Diopsid – Titanit Gänge von Arkaroola (Australien)

Diplomarbeit zur Erlangung des akademischen Grades eines Diplomingenieurs

Thomas Hans AIGLSPERGER

März, 2010

Betreuer

Ao. Uni.-Prof. Dr. Ronald J. BAKKER¹⁾

1) Department Angewandte Geowissenschaften und Geophysik Lehrstuhl für Mineralogie und Petrologie, Montanuniversität Leoben, Österreich

EIDESSTATTLICHE ERKLÄRUNG

Ich erkläre an Eides statt, dass ich diese Arbeit selbständig verfasst, andere als die angegebenen Quellen und Hilfsmittel nicht benutzt und mich auch sonst keiner unerlaubten Hilfsmittel bedient habe.

AFFIDAVIT

I declare in lieu of oath, that I wrote this thesis and performed the associated research myself, using only literature cited in this volume.

DANKSAGUNG

An dieser Stelle möchte ich mich ganz besonders bei meinem Betreuer seitens der Montanuniversität Leoben, Herrn Ao. Univ. – Prof. Dr. Ronald BAKKER, für seine geduldige und stets produktive Hilfestellung beim Verfassen dieser Arbeit bedanken.

Für ihre freundschaftliche Hilfe und kompetente Beratung während der Elektronenstrahlmikrosondenanalysen, möchte ich mich ganz herzlich bei Frau Dr. Federica ZACCARINI bedanken.

Herrn Ao. Univ. – Prof. Dr. Gerd RANTITSCH möchte ich für seine wertvollen Ratschläge bei der Erstellung der georeferenzierten Karte danken.

Ein großes Dankeschön ergeht an Herrn Helmut MÜHLHANS für die Präparation der Dünnschliffe sowie seiner Hilfe während der Verwendung der Elektronenstrahlmikrosonde.

Frau Judith BERGTHALER danke ich für ihre stetige Hilfsbereitschaft bei diversen administrativen Problemen sowie für ihr sonniges Gemüt, das zu dem guten Arbeitsklima innerhalb des Lehrstuhls wesentlich beigetragen hat.

Bei Margit WELIGOSCHEK, Andrea WINKLER und Doris KNABL möchte ich mich für ihre Kompetenz in Bezug auf verschiedene Herausforderungen in der Literaturrecherche bedanken.

Meinen Diplomarbeitszimmerkollegen Gerald A. KRIBITZ und Benjamin WIESER sei stellvertretend für alle mir nahestehenden Kommilitonen und Kommilitoninnen der letzten Jahre, für die gegenseitige Hilfe während des Studiums gedankt.

Als bei einer der wichtigsten Personen für mich in Leoben möchte ich mich bei meinem lieben Freund Dr. mont. Amir Morteza AZIM ZADEH von ganzem Herzen für seine philosophischen Lehrstunden bedanken.

Meiner Familie im Allgemeinen und meinen Eltern im Besonderen, die zeit meines Lebens immer an mich geglaubt und mich bei allem was ich getan habe unterstützt haben, gebührt der allergrößte Dank.

Ein tief empfundenes Dankeschön für ihre bedingungslose Liebe in den letzten vier Jahren sowie für ihre unbeschreibliche Fähigkeit den tristesten Tag in eine *alegría* zu verwandeln, ergeht an meine geliebte Lebensgefährtin Dariveth QUESADA VILLAGRA.

ABSTRACT

The sillimanite bearing Mesoproterozoic metagranites and metasediments of the Mt. Painter Inlier, Arkaroola (northern Flinders Ranges) contain a variety of unusual titanite-bearing veins: a) megacryst diopside – titanite (10%, up to 40 cm) pegmatite; b) scapolite (marialite) – quartz – actinolite – titanite (7%, up to 1 cm) vein; c) Kfeldspar – calcite – diopside – titanite (5%, up to 1 cm) pegmatite. The diopsid – titanite veins (a) are WNW-ESE striking and up to 5 m in thickness. They contain minor amounts of quartz, hematite, calcite and apatite. Titanite crystals do not show reaction zones with diopside, which are partly hydrothermally altered to actinolite. Pegmatite (b) contains mainly large elongated crystals of marialite, intergrown with randomly oriented titanite and diopside/actinolite. Accessory minerals are epidote (secondary), biotite, zircon and magnetite. Pegmatite (c) is asymmetrical zoned: the center part contains mainly Kfeldspar and quartz with miaroles, whereas one rim contains titanite crystals and the opposite rim contains actinolite crystals. Fluid inclusions (fi) are abundant in diopside, titanite, quartz, calcite and apatite. Inclusions in titanite and diopside are investigated optically, with ramanspectroscopy and XRF spectroscopy using an electron microprobe. Titanite has similar inclusions in all three rock types and contains trails of dark inclusions with a strong reequilibration texture. A brine and a vapour bubble are observed in some of these inclusions. Beside monazite and zircon, titanite contains a variety of sporadic exotic minerals, such as baddeleyite, uraninite, thorianite and fergusonite. Furthermore undefined minerals like Ca-Ti-Y-Nd-Sm-La-rich crystals, Nb-Y-Ti-Th-U crystals and Si-Nb-Y-Ti-Fe-Ca- SEE crystals are present. Accessory minerals in diopside are among others: baryt, pyrit, scheelite and wakefieldit. Crystals with Si-Y-Ca-Al-SEE and Si-Y-Ca-Ce-Fe composition remain undefined. Inclusions in quartz are investigated additionally with microthermometry. Four types of fluid inclusions are identified: 1) aqueous, irregular elongated fi with sizes up to 75 μ m and either low or high salinity of unknown composition. Homogenisation temperatures in low saline fi reaches values up to 350°C; 2) CO₂ rich secondary inclusions with negative crystal forms. The density of these fi vary between 0.956 and 0.584 g/cc; 3) highly complex fi with different solid phases (salts, calcite, hematite). Vapour and liquid homogenize around 120°C, whereas salt and calcite crystals dissolve at higher temperatures, up to 580° C; 4) homogenous, aqueous fi (secondary) with diameters smaller than 5 μ m. Electron-microprobe analyses of titanite show a zonation caused by different enrichments in LREE (mainly Nd), Y and Nb. Diopside is relatively enriched in Fe (i.e. salite) wheras REE are not detected. Monazites in titanite and quartz are enriched in Ce and contain considerable amounts of Th and Sm.

ZUSAMMENFASSUNG

Die sillimanithältigen, mesoproterozoischen Metagranite und Metasedimente innerhalb des Mt. Painter Inliers, Arkaroola (nördliche Flinders Ranges), beinhalten eine Reihe von außergewöhnlichen, titanithältigen Gängen: a) Diopsid – Titanit (10%, bis zu 40 cm) Riesenkristallpegmatit mit Quarz, Hämatit, Kalzit und Apatit; b) Gänge mit Skapolith (Marialit) -Quarz – Aktinolith – Titanit (7%, bis zu 1 cm); c) K-Feldspat – Kalzit – Diopsid – Titanit (5%, bis zu 1 cm) Pegmatit. Die Diopsid – Titanit Gänge (a) streichen WNW – OSO und sind bis zu 5 m mächtig. Sie beinhalten geringe Mengen an Quarz, Hämatit, Kalzit und Apatit. Die Titanitkristalle zeigen keinen Reaktionsrand mit Diopsid, der teilweise hydrothermal in Aktinolith umgewandelt wurde. Pegmatit (b) besteht vorwiegend aus großen, länglichen Marialitkristallen, die mit unorientiertem Titanit und Diopsid bzw. Aktinolith verwachsen sind. Als akzessorische Minerale treten Epidot (sekundär), Biotit, Zirkon und Magnetit auf. Pegmatit (c) zeigt eine asymmetrische Zonierung: im Zentrum herrschen K-Feldspat und Quarz mit Miarolen vor, während eine Seite von Titanit- und die gegenüberliegende Seite von Aktinolithkristallen dominiert wird. Flüssigkeitseinschlüsse (fi) sind häufig im Diopsid, Titanit, Quarz, Kalzit und Apatit. Einschlüsse im Diopsid und Titanit wurden optisch, mit Raman- sowie XRF Spektroskopie untersucht. In allen drei Gesteinstypen zeigt Titanit ähnliche Einschlüsse mit dunklen Einschlussspuren sowie starken Reaequilibrierungstexturen. In manchen Fällen haben diese fi Salzlösungen mit einer Gasblase. Neben Monazit und Zirkon beinhaltet Titanit verschiedene, sporadisch auftretende Minerale wie Baddelevit, Uraninit, Thorianit und Fergusonit. Akzessorien im Diopsid sind unter anderem: Baryt, Pyrit, Scheelit und Wakefieldit. Einschlüsse im Quarz wurden zusätzlich mit Mikrothermometrie untersucht. Vier fi Typen wurden identifiziert: 1) wässrige, unregelmäßig längliche fi (bis zu 75 μ m) mit entweder niedriger oder hoher Salinität unbekannter Zusammensetzung. Homogenisierungstemperaturen in niedrig salinaren fi erreichen Werte von bis zu 350°C; 2) CO₂ reiche, sekundäre Einschlüsse mit negativer Kristallform. Die Dichte dieser fi variiert zwischen 0.956 und 0.584 g/cm²; 3) hochkomplexe fi mit verschiedenen Festphasen (Salze, Kalzit, Hämatit). Gas- und Flüssigphasen homogenisieren bei etwa 120°C, während sich Salz- und Kalzitkristalle bei höheren Temperaturen auflösen (bis 580°C); 4) homogene, wässrige fi (sekundär) mit Durchmessern < 5 µm. EMS Analysen der Titanite zeigen durch unterschiedliche Anreicherungen von LSEE (hauptsächlich Nd), Y, und Nb verursachte Zonierungen. Diopsid ist in Fe relativ angereichert (i.e. Salit) und besitzt keine SEE. Ce-Monazite in Titanit und Quarz beinhalten beachtliche Mengen an Th und Sm.

INHALTSVERZEICHNIS

1	GEOLOGISCHER ÜBERBLICK	
	1.1 REGIONALE GEOLOGIE	
	1.1.1 Tektonische Geschichte der Curnamona Provinz	2
	1.2 LOKALE GEOLOGIE	3
2	SVSTEMATIK DER DECMATITE	R
2	2.1 DEFINITION	,ð
	2.1 DEFINITION	0 Q
	2.2 REASSITIZERONU	
	2.2.1 Die ubyssuie Klasse	
	2.2.2 Die Muskovit – saltana Flamanta Klassa	
	2.2.5 Die Muskovit – seitene Elemente Riusse	
	2.2.4 Die seitene Elemente Russe	
	2.2.5 Die Intui ontische Klusse	
	2.3 DIE LEGMATTI FAMILIEN	
	2.3.1 Die LUT Fullitie	
	2.3.2 DIE NICHTCDANITISCHEN DECMATITE	
	2.4 DIE MCHTGRAMTISCHENTEGMATHE	
	2.4.2 Mafische Magmen: Cabbroitische Degmatite	
	2.4.2 Mujische Mugmen. Gubbionische Legmanie	
	2.4.3 Arkunne Mugmen. Syenicische und Kurbondulusche Feyndule	
	2.4.3.2 Pegmatitische Syenite	
3	METHODENRESCHREIBUNG	17
5	3.1 AUE-UND DURCHLICHTMIKROSKOPIE	17
	3.2 RAMAN MIKROSPEKTROMETRIE	
	3.3 MIKROTHERMOMETRIE	
	3.4 FLEKTRONENSTRAHLMIKROSONDE (EMS)	20
	3.5 ARCGIS 9.2	23
	3.6 BOCKWARE STEREOSTAT 1.5	23
	37 PFak Fit 2002 v 4 11	23
	3.8 IMAGEI 1 42	23
	3.9 AoSoVir Software Package Fluids v 2	23
	3.10 LONER 17 BZW 32	23
4	KARTIERUNG	
	4.1 AUFGABENSTELLUNG	
	4.2 VORGEHENSWEISE IM FELD	
	4.3 ERSTELLUNG DER GEOREFERENZIERTEN KARTE	
	4.4 DIE HAUPTKARTE	
	4.5 DIE ZUSATZKARTEN	

	4.5.1	DTG Gangmächtigkeiten	26
	4.5.2	Titanit Auftreten	27
	4.5.3	Probenpunkte	28
	4.6 Di	opsid – Titanit Gesteine	
	4.6.1	Diopsid – Titanit Gänge	29
	4.6.2	Skapolith mit Diopsid und Titanit	32
	4.6.3	Pegmatitgänge mit Diopsid und Titanit	32
	4.7 Pe	GMATITKÖRPER UND QUARZREICHE GESTEINE	
	4.8 Ni	EBENGESTEINE	
	4.8.1	Augengneis	33
	4.8.2	Knotenschiefer	34
	4.8.3	Granite	34
	4.9 Qu	JARZ-HÄMATITÜBERPRÄGUNG	
	4.10 H	Iot Spots / Störungen	34
	4.11 N	ЛАГІС ДҮКЕ	35
5	SCHL	FFBESCHREIBUNG	36
	5.1 14	۹	
	5.2 10	· · · · · · · · · · · · · · · · · · ·	
	5.3 1I)	
	5.4 2	D	41
	5.5 2H	ΕΑ	42
	5.6 2H	S B	45
	5.7 3.	Α	
	5.8 3	C	
	5.9 3	К	
	5.10 4	k B	54
	5.11 4	k E	54
	5.12 6	5 H	56
	5.13 7	7 F	57
	5.14 8	3 A	60
	5.15 9) C	61
	5.16 1	LO C	63
6	ELEK	FRONENSTRAHLMIKROSONDE (EMS)	65
	6.1 TI	TANIT	65
	6.1.1	Zonierungen	66
	6.1.2	Substitutionsmodelle	
	6.1.3	Akzessorische Minerale innerhalb der Titanite	76
	6.1.4	Seltene Erdelemente (SEE)	79
	6.2 Di	OPSID	84
	6.2.1	Substitutionsmodelle	
	6.2.2	Akzessorische Minerale innerhalb der Salite	88
	6.3 Ai	KTINOLITH	90

	6.3.	.1 Substitutionsmodelle	93
6.	4	Monazite	95
7	UNI	FERSUCHUNGEN AN FLÜSSIGKEITSEINSCHLÜSSEN IM QUARZ	101
7.	1	GRUPPE 1: WÄSSRIGE FLÜSSIGKEITSEINSCHLÜSSE MIT BLASE	
7.	2	GRUPPE 2: CO ₂ REICHE EINSCHLÜSSE	106
7.	3	GRUPPE 3: KOMPLEXE, MEHRPHASIGE FLÜSSIGKEITSEINSCHLÜSSE	107
7.	4	GRUPPE 4: HOMOGENE, WASSERREICHE FLÜSSIGKEITSEINSCHLÜSSE	113
8	SCH	ILUSSFOLGERUNGEN	
9	LIT	ERATURVERZEICHNIS	
10	AN	NHANG	122
1(0.1	Fotoaufnahmen, Skizzen und GPS Punkte	122
1(0.2	RAMANSPEKTREN VON MINERALIEN	148
1(0.3	FLÜSSIGKEITSEINSCHLÜSSE: ROHDATEN UND BERECHNUNGEN	152
1(0.4	ELEKTRONENSTRAHLMIKROSONDE: ROHDATEN UND BERECHNUNGEN	154
1(0.5	KARTE IM MAßSTAB 1:3000 MIT DREI ZUSATZKARTEN IM MAßSTAB 1:10000	174

1 Geologischer Überblick

1.1 Regionale Geologie

Das Untersuchungsgebiet befindet sich innerhalb der sogenannten Curnamona Provinz, die ein ~50 000 km² großes, eiförmiges, palaeoproterozoisches Krustenelement darstellt (s. Abb. 1-1) und großteils von neoproterozoischen bis kambrischen Sedimenten überdeckt wird. Sie ist heute vom Gawler Kraton durch den neoproterozoischen Riftingkomplex der Adelaide Geosynklinale getrennt (s. Abb. 1-1 u. Abb. 1-2). Die südliche Curnamona Provinz mit seinen großen Pb-Zn-Ag-(Au) Erzgängen bei Broken Hill repräsentiert den südöstlichsten Ausläufer des östlichen Australischen Blei-Zink Gürtels, der so bedeutende Lagerstätten beinhaltet wie McArthur River, HYC, Centery, Mt Isa oder Cannington (s. Abb. 1-1). Curnamona birgt des Weiteren ökonomische Uran sowie Cu-Au-Mo Mineralisationen und ist daher als Bestandteil der frühmesoproterozoischen IOCG (Iron**O**xide **C**opper **G**old) Provinz zu verstehen (s. Abb. 1-1).

<u>Abb. 1-1</u>

Geographische Lage der Curnamona Provinz und ihre Beziehung zum östlichen australischen Pb-Zn Gürtels bzw. zu den frühmesoproterozoischen IOCG Provinzen (COLIN et al., 2008)

<u>Abb. 1-2</u>

Detailbetrachtung der Beziehung: Gawler Kraton – Adelaide Geosynklinale - Curnamona Provinz (COLIN et al., 2008); das rote Viereck markiert die Lage des Untersuchungsgebietes

1.1.1 Tektonische Geschichte der Curnamona Provinz

Die Curnamona Provinz weist eine komplexe Entstehungsgeschichte auf die durch folgende Aufzählung von geologischen Ereignissen kompakt nachgezeichnet wird:

- Zwischen 1720 und 1640 Ma kommt es zu krustaler Extension mit einhergehender Beckenentwicklung und zur Ablagerung der sogenannten Willyama Supergruppe auf kontinentaler Kruste mit dazugehörigen Magmatiten.
- Polyphase Deformation und Metamorphose folgen während des Olarian Orogens (~1600 Ma), Intrusionen von mesoproterozoischen Graniten (1595 1580 Ma), Hebungsprozesse im späten Stadium des Orogens und Erosion, bevor Vulkanite (~1580 Ma) und lokale Sedimente das Zentrum der Curnamona Provinz zudecken.
- Retrograde Scherung im Mesoproterozoikum führt zu Segmentierung und untergeordneter Neufaltung der Curnamona Provinz.

- Neoproterozoisches Rifting leitet eine weitere Phase von Extension und Segmentierung ein, welche von neoproterozoischer Sedimentation begleitet wird.
- Die Becken Inversion im mittleren bis späten Kambrium sowie Kontraktion und Metamorphose während des Delamerianischen Orogens betrifft nur die Peripherie der Curnamona Provinz. Das Zentrum verbleibt kratonisch mit flachliegenden neoproterozoischem und kambrischem Cover.
- Teilweise gestörte, mitunter diskordant abgegrenzte, bis ins Basement reichende, Antiklinale und Dome werden in den gefaltenen Adelaidischen Gesteinen gebildet, die als Erosionsprodukt die heute vorzufindenden Willyama Inier bilden.
- Abschließend kommt es zur Ablagerung von mesozoischem, tertiärem und quatärem Cover, die alle von neotektonischen Prozessen beeinflusst werden.

1.2 Lokale Geologie

Die in dieser Arbeit untersuchten Diopsid –Titanit Gänge (DTG) befinden sich in den nördlichen Flinders Ranges Südaustraliens, rund 6,5 km nördlich der Ortschaft Arkaroola Village (s. Abb. 1-3).

Abb. 1-3 Übersichtsbild zur geographischen Lage des Diopsid – Titanit Vorkommens

Die geologischen Einheiten rund um Arkaroola unterteilen sich in ein palaeo- bis mesoproterozoisches Basement (Mt Painter Inlier) aus Graniten, Geneissen und Metasedimenten (s. Abb. 1-4), sowie in neoproterozoische bis kambrische Sedimente, welche das Basement überlagern. Gemeinsam bilden sie die nördlichsten Ausläufer des Adelaide Faltengürtels (COATS und BLISSET 1971).

<u>Abb. 1-4</u>

Geologische Gegebenheiten des Mt Painter Inliers (nach COATS und BLISSET 1971). Die rote Markierung zeigt die Lage der Diopsid – Titanit Gänge

Die Metasedimente, für die ein palaeoproterozoisches Alter angenommen wird, wurden im Mesoproterozoikum von A-type Graniten und Trondhjemiten intrudiert (TEALE 1993). In lokalen Fällen kam es im Paläozoikum zu einer Umwandlung in Gneisse und Schiefer (ELBURG et al. 2001).

Mit der Delamerianische Orogenese (~ 500 Ma) wurde das Gebiet einer Hochtemperatur bzw. Niedrigdruck Metamorphose unterzogen, welche das Wachstum von metamorphen Mineralen wie Biotit, Andalusit und Cordierit förderte. Die zu Beginn der Orogenese vorherschende duktile Deformation der beiden geologischen Einheiten wurde durch das darauffolgenden Uplift von spröder Deformation abgelöst. Diese führte zur Bildung von Scher- und Störungszonen welche Wegbereiter für aufsteigende Schmelzen niedriger Volumina waren und als Pegmatite und Leukogranite auskristallisierten.

Im späten Ordovizium folgte dem Delamerianischen Ereigniss ein magmatisch-hydrothermales Ereignis (ELBURG et al. 2003), in welchem der "British Empire Granite" als mächtiger I-S Typ Batholith in das Basement intrudierte (s. Abb. 1-4). U-Pb Datierungen von Monaziten aus Pegmatiten innerhalb des Mt Painter Inlier führten zwar zu schwankenden Altersangaben von 462 +34/-36 Ma (ELBURG et al. 2003), könnten jedoch mit dem Alter der Diopsid-Titanit Gänge von Arkaroola korrelieren (443 ±3 Ma mittels U-Pb Datierung von Titanit, ELBURG et al. 2003).

Nach dem magmatischen Ereignis kam es regional zu Skarn Bildung und epithermaler Quarz-Hämatit Mineralisierung wie beispielsweise am Mt Gee (s. Abb. 1-4), wo letztere als imposanter Gesteinskörper, die Mt Gee Brekkzie, vorliegt (s. Abb. 1-5). Da auch die Diopsid-Titanit Gänge von Arkaroola eine solche Überprägung erfuhren, kann ein Alter von weniger als 440 Ma für dieses Quarz-Hämatit Ereignis angenommen werden.

Abb. 1-5 Mt Gee Brekkzie

Der hohe Wärmefluss von 126 mW/m² in der Region (s. Abb. 1-6) wird durch die Hitzeentwicklung Uran-hältiger Granite des Basements erklärt, was die Vermutung einer Kontaktmetamorphose innerhalb der neoproterozoischen Überlagerungssedimente nahelegt (McLAREN et al. 2002).

<u>Abb. 1-6</u>

- (a) Wärmeflusskarte in mW/m² von Australien mit Durchschnittswerte für die 3 Provinzen nach SASS & LACHENBRUCH (1979); WP, CA, EP → (Western, Central, Eastern Province)
- (b) Detailaufnahme für das zentrale Südaustralien (NEUMANN et al., 2000); WGC (Western Gawler Craton), EGC (Eastern Gawler Craton), WI (Willyama Inliers)

Abbildung 1-7 versucht die wichtigsten geologischen Gegebenheiten im Untersuchungsgebiet wiederzugeben. Das Foto wurde vom östlichen Gipfel des Kartierungsgebietes (s. Hauptkarte Anhang 10.5) in Richtung Westen aufgenommen, und zeigt die Lage der Störungszone im Süden, einen von zwei gabbroitischen Dykes im Norden, sowie im Zentrum die Lage zweier DTG als auch eine Zone mit starker Quarz – Hämatit Überprägung.

2 Systematik der Pegmatite

2.1 DEFINITION

Pegmatit, (R. J. HAUY in A. BRONGNIART, 1813, neu def. v. A. DELESSE, 1849) ein groß- bis riesenkörniges magmatisches Gestein, das aus einer an flüchtigen Bestandteilen reichen Restschmelze plutonischer Magmen erstarrt ist (Geologisches Wörterbuch, MURAWSKI 2004).

Das Wort "Pegmatit" stammt ursprünglich aus dem Altgriechischen und bedeutet soviel wie "etwas fest bzw. starr durch gegenseitiges Verflechten machen" (AUTENRIETH 1958). Diese Definition bezieht sich auf die in solchen Gesteinen oft zu beobachtenden Verwachsungen von Quarz und perthitischem Mikroklin, wegen deren Ähnlichkeit zu historischen Schriftzeichen das Gestein dann auch als "Schriftgranit" bezeichnet wird (s. Abb. 2-1). HAIDINGER (1845) sowie andere Wissenschaftler etwas später schlugen vor, den Begriff "Pegmatit" auf sehr grobkörnige, granitische Differentiationen und Gänge auszuweiten, ganz unabhängig vom Vorhandensein von "Schriftgranit".

Abb. 2-1 Schriftgranit

Diese traditionellen Definitionen erscheinen problematisch, da sie die umfangreiche Diversität der Pegmatite nicht zum Ausdruck bringen können. So haben Geologen schon seit vielen Jahren auch Mikropegmatite und feinkörnige Granophyre als Teile der Pegmatitfamilie akzeptiert. David LONDON definierte 2008 daher den Begriff Pegmatit in einer Spezial Publikation des Canadian Mineralogist (*Pegmatites*) folgendermaßen:

Pegmatit: ein essentiell magmatisches Gestein, mit gewöhnlich granitischer Zusammensetzung, das wegen seiner extrem grobkörnigen aber variablen Korngröße von anderen Magmatiten unterschieden werden kann, oder aufgrund einer Abundanz an Kristallen, mit skelettförmiger, schriftförmiger oder stark gerichteter Wachstumstracht. Pegmatite treten als scharf abgegrenzte, homogene bis zonierte Gesteinskörper innerhalb von magmatischen oder metamorphen Nebengesteinen auf.

2.2 KLASSIFIZIERUNG

Neben der überwiegenden Mehrheit an Pegmatiten mit granitischer Zusammensetzung existieren auch Pegmatite mit basischer, intermediären oder alkalischer Komposition. Letztere weisen jedoch im Allgemeinen nicht die große Komplexität ihrer sauren Pendants vor, weshalb sie von der Klassifizierung ausgenommen wurden. Sie werden weiter unten separat behandelt.

Im Jahre 1933 schlug LANDES ein Modell zur Klassifizierung der Pegmatite vor, in dem er *einfache* von *komplexen* unterschied, und das auf rein chemischen Parametern wie sauer (granitisch), intermediär (dioritisch) und basisch (gabbroitisch) basiert. Die komplexen Pegmatite beinhalten dabei immer einen signifikanten Anteil an seltenen Elementen, den LANDES als Folge von hydrothermalem Austausch innerhalb des bereits auskristallisierten Pegmatiten interpretierte.

GINSBURG entwickelte 1984 ein Schema, das sich weitgehend auf mineralogische oder strukturelle Eigenschaften bezieht und mit der Teufe des Einbaus in Verbindung steht. Es lässt sich in vier Pegmatit-Klassen unterteilen: abyssale Klasse, Muskovit Klasse, seltene Elemente Klasse und miarolitische Klasse. CERNY (1991, CERNY & ERCIT 2005) verbesserte diese Trennung durch das Korrelieren der Pegmatitklassen mit petrogenetischen Daten (s. Abb. 2-2). Das folgende Schema wurde von CERNY (1991) modifiziert und von CERNY & ERCIT (2005) überarbeitet. Es entspricht dem heutigen Stand der Wissenschaft und gliedert sich in 5 Klassen, 10 Subklassen, 13 Typen und 7 Subtypen (s. Abb. 2-4).

<u>Abb. 2-2</u>

P-T Diagramm der 4 Pegmatitklassen nach GINSBURG (1984) und CERNY (1991). AB: abyssal, MS: Muskovit, RE: Seltene Elemente, MI: miarolitisch; Stabilitätsgrenzen: 1-3: Kyanit – Sillimanit – Andalusit; 4: Spodumen + 3 Quarz \rightarrow Vilrgilit; 5: Petalit + Quarz $\rightarrow \beta$ -Spodumen; 6: Spodumen + 2 Quarz \rightarrow Petalit; 7: Sekaninait (Skn, Fe Analog v. Cordierit) \rightarrow Almandin + Aluminiumsilikat + Quarz

2.2.1 Die abyssale Klasse

Abyssale Pegmatite werden im Hinblick auf den hohen metamorphen Grad ihrer Nebengesteine definiert, jedoch werden auch Pegmatite aus mittlere Tiefe (maximal obere Amphibolitfazies) hinzugezählt (CERNY & ERCIT 2005). Die Charakterisierung der abyssalen Pegmatite erfolgt daher weniger aufgrund ihrer Mineralogie oder aufgrund der in der Pegmatitdefinition von LONDON (2008) angesprochenen besonderen Textur, als viel mehr durch die Amphibolit- bis Granulit-metamorphe Fazies des Nebengesteins.

2.2.2 Die Muskovit Klasse

Die Muskovit Klasse deckt sich mit den einfachen Pegmatiten von LANDES (1933), die durch partielle Aufschmelzung des Nebengesteins entstehen und teilweise Deformierungen vorweisen. Nichtsdestotrotz werden in der Literatur auch Pegmatite, die in Hochdruck amphibolitfaziellen Nebengesteinen mit Kyanite-Sillimanit Progression vorzufinden sind (z.B.: CERNY 1991), dieser Klasse zugeordnet. Dadurch wird eine Abgrenzung zu der Klasse der abyssalen Pegmatiten unmöglich gemacht.

2.2.3 Die Muskovit – seltene Elemente Klasse

Aufgrund der Problematik innerhalb der Muskovit Klasse führten CERNY & ERCIT 2005 diese neue Klasse ein, deren Pegmatite als intrusive Körper mit einem kontinuierlichem Granit – Seltene Elemente Pegmatit Übergang verstanden werden.

2.2.4 Die seltene Elemente Klasse

Pegmatite dieser Klasse zählen zu den Vielfältigsten hinsichtlich ihrer Zusammensetzung und korrelieren mit den von LANDES definierten komplexen Pegmatiten. Sie indrudieren im allgemeinen in Nebengesteine, die eine Peakmetamorphose im niedrigeren Druckbereich der Grünschiefer Fazies und Amphibolit Fazies vorweisen (s. Abb. 2-2).

2.2.5 Die miarolitische Klasse

Die Miarolitische Klasse unterscheidet sich von den restlichen durch das häufige Auftreten von offenen oder mit Tonmineralen gefüllten Hohlräumen, den sogenannten Miarolen. Neben dem Vorkommen dieser Pegmatite als kleine Differentiationen innerhalb von oberflächennah intrudierten Graniten (z.B. Cuasso al Monte, Italien), existiert auch noch ein vollkommen anderer Typ von miarolitischem Pegmatit. Dieser intrusive Pegmatit formt konzentrisch zonierte, vertikale bis flach einfallende, geschichtete Gänge, wie sie beispielsweise in San Diego County, Kalifornien, vorgefunden werden. Miarolitische Hohlräume sind häufig entlang von Flächen und tendieren sich in der Nähe von der Zentralline des Pegmatiten anzuordnen (s. Abb. 2-3). Miarolitische Pegmatite sind die Hauptquellen für Edelsteine aus Pegmatiten.

<u>Abb. 2-3</u> Miarolitische Hohlräume entlang der Zentrallinie (pocket line) Foto aus der San Diego gem Mine, Mesa Grande Distrikt, Kalifornien

2.3 Die Pegmatit Familien

CERNY schlug 1991 zwei petrogenetische Familien vor, welche kurz LCT bzw. NYF genannt werden und sich durch die jeweilige Anreicherung an verschiedenen Elementen innerhalb der Pegmatitklassen unterscheiden (s. Abb. 2-4). LCT steht für Lithium-Cäsium-Tantal und NYF für Niob-Yttrium-Fluor.

PEGMATI	PEGMATITE FAMILY: LCT or NYF			
PEGMATITE CLASS Subclass Type Subtype				
Abyssal HREE LREE U BBe				
Muscovite	•			
Muscovite-Rare Element REE Li				
Rare-Elem	Rare-Element			
Li	allanite-monazite euxenite gadolinite beryl beryl-columbite			
	beryl-phosphate complex spodumene petalite lepidolite elbaite amblygonite albite-spodumene albite			
Miarolitic REE	topaz-beryl gadolinite fargusopite			
Li	beryl-topaz spodumene petaltite lepidolite			

<u>Abb. 2-4</u>

Pegmatit Klassifizierungsmodell nach CERNY (1991), modifiziert von CERNY & ERICT (2005)

2.3.1 Die LCT Familie

LCT Pegmatite sind häufiger und deshalb besser erforscht als NYF Pegmatite. Sie zeigen neben ihrer typischen Li, Cs und Ta Anreicherung auch einen signifikanten Einbau der Elemente Be, B, F, P, Mn, Ga, Rb, Nb, Sn und Ha. Die peraluminische Natur dieser Pegmatite zeigt sich durch das Auftreten von Muskovit, Tourmalin, an Spessartin reiche Granate und untergeordnet Gahnit (ZnAl₂O₄), Topaz oder Andalusit. Innerhalb der LCT Familie kann durch den Gehalt an Phosphor zwischen Pegmatiten aus Metasedimenten und solchen aus Magmatiten unterschieden werden. Nur marine Schwarzschiefer, die wichtige Protolithe für Metamorphite sind, zeigen eine ausgeprägte Anreicherung an Phosphor (e.g. GROMET et al. 1984, COVENEY & GLASCOCK 1989). Die aus diesen Metasedimenten generierten S-Typ Granite weisen eine LCT Charakteristik auf (CHAPPELL & WHITE 1992, 2001).

2.3.2 Die NYF Familie

NYF Pegmatite sind ergänzend zu Nb, Y und F auch an SSEE, Be, Ti, Sc, und Zr angereichert. Charakteristisch für NYF Pegmatite scheint das Vorhandensein von amazonitischen K-Feldspat zu sein. Assoziiert werden NYF Pegmatite mit granitischen Magmen, die aus dem Aufschmelzprozess der tiefen Kruste in Zusammenhang mit kontinentalem Rifting, gebildet werden (e.g., KOVALENKO et al. 1995, LENHARO et al. 2003, ERCIT 2005, MARTIN & DE VITO 2005). Im Gegensatz zu den LCT Pegmatiten tendieren sie zu alkaliner Zusammensetzung, was sich durch die Bildung von Na-Pyroxenen und Amphibolen zeigt. Bezüglich ihrer Elementanreicherung ähneln die NYF Pegmatite dem geochemischen Fingerabdruck von Syenit-Karbonatit Magmatiten (e.g., BIRKETT & SINCLAIR 1998, SOKOLOV 2002), wenngleich zwei wichtige Unterschiede hervorzuheben sind: zum einen beinhalten NYF Pegmatite extrem wenig Phosphor, das ein häufiger Bestandteil in Syeniten und Karbonatiten ist, und zum anderen ist die Anreicherung von SSEE gegenüber den LSEE für Karbonatite eher untypisch.

2.4 DIE NICHTGRANITISCHEN PEGMATITE

2.4.1 Ultramafische Magmen: Komatiite

Komatiite und Pikrite sind an Olivin reiche Gesteine, die sich aus ultramafischen Magmen mit sehr hohem MgO bzw. sehr niedrigem SiO₂ Gehalt gebildet haben. Aufgrund der skelettförmigen Spinifex Textur sowie des gerichteten Kristallwachstums des Olivins in den Komatiiten, werden diese nach der Definition von LONDON (2008) als pegmatitisch bezeichnet.

2.4.2 Mafische Magmen: Gabbroitische Pegmatite

Pegmatitische Horizonte als sehr kleine Anteile der Gesamtmasse bei gabbroitischen Intrusionen sind nicht ungewöhnlich (e.g., LOVERING & DURRELL 1959, BEARD & DAY 1986). Gabbroitische Pegmatite gliedern sich dabei in zwei verschiedene Typen auf. Der häufigere der beiden besteht aus kleinen, zonierten Differentiationen die im Gabbro verteilt sind. Sie zeigen eine gewöhnliche Zonierung mit an Klinopyroxen reichen Rändern und an Plagioklas reichen Kernen, wobei sich diese Zonierung auch umgekehrt ausprägen kann (BEARD & DAY 1986, SCOON & MITCHELL 2004). Der zweite gabbroitische Pegmatittyp formt scharf abgegrenzte, diskordante Körper, im allgemeinen Pipe ähnliche Intrusionen, welche die gabbroitische Schichten in einem steilen Winkel durchschlagen (e.g., MYERS 1978, VILJOEN & SCOON 1985, SCOON & MITCHELL 2004, KERR et al. 2004).

2.4.3 Alkaline Magmen: Syenitische und Karbonatitische Pegmatite

Magmen aus dem Erdmantel können bei ihrem Aufstieg eine Vielzahl an Gesteinen generieren, zu denen auch Nephelin Syenite und Karbonatite zählen. Pegmatite treten in diesen Gesteinen als Differentiationen und Dikes innerhalb des Intrusionskomplexes auf. Die Geologie und Mineralogie der alkalinen Magmatite sind sehr komplex und beinhalten viele ungewöhnliche Gesteins- und Mineralnamen. Syenite die mit alkalinem Magmatismus in Verbindung stehen können in zwei Gruppen (agpaitische und miaskitische Pegmatite) unterteilt werden. Agpaitische Syenite haben einen relativ hohen Anteil an Natrium verglichen mit Kalium bzw. Aluminium wobei der Kalziumgehalt sehr niedrig ist. Miaskitische Syenite hingegen zeigen geringe Werte für Natrium in Relation mit Kalium und Aluminium. Magnesium und Kalzium sind die Hauptelemente in diesen Gesteinen. Aufgrund der unterschiedlichen geochemischen Parametern sind agpaitische und miaskitische Pegmatite gut zu unterscheiden (s. Abb. 2-5). HEINRICH vermutete 1966, dass Karbonatite, egal ob pegmatitisch oder nicht, ausschließlich in Verbindung mit miaskitischen Syeniten auftreten.

COMPARISON OF AGPAITIC AND MIASKITIC NEPHELINE SYENITES*			
Agpaitic	Miaskitic		
Major elements			
$(Na_2O + K_2O)/Al_2O_3 > 1$	(Na ₂ O + K ₂ O)/Al ₂ O ₃ < 1		
Na/(AI – K) > 0.85	Na/(AI – K) < 0.85		
Ca-, Mg-poor	Ca-, Mg-rich		
Fe ₂ O ₃ > FeO	Fe ₂ O ₃ < FeO		
Mafic silicates			
aegirine, arfvedsonite-	biotite, diopside, augite		
riebeckite, aenigmatite	hornblende		
Feldspathoids			
nepheline, sodalite	nepheline, cancrinite		
Elemental enrichments			
Ti, Sr, P. Zr, Nb, LREE, Th	Ti, Ba, Sr, P, Zr, Nb, LREE, Th, U		
Accessory minerals			
rinkite, mosandrite, eudialyte, lamprophyllite, britholite, belovite, villiaumite	titanite, ilmenite, rutile, magnetite, zircon, apatite, pyrochlore, fluorite		
Volatile components			
F, CI, H ₂ O	H ₂ O, CO ₂ , F		
* modified from Heinrich (1966).		

Abb. 2-5GeochemischeUnterscheidung vonagpaitischenbzw.Syeniten

2.4.3.1 Pegmatitische Karbonatite

Karbonatite sind normalerweise nicht von pegmatitischer Textur, allerdings berichteten BOWDEN et al. (2000) von Karbonatitgängen mit Spinifex Textur. Die Mineralogie von pegmatitischen Karbonatiten wird von Kalzit, Ca-Pyroxenen und Amphibolen, Biotit, Albit oder K-Feldspat und Nephelin dominiert. Untergeordnet treten auch Apatit, Titanit, Ilmenit, Magnetit, Fluorit, Monazit, Thorit und Uraninit auf.

2.4.3.2 Pegmatitische Syenite

Durch den magmatischen Fraktionierungsprozess werden sowohl pegmatitische Karbonatite als auch pegmatitische Syenite signifikant an den Elementen Ti, Zr, Th, U und LSEE angereichert. Außergewöhnlich hohe Konzentrationen an Sr, Ba, P und Nb sind ebenfalls in beiden häufig.

Was sie voneinander unterscheidet ist die Tatsache, dass diese sogenannten "high-field-strength elements" (HFSE) bei den Karbonatiten dazu tendieren Oxide und Phosphate zu bilden. In Syeniten hingegen befinden sich die HFSE in sehr ungewöhnlichen Na-Silikaten (e.g., HORWATH & GAULT 1990, PEKOV 2000).

Nephelin ist das Hauptfoid in den pegmatitischen agpaitischen Syeniten, die gemeinsam mit Ca armen Plagioklas sowie K-Feldspaten auftritt. Nach innen gerichteter (Riesen-) Kristallwachstum ist vergleichsweise selten, kann jedoch sowohl in agpaitischen als auch miaskitischen Pegmatiten bzw. pegmatitischen Karbonatiten vorkommen.

Beide Typen zeigen starke, konzentrische Zonierungen von Mineralvergesellschaftungen, wobei Silikate den Kern von agpaitischen Pegmatiten bilden. Kalzit herrscht in den Kernen der karbonatitischen Pegmatiten vor.

Perthitische Verwachsungen wie auch skelettförmiger Kristallhabitus, beides sehr häufig in granitischen Pegmatiten, treten weder bei karbonatitischen noch bei agpaitischen Pegmatiten auf. Diese Tatsache lässt sich dadurch erklären, dass die Magmen, welche Karbonatite und agpaitische Syenite hervorbringen, nur geringe Viskositäten vorweisen.

3 Methodenbeschreibung

3.1 Auf- und Durchlichtmikroskopie

Ein Lichtstrahl, der entweder von unten durch einen polierten, rund 90 µm dicken Dünnschliff geschickt (Durchlicht), oder von oben an einer gut polierten Oberfläche reflektiert werden kann (Auflicht), zeigt abhängig von den physikalischen Eigenschaften der Minerale ein unterschiedliches optisches Verhalten. Für die Identifizierung von Minerale können wichtige Parameter wie Eigenfarbe, Pleochroismus, Höhe der Lichtbrechung, optischer Charakter, Achsenwinkel, Verzwilligung, Spaltbarkeit sowie optische Isotropie bzw. Anisotropie bestimmt werden. Ein schematischer Aufbau eines Durchlichtmikroskops zeigt Abb. 3-1.

Sämtliche Dünnschliffe sowie der Dickschliff (~150 μ m) der Probe 6A wurden unter einem Olympus BX40F4 Polarisationsmikroskop mit Objektiven von 5-, 10-, 20-, 40-, 50- und 100facher Vergrößerung beobachtet. Die in dieser Arbeit präsentierten Mikroskopiefotos wurden großteils mit einer an einem PC angeschlossenen, analogen JVC Farbvideo Kamera (3-CCD KY-F55B) durchgeführt und anschließend mit den Softwareprogrammen Adobe Photoshop bzw. Freehand bearbeitet. Opake Mineralphasen wurden an einem mit einer Auflichteinheit kombinierten Polarisationsmikroskop des selben Modells untersucht. Die Fotoaufnahmen aus diesen mikroskopischen Beobachtungen, sowie weitere Durchlichtfotoaufnahmen, vor allem von diversen Flüssigkeitseinschlüssen, stammen von einer ans Mikroskop angeschlossenen Digitalkamera der Marke UEye.

3.2 Raman Mikrospektrometrie

Raman Mikrospektrometrie ist eine schnelle und vor allem zerstörungsfreie qualitative Untersuchungsmethode, bei der alle drei Aggregatzustände (fest, flüssig, gasförmig) gemessen werden können. Diese Vorteile gegenüber anderen Methoden hat Raman Mikrospektrometrie zum wichtigsten analytischen Instrument auf dem Gebiet der Flüssigkeitseinschlussforschung gemacht. Abgesehen von Dünn- bzw. Dickschliffen können Minerale auch von unbearbeiteten Proben (z.B. Handstücke) mit Raman Mikrospektrometrie identifiziert werden.

Wenn monochromatisches Licht auf Materie scheint entstehen verschiedene Wechselwirkungen zwischen dem einfallenden Lichtstrahl und den Molekülen. Je nach dem Auftreten von Schwingungs-, Rotierungs- oder anderen Bewegungen mit niedriger Frequenz, beschreibt der Ramaneffekt die Änderung der Energie eines Lichtstrahls, die durch die unelastische Kollision mit polyatomischen Molekülen verursacht wird. Wenn das Licht dabei einen Energieimpuls an die Moleküle weitergeben kann werden diese zu vibrieren beginnen, was als Energieverlust in Form der Stokes Streuung beobachtet werden kann. Im Gegensatz dazu tritt wesentlich seltener ein Energiegewinn auf, wenn die Moleküle bereits vibrieren und so eine Anti-Stokes Streuung hervorgerufen wird (s. Abb. 3-2).

<u>Abb. 3-2</u>

Schematische Darstellung der möglichen energetischen Änderungen eines Lichtstrahls beim Auftreffen auf Materie; <u>(www.kosi.com/Raman Spectroscopy/rtr-ramantutorial.php?ss=800</u> zugegriffen am 23. Jänner 2010)

Um diese molekularspezifischen Energiegegebenheiten visualisieren zu können wird ein sogenanntes Ramanspektrum mit der Streuungsintensität auf der Ordinate, und dem resultierenden Energieverlust als Wellenlänge in Relation zum einfallenden Lichtstrahl auf der Abszisse, gezeichnet. Diese Ramanspektren werden abschließend zur Identifikation der Phasen mit Referenzspektren aus einer Datenbank verglichen (z.B. <u>www.rruff.com</u>).

Die in dieser Arbeit durchgeführten Messungen mittels Raman Mikrospektrometrie dienten als Kontrolle der Ergebnisse aus der Auf- und Durchlichtmikroskopie sowie zur Identifizierung der verschiedenen Phasen in Flüssigkeitseinschlüssen. Sie erfolgten mit einem LABRAM (ISA Jobin Yvon), das über einen 100 mW starken Nd-YAG Grünlaser mit 532 nm Wellenlänge verfügt (s. Abb. 3-3 u. 3-4). Die Kalibrierung des Messgerätes erfolgte mit Silizium (520 cm⁻¹) und Polyethylen (1062 cm⁻¹, 1128 cm⁻¹, 1169 cm⁻¹, 1295 cm⁻¹, 1487 cm⁻¹, 1439 cm⁻¹, 2848 cm⁻¹, 2881 cm⁻¹).

<u>Abb. 3-3</u> Flüssigkeitseinschlusslabor der MUL mit LABRAM Raman Mikrospektrometer

<u>Abb. 3-4</u> Detailaufnahme des Grünlasers und der Mikroskopeinheit

3.3 Mikrothermometrie

Um Informationen über wichtige Genesefaktoren wie Druck, Temperatur und Salinität zu erhalten, werden mikrothermometrische Untersuchungen an Flüssigkeitseinschlüssen durchgeführt.

An einem Heiz- (bis zu 600°C) bzw. Kühltisch (bis zu -196°C) wird ein wenige Millimeter großes Bruchstück eines ungefähr 150 μm dicken Dickschliffes (beidseitig poliert und ohne Glasplatte) aufgeheizt bzw. heruntergekühlt, bis ein Phasenübergang bei den Komponenten der Einschlüsse durch ein angeschlossenes Polarisationsmikroskop beobachtet werden kann (s. Abb. 3-5 u. Abb. 3-6).

Abb. 3-5 Heiz- Kühltisch (LINKAM MDS 600) mit angeschlossenem Polarisationsmikroskop

<u>Abb. 3-6</u> Detailaufnahme des Heiz- Kühltisches (LINKAM MDS 600)

Bei fluiden Phasen unterscheidet man dabei die Homogenisierungs- $(T_{\rm h})$ von der Schmelztemperatur (T_m) , wobei erstere jene Temperatur ist bei der ein zweiphasiger Flüssigkeitseinschluss mit flüssiger und gasförmiger Phase in die homogene, flüssige Phase übergeht (Verschwinden der Blase). Durch vollständiges Einfrieren des Einschlusses und anschließendem. kontinuierlichem Aufwärmen (ca. $3^{\circ}C/min$ erhält man die Schmelztemperatur. Sie kennzeichnet jene Temperatur bei der das gesamte Eis in den flüssigen Zustand gewechselt ist. Als Auflösungstemperatur (T_{solv}) wird jene Temperatur bezeichnet, bei der eine feste Phase (z.B. ein Salzkristall) sich in der flüssigen Phase vollständig aufgelöst hat. Durch den Vergleich mit den gemessenen Werten von synthetisch hergestellten Flüssigkeitseinschlüssen sowie durch physikalische Berechnungen mit diversen Sofwarepaketen, kann auf oben erwähnte Parameter rückgeschlossen werden.

Zur Kalibrierung wurden synthetisch hergestellte CO_2 und H_2O Flüssigkeitseinschlüsse mit bekannten Schmelz- bzw. Homogenisierungstemperaturen verwendet (T_m (CO_2) = -56,6°C; T_m (H_2O) = 0°C, T_h (H_2O) = 374°C).

3.4 Elektronenstrahlmikrosonde (EMS)

Die Elektronenstrahlmikrosonde (s. Abb. 3-7) ermöglicht zerstörungsfreie Analysen der chemischen Zusammensetzung von Feststoffoberflächen, die zuvor poliert und mit einer leitenden Schicht (z.B. Kohlenstoff) bedampft werden müssen.

Die aus einem Wolfram Filament generierten, niedrig energetischen Elektronen werden durch eine Anodenplatte auf bis zu 30 keV beschleunigt, wobei der daraus resultierende Elektronenstrahl durch magnetische Linsen auf etwa 1 µm im Durchmesser gebündelt wird. Der auf den Probenpunkt fokussierte Elektronenstrahl verursacht neben thermischen Effekten auch Kathodolumineszenz, kontinuierliche Röntgenstrahlung (Bremsstrahlung) sowie charakteristische Röntgenstrahlung. Letzteres ist ausschlaggebend für die Möglichkeit von chemischen in situ Analysen, bei denen zwischen energiedispersiver Analytik (EDS) und wellenlängendispersiver Analytik (WDS) unterschieden wird. EDS benutzt einen mit flüssigem Stickstoff gekühlten Halbleiter-Detektor um alle von der Probe produzierten Röntgenstrahlen mit verschiedenen Wellenlängen einfangen zu können (qualitative Analyse). Bei der quantitativen Analyse (WDS) wird die charakteristische Röntgenstrahlung an einem Analysekristall gebeugt um einzelne Wellenlängen zu erhalten. Die daraus resultierenden verschiedenen Intensitäten geben durch den Vergleich mit Standards Aufschluss über den quantitativen Anteil der beteiligten Komponenten.

Die in dieser Arbeit ausgewerteten Mikrosondenmessungen wurden am Eugen F. Stumpfl Mikrosondenlabor des Lehrstuhls für Mineralogie und Petrologie, am Department für Angewandte Geowissenschaften, an der Montanuniversität Leoben, mit einem JEOL-JXA 8200-WD/ED durchgeführt. Die Beschleunigungsspannung betrug 20 kV bei einer Stromstärke von 10 nA. Die Messzeiten betrugen 20 Sekunden für die Peaks und 10 Sekunden für den Hintergrund, wobei die einzelnen detection limits (d.l.) der Messungen automatisch angeführt wurden. Informationen zu den verwendeten Standards sind in folgender Tabelle aufgelistet:

	Element	Standard Name	X-ray line	Analysekristall
ТІТАЛІГТ	Al-O-	TH DEONA	Ка	TAD
IIIANII	Al2U3		Ku Ka	DETI
	510 ₂		Ka	PEIJ
	LaO	TITLB50NA	Κα	PEIJ
		mona52LDint	La	
	Le ₂ O ₃	mona32LBint	Lα	LIFH
	Y ₂ O ₃	YAIgar5120KVLB	Lα	PEIJ
	T_1O_2	TitLB50NA	Κα	PETH
	Pr_2O_3	mona32LBint	Lα	LIFH
	ThO ₂	ThOGGGE	Μα	PETJ
	P_2O_5	mona32LBint	Κα	PETH
	Nd_2O_3	mona32LBint	Lα	LIFH
	FeO	IlmeniteLB	Κα	LIF
	Sm_2O_3	EE2LBint	Lβ	LIFH
	Ho ₂ O ₃	REE4LBint	Lα	LIFH
	Nb_2O_5	RutileStdJul	Lα	PETJ
	Gd ₂ O ₃	REE1LBint	Lβ	LIFH
	Yb ₂ O ₃	REE2LBint	Lα	LIFH
	Element	Standard Name	X-ray line	Analysekristall
MONAZIT	SiO ₂	KaeLB20Kv50na	Κα	ТАР
	Y_2O_3	YAlgar5120kvLB	Lα	PETJ
	P_2O_5	mona32LBint	Κα	PETH
	Ce_2O_3	mona32LBint	Lα	LIFH
	ThO ₂	ThOGGGE	Μα	PETJ
	Dy_2O_3	REE4LBint	Lα	LIFH
	La_2O_3	mona32LBint	Lα	LIFH
	CaO	KaeLB20Kv50na	Κα	PETJ
	Sm_2O_3	REE2LBint	Lβ	LIFH
	Pr_2O_3	mona32LBint	Lα	LIFH
	Gd ₂ O ₃	REE1LBint	Lα	LIFH
	Nd ₂ O ₃	mona32LBint	Lα	LIFH
	E112O3	REE1LBint	Lα	LIFH
	$H_{0_2}O_2$	REE4LBint	Lα	LIFH
		REF11 Bint	Lα	LIFH
	Er ₂ O ₃	REE4LBint	Lα	LIFH
· · · · · · · · · · · · · · · · · · ·	Element	Standard Name	X-ray line	Analysekristall
	Liement	Bundara Mane	A ruy mic	Thaty Schi Istan
DIOPSID /	SiO ₂	CPXM115LB	Κα	ТАР
AKTINOLITH	CaO	CPXM115LB	Κα	PETJ
	TiO2	IlmeniteLB	Κα	PETH
	FeO	KaersutiteLB	Κα	LIFH
	Al203	KaersutiteLB	Κα	ТАР
	Al2O3 MnO	KaersutiteLB 39 Rhodonite n	Κα Κα	TAP Lifh
	Al2O3 MnO MgO	KaersutiteLB 39_Rhodonite_n CPXM115LB	Κα Κα	TAP LIFH TAP

3.5 ArcGIS 9.2

Die Erstellung der georeferenzierten Karte erfolgte mit dem Computerprogramm ArcGIS 9.2. Weitere Informationen sind im Kapitel "Kartierung – Erstellung der georeferenzierten Karte" (s.S. 24) angeführt.

3.6 Rockware StereoStat 1.5

Die strukturgeologische Auswertung von 53 Messungen mittels Geologenkompass erfolgte mit dem Computerprogramm Rockware StereoStat 1.5.

3.7 Peak Fit 2002 v. 4.11

Für den Versuch die NaCl Konzentrationen der Flüssigkeitseinschlüsse zu bestimmen, wurden die H₂O Peaks der Einschlüsse mittels Raman gemessen und mit dem Computerprogramm Peak Fit 2002 v. 4.11 auf jeweils 3 Gauss – Lorenz Funktionen aufgeteilt. Im Anschluss wurden die Peakpositionen bzw. Peakintensitäten der ersten beiden Funktionen mit Messdaten synthetisch hergestellter Flüssigkeitseinschlüsse aus BAUMGARTNER & BAKKER (2008) verglichen.

Folgende Einstellungen wurden gewählt:

Baseline Korrektur:	2 nd Deriv Zero	Lin
AutoFit:	Peakts III	Deconvolution
Peak Type:	Spectroscopy	Gauss + Lor Amp

3.8 ImageJ 1.42

Relative Volumsprozente von Gasblasen innerhalb von Flüssigkeitseinschlüssen wurden mit Hilfe des Computerprogramms ImageJ 1.42 berechnet.

3.9 AqSoVir Software Package Fluids, v.2

NaCl – bzw. KCl – Salinitäten von hochkomplexen Einschlüssen (Gruppe 3) wurden mit dem Computerprogramm AqSoVir Software Package Fluids, v.2 berechnet.

3.10 Loner 17 bzw. 32

Mit dem Computerprogramm Loner 17 wurden die Dichten der CO₂ reichen Einschlüsse (Gruppe 2) berechnet, während mit Loner 32 die NaCl Salinitäten der zweiphasigen Flüssigkeitseinschlüsse mit Gasblase (Gruppe 1), bestimmt wurden.

4 Kartierung

Die Kartierung der Diopsid – Titanit Gänge (DTG) in Arkaroola wurde von 2. Bis 14. August 2007 durchgeführt. Als Kartengrundlage diente ein rund 1 km² großer Ausschnitt der topographischen Karten "*YUDNAMUTANA 6737-1"* bzw. *"WOOLTANA 6737-2"* im Maßstab 1:50000, der hochauflösend gescannt und auf einen Maßstab von 1:2000 vergrößert wurde.

4.1 Aufgabenstellung

Ziel der Kartierung war es eine möglichst detaillierte Vorstellung für das Auftreten der DTG zu bekommen. Ihre Verbreitung, Mächtigkeiten, Orientierung, Zusammensetzungen, geologische Geschichte sowie ihr Verhältnis zum Nebengestein galt es in Form einer georeferenzierten Karte darzustellen.

4.2 Vorgehensweise im Feld

Es wurde versucht, das Kartiergebiet systematisch von Norden nach Süden flächendeckend auf das Auftreten von DTG hin zu untersuchen. Jedes Erstauftreten eines Ganges wurde mittels GPS Punkt (Handgerät Garmin eTrex H) markiert und in die Karte eingetragen. Die Gänge wurden anschließend "verfolgt", wobei alle 10 Meter ein GPS Punkt gespeichert und in die Karte eingetragen wurde. Unregelmäßige Diopsidvorkommen ohne Gangcharakter bzw. mit Diopsid assoziierte Pegmatitaufschlüsse wurden als "Patches" notiert und eingetragen. Informationen bezüglich der oben beschriebenen Parameter wurden im Feldbuch vermerkt und mit Hilfe von insgesamt 600 Fotoaufnahmen dokumentiert.

