Neuentwicklung eines Einscheibenrades für ein Rückladegerät

Diplomarbeit

Durchgeführt bei der SANDVIK MINING AND CONSTRUCTION Materials Handling GmbH & Co KG

Vorgelegt von

Mathias Eder

Betreuer:

Dipl.-Ing. Dr. mont. Michael Prenner

Begutachter:

Univ.Prof Dipl.-Ing. Dr. mont. Franz Kessler

EIDESSTATTLICHE ERKLÄRUNG

Ich erkläre hiermit an Eides Statt, dass die vorliegende Diplomarbeit

Neuentwicklung eines Einscheibenrades für ein Rückladegerät

von mir selbst und nur unter Verwendung der angeführten Literatur verfasst wurde.

Leoben, im Februar 2009

Mathias Eder

Danksagung

Diese Diplomarbeit möchte ich meinen Eltern widmen, da sie nicht nur mein Studium zum größten Teil finanziert haben, sondern auch sehr großes Vertrauen in mich setzten und so gut es ging unterstützten.

Weiters möchte ich mich auch bei all denen bedanken, die mich bei der Anfertigung meiner Diplomarbeit so kräftig unterstützt haben. Ganz besonders bedanken möchte ich mich bei Univ.-Prof. Dipl.-Ing. Dr. mont. Franz KESSLER, Dipl.-Ing. Dr. mont. Michael PRENNER, Dipl.-Ing. Ulfried RIEGER sowie meinem externen Betreuer der Firma Sandvik, Dipl.-Ing. Thomas JABS, für die Ermöglichung dieser Diplomarbeit und der tatkräftigen Unterstützung bei der Erstellung dieser. Vielen Dank für die hilfreichen Anregungen und die große Geduld.

An dieser Stelle möchte mich auch noch bei allen anderen bedanken, die mich während meines Studiums begleitet haben. Ganz gleich wie, ohne Euch hätte ich das niemals geschafft! Großer Dank gebührt auch meiner Freundin Corinna, die während des letzten halben Jahres auf viel gemeinsame Zeit verzichten musste, stets ein offenes Ohr für mich hatte und immer für mich da war.

Inhaltsverzeichnis

EIDESSTATTLICHE ERKLÄRUNG	2
Danksagung	
Inhaltsverzeichnis	
Kurzbeschreibung	
Abstract	
1 Einführung	10
2 Zielsetzung	11
3 Grundlagen des Schaufelradrückladers	12
3.1 Grundlagen des Haldenrückholprozesses	
3.2 Arbeitsweise der Rückladegeräte	15
3.3 Haldensysteme	16
3.3.1 Chevron-Methode	18
3.3.2 Windrow-Methode	19
3.4 Maschinenbauliche Grundlagen des Schaufelradrückladers	20
4 Gestaltung von Schaufelrädern	26
4.1 Das Zellenrad	27
4.2 Das Halbzellenrad	28
4.3 Das zellenlose Rad	
4.4 Auswahl des geeigneten Schaufelradtyps	30
4.5 Aufbau des Schaufelrades mit Antrieb	31
4.5.1 Die Schaufel	31
4.5.1.1 Form der Schaufel	31
4.5.1.2 Schneidmesser, Zähne	33

Inhaltsverzeichnis

5

	4.5.1.	3 Werkstoffwahl der Schneidzähne	35
	4.5.1.	4 Schaufelbefestigung am Schaufelradkörper	37
	4.5.1.	5 Schaufelinhalt und Befüllvorgang	38
	4.5.1.	6 Entleerung der Schaufel	38
4.	5.2	Der Schaufelradkörper	40
	4.5.2.	1 Doppelwandige Ausführung des Schaufelradkörpers	41
	4.5.2.	2 Einwandige Ausbildung des Schaufelradkörpers mit Speichen	43
	4.5.2.	3 Einwandige kegelförmige Ausbildung	44
	4.5.2.	4 Transport des Schaufelradkörpers	46
	4.5.2.	5 Verbindung des Schaufelradkörpers mit der Schaufelradwelle	47
4.	5.3	Schaufelradwelle	48
4.	5.4	Lagerung der Schaufelradwelle	48
	4.5.4.	1 Schaufelrad und Getriebe zwischen den Lagern	50
	4.5.4.	2 Schaufelradkörper zwischen den Lagern, Getriebe außerhalb	52
	4.5.4.	3 Schaufelrad und Getriebe außerhalb der Lager	53
4.	5.5	Verbindungselemente zwischen Schaufelradwelle und Getriebe	54
	4.5.5.	1 Verbindungselement Hohlwellenstummel	55
	4.5.5. Schau	2 Verbindung durch einen Hydraulikpressverband des Großrades mit o Ifelradwelle	der 56
	4.5.5.	3 Keilwellenverbindung zwischen Schaufelradwelle und Getriebegroßrad	57
	4.5.5.	4 Flanschverbindung zwischen Schaufelradwelle und Großrad des Getriebes	58
4.6	Ste	ellung des Schaufelrades zur Böschung	59
К	onzej	pt und Anforderungen	61
5.1	Ко	onstruktionsmethodische Vorgehensweise	61
5.2	Ar	nforderungsliste	63
5.3	M	ethode "Paarvergleich zum Bewerten"	66
5.4	Ge	ewichtigkeit	68

Neuentwicklung eines Einscheibenrades für ein Rückladegerät

6	Vario	antenfindung	70
	6.1	Variante Schrumpfscheibe	70
	6.2	Variante Hirthverzahnung	72
	6.3	Variante Aufschweißen	73
	6.4	Variante Gießen	75
	6.5	Variante Aufschrumpfen	76
	6.6	Variantenvergleich	77
7	Lasta	annahmen	78
	71	Schwenkkraft	81
	7.1	Umfongekroft	
	7.2	Omnangskrant	02
_	7.3		83
8	Bere	chnung und Simulation des Schaufelrades	84
	8.1	Wellenberechnung	86
	8.1.1	Grundgedanken zum Tragfähigkeitsnachweis und Aufbau von DIN 743	86
	8.1.2	Grundlagen von Belastungen und Beanspruchungen	88
	8.1.3	Nennspannungen	92
	8.1.4	Zeitlicher Verlauf der Belastungen	94
	8.1.5	Werkstoffkennwerte	94
	8.1.6	Ruhende Belastung	95
	8.1.7	Dynamische Belastung	95
	8.1.8	Dauerfestigkeitsschaubild	98
	8.1.9	Örtliche Spannungen	99
	8.1.10	Kerbwirkung	99
	8.1.11	Prinzipieller Ablauf des Nachweises der Sicherheit	102
	8.1.12	Sicherheiten	103
	8.1.13	Eingabewerte und Ergebnisse der Berechnung	104
	8.2	Lagerberechnung	106
	8.2.1	Grundlagen der Lagerberechnung	106

Neuentwicklung eines Einscheibenrades für ein Rückladegerät

8	8.2.2	Eingabewerte und Ergebnisse der Loslagerberechnung	109
8	8.2.3	Eingaben und Ergebnisse der Festlagerlagerberechnung	110
8.3		Pressverbände	111
8	8.3.1	Theoretische Grundlagen	111
8	8.3.2	Pressverband zwischen Schaufelradflansch und Welle	115
8	8.3.3	Pressverband zwischen Kupplungsflansch und Welle	117
8.4		Schraubenberechnung - Verbindung Schaufelradflansch/Scheibenrad	118
8	8.4.1	Grundlagen	118
8	8.4.2	Verspannungsschaubild	120
8	8.4.3	Eingabewerte und Ergebnisse	124
8.5		Scheibenrad	125
8	8.5.1	Eingabewerte und Ergebnis	125
9 2	Zusa	mmenfassung	131
10	Ve	erzeichnisse	133
10.	1	Abbildungsverzeichnis	133
10.	2	Literaturnachweis	137

Kurzbeschreibung

Zum Rückladen von Schüttgut aus einer Halde werden verschiedene Rückladegeräte eingesetzt, unter anderem Schaufelradrücklader. Das Schaufelrad ist dabei das zentrale Bauteil eines derartigen Haldenrückladegerätes. In diesem speziellen Fall handelt es sich um ein Rückladegerät auf einem Schienenfahrwerk wobei das Schaufelrad an einem heb- und senkbaren Schwenkausleger montiert ist. Anhand eines konkreten Einsatzbeispiels wird ein Schaufelrad für ein Rückladegerät in Form eines Einscheibenrades entwickelt. Der Schwerpunkt wird auf die Konstruktion des Einscheibenrades gelegt. Das Scheibenrad soll aus zwei zusammengeschweißten, konischen Blechen bestehen. Das primäre Ziel dieser Arbeit ist eine Gewichtsoptimierung des Schaufelrades und dessen Komponenten mit Hilfe von Berechnungen und Simulationen. Hierbei wird das Hauptaugenmerk auf die Fertigungsart der Welle und des Schaufelradflansches, inklusive der Verbindung beider Komponenten miteinander gelegt. Weitere Kriterien sind die Fertigungskosten, der Bauraum, der Transport und der Ein- bzw. der Ausbau des Schaufelrades. Mit diesen Kriterien und allen bekannten Lasten werden verschiedene Varianten betrachtet und die am besten geeignete konstruiert.

Abstract

In order to sufficiently reclaim bulk freight from waste tips, various models of retrieval and reloading devices are employed. Among them: the bucket wheel reclaimer. The central mantle piece of this construction is the bucket wheel itself, which is used to reload the bulk material from the rock pile. It moves on specific rails and is further outfitted with a remove- and lowerable jib boom. With the aid of concrete data, such a bucket wheel is to be assembled in form of a one-disk bucket wheel. In terms of manufacture, a one-disk wheel needs to be designed, which is supposed to be built out of two welded, tapered steel sheets. Primary aim of this diploma work is to establish a sufficient, optimal weight optimization of the bucket wheel and its components through calculations and computer simulations. With this the processing of the shaft and bucket wheel muff, including the fusion of both components are to be examined. Further, criteria include cost of manufacture, required area of construction, transport, installation and dismounting of the bucket wheel. In hindsight to these criteria and known weight afflictions, various samples shall be reviewed in order to distinguish and built the most efficient.

1 Einführung

Die Firma SANDVIK MINING AND CONSTRUCTION Materials Handling GmbH & Co KG konstruiert und entwickelt unter anderem Schaufelradrücklader in verschiedenen Formen, Größen und mit unterschiedlichen Förderleistungen. Zum Rückladen von Schüttgut (Kohle, Erz, Mineralien) aus einer Halde werden verschiedene Rückladegeräte eingesetzt. Eine haufenförmige Ansammlung von Schüttgut wird im Bergbau als Halde bezeichnet. In diesem speziellen Fall handelt es sich um ein Rückladegerät auf Schienen mit einem Schaufelrad an einem hebund senkbaren Schwenkausleger.

Der Inhalt dieser Arbeit ist die Neuentwicklung eines Einscheibenrades für ein Rückladegerät anhand eines Beispiels einer bestehenden Maschine.

Die vorliegende Arbeit besteht aus zwei Teilen. Im ersten Teil werden die theoretischen Grundlagen eines Rückladegerätes und das System der Halde, sowie die Varianten des Schaufelrades erklärt. Weiters werden die auszulegenden Elemente definiert und beschrieben. Anhand eines Beispielrückladers wird im zweiten Teil der Arbeit ein Schaufelrad in Form eines Einscheibenrades mit Hilfe von Berechnungen und Simulationen ausgelegt und entworfen und dieses mittels eines 3D-Programms konstruiert.

2 Zielsetzung

Die Aufgabenstellung ist die Konstruktion und Dimensionierung eines Einscheibenrades, insbesondere von Welle, Lager, Wellen-Nabenverbindungen und des Antriebsflansches unter der Berücksichtigung einer Gewichts-, Montage-, Wartungs- und Fertigungsoptimierung.

Das primäre Ziel ist eine Gewichtsoptimierung des Schaufelrades und dessen Komponenten mit Hilfe von Berechnungen und Simulationen. Sekundär werden die Fertigungsart der Welle und des Flansches und die damit verbundenen Kosten betrachtet. Insbesondere werden die Welle, der Schaufelradkörper, die Lagerung und die Verbindungen zwischen Schaufelradkörper, Flansch und Welle behandelt.

3 Grundlagen des Schaufelradrückladers

Die Herstellung von Produkten wird oftmals von Rohstoffen bestimmt, die in den Erzeugerländern teilweise nur schwer erhältlich sind. Rohstoffe wie Eisenerz, Bauxit, Kohle oder Getreide werden daher über sehr weite Strecken mit dem Schiff transportiert und in Häfen vorübergehend zwischengelagert. Die Lagerung der oben genannten losen Schüttgüter erfolgt dabei auf einer Halde. Damit diese Ansammlungen von Schüttgütern möglichst kostengünstig aufgenommen und der weiteren Verarbeitung zugeführt werden kann, werden verschiedenste technische Einrichtungen wie zum Beispiel Förderbänder und Absetzer benötigt. Technische Einrichtungen die ein erneutes Aufsammeln dieser Schüttgüter ermöglichen werden Haldenrückgewinnungsgeräte genannt [2].

Abb.1: Grundaufbau eines Umschlagplatzes

Schaufelradrücklader dienen ausschließlich zur Wiederaufnahme von Schüttgütern von einer Halde. Zum Aufschütten der Halde sind gesonderte Absetzer mit einem Bandschleifwagen im Einsatz. Auch eine Kombination beider Maschinen ist möglich und wird bei kleineren Halden eingesetzt. Diese können sowohl als Bagger als auch als Absetzer zum Aufschütten der Halde eingesetzt werden. Hier ist der dafür nötige Bandschleifwagen an eine hydraulische Vorrichtung gekoppelt, mit deren Hilfe dieser nach Bedarf ein- und ausgefahren werden kann. Beim Absetzbetrieb läuft das Förderband in Richtung des Schaufelrades und wirft das Material beim Schaufelrad vorbei auf die Halde.

Abb.2: Schaufelradrücklader

3.1 Grundlagen des Haldenrückholprozesses

Der Arbeitsprozess von Rückladegeräten umfasst den Abbau von Rohstoffen von einer Halde und das Aufnehmen derselben für den Transport. Um den Rohstoff aus der Halde herauszulösen, muss er durch geeignete Mittel örtlich so stark beansprucht werden, dass die Festigkeitsgrenze überschritten wird. Auf der Halde befindet sich aufgeschüttetetes Rohmaterial. Da die Druckfestigkeit deutlich größer ist als die Zug- und Scherfestigkeit müssen direkt oder indirekt ausreichend große Zug- bzw. Scherspannungen erzeugt werden. Beim Abbau von Erdstoffen mittels Schaufelradbaggern, sowie bei Haldenrückholgeräten, werden ausschließlich physikalische Prinzipien angewendet. Die Grundlagen werden nachfolgend dargestellt. Für den Rückladeprozess ist jedoch nur das Prinzip des "Brechens" relevant. Die anderen Prinzipien werden nur bei Schaufelradbaggern eingesetzt.

Abb.3: a) Spanen, b) Kerben, c) Spalten, d) Brechen, e) Schleifen

3.2 Arbeitsweise der Rückladegeräte

Zum Lösen des Fördergutes aus seinem Verband in der Böschung wird das drehende Schaufelrad in den einzelnen Höhenlagen um einen bestimmten Schwenkwinkel geschwenkt. Der Abbau des Fördergutes erfolgt immer von der höchsten Lage nach unten. Durch unterschiedliche Auslenkwinkel wird eine Seitenböschung mit einem bestimmten Neigungswinkel α geschnitten [2].

Abb.4 : Arbeitsweise des Rückladegerätes

3.3 Haldensysteme

Für die Lagerung großer Schüttgutmengen bieten sich Halden an, die mechanisiert und vollautomatisch auf- und abgebaut werden können. Die verfahrenstechnischen Anforderungen an die Lagerhaldentechnik führten zur Entwicklung von Haldenaufund -abbausystemen mit einer speziell auf diese Belange zugeschnittenen Maschinenentwicklung. Unter dem Begriff Mischbetttechnik werden heute alle die Verfahren und zugehörigen Maschinen zusammengefasst, deren Aufgaben über die reine Umschlagtechnik hinausgehen [5].

Abb.5: Grundaufbau einer Längshalde

Im Laufe der Zeit sind eine Vielzahl von Systemen entwickelt worden mit dem Ziel, die theoretischen Vorstellungen möglichst gut zu erreichen. Der Lagerplatztyp und seine Funktion als Puffer oder Mischbett bestimmt die Methode des Absetzens. Für das Absetzen auf Längslagern im Freien kommen Absetzer mit Fahrbrücke, mit Schwenk- oder mit Schwenk- und Hubeinrichtung zum Einsatz. Die Beschickung der Absetzer selbst erfolgt über einen Gurtförderer mit Bandschleifenwagen. Nachfolgende Abbildung zeigt einen Überblick der verschiedenen Haldensysteme. Die zwei, die für Schaufelradrücklader relevant sind, werden im Folgenden erörtert.

Abb.6: Mischbettsysteme

3.3.1 Chevron-Methode

Der Aufbau erfolgt in Längsrichtung durch Aufschütten auf den First der Halde, wobei der Abbau in Querrichtung erfolgt. Durch dieses System können verschiedene Zusammensetzungen gemeinsam erfasst werden. Beim Aufschütten freifließender Schüttgüter mit breiter Korngrößenverteilung rollen die groben Partikel weiter den Schüttkegel hinunter als die feinen. Daraus ergibt sich eine systematische Anreicherung großer Körner im unteren Bereich der Lagerhalde.

Abb.7: Chevronmethode

3.3.2 Windrow-Methode

Der Aufbau der Halde erfolgt mittels nebeneinander und übereinander liegenden, längs aufgebauten Einzelschüttungen. Beim Rückfördern des Schüttgutes wird die Halde der Haldenflanke entlang seitlich abgebaut. Bei dieser Methode gibt es keine spezifischen Zonen mit Grobkornanreicherung. Die Grobkornanreicherung ist über den ganzen Haldenquerschnitt verteilt.

Windrow - open pile

Abb.8: Windrowmethode

3.4 Maschinenbauliche Grundlagen des Schaufelradrückladers

Zum Rückladen von Schüttgut (Kohle, Erz, Mineralien) aus einer Halde werden verschieden große Rückladegeräte eingesetzt. Die Art des Rückladegerätes wird unter anderem durch das Material, die Durchsatzleistung und die Struktur des Lagerplatzes bestimmt.

Abb.9: Übersicht des Schaufelradrückladers

Das Fahrwerk besteht üblicherweise aus drei auf Schienen fahrenden Fahrgestellen. Die Funktion des Portals besteht darin, die Auflasten und Horizontalkräfte einer Drehverbindung an die üblicherweise drei Fahrwerksgruppen auf Schienen abzuleiten. Die Laufwerke einer Gruppe unterhalb eines Portalstützpunktes werden durch ein System von Ausgleichsschwingen so gekoppelt, dass sich an allen Laufrädern einer Gruppe die gleichen Raddrücke aus den Vertikallasten ergeben.

Abb.10 : Portal mit unsymmetrischer Dreipunktabstützung

Die Ausgleichsschwingen sind in der Regel als Balkenträger mit Kastenquerschnitt ausgebildet, um an den so genannten "Fest" – Punkten der Portale auch die quer zur Schiene gerichteten Kräfte übertragen zu können. Das gebräuchlichste System ist die unsymmetrische Dreipunktabstützung (Abb. 10). Bei der Dreipunktabstützung ist es üblich, die Fahrwerkgruppe der Einpunktseite als "Pendelstütze" auszubilden, wobei Neopren – Lager die Funktion des Drehgelenkes an der Lagerstelle zwischen Portal und Hauptschwinge übernehmen. Die Schwinge muss dann in Schienenrichtung durch besondere drucksteife Distanzstäbe abgefangen werden[6].

Abb.11: Fahrgestell

Schaufelradrücklader werden fast ausschließlich als schwenkbare Geräte ausgeführt. Das heißt, dass der Oberteil gegen ein Unterteil um eine senkrechte Achse drehbar ist. In den meisten Fällen ist der Drehmechanismus nach dem Drehscheibenprinzip ausgebildet. Zur Realisierung dieses Prinzips sind Ringträger erforderlich.

Der obere Teil des Portals trägt den unteren Teil des Drehdecks. Das Portal steht auf drei Fahrwerken, welche mit drei Verbindungsarmen mit dem Portal verbunden sind. Das Drehdeck verbindet das Portal mit dem oberen Teil des Schaufelradrückladers. Der Baggervorgang erfordert eine kontinuierliche Schwenkbewegung des Oberbaus und eine sich wechselnde Richtungsumkehr an den Enden des Blockes. Daher übernimmt das Schwenkwerk die Aufgabe des Vortriebs zur Wahrung eines kontinuierlichen Förderstromes. Ein Drehdeck besteht aus dem Schwenkantrieb oder Drehwerk und der die Auflasten übertragenden Drehscheibe.

Abb.12: Schema der Schienenfahrwerke mit einer Dreipunktabstützung

Der Ring des Drehdecks ist ein biegesteifes, geschweißtes Kastenfachwerk. Der obere Teil des Drehlagers ist mit einem Ring mit dem Oberbau verbunden. Der äußere Ring des Drehwerks ist mit einem Zahnkranz versehen, welches als Antriebsrad fungiert. Dieses wird mit ein oder mehreren Antrieben betrieben. Im Inneren schützt ein Trägersystem das Förderband.

Abb.13: Drehdeck

Der Oberbau besteht aus einem Fachwerksystem, dem Gegengewichts- und dem Schaufelradausleger. An der Spitze des Schaufelradauslegers befindet sich das Schaufelrad.

Abb.14: Gegengewichtsausleger

Der Gegengewichtsausleger besteht aus einer Trägerkonstruktion und Betonblöcken und ist am hinteren Ende des Schaufelradrückladers angebracht. Das Gegengewicht sorgt für die Balance des Schaufelradrückladers sowohl im Ruhezustand als auch bei Volllast. Der Gegengewichtsausleger ist mittels zweier Aufhängungen mit Seilsystem und über Bolzen mit dem Fachwerksystem verbunden.

Der Schaufelradausleger umfasst die Hauptförderkomponenten der Maschine. Das Schaufelrad transportiert das Schüttgut auf das nachfolgende Förderband, welches das Schüttgut zur Mitte der Maschine fördert.

Der Schaufelradausleger ist mit dem Mast und dem Pylon mittels eines Seilsystems verbunden, sowie mittels Verbindungsbolzen mit dem Gegengewichtsausleger. Mit den Wippzylindern kann der Ausleger gehoben und gesenkt werden. Mit diesem System steht der Lader in jeder Arbeitslage stabil.

Der Schaufelradrücklader wird darauf ausgelegt, den Boden der Halde zu erreichen, sowie über die gesamte Breite und Höhe der Halde schwenken zu können [2].

Der Schaufelradausleger beinhaltet folgende Hauptkomponenten:

- Mast
- Aufhängungsseile
- Schaufelrad mit Antrieb
- Förderbandeinheit
- Schaufelrad- und Ringschurre
- Steuerhaus
- Fachwerksausleger

4 Gestaltung von Schaufelrädern

Das Schaufelrad als primäres Förderorgan ist die wesentlichste Komponente des Schaufelradrückladers. Die Dimensionierung und Auslegung des Schaufelrades ist daher bei der Planung für den Einsatz eines Schaufelradrückladers sehr wichtig. Man unterscheidet grundsätzlich drei verschiedene Arten des Schaufelrades:

- Zellenrad
- Halbzellenrad
- Zellenloses Rad

Diese unterscheiden sich nur in der Art der Ableitung des von den Schaufeln gelösten Fördergutes auf das weiterfördernde Band im Schaufelradträger.

4.1 Das Zellenrad

Beim Zellenrad befinden sich im Körper des Schaufelrades zusätzliche Kammern, die zur Fördergutaufnahme dienen. Das gelöste Material wird durch diese Zellen zur bandseitigen Außenwand des Schaufelrades befördert und im Bereich der Ausschüttöffnung über eine Schurre auf das Band im Schaufelradträger übergeben (Abb. 16). Eine feststehende Schurre, die am Schaufelradträger befestigt ist, verhindert die frühzeitige Entleerung des gelösten Fördergutes. Durch das Vorbeigleiten des Schüttguts an der Schurre, ist diese einem sehr starken Verschleiß unterzogen. Für das Abgleiten des Fördergutes ist eine möglichst große Neigung der Zelle notwendig, weshalb die Zelle im Schaufelradkörper möglichst nahe an den Drehmittelpunkt des Schaufelrades herangezogen werden muss oder das Schaufelrad einen entsprechend großen Durchmesser haben muss [2].

(1) Wand zum Festhalten des Fördergutes, (2) Ausschüttöffnung, (3) Schurre, (4) Zelle im Schaufelrad, (5) Band im Schaufelradträger, (6) Schaufel

Abb.16: Schaufelrad mit Zellen

4.2 Das Halbzellenrad

Beim Halbzellenrad liegt unter den Schaufeln im Schaufelradkörper ein Hohlraum, der von einer Ringschurre in radialer Richtung begrenzt wird. Diese Ringschurre wird soweit an der Innenseite des Halbzellenrades geführt, bis das Fördergut im Bereich der Austrittsöffnung das Schaufelrad verlassen kann. Durch eine seitlich geneigte Austragsschurre gleitet das gelöste Schüttgut auf das Förderband zur Abförderung. Die Neigung der Austragsschurre ist abhängig von den Kontaktbedingungen (Reibung, usw.) zwischen Schüttgut und Schurrenauskeidung. Dieser Winkel und die Größe der Halbzelle ergeben den erforderlichen Schaufelraddurchmesser. Die verschleißbehafteten Flächen der Halbzellen sind ebene Bleche mit einer einfachen Geometrie und können somit kostengünstig ausgewechselt werden. Die theoretische Fördermenge muss um das 1,5 fache größer bemessen werden, als die tatsächliche Fördermenge. Die Abb.17 zeigt den Aufbau eines Halbzellenrades [2].

Ringschurre, (2) Ausschüttöffnung, (3) Halbzelle, (4) Schurre, (5) Schaufel

Abb.17 : Halbzellenrad

4.3 Das zellenlose Rad

Unter den Schaufeln liegt beim zellenlosen Rad ein Hohlkörper, dessen Größe allein von der Konstruktion der Schaufel abhängig ist. In radialer Richtung wird das Fördergut durch eine Ringschurre abgeschlossen und erst beim Austritt ermöglicht diese das Entleeren des gesamten Fördervolumens. Der Hohlraum unter der Schaufel wird bei der Errechnung der theoretischen Förderleistung ebenfalls berücksichtigt. Da die Höhe des Raumes unter der Schaufel bei einem zellenlosen Rad geringer ist als beim Halbzellenrad, kann der Schaufelraddurchmesser im Allgemeinen kleiner sein. Das Austragsband im Schaufelradträger kann bei dieser Ausführungsform oberhalb der Drehachse des Schaufelrades liegen, wobei sich günstigere Schnittverhältnisse ergeben. Die Lage der Ausschüttöffnung sowie die Konstruktion der Schaufeln kann aus Abb.18 entnommen werden [2].

Ringschurre, (2) Ausschüttöffnung, (3) Schurre, (4) Ringraum, (5) Band im Schaufelradträger, (6) Schaufel, (7) Schaufelradkörper, (8) Schaufelradwelle, (9) Schaufelradgetriebe, (10) Antriebsmotoren

Abb.18 : Zellenloses Schaufelrad

4.4 Auswahl des geeigneten Schaufelradtyps

Bei der Auswahl des Schaufelradtyps kann die nachfolgende Abbildung verwendet werden [2].

	Zellenrad	Halbzellenrad	Zellenloses Rad
Schneidgeschwindigkeit	etwa 2 m/s	etwa 2 bis 3 m/s	3 bis 4 m/s
Eigenschaften	 + Ausgezeichnete Betriebsergebnisse bei grobstückigem Fördergut + Gut ausgesteifter Tragkörper großer Festig- keit - Zellenräder sind nur für eine Drehrichtung geeignet - Zelle muss bis nahe an den Schaufelradmittel- punkt herangezogen werden um die Neigung für das Abgleiten des Fördergutes zu erhalten - Starker Verschleiß der Rutschflächen an der Zelleninnenwand - Verdichtung des Baggergutes im Bereich des Radmittelpunktes 	 + Größtmögliche Füllung bei vollständiger Ent- leerung, auch bei klebrigen Fördergut + Förderband im Schaufelradträger kann über der Drehachse des Schaufelrades angeordnet werden + Schleißflächen der Halbzelle sind Ebenen 	+ Steigerung des Durch- satzes und Verkürzung des Entleerungsvorganges + Fertigung des Schaufel- rades + Geringes Gewicht des Schaufelrades + Verwendung von Gleitschurren, Rollenroste oder Drehteller als Entleerungsvorrichtungen + Größte Umfangsgeschwindigkeit + Vergrößerung der Schaufelradfüllung durch Ringraumanteil
Einsatzgebiet	Schüttgutumschlag		Schaufelradbagger im Tagebau

Abb.19: Schaufelradtypen und deren Eigenschaften

4.5 Aufbau des Schaufelrades mit Antrieb

Das Schaufelrad mit Antrieb umfasst alle Teile, die für die Drehbewegung des Rades und das Lösen und Transportieren des Fördergutes zu dem Abzugsförderband notwendig ist [2].

4.5.1 Die Schaufel

4.5.1.1 Form der Schaufel

Die Schaufel wird meistens als gepresster oder geschweißter Stahlkörper ausgeführt. Die Querschnitte der verschiedenen Schaufelkörper sind in Abb.20 und Abb.21 dargestellt und können entweder rechteckförmig, trapezförmig oder kreisförmig sein [2].

Abb.21: Kreisförmige Schaufel

Die Schneidkanten oder Schneidmesser der Schaufeln sind mit verschleißfestem Material z.B. Brinar 400 (1.8714) gepanzert. Der Abstand zwischen zwei Schaufeln und die Schaufelbreite ist in Abhängigkeit des Schaufelraddurchmessers und des Fließverhaltens vom Material zu wählen. Die Schaufel besteht aus den Schaufelwänden, dem Schaufelboden und -rücken, den Schneidezähnen und den Schaufelbefestigungen. Die Schaufelwände und der Schaufelboden werden bei Haldenrückholgeräten leichter ausgeführt, als die der Schaufelradbagger. Die Schaufeln und Seitenwände müssen so geformt sein, dass ein gutes Befüllen und Entleeren der Schaufeln möglich ist und die Seitenwände die Böschung nicht berühren.

4.5.1.2 Schneidmesser, Zähne

Durch die Arbeitsweise des Schaufelrades gräbt eine Schaufel nur mit einer Seite. Der Übergangsbereich zwischen Seiten- und Außenkante ist jener Bereich, der während des Grabens den größten Beanspruchungen ausgesetzt und daher dem größten Verschleiß unterworfen ist. An der Grabkante werden Zähne eingesetzt, damit die Schneidkante entlastet wird und vor Verschleiß geschützt ist.

Abb.22: Frontansicht der Schaufel eines Schaufelradbaggers

Abb.23: Schaufelkomponenten

In den Seitenwänden von rechteckigen oder trapezförmigen Schaufeln werden die Zähne vorwiegend in Längsrichtung beansprucht, während die Zähne in der Vorderkante der Schaufel auch starken seitlichen Beanspruchungen unterworfen sind. Diese werden umso größer, je höher die Schwenkgeschwindigkeit des Rades in Bezug auf die Umfangsgeschwindigkeit wird. Besonders hoch sind die Beanspruchungen der Eckzähne, bzw. der vorgezogenen Eckmesser [2].

Grundsätzlich gibt es zwei Möglichkeiten zur Verbindung der Zähne mit der Schaufel:

- Schraubverbindung
- Keilverbindung

Da die Schraubverbindung schwer lösbar ist und daher lange Zeit für den Zahnwechsel benötigt wird, wird die Keilverbindung vorgezogen. Aus Abbildung 24 ist ersichtlich, dass die einzelnen Schneidmesser mit Hilfe von Keilen in den angeschweißten Taschen gesichert werden. Diese Verbindung ist auch unter Verschmutzung einfach lösbar und ermöglicht kurze Zahnwechselzeiten.

Abb.24: Aufgesteckter Zahn

Stumpfe Schneidkanten bzw. Schneidzähne führen zu einer erheblichen Steigerung der Schnittkräfte und damit der Antriebsleistung und sollte daher möglichst vermieden werden. In den meisten Fällen können stumpfe Schneidorgane durch Aufschweißen wieder verwendet werden.

4.5.1.3 Werkstoffwahl der Schneidzähne

Nach [8] soll der Schneidzahn einen Grundkörper aus legiertem Stahlguss mit guter Bruchdehnung haben. Die Zahnschneiden werden zusätzlich mit Panzerschweißung gegen Verschleiß geschützt. Abb. 25 zeigt den Werkstoff der Zahnspitze und die Einsatzzeit eines Schaufelradzahnes in bestimmten Einsatzgebieten.

Tagebou vorliegende Bodenart	Werkstaff der Zahnspitze	Standzeit in Betriebsstunden (Soweit bekannt)
Neyveli Cudalore Sandstein Sch.Rs. <u>700</u> - 20 J	Widia 07:10 aufge- lötet. Silberlat Rattenstärke 10 mm Form nach Bestellung	in sehr hartem Sand- stein 380 h, in vorgesprengtem Sand 500 h
Landgewinnung Bedok Singopur Yellow Bedoksoil Bild 13-12 SchRs 150 S	Widia 6710 Werdur (Krupp) als Flächenpanze- rung	Standaeit max. 500 h Kosten 1967 f. Zahne 0,03 DH/ M ³
Hacholae (Tago) Phosphat Sch.Rs 150 S	z Teil Ripperzähne mit Widia 0710 siehe Bild 6 - 27	2700 h nur Ausbrüche beim Auftreffen auf Steine
Stripmining Sch Rs. <u>1980</u> - 30,5 Tonschiefer Fr. Krupp Peabady North. III.	Esco - Záhne leg: 651. vergület 6z - 63 kp/mm ² H8 - 418	Kosten 1964 0,058 DM / fm ³
GCOS - Tagebau am Athabasca River Alberta (Kanada) Ölsand Sch Rs <u>1000</u> <u>75</u> - 26	USA - Lieferung Guswechselbare Spitzen, gepanzert mit Carbid - Legierung	in vorgesprengtem Ölsand 125 h
Panzerelektroden mit Carbiden	Verdur (Krupp) FOX Multidur (We Carbid) 68 - 12 Rc (Böhler) Ledurit 6 - 60 Rc Weldit für Aufogen- u. E-Schweißung	

Abb.25: Werkstoffe und Standzeiten von Schaufelzähnen

Um eine weitere Verbesserung der Standzeit von Schaufelzähnen zu erreichen, empfiehlt es sich in eine bedingt verschleißfähige Matrix, Karbide und andere Hartstoffe einzulagern. Wegen der auf die Schneiden zusätzlich einwirkenden Stoßund Schlagbeanspruchungen muss auch genügend Zähigkeit vorhanden sein. Die Härtevergleichstabelle (Abb. 26) gibt einen Überblick über die Härte der Minerale und die der Hartstoffe [2].

Abb.26.: Härtevergleichstabelle
4.5.1.4 Schaufelbefestigung am Schaufelradkörper

Die Schaufel wird bei den vorderen und hinteren Schaufelbefestigungen durch zwei Bolzen mit dem Schaufelradkörper verbunden. Eine weitere Verbindung erfolgt in der Mitte der Schaufel über einen Spannkeil. Die vordere und die hintere Befestigung der Schaufel werden in Abb.27 gezeigt.

Abb.27: Schaufelbefestigung am Schaufelradkörper

Wenn eine Drehrichtungsumkehr für den Tiefschnitt erforderlich ist, so müssen die angebrachten Schaufeln um 180° gewendet werden. Dies ergibt eine Schaufelbefestigung gemäß der nachfolgenden Abbildung (Abb.28).

Abb.28: Schaufelradbefestigung bei drehbaren Schaufeln

Wenn der Grundkörper der Schaufel keinem besonderen Verschleiß ausgesetzt wird, kann die Schaufel direkt auf den Schaufelträger angeschweißt werden. Bei Wartungsarbeiten wird dann lediglich die Schneidkante erneuert.

4.5.1.5 Schaufelinhalt und Befüllvorgang

Der Schaufelinhalt und der Füllgrad sind von der Form des Schaufelrades und dem Winkel der Drehachse zur Schneidebene abhängig. In Abb.29 ist der Füllgrad des Schaufelvolumens bei einem Schneidebenenwinkel von 20° dargestellt.

Abb.29 : Füllgrad bei verschiedenen Schaufelradtypen

Wenn das Schaufelrad mindestens mit dem halben Durchmesser im Schnitt steht, kann eine vollständige Füllung der Schaufel erfolgen. Deshalb kann die Wirtschaftlichkeit eines Schaufelradrückladers bei zu geringen Schnitthöhen nicht gewährleistet werden.

4.5.1.6 Entleerung der Schaufel

Die vollständige Entleerung des gesamten Schaufelinhaltes muss innerhalb der Ausschüttöffnung erfolgen (Abb. 29). Um eine rasche Entleerung zu erreichen, verringert sich der Schaufelquerschnitt von außen nach innen. Damit wird das Anbacken des Fördergutes an den Seitenwänden verhindert. Weiters wird das aufgenommene Material durch die Umfangsgeschwindigkeit des Schaufelrades nach außen gedrückt. Dabei darf die Zentrifugalkraft einen bestimmten Wert nicht überschreiten. Für die Entleerung der Schaufeln von besonders klebrigem Fördergut ergeben sich folgende Notwendigkeiten:

- Auskleiden der Schaufelinnenseite mit Stoffen geringerer Haftfähigkeit
- Anordnung von Ketten oder Gummimatten an der Schaufelrückseite
- Beheizung der Schaufelinnenflächen

4.5.2 Der Schaufelradkörper

Der Schaufelradkörper hat die Aufgabe, die Schaufelradwelle mit den Schaufeln fest zu verbinden. Dabei müssen alle Kräfte und Momente zwischen den beiden Komponenten übertragen werden. Das mit den Schaufeln aufgenommene Fördergut wird durch den Schaufelradkörper auf das Förderband weitergeleitet [2].

Abb.30: Schaufelradkörper

Durchgangsöffnungen im Schaufelradkörper sollen das Schüttgut durchlassen, ein Anbacken des gelösten Materials verhindern und die Steifigkeit des Systems nicht beeinträchtigen. Die Gestaltung des Schaufelradkörpers kann auf verschiedene Arten erfolgen:

- Doppelwandige Ausbildung des Schaufelradkörpers
- Einwandige Ausbildung des Schaufelradkörpers mit Speichen
- Einwandige kegelförmige Ausbildung

Die wesentlichen Konstruktionsparameter dieser Ausführungen werden nachfolgend beschrieben.

4.5.2.1 Doppelwandige Ausführung des Schaufelradkörpers

Für die Ableitung des Fördergutes auf das Förderband im Schaufelradträger muss der Schaufelradkörper auf der Bandseite offen ausgeführt sein. Die kraftübertragende Konstruktion muss bandseitig offen sein, damit das Schüttgut abfließen kann (Abb.31). Um die Schaufeln entsprechend befestigen zu können, befindet sich bandseitig nur ein Ring (Abb.31 - Teil 3), der über Querbalken (Abb.31 - Teil 4) mit der tragenden Konstruktion, dem Schaufelradkörper, verbunden ist.

Innere Tragwand, (2) Äußere Tragwand, (3) Ring auf der Innenseite, (4) Querbalken, (5) Schaufel, (6) Schaufelradwelle, (7) Querschott, (8) Schurre, (9) Band im Schaufelradträger

Abb.31: Doppelwandiger Schaufelradkörper

Der Schaufelradkörper ist doppelwandig ausgeführt, wobei die innere und die äußere Wand durch Schotte miteinander verbunden sind. Um die bandseitige Tragwand gegen den Verschleiß durch das herabrutschende Fördergut möglichst gut zu schützen, wird zusätzlich Verschleißmaterial aufgebracht. Öffnungen sind auf dieser Seite nicht vorzusehen, da der Zugang zum Schaufelradkörper über die Außenwand erfolgen kann.

Der größte Vorteil dieser Ausführung liegt in der guten Kräfteüberleitung zwischen der Schaufelradwelle und den Schaufeln und der einfachen Einbindung der Ouerbalken in das Tragsystem. Nachteilig ist die Möglichkeit der Materialansammlung im Zwischenraum der beiden Tragwände. Eine solche Ansammlung von Fördergut ist nur schwer feststellbar und kann sich auf die Konstruktion des Schaufelrades negativ auswirken. Die zusätzlichen Beanspruchungen der rotierenden Tragkonstruktion müssen ebenfalls beachtet werden. Die doppelwandige Ausbildung des Schaufelradkörpers kann nur für zellenlose Schaufelräder (Kapitel 4.3) angewendet werden, da sonst die durchgehende Ausbildung der Innenwand nicht möglich ist [2].

4.5.2.2 Einwandige Ausbildung des Schaufelradkörpers mit Speichen

Im Gegensatz zum doppelwandigen Schaufelradkörper ist bei dieser Ausführung nur eine Tragwand vorhanden. Bei Zellenrädern liegt die durchgehende Wand an der Außenseite des Radkörpers und bei zellenlosen oder Halbzellenrädern an der Innenseite des Radkörpers. Die Steifigkeit dieser Konstruktion wird zusätzlich durch das Anbringen von Speichen erhöht. In Abb. ist der Aufbau eines Speichenrades dargestellt [2].

 Innere Tragwand, (2) Speichen, (3) Ring auf der Innenseite, (4) Querbalken, (5) Schaufel, (6) Schott an den Speichen Abb.32: Aufbau eines Speichenrades

Die Stärke dieser Ausführungsart liegt in der guten Zugänglichkeit der tragenden Teile. Materialansammlungen zwischen den Speichen können leicht festgestellt und beseitigt werden. Jedoch bietet diese Form des Rades mehr Ansatzpunkte für das Festsetzen von Verschmutzungen.

4.5.2.3 Einwandige kegelförmige Ausbildung

Das wichtigste Konstruktionselement dieser Ausführung ist die kegelstumpfförmige Schale der Tragwand. Diese nimmt alle Kräfte zwischen der Schaufelradwelle und den Schaufeln auf. Zusätzliche Versteifungen zur kegelförmigen Tragwand sind nicht notwendig und es bieten sich deshalb keine Ansatzmöglichkeiten für Verschmutzungen. Das gelöste Material gleitet direkt über die Kegelschale seitlich ab. Ausreichender Verschleißschutz ist daher unbedingt zu beachten. Die Kraftübertragung erfolgt von der Schaufel auf den Schaufelradkörper. Mit Hilfe eines drehsteifen Ringes an der Außenseite des Schaufelradkörpers werden diese Kräfte auf die Tragwand übertragen. Die Besonderheiten dieser Konstruktion des Schaufelrades sind in Abb.33 dargestellt.

(1) Kegelstumpfförmige Tragwand, (2) Verbindungskonstruktion zur Schaufelradwelle, (3) Ring an der Innenseite,
(4) Drehsteifer Ring an der Außenseite, (5) Querbalken, (6) Schurre, (7) Schaufelradwelle, (8) Schaufel
Abb.33: Einwandiges Konusrad

Der große Vorteil dieser Form des Schaufelrades liegt in der guten Zugänglichkeit aller Teile. Die einwandige kegelförmige Ausbildung des Schaufelradkörpers ist nur für Halbzellen und zellenlose Räder anwendbar [2].

4.5.2.4 Transport des Schaufelradkörpers

In den meisten Fällen sind die Abmessungen des Schaufelradkörpers sehr groß. Daher muss dieser in kleinere Stücke unterteilt werden, damit ein Transport zum Bestimmungsort erfolgen kann (Abb. 34).

 Versandstücke des Schaufelrades, (2) Laschen für den Zusammenbau an der Baustelle, (3) Verschweißung, Abb.34: Teilung des Schaufelradkörpers für den Transport

Beim Zusammenbau der einzelnen Segmente ist darauf zu achten, dass die zulässige Unwucht des Schaufelrades und eine gewisse Rundlauftoleranz nicht überschritten werden. Die dafür zulässigen Grenzwerte können aus [2] entnommen werden. Wenn die Toleranzen überschritten werden, kann es im Betrieb zu einem unruhigen Lauf des Schaufelrades kommen und die auftretenden Beanspruchungen können unzulässig hohe Werte annehmen.

4.5.2.5 Verbindung des Schaufelradkörpers mit der Schaufelradwelle

Die Verbindung der Schaufelradwelle mit dem Schaufelradkörper erfolgt im Allgemeinen durch eine Verschraubung. Eine Verbindung durch Schweißen würde hohe Eigenspannungen und Verformungen verursachen und ist daher nicht zulässig. Damit ein einfaches Zusammenfügen der Teile auf der Baustelle durchführbar ist, wird ein hohes Maß an Fertigungsgenauigkeit vorausgesetzt. Während des Betriebes des Rades treten starke Kräfteschwankungen auf, welche ohne Relativbewegungen zwischen der Welle und dem Schaufelrad übertragen werden müssen.

Daher muss eine reibschlüssige Verbindung zwischen Welle und Rad vorgesehen werden. Das erfordert Schrauben mit hoher Festigkeit die die erforderliche Vorspannkraft aufbringen können. Abb. 35 zeigt eine mögliche Form der Verbindung eines Schaufelrades mit der Schaufelradwelle.

(1) Schaufelradkörper, (2) Schaufelradwelle, (3) Stoßlaschen

Abb.35: Schraubverbindung des Schaufelrades mit der Schaufelradwelle

4.5.3 Schaufelradwelle

Die Schaufelradwelle muss über einen langen Zeitraum stark wechselnde Kräfte und Momente zwischen den Lagern sowie zwischen Schaufelrad und Getriebe sicher übertragen. Als Werkstoff werden Vergütungsstähle, wie zum Beispiel 42CrMo4, gewählt, da diese über eine ausreichende Festigkeit und genügend Zähigkeit verfügen. Durch Chrom wird der Stahl öl- bzw. lufthärtbar. Durch der für die Herabsetzung Martensitbildung erforderlichen kritischen Abkühlgeschwindigkeit erhöht es die Härtbarkeit und verbessert damit die Vergütbarkeit. Die Schweißbarkeit nimmt bei reinen Chromstählen mit zunehmendem Chrom-Gehalt ab. Molybdän hingegen wirkt sich günstig auf die Schweissbarkeit aus. Es verringert weitgehend die Anlasssprödigkeit, fördert die Feinkornbildung und erhöht die Streckgrenze und die Festigkeit. Um bei großen Wellendurchmessern eine entsprechende Wärmebehandlung zu erleichtern wird die Welle als Hohlwelle ausgeführt. Zusätzlich erfolgt dadurch eine Verringerung der Masse. Die Bearbeitung der Schaufelradwelle muss sorgfältig ausgeführt werden und scharfe Querschnittsübergänge oder Kerben sollten vermieden werden. Im Falle einer Ersatzbeschaffung der Schaufelradwelle sind lange Herstellzeiten für die Rohwelle und deren Fertigbearbeitung zu beachten. Es empfiehlt sich die Schaufelradwelle während des Betriebes laufend zu untersuchen.

4.5.4 Lagerung der Schaufelradwelle

In der vorliegenden Arbeit wird der Lagerung der Schaufelradwelle eine besondere Bedeutung zugeschrieben. Die Anordnung des Fest- und Loslagers, deren Abstand zueinander, sowie die Lage des Schaufelrades zum Ausleger sind von großer Bedeutung für das Gesamtkonzept eines Schaufelradbaggers. Die Schaufelradwelle ist statisch bestimmt im Schaufelradträger gelagert. Im Festlager können Kräfte in alle Richtungen aufgenommen werden, während das Loslager Axialbewegungen zulässt und daher nur radiale Kräfte aufnehmen kann. Als Lager werden Pendelrollenlager verwendet. Die Rollebene für diese Form der Lagerung muss senkrecht zur Schaufelradwelle verlaufen, da nur geringe Abweichungen aus dieser Lage zugelassen werden. Elastische Verformungen in der Stahlkonstruktion wirken sich negativ auf die Lager aus, besonders dann, wenn unterschiedliche Kräfte auf die Lager wirken [2]. Um den Ein- und Ausbau der Pendelrollenlager zu ermöglichen, ist gegebenenfalls eine geteilte Lagerausführung notwendig. In Abhängigkeit des Schaufelraddurchmessers, des Freischnittwinkels und der Bewegungsrichtung des Schaufelrades ergeben sich im Wesentlichen drei verschiedene Anordnungsmöglichkeiten:

- Schaufelrad und Getriebe zwischen den Lagern
- Schaufelradkörper zwischen den Lagern, Getriebe außerhalb
- Schaufelrad und Getriebe außerhalb der Lager

4.5.4.1 Schaufelrad und Getriebe zwischen den Lagern

Der Vorteil dieser Anordnung liegt in der ausgeglichenen Belastung der beiden Schaufelradwellenlager (Abb.36). Die Eigengewichte von Schaufelrad und Getriebe verteilen sich entsprechend ihres Abstandes von den Lagern. Schaufelradgetriebe und Schaufelradkörper liegen sehr nahe aneinander. Der Nachteil an dieser Konstruktion ist jedoch der große Lagerabstand und die dadurch auftretende größere Biegebeanspruchung auf die Welle.

(1) Schaufelrad, (2) Schaufelradgetriebe, (3) Schaufelradwelle, (4) Schaufelradträger, (5) Loslager, (6) Festlager,

A Lagerabstand

Abb.36: Anordnung von Schaufelrad und Getriebe zwischen den Lagern der Schaufelradwelle

Die Momentenübertragung vom Getriebe zum Schaufelrad kann über eine eigene Hohlwelle erfolgen und braucht deshalb nicht von der Schaufelradwelle übernommen werden. Für den Aus- und Einbau des Schaufelradgetriebes ist das Entfernen einer Lagerung notwendig. Hierbei muss das Schaufelrad dementsprechend abgestützt werden.

4.5.4.2 Schaufelradkörper zwischen den Lagern, Getriebe außerhalb

Die Gewichtskräfte des Getriebes und des Schaufelrades werden zum größten Teil von einem Lager aufgenommen, wohingegen das andere Lager einen sehr geringen Anteil der Belastung trägt. Durch die Anordnung des Lagers zwischen dem Getriebe und dem Schaufelrad wird der Lagerabstand geringer. Das erforderliche Drehmoment und die auf das Schaufelrad wirkenden Kräfte werden direkt von der Schaufelradwelle aufgenommen. Diese Tatsache führt zu einer wesentlich stärkeren Ausbildung der Welle, vor allem im Bereich des Loslagers. Belastungen die Normal zur Schaufelradebene wirken, wie zum Beispiel die Schneidkräfte, wirken durch den geringen Lagerabstand stärker auf die Lager und somit müssen diese größer dimensioniert werden. Abb. 37 zeigt die Anordnung des Schaufelrades zwischen den Lagern der Schaufelradwelle mit dem Schaufelradgetriebe auf der Außenseite.

(1) Schaufelrad, (2) Schaufelradgetriebe, (3) Schaufelradwelle, (4) Schaufelradträger, (5) Loslager, (6) Festlager
Abb.37: Anordnung des Schaufelrades zwischen den Lagern der Schaufelradwelle

Der Aus- und Einbau des Schaufelradgetriebes gestaltet sich bei dieser Anordnung einfach, da das Getriebe auf der freien Seite der Welle liegt. Eine zusätzliche Abstützung der Schaufelradwelle bei der Montage ist deshalb nicht notwendig [2].

4.5.4.3 Schaufelrad und Getriebe außerhalb der Lager

Das Schaufelrad liegt bei diesem Aufbau am Rand der Schaufelradwelle (Abb.38). Demzufolge ergeben sich besonders günstige Freischnittwinkel zum Schneiden von Seitenböschungen. Gesteinsbrocken und Verschmutzungen die von den Schaufeln nicht aufgenommen werden können, fallen frei neben dem Schaufelrad ab und es können keine Konstruktionsteile beschädigt werden.

(1) Schaufelrad, (2) Schaufelradgetriebe, (3) Schaufelradwelle, (4) Schaufelradträger, (5) Loslager, (6) Festlager
Abb.38: Anordnung von Schaufelrad und Schaufelradgetriebe außerhalb der Lager

Die Belastung des schaufelradseitigen Lagers wird durch die Kräfte am Schaufelrad wesentlich stärker beeinflusst als am Gegenlager. Werden Schaufelrad und Schaufelradgetriebe auf derselben Seite angeordnet, so wird die Schaufelradwelle zusätzlich durch ein Biegemoment aufgrund der Gewichtskräfte von Schaufelrad und Getriebe belastet.

4.5.5 Verbindungselemente zwischen Schaufelradwelle und Getriebe

Das Getriebe befindet sich auf der Schaufelradwelle und wird durch das Großrad an der Welle, sowie der Drehmomentenstütze gestützt. Die Drehmomentstütze ist ein eigenständiges Maschinenelement und ein Bestandteil der Getriebeaufhängungen. Aufgabe der Drehmomentenstütze ist das Auffangen des Antriebmomentes und dessen Einleitung in die Tragstruktur. Die Übertragung des Drehmomentes vom Getriebe zum Schaufelrad kann auf unterschiedliche Weise erfolgen:

- Durch einen Hohlwellenstummel
- Aufpressen des Getriebegroßrades auf die Schaufelradwelle
- Keilwellenverbindung zwischen Schaufelradwelle und Getriebegroßrad
- Flanschverbindung zwischen Schaufelradwelle und Getriebe

Nachfolgend werden die aufgezählten Verbindungen zwischen Schaufelradwelle und Schaufelradgetriebe, sowie deren Konstruktionsmerkmale, genauer erläutert.

4.5.5.1 Verbindungselement Hohlwellenstummel

Am Getriebegroßrad ist bei dieser Form der Drehmomentenübertragung ein Hohlwellenstummel angesetzt, der über eine Flanschverbindung mit dem Schaufelradkörper verschraubt ist. Die Drehmomentenübertragung erfolgt direkt über diesen Hohlwellenstummel und nicht über die Schaufelradwelle. Abb. 39 zeigt die Flanschverbindung zwischen Getriebe und Schaufelradwelle.

(1) Schaufelrad, (2) Großrad des Schaufelradgetriebes, (3) Schaufelradwelle, (4) Flanschverbindung mit dem Schaufelrad,

(5) Loslager, (6) Festlager

Abb.39: Flanschverbindung von Schaufelradwelle und Getriebe

Die direkte Drehmomentenübertragung kann nur dann angewendet werden, wenn zwischen Getriebe und Schaufelrad keine anderen Konstruktionselemente, wie Lager, vorhanden sind (Abb. 39). Der Getriebekasten braucht für den Aus- und Einbau nicht geöffnet zu werden, da nach dem Lösen der Flanschverbindung das gesamte Getriebe seitlich abgezogen werden kann.

4.5.5.2 Verbindung durch einen Hydraulikpressverband des Großrades mit der Schaufelradwelle

Bei dieser Art der Verbindung von Großrad und Schaufelradwelle wird die konische Nabe des Großrades aufgeweitet, sodass sich die Schaufelradwelle aufschieben lässt. (Abb. 40) Die Vergrößerung der Nabenbohrung sowie das Aufschieben beider Teile erfolgt hydraulisch. Aufschubmaße und Druckverhältnisse beim Aufpressen des Großrades sind in [2] dargestellt.

 Schaufelrad, (2) Großrad des Schaufelradgetriebes, (3) Schaufelradwelle, (4) Lager des Getriebes, (5) Pressverbindung, (6) Aufpressdruck, (7) Aufweitungsdruck

Abb.40: Verbindung von Schaufelradwelle und -getriebe durch Aufpressen

Bei diesem Befestigungsverfahren muss zuerst das Großrad auf die Schaufelradwelle aufgepresst werden, und dann erst können die restlichen Getriebeteile angebracht werden. Ein Ab- und Einbau des Getriebes ist bei geschlossenem Getriebekasten nicht möglich. Aus diesem Grund sind besondere Vorsichtsmaßnahmen zu treffen, damit Verschmutzungen des Getriebes während des Einbaus oder des Zusammenbaus verhindert werden.

4.5.5.3 Keilwellenverbindung zwischen Schaufelradwelle und Getriebegroßrad

Die Momentenübertragung auf die Schaufelradwelle erfolgt über eine Keilwellenverbindung zwischen dem Großrad und der Schaufelradwelle. Es muss darauf geachtet werden, dass zwischen der Welle und dem Großrad kein Spiel auftreten kann (Abb. 41) [2].

(1) Schaufelrad, (2) Großrad des Schaufelradgetriebes, (3) Schaufelradwelle, (4) Lager des Schaufelrades, (5) Nutverbindung

Abb.41: Keilwellenverbindung zwischen Großrad und Schaufelradwelle

Für die Montage ist es bei dieser Ausführungsform nicht notwendig, den Getriebekasten zu öffnen. Verschmutzungen des Getriebes, sowie Montagefehler können beim Einbau auf der Baustelle ausgeschlossen werden.

4.5.5.4 Flanschverbindung zwischen Schaufelradwelle und Großrad des Getriebes

Bei dieser Verbindung wird die Getriebeabtriebswelle mit der Schaufelradwelle über einen Flansch verbunden. Die Getriebeabtriebswelle ist direkt mit dem Großrad des Getriebes verbunden, während die Schaufelradwelle den Schaufelradkörper trägt und mit zwei Lagern abgestützt wird. An der Trennstelle der beiden Teile sind Flansche angebracht, die miteinander verschraubt werden. Der Getriebekasten kann ohne eine axiale Bewegung, im geschlossenen Zustand, montiert werden. Die Flanschverbindung zwischen Schaufelrad und Getriebe ist in Abb. 42 ersichtlich.

 Schaufelrad, (2) Schaufelradgetriebe, (3) Schaufelradwelle, (4) Flanschverbindung, (5) Führungsrohr Abb.42: Flanschverbindung zwischen Schaufelradwelle und Getriebegroßrad

Querkräfte und Drehmomente, die an der Verbindungsstelle wirksam sind, werden über die Reibung zwischen den beiden Flanschen aufgenommen. Die dafür benötigte Normalkraft wird durch eine ausreichende Vorspannung der hochfesten Schrauben erreicht.

4.6 Stellung des Schaufelrades zur Böschung

Die beste Stellung des Schaufelrades für das Aufnehmen des Materials von der Halde wird erreicht, wenn die Schaufelradebene durch die Drehachse des Oberbaus führt. In diesem Fall ändert sich die Ebene des Schaufelrades mit der Höhenstellung nicht. Daher sind die Schnittkurven für beide Schwenkrichtungen spiegelbildlich. Diese theoretische Stellung des Schaufelrades kann erreicht werden, jedoch ist es notwendig das aufgenommene Fördergut auf das abfördernde Band zu übergeben. Hierbei führt die Achse des Förderbandes nicht mehr durch die Achse des Schaufelradauslegers. Das führt zu zusätzlichen Spannungen und Verzug der Stahlkonstruktion der Stahlkonstruktion. Weiters müssen zusätzlich Komponenten für die Übergabe auf das Förderband eingesetzt werden. Aus diesem Grund wird diese Variante nur selten eingesetzt und nicht weiter behandelt. Eine Verbesserung der Übergabe auf das Förderband kann durch das Verdrehen der Schaufelradebene um die senkrechte Achse erfolgen. Der Bereich der Ausschüttöffnung rückt bei dieser Konstruktionsanordnung näher zum Förderband. Die Neigung der Austragsschurre kann somit steiler gewählt werden und damit ein Anbacken des Materials auf der Austragsschurre reduzieren. Nachteilig wirkt sich das senkrechte Verdrehen des Schaufelrades auf die Schnittfigur in den beiden Schwenkrichtungen aus. Durch Kippen der Schaufelradebene um die senkrechte Achse kann das Förderband in das Schaufelrad hineingeführt werden. Die Übergabeverhältnisse des Fördergutes vom Schaufelrad auf das Förderband werden durch diese Stellung weiter verbessert. Abb.43 zeigt die unterschiedlichen Stellungen des Schaufelrades zum Schaufelradausleger.

a Ebene des Schaufelrades geht durch die Drehachse des Oberbaus, b Ebene des Schaufelrades ist um die senkrechte Achse verschwenkt, c Ebene des Schaufelrades ist um die senkrechte Achse verschwenkt und um die waagerechte Achse verkippt

Abb.43: Stellung des Schaufelrades zum Schaufelradausleger

Um im Betrieb eine möglichst störungsfreie Materialübergabe zu gewährleisten, wird das Schaufelrad um die vertikale Achse verdreht und um die horizontale Achse gekippt. Durch den geringen Abstand des Förderbandes zum Schaufelrad kann die Austragsschurre steil angestellt werden und ein Festsetzen des Materials wird somit verringert [2].

5 Konzept und Anforderungen

Nachdem in den vorhergehenden Kapiteln die Aufgabenstellung und die allgemeinen Grundlagen des Schaufelradrückladers und explizit die des Schaufelrades genauer erläutert werden, wird nun mit der Konzeptphase der Produktentwicklung begonnen.

Das Konzept wird aus der Aufgabenstellung und der Anforderungsliste, die im Folgenden erstellt wird, erarbeitet. Im Anschluss wird der methodische Teil der Konstruktion dargestellt. Zu Beginn der Konzeptphase werden die geforderten Funktionen analysiert und die Wirkprinzipien betrachtet. Für die Wirkprinzipien werden Lösungsansätze ermittelt, diese werden bewertet, und aus den bewerteten Lösungsansätzen wird mittels des morphologischen Kastens die optimale Gesamtlösung bestimmt [13].

5.1 Konstruktionsmethodische Vorgehensweise

Der Konstrukteur ist maßgeblich an der Bestimmung der technischen und wirtschaftlichen Produkteigenschaften beteiligt. Die Entwicklung technischer Produkte erfordert entsprechend der Problem- und Aufgabenvielfalt äußerst vielseitige konstruktive Tätigkeiten. Um zu einer gut Lösung zu gelangen ist ein Vorgehen erforderlich, welches planbar, flexibel, optimierbar und nachprüfbar ist. Hierfür stellt die Konstruktionsmethodik Hilfsmittel zu Verfügung, die neben konkreten Handlungsweisen zum Entwickeln und Konstruieren technischer Systeme auch Methoden zur Lösung einzelner Konstruktionsprobleme oder - teilaufgaben beinhalten. Das nachfolgende Bild zeigt das generelle Vorgehen beim Entwickeln und Konstruieren gemäß der VDI–Richtlinie 2221 [16].

Phase	Festlegung			
I Planen und Klären der Aufgabe	informative			
II Konzipieren	prinzipielle			
III Entwerfen	gestalterische			
IV Ausarbeiten	herstellungstechnische			

Tab.1: Phasen des Entwicklungsprozesses

5.2 Anforderungsliste

Die Anforderungsliste wurde in Zusammenarbeit mit dem verantwortlichen Betreuer der Firma Sandvik ausgearbeitet. In der Anforderungsliste gibt es zwei unterschiedliche Qualitäten an Bewertungsmöglichkeiten. Die Anforderungen können als eine Forderung eingestuft werden oder als ein Wunsch. Die Wünsche sollen in die Konstruktion einfließen, wenn der dadurch entstehende Nutzen, die dafür aufzuwendenden Herstellungskosten rechtfertigt. Die formulierten Wünsche werden wiederum in vier verschiedene Stufen unterteilt. Diese stellen eine Abstufung des akzeptablen Gefälles zwischen dem Nutzen und den erhöhten Herstellungskosten dar. Die gestellten Forderungen sind im Gegensatz zu den Wünschen definierte Anforderungen, die unabdingbar in der Konstruktion umgesetzt werden müssen.

Die Methode "Auswahlliste" wurde von Pahl und Beitz 1993 entwickelt. Die *Methode "Auswahlliste"* wählt Varianten nach festgelegten, weitgehend allgemeingültigen Auswahlkriterien unter Nutzung eines Formblatts aus. Grundlage der Methode "Auswahlliste" ist ein Formblatt mit organisatorischen Angaben, sowie einem Vorschlag von Auswahlkriterien und –werten [13].

			F	Projekt:							
				E	Bearbeiter:						Seite:
Werte (+) ja Entscheid (-) nein (-) Informationsmangel (+) weiterverfol (?) Informationsmangel (-) scheidet au (-) scheidet au (!) Widersprüche (-) Information (erneut beur (-) Information (erneut beur Auswahlkriterien mit Aufgabe (-) Verträglichkeit gegeben (-) Forderungen der Anforderungsliste erfüllt									folgen aus on beschaffen eurteilen) auf Änderung		
		A	в	С	Gru	Au	lsät fwa Un Ir	m ei	n realisierbar zulässig elbare Sicherheitstechnik gegeben genen Bereich bevorzugt B e m e r k u n g e n (Hinweise, Begründungen		
2	1										
	2										
	3										
	4										
	5										
	6										

Abb.45: Formblatt mit Auswahlkriterien (Ausschnitt) nach [Pahl, Beitz 1993 (1)]

Diese Methode gliedert sich in 3 Arbeitsschritte [13]:

• Auswahlkriterien festlegen

Die Methode "Auswahlliste" kann mit den vordefinierten Auswahlkriterien durchgeführt werden oder durch individuell festgelegte Kriterien, die aus Fest- und Bereichsforderungen der Anforderungsliste abgeleitet werden. Die vordefinierten Auswahlkriterien werden beim Auswählen zunehmend schärfer formuliert und sieben ungeeignete Varianten, wie mit einem Satz von immer feiner werdenden Sieben, sehr effizient heraus.

• Varianten beurteilen

Die Varianten werden hinsichtlich der Erfüllung der Auswahlkriterien beurteilt und das Ergebnis mit den nachfolgenden Symbolen gekennzeichnet.

- ➤ + (geeignet)
- ► (ungeeignet)
- > ? oder ! (eine weitere Überprüfung der Variante ist notwendig)
 - Entscheiden

Das Ergebnis der Auswahl ist eine eingeschränkte Menge von geeigneten Varianten, die es sich lohnt weiterzuverfolgen. Es können Fragen zur Informationsbeschaffung angestoßen und eine Diskussion von Anforderungen angeregt werden. Das Auswählen beinhaltet das Risiko, dass günstige Varianten aufgrund von Fehlbeurteilungen aus Informationsmangel nicht weiterverfolgt werden. Deshalb wird eine nachträgliche Reflektion über das Auswahlergebnis empfohlen [13].

5.3 Methode "Paarvergleich zum Bewerten"

Der Paarvergleich ist als Bewertungsmethode auch unter den Bezeichnungen "Konkurrenzbewertung" oder "Dominanzmatrix" bekannt.

Ein Paarvergleich ist eine betont intuitive Bewertungsmethode, in der alle Lösungen jeweils paarweise verglichen, mit einer Einzelwertung belegt und diese zu einer Gesamtwertung addiert werden.

Beim Paarvergleich werden die Lösungen in der Kopfzeile und Kopfspalte einer quadratischen Matrix aufgetragen.

Abb.46: Paarvergleich von 7 Lösungen (1 = besser, 0 = nicht besser, - = nicht bewertet)

Eine weitere Art der Bewertung wäre:

1 = besser

$$0 = gleich$$

-1 = schlechter

Mit dem Paarvergleich werden die Lösungen paarweise verglichen und entschieden welche Lösung besser bzw. schlechter ist. Diese Ergebnisse werden in das Matrixfeld eingetragen. Ein Gesamtwert durch Addition der Spaltensumme gebildet und daraus die Rangordnung / -folge der Lösungen (Ranking) abgeleitet.

Der Paarvergleich führt bei einer Lösungsmenge von maximal 10 Lösungen in der Regel schnell zu einem begründeten Ergebnis. Dabei wird nur eine Aussage getroffen, ob eine Lösung besser als eine andere ist. Der Unterschied wird dabei jedoch nicht quantifiziert. Trotzdem reicht das Ergebnis in vielen Fällen aus, um sich für das Konkretisieren der besten Lösungen im weiteren Entwicklungsprozess zu entscheiden. Das Bewerten mit der Methode "Paarvergleich" ist dann besonders zu empfehlen, wenn sich Experten einen schnellen Überblick über die Qualität eines nicht zu großen, aber schlecht einzuschätzenden Lösungsspektrums verschaffen wollen [13].

