im Nachgiebigkeitstensor (GI. 5) dadurch, dass die in den Gleichungen 4a bis 4c angegebenen Terme die selben Werte einnehmen. Ein Faserverbund kann, aufgrund seiner orthotropen Einzelschichten, keine Isotropie erreichen. Es wird daher oft eine **Quasi-Isotropie** angestrebt. Bezogen auf die Steifigkeit lässt sich das durch einen zur Mittelebene symmetrischen Aufbau aus 0°, +45°, -45° und 90° angeordneten Schichten erreichen. Abb. 2.3 zeigt einen typischen quas-isotropen Aufbau aus unidirektionalen Einzelschichten. Die Festigkeit ist immer abhängig von der Faserorientierung und daher lässt sich ein wirklich quasi-isotroper Verbund nur durch unendlich viele Schichten mit entsprechend kleinen Winkelunterschieden (oder einer Wirrfasermatte) realisieren (Wörndle, 1996; Schürmann, 2004; Wörndle, 2007).

$$C_{11} = C_{22} = C_{33}$$
 (Gl. 4a)

$$C_{12} = C_{13} = C_{23}$$
 (Gl. 4b)

$$C_{44} = C_{55} = C_{66}$$
 (Gl. 4c)

$$\underbrace{\underline{C}}_{=} = \begin{bmatrix} C_{11} & C_{12} & C_{12} & 0 & 0 & 0 \\ C_{21} & C_{11} & C_{12} & 0 & 0 & 0 \\ C_{12} & C_{12} & C_{11} & 0 & 0 & 0 \\ 0 & 0 & 0 & C_{44} & 0 & 0 \\ 0 & 0 & 0 & 0 & C_{44} & 0 \\ 0 & 0 & 0 & 0 & 0 & C_{44} \end{bmatrix}$$
(GI. 5)

+45°
-45°
0°
90°
90°
0°
0° 45°

Abb. 2.6: Beispiel für einen quasi-isotropen Aufbau aus UD-Lagen.

2.4 Epoxidharze

Um aus dem trockenen Faservorformling ein technisches Bauteil zu erzeugen, muss das Faserhalbzeug mit einer Matrix verbunden werden. Diese gewährt den Zusammenhalt zwischen den Fasern und die Formhaltigkeit des Bauteils. Die Wahl des Matrixwerkstoffes hängt besonders von dem eingesetzten Bereich und von den dort vorherrschenden Temperaturen und der Feuchtigkeit ab. Weiters entscheidet auch die Art der Verarbeitung die Wahl der Matrix. Bei Faserverbunden kommen meist Polymermatrizen zum Einsatz, obwohl auch Metall, Keramik, Glas oder auch Kohlenstoff als Matrix möglich wäre (Bergmann, 1992).

Einer der wichtigsten Vertreter der polymeren Matrizen sind die Epoxid-Harze (EP), die zu der Gruppe der Duromere gehören. Sie zeichnen sich durch einen amorphen Aufbau mit einer sehr engen dreidimensionalen Vernetzung aus. Die

Haupteigenschaften der Epoxidharze sind hohe Chemikalienbeständigkeit, sehr gute mechanische Festigkeiten und Wärmeformbeständigkeit. Für die Verarbeitung wichtige Merkmale sind unter anderem die niedrige Viskosität und die thermische Aushärtung (Wörndle, 1996; Lang, 2001).

Konventionell werden Epoxid-Harze durch eine Umsetzungsreaktion der Ausgangsstoffe Bisphenol-A und Epichlorhydrin hergestellt, wobei sich dabei Chlorwasserstoff abspaltet. Es entstehen dann lineare Epoxid-Harz-Moleküle mit sehr reaktionsfreudigen Hydroxylgruppen am Ende der Ketten. Für die Aushärtung werden Härter benötigt, die sich durch Additionsreaktion an das Harz binden. Üblicherweise werden für kalthärtende Systeme aliphatische Amine und für die Warmaushärtung aromatische Amine verwendet. Die warmhärtenden Systeme zeichnen sich durch deutlich kürzere Reaktionszeiten und höhere Vernetzungsgrade aus und haben sich daher in der Verbundtechnologie durchgesetzt. Die Temperaturbeständigkeit und die mechanischen Eigenschaften der Verbundwerkstoffe steigen mit dem Vernetzungsgrad, der wiederum von der Aushärtetemperatur abhängig ist. So liegen die Verarbeitungstemperaturen der Verbunde zwischen 120 °C und 180°C. Ein direkt anschließendes Nachhärten mit einer Temperaturerüberhöhung von 20 °C ist möglich und führt zu einer noch besseren Temperaturresistenz, allerdings mit gleichzeitiger Reduktion der Duktilität. Nachteilig ist zu erwähnen, dass die Epoxid-Harze dazu neigen, Wasser aufzunehmen und dadurch die mechanischen Eigenschaften deutlich verschlechtern (besonders in Kombination mit hohen Temperaturen)(Bergmann, 1992; Wörndle, 1996; Schwarz, 2000).

Die Härtungsreaktion verläuft bei den Epoxidharzen über die Ringöffnung der Epoxidgruppe, genauer Ethylenoxidgruppe, durch eine stufenweise Additionsreaktion ab. In Abb. 2.7 ist eine aminische Härtungsreaktion vereinfacht dargestellt.

Abb. 2.7: Härtungsreaktion von EP-Harz mit Amin (Schwarz, 2000).

Der genaue Verlauf und die gewünschten Eigenschaften hängen stark vom verwendeten Harz-Härtersystem ab und können mittels Zusatzstoffen, wie Beschleunigern weiter beeinflusst werden (Lang et al., 1986).

Bei der Verarbeitung von Verbundwerkstoffen ist nach wie vor die Prepreg-Technologie Stand der Technik, allerdings gewinnt das Resin Transfer Moulding (RTM) Verfahren durch kurze Zykluszeiten und einfache Formgebung zunehmend an Bedeutung. In diesem Verfahren wird das noch trockene Gewebe in eine beheizbare Pressform gebracht. Nach dem Schließen wird Harz in Überschuss in die Form eingespritzt, wobei das eingesetzte Harz-Härter-System die Aushärtezeit bestimmt. Dieses Verfahren setzt eine niedrige Viskosität des Harzes voraus, da sonst die Fasern nicht vollständig mit Harz getränkt werden. Für diesen Prozess ist die Fliessfähigkeit des Standard Harz-Härter-Gemisches meist zu hoch und daher muss mit weiteren Zusatzstoffen gearbeitet werden. Hier bietet sich die Beigabe von organischen Lösungsmitteln an, die während der Verarbeitung entweichen. Die Herabsetzung der Viskosität der flüssigen Phase führt zu einer Versprödung des Harzes im ausgehärtetem Zustand, daher muss eine Kompromisslösung gefunden werden, um das Harz-System für den RTM Prozess und den späteren Einsatz brauchbar zu machen. Die Harz-Systeme werden darum zäh modifiziert (Ehrenstein und Bittmann, 1997; Rudd et al., 1997).

Das Wichtigste beim Füllprozess ist, dass es zu keinen Lufteinschlüssen und trockenen Stellen kommt. Daher empfiehlt es sich, den Verlauf der Fliessfront zu kennen und während des Füllens zu kontrollieren, wodurch Korrekturmaßnahmen in der Phase, während das Harz noch niedrigviskos ist, möglich sind. Wie schon vorher beschrieben, ist der Aushärtungsprozess bestimmend für den Vernetzungsgrad. Während des Härtens ändert sich der Zustand des Harzes von flüssig über gelartigen auf fest. Für die Verarbeitung ist es wichtig zu wissen, ab wann das Harz den noch fließfähigen Zustand verlässt und in den festen Zustand übergeht. Dieser Punkt wird als Gelpunkt bezeichnet. Mit fortschreitender Vernetzung steigt die Steifigkeit des Harzes, wobei mit zunehmendem Vernetzungsgrad die Reaktion immer langsamer abläuft, da die Molekülbeweglichkeit immer mehr behindert wird. Ab dem Glaspunkt gilt das Harz als Festkörper. Um eine vollständige Durchhärtung zu erreichen, müssen alle Ausgangsstoffe vernetzen. Dazu muss die Reaktionstemperatur über der Glastemperatur liegen und eine gewisse Zeit anhalten, damit das Harz durchhärten kann. Praktisch kann dies in einem DSC (Dynamic Scanning Calorimetry) Versuch bestimmt werden und so die Zeit festgelegt werden, ab wann entformt werden kann. In Abb. 2.8 ist die Änderung der Viskosität des Harzes und der Schubmodul im Laufe der Reaktionszeit abgebildet (McHugh et al., 2001).

Abb. 2.8: Viskosität in Abhängigkeit der Reaktionszeit beim RTM-Prozess (Mc-Hugh et al., 2001).

3. Experimentelles

3.1 Werkstoffe

In dieser Diplomarbeit wurden vier verschiedene Epoxid-Harz-Systeme in Kombination mit zwei verschiedenen Kohlenstofffasertypen, die zu NCF-Verbunden mit unterschiedlichem Aufbau verarbeitet waren, charakterisiert und miteinander verglichen. Voraussetzung für alle Harzsysteme war die Eignung für den Resin Transfer Moulding (RTM) Prozess.

3.1.1 Harz-Systeme

Zum Einsatz kamen vier sogenannte Einkomponenten-RTM-Epoxid-Harz-Systeme, wobei als Referenz das bisher einzige in der Luftfahrt zugelassene Harz, HexFlow[®] RTM6, des französischen Herstellers Hexcel Composites (Dagneux, F) diente. Die drei anderen Harze waren das Bakelite[®] EPS 600 und Bakelite[®] EPS 601 der zum US-amerikanischen Konzern Hexion Speciality Chemicals, Inc. (Columbus, OH) gehörenden Firma Bakelite AG (Duisburg-Meiderich, D), sowie das CYCOM[®] 977-2 der Firma Cytec Engineered Materials, Inc. (Tempe, AZ, USA). Die vier Harze charakterisieren sich wie nachfolgend beschrieben.

HexFlow[®] RTM6

Das RTM6-Harz ist ein für die Verarbeitung fertig gemischtes (Harz und Härter sind im stöchiometrischen Verhältnis bereits gemischt, was das Harz streng genommen zu keinem Einkomponenten-Harz macht) Epoxid-Harz, dass für eine Einsatztemperatur von -60°C bis +180°C ausgelegt ist. Bei Raumtemperatur ist das Harz eine braune, lichtdurchlässige, sehr zähfließende Masse. Für die Verarbeitung muss das Harz auf 80°C und die Pressform auf 120°C vorgewärmt werden (laut Hersteller). Der Verarbeitungsdruck liegt zwischen 1 und 3 bar. In der Werkzeugform härtet das Harz bei 160°C innerhalb 75 min aus. Bei Raumtemperatur lässt sich das Harz mindestens 15 Tage lagern (Shelf Life), bei Reduktion der Lagertemperatur auf -18°C werden 9 Monate garantiert (Guaranteed Shelf Life). Das RTM6 wird bereits entgast angeliefert und kann direkt verarbeitet werden. Folgende Spezifikationen wurden aus dem Datenblatt des Herstellers entnommen (Hexcel Corporation Publication ITA 065d (März 2007)).

 ρ = 1,14 g/cm³ des gehärtet Harzes

Wasseraufnahme ∆m [%] (14 Tage bei 70°C in destilliertem Wasser):

∆m = 2,1 %

Bakelite[®] EPS 600

Das Harzsystem EPS 600 ist ein Einkomponenten Epoxid-Harz, dass sich besonders durch seine guten Verarbeitungseigenschaften als noch unvernetztes Harz und seine guten mechanischen Eigenschaften im ausgehärteten Zustand auszeichnet. Es zeigt weiters eine niedrige Wasseraufnahme im unvernetzten Zustand. Die Lagerhaltbarkeit hängt stark von der Lagertemperatur ab und reicht von drei Monaten bei 5°C bis zu 9 Monaten bei -18°C. Es zeigt gute Resistenz gegen Chemikalien wie Hexan, Natriumhydroxid und Toluen. Allerdings kommt es bei Kontakt mit Methylethyketon (MEK), Schwefel- und Salpetersäure zu erheblichen Schädigungen. Die Verarbeitungs-/ Einspritztemperatur sollte bei 120°C liegen. Es sollten keine größeren Mengen des Harzes auf über 80°C erwärmt werden, da das zu lokalen Temperaturüberhöhungen führen kann und so eine unkontrollierbare exotherme Reaktion ausgelöst werden kann. Folgende Spezifikationen wurden aus dem Datenblatt des Herstellers entnommen (Bakelite AG ATE-E1 (Oktober 2003)).

Gel Zeit T_{GEL} [*min*]: $T_{GFL} = 260 + -20 \text{ min}$ bei 120°C T_{GEL} = 23 +- 5 min bei 180°C Viskosität n [mPa.s] bei 120°C: $\eta = 50 + 20 \text{ mPa.s}$ Glasübergangstemperatur T_{α} [°C]: $T_{q} = 202^{\circ}C$ im trockenen Zustand $T_{q} = 216^{\circ}C$ im trockenen Zustand, nachvernetzt (120 min, 180°C) Dichte ρ [g/cm³] bei 25°C $\rho = 1,10 + 0,02 \text{ g/cm}^3$ des ungehärteten Harzes Wasseraufnahme Δm [%] (14 Tage bei 70°C in destilliertem Wasser):

∆m = 2,5 %

Bakelite[®] EPS 601

Das Harzsystem EPS 601 ist ebenfalls ein Einkomponenten Epoxid-Harz, dass sich vom EPS 600 vor allem durch seine hohe Bruchfestigkeit und seine sehr niedrige Wasseradsorptionsneigung (auch bei hohen Temperaturen) unterscheidet. Durch den hohen Glasübergangsbereich von über 200°C ist es besonders gut für den "hot-wet" Einsatz, also dem Einsatz unter erhöhter Luftfeuchtigkeit und hohen Temperaturen (z.B. 70°C), geeignet. Die Lagerhaltbarkeit hängt stark von der Lagertemperatur ab und reicht von drei Monaten bei 5°C bis zu 9 Monaten bei -18°C. Auch beim EPS 601 liegt, wie beim EPS 600, die Verarbeitungs-/ Einspritztemperatur bei 120° und es gelten die gleichen Sicherheitshinweise. Folgende Spezifikationen wurden aus dem Datenblatt des Herstellers entnommen (Bakelite AG ATE-E1 (Oktober 2003)).

Gel Zeit T_{GEL} [min]: $T_{GEL} = 260 + -20 \text{ min}$ bei 120°C $T_{GFI} = 23 + 5 min$ bei 180°C Viskosität n [mPa.s] bei 120°C: $\eta = 50 + 20 \text{ mPa.s}$ Glasübergangstemperatur T_q [°*C*]: $T_{q} = 217^{\circ}C$ im trockenen Zustand $T_{q} = 205^{\circ}C$ im trockenen Zustand, nachvernetzt (120 min, 180°C) Dichte ρ [g/cm³] bei 25°C $\rho = 1,10 + 0,02 \text{ g/cm}^3$ des ungehärteten Harzes Wasseraufnahme Δm [%] (14 Tage bei 70°C in destilliertem Wasser): ∆m = 1,7 %

Cycom[®] 977-2

Cycom[®] 977-2 ist ein schlagfest modifiziertes Epoxid-Harz-System, dass für den Autoklaven und den RTM-Prozess geeignet ist. Es zeichnet sich durch hervorragende mechanische Werte aus, wobei besonders die Impact Eigenschaften herausstechen. Die Aushärtung findet bei 177°C statt und die Einsatztemperatur kann bis 138°C im trockenen und 104°C im feuchten Zustand betragen. Als Lagerzeit bei -18°C werden 12 Monate vom Hersteller angegeben. Folgende Spezifikationen wurden aus dem Datenblatt des Herstellers entnommen (Cytec Engineered Materials, Rev. E (Februar 2002)).

Glasübergangstemperatur T_g [°C]: $T_g = 212$ °C im trockenen Zustand

Dichte ρ [g/cm³] bei 25°C

 ρ = 1,30 g/cm³ des ungehärteten Harzes

3.1.2 Faserhalbzeuge und Plattenherstellung

Es wurden zwei verschiedene Hochleistungskohlenstofffasern der Firma TohoTenax Europa GmbH (Wuppertal, D) verwendet, die sich maßgeblich durch die aufgetragene Schlichte (s. Kapitel 2.3) unterscheiden.

Zum Einsatz kamen die Fasertypen Tenax-E-HTA-5131-400tex-f6000-Z10 und Tenax-E-HTS-5631-800tex-f12000-Z10. Die Nomenklatur der Fasern war dabei folgende:

Tenax®	Markenname
E	Werk Oberbruch, Deutschland (E = Europa, J = Japan, A = USA)
HTA	Garntyp (Standardmodul, HT-Fasern)
	HTA: Faser mit Epoxid-Harz Schlichte
	HTS: Faser mit Polyurethan Schlichte
5131	Garntypcode (Beinhaltet speziell die Präperationsart)
	5131 = Type mit ca. 1,3 % Schlichteauftrag auf Epoxidharz-Basis
	5631 = Type mit ca. 1,0 % Schlichteauftrag auf Polyurethan-Basis
400tex	Garnfeinheit (1tex = 1 Gramm/ 1000 Meter)
f6000	Filamentanzahl
Z10	Drehrichtung des Garns und Garndrehungen pro Meter (ohne Dre- hung wäre es t0)

Die Spezifikationen der HTA und HTS Fasern sind in der Tabelle 3.1 aufgeführt.

Eigenschaft	Tenax [®] HTA 5131	Tenax [®] HTS 5631
Filamentdurchmesser [µm]	7	7
Dichte [g/cm ³]	1,76	1,77
Zugfestigkeit [MPa]	3950	4300
Zug-Modul [GPa]	238	240
Bruchdehnung [%]	1,7	1,8

Tabelle 3.1: Produktbeschreibung und Eigenschaften der Tenax HTS undHTA Faser.

Die beiden Fasertypen sind klassische Hochleistungskohlenstofffasern und gehören zur Gruppe der High Tenacity (HT) Fasern (s. Kapitel 2.1). Die HTA Faser ist die ältere Faservariante im Produktprogramm der Firma Toho Tenax GmbH und wird bei der Produktion mit einer Schlichte aus Epoxid-Harz mit einem Auftrag von ca. 1,3 %, versehen. Die HTS Faser wird mit einer Polyurethanschlichte mit einem Präperationsauftrag von ca. 1 %, versehen. Beide Fasern werden aus Polyacrylnitril (PAN) gewonnen. Sie zeichnen sich neben den oben erwähnten Eigenschaften noch durch chemische Resistenz, wie zum Beispiel die Beständigkeit gegen Säuren, Alkalien und organische Lösungsmittel, geringe Wärmeausdehnung und gute elektrische Leitfähigkeit aus. Die HTS-Faser zeigt einen etwas höhere E-Modulwert und Festigkeit im Vergleich zur HTA-Faser. Beide Fasertypen weisen dabei die selbe Bruchdehnung auf.

Die Fasern wurden von der Firma Saertex GmbH & Co. KG (Saerbeck, D) auf einer Schusseintragsmaschine der Firma LIBA Maschinenfabrik GmbH (Naila, D) (siehe auch Kapitel 2.3.1) zu zweischichtigen, bidiagonalen Karbon Gelegen, unter den Winkeln +45° und -45°, mit 1270 mm Breite verarbeitet und vernäht. Dabei wies jede Lage ein Flächengewicht von 267 g/m² und der Nähfaden (PES 74 dtex SC) ein Flächengewicht von 6 g/m² auf. Das Gesamtflächengewicht des trockenen

Verbundes war somit 540 g/m². Abb. 3.1 zeigt die Orientierung der Fasern im bidiagonalen Gelege zur Produktionsrichtung (x = 0° oder Kett-Richtung).

Abb. 3.1: Orientierung der Fasern im bidiaogonalen Gelege (Saertex, 2004).

Bei der Firma FACC AG wurden die zweilagigen Gelege zu Verbunden verarbeitet, wobei zu Beginn des Fertigungsprozesses darauf zu achten war wie die Produktionsrichtung (Kett-Richtung) lief, um beim Legen der Verbunde die quasiisotropie zu garantieren. Der Zuschnitt erfolgte wie in Abb. 3.2 dargestellt, wobei alle Lagen des gleichen Typs aus der gleichen Matte erfolgten um den Verschnitt gering zu halten. Das obere Bild zeigt dabei den Zuschnitt der +-45° Einzelschichten und das unter der 0°/90° Schichten. Alle Zuschnitte erfolgten auf das Maß 350 mm x 500 mm. Nach dem Zuschneiden war darauf zu achten, dass die Lagen alle richtig markiert wurden, um eine spätere Zuordnung zu ermöglichen. Dabei war ein direktes Beschreiben oder Bekleben der Fasern nicht zulässig, sondern erfolgte auf der Verpackung, wobei die Angabe der Kett-Richtung und die Vorder- und Hinterseite des zweilagigen Verbundes wichtig war.

Nach dem Zuschnitt wurde die RTM-Anlage mit Heizpresse und der Form mit den Abmaßen 350 mm x 500 mm x 4 mm (Breite x Länge x Höhe) vorbereitet. Weiters wurde das Harz aufgetaut. Der Aufbau der quasi-isotropen Platten erfolgte in 16 Lagen. Dabei wurden acht Lagen im abwechselnden +-45° - 0°/90° Takt gelegt und dann spiegelgleich weiter aufgebaut, sodass in der Mittelebene zwei 90° Lagen aufeinander trafen. Die biaxialen (0°/90°) Proben wurden ebenfalls in 16 Lagen alternierend 0° - 90° aufgebaut. So ergaben sich 32 Einzelschichten für jeden Probekörper. In Tabelle 3.2 sind die Verarbeitungsparameter des RTM-Injektions Prozesses angeführt.

Abb. 3.2: Zuschnittsplan der Einzelschichten (FACC, 2005).

 Tabelle 3.2:
 Injektionsdaten des RTM-Prozesses.

Injektionsdaten	
Injektionsfluss [cm ³ /min]	500
Injekktionsdruck [bar]	1 – 2
Druck nach Injektion [bar]	2 - 3
Injektionstemperatur der Form [°C]	110
Aushärtung	durch die Heizpresse
Aufheizrate [°C/min]	2

Zeit bis zur Vernetzung [min]	90
Temperatur bei der Vernetzung [°C]	180
Haltezeit [min]	70
Temperatur bei der Haltezeit [°C]	120

Nach der Entformung der Platte wurde eine Sichtkontrolle des ausgehärteten Teiles auf offensichtliche Porositäten oder sonstige Fehlstellen durchgeführt. Bei auftretenden Fehlern wuden diese mit einem weißen Marker gekennzeichnet. Eine weitere Qualitätssicherung erfolgte über eine Ultraschallprüfung, um Fehlstellen im Inneren der Platten zu lokalisieren. Weiters wurde die fertige Plattendicke an acht Punkten vermessen und die Messwerte wurden im jeweils zugehörigen Lebensdatenblatt eingetragen.

Abschließend wurde der Faservolumengehalt der Platte nach Gleichung 14 (s. Seite 36) bestimmt.

3.2 Prüfkörper

Im vorgegebenen Prüfplan (s. Tabelle 3.3) wurden sechs verschiedene monotone Prüfverfahren festgelegt, zu denen jeweils eigene Prüfkörper gefertigt wurden. Anhand der Daten, die im monotonen Zug- und Druckversuch ermittelt wurden, wurden weiters mit den Kurzproben Ermüdungsversuche festgelegt (s. Kapitel 3.3). Dabei wurde der erste Prüfkörper mit 50 % der maximalen Last aus den monotonen Versuchen beaufschlagt. Bei einem Versagen unter 200.000 Zyklen wurde der zweite Prüfkörper mit 40 % der Maximallast getestet. Bei einem Durchlaufen der 200.000 Zyklen wurde die Last auf 60 % erhöht. Beim dritten Prüfkörper wurde auf das Verhalten des zweiten eingegangen und die Last dementsprechend gewählt (s. Abb. 3.5). Bei unschlüssigen Ergebnissen wurde jeweils eine Probe zur Reproduzierung eingerechnet, in der Tabelle 3.3 mit (+1) dargestellt ist.

Zum Einsatz kamen:

Lange Zugproben

gelocht (Open Hole Tensile - OHT)

ungelocht (Plain Tensile - PT)

Kurze Zugproben

gelocht (Short Open Hole Tensile - SOHT)

ungelocht (Short Plain Tensile - SPT)

Kurze Druckproben

gelocht (Open Hole Compression - OHC)

ungelocht (Plain Compression - PC)

Die Prüfkörper wurden entsprechend der Airbus internen Normen für Zug AITM 1-0007 (Issue 3) und Druck AITM1-0008 (Issue 3) gefertigt, in der die gelochten Proben als Type B und die ungelochten als Type A Prüfkörper bezeichnet werden.

Tabelle 3.3:	Prüfplan mit Probekörperanzahl (für alle Harz/ Faserkombina-
	tionen gültig).

Prüfverfahren	Prüf-	Norm	Anzahl	Ermüdung 1	Ermüdung 2	Ermüdung 3
	nentung		monoton	50%	40%/ 60 %	////%
PT	0°	AITM 1.0007	6			
Short PT	0°	- ,, -	6	1 (+1)	1 (+1)	1 (+1)
OHT	0°	- ,, -	6			
Short OHT	0°	- ,, -	6	1 (+1)	1 (+1)	1 (+1)
PC	0°	AITM 1.0008	6	1 (+1)	1 (+1)	1 (+1)
OHC	0°	- ,, -	6	1 (+1)	1 (+1)	1 (+1)

Die Prüfkörper unterscheiden sich demnach geometrisch nur durch ihre Gesamtlänge L bzw. der in der Norm definierten Einspannlänge (s. Abb. 3.2 und 3.3). Alle Proben wurden mit Aufleimern versehen, die eine theoretische Dicke von 1,68 mm pro Aufleimer aufwiesen. Die Aufleimer wurden aus dem Glasfaser-Prepreg Airpreg 8150 der Firma Isovolta AG (Wiener Neudorf, A) in 5 Lagen Biaxial (+/-45°) bei der FACC AG gefertigt und für die Langproben zusätzlich einseitig angefast. Aufgebracht wurden die Aufleimer mit dem Epoxid-Klebefilm Scotch Weld AF 163-2L in einer Heizpresse für 60 min bei ca. 3 bar Druck und einer Pressentemperatur von 125°C. Bei den kurzen Proben (Short PT, Short OHT, PC, OHC) wurde dabei auf eine Parallelität der Flächen zueinander zu achten, die 0,05 mm nicht überschreiten darf. Die Gesamtlänge der Probekörper wurde von der Länge der GFK-Aufleimer bestimmt, die laut AITM (1-0007 und 1-0008) größer als I = 50 mm sein sollte. Von der FACC AG wurden die Aufleimer mit I = 60 mm (Aufleimer Typ 2) festgelegt, was bei den Langproben zu einer Gesamtlänge von L = 300 mm und bei den Kurzproben zu einer Gesamtlänge von L = 152 mm führte. Der Zuschnitt der Proben erfolgte auf einer Diamantkreissäge. Dabei war eine Parallelität der Probekörperlängsseiten zueinander, mit einer maximalen Abweichung von 0,05 mm, gefordert. Die Dicke der Probekörper war vom Aufbau der Proben abhängig. Sowohl für den quasi-isotropen, als auch den biaxialen (0°/90°) Aufbau ergaben sich ca. 4 mm, was sich mit der Forderung der AITM deckte. Die Abweichungen sollten dabei max. 4 % der mittleren gemessenen Dicke betragen, was eingehalten wurde. Die kurzen Zugproben (Short PT und Short OHT) stellten dabei eine Sonderform dar, da in der Zugprüf-Norm (AITM 1-0007) keine Kurzproben definiert sind. So wurden diese nach der Druckprüf-Norm (AITM 1-0008) gefertigt und nach der Zugnorm (AITM-1-0007) geprüft.

Bei den gelochten Proben (OHT, Short OHT, OHC) war sowohl die Position, als auch der Durchmesser D der Bohrung wichtig und der AITM-Norm zu entnehmen. Die Bohrung wurde mit einem Spezialbohrer angefertigt, da der Durchmesser D innerhalb der Fertigungstoleranz von D = 6,339 mm und 6,384 mm liegen musste.

Abb. 3.2: Konstruktionszeichnung der Kurzprobe, wahlweise mit Bohrung, nach AITM 1-0008 Issue 3.

Abb. 3.3: Konstruktionszeichnung der Langprobe, wahlweise mit Bohrung, nach AITM 1-0007 Issue 3.

3.3 Versuchsdurchführung

Laut vorgegebenem Prüfplan (s. Tabelle 3.4) wurden an den einzelnen Laminaten sowohl monotone Zugversuche als auch monotone Druckversuche durchgeführt. Basis dieser Ergebnis wurden unter vorgegebener Kraft Ermüdungsversuche bei einem R-Verhältnis von R = -1, also unter wechselnder Belastung, und einer Prüffrequenz von f = 5 Hz durchgeführt, die bei maximal 200.000 Zyklen abgebrochen wurden, sofern kein vorzeitiges Versagen eintrat. Alle Versuche erfolgten auf einer
servohydraulischen Prüfmaschine Typ MTS 810 (Fa. MTS Systems GmbH, Berlin, D) und wurden mit der Maschinensoftware "Testware SX" gesteuert. Alle Proben wurden beidseitig mit Dehnmessstreifen (DMS) vom Typ 1-LY41-6/120 (Fa. Hottinger Baldwin Messtechnik GmbH, Darmstadt, D) ausgestattet, zusätzlich wurde auf den Langproben Plain Tensile und Open Hole Tensile ein Axialextensometer Typ MTS 634.11F-24 angebracht, das nach ca. 70 % der Bruchlast abgenommen wurde. Bei den gelochten Kurzproben Short Open Hole Tensile und Open Hole Compression wurden aufgrund der hohen lokalen Spannungen um die Bohrung und Platzmangel keine Dehnmessstreifen angebracht.

Harz-System	Faseranordnung und -typ	Aufbau
HexFlow RTM6	+/- 45° HTA	Quasi-Isotrop
HexFlow RTM6	+/- 45° HTS	Quasi-Isotrop
HexFlow RTM6	+/- 45° HTS	0°/90°
Bakelite EPS 600	+/- 45° HTS	Quasi-Isotrop
Bakelite EPS 601	+/- 45° HTS	Quasi-Isotrop
Cycom 977-2	+/- 45° HTS	Quasi-Isotrop

 Tabelle 3.4:
 Werkstoffe und Lagenaufbau.

Durch das Applizieren von zwei Dehnmessstreifen konnten eventuelle Effekte des Einspannens, wie zum Beispiel Biegung des Probekörpers aufgrund nicht fluchtender Einspannbacken, detektiert werden, und außerdem war es eine zusätzliche Absicherung der Daten, für den Fall, dass ein DMS ausfallen sollte. Als Messverstärker und Datenwandler diente die Messelektronik Spider 8, die mit dem zusätzlichen Messcomputer über die Druckerschnittstelle verbunden war. Mit der dazugehörigen Software "Catman" (Version 4.5) konnten die Daten erfasst werden (jeweils Hottinger Baldwin Messtechnik GmbH, Darmstadt, D) (Kitzmüller, 2007).

3.3.1 Zugeigenschaften

Die Ermittlung der Zugeigenschaften (E-Modul und Festigkeit) erfolgte nach der Airbus Prüfnorm AITM 1-0007 Issue 3. Für die Prüfung wurden die Proben Plain Tensile, Open Hole Tensile, Short Open Hole Tensile und Short Plain Tensile verwendet. Wie in der AITM 1-0007 vorgeschrieben und eingangs erklärt, wurden bei den Langproben Plain Tensile und Open Hole Tensile sowohl DMS als auch Extensometer verwendet und bei den Short Plain Tensile Proben wurden nur DMS appliziert um die genaue Dehnung des Prüfkörpers zu messen. Dies war notwendig da der induktive Wegaufnehmer des Hydraulikkolbens der Prüfmaschine auch die Nachgiebigkeit dieser mit gemessen und so zu verfälschten Ergebnissen geführt hätte. Bei den Short Open Hole Tensile Proben wurden aufgrund der hohen lokalen Spannungen um die Bohrung und Platzmangel auf der Probenoberfläche weder DMS noch Extensometer angebracht und daher konnte nur die Zugfestigkeit ermittelt werden. Die Prüfgeschwindigkeit war 2 mm/min und es wurde die Längenänderung in Abhängigkeit der Kraft mittels Catman - Software im Falle der DMS und mittels Testware SX - Software im Falle des Extensometer aufgezeichnet. Bei den Short Open Hole Tensile Proben wurde nur die Bruchlast notiert. Alle Messungen erfolgten bei genormtem Raumklima von (23 +/- 2)°C und 50 % rel. Luftfeuchte.

Ausgewertet wurden die Zugfestigkeit σ_{zB} und der Elastizitätsmodul für Zug E_z nach folgenden Gleichungen:

$$\sigma_{zB} = \frac{F_m}{B \cdot t}$$
(GI. 6)

wobei σ_{zB} die Zug-Spannung beim Bruch (Zugfestigkeit) in [MPa], F_m die maximal auftretende Kraft in [N], B die Breite und t die Dicke des Prüfkörpers in [mm] waren.

$$E_{z} = \frac{\Delta F}{\Delta \varepsilon_{x} \cdot B \cdot t} = \frac{\frac{F_{m}}{2} - \frac{F_{m}}{10}}{\Delta \varepsilon_{x} \cdot B \cdot t}$$
(Gl. 7)

wobei E_z der Zug-E-Modul in [MPa], ΔF die Differenz der Zugkraft bei 50 % und 10 % der Zug-Kraft in [N], $\Delta \varepsilon_x$ die Differenz der zur Kraft gehörenden Dehnungen in [-] und B und t wieder die Breite und die Dicke des Prüfkörpers in [mm] waren. Bei den gelochten Proben wurde der ungeschädigte Querschnitt als Bezugsfläche herangezogen, was zu einem scheinbaren E-Modul führte, der im Folgenden ebenfalls mit E-Modul bezeichnet wurde.

3.3.2 Druckeigenschaften

Die Ermittlung der Druckergebnisse erfolgte nach der Airbus internen Norm AITM 1-0008 Issue 3. Für die Prüfung wurden die Proben Plain Compression und Open Hole Compresion verwendet. Aufgrund der hohen lokalen Spannungen um die Bohrung und Platzmangel wurden bei den gelochten Proben keine Dehnungsmessstreifen angebracht. Weiters wurde auf das Applizieren des Extensometers verzichtet, da es in der Norm nicht vorgesehen und zudem auf dem Prüfkörper kein Platz war. Die Prüfgeschwindigkeit war laut Norm zwischen 0,5 und 1 mm/min zu wählen und wurde auf 0,5 mm/min festgelegt. Es wurden - analog zu den Zugversuchen - die Längenänderung in Abhängigkeit der Kraft mittels Catman - Software im Falle der DMS aufgezeichnet. Bei den Open hole Compression Daten wurde nur die Bruchlast notiert. Alle Messungen erfolgten bei genormtem Raumklima von (23 +/- 2)°C und 50 % rel. Luftfeuchte.

Ausgewertet wurden die Druckfestigkeit σ_{dB} und der Elastizitätsmodul für Druck E_D nach folgenden Gleichungen:

$$\sigma_{\rm dB} = \frac{F_{\rm m}}{B \cdot t}$$
(Gl. 8)

wobei σ_{dB} die Druck-Spannung beim Bruch (Druckfestigkeit) in [MPa], F_m die minimal auftretende Kraft in [N], B die Breite und t die Dicke des Prüfkörpers in [mm] waren.

$$E_{d} = \frac{\Delta F}{\Delta \varepsilon_{x} \cdot B \cdot t} = \frac{\frac{F_{m}}{2} - \frac{F_{m}}{10}}{\Delta \varepsilon_{x} \cdot B \cdot t}$$
(Gl. 9)

wobei E_d der Druck-E-Modul in [MPa], ΔF die Differenz der Druckkraft bei 50 % und 10 % der Druck-Kraft in [N], $\Delta \epsilon_x$ die Differenz der zur Kraft gehörenden Dehnungen in [-] und B und t wieder die Breite und die Dicke des Prüfkörpers in [mm] waren. Der Druck-E-Modul wurde nur für die ungelochten Proben bestimmt.