4.3 Erstellung der georeferenzierten Karte

Der hochauflösende Scan des Kartenausschnittes wurde zusammen mit einer von Dr. BONS zur Verfügung gestellten Satellitenaufnahme des betreffenden Gebietes in das Computerprogramm *ArcGIS 9.2* importiert und für das *AGD_1984_AMG_Zone_54* mit *Transverse_Mercator* Projektion georeferenziert. Anschließend wurden die gesammelten Daten zu den einzelnen GPS Punkten in Excel aufbereitet und in diese Basiskarte eingespielt. Mit Hilfe der Feldbücher wurde versucht die geologischen Gegebenheiten so detailliert wie möglich in der Karte nachzuzeichnen, wobei die verwendeten Symbole, wie beispielsweise die Dicke des Liniensymbols für die Gänge, nicht als maßstabsgetreu zu verstehen sind. Um eine möglichst gute Übersicht zu gewährleisten wurde die relevante Information auf 4 Karten aufgeteilt, wobei für die Hauptkarte, bei der die transparente Satellitenaufnahme weggelassen wurde, ein Maßstab von 1:3000 und für die drei

Zusatzkarten ein Maßstab von 1:10000 gewählt wurde. In allen Zusatzkarten sind die DTG als Referenz angeführt.

4.4 Die Hauptkarte

Die Hauptkarte (s. Anhang 10.5 bzw. Abb. 4-1) behandelt in erster Linie die räumliche Verteilung der DTG sowie deren geologische Orientierung. Weiters wurden die im Kartiergebiet anzutreffenden Lithologien Pegmatit, Quarz und Mafic Dyke eingezeichnet. Die postgenetische Quarz – Hämatit Überprägung, das Auftreten von Geysiren (Hot Spots) und gut verfolgbare Störungszonen sind ebenfalls Teil der Hauptkarte. Strukturgeologische Aufnahmen vom Nebengestein (Schieferungsflächen) sowie Einfallsrichtungen bzw. Einfallswinkel der Gänge wurden mit dem Computerprogramm Rockware StereoStat 1.5 ausgewertet und als Contour Plots in die Karte importiert. Die Foliation des Nebengesteins wurde für das gesamte Kartierungsgebiet interpretiert und in Form von Foliationslinien dargestellt. Abschließend zeigt die Hauptkarte einen vermutlichen Grenzverlauf zu den Metagraniten im Süden.

Diopside-Titanite Veins of Arkaroola

<u>Abb. 4-1</u> Hauptkarte: DTG (grüne Linien); Hauptschieferung (dünne blaue Linien); Störungen (rote Linien); Pegmatite (rosa); mafische Dykes (grau); Quarz – Hämatit Überprägung (violett)

4.5 Die Zusatzkarten

4.5.1 DTG Gangmächtigkeiten

Die erste Zusatzkarte gibt die im Feld abgeschätzten Gangmächtigkeiten mittels Intervallsangaben von 0-1 m bis 4-5 m wieder. Dabei wurde bei der Symbolwahl sowohl eine farbliche als auch eine größenabhängige Unterscheidung gemacht (s. Anhang 10.5 bzw. Abb. 4-2).

<u>Abb. 4-2</u>

Zusatzkarte mit Angaben zu den DTG Gangmächtigkeiten

4.5.2 Titanit Auftreten

Die Zusatzkarte zwei liefert Informationen über das Auftreten von Titanitkristallen in den DTG bzw. den Diopsid Titanit Gesteinen. Auch hier wurde während der Kartierung der relative Volumenanteil des Titanits am gesamten Gang geschätzt, in drei Gruppen (1, 5, 10 vein vol.%) unterteilt und in die Karte eingezeichnet (s. Anhang 10.5 bzw. Abb. 4-3).

<u>Abb. 4-3</u>

Zusatzkarte zwei mit Angaben zum Auftreten der Titanite

4.5.3 Probenpunkte

Die beprobten GPS Punkte sowie jene Probenpunkte deren Gesteine bzw. Mineralien in weiterer Folge in dieser Arbeit untersucht wurden, sind in Zusatzkarte drei dargestellt (s. Anhang 10.5 bzw. Abb. 4-4).

<u>Abb. 4-4</u>

Zusatzkarte drei mit Angaben zu den Probenpunkten
Bei der folgenden Beschreibung der geologischen Gegebenheiten im Kartierungsgebiet wurde versucht, die Situation vor Ort anhand von Skizzen und Fotos möglichst detailliert wiederzugeben. Die jeweiligen Fotos bzw. Skizzen wurden im Anhang ab Seite 122 beigelegt.

4.6 Diopsid – Titanit Gesteine

Die Gesteine in denen sowohl Diopsid als auch Titanit in makroskopisch erkennbaren Mengen auftritt, lassen sich in folgende drei Untergruppen unterteilen.

- Diopsid Titanit Gänge
- Skapolith mit Diopsid und Titanit
- Pegmatitgänge mit Diopsid und Titanit

4.6.1 Diopsid – Titanit Gänge

Die Diopsid – Titanit Gänge (DTG) variieren in ihrer Mächtigkeit von wenigen Zentimetern (s. Foto 1) bis einigen Metern (s. Foto 4), wobei maximale Mächtigkeiten von bis zu 5 m erreicht werden. Die strukturgeologischen Auswertungen zeigen, dass diese tektonisch nicht beanspruchten Gänge bevorzugt mittelsteil nach NNO einfallen (010/40) und somit die Schieferungsflächen der Nebengesteine diskordant durchschlagen (s. Abb. 4-5 u. 4-6 bzw. Foto 34). Im zentralen Norden des Kartierungsgebietes treten wenige Zentimeter mächtige DTG auf, die durch ihre Parallelität zu der umgebenden Scherungszone des Nebengesteins auffallen (s. Foto 7).

29

Wie in der Hauptkarte (s. Anhang 10.5) ersichtlich, zweigen von den mächtigen DTG kleinere Gänge ab (s. Skizze 1), die mitunter komplexe Netzwerke im Nebengestein bilden können (s. Foto 8). Scharfe Kontakte mit dem Nebengestein sind häufig, bei denen in untergeordneter Weise Reaktionsränder wie auf Foto 40 auftreten (s. Skizze 2, 3, 5 u. 6). Manche Gänge sind mit K-Feldspat reichen Pegmatiten assoziiert, wobei diese entweder von den DTG durchschlagen (s. Skizze 1) oder von diesen umschlossen (s. Skizze 4) werden. In beiden Fällen sind Diopsid und Pegmatit zumeist scharf voneinander abgegrenzt. Dort wo der Diopsid in sein pegmatitisches Nebengestein eingedrungen ist treten vereinzelt exotische Texturen auf, wie beispielsweise sogenannte "Brain – Texturen" (s. Skizze 6), die mit der Kristallisierung von Ca-reichen Fluiden in einem syenitischen Kristallbrei in Zusammenhang gebracht werden (CORRIVEAU et. al., 1995).

Hydrothermale Umwandlungsprozesse führten zu einer Amphibolisierung der DTG, wobei die dabei entstandenen Aktinolith- und Apatitkristalle mehrere Zentimeter groß ausgebildet sein können (s. Foto 2 u. Skizze 7). Skizze 8 zeigt ein in manchen Fällen auftretendes, beidseitiges Ausdünnen der Diopsid - Titanit Gangpakete, bei dem der hangende Bereich bis zu 5 cm in das Nebengestein hineinreicht.

Der Titanitanteil in den DTG schwankt zwischen < 1 vein vol.% und maximal 10 vein vol.%, wobei große Titanitvorkommen wie auf Foto 9 äußerst selten auftreten und sich auf den zentralen Norden des Kartiergebietes konzentrieren (s. Zusatzkarte 2). Die euhedralen Titanitkristalle variieren dabei in ihrer Größe von wenigen Millimetern bis zu 40 cm, wobei Riesenkristalle von ca. 20 Zentimeter im Durchmesser (s. Fotos 10 - 12) in titanitreichen Aufschlüssen häufig sind. Wie Abb. 4-1 zeigt liegen in den DTG keine makroskopisch erkennbaren Reaktionsränder zwischen den Titaniten und der diobsidreichen Matrix vor. Weiters ist für die Titanite der DTG keine bevorzugte Wachstumsrichtung erkennbar.

<u>Abb. 4-1</u>

X 0340395 **Y** 6652471

Titanitkristall in Diopsidmatrix ohne Reaktionsrand

Quarz tritt in den DTG als vor-, früh- und spätdiagenetische Phase auf. Vordiagenetische Quarzphasen sind zumeist Zentimeter dicke Quarzadern die gefaltet sein können, und sowohl von den DTG durchschlagen (s. Foto 18) als auch von der Scherung des Nebengesteins durchschnitten werden (s. Foto 20). In manchen Fällen sind die Randbereiche dieser Quarzadern von der späteren Diopsid- / Aktinolithphase flankiert (s. Foto 19). Im Gegensatz dazu treten die frühdiagenetischen Quarzphasen innerhalb der DTG als massige Aggregate (s. Foto 14 u. 23) oder als schön auskristallisierte Milchquarzdrusen auf (s. Foto 13, 21 u. 22). Die Kristalle dieser Drusen erreichen Größen von mehreren Zentimeter und unterscheiden sich somit von den durchsichtigen, zarten Kristallspitzen der spätdiagenetischen Quarzphase. Diese spätdiagenetische Quarzphase überzieht die DTG ähnlich einer Zuckerkruste, und füllt Hohlräume bzw. Risse, die bei der Kristallisation der DTG und der anschließenden hydrothermalen Beanspruchung gebildeten wurden, auf (s. Abb. 4-2).

Abb. 4-2

X 0340395 **Y** 6652471

Titanit- und Diopsidkristalle zusammen mit spätdiagenetischen Quarzphasen

Kalzit ist ein häufiger Bestandteil von Drusen innerhalb der DTG und ist in zwei Typen zu unterteilen:

- 1. Massiver Kalzit
- 2. Blättriger Kalzit

Wie die Fotos 29 - 33 zeigen, treten diese beiden Kalzitphasen häufig in Verbindung mit den spätdiagentischen Quarzphasen auf, wobei der Kalzit dabei stets als letzte Phase das Zentrum der jeweiligen Druse bildet.

Feldspat ist nie innerhalb der DTG vertreten, zeigt allerdings in unmittelbarer Nähe zu diesen auffällige, kreuz und quer verlaufende Verwachsungen mit Diopsid bzw. Aktinolith (s. Foto 27).

4.6.2 Skapolith mit Diopsid und Titanit

Im Nordwesten des Kartierungsgebietes finden sich Aufschlüsse eines Skapolithgesteins mit Diopsid und Titanit, die von bis zu 2 m mächtigen DTG durchzogen werden (s. Foto 1). Die Titanitkristalle (< 1 cm) zeigen sich dabei innerhalb der stängeligen Diopsid/Aktinolith – Skapolith Matrix gänzlich unorientiert (s. Abb. 4- 2).

<u>Abb. 4-2</u>

X 0339993 **Y** 6652427

Handstück des Skapolithgesteins mit Diopsid/Aktinolith (grün) und unorientierten Titanitkristallen (braun)

4.6.3 Pegmatitgänge mit Diopsid und Titanit

K-Feldspat reiche, diopsid- und titanithältige Pegmatitgänge (~5 vein vol.%) von bis zu 0,5 m Mächtigkeit und deutlichen Miarolen, wurden ausschließlich im äußersten zentralen Osten des Kartierungsgebietes beobachtet. Die stets kleiner als 5 cm großen, euhedralen Titanitkristalle zeigen eine bevorzugte Wachstumsrichtung vom Gangrand zur Gangmitte (s. Abb. 4-3). Diopsid ist prinzipiell überall in den Pegmatitgängen untergeordnet in Form von bis zu 10 cm großen Kristallen anzutreffen, wobei in manchen Fällen einem titanitreichen Pegmatitrand ein diopsidreicher Pegmatitrand gegenüberliegt. Diopsid wurde teilweise durch hydrothermale Prozesse in Aktinolith umgewandelt.

<u>Abb. 4-3</u>

X 0340865 Y 6652304

Titanitreicher Pegmatitrand mit bis zu 1 cm großen Miarolen (zentraler oberer Bildrand)

4.7 Pegmatitkörper und quarzreiche Gesteine

K-Feldspatreiche Pegmatitkörper sind wie bereits erwähnt häufig mit den DTG assoziiert. Sie treten hauptsächlich im Norden und Westen des Kartiergebietes auf und zeigen mit Ausnahme des eben beschriebenen Diopsid-Titanit Pegmatitganges im Osten, sowie der drei rundlichen Pegmatitkörper in Gipfelnähe im Westen (s. Anhang 10.5), eher unregelmäßige, längliche Formen. Mit diesen westlichen Pegmatiten steht vermutlich ein rund 100 m² großer, linsenförmiger Quarzkörper, der sich exakt am Gipfel des westlichen Berges befindet, in Verbindung (s. Foto 28).

4.8 Nebengesteine

Die im Kartiergebiet anzutreffenden Nebengesteine wurden für jeden Aufschlusspunkt im Feldbuch notiert, fanden aber wegen zu großer Inhomogenität bezüglich ihrer Verteilung keine eigene Berücksichtigung in der Karte. Im Wesentlichen kann das Nebengestein in folgende drei Hauptgruppen unterteilt werden:

- 1. Augengneis
 - a. Quarzaugengneis
 - b. Feldspataugengneis
- 2. Knotenschiefer
- 3. Granite

4.8.1 Augengneis

Quarzaugengneise sind zusammen mit den Knotenschiefern die häufigsten Nebengesteine der DTG und treten im Kartiergebiet bis zur südlichen Grenze zu den Metagraniten, wo Feldspataugengneise bzw. Xenolith Granite vorherrschen, flächendeckend auf. Die Quarzaugen sind stets kleiner als 0,5 cm und zeigen in manchen Fällen eine Abplattung entlang der Schieferung (s. Foto 40). Die Feldspäte der Feldspataugengneise erreichen Größen von bis zu 2 cm, sind allerdings verglichen mit den Quarzen der Quarzaugengneise wesentlich inhomogener im Gestein verteilt bzw. orientiert (s. Foto 39).

4.8.2 Knotenschiefer

Knotenschiefer sind im Feld aufgrund von bis zu 7 cm großen Knoten leicht zu identifizieren (s. Foto 35). Bei Betrachtung normal zur Druckrichtung wird eine deutliche Abplattung der meisten Knoten sichtbar (s. Fotos 36 u. 37), wobei der Blick auf diese Knoten normal zur Schieferungsfläche ebenfalls eine gewisse Einregelung erkennen lässt (s. Foto 38).

4.8.3 Granite

Granite mit bis zu 15 cm großen Xenolithen (s. Foto 42) konnten nur an einem einzelnen Aufschluss ohne direktem DTG Zusammenhang im Süden des Kartiergebietes beobachtet werden.

Bei Betrachtung aller mittels Geologenkompass gemessenen Werte für die stets steil stehenden Hauptschieferungsflächen der Nebengesteine, zeigt sich ein variables Streichen im Kartierungsgebiet, das auf eine großräumige Verfaltung hindeuten könnte (s. Karte Anhang 10.5 bzw. Abb. 4-6).

4.9 Quarz-Hämatitüberprägung

Die Quarz-Hämatitüberprägung ist im gesamten Kartiergebiet anzutreffen, jedoch mit besonderer Häufigkeit im zentralen Westen, wo durch dieses Ereignis beanspruchte Gesteine heute Bergrücken formen (s. Foto 44). In der Nähe der Störungszonen sind des Öfteren brekkzierte und von der Quarz-Hämatitphase wieder zusammengefügte Nebengesteine vorzufinden, die nach ihrem äußeren Erscheinungsbild der eingangs erwähnten Mt. Gee Brekkzie sehr ähnlich sind (s. Foto 43). Generell beobachtet man oft eine starke Quarz-Hämatitüberprägung der reaktivierten DTG.

4.10 Hot Spots / Störungen

Als Hot Spots wurden jene zwei, etwa vier Meter im Durchmesser messenden Gebilde bezeichnet, in denen durch starke hydrothermale Alterationsprozesse das Gestein zu Tonminerale, vermutlich Kaolinit, umgewandelt wurde.

Die beiden steil stehenden Störungszonen verlaufen parallel von SSO nach NNW, wobei nur die westlichere der beiden auf einer Distanz von rund 165 Meter gut verfolgbar ist (s. Foto 47). Diese Störungszone könnte mit einer Scherungszone am südlichsten Rand des Kartiergebietes in Verbindung stehen (s. Foto 48). Aufschlüsse von DTG, die sich in unmittelbarer Nähe zu diesen Störungszonen befinden sind äußerst komplex und zeigen komplizierte Netzwerke. Am nördlichen Ende der westlichen Störungszone befindet sich eine steil stehende, rund 50 cm geöffnete Kluft, die stalaktitenähnliche Quarzknollen von rund einem Zentimeter Länge beinhaltet (s. Fotos 24 – 26).

4.11 Mafic Dyke

Im Norden bzw. im Westen des westlichen Berges im Kartierungsgebiet wurden zwei nicht zusammenhängende, gabbroitische Gesteinskörper vorgefunden (s. Karte Anhang 10.5).

Ersterer erstreckt sich vom Tal des Radium Creeks auf rund 300 m Länge und 160 Höhenmeter Richtung Gipfel im Südwesten, wobei sich der durchschnittlich 30 m breite Dyke in Gipfelnähe auf den letzten 40 Höhenmeter deutlich verjüngt (~1 m mächtig) und als zwei "Dykespitzen" ausläuft. Am nordwestlichen Rand, des ansonsten mineralogisch sehr homogenen Dykes, findet sich nach etwa 20 Höhenmeter vom Tal gerechnet ein rund 10 cm x 10 cm großer Quarzkörper im Dyke.

Der zweite, etwas größere Dyke, befindet sich westlich des Berges und erstreckt sich von dem Ostrand der Straße (Ridgetop Tour), bis knapp (~20 Höhenmeter) unterhalb des Gipfels. Im Gegensatz zum eben beschriebenen Dyke, zeigt dieser nach ca. 40 Höhenmeter von der Straße gerechnet eine Verjüngung von ~45 m auf ~1,5 m. Unmittelbar darauf bläht sich der Dyke allerdings wieder auf eine Maximalbreite von 120 Meter auf, und zeigt in Gipfelnähe keine Anzeichen auf eine weitere Verjüngung.

Vor allem der erstgenannte Dyke fällt durch eine deutliche Parallelität mit der vorherrschenden Schieferung des Nebengesteins auf.

5 Schliffbeschreibung

5.1 1A

Probe 1A stammt aus einem geringmächtigen Diopsidseitengang in dem reiner Quarz als eingeschlossene Mineralphase vorliegt (s. Skizze 4). Makroskopisch sind neben den Hauptmineralen Quarz (bis zu 0,5 cm große Körner) und Albit, der zwischen den Quarzkörnern als Matrix auftritt, auch noch dunkelgrüner Aktinolith und hellgrüner Epidot erkennbar.

Der Dünnschliff aus dieser Probe lässt sich generell in 85 vol.% Quarz, 10 vol.% Feldspat, 3 vol.% Aktinolith und 2 vol.% Akzessorien (Apatit, Zirkon, Titanit, Biotit, Hämatit, Epidot) unterteilen. Quarz zeigt undulöse Auslöschung was auf eine tektonische Beanspruchung des Gesteins schließen lässt. Innerhalb des Quarzes befinden sich Gruppen von blaugrünen bis gelblichen, rundlichen Zirkonen (s. Abb. 5-1) sowie bläuliche Apatit - Nadeln. Titanit fällt durch einen ca. 1,3 mm großen, euhedralen Kristall im Quarz auf (s. Abb. 5-2), während Aktinolith xenomorph vorliegt (s. Abb. 5-3). Quarz und Albit zeigen mitunter auffällige Texturen, die an Lösungserscheinungen erinnern (s. Abb. 5-4). Sowohl im Feldspat, als auch in den Biotitkristallen sind Zirkone eingeschlossen, die keine Strahlungsschäden verursacht haben.

Abb. 5-1 Zirkonkristalle im Quarz

Abb. 5-3 Xenomorpher Aktinolithkristall

Abb. 5-2 Euhedraler Titanitkristall im Quarz

<u>Abb. 5-4</u> Texturen zwischen Quarz und Albit; gekreuzte Pol.

Entlang von häufig auftretenden Spuren sind eine Vielzahl von verschiedenen Einschlüssen (FI) im Quarz beobachtbar. Einphasig liquide Einschlüsse scheinen sich dabei ausschließlich an Korngrenzen anzuordnen (s. Abb. 5-5), während CO₂ reiche Einschlüsse quer über das gesamte Quarzkorn vorliegen (s. Abb. 5-6). Flüssige Einschlüsse mit Gasblase treten häufig neben Einschlüssen ohne Gasblase auf (s. Abb. 5-7). Bei einigen Flüssigkeitseinschlüssen konnte eine neuartige Ringtextur beobachtet werden (s. Abb. 5-8), deren Ursprung noch zu untersuchen ist. Mehrphasige, komplexe Einschlüsse mit Hämatit, Salzkristall und anderen Festphasen sind nicht selten (s. Abb. 5-9 u. Abb. 5-10).

Abb. 5-5 Einphasige FI an Quarz Korngrenzen

Abb. 5-7 FIs mit und ohne Gasblase

Abb. 5-9 Mehrphasiger Einschluss im Quarz

Abb. 5-6 CO2 reiche Einschlüsse im Quarz

Abb. 5-8 Ringtextur eines FI im Quarz

Abb. 5-10 Komplexer, mehrphasiger FI im Quarz

5.2 1C

Das moosgrüne Handstück 1C stammt aus einem DTG und besteht vorwiegend aus hellgrünem Diopsid und dunkelgrünem Aktinolith. An der Oberfläche der Probe befinden sich lokal Hämatitkristalle (<1mm) sowie Fragmente eines ursprünglich mehrere Zentimeter großen, dunkelbraunen Titanitkristalls.

Der Dünnschliff gliedert sich in einen klar abgegrenzten dunkelgrünen Diopsidbereich (83 vol.%) sowie einer linear verlaufenden Umwandlungszone mit ausschließlich blaßgrünem Aktinolith (10 vol.%) und Hämatit (6 vol.%). Als akzessorische Mineralphasen (1 vol.%) treten euhedrale Titanitkristalle (bis 0,2 mm) im Diopsid sowie Kalzit in unmittelbarer Nähe zur Umwandlungszone auf (s. Abb. 5-11).

Abb. 5-11 Aktinolith (grün), Kalzit (weiß) u. Hämatit (schwarz) in der Umwandlungszone

Die Diopsidkristalle beherbergen sowohl feste Aktinolitheinschlüsse mit oder ohne Hämatitphase (s. Abb. 5-12 – 5-14), als auch sekundär gebildete zweiphasige Flüssigkeitseinschlüsse mit kleiner Gasblase (s. Abb. 5-15).

<u>Abb. 5-12</u> Fester Aktinolitheinschluss mit Hämatitphase (schwarz) im Diopsid

<u>Abb. 5-13</u> Feste Aktinolitheinschlüsse mit Hämatitphase (schwarz) im Diopsid

<u>Abb. 5-14</u> Fester Aktinolitheinschluss mit Hämatitphase (schwarz) im Diopsid

<u>Abb. 5-15</u> Sekundär gebildete, zweiphasige Flüssigkeitseinschlüsse mit kleiner Gasblase im Diopsid

5.3 1D

Das Gestein wurde im Feld aufgrund von bis zu 3 cm großen Quarzknoten inmitten einer Biotitreichen Matrix als Knotenschiefer angesprochen, wobei die Quarzknoten entlang der Schieferungsfläche abgeplattet sind und somit im Querschnitt oval erscheinen.

Der Dünnschliff aus dieser Probe weist als Hauptminerale undulös auslöschenden Quarz (s. Abb. 5-16) (60 vol.%), Biotit (25 vol.%) und Feldspat (Albit) (14 vol.%) auf, während blättchenförmiger Hämatit, selten auftretender Titanit, feinnadeliger Sillimanit als Fibrolith (s. Abb. 5-17), Xenotim und Zirkone als Akzessorien auftreten. Letztere zeigen im grünlichen und daher vermutlich an Eisen angereicherten Biotit deutliche Strahlungsschäden (s. Abb. 5-18). Dunkelgrüner Xenotim tritt vorwiegend in Form von idiomorphen Mineralgruppen auf, die sich oft in unmittelbarer Nähe zu den Sillimanitbüscheln befinden (s. Abb. 5-19) und Xenotim somit als Reaktionsmineral während hochmetamorphen Prozessen interpretiert werden könnte.

Abb. 5-16 undulös auslöschende Quarz mit Spuren von Einschlüssen; gekreuzte Pol.

Abb. 5-17 Feine Sillimanitnadeln (Fibrolith) im Quarz; gekreuzte Pol.

Abb. 5-18 Strahlungsschäden im Fe - reichen Biotit (grünlich) durch Zirkon

<u>Abb. 5-19</u> Gruppe von idiomorphen Xenotimkristallen im Quarz bzw. neben Fibrolith

Innerhalb der Quarzkristalle sind Spuren von Einschlüssen häufig, die entweder einphasig gasförmig (CO_2) mit einer Tendenz zur Ausbildung von negativen Kristallformen (s. Abb. 5-20 u. 5-21) sind, oder komplex mehrphasig (vermutlich Salze und Karbonate als Festphasen) auftreten (s. Abb. 5-22 - 5-24).

<u>Abb. 5-20</u> CO₂ reiche Einschlüsse im Quarz mit negativer Kristallform

Abb. 5-22 Mehrphasiger Einschluss im Quarz

<u>Abb. 5-21</u> CO₂ reiche Einschlüsse im Quarz mit negativer Kristallform

Abb. 5-23 Mehrphasiger Einschluss im Quarz

Abb. 5-24 Mehrphasiger Einschluss im Quarz

5.4 2 D

Probe 2D stammt aus einem \sim 5 cm mächtigen Aktinolithgang innerhalb eines DTG und zeigt einen makroskopisch erkennbaren, parallel verlaufenden Quarz - Hämatitgang (\sim 2 mm mächtig) im Zentrum des Aktinolithganges.

Der Dünnschliff gliedert sich in 75 vol.% Aktinolith, 10 vol.% Quarz, 10% Hämatit / Magnetit sowie 5 vol.% Kalzit mit Chlorit und Titanit als Akzessorien. Kalzitkristalle (bis zu 5 mm) und radial strahliger Chlorit (s. Abb. 5-25) kommen ausschließlich innerhalb bzw. im direkten Randbereich des Quarz - Hämatitganges vor, während Quarz und Hämatit / Magnetit über den gesamten Schliff verteilt auftreten. Aktinolith und Quarz zeigen ein auffälliges myrmekitisches Gefüge, das an jenes von Schriftgraniten erinnert (s. Abb. 5-26).

Abb. 5-25 Chlorit (gelb) mit Hämatit (schwarz)

<u>Abb. 5-26</u> myrmekitisches Gefüge von Aktinolith (gelblich) und Quarz (grau)

Bei Betrachtung der Hämatitkristalle im Auflicht wird deutlich, dass diese in manchen Fällen einen Kern aus Magnetit besitzen (s. Abb. 5-27). Im Gegensatz dazu handelt es sich bei bis zu 1 mm langen opaken Nadeln im Quarz – Hämatitgang ausschließlich um Hämatitkristalle (s. Abb. 5-28).

<u>Abb. 5-27</u> Magnetitkern (hellgrau) im Hämatit (weiss) innerhalb von Aktinolith (dunkelgrau)

<u>Abb. 5-28</u> idiomorphe Hämatitnadeln (weiss) im Aktinolith (grau)

5.5 2E a

Das Handstück ist Teil eines Titanit reichen (~5 vein vol.%) DTG und fällt durch einen spitz zusammenlaufenden, bis zu 3 cm dicken Moriongang innerhalb des Diopsids auf. Der Kontakt zwischen Diopsid und Quarz erscheint makroskopisch scharf, ohne erkennbaren Reaktionsrand. Als Hauptmineralbestand im Dünnschliff liegen Quarz (50 vol.%), Diopsid (30 vol.%), Hämatit (10 vol.%) und Aktinolith (8 vol.%), der sich erst unter dem Durchlichtmikroskop als blassgrüner Reaktionssaum erkennbar zeigt, vor. Innerhalb des Quarzganges treten als Akzessorien feinnadeliger, an die Ränder gebundener Hämatit (s. Abb. 5-29), aequidimensionaler Kalzit mit hohem Relief (s. Abb. 5-30), sowie ausschließlich am spitzen Ende des Gangs beobachtbare Lanthanit- (s. Abb. 5-31), Monazit- und Apatitkristalle, auf. Monazitkristalle von sehr geringer Größe (< 5 μm) bilden im Quarz wolkenähnliche Strukturen (s. Abb. 5-32) und heften sich häufig in Gruppen an Apatitnadeln (s. Abb. 5-33). Aequidimensionale Kristalle im Quarz mit hohem Relief (s. Abb. 5-34) konnten weder mikroskopisch noch ramanspektroskopisch identifiziert werden. Quarz ist durch eine auffällige hell - dunkel Zonierung charakterisiert (s. Abb. 5-35) und beherbergt eine Vielzahl an Einschlüssen (s. Abb. 5-36).

Abb. 5-29 Hämatitnadeln

Abb. 5-30 aequidimensionaler Kalzitkristall

Abb. 5-31 Lanthanitkristall im Quarz

Abb. 5-32 Aequidimensionaler Kalzit u. "schwarze Wolken" aus winzigen Monazitkristallen (< 5 μm) im Quarz

<u>Abb. 5-33</u> Apatitnadeln mit angehefteten Gruppen von Monazitkristallen im Quarz

<u>Abb. 5-34</u> Aequidimensionale Kristalle, Apatitnadeln und Gruppen von Monazitkristallen im Quarz

Abb. 5-35 Zonierungsmuster im Quarz

Abb. 5-36 Einschlüsse im Quarz

Die häufigsten Einschlüsse im Quarz sind liquide Phasen, die in manchen Fällen mit einer kleinen Gasblase auftreten und Reaequilibrierungstexturen vorweisen (s. Abb. 5-37 u. 5-38).

Abb. 5-37 Beginnende Reaequilibrierungsprozesse eines zweiphasigen Einschlusses im Quarz

<u>Abb. 5-38</u> Reaequilibrierungstexturen eines zweiphasigen Einschlusses im Quarz

Einqhasige, liquide Einschlüsse mit länglichen Formen treten in der Nähe der "Monazitwolken" auf (s. Abb. 5-39). Sehr unregelmäßige Flüssigkeitseinschlüsse mit kleiner Gasblase können bis zu 75 µm Größe erreichen (s. Abb. 5-40). Innerhalb des Diopsids sind primäre, zweiphasige Flüssigkeitseinschlüsse (flüssig und gasförmig) entlang der Kristallographie präsent (s. Abb. 5-41).

Abb. 5-39 Einphasige, längliche Flüssigkeitseinschlüsse in der Nähe von "Monazitwolken" innerhalb des Quarz

Abb. 5-40 Großer (~75 μm) und unregelmäßig länglicher Flüssigkeitseinschluss mit Gasblase im Quarz

Abb. 5-41 Primäre, zweiphasige Einschlüsse im Diopsid

5.6 2E b

Aus dem selben DTG wie Probe 2E a wurde ein ca. 20 cm großer, idiomorpher Titanitkristall beprobt. Er erscheint im Handstück dunkelbraun, was generell für die Titanite aus Arkaroola typisch ist, zeigt perfekte Spaltbarkeit und ist von zahlreichen Rissen durchzogen.

Im Dünnschliff sind neben Titanit (99 vol.%) auch Aktinolith, Quarz und Hämatit (zusammen 1 vol.%) beobachtbar, wobei Quarz und Hämatit stets als sekundär gebildete, feste Einschlüsse entlang von Spuren auftreten (s. Abb. 5-42).

Abb. 5-42 Spur von festen Einschlüssen im Titanit

Flüssigkeitseinschlüsse sind mehrheitlich mit Festphasen verbunden (s. Abb. 5-43 u. 5-44), während Anhäufungen von zweiphasigen Einschlüssen mit Flüssigkeit und Gasblase als Produkte von Reaequilibrierungsprozesse von großen (\sim 75 µm) Einschlüssen gedeutet werden können (s. Abb. 5-45). Abb. 5-46 zeigt ebenfalls einen stark rekristallisierten Flüssigkeitseinschluss mit roter Hämatitphase.

<u>Abb. 5-43</u> Flüssigkeitseinschluss mit mehreren Festphasen (rot = Hämatit) im Titanit

Abb. 5-45 Zweiphasige Flüssigkeitseinschlüsse mit Gasblase infolge von Reaequil.prozessen

Abb. 5-44 Flüssigkeitseinschluss mit mehreren Festphasen und Gasblase im Titanit

<u>Abb. 5-46</u> Stark rekristallisierter Einschluss mit Hämatitphase (rot) im Titanit

5.7 3A

Probe 3A wurde direkt vom Kontakt zwischen einem mehreren Zentimeter großen, euhedralen Titanitkristall und einem ebenso großen Diopsidkristall entnommen. Am Kontakt ist eine 2 mm mächtige Umwandlungszone aus Aktinolith makroskopisch erkennbar (s. Abb. 5-47).

Abb. 5-47 Übersichtsfoto vom Kontakt zwischen Titanit (links) und Umwandlungszone (rechts)

Der Dünnschliff teilt sich in 65 vol.% Titanit und 30 vol.% Diopsid mit 5 vol.% Umwandlungszone auf, wobei in letzterer Quarz und Hämatit als Akzessorien vorkommen. Innerhalb des Titanits können alle Einschlusstypen von Schliff 2E b wiedergefunden werden.

Zusätzlich dazu gibt es jedoch eine Gruppe von primären Einschlüssen, die durch ihre negative Kristallform sowie durch ihre schwarze Färbung auffallen (s. Abb. 5-48).

<u>Abb. 5-48</u> Schwarze, primäre Einschlüsse mit negativer Kristallform im Titanit

Im Kontaktbereich mit der Umwandlungszone häufen sich komplexe, mehrphasige Flüssigkeitseinschlüsse mit kubischen Salzkristallen und anderen Festphasen (z.B. Hämatit) sowie einer Gasblase (s. Abb. 5-49 u. 5-50).

Abb. 5-49 Komplexer, mehrphasiger Flüssigkeitseinschluss innerhalb des Titanits im Randbereich der Umwandlungszone

<u>Abb. 5-50</u> Komplexer, mehrphasiger Flüssigkeitseinschluss innerhalb des Titanits im Randbereich der Umwandlungszone

Bei festen Einschlüssen im Diopsid handelt es sich um Aktinolith, der in manchen Fällen gemeinsam mit Hämatit auftritt (s. Abb. 5-51). Flüssigkeitseinschlüsse mit Gasblase wie in Abb. 5-52 bzw. mit zusätzlichem Salzkristall (s. Abb. 5-53) sind häufig.

<u>Abb. 5-51</u> Fester Einschluss mit gelblichem Aktinolith und schwarzem Hämatit im Diopsid

<u>Abb. 5-52</u> Flüssigkeitseinschluss mit Gasblase im Diopsid

<u>Abb. 5-53</u> Flüssigkeitseinschluss mit Salzkristall und Gasblase im Diopsid

Innerhalb des Quarzes sind mehrphasige, komplexe Flüssigkeitseinschlüsse mit kubischen und ovalen Salzkristallen sowie einer Gasblase beobachtbar (s. Abb. 5-54). Weiters deuten Flüssigkeitseinschlüsse mit seltener Gasblase und kubischem Salzkristall (s. Abb. 5-55 - 5-57) auf eine hohe Dichte in diesem Einschlusstyp.

Abb. 5-55 Dreiphasiger Flüssigkeitseinschluss mit Salzkristall und kleiner Gasblase

<u>Abb. 5-56</u> Zweiphasiger Flüssigkeitseinschluss mit Salzkristall ohne Gasblase

Abb. 5-57 Zweiphasiger Flüssigkeitseinschluss mit Salzkristall ohne Gasblase

Bei einphasigen Einschlüssen im Quarz mit negativer Kristallform dürfte es sich hingegen um CO_2 reiche Einschlüsse handeln (s. Abb. 5-58).

Abb. 5-58 Einphasiger Einschluss (vermutl. CO₂ reich) mit negativer Kristallform im Quarz

5.8 3C

Verwachsungen von Titanit mit Diopsid sowie Überprägungen von Quarz, Hämatit und Kalzit, kennzeichnen Probe 3C. Quarz überzieht dabei die Oberfläche des Titanitkristalls mit bis zu 3 mm großen Kristallen. Kalzit mit blättrigem Habitus tritt innerhalb einer 2,5 cm großen Druse auf, während Hämatit als rot oxidierte Füllungen im Handstück beobachtet werden kann. Die Hauptmineralanteile im Dünnschliff sind 80 vol.% Titanit, 13 vol.% Diopsid, 4 vol.% Kalzit, 2 vol.% Hämatit und 1 vol.% Quarz. Innerhalb des Quarzes treten schwarze Hämatitnadeln von bis zu 200 µm Länge auf (s. Abb. 5-59).

Abb. 5-59 Hämatitnadeln im Quarz

Titanit zeigt wie bei den vorangegangenen Schliffen Spuren von festen Einschlüssen (s. Abb. 5-60), die in manchen Fällen leicht als Hämatit- reiche Phasen identifiziert werden können (s. Abb. 5-61).

Abb. 5-60 Spur von festen Einschlüssen im Titanit

<u>Abb. 5-61</u> Spur von Hämatit- reichen Phasen im Titanit

Reaequilibrierte Einschlüsse mit "Hallow" (s. Abb. 5-62) sind im Titanit ebenfalls häufig, während innerhalb des Diopsids mehrphasige Einschlüsse ohne Gasblase auffallen (s. Abb. 5-63). Die zweiphasigen Flüssigkeitseinschlüsse mit kleiner Gasblase im Kalzit lassen sich in unregelmäßige, längliche Einschlüsse (s. Abb. 5-64) und in regelmäßige Einschlüsse mit negativer Kristallform (s. Abb. 5-65) unterteilen.

<u>Abb. 5-62</u> Reaequilibrierter Einschluss mit "Hallow" im Titanit

<u>Abb. 5-63</u> Mehrphasiger Einschluss ohne Gasblase im Diopsid

Abb. 5-64 Unregelmäßiger Flüssigkeitseinschluss mit kleiner Blase im Kalzit

<u>Abb. 5-65</u> Regelmäßige Flüssigkeitseinschlüsse mit Blase und negativer Kristallform im Kalzit

5.9 3 K

Probe 3K wurde zwischen zwei etwa 10 m voneinander entfernten, parallel verlaufenden DTG entnommen, von denen einige kleinere "Pegmatit - Patches" im rechten Winkel abzweigen. Der Übergang zwischen Diopsidgang und Pegmatit ist dabei durch eine mehrere Zentimeter mächtige Umsetzungszone mit abnehmenden Diopsid- bzw. Titanitanteilen, innerhalb einer feldspatreichen Matrix, gekennzeichnet. Diese Umsetzungszone, in der Epidot makroskopisch durch seine hellgrüne Eigenfarbe auffällt, ist von Millimeter mächtigen Gängchen aus Diopsid bzw. Aktinolith durchzogen,.

Der Dünnschliff zeigt den unmittelbaren Übergangsbereich von diopsidreicher Zone zu pegmatitreicher Zone und gliedert sich nach den Hauptmineralen in 44 vol.% Diopsid, 34 vol.% Feldspat, 19 vol.% Quarz und 1 vol.% Epidot mit zonarem Aufbau, 1 vol.% Hämatit sowie 1 vol.% Akzessorien (Titanit, Apatit, Zirkon). Bei dem Feldspat fallen perthitische Entmischungen (s. Abb. 5-66) sowie Ansätze einer Mikroklinverzwilligung (s. Abb. 5-67) auf.

Abb. 5-66 Perthitische Entmischungslamellen im Feldspat; gekreuzte Pol.

Abb. 5-67 Ansätze einer Mikroklinverzwilligung; gekreuzte Pol.

Einschlüsse im Quarz unterteilen sich im wesentlichen in zwei Gruppen: neben sehr homogenen flüssigen Einschlüssen mit Gasblase gibt es auch komplexere Einschlüsse, mit fester (Salz und/oder Hämatit), flüssiger und gasförmiger Phase. Innerhalb der Apatitkristalle sind längliche Einschlüsse häufig, die bei einem Schnitt normal zu ihrer C – Achse negative Kristallformen zeigen (s. Abb. 5-68). Komplexe Einschlüsse mit mehreren Festphasen (s. Abb. 5-69 u. 5-70) sind dabei ebenso präsent wie zweiphasige Flüssigkeitseinschlüsse mit Gasblase (s. Abb. 5-71). Sehr komplexe, mehrphasige Einschlüsse mit Hämatit befinden sich auch innerhalb der Feldspäte sowie im Diopsid.

Abb. 5-68 Einschlüsse innerhalb des Apatits mit negativen Kristallformen; Schnitt normal zur C - Achse

Abb. 5-69 Komplexer Flüssigkeitseinschluss innerhalb des Apatits mit zwei festen Phasen und kleiner Gasblase; Schnitt parallel zur C - Achse

Abb. 5-70 Komplexer Flüssigkeitseinschluss innerhalb des Apatits mit zwei festen Phasen und kleiner Gasblase; Schnitt parallel zur C - Achse

Abb. 5-71 Zweiphasiger Flüssigkeitseinschluss mit kleiner Gasblase im Apatit ; Schnitt parallel zur C - Achse

5.10 4 B

Das Handstück der Probe 4B zeigt Verwachsungen von bis zu 5 cm großen Alkalifeldspäten mit Diopsid innerhalb einer Übergangszone eines DTG zu einem Pegmatiten. Makroskopisch lässt sich rosa Kalifeldspat, weißer Alkalifeldspat sowie Quarz und Diopsid, der teilweise in Aktinolith umgewandelt wurde, unterscheiden.

Der Dünnschliff unterteilt sich in 55 vol.% Diopsid / Aktinolith, 20 vol.% Alkalifeldspat, 10 vol.% Kalifeldspat, 14 vol.% Quarz und 1 vol.% Akzessorien (Kalzit, Hämatit, Epidot). Kalzit zeigt im Durchlicht auffälligen blättrigen Habitus, während beim Alkalifeldspat (Albit) perthitische Entmischungslamellen auftreten (s. Abb. 5-72). Kalifeldspat (Mikroklin) ist unter dem Durchlichtmikroskop als braune Masse erkennbar.

Abb. 5-72 Entmischungslamellen des Albits; gekreuzte Pol.

5.11 4 E

Einen sehr homogenen Pegmatiten aus rosa färbigem Kalifeldspat und hellgrauen Quarzkristallen (jeweils bis zu 1 cm) zeigt Probe 4E. Makroskopisch lassen die länglichen Quarzkristalle in einer Matrix aus ovalen Kalifeldspäten, welche wiederum durch normal auf die Längsachse der Kristalle verlaufende Lamellen charakterisiert sind, auf für Pegmatite typische myrmekitische Gefüge schließen.

Unter dem Durchlichtmikroskop wird deutlich, dass die flammenförmigen Lamellen des Kalifeldspates von einer perthitischen Entmischung zwischen Albit und Mikroklin herrühren (s. Abb. 5-73). Mit 80 vol.% ist dieser Mikroklin - Albit Perthit Hauptmineral des Dünnschliffes, während undeformierter Quarz mit 19 vol.% und Kalzit, Hämatit, Anatas sowie Rutil als Akzessorien mit 1 vol.% vorliegen.

Abb. 5-73 Flammenförmiger Mikroklin – Albit Perthit; gekreuzte Pol.

Im Quarz befinden sich neben Spuren von einphasigen CO₂ Einschlüssen (s. Abb. 5-74) auch flach dimensionierte, unregelmäßige Flüssigkeitseinschlüsse mit kleiner Gasblase (s. Abb. 5-75) und komplexere Einschlüsse mit Salzkristall und anderen Festphasen (s. Abb. 5-76 u. 5-77).

Abb. 5-74 Spur von CO2 reichen Einschlüssen

Abb. 5-75 Flach dimensionierte Flüssigkeitseinschlüsse mit kleiner Gasblase

<u>Abb. 5-76</u> Komplexe Einschlüsse mit mehreren Festphasen

Abb. 5-77 Komplexe Einschlüsse mit Salzkristall

5.12 6 H

Probe 6H stammt aus einem kalifeldspatreichen Gang, an dessen Ränder bis zu 1 cm große Titanitkristalle in Richtung Gangzentrum auskristallisiert sind. Das durch den Kalifeldspat rötlich erscheinende Handstück zeigt einen Bereich dieses Ganges, in dem auf einer Randseite ausschließlich Titanit in einer an Feldspat und Kalzit reichen Matrix anzutreffen ist, während auf der gegenüberliegenden Seite Diopsid vorherrschend ist.

Der Dünnschliff deckt den Randbereich mit den Titanitkristallen ab und lässt sich in 70 vol.% Feldspat, 22 vol.% Kalzit, 7 vol.% Titanit und 1 vol.% Hämatit unterteilen. Kalifeldspat zeigt mitunter Mikroklinverzwilligung (s. Abb. 5-78) sowie auffällige Verwachsungstexturen (s. Abb. 5-79).

Bei den Flüssigkeitseinschlüssen im Titanit handelt es sich hauptsächlich um komplexe, mehrphasige Einschlüsse (dunkelrote Hämatitphase), die entlang von Spuren auftreten (s. Abb. 5-80). In manchen Fällen können diese Einschlüsse Durchmesser von bis zu 70 µm erreichen und zeigen Reaequilibrierungserscheinungen (s. Abb. 5-81). Die komplexen, mehrphasigen Flüssigkeitseinschlüsse innerhalb der Feldspäte befinden sich ebenfalls entlang von Spuren und ähneln generell jenen der Titanite (s. Abb. 5-82). Im Kalzit herrschen bis zu 35 µm große, zweiphasige Flüssigkeitseinschlüsse mit kleiner Gasblase vor (s. Abb. 5-83).

Abb. 5-78 Mikroklinverzwilligung des Kalifeldspats Abb. 5-79 Titanitkristallspitze (links) mit Verbei gekreuzten Polarisatoren

wachsungstexturen der Feldspäte (rechts)

Abb. 5-80 Spuren von mehrphasigen Flüssigkeitseinschlüssen im Titanit

<u>Abb. 5-81</u> Mehrphasiger Flüssigkeitseinschluss mit Reaequilibrierungserscheinungen und dunkelroter Hämatitphase

<u>Abb. 5-82</u> Komplexer, mehrphasiger Flüssigkeitseinschluss im Feldspat

Abb. 5-83 Zweiphasige Flüssigkeitseinschlüsse mit kleiner Gasblase im Kalzit

5.13 7 F

Bei Probe 7F handelt es sich um Verwachsungen von bis zu 3 cm großen, rosa färbigen Feldspatkristallen mit Diopsid, der teilweise zu dunkelgrünem Aktinolith umgewandelt wurde. Des Weiteren lassen sich makroskopisch hellgrüner Epidot und Quarz erkennen.

Der Dünnschliff gliedert sich in 42 vol.% Feldspat, 25 vol.% Diopsid / Aktinolith, 22 vol.% Quarz, 5 vol.% Apatit, 3 vol.% Titanit, 2 vol.% Epidot und 1 vol.% Akzessorien (Hämatit, Anatas, Rutil, Monazit, Zirkon). Feldspat tritt sowohl als weiße Kristalle mit deutlicher Plagioklasverzwilligung (s. Abb. 5-84), sowie in Form von bräunlichen Mikroklin - Massen auf. Erstere zeigen ein eindeutiges Albit – Ramanspektrum, unterscheiden sich aber in Bezug auf ihre Doppelbrechung bei gekreuzten Polarisatoren. Neben schwarz/weiß verzwilligten Plagioklasen finden sich welche mit rot – gelber bzw. violett - grüner Interferenzfarbe (s. Abb. 5-84 bzw. 5-85). Quarz, der bis zu 15 μ m große Rutilnadeln beherbergt, zeigt undulöse Auslöschung sowie durch Einschlüsse gut erkennbare Wachstumszonen (s. Abb. 5-86). In den Plagioklasen finden sich große, längliche Monazitkristalle (~250 μ m) mit nicht näher definierten festen Einschlüssen (s.

Abb. 5-87). Innerhalb der Titanite, die in Mineralvergesellschaftungen mit Zirkonen auftreten können, sind bis zu 150 μm große Rutileinschlüsse beobachtbar (s. Abb. 5-88 u. 5-89).

Flüssigkeitseinschlüsse im Titanit konnten nicht ausgemacht werden, während feste Einschlüsse mit mehreren Festphasen entlang von Spuren häufig sind (s. Abb. 5-90 u. Abb. 5-91). Die wurmartigen Flüssigkeitseinschlüsse der bis zu 350 μ m großen Apatitkristalle (s. Abb. 5-92) treten massenhaft entlang von Spuren auf (s. Abb. 5-93). Sie liegen je nach Vorhandensein einer Gasblase sowohl als einphasig als auch zweiphasig nebeneinander vor (s. Abb. 5-94).

Abb. 5-84 Unterschiedliche Doppelbrechung der Albitkristalle bei gekreuzten Plarisatoren (schwarz/weiß bzw. rot/gelb)

Abb. 5-84 Unterschiedliche Doppelbrechung der Albitkristalle bei gekreuzten Polarisatoren (schwarz/weiß bzw. rot/gelb)

Abb. 5-86 Durch Einschlüsse gut erkennbare Wachstumszonen im Quarz

Abb. 5-87 Monazitkristall mit länglichen, festen Einschlüssen innerhalb des Feldspat

<u>Abb. 5-88</u> Auflichtmikroskopiefoto einer Mineralvergesellschaftung im Feldspat mit Titanit (ttn), Rutil (rtl) und zwei Zirkonkristallen (zir)

Abb. 5-89 Rutilphasen im Titanit

<u>Abb. 5-92</u> Apatitkristalle (weiss) neben Titanitkristalle (braun)

<u>Abb. 5-90</u> Spuren von mehrphasigen, festen Einschlüssen im Titanit

<u>Abb. 5-91</u> Detailaufnahme der mehrphasigen, festen Einschlüsse im Titanit

<u>Abb. 5-93</u> Spuren von Flüssigkeitseinschlüssen im Apatit

Abb. 5-94 wurmartige Flüssigkeitseinschlüsse im Apatit mit bzw. ohne Blase

5.14 8 A

Probe 8A stellt ein Handstück aus homogenem Diopsid dar und zeigt daher makroskopisch keine wesentlichen Unterschiede.

Als Akzessorien finden sich unter dem Durchlichtmikroskop neben Kalzit, Quarz, Hämatit und Titanit auch bis zu 100 μ m große, unregelmäßig geformte Biotitkristalle, die mit Hämatitphasen gemeinsam auftreten (s. Abb. 5-95). Titanit und Quarz liegen als idiomorphe Kristalle innerhalb des Diopsids vor (s. Abb. 5-96 u. 5-97).

Bei den Einschlüssen im Diosid handelt es sich vorwiegend um feste Phasen, von denen mittels Raman Anhydrit bestimmt werden konnte (s. Abb. 5-98). Komplexe, mehrphasige, feste Einschlüsse wie in Abb. 5-99 sind selten.

<u>Abb. 5-95</u> Unregelmäßig geformter Biotitkristall (braun) mit Hämatitphasen (schwarz)

Abb. 5-97 Idiomorpher Quarzkristall im Diopsid

Abb. 5-96 Idiomorpher Titanitkristall im Diopsid

Abb. 5-98 Anhydriteinschluss im Diopsid

<u>Abb. 5-99</u> Komplexer, mehrphasiger, fester Einschluss im Diopsid

5.15 9 C

Probe 9C stammt aus einem an Aktinolith und Titanit reichen Skapolithgestein. Der Skapolith erscheint makroskopisch als cremeweiße, längliche Kristalle (bis zu 3 cm), die sich mit Verwachsungen aus Aktinolith und Titanit abwechseln. Vereinzelt sind Bereiche mit Quarz und Biotit beobachtbar, während Epidot als hellgrünes Alterationsmineral auftritt. Der Dünnschliff zeigt einen Querschnitt durch die Längsachsen der Skapolithkristalle und teilt sich in 60 vol.% Na-Skapolith (Marialit), 16 vol.% Quarz, 10 vol.% Aktinolith, 8 vol.% Titanit, 2 vol.% Diopsid, 2 vol.% Analcim, 1 vol.% Epidot und 1 vol.% Akzessorien (Biotit, Zirkon, Rutil) auf. Rutil tritt dabei ausschließlich innerhalb der Titanitkristalle auf (s. Abb. 5-100), während Analcim häufig mit Aktinolith / Diopsid bzw. Skapolith vergesellschaftet ist (s. Abb. 5-101 u. Abb. 5-102).

Innerhalb der Titanite ist eine Vielzahl von festen Einschlüssen entlang von Spuren beobachtbar. Neben hochkomplexen, mehrphasigen Einschlüssen wie in Abb. 5-103, finden sich auch zweiphasige, längliche Schmelzeinschlüsse (s. Abb. 5-104) sowie eingeschlossene Diopsidkristalle (s. Abb. 5-105). Die Einschlüsse im Diopsid beschränken sich auf zweiphasige Flüssigkeitseinschlüsse mit kleiner Gasblase (s. Abb. 5-106) sowie auf feste Einschlüsse (s. Abb. 5-107).

Abb. 5-100 Titanitkristall (hellbraun) mit Rutileinschluss (orange) im Skapolith (graue Masse)

<u>Abb. 5-101</u> Analcimkristalle (hell grau) mit Diopsid (grün) und Skapolith (trübe Masse)

Abb. 5-102 Analcimkristalle (Bildmitte) mit Aktinolith (blaugrün) bei gekreuzten Polarisatoren

<u>Abb. 5-103</u> Hochkomplexe, mehrphasige, feste Einschlüsse im Titanit

Abb. 5-104 Zweiphasige Schmelzeinschlüsse im Titanit

<u>Abb. 5-105</u> 70 μm großer Diopsideinschluss im Titanit (s. Pfeil)

Abb. 5-106 Flüssigkeitseinschlüsse mit Gasblase im Abb. 5-107 Fester Einschluss im Diopsid

5.16 10 C

Als "Mafic Dyke" (s. Hauptkarte Anhang 10.5) wurde jener homogene, gabbroitische Gesteinskörper bezeichnet, aus der Probe 10C stammt. Makroskopisch fällt die Probe vor allem durch ihre mehrheitlich dunkelgraue, feinkörnige Mineralzusammensetzung auf.

Der Dünnschliff unter dem Durchlichtmikroskop zeigt, dass es sich bei den dunklen Komponenten hauptsächlich um Amphibol (50 vol.%) und Hämatit (19 vol.%) handelt, während Feldspat (20 vol.%) mit Verzwilligungslamellen, Quarz (7 vol.%) und Pyroxen (3 vol.%) den hellen Anteil ausmachen. 1 vol.% Akzessorien gliedern sich in Titanit, Monazit, Biotit, Magnetit und Ilmenit auf. Die Amphibole sind stets mit Hämatitphasen assoziiert (s. Abb. 5-108), die symplektitische Verwachsungen mit den Amphibolen zeigen. Es scheint sich dabei um einen Reaktionssaum zwischen Quarz und Amphibol zu handeln, in dem sich neben dem Hämatit auch Plagioklas und Pyroxen bildeten (s. Abb. 5-109). Innerhalb des Magnetits sind feinnadelige Hämatitphasen erkennbar (s. Abb. 5-110).

Die deutlich verzwilligten Feldspäte beherbergen eine große Menge an festen Einschlüssen (s. Abb. 5-111), wobei es sich bei diesen um farblose Monazitkristalle sowie um rotbraune Biotitphasen handelt (s. Abb. 5-112).

<u>Abb. 5-108</u> Symplektitische Texturen von Hämatit (weiss) im Auflicht

<u>Abb. 5-109</u> Symplektitische Texturen von Hämatit und Plagioklas als Reaktionsrand zwischen Amphibol und Quarz

<u>Abb. 5-110</u> Aufnahme im Auflicht und mit gekreuzten Polarisatoren von Ilmenit (ilm), Magnetit (mag) und feinen Hämatitnadeln (hem)

Abb. 5-111 Feldspatkristalle mit Einschlüssen; gekreuzte Polarisatoren

6 ELEKTRONENSTRAHLMIKROSONDE (EMS)

6.1 Titanit

Titanite der Proben 2E (=2Eb) (zentral), 6H (östlich) und 9C (westlich) wurden mittels Mikrosonde quantitativ analysiert. Neben den Hauptelementen Ti, Si und Ca wurden Al, Fe, P, Nb, Th sowie Y, La, Ce, Pr, Nd, Sm, Gd, Ho und Yb (SEE) in die 293 Messungen einbezogen. Eisen wurde ausschließlich als dreiwertig angenommen (DEER, 1997) und der FeO Gehalt somit auf Fe_2O_3 umgerechnet. Messbare Konzentrationen von Zr konnten in EDS Analysen nicht nachgewiesen werden. Eine Auflistung der errechneten Mittelwerte bzw. der Schwankungsbereiche dieser Messungen ist in Tab. 6-1 u. Tab. 6-2 dargestellt. Auf die chemische Variation innerhalb der Titanite wird im Folgenden detailliert eingegangen.

