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Abstract

Nowadays cameras are used in many areas, for example image inspection and video games.
This thesis explores a mathematical analysis for the interactive motion of a camera, which is
moved by a robot and is controlled by a six degrees of freedom input device.

Motion of camera includes roll, pitch and yaw rotations and the translation in its own and the
global coordinate systems. Furthermore, the inverse kinematics of the robot was used to find the
angles of the drive motors to accomplish the desired motion. Denavit-Hartenberg convention
was applied to model a standard six degrees of freedom industrial robot. Camera and robot are
implemented and animated in a virtual world written in VRML code (Virtual Reality Modeling
Language), which was generated with a CAD program. The algorithms were programmed in
Matlab/Simulink, which provides interfaces to the 3D mouse for input control and to the virtual
world for the purpose of animation.Introductions to the mathematics of VRML transforms and
to robot kinematics were given.

After implementing and testing the equipment in a virtual world in VRML, the camera can be
moved under the control of a 3D mouse. Now the algorithms are ready to be applied in a system
with a real robot.
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Zusamenfassung

Bewegte Kameras werden auf vielen Gebieten verwendet, zum Beispiel für Videoinspektion
oder in Computerspielen. Ziel dieser Arbeit war die Erarbeitung der mathematischen Algo-
rithmen für die Bewegung einer Kamera mit Hilfe eines Roboters mit sechs Freiheitsgraden,
interaktiv gesteuert über eine 3D-Maus.

Die Bewegung umfasste die Rotation als Roll-, Nick-, und Gierwinkel, sowie die Translation
im kameraeigenen und im globalen Koordinatensystem. Weiters war die inverse Kinematik für
den Roboter erforderlich, um für die gewünschte Bewegung die Winkel der Gelenksantriebe
zu ermitteln. Um den Roboter mit sechs Freiheitsgraden zu beschreiben, wurde die Denavit-
Hartenberg Konvention verwendet. Kamera und Roboter wurden in einer virtuellen Welt im-
plementiert, geschrieben in VRML (Virtual Reality Modeling Language). Der Code wurde mit
einem CAD-Programm erzeugt. Die Algorithmen wurden programmiert in Matlab/Simulink,
das auch Interfaces zur Verfügung stellte für die 3D-Maus als Eingabegerät und für die virtuelle
Welt zum Zweck der Animation.

Eine Einführung in die Mathematik der VRML-Transformationen und in die Roboterkinematik
wurde gegeben. Nach dem Implementieren und Testen kann die Kamera über die 3D-Maus ges-
teuert werden. Die Algorithmen können auf einem realen Kamera-Roboter-System eingesetzt
werden.
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1. Introduction

A camera is a device that records images. These images may be still photographs or moving im-
ages such as videos or movies [32]. Nowadays, cameras are used in many areas, video games,
industrial image inspection, for example. Video games, Virtual worlds and interactive real time
applications need a view of virtual world for human. For this purpose a virtual camera system
must be used. To control the camera, we must study mathematical analysis of motion. Cur-
rently, motion is studied in different areas of research, simulation, game technology, animation,
robotics, for example.

1.1. Motion in Games

Motion plays a very important role in computer games, and is also very important element for
education and entertainment. Characters and objects are manipulated and moved subject to
physical constraints. Motion in games include motion of camera, motion of virtual humans,
etc. We have a lot of things to study about the motion, simulation of natural motion, navigation,
physic based motion, algorithms and techniques of animation, manipulation of object, etc.

Motion of camera is a very important part of motion in games, in first person computer games,
camera is the eyes of the player’s character, in third person computer games, camera watches
the player and moves to keep the player in sight. Nowadays we can play flight simulator games
and navigate in a 3D world with a 3D mouse or with a joystick. In these games cameras moves
through the scene like physical objects and make the experience realistic almost like in the real
world. Like in a cinema movie, the camera connects us with the virtual world.

The mathematics of transformation of camera is very important for games and simulator. The
basic mathematics for motion has been described in the literature [4], however, the detail of the
mathematics for motion and control of camera with a six degrees of freedom device has not
been studied well.

1.2. Motion of the Camera in VRML Worlds

VRML stands for Virtual Reality Modeling Language. The term VRML was coined by Dave
Raggett in a paper submitted to The First International Conference on the World-Wide Web in
1994, and first discussed at the WWW94 VRML BOF established by Tim Berners-Lee, where
Mark Pesce presented the Labyrinth demo he developed with Tony Parisi and Peter Kennard
[32].

VRML is used to specify dynamic 3D scenes and the user can navigate with help of VRML
browser. VRML scenes can be distributed over the World-Wide Web and browsed with VRML
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1. Introduction

browsers. In 1997, a new version of the format was finalized, as VRML97 also known as
VRML 2.0, and became an ISO standard (ISO/IEC 14772-1:1997), this version is functional
up to now [32]. We will use this version to study the motion of camera in VRML scenes.
X3D is the succeeding standard, but VRML is still applied to education, electronic commerce,
interactive system of entertainment, etc. VRML is very promising in those areas. Tody, CAD
and CAM are very important in the mechanical and architectonic area, and VRML is used as
an interchange standard for engineering data. A very important application of VRML is in the
area of entertainment, VRML makes the interaction between human and virtual world more
and more realistic. This is the purpose, why we will study the mathematics of motion in virtual
worlds in VRML.

VRML world has no limits in size and complexity, this means a VRML world can be fairly
large. A virtual world allows the user to move through it and to visit its parts. Nowadays the
navigation of programs often is controlled by human with a 3D mouse. 3D mouse has more
advantage than normal mouse for navigation. The basic mathematics for motion of camera
have been described in literature [15] and [25], however, the mathematics for the continuous
motion of a camera, which is controlled by a 3D mouse, has not been studied.

1.3. Motion of the Robot

George Devol applied for the first robotics patents in 1954 (granted in 1961). The first company
to produce a robot was Unimation, founded by George Devol and Joseph F. Engelberger in
1956, and was based on Devol’s original patents. An industrial robot is officially defined by
ISO Standard 8373 as an automatically controlled, reprogrammable, multipurpose manipulator
programmable in three or more axes. [32]

Two axes can reach any point in a plane, three axes can reach any point in space. If we want to
fully control the orientation of the end effector three more axes are required.

Nowadays industrial robot is used in many area. Typical applications of robots are welding,
painting, assembly, packaging and palletizing, product inspection, testing, all accomplished
with high endurance, speed and precision. An important kind of inspection of products is image
inspection, many kinds of cameras are used to industrial image inspection, for example infrared
(IR) camera or video camera. For the purpose of camera motion with a robot, we need to study
the motion of robot, this means we must study kinematics.

In robot kinematic analysis the position, velocity and acceleration of all links of the robot are
calculated without considering the forces that cause this motion. The most active areas within
robot kinematics is the screw theory. Robot kinematics are classified in two types, forward
kinematics and inverse kinematics. The robot kinematics have been described in literature [11]
and [29]. We need to study the motion of a robot, which is controlled by a 3D mouse, with a
camera mounted on its end-effector.

The robot (see Fig. 1.1) we use is a kind of industrial robot. This robot has six rotation axes
(g1...g6) and each axis can rotate about 360◦. Axis g5 can rotate about 180◦.
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1. Introduction

Figure 1.1.:Rotatation axes of the Stäubli-Robot [11].
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2. Mathematics of VRML-Transforms

A virtual world is based on a 3D coordinate system (global coordinate system) and described by
the Virtual Reality Modeling Language (VRML), which is used for representing 3D interactive
vector graphics. Every object has its own coordinate system, the position of every object is
described in the global coordinate system and in its own coordinate system. We can change
position of every object in VRML world. Position change of objects in the real world is called
motion, but motion of object in VRML world is called a transform. Transformation includes
rotation, translation and scaling, etc. Transformation is based on mathematics of motion. In this
chapter we will study mathematics of motion.

2.1. Mathematical Notation

x, y, z Initially coordinate
x’, y’, z’ Coordinate after transform
a, b, c Axial displacement
θx, θy, θz Rotate angle about axis (Euler angles)
θ Rotate angle about axis ~u = (u1,u2,u3)
~u Unit vector
~a Vector
I Identity matix
Rx, Ry, Rz Rotate matrix about axis
V’ Matrix after transform
V Initially matrix
S Scaling matrix
Sx, Sy, Sz Scaling factors
α is the angle between the x-axis and the line of nodes (euler angle)
β is the angle between the z-axis and the Z-axis (euler angle)
γ is the angle between the line of nodes and the X-axis (euler angle)
q Unit quaternion
s Scalar
i, j, k Imaginary part
Qx, Qy, Qz Quaternion
qrot Rotated quaternion

2.2. Coordinate System

The VRML uses right-handed Cartesian coordinate system and is different from the Matlab (see
Fig. 2.1). VRML uses the world coordinate system in which the y-axis points upward and the
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2. Mathematics of VRML-Transforms

z-axis places objects nearer or farther from the front of the screen [22]. It is very important
to understand this fact in the situation, which includes interaction of these different coordinate
systems.

z

y

-y

x

y

-z

z

x

MATLAB graphics coordinate system VRML coordinate systems

Figure 2.1.: Coordinate Systems

2.3. Translation

In Euclidean geometry, a translation is moving every point a constant distance in a specified
direction [32]. Translation can be described as addition of a constant vector to each point of an
object. This refers to move objects to different places in the coordinate system. To translate a
3D point, modify each dimension separately [4]:

x′ = x+ a; y′ = y + b; z′ = z + c; (2.1)

In matrix format of homogeneous coordinates [11]:
1
x′

y′

z′

 =


1 0 0 0
a 1 0 0
b 0 1 0
c 0 0 1




1
x
y
z

 (2.2)

The code for translation with VRML:

Transform{ a b c
translation 0.0 0.0 0.0

children [ . . . ]
}
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2. Mathematics of VRML-Transforms

To describe the problem between different coordinate system, we builded a coordinate system
in VRML world with CINEMA 4D1 (see Fig. 2.2):

Figure 2.2.: Building an object in a coordinate system of a virtual world using CINEMA 4D

Then we developed the code of simulation with Matlab/Simulink. First of all we used a VR Sink
to load a VRML file and choose ports which write values of transformation in VRML world (see
Fig. 2.3). In Matlab/Simulink, we can build a connection between Matlab and VRML world to
define the behavior of VRML object. This means All parameters of VRML world, which are
used to control the motion in VRML world, could be controlled by Matlab/Simulink.

1Cinema 4D is a software to create virtual movie scenes and 3D animations. It is capable of exporting a scene to a VRML file.
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2. Mathematics of VRML-Transforms

Figure 2.3.: Using VR sink to load a VRML file

To move an object over time, the value of coordinate of VRML object is controlled using the
ramp1 (see Fig. 2.4).

We must change the initial value of Ramp to a three-dimensional value (see Fig. 2.5), which is
used to move an object in 3D world.

When we changed the first value, the prism goes along z axis of the global coordinate system,
this means z-value of prism increase over time.
When we changed the second value, the prism goes along y axis of the global coordinate system,
this means y-value of prism increase over time.
When we changed the third value, the prism goes along x axis of the global coordinate system,
this means x-value of prism increase over time.

