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A B S T R A C T

This thesis deals with the characterization of thin metallic film systems with respect to

their mechanical properties. This incorporates investigations about the intrinsic proper-

ties, internal loading conditions and the response to external mechanical loading of the

material systems.

Compressive and tensile residual stresses in thin films have implications on the reli-

ability of microelectronic components. Residual stresses can have a negative or a pos-

itive effect on the performance and lifetime of the structures. In this thesis, a method

is developed to efficiently determine residual stresses in thin films. This is realized by

combining micro-mechanical experiments and computational methods. Experimental

results, obtained with the so-called Ion beam Layer Removal method, are utilized to

inversely determine the residual stresses numerically with finite element simulations or

analytically with the Euler-Bernoulli beam theory. It is shown that the residual stresses

in various thin film systems can be locally resolved with high precision.

The material behavior of thin films is determined by their size and the internal struc-

ture. The nanocrystalline nature of the investigated materials allows for a classical ap-

proach to derive the yield and hardening behavior. The force-displacement response

from spherical nanoindentation experiments is used in an optimization routine – cou-

pled to finite element analysis – to numerically determine the flow curve of the thin

films while also considering the residual stresses. It is shown that the flow behavior of

miniaturized materials is different compared to macroscopic or bulk materials.

To describe the fracture behavior of the thin film stacks under external loading, the

concept of configurational forces is applied. The investigation is especially focused on

the influence of the residual stress state and material properties on the crack driving

force. A crack can experience shielding or anti-shielding in the vicinity of an interface.

This impact on the crack driving force is described by the interface inhomogeneity term.

Another contribution to the term is given by the jump of the residual stress at the inter-

faces. In addition, the residual stress gradient in the layers further influences the crack

driving force. This contribution to the crack driving force is given by the gradient inho-

mogeneity term.

The mechanical behavior of thin film components has an integral significance for the

performance and life span of high-end microelectronic devices. This thesis offers tools

for thin film stack characterization which can be readily applied in the design chain of

components.
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K U R Z Z U S A M M E N FA S S U N G

Diese Arbeit beschäftigt sich mit der Bestimmung der mechanischen Eigenschaften von

dünnen metalischen Schichtsystemen. Dies beinhaltet Untersuchungen der Materialsys-

teme in Bezug auf ihre intrinsischen Eigenschaften, interne Belastungen und die Reakti-

on auf externe Belastungen.

Druck- und Zugeigenspannungen in dünnen Schichten beeinflussen die Zuverlässig-

keit von mikroelektronischen Komponenten. Eigenspannungen können sowohl einen

negativen als auch einen positiven Effekt auf die Leistungsfähigkeit und Lebensdauer

der Strukturen haben. In dieser Arbeit wird eine Methode entwickelt, mit der man die

Eigenspannungen in dünnen Schichten effektiv bestimmen kann. Um dies zu realisie-

ren, werden mikromechanische Experimente und Rechenmethoden kombiniert. Experi-

mentelle Ergebnisse der sogenannten Ion beam Layer Removal Methode werden her-

angezogen, um invers die Eigenspannungen numerisch, mit Hilfe von Finite Elemente

Simulationen, oder analytisch, nach der Euler-Bernoulli Balkentheorie, zu bestimmen.

Es wird gezeigt, dass die Eigenspannungen in verschiedenen dünnen Schichtsystemen

mit hoher Genauigkeit lokal aufgelöst werden können.

Das Materialverhalten von dünnen Schichten ist durch ihre Dicke und Mikrostruktur

bestimmt. Da die untersuchten Materialien nanokristallin sind, kann das Fließ- und Ver-

festigungsverhalten mit einem klassischen Zugang abgeleitet werden. Dabei wird das

Kraft-Verschiebungs Verhalten aus sphärischen Nanoindentierungsexperimenten in ei-

ner Optimierungsroutine – die an eine Finite Elemente Analyse gekoppelt ist – benutzt,

um die Fließkurve der dünnen Schichten numerisch zu bestimmen, wobei die Eigen-

spannungen mitberücksichtigt werden. Es wird gezeigt, dass sich das Fließverhalten

von miniaturisierten Materialien von dem der makroskopischen oder Bulk-Materialien

unterscheidet.

Um das Bruchverhalten in den dünnen Schichtsystemen zu beschreiben, wird das

Konzept der Configurational Forces herangezogen. Das Hauptaugenmerk liegt beson-

ders in der Untersuchung vom Einfluss der Eigenspannungen und des Materialver-

haltens auf die risstreibende Kraft. Ein Riss kann von einer Grenzfläche abgeschirmt

oder angezogen werden. Die Auswirkung auf die risstreibende Kraft wird durch den

Grenzflächeninhomogenitätsterm beschrieben. Der Sprung der Eigenspannungen an

den Grenzflächen macht einen zusätzlichen Beitrag zu diesem Term aus. Weiters be-

einflusst der Eigenspannungsgradient innerhalb der Schichten die risstreibende Kraft.

Dieser Beitrag zur risstreibenden Kraft ist durch den Gradiententerm gegeben.
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Das mechanische Verhalten von Dünnschichtkomponenten trägt wesentlich zur Leis-

tungsfähigkeit und Lebensspanne von Highend-Mikroelektronikgeräten bei. Das in die-

ser Arbeit präsentierte Konzept stellt ein Werkzeug für die Charakterisierung von Dünn-

schichtsystemen dar, welches in der Designkette von Komponenten eingesetzt werden

kann.
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Part I

P R E A M B L E





1
I N T R O D U C T I O N

Since Moore’s law was postulated in the late 60’s, [1], the microelectronics (ME) industry

is driven by the idea to regularly increase the number of components in an integrated

curcuit (IC) by a factor of two, while reducing the costs to a minimum. The goal is

to accomplish this every 12− 24 months. Lately, this time interval has increased to ap-

proximately 30 months, as the silicon based technology is slowly reaching its saturation

limit. Meanwhile, the integration has extended into the 3rd dimension and the number

of components per 3D IC is still increasing, making the complexity of the embedded

components very high. In this context, the era of Moore’s law has transitioned into the

often mentioned era called ”More Than Moore”, see e. g. [2].

In addition, the manufacturers are currently focused on increasing the versatility of

3D ICs. During its lifetime, a ME device has to perform reliably under different con-

ditions while fulfilling its many designated functions. The response of components to

environmental influences is one of the key issues concerning the reliability of the device.

Such components incorporate various miniaturized materials with a wide span of mate-

rial properties. The combination of thin metallic films, ceramics for isolation purposes

and bonding materials is creating a complex environment. The electronic, magnetic and

optical properties of the used materials have been extensively investigated. On the other

hand, the mechanical properties of the materials and their composites have often been

disregarded.

The fabrication process of 3D ICs is a good example where significant straining

emerges which can lead to device failure. The strains result in different types of stresses,

such as residual stresses due to the deposition process, thermal strains due to deposi-

tion at elevated temperatures and subsequent cooling or external stresses caused in the

process of embedding. The proper knowledge about the magnitude and distribution of

the stress state is necessary when investigating the failure behavior of a component.

The embedded materials, e. g. thin films, also differ with respect to their stress-strain

behavior. Moreover, the individual materials behave in a different fashion if compared

to conventional or bulk materials. This is caused by the variation of the internal struc-

ture, such as grain size and their distribution, and external dimensions, e. g. the film

thickness. As the failure behavior of a component is also determined by the properties

of the used materials, their stress-strain relation has to be properly determined. This

means that conventional methods which yield a linear elastic material behavior have

3



4 introduction

to be reconsidered and extended or replaced by methods that determine elastic–plastic

properties.

Finally, the failure behavior of the components has to be quantitatively described. The

loading parameter that describes the fracture behavior of a body incorporating mate-

rial inconsistencies, such as cracks, is called crack driving force, see e. g. [3]. Unlike in

homogeneous bodies, the crack driving force in multi-material components does not

only depend on the externally applied load [4, 5]. Internal loading conditions, such as

residual stresses, govern additional contributions to the overall crack driving force. Ad-

ditionally, the material properties determine how a crack behaves at the transition from

one material to the other. In any case, a crack can be prevented from propagation or, on

the other hand, accelerated to extend even faster. In order to determine the crack driv-

ing force in elastic–plastic inhomogeneous structures, conventional methods have to be

replaced with more sophisticated approaches.

In this work, the problems concerning the mechanical behavior of thin metallic film

stacks are investigated. By developing appropriate analytical and numerical tools the

failure behavior in such material systems can be quantitatively determined.

This thesis is structured in the following way: In the remainder of Part i the basics

of continuum mechanics and fracture mechanics are explained and a short introduction

to the concept of configurational forces is given. In addition, the composition of the

investigated thin film stacks is presented. After that, the emergence and calculation of

residual stresses in layered structures is explained in Part ii. Simple model materials

are examined before the residual stress distributions are calculated for more sophisti-

cated material combinations. Part iii is dedicated to the investigation of the stress-strain

behavior of the thin films. This is focused on how to determine the flow curve of the

given materials. The yield and hardening behavior is critically discussed and compared

with results from other investigations. Based on the results from Part ii and Part iii,

the fracture behavior in the thin film stacks is subsequently determined in Part iv. The

numerical implementation of the configurational force concept is explained before the

finite element model for the material systems is introduced. The discussion is focused

on the implications of the material inhomogeneities, i. e. the residual stress distribution

and material arrangement, on the crack driving force. Finally, Part v gives a general

conclusion of the thesis followed by an outlook.



2
S H O RT I N T R O D U C T I O N T O C O N T I N U U M M E C H A N I C S

The branch of continuum mechanics is concerned with the deformation of solids, liquids

and gases subjected to stress. This thesis is focused on the description of solid continua,

where the theories of elasticity and plasticity allow for an adequate description of the

stress and deformation behavior of most engineering materials, such as metals.

The plain fundamentals of continuum mechanics which are needed in the course

of the thesis shall be introduced in this chapter. For the sake of simplicity, detailed

derivations of equations are omitted. For extensive explanations and calculations the

reader is referred to the books of Bonet and Wood [6], Chadwick [7] or Malvern [8]. This

chapter is mainly following the structure and language of Bonet and Wood [6].

2.1 deformation gradient

Imagine a body B0 in its initial state at time t0, as shown in Figure 1. The body B0 is

a set of material points which are described by the coordinates X, with respect to the

Cartesian basis Xi. If the body B0 is in some way subjected to internal or external load-

ing it will deform into the body B (see Figure 1). The material points in this body are

described by the coordinates of an another Cartesian basis xi. As shown in Figure 1, the

initial as well as the deformed form of a body are represented by identical coordinate

systems, i. e. Xi and xi, where i = 1, 2, 3. From now on, we refer to xi as the global

coordinate system.

In finite deformation analysis, it is very important to make a precise distinction be-

tween a configuration before deformation (B0) and a configuration during or after de-

formation (B). Reference to the latter or current configuration of the body is also often

referred to as the spatial or Eulerian description and reference to the former or refer-

ence configuration is also called the material or Lagrangian description. The reference

description refers to the behavior of a material point. The current description, on the

other hand, refers to the behavior at a spatial position, see [6].

The motion can be described as a nonlinear one-to-one mapping between the initial

and current material point position,

x = x (X, t) . (1)

5



6 short introduction to continuum mechanics

Figure 1: Reference configuration B0 and current configuration B. A material point at the po-

sition X of B0 is projected at time t into its current position x of B by the nonlinear

mapping x = x (X, t). Additionally, the deformation gradient F maps line elements from

B0 into tangent vectors of B, given by Equation 3.

For a constant value of t, Equation 1 is a mapping between the reference and current

description of the bodies. If, however, the particle position X is fixed, Equation 1 de-

scribes the time dependent motion of this material point.

Just like the material point positions in the deformed and undeformed body can be

related, also the distance between two neighboring points in the current (dx) and ref-

erence (dX) configuration can be related to each other, as shown in Figure 1. This is

accomplished by introducing the deformation gradient F, which is defined as

F =
∂x

∂X
. (2)

The deformation gradient transforms vectors in the reference configuration into vec-

tors in the current configuration, i. e.

dx = FdX. (3)

Therefore, F is a key quantity in finite deformation analysis, as it is involved in all

equations relating quantities before and after deformation, see [6]. Also, in finite defor-

mation analysis it does not matter how large the displacement u = x−X is, see Figure 1.

It can even exceed the initial dimensions of the body, which is often the case, e. g. in

metal forming.



2.2 polar decomposition and strain 7

Figure 2: Deformation of the current configuration in the case of small strain theory. Accordingly,

the deformation gradient F is determined by the displacement field u.

In numerical analysis, it is often beneficial or even necessary that linearized equations

are used for the calculations. Consider a small displacement u from the current config-

uration x = x (X, t), as shown in Figure 2. It follows that the linearized version of the

deformation gradient F is

F = ∇u, (4)

see Bonet and Wood [6] for a detailed derivation.