	ZE hell $n = 49$		6H hell n ≖ 47		96 hell n = 50		
	Mittelwert	Wertebereich	Mittelwert	Wertebereich	Mittelwert	Wertebereich	
SiO ₂	29,839	28,894 ~ 30,623	28,239	27,297 - 29,137	28,378	27,431 - 29,291	SiO ₂
TiO ₂	35,768	35,577 - 36,198	35,118	27,243 - 35,940	36,142	35,340 - 36,929	TiO ₂
CaO	26,398	25,676 - 26,910	24,529	24,189 - 24,875	25,106	24,612 - 25,773	CaO
RE ₂ O ₃	3,471	3,031 - 3,981	4,149	1,835 - 4,647	3,506	2,084 - 4,213	RE ₂ O ₃
Fe ₂ O ₃	2,266	1,824 - 2,170	2,250	2,132 - 2,111	1,758	0,882 - 1,907	Fe ₂ O ₃
Nb ₂ O ₅	1,443	1,106 - 1,734	1,574	1,206 - 1,861	0.688	0,297 - 1,878	Nb ₂ O ₅
Al ₂ 0 ₃	0,585	0,499 - 0,683	0,521	0,449 - 0,605	0,518	0,411 - 1,248	Al ₂ O ₃
P ₂ O ₅	0,032	b.d.f - 0,072	0,069	0,040 - 0,084	0,018	b.d.l - 0,064	P205
ThO_2	0,038	b.d.l ~ 0,080	0,048	0,020 - 0,171	0,028	b.d.l - 0,146	Th02
Total	99,839	97,627 - 101,412	96,496	85,835 - 98,229	96,340	95,318 - 97,325	Total
	Number of ions on	the basis of four Si	Number of ions on	the basis of four Si	Number of ions on	the basis of four Si	
Si	4.000	4.000	4.000	4.000	4,000	4.000	St
Al	0,092	0,079 - 0,107	0,087	0,075 - 0,102	0,086	0,069 - 0,204	AL
Fe ³⁺	0,206 3,90	6 0,171 - 0,218	0,216 4,044	0,205 - 0,229	0,168 4,08	6 0,083 - 0,206	Fe ^{3*}
Ti	3,607	3,500 - 3,757	3,741	3,003 - 3,900	3,832	3,666 - 3,955	Ti
Nb	0,087	0,066 - 0,102	0,101	0,077 - 0,120	0,057	0,019 - 0,122	Nb
RE	0,197 4,07	7 0,177 - 0,222	0,244 4,062	0,131 - 0,273	0,202 4,05	I 0,116 - 0,241	R£
Ca	3,792	3,684 - 3,933	3,723	3,604 3,905	3,792	3,699 - 3,921	Ca
Р	0,004	0,000 - 0,008	0,008	0,005 - 0,010	0,002	0,000 - 0,007	Р
Th	0,001	0,000 - 0,002	0,002	0,001 - 0,003	0,001	0,000 - 0,005	Th
0	19,981	19,697 - 20,358	20,301	16,882 - 20,755	20,290	19,782 - 20,709	0

Tab. 6-1Durchschnittswerte bzw. Intervallangaben zu den quantitativen Analysen der "hellen" Titanite $RE_2O_3 = Y_2O_3 + La_2O_3 + Ce_2O_3 + Pr_2O_3 + Nd_2O_3 + Sm_2O_3 + Gd_2O_3 + Ho_2O_3 + Yb_2O_3$

	2E dunkel n	= 49			6H dunkel n	= 48				9C dunkel	n = 50				
	Mittelwert		Werteb	ereich	Mittelwert		Wert	eber	reich	Mittelwert		Wert	ebe	reich	
SiO ₂	30,015	2	8,796 -	31,061	28,858		27,694	-	29,879	28,744		28,179	-	29,374	SiO ₂
TiO ₂	36,361	3	5.277 -	36.953	35.892		35.135	-	36,591	37.046		36.245	-	37,750	TiO ₂
CaO	26,594	2	5.807 -	27,643	25,154		24,882	-	25,578	26,398		25,904	-	26,743	CaO
RE ₂ O ₃	2,846		1,168 -	2,143	3,270		2,776	-	3,801	1,508		0,589	-	1,872	RE ₂ O ₃
Fe ₂ O ₃	1,923		1,523 -	2,161	2,152		1,622	and in	2,244	0,871		0,649	-	1,075	Fe ₂ O ₃
Nb _z O ₅	1,139		0,796 -	1,521	0,902		0,681	-	1,326	0,341		0,168	-	0,568	Nb ₂ O ₅
Al ₂ O ₃	0,589		0,477 -	0,863	0,517		0,379	-	0,678	0,940		0,415	-	1,233	Al ₂ O ₃
P205	0,013		b.d.1 -	0,057	0,022		0,011	-	0,042	0,033		0,015	-	0,052	P205
ThO ₂	0,018		b.d.1 -	0,155	0,021		0,014	-	0,160	0,050		b.d.1	-	0,105	ThO ₂
-				÷											-
Total	99,498	9	7,917 -	100,524	96,788		95,289	÷ 1	98,183	95,931		94,884	•	96,804	Total
	Number of io	ns on the basis of fo	ur Si		Number of io	ns on the ba	isis of four Si			Number of	ions on the basi	s of four Si			
Si	4,000		4.000		4,000		4,000			4.000		4,000			Si
Al	0,092	1 1	0,074 -	0,134	0,084	F	0,060	e i	0,111	0,154	1	0,068		0,206	Al
Fe ³⁺	0,173	3,911	0,138 -	0,214	0,202	4,030	0,147		0,232	0,082	4,115	0,062		0,112	Fe ³⁺
Ti	3,646		3,490 -	3,821	3,743		3,594		3,905	3,878]	3,739	+	4,016	Ti
Nb	0,069		0,047 -	0,092	0,057		0,043	-	0,085	0,021	1	0,010	-	0,036	Nb
RE	0,162	4,029	0,132 -	0,204	0,188	3,981	0,157		0,212	0,085	4,042	0,059	+	0,132	RE
Ca	3,798		3,632 -	3,985	3,737		3,621	\sim	3,882	3,936	1	3,837		4,036	Ca
Р	0,002		0,000 -	0,006	0,003		0,000	- 199	0,005	0,004	-	0,002		0,006	Р
Th	0,001	1	0,000 -	0,002	0,001		0,000	÷ 1	0,002	0,002		0,000	•	0,003	Th
0	19,909	1	9,513 -	20,437	20,084		19,719	1.0	20,605	20,241		19,855	-	20,569	0

Tab. 6-2Durchschnittswerte bzw. Intervallangaben zu den quantitativen Analysen der "dunklen" Titanite $RE_2O_3 = Y_2O_3 + La_2O_3 + Ce_2O_3 + Pr_2O_3 + Nd_2O_3 + Sm_2O_3 + Gd_2O_3 + Ho_2O_3 + Yb_2O_3$

6.1.1 Zonierungen

In Aufnahmen mittels zurückgestreuter Elektronen (BSE) zeigen die Titanite auffällige hell/dunkel Zonierungen, welche in drei Typen unterteilt werden können:

- 1. Lamellenförmige Zonierung (s. Abb. 6-1)
- 2. Unregelmäßige Auslaugungsstrukturen (s. Abb. 6-2 u. 6-4)
- 3. Kristallographisch definierte Zonierung (s. Abb. 6-3)

Die Titanite der Probe 2E weisen sowohl Zonierungen des Typs 1 sowie des Typs 2 auf, wobei letztere stark bevorzugt werden und häufig anzutreffen sind. Innerhalb der Titanite der Probe 9C konnten ausschließlich unregelmäßige, den gesamten Kristall betreffende, Auslaugungsstrukturen (Typ 2) beobachtet werden. Die Titanite der Probe 6H treten hingegen zumeist homogen, ohne optisch erkennbare Unterschiede, auf. Jedoch konnte an einem Titanitkristall eine kristallographisch klar definierte Zonierung (Typ 3) nachgewiesen werden. Bei diesem Typ ist der zentrale Teil des Kristalls auf BSE Aufnahmen hell (h), während die äußeren Bereiche dunkel (d) erscheinen.

<u>Abb. 6-1</u> Lamellenförmige Titanit Zonierung (Schliff 2Eb)

<u>Abb. 6-3</u> Kristallographisch definierte Titanitzonierung mit hellem Kern und dunklem Rand (Schliff 6H)

<u>Abb. 6-2</u> Auslaugungserscheinungen innerhalb eines Titanitkristalls (Schliff 2Eb)

<u>Abb. 6-4</u> Auslaugungserscheinungen innerhalb eines Titanitkristalls (Schliff 9C)

Die quantitativen Analysen der "hellen" bzw. "dunklen" Titanite geben Aufschluss über diese optisch erkennbaren Unterschiede im Chemismus. Generell sind die "hellen" Titanite gegenüber den "dunklen" Titaniten in den seltenen Erdelementen (inklusive Yttrium), Fe sowie Nb angereichert, während die "dunklen" Titanite etwas höhere Werte für Si, Ti und Ca vorweisen (s. Tab. 6-1 u. 6-2 bzw. Abb. 6-5). Die "hellen" Titanite der Probe 6H weisen mit einem Gehalt von durchschnittlich 4,1 mass% Re₂O₃ die höchste Konzentration an Seltenen Erden auf, ihr CaO Gehalt ist mit 24,5 mass% am niedrigsten. Innerhalb der Titanite der Probe 9C fallen die erhöhten Gehälter von Al₂O₃ der "dunklen" Titaniten (0,940 mass%) sowie deren niedrige Konzentration an Fe₂O₃ (0,871 mass%) und RE₂O₃ (1,5 mass%) auf. Die niedrigen Totals der Proben 6H und 9C (durchschnittlich 96,5 mass%) lassen auf einen nicht unerheblichen Einbau an F und vor allem H₂O schließen, der mit Ramanspektroskopie durch Nachweis von OH Schwingungen bestätigt werden konnte. Die Titanite der Probe 2Eb weisen im Gegensatz dazu Totals von durchschnittlich 99,5 mass% auf.

6.1.2 Substitutionsmodelle

Aufgrund der allgemeinen Formel Ca Ti [O/SiO₄] erlaubt die Struktur von Titanit an vier Positionen eine mögliche Elementsubstitution (SAHAMA, 1946):

Ca ^[7] Position:	SEE, Y, Mn, Fe ²⁺ , Sr, Ba, Mg, Na, K, Li, U, Th, Pb;
Ti ^[6] Position:	Al, Fe ³⁺ , Nb, Ta, Zr, Sn, V, Cr;
Si ^[4] Position:	P, Al, 4H;
0 1 Position:	OH, F, Cl.

Die in die quantitativen Analysen einbezogenen Elemente dieser Arbeit sind rot hervorgehoben, alle anderen (exkl. H, O, F, Cl) konnten bei stichprobenartigen EDS Messungen im Titanit nicht nachgewiesen werden.

Zuerst wurden die Titanite aus den Proben 2E, 6H und 9C nach dem Substitutionsmodell von GREEN und PEARSON (1986) (s. Gleichung A) auf lineare Substitutionsgegebenheiten hin untersucht und die Ergebnisse in den Abb. 6-6 a,b,c dargestellt.

$$Ca^{2+} + Ti^{4+} \Leftrightarrow REE^{3+} + (Al, Fe)^{3+}$$
 (A)

Aus diesen Abbildungen geht hervor, dass der bereits erwähnte Unterschied im Chemismus bezüglich des Einbaus an SEE, Al und Fe, bei den Titaniten der Probe 2Eb und 6H nicht in einem direkten Verhältnis mit den Gehalten an Kalzium bzw. Titanium steht. So zeigen sowohl die "hellen" als auch die "dunklen" Titanite dieser Proben identische Ca²⁺ + Ti⁴⁺ Schwankungsbereiche innerhalb ihrer Zonierungen.

Im Gegensatz dazu scheinen sich die "hellen" bzw. "dunklen" Titanite der Probe 9C entlang der stöchiometrischen Substitution zu orientieren.

<u>Abb. 6-6 a. b. c</u> Darstellung der chemischen Variation nach dem Substitutionsmodell von GREEN und PEARSON (1986) für in dieser Arbeit untersuchte Titanite

Als zweites Substitutionsmodell wurde jenes von CLARK (1974) (s. Gleichung **B**) exklusive Tantal herangezogen. Im folgenden wird nach steigendem Titaniumgehalt auf die einzelnen Titanitproben für dieses Modell eingegangen.

In den Titaniten der Probe 2Eb konnte keine Korrelation nach Gleichung **B** beobachtet werden. Sowohl die "hellen" als auch die "dunklen" Titanite haben, wie in Abb. 6-7 a ersichtlich, gleiche Schwankungsbereiche für 2Ti⁴⁺ und zeigen auch keinerlei signifikante Unterschiede bezüglich ihrer (Nb)⁵⁺ + (Al, Fe)³⁺ Konzentrationen.

Ein anderes Bild zeigt sich für die Titanitprobe 6H (s. Abb. 6-7 b). Die Titaniumgehalte variieren zwar ebenfalls von "hell" nach "dunkel" in gleichem Maße, andererseits sind die (Nb, Ta)⁵⁺ + (Al, Fe)³⁺ Konzentrationen in den "hellen" Titaniten etwas größer als bei den "dunklen" Titaniten. Der Kontakt zwischen diesen beiden Titaniten der Probe 6H erscheint im Diagramm wegen kaum auftretender Überlappung sehr scharf.

Die höchsten Titaniumgehalte weisen die Titanite der Probe 9C auf. Die "dunklen" Titanite können Maximalwerte von über 4 Titanium-Ionen pro vier Siliziumatome erreichen, und unterscheiden sich somit von den "hellen" Titaniten dieser Probe. Im Gegenzug sind die (Nb, Ta)⁵⁺ + (Al, Fe)³⁺ Konzentrationen der "hellen" Titaniten trotz häufiger Überlappung mit den "dunklen" Titaniten im Durchschnitt etwas höher. Die Mittelwerte für 2Ti⁴⁺ bzw. (Nb, Ta)⁵⁺ + (Al, Fe)³⁺ liegen für die Titanitprobe 9C exakt auf der stöchiometrischen Substitutionslinie (s. Abb. 6-7 c), was auf einen Substitutionsprozess hinweisen könnte.

<u>Abb. 6-7 a. b. c</u> Darstellung der chemischen Variation nach dem Substitutionsmodell von CLARK (1974) für in dieser Arbeit untersuchte Titanite

In weiterer Folge wurde versucht einzelne Elementsubstitutionen ohne Berücksichtigung der Ladungsbilanz darzustellen. Es sollte dabei untersucht werden, ob die jeweiligen Positionen der Ca - bzw. der Ti - Atome von den oben beschriebenen, möglichen Elementen substituiert wurden oder nicht.

$$Ca \Leftrightarrow SEE + Y$$
 (C)

Ähnlich wie bei den bereits erwähnten Substitutionsmodell nach GREEN u. PEARSON (1986), zeigt sich in den Diagrammen nach Formel (**C**) die gute Unterscheidbarkeit der "hellen" von den "dunklen" Titaniten, aufgrund ihres vermehrten Einbaus von SEE.

Für die Proben 2Eb und 6H kann allerdings eine Substitution dieser Elemente für das Kalzium, wegen der konstanten Ca Schwankungsbereiche, ausgeschlossen werden (s. Abb. 6-8 a,b).

Der nach Formel (**A**) sich bereits abzeichnende negative Trend der "hellen" gegenüber den "dunklen" Titaniten in Schliff 9C, wird durch die alleinige Betrachtung des Ca mit den SEE deutlich verstärkt (s. Abb. 6-8 c). Die mittleren Kalziumgehalte der "hellen" Titanite sind um den gleichen Wert reduziert, wie die SEE-Gehalte der "dunklen" Titanite, was sich als eine Verschiebung des Ca/SEE Verhältnisses entlang der stöchiometrischen Substitutionslinie erkennbar macht. Es ist daher von einer Substitution des Kalziums durch SEE in Schliff 9C auszugehen.

Abb. 6-8 a, b, c Gegenüberstellung von Ca vs. REE + Y für in dieser Arbeit untersuchte Titanite

Als viertes und letztes Substitutionsmodell wurde die Titaniumposition nach Formel (**D**), die sich von Formel (**B**) bezüglich des Titaniumanteils unterscheidet, näher untersucht.

$$Ti \Leftrightarrow Al + Fe + Nb$$
 (D)

Im Gegensatz zu dem Substitutionsmodell nach CLARK (1974) zeigt sich hier die chemische Varietät der "hellen" und "dunklen" Titanite bezüglich ihrer unterschiedlichen Al + Fe + Nb Konzentrationen bei allen drei Titanit Proben. Ein klarer Zusammenhang mit den Titaniumkonzentrationen konnte jedoch nicht beobachtet werden, wenngleich ein solcher für die Probe 2Eb in sehr geringem Maße vorstellbar ist (s. Abb. 6-9 a). Die Titanite der Probe 9C weisen hingegen konstant bleibende Schwankungsbereiche für die Titaniumgehalte von "dunkel" nach "hell" vor. Am ehesten dürfte eine Substitution, wie bereits oben erwähnt, zwischen Titanium und Al + Fe + Nb bei den Titaniten der Probe 9C eingetreten sein (s. Abb. 6-9 c).

Abb. 6-9 a, b, c Gegenüberstellung von Ti vs. Al + Fe + Nb für in dieser Arbeit untersuchte Titanite

6.1.3 Akzessorische Minerale innerhalb der Titanite

Quarz und Hämatit sind als feste Einschlüsse in Form von Rissfüllungen innerhalb der Titanitkristalle zu beobachten (s. Abb. 6-10). Zusammen mit dieser Quarzphase tritt in allen Titanitproben, aber mit besonderer Häufigkeit im Schliff 2Eb, eine Vielzahl an akzessorischen Mineralen als feste Einschlüsse auf (s. Tab. 6-3).

Abb. 6-10 Übersichtsfoto (BSE) eines Titanitkristalles (Schliff 2Eb).

Bestimmbare Phasen		Unbestimmbare Phasen	
Baddeleyit	ZrO ₂	Aeschynite ? Samarskite ?	Nb, Y, Th, SEE
Baryt	BaSO ₄	Polymignite ?	Nb, Y, Ti, Th
Fergusonit (SEE, Ti)	YNbO ₄	Euxenite ?	Nb, Y, Ti, U, Th
Hämatit / Magnetit	Fe ₂ O ₃ / Fe ₃ O ₄	?	Si, Nb, Y, Ti, Fe, Ca, SEE
Ilmenit	Fe ²⁺ TiO ³	Huttonit?	Si, Th
Kalzit	CaCO ₃	Thorit ?	Si, Th, U
Monazit (Th, Ca, U)	(Ce,La,Nd,Th)PO4	Yttrialite ?	Si, Th, Y
Phlogopit	KMg ₃ [(OH,F) ₂ AlSi ₃ O ₁₀]	?	Si, Ti, Nb, Y, Ca, SEE
Pyrit	FeS ₂	Nioboaeschynite?	Ca, Nd, Ce, Y
Quarz	SiO ₂	?	Ca, Ti, Y, Nd, Sm, La
Rutil / Anatas	TiO ₂		
Thorianit	ThO ₂		
Uraninit	UO ₂		
Zirkon	Zr[SiO ₄]		

Tab. 6-3 Auflistung der akzessorischen Mineralphasen im Titanit

In den Titaniten des Schliffes 2Eb handelt es sich dabei hauptsächlich um Oxide (Baddeleyit, Ilmenit, Rutil / Anatas, Fergusonit, Thorianit, Uraninit) sowie Zirkone, Monazite und nicht definierbare Nb-Y Mineralphasen (s. Abb. 6-11 u. 6-12). Untergeordnet als akzessorische Minerale innerhalb dieser Titanite scheinen Baryt, Kalzit, Phlogopit und Pyrit auf. Im Schliff 6H sind innerhalb der Titanite Baryt, Pyrit, Zirkon, Ilmenit, Thorianit und nicht zuordenbare Ca – SEE Mineralphasen (s. Abb. 6-13 c) präsent.

<u>Abb. 6-11</u> Komplexer fester Einschluss im Titanit mit vielen akzessorischen Mineralen (Schliff 2Eb)

Abb. 6-12 Fester Einschluss im Titanit mit Quarz, Hämatit / Magnetit und einer undefinierbaren Nb, Y, Ti, Th Mineralphase (Schliff 2Eb)

<u>Abb. 6-13 a. b. c</u> Fester Einschluss im Titanit mit Quarz, Kalzit, Rutil, yttriumreichen Titanit und einer undefinierbaren Ca, Nd, Ce, Y Mineralphase (Schliff 6H).

Die Titanite der Probe 9C weisen neben regelmäßig zonierten Zirkonen und Si –Th Mineralphasen keine akzessorischen Minerale auf. Die akzessorischen Minerale aller untersuchten Titanitproben überschreiten selten ein Maximum von 10 μ m im Durchmesser. Aussagekräftige quantitative Analysen sind somit schwierig und wurden daher nur an den größeren Monazitkristallen (bis 12 μ m) (s. S. 95) innerhalb der Probe 2Eb durchgeführt.

Alle mittels EDS bestimmten akzessorischen Minerale sind in Tab. 6-3 angeführt, wobei einige chemischen Zusammensetzungen nicht mit Sicherheit einer Mineralbezeichnung zugeteilt werden konnten. Bei Fergusonit (s. Abb. 6-14 a, b, c) wurden EDS (s. Abb. 6-15) und Ramanspektroskopie (s. Abb. 6-16) zur Identifizierung herangezogen. Bei letzterem weist das Fergusonitspektrum einen breiten Peak bei 795 cm⁻¹ auf und stimmt somit mit Messungen von metamiktischen Fergusonitkristallen überein (GIERE, 2009) (s. Abb. 6-17).

Abb. 6-14 a. b. c Fester Einschluss innerhalb eines Titanitkristalls (Schliff 2Eb). Abb. 6-12 a zeigt eine Fotoaufnahme unter dem Auflichtmikroskop. Abb. 6-12 b u. 6-12 c sind BSE Aufnahmen mit unterschiedlichen Vergrößerungen bzw. Kontrasteinstellungen.

Abb. 6-15 EDS Spektrum des oben abgebildeten Fergusonitkristalls

6.1.4 Seltene Erdelemente (SEE)

Die durchschnittlichen SEE - Konzentrationen der untersuchten Titanite variieren von 1,5 mass% ("dunkler" Titanit in Probe 9C) bis zu 4,1 mass% in den "hellen" Titaniten der Probe 6H, wobei LSEE (Y + La-Sm) generell gegenüber den SSEE (Eu-Lu) angereichert sind. Eine tabellarische Auflistung mit Intervallsangaben und Mittelwerten für alle gemessenen SEE ist in Tab. 6-4 ersichtlich.

	2E hell n	=49	6H heli n	=47	Γ	9C hell n	1=50
	Wertebereich	Mittelwert	Wertebereich	Mittelwert		Wertebereich	Mittelwert
Y ₂ O ₃	1,267 - 1,682	1,422	1,338 - 1,547	1,417		0,479 - 1,461	1,094
La ₂ O ₃	0,117 - 0,293	0,199	0,082 - 0,292	0,197		0,042 - 0,285	0,153
Ce ₂ O ₃	0,061 - 0,102	0,080	0,044 - 0,889	0,785		0,410 - 0,959	0,698
Pr ₂ O ₃	b.d.l - 0,132	0,023	0,004 - 0,141	0,063		b.d.l - 0,095	0,052
Nd ₂ O ₃	0,839 - 1,497	1,192	0,172 - 1,582	1,164		0,691 - 1,489	1,046
Sm_2O_3	b.d.l - 0,145	0,091	0,040 - 0,198	0,106		b.d.l - 0,232	0,089
Gd ₂ O ₃	0,163 - 0,283	0,212	0,173 - 0,318	0,226		0,038 - 0,275	0,170
Ho ₂ O ₃	0,082 - 0,294	0,177	0,007 - 0,309	0,189		0,102 - 0,284	0,183
Yb ₂ O ₃	b.d.l - 0,177	0,076	0,041 - 0,171	0,097	L	b.d.l - 0,165	0,092

	2E dunkel	n=49		6H dunkel	n=48	9C dunkel	n=50
	Wertebereich	Mittelwert	W	ertebereich	Mittelwert	Wertebereich	Mittelwert
Y ₂ O ₃	1,047 - 1,510	1,226	0,8	68 - 1,312	1,118	0,320 - 0,554	0,429
La ₂ O ₃	b.d.l - 0,318	0,122	0,0	40 - 0,179	0,125	b.d.l - 0,281	0,086
Ce ₂ O ₃	0,037 - 0,091	0,060	0,4	96 - 0,817	0,620	0,245 - 0,544	0,346
Pr ₂ O ₃	b.d.l - 0,070	0,009	0,0	32 - 0,081	0,051	b.d.l - 0,069	0,034
Nd ₂ O ₃	0,570 - 1,467	0,950	0,7	08 - 1,380	0,946	0,175 - 0,758	0,489
Sm ₂ O ₃	b.d.l - 0,137	0,061	0,0	28 - 0,093	0,061	b.d.l - 0,096	0,045
Gd 2 03	0,064 - 0,263	0,169	0,1	06 - 0,254	0,169	b.d.l - 0,122	0,066
Ho ₂ O ₃	0,083 - 0,362	0,185	0,0	61 - 0,276	0,165	b.d.l - 0,155	0,088
Yb ₂ O ₃	b.d.l - 0,155	0,063	0,0	47 - 0 <u>,</u> 160	0,085	b.d.l - 0,134	0,065

<u>**Tab. 6-4**</u> Intervallbereiche sowie Mittelwerte in mass% von SEE innerhalb der Titanite.

FLEISCHER (1978) untersuchte 271 veröffentlichte Titanit Analysen auf einen Zusammenhang zwischen dem Einbau der Lanthanite (inklusive Yttrium) und dem jeweiligen Gesteinstyp, aus der die Titanite stammten (s. Abb. 6-18 u. 6-20). Seinen Auswertungen nach nehmen in der Sequenz alkalischer Pegmatit – alkalisches Gestein – Gabbro und Pyroxenite – Granodiorit – Granit – granitischer Pegmatit die durchschnittlichen Gehälter von leichten Lanthaniten (La – Ce) ab, die durchschnittlichen Gehälter von den intermediären Lanthaniten (Sm – Ho) zu, die Gehälter der schweren Lanthaniten (Er –Lu) ab, der Gehalt an Yttrium zu sowie das La/Nd – Verhältnis ab. FLEISCHER weist in seiner Arbeit allerdings auch auf die großen Überlappungsgegebenheiten zwischen den einzelnen Gruppen hin. Trotzdem wurde in dieser

Arbeit versucht, die Konzentrationsverhältnisse der Lanthanite in den Titanitproben aus Arkaroola mit jenen von FLEISCHER (1978) zu vergleichen.

Dabei fallen die für alle Titanite extrem niedrigen La / Nd – Verhältnisse von durchschnittlich 0,2 auf, was auf den wesentlich höheren Nd – Gehalt der Titanite aus Arkaroola, relativ zu jenen von FLEISCHER untersuchten Titaniten, zurückzuführen ist. In den Diagrammen nach FLEISCHER (1978) deutet sowohl der Gehalt an La+Ce+Pr als auch die Y - Konzentrationen der Titanite aus Probe 2Eb, auf Titanite aus granitischen Pegmatiten hin (s. Abb. 6-18 u. 6-21). Im Gegensatz dazu liegen die Titanite aus den Proben 6H und 9C im granitischen bis granodioritischen Bereich (s. Abb. 6-18 u. 6-21).

Abb. 6-18Gegenüberstellung von Σ La+Ce+Pr alsAtom% vs. dem La/Nd Verhältnis;Durchschnittswerte für Titanite aus 6Gesteinstypen (modifiziert nachFLEISCHER, 1978)

Abb. 6-19 Selbes Diagramm wie links mit Daten aus quantitativen Analysen der Titanitproben 2E, 6H, 9C.

<u>Abb. 6-20</u>

Gegenüberstellung von Σ La+Ce+Pr als Atom% vs. 100*Y/(Y+Ln); Durchschnittswerte für Titanite aus 6 Gesteinstypen (modifiziert nach FLEISCHER, 1978)

Selbes Diagramm wie oben mit Daten aus quantitativen Analysen der Titanitproben 2E, 6H, 9C. In dem nach DEER et al. (1997) bzw. FLEISCHER (1978) modifizierten Dreiecksdiagramm mit den Lanthanitzusammensetzungen in Titaniten aus verschiedenen Gesteinstypen (s. Abb. 6-22), zeigt sich der bereits erwähnte Trend vom bevorzugten Einbau leichter Lanthanite in Titanite aus alkalischen und (ultra-) basischen Gesteinen. Im Gegensatz dazu sind Titanite aus granitischen Gesteinen äußerst variabel und treten auf einer großen Breite im Dreiecksdiagramm auf.

<u>Abb. 6-22</u> Nach FLEISCHER (1978) bzw. DEER (1997) modifiziertes Dreiecksdiagramm mit Atom% der leichten, intermediären und schweren Lanthanite in Titaniten als Versuch zur Gesteinstypklassifizierung.

Die Titanitproben aus Arkaroola befinden sich, bei Betrachtung aller untersuchten Proben, in einem großräumigen Bereich innerhalb dieses Diagramms. Während die Titanite der Probe 2E durchschnittlich ~73 Atom% der leichten Lanthanite, ~22 Atom% der intermediären Lanthanite und ~5 Atom% der schweren Lanthanite vorweisen (s. Abb. 6-23 a), nähern sich die Titanite der Proben 6H und 9C, kontinuierlich der Ecke mit den leichten Lanthanite an (s. Abb. 6-23 b, c). Der durchschnittliche Gehalt an schweren Lanthaniten liegt dabei zwischen ~3 Atom% (Probe 6H) bzw. ~4 Atom% (Probe 9C). Generell zeigt sich, dass die Titanite aus Arkaroola im Dreiecksdiagramm der Abb. 6-22 nach FLEISCHER (1978) bzw. DEER (1997), deutlich in Richtung der alkalischen Gesteine verschoben sind. So korrelieren beispielsweise die zuvor als aus granitischen Pegmatiten definierten Titanite der Probe 2Eb, im Dreiecksdiagramm nach FLEISCHER mit Titaniten aus Graniten bis Granodioriten. Diese Verschiebung wird durch den außergewöhnlich hohen Gehalt an Nd in den Titaniten aus Arkaroola verursacht.

Abb. 6-23 a, b, c Dreiecksdiagramm nach FLEISCHER (1978) mit Atom% der leichten, intermediären und schweren Lanthanite in Titaniten; Darstellung der untersuchten Titanitproben 2E, 6H, 9C.

6.2 Diopsid

Die Elemente Si, Ca, Ti, Fe, Al, Mn, Mg und Na wurden zur quantitativen Bestimmung der Diopside aus den Proben 1C (nördlich), 4B (zentral) und 8A (südlich) herangezogen, wobei der Eisengehalt korrigiert und in FeO und Fe₂O₃ aufgeteilt wurde (DROOP 1987). Bei den stöchiometrischen Berechnungen basierend auf sechs Sauerstoffatomen, wurde Aluminium aufgrund seines jeweiligen Platzes im Gitter als Al^[IV] bzw. Al^[VI] unterschieden. P, Cr und Ni konnten mittels EDS nicht nachgewiesen werden und wurden somit von den Analysen ausgeschlossen. Eine Auflistung mit errechneten Mittelwerten bzw. Schwankungsbereichen ist in Tab. 6-5 dargestellt.

	1C Diopsid n = 25		4B Diopsid n = 25		8A Diopsid n = 25		
	Mittelwert	Wertebereich	Mittelwert	Wertebereich	Mittelwert	Wertebereich	
SiO ₂	53,479	52.714 - 54.202	53,659	52,765 - 54,280	53.614	52,896 - 54,558	SiO ₂
CaO	22.511	22.025 - 23.089	21.889	21.281 22.329	22,108	21.533 - 22.873	CaO
Ti0,	0.044	0.005 - 0.078	0.049	0.007 0.092	0.042	b.d.l - 0.098	TiO,
FeO	6.910	5.461 - 7.896	7.743	6.380 - 8.657	7.320	6.105 - 8.096	FcO
Fe ₂ O ₁	0.906	b.d.l - 2.435	0.583	b.d.l - 2.004	0.215	b.d.l - 1.119	Fe ₂ O ₃
Al ₂ O ₃	0.195	0.081 - 0.250	0.414	0.272 - 0.517	0.341	0.256 0.490	Al ₂ O ₃
MnO	0.066	0.027 - 0.105	0.072	0.035 - 0.115	0.072	b.d.l - 0.134	MnO
MgQ	13,729	13,351 - 14,089	13,212	12,755 13,645	13,347	12,868 - 14,196	MgO
Na ₂ O	1,168	0,966 - 1,364	1,586	1,370 • 1,749	1,449	1,137 - 1,713	Na ₂ O
Tutal	99,007	98,182 - 99,893	99,208	98,003 - 100,067	98,507	97,551 - 99,509	Total
	Number of ions on	the basis of six O	Number of ions on th	he basis of six O	Number of ions on t	he basis of six O	
Si Al ^{IIV} I	1,992 1.998	1,971 - 2,007 0.004 - 0.010	1,993 2.000	1,977 - 2,005 0,000 - 0,020	2,002 2,004	1,987 - 2,014 0.000 - 0,013	Si Al ^[IV]
A1 [11]	0,003	0,000 - 0,010	0,011	0.000 - 0.023	0,013	0,001 - 0,022	AI TVI
Ti	0.001	0,000 - 0,002	0,001	0.000 - 0.003	0,001	0,000 - 0,003	Ti
Fe ^{2•}	0,215	0,171 - 0,245	0,241	0,200 - 0,269	0,229	0,192 - 0,254	Fe ^{2*}
Fe ³⁺	0.025 1,992	0,000 - 0,069	0.016 1.874	0.000 - 0.056	0,006 1,878	0.000 - 0.031	Fe?*
Mn	0.002	0,001 - 0,003	0.002	0.001 • 0.004	0.002	0.000 - 0.004	Mn
Mg	0,762	0,746 - 0,780	0,731	0,706 - 0,749	0,743	0,714 - 0,791	Mg
Ca	0,898	0,880 - 0,913	0,872	0,845 0,893	0,884	0,863 - 0,921	Ca
Na	0,084	0,070 - 0,099	0,114	0,099 - 0,126	0,105	0,083 = 0,124	Na
Mg	40,0	39,4 - 40,8	39,3	38,2 • 40,2	39,8	38,5 - 41,8	Mg
*ΣFe	12.8	12,2 - 13,8	13,9	13,1 15,3	12,7	10.7 ± 13,9	*ΣFe
Ca	47,2	46,6 - 47,9	46,8	45,8 - 47,6	47,4	46,6 - 48,2	Ca

 $\Sigma Fe = Fe^{2*} + Fe^{3+} + Mn$

Tab. 6-5 Durchschnittswerte bzw. Intervallangaben zu den quantitativen Analysen der Diopside

Die Diopside weisen im Gegensatz zum Titanit keinen Einbau von SEE auf und zeigen keine visuell erkennbaren Zonierungen. Die Atom% von Mg, Σ Fe und Ca aus den quantitativen Analysen (n=75) definieren die Diopside aus Arkaroola im Dreiecksdiagramm nach POLDERVAART und HESS (1951), als Salite (s. Abb. 6-24 u. 6-25).

Dreiecksdiagramm zur Klassifizierung von Pyroxenen nach POLDERVAART und HESS (1951)

Abb. 6-25 (links)

Vergrößerung des Salitfeldes im Dreiecksdiagramm zur Klassifizierung von Pyroxenen nach POLDERVAART und HESS (1951) (s. oben)

Die normal – alkalinen Salite (LeBAS, 1962) sind sehr arm an TiO₂ (~0,04 mass%) und verweisen ungewöhnlich hohe Konzentrationen an Na₂O (bis 1,7 mass%), die den Maximalwert von 0,94 mass% für Salite in der Analysensammlung von DEER (1997) um fast das Doppelte übersteigen.

Fe²⁺ weist in der Salitprobe 4B mit Maximalwerten von 0,269 Ionen pro sechs Sauerstoffatome die höchsten Gehälter auf, während der Fe²⁺ Einbau in den Proben 1C und 8A mit durchschnittlich 0,215 bzw. 0,229 Ionen pro sechs Sauerstoffatome, etwas geringer ist.

Die Salitprobe 1C zeigt mit durchschnittlichen Fe³⁺ Werten von 0,025 Ionen pro sechs Sauerstoffatome, den stärksten Einbau von dreiwertigen Eisen. Deren Konzentrationen sind mit durchschnittlich 0,016 Ionen pro sechs Sauerstoffatome in Probe 4B bzw. 0,006 Ionen pro sechs Sauerstoffatome in Probe 8A, deutlich geringer.

6.2.1 Substitutionsmodelle

Die allgemeine Formel für Pyroxene lautet $[(M2)(M1)T_2O_6]$, wobei folgende Elemente die M bzw. die T Positionen besetzen können:

 M2 :
 Ca, Na

 M1 :
 Mg, Fe²⁺, Mn, Li, Ni, Al ^[VI], Fe³⁺, Cr, Ti

 T :
 Si, Al ^[IV],

Die in die quantitativen Analysen einbezogenen Elemente sind rot hervorgehoben, während Li, Ni und Cr nicht nachgewiesen werden konnten.

Fe³⁺ sowie Al³⁺ treten als Elemente für den Ladungsausgleich innerhalb der M Positionen auf. Silizium kann von Al³⁺ [IV] substituiert werden, was allerdings in den Salitproben aus Arkaroola nicht beobachtbar ist.

$$Ca^{2+} + Mg^{2+} + Fe^{2+} + Fe^{3+} \Leftrightarrow Na^{+} + Al^{3+}$$
 (1)

In Bezug auf das Substitutionsmodell nach Formel (1) unterscheidet sich die Salitprobe 1C von den Saliten aus Probe 4B bzw. 8A. Wie Abb. 6-28 zeigt, weisen die Salite aus Probe 1C die höchsten Durchschnittswerte für die Summe von $Ca^{2+} + Mg^{2+} + \sum Fe$ (1,9 Ionen bezogen auf sechs Sauerstoffatome) auf, wobei sich alle Salitproben deutlich unterhalb der 1:1 Substitutionslinie befinden. Die alleinige Betrachtung der Substitution innerhalb der M2 Position ($Ca^{2+} \iff Na^+$) liefert ein ähnliches Bild (s. Abb. 6-29), wenngleich die Korrelation weitaus schwächer ist. Auch hier liegen die Werte mehrheitlich unterhalb der 1:1 Substitutionslinie, was einen zusätzlichen Elementeinbau in die M2 Position nahelegt.

In Abb. 6-30 wird die Summe aus Fe³⁺ + Al³⁺ [VI] + Ti⁴⁺ den Werten von Al³⁺ [IV], das als Ladungsausgleich in der T Position vorliegt, gegenübergestellt. Während für die Salite aus der Probe 4B ein eindeutiger, positiver Trend ersichtlich ist, zeigen die Salite der Probe 1C einen relativ homogenen Al³⁺ [IV] Gehalt von stets weniger als 0,01 Ionen pro sechs Sauerstoffatome und eine sehr variable Verteilung für die Summe aus Fe³⁺ + Al³⁺ [VI] + Ti⁴. In den Saliten der Probe 8A konnte nur in 7 von insgesamt 25 Messungen Aluminium in der T Position nachgewiesen werden.

<u>Abb. 6-30</u> $Al^{3+}[IV]$ vs. $Fe^{3+} + Al^{3+}[VI] + Ti^4$ in Saliten aus Arkaroola

6.2.2 Akzessorische Minerale innerhalb der Salite

Häufig entlang von Rissen aber auch als feste Einschlüsse innerhalb des Salits finden sich neben den oft auftretenden Mineralien Aktinolith (als Produkt einer Amphibolalteration), Quarz und Hämatit auch eine Vielzahl an akzessorischen Mineralien. Bei diesen handelt es sich vorwiegend um ähnliche Phasen wie bei den zuvor besprochenen Titanitkristallen, jedoch konnten keine Nbreichen Mineralien wie Fergusonit (YNbO₄) ausfindig gemacht werden. Stattdessen wurde mittels EDS Yttrium-Wakefieldit (YVO₄) zusammen mit Hämatit innerhalb des Salits nachgewiesen (s. Abb. 6-31). Zonierte Zirkone treten häufig auf, wobei die Zonierungen auf unterschiedliche Konzentrationen von Ca zurückzuführen sind (s. Abb. 6-32).

Abb. 6-31 Wakefieldit (Y), Hämatit und Quarz innerhalb des Salits

<u>Abb. 6-32</u> Zonierter Zirkon, Quarz, Aktinolith und Hämatit innerhalb des Saltis

Titanit kommt entweder mit deutlich ausgeprägter Zonierung oder mit extremer SEE Anreicherung innerhalb des Salits vor (s. Abb. 6-33 u. 6-34). Die kristallographisch orientierte Zonierung erscheint auf BSE Fotos als dunkle Kerne mit hellen Rändern und unterscheidet sich somit von jenen der Titanitproben (s. Abb. 6-1 bis 6-4).

<u>Abb. 6-34</u> An SEE angereicherter Titanitkristall mit Aktinolith innerhalb des Salit

Besonders die Salitprobe 4B beinhaltet einige akzessorische Mineralien, deren Chemismus keiner Mineralbezeichnung zugeteilt werden konnte (s. Abb. 6-35 u. Abb. 6-36). Eine Auflistung aller bestimmbaren und unbestimmbaren Mineralphasen ist in Tab. 6-6 angegeben.

<u>Abb. 6-35</u> Undefinierbare Si, Y, Ca, Ce Mineralphase mit Aktinolith innerhalb des Salit

<u>Abb. 6-36</u> Undefinierbare Al, Si, Ca, Ce, Fe Mineralphase mit Kalzit und Aktinolith innerhalb des Salit

Bestim	mbare Phasen	Unbestimmba	are Phasen
Aktinolith	Ca ₂ (Mg, Fe ²⁺) ₅ (Si ₈ O ₂₂)(OH) ₂	Cerorthit (Allanit) ?	Al, Si, Ca, Ce, Fe
Baryt	BaSO ₄	Caysichite-(Y) ?	Si, Y, Ca
Chalkopyrit	CuFeS	Kainosite-(Y) ?	Si, Y, Ca, Ce
Galenit	PbS ₂	?	Si, Y, Ca, Ce, Fe
Hämatit / Magnetit	Fe_2O_3 / Fe_3O_4	?	Si, Ca, Al, SEE
Kalzit	CaCO ₃	?	Si, Ca, Y, Al, SEE
Monazit	(Ce,La,Nd,Th)PO4		
Pyrit	FeS ₂		
Quarz	SiO ₂		
Rutil / Anatas	TiO ₂		
Scheelit	Ca[WO ₄]		
Titanit (SEE)	CaTiSiO ₅		
Uraninit	UO_2		
Wakefieldit	YVO ₄		
Zirkon	Zr[SiO ₄]		

Tab. 6-6 Auflistung der akzessorischen Mineralphasen im Diopsid

6.3 Aktinolith

Aktinolith tritt als hydrothermales Alterationsprodukt entlang von Rissen innerhalb des Salites bzw. innerhalb des Nebengesteins auf. Er erscheint auf BSE Aufnahmen wegen des höheren Mg/Ca Verhältnisses stets dunkler als Salit und bildet neben klar definierten, länglichen Kristallen (s. Abb. 6-34) auch schwer auszumachende Auslaugungstexturen im Salit (s. Abb. 6-37).

Abb. 6-37 BSE Aufnahme von Auslaugungserscheinungen des Salits

Die Auswertung aus 70 quantitativen Analysen zeigt, dass die Aktinolithe aller untersuchten Proben (1C, 4B, 8A) nur geringe chemische Unterschiede vorweisen und einheitlich als Aktinolithe zu definieren sind (s. Abb. 6-38).

Die durchschnittlichen SiO Konzentrationen der Aktinolithe aus Probe 1C sind mit 56 mass% etwas höher als jene der Proben 4B (~54,5 mass%) bzw. 8A (~55,2 mass%).

Die durchschnittlichen Titaniumgehalte der untersuchten Aktinolithe liegen bei etwa 0,14 mass% (Probe 1C), 0,22 mass% (Probe 4B) sowie 0,16 mass% (Probe 8A) und erreichen in der Probe 4B Maximalwerte von 0,6 mass%.

Eisen tritt ausschließlich zweiwertig in den Aktinolithen, mit Gehalten von durchschnittlich 8,6 mass% FeO für Probe 1C und Probe 8A, auf. Die Aktinolithe der Probe 4B zeigen mit durchschnittlich 9,5 mass% und Maximalwerten von bis zu 10,9 mass% die höchsten gemessenen FeO Konzentrationen

Die Aluminiumgehälter sind in den Aktinolithen der Probe 1C mit durchschnittlich 0,8 mass% am niedrigsten, während die Aktinolithe aus Probe 4B mit 1,4 mass% bzw. die Aktinolithe aus 8A mit 1,2 mass% deutlich höhere Aluminiumkonzentrationen verzeichnen.

Die durchschnittlichen Natrium Konzentrationen reichen von 0,8 mass% in Probe 1C bis 0,9 mass% in den Proben 4B und 8A. In letzterer erreichen die Natrium Gehälter dabei in manchen Fällen den Höchstwert von 2 mass%.

18,5 mass% MgO in den Aktinolithen der Probe 1C sind die höchsten gemessenen Durchschnittwerte für Magnesium, verglichen mit den Aktinolithen der Probe 4B (17,6 mass% MgO) und der Probe 8A (18 mass% MgO).

Der durchschnittliche Kalziumanteil liegt in allen analysierten Aktinolithen bei 12 mass% CaO und ist somit homogen.

Aufgrund der durchschnittlichen mass% - Summen (Totals) von 96,3 mass% ist mit einem H_2O Gehalt von mindestens 2 mass% zu rechnen.

Eine tabellarische Aufstellung mit Mittelwerten und Intervallsangaben für alle untersuchten Elemente ist in Tab. 6-7 angeführt, wobei die stöchiometrischen Berechnungen nach LEAKE (1997) durchgeführt wurden.

	1C Ak	tinolith n = 25	4B AI	ttinolith n = 24	BA Ak	ttinolith n = 21	
	Mittelwert	Wertebereich	Mittelwert	Wertebereich	Mittelwert	Wertebereich	
SiO ₂	55,945	53,986 - 56,771	54,492	52,058 - 56,193	55,183	53,023 - 56,740	SiO ₂
CaO	11,951	10,634 - 12,558	11,879	11,035 - 12,483	11,881	10,865 - 12,456	CaO
TiO ₂	0,135	0,061 - 0,307	0,223	0,046 - 0,638	0,158	0,019 - 0,424	TiOz
FeO	8,563	7,711 - 10,042	9,448	8,050 - 10,889	8,638	7,720 - 9,703	FeO
Fe ₂ O ₃	-	- 2 -	-		-		Fe ₂ O ₃
Al ₂ O ₃	0,800	0,511 - 1,849	1,414	0,668 - 2,543	1,156	0,279 - 2,300	Al ₂ O ₃
MnO	0,054	0.027 - 0.090	0,063	0.037 - 0.113	0.051	0.011 - 0.100	MnO
MgO	18,498	17.761 - 19.231	17.641	16,353 - 18,999	18.032	17,160 - 19,027	MgO
Na ₂ O	0,830	0,325 - 1,581	0,928	0,564 - 1,495	0,968	0,515 - 1,981	Na ₂ O
Total	96,776	95,666 - 97,701	96,088	94,444 - 97,021	96,067	94,514 • 97,314	Total
	Number of io	ns on the basis of 23 O	Number of io	ns on the basis of 23 O	Number of io	ns on the basis of 23 O	
Si	7,909	7,697 - 7,985	7,804	7,586 - 7,955	7,864	7,667 - 7,980	Si
Al	0,133	0.085 - 1,913	0,239	0,111 - 1,893	0,194	0.046 - 1,925	AJ
Ti	0,014	0.006 - 0.033	0.024	0.005 - 0.070	0.017	0.002 - 0.045	Ti
Fe ^{2*}	1,012	0,906 1,188	1,132	0,954 - 1,327	1,029	0,920 - 1,146	Fe ²⁺
Fe ^{3*}	-		-		-		Fe ³⁺
Mn	0,006	0,003 - 0,011	0,008	0,005 - 0,014	0,006	0,001 - 0,012	Mn
Mg	3,897	3,744 - 4,052	3,765	3,552 - 4,015	3,830	3,690 - 3,988	Mg
Ca	1,810	1,597 - 1,913	1,823	1,723 - 1,893	1,814	1,673 - 1,925	Ca
Na	0,227	0,090 - 0,430	0,258	0,155 - 0,422	0,268	0,140 0,546	Na
	$A_{0-1}B_2C_5$	T ₈ O ₂₂ (OH,O,F,Cl)	A _{0.1} B ₂ C ₅	T ₈ O ₂₂ (OH,O,F,Cl)	$A_{0-1}B_2C_5$	5T _B O ₂₂ (OH,O,F,Cl)	
$\Sigma T (Si + Al + Ti)$	8.056	8.003 - 8.101	8.067	8.020 - 8.124	8.075	8.027 - 8.119	Σ T (Si + Al + Ti)
excess 1	0,056	0,003 - 0,101	0,067	0,020 - 0,124	0,075	0,027 - 0,119	excess 1
ΣC (excess 1 + Fe + Mg + Mn)	4,973	4.935 - 5.010	4,972	4,901 - 5,015	4.940	4.840 - 5.015	$\Sigma \in \{excess 1 + Fe + Mg + Mn\}$
excess 2	0,001	0,000 - 0,010	0,001	0,000 - 0,015	0,001	0,000 - 0,015	excess 2
Σ B (excess 2 + Na + Ca)	2,038	1,990 - 2,151	2,082	2,002 - 2,200	2,082	1,991 - 2,219	ΣB (excess 2 + Na + Ca)
excess 3	0,039	0,000 - 0,151	0,082	0,002 - 0,200	0,083	0,000 - 0,219	excess 3
$\Sigma A (excess 3)$	0,039	0,000 - 0,151	0,082	0,002 - 0,200	0,083	0,000 - 0,219	$\sum A$ (excess 3)

Tab. 6-7 Durchschnittswerte bzw. Intervallangaben zu den quantitativen Analysen der Aktinolithe

6.3.1 Substitutionsmodelle

Die allgemeine Formel für Amphibole lautet $A_{0-1}B_2C_5T_8O_{22}$ (OH,O,F,Cl), wobei folgende Elemente die einzelnen Positionen besetzen können:

T :	Si4+,	Al ³⁺ ,	Ti ⁴⁺	
C :	Mg ²⁺ ,	Fe ²⁺ ,	Mn+	excess aus T
B :	Na⁺,	Ca2+,	exces	s aus C
A :	excess a	us B		

Innerhalb der Salite aus Arkaroola wird in der T Position Silizium durch Aluminium bzw. Titanium ersetzt (v.v.). Wie in Abb. 6-39 ersichtlich, ist dieser negative Trend bei Si vs. Al sehr deutlich ausgeprägt. Es zeigt sich weiters, dass die Werte fast ausschließlich über der 1:1 Substitutionslinie liegen, und dieser Überschuss an Al bzw. Si (excess T) somit als Ladungsausgleich in die C Position geht.

Abb. 6-39 Korrelationsdiagramme für Si vs. Al innerhalb der Aktinolithe aus Arkaroola

In der C Position nimmt das, wie bereits erwähnt ausschließlich als Fe²⁺ auftretende Eisen, bei steigenden Mg Anteilen ab (s. Abb. 6-40).

Abb. 6-40 Korrelationsdiagramm für Mg vs. Fe²⁺ innerhalb der Aktinolithe

Eine Substitution des Kalziums durch Natrium (v.v) tritt innerhalb der B Position auf (s. Abb. 6-41), wobei der Trend einen Überschuss an Ca bei höheren Na Gehalten (excess B) zeigt, und sich dieser somit in der A Position befindet.

Abb. 6-41 Korrelationsdiagramme für Na vs. Ca innerhalb der Aktinolithe

6.4 Monazite

Die im Quarz bzw. Titanit beobachteten Monazite (Ce, La, Nd)[PO₄]) sind selten größer als 10 μ m groß und kommen sowohl als allein stehende, idiomorphe Kristalle, als auch in Form von Akkumulationen kleinster (< 1 μ m) Monazitphasen vor (s. Abb. 6-43). Letzteres wurde nur innerhalb von Quarz beobachtet.

Abb. 6-43 BSE Aufnahme eines Quarzkristalls mit mehreren Festphasen (Schliff 2Ea):

- 1. Idiomorpher Monazitkristall
- 2. Hämatit
- 3. Kalzit
- 4. Ce, Si, Nd, Ca, La, Y Mineral (Percleveite?)

Bei den "wolkenartigen", weißen Akkumulationen handelt es sich um Ansammlungen feinster Monazkristalle (< 1 μ m)

Die folgenden Ergebnisse beziehen sich auf quantitative Analysen der größeren Monazite in den Schliffen 2Ea (Monazite im Quarz) und 2Eb (Monazite im Titanit). Eine tabellarische Aufstellung der Messergebnisse zeigt Tab. 6-8.