3.3.3 Ermüdungseigenschaften

Die Ermüdungsbeanspruchung stellt die kritischste Belastung für Verbundmaterialien dar. Eine der wichtigsten Kenngrößen bei zyklischen Versuchen ist das R-Verhältnis. Es gibt das Verhältnis von minimaler Spannung (oder Dehnung) zur maximalen Spannung an. Bei der Belastung wird dabei zwischen einer schwellenden Zug ($0 \le R < 1$), schwellenden Druck ($1 < R \le \infty$) und einer Wechselbelastung (- $1 \le R < 0$) unterschieden. Besonders eine wechselnde Belastung um die Null-Linie, also R = -1, führt oft zu einem schnellen Versagen und ist der empfindlichste Belastungsfall (Hertzberg und Manson, 1980).

Aufgrund der viskoelastischen Eigenschaften der polymeren Matrix ergibt sich im Spannungs-Dehnungs-Diagramm bei Ermüdungsbelastung keine Gerade, sondern es zeichnet sich eine Elypse (Hysterese) ab, an der sich, wie in Abb. 3.4 zu sehen, zwei verschiedene Moduli definieren lassen: der Sekanten-Modul und der Dynamische-Modul. In dieser Arbeit wurde nur der dynamische Modul gemessen, der sich als Steigung in der Hysterese definiert und sich nach Gleichung 10 berechnen lässt. Er stellt daher die Schädigung im Augenblick dar und gilt so als "single-cycle-Effekt" (Zahnt, 2003).

$$E_{dyn} = \frac{\Delta F}{\Delta \varepsilon \cdot B \cdot t} = \frac{F_{max} - F_{min}}{(\varepsilon_{max} - \varepsilon_{min}) \cdot B \cdot t}$$
(GI. 10)

Dabei ist E_{dyn} der dynamische Modul in [MPa], ΔF die Differenz der maximal auftretenden und minimal auftretenden Kraft in [N], $\Delta \varepsilon$ die dazugehörige Dehnung [-], B die Breite und t die Dicke des Prüfkörpers jeweils in [mm].

Abb. 3.4: Hysteresisschleife im Spannungs-Dehnungs-Diagramm bei zyklischer Belastung.

Die Ergebnisse einer Serie von Ermüdungsversuchen können in einem doppellogarithmischen Diagramm dargestellt werden, wobei die Nennspannung über der ertragenen Zyklenzahl aufgetragen wird. Es zeigt sich eine zu Beginn rasch abfallende Kurve, die mit steigender Zykluszahl flacher wird (wobei Kunststoffe nicht zwingend eine so genannte Dauerfestigkeit aufweisen). Dieses Diagramm wird als Wöhlerschaubild bezeichnet und ist eine Möglichkeit das Ermüdungsverhalten grafisch darzustellen. Eine andere Möglichkeit ist die Gegenüberstellung des dynamischen Moduls über der Zykluszahl, was die Materialschädigung gut darstellt (Zahnt, 2003; Pinter, 2006).

Die Ermüdungsversuche wurden auf Basis der Ergebnisse der monotonen Zugund Druckversuche durchgeführt. Dazu wurde die erste Probe mit 50 % der Zugbzw. Druckfestigkeit aus den monotonen Versuchen zyklisch bei 5 Hz und einem R-Verhältnis von R = -1 getestet. Kam es hier zu einem Versagen unter 200.000 Zyklen, so wurde die Last auf 40 % reduziert und im Falle eines Durchlaufens wurde die Last auf 60 % erhöht. In Abb. 3.5 ist der von Airbus speziell festgelegte Versuchsablauf grafisch dargestellt, für den je Laststufe ein Probekörper vorgesehen war. So ergaben sich, durch die unterschiedlichen Zug- und Druckfestigkeiten zwei verschiedene Ausgangsniveaus für die Ermüdungsversuche, was gemäß des Versuchsplans zu insgesamt sechs verschiedenen Lastniveaus für die zyklische Belastung und somit sechs Punkte für das Wöhlerschaubild führte. Für die Versuche wurden nur die kurzen Proben (Short Plain Tensile, Short Open Hole Tensile, Plain Compression und Open Hole Compression) verwendet, da bei den Langproben die Gefahr des Ausknickens bestand. Die ungelochten Proben wurden wieder mit zwei DMS vom Typ 1-LY41-6/120 (Fa. Hottinger-Baldwin Messtechnik GmbH, Darmstadt, D) bestückt um die exakte Dehnung zu Messen und so den Verlauf des dynamischen E-Moduls über der Zyklenzahl darstelllen zu können. Die DMS lösten sich allerdings nach wenigen Zyklen ab und so konnte nicht bis zum Schluss mit der exakten Dehnung gemessen werden. Allerdings konnte mit der wahren Dehnung des DMS' die Maschinennachgiebigkeit bestimmt und so ein Korrekturfaktor ermittelt werden. Mit diesem Korrekturfaktor konnte dann die Dehnung über den induktiven Wegaufnehmer des Hydraulikkolbens über die gesamte Versuchsdauer aufgezeichnet werden. Die gelochten Proben wurden ohne DMS getestet. Es konnte daher kein E-Modul bestimmt werden und so wurden die Ergebnisse auf den Anfangswert normiert und der prozentuelle Abfall des Moduls, also die Schädigung, konnte bis zur maximalen Zykluszahl dargestellt werden. Alle Messungen erfolgten bei genormtem Raumklima von (23 +/- 2)°C und 50 % rel. Luftfeuchte.

Abb. 3.5: Versuchsplan für Ermüdungsversuche.

3.4 Normalisierung der Testergebnisse

Bei der Berechnung von Verbunden bezieht man sich in der Regel auf den Volumenanteil der Komponenten, also der Faser und der Matrix (die Schlichte nimmt einen zu geringen Anteil am Volumen des Verbundes ein). In der Praxis hat sich der Faservolumenanteils φ_F als internationaler Kennwert durchgesetzt. Dieser Kennwert errechnet sich nach Gleichung 11, wobei V_F das Volumen der Fasern und V_M das Volumen der Matrix ist. Beide Volumina zusammen ergeben das Gesamtvolumen des Verbundes. Diese Gleichung ist auch als Mischungsregel bekannt (Wörndle, 1996).

$$\varphi_F = \frac{V_F}{V_V} = \frac{V_F}{V_F + V_M} \tag{GI. 11}$$

Um den genauen Fasergehalt eines Verbundes zu bestimmen, sind Methoden wie das Auskochen der Matrix oder optische Bestimmung mittels Mikroskop geläufig. In der Praxis unterscheiden sich die Faseranteile von unterschiedlichen Verbunden trotz gleicher Herstellungsparameter, daher wurden die Messergebnisse in dieser Arbeit auf einen Faservolumengehalt von 57 % mit der nachstehenden Methode normalisiert (Painold, 2003).

normalisierter Wert = gemessener Wert
$$\cdot \frac{\varphi_{\text{F,normalisiert}}}{\varphi_{\text{F,gemessen}}}$$
 (GI. 12)

Gleichung 12 zeigt die allgemeine Variante, wie Ergebnisse normalisiert werden können, wobei $\varphi_{F,normalisiert}$ dem selbst gewählten Prozentsatz entspricht (in diesem Fall 57 %) und $\varphi_{F,gemessen}$ der gemessene Faservolumengehalt über beispielsweise Veraschung eines Reststückes der Probenplatte. Dies führt zu einem gemittelten Ergebnis, da der Faservolumenanteil prozessbedingt über die Platte nicht konstant ist.

Eine andere Variante, den Faservolumengehalt zu bestimmen führt über die Dicken der Ebenen. Dazu wird eine äquivalente Schichtdicke t_F einer kompakten Faserschicht angenommen, die entstehen würde, wenn die Fasern kompakt – also ohne Hohlraum zwischen den Faserfilamenten – angeordnet wären. Dies errechnet sich über das Faserflächengewicht FAW und die Dichte der Faser ρ_F , wie in Gleichung 13 zu sehen ist.

$$t_{f} = \frac{FAW}{\rho_{F}}$$
(Gl. 13)

Diese Dicke bezogen auf die absolute Laminatdicke einer Gewebelage ergibt den Faservolumengehalt φ_F einer Laminatplatte. Diese absolute Laminatdicke wird als "cured ply thickness" – CPT – bezeichnet.

$$\varphi_{\rm F} = \frac{\rm FAW}{\rho_{\rm F} \cdot \rm CPT} \tag{GI. 14}$$

Wird die Gleichung 14 mit Indizessen versehen, so ergeben sich die Gleichungen für den normierten Faservolumengehalt $\varphi_{F,normalisiert}$, der selbst definiert wurde, und den gemessenen Faservolumengehalt des Prüfkörpers $\varphi_{F,gemessen}$.

$$\varphi_{\text{F,normalisiert}} = \frac{\text{FAW}_{\text{nominal}}}{\rho_{\text{F}} \cdot \text{CPT}_{\text{normalisiert}}}$$
 (Gl. 15a)

$$\varphi_{\rm F,gemessen} = \frac{\rm FAW_{gemessen}}{\rho_{\rm F} \cdot \rm CPT_{gemessen}}$$
 (Gl. 15b)

Dabei sind $FAW_{nominal}$ das nominelle und FAW_{PK} das gemessene Faserflächengewicht, $CPT_{normalisiert}$ die selbst definierte, normalisierte und $CPT_{gemessen}$ die gemessene absolute Laminatdicke einer einzelnen Gewebeschicht. Werden die Gleichungen 15a und 15b ins Verhältnis zueinander gesetzt, so ergibt sich:

$$\frac{\varphi_{\text{F,normalisiert}}}{\varphi_{\text{F,gemessen}}} = \frac{\text{FAW}_{\text{nominal}} \cdot \text{CPT}_{\text{gemessen}}}{\text{FAW}_{\text{gemessen}} \cdot \text{CPT}_{\text{normalisiert}}}$$
(GI. 16)

Wird die Gleichung 16 mit der Ausgangsgleichung 12 kombiniert, so ergibt sich folgender Zusammenhang:

normalisierter Wert = gemessener Wert
$$\cdot \frac{FAW_{nominal} \cdot CPT_{gemessen}}{FAW_{gemessen} \cdot CPT_{normalisiert}}$$
 (GI. 17)

Durch Umformen der Gleichung 15a auf die absolute Laminatdicke $CPT_{normalisiert}$ und anschließendes Einsetzen in die Gleichung 17 lassen sich so alle Prüfergebnisse eines jeden Probekörpers auf den selbst definierten Faservolumengehalt $\varphi_{F,normalisiert}$ normalisieren, sofern die Dichte der Faser ρ_{F} , das gemessene Faserflächengewicht FAW_{gemessen} und die gemessene absolute Laminatdicke CPT_{gemes-} sen des Prüfkörpers bekannt sind. Die endgültige Gleichung dafür lautet dann:

normalisierter Wert = gemessener Wert
$$\cdot \frac{\varphi_{F,\text{normalisiert}} \cdot \text{CPT}_{\text{gemessen}} \cdot \rho_F}{\text{FAW}_{\text{gemessen}}}$$
 (GI. 18)

Laut Arbeitsanweisung der FACC AG wird der Faservolumengehalt nach Gleichung 19 berechnet. Dabei handelt es sich um eine Modifizierung der Mischungsformel (Gl. 11) mit Berücksichtigung des Nähfadenanteils. m_F ist dabei die Masse der Faser (die für jede produzierte Platte gemessen wird), GA_{Nähfaden} ist der Gewichtsanteil des Nähfadens am Gesamthalbzeug, ρ_F ist die Dichte der Faser, wobei der Wert für HTA-Fasern bei 1,76 g/cm³ und für HTS-Fasern bei 1,77 g/cm³ liegt und t ist die theoretische Dicke des Verbundes, für den t = 4 mm eingesetzt wird. Die Fläche der Platte beträgt 350 mm x 500 mm und wird in der Gleichung mit A_{Platte} bezeichnet.

$$\varphi_{\rm F} = \frac{V_{\rm Faser}}{V_{\rm Platte}} = \frac{m_{\rm F} \cdot (1 - {\rm GA}_{\rm Nähfaden})}{\rho_{\rm F} \cdot {\rm A}_{\rm Platte} \cdot {\rm t}}$$
(Gl. 19)

4. ERGEBNISSE

Alle monotonen Versuche wurden, wie in den Abschnitten 3.3.1. und 3.3.2. beschrieben, durchgeführt. Dabei wurden je Faser-Harz-Kombination und Probekörpertyp sechs Proben für die Messungen herangezogen und die Festigkeiten und E-Moduli ermittelt. Auf Basis der Festigkeitswerte aus den Zug- und Druck-Versuchen, wurden die Ermüdungsversuche, wie in Kapitell 3.3.3. beschrieben, durchgeführt. Die Aufbereitung der Daten für die quasi-statischen Messungen erfolgte in Form von Spannungs-Dehnungs Diagrammen. Für die dynamischen Versuche wurde einerseits der dynamische E-Modul als Funktion der Zyklenzahl (wobei bei 200.000 Zyklen der Versuch abgebrochen wurde) für die jeweilige Einzelmessung dargestellt. Um den Zusammenhang der einzelnen Laststufen bzw. das Verhalten der Proben bei ansteigender Last zu veranschaulichen, wurden andererseits alle Proben vom selben Typ (Short Plain Tensile und Plain Compression, bzw. Short Open Hole Tensile und Open Hole Compression) in Form von Wöhlerkurven dargestellt. Alle Einzelverläufe der Ermüdungsversuche sind im Anhang angeführt.

Es wurden vier verschiedene Einflüsse untersucht und verglichen:

- Einfluss der Prüfkörpergeometrie (Kurz- und Langproben)
- Einfluss des Fasertyps (HTA, HTS)
- Einfluss des Matrix-Harz-Systems (RTM6, EPS600, EPS601, 977-2)
- Einfluss des Lagenaufbaus (quasi-isotrop, biaxial)

4.1 Einfluss der Prüfkörpergeometrie

4.1.1 Monotone Versuche

Beim Vergleich der verschiedenen Probekörperspezifikationen wurde besonders auf den Einfluss der Probekörperlänge eingegangen. Da für die Ermüdungsversuche nur Kurzproben verwendet werden konnten, werden in diesem Kapitel nur die Proben, die unter monotoner Zug-Belastung getestet wurden, miteinander verglichen, da so auf die beiden Prüfkörperlängen eingegangen werden konnte. Dabei ergaben sich für die ungelochten Proben aller Matrixharze durchgehend höhere Festigkeitswerte für die Kurzproben. Dies lässt sich nach der Theorie erklären, dass in einem längeren Prüfkörper die Wahrscheinlichkeit von Fehlstellen deutlich höher ist und daher die Festigkeit negativ beeinflusst werden kann (Ehrenstein, 2006). Bei den Open Hole Proben waren die Festigkeiten der Lang- und Kurzprobe beinahe gleich, was sich durch die Bohrung und dem dadurch bestimmten Versagensquerschnitt erklären lässt. Die Festigkeitsverläufe der gelochten und ungelochten Proben mit quasi-isotropem Aufbau, Toho Tenax HTS-Faser und unterschiedlichen Matrix-Harzen sind in der Abb. 4.1 dargestellt.

Abb. 4.1: Gegenüberstellung der Zugfestigkeiten von Plain Tensile (PT), Short Plain Tensile (SPT), Open Hole Tensile (OHT) und Short Open Hole Tensile (SOHT) Proben mit unterschiedlichen Matrix-Harzen.

Beim Vergleich der Probekörperlängen im Bezug auf den E-Modul wurden nur die Plain Tensile und Short Plain Tensile Proben miteinander verglichen. Es ergaben sich keine klaren Tendenzen, dass die Probekörperlänge einen Einfluss auf den E-Modul hätte. Abb. 4.2 zeigt die Mittelwerte und die Standardabweichung der E-Moduli der Plain Tensile und Short Plain Tensile Proben mit quasi-isotropem Aufbau, HTS-Faser und unterschiedlichen Matrixharzen.

Abb. 4.2: Gegenüberstellung der E-Moduli von Plain Tensile (PT) und Short Plain Tensile (SPT) Proben mit unterschiedlichen Matrix-Harzen.

4.2 Einfluss des Fasertyps

4.2.1 Monotone Versuche

Bei den Untersuchungen des Fasertypeinflusses wurden die Proben mit den Fasertypen HTA und HTS bei quasi-isotropem Aufbau und dem Harz-System RTM6 als Matrix miteinander verglichen. Die beiden Fasertypen unterschieden sich in erster Linie durch ihre Schlichte, wobei die HTA Faser mit einer Epoxidharz Schlichte mit einem Auftrag von ca. 1,3 % und die HTS Faser mit einer Polyurethan Schlichte mit ca. 1 % Auftrag präpariert war. Die Untersuchungen der Zugeigenschaften zeigten durchgehend eine höhere Festigkeit der Proben mit der HTS Faser, wobei der Unterschied von 20 MPa bei den Plain Tensile Proben bis 60 MPa bei den Short Plain Tensile Proben variierte. In Abb. 4.3 sind die Zugfestigkeit der Plain Tensile, Short Plain Tensile, Open Hole Tensile und Short Open Hole Tensile Proben einander gegenübergestellt. Die Resultate der auf Zug ermittelten Festigkeiten entsprachen den Erwartungen aus den Datenblättern der Fasern (HTS Faser hat eine etwas höhere Festigkeit als die HTA-Faser). Der Festigkeitsunterschied von den Kurz- zu den Langproben belegte die Theorie von Ehrenstein der höheren Fehlstellen in Langproben.

Abb. 4.3: Gegenüberstellung der Zugfestigkeiten von Plain Tensile (PT), Short Plain Tensile (SPT), Open Hole Tensile (OHT) und Short Open Hole Tensile (SOHT) Proben mit HTA- und HTS-Faser.

Bei den Druck-Versuchen zeigte sich ein gegenteiliges Ergebnis. Die aus der HTA-Faser gefertigten Plain Compression Probekörper wiesen eine im Schnitt um 25 MPa höhere Festigkeit auf, bei einer mittleren Festigkeit von 420 MPa für die HTA Faser. Bei den Open Hole Compression Versuchen war praktisch kein Unterschied der beiden Fasertypen zu erkennen. Beide Typen zeigten eine Festigkeit von 281 MPa. In Abb. 4.4 sind die Festigkeiten der Plain Compression und Open Hole Compression Proben einander gegenüber gestellt. Möglicherweise ist eine bessere Anbindung der HTA-Faser mit Epoxy-Schlichte an die Matrix für die etwas besseren Druckeigenschaften verantwortlich. Der generelle Vergleich der Zugund Druckeigenschaften zeigt für beide Fasertypen deutlich niedrigere Druckfestigkeiten.

Abb. 4.4: Gegenüberstellung der Druckfestigkeiten von Plain Compression (PC) und Open Hole Compression (OHC) Proben mit HTA- und HTS Faser.

Hinsichtlich der E-Modulwerte zeigte sich beim Vergleich der auf Zug belasteten Prüfkörper sowohl bei den Plain Tensile, als auch bei den Open Hole Tensile Proben für beide Fasertypen, unter Berücksichtigung der Standardabweichung, kein Unterschied. Im Schnitt lagen die Werte für die Proben bei ca. 46.000 MPa. Bei der Ermittlung der E-Modulwerte der auf Druck belasteten Prüfkörper wiesen die Proben mit der HTA Faser im Vergleich zu den HTS Faserproben etwas geringere Werte auf. Des Weiteren zeigte sich, dass die Proben mit der HTS Faser auf Zug und Druck annähernd die selben E-Modulwerte aufwiesen, während die Proben mit der HTA Faser etwas geringere Druckmoduli zeigten (s. Abb. 4.5). Die Ursache für den leichten Abfall im Druckmodul der HTA-Proben ist vorallem auch unter dem Aspekt der höheren Druckfestigkeiten dieser Proben (s. Abb. 4.3) nicht unmittelbar erklärbar.

Abb. 4.5: Gegenüberstellung der E-Moduli von Plain Tensile (PT), Open Hole Tensile (OHT) und Plain Compression (PC) Proben mit HTA- und HTS-Faser.

4.2.2 Ermüdungsversuche

Bei den Einzelmessungen wurde der dynamische E-Modul normiert. Das heißt, der sich während der Messung verändernde Modulwert wurde auf den Anfangswert bezogen, und so wurde der prozentuelle Abfall des Moduls dargestellt. Dies war nötig, weil für die genaue Modulwert-Ermittlung die wahre Dehnung bis zum Schluss nötig gewesen wäre. Da sich aber die Dehnungsmessstreifen bei der Messung ablösten, wurden das Wegsignal über den induktiven Wegaufnehmer des Hydraulikkolbens der Maschine für die Auswertung herangezogen.

Um Schädigungsvorgänge im Material darzustellen, wurde der dynamische E-Modul über der ertragenen Zyklenzahl dargestellt. Das Verhalten mehrer Proben vom selben Typ bei unterschiedlichen normierten Spannungsamplituden S_a wurde in Form von Wöhlerkurven dargestellt. Die normierte Spannungsamplitude errechnet sich nach der Gleichung 20 und stellt die Spannungsamplituden bei den jeweiligen Laststufen mit den Zug- und Druckfestigkeiten aus den monotonen Versuchen ins Verhältnis.

$$S_{a} = \frac{\sigma_{max} - \sigma_{min}}{\sigma_{z,B} - \sigma_{d,B}}$$
(GI. 20)

 S_a ist dabei die normierte Spannungsamplitude [-], σ_{max} und σ_{min} sind die größte und kleinste auftretende Spannung aus der zyklischen Messung in [MPa] und $\sigma_{z,B}$ und $\sigma_{d,B}$ sind die Bruchsspannungen aus den monotonen Zug bzw. Druck Versuchen in [MPa].

Abb. 4.6 zeigt beispielhaften den Verlauf des normierten dynamischen E-Moduls über der Zykluszahl für Short Plain Tensile Proben aus der HTA und HTS Faser bei 30 % der gemittelten Bruchkraft aus den monotonen Zugversuchen. Hier zeigte sich die HTA Faser über den Zykluszahlen als durchwegs steifer. Auch das Versagen setzte bei der HTA Faser später ein. So kam es bei der HTS Probe nach bereits 26.000 Zyklen zum Versagen, während die HTA Faser Probe erst nach 65.000 Zyklen brach.

Abb. 4.6: Dynamischer E-Modul über Zykluszahl für Proben mit HTA und HTS Faser bei 30 % der Zug-Bruchfestigkeit.

Das in Abb. 4.6 dargestellte Verhalten zeigte sich auch bei den anderen Short Plain Proben mit höheren Lasten und spiegelt sich auch in den Wöhlerdiagrammen (s. Abb. 4.7a und 4.7b) wieder. So zeigte sich bei den Proben mit HTS Faser ein früheres Versagen, als bei den Proben mit HTA Faser. Bei der niedrigsten Laststufe ergaben sich für beide Fasertypen Durchläufer (> 200.000 Zyklen), was durch einen Pfeil im Diagramm dargestellt wurde. Bei den Short Open Hole Proben fällt die größere Streuung der HTS Prüfkörper im Vergleich zu den Short Plain Proben auf, während die HTA Proben wieder auf einer Linie verliefen. Bei der niedrigsten Laststufe kam es bei beiden Fasertypen wieder zu einem Durchlaufen der vorgegebenen 200.000 Zyklen. In Absolutwerten liegt die Spannungsamplitude bei der niedrigsten Laststufe bei den Short Plain Proben bei 300 MPa und bei den Open Hole Proben bei 220 MPa. Das bessere Ermüdungsverhalten der HTA-Faserproben dürfte hier wieder auf die Epoxy-Schlichte und die daraus resultierende bessere Faser-Matrix-Anbindung zurückzuführen sein.

Abb. 4.7a: Wöhlerdiagramm für Short Plain Proben mit HTA und HTS Fasern.

Wöhlerdiagramm für Short Open Hole Prüfkörper R = -1

Abb. 4.7b: Wöhlerdiagramm für Open Hole Proben mit HTA und HTS Fasern.

4.3 Einfluss des Matrix-Harz-Systems

4.3.1 Monotone Versuche

Um die vier verwendeten Matrixharze RTM6, EPS600, EPS601 und 977-2 zu vergleichen, wurden alle Proben mit dem selben quasi-isotropem Aufbau und dem selben Fasertyp (HTS) verwendet.

In der Abb. 4.8 sind die Zugfestigkeiten der Plain Tensile und Open Hole Tensile Proben mit unterschiedlichen Matrixharzen einander gegenüber gestellt. Dabei wurde auf die Darstellung der Kurzproben (sowohl Short Plain als auch Short Open Hole) verzichtet, da sich bei diesen die selbe Wertung ergab. Während bei den gelochten Proben sich lediglich EPS 601 etwas von den anderen Systemen abhob, lagen bei den gelochten Proben sowohl EPS 601 als auch EPS 600 etwas über den Festigkeiten der beiden anderen Systeme.

Abb. 4.8: Gegenüberstellung der Zugfestigkeiten von Plain Tensile (PT) und Open Hole Tensile (OHT) Proben mit unterschiedlichen Harzsystemen.

Bei Composites werden die Druckeigenschaften stärker von der Matrix bestimmt, als die Zugeigenschaften, die hauptsächlich durch die Fasern in 0°-Richtung geprägt werden. Die Gegenüberstellung der Druckfestigkeit der vier verschiedenen Harzsystem ist in Abb. 4.9 zu sehen. Hier wurden die Plain Compression und Open Hole Compression Proben einander gegenüber gestellt. Es zeigten sich nur sehr geringe Unterschiede in den Festigkeiten, aber tendenziell zeigten, Im Gegensatz zu den Ergebnissen auf Zug, die beiden EPS Systeme etwas niedrigere Werte, mit den geringsten Werten für das EPS601 System. Generell zeigten sich auf Druck etwas niedrigere Festigkeitswerte als auf Zug.

Die Untersuchungen der E-Moduli zeigten ebenfalls nur geringe Unterschiede. Dabei lag der Mittelwert der Plain Tensile Proben bei 46.500 MPa (s. Abb. 4.10). Unter Druck ergaben sich, wie es für Composites generell gültig ist, etwas niedrigere Werte. Lediglich das RTM6 Harz zeigte unter Druck etwas höhere E-Modulwerte im Vergleich zum Zugmodul.

Abb. 4.9: Gegenüberstellung der Druckfestigkeiten von Plain Compression (PC) und Open Hole Compression (OHC) Proben mit unterschiedlichen Harzsystemen.

Abb. 4.10: Gegenüberstellung der E-Moduli von Plain Tensile (PT) und Plain Compression (PC) Proben mit unterschiedlichen Harzsystemen.

4.3.2 Ermüdungsversuche

Bei den Ermüdungsversuchen zeigten die Proben mit dem EPS601 Harzsystem die kürzesten und die mit dem Cycom 977-2 Harzsystem die längsten Laufzeiten, was in der Abb. 4.13a, dem Wöhlerschaubild für Short Plain Proben, gut zu sehen ist. Auch hier wurden die Proben, die nach der vorgegebenen Laufleistung von 200.000 Zyklen nicht brachen, mit einem Pfeil als Durchläufer markiert. Zur Reproduktion wurden je eine Short Plain Probe jedes Harztyps (mit Ausnahme des EPS600, da dieses die vorgegebenen 200.000 Zyklen nicht erreichte) bei der niedrigsten Laststufe wiederholt getestet. Es wurde dabei die maximale Zyklenzahl auf bis zu eine Million Zyklen angesetzt. Die selben Tendenzen können auch aus den Verläufen der Short Open Hole Messungen gezogen werden, obwohl hier eine größere Streuung der einzelnen Messungen vorlag (s. Abb. 4.11b).

Beispielhaft für die unterschiedlichen Laststufen, wurden die Verläufe der Short Plain Tensile Proben der unterschiedlichen Harzformulierungen bei 30 % der Zug-Bruchlast aus den monotonen Versuchen in Abb. 4.12 einander gegenübergestellt. Es zeigte sich bereits kurz nach dem Start der Versuche ein Abfall des E-Moduls bei allen Proben. Die Short Plain Tensile Probe mit dem EPS 601 Harz versagte bereits nach 7.000 Zyklen. RTM6 zeigte den stärksten Modulabfall, allerdings hielt dieses Harz-System mehr Lastwechseln stand, als die EPS Harze. Das zäh-modifizierte Harzsystem 977-2 zeigte bei einem sehr ähnlichen Verlauf des E-Moduls wie die EPS Systeme die längste Standfähigkeit und brach bei knapp 65.000 Zyklen. Die in Abb. 4.12 gezeigten Verläufe und Tendenzen konnten auch bei den Messungen mit höheren Lasten bestätigt werden.

Abb. 4.11a: Wöhlerdiagramm für Short Plain Proben der vier Harzsysteme.

Abb. 4.11b: Wöhlerdiagramm für Short Open Hole Proben der vier Harzsysteme.

Abb. 4.12: Dynamischer E-Modul über Zykluszahl für die verschiedenen Harzsysteme bei 30 % der Zug-Bruchfestigkeit.

4.4 Einfluss des Lagenaufbaus

4.4.1 Monotone Versuche

Zur Untersuchung des Lagenaufbaus, wurden Proben mit der selben Fasertype (HTS) und dem selben Harzsystem (RTM6) verwendet. Dabei wurde einerseits ein quasi-isotroper andererseits ein biaxialer Aufbau (Faserorientierung 0°/90°) realisiert.

Bei den Untersuchungen der Zugeigenschaften ergab sich, wie erwartet, eine deutlich höhere Festigkeit der biaxialen Proben. Dies lässt sich durch den doppelt so hohen Anteil an Fasern in 0° Richtung bei den biaxialen Probekörpern, im Vergleich zu den quasi-isotropen Proben, begründen. Bei den biaxialen Plain Tensile Proben wurde eine Zugfestigkeit von 900 MPa erreicht. Die Zugfestigkeit der quasi isotropen Proben erreichte einen Mittelwert von 600 MPa. Die Versuche an den Short Plain Tensile Proben ergaben die selben Verhältnisse und werden daher nicht explizit dargestellt. Bei den Open Hole Tensile Proben lag die Festigkeit für die biaxialen Proben im Schnitt bei 550 MPa, während die quasi-isotropen Probekörper ca. 200 MPa niedriger lagen. In Abb. 4.13 sind die Zugfestigkeiten der Plain Tensile und Open Hole Tensile Proben dargestellt.

Bei den auf Druck belasteten Proben zeigten ebenfalls die biaxialen Prüfkörper eine deutlich höhere Festigkeit, allerdings war hier der Festigkeitsunterschied zwischen den zwei Aufbauvarianten geringer. Dies begründet sich durch die Druckempfindlichkeit der Elementarfaser, die beim leichtesten Ausknicken bereits bricht. Weiters sind Druckeigenschaften mehr von der Matrix dominiert als die Zugeigenschaften. Dies wirkt sich besonders bei den biaxialen Gelegen aus, da hier die Stützwirkung der +/- 45° Fasern, wie beim quasi-isotropen Aufbau gegeben, fehlt. So reichten die Festigkeiten der biaxialen Plain Compression Proben bis 600 MPa und die der quasi-isotropen Proben bis 500 MPa. Die gelochten Proben zeigten ebenfalls eine höhere Druckfestigkeit für die biaxialen Gelege (s. Abb. 4.14). Auch hier lagen, wie schon bei vorherigen Gegenüberstellungen, die Druckfestigkeiten etwas niedriger als die Zugfestigkeiten

Abb. 4.13: Gegenüberstellung der Zugfestigkeiten von Plain Tensile (PT) und Open Hole Tensile (OHT) Proben mit quasi-isotropem und biaxialem Aufbau.

Abb. 4.14: Gegenüberstellung der Druckfestigkeiten von Plain Compression (PC) und Open Hole Compression (OHC) Proben mit quasi-isotropem und biaxialem Aufbau.

Durch den biaxialen Aufbau ergaben sich erwartungsgemäß auch höhere E-Modulwerte für die 0°/90° Prüfkörper. Die Werte lagen dabei bei einem Mittelwert von 68.000 MPa für die biaxialen Zugproben. Der Modulunterschied zu den Druckproben ist nicht stark ausgeprägt. Die Werte lagen bei einem Mittelwert von 61.000 MPa für die biaxialen Prüfkörper. Die quasi-isotropen Proben wiesen einen E-Modul von ca. 46.000 MPa auf, unabhängig vom Probekörpertyp und Belastungsart (Zug bzw. Druck). In der Abb. 4.15 sind die Modulauswertungen für die Plain Tensile und Plain Compression Proben gemeinsam dargestellt.

Abb. 4.15: Gegenüberstellung der E-Moduli von Plain Tensile (PT) und Plain Compression (PC) Proben mit quasi-isotropem und biaxialem Aufbau.

4.4.2 Ermüdungsversuche

In Abb. 4.16a sind die Wöhlerkurven der zwei Aufbauvarianten für Short Plain Proben in normierter Form dargestellt. Es ergab sich ein besseres Verhalten der Proben mit biaxialem Aufbau, besonders bei geringen Lasten. Auch hier wurde bei der niedrigsten Laststufe mit beiden Aufbauvarianten ein Durchlaufen (>200.000 Zyklen) erzielt. Aufgrund der höheren Streuung der quasi-isotropen Proben konnte bei den Tests mit den Open Hole Proben kein Ranking getroffen werden (s. Abb. 4.16b)

Abb. 4.16a: Wöhlerdiagramm für Short Plain Proben mit biaxialem und quasiisotropem Aufbau in normierten Werten dargestellt.

Abb. 4.16b: Wöhlerdiagramm für Open Hole Proben mit biaxialem und quasiisotropem Aufbau in normierten Werten dargestellt.

Als Ergänzung der Ergebnisse aus den Wöhlerdiagrammen ist in Abb. 4.17 der Verlauf der dynamischen E-Moduli der Short Plain Tensile Proben bei 30 % der Bruchlast aus den monotonen Zugversuchen dargestellt. Es ist für beide Kurven ein ähnlicher Modulverlauf zu sehen, der sich nur durch ein vorzeitiges Versagen der quasi-isotropen Probe unterscheidet.

Abb. 4.17: Dynamischer E-Modul über der Zykluszahl für die Proben mit biaxialem und quasi-isotropem Aufbau bei 30 % der Zug-Bruchfestigkeit.

5. Zusammenfassung

Ziel dieser Arbeit war es die mechanischen Eigenschaften von RTM-Laminaten zu beschreiben, für die als Faserhalbzeug Kohlenstofffaser-Gelege, sogenannte Non-Crimp Fabrics (NCFs), verwendet wurden. Insbesondere sollte der Einfluss unterschiedlicher Fasertypen, Matrix-Harzsysteme und Lagenaufbauten untersucht werden. Es wurden die wesentlichen Eigenschaften unter monotoner Zug- und Druckbelastung (Festigkeit und E-Modul) als auch das Ermüdungsverhalten unter wechselnder Last bestimmt.

Die Untersuchungen unter monotoner Zugbelastung wurden generell mit zwei unterschiedlichen Prüfkörperlängen durchgeführt. Dabei konnte gezeigt werden, dass die Zugfestigkeit der kurzen Proben durchgängig um ca. 10 % höher lag. Das wurde auf die geringere Fehlstellenwahrscheinlichkeit in den kurzen Proben zurückgeführt. Open Hole Festigkeit bzw. die Modulwerte blieben erwartungsgemäß von der Prüfkörperlänge unbeeinflusst.