1The Ramp block generates a signal that starts at a specified time and value and changes by a specified rate. The block’s Slope, Start time,
and Initial output parameters determine the characteristics of the output signal. All must have the same dimensions after scalar expansion
[22].
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2. Mathematics of VRML-Transforms

Figure 2.4.: Develop the code of simulation using Matlab/Simulink

2.4. Rotation

A rotation is a circular movement of an object around a center (or point) of rotation. A three-
dimensional object rotates always around an imaginary line called a rotation axis. Mathemati-
cally, a rotation is a rigid body1 movement, which is unlike translation, keeps a point fixed. This
definition applies to rotations within both two and three dimensions (in a plane and in space,
respectively) [32]. In three-dimensional space a rotation keeps a line fixed, which is represented
by a vector, which characterizes the rotation at that point during its attributes (length and direc-
tion). This follows from Euler’s rotation theorem. In flight dynamics, the principal rotations are
known as pitch, roll and yaw [32]. Rotation about the x-axis is often called Roll, Rotation about
the y-axis is often called Pitch, Rotation about the z-axis is often called Yaw. Then we must
know the convention of rotation, rotate angle is positive, if the rotation in counterclockwise,
which is determined by the righthand rule.

1In physics, a rigid body is an idealization of a solid body of finite size in which deformation is neglected. In other words, the distance
between any two given points of a rigid body remains constant in time regardless of external forces exerted on it [32].
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2. Mathematics of VRML-Transforms

Figure 2.5.: Using Ramp to give a value of coordinate system

A 3D object rotate about x-axis is described in Fig. 2.6,

Modify each dimension separately [4]:

y′ = y cos θx− z sin θx; z′ = y sin θx+ z cos θx; x′ = x (2.3)

In Matrix format [4]:

V ′ =

 x′

y′

z′

 = Rx · V =

 1 0 0
0 cos(θx) − sin(θx)
0 sin(θx) cos(θx)

 x
y
z

 (2.4)

Rotation of 3D object about y-axis is described in Fig. 2.7,

Modify each dimension separately [4]:

z′ = z cos θy − x sin θy; x′ = z sin θy + x cos θy; y′ = y (2.5)

In matrix format [4]:

V ′ =

 x′

y′

z′

 = Ry · V =

 cos(θy) 0 sin(θy)
0 1 0

− sin(θy) 0 cos(θy)

 x
y
z

 (2.6)
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2. Mathematics of VRML-Transforms

z

x

y

Figure 2.6.: Rotation about x-axis

x

y

z

Figure 2.7.: Rotation about y-axis

Then rotation of a 3D object about z-axis (see Fig. 2.8), modify each dimension separately [4]:
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2. Mathematics of VRML-Transforms

y

z

x

Figure 2.8.: Rotation about z-axis

x′ = x cos θz − y sin θz; y′ = x sin θz + y cos θz; z′ = z (2.7)

In matrix format [4]:

V ′ =

 x′

y′

z′

 = Rz · V =

 cos(θz) − sin(θz) 0
sin(θz) cos(θz) 0

0 0 1

 x
y
z

 (2.8)

Then we must know the VRML code for rotation:

Transform{ x y z angle
rotation 0.0 0.0 0.0 0.0

children [ . . . ]
}

From VRML code of rotation, we know that, if we want to rotate an object in VRML world, we
need four parameters as following equation:

[
a b c d

]
(2.9)

Where, a, b, c are direction vectors of the rotation axis, d is the rotation angle about rotation
axis. Then we changed the initial value of Ramp (see Fig. 2.9):
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2. Mathematics of VRML-Transforms

Figure 2.9.: Code of Ramp for rotating an object in VRML world

We gave the fourth parameter a positive value for each rotation and when we gave the first
parameter a positive value, the prism rotates about z-axis counterclockwise, when we gave the
second parameter a positive value, the prism rotates about y-axis counterclockwise, when we
gave a third parameter a positive value, the prism rotates about x-axis counterclockwise. This
is the same as the convention.

If we need more than one rotation of object about different axes, we can multiply each of
respective rotation matrices in the order of applied rotation. For example, if the object rotates
first about x-axis, then rotates about y-axis, at last rotates about z-axis are applied, the combined
rotation is [4]:

R = Rx ·Ry ·Rz (2.10)

Then the rotation matrix is as following equation:

12



2. Mathematics of VRML-Transforms

R =

 cos θy cos θx − cos θy sin θz − sin θy
− sin θx sin θy cos θz + cos θx sin θz sin θx sin θy sin θz + cos θx cos θz − sin θx cos θy
cos θx sin θy cos θz + sin θx sin θz − cos θx sin θy sin θz + sin θx cos θz cos θx cos θy

 (2.11)

If rotation about z-axis is applied first, then rotation about x-axis followed by rotation about
y-axis, the combined rotation matrix is:

R = Rz ·Rx ·Ry (2.12)

Then we look at axis of rotation. Every rotation in three dimensions has an axis, which has
direction that is fixed by the rotation. Given a rotation matrix R, a vector ~u parallel to the
rotation axis must satisfy:

R~u = ~u (2.13)

Rotation matrix gives an axis and an angle, the matrix for a rotation by an angle of θ about an
axis the direction of ~u is [11]:

R =

 u2
x + (1− u2

x) cos θ uxuy(1− cos θ)− uz sin θ uxuz(1− cos θ) + uys
uxuy(1− cos θ) + uz sin θ u2

y + (1− u2
y) cos θ uyuz(1− cos θ)− uxs

uxuz(1− cos θ)− uy sin θ uyuz(1− cos θ) + ux sin θ u2
z + (1− u2

z) cos θ


(2.14)

Where:

~u =

 ux

uy

uz

 (2.15)

This can be written as Rodrigues’ formula [11]:

Ru,θ = uuT + cos θ(I− uuT ) + [u]× sin θ (2.16)

Equivalent to:

Ru,θ = I + [u]× sin θ + [u]2×(1− cos θ) (2.17)

Consider the cross product as a matrix multiplication:

u× v = [u]× v (2.18)

Where:

[u]× =

 0 −uz uy

uz 0 −ux

−uy ux 0

 (2.19)
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2. Mathematics of VRML-Transforms

[u]× is the skew symmetric form of ~u, Then:

uuT =

 ux

uy

uz

 ·
[
ux uy uz

]
=

 u2
x uxuy uxuz

uxuy u2
y uyuz

uxuz uyuz u2
z

 (2.20)

One way to represent a rotation in 3D are Euler angles (see Fig. 2.10), Euler angles are a means
of representing the spatial orientation of any coordinate system as a composition of rotations
from a coordinate system. In the following the fixed system is described in lower case (x, y, z)
and the rotated system is described in upper case letters (X, Y, Z)[32]. Euler angles α, β, γ are
composition of Euler rotations.

Z

X

Y

y

x

z

â

á ã

N

Figure 2.10.: Euler angles: The x-y-z (fixed) system is shown in green, the X-Y-Z (rotated) system
is shown in red. The line of nodes, labeled N, is shown in blue.

If we want to define Euler angles, we must give a reference frame and the one whose orientation
we want to describe, first we define the line of nodes (N) as the intersection of the x− y and the
X − Y coordinate planes [32]. Then we can define Euler angles as (see Fig. 2.10):

• α is the angle between the x-axis and the line of nodes.

• β is the angle between the z-axis and the Z-axis.

• γ is the angle between the line of nodes and the X-axis.
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2. Mathematics of VRML-Transforms

The problem of Euler rotation is the gimbal lock (see Fig. 2.11), which is the loss of one degree
of freedom that occurs when the axes of two of the three gimbals1 are driven into the same
place and cannot compensate for rotations around one axis in three dimensional space [32].
Euler angles give a numerical description of any rotation in three dimensional space using three
numbers. To make a comparison, all the translations can be described using three numbers x, y
and z, as the succession of three consecutive linear movements along three perpendicular axes
X, Y and Z. That is the same for rotations, all the rotations can be described using three numbers
α β and γ as the succession of three rotational movements around three axes that are perpendic-
ular one to the next. This similarity between linear coordinates and angular coordinates makes
Euler angles very intuitive, but unfortunately they suffer from the gimbal lock problem [32].

Figure 2.11.: Three axes Z-X-z-gimbal showing Euler angles. External frame and external axis
’x’ are not shown. Axes ’Y’ and ’y’ are perpendicular to each gimbal ring [32].

To explain this problem, we look at a rotation in 3D space, which can be represented with
matrices:

R =

 cosα − sinα 0
sinα cosα 0
0 0 1

 1 0 0
0 cos β − sin β
0 sin β cos β

 cos γ − sin γ 0
sin γ cos γ 0
0 0 1

 (2.21)

with α and γ are constrained in the interval [−π, π], and β constrained in the interval [0, π]. For
example, if β = 0, then sin β = 0 and cos β = 1, the above expression becomes equal to:

0A gimbal is a ring that is suspended so it can rotate about an axis. Gimbals are typically nested one within another to accommodate rotation
about multiple axes [32].
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2. Mathematics of VRML-Transforms

R =

 cosα − sinα 0
sinα cosα 0
0 0 1

 1 0 0
0 1 0
0 0 1

 cos γ − sin γ 0
sin γ cos γ 0
0 0 1

 (2.22)

The second matrix is the identity matrix and has no effect on the product. Carrying out matrix
multiplication of first and third matrices:

R =

 cosα cos γ − sinα sin γ − cosα sin γ − sinα cos γ 0
cosα cos γ + cosα sin γ − sinα sin γ + cosα cos γ 0

0 0 1

 (2.23)

And finally using the trigonometry formulas:

R =

 cos(α + β) − sin(α + β) 0
sin(α + β) cos(α + β) 0

0 0 1

 (2.24)

Changing value of α and β in the above matrix has the same effects, the rotation angle α + β
changes, but the rotation axis remains in the Z direction. The last column and the last line in the
matrix won’t change: one degree of freedom has been lost.

The only solution for α and β to recover different roles is to get β away from the zero value.

A similar problem appears when β = π.

One can choose another convention for representing a rotation with a matrix using the Euler
angles than the Z −X − z convention, and also choose other variation intervals for the angles,
but at the end there is always at least one value for which a degree of freedom is lost.

One can use quaternion to solution this problem. Quaternion is another representation for rota-
tions in 3D space. In mathematics, the quaternions are a number system that extends the com-
plex numbers. They were first described by Irish mathematician Sir William Rowan Hamilton
in 1843 and applied to mechanics in three-dimensional space [32]. There are many ways to rep-
resent the orientation of an object. Most programmers use 3×3 rotation matrices or three Euler
angles to store this information. Each of these solutions works fine until you try to interpolate
smoothly between two orientations of an object. A quaternion is a tuple made of four numbers
[13]:

q = s+ ix+ jy + kz
s...Scalar part

x, y, z...V ector part
(2.25)

or,

q =

s,
 x

y
z

 (2.26)

Conjugation of a quaternion is [13]:
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2. Mathematics of VRML-Transforms

i

jk

Figure 2.12.:Calculation rule for the multiplication of imaginary part

q∗ =

s,−
 x

y
z

 (2.27)

Reciprocal of a quaternion is [13]:

q−1 =
q∗

qq∗
(2.28)

The magnitude of a quaternion is [13]:

‖q‖ = Norm(q) =
√
qq∗ =

√
s2 + x2 + y2 + z2 (2.29)

If the relation s2 + x2 + y2 + z2 = 1 is verified, then the quaternion is a unit quaternion and
can be used to represent a rotation. If a quaternion is a unit quaternion q∗ = q−1. To change a
quaternion to a rotation around an arbitrary axis in 3D space,we should take a rotation angle θ
about axis ~u = (u1, u2, u3), ~u is a unit vector, then we get the quaternion q = (w, x, y, z) like
[13]:

w = cos(θ/2);
x = u1 sin(θ/2);
y = u2 sin(θ/2);
z = u3 sin(θ/2)

(2.30)

q = ‖q‖ ·(cos(θ/2), u1 · sin(θ/2), u2 · sin(θ/2), u3 · sin(θ/2)) (2.31)
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2. Mathematics of VRML-Transforms

We want to rotate a vector ~a = (a1, a2, a3) about axis ~u, then we need to translate ~a to quater-
nion ~p = (0, a1, a2, a3) [13]:

prot = q · p · q−1 (2.32)

If we have three Euler angles (α, β, γ), then we can form three independent quaternions [13]:

Qx = [cos(α/2), (sin(α/2), 0, 0)] ;
Qy = [cos(β/2), (0, sin(β/2), 0)] ;
Qz = [cos(γ/2), (0, 0, sin(γ/2))]

(2.33)

And the final quaternion is obtained by Qx ·Qy ·Qz.

2.5. Scaling

In Euclidean geometry, uniform scaling is a linear transformation that enlarges or increases or
diminishes objects by a scale factor the scale factor that is the same in all directions, it is also
called a homothety [32]. The result of uniform scaling is similar to the original. A scale factor
of one is normally allowed, so that congruent shapes are also classified as similar, but some
school text books specifically exclude this possibility.

More general is scaling with a separate scale factor for each axis direction. Non-uniform or
anisotropic scaling is obtained when at least one of the scaling factors is different from the
others, a special case is directional scaling (in one direction). Non-uniform scaling changes
the shape of the object, e.g. a rectangle may change into a rectangle of a different shape, but
also into a parallelogram (the angles between lines parallel to the axes are preserved, but not all
angles) [32].

Scaling in VRML-World means enlarge or shrink shapes, the mathematics of scaling is [27]:

V ′ = V S =
[
x y z 1

] 
Sx 0 0 0
0 Sy 0 0
0 0 Sz 0
0 0 0 1

 (2.34)

where Sx, Sy, Sz are the scale factors in the x, y, z directions.
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3. Camera Motion in a Virtual World

In the previous chapter we studied mathematics of motion in 3D world. We already know how
rotation and translation of an object in the global coordinate system are described by mathematic
equations. Now we study the motion of a camera, which is built in VRML world and controlled
by a 3D mouse. In our project we do not consider the gravitation and acceleration, which are
very important and influence motion in real world. We only study mathematics of the motion
of camera in ideal situation.

3.1. 3D Mouse

We used a six degrees of freedom device (see Fig. 3.1) in the experiment, which was used to
control the position of camera in the virtual world. 3D Mouse is the perfect input device for
building and manipulating 3D models and Virtual Reality Worlds, first of all we installed the
driver of 3D mouse in our computer and connected this USB device to it.

Figure 3.1.:3D Mouse with six degrees of freedom
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3. Camera Motion in a Virtual World

The outputs of this 3D mouse could be used in different ways (see Fig. 3.2): The movements

Figure 3.2.:Movement of the space mouse

"Roll", "Tilt" and "Spin" control the rotation about x, y and z axis, like "Roll", "Pitch" and
"Yaw". The movement "Left/Right", "Up/Down" and "Forward/backward" control the transla-
tion about x, y and z axis.

3.2. Development of the Matlab Code

In Chapter 2, we described how to use Matlab/Simulink for the connection of the VRML world
with the controller. In this section we describe how to develop a Matlab code for our experiment.
At first we used the Matlab/Simulink 3D Animation and then chose the "Space mouse Input1"
and "VR Sink" (see Fig. 3.3):

The Space mouse input block has three outputs, they are "Speed", "Position" and "Viewpoint
Coordinates" (see Fig. 3.4):

"Speed" means that no transformations are done. Outputs are translation and rotation speeds
[22].

"Position" means that translations and rotations are integrated. Outputs are position and orien-
tation in the form of roll/pitch/yaw angles [22].

"Viewpoint coordinates" means that translations and rotations are integrated. Outputs are posi-
tion and orientation in the form of an axis and an angle. You can use these values as viewpoint
coordinates in VRML [22].

The type of output which we chose is "speed" for our experiment. We chose an "Integrator"
witch from Matlab/Simulink-Commonly used blocks to integrate speed over time, this means
the "speed" signal is changed into distance signal in VRML world. We also chose a "Gain"
(from Matlab/Simulink-Commonly) to change the scale of the "Speed" signal (see Fig. 3.5):

3.3. VR Sink

To study the motion of camera in VRML world, we used the "VR Sink" block, which can write
data from Matlab/Simulink model to virtual world. It loads a VRML file and one can choose
the port for motion to write values from the 3D mouse into the VRML world (see Fig. 3.6):

1A space mouse is a device similar to a joystick in purpose, but it also provides movement control with six degrees of freedom. This block
reads the status of the space mouse and provides some commonly used transformations of the input [22].
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3. Camera Motion in a Virtual World

Figure 3.3.:Matlab/simulink blocks for 3D mouse and VRML-World

There are two types of translation and rotation for the camera (see Fig. 3.7).

The first type of transformation of the camera is rotation and translation of the camera in the
global coordinate system of VRML world, this means we can control the axis-value of the
coordinate system, direction and angle of rotation of camera in the global coordinate system
when we give values to the ports ”Camera.Rotation” and ”Camera.Translation” with 3D
mouse. The second type of the transformation of the camera is rotation and translation of the
camera in its own coordinate system, which is based on the global coordinate system. This
means we can write value of the coordinate system, direction and angle of rotation of camera
in the own coordinate system after giving values to the ports ”V iew_camera.position” and
”V iew_camera.Orientation” with the 3D mouse.

After this, one can control the coordinates and directions of the camera and the objects with the
3D mouse. First we wanted to let the camera focus on the object when the position of the camera
changed in global coordinate system by 3D mouse. We needed to develop a mathematical basis
for this transformation, fist we needed to know the position of camera in VRML world (see
Fig. 3.8), second, we needed to know how works the camera in VRML world. We saw that the
camera focus along z-axis (Direction Vector is (0,0,1)) of the own coordinate system.

The input signal of the rotation of the camera must in the form "[Direction Vector, Rotation
Angle]":

The "Direction Vector" between point O(0,0,0) and A(x1,y1,z1) is:

~a =
−→
OA = (x1, y1, z1)− (0, 0, 0) = (x1, y1, z1) (3.1)
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3. Camera Motion in a Virtual World

Figure 3.4.:Three outputs of Space mouse input block

The vector analysis yields (see Fig. 3.9):

−→
OA+

−→
AB =

−−→
OB;

−−→
OB −

−→
OA =

−→
AB (3.2)

This can be also written as:
~a+ ~c = ~b;~b− ~a = ~c (3.3)

The length of the vector a can be computed with the Euclidean norm:

‖~a‖ =
√

x12 + y12 + z12 (3.4)

The dot product of two vectors ~a and~b is:

~a ·~b = ‖a‖ ‖b‖ cos(θ) (3.5)

We can compute the angle θ between ~a and ~b from this equation. The cross product is only
meaningful in three dimensions. The cross product differs from the dot product primarily in the
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3. Camera Motion in a Virtual World

Figure 3.5.:Change the speed signal into distance signal during use Integrator block

way, that the result of the cross product of two vectors is a vector. The cross product, denoted ~a
,~b, is a vector perpendicular to both a and b and is defined as :

~a×~b = ‖a‖ ‖b‖ sin(θ)~n (3.6)

The geometric meaning of cross product is described by Fig. 3.10:

Now, we can use this mathematical basis to develop the code for motion using Matlab (see Fig.
3.11):

We gave the object a position in the VRML world. Then we used the 3D mouse to change
the position of the camera, so we got two vectors and we needed a direction vector for the
camera. We computed the vector between the object and the camera, then we needed to let the
camera focus on the object. First of all, we known the original direction of camera in VRML
world [0, 0, 1]T and because of the different of coordinate systems (see Fig. 2.1), the direction
of camera out of VRML world was [0, 0,−1]T . So the cross product of the direction vector of
camera [0, 0,−1]T and the vector between camera and the object was computed, then the camera
was rotated about this cross product to tracking on the object. The angle of the rotation about
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3. Camera Motion in a Virtual World

Figure 3.6.:Choosing the ports to write data to the virtual world

Figure 3.7.:Two types of the movement for the camera
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3. Camera Motion in a Virtual World

Figure 3.8.:Position of the camera in the virtual world

this axis was computed using the dot product (Equ. 3.5). In this code we used a "normalize"
block, which takes an input vector of any size and outputs the unit vector parallel to it [22], to
get the unit vector for the cross product. The final product realised the tracking, this means, we
changed the position of the camera but the camera always focused on the object. Or we changed
the position of the object, and the camera was always focused on the object.

3.4. Roll, Pitch and Yaw

In this section we want to let the camera rotate about axes of the own coordinate system and
translate it in the own coordinate system. To solve this problem we need to known the mathe-
matics of Roll, Pitch and Yaw. When an object rotates about the x-axis (see Fig. 3.12), we get
following equations:

x′ = x
y′ = ycos(θ)− zsin(θ)
z′ = ysin(θ) + zcos(θ)

(3.7)
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3. Camera Motion in a Virtual World
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Figure 3.9.:Direction vector of camera and object in the global coordinate system
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Figure 3.10.:Cross product of vectors
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3. Camera Motion in a Virtual World

Figure 3.11.:Matlab Code for the camera tracking

è
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Figure 3.12.:Rotation about x-axis
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3. Camera Motion in a Virtual World

The rotation matrix from equation 3.7 is:

Rx =

 1 0 0
0 cos θ − sin θ
0 sin θ cos θ

 (3.8)

As we know, the rotation about z-axis is yaw, the rotation about y-axis is pitch, the rotation
about x-axis is roll. First we want to solve this problem with rotation matrices of Roll, Pitch
and Yaw. We multiplied these three rotation matrixes Rx ·Ry ·Rz, which is the same as equation
3.9, to change the input signal to these three rotation. From equation 3.9 we found a problem,
that the rotations must have the same sequence as Rx · Ry · Rz, this means the first rotation
must about x-axis and the last rotation must be about z′′-axis (see Fig 3.13), finally only the
z′′-axis was the correct axis of the new coordinate system, which after rotated about x-axis and
y′-axes (see Fig. 3.13). This means the object can not rotate about x′′-axis and y′′-axis, if we
want let the object rotate about them we need multiply an other Rx or Ry to equation 3.9, this
means if we need a rotation about new axis we must multiply a new rotation matrix behind
equation what we already had. This method makes an endless equation. If M = Rx · Ry · Rz

and M ′ = Rz ·Ry ·Rx. M and M′ are non-commutative.

y

z

x

y'

z‘z‘
z‘‘

x‘‘

Figure 3.13.:Coordinate system rotating about axes

Now, the problem of the rotation is how we can get the new rotation matrix, and how we can
get the rotation about the new axis. According to the mathematics of rotation with matrices
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3. Camera Motion in a Virtual World

described previously, we need to multiply the rotation matrix and the rotation matrix for x, y
and z axis:

M ′ =

 1 0 0
0 cos(α′) sin(α′)
0 −sin(α′) cos(α′)

 cos(β′) 0 −sin(β′)
0 1 0

sin(β′) 0 cos(β′)

 cos(γ′) sin(γ′) 0
−sin(γ′) cos(γ′) 0

0 0 1

 (3.9)

M ′ is a rotated matrix, we multiply this rotated matrix with the new rotation matrix:

M ′′ = M ′

 1 0 0
0 cos(α) sin(α)
0 −sin(α) cos(α)

 cos(β) 0 −sin(β)
0 1 0

sin(β) 0 cos(β)

 cos(γ) sin(γ) 0
−sin(γ) cos(γ) 0

0 0 1

 (3.10)

Now, we get the rotation about new x, y and z axis, if we need always rotation about the new
axis, we need a cycle of this multiplication. The problem to do this for our project can not be
solved, because we have only one input for three rotation angles, after each rotation we need to
set the value of the rotation angel to zero. We can resolve this problem with speed of the input
signal, but the problem is how can we get the multiplication like function M ′′. So we need to
solve this problem with another method.