26.8	n = 11	in Qu	arz	2E b n	= 5	in '	Fita	nit
Mittelw	ert	Werteber	eich	Mittelwert		Wertei	ber	eich
2,538	3	0,472 -	7,115	3,074		0,894	-	5,321
0,316	à	0,141	0,645	0,971		0,357	-	2,874
23,63)	17,884 -	30,066	25,076		19,966	-	29,212
33,083	2	25,965 -	37,779	30,169		19,407	-	39,378
5 19(1	bdl -	14 183	10.916		2.062	_	21 993
0 1 2 (bdl -	0.476	0.251		hdl		0.698
16 1 10	, ,	13 5 10	10.000	10,400		EOCE		15 204
10,110) 7	12,518 -	19,002	10,499		0,476	_	13,204
0,021		0,151 -	1,5/4	1,011		0,475	-	1,404
0,790)	0,466 -	1,760	1,399		0,602	-	2,057
3,709)	2,855	4,604	3,129		2,212	-	3,680
0,470)	0,215 -	1,147	0,799		0,340	-	1,749
8,406	ó	6,981 -	12,234	10,992		6,949	-	19,540
0,804	ł	0,630 -	0,974	0,993		0,778	-	1,339
0,043	7	b.d.l -	0,177	0,100		b.d.l	-	0,502
0.000)	b.d.l –	0.005	-		-	-	-
0,002	2	b.d.l –	0,022	0,008		b.d.l	-	0,020
10100		71,001	101,017	77,000		50,107		100,007
Number o	of ions on the bas	is of four O		Number of io	ns on the bas	is of four O		
4,000)	4,000		4,000		4,000	-	
4,000 0,113	0.968	4,000 0,018 -	0,323	4,000 0,128	0.994	4,000 0,035	-	0,235
4,000 0,113 0,855	0.968	4,000 0,018 - 0,688 -	0,323 0,990	4,000 0,128 0,865	0,994	4,000 0,035 0,748	-	0,235 0,962
4,000 0,113 0,855 0,003	0,968	4,000 0,018 - 0,688 - 0,003 - 0,437 -	0,323 0,990 0,013	4,000 0,128 0,865 0,022	0,994	4,000 0,035 0,748 0,008 0,314		0,235 0,962 0,068
4,000 0,113 0,855 0,003 0,520 0,531	0.968	4,000 0,018 - 0,688 - 0,003 - 0,432 - 0,000 -	0,323 0,990 0,013 0,571 0,147	4,000 0,128 0,865 0,022 0,449 0,104	0,994	4,000 0,035 0,748 0,008 0,314 0,018		0,235 0,962 0,068 0,561 0,221
4,000 0,112 0,855 0,000 0,520 0,053 0,000	0.968	4,000 0,018 - 0,088 - 0,003 - 0,432 - 0,000 - 0,000 -	0,323 0,990 0,013 0,571 0,147 0,006	4,000 0,128 0,865 0,022 0,449 0,104 0,003	0,994	4,000 0,035 0,748 0,008 0,314 0,018 0,000		0,235 0,962 0,068 0,561 0,221 0,010
4,000 0,113 0,855 0,003 0,520 0,053 0,003 0,255	0,968	4,000 0,018 - 0,088 - 0,003 - 0,432 - 0,000 - 0,000 - 0,199 -	0,323 0,990 0,013 0,571 0,147 0,006 0,283	4,000 0,128 0,865 0,022 0,449 0,104 0,003 0,157	0,994	4,000 0,035 0,748 0,008 0,314 0,018 0,000 0,089		0,235 0,962 0,068 0,561 0,221 0,010 0,226
4,000 0,113 0,855 0,003 0,522 0,003 0,003 0,255 0,030	0,968	4,000 0,018 - 0,088 - 0,003 - 0,432 - 0,000 - 0,000 - 0,199 - 0,007 -	0,323 0,990 0,013 0,571 0,147 0,006 0,283 0,077	4,000 0,128 0,865 0,022 0,449 0,104 0,003 0,157 0,045	0,994	4,000 0,035 0,748 0,008 0,314 0,018 0,000 0,089 0,020		0,235 0,962 0,068 0,561 0,221 0,010 0,226 0,067
4,000 0,113 0,855 0,007 0,520 0,055 0,007 0,255 0,030 0,017		4,000 0,018 - 0,088 - 0,003 - 0,432 - 0,000 - 0,000 - 0,199 - 0,007 - 0,007 -	0,323 0,990 0,013 0,571 0,147 0,006 0,283 0,077 0,024	4,000 0,128 0,865 0,022 0,449 0,104 0,003 0,157 0,045 0,020	0,994	4,000 0,035 0,748 0,008 0,314 0,018 0,000 0,089 0,020 0,020 0,008		0,235 0,962 0,068 0,561 0,221 0,010 0,226 0,067 0,037
4,000 0,113 0,855 0,003 0,520 0,053 0,003 0,255 0,030 0,012 0,055	0,968 7 8 8 9 8 9 1,084	4,000 0,018 - 0,688 - 0,003 - 0,432 - 0,000 - 0,000 - 0,199 - 0,007 - 0,007 - 0,007 -	0,323 0,990 0,013 0,571 0,147 0,006 0,283 0,077 0,024 0,065	4,000 0,128 0,865 0,022 0,449 0,104 0,003 0,157 0,045 0,020 0,046	0,994	4,000 0,035 0,748 0,008 0,314 0,018 0,000 0,089 0,020 0,008 0,020 0,008		0,235 0,962 0,068 0,561 0,221 0,010 0,226 0,067 0,037 0,052
4,000 0,113 0,855 0,007 0,520 0,053 0,007 0,053 0,007	0,968 7 8 8 9 8 9 9 9 9 9 9 1,084	4,000 0,018 - 0,088 - 0,003 - 0,432 - 0,000 - 0,000 - 0,199 - 0,007 - 0,007 - 0,007 - 0,007 - 0,047 - 0,003 -	0,323 0,990 0,013 0,571 0,147 0,006 0,283 0,077 0,024 0,065 0,015	4,000 0,128 0,865 0,022 0,449 0,104 0,003 0,157 0,045 0,020 0,046 0,011	0,994	4,000 0,035 0,748 0,008 0,314 0,018 0,000 0,089 0,020 0,089 0,020 0,008 0,036		0,235 0,962 0,068 0,561 0,221 0,010 0,226 0,067 0,037 0,052 0,026
4,000 0,112 0,852 0,002 0,052 0,002 0,053 0,030 0,012 0,053 0,002	0,968 7 8 9 9 9 9 9 9 9 9 1,084	4,000 0,018 - 0,688 - 0,003 - 0,432 - 0,000 - 0,000 - 0,199 - 0,007 - 0,007 - 0,007 - 0,007 - 0,007 - 0,007 - 0,007 - 0,003 - 0,113 -	0,323 0,990 0,013 0,571 0,147 0,006 0,283 0,077 0,024 0,065 0,015 0,171	4,000 0,128 0,865 0,022 0,449 0,104 0,003 0,157 0,045 0,020 0,046 0,011 0,160	0,994	4,000 0,035 0,748 0,008 0,314 0,018 0,000 0,089 0,020 0,008 0,020 0,008 0,036 0,005 0,100		0,235 0,962 0,068 0,561 0,221 0,010 0,226 0,067 0,037 0,052 0,026 0,026
4,000 0,112 0,852 0,007 0,522 0,053 0,053 0,053 0,053 0,053 0,053 0,053 0,007 0,012	0,968 7 8 9 9 9 9 9 9 9 9 1,084	4,000 0,018 - 0,688 - 0,003 - 0,432 - 0,000 - 0,000 - 0,007 - 0,003 - 0,113 - 0,010 -	0,323 0,990 0,013 0,571 0,147 0,006 0,283 0,077 0,024 0,065 0,015 0,171 0,015	4,000 0,128 0,865 0,022 0,449 0,104 0,003 0,157 0,045 0,045 0,020 0,046 0,011 0,160 0,014	0,994	4,000 0,035 0,748 0,008 0,314 0,018 0,000 0,089 0,020 0,008 0,020 0,008 0,036 0,005 0,100 0,011		0,235 0,962 0,068 0,561 0,221 0,010 0,226 0,037 0,052 0,026 0,281 0,018
4,000 0,112 0,855 0,007 0,522 0,055 0,055 0,055 0,012 0,055 0,007 0,128 0,001	0,968 7 8 8 9 1,084	4,000 0,018 - 0,688 - 0,003 - 0,432 - 0,000 - 0,000 - 0,007 - 0,007 - 0,007 - 0,007 - 0,007 - 0,047 -	0,323 0,990 0,013 0,571 0,147 0,006 0,283 0,077 0,024 0,065 0,015 0,171 0,015 0,002	4,000 0,128 0,865 0,022 0,449 0,104 0,003 0,157 0,045 0,020 0,046 0,011 0,160 0,014 0,001	0,994	4,000 0,035 0,748 0,008 0,314 0,018 0,000 0,089 0,020 0,008 0,008 0,008 0,008 0,008 0,005 0,005 0,100 0,011 0,000		0,235 0,962 0,068 0,561 0,221 0,010 0,226 0,037 0,052 0,026 0,281 0,018 0,007
4,000 0,112 0,852 0,002 0,522 0,003 0,253 0,003 0,012 0,053 0,001 0,124 0,001 0,001	0 3 5 7 8 8 9 1,084 7 8 1	4,000 0,018 - 0,688 - 0,003 - 0,432 - 0,000 - 0,000 - 0,007 - 0,007 - 0,007 - 0,047 - 0,040 - 0,047 - 0,040 -	0,323 0,990 0,013 0,571 0,147 0,006 0,283 0,077 0,024 0,065 0,015 0,171 0,015 0,002 0,000	4,000 0,128 0,865 0,022 0,449 0,104 0,003 0,157 0,045 0,045 0,020 0,046 0,011 0,160 0,014 0,001 0,000	0,994	4,000 0,035 0,748 0,008 0,314 0,018 0,000 0,089 0,020 0,008 0,008 0,008 0,008 0,008 0,005 0,100 0,011 0,000		0,235 0,962 0,068 0,561 0,221 0,010 0,226 0,067 0,052 0,026 0,018 0,018 0,007 0,000
4,000 0,111 0,851 0,007 0,522 0,035 0,035 0,035 0,031 0,011 0,055 0,031 0,012 0,011 0,001	0,968 0,968 1,084	4,000 0,018 - 0,088 - 0,003 - 0,432 - 0,000 - 0,000 - 0,199 - 0,007 - 0,007 - 0,007 - 0,007 - 0,047 - 0,003 - 0,113 - 0,010 - 0,000 - 0,000 -	0,323 0,990 0,013 0,571 0,147 0,006 0,283 0,077 0,024 0,065 0,015 0,171 0,015 0,002 0,000 0,000	4,000 0,128 0,865 0,022 0,449 0,104 0,003 0,157 0,045 0,020 0,046 0,011 0,160 0,014 0,001 0,000 0,000	0,994	4,000 0,035 0,748 0,008 0,018 0,000 0,089 0,020 0,008 0,008 0,005 0,100 0,011 0,000 0,000		0,235 0,962 0,068 0,561 0,221 0,010 0,226 0,067 0,037 0,052 0,026 0,281 0,018 0,007 0,000 0,000
4,000 0,112 0,852 0,002 0,520 0,002 0,012 0,002 0,012 0,002 0,012 0,002 0,012 0,002 0,002 0,000	0.968 0.968 1,084	4,000 0,018 - 0,688 - 0,003 - 0,432 - 0,000 - 0,000 - 0,199 - 0,007 - 0,007 - 0,007 - 0,047 - 0,003 - 0,113 - 0,010 - 0,000	0,323 0,990 0,013 0,571 0,147 0,006 0,283 0,077 0,024 0,065 0,015 0,015 0,015 0,005 0,000 0,000 24,538	4,000 0,128 0,865 0,022 0,449 0,104 0,003 0,157 0,045 0,020 0,045 0,020 0,046 0,011 0,160 0,014 0,001 0,000 0,000	0,994	4,000 0,035 0,748 0,008 0,314 0,018 0,000 0,089 0,020 0,008 0,008 0,008 0,008 0,008 0,008 0,008 0,008 0,000 0,011 0,000 0,000 18,752		0,235 0,962 0,068 0,561 0,221 0,010 0,226 0,067 0,037 0,052 0,026 0,281 0,018 0,007 0,000 0,000 37,769
4,000 0,112 0,852 0,002 0,520 0,002 0,012 0,002 0,012 0,002 0,012 0,002 0,002 0,002 0,000 0,000	0,968 0,968 1,084	$\begin{array}{rcrrr} 4,000\\ 0,018&-\\ 0,688&-\\ 0,003&-\\ 0,432&-\\ 0,000&-\\ 0,000&-\\ 0,007&-\\ 0,007&-\\ 0,007&-\\ 0,007&-\\ 0,007&-\\ 0,007&-\\ 0,000&-\\ 0,000&-\\ 0,000&-\\ 0,000&-\\ 0,000&-\\ 0,000&-\\ 0,000&-\\ 17,277&-\\ 51,067&-\\ \end{array}$	0,323 0,990 0,013 0,571 0,147 0,006 0,283 0,077 0,024 0,065 0,015 0,015 0,015 0,015 0,002 0,000 0,000 24,538 56,703	4,000 0,128 0,865 0,022 0,449 0,104 0,003 0,157 0,045 0,020 0,046 0,011 0,160 0,014 0,001 0,000 0,000 25,836 54,872	0,994	4,000 0,035 0,748 0,008 0,314 0,018 0,000 0,089 0,020 0,008 0,005 0,100 0,005 0,100 0,011 0,000 0,011 0,000 0,011 0,000 0,000		0,235 0,962 0,068 0,561 0,221 0,010 0,226 0,067 0,037 0,052 0,026 0,281 0,018 0,007 0,000 37,769 60,019

<u>Tab. 6-8</u> Durchschnittswerte bzw. Intervallangaben zu den quantitativen Analysen der Monazite

Unter Berücksichtigung, dass doppelt so viele Monazitmessungen im Quarz ausgewertet wurden wie im Titanit, zeigen sich 3 wesentliche chemische Unterschiede. So sind zum einen die Gehalte an Yttrium in den Monaziten der Titanite mit durchschnittlich 1 mass% um ca. das Dreifache höher als jene der Quarz – Monazite. Weiters stehen verglichen mit den Quarz – Monazite, den durchschnittlich doppelt so hohen Konzentrationen an Thorium (11 mass%) und Samarium (1,4 mass%) für die Titanit - Monazite, rund ein Drittel niedrigere Durchschnittsgehalte von Lanthan (~10,5 mass%) gegenüber.

Ein negativer Trend entlang der stöchiometrischen Substitution zwischen Cerium (dominantes Element in beiden Monazittypen; durchschnittlich 30 – 33 mass%) und Thorium ist klar erkennbar (s. Abb. 6-44). Abbildung 6-45 verdeutlicht den vermehrten Einbau an Nd und SEE in den Monaziten der Probe 2Eb.

Die für Monazite charakteristische 1:1 Substitution des Phosphors durch Silizium konnte in beiden Gruppen beobachtet werden (s. Abb. 6-46). Die Monazite der Titanite zeigen dabei einen besonders linearen Verlauf entlang der stöchiometrischen Substitutionslinie.

Abb. 6-46 Charakteristische 1:1 Substitution des Phosphors durch Silizium innerhalb der Monazite

Obwohl Phosphor und Cerium sich auf verschiedenen Positionen im Kristallgitter befinden, herrscht dennoch eine deutliche, positive Korrelation vor (s. Abb. 6-47). Die 1:1 Linie wurde in diesem Diagramm frei gewählt, um die Unterschiede der beiden Monazittypen hervorzuheben.

Abb. 6-47 Positive Korrelation zw. Ce und P innerhalb der Monazite

Eine Substitution des Phosphors durch Thorium ist in Abb. 6-48 ersichtlich, in der sich die verschiedenen Monazite auch klar voneinander abgrenzen. Aufgrund dieser Korrelation und der etwas zu niedrigen Stöchiometrie der Monazite für die Phosphor Position (P+Si=1), muss angenommen werden, dass Thorium (bzw. andere SEE) als Ladungsausgleich in der Phosphor Position auftritt. Die Monazite aus dem Titanit liegen dabei sehr nahe an der Si=0 – Linie, während sich die Monazite aus dem Quarz entlang der Si=0,1 Linie anordnen.

Abb. 6-48 Substitution des P durch Th innerhalb der Monazite

Wie im Dreiecksdiagramm für Monazite mit den Atomprozenten von Ce, La und Pr+Nd ersichtlich (s. Abb. 6-50), treten beide Monazitgruppen innerhalb des Ceriumfeldes auf. Die Titanit – Monazite streuen dabei signifikant, während die Quarz – Monazite homogen bei durchschnittlich 54 atom% Ce, 27 atom% La und 19 atom% Pr+Nd zu finden sind.

Abb. 6-50 Dreiecksdiagramm mit Atomprozenten von Ce, La und Pr+Nd

FLEISCHER (1965) versuchte, ähnlich wie bei den bereits diskutierten Titaniten, die SEE Beziehungen innerhalb der Monazite für eine Eingrenzung der Gesteine, in denen sie gebildet wurden, zu nutzen. Auch hier sei jedoch erwähnt, dass die Überlappungsbereiche der einzelnen Felder keine eindeutigen Schlussfolgerungen zulassen.

Die Monazite aus Arkaroola finden sich im Diagramm nach FLEISCHER (1965) im gesamten Bereich zwischen "pegmatites" und "alkalic rocks" wieder (s. Abb. 6-51). Somit lassen sich die analysierten Monazite nicht eindeutig in ein von FLEISCHER definiertes Feld eingrenzen, wenngleich sich eine vielleicht nicht unbedeutende Häufung von Punkten, sowohl um den von FLEISCHER definierten Punkt für Monazite aus alkalischen Gesteinen, als auch um jenen für Monazite aus Quarz Adern, befindet.

Abb. 6-51 SEE Beziehungen in Atomprozent für Monazite nach FLEISCHER (1965)
7 Untersuchungen an Flüssigkeitseinschlüssen im Quarz

Ramanspektroskopische und mikrothermometrische Untersuchungen wurden ausschließlich an Flüssigkeitseinschlüssen im Quarz der Probe 6A durchgeführt. Bei dem Probenpunkt handelt es sich um einen geringmächtigen Diopsidgang in dem mehrere, bis zu 10 cm große Quarzphasen eingeschlossen sind (s. Abb. 7-1). Die Quarzphasen sind definitiv älter als das in Kapitel 4 beschriebene, spätdiagenetische Quarz – Hämatit Überprägungsevent.

Abb. 7-1 Fotoaufnahme der Probe 6A im Feld (weiß = Quarz; grün = Diopsid / Aktinolith)

Die im Quarz auftretenden Flüssigkeitseinschlüsse können in vier Hauptgruppen unterteilt werden:

- 1. Wässrige Flüssigkeitseinschlüsse mit Blase
 - a. niedrig salinare Flüssigkeitseinschlüsse
 - b. hoch salinare Flüssigkeitseinschlüsse
- 2. CO₂ reiche Einschlüsse
- 3. Komplexe, mehrphasige Flüssigkeitseinschlüsse
 - a. Flüssigkeitseinschlüsse mit Salzkristall und Blase
 - b. Flüssigkeitseinschlüsse mit Hämatitphase, Salzkristall und Blase
 - c. Flüssigkeitseinschlüsse mit zwei Salzkristallen und Blase
 - d. Flüssigkeitseinschlüsse mit Salzkristall, Kalzit und Blase
 - e. Flüssigkeitseinschlüsse mit großer Kalzitphase
 - f. Flüssigkeitseinschlüsse mit mehr als zwei Festphasen und Blase
- 4. Homogene, wasserreiche Flüssigkeitseinschlüsse

An den ersten drei Gruppen wurden oben erwähnte Methoden angewandt und ausgewertet, während bei den homogenen Flüssigkeitseinschlüssen der Gruppe 4 nur der Wasserpeak mittels Ramanspektroskopie nachgewiesen wurde.

7.1 Gruppe 1: Wässrige Flüssigkeitseinschlüsse mit Blase

Diese Gruppe von wässrigen Flüssigkeitseinschlüssen tritt entlang von Spuren auf und lässt sich in zwei weitere Untergruppen unterteilen. Wie Abb. 7-2 zeigt, unterscheiden sich unregelmäßig geformte, längliche Flüssigkeitseinschlüsse mit großer Gasblase (bis 17 vol.%), von sehr flach dimensionierten Flüssigkeitseinschlüssen mit sowohl unregelmäßigen, rundlichen als auch länglichen Formen. Die Volumenfraktionen der Blasen bei den flach dimensionierten Flüssigkeitseinschlüssen liegen bei 1,5 vol.% bis maximal 3 vol.%.

<u>Abb. 7-2</u> Übersichtsfoto von niedrig salinaren Flüssigkeitseinschlüssen (links) und Detailaufnahmen von hoch salinaren Flüssigkeitseinschlüssen (rechts) im Quarz

In der erstgenannten Untergruppe sind Einschlüsse mit bis zu 75 μ m Länge nicht selten, während die flach dimensionierten Flüssigkeitseinschlüsse Längen von maximal 25 μ m aufweisen. Ausschlaggebend für die Unregelmäßigkeiten der Einschlussformen in beiden Untergruppen, sind deutlich erkennbare "necking" – Prozesse, bei denen die Einschlüsse nach der Separierung der Phasen weiter rekristallisieren. Dabei kann es zu einer ungleichen Verteilung der Phasen kommen (s. Abb. 7-2).

Bei Betrachtung der Einschlüsse mit Ramanspektroskopie zeigt sich, dass die wässrigen Flüssigkeitseinschlüsse der ersten Untergruppe einen Wasserpeak mit einem deutlichen Sattel bei ~3250 cm⁻¹ besitzen (s. Abb. 7-3). Diese Peakform ist typisch für niedrig salinare Lösungen. Im Gegensatz dazu steigt der Wasserpeak der flach dimensionierten Flüssigkeitseinschlüsse kontinuierlich an, was als ein Indiz für hochsalinare Lösungen gedeutet wird (s. Abb. 7-4).

In weiterer Folge wurde versucht die Salinität dieser Einschlüsse mit Hilfe des kausalen Zusammenhangs zwischen dem Verhältnis der ersten beiden Peakintensitäten (bei dreiwertiger Gauß – Lorenzverteilung), sowie der Peakposition des ersten Peaks bei verschiedenen NaCl – Salinitäten, festzustellen (s. BAUMGARTNER & BAKKER; 2008).

Wie in Abb. 7-5 ersichtlich liegen weder die Einschlüsse der niedrig salinaren Untergruppe noch die hochsalinaren, flach dimensionierten Flüssigkeitseinschlüsse innerhalb des allgemeinen H₂O – NaCl Trends.

Diese Tatsache legt die Vermutung nahe, dass es sich bei den Flüssigkeitseinschlüssen der Gruppe 1 nicht um NaCl reiche, sondern um möglicherweise K- oder $CaCl_2$ reiche Flüssigkeitseinschlüsse handeln könnte. Orientierungseffekte des Quarzes könnten allerdings ebenfalls eine Ursache darstellen (s. BAUMGARTNER & BAKKER; 2008).

Abb. 7-5 Vergleich mit synthetisch hergestellten Flüssigkeitseinschlüssen mit NaCl Konzentrationen von 0 bis 24 mass% aus BAUMGARTNER & BAKKER (2008)

Mikrothermometrische Analysen geben die unterschiedlichen Salinitäten dieser Einschlüsse durch variable Schmelzpunkte (T_x) wieder. Während Einschlüsse mit großer Blase und niedriger Salinität durchwegs im Temperaturintervall zwischen -4 °C und -6 °C schmelzen, tritt ein Aufschmelzen bei den höher salinaren Einschlüssen der flach dimensionierten Einschlüsse, schon zwischen -12 °C und -16 °C auf (s. Abb. 7-6). Eine Homogenisierung der beteiligten Phasen in die fluide Phase stellt sich bei den weniger salinaren Einschlüssen in einem sehr breiten Intervall von etwa 80 °C bis 360°C ein. Bei den hochsalinaren Einschlüssen ist hingegen eine Tendenz zum Homogenisieren bei Temperaturen von ~50 °C zu beobachten (s. Abb. 7-7 u 7-8).

temp. für Einschlüsse der Gruppe 1

Einschlüsse der Gruppe 1

<u>Abb. 7-8</u> Gegenüberstellung von Schmelzpunkten und Homogenisierungstemperaturen für Einschlüsse der Gruppe 1

Unter der Annahme, dass es sich bei den Flüssigkeitseinschlüssen der Gruppe 1 um ausschließlich NaCl reiche Lösungen handelt, wurden Salinitäten bzw. molare Volumina berechnet und in Tab. 7-1 dargestellt.

Salinität	Vm
[eq. mass% NaCl]	[cc/mol]
14,27	18,367
17,95	18,053
15,96	18,412
15,38	18,53
16,06	18,492
17,78	18,613
8,10	18,881
9,06	21,295
8,10	27,154
10,23	25,262
10,49	22,729
10,49	21,362
10,49	25,591
8,38	21,052
8,92	19,897
8,92	26,307
8,10	19,867
7,11	22,526
8,24	19,425
8,10	19,471

Tab. 7-1 Berechnete Salinitäten und molare Volumina für Einschlüsse der Gruppe 1

Es zeigt sich, dass die berechneten Salinitäten der niedrigsalinaren Einschlüsse (rot umrandet) mit durchschnittlich 10 mass% NaCl sehr gut mit ihrem bei ebenfalls 10 mass% NaCl liegenden Schnittpunkt, zwischen ihrem Trend in Abb. 7-5 und den synthetischen Referenzeinschlüssen der Abb. 7-5, korrelieren. Ihre molaren Volumina liegen dabei zwischen 18,881 und 27,154 cm²/mol. Die berechneten Salinitäten der hochsalinaren Einschlüsse (schwarz umrandet) sind hingegen mit durchschnittlich 16 mass% NaCl deutlich geringer, als ihr Trend in Abb. 7-5 vermuten lässt.

7.2 Gruppe 2: CO₂ reiche Einschlüsse

 CO_2 reiche Einschlüsse finden sich entlang von gut verfolgbaren Spuren im Quarz. Die 25 μ m großen Einschlüsse erscheinen stets dunkel und besitzen in einigen Fällen eine gut ausgeprägte negative Kristallform (s. Abb. 7-9). Abb. 7-10 zeigt ein charakteristisches CO_2 Ramanspektrum mit den beiden Hauptpeaks bei 1283 cm⁻¹ und 1387 cm⁻¹.

Die Temperaturen für das Homogenisieren in die flüssige Phase befinden sich bei diesen Einschlüsse zwischen -5 °C und 30 °C, mit zwei Häufigkeiten in den Intervallen 5-10°C bzw. 15-20°C (s. Abb. 7-11).

<u>Abb. 7-11</u>

Histogramm der Homogenisierungstemperaturen für die Einschlüsse der Gruppe 2

7.3 Gruppe 3: Komplexe, mehrphasige Flüssigkeitseinschlüsse

Abb. 7-12 Detailaufnahme eines komplexen, mehrphasigen Flüssigkeitseinschlusses

Flüssigkeitseinschlüsse dieser Gruppe, die ebenfalls entlang von Spuren auftreten, zeichnen sich durch die große Variabilität im Bezug auf ihre eingeschlossenen Festphasen aus. Wie in Abb. 7-12 ersichtlich, handelt es sich dabei um Hämatit, Kalzit und Salzkristalle. Letztere wurden für die mikrothermometrischen Untersuchungen zusätzlich noch nach ihrem äußeren Erscheinungsbild in kubische und rundliche Salzkristalle unterteilt. Prinzipiell sind Salzkristalle nicht ramansensitiv, jedoch wurde bei einigen kubischen Kristallen zwei von der Matrix sich unterscheidende Peaks (bei 167 cm⁻¹ und 235 cm⁻¹) gemessen (s. Abb. 7-13). Dabei handelt es sich vermutlich um Sulfidphasen die am Salzkristall haften.

Die Flüssigkeiten in denen sich die Festphasen befinden, zeigen Ramanspektren mit steilen, durchgehenden Peaks bei etwa 3410 cm⁻¹, wie sie charakteristisch für hochsalinare Lösungen sind (s. Abb. 7-14).

Neben den häufig auftretenden Flüssigkeitseinschlüssen mit einem Salzkristall und Blase (durchschnittlich 9 vol.%) (s. Abb. 7-15 a) finden sich auch Einschlüsse mit Hämatitphase und Blase (~13 vol.%) (s. Abb. 7-15 b). Besonders die erstgenannte Untergruppen zeichnet sich dabei durch ihre oft regelmäßigen, je nach Schnitt quadratisch bis rechteckigen Formen aus. Eher länglich und regelmäßig geformte Einschlüsse mit zwei Salzkristallen und Elase (durchschnittlich 10 vol.%) sind relativ selten, erreichen jedoch Größen von bis zu 25 μ m (s. Abb. 7-15 c). Regelmäßige, längliche Einschlüsse mit einem Salzkristall, blauer Kalzitphase und Blase (~6 vol.%) finden sich oft (s. Abb. 7-15 d), im Gegensatz zu sehr seltenen, unregelmäßig rundlichen Flüssigkeitseinschlüssen, mit einem einzelnen, großen Kalzitkristall ohne Blase (s. Abb. 7-15 e).

Hochkomplexe, unregelmäßig geformte, längliche Einschlüsse wie in Abb. 7-12 sind häufig und erreichen Größen von bis zu 75 μ m.

Abb. 7-15 Fünf der häufigsten Phasenzusammensetzungen für die Flüssigkeitseinschlüsse der Gruppe 3

- a. Flüssigkeitseinschluss mit Salzkristall und Blase
- b. Flüssigkeitseinschluss mit Hämatitphase, Salzkristall und Blase
- c. Flüssigkeitseinschluss mit zwei Salzkristallen und Blase
- d. Flüssigkeitseinschluss mit Salzkristall, Kalzit (blau) und Blase
- e. Flüssigkeitseinschluss mit großer Kalzitphase

In dieser Gruppe liegt die Homogenisierungstemperatur der flüssigen Phase zwischen 100 °C und 160 °C, mit einer Häufigkeit im Intervall von 110 – 120 °C (s. Abb. 7-16 a). Bei Betrachtung der Auflösungstemperaturen (T_{solv}) der Festphasen zeigt sich, dass sich die gerundeten Salzkristalle in einem sehr großen Temperaturbereich von 90 – 580 °C auflösen, wobei eine relative Häufigkeit bei niedrigeren Temperaturen von 90 °C bis etwa 160 °C beobachtbar ist. Die kubischen Salzkristalle streuen deutlich weniger stark und lösen sich in einem Temperaturbereich von 130 °C bis 280 °C auf (s. Abb. 7-16 b). Kalzit ist neben dem unlöslichen Hämatit oftmals die letzte Festphase die sich auflöst und zeigt im Histogramm der Abb. 7-16 b von 230 °C bis 240 °C ein Maximum an Löslichkeit.

Abb. 7-16 a-e zeigt einen typischen Einschluss der Gruppe 3 mit mehreren Festphasen und sein Verhalten bei stetiger Temperaturzunahme. Bei den in Tab. 7-2 dargestellten Berechnungen für die Salinitäten dieser Einschlüsse wurde vorausgesetzt, dass es sich bei den Salzkristallen um ausschließlich NaCl und KCl handelt. Weiters wurden nur die beiden größeren Kristalle (sal 1 bzw. sal 2) berücksichtigt, wobei jener Salzkristall mit der jeweils tiefer liegenden T_{solv} als NaCl angenommen wurde.

<u>Abb. 7-16 a; b; c; d; e</u>

Foto a zeigt einen komplexen Einschluss der Gruppe 3 bei Zimmertemperatur; neben der flüssigen Phase (aq) und einer Gasblase (vap) sind drei Salze (sal 1-3), sowie eine Kalzitphase (cal) vertreten; durch sukzessives Erhitzen des Einschlusses sind verschiedene Phasenübergänge beobachtbar (Fotos b bis d); bei 320°C (Foto e) homogenisiert der Einschluss in die flüssige Phase.

T _{solv} (sal 1)	T _{solv} (sal 2)		Salinität	
[°C]	[°C]		[mass% NaCl]	[mass% KCI]
190	575	[11,567	75,424
200	367	[16,139	50,750
150	150	[16,194	27,750
140	140		16,273	26,652
170	150		16,415	29,666
190	320		16,444	45,436
180	150	[16,505	30,636
190	300	[16,551	43,208
160	240	[16,659	36,762
150	120	[16,976	27,199
180	120	[17,251	30,120
270	408		17,493	54,366
170	110		17,543	28,882
150	100		17,800	26,628
160	100		17,896	27,600

Tab. 7-2 Berechnete Salinitäten für Einschlüsse der Gruppe 3

Die unter oben beschriebenen Annahmen berechneten Salinitäten variieren zwischen 11,6 – 17,9 mass% NaCl und 26,6 - 75,4 mass% KCl (s. Tab. 7-2), wobei sich für NaCl eine klare Häufigkeit zwischen 16 - 18 mass% zeigt.

<u>Abb. 7-16</u>

a. Histogramm für die Homogenisierungstemperaturen der flüssigen Phase der Einschlüsse in Gruppe 3b. Histogramm für die Auflösungstemperaturen der festen Phasen der Einschlüsse in Gruppe 3

Die Gegenüberstellung von Homogenisierungstemperaturen der flüssigen Phase mit den Auflösungstemperaturen der kubischen Salzkristalle verdeutlicht die Inhomogenität in dieser Gruppe (s. Abb. 7-17).

Abb. 7-17 Gegenüberstellung von Homogenisierungs- und Auflösungstemperaturen für Einschlüsse der Gruppe 3

7.4 Gruppe 4: Homogene, wasserreiche Flüssigkeitseinschlüsse

Abb. 7-18 Fotoaufnahme einer Spur mit Flüssigkeitseinschlüssen der Gruppe 4

Diese Gruppe von sehr kleinen (< 5 μ m), unregelmäßig rundlich bis länglich geformten Einschlüssen könnte unter Umständen durch das selbe fluide Ereignis entstanden sein, wie die bereits diskutierten Flüssigkeitseinschlüsse mit Blase der Gruppe 1. Sie treten entlang von deutlichen Spuren auf (s. Abb. 7-18) und dürften aufgrund ihres Ramanspektrums ausschließlich niedrig salinare, wässrige Fluidphasen enthalten (s. Abb. 7-19).

8 Schlussfolgerungen

Ziel dieser Diplomarbeit war es titanithältige Gänge in Arkaroola (Südaustralien) zu kartieren, mineralogisch bzw. petrographisch zu untersuchen, und die bei der Bildung dieser Gänge beteiligten fluiden Phasen zu charakterisieren.

Diese Gänge befinden sich innerhalb von paleo- bis mesoproterozoischen Metagraniten bzw. Metasedimenten (Mt. Painter Inlier) und unterteilen sich in drei Typen von pegmatitschen Gängen:

- 1. Diopsid Titanit Gänge (DTG)
- 2. Skapolith Diopsid Titanit Gänge (SDTG)
- 3. Granitische Pegmatitgänge mit Diopsid und Titanit (PG)

Die konstante Orientierung dieser innerhalb des kartierten Gebietes undeformierten Gänge (010/40) zeigt, dass sie nach der Verfaltung der Hauptfoliation ins Nebengestein intrudierten. Anschließend wurden sie hydrothermal wie auch von einer Quarz – Hämatitphase überprägt.

Der Titanitanteil in den Diopsid – Titanit Gängen variiert zwischen <1 vol% und 10 vol%, wobei ungerichteter Riesenkristallwachstum (max. 40 cm Länge) vorherrschend ist. Neben den beiden Hauptmineralen tritt Aktinolith häufig als hydrothermales Alterationsprodukt innerhalb der DTG auf. Spätdiagentische Quarzphasen beinhalten Spuren von Lanthanit-, Monazit- und Apatitkristallen.

Skapolith (Marialit) - Diopsid – Titanit Gänge liegen nur im Nordwesten des Kartierungsgebiet vor, wobei der Titanitanteil bei maximal 5 vol% liegt. Die Titanitkristalle (<1 cm) sind in der marialitreichen Matrix unorientiert, während die orientierten Diopsidkristalle durch Mineralvergesellschaftungen mit Analcim auffallen.

Granitische Pegmatitgänge mit Diopsid und Titanit (~5 vol%) in einer an K-Feldspat reichen Matrix sind ausschließlich im zentralen Osten des Kartierungsgebietes anzutreffen und zeigen eine asymmetrische Zonierung: eine Gangseite wird von Titanit-, die gegenüberliegende Seite von Diopsid- bzw. Aktinolithkristallen dominiert. Die bis zu 5 cm großen Titanitkristalle fallen dabei durch eine klar bevorzugte Wachstumsrichtung vom Gangrand zur Gangmitte auf. Im Zentrum der Gänge sind bis zu 1 cm große Miarolen beobachtbar, die als Indiz für einen miarolitischen Pegmatittyp nach CERNY (1991) gedeutet werden können.

Das variable Nebengestein gliedert sich in Augengneise (Quarz bzw. Feldspat), sillimanithältigen Knotenschiefer und Granite. Die Knotenschiefer beinhalten Gruppen von dunkelgrünen Xenotimkristallen, die bevorzugt neben den Fibrolithnadeln anzutreffen sind. Weiters zeigt Fe – reicher Biotit deutliche Strahlungsschäden durch Zirkon. Die Granite im Süden des Kartierungsgebietes fallen durch bis zu 15 cm große Xenolithe auf. Durch EMS Analysen der Titanite aus den verschiedenen pegmatitischen Gängen werden geringfügige Unterschiede im Chemismus deutlich, die visuell als hell/dunkel Zonierungen in BSE Aufnahmen beobachtbar sind. Die hellen Zonen im Titanit sind dabei auf den vermehrten Einbau an SEE (inkl. Y), Fe sowie Nb zurückzuführen, während bei den dunklen Zonen im Titanit eine relative Anreicherung an Si, Ti und Ca vorherrschend ist. Bei den SEE überwiegen die LSEE gegenüber den SSEE. Die durchschnittlichen Zusammensetzungen der hellen bzw. dunklen Titanite aus den verschiedenen Gängen sind:

	Titanite DTG
hell	$ \begin{bmatrix} Ca_{3,79} & SEE_{0,20} & Nb_{0,09} \end{bmatrix} \begin{bmatrix} Ti_{3,61} Fe^{3+}_{0,21} & Al_{0,09} \end{bmatrix} P_{0,004} & Th_{0,001} \begin{bmatrix} O_4 / Si_4 & O_{15,98} \end{bmatrix} \\ SEE_{0,20} = Y_{0,101} + La_{0,010} + Ce_{0,004} + Pr_{0,001} + Nd_{0,057} + Sm_{0,004} + Gd_{0,009} + Ho_{0,008} + Yb_{0,003} \end{bmatrix} $
dunkel	$\begin{bmatrix} Ca_{3,80} \text{ SEE}_{0,16} \text{ Nb}_{0,07} \end{bmatrix} \begin{bmatrix} Ti_{3,65} \text{ Fe}^{3+}_{0,17} \text{ Al}_{0,09} \end{bmatrix} P_{0,002} \text{ Th}_{0,001} \begin{bmatrix} O_4 / \text{Si}_4 O_{15,91} \end{bmatrix}$ $\text{SEE}_{0,16} = Y_{0,087} + La_{0,006} + Ce_{0,003} + Pr_{0,000} + Nd_{0,045} + Sm_{0,003} + Gd_{0,007} + Ho_{0,008} + Yb_{0,003}$
	Titanite SDTG
hell	$\begin{bmatrix} Ca_{3,79} \ SEE_{0,20} \ Nb_{0,06} \end{bmatrix} \begin{bmatrix} Ti_{3,83} \ Fe^{3+}_{0,17} \ Al_{0,09} \end{bmatrix} P_{0,002} \ Th_{0,001} \begin{bmatrix} O_4 / Si_4 \ O_{16,29} \end{bmatrix}$ $SEE_{0,20} = Y_{0,082} + La_{0,008} + Ce_{0,036} + Pr_{0,001} + Nd_{0,053} + Sm_{0,004} + Gd_{0,008} + Ho_{0,008} + Yb_{0,003}$
dunkel	$\begin{bmatrix} Ca_{3,94} \text{ SEE}_{0,09} \text{ Nb}_{0,02} \end{bmatrix} \begin{bmatrix} Ti_{3,88} \text{ Fe}^{3+}_{0,08} \text{ Al}_{0,15} \end{bmatrix} P_{0,004} \text{ Th}_{0,002} \begin{bmatrix} O_4 / \text{Si}_4 O_{16,24} \end{bmatrix}$ $\text{SEE}_{0,09} = Y_{0,032} + La_{0,004} + Ce_{0,018} + Pr_{0,000} + Nd_{0,024} + Sm_{0,001} + Gd_{0,003} + Ho_{0,003} + Yb_{0,001}$
	Titanite PG
hell	$\begin{bmatrix} Ca_{3,72} \ SEE_{0,24} \ Nb_{0,10} \end{bmatrix} \begin{bmatrix} Ti_{3,74} \ Fe^{3+}_{0,22} \ Al_{0,09} \end{bmatrix} P_{0,008} \ Th_{0,001} \begin{bmatrix} O_4 / Si_4 \ O_{16,30} \end{bmatrix}$ $SEE_{0,24} = Y_{0,107} + La_{0,010} + Ce_{0,040} + Pr_{0,002} + Nd_{0,058} + Sm_{0,005} + Gd_{0,011} + Ho_{0,009} + Yb_{0,003}$
dunkel	$\begin{bmatrix} Ca_{3,74} \text{ SEE}_{0,19} \text{ Nb}_{0,06} \end{bmatrix} \begin{bmatrix} Ti_{3,74} \text{ Fe}^{3+}_{0,20} \text{ Al}_{0,08} \end{bmatrix} P_{0,003} \text{ Th}_{0,001} \begin{bmatrix} O_4/Si_4O_{16,08} \end{bmatrix}$ SEE _{0,19} = Y _{0,083} + La _{0,006} + Ce _{0,031} + Pr _{0,001} + Nd _{0,047} + Sm _{0,002} + Gd _{0,008} + Ho _{0,007} + Yb _{0,003}

Die um rund 3 mass% geringeren Totals der Titanite aus den SDTG bzw. den PG gegenüber den DTG, lassen auf einen vermehrten Einbau von F und H₂O schließen. Innerhalb der Titanitprobe aus den DTG sind eine Vielzahl an Y-, Nb- und Th – reichen, akzessorischen Mineralien in Form von festen Einschlussspuren vertreten, von denen nur SEE – reicher Fergusonit (YNbO₄) eindeutig identifiziert werden konnte. Dieser Chemismus könnte mit der von CERNY (1991) Pegmatite vorgeschlagenen NYF Familie korrelieren. Ein Vergleich der Lanthanitkonzentrationen mit der Gesteinsklassifizierungsmethode von FLEISCHER (1978) liefert kein eindeutiges Ergebnis. Jedoch können die Titanite aus den DTG ("granitische Pegmatite" Feld) von Titaniten aus den SDTG bzw. den PG (eher "Granite" – "Granodiorite" Feld) klar unterschieden werden. Alle Titanitproben haben kleine La/Nd Verhältnisse (~0,2) gemeinsam, was durch die erhöhten Konzentrationen an Nd (max. 1,6 mass%) erklärt werden kann.

Die EMS Analysen der Diopside aus zwei verschiedenen DTG sowie aus einem Übergangsbereich zwischen DTG und Pegmatit definieren diese als normal – alkaline Salite. Diese Salite fallen durch ihre hohen Konzentrationen an Natrium (durchschnittlich 1,5 mass%) auf. Durchschnittliche Zusammensetzungen der Salite sind:

	aus DTG 1
Salit	$\begin{bmatrix} Ca_{0,90} \ Na_{0,08} \end{bmatrix} \begin{bmatrix} Mg_{0,76} \ Fe_{0,24} \ Al^{[VI]}_{0,003} \ Mn_{0,002} \ Ti_{0,001} \end{bmatrix} \begin{bmatrix} Si_{1,99} \ Al^{[IV]}_{0,007} \ O_6 \end{bmatrix}$ $Fe_{0,24} = Fe^{2+}_{0,215} + Fe^{3+}_{0,025}$
	aus DTG 2
Salit	$\begin{aligned} & \left[Ca_{0,88} Na_{0,11} \right] \left[Mg_{0,74} Fe_{0,24} Al^{[VI]}_{0,013} Mn_{0,002} Ti_{0,001} \right] \left[Si_{2,00} Al^{[IV]}_{0,008} O_6 \right] \\ & Fe_{0,24} = Fe^{2+}_{0,229} + Fe^{3+}_{0,006} \end{aligned}$
	aus Übergangsbereich DTG - Pegmatit
Salit	$\begin{bmatrix} Ca_{0,87} Na_{0,11} \end{bmatrix} \begin{bmatrix} Mg_{0,73} Fe_{0,26} Al^{[VI]}_{0,011} Mn_{0,002} Ti_{0,001} \end{bmatrix} \begin{bmatrix} Si_{1,99} Al^{[IV]}_{0,012} O_6 \end{bmatrix}$ $Fe_{0,26} = Fe^{2+}_{0,241} + Fe^{3+}_{0,016}$

Akzessorische Minerale innerhalb der Salite sind unter anderen Baryt, Chalkopyrit, Galenit, Monazit, Scheelit und Wakefieldit. Akzessorische Minerale mit Si-, Y-, Ca – reicher Zusammensetzung, die mit Aktinolitheinschlüssen im Salit assoziiert sind, konnten nicht identifiziert werden.

Die in den Salitproben auftretenden Amphibole wurden mittels EMS analysiert und definieren diese als Aktinolithe, in denen kein dreiwertiges Eisen festgestellt wurde. Durchschnittliche Zusammensetzungen sind:

	aus DTG 1
Aktinolith	$\label{eq:ca1,81} [Ca_{1,81} \ Na_{0,23}] \ [Mg_{3,90} \ Fe^{2+}_{1,01} \ Mn_{0,006}] \ [Si_{7,91} \ Al_{0,13} \ Ti_{0,014}] \ O_{22}/O$
	aus DTG 2
Aktinolith	$\label{eq:ca1,81} [Ca_{1,81} \ Na_{0,27}] \ [Mg_{3,83} \ Fe^{2+}{}_{1,03} \ Mn_{0,006}] \ [Si_{7,86} \ Al_{0,19} \ Ti_{0,017}] \ O_{22}/O$
aus Übergangsbereich DTG - Pegmatit	
Aktinolith	$\label{eq:ca1,82} [Ca_{1,82} \ Na_{0,26}] \ [Mg_{3,77} \ Fe^{2*}{}_{1,13} \ Mn_{0,008}] \ [Si_{7,80} \ Al_{0,24} \ Ti_{0,024}] \ O_{22}/O$

Akzessorische Monazite im Quarz und Titanit aus einem DTG wurden mit EMS analysiert, wobei diese folgende Zusammensetzungen vorweisen:

	im Quarz	
Monazit	$\begin{bmatrix} Ce_{0,52} \ La_{0,26} \ Nd_{0,13} \end{bmatrix} Ca_{0,03} \ Th_{0,07} \ SEE_{0,10} \ \begin{bmatrix} P_{0,86} \ Si_{0,11} \ O_4 \end{bmatrix}$ $SEE_{0,10} = Y_{0,007} + Dy_{0,002} + Sm_{0,012} + Gd_{0,007} + Eu_{0,012} + Ho_{0,001} + Pr_{0,058}$	
	im Titanit	
Monazit	$\begin{bmatrix} Ce_{0,45} \ La_{0,16} \ Nd_{0,16} \end{bmatrix} Ca_{0,05} \ Th_{0,10} \ SEE_{0,12} \ \begin{bmatrix} P_{0,87} \ Si_{0,13} \ O_4 \end{bmatrix}$ $SEE_{0,12} = Y_{0,022} + Dy_{0,003} + Sm_{0,020} + Gd_{0,011} + Eu_{0,014} + Ho_{0,001} + Pr_{0,046}$	

In beiden Monazittypen ist Cerium das dominierende Element. Der Vergleich mit dem Gesteinsklassifizierungsmodell nach FLEISCHER (1965) liefert kein eindeutiges Ergebnis, wenngleich die Monazite aus dem Quarz bevorzugt um das "alkalische Gesteine" bzw. um das "Quarzadern" Feld zu finden sind.

Flüssigkeitseinschlüsse aus frühdiagenetischem Quarz innerhalb eines DTG lassen sich in vier Gruppen unterteilen:

- 1. Wässrige Flüssigkeitseinschlüsse mit Blase
 - a. niedrig salinare Flüssigkeitseinschlüsse
 - b. hoch salinare Flüssigkeitseinschlüsse
- 2. CO₂ reiche Einschlüsse
- 3. Komplexe, mehrphasige Flüssigkeitseinschlüsse
- 4. Homogene, wasserreiche Flüssigkeitseinschlüsse

Die bei der Bildung der Gänge anwesenden Fluide waren vermutlich aufgrund ihrer relativ hohen Gesamthomogenisierungstemperaturen (bis zu 575 °C) die hochsalinaren Fluide der Gruppe 3, sowie möglicherweise die CO₂ reichen Einschlüsse der Gruppe 2. Die häufige Anwesenheit von festen Phasen in den Flüssigkeitseinschlüssen der Gruppe 3 deutet auf einen magmatischen Ursprung der Diopsid – Titanit Gänge von Arkaroola hin. Als späte fluide Phasen, die wahrscheinlich erst durch die Quarz – Hämatit Überprägung der DTG eingebracht wurden, können die Flüssigkeitseinschlüsse der Gruppe 4 sowie jene der Gruppe 1, die zusammen einen Übergang von hochsalinarem zu niedrigsalinarem Fluidsystem darstellen, interpretiert werden.

9 Literaturverzeichnis

AUTENRIETH, G., (1958). A Homeric Dictionary (English translation by R.P. Keep, revised by I. Flagg). University of Oklahoma Press.

BAUMGARTNER, M. & BAKKER, R.J., (2008). Raman spectroscopy of pure H_2O and NaCl- H_2O containing synthetic fluid inclusions in quartz – A study of polarisation effects. Mineralogy and Petrology

BEARD, J.S. & DAY, H.W., (1986). Origin of gabbro pegmatite in the Smartville intrusive complex, northern Sierra Nevada, California. American Mineralogist **71**, 1085-1099

BIRKETT, T.C. & SINCLAIR, W.D., (1998). Rare-metal replacement deposits (skarn and fenites) associated with alkalic and carbonatite complexes. In *Mineralized Intrusion-Related Skarn Systems* (D.R. Lentz, ed.). Mineralogical Association of Canada Short Course Handbook **26**, 445-474

BOWDEN, P., WALL, F. & SCHURMANN, L., (2000). "Spinifex-textured" pegmatitic crystallisation in carbonatites. In *Carbonatite workshop, 2000* (J. Moutte & D. Garcia, eds.). Journal of African Earth Sciences **32**, A11-A12

CERNY, P. & ERCIT, T.S., (2005). The classification of granitic pegmatites revisited. Canadian Mineralogist **43**, 2005-2026

CERNY, P., (1991). Rare-element granite pegmatites. I. Anatomy and internal evolution of pegmatite deposits. Geoscience Canada **18**, 49-67

CHAPPELL, B.W. & WHITE, A.J.R., (1992). I- and S-type granites in the Lachlan Fold Belt. Transactions of the Royal Society of Edinburgh, Earth Sciences **83**, 1-26

CHAPPELL, B.W. & WHITE, A.J.R., (2001). Two contrasting granite types: 25 years later. Australian Journal of Earth sciences **48**, 489-499

CLARK, A.M., (1974). A tantalum-rich variety of sphene. Min. Mag., **39**, 605-607

COATS, R.P. & BLISSET A.H., (1971). Regional and economic geology of the Mount Painter Province. Geological Survey of South Australia Bulletin **43**, 426

COLIN, H.H. & PREISS, W.V., (2008). Understanding the 1720–1640Ma Palaeoproterozoic Willyama Supergroup, Curnamona Province, Southeastern Australia: Implications for tectonics, basin evolution and ore genesis. Precambrian Research **166**, 297–317

CORRIVEAU, L. & LeBLANC, D., (1995). Sequential nesting of magmas in marble, southwestern Grenville Province, Ouebec: from fracture propagation to diapirism. Tectonophysics **246**, 183-200

COVENEY, R.M. & GLASCOCK, M.D., (1989). A review of the origins of metal-rich Pennsylvanian black shales, central U.S.A., with an inferred role for basinal brines. Applied Geochemistry **4**, 347-367

DEER, W.A., HOWIE, R.A. & ZUSSMAN, J., (1997). Rock-Forming-Minerals, Orthosilicates, Volume 2A, Second Edition, The Geological Society, London, 443 ff.

DEER, W.A., HOWIE, R.A. & ZUSSMAN, J., (1997). Rock-Forming-Minerals, Single-Chain Silicates, Volume 1A, Second Edition, The Geological Society, London, 443 ff.

DROOP, G.T.R., (1987). A general equation for estimating Fe³⁺ concentrations in ferromagnesian silicates and oxides from microprobe analyses, using stoichiometric criteria. Mineral. Mag. **51**, 431-435.

ELBURG, M.A., BONS, P.D., BOUGHERTY-PAGE, J., JANKA, E., NEUMANN, N. & SCHAEFER, B., (2001). Age and metasomatic alteration of the Mt Neill Granite at Nooldoonooldoona Waterhole, Mt Painter Inlier, South Australia. Aust J Earth Sci **48**, 721–730

ELBURG, M.A., BONS, P.D., FODEN, J. & BRUGGER, J., (2003). A newly defined late Ordovician magmatic-thermal event in the Mt Painter Province, northern flinders Ranges, South Australia. Aust J Earth Sci **50**, 611–631

ERCIT, T.S., (2005). REE-enriched granitic pegmatites. In *Rare-Element Geochemistry and Mineral Deposits* (R.L. Linnen & I.M. Samson, eds.). Geological Association of Canada, Short Course Notes **17**, 175-199

FLEISCHER, M. & ALTSCHULER, Z.S., (1969). The relationship of the rare-earth composition of minerals to geological environment. Geochim. Cosmochim. Acta, **33**, 725-732

FLEISCHER, M., (1965). Some aspects of the geochemistry of yttrium and the lanthanides. Geochimica et Cosmochimica Acta **29**, 755-772

FLEISCHER, M., (1978). Relation of the relative concentrations of lanthanides in titanite to type of host rocks. Amer. Min., **63**, 869-873

GIERE, R., WILLIAMS, C.T., WIRTH, R. & RUSCHEL, K., (2009). Metamict fergusonite-(Y) in a spessartine-bearing granitic pegmatite from Adamello, Italy. Chemical Geology **261**, 333–345

GINSBURG, A.I., (1984). The geological condition of the location and the formation of granitic pegmatites. International Geological Congress, 27th, Proceedings **15**, 245-260

GREEN, T.H., & PEARSON, N.J., (1986). Rare-earth element partitioning between sphene and coexisting silicate liquid at high pressure and temperature. Chem. Geol. **55**, 105–119

GROMET, L.P., DYMEK, R.F., HASKIN, L.A. & KOROTEV, R.L., (1984). The "North American shale composite": its compilation, major and trace element characteristics. Geochimica et Cosmochimica Acta **48**, 2469-2482

HAIDINGER, W., (1845). Handbuch der Bestimmenden Mineralogie. Braumüller & Seidel

HEINRICH, E.W., (1966). The Geology of Carbonatites. Rand McNally, Chicago, Illinois

HORWATH, L. & GAULT, R.A., (1990). The mineralogy of Mont Saint-Hilaire, Quebec. Mineralogical Record **21**, 248-259

KERR, A.C., TARNEY, J., KEMPTON, P.D., PRINGLE, M. & NIVIA, A., (2004). Mafic pegmatites intruding oceanic plateau gabbros and ultramafic cumulates from Bolivar, Colombia; evidence for a "wet" mantle plume? Journal of Petrology **45**, 1877-1906

KOVALENKO, V.I., TSARYEVA, G.M., GOREGLYAD, A.V., YARMOLUK, V.V. & TROITSKY, V.A., (1995). The peralkaline-granite related Khaldzan-Buregtey rare metal (Zr, Nb, REE) deposit, Western Mongolia. Economic Geology **90**, 530-547

LANDES, K.K., (1933). Origin and classification of pegmatites. American Mineralogist 18, 33-56

LEAKE, B.E., et al., (1997). Nomenclature of amphiboles: Report of the subcommittee on amphiboles of the International Mineralogical Association, commission on new minerals and mineral names. The Canadian Mineralogist, **35**, 219-246

LeBAS, M.J., (1962). The role of aluminum in igneous clinopyroxenes with relation to their parentage. h e r . J. Sci. **260**, 267-288.

LENHARO, S.L.R., POLLARD, P.J. & BORN, H., (2003). Petrology and textural evolution of granites accociated with tin and rare metals mineralication at the Pitinga mine, Amazonas, Brazil. Lithos **66**, 37-61

LONDON, D., (2008). Pegmatites. Special Publication 10, The Canadian Mineralogist

LOVERING, J.K., & DURRELL, C., (1959). Zoned gabbro pegmatites of Eureka Peak, Plumas County, California. Journal of Geology **67**, 253-268

MARTIN, R.F. & DE VITO, C., (2005). The patterns of enrichment in felsic pegmatites ultimately depend on tectonic setting. Canadian Mineralogist **93**, 2027-2048

McLAREN, S., DUNLAP, W.J., SANDIFORD, M. & McDougall, I., (2002). Thermochronology of high heat-producing crust at Mount Painter, South Australia: implications for tectonic reactivation of continental interiors. Tectonics **21**, article no. 1020

MURAWSKI, H. & MEYER, W., (2004). Geologisches Wörterbuch

MYERS, J.S., (1978). Pipes of mafic pegmatite in the stratiform Fiskenaesset anorthosite complex, southwest Greenland. Lithos **11**, 277-282

NEUMANN, N., SANDIFORD, M. & FODEN, J., (2000). Regional geochemistry and continental heat flow: implications for the origin of the South Australian heat flow anomaly. Earth and Planetary Science Letters **183**, 107–120.

PEKOV, I., (2000). Lovozero Massif: Histroy, Pegmatites, Minerals. Ocean Pictures, Moscow, Russia

POLDERVAART, A. & HESS, H.H., (1951). Pyroxenes in the crystallization of basaltic magmas. Journal of Geology **59**, 472-489

SAHAMA, Th.G., (1946). On the chemistry of the mineral titanite. Bull. Comm. Geol. Finl. **138**, 88–120

SASS, J.H. & LACHENBRUCH, A.H., (1979). Thermal regime of the Australian continental crust. In *The Earth—its Origin, Structure and Evolution* (McElhinny, M. W., ed.), London: Academic Press, 301–351.

SCOON, R.N. & MITCHELL, A.A., (2004). The platiniferous dunite pipes in the eastern limb of the Bushveld Complex: review and comparison with unmineralized discordant ultramafic bodies. South African Journal of Geology **107**, 505-520

SOKOLOV, S., (2002). Melt inclusions as indicators of the magmatic origin of carbonatite rare metal and rare earth minerals. In *Melt Inclusions at the Millennium; Toward a Deeper Understanding of Magmatic Processes* (E.H. Hauri, A.J.R Kent & N. Arndt, eds.). Chemical Geology **183**, 373-378

TEALE, G.S., (1993). The Nooldoonooldoona Trondhjemite and other newly recognised Mesoproterozoic intrusives in the Mount Painter Province. Geol Surv S Aust Q Geol Notes **125**, 20–31

10 Anhang

10.1 Fotoaufnahmen, Skizzen und GPS Punkte

<u>Foto 1</u>

X 0339993 **Y** 6652427

10 cm mächtiger Diopsidgang innerhalb von titanithältigem Skapolith.

Nebengestein: Quarzaugengneis

<u>Foto 2</u>

X 0340320 **Y** 6652394

Bis zu 10 cm große, (durch Quarz – Hämatitüber-prägung) stark alterierte Aktinolithkristalle.

Nebengestein: Quarzaugengneis

Foto 3

X 0340651 **Y** 6651693

10 cm mächtiger Aktinolithgang mit starker Quarz – Hämatitüberprägung. Bitte beachten Sie, dass der Gang die Scherung des Nebengesteins (165/90) durchschlägt.

Nebengestein: Feldspataugengneis

Foto 4

X 0340759 **Y** 6652103

2 m mächtiger, Diopsidgang ohne Titanit.

Nebengestein: Knotenschiefer

<u>Foto 5</u>

X 0340065 **Y** 6652452

5 cm mächtiger Gang innerhalb eines nichtverfolgbaren 10m x 4m großen Aufschlusses.

Nebengestein: Quarzaugengneis

<u>Foto 6</u>

X 0340340 **Y** 6652247

1 m mächtiger Diopsidgang mit wenig Titanit (~1 vein vol.%) und sehr scharfem Kontakt.

<u>Foto 7</u>

X 0340544 **Y** 6652562

Diopsidgänge bis 50cm; gleiche Orientierung wie Scherungszone 10/70; zweite, ältere Foliation 140/43; wenig Hämatit-Quarz Überprägung

Nebengestein: stark deformierter Quarzaugengneis

<u>Foto 8</u>

X 0340550 **Y** 6652219

Komplexer Kontakt eines 1m mächtigen Diopsidganges; keine Quarz – Hämatitüberprägung; im Diopsid bis 4cm große, violette Feldspatkristalle

<u>Foto 9</u>

X 0340395 **Y** 6652471

5 m mächtiger Diopsidgang, sehr reich an Titanit (~10 vein vol.%).

Nebengestein: Knotenschiefer

<u>Foto 10</u>

X 0340395 **Y** 6652471

Ein 10 cm großer Titanitkristall in Diopsid ohne späterer Quarz -Hämatitüberprägung.

Nebengestein: Knotenschiefer

<u>Foto 11</u>

X 0340395 **Y** 6652471

10 cm große Titanit- und Diopsidkristalle mit späterer Quarz - Hämatitüberprägung.

Nebengestein: Knotenschiefer

<u>Foto 12</u>

X 0340395 **Y** 6652471

Bis zu 15 cm große Titanitkristalle. Bitte beachten Sie die von Quarz aufgefüllten, cm dicken Sprünge und Risse in den Kristallen.

Nebengestein: Knotenschiefer

<u>Foto 13</u>

X 0340407 **Y** 6652425

Schwarze Morionkristalle und weißer Quarz am Kontakt mit Titanit innerhalb eines ~20 cm mächtigen Diopsidganges.

Nebengestein: Quarzaugengneis

<u>Foto 14</u>

X 0340847 **Y** 6652594

Pegmatit mit faustgroßen Quarz-, Felspat-, Titanit- und Diopsidkristallen.

<u>Foto 15</u>

X 0340747 **Y** 6652373

5 cm große Titanitkristalle innerhalb eines ~50 cm mächtigen Diopsidganges. Starke Quarz Hämatitüberprägung.