5.4 Gewichtigkeit

In diesem Kapitel wird die Gewichtigkeit sämtlicher Eigenschaften betrachtet und gegeneinander mittels der vorherig erklärten Konkurrenzbewertung abgewogen. Die Haupteigenschaften welche betrachtet werden sind:

- Gewicht (GE)
- Fertigung (FE)
- Aus- und Einbau (A+E)
- Bauraum (BR)
- Transport (TR)
- Kosten (KO)

Die Wichtigkeit der einzelnen Bewertungskriterien werden wie beschrieben mit

- ➤ 2 (wichtiger als eine andere Eigenschaft),
- ➢ 1 (gleich wichtig) und
- ➢ 0 (weniger wichtig) verglichen.

Im Vergleich zu	GE	FE	A+E	BR	TR	KO
GE	1	0	0	0	0	1
FE	2	1	0	0	0	1
A+E	2	2	1	1	1	2
BR	2	2	1	1	1	2
TR	2	2	1	1	1	2
КО	1	1	0	0	0	1
Summe absolut	10	8	3	3	3	9
Summe normiert	1	0,8	0,3	0,3	0,3	0,9

Tab.2: Gewichtigkeit mit der Konkurrenzbewertung

Die normierte Summe der einzelnen Bewertungskriterien wird für die nachfolgende

Bewertungskriterium	Gewfaktor		
Gewicht	1		
Fertigung	0,8		
Aus- + Einbau	0,3		
Bauraum	0,3		
Transport	0,3		
Kosten	0,9		

Variantenfindung eingesetzt. Daraus ergibt sich eine Gewichtung von:

Tab.3: Gewichtungsfaktoren

6 Variantenfindung

In diesem Kapitel werden alle nachfolgend erklärten Varianten verglichen und gegeneinander abgewogen. Das Hauptaugenmerk liegt bei der Hauptantriebswelle und dem Flansch, welcher das Scheibenrad mit der Welle verbindet. Es wird eine genauere Betrachtung der besten 3 Varianten durchgeführt, um zu der besten Variante zu gelangen. Diese Variante wird berechnet und konstruiert.

6.1 Variante Schrumpfscheibe

In diesem Kapitel wird die Variante mit Schrumpfscheiben genauer betrachtet. Hierbei wird mittels zweier Schrumpfscheiben der Flansch mit der Welle kraftschlüssig verbunden. In den nachfolgenden Skizzen sieht man eine gängige Version des Schaufelrades mit der Version der Schrumpfscheibe. Diese Version ist an zwei Stellen über den Umfang mit der Welle verbunden.

Abb.47: gängige Schrumpfscheibenkonstruktion

Abb.48: Skizze einer Schrumpfscheibenverbindung

In Abbildung 48 sieht man eine Skizze des Flansches, welche durch eine Schrumpfscheibenverbindung an der Welle befestigt wird. Der Vorteil dieser Konstruktion ist der Ein- bzw. der Ausbau, da dieser vor Ort und sehr einfach durchführbar ist. Jedoch ist dadurch der Bauraum eingeschränkt. Ein weiterer Nachteil sind die hohen Kosten dieser Version, sowie das große Gewicht.

6.2 Variante Hirthverzahnung

Abb.49: Variante Hirthverzahnung

Bei dieser Variante wird der Flansch mittels einer Hirthverzahnung an der Welle befestigt. Diese Variante wird durch den hohen technischen Aufwand nur für kleine Wellenverbindungen eingesetzt. Durch die hohe technische Präzision der Hirthverzahnung fallen sehr hohe Fertigungskosten an. Daher ist diese Variante für dieses Konstruktion ungeeignet. Das Moment wird durch die Hirthverzahnung direkt auf die Welle übertragen. Der Ein- bzw. Ausbau ist bei dieser Konstruktion durch die Verschraubung in der Mitte der Welle technisch nicht sehr aufwendig und dadurch auf der Baustelle direkt möglich. Der benötigte Bauraum kann jedoch wesentlich verringert werden, da alle notwendigen Teile im inneren der Welle liegen.
6.3 Variante Aufschweißen

Abb.50: Variante Schweißen

Bei dieser Variante wird der Flansch auf die Welle geschweißt. Der Vorteil dieser Variante sind die geringen Kosten der Konstruktion. Auch die Stelle an der der Flansch aufgeschweißt wird ist bis zur endgültigen Positionierung veränderbar. Der große Nachteil dieser Konstruktion ist jedoch, dass durch die Wärmespannungen, die während des Schweißens auftreten, der Flansch verzogen werden kann und dadurch dieser nicht mehr normal auf die Welle steht. Die Welle kann ebenfalls durch die auftretenden Wärmespannungen verzogen werden. Ein weiterer Nachteil entsteht durch die Gefügeveränderung an der Wärmeeinflusszone, an der das Moment auf die Welle übertragen wird. Der größte Nachteil liegt jedoch in der Schweißbarkeit des vorgesehenen Vergütungsstahls 42CrMo4. Dieser hat nur eine begrenzte Schweißbarkeit. Ein Vorwärmen auf mindestens 200 - 300°C ist unbedingt erforderlich. Jedoch sollte die obere Temperatur grenze wegen des Risikos der Oxydation des Chroms nicht überschritten werden. Dieser Vergütungsstahl kann reibgeschweißt werden, jedoch ist dies praktisch nicht anwendbar. Um die möglichen Gefahren die mit den Gefügebildungen einhergehen schon im Vorfeld zu erfassen, wird das Schaeffler - Diagramm eingesetzt. Bei

Martensitbildung können Härterisse entstehen. Im austenitischen Bereich ist der Werkstoff warmrissanfällig. Bei ferritischen Stählen muss auf das Kornwachstum Rücksicht genommen werden und in den Mischbereichen von Austenit und Ferrit kann Versprödung durch Bildung Sigma – Fasen auftreten. In der nachfolgenden Abbildung ist das Schaeffler – Diagramm zu sehen. Im roten Bereich können Warmrisse als Riss quer durch die gesamte Naht auftreten. Der gelbe Bereich zeigt an, dass Sigma – Fasen Versprödungen durch Langzeitbeanspruchung auftreten können. Im blauen Bereich wird ein verstärktes Kornwachstum verzeichnet und im grünen Bereich können Kaltrisse auftreten. Nur im weißen Bereich in der Mitte entsteht eine einwandfreie Naht bei einem Material mit Delta – Ferrit.

Abb.51: Schaeffler-Diagramm mit Angabe der Gefügebereiche und den möglichen Fehlern, die beim Schweißen auftreten können.

Daher muss ein gut schweißbarer Stahl verwendet werden. Hierbei wird ein gut schweißbarer niedriglegierter Stahl verwendet (15CrMoV6). Durch die geringere Festigkeit des Werkstoffes erhöht sich das Gewicht der Welle bzw. des Flansches um etwa 15% gegenüber des vorher gewählten Werkstoffs (42CrMo4).

6.4 Variante Gießen

Bei dieser Variante wird die Welle mit dem Flansch gegossen. Dadurch ergibt sich ein, im Gegensatz zu den anderen Varianten, idealer Kraftfluss zwischen dem Flansch und der Welle. Jedoch ist die Festigkeit einer gegossenen Welle mit dem gleichen Werkstoff, bei den angewandten Durchmessern, um mindestens 30% geringer als bei einer geschmiedeten Welle. Aus diesen Gründen muss die Welle wesentlich größer dimensioniert werden. Dadurch ist das Gewicht der Welle inklusive des Flansches gegenüber einer geschmiedeten Welle um etwa 15% größer. Weiters befindet sich eine kritische Zone direkt am Übergang Flansch - Welle, in der sich Lunker bilden und andere Gießfehler auftreten können. Jedoch ist eine gegossene Version um etwa die Hälfte billiger als eine Geschmiedete.

Abb.52: Variante Gießen

6.5 Variante Aufschrumpfen

Bei dieser Variante wird der Flansch auf die Welle geschrumpft. Dies muss in eine Werkstätte erfolgen und kann nicht auf der Baustelle direkt vor Ort erfolgen. Dieser Vorgang ist schwierig, da der Flansch von oben mit einem Kran auf die aufgestellte Welle herabgelassen wird und dabei nicht verkanten darf, da der Flansch ansonsten nicht mehr gelöst und dadurch verschoben werden kann. Das Gewicht ist gegenüber den anderen Varianten am geringsten, da eine geschmiedete Welle und ein geschmiedeter Flansch aus dem gleichen Werkstoff (42CrMo4) verbunden werden. Sowohl der Ein- als auch der Ausbau der Welle – Flanschverbindung ist wie bei den vorherigen zwei Varianten sehr einfach. Ein Nachteil ist jedoch der Kostenfaktor der Konstruktion, da laut [17] eine geschmiedete Welle mindestens um das doppelte teurer ist als eine gegossene Welle.

Abb.53: Variante Aufschrumpfen

6.6 Variantenvergleich

In der nachfolgenden Tabelle werden alle vorherigen Varianten benotet, mit dem Gewichtungsfaktor multipliziert und addiert. Aus dem daraus folgenden Wert kann die Platzierung der jeweiligen Varianten entnommen werden. Der Notenschlüssel mit einer Benotung von 0 - 4, wobei 0 die schlechteste ist, kann aus der nachfolgenden Tabelle entnommen werden.

		Notenschlüssel
	0	unbefriedigend
	1	gerade noch tragbar
ſ	2	ausreichend
ſ	3	gut
	4	ideal
1		

Tab.4: Notenschlüssel

Variante	1	Schrumpfscheibe
Variante	2	Hirthverzahnung
Variante	3	Schweißen
Variante	4	Gießen
Variante	5	Aufschrumpfen

Tab.5: Varianten

	Variante								
Bewertungskriterium	Gewfaktor	1	2	3	4	5			
Gewicht	1	2	3	2	2	4			
Fertigung	0,8	3	0	3	3	3			
Aus- + Einbau	0,3	3	2	4	4	4			
Bauraum	0,3	2	3	3	4	3			
Transport	0,3	3	4	2	2	2			
Kosten	0,9	2	1	3	4	3			
Summe x Gewfaktor		8,6	6,6	9,8	11,0	11,8			
Platzierung		4	5	3	2	1			

Tab.6: Variantenvergleich

Aus dieser Tabelle kann man erkennen, dass die Wellen-Naben-Verbindung (Variante Aufschrumpfen) gegenüber den Übrigen am geeignetsten ist. Daher wird diese Variante entworfen, konstruiert und simuliert.

7 Lastannahmen

Die Lastannahmen sowie die Hauptabmessungen werden anhand des Haldenrückholgerätes VARL 2000/60 mit einer durchschnittlichen Förderleistung von mindestens 5000m³/h getroffen. Diese Maschine fördert Eisenerz mit einer Schüttdichte von 2,5 t/m³. Die Randbedingungen wie

- Motorleistung,
- Schaufelraddurchmesser,
- Schaufelanzahl,
- Drehzahl des Schaufelrades,
- max. Drehgeschwindigkeit des Haldenrückholgerätes,
- Schwenkmoment,

wurden von der Firma SANDVIK MINING AND CONSTRUCTION Materials Handling GmbH & Co KG bereitgestellt. Anhand dieser Werte können die Kräfte, Momente und Spannungen des Schaufelrades bestimmt werden. Mit diesen Ergebnissen wird die Schaufelradwelle, Lager, Wellen-Nabenverbindungen, Antriebsflansch und das Einscheibenrad unter der Berücksichtigung einer Gewichts- und Fertigungsoptimierung konstruiert. Nachfolgend werden Skizzen des Schaufelrads aufgestellt, welche die angreifenden Kräfte, die Positionen der Lager und die Hauptabmessungen zeigen.

Abb.54: Kräfte und Momente des Schaufelrads

In Abb. 55 werden die Hauptabmessungen der Welle gezeigt. Die Hauptabmessungen beziehen sich auf das oben genannte Haldenrückholgerät. Mit diesen Werten werden alle weiteren Berechnungen, Konstruktionen und Simulationen durchgeführt.

Abb.55: Hauptabmessungen der Konstruktion

Die Abmessungen beziehen sich jeweils auf den Angriffspunkt des Momente beziehungsweise der Kräfte und werden in den obigen Abbildungen nur vereinfacht dargestellt. Die Länge L1 bezieht sich auf den Abstand zwischen Getriebe und Getriebeflansch. L2 gibt die Länge zwischen Getriebeflansch und Loslager an. Der Abstand zwischen dem Loslager und dem Wellenflansch wird als L3 bezeichnet und L4 gibt die Länge zwischen dem Wellenflansch und dem Festlager an.

- L1 = 954mm (Länge zwischen Getriebe und Getriebeflansch)
- L2 = 550mm (Länge zwischen Getriebeflansch und Loslager)
- L3 = 1400mm (Länge zwischen Loslager und Wellenflansch)
- L4 = 600mm (Länge zwischen Wellenflansch und Festlager)

7.1 Schwenkkraft

Die Berechnung der Seitenkraft Fs die auf das Schaufelrad wirken erfolgt aus dem Schwenkmoment Ms, welche durch die Auslegerlänge von 60m dividiert wird. Die abnormale Schwenkkraft Fss, welche auftritt, wenn das Schaufelrad an ein Hindernis gerät (z.B. Boden der Halde), wird mit einer zusätzlichen Sicherheit von 1,5 berechnet.

$$M_{s} := 4775 \text{ kNm}$$

$$AB := 60 \text{ m}$$

$$F_{S} := \frac{M_{s}}{AB}$$

$$F_{SS} := \frac{M_{s} \cdot 1.5}{AB}$$

$$F_{SS} = 119.375 \text{ kN}$$

$M_S \ldots \ldots$	Schwenkmoment
AB	Auslegerlänge
F _S	Schwenkkraft
F _{SS}	abnormale Schwenkkraft

7.2 Umfangskraft

Die Torsionsmoment ermittelt sich aus der Motorleistung P_m und der Drehzahl n des Schaufelrades. Durch das Torsionsmoment, dem Durchmesser des Schaufelrades d_s und einem Überlastfaktor von 1,1 kann die Umfangskraft F_U berechnet werden.

$P_m := 630 \mathrm{kW}$	$n := 6.17 \cdot \frac{1}{\min}$	d _s := 10200mm
$M_t := \frac{P_m}{2 \cdot \pi \cdot n}$		
$F_{U} \coloneqq \frac{M_{t} \cdot 1.1}{\frac{d_{s}}{2}}$		M _t = 976 kNm

 $F_{\rm U} = 210.305 \ \rm kN$

P_m..... Motorleistung

- M_t..... Torsionsmoment
- F_U.....Umfangskraft
- n.....Drehzahl der Welle
- d_S.....Schaufelraddurchmesser

7.3 Gewichtskraft

Die Gewichtskraft beinhaltet sämtliche Komponenten des Schaufelrades. Dies beinhaltet die Schaufelradwelle, dem Schaufelradflansch, den Kupplungsflansch, die Schaufelradscheibe, dem Schaufelradkörper inklusive den Schaufeln sowie alle notwendigen Verbindungselemente. Weiters wird eine Verschmutzung des Schaufelrades mit einberechnet. Für die nachfolgende Berechnung wird eine Gewichtskraft von 355kN exklusive der Verschmutzung angenommen. Diese Kraft greifen in der Berechnung nur an einem Punkt an. Zur Bestimmung der Verschmutzung wird eine Kreisscheibe mit dem Schaufelraddurchmessers angenommen worauf eine 5cm dicke Schicht (t) des zu fördernden Schüttgutes angenommen wird.

Verschmutzung am Schaufelradkörper Vb

t := 5 cm	d _s := 10200mm
$\rho := 2500 \frac{\text{kg}}{\text{m}^3}$	
$Vb := \frac{d_{s}^{2} \cdot \pi}{4} \cdot t \cdot g \cdot \rho$	Vb = 100.17 kN

t..... Dickeschicht der Verschmutzung

ρ..... Schüttdichte von Eisenerz

d_S.....Schaufelraddurchmesser

Eigengewicht des Schaufelrades

Q := 355 kN + Vb Q = 455.166 kN

Q..... Eigengewicht des Schaufelrades

V_b.....Verschmutzung des Schaufelrades

8 Berechnung und Simulation des Schaufelrades

In diesem Kapitel wird die vorher ausgewählte Variante (Variante Aufschrumpfen) berechnet und simuliert. Diese Berechnungen und Simulationen werden für folgende Teile durchgeführt:

- Welle (1)
- Pressverband zwischen Schaufelradflansch (2) und Welle
- Scheibenrad (3)
- Pressverband zwischen Kupplungsflansch (5) und Welle
- Festlager (6)
- Loslager (7)
- Schraubenberechnung f
 ür die Verbindung zwischen Schaufelradflansch und Scheibenrad (9)

Abb.56: Gesamtansicht des Schaufelrades mit Komponenten

Die Berechnungen wurden mit MDESIGN durchgeführt. MDESIGN liefert kein vollständiges Protokoll. Aus diesem Grund werden nachfolgend die Konzepte der

einzelnen Berechnungen erklärt. Die Ergebnisprotokolle der einzelnen Berechnungen werden im Anhang A angefügt. Die Simulationen wurden mit ABAQUS durchgeführt und werden nachfolgend eingefügt. Alle Zeichnungen wurden mit CATIA gezeichnet (siehe Anhang B).

8.1 Wellenberechnung

8.1.1 Grundgedanken zum Tragfähigkeitsnachweis und Aufbau von DIN 743

Bei der Auslegung und Nachprüfung der Bauteilabmessungen muss gewährleistet sein, dass die inneren Beanspruchungen, die sich aus den äußeren Belastungen ergeben, mit ausreichender Sicherheit gegen Versagen des Bauteiles aufgenommen werden können. Die im jeweiligen gefährdeten Bauteilquerschnitt auftretende größte Spannung darf den für diese Stelle maßgebenden zulässigen Wert nicht überschreiten. Diese zulässige Spannung ist im Wesentlichen abhängig vom Werkstoff, von der Beanspruchungs- und Belastungsart sowie der geometrischen Form des Bauteiles und anderen Einflüssen, wie z. B. Bauteiltemperatur, Eigenspannungen, Werkstofffehler, korrodierend wirkende Umgebungsmedien. Die Dimensionierung eines Bauteiles richtet sich vor allem nach der Art seines möglichen Versagens (das Bauteil kann seine Funktion nicht mehr erfüllen), das in den meisten Fällen hervorgerufen wird durch

- unzulässig große Verformungen,
- Gewaltbruch,
- Dauerbruch,
- Rissfortschreiten (Bruchmechanik),
- Instabilwerden (z. B. Knicken, Beulen),
- mechanische Abnutzung (z. B. Verschleiß, Abrieb),
- chemische Angriffe (z. B. Korrosion).

Kommen mehrere dieser Kriterien für das Versagen eines Bauteiles in Frage, sollte der Nachweis für jede dieser Möglichkeiten erfolgen. Die ungünstigsten Verhältnisse sind dann der konstruktiven Auslegung des Bauteiles zugrunde zu legen. Der reine Festigkeitsnachweis (Fließen, Gewalt- und Dauerbruch) kann in Anlehnung an nachfolgende Abbildung durchgeführt werden [18, 19].

Abb.57: Allgemeiner Festigkeitsnachweis (Berechnungsalgorithmus)

8.1.2 Grundlagen von Belastungen und Beanspruchungen

Die am Bauteil angreifenden äußeren Kräfte und Momente müssen durch das Bauteil übertragen werden. In der Realität erfolgt die Übertragung von Kräften durch Flächen – im Modell wird jedoch eine punktförmige Krafteinleitung benutzt. Die Belastungen erzeugen in der Querschnittsfläche eine Beanspruchung. Aus den Ouerschnitts und den lassen Abmessungen des Belastungen sich die Beanspruchungen (Spannungen) berechnen. Spannungen die senkrecht zu Querschnittsflächen wirken, werden als Normalspannungen, Spannungen in der Querschnittsfläche als Schubspannungen bezeichnet. Die Normalkraft und die Biegemomente führen zu Normalspannungen, aus den Querkräften und dem Torsionsmoment entstehen Schubspannungen.

Abb.58: Spannungskomponenten

Die an einer bestimmten Stelle wirkenden Spannungen werden in ihrer Gesamtheit durch Einzelspannungen in drei Schnittflächen beschrieben. Diese kreuzen sich an einer Stelle, also durch drei Vektoren mit je drei Komponenten, die zusammengenommen den Spannungstensor bilden.

Die einfachste Darstellung hat der Spannungstensor, wenn man die drei Schnittflächen jeweils senkrecht zu einer Richtung eines kartesischen Koordinatensystems wählt. Die drei Kräfte in den drei Schnittflächen entsprechen den Zeilen der folgenden Matrix:

$$S = \begin{bmatrix} \sigma_x & \tau_{xy} & \tau_{xz} \\ \tau_{yx} & \sigma_y & \tau_{yz} \\ \tau_{zx} & \tau_{zy} & \sigma_z \end{bmatrix}$$

Durch Drehen des Koordinatensystems lässt sich erreichen, dass die Schubspannungen Null werden. Es verbleiben nur Normalspannungen, welche Hauptspannungen genannt werden.

$$\underline{\underline{\mathbf{S}}} = \begin{pmatrix} \mathbf{\sigma}_1 & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{\sigma}_2 & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{\sigma}_3 \end{pmatrix}$$

Maximale Schubspannungen wirken in Flächen, deren Normale jeweils senkrecht auf einer Hauptachse steht und mit den beiden anderen einen Winkel von 45° einschließt. Die Kenntnis der maximalen Spannungen ist für die Bewertung des Bauteilversagens wichtig. Anschaulich lassen sich die Verhältnisse am Mohrschen Spannungskreis darstellen. Der MOHRsche Spannungskreis lässt sich 2dimensional einfach und ohne Berechnung mit Hilfe der Spannungen σ_x , σ_y und τ_{xy} konstruieren.

Abb.59: Mohrscher Spannungskreis, 2-dimensional

Stabförmige Teile haben nur Belastungen an 2 gegenüberliegenden Flächen.

Abb.60: Grundbeanspruchungen

Die bei einer Schubbelastung vorhandene nichtlineare Spannungsverteilung über dem Querschnitt wird bei technischen Anwendungen meistens durch eine mittlere Schubspannung ersetzt. Als Vereinfachung wird eine konstante Spannungsverteilung angenommen. Bei Biegung und Torsionsbelastung wird der Höchstwert der Spannung an der Bauteiloberfläche des Stabes erreicht - in der Bauteilmitte (neutrale Faser) entsteht bei symmetrischen Querschnitten keine Biegespannung (Abb. 59) [18, 19].

8.1.3 Nennspannungen

Unter häufig zutreffenden Voraussetzungen lässt sich für alle 6 Belastungen die auftretende Spannung (Nennspannung) mit geringem Aufwand bestimmen.

Längskraft
$$\sigma_x = \frac{F_x}{A}$$

Biegemoment $\sigma_{bz} = \frac{M_{bz}y}{l_z} = \frac{M_{bz}}{W_{bz}}$ $\sigma_{by} = \frac{M_{by}z}{l_y} = \frac{M_{by}}{W_{by}}$
Querkraft $\tau_y = \frac{F_y}{A_s}$ $\tau_z = \frac{F_z}{A_s}$
Torsion $\tau_t = \frac{T}{W_t}$

Alle Normalspannungen und alle Schubspannungen lassen sich vektoriell zusammenfassen. Schubspannungen verlaufen am Rand des Querschnittes tangential, in den Ecken sind sie Null. Die Schubspannungen durch die Querkräfte können meistens vernachlässigt werden.

Abb.61: Supperposition von Normalspannungen und Schubspannungen

In der Praxis kommt es oft vor, dass Normalspannungen aus einer Biegebelastung und Schubspannungen aus Torsion gemeinsam auftreten. Der mehrachsige Spannungszustand ist dann auf einen einachsigen Vergleichszustand umzuformen.

Neuentwicklung eines Einscheibenrades für ein Rückladegerät

Das Bruchverhalten des Werkstoffes entscheidet über die anzuwendende Berechnungshypothese. Bei sprödem Werkstoffverhalten wird die Normalspannungshypothese (NH) Und bei zähem Verhalten die Gestaltänderungsenergiehypothese (GEH) verwendet. [18, 19]

Für stabförmige Bauteile(einachsig):

NH
$$\sigma_{v} = 0.5(\left|\sigma_{z} + \sigma_{b}\right| + \sqrt{\left(\sigma_{z} + \sigma_{b}\right)^{2} + 4\tau_{t}^{2}}$$

GEH
$$\sigma_{v} = \sqrt{(\sigma_{z} + \sigma_{b})^{2} + 3\tau_{t}^{2}}$$

einachsig	zweiachsig
$\sigma_{v} = \frac{ \sigma_{x} }{2} + \frac{1}{2}\sqrt{\sigma_{x}^{2} + 4\tau_{xy}^{2}}$	$\sigma_{v} = \frac{ \sigma_{x} + \sigma_{y} }{2} + \frac{1}{2}\sqrt{(\sigma_{x} - \sigma_{y})^{2} + 4\tau_{xy}^{2}}$
$\sigma_{\rm V} = \sqrt{\sigma_{\rm X}^2 + 4\tau_{\rm Xy}^2}$	$\sigma_{\rm V} = \sqrt{(\sigma_{\rm X} - \sigma_{\rm y})^2 + 4\tau_{\rm Xy}^2}$
	$\sigma_1 > 0$ $\sigma_2 < 0$
$\sigma_{\rm V} = \sqrt{\sigma_{\rm X}^2 + 3\tau_{\rm Xy}^2}$	$\sigma_{\rm V} = \sqrt{\sigma_{\rm X}^2 + \sigma_{\rm y}^2 - \sigma_{\rm X}\sigma_{\rm y} + 3\tau_{\rm Xy}^2}$
-	einachsig $\sigma_{v} = \frac{ \sigma_{x} }{2} + \frac{1}{2}\sqrt{\sigma_{x}^{2} + 4\tau_{xy}^{2}}$ $\sigma_{V} = \sqrt{\sigma_{X}^{2} + 4\tau_{Xy}^{2}}$ $\sigma_{V} = \sqrt{\sigma_{X}^{2} + 3\tau_{Xy}^{2}}$

8.1.4 Zeitlicher Verlauf der Belastungen

Die auftretenden Lasten können konstant sein oder einen zeitlich veränderlichen Verlauf haben. Konstante Lasten werden auch als statische Lasten bezeichnet. Im dynamischen Fall ändert sich die Belastung periodisch zwischen einem Minimalwert und einem Maximalwert. In diese Gruppe fallen schwellende, wechselnde oder schwingende Belastungen. Zur genauen Festlegung wird das Spannungsverhältnis R benutzt. [18, 19]

Abb.62: Dynamische Belastungsarten

8.1.5 Werkstoffkennwerte

Zur Beurteilung des Bauteilversagens müssen neben den auftretenden Belastungen die Festigkeitsgrenzwerte des Werkstoffes bekannt sein. Diese werden durch Werkstoffkennwerte beschrieben. Wird ein Kennwert überschritten, so kommt es zum Versagen des Bauteils.

Der zu beachtende Kennwert wird vom Verhalten des Werkstoffes (spröde, duktil), den Betriebsbedingungen und der Belastungsart bestimmt. Als Versagensgrenze können unzulässige plastische Verformungen, Gewaltbruch oder Dauerbruch bei dynamisch belasteten Werkstoffen in Frage kommen. [18, 19]

8.1.6 Ruhende Belastung

Bei ruhender Belastung lassen sich die höchst zulässigen Werkstoffkennwerte ausnutzen, da durch die Belastung keine Schädigung des Werkstoffes auftritt. Die benötigten Kennwerte werden in der Werkstoffprüfung ermittelt.

Streckgrenze R _e :	Überschreitung	ergibt	eine	plastische
	Werkstoffverform	ing		
0,2 % Dehngrenze R _{p0,2}	nach völliger En	tlastung ver	bleibt eine	plastische
	Dehnung von 0,2 %	o		
Zugfestigkeit R _m :	Spannung bei der	der Werks	toff bei Zu	igbelastung

bricht

Duktile Werkstoffe (Baustähle, Vergütungsstähle, Kupfer-Legierungen, Aluminium-Legierungen) werden in der Regel gegen Verformung dimensioniert. Als Kennwert wird deshalb die Streckgrenze R_e oder bei Werkstoffen ohne ausgeprägte Streckgrenze die 0,2% Dehngrenze verwendet.

Spröde Werkstoffe (Gusseisen, gehärtete Stähle) werden gegen Bruch dimensioniert. Daher wird als Kennwert die Zugfestigkeit benutzt.

Liegen bei Druck, Biegung und Torsionsbelastung die benötigten Festigkeitskennwerte nicht vor, so lassen sich diese näherungsweise aus den bei Zugbelastung ermittelten Werten bestimmen [18, 19].

8.1.7 Dynamische Belastung

Die bei statischer Belastung angewandten Kennwerte (R_m , $R_{p0,2}$, R_e) dürfen bei dynamischer Belastung nicht verwendet werden. Zur Dimensionierung werden Kennwerte benutzt, die durch einstufige Schwingversuche gewonnen werden. Die Versuche werden an genormten Probestäben (d = 10 mm), ohne Kerben und polierter Oberfläche, durchgeführt.

Je nach der Höhe des Spannungsausschlages ergibt sich eine bestimmte Anzahl Lastwechsel bis zum möglichen Bruch der Probe. In Schwingversuchen zeigt sich, dass metallische Werkstoffe wiederholte Belastungen nicht beliebig häufig ertragen können, auch dann nicht, wenn die Spannungsamplitude unterhalb der Streckgrenze bleibt. Der Belastungsablauf läuft makroskopisch elastisch ab. Die ertragbare Beanspruchung wird zeit- und damit schwingspielzahlabhängig. Zur Aufnahme der Wöhlerkurve werden ca. 6-10 Proben eines Werkstoffes mit einheitlicher Oberflächenbeschaffenheit bei konstanter Mittelspannung mit unterschiedlichen Spannungsamplituden bis zum Bruch geprüft. Die so ermittelten Wertepaare σ_A , N_B (Bruchschwingspielzahl) werden entweder in ein σ_A , log NB- oder in ein log σ_A , log N_B - Diagramm eingetragen. Als Ausgleichskurve ergibt sich die Spannungswöhlerkurve. Es werden in Abb. 62 zwei grundsätzlich verschiedene Verläufe unterschieden.

Abb.63: Schematische Darstellung des Wöhlerdiagramms

Bis ca. 10 Schwingspiele erstreckt sich der quasistatische Bereich, an den sich das Zeitfestigkeitsgebiet bis N $\approx 2 \cdot 10^6$ mit stetig abnehmender ertragbarer Spannungsamplitude anschließt. Beim Kurventyp I sinkt die ertragbare Spannungsamplitude nun mit steigender Schwingspielzahl nicht mehr weiter ab, während Kurventyp II auch bei sehr hohen Schwingspielzahlen keinen horizontalen Verlauf zeigt. Ferritische Stähle (kubischraumzentriert - krz) und heterogene Nichteisenmetallegierungen weisen Typ I, austenitische Stähle und andere kubischfächenzentrierte - Legierungen (z.B. Al-Leg.) Typ II auf. Der Knickpunkt bei Typ I liegt meistens bei 2 – 10 x 10⁶ Schwingspielen. Es genügt somit, Proben bis maximal 10⁷ Schwingspiele zu prüfen. Die Spannungsamplitude, die ein Werkstoff bis zu dieser Grenzlastspielzahl ohne Bruch erträgt, wird als Dauerfestigkeit σ_D bzw. im Spezialfall der rein wechselnden Belastung als Wechselfestigkeit σ_W bezeichnet. Ein Wöhlerdiagramm beschreibt also nur das

Verhalten bei einer Mittelspannung σm . Bei Vertretern des Typs II wird ersatzweise die bis 10⁸ Schwingspiele ertragbare Spannungsamplitude als Dauerfestigkeitswert angenommen. Dabei handelt es sich allerdings nicht um eine echte Dauerfestigkeitsgrenze [18, 19].

8.1.8 Dauerfestigkeitsschaubild

Führt man bei gleicher Belastung Wöhlerversuche mit unterschiedlicher Mittelspannung durch, so zeigt sich, dass die erreichbaren Spannungsausschläge von der Mittelspannung abhängig sind. Zur Darstellung der Abhängigkeit werden die Diagramme nach Smith und Haigh benutzt. Die genaue Ermittlung von Dauerfestigkeitsschaubildern bedingt eine große Anzahl von experimentell bestimmten Wöhlerlinien. Es ist zur Vermeidung dieses Aufwandes üblich die Grenzlinien der Schaubilder durch Geraden zu ersetzen. Dies ist wegen der Streuung der Kennwerte für die praktische Anwendung völlig ausreichend.

Im Haigh - Diagramm wird die Spannungsamplitude über der Mittelspannung aufgetragen. Das Diagramm wird nach rechts durch die Streckgrenze begrenzt. Spannungsausschläge für die wichtigsten R – Werte lassen sich leicht ablesen. R bezeichnet das Verhältnis von Ober- zu Unterspannung. Bei vorhandener Mittelspannung ergibt sich die Ausschlagsspannung zwischen der Grenzkurve und der Linie für R = 1 (Bild 64).

Falls Angaben über die dynamischen Kennwerte nicht zur Verfügung stehen, lassen sich diese durch statische Kennwerte abschätzen [18, 19].

Abb.64: Haigh Diagramm (schematisch)

8.1.9 Örtliche Spannungen

Die bisherigen Voraussetzungen werden bei realen Bauteilen nicht immer erfüllt. Durch Kerben, Absätze, Querborhungen oder ähnliche konstruktive Details sind die bisherigen Voraussetzungen nicht mehr erfüllt. An diesen Stellen ergeben sich gegenüber den Nennspannungen höhere Spannungen. In der klassichen Berechnung, besonders bei stabförmigen Bauteilen, werden diese Erhöhungen durch Formzahlen in die Berechnung aufgenommen. Bauteile mit komplexer Geometrie werden heute nach anderen Methoden berechnet. Berechnungen nach dem Finite-Elemente-Methode oder Randelementmethode ergeben direkt die örtlichen Spannungen [18, 19].