Hinsichtlich des Fasertypeneinflusses wurden zwei Fasern, die sich im wesentlichen durch ihre Schlichte unterschieden, untersucht. Unter monotoner Zug Belastung zeigten die quasi-isotropen Laminate mit der Fasertype HTS, die eine etwas höhere Festigkeit als die Vergleichsfaser HTA aufweist, auch etwas höhere Festigkeiten. Den nicht unbeträchtlichen Einfluss der Schlichte auf die mechanischen Eigenschaften spiegelten die Ergebnisse unter monotonem Druck und wechselnder Ermüddungsbelastung wieder, wo die Faser HTA bessere Ergebnisse erzielte.

Die Untersuchungen der vier verschiedenen Matrix-Harzysteme ergab prinzipiell keine großen Unterschiede in den Werten, aber es zeigte sich eine Tendenz mit den höchsten Festigkeitswerten auf Zug und den niedrigsten Werten auf Druck für das Harzsystem EPS 601. Für den E-Modul wurden, unter Berücksichtigung der Standardabweichung, mit allen vier Harzsystemen die selben Werte erzielt. Einzig auf Druck wies das RTM6 Harz eine etwas höheren Modul auf. Auf Ermüdung hob sich das zähmodifizierte Harzsystem 977-2 durch etwas höhere Versagenszyklen im Wöhlerdiagramm hervor, während das EPS 601 die geringsten Versagenszyk-

len aufwies. Generell waren aber auch unter Ermüdungsbelastung die Unterschiede nur gering.

Die Untersuchungen des Lagen-Aufbautyps (quasi-isotrop, biaxial) belegten die Erwartungen für höhere Festigkeiten und E-Modulwerte für die 0°/90° Probekörper auf Zug und auf Druck. Allerdings war der Festigkeitsunterschied der beiden Aufbauvarianten auf Druck kleiner als auf Zug, da die Druckeigenschaften mehr von der Matrix dominiert werden. Unter zyklischer Belastung zeichneten sich die Proben mit biaxialem Aufbau durch ein besseres Ermüdungsverhalten aus.

Zusammenfassend kann insbesondere hinsichtlich der unterschiedlichen Matrix-Harzsysteme gesagt werden, dass das untersuchte mechanische Eigenschaftsprofil nur geringe Unterschiede aufwies und somit zumindest in dieser Hinsicht sich Alternativen zum bereits in der Luftfahrt qualifizierten RTM-Harzsystems RTM6 anbieten würden.

6. Literatur:

Bergmann H.W. (1992). "Konstruktionsgrundlagen für Faserverbundbauteile", Springer, Berlin, D.

Bibo G.A., Hogg G. J. und Kemp M. (1997). "Mechanical Characterization of glassand carbon-fibre reinforced composites made with non-crimp fabrics", Composites Science and Technology, 57: 1221-1241, Elsevier, St. Louis, MO, USA.

Chembers J.R. (2003). "Concept to Reality: Contribution of the Langley Research Center to U.S. civil aircraft of the 1990s", Technical Report, SP-2003-4529, NASA, Washington, DC, USA.

Ehrenstein G.W. und Bittmann E. (1997). "Duroplaste – Aushärtung – Prüfung – Eigenschaften", Hanser, München, D.

Ehrenstein G.W. (2006). "Faserverbund-Kunststoffe", Hanser, München, D.

Goldberg A.P., Mills A.R. und Irving P. (1994). "Non-crimped fabrics versus prepregs CFRP composites – A comparison of mechanical performance". 6th int. Conference on Fibre Reinforced Composites, FRC94, Paper 6, Newcastle University, Newcastle, GB.

Griess T. (2007). Vorlesungsunterlagen zu "Faserverbundwerkstoffe II/ Preforming", Institut für Textiltechnik (ITA), Rheinisch-Westfälische Technische Hochschule, Aachen, D.

Hertzberg R.W. und Manson J.A. (1980). "Fatigue of engineered plastics", Academic Press, New York, USA.

Kitzmüller W. (2007). "Hysteretische Erwärmung von RTM-Laminaten unter Ermüdungsbelastung", Studienarbeit, Institut für Werkstoffkunde und Prüfung der Kunststoffe, Montanuniversität, Leoben, A.

Kruckenberg T. und Paton W. (1998). "Resin Transfer Moulding for Aerospace Structures", Kluwer Academic Publisher, Dordrecht, NL.

Lang R.W., Stutz H. Heym M. und Nissen D (1986). "Die Angewandte Makromolekulare Chemie", 145/146, 267.

Lang R.W. (2001). Vorlesungsunterlagen zu "Physik und Werkstoffkunde der Kunststoffe", Institut für Werkstoffkunde und Prüfung der Kunststoffe, Montanuniversität, Leoben, A.

Lang R.W. (2001a). Vorlesungsunterlagen zu "Werkstoffprüfung der Kunststoffe", Institut für Werkstoffkunde und Prüfung der Kunststoffe, Montanuniversität, Leoben, A.

Lang R.W. (2005). "Faserverbundwerstoffe – Composites: Entwicklungstrends gestern – heute – morgen", Präsentation am Polymer Competence Center Leoben GmbH, Leoben, A.

Leong K.H., Ramakrishna S., Huang Z.M. und Bibo G.A. (2000). "The potential of knitting for engineering composites – a review", Composites Part A, 31: 197-220, Elsevier, St. Louis, MO, USA.

LIBA (2007). Firmen-/ Produktinformation, URL:

http://liba.de/download/brochure/04%20Multiaxial/Copcentra%20MAX%203%20C NC.pdf

Mattsson D. (2005). "Mechanical performance of NCF composites", Dissertation, Department of Applied Physics and Mechanical Engineering Division of Polymer Engineering, Lulea University of Technoligy, Lulea, S.

McHugh J., Döring J., Stark W. (2001). "Ultraschallcharakterisierung von vernetzenden Epoxid-Harze", Jahrestagung 2001 – Zerstörungsfreie Materialprüfung, Deutsche Gesellschaft für Zerstörungsdreie Prüfungen e.V., Berlin, D.

Miller A.J. (1996). "The Effect of microstructural parameters on the mechanical properties of non-crimp fabric composites", M.Phil Thesis, Cranfield University, School of Indurstrial and Manifacturing Science, Cranfield, UK.

Mouritz A.P., Leong K.H. und Hertzberg I.A. (1997). "A review of the effect of stitching on the in-plane mechanical properties of fibre-reinforced polymer composites", Composites Vol. 28 A, 28: 979-991, RMIT University, Melbourne, AU.

Painold M. (2003). "Basischarakterisierung und Untersuchung des Ermüdungsverhaltens Karbonfaserverstärkter RTM-Laminate", Diplomarbeit, Institut für Werkstoffkunde und Prüfung der Kunststoffe, Montanuniversität, Leoben, A. Pinter G. (2006). "Characterisation of the tensile fatigue behaviour of RTMlaminates by isocyclic stress-strain-diagrams", International Journal of Fatigue, Elsevier, St. Louis, MO, USA.

Rudd C.D., Long A.C., Kendall K.N. und Mangin C.G.E. (1997). "Liquid Moulding Technologies", Woodhead Publishing Ltd., Abington, GB.

Schwarz O. (2000). "Kunststoffkunde", Vogel, Würzburg, D.

Schürmann H. (2004). "Konstruieren mit Faser-Kunststoff-Verbunden", Springer, Berlin, D.

Stephan W. (2007). Aritkel im "der Standard" (10.07.2007), "Von Reichersberg nach Everett", Wien, A.

Tsai G-C und Chen J-W (2005). "Effect of stiching on Mode I strain energy release rate", Composite Structures, 69: 1-9, Elsevier, Orlando, FL, USA..

Weimer C. (2002). "Zur nähtechnischen Konfektion von textilen Verstärkungsstrukturen für Faser-Kunststoff-Verbunde", Dissertation, Institut für Maschinenbau und Verfahrenstechnik, Universität Kaiserslautern, D.

Wörndle R. (1996). Verlesungsunterlagen zu "Verbundwerkstoffe I+II", Institut für Konstruieren in Kunststoffen, Montanuniversität, Leoben, A.

Wörndle R. (2007). Verlesungsunterlagen zu "Wiederholung und Ergänzung zu Mechanik", Institut für Konstruieren in Kunststoffen, Montanuniversität, Leoben, A.

Zahnt B.A. (2003). "Ermüdungsverhalten von glasfaserverstärkten Kunststoffen – Charakterisierungsmethoden, Werkstoffgesetze und Struktureigenschaftsbezeichnungen". Dissertation, Institut für Werkstoffkunde und Prüfung der Kunststoffe, Montanuniversität, Leoben, A.

7. ANHANG

Alle folgenden Tabellen und Diagramme wurden nach den Vorgaben der Projektpartner angefertigt und sind für den internen Gebrauch bestimmt.

7.1. Airbus Tabellen - Monotone Versuche

A.1:	RTM6 HTA QI Plain Tensile	. 65
A.2:	RTM6 HTA QI Open Hole Tensile.	. 66
A.3:	RTM6 HTA QI Short Plain Tensile	. 67
A.4:	RTM6 HTA QI Short Open Hole Tensile	. 68
A.5:	RTM6 HTA QI Plain Compression.	. 69
A.6:	RTM6 HTA QI Open Hole Compression.	. 70
A.7:	RTM6 HTS QI Plain Tensile	. 71
A.8:	RTM6 HTS QI Open Hole Tensile.	. 72
A.9:	RTM6 HTS QI Short Plain Tensile	. 73
A.10:	RTM6 HTS QI Short Open Hole Tensile	. 74
A.11:	RTM6 HTS QI Plain Compression	. 75
A.12:	RTM6 HTS QI Open Hole Compression	. 76
A.13:	RTM6 HTS Biax Plain Tensile	. 77
A.14:	RTM6 HTS Biax Open Hole Tensile	. 78
A.15:	RTM6 HTS Biax Short Plain Tensile	. 79
A.16:	RTM6 HTS Biax Short Open Hole Tensile	. 80
A.17:	RTM6 HTS Biax Plain Compression	. 81
A.18:	RTM6 HTS Biax Open Hole Compression	. 82

A.19:	EPS 601 HTS QI Plain Tensile	. 83
A.20:	EPS 601 HTS QI Open Hole Tensile	. 84
A.21:	EPS 601 HTS QI Short Plain Tensile.	. 85
A.22:	EPS 601 HTS QI Short Open Hole Tensile.	. 86
A.23:	EPS 601 HTS QI Plain Compression.	. 87
A.24:	EPS 601 HTS QI Open Hole Compression.	. 88
A.25:	EPS 600 HTS QI Plain Tensile	. 89
A.26:	EPS 600 HTS QI Open Hole Tensile	. 90
A.27:	EPS 600 HTS QI Short Plain Tensile.	. 91
A.28:	EPS 600 HTS QI Short Open Hole Tensile.	. 92
A.29:	EPS 600 HTS QI Plain Compression.	. 93
A.30:	EPS 600 HTS QI Open Hole Compression.	. 94
A.31:	977-2 HTS QI Plain Tensile	. 95
A.32:	977-2 HTS QI Open Hole Tensile	. 96
A.33:	977-2 HTS QI Short Plain Tensile.	. 97
A.34:	977-2 HTS QI Short Open Hole Tensile.	. 98
A.35:	977-2 HTS QI Plain Compression.	. 99
A.36:	977-2 HTS QI Open Hole Compression.	100

7.2. Airbus Tabellen - Monotone Versuche

A.37:	RTM6 HTA QI Short Plain Tensile/ Short Open Hole Tensile 101
A.38:	RTM6 HTA QI Plain Compression/ Open Hole Compression 102
A.39:	RTM6 HTS QI Short Plain Tensile/ Short Open Hole Tensile 103
A.40:	RTM6 HTS QI Plain Compression/ Open Hole Compression 104
A.41:	RTM6 HTS Biax Short Plain Tensile/ Short Open Hole Tensile

A.42:	RTM6 HTS Biax Plain Compression/ Open Hole Compression 106
A.43:	EPS601 HTS QI Short Plain Tensile/ Short Open Hole Tensile 107
A.44:	EPS601 HTS QI Plain Compression/ Open Hole Compression 108
A.45:	EPS600 HTS QI Short Plain Tensile/ Short Open Hole Tensile 109
A.46:	EPS600 HTS QI Plain Compression/ Open Hole Compression 110
A.47:	977-2 HTS QI Short Plain Tensile/ Short Open Hole Tensile 111
A.48:	977-2 HTS QI Plain Compression/ Open Hole Compression 112
7.3.	Dynamische Versuche - Einzelverläufe
A.49:	RTM6 HTA QI - Ermüdungsverläufe für Short Plain Tensile Proben 113
A.50:	RTM6 HTA QI - Ermüdungsverläufe für Plain Compression Proben 113
A.51:	RTM6 HTA QI - Ermüdungsverläufe für Short Open Hole Tensile
	Proben
A.52:	RTM6 HTA QI - Ermüdungsverläufe für Open Hole Compression
	Proben
A.53:	RTM6 HTS QI - Ermüdungsverläufe für Short Plain Tensile Proben 115
A.54:	RTM6 HTS QI - Ermüdungsverläufe für Plain Compression Proben 115
A.55:	RTM6 HTS QI - Ermüdungsverläufe für Short Open Hole Tensile
	Proben
A.56:	RTM6 HTS QI - Ermüdungsverläufe für Open Hole Compression
	Proben

- A.57: RTM6 HTS biax Ermüdungsverläufe für Short Plain Tensile Proben. . 117
- A.58: RTM6 HTS biax Ermüdungsverläufe für Plain Compression Proben. . 117
| A.61: | EPS601 HTS QI - Ermüdungsverläufe für Short Plain Tensile
Proben | . 119 |
|-------|---|-------|
| A.62: | EPS601 HTS QI - Ermüdungsverläufe für Plain Compression
Proben | . 119 |
| A.63: | EPS601 HTS QI - Ermüdungsverläufe für Short Open Hole Tensile
Proben | . 120 |
| A.64: | EPS601 HTS QI - Ermüdungsverläufe für Open Hole Compression
Proben. | . 120 |
| A.65: | EPS600 HTS QI - Ermüdungsverläufe für Short Plain Tensile
Proben | . 121 |
| A.66: | EPS600 HTS QI - Ermüdungsverläufe für Plain Compression
Proben | . 121 |
| A.67: | EPS600 HTS QI - Ermüdungsverläufe für Short Open Hole Tensile
Proben | . 122 |
| A.68: | EPS600 HTS QI - Ermüdungsverläufe für Open Hole Compression
Proben. | . 122 |
| A.69: | 977-2 HTS QI - Ermüdungsverläufe für Short Plain Tensile Proben | . 123 |
| A.70: | 977-2 HTS QI - Ermüdungsverläufe für Plain Compression Proben | . 123 |
| A.71: | 977-2 HTS QI - Ermüdungsverläufe für Short Open Hole Tensile
Proben | . 124 |
| A.72: | 977-2 HTS QI - Ermüdungsverläufe für Open Hole Compression
Proben | . 124 |

7.1 Airbus Tabellen - Monotone Versuche

7.1.1001001 – RTM6 HTA Quasi-isotrop

										mbH 2006			et	uə	ագ	96	116										
										schland G		0	ior tot	,p∈ id	eyo uəu	ni: etta	9.000	st	G								
Plane Tensile		place: PCCL Leoben	e of test: 21. Aug 06	rator: Kitzmüller Wolfgang	standard: AITM 1.0007A issue3		et reference:	piled by: Wolfgang Kitzmüller	E: 26. Okt 06	Airbus Deut		tio	01 01)		s Terra de Terrarks			in line line line line line line line li	C								
F		test	date	ope	test		she	COT	date]	poissons ra				>	V _W										
iominal fibre volume content: 60,0%												snir	E-modulus in transverse direction	related to t _{mase} related to t _{com}	s/MPa s/MPa	%/A %/	E, E, MPa E, E, MPa	MPa min/MPa MPa min/MPa	6 / 50% of failure stress								
Ē												modu	irection	I to tom	s/MPa	٨٩٨	E. MPa	min/MPa	odulus 10%			n = 6		2733	5,7%	47816	45325
L													ngitudinal c	related			ٹت ø	a MPa	secant m	46006	51241	45325	51355	46302	46665		
L													nodulus in lo	ited to t _{meas}	s/MPa	0/0/N	E"MP	a min/MP	nethod:	92	200	4 n=6	24	16 2817	5,9%	47665	45214
L					n.a.			s,					盗	E E	Pa	%	MPa E,	MPa MP.	calc. r	4539	2112	:6 452	5120	6 4624	5% 4666	8,7	9,6
L		S32CX000			ther, nut,	ence:		s, NDT map	s, photos,				strength	related to t.	SA	~	D _{nmee} 0 _m /l	APa min/		69,6	69,8	82,4 n :	76,8	81,3 8	92,3 1,5	21	393
L	er GmbH]	extile batch:		1607539-1	astener, was	collar refer	ttachments	(cure cycle	micrograph			e	tt.	these	s/MPa	٨٩%	J _m /MPa	nin/MPa		43	45	n=6 5	43	10,5 5	1,8% 5	277,0	562,1
L	H rtex Wagen	e batches te	ches:	hes: N	4		8			-		ruptu	strenç	related to			0 mnse	MPa		562,1	569,3	581,2	576,2	580,7	592,5		
L	gener Gmbl 4dtex] [Sae	fibre/textil	binder bat	resin batc										ultimate	strain		ω	%		1,34	1,21	1,34	1,54	1,35	1,36		
L	Saertex Wai 00 [PES,7													rupture	load		ш	N		0 74853	0 74805	0 76331	5 75653	8 76239	5 77746		
L	S,74dtex] [9 01270-2640													416 84			•	mm		180,5	180,5	180,5	180,0	180,0	180,0		
L	64000 [PE (00K-0531-1											Isions		di	ac ac		8	m		09 00	09 00	09 00	09	09 00	09 00		_
L	30-01270-2 xtile S32C)	911										cimen dime	9	ші Ч1		als	Vmpax	mm		2,13 3	2,09 3	2,04 3	2,06 3	2,06 3	2,09 3		
ATH	2CX00K-05 counter-te	A 6K Lot 30										spe	e s	au	ano s s s	4s 44	t _{mm} V	m		4,09 3	4,09 3	4,09 3	4,09 3	4,09 3	4,09 3		
abric+/-45	Saertex S3 + symmetri	TENAX HT		RTM6)/ 90)2							s 0	əu	sea: b iick s	4¥	t mean	mm		4,15	4,10	4,10	4,10	4,10	4,09		
I-Carbon-I		fibre:	binder:	resin:	() ()	90/45/135/		q					9	i×i	∍-11-	0	Ø	deq.		0	0	0	0	0	0		
: Bidiagona	ull designation: W, construction,)				25/50/25 ((:: (45/135/0)		as received	none	23°C, dry	i filled in				individual specimen	name				RTM001001A-002	RTM001001A-003	RTM001001A-004	RTM001001A-005	RTM001001A-006	RTM001001A-007		
short name	abric/NCF fi				nass ratio:	tacking seq.				tions:	fields to be		;u	эш	ise	ds	.jo	#		4	2 8	~	4	5	9	_	~
material s	Prepreg/fit (includin				laminate n	detailed si		ageing:	fatigue:	test condit	only white			0	пч	D 16	ed.				×	чə) ete	a ə	lit×	(əì	

A.1: RTM6 HTA QI Plain Tensile.

Γ										PH 2008		Γ	s.	uə	шų	oe	tte.										
										utschland 6		•	i or	.p∈ Id	u ə u	ni< e.#	.e	i s	G								
e e										Ø Airbus De																	
n Hole Tens		e		oltgang	A issue3			zmüler																			
le		PCCL Leobe	0. Aug 06	(itzmüller W	NTM 1.0007			Volfaana Kit	14 Okt 06						emaiks												
							105.						6 5 0 1 0 1	(80) 4 P 1 03	iet ate ital	Pil	5 (00) (00)		4	\times	×	\leq		×	×		
		tect place:	date of test	operator	test standard		sheetreferer	compiled by:	date:			s ratio			s	%,N	×	шi									
Γ												poisson					Υ,	•									
800													tion	to t	sMPa	\$	E,MPa	min/MP a									
The content													risverse dire	related			ധ	MPa									
al fibre volu													odulus in tra	to t	sMPa	%N	E.MPa	min/MPa	stres								
nomin												sulu	÷	related			w	MPa	0% of failure								
												DOLL	ection	to t	sMPa	%,N	E./MPa	min/MP a	ulus 10% / 5			0=0		1373	30%	46265	4823
													gitudinal dire	related			ш	MPa	secant mod	44823	46942	46200	4861	46117	4847		
													odulus in lon	t,	sMPa	%	E,MPa	min/MP a	÷			0=0		296Z	5,3%	46464	4448
L					n.a.								÷	related			ա	MPa	calc. metho	8448 8	60800	44664	47843	46232	46784		
L								50	<u> </u>				the first the fi	d to t-	sMPa	%»	0"/MPa	min/MPa				9=U		90	3,1%	3463	3228
L		ht S22CX00			asher, nut	erence:	<u>م</u>	Hes, ND T ma	phs, photos,				ŧ	relate			Ű.	MPa		348.7	360,1	332,8	346,0	3630	37,1		
L		techie bato		MB10802	fætener, w	collar ref	attachmen	(cure cyc	microgra			oture	ength	dto t	sMPa	\$	oMPa	min/MP a				9=0		40	3,1%	688	3289
L	IN IN	: batches:	thes:	.s.								2	45	relate			J.	MPa		340,4	346,9	328,9	392	366,1	329,1		
	Watener Gn	fibre/textils	binder bat	resin batol										ultimate	strain		•••	*		620	072	074	073	079	072		
	er GmbH] exil Saertex													rupture	load		u.	N		46/01	46942	4888	46201	47811	44305		
	ertex/Wagen) IPES/74df												_	31	tre tre	<u> </u>	~	E		8	180,5	180,75	180,25	180,25	180,25		
	(74dtex) [Sa 1270-26400												_	di di	ie Di Gu	<u> </u>	~	E		8	8	8	8	8	8		
L	6400 PES 00K06310											n dimension		34µ , , ,	uə u bəd	5	_	E		8	8	8	8	8	8		
L	530-01270-2 edile 522C)	16										specime		ч# ші	oe q n o ivo	15	, ii	E		32,08	32,08	32,05	32,03	32,06	32,13		
HTA	32CX00K0	TA6KLot 3											5	e u	e nick s	÷	L.	E		409	409	409	409	409	409		
abric+/45	Saertex S + symmet	TENAX H		RTM6		1007							5 0	Pe I E UI	e an b Moin	41 W	L.	E		4/3	4,14	4,14	4,16	4/7	4,19		
al-Carbon-F		fibre	binder:	resin:	9	0046/136/0		-98					-	⊧i≫a	×11- 1	-	8	deg.		0	0	0	0	0	0		
Bidiadoni	n)				2000251	(46/13500		Z receive	00ê	23°C, dry					alspecimen	name				101E 002	101E 003	101E 004	101E 005	101E 008	101E 007		
	ul designatio V, constructio										filled in				individu					RTM0010	RTM0010	RTM0010	RTM0010	RTM0010	RTM0010		
short name:	labric/NCF ft ng exact FAM				mass ratio:	tacking seq.				tions:	e fields to be		9 11	əw	ioə	ds	: 10	~		-	2	~	4	\$	80	r~	~~
material	Prepregif. (includir				lamin ate	detailed s		ageing:	fatigue:	test condi	only while			d	14	> te	P				\times	чэ	đek	9 9	411	<9 1	

A.2: RTM6 HTA QI Open Hole Tensile.

										mbH 2008			sy	uə	шч	oe	11e										
										eutschland G		•	, ot	.pe Iol	uəu	ni< e#	.e	t s	ç	_							
ensile										© Airbus D																	
Short Plane T		eoben	0.206	er Wolfgang	007A issue8		870	er Wolfgang	20.2006																		
		POCLLE	August 3	Kitzmülle	AITM 1.0	_	201.080	Kitzmüli	Oktober					(50	ie marks	he.f	.5										
			test	e	ndard:		eference:	id by:					59 9 6 1 0		ist Sb	All Bil	PD PD PD PD		G	~							
H		test pla	date of	operato	test sta		sheetn	compile	date		1	OIES ONS LAÑO			S I	Š	>"	-j									
\$00															Pa		MPa V	MPa .									L
nent 8													se direction	related to t	N/s	>	ين ال	Pa min									
re volume co													is in transvers	-	MP a	×.	MPa	MPa N									
nominal fib													E-modulu	related to t	22	-	ۍ س	MP.a min	f failure stress								
												modulus	_		:MPa	M.M	"MPa	inMPa	10%/50% 0			0=0		8	1,1%	6929	121
													idinal directio	related to t			ш	MP.a m	cant modulus	4621	4666	46761	46278	47175	45721		
L													ulus in longitu		s/MPa	N/N	E./MPa	minMPa	Se			0=0		193	12%	44553	48,783
L					E.								Emod	related to			ய	MPa	alc. method:	4400	4829	484	448	46462	43788		Γ
L								10					Ę.	Ļ.	s/MPa	%JA	o"/MPa	minMPa				9=U		092	42%	6258	580.7
L		C \$22CX00			isher, nut	rence:		es, ND T map	hs, photos,				ster	related			0 num	MPa		5807	6102	637,9	648,0	609	6220		
L		tedile batch		MB07539-1	fætener, wo	collar refe	attachment	(cure cycl	micrograd			oture	ength	dto t	s/MPa	\$	c_/MPa	minMPa				9 12		26,4	42%	9/10	6//9
L	E	e batches:	ches:	h6:								5	*	relate			0 Colum	MPa		60/0	888	6119	6182	627,3	6005		
L	Waqener Gm	fibre/textil	binder ba	resin bato										utimate	strain		~	*		<u>8</u>	8	141	144	1,42	<u>8</u>		
L	ner GmbH) texi ISaertex													ruptur	peol	_	۰ د	z		7694	80184	83724	84468	85440	1 8200		
L	aertex Wage 00 IPES/744													3	tre tre		*	E		2.4	32,4	23	32,52	2,4	25		
L	ES,74dtex) [5											SUO			19		~	u u		0	8	09	09	0	0		
L	0-264000 (P											imen dimensi	9	ші чж	>iwi 9 e c	s		m m		27 15	12 15	8 15	11 15	61	07 15		
L	040630-0127 ter-textile S3	of 30911										spec	9 10		aloir S De q	47	m.	e E		0 32	0 32	0 32	0 37	0 32	0 32		
48° HTA	rtex S32CX00 mmetric coun	AX HTABKL											=	en'	а моји моји	u 44		u u		427 4	424 4	427 4	428 4	425 4	427 4	$\left \right $	
bon-Fabric+	Sae + sv	Ē	ter:	in: RTA		1(35/0/90)2							ə.	in s i×i	е э: ч	ω •	Ø	deg.		-	-	0	0	0	-	\vdash	
diagonal-Carl		10	pind	(6)	6025(0)	5/1350090046		received	Ue	°C, dn					ecimen					10	80	8	500	39	3		
1.85	signation: struction,)				89	£.		ю	2	83	.e				individual sp	name				TM001001B	TM001001B -	TM001001B	TM001001B	TM001001B	TM001001B		
t name:	c/NCF full des vact FAM, con				s ratio:	ing seq.					ds to be filled		3	əш	ioe	d≤	5 J O	• **		4	2 R	В	4 R	5 8	8	r~-	~~
material shot	Prepregitabri (including e				laminate max	detailed stack		ageing:	fatigue:	test condition	only white fiel			J	14	-te	q				×	40	de.		-411	<=4	

A.3: RTM6 HTA QI Short Plain Tensile.

										and GmbH 2008			s)	u əl	шц:		H6 F										
										us Deutschl.		•	tor	id i	uəu	nia		ts	ſ							Ξ	
Short Open Hole Tensile		PCCL Leoben	22. August 2006	Kitzmüller Wolfgang	AITM 1.0007A issue3		SW 06000123	Kitzmüller Wolfgang	20. Okt 06	© Airb					remarks												
							33) 0 t 0 5	10 9 9	161 3b 916.	81 Ait 33	S DP DU)		c					\triangleleft			
		est place:	late of test	perator	est standard		theet referen	compiled by:	late:			s ratio			~ 3	%,M	~"	Ч						_			
												poisson					Ϋ́										\square
\$00													UOI	Ļ	sMPa	ŝ	E MPa	min/MP a									
he content													overse direc	related			w	MPa									\square
al fibre volun													odulus in trar	to t	sMPa	«»	EMPa	min/MP a	stres								
nomin												silu	е Ш	related t			w	MPa)% of failure								\square
												Dom	ction	۹Ļ	sMPa	\$	EMPa	min/MP a	ulus 10% / 50								
													gitudinal dire	related			ഹ	MPa	secant mod								
L													odulus in lon	to t	sMPa	%X)	E MPa	min/MPa	÷								
L					n.a.								Ŭ.	related			ш	MPa	calc. metho								
L								8	_				ų,	tot	sMPa 	%»	o.,/MPa	min/MP a				9=U		\$	40%	688	3342
L		h: \$22CX00			asher, nut	erence:	ط	les, ND T ma	phs. photos.				ŧ	relate			Ū,	MPa		369	3348	5 <u>4</u> 8	3342	348,4	3830		
L		textile batc		M610802	fætener, w	collar ref	attachment	(cure cyc	microgra			oture	ų da	d to tame	sMPa	%N	o"/MPa	min/MP a			_	92	_	13,4	38%	3025	3277
L	H	batches:	thes:	30								E	÷.	relate			Ű,	MPa		368,7	327,7	339,4	329,1	342,6	367,4		
L	Watener Gm	fibre/textils	binder bat	resin batot										ultimate	strain		~	*									
L	er GmbH] exil Saertex													rupture	load		.	×		48115	44143	46411	43877	46711	47628		
L	ertex/Wagen) IPES/74df													-110	ent Iens		~	E		32,54	32,48	32,44	32,48	32,38	32,46		
L	(74dtex) [Sa 1270-26400													410	16 Ie ui		~	E		8	8	8	8	8	8		
L	6400 PES 00K05310											n dimension	9	-110 1 1	nel nec	5	_	æ		150	150	160	150	99	99 99		
L	630-01270-2 Isdile S22C)	1180										specime	9	ч# ші	p e c L	s	-	E		32,06	32,23	32,20	32,09	32,07	32,07		
HTA	32CX00K0 tric counter-t	TA6KLot 3											5	e u	е Мојг Sloir	ť	L.	E		409	409	409	409	409	40 0		
abric+/45	Saertex (+ symmet	TENAXH		RTM6		1002							3 0	au Ins	se er o doir	44 11	Į.	E		4,19	4,18	4,16	4,16	4,16	4,16		
al-Carbon-F		fibre	binder:	resin:	6	00046/136/0		198					2	:i≻a	»رير- ۲	·	æ	deg.		0	0	0	0	0	0		
Bidiaoon	lesignation: construction)				22/02/2	(46/1350		Z receiv	none	23°C, dry	ed in				individual specimen	name				RTM001001C-001	RTM001001C-002	RTM001001C-004	RTM001001C-005	RTM001001C-008	RTM001001C-007		
ort name:	richNCF full d exact FAW, o				SS ratio:	king seq.:				1S:	elds to be fill		.	sω	ioə	ds	10	~~~		-	2	~	4	2	80	-	~~
material shi	Prepregitab. (including.				laminate ma	detailed stac		ageing:	fatioue:	test condition	only white fi			d	144	>f6	a				\times	40	de.	1 9	1i 1 >	(əq	

A.4: RTM6 HTA QI Short Open Hole Tensile.

										eutschland GmbH 2006		•	tor S ts	eu , pe , pe	u ar arbs	nic Atte	e e tte	st	0								
Plane Compression		PCCL Leoben	25. August 2006	Kitzn üller Wolfgang	AITM 1.0008A issue3		SW 06000123	Kitzn üller Wolfgang	26. Okt 06	@ AirbusD					📅 remarks	ete	8										
		33	test		ndard:		eference:	ed by:				L	0L 96 95	1 P 1 O 3 J D	liet t sb t sb	~!¥ ƏƏ			C			4					I
L		test pla	date of	operato	test sta		sheetr	compile	date:		1	issons ratio			00 3	≶ T	>"	mi									Т
30												8	_	Γ.	æ.,		Pa V.	Pa .									l
tent: 60													se direction	elated to t	W. 1	≨ ; 	<u>د</u>	Pa min		_							T
: volume cor													sin transver		Pa Se x	' £ :	MPa B	MPa M	tress								l
nominal fibre													E-modulus	related to t.	8	> 	للله للله	APa min	% of failure s								Ī
												modulus			sMPa 	ŝ	MPa	inMP a	us 10% / 50°			U= 6		212	1,3%	46/6	
													tudinal direct	related to		Ţ	٣	MPa m	ecant m odul	45142		4347	45142	43627	44798		I
													ulus in longi	ot	sMPa	%\^ }	E_MPa	minMPa	d S			9=U		6	1,1%	42/100	
					US.	8							E-mod	related			ث	MPa	calc. metho	41601	42313	42084	42739	41497	42363		
		8		~		_) apps	°)				sngth	dtot	sMPa	\$ }	G_MPa	minMPa				9=U		168 8-j	-3,2%	-518,0	
		Ichr S32CX(L1; M610800	washer, nut	eference:	-22	rcles, NDT n	aphs, photo	:			÷8	relate			0°ra	MPa		-530,4	-502,4	-5308	-5378	-499,6	-507,0		
	Ŧ	textile be		M607539	fastener,	collar re	attachme	(oure c	microgr			uoture	rength	ed to t	sMPa	\$ 	L G MPa	minMP8				9 <u>2</u>		155	3,2%	9 ⁴ 0	
	agener Gmb	dile batches	oatches	tohes										e relat		_	0 and	MPa		-2017	-476,3	-5039	-509,3	-475,3	-479,6		
	GmbH] [Saertex Wi	fibre feb	binder I	resin be										re uttimat	d strair	+	~	~		04 1,37	20 1,25	88 1,18	12 1,34	72 1,32	13	-	
	ex Wegener PES,74dtex											\vdash			. <u>8</u> 5uəj		-	Z		996 938	286 986	3969 5960 5960	41 -705	48 - 554	51 - 664	\vdash	
	dtex][Saerte 0-264000 [F												_	ə up	2nal		-	m		37,0	0	0 32	33	0 32	0 32,	\vdash	
	00 [PES,74 (-0531-0127											nsions	-	d yje	n Juel Ing		_	u u		8	8	50	9	50	80	\vdash	
	01270-2640 e S32CX001											cimen dimer	9	ш) Ч#	29d 2MA	8	Nam	uu		2,08	208	2,09	2,05	2.04	202		
TA	X00K-0530- ounter-textil	IX Lot 30911										8	0	9U	xbir s	-17	_ B	æ		4,09	408	409	409	4,09	4,09 3		
Dric+/46° H	aertex S32C symmetric o	ENAX HTA6		1M6		907							8	au	ano Noir S	44	t _{arx}	uu		433	432	4.31	432	4,30	4,33		
Carbon-Fat	÷ ۳	bre: T	inder:	esin: R		045/135/0/9						F		si×	е-що	-	8	deq.		-	-	-	-	0	0		
Bidiagonal-	lesignation: vonstruction,)			2	25/50/25 (0)	(45/135/0/9(as received	none	23°C, dry	sdin				ndividual specimen	Listie				TM 001001B-001	TM 001 001 B-002	TM 001 001 B-003	TM 001 001 B-004	TM 001 001 B-005	TM 001001B-006		
nt name:	icNCF full of tract FAM, c				ss ratio:	king seq.:				2	lds to be fille		ue	e uni	isec	ts ,	10	#		4	2 R1	В	4	5 R1	6 R1		
naterial shu	epreg/fabri (including e				minate max	etailed stao		teing:	tique:	st condition	ny white fe			0	114	ope	q				×	цр цр	ate I	qe	ali⊅	<07	1

RTM6 HTA QI Plain Compression.