Nebengestein: Quarzaugengneis

<u>Foto 16</u>

X 0340865 **Y** 6652304

Bis zu 1,5 m mächtiger Titanit -Pegmatitgang. Bitte beachten Sie die variablen Titanit - Kristallgrößen von < 0,5cm bis > 4 cm.

Nebengestein: Quarzaugengneis

<u>Foto 17</u>

X 0340865 **Y** 6652304

Kontakt eines Titanit -Pegmatitganges. Bitte beachten Sie den Richtung Gangzentrum orientierten Kristallwachstum der ~1cm großen Titanitkristalle.

<u>Foto 18</u>

X 0340365 **Y** 6652474

Gefaltete Quarzader. Bitte beachten Sie, dass die Foliation des Nebengesteins die Quarzader durchschneidet. Die Ader ist somit älter als das tektonische Ereignis.

Nebengestein: Knotenschiefer

<u>Foto 19</u>

X 0340644 **Y** 6651619

2 cm dicke Quarzader, deren Randbereich von Aktinolith flankiert wird .

Nebengestein: Feldspat Augengranit

<u>Foto 20</u>

X 0340409 **Y** 6652030

Diopsid – Aktinolithgang mit scharfem Kontakt. Bitte beachten Sie die 2 cm dicke Quarzader in unterer Bildmitte, die den Gang nicht durchschlägt.

<u>Foto 21</u>

X 0340381 **Y** 6652460

Durchscheinende, bis zu 3 cm große Quarzkristalle.

Nebengestein: Quarzaugengneis

<u>Foto 22</u>

X 0340847 **Y** 6652594

Bis zu 3 cm große Milchquarzkristalle.

Nebengestein: Quarzaugengneis

<u>Foto 23</u>

X 0340847 **Y** 6652594

Auffällige Verwachsung von faustgroßen Diopsidkristallen mit Quarz.

<u>Foto 24</u>

X 0340331 **Y** 6652136

Bis zu 50 cm offene Kluft mit starker Quarz – Hämatitüberprägung. Bitte beachten Sie die stalaktitenähnlichen Quarzknollen.

Nebengestein: Quarzaugengneis

Foto 25

X 0340331 **Y** 6652136

Detailaufnahme der stalaktitenähnlichen Quarzknollen.

Nebengestein: Quarzaugengneis

<u>Foto 26</u>

X 0340331 **Y** 6652136

Detailaufnahme der stalaktitenähnlichen Quarzknollen. Bilddurchmesser: 6 cm

<u>Foto 27</u>

X 0340318 **Y** 6652144

Verwachsungen von bis zu 5 cm großen Feldspatkristallen mit Diopsid / Aktinolith.

Nebengestein: Quarzaugengneis

<u>Foto 28</u>

X 0340123 **Y** 6652427

15 m x 7 m großer, klar begrenzter Quarzaufschluss.

Nebengestein: Quarzaugengneis / Knotenschiefer / Biotitschiefer

<u>Foto 29</u>

X 0340405 **Y** 6652211

4 cm große Druse von blättrigem Kalzit, umrandet von dunklem Quarz, hellem Quarz und Aktinolith innerhalb eines Diopsidganges.

Nebengestein: Quarzaugengneis

<u>Foto 30</u>

X 0340651 **Y** 6651693

~1 cm großer Kalzitkristall innerhalb eines durch die Quarz – Hämatitüberprägung stark beanspruchten Aktinolithganges .

Nebengestein: Feldspat Augengranit

<u>Foto 31</u>

X 0340405 **Y** 6652211

Kalzit – Quarz Ader mit Druse innerhalb eines Diopsidganges. Bitte beachten Sie die starke hydrothermale Umwandlung des Diopsids (hellgrün) in Aktinolith (dunkelgrün)

<u>Foto 32</u>

X 0340405 **Y** 6652211

Detailaufnahme der Druse:

4 verschiedene Phasen:

- 1) Aktinolith + Quarz (äußerer Rand)
- 2) Blättriger Kalzit (gelblich)
- 3) Quarz Hämatit (rötlich)
- 4) Massiver Kalzit (Zentrum).

Nebengestein:

Quarzaugengneis

Foto 33

X 0340405 **Y** 6652211

~5 cm offene Druse mit massivem Kalzit und starker Quarz – Hämatitüberprägung. Bitte beachten Sie die Magnetitkristalle rechts der Münze.

<u>Foto 34</u>

X 0340395 **Y** 6652471

Knotenschiefer (70/90) direkt am Kontakt mit einem Diopsidgang. Die Knoten scheinen eine ältere Quarzaugen Textur zu überwachsen

Foto 35

X 0340326 **Y** 6652447

Knotenschiefer (260 / 65) mit bis zu 7 cm großen Knoten.

<u>Foto 36</u>

X 0340326 Y 6652447

Detailaufnahme eines Knotenschiefers normal zur Druckrichtung. Bitte beachten Sie die dunklen Mineralanteile (Hämatit bzw. Magnetit).

<u>Foto 37</u>

X 0340384 **Y** 6652510

Knotenschiefer (130/85) mit deutlich in Schieferungsrichtung abgeplatteten Knoten.

<u>Foto 38</u>

X 0340384 **Y** 6652510

Blick normal auf die Schieferungsfläche. Bitte beachten Sie, dass auch hier eine "N-S" Einregelung der Knoten beobachtbar ist.

<u>Foto 39</u>

X 0340651 **Y** 6651693

Feldspat Augengranit. Bitte beachten Sie die variable Größe der Feldspäte sowie deren unregelmäßige Orientierung.

<u>Foto 40</u>

X 0340390 **Y** 6652077

Quarzaugengneis am Kontakt mit einem geringmächtigen Diopsidgang. Bitte beachten Sie den beidseitigen, ~2 cm dicken Reaktionsrand.

<u>Foto 41</u>

X 0340550 **Y** 6652219

Alterierter Quarzaugengneis mit Reaktionsrand und sehr schwacher Foliation . Bitte beachten Sie den 4 cm großen, violetten Feldspatkristall sowie die ihn umschließenden Aktinolithkristalle.

<u>Foto 42</u>

X 0340682 **Y** 6651532

Gewöhnlicher Granit im Süden des Kartierungsgebietes mit deformierten, bis zu 15 cm in der Längsachse messenden Xenolithen.

<u>Foto 43</u>

X 0340303 **Y** 66512136

Brekkziertes und von Hämatit überprägtes Nebengestein. Zwischenräume wurden von Quarz ausgefüllt. Bitte beachten Sie die Ähnlichkeit mit der Mt Gee Brekkzie.

<u>Foto 44</u>

X 0340365 **Y** 6652294

Durch hydrothermale Phasen stark alteriertes Nebengestein. Bitte beachten Sie den quarzreichen Kern sowie die bis zu 15 cm langen Hohlraumtexturen.

<u>Foto 45</u>

X 0340404 **Y** 6652211

Starke Hämatitüberprägung eines Diopsidganges.

<u>Foto 46</u>

X 0340429 **Y** 6651972

"Spot" von 4 m im Durchmesser mit stark alteriertem, Kaolinit ähnlichem Material.

<u>Foto 47</u>

X 0340387 **Y** 6652107

Sehr steil stehende, gut verfolgbare Störungsflächen; Aufschlüsse in Nähe der Störungszone sind sehr komplex.

Starke Foliation des Nebengesteins (240/80)

<u>Foto 48</u>

X 0340682 **Y** 6651532

Scherzone (240 /87) am südlichen Rand des Kartierungsgebietes. Bitte beachten Sie die verschiedenmächtigen Lagen von reinem Quarz bzw. Biotit reicheren Einheiten.

<u>Skizze 1:</u>

X 549 0340384 Y 6652510

Die Skizze zeigt einen ~0,5 m mächtigen Diopsidgang (15/43) zusammen mit länglichen Pegmatitkörpern. Kleinere, rund 10 cm mächtige Diopsidgänge verlaufen seitlich des Hauptganges und durchschlagen die Pegmatite. Der Kontakt zwischen Diopsidgang und Nebengestein ist vorwiegend scharf, wobei Diopsid auch als Verdrängungsmineral im nahen Randbereich zu den Pegmatiten beobachtet werden kann.

50 cm

<u>Skizze 2 (oben):</u>

X 549 0340426 Y 6652427

Die Skizze erklärt die mineralogischen Gegebenheiten eines 40 cm mächtigen Seitenastes eines Diopsidhauptganges. Das Zentrum wird dabei von einem dunkelgrünen Aktinolithkern dominiert, der sich durch einen gut erkennbaren Reaktionsrand vom hellgrünen Diopsid abgrenzt.

Nebengestein: Qtz. - Augengneis

<u>Skizze 3 (links):</u>

X 549 0340426 Y 6652427

Die Abbildung skizziert einen 5 cm mächtigen Aktinolithgang mit einem Kern aus Hämatit-Quartz, innerhalb eines geringmächtigen Diopsidganges. Bitte beachten Sie den hellen Reaktionssaum zwischen Akt. u. Di. (rot strichlierte Linie).

<u>Skizze 4:</u>

X 549 0340384 Y 6652510

Dieser Diopsidgang (26/70) ist 1,2 m mächtig und weist mit nur \sim 1 vein vol.% sehr wenig Titanit auf. Beachten Sie das Wechselspiel von Quarz, Pegmatit und Diopsid, der teilweise zu Aktinolith umgewandelt wurde.

<u>Skizze 6 (unten):</u>

X 549 0340284 **Y** 6652437

Die Abbildung zeigt von \sim 2 cm dicken Diospsidrändern begrenzte "Brain – Texturen", die als Kristallisierung von Ca-reichen Fluiden in einem syenitischen Kristallbrei verstanden werden (CORRIVEAU et. al. 1995).

Nebengestein: Knotenschiefer

<u>Skizze 5 (oben):</u>

X 549 0340355 **Y** 6652450

Geringmächtiger Diopsidgang mit beidseitigem Reaktionsrand (rot strichlierte Linie). Bitte beachten Sie den Kontakt zu einem nur hier beobachteten Graniten (keine Qtz – Augen).

<u>Skizze 7 (oben):</u>

X 549 0340287 **Y** 6652384

Die Skizze zeigt einen von hydrothermaler Überprägung stark beanspruchten Aufschluss, in dem Diopsidgänge ausdünnen und in Aktinolith übergehen. Bitte beachten Sie die cm großen, weißen Apatit- bzw. dunkelgrünen Aktinolith Kristalle.

Nebengestein: Qtz. - Augengneis

<u>Skizze 8 (links):</u>

X 549 0340287 **Y** 6652384

Nach beiden Seiten hin ausdünnendes Diopsid / Aktinolith Gangpaket. Bitte beachten Sie im hangenden Bereich das ~5 cm tiefe Eindringen in das Nebengesteis (rot strichlierte Linie).

GPS Punkt	x	Y	Probe	Foto Thomas	Foto Ronny	Di-Durchm. [m]
	F100210201	0052540	11101010	272 274	76.00	
1	5490340384	6652510	TA 18 IC ID	3/2 - 3/6	/6-92	1,3
2	5490340360	6652518	1515		04 - 06	
3	5490340304	6652490		378: 437 - 420	94 - 90	0.4
	5490340370	6652484	HA HD HC	5/6, 42/ 425	57 - 105, 102 - 100	V,4
6	5490340395	6652471	34 38 3C 3D 3E 3E 3G	410 - 418	128 - 148	5
7	5490340426	6652427	2A 2B 2C 2D	393: 394	104 - 111	
8	5490340407	6652425	2F 2F	395 - 397	112 - 114	
9	5490340389	6652412	2G 2H 2I 2I		115 - 117	3
10	5490340374	6652409	2K 2L		118	0,3
11	5490340352	6652408	2M 2N	398		0,4
12	5490340330	6652395	20			2
13	5490340320	6652394	2P 2Q	399; 400		3
14	5490340303	6652370				
15	5490340287	6652384	2R 2S 2T	405; 406	119 - 127	1
16	5490340381	6652460	3I 3H	419 - 421	150	3
17	5490340355	6652450	31		151 - 156	2
18	5490340331	6652449	3K 3L		157; 158	1
19	5490340303	6652446	3M 3N	422; 423		
20	5490340284	6652437			159 - 161	0,5
21	5490340265	6652432				1
22	5490340243	6652413				
23	5490340220	6652396		· · · · · · · · · · · · · · · · · · ·		
24	5490340264	6652376	30 3P	ē		1
25	5490340362	6652474	4D		167; 168	0,1
26	5490340338	6652473		430; 431	169	0,6
27	5490340316	6652484				1 (d has)
28	5490340259	6652443				1,5
29	5490340230	6652424				1
30	5490340233	6652402	17			1,5
31	5490340166	6652427	4E		170; 171	
32	5490340123	6652427	41-	445		2
33	5490340244	6652371				3
34	5490340300	6652319				0,2
30	5490340284	6652313		-	-	0,2
27	5400240265	6652304		116		0.4
	5490340380	6652299	40 40	440		0,4
30	5490340407	6652298				0,5
40	5490340456	6652284	-	c		0.2
40	5490340480	6652307				1
42	5490340502	6652310	-			
43	5490340489	6652403	-	-		5
44	5490340515	6652375				
45	5490340547	6652326				1
46	5490340583	6652219				1
47	5490340419	6652166			172	1.5
48	5490340522	6652591	5A 5B 5C 5D		173 - 175	0,2
49	5490340506	6652536				
50	5490340685	6652600				
51	5490340522	6652580		-		0,5
52	5490340544	6652563		1		1.1.1.1
53	5490340610	6652569				1
54	5490340662	6652607	5E		177 - 179 ?	
55	5490340713	6652553				1,5
56	5490340761	6652544				1
57	5490340820	6652530				
58	5490340858	6652563				1,5
59	5490340921	6652580				1,5
60	5490340877	6652563			180	
61	5490340847	6652594	5F 5G	457 - 465	181 - 183	

Orientierung	Titanit	Nebengestein	Foliation	Überprägung
026 / 70	~ 1 vein vol%	Knotenschiefer	130 / 85	
		Knøtenschiefer	125 / 70	
		Knotenschiefer		
015 / 43		Knotenschiefer		
006 / 49	- 10 upin upl0/	Knotonschiefer	070 / 00	
006748	~ TO AGUL ADLA9	Knotenschierer	070790	
	~ 5 vein vol%		-	
020 / 60		Quarz Augen		
		Quarz Augen	243 / 55	-
		Quarz Augen	225 / 70	ja
		Knotenschiefer	225 / 58	
	~ 5 vein vol%			ja
		Quarz Augen	80 / 80	ja
	~ 10 vein vol%	Quarz Augen	keine	ja
	~ 1 vein vol%	14 14 14 14	200105	
		Knøtenschiefer	260 / 65	ja
		Kashansahisfay	-	
		Knotenschierer		
		Quarz Augen	056 / 90	
		Quart ridgen	0307.55	ia
		Knotenschiefer		
115 / 15	~ 5 vein vol%		300 / 80	
		Knotenschiefer	1	
	~ 5 vein vol%			
	~ 5 vein vol%			
	~ 5 vein vol%			
		Quarz Augen	105 / 85	
		Biotitschiefer	120 / 90	
215 / 35 (Streckung)				
155 (Streckung)				-
020 / 45 bzw. 95 (Streckung)		0		1-
		Quarz Augen		ja í-
		Outers Augon	_	ja
		Quarz Augen		ja
				ja
				ja
			1	
				ja
010 / 70		Quarz Augen		ja
250785		0	1 4 4 2 4 4 2	1-
		Quarz Augen	140 / 43	ја
345 / 80				ia
3437.80	~ 10 vein vol%	Knotenschiefer		ja
015 / 68	~ 10 vein vol%	Quarz Augen		
010,00	20 (0.11 / 0.170	quartinagan		
163 / 65			163 / 65 bzw. 225 / 80 (alt)	
010 / 50	t t			
	~ 5 vein vol%	Knotenschiefer	245 / 70	

GPS Punkt	x	Y	Probe	Foto Thomas	Foto Ronny	Di-Durchm. [m]	Orientierung	Titanit	Nebengestein	Foliation	Überprägung
62	5490341071	6652534					020 / 50				
63	5490340846	6652347				1					
64	5490340449	6652461		-	-	+		+ +			
65	5490340488	6652399	4.4.4.6			1	350 / 50	+ +	Quarz Augen	205 / 73	
66	5490340538	6652397	6A 6B	487	184 - 186	+ +		+ +	Knotenschiefer	060 / 80	-
67	5490340602	6652402		-		1		+ +	* •	Į	
68	5490340676	6652433	6 C	-	187; 188	0,1	005 / 59	+ +	Quarz Augen		
69	5490340925	6652520		-	-	+	025 / 63	+ +	Knotenschlefer	Į	
/0	5490340949	6652512	(D. (E	-		1		+ +			
/1	5490340990	6652480	6D 6E	-		1,5	105 (Streckung)	+ +	Quarz Augen	-	
72	5490340967	6652458		-		1,5	105 (Streckung)	+ +		-	
7.3	5490340862	6652358		-		1,5		+ +		-	
74	5490340307	6652267		400		0.5		+ +			
75	5490340712	6652307		490		0,5		- 10 upin val94		-	
70	5490340747	6653240		-		1.5		~ 10 vent vol%		+	-
70	5490340778	6652227		-		1.5		~ 5 vein vol%		+	-
70	5490340790	6652321		-		1,5		~ 5 vein vol%		+	
20	5490340817	6652314		-	-	1,5		~ 5 vein vol%		+	-
81	5490340863	6652359		-	-	3		2 J VEIT V0170		+	-
87	5490341080	6652331		-	-	+ +		v 5 voin vol94		+	
83	5490340841	6652331	6E.6C	-	-	0.5		10 J Ven Vor /u			
84	5490340865	6652304	01.00			1		+ +			
85	5490340800	6652309				1		+ +			
86	5490340931	6652303		-		1.5		+ +		1	
87	5490341080	6652331	6H		189 - 197	0.2		+ +	Biotitechiefer	155 / 87 2 bzw. 195 / 80	
88	5490340934	6652166	61	-	107 152	1		+ +	Biotitschiefer	155, 67 - 524. 155, 86	
89	5490340857	6652138	U1	-		2		+ +	Sinceschieren	-	ía
90	5490340824	6652150				1 1		+ +		1	ja
91	5490340694	6652243				2		+ +			,3
92	5490340670	6652245		-		5		+ +			
93	5490340641	6652273						+ +	Quarz Augen	1	
94	5490340601	6652255				1 1		~ 1 vein vol%		1	
95	5490340648	6651699	7A 7B 7C 7D 7E		193 - 198	0.1	115 / 50 bzw. 025 / 55		Feldspat Augen	185 / 75	ía
96	5490340644	6651619	7F		199 - 201	0,05	114 / 53	1			
97	5490340682	6651532			202 - 205	1		1	Biotitschiefer	240 / 87	
98	5490340691	6651740				1		1	Knotenschiefer Grenze!	1	
99	5490340730	6652058	7G 7H			0,7	355 / 65	1 1	Quarz Augen	1	
100	5490340450	6652219	8A 8B		206 - 216	1	255 / 60	t t	Quarz Augen	020 / 90	
101	5490340484	6652245				0,5	320 / 60	1			
102	5490340447	6652238			217 - 219	0,1	346 / 53	1 1	Quarz Augen	255 / 85	
103	5490340404	6652211	8C 8D	1		0,5	315	~ 5 vein vol%		1	
104	5490340391	6652200	8E 8F 8G 8H	563 - 565				1			
105	5490340405	6652211				0,5	255		Quarz Augen		ja
106	5490340371	6652137			220 - 226			1	Quarz Augen		ja
107	5490340373	6652158				1					ja
108	5490340390	6652197	8I 8J	560 - 562							ja
109	5490340347	6652128	8K		227; 228 ?	1					ja
110	5490340331	6652136		566 - 569				1			ja
111	5490340318	6652144	8L		229; 230	0,5					
112	5490340303	6652136			231; 232	0,2		1	Quarz Augen	035 / 40	ja
113	5490340271	6652130				ļ		1	Knotenschiefer		
114	5490340184	6652137	8M			1		+ +	Knotenschiefer	253 / 80	ja
115	5490340205	6652228						+ +		-	ja
116	5490339979	6652424	9A 9B	-	233 - 236	0,4	328	+ +		-	
117	5490339993	6652427	9C 9D 9E 9F			0,5	4	+ +			
118	5490340065	6652452	9G 9H 9I	579; 580		0,05	295 / 40	+ +	Quarz Augen		
119	5490340053	6652365	9]	-	-	+ +		+ +			
120	5490340054	6652393		-		+		+			
121	5490340043	6652378		+		+ +		+ +			
122	5490340023	6652374									

GPS Punkt	Х	Y	Probe	Foto Thomas	Foto Ronny	Di-Durchm, [m]	Orientierung	Titanit	Nebengestein	Foliation	Überorägung
					, , , , , , , , , , , , , , , , , , , ,				_		
123	5490340003	6652365									
124	5490339975	6652353									-
125	5490339955	6652338									
126	5490339926	6652294									-
127	5490339901	6652271									
128	5490339902	6652212									-
129	5490339906	6652174									-
130	5490339940	6652174									-
130	5490339955	6652120									
132	5490339945	6652216				-	+				-
132	5490339945	6652265				GDS	Punkto 119 - 148 · Mafie Dy				
134	5490339933	6652200					-	yke 1			+
125	5490339922	6652228					-				
135	5400220096	6652320					-				-
127	5490339900	6652313					-				-
120	5490340000	6652300					-				-
120	5490340013	6653300					-				-
135	5490340011	0032288					-				-
140	5490340044	6652282									-
141	5490340045	6652295					-				
142	5490340088	6652275					-				-
143	5490340098	6652300					-				-
144	5490340100	6652331									-
145	5490340105	6652351									-
146	5490340109	6652369									
14/	5490340112	6652386									
148	5490340082	6652398									
149	5490340140	6652300					-		Knotenschiefer		
150	5490340186	6652293				0,5			Quarz Augen		
151	5490340209	6652269									
152	5490340456	6651924	9K				-		Knøtenschiefer	355 / 90	ja
153	5490340482	6651746									ja
154	5490340378	6652711							Biotitschiefer + Quarz Augen	327 / 90	
155	5490340356	6652701									
156	5490340325	6652667									
157	5490340311	6652660									
158	5490340278	6652644									
159	5490340264	6652618									
160	5490340242	6652591									
161	5490340224	6652579									
162	5490340229	6652560									
163	5490340211	6652540									
164	5490340201	6652524									-
165	5490340190	6652485				GPS	Рипкте 154 - 177 : Ма́тс Dy	/ке z			
166	5490340216	6652499									
167	5490340222	6652531									
168	5490340231	6652545									
169	5490340249	6652569									
170	5490340264	6652603									
171	5490340280	6652627									
172	5490340312	6652643									
173	5490340336	6652662									
174	5490340364	6652669									
175	5490340381	6652674									
176	5490340335	6652674	10A 10B								
177	5490340412	6652730	10C 10D							345 / 90	
178	5490340458	6652276				0,2	5				
179	5490340401	6652261				0,3	015 / 45				ja
180	5490340384	6652229									
181	5490340359	6652244	10E								ja
182	5490340355	6652245				0,5	015 / 58				
183	5490340335	6652234			238; 239	0,2		~ 5 vein vol%			

GPS Punkt	Х	Y	Probe	Foto Thomas	Foto Ronny	Di-Durchm. [m]	Orientierung	Titanit	Nebengestein	Foliation	Überprägung
184	5490340340	6652247		585		1		~ 1 vein vol%			
185	5490340377	6652253							-		
186	5490340371	6652108				0,5	156		Knotenschiefer	240 / 80	
187	5490340377	6652072				1			-		
188	5490340381	6652047								1	
189	5490340384	6652051									
190	5490340418	6651992									
191	5490340423	6651974		590 - 592							
192	5490340429	6651972									
193	5490340485	6651985	10F								
194	5490340387	6652107		599							
195	5490340390	6652077	11A 11B	600 - 602				~ 1 vein vol%			
196	5490340409	6652030		603; 604							
197	5490340660	6652120	11C 11D	605 - 610		1,5					
198	5490340693	6652112									
199	5490340732	6652097									
200	5490340759	6652103		611; 612							
201	5490340791	6652085				[]				I	
202	5490340818	6652064									
203	5490340847	6652057				2					
204	5490340872	6652042									
205	5490340609	6651860				0,05					
206	5490340600	6651865				0,4					
207	5490340580	6651876		T T							T
208	5490340573	6651891									
209	5490340578	6651902									
210	5490340590	6651914						1			
211	5490340591	6651929									
212	5490340556	6651903				1					
213	5490340456	6651871								T	
214	5490340464	6651903				0,2		1		1	
215	5490340454	6651909				1		1		T	
216	5490340450	6651920		1		1 1		1		1	
217	5490340398	6651930				0,2		I		I	I

10.3 Flüssigkeitseinschlüsse: Rohdaten und Berechnungen

Gruppe 1:

V (Einschluss)	V (Blase)	V(B) / V(E)	Mittelwert
14837	426	2,87	
43428	573	1,32	7 77
31110	732	2,35	2,37
16700	492	2,95	
32474	2832	8,72	
12092	1260	10,42	
6208	800	12,89	
9235	908	9,83	
3744	288	7,69	
3696	398	10,77	9,61
4370	472	10,80	
18360	1528	8,32	
14479	1106	7,64	
2179	380	17,44	
55128	641	1,16	

Tm	Th
[°C]	[°C]
-10,3	36,0
-14,2	35,0
-12,0	46,9
-11,4	53,0
-12,1	53,0
-14,0	68,7
-5,2	83,0
-5,9	235,0
-5,2	356,3
-6,8	341,0
-7,0	286,3
-7,0	240,0
-7,0	348,0
-5,4	224,2
-5,8	165,0
-5,8	350,0
-5,2	164,0
-4,5	269,0
-5,3	132,4
-5,2	136,3

Gruppe 2:

Gruppe	3:
--------	----

	V (Einschluss)	V (Blase)	V(B) / V(E)	Mittelwert
bubble salz	15444	1135	7.35	
outbre suit	7611	668	8,78	
	7856	749	9.53	
	8975	1263	14.07	
	25613	1885	7.36	
	9417	882	9.37	
	7020	592	8.43	11 m 1 m 1 m 1
	8112	668	8.23	8,87
	11890	1313	11.04	
	16020	256	1.60	
	5074	451	8.89	
	7692	860	11.18	
	5046	489	9,69	
	13169	1135	8,62	
bubble salz fest	8530	540	6,33	
	12356	1663	13,46	
	18156	1663	9,16	
	33696	938	2,78	6.18
	11617	668	5,75	0,10
	56025	2377	4,24	
	97499	3436	3,52	
	35646	1490	4,18	
	27000	1000	6.72	
bubble saiz saiz	2/989	1880	0,72	
	7662	1024	12 26	10,12
	/003	1024	13,30	
	3370	090	11,34	
multi comp	38500	2216	5.76	
	50069	2960	5.91	
	56835	3108	5,47	
	41418	2602	6,28	
	148167	5480	3,70	5,14
	83961	4645	5,53	
	69334	3219	4,64	
	53909	2884	5,35	
	145574	5206	3,58	

T_h (CO₂) V_m (CO₂)

[cc/mol]

47,332 48,021

49,336 49,336

49,447 49,522

49,674 49,867 50,677 51,108 51,838

53,202 53,476 54,286

54,970 55,035

55,100

55,567

55,774 56,423

56,498

59,886 65,902 73,721

[°C]

-0,4 1,8

5,6 5,6

5,9 6,1 6,5 7,0 9,0

10,0 11,6 14,3 14,8 16,2

17,3 17,4

17,5

18,2

18,5

19,4 19,5

23,3 27,3 29,7

FI Nummer	Th (L+V->L)	T _{solv} Salzkristall groß, kubisch	T _{solv} Salzkristall hellblau rundlich	T _{solv} Kristall gelblich rundlich groß	T _{solv} durchsichtig (weiss)	T _{solv} Kalzit klein dunkelblau	Sonstiges
	[°c]	[°c]	[°c]	[°C]	[°c]	[°c]	
1	115,4	160				240	
2	115,4						310°C: kaputt
m	115,4	150				240	
4	110	170	150				
ы	115,4	150					
9	130	150	100				220°C: kaputt
7	115,4	160	100				210°C: 2 Kristalle; 220: kaputt
8	115,4	180	150			220	
տ	130	150	150				
10	130						230°C: kaputt
11	130	200					220°C: kaputt
12	130	190					
13	140	140	140				200°C: kaputt
14	140						230°C: kaputt
15	160	240					
16	120			408,3	270		
17	110	230					
18	130	190					
19				×	-		kaputt
20	110	200					2 Kristalle
21	108	200					
22	130						
23					1		kaputt
24	110	170					200°C: kaputt
25	120	170	110				
26	140	160	110	240			
27	140						200°C: kaputt
28	108	150					
29	120	280				350	
30	130	200		367,3			
31	120	150	120		160		
32	120	180	120				
33	120		140				
34	150	190		300			
35	150	190		320		260	
36	150	190		575,3			

Gruppe 3:

10.4 Elektronenstrahlmikrosonde: Rohdaten und Berechnungen

Titanit hell (Schliff 2Eb)

	SiO ₂	Al ₂ O ₁	CaO	Ti0 _z	FeO	Fe ₂ O ₃	P ₂ O ₅	Nh ₂ O ₅	Y203	La ₂ O ₃	Ce ₂ 0 ₃	Pr201	Nd ₂ O ₃	Sm ₂ O ₃	Gd203	Th0 ₂	Hog03	Yb203	E REE	TOTAL
			_					-				-				_				
Messung	mass%	mass%	mass%	mass%	mass%	mass%	mass%	mass%	mass%	mass%	mass%	mass%	mass%	mass%	mass%	mass%	mass%	mass%	mass%	mass%
2Eb Tit hell 1	29,740	0,599	26,783	35,642	2,024	2,249	0,038	1,288	1,462	0,192	0,075	i b d i	1,151	0,095	0,236	0,062	0,149	0,126	3,486	99,887
2Eh Tit hell 2	29,314	0,661	26,144	35,628	2,074	2,304	0,045	1,283	1,597	0,120	0,076	0,042	0,925	0,096	0,239	0,080	0,178	0,132	3,399	98,858
ZEb Tit hell 3	29,189	0,655	26,792	35,637	2,093	2,325	0,044	1,416	1,495	0,212	0,073	bd.i	0,839	0,109	0,252	0.017	0,253	0,115	3,347	99,412
2Eb Tit helf 4	29,327	0,578	26,389	35,679	2,075	2,305	0,072	1,628	1,484	0,203	0,077	0.052	1,108	0,120	0,251	0.059	0,167	b.d.l	3.462	99,499
ZED THEFEILS	29,778	0,657	25,232	35,540	2,112	2,346	0,057	1,509	1,344	0,237	0,092	0.0.1	1,320	0,072	0,177	0,058	0,117	0.04	3,359	99,635
2ED III ACH C	20,024	0,030	25,670	33,700	1 642	1.974	0,035	1,207	1,227	0,150	0,070	10.0.1	0.057	0,050	0,175	6.41	0,103	0,005	2.021	97,027
2Eb Tit hell 8	29.345	0.565	26,529	35,957	1,042	2.086	0.018	1,507	1.386	0.137	0.080	0.863	1.076	0.045	0.192	0.035	0.163	0.085	3227	99,037
2Eb Tit bell 9	Z9.485	0.528	25.846	35,907	1,916	2,129	b.d.l	1.519	1.347	0,219	0.091	bd.	1.041	0.112	0.200	0.037	0.153	0.093	3.256	98,707
2Eb Tit hell 10	29,009	0,602	26,559	35,655	2,100	2,333	0,016	1,431	1,347	0,242	0,065	b.d.i	1,116	0,068	0.163	0.028	0,146	0,114	3.261	98,894
2Eb Tit hell 71	29,395	0,600	26,327	35,859	1,901	2,112	0,008	1,434	1,326	0,169	0,074	h d.l	1,269	0,105	0,183	b d.)	0,117	0,043	3,286	99,021
2Eb Tit hell 12	29,141	0,631	26,360	35,776	1,927	2,141	b.d.l	1,492	1.334	0,158	0,084	b.d.l	1,435	0,048	0,174	0.021	0,190	0,057	3,480	99,042
2Eb Tit hell 13	29,397	0,658	26,435	35,829	1,961	Z,179	0,021	1,424	1,479	0,232	0,088	p'q'i	1.071	0,121	0,262	b.d.1	0,216	0,085	3,554	99,497
2Eh Tit hell 14	28,926	0,592	26,328	35,784	2,014	2,238	0,037	1,446	1,483	0,269	0,068	h d.1	1,139	0,141	0,210	0,049	0,082	0,176	3,568	98,968
2Eb Tit hell 15	29,162	0,654	26,062	35,691	2,100	2,333	b.d.l	1,334	1,447	0,179	0,085	0,042	1,15Z	0,095	0,244	b.d.l	0,182	0,118	3,544	98,780
ZED Tithell 16	29,137	0,549	26,558	35,906	2,014	2,238	0,014	1.316	1,358	0.231	0,081	10 01 1	1,279	0,099	0,214	0.041	0,135	0.068	3,465	99,183
2Eh Litzell 17 7Eh Tithell 18	29,287	0.645	26,331	35,795	2,030	2,255	0,052	1,591	1 294	0,207	0.083	0.0.1	1,036	0,108	0,175	0.054	0,218	0,114	3,330	99,303
2Eb Tit hell 19	29,877	0.542	26 627	35 823	1 907	2,300	6,645 h.d.l	1558	1.335	0.234	0.055	b.d.i	1393	0.085	0.189	0.015	0.156	0.069	3 5 2 7	100.088
2Eh Tit hell 20	29.653	0.588	26.253	35.857	1.904	2.115	b.d.l	1.423	1.429	0.192	0.075	0.087	1.106	0.114	0.252	0.027	0.144	h.d.l	3.399	99.315
2Eb Tit hell 21	29,488	0,578	26,559	35,922	1,899	2,110	b.d.l	1,284	1,267	0,176	0,080	b d.i	0,983	0,122	0,189	0,053	0,133	0,129	3,079	99,073
2Eb Tit hell 22	29,753	0,623	26,643	35,792	2,010	2,233	þ.d.l	1,465	1,407	0,243	0,095	lb d.i	1,220	0,057	0,154	0,029	0,104	0,114	3,404	99,942
2£h Tit hell 23	29,641	0,536	26,099	35,759	2,123	2,359	0,046	1,505	1,461	0,176	0,080	fa di d	0,973	0,077	0,224	0,072	0,227	0,080	3,300	99,317
2Eb Tit hell 24	29,774	0,499	26,605	35,961	1,941	2,156	0,007	1,474	1,433	0,139	0,075	b.d.l	1,162	0,076	0,192	0,021	0,174	0,133	3,383	99,980
2Eb Tit hell 25	30,046	0.574	26,191	35,629	2,048	2,275	0,060	1,497	1,452	0,145	0,075	p.d.l	1.288	0.139	0,258	0,028	0,176	0.056	3,589	99,889
2Eb Tit hell 26	-30,156	0,526	26,515	35,864	1,956	2,173	b.d.l	1,455	1,345	0,165	0,075	b d.t	1,326	0,066	0,167	b.d.1	0,174	0,107	3,425	100,114
ZED THE BEIL 27	30,588	0,637	20,435	35,943	1,971	2,190	0,009	1,322	1,350	0,161	0,078	0,080	1,336	0,104	0,208	0,025	0,162	Dudle	3,505	100,454
250 Litthell 20 25b Tithell 20	20,782	0.373	26,520	35,798	1 080	2,230	0,057	1,594	1,355	0,155	0,035	0.037	1,130	0,109	0,344	0,036	0,193	5.0.1 5.d l	3,307	99,975
25h Tit hell 30	30.251	0.524	26.542	35,756	2.170	2.411	0.045	1.269	1.552	0.287	0.057	hdl	1.146	0.081	0.205	0.058	9,236	0.146	3.721	109.587
2Eb Tithell 31	29,977	0,619	25,959	35,776	2,141	2,379	0,040	1,351	1,682	0,189	0,087	0,041	1,280	0,085	0,209	0,060	0,167	0,12B	3,868	100,029
2Eh Tithell 32	30,405	0,528	26,601	36,198	2,029	2,254	0,015	1,141	1,369	0,174	0,065	b.d.l	1,127	0,068	0,202	0,030	0,180	0,067	3,252	100,425
2Eb Tit hell 33	30,236	0.542	26,697	35,804	2,130	2,366	0,048	1,510	1,454	0,293	0,088	b d.i	1,342	0,095	0,232	0.038	0,294	0,048	3,846	101,087
2Eb Tit hell 34	30,450	0,532	26,360	35,859	2,169	2,410	0,041	1.569	1,530	0,117	0,069	0,042	1,121	0,092	0,193	0,073	0,229	0,174	3.567	100,861
2Eh Tit hell 35	30,375	0,572	26,575	35,760	2,092	2,324	0,025	1,209	1,373	0,198	0,075	0,047	1,172	0,058	0,223	0,031	0,203	0,061	3,410	100,281
2Eb Tit hell 36	30,136	0,683	26,511	35,666	2,152	2,391	0,028	1,294	1,504	0,126	0,077	bd.i	1,130	0,076	0,182	0,046	0,225	0,051	3,371	100,126
2ED FILLER 37	20,913	0,545	26,423	35,763	2,132	2,369	0,028	1,160	1,391	0,132	0,074	0.029	1,297	0,009	0,189	0,016	0,190	0.01	3,297	99,970
2Eh Tit bell 39	30 182	0.671	26,437	35 876	2,097	2,.1.10	0.015	1,403	1390	0,177	0.074	0,030	1,240	0,070	0.237	0.041	0,210	U,UIZ	3,470	99.954
2Eb Tit hell 40	30.606	0.515	26 7 14	35 725	2138	2.375	0,013	1 612	1.501	0.266	0.096	0.046	1 352	0.086	0.201	0.055	0 113	0.098	3759	101.412
2Eh Tit hell 41	30,407	0,534	26,329	35,591	2,095	2,328	0.044	1.534	1,500	0,155	0,102	0,087	1,429	0,077	0,188	0.024	0,109	0.065	3.712	100,503
ZEb Tit heli 4Z	30,144	0,522	26,191	35,676	2,101	2,334	0,059	1,579	1,451	0,201	0,099	0,053	1,497	0,101	0,228	0,045	0,211	0,102	3,943	100,493
2Eb Tit hell 43	30,213	0.621	26,329	35,662	2,151	2,390	0,044	1,585	1,550	0,196	0,097	0,038	1,494	0,106	0,233	0,033	0,193	0.074	3,981	100,858
2Eh Tit hell 44	30,189	0,626	25,955	35,577	2,084	2,315	0,043	1,643	1,475	0,225	0,092	h.d.l	1,242	0,065	0,207	0,069	9,236	p'q'	3,542	99,959
2Eb Tit hell 45	30,267	0,521	26,106	35,642	2,116	2,351	0,055	1,658	1,463	0,284	0,095	b d.i	1,357	0,076	0,225	0,050	0,201	0,079	3,780	100,430
2Eb Tit hell 46	30,312	0,578	26,336	35,625	2,126	2,362	0,059	1.562	1.385	0.256	0,085	0,117	1,114	0,085	0,185	0.057	0,151	0,177	3,555	100,446
ZEb Tit hell 47	30,554	0,511	26,683	35,635	2,037	2,263	0,056	1,476	1,388	0,229	0,085	b d.i	1,474	0,094	0,255	0,048	0,140	5.d.)	3,665	100,901
ZED THE BOIL 48	30,623	0,620	26,419	35,624	2,070	2,300	0,049	1,734	1,442	0,190	0,090	Dd.i	1,175	0,088	0,232	0,028	0,147	0,072	3,436	100,833
720 LICUGH 4A	30,552	0,605	20,519	35,039	2,116	2,346	0,000	1,032	1,342	0,278	0,071	0,076	1188	0,143	0,383	0,054	0,235	0,066	3,682	101,089
MAX	30,623	0.683	26,910	36,198	2,170	2,411	0,072	1,734	1.682	0,293	0,102	0.132	1,497	0,145	0,283	0.080	0,294	0,177	3.981	101,412
MUN	28,894	0,499	25,676	35,577	1,642	1,824	b.d.l	1,106	1,267	0,117	0,061	b.d.l	0,839	b.d.l	0,163	bd.	0,082	b.d.l	3,031	97,627
MITTELWEAT	Z9.839	0.585	26,398	35,768	2,039	2,266	0,032	1,443	1.422	0,199	0.080	0.023	1,192	0.091	0.212	0.038	0.177	0.076	3.471	99,839

Titanit hell (Schliff 2Eb)

	Si	Al	Ca	Ti	Fe	P	Nb	Y	La	Ce	Pr	Nd	Sm	Gd	Th	Ho	Yb	0	EREE	ΣAl+Fe+Ti	ENb+REE+Ca
			- i																		
Messung	Number	of ions o	on the ba	sis of fou	r Si		- 1		i i										i i		
2Eb Tit heil 1	4,000	0,095	3,859	3,606	0,205	0,004	0,078	0,105	0,010	0,004	0,000	0,055	0,004	9,011	0,002	0,006	0,005	20,030	0,200	3,905	4,137
2Eb Tit hell 2	4,000	0,106	3.822	3.657	0,213	0,005	0,079	0.116	0.006	0.004	0,002	0.045	0.004	0.011	0.002	0,008	0.005	20,131	0.201	3,976	4,102
2Eb Tit hell 3	4,000	0,106	3,932	3,673	0,216	0,005	0,088	0,108	0,011	0,004	0,000	0,041	0,005	0,012	0,001	0,011	0,005	20,289	0,197	3,995	4,216
2Eb Tit hell 4	4,000	0,093	3,856	3,660	0,213	0,008	0,100	0,108	0,010	0,004	0,003	0,054	0,006	0,011	0,002	0,007	0,000	20,214	0,203	3,966	4,159
2Eb Tit hell S	4,000	0.104	3,775	3,601	0,213	0,006	0,092	0,096	0.012	0.005	0,000	0.063	0,003	0,008	0.002	0,005	0,000	19,989	0.192	3,918	4.059
2Eb Tit hell 6	4,000	0,088	3,808	3,/18	0,209	0,006	0,087	0,099	0,008	0,004	0,000	0,053	0,003	9,008	0,002	0,007	0,003	20,200	0,183	4,015	4,078
ZED inchell 7	4,000	0,107	3,933	5,/3/	0,171	0,000	0,083	0,101	0,012	0,004	0,000	0,047	0,000	0,009	0,000	0,004	0,004	20,344	0,181	4,035	9,197
ZED UILACH 8	4,000	0,091	3,874	3,080	0,193	0,002	0,093	0,101	0,007	0,004	0,003	0,052	0,002	0,009	0,001	0,007	0,004	20,194	0,158	3,970	4,133
AED HUREN 9	4,000	0,004	3,730	2,004	0,170	0.007	0,095	0,097	0.011	0,000	0,000	0,050	0,000	0,007	0,001	0,007	0,004	20,021	0.100	4.047	4,037
26b Tit holl 11	4,000	0,050	2 8 2 8	3,070	0,210	0,002	0,005	0,075	0.002	0,003	0,000	0,033	0,003	0,007	0,000	0,000	0,003	20,303	0,191	2 941	4,2114
7Eb Tit holl 17	4,000	0,090	3,030	3,670	0,193	0,001	0,000	0,090	0,000	0,004	0,000	0,002	0,003	0,008	0,000	0,003	0,002	20,122	0,190	3,901	4 170
2Eb Tit hell 13	4.000	0.106	3,010	3,667	0,100	0.007	0,095	0.107	0,000	0,004	0,000	0.057	200,0	0,000	6,661	0,000	0,002	20,190	0,201	3 973	4 147
2Eb Tit hell 14	4.000	0.096	3 900	3 722	0.210	0.004	0.090	0 109	0.014	0.003	0,000	0.056	0.007	0.010	0.002	0.004	0.007	20.358	0,210	4.028	4.201
2Eh Tit hell 15	4.000	0.106	3,830	3.682	0.217	0.000	0.083	0.106	0.009	0.004	0.007	0.056	0.004	0.011	0.000	0.008	9.005	20,193	0.206	4,005	4.178
2Eb Tit heil 16	4.000	0.089	3.906	3,707	6.268	0.002	0.082	0.099	0.012	0.004	0.000	0.063	0.005	9.010	0.000	0.006	0.003	20,276	0.201	4,004	4.189
2Eb Tit helf 17	4,000	0.099	3.856	3.677	0.209	0.007	0.095	0.103	0.010	0.004	0.000	0.051	0.005	0.008	0.001	0.009	0.005	20.222	0.195	3,985	4.146
2Eb Tit hell 18	4,000	0,103	3,910	3,654	0,212	0,005	0,084	0,101	0,010	0,003	0,000	0.052	0,006	0,007	0,00Z	0,011	0,003	20,205	0,193	3,969	4,187
2Eb Tit hell 19	4,000	0,086	3,819	3,607	0,192	0,000	0,094	0,095	0,012	0,003	0,000	0,067	0,004	0,008	0,000	0,007	0,003	19,984	0,198	3,885	4,112
2Eb Tit hell 20	4,000	0,093	3,794	3,638	0,193	0,000	0,087	0,103	0,010	0,004	0,004	0,053	0,005	0,011	0,001	0,006	0,000	20,013	0.196	3,925	4,077
2Eb Tit hell 21	4,000	0,092	3,860	3,665	0,194	0,000	0,079	0,091	0,009	0,004	0,000	0,048	0,006	9,008	0,00Z	0,006	0,005	20,085	0,177	3,951	4,116
2Eb Tit hell 22	4,000	0,099	3,837	3,619	0,203	0,600	0,089	0,101	0,012	0,005	0,000	0,059	0,003	0,007	0,001	0,004	0,005	20,046	0,195	3,921	4,121
2Eb Tit hell 23	4,000	0,085	3,773	3,629	0,216	0,005	0,092	0,105	0,009	0,004	0,000	0,047	0,004	0,010	0,002	0,010	0,003	20,017	0,191	3,930	4,056
ZEb Tit hell 24	4,000	0,079	3,829	3,634	0,196	0,001	0,090	0,102	0,007	0,004	0,000	0,056	0,004	0,009	0,00 I	0,007	0,005	20,027	0,194	3,909	4,112
2Eb Tit hell 25	4,000	0,090	3,735	3,568	0,205	0,007	0,090	0,103	0,007	0,004	0,000	0,061	0,006	0,011	0,001	0,007	0,002	19,861	0,202	3,863	4,028
26b Tit hell 26	4,000	0,082	3,768	3,57B	0,195	0,000	0,087	0,095	0,008	0,004	0,000	0,063	0,003	0,007	0,000	0,007	0,004	19,845	0,191	3,855	4,047
ZEb Tit hell 27	4,000	0,099	3,728	3,558	0,195	0,001	0,079	0,095	0,008	0,004	0,004	0,063	0,005	8,009	0,00 I	0,688	0,000	19,778	0,195	3,853	4,001
2Eb Tit heil 28	4,000	0.090	3,799	3,595	0,202	0,006	0,096	0,096	0,009	0.004	0,000	0,054	0,005	9,011	0,001	0,008	0,000	19,970	0,198	3,888	4,084
Zeb Tithen 29	4,000	0,087	3,756	3,603	0,201	0,006	860'0	0,098	0,0091	0,004	0,002	0.058	0,007	0,010	0,002	0,007	0,000	13,348	0,194	3,891	4,048
ZED FILDER 3D	4,000	0,082	3,759	5,555	0,216	0,005	0,076	0,109	0,014	0,003	0,000	0,054	0,004	0,009	0,002	0,010	0,006	19,8.19	0,209	3,852	4,04.4
JED III REI 31	4,000	0,097	2740	3,371	0,215	0,005	0,081	0,119	0,009	0,004	0,002	0,051	0,004	0,009	0,002	0,007	0,005	10,911	0,221	3,903	3,000
260 7 tt neil 34	4,000	0.002	7 794	3,302	0.201	0.602	0,000	0,070	0,008	0.003	0.000	0,033	0,003	0,009	0,001	0,000	0,003	19,700	0,102	3,004	4.097
2Eb Tit hell 34	4,000	0,003	3,704	3,503	0,214	0,000	0,090	0,102	0,014	0,009	0,000	0,003	0.004	0,010	0,001	0,015	0,002	19,213	0,213	3,037	4,007
2Eb Tit hell 35	4,000	0,082	3 749	3547	0 207	0.003	0.072	0.096	0,000	0,003	0,002	0.055	0,004	0.010	0,002	0,010	0,007	19751	0,190	3 838	4 011
2Eb Tit bell 36	4.000	0.107	3,770	3,561	0.715	0.003	0.078	0 106	0.006	0.004	0,000	0.054	0.003	0.008	0.001	0.009	0.002	19.868	0.193	3,892	4.040
2Eb Tit hell 37	4.000	0.084	3,723	3.538	0.211	0.003	0.069	0.094	0,006	0.004	0.000	0.059	0.003	0.008	0.000	0.008	0.000	19.697	0.182	3.833	3.974
2Eb Tit hell 38	4,000	0.095	3.741	3,546	0,208	0.002	0.072	0.097	0.009	0,003	0.002	0.059	0.004	0.009	0.001	0,009	0.002	19,766	0.195	3,849	4.008
ZEb Tit hell 39	4,000	0,097	3,743	3,576	0,208	0.002	0,066	0,097	0,008	0,004	0,006	0,053	0,005	0,010	0,001	0,010	0,000	19,814	0,193	3,881	4,001
2Eb Tit hell 40	4,000	0,079	3,740	3,512	0,210	0,006	0,095	0,104	0,013	0,005	0,002	0,063	0,004	0,009	0,002	0,005	0,004	19,766	0,208	3,801	4,044
26b Tit hell 41	4,000	0,083	3,711	3,521	0,207	0,005	0,091	0,105	0,008	0,005	0,004	0,067	0,003	0,008	0,001	0,005	0,003	19,742	0,208	3,812	4,009
ZEb Tit hell 42	4,000	0,082	3,723	3,561	0,210	0,0117	0,095	0,102	0,010	0,005	0,003	0,071	0,005	0,010	0,001	0,009	0,004	19,865	0,218	3,85Z	4,036
2Eb Tit heil 43	4,000	0,097	3,734	3,551	0,214	0,005	0,095	0,109	0,010	0,005	0,00Z	0,071	0,005	9,016	0,001	0,008	0,003	19,888	0,222	3,862	4,051
2Eb Tit hell 44	4,000	0.098	3.684	3,545	0.208	0,005	890.0	0.104	0,011	0.004	0,000	0.059	0,003	0.009	0,002	0,010	0.000	19,796	0,200	3,851	3,983
2Eb Tit hell 45	4,000	0,081	3,696	3,543	0,210	0,006	0,099	0,103	4,014	0,005	0,000	0,064	0,003	0,010	0,002	0,098	0,003	19,801	0,210	3,834	4,006
2Eb Tit heil 46	4,000	0,090	3,723	3,536	6,211	0,007	0,093	0,097	0,012	0,004	0,006	0,05Z	0,004	9,008	0,002	0,006	0,007	19,795	0,197	3,837	4,014
266 Tit hell 47	4,000	0.079	3,741	3,508	0,201	0,006	0,087	0,097	0,011	0.004	0,000	0,069	0.004	0,011	0.001	0,006	0,000	19,715	0,202	3,787	4,030
ZED Tit heil 48	4,000	0,095	3,697	3,500	0,203	0,005	0,102	0,100	0,009	0,004	0,000	0,055	0,004	0,010	0,001	0,006	0,003	19,703	0,191	3,799	3,991
zeo richen 49	4,000	0,093	3,720	3,509	0,208	0,007	0,097	0,093	0,013	0,003	0,004	0,056	0,006	0,012	0,002	0,010	0,003	19,753	0,201	3,811	4,017
MAX		0 102	3 9 3 3	3 752	0.719	0.009	0102	0.119	0.014	0.005	0.006	0.071	0.007	8.012	8.802	0.017	8.007	70359	8 222	4.035	4 716
MIN		0.079	3,684	3,500	0.171	0,000	0.066	0.091	0.004	0,003	0,000	0.041	0,007	0.007	0,002	0.004	0,000	19 607	0.177	3,797	3.974
MITTELWERT		0,092	3,792	3,607	0,206	0.004	0,087	0,101	0,010	0,0114	0,001	0,057	0,004	0.009	0,001	0.008	0,003	19,981	0,198	3,906	4,077

Titanit dunkel (Schliff 2Eb)