8.1.10 Kerbwirkung

Nur in Bauteilen mit einfacher, geometrischer Gestalt ergibt sich die bisher behandelte Nennspannungsverteilung im Bauteil.

Durch Unstetigkeiten in der Bauteilgeometrie (Absätze, Einstiche, Querbohrungen), die fast an allen Bauteilen funktionsbedingt vorhanden sind, wird die Spannungsverteilung im Bauteil deutlich gegenüber der Nennspannungsverteilung der Unstetigkeitsstelle stellt sich geändert. An eine gleichmäßige Dehnungsverteilung ein, die zu hohen örtlichen Spannungsspitzen führt (Abbildung 65). Der wirkliche Verlauf der Spannungen im Kerbbereich ist nur sehr schwer zu bestimmen. Für die praktische Anwendung wird die maximal auftretende Spannung bestimmt. Die Berechnung der Kerbspannungen ist bei statischer und dynamischer Belastung unterschiedlich, da die Spannungsverteilung in der Nähe der Kerbe von der Kerbgeometrie, der Belastungsart und den Betriebsbedingungen abhängig ist.

Die Spannungsverteilung im Kerbgrund ist wesentlich von der Form der Kerbe abhängig. Zur Beschreibung der Erhöhung wird die Formzahl K_t verwendet, die als das Verhältnis der maximalen Spannung zur Nennspannung definiert ist.

$$K_{tz} = \frac{\sigma_{\max}}{\sigma_n}$$
 $K_{tb} = \frac{\sigma_{b\max}}{\sigma_{bn}}$ $K_{tt} = \frac{\tau_{\max}}{\tau_{tn}}$

Die Nennspannung (σ_n , σ_{bn} , τ_{tn}) wird meistens auf den Restquerschnitt bezogen und ist damit eine fiktive Spannung im Restquerschnitt des Bauteiles. Falls die Berechnung der Nennspannung mit Hilfe des Restquerschnittes schlecht möglich ist, wird der ungeschwächte Querschnitt verwendet. Die Formzahl bezieht sich auf den Probenquerschnitt. Bleibt die maximale Spannung unterhalb der Elastizitätsgrenze des Werkstoffes, so ist die Formzahl nur von der Kerbgeometrie und der Beanspruchung abhängig.

Bild 65: Spannungsverlauf im gekerbten Bauteil (Prinzip)

Die vom Werkstoff unabhängigen Formzahlen werden überwiegend experimentell bestimmt. Die Formzahl ist bei Zug am größten und bei Torsion am kleinsten.

$$K_{t,z} > K_{t,b} > K_{t,t}$$

Analog zur ruhenden Belastung versagt ein Bauteil bei dynamischer Belastung dann, wenn der auftretende Spannungsausschlag größer ist als der ertragbare Spannungsausschlag σ_A . Die Spannungsspitze wird dann:

$$K_f \sigma_{an} > \sigma_A$$

Offensichtlich kann sich durch örtliches Fließen im Bereich des Kerbgrundes die Kerbspannung nicht wie bei ruhender Belastung ausbilden. Als Kerbwirkungszahl wird daher das Verhältnis der Dauerfestigkeit der glatten Probe zur Dauerfestigkeit der gekerbten Probe definiert:

$$K_f = \frac{\sigma_A}{\sigma_{AK}}$$

Bei dynamischer Belastung ist somit die Formzahl K_t durch die Kerbwirkungszahl K_f zu ersetzen. Nach bisher vorliegenden Untersuchungen hängt die Kerbwirkungszahl von der Kerbgeometrie, der Belastungsart, der Oberfläche und vom Werkstoff ab.

Werkstoffe mit hoher Zugfestigkeit reagieren empfindlicher auf Kerben als Werkstoffe mit geringer Zugfestigkeit. Die Kerbwirkungszahlen werden üblicherweise aus Versuchen bestimmt. Da wegen der vielen Einflussparameter die experimentelle Bestimmung einen hohen Versuchsaufwand bedingt, wurde schon sehr früh versucht, die Kerbwirkungszahl aus der Formzahl zu berechnen [18, 19].

8.1.11 Prinzipieller Ablauf des Nachweises der Sicherheit

Das Vorgehen in DIN 743 und der FKM Richtlinie ist an vielen Stellen gleich. Die FKM Richtlinie ist jedoch allgemeiner formuliert. Das folgende Vorgehen orientiert sich daher an der FKM Richtlinie [18, 19].

Abb.66: Ablaufdiagramm

8.1.12 Sicherheiten

Die Sicherheitsfaktoren gelten für sichere Lastannahmen und eine Überlebenswahrscheinlichkeit von 97,5% für die Festigkeitskennwerte. Unter günstigen Voraussetzungen dürfen die Sicherheitsfaktoren verringert werden [18, 19].

Es wird ein duktiler Werkstoff mit einer Bruchdehnung > 12,5 % angenommen.

Sicherheitsfaktoren gegen Bruch:

		Schadensfolge			
		hoch	niedrig		
Wahrscheinlichkeit für das	Hoch	2,0	1,75		
Autoreten der Spannung	Gering	1,8	1,6		

Sicherheitsfaktoren gegen Fließen:

		Schadensfolge		
		hoch	niedrig	
Wahrscheinlichkeit für das	Hoch	1,5	1,3	
Auttreten der Spannung	Gering	1,35	1,2	

8.1.13 Eingabewerte und Ergebnisse der Berechnung

Mit den Daten der Lastannahme wird die Welle auf Dauerfestigkeit berechnet. Mit einem Überlastfaktor von 1,5 für Zug bzw. Druck und Biegung greift an der Stelle des Schaufelradflanschs eine Radialkraft von 578kN für das Eigengewicht und 100,17kN, für die angenommene Verschmutzung des Schaufelrades, an. Die Axialkraft oder Schwenkkraft greift auf einem Radius von 5,1m als Biegemoment an der Welle an. Diese Kraft wird nur an einer Schaufel angenommen. Mit einem Überlastfaktor von 2 wird das Antriebsmoment von 976000Nm von der Schaufel, dem Schaufelradkörper und der Schaufelradscheibe auf die Welle übertragen. Um den Pressverband zu berücksichtigen, wird an den Stellen der Pressverbände die Kerbwirkungszahl β_{K} verwendet. Aus der nachfolgenden Tabelle werden die Werte für die Form C entnommen. Die Drehzahl der Welle wird durch die Schnittgeschwindigkeit definiert und beträgt 6,17U/min.

Form	Wellenwerkstoff mit R _m (N/mm ²)								
	400	500	600	700	800	900	1000	1100	
А	2,1	2,4	2,6	2,9	3,1	3,5	3,8	4,1	
В	1,8	2,1	2,3	2,5	2,7	3,0	3,3	3,6	
С	1,7	1,9	2,1	2,3	2,5	2,7	3,0	3,3	
D	1,2	1,3	1,4	1,5	1,6	1,8	1,9	2,1	
Form A Form B Form C Form D									

Tab.6: Kerbwirkungszahl β_K bei Biegung von Wellen mit aufgepressten Naben

Abb.67: 3D – Modell der Schaufelradwelle

Mit einer Mindestsicherheit von 1,2 gegen Dauerbruch und einer Mindestsicherheit von 1,5 gegen bleibende Verformungen ist die Welle dimensioniert und wird mit CATIA konstruiert. Das Berechnungsprotokoll befindet sich in Anhang A. Die Fertigungszeichnungen sind in Anhang B zu finden.

8.2 Lagerberechnung

Die Berechnung des Fest- und des Loslagers wird anhand der DIN ISO 281 durchgeführt.

8.2.1 Grundlagen der Lagerberechnung

Zuerst muss die dynamische äquivalente Belastung P errechnen werden. Hierbei sind folgende Angaben nötig:

- X,Y = Anpassungsfaktoren aus einem Lagerkatalog
- F_r = Radialkraft am Lager, in kN
- F_a = Axialkraft am Lager, in kN

$$\mathbf{P} = \mathbf{X}^* F_a + \mathbf{Y}^* F_r$$

P = Dynamische äquivalente Belastung in kN

Danach kann die Lebensdauer des Lagers wie folgt errechnet werden. Dazu sind folgende Angaben nötig:

- C = Dynamische Tragzahl in kN
- *P* = Dynamische äquivalente Belastung in kN (muss zuerst berechnet werden, siehe oben 1. Schritt)
- *p* = Lebensdauerexponent, *p*=3 (für Kugellager), *p*=10/3 (für alle anderen Lager)
- n = Drehzahl in 1/min

$$L_{\rm 10} = \left(\frac{C}{P}\right)^p$$

$$L_{10h} = \frac{10^6}{60 \cdot n} \cdot L_{10} = \left(\frac{16666}{n}\right) \cdot \left(\frac{C}{P}\right)^p$$

 L_{10} = Lebensdauer in *Millionen Umdrehungen* bei 10 % Ausfallwahrscheinlichkeit L_{10h} = Lebensdauer in *Stunden* bei 10 % Ausfallwahrscheinlichkeit.

Die Lebensdauer für andere Ausfallwahrscheinlichkeiten wird durch Multiplikation von L_{10} mit einem Faktor berechnet:

 $L_5 = 0.62 \cdot L_{10in}$ Millionen Umdrehungen bei 5 % Ausfallwahrscheinlichkeit $L_4 = 0.53 \cdot L_{10in}$ Millionen Umdrehungen bei 4 % Ausfallwahrscheinlichkeit $L_3 = 0.44 \cdot L_{10in}$ Millionen Umdrehungen bei 3 % Ausfallwahrscheinlichkeit $L_2 = 0.33 \cdot L_{10in}$ Millionen Umdrehungen bei 2 % Ausfallwahrscheinlichkeit $L_1 = 0.21 \cdot L_{10in}$ Millionen Umdrehungen bei 1 % Ausfallwahrscheinlichkeit Bei veränderlicher Drehzahl n muss mit der mittleren Drehzahl n_m gerechnet werden. Diese mittlere Drehzahl wird aus den Einzeldrehzahlen und der jeweiligen Wirkdauer q in % berechnet:

$$n_m = n_1 \cdot \frac{q_1}{100} + n_2 \cdot \frac{q_2}{100} \cdots$$

In der zweiten Formel ist zu erkennen, dass die Belastung des Lagers durch die Potenz sehr stark in die Lebensdauer eingeht. Bei veränderlicher Belastung haben deshalb auch nur über kurze Zeitanteile wirkende, hohe Belastungen einen erheblichen Einfluss auf die Lebensdauer. Für die dynamisch äquivalente Lagerbelastung gilt:

$$P = \sqrt[p]{P_1^p \cdot \frac{n_1}{n_{\rm m}} \cdot \frac{q_1}{100} + P_2^p \cdot \frac{n_2}{n_{\rm m}} \cdot \frac{q_2}{100} + \cdots}$$

Zur Abschätzung der Belastung der Lager können folgende Richtwerte herangezogen werden:

Die großen Belastungen müssen durch ein ausreichend dimensioniertes Lager aufgenommen werden. Auch zu niedrige Belastungen müssen vermieden werden, da ansonsten kein Rollen der Wälzkörper sondern ein Gleiten stattfindet. Gleitreibung muss unbedingt vermieden werden, denn sie sorgt für starken Verschleiß und verkürzte Lebensdauer. Bei Schrägkugellagern oder Kegelrollenlagern in einer angestellten Lagerung verursacht eine vom Lager aufzunehmende Radialkraft eine innere Axialkraft, welche in die Lebensdauerberechnung mit einbezogen werden muss. Für die meisten Anwendungen des allgemeinen Maschinenbaus reicht die obige Lebensdauerberechnungsmethode aus. In bestimmten Fällen kann es jedoch erforderlich sein, eine erweiterte Lebensdauerberechnung durchzuführen, welche weitere Einflüsse wie Viskosität des Schmierstoffes, Betriebstemperatur, Überlebenswahrscheinlichkeit und Sauberkeit berücksichtigt. Es wird in diesem Kapitel jedoch nicht darauf eingegangen. Die entsprechende Vorschrift ist in der DIN ISO 281 enthalten [18, 19].
8.2.2 Eingabewerte und Ergebnisse der Loslagerberechnung

Das Loslager befindet sich zwischen Kupplungsflansch und Schaufelradflansch. Laut Wellenberechnung ergibt sich an dieser Stelle ein Durchmesser von 420mm. Die Breite des Lagers darf einen Wert von 400mm nicht überschreiten. Die erforderliche Lebensdauer des Lagers wird mit 100000 h angenommen. Laut Auflagerberechnung wird das Loslager mit einer radialen Kraft von 960394N beansprucht. Um die Sicherheit gegen statische Belastungen zu gewährleisten wird ein Sicherheitsfaktor von 2 angenommen. Das Lager soll als zweireihiges Radial Pendelrollenlager ausgeführt werden.

Abb.68: Aufbau der Konstruktion

Es wird das Lager 230/500CA/W33 von SKF ausgewählt. Die erforderliche Lebensdauer von 100000h wird mit über 154189h um 50% überschritten. Somit ist das Lager ausreichend dimensioniert. Die Kosten eines Lagers betragen bei E. B. Atmus Co., Inc. 25451US\$, Stand 01/2009.

8.2.3 Eingaben und Ergebnisse der Festlagerlagerberechnung

Das Festlager befindet sich am Ende der Welle. Laut Wellenberechnung ergibt sich an dieser Stelle ein Durchmesser von 340mm. Die Breite des Lagers darf einen Wert von 300mm nicht überschreiten. Laut Auflagerberechnung wird das Festlager mit einer radialen Kraft von 261372N und einer axialen Kraft von 79583N beansprucht. Die erforderliche Lebensdauer des Lagers wird mit 100000 h angenommen. Um die Sicherheit gegen statische Belastungen zu gewährleisten wird ein Sicherheitsfaktor von 2 angenommen. Das Lager soll als zweireihiges Radial Pendelrollenlager ausgeführt werden.

Es wird das Lager 23068CC/W33 ausgewählt. Die erforderliche Lebensdauer von 100000h wird mit über 300000h um das Dreifache überschritten. Somit ist das Lager ausreichend dimensioniert. Die Kosten eines Lagers betragen bei E. B. Atmus Co., Inc. 8487US\$, Stand 01/2009.

8.3 Pressverbände

8.3.1 Theoretische Grundlagen

Unterschieden werden rein elastische (a) sowie elastisch-plastische Pressverbände (b). Bei den letztgenannten wird die Streckgrenze der Werkstoffe geringfügig überschritten. Der angewandte Berechnungsansatz betrifft die rein elastischen Pressverbände [18, 19].

Abb.69: a) elastisch b) elastisch-plastisch Pressverband

Durch das Übermaß, d.h. durch die Differenz zwischen dem Durchmesser der Welle und dem der Nabe, entsteht beim Fügen der Teile eine Fugenpressung p_F . Somit können durch den Reibschluss der Verbindung radiale und tangentiale Kräfte übertragen werden. Die Fugenpressung erzeugt in Welle und Nabe Spannungen, d.h. in den Werkstoffen entstehen Normal- und Schubspannungen. Beim Elastizitätsansatz dürfen sie die jeweiligen Streckgrenzen nicht überschreiten. Diese Spannungen werden mithilfe der Durchmesser-Verhältnisse Q_A und Q_I bestimmt:

$$Q_A = \frac{D_F}{D_{Aa}} < 1 \qquad \qquad Q_I = \frac{D_{Ii}}{D_F} < 1$$

Bei einer Vollwelle ist $D_{Ii} = 0$, daher ist auch $Q_I = 0$

Spannungen im Außenteil:

$$\sigma_{tAi} = p_F \cdot \frac{1 + Q_A^2}{1 - Q_A^2}$$

$$\sigma_{tAa} = p_F \cdot \frac{1 + Q_A^2}{1 - Q_A^2} - p_F$$

$$|\sigma_{rAi}| = |p_F|$$

Spannungen im Innenteil:

$$-\sigma_{tIi} = p_F \cdot \frac{1 + Q_I^2}{1 - Q_I^2} + p_F = \frac{2 \cdot p_F}{1 - Q_I^2}$$
$$-\sigma_{tIa} = p_F \cdot \frac{1 + Q_I^2}{1 - Q_I^2}$$
$$|\sigma_{rIa}| = |p_F|$$

Aus den beim Fügen der Teile erzeugten Spannungen kann man nach dem Hooke'schen Gesetz $\sigma = \epsilon * E$ mithilfe des Elastizitätsmoduls E des jeweiligen

Werkstoffs die der Spannung σ entsprechende Längenänderung ϵ berechnen. Man verwendet dazu außerdem die Querdehnzahl v.

Die Querdehnzahl (Poisson'sche Zahl) v ist definiert als Verhältnis aus relativer Dickenänderung zur relativen Längenänderung unter Einwirkung einer äußeren Kraft. Sie ist für die verschiedenen Materialien tabelliert.

Die nachfolgenden Formeln zeigen den Zusammenhang von Fugenpressung und relativer Durchmesseränderung am Außenteil (Nabe) innen und am Innenteil (Welle) außen:

$$\varepsilon_{Ai} = \frac{p_F}{E_A} \cdot \left\{ \frac{1 + Q_A^2}{1 - Q_A^2} + \nu_A \right\} \qquad \qquad -\varepsilon_{Ia} = \frac{p_F}{E_I} \cdot \left\{ \frac{1 + Q_I^2}{1 - Q_I^2} - \nu_I \right\}$$

Die Längenänderungen von Außen- bzw. Innenteil verlaufen in entgegengesetzter Richtung, die Berechnung der Gesamt - Längenänderung geschieht also durch Addition der Beträge von ε_{Ai} und ε_{Ia} .

Das Übermaß Z ergibt sich durch Multiplikation der relativen Längenänderung mit dem Durchmesser der Fuge.

$$Z = D_F \cdot (\varepsilon_{Ai} + |\varepsilon_{Ia}|)$$

Der Pressverband muss so ausgelegt sein, dass er die geforderte resultierenden äußere Kraft übertragen kann, ohne sich zu lösen und zu rutschen.

Abb.70: a) Längskraft b) Umfangskraft/Drehmoment c) resultierende Kraft

Es wird mit der Rutschkraft gerechnet, da diese nur 66% der Kraft zum lösen beträgt. Weiterhin werden Annahmen zur Berücksichtigung der dynamischen Betriebsverhältnisse gemacht.

Zur sicheren Übertragung setzt man nun nachfolgende Formel ein.

$$F_{Rres} = c_B \cdot v_H \cdot F_{res}$$

c_B = Betriebsfaktor zur die Berücksichtigung der dynamischen Betriebsverhältnisse.

 $v_{\rm H}$ = Haftsicherheit (1,5..2) als zusätzliche Sicherheit

Die kleinste erforderliche Fugenpressung p_{Fk} ergibt sich dann als erforderliche resultierende Rutschkraft F_{res} pro Fugenfläche A_F und Division mit dem Haftbeiwert μ .

$$p_{Fk} = \frac{c_B \cdot v_H}{\mu} \cdot \frac{F_{res}}{A_F} = \frac{c_B \cdot v_H}{\mu} \cdot \frac{F_{res}}{\pi \cdot D_F \cdot l_F}$$

Mit den obigen Gleichungen wird dann das kleinste Haftmaß Z_k berechnet.

$$Z_{k} = D_{F} \cdot (\varepsilon_{Ai} + \left| \varepsilon_{Ia} \right|) = D_{F} \cdot \frac{p_{Fk}}{E_{A}} \cdot K$$

8.3.2 Pressverband zwischen Schaufelradflansch und Welle

Der Pressverband muss an den Fügeflächen einen genügend hohen Widerstand gegen Verschiebung und/oder Verdrehung der gefügten Teile aufbringen. Dieser Widerstand wird Haftreibung genannt und wird wesentlich vom Übermaß bestimmt. Die Berechnung erfolgt laut DIN 7190. Der Flansch sowie die Welle bestehen aus 42CrMo4. Der Rauhtiefe wird bei beiden Oberflächen mit 25µm angenommen. Die Sollsicherheit gegen Rutschen muss mindestens 2 betragen. Mit einer Sollsicherheit gegen eine plastische Verformung von 1,2 genügt dies dem Anspruch des Verbandes. Der Haftbeiwert wird bei Rutschen in Längsrichtung mit 0,20 und bei Rutschen in Umfangsrichtung mit 0,20 angenommen. Eine weitere Voraussetzung ist, dass der Flansch beim Fügen nicht über 400°C erwärmt werden darf, um eine Gefügeveränderung zu vermeiden.

Mit einer Fügetemperatur von 305° C liegt der Wert unter der höchsten Fügetemperatur. Mit einem mindest übertragbaren Drehmoment, wobei die Fliehkräfte berücksichtigt sind, von mindestens 190,8 kNm liegt dies über den Anforderungen. Die maximale Vergleichsspannung ($\sigma_{Vmax} = 639$ N/mm² < R_{emin} = 900N/mm²) liegt laut Berechnung unter dem maximal gültigen Wert. Somit ist der Querpressverband ausreichend dimensioniert. Mit diesen Daten wird der Flansch konstruiert und ist im Anhang B zu finden.

Um den Flansch zu optimieren wird eine Simulation mit ABAQUS durchgeführt. Hier wird der Flansch auf die Welle geschrumpft und mit den Gewichts- und den Seitenkräfte, jedoch ohne dem Moment, belastet. Durch diese Simulation wird eine ideale Form des Flansches festgestellt. Vor allem im Bereich des Auslaufes treten unzulässige Spannungsspitzen auf. Es wurden verschiedene Auslaufradien, sowie unterschiedliche Formen der Entlastungskerben verwendet um den Übergangsbereich zu optimiert. Berechnung und Simulation des Schaufelrades

Abb.71: Aufschrumpfsimulation in N/mm²

Laut den Ergebnissen der Simulation ist diese Form des Flansches ideal. Um die maximalen Spannungen an den Außenkanten zu minimieren, werden Entlastungsnuten gefertigt. Im Auslauf der Außenkanten ist ein Radius von 50mm ideal. Alleine durch den Aufschrumpfprozess und den auftretenden Kräften tritt eine Spannung von 48N/mm² auf.

Abb.72: Entlastungsnut und Auslaufradius

8.3.3 Pressverband zwischen Kupplungsflansch und Welle

Die Berechnung erfolgt laut DIN 7190. Der Flansch sowie die Welle bestehen aus 42CrMo4. Der Rauhtiefe wird bei beiden Oberflächen mit 25µm angenommen. Die Sollsicherheit gegen Rutschen soll mindestens den Faktor 1,2 betragen. Mit einer Sollsicherheit gegen eine plastische Verformung von 1,2 genügt dies dem Anspruch des Verbandes. Der Haftbeiwert wird bei Rutschen in Längsrichtung mit 0,14 und bei Rutschen in Umfangsrichtung mit 0,16 angenommen. Eine weitere Voraussetzung ist, dass der Flansch beim Fügen nicht über 400°C erwärmt werden darf, um eine Gefügeveränderung zu vermeiden.

Mit einer Fügetemperatur von 292°C liegt der Wert unter der höchsten Fügetemperatur. Mit einem mindest übertragbaren Drehmoment, wobei die Fliehkräfte berücksichtigt sind, von mindestens 1293959Nm liegt dies über den Anforderungen. Die maximale Vergleichsspannung ($\sigma_{Vmax} = 613$ N/mm2 < R_{emin} = 900N/mm2) liegt unter dem maximal gültigen Wert. Somit ist der Querpressverband ausreichend dimensioniert. Mit diesen Daten wird der Flansch konstruiert und ist im Anhang B zu finden.

8.4 Schraubenberechnung - Verbindung Schaufelradflansch/Scheibenrad

8.4.1 Grundlagen

Eine Schraubenverbindung ist eine lösbare Verbindung von zwei oder mehreren Teilen durch eine oder mehrere Schrauben. Die Schrauben sind dabei so zu bemessen, dass das entstandene Verbundteil die ihm zugedachte Funktion erfüllt und den auftretenden ruhenden oder wechselnden Betriebskräften standhält [18, 19].

Die Berechnung der Schraubenverbindung zielt auf die Festlegung der erforderlichen Schraubenabmessungen unter Berücksichtigung folgender Einflussfaktoren:

- Festigkeitsklasse der Schraube
- Verminderung der Montagevorspannkraft in der Trennfuge oder Teilen der Trennfuge durch die Betriebskraft
- Verminderung der Montagevorspannkraft durch Setzerscheinungen
- Streuung der Vorspannkraft beim Anziehen
- Dauerhaltbarkeit bei Wechsellast
- Druckbeanspruchung der verspannten Teile durch Schraubenkopf und/oder Mutter
- Zulässige Flächenpressungen (Verspannte Teile)
- Änderungen der Festigkeiten von Schraube, Mutter und Zwischenlagen sowie der Kräfte und Spannungen unter Temperatureinfluss

In der VDI 2230 spielt der Begriff Montagevorspannkraft eine zentrale Rolle. Hierbei handelt es sich um die bei der Montage aufgebrachte Vorspannkraft. Die minimale Vorspannkraft, die zur Übertragung der Betriebskräfte nötig ist, entspricht der minimalen Montagevorspannkraft F_{Mmin} . Beim Anziehen ergibt sich eine gewisse Unsicherheit über die Höhe der erzeugten Vorspannung auf Grund der Reibungsverhältnisse. Dieser Unsicherheitsbereich wird durch den Anziehfaktor abgedeckt. Um sicher zu sein, dass die notwendige Vorspannkraft erreicht wird, ist es nötig, das Anziehdrehmoment so zu erhöhen, dass die maximale Vorspannkraft F_{Mmax} erreicht wird. Der Begriff Montagevorspannkraft wird damit unterschiedlich gebraucht, so dass eine gewisse Verwirrung fast unvermeidlich ist [18, 19].

Bei einer Schraubenverbindung werden die verspannten Teile durch die spannenden Teile zusammengepresst. Dabei ist die Vorspannkraft F_V in der Schraube und den verspannten Teilen gleich, aber entgegengesetzt gerichtet. Im Montagezustand ohne äußere Belastung ist die Montagevorspannkraft F_M in der Schraube identisch mit der Schraubenkraft F_S und die Montagevorspannkraft in den verspannten Teilen identisch mit der Klemmkraft F_{K} . Für eine sichere Funktion der Schraubenverbindung ist eine Mindest-Montagevorspannkraft F_{Mmax} erforderlich. Die Montagevorspannkraft in Schraubenverbindungen wird von einer Vielzahl von Faktoren beeinflusst, u.a. von:

- Reibungsverhältnissen in den sich relativ zueinander bewegenden Oberflächen
- der geometrischen Form der Verbindung
- der Anziehmethode
- dem Anziehwerkzeug.

Die Schraube muss für eine - aufgrund der Betriebskräfte - vorgegebene Mindest-Montagevorspannkraft F_{Mmin} so ausgelegt werden, dass sie selbst bei Erreichen Vorspannkraft einer größtmöglichen F_{Mmax} eine vorgegebene Grenz-Gesamtbeanspruchung (aus Zug- und Torsionsbeanspruchung zusammengesetzt) nicht überschreitet. F_{Mkat} ist die Kraft, die zusammen mit dem beim Anziehen Gewindemoment entstehenden die genormte Mindeststreckgrenze des Schraubenwerkstoffes zu 90% ausnutzt; man spricht auch von der effektiv möglichen Montagevorspannkraft. Dies ist der Wert, der sich jeweils in den Tabellen [18, Tabellenbuch] wieder findet, wo die Vorspannkraft und Anziehmomente für bestimmte Schraubentypen angegeben werden.

Die maximale Montagevorspannkraft F_{Mmax} muss stets kleiner als die effektiv mögliche Montagevorspannkraft F_{Mkat} bleiben:

$F_{Mmax} < F_{Mkat}$

Die Montagevorspannkraft F_M der Schraube dient als Bemessungskriterium für den Schraubendurchmesser. Deshalb ergibt sich als Basis der Schraubenberechnung die folgende Hauptdimensionierungsformel:

$$F_{Mmax} = \alpha_A F_{Mmin} = \alpha_A (F_{Kerf} + (1-\phi)F_A + F_Z)$$

Mit dem Anziehfaktor α_A wird berücksichtigt, dass in Abhängigkeit vom gewählten Montageverfahren die Montagevorspannkraft F_M in mehr oder weniger weiten Grenzen streuen kann. Fz bezeichnet den Vorspannkraftverlust, der durch Setzvorgänge eintreten kann. Es wird berücksichtigt. dass die Montagevorspannkraft F_M im Betriebszustand durch den Anteil $(1-\phi)F_A$ der axialen Schraubenkraft vermindert wird. Und schließlich ist eine Mindestklemmkraft von der Größe F_{Kerf} erforderlich, um die Dichtfunktion und die Verhinderung des einseitigen Klaffens in den Trennfugen oder des selbsttätigen Lösens zu gewährleisten [18, 19].

8.4.2 Verspannungsschaubild

Das Verspannungsschaubild stellt die Längenänderung auf der X-Achse der Kraft auf der Y-Achse gegenüber. Die Geraden stellen in diesem Diagramm die Federkennlinie der Schraube, sowie die der verspannten Teile dar. Der Tangens ihres Steigungswinkels ist somit die Federkonstante c, die als Verhältnis von Kraft zu bewirkter Längenänderung definiert ist. Das Festziehen einer Schraube bewirkt nun, dass sie sich dehnt, während das verschraubte Material gestaucht wird. Diese Vorspannkraft wirkt gleichermaßen auf die Schraube, wie auch auf die verbundenen Elemente. Es handelt sich also eigentlich um eine Reihenschaltung von Federn, bei der die Materialien als Folge derselben Kraft wegen ihrer im Allgemeinen unterschiedlichen Federkonstanten unterschiedlich stark verformen. In diesem Zusammenhang ist sinnvollerweise die Kennlinie der Schraube mit positiver Steigung eingetragen, während die Materialkennlinie negativ ansteigt. Damit werden entsprechend die positiven und negativen Längenänderungen, d.h. die Längungen und Stauchungen verdeutlicht. Am Schnittpunkt beider Geraden kann man also die Vorspannkraft ablesen. Entspannen sich die Werkstoffe mit der Zeit,

Berechnung und Simulation des Schaufelrades

treten also Setzvorgänge ein, so sinkt natürlich die Vorspannkraft und die Längenänderungen von Schraube und Bauteilen gehen ebenfalls zurück. Im Diagramm bedeutet das eine Verschiebung der Kennlinien nach unten um die entsprechende Kraftdifferenz. Der Setzbetrag ist dabei analog als Längendifferenz erkennbar. Die Verhältnisse bei einer eigentlichen Belastung der Schraubverbindung, zusätzlich zur Vorspannkraft, sind folgende: die Betriebskraft bewirkt eine zusätzliche Dehnung der Schraube und eine Reduzierung der Bauteil-Stauchung. Sie wirkt der Vorspannkraft entgegen (man kann sie aber nicht einfach davon abziehen, weil das gestauchte Material ja ebenfalls eine "Gegenkraft" aufbringt und die zunehmend gedehnte Schraube auch entsprechend größeren Kräften aufweist). Graphisch bedeutet dies. dass sozusagen der Gleichgewichtspunkt der Vorspannkraft verlassen wird die und Verbindungselemente soweit verformt werden (entspricht Wandern auf den Kennlinien), bis die Summe der zu diesen Verformungen nötigen Kräfte gleich der Betriebskraft ist. Die verspannten Teile werden dadurch entspannt so dass nur noch die Restklemmkraft hervorgerufen wird, welche geringer ist als die vorherige Vorspannkraft. Die konstruktive Gestaltung einer Schraubverbindung hat Einfluss auf die Verteilung der Betriebskraft auf Schraube und Bauteile. Befindet sich der Angriffspunkt der Betriebskraft z.B. nahezu am Schraubenkopf, so ist klar, dass dann nur die Federkonstante der Schraube maßgebend ist. Wirkt die Betriebskraft nicht direkt am Schraubenkopf, sondern "drückt" z.B. über weiteres Material erst auf die Schraube, dann sinkt die Federkonstante (Reihenschaltung: $c_{ges}^{-1} = \Sigma c_i^{-1}$).

Abb.73: Federersatzsystem einer Schraubenberechnung

In diesem Fall entfällt also mehr Kraft auf die "elastischere" Schraube und die Restklemmkraft ist relativ geringer. Eine solche Gestaltung lässt sich an dem "Knick" in der Kennlinie der Schraube bei der Vorspannkraft erkennen (erst bei Auftreten der Betriebskraft wirkt der verschobene Kraftangriffspunkt mit dem zusätzlichen verformungsfähigen Material aus). Somit sollte man z.B. zu Dichtzwecken den Kraftangriffspunkt nahe an dem Schraubenkopf legen, um eine große Restklemmkraft zu erzielen. Soll die Verbindung im Gegenteil elastisch sein, ist es ratsam, außer dem Schraubenschaft zusätzliches Material vor den Kraftangriffspunkt zu verlegen, oder aber eine Dehnschraube zu verwenden, die wegen ihres geringeren Schaftdurchmessers eine größere Dehnfähigkeit besitzt.

Abb.74: Verspannungsschaubild

Dieses Verspannungsschaubild zeigt anschaulich, wie die axiale Betriebskraft FA nicht allein von der Schraube aufgenommen wird, sondern nur ein Teil FSA darauf wirkt.

Abb.75: Vollständiges Verspannungsschaubild inklusive Setzbetrag

Formelzeichen

- f_S..... Längenänderung der Schraube,
- f_{SA}..... Längenänderung der Schraube infolge von FA,
- f_{PA}..... Längenänderung der Bauteile infolge von FA,
- f_{PM}......Verkürzung der verspannten Teile infolge von FM,
- $f_{\text{SM}}.\ldots..L$ ängenänderung der Schraube infolge von FM,
- f_Z..... plastische Verformung, Setzbetrag
- F_{SA}..... Teil der Axiallast, der die Schraube be- bzw. entlastet,
- F_{PA}..... Teil der Axiallast, der die Bauteile be- bzw. entlastet,
- FA.....Axialkraft, eine in Schraubenachse gerichtete Komponente einer beliebig gerichteten Betriebskraft,
- F_S..... Schraubenkraft,
- F_M..... Montagevorspannkraft,
- Fz...... Vorspannkraftverlust infolge einer plastischen Verformung,

Bei dynamisch belasteten Schraubenverbindungen wechselt daher die Kraft, die die Schraube beansprucht, zwischen der Montagevorspannkraft F_M , bzw. nach der Setzerscheinung F_V , und der Kraft F_S . Daher ist nur eine kleine

Ausschlagsspannung vorhanden. Da die ertragbaren Ausschlagsspannungen nur sehr gering von der Mittelspannung abweichen, wird durch die Verspannung eine hohe Tragfähigkeit von Schraubenverbindungen erreicht [18, 19].

8.4.3 Eingabewerte und Ergebnisse

Die Schraubenberechnung basiert auf der Richtlinie VDI 2230 Blatt 1, Ausgabe Februar 2003. Laut dieser Norm dient die Montagevorspannkraft FM der Schraube als Hauptauswahlkriterium für den Schraubennenndurchmesser. Es muss das maximale Drehmoment vom Schaufelradflansch auf die Schaufelradscheibe übertragen werden. Das Moment wird mit 976000Nm, wie in der Lastannahme besprochen, angenommen. Um die eventuell zusätzlich auftretenden Belastungen abzudecken, wird eine Querkraft von 7500N angenommen. wird Der mittlere Teilkreisdurchmesser beträgt in der Berechnung 1280mm. In der Konstruktion gibt es zwei Teilkreisdurchmesser, einen Teilkreisdurchmesser mit 1220mm und einen mit 1340mm. An jedem Teilkreis befinden sich 18 M39 x 260 Schrauben. Weiters muss berücksichtigt werden, dass der Flansch aus einem Vergütungsstahl (42CrMo4) und die Schaufelradscheibe aus einem Baustahl (S355 JO) bestehen.

Die Schraubenverbindung kann das auftretende Moment mit einer 1,8fachen Sicherheit übertragen. Die Schrauben müssen mit einem Anziehdrehmoment von 4450Nm angezogen werden.

8.5 Scheibenrad

In diesem Kapitel wird das Scheibenrad konstruiert und simuliert. Durch Einsatz von ABAQUS wird mit den berechneten Kräften und Momenten das Scheibenrad simuliert. Das Scheibenrad wird in eine endliche Anzahl Elemente unterteilt um an komplexen Strukturen physikalische Berechnungen durchzuführen. Die Konstruktionszeichnung befindet sich im Anhang B.

8.5.1 Eingabewerte und Ergebnis

Das Scheibenrad muss das maximale Drehmoment von 976000Nm übertragen können. Weiters darf es durch die maximale Seitenkraft von 79583N (siehe Lastannahme), die durch die Schnittkräfte auftreten, nicht mehr als 15mm, auf dem gesamten Durchmesser, verzogen werden. Das Scheibenrad besteht aus zwei konischen Blechen die zusammengeschweißt werden. Durch die Simulation wird das Scheibenrad gewichtsoptimiert. Die am höchsten beanspruchten Zonen werden verstärkt ausgeführt. Es wird ein Faktor von 1,5 vorgegeben um die Sicherheit des Scheibenrades gewährleisten zu können. In der Simulation wird das Scheibenrad im inneren Durchmesser eingespannt. Das Moment, sowie die seitlichen Belastungen werden am Außendurchmesser der Scheibe angesetzt.

Abb.76: Belastungen die auf die Scheibe wirken (gelb: Moment, rosa: Seitenkräfte)

Um die Schweißnaht zu simulieren, wird das Scheibenrad mit 75% der Breite der tatsächlichen Schweißnaht an den Übergängen verbunden um die geringere Festigkeit der Schweißverbindung zu berücksichtigen. Die Konstruktionszeichnung des Scheibenrades ist in Anhang B zu finden.

Abb.77: Skizze der tatsächlichen Schweißnaht

Abb.78: Schweißnahtersatz mit 75% der Breite der tatsächlichen Schweißnaht

Berechnung und Simulation des Schaufelrades

Das Modell zeigt erste Probleme der FEM auf. Als wichtigste Erkenntnis ist hierbei festzuhalten, dass sich komplizierte, aus einem realen Bauteil gewonnene, Geometrien innerhalb der Software ABAQUS nur mit Tetraeder – Elementen automatisch vernetzen lassen. Hierbei wurden TET – Elemente mit einer quadratischen Funktion verwendet und mit knapp 60000 Elementen. Diese Elemente liefern im Gegensatz zu den übrigen Elementtypen (z.B. Hexagonale Elemente) Ergebnisse die mit einem größeren Fehler behaftet sind. Die Qualität einer FEM - Simulation hängt maßgeblich von der Qualität der Vernetzung ab und eben diese gestaltet sich bei realen Geometrien sehr schwierig und stellt den zeit-und arbeitsintensivsten Teil der Simulationsarbeit dar.

Abb.79: TET - Vernetzung der vereinfachten Konstruktion der Scheibe

Die dabei auftretenden Spannungen und Verschiebungen sind in den nachfolgenden Abbildungen zu sehen.

Abb.80: Auftretende Spannungen auf das Scheibenrad in $\mathrm{N/mm}^2$

Abb.81: maximale Verschiebung des Scheibenrades in mm

Laut Simulationen des Scheibenrades sind alle Bedingungen erfüllt. Die maximale Verschiebung liegt mit 13,98mm an der Außenseite (siehe Abbildung 81) unter den geforderten 15mm. Die Simulation wurde mit allen auftretenden Kräften und Momenten, siehe Lastannahme, simuliert. Die maximalen Spannungen treten im unteren Bereich des inneren Konusrades, sowie in der Einspannung auf (siehe Abbildung 80). Daher muss das Scheibenrad im Bereich der Schweißnähte, sowie im Bereich des Überganges eine Blechdicke von 25mm haben. Dazwischen ist eine Blechdicke von 10mm bzw. 15mm notwendig (siehe Konstruktionszeichnung des Scheibenrades im Anhang B). Diese wurden durch den Einsatz verschiedener Blechdicken, sowie unterschiedlich Geometrien mit ABAQUS optimiert. Mit einer maximalen Spannung für die Dauerfestigkeit von mind. 290N/mm² des ausgewählten Werkstoffes (PAS355) mit einer Mindestsicherheit von 2,3. Somit ist die Sicherheit der Konstruktion gegeben.

Abb.82: Dauerfestigkeit von verschiedenen Baustählen [Thyssen Krupp]

9 Zusammenfassung

Diese Arbeit beschreibt die Auslegung eines Schaufelrades bei der Vorgabe der Hauptabmessungen. Durch ein Auswahlsystem wurde die optimale Lösung der Fertigung und Konstruktion des Schaufelrades herausgefunden. Das Hauptaugenmerk liegt bei der Hauptantriebswelle und dem Flansch, welcher das Scheibenrad mit der Welle verbindet.

Die Variante "Schrumpfscheiben" wird mittels zweier Schrumpfscheiben der Flansch mit der Welle kraftschlüssig verbunden. Der Vorteil dieser Konstruktion ist der einfache Ein- bzw. der Ausbau der Welle, da dieser vor Ort leichter durchführbar ist. Jedoch ist dadurch der Bauraum eingeschränkt. Ein weiterer Nachteil sind die hohen Kosten dieser Version, sowie das große Gewicht.

Bei der zweiten Variante wird der Flansch mittels einer Hirthverzahnung mit der Welle verbunden. Diese Variante wird durch den hohen technischen Aufwand nur für kleine Wellenverbindungen eingesetzt. Durch die hohe technische Präzision der Hirthverzahnung fallen sehr hohe Fertigungskosten an. Daher ist diese Variante für dieses Konstruktion ungeeignet.

Die Variante "Schweißen"; Hierbei wird der Flansch auf die Welle geschweißt. Der Vorteil dieser Variante sind die geringen Kosten der Konstruktion. Auch die Stelle an der der Flansch aufgeschweißt wird ist bis zur endgültigen Positionierung veränderbar. Der große Nachteil dieser Konstruktion ist jedoch, dass durch die Wärmespannungen, die während des Schweißens auftreten, der Flansch verzogen werden kann und dadurch dieser nicht mehr normal auf die Welle steht. Der größte Nachteil liegt jedoch in der schlechten Schweißbarkeit des vorgesehenen Vergütungsstahls 42CrMo4. Daher muss ein gut schweißbarer Stahl verwendet (15CrMoV6). Durch die geringere Festigkeit des Werkstoffes erhöht sich das Gewicht der Welle bzw. des Flansches um etwa 15% gegenüber des vorher gewählten Werkstoffs (42CrMo4).

Bei der Variante "Gießen" wird die Welle inklusive des Flanschs gegossen. Dadurch ergibt sich ein, im Gegensatz zu den anderen Varianten, eine gute freie Gestaltung und damit ein idealer Kraftfluss zwischen dem Flansch und der Welle. Jedoch ist die Festigkeit einer gegossenen Welle mit dem gleichen Werkstoff, bei den angewandten Durchmessern, um mindestens 30% geringer als bei einer geschmiedeten Welle. Aus diesen Gründen muss die Welle wesentlich größer dimensioniert werden. Dadurch ist das Gewicht der Welle inklusive des Flansches gegenüber einer geschmiedeten Welle um etwa 15% größer. Weiters befindet sich eine kritische Zone direkt am Übergang Flansch - Welle, in der sich Lunker bilden und andere Gießfehler auftreten können. Jedoch ist eine gegossene Version um etwa die Hälfte billiger als eine Geschmiedete.

Bei der Variante "Aufschrumpfen" wird der Flansch auf die Welle geschrumpft. Das Gewicht ist gegenüber den anderen Varianten am geringsten, da eine geschmiedete Welle und ein geschmiedeter Flansch aus dem gleichen Werkstoff (42CrMo4) verbunden werden. Sowohl der Ein- als auch der Ausbau der Welle – Flanschverbindung ist wie bei den vorherigen zwei Varianten sehr einfach. Ein Nachteil ist jedoch der Kostenfaktor der Konstruktion, da laut [17] eine geschmiedete Welle mindestens um das doppelte teurer ist als eine gegossene Welle.

Alle vorher erklärten Varianten wurden in dem Kapitel Variantenfindung verglichen und gegeneinander abgewogen. Es wurde eine genauere Betrachtung der besten 3 Varianten durchgeführt, um zu der besten Variante zu gelangen. Es wurde herausgefunden, dass die Varianten "Aufschrumpfen" am besten ist. Diese Variante wurde berechnet und konstruiert.

Mit Hilfe von Berechnungs- und Simulationsprogrammen wurde das primäre Ziel dieser Arbeit, die Gewichtsoptimierung des Schaufelrades und dessen Komponenten, erfüllt. Durch die Verwendung eines Einscheibenrades wurde das Gewicht des Schaufelrades um einen großen Teil verringert. Laut Erfahrungswerten von bisherigen Konstruktionen mit gleichen Anforderungen und Dimensionen, wurde das Gesamtgewicht des Schaufelrades, exklusive des Getriebes, um mindestens 35% vermindert. Auch das Ziel mit der Verminderung des Bauraumes wurde mit dieser Konstruktion erreicht.

10 Verzeichnisse

10.1 Abbildungsverzeichnis

Abb.1: Grundaufbau eines Umschlagplatzes	12
Abb.2: Schaufelradrücklader	13
Abb.4 : Arbeitsweise des Rückladegerätes	15
Abb.5: Grundaufbau einer Längshalde	16
Abb.6: Mischbettsysteme	17
Abb.7: Chevronmethode	18
Abb.8: Windrowmethode	19
Abb.9: Übersicht des Schaufelradrückladers	20
Abb.10 : Portal mit unsymmetrischer Dreipunktabstützung	21
Abb.11: Fahrgestell	22
Abb.12: Schema der Schienenfahrwerke mit einer Dreipunktabstützung	23
Abb.13: Drehdeck	23
Abb.14: Gegengewichtsausleger	24
Abb.15: Schaufelradausleger	25
Abb.16: Schaufelrad mit Zellen	27
Abb.17 : Halbzellenrad	28
Abb.18 : Zellenloses Schaufelrad	29
Abb.19: Schaufelradtypen und deren Eigenschaften	30
Abb.20: Trapezförmige Schaufel	31
Abb.21: Kreisförmige Schaufel	31
Abb.22: Frontansicht der Schaufel eines Schaufelradbaggers	33
Abb.23: Schaufelkomponenten	33

Abb.24: Aufgesteckter Zahn	34
Abb.25: Werkstoffe und Standzeiten von Schaufelzähnen	35
Abb.26.: Härtevergleichstabelle	36
Abb.27: Schaufelbefestigung am Schaufelradkörper	37
Abb.28: Schaufelradbefestigung bei drehbaren Schaufeln	37
Abb.29 : Füllgrad bei verschiedenen Schaufelradtypen	38
Abb.30: Schaufelradkörper	40
Abb.31: Doppelwandiger Schaufelradkörper	41
Abb.32: Aufbau eines Speichenrades	43
Abb.33: Einwandiges Konusrad	45
Abb.34: Teilung des Schaufelradkörpers für den Transport	46
Abb.35: Schraubverbindung des Schaufelrades mit der Schaufelradwelle	47
Abb.36: Anordnung von Schaufelrad und Getriebe zwischen den Lager Schaufelradwelle	n der
Abb.37: Anordnung des Schaufelrades zwischen den Lagern der Schaufelrad	iwelle
Abb.38: Anordnung von Schaufelrad und Schaufelradgetriebe außerhalb der	Lager
Abb.39: Flanschverbindung von Schaufelradwelle und Getriebe	55
Abb.40: Verbindung von Schaufelradwelle und -getriebe durch Aufpressen	56
Abb.41: Keilwellenverbindung zwischen Großrad und Schaufelradwelle	57
Abb.42: Flanschverbindung zwischen Schaufelradwelle und Getriebegroßrad.	58
Abb.43: Stellung des Schaufelrades zum Schaufelradausleger	60
Abb.44: Das Vorgehen bei der Konstruktion neuer technischer Produkte gem	äß der
VDI–Richtlinie 2221	62
Tab.1: Phasen des Entwicklungsprozesses	62

Abb.45: Formblatt mit Auswahlkriterien (Ausschnitt) nach [Pahl, Beitz 1993	8 (1)] 64
Abb.46: Paarvergleich von 7 Lösungen $(1 = besser, 0 = nicht besser, - bewertet)$	= nicht
Tab.2: Gewichtigkeit mit der Konkurrenzbewertung	
Tab.3: Gewichtungsfaktoren	69
Abb.47: gängige Schrumpfscheibenkonstruktion	
Abb.48: Skizze einer Schrumpfscheibenverbindung	
Abb.49: Variante Hirthverzahnung	
Abb.50: Variante Schweißen	
Abb.51: Schaeffler-Diagramm mit Angabe der Gefügebereiche und den me	öglichen
Fehlern, die beim Schweißen auftreten können.	
Abb.52: Variante Gießen	
Abb.53: Variante Aufschrumpfen	
Tab.4: Notenschlüssel	
Tab.5: Varianten	
Tab.6: Variantenvergleich	
Abb.54: Kräfte und Momente des Schaufelrads	
Abb.55: Hauptabmessungen der Konstruktion	80
Abb.56: Gesamtansicht des Schaufelrades mit Komponenten	
Abb.57: Allgemeiner Festigkeitsnachweis (Berechnungsalgorithmus)	
Abb.58: Spannungskomponenten	
Abb.59: Mohrscher Spannungskreis, 2-dimensional	
Abb.60: Grundbeanspruchungen	
Abb.61: Supperposition von Normalspannungen und Schubspannungen	
Abb.62: Dynamische Belastungsarten	

10.2 Literaturnachweis

 [1] Günter Kunze, Helmut Göhring, Klaus Jacob: Baumaschinen – Erdbau- und Tagebaumaschinen, 1. Auflage, Vieweg & Sohn Verlagsgesellschaft 2002. ISBN 3-528-06628-8

[2] W. Durst, W. Vogt: Schaufelradbagger, Trans Tech Publications 1986. ISBN 0-87849-057-4

[3] R. H. Wölbier: Stacking Blending Reclaiming of Bulk Materials, Trans Tech Publications 1977. ISBN 0-87849-018-3

[4] Heinz-Herbert Cohrs, Rainer Oberdrevermann: Giganten im Erd- und Tagebau,1. Auflage, Motorbuch Verlag 2004. ISBN 3-613-02395-4

[5] F. Kurth: Fördertechnik – Tagebaugroßgeräte und Universalbagger, VEB Verlag Technik Berlin 1971

[6] Stahlbau Handbuch Band 2, Teil A, Sonderdruck, Stahlbau-Verlags GmbH, Köln, 1987

[7] J. F. Rodenberg, F. R. Germany: Continuous Surface Mining, 1998

[8] Ludwig Rasper: Der Schaufelradbagger als Gewinnungsgerät, 1. Auflage, Trans Tech Publications 1973, ISBN 3-87849-008-6

[9] Ludwig Rasper: The Bucket Wheel Excavator – Development, Design, Application, 1.Auflage, Trans Tech Publications 1975, ISBN 0-87849-012-4

[10] A. Doetsch: Vorlesungsunterlagen zu Gewinnungsmaschinen, Institut fürFördertechnik und Konstruktionslehre der Montanuniversität Leoben im WS 07/08

[11] Rasper: Der Schafelradbagger als Gewinnungsgerät, Trans Tech Publications1973, 1. Auflage

[12] Spachtholz: Untersuchung der Einsetzbarkeit eines kontinuierlichen Gewinnungssystems für Festgesteinstagebaue, TU Aachen, 1995

[13] Kessler: Vorlesungsunterlagen zu Konstruktionslehre, Institut fürFördertechnik und Konstruktionslehre der Montanuniversität Leoben im WS 05/06

[14] Kessler: Vorlesungsunterlagen zu stetige Fördersysteme, Institut fürFördertechnik und Konstruktionslehre der Montanuniversität Leoben im WS 05/06

[15] Kessler: Vorlesungsunterlagen zu unstetige Fördersysteme, Institut fürFördertechnik und Konstruktionslehre der Montanuniversität Leoben im WS 04/05

[16] VDI – Richtlinie, Methodik zum Entwickeln und Konstruieren technischer Systeme und Produkte, 1993 – 05

[17] Buchmayer: Vorlesungsunterlagen zu Umformtechnik und –maschinen I undII, Lehrstuhl für Umformtechnik, 06/07

[18] Roloff/Matek, Maschinenelemente Lehrbuch +Tabellenbuch, 18. Auflage, Vieweg, 2007

[19] Dubbel - Taschenbuch f
ür den Maschinenbau Taschenbuch f
ür den Maschinenbau, 21. Auflage, Springer-Verlag GmbH, 2004

Anhang A

Berechnungen

	Studien	/ersion	
rogramm : MDESIGN	Benutzer :	Kunde :	
Iodulversion : 11.0.3e	Datum : 22.02.2009	Proj. Nr :	
	MDESIGN sha	aft, DIN 743	
Das vorliegende Programm gestattet Ausgabe Oktober 2000. Der Nachweis der Tragfähigkeit für W in die Sicherheit gegen Dauerbruch (f	den Tragfähigkeitsnachweis für Welk /ellen und Achsen erfolgt durch die E Ermüdungs- oder Schwingungsbrüche	en und Achsen. Die Berechnungsgrundlage bildet o rmittlung einer rechnerischen Sicherheit. Diese Sic en) sowie bleibender Verformung (und Anriß oder	die DIN 743, cherheit teilt sich Gewaltbruch)
Bei der Berechnung des Vermeidens v Diese ergeben sich aus den vorgegeb Sicherheit gegen Fließen, ist nur die r maximalen Belastungen.	von Dauerbrüchen werden konstante enen Belastungen. Bei dem Nachwei naximal auftretende Beanspruchung	schädigungsäquivalente Spannungsamplituden zu s gegen bleibende Verformung bzw. Gewaltbruch, maßgebend. Diese wiederum ergibt sich aus den	ıgrunde gelegt. . bezeichnet mit vorgegebenen
Die Berechnung der Sicherheiten, bez berechenbare Kerbformen über eine g	tieht sich ausschließlich auf den Ort e grafische Auswahl zur Verfügung.	einer ausgeprägten Kerbwirkung. Es stehen hierzu	grundsätzlich 9
Der Anwendungsbereich ist auf Stähle vorliegende Programm gilt hierfür alle	e begrenzt. Geschweißte Bauteile sind erdings nicht!	d gesondert nachzurechnen. Die verwendete Norm	n bzw. das
Die Berechnungsgrundlage für das Mo von Wellen und Achsen" dar.	odul Wellenberechnung stellt die DIN	l 743, Ausgabe Oktober 2000 Teil 1-3 "Tragfähigk	eitsberechnung
Eingabedaten:			
<u>Eingabedaten:</u> Welle	enberechnung in Anlehnung an D	DIN 743 - erweiterte Version	
Eingabedaten: Welle Geometrieschema	enberechnung in Anlehnung an D	DIN 743 - erweiterte Version gesamte Wellen	geometrie
Eingabedaten: Welle Geometrieschema Berechnungsgang	enberechnung in Anlehnung an D	PIN 743 - erweiterte Version gesamte Wellen dynamischer und Festigkeitsnachv	geometrie d statischer veis
Eingabedaten: Welle Geometrieschema Berechnungsgang Beanspruchungsart Zug-Druck Beanspruchungsart Biegung Beanspruchungsart Torsion	enberechnung in Anlehnung an D	PIN 743 - erweiterte Version gesamte Wellen dynamischer und Festigkeitsnachv dynamisch rein dynamisch rein dynamisch rein	geometrie d statischer veis wechselnd wechselnd wechselnd
Eingabedaten: Welle Geometrieschema Berechnungsgang Beanspruchungsart Zug-Druck Beanspruchungsart Biegung Beanspruchungsart Torsion Faktor für Maximallast (Zug-Druck) Faktor für Maximallast (Biegung) Faktor für Maximallast (Torsion)	enberechnung in Anlehnung an D	PIN 743 - erweiterte Version gesamte Wellen dynamischer um Festigkeitsnachv dynamisch rein dynamisch rein dynamisch rein 1.5 1.5 2	geometrie d statischer veis wechselnd wechselnd wechselnd
Eingabedaten: Wella Geometrieschema Berechnungsgang Beanspruchungsart Zug-Druck Beanspruchungsart Biegung Beanspruchungsart Torsion Faktor für Maximallast (Zug-Druck) Faktor für Maximallast (Diegung) Faktor für Maximallast (Torsion) Angaben zum Werkstoff Festigkeitswerte nach Werkstoffhummer	enberechnung in Anlehnung an D	PIN 743 - erweiterte Version gesamte Wellen dynamischer und Festigkeitsnachv dynamisch rein v dynamisch rein v dynamisch rein v 1.5 1.5 2 eigene Vorgabe 42CrMc 1.7225	geometrie d statischer veis wechselnd wechselnd wechselnd
Eingabedaten: welle Geometrieschema eenspruchungsgang Berechnungsgang eanspruchungsart Zug-Druck Beanspruchungsart Biegung Beanspruchungsart Torsion Faktor für Maximallast (Zug-Druck) Faktor für Maximallast (Biegung) Faktor für Maximallast (Torsion) Faktor stür Maximallast (Torsion) Angaben zum Werkstoff Festigkeitswerte nach Werkstofffnummer Bezugsdurchmesser	enberechnung in Anlehnung an D	PIN 743 - erweiterte Version gesamte Wellen dynamischer um Festigkeitsnachv dynamisch rein v dynamisch rein v dyna	geometrie d statischer veis wechselnd wechselnd wechselnd
Eingabedaten: Wella Geometrieschema Berechnungsgang Beanspruchungsart Zug-Druck Beanspruchungsart Biegung Beanspruchungsart Torsion Faktor für Maximallast (Zug-Druck) Faktor für Maximallast (Biegung) Faktor für Maximallast (Torsion) Fagaben zum Werkstoff Pestigkeitswerte nach Werkstoffbezeichnung Werkstoffnummer Bezugsdurchmesser Für den Bezugsdurchmesser Zugfestigkeit Streckgrenze Biege-Wechselfestigkeit Zug-Druck-Wechselfestigkeit rosions-Wechselfestigkeit	enberechnung in Anlehnung an D	pIN 743 - erweiterte Version gesamte Wellen dynamischer um Festigkeitsnachv dynamisch rein v dynamisch rein v dyn	geometrie d statischer veis wechselnd wechselnd wechselnd of mm N/mm ² N/mm ² N/mm ² N/mm ² N/mm ² N/mm ²
Eingabedaten: Wella Geometrieschema Berechnungsgang Beanspruchungsart Zug-Druck Beanspruchungsart Biegung Beanspruchungsart Torsion Faktor für Maximallast (Zug-Druck) Faktor für Maximallast (Torsion) Faktor für Maximallast (Torsion) Bezugsdurchmesser Für den Bezugsdurchmesser Zugfestigkeit Streckgrenze Biege-Wechselfestigkeit Zug-Druck-Wechselfestigkeit Zug-Druck-Wechselfestigkeit Jorsions-Wechselfestigkeit Schubmodul Dichte	enberechnung in Anlehnung an D	PIN 743 - erweiterte Version gesamte Wellen dynamischer um Festigkeitsnachv dynamisch rein v dynamisch rein v dyn	geometrie d statischer veis wechselnd wechselnd wechselnd of M/mm ² N/mm ² N/mm ² N/mm ² N/mm ² N/mm ² N/mm ² N/mm ²

	Studienversion	
Programm : MDESIGN	Benutzer :	Kunde :
Modulversion : 11.0.3e	Datum : 22.02.2009	Proj. Nr :
	MDESIGN shaft, DIN 743	
Werkstoffgruppe Wärmebehandlung Oberflächenverfestigung		Vergütungsstähle vergütet nein
<u>Wellengeometrie</u>		
Wellengeometrie		

Nr.	Dal	DII	Da r	Dir	L	Rz	r	d:	t:	ασzd:	ασb:	ατ t :	nzd:	nb:	nt:	βσzα	βσbd	βταΒ	dBK:
	mm	mm	mm	mm	mm	μm	mm	mm	mm							dBK:	BK:	K:	1
1	500	240	500	240	1204	25	0	0	0	0	0	0	0	0	0	0	0	0	0
2	500	240	500	240	200	25	0	0	0	0	0	0	0	0	0	2.3	2.3	1.4	40
3	500	240	500	240	400	25	0	0	0	0	0	0	0	0	0	0	0	0	0
4	500	240	430	270	275	25	0	0	0	0	0	0	0	0	0	0	0	0	0
5	430	270	430	270	650	25	0	0	0	0	0	0	0	0	0	2.3	2.3	1.4	40
6	430	270	340	270	175	25	0	0	0	0	0	0	0	0	0	0	0	0	0
7	340	270	340	270	250	25	0	0	0	0	0	0	0	0	0	0	0	0	0

Berechnung der Durchbiegung für Stelle	x = 2354	mm
Drehzahl der Welle	n : 6.17	1/min
Berücksichtigung Eigengewicht	Ja	

Lager

Nr.	Typ =	Position x =
		mm
1	Loslager	1504
2	Festlager <>	2954

Angaben zu den Belastungen

Axialkräfte Fax

Nr.	Position x =	Betrag =	Radius =	Winkel $\alpha =$
	mm	N	mm	0
1	2354	79583	5100	0

Radialkräfte Fr

Nr.	Position x =	Betrag =	Winkel α =
	mm	N	0
1	0	-578000	360
2	2354	-100170	360

			Studienversion			
rogramm : MDES	IGN	Benutzer	:		Kunde :	
odulversion : 11.0.3	le	Datum	: 22.02.2009		Proj. Nr :	
		MDE	SIGN shaft, DIN	N 743		
Torsion						
Nr.	Position x	=	Torsionsmomente Mt:	Leistung F):	Übertragungsglied =
1	2354		976000	0		Abtrieb
2	0		976000	0		Antrieb
Mindestsicherheit gege Mindestsicherheit gege	en Dauerbruch en bleibende Verform	ung			SDmin SFmin	= 1.5 = 1.2
	z	Y	Koordinatensys	tem		
	Z	Y	Koordinatensys	tem	0° 90° 180	270°
	Z	Y	Koordinatensys	tem	0° 90° 180	270° °
	Z	Y	Koordinatensys	tem	0° 90° 180	270° °
	Z	Y (Koordinatensys	tem	0° 90° 180	270° •

Ì

				Stud	ienv	version					
rogramm	: MDESIGN		Benutze	er :			Kunde	:			
lodulversi	on : 11.0.3e		Datum	: 22.02	.2009)	Proj. N	lr :			
			MD	ESIGN	sha	aft, DIN 74	3				
Ergebnis	ise:										
Berechn	ungsgang:				dynan	nischer und statisc	her Festigkeits	nachweis			
Gesamtlä Gesamtm	nge der Welle asse der Welle			L	I	= 3154.00 = 2993.51	0 mm 3 kg	-			
Massentra	agheitsmoment dei sches Trägheitsmo	^r Welle ment der Wel	ام	J		= 109./196 = 1357748.2	o/ kgm 49 cm4	2			
Position d	les Schwerpunktes	auf der X-Ach	ise	XS	5	= 1337740.2 = 1314.22	1 mm				
Verdrehw	inkel der Welle			φ		= 0.320	0				
Zusätzlio	che Wellendaten	:	•								
weil	enabsatznr.	I	1p	Wt cm ³		m	J kam²	I		WD cm ³	
	1	1204.0	5 810e+005	2 3240+	004	1428 207	54 9146	2 905e	+005	1 162e+004	
	2	200.0	5.810e+005	2.32101	001	237 244	9 1220	2.905e	+005	1.102c+001	
	3	400.0	5.810e+005	2.324e+	004	474.487	18.2440	2.905e	+005	1.162e+004	
	4	275.0	4.307e+005	1.840e+	004	256.921	9.1035	2.153e	+005	9200.869	
	5	650.0	2.835e+005	1.318e+	004	448.839	14.4638	1.417e	+005	6592.230	
	6	175.0	1.793e+005	9149.7	45	81.999	2.3210	8.963e	+004	4574.873	
	7	250.0	7.902e+004	4648.2	58	65.815	1.5508	3.951e	+004	2324.129	
Lagerrea	aktionskräfte:										
Nr	Тур	Position	Radialkraf	t Y-Achse	Rad	lialkraft Z-Achse	Result. Ra	dialkraft	Axia	lkraft X-Achse	
		x	Ry	/		Rz	R		Rax		
		mm	N	1 700		<u>N</u>	N	700		N	
1	Loslager	1504.000	97275	4./00		0.000	972754	1./00		0.000	
2	⊢estlager <>	2954.000	-2.6426	+005		0.000	264157	.5/3	-79583.000		

х	=	1504.000	mm
Mbmax	=	882473.315	Nm
Х	=	0.000	mm
Mtmax	=	976000.000	Nm
Х	=	2354.000	mm
Fzdmax	=	-79583.000	N
Х	=	2954.000	mm
σzdmax	=	-2.373	N/mm²
x	=	2079.000	mm
σbmax	=	101.252	N/mm²
		2254 000	
x	=	2354.000	mm
τtmax	=	/4.02/	N/mm²
×	_	0.000	mm
vmax	_	2 559169	mm
ymux		2.555105	
x	=	0.000	mm
Θ	=	0.117633	0
0		0122/000	
х	=	2079.000	mm
Sf	=	1.717	
	x Mbmax x Fzdmax x σzdmax x σbmax x τtmax x τtmax x ymax x Θ x	$\begin{array}{c} x & = \\ Mbmax & = \\ Mtmax & = \\ Mtmax & = \\ r \\ T \\ r \\ r$	x=1504.000 882473.315X=0.000 976000.000X=2354.000 -79583.000x=2954.000 -2.373x=2079.000 101.252x=2079.000 rtmaxx=2354.000 rtmaxx=2079.000 0.11252x=0.000 2.559169x=0.000 0.117633x=0.000 0.117633x=2079.000 1.717

			Stu	dienvers	sion				
rogramm	ו : MDESIGN	Benut	zer :			Kun	de :		
odulvers	sion : 11.0.3e	Datur	n :22.0	2,2009		Proi	.Nr :		
		М	DESIG	N shaft,	DIN 74	3			
Positic	DN			x =	1404.00	0 m	ım		
Betrag)			Sd =	1.587				
Werkst	off-Kenndaten für			deff =	500.000) m	IM		
Werksto	ffbezeichnung				42C	rMo4			
VVErKSto	akeit			σB =	1.72 900 000	225) N	/mm²		
Streckgr	enze			σS =	500.000	D N	/mm²		
Zug-Dru	ck-Wechselfestigkeit			σzdW =	340.000	N C	/mm²		
Biege-W	/echselfestigkeit			σbW =	450.000	D N	/mm² /mm²		
tech Gri	-wechselfestigkelt ößeneinflußfaktor (Zugfestigkeit)			τινν = K1Bdeff =	230.000	J N	/11111114		
tech. Gr	ößeneinflußfaktor (Streckgrenze)			K1Sdeff =	1.000				
Zug-Dru	eter der Querscnnitte: Ick Kraft Fzd und Zug/Druck Spanni	una o zd							
Nr	Тур	Position	Result.	Amplitude	Mittel	Maximal	Amplitude	Mittel	Maximal
		x	Fzdx	Fzda	Fzdm	Fzdmax	σ zda	σ zdm	σ zdmax
1	Poputzordofiniarta Karbform	1404	N	N	N	N	N/mm ²	N/mm ²	N/mm ²
2	Benutzerdefinierte Kerbform	2729	-79583.00	-79583.00	0.000	-119374.5	-0.905	0.000	-1.357
	(konisch)		0	0					
3	Berechnungsergebnisse für Stelle x	2354	-79583.00 0	-79583.00 0	0.000	-119374.5	-0.905	0.000	-1.357
	and the state of t						·]
Biegemo	oment Mb und Biegespannung σb Typ	Position	Pocult	Amplitudo	Mittol	Maximal	Amplitudo	Mittol	Maximal
	'YP	x mm	Mbx Nm	Mba Nm	Mbm Nm	Mbmax Nm	σ ba N/mm ²	σ bm N/mm ²	σ bmax N/mm ²
1	Benutzerdefinierte Kerbform	1404	822981.32 4	822981.32 4	0.000	1.234e+00 6	70.822	0.000	106.233
2	Benutzerdefinierte Kerbform (konisch)	2729	59732.87 6	59732.87 6	0.000	89599.31 4	9.061	0.000	13.592
3	Berechnungsergebnisse für Stelle x	2354	565828.22 8	565828.22 8	0.000	848742.34 2	85.833	0.000	128.749
Torsions	moment Mt und Torsionssnannung	τt							
Nr	Тур	Position	Result.	Amplitude	Mittel	Maximal	Amplitude	Mittel	Maximal
		x	Mtx	Mta	Mtm	Mtmax	τta	τtm	τtmax
1	Renutzerdefinierte Korbform	1404	Nm	Nm	Nm 0.000	Nm	N/mm ²	N/mm ²	N/mm ²
1		1404	0.00	0	0.000	1992000	CCCC.17	0.000	05.550
1		2729	0.000	0.000	0.000	0.000	0.000	0.000	0.000
1 2	Benutzerdefinierte Kerbform			1		1052000	74 027	0.000	148 052
1 2	Benutzerdefinierte Kerbform (konisch)	2254	976000 00	976000 00	0 000	195 //////			1 70 (1)
1 2 3	Benutzerdefinierte Kerbform (konisch) Berechnungsergebnisse für Stelle x	2354	976000.00 0	976000.00 0	0.000	1952000	74.027	0.000	1101055
1 2 3 Berecht	Benutzerdefinierte Kerbform (konisch) Berechnungsergebnisse für Stelle x nungsergebnisse für Stelle	2354	976000.00 0	976000.00 0 x =	0.000	0 m	im	0.000	1101000
1 2 3 Berecht	Benutzerdefinierte Kerbform (konisch) Berechnungsergebnisse für Stelle x nungsergebnisse für Stelle	2354	976000.00 0	976000.00 0 x =	0.000 2354.00 268528 9	0 m	Im	0.000	1101000
1 2 3 Berechi Querkraf Durchbie	Benutzerdefinierte Kerbform (konisch) Berechnungsergebnisse für Stelle x nungsergebnisse für Stelle ftverlauf egung	2354	976000.00 0	976000.00 0 x = Qx = yx =	0.000 2354.00 268528.9 0.30902	1952000 0 m 34 N 8 m	Im	0.000	

Ś

gramm : MDESIGN	Benutzer :	Kunde :
odulversion : 11.0.3e	Datum : 22.02.2009	Proj. Nr :
	MDESIGN shaft, DIN	743
Biegekritische Drehzahlen	kritische Drehzahlen	Eigenfrequenzen
Biegekritische Drehzahlen Nr	kritische Drehzahlen nb	Eigenfrequenzen ω
Biegekritische Drehzahlen Nr	kritische Drehzahlen nb 1/min	Eigenfrequenzen ω rad/s
Biegekritische Drehzahlen Nr 1	kritische Drehzahlen nb 1/min 6502.8	Eigenfrequenzen ω rad/s 681.0
Biegekritische Drehzahlen Nr 1 2	kritische Drehzahlen nb 1/min 6502.8 36124.8	Eigenfrequenzen ω rad/s 681.0 3783.0
Biegekritische Drehzahlen Nr 1 2 3	kritische Drehzahlen nb 1/min 6502.8 36124.8 56387.3	Eigenfrequenzen ω rad/s 681.0 3783.0 5904.9
Biegekritische Drehzahlen Nr 1 2 3 4	kritische Drehzahlen nb 1/min 6502.8 36124.8 56387.3 112650.8	Eigenfrequenzen ω rad/s 681.0 3783.0 5904.9 11796.8
Biegekritische Drehzahlen Nr 1 2 3 4 5	kritische Drehzahlen nb 1/min 6502.8 36124.8 56387.3 112650.8 151682.9	Eigenfrequenzen ω rad/s 681.0 3783.0 5904.9 11796.8 15884.2
Biegekritische Drehzahlen Nr 1 2 3 4 5 6	kritische Drehzahlen nb 1/min 6502.8 36124.8 56387.3 112650.8 151682.9 355250.8	Eigenfrequenzen ω rad/s 681.0 3783.0 5904.9 11796.8 15884.2 37201.8

Torsionkritische Drehzahlen

8

Nr	kritische Drehzahlen	Eigenfrequenzen
	nb	ω
	1/min	rad/s
1	36742.9	3847.7
2	62136.2	6506.9
3	93257.0	9765.8
4	116277.6	12176.6
5	132305.7	13855.0
6	145919.7	15280.7
7	154395.6	16168.3

1577640.5

Festigkeitsnachweis:

K2(d) - Geometrischer Größeneinflußfaktor KF - Einflußfaktor der Oberflächenrauheit

ασ, τ - Formzahlen

Nr	Тур	Position	ZD.	Biegung	ZD.,	Torsion	ZD.	Biegung	Torsion
		x	K2(d)	und	Biegung	KFτ	ασ zd	ασb	ατ
		mm		Torsion	ΚϜϭ				
				K2(a)					
1	Benutzerdefinierte Kerbform	1404.0	1.00	0.80	0.80	0.88	-	-	-
2	Benutzerdefinierte Kerbform (konisch)	2729.0	1.00	0.80	0.80	0.88	-	-	-
3	Berechnungsergebnisse	2354.0	1.00	0.80	0.80	0.88	-	-	-
	für Stelle x								

G' - Bezogenes Spannungsgefälle

nσ, τ - Stützzahl

Nr	Тур	Position x mm	ZD. G'zd 1/mm	Biegung G'b 1/mm	Torsion G't 1/mm	ZD. nozd	Biegung nob	Torsion nτ
1	Benutzerdefinierte Kerbform	1404.0	-	-	-	-	-	-
2	Benutzerdefinierte Kerbform (konisch)	2729.0	-	-	-	-	-	-
3	Berechnungsergebnisse für Stelle x	2354.0	-	-	-	-	-	-

165210.1

Studienversion

Programm : MDESIGN

Modulversion : 11.0.3e

Datum : 22.02.2009

Benutzer :

Kunde : Proj. Nr :

MDESIGN shaft, DIN 743

 $\beta\sigma z ddBK$, $\beta\sigma bdBK$, $\beta\tau dBK - Kerbwirkungszahl bei dBK$ $<math>\beta\sigma z d$, $\beta\sigma b$, $\beta\tau$ - Kerbwirkungszahlen Ky - Einflußfaktor zur Oberflächenverfestigung

Nr	Тур	Positio	ZD.	Biegun	Torsion	ZD.	Biegun	Torsion	ZD.	Biegun	Torsion
		n	βσ zddB	g	βτ dBK	βσzd	g	βτ	Kvzd	g	Κντ
		x	K	βσ bdBK	-		βσ b	-		Kvb	
		mm									
1	Benutzerdefinierte Kerbform	1404.0	2.30	2.30	1.40	2.46	2.46	1.44	1.00	1.00	1.00
2	Benutzerdefinierte Kerbform	2729.0	2.30	2.30	1.40	2.45	2.45	1.43	1.00	1.00	1.00
	(konisch)										
3	Berechnungsergebnisse	2354.0	-	-	-	1.00	1.00	1.00	1.00	1.00	1.00
	für Stelle x										

Ko, K τ - Gesamteinflußfaktor

 $\sigma zdWK$, σbWK , τtWK - Wechselfestigkeit des gekerbten Bauteils

K2F - Statische Stützwirkung

Nr	Тур	Positio	ZD.	Biegun	Torsion	ZD.	Biege	Torsion	ZD.	Biegun	Torsion
		n	Κσ	g	Κτ	σ zdWK	σbWK	s	K2Fzd	g	K2Ft
		x		Κσ		N/mm ²	N/mm ²	τ tWK		K2Fb	
		mm						N/mm ²			
1	Benutzerdefinierte Kerbform	1404.0	2.71	3.32	1.93	125.58	135.48	119.45	1.00	1.10	1.00
2	Benutzerdefinierte Kerbform (konisch)	2729.0	2.70	3.31	1.92	126.04	135.99	119.62	1.00	1.10	1.00
S	Berechnungsergebnisse für Stelle x	2354.0	1.25	1.50	1.38	271.70	299.72	166.59	1.00	1.10	1.00

γF - Erhöhung der Fließgrenze

σzdFK, σbFK, τtFK - Bauteilfließgrenze

Nr	Тур	Position	ZD.	Biegung	Torsion	ZD.	Biegung	Torsion
		x	γFzd	γFb	γFt	σ zdFK	σ bFK	τ tFK
		mm				N/mm ²	N/mm ²	N/mm ²
1	Benutzerdefinierte Kerbform	1404.0	1.00	1.00	1.00	500.00	550.00	288.68
2	Benutzerdefinierte Kerbform (konisch)	2729.0	1.00	1.00	1.00	500.00	550.00	288.68
3	Berechnungsergebnisse	2354.0	1.00	1.00	1.00	500.00	550.00	288.68
	für Stelle x							

Statische Sicherheit

Nr	Тур	Position	Sf	in	in
		x mm		Punkt1 Sf1	Punkt2 Sf2
1	Benutzerdefinierte Kerbform	1404.0	2.86	-	-
2	Benutzerdefinierte Kerbform (konisch)	2729.0	36.46	-	-
3	Berechnungsergebnisse für Stelle x	2354.0	1.77	-	-

ψ - Einflußfaktor der Mittelspannungsempfindlichkeit

σmv, τmv - Vergleichsmittelspannung

<u></u>											
Nr	Тур	Position	ZD.	Biegung	Torsion	σmv	τ mv	σ mv1	τ mv1	σmv2	τ mv2
		x	ψ zd σK	ψ b σK	ψτΚ	N/mm ²					
		mm									
1	Benutzerdefinierte Kerbform	1404.0	-	0.08	0.07	0.00	0.00	-	-	-	-
2	Benutzerdefinierte Kerbform	2729.0	0.08	0.08	-	0.00	0.00	-	-	-	-
	(konisch)										
3	Berechnungsergebnisse	2354.0	0.18	0.20	0.10	0.00	0.00	-	-	-	-
	für Stelle x										

			St	udien	ersior/	ſ					
ogramm	: MDESIGN	Benu	utzer :				Kur	nde :			
dulversior	11.0.3e	Datu	m : 22	2.02.2009			Pro	j. Nr :			
					-						
Ausschladd	auarfactiakait dae Bautaile (Cor	taltfacticka	·i+)								
Ausschlagda Nr	auerfestigkeit des Bauteils (Ges Typ	staltfestigke Position x mm	<mark>it) ΖD.</mark> σ zdADK N/mm²	Biegung σ bADK N/mm²	Torsion τ tADK N/mm ²	ZD. in Punkt1 ozdAD K1 N/mm ²	Biegun g in Punkt1 σbADK 1 N/mm ²	Torsion in Punkt1 τtADK1 N/mm ²	ZD. in Punkt2 σzdADK 2 N/mm ²	Biegun g in Punkt2 obADK 2 N/mm ²	Torsion in Punkt2 τ tADK2 N/mm ²
Ausschlagda Nr	auerfestigkeit des Bauteils (Ges Typ Benutzerdefinierte Kerbform	staltfestigke Position x mm 1404.0	it) ZD. σ zdADK N/mm ²	Biegung σbADK N/mm ² 135.48	Torsion τtADK N/mm ² 119.45	ZD. in Punkt1 σzdAD K1 N/mm ²	Biegun g in Punkt1 obADK 1 N/mm ²	Torsion in Punkt1 τtADK1 N/mm ²	ZD. in Punkt2 σzdADK 2 N/mm ²	Biegun g in Punkt2 σbADK 2 N/mm ²	Torsion in Punkt2 τ tADK2 N/mm ²
Ausschlagda Nr 1 2	auerfestigkeit des Bauteils (Ges Typ Benutzerdefinierte Kerbform Benutzerdefinierte Kerbform (konisch)	staltfestigke Position x mm 1404.0 2729.0	it) ZD. σ zdADK N/mm ² - 126.04	Biegung σ bADK N/mm ² 135.48 135.99	Torsion τtADK N/mm ² 119.45	ZD. in Punkt1 σzdAD K1 N/mm ² - -	Biegun g in Punkt1 σbADK 1 N/mm ² -	Torsion in Punkt1 τtADK1 N/mm ² - -	ZD. in Punkt2 σzdADK 2 N/mm ² - -	Biegun g in Punkt2 obADK 2 N/mm ² -	Torsion in Punkt2 τtADK2 N/mm ² - -

Nr	Тур	Position	Sd	in	in
		x		Punkt1	Punkt2
		mm		Sd1	Sd2
1	Benutzerdefinierte Kerbform	1404.0	1.59	-	-
2	Benutzerdefinierte Kerbform (konisch)	2729.0	13.55	-	-
3	Berechnungsergebnisse	2354.0	1.89	-	-
	für Stelle x				

		Studienversion	1
Programm : MDESIGN	Benutzer	:	Kunde :
10dulversion : 11.0	Datum	: 19.02.2009	Proj. Nr :
		Wälzlager	
 Mit dem vorliegenden Programm können ra dynamische Belastungen berücksichtigt. Die Die Berechnung basiert auf folgenden Grum [1] DIN ISO 76 vom Oktober 1988; V [2] DIN ISO 281 /A2 vom September Lebensdauerbeiwert axyz. [4] DIN 623 vom Mai 1993; Wälzlage [5] DIN 51 519 vom August 1998; Sc [6] Roloff/Matek Maschinenelemente/ 2000. S. 450 bis 496 Abschnitt 14 [7] Roloff/Matek Maschinenelemente/ 2000. S. 122 bis 133 Abschnitt 14 [8] Der Schmierstoff im Wälzlager/ At PublNr. WL 81 115/4 DA. Bezog [9] Interaktiver SKF Lagerungskatalog [10] eCatalog Version 3.0 (Wälzlagerka Die Berechnung der äquivalenten Belastung den Angaben in den Katalogen des jeweilige erweiterten Lebensdauerberechnung erfolgt Die Berechnung der Gesamtlebensdauer für Folgende Lagertypen können berechnet wer Radial-Pendelkugellager, ein- und zu Schrägkugellager, ein- und zu Axial-Schrägkugellager, ein- und zu Radial-Zylinderrollenlager, ein- und zu Radial-Pendelrollenlager, ein- und Axial-Pendelrollenlager, ein- und Axial-Pendelrollenlager, ein- und Axial-Pendelrollenlager, ein- und Axial-Pendelrollenlager, ein- und Axial-Nadellager 	adiale und axiale e dynamischen B Wälzlager; Statise Wälzlager; Dynar 2001; Wälzlager er; Grundlagen; I chmierstoffe; ISO / Normung Bered 4 Wälzlager und / Tabellen; 14. A 4 Wälzlager. ufgaben der Sch en aus Internet: g Version 2.0; SI atalog auf CD-RO gen und der Lebø en Lagerherstelle t nach den Gleicl r instationäre Be erden: zweireihig eihig ig weiseitig wirkend enlager, einreihig wirkend enlager, einreihig ig d zweiseitig wirkend wirkend	Wälzlager ausgewähltund belastungen können statio che Tragzahlen. nische Tragzahlen und no ; Dynamische Tragzahl u Bezeichnung, Kennzeichn D-Viskositätsklassen für fli chnung Gestaltung; 14. A Wälzlagerungen. uuflage, Vieweg & Sohn V mierung bei Wälzlagern. www.fag.de Stand: Nov. KF 2001 Publikation 4702 DM) FAG OEM und Hande ensdauer beruht auf den v ers. Die Berücksichtigung hungen und Tabellen der lastungen erfolgt nach Ro	I nachgerechnet werden. Es werden statische und när und instationär sein. minelle Lebensdauer: nd nominelle Lebensdauer; Änderung 2; ung issige Industrie-Schmierstoffe. uflage, Vieweg & Sohn Verlagsgesellschaft mbH, Braunschw erlagsgesellschaft mbH, Braunschweig/Wiesbaden, Firmenschrift der Firma FAG OEM und Handel AG; 2001. G (CD-ROM) I AG, Schweinfurt, 2001. Sleichungen der DIN ISO 96 bzw. DIN ISO 281 und der Temperatureinflüsse und der Lagerreinheit in der Firmenschrift FAG: "Der Schmierstoff im Wälzlager". Ioff/Matek S.478 und 480.

	Studie	nversion		
Programm : MDESIGN	Benutzer :		Kunde :	
Modulversion : 11.0	Datum : 19.02.20	09	Proj. Nr :	
	Wälz	zlager		
Eingabedaten:	Wälzlag	jer		
	_			
Angaben zum Berechnungsablauf Belastungsart			dynamisch	
Umfang der Berechnung			erweitert	
Umfang der Ergebnisanzeigen			ausführlich	
Hersteller / Katalogdaten			FAG und SKF	
Lagerauswahl			Neu anfangen	
Anforderungen an die Lagerung				
Lastfälle Berücksichtigen			nein	
Radialkraft			Fr : 261192	N
AXIAIKIATI Drehzahl			Fa: 79583	N 1/min
Dienzani			11 - 0.17	1/11111
Erf. Lebensdauer			Lh erf : 100000	h
Erf. Zuverlässigkeit			Zu erf = 90	%
Erf. Sicherheit gegen stat. Belast.			S0 erf = 2	
Min. zul. Weilendurchmesser			dmin = 340 Dmax = 1000	mm
Max. zul. Lagerbreite			Bmax = 300	mm
Lagerparameter		Dadi	al Dondolrollonlagor zwoiro	ihia
Lageityp Kurzzeichen des Herstellers		Raul	ai Fendeli ollerilagei zwelle	ing
Reihe				
Äußere Form			beliebig	
Viskositätsklasse ISO			VG = 68	mm²/s
Üngebungstemperatur			tU = 20 Väl = 0	oC dm3/min
Kühlfaktor			V01 = 0 Kt = 1	um•/mm
Verunreinigungsfaktor			V1	

Ň

С	_	2250000
	_	2350000
Х	=	0.67
Y	=	4.20
Р	=	509247
ng	=	900
a1	=	1.00
a23	=	0.70
L	=	113.8
Lh	=	307446.2
+	_	21
	X Y P a1 a23 L Lh	C = X = P = ng = a1 = L = Lh = t =

Kin. Viskosität bei Betriebstemperatur

N 1/min

h °C

mm²/s

215.1

ny =

10^6 Umdr

Programm : MDESIGN Benutzer Kunde : Modulversion : 11.0 Datum : 19.02.2009 Proj. Nr : Wälzlager Reibnissting Reibleistung M = 60133 Nmm Reibleistung MR = 60133 Nmm Warrekonvektion an Umgebung QR = 39 W Wasse des Einzellagers M = 105.000 Kg Eewertung der Ergebnisses: Lh = 30746.2 h = 10000 h = Lh erf Die erreichbare Lebensdauer Lh ist größer als die geforderte Lebensdauer Lherf. Damit ist das Lager ausreichend dimensioniert. Da Da Da = 520.0 mm D = 340.0 mm B = 133.0 mm				Studienve	ersion			
Modulversion : 11.0 Datum : 19.02.2009 Proj. Nr : Wälzlager Reibmoment des Lagers Reibleistung Withleistung der Umlaufschmierung Warekorvektion an Umgebung Masse des Enzellagers M = 60133 0 W Ware des 10000 N mm m = 00133 0 W Ware des 10000 N mm Masse des Enzellagers Nmm Ware des 10000 N mm m = 105.000 Kg Bewertung der Ergebnisses: Lh = 30746.2 h >= 10000 h = th ef Die erreichbare Lebensdauer List größer als die geforderte Lebensdauer Lherf. Damit ist das Lager ausreichend dimensionier. Kurzbezeichnung des Lagers 23068CC/W33 Da = 520.0 mm D = 340.0 mm B = 133.0 mm	Programm	: MDESIGN	Benutzer	:			Kunde :	
WälzlagerRebronnent des Lagers Rebleistung Warnekonvektion an Ungebung Masse des EinzellagersM $B = 033$ $QL = 0$ $M = 105.000$ Rg Everung der Ergebnissest Die erreichbart Lebensdauer Lieft Dem reichbart Lebensdauer Lieft Lebensdauer Lieft Damit ist das Lager ausreichend dimensioniet. Kurzbezeichnung des Lagers 23068CC/W33 $I = 340.0$ $B = 133.0$ $M = 133.0$ $M = 133.0$	Aodulversion	: 11.0	Datum	: 19.02.2009			Proj. Nr :	
Reting Nume Nestedes Warmekonvektion an Umgebung Warser des EinzellagersM R e $0 = 0$ $0 = 0$ $0 = 0$ $0 = 0$ $0 = 0$ $0 = 0$ 				Wälzlag	jer			
Damit ist das Lager ausreichend dimensioniert. Kurzbezeichnung des Lagers 23068CC/W33 Da = 520.0 mm $D = 340.0 mm$ $B = 133.0 mm$	Reibmoment Reibleistung Kühlleistung Wärmekonve Masse des Ei Bewertung Lh = 307446 Die erreichba	des Lagers der Umlaufschmierung ektion an Umgebung nzellagers der Ergebnisses: 5.2 h >= 100000 h = Lh erf are Lebensdauer Lh ist größer als	die gefordert	te Lebensdauer Lh	M = QR = Qöl = QL = m =	60133 39 0 39 105.000	Nmm W W W kg	
Da = 520.0 mm $D = 340.0 mm$ $B = 133.0 mm$		Kurzbezeich	nung d	les Lagers	3230	68CC/V	V33	
B = 133.0 mm			q	Da	Da =	= 520.0	mm	
<u>B</u> B = 133.0 mm			<u>I</u>		D =	= 340.0	mm	
		В			B =	= 133.0	mm	

	Studienversion	
Programm : MDESIGN	Benutzer :	Kunde :
Nodulversion : 11.0.2	Datum : 25.08.2008	Proj. Nr :
	Wälzlager	
 Mit dem vorliegenden Programm können rad dynamische Belastungen berücksichtigt. Die Die Berechnung basiert auf folgenden Grund IIN ISO 76 vom Oktober 1988; W DIN ISO 281 /A2 vom September 2 Lebensdauerbeiwert axyz. DIN 1SO 281/A2 vom September 2 Lebensdauerbeiwert axyz. DIN 51519 vom August 1998; Sci Roloff/Matek Maschinenelemente/ 2000. S. 450 bis 496 Abschnitt 14 Roloff/Matek Maschinenelemente/ 2000. S. 450 bis 496 Abschnitt 14 Der Schmierstoff im Wälzlager/ Au PublNr. WL 81 115/4 DA. Bezoge Interaktiver SKF Lagerungskatalog eCatalog Version 3.0 (Wälzlagerkat Die Berechnung der äquivalenten Belastunger den Angaben in den Katalogen des jeweilige erweiterten Lebensdauerberechnung erfolgt Die Berechnung der Gesamtlebensdauer für Folgende Lagertypen können berechnet werd Radial-Rillenkugellager, ein- und zweirei Radial-Pendelkugellager, ein- und zweirei Radial-Pendelkugellager, ein- und zweirei Radial-Schrägkugellager, ein- und zw Axial-Schrägkugellager, ein- und zw Axial-Schrägkugellager, ein- und zweirei Radial-Zylinderrollenlager, ein- und zw Axial-Zylinderrollenlager, ein- und zw Axial-Rillenkugellager, ein- und zw Radial-Pendelrollenlager, ein- und zw Radial-Pendelrollenlager, einseitig w Tonnenlager (=Radial-Pendelroller Radial-Pendelrollenlager, einseitig w Axial-Pendelrollenlager, einseitig w Radial-Pendelrollenlager, einseitig w Radial-Nadellager 	iale und axiale Wälzlager ausgewähltund dynamischen Belastungen können station lagen älzlager; Statische Tragzahlen. Wälzlager; Entwurf; Dynamische Tragzal 001; Wälzlager; Dynamische Tragzal 101; Wälzlager; Dynamische Tragzal 101; Wälzlager; Dynamische Tragzal 101; Wälzlager; Grund mierstoffe; ISO-Viskositätsklassen für flüs Normung Berechnung Gestaltung; 14. Au Wälzlager und Wälzlagerungen. Tabellen; 14. Auflage, Vieweg & Sohn Ve Wälzlager. fgaben der Schmierung bei Wälzlagern. Fn naus Internet: www.fag.de Stand: Nov.2 Version 2.0; SKF 2001 Publikation 4702 0 calog auf CD-ROM) FAG OEM und Handel en und der Lebensdauer beruht auf den G n Lagerherstellers. Die Berücksichtigung o nach den Gleichungen und Tabellen der F instationäre Belastungen erfolgt nach Role den: weireihig hig eiseitig wirkend weiseitig wirkend d zweireihig irkend lager, einreihig) azweiseitig wirkend irkend	nachgerechnet werden. Es werden statische und är und instationär sein. hlen und nominelle Lebensdauer. d nominelle Lebensdauer; Änderung 2; llagen; Bezeichnung, Kennzeichnung. ssige Industrie-Schmierstoffe. flage, Vieweg & Sohn Verlagsgesellschaft mbH, Braunschweig rlagsgesellschaft mbH, Braunschweig/Wiesbaden, irmenschrift der Firma FAG OEM und Handel AG; 01. G (CD-ROM) AG, Schweinfurt, 2001. leichungen der DIN ISO 76 bzw. DIN ISO 281 und ter Temperatureinflüsse und der Lagerreinheit in der ärmenschrift FAG: "Der Schmierstoff im Wälzlager". off/Matek S.478 und 480.

Program : MDESIGN Benutzer : Kunde : Modulversion : 11.0.2 Datum : 25.08.2008 Proj. Nr : Wälzlager Eingabedaten: Mätzlager Angaben zum Berechnungsablauf Detstangart dynamisch erweitet ein Detstangart dynamisch erweitet ein Beschungen an die Lagerung Lagerungen an die Lagerung Lagerauswahl Frf. Lobensduer Erf. Zuverlässigkeit Frf. Sichenfeit gegen stat. Belast. Min. zul. Vergerbreite Lagertreite Max. zul. Jagertreite Lagertreite Max. zul. Jagertreite Lagertreite Max. zul. Jagertreite Lagertreite Max. zul. Jagertreite Max. Zu			Studienversion	n		
Modulversion : 11.0.2 Datum : 25.08.2008 Proj. Nr : Wälzlager Eingabedaten: Eingabedaten: Eingabed	ramm : MDESIGN	Benutzer	:	ĸ	Kunde :	
Wälzlager Eingabedaten: Wätzlager Purfang der Brechnungsabtanf Persteller (Kaulogdaten Lagerauswahl dynamisch eweitenf ausfühlen Kaulogdaten Lagerauswahl dynamisch eweitenf ausfühlen Kaulogdaten Lagerauswahl Anforderungen and Lagerung Lastfähle berücksichtigen Radiallvarit Axaialkraft Brit. zuverlässigkeit Erf. Zuverlässigkeit Min. zul. Vellebmatzbreiten Min. Zul. Zul. Zul. Zul. Zul. Zul. Zul. Zul	Ilversion : 11.0.2	Datum	: 25.08.2008	P	Proj. Nr :	
Eingabedaten: Subtagen Mangen zum Greinungsehnen Mindigen gere Berechnungsehnen Mindigen gere Berechnungsehnen Mindigen gere Berechnungsehnen Mangen gere Berechnungsehnen Mangen gere Berechnungsehnen Berechnungesten Berechnungsehnen Berechnungsehnen Berechnungsehnen Berechnungsehnen Berechnungsehnen Berechnungsehnen Berechnungsehnen Berechnungsehnen Berechnungerechnen Berechnen <td></td> <td></td> <td>Wälzlager</td> <td></td> <td></td> <td></td>			Wälzlager			
Eingapedeaten: Wälzlager Angabe zum Berechnungsablauf Belastungsart Umfang der Berechnung Umfang der Berechnung Umfang der Berechnung Umfang der Berechnung Lagerauswahl Astalkoraf Radialkraft Astalkoraft Erf. Lebensdauer Erf. Lebensdauer Erf. Lebensdauer Erf. Lebensdauer Erf. Lebensdauer Erf. Lebensdauer Erf. Lebensdauer Erf. Suverlässigkeit La eff = 00000 h Zu erf = 90 % So erf = 2 dmin = 500 mm Max. 2ul. Außendurchmesser Max. 2ul. Augerbreite Lagerparameter Lag						
Angaben zum Berechnungsablauf dynamisch Belsstungsart dynamisch Umfang der Brechnung ausführlich Hersteller / Katalogdaten ausführlich Lagerauswahl FAG und SKF Lagerauswahl Fa : 0 Axiakraft Fa : 0 Drehzahl Rein Axiakraft Fa : 0 Erf. Lebensdauer L eff : 100000 h Erf. Scherheit gegen stat. Belast. S0 eff = 2 Min. zul. Wellendurchmesser dmin = 500 mm Max. zul. Außendurchmesser Dmax = 1000 mm Max. zul. Lagerbreite Brax = 400 mm Valesdiskasses ISO V = 6.8 mm²/s Urskostätskasses ISO V = 6.8 mm²/s Ungerbungstemperatur VI = 2.0 °C Olstom bei Umadurchmesurg V = 0 dm²/n Kühflaktor VI	igabeuaten:		Wälzlager			
Parameter dynamisch Umfang der Berechnung erweitert Umfang der Ergebnisanzeigen ausfühlich Hersteller / Katalogdeten EAG und SKF Lagerauswahl Neu anfrangen Anforderungen an die Lagerung nein Radialkraft Fa : 0 N re soord Aniskraft Fa : 0 Drehzahl Neu anfrangen Erf. Lebensdauer Lh erf : 100000 h Erf. Scherheit gegen stat. Belast. So erf = 2 Min. zul. Wellendurchmesser dmin = 500 mm Max. zul. Lagerbreite Bmax = 400 mm Lagerbraneter Lagerbreite Lagerbraiter So eff = 2 Viskostitätskalsse ISO VG = 68 mm³/s Viskostitätskalsase ISO VG = 68 mm³/s Viskostitätskalsase ISO VG = 0 dm³/m Viskostitätskalsase ISO VI Verunreinigungsfaktor V1	aabon zum Berechnungsablauf					
Lastfile bericksichtigen nein rein Radialkraft Axialkraft r: 960535 N Drehzahl n = 6.17 I/min Erf. Lebensdauer Lh erf : 100000 h Erf. Scherheit gegen stat. Belast. 2u erf = 90 % Min. zul. Wellendurchmesser dmin = 500 mm Max. zul. Außendurchmesser dmin = 500 mm Max. zul. Lagerbreite Dmax = 1000 mm Lagerbrameter Lagerbreite Bmax = 400 mm Kurzzeichen des Herstellers Radial Pendelrollenlager zweireihig Kurzzeichen des Herstellers Riehe Außere Forn normal mm²/s Vingebungstemperatur VG = 68 mm²/s Vimgebungstemperatur VG = 0 dm³/m Verunreinigungsfaktor v1 2	lastungsart nfang der Berechnung nfang der Ergebnisanzeigen rsteller / Katalogdaten gerauswahl				dynamisch erweitert ausführlich FAG und SKF Neu anfangen	
Lastfälle berücksichtigen Radialkraft Radialkraft Radialkraft Radialkraft Radialkraft Radialkraft Reis0535 N Fa:0 N r=260535 N Fa:0 N r=6.17 I/min r=6.17 I/min Fr: Lebensdauer Lh ef: 100000 h Zu eff = 90 % Eff. Sicherheit gegen stat. Belast. S0 eff = 2 Min. zul. Wellendurchnesser Mnax. zul. Außendurchnesser Max. zul. Außendurchnesser Radial Pendelrollenlager zweireihig Kurzzeichen des Herstellers Reihe Außere Form VG = 68 mm²/s Umgebungstemperatur Olstrom bei Umlaufschmierung Kühlfaktor VI	forderungen an die Lagerung					
Adalkraft P. 2000 N Drehzahl F. 2000 N Drehzahl F. 2000 h Erf. Sicherheit gegen stat. Belast. Erf. Sicherheit gegen stat. Belast. Min. zul. Wellendurchmesser Max. zul. Außendurchmesser Max. zul. Außendurchmesse	stfälle berücksichtigen dialkraft				nein Fr : 960535	N
Drehzahl n = 6.17 1/min Erf. Lebensdauer Lh erf : 100000 h F.f. Sicherheit gegen stat. Belast. S0 erf = 2 % Min. zul. Wellendurchmesser Mamma Mamma Max. zul. Lagerbreite Bmax = 400 mm Lagertyp Radial Pendelrollenlager zweireihig Kurzzeichen des Herstellers Reihe Außere Form Normal Viskositätsklasse ISO VG = 68 mm²/s Umgebungstemperatur U = 20 °C Ölstrom bei Umlaufschmierung Vi = 0 dm³/n Kühfaktor V1 VI	ialkraft				Fa : 0	N
Erf. Lebensdauer Erf. Zuverlässigkeit Erf. Sicherheit gegen stat. Belast. Kin. zul. Wellendurchmesser Max. zul. Außendurchmesser Max. zul. Lagerbreite Lagerbrameter Lagertyp Kurzzeichen des Herstellers Reihe Außere Form VG = 68 mm²/s Umgebungstemperatur Ölstorm bei Umlaufschmierung Kühlfaktor Verunreinigungsfaktor VI	ehzahl				n = 6.17	1/min
Erf. Zuverlässigkeit Zu verf = 90 % Erf. Sicherheit gegen stat. Belast. Kin. zul. Wellendurchmesser Max. zul. Außendurchmesser Max. zul. Lagerbreite Dmax = 1000 mm Max. zul. Lagerbreite Brax = 400 mm Lagerparameter Lagertyp Radial Pendelrollenlager zweireihig Kurzzeichen des Herstellers Reihe Außere Form VG = 68 mm²/s Umgebungstemperatur Oistrom bei Umlaufschmierung Kühlfaktor VG = 68 mm²/s Verunreinigungsfaktor VI	. Lebensdauer				Lh erf : 100000	h
Err. Sicherneit gegen stat. Belast. Min. zul. Wellendurchmesser Max. zul. Außendurchmesser Max. zul. Lagerbreite Lagerparameter Lagertyp Kurzzeichen des Herstellers Reihe Àußere Form Viskositätsklasse ISO Umgebungstemperatur Ölstrom bei Umlaufschmierung Kühlfaktor Verunreinigungsfaktor So err = 2 dmin = 500 mm Dmax = 1000 mm Bmax = 400 mm Bmax = 400 mm Max. zul. Lagerbreite Radial Pendelrollenlager zweireihig VG = 68 mm²/s U = 20 °C Ölstrom bei Umlaufschmierung Kühlfaktor Voil = 0 dm³/m V1	. Zuverlässigkeit				Zu erf = 90	%
Max. zul. Außendurchmesser Max. zul. Lagerbreite Lagerparameter Lagerparameter Lagerparameter Lagerparameter Lagerparameter Ruizeichen des Herstellers Reihe Außere Form Viskositätsklasse ISO Umgebungstemperatur Colstrom bei Umlaufschmierung Kühlfaktor Voil = 0 Voil = 0	n. zul. Wellendurchmesser				$s_0 \text{err} = 2$ dmin = 500	mm
Max. zul. Lagerbreite Bmax = 400 mm Lagerparameter Radial Pendelrollenlager zweireihig Kurzzeichen des Herstellers Raine Äußere Form normal Viskositätsklasse ISO VG = 68 mm²/s Umgebungstemperatur tU = 20 °C Ölstrom bei Umlaufschmierung VGl = 0 dm³/n Kühlfaktor Kt = 1 Verunreinigungsfaktor V1	ix. zul. Außendurchmesser				Dmax = 1000	mm
Lagerparameter Radial Pendelrollenlager zweireihig Kuzzzeichen des Herstellers Radial Pendelrollenlager zweireihig Äußere Form normal Viskositätsklasse ISO VG = 68 mm²/s Umgebungstemperatur til = 20 °C Ölstrom bei Umlaufschmierung Völ = 0 dm³/m Kühlfaktor Kt = 1 Verunreinigungsfaktor V1	ix. zul. Lagerbreite				Bmax = 400	mm
Lagertyp Radial Pendeirollenlager zweireihig Kurzzeichen des Herstellers Reihe Äußere Form normal Viskositätsklasse ISO VG = 68 mm²/s Umgebungstemperatur Ölstrom bei Umlaufschmierung Kühlfaktor Kt = 1 Verunreinigungsfaktor V1	gerparameter					
Reihe Äußere Form normal Viskositätsklasse ISO VG = 68 mm²/s Umgebungstemperatur Ölstrom bei Umlaufschmierung Kühlfaktor Kt = 1 Verunreinigungsfaktor V1	gertyp rzzeichen des Herstellers			Radial F	Pendelrollenlager zweire	eihig
Außere Form normal Viskositätsklasse ISO VG = 68 mm²/s Umgebungstemperatur tU = 20 °C Ölstrom bei Umlaufschmierung Völ = 0 dm³/n Kühlfaktor Kt = 1 Verunreinigungsfaktor	ihe					
UngebungstemperaturtU = 20°CÖlstrom bei UmlaufschmierungVöl = 0dm³/nKühlfaktorKt = 1VerunreinigungsfaktorV1	Bere Form				normal VG = 68	mm²/s
Ölstrom bei Umlaufschmierung Völ = 0 dm³/n Kühlfaktor Kt = 1 Verunreinigungsfaktor V1	ngebungstemperatur				tU = 20	°C
Kuhiraktor Kt = 1 Verunreinigungsfaktor V1	strom bei Umlaufschmierung				Völ = 0	dm³/min
	hltaktor rupreinigungsfaktor				Kt = 1 V1	
					VI.	

X

a23 =

L =

t

ny =

=

Lh =

0.65

57.1

154188.9

21

206.5

10^6 Umdr

h

°C

mm²/s

Werkstoff und Betriebsbeiwert

Kin. Viskosität bei Betriebstemperatur

Modifizierte Lebensdauer

Modifizierte Lebensdauer

Betriebstemperatur

			Studienv	ersion			
Programm : MI	DESIGN	Benutzer	:			Kunde :	
10dulversion : 11	.0.2	Datum	: 25.08.2008			Proj. Nr :	
			Wälzla	ger			
Reibmoment des I Reibleistung Kühlleistung der U Wärmekonvektion Masse des Einzella Bewertung der I	Lagers Imlaufschmierung an Umgebung agers E rgebnisses:			M = QR = Qöl = QL = m =	166239 107 0 107 225.000	Nmm W W W kg	
Lh = 154188.9 h Die erreichbare Le Damit ist das Lage	>= 100000 h = Lh erf bensdauer Lh ist größer als o er ausreichend dimensioniert.	lie gefordert	e Lebensdauer L	herf.			
	Kurzbezeich	nung d	es Lager	s 230,	/500CA	/W33	
			- A				
		σ	Da				
				Da =	= 720.0	mm	
				D =	= 500.0	mm	
	B			B =	= 167.0	mm	

			Studienversior	1	
rogramm	: MDESIGN	Benutzer	· :	Kunde :	
odulversio	n :11.0.3	Datum	: 07.08.2008	Proj. Nr :	
		Zylin	drische Pressve	rbände	
Mit dem vo zylindrische	rliegenden Programm kör en Wirkflächen, deren Teil	inen, basierend auf d e aus metallischen W	er Berechnungsgrundlage I erkstoffen bestehen, berec	DIN 7190, Ausgabe Februar 2001, Pres hnet werden.	ssverbände mit
Ausgehend Außenteil a berücksicht	von dem Berechnungsmo ufweist, können die durch tigt werden.	odell, welches abweic 1 das Fügen hervorge	hend eines realen Pressver rufenen elastischen oder al	bandes eine konstante axiale Länge vo per elastisch-plastischen Verformunger	on Innen- und n im Außenteil
Berechnung	gsgrundlage				
Die Berech	nungsgrundlage für das M	lodul zylindrische Pre	ssverbände stellt die DIN 7	190 Ausgabe Februar 2001 dar.	
Des Weiter - D	en wurden folgende Norm DIN ISO 286 Teil 1, Ausga	ien verwendet: be November 1990, I	SO-System für Grenzmaße	und Passungen	
- C	DIN ISO 286 Teil 2, Ausga	be November 1990, I	SO-System für Grenzmaße	und Passungen	
Geltungsbe	ereich				
In Anlehnu	ng an die DIN 7190 ist de	r Geltungsbereich für	den aus metallischen Wer	kstoffen bestehende zylindrische Press	sverband wie folgt
e vv - C - I - A - C - C - C - C - B - B - B - B - B - C - B - C - C	elastischen Innenteils (Wel venn folgende Voraussetzt Das Innenteil (Welle) muss nnen- und Außenteil müss vusreichende Verformbark Der berechnete bezogene 1 <= Dzetta <= 1/t Der Gültigkeitsbereich des Nachrechnung", sofern hi mm $<= DF <= 3150$ mm "ür den Innendurchmessen QI <= 0,9 bzw. $DII <= 0,9$ * Bei spröden Werkstoffen is gemittelte Rautiefe der Füg in durch Fliehkraft beans Das Innenteil (Welle) muss	le) eine plastisch bea ungen erfüllt sind: s voll sein (<i>DiI=0</i> bzw. sen gleiche Elastizitäts eit der beteiligten We Plastizitätsdurchmesser <i>QA</i> liegen Fugendurchmessers (erbei die Vorgabe übe r des Innenteils (Bohr <i>DF</i>) t nur eine rein elastis geflächen: 0,63mu_m pruchter Pressverband s voll sein (<i>DiI=0</i> bzw.	nspruchte Ringzone des Au P. QI=0) skonstanten aufweisen (<i>EA</i> rkstoffe (Bruchdehnung <i>A</i>) er muss im Bereich (Nennmaß der Welle) ist fü er die ISO-Toleranzklassen ung der Welle) gilt: che Auslegung zulässig $D <= Rz <= 250 mu_m$ d kann berücksichtigt werde P = 0	ußenteils (Nabe) auf und können bered = <i>EI; muA=muI</i>) > <i>=10%,</i> Brucheinschnürung <i>Z>=30%;</i> r den Berechnungsgang "Vorauslegung erfolgt wie nachstehend festgelegt: en, wenn folgende Bedingungen einge	:hnet werden,) g" und halten werden:
- I - D	nnen- und Außenteil müss Durch das Fügen und durc	en gleiche Elastizität h die Fliehkraft treter	skonstanten und Dichten au i im Innen- und Außenteil a	ufweisen (<i>EA=EI; muA= muI; RohA=R</i> ausschließlich elastische Verformungen	R <i>ohI</i>) 1 auf.
Finankada					
Eingabeda	aten:	Zyliı	ndrische Pressverbände		
Fügeart				Querpressverband	
ISO-Paßsys Berechnun	stem gsgang			System Einheitsboh Vorauslegung	irung
Vorgabe ül	oer den Mindestwert			übertragendes Dreł Avialkraft	nmoment bzw.
zu übertrag	gendes Drehmoment			T = 976000	Nm
zu ubertrag Fugendurc	Jende Axiaikraft hmesser (Nennmaß)			Fax = 0 DF = 500	א mm
Fliehkraftei	influß berücksichtigen			ja n – 6.17	1/min
Fliehkraftb	edingter Abfall des Fugen	drucks von höchsten	10%% einhalten	nein	±/11111
Geometrie	e				
Berechnun	g der gestuften Nabenabs	chnitte		ја	

	Studienversic	on	
Programm : MDESIGN	Benutzer :	Kunde :	
Modulversion : 11.0.3	Datum : 07.08.2008	Proj. Nr :	
	Zylindrische Pressve	erbände	
	· ·		
Nabenabschnitt	Europiinen IE		Dente:le De A
Nr.	mm	Außendurchmesser des Aui	Sentelis DaA =
1	200	760	
2	54	1120	
3	10	880	
Bauteileigenschaften Innenteils- Werkstoffe (Festigk	œitswerte) nach	MDESIGN Datenbank	
Werkstoffbezeichnung		42CrMo4	
Werkstoffnummer		1.7225	
Werkstoffgruppe		Vergütungsstahl	
Normabmessung		dNn = 16	mm
Fließgrenze für dNp		RpN = 900	N/mm ²
Elastizitätsmodul		E = 210000	N/mm ²
Poisson-Zahl		v = 0.3	
Dichte		$\rho = 7850$	kg/m ³
Brucheinschnürung		$Amin = 10$ $7 \cdot 40$	% %
bracheinschnarung		2.10	70
Werkstoff randschichtgehärtet Beanspruchungen vorwiegend quer	[.] zur bevorzugten Bearbeitungs(Walz)richtung	nein nein	
Außenteils - Werkstoffe (Festig	keitswerte) nach	MDESIGN Datenbank	
Werkstoffbezeichnung		42CrMo4	
Werkstoffnummer		1.7225	
Wärmebebandlung / Zustand		vergütungsstani	
Normahmessung		dNn = 16	mm
Fließarenze für dNp		$R_{\rm D}N = 900$	N/mm ²
Elastizitätsmodul		E = 210000	N/mm²
Poisson-Zahl		v = 0.3	
Dichte		$\rho = 7850$	kg/m ³
Brucheinschnürung		Amm = 10 $7:40$	% %
Drachensennarang		2110	70
Werkstoff randschichtgehärtet Beanspruchungen vorwiegend quer	· zur bevorzugten Bearbeitungs(Walz)richtung	nein nein	
Oberflächenrauheit der Fügeflä gemittelte Rautiefe der Fügefläche gemittelte Rautiefe der Fügefläche	i chen des Außenteils des Innenteils	RzA = 25 RzI = 25	μm um
			h
Soll-Sicherheiten			
Sollsicherheit gegen Rutschen		Sr = 2	
Sollsicherheit gegen vollplastische V Sollsicherheit gegen vollplastische V	Verformung des Außenteils Verformung des Innenteils	SPA = 1.2 SPI = 1.2	
	-		
Reibwerte			
Haftbeiwert bei Rutschen in Umfan Haftbeiwert bei Rutschen in Längsr	gsrichtung ichtung	vru = 0.2 vrl = 0.2	
Thermisches Fügen von Ouern	ressverhänden		
Kühlverfahren des Innenteil		Raumtemperatur	
Fügespiel zulassen		nein	

Ŷ

	Stuc	lienversior	ו		
rogramm : MDESIGN lodulversion : 11.0.3	Benutzer : Datum : 07.08	8.2008		Kunde : Proj. Nr :	
	Zylindrisch	e Pressve	rbände		
Dauerfe	estigkeitsschaul	oild nach	bereich Schwellber	(schematisch)	
Ergebnisse:					
Ergebnisse: Gesamte Fügelänge Äquivalenter Nabenaussendurchmess	er	IF = DaA =	264.000 810.157	mm mm	
Ergebnisse: Gesamte Fügelänge Äquivalenter Nabenaussendurchmess Äquivalentes Außendurchmesserverhä Durchmesserverhältnis Innenteil	er ältnis	IF = DaA = QA = QI =	264.000 810.157 0.617 0.000	mm mm	
Ergebnisse: Gesamte Fügelänge Äquivalenter Nabenaussendurchmess Äquivalentes Außendurchmesserverhä Durchmesserverhältnis Innenteil Mittenrauwert der Fügefläche des Auf Mittenrauwert der Fügefläche des Inn	er ältnis Benteils nenteils	IF = DaA = QA = QI = RaA = RaI =	264.000 810.157 0.617 0.000 2.000 2.000	mm mm µm µm	
Ergebnisse: Gesamte Fügelänge Äquivalenter Nabenaussendurchmess Äquivalentes Außendurchmesserverhä Durchmesserverhältnis Innenteil Mittenrauwert der Fügefläche des Auf Mittenrauwert der Fügefläche des Inn Werkstoffbezeichnung des Außenteils untere Streckgrenze des Außenteils für deff Grenzfugendruck für vollplastisches A	er ältnis Benteils ienteils : ußenteil	IF = DaA = QA = QI = RaA = RaI = ReLA = pPA =	264.000 810.157 0.617 0.000 2.000 2.000 42CrMo4 900.000 1120.000 501.553	mm mm µm µm N/mm² mm N/mm²	
Ergebnisse: Gesamte Fügelänge Äquivalenter Nabenaussendurchmess Äquivalentes Außendurchmesserverhä Durchmesserverhältnis Innenteil Mittenrauwert der Fügefläche des Auf Mittenrauwert der Fügefläche des Inn Werkstoffbezeichnung des Außenteils untere Streckgrenze des Außenteils für deff Grenzfugendruck für vollplastisches A Werkstoffbezeichnung des Innenteils untere Streckgrenze des Innenteils für deff Grenzfugendruck für vollplastisches In	er ältnis Benteils nenteils ußenteil	F = DaA = QA = QI = RaA = RaI = PPA = ReLI = PPI =	264.000 810.157 0.617 0.000 2.000 2.000 42CrMo4 900.000 1120.000 501.553 42CrMo4 900.000 500.000 1039.230	mm mm µm µm N/mm² mm N/mm² N/mm² mm N/mm²	
Ergebnisse: Gesamte Fügelänge Äquivalenter Nabenaussendurchmess Äquivalentes Außendurchmesserverhä Durchmesserverhältnis Innenteil Mittenrauwert der Fügefläche des Auß Mittenrauwert der Fügefläche des Inn Werkstoffbezeichnung des Außenteils untere Streckgrenze des Außenteils für deff Grenzfugendruck für vollplastisches Auß Werkstoffbezeichnung des Innenteils untere Streckgrenze des Innenteils für deff Grenzfugendruck für vollplastisches In Gewählte ISO-Passung:	er ältnis Benteils enteils : ußenteil	F = DaA = QA = QI = RaA = RaI = PPA = ReLI = pPI =	264.000 810.157 0.617 0.000 2.000 2.000 42CrMo4 900.000 1120.000 501.553 42CrMo4 900.000 500.000 1039.230 500 H10/z	mm mm μm μm N/mm ² mm N/mm ² N/mm ² M/mm ² N/mm ²	
Ergebnisse: Gesamte Fügelänge Äquivalenter Nabenaussendurchmess Äquivalentes Außendurchmesserverhä Durchmesserverhältnis Innenteil Mittenrauwert der Fügefläche des Auß Mittenrauwert der Fügefläche des Inn Werkstoffbezeichnung des Außenteils untere Streckgrenze des Außenteils für deff Grenzfugendruck für vollplastisches Auß Werkstoffbezeichnung des Innenteils: untere Streckgrenze des Innenteils für deff Grenzfugendruck für vollplastisches In Gewählte ISO-Passung: oberes Abmaß Außenteil (Nabe) unteres Abmaß Innenteil (Welle)	er ältnis Benteils nußenteil	IF = DaA = QA = QI = RaA = RaI = PPA = pPA = pPI = ES = EI = ei =	264.000 810.157 0.617 0.000 2.000 2.000 42CrMo4 900.000 1120.000 501.553 42CrMo4 900.000 500.000 1039.230 500 H10/z 250.0 0.0 1500.0 1250.0	mm mm μm μm μm N/mm ² mm N/mm ² N/mm ² N/mm ² N/mm ² N/mm ² N/mm ² 10	

		Studien	versi	on			
Programm : MDESIGN	Benutzer	:				Kunde :	
Modulversion : 11.0.3	Datum	: 07.08.200	8			Proj. Nr :	
	Zylinc	lrische P	ress	/er	bände		
Übermaß wirksames Übermaß im gefügten Zustand bezogenes wirksames Übermaß			U Uw ζw	= = =	1.000 0.960 0.001920	1.500 1.460 0.002920	mm mm
erreichbarer Fugendruck im Stillstand			р	=	124.812	189.818	N/mm²
Fugendruck bei Drehzahl n			pn	=	124.812	189.818	N/mm²
übertr. Drehmoment gemäß Fugendruck im Stillstand			Т	=1	293959.463	1967896.683	Nm
übertr. Drehmoment unter Fliehkrafteinfluß			Tn	=1	293958.039	1967895.260	Nm
übertr. Axialkraft gemäß Fugendruck im Stillstand			Fax	=	5175.838	7871.587	kN
übertr. Axialkraft unter Fliehkrafteinfluß			Faxn	=	5175.832	7871.581	kN
Umfangsgeschwindigkeit der Außenkontur des Außenteils			u	=	0.262	m/s	
Umfangsgeschwindigkeit bei der das Außenteil abhebt			uab	=	249.516	307.708	m/s
Drehzahl bei der das Außenteil abhebt			nab	=	5882.079	7253.901	1/min
Fügespiel Übermaß beim Fügen			Usθ UF	= =	0.000 1.500	mm mm	
Umgebungstemperatur beim Fügen Temperatur des Innenteils beim Fügen			$\begin{array}{l} \theta R \\ \theta I \end{array}$	= =	20.000 20.000	°C °C	
Erforderliche Temperatur des Außenteils beim Fügen			θAerf	=	292.727	°C	
Radialspannung Außenteil bezogen auf DF Radialspannung volles Innenteil konstant			σrAi σrI	= =	-189.818 -189.818	N/mm² N/mm²	
Tangentialspannung Außenteil bezogen auf DA Tangentialspannung Außenteil bezogen auf DF Tangentialspannung volles Innenteil konstant	а		σtAa σtAi σtI	= = =	233.563 423.382 -189.818	N/mm² N/mm² N/mm²	
Maximale Vergleichsspannung Außenteil Maximale Vergleichsspannung Innenteil			σvAi σvI	= =	613.200 189.818	N/mm² N/mm²	

	Studienversion		
Programm : MDESIGN	Benutzer :	Kunde :	
Iodulversion : 11.0.3	Datum : 07.08.2008	Proj. Nr :	
	Zylindrische Pressverb	ande	
zylindrischen Wirkflächen, deren Teile	e aus metallischen Werkstoffen bestehen, berechn	et werden.	IT
Ausgehend von dem Berechnungsmo Außenteil aufweist, können die durch berücksichtigt werden.	dell, welches abweichend eines realen Pressverba das Fügen hervorgerufenen elastischen oder abei	ndes eine konstante axiale Länge von Innen- und r elastisch-plastischen Verformungen im Außenteil	
Berechnungsgrundlage			
Die Berechnungsgrundlage für das Mo	odul zylindrische Pressverbände stellt die DIN 719	0 Ausgabe Februar 2001 dar.	
Des Weiteren wurden folgende Norm	en verwendet: ie November 1990, ISO-System für Grenzmaße un	nd Passungen	
- DIN ISO 286 Teil 2, Ausgab	e November 1990, ISO-System für Grenzmaße un	nd Passungen	
Geltungsbereich			
In Anlehnung an die DIN 7190 ist der festgelegt:	Geltungsbereich für den aus metallischen Werks	offen bestehende zylindrische Pressverband wie f	folgt
 Es konnen rein elastische al elastischen Innenteils (Well wenn folgende Voraussetzu Das Innenteil (Welle) muss Innen- und Außenteil müsse Ausreichende Verformbarke Der berechnete bezogene P 	s auch elastisch-plastische Pressverbande berucks e) eine plastisch beanspruchte Ringzone des Auße ngen erfüllt sind: voll sein ($DiI=0$ bzw. $QI=0$) en gleiche Elastizitätskonstanten aufweisen ($EA=E$ it der beteiligten Werkstoffe (Bruchdehnung $A>=$ lastizitätsdurchmesser muss im Bereich	sichtigt werden. Letztere weisen neben eines rein enteils (Nabe) auf und können berechnet werden, EI; muA=muI) 10%, Brucheinschnürung Z>=30%)	
 1<=Dzetta<=1/Q Der Gültigkeitsbereich des F "Nachrechnung", sofern hie 	A liegen Fugendurchmessers (Nennmaß der Welle) ist für o rbei die Vorgabe über die ISO-Toleranzklassen er	len Berechnungsgang "Vorauslegung" und folgt wie nachstehend festgelegt:	
1mm<=DF<=3150mm - Für den Innendurchmesser (OI<=0.9 bzw. DiI<=0.9*L	des Innenteils (Bohrung der Welle) gilt: DF)		
- Bei spröden Werkstoffen ist	nur eine rein elastische Auslegung zulässig		
 Genittete Kaudele del Fug Ein durch Fliehkraft beansp Das Innenteil (Welle) muss Innen- und Außenteil müsse Durch das Fügen und durch 	ruchter Pressverband kann berücksichtigt werden, voll sein ($DiI=0$ bzw. $QI=0$) en gleiche Elastizitätskonstanten und Dichten aufv dei Fliehkraft treten im Innen- und Außenteil aus	wenn folgende Bedingungen eingehalten werder weisen (<i>EA=EI; muA= muI; RohA=RohI</i>) sschließlich elastische Verformungen auf.	1:
Eingabedaten:			
	Zylindrische Pressverbände		
Fügeart		Querpressverband	
150-Paßsystem Berechnungsgang		System Einheitsbohrung Vorauslegung	
Vorgabe über den Mindestwert		übertragendes Drehmoment bzw Axialkraft	
zu übertragendes Drehmoment zu übertragende Avialkraft		T = 976000 Nm Fax = 119375 N	
Fugendurchmesser (Nennmaß)		DF = 430 mm	
Filehkratteintluß berücksichtigen Drehzahl		ja n = 6.17 1/min	
Fliehkraftbedingter Abfall des Fugend	rucks von höchsten 10%% einhalten	nein	
Geometrie			
Berechnung der gestuften Nabenabso	hnitte	ja	

	Studienversio	on	
Programm : MDESIGN	Benutzer :	Kunde :	
Modulversion : 11.0.3	Datum : 07.08.2008	Proj. Nr :	
	Zylindrische Pressve	erbände	
Nabenabschnitt Nr.	Fugenlänge IF =	Außendurchmesser des Au	ıßenteils DaA =
	mm	mm	
1	225	630	
2	100	1500	
3	225	050	
Bauteileigenschaften Innenteils- Werkstoffe (Festigk	eitswerte) nach	MDESIGN Datenban	<
Werkstoffbezeichnung		42CrMo4	
Werkstoffnummer		1.7225	
Werkstoffgruppe		Vergütungsstahl	
Wärmebehandlung / Zustand		vergütet	
Normabmessung		$dNp = 16$ $P_{PN} = 000$	mm N/mm2
Fliebgrenze für unp Elastizitätsmodul		F = 210000	N/mm ²
Poisson-Zahl		v = 0.3	••/
Dichte		$\rho = 7850$	kg/m³
Bruchdehnung		Amin = 10	%
Brucheinschnürung		Z : 40	%
Werkstoff randschichtgehärtet Beanspruchungen vorwiegend quer	zur bevorzugten Bearbeitungs(Walz)richtung	nein nein	
Außenteils - Werkstoffe (Festig	keitswerte) nach	MDESIGN Datenban	K
Werkstoffbezeichnung Werkstoffnummer Werkstoffgruppe Wärmebehandlung / Zustand		42CrMo4 1.7225 Vergütungsstahl vergütet	
Normabmessung		dNp = 16	mm
Fließgrenze für dNp		RpN = 900	N/mm ²
Elastizitatsmodul Doisson Zahl		E = 210000	N/mm²
Dichte		v = 0.3 o = 7850	ka/m³
Bruchdehnung		Amin = 10	%
Brucheinschnürung		Z : 40	%
Werkstoff randschichtgehärtet		nein	
Beanspruchungen vorwiegend quer	zur bevorzugten Bearbeitungs(Walz)richtung	nein	
Oberflächenrauheit der Fügeflä gemittelte Rautiefe der Fügefläche	chen des Außenteils	RzA = 25	μm
gemittelte Rautiefe der Fügefläche	des Innenteils	RzI = 25	μm
Soll-Sicherheiten			
Sollsicherheit gegen Rutschen		Sr = 2	
Sollsicherheit gegen vollplastische	/erformung des Außenteils	SPA = 1.2	
Sollsicherheit gegen vollplastische V	/erformung des Innenteils	SPI = 1.2	
Reibwerte			
Haftbeiwert bei Rutschen in Umfan	gsrichtung	vru = 0.2	
Haildeiwert dei Kutschen in Langsr	icituiig	vri = 0.2	
Thermisches Fügen von Querpr	ressverbänden		
Kühlverfahren des Innenteil		Raumtemperatur	
Fügespiel zulassen		nein	

Ŷ

	Stud	ienversion			
Programm : MDESIGN	Benutzer :		Kı	unde :	
Adulversion : 11.0.3	Datum : 07.08	.2008	Pr	roj. Nr :	
	Zulindriach	Dracovar	hände	·	
	Zylindrische	e Pressveri	bande		
Dauer	festigkeitsschaub	oild nach	Smith (schematisch)	
		ත Wechselbe	reich Schwellbereich		
	Fall	-1	κ=0	+1 	
	I statisch		"ÍÍ	, ,	
	II dynamisch - schweilend III dynamisch - wechselnd		N NO		
		Ш	omax		
		+ 0M	CA CA		
				σm	
		- aw			
Ergebnisse:					
Gesamte Fügelänge Äquivalenter Nabenaussendurchme	esser	IF = DaA =	550.000 683.229	mm mm	
Äquivalentes Außendurchmesserve	rhältnis	QA =	0.629		
Durchmesserverhältnis Innenteil		QI =	0.000		
Mittenrauwert der Fügefläche des Mittenrauwert der Fügefläche des	Außenteils Innenteils	RaA = RaI =	2.000 2.000	µm um	
Werkstoffhezeichnung des Außente	silc'		42CrMo4	b	
untere Streckgrenze des Außenteil:	5	ReLA =	900.000	N/mm²	
tur dett Grenzfugendruck für vollplastische	s Außenteil	= pPA =	481.210	mm N/mm²	
Werkstoffbezeichnung des Innente	ils:		42CrMo4		
untere Streckgrenze des Innenteils für deff	;	ReLI = =	900.000 430.000	N/mm² mm	
Grenzfugendruck für vollplastische	s Innenteil	pPI =	1039.230	N/mm²	
Gewählte ISO-Passung:			430 H10/z10		
oberes Abmaß Außenteil (Nabe)		ES =	250.0	μm	
unteres Abmaß Außenteil (Nabe) oberes Abmaß Innenteil (Welle)		EI = es =	0.0 1350.0	μm μm	
unteres Abmaß Innenteil (Welle)		ei =	1100.0	μm	
Vorformung Außontail		Mindestüber	maß	Höchstübermaß	
venormung Aubentell		rein eiastisch		rein elastisch	

Ŷ

	Stu	dienversi	on			
Programm : MDESIGN	Benutzer :				Kunde :	
Modulversion : 11.0.3	Datum : 07.0	08.2008			Proj. Nr :	
	Zylindrisc	he Pressv	rer	bände		
Übermaß wirksames Übermaß im gefügten Zustand bezogenes wirksames Übermaß		U Uw ζw	= = =	0.850 0.810 0.001884	1.350 1.310 0.003047	mm mm
erreichbarer Fugendruck im Stillstand		р	=	119.446	193.178	N/mm²
Fugendruck bei Drehzahl n		pn	=	119.446	193.178	N/mm²
übertr. Drehmoment gemäß Fugendruck im Stillstand		Т	=1	908052.913	3085863.353	Nm
übertr. Drehmoment unter Fliehkrafteinfluß		Tn	=1	908051.391	3085861.831	Nm
übertr. Axialkraft gemäß Fugendruck im Stillstand		Fax	=	8874.665	14352.853	kN
übertr. Axialkraft unter Fliehkrafteinfluß		Faxn	=	8874.658	14352.846	kN
Umfangsgeschwindigkeit der Außenkontur des Außenteils		u	=	0.221	m/s	
Umfangsgeschwindigkeit bei der das Außenteil abhebt		uab	=	247.147	314.304	m/s
Drehzahl bei der das Außenteil abhebt		nab	=	6908.622	8785.866	1/min
Fügespiel Übermaß beim Fügen		Usθ UF	=	0.000 1.350	mm mm	
Umgebungstemperatur beim Fügen Temperatur des Innenteils beim Fügen		$\begin{array}{c} \theta R \\ \theta I \end{array}$	= =	20.000 20.000	°C °C	
Erforderliche Temperatur des Außenteils beim Fügen		θAerf	=	305.412	°C	
Radialspannung Außenteil bezogen auf DF Radialspannung volles Innenteil konstant		σrAi σrI	=	-193.178 -193.178	N/mm² N/mm²	
Tangentialspannung Außenteil bezogen auf DA Tangentialspannung Außenteil bezogen auf DF Tangentialspannung volles Innenteil konstant	4a =	σtAa σtAi σtI	= = =	253.412 446.590 -193.178	N/mm² N/mm² N/mm²	
Maximale Vergleichsspannung Außenteil Maximale Vergleichsspannung Innenteil		σνAi σvI	=	639.767 193.178	N/mm² N/mm²	

		Studienversion	
rogramm : MDES	IGN Be	enutzer :	Kunde :
Iodulversion : 11.0	Da	atum : 07.08.2008	Proj. Nr :
	S	chraubenberechnung	g basis
Die Berechnungsgrund	llagen des Programms ist die	e VDI-Richtlinie 2230 Blatt 1, Ausga	be Februar 2003.
Die Berechnungsgrund Systematische Berechr Die Montagevorspann	llage des Moduls Schraubent nung hochbeanspruchter Sch kraft FM der Schraube dient l	perechnung basiert auf der Richtlini raubenverbindungen Zylindrische E nierbei als Hauptauswahlkriterium f	e VDI 2230 Blatt 1, Ausgabe Februar 2003 Einschraubenverbindungen. ür den Schraubennenndurchmesser.
Des Weiteren wurden	folgende DIN-Normen und F	irmenschriften verwendet:	
DIN EN ISO 4017	Ausgabe März 2001	Sechskantschrauben mit Gewinde	bis Kopf
DIN EN ISO 8676	Ausgabe März 2001	Sechskantschrauben mit Gewinde Feingewinde	bis Kopf und metrischem
DIN EN ISO 4014	Ausgabe März 2001	Sechskantschrauben mit Schaft	
DIN EN ISO 8765	Ausgabe März 2001	Sechskantschrauben mit Schaft ur	nd metrischem Feingewinde
DIN EN ISO 4762	Ausgabe Februar 1998	Zylinderschrauben mit Innensechs	skant
DIN EN ISO 4032	Ausgabe März 2001	Sechskantmuttern, Typ 1	
DIN EN ISO 8673	Ausgabe März 2001	Sechskantmuttern, Typ 1, mit met	trischem Feingewinde
DIN EN ISO 7089	Ausgabe November 2000	Flache Scheiben, Normale Reihe,	Produktklasse A
DIN EN 20 273	Ausgabe Februar 1992	Durchgangslöcher für Schrauben	
DIN 13 T1-10	Ausgabe November 1999	Metrisches ISO-Gewinde	
DIN EN 10269	Ausgabe November 1999	Stähle und Nickellegierungen für I Temperaturen	Befestigungselemente bei erhöhten
DIN EN ISO 3506-1	Ausgabe März 1998	Mechanische Eigenschaften von V Stählen	erbindungselementen aus nichtrost.
DIN 267-13	Ausgabe August 1993	Mechanische Verbindungselement	e
DIN EN ISO 898-1	Ausgabe November 1999	Mechanische Eigenschaften von V und legiertem Stahl	erbindungselementen aus Kohlenstoff
Fachbericht:			
VDI-Berichte Nr. 1644	4, 2001 Schraubenverbindun	gen	
Eingabedaten:			
Na	ichrechnung hochbeansp Zylindrische E	ruchter Schraubenverbindunge Einschraubenverbindungen - St	n in Anlehnung an VDI 2230 andardversion
Berechnungsgang Verspannung Verschraubungsart Schraubenverbindung Betriebsbelastung			Nachrechnung Zentrische Durchsteckschraubverbindung Mehrschraubenverbindung dynamisch

pramm MDESIGN Benutzer Kunde ulversion : 11.0 Datum : 07.08.2008 Proj. Nr Schraubenberechnung basis			Studier	iversion		
Lulversion : 11.0 Datum : 07.08.2008 Proj. Nr : Schraubenberechnung basis FAU = 0 N nein Not der Axialkraft förderliche Mindesklemmkraft vorgeben rehmomet am Umfang der Schraubenverbindung usztlich Querkraft innale Rehbungszahl in der Kopfauflage FAU = 0 N nein Innale Rehbungszahl in der Kopfauflage Mitmax = 797600 Nm F2 = 7500 N g F = 1 F2 = 7500 N g F = 1 Disicherheit gegen Querutschen vorgeben Dt = 1280 mm in = 0.12 µtKmin = 0.12 nein pKmin = 0.12 µtKmin = 0.12 µtKmin = 0.12 µtKmin = 0.12 nein Disicherheit gegen Querutschen vorgeben Dt = 1280 mm in = 36 DA = 56 mm in = 36 DA = 56 kmabben Ketticksichtigen etriebstemperatur der verspannten Teile DA = 56 mm in = 0.12 µtKmin = 0.	Programm : MDESIGN	Benutze	er :		Kunde :	
Schraubenberechnung basis FAU = 0 N nich schluberuchlang Mathematik Vorgeben nich with with the schluberuchlang Bit Mathuberuchlang Bit Mathuberuchlang Bit Mathuberuchlang Bit Mathuberuchlang Bit Mathuberuchlang Bit Mathuberuchlang Bit Mathuberuchlange Dial Mathuberuchlange	Modulversion : 11.0	Datum	: 07.08.200)8	Proj. Nr :	
htterer Grenzwert der Axialkraft förderliche Mindestklemmkraft vorgeben rein methommet at unfrang der Schraubenverbindung ustätzliche Querkraft. FAU = 0 N notel verkraft. nein Nitmax = 976000 Nin G = 1 mizahl kraftburgszahl in der Konsubenverbindung ustätzlicher Auszahl in der Konforläge Nin G = 1 Streckgrenzgesteuertes Anziehen µGmin = 0.12 ninmale Reibungszahl in der Konforläge µTmin = 0.12 µTmin = 0.12 ninmale Reibungszahl in der Konforläge µKmin = 0.12 nissti-Außendurchmesser Dt = 1280 mm nissti-Außendurchmesser ein der Trennfuge DA = 56 mm nissti-Außendurchmesser ein der Trennfuge DA = 56 mm statz-Außendurchmesser ein der Trennfuge DA = 56 mm statz-Außendurchmesser oberkalb der Trennfuge DA = 50 mm verhebstemperatur der Schraube Ts = 20 °C chraube Ts = 20 °C chrauben Tr = 20 °C chrauben Tr = 20 °C chrauben Ts = 200 °C trebstemperatur der verspannten Teile 12.9 versitektigteresterekterenzeitektemperatur Ts = 260 m		Schr	aubenber	echnung basis	5	
Intere Grenzwert der Avlakkraft (röderliche Midestklemmkraft vorgeben rehmoment am Umfang der Schraubenverbindung usätzliche Querkraft nizherträhren nizherträhren inmale Reibungszahl im Gewinde inimale Reibungszahl im der Trennfuge inimale Reibungszahl im der Konfulfage ollsicherheit gegen Querutschen vorgeben FAU = 0 N Mmax = 976000 N qF = 1 N mein eilkreisdurchmesser inzahl der Schrauben rastz-Außendurchmesser in der Trennfuge machwertiges in der Konfulfage ollsicherheit gegen Querutschen vorgeben Dt = 1280 mm mm eilkreisdurchmesser inzahl der Schrauben rastz-Außendurchmesser in der Trennfuge michther Schrauben Dt = 1280 mm mm eilkreisdurchmesser inzahl der Schrauben urchmesser des Scherquerschnittes vorgeben DA = 56 mm DA = 60 mm nein mm bzudichtenden Innendruck berücksichtigen etriebstemperatur der Schraube etriebstemperatur der verspannten Teile nein 12.9 Ts = 20 °C °C chraube eurigestigkt der Schraube bei RT undgestigkt der Schraube bei RT influßfabtr Scherfestigkeit der Schraube bei RT om om om om chraubenbezeichnung om durdent chraubenbezeichnung om om om om om N/mm ² Reiselfestigkteit der Schraube bei RT totter thäusehngekeite Mutter is = 260 mm N/mm ² Reiselfestigkteit der Schraube bei RT totter thäusehngezeichnung om durchmesser der Mutterauflage ubendurchmesser der Mutterauflage ubendurchmesser der Mutterauflage ubendurchmesser der Mutterauflage tutterröhe S = 60 mm duffestigkteit der Sch mit so = 260 mm mm mm						
Initiation minutany des Schaubenverbindung Mtmax = 976000 Nm Witzer rG = 7500 N minutany des Schaubenverbindung rG = 1 minuth des Schaubenverbindung rG = 20 minuth des Schaubenverbindung rG = 20 minuth des Schaubenverbindung rG = 1280 minuth des Schaubenverbindung rG = 1280 minuth des Schaubenverbindung rG = 1280 minutint	Unterer Grenzwert der Axialkraft Erforderliche Mindestklemmkraft vorgeben				FAU = 0	Ν
usitzliche Querkraft $FQ = 7500$ N nziehverfahren $qF = 1$ nziehverfahren $qF = 1$ nziehverfahren $qF = 1$ nziehverfahren $qF = 1$ inimale Reibungszahl in Gewinde μ Timin = 0.12 inimale Reibungszahl in der Trennfuge μ Timin = 0.12 inimale Reibungszahl in der Trennfuge μ Kmin = 0.12 olisicherheit gegen Querutschen vorgeben nein eilkreisdurchmesser Dt = 1280 mm nzahl zwäßendurchmesser in der Trennfuge DA = 56 mm nzahl der Schrauben nein mein bzudichtenden Innendruck berücksichtigen nein mein treiteistemperatur der Schraube T5 = 20 °C chraube treiteistemperatur der verspannten Teile T5 = 20 °C chraube terföjstelfskildslase 12.9 Mm ² minduststrackgendurchmesser and er Schraube bei RT Regelgewinde Rmin = 1120 N/mm ² minduststrackgendurchmesser Regelgewinde Rmin = 1220 N/mm ² digestigkeit der Schraube bei RT Regelgewinde Reschschraube mit Schaft chraubengöurchm	Drehmoment am Umfang der Schraubenve	erbinduna			Mtmax = 97600	0 Nm
nzahl kartübertragender innerer Trennfugen nziehverfahren inimale Reibungszahl in der Trennfuge linimale Reibungszahl in der Kopfauflage ollsicherheit gegen Querrutschen vorgeben eilkreisdurchmesser nzahl der Schrauben eilkreisdurchmesser in der Trennfuge statz-Außendurchmesser orheihalb der Trennfuge statz-Außendurchmesser orheihalb der Trennfuge terleisbetmperatur der Schraube bzudichtenden Innendruck berücksichtigen terleisbetmperatur der Schraube terleisbetmperatur der Schraube bei RT inderstörschraube bei RT ugfestigkeit der Schraube bei RT ugfestigkeit der Schraube bei RT indufaktor Schraube bei RT ugfestigkeit der Schraube bei RT indufaktor Schraube mit Schaft B = 260 mm bitter chraubenlänge is 260 mm inderdurchmesser der Mutterauflage ubendurchmesser der Mutterauflage ubendurchmesser der Mutterauflage ubendurchmesser der Mutterauflage inderdufter Schraube Nmm ² Nr. Werkstoff Kendoul EP Nmm ² Mindestzugfestigkeit [FG] Teildicke hi mm	Zusätzliche Querkraft				FQ = 7500	N
nziehverfahren inzimale Reibungszahl im Gewinde inimale Reibungszahl im Gewinde inimale Reibungszahl in der Trennfuge inimale Reibungszahl in der Konfauflage olisicherheit gegen Querrutschen vorgeben eilkreisdurchmesser mzahl der Schrauben razah ußer Außendurchmesser in der Trennfuge mrstz-Außendurchmesser ein der Trennfuge mrein treibstemperatur der Schraube Estigkeitsklasse 12.9 Modul des Schraubenwerkstoffes bei RT Indefstyrscher der Schraube bei RT mindifaktor Scherfestigkeit der Schraube bei RT mindifaktor Scherfestigkeit der Schraube bei RT Regelgewinde chraubengeometrie ewindeart chraubenzeichnung omm chraubenzeichnung mm konzuberwerkstoffes Mindestzugfestigkeit Mutter mendurchmesser der Mutterauflage Mutter Mutter Mindestzugfestigkeit Mutter Mindestzugfestigkeit Mitter Mindestzugfestigkeit Mitter Mindestzugf	Anzahl kraftübertragender innerer Trennfu	gen			$q\tilde{F} = 1$	
Inimale Reibungszahl im Grewinde µTmin = 0.12 Inimale Reibungszahl in der Kopfauflage µTmin = 0.12 µKmin = 0.	Anziehverfahren				Streckgrenzgeste	euertes Anziehen
inimite Returningszehl in der Treinninge µTimin = 0.12 µKmin = 0.12 nein Dt = 1280 mm i = 36 mm DA = 56 mm DA = 50 °C C chraube estigkeitsklasse 12.9 ESRT = 211000 N/mm ² Rpmin = 1100 N/mm ² Rps = 0.6 chraubenser chraubentyp	Minimale Reibungszahl im Gewinde				$\mu Gmin = 0.12$	
Initial relationspace in the Representation of th	Minimale Reibungszahl in der Frennfuge				$\mu I min = 0.12$	
elikreisdurchmesser nzahl der Schrauben rsatz-Außendurchmesser in der Trennfuge urchmesser des Scherquerschnittes vorgeben bzudichtenden Innendruck berücksichtigen etriebstemperatur der Schraube etriebstemperatur der verspannten Teile triebstemperatur der Schraube bei RT Indußatstreckgrenze der Schraube bei RT Rem = 1220 N/mm ² Rmmin = 1100 N/mm ² Regelgewinde chraubenbezeichnung orm Chraubenlänge Inter chraubenlänge Inter Chraubenlänge Inter Mitter Scher Se 60 mm Lutter Mutter Scher Induster Induget Stresser der Mutterauflage Ußendurchmesser der Mutterauflage Ußendurchmesser der Mutterauflage Ußendurchmesser der Mutterauflage Inter Scher Inter Nr. Werkstoff <u>E-Modul EP</u> <u>Mindestzugfestigkeit fG</u> <u>Teildicke hi</u> mmin	Sollsicherheit gegen Ouerrutschen vorgebe	'n			μ NIIIII – 0.12 nein	
elikreisdurchmesser Dt = 1280 mm nzahl der Schrauben i = 36 nsatz-Außendurchmesser in der Trennfuge DA = 56 mm nsatz-Außendurchmesser oberhalb der Trennfuge DA' = 60 mm urchmesser des Scherquerschnittes vorgeben nein nein tzudichtenden Innendruck berücksichtigen nein nein etriebstemperatur der Schraube Ts = 20 °C etriebstemperatur der verspannten Teile Tp = 20 °C Modul des Schraubenwerkstoffes bei RT ESRT = 211000 N/mm² indeststreckgrenze der Schraube bei RT gefstigkeit der Schraube bei RT Rmmin = 1100 urgefstigkeit der Schraube bei RT RBS = 0.6 N/mm² influßfaktor Scherfestigkeit der Schraube bei RT Regelgewinde Sechskantschraube mit Schaft uraubentbezeichnung DIN EN ISO 4014 Mm M39 x 260 orm DIN EN ISO 4014 dh = 40 mm ohruspelter Mutterauflage dw/Mu = 55.9 mm ußendurchmesser der Mutterauflage dw/Mu = 55.9 mm ußendurchmesser der Mutterauflage Mindestzugfestigkeit fG Teildicke hi					nem	
nzahl der Schrauben i = 36 rsatz-Außendurchmesser in der Trennfuge DA = 56 mm rsatz-Außendurchmesser oberhalb der Trennfuge DA = 60 mm urchmesser des Scherquerschnittes vorgeben DA = 20 mein bzudichtenden Innendruck berücksichtigen nein Ts = 20 °C etriebstemperatur der Schraube Ts = 20 °C etriebstemperatur der verspannten Teile Ts = 20 °C Modul des Schraubenwerkstoffes bei RT ESRT = 211000 N/mm² indeststreckgrenze der Schraube bei RT Rm = 1220 N/mm² indußtaktor Scherfestigkeit der Schraube bei RT Rm = 1220 N/mm² influßfaktor Scherfestigkeit der Schraube bei RT Rm = 1220 N/mm² influßfaktor Scherfestigkeit der Schraube fBS = 0.6 N/mm² chraubentyp Sechskantschraube mit Schaft Mag x 260 orm DIN FN ISO 4014 Mn = 40 Mm ohrungsdurchmesser der Mutterauflage Da = 39 mm ußendurchmesser der Mutterauflage Da = 39 mm ußendurchmesser der Mutterauflage dw ^M U = 55.9 mm ußendurchmesser der Mutterauflage	Teilkreisdurchmesser				Dt = 1280	mm
rsatz-Außendurchmesser in der Trennfuge DA = 56 mm pratz-Außendurchmesser oberhalb der Trennfuge DA' = 60 mm nein DA' = 60 mm DA' = 60 mm nein TS = 20 °C Chraube estigkeitsklasse 12.9 Modul des Schraubenwerkstoffes bei RT indeststreckgrenze der Schraube bei RT ugfestigkeit der Schraube bei RT influßfaktor Scherfestigkeit der Schraube bei RT influßfaktor Scherfestigkeit der Schraube chraubengeometrie iewindeart chraubengeometri	Anzahl der Schrauben				i = 36	
rsatz-Außendurchmesser oberhalb der Trenntuge DA' = 60 mm urchmesser des Scherquerschnittes vorgeben nein bzudichtenden Innendruck berücksichtigen nein etriebstemperatur der Schraube Ts = 20 °C etriebstemperatur der verspannten Teile Ts = 20 °C chraube 12.9 Modul des Schraubenwerkstoffes bei RT ESRT = 211000 N/mm² indeststreckgrenze der Schraube bei RT ESRT = 211000 N/mm² N/mm² indugfstigkeit der Schraube bei RT Rpmin = 1100 N/mm² indugfstigkeit der Schraube bei RT RfB = 0.6 N/mm² indugfstigkeit der Schraube bei RT RfB = 0.6 N/mm² indugfstigkeit der Schraube fBS = 0.6 Chraubengeometrie ewindeart Regelgewinde M39 x 260 form DIN EN ISO 4014 M19 x 260 ohrungsdurchmesser DIN EN SO 4014 Mindestzugfestigkeit ohrungsdurchmesser der Mutterauflage Da = 39 mm udendurchmesser der Mutterauflage Da = 39 mm udendurchmesser der Wutterauflage Mindestzugfestigkeit fG Teidlicke hi Nr. We	Ersatz-Außendurchmesser in der Trennfuge	e			DA = 56	mm
Nutrimesser des scherquetschnitues vorgeben nein bzudichtenden Innendruck berücksichtigen rs = 20 °C etriebstemperatur der Schraube Ts = 20 °C etriebstemperatur der verspannten Teile Tp = 20 °C chraube 12.9 * estigkeitsklasse 12.9 * Modul des Schraubenwerkstoffes bei RT ESRT = 211000 N/mm² lindeststreckgrenze der Schraube bei RT Rm = 1220 N/mm² influßfaktor Scherfestigkeit der Schraube fBS = 0.6 0.6 chraubengeometrie fBS = 0.6 0.6 chraubenbezeichnung Regelgewinde Sechskantschraube mit Schaft ohrungsdurchmesser dh = 40 mm chraubenlänge Is = 260 mm lutter s = 60 mm chlüsselweite Mutter s = 60 mm ußendurchmesser der Mutterauflage dw Mu = 55.9 mm ußendurchmesser der Mutterauflage m = 33.4 mm Mageb der verspannten Teile Teildicke hi mm	Ersatz-Außendurchmesser oberhalb der Tre	ennfuge			DA' = 60	mm
bzudichtenden Innendruck berücksichtigen nein etriebstemperatur der Schraube Ts = 20 °C etriebstemperatur der verspannten Teile Tp = 20 °C chraube 12.9 * estigkeitsklasse 12.9 * -Modul des Schraube werkstoffes bei RT ESRT = 211000 N/mm² indeststreckgrenze der Schraube bei RT Rpmin = 1100 N/mm² ugfestigkeit der Schraube bei RT Rbs = 0.6 chraubengeometrie ewindeart Regelgewinde schraube mit Schaft chraubengeometrie DIN EN ISO 4014 Miss > 260 orm DIN EN ISO 4014 mm ohrungsdurchmesser gs = 260 mm uedendurchmesser der Mutterauflage Da = 39 mm uderdurchmesser der Mutterauflage Da = 39 mm uedendurchmesser der Mutterauflage m = 33.4 mm Magebe der verspannten Teile Mindestzugfestigkeit fG Teildicke hi	Durchmesser des Scherquerschnittes vorge	even			nein	
triebstemperatur der Schraube Ts = 20 °C thriebstemperatur der verspannten Teile Tp = 20 °C chraube 12.9 *C estigkeitsklasse 12.9 *C Modul des Schraubenwerkstoffes bei RT ESRT = 211000 N/mm² ugfestigkeit der Schraube bei RT Rpmin = 1100 N/mm² ugfestigkeit der Schraube bei RT Rpmin = 120 N/mm² influßfaktor Scherfestigkeit der Schraube fBS = 0.6 chraubengeometrie ewindeart Regelgewinde Sechskantschraube mit Schaft chraubentyp Sechskantschraube mit Schaft M39 x 260 orm DIN EN ISO 4014 dh = 40 mm ohrungsdurchmesser dh = 40 mm Is = 260 mm ubendurchmesser der Mutterauflage Da = 39 mm dwdwu = 55.9 mm uterthöhe m = 33.4 mm m m Teildicke hi Nr. Werkstoff E-Modul EP Mindestzugfestigkeit fG Teildicke hi	Abzudichtenden Innendruck berücksichtige	en			nein	
etriebstemperatur der verspannten Teile Tp = 20 °C chraube estigkeitsklasse 12.9 -Modul des Schraubenwerkstoffes bei RT ESRT = 211000 N/mm² uindeststreckgrenze der Schraube bei RT Rpmin = 1100 N/mm² uindeststreckgrenze der Schraube bei RT Rpmin = 1100 N/mm² uindeststreckgrenze der Schraube bei RT Rm = 1220 N/mm² influßfaktor Scherfestigkeit der Schraube fBS = 0.6 6 chraubentyp Regelgewinde 5 chraubentyp Sechskantschraube mit Schaft M39 x 260 orm DIN EN ISO 4014 0 ohrungsdurchmesser Is = 260 mm chraubenlänge Is = 260 mm Iutter s = 60 mm mm chlüsselweite Mutter s = 60 mm mm nendurchmesser der Mutterauflage dwMu = 55.9 mm mm ulderthöhe m = 33.4 mm mm Nr. Werkstoff E-Modul EP Mindestzugfestigkeit fG Teildicke hi	Betriebstemperatur der Schraube				Ts = 20	°C
chraube estigkeitsklasse 12.9 -Modul des Schraubenwerkstoffes bei RT ESRT = 211000 N/mm² lindeststreckgeraze der Schraube bei RT Rpmin = 1100 N/mm² ugfestigkeit der Schraube bei RT Rm = 1220 N/mm² ugfestigkeit der Schraube bei RT Rm = 1200 N/mm² influßfaktor Scherfestigkeit der Schraube fBS = 0.6 chraubengeometrie iewindeat Regelgewinde sechskantschraube mit Schaft chraubenbezeichnung M39 x 260 DIN EN ISO 4014 ohrungsdurchmesser dh = 40 mm chraubenlänge Is = 260 mm Nteter s = 60 mm chlüsselweite Mutter Da = 39 mm nendurchmesser der Mutterauflage dwMu = 55.9 mm ußendurchmesser der Mutterauflage dwMu = 55.9 mm utterhöhe m = 33.4 mm Magabe der verspannten Teile Remain fG Teildicke hi	Betriebstemperatur der verspannten Teile				Tp = 20	°C
Hould les Schraubenwerkstoffes bei RT ESRT = 211000 N/mm² lindeststreckgrenze der Schraube bei RT Rpmin = 1100 N/mm² ugfestigkeit der Schraube bei RT Rm = 1220 N/mm² influßfaktor Scherfestigkeit der Schraube fBS = 0.6 chraubengeometrie ewindeart Regelgewinde chraubentyp Sechskantschraube mit Schaft M39 x 260 chraubenlänge DIN EN ISO 4014 Mm² ohrungsdurchmesser dh = 40 mm chraubenlänge Is = 260 mm lutter Se = 60 mm chlüsselweite Mutter s = 60 mm ußendurchmesser der Mutterauflage dwMu = 55.9 mm ulterhöhe m = 33.4 mm Nr. Werkstoff E-Modul EP Mindestzugfestigkeit fG Teildicke hi	Schraube Fastiakaitaklassa				12.0	
Indedtates of the standard of	F-Modul des Schraubenwerkstoffes bei RT				12.9 FSRT = 21100	0 N/mm²
ugfestigkeit der Schraube bei RT Rm = 1220 N/mm² influßfaktor Scherfestigkeit der Schraube RB = 1220 N/mm² influßfaktor Scherfestigkeit der Schraube Regelgewinde Sechskantschraube mit Schaft iewindeart M39 x 260 DIN EN ISO 4014 ohrungsdurchmesser dh = 40 mm chraubenlänge Is = 260 mm Iutter S = 60 mm chlüsselweite Mutter S = 60 mm ußendurchmesser der Mutterauflage dwMu = 55.9 mm ußendurchmesser der Mutterauflage dwMu = 55.9 mm ultterhöhe m = 33.4 mm	Mindeststreckgrenze der Schraube hei RT				Rpmin = 1100	N/mm ²
influßfaktor Scherfestigkeit der Schraube fBS = 0.6 chraubengeometrie ewindeart iewindeart Regelgewinde chraubenbezeichnung Sechskantschraube mit Schaft ohrungsdurchmesser M39 x 260 ohrungsdurchmesser DIN EN ISO 4014 chraubenlänge dh = 40 mm Intter Is = 260 mm chrusselweite Mutter s = 60 mm nenedurchmesser der Mutterauflage Da = 39 mm ußendurchmesser der Mutterauflage dwMu = 55.9 mm ultethöhe m = 33.4 mm	Zugfestigkeit der Schraube bei RT				Rm = 1220	N/mm ²
chraubengeometrie Regelgewinde iewindeart Regelgewinde chraubentyp Sechskantschraube mit Schaft chraubenbezeichnung M39 x 260 jorm DIN EN ISO 4014 ohrungsdurchmesser dh = 40 chraubenlänge Is = 260 Inter s = 60 chlüsselweite Mutter Da = 39 nnendurchmesser der Mutterauflage dwMu = 55.9 ußendurchmesser der Mutterauflage dwMu = 55.9 ußendurchmesser der Mutterauflage m = 33.4 Nr. Werkstoff E-Modul EP Mindestzugfestigkeit fG N/mm ² Rmmin Teildicke hi	Einflußfaktor Scherfestigkeit der Schraube				fBS = 0.6	
iewindeart Regelgewinde chraubentyp Sechskantschraube mit Schaft chraubenbezeichnung M39 x 260 jorm DIN EN ISO 4014 ohrungsdurchmesser dh = 40 chraubenlänge Is = 260 Iutter s = 60 chlüsselweite Mutter s = 60 nnendurchmesser der Mutterauflage Da = 39 ußendurchmesser der Mutterauflage dwMu = 55.9 lutterhöhe m = 33.4 Mr. Werkstoff IVr. Kerkstoff IVr. Kerkstoff IVr. Kerkstoff	Schraubengeometrie					
Chraubentyp Sechskantschraube mit Schäft chraubenbezeichnung M39 x 260 Jorm DIN EN ISO 4014 ohrungsdurchmesser dh = 40 mm chraubenlänge Is = 260 mm Iutter s = 60 mm chlüsselweite Mutter Da = 39 mm ußendurchmesser der Mutterauflage dwMu = 55.9 mm lutterhöhe m = 33.4 mm Angabe der verspannten Teile Nr. Werkstoff E-Modul EP Mindestzugfestigkeit fG Teildicke hi	Gewindeart				Regelgewinde	uha mit Cak-A
Initial Definition of the second state of the second st	Schraubentyp				Sechskantschra	ude mit Schaft
ohrungsdurchmesser dh = 40 mm chraubenlänge ls = 260 mm lutter s = 60 mm chlüsselweite Mutter Da = 39 mm ußendurchmesser der Mutterauflage dwMu = 55.9 mm ußendurchmesser der Mutterauflage mm mm ußendurchmesser der Mutterauflage mm mm ußendurchmesser der Mutterauflage mm mm Magabe der verspannten Teile mm mm Nr. Werkstoff E-Modul EP Mindestzugfestigkeit fG Teildicke hi	Norm				DIN F	N ISO 4014
Inter Is = 260 mm Intter s = 60 mm Inter Da = 39 mm Inter Da = 39 mm Inter Magabe der verspannten Teile mm Nr. Werkstoff E-Modul EP Mindestzugfestigkeit fG Teildicke hi	Bohrungsdurchmesser				dh = 40	mm
Iutter s = 60 mm chlüsselweite Mutter Da = 39 mm onendurchmesser der Mutterauflage Da = 39 mm ußendurchmesser der Mutterauflage dwMu = 55.9 mm lutterhöhe m = 33.4 mm Angabe der verspannten Teile Mindestzugfestigkeit fG Nr. Werkstoff E-Modul EP Mindestzugfestigkeit fG Teildicke hi	Schraubenlänge				ls = 260	mm
Intter s = 60 mm chlüsselweite Mutter Da = 39 mm ußendurchmesser der Mutterauflage Da = 39 mm ußendurchmesser der Mutterauflage dwMu = 55.9 mm lutterhöhe m = 33.4 mm Angabe der verspannten Teile Vr. Nr. Werkstoff E-Modul EP Mindestzugfestigkeit N/mm² Rmmin	Martheau					
Intercontractor Intercontractor Intercontractor Intercontractor Innendurchmesser der Mutterauflage Da = 39 mm ußendurchmesser der Mutterauflage dwMu = 55.9 mm Iutterhöhe m = 33.4 mm Angabe der verspannten Teile Vr. Werkstoff E-Modul EP Nr. Werkstoff E-Modul EP Mindestzugfestigkeit fG	Schlüsselweite Mutter				s = 60	mm
ußendurchmesser der Mutterauflage lutterhöhe der verspannten Teile Nr. Werkstoff E-Modul EP Mindestzugfestigkeit fG Teildicke hi N/mm ² Rmmin G Teildicke hi	Innendurchmesser der Mutterauflage				Da = 39	mm
Interhöhe m = 33.4 mm Angabe der verspannten Teile Mindestzugfestigkeit fG Teildicke hi mm Nr. Werkstoff E-Modul EP N/mm² Mindestzugfestigkeit fG Teildicke hi mm	Außendurchmesser der Mutterauflage				dwMu = 55.9	mm
Angabe der verspannten Teile Fernodul EP Mindestzugfestigkeit fG Teildicke hi Nr. Werkstoff E-Modul EP Mindestzugfestigkeit fG Teildicke hi N/mm ² Rmmin mm mm mm mm	Mutterhöhe				m = 33.4	mm
Nr. Werkstoff E-Modul EP Mindestzugfestigkeit fG Teildicke hi mm	Angabe der verspannten Teile					
N/mm ² Rmmin mm	Nr. Werkstoff	E-Mo	dul EP	Mindestzugfestigkeit	fG	Teildicke hi
N/mm2		N/mr	n∠	Kmmin		mm

Nr.	Werkstoff	E-Modul EP	Mindestzugfestigkeit	fG	Teildicke hi
		N/mm ²	Rmmin		mm
			N/mm ²		
1	34CrMo 4	205000	1000	0.87	100
2	S355 JO	205000	510	1.49	100

Unterlegscheiben Unterlegscheibe unter Kopf Unterlegscheibe unter Mutter Scheibengeometrie	ja ja	
Innendurchmesser Dicke der Unterlegscheibe unter Kopf	dhas = 42 hs1 = 6	mm mm
Dicke der Unterlegscheibe unter Mutter <u>Werkstoff der Scheibe</u> E-Modul des Scheibenwerkstoffes bei RT Mindestzugfestigkeit bei RT	hs2 = 6 16MnCr 5 EPS = 205000 RmminS = 1000	mm N/mm² N/mm²

	Studienversion		
Programm : MDESIGN	Benutzer :	Kunde :	
Iodulversion : 11.0	Datum : 07.08.2008	Proj. Nr :	
	Schraubenberechnung	basis	
Einflußfaktor Grenzflächenpressung		fG = 0.9	
Fase an der Bohrung berücksichtigen Setzbetrag selbst vorgeben Setzbetrag	s Anziehdrehmoment hei DT vorgehen	nein ja fz = 3 pein	μm
Ausnutzung der Streckgrenze beim Anziel	ien	v = 90	%
	lk	IGM	
ISK		IGew	

	Studienvers	sion		
rogramm : MDESIGN	Benutzer :	Κι	inde :	
odulversion : 11.0	Datum : 07.08.2008	Pr	oj. Nr :	
	Schraubenberechr	nung basis		
Ergebnisse: Systematische E Schraubenverbindung	erechnung hochbeanspruchter gen in Anlehnung an VDI 2230			
Sechskantschraube DIN E	N ISO 4014 - M39 x 260 - 12.9			
Allgemeine Berechnungswerte				
<u>Schraubengeometrie</u>		d	- 30.00	mm
Gewindesteigung		P	= 39.00 = 4.00	mm
Bohrungsdurchmesser		dh	= 40.00	mm
Außendurchmesser der ebenen Kopfauf	lage	dw	= 55.86	mm
Innendurchmesser der Kopfauflage		da	= 42.40	mm
Flankendurchmesser		d2	= 36.40	mm
Kerndurchmesser Schaftlänge		d3	= 34.09	mm
Schraubenlänge		ls	= 260.00	mm
Kerndurchmesser des Muttergewindes		D1	= 34.67	mm
Klemmlänge		lk	= 212.00	mm
Winkel des Verformungskegels		(0	- 21.48	0
Grenzaußendurchmesser des Verformu	naskeaels	φ DAGr	= 139.27	mm
Gesamthöhe der Verformungshülse		IH	= 211.64	mm
Gesamthöhe des Verformungskegel		IV	= 0.18	mm
Elastische Nachgiebigkeiten der Verbing	luna			
Nachgiebigkeit der Schraube:				
- bei Raumtemperatur		δSRT	= 1.1489	10^-6mm/N
Nachgiebigkeit der verspannten Teile:				
- bei Raumtemperatur zentrisch verspannt		δPRT	= 0.8572	10^-6mm/N
Δnziehfaktor		αA	= 1,000	
Setzbetrag		fz	= 3.00	um
Mindestklemmkraft für Dichtefunktion		FKP	= 0.00	Ň
Erforderliche Mindestklemmkraft		FKerf	= 415509.26	N
Vorspannkraftverlust infolge Setzens	to our	Fz	= 1495.41	N
Thermische induzierte Vorspannkraftän	temp. Jeruna	∆F'Vth ∧FVth	= 0.00	N
			0100	
Zulässige Montagevorspannkraft bei RT		FMzul	= 875693.62	N
Minimal erforderliche Montagevorspann Minimale Vorspannkraft	kraft	FMmin FVmin	= 41/004.6/ = 874198.21	N N
Flächenpressung				
Auflagefläche:		A	1000 75	
- Schraubenkopt - Unterleascheibe (Konfseitia)		ApKmin Apl Imin	= 1038.75 = 1080.00	IIIII)² mm²
- Mutter		ApMumin	= 1068.78	mm ²
- Unterlegscheibe (Mutterseitig)		ApU2min	= 1984.11	mm ²
Montagezustand				
Flächenpressung:				
- Kopfauflage		pMKmax	= 843.03	N/mm ²
- Scheibe/erstes verspannte Teil		pMUmax	= 442.27	N/mm ²
- Mutteraunage - Scheibe/letzte verspannte Teil		nMI I2max	= 019.34 = 441.35	N/mm ²
Grenzflächepressung:		Phozinax	111.55	,
- Scheibe		pGU	= 900.00	N/mm ²
			070.00	NI /

Programm : MDESIGN	Benutzer :	Ku	nde :	
Iodulversion : 11.0	Datum : 07.08.2008	Pro	oi. Nr :	
	Schraubenberechn	una hasis		
- das letzte versnannte Teil		nG	- 759.90	N/mm2
Sicherheit gegen Flächenpressung:		ρG	- 759.90	IN/11111-
- Kopfauflage		SpMK	= 1.07	
- Scheibe/erstes verspannte Teil		SpMU	= 1.97	
- Mutterauflage		SpMMu	= 1.10	
- Scheibe/das letzte verspannte Teil		SpMU2	= 1.72	
Betriebszustand				
Flächenpressung:				
- Kopfauflage		pBKmax	= 841.59	N/mm ²
 Scheibe/das erste verspannte Teil 		pBUmax	= 441.51	N/mm ²
- Mutterauflage		pBMumax	= 817.94	N/mm ²
 Scheibe/das letzte verspannte Teil 		pBU2max	= 440.60	N/mm²
Grenzflächepressung:				
- Scheibe		pGU	= 900.00	N/mm²
- das erste verspannte Teil		PG1	= 870.00	N/mm²
- das letzte verspannte Teil		pG	= 759.90	N/mm²
Sicherheit gegen Flächenpressung:				
- Kopfauflage		SpBK	= 1.07	
 Scheibe/das erste verspannte Teil 		SpBU	= 1.97	
- Mutterauflage		SpBMu	= 1.10	
- Scheibe/das letzte verspannte Teil		SpBU2	= 1.72	
Eine Ermittlung der minimalen Einschraubt	efe entfällt, da bei			
der Berechnung davon ausgegangen wird,	daß genormte Muttern mit			
der Festigkeitsklasse der Schraube verwend	Jet werden			
und somit voll tragfähig sind!				
Sicherheit gegen Gleiten und Abscher	en der Schraube			
Minimale Restklemmkraft		FKRmin	= 874198.21	N
Resultierende Querkraft		FQmax	= 49861.11	N
Erforderliche Mindestklemmkraft für Reibsc	hluß	FKQ	= 415509.26	N
Sicherheit gegen Gleiten		SG	= 2.10	
Es gilt: SG Sgsoll!				
Maßgebender Scherquerschnitt		Ατ	= 1194.59	mm²
Scherfestigkeit der Schraube		τBS	= 732.00	N/mm ²
Sicherheit gegen Abscheren		SA	= 17.54	
Es gilt: SA 1.1!				
Anziehdrehmoment				
Erforderliches Anziehdrehmoment bei RT		MA	= 5360.45	Nm

Anhang B

Fertigungszeichnungen