A.5:

material short name:	Bidiagonal-Car	hon-Fabric+/	145° HTA													Tom	nal fibre volu	me content:	%0 [°] 09			Open Hole Compres	sion		
Prepreoffabric/NCF full (including exact FAW,	designation: construction,)	Saertex + symm	: S32CX00K- letric counter-	0530-01 270 textile S32C	-264000 IP :X00K-0531	ES,740tex) 1-01270-264	(Seertex W 1000 [PES]	lagener Gmt 74dtex] [Sae	HI rtex Wagen	ar GmbH]															
	fibre	TENAX	HTA 6K Lot	30911				fibr	Atextile batc	hes: textile l	batch: S32CX									test plac	33	PCCL Leoben			
	bind							bin	ler batches											date of t	test:	18. August 2006			
	resin	C RTM6						resi	n batches	M6108	03									operato	-	Kitzmüller Wolfgang			
laminate mass ratio:	25/50/25 (01)									fastene	rr, washer, nu		na							test star	ndard	AITM 1.0008A issue3			
detailed stacking seq.:	(45/135/0/90/45	1135/0/90)2								collai	reference:														
										attachr	nents									sheet re	sference:	SW 06000123			
ageing:	as received									(cure	cycles, NDT	maps,								compile	d by:	Kitzmüller Wolfgang			
fatique:	none									micro	ngraphs, phot-	0S,)								date:					
test conditions:	23°C, div																					QAirt	us Deutschla	and Gmbh	<u>30</u>
only white fields to be fill	led in]					
				specimen o	mensions					npture						modulus				poissons ratio				⊢	
su		6 0	s I	Э	Э					strength	str	ngth	E-modulu	s in longitua	inal direction	ші —	modulus in t	ans/erse di	rection		0L 96 95		tor	2	61
эц		au Jne	eui	чн	u) iu	uµ6 di	Line ar	upture uft	mate re	lated to t	relate	d to two	related to	arx.	related to t _m	rel	sted to t _{arm}	relate	d to t _{com}		C = 3 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1		1q	pe	นอ
ecit secit	dividual specimen	в-по веат р	s UDICK B	o M u o a de	∑uəj u ⊃əda	gri gri	ənt İeriç	bed	rain	s/MF v/%	05	s/MPa v/%	0 -	MPa w%	Alls v	<u>8</u> ×	sMPa v/%		s/MPa v/%	s NW	lief b vate vate	remarks	иә ш	aupe	шир
hed e to		i i	⁰	When	-	8		·	ت س		la Gurre	o,/MPa	ئى تى	/MPa	تي ت	Pa E.		ئى	E_/MPa	~ ~ ~	nerti (nerti itoe		6q	це	8116
> #	3	ag mm	mm	mm	mm	mm	mm	N	% M	a minMi	Pa MPa	minMPa	MPa mi	n/MPa h	Pa min/	MPa MP	a minMP	MPa	minMPa	- min	2		ds		
													calc. method:	Sect	ant modulus	10%/50%	of failure stre	8			C				
1	1/1001001D-001	0 4,17	4,09	32,11	150	08	33,05 -5	39217,2	-28	2,9	-298,6														Γ
X R	Thronton D-002 1	0 4,17	4,09	32,09	150	8	32,87 -5	37803,5	-28	2,8	-288,0														
с ч	TM001001D-003	0 4,17	4,09	32,13	150	99	32,75 -5	39810,2	-29	=U 5/2	302,9	9=U													
ate 4	TM 001 001 D- 004	0 4,17	4,09	32,03	150	09	32,68 -5	35107,3	-26	2,8	-267,9														
d 9 2	TM001001D-005	0 4,18	4,09	32,04	150	99	32,74 -5	12855,8	-24	5,6 19,5	-250,7	19,7													
8 ₩	M001001D-006	9 4,18	4,09	32,04	150	8	32,59 -5	36500,2	-27	25 -7.15	6 -278,5	%0''-					_				\ge				
ere:										-275		-281,1													
00										-297,	2	-302.9				_									_

A.6:

										utschland GmbH 2006		0	tor S	uə ,pa ,d	шц өцр өцр	ita tra	e be atte	as	C								
Plane Tensile		PCCL Leoben	Oktober 13. 2006	Kitzmüller Wolfgang	AITM 1.0007A issue3			Wolfgang Kitzmüller	Oktober 26. 2006	@ Airbus De					remarks												
		20	ti:		tard:		erence:	by:					ot 96 95		tel tel ete	101 101	pe jue (ue		C	7	×	\ge	\ge	\ge	\ge		
		test plac	date of t	operator	test stan		sheet ref	compileo	date:		1	sons ratio			ŝ	%//	~	min									Г
%												pois					a V _w	•									L
at: 60,0													direction	ated to t	sMPa	%\X	E_/MP	i min/MP	a - 2		_						Г
olume conte													h transverse	, rel	e		Pa E,	Pa MPe	tress								L
mal tipre vi													E-modulus i	elated to tar	Shhis	\$} }		Pa min/N	6 of failure s								Γ
9												modulus	5	-	MPa	%	/MPa	MPa M	IS 10% / 509			9 =		282	%8	382	
1													udinal directi	related to t	8		ئى ت	MPa mi	cant modulu	47864	47156	48390 L	46239	44370	44151	4	ĺ
													ilus in longit	0 term	sMPa	%/X	E"/MPa	min/MPa	dt Se			9 =U		2194	4,8%	46181	L
					n.a								E-mod	related.			யீ	MPa	calc. metho	48158	47388	48449	45902	43834	43356		ſ
		50			÷			, maps,	('90				ength	ed to t	sMPa	%),	on,/MPa	minMPa				9=L		15,3	2,6%	5987	
		atch: S1176		141	r, washer, nu	reference:	ients	cycles, NDT	graphs, phot				- 初	relate			8 Cross	a MPa		573,6	595,1	594,4	607,4	619,2	602,3		
	GmbH	es: textile t		M 5287(fastene	collar	attachn	(cure	micro			nuture	strength	ated to taxe	SMP	%N	a,/MF	a min/MF		-	0	1 1 1		7 11,6	5 20%	38	ſ
	1 tex Wagene	textile batch	er bøtches	batches									_	nate rel	.us	_	Ξ 0 _m	% MP		3 577	37 598	3 595	39 603	44 611	44 591		
	gener Gmbh 4dtex] [Saer	fibre	bind	resir									-	pture uttir	oad str			N		4974 1	7887 1,	7794 1	9346 1,	1252 1,	880 1,		
	Seertex Wa 000 [PES.7													2 1412 6	οщ	1		mm		18	180,75 7	180,5 7	180,75 7	180,1 8	180,5 7		
	ES, 74 dtex)													u# d	grig gri	1	ğ	mm		8	8	09	. 08	98	09		
	J-264000 P											dimensions	ə	ц¥ шi	ວ່ມອ ບ ວອເ	il des	-	mm		8	8	30	30	00	30		
	-0534-01270 -textile S32	×										specimen	Э	U1	0 m 0 0 e c	ab	When	mm		31,96	32,00	32,00	31,94	32,09	32,02		
-45°HIS	S32CX00K letric counter	HTS 5631 1											е 1	eui	e Noi E	ui U	t eve	mm		4,09	4,09	4,09	4,09	4,09	4,09		
On-Fabric+)	Saertex + symm	TENEX		RTM6		35/0/ 90)2							9	JNe	іск 9 6 98	чı	terx	mm		4,07	4,07	4,09	4,12	4,14	4,17		
ngonal-Carb	-	fibre:	binder	resin:	1/25 (01)	35/0/90/45/1		ceived		Ch/			•	s i xu	ueu ueu	0	8	deo		0	00	0 0	0	0	0 90,		
Bidi	designation: construction,				25/50	(45/)		85 Tê	none	2.0	ed in				dividual speci	name				M0010024.0	M0010024-C	M0010024-C	M0010024-C	M0010024-C	M0010024-C		
Nort name:	pric/NCF full (exact FAW,)				ass ratio:	cking seq.:				UIS.	elds to be fill.		зu	эц	⊒. ∋cit	de	s †c) #		- 8	2 RT	3 RI	4 RT	5 RT	6 R1	L	
naterial sh	Prepredifab (including				aminate ma	detailed stat		aqeing:	atique:	est conditio	only white fi			c	лч	μq	∋q				×	цз	ate	q ə	II ₽	:91	

7.1.2001002 - RTM6 HTS Quasi-isotrop

conical fibre volume content 10.0% Doen Hole Terretie	20.24000 [FES.744ec] (Searter Vagener GmbH] S2C000466601270-24000 [FES.744ec] (Searter Vagener GmtH]	Ibreteoliebdathas texile tadat SY/TODO	binder tatates Unit 2008	tesin batabes N42827044	lasterat, na. last dandart MTM 1.000 Alisane3	cola releence	attachments sheet relearns	(oure cycles, NOT maps, with a second s	mirozat/s, ph/ds,) date August 8, 2006	6 Wrbus DevisorMard Conth 2006		cinen dimesions nuclue module poissons ratio	strength strength E-modulus in transverse direction E-modulus in transverse direction So So B	_5 5 5 25 05 nodue utimate related to two related	1 전 1 전 1 전 1 전 1 전 1 전 1 전 1 전 1 전 1 전	<u>64 1 0 1 F E Gave</u> GaMPa <u>Gave</u> GaMPa <u>E GaMPa E GaMPa E GaMPa E GaMPa E GaMPa Va</u> va <u>7</u> 555	ma ama ama ama ama na na % Maa ainhMaa Maa ainhMaa Maa ainhMaa Maa ainhMaa Maa ainhMaa Maa ainhMaa . ain 23	Lask method: executinoidules (DM) 60M of failure alesse	570 300 80 18072 5880 031 3883 4018 4804 4815 4815	2,18 200 60 180,75 46961 0,81 289,5 239,3 46861 46800 46800 46800	200 00 00 18072 52030 097 3948 n=8 4011 n=8 41680 n=8 4562 n=8 2562 n=8		218 300 80 181 46828 013 3337 171 3388 170 4688 338 4681 380 1	2,10 300 60 18125 50458 08 3783 3.2% 284.2 3,1% 46349 5,9% 50133 6,0%		
64140°HTS	ertex 5202 X00K-0634-01/270-284000 [PES/74dev][Særtex/Negener GmbH] winnderio counter-textile 52202/00K-0636-01/270-204000 [PES/74dev][Særtex/Nege	NAXHTS 5621 12K fibrets	binder	M6 resint		2						specimen dimensions	9 9 9 8 1 1 8		anick mon anick an	tawa taa waxaa I a f F E	mm mm mm mm N %		4/7 4,09 32,20 300 60 180,25 53690 0,8	4,20 4,09 32,19 300 60 180,75 4995/ 0,5	4,16 4,09 32,20 300 60 180,25 52833 0,9	4,15 4,09 22,17 300 60 180,25 51,081 0,5	4/15 4/08 32/18 300 60 181 48853 0/7	4,16 4,09 32,10 300 60 181,25 50453 0,		
terial short name: Bidfacorol.Carbon-Fabric	pregitabric/NCF ful designation Sae rolucting exact FAM, construction) + 5M	thre	binder	resin: RTM	inate mass ratio: 25(50/25(Ql)	aled stacking seq.: (45/135/0/90/45/1 250/ 90/2		ang as received	aue:	tounditions 23°C, dy	white fields to be filled in		9) 	in s بر ال	peci ndividual specimen office	e to	4 (¢9)		1 RTM001002E-002 0 4	× 2 RTM001002E-003 0 4	5 3 RTM001002E-004 0 4	🛱 🛛 4 RTM001002E-005 0 4	© 5 RTM001002E-006 0 4	🗄 🛛 6 RTIMO01002E-007 0 4	<e1< td=""><td></td></e1<>	

RTM6 HTS QI Open Hole Tensile.

A.8:

										GmbH 2006			st	uə	uu uu	36	це										
										utschland		0	101	id 1	uə	mi:) a c	sk									
Short Plane Tensile		test place: PCCL Leoben	date of test: Juli 13. 2006	operator: Kitzmüller Wolfgang	test standard: ATM 1.0007Aissue3		sheet reference: SW 06000123	compiled by: Ktzmüller Wolfgang	date: August 8. 2006	© Airbus Deu	1	sons ratio	00 00 01	luri dif cs	s a termarks	v/% diamond	ج" معا (nead	min	C	X	X						
												pois					Ynr										
content: 60,0%													isverse direction	related to t _{rm}	sMPa	%/X	E, E, MPa	MPa min/MPa	SSS								
ial fibre volume													modulus in tran	ated to t _{eex}	sMPa	%/X	E MPa	a min/MPa	1% of failure stre								
nomi												modulus	نت ه	9	Pa	~	Pa B	MPa MF	s 10% / 50			9		6	%	8	03
E													nal directio	lated to t	Ws	~	یں ا	Da min/l	nt modulu	20	66	371 n=	92	00	34 12,	497	28
L													n longitudi	*×	ĥa	~	MPa	MPa M	seca	34	472	-6	9	63	4% 477	112	126
L					1.a.								E-modulus	related to t _m	₩s	~	یر ت	MPa min/	calc. method:	45079	45777	46496 n:	45486	5864 54	44927 11,	47	<u></u>
L		8						maps,	0S,)				gth	totum	sMPa	%//	on MPa	min/MPa				0=U		25,3	37%	2,086	6409
L	_	ch: S1176/		_	vasher, nu	ference:	ts	des, NDT	aphs, phot				stren	related			Umac	MPa		640,9	708,7	679,7	702,9	702,3	679,7		
L	ner GmbH	textile bat		M628704-	fastener, v	collar re	attachmer	(cure cy	microgra			an	igth	to t _{mear}	sMPa	N/%	o _m .MPa	min/MPa				9=U		24,1	37%	8,669	622.7
L	H] rtex Wage	e batches	tches:	hes:								Idu	strer	related			Dames	MPa		622,7	687,1	663,5	683,1	6999	646,7		
L	Jener Gmb Idtex] [Sae	fibreftextil	binder ba	resin bato										ultimate	strain		3	%		1,37	1,32	1,41	151	1,13	1,43		
L	iertex Wag 0 [PES.74													rupture	load		u.	N		84394	93508	8839	92455	92275	89262		
L	'4dtex Sa 270-26400													416 84	enț enț	1	·	mm		32,42	32,35	32,15	32,20	32,20	32,30		
L	00 (PES/) (0635-01)											US SU		di di	euí dt	1	0	mm		8	8	8	8	8	8		
L	1270-2640 S32CX001											n dimensio	Э	mi:		l de	_	mm		<u>8</u>	(5)	<u>8</u>	<u>8</u>	<u>(6</u>	150		
	DK-0634-0 ter-textile	1 12K										specimer	а	uni:	- 	, as	Winex	mm		32,19	32,25	32,13	32,15	32,12	32,10		
+/45° HT	(S32CX0) netric cour	HTS 563											s 6	s ni 9 n	e mo Xoi	4‡ iu	t _{ion}	mm		4,09	4,09	4,09	4,09	4,09	4,09		
on-Fabric	Saerte) + symm	TENAX		RTM6		36/0/90/2							8 8.	JINS	sea b Aoi	ui uu	taex	mm		4,21	4,22	4,26	4,21	4,32	4,30		
onal-Carbo	<u> </u>	fibre:	binder:	resin:	5 (QI)	0/90/45/1		ived					s	ixo	s-11	0	8	deg.		0	0	0	0	0	0		
Bidiago	designation: construction,				25/50/2:	(45/135)		as recei	none	23°, drv	lled in				ividual specime	name				M001002B-002	M001002B-004	M001002B-00E	M001002B-006	M001002B-006	M001002B-015		
ort name:	ric/NCF full exact FAW				ss ratio:	king seq.:				'IS.	alds to be fi		s U i	эш	<u>B</u> .	ds	. J C	• #		1 RT	2 RT	3 RT	4 RT	5 RT	6 RT	~	~~
material shu	Prepreg/fabl (including				laminate ma	detailed stat		ageing:	fatique:	test conditio	only white fit			a	пч	ote	sq				×	цэ	te	99	lit>	(91	

										mbH 2006			લ્વ	uə	шцэ	ette					_	_	_	_		
										utschland G		•	10 <u>1</u>	,pa idi	и е ші і цо ві	at Sec	at	ſ								
Short Open Hole Tensile		PCCL Leoben	Juli 17. 2006	Kitzmüller Wolfgang	ATM 1.0007Aissue3		oe: SW 06000123	Kitzmüller Wolfgang	August 8. 2006	© Airbus De			01	82	e e e e e e e e e e e e e e e e e e e	act act st		c	X	X	X	X	X	×		
		st place:	ste of test:	berator:	st standard:		neet referenc	mpiled by:	ste			ratio	29		ω§ ist b		Ē									
		<u>te</u>	-B	9	单		-55	8	-p			poissons				Ŋ.e	•									Γ
96 ⁰ 09													tion	to t _{mm}	sMPa v/%	E_MPa	minMPa									
te content:													Isverse direc	related		ئى	MPa									Γ
al fibre volun													odulus in tra	I to t _{area}	sMPa Wv	E_MPa	minMPa	re stress								
nimor												allus	Ë	related		ů	MPa	50% of failu								
												Ê	rection	ed to t _{mm}	sMPa vok	E_MPa	minMPa	odulus 10% /								
													ongitudinal d	relat		ئى	a MPa	secantimo								L
													modulus in l	ted to t _{arm}	sMPa Wor	E_MP	Munm	thod:								
					ġ								<u>نن</u>	- Sec		ثت ہ	Pa MPa	calo. me							5	5
		60/9			Ę			lī maps,	otos,)				strength	lated to t _{tom}	AM2 300		a minM			5	т ц	0	90 190	5 4.29	8	990
		e batch: S117		704.1	ner, washer, i	ar reference:	ments	e cydes, ND	rographs, ph					2	e %	APa G	MPa MP		372	382	:6 403	88	280	356	91	12
	Ŧ	rest textile		M528	faster	8	attac	<u>,</u>	Ē			npture	strength	elated to t _m	- 75 	. " ""	Pa min/		32,4	26	3(1 1)	40	305 15	12	3	8
	lagener Gmb	etextile batch	ler batches	n batches:										imate	trair	ω υ	W %		8	33	8	33	**	~	_	
	r GmbH] d [Saertex W	fb	bind	resi										uttree ut	peol	- 	N		40015	1800	22868	20272	51144	1984		
	rtexWagene IPES,74dex													416 91	ent Peng		E		32,38	32,55	32,70	32,60	32,60	300	-	
	74dtex) [Sæ 270-264000													կյը di	nel nel	•	E		8	8	8	8	8	8	_	
	34000 (PES) 00K-0635-01											dimensions	9	ші: п	iuəl u oəds	-	E		150	150	150	150	150	<u>(</u>		
	34-01270-26 skile S32CXI											specimen (Э	411 U	piw n biw	Winex	E		32,20	32,20	32,08	32,00	32,00	32,00		
STH	32C X00K-06 tic counter-te	TS 5631 12K											56	s ni s e n	mon nom	4 _ #	E		409	409	409	409	409	409		
Fabric+/46*	Særtex S + symmetr	TENAXH.		RTM6		2/00/2							9. 9.	səu Ins	вэтт b bidxi		E		4,20	4,20	4,20	4,20	4,20	4,20		
al-Carbon-		fibre	binder.	resin:	0	09045/1350		8					<	aj ×1	s -110	8	deg.		0	0	0	0	0	0		
Bidiagor	l designation construction,)				25/150/25	(45//35/)		26 receiv	none	23°C, dr	filed in				individual specimer				RTM001002C-001	RTM001002C-002	RTM001002C-003	RTM001002C-004	RTM001002C-005	RTM001002C-008		
hort name:	bricNCF full g exact FAW				lass ratio:	adking seq.				ons	fields to be fi		ടപ	әш	beci	e to	*		-	2	~	4	9	0	7	~
naterial s	Prepregital (including				laminate m	detailed sta		ageing:	fatigue:	test condition	only white			a	1 494	вd				×	цэ	te	d 9	li 1 ×	əţ	

A.10: RTM6 HTS QI Short Open Hole Tensile.

										GmbH 2006			st	uə	шц	96	tte										
										eutschland		•	tor	,pa	цэ	ni: ett	e B	s	ſ								
Plane Condression	-	est place: PCCL Leoben	date oftest. Juli 12. 2008	operator. Kitzmüller Wolfgang	test standard: ATM 1.0008Aiseue3		sheet reference: S/V 06000123	compiled by: Kitzmüller Wolfgang	date August 8. 2006	© Airbus D		statio	001 01 01	100 100 100	s laistemarks	V98 lid	S B)	min	c	X	X	X	X	X	X		
												poisson					¥ _{re}	•									
90.09													dion	l to t _{mm}	sMPa	960	E_MPa	minMPa									
me content:													nsverse dire	relate			ů,	MPa									
Tal fibre volu													odulus in tra	id to t _{arra}	sMPa	%	E_MPa	minMPa	ure stress								
D												allubo	ü	relati			யீ	a MPa	50% of tai								
												Ē	direction	sted to t _{mm}	sMPa	\$	E_MPa	minMP	odulus 10%			9=U		8	<u>%</u>	46846	45267
													longitudinal	la			ц В	Pa MPa	secantin	47272	47186	46479	46267	47332	47539		-
													-modulus in	ated to t _{arm}	SMP	%	a a a a a a a a a a a a a a a a a a a	a minMl	ethod:	콧	*	8 8 8	8	98 27	8	4530	4402
					ë								-	2			Pa E,	APa MP	calo. m	4690	4680	6 488	<u>8</u>	6 4600	% 4500	97	33
		76/09			Ę			OT maps,	notos,)				strength	elated to t _{oun}	WS	\$ \$	20 10 10 10 10 10 10 10 10 10 10 10 10 10	a minA		2,4	88	2,3 1=	2	8 8	0.9 -5,4	¥	-521
		e batch: S11		3704-1	ner, washer,	ar reference	hments	re cydes, N	prographs, pl						Рa	2	MPa G	MPa M		8	99	=6 -52	50	7,5 47	8% 47	99	52
	3	thes textil		M52	faste	8	attac	<u>,</u> (0,	Ē			npture	strength	related to t	22		Tarran Tarran	AP.a min		48,3	96,0	06,2 n	02,4	60.7	48,0 5	4	\$
	Vapener Gmb	eftextile bato	der batches:	in batches:										timate	atrain			%		101 4	1,15 4	1,15 - 5	1,17 - 5	1,03	103 4		
	r GmbH] x [Saertex//	ģ	pi	lesi										upture ut		_	LL.	N		81025	67372	68700	93966	62150	61900	_	
	rtex Wagene IPES,74de													416 Ə 1	eni tre	1		E		32,55	32,55	2,83	32,75	32,75	32,85		
	74dtex) [Sæ 270-284000													dı dı	лө ПЭ		a	E		8	8	8	8	8	8		
	94000 [PES 00K-0635-01											dimensions	Э	ц16 1 Ш і:	iuə J Dəc	l Is	-	E		150	150	150	150	150	150		
	34-01/270-28 extile S32CX											specimen (э	чн ц ші:	o e c n bi w	i 16	Witness.	Ш		32,28	32,30	32,15	32,15	32,12	32,13		
STH	32C X00K-06 tic counter-te	TS 5631 12K											55	s ni s e n	i de l	41	ere t	E		409	409	409	409	400	409		
Fabric+ 145°	Særtex S. + symmetr	TENAXH		RTM6		2(06)(88 9.	səu Ins	op p e ai	ічт ш	tan ta	E		4,21	4,21	4,23	4,21	4,20	4,32		
al-Carbon-		fibre	binder.	resin:	(0)	08045/1350		æ		_			<	ai >1	2 -11	•	8	deg.		0	0	0	0	•	0		
Bidiagor	l designation construction,)				25/50/25	(45//35/)		25 receiv	none	23°C, dn	filed in				individual specimen	name				RTM001002C-010	RTM001002C-011	RTM001002C-012	RTM001002C-013	RTM001002C-014	RTM001002C-015		
hort name:	bric/NCF full 1 exact FAIN				ase ratio:	adving seq.				ons	fields to be f		ธม	əш	io e	ds	i 10	*		+	2	~	4	9	8	2	~~
material s	Prepregital (including				laminate m	detailed sta		ageing:	fatigue:	test conditi	only white			a	14	91E	q				×	цэ	te	q ə	lit×	:e1	

A.11: RTM6 HTS QI Plain Compression.

										d GmbH 2006			st	uə	u	upe	the	,									
										eutschlan		0	101 2	1q 1d	u	əmi bet	oe:	des	C								-
Open Hole Compression		PCCL Leoben	Juli 4. 2006	Kitzm üller Wolfgang	ATM 1.0008A issue3		x: SIV 06000123	Kitzm üller Wohtgang	August 8. 2006	@ Airbus [e ot		101	eds ivationalities tationalities	s a		C	X		×					
		t place:	le oftest:	erator:	t standard:		eet referenc	mpiled by:	يو			sti:	26	nLe		≈ % % «	~e 162^	min ,									
		tes	clat.	8	tes		35	00	84]	noissons n			┢		Y _w										
													e direction	ated to t _{mm}	oMDo	vi%	E_MPa	a minMPa									
AIIIN AIIINO													n transverse	2	ľ	2 9	Pa E,	Pa MP	ŝ								
UTILIDE INC													E-modulus	elated to t	W	₩, ¹ >		Pa min≬	of failure sh					[Γ
=												modulus	5		MDo	mra V%	MPa 6	nMPa M	s10%/50%								
1													utinal direction	related to t	-		ٹت ث	MP a mi	cant modulu								Γ
													ilus in longit	ot	AMDA	vi%	E_MPa	minMP a	t Se								
					n.a.								E-mod	related			யீ	MPa	calc. method								
		g						m aps,	S()				ength	ed to t _{mm}	AMDA	vi%	o, MPa	minMPa				9=U	_	12	-4.3%	-281,4	3056
		etch: S1176)4-1	r, washer, nu	reference:	ents	cycles, NDT	graphs, phot				8	relati			a Gua	a MPa		-277,4	-278,2	-276,2	-279,8	-3056	-2715		
	Hái	es: textile t		M5287	fastene	collar	attachn	(oure	micro			nuture	strength	ated to t	AMD	VI%	La Caller	a minMf		5	4	2 2	o	12,4	42	29	38
	Wagener Gn	textile batch	er betches	batches									-	nate rel		an	ε σ _m	% MP		-38	-290	-38	-29(\$\$	-284		
	er GmbH] ex][Saertex1	fibred	binde	resin									┝	oture uttin	4	Dadi Str		N		9238	9920	6269	2177	0127	5621		
	ertex Wager D [PES,74dt											╞		z uf	5u	- 191	.+-	uu		32,19 3	32,42 3	32,49 3	32,47 3	32,52 4	32,41 - 3		
	5,74 oftex) [S8 11 27 0 - 264 00													ц£ d	5. 1.1	191 D	0	uu		8	8	8	8	8	8		
	264000 [PE((00K-0535-0											imensions		عدب ر بس	5u u	iəi əds	_	uu		(20	(20	150	(20	150	150		
	534-01270-2 lextile S32C)											specimen d	9	ч# 	2 I U 3 I	nn ads	Wara.	uu		32,20	32,11	32,10	32,13	32,10	32,07		
CILL.C	S32CX00K-0 tric counter-t	HTS 5631 12											8	eu eu	8 *	thic non	tan t	uu		409	409	409	8 4	8 9	409		
FL'AUIIC+/+	Saertex S + symmet	TENAX H		RTM6		5(0(90)2							8 0.	JNS); () () () () () () () () () () () () ()	зө ш эічт	t _{arx}	uu		3,92	3,92	330	392	392	391	-	
UNAI-Laivu		fibre:	binder:	resin:	5 (QI)	0090451135		ived		A			\$	si×ı	-	-#0		deq.		0	0	-	-	-	-		
Diuld	l designation: (construction,)				25/50/2	(45/13%		as rece	none	23°C, 0	filed in				a min and harded the	Indimidual specim				RTM 001002D-001	RTM 001002D-002	RTM 001002D-003	RTM 001002D-004	RTM 001002D-005	RTM 001002D-006		
1011 HollE:	bricNCF full y exact FAN				nass ratio:	acking seq.				SUC	fields to be t		ue	, ш	10	əds	10	*		-	2	~	4	Ś	9	_	~~
TIQUENTIAL SI	Prepreg/fai (including				aminate m	letailed st		igeing:	atigue:	est conditi	only white t			0		цор	sd				×	40	ate	qe	₽II₽	<91	

										d GmbH 2006			ব	uә	ωı	a ci	tte										
										Deutschland		0	101 101	,p∈ Įd	u ə	mis ette	e) a c	IS	ſ						_		
Plane Tensile		PCCL Leoben	Sept 05. 2008	Kitzmüller Wolfgang	ATM 1.0007Aissue3			Wolfgang Kitzmüller	Oktober 02. 2006	© Airbus			01	94	e ti ti izi remarks	101	e e										
		lace:	oftest	stor.	tandard		t reference:	vied by:					90 29	1 03	ie† t ei	pil Sec		j.	1		Ê	Ê	Ê	Ê	Ê		
		test	date	opera	test s		sheel	omp	date		1	ooissons rati				2	7	Е									
900														5	Pa NPa	*	MPa V	MPa									
ortent: 0													rse direction	related to t,	155	>	E, E,	IPa min									
re volume o													is in transve		MPa	8	MPa	MPa N	ress								
nominal fibr												5	E-modulu	related to t,	3	-	Ë,	MPa mi	6 of failure st								
												тофі	.u	otmu	sMPa	% 0	"MPa	ninMPa	us 10% / 509			9=U		1334	1,9%	88603	67347
													tudinal direct	related to			ů	MPan	ecantmodul	67451	69550	67347	6898	67424	70257		
													ulus in longi	otara	sMPa	860	E_MPa	minMPa	5			9=U		1265	1,9%	67883	99999
					ġ								E-mod	related			ů	MPa	calo. methoc	86788	68710	9888	6883	6771	69492		
								abe	-				ditte Ditte	l to t _{orm}	sMPa	%0	σ _m MPa	minMPa				0=U		619	5,8%	888.6	618
		h: S117809			lasher, nut,	erence:	2	des, NDT ma	phs, photos,				stre	related			0 arres	MPa		852,3	9352	8917	831,9	908,4	8119		
		textile batc		M528704-	fastener, v	collar ref	attachmen	(orre c)d	microgra			oture	ength	dto t _{mm}	sMPa	\$	o _m MPa	minMPa				9 <u>=</u> 0		608	5,7%	88).0	822,0
	er GmbH]	e batches:	ches	hes								2	-64	relate			C _{terrer}	MPa		8442	924,1	883,3	8220	8888	960,4		
	H] ertexWagen	fibretexti	binderba	resin bat										uttimate	strain		w	*		131	1,38	1,37	1,21	1,34	1,42		
	lagener Gmt 74dex) (Sae													npture			ч.	Z		5 111810	122580	8 11666	5 108900	5 11888	5 127118		
][SærtexW 94000 [PES													91	ent ent	-		ШШ		180,2	180,5	179,9	180,2	180,2	180,2		
	[PES,74dtex 35-01270-26											SUC		410 d1	иð иб		~	m		8	8	8	8	8	8		
	70-264000 2CX00K-06											nen dimensi	ə	ш і 41	591 0	ats v	-	mm		M 300	74 300	300	00	300	300		
	0K-0534-012 ter-textile S3	1 12K										specif	9 55	.er	iec aki	4 S	m Wine	E		19 32(19 32(18 31,	19 32(16 31, <u>5</u>	16 31 ₂		$\left \right $
+/45°HTS	tex S32CX01 metric coun	AXHTS 5631											16	:9r		141	π	ill Ill		13 4(14 41	13 4(14 4(13 4(14 41		$\left \right $
bon-Fabric+	Saert Fish	TEN,	55	T RTM		0,80)2							э. •	ai≫a	е 9 ц. 5	ш 0	a ta	eg. m		4	9	9	9	9	4		\vdash
Bidiagonal-Can	tion dion,)	fbre	bind	resir	50/0/50	108/0/08/0/08/0)		as received	none	28°C, dry					ual specimen	name		0		1003A-004	1003A-005	1003A-006	10094007	0034-008	0034-009		
.iau	F full designa					:d:					be filled in				individ					RTM00	RTM001	RTM00	RTMON	RTM00	RTM0)		
aterial short na	repregrabnic/NCF (including exact F				minate mass ratio	staled stacking s		peing:	tigue:	st conditions:	nly white fields to		SU	а	11 U	ote	sd 9 to	*		1	×	က မာ	4 4	e p	99 ×411	:01	~~~

7.1.3001003 - RTM6 HTS BIAXIAL

A.13: RTM6 HTS Biax Plain Tensile.

										schland GmbH 2006		0	tor St	uə ,pa	шu рцр	mi ISE	be tte	de	C								
Open Hole Tensile		PCCL Leoben	Juli 18. 2006	Kitzmüller Wolfgang	AITM 1.0007A issue3		06	Wolfgang Kitzmüller	August 20. 2006	© Airbus Deut			or or	9 1 0	a toti a toti remarks		act (ne		C	X							
		test place:	date of test:	operator.	test standard		sheet referen	compiled by:	date:		1	ons ratio	28	un	s S	10% 11%	- -	min									
%0'(poiss	_		Pa	~	MPa V.,	MPa -									
content: 60													verse direction	related to t	S/M	*	E, E,/)	MPa min/	2								Γ
I fibre volume													odulus in trans	dtoteex	sMPa	%/X	E _n /MPa	minMPa	failure stress								L
nomina												nodulus	ШШ	relate			ш 8	Pa MPa	0%/50% of 1								-
F													nal direction	elated to tun	SMP	%/A		Pa min/MF	nt modulus 1	180	88	587 D=6	8	68 405	765 6,1%	0299	2020
L													s in longitudi	teen 1	MPa	۷/۸	/MPa	nMPa MF	Seca	768	20	n= 6 599	8	2007	7,4% 697	8433	0000
L					8								E-modulu	related to	~		പ്	MPa mi	alc. method:	75079	701.25	60399	67464	80,199	71424		
L		g						maps,)S,)				lĝi	dot	sMPa	%//	da,/MPa	minMPa	0			9=U		9 ⁰	2,0%	563,8	2440
L		tch: S11760		5	washer, nut	eference:	ants	ycles, NDT r	raphs, photo				stre	related			b Greek	a MPa		541,9	8'295	564,0	557,2	547,8	543,9		
L	GmbHl	s: textile be		M 68753	fastener,	collar r	attachme	(cure c	microg			upture	trength	ted to t	sMPa	%/X	a"/MP₀	minMP8				9±		8	12%	567,4	2270
	ex Wagener	extile batche	batches	atches									~	ate relat	.=		0acce	MPa		8 584,9	567,9	571,1	4 562,9	6 560,3	8 557,6		┞
	ener GmbHI dtex] [Saerte	fibre/t	binder	resink										ture uttim	ad stra		~	N %		20 888	512 0,6	03	022 0,8	812 0,8	446 0,7		
	Saertex Wao 000 [PES,74											\vdash		E A G	оца аца	21	·+	mm		80,25 71	80,05 75	30,075 75	80,02 74	80,4 72	80,25 72		
	ES,74 dtex) [1													u# d	au č đuj	21	0	mm		09	1	80	8	` 19	8		╞
	J-264000 IP											limensions	Э	ц¥ шi	ວັບອ ບ ວອງ	ગ ds	—	mm		30	30	8	8	30	00		
	-0534.01.270 r-textile S32	×										specimen	а	ця ші	9 M U 9 Ø	dis	When	mm		32,43	32,51	32,53	32,47	32,49	32,56		
/46° HTS	: S32CX00K hetric counte	HTS 5631 /											е Р	eu sui	e ick e	Ч‡ УU		mm		409	4,09	409	409	4.09	4,09		
on-Fabric+	Saertex + symm	TENAX		RTM6		19012							6 9.	JINE	ick b b b b b b b b b b b b b b b b b b b	чı эш	terr	a mm		3,79	4,09	4.04	4,05	4,00	3,99		
agonal-Cart	Ē	fibre:	bindet	resin	A50	0/0/90/0/90/0		eceived	a)	No. 1			e	: ixo	imen	0	8	dec		002 0	000	004 0	00	900	0 200		
Bidi	l designation: construction				200	60		as n	UOU	23.0	filed in				ndividual spec	name				TTM 001 003E-	TTM 001 003E-	TTM 001 003E-1	TTM001003E-	TTM 001 003E-	TTM 001 003E-		
thort name:	abric/NCF full g exact FAM				nass ratio:	acking seq.:				ions:	fields to be t		uə	ш	29	ds	10	#		+	2	°	4	5	9	F	~
naterial s.	Prepredific (including				arminate n	etailed st.		qeing:	atigue:	est conditi	nly white			C	пч	μc	≥q				×	чэ	ote	qe	a i i b	(91	