We tried to solve this problem with a vector, as we know the rotation axis is a vector in the own
coordinate system of the camera, the new rotation axes is a vector in the primary own coordinate
system. If we can compute the new direction vector of the rotation axis with angular velocity of
the rotation and the primary vector of the x, y and z axis in primary coordinate system, we can
get the new coordinate system.

First, we studied how to change the position of axis after rotation (see Fig. 3.14-3.16), if the
rotation angle is small enough, we can get the direction of dex, dey and dez have the same
direction as ex, ey and ez, then we used the differential equation for roll, pitch and yaw.

The direction of axis is changed by roll:

-dá

ey

ezex

-dá

dez=-dáÌey

dey=-dáÌ-ez

??

? ?

?

? ?

Figure 3.14.:Direction of axis is changed during rotation about x-axis
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The direction of axis is changed by pitch:

-dâ

ey

ez

ex

-dâ

dez=-dâÌ-ex

dex=-dâÌez

?
?

? ?

?

?

?

Figure 3.15.:Direction of axis is changed during rotation about y-axis

The direction of axis is changed by yaw:

-dã

ey

ez

ex

-dã

dey=-dãÌex

dex=-dãÌ-ey
Ì

?

?
?

??

? ?

Figure 3.16.:Direction of axis is changed during rotation about z-axis
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Then, we computed the differential equation for three axes from equations 3.11, 3.12 and
3.13:

d~ex =
·
~ex =

·
γ ·~ey −

·
β ·~ez (3.11)

d~ey =
·
~ey =

·
α ·~ez −

·
γ ·~ex (3.12)

d~ez =
·
~ez =

·
β ·~ex −

·
α ·~ey (3.13)

Because of the type of our signal, differential equations describe the velocities, which are results
of the rotations about axis of coordinate system, which changes the direction vector of axis. We
built this function with the Matlab/Simulink-Subsystem in Fig. 3.17.

Figure 3.17.:Matlab code for the differential equation of rotation

Then we built Matlab code for roll, pitch and yaw, the input signals for the functions in Fig.
3.17 are velocities.

The following vectors are initial positions of direction vectors for the initial coordinate system.
This initial condition is the roll axis in the primary coordinate system:

~ex =

 1
0
0

 (3.14)
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3. Camera Motion in a Virtual World

Figure 3.18.:Matlab code for Roll, Pitch and Yaw

This initial condition is for pitch axis in the initial position of coordinate system:

~ey =

 0
1
0

 (3.15)

This initial condition is for yaw in the primary coordinate system:

~ez =

 0
0
1

 (3.16)

We used the Integrator block, which integrate the inputs with the initial condition of direct vector
[22], to compute the new direction vector of the new axis. The position of initial coordinate
system was changed from the initial condition after rotations, then we gave the changed value of
the axis back to the subsystem for the differential equation of rotation. After this, the direction
vectors of the coordinate system were the new coordinate system. On this basis, we got the
new axis in initial coordinate system during changing velocity of the x, y and z values during
integration. After integration of this equation, we got the new unit vector of the three axes, this
means the three axes of the coordinate system was changed over time.
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3. Camera Motion in a Virtual World

It should be mentioned, that numerical solution of differential equations leads to accumulation
of computing errors. Consequently, this method is not suited for infinite operation without
additional measures. To check the motion of the axes, we needed a function to compute the
length of the unit vectors ex, ey and ez:

|~ex| = |~ey| = |~ez| =
√

x2 + y2 + z2 = 1 (3.17)

We wrote a Matlab code for this function using Fcn block (see Fig. 3.19), which applies the
specified mathematical expression to its input [22]:

Figure 3.19.:Compute the length of the unit vector

As we described in chapter 2, we have only one port for the control of the camera rotation in
VRML format, the problem is how can we write all direction vectors into VRML world. We
found a method, which includes all three unit vector of the axis, to solve this problem. A matrix
can be written as [12]:  a0.0 a0.1 a0.2

a1.0 a1.1 a1.2
a2.0 a2.1 a2.2

 (3.18)

We can represent its rows as three vectors:

aT0 = ( a0.0 a0.1 a0.2 )
aT1 = ( a1.0 a1.1 a1.2 )
aT2 = ( a2.0 a2.1 a2.2 )

(3.19)

Then the matrix can be written like this:  aT0
aT1
aT2

 (3.20)
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Similarly, we can represent a matrix with its columns as three vectors [12]:

b0 =

 b0.0

b1.0

b2.0



b1 =

 b0.1

b1.1

b2.1



b2 =

 b0.2

b1.2

b2.2


(3.21)

The matrix can be written as:

[
b0 b1 b2

]
(3.22)

The initial coordinate system and the new coordinate system are described (see Fig. 3.20):

X

Y

Z

N

o

M

A

Figure 3.20.:Primary coordinate system and rotated coordinate system
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The unit vectors for the rotated coordinate system are:
−→
N =

(
nx ny nz

)
−→
M =

(
mx my mz

)
−→
A =

(
ax ay az

) (3.23)

The matrix can be written as:  nx mx ax
ny my ay
nz mz az

 (3.24)

This matrix describes rotation about X-axis, Y-axis, Z-axis or a combination of the three, we
set the unit vector of the axis in this matrix as three columns like:

R =

 u11 u21 u31
u12 u22 u32
u13 u23 u33

 (3.25)

where, u1, u2 and u3 are inputs to Matlab Function 1 (see Fig. 3.21).

To test this method, we built the Matlab code (see Fig. 3.21): Then we fed the rotation matrix

Figure 3.21.:Changing matrix to VRML rotation

to the VRML Rotation block, which takes a rotation matrix as input and outputs the axis/angle
rotation representation used for defining rotations in VRML, to test our method [22]. Finally,
we got exactly the correct result, this means we got the correct rotation, which was about the
new coordinate system.
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3. Camera Motion in a Virtual World

Then we translated the camera in VRML world using the 3D mouse, which gave the x, y and z
values. It is no problem before the own coordinate system of the camera changed, this means
orientation of the camera was not changed. Then we changed the orientation of the camera
and found that, we could only change the x, y and z values along axes of initial coordinate
system. This means we could not change the position of the camera at the correct direction.
To resolve this problem we needed to know the mathematics of translation and rotation. We
used mathematics what we described in chapter 2 to resolve this problem. We already knew
the new position of the coordinate system of camera. When we multiplied the rotation matrix
and initial x, y and z values like equation 3.26, we solved this problem. The change of the x,
y and z values are following the new x, y, z axis, but there was another problem. Since the
type of signal is speed, we needed an Integrator, when we used it before the multiplication of
x, y and z values with rotated matrix. When we changed the rotation matrix, the value of the
translation was also changing with it. Because of this problem, the rotation of the camera was
about the wrong axis, not the new axis. When we used it after the multiplication, the change of
the velocity of the x, y and z values is correct, so we solved the problem (see Fig. 3.22). X

Y
Z

 =

 u11 u21 u31
u12 u22 u32
u13 u23 u33

 ·

 t1
t2
t3

 (3.26)

Matlab code for the translation at new coordinate system. Finally, we could control the motion

Figure 3.22.:Matlab code for the translation

of camera in VRML world well with the developed Matlab code. After studying mathematics
of motion in VRML world, we could change the position of the camera not only in global
coordinate system, also in the own coordinate system.
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4. Camera Motion in a Virtual World Using a
Virtual Robot

In the previous chapter we developed the Matlab code for the motion of the camera in VRML
world. Sometimes we want to control a camera in real world like in VRML world. For this
purpose we can use a robot, which can achieve the motion of camera. First of all, we can study
the motion of camera with a virtual robot. In this chapter we will study the transforms of camera
with a 6DOF robot with six axes, which means it can reach any point of a sphere, when we want
to get a point of the sphere, we need to understand the mathematics of transformation and the
kinematics of the robot.

4.1. Denavit-Hartenberg Parameters

If we want to describe the motion of a serial robot with swivel joint, we can use the Denavit-
Hartenberg Parameters. A commonly used convention for selecting frames of reference in
robotics applications is the Denavit and Hartenberg (DH) convention, which was introduced
by Jaques Denavit and Richard S. Hartenberg in the year 1955 [32]. To find a minimal repre-
sentation, the common normal between two lines is the main geometric concept used by Denavit
and Hartenberg. The frame are laid out as follows [32]:

• Zn-axis is in the direction of the joint axis.
• Xn-axis is as :

Xn = Zn−1 × Zn (4.1)

If there is no unique common normal (parallel z axes), then the offset d is a free parameter.
• The y-axis follows from the x- and z-axis by choosing it to be a right-handed coordinate
system.

Then the transformation is described by the following three Denavit-Hartenberg parameters
[11]:

• αn: angle from gi-axis to gi+1-axis.
• dn: offset along gi to the common normal between gi and gi+1.
• an: length of the common normal from gi-axis to gi+1-axis.
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4. Camera Motion in a Virtual World Using a Virtual Robot

We looked for the Denavit-Hartenberg parameters of our 6-axes serial robot (see Fig. 4.1).

Figure 4.1.:Rotation axes of our serial robot 1

1This virtual robot is from the demo of Matlab 2009b/SimMechanics [23].
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First of all, we built a 6-axes serial robot with Matlab (see Fig. 4.2).

Figure 4.2.:6-axes serial robot 1

1This robot arm with virtual reality scene is from the demo of Matlab 2009b/SimMechanics [23].
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This serial robot has six bodies (see Fig. 4.3), we must fix all of them with coordinates of center
of joints in VRML world (see Fig. 4.4):

Figure 4.3.:6 bodies of the serial robot 1

The center coordinates of the first joint are the origin point of the base coordinate system
(e0,1,e0,2,e0,3) (see Fig. 4.6) and are based on the global coordinate system (coordinate sys-
tem of VRML world):  z1

y1
x1

 =

 0
0

3000

 (4.2)

Because we only study the motion of robot, we let the coordinates of the origin of the base
coordinate system be:  z1

y1
x1

 =

 0
0
0

 (4.3)

1This robot arm with virtual reality scene is from the demo of Matlab 2009b/SimMechanics [23].
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Figure 4.4.:Coordinates of the centers of joints
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The coordinates of center of the second joint are: z2
y2
x2

 =

 804.8
1012
49.43

 (4.4)

The coordinates of center of the third joint are: z3
y3
x3

 =

 804.8
2793
49.43

 (4.5)

The coordinates of center of the fourth joint are: z4
y4
x4

 =

 498.5
2793
−156

 (4.6)

The coordinates of center of the fifth joint are: z5
y5
x5

 =

 498.5
4249
−156

 (4.7)

Then we computed all Denavit-Hartenberg parameters of our robot from equations 4.4-4.7:

α1=π
2
, a1=804.8, d1=1012;

α2=0, a2=1781, d2=0;
α3=π

2
, a3=306.3, d3=205.43;

α4=π
2
, a4=0, d4=1456;

α5=π
2
, a5=0, d5=0;

Because of e2,3 and e1,3 are not collinear, this means the length of common normal between e2,3
and e1,3 is a′1 = 49.43.

If we want to control the motion of the robot, we must study kinematics of the robot and find a
solution for our project.

4.2. Kinematics

Kinematics is the formal description of motion. One of the goals of rudimentary mechanics is
to identify forces on a point object and then apply kinematics to determine the motion of the
object. Ideally the position of the object at all times can be determined. For an extended object,
(rigid body or other), along with linear kinematics, rotational motion can be applied to achieve
the same objective: Identify the forces, develop the equations of motion, find the position of
center of mass and the orientation of the object at all times [32]. Robot Kinematics mainly has
two types, forward kinematics (direct kinematics) and inverse kinematics.
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4.2.1. Forward Kinematics

Forward kinematics is computation of the position and orientation of robot’s end effector as a
function of its joint angles [32]. First, we need to know that the 6-axes robot has six local co-
ordinate systems and a base coordinate system, we can give every transform of each coordinate
system, then we get the position of the end coordinate system in the base coordinate system, we
call this forward kinematics, or, we first know the position of the latest coordinate system in the
global coordinate system, then we can solve every transform of each coordinate system, we call
this inverse kinematics.

If we use forward kinematics, we must know Denavit-Hartenberg (DH) convention, which is
already described in section 1. In this convention, each homogeneous transformation is repre-
sented as a product of four basic transformations. The common normal between two lines was
the main geometric concept that allowed Denavit and Hartenberg to find a minimal representa-
tion. The precondition of Denavit-Hartenberg convention are [32]:
1. The coordinate system is fixed on rotation axis.
2. The z-axis is in the direction of the joint axis.
3. The x-axis is parallel to the common normal: ~xn=~zn−1 × ~zn.
If there is no unique common normal (parallel z axes), then d is a free parameter.
4. The y-axis follows from the x- and z-axis by choosing it to be a right-handed coordinate
system.

In DH convention a transformation is represented as concatenation of three transformations
[11]: xi

yi
zi

 =

 di
0
ai


︸ ︷︷ ︸
T (xi,yi,zi)

+

 cos(αi) − sin(αi) 0
sin(αi) cos(αi) 0

0 0 1


︸ ︷︷ ︸

R(zi,αi)

 1 0 0
0 cos(ui+1) − sin(ui+1)
0 sin(ui+1) cos(ui+1)


︸ ︷︷ ︸

R(xi+1,ui+1)

 xi+1

yi+1

zi+1


(4.8)

In DH convention a transformation T (xi, yi, zi), R(zi, αi) and R(xi+1, ui+1) can be also repre-
sented as two homogeneous matrices [11]:

1 0 0 0
di cos(αi) − sin(αi) 0
0 sin(αi) cos(αi) 0
ai 0 0 1




1 0 0 0
0 1 0 0
0 0 cos(ui+1) − sin(ui+1)
0 0 sin(ui+1) cos(ui+1)

 (4.9)

Where the four quantities αi, ai, di, ui+1 are parameters associated with link i and joint i. The
four parameters αi, ai, di and ui+1 in equation 4.8 are generally given the names link twist,
link offset, link length, and joint angle, respectively. These names derive from specific aspects
of the geometric relationship between two coordinate frames [29]. On this basis, we will look
at forward kinematics of 6-axes serial robot, the coordinate of a point which based on end
coordinate system must be given, then we give six rotation angles u1, ..., u6 of each axis, we can
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get the coordinate of same point which based on the global coordinate system. The equation is
[11]: 

1
x0
y0
z0

 = B(u1, ..., u6) ·


1
x6
y6
z6

 (4.10)

Where [x0 y0 z0]
T is the coordinate of a point based on the global coordinate system. [x6 y6 z6]

T

is the coordinate of same point based on the end effector coordinate system, B(u1...u6) is a ma-
trix, which depends on six rotation angles u1, ..., u6 and the Denavit-Hartenberg Parameters ai,
di, αi [11]:

B(u1, ..., u6) = Rx(u1) · C1 · ... · C5 ·Rx(u6) (4.11)

Where:

Ci =


1 0 0 0
di cαi

−sαi
0

0 sαi
cαi

0
ai 0 0 1

 , Rx(ui) =


1 0 0 0
0 1 0 0
0 0 cαi

−sαi

0 0 sαi
cαi

 (4.12)

4.2.2. Inverse Kinematics

In this section, we will study inverse kinematics. Inverse kinematics is the process of deter-
mining the parameters of a jointed flexible object (a kinematic chain) in order to achieve a
desired pose [32]. With the length of each link and position and orientation of the end effector
of the robot given, we must compute the angles of each joint which are needed to obtain that
position.

With this precondition, we must know the position of the end joint O6 and the three vectors e6,1,
e6,2 and e6,3 (see Fig. 4.6), which are based on global coordinate system.

The position of the end joint based on the global coordinate system is [12]:

O6 =

 b10
b20
b30

 (4.13)

The three direction vectors based on the global coordinate system are [12]: b11
b21
b31

 ,

 b12
b22
b32

 ,

 b13
b23
b33

 (4.14)

Then we must compute six rotation angles using following equation [12]:

B(u1, u2...u6) =


1 0 0 0
b10 b11 b12 b31
b20 b21 b22 b32
b30 b31 b23 b33

 (4.15)
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4.3. Camera Motion with a 6-Axes Serial Robot

In our project, we mounted a camera on the end effector of our virtual six axes serial robot, this
means the camera is fixed on the end coordinate system. Then we wanted to control the motion
of camera with a 3D mouse described in chapter 3 and watch in an own window, which displays
the video image of the camera (see Fig. 4.5). First of all, if we want to control the position of

Figure 4.5.:Virtual robot in the virtual world 1

camera in the global coordinate system, we must give and change the position of camera using
the 3D mouse, this means we already know the position of the camera in the global coordinate
system. Then we must compute six rotation angles of each axis to achieve the motion of camera.
The condition of our project is the same as inverse kinematics. This means we can use inverse
kinematics to solve our problem.

First we let every center of joint to be the origin of coordinate system and six links twist angles
to be zero, then established the base coordinate system and another local coordinate system for

1This virtual robot is from the demo of Matlab 2009b/SimMechanics [23]; the virtual world [30].
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every link {Oi; ei,1, ei,2, ei,3}, witch is right-handed Cartesian coordinate system (see Fig. 4.6).
ei,1 is a direction vector of xi and has the same direction as the rotation axis gi. ei,3 is a direction
vector of zi and has the same direction as the common normal between gi and gi+1. If there is
no unique common normal, we can establish any coordinate system. From those conditions we
established coordinate systems of our robot (see Fig. 4.6).

Figure 4.6.:Coordinate systems of our serial robot 1

1This robot arm with virtual reality scene is from the demo of Matlab 2009b/SimMechanics [23].
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We know g1...g6 as six axes of the serial robot. g4, g5, g6 intersect in one point [11], so we split
this problem into two steps. Firstly, we computed three angles of rotation u1, u2, u3, then we
computed the last angles of rotation u4, u5, u6 [11].

4.3.1. Computing Angles of Rotation u1, u2, u3

First of all, we looked at a point P = [xi+1, yi+1, zi+1], witch was based on (i + 1)st coordi-
nate system, and the same point P = [xi, yi, zi], which was based on ith coordinate system.
The homogeneous transformation for example during translation along xi+1-axis and zi+1-axis,
rotation about xi+1-axis and zi+1-axis of the (i + 1)th coordinate system to the ith coordinate
system is:


1
xi

yi
zi

 =


1 0 0 0
di cos(αi) − sin(αi) 0
0 sin(αi) cos(αi) 0
ai 0 0 1


︸ ︷︷ ︸

Ci


1 0 0 0
0 1 0 0
0 0 cos(ui+1) − sin(ui+1)
0 0 sin(ui+1) cos(ui+1)


︸ ︷︷ ︸

Rx(ui+1)


1

xi+1

yi+1

zi+1


(4.16)

The homogeneous transformation from the first to the zeroth coordinate system is only a rotation
about the e1,1 axis, since both coordinate system have a common x-axis:

1
x0

y0
z0

 =


1 0 0 0
0 1 0 0
0 0 cos(u1) − sin(u1)
0 0 sin(u1) cos(u1)




1
x1

y1
z1

 (4.17)

The homogeneous transformation from the second to the first coordinate system is a rotation
about e2,1 and e2,3, and a translation along e2,2, e2,1 and e2,3:


1
x1

y1
z1

 =


1 0 0 0
d1 cos(α1) − sin(α1) 0
a′1 sin(α1) cos(α1) 0
a1 0 0 1




1 0 0 0
0 1 0 0
0 0 cos(u2) − sin(u2)
0 0 sin(u2) cos(u2)




1
x2

y2
z2

 (4.18)

The homogeneous transformation from the third to the second coordinate system is a translation
along e3,2 and e3,1:


1
x2

y2
z2

 =


1 0 0 0
d2 cos(α2) − sin(α2) 0
a2 sin(α2) cos(α2) 0
0 0 0 1




1 0 0 0
0 1 0 0
0 0 cos(u3) − sin(u3)
0 0 sin(u3) cos(u3)




1
x3

y3
z3

 (4.19)

The homogeneous transformation from the fourth to the third coordinate system is a rotation
about e4,3 and e4,1, and a translation along e4,3:
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1
x3

y3
z3

 =


1 0 0 0
d3 cos(α3) − sin(α3) 0
a3 sin(α3) cos(α3) 0
0 0 0 1




1 0 0 0
0 1 0 0
0 0 cos(u4) − sin(u4)
0 0 sin(u4) cos(u4)




1
x4

y4
z4

 (4.20)

The homogeneous transformation from the fifth to the fourth coordinate system is a rotation
about e5,2 and e5,1, and a translation along e5,1:


1
x4

y4
z4

 =


1 0 0 0
d4 cos(α4) 0 − sin(α4)
0 0 1 0
a4 sin(α4) 0 cos(α4)




1 0 0 0
0 1 0 0
0 0 cos(u5) − sin(u5)
0 0 sin(u5) cos(u5)




1
x5

y5
z5

 (4.21)

The homogeneous transformation from the sixth to the fifth coordinate system is a rotation
about e6,2 and e6,1:


1
x5

y5
z5

 =


1 0 0 0
d5 cos(α5) 0 − sin(α5)
0 0 1 0
a5 sin(α5) 0 cos(α5)




1 0 0 0
0 1 0 0
0 0 cos(u6) − sin(u6)
0 0 sin(u6) cos(u6)




1
x6

y6
z6

 (4.22)

We computed the location of the point P = [x0, y0, z0] of the end coordinate system in the
global coordinate system from all homogeneous transformations:

1
x0

y0
z0

 = Rx(u1)C1Rx(u2)C2Rx(u3)C3Rx(u4)C4Rx(u5)C5Rx(u6)


1
x6

y6
z6

 (4.23)

From equation 4.11 in section Inverse Kinematics and equation 4.15 in section 4.2 we can get
the following equation:

B(u1...u6) = Rx(u1)C1Rx(u2)C2Rx(u3)C3Rx(u4)C4Rx(u5)C5Rx(u6) (4.24)

and
1 0 0 0
b10 b11 b12 b31
b20 b21 b22 b32
b30 b31 b23 b33

 = Rx(u1)C1Rx(u2)C2Rx(u3)C3Rx(u4)C4Rx(u5)C5Rx(u6) (4.25)

The meaning of matrix equation 4.25 was already described in section 4.2.2. The coordinates of
the origin O6 are [1, b10, b20, b30]

T , the coordinates of the end joint in the end coordinate system
are [1, 0, 0, 0]T . Now, we substitute these coordinates in equation 4.23:
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1
x0

y0
z0

 = Rx(u1)C1Rx(u2)C2Rx(u3)C3Rx(u4)C4Rx(u5)C5Rx(u6)


1
0
0
0

 (4.26)

Then we get the following equation:
1
x0

y0
z0

 =


1

d1+a2cos(u2)− a3sin(u2 + u3) + d4cos(u2 + u3)
−(d3−49.43)cos(u1)− sin(u1)(a1−a2sin(u2)− a3cos(u2 + u3)− d4sin(u2 + u3))
−(d3−49.43) ∗ sin(u1) + cos(u1)(a1−a2sin(u2)− a3cos(u2 + u3)− d4sin(u2 + u3))


(4.27)

Since 
1 0 0 0
b10 b11 b12 b31
b20 b21 b22 b32
b30 b31 b23 b33




1
0
0
0

 =


1
b10
b20
b30

 (4.28)

we get the following equations:

b10 = d1+a2cos(u2)− a3sin(u2 + u3) + d4cos(u2 + u3) (4.29)

b20 = −(d3−49.43)cos(u1)− sin(u1)(a1−a2sin(u2)− a3cos(u2 + u3)− d4sin(u2 + u3))
(4.30)

b30 = −(d3−49.43)sin(u1) + cos(u1)(a1−a2sin(u2)− a3cos(u2 + u3)− d4sin(u2 + u3))
(4.31)

First, we computed u1 from equation 4.30 and 4.31, from equation 4.31 we got the equation:

a1−a2sin(u2)− a3cos(u2 + u3)− d4sin(u2 + u3) = P =
b30+(d3−49.43)sin(u1)

cos(u1)
(4.32)

Then we substituted P in equation 4.30 and got the following equation:

b20cos(u1)+b30sin(u1) = −(d3−49.43); (4.33)

Because of following equation:

acos(x) + bsin(x) =
√
a2 + b2cos(x + a); tan(a) =

b

a
(4.34)

we got an equation about u1:

u1 = arccos(
−(d3−49.43)√

b2
30 + b2

20

) + arctan(
b30
b20

); (4.35)
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We got two solutions u1,1 and u1,2 from equation 4.35 in interval [0, 2π). If b20 > 0 we can take
solution u1,1, if b20 < 0 we get the solution u1,2 = u1,1+π, if b20 = 0 and b30 < 0, tan(a) =b

a
=-

π
2
, if b20 = 0 and b30 > 0, tan(a) =b

a
=π

2
. There is an other situation of u1, if −(d3−49.43)√

b230+b220
> 1 the

part of cos(u1) has no solution, we let u1=arctan( b30b20
).

Then we computed u3 from equation 4.29, 4.30 and 4.31, we considered the position b30 = 0
and b20 = 0, then we used the following equation to solve this problem:

v =

{
b20+(d3−49.43)sin(u1)

−sin(u1)
−a1 (b20 6= 0)

b30+(d3−49.43)sin(u1)
cos(u1)

−a1 (b20 = 0)
(4.36)

From equation 4.36 we got a new equation to substitute equation 4.30 and 4.31:

−a2sin(u2)−a3cos(u2 + u3)−d4sin(u2 + u3) = v (4.37)

Then u3 was computed from equation 4.29 and 4.37, these two equations have the same terms
of trigonometric functions but different coefficients, so we squared and added them, finally we
got the following equation:

This equation was the same as equation 4.34, so u3 can be computed:

u3 = arccos(
v2 + (b10 − d1)

2 − (d24 + a22 + a23)√
(2a2d4)2 + (2a2a3)2

) + arctan(
−(2a2d4)

(2a2a3)
); (4.38)

However u3 has two solutions, but only the solution in the interval [0, π] is meaningful for our
project. There is also a different situation, if v2+(b10−d1)2−(d24+a22+a23)√

(2a2d4)2+(2a2a3)2
> 1, we let u3 = arctan(−(2a2d4)

(2a2a3)
).

we already knew the solution of u3 and u1, then we computed u2 from equation 4.29 and 4.37.
They had to be resolved, then we got following equation :

b10 − d1 = cos(u2)(a2−a3sin(u3) + d4cos(u3))− sin(u2)(a3cos(u3) + d4sin(u3)) (4.39)

v = −sin(u2)(a2−a3sin(u3) + d4cos(u3))− cos(u2)(a3cos(u3) + d4sin(u3)) (4.40)

We got two equations for u1 from these equations:

sin(u2) := −(b10−d1−cos(u2)(a2−a3sin(u3) + d4cos(u3)))/(a3cos(u3) + d4sin(u3)) (4.41)

cos(u2) := (b10 − d1+sin(u2)(a3cos(u3) + d4sin(u3)))/(a2−a3∗sin(u3) + d4cos(u3)) (4.42)

u2 can be computed with the arctangent function, the solution of u2 is only meaningful in
interval [0, π]. For us, in the situation of (b10 − d1+sin(u2)(a3cos(u3) + d4sin(u3))) = 0, this
means the value of arctangent is endless great, then u2 =

π
2
.
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4.3.2. Computing Angles of Rotation u4, u5, u6

The origin of the end coordinate system is yielded during calculation of u1,u2 and u3 in the
global coordinate system. Then the direction of e6,1, e6,2 and e6,3 was given by the 3D mouse,
which ascertain the direction of the camera. u4, u5, u6 are computed during e6,1, e6,2 and e6,3
and also the other direction vectors. u4 is only dependent on direction vector e5,1 and e4,3, when
u4 = 0 e5,1 = e4,3. The direction of e4,1, e4,2, e4,3 are only dependent on rotation about g1, g2,
g3, this means the direction of axes of the fourth coordinate system is only dependent on u1,
u2 and u3, we can get direction vector of the fourth coordinate system from equation 4.23 and
4.25, first the matrix of homogeneous transformation from zeroth to fourth is computed with
following equation:

B(u1...u3) = Rx(u1)C1Rx(u2)C2Rx(u3)C3 (4.43)

[
0 1 0 0

]T
Because of equation 4.23, 4.25 and 4.14, we got direction vector of e4,1 and e4,3 by multiplying
B(u1...u3) with

[
0 1 0 0

]T and
[
0 0 0 1

]T :

e4,1 =

 −cos(u2 + u3)
−sin(u1)sin(u2 + u3)
cos(u1)sin(u2 + u3)

 (4.44)

e4,3 =

 sin(u2 + u3)
−sin(u1)cos(u2 + u3)
cos(u1)cos(u2 + u3)

 (4.45)

e5,1 is dependent on e4,1 and e6,1, with cross product of e4,1 and e6,1 is e5,1 computed:

e4,1 × e6,1 (4.46)

Since the cross product is not a unit vector, this means the length of the cross product is not one,
it must be translated to a unit vector with following equation:

e5,1 =
e4,1 × e6,1
|e4,1 × e6,1|

(4.47)

We must consider that, if cross product of e4,1 and e6,1 is zero, e5,1 is the same as e4,3 or -e4,3,
we let e5,1 = e4,3.

From equation 3.5 in chapter 3, we can compute the angle between two direction vector, because
the direction vector is a unit vector, so we can get following equation with unit vectors ~a and
~b:

cos(θ) = ~a ·~b (4.48)

Then u4 is computed from e5,1 and e4,3:
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u4 = arccos(e4,3 · e5,1) (4.49)

There is a special situation, if direction vectors are collinear, their cross product is zero. There
are two possibilities: These two direction vectors have the same or the reverse direction. If we
known the direction of both vectors, u4 = 0 or π can be ascertained.

During tests of this method we found that, that the solution of equation 4.48 was in interval [0, π]
, but the solution, what we needed was in interval [0, 2π). To solve this problem we needed to
know the direction of axis of rotation. The angle between two vectors could be said as an angle
of rotation about the axis, which is the cross product of them, from one vector to the other. The
cross product of two vectors is defined as a vector that is perpendicular to both vectors, with a
direction given by the right-hand rule and a magnitude equal to the area of the parallelogram
that the vectors span (see Fig. 4.7).

axb

è
a

a‘xb

a‘
è

Figure 4.7.:Cross product of the vector

From Fig. 4.7 we know that the direction of rotation axis is different, if the rotation angle is in
different intervals, this means the direction of rotation axis for rotation angle in interval [0, π]
is in the reverse direction of rotation axis for rotation angle in interval (π, 2π). The interval of
rotation angle ascertained by convention, in the way, that the rotation angle counterclockwise
about robot axis of ith coordinate system is positive. So that if direction of rotation axis is
the same as direction of ei,1, rotation angle is in interval [0,π], otherwise in interval (π, 2π).
Rotation angle can be computed in interval [0, 2π) with the following equation: The rotation
axis and e4,1 are collinear, if direction of rotation axis is the same as direction of e4,1

u4 = arccos(e4,3 · e5,1) (4.50)
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Otherwise:
u4 = 2π − arccos(e4,3 · e5,1) (4.51)

Because of e4,1, e5,1 and e6,1 cross in one point, so the angle between e4,1 and e6,1 is only
influenced by rotation about e5,1, so that u5 can be computed from e4,1 and e6,1: The rotation
axis and e5,1 are collinear, if direction of rotation axis is the same as direction of e5,1

u5 = arccos(e4,1 · e6,1) (4.52)

Otherwise:
u5 = 2π − arccos(e4,1 · e6,1) (4.53)

The angle between e5,1 and e6,3 is only influenced by rotation about e6,1, so that u6 can be
computed from e5,1 and e6,3: The rotation axis and e6,1 are collinear, if direction of rotation axis
is the same as direction of e6,1

u6 = arccos(e5,1 · e6,3) (4.54)

Otherwise:
u6 = 2π − arccos(e5,1 · e6,3) (4.55)

We wrote all equations, which can compute all rotation angles of the robot axes, with Embedded
Matlab Function in Matlab/Simulink. The Matlab code was written in listing A.1. Because of
e6,1 and e6,3 must be calculated, and we got the initial values of e6,1 and e6,3 at the initial situation
of the robot (all rotation angles are zero). The direction of the camera is controlled by 3D mouse
with following equation:

e6,1 =

 1 0 0
0 cos(w2) − sin(w2)
0 sin(w2) cos(w2)

 cos(w1) 0 sin(w1)
0 1 0

− sin(w1) 0 cos(w1)

 −1
0
0

 (4.56)

w1 and w2 are angles, which are given by the 3D mouse, using this equation the camera is
rotated about x and y axis of the global coordinate system.

e6,3 is dependent on e6,1, which means the direction of e6,3 is changed by rotation of e6,1 and
direction of e6,1, this relation is described by the following equation:

e6,3 = e6,1(1)
2(1− c(w3)) + c(w3) e6,1(1)e6,1(2)(1− c(w3))−e6,1(3)s(w3) e6,1(1)e6,1(3)(1− c(w3))+e6,1(2)s(w3)

e6,1(1)e6,1(2)(1− c(w3))+e6,1(3)s(w3) e6,1(2)
2(1− c(w3)) + c(w3) e6,1(2)e6,1(3)(1− c(w3))−e6,1(1)s(w3)

e6,1(1)e6,1(3)(1− c(w3))−e6,1(2)s(w3) e6,1(2)e6,1(3)(1− c(w3))+e6,1(1)s(w3) e6,1(3)
2(1− c(w3)) + c(w3)


 1 0 0

0 c(w2) −s(w2)
0 s(w2) c(w2)

 c(w1) 0 s(w1)
0 1 0

−s(w1) 0 c(w1)

 0
0
1


(4.57)

Where

c...cos;
s...sin;
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e6,1 =

 e6,1(1)
e6,1(2)
e6,1(3)

 (4.58)

and w1, w2, w3 are given by 3D mouse. We developed a Matlab code for this experiment (see
Fig. 4.9).

First, we changed the position of camera accurately to know the accuracy of our Matlab code,
so we used Slider Gain block, which vary a scalar gain during a simulation using a slider [22], to
change the position of camera. We gave the rotation angle, which was computed by the Matlab
code in Embedded MATLAB Function (see Fig. 4.10), to the port of each link (see Fig. 4.3)
for our experiment.

We got the x, y and z values, which were computed from six rotation angles. They were the
same as the value of inputs, which means our Matlab code is accurate and the result of our
Matlab code is non-ambiguous. Then, we experimented on 3D mouse, which can control the
coordinates of the origin of the end coordinate system in the global coordinate system and the
directions of axes of the end coordinate system in the global coordinate system.

During our experiment, we got a problem, because of the Denavit-Hartenberg parameters of our
virtual robot: e1,1 and e4,1 are not collinear, the length of the common normal from e1,1 to e4,1
is 156, this means there is a dead zone for our robot. There was a scale 2000 from real robot
to our virtual robot, which means, the value from virtual world is the same as the value of the
real world divided by 2000. Then we got the length of the common normal from e1,1 to e4,1
of 156/2000 = 0.078. This means, the position of the origin of the end coordinate system is
impossible in the region, which is a cylinder with a radius of 0.078 and the axis of this cylinder
is e0,1. So that y and z values of the position of the end coordinate system is limited by following
equation:

y2 + z2 ≥ 0.0782 (4.59)

Because of Denavit-Hartenberg parameters of our robot, the x, y and z values of the origin of
the end coordinate system are also limited, the maximum value of x in the second coordinate
system is computed from equation 4.3 and 4.7, which is (4249−1012)/2000 = 1.6185, and the
maximum of y and z are limited by x, if x = (1012 − 804.8 + 498.5)/2000, y and z have the
maximum value, if x = 1.6185, y and z have the minimum value. y and z values are limited by
following equation:

z2 + y2 ≤ 1.61852 − x2 − 498.5

2000
(4.60)

We developed a Matlab code for this equation (see Fig. 4.12), we used Embedded MATLAB
Function3 to compute z2 and y2 and the If block together with If Action subsystems containing
Action Port blocks to implement standard C-like if-else logic [22]. The If Action subsystem,
which is a Subsystem block that is preconfigured to serve as a starting point for creating a
subsystem whose execution is triggered by an If block [22], to stop and start the motion of the
robot.

The rotation angle of g6 (u6) of our virtual robot is limited in interval [−2π
3
, 2π

3
] , because we only

study the motion of camera, we did not consider this limit of u6 and the size of the camera.

Then we also studied the tracking of camera with our virtual robot like in chapter 3. We de-
veloped code (see Fig. 3.11) to compute the direction from camera to a point, the position of
point was given as precondition and the position of camera was given by the 3D mouse. Then
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we got a direction vector from origin of the end coordinate system to the point (see Fig. 4.13).
We got a problem that we did not get a direction vector from camera to this point, because we
built the camera on the robot axis g6 but not on the origin of the end coordinate system. And
the direction of camera is the same as the direction e6,3, first, we let e6,3 be the same as this
direction vector, then the direction vector of e6,1 must be the same as direction vector, which
computed out from cross product of direct vector of camera and direction vector from origin of
end coordinate system to the point. We got the camera tracked on the correct direction but not
on the correct point, however we can change the tracking point around the correct point during
rotation of camera about e6,3 and the camera tracked on a fixed point during translation (see
Fig. 4.5). If we built the camera on the robot axis g6 and let direction of camera be the same
as direction of e6,1, further let the direction vector of e6,1 be the same as direction vector from
origin of the end coordinate system to the point, and finally let the direction vector of e6,3 be the
same as direction vector, which was computed from the cross product of the direction vector of
the camera and direction vector from the origin of end coordinate system to that point, then the
camera focused on the correct point during changing the position of camera (see Fig. 4.8).

Finally, the position and direction of camera in global coordinate system is well controlled
with the 3D mouse by our programm, the position and the direction of the camera can be also
changed in the own coordinate system of the end link.

1This virtual robot is from the demo of Matlab 2009b/SimMechanics [23]. Virtual world [30].
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Figure 4.8.:Matlab code for tracking of camera on a correct point 1
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Figure 4.9.:Matlab code for the experiment on Slider Gain block
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Figure 4.10.:Comparing the values of input with the values of output 58



4. Camera Motion in a Virtual World Using a Virtual Robot

Figure 4.11.:Matlab code for the experiment with the 3D mouse
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Figure 4.12.:Matlab code for limits of y and z coordinate values
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4. Camera Motion in a Virtual World Using a Virtual Robot

Figure 4.13.:Matlab code for tracking of camera on a point
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5. Conclusion

This thesis introduced into mathematics and kinematics of the motion of a robot-driven camera
and documented experiments with a 3D mouse for control. Camera and the 6DOF serial robot
were built in a virtual world in VRML. The 3D mouse gave six signals to the outputs, three ro-
tation signals and three translation signals, so that a 3D mouse was compatible for our study of
motion in three dimension space. The virtual robot is a detailed dynamic model of the Manutec
r3 robot. Our experimental results verify the mathematical analysis and make it applicable for
implementation on a real robot.

In chapter 2 several mathematical methods to describe motion known from the literature were
presented. The motion included translation and rotation. Some problems with rotation in three
dimensions were discussed, for example the rotation matrix with Euler angles had the gimbal
lock problem, which the quaternions had not. On the other hand, quaternions had problems
with translation.

A Matlab code was developed to control the motion of the camera in VRML world with a 3D
mouse. This Matlab code included mathematical equations, which converted outputs of 3D
mouse to the camera motion in VRML world. A method was developed to solve the problem
with gimbal lock and concatenation of translation and rotation, which used infinitesimal calcu-
lus to calculate direction vector of axes of coordinate frame, which was fixed on the moving
camera. This method worked well to solve gimbal lock by rotation with Euler angles and trans-
lation problem of quaternions. Additionally, a Matlab code was developed to solve the problem
to let the camera follow an object, when positions of the camera or the object are changing.
This Matlab code worked well and moves the camera like human eyes, which can track resting
or moving objects.

We also studied kinematics for the motion of the robot, which was used to move camera in our
project. A Matlab code was developed to control the motion of camera, which was mounted on
the robot, with a 3D mouse. This program worked well to control the position of the camera and
had a non-ambiguous solution for each position, however the position of camera was limited by
the physical contraints of camera and links. With this program the view direction of the camera
can be kept during a translation of the camera.

The resulting software turned out to be suitable to navigate a camera with a 3D mouse and to
follow the motion of an object in a virtual world. The method of this thesis is meaningful for
3D games, virtual movies and VRML environment. It will be useful to control real robots in
production industry for image inspection.
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A. Matlab Code

Listing A.1:Calculation of u1...u6 from x0, y0, z0, w1, w2, w3

1
2 function [u1,u2,u3,u4,u5,u6,e51,e63,e611,uu22] = fcn(x0,y0,z0,

w1,w2,w3)
3 %
4 % This Matlab code is for the control of direction and

position of the camera, which is builded on the end effector
of 6DOF robot, with a 3D mouse.

5 %
6 % The inputs x0, y0 and z0 are x, y and z values of origin of

the end coordinate system in the global coordinate system,
which are gave by the 3D

7 % mouse.
8 % w1, w2, w3 are rotation angles, which are gave by the 3D

mouse. The direction of axis of the end coordinate system is
computed from rotation

9 % angles.
10 %
11 % The outputs from $u_1$ to $u_6$ are rotation angles of the

robot joints, which are computed from x0, y0, z0 and w1, w2,
w3. The outputs are used for % control

12 % of motion of robot links.
13 %
14 % Author: Yuan Li
15 % Date: 20 October 2010
16
17 %Denavit-Hartenberg parameters
18 %2000 is the scale from virtual robot to VRML-World
19 d1=1012/2000;
20 %d2=0;
21 d3=156/2000;
22 d4=1456/2000;
23 %d5=0;
24 a1=804.8/2000;
25 a2=1781/2000;
26 a3=306.3/2000;
27 %a4=0
28 R=-d3;
29
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30 % First step:
31 % The rotation angle of e(1,1)
32 if(abs(R/sqrt(z0^2+y0^2))<=1)
33 if(y0>0)
34 u1=acos(R/sqrt(z0^2+y0^2))+atan(z0/y0);
35 elseif(y0==0&&z0>0)
36 u1=acos(R/sqrt(z0^2+y0^2))+pi/2;
37 elseif(y0==0&&z0<0)
38 u1=acos(R/sqrt(z0^2+y0^2))-pi/2;
39 elseif (y0<0)
40 u1=acos(R/sqrt(z0^2+y0^2))+atan(z0/y0)+pi;
41 else
42 u1=0;
43 end
44 elseif(y0~=0)
45 u1=pi/2;
46 else
47 u1=0;
48 end
49
50 % 2. Step:
51 % The rotation angle u3 of e(3,1) is computed
52 if(y0~=0)
53 c=-(y0+d3*cos(u1))/sin(u1)-a1;
54 else
55 c=(z0+d3*sin(u1))/cos(u1)-a1;
56 end
57
58 b=-2*a2*a3;
59 a=2*a2*d4;
60 p1=x0-d1;
61
62 if(abs((p1^2+c^2-a2^2-a3^2-d4^2)/sqrt(a^2+b^2))<=1)
63 u3=acos((p1^2+c^2-a2^2-a3^2-d4^2)/sqrt(a^2+b^2))+atan(b/a);
64 else
65 u3=acos((p1^2+c^2-a2^2-a3^2-d4^2)/abs(p1^2+c^2-a2^2-a3^2-d4

^2))-atan(b/a);
66 end
67
68 % 3. Step
69 % The rotation angle $u_2$ of e(2,1) is computed
70 u2=atan((c*(a2-a3*sin(u3)+d4*cos(u3))+p1*(a3*cos(u3)+d4*sin(u3)

))/(c*(a3*cos(u3)+d4*sin(u3))-p1*(a2-a3*sin(u3)+d4*cos(u3)))
);

71
72 %Direct vector of e(4,1) and e(4,3), which are computed with

Maple
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73 e41=[-cos(u2+u3);-sin(u1)*sin(u2+u3);cos(u1)*sin(u2+u3)];
74 e411=round(e41*10);
75 e43=[sin(u2+u3);-sin(u1)*cos(u2+u3);cos(u1)*cos(u2+u3)];
76
77 e61=[1 0 0;0cos(w2) -sin(w2);0sin(w2)cos(w2)] *[cos(w1) 0

sin(w1);0 1 0;-sin(w1) 0cos(w1)] *[1;0;0];
78 e611=round(e61*10);
79
80 %4. step
81 %The rotation angle u4 is computed
82 if(norm(cross(e41,e61))==0)
83 e51=[0;0;1];
84 else
85 e51=(cross(e41,e61)/norm(cross(e41,e61)));
86 end
87 e511=round(10*e51);
88 uu4=cross(e43,e51);
89 uu41=norm(cross(e43,e51));
90 if(norm(cross(e43,e51))~=0)
91 uu42=round(10*uu4/uu41);
92 if(uu42(1)~=0)
93 c0=uu42(1)/abs(uu42(1));
94 else
95 c0=0;
96 end
97 if(uu42(2)~=0)
98 c1=uu42(2)/abs(uu42(2));
99 else

100 c1=0;
101 end
102 if(uu42(3)~=0)
103 c2=uu42(3)/abs(uu42(3));
104 else
105 c2=0;
106 end
107 if(e411(1)~=0)
108 c00=e411(1)/abs(e411(1));
109 else
110 c00=0;
111 end
112 if(e411(2)~=0)
113 c11=e411(2)/abs(e411(2));
114 else
115 c11=0;
116 end
117 if(e411(3)~=0)
118 c22=e411(3)/abs(e411(3));
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119 else
120 c22=0;
121 end
122
123 if(c0==c00 && c1==c11 && c2==c22)
124 u4=acos(e43’*e51);
125 else
126 u4=2*pi-acos(e43’*e51);
127 end
128
129 elseif(e43(1)==e51(1)&&e43(2)==e51(2)&&e43(3)==e51(3))
130 u4=0;
131 else
132 u4=pi;
133 end
134
135 % 5. step
136 % The rotation angle u5 is computed
137 uu5=cross(e41,e61);
138 uu51=norm(cross(e41,e61));
139 if(uu51~=0)
140 uu52=round(10*uu5/uu51);
141 if(uu52(1)~=0)
142 b0=uu52(1)/abs(uu52(1));
143 else
144 b0=0;
145 end
146 if(uu52(2)~=0)
147 b1=uu52(2)/abs(uu52(2));
148 else
149 b1=0;
150 end
151 if(uu52(3)~=0)
152 b2=uu52(3)/abs(uu52(3));
153 else
154 b2=0;
155 end
156 if(e511(1)~=0)
157 b00=e511(1)/abs(e511(1));
158 else
159 b00=0;
160 end
161 if(e511(2)~=0)
162 b11=e511(2)/abs(e511(2));
163 else
164 b11=0;
165 end
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166 if(e511(3)~=0)
167 b22=e511(3)/abs(e511(3));
168 else
169 b22=0;
170 end
171 if(b0==b00 && b1==b11 && b2==b22)
172 u5=acos(e41’*e61);
173 else
174 u5=2*pi-acos(e41’*e61);
175 end
176 elseif(e41(1)==e61(1)&&e41(2)==e61(2)&&e41(3)==e61(3))
177 u5=0;
178 else
179 u5=pi;
180 end
181
182 %6.step
183 %The rotation angle u6 is computed
184 %First of all, direct vector of e6,3 must be gave
185 e63=
186 [e61(1)^2*(1-cos(w3))+cos(w3) e61(1)*e61(2)*(1-cos(w3))-e61(3)*

sin(w3) e61(1)*e61(3)*(1-cos(w3))+e61(2)*sin(w3);
187 e61(1)*e61(2)*(1-cos(w3))+e61(3)*sin(w3) e61(2)^2*(1-cos(w3))+

cos(w3) e61(2)*e61(3)*(1-cos(w3))-e61(1)*sin(w3);
188 e61(1)*e61(3)*(1-cos(w3))-e61(2)*sin(w3) e61(2)*e61(3)*(1-cos(

w3))+e61(1)*sin(w3) e61(3)^2*(1-cos(w3))+cos(w3)]*
189 [1 0 0;0cos(w2) -sin(w2);0sin(w2)cos(w2)] *[cos(w1) 0sin(w1)

;0 1 0;-sin(w1) 0cos(w1)] *[0;0;1];
190
191
192 uu2=cross(e51,e63);
193 uu21=norm(cross(e51,e63));
194 if(norm(cross(e51,e63))~=0)
195 uu22=round(10*uu2/uu21);
196 if(uu22(1)~=0)
197 a0=uu22(1)/abs(uu22(1));
198 else
199 a0=0;
200 end
201 if(uu22(2)~=0)
202 a1=uu22(2)/abs(uu22(2));
203 else
204 a1=0;
205 end
206 if(uu22(3)~=0)
207 a2=uu22(3)/abs(uu22(3));
208 else
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209 a2=0;
210 end
211 if(e611(1)~=0)
212 a00=e611(1)/abs(e611(1));
213 else
214 a00=0;
215 end
216 if(e611(2)~=0)
217 a11=e611(2)/abs(e611(2));
218 else
219 a11=0;
220 end
221 if(e611(3)~=0)
222 a22=e611(3)/abs(e611(3));
223 else
224 a22=0;
225 end
226
227 if(a0==a00 && a1==a11 && a2==a22)
228 u6=acos(e51’*e63);
229 else
230 u6=2*pi-acos(e51’*e63);
231 end
232 elseif(e51(1)==e63(1)&&e51(2)==e63(2)&&e51(3)==e63(3))
233 u6=0;
234 else
235 u6=pi;
236 end
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Listing B.1:Calculation of u1...u6 from Denavit-Hartenberg parameters

1
2 > c1:=Matrix([[1,0,0,0],[d1,cos(a1),-sin(a1),0],[49.43,sin(a1),

cos(a1),0],[p1,0,0,1]]);
3
4 > c2:=Matrix([[1,0,0,0],[d2,cos(a2),-sin(a2),0],[-p2,sin(a2),

cos(a2),0],[0,0,0,1]]);
5
6 > c3:=Matrix([[1,0,0,0],[-d3,cos(a3),-sin(a3),0],[0,sin(a3),cos

(a3),0],[-p3,0,0,1]]);
7
8 > c4:=Matrix([[1,0,0,0],[-d4,cos(a4),0,sin(a4)],[0,0,1,0],[p4,-

sin(a4),0,cos(a4)]]);
9

10 > c5:=Matrix([[1,0,0,0],[d5,cos(a5),0,sin(a5)],[0,0,1,0],[p5,-
sin(a5),0,cos(a5)]]);

11
12 > r1:=Matrix([[1,0,0,0],[0,1,0,0],[0,0,cos(u1),-sin(u1)],[0,0,

sin(u1),cos(u1)]]);
13
14 > r2:=Matrix([[1,0,0,0],[0,1,0,0],[0,0,cos(u2),-sin(u2)],[0,0,

sin(u2),cos(u2)]]);
15
16 > r3:=Matrix([[1,0,0,0],[0,1,0,0],[0,0,cos(u3),-sin(u3)],[0,0,

sin(u3),cos(u3)]]);
17
18 > r4:=Matrix([[1,0,0,0],[0,1,0,0],[0,0,cos(u4),-sin(u4)],[0,0,

sin(u4),cos(u4)]]);
19
20 > r5:=Matrix([[1,0,0,0],[0,1,0,0],[0,0,cos(u5),-sin(u5)],[0,0,

sin(u5),cos(u5)]]);
21
22 > r6:=Matrix([[1,0,0,0],[0,1,0,0],[0,0,cos(u6),-sin(u6)],[0,0,

sin(u6),cos(u6)]]);
23
24 > a1:=Pi/2;a2:=0;a3:=Pi/2;a4:=-Pi/2;a5:=Pi/2;
25 > p1:=804.8;p2:=1781;p3:=306.3;p4:=0;p5:=0;
26 > d1:=1012;d2:=0;d3:=156+49.43;d4:=1456;d5:=0;
27 > R:=r1.c1.r2.c2.r3.c3.r4.c4.r5.c5.r6;
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28
29 > x6:=Vector([1,0,0,0]);
30
31 > R.x6;
32
33 > so1:=1012 +1781*cos(u2)-306.3*sin(u2+u3) + 1456*cos(u2 + u3)

;
34
35 > s02:= -156*cos(u1)-sin(u1)*(804.8 - 1781*sin (u2) -306.3*cos(

u2+u3)-1456*sin (u2 + u3));
36
37 > s03:= -156*sin(u1)+cos(u1)*(804.8 - 1781*sin (u2) -306.3*cos(

u2+u3)- 1456*sin (u2 + u3));
38
39 > (s03+156*sin(u1))/cos(u1)=x;
40
41 > s02*cos(u1)=-156*cos(u1)^2-sin(u1)*(s03+156*sin(u1));
42
43 > s02*cos(u1)+s03*sin(u1)=-156;
44
45 > v1 := 1781*cos(u2)-306.3*sin(u2+u3) + 1456*cos(u2 + u3);
46
47 > v2:=-1781*sin (u2) -306.3*cos(u2+u3)- 1456*sin (u2 + u3);
48
49 > v3:=v1*v1;
50
51 > v4:=v2*v2;
52
53 > v3+v4;
54
55 > v5:=combine(v3+v4 );
56
57 > d4^2+p2^2+p3^2;
58
59 > p2*2*d4;
60
61 > 2*p3*p2;
62
63 > pp:=1781*cos(u2)-306.3*sin(u2+u3) + 1456*cos(u2 + u3);
64
65 > c:=-1781*sin (u2) -306.3*cos(u2+u3)- 1456*sin (u2 + u3);
66
67 > expand(pp);
68
69 > expand(c);
70
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71 > pp2:=cos(u2)*(1781-306.3*sin(u3)+1456*cos(u3))-sin(u2)

*(306.3*cos(u3)+1456*sin(u3));
72
73 > c2:=-sin(u2)*(1781-306.3*sin(u3)+1456*cos(u3))-cos(u2)

*(306.3*cos(u3)+1456*sin(u3));
74
75 > sin(u2):=-(pp2-cos(u2)*(1781-306.3*sin(u3)+1456*cos(u3)))

/(306.3*cos(u3)+1456*sin(u3));
76
77 > cos(u2):=(pp2+sin(u2)*(306.3*cos(u3)+1456*sin(u3)))

/(1781-306.3*sin(u3)+1456*cos(u3));
78 >cos(u2):=-(c2*(306.3*cos(u3)+1456*sin(u3))-pp2*(1781-306.3*sin

(u3)+1456*cos(u3)))/((1781-306.3*sin(u3)+1456*cos(u3))
^2-(306.3*cos(u3)+1456*sin(u3))^2);

79 >sin(u2):=-(c2*(1781-306.3*sin(u3)+1456*cos(u3))+pp2*(306.3*cos
(u3)+1456*sin(u3)))/((1781-306.3*sin(u3)+1456*cos(u3))
^2-(306.3*cos(u3)+1456*sin(u3))^2);
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