2.2 polar decomposition and strain

The meaning of the deformation gradient is further disclosed in terms of its decompo-

sition into stretch and rotation components. The tensor F shall be expressed in terms of

R, which is the rotational tensor and U or V, denoting the right or left stretch tensor,

respectively:

F = RU = VR. (5)

Additionally, the right and left Cauchy-Green tensors are defined, respectively:

C = FTF, (6)

b = FFT . (7)
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From Equation 3, it follows that

dx = RUdX = VRdX. (8)

It is clear that in Equation 8 dX is first streched or strained by U and subseqnently

rotated by R into dx. The transformation VR, however, performs the rotation first and

after that the stretch. From the definition of the right Cauchy-Green tensor from Equation 6

and the left Cauchy-Green tensor from Equation 7 as well as Equation 5, it can be shown

that

C = FTF = UTRTRU = U2 (9)

b = FFT = VRRTVT = V2. (10)

From Equation 9 and Equation 10 it can be concluded that C and b are also measures

of the strain, see Bonet and Wood [6]. In an equivalent fashion, Equation 11 proves the

same argument,

ds2 − dS2 = dX ((C − 1) dX) = dx
((

1 − b−1
)

dx
)

, (11)

where, ds2 and dS2 are the squared lengths of the linear elements at x and X, respec-

tively. The tensors

E =
1

2
(C − 1) , (12)

e =
1

2

(

1 − b−1
)

, (13)

are called the Lagrangian strain tensor or reference strain tensor and Eulerian strain tensor

or spatial strain tensor, respectively.

Equivalently to the linearization of the deformation gradient in Equation 4, e. g. also

the Lagrangian strain can be linearized, see [6] for a detailed derivation,

ε =
1

2

(

∇u + (∇u)T
)

. (14)

Since the current and reference configuration are represented in the same coordinate

system in this thesis, the linearized Eulerian strain is equal to the linearized Lagrangian

strain.

2.3 stress

Consider the body B from Figure 1 which is in its current configuration. Figure 3a shows

a cut, performed on the body B. A point on the infinitesimally small area element da

with its outward normal vector n is exposed to a traction vector t, which is defined as

t = lim
da→0

dp

da
, (15)
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(a) Cut bodies, B0 in the reference configuration and B in the current configuration,

to showcase the traction on the respective infinitesimally small area elements dA

and da.

(b) Cauchy tetrahedron with t acting on the sur-

face.

Figure 3: Representation of the traction vector t from which the Cauchy stress tensor σ is derived.

where dp is the reaction force acting on da. The presence of a bulk stress tensor arises

from the balance of deformational forces around a material point on the elemental tetra-

hedron as shown in Figure 3b. Here, three linearly independent cuts are performed

around a material point. The traction vector t acts on the surface. From this equilibrium

the Cauchy stress tensor σ relates the surface traction vector t and the normal vector n:

t = σn. (16)
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The Cauchy stress tensor acts at a material point in the current configuration. In the

course of the thesis, some derivations are performed with a different stress measure,

which relates the element force vector dp to the reference area element dA in body B0,

as shown in Figure 3a. The resulting traction vector is s = Sm, whereby m is the normal

to dA. s is the so-called 1st Piola-Kirchhoff traction vector and S is called 1st Piola-

Kirchhoff stress tensor which is derived from the Cauchy stress tensor, see Bonet and

Wood [6]:

S = JσF−T , (17)

where

J Jacobian, detF,

F−T Transposed to the inverse of the deformation gradient.

2.4 balance laws

This section mainly follows the discussion and derivations from the lecture notes about

continuum mechanics, written by Abeyaratne [9].

2.4.1 Conserved quantities

Consider that Ω (R, t) is the value of an extensive physical property associated with a

region R inside the body B at time t, as shown in Figure 4. Under suitable conditions a

density ω (x, t) of this property can be defined with the relation

Ω (R, t) =

∫
R

ω (x, t) dv, (18)

where dv is a volume element of the region R. The quantities which are represented

by Ω are the mass, linear and angular momentum, as well as the energy and entropy

inside R. Almost all of the quantities obey the following form
∫
R

αdv +

∫
∂R

βda =
d

dt

∫
R

ωdv, (19)

where

α Bulk generation of Ω at material points in R,

β Generation of Ω at material points on the boundary ∂R,

da Surface element on ∂R.

An equation like Equation 19 is known as a global balance law:

• Global, as it is defined for the collection of material points in R, rather than singled

out material points.
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• Balance, as it describes how the rate of increase of the amount of Ω in R is balanced

by the generation of Ω at material points inside of R and its surface ∂R.

To be able to perform calculations it is convenient to define local field equations. In the

following subsections, the focus lies on the definition of the localized versions of the

global balance laws. For full derivations, the reader is referred to Abeyaratne [9].

2.4.2 Balance of mass

The conservation of mass postulates that the mass of any R does not depend on time or

motion. Therefore we can write:

d

dt

∫
R

ρ (x, t) dv = 0, (20)

where ρ (x, t) is the mass density. Equation 20 is the global balance of mass. The local

version of Equation 20 or the field equation is written as

ρ̇+ ρ∇ · v = 0, (21)

in which ρ̇ represents the material time derivative and ∇ · v is the divergence of the

material point velocity.

Figure 4: Densities α and β which define extensive physical quantities Ω inside the region R and

on its boundary ∂R, respectively, of a body B.
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2.4.3 Specification of a force

There are two types of forces acting on part R:

• Body forces which act at the material points inside of R.

• Traction forces which act at the material points on the boundary ∂R.

A force is classified by how it contributes to: 1. the resultant force, 2. the resultant

moment around a fixed point and 3. how it performs power. The traction was already

defined in Section 2.3. Therefore, the contact force per unit area is denoted by t and the

contributions corresponding to the list above are:

∫
∂R

tda,
∫
∂R

x × tda,
∫
∂R

t · vda, (22)

where

x position,

v material point velocity.

The body force, on the other hand, shall be denoted with b and the following integral

terms describe their complete contribution:

∫
R

ρbdv,
∫
R

x × ρbdv,
∫
R

ρb · vdv, (23)

where ρ is the mass density in the current configuration. In conclusion, the resulting

force on R is
∫
∂R

tda +

∫
R

ρbdv, (24)

the resulting moment around a fixed point of the forces is
∫
∂R

x × tda +

∫
R

x × ρbdv, (25)

and the total performed work of the external forces reads
∫
∂R

t · vda +

∫
R

ρb · vdv. (26)
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2.4.4 Balance of linear and angular momentum

The definition of the balance law of linear momentum requires that in an inertial frame

the resultant force on any part of the body equals the rate of increase of its linear mo-

mentum. By using Equation 24, the balance law of linear momentum reads∫
∂R

tda +

∫
R

ρbdv =
d

dt

∫
R

ρvdv. (27)

Equivalently, the conservation of angular momentum in R is defined as the balance

between the resulting moment around a fixed point defined in Equation 25 and the rate

of increase of its angular momentum:∫
∂R

x × tda +

∫
R

x × ρbdv =
d

dt

∫
R

x × ρvdv. (28)

Now consider that the traction vector t is defined by Equation 16 and that all fields

are smooth. Additionally, it follows from the balance of angular momentum that the

Cauchy stress tensor σ is symmetric, i. e. σ = σ
T . The proof for that is shown in [9]

and is not repeated here. Following those requirements, the global balance law of linear

momentum from Equation 27 can be written in its local form

∇ ·σ + ρb = ρv̇. (29)

In a similar fashion, the balance laws can be postulated in terms of the 1st Piola-

Kirchhoff stress tensor S as defined in Equation 17 in Section 2.3. For example, the local

form of the conservation of linear momentum is written as

∇ · S + ρ0b = ρ0v̇, (30)

where ρ0 is the mass density of any region R0 in the body B0 defined in the reference

configuration, see e. g. Figure 3a. In contrast to the Cauchy stress tensor, the 1st Piola-

Kirchhoff stress tensor is non-symmetric, i. e. SFT = FST .

2.4.5 Conservation of energy – First law of thermodynamics

As the thermodynamic quantities, which are calculated in the course of the thesis are

acting in the reference configuration, the first and second law of thermodynamics are

also defined in the reference configuration, in terms of the 1st Piola-Kirchhoff stress

tensor S.

The first law of thermodynamics states that at each point in time during a motion, the

sum of the working rate and the rate of heating on any region R0 in a body B0 has to

be equal to the rate of increase of the total energy of R0, see [9]:∫
R0

S · ḞdV +

∫
∂R0

q0 · mdA+

∫
R0

ρ0rdV =

∫
R0

ρ0γ̇dV , (31)
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where

S · Ḟ stress power density,

q0 and r externally supplied heat to R0,

γ̇ rate of increase of specific internal energy,

dV volume element of the region R0,

dA area element on the boundary ∂R0.

By applying the divergence theorem to the second term on the left hand side of Equa-

tion 31 the conservation law can be written in its localized form

S · Ḟ +∇ · q0 + ρ0r = ρ0γ̇. (32)

2.4.6 Dissipation inequality – Second law of thermodynamics

The second law of thermodynamics states that at each point in time during a motion, the

sum of the rates of entropy flux and entropy supply cannot exceed the rate of increase

of the entropy in the region R0, see [9]:
∫
R0

ρ0r

θ
dV +

∫
∂R0

q0 · m

θ
dA 6

d

dt

∫
R0

ρ0ηdV, (33)

where

θ absolute temperature,

η specific entropy.

Equation 33 is a form of the Clausius-Duhem inequality and it states that the net rate of

entropy production or dissipation is larger or equal to zero; thus the name dissipation

inequality. Now, the divergence theorem is applied again for the second term on the left

hand side of the inequality. Additionally, the Helmholtz free-energy φ = γ− ηθ shall

be introduced for later purposes, where it is equal to the strain energy density in the

model. By utilizing Equation 32, the second law of thermodynamics can be written in

the following local form:

S · Ḟ − φ̇ > 0. (34)

2.5 constitutive equations

A constitutive equation relates two physical quantities for a specific material which is

subjected to loading. Specifically in this thesis, we are interested in the relation between

the stress and strain of solid materials.
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2.5.1 Linear elastic materials

One of the first constitutive relations was introduced by Robert Hooke. Hooke’s law

describes the stress-strain behavior of a linear elastic material. In a generalized form,

the stress components in their respective directions depend on a linear combination of

all the strains. In this case the stresses are related to the strains via 81 coefficients. Due

to some symmetries this number can be reduced to 21 independent coefficients. In this

thesis the materials are assumed to behave isotropic, and for an elastically isotropic

material all the coefficients can be expressed in terms of two constants:

E Young’s modulus,

ν Poisson’s ratio.

For a comprehensive study of the constitutive equations for generalized linear elastic

materials, the reader is referred to the book of Malvern [8].

2.5.2 Elastic–plastic materials

The calculations in this thesis are concerning the mechanical behavior of thin metallic

films. Thus, this subsection is focusing on the description of plasticity in metals, i. e.

metal plasticity. The books of Malvern [8] and Lubliner [10] cover the constitutive behav-

ior of various types of plastically deformable materials, which is not repeated here.

A typical stress-strain diagram for a metal is presented in Figure 5. Theoretically, the

material is described by Hooke’s law until the elastic limit σel is reached. This value

is normally called the yield strength of a material. However, the exact point of yield-

ing is difficult to determine from experiments. In order to perform experiments with

reproducible results for the yield strength, the so-called offset yield strength σ0 was in-

troduced. The linear part of the original curve is shifted by an offset strain value δ. The

point where this parallel line crosses the original curve determines σ0. For metals, this

value is most commonly chosen to be δ = 0.2%.

If the material is not strained beyond the yield stress, it returns to its initial state after

unloading, i. e. all the strain is recovered. Beyond the point of yielding, most commonly,

the stress has to be further increased in order to additionally deform the material. This

phenomenon is known as work-hardening or strain-hardening. If the material is loaded

up to e. g. point A, see Figure 5, a part of the strain or deformation which is accumu-

lated by the material cannot be recovered anymore upon unloading, called the plastic

strain εp. This strain is acquired by drawing a parallel line to the linear elastic part of

the original curve. The plastic strain εp is measured at the point where this line cuts the

abscissa. By drawing a line parallel to the ordinate, the remaining or recovered elastic
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strain εe can be determined, as shown in Figure 5.

In Part iii of the thesis, the material behavior of thin tungsten and copper films is in-

vestigated. The stress-strain relation there is given by the well-known Ramberg-Osgood

material model [11]:

ε =
σ

E
+ δ

(

σ

σ0

)m

, (35)

where

σ uniaxial true stress,

σ0 offset yield strength,

ε total strain,

E Young’s modulus,

δ yield offset,

m inverse hardening parameter.

The Ramberg-Osgood material model is designed to give a continuously rising stress

with increasing strain, mainly depending on the hardening parameter. This model is not

able to predict an ultimate strength of the material before the point of fracture at high

strains. However, for low strains the model gives a reasonable prediction of the resulting

flow stresses.

Figure 5: Exemplary tensile stress-strain relation.
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F U N D A M E N TA L S O F F R A C T U R E M E C H A N I C S

Fracture mechanics is based on the tools of continuum mechanics, discussed in the pre-

vious chapter. It allows for the description of the behavior of cracks in different types

and compositions of materials. The topic of fracture mechanics is one of the most active

fields of research and was already extensively investigated in the past. The basics of

fracture mechanics are collected in different books and publications, see e. g. [12, 13].

The article by Kolednik, [3], gives a very good overview of fracture mechanics.

In this chapter, the most relevant concepts and terms of fracture mechanics are intro-

duced, to prepare the reader for the discussions in the upcoming parts of this thesis.