A.14: RTM6 HTS Biax Open Hole Tensile.

										thland GmbH 2006			101 S1	uə ipe	ш. эцэ	iette ect	ette	is.									
Short Plane Tensile		PCCL Leoben	Sept 05. 2006	Kitzn üller Wolfgang	X: AITM 1.0007A issue3		NC:	: Wolfgang Kitzmüller	Oktober 05. 2006	@ Airbus Deutos			0L 0C		호 한 편 remarks				C	X							
		test place:	date of test.	operator:	test standar		sheet refere	compiled by	date:			ns ratio			\$	%	~	min									
												poisso					~										
nt: 60,05													direction	ated to t _{mm}	sMPa	%//	Ē	a minMP									
volume conte													in transverse	122	Pa	~	APa E.	MPa MP⊗	'ess								
nominal fibre													E-modulus	related to t_	**	*	ш" Ш	APa min	% of failure st								
												modulus	tion	t	sMPa	٨%	MPa	nin MPa N	us 10% / 50%			9=U		2565	38%	68160	63106
													gitudinal direc	related to			٣	MPan	secant modu	70455	69094	69005	63106	68589	68713		Γ
L													odulus in long	dtot	sMPa	%	E_MPa	minMPa	nod:			9=U		2545	39%	65038	60024
L					U'B'	_				L			ŭ.	relate			ثت 8	a MPa	calc. meth	67014	66493	69999	60024	20099	66131		
L		1609			ut,)T m aps,	iotos,)				strength	ated to t _{mm}	SMP8	%IA	a. Mp	a minMP		52		(4 D=6	5	430	5 42%	1015,1	946,5
L		e betch: S11		8704.1	ner, washer,	lar reference	thments	re cycles, NC	prographs, ph	:				92 10	Pa	W	MPa Gue	MPa MP		346	1001	= 6 100	1000	100	1% 1062	8 , 8	05
L	GmbH]	iches: textil	24	M52	faste	100	attac	3	Ē			nuoture	strength	related to t	S	~	0	MPa min.		300,5	9696	991/3 D	0600	992 992 992	006.2	8	96
L	H tex Wagener	breftextile ba	inder batche	esin batches										ultimate	strain		~	%		1,39	1,48	1,45	1,55 1	1,45	1,52 1		
L	agener Gmbh 74dtex] [Saer			2										nupture	load		u.	N		125180	132570	133000	139140	131470	141050		
L	ISaertex Wi 14000 [PES]													цµ Ə	euj	1	+	mm		32,4	32,49	32,38	32,41	32,42	32,45		
L	IPES,74 dtex 335-01270-26											SU		up d	jue µB	21	8	uu		8	8	8	8	8	8		
L	270-264000 32CX00K-00											nen dimensic	9	-uii		dis	-	um n		30	7 300	30	70 300	300	\$ 300		
	00K-0534-01 unter-textile S	3112K										speci	9	en in i	u s s ick	dis Ult	mo mo	nm mr		09 32	09 32	09 32/	09 32)	09 32/	09 32		
ric+/-45° HT	ertex S32CX symmetric cor	NAX HTS 56		M6									91 S	eu eu	р р	уц Ч‡	t _{arx} t	nm		4,30 4	4,25 4	4.31 4	4,30 4	4,25 4	4,32 4		\square
Carbon-Fab	ΒŦ	ibre: TE	oinder:	esin: R1		(90,00,90)2							a.	s px	:eə s-µ	.0	9	deq.		0	-	0	-	0	-		
Bidiagonal	anation: struction,)			-	50/0/50	0/06/0/06/0)		as received	none	23°C, dry					idual specimen	name				001003B-001	01003B-002	001003B-003	010038-004	001003B-005	001003B-006		
name:	NCF full desit not FAW, cons				ratio:	."bas bu					s to be filled i		ŝų	əu		əds	: 10	*		1 RTMU	2 RTML	3 RTML	4 RTMU	5 RTML	6 RTML	r~	~~
material short	Prepreq/fabric (including exu				aminate mass	detailed stackii		aqeing:	fatigue:	lest conditions.	only white field		-	0	11 4	uc)	sd				×	ца	ate	q ə	411	(ət	

A.15: RTM6 HTS Biax Short Plain Tensile.

										mbH 2008			sy	J 84	n doe	11e										٦
										utschland 6		•	- č	ра [0]	n emi do 63	0.94	1 s	G								
ensile										O Airbus D																
Den Hole T		s		olfgang	A issue3			olfgang	88																	
Short (PCCLLeob	Aug 02. 200	Ktzmüller V	ATM 1.000			Ktzmüller V	August 22.2						remarks											
					-9		:uoe:) 0 t 0 t	101	ietbi sbe stevi itsitet	15 10E 10E		c	×	\ge	×	×	×	\ge		
L		test place:	date of test	operator:	teststanda		sheet refer	complied by	date:			16 1.00			s %	>"	-G			_	_	_	_	_		
												poisso				ň	-									
8													ection	ed to t	shPa vi%	E.MPa	minMPa									
lume content													lansverse dir	relati		w	MPa									
minal fibre vo													modulus in t	ed to t	s/MPa v/%	EMPa	minMP ₃	ite stees								
U												odulus	Ľ	rel at		س	L MPa	/ 50% of tails								
L												E	direction	ted to t	s/MPa X/X	e e e e e e e e e e e e e e e e e e e	minMP	odulus 10%.								
L													longtudnal (rela		ωí 2	a MPa	secant m								Ц
L													E-modulus in	ated to t	SMP. XV	3	minMi	thod								
L					2									iel.	~	تة م	Pa MPa	calo. me								
L		8						maps,	()				strength	lated to tww	SMP X/V	3	a minM		~	~	Ĩ.	-	4 8	\$ 	8	68
L		atch: \$1176		391	K, WECher, M	reference:	양관	cycles, NDT	ographs, phot				-	2	2.00	2	Pa MP.		690	680	600	662	689	8		
L		- Portier		M6076	tasten	collar	attachr	(ourè	miore			rupture	strength	lated to tam	¥: \$>	3	J min		_	~	۳ ۵	4	8	ب	g	\$
L	GmbHl	odile batohes	batches:	atches:									⊢	ate re	- <u>e</u>	0°**	du		53	574	602	54	99	45 1		
L	1 ex Watener	fbre/h	binder	risin									┝	ue din	tt.		3~		50	8	4	5	3	5	_	\mid
	gener GmbH 4dtex) IS aer													90 410	- <u>c</u>		~ e		37 716	4	35	24 736	88	22 88	_	Η
L	(Saertex Wa 4000 IPES 7												-		hu el le ne		e		0 32	0 32	0 32	0 32	0 32	33	_	Η
L	PES,74dex) 35.01270.26											5005	+	110	16		и 9		8	8	8	8	8	8	-	Η
L	20-26400 22C/00K06											koimen dimer	0	416	n nine Sin Sin Sinne Sin Sin Sin Sin Sin Sin Sinne Sin Sin Sin Sin		E E		8	2.12	2.15	2,12	200	54	-	Η
	00K 0634 01 Inter-textile S	31 12K										Spice	2	e 0	s boed s Morek	-	uu		40 0	48	400	400	40	6 6		\mid
1.45° HTS	ertex SS2CX immetric cou	VAX HTS 56.		99									5	9-U	s Noi 41		£		42	42	42	421	42	421		\mid
rbon-Fabric	8 ÷	3 19	der	in RT		000							9.	in s	е әш ощо	8	040		-	-	0	-	-	-		
diaconal-Car		4p	-13	22	60	08/0106/006		received	ŧ	*C, dry					ecimen				8	8	8	8	8	8		
1 all	ignation:				8	ē		23	8	83	.G				individual sp. name				TM001003C-1	TM001003C-1	TM001003C-L	TM001003C-L	TM001003C-L	TM001003C-L		
name:	NCF full des				1350	10 S 60					ts to be filled			ъчш	io e di	= 1 <			-	2 R.	8	4 R	ъ 8	8	~	
material shore	Prepregitabric (including ex				aminute muss	detailed stack		ageing:	atique:	est conditions	only white fiel			J	1403	r q				×	40	4e 4	1 0	124>	~1	

A.16: RTM6 HTS Biax Short Open Hole Tensile.

	_										us Deutschland GmbH 2006		0	tot 2	.pe	шця upe	cin stte	90 90	et	C								
	Plane Compression		PCCL Leoben	Aug 08. 2006	Kitzn üller Woltgang	AITM 1.0008A issue3			Kitzn üller Woltgang	August 21. 2006	OAIR				50	temarks	ste											
I				ftest	5	andard:		eference:	ed by:					,ot 96 95		iet sb	0 110 1110		_	P								
			test ple	date of	operati	test ste		sheetr	compil	date:		1	issons ratio			S	§ : 	_ _	mi									
	%00												00			Pa ×	;	AL R	MPa -									
	ntent: 6													rse direction	related to t _m		≥ 2		Pa mini									
	e volume co													is in transve	14 14	MPa		Mr a	nMPa M	aress								
	nominal fibr												\$	E-modulu	related to t	65		ن ت و ت	MPa mi	% of failure								
													modulu	tion) t _{orm}	sMPa	- 40%		ninMPa	lus 10% / 50			9=U		3646	5,7%	64115	56749
l	1													tudinal direc	related to			ات	MPa n	secant modu	56749	66739	64678	66613	66735	66277		
														Julus in long	to t _{arra}	sMPa	1/// 1///		minMPa	at .			9=U		3503	2,7%	61069	54040
						D.a.								E-moc	related		L	وت	MPa	calc. metho	54040	62168	61448	62459	63186	63113		
			g			_			n apos,)S,)				ength	ed to t _{orm}	sMPa	%) - *0*-		minMPa			_	9= 1	_	385	47%	-600,5	-626,1
			atch: S1176/		4-1	washer, nut	reference:	ents	cycles, NDT	raphs, photo				8	relation		Ŀ		a MPa		-611,4	-591,6	-611,0	-547,0	-615,9	-626/		
		F	s: textile to		M52870	fastener	collar	attachm	(oure (microc			npture	strength	ted to t	sMPa			minMP		~		3= 2		1 27,9	4 3%	-572,0	-596,3
		lagener Gml	stile batche	betches	atches										ate rela	_	+	000	MP8		-582	2 -559,	-580	-521	-592,	-596 -596		
		r GmbH] d [Saertex V	fibreate	binder	resint										ure uttim	ad stra	-	~ :	~		296 1,1	368 1,0	01 080	60 98	964 1,0	320 1,0		
		tex Wagene IPE S,74dte:													12 LIP	iuel			m M		51 80	22- 85	8	58 -72	52 - 30	10 10 10		
		4dtex) [Saer 70-264000													e: uit	iual inal		-	nn n		80 32	60 32	60 32	60 32	60 32	60 32		
		1000 (PES,7 DK-0535-012											ensions		-116 7	Leu L		_	mm		150	150	150	150	150	150		
		4-01270-264 tile S32CX0											oecimen dim	9		n Nic	s ::	Mar	mm		32,11	31,97	32,04	32,35	32,02	31,95		
	HTS	CX00K-0534 counter-text	563112K										8	s 14	eu ius	mo Xbir			mm		4,09	4,09	4,09	4,09	4,09	4,09		
	abric+/46°	Saertex S32 + symmetric	TENAX HTS		RTM6									9 0	eu: Ins	see b yoir s	14 	K M	mm		4,30	4,33	4,31	4,29	4,26	4,30		
	al-Carbon-F		fibre:	binder:	resin:		0/90/08/0/2		-5					\$	si×i	ə-µ.¢	> .	=	deg.		0	0	0	0	0	0		
	Bidiagon	designation: construction,)				500/50	06/0/06/0)		as receive	none	23°C, dry	lled in				individual specimen	name				RTM 001003B-002	RTM 001003B-003	RTM 001003B-004	RTM 001003B-005	RTM 001003B-006	700-800100MTF		
	hort name:	oricINCF full exact FAM				ass ratio:	icking seq.:				SUC	felds to be fi		ua	, UI		te t	•	*		-	2	~	4	5	- 60		
	material st	Prepreg/fab (including				laminate me	detailed sta		ageing	tatigue:	test conditio	only white f			G	u us	oper	9				×	цр	-te	qe	ali⊅	<91	ŀ

A.17: RTM6 HTS Biax Plain Compression.

										GmbH 2006			व्य	uэı	шцэ	5110	2									
										eutschland		01	,oi	,pe	оцэв: шөш	att e ci	ds									
Open Hole Compression		test place: PCCL Leoben	date of text Juli 18, 2006	operator. Kitzmüller Wolfgang	test standard: ATM 1.0008Aissue3		sheet reference:	compiled by: Kitzmüller Wolfgang	date August 22. 2006	© Airbus D		nsratio	01 01 01	00 00 00 00 00 00 00 00 00 00 00 00 00	s defeti defeti entrentre entr	r ali ali et					X	X		X		
L												poised				2										
80.08													redion	ed to t _{mm}	sMPa XVV	E.MPa	minMPa									
lume contern													ransverse di	relat		u.	e MPa									L
ninal fibre vo													-modulus in t	sted to t _{arm}	sMPa WW		de le	ilure stress								
18												aulubom	_	ala.			Pa MPa	%/50% of ta								L
F													al direction	elated to t _{mm}	d WS		Nei Pe	t modulus 10								
L													in longtudin.		e s	- "	MPa MP	1035								L
L													E-modulus	related to t	-55 ~		e de la composición de la comp	method								
L					E.								_	- mu	sMPa vox		E AM	- Selo			0=U		11,1	32%	341,5	366.6
L		90192113			ler, nut,	.301		, NDT maps,	(, photos,)				strengt	related to		1	MPa =		325,5	342,5	3666	-348,3	-333,3	-341 B		
L		extile batch: (1607539-1	estener, was	collar refere	ttachments	(oure cycles	micrographs			e	£.	otara	sMPa Wo	- a Mba	minMPa				9 <u>=</u> 0		#3	3,3%	-336,5	361.5
L	IHqu	batches: to	les.	Si I	-		-0					nptu	stren	related to		J.	MPa		319,4	3360	361,5	345/1	330/1	-3367		
L	x Wagener G	fibre/textile	binder batd	resin batchs										uttimate	strain		*									
L	ener GmbH] dex[[Saetle													npture	peol	-	z		42996	45240	47516	48157	43975	45086		
L	Særtex Wag 00 (PES,74													416 Ə :	ent fre	-	E		32,18	32,89	33,05	34,07	33,80	34,28		
L	ES,74dtex][5-01270-264											50		կդը di di	inel ng	-	E		8	8	8	8	8	8		
L	0-264000 (P 2CX00K-063											nen dimensio	9	ш і: 41)	piw biw	-	E		8 150	9 150	8	1 150	8 150	7 150		
L	K-0534-0127 ter-textile S3	12K										specir	9		u oəds				00 32,2	0 20,2	36	08 - 20 ⁰	32,2	0 32,2		
445°HTS	iek SS2CX00 Imétric court	4XHTS 5631		~									16	e ni s ni	a mon mon				17 4,0	17 4(15 4,0	14 4(13 4,0	15 4,0		
bon-Fabric+	Sæd + sin	TEN	Jai a	T RTMI		0,80)2							e s	ai xe	s-1110 b		, E		9	0 4	0	9 4	9	0		
fiagonal-Car	~	fbre	piid	resir	090	10810/08/008		received	æ	C, dry					scimen	1			8	20	8	ā	50	8		
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	esignation				8	ê		28	é	83	din				individual sp				TM001003D	TM001003D	TM001003D	TM001003D	TM001003D	TM00003D		
ort name:	nich/CF full di exact FAI/V, or				ss ratio:	xing seq.				22	elds to be fille		<u>з</u> ц :	• LLI	iceq	e t	• *		4	2 R	~	4	5 R	8 8	7	
naterial sh	Prepregliabi (including.				aminate ma	detailed stac		ageing:	fatique:	test condition	only white fit			a	। पञ	Bd				×	цэ	1B	q ə	111>	<91	

A.18:

RTM6 HTS Biax Open Hole Compression.

7.1.4002002 – EPS601 HTS Quasi-isotrop

A.19: EPS 601 HTS QI Plain Tensile.

										chland GmbH 2006		•	etro S	be be	u y pe na na na na na na n	ijje The E Th	e ads	. [
Open Hole Tensile		est place: PCCL Leoben	date of test: 15. Sept 05	operator: Kitzmüler Wolfgang	est standard: ATM 1.0007A issue3		sheet reference:	compiled by: Wolfgang Kitzmüller	date: 27. Okt D6	@Airbus Deuts		s ratio	[0]	101 101 63	S Terror and the marks	<pre>< 5 Selicit Selic</pre>	*** > ((a		X	X	X	X				
content: 60,0%			0	0			0,		0			poisson	sverse direction	related to t _{som}	s/MPa vok	L WDS	MPa min/MPa .	658								
nominal fibre volume												modulus	rection E-modulus in tran	to t _{rom} related to t _{mex}	SMPa SMPa		min/MPa MPa min/MPa	dulus 10% / 50% of failure str			0=0		1390	2,9%	47882	45847
					13.								E-modulus in longitudinal din	related to t_mem related t	s/MPa v/vc		MPa minMPa MPa n	alc. method: secant moc	5063 48869	47472 45847	50157 n=6 48257	51661 49514	49513 1489 46668	51012 3,0% 48019	50111	47472
	er GmbH]	A in LDS		11633101	stener, washer, nut, n	collar reference:	achments	joure cycles, NDT maps,	nicrographs, photos,)			-	h strength	tww related to tww	MPa SMPa	MP2 T MP2	mMPa MPa minMPa		421.2	444,4	n=6 4749 n=6	432.8	19,2 445,9 18,4	4,2% 433,7 4,2%	62,7 442,2	37.3 421.2
	Wågener GmbH] 15.74dtex] [Saertex Wågene	fibre/textile batches k. /	binder batches:	resin batches: 20	fas		<u>at</u>					rupture	strengt	ure ultimate related to	ad strain s	ь ь 	MPa mi		48 0,9 437,3	79 1,08 460,1	75 1,08 493,6 r	83 0.91 451.6	45 1,05 473,1 .	65 0,97 460,7 4	4	4
	.000 [PES,74dtex][Saertex 0K-0535-01270-264000 [PE											ons		110 110 110 110 100 100 100 100 100 100	iual au gui gui gui		- um		00 180,75 549	60 181 579	819 52'621 09	60 180 552	0 181,25 581	60 180 565		
5° HTS	S32CX00K-0534-01270-264 etric counter-textile S32CX00	HTS 5631 12K										specimen dimensi	ai ai se		a Mora S S S S S S S S S S S S S S S S S S S	s =	mm mm mm		4,09 31,90 300	4,09 31,90 300	4,09 31,86 300	4,09 31,80 300	4,09 31,88 300	4,09 31,89 300		
diagonal-Carbon-Fabric+/4	ion: Saertex tion,) + symm	fibre: TENAX	binder:	resin: EPS601	(E0/25 (QI)	5/136/0/90/45/135/0/90)2		received	ne	°C, dry			83 8	ixe ins	9000men 00me 00m	+ _ _ _ _ _	nlan mm		002A-001 0 3,94	002A-002 0 3,95	002A-003 0 3,94	002A-004 0 3,92	002A-005 0 3,86	002A-006 0 3,85		
naterial short name: Bi	Prepreg/fabric/NCF full designat (including exact FAW, construc				aminate mass ratio: 25	letailed stacking seq.: (4)		ogeing: as	atigue: no.	est conditions: 23	mly white fields to be filled in		uə	mi	individuals	s To	> # I	-	1 EPS01-002	× 2 EP9801-002	5 3 EP9801-002	a 4 EPS01-002	# 5 EP9801-002	EP5001-002	×ə	

A.20: EPS 601 HTS QI Open Hole Tensile.

										mbH 2006			są	uә	шц	9 B C	tte										
										eutschland G		•	101 2	,p∈	цэ	ni: ett	e)əd	s	ç								
Short Plane Tensile		e: PCCL Leoben	est 25. September 2006	Kitzmüller Wolfgang	dard: ATM 1.0007Aissue3		erence: SW 06000123	by: Kitzmüller Wolfgang	Oktober 27. 2006	© Airbus D			01 01	101 101	tai tetti taistetti remarks	bil Vit tet	s SB SB		c	X	X			X	×		
		test place	date of te	operator.	test stand		sheet refi	compiled	date		1	sons ratio			s.	8	<u>_</u>	Ē								_	
*												pois		_			N ^N	9									
± 80,0													lirection	sted to t _{mm}	sMPa	85	E.MPa	minMP								_	
olume conte													transverse (a la	_		ي ه	a MPa									
minal fibre v													-modulus in	ated to t _{arra}	sMPs	8	2	minMF	ailure stress							_	
18												modulus		Ð	e	~	Pa E	Pa MPa	96/50% of t							~	4
H													al direction	elated to t _{mm}	₩.	2		a minM	t modulus 10	8	8	нц 100 100	14	8	26	ŝ	442
L													in longitudin.		Pa	~	MPa E	MP.a MP	Secart	64	450	:6 464	442	84	9% 472	26	98
													E-modulus	related to t_	NS.	3	<u>ت</u>	Pa minl	method	012	8	:ш 090	8	88	57 (88	G	\$
L					ġ									5	MPa	%	MPa	MPa V	calo.	4	4	= 6 47	4	25,6 47	88	13,4	767
					er, nut,	2		NDT maps,	photos,)				strength	related to t	20		G _{nore}	MP.a mir		301.3	876,7	723,7 n	М7,2	746.0	288	~	<u></u>
L		A. inLDS		11633101	tener, washe	ollar referen	achments	oure cycles,	nicrographs,				E	X	sMPa	96,1	"MPa	inMPa				92 12		21,3	2,9%	81122	9009
	동	tches k.	iri	20	fac		韦					npture	strengt	related to t			C _{mines}	MPa Π		718,4	9/009	733,5	731,5	781,8	745,1		
L	Vagener Gm	brefextile ba	inder batche	esin batches										utimate	strain			×		1,77	1,78	1,68	1,88	1,69	1.64	Π	
L	er GmbH] sv] [Saertex1	-		2										npture	peol		u	z		81080	88472	94520	83578	97236	94688		
L	ertex Wagen I [PES,74de													418 Ə 1	e Li e	1		Ш		32,22	32,31	32,41	32,48	32,29	32,24		
L	(74dtex) [Sa 1270-264000												2	dı dı	лө Пэ		æ	ШШ		8	8	8	8	8	8		
L	64000 (PES (00K-0636-0											I dimensions	Э	ші: п	e ui J Dec	15	-	ш		150	150	150	150	150	1 50		
L	634-01270-2 lextile S32C>	×										specimen	э	411 1	n je D	i de	Warm	E		322	32,02	31,94	31,90	31,87	3,85		
STH°	S32C X00K-0 tric counter-1	ITS 5831 12											56	s ni s e r	ш о ISPDI	41	-t ⁶	E		409	4,09	4,09	4,09	409	409		
Fabric+1-45	Saertex (+ symme	TENAXH		EPS001		0/80)2							9.	ins	9 9 9 9 9 9	iчi ш		E		383	3,95	4,04	4,01	401	88		
ral-Carbon		fibre	binder.	resin:	5(Q)	0/80/45/135		<u>/66</u>					<	ai >1	5 -11	•	8	dêg.		0 0	02	03	04 0	0	0	_	
Bidiago	Il designation) V, construction,)				25/50/2:	(45/135/		26 recei	none	23°, dry	filled in				individual specime	name				EPS601-002002B-0	EPS601-002002B-0	EPS601-002002B-0	EPS601-002002B-0	EPS601-002002B-0	EPS801-0020028-0		
short name:	abricNCF fu ng exact FAM				mass ratio:	tacking seq.				ions:	fields to be		9U	әш	iəe	de	s 10	*		-	2	~	4	5	•	L	~
naterial	Prepregita (includin				laminate r	detailed s		ageing:	fatigue:	test condit	only white			a	14	91E	q				×	цэ	te	d ə	li1×	ət	

A.21: EPS 601 HTS QI Short Plain Tensile.

ſ											Nd GmbH2006			51	• •	ш ң о ғ	110	:									_
L											us Deutschla		•	10 ⁴	8	∎smi stont	091 12	dis	C		_1						
And											939																
from the To	anu ian			300	and A	[SUE]) UED																		
Dive	1010		COL LEODER	9. September	ttmller viot	MI1007A		W0600123	timiler viol	27.0405						Siterio											
L			a		×	-4			×					2 e t 0 t	(so) 1 P 1 Q	ietba steut disite	is ioe ali)		ç	R	\ge		X				
L			t place	e officit	Erator.	(Standard:		ed reference:)(d byl)	343			i i i i i i i i i i i i i i i i i i i	Ē		10 BG	بر	듵									
Ľ	Т		100	13	8	a		60	8	Q2			polssons				,										Γ
NNA	2000												⊢			ed ys	E C	nnMPa									
	CONFIL													ree direction	related to t			MR N									Γ
and the second second	a noe wome													ulus in transie		Ed ys	5	InMPa									
	UIII0													Emol	related to t.			E	JPE STRESS								Γ
L													moduus	\vdash		64 92		TW/P3	\$ /50% of tal								
Ľ	1													Tai dhection	related to t.			E	TT modulus 10								
L														usin longtudr		<u>e</u> e	ـــــــــــــــــــــــــــــــــــــ	MPa	E086								
L														Emodul	related to t	1.0		E B	Tethod:								
L						2							⊢	⊢		8 e	g	MPa N	CEIC.I						<u>*</u>	53	5
L									19181	(atengih	related to t	56 -	5	E		~	8		8	5	43	¥	4
L			5		301	r. waaher. nut	reference:	援	cicles, NDT r	oraphs. choto				┝		æ	ت چ	MPa M		9	4	3	4	8	*	~	
L			K .AIn		20160	1913 EUR	00la	長月	(one	Ê			age	atengh	elated to t	8 ×	5]	JE R		~	P -2	÷		2	*	4	\$ 3
L			tie batches:	aches.	tches:									-	44		5	W		24	40	4	急	3	40		
L		됱	(available)	binderb	regin ba									_		-G#		20		~				_			
L		EX VIGORIELO											_			Š.	-	N		200	22	2 821	395	986	200		
L	honer (2mhH	Addent Isaen													110	ənî ⊇∎əd	-	E		323	32,0	324	32,51	322	32,37		
	VI IStartav III	K400 PES.													116	316 316	-	E		8	ß	B	ß	8	ß		
	I IDES 74#4	0235-01270-2											en dimensione		- 110	oəds		E		5	<u>8</u>	5	\$	5	5		
	UN1270-26400	le szcolak											E Seci	•	-41 I	apec	1	E		31.89	3194	2.13	31,99	31.95	31,95		
	2CYNNW26	Counterted	XZ1 12% S											5	5 0 j	**** ***	•	E		8	8 4	8	â	89 89	â		
AN INT	Steffer ST	Hames+	TBNK HT		B\$01		2								3	жана Р Е е е ш	-	E		40	325	38	397	385	395		
A + 1 - 7 - 1 - 1	UBL-UDEA		the:	binder:	rean:		V46/135/0/90							•	ai × I	e-#10	~	(8)		-	-	-	-	-	-		
Pd second	191008019					256025 (0	(45/135/D9D		191/BCBJ 52	au	2°.0v					ecimen name				1028-004	0028-007	1028-003	0028-009	0028-010	0028-011		
	nation.	TUCION)														indvidual sp				EPS601-002	EPS601-0021	EPS601-002	EPS601-0021	EPS601-0021	EPS601-0021		
	IT INSTREE: MOPE AND ADDREE	adt FWN con					ing seq.:					1sto be 11ed 1		==	ъц	iosq	s 14	~ ~		-	2	~	4	s	9	~	800
and the second	CITE BRIERE	(Including e				laminate mas	detaled stack		30Elho:	tatione:	test conditions	orty white fee			a	1 1 3	Eq				×	9 <	40	9 P	112.2	. a.	

A.22: EPS 601 HTS QI Short Open Hole Tensile.

											d GmbH 2008			s)	uə	ц	op	11e										
I											Deutschlan		•	, ou	pa Id	u ər	nia	.e	i s	ſ								
	Plane Compression		PCCL Leoben	20. September 2006	Kitzmüller Wolfgang	AITM 1.0008A issue3		SW 06000123	Kitzmüller Wolfgang	27. Okt 06	@ Airbus				(50	1 remarks	te i	.5										
				tt		dard:		erence:	jaji Jaji					9 d 9 d 9 d		ist at	- Pil	pe)		ſ	~						3	
			tect place	date of te	operator	testano		sheetref	compiled	date:			ons ratio			~	\$	> ^e	Ē									
I													poiss		_			2	•									
l	8													ection	dbt	s/MPa	%	E.MPa	minMPa						_			
I	me content													insverse dire	relate			ய	MPa									
I	hal fibre volu													odulus in tra	to t	s/MPa	WM	E_MPa	minMPa	stres								
	nomi												sulu	ш. Ш.	related			ய	MPa	% of failure								
													mod	tion	Ļ	s/MPa	%	E_MPa	minMPa	lus 10% / 50			0=0		툜	%% ⁰	41346	48712
]	٦													tudinal direc	related			ய	MPa	ecant modu	4744	44691	44609	424	43712	403 1		Π
														dulus in long	Ļ	s/MPa	%	E.MPa	minMPa	0.			9=0		8	1,1%	46467	4668
						1.8.								Ē	related			ய	MPa	alc. method	4804	488	48918	46104	4666	46429		Π
														Ē.		s/MPa	%	o/MPa	minMPa				9=0		8 8	÷4 ∜	454.0	-479,7
						ier, nut	nce:		ND T maps,	, photos,)				sten	related t			Ű,	MPa		-4683	-403	-4619	-4878	4280	-4797		
			AinUDS		0168300	stener, wash	collar refere	tachments	(oure cycles	micrographs			æ	f	i	s/MPa	%	o/NPa	minMPa				9=U		183	4 ≹	476.7	-500,0
			ches: k		2			ing			Γ		ruptur	steri	related to			Ū,	MPa		-473	-462,9	-478,4	-487.5	-472	-900 -		
		ner GmbH1	reftextile ba	nder batches	sin batches:										utimate	strain			*		1,18	108	1,13	121	10	13		
		nbH] aertex VIVane	4	1	ß										rupture	load		u.	N		-58244	-57128	-58780	-61258	-56820	62544		
		Wagener Gn S.74dtex1 IS												•	416 Ə	e Di	1		E		32,25	32,19	32,13	3221	32,29	22,34		
		ex Saertex 264000 IPE												•	ua 6 di	a n		~	E		8	8	8	8	8	8		
		0 [PES,74d 060501270											hensions		941) 1 1	u ə 1 2 = 0	ı 1s	_	E		8	8	8	8	8	ŝ		
		1270-26400 S22 CX0014											pecimen din	9	ч# ші	29 (2 2 ()	ı 1s	Ulan	E		31,75	31,73	31,80	32,02	31,89	3(8		
		00K06340 unter-textile	831 12K											5	2 U	ani ≥	4.0	ي.	E		409	409	409	409	409	40		
	+/48 HTS	ertex S32C) ommetric co	NAX HTS 5		1005									=	au	s Noi S	47	<u>ا</u> ر	E		391	389	388	383	392	390		
	thon-Fabric	33 ¥.	ير س	der:	ii:		V135/0/90/2							9.	ti≻at	·-,,,	•	8	deg.		0	0	0					
	faconal-Car		-lêi	-IJ	les	50/25/(0)	//35/0/80/46		received	24	C, dry					cimen					100:02	20-002	2C-003	20:004	20:00	90:02		
	2	pration: truction,)				29	æ		ю	8	22	_				ndividual spe	name				S601-00200	S601-00200	S601-00200	S601-00200	S601-00200	S601-00200		
	name:	VCF full desi of FAIN, cons				atio:	gseq.					to be filled i		9	ъш	io s	di≊	: 10	~			2 EP.		4 EP	5 EP	80 60	P~~	
	material short (Prepregrabric/ (including exa-				laminate mass r	detailed stacking		ageing:	fatigue:	test conditions:	only white fields			J	14	- 1 e	P				×	40	de.		-411 -	cəq.	