	SiO ₂	Al ₂ 0,	CaO	Ti0 ₂	FeO	Fe ₂ O ₃	$P_z O_z$	Nb_2O_5	Y ₂ O ₃	La ₂ 0 ₃	Ce ₂ 0 ₃	Pr_2O_3	Nd ₂ O ₃	Sm ₂ O ₃	Gd20g	Th0 ₂	Ho ₂ O ₃	Yb203	E REE	TOTAL
								_												
Messung	mass%	mass%	mass%	mass%	mass%	mass%	mass%	mass%	mass%	mass%	mass%	mass%	mass%	mass%	10358%	mass%	mass%	mass%	mass%)	100.0 S + S + S + S
hicodang	1103370	1103370	1103370	111135713	111(13)3/70	1103575	10003070	11103570	Allass Pa	11113310	1100010	1103375		121013070	11112072	1143370	1003379	1110.3375	111133710	H 1000 / 1
2Eb Tit durskel 1	29 7 95	0.579	25 807	35 468	2119	2 3 5 4	0.057	1462	1510	0318	0.084	0.038	0.964	0.085	0 188	0.065	0.179	0.105	1961	99.058
ZEb Tit dunkel 2	30 021	0.539	26 398	35 586	2.083	2314	0.050	1.571	1.509	0,010	0.001	0.050	1 181	0.056	0.263	0.049	0.175	0.067	2.072	180.059
2Eb Tit durikel 3	29 926	0.603	27.056	36,951	1.371	1.523	0.008	0.933	1.077	0.142	0.043	b.d.l	0.570	0.043	0.155	0.034	0.129	0.116	1.198	99.309
2Eb Tit dunkel 4	29 804	0.676	26.475	36.033	1961	2179	0.017	1.064	1327	0,111	0.056	h.d.l	0,833	h.d.)	0.162	0.021	0.161	hdl	1 3 2 3	98,919
2Eb Tit dunkel 5	29,726	0.558	27.643	36,767	1.452	1.613	h.d.l	1.135	1.048	0.193	0.069	b.d.l	0.706	0.094	0.155	0.014	0.1361	0.0931	1,448	99.952
2Eb Tit dutikel 6	Z9.692	0.611	27.011	36,953	1.537	1,708	0.021	1.048	1.154	0.145	0.065	0.046	0.756	b.d.l	0.168	0.016	0.174	0.057	1.411	99.625
2Eb Tit dunkei 7	29,492	0,593	26,367	36,659	1,527	1,696	110.0	1,069	1,063	0,084	0,062	b.d.l	0,678	0,057	0,207	b.d.i	0,083	b.d.i	1,171	98,121
2Eb Tit dunkel 8	Z9,758	0,576	Z6,635	36,777	1,478	1,642	0,007	1,201	1,214	0,156	0,044	b.d.l	0,789	0,065	0,189	0,015	0,220	b.d.1	1,463	99,289
2Eb Tit dunkel 9	29,395	0,599	26,386	36,673	1,405	1,561	0,010	1,048	1,100	0,114	0,070	b.d.I	0,847	9,966	0,135	6,621	0,212	0,113	1,557	98,358
2Eb Tit dunkel 10	28,796	0,480	26,752	36,577	1,706	1,895	0,020	1,125	1,182	0.113	0,063	b.d.l	1,073	0,069	0.128	b.d.l	0,105	b.d.l	1,551	98,378
ZEb Tit dunkel 11	Z9,401	0,590	Z6,515	36,468	1,703	1,892	0,026	1,200	1,220	0.096	0,063	b.d.l	1,155	h.d.)	0,175	0,023	0,134	0,055	1,678	99,013
2Eb Tit dunkel 12	Z9,189	0,530	26,869	36,515	1,638	1,820	0,027	1,038	1,261	0,159	0,044	b.d.I	-1,164	0,061	0,218	0,016	0,233	0,155	2,034	99,298
2Eb Tit dunkel 13	29,232	0,577	26,115	36,465	1,707	1,896	0,018	1,030	1,239	0,085	0,068	0,040	0,690	0,062	0,181	b.d.l	0,148	0,071	1,345	97,917
2Eb Tit dunkel 14	29,315	0,486	26,892	36,747	I,489	1,654	h.d.l	1,099	1,121	0,109	0,053	0,064	0,675	h.d.l	0,064	b.d.f	0,149	0,054	1,168	98,482
2Eb Tit dunkel 15	29,676	0,545	26,543	36,728	1,423	1,581	0,007	1,000	1,144	0,040	0,058	b.d.l	0,769	0,075	0,147	0,023	0,089	0,101	1,279	98,526
2Eb Tit dunkei 16	29,610	0,561	26,914	36,662	1,485	1,650	0,025	1,061	1,047	0,046	0,048	b.d.l	0,648	0,071	0,169	b.d.l	0,143	0,057	1,362	98,912
2Eb Tit dunkel 17	Z9,676	0,572	Z6,607	36,823	1,463	1,625	b.d.l	0,898	1,102	0,114	0,053	b.d.l	0,794	b.d.)	0,098	b.d.)	0,293	0,059	1,301	98,604
2Eb Tit dunkel 18	Z9,082	0,593	26,628	36,266	1,780	1,978	0,019	1,225	1,249	0,156	0,062	b.d.I	1,068	0,043	0,189	6,614	0,194	0,057	1,759	98,81Z
2Eb Tit dunkel 19	29,795	0,596	26,339	36,195	1,789	1,988	b.d.l	1,370	1,303	0,200	0,074	b.d.]	0,948	0,051	0,167	0,024	0,170	0,149	1,759	99,369
2Eb Tit dunkel 20	29,332	0,563	Z6,300	36,175	1,751	1,945	0,011	1,462	1,377	0,168	0,071	b.d.1	1,015	0,137	0,178	0,023	0,143	0,079	1,791	98,979
2Eb Tit dunkel 21	Z9,631	0,522	26,631	36,513	1,755	1,950	0,030	1,155	1,374	0,137	0,065	0,060	0,963	0,089	0,177	0,018	0,279	0,125	1,895	99,719
2Eb Tit dunkel 22	29,842	0,525	26,544	36,466	1,729	1,921	0,023	L,154	1,284	0,139	0,053	0,070	1,074	0,041	0,164	0,028	0,278	0,084	1,903	99,690
2Eb Tit dunkel 23	29,651	0,636	Z6,50Z	36,457	I,666	1,851	h.d.1	1,276	1,240	0,173	0,066	b.d.l	0,810	0,074	0,194	b.d.f	0,203	h.d.l	1,520	99,133
2Eb Tit dunkel 24	29,51Z	0,576	26,229	36,632	1,530	1,700	0,014	1,214	1,135	0,096	0,068	b.d.l	0,727	0,055	0,203	0,025	0,131	0,120	1,400	98,437
26b Tit dunkel 25	29,984	0,627	26,747	36,548	1,479	1,643	b.d.)	1,462	1,154	0,124	0,051	b.d.]	1,022	0,061	0,118	0,029	D,128	b.d.l	1,504	99,697
2Eb Tit dunkel 26	Z9,858	0,559	26,229	36,416	1,556	1,729	0,011	1,283	1,211	0,161	0,061	p.d.1	0,886	0,099	0,174	b.d.l	0,190	0,691	1,662	98,958
2Eb Tit dunkel 27	30,242	0,611	26,699	36,308	1,592	1,769	b.d.I	1,339	1,294	0,075	0,046	b.d.l	1,131	0,097	0,172	0,014	0,224	0,117	1,862	100,139
2Eb Tit dunkel 28	30.346	0,566	26,292	36,402	1,517	1.685	0,015	1,450	1.214	0,109	0,049	D.C.	0,932	0,039	0,160	0,018	0.252	0.0.	1,541	99,529
2Eb Tit dunkel 29	30,307	0,500	26,842	36,128	2,004	2,226	0,028	1,039	1,14/	0.098	0.064	b.d.l	0,785	0,034	0,185	0,052	0,180	0,0791	1,425	99,694
ZED Fit durikel 30	30,076	0,498	27,111	36,141	2,082	2,313	D.d.I	1,002	1,208	0,143	0,059	D.G.J	1,084	0,096	0,144	0,035	0,188	0.0.1	1,714	100,099
2ED TR dunkel 31	30,447	0,504	26,563	36,141	2,010	2,633	0,017	0,885	1,290	0,108	0,054	0,0,1	0,874	0,069	0,198	0,031	0,232	0,052	1,567	99,698
ZED DIE GIERREI 32	30,525	0,637	25,548	35,243	2,035	2,201	0,021	1,005	1,241	D.O.I	0,071	0,053	1,069	0,102	0,210	0,031	0,286	n.a.i	1,791	100,304
2Eb Tit dunket 55	20,213	0,997	20,721	30,233	2,074	1,004	0,024	1,170	1,200	0,125	0,037	0.6.1	0,747	0,025	0,233	D.C.I	0,107	0.031	1,309	100,030
260 Fit dunket 35	21 061	0,020	26,717	26 770	1,999	1,000	0.0.7	1157	3,140	0,141	0,033	h d 1	0,717	0.073	0,174	hdl	0.150	0,077	1,399	180 120
260 In dunkei 35	30,0011	0,010	26,407	76.765	1,973	1,665	6,000	1.147	1,161	0.090	0,073	b.d.1	1 20.5	0,057	0.105	b.dl	0,100	0,070	1,4771	100,335
2Eb Tit dunkel 30	20 795	0,570	26711	36,703	1 472	1,605	h d l	1,192	1,122	0.097	0,060	h d 1	1117	0,030	0,135	0.015	0,202	0.072	1.761	100,302
7Eb Tit dunkel 39	30,730	0,573	26.673	36,602	1.537	1,000	bdl	1 192	1135	0.102	0.000	b d 1	0.964	0.045	0113	hdl	0.155	0,073	1 558	180,205
ZEb Tit durakel 39	30.758	0.761	26,910	35.678	2 045	2,701	b.d.l	0.913	1 283	0.085	0.010	b.d.l	1 1 8 9	0.078	0.147	b.d.t	0.245	hdl	1 803	100.378
2Eb Tit dunkel 40	30 4 79	0.586	25 832	36 2 26	1 799	1 986	h d I	0.954	1 384	0 109	0.063	h d l	1 467	0.079	0.161	h d l	0193	0.071	7 143	99 590
2Eb Tit dunkel 41	30.670	0,670	26.622	36,118	1.777	1,974	b.d.l	0.796	1,001	6.d.	0.045	h d.l	0.964	0.069	0.191	0.032	0.168	0.057	1 494	99.687
2Eb Tit dunkel 42	30.327	0.863	26,595	35.661	Z.010	Z.233	b.d.l	1.107	1.418	0.124	0.042	b.d.l	1.016	0.103	0.188	b.d.l	0.145	0.059	1.677	99.881
26b Tit dunkel 43	30.399	0.836	26.448	35,277	2.161	2,401	b.d.)	1.373	1.454	0.075	0.037	b.d.1	1.048	0.076	0.174	b.d.)	0.362	0.0.1	1,772)	99,960
2Eb Tit dunkel 44	30,692	0.614	26.364	36,107	2.014	2.238	0.025	1.034	1.184	0.117	0.056	b.d.1	1.004	0,027	9.11Z	0.047	0,140	b.d.]	1.456	99,751
2Eb Tit dutikel 45	30,426	0,477	26,811	36,073	1,968	2,186	0,021	1,150	1,204	0,113	0,078	b.d.1	1,016	0,083	0,174	0,054	0,249	0,087	1,800	100,202
2Eb Tit dunkel 46	30,659	0,550	26,946	36,131	1,979	2,199	0,012	1,060	1,236	0.191	0.067	b.d.]	0.864	0.063	0,191	0,037	0.166	0,078	1,620	100,450
ZEb Tit durikel 47	30,612	0,603	26,228	36,075	1,967	2,185	0,026	1,113	1,256	0,135	0,065	b.d.l	1,127	0,104	0,177	0,036	0,246	0,116	1,970	160,104
2Eb Tit dunkel 48	30,205	0,641	26,641	36,154	1,988	2,209	0,029	1,178	1,229	0,097	0,082	b.d.l	1,057	0,040	0,151	b.d I	0,205	0,075	1,707	99,993
									}										}	
		_														_				
MAX	31,061	0,863	27,643	36,953	2,161	2,401	0,057	1,521	1,510	0,318	0,091	0,070	1,467	0,137	0,263	0,065	0,362	0,155	2,143	100,524
MIN	28,796	0,477	25,807	35,277	1,371	1,523	b.d.)	0,796	1,047	b.d.)	0,037	b.d.l	0,570	(b.d.)	0,064	(b.d.)	0,083	b.d.1	1,168	97,927
MITTELWERT	30,015	0,589	26,594	36,361	1,731	1,923	0,021	1,139	1,226	0,127	0,060	0,053	0,950	9,968	0,169	6,029	0,185	0,087	1,619	99,498

Titanit dunkel (Schliff 2Eb)

	Si	Al	Ca	Ti	Fe	Р	Nb	Y	La	Ce	Pr	Nd	Sm	Gd	Th	Ho	Yb	0	ΣREE	ΣAl+Fe+Ti	END+REE+Ca
Maranna	Number				0.																
messung	number		n the bas		ar)
2Eb Tit dunkel 1	4,000	0,092	3,71Z	3,581	0,214	0,006	0,089	0,108	0,016	0,004	0,002	0,046	0,004	0,008	0,00Z	0.008	0,004	19,875	0,200	3,887	4,001
2Eb Tit dunkel 2	4,000	0,085	3,76B	3,566	0,209	0,006	0,092	0,107	0,012	0,004	0,002	0,056	0,003	0,012	0,001	0.005	0,003	19,893	0,204	3,860	4,064
2Eb Tit dunkel 3	4,000	0,095	3,874	3,715	0,138	0,001	0,056	0,077	0,007	0,002	0,000	0,027	0,002	0,007	0,001	0,005	0,005	19,996	0,132	3,948	4,063
2Pb Tit dunkel 4	4,000	0,107	3,807	3,637	0,198	0,002	0,065	0,095	0,005	0,003	0,000	0,040	0,000	0,007	0,001	0,007	0,000	19,942	0,157	3,942	4,028
ZED Tit dunkel S	4,000	0,088	3,985	3,721	0,147	0,000	0,069	0,075	0.010	0,003	0,000	0,034	0,004	0,007	0,000	0,006	0.004	20,168	0.143	3.957	4.197
ZED TIL BUTKELN ZED Tit dumikal 7	4,000	0,097	3,898	3,744	0.156	0.001	0,064	0.077	0.007	0,003	0,000	0.022	0.007	0.000	0,000	0.004	0,002	20,155	0.122	3,997	4,111
2ED Tit dunkel 7	4,000	0,095	3,031	2719	0,150	0,001	0,000	0,077	0,004	0,003	0,000	0.033	0,003	0,009	0,000	0,004	0,000	20,052	0,132	3,990	4,029
26b Tit dunkel 9	4,000	0.096	3 847	3,753	0,149	0.001	0.064	0,007	0.000	0.003	0,000	0.041	0.003	0.006	0,000	0.009	0.005	20108	0,153	3,993	4.064
2Eb Tit dunkel 10	4.000	0.079	3,981	3.821	0.178	0.002	0.071	0.087	0.006	0.003	0.000	0.053	0.003	0.006	0.000	0.005	0.000	20,437	0.163	4.078	4.215
2Eb Tit dunkel 11	4.000	0.095	3.865	3,732	0.174	0.003	0.074	0.088	0.005	0.003	0.000	0.056	0.000	0.008	0.001	0.006	0.002	20.177	0.168	4.001	4.107
2Eb Tit dunkel 12	4,000	0,086	3.945	3,764	0.169	0.003	0,064	0.09Z	0,008	0.002	0,000	0,057	0,003	0,010	0.000	010.0	0.006	Z0,306	0,189	4,018	4,197
ZEb Tit dunkel 13	4,000	0,093	3,828	3,753	0,176	0,002	0,064	0,090	0,004	0.003	0,002	0,034	0,003	0,008	0,000	0.006	0,003	20,133	0,154	4,022	4,046
2Eb Tit dunkel 14	4,000	0,078	3,931	3,771	0,153	0,000	0,068	0,081	0,005	0,003	0,003	0,033	0,000	0,003	0,000	0.006	0,002	20,195	0,137	4,002	4,136
2Eb Tit dunkel 15	4,000	0,087	3,833	3,723	0,144	0,001	0,061	0,082	0,002	0,003	0,000	0,037	0,003	0,007	0,001	0.004	0,004	19,995	0,142	3,954	4,036
2Eb Tit dunkel 16	4,000	0,089	3,895	3,725	0,151	0,003	0,065	0,075	0,002	0,002	0,000	0,041	0,003	0,008	0,000	0,006	0,002	20,085	0,140	3,965	4,100
2Eb Tit dunkel 17	4,000	0,091	3,842	3,733	0,148	0,000	0,055	0,079	0,006	0,003	0,000	0,038	0,000	0,004	0,000	0.008	0,002	20,014	0,140	3,972	4,037
2Eb Tit dunkel 18	4,000	0,096	3,924	3,752	0,184	0,00Z	0,076	0,091	0,008	0,003	0,000	0,05Z	0,00Z	0,009	0,000	0.008	0,002	Z0,308	0,176	4,032	4,176
ZED Tit dunkel 19	4,000	0,094	3,768	3,655	0,181	0,000	0,083	0,093	0,010	0,004	0,000	0,045	0,002	0,007	0,001	0,007	0,006	19,98Z	0,175	3,930	4,047
2ED TH AUNKEL20	4,000	0,090	3,892	3,710	0,130	0,001	0,090	0,100	0,008	0,004	0,000	0,049	0,006	0,008	0,001	0,006	0,003	20,176	0,185	3,981	4,118
260 1 it dunkel 22	4,000	0.083	3,031	3,017	0,170	0.003	0.070	16,077	0.007	0.003	0.002	0.051	0.004	0,007	0,001	0.012	0,0117	20,120	0,107	3,7517 2,924	4,107
2Fb Tit dunkel 23	4,000	0,003	3,830	3,699	0.169	0,000	0.078	0.089	0,009	0.003	0.000	0.039	0.002	0,007	0,001	0.009	0,003	20.069	0.141	3,969	4,069
2Eb Tit dunkel 24	4.000	0.092	3.809	3.734	0.156	0.002	0.074	0.082	0.005	0.003	0.000	0.035	0.003	0.009	0.001	0.006	0.005	20.062	0.148	3.982	4.030
2Eb Tit dunkel 25	4,000	0,099	3,823	3,667	0,146	0,000	0,088	0,082	0,006	0,002	0,000	0,049	0,003	0,005	0,001	0.005	0,000	19,979	0,153	3,914	4,063
2Eb Tit dunkel 26	4,000	0,068	3,764	3,669	0,157	0,001	0,078	0,086	0,008	0,003	0,000	0,042	0,005	0,008	0,000	0.008	0,004	19,914	0,164	3,914	4,006
2Eb Tit dunkel 27	4,000	0,095	3,783	3,612	0,158	0,000	0,080	0,091	0,004	0,002	0,000	0,053	0,004	0,008	0,000	0.009	0,005	19,853	0,176	3,866	4,040
28b Tit dunkel 28	4,000	0,088	3,713	3,689	0,150	0,002	0,086	0,085	0,005	0,002	0,000	0,044	0,002	0,007	0,001	0,011	0,000	19,743	0,156	3,847	3,955
2Eb Tit dunkel 29	4,000	0,078	3,795	3,586	0.199	0,003	0,062	0,081	0,005	0,003	0,000	0,037	0,002	0,008	0,002	0,008	0,003	19,768	0,146	3,863	4,003
2Eb Tit dunkel 30	4,000	0,078	3,863	3.615	0,208	0,000	0,060	0,085	0,007	0.003	0,000	0,051	0,004	0,006	0,001	0.008	0,000	19,924	0,166	3.902	4,089
2Eb Tit dunkel 31	4,000	0,078	3,739	3,571	0,199	0,002	0,053	0,090	0,005	0,003	0,000	0,041	0,003	0,009	0,001	0.010	0,002	19,678	0,163	3,848	3,954
2Eb Tit dunkel 32	4,000	0,098	3,727	3,572	0,201	0,002	0,060	0,087	0,000	0,003	0,003	0,050	0,005	0,009	0,001	0,012	0,000	19,729	0,168	3,871	3,955
260 10 dunkei 33 26b Tit dunkei 33	4,000	0,077	3,783	3,575	0.205	0,000	0,058	0.070	0.007	0.003	0,000	0.044	0,001	0,010	0,000	0.007	0.000	19,709	0,150	3,850	2 950
26b Tit dunkel 14	4,000	0,093	3,731	3,007	0,147	0,000	0,007	0.077	0,007	0,003	0,000	0,040	0.003	0,000	0,000	0.004	0,005	10,703	0,150	2 704	3,750
2Eb Tit dunkel 36	4 000	0.092	3 7 3 4	3,620	0.148	0,000	0.068	0.078	0,005	0.003	0,000	0.056	0.007	0,000	0,000	0.012	0.002	19.751	0.165	3,850	3,967
2Eb Tit dunkel 37	4,000	0.087	3,717	3,596	0.144	0.000	0.064	0.079	0.005	0.003	0.000	0.052	0.002	0.006	0.000	0.010	0.003	19.654	0.159	3.827	3,940
2Eb Tit dunkel 38	4,000	0,068	3,715	3,579	0,150	0,000	0,070	0,079	0,005	0,002	0,000	0,045	0,002	0,005	0,000	0.006	0,005	19,627	0,149	3,816	3,934
2Eb Tit dunkel 39	4,000	0,117	3,749	3,490	0,200	0,000	0,054	0,089	0,004	0,003	0,000	0,055	0,003	0,006	0,000	0.010	0,000	19,594	0,171	3,806	3,974
28b Tit dunkel 40	4,000	0,091	3,632	3,576	0,177	0,000	0,057	0,097	0,005	0,003	0,000	0,069	0,004	0,007	0,000	0,008	0,003	19,619	0,195	3,843	3,884
2Eb Tit dunkel 41	4.000	0.103	3.720	3.543	0.174	0,000	0.047	0.091	0.000	0.002	0.000	0.045	0,003	0,008	0.001	0.007	0.002	19.579	0.159	3.820	3.925
2Eb Tit dunkel 42	4,000	0,134	3,758	3,53R	0,199	0.00	0,066	D, 10 M	0,006	0,002	ព,ពកា	0,048	0,005	N,008	0,000	0.006	0.002	19,764	0,177	3,871	4,001
2Eb Tit dunkel 43	4,000	0,130	3,728	3,491	0,214	0,000	0,082	0,102	0,004	0,002	0,000	0,049	0,003	0,008	0,000	0.015	0,000	19,704	0,183	3,835	3,993
2Eb Tit dunkel 44	4,000	0,094	3,662	3,540	0,198	0,003	0,061	0,082	0,006	0,003	0,000	0,047	0,001	0,005	0,001	0.006	0,000	19,587	0,149	3,832	3,892
2EB TH dunkel 45	4,000	0,074	3,776	3,567	8,195	0,002	0,068	0,084	0,005	0,004	0,000	0,048	0,004	0,008	0,002	0,010	0,003	19,742	0,166	3,835	4,011
200 TH dunkel 46 265 Tirdunkel 42	4,000	0,085	3,766	3,345	0,194	0,001	0,063	0,086	0,009	0,003	0,000	0,040	0,003	0,008	0,001	0,007	0,003	19,877	0,160	3,824	3,988
ZED JIL BURKEL 47	4,000	0.043	3,072	3,595	0.100	0,003	0,000	0,087	0,007	0,003	0,000	0,053	0,005	0,008	0,001	0.010	0,005	19,031	0.165	3,834	3,919
PED 11 GRUNG 40	4,000	0,100	3,780	2,001	0,120	0,003	0,071	u,ud /	0,005	0,004	0,000	0,030	0,002	0,007	0,000	0.009	0,003	19,002	0,105	3,077	7,010
MAX		0,134	3,985	3,821	0,214	0,006	0,092	0,109	0,016	0,004	0,003	0,069	0,006	0,012	0,002	0,015	0,006	20,437	0,204	4,078	4,215
MITTELWERT		0,074	3,632	3,490	0,138	0,000	0.047	0,075	0,000	0,002	0,000	0,027	0,000	0,003	0,000	0,004	0,000	19,513	0,132	3,796	3,865
PRETERVENT		0,092	2/40	3,040	0,173	0,002	0,009	0,087	0,000	0,003	0,000	0,045	0,005	0,007	0,001	0,008	0,003	12/202	0,102	3,712	4,029

Titanit hell (Schliff 6H)

	SiO ₂	Al_2O_3	CaO	TiO ₂	FeO	Fe ₂ O ₃	P_2O_5	Nb ₂ O ₅	¥203	La ₂ O ₃	Ce ₂ O ₃	Pr ₂ O ₃	Nd ₂ O ₃	Sm ₂ O ₃	Gd ₂ O ₃	ThO ₂	Ho ₂ O ₃	Yb ₂ O ₃	S REE	TOTAL
	_																			
Messung	mass%	mass%	mass%	mass%	mass%	mass%	mass%	mass%	mass%	mass%	mass%	mass%	mass%	mass%	mass%	mass%	mass%	mass%	mass%	mass%
6H Tit bell 1	29,137	0,481	24,569	35,363	2,044	2,271	0,067	1,805	1,403	0,184	0,854	0,136	1,337	0,074	0,209	0,036	0,201	0,102	3,097	98,229
6H Tit bell 2	28,254	0,602	24,666	35,543	2,055	2,283	0,075	1,665	1,436	0,188	0,832	b.d.l	1,108	0,149	0,276	0,067	0,248	0,050	2,851	97,442
6H Tit hell 3	28,296	0,524	24,563	35,425	2,057	2,285	0.074	1,834	1,394	0,154	0,856	0,141	1,178	0,083	0,248	0.038	0,116	0,079	2,855	97,288
6H Tit bell 4	28,199	0,501	24,448	35,506	2,024	2,249	0,083	1,589	1,359	0,171	0,850	0,061	1,122	0,081	0,259	0,044	0,158	0,111	2,813	96,791
6H Tit hell 5	26,450	0,512	24,590	35,428	2,111	2,345	0,072	1,427	1,466	0,213	0,869	b.d.1	1,295	0,198	0,239	0,031	0,146	0,122	3,082	97,423
6H Tit hel) 6	26,655	0,475	24,575	35,439	2,031	2,256	0,076	1,454	1,346	0,178	0,861	b.d.1	1,244	0,104	0,199	0.026	0,149	0,088	2,823	97,127
6H Tit hell 7	28,306	0,491	24,605	35,433	2,057	2,285	0,072	1,708	1,434	0,237	0,855	, b.d.1	1,283	0,104	0,262	0,036	0,223	0,144	3,108	97,478
6H Tit hell 8	27,947	0,550	24,641	35,595	2,038	2,264	0,066	1,483	1,489	0,181	0,834	0,073	1,074	0,153	0,202	0,052	0,238	0,050	2,805	96,892
6H Tit hell 9	26,277	0,513	24,565	35,593	Z,022	2,246	0,075	1,674	1,439	0,196	0,957	.b.d.1	1,252	0,119	0,267	0,050	0,199	0,061	2,951	97,383
6H Tithell 10	28,716	0,562	24,742	35,692	1,998	2,220	0,064	1,636	1,349	0,170	0,883	0,034	1,416,	0,093	0,175	0,023	0,226	0,141	3,138	98,142
6H Tithell 11	28,395	0,497	24,425	35,426	2,037	2,263	9,082	1,638	1,373	0,240	0,856	15.d.l	1,182,	0,080	0,206	0,058	0,260	0,171	4,368	97,152
6H Tithell 12	28,689	0,501	24,659	35,490	2,102	2,335	0,078	1,556	1,366	0,194	0,816	0,057	1,350	0,084	0,215	0.048	0,208	0,047	4,337	97,693
GH HEBELLIS	28,325	0,574	24,385	35.631	2,079	2,310	0,075	1./10	1.502	0.229	0,832	0,080	1,158	0.004	0.200	0,053	0,138	0.124	4,357	97,020
6H HEBEN 14	28,808	0,499	24,230	35,249	2,083	2,314	0,057	1,698	1,370	0,185	0,811	10.G.I	1,190	0,086	0,255	0,052	0,246	0,103	4,245	97,163
CR III BEI 15	20,011	0,401	24,470	25,331	2,037	2,265	0,078	1,505	1,400	0,151	0,051	0.0.1	1,272	0,070	0,223	0,029	0,234	in di	4,230	97,014
60 Tit ball 17	20,049	0.515	24,011	25 211	2,034	2,200	0,003	1,737	1,300	0,231	0,000	0,074	1.107	0,003	0,273	0,003	0,110	0.127	4.767	97,003
64 Titball 19	20,4.10	0,313	74.651	25 202	2,000	2,222	0,075	1.947	1.245	0,232	0,831	15.61	1.246	0,133	0,230	0,024	0,204	b d l	4,302	07 797
6H Tit bell 10	78 434	0,541	24 506	35,373	2,070	2,312	0.073	1,697	1,575	0,103	0,004	b.d.1	1,240	0.145	0,270	0,000	0,150	0.082	4,220	97 185
6H Tit bell 20	28 433	0,400	24 483	35 177	2.025	2,250	0.068	1,003	1436	0.257	0,836	0.036	1214	0.108	0,2218	0.057	0,233	0.097	4435	97,096
6H Tithell 21	28.222	0.535	24,502	35.240	2.028	2,253	0.064	1.774	1.379	0.185	0.850	0.056	1.093	0.082	0.196	0.086	0.214	0.080	4.135	96.811
6H Tit hell 22	2B 682	0.534	24 307	35 352	2.062	2,291	0.082	1.526	1448	0178	0.827	h.d1	1 4 4 1	0.093	0.226	0.054	0.161	hdi	4.374	97.202
6H Tit hell 23	28,317	0.574	24,646	35,208	2.096	2,329	0.071	1.686	1.418	0,160	0.883	0.093	1.099	0.157	0.245	0.044	0.141	0.102	4.298	97,173
6H Tit hel) 24	27.873	0.543	24,489	35.423	2.025	2.250	0.075	1.720	1.336	0,200	0.919	0.043	1.335	0.152	0.183	0.020	0.255	0.071	4.396	96.789
6H Tit hell 25	28,107	0,486	24,338	35,185	1,923	2,136	0,061	1,409	1,404	0,224	0,832	b.d.1	1.162	0.097	0,186	0,025	0,262	0,102	4,269	96,016
6H Tit hell 26	28,393	0,530	24,375	35,180	1,992	2,213	0,056	1,438	1,362	0,203	0,837	0,056	1,310	0,114	0,214	0,060	0,185	0,169	4,450	96,697
6H Tit hell 27	28,362	0,456	24,420	35,342	1,988	2,209	0,075	1,371	1,361	0,195	0,834	0,040	1,260	0,135	0,224	0.054	0,204	0,054	4,307	96,596
6H Tit hell 28	28,446	D.466	24,361	35,070	1.996	2,218	0,072	1.633	1.401	0.172	0.828	0.090	1,551	0.159	0.236	0,028	0.146	0.041	4.624	96,918
6H Tit hell 29	27,716	0,525	24,313	35,192	1,928	2,142	0,060	1,427	1,455	0,150	0,834	0,054	1,158	0,040	0,235	0,034	0,196	0,114	4,236	95,645
6H Tit hell 30	28,296	0,528	24,308	35,218	1,948	2,164	0,066	1,471	1,375	0,198	0,820	b.d.l	1,154	0,093	0,226	0,027	0,196	0,104	4,166	96,244
6H Tit hell 31	28,414	0,531	24,189	35,058	1,962	2,180	0,070	1,493	1,365	0,245	0,848	0,066	1,277	0,117	0,271	0,059	0,215	0,052	4,456	96,450
6ff Tit bell 32	27,545	0,496	24,387	35,009	2,020	2,244	0,060	1,669	1,416	0,158	0,876	b.d.l	1,183	0,047	0,245	0,055	0,169	0,113	4,207	95,672
6H Tit hell 33	28,166	0,449	24,507	35,241	1,957	2,174	0,060	1,387	1,432	0,140	0,851	0,052	1,077	0,069	0,199	0,041	0,185	Lb.d.	4,005	96,030
6H Tit hell 34	27,938	0,548	24,441	33,303	2,065	2,294	0,068	1,690	1,484	0,176	0,068	0,017	0.249	0,092	0,183	0,048	0,037	b.d.i	2,306	92,636
6H Tit hell 35	27,297	0,589	24,875	27,243	2,029	2,254	0,040	1,625	1,390	0,183	b d.	0,004	h.d.l	0,078	0,173	0,077	0,007	[b.d.]	1,835	85,835
CH TIChell 36	27,356	0,491	24,558	32,766	2,081	2,312	0,073	1,687	1,352	0,189	0,044	0.0.1	0,172	0,129	0,249	0,050	0,033	D.d.i	2,168	91,461
GH LIEBEU 37	27,687	0,580	24,582	39,253	2,040	2,266	0.084	1,675	1,383	0,173	0,107	0,021	1,597	0,116	0,318	0,087	0,138	0.125	2,915	94,109
64 Tit ball 30	27.520	0,510	24,303	25 / 21	2,009	2,201	0,074	1,7.50	1,320	0.154	0,000	0,030	1,200	0,127	0,202	0.060	0,221	0,125	4,047	77,233
44 Tit kell 40	79 164	0,571	22,303	25 4 1 4	2.070	2 2 1 5	0.072	1.961	1,177	0,134	0,034	0.117	1,270	0.112	0.220	0.000	0,109	hdi	4.100	90,030
6H Tit bell 41	27 670	0,371	24.745	35,869	1955	2172	0.060	1 740	1,303	0.247	0,030	0,030	1308	0.107	0.253	0.049	0.183	0132	4 5 8 8	96.857
6H Tit hell 42	28,180	0.535	24.611	35,857	1.924	2,138	0.056	1,223	1.350	0.247	0.800	b.d.]	1.006	0.130	0.183	0.070	0.249	b.d.l	3.965	96.635
6H Tit hell 43	28,231	0.543	24.820	35.815	1.919	2.132	0.053	1.371	1.375	0.292	0.817	b.d1	1.157	0.086	0,219	0.063	0.166	b.d.l	4.112	97.140
6H Tit bell 44	28.319	0.529	24.684	35.652	1.976	2,195	0.060	1.206	1.481	0.173	0.847	0.040	1.213	0.124	0.223	0.062	0.233	0.076	4.410	97.117
6H Tit hell 45	28,537	0,605	24,741	35,794	1,961	2,179	0,059	1,350	1,534	0,215	0,823	0,046	1,050	0,110	0,232	0,047	0,258	Lb.d	4,268	97,580
6H Tit bell 46	27,900	0,479	24,704	35,915	1,950	2,166	0,060	1,358	1,426	0,204	0,830	b.d.	1,257	0.075	0,253	0,047	0,075	b.đ i	4,120	96,749
6H Tit bell 47	27,781	0,507	24,663	35,940	2,015	2,239	0,049	1,267	1,547	0,082	0,849	0,072	1,114	0,116	0,174	0,067	0,309	h.d.l	4,263	96,776
мах	29,137	0.605	24,875	35,940	2,111	2,345	0.084	1.861	1,547	0.292	0,889	0,141	1.582	0.198	0.318	0.086	0,309	0,171	4.647	98.229
MIN	27.297	0.449	24.189	27.243	1,919	2.132	0.040	1,206	1.338	0.082	6.d.I	b.d.1	b.d.l	0.040	0.173	0.020	0.007	b.d.l	1.835	85.835
MITTELWERT	28,239	0,521	24,529	35,118	2,025	2,250	0,069	1,574	1,417	0,197	0,785	0,063	1,164	0,106	0,226	0,048	0,189	0,097	3,848	96,496

Titanit hell (Schliff 6H)

	Si	AL	Ca	Ti	Fe	h	Nb	Y	La	Ce	Pr	Nd	Sm	Gđ	Th	Но	Yb	0	EREE	ΣAl+Fe+Ti	END+REE+Ca
		nber of ions on the basis of fe																			
Messung	Number :	afionsc i	n the bas	is of four /	Si																
6H Tit hell 1	4,000	0.078	3.613	3.651	0.211	0.005	0.112	0.102	0.009	0.043	0.007	0.066	0.004	0.010	0.001	0.009	0.004	20.031	0.253	3.940	3.979
6H Tit hell 2	4.000	0.100	3,741	3,785	0.219	0.009	0.107	0.108	0.010	0.043	0.000	0.056	0.007	0.013	0.002	0.011	0.002	20,459	0.251	4.104	4.098
6H Tit hell 3	4,000	0,087	3,720	3,766	0,219	0,009	0,117	0,105	0,008	0,044	0,007	0,059	0,004	0,012	0,001	0,005	0,003	20,402	0,248	4,073	4,085
6H Tit hell 4	4,000	0,084	3,715	3,788	0,216	0,010	0,102	0.103	0,009	0,011	0,003	0,057	0,004	0,012	0,001	0,007	0,005	20,389	0,211	4,088	4,061
Gil Tit hell 5	4,000	0,085	3,704	3,746	0,223	0,009	0,091	0.111	0.011	0,045	0,000	0,065	0.010	0,011	0,001	0,007	0,005	20,306	0,264	4,055	4,059
6H Tít hell 6	4,000	0,078	3,675	3,721	0,213	0,009	0,092	0,100	0,009	0,044	0,000	0,062	0,005	0,009	0,001	0,007	0,004	20,167	0,240	4,012	4,007
6H Tit hell 7	4,000	0,082	3,725	3,766	0,219	0,009	0,109	0,108	0,012	0,044	0,000	0,065	0,005	0,012	0,001	0,010	0,006	20,398	0,263	4,067	4,097
6H Tit hell 8	4,000	0,093	3,77B	3,832	0,219	0,008	0,096	0,113	0,010	0,044	0,004	0,055	0,008	0,010	0,002	0.011	0,002	Z0,557	0,Z56	4,144	4,130
6H Tit hell 9	4,000	0,086	3,723	3,787	0,215	0,009	0,107	0,108	0,010	0,044	0,000	0,063	0,006	0,013	0,002	0,009	0,003	20,425	0,256	4,088	4,086
6H Tit hell 10	4,000	0,092	3,692	3,739	0,209	0,008	0,103	0,100	0,009	0,045	0,002	0,070	0,004	0,008	0,001	0,010	0,006	20,283	0,254	4,041	4,050
6H Tit hell 11	4,000	0,083	3,686	3,753	0,216	0,010	0,104	0,103	0,012	0,044	0,000	0,059	0,004	0,010	0,002	0,012	0,007	20,307	0,251	4,052	4,042
6H Tit hell 12	4,000	0,082	3,663	3,722	0,221	0,009	0,09B	£,101	0,010	0,042	0,003	0,067	0,004	0,010	0,002	0,009	0,002	20,225	0,248	4,025	4,030
6H THENEN TR	4,000	0,095	3,689	3,792	0,221	0,004	0,109	0,113	0,012	0,043	0,004	0,050	0,003	0,009	0,002	0,006	0,005	20,530	0,256	4,058	4,054
6H DUNEH 14	4,000	0,062	3,604	3,061	0,218	0,005	0,107	0,101	0,009	0,041	0,000	0,059	0,004	0,012	0,002	0,011	0,004	20,068	0,242	3,980	3,953
6H TR BELLS	4,000	0,075	3,666	3,715	0.215	0,009	0,095	0,108	0,007	0,043	0,000	0,065	0,003	0,010	0,001	0,010	0,000	20,167	0,246	4,007	4,007
CH Tit ball 17	4,000	0.005	3,030	3,071	0.212	0,008	0,110	0.102	0.012	0.043	0,004	0,039	0,003	0,011	0,002	0,000	0,000	20,143	0.250	3,792	4,004
64 Tit hell 18	4,000	0.088	3,600	3,737	0,220	0,009	0.116	0,101	0,013	0.044	0,004	0.067	0,005	0.013	a na 2	0,013	0,000	20,200	0,230	3 993	3 984
6H Tit hell 19	4 000	0.077	3,693	3.726	0.219	0.010	0.107	0.106	0.012	0.046	0,000	0.061	0.007	0.010	0,002	0.011	0.004	20 2 7 3	0.256	4.024	4.057
6H Tit hell 20	4 000	0.081	3 690	3.722	0.214	0.008	0.108	0108	0.013	0.043	0.002	0.061	0.005	0.010	0.002	0.010	0.004	20 257	0.257	4,018	4.055
6H Tit hell 21	4.000	0.089	3.720	3.757	0.216	0.008	0.114	0.104	0.010	0.044	0.003	0.055	0.004	0.009	0.003	0.010	0.003	20,365	0.242	4.062	4.076
6H Tit hell 22	4.000	0.088	3.632	3.708	0.216	0.010	0.096	0.107	0.009	0.042	0.000	0.072	0.004	0.010	0.002	0.007	0.000	20.151	0.253	4.012	3.981
6H Tit hell 23	4,000	0,096	3,730	3,741	0,223	0,008	0,108	0,107	0,008	0,046	0,005	0,055	0,008	0,011	0,001	0,006	0,004	20,358	0,251	4,059	4,088
6H Tit hell 24	4,000	0,092	3,765	3,823	0,219	0,009	0,112	0,102	0,011	0,043	0,002	0,068	0,008	0,009	0,001	0,012	0,003	20,567	0,257	4,134	4,134
6H Tit hell 25	4.000	0.082	3,711	3,766	0,206	0.007	0.091	0.106	0.012	0.043	0.000	0.059	0.005	0,009	0,001	0.012	0.004	Z0.296	0.250	4.054	4.052
6H Tit hell 26	4,000	0,083	3,679	3,728	0,211	0,007	0,092	0.102	0,011	0,043	0,003	0,066	0,006	0,010	0,002	0,008	0,007	20,217	0,256	4,027	4,026
6H Tit hell 27	4,000	0,076	3,690	3,749	0,211	0,009	0,087	0.102	0,010	0,043	0,002	0,063	0,007	0,010	0,002	0,009	0,002	20,236	0,249	4,036	4,026
GII Tit hell 28	4,000	0,077	3,670	3,709	0,211	0,009	0,104	0.105	0,009	0,043	0,005	0,078	0,008	0,011	0,001	0,007	0,002	20,202	0,266	3,998	4,040
6H Tít hell 29	4,000	0,089	3,759	3,820	0,209	0,007	0,093	0,112	0,008	0,044	0,003	0,060	0,002	0,011	0,001	0,009	0,005	20,481	0,254	4,119	4,106
6H Tit hell 30	4,000	0,088	3,681	3,744	0,207	0,008	0,094	0,103	0,010	0,04Z	0,000	0,058	0,005	0,011	0,001	0,009	0,004	20,234	0,243	4,040	4,018
6H Tit hell 31	4,000	0,068	3,64B	3,712	0,208	0,006	0,095	0,102	0,013	0,044	0,003	0,064	0,006	0,013	0,002	0,010	0,002	20,163	0,256	4,008	4,000
6H Tit hell 32	4,000	0,085	3,794	3,824	0,221	0,007	0,110	0,109	0,008	0,047	0,000	0,061	0,002	0,012	0,00Z	0,008	0,005	20,575	0,253	4,129	4,156
6H Tit hell 33	4,000	0,075	3,729	3,764	0,209	0,007	0,089	0,108	0,007	0,044	0,003	0,055	0,003	0,009	0,001	0,008	0,000	20,284	0,238	4,048	4,056
6H 110 Doll 34	4,000	0,092	3,749	3,586	0,222	0,005	0,109	0,113	0,009	0,004	0,001	0,013	0,005	0,009	0,002	0,002	0,000	19,923	0,154	3,901	4,013
6H Tit ball 26	4,000	0,102	3,903	2,003	0,224	0,003	0.117	0.105	0,010	0,000	0,000	0.000	0,004	0.012	0,003	0,000	0,000	70.040	0,131	3,326	4,144
6H Tit ball 37	4,000	0.000	2,097	3,003	0,227	0.013	0,112	0.106	0,010	0.002	0,000	0.034	0.006	0.012	0,002	0.004	0,000	20,047	0.194	4.043	4,113
6H Tit hell 38	4,000	0.087	3,003	3 7 9 4	0,222	0.009	0.112	0.100	0.014	0.020	0.002	0.081	0,000	0.010	0.001	0.010	0.005	20,309	0,104	4,043	4,050
6H Tit hell 39	4.000	0.102	3.827	3.872	0.229	0.010	0.102	0.114	0.008	0.044	0.006	0.067	0.006	0.012	0.002	0.008	0.003	20.755	0.268	4.203	4,597
6H Tit hell 40	4.000	0.096	3.731	3,784	0.223	0.009	0.120	0.114	0.012	0.043	0.003	0.052	0.005	0.010	0.002	0.010	0.000	20.476	0.250	4.103	4,100
6H Tit hell 41	4,000	0,079	3,832	3,900	0,213,	0,007	0,081	0,115	0,013	0,041	0,005	0,068	0,005	0,012	0,002	0,008	0,006	20,703	0,273	4,192	4,186
6H Tit hell 42	4,000	0,089	3,743	3,828	0,205	0,007	0,078	0,102	0,013	0,04Z	0,000	0,051	0,006	0,009	0,00 Z	0,011	0,000	20,409	0,234	4,123	4,055
611 Tit hell 43	4,000	0,091	3,76B	3,617	0,205	0,006	0,088	0,104	0,015	0,042	0,000	0,059	0,004	0,010	0,002	0.007	0,000	20,446	0,242	4,112	4,097
6H Tit hell 44	4,000	0,088	3,735	3,788	0,210	0,007	0,077	0,111	0,009	0,044	0,002	0,061	0,006	0,010	0,002	0,010	0,003	20,358	0,258	4,086	4,070
6H Tit hell 45	4,000	0,100	3,715	3,774	0,207	0,007	0,086	0,114	0,011	0,042	0,002	0,053	0,005	0,011	0,001	0,012	0,000	20,332	0,250	4,080	4,051
6H Tit hell 46	4,000	0,081	3,794	3,873	0,210	0,007	0,088	0,109	0,011	0,044	0,000	0,064	0,004	0,012	0,002	0,003	0,000	20,588	0,247	4,164	4,129
6H Tit hell 47	4,000	0,086	3,804	3,892	0,218	0,006	0,082	0,119	0,004	0,045	0,004	0,057	0,006	0,008	0,002	0,014	0,000	20,656	0,257	4,196	4,144
	- C.	0.102	2.005	2.000	0.220	0.012	0.120	0.110	0.015	0.042	0.007	0.001	0.010	0.015	0.002	0.014	0.005	20.755	0.070	4 3 0 3	4 107
MIN	11	0,102	3,905	3,900	0,229	0,010	0,120	0,119	0,015	0,047	0,007	0,081	0,010	0,015	0,003	0,014	0,007	19,995	0,273	1,203	2,197
MITTELWERT		0.087	3,723	3.741	0.203	0,003	0,077	0.107	0.010	0.040	0,000	0,000	0.002	0,008	0,001	0,000	0,000	70 301	0,131	4 044	4.067
A A A A A A A A A A A A A A A A A A A		0,007	10 M M	100 C 1	0.9410	0,090	01101	A1991	01010	01010	ALAN E	0,000	0,000	010.1.1	01095	0,000	010.0.0	PO1001	018 FT		1007

	SiO ₂	Al ₂ O ₃	CaO	TiO ₂	FeO	Fe_2O_3	P_2O_5	Nb_2O_3	Y ₂ O ₃	$La_2 \Theta_3$	Ce_2O_2	$\mathbf{Pr}_{2}\mathbf{O}_{3}$	Nd ₂ O ₃	Sm_2O_3	$\mathbf{Gd}_2\mathbf{O}_3$	Th0 ₂	Ho ₂ O ₃	Yb ₂ O ₃	S REE	TOTAL
Messung	mass%	maccW	11120296	marcelle	mands	massak	mass%	mass94	111115.96	mass%	mass%	manal	macc06	massiliá	mass%	masses	mass%	macc%	Massem.	massta
hicodang	11100070	11100-270			111122.72	1143510	1103310	THE POPULATION	10000010	11400 70	111100 /0	Supervised Vo.	111113572	1102270	1140010	11000012	1145570	11000070	Industria i	1100070
6H Tit dunkel 1	29,626	0,513	25,035	35,771	1,955	2,172	0.024	0,844	1,006	0,127	0,614	0,049	1,098	b.d.l	0,174	0,036	0,141	0,114	2,353	97,344
611 Tit dunkel 2	29,762	0,487	25,338	35,934	1,954	2,171	0,026	0,973	1,102	0,126	0,610	b.d.]	0,778	0,060	0,181	0,026	0,184	0,109	2,073	97,866
6H Tit dunkel 3	29,771	0,379	25,322	35,989	1,970	2,189	0,031	0,908	1,091	0,156	0,591	b.d.l	0,894	0,072	0,192	0,037	0,123	0,064	2,129	97,799
6H Tit dunkel 4	29,406	0,435	25,09Z	35,811	1,958	2,175	0,042	0,844	1,065	0,077	0,587	10.d.)	1,176	0,049	0,161	b.d.J	0,168	b.d.l	2,218	97,088
6H Tit dunkel 6	29,027	0,435	25,578	30,043	1,910	1672	0.019	0,037	1,050	0,110	0,001	lb.d.	0,900	0,073	0,102	0,037	0,131	0,055	2,077	90,053
6H Tit dunkel 7	29 7 56	0.492	25,507	36454	1481	1,055	0.032	0,940	1.012	0.040	0.540	b d d	0,013	0,037	0,124	0,047	0,220	0 140	1917	97.676
6H Tit dunkel 8	29.374	0.556	25,265	36.25Z	1.647	1.830	0.026	0.697	1.061	0.103	0.522	b.d.l	0.924	0.957	0.121	h.d.	8.137	0.059	1.923	96,984
6H Tit dunkel 9	29,090	0,645	25,101	35,175	2,244	2,493	b.d.i	1,166	1,147	0,112	0,817	9,077	0,966	b.d.l	0,116	0,038	0,146	0,098	2,370	97,187
6H Tit dunkel 10	29,111	0.411	25,216	36,032	1,931	2,145	0.034	0,794	1,060	0.118	0.657	b.d.l	0,976	0.042	0,179	0,030	0,105	b.d.l	2.107	96,910
611 Tit dunkel 11	29,724	8,6Z0	Z5,Z43	35,583	Z,011	2,234	b.d.l	0,978	1,098	0,124	0,768	b.d.]	1,380	0,071	0,127	b.d.l	0,243	b.d.l	2,713	98,183
6H Tit dunkel 12	29,48Z	0,639	25,557	36,404	1,479	1,643	0,024	0,851	0,948	0,100	0,574	b.d.i	0,989	0,039	0,135	0,015	0,158	0,049	2,059	97,606
6H Tit dunkel 13	29,520	0,592	25,559	36,359	1,493	1,659	0,026	0.931	0,868	0,142	0,621	b.d.]	0,977	0,060	0,106	0,027	0,142	b.d.l	2,075	97,589
611 Tit dunkel 14	29,343	0,439	25,212	35,971	1,941	2,156	0,021	0,857	1.026	0,092	0,645	b.d.J	0,907	b.d.l	0,154	b.d.l	0,192	0,085	2,065	97,090
6H Tit dunkel 15	Z9,212	0,456	25,194	35,959	1,951	2,168	0,027	0,853	1,042	0,169	0,645	0,039	0,851	0,073	0,111	b.d.l	0,062	0,047	1,997	96,908
6H Tit duskel 16	29,569	0,507	25,097	36,036	1,926	2,140	0,025	0,953	0,984	0,104	0,598	0,042	0,819	b.d.l	0,168	b.d.l	0,061	b.d.t	1,792	97,113
OH TH GURSCI 17	20,024	0,678	25,170	35,595	2,093	4,343	0.0.1	1,001	1,140	0,040	0,733	0,050	10,978	D.G.I	0,201	0.021	0,150	0,082	2,252	96,095
AH Tit dunkel 10	22,300	0,622	25,115 25,10B	35,032	7 7 7 7 7	7.491	b.d.l	1.059	1120	0,129	0,031	0.032	1112	0,035	0,145	0,031	0,126	0,002	2,502	97,337
611 Tit dunkel 20	29.176	0.531	-75 398	36 591	1464	1.627	0.033	0.725	1164	0.089	0.611	hd1	1,113	0.058	0.200	0.015	0.100	bdi	2164	97,409
6H Tit dunkel 21	29.303	0.642	25,297	35,489	2.068	2,298	b.d.]	1.093	1.198	0.146	0.723	b.d.l	1.096	0.059	0,176	b.d.J	0.135	0.062	2.397	97.697
6H Tit dunkel 22	28.623	0,506	25,367	36,129	2.001	2.223	0,020	0,905	1.165	0,114	0,583	b.d.	0.940	0.093	0.254	0.030	0.173	0.107	2.294	97,232
611 Tit dunkel 23	28,973	0,579	25,381	36,078	2,010	2,233	0,012	0,855	1,099	0,155	0,589	b.d.l	0,878	0,090	0,178	0,041	0,150	b.d.í	2.081	97,291
6H Tit dunkel 24	28,430	0,489	25,074	35,986	Z,027	2,252	0,025	0,996	1,193	0,110	0,558	b.d.i	1,121	0,066	0,174	0,015	0,179	0,071	2,293	96,737
6H Tit dunkel 25	28,887	0,592	25,205	35,856	2,037	2,263	0,024	1,121	1,200	0,118	0,596	b.d.l	0,845	b.d.l	0,166	0,025	0,276	0,075	2,101	97,249
6H Tit dunkel 26	28,455	0,462	24,959	35,657	1,966	2,184	0,022	0,850	1,122	0,179	0,592	b.d.1	L015	0,031	0,164	0,014	0,086	0,091	2,162	95,873
6H Tit dunkel 27	28,795	0,422	24,910	35,702	1,922	2,135	0,025	0,836	1,154	0,171	0,618	b.d.	0,783	0,072	0,170	0,023	9,165	0,109	2,111	96,090
6H Tit dunkel 28	28,065	0,532	24.893	35,654	2.029	2,254	0.023	0.820	1,163	0.176	0.591	b.d.l	1,159	0,031	0,188	0.051	0.233	0,077	2,506	95,910
6ll Tit dunkel 29	28,150	0,486	25,061	35,913	1,966	2,184	0,021	0,879	1,157	0,096	0,625	0,070	0,905	b.d.l	0,187	0,026	0,183	0,094	2,186	96,037
6H Tit dunkel 30	26,573	0,519	24,880	35,490	2,008	2,231	0,024	0,910	1,125	0,100	0,603	0,035	1,085	0,062	0,224	0,020	0,250	0,003	2,534	90,298
611 Tit dunkel 32	28,730	0,300	74 991	33,303	2,000	2,227	0,027	0,773	1,001	0,122	0,041	lb d l	1,000	0,037	0,242	b.d.	0,203	0.01	2,909	96 162
6H Tit dunkel 33	28.197	0,460	24.927	35,438	1,998	2 7 2 0	0.072	0.805	1,162	0.096	0.598	b.d.	0,170	0.045	0.163	b.d.l	0149	0.110	2.058	95.289
6H Tit dunkel 34	28,805	0,424	24,963	36.034	2.034	2,260	0.031	0.681	1.255	0,137	0.632	b.d.J	0.798	0,042	0,138	0.035	0.133	0.081	1.996	96,449
6H Tit dunkel 35	28,589	0,436	24,916	35,928	1,975	2,194	0,025	0,787	1,207	0,161	0,591	b.d.1	0,988	0,086	0,180	0,033	0,206	0,101	Z.346	96,42B
6H Tit dunkel 36	28,147	0,419	24,954	35,969	1,984	2,204	0,019	0,879	1,269	0,132	0,622	b.d.t	0,924	0,028	0,194	0,01B	0,146	0,071	2,135	95,995
6H Tit dunkel 37	28,700	0,497	24,957	35,908	1,993	2,214	0,027	0,863	1,302	0,112	0,613	0.034	0,780	0,091	0,208	0.026	0,198	0,073	2,135	96,603
611 Tit dunkel 38	28,061	0,433	24,938	35,820	Z.005	2,228	0,019	0,890	1,237	0,144	0,640	b.d.l	1,023	0,084	0,129	0.022	0,183	0,080	2,305	95,921
6H Tit dunkel 39	28,110	0,461	Z5,Z46	35,956	1,967	2,185	0,020	0,967	1,010	0,157	0,600	0,041	0,708	b.d.l	0,152	b.d.J	0,119	0,059	1,836	95,791
6H Tit dunkel 40	28,243	0,507	25,018	35,798	2,101	2,334	0,038	0,933	1,312	0,088	0,619	b.d.]	0,923	0,045	0,210	0,032	0,131	0,118	2,166	96,349
611 TH MURKEL 41	28,155	0,561	25,127	35,974	2,084	4,315	0,031	1,074	1,204	0,155	0,612	D.G.J	0,791	D.d.I	0,207	0,034	0,249	0,095	2,144	96,586
6H Tit dunkul 42	20,341	0,309	25,076	25 0 90	1074	2,304	0,027	0,999	1,101	0,129	0,002	0,049	0,995	0,041	0,178	0,032	0,177	0.047	1946	90,438
64 Tit dunkel 44	28,476	0.487	25,201	36 1 14	1,574	2,193	0.011	0,823	1.007	0,143	0,003	b.d1	0,700	0,040	0,110	0.025	0 117	0,007	1.920	96,762
6H Tit dunkel 45	27.694	0,566	25.088	35,949	2,005	2,228	0.020	0.870	1.143	0.114	0.597	b.d.t	0.972	0,075	0,181	0.034	0.126	b.d.l	2.099	95.657
6H Tit dunkel 46	28.330	0,446	25,064	36,039	1.860	2.066	0.019	1,326	1.151	0,114	0.630	b.d.l	0.914	0.066	0,147	0.020	0.146	b.d.l	2.037	96,478
611 Tit dunkel 47	28,246	0,545	Z5,Z40	36,147	Z,034	2,260	0,036	0,795	1,20Z	0,145	0,579	b.d.J	1,08Z	0,085	0,158	b.d.l	0,162	0,067	2,278	96,749
6H Tit dunkel 48	28,082	0,599	25,085	36,054	2,093	2,325	0,018	0,806	1,178	0,115	0,496	0,091	0,765	b.d.l	0,216	0,047	0,180	0,058	1,958	96,105
												i	1							
MAX	29.879	0.679	25.578	36.591	2.244	2,493	0.047	1.326	1.312	0.179	0.817	0.091	1.380	0.093	0.254	0.051	0.276	0.160	3.801	98.183
MIN	27.694	0.379	24.882	35,135	1,460	1.622	b.d.)	0.681	0.868	0.040	0.496	b.d.J	0.708	b.d.l	0,106	b.d.l	0.061	b.d.i	2.776	95,289
MITTELWERT	28,858	0,517	25,154	35,892	1,937	2,152	0,025	0,902	1,118	0,125	0,620	0,047	0,946	0,059	0,169	0,029	0,165	0,083	3,270	96,788

Titanit dunkel (Schliff 6H)

Titanit dunkel (Schliff 6H)

	Si	Al	Ca	Ti	Fe	Р	Nb	Y	La	Ce	Pr	Nd	Sm	Gd	Th	Но	Yb	0	EREE	ΣAl+Fe+Ti	END+REE+Ca
messung	Number	orions	n the ba	sis of tou	rsi				Í			- 1		{		- 1			1 1		
6H Tit dunkel 1	4,000	0,082	3,621	3,633	0,199	0,003	0,052	0,072	0,006	0,030	0,002	0,053	0,000	0,008	0,001	0,006	0,005	19,719	0,183	3,913	3,856
6H Tit dunkel 2	4,000	0,077	3,648	3,632	0,198	0,003	0,059	0,079	0,006	0,030	0,000	0,037	0,003	0,008	0,001	0,008	0,004	19,745	0,176	3,907	3,883
6H Tit dunkel 3	4,000	0,060	3,645	3,637	0,199	0.004	0,055	0,077	0,008	0,029	0,000	0.043	0,003	0.009	0,001	0,005	0,003	19,721	0,177	3,896	3,877
6H Tit dunkel 4	4,000	0,070	3,657	3,664	0,200	0,005	0,052	0,077	0,004	0,029	0,000	0,057	0,002	0,007	0,000	0,007	0,000	19,807	0,184	3,934	3,893
6H Tit dunkel 5	4,000	0.071	3,723	3,736	0,198	0.005	0.053	0,076	0,006	0.030	0,000	0,045	0,004	0.007	0.001	0,006	0,002	20,008	0,176	4,004	3,952
6H Tit dunkel 6	4,000	0,098	3,668	3,667	0,147	0,002	0,057	0,069	0,008	0,027	0,000	0,039	0,002	0,006	0,001	0,010	0,004	19,766	0,164	3,912	3,889
6H Tit dunkel 7	4,000	0,078	3,673	3,686	0,150	0,004	0,052	0,072	0,002	0,027	0,000	0,040	0,003	0,006	0,001	0,005	0,006	19,770	0,161	3,913	3,887
6H TILDUNKEI 8	4,000	0,089	3,686	3,713	0,169	0.003	0,043	0.024	0,005	0,026	0,000	0,045	0,003	0,005	0,000	0,006	0,002	19,868	0,170	3,971	3,898
6H TILBURKCI 9	4,000	0,105	3,698	3,538	0,232	0,004	0,072	0,034	0,006	0,041	0,004	0,047	0,000	0,005	0,001	0,006	0,004	19,959	0,198	3,975	3,908
6H Tit dunkel 11	4,000	0,007	3,712	3,729	0,200	0,004	0.050	0,078	0,000	0,033	0,000	0,040	0,002	0,008	0,001	0,003	0,000	10,765	0,175	3,770	3,790
6H Tit duskel 12	4 000	0,075	3715	3,005	0.151	0.000	6.052	0.073	0.000	0.030	0,000	0,000	0.003	0,000	0.000	9.637	0,000	19917	0.167	3,968	3,900
6H Tit dunkel 13	4.000	0.095	3.710	3,706	0.152	0.003	0.057	0.063	0.007	0.031	0.000	0.047	0.003	0.005	0.001	0.006	0.000	19.885	0.161	3.952	3.929
6H Tit dunkel 14	4,000	0.071	3.682	3,688	0.199	0.002	0.053	0.074	0.004	0.032	0.000	0.044	0.000	0.007	0.000	0.008	0.004	19.861	0,174	3.958	3,909
6H Tit dunkel 15	4,000	0,074	3,696	3,703	0,201	0,003	0,053	0,076	0,009	0,03Z	0,002	0,042	0,003	0,005	0,000	0,003	0,002	19,915	0,173	3,978	3,922
6H Tit dunkel 16	4,000	0,091	3,637	3,667	0,196	0,003	0,059	0,071	0,005	0,030	0,002	0,040	0,000	0,008	0,000	0,003	0,000	19,776	0,157	3,943	3,854
6H Tit dunkel 17	4,000	0,111	3,742	3,685	0,219	0,000	0,063	0,084	0,002	0,037	0,003	0,048	0,000	0,009	0,000	0,007	0,003	20,055	0,195	4,014	4,000
6H Tit dunkel 18	4,000	0,100	3,664	3,690	0,171	0,000	0,059	0,080	-0,006	0,03Z	0,000	0,051	0,003	0,006	0,001	0,007	0,003	19,881	0,189	3,960	3,911
6H Tit dunkel 19	4,000	0,096	3,658	3,594	0,229	0,000	0,065	0,081	0,008	0,041	0,002	0,054	0,000	0,009	0,000	0,008	0,005	19,807	0,209	3,918	3,931
6H Til dunkel 20	4.000	0,086	3,730	3.773	0.151	0.004	0,045	0.085	0.005	0,031	0.000	0.049	0,003	0.009	0.000	0.008	0.000	20.039	0,189	4,010	3,965
6H Tit dunkel 21	4,000	0,103	3,699	3,644	0,212	0,000	0,067	0,086	0,007	0,036	0,000	0,053	0,003	0,008	0,000	0,006	0,003	19,931	0,202	3,959	3,969
6H Tit dunkel 2Z	4,000	0,093	3,798	3,797	0,210	0,002	0,057	0,087	0,006	0,030	0,000	0,047	0,004	0,012	0,001	0,008	0,005	20,281	0,198	4,091	4,053
6H Tit dunkel 23	4,000	0,094	3,754	3,746	0.209	0.001	0.053	0,081	0,008	0.030	0,000	0,043	0,004	0,008	0.001	0,007	0,000	20,112	0,181	4,049	3,988
6H Tit nunkel 24	4,000	0,081	3,779	3,808	0,215	0,003	0,063	0,089	0,006	0,029	0,000	0,056	0,003	0,008	0,000	0,0081	0,003	20,309	0,202	4,31)4	4,045
6H Tit dunkel 25	4,000	0,097	3,739	3,734	0,212	0,003	0,070	0,089	0,006	0,030	0,000	0,042	0,000	0,008	0,001	0,012	0,003	20,139	0,189	4,043	3,999
6H Tit gunkel 26	4,000	0.077	3,759	3,770	0,208	0,003	0,054	0.021	0,009	0.030	0,000	0,051	0,002	800,0	0,000	0,004	0,003	20,155	0.101	4,054	4,004
6H Tit dunket 27	4,000	0,069	3,707	2422	0,201	0,003	0,052	0,085	0,009	0,031	0,600	0,039	0,003	0,008	0,001	0,007	0,005	26 265	0,100	4,007	3,947
6H Tit dunkel 29	4,000	0.081	3,801	3,922	0,210	0,003	0.056	0,000	0.005	0,031	0.004	0.046	0,002	0,000	0.001	0,011	0,000	20,303	0,196	4 130	4,067
6H Tit dunkel 30	4.000	0.086	3,732	3,737	0.212	0.003	0.058	0.084	0.005	0.034	0.002	0.054	0.003	0.010	0.001	0.011	0.004	20,116	0.207	4.034	3.998
6H Tit dunkel 31	4.000	0.081	3.682	3.674	0.209	0.003	0.048	0.078	0.006	0.032	0.000	0.052	0.003	0.011	0.001	0.012	0.000	19.887	0.194	3.964	3.925
6H Tit dunkel 32	4,000	0,086	3,741	3,716	0.214	0,003	0,055	0,091	0,007	0,029	0,000	0,048	0,003	0,010	0.000	0,008	0,007	20,072	0,203	4,016	3,999
6H Tit dunkel 33	4,000	0,077	3,788	3,781	0,213	0,003	0,05Z	0,089	0,005	0,031	0,000	0,045	0,002	0,008	0,000	0,007	0,005	20,207	0,191	4,071	4,031
6H Tit dunkel 34	4,000	0,069	3,714	3,764	0,213	0,004	0,043	0,093	0,007	0,032	0,000	0,040	0,002	0,006	0,001	0,006	0,003	20,066	0,189	4,045	3,946
6H Til dunkel 35	4,000	0,072	3,735	3,781	0,208	0,003	0,050	0,090	0,008	0,030	0,000	0,049	0,004	0,008	0,001	0,009	0,004	20,156	0,204	4,061	3,988
6H Tit dunkel 36	4,000	0,070	3,799	3,845	0,212	0,002	0,056	0,096	-0,007	0,03Z	0,000	0,047	0,001	0,009	0,001	0,007	0,003	20,363	0,202	4,127	4,058
6H Tit dunkel 37	4,000	0,082	3,726	3,764	0,209	0,003	0,054	0,097	0,006	0,031	0,002	0,039	0,004	0,010	0,001	0,009	0,003	20,136	0,200	4,055	3,981
6H Tit dunkel 38	4,000	0.073	3,808	3,840	0.215	0.002	0.057	0.094	0.008	0.033	0,000	0.052	0.004	0,006	0.001	0.008	0.003	20,383	0,209	4,128	4,074
6H Tit dunkel 39	4,000	0,077	3,849	3,848	0,211	0,002	0,062	0,076	0,008	0,031	0,002	0,036	0,000	0,007	0,000	0,005	0,003	20,392	0,169	4,136	4,080
6H Tit dunkel 40	4,000	0,085	3,796	3,813	0,224	0,005	0,060	0,099	0,005	0,032	0,000	0,047	0,002	0,010	0,001	0,006	0,005	20,356	0,205	4,122	4,061
6M TH BURKel 41	4,000	0,094	3,824	3,849	0,223	0,004,	0.069	0.022	0,008	0.032	0.000	0,040	0,000	0.000	0,001	0.00111	0,004	20,465	0,196	4,151	4,090
6H Tit dunkel 42	4,000	0,095	3,732	2,472	0,220	0.001	0,057	0,037	0,007	0,031	0,003	0,050	0,002	0,000	0,001	0,008	0,002	26,315	0,190	4,511	4,050
6H Tit dunkel 44	4,000	0.079	3,793	3,003	0,207	0,001	0.056	0.075	0,009	0.031	0,000	0,030	0,004	0,005	0,000	0.005	0,003	20,230	0.171	4,050	4,015
6H Tit dunkel 45	4.000	0.096	3.882	3,905	0.218	0.002	0.057	0.088	-0.006	0.037	0.000	0.050	0.004	0.009	0.001	400.0	0.000	20.605	0.194	4.220	4.133
6H Tit dunkel 46	4,000	0,074	3,791	3,827	0,198	0.002	0,085	0,086	0,006	0.033	0,000	0.046	0,003	0,007	0,001	0,007	0,000	20,353	0,188	4.099	4,064
6H Tit dunkel 47	4,000	0,091	3,829	3,850	0,217	0,004	0,051	0,091	0,008	0,030	0,000	0,055	0,004	0,007	0,000	0,007	0,003	20,436	0,205	4,158	4,085
6H Tit dunkel 48	4,000	0,101	3,828	3,863	0,224	0,002	0,05Z	0,089	0,006	0,026	0,004	0,039	0,000	0,010	0,00Z	0,008	0,003	20,456	0,185	4,187	4,065
	ļ]		ļ					
MAY		0.112	7 997	2005	0.272	0.005	0.005	0.000	0.000	0.041	0.004	0.044	0.004	0.017	0.002	0.017	0.007	20.005	0.373	4 2 2 8	4 122
MIN		0,111	3,662	3,905	0.147	0,005	0,005	0,099	0,009	0,041	0,004	0.000	0,004	0,012	0,002	0,012	0,007	19710	0.157	7,220	4,133 7 RC4
MITTELWERT		0,084	3,737	3,743	0,202	0,003	0,057	0,083	0,006	0,031	0,000	0,047	0,002	0,008	0,001	0,007	0,003	20.084	0,188	4,030	3,981

Titanit hell ((Schliff 9C)
i i cuine nen	benni yaj

	SiO ₂	Al203	CaO	TiO ₂	Fe0	Fe ₂ 0 ₃	P2Os	Nh ₂ O ₅	Y203	La_2O_3	Ce ₂ 0 ₃	Pr ₂ O ₃	Nd ₂ O ₂	Sm_2O_3	Gd203	ThO ₂	Ho ₂ O ₂	Yb ₂ O ₃	Σ RÉE	TOTAL
	_	-														_				
Messung	mass%	mass%	mass%	mass%	mass%	mass%	mass%	mass%	mass%	mass%	mass%	mass%	mass%	mass%	mass%	mass%	mass%	mass%	mass%	mass%
0.0001-114		0.000		04 - 70		1.000		0.000			0.000		1.074			0.054		6.120		04 848
90 Tit hell 1	28,432	0,430	24,771	36,172	1,692	1,880	0,029	0,602	1,344	0,165	0,707	b.d.i	1,254	0,145	0,219	0,054	0,212	0,129	4,175	96,545
OC THE LET 2	20,213	0,490	23,005	30,330	1,539	1,710	0.025	0.400	1,103	0.219	0,009	0,043	1,009	0.091	0.194	0,025	0,191	0,000	2,075	96,207
9C Tit bell 4	28,637	0.424	25.432	36,333	1505	1,650	0,022	1 120	1,667	0.117	0.655	0.038	0.015	0,007	0,107	0,020	0,179	0,147	3,745	96,549
90 Tit hell 5	28,778	0.512	25,308	36759	1.409	1.565	0.033	0.363	0.877	0.179	0.766	hidd	1,259	0.054	0.120	hdl	0.151	0.075	3.491	96,809
9C Tit hell 6	28.728	0.430	24,973	36.250	1.596	1.773	0.018	0.553	1.287	0.177	0.665	b.d.I	0.881	0.111	0.164	b.d.I	0.263	0.073	3.641	96.366
9C Tit hell 7	28.571	0.466	24,843	35.998	1,680	1.866	0.014	0.654	1.414	0.168	0.721	0.053	1.123	0.125	0.165	0.037	0,174	0.110	4.073	96.522
9C Tit hell 8	28,454	0,460	24,892	36,204	1,678	1,864	0,026	0,708	1,350	0,132	0,689	b.d.1	1,014	0,117	0,235	0,027	0,194	0,071	3,802	96,437
9C Tit hell 9	28,354	0,425	24,841	36,198	1,645	1,828	0,019	0,699	1,338	0,127	0,675	0,078	0,901	0,124	0,163	0,045	0,184	0,139	3,729	96,138
9C Tit hell 10	28,162	0,431	24,823	36,123	1,594	1,771	0,029	0,550	1,261	0,141	0,630	b.d.1	1,037	0,120	0,275	0,023	0,219	0,051	3,734	95,646
9C Tit hell 11	27,817	0,413	24,776	36,158	1,595	1,772	0,032	0,683	1,298	0,134	0,732	0,040	0,967	0,136	0,160	b.d.l	0,231	0,161	3,879	95,530
9C Tit hell 12	28,211	0,492	25,010	36,247	1,577	1,752	0,030	0,562	1,238	0,169	0,674	0.071	1,074	0,054	0,213	0,047	0,137	0,102	3,732	96,083
9C Tit hell 13	28,216	0,420	24,873	36,179	1,593	1,770	0,023	0.653	1,343	0,115	0,734	b.d.1	1,245	0,111	0,211	0,023	0,229	0,120	4,108	96,265
9C Tit hell 14	28,405	0,431	24,997	35,744	1,758	1,953	0,018	1,359	1,229	0,060	0,628	0,035	0,782	0,057	0,145	0,027	0,117	0,143	3,196	96,130
90 Tit hell 15	28,335	0,462	24,998	36,024	1,655	1,839	0,014	1,302	1.254	0,108	0,619	0,041	0,980	0,081	0.230	0,023	0.225	0,078	3,616	96,613
90 Tit hell 16	28,604	0,562	25,257	36,370	1,5783	1,753	0,029	0,930	0,981	0,097	0,611	b.d.l	0,880	0,046	0,172	b.d.1	0,238	b.d.l	3,025	96,530
90 TH Rel 17	28,432	0,435	24,735	35,991	1,7823	1,980	0,024	1,557	1,364	0,158	0,627	0.055	1,065	0,073	0.151	D.G.I	0,204	0,088	3,778	96,894
OC THE head 10	20,029	0,473	25,293	36,510	1,400	1,044	0,020	1 202	1,043	0.121	0,620	0,055	0,879	0,107	0,176	5.017	0.244	0.053	3,340	96,952
9C Tit bell 20	28,0313	0.502	24,903	36,133	1,750	1,744	0.015	1,603	1,200	0,131	0,643	6,052 6.d1	0,700	0,007	0,230	0.062	0,290	b.d.l	3,047	96,000
9C Tit hell 21	27 732	0.526	24 664	35 389	1.825	2.028	0,015	1,376	1461	0.042	0,004	(b.d.)	0.877	0 130	0,165	b/11	0.248	0.165	3,684)	95 804
9C Tit hell 22	27.925	0,488	24.612	35.340	1.907	2.119	b.d.l	1.878	1.461	0.160	0.578	b.d.1	0.691	0.087	0.254	b.d.l	0.284	0.073	3,588	95.950
9C Tit hell 23	27.742	0.460	24,962	35.908	1.747	1.941	0,018	1.094	1.211	0.100	0.602	0.031	1.041	0.063	0.172	b.d.l	0,198	0.119	3,527	95.652
9C Tit hell 24	28,242	0,478	25,018	35,861	1,719	1,910	0,024	1,189	1,246	0,140	0,596	b.d.)	1,112	0,089	0,196	0,024	0,168	0,051	3,598	96,364
9C Tit hell 25	28,216	0,452	25,012	35,754	1,739	1,932	0,012	1,260	1,292	0,089	0,578	b.d.1	0,969	0,027	0,175	b.d.I	0,184	0,110	3,424	96,062
9C Tit hell 26	27,431	0,494	25,029	35,943	1,730	1,922	0,007	1.204	1,228	0,060	0,599	b.d.1	0,931	0,117	0,192	b.d.I	0,161	b.d.l	3,288	95,318
9C Tit hell 27	28,275	0,500	25,103	35,913	1,730	1.922	0,022	1,285	1,280	0,079	0,641	b.d.)	0,930	0,128	0,221	b.d.I	0,144	0,065	3,488	96,508
9C Tit hell 28	28,171	0,415	24,778	35,704	1.B36	2,040	0,018	1.301	1,334	0.152	0,614	0,033	1,078	0,095	0,186	0,053	0,171	0,048	3,711	96,191
9C Tit hell 29	28,442	0,449	25,013	35,861	1,777	1,974	0,030	1,296	1,214	0,109	0,640	b.d.l	0,856	0,047	0,151	0,05B	0,261	0,164	3,442	96,565
9C Tit hell 30	28,097	0,498	24.B22	36,284	1,640	1,822	0,014	0,455	1,370	0,103	0,662	0,038	1,051	0,064	0,163	0,051	0,239	0,133	3,823	95,866
9C Tit hell 31	28,301	0,440	25,054	36,414	1,544	1,715	0,024	0,954	1,152	0,152	0,630	b.d.l	1,084	0,118	0,216	0,024	0,198	0,053	3,603	96,529
9UTR Rel 32	28,254	0,499	25,281	36,960	1,499	1,665	0,020	0,939	1,113	0,204	0,613	0,050	1,298	0,090	0,170	0.0.1	0,159	0,096	3,813	96,951
9C Tit ball 34	28,623	0,316	20,441	36,990	1,305	1,673	0,015	0,921	0.522	0.285	0,004	0.059	0,901	0,095 b.d.t	0.085	0,022	0,200	6,009	2 76 2	90,420
90 Tit bell 35	28,686	0.435	25,552	36.937	1.432	1,591	0.013	0,310	0,512	0.188	0,003	0.082	0,927	0.0.1	0.070	0,030	0.121	bdl	2,702	96 347
90 Tit hell 36	27,886	0.411	25,409	36.656	1.527	1.696	0.012	0.302	0.703	0.145	0.848	h d.)	1,103	0.003	0.135	0.036	0,108	0.079	3,215	95.623
9C Tit hell 37	28,782	0.457	25,773	36.929	1.373	1.525	0.011	0,297	0.479	0.218	0.943	b.d.1	1.176	b.d.l	0.086	0.069	b.d.l	b.d.l	2.902	96,745
9C Tit hell 38	28,069	0,475	25,311	36,349	1,607	1,785	0,014	0,548	0,797	0,232	0,872	0.095	1,198	0.040	0,166	0,028	0,120	b.d.l	3,540	96,119
9C Tit hell 39	28,396	0,448	25,373	36,225	1,722	1.913	0,016	0,606	0,909	0.231	0,862	0.059	1,123	0.093	0.141	0,045	0,107	b.d.l	3,525	96,547
9C Tit hell 40	28,146	0,485	25,236	36,238	1,670	1,855	b.d.l	0,540	0,896	0,205	0,803	b.d.l	1,206	0,103	0,133	0,054	0,209	b.d.l	3,555	96,109
9C Tit hell 41	29,190	0,599	25,195	35,986	1,442	1,602	0,012	0,861	0,927	0.157	0,684	0.052	1,081	0.043	0.126	0,034	0,195	b.d.l	3,265	96,744
9C Tit hell 42	29,096	0,597	25,493	36,091	1,387	1,541	b.d.l	0,903	0,816	0,123	0,664	p'q'j	0,895	0,030	0,038	b.d.l	0,102	0,109	2,777	96,498
9C Tit hell 43	29,291	1,142	25,551	35,693	0,918	1,020	0,064	0,602	0,603	0,147	0,410	b.d.l	0,697	0,039	0,085	0,146	0,103	b.d.l	2,084	95,593
90 Tit hell 44	28,776	1,178	25,263	36,032	0,811	0,901	0,017	0,336	0,948	0,236	0,959	b.d.l	1,489	0,232	0,218	0,052	0,131	b.d.l	4,213	96,768
90 Tit bell 45	28,794	1,248	25,029	35,863	0,794	0,882	0,024	0,351	1,035	0,172	0,839	D.C.I	1,365	0,185	0,200	0,046	0,218	D.d.l	4,014	96,251
9U FIG BELLAG	28,607	0,626	25,210	35,833	1,742;	1,955	0.000	1,290	0,859	0.320	0,782	0.0.1	1,060	0,039	0.125	0.0.1	0,122	0,074	3,253	96,509
90 Tit ball 48	28,098	0,302	25,212	35,008	1,080	1,000	0,008	1,123	0,794	0,230	0,017	6,076 h.dl	1.235	0,106	0,133	0,024	0.155	0.001	3,391	90,700
9C Tit hell 49	28,569	0.485	25,473	35,949	1.774	1.971	h.d.l	1.342	0.831	0.198	0,930	0.088	1,213	hdl	0,267	0.028	0.133	b.d.l	3.509	97.325
9C Tit hell 50	27.835	0.739	25,471	36360	1.427	1.565	h.d.l	1.038	0.905	0.180	0.702	h d.l	1.073	0.063	0.175	0.041	0.133	0.050	3,281	96.350
							- /													
MAY	20.201	1.240	26 772	22 0 10	1.007	2140	0.064	1.070	1 46 3	0.385	0.050	0.005	1.400	0.222	0.275	0147	0.204	0.165	4 21 2	07 225
MIN	27.431	0.411	24 612	35,929	0.794	0.882	b d l	0.207	0.470	0,285	0,959	0,095	0,401	0,232	0.275	0,146	0,284 hdl	bd1	2 094	95 318
MITTELWERT	28,378	0,518	25,106	36,142	1,582	1,758	0,020	0,888	1,094	0,153	0,698	0,052	1,046	0,089	0,170	0,038	0,183	0,092	3,506	96,340

Titanit hell (Schliff 9C)

	Si	Al	Ca	Ti	Fe	р	Nb	Y	La	Ce	Pr	Nd	Sm	Gd	Th	Ho	Yb	0	ΣREE	ΣAl+Fe+Ti	ΣNb+REE+Ca
Moccura	Number	diana	n the her	in adda ur	e:																
messung	Number	prions o	n ne bas		ər (1								
9C Tit hell 1	4,000	0,071	3,734	3,8Z8	0,179	0,003	0,038	0,101	0,009	0,036	0,000	0,063	0,007	0,010	0,002	0,009	0,006	Z0,233	0,241	4,078	4,013
90 Tithell 2	4,000	0,082	3,807	3,896	0,164	0,003	0,030	0,088	0,011	0,035	0,002	0,054	0,004	0,007	0,001	0,009	0,004	20,372	0,214	4,142	4,051
9C Tithell 3	4,000	0,069	3,713	3,793	0,176	0,003	0,060	0,091	0,006	0,032	0,000	0,059	0,004	0,008	0,001	0,008	0,006	20,144	0,214	4,038	3,986
9C Tit hell 4	4,000	0,070	3,840	3,853	0,160	0,004	0,071	0,080	0,006	0,034	0,002	0,046	0,004	0,005	0,001	0,007	0,002	20,359	0,186	4,083	4,097
9C TH BAILS	4,000	0,084	3,769	3,843	0,147	0,004	0,023	0,065	0,009	0,039	0,000	0,052	0,003	0,005	0,000	0,007	0,003	20,159	0,194	4,074	3,985
9C TUBER 0	4,000	0,071	2,725	2 704	0.177	0,002	0,035	0,095	0,009	0.039	0,000	0,044	0.0061	0,008	0.001	0,012	0,003	20,003	0.211	4,034	4.004
9C Tit bell 8	4,000	0,077	3,720	3,771	0.177	0,002	0.041	0,103	0,009	0.037	0,005	0.051	0,008	0,009	0,001	0,008	0,005	20,133	0.237	4.082	4,004
9C Tit hell 9	4.000	0.071	3.754	3.841	0.175	0.002	0.045	0.100	0.007	0.035	0.004	0.045	0.006	0.008	0.001	0.008	0.006	20.253	0.219	4,085	4.018
9C Tit hell 10	4,000	0,072	3,777	3,859	0,170	0,003	0,035	0,095	0,007	0,033	0,000	0,053	0,006	0,013	0,001	0,010	0,002	20,286	0,219	4,101	4,032
9C Tithell 11	4,000	0,070	3,817	3,911	0,173	0,004	0,044	0,099	0,007	0,039	0,002	0,050	0,007	0,009	0,000	0,011	0,007	20,467	0,230	4,153	4,091
9C Tit hell 12	4,000	0,082	3,799	3,865	0,168	0,004	0,036	0,093	0,009	0.035	0.004	0,054	0.003	0.010	0,002	0,006	0.004	20,336	0,219	4,116	4,054
90 Tit hell 13	4,000	0,070	3,778	3,858	0,170	0.003	0,042	0,101	0.006	0,038	0,000	0.063	0,005	0,010	0,001	0.010	0.005	20,325	0,239	4,098	4.059
9C Tit hell 14	4,000	0,072	3,771	3,786	0.186	0,002	0,087	0,092	0,003	0,032	0,002	0,039	0.003	0,007	0,001	0,005	0,006	20,237	0,190	4,044	4,047
90 Tithell 15	4,000	0,077	3,781	3,825	0,176	0,002	0,083	0,094	0,006	0,032	0,002	0,049	0,004	0,011	0,001	0,010	0,003	20,340	0,211	4,078	4,075
9C Tit hell 16	4,000	0,093	3,764	3,825	0,166	0,003	0.059	0.073	0,005	0,031	0.000	0.044	0,002	0,006	0.000	0,011	0.000	Z0,239	0,174	4,084	4,017
90 Tithell 17	4,000	0,072	3,728	3,803	0,189	0,003	0,100	0,102	0,008	0,032	0,002	0,054	0,004	0,007	0,0001	0,009	0,004	20,315	0,222	4,064	4,050
9C TIERCE 18	4,000	0.077	3,750	3,811	0,1531	0,002	0.052	0,077	0.0121	0,032	0,003	0.040	0,0051	0,008	0,001	0,004.4	0.000	20,1501	0.013	4,041	4,002
9C TR bell 20	4,000	0.024	2,809	2.972	0.191	0.002	0.077	0.093	0.007	0.033	0.002	0.019	0.005	0.012	0.0001	0.011	0.002	20,300	0.213	4,099	4,099
90 Tit bell 71	4,000	0,009	3,811	3 839	0,101	0.002	0.115	0,074	0.002	0.031	0,000	0.045	0,005	0,010	0,002	0.011	0.607	20,549	0,202	4 177	4,057
90 Tit hell 22	4.000	0.082	3.777	3.807	0.206	0.000	0.122	0.111	0.008	0.030	0.000	0.035	0.004	0.012	0.000	0.013	0.003	20.454	0.218	4.095	4,116
90 Tithe8 23	4,000	0,078	3,856	3,894	0,190	0,002	0,071	0,093	0,005	0,032	0,002	0,054	0,003	0,008	0,000	0,009	0,005	20,545	0,210	4,162	4,138
90 Tit hell 24	4,000	0,080	3,796	3,822	0,183	0,003	0,076	0,094	0.007	0,031	0,000	0,056	0,004	0,009	0,001	0,008	0,002	20,352	0,212	4,085	4,084
9C Tit hell 25	4,000	0,076	3,799	3,812	0,186	0,001	0,081	0,097	0,005	0,030	0,000	0,049	0,001	6,808	0,000	0,008	0,005	20,326	0,204	4,073	4,083
9C Tit hell 26	4,000	0,085	3,910	3,94Z	0,190	0,001	0,079	0,095	0,003	0,032	0,000	0,048	0,006	6,005	0,000	0,007	0,000	Z0,709	0,20Z	4,217	4,191
9C Tit hell 27	4,000	0,083	3,805	3,821	0,184	0.003	0,082	0,096	0,004	0,033	0,000	0,047	0,006	0,010	0,000	0,006	0,003	20,370	0.207	4,089	4,093
90 Titheli 28	4,000	0,069	3,769	3,813	0,196	0,002	0,084	0,101	0,008	0,032	0,062	0,055	0,005	6,009	0,002	0,008	0,002	20,342	0,220	4,079	4,673
9C Tit hell 29	4,000	0,074	3,769	3,793	0,188	0,004	0,082	0,091	0,006	0,033	0,000	0,043	0,002	0,007	0,002	0,012	0,007	20,268	0,200	4,056	4,052
9E TEENEII 30	4,000	0,084	3,786	3,885	0,176	0,002	0.029	0,104	0,005	0,035	0,002	0,053	0,003	0,008	0,002	0,011	0,006	20,365	0,227	4,144	4,042
90 Titball 32	4,000	0.093	3,794	3,071	0.160	0,003	0,001	0,007	0,008	0,033	0,000	0,055	0,000	0,010	0,001	0,005	0,002	20,300	0,209	4,103	4,004
9C Tit hell 33	4 000	0.087	3,830	3 890	0.160	0.002	0.059	0.082	0.006	0.031	0,003	0.050	0.005	800.0	0,000	0,009	0.003	20,425	0.194	4,138	4.083
9C Tit hell 34	4.000	0.073	3.823	3.879	0.146	0.002	0.020	0.039	0.015	0.045	0.003	0.046	0.000	0.004	0.001	0.000	0.000	20.194	0.152	4.099	3,994
9C Tit hell 35	4,000	0,071	3,802	3,863	0,150	0,002	0,019	0,047	0,010	0,047	0,004	0,045	0,003	0,003	0,001	0,005	0,000	20,163	0,165	4,085	3,986
9C Tit hell 36	4,000	0,069	3,905	3,955	0,165	0,001	0,020	0,054	0,008	0,045	0,000	0,056	0,005	0,006	0,001	0,005	0,003	Z0,493	0,182	4,189	4,106
90 Tit hell 37	4,000	0,075	3,837	3,860	0,144	0,001	0.019	0,035	0,011	0,048	0,000	0,058	0,000	0,004	0,002	0,000	0,000	20,175	0,157	4,079	4.013
90 Tit hell 38	4,000	0,080	3,864	3,896	0,172	0,002	0,035	0,060	0,012	0,045	0,005	0,061	0,002	0,009	0,001	0,005	0,000	20,429	0,200	4,148	4,190
9C Tít hell 39	4,000	0,074	3,829	3,838	0,183	0,002	0,039	0,068	0,012	0,044	0,003	0,056	0,005	0,007	0,001	0,005	0,000	20,295	0,200	4,095	4,068
90 Tit hell 40	4,000	0,081	3,842	3,873	0,179	0,000	0,035	0,068	0,011	0,042	0,000	0,061	0,005	0,006	0,002	0,009	0,000	20,372	0,202	4,133	4,079
9C Tit hell 41	4,000	0,0971	3,699	3,709	0,149	0.001	0.0531	0,068	0,008	0,034	0,003	0.053	0.002	0.005	0.001	0.008	0,000	19,896	0.182	3,954	3,934
9C TH Bell 42	4,000	0,097	3,/35	3,/32	0.094	0,000	0.027	0,0601	0,000	0,033	0,000	0.034	0,001	0,002	0,000	0,004	0,005	19,9521	0,155	3,972	3,900
60 Tit hell 44	4,000	0,103	3,762	3 767	0.085	0.002	0.021	0.070	0.012	0.020	0.000	0.074	0.011	0.010	0.002	0.004	0.000	20 172	0.237	4 045	4.015
90 Tit hell 45	4.000	0.204	3725	3 747	0.083	0.002	0.022	0.077	0.009	0.043	0,000	0.07 1	0,011	0,010	0.001	0.010	0,000	20.050	0.223	4 034	3 970
9C Tit hell 46	4,000	0.070	3.776	3,768	0.183	0.000	0.078	0.064	0.010	0.040	0.000	0.053	0.062	0.006	0.000	0.005	0.003	20.164	0.183	4.022	4.038
90 Tithell 47	4,000	0,092	3,765	3,760	0,176	0,001	0,072	0,059	0,012	0,042	0,004	0,061	0,005	0,006	0,001	0,000	0,000	20,155	0,189	1,029	4,025
9C Tit hell 48	4,000	0,071	3,781	3,785	0,188	0,000	0,063	0,074	0,610	0,041	0,000	0,063	0,004	0,010	0,001	0,007	0,004	20,217	0,211	4,044	4,055
9C Tit hell 49	4,000	0,080	3,821	3,786	0,187	0,000	0,085	0,062	0,010	0,043	0,004	0,061	0,006	6,008	0,001	0,608	0,000	20,300	0,196	4,052	4,102
90 Tit hell 50	4,000	0,125	3,921	3,930	0,154	0,000	0,067	0,069	0,610	0,037	0,000	0,055	0,003	0,008	0,001	0,006	0,002	20,657	0,190	4,209	4,179
																		1			[
мах	6	0.204	2 9 2 1	2055	0 704	0.007	0 122	0.112	0.015	0.049	0.005	0.074	0.011	0.012	0.005	0.017	0.007	20 200	0.241	4717	4 191
MIN		0.069	3.699	3,666	0.083	0.000	0.019	0.035	0.002	0.020	0.000	0.034	0.000	0.002	0.000	0.000	0.000	19,782	0.116	3.944	3.891
MITTELWERT		0,086	3,792	3,832	0,168	0,002	0,057	0,082	0,008	0,036	0,001	0,053	0,004	0,008	0,001	0,008	0,003	20,290	0,203	4,086	4,051

	SiO ₂	Al ₂ O ₃	CaO	TiO ₂	Fe0	Fe_2O_3	P ₂ O ₅	Nh ₂ O ₃	¥203	La_2O_3	Ce203	Pr ₂ O ₃	Nd ₂ O ₃	Sm ₂ O ₃	Gd203	ThO ₂	Ho ₂ O ₃	Yb ₂ O ₃	Σ RÉE	TOTAL
Messung	mass%	mass%	macc%	mass%	mass%	masclife	mass%	mass%	mass%	massi	mass%	mass%	mass%	masella	mass%	mass%	mass%	mass%	mass%	mass%
messwing	1014 29 20	116433 99	11103370	111433 70	11103370	10/4/99 20	11103370	10/4 55 70	11103370	16(3370	Midda 70	fulcios 20	1164-8570	11103370	1161-05-20	1103370	110.3520	1114333.70	1130 35 70	11103379
9C Tit dunkel \$	28,357	0,809	26,337	37,646	0,63B	0,709	0,046	0,441	0,468	0,165	0,384	b.d.1	0,552	b.d.l	0,090	0,031	0,105	0,046	1,342	96,186
9C Tit dunkel 2	29,022	0,842	26,354	37,320	0,719	0,799	0,038	0,462	0.492	0.045	0,421	b.d.1	0,452	0.047	0,115	0,094	b.d.l	0,046	1.126	96,549
9C Tit dunkel 3	28,503	0,741	26,491	37,460	0,733	0,814	0,042	0,369	0.417	0,123	0,368	b.d.I	0,505	0.044	0,070	0,085	0,052	b.d.l	1,162	96,084
9C Tit dunkel 4	28,515	1,209	26,579	36,583	0,788	0,875	0,028	0,374	0.413	0,081	0,366	b.d.l	0,426	0.029	0,052	0,070	0,155	b.d.l	1,109	95,755
9C Tit dunkel 5	28,451	1,174	26,452	36,613	0,796	0,884	0,031	0,323	0.415	0,116	0,296	b.d.l	0,315	0,037	b.d.I	0,066	0,061	0,115	0,940	95,349
9C Tit dunkel 6	29,128	0,867	26,245	37,247	0,686	0,762	0,028	0,532	0,526	0,045	0,369	b.d.I	0,509	p.d.)	0,044	0,080	b.d.f	b.d.l	0,967	96,382
9C Tit dunkel 7	28,232	0,810	26,322	37,683	0,637	0,708	0,051	0,381	0,527	0,090	0,397	b.d.i	0,593	0,049	0,066	0,053	0,101	b.d.l	1,296	96,063
9C Tit dunkel 8	28,686	0,731	26,530	37,567	0,726	0,807	0,041	0,334	0,447	p'q']	0,313	0,069	0,442	p.d.l	0,051	0,059	0,099	b.d.l	0,974	96,176
9C Tit dunkel 9	28,705	0,699	26,595	37,473	0,B19	0,910	0,026	0,485	0,425	0,063	0,387	b.d.I	0,335	0,063	0,031	0,05Z	0,096	[b.d.]	0,975	96,345
9C Tit dunkel 10	28,906	0,415	26,275	37,472	1,075	1,194	0,034	0,457	0,527	0,085	0,407	b.d.l	0,667	0,033	0,076	0,105	b.d.l	0,071	1,339	96,724
9C Tit dunkel 11	28,960	0,580	26,288	37,317	0,906	1,007	0,028	0,520	0,519	0,079	0,425	b.d.1	0,655	0,055	0,078	0,042	0,098	b.d.l	1,390	96,651
9C Tit dunkel 12	28,620	0,770	26,334	37,179	0,756	0,842	0,041	0,378	0,507	0,118	0,377	0,031	0,292	0.059	0,034	0,036	0.074	b.d.l	0,985	95,694
90 Tit dunkel 13	28,468	0,805	26,501	37,511	0,584	0,649	0,049	0.326	0,498	0,158	0,366	b.d.l	0,538	0.096	0,049	0,081	b.d.l	0,053	1.260	96,148
9C Tit dunke] 14	28,287	0,766	26,344	37,419	0,743	0,825	0,037	0,384	0,485	0,114	0,405	b.d.1	0,442	b.d.l	0,069	0,075	0,078	p.d.l	1,128	95,750
90 Tit dunkel 15	28,685	0,571	26,212	37,574	0,749	0,832	0.052	0,491	0,554	p.d.l	0,415	b.d.i	0,581	b.d.l	0.052	0,015	0,054	0,134	1.236	96,222
9C Tit dunkel 16	28,689	1,164	26,447	36,878	0,798	0,887	0,030	0,392	0.442	0,068	0,329	b.d.l	0,576	b.d.l	0,052	0,058	0,046	b.d.l	1.071	96,048
9C Tit dunkel 17	28,728	0,691	26,558	37,624	0,781	0,868	0,03B	0,306	0,487	b.d.J	0,319	b.d.l	0,610	0,074	0,076	0,021	0,073	b.d.l	1,152	96,473
9C Tit dunkel 18	28,996	1,156	26,691	36,877	0,791	0,879	0,037	0,432	0,407	0,105	0,311	b.d.l	0,455	b.d.i	0,040	0,059	0,109	b.d.l	1,020	96,544
9C Tit dunkel 19	28,522	1,102	26,712	36,967	0,739	0,821	0,033	0,273	0,423	p'q']	0,267	b.d.1	0,561	p.d.l	b.d.I	0,055	0,091	0,068	0,987	95,895
9C Tit dunkel 20	28,809	0,602	26,670	37,750	0,790	0,878	0,037	0,568	0,403	0,068	0,352	b.d.1	0,334	p.d.l	0,050	0,029	0,102	b.d.l	0,926	96,672
9C Tit dunkel 21	29,234	1,063	26,313	36,337	0,851	0,945	0,035	0,168	0,350	b.d.]	0,292	b.d.)	0,376	b.d.l	0,048	0,051	b.d.)	b.d.l	0,716	95,212
9C Tit dunkel 22	28,458	1,115	26,257	36,309	0,848	0,942	0,031	0,258	0,341	0,093	0,332	b.d.1	0,540	b.d.l	0,038	0,032	0,076	0,062	1,141	94,884
9C Tit dunkel 23	29,101	1,198	26,455	36,447	0,819	0,910	0,031	0,237	0,320	0,057	0,321	b.d.1	0,434	b.d.l	0,048	0,045	0,093	b.d.l	0,953	95,697
9C Tit dunkel 24	28,853	0,908	26,197	36,998	0,808	0,898	0,038	0,260	0,477	0,051	0,385	b.d.)	0,605	0.095	0,077	0,017	0,129	0,090	1,432	96,078
9C Tit dunkel 25	28,503	0,724	26,017	36,986	0,975	1,083	0,02B	0,247	0,480	0,074	0,481	b.d.l	0,548	0,028	0,075	0,033	b.d.l	preri	1,206	95,307
9C Tit dunkel 26	28,244	1,069	26,051	36,742	0,757	0,841	0.032	0,420	0.482	0,094	0,411	b.d.1	0,654	0,081	b.d.I	0,028	b.d.l	p.d.l	1,240	95,149
9C Tit dankel 27	28,609	0,491	26,057	37,374	0,865	0,961	0,036	8,511	0,476	0,084	0,378	b.d.ł	0,719	b.d.l	0,095	0,046	0,135	0,084	2,495	96,856
9C Tit dunkel 28	28,692	1,184	26,209	36,491	0,860	0,955	0,015	0,320	0,397	b.d.J	0,316	b.d.l	0,516	b.d.l	b.d.l	0,056	0,123	b.d.l	0,955	95.274
9C Tit dunkel 29	28,641	1,080	26,316	36,245	0,904:	1,004	0,022	0,191	0,426	p'q']	0,318	b.d.l	0,517	0,031	0,069	0,019	0,124	b.d.l	1,059	95,003
9C Tit dunkel 30	28,927	0,768	25,904	36,732	0,836	0,929	0,032	0,354	0,535	0,281	0,544	0,037	0,741	0,047	0,122	0,044	0,100	b.d.l	2,872	96,097
9C Tit dunkel 31	28,888	1,047	26,621	37,298	0,680	0,755	0,029	0,264	0,380	p'q']	0,297	b.d.i	0,409	b.d.l	0,060	0,054	0,093	0,061	0,920	96,256
9C Tit dunkel 32	29,374	1,048	26,649	37,371	0,632	0,702	0,028	0,352	0,351	0,089	0,297	b.d.l	0,452	0,026	b.d.l	0,065	b.c.l	b.d.l	0,864	96,804
9C Fit dankel 33	29,130	1,172	26,710	37,209	0,695	0,773	0,018	0,229	0,344	0,131	0,299	b.d.l	8,451	0,026	0,063	0,046	0,074	0,052	2,096	96,627
9L Tit dunkel 34	28,947	1,177	26,743	36,896	0,886	0,984	0,032	0,255	0,344	b.d.	0,273	6.d.1	0,275	b.d.l	0,079	0,033	0,071	b.d.l	0,698	96,109
91. Tit dunsel 35	28,9.98	1,164	26,320	36,635	0,837	0,930	0,039	0,368	0,940	0,126	0,351	0.0.1	0,538	D.C.I	0,070	0,050	0,078	D.C.I	1,163	96,047
9C Fit dansel 36	29,243	1,040	26,583	35,954	0,798	0,884	0,021	0,334	0,404	0,070	0,361	0.6.1	0,259	D.C.I	0,052	0,080	0,131	D.Q.I	0,873	36,455
9U Tit dunkel 37	28,926	1,095	26,282	36,853	0,642	0,935	0,031	816.0	0,387	0.047	0,315	0.0.1	0,426	D.C.I	0,060	0,084	0,044	D.C.I	0,947	95,858
9L TR dunsel 38	28,775	1,1/5	26,307	36,306	0,653	0,968	0,020	0,265	0,357	0,065	0,245	0.0.1	0,448	0.6.1	0,035	0,056	D.G.I	D.C.I	0,793	95,262
oc the dunkel 39	28,210	1,233	26,568	36,654	0.871	0,968	0,034	0.252	0.331	0,050	0,289	0.6.1	0,490	0.0.1	0,046	0.022	0,056	0.0.1	0,931	95,203
OC THAUSTON 40	28,806	1,134	26,621	36,666	0,873	0,970	0,033	0,313	0.377	0,092	0,302	0.0.1	0,515	0.0.1	0.07	0,052	0,070	0,039	1,018	96,010
The automatical 42	28,818	1,082	26,389	36,500	0,652	0.000	0,035	0.234	0,390	0.070	0.305	0.0.1 Ib.d.1	0,556	0.031	0,065	0,065	0.0.1	0,084	1,117	95,679 BE EC4
OC TRA durate 142	20,981	1,039	20,558	30,379	0,089	0,968	0,043	0,309	0,905	0,058	0,265	0.0.1	0,175	0.037	0.070	0.000	0,0/1	10.0.1	0,589	95,551
PC TH dunkel 43	20,053	0,924	26,912	37,094	0,739	0,821	0,039	0,274	0,365	0.044	0.348	0.0.1	0.750	0,037	0,079	0,059	0,069	0.020	1,960	95,802
PC TR dunkel 44	20,730	0,820	20,263	37,335	0,011	0.079	0,027	0,303	0.250	0,046	0,354	b.d.1	0,758	0,055	0,111	0,059	0,093	0,039	1,955	99,210
PC The duplical 45	20,179	0.914	20,935	27,228	0,742	0,824	0,024	0,451	0.455	0,075	0,296	lo.c.i	0,412	0.034	0,035	0,034	0.0.120	10.0.1 b.d.l	1,618	32,941
90 The duplical 47	20,720	0.033	26,109	27.201	0,703	0,751	0,025	0,505	0.927	0,097	0.214	h d 1	0,091	b.d1	6.102	0,027	0,128	0.000	1,408	90,020
9C TR ounsel 47	20,019	0,952	20,94/	26 0 22	0,095	0.072	0,033	0,297	0.414	0,043	0,314	b.d.1	0.204	b.d.)	0.114	0,047	0,108	0,080	0,959	90,709 0E 104
ACTH duringer 48	20,011	0.001	20,270	30,933	0,035	0,950	0,020	0,348	0.479	0,058	0,330	h d 1	0,490	0.03	0.000	0,030	0.029	0,041	1.09/	33,100 BE 462
PC TE dunkel 49	26,811	1.013	26,105	37,057	0,736	0,818	0.024	0,223	0.475	0,059	0.334	0.0.1 b.d.1	0.475	0,035	0,096	0,031	0,064	b.d.l	1,086	95,052 04 E27
70 TR UGHARI 50	77,238	L'OL/	20,030	97,130	0,019	0,002	0,025	0.692	0.911	10-Cld	0,409	0.0.1	0,407	0.027	0,072	0,002	0,075	D'ILLI	0,910	30,001
																0.147	0.107			
MAX	29,374	1,233	26,743	37,750	1,075	1,194	0,052	0,568	0,554	0,281	0,544	0,069	0,758	0,096	0,122	0,105	0,155	0,134	1,872	96,804
MIN	28,179	0,415	25,904	36,245	0,584	0,649	0,015	0,168	0,320	p.d.l	0,245	b,d,l	0,175	p.d.l	b.d.l	b,d.l	b.d.l	b.d.l	0,589	94,884
MITTELWERT	28,731	0.940	26.398	37.046	0.784	0.871	0.033	0.341	0.429	0.086	0.346	0.034	0.489	0.045	0.066	0.050	0.088	0.065	1.079	95,931

Titanit dunkel (Schliff 9C)

Titanit dunkel (Schliff 9C)

	Si	Al	Ca	Ti	Fe	Р	Nb	Y	La	Ce	Pr	Nd	Sm	Gd	Th	Ho	Yb	0	ΣREE	ΣAl+Fe+Ti	END+REE+Ca
Messung	Number	of ions o	n the bas	is of four 1	S1												(
90 Tit dunkel 1	4,000	461,0	3,980	3,994	0,068	0,005	0,028	0,035	0,009	0,020	0,000	0,028	0,000	0,004	0,001	0,005	0,00Z	Z0,511	0,102	4,196	4,110
90 Tit dunkel 2	4.000	0,137	3,891	3,869	0,075	0,004	0,029	0,036	0,002	0,021	0,000	0.022	0,002	0,005	0,003	0,000	0.002	20,172	0,091	4,080	4,011
90 Tit dunkel 3	4,000	0,123	3,983	3,954	0,077	0,005	0,023	0,031	0,006	0,019	0,000	0,025	0,002	0,003	0,003	0,002	0,000	20,401	0,089	4,154	4,096
9C Tit dunkel 4	4,000	0,200	3,994	3,860	0,083	0,003	0,024	0,031	0.004	0,019	0,000	0,021	0,001	0,002	0,002	0,007	0,000	20,339	0,086	4,143	4,104
90 Tit dunkel 5	4,000	0,195	3,984	3,872	0,084	0,004	0,021	0,031	0,006	0,015	0,000	0,016	0,002	0,000	0,002	0,003	0,005	20,327	0,079	4,150	4,082
9C Tit dunkel 6	4,000	0,140	3,861	3,847	0,071	0,003	0,033	0,038	0,002	0,019	0,000	0,025	0,000	0,002	0,002	0,000	0,000	20,097	0.086	4,058	3,980
90 Til dunkel 7	4,000	0,135	3,995	4,016	0,068	0,006	0,024	0,040	0,005	0,021	0,000	0,030	0,002	0,003	0,002	0,005	0,000	20,569	0,105	4,219	4,125
90 Tit durkers	4,000	0,120	3,983	3,940	0.0021	0.003	0.021	0.022	0,000	0,016	0,004	0.017	0,000	0,002	0,002	0,004	0,000	20,325	0,081	4,136	4,000
90 Tit dunkel 10	4,000	0.068	3,970	3,927	0.112	0,003	0,031	0,032	0.003	0.021	0.000	0,017	0.002	0,001	0.002	0,001	0.003	20,333	0,000	4,080	4.029
90 Tit dunkel 11	4 000	0.094	3 890	3 877	0.094	0.003	0.032	0.038	0.004	0.021	0.000	0.032	0.003	0.004	0.001	0.004	0.000	20,218	0.106	4.065	4.029
90 Tit dunkel 12	4,000	0,127	3,943	3,908	0,080	0,005	0,024	0,038	0,006	0,019	0,002	0,015	0,003	0,002	0,001	0,003	0,000	20,274	0,087	4,115	4,054
9C Tít dunkel 13	4.000	0,133	3,989	3,964	0.062	0.006	0.021	0,037	0.008	0,019	0,000	0.027	0,005	0,002	0,003	0,000	0.002	20,432	0,100	4,159	4,110
90 Tit dunkel 14	4,000	0,128	3,991	3,980	0,079	0.004	0,025	0,036	0.006	0,021	0.000	0,022	0.000	0,004	0,002	0,004	0,000	20,478	0.093	4,186	4,109
90 Tit dunkel 15	4,000	0,094	3,916	3,941	0,079	0,006	0,031	0,041	0,000	0,021	0,000	0,029	0,000	0,002	0,000	0,002	0,006	20,302	0,102	4,113	4,049
90 Tit dunkel 16	4,000	0,191	3,950	3,867	0,084	0.004	0.024	0.033	0,003	0.017	0.000	0,029	0,000	0,002	0.002	0,00Z	0,000	Z0,299	0.086	4,142	4,061
9C Tit dunkel 17	4,000	0,113	3,962	3,940	0,082	0,004	0,019	0,036	0,000	0,016	0,000	0,030	0,004	0,004	0,001	0,003	0,000	20,335	0,093	4,135	4,074
90 Tit dunkel 18	4,000	0,188	3,946	3,828	0,082	0.004	0,027	0,030	0,005	0,016	0,000	0,022	0,000	0,002	0,002	0,005	0,000	20,208	0,080	4,098	4,053
9C Tit dunkel 19	4,0001	0,182	4.013	3,899	0.078	0.004	0.017	0,032	0,000	0,014	0,000	0.028	0.000	0.000	0,002	0,004	0,003	Z0.379	0.080	4,159	4,111
95. THE GUAREI ZU	4,000	0,099	3,967	3,942	0.007	0.004	0,036	0,030	0,005	0,018	0,000	0.017	0,000	0,002	0,001	0,0051	0,000	20,3.58	0,076	4,123	4,078
90 Tit dunkal 22	4,000	0.1271	2,057	3,739	0,008	0,004	0,010	0,025	0,000	0.017	0,000	0,010	0,000	0,002	0.002	0,000	0.000	20,218	0,001	4 113	4.053
90 Tit dunkel 23	4 000	0 194	3 896	3 768	0.085	0.004	0.015	0.023	0.003	0.016	0,000	0.021	0,000	0.002	0,001	0.004	0.000	20,003	0.070	4.047	3,980
90 Tit dunkel 24	4.000	0.148	3.891	3,858	0.084	0.004	0.016	0.035	0.003	0.020	0.000	0.030	0.005	0.004	0.001	0.006	0.004	20,165	0.105	4.090	4.012
90 Tit dunkel 25	4,000	0,120	3,912	3,904	0,103	0,003	0,016	0,036	0,004	0,025	0,000	0,027	0,001	0,003	0,001	0,000	0,000	20,248	0,097	4,127	4,024
90 Tit dunkel 26	4,000	0,178	3,953	3,914	0,081	0.004	0,027	0,036	0,005	0,021	0,000	0,033	0,004	0,000	0,001	0,000	0,000	Z0,397	0,100	4,173	4,079
90 Til dunkel 27	4,000	0,061	3,903	3,930	0,091	0.004	0,032	0,035	0.004	0,019	0,000	0,036	0,000	0.004	0.001	0,006	0,004	20,279	0,109	4.102	1,044
96 Tit dunkel 28	4,000	0,195	3,914	3,826	0,090	0.002	0,020	0,029	0,000	0,016	0,000	0,026	0,000	0,000	0,002	0,005	0,000	20,168	0,077	4,111	4,011
90 Tit dunkel 29	4,000	0,178	3,937	3,807	0,095	0,003	0,012	0,032	0,000	0,016	0,000	0,026	0,001	0,003	0,001	0,006	0,000	20,125	0,084	4,080	4,033
90 Tit dunkel 30	4,000	0,125	3,837	3,820	0,087	0,004	1,022	0,039	0,014	0,028	0,002	0,037	0,002	0,006	0,001	0,004	0,000	20,062	0,132	4,032	3,992
90 Tit dunkel 31	4,000	0,171	3,949	3,864	0,071	0,003	0,017	0,028	0,000	0,015	0,000	0,020	0,000	0,003	0,002	0,004	0,003	20,243	0,073	4,126	4,038
9C Tit dunkel 32	4,000	0,168	3,888	3,628	0,005	0,003	0,022	0,025	0,004	0,015	0,000	0.022	0,001	0,000	0,002	0,000	0.000	20,060	0,008	4,061	3,977
90 Tit dunkel 34	4,000	0.190	3,929	3,033	0.002	0.002	0.016	0.025	0.000	0.014	0.000	0.014	0,001	0,003	0.001	0,003	0.002	20,146	0.050	4,074	4,022
90 Tit dunkel 35	4.000	0.190	3.898	3.809	0.087	0.005	0.023	0.032	0.006	0.018	0.000	0.027	0.000	0.003	0.002	0.003	0.000	20.137	0.090	4.085	4.010
9C Tit dunkel 36	4.000	0.176	3.896	3,803	0.082	0.002	0.021	0.029	0.004	0.016	0.000	0.013	0.000	0.002	0.002	0.006	0.000	20.057	0.072	4.060	3,958
90 Tit dunkel 37	4,000	0,178	3,894	3,833	0,088	0,004	0,020	0,028	0,002	0,016	0,000	0,021	0,000	0,003	0,003	0,004	0,000	20,135	0,075	4,099	3,988
9C Tit dunkel 38	4,000	0,192	3,918	3,823	0,089	0.002	0,017	0,026	0,003	0,012	0,000	0,022	0,000	0,002	0,002	0,000	0,000	20,137	0,066	4,105	4,690
90 Tit dunkel 39	4,000	0,206	4,036	3,909	0,093	0.004	0.016	0,025	0,003	0,015	0.000	0,025	0,000	0,002	0,001	0,003	0,000	20,463	0,072	4,208	4,124
90 Tít dunkel 40	4,000	0,186	3,960	3,832	0,091	0,004	0,020	0,028	0,005	0,015	0,000	0,026	0,000	0,000	0,002	0,003	0,002	20,218	0,078	4,108	4,058
9C Tít dunkel 41	4,0001	0.177	3.9Z4	3,821	0.089	0.004	0,015	0.029	0,004	0,016	0.000	0.028	0,001	0.003	0.002	0,000	0.004	Z0,142	0.084	4,087	4,023
90 Til dunkel 42	4,000	0,169	3,927	3,797	0.0921	0,005	0,023	0,030	0,003	0,014	0,000	0,009	0,000	0,000	0,000	0,003	0,000	20,072	0,059	4,059	1,009
96. TH dunkel 43	4,0001	0,151	3,923	3,608	0.044	0,005	0.027	0,027	0,000	0.010	0,000	0,021	0,002	0,004	0,002	0,003	0,000	20,170	0,074	4,098	4,014
90 Tit due bal 40	4,000	0.153	3,319	3,909	0.00%	0,003	0,023	0,033	0.002	0.015	0,000	0,030	0,003	0,005	0.002	0,004	0,002	20,201	0,100	4,207	4 104
95 Tit duakel 46	4 000	0.151	3,903	3,897	0.074	0.003	0.019	0.027	0.005	0.019	0,000	0.034	0.001	0.001	0,001	0,006	0.000	20,405	0.103	4,121	4.025
90 Tit dunkel 47	4,000	0.154	3,960	3,920	0.073	0.004	0.019	0.027	0.002	0.016	0.000	0.021	0.000	0.000	0.001	0,005	0.003	20,312	0.074	4.147	4.053
90 Tit dunkel 48	4,000	0,159	3,972	3,920	0,091	0,003	0,022	0,031	0,603	0,017	0,000	0,015	0,000	0,005	0,002	0,003	0,002	20,367	0,076	4,170	4,070
90 Tit dunkel 49	4,000	0,161	3,892	3,870	0,077	0,003	0,014	0,033	0,003	0,017	0,000	0,025	0,002	0,004	0,061	0,003	0,000	20,162	6,087	4,107	3,993
90 Tit dunkel 50	4,000	6,163	3,890	3,805	0,063	0,003	0,018	0,030	0,600	0,013	0,000	0,023	0,001	0,003	0,002	0,003	0,000	20,006	0,074	4,031	3,982
																	1				
мах		0.706	4 034	4.016	0.117	0.006	0.036	0.041	0.014	0.078	0.004	0.039	0.005	0.006	0.002	0.007	0.006	20 569	0.132	4,719	4,125
MIN		0,068	3.837	3,739	0.062	0,002	0.010	0,023	0.000	0,012	0,000	0.009	0,000	0,000	0,000	0,000	0,000	19,855	0,059	3,999	3,928
MITTELWERT		0,154	3,936	3,878	0,082	0,004	0,021	0,032	0,004	0,018	0,000	0,024	0,001	0,003	0,002	0,003	0,001	20,241	0,085	4,114	4,043

Diopsid (Schliff 1C)

	SiOz	CaO	TiO ₂	FeO	Fe_2O_3	Al_2O_3	MnO	MgO	Na ₂ 0	TOTAL.	Si	Ca	Tí	Fe ^{2*}	Fe ^a *	AI (IV)	AI (VI)	Mn	Mg	Na	Т	M1	M2	Mg	*ΣFe	Ca
Messung	mass%	mass%	mass%	mass%	mass%	mass%	mass%	mass%	mass%	mass%	Numbe	afians	on the	basis n	f six Q									Fod merr	her nero	entages
A																										cumPro.
10 Diobsid 1	53,339	22,630	0,040	5,919	1,812	0,214	0,098	13,788	1,344	99,185	1,980	0,900	0,001	0,184	0,051	0,009	0,000	0,003	0,763	0,097	1,990	1,002	0,997	40,1	12,5	47,4
1C Diobsid 2	53,178	22,434	0,034	5,617	2,282	0,160	0,075	14,089	1,266	99,135	1,975	0,893	0,001	0,174	0,064	0,007	0,000	0,002	0,780	0,091	1,982	1,022	0,984	40,8	12,6	46,7
1C Diobsid 3	53,068	22,035	0,018	7,097	1,285	0,218	0,056	13,351	1,364	98,492	1,988	0,885	0,001	0,222	0,036	0,010	0,000	0,002	0,746	0,099	1,998	1,006	0,984	39,4	13,8	46,8
10 Diobaid 4	53,645	22,025	0,052	7,603	0,270	0,232	0,032	13,717	1,257	98,833	2,000	0,880	0,001	0,237	0,008	0,000	0,010	0,001	0,762	0,091	2,000	1,019	0,971	40,4	13,0	46,6
10 Diobaid 5	53,415	22,563	0,028	6,906	0,858	0,207	0,083	13,614	1,197	98,871	1,993	0,902	0,001	0,215	0,024	0,007	0,002	0,003	0,757	0,087	2,000	1,002	0,988	39,8	12,7	47,4
1C Diobsid 6	54,117	22,410	0,066	7,896	0,000	0,218	0,070	13,746	0,974	99,497	2,007	0,890	0,002	0,245	0,000	0,000	0,010	0,002	0,760	0,070	2,007	1,018	0,961	40,0	13,0	46,9
1C Diobsid 7	53,756	22,376	0.062	7,532	0.308	0.250	0,068	13,550	1,275	99,177	1,998	0,891	0,002	0.234	0.009	0.002	0.009	0.002	0,751	0.092	2,000	1,007	0,983	39.8	13.0	47.2
1C Diobsid 8	53,802	22,973	0,021	6,589	0,952	0,191	0,099	13,881	1,111	99,609	1,992	0,911	0,001	0,204	0,027	0,008	0,000	0,003	0,766	0,080	2,000	1,000	0,991	40,1	12,2	47,7
10 Diobsid 9	53,937	22,223	0,066	7,478	0,141	0,170	0.049	13,712	1,284	99,060	2,004	0,885	0,002	0,232	0,004	0,000	0,007	0,002	0,759	0,093	2,004	1,007	0,977	40,4	12,6	47,0
1C Diobsid 10	52,871	22,444	0,049	7,084	0,817	0,193	0,074	13,684	0,966	98,182	1,990	0,905	0,001	0,223	0,023	0,009	0,000	0,002	0,768	0,071	1,999	1,018	0,976	40,0	12,9	47,1
10 Diobsid 11	52,714	22,416	0,050	5,461	2,435	0,206	0,027	13,876	1,313	98,499	1,971	0,898	0,001	0,171	0,069	0,009	0,000	0,001	0,773	0,095	1,980	1,015	0,993	40,5	12,6	47,0
1C Diobsid 12	53,398	22,390	0,054	7,090	0,570	0,216	0,087	13,672	1,183	98,660	1,995	0.896	0,002	0,222	0,016	0,005	0,005	0.003	0,761	0,086	2,000	1,008	0,982	40,1	12,7	47,2
1C Diobsid 13	53,266	22,471	0,067	6,587	1,288	0,199	0,066	13,818	1,177	98,939	1,986	0,897	0,002	0,205	0,036	0,009	0,000	0,002	0,768	0,085	1,994	1,013	0,982	40,2	12,8	47,0
1C Diobsid 14	53,370	22,556	0,057	6,802	0,761	0,199	0,074	13,745	1,152	98,716	1,993	0,902	0,002	0,212	0,021	0,007	0,00Z	0,002	0,765	0,083	2,000	1,005	0,986	40,Z	12,4	47,4
10 Diebsid 15	53,483	22,574	0,037	6,915	0,818	0,208	0,064	13,749	1,153	99,001	1,992	0,901	0,001	0,215	0,023	0,008	0,002	0,002	0,763	0,083	2,000	1,006	0,984	40,1	12,6	47,3
10 Diobaid 16	53,228	22,514	0,049	7,212	0,741	0,215	0,073	13,754	1,004	98,790	1,991	0,902	0,001	0,226	0,021	0,009	0,000	0,002	0,767	0,073	2,000	1,017	0,975	40,0	13, û	47,0
10 Diobsid 17	53,534	22,840	0,067	6,684	1,133	0,202	0,067	13,800	1,116	99,444	1,987	0,908	0,002	0,207	0,032	0,009	0,000	0,002	0,763	0,080	1,996	1,007	0,989	39.9	12,6	47,5
10 Diobsid 18	53,248	22,571	0,056	6,422	1,166	0,215	0,051	13,757	1,224	98,710	1,988	0,903	0,002	0,200	0,033	0,009	0,000	0,002	0,765	0,089	1,997	1,002	0,991	40,2	12,3	47,4
1C Diobsid 19	53,105	22,648	0,017	6,333	1,288	0,197	0,072	13,556	1,248	98,464	1,988	0,908	0,000	0,198	0,036	0,009	0,000	0,002	0,756	0,091	1,997	0,994	0,999	39,8	12,5	47,8
1C Diobsid 20	53,516	ZZ,450	0,005	7,763	0,101	0,205	0,0Z9	13,614	1,035	98,718	2,002	0,900	0,000	0,243	0,003	0,000	0,009	0,001	0,759	0,075	2,002	1,015	0,975	39,8	12,9	47,2
1C Diobsid 21	53,665	22,558	0,032	7,287	0,797	0,204	0,054	13,814	1,080	99,492	1,992	0,897	0,001	0,226	0,022	0,008	0,001	0,002	0,764	0,078	2,000	1,016	0,975	40,0	13,1	46,9
1C Diobsid 22	53,586	22,309	0,044	7,714	0,183	0,157	0,061	13,705	1,050	98,809	2,002	0,893	0,001	0,241	0,005	0,000	0,007	0,002	0,763	0,076	2,002	1,019	0,969	40,1	13,0	46,9
1C Diobsid 23	53,694	22,593	0,026	6,651	1,035	0,170	0,085	13,861	1,205	99,320	1,992	0,898	0,001	0,206	0,029	0,007	0,000	0,003	0,766	0,087	1,999	1,005	0,985	40,3	12,5	47,2
10 Diobsid 24	53,837	23.089	0.034	6.217	1,606	0.081	0,105	13,706	1,218	99,893	1,988	0.913	0,001	0.192	0.045	0.004	0,000	0,003	0.754	0.087	1,991	0,995	1.001	39.5	12.6	47.9
10 Diobsid 25	54,202	22,673	0,078	7,882	0,000	0,170	0,028	13,656	0,999	99,688	2,007	0,900	0,002	0,244	0,000	0,000	0,007	0,001	0,754	0,072	2,007	1,008	0,971	39,7	12,9	47,4
MAN	E4.202	22.000	0.070	7.004	2426	0.000	0.105	14000	1264	00.002	3.447	0.013	0.000	0.245	0.040	0.010	0.04.0	0.000	0.700	0.000	2 4 4 7	1 000	1 0 0 1	40.0	12.0	47.0
MIN	52.714	23,009	0,076	F 444	4,435	0,250	0,105	12.25	0.047	00 100	1.071	0,913	0,002	0,240	0,000	0,010	0,010	0,003	0.740	0,039	1 000	0.004	0.061	40,0 20,4	10.0	47,3
MITTELMERT	52,714	22,025	0.005	6,910	0,000	0.105	0.027	13,351	1,169	90,102	1,9/1	0,000	0.001	0.171	0.025	0,000	0.000	0,001	0.740	0,024	1,960	1,009	0.901	39,4	12,2	40,0
NOT LEPAKER [33,479	22,511	0,044	0'410	0,906	0,142	0,066	15,729	1,108	99,007	1,992	0,898	0,001	0,215	0,025	0,007	0,003	0,002	0,702	0,084	1,998	1,009	0,983	40,0	12,6	27,2

 ${}^{\bullet}\Sigma Fe = Fe^{2+} + Fe^{3+} + Mn$

 $\boldsymbol{T} = -Si + A^{\|\boldsymbol{V}\|}$

 $M1 = Al^{[V1]} + Ti + Fe^{2*} + Fe^{2*} + Mn + Mg$

M2 = Ca + Na

Diopsid (Schliff 4B)

	SiOz	CaO	TiO ₂	Fe0	Fe ₂ O ₃	Al_2O_3	MnO	MgO	Na ₂ 0	TOTAL	Si	Ca	Ti	Fc ²⁺	Fc ³⁺	AI (W)	AI (VI)	Mn	Mg	Na	Т	M1	M2	Mg	*ΣFe	Ca
Messung	mass%	mass%	mass%	mass%	mass%	mass%	mass%	mass%	mass%	mass%	Number	ofions	on the	basis o	f six 0									End men	ber perc	entuges
A	1	1		5	8																				j	B
4B Diobsid 1	53,753	22,160	0,018	7,811	0,000	0,409	0,045	13,211	1,486	98,893	2,002	0,884	0,001	0,243	0,000	0,000	0,018	0,001	0,733	0,107	2,002	0,996	0,991	39,4	13,1	47,5
4B Diobsid 2	54,126	22,156	0,025	7,630	0,344	0,430	0,072	13,645	1,505	99,932	1,994	0,874	0,001	0,235	0,010	0,006	0,013	0,002	0,749	0,107	Z,000	1,009	0,982	40,1	13,Z	46,7
4B Diobsid 3	53,578	22,251	0,023	7,721	0,131	0,353	0,040	13,347	1,370	98,814	1,999	0,889	0,001	0,241	0,004	0,001	0,014	0,001	0,742	0,099	2,000	1,003	0,988	39,5	13,1	47,4
4B Diohsid 4	53,043	21,987	0,049	6,994	1,448	0,356	0,057	13,131	1,607	98,672	1,982	0,880	0,001	0,219	0,041	0,016	0,000	0,002	0,731	0,116	1,998	0,994	0,997	39,1	13,9	47,0
4B Dinhsid 5	53,741	22,267	0,051	7,687	0,287	0,397	0,039	13,174	1,553	99,196	1,996	0,886	0,001	0,239	0,008	0,004	0,013	0,001	0,729	0,112	2,000	0,992	0,998	39,1	13,3	47,6
4B Diobsid 6	54,090	21,919	0,024	8,083	0,238	0,335	0,073	13,232	1,603	99,597	2,001	0,869	0,001	0,250	0,007	0,000	0,015	0,002	0,729	0,115	2,001	1,004	0,984	39,3	13,9	46,8
4B Diobsid 7	54,115	21,556	0,073	8,362	0,000	0,370	0.075	13,312	1,628	99,491	2,003	0,855	0,002	0,259	0,000	0,000	0,016	0,002	0,734	0,117	2,003	1,013	0,971	39,7	14,1	46,2
4B Diobsid 8	54,171	21,962	0,046	8,152	0,000	0,382	0,056	13,253	1,529	99,551	2,004	0,870	0,001	0,252	0,000	0,000	0,017	0,002	0,731	0,110	2,004	1,003	0,980	39,4	13,7	46,9
4B Diobsid 9	53,509	21,695	0,086	8,450	0,000	0.498	0,101	12,957	1,551	98,847	1,997	0,868	0,002	0,264	0,000	0,003	0.019	0,003	0.721	0.112	2,000	1,009	0,980	38,9	14,4	46,8
4B Diohsid 10	53,955	21,786	0,041	8,657	0,000	0,517	0,063	12,755	1,595	99,369	2,003	0,866	0,001	0,269	0,000	0,000	0,023	0,002	0,706	0,115	2,003	1,000	0,981	38,3	14,7	47,0
4B Dinhsid 11	54,125	21,883	0,054	7,968	0,000	0,387	0,076	13,580	1,424	99,497	2,002	0,867	0,002	0,246	0,000	0,000	0,017	0,002	0,749	0,102	2,002	1,016	0,969	40,2	13,3	46,5
4B Diobsid 12	53,422	21,635	0.049	8,303	0,805	0,435	0.046	12,769	1,727	99,191	1,989	0,863	0,001	0,259	0.023	0.011	0,008	0.001	0,709	0.125	2,000	1,001	0,988	38,2	15,2	46.5
4B Diobsid 13	54,127	21,510	0,079	8,593	0,000	0,476	0,087	13,116	1,642	99,630	2,002	0,852	0,002	0,266	0,000	0,000	0,021	0,003	0,723	0,118	2,002	1,014	0,970	39,Z	14,6	46,2
46 Diohsid 14	53,318	21,559	0,057	8,059	1,155	0,443	0,047	12,861	1,749	99,24B	1,984	0,859	0,002	0,251	0,032	0,016	0,003	0,001	0,713	0,126	2,000	1,003	0,986	38,4	15,3	46,3
4B Diohsid 15	54,280	21,594	0,059	8,257	0,000	0,441	0,069	13,188	1,687	99,575	2,005	0,854	0,002	0,255	0,000	0,000	0,019	0,002	0,726	0,121	2,005	1,004	0,975	39,5	14,0	46,5
4B Diphsid 16	53,324	22,230	0,007	7,078	1,019	0,368	0,101	13,323	1,475	98,925	1,987	0,888	0,000	0,221	0,029	0,013	0,003	0,003	0,740	0,107	2,000	0,996	0,994	39,4	13,4	47,2
4B Diobsid 17	54,088	21,808	0,025	8,151	0,018	0,431	0,069	13,211	1,694	99,495	2,001	0,864	0,001	0,252	0,000	0,000	0,019	0,002	0,728	0,121	2,001	1,003	0,986	39,4	13,8	46,8
4B Diobsid 18	53,399	21,909	0,041	6,857	1,609	0,460	0,103	13,389	1,713	99,480	1,977	0,869	0,001	0,212	0,045	0,020	0,000	0,003	0,739	0,123	1,997	1,000	0,992	39,5	13,9	46,5
4B Diobsid 19	54,045	21,281	0,092	8,335	0,000	0,467	0,098	13,360	1,552	99,230	2,004	0,845	0,003	0,258	0,000	0,000	0,020	0,003	0,738	0,112	2,004	1,023	0,957	40,0	14,2	45,8
4B Diobsid 20	54,232	22,017	0,055	7,862	0,167	0,484	0,095	13,543	1,612	100,067	1,995	0,867	0,002	0,242	0,005	0,005	0,016	0,003	0,742	0,115	2,000	1,009	0,98Z	39,9	13,4	46,7
4B Diohsid 21	53,061	21,826	0,050	7,490	1,044	0,385	0,063	13,068	1,578	98,566	1,986	0,875	0,001	0,234	0,029	0,014	0,003	0,002	0,729	0,115	2,000	0,999	0,990	39,0	14,2	46,8
4B Dinhsid 22	52,813	22,258	0,026	6,380	2,004	0,272	0,058	12,982	1,624	98,417	1,979	0,893	0,001	0,200	0,056	0,012	0,000	0,002	0,725	0,118	1,991	0,984	1,011	38,6	13,8	47,6
4B Diobsid 23	53,252	22,329	0,027	6,600	1,430	0,383	0,115	13,465	1,489	99,090	1,980	0,890	0,001	0,205	0,040	0,017	0,000	0,004	0,746	0,107	1,997	0,996	0,997	39,6	13,2	47,2
4B Diobsid 24	53,229	22,181	0,074	6,984	1,269	0,134	0,099	13,283	1,566	99,119	1,980	0,884	0,002	0,217	0,036	0,019	0,000	0,003	0,736	0,113	1,999	0,994	0,997	39,3	13,6	47,1
4B Diobsid 25	52,765	21,734	0,058	7,188	1,029	0,443	0,035	13,151	1,600	98,003	1,984	0,875	0,002	0,226	0,029	0,016	0,003	0,001	0,737	0,117	2,000	0,998	0,992	39,4	13,7	46,8
																								-		
MAX	54,280	22,329	0,092	8,657	2,004	0,517	0,115	13,645	1,749	100,067	2,005	0,893	0,003	0,269	0,056	0,020	0,023	0,004	0,749	0,126	2,025	1,103	1,020	40,2	15,3	47,6
MIN	52,765	21,281	0,007	6,380	0,000	0,272	0,035	12,755	1,370	98,003	1,977	0,845	0,000	0,200	0,000	0,001	0,000	0,001	0,706	0,099	1,978	0,907	0,944	38,2	13,1	45,8
MITTELWERT	53,662	21,900	0.048	7.746	0,560	0.414	0.071	13,212	1,582	99,196	1,993	0.872	0.001	0.241	0.016	0.012	0.011	0.002	0.731	0,114	2,005	1,003	0.986	39,3	13,9	46.8

 ${}^{\bullet}\Sigma Fe = Fe^{2+} + Fe^{3+} + Mn$

M1 = $Al^{[VI]} + Ti + Fc^{2*} + Fe^{3*} + Mn + Mg$

 $\mathbf{T} = -\mathbf{S}\mathbf{i} + \mathbf{A}^{[iV]}$

M2 = Ca + Na

Diopsid (Schliff 8A)

	SiO ₂	CaO	TiO ₂	FeO	Fe_2O_3	Al_2O_3	MnO	MgO	Na ₂ 0	TOTAL	Si	Ca	Tí	Fc ²⁺	Fc ³⁺	AI (W)	AI (VI)	Mn	Mg	Na	Т	M1	M2	Mg	*ΣFe	Ca
Messung	mass%	mass%	mass%	mass%	mass%	mass%	mass%	mass%	mass%	mass%	Number	ofions	on the	basis o	fsix 0									End men	iber perc	entages
				8	8			10	0																	в
10 Aktinolith 1	55,094	11,768	0,183	7,937	0,000	0,706	0,087	18,900	0,991	95,666	2,014	0,872	0,000	0,244	0,000	0,000	0,013	0,002	0,732	0,102	2,014	0,991	0,974	39,6	13,3	47,1
1C Aktinolith Z	56,405	10,634	0,138	8,391	0,000	0,808	0,081	18,83Z	1,581	96,870	2,002	0,889	0,003	0,213	0,000	0,000	0,017	0,003	0,765	0,097	2,002	1,001	0,984	40,9	11,6	47,5
10 Aktinolith 3	56,098	11,567	0,211	8,224	0,000	0,813	0,047	18,678	1,173	96,811	1,987	0,921	0,000	0,192	0,027	0,013	0,001	0,004	0,766	0,083	2,000	0,989	1,003	40,1	11,7	48,2
10 Aktinolith 4	56,634	11,956	0,136	7,711	0,000	0,515	0,049	18,964	0,934	96,899	1,987	0,896	0,000	0,198	0,031	0,013	0,002	0,001	0,755	0,106	2,000	0,987	1,002	40,1	12,2	47,6
10 Aktinolith 5	56,499	12,069	0,120	7,768	0,000	0,511	0,030	19,231	0,812	97,040	2,005	0,888	0,001	0,229	0,000	0,000	0,011	0,002	0,759	0,092	2,005	1,002	0,980	40,4	12,3	47,3
10 Aktinolith 6	56,309	11,871	0,121	8,216	0,000	0,635	0,037	18,777	0,783	96,749	2,000	0,899	0,002	0,197	0,001	0,000	0,012	0,004	0,791	0,086	2,000	1,006	0,985	41,8	10,7	47,5
10 Aktinolith 7	55,670	12,188	0,176	9,308	0,000	0,789	0,059	17,886	0,658	96,734	2,005	0,886	0,001	0,252	0,000	0,000	0,018	0,002	0,714	0,107	2,005	0,987	0,993	38,5	13,7	47,8
10 Aktinolith 8	56,045	12,179	0,067	8,577	0,000	0,555	0,056	18,422	0,599	96,500	2,006	0,887	0,001	0,250	0,000	0,000	0,012	0,003	0,726	0,102	2,006	0,991	0,989	38,9	13,5	47,5
10 Aktinolith 9	56,771	12,174	0,085	8,182	0,000	0.544	0,027	18,756	0,685	97,224	2,003	0,890	0,001	0,241	0,006	0,000	0.012	0,001	0,720	0,113	2,003	0,982	1,002	38,8	13.4	47,9
10 Aktinolith 10	55,567	12,078	0,192	9,193	0,000	1,239	0,033	17,878	0,806	96,986	1,992	0,876	0,000	0,206	0,030	0,008	0,005	0,001	0,743	0,124	2,000	0,986	1,000	40,0	12,8	47,2
1CAktinolith 11	55,882	12,130	0,120	8,494	0,000	0,566	0,028	18,773	0,812	96,805	2,001	0,881	0,003	0,230	0,000	0,000	0,022	0,002	0,739	0,109	2,001	0,995	0,990	39,9	12,5	47,6
10 Aktinolith 12	56,338	12,102	0,154	7.934	0,000	0.628	0.080	18,647	0,597	96,480	2.014	0,885	0,002	0,230	0,000	0,000	0.015	0,003	0,725	0.105	2,014	0,974	0.990	39.4	12.6	48,0
1C Aktinolith 13	53,986	11,386	0,307	8,56Z	0,000	1,849	0,037	18,345	1,490	95,962	2,010	0,877	0,001	0,227	0,000	0,000	0,016	0,002	0,740	0,108	2,010	0,986	0,985	40,1	12,4	47,5
1CAktinolith 14	55,495	11,506	0,135	7,719	0,000	0,870	0,044	19,195	1,159	96,123	2,004	0,880	0,002	0,227	0,000	0,000	0,015	0,003	0,753	0,103	2,004	1,000	0,983	40,4	12,4	47,2
10 Aktinolith 15	55,709	11,516	0,137	8,010	0,000	1,011	0,032	18,798	1,214	96,427	2,004	0,865	0,001	0,254	0,000	0,000	0,019	0,003	0,723	0,116	2,004	1,000	0,981	39,2	13,9	46,9
10 Aktinolith 16	56,448	12,263	0,125	9,208	0,000	0,766	0,040	18,011	0,536	97,397	2,004	0,863	0,001	0,243	0,005	0,000	0,012	0,003	0,738	0,116	2,004	1,003	0,979	39,8	13,6	46,6
10 Aktinolith 17	55,992	12,073	0,069	9,485	0,000	1,132	0,060	17,839	0,676	97,326	2,008	0,877	0,001	0,246	0,000	0,000	0,012	0,002	0,736	0,104	2,008	0,997	0,981	39,5	13,3	47,1
10 Aktinolith 18	55,832	12,517	0,085	8,479	0,000	0,521	0,048	18,342	0,325	96,148	1,996	0,889	0,001	0,245	0,011	0,004	0,011	0,001	0,728	0,104	2,000	0,997	0,993	38,8	13,7	47,4
10 Aktinolith 19	55,698	12,558	0,071	10,042	0,000	1,060	0,072	17,761	0,439	97,701	2,003	0,880	0,002	0,232	0,000	0,000	0,015	0,003	0,745	0,108	2,003	0,997	0,989	40,1	12,6	47,3
10 Aktinolith 20	55,747	12,128	0,141	8,948	0,000	0,530	0,051	18,332	0,598	96,475	2,008	0,873	0,000	0,249	0,000	0,000	0,015	0,002	0,729	0,110	2,008	0,994	0,983	39,3	13,5	47,1
10 Aktinolith 21	56,484	12,093	0,085	9,372	0,000	0,658	0,074	18,160	0,606	97,532	1,999	0,872	0,001	0,240	0,008	0,001	0,015	0,002	0,730	0,120	2,000	0,996	0,992	39,4	13,5	47,1
10 Aktinolith 22	55,459	11,408	0,219	8,541	0,000	1,055	0,083	18,872	1,203	96,840	1,991	0,887	0,002	0,223	0,018	0,009	0,010	0.000	0,725	0,124	2,000	0,978	1,010	39,1	13,0	47,8
10 Aktinolith 23	56,557	12,550	0,061	8,719	0,000	0,580	0,090	18,453	0,565	97,575	2,006	0,891	0,001	0,219	0,000	0,000	0,015	0,003	0,759	0,091	2,006	0,997	0,982	40,5	11,9	47,6
10 Aktinolith 24	55,594	11,592	0,166	8,267	0,000	1,135	0,055	18,503	1,083	96,395	1,991	0,910	0,001	0,192	0,013	0,009	0,006	0,003	0,785	0,083	2,000	1,000	0,993	41.3	10,9	47,8
10 Aktinolith 25	56,323	12,465	0,080	8,790	0,000	0,521	0,043	18,088	0,432	96,742	2,002	0,873	0,001	0,236	0,000	0,000	0,019	0,001	0,744	0,110	2,002	1,001	0,984	40,1	12,8	47,1
MAX	56,771	12,558	0,307	10,042	0,000	1,849	0,090	19,231	1,581	97,701	2,014	0,921	0,003	0,254	0,031	0,013	0,022	0,004	0,791	0,124	2,027	1,104	1,045	41,8	13,9	48,2
MIN	53,986	10,634	0,061	7,711	0,000	0,511	0,027	17,761	0,325	95,666	1,987	0,863	0,000	0,192	0,000	0,001	0,001	0,000	0,714	0,083	1,988	0,906	0,946	38,5	10,7	46,6
MITTELWERT	55,945	11,951	0,135	8,563	0.000	0.800	0.054	18,498	0.830	96.776	2,002	0.884	0.001	0,229	0.006	800,0	0.013	0.002	0.743	0,105	2,010	0,994	0.989	39,8	12,7	47.4

 ${}^{\bullet}\Sigma Fe = Fe^{2+} + Fe^{3+} + Mn$

M1 = $Al^{[VI]} + Ti + Fe^{2*} + Fe^{3*} + Mn + Mg$

 $\mathbf{T} = -\mathbf{S}\mathbf{i} + \mathbf{A}^{|iV|}$

M2 = Ca + Na

Aktinolith (Schliff 1C)

	SiO ₂	CaO	TiO ₂	FeO	Fe_2O_3	Al_2O_3	MnO	Mg0	Na ₂ 0	TOTAL	Si	Са	Ti	Fe ²⁺	Fc ³⁺	Al	Мп	Mg	Na	Т	excess 1	С	excess 2	В	A
Messung	mass%	mass%	mass%	mass%	mass%	mass%	mass%	mass%	mass%	mass%	Number	ofions	on the	basis o	23 0										
1C Aktinolith 1	55.094	11.768	0.183	7.937	0.000	0.706	0.087	18,900	0.991	95,666	7.865	1.800	0.020	0.947	0.000	0.119	0.011	4.021	0.274	8,003	0.003	4.982	0.000	2.074	0,074
1C Aktinolith 2	56,405	10,634	0,138	8,391	0,000	0,808	0,081	18,832	1,581	96,870	7,908	1,597	0,015	0,984	0,000	0,133	0,010	3,935	0,430	8,056	0,056	4,984	0,000	2,027	0,027
1C Aktinolith 3	56,098	11,567	0,211	8,224	0,000	0,813	0,047	18,678	1,173	96,811	7,898	1,745	0,022	0,968	0,000	0,135	0,006	3,919	0,320	8,055	0,055	4,948	0,000	2,065	0,065
1C Aktinolith 4	56,634	11,956	0,136	7,711	0,000	0,515	0,049	18,964	0,934	96,899	7,954	1,799	0,014	0,906	0,000	0,085	0,006	3,970	0,254	8,054	0,054	4,935	0,000	2,053	0,053
1C Aktinolith 5	56,499	12,069	0,120	7,768	0,008	0,511	0,030	19,231	0,812	97,040	7,935	1,816	0,013	0,912	0,000	0,085	0,004	4,025	0,221	8,032	0,032	4,973	0,000	2,037	0,037
1C Aktinolith 6	56,309	11,871	0,121	8,216	0,000	0,635	0,037	18,777	0,783	96,749	7,943	1,794	0,013	0,969	0,000	0,106	0,004	3,948	0,214	8,062	0,062	4,983	0,000	2,008	800,0
1C Aktinolith 7	55,670	12,188	0,176	9,308	0,000	0,789	0,059	17,886	0,658	96,734	7,912	1,856	0,019	1,106	0,000	0,132	0,007	3,789	0,181	8,063	0,063	4,966	0,000	2,037	0,037
1C Aktinolith 8	56,045	12,179	0,067	8,577	0,000	0,555	0,056	18,422	0,599	96,500	7,954	1,852	0,007	1,018	0,000	0,093	0,007	3,897	0,165	8,054	0,054	4,976	0,000	2,017	0,017
1C Aktinolith 9	56,771	12,174	0,085	8,182	0,000	0,544	0,027	18,756	0,685	97,224	7,970	1,831	0,009	0,961	0,000	0,090	0,003	3,925	0,186	8,069	0,069	4,958	0,000	2,018	0,018
1C Aktinolith 10	55,567	12,078	0,192	9,193	0,000	1,239	0,033	17,878	0,806	96,986	7,866	1,832	0,020	1,088	0,000	0,207	0,004	3,772	0,221	8,093	0,093	4,957	0,000	2,053	0,053
1C Aktinolith 11	55,882	12,130	0,120	8,494	0,000	0,566	0,028	18,773	0,812	96,805	7,904	1,838	0,013	1,005	0,000	0,094	0,003	3,957	0,223	8,011	0,011	4,976	0,000	2,061	0,061
1C Aktinolith 12	56,338	12,102	0,154	7,934	0,000	0,628	0,080	18,647	0,597	96,480	7,967	1,834	0,016	0,938	0,000	0,105	0.010	3,930	0,164	8,088	0,088	4,967	0,000	1,997	0,009
1C Aktinolith 13	53,986	11,386	0,307	8,562	0,000	1,849	0,037	18,345	1,490	95,962	7,697	1,739	0,033	1,021	0,000	0,311	0,004	3,898	0,412	8,040	0,040	4,964	0,000	2,151	0,151
1C Aktinolith 14	55,495	11,506	0,135	7,719	0,000	0,870	0,044	19,195	1,159	96,123	7,859	1,746	0,014	0,914	0,000	0,145	0,005	4,052	0,318	8,019	0,019	4,990	0,000	2,064	0,064
1C Aktinolith 15	55,709	11,516	0,137	8,010	0,000	1,011	0,032	18,798	1,214	96,427	7,868	1,743	0,015	0,946	0,000	0,168	0.004	3,957	0,332	8,051	0,051	4,958	0,000	2,075	0,075
1C Aktinolith 16	56,448	12,263	0,125	9,208	0,000	0,766	0,040	18,011	0,536	97,397	7,956	1,852	0,013	1,085	0,000	0,127	0,005	3,783	0,146	8,096	0,096	4,969	0,000	1,998	0,000
1C Aktinolith 17	55,992	12,073	0,069	9,485	0,000	1,132	0,060	17,839	0,676	97,326	7,905	1,826	0,007	1,120	0,000	0,188	0,007	3,754	0,185	8,101	0,101	4,982	0,000	2.011	0,011
1C Aktinolith 18	55,832	12,517	0,085	8,478	0,000	0,521	0.048	18.342	0.325	96,148	7,965	1,913	0,009	1.011	0.000	0.088	0.006	3,900	0.090	8,062	0,062	4.979	0,000	2,003	0,003
1C Aktinolith 19	55,698	12,558	0,071	10,042	0,000	1,060	0,072	17,761	0,439	97,701	7,878	1,903	0,008	1,188	0,000	0,177	0,009	3,744	0,120	8,062	0,062	5,003	0,003	Z,026	0,026
1C Aktinolith 20	55,747	12,128	0,141	8,948	0,000	0,530	0,051	18,332	0,598	96,475	7,932	1,849	0,015	1,065	0,000	0,089	0,006	3,888	0,165	8,036	0,036	4,995	0,000	2,014	0,014
1C Aktinolith 21	56,484	12,093	0,085	9,372	0,000	0,658	0,074	18,160	0,606	97,532	7,953	1,824	0,009	1,103	0,000	0,109	0,009	3,811	0,165	8,071	0,071	4,994	0,000	1,990	0,000
1C Aktinolith 22	55,459	11,408	0,219	8,541	0,000	1,055	0,083	18,872	1,203	96,840	7,825	1,724	0,023	1,008	0,000	0,175	0,010	3,969	0,329	8,024	0,024	5,010	0,010	2,064	0,064
1C Aktinolith 23	56,557	12,550	0,061	8,719	0,000	0,580	0,090	18,453	0,565	97,575	7,949	1,890	0,006	1,025	0,000	0,096	0,011	3,866	0,154	8,052	0,052	4,953	0,000	2,044	0,044
1C Aktinolith 24	55,594	11,592	0,166	8,267	0,000	1,135	0,055	18,503	1,083	96,395	7,869	1,758	0,019	0,978	0,000	0,189	0,007	3,903	0,297	8,076	0,076	4,961	0,000	2,055	0,055
1C Aktinolith 25	56,323	12,465	0,080	8,790	0,000	0,521	0,043	18,088	0,432	96,742	7,985	1,893	0,009	1,042	0,000	0,087	0,005	3,822	0,119	8,081	0,081	4,950	0,000	2,012	0,012
	_					_					_	_					_	_		_					
MAX	56,771	12,558	0,307	10,042	0,000	1,849	0,090	19,231	1,581	97,701	7,985	1,913	0,033	1,188	0,000	0,311	0,011	4,052	0,430	8,101	0,101	5,010	0,010	2,151	0,151
MIN	53,986	10,634	0,061	7,711	0,000	0,511	0,027	17,761	0,325	95,666	7,697	1,597	0,006	0,906	0,000	0,085	0,003	3,744	0,090	8,003	0,003	0,003	0,000	0,000	0,000
MITTELWERT	55,945	11,951	0,135	8,563	0,000	0,800	0,054	18,498	0,830	96,776	7,909	1,810	0,014	1,012	0,000	0,133	0,006	3,897	0,227	8,056	0,056	4,973	0,001	2,038	0,039

 $\mathbf{T} = \{ Sl + Al + Tl \}$ excess 1

C = (excess 1 + Fe + Mg + Mn) excess 2

B = (excess 2 + Na + Ca) excess 3

A = excess 3

Aktinolith (Schliff 4B)

	SiO ₂	CaO	TíO ₂	FeO	Fe_2O_3	Al_2O_3	MnO	MgO	Na ₂ O	TOTAL	Si	Са	Ti	Fc ^{2*}	Fc ³⁺	AL	Mn	Mg	Na	Т	excess 1	С	excess 2	В	Α
Messung	mass%	mass%	mass%	mass%	mass%	mass%	mass%	mass%	mass%	mass%	Number	of ions	on the	basis of	f23 0										
4B Aktinolith 1	53,507	12,045	0,181	9,015	0,000	1,366	0,061	17,421	0,848	94,444	7,799	1,881	0,020	1,099	0,000	0,235	0,008	3,784	0,240	8,053	0,053	4,944	0,000	2,120	0,120
4B Aktinolith 2	54,631	11,850	0,314	9,541	0,000	1,658	0,047	17,578	1,072	96,691	7,773	1,806	0,034	1,135	0,000	0,278	0,006	3,728	0,296	8,084	0,084	4,953	0,000	2,102	0,102
4B Aktinolith 3	53,652	11,651	0,368	10,062	0,000	1,798	0,063	17,197	1,098	95,889	7,725	1,797	0,040	1,211	0,000	0,305	0,008	3,690	0,306	8,070	0,070	4.979	0,000	2,104	0,104
4B Aktinolith 4	52,058	11,035	0,638	10,889	0,000	2,543	0,079	16,353	1,495	95,09	7,586	1,723	0,070	1,327	0,000	0,437	0,010	3,552	0,422	8,093	0,093	4,981	0,000	2,145	0,145
4B Aktinolith 5	55,628	12,377	0,102	9,303	0,000	0,913	0,038	17,922	0,649	96,932	7,895	1,882	0,011	1,104	0,000	0,153	0,005	3,791	0,179	8,058	0,058	4,958	0,000	2,060	0,060
4B Aktinolith 6	53,745	11,352	0,283	9,199	0,000	1,695	0,043	17,502	1,260	95,079	7,758	1,756	0,031	1,110	0,000	0,288	0,005	3,766	0,353	8,077	0,077	4,959	0,000	2,108	0,108
4BAktinolith 7	54,637	11,739	0,196	8,760	0,000	1,213	0,074	18,122	1,032	95,763	7,821	1,800	0,020	1,049	0,000	0,205	0,009	3,866	0,286	8,016	0,046	4,970	0,000	2,087	0,087
4B Aktinolith 8	54,400	11,745	0,366	8,050	0,000	1,646	0,064	18,999	1,178	96,448	7,713	1,784	0,039	0,954	0,000	0,275	0,008	4,015	0,324	8,027	0,027	5,003	0,003	2,111	0,111
4B Aktinolith 9	55,229	12,059	0,170	8,919	0,000	0,859	0,113	18,486	0,721	96,556	7,858	1,838	0,018	1,061	0,000	0,144	0,014	3,920	0,199	8,020	0,020	5,015	0,015	2,052	0,052
4B Aktinolith 10	53,276	11,702	0,291	9,919	0,000	2,108	0,037	17,289	1,170	95,792	7,677	1,806	0,032	1,195	0,000	0,358	0,005	3,713	0,327	8,066	0,066	4,979	0,000	2,133	0,133
4B Aktinolith 11	55,669	12,337	0,088	8,763	0,000	0,863	0,061	18,087	0,606	96,474	7,917	1,880	0,009	1,042	0,000	0,145	0,007	3,834	0,167	8,071	0,071	4,954	0,000	2,047	0,047
4B Aktinolith 12	53,753	11,963	0,206	9,203	0.000	1,605	0.042	17,730	0,831	95,333	7.764	1,851	0.022	1,112	0,000	0,273	0.005	3,817	0,233	8,060	0,060	4,993	0,000	2.084	0,084
4B Aktinolith 13	54,505	11,602	0,256	10,243	0,000	1,350	0,076	16,941	0,951	95,924	7,838	1,787	0,028	1,232	0,000	0,229	0,009	3,631	0,265	8,095	0,095	4,967	0,000	2,053	0,053
4B Aktinolith 14	55,861	11,410	0,115	8,596	0,000	0,954	0,070	18,495	0,975	96,476	7,906	1,730	0,012	1,017	0,000	0,159	0,008	3,901	0,268	8,077	0,077	5.005	0,005	2,002	0,002
4B Aktinolith 15	54,457	12,268	0,103	10,048	0,000	2,014	0.077	17,158	0,668	96,793	7,774	1,876	0,011	1,199	0,000	0,339	0,009	3,651	0,185	8,124	0,124	4,984	0,000	2,061	0,061
4B Aktinolith 16	54,051	12,180	0,087	10,666	0,000	1,443	0,065	16,894	0,647	96,033	7,807	1,885	0,009	1,288	0,000	0,246	0,008	3,637	0,181	8,062	0,062	4,995	0,000	2,066	0,066
4B Aktinolith 17	54,803	11,578	0,222	8,642	0,000	1,131	0,039	18,394	0,949	95,758	7,836	1,774	0,024	1,033	0,000	0,191	0,005	3,920	0,263	8,050	0,050	5.008	0,008	2,045	0,045
4B Aktinolith 18	55,546	11,629	0,231	9,261	0,000	1,159	0,058	18,075	1,062	97,021	7,850	1,761	0,025	1,094	0,000	0,193	0,007	3,807	0,291	8,068	0,068	4,977	0,000	2,052	0,052
4B Aktinolith 19	55,398	12,173	0,046	9,212	0,000	0,775	0,056	18,099	0,586	96,345	7,907	1,861	0,005	1,099	0,000	0,130	0,007	3,850	0,162	8,042	0,042	4,999	0,000	2,024	0,024
48 Aktinolith 20	53,457	11,698	0,477	9,925	0,000	2,406	0,076	16,903	1,471	96,413	7,645	1,792	0,051	1,187	0,000	0,406	0,009	3,603	0,408	8,102	0,102	4,901	0,000	2,200	0,200
4B Aktinolith 21	56,193	12,483	0,054	9,038	0,000	0,668	0,058	17,944	0,564	97,002	7,955	1,893	0,006	1,070	0,000	0,111	0,007	3,786	0,155	8,072	0,072	4,935	0,000	2,048	0,048
4B Aktinolith 22	54,895	12,236	0,076	9,480	0,000	1,105	0,087	17,671	0,648	96,198	7,864	1,878	0,008	1,136	0,000	0,187	0,011	3,773	0,180	8,058	0,058	4,977	0,000	2,058	0,058
4B Aktinolith 23	54,745	11,948	0,151	9,918	0,000	0,996	0,043	17,265	0,797	95,863	7,875	1,841	0,016	1,193	0,000	0,169	0,005	3,702	0,222	8,060	0,060	4,960	0,000	2,064	0,064
4B Aktinolith 24	53,717	12,042	0,348	10,099	0,000	1,665	0,080	16,848	0,993	95,792	7,753	1,862	0,038	1,219	0,000	0,283	0,010	3,624	0,278	8,071	0,071	4,927	0,000	2,140	0,140
MAX	56,193	12,483	0,638	10,889	0,000	2,543	0,113	18,999	1,495	97,021	7,955	1,893	0,070	1,327	0,000	0,437	0,014	4,015	0,422	8,124	0,124	5,015	0,015	2,200	0,200
MIN	52,058	11,035	0,046	8,050	0,000	0,668	0,037	16,353	0,564	94,444	7,586	1,723	0,005	0,954	0,000	0,111	0,005	3,552	0,155	8,020	0,020	0,020	0,000	0,000	0,002
MITTELWERT	54,492	11,879	0,223	9,448	0,000	1,414	0,063	17,641	0,928	96,088	7,804	1,823	0,024	1,132	0,000	0,239	0,008	3,765	0,258	8,067	0,067	4,972	0,001	2,082	0,082

T = (Si + Al + Ti) excess 1

C = (excess 1 + Fe + Mg + Mn) excess 2

B = (excess 2 + Na + Ca) excess 3

A = excess 3

Aktinolith (Schliff 8A)

	SiO ₂	CaO	TíOz	FeO	Fe ₂ O ₃	Al_2O_3	MnO	Mg0	Na ₂ O	TOTAL	Sí	Ca	Ti	Fe ²⁺	Fe ^{3*}	Al	Mn	Mg	Na	Т	excess 1	C	excess 2	В	Α
Messung	mass%	mass%	mass%	mass%	mass%	mass%	mass%	mass%	mass%	mass%	Number	of ions	on the	basis o	123 0										
8A Aktinolith I	54,777	11,630	0,264	7,720	0,000	1,518	0,081	18,577	1,055	95,622	7,808	1,776	0,028	0,920	0,000	0,255	0,010	3,947	0,292	8,092	0,092	4,968	0,000	2,068	0,068
8A Aktinolith 2	54,007	11,095	0,424	8,872	0,000	2,288	0,0.4.3	17,605	1,853	96,177	7,674	1,689	0,045	1,054	0,000	0,383	0,004	3,729	0,510	8,103	0,103	4,889	0,000	2,199	0,199
RA AKUNODUD 3	52,022	10.062	0,173	8,500	0,000	1,322	0,011	17,718	1,010	94,615	7,834	1,611	0,019	1,037	0,000	0,223	0.004	3,822	0,285	8,078	0,078	4,9.38	0,000	2,090	0,096
9A Aktinolith 5	53,025	10,003	0,200	0,711	0,000	2,500	0,030	10 117	1,020	91,314	7,007	1,003	0,031	1,033	0,000	0.392	0,004	3,703	0,310	9.027	0,070	4,713	0,000	2,173	0,193
84 Aktinolith 6	54917	12,110	0,100	7.839	0,000	1.0191	0.014	18,021	0.849	94,893	7,8991	1.851	0.020	0,909	0,000	0,130	0.002	3,900	0,225	8.096	0,027	4 903	0,000	2,130	0.130
8A Aktinelith 7	55.074	12.014	0.155	9.095	0.000	0.891	0.073	17.160	0.700	95.162	7.945	1.857	0.017	1.097	0.000	0.151	0.009	3,690	0.196	8.114	0.114	4.909	0.000	2.053	0.053
8A Aktinolith 8	55.636	12,456	0.054	8.747	0.000	0.535	0.026	17.696	0.556	95,706	7.976	1.913	0.006	1.049	0.000	0.090	0.003	3.781	0.155	8.072	0.072	4.905	0.000	2.068	0.068
8A Aktinolith 9	54,297	10,976	0,370	7,974	0,000	2,119	0,034	17,776	1,981	95,527	7,724	1,673	0,040	0,948	0,000	0,355	0,004	3,769	0,546	8,119	0,119	4,840	0,000	2,219	0,219
8A Aktinalith 10	55,204	11,963	0,019	8,776	0,000	0,741	0,046	17,419	0,778	94,946	7,965	1,849	0,002	1,059	0,000	0,126	0,006	3,746	0,218	8,093	0,093	4,903	0,000	2,067	0,067
8A Aktinolith 11	54,610	12,292	0,207	8,540	0,000	1,627	0,058	17,631	0,948	95,913	7,807	1,883	0,022	1,021	0,000	0,274	0.007	3,757	0,263	8,104	0,104	4,888	0,000	2,145	0,145
8A Aktinolith 12	54,983	11,855	0,111	8,542	0,000	1,581	0,063	18,045	1,017	96,197	7,821	1,807	0,012	1,016	0,000	0,265	0,008	3,826	0,280	8,098	0,098	4,947	0,000	2,087	0,087
8A Aktinolith 13	55,211	11,883	0,219	8,701	0,000	1,347	0,052	18,261	1,153	96,827	7,808	1,800	0,023	1,029	0,000	0,224	0,006	3,849	0,316	8,056	0,056	4,940	0,000	2,116	0,116
8A Aktinolith 14	55,844	12,066	0,149	8,567	0,000	1,108	0,085	18,387	0,902	97,108	7,871	1,822	0,016	1,010	0,000	0,184	0,010	3,863	0,246	8,071	0,071	4,953	0,000	2,068	0,068
8A Aktinolith 15	55,733	11,767	0,108	9,703	0,000	1,092	0,058	17,946	0,907	97,314	7,872	1,781	0,011	1,146	0,000	0,182	0,007	3,778	0,248	8,065	0,065	4,996	0,000	2,029	0,029
8A Aktinalith 16	56,740	12,257	0,053	8,341	0,000	0,279	0,026	19,027	0,515	97,238	7,980	1,847	0,006	0,981	0,000	0,046	0,003	3,988	0,140	8,032	0,032	5,004	0,004	1,991	0,000
8A Aktinolith 17	56,170	11,981	0,055	8,824	0,000	0,576	0,024	18,592	0,619	96,841	7,946	1,816	0,006	1,044	0,000	0,096	0,003	3,920	0,170	8,048	0,048	5,015	0,015	2,000	0,000
8A Aktinalith 18	56,363	12,104	0,078	8,958	0,000	0,536	0,049	18,225	0,627	96,94	7,969	1,833	0,008	1,059	0,000	0,089	0,006	3,841	0,172	8,067	0,067	4,972	0,000	2,005	0,005
8A Aktinolith 19	56,258	12,028	0,063	8,931	0,000	0,708	0,083	18,428	0,800	97,299	7,923	1,815	0,007	1,052	0,000	0,118	0,010	3,868	0,218	8,048	0,048	4,978	0,000	2,033	0,033
8A Aktinoiith 20	55,485	12,030	0,077	9,225	0,000	1,129	0,077	17,979	0,748	96,75	7,878	1,830	0,008	1,095	0,000	0,189	0,009	3,805	0,206	8,075	0,075	4,984	0,000	2,036	0,036
8A Aktinouth 21	36,011	12,096	0,054	8,747	0,000	0,646	0,100	18'2A1	0,6791	96,924	7,921	1,833	0,006	1,034	0,000	0,1081	0,012	3,9191	0,185	8,035	0,035	5,000	0,000	2,019	0,019
MAX	56,74	12,46	0,424	9,703	0	2,3	0,1	19,03	1,981	97,314	7,980	1,925	0,045	1,146	0,000	0,392	0,012	3,988	0,546	8,119	0,119	5,015	0,015	2,219	0,219
MIN	53,02	10,87	0,019	7,72	0	0,279	0,011	17,16	0,515	94,514	7,667	1,673	0,002	0,920	0,000	0,046	0,001	3,690	0,140	8,027	0,027	0,027	0,000	0,000	0,000
MITTELWERT	55,18	11,88	0,158	8,638	0	1,156	0,051	18,03	0,968	96,067	7,864	1,814	0,017	1,029	0,000	0,194	0,006	3,830	0,268	8,075	0,075	4,940	0,001	2,082	0,083

 $T \stackrel{\text{\tiny{def}}}{=} ($ Si + Al + Ti) excess 1

C = (excess 1 + Fe + Mg + Mn) excess 2

B = (excess 2 + Na + Ca) excess 3

A = excess 3
Monazit (Schliff 2Ea)

	SiO ₂	$\mathbf{Y}_2\mathbf{O}_3$	P_2O_5	Ce_2O_3	Th0 ₂	Dy_2O_3	La_2O_3	CaO	Sm_2O_3	Pr_2O_3	$\mathbf{Gd}_{2}\mathbf{O}_{3}$	Nd_2O_3	Eu ₂ O ₃	Ho_2O_3	Tb ₂ O ₃	Er_2O_3	TOTAL
Messung	mass%	mass%	mass%	mass%	mass%	mass%	mass%	mass%	mass%	mass%	mass%	mass%	mass%	mass%	mass%	mass%	mass%
2Ea Mon1	0,472	0,645	30,066	34,398	b.d.l	b.d.l	19,882	0,183	0,959	4,604	0,770	8,558	0,798	0,177	0,005	b.d.l	101,517
2Ea Mon2	0,477	0,549	29,900	34,225	b.d.l	0,049	13,823	0,466	1,760	3,741	1,147	12,234	0,974	0,141	b.d.l	b.d.l	99,486
2Ea Mon3	1,989	0,416	25,414	37,160	b.d.l	b.d.l	17,355	0,178	0,639	4,294	0,317	9,407	0,961	b.d.l	b.d.l	b.d.l	98,130
2Ea Mon4	0,512	0,182	27,026	37,779	b.d.l	b.d.l	17,430	0,151	0,833	3,880	0,300	9,174	0,793	b.d.l	b.d.l	b.d.l	98,060
2Ea Mon5	2,055	0,141	22,346	34,443	5,467	b.d.l	17,193	0,597	0,467	3,691	0,215	7,317	0,835	0,017	b.d.l	b.d.l	94,784
2Ea Mon6	3,972	0,152	20,015	29,456	11,432	0,343	15,658	1,035	0,608	3,294	0,377	6,981	0,764	b.d.l	b.d.l	b.d.l	94,087
2Ea Mon7	2,256	0,343	23,117	34,303	5,138	0,052	14,615	0,549	0,691	3,582	0,448	8,103	0,786	0,080	b.d.l	0,022	94,085
2Ea Mon8	7,115	0,283	17,884	25,965	14,183	0,426	12,518	1,574	0,729	2,855	0,385	7,084	0,630	b.d.l	b.d.l	b.d.l	91,631
2Ea Mon9	3,970	0,227	20,881	31,298	7,018	0,098	16,785	1,204	0,554	3,700	0,401	7,202	0,663	b.d.l	b.d.l	b.d.l	94,001
2Ea Mon10	1,312	0,247	22,977	33,574	3,869	0,176	15,777	0,468	0,982	3,714	0,548	9,297	0,961	0,098	b.d.l	b.d.l	94,000
2Ea Mon11	3,790	0,287	20,400	31,301	9,987	0,179	16,170	0,491	0,466	3,449	0,263	7,108	0,676	b.d.l	b.d.l	b.d.l	94,567
MAX	7,115	0,645	30,066	37,779	14,183	0,426	19,882	1,574	1,760	4,604	1,147	12,234	0,974	0,177	0,005	0,022	101,517
MIN	0,472	0,141	17,884	25,965	b.d.l	b.d.l	12,518	0,151	0,466	2,855	0,215	6,981	0,630	b.d.I	b.d.l	b.d.l	91,631
MITTELWERT	2,538	0,316	23,639	33,082	8,156	0,189	16,110	0,627	0,790	3,709	0,470	8,406	0,804	0,103	0,005	0,022	95,850

	Si	Y	Р	Се	Th	Dy	La	Ca	Sm	Pr	Gd	Nd	Eu	Но	Tb	Er	∑P+Si	∑Y+Ca+REE	Се	La	Pr+Nd
Messung	Number	ofions o	n the bas	is of four (0														Atomi	c percei	ntages
2Ea Mon1 2Ea Mon2 2Ea Mon3 2Ea Mon4 2Ea Mon5 2Ea Mon7 2Ea Mon7 2Ea Mon9 2Ea Mon10 2Ea Mon11	0,018 0,019 0,082 0,021 0,092 0,180 0,099 0,323 0,176 0,059 0,171	0,013 0,011 0,009 0,004 0,003 0,004 0,008 0,007 0,005 0,006 0,007	0,982 0,990 0,890 0,944 0,843 0,769 0,861 0,688 0,785 0,871 0,779	0,486 0,490 0,563 0,571 0,562 0,489 0,553 0,432 0,509 0,551 0,517	0,000 0,000 0,000 0,055 0,118 0,051 0,147 0,071 0,039 0,102	0,000 0,001 0,000 0,000 0,005 0,001 0,006 0,001 0,003 0,003	0,283 0,199 0,265 0,265 0,282 0,262 0,237 0,210 0,275 0,261 0,269	0,008 0,020 0,008 0,007 0,028 0,050 0,026 0,077 0,057 0,057 0,022	0,013 0,024 0,009 0,012 0,007 0,010 0,010 0,011 0,008 0,015 0,007	0,065 0,053 0,065 0,058 0,060 0,054 0,057 0,047 0,060 0,061 0,057	0,010 0,015 0,004 0,003 0,006 0,007 0,006 0,006 0,008 0,004	0,118 0,171 0,139 0,135 0,116 0,113 0,127 0,115 0,114 0,149 0,114	0,011 0,013 0,014 0,011 0,013 0,012 0,012 0,010 0,010 0,015 0,010	0,002 0,000 0,000 0,000 0,000 0,000 0,001 0,000 0,000 0,001 0,000	0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	1,000 1,009 0,973 0,965 0,934 0,949 0,960 1,011 0,962 0,930 0,950	1,008 0,998 1,076 1,067 1,076 1,000 1,039 0,914 1,045 1,088 1,009	51,1 53,6 54,6 55,4 55,0 53,2 56,7 53,7 53,1 53,9 54,0	29,7 21,8 25,7 25,8 27,7 28,5 24,3 26,1 28,7 25,5 28,1	19,2 24,5 19,8 18,8 17,3 18,2 19,0 20,2 18,2 20,5 17,9
MAX MIN MITTELWERT	0,323 0,018 0,113	0,013 0,003 0,007	0,990 0,688 0,855	0,571 0,432 0,520	0,147 0,000 0,053	0,006 0,000 0,002	0,283 0,199 0,255	0,077 0,007 0,030	0,024 0,007 0,012	0,065 0,047 0,058	0,015 0,003 0,007	0,171 0,113 0,128	0,015 0,010 0,012	0,002 0,000 0,001	0,000 0,000 0,000	0,000 0,000 0,000	1,011 0,930 0,968	1,088 0,914 1,029	56,7 51,1 54,0	29,7 21,8 26,5	24,5 17,3 19,4

Monazit (Schliff 2Eb)

	SiO ₂	\mathbf{Y}_20_3	P ₂ O ₅	Ce_2O_3	Th0 ₂	$\mathbf{D}\mathbf{y}_{2}\mathbf{O}_{3}$	La_2O_3	CaO	Sm_2O_3	Pr ₂ O ₃	$\mathbf{Gd}_{2}\mathbf{O}_{3}$	Nd_2O_3	Eu ₂ O ₃	Ho_2O_3	Tb ₂ O ₃	Er203	TOTAL
Messung	mass%	mass%	mass%	mass%	mass%	mass%	mass%	mass%	mass%	mass%	mass%	mass%	mass%	mass%	mass%	mass%	mass%
2Eb mon1	0,894	0,543	29,212	39,378	2,062	b.d.l	12,392	0,476	0,938	3,680	0,514	10,338	1,111	b.d.l	b.d.l	b.d.I	101,538
2Eb mon2	1,993	0,666	27,240	30,401	3,955	b.d.l	5,965	0,661	2,657	3,051	0,999	19,540	1,339	b.d.l	b.d.l	b.d.l	98,467
2Eb mon3	2,866	0,417	24,912	32,739	10,426	0,125	12,951	1,349	0,676	3,254	0,394	7,816	0,778	b.d.l	b.d.l	b.d.l	98,703
2Eb mon4	4,296	0,357	24,051	28,918	16,142	0,431	15,204	1,164	0,602	3,447	0,340	6,949	0,838	b.d.l	b.d.l	0,018	102,757
2Eb mon5	5,321	2,874	19,966	19,407	21,993	0,698	5,985	1,404	2,122	2,212	1,749	10,316	0,898	0,502	b.d.l	0,020	95,467
	-																
MAX	5,321	2,874	29,212	39,378	21,993	0,698	15,204	1,404	2,657	3,680	1,749	19,540	1,339	0,502	b.d.l	0,020	102,757
MIN	0,894	0,357	19,966	19,407	2,062	b.d.l	5,965	0,476	0,602	2,212	0,340	6,949	0,778	b.d.l	b.d.l	b.d.l	95,467
MITTELWERT	3.074	0,971	25.076	30,169	10.916	0.418	10,499	1.011	1.399	3,129	0,799	10,992	0.993	0.502	b.d.l	0.019	99,386

	Si	Y	Р	Ce	Th	Dy	La	Ca	Sm	Pr	Gd	Nd	Eu	Но	Tb	Er	∑P+Si	∑Y+Ca+REE	Се	La	Pr+Nd
Messung	Number	 ofionso 	n the basi	 is of four 	0 														Atom	ic percei	ntages
2Eb mon1	0,035	0,011	0,962	0,561	0,018	0,000	0,178	0,020	0,013	0,052	0,007	0,144	0,015	0,000	0,000	0,000	0,997	0,999	60,0	19,0	21,0
2Eb mon2	0,080	0,014	0,928	0,448	0,036	0,000	0,089	0,029	0,037	0,045	0,013	0,281	0,018	0,000	0,000	0,000	1,009	0,974	52,0	10,3	37,8
2Eb mon3	0,118	0,009	0,869	0,494	0,098	0,002	0,197	0,060	0,010	0,049	0,005	0,115	0,011	0,000	0,000	0,000	0,987	0,949	57,8	23,0	19,2
2Eb mon4	0,173	0,008	0,819	0,426	0,148	0,006	0,226	0,050	0,008	0,051	0,005	0,100	0,012	0,000	0,000	0,000	0,992	0,885	53,1	28,1	18,8
2Eb mon5	0,235	0,068	0,748	0,314	0,221	0,010	0,098	0,067	0,032	0,036	0,026	0,163	0,014	0,007	0,000	0,000	0,983	0,824	51,5	16,0	32,5
MAX	0,235	0,068	0,962	0,561	0,221	0,010	0,226	0,067	0,037	0,052	0,026	0,281	0,018	0,007	0,000	0,000	1,009	0,999	60,0	28,1	37,8
MIN	0,035	0,008	0,748	0,314	0,018	0,000	0,089	0,020	0,008	0,036	0,005	0,100	0,011	0,000	0,000	0,000	0,983	0,824	51,5	10,3	18,8
MITTELWERT	0,128	0,022	0,865	0,449	0,104	0,003	0,157	0,045	0,020	0,046	0,011	0,160	0,014	0,001	0,000	0,000	0,994	0,926	54,9	19,3	25,8

10.5 Karte im Maßstab 1:3000 mit drei Zusatzkarten im Maßstab 1:10000

Diopside-Titanite Veins of Arkaroola

AGE 1981 AND Zone & Projection To

MAFIC DYKE (INTERPRETATION)

UNIVERSITY OF LEOBEN