3.1 definition of the crack driving force

Imagine a homogeneous body with an initial crack under loading, as shown in Figure 6.

Generally, this crack with an initial length a0 will extend if the crack driving force D

equals or exceeds the crack growth resistance R [3, 14]. The crack driving force D de-

scribes a loading parameter deduced from the strain energy or the work of applied

loading in a body. The crack growth resistance R will prevent crack propagation. It usu-

ally depends on the crack extension ∆a and the geometries of the body, see Figure 6. If

D < R, the crack will remain stationary. On the contrary, if D = R, the crack will exhibit

stable growth, and if D > R, the crack growth becomes unstable.

As it is suggested in Figure 6, only cracks under Mode I loading are investigated in

this thesis. This is the crack opening mode and the most critical one, see e. g. [12].

3.2 regimes of fracture mechanics

In a simple distinction, fracture mechanics can be divided into linear elastic fracture

mechanics (LEFM) and elastic–plastic or nonlinear fracture mechanics (E–PFM, NLFM),

see e. g. [3]. The concept of LEFM applies if the plastic deformation during crack growth

is zero or limited. In this case, the size of the plastic zone rpl is very small compared

to the crack length a and the ligament length b, rpl << a, b, in which case small-scale

yielding (ssy) conditions apply, see Figure 7a. E–PFM, on the other side, is used if the

body experiences significant plastic deformation, rpl >> a, b, or, in general, nonlinear

behavior. In a homogeneous body with a long crack the prevailing conditions are either

17
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Figure 6: A homogeneous body under Mode I loading with its current crack length a, ligament

length b and width W.

large-scale yielding (lsy) or general yielding (gy), as shown in Figure 7b. Under the lsy

conditions, the onset of plastic deformation is at the back face of the body, while gy

applies when the crack tip plastic zone and back face plasticity merge into one plastic

zone. In a special case where the crack is very short, as shown in Figure 7c, E–PFM has

to be applied, as also a small plastic zone does not comply with the conditions from

Figure 7a. As already mentioned, this thesis is ultimately dealing with the crack driving

force in thin metallic film stacks. In a layered composite, as shown in Figure 7c, the

materials deform in a different way and often the lsy condition cannot be defined by

the onset of back face plasticity. In this case lsy applies if the size of the plastic zone rpl

compares to or is higher than the crack length a.

3.2.1 Linear elastic fracture mechanics

The stresses close to the crack tip of a linear elastic body are calculated by, see [15]

σij =
K√
2πr

fij (θ) , (36)

with the polar coordinates (r, θ), the angular stress functions fij (θ) and

K = σap

√
πafK. (37)

K describes the intensity of the near-tip field and is therefore called stress intensity

factor. It depends on the applied stress σap the crack length a, and the geometry of
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(a) LEFM (b) E-PFM

(c) Special cases of E-PFM

Figure 7: Different regimes of fracture mechanics.

the body, represented by fK. However, the equation for the near-tip stresses implies a

singular behavior of the stress field, as r → 0, which is not the case in reality. Plastic

deformation generated at the crack tip keeps the stresses finite, but for as long as the

plastic zone is reasonably small the stress intensity factor K is a valid measure for the

crack driving force. Moreover, as the stresses or strains at the crack tip equal or exceed

a critical value K = KIc, fracture occurs. The material parameter KIc is called fracture

toughness and describes the resistance of the material against fracture. Connecting this

stress and strain deformation concept to the energy based perspective of a crack driving

force D, one finds the relation

G =
K2

Eb
, (38)

where G is the LEFM equivalent to the generalized definition of the crack driving

force D, called elastic energy release rate, see [16]. Eb = E/
(

1− ν2
)

is the biaxial Young’s

modulus for plane strain conditions, where ν is the Poisson’s ratio.
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3.2.2 Nonlinear and elastic–plastic fracture mechanics

In the regime where plastic deformation becomes relevant, the concept of LEFM will

fail. Therefore, the stress intensity factor K has to be extended into a parameter valid

for NLFM and E–PFM. Based on the deformation theory of plasticity, in 1968 a fracture

parameter called J-integral was introduced by Rice [17]. Similar to K, the J-integral de-

scribes the intensity of the near-tip field and crack growth occurs if the corresponding

critical value is reached. The J-integral describes a contour integral on an arbitrary path

around the crack tip. It was shown by Rice [17], that the J-integral is the equivalent to the

energy release rate of work done on a nonlinear elastic body containing a crack per unit

fracture area. This can be understood as a more generalized version of the elastic energy

release rate G. For LEFM, the J-integral is identical to G; consequently, a relationship

between the stress intensity factor K and the J-integral can be established:

Jel =
K2

Eb
. (39)

There are some limitations concerning the conventional J-integral proposed by Rice

when applying it to real elastic–plastic materials, pointed out by Simha et al. [18] and

Kolednik et al. [19]. The conventional J-integral is based on the theory of plastic de-

formation, assuming nonlinear elastic behavior for elastic–plastic materials. For non-

proportional loading conditions, this theory will predict wrong total strains. For a proper

description for elastic–plastic materials incremental theory of plasticity is necessary. Ad-

ditionally, this nonlinear elastic J-integral does not directly describe a crack driving force

for real elastic–plastic materials. It acts as a measure of the intensity of the crack tip field,

comparable to the stress intensity factor K in LEFM.

3.3 configurational force concept and the j-integral

Material imperfections, smooth or discontinuous material variations as well as residual

stresses, are known to have an influence on the crack driving force in a body, see e.g.

[4, 5, 19–25]. A very good way to describe the impact of material inhomogeneities on

the fracture behavior is provided by the configurational force concept, which is based

on the ideas of Eshelby [26], and adopted by Gurtin [27] and Maugin [28]. This concept

makes it theoretically possible to describe any kind of inhomogeneous behavior in a

body. Examples for inhomogeneities or imperfections in a material are cracks, voids,

dislocations and sharp interfaces. In the following, the basic idea of the configurational

force concept is given. For comprehensive derivations of the following equations and

definitions the reader is referred to [5, 19, 26–28].

From a thermodynamical viewpoint, a configurational force tries to push a defect
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into a configuration where the total potential energy of the system has its minimum. In

general, a configurational force vector f can be calculated at each material point in a

body. It is defined as the divergence of the configurational stress tensor C and becomes

non-zero only at positions of a defect in the body:

f = −∇ · C = −∇
(

φI − FTS
)

, (40)

where

φ Helmholtz free energy or strain energy density,

I Identity tensor,

FT Transposed deformation gradient,

S 1st Piola-Kirchhoff stress tensor.

If, for example, a two-dimensional homogeneous elastic body with a sharp crack is

considered, the crack tip exhibits a configurational force vector ftip, determined by Equa-

tion 41

ftip = − lim
r→0

∫
Γr

(

φI − FTS
)

mdl. (41)

Here, Γr is the contour around the crack tip at the distance r away from the crack tip

and m denotes the unit normal vector to the contour. The corresponding energy dissi-

pated per unit crack extension is a projection of ftip in the direction of crack extension

e and gives

Jtip = −e · ftip. (42)

Jtip is the scalar near-tip J-integral and it represents the crack driving force. The scalar

driving force caused by the externally applied load into the body is characterized by the

far-field J-integral Jfar, which results in

Jtip = Jfar, (43)

since no other defects are present in the homogeneous body incorporating a sharp

crack.

3.4 material inhomogeneity term

If the crack tip is situated in the vicinity of a sharp interface, the crack tip stress field

experiences a jump as soon as the material properties change at the interface. In this case

the interface imposes a shielding or anti-shielding effect on the crack tip. Anti-shielding

occurs if the crack is about to propagate from a material with higher Young’s modulus

and/or higher yield strength into a material with lower modulus and/or strength. If,
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however, the crack is approaching an interface to a material with higher Young’s mod-

ulus and/or higher yield strength the crack tip is shielded by the interface [5, 29]. The

latter effect is commonly utilized to arrest a crack in a soft interlayer and prevent its fur-

ther propagation through the whole structure [19, 30, 31]. The same concept of shielding

or anti-shielding can be applied for the effect of compressive or tensile residual stresses

in a body, respectively. For instance, compressive residual stresses normally act opposite

to the stress field originating from external loading. Those stresses have to be overcome

before further crack elongation is possible.

If a body incorporates inhomogeneities, the equality between the near-tip and far-field

J-integral in Equation 43 does not apply anymore. The total material inhomogeneity

term Cinh is introduced, quantifying the sum of all material inhomogeneity effects in

the body and is added to the far-field J-integral to form the crack driving force [5, 29]:

Jtip = Jfar + Cinh. (44)

An example of such a body is presented in Figure 8, where Jtip is calculated around

Γtip and Γfar is the contour around Jfar. The crack tip is shielded by the inhomogeneities

if Cinh is negative, and anti-shielding occurs if Cinh has a positive value. Specifically in

this investigation, the inhomogeneity sources are the sharp interfaces and the residual

stress gradients. That results in two inhomogeneity terms:

• Interface inhomogeneity term CIF, describing the effect of the jump of material

properties as well as the residual stress jump at the sharp interfaces.

• Gradient inhomogeneity term CGR, which accounts for the continuous variation

of residual stresses in the interlayers.

The sum of CIF and CGR results in the total material inhomogeneity term Cinh:

Cinh = CIF + CGR. (45)

The configurational force at a sharp interface Σ is calculated from the jump of the

configurational stress tensor

fΣ = −[[C]]n, (46)

where n is the unit normal vector to the interface and the corresponding projection in

crack propagation direction is given by

CIF
i = −e ·

∫
Σi

(

[[φi]]I − [[FT
i ]] 〈Si〉

)

nidl, (47)
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Figure 8: A segment of a tri-layer sample including the contours Σi and Γfar that are used to

calculate the interface term CIF and far-field J-integral Jfar, respectively. The gradient

term CGR is determined in the regions which incorporate a residual stress gradient

denoted by Dj. Γtip is the crack tip contour where Jtip is calculated and is in this case

excluded from D2.

for a body incorporating i interfaces, with Σi being the contour around the i-th inter-

face, as shown in Figure 8. The summed up contributions from the sharp interfaces give

the total interface inhomogeneity term:

CIF =
∑

i

CIF
i . (48)

In Equation 47, ni denotes the unit normal vector to the i-th interface in the body. A

jump of a quantity at an interface is designated by [[q]] = (q+ − q−) and 〈q〉 = (q+ + q−) /2

represents the average of q across the interface. q+ and q− are the limiting values of q on

each side of the interface.

If the residual stress state in the interlayers were constant, CGR would be zero, as

the difference in strain energy density from one material point to the other in the inter-

layers is vanishing. A study of a ceramic multilayer composite gave only the interface

inhomogeneity term CIF due to the jumps of material properties and residual stresses at

the interfaces [32]. In this thesis, the gradient inhomogeneity term CGR has to be taken

into account, since the variation of residual stresses inside the layers leads to an explicit

gradient of the strain energy density.

The residual stresses acting parallel to the sharp interfaces exhibit a gradient in y-

direction. Thus, the stored energy density in the body is experiencing a variation in the

same direction. The corresponding configurational force is calculated as the gradient
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of the strain energy density φ = φ (F, y) in distribution direction, see [5]. The gradient

inhomogeneity term for the j-th interlayer is derived by Equation 49:

CGR
j = −e ·

∫
Dj

∇jφ (F, y) dA. (49)

As denoted in Figure 8, the integral is calculated for each region Dj exposed to a

residual stress distribution without considering the adjacent interfaces. If the crack tip

contour Γtip is situated in the layer, the area enclosed by Γtip must be excluded from the

integration area. Summing up the contributions from all the interlayers gives the total

gradient inhomogeneity term:

CGR =
∑

j

CGR
j . (50)



4
C O M P O S I T I O N O F T H E I N V E S T I G AT E D M AT E R I A L S

4.1 thin film technology

This section is designated to provide a basic understanding about thin film technology

and its most common fields of application. It is closely following the book of Adachi

and Wasa [33].

For almost 60 years now, thin films are being utilized in the production of electronic

devices, optical and protective coatings or just decorative parts. In the very early stages

of 1960s, the thin film transistor (TFT) was proposed by Weimer. Due to the instability

of the TFTs, the produced devices could not be considered for everyday use. The first

practical applications for thin films were centered around passive devices, e. g. thin film

capacitors and resistors. In the following years, thin film processing had been imple-

mented in the production of solar cells, such as amorphous silicon (a-Si) sollar cells. a-Si

was used to fabricate solar cells for calculators and a liquid crystal television was pro-

duced with a-Si TFTs. Ongoing research is dealing with the efficiency of a-Si solar cells,

as the energy consumption for the production of single crystal bulk Si solar cells is sig-

nificantly higher. Thin film technology is also used to produce filters for color displays.

Additionally, thin films are used for the realization of sensors, storage devices and new

types of random access memory, e. g. ferroelectric dynamic random access memory. The

latest applications are mostly concerning the ME industry and are discussed in [33].

Generally, thin films are fabricated by physical and chemical vapor deposition (PVD

and CVD) or their combination (PECVD). The growth of thin films can be induced by

a thermal process, where a source material is evaporated in a vacuum chamber and the

atoms accumulate on a substrate material. A different way to govern thin film growth

is via ion processes, i. e. using the irradiation of energetic species or sputtering to create

the atom flox for deposition. The variations between the available deposition techniques

are further discussed in [33].

Thin films also exhibit unique properties that are related to the way how the thin

films are fabricated or grown. Their toughness and strength can be well controlled dur-

ing the deposition process. Compared to that, strengthening of bulk materials requires

additional processing steps.

25
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4.2 fabrication of the investigated thin film stacks

This thesis is focused on the investigation of thin metallic films and their composites de-

posited on a Si substrate. The materials at hand are primarily tungsten (W) and copper

(Cu). Both materials are much desired in the fabrication of modern ME devices. Addi-

tional materials processed in the course of fabrication are titanium nitride (TiN) and

chromium (Cr), serving as passivation layers on top of the Si wafer. The TiN-layer is

considered in the calculations, whereas the ultra-thin Cr-layers are not.

The investigated thin films are deposited on top of Si wafers with a (100) crystallo-

graphic orientation. The wafer thicknesses differ between the samples and will be men-

tioned while they are introduced. Two simple specimens are exclusively used for the

residual stress calculations. The first one consists of a 1.58µm thick Cu film electrode-

posited on a 725µm thick Si substrate. The second sample comprises a W and a TiN film

deposited on a Si wafer with a thickness of 700µm. Together, the films are approximately

0.8µm thick, whereby the TiN-layer is 0.12µm thick. CVD was used to deposit the TiN

as well as the W layer.

More sophisticated thin film stacks were prepared for an in-depth characterization

of their mechanical behavior. The samples consist of tri-layer stacks with alternating

W- and Cu-layers, i. e. a W-Cu-W and a Cu-W-Cu stack, respectively. The Si substrate

is 525µm thick and all layers have an approximate thickness of 0.5µm and a globular

grain structure. The grain size varies between 60 and 70nm and is determined by a line

intercept method from scanning electron microscope (SEM) micrographs, see [34]. For

good adhesion, a 10nm thick Cr-layer was deposited on Si. Another sample was pre-

pared with a 1.0µm thick W-layer. The film was not processed in one single step. After

depositing about 0.5µm of W the process was interrupted for 4550s before the rest of

the layer was completed. The implications of the deposition sequence are explained in

Chapter 7. As this thesis is not mainly focusing on the preparation of the material stacks,

further information about the deposition conditions and parameters can be taken from

[34].

All material systems were produced at room temperature using PVD on a Mantis

Sputter System (Mantis, Thame, United Kingdom). While the latter sample is used to

determine its residual stress distribution and the flow behavior of W, the W-Cu-W and

the Cu-W-Cu stacks are fully characterized. The investigated stacks and the film thick-

nesses are presented in Table 1.



4.3 linear elastic material properties 27

Stack 1st Layer [µm] 2nd Layer [µm] 3rd Layer [µm] Substrate [µm]

Cu Cu 1.58 − − Si 725

W-TiN W 0.68 TiN 0.12 − Si 700

W-W W 0.5 W 0.5 − Si 525

W-Cu-W W 0.5 Cu 0.5 W 0.5 Si 525

Cu-W-Cu Cu 0.5 W 0.5 Cu 0.5 Si 525

Table 1: Investigated thin film stacks with the according film thicknesses.

4.3 linear elastic material properties

The substrate is assumed to behave linear elastically for all stacks which were introduced

in the previous section. For Si we use a Young’s modulus of 170GPa and a Poisson’s ra-

tio of 0.28, evaluated as a mean value from different sources [35–38]. Additionally, the

remaining film materials are assumed to behave linear elastically during the residual

stress calculations. A summary of the elastic material behavior for W and TiN was al-

ready given in a former article [39]. In the present case for W a Young’s modulus of

411GPa and a Poisson’s ratio of 0.28 is used. TiN has a Young’s modulus of 390GPa and

a Poisson’s ratio equal to 0.34. For the film material Cu the values are 130GPa and 0.34,

respectively, see the values reported in [40–42]. The elastic properties for the materials

are given in Table 2.

In order to appropriately determine the failure behavior of the W-Cu-W and Cu-W-

Cu stacks, the yield and hardening behavior of W and Cu has to be known in addition

to their linear elastic properties. This is part of the current thesis and is investigated in

Part iii.

Material E [GPa] ν [−]

Si 170 0.28

W 411 0.28

Cu 130 0.34

TiN 390 0.34

Table 2: Linear elastic properties of the thin film materials.





Part II

R E S I D U A L S T R E S S E S I N T H I N M E TA L L I C F I L M S

In this part of the work, the residual stress state in thin metallic films is stud-

ied. In the course of the investigation, the results from numerical calcula-

tions were compared to an analytical solution. First results on single-layered

specimens were presented in [39, 43]. The analytical approach has proven to

be very efficient. Therefore, the residual stress distributions in multi-layered

specimens were calculated analytically. The corresponding results were also

published in [34].
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D E T E R M I N I N G R E S I D U A L S T R E S S E S I N T H I N F I L M S

5.1 motivation

Generally, thin film components for ME applications, such as through silicon vias, are

subjected to residual stresses. Residual stresses in thin films cannot be avoided. The rea-

sons for that are variations in the coefficient of thermal expansion or an atomic lattice

spacing mismatch between the processed materials. Also, different other factors are in-

fluencing the residual stress accumulation in thin films during their deposition [44, 45].

However, in many applications small amounts of residual stresses are tolerable and do

not have a significant influence on the performance or reliability of a device. If properly

designed, a thin film component can even benefit from the internally generated stresses.

In order to be able to describe their mechanical properties, such as fracture behavior, it

is important that the residual stress state in thin films and thin film stacks is properly

described.

Some literature argues about constant residual stresses in thin films [46–48]. Most of

the recent studies, however, show that the residual stresses are locally varying through-

out the thin films. X-ray diffraction analysis [49–54] as well as focused ion beam milling

(FIB) in combination with digital image correlation (DIC) [51, 55–60] are the most pop-

ular techniques for measuring residual stress gradients in thin films. With the latter

method a specific region with characteristic features is imaged before and after removal

of stressed material. The form of the processed area can have numerous geometrical

shapes [57, 60]. After the FIB cut is introduced, the material around the cut deforms due

to residual stress relaxation. The corresponding deformation field is determined from

scanning electron microscope (SEM) scans taken from the initial and current condition

and used to recalculate the initial stress state in the films.

However, the intense FIB milling and forming of different shapes limits the possibil-

ities with FIB-DIC. The complex geometries are not easy to produce and the created

FIB cuts can negatively influence the displacement and strain gradient, as the strain

relief can lie inside the FIB damaged region [55, 60, 61]. It has been shown that ion

damage generally depends on the materials and ions involved in processing as well as

the ion current, their incident angle and acceleration voltage [62]. Moreover, the DIC

measurements depend on the precision of the imaging system and the utilized correla-

tion algorithm [63, 64]. This does not necessarily mean that FIB milling is not suitable

31
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for the evaluation of residual stresses, but that FIB damage, which can compromise the

results, has to be minimized. Additionally, simpler analysis tools compared to the DIC

method would be beneficial. That being said, the so-called ion beam layer removal (ILR)

method is a promising alternative approach to determine residual stress distributions in

different thin film stacks [39, 43].

5.2 the ion beam layer removal method

5.2.1 Experiments

As many other approaches, the ILR method combines experimental efforts with analyt-

ical or numerical calculations. The experimental part involves cutting of beam shaped

micro samples and subsequent milling of thin layers in a designated area as well as

SEM imaging. Notably, the method utilizes FIB milling, but the relation between the FIB

milled region and sample size suggests that the FIB damage does not have a significant

impact on the results. Sample preparation and the milling procedure are not the main

part of this thesis and shall be shortly summarized here. Details about the sample fabri-

cation can be found in [34, 65].

The measurements start after the cantilever is prepared as shown in Figure 9, where

initially the beam is fixed on both sides, as demonstrated in Figure 9a. As soon as one

side of the bridge is cut free (see Figure 9b), the beam deflects in the positive or the neg-

ative direction, depending on the residual stresses present in the system. The following

steps are necessary to determine the residual stress distribution:

1. The micro-beam dimensions are determined from SEM recordings.

2. The initial deflection of the cantilever is measured at its free end by SEM imaging,

as shown in Figure 9b.

3. After that, a thin layer of material is removed in the ILR area (see Figure 9b) by

FIB milling. The ion beam penetrates the cantilever from the side which reduces

the area influenced by ion bombardment; in the view of Figure 9 it travels in out-

of-paper-plane direction.

4. A SEM picture is taken to determine the thickness of the removed layer, in the

following termed sublayer, and the current deflection of the micro-beam.

5. Step 3. and 4. are repeated until the whole film is removed from the substrate.
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(a) Bridge prepared for FIB milling.

(b) Released beam at the front, where the deflection is measured. The thin layers

of material are removed in the ILR area

Figure 9: SEM micrographs of a Cu-Si beam prepared for residual stress calculations with the

ILR method.

5.2.2 Analytical solution

The stress in each sublayer is determined from the current deflection, the elastic prop-

erties of the system, given in Table 2, and the dimensions of the cantilever. In order to

calculate the residual stresses in the sublayers analytically, the measured deflections as

well as the sublayer thicknesses are stored in text files. The analytical approach utilizes

the Euler–Bernoulli beam theory [66] and in this work the scheme from Jiang et al. [67]

is followed closely. In the following the calculation is explained in detail:

If small elastic deformations are assumed, the curvature κ of a cantilever can be calcu-

lated from its deflection curve u(x) as

κ =
d2u

dx2
. (51)

The solution of the differential equation relates the initial deflection and the initial

curvature of the entire cantilever,

κo = −
2δo

l2
, (52)

where l is the cantilever length and δo and κo denote the deflection and curvature

after the micro-beam is cut free, respectively. While the film material in the ILR area is

gradually removed, the curvature in this area changes and thus the deflection of the can-

tilever. Furthermore, the deflection change of the cantilever is a function of the cantilever
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thickness in the ILR area as well as the initial deflection calculated from Equation 52. In

this case, the curvature in the ILR area can only be determined iteratively as

δi =
1

κAi

(

1− cos
(

κAi lA
))

+ sin

(

κAi lA + κo
lR

2

)

2

κo
sin

(

κo
lR

2

)

(53)

for each measured deflection δi [65]. In Equation 53, i = 1, . . . ,n labels the remaining

material system which consists of the substrate and n− i sublayers and the respective

curvature is denoted by κAi . The length of the ILR area and the remaining cantilever

length are denoted by lA and lR, respectively.

What follows is the calculation of the residual stress on the basis of force and momen-

tum balance in the cantilever. This is done for each removed sublayer by reintroducing

them into the system in reverse order, starting with the last removed sublayer. As no

external forces are applied to the cantilever, its deflection is caused solely by the preex-

isting residual stress in each sublayer j. By solving the following force and momentum

equilibrium equations, respectively, the residual stress for each sublayer can be deter-

mined:

P =

tsub∫

0

σx,0 (y) dA +

n∑
j=0

tj+1∫

tj

σx,j (y) dA = 0, (54)

My =

tsub∫

0

σx,0 (y) · ydA +

n∑
j=0

tj+1∫

tj

σx,j (y) · ydA = 0. (55)

In Equation 54 and Equation 55, σx,0 represents the stress distribution in y-direction in

the substrate and σx,j denotes the stress distribution in the sublayers in a relaxed system.

tsub and tj are the substrate thickness and the current distance to the coordinate system

origin, which is situated at the bottom of the substrate as shown in Figure 10.

Finally, dA denotes the integration area. Furthermore, it is assumed that the thin film

is in a biaxial plane stress state, as the wafer diameter is much larger than its thickness.

This means that σx,j (y) = σz,j (y), where the z-direction lies perpendicular to the x-

direction in the same plane. Additionally, it is assumed that the biaxial stress state does

not change significantly as the cantilever is prepared. The stresses in Equation 54 and

Equation 55 are a summation of the bending stress σb
x,j (y), which is controlled by the

cantilever deformation, and the eigenstress or residual stress in each sublayer σres
x,j . The

total stress is calculated in the following way:

σx,j (y) = σb
x,j (y) + σres

x,j =
(

εbx,j (y) + εresx,j

)

· Eb,j = εx,j (y) · Eb,j. (56)

In Equation 56, Eb,j is the biaxial Young’s modulus of each individual sublayer and is

calculated as

Eb,j =
Ej

1− νj
, (57)
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Figure 10: An exemplary sketch of a specimen consisting of a substrate and 3 sublayers. The

neutral axis for a Si beam without considering the sublayers is marked by the dashed

line. The residual stress for each sublayer is determined by reintroducing them onto

the Si beam, starting with sublayer 1.

where Ej is the Young’s modulus of the material and νj is its Poisson’s ratio. The

bending strain is denoted by εbx,j (y), the eigenstrain is denoted by εresx,j and εx,j (y) is the

total strain, for the j-th sublayer. There is no material separation during deformation, i. e.

the bending strain distribution over the cantilever thickness has to be linear, meaning

that

εbx,j (y) = κjy + dj. (58)

Here, κj represents the current curvature determined with Equation 53. Notably, κj

can only be determined relative to the neutral axis, see Figure 10. As Equation 53 by

definition refers to the neutral axis the y-coordinate has to be offset by dj. Ultimately,

this results in a system of equations which has to be solved for each sublayer where

σres
j and dj are the two unknown parameters.

The residual stress calculations in the removed thin film layers are performed with

a script, which is realized in the computing software MapleTM (Maplesoft, Waterloo,

Canada) [34]. In the preamble the application is provided with input data, such as

the cantilever geometries and the elastic properties of the materials. Additionally, the

sublayer thicknesses and the corresponding deflections, obtained from the experiments,

are read from text files. After providing this initial input, every following sequence in

the script is performed automatically. In a first iterative loop, the curvatures for each

sublayer are calculated following Equation 53 where, notably, each current curvature

depends on the preexisting curvatures. Secondly, the sublayers are re-deposited step by

step in another iterative loop, starting with the last removed layer. It is assumed that the

substrate is initially stress-free and thus undeformed. The residual stress σres
j and offset

dj for each attached sublayer are calculated by solving the force and momentum balance

from Equation 54 and Equation 55, depending on the parameters determined from the
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previous sublayers and the curvature from the current layer. Finally, the residual stress

distribution is returned.

5.2.3 Numerical approach

The numerical calculations combine finite element (FE) modeling and an inverse op-

timization algorithm. The FE simulations are performed with the software package

ABAQUS (Simulia, Dassault Systems) and the Levenberg-Marquardt algorithm is used

for optimization [68, 69]. This is realized within a graphical user interface (GUI) which

was designed for this purpose at the MCL (see Figure 11a). Three tabs are designated for

the creation of a 3D FE model of the cantilever, as shown in Figure 11b, the calculation

as well as the output of the residual stress gradient in the thin film. The Settings tab

is designed for the pre-processing part of the complete ABAQUS environment (CAE),

where the geometries are assigned to the micro-beam and the mesh requirements and

material properties are set up for the model. In the Parameter tab, the FE pre-processing

part is completed after defining a parameter vector with an initial residual stress distri-

bution for the film. One continues to prepare the inverse optimization routine, which

is realized with Python, by listing the experimental data needed for the optimization;

e. g. the sublayer thicknesses and the corresponding deflections. Also, the optimization

parameters have to be fixed.

After the cantilevers are prepared and cut free for the residual stress calculations, they

are still fixed to the rest of the remaining wafer on their back side, as shown in Figure 9.

It is important that the elastic fixation between the actual beam and the remaining or

untreated structure is considered in the FE model via a boundary condition, as it was

discussed in detail in [39]. It was demonstrated on an example that the so-called box

deformed elastically in the vicinity of the elastic junction or fixation, highlighted in Fig-

ure 11b. Compared to a rigidly fixed cantilever, the stresses are reduced over the film

thickness as the micro-beam with the box can be freely deformed. On the front side,

however, the cantilever is initially clamped in all directions. The parameter vector, con-

taining the estimated residual stress field, is applied via an initial condition. When the

nodes on the front side are released, the residual stresses inside the film relax, leading

to a deflection of the micro-cantilever (see Figure 11b). The direction and magnitude of

the deflection depends on the initial choice of the residual stress vector. Subsequently,

the FIB milling in the ILR area, highlighted on the FE model in Figure 11b, is performed

in the simulation by deleting the element layers corresponding to the sublayers removed

in the procedure. By utilizing a modeling technique called "model change" it is possible

to change the stiffness of a selected element set to approximately zero. In order to re-
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duce the calculation time, each sublayer is modeled with one row of elements. Loss of

precision is avoided by using fully integrated 20−node quadratic brick elements C3D20.

(a) Example of the graphical user interface. Here, a picture of the Settings

tab is presented.

(b) From top to bottom: FE model in its initial state, with intact bound-

ary conditions. The beam is relaxed and equilibrated. Subsequently, the

sublayers in the ILR area are removed. After each layer removal an equi-

libration step is introduced.

Figure 11: Numerical tool for the calculation of the residual stresses.
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At this point the Levenberg-Marquardt algorithm enters the calculation. The prede-

fined parameter vector, containing the initial residual stress distribution, is altered sys-

tematically with the goal to minimize the deviation between the simulated and experi-

mental deflections. The iterative procedure terminates after a certain threshold deviation

is met and the last determined stress vector is considered as the residual stress distribu-

tion in the thin film. After the calculations have completed, the functions of the Results

tab in the GUI become available, where one has the possibility to visualize the resulting

deflections and residual stresses.

5.3 residual stresses in simple thin film/substrate configurations

The first residual stress calculations were performed on the Cu film deposited on Si.

The second sample consists of the W-layer combined with a very thin TiN-interlayer

deposited on Si. The thin film dimensions were already introduced in Table 1 and are

not repeated here. As mentioned before, the micro-cantilever beams for the residual

stress calculations are prepared by FIB milling. The beam geometries are listed in Table 3

and are denoted according to Figure 12. The elastic constants for the FE simulations are

taken from Table 2.

Specimen W [µm] B [µm] ILR [µm] L [µm]

Cu 7.07 4.12 14.50 87.00

W-TiN 5.83 7.82 14.56 90.24

Table 3: The dimensions of the micro-cantilevers for the residual stress calculations.

The residual stress distribution through the Cu film calculated analytically and nu-

merically is shown in Figure 13a. In this example the thickness of the removed layers is

around 0.15µm. The core part of the film experiences nearly constant residual stresses.

Figure 12: Sketch of a processed specimen for residual stress calculations where the film layer in

the ILR area has already been removed.
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(a) Comparison of the residual stress distribu-

tions in the Cu film, calculated numerically

and analytically.

(b) Comparison of the experimentally deter-

mined and optimized deflections for the Cu-

Si sample.

Figure 13: Analytical and numerical results from the residual stress calculations for the Cu-Si

micro-cantilever beam.

This behavior is a consequence of a thermo-mechanical treatment for a number of

cycles from previously conducted wafer curvature measurements. Moreover, in this pro-

cess most of the residual stresses caused by the fabrication process are relieved by plas-

tic deformation. The residual stress behavior is confirmed by the predominantly linear

behavior of the deflection curve through the middle part of the film, as shown in Fig-

ure 13b. In this particular example there are some deviations between the analytical and

numerical deflection profiles for the first and last sublayer. It can be safely assumed

that the numerically determined stress will become of compressive nature if the simu-

lated deflection approaches the experimental one. In order to minimize these deviations,

calculations with different sets of optimization parameters have been performed. How-

ever, the system seems to be stuck in a local minimum, where it reaches the desired

requirements to stop the optimization loop.

The optimization algorithm performs better for the second example. In Figure 14a the

numerical and analytical results are compared for the W-TiN film. The numerically esti-

mated deflections almost match the experimentally measured deflection profile, which

is evident from Figure 14b. However, the analytical solution tends to result in higher

stress values, especially in the vicinity of the interface between TiN and W. The reason

for that is that the analytical approach is more susceptible to irregular deflection profiles.

Thus, errors which inevitably occur during the experiments and deflection estimations

from the SEM scans can result in higher stress peaks. In the upcoming chapter this is-

sue is appropriately addressed by some improvements to the calculation method. The

thickness of the removed layers in this example is significantly smaller compared to the

Cu specimen. In order to demonstrate the importance of a higher number of sublayers,



40 determining residual stresses in thin films

the numerical result from Figure 14a is compared to a residual stress distribution with

a lower depth resolution in Figure 15. The higher residual stress resolution reveals a

residual stress peak of about 3GPa in the vicinity of the W/TiN interface.

(a) Comparison of the residual stress distribu-

tions in the W-TiN stack, calculated numeri-

cally and analytically.

(b) Comparison of the experimentally deter-

mined and optimized deflections for the W-

TiN-Si sample.

Figure 14: Analytical and numerical results from the residual stress calculations for the W-TiN-Si

micro-cantilever beam.

Figure 15: Comparison of the numerically determined residual stresses with a low resolution

(black dashed line) and a high resolution (blue solid line).
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Compared to the analytical solution, the numerical approach becomes increasingly more

time consuming as the thickness of the layers removed in the ILR area decreases. In

other words, by increasing the number of FIB cuts, the number of elements in the FE

model drastically rises and the size of the predefined stress vector for the optimization

increases. Thus, the optimization algorithm coupled to the FE simulation needs dispro-

portionally more time to find a suitable match between the experimental and simulated

deflection curve. The analytical approach, on the other hand, does not suffer from a dras-

tic increase in computation time. Because of the aim to rigorously resolve the residual

stresses in a W-Cu-W and Cu-W-Cu stack deposited on a Si wafer where each individual

film has a thickness of 0.5µm, it was decided to improve the precision and automation

of the experimental as well as the analytical procedure.

6.1 adjustments to the experimental procedure and analytical solu-

tion

6.1.1 Automatically conducted experiments

To accurately capture the deflection values after each removal step in the ILR area, the

sample has to be properly prepared and the FIB-SEM workstation has to be handled

with caution in several steps. In the previous examples from Figure 13 and Figure 14 it

was possible to perform this procedure manually. If, however, stacks like the W-Cu-W

or Cu-W-Cu tri-layer systems are thoroughly investigated, it is difficult to achieve the ex-

pected accuracy of the results; especially if the sublayers are thinner than 0.1µm. In order

to acquire precise data in the fastest possible way, the cutting and imaging routine was

fully automated. Details about the procedure were discussed in [34]. With this approach

it is possible to reliably determine when the FIB cut reaches an interface from one film

to the other by imaging the ILR area. Previously this was done by an estimate from the

deflection profile. Furthermore, by setting up markers on the specimens the stage move-

ment for FIB milling and imaging can be improved. Consequently, the micro-cantilevers

can be imaged at the same position several times, e. g. the deflection is recorded three

times after each cut. This allows estimating the statistical error made during the deflec-

41
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tion measurement. Finally, the machine is set to remove 50nm of material in the ILR

area in each step, which corresponds to the grain size and results in approximately ten

sublayers per film.

6.1.2 Analysis improvements

The residual stress profile in a single film is expected to have a smoother gradient if the

sublayer thickness is reduced. Due to inevitable errors while determining the cantilever

deflections from SEM images, the resulting residual stress distribution can show an

unexpected trend through a single film, see e. g. the W-layer in Figure 14a. Because

of the improved experimental method, this error can be diminished by building an

average deflection profile from the three measured data sets. Additionally, to smoothen

out potential runaway residual stress values the averaged data is fitted with higher order

polynomial functions. In Figure 16, the average deflection profile and its fitted value are

compared. The deflections for each film have to be fitted separately, as the deflection

profile in each layer behaves differently.

Figure 16: The average value of the three measured deflection profiles for the W-Cu-W stack,

marked by the black squares. To further improve the quality of the resulting residual

stresses the average value is fitted with higher order polynomials (red triangles).

6.2 analytical results for tri-layer stacks on a substrate

As described in the previous chapter, a MapleTM script has been designed to automati-

cally perform the calculations and the residual stresses are readily derived. 40 sublayers
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Figure 17: Residual stress distribution in the W-Cu-W stack.

Figure 18: Residual stress distribution in the Cu-W-Cu stack.

have been removed in the ILR area for the W-Cu-W as well as the Cu-W-Cu micro-beams.

After the corresponding deflections and sublayer thicknesses have been provided to the

script, the corresponding curvatures are calculated and stored in a list. Additionally, a

list of biaxial Young’s moduli is created according to the number of cuts in each film.

Before the routine starts, a list with placeholders for σres
j is defined which are replaced

with their corresponding results as the derivation carries on.

The resulting residual stress distributions in the W-Cu-W and Cu-W-Cu stacks are

shown in Figure 17 and Figure 18, respectively. Owing to the improved data analysis
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a smooth residual stress variation is achieved in the respective thin films. Also, the

residual stresses exhibit a jump in the stress value at the sharp interfaces. In both stacks

the W-layers are subjected to compressive and the Cu-layers exhibit tensile residual

stresses, respectively.

6.3 summary and conclusion

In the present part, the residual stress behavior in thin metallic films deposited on a

Si wafer was investigated. Based on the ILR method an analytical and a numerical ap-

proach to calculate the residual stress distributions through the films were introduced.

The analytical derivation is based on the Euler–Bernoulli beam theory. Here, the residual

stress distribution in the thin films is calculated in an iterative procedure from the force

and momentum balance in the prepared micro-cantilevers. The more sophisticated nu-

merical approach combines FE simulations and a least-squares optimization (Levenberg-

Marquardt algorithm).

For simple film/substrate combinations such as the Cu/Si or W-TiN/Si samples, the

residual stress resolution through the films was held relatively low. In this case, the an-

alytical and numerical approach were compared. The results for the Cu/Si show very

similar behavior when comparing the analytical and numerical approach. On the other

hand, the analytically determined residual stresses overestimate the residual stresses in

the W-layer, supposing that the numerical calculation is more accurate. In the example

of the W-TiN/Si calculation it was also shown that a higher resolution reveals residual

stress peaks never reported before.

The numerical implementation is much more powerful in terms of taking into account

complex boundary conditions and material properties. However, the analytical method

is much faster. In order to determine residual stresses in the complex W-Cu-W/Si and

the Cu-W-Cu/Si samples, the analytical method was preferred. In this case the numeri-

cal calculation consumes too much computational time, because of a larger model and

a significantly higher number of optimization steps. Anyway, the analytical solution

yields very good results, especially after a more sophisticated analysis and a refined

experimental approach.

As properly determined residual stresses have an influence on the material and the

fracture behavior of the stacks, the presented results are of crucial importance in the

upcoming chapters.



Part III

M AT E R I A L B E H AV I O R O F T H I N M E TA L L I C F I L M S

This part of the thesis covers the study about the material behavior of the

thin films. In order to determine the elastic-plastic properties of the materials

an appropriate calculation scheme had to be established. Early results were

already presented in [70]. Details about the method and final results were

published in a recent article [71].
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F I L M S

7.1 discovering functional materials

Depending on the requirements for ME components, such as reliability or high func-

tionality, different types, sizes and arrangements of thin films are used in their assembly.

However, the strength of such thin films is controlled by their external and internal di-

mensions, i. e. the grain size and film thickness. Obviously materials on the sub-micron

scale behave differently than their bulk counterparts [72–74]. Researchers have been

pursuing this topic for a long time now and the two main fields of interest have been

single-crystalline materials [72, 75, 76] and polycrystalline materials [77–79]. The behav-

ior of single-crystalline materials is controlled by their external dimensions. On the other

hand, the grain size or internal structure is controlling the strength and hardening of

polycrystalline materials.

The size effect on the plastic deformation in thin single-crystalline films can be de-

scribed by the limited movement of dislocations within the film [44, 80]. As the film

thickness plays the role of the grain size in this case, the yield strength depends on the

film thickness, which is directly related to the extension of at least one dislocation loop

which has to fit into the film. The strengthening effect on a material by reducing the

dimensions of single-crystalline specimens has also been observed experimentally, e. g.

by tensile and compression testing [72, 75, 81, 82] or bending beam experiments [76, 83].

On the other hand, the deformation properties of polycrystalline materials are mainly

driven by dislocation pile-up at grain boundaries [10, 73]. Since the size of thin films

used in advanced microelectronics ranges between a few nm and a few µm, the most

anticipated materials are nanocrystalline [77, 84, 85], i. e. polycrystalline materials with

grains on the nanometer scale.

Most recently, studies have been focusing on the research of thin nanocrystalline films

which contain only few grains across their thickness. A general consensus about the

strengthening effect on such materials has yet to be found, as some researchers are re-

porting strengthening effects [86] and others are observing weakening of such materials

[87]. However, it is clear that the strength of such nanocrystalline materials can be con-

trolled by altering their microstructure while decreasing the external dimensions [73,

86, 87]. In order to properly utilize thin nanocrystalline films in the design of micro-
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electronic components, their material behavior has to be uncovered. For this purpose

appropriate experiments have to be conducted and numerical tools have to be devel-

oped.

7.2 nanoindentation experiments

The flow and hardening behavior of thin nanocrystalline W and Cu films is determined

with samples which stem from the same wafers as the specimens prepared for the resid-

ual stress investigations. This ensures that the appropriate loading conditions are con-

sidered during the calculations. The plastic behavior of W is derived from the W-W

specimen, presented in Table 1. As discussed in Section 4.2, a disruption of the depo-

sition process results in a variation of the residual stress state in the film, as shown

in Figure 19. The second stack is the W-Cu-W tri-layer, with the film dimensions from

Table 1. The residual stresses for this stack were already characterized, see Figure 17.

In order to determine the flow behavior of the W and Cu films, we performed nanoin-

dentation experiments. The experiments were conducted on a platform Nanoindenter

G200 (Keysight Tec. Inc, Santa Rosa, CA, USA) at room temperature, equipped with a

spherical diamond indentation tip (Synton-MDP AG, Nidau, Switzerland), depicted in

Figure 20. The tip has a radius of around 10µm. The nanoindentations were performed

in a standard load controlled operating scheme where a maximum load of 100mN at a

preset loading time of 30s was reached.

Figure 19: Residual stress distribution in the W-W stack.
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Figure 20: SEM micrograph of the nanoindenter tip, made of diamond.

The force-displacement curves are presented in Figure 21. The six experimental curves

for the W-W (solid lines) as well as the W-Cu-W (dashed lines) stack configuration al-

most coincide and lie within 2% deviation. This is in fact a consequence of the nanocrys-

talline nature of the investigated films. However, as long as a large enough material

volume is examined, the results should not be much different for other materials with

different grain structure or material combinations. Because of the softer Cu-interlayer in

the W-Cu-W tri-layer system the loading segments of the two stack configurations differ.

Figure 21: All six experimentally acquired loading curves for the W-W sample (set of solid lines)

and the W-Cu-W sample (set of dashed lines).
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The nanoindenter tip does not penetrate into the pure W-layer as deep as it does into

the layer system with Cu. Similar behavior has been observed in [88], where titanium

and chromium interlayers have been introduced into a W-Cu-SiO2-Si system.

The maximum indentation depth for the W-W specimen reaches approximately a

fourth of the layer thickness. Moreover, the plastic indentation depth for the W-Cu-W

1.5µm thick stack is about 20% of the total layer thickness, meaning that 10% of the film

thickness were exceeded. Therefore, potential substrate effects cannot be excluded [89,

90]. However, because the indented volume contains a large number of grains, this effect

should not be significant.

7.3 numerical tool

7.3.1 Finite element model

In order to inversely derive the unknown yield strength and inverse hardening param-

eter, a model of the nanoindentation experiment has to be created. For this purpose a

Python script is established which automatically generates a 2D axial symmetric model

of the experiment. As an example, the model of the W-Cu-W tri-layer stack on the Si

substrate is shown in Figure 22a. The corresponding symmetry axis is the y-axis. The

surface directly below the nanoindenter and the face on the outside of the model are

unconstrained, which allows the material to move freely in lateral direction, along the

x-axis. The nanoindenter tip is assumed to be perfectly spherical and, unlike the ma-

terial below the tip, sliding of the indenter in x-direction is not allowed. This means

that the tip has only the possibility to move in indentation direction, i. e. parallel to the

y-axis. The force from the experiment is applied as a concentrated force to a node at the

tip of the nanoindenter, denoted by F in Figure 22a. Finally, the bottom of the model is

constrained in y-direction.

Additionally, the material behavior of such thin film stacks can be influenced by their

inherent residual stress state. Therefore, the residual stress distributions are considered

in the models. The residual stress distribution from Figure 17 is indicated in the en-

larged area around the indenter tip in Figure 22b. The stresses act perpendicular to the

symmetry axis and are prescribed by means of the user subroutine SIGINI. Depending

on the distance from the origin in y-direction the residual stresses are induced at the

integration points of the elements. The magnitude of the tangential stress is equal to the

residual stress component. Thus, a biaxial stress state in the thin films is realized.

The specimens are modeled with 4-node bilinear (CAX4) elements. In order to appro-

priately resolve the deformed region around the nanoindenter tip, the element size in

its vicinity is held at a constant size of 0.05µm, evident from Figure 22b. The rest of
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the model is meshed with coarse elements with a maximum size of 0.5µm, ensuring

sufficiently low computation times for the simulations.

(a) Boundary conditions in the FE model.

(b) Zoomed in area close to the nanoindenter tip to show the mesh reso-

lution. Also, the residual stress distribution from Figure 17 is projected

onto the mesh.

Figure 22: Axial symmetric FE model of the W-Cu-W probe.



52 flow behavior of nano-sized tungsten and copper films

7.3.2 Relating the finite element model to the experiment

After a ”master” model of the nanoindentation experiment has been created, an op-

timization routine which calculates the inverse hardening parameter m and the yield

strength σ0, defined in Equation 35, of a given material is initiated. The FE model and

the Ramberg-Osgood stress-strain relation are coupled by the Levenberg-Marquardt al-

gorithm. A bounded least-squares optimization is used to assess the difference between

the target experimental force-displacement response and the results from the simula-

tions. A Python script reads the master input file and looks for the line where the mate-

rial properties of the model are generated. Note that the master model is generated with

the elastic properties from Table 2 which do not change during the optimization. With

the initially defined guess for the parameter set [σ0, m], the script creates a flow curve

for the given material and saves it as its first ”slave” file. A simulation is performed

with the slave model and the resulting force-displacement response is compared to the

corresponding experimental data. The least-squares algorithm decides whether or not

the results are within a given tolerance and if the optimization should be continued or

terminated. If the result is satisfactory, the optimization is complete and the optimiza-

tion parameters σ0 and m are returned. If, on the other hand, the deviation between the

experimental and simulated force-displacement data is too large, the algorithm keeps

suggesting new pairs of optimization parameters [σ0, m] and performs simulations with

slave models until the desired result is achieved.

In order to calculate an appropriate stress-strain relation for the W as well as the Cu

film, the problem is divided into two steps. As a first step the plastic behavior of W in the

W-W specimen is optimized. Secondly, the flow behavior of W is used to characterize

the Cu film in the W-Cu-W stack. An optimization is performed for each experimen-

tal loading curve from Figure 21 and the corresponding optimized load-displacement

data is shown in Figure 23. The parameters matching the calculated curves are listed in

Table 4.

Just like the experimental curves, the six numerically determined force-displacement

curves coincide very well. This allows calculating an average loading behavior for both

materials and compare the experimental and numerical results. In Figure 24, the pair

of the black solid line and black dots represents the comparison for the W film and

the red solid line paired with the red triangles shows the comparison for the Cu film.

An average loading behavior corresponds to an average yield and hardening behav-

ior of the six parameter sets in Table 4. The inversely determined δ = 0.2% offset

parameters are [σ0, m] = [1.91± 0.03GPa, 13.3± 0.3] for W in the W-W specimen and

[0.65± 0.04GPa, 2.8± 0.1] for the Cu film in the W-Cu-W tri-layer stack configuration.
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Figure 23: Numerically determined loading data for all six W-W models (closed symbols) and

the W-Cu-W models (open symbols).

Sample Test σ0 [GPa] m

W-Si 1 1.91 13.0

2 1.88 13.3

3 1.90 13.4

4 1.91 13.5

5 1.88 13.6

6 1.96 12.8

MV 1.91± 0.03 13.3± 0.3

W-Cu-W-Si 1 0.66 2.7

2 0.71 2.8

3 0.59 2.9

4 0.68 2.8

5 0.61 2.7

6 0.65 2.7

MV 0.65± 0.04 2.8± 0.1

Table 4: Optimized yield strength and inverse hardening parameters. MV denotes the mean

value including the standard deviation calculated from the six parameter sets [σ0, m].

7.4 flow behavior of the thin tungsten and copper films

Finally, the stress-strain behavior calculated according to Equation 35 with the mean

parameter sets listed in Table 4 for the two respective materials are shown in Figure 25.
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Figure 24: Comparison of the mean simulated and experimental data for the two stack configura-

tions showing excellent agreement. The solid lines represent the experimental curves

and the corresponding simulated data is marked with symbols.

The flow curve for W is denoted by the gray solid line and the stress-strain curve for Cu

is drawn by the orange dashed-dotted line. For comparison, the optimizations were ad-

ditionally performed without considering the residual stresses. As denoted by the black

dashed line, including or excluding residual stresses in the simulations does not have

a significant impact on the resulting flow and hardening behavior of W. The difference

between the results lies within the numerical accuracy, which is also evident from Ta-

ble 4. For Cu, however, this is not the case. By excluding the residual stress gradient in

the simulations, the resulting flow curve deviates from the original curve by the average

tensile residual stress of about 0.34GPa occupying the Cu-layer in the W-Cu-W stack, see

Figure 17. Note that the intrinsic strength of a material does not depend on the residual

stresses. However, they impose internal loading on the material. These initial stresses

influence the overall stress state and therefore have an impact on the flow behavior of

the material in the model. Therefore, thin film stacks should be characterized taking into

account their internal loading, especially for materials with higher ductility, such as Cu.

7.5 discussion and summary

Finally, the results are critically compared and related to results from literature. In a

recent publication [81], the experiments on single-crystalline W nanopillars have shown

that the compressive and tensile 0.2% offset yield strength lies in the range of 1.3-1.5GPa
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Figure 25: Stress-strain relation for W (grey solid line) and Cu (orange dash-dotted line). Flow

curves resulting from the optimization procedure without considering the presence

of residual stresses for W (black dashed line) and Cu (red dotted line) are also shown.

The curves where the residual stresses are considered correspond to the mean values

of the parameter sets [σ0, m] in Table 4.

for roughly 0.5µm thick samples. It is proposed that the difference to the current result

of 1.91GPa can be mainly attributed to the nanocrystalline structure of the films with a

grain size between 60 and 70nm. Such a grain size effect in thin films was also shown

in [91]. On the other hand, previous studies have shown that nanocrystalline Cu can

display quite a high yield strength, around 0.76GPa for a mean grain size of about

30nm [85, 92]. In a first estimation, this value agrees well with our result, which is

0.65GPa. As the Cu-layer in the present study has somewhat larger grains, a lower yield

strength could be expected. An estimation using the classical Hall-Petch relation, where

the yield strength depends inversely on the grain size, gives 0.47GPa with the Hall-

Petch constants for Cu of σr = 25MPa and ky = 0.11MPa
√
m taken from [93]. Here,

σr denotes the starting stress for dislocation movement and ky is the strengthening co-

efficient. However, the above yield strength of 0.76GPa from literature was obtained for

a bulk nanocrystalline Cu component that was presumably free from residual stress,

while in this work a 0.5µm thin Cu film with at most eight grains over the thickness

is investigated. Additionally, the Cu-layer is exposed to residual stresses. It was already

shown in recent work that, just like a decreasing grain size, also a reduced film thickness

can impose an effect on the yield and hardening behavior of thin films on a substrate

[91]. Additionally, the Cu film in the W-Cu-W sample is constrained by two stiff W-

layers, which is also contributing to the overall strength of Cu. It appears that a similar
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strength can be achieved by varying the internal structure, external dimensions and con-

straints of the same material.

In this part nano-sized W and Cu films were investigated with respect to their flow be-

havior. On the basis of a continuum mechanical approach a 0.2% yield strength σ0 and

inverse hardening parameter m were determined for both materials. The calculations

were realized by a combination of nanoindentation experiments and numerical model-

ing. The influence of the microstructure, external dimensions as well as the architecture

on the material behavior of the thin W and Cu films was addressed. Additionally, it

was shown that a residual stress state has to be considered when calculating the flow

behavior of a ductile material, such as Cu. Moreover, the sequence of materials within

the stack is important since adjacent layers influence each other with respect to their ma-

terial behavior. As W is the stiffer material in the W-Cu-W specimen, the deformation

behavior of the Cu-layer is influenced by the two constraining W-layers. The presented

results were also published in a recent paper [71].

The investigations in the upcoming part about the fracture behavior of thin film stacks

is going to show that it is important to consistently consider the internal and external

influences in the process of material characterization.



Part IV

C R A C K D R I V I N G F O R C E I N T H I N M E TA L L I C F I L M S TA C K S

In the following part, the influence of the previously calculated residual

stress distributions and the material behavior on the crack driving force in

thin metallic film systems is investigated. In the framework of the configura-

tional force concept the material inhomogeneity effects due to the residual

stress state and the material behavior discrepancy in the stacks are deter-

mined. Early results were published in [94, 95] and fracture properties of

thin films were reported in [70]. The final results are part of an ongoing

investigation and are planned to be published in the near future [96].





8
M O D E L I N G F R A C T U R E O F T H I N F I L M C O M P O S I T E S

8.1 motivation

As discussed in Part iii, miniaturized materials such as thin films exhibit higher strength

compared to their bulk counterparts. In principle designers prefer to work with high

strength materials, but it is very important to note that an increase in strength is in most

cases accompanied by a limited or lower resistance to fracture. By purposeful utilization

of material inhomogeneities, the fracture toughness of components can be significantly

improved. The use of material variations to increase the fracture resistance of functional

materials has been the topic of several investigations in the past, see [Kubair2011, 4, 20,

21, 97–102]. One of the most prominent fields where thin film composites are beneficial

is microelectronics [103, 104]. It is very common to fabricate structures with alternating

hard and soft layers. For this kind of thin film arrangement, scientists are primarily in-

spired by natural structures [30, 31, 99, 105–107]. For instance, deep sea sponges have a

multi-layered structure consisting of a stiff and strong glass matrix which incorporates

thin and soft protein interlayers serving as crack stoppers. What happens in such mate-

rials is that the crack driving force is drastically decreased as soon as the crack arrives in

the soft layer [31, 107]. Thereby, the fracture toughness of the structure becomes signifi-

cantly higher without suffering a noticeable loss in stiffness or strength. Other examples

of natural composites which exceed the properties of their constituents would be hybrid

materials that are highly mineralized (e. g. bone and teeth) or are purely polymeric, such

as wood, bamboo or silk. However, examples from nature are often very hard to produce

artificially.

Additionally, thin film components are subjected to residual stresses, which was inves-

tigated in Part ii of the thesis. Most importantly, the residual stresses are locally resolved,

which has implications on the fracture behavior of thin film stacks. Regarding the frac-

ture behavior of functional materials, analysis of experimental results has shown that

residual stresses influence the materials crack growth resistance [108–111].

Currently, it is very important to precisely understand the material behavior as well

as the magnitude and distribution of residual stresses in thin films. With the appropri-

ate tools, the failure behavior in thin film systems can be properly investigated or even

predicted. In the following, the numerical implementation of the configurational force

concept, as introduced in Section 3.3, is described. The crack driving force can be cal-

59
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culated by following up on a conventional FE analysis with a post-processing routine

based on the configurational force concept.

8.2 numerical model for the calculation of the crack driving force

8.2.1 Numerical derivation of the crack driving force

The configurational forces, which determine the crack driving force in the material

stacks, are calculated with a post-processing routine written in Python. The basics for

the numerical calculation of configurational forces were introduced by Mueller et al.

[112, 113]. To calculate the configurational forces the post-processing tool collects the

displacement, stress and strain energy fields from the FE simulations in ABAQUS for

each node in the model. With this data at hand, the configurational stress tensor C from

Equation 40 can be readily obtained. In Figure 26 four adjacent elements with their

respective integration points (+) are depicted. The nodes are marked by red dots. A

configurational force vector in a node K of a single element e is then determined by:

gK =

∫
Ve

NKfdV =

∫
Ve

DT
K · CdV, (59)

where

NK Shape functions,

DT
K Transposed derivatives of shape function w.r.t. nodal coordinates,

Ve Element volume.

The integration is performed numerically with Gauß quadrature while considering

that dV = wdA, and w is the specimen width. Finally, the configurational forces from all

elements adjacent to the same node K are summed up to give the resulting configura-

tional force vector in the node:

gK =

ne∑
e=1

ge
K, (60)

where ne is the number of adjacent elements e. The scalar J-integral in a region D

which includes k nodes and is enclosed by a contour Γ is calculated as

JΓ =
∑
k∈D

−(e · gK)∆Ak. (61)

In Equation 61, ∆Ak is the area enclosed by Γ , as shown in Figure 26.

In Figure 27a, a simple model of a loaded compact tension specimen is given. The

configurational forces around the crack tip are calculated and presented as vectors in

Figure 27b. The largest vector lies at the node directly at the crack tip. According to
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Figure 26: Four adjacent elements with the corresponding integration points (+). The configura-

tional forces assembled at the nodes calculated at their adjacent elements are shown

by exemplary vectors (red arrows). Also, the integration area around the node K is

depicted.

theory, this should be the only configurational force which appears, as a homogeneous

body is considered. However, the nodes surrounding the crack tip node show small

configurational forces. They appear due to numerical inaccuracies, since the four-node

linear elements, used in this example, cannot completely resemble the singularity at the

crack tip, see e. g. [19]. By accordingly refining the mesh in a given model, those inaccu-

racies can be minimized and reduced to a very narrow area around the crack tip.

As is suggested by Equation 46, the configurational force for a node at an interface

is derived from the difference of the configurational stress tensor on one and its adja-

cent side of the node. To realize this numerically, the post-processing script has to be

provided with the concerning node and, separately, the corresponding elements on each

side of the node. Finally, the configurational force at the interface node K is determined

as

gΣ,K =
(

g+

Σ,K − g−

Σ,K

)

e, (62)

where g+

Σ,K represents the configurational force on one side and g−

Σ,K the configura-

tional force on the adjacent side. In comparison to Equation 46, the unit normal vector
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(a) Meshed model of a loaded compact tension specimen.

(b) Area around the crack tip with the configurational force at the crack

tip (orange arrow) and the configurational forces resulting from mesh

resolution (blue arrows).

Figure 27: Simple FE model to demonstrate the calculation of configurational forces.

to the interface is equal to the crack propagation direction. In the models presented

in this thesis this is always the case. In a scenario where a crack lies very close to an

interface, a part of the configurational force from the interface nodes redistributes to

the nodes adjacent to them; again due to numerical inaccuracies. In this case the total
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configurational force around the interface, gΣ, is the sum of the configurational forces

at the interface and the nodes adjacent to it.

8.2.2 Finite element model

The FE models are based on micro-cantilevers prepared for fracture experiments, where

the fracture toughness of the thin films in the multilayer stacks under mechanical load-

ing was investigated [70]. As shown in the SEM picture of the W-Cu-W stack in Fig-

ure 28a the fracture samples are prepared in a very similar fashion as the samples fab-

ricated for the residual stress calculations. In this way, the residual stress distributions

from Part ii are appropriately considered. In order to create a model, the necessary ge-

ometries are determined from the SEM pictures. As denoted in Figure 28a, the distance

between the crack and beam fixation is c and l is the gap between the loading point L

and crack. Moreover, the total beam height h, width w and thickness of each thin film

are measured from SEM pictures at higher magnification. The geometries for the W-Cu-

W and Cu-W-Cu specimen are listed in Table 5, and the film dimensions are given in

Table 1.

Stack c [µm] l [µm] h [µm] w [µm]

W-Cu-W 6.79 20.50 4.50 3.76

Cu-W-Cu 3.80 21.90 4.50 4.10

Table 5: Micro-beam geometries used for FE modeling.

In the course of the discussion the results of the so-called ”bare” model and the ”full”

model are compared. The bare model behaves exclusively linear elastic and the full

model includes the elastic-plastic material behavior, as presented in Figure 25 and the

residual stress gradients from Figure 17 and Figure 18, depending on which thin film

stack is modeled. The elastic material properties from Table 2 are considered in the mod-

els. Figure 28b shows the 2D plane strain model for the W-Cu-W stack with the respec-

tive boundary conditions. The exact same model is created multiple times for different

crack lengths of a stationary crack. In this way the crack is propagated through the mate-

rial system for crack lengths between 0.1 and 1.475µm. This is automatically performed

with a Python script. The models are meshed with four-node bilinear plane strain ele-

ments (CPE4). Special attention is paid to meshing the crack tip. An area around the

crack tip, covering the thickness of the layer and double the thickness in lateral direc-

tion, is meshed with square shaped elements with a constant size of 0.005µm. The area

around the crack tip is shown in Figure 28c. By using this element size, it is possible to

accurately model cracks which are a distance of 0.025µm appart from the closest inter-
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(a) SEM scan of the W-Cu-W fracture specimen.

(b) Boundary conditions for the FE model of the W-Cu-W specimen.

(c) The mesh in the vicinity of the crack tip.

Figure 28: The setup for the FE model of the W-Cu-W micro-cantilever.

face. A free mesh has been put on the remaining area with the constraint that the largest

elements do not exceed a size of 0.3µm. In order to properly calculate the material inho-

mogeneity term at the thin film boundaries, also the mesh around the sharp interfaces

is resolved with the smallest elements.

Note that, the residual stresses in the thin film stacks are nto a consequence of a mis-

match of the thermal expansion coefficient, as the thin films were deposited at room

temperature. In the full model, the residual stresses are imposed on the element integra-

tion points of an uncracked specimen in the initial step via the user subroutine SIGINI.

The residual stresses act in the lateral cantilever direction. This implementation method

was verified by calculating the far-field J-integral, Jfar, with the post-processing tool as

well as the virtual crack extension (VCE) method provided by ABAQUS. It was con-

firmed that both approaches yield the same results for Jfar.
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A crack in the model is defined by a so-called ”seam”. With this feature, a line of

nodes is duplicated, introducing a sharp crack. The crack plane lies transverse to the

interfaces and the crack propagation direction is defined by the vector (0.0,−1.0). Ini-

tially, the flank nodes are fixed in all directions, as shown in the insert of Figure 28b.

Following that, the residual stresses in the full model are equilibrated by releasing the

crack flank nodes, denoted by equilibration step E1 in Figure 28b. After that, the front

of the beam is released in the second equilibration step E2, redistributing the residual

stresses one more time. This procedure resembles the residual stress redistribution after

a thin notch is cut into the sample and the subsequent release of the beam on one end

by FIB milling.

The micro-beam is monotonically loaded with a constant load line displacement of

d = 1.5µm in the loading point L, as shown in Figure 28a and Figure 28b, respectively.

While the cantilever is under load, the back side of the beam remains constrained in all

directions as the box foot remains unconstrained. By choosing this kind of constraint,

the simulated force-displacement behavior shows a good agreement with the mechani-

cal response of the micro-beam compared to the experiment, which was demonstrated

in [70].
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O N T H E C R A C K D R I V I N G F O R C E

9.1 material inhomogeneity effect

The material inhomogeneity effect depends on the material properties of the layers, the

residual stress distribution and also the film sequence. The interface and gradient terms

as well as the total material inhomogeneity terms are presented for the W-Cu-W and Cu-

W-Cu stacks in Figure 29 and Figure 30. The different inhomogeneity terms are plotted

for stationary cracks with increasing crack length.

9.1.1 W-Cu-W stack

The first results are obtained for the bare W-Cu-W model, as shown in Figure 29a. As

the residual stress state is neglected in the bare model, the gradient inhomogeneity term

CGR is zero for all crack lengths. Thus, the interface inhomogeneity term CIF, drawn as

the black solid line with circles, and the total material inhomogeneity term Cinh, plotted

as the red solid line with squares, overlap. W has a larger Young’s modulus E than Cu

and Si. Therefore, a crack approaching the W/Cu and W/Si interface experiences an

increasing anti-shielding effect. However, as the crack extends through the Cu film, the

Cu/W interface is starting to shield the crack tip. Shielding starts after the crack reaches

approximately the length of 0.7µm and CIF and in this case also Cinh become negative.

Theoretically, CIF has its minimum exactly at the interface, which is not possible to real-

ize in the FE model.

Figure 29b shows the results of the full model, taking into account the residual stress

distribution from Figure 17 and elastic-plastic material behavior from Figure 25. The

gradient inhomogeneity term CGR is plotted as green solid line with triangles. Due to

lower residual stresses and a relatively plane stress distribution, the gradient inhomo-

geneity term CGR is small in the first W-layer and negligible in the Cu-layer. As soon as

the residual stress gradient steepens in the second W-layer and the compressive residual

stress exceeds approximately 1GPa at a crack length of 1.1µm, a strong shielding effect

is evident. However, the interface and gradient inhomogeneity term have counteracting

effects and the resulting total material inhomogeneity term is small.

The influence of the residual stress distribution is evident from Figure 29c, where the

67
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total material inhomogeneity terms for the full model and for the bare model are com-

pared. Here, the red line with squares denotes the result for the full model and the black

line with triangles represents the bare model. As the crack tip is noticeably shielded by

the negative compressive stress gradient in the bottom W-layer in the full model, most of

the anti-shielding present in the bare model is annihilated or even reverted into a slight

shielding effect. This will have implications when calculating the crack driving force in

Section 9.2.

(a) Interface inhomogeneity term CIF (black line

with circles) and the total material inhomo-

geneity term Cinh (red line with squares) for

the bare model.

(b) Interface inhomogeneity term CIF (black line

with circles), gradient inhomogeneity term

CGR (green line with triangles) and the total

material inhomogeneity term Cinh (red line

with squares) for the full model model.

(c) Comparison of the total material inhomogene-

ity term Cinh for the bare model (black line

with triangles) and the full model (red line

with squares).

Figure 29: Behavior of the material inhomogeneity terms depending on the growing stationary

crack for the W-Cu-W model.
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9.1.2 Cu-W-Cu stack

Figure 30a shows the results for the interface inhomogeneity term CIF and the total ma-

terial inhomogeneity term Cinh for the bare model of the Cu-W-Cu specimen. Again, as

the bare model does not incorporate a residual stress distribution, the gradient inhomo-

geneity term is zero.

It is nicely demonstrated, that the Cu/W interface provides a shielding effect to an

approaching crack. In addition, the Cu/Si interface is also slightly shielding the crack

from propagation very close to the interface. In contrast, the W/Cu interface has an

(a) Interface inhomogeneity term CIF (black line

with circles) and the total material inhomo-

geneity term Cinh (red line with squares) for

the bare model.

(b) Interface inhomogeneity term CIF (black line

with circles), gradient inhomogeneity term

CGR (green line with triangles) and the total

material inhomogeneity term Cinh (red line

with squares) for the full model model.

(c) Comparison of the total material inhomogene-

ity term Cinh for the bare model (black line

with triangles) and the full model (red line

with squares).

Figure 30: Behavior of the material inhomogeneity terms depending on the growing stationary

crack for the Cu-W-Cu model.
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anti-shielding effect on the crack tip.

After introducing the residual stress gradient from Figure 18 and the elastic-plastic

material behavior from Figure 25, the material inhomogeneities for the full model are

calculated. The corresponding results are presented in Figure 30b. Notably, the residual

stresses in the Cu-W-Cu stack on average never exceed 0.3GPa in tensile or compressive

direction, which can be readily calculated from Figure 18. Thus, the gradient inhomo-

geneity term CGR, plotted as the green solid line with triangles, is zero and does not

have any influence on the total material inhomogeneity term Cinh, presented as red

solid line with squares, which is almost identical to the interface inhomogeneity term

CIF, marked as black solid line with circles. Furthermore, we compare the total material

inhomogeneity terms from the bare model and the full model in Figure 30c. As the ef-

fect from the residual stress distribution is neglectable, the total material inhomogeneity

terms are comparable.

9.2 effective crack driving force

9.2.1 W-Cu-W stack

The effective crack driving forces for stationary cracks with increasing length are cal-

culated according to Equation 44. The bare model and the full model for the W-Cu-W

film distribution are compared in Figure 31. It is shown how the Jtip values compare

to a stress intensity factor under critical conditions from experiments. In [70] the criti-

cal stress intensity factor KC = 3.3MPa
√
m was calculated for the top W-layer in the

W-Cu-W film system. This was realized by combining fracture mechanics testing and

FE modeling. Further details can be found in [70]. We consider that the critical crack

driving force JC is determined by

JC = K2
C · 1− ν2

E
, (63)

where E is the Young’s modulus and ν is the Poisson’s ratio. Inserting KC into Equa-

tion 63, JC amounts to 24.3J/m2. A crack in W can propagate if the crack driving force

equals or exceeds this critical value. In this case, the top W-layer would fail at a crack

length a = 0.45µm for the bare model and the full model, as marked by the encircled

points in Figure 31. Furthermore, it is assumed that the critical stress intensity factor is

also valid for the second W-layer and that the crack is situated in this layer. As high-

lighted by the circle around the black triangle in the W-layer on top of Si, Jtip exceeds

JC for a = 1.1µm in the bare model. This crack length shifts to 1.3µm in the full model.

Thus, a cracked micro-cantilever beam which seems to fail in the bare model is shielded

from propagation by the residual stress state. Therefore, it is obviously important that
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the residual stress distribution is taken into account in the FE model. Otherwise, wrong

predictions about the critical conditions for components with a similar structure would

be the consequence.

Moreover, imagine a specimen which contains only a single W-layer deposited on top

of the Si wafer. In principle, the Jtip value would increase linearly and for any crack

length surpassing 0.45µm the specimen would fail. As evident from Figure 31, in the

multilayer stack the soft Cu-interlayer offers an arresting environment for a crack prop-

agating from the surface of the cantilever. After the top W-layer fails and the crack

enters the Cu-interlayer the crack driving force decreases due to the repelling effect of

the Cu/W interface, while the load line displacement remains the same and the crack

length increases. Therefore, in order to achieve further crack propagation, the external

load on the micro-beam has to be strongly increased. Moreover, the inherent fracture

toughness of Cu is higher compared to W, which requires the load to be even higher.

Figure 31: The crack driving forces Jtip in the W-Cu-W stack for the bare model (black line with

triangles) and the full model (red line with squares) are compared. The critical crack

positions in the W-layers are encircled.

9.2.2 Cu-W-Cu stack

As the gradient inhomogeneity term CGR does not play a role in the Cu-W-Cu film stack,

see Figure 30b, the effective crack driving force Jtip is driven by the sum of the far-

field J-integral and the interface inhomogeneity term CIF. Considering the same loading

conditions as for the W-Cu-W models, the crack driving force in the top Cu-layer does
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not even reach the critical JC value, as shown in Figure 32. Since Cu has a lower yield

strength and behaves more ductile than W, it can be assumed that JC is significantly

higher for Cu. Thus, Jtip is far from reaching the critical JC for Cu which is necessary

for crack propagation. However, it is safe to assume that JC = 24.3J/m2 is also valid

for the W-interlayer in the Cu-W-Cu stack. If a crack were present through the first Cu-

layer into the W-interlayer, the crack length where the W-interlayer fails in the bare as

well as the full model is a = 0.7µm. Moreover, for both models, the crack driving force

strongly increases as the crack is further extended through the W-interlayer. Although

Jtip decreases after the crack enters the Cu-layer, it remains relatively high compared to

the crack driving force calculated for the full model of the W-Cu-W thin film stack, see

Figure 31. As we do not have any results on the critical stress intensity factor for the

thin Cu film, we cannot predict if the conditions in the second Cu-layer are critical or

not. However, in the experiments fracture in the Cu-layers was not observed. Thus, the

experiments indicate that JC for Cu should be much higher than for W. Altogether, for

material systems which behave similar to the Cu-W-Cu stack, a very good estimation

about the critical conditions can already be made by means of the bare model, i. e. a

linear elastic model.

Figure 32: The crack driving forces Jtip in the Cu-W-Cu stack for the bare model (black line with

triangles) and the full model (red line with squares) are compared.
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9.3 summary

The crack arresting capabilities of two thin film systems have been investigated exem-

plarily for a W-Cu-W stack configuration and a Cu-W-Cu stack configuration. In sum-

mary, our work demonstrated that:

1. The soft Cu interlayer provides the W-Cu-W material system with the ability to

diminish crack driving forces. Ultimately, the crack can be arrested at the transition

from the softer to the harder material in the W-Cu-W stack.

2. It was demonstrated that a compressive residual stress gradient can significantly

decrease the crack driving force in front of a crack tip. In the case of the W-Cu-W

stack, the crack experiences a strong shielding effect from the compressive residual

stresses in the bottom W-layer, as soon as they reach and increase beyond 1GPa.

Certainly, this is not a threshold value that should be considered for any material

system. The influence of the residual stress state on the crack driving force in a thin

film stack depends on the external loading conditions and also the dimensions and

composition of a stack.

3. It was shown that the anti-shielding effect of an interface can be countered by the

shielding effect of the compressive residual stress state. The consequence is that

the initially stressed component with a given crack withstands failure, in contrast

to an originally stress free one. This was demonstrated by comparing the bare

model with a full model.

4. Despite experiencing a low crack driving force in the top Cu-layer, the Cu-W-Cu

stack does not benefit from a favorable residual stress distribution.

5. Due to the crack arresting effect of the Cu-interlayer and an appropriate compres-

sive residual stress gradient in the bottom W-layer, it can be ensured that the crack

driving force in the W-Cu-W stack remains relatively low for a crack growing

through the whole structure.
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C O N C L U S I O N A N D O U T L O O K

The processing of thin films in microelectronic components can be beneficial for the

functionality and reliability of a device. Furthermore, thin films occupy a very small

volume in the assembly, which makes the realization of 3D integrated circuits much

easier. Nonetheless, an arbitrarily fabricated thin film component will not automatically

meet the requirements concerning its reliability and persistent functionality. The design

concept of a component raises questions about the internal as well as the external di-

mensions and also the arrangement of the incorporated thin films.

This thesis was conducted to fully characterize the mechanical properties of thin W

and Cu films and their stacks deposited on Si wafers. With the appropriate methods it

was possible to determine the state of internal loading in the film systems even before

any external load was applied to the structures. With a rather simple but very effec-

tive analytical method, which was prefaced by sophisticated experiments, the residual

stresses in the thin metal layers, i. e. the W-Cu-W and Cu-W-Cu tri-layer stacks, were

calculated with high precision. In a separate publication, the results were compared to

X-ray diffraction measurements, see [34].

Additionally, the thin films were characterized with respect to their material behav-

ior. Due to the nanocrystalline nature of the investigated metal layers, we were able to

numerically determine the yield and hardening behavior of W and Cu with the help

of spherical nanoindentation experiments within a continuum mechanical framework.

The stress-strain relation of the materials was defined by the yield strength σ0 and

the inverse hardening parameter m. In an optimization loop, the parameter set [σ0, m]

was optimized to fit the resulting force-displacement curve from FE simulations to the

loading data from the experiments. The results were discussed with respect to the Hall-

Petch relation and critically compared to other studies. It was concluded that the grain

structure, external dimensions and the constraints acting on the thin films dictate their

material behavior.

Finally, the residual stress distribution and the elastic–plastic material properties of

the thin W and Cu films were implemented in a model with the goal to determine the

fracture behavior of the W-Cu-W and the Cu-W-Cu stacks. Using the concept of con-

figurational forces, it was possible to explicitly distinguish between the influence of the

interfaces and the residual stress gradient in the individual layers on the crack driving

force. It was shown that the sequence of materials strongly dictates the crack driving
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force, e. g. the crack is arrested in the Cu-interlayer in the W-Cu-W stack. Furthermore,

residual stresses can prevent a crack from further propagation, e. g. the resistance to

failure of the W-Cu-W stack is improved by the compressive residual stress gradient in

the bottom W-layer. It was discussed that, compared to the Cu-W-Cu stack, the W-Cu-W

film system has a higher mechanical stability due to the thin film arrangement and the

residual stress state in the W-Cu-W stack.

The fracture behavior of thin film stacks can further be improved by optimizing the re-

lationship between the elastic and plastic properties of the involved materials. Of course,

the behavior of a material can be altered through its internal and external structure, i. e.

by adjusting the grain size and film thickness. On the other hand, the residual stress

state is not only dependent on the sequence and dimensions of the thin films. It can

easily be manipulated by the deposition process in a beneficial way.

The tools developed in this thesis give the possibility to investigate the impact of

internal loading and material properties on the fracture behavior of thin film stack con-

figurations under loading. In this context, our findings can be readily applied to an

effective design of thin film material systems. In Table 6 the purpose of each tool is

summarized. Additionally, the tools are collected on a compact disc and attached to the

thesis.

Name Programing environment,

Software

Purpose

resid_stress MapleTM Calculation of residual

stress profiles in thin film

stacks.

nanoindent Python, ABAQUS Inverse determination of

the stress-strain behavior

of thin films.

fract_sim Python, ABAQUS Calculation of the crack

driving force in thin film

stacks dependent on the

residual stress state and

material properties.

Table 6: Set of tools developed for the full mechanical characterization of thin film stacks.
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