A.23: EPS 601 HTS QI Plain Compression.

										mbH 2006			eħ	uə	ապօ	ette										_
										tschland G		•	101 5	,p∈ Id	uam nam	ise He	ds									
Open Hole Compression		test place: PCCL Leoben	date of test: 15. September 2006	operator: Kitzmüller Wolfgang	test standard: ATM 1.0008A issue3		sheet reference: SW 06000123	compiled by: Kitzmüller Wolfgang	date: 26. Okt 06	© Airbus Deut]	boissons ratio	e?)	10 10 10 10 10	S Ted are used to the second s	د روان (neiti ast	- unin	C	X				X	X		
%0													_		e s	, Ę	MPa									L
tent: 60													rse directio	elated to t.	₩ >	<u>لل</u> الل	Pa mir									Γ
volume cor													s in transve		MPa Vok	MPa	MPa N	ure stress								L
ominal fibre												9	E-modulu	related to	05 0	ئں س	MPa mi	50% of fail								Γ
iii												modul	ection	to t _{um}	sMPa v/ok	E, MPa	minMPa	dulus 10% /								
													gitudinal dir	related		ω	MPa	secant mo								Γ
													dulus in Ion	id to t _{maxe}	sMPa v/vk	E. MPa	minMPa	thod:								T
					na.								0 L L L	relate		تت «	a MPa	calc. me								
					, et			DT maps,	hotos,)				trength	ted to t _{rom}	SMPs v/v	Ju Su Su Su Su Su Su Su Su Su Su Su Su Su	minMF		7	~	3 n=6	4	5	4 3%	240,1	22
	풀	nLDS		33101	ner, washer	ar reference	nments	'e cycles, N	rographs, p					rela	°°. ⊰	Pa G	APa MPa		-221	-241	6 -244	-2#2	782-	% -251		
	aqener Gm	ches k A i		20116	faster	100	attact	. <u>8</u>	mic			rupture	strength	lated to t _{me}	Ws »		Pa		5	29	10 10	80	28 10	5	¥.	Ę
	SmbH] Saertex W	eftextile bat	der batches	n batches:									-	mate	rain	3	W %		-22	-24	53	53	-24	97: -97		
	(Wagener (ES 74 dtex)	fibre	bin	resi										upture uti	load		z		82063	1221	2003	32052	81147	2333		
	ex] [Saerte) 264000 [PI													2 416 86	le Di		m		32,13 -2	32,28	32,21 🗧	32,22	32,18	32,18		
	[PES,74dt 635-01270-												-	di di	leui du	6	m		8	8	8	8	8	8		
	70-264000 %2CX00K-0											dimensions	ə	416 1 1	iual u sads	_	m		150	150	0G).	J <u>5</u> 0	150	150		
	<0534-012 er-textile SC	12K										specimen	Э	Ч¥ mi	oeqe n oiw	Mare	W		32,14	32,13	32,07	32,07	32,07	32,03		
5° HTS	c 532CX001 Tetric count	HTS 5631		_									s: P	sni en:	e mon Apidi S	-	æ		4,09	409	409	409	4,09	409		
Fabric+/4	Saerte) + symm	TENAX		EPS00		0/90)2							s ə.	au: Ins	searr b Aoidi		W		3,97	3,99	3,98	3,99	4,00	6		
ial-Carbon		fibre:	binder	resin:	(0)	80/45/135		g					6	ei xo	°-#o	8	deg		0 10	002 0	03 0	0	05 0	090		
Bidiagor	gnation: struction,				25/50/25	(45/135/C		as receiv	none	23°C, dr)					dual specim	IIIII			1-002002D-I	1-0020020-(1-002002D-(1-002002D-(1-002002D-(1-002002D-I		
name:	CF full desi t FAW, con:				atio:	: '086'					to be filled i				indivil				EPS80;	EPS80;	EPS00	EPS0)	EPS80	EPS80;		
rial short n	regfabric/N				ate mass re	led stacking		<u>.</u>	ġ.	onditions:	white fields t		s ua	эш	iseq	e to) #		-	2	~	4	2	2	~	¢
IIII	(jii)				amir	detai		ageil	fatigu	test	1 de	1		U	43					×	47	+61	10	114.8	+	

A.24: EPS 601 HTS QI Open Hole Compression.

										rbH 2006			eħ	Jai	uype	ette						_				
										schland Gn		0	tor S	.pe Id	nemi intoet	ae te	ak	C								
Plane Tensile		test place: PCCL Leoben	date of test 02. Okt 06	operator: Kitzmüller Wolfgang	test standard: ATM 1.0007Aissue3		sheet reference:	compiled by. Wolfgang Kitzmüller	date: 30. Okt 06	@Airbus Deut		ns ratio	97 01)	lur to to cs cs	s at a state and a state www. www.communities.	val (ne act act	min	C		X				X		
												poisso				Y.										
iinal fibre volume content: 60,0%													E-modulus in transverse direction	elated to t related to t	sMPa sMPa v% v%	E, E, MPa E, E, MPa	Pa min/MPa MPa min/MPa	D% of failure stress								
MOM												modulus			MPa %	MPa -	MPa M	ls 10% /5(9=		82	,2%	657	111
Ľ													idinal direct	related to t	- <i>8</i>	ىت تى	MPa mir	cant modul	311	88	2092 n	3453	6115 5	4287 11	4	4
L													us in longitu	0 t _{mw}	sMPa v%	- WPa	nin/MPa	d: 98	~	4	9=U	4	2375	107% 4	50272	46611
L					n.a.								Emodul	related to		ш ш	MPa	calc. metho	46218	49616	54770	45511	8773	46744		
L				0276000	÷			maps,	tos,)				ngth	d to t _{on}	s/MPa v/%	o., MPa	min/MPa				0=U		32	5,5%	573,3	538,1
L	_	g		HD, Erz Nr.	, washer, ni	reference:	ents	cycles, ND7	graphs, pho				ats	relate		B Cone	a MPa		806 ,3	988	8,17,8	538,1	569 _{,3}	5510		
L	ener Gmbh	es k A in l		73-663-	fastene	collar	attachm	(cure	micro			upture	trength	ed to t _{mm}	s/MPa v/%	G,MP	min/MP				0=0	-	327	90%	6052	5636
L	nbH] aertex Waq	extile batch	r batches:	batches:										ate relat	.9	0 _{one}	MPa		38	4 001	4 649,6	8 563,6	5 385,	8		
L	Vågener Gr 8,74dtex) (S	fibre	binde	resin										ture ultim	ad stra		% }		2	50 1,2	12 1,3	528 1,3	344 1,1	33 1/		
L][Saertex \ 34000 [PE9												-	31F	e iual		m		22 100	0,75 74	1,25 810	1,25 700	1,00 73	0,75 72(
L	FES/4dtex 6-01270-26													-116 di	leui du	0	mm		80 80	80 80	60 18	80 18	60 18	80		
L	1-264000 (1 CX00K4063											nensions	- -		iuəl J	-	mm		8	8	30	30	30	90		
L	0634-01270 textile 532	×										pecimen di	а	чн uui	oeqe T Diw	Warne	mm		32,12	32,08	32,06	32,05	32,02	31,97		
S.	32CX00KI	TS56311										5	s: *	s nii 9 nii 9	non Apirtt 3	t	шш		4,09	4,09	4,09	4,09	4,09	4,09		
nic+/45° H	Saertex 5 + symmet	TENAX H		EP3600		07							s ə.	au: Ins	seem o Aoidt ≥	lanx.	m		382	387	389	391	391	388		
Carbon-Fat		fibre:	binder:	resin:		45/1350/9							6	i×	s-Ħo	ø	deg.		-	-	0	0	0	0		
Bidiagonal-C	designation: construction,)				25/50/25 (0)	(45/135/090/		as received	none	23°C, dry	lled in				individual specimen name				'900-003002aA-001	900-003002aA-002	500-003002aA-003	500-003002aA-004	500-003002aA-005	'900-003002aA-006		
ort name:	nicNCF full exact FAW				ass ratio:	cking seq.:				ns:	elds to be fi		sue	эш	iseq	s to	• #		⊞ 	2	с.	4	5	90 90	F~~-	
material sh	Prepreg/fab (including				laminate mé	detailed stai		ageing:	fatigue:	test conditio	only white fi			a	। प ञ	eq				×	цэ	teo	39	lit>	:e1	

7.1.5003002 - EPS600 HTS Quasi-isotrop

A.25: EPS 600 HTS QI Plain Tensile.

										nbH 2006			sti	Jər	ողօ	ette	2									
										schland Gn		0:	5 104	pə d	acµ uəu	iice tte	ds									
Open Hole Tensile		test place: PCCL Leoben	date of test. 06. Okt 06	operator: Kitzmüller Wolfgang	test standard: AITM 1.0007A issue3		sheet reference:	compiled by: Wolfgang Kitzmüller	date: 30. Okt 06	@Airbus Deuts		ns ratio	01 01 01	lur to ta ta	s teres termarks	s sen set	uiu ^	C	X	X	X	X	X	X		
												poisso				١	•									
ume content 60,0%													transverse direction	 related to t_{iom} 	Pa sMPa	Pa E. E. MPa	Pa MPa min/MPa	e stress								
minal fibre vol												8	E-modulus in	related to t	S/MF	т С Ш	MPa min/M	/50% of failure								
8												modul	ection	0 tum	s/MPa	 MPa⊥	nin/MPa	dulus 10%.			0=0		1210	2,5%	48220	46945
Г													qitudinal dir	related		ш	MPa	secant mo	48260	50413	46945	47618	48524	47561		
													dulus in Ion	d to t _{mexe}	s/MPa v.o.	E. MPa	min/MPa	thod:			9=U		1271	2,5%	51688	49936
				0	n.a.								Emo	relate		ш	e MPa	calc. me	51336	53348	49936	20017	52924	21667		
				Nr.027600	r, nut,			VDT maps,	photos,)				strength	ated to t _{rom}	S/MP 2000		a min/M		2	~	4 n=6	5	3 242	0 53%	459,2	4334
	GmbH]	inLDS		63-HD, Erz	ener, washe	llar referenc	thments	ire cycles, l	crographs,					m rel	e Ba	WPa G	MPa MP		451	440	=6 433	466	4 501	462	2,5	
	x Wågener	atches k.A.	.55	s. 73-6	faste	8	attac	J	E			rupture	strength	elated to t	A's 7	L	VPa min/		805 1	629	610 n:	88	468 31	018	69	(
	ter GmbH] (Ex) [Saerte	orevertile b	nder batch(sin batches										Itimate	strain		~		0,99 4	0,94 4	0,95 4	1,06 4	1,16 5	1,07 5		
	rtex Wagen [PES/74dt	2	100	Le Le									-	rupture u	load	u	z		59017	57455	56645	00841	66223	60272		
	4dtex] [Sae 70-264000												,	941 116	le ni	•	æ		92/'081	180,75	180,75	181	180,75	180,25		
	00 (PES/7 <0635-012											US		di 116	len gr	0	W		08	8	09	09	8	8		
	01270-2640 832CX001											en dimensio	a	nu: nui: 1110	uel J	3	8		8	8	8	30	8	8		
	00K-0534-(unter-textile	31 12K										specime	а	e inni inni inni	u ⊃əde ≽	W.			3196	9 319'	9 31,90	9 3180	9 318	9 31,90		
5° HTS	tex 532CX mmetric col	AX HTS 56		80									le le	e n; inin e n;	4əid 2 10 10 10 10		а ш		85 40	87 40	85 40	33 40	75 4,0	77 4,0		
-Fabric+/2	Sael + sy	e: TEN	der:	in: EPS		(0/90)2						_	e S	ins ixe	з-Що	نہ <u>ر</u> ت	ea. m		0	0	0	0	0	0	\vdash	\vdash
Bidiagonal-Carbon	signation: nstruction,)	fibr	bin	resi	26/50/25 (QI)	(45/135/0/90/45/135		as received	none	23°C, dry	1 in				widual specimen				10-003002aA-001	10-003002aA-002	10-003002aA-003	10-003002aA-004	10-003002aA-006	10-003002aA-007		
rt name:	cNCF full dec xact FAW, con				is ratio:	áng seq.:				:05	lds to be filled		uə	ı	indi pec	s to	#		1 EPS00	2 EPS80	3 EPS00	4 EPS00	5 EPS00	6 EPS00	7	
material sho	Prepreg/fabri (including e				laminate mas	detailed stach		ageing:	fatigue:	test condition	only white fie.			a	IЦЭ	ted				×	цэ	teo	1 0	41143	×ə1	

A.26: EPS 600 HTS QI Open Hole Tensile.

			Γ							1bH 2006			eti	Jəl	ակե	ne:	це										
										schland Gn		03	5 hor	pa Id	uəu.	nis H	e)a(ək	C								
Short Plane Tensile		est place: PCCL Leoben	late of test: 11. Oktober 2006	perator: Kitzmüller Wolfgang	est standard: ATM 1.0007A issue3		sheet reference: SWV06000123	compiled by: Kitzmüller Wolfgang	late: 30. Oktober 2006	@Airbus Deuts		ratio	e?	10 10 10 10 10 10 10	s Tarational Sector Sec	ere di la companya de		min	C	X			X	X			
											1	poissons					V.v.										Γ
ominal fibre volume content 60,0%												ulus Internet Interne	E-modulus in transverse direction	related to t related to t	s/MPa s/MPa	04.70	E, E, MPa E, E, MPa	MPa min/MPa MPa min/MPa	6/50% of failure stress								
Ē												mod	irection	i to t _{ine}	s/MPa	8	E, MPa	min/MPa	odulus 10%			0=0		<u>1</u> 88	30%	4754	43029
													ngitudinal d	related			ш	al MPa	secant m	44821	46631	43891	46050	43029	44203		
L													odulus in lo	ed to t	s/MPa	ŝ	ц Щ	min/MP.	lethod:	10	100	0=0 8		16/1	3,7%	48576	100
L				8	n.a.			(1)					۵ ۵	relat	° -		تنا چ	(Pa) MPa	calc. m	4830	188 188 188 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6 4806	5042	4607(% 4770	22	2
L				Z Nr.02760	er, nut,	.06		NDT maps	, photos,				strength	lated to t	Ws.	5		Pa min/h		4 D	34	15	22	35 18,	35 28	¥	53
L	r GmbH]	A in LDS		663-HD, E	tener, wast	ollar referei	achments	oure cycles	nicrographs				_		MPa MPa	8	MPa G	nMPa M		29	8	99 9=1	62	6,6 64	4% 65	06,8	846
L) ex Wågene	batches k. /	185.	es: 73-	fas		ŧ					rupture	strengt	related to t	3	1	Ū	MPa mi		726,4	692.7	724,4 r	684.6	, 2015	7052 2	~	
L	ener GmbH dtex] [Saert	fibre/textile	binder batcl	resin batch										ultimate	strain		ω	%		1/1	148	1,75	1,52	18	186		Γ
L	ertex Wage D [PES/740													rupture	load		ш	N		8968	8184	8684	81957	84296	8808		
L	74dtex] [Sa 270-264001													416 86	le u (•	mm		32,49	32,56	32,46	32,45	32,37	32,33		
L	000 (PES, 0K-0635-01											ons		di di	leuí gu Jeuí		~	mm		8	8	8	8	8	8		
L	-01270-264 le 532CX00											ien dimensi	a	uų HH	oiw oeq	6	-	n mm		8 150	11 150	150	150	3 150	11 150		
L	X00K-0534 ounter-texti	631 12K										specifr	9 5	aui eui	u oədi s souu	5	a War	m		09 32,	00 30	09 32.0	09 32,0	09 32,0	09 22,		\vdash
15° HTS	ertex 532C) ymmetric o	VAX HTS 5		800									le S	en:	Noid R Mor Void	1 1		m		80 4(74 4(74 4(74 4(72 40	79 4(
n-Fabric+/	8 9 8 4	IIE: IE	nder:	sin: EP		5/0/90)2							а. 6	ine ixa	з-Щс ;еаг	u ,	8	deq. 1		0	0	0	0	0	0		\vdash
Bidiagonal-Carbor	tesignation: construction,)	đ	10 10	re re	Z5/50/25 (QI)	(45/135/0/90/45/135		as received	none	Z3°, dry	ed in				idual specimen name					100-003002aB-001	100-003002aB-002	100-003002aB-003	1200-003002aB-004	100-003002aB-005	800-003002aB-006		
nt name:	icNCF full c sxact FAW, c				ss ratio:	king seq.:				.5	Ids to be fill		uə	mi	indiv pec	6	of	#		1 EPS	2 EPS	3 EPS	4 EPS	5 EPS	6 EPS	L	
material sho	Prepreg/fabr (including 6				laminate mai	detailed stac		ageing:	fatigue:	test condition	only white fie			C	แ นว	te	q				×	цэ	te	9 e	di to	×91	

A.27: EPS 600 HTS QI Short Plain Tensile.

										Iland GmbH 2006		03	ior S	uəı .pə ld	nemi ndost ndos	itte itte	de									
Short Open Hole Tensile		test place: PCCL Leoben	date of test: 4. Oktober 2006	operator: Kitzmüller Wolfgang	test standard: ATM 1.0007 A issue3		sheet reference: SW 06000123	compiled by: Kitzmüller Wolfgang	date: 04. Okt 06	@ Airbus Deutsch		sratio	65 be	101 101 202	s ted a te termarks ted a termarks	4 (ne act	min	C		X		X				
content: 60,0%					-				0			poissons	sverse direction	related to t	sMPa v/%	E, E, MPa V.,	MPa minMPa -	688								
nominal fibre volume												modulus	rection E-modulus in tran	to t.m related to t.m.	sMPa sMPa v% v%	E"./MPa E, E"./MPa	minMPa MPa minMPa	odulus 10% /50% of failure str								
					n.a.								E-modulus in longitudinal d	related to t related	sMPa v/%	E, E, MPa E,	MPa minMPa MPa	calc. method: secant mo								
	GmbH]	s k. A. in LDS		73-663-HD, Erz Nr::0276000	fastener, washer, nut,	collar reference:	attachments	(cure cycles, NDT maps,	micrographs, photos,)			oture	ength strength	d to t related to t	sMPa sMPa v/% v/%	d., MPa dam d., MPa	minMPa MPa minMPa		428,9	445,3	n=6 447,7 n=6	428,6	9,5 441,1 8,3	2,0% 442,7 1,9%	469,6 439,0	457,4 428,6
	Wågener GmbH] S,74dtex] [Saertex Wagener	fibre/fextile batche	binder batches:	resin batches:									- atr	rupture uttimate relate	load strain	F E Gane	N % MPa		56008 457,4	58280 475,5	58442 478,0	56094 467,7	57432 472,9	57563 475,9		
	0 [PES.74dtex][Saertex 0535-01270-264000 [PE											ons	•	Bity Bity Bity Bity	len(a f	m mm mm		50 60 32,34	50 60 32,30	50 60 32,43	50 60 32,34	50 60 32,23	50 60 32,20		
	X00K-0534-01270-26400 ounter-textile 532CX00K	3631 12K										specimen dimensi	9 9 5 1		mom s spec n n viv c viv c viv	teen Waren	mm mm		4,09 31,93 1	4,09 32,00 1	4,09 31,92 1	4,09 32,00 1	4,09 31,84 1	4,09 31,79 1		
bon-Fabric+/45° HTS	Saertex 532C + symmetric c	INE: TENAX HTS 5	nder.	sin: EPs600		135/0/90)2							6 8. 9.	au: au:	s-Tho seerm b Apirtt e	ũ t _{arm}	deg. mm		0 384	0 388	0 383	0 383	0 382	0 381		
Bidiagonal-Can	III designation: V, construction,)	fit.	ļļ	re re	Z5/50/25 (QI)	(45/135/0/90/45/		as received	none	Z3°C, dry	filled in				individual specimen name				PSB00-003002aB-001	PS00-003002aB-002	PS800-003002aB-003	PS800-003002aB-004	PS800-003002aB-005	PS800-003002aB-006		
material short name:	Prepreg/fabric/NCF fu (including exact FAV)	(including exact FAM, construction,)			laminate mass ratio:	detailed stacking seq.		ageing:	fatigue:	test conditions:	only white fields to be.		uə	ui O	n dəte	ot bs	#		- -	X X	ш С ЧЭ		یں می ا ا	4iit)	×ə1	~

A.28: EPS 600 HTS QI Short Open Hole Tensile.

										mbH 2006			eti	uəı	ապե	ne t	te										
										schland G		0:	5 LOU	pa Id	yse ueu	ni⊃ tte	8	sk	٢								
Plane Compression		test place: PCCL Leoben	date of test: 9. Oktober 2006	operator: Kitzmüller Violfgang	test standard: AITM 1.0008A issue3		sheet reference: SW 06000123	compiled by: Kitzmüller Wolfgang	date: 30. Okt 06	@Airbus Deut:	1	ins ratio	63 01 02	101 104 102	s ta static ternarks	2% 2% 110 100 110		min	C	X	X	X					
												poisso					V.v.	•									
ibre volume content 60,0%													dulus in transverse direction	d to t_mem related to t_m	s/MPa s/MPa		Le MPa E, E MPa	min/MPa MPa min/MPa	of failure stress								
nominal f												dulus	E-mo(relate		1	ŭ	MPa)%/20%(
												8	l direction	ed to t _{iom}	s/MPa		ц Т В Г В Г В	mnMPa	modulus 10			0=U		2347	54%	43137	33469
													ongitudinal	relat		ŀ	ŭ 9	Pa MPa	secant	44396	43696	43626	39469	44959	43676		-
													nodulus in l	ted to t _{mexe}	SMP.	5	چ ڀ	a min/M	method:	2	çe	9=0 6	90	5 2622	2 200	聋	4140
				8	n.a.			5					ů	100	ዲ >	e (ц Ц	vPa MP	calc. I	84	410	6 4732	4140	0 487	%	0	8
				'Z Nr.:0276	er, nut,	108:		, NDT map	, photos,				strength	elated to t.,	Ws."	≌ < T	0,1/\ 	Pa min/		28	2,1	7,1 n=	26	7,4 29	67 67	4	-200
	GmbH]	in LDS		SCB-HD_E	ener, wash	illar referei	chments	ure cycles	icrographs						e Pa	2	MFa G	MPa M		ŝċ	6	=6 -47	-42	2,7 -47	2%	35,5	76,1
	x Wágener	atches k. A	.se	s. 73-1	fast	8	atta	9				rupture	strength	related to t	55	_	Jawe Uni	vPa min		547.2	308	617.6 n	1,076	518p 2	236 4	~~~	Ģ
	er GmbH] ex][Saerte	irertextile b	nder batch	sin batche:										timate	strain	+	ω	%		1,15 - 5	1,28 - 5	121 8	1,25 - 5	1,24 - 5	127		
	rtex Wåger (PES/74dt	4	iQ.	16										rupture u	load	1	۰	N		-65946	-64164	61920	-55132	-62312	-63460		
	dtex][Sae 0-264000													416 86	le Li Le Li		-	mm		32,37	32,24	32,28	32,11	32,10	32,09		
	0 (PES,74 0636-0127											5		di di	leui du		-	mm		8	8	8	8	8	8		
	270-26400 332 CX00K											dimension	8	ut te u	leui J Səd	5	_	mm		(C	(<u>5</u>	(50	150	150	93		
	IK-0534-01 ter-textile (12K										specimen	8	Ч¥ сці	aeq 1 2	5	Wmpxx	mm		31,76	31,88	31/73	31,90	31,91	31,98		
HTS	 S22CX00 netric coun 	HTS 5631		_									68 16	sni 9n:	a mor Abid S	1 1	100	m		409	4,09	409	4,09	4,09	409		
bric+/45°	Saerte: + symn	TENAX		EPS00		90)2							8 9.	au: Ins	sear b Abid	14 	Tapaxe 1	mm		380	3,79	3,77	300	3,77	370		
Carbon-Fa		fibre:	binder	resin:		/45/135/0/							S	i xa	s-₩c	<u> </u>	8	deci		1	2 0	3	4	5	0 9		
Bidiagonal-u	ull designation: N, construction,)				26/50/25 (01,	(45/135/0/90)		as received	none	23°C, dry	filled in				individual specimen	name				PS800-003002aC-00	PS00-003002aC-00.	PS800-003002aC-00	PS00-003002aC-00	PS00-003002aC-00	PS600-003002aC-00.		
hort name:	Ibric/NCF fu g exact FAV				nass ratio:	acking seq.				ions:	fields to be		uə	ωį	əəd	e 1	10	#		-	2 B	~	4	5	ш 0	~	
material s.	Prepregra (including				laminate m	detailed st		ageing:	fatigue:	test conditi	only white			d	เนว	te	q				×	цэ	teo	98	di t>	(91	

A.29: EPS 600 HTS QI Plain Compression.

										nbH 2006			eti	uəı	ապես	:116										
										schland Gr		0:	iou Lou	pə Id	nemi nachi	be be	de	C								
Open Hole Compression		test place: PCCL Leoben	date of test. 2. Oktober 2006	operator. Kitzmüller Wölfgang	Test standard: ATM 1.0008A issue3		sheet reference: SW/06000123	compiled by: Ktzmüller Wolfgang	date: 30. Okt 06	@Airbus Deuts	1	ns ratio	65 be	101 101 102	s la sterait 1.0% de datig 1.0% de elviat	act (ne (ne	min	C	X	X				X		
												poisso				V _{nr}	•									
nominal fibre volume content; 60,0%												modulus	-modulus in longitudinal direction E-modulus in transverse direction	elated to t related to t related to t related to t	SMPa SMPa SMPa SMPa V%	<u>E, E, MPa E, E, MPa E, E, MPa E, E, MPa</u>	Pa min/MPa MPa min/MPa min/MPa min/MPa	.: method: secant modulus 10% / 50% of failure stress								
Ŀ				0009	n.a			ps,	-			-	_		MPa %	MPa	MPa N	cal			9=		14	8	82,9	03,1
L				Erz Nr. 027	sher, nut,	ence:		s, NDT ma	ns, photos,				strength	related to t	56 ×	Correct Cm	MPa min		276,3	303,1	006 n	<u>819</u>	286,5	2003 4	~>	ç
	er GmbH]	A in LDS		3-663-HD	stener, wa	collar refe	tachments	(cure cycle	micrograp			a			aMPa v%	"MPa	in/MPa				0=0	<u> </u>	12	39%	307,4	3288
	l) tex Wágen	batches k	thes:	es: 75	fa Ia		<u>at</u>					ruptur	streng	related to		U _{dutes} U	MPa m		-303 B	-328,8	-304 D	3050	-309,2	-2917		
	ener GmbH dtex] [Saer	fibreAtextile	binder batt	resin batch										ultimate	strain	w	%							Π		
	ertex Vilage) [PES/74		Γ											rupture	load	u.	N		-36538	-39955	-36907	-37088	-37388	-35259		
	'4dtex)[Sa 270-264000													ц16 əe	eni fre	•	mm		3221	32,16	32,50	32,22	32,25	32,18		
	00 [PES/7 (0635-012											us Su		di di	leuí du	8	mm		8	8	8	8	8	8		
	1270-2640 532cX001											n dimensio	ə		iuaj u pads	-	mm		ŝ	150	ŝ	QQ	99	ŝ		
	0K-0534-07 ter-textile	1 12K										specimer	а	41 Lui	oeqe n oiw	Warness	mm		32,34	32,24	32,16	32,16	31,91	32,02		
°HTS	(532CX00 netric coun	HTS 563(s: It	sni en:	e mon Voidt 2	ton	mm		409	4,09	409	409	409	409		
abric+/45	Saerte) + symm	TENAX		EPS00		(90)2							6 8.	au: Ins	seem b Apidf	t mexe	mm		372	377	378	378	379	378		
Carbon-F		fibre:	binder:	resin:		(45/135/0)							6	ei xa	s-Ħo	ø	deq.		0	2 0	0	0	9	0		
Bidiagonal-	nation: ruction,)				25/50/25 (0	(45/135/0/90		as received	none	23°C, dry					ual specimen name				103002aD-00	103002aD-01	103002aD-00	03002aD-01	103002aD-00	00002aD-01		
	full design AW/, const										oe filled in				individu				EPS800-(EP500-C	EPS800-(EPS800-C	EPS800-(EPS800-C		
short nam	fabric/NCF ng exact F.				mass ratio	stacking se				tions:	e fields to t		uə	ωi	əəds	ło	#		-	2	~	4	ч С	۵	2	
material	Prepreg/t (includii				laminate.	detailed s		ageing:	fatigue:	test condi	only white			a	ાપગ	eq				×	цэ	qeo	वि	dit>	<91	

A.30:

EPS 600 HTS QI Open Hole Compression.

										mbH 2006			et	uə	ապօ	ette	:									_
										schland G		•	101 1	,p∈ ∤d	achs nam	i pe He	ds									
Plane Tensile		test place: PCCL Leoben	date of test: 12. Okt 06	operator: Kitzmüller Wolfgang	test standard: ATM 1.0007A issue3		sheet reference:	compiled by: Wofgang Kitzmüller	date: 31. Okt D6	@ Airbus Deut		ns ratio	e?	1 n 1 o 2	s te or te	valie (neti acti	uiu	C	X			X				
												poisso				ľ.,	•									
ent: 60,0%													se direction	lated to t	sMPa ww	E.MPa	a minMPa									
volume cont													s in transvers	9	MPa /v/	MPa E	MPa MP	ire stress								
ominal fibre												lus Su	E-modulus	related to t	- 85	ئں ⁻ س	MPa	/50% of fail								Γ
												modu	irection	to t	sMPa v/v	E. MPa	minMPa	odulus 10%			0=0		1569	32%	48322	45608
													ngitudinal d	relate		ш	RPa R	secant m	4840	45608	49551	50015	48083	47832		
													hodulus in lo	ted to t	sMPa v/v	, and and a second seco	minMP	rethod:	-	-	0=n 6		0 2196	0 4,3%	51263	49641
					U.a.								ŭ	Lee Lee	ദ്ച	ш Д	Pa MP	calc. r	4965	4864	5365	155	0 5062	% 2086	~	
					er, nut,	108:		NDT maps	, photos,)				strength	elated to t	WIS 0/1	: 2 -	Pa min		80	14	9,7 n=	21	85 23	65 39	283	89
	IHQME	A in LDS		020033	stener, wast	collar refere	achments	oure cycles	nicrographs				_		MPa v/w	"MPa	inMPa N		33	55	0=6 56	83	195	3,1% 57	23,1	088
	x Wágener I	batches ku	thes:	es: 87	ŝ.		at					ruptur	strengt	related to			MPa		638,1	630,8	638,9	629,8	588,0	6132		
	ner GmbH] tex] [Saerte	fibre/fextile	binder bato	resin batch										uttimate	strain		*		1,45	1,42	1,34	129	128	133		
	ertex Wage I FES/74d													rupture	load	L	z		81815	77250	260//	76067	73007	75392		
	74dtex) [Sai 270-264000												_	418 84	le n (-	m		181,25	181,00	181,00	181,25	181,25	181,00		
	000 (PES) (K-0636-01)											ions		uit d	iuaj du juaj	8	a a a a a a a a a a a a a a a a a a a		8	8	8	8	8	8		
	-01270-264 le 532CX00											nen dimens	ə	шi ЧH	oiw oeqe		m		86 300	94 300	300 200	95 300	96 300	98 300		
	X00K-0534 ounter-texti	631 12K										specir	9	ui ui	a s s s	. 3	u u		09 31	D9 31	09 31	09 31	D9 31	<u></u> 09 31		
5/45° HTS	iertex 532C symmetric c	NAX HTSE		7-2 film									16	eni sni	uou s yoidi		uuu		4,03 4	3,84 4	3,78 4	3,78 4	3,89 4	3,85 4		╞
bon-Fabric	ගී *	DIE: TE	nder:	sin: 977		1350/90)2							<u>ә</u> .	ine ine	s-fto	1	deg.		0	0	0	0	0	0		
Bidiagonal-Cal	II designation: V, construction,)	1	ļ	9	25/50/25 (01)	(45/135/090/45		as received	none	23°C, dry	filled in				individual specimen		1		77-2-001002A-001	77-2-001002A-002	77-2-001002A-003	77-2-001002A-004	77-2-001002A-005	77-2-001002A-006		
hort name:	bric/NCF ful t exact FAM				ass ratio:	acking seq.:				ons:	fields to be t		sue	эш	iiseq	e lo) #		1 97	2 97	3 97	4 97	5 97	6 97	~	~
material st	Prepreg/fal (including				laminate m	detailed sta		ageing:	fatigue:	test condition	only white t			C	11 4 3	hed				×	цэ	te	99	lit×	(91	

7.1.6001002 – Cycom 977-2 HTS Quasi-isotrop

A.31: 977-2 HTS QI Plain Tensile.

										ImbH 2006			et	uə	шц	pe	11e										
										schland G		•	101 5	,pe Id	uə uə	mi)e 380	ak	ſ								
Open Hole Tensile		test place: PCCL Leoben	date of test. 12. Okt 06	operator: Kitzmüller Wolfgang	test standard: ATM 1.0007 A issue3		sheet reference:	compiled by. Wolfgang Kitzmüller	date: 31. Okt 06	© Airbus Deut	1	sons ratio	or be	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	s ja g g ji remarks	er% id id itivitat		min	C	X	>1	7					
%												pois		_			a V _m	•									
nt: 600													e direction	ted to t	S/NP	%//	ц Ц	min/M									
lume conte													i transvers	ja ja	e	.9	ш Д	Pa MP	stress								
nal fibre vo													-modulus ir	lated to t	N/s	N)	ی لی	a min/l	% of failure								
nomi												modulus	8	9	APa A	%	MPa M	MPa MF	IS 10%/50			99		33	2%	846	450
F													dinal directi	related to t	18	>>	ئل ت	vPa min	ant modul.	940	2108	7546 n	5450	7953 11	5618 2,	\$	45
L													s in longitu	A Mark	MPa	N/%	. MPa	n/MPa N	: 860	*	¥	n=6 4	*	1046	2,1%	0136	8727
L					-rei								Emodulu	related to			u u	MPa	alc. method	49133	9080	200577	48727	61545	90154		4
L					e			naps,	e')				1	0t	sMPa	۸/%	o., MPa	min/MPa	8			9=0		13,2	3,2%	415,8	4012
L				~	vasher, nut	erence:	ŝ	cles, NDT r	aphs, photo	:			strem	related			Ū _{an∞}	MPa		422,0	401,2	419.7	403,4	411,9	436,6		
L	er GmbH]	KA in LD		87020033	fastener, v	collar re	attachmer	(cure cy	microgr			ture	ngth	to t	s/MPa	N%	o, MPa	min/MPa				0=U		19.3	4,3%	445,2	423,4
L	H) rtex Waqer	ile batches	atches:	iches:								12	-Str	related			0 _{one}	MPa		446,0	423,4	465	432,4	442,7	480,0		
L	jener Gmbl 4dtex) (Sae	fibreAex	binder b	resin ba										e uttimate	strain		ω	*		0,92	8	60	0.87	80	960		
L	laertex Vila; 00 PES,7;													nuptur.	load		ц.	Z		56206	5 52491	59742	5 52594	5 53616	5 5863		
L	3/74 dtex][9 1270-2640													911 93	ins Prie	" 	ب	uu u		<u>6</u>	181	100	181	181	180		
L	4000 (PEE 0K-0535-0											sions		di di	au du	1 1	9	u m		00	00	8	09	09 0	09 0		
L	1-01270-26 ile 532CX0											men dimen	э	uui 411		als ,	-	m m		8	06	<u>8</u>	8	8	80		
₽	XOOK-0634 counter-text	5631 12K										speci	ə s	eu:	yoi s 290	als 41		m		.00 31	00 31	00 31	00 31	00 31	09 31		
nic+/45° H	ertex S320 opmetric o	NAX HTS!		7-2 film		07							۱۴ s	au:	n Noi S S	ч і чі	t t	m		887	88	385	382 4	381 4	372 4		
arbon-Fat	ගී +	re: TE	nder:	sin: 97.		45/135/0/9						-	<u>а</u> .	ine ine	з-Щ		0	deg.		0	0	-	0	0	0		
diagonal C	on: (ion,)	fb	ili	18	(60/25 (QI)	5/135/0/90/		received	ne	"C, dry					recimen					12A-001	'2A-002	2A-003	'2A-004	12A-005	12A-006		
	II designati V, construct				25	Ť		as	8	53	filled in				ndividual sp	name				77-2-00100	77-2-00100	77-2-00100	77-2-00100	77-2-00100	77-2-00100		
hort name:	bric/NCF fu 1 exact FAV				ass ratio:	acking seq.				ONS:	fields to be.		sua	эш	ij De	de	: 10	#		1	2 9	6	4 9	5 9	6 9	r~-	
material si	Prepregria (including	Hrepregnabrich CH 1 (including exact FA				detailed sta		ageing:	fatigue:	test conditi	only white :			D	пч	əte	∍q				×	цэ	te	4 0	lit×	:e1	

A.32: 977-2 HTS QI Open Hole Tensile.

										SmbH 2006			st	uəı	лц	эe	це										
										itschland (0	101	pa Id	uət	ni: e#	е) ә с	sk	ſ								
Short Plane Tensile		test place: PC CL Leoben	date of test: 19. Oktober 2006	operator. Kitzmüller Wolfgang	test standard: ATM 1.0007Aissue3		sheet reference: SW 06000123	compiled by: Ktzmüller Wolfgang	date: 31. Oktober 2006	© Airbus Deu	1	sons ratio	eV or j	luri d f cs	S Team of the marks	w/% 110		min	C	X							
content: 60,0%												pois	sverse direction	related to t _{rom}	sMPa	N%	E, E, MPa Viii	MPa min/MPa -	888								
nominal fibre volume												odulus	E-modulus in tran	related to t _{avex}	a sMPa	%/٨	a E, E, MPa	Pa MPa min/MPa	10% / 50% of failure str								
F												2	tudinal direction	related to t _{um}	SMP	4%/A	E, E, M	MPa min/M	ecant modulus	40436	46893	46947 n= 6	46069	48126 2789	47314 6,1%	4596	4043
													ulus in longi	to t _{ava}	sMPa	%//\	E, MPa	min/MPa	nod: S			n=6		3887	%//	50398	42570
					n.a.								E-mod	related			تت ®	a MPa	calc. met	42570	51627	52678	51481	52772	51262		
L					r, nut,	aj		vDT maps,	ahotos,)				strength	ated to t _{ion}	sMPa	%//	an MP	a min/MF		-	0	5 n=6		5 52,6	4 83%	693	525,1
	GmbH	in LDS		20033	ener, washe	llar referenc	chments	ure cycles, 1	crographs,					Par Tel	/Pa	%	MPa _{Can}	MPa MP		525	999	93 92	999	98 635	,1% 661	1,5	28
	x Wagener	oatches k.A.	es:	s: 870	fast	8	atta	2	Ē			rupture	strength	related to t _a	WS	~	Umee Un/	MPa min		562,8	733,3	u 1389	721,2	396,8 8	705,8 10	88	53
	ner GmbH] tex][Saerte	ibre/textile t	oinder batch	esin batche										ultimate	strain	_	ω	%		135	1,55	15	152	1,43	1,49		
	ertex Wage D [PES/74d													rupture	load		u.	N		69164	87060	86100	84088	82780	84832		
	/4dtex Sa 270-26400													941 96	eni fre		•	mm		32,04	32,08	32,25	32,16	32,17	32,26		
	000 (PES, DK-0636-01											ions		418 41 418	aui au eui	-	8	mm		8	8	8	8	8	8		
	4-01270-26v tile S32CX0											nen dimens	9	ui: 416	n Dec	s	- ×	m		21 150	96 150	97 150	86 150	85 150	84 150		
HTS	CX00K-053. counter-text	5631 12K										speci	e s	e u:	yoir S Deq	ls 41	tion Wn	mm		409 32	t Dia 31	109 31	409 31	409 31	t 103 31		
abric +/45°	iaertex S32 symmetric	ENAX HTS		77-2 film		30)2							s	en: in:	s Aoir R R D R D D	-17	t _{nex}	mm		8	3,72	385	366	3,73	3,78		
Carbon-F	03 +	fbre: T	binder:	resin: 9	_	0/45/135/0/							a.	ive	:еа з-Д(<u>.</u>	8	deg.		0	-	-	0	0	0		
Bidiagonal-	designation: construction,)				25/50/25 (0)	(45/135/0/90		as received	none	23°, dry	illed in				lividual specimen	name				7.2.001002A-001	7-2-001002A-002	7-2-001002A-008	7-2-001002A-004	7-2-001002A-005	7-2-001002A-006		
nort name:	pric/NCF full exact FAW				ass ratio:	ncking seq.:				DDS:	fields to be fi		s Li e	эш	ice	ds	10	#		1 977	2 977	3 977	4 977	5 977	6 977	I	
material st	Prepregifiat (including				laminate m	detailed sta		ageing:	fatigue:	test conditio	only white t			a	14	o te	ed.				×	цэ	teo	7 0	lit>	(91	

A.33: 977-2 HTS QI Short Plain Tensile.

										6H 2006			eti	uəı	ndəe	911e										
										chland Gm		01	5 hor	pə Id	nemi nast	se te	ds	C								
Short Open Hole Tersile		test place: PCCL Leoben	date of test: 16. Oktober 2006	operator: Kitzmüller Wolfgang	test standard: ATM 1.0007 A issue3		sheet reference: SW/06000123	compiled by. Kitzmüller Wolfgang	date: 31. Okt 06	© Airbus Deuts	1	ns ratio	65 be	lur d f ca	s la steration v/% dedate in alitemarks	K (ne act act	min (C	X							
L												poisso				V _n r	·									
nominal fibre volume content: 60,0%												modulus	dinal direction E-modulus in transverse direction	related to t.m. related to t.m. related to t.m.	siMPa siMPa siMPa v%	<u>e, e, Mpa e, e, Mpa e, e, Mpa</u>	vPa min/wPa MPa min/MPa MPa min/MPa	cant modulus 10% / 50% of failure stress								
L													s in longitu	Max.	84 % %	MPa	n/MPa	38								
L					œi								E-modulus	related to	05	ٹں س	MPa mi	ilc. method				Γ				Γ
L					2			naps,	s,)				£	t.	s/MPa v/%	", MPa	in/MPa	2			0=0		15,6	39%	399,4	3715
L				~	asher, nut	erence:	5	cles, NDT r	phs, photo				stren(related t		0 Dansee	MPa		3715	413,1	411,6	4078	3967	3957		
L	[Hquu	kA. in LD(87020033	fastener, v	collar ref	attachmen	(cure cyr	microgra			Ure	gth	to t _{max}	s/MPa v%	o., MPa	min/MPa				0=U		12	8,4%	427,1	3566
L	Mågener G	e batches	tches:	thes:								rupt	strer	related		0 Dairwe	MPa		3566	436 D	452,6	450,8	437,4	429,3		
L	GmbH] [Saertex ¹	fibre/texti	binder ba	resin batt										ultimate	strain	ω	%									
L	: Wagener ES 74 dtex													rupture	load	u.	N		48739	54242	54104	53661 53661	52177	52018		
L	x) [Saertex 64000 [Pf													416 86	le u (ч—	mm		32,34	32,33	32,39	32,39	32,38	32,37		
L	PES,74dte 6-01270-2													di di	leui du	8	mm		8	8	8	8	8	8		
L	-264000 [2X00K-060											limensions	а	mi	abec	-	mm		99 92	150	150	ŝ	150	150		
L	34-01270 extile 532(~										specimen d	ə	ui.	u Jads	Winne	mm		32,08	32,11	32,14	32,17	32,16	32,14		
5° HTS	2CX00K406 c counter-t	B 5631 124											sa Je	sui eu:	mon Apidt ≥	t.	mm		409	409	409	409	409	409		
abric+/45	Jaertex 532 - symmetric	ENAX HT		77-2 film		/90)2							s	au:	b Apirtt R	t arxe	mm		4,26	388	3,72	22	3,71	3,77		
-Carbon-F	05 Ŧ	ibre: 7	inder:	esin: 9	-	0/45/135/0							6	ei xa	з-то	ø	deq.		0	-	0	-	0	-		
: Bidiagonal	ull designation: W, construction,)				26/50/25 (0,	.: (45/135/0/9		as received	none	23°C, dry	t filled in				ndividual specimen name				77-2-001002B-001	77-2-001002B-002	77-2-001002B-003	77-2-001002B-004	77-2-001002B-006	77-2-001002B-006		
hort name	bric/NCF ft Lexact FAN				ass ratio:	acking seq.				Ons:	fields to be		uə	шį	. <u>≃</u> ⊃əds	ło	#		1 9	2 9,	6 6	4 9	5	9		
material si	Prepreg/fal (including				aminate m	detailed sta		ageing:	atigue:	est conditi	only white t			d	ll Hət	eq				×	цэ	de.	4 6	di to	K91	

A.34: 977-2 HTS QI Short Open Hole Tensile.

										NbH 2006			et	uə	шц	эе	11e										
										schland Gm		0	to r S	,pe Id	uə.	ni: ett	е ЭЭС	ak	ſ								
Plane Compression	-	lace: PCCL Leoben	of test: 17. Oktober 2006	ator. Kitzmüller Wolfgang	tandard: ATM 1.0008A issue3		reference: SW06000123	iled by: Kitzmüller Wolfgang	31. Okt 06	@Airbus Deuts			or or	lun d f so	ta a te terrarks	8 [1] 년 1] 년 1] 1] 1] 1] 1] 1] 1] 1] 1] 1] 1] 1] 1] 1	5 38 100	n	C	X		X					
F		test c	date	opera	tests		shee	dimo	date:]	oissons ratio				~	, ,	E.									
%0(8	=	5	e L	%	MPa V.	MPa .				L					
ontent 60													erse directio	related to t.	¶s	3	Ľ Ľ	MPa min/									
re volume ci													ilus in transv	0 t _{max}	s/MPa	%//	E_MPa	min/MPa	ailure stress			L					
nominal fib												dulus	Emod	related			ഷ്	MPa	% /50% of 1								
												æ	l direction	ted to t	sMPa	%/	E_MPa	min/MPa	modulus 10			9 <u>2</u>	I	384	4,3%	44217	40735
													longitudina	relat	æ		βa	APa MPa	secant	44266	40736	9	198 1	3 4827	% 4681E	8	9
													E-modulus in	elated to t	SM	5/A	۳ ۳	Pa min/h	: method:	436	310	<u>تا</u> 800	ē	258 202	022 4,3	89 89	443
					n.a.			aps,					5		sMPa	V/%	"MPa	in/MPa N	calc	4	3	n=6 49	8	29,3	-59% 47	493,6	523.9
				~	rasher, nut,	erence:	\$	cles, NDT m	aphs, photos				streng	related to			Cona O	MPa m		-5197	-464,2	4530	-5072	-523.9	-493,4		Ċ
	ner GmbH]	s kA. in LD		87020033	fastener, v	collar re	attachmer	(oure cy	microgra			pture	ength	d to t	sMPa	%//	oMPa	min/MPa				9=0 1		24,8	47%	523,1	-552.9
	ibH) aertex Wiaqe	extile batche	batches:	latches:								2	55	ate relate	_		Uona	MPa		-533,4	1 -505p	-493,4	-547,3	-552.9	-506,4		
	Vågener Gm 3,74dtex Sa	fibreat	binder	resin b										ture uttime	ad strai	_	ω 	% 		132	986 1,14	580	636 1,26	780 1,37	636 1,21		\vdash
	k] [Saertex V 64000 PES													E Att		1	-	mm		12,09 -68	2.01 -60	2,10 -59	200 -66	1,93 -68	187 -64		\vdash
	(PES/74dte) 36-01270-2												-	u16 di	eui Gu		6	mm		8	8	8	8	8	8		
	70-264000 32CX00K-06											dimensions	ə	uni Uni	iuə u səc	6	_	mm		150	150	99	<u>1</u>	150	150		
	IK-0634-012 ter-textile S	12K										specimen	9	чн шi	a a n aiw	Is	Winese	mm		32,09	32,12	32,16	32,13	22,10	32,03		
+/45° HTS	ex 532CX00 metric coun	X HTS 5631		film									50 8 6	ani sui	aon B Mo Moir Aoir	tt u	e t _{ion}	mm		9 4,09	6 409	604	9 409	8 409	9 4,09		
bon-Fabric	Saert + sym	ENA :	er.	n: 977-2		/135/0/90)2							a. s	ine	з-Ш р р		0 t _{are}	eg. mn		0 39	0 37	37	0 37	38	0 39		\vdash
iadonal-Car		fibre	bind	resi	0/25 (QI)	135/0/90/45		eceived	a	C, dry				-	ecimen			Ø		B-001	B-002	BOB	B-004	B-005	B-006		\vdash
Bidi	III designation Y, constructio				266	. (45)		as n	non	23.(filled in				individual spe	name				77-2-001002	77-2-001002	77-2-001002	77-2-001002	77-2-001002	77-2-001002		
short name.	fabric/NCF fu				mass ratio:	stacking seq.				tions:	e fields to be		su	∍u	ise	ds	ło	#		1 9	2 6	0 0	4	5	9	2	~~
material	Prepreg/f (includi)				laminate i	detailed s		ageing:	fatigue:	test condi	only white			Q	цч	ote	ed.				×	Чэ	te	qə	lit>	(91	

A.35:

977-2 HTS QI Plain Compression.
										tschland GmbH 2006		0	tor S	uəı ,pe Id	ակ։ իկշթ սթա	ite tte	ds									
Open Hole Compression		PCCL Leoben	5. Oktober 2006	Kitzmüller Wolfgang	d: ATM 1.0008A issue3		nce: SW/06000123	c Kitzmüller Wolfgang	31. Okt 06	@Airbus Deu			ot pe	1 01 6 1	d a te	itor ats		C	X					X		
		test place:	date of test:	operator:	test standar		sheet refere	compiled by	date:		1	ins ratio	<u>7.8</u>	un	ov š	2 2 3 1 10	^ ₹`≣									
%												poise		_		2	× .									
tent 60,0													se direction	elated to t _{rom}	s/MPa 		Da min/MF									
e volume con													us in transver	ot _{ere} n	s/MPa 		ninMPa M	ilure stress								
nominal fibr												dulus	E-modul	related to		u	MPa	% /50% of fa								
												m	al direction	ated to t _{iom}	s/MPa 		a minMPa	t modulus 10			I –					
L													s in longitudir	t _{max} re	MPa 	W170 AMPa	n/MPa MP	: secar								
L					n.a.								E-modulu	related to			MPa m	calc. methoc								
					nut,			DT maps,	hotos,)				trength	ted to t _{rom}	s/MPa 	n MPs	min/MPa				0=0	6	7 10.5	1 -39%	-265,5	-281.9
L	[Hqu	in LDS		200333	ener, washer	ollar reference	chments	ure cycles, N	icrographs, p					rela	MPa 	L SUPS	MPa MPa		-268	-257	=6 -257	-281	3,9 -271	255	88,3	11.6
	x Waqener G	batches: k.A.	thes:	es: 870	fast	8	atta	0	2			rupture	strength	related to t	<u>8</u> .	 	MPa mir		-282.6	-2768	-2860 n	-311,6	-297.9	-2760 -4	~	÷
	ener GmbH] dtex] [Saerte	fibreAextile	binder batt	resin batch										e ultimate	strain		8									
	(Saertex Viág 000 (PES,74													1 Line Line	load		z E		19 -35298	15 -33796	22 -33725	27 -36804	35 -35541	40 -33343		
	PES 74 dtex]												-	əe dith di	leni gri	2	, m		60 32	60 32	80	60 32	60 32	80		\vdash
	70-264000 32CX00K-05											dimensions	9	ut te u	iuəj u səde	→ -	æ		150	150	ŝ	150	150	50		
s	JOK-0534-012 Inter-textile S	31 12K										specimen	а	417 LULI (s n n oiw	. 3	U U		9 32,11	32,05	9 203	31,93	31,99	31.96		
ric+/45° HT	ertex 532CXC ymmetric cou	NAX HTS 56		'-2 film		26							e Le	en: snin en:	yoid a mor yoid	} + ↓			3,89 4,00	881 4,00	22	8,70 4,00	373 4.0	3,78 4,0		
-Carbon-Fat	සී ග ගී +	ibre: TE	oinder:	esin: 977	0	0/45/135/0/9							а. s	ine ine	еац з-Що		deg.		0	0	0	0	0	0		
Bidiagonal	designation: construction,)				25/50/25 (0	(45/135/090		as received	none	23°C, dry	led in				ividual specimen	ame			-2-001002B-001	-2-001002B-002	-2-001002B-003	-2-001002B-004	-2-001002B-005	-2-001002B-006		
hort name:	abric/NCF full u g exact FAW, u				nass ratio:	acking seq.:				ions:	fields to be fill		รมส	эш	ice c	ie 1	• #		1 977	2 977-	3 977-	4 977	5 977	6 977	~	~
material s	Prepreg/fa (includin)				laminate n	detailed st		ageing:	fatigue:	test condit	only white			a	цı	ted				×	Чэ	te	d 9	lit×	:91	

A.36:

977-2 HTS QI Open Hole Compression.

7.2 Airbus Tabellen - Dynamische Versuche

7.2.1001001 – RTM6 HTA Quasi-isotrop

		ce Center Leoben				schland GmbH 2006		otoria en photo attached? attachments		tile	ce Center Leoben			schland GmbH 2006	strachments attached? attachments	
	Short Plane Tensile	Polymere Competen ######## Kitzmüller Wolfgang	3: AITM 1.0007	nce:	Kitzmüller Wolfgang	© Airbus Deut		marks		Short Open Hole Tens	Polymere Competen 2325. August 2006	AITM 1.0007	Nuce. Kitzmüller Wolfgang 20. Okt 06	© Airbus Deut	marks	
		test place: date of test operator:	test standar	sheet refere	compiled by. date:	nato.		Valid Tallure / activated for statistics) a			test place: date of test	test standar	srieet rererer compiled by: date:	-	valid failure? (needs to be activated for statistics) a	
		S32CX000						gth sMPa v/% m_MPa min/MPa			1: S32CX001	e			ngth s/MPa v/% min/MPa	n = 2 5,1 353,9 350,3
60.0%		extile batch: 1607539-1	n.a		raps,	[···· 'e		stren of MPa		60,0%	textile batch	1, n	maps,)		stre relateo 0s	357,4
le content:		le batches to Itches ches	washer, nut, eference:	ints	ycles, NDT n anhs, nhntn	aprila, prilato		1 to t _{mess} s/MPa v/% 0 ^m /MPa		ime content	xtile batches batches:	rr, washer, ni reference:	cycles, NDT araphs, phoi		trength ed to t _{meas} s/MPa v/% min/MPa	n = 2 1,2% 346,9 344,1
l fibre volum		fibre/texti binder ba resin batt	fastener, collar re	attachme	(oure c) mirmar	5		al relatec		1al fibre volu	fibre/te) binder t	fastene	(cure micro		ual relat d Comme MPa	21 349,1
nomina	ler GmbH]							er of residua		nomir ener GmhH1					ber of resid	600 459 0000 458 0000 468
	bH) ertex Wäger							ad cycle	0 561	mbH] Saertey Man					oad cy	50 13 30 220 60 31
	Vågener Gm I,74dtex] [Sa							ax. % of cload lo: F	227,3 5	Wagener G					max. % (atic load 1 F	45814 45814 45814 45814 45814
	() [Saertex V 64000 [PES						-		32,59 822 32,54 822 32,48 822	ex] [Saertex 264000_rpf						32,12 4 32,36 4 32,26 4 32,32 4
	PES,74dtex 31-01270-20								0000	1 [PES,74dt						09 09 09
	70-264000 [2CX00K-05							n - E n n n n n n n n n n n n n n n n n n n	150	270-264000 320X00K-0					a mice angth n	150 150 150
	<-0530-0127 er-textile S3	t 30911						e miater a specime a miater a specimen a spe	32,03 32,03 32,03 32,03	0K-0530-01	ot 30911				s specime amathh amath amath amathh amath amathh amathh amathh amathh amathh amathh amathh amathh amathh amathh amathh amathha ama	32,10
	< S32CX001	(HTA 6K Lo						thimon s thicknes s s	4,09	ex S32CX0	X HTA 6KI				= = = = = = = = = =	6 4 09 8 4 09 0 4 09
1-45° HTA	Saerte) + symn	TENAX RTM6						measure d f f f f f f f f f f f f f f f f f f	4,26	Saert Saert + svm	TEN				aunseauu	4,1 4,1 4,2
on-Fabric+		fibre: binder: resin:	35/0/ 90/2					sixe-110 R B		rbon-Fabric	fibre: binder: meein:	/135/0/ 90)(sixe-#o	
ional-Carb			25 (QI) 5/0/90/45/1		eived	drv		test date	07 30. Au 08 30. Au 09 30. Au	agonal-Cal		0/25 (QI) 135/0/90/45	eceived	, dry	E Test date	008 24.7 009 24.7 010 23.7 011 25.7
e: Bidiac	full designation: VVV, construction,		25/50/		as rec	23°C.	e filled in	individual specimen nam	RTM 001001B-0 RTM 001001B-0 RTM 001001B-0	Full designation		0: 25/5	as re ves	be filled in	individual specimen na	RTM001001C RTM001001C RTM001001C
short nam	fabric/NCF		e mass ratio;	stacking set		litions:	te fields to b	anemiceqs to #	∞ <i>→</i> ∞ 0 4 3 3 7 →	g/fabric/NCF	0	te mass rati	n staukirig s	inditions: hite fields to	*nemioaqs to #	∞ ∽ ∞ 0 0 0 →
materia	Prepreg (includ		laminate	detailed	ageing: fatione:	test cont	only whi.	Datch ID	X hoted elitxet	Prepre (inclu		lamina	ageing	test co only w	batch ID	X dated elitxet

A.37: RTM6 HTA QI Short Plain Tensile/ Short Open Hole Tensile.

	Plane Compression	Polymere Competence Center Leoben 25. Aug 06 Kdzmüller Wolfbana	ATTM 1.0008 Ktzmüller Woldgang	20. ON UN © Airbus Deutschland GmbH 2006	0	g attachments strached?			Open Hole Compression	Polymere Competence Center Leoben 28 -30. August 2006 Kitzmüller Wolfgang	AITM 1.0008	Kitzmüller Wolfgang 27. Aug 06	© Airbus Deutschland GmbH 2006	ی عتلمدامون مادداسوی مارمزه مالمدامون مالمدالمدامه مالمدامون مالمدامه مالمدامه مالمدامه مالمدامه مالمدام مالمدامه مالمدامه مالمدامه مالمدام مالمدامه مالمدامه مالمدامه مالمدام مالمدامه مالمدامه مالمالمدامه مالمدامه مالمالمدامه مالمدامه مالمالمدامه مالمدامه مالمدامه مالمالمدامه مالمالمدامه مالمالمالمالمدامه مالمالمالمالمالمالمالمالمالمالمالمالمالم	st		
) test place: date of test: nnerator:	test standard: sheet reference complied by:	uale.		valid failure? (needs to be activated for statistics)				test place: date of test: operator.	test standard: sheet referend	compiled by: date:		valid failure? (needs to be strivated for statistics)		×~~~~	
60.0%	-	e batch: S32CX00 539-1; M610802	ë. Li ji			strength elated to t s/MPa 0/MPa 0/MPa		60,0%		h: S32CX000	ë.			ength ed to t _{som} s/MPa v/% c _m /MPa	min/MPa	n = 1	-239,7 -239,7
ominal fibre volume content		fibre/textile batches: textile binder batches: M607	fastener, washer, nut, collar reference. attachments (cure cycles, NDT maps,		nuture	atrength related to two sMPa v/% v/% mPa mit/MPa mit		iominal fibre volume content		fibre/textile batches textile batch binder batches. M610802 resin batches: M610802	fastener, washer, nut, n. collar reference: attachments	(cure cycles, NDT maps, micrographs, photos,)		pture strength strength relate	MPa min/MPa MPa	-232,9 n = 1	-232,9
- VIII	[Saertex 532CX006/0530.01270-284000 [PES/140tex] [Saertex Wagener GmbH] + symmetric countertextile 532CX006/0531-01270-264000 [PES/14dfex] [Saertex Wagener GmbH]	TENAX HTA ØK LOT 30911 RTM6			suecimen dimensions	d association association association association	4.32 4.09 32.04 150 80 32.685 -67934 50 5600 -4.081 4.32 4.09 32.08 150 60 32.645 -67934 40 2657 4.33 4.09 32.07 150 60 32.475 -67934 30 22.000 -4.081 4.33 4.09 32.07 150 60 32.475 -67934 30 22.000 -4.081 1	6 HTA	Saertex S32CX00K-0530-01270-264000 [PES,74dtex] [Saertex Wagener GmbH] + svmmetric counter-textile S32CX00K-0531-01270-264000 [PES,74dtex] [Saertex Wagener GmbH]	TENAX HTA 6K Lot 30911 RTM6				CE acres specimen dimensions Specimen dimensions acres a reading acres are acres ar	mm mm mm mm mm mm N 1 % - N	4.20 4.09 32,01 150 60 32,44 -36.882,4 50 102464 4.21 4.09 32,00 150 60 32,46 -36.882,4 40 231373 4.22 4.09 31,99 150 60 32,49 -36.882,4 60 38662	
Bidiatonal-Carbon-Fabric+/-45°	II designation: V, construction,)	fibre: binder resin:	25/50/26 (01) (45/135/0/90/45/135/0/ 90)2 as received	23°C, dry		individual specimen test date ame est date	RTM001007B-007 25. Aug 0 RTM001001B-008 25. Aug 0 RTM001001B-009 25. Aug 0	ie: Bidiagonal-Carbon-Fabric+/4€	full designation: AVV. construction)	fibrre: binder: resin:	: 25/50/25 (QI) (45/135/0/90/45/135/0/ 90)2 0.:	as received	23°C, dry	sixe-indiverse date	deg.	RTM001001D-007 28.Aug 0 RTM001001D-008 30.Aug 0 RTM001001D-009 29.Aug 0 RTM001001D-009 29.Aug 0	
material short name:	Prepreg/fabric/NCF fu (including exact FAM)		aminate mass ratio: Betailed stacking seg. Optimio:	lariyue. Lest conditions: onty white tracts to he		batch ID # of specimer	X rtoted slitxst	naterial short nam	Prepreg/fabric/NCF	X	aminate mass ratio detailed stacking sei	igeing: atigue:	est conditions: only white fields to b	DI hoted	#	le batch X	texti

A.38: RTM6 HTA QI Plain Compression/ Open Hole Compression.

ort nam.	e' Ridiadon	nal-Carbon.	Fahno+/4	5° HTC					L				nominal 1	Thre volume	i content-	ED PVL						
and the second sec	ull designation: W, construction,)			Saertex S3 + symmetri	32CX00K-0	0534-0127 textile S32	0-264000 3CX00K-06	[PES,74d 535-01270	ex] [Saerte -264000 [F	X Wagene	r GmbH] ([Saertex	Wagener (IHqui		-	2010			Short	: Plane Tensile		
			fibre: binder: resin:	TENAX HT RTM6	S 5631 12	ž								fibre/textile binder batof resin hatche	batches: to hes: es:	extile batch: 4528704-1	S1176/09	test place: date of test onerator	Polyme 614 Kitzmű	ere Competenc Jul 2006 Iller Whlfmann	e Center Lec	ben
6 6	25/50/25 (45/135/0	(QI))/90/45/135	0/ 90)2											fastener, wa collar refe attachments (cure cvicl	asher, nut, srence: s lee: NDT m	U. Superior	ri l	test standard: sheet reference: compiled by:	AITM 1	1.0007		
	Ves 23°C, div	3												micrograp	ohs, photos	· · · ·)		date:	02. OK	t 06 © Airbus Del	tschland Grr	bH 2006
	individual specimen name	est date	sixe-iio a a	saruseam aurseame	and the second s	mm specime	amice and the spectra and the		tipnal – E	max. static load	% of max. load	number of cycles	residual load N	upture streni come MPa	oth s/MPa v% min/MPa min/MPa	strer related 0.00000	ngth to t _{om} s/MPa v/% σ_ MPa min/MPa	valid failure? (needs to be activated for statistics) ag	\$\$		atached? attached?	attachments
	RTM 0010028-013 RTM 0010028-013 RTM 0010028-016 RTM 0010028-017	07. Jul 13. Jul 14. Jul 14. Jul		4,20 4,32 4,32 4,32	4,09 4,09 4,09	32,00 32,09 32,21 32,23	150 150 150	0000	32,25 32,48 32,38 32,38	90181 90181 90181 90181	20,000	20282 26521 1592 278										
E 54	e: Bidiagon: full designation: VVV, construction,)	al-Carbon-	Fabric+/-4t	• HTS Saertex 5 + symmet	332CX00K tric counte	20534-012 cr-textile St	70-26400	0 [PES,74 0535-0127	dtex][Saer '0-264000	tex Wager [PES,74dt	ler GmbH] ex] [Saerte	ex Wagene	nominal r GmbH]	fibre volume	e content	60,0%	. 61170.00		Short C	ben Hole Ten	iie	
.e	25/50/25 (QI) 0/45/135/(binder: resin: 1/ 90)2	RTM6	2007	47								hore/texum binder bat resin batc fastener, v collar re	e Datunes tches: thes: washer, nu ference:	Texure Datum M528704-1 t, n.	a	test prace: date of test operator: test standard:	AITM	nere Competen in 11. Jul. 20 üller Wolfgang 1.0007		ODEU
P Se	q.: às receive ves 23°C, dry	p												attachmer (cure cy microgra	nts cles, NDT aphs, phot	maps,)		sheet referenc compiled by: date:	e: Mitzm 03. Ol	üller Wolfgang kt 06 © Airbus Deu	schland Gm	6H 2006
5	individual specimen	test date	sixe-110 a 2	s b thicknes d thicknes	ی الباندلامی ع	wiqtp u sbecime sbecime	leuâtµ u sbecime	cing ding ding	thee feed	max. static loa	% of ma	x. number cycles	of residua	rupture strei related MPa	to toots s/MPa v/% or_/MPa	Trelate	ength s/MPa v/% or_MPa	valid failure? (needs to be activated for statistics)	arks		specimen photo sttached?	attachments
	RTM 001002C-007 RTM 001002C-008 RTM 001002C-008 RTM 001002C-001 RTM 001002C-011 RTM 001002C-012	30. Jun 01. Jul 02. Jul 10. Jul 11. Jul		4,20 4,20 4,21 4,23 4,23 4,23	4,09 4,09 4,09 4,09 6,09	31,97 31,98 31,91 31,91 31,92 31,95	150 150 150 150	888888	32,60 32,75 32,75 32,75 32,75 32,75 32,70	60226 50226 50226 50226 50226 50226 50226	30 40 50 %	5017 5017 73256 73256 73256 73256 73250 64293 64293 64293	47787 50541	355,2 370,5	n = 2 10,8 3,0% 362,8	365,5 386,7	n = 2 15,0 376,1					

7.2.2001002 - RTM6 HTS Quasi-isotrop

A.39:

RTM6 HTS QI Short Plain Tensile/ Short Open Hole Tensile.

.

Bidia	gonal-Carbol	n-Fabric+/45	° HTS								nomi	hal fibre voli	ume conter	it 60,0%					
(,r	100 million (1997)		Saertex S3 + symmetri	2CX00K-05 counter-te	34-01270-2 xtile S32CX	264000 (PE <00K-0535-	S.74dtex] (01270-264	Saertex W(000 [PES,	agener Gm 74dtex] [Sa	ibH] aertex Wagi	ener GmbH						Plane Compression		
		fibre: binder: resin:	TENAX HT PTM6	S 5631 12K								fibre/te binder resin h	extile batch batches: atches:	esi textile bi M62870	atch: S1176/09 4-1	test place: date of test operator:	Polymere Competence (11/12. Jul. 2006 Kithmüller Wolfnapor	Center Leo	oen
35/0/90/45/1	1 1 <i>6</i> 5	5/0/ 90)2										fasten colla attachi	er, washer, rreference mente	unt'	n.a.	test standard:	ATM 1.0008		
ceived , dry												auau (cure micn	cycles, NE ographs, pt	DT maps, notos,)		sineer reneration: compiled by: date:	Ktzmüller Wolfgang 3. Okt 06 © Airbus Deu	schland G	nbH 2006
				Sne	scimen dime	ensions						runture						c	
date		sixe-mo = 8	E thicknes thicknes measure	aminon s f thicknes s	n specime		utbrai 2 E		8X. % of 10ad 100	ad cyc	ber of resic	Idal rela	trength ted to taxes s/MPa s/MPa a min/MF	a Gmee	strength lated to t s/MPa v/% min/MPa min/MPa	valid failure? valid failure? activated for activated for		specimen photo sttached?	attachments
016 11.JL 017 11.JL 018 12.JL		000	4,25 4,28 4,35	4 09 09 00 00 00 00 00 00 00 00 00 00 00	32,12	150 6	32	75 65 65 648 648	59,8 59,8 59,8 34 59,8 34 59,8 34 59,8 34 59,8 50,8 50,8 50,8 50,8 50,8 50,8 50,8 50	0 45	590 1480 0000 -586	513 -418		-444,9					
++	111				++	++	++	++	++	++	++		-4 18,5		444,9 -444,9				
iagonal-Ca	-te	on-Fabric+/4	15°HTS Saertex 5	32CX00K-(0534-01270	0-264000	PES.74dte	ex] [Saertex	Wagener	GmbHl		iominal fibr	e volume c	ontent:	, %0'08	-	Open Hole Compress	u	
()		fibre: binder: resin:	+ Symme TENAX F.	TS 5631 1.	-textile S32 2K	CCX00K-05	35-01270-	264000 [PI	ES,74dtex]	Saertex \	Vagener Gr	Than Than Than Than Than Than Than Than	ore/textile t nder batch sein hatche	atches tex les: or MF	tile batch: S117 08704.1	6/09 test place: date of test	Polymere Compete 313. Jul. 2006 Kitranuller Welfnam	1ce Center	Leoben
50/25 (QI) 135/0/90/4	21	35/0/ 90)2											istener, wa collar refer tachments	sher, nut, rence:	U.a.	test standard sheet referen			
eceived												T	(cure cycle micrograp)	es, NDT me hs, photos,)	compiled by: date:			
C, dry																	© Airbus Deut	schland Gn	hbH 2006
				01	specimen di	imensions		_				up	ture					01	
	alen is	sixe-Mo	measure d thicknes s	nominal thicknes s	width n specime	length n ttp://decime	grip ding	free Iength M	max. 9	6 of max. Ir load	rumber of cycles	load	strengt	th s/MPa v/%	strength related to t _w	% صف ind failure? seds to be tivated for tatistics)_	narks	onq nəmi: Sbərbett	stnemdos
		a dea.	tmm	mm	Wmeas	_ m	a mm	t m	цz	%	د ،	щz	MPa D	in/MPa	MPa Dm/l	MPa (ne ac MPa va		e Dads	911
-007 03.	크린		3,91	4,09	32,18	150	88	32,54	-37243	50	25311	- 100				N Start	pped (technician)		
PL008 04.	귀		3.91	4,09	32,14	150	80	32,54	-37243	40	220000	-39483	-314,2	ې د ا	300,3				
2010 05 2010 05	리크		3.92	4,09	32,09	150	90	32,44	-37243	20	15191 5065	T	T	7 = U	Ē				
011 12	귀리	, 0	3,94	4,09	32,19	150	, 09	32,35	-37243	; 09	4081	Γ	Τ	3.6					
-012 13	르	0	3,99	4,09	31,99	150	8	32,40	-37243	40	220000	-39448	.309.1	-1.2%	<u>301,4</u>				
+							+				T	Π	T	314,2	, €	1,4			

A.40: RTM6 HTS QI Plain Compression/ Open Hole Compression.

		oben mbH 2006	strachments			en	U U U U U U U U U U U U U U U U U U U	000711011	stnemtsette		
		e Center Le tschland Gr	specimen photo		٥	Center Leob	intechland (2)		specimen photo Sberbetts		
	Short Plane Tensile	test place: Polymere Competenc date of test: 0.5 Set 08 operator: Marmuler Wolfgang test standard: ATTM 1.0007 test standard: Marmuler Wolfgang date: 05.04.06 date: 05.04.06	valute allure? (needs to be statistics) and statistics) and statistics)	X Tabs failed	Short Open Hole Tensil	test place: Polymere Competence date of test: 03. Aug 04. Aug. 2006 mersther	test dandard: AITM 1007 sheet reference. AITM 1007 complet by: Kdzmüller Wohtang date: 22. Aug 06 Admin.o. Do	_	r suite i suito su	***	
l		S1176/09 a.	ngth s/MPa v/% σ_MPa min/MPa			S1176.09	œ		igth to t sMPa γ/% σ _n /MPa min/MPa		539,2 539,2
60.0%		textile batch M528704-1 L, "In" maps, "In" Ds,)	relate MPa		60,0%	textile batch: 1 M607539-1	и (;		strei Trelated MPa	539,2	
me content.		tile batches atches: , washer, nu reference: ents vycles, NDT araphs, phot	ength s/MPa v/% min/MPa		me content:	e batches: Iches: hes:	washer, nut, ference: tts cles, NDT me aphs, photos,		ength s/MPa v/% min/MPa		519,0
fibre volur		fibre/tex binder b resin ba collar attachm (cure (microj	upture str 0.00005		al fibre volu	fibre/textil binder bat resin batc	fastener, v collar re attachmei (cure cy microgr	an index on a	Dupuure str Gareet MPa	519,0	
nominal	r GmbH]		of residua load		nomin				f residual load N	71081	
L	ex Wagene		x. number cycles	92081 92081					cycles	1021 15295 220000	
	ner GmbH] tex][Saerti		d load %	340.0	E .	ertex wage			% of max load %	30 40	
	rtex Wágei [PES,74d		max. static loa	133735	ågener Gm	eci 1xain+/			max. static loa F	73422 73422 73422	
	ldtex] [Sae 70-264000		aau tuee	32,45 32,45 32,26 32,26	Saertex V				aent Free free	32,27 32,32 32,52	
	0 [PES,74 0535-0127			888	ES.74dtex]	07-07/10-0			ding a E	888	
	270-26400 332 CX00K		adimensional dimensional dimension	150	264000 [F	2001-XINDV		dimension	an officiation of the section of the	150	
	K-0534-01) er-textile S	12K	specime specime	32,05	634-01270			a consistence	specime n math math math math math math math math	32,08 32,06 32,23	
	S32CX00 etric count	HTS 5631	a thicknes	4,09	32CX00K0	TS 5631 12			senvicient servicient s	4 09 4 09	
45°HTS	Saertex + symm	RTM6	measure a fricknes	4,35	• HTS Saertex S	+ symmer TENAX H KI MG			sanssam b sen thicknes s	422 423 425	
-Fabric+/-		fibre: binder:)2	sixe-110 a a	000	-abric+/45	fibre: binder: resin:			sixe-îto a 🛱		
al-Carbon		06/0/06/0/	test date	05. Sept 05. Sept 05. Sept	al-Carbon-F		7080/080/		eteb teet	03. Aug 03. Aug 04. Aug	
1e: Bidiagon.	full designation: AVV, construction,)	tr 10,0050 10,0080	individual specimen name	RTM001003B 007 RTM001003B 008 RTM001003B 008	II designation:	w, construction,)	50/0/50 (0/90/0/90 as receive yes	tilled in	individual specimen name	RTM001003C-007 RTM001003C-008 RTM001003C-009	
short nam	abric/NCF	mass ratio tacking se tions:	* of specimens	- 7 0 4 0 7 - 0	nic/NCF ful	a exact FAV	ass ratio: acking seg	tields to be	# of specimer	-0.0044	o – م
material	Prepreg/f	laminate detailed s ageing: fatigue: test condit only white	batch ID	textile batch X	material sl Prepreg/fat		laminate m detailed sta ageing: fatigue: test conditio	only white t	Datch ID	y hatch X	əlitxət

7.2.3001003 – RTM6 HTS Biaxial

erial short n	ame: Bidiago	onal-Carbo	n-Fabric+/.	45° HTS Saertex (532CX00K	0534-012	70-264000	IPES 74 dt	ex] [Saerte	*X Wagene	r GmbH		nominal fi	bre volume co	ntent: 6	0'0%		Plane C	compression			
ding exac	t FAW, construction,	(+ symme	tric counter	r-textile S3	2CX00K-0	535-01270	-264000 FF	PES, 74 dte.	x] [Saerte>	x Wagener	GmbH]						-			
			fibre: binder: resin:	TENAX I RTM6	HTS 5631 1	2K								fibre/textile b binder batche resin batches	atches text es: M5:	lle batch: S1 8704-1	176 test place: date of test: operator.	Polymen 10/11.A Kitzmülle	e Competence (.ug 06 er Wolfaang	Center Le	open	
e mass ra d stacking	tio: 50/0/50 (0/90/0/	6/0/06/0/06	0)2											fastener, was collar referi attachments	sher, nut, ence:	n.a.	test standar sheet refere	d: AITM 1.0	8000			
nditions: nite fields t	as recei ves 23°C, dr	ived												(cure cycle micrograph	s, NDT ma is, photos,	s' (;	compiled by date:	21. Aug	er Wolfgang 06 9 Airbus Deutsc	hland Gm	юН 2006	
# of specimens	individual specimen name	test date	sixe-fto a B	aneasure a thicknes	thicknes sensor s	max width n	u leuđty B – u leuđty B – u storus	ding af	ant free free	max. static load F	% of max. load %	number of cycles n	rupti residual load F	related to 1 strengt st 0 mire	MPa C	strength elated to two s/MF v/% Pa min/M	valid failure? valid failure? activated for statistics) a	marks		specimen photo sttached?	stnemhostte	
- 0 0 7 4 0 0 ~ 0	RTM0010038-005 RTM0010038-005 RTM0010038-015	8 10. Aug 9 11. Aug 11. Aug		4,33	4,09	32,02	150	888	32,485	-78770 -78770 -78770	60 60	58930 220000 529						abs failed				
al short n; Mabric/NC ding exact e mass rat	Ener Bidiagor F full designation FAW, construction, FAW, construction, 60/050 io: 50/050 io: 50/050	1 Carbon	Fabric+/4: fibre: inder. esin:)2	5° HTS Saertex S3 + symmetri TENAX HT TENAX HT RTM6	2CX00K-06 5 5631 12k	84-01270- xxtile 5320	284000 [P X00K-053{	ES.74dtex]	Saertex V 4000 [PES	Vagener Gr 74dtex] [5	mbH] Saertex W&	nomi igener Gml	bH fibre vi brand fibre vi fibre. faste col	furme content textile batche: ar batches: batches: ner, washer, n ner reference: therence:	60,0%	ch: S1176/05	test place: date of test operator. test standard sheet referen	Open Hole Polymere Kitzmüller Al TM 1.00	Compression Competence Ce 2006 Wolfgang	nter Le ob	eu	
nditions:	as receiv ves 23°C, dry	/eq											<u>ë</u> ë	ire cycles, ND crographs, pho	T maps,)		compiled by: date:	Kitzmüller 22. Au	Wolfgang 3 06 © Airbus Deutscl	nland Gmt	bH 2006	
t speciment	individual specimen name	test date	sixe-fto a B	enseame a thicknes	E thicknes	n specime dim n width dim n width	a u E	E length		tric % of	ad of c	mber resi	dual rupture	strength lated to trass SMPa SMPa v/% v/% a min/MPa	MPa Gmess	rength s/MPa v/% o_/MPa min/MPa	valid failure? (needs to be activated for statistics) g	arks		specimen photo attached?	attachments	
1 0 0 1 0 0 1	RTM001003D-007 RTM001003D-008 RTM001003D-009	19.Jul 19.Jul 20.Jul	000	4,13	4 00 00 00 00 00 00 00 00 00 00 00 00 00	32.26	2900	34 33	100 45 30 45	1633	23(2000										

A.42: RTM6 HTS Biax Plain Compression/ Open Hole Compression.

	er Leoben			and GmbH 2006		sttachments attachments				er Leoben		Lond Cooker 2000		sttachments attached? attachments				
Short Plane Tensile	Polymere Competence Cent 25. Sept 06 Kitzmüller Wolfbang	AITM 1.0007	Kitzmüller Wolfgang 26. Okt 06	© Airbus Deutsch					Short Open Hole Tensile	Polymere Competence Cent 19. Sept 06 Kitzmüller Wolfgang	AITM 1.0007	Kitzmüller Wolfgang 26. Okt 06 ® Aithus Douthoot						Ī
	test place: date of test: onerator:	test standard: sheet reference	compiled by: date:	- Markan		valid failure? valid failure? activated for statistics) aa				test place: date of test operator:	test standard: sheet reference:	compiled by: date:		valid failure? (needs to be activated for statistics) ef ag	×			
ibre volume content 60,0%	fibre/textile batches k. A. in LDS binder batches: 2011633101 resin batches	fastener, washer, nut, n.a. collar reference: attachments	(cure cycles, NDT maps, micrographs, photos,)	Arris Department I provide the second	Jre	strength strength related to two w% v% dmm minMPa mm minMPa mm minMPa minMPa		bre volume content: 60,0%		fibre/textile batches k. A. in LDS binder batches: resin batches: 2011633101	fastener, washer, nut, n.a. collar reference: attachments	(cure cycles, NDT maps, micrographs, photos,)		reaction of the strength stren				
I nominal f Iftex Wagener GmbHl					rupti	ax. number residual of cycles load n F	7101	nominal fi	1 ex Wagener GmbH1					ruptu x. number residual of cycles load n F - N	107	1816 81248		
aertex Wagener Gmbl 00 [PES.74dtex] [Sae!						max. static % of m load load F F 8	83258.67 83258.67 93258.67 93258.67 93258.67 30		iertex Wägener GmbH 0 [PES.74dtex] [Saerl					max. static % of ma load load F 7 %	58510 22 50	56510,33 40 56510,33 40 56510,33 30		
00 [PES,74dtex][S .0535-01270-2640]					US SU	ding arg	60 32,24 60 32,37 60 32,48 32,48		0 [PES,74 dtex] [Sa 0535-01 270-26400					o grip fingth free free free free	R0 27.71	60 32,15 60 32,16 80 32,2		_
-0534-01270-26400 -1extile S32CX00K	12K				specimen dimensio	specime secone secone n n n n n n n n n n n n n n n n n n	31,80 150 31,76 150 31,72 150		0534-01270-264001 textile S32CX00K-	X				Decimen dimension specime mm mm mm mm	21 01 1 150	31,90 150 31,92 150		
Saertex S32CX00K	TENAX HTS 5631 1 PS601					Thicknes thicknes thicknes thicknes thicknes thicknes thicknes	3,98 3,95 3,92 3,92 4,09 4,09		aertex S32CX00K-0 symmetric counter-	ENAX HTS 5631 12 PS601				and the second s	2 07 1 1 10	3.94 4.09 3.94 4.09 3.94 4.09		-
ric+/-45° HTS	fibre: binder. resin:	0)2				sixe-tto a b		bric+/-45° HTS	<u>(ñ</u> +	fibre: TE binder: El resin: El	0)2			aivasarie Bierasure	-			
arbon-Fab		45/135/0/ 90				Rest date	25. Sep 25. Sep 25. Sep	Carbon Fab			45/135/0/ 9			test date	10 Cant	19. Sept 19. Sept 19. Sept		
e: Bidiagonal-C full designation: WV. construction)		25/50/25 (OI) (45/135/0/90/	as received none	a filed in		individual specimen nar	EP5601-002002C-007 EP5601-002002C-008 EP5601-002002C-008	e: Bidiagonal-C	full designation: VVV. construction,)		25/50/25 (OI) (45/135/0/90/	as received none	ie filled in	individual specimen name	EDSEN1 0020020 012	EPS601-002002C-013 EPS601-002002C-013 EPS601-002002C-014		
reg/fabric/NCF		late mass ratio. Prd starking ser	19: 19: 19:	conditions:		nemiceqs to #	- C1 00 4 00 ~ 00	rial short nam	reg/fabric/NCF		late mass ratio. led stacking ser	1g: Je: coditiono:	white fields to t	* of speciment	-	-0.04		~ @
Prep (inc		lamir detai	ageit fatiol	test		CI dated	Y dated alityat	mate	Prep (in		lamii detai	agei fatigi	only	UI 45184		X date	-4 elitx	34

7.2.4002002 – EPS601 HTS Quasi-isotrop

A.43: EPS601 HTS QI Short Plain Tensile/ Short Open Hole Tensile.

	mpression	Competence Center Leoben 6 Wolfbana	800	Wolfgang	Airbus Deutschland GmbH 2006	01	sthachments				Compression	Competence Center Leoben gust 2006 Wolfgang	88	Wolfgang	Airous Leutschland GmbH 2006	oto ng	ite oəds		
	Plane Co	itest place: Polymere date of test 25. Aug (Mitzmülle	.a. test standard: AITM 1.0	compiled by: Kitzmülle date: 26. Okt 0	0		th SMP a to be simple to be the activation of the constant and the constant an		314,0		Open Hole	test place: Polymere date of test 2830. Au operator: Kitzmüller	a. test standard: AITM 1.00 sheet reference:	compiled by: Kitzmüller date: 27. Aug		th th th th th th th th th th	m.MPa ⊽ c a ∞ in.MPa > (c a ∞	=	138,8
al fibre volume content: 60,0%		fibre/textile batches k. A. in LDS binder batches. 2011633107 resin batches	fastener, washer, nut, n. collar reference:	auauments (cure cycles, NDT maps, micrographs, photos,)		oture	al related to the streng and related to the streng and	n = 1 -329,3 n = 1	329,3	fibre volume content 60,0%		fibre/textile batches k. A. in LDS binder batches. 2011633101 resin batches.	fastener, washer, nut, n.a. collar reference: attachments	(cure cycles, NDT maps, micrographs, photos,)		iture strength strengt I related to teas related to v/%	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0	3 -205,4 n=1 -198,8	-205,4 -
nomina	x Wågener GmbH] PES,74dtex] [Saertex Wågener GmbH]					linu	max static % of max, number of residutionad load cycles load load by the state of t	-69128,67 50 3640 -59128,67 40 27556 -59128,67 30 220000 4094		nomina	ex Wagener GmbH] PES,74dtex] [Saertex Wagener GmbH]					nu max. % of max. humber of residu static load load cycles load	F N F	-31501,5 50 110767 -31501,5 40 220000 -26028 -31501,5 30 9338	
	01270-264000 [PES,74dtex][Saerte: e S32CX00K-0535-01270-264000 [P					nen dimensions	mbime mbime n m	90 150 60 32.22 . 80 150 60 32.165 . 81 150 60 32.19 .			-01270-264000 [PES,74dtex][Saerte le S32CX00K-0535-01270-264000 [F					width specime brogth width specime spe	m m m m m m m m m m m m m m m m m m m	99 150 60 32.19 00 150 60 32.07 06 150 60 32.15	
5° HTS	Saertex S32CX00K-0534- + symmetric counter-textil	TENAX HTS 5631 12K				specin	en on of the second of the sec	3,95 4,09 31,8 3,91 4,09 31,8 3,90 4,09 31,8 3,90 4,09 31,8		5° HTS	Saertex S32CX00K-0534 + symmetric counter-texti	EPS601				off-axis specime off-axis off-axis off-axis off-axis off-axis off-axis off-axis off-axis off-axis	a t _{reas} t _{oun Win} eq. mm mm m	0 3,99 4,09 31, 0 3,96 4,09 32, 0 3,92 4,09 32, 3,92 32,	
Bidiagonal-Carbon-Fabric+/-4	hation: nuction,)	fibre: binder resin:	25/50/25 (QI) (45/135/0/90/45/135/0/ 90)2	as received none	23°, dry		ala spectimen rest date rest date	002002C-007 20.5ept 0 002002C-008 20.5ept 0 002002C-009 20.5ept 0 002002C-009 20.5ept 0		Bidiagonal-Carbon-Fabric+/-4	hation: ruction,)	fibre: binde resin:	25/50/25 (QI) (45/135/0/90/45/135/0/ 90)2	as received none	23°, ary	naal name Dame Dame Dame Dame Dame Dame Dame D	:e1	002002D-007 18. Sept 002002D-008 15. Sept 002002D-009 18. Sept	
material short name:	Prepreg/fabric/NCF full design (including exact FAW, consti		laminate mass ratio:	uetaireu staukirig seq ageing: fatigue:	test conditions: only white fields to be filled in		batch ID # of specimens id id id id id id id id	ile batch X	texti	material short name:	Prepregifabric/NCF full design (including exact FAW, consti		laminate mass ratio: detailed stacking seq.:	ageing: fatigue:	test conditions. only white fields to be filled in	ntch ID	sd : 10 #	batch X E F S601- E F S601- E F S601- E F S601- D S01- D S	textile

A.44: EPS601 HTS QI Plain Compression/ Open Hole Compression.

	nsile	tence Center Leoben	5	ă.	Deutschland GmbH 2006	0	attachments attached?			Tensile	tence Center Leoben	2	bu	Deutschland GmbH 2006	0	toriq nəmi: Sbərtəstt stnəmrəs	pe e iads					
	Short Plane Ter	Polymere Compe 11. Okt 06 Kitzmüller Wolfda	L AITM 1.0007	Kitzmüller Wolfga 30. Okt 06	© Airbus		narks			Short Open Hole	Polymere Compe 04. Okt 06 Izitermüller Wolfice	ATM 1.0007	Kitzmüller Wolfga 30. Okt 06	©Airbus		narks						
		test place: date of test operator:	test standard sheet referen	compiled by: date:			valid failure? (needs to be activated for statistics) <u>q</u>				test place: date of test	test standard sheet referen	compiled by: date:			lid failure? seds to be tivated for tatistics)	ev nn) ev	X	~			
		DS HD. Erz Nr::0276000	n.a.				strength Related to two SMPa v/% minMPa minMPa				DS un Erz Nr.0076000	n.a.				strength related to tww s/MPa v/%	o, MPa minMPa					
ime content 60,0%		title batches k. A. in L batches: 73-653-1 atches:	er, washer, nut, r reference: ments	e cycles, NDT maps, ographs, photos,)	-	a	trength ted to taxes S/MPa v/% m_MPa min/MPa MPa		ime content:] 60,0%		batches K.A. in L batches: arches: 72 653 L	armos. 8r, washer, nut, reference: nents	cycles, NDT maps, graphs, photos,)			trength ted to twase sMPa v/%	min/MPa Garree					
iinal fibre volu	IHq	fibre/te binder resin b	fastene collar attachr	(cure micro		ruptur	aidual relat bad F G		inal fibre volu	Ŧ	fibre/te bindert mesin hv	fastene collar attachm	(cure micro		nupture	idual relat	F σ _{mee}	ŀ				
norr	Wagener Grr						umber of res cycles II	1554	Juou	'agener Gmbl						umber of res cycles to		130	2022	10/70		
Γ	ner GmbH] tex] [Saertex						% of max. r load %	898		er GmbH] X [Saertex M						% of max. n load	%	20	40	R		
L	iertex Wage 0 [PES,74d						max. static load N	85149,50		tex Wagene PES, 74dte						max. static load	ᇿᡔ	57303,17	57303,17	5/3U3,17		
L	74dtex] [Sa 270-26400(abu thee	32,33		tdtex][Saer 70-264000						aent Atgnal	_ m	32,425	32,44	32,19		
L	000 (PES, 7 K-0535-01)					ons		9999		00 [PES,74 -0535-0127					ns	length grip	a mm	09	60	₽		
L	01270-264 S32CX00					en dimensi	u – E	9 150 150		1270-26400 532CX00K					n dimensio	nnarth n specime	- m	150	150			
L	00K-0534-1 Inter-textile	31 12K				specim	s specime	31.9		0K-0534-01 ther-textile (1 12K				specime	specime n n	Wmmean mm	32,30	32,05	21,0,		
L	ex S32CXI Imetric col	XX HTS 56 500					Thicknes	0 2 0 4 4 0 7 0 7 0		k S32CX00 netric court	(HTS 563					s Innimon sanyoint	mm mm	4,09	4,09	4,03		\parallel
°HTS	Saert + sym	TEN				╞	p ↓ª È aunseau		ITS	Saerte: + symn	TENAY	5				thicknes d measure	mm	3,78	3,79	2,00	\square	
abric+/45		fibre: binder: resin:	90)2				Sixe off-axis		ric+/45° F		fibre: binder: racin:	0)2				sixe-ño	dea.	0	0	-		
Carbon F			I))/45/135/0				est date	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	arbon-Fab.			5/135/0/91				ateb te	et e	04. OKt	04. OK	DA. UK		
ne: Bidiagonal-	Ffull designation: AW, construction,)		3: 25/50/25 (Q) (45/135/0/90	as received ves	be filled in		individual specimen name	EPS600-00300238-00 EPS600-00300238-00 EPS600-00300238-00	Bidiagonal-Ca	III designation: V, construction,)		25/50/25 (CI) (45/135/0/90/4:	as received ves	23°C, dry		individual specimen name		PS600-003002aC-008	PS600-003002aC-009	PS6U0-003002aC-010		
short nan	fabric/NCF		ermass ratio		ditions: e fields to		nemioeqe to #	← 0.00 4 00 0 - 00	ort name:	nic/NCF fu exact FAM		ass ratio: rking sed :		ons: Pick to her		snemioeqs	10 #	1	2 1 1	4 X	5	
material	Prepregr (includ		laminate detailed	ageing: fatigue:	test cond		batch ID	textile batch X	material sh	Prepreg/fat (including		laminate m: detailed sta	ageing: fatigue:	test condition		CI Hote	q		X	lote!	d elit	texi

7.2.5003002 - EPS600 HTS Quasi-isotrop

A.45: EPS600 HTS QI Short Plain Tensile/ Short Open Hole Tensile.

	Plane Compression	sst place: Polymere Competence Center Leoben ate of test: 9/10. Oktober 2006 berabir. Kitzmiciler Wolfgang	est standard ATM 1.0008	onplete by Kitzmüller Wolfgang ate 00,406 06 06 004 2006		(needs to be attachments aftached? aftached? aftached? aftached?			Upen Hole Compression	t place: Polymere Competence Center Leoben te of test 2/3. Oktober 2006 erator: Krizmüller Wolfgang	t standard: ATM 1.0008	npiled by: Mdzmuuller Wolfgang B: 0kt 06 @ Airbus Deutschland GmbH 2006	ants sints sints	attachme statistic age specimen statistic a stache stachme stache		
nominal fibre volume content. 60,0%		ItherArbite batches k.A. in LDS binder batches: 73-653-HD, Erz Nr. 0276000 00 iresin batches: 73-653-HD, Erz Nr. 0276000 00	fastener, washer, nut, n.a. collar reference: attractiments	(cure cycles, NDT maps, cure cycles, NDT maps, micrographs, photos,)	nuture	residual related to tuan strength related to tuan shift a single		inal fibre volume content. 60,0%	IHQU	fibre/texter batches k. A. in LDS test binder batches: 73-653-HD. Efz Nr.:0276000 ooe	fastener, washer, nut, n.a. test collar reference: attachments she	(cure cycles, NDT maps, com micrographs, phdtos,)	upture strength Strength C 2000 2000 2000 2000 2000 2000 2000 2	0ad date www. 0ad 0ad www. V/% 3 0ad v/% 3 0am 0am 1am 1am 1am 1am 1am 1am 1am 1am 1am 1	4639 - 285.8 n = 1 - 263.7 n = 1	285,8 263,7
	Saertex S32CX00K-0534-01270-264000 [PES,74dtex] [Saertex Wagener GmbH] + symmetric counter-textile S32CX00K-0535-01270-264000 [PES,74dtex] [Saertex Wagener GmbH	TENAX HTS 5631 12K EP5600			specimen dimensions	Image: second	381 4.09 31.87 150 60 32.115 -62155.67 60 3.84 4.09 31.82 150 60 32.145 62155.67 40 3.86 4,09 31.82 150 60 32.135 -62155.67 30		Saertex S32/CXUUK-UD34-UT2/U-264UUU PES,/40tbx Saertex Wagpmer GMDH + symmetric counter-textile S32CX00K-0535-01270-264000 PES,74dtex Saertex Wagener Gm	TENAK HTS 5631 12K EPS600			ure Rectimen dimensions The first mean of the f	the second static second secon	377 4,09 31,95 150 60 32,31 -37187,5 50 61124 3.76 4,09 32,32 150 60 32,04 -37187,5 40 124560 3.78 4,09 32,16 150 60 32,08 -37187,5 30 220000 -3 3.78 4,09 32,16 150 60 32,08 -37187,5 30 220000 -3	
material short name: Bidlagonal-Carbon-Fabric+/.45° HTS	Prepreg/fabric/NCF full designation: (including exact FAW, construction,)	fibre: binder resin:	laminate mass ratio: 25/50/25 (Q) (45/135/090/45/135/090)2 http://dimession	agence growing server adplicit and tables as received tables controller to a price of y test controller to a price of a		batch ID test date test date	1ex1ile batch X 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	material short name: Bidiagonal-Carbon-Fabric+/45° HTS	Prepregrapmonuch tuil designation: (including exact FAW, construction,)	filore: binder resin	Iaminate mass ratio: 25/50/25 (Cl) detailed stacking seg.: (45/135/0/90/45/135/0/90)2	ageing as received as received fatigue: Ves restonations: 23°C, dry morwing trans to he miled in	six e	batch IC test date test date angle test date angle test date	1 EPS600-003002aD-007 02. OM 0 2 EPS600-003002aD-008 02. OM 0 4 3 EPS600-003002aD-008 03. OM 0	textile

A.46: EPS600 HTS QI Plain Compression/ Open Hole Compression.

7. ANHANG

		enter Leoben			land GmbH 2006	0	attachen phot attached? attachments	аціясциван рафор заціясциван рафор заціясциван рафор заціясциван рафор заціясциван рафор заціясциван рафор заціясциван рафор заціясциван заціяснивном заціясциван заціяснивном заціясн						
	Short Plane Tensile	Polymere Competence C 19. Okt 06 Kitzmüller Wintfrand	ATM 1.0007	Kitzmüller Wolfgang 31. Okt 06	© Airbus Deutsch			Short Open Hole Tensile Short Open Hole Tensile Pervirence Competence Cent 16-18. Oktober 2006 Küzmüller Wolgang ATTM 1.0007 Küzmüller Wolgang 31. Okt 06 0440	ut not broken (lower limit detec)					Ī
		est.	Idard: Ference	d by:			E E E E E E E E E E E E E E E E E E E		stoppedb					
		test plac date of 1 oneration	test star	compile date:			valid failure? (needs to be activated for	valid failure? valid failure? teche to be activated teche to be a		A				
60 N%							ngth d to two s/MPa v/% min/MPa	57,0%			n=1		434.4	434,4
P content							stre relate(0	content:			A A A	#'#0#		
Thre volum	2						ength d to the s/MPa v/% min/MPa min/MPa	ore volume sight sight minimPa minimPa			n=1		480.2	480,2
nominal f						ar	stre relateo MPa	omminal fit			C 001	400,4		
		v s	e. L			npt	residual load N				2076	C/ROC	Τ	Γ
	lHdm	K.A. in LD 87020033		maps, is,)			cycles	458 1059 A. in LDS A. in LDS A. in LDS (170200333 170200333 (170200333 A. in LDS (1000) (100)	1509	25288	956	000077	Ť	T
	Wågener G	le batches: tches: thes:	washer, nu eference: nts	/des, NDT aphs, photi			% of max	9 and 10	20	40	93 F	n,		
	r GmbH] { Saertex	fibre/texti binder ba resin hatr	fastener, collar re attachme	(cure c) microgr	,		max. static loai	82337.3 82337.3 82337.3 82337.3 82557.3 82557.	52489,50	52489,50	52489,50	00,408,00	+	T
l	ex Wågene PES, 74dte)						ant length	32,16 32,19 32,19 32,14 32,14 16 16 16 16 17 17 17 17 17 17 17 17 17 17 17 17 17	32,295	32,28	32,245	34,44	+	-
Ļ	tex] [Saerb -264000 [I					ns	ding a E		60	60	09	8		
	[PES,74d 535-01270					in dimensio	a north n specime	150 11274 dtb 150 1270-284 1600 1270-284 1600 1270-284	150	150	150		+	+
	70-264000 2CX00K-0					specime	specime a specime	31.73 31.82 31.82 31.82 31.82 31.82 33.65.6 01<00 01<00 01<00 01<00 01<00 01<00 01<00 01<00 01<00 01<00 01<00 01<00 01<00 01<00 01<00 01<00 01<00 01<00 01<00 01<00 01<00 01<00 01<00 01<00 01<00 01<00 01<00 01<00 01<00 01<00 01<00 01<00 01<00 01<00 01<00 01<00 01<00 01<00 01<00 01<00 01<00 01<00 01<00 01<00 01<00 01<00 01<00 01<00 01<00 01<00 01<00 01<00 01<00 01<00 01<00 01<00 01<00 01<00 01<00 01<00 01<00 01 01 01 01 01 01 01 01 01 01 01 01 0	32,12	32,10	32,10	27'01	-	+
	-0534-0127 r-textile S3	2K					and thicknes	e S 332CX00	4,09	4,09	4,09	4° (18	+	
y.	32CX00K- ric counter	TS 5631 1					anuseam b B B B B B B B B B B B B B B B B B B	31 12K 33 80 00 00 00 00 00 00 00 00 00 00 00 00	3,77	8,78	8,78	2,2	+	+
c+1.45° HT	Saertex S + symmet	TENAX H [.] 977-9 film	5				sixs-fto R 🛱	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0					+	+
hon-Fahri		fibre: binder: resin:	135/0/ 90)				əteb teət	19. Okt 19. Okt 79. Okt 719. Okt 97.22 97.22 97.22 0 90)	9	t t			_	_
ional-Carl	(25 (QI) 5/0/90/45/	eived	ζį,		en name	007 009 009 009 009 009 009 000 000 000	16. Ok	16. Ok	17.0k	5	\downarrow	
e Ridiad	full designation: VV, construction,		1: 25/50/	as rect none	e filled in		individual specin	977-2-001002A- 977-2-001002A- 977-2-001002A- III designation V, construction V, construction 145/135 25/50/2 23°C, of 23°C, of 23°C, of 100 me 23°C, of 100 me 100 me	77-2-0010028-007	77-2-0010028-008	77-2-001002B-009	010-0700100-7-77		
thort nam	abric/NCF		mass ratio: acking sec		tions: fields to b.		snamioaqe to #	* of specimens * of specimens * of specimens * of specimens	1 97	2 97	3 91	5 + 4	9	
material	Prepreg/ft (includin		laminate r detailed sl	ageing: fatigue:	test condi only white		Di dəteh ID	batch ID batch ID batch ID batch ID batch ID batch ID batch ID batch ID batch X batch X batc		×	< U 3	sd elit	txət	

7.2.6001002 – Cycom 977-2 HTS Quasi-isotrop

A.47: 977-2 HTS QI Short Plain Tensile/ Short Open Hole Tensile.

		eopen			chland GmbH 2006		attachments					TT		d GmbH 2006		stnemtos	94	Γ							
		e Center Le				0	toriq nə micəqə Sbərhəttə						enter Leoben			Arbus Deutschlar		otonen photo Sberhach	e ads						
Plane Compression		Polymere Competence 18./19. Oktober 2006 Kitzmüller Wolfgang	AITM 1.0008 Kitzmüller Wolfgang 31. Okt 06		© Airbus Deuts		ŝ					Open Hole Compression	Polymere Competence Co 5./6. Oktober 2006	AITM 1.0008	Kitzmüller Wolfgang 31. Okt 06	0		2							
		ace: f test: or:	andard: reference	ed by:			statistics)						ce: test:	or: ndard: eference:	ed by:		(soiteitete rot								
Dor 1	2	test pla date ol operat	test str sheet	date:			valid failure? valid failure? (needs to be				2%		test pla date of	operato test sta sheet n	compile date:	_	م م ش " م " م " valid failure? valid failure? (needs to be activated						Ĥ		
nominal fibre volume content: 57.0							related to two strength related to two switch simulations of the second strength simulation of the strength simulation of the strength simulation of the strength str			440,	t 60							ed to t _{rom} s/MPa v/%	σ _m /MP min/MF			7 = u	20	-2,9%	-245,1
									-440,1	444,5 444,5	ie conten							relat	0 ₂₀₀₈ MPa	-235,2		-245,1			
									n= 1		bre volum							ngth to t _{meæ} s/MPa v/%	σ _m /MPa min/MPa			7 = U	6,6	-2,5%	-263,5
									-444,5		nominal fi						8	stre	0 _{acea} MPa	-254,2		-263,5			
			n.a.			ruptun	residual Ioad F		-57556					e.			ruptur	residual Ioad	њz	-30764		-32001		T	Γ
	_	k.A. in LDS 870200333		;) (;			max. static % of max, humber of load load cycles F n n	11000	66841 220000 4753			ΓΗ	(.A. in LDS		aps,			number of cycles	c ,	220000	17972	220000		Ť	
bric+/45° HTS	smbH] Saertex Wagener Gmbl	atches: es: x	ther, nut, ence:	s, NDT map s, photos, .				ę	40 30 50			agener Gm	batches: nes:	sher, nut, rence: s	es, NDT m; hs, photos,			% of max. load	8	50	8	40		T	T
		ibre/textile b binder batche esin batches	astener, was collar referent	(cure cycle: micrograph				-64803,00	-64803,00 -64803,00 -64803,00		GmbH]	GmbH] [Saertex W	fibre/textile binder batch	fastener, wa collar refe attachments	(cure cycl micrograp			max. static load	њz	-34750	-34750	-34/50		T	
	Wagener G					specimen dimensions	utgnal ← Ē	1000	31,955 31,85 31,92			<pre>< Wagener ES,74dtex]</pre>						əən İfengi	f	32,49	32,37	32,37			
	x] [Saertex 264000 [PE						B - length graphic concentration graphic con		0.00	150 60		xx] [Saerte: 264000 [P						ding drip	g m	60	09	90			
	Saertex S32CX00K-0534-01270-264000 [PES,74dte + symmetric counter-textile S32CX00K-0535-01270-2								150 150 150			PES, 74 dte 35-01270-3					dimensions	nəmicəqs dfpnəl	— @	150	150	150			
							amictan a specime though	0000	32,06 31,98 31,96			264000 [X00K-053					specimen	nemiceqe dtbiw	Wine an	31,98	31,98	31,92			
							thicknes s thicknes s	00,	4,09			4-01270- tile S32C	5631 12K					nominal thickness	mm	4,09	4,09	4,08		T	
		S 5631 12K					anuseanne d f f f f f f f f f f f s anues anue d f f s anue d f f f f f f f f f f f f f f f f f f		4,05		° HTS	CX00K-05: counter-te:						benuseem ssenknidt	t _{meax} mm	3,79	3,79	3,81		T	
		TENAX HT 977-2 film	90)2				sixs-fto a a				abric+/-45	aertex S32 symmetric	ENAX HTS	/ 90)2				sixas-∭no	a deg.	0		-			
Carbon-Ea		fibre: binder: resin:	() 0/45/135/0/				eteb teet		18. Okt 18. Okt 19. Okt		I-Carbon-F	() +	fibre: T binder: D	ol) 90/45/135/0	7			st date	et	05. Okt	06. Okt	06. 0kt		1	
a' Didiononal	full designation:		25/50/25 (G (45/135/0/9	as received none	e filled in	c IIIca III	Individual specimen name		977-2-001002B-007 977-2-001002B-008 977-2-001002B-009		ie: Bidiagona	full designation: AVV, const		.: 25/50/25 () .q.: (45/135/0/	as receive none	23°C, dry		individual specimen name		977-2-001002B-007	977-2-001002B-008	877-2-001002B-009			
hort name	ibric/NCF 1 g exact FA		nass ratio: acking sec		test conditions: only white fields to b		memiceqe to #				hort nam	abric/NCF g exact F/		nass ratio tacking se		tions: o be filled in		snemioeq	¥ 04 8	-	2	м 4	5	9	~ ∞
matariale	Prepreg/fa (includin		laminate n detailed st	ageing: fatigue:			Datch ID		X doted e	litx9t	materials	Prepreg/fit (includin		laminate r detailed st	ageing: fatigue:	test condi-		GI (1316	q		×	atch	d elit	xət	

977-2 HTS QI Plain Compression/ Open Hole Compression.

7.3 Dynamische Versuche - Einzelergebnisse

7.3.1001001 - RTM6 HTA Quasi-isotrop

A.51: RTM6 HTA QI - Ermüdungsverläufe für Short Open Hole Tensile Proben.

A.52: RTM6 HTA QI - Ermüdungsverläufe für Open Hole Compression Proben.

7.3.2001002 - RTM6 HTS Quasi-isotrop

A.54: RTM6 HTS QI - Ermüdungsverläufe für Plain Compression Proben.

A.55: RTM6 HTS QI - Ermüdungsverläufe für Short Open Hole Tensile Proben.

A.56: RTM6 HTS QI - Ermüdungsverläufe für Open Hole Compression Proben.

7.3.3001003 - RTM6 HTS Biaxial (0°/90°)

A.59: RTM6 HTS biax - Ermüdungsverläufe für Short Open Hole Tensile Proben.

A.60: RTM6 HTS biax - Ermüdungsverläufe für Open Hole Compression Proben.

7.3.4002002 - EPS 601 HTS Quasi-isotrop

A.63: EPS601 HTS QI - Ermüdungsverläufe für Short Open Hole Tensile Proben.

A.64: EPS601 HTS QI - Ermüdungsverläufe für Open Hole Compression Proben.

7.3.5003002 - EPS 600 HTS Quasi-isotrop

A.66: EPS600 HTS QI - Ermüdungsverläufe für Plain Compression Proben.

A.67: EPS600 HTS QI - Ermüdungsverläufe für Short Open Hole Tensile Proben.

A.68: EPS600 HTS QI - Ermüdungsverläufe für Open Hole Compression Proben.

A.71: 977-2 HTS QI - Ermüdungsverläufe für Short Open Hole Tensile Proben.

A.72: 977-2 HTS QI - Ermüdungsverläufe für Open Hole Compression Proben.