

Montanuniversität Leoben Department Product Engineering Lehrstuhl für Allgemeinen Maschinenbau

Ъ

• [•]

Diplomarbeit

Christoph Hofbauer

Betreuer:

ł.

d.

4 10

Ass. Prof. Dipl.-Ing. Dr. mont. Michael Stoschka (Montanuniversität Leoben – Lehrstuhl für Allgemeinen Maschinenbau) Dipl. –Ing. Michael Breitler (Inteco special melting technologies)

EIDESSTATTLICHE ERKLÄRUNG

Ich erkläre an Eides statt, dass ich diese Arbeit selbständig verfasst, andere als die angegebenen Quellen und Hilfsmittel nicht benutzt und mich auch sonst keiner unerlaubten Hilfsmittel bedient habe.

AFFIDAVIT

I declare in lieu of oath, that I wrote this thesis and performed the associated research myself, using only literature cited in this volume.

Datum

Unterschrift

Danksagung

Für die Betreuung dieser Arbeit möchte ich mich bei Herrn Ass. Prof. Dipl.-Ing. Dr. mont. Michael Stoschka von der Montanuniversität Leoben sowie bei Herrn Dipl.-Ing. Michael Breitler, dem Leiter der Abteilung für Mechanik / Sondermetallurgie, bei der Firma Inteco special melting technologies, sehr herzlichst bedanken.

Weiters möchte ich noch den Herrn Dipl.-Ing. Dr. mont. Harald Holzgruber und Ing. Gerhard Reithofer von der Firma Inteco special melting technologies sowie Dipl.-Ing. Georg Fiedler vom Ingenieurbüro Fiedler GmbH meinen Dank aussprechen. Ohne sie wäre diese Diplomarbeit nicht zustande gekommen.

Kurzfassung

In der vorliegenden Arbeit wird anhand der Drehsäule des Ofenkopfes einer ESU-Anlage die Anwendung des Eurocode 3 aufgezeigt. Die grundlegenden Anforderungen des Eurocode 3 bauen auf den Eurocode 0 bzw. den Eurocode 1 auf, weshalb im Speziellen folgende Normenwerke für die Bemessung herangezogen wurden: DIN EN 1990 – Grundlagen der Tragwerksplanung, DIN EN 1991-1-1 – Einwirkungen auf Tragwerke – Allgemeine Einwirkungen auf Tragwerke – Eigengewicht und Nutzlasten im Hochbau, DIN EN 1991-3 – Einwirkungen auf Tragwerke – Einwirkungen infolge von Kranen, DIN EN 1993-1-1 – Bemessung und Konstruktion von Stahlbauten – Plattenförmige Bauteile sowie die DIN EN 1993-1-9 – Bemessung und Konstruktion von Stahlbauten – Ermüdung.

Die höchstbelastete Stelle wurde mittels der Methode der finiten Elemente lokalisiert. Dieser Bereich wurde einem umfassenden analytischen Nachweis gemäß dem Eurocode unterzogen. Es wurden die Nachweisführungen mittels Grenzzuständen der Tragfähigkeit (Lagesicherheit, Beanspruchbarkeit von Querschnitten, Stabilitätsnachweis), Grenzzuständen der Gebrauchstauglichkeit (Verschiebungen) sowie der Ermüdungsnachweis erbracht, wobei die Beanspruchbarkeit von Querschnitten unter Berücksichtigung der Methode der reduzierten Spannungen erfolgt ist.

Abstract

This thesis illustrates how the Eurocode 3 principle is applied on the electrode column of an electrode arm in an ESR-plant. The general requirements of the Eurocode 3 are based on the Eurocode 0 and Eurocode 1, therefore the following standards are used: DIN EN 1990 – Basis of structural design, DIN EN 1991-1-1 – Actions on structures – General actions – Densities, self-weight, imposes loads for buildings, DIN EN 1991-3 – Actions on structures – Actions induced by cranes, DIN EN 1993-1-1 – General rules and rules for buildings, DIN EN 1993-1-5 – General rules – Plated structural elements, DIN EN 1993-1-9 – General rules – Fatigue.

The area with the highest load was localized by means of the finite element model. This area was then analytically assessed by the application of the Eurocode standards. The verification for the ultimate limit state (Static equilibrium, Cross-sectional resistance, Flexural buckling resistance), the serviceability limit state (displacements) as well as for fatuige were adduced. The verification of the cross-sectional resistance was designed with consideration of the reduced stress method.

1 Inhaltsverzeichnis

1	Inhaltsver	rzeichnis	5
2	Aufgaben	stellung	8
3	Lösungsa	nsatz	9
4	Gliederun	ıg der Arbeit	10
5	ESU – An	lagen – Einführung	
	5.1 Allgen	1eines	
	5.2 Prozes	psablauf	11
	5.3 Aufbai	u einer ESU – Anlage (Xingtai)	
6	Finfühmu	ng in dan Funaada	19
U	Elliunru	ig in den Eurocode	10
	6.1 EN 19	90 – Grundlagen der Tragwerksplanung	
	6.1.1 And	forderungen	
	6.1.1.1	Grundlegende Anforderungen	
	0.1.1.2	Benandlung der Zuverlassigkeit	
	0.1.1.5	Deprante Nutzungsdauer	
	6.1.2 Gru	Dauemanigken	19
	6121	Allgemeines	19
	6.1.2.2	Bemessungssituation	
	6.1.2.3	Grenzzustände der Tragfähigkeit	
	6.1.2.4	Grenzzustände der Gebrauchstauglichkeit	
	6.1.2.5	Bemessung nach Grenzzuständen	
	6.1.3 Bas	sisvariable	
	6.1.3.1	Einwirkungen	
	6.1.3.2	Eigenschaften von Baustoffen	
	6.1.3.3	Geometrische Angaben	
	6.1.4 Stat	tische Berechnung	
	6.1.4.1	Statische Einwirkung	
	6.1.4.2	Dynamische Einwirkung.	
	6.1.5 Nac	All-american	
	0.1.3.1	Allgemeines	
	6153	Emiscili di Kuligeti Remessingswerte	
	6154	Nachweis der Grenzzustände der Traofähigkeit	
	6.1.5.5	Nachweis für Grenzzustände der Gebrauchstauglichkeit	
	6.2 EN 19	91-1-1 – Einwirkungen auf Tragwerke – Allgemeine Einwirkungen auf Tragwerke – H	Eigengewicht
	und Nutzlasten.		
	6.2.1 Ein	Einwirkungen	
	0.2.1.1	Eigengewicht	
	6213	Außergewöhnliche Lasten	
	6.2.2 Ber	nessungssituationen	
	6.2.2.1	Allgemein	
	6.2.2.2	Eigengewicht	
	6.2.2.3	Nutzlasten	
	63 EN10	013 Finniskungen auf Transpeka Finniskungen infolge von Vrange	20
	631 Fin	wirkungen aus Hehezeugen und Kranen auf Kranhahnträger	
	0.5.1 LIII	wirkungen aus medezeugen und istanen auf istanbannluaget	

	6.3.1.1	Einteilung der Einwirkungen	29
	6.3.1.2	Lastanordnungen	31
	6.3.1.3	Vertikale Kranlasten – charakteristische Werte	33
	6.3.1.4	Horizontale Kranlasten – charakteristische Werte	34
	6.4 EN 19	93-1-1 – Bemessung und Konstruktion von Stahlbauten – Allgemeine Bemessungsregeln	40
	6.4.1 Gru	Indlagen für die Tragwerksplanung.	40
	6.4.1.1	Anforderungen	40
	6.4.1.2	Nachweisverfahren mit Teilsicherheitsbeiwerten	40
	6.4.2 We	rkstoffe	40
	6.4.2.1	Allgemeines	40
	6.4.2.2	Baustahl	40
	6.4.3 Tra	gwerksberechnung	42
	6.4.3.1	Statische Systeme	42
	6.4.3.2	Untersuchung von Gesamttragwerken	42
	6.4.3.3	Imperfektionen	43
	6.4.3.4	Berechnungsmethoden	44
	6.4.3.5	Klassifizierung von Querschnitten	45
	6.4.4 Gre	enzzustände der Tragfähigkeit	48
	6.4.4.1	Allgemeines	48
	6.4.4.2	Beanspruchbarkeit von Querschnitten	49
	6.4.4.3	Zugbeanspruchung	49 50
	6.4.4.4	Druckbeanspruchung	50
	6446	Biegebeanspruchung aus Biegung und Normalkraft	30 51
	6.4.5 Sto	bilitäteneehweis	J I 51
	0.4.5 Sta	Cleichförmige Bauteile mit planmäßig zentrischem Druck	J I 51
	6452	Gleichförmige Bauteile mit Biegung um die Hauntachse	51
	6453	Auf Biegung und Druck heanspruchte gleichförmige Bauteile	55 58
	6454	Allgemeines Verfahren für Knick- und Biegedrillknicknachweise für Bauteile	60
	6.5 EN199	93-1-5 – Bemessung und Konstruktion von Stahlbauten – Plattenförmige Bauteile	61
	6.5.1 Gru	indlagen für die Tragwerksplanung und Verfahren	61
	6.5.2 Me	thode der reduzierten Spannungen	61
	6.6 EN199	93-1-9 – Bemessung und Konstruktion von Stahlbauten – Ermüdung	65
	6.6.1 Ber	messungskonzepte	65
	6.6.2 Ber	rechnung der Spannungsschwingbreiten	65
	6.6.2.1	Bemessungswert der Spannungsschwingbreite der Nennspannungen	65
	6.6.2.2	Bemessungswert der Spannungsschwingbreite korrigierter Nennspannungen	67
	6.6.2.3	Bemessungswert der Spannungsschwingbreite der Strukturspannungen (Kerbspannungen)	67
	6.6.3 Err	nüdungsfestigkeit	67
	6.6.4 Err	nüdungsnachweis	68
_			
7	Anwendu	ng des Eurocode	71
	7.1 Proble	embeschreibung	71
	7.1.1 We	rkstoff	72
	7.1.2 Ein	wirkungen	73
	7.1.3 Ab	messungen	73
	7.2 Lastfa	U 1	75
	7.2 Lastfa	ll 1 nittlung dar maßgahanden Kröfte	/ J 75
	7.2.1 EII	Flaktrodanwagan	75 75
	7.2.1.1	Haubenwagen	רי דד
	7213	Säule	70
	7.2.1.3 7.2.1.3	Jowerksberechnung	79 81
	7221	Finfluss der Tragwerksverformung	81
	7.2.2.2	Imperfektionen	
	7.2.2.3	Ouerschnitt	
	7.2.2.4	Spannungen im betrachteten Querschnitt	84
	7.2.2.5	Methode der reduzierten Spannungen	88
	7.2.2.6	Grenzzustände der Tragfähigkeit	96

	7.2.2.7	Grenzzustand der Gebrauchstauglichkeit	
	7.2.2.8	Ermüdungsnachweis am betrachteten Querschnitt	
7.3	Lastfal	11 2	
7.3	3.1 Ĕrn	nittlung der maßgebenden Kräfte	
	7.3.1.1	Elektrodenwagen	
	7.3.1.2	Haubenwagen	
	7.3.1.3	Säule	
7.3	3.2 Tra	gwerksberechnung	
	7.3.2.1	Einfluss der Tragwerksverformung	
	7.3.2.2	Imperfektionen	
	7.3.2.3	Querschnitt	
	7.3.2.4	Spannungen im betrachteten Querschnitt:	
	7.3.2.5	Methode der reduzierten Spannungen	
	7.3.2.6	Grenzzustände der Tragfähigkeit	
	7.3.2.7	Grenzzustand der Gebrauchstauglichkeit	
	7.3.2.8	Ermüdungsnachweis am betrachteten Querschnitt	
8 Zi	usamme	nfassung	
9 A1	nhang		
9.1	Literat	turverzeichnis	
9.2	Abbild	lungsverzeichnis	
9.3	Tabell	enverzeichnis	
9.4	Abkürz	zungsverzeichnis	

2 Aufgabenstellung

Durch die Einbindung des Eurocode in das nationale Normenwerk kommt es zu einer mehrjährigen (5-jährigen) Übergangsfrist, in welcher sowohl die nationalen Normen als auch der Eurocode seine Gültigkeit haben, auch wenn sich diese in gewissen Bereichen widersprechen.

Mit Ablauf dieser Übergangsfrist tritt jedoch der Eurocode voll in Kraft und löst somit alle anderen nationalen Normen, welche sich vom Eurocode unterscheiden, ab.

Jene Bauwerke, welche bis zum Ablauf dieser Übergangsfrist hin noch nach der veralteten Normschrift DIN 18800 ausgelegt wurden, behalten ihre Gültigkeit, wogegen alle neuen Bauwerke und Anlagen nach den Gesetzmäßigkeiten des Eurocode ausgelegt werden müssen.

In Österreich wird der Eurocode seit dem 30. Juni 2009 anerkannt und in vollem Ausmaß akzeptiert, wodurch im Rahmen dieser Diplomarbeit für die Firma *Inteco special melting technologies* die prinzipielle Anwendung des Eurocode (Eurocode 3) ausgearbeitet wird.

Im Zuge dieser Arbeit ist für eine ESU-Anlage, im Speziellen für den Ofenkopf der Anlage, nachzuweisen ob das Bauteil den Anforderungen der Richtlinien des Eurocode (Eurocode 3) gerecht wird. Dabei sollen die gängigen Normschriften des Eurocodes studiert, ausgearbeitet sowie anhand eines Beispieles aus der Industrie gezeigt werden, wie der Eurocode anzuwenden ist.

Weiters sollen die analytisch gewonnen Ergebnisse mittels einer Finite-Elemente-Analyse verglichen und ausgewertet werden.

3 Lösungsansatz

Abbildung 3-1: Abfolge der Tätigkeiten

Zu Beginn dieser Arbeit soll zunächst ein grober Überblick über den gesamten Eurocode gegeben werden. Im weiteren Verlauf sind jene Kapitel zu studieren und auszuarbeiten, welche für die praktische Anwendung im Bereich von ESU-Anlagen benötigt werden.

Die erarbeiteten Kenntnisse sind auf den Ofenkopf der ESU-Anlage umzulegen, wobei darauf zu achten ist, dass folgende Kriterien, welche für die Bemessung der kritischen Bereiche im Bauwerk wie:

- Beanspruchbarkeit von Querschnitten,
- Auftretende Verschiebungen,
- Knicken, Biegedrillknicken,
- Beulen

sowie

• Ermüdung

berücksichtigt werden.

Durch Zuhilfenahme einer Finite-Elemente-Analyse können die analytisch gewonnen Ergebnisse verglichen werden.

4 Gliederung der Arbeit

Eine Einführung in ESU-Anlagen wird in Kapitel 5 gegeben. Das Funktionsprinzip sowie der Aufbau einer Anlage nach dem heutigen Stand der Technik werden dargestellt.

In Kapitel 6 wurden jene normativen Teile des Eurocodes angewendet, welche für die prinzipielle Bemessung notwendig sind. Dazu gehören die DIN EN 1990 – Grundlagen der Tragwerksplanung, DIN EN 1991-1-1 – Einwirkungen auf Tragwerke – Allgemeine Einwirkungen auf Tragwerke – Eigengewicht und Nutzlasten im Hochbau, DIN EN 1991-3 – Einwirkungen auf Tragwerke – Einwirkungen infolge von Kranen, DIN EN 1993-1-1 – Bemessung und Konstruktion von Stahlbauten – Allgemeine Bemessungsregeln für den Hochbau, DIN EN 1993-1-5 – Bemessung und Konstruktion von Stahlbauten – Plattenförmige Bauteile sowie die DIN EN 1993-1-9 – Bemessung und Konstruktion von Stahlbauten – Ermüdung.

Kapitel 7 umfasst die Anwendung des Eurocode auf den Ofenkopf einer ESU-Anlage. Dabei wurde zwischen zwei Lastfällen (Betriebszustände) unterschieden. Der Lastfall Nr. 1 beschreibt eine statische Einwirkung auf den Ofenkopf, wogegen der Lastfall Nr. 2 eine dynamische Einwirkung darstellt. Der Berechnungsablauf für die beiden Lastfälle verläuft ähnlich, jedoch kommen im Lastfall Nr. 2 die Einwirkungen infolge von bewegten Lasten zur Geltung, welche in Form der Berechnung von Kranen nach DIN EN 1991-3 abläuft.

Der umfassende Berechnungsablauf ist wie folgt gegliedert:

- Ermittlung der Kräfte aufs System (infolge der Einwirkungen)
- Ermittlung der auftretenden Spannungen im betrachteten Querschnitt
- Ermittlung der Grenzzustände der Tragfähigkeit (Lagesicherheit, Beanspruchbarkeit von Querschnitten und Stabilitätsnachweis)
- Ermittlung der Grenzzustände der Gebrauchstauglichkeit (Verschiebungen)
- Ermüdungsnachweis

5 ESU – Anlagen – Einführung

5.1 Allgemeines

Der Elektro-Schlacke-Umschmelzprozess (ESU-Prozess) wurde zur Herstellung von hochgradigem Stahl im Jahre 1958 in der ehemaligen Sowjetunion entwickelt und eingeführt. In den sechziger Jahren wurden in Österreich und Großbritannien unabhängige Forschungsarbeiten auf diesem Gebiet durchgeführt. Zeitgleich wurden in West-Europa und den USA die ersten ESU-Anlagen in Betrieb genommen.

5.2 Prozessablauf

Während des ESU-Prozesses wird ein Block durch Abschmelzen einer verzehrbaren Stahlelektrode in einer den Metallspiegel abdeckenden Schlacke der in einer wassergekühlten Kokille oder einem Tiegel kontrolliert und gesteuert aufgebaut.

Die für den Abschmelzprozess notwendige Energie wird durch den Stromdurchgang durch die flüssige Schlacke, die als elektrischer-ohmscher Widerstand wirkt, erzeugt.

Durch die Wahl von geeigneten Schmelzparametern (Stromstärke, Spannung, Schmelzrate-Leistung, Eintauchtiefe, ...) kann die Ausbildung des flüssigen Metallsumpfes so beeinflusst werden, dass man einen homogenen und seigerungsfreien, dichten Block erhält.

Die flüssigen Metalltropfen, die an der Elektrodenspitze gebildet werden, passieren die flüssige und metallurgisch aktive Schlacke wodurch hervorragende Bedingungen für Metall-Schlacke-Reaktionen, wie den Abbau von Schwefel oder Sauerstoff bestehen.

Durch den Einsatz einer geeigneten Schutzgashaube kann weiters die Aufnahme von Wasserstoff sowie die Zunderbildung an der Elektrodenspitze vermieden werden, was zu bestem Reinheitsgrad führt.

Weiters können Qualitäten mit hohen Ti-Gehalten oder niedrigsten Al- und Si-Werten ohne größere Schwierigkeiten reproduzierbar erzeugt werden.

Blöcke werden heute im Standtiegel aus einer Elektrode und auch mittels Elektrodenwechseltechnik im Gleittiegelverfahren erschmolzen.

Abbildung 5-1: Prinzipielle Funktionsweise einer ESU-Anlage [9]

Vorteile eines ESU-Blockes gegenüber eines konventionell gegossenen Stahl-Blockes:

- Dichte Struktur ohne Lunker oder Porosität
- Höherer Reinheitsgrad (weniger und kleinere Einschlüsse)
- Homogene Zusammensetzung über die gesamte Blocklänge
- Höherer Ertrag an umgeschmolzenen Material
- Allgemeine Verbesserung der mechanischen Eigenschaften
- Gleichmäßige Oberfläche (i.a. keine Oberflächenbearbeitung für die weitere Verarbeitung notwendig)
- Kontrollierte Verfestigung (verbesserte Makro- und Mikrostrukturen)
- Durch das Schlackenbad wird das umgeschmolzene Material vor Oxidation geschützt

5.3 Aufbau einer ESU – Anlage (Xingtai)

Abbildung 5-2: Darstellung der Gesamtanlage Xingtai [8]

Die vorliegende ESU-Anlage ist im Wesentlichen durch Folgendes gekennzeichnet:

1) Technologie

Die Inteco ESR/ESRR-Anlage ist eine Schutzgas (Inertgas) ESR/ESRR-Anlage und besteht aus zwei zu betreibenden Anlagen (ESR-ESRR), welche im Wesentlichen aus einem Ofenkopf (Abbildung 5-2) mit Schmelzstromversorgung, Mediensystemen und individueller Steuerung an einem Schmelzstand eingesetzt werden kann.

2) ESU-Anlage

Die ESR/ESRR-Anlage arbeitet mit dem Ofenkopf auf der Schmelzstation (Gleittiegel).

Weiters kann mit dem Ofenkopf durch Austausch der Schmelzstation (T-Kokille) umgeschmolzen werden.

3) Schmelzstände

Die Schmelzstation ESR ist ein Schmelzstand mit einer Gleitkokille (Abbildung 5-5) mit einem Abzugstisch und durch Austausch der Station durch eine T-Kokille (Abbildung 5-6) auch eine ESRR Anlage. Die Station ist für die Produktion von ESR/ESRR-Blöcken mittels Elektrodenwechseltechnologie gebaut.

4) Ofenkopf

Der Ofenkopf der ESR/ESRR-Anlage ist in Säulenbauweise konstruiert. Die Bewegung des Ofenkopfes (Säule) zu den einzelnen Stationen erfolgt durch das Schwenken der Säulen zu den einzelnen Positionen.

5) Elektroden- und Haubenwagen

Der Ofenkopf ist mit einem Elektrodenwagen (Abbildung 5-3) ausgerüstet, der aus einem Rahmen mit Arm, der X-Y-Verstellung mit Wiegezellen und einer Elektrodenstange mit Elektrodenklemme besteht.

Die X-Y-Verstellung (Abbildung 5-3) hat die Aufgabe die Elektrode während des Schmelzvorganges im Tiegel in horizontaler Richtung zu zentrieren, damit in jedem Betriebszustand ein optimales Schmelzen möglich ist. Die Elektrodenstange hingegen ist für den Stromübergang von Gleitkontakt auf die Elektrode verantwortlich.

Der Elektrodenwagen ist auf der Drehsäule (Abbildung 5-2) montiert, die auch den Haubenwagen (Abbildung 5-4) mit der Schutzgashaube, der koaxialen Stromführung, den Gleitkontakt und die Hochstromklemme trägt.

Der Antrieb des Elektrodenwagens wird durch mit einem Servo-Motor (Abbildung 5-2) betriebenen Spindelantrieb realisiert.

Der Haubenwagen wird ebenfalls wie der Elektrodenwagen mittels Servo-Motor angetrieben.

Die Drehsäule ist mittels Drehlager mit der Säule verbunden. Die Stützsäule ist am Fundament verankert.

Abbildung 5-3: Elektrodenwagen (Elektrodenstange in Schnittdarstellung)

Abbildung 5-4: Haubenwagen

6) Gleit- und Stand-Tiegelstation

In der Gleittiegelstation (ESR) ist die Kupfer-Bodenplatte auf dem verfahrbaren Blockwagen montiert, der das Verfahren und das einfache Herausheben des Blocks mit der Blockzange und dem Kran ermöglicht. Wogegen bei der Standtiegelstation (ESRR) die Kupfer-Bodenplatte direkt in der T-Kokille verbaut ist.

Der wesentliche Unterschied zwischen den beiden Stationen besteht darin, dass bei der Gleittiegelstation während des Schmelzvorganges der Schmelzbadspiegel auf konstantem Level bleibt, wobei er sich beim Standtiegel mit abschmelzender Elektrode anhebt.

Weiters ist beim Schmelzen mittels Standtiegel die umgeschmolzene Blockgröße durch die Tiegelbauhöhe begrenzt. Im Gleittiegelverfahren wird der Block über den Blockwagen durch die Tiegelstation hindurch aufgebaut und kann in weiterer Folge mit der Blockzange von unten abgeführt werden. Die Blockgröße wird durch den Hub des Blockwagens begrenzt.

Abbildung 5-6: Standtiegelstation (T-Kokille)

7) Kontrollsystem

Das gesamte System des Anlagenkopfes einschließlich der Medienzuleitung ist so ausgelegt, dass der unabhängige Betrieb des Anlagenkopfes in der Schmelzstation gewährleistet ist.

Das Kontrollsystem und alle untergeordneten Systeme ermöglichen einen unabhängigen Betrieb des Anlagenkopfes in der Schmelzstation.

8) Stromversorgung

Die ESR/ESRR-Anlage ist mit einphasigen Transformatoren ausgestattet. Diese sind stufenlos unter Last verstellbar. Um einen Leistungsfaktor von > 0,9 zu erreichen ist die Stromversorgung mit einer Kompensation ausgestattet.

Die Hochstromverbindung zu den einzelnen Transformatoren wird über eine hydraulisch betätigte Klemme (Abbildung 5-4) realisiert, die den entsprechenden Ofenkopf, wenn sich dieser an seiner Schmelzstation befindet, verbindet.

Das bedeutet, dass die komplette ESR/ESRR-Anlage nicht mit der Stromversorgung verbunden ist, wenn sich der Ofenkopf nicht auf einer Schmelzstation befindet.

Diese Maßnahme dient unter anderem auch zur Erhöhung der Sicherheit bei Instandhaltungs- und Instandsetzungsarbeiten.

Die Hochstromversorgung vom Transformator zur Elektrode besteht aus wassergekühlten Kupferschienen in voll koaxialer Ausführung.

Diese Kupferschienen werden mit einer Hochstromklemme zum jeweiligen Ofenkopf verbunden.

Von dort fließt der Strom über den Gleitkontakt (Abbildung 5-4) zur äußeren und weiter zur inneren Elektrodenstange bis hin zur Elektrodenklemme.

Der Stromfluss geht weiter über den Stub, die Elektrodenspitze in die Schlacke und über den Block in die Kupferbodenplatte (Abbildung 5-5/5-6).

Mit einem zentralen Stromtransport von der Klemme zu vier Gleitkontakten (nur bei der Gleittiegelstation), zu vier parallel zur Blockachse verlaufenden Stromrohren, weiter zum Ofenoberteil und mit verschiedenen wassergekühlten Kupferelementen zum Transformator schließt sich die Hochstromschleife.

Diese so kurz als mögliche Ausführung der Hochstromschleife mit 100 %ig koaxialen Design, garantiert minimale Magnetfelder und minimierte elektrische Verluste, die wiederum einen niedrigen spezifischen Energieverbrauch beim Umschmelzen zur Folge haben.

9) Emissionen

Der Elektro-Schlacke-Umschmelzprozess ist im Allgemeinen ein sehr ruhiger Prozess.

Durch den Einsatz einer Schutzgashaube ist der gesamte Raum oberhalb der flüssigen Schlacke abgedeckt und dadurch werden die Lärm- und Staubemissionen im Anlagenumfeld stark reduziert. 10) Emissionsabsaugung / Staubemissionen

Die Emissionen (Abgase) des Umschmelzprozesses enthalten Staub und Fluorverbindungen die abgesaugt werden müssen.

Alle produzierten Emissionen der Anlagen werden von einer zentralen Absaugung zusammengefasst.

11) Lärmemission

Anlagenkomponenten mit einer Lärmentwicklung > 75 dBA sind entweder eingehaust oder in separaten Räumen installiert, z.B. Kühlwasserpumpen, Hydraulik, Stromversorgung, etc.

Im Allgemeinen wird während des Betriebes ein durchschnittlicher Lärmpegel von ~65 dBA auftreten.

6 Einführung in den Eurocode

In diesem Abschnitt werden kurz jene Kaptitel des Eurocodes erläutert, welche für die grundlegende Anwendung von Stahlkonstruktionen im Bereich des Anlagenbaus von ESU-Anlagen benötigt werden. Im Kapitel 7 - Anwendung - findet sich ein Berechnungsbeispiel an welchem dies noch verdeutlicht wird.

Für die Bemessung der Stahlsäule der ESU-Anlage Xingtai (Berechnungsbeispiel im Anhang) wurden folgende Eurocodes herangezogen:

- EN 1990 [1]
- EN 1991-1-1 [2]
- EN 1991-3 [3]
- EN 1993-1-1 [4]
- EN 1993-1-5 [5]
- EN 1993-1-9 [6]

Alle Begriffsdefinitionen sowie Symbole und Formelzeichen wurden aus dem aktuellen Eurocode (Auflage Dezember 2010) übernommen.

6.1 EN 1990 – Grundlagen der Tragwerksplanung

Grundlegend für die Tragwerksplanung ist die Bemessung auf zulässige Tragsicherheit, Gebrauchstauglichkeit sowie Dauerhaftigkeit. Dabei muss für die Bemessung ein sogenannter Teilsicherheitsbeiwert berücksichtigt werden, damit die Bemessung einer Anlage stets auf der sicheren Seite liegt.

Für die Auslegung und die Berechnung von Bauteilen ist die EN 1990 in direkter Verbindung mit den EN 1991 bis EN 1999 anzuwenden.

6.1.1 Anforderungen

6.1.1.1 Grundlegende Anforderungen

Für die Bemessung der Anlage (Säule) ist zu beachten, dass eine ausreichende Tragfähigkeit, Gebrauchstauglichkeit sowie Dauerhaftigkeit über die gesamte Nutzungsdauer gewährleistet ist. Es ist ebenfalls darauf zu achten, dass es durch Einwirkungen wie z.B. Anprall mittels Kran bzw. durch menschliches Versagen zu keinen Schadensfolgen kommt, welche die Gebrauchstauglichkeit der Anlage beeinflussen.

Weiters sollten Bauelemente vermieden werden, die einen plötzlichen Funktionsausfall zur Folge haben könnten.

6.1.1.2 Behandlung der Zuverlässigkeit

Die Zuverlässigkeit eines Tragwerks ist dann gegeben, wenn die anzuwendenden Eurocodes (EN 1990 bis EN 1999), für den Entwurf und die Berechnung sowie für geeignete Ausführungs- und Qualitätsmanagementmaßnahmen herangezogen werden.

Als Zuverlässigkeitsniveau kommen entweder die Tragfähigkeit oder die Gebrauchstauglichkeit einer Baugruppe in Frage.

6.1.1.3 Geplante Nutzungsdauer

Klasse der Nutzungs- Dauer	Planungsgröße der Nutzungsdauer (in Jahren)	Beispiele
1	10	Tragwerke mit befristeter Standzeit ^a
2	10–25	Austauschbare Tragwerksteile, z. B Kranbahnträger, Lager
3	15–30	Landwirtschaftlich genutzte und ähnliche Tragwerke
4	4 50 Gebäude und andere gewöhnliche Tragwerke	
5	100	Monumentale Gebäude, Brücken und andere Ingenieurbauwerke
^a ANMERKUNG Tragwerke oder Teile eines Tragwerks, die mit der Absicht der Wiederverwendung demontiert werden können, sollten nicht als Tragwerke mit befristeter Standzeit betrachtet werden.		

Die geplante Nutzungsdauer ist aus der unten angeführten Tabelle (Tabelle 6-1) zu entnehmen.

6.1.1.4 Dauerhaftigkeit

Während der gesamten Nutzungsdauer einer Anlage darf sich keine Veränderung in ihrem Arbeitsverhalten ergeben. Dies gilt sowohl während der Einwirkung einer statischen bzw. quasistatischen sowie für die Einwirkung einer dynamischen bzw. zeitlich veränderlichen Last.

6.1.2 Grundsätzliches zur Bemessung mit Grenzzuständen

6.1.2.1 Allgemeines

Es ist der Nachweis der Grenzzustände zu erfüllen (Tragfähigkeit und Gebrauchstauglichkeit). Dabei sind die auftretenden Belastungen in ständige, vorübergehende und außergewöhnliche Belastungen einzuteilen.

6.1.2.2 Bemessungssituation

Die Bemessungssituationen müssen für jeden Anwendungsfall der Anlage berücksichtigt und mit hinreichender Genauigkeit erfasst werden. Es müssen die so genannten Lastfälle definiert werden. Dabei sind folgende Bemessungssituationen zu unterscheiden:

- ständige Situation (übliche Nutzungsbedingung)
- vorübergehende Situation (zeitlich begrenzte Zustände)
- außergewöhnliche Situationen (z.B. Anprall eines Kranes)
- (Erdbeben)

6.1.2.3 Grenzzustände der Tragfähigkeit

Die Sicherheit von Personen und des Tragwerks müssen gewährleistet sein. Nachzuweisende Grenzzustände:

- Verlust der Lagesicherheit (EQU)
- Versagen durch übermäßige Verformung (STR)
- Versagen durch Materialermüdung (FAT)

6.1.2.4 Grenzzustände der Gebrauchstauglichkeit

Die Funktion des Bauwerks sowie sein äußeres Erscheinungsbild (keine zu großen Durchbiegungen oder ungewollte Rissbildungen) sollte nach diesem Kriterium aufrecht erhalten werden.

Nachzuweisende Grenzzustände:

- Verformungen / Verschiebungen (Erscheinungsbild)
- Schwingungen (Funktion)
- Schäden (Rissbildung, ...)

6.1.2.5 Bemessung nach Grenzzuständen

Grenzzustände dürfen nicht überschritten werden und es müssen alle kritischen Lastfälle im Vorhinein ausreichend definiert worden sein.

Bei den Lastmodellen können entweder wirkliche physikalische Modelle oder virtuelle mathematische Modelle herangezogen werden.

6.1.3 Basisvariable

6.1.3.1 Einwirkungen

Repräsentative Werte für Einwirkungen:

- ständige Einwirkung (z.B. Eigengewicht)
- veränderliche Einwirkung (z.B. Elektrodengewicht)
- außergewöhnliche Einwirkung (z.B. Anprall eines Kranes)

Auf die einzelnen Einwirkungen wird im Kapitel 6.2 bzw. 6.3 näher eingegangen.

6.1.3.2 Eigenschaften von Baustoffen

Die bauteilspezifischen Eigenschaften, wie z.B. Zugfestigkeit oder Fließgrenze, werden anhand von genormten Prüfverfahren an genormten Proben ermittelt. Um jedoch die tatsächlichen Bauteileigenschaften zu erhalten, müssen gegebenenfalls die an der Probe ermittelten Werkstoffeigenschaften mit sogenannten Übertragungsbeiwerten (Größenfaktoren, Temperaturfaktor, Oberflächenfaktor, ...) an jene Eigenschaften des Bauteils angeglichen werden.

6.1.3.3 Geometrische Angaben

Es dürfen die geometrischen Daten direkt aus dem Engineering übernommen werden.

6.1.4 Statische Berechnung

6.1.4.1 Statische Einwirkung

Es ist das Lastverformungsverhalten der Anlage zu berücksichtigen, wobei die Randbedingungen sehr genau definiert werden müssen.

Grundsätzlich ist die Bemessung nach der Theorie I. Ordnung zu führen. Die Theorie II. Ordnung ist nur dann zu berücksichtigen, wenn die Verformungen einen erheblichen Einfluss auf die Schnittgrößen zeigen.

6.1.4.2 Dynamische Einwirkung

Es sind alle Massen, Tragfähigkeiten, Steifigkeiten sowie Dämpfungseigenschaften der Anlage zu berücksichtigen.

Bei quasi-statischer Einwirkung sind die dynamischen Anteile entweder im quasi-statischen Anteil enthalten oder über zusätzliche Schwingbeiwerte (Teilsicherheitsbeiwerte) in der statischen Einwirkung zu berücksichtigen.

6.1.5 Nachweisverfahren mit Teilsicherheitsbeiwerten

6.1.5.1 Allgemeines

Mit diesem Nachweisverfahren ist nachzuweisen, dass die Grenzzustände, welche durch die Bemessungssituationen auftreten, nicht überschritten werden.

6.1.5.2 Einschränkungen

Diese Anwendung nach EN 1990 gilt ausschließlich für Tragfähigkeits- bzw. Gebrauchstauglichkeitsnachweise mit statischer Belastung, dies inkludiert sowohl quasi-statische Lasten als auch statische Lasten mit Schwingbeiwerten. Ermüdungsnachweise bzw. nichtlineare Berechnungen sind nach EN 1993-1-9 zu bemessen.

6.1.5.3 Bemessungswerte

6.1.5.3.1 Bemessungswerte für Einwirkungen

Für eine Einwirkung F ist der Bemessungswert F_d:

$F_d = \gamma_f \cdot F_{rep}$	(Gl.1)
$F_{rep} = \psi \cdot F_k$	(Gl.2)

F _k	charakteristischer Wert der Einwirkung
F _{rep}	maßgebender repräsentativer Wert der Einwirkung
γ _f	Teilsicherheitsbeiwert für Einwirkungen; berücksichtigt ungünstige Größenabweichungen
ψ	Kombinationsbeiwert; 1,00 oder ψ_0 , ψ_1 oder ψ_2 ; nach DIN EN 1990 / Tabelle A.1.1

Einwirkung	Ψb	Ψı	₩2
Nutzlasten im Hochbau (siehe EN 1991-1-1)			
Kategorie A: Wohngebäude	0,7	0,5	0,3
Kategorie B: Bürogebäude	0,7	0,5	0,3
Kategorie C: Versammlungsbereiche	0,7	0,7	0,6
Kategorie D: Verkaufsflächen	0,7	0,7	0,6
Kategorie E: Lagerflächen	1,0	0,9	0,8
Fahrzeugverkehr im Hochbau Kategorie F: Fahrzeuggewicht ≤ 30kN		0,7	0,6
Kategorie G: 30kN < Fahrzeuggewicht ≤ 160kN		0,5	0,3
Kategorie H : Dächer 0 0 0		0	
Schneelasten im Hochbau (siehe EN 1991-1-3) ^a			
 Finnland, Island, Norwegen, Schweden 	0,7	0,5	0,2
 Für Orte in CEN-Mitgliedsstaaten mit einer Höhe über 1000 m ü. NN 	0,7	0,5	0,2
 Für Orte in CEN-Mitgliedsstaaten mit einer Höhe niedriger als 1000 m ü. NN 	0,5	0,2	0
Windlasten im Hochbau (siehe EN 1991-1-4) 0,6 0,2 0		0	
Temperaturanwendungen (ohne Brand) im Hochbau, siehe EN 1991-1-5 0,6 0,5 0		0	
ANMERKUNG Die Festlegung der Kombinationsbeiwerte erfolgt im Nationalen Anhang.			
a Bei nicht ausdrücklich genannten Ländern sollten die maßgebenden örtlichen Bedingungen betrad	chtet werde	n.	

Tabelle 6-2: Empfehlungen zu Kombinationsbeiwerten; Tabelle A.1.1 aus [1]

6.1.5.3.2 Bemessungswerte für die Auswirkungen von Einwirkungen

Allgemeine Darstellung der Auswirkungen E_d von Einwirkungen:

$$E_d = \gamma_{Sd} \ E \ \{\gamma_{f,i} \ F_{rep,i} \ ; \ a_d \} \qquad i \geq 1$$

(Gl.3)

(Gl.5)

a _d	Bemessungswert der geometrischen Größe (siehe 6.1.5.3.4)
γ_{sd}	Teilsicherheitsbeiwert zur Berücksichtigung von Unsicherheiten

Vereinfachung:

.4)

 $\gamma_{F,i} = \gamma_{Sd} \; \gamma_{f,i}$

 $\gamma_{F,i}$ gesamter Teilsicherheitsfaktor; nach Tabelle 6-3, Tabelle 6-4 und Tabelle 6-5

6.1.5.3.3 Bemessung für Eigenschaften von Bauteilen

Die Bemessung von Bauteileigenschaften wird mit dem Bemessungswert X_d berücksichtigt:

$$X_{d} = \eta \cdot \frac{X_{k}}{\gamma_{m}}$$
(Gl.6)

- X_k charakteristischer Wert einer Bauteileigenschaft
- η Umrechnungsfaktor zwischen Probeneigenschaft und Bauteileigenschaft
- γ_m Teilsicherheitsbeiwert für die Bauteileigenschaft

6.1.5.3.4 Bemessung geometrischer Größen

Die Bemessungswerte von geometrischen Größen (Abmessungen der Bauteile), dürfen aus dem Engineering übernommen werden:

$$a_{d} = a_{nom} \tag{G1.7}$$

Unter Berücksichtigung der Theorie II. Ordnung:

$$a_d = a_{nom} \pm \Delta_a \tag{G1.8}$$

 a_{nom} Abmaße aus dem Engineering Δ_a ungünstige Abweichungen vom charakteristischen Wert oder Nennwert

6.1.5.3.5 Bemessung der Tragfähigkeit

Für die Tragfähigkeit ist der Bemessungswert R_d wie folgt zu ermitteln:

$$R_{d} = \frac{1}{\gamma_{Rd}} \cdot R \quad \{X_{d,i}; a_{d}\} = \frac{1}{\gamma_{Rd}} \cdot R \quad \{ \eta_{i}; \frac{X_{k,i}}{\gamma_{m,i}}; a_{d}\} \qquad i \ge 1$$
(G1.9)

$\begin{array}{ll} \gamma_{Rd} & \mbox{Teilsicherheitsbeiwert für die Unsicherheit des Widerstandmodells} \\ X_{d,i} & \mbox{Bemessungswert der Bauteileigenschaft} \end{array}$

Vereinfacht:

$$R_{d} = R \{ \eta_{i} \frac{X_{k,i}}{\gamma_{M,i}} ; a_{d} \}$$
 $i \ge 1$ (GI.10)

$$\gamma_{M,i} = \gamma_{Rd} \cdot \gamma_{m,i} \tag{GI.11}$$

Für Bauteile aus einem Baustoff gilt für die Bemessung der Tragfähigkeit R_d:

$$R_{d} = \frac{R_{k}}{\gamma_{M}}$$
(G1.12)

6.1.5.4 Nachweis der Grenzzustände der Tragfähigkeit

6.1.5.4.1 Allgemeines

Es müssen grundsätzlich folgende Grenzzustände für den Nachweis der Tragfähigkeit nachgewiesen werden:

- EQU: Verlust der Lagesicherheit
- STR: Versagen oder übermäßige Verformungen
- FAT: Ermüdungsversagen (nach 6.6)

6.1.5.4.2 Nachweis der Lagesicherheit und der Tragfähigkeit

Für den Nachweis der Lagesicherheit hat folgende Beziehung zu gelten:

 $E_{d,dst} \leq R_{d,stb}$

(Gl.13)

 $E_{d,dst}$ Bemessungswert für die Auswirkung der destabilisierenden Einwirkung $R_{d,stb}$ Bemessungswert für die Auswirkung der stabilisierenden Einwirkung

Für den Nachweis der Grenzzustände bezüglich der Tragfähigkeit eines Querschnittes, Bauteils oder einer Baugruppe gilt folgendes:

$$E_d \le R_d$$
 (Gl.14)

E _d	Bemessungswert der Auswirkung der Einwirkung
R _d	Bemessungswert der zugehörigen Tragfähigkeit

6.1.5.4.3 Kombinationsregeln für Einwirkungen (ohne Ermüdung)

- a) Allgemeines
- b) Kombinationen bei ständigen oder vorübergehenden Bemessungssituationen (Grundkombination)
- c) Kombinationen von Einwirkungen bei außergewöhnlichen Bemessungssituationen

<u>zu a)</u>

Für alle kritischen Lastfälle sind die Bemessungswerte E_d der Auswirkung der Einwirkung für die verschiedenen Lastfallkombinationen zu definieren. Zur Beurteilung der Bemessung wird jener Wert mit der schlechtesten Auswirkung herangezogen.

<u>zu b)</u>

Die Kombinationen der Auswirkung sind im Allgemeinen wie folgt zu bestimmen:

$$E_{d} = E \{\gamma_{g,j} G_{k,j}; \gamma_{p} P; \gamma_{Q,1} Q_{k,1}; \gamma_{Qi} \psi_{0,i} Q_{k,i}\} \qquad j \ge 1; i > 1$$
(Gl.15)

Die Kombination in der Klammer {} kann wie folgt ausgedrückt werden, entweder durch:

$$\sum_{(j\geq 1)} \gamma_{G,j} G_{k,j} "+" \gamma_p P "+" \gamma_{Q,1} Q_{k,1} "+" \sum_{(i>1)} \gamma_{Q,i} \psi_{0,i} Q_{k,i}$$
(Gl.16)

oder für STR durch die ungünstigere der beiden Kombinationen

$$\sum_{(j\geq 1)} \gamma_{G,j} G_{k,J} "+" \gamma_p P "+" \gamma_{Q,1} \psi_{0,1} Q_{k,1} "+" \sum_{(i\geq 1)} \gamma_{Q,i} \psi_{0,i} Q_{k,i}$$
(Gl.17)

$$\sum_{(j\geq 1)} \zeta_{j} \gamma_{G,j} G_{k,j} "+" \gamma_{p} P "+" \gamma_{Q,1} Q_{k,1} "+" \sum_{(i\geq 1)} \gamma_{Q,i} \psi_{0,i} Q_{k,i}$$
(Gl.18)

"+"	ist zu kombinieren
Σ	gemeinsame Auswirkung von
ζ	der Reduktionsbeiwert für ungünstig wirkende ständige Einwirkungen G

<u>zu c)</u>

Die Auswirkung der Einwirkung wird wie folgt bestimmt:

$$E_{d} = E \{G_{k,j}; P; A_{d}; (\psi_{1,1} \text{ oder } \psi_{2,1}) Q_{k,1}; \psi_{2,i} Q_{k,i}\} \quad j \ge 1; i > 1$$
(Gl.19)

Die Kombination in der Klammer {} kann wie folgt ausgedrückt werden:

 $\sum_{(j\geq 1)} G_{k,j} \text{``+``P``+``A_d``+``} (\psi_{1,1} \text{ oder } \psi_{2,1}) Q_{k,1} \text{``+``} \sum_{(i\geq 1)} \psi_{2,i} Q_{k,i}$ (Gl.20)

Tabelle 6-3: Bemessungswerte der Einwirkungen für EQU; Tabelle A1.2(A) aus [1]

Ständige und	Ständige Ei	nwirkungen	Leit-	Begleiteinwi	rkungen					
vorübergehende Bemessungs- situationen	Ungünstig	Günstig	einwirkung ^a	Vorherrschende (gegebenenfalls)	Weitere					
Gl.16	$\gamma_{\rm G,j,sup}G_{\rm k,j,sup}$	$\gamma_{\rm G,j,inf}G_{\rm k,j,inf}$	%Q,1 ℓk,1		%q,i ₩0,i Qk,i					
ANMERKUNG 1 Die <i>p</i> -Werte können im Nationalen Anhang festgelegt werden. Die folgenden Werte gelten als Emp- fehlungswerte für <i>y</i> .										
$\gamma_{G,j,sup} = 1,10$	$\gamma_{G,j,sup} = 1,10$									
$\gamma_{G,j,inf} = 0.90$										
$\gamma_{Q,1} = 1,50$ bei ungunstiger Wirkung (U bei gunstiger Wirkung)										
$\gamma_{Q,i} = 1,50$ bell ungunst	tiger winkung (U bei	gunstiger wirkung)							
ANMERKUNG 2 Für den Fall, dass der Nachweis des statischen Gleichgewichtes auch den Widerstand der tragen- den Bauteile einschließt, darf alternativ zu den zwei getrennten Nachweisen nach den Tabellen A1.2(A) und A1.2(B) ein kombinierter Nachweis basierend auf Tabelle A1.2 (A) durchgeführt werden – sofern dies nach dem Nationalen Anhang zulässig ist –, wobei die folgenden Teilsicherheitsbeiwerte empfohlen werden. Die empfohlenen Teilsicherheitsbeiwerte dürfen im Nationalen Anhang geändert werden.										
$\gamma_{G,j,sup} = 1,35$										
$\gamma_{G,j,inf} = 1,15$										
$\gamma_{Q,1} = 1,50$ bei ungüns	tiger Wirkung (0 be	i günstiger Wirkung	3)							
$\gamma_{\rm Q,i}$ = 1,50 bei ungünst	tiger Wirkung (0 bei	i günstiger Wirkung)							
vorausgesetzt, dass der Nachweis mit $\gamma_{G,j,inf}$ = 1,00 für den ungünstig und den günstig wirkenden Teil der ständigen Einwirkung nicht maßgebend wird.										
a Die veränderlichen B	Einwirkungen sind die	in Tabelle 3-2 ange	gebenen.							

Ständige und vorüber-	Ständige Einwirkungen		Leitein- wirkung	in- Begleiteinwirkungen ^a ang			Ständige und vorüber-	Ständige Einwirkungen		Leitein- Begleiteinv wirkung ^a		virkungen ^a
gehende Bemessungs situationen	Ungünstig	Günstig		Vorherr- schende (gegebe- nenfalls)	Weitere		gehende Bemessungs situationen	Ungünstig	Günstig	Ein- wirkung	Vorherr- schende	Weitere
Gl.16	$\gamma_{\rm G,j,sup}G_{\rm k,j,sup}$	$\gamma_{\rm G,j,inf}G_{\rm k,j,inf}$	% _{Q,1} <i>Q</i> _{k,1}		$\gamma_{\mathrm{Q},\mathrm{i}} \psi_{\mathrm{Q},\mathrm{i}} \mathcal{Q}_{\mathrm{k},\mathrm{i}}$		Gl.17	$\gamma_{\rm G,j,sup}G_{\rm k,j,sup}$	$\gamma_{\rm G,j,inf}G_{\rm k,j,inf}$		$\gamma_{Q,1}\psi_{0,1}Q_{k,1}$	$\gamma_{\mathbf{Q},i} \psi_{0,i} \mathcal{Q}_{\mathbf{k},i}$
							Gl.18	^{ζγ} G.j.sup G _{k.j.sup}	$\gamma_{\rm G,j,inf}G_{\rm k,j,inf}$	γ _{Q,1} Ω _{k,1}		$\gamma_{\mathbf{Q},i} \psi_{0,i} \mathcal{Q}_{\mathbf{k},i}$
ANMERKUNG 1 Die verbindliche Festlegung aus der Auswahl 0.10 oder 0.10 a) und 0.10 b) erfolgt im Nationalen Anhang. Im Falle von 0.10 a) und 0.10 b) kann der Nationale Anhang 0.10 a) so verändern, dass nur ständige Einwirkungen berücksichtigt werden.												
ANMERKUNG 2	Die Festlegung	der γ− und <i>§</i> -We	rte erfolgt in	Nationalen Anł	hang. Bei Wahl o	ler A	Ausdrücke 6.10 od	ler 6.10 a) und 6.10	b) wurden die fo	lgenden 🤊 ur	nd <i>§</i> -Werte empf	ohlen.
γ _{G.J.sup} = 1,35												
γ _{G.J.Inf} = 1.00												
γ _{Q,1} = 1,50 bei ur	ngünstiger Wirkun	g (O bei günstige	er Wirkung)									
$\gamma_{\rm Q,l}$ = 1,50 bei un	günstiger Wirkung	(0 bei günstige	r Wirkung)									
<i>ξ</i> = 0,85 (so dass	<i>ξγ</i> _{G,j,sup} = 0,85 ×	1,35 = 1,15)										
Zu <i>y</i> -Werten für e	ingeprägte Verfor	mungen siehe a	uch EN 199	1 bis EN 1999.								
ANMERKUNG 3 Die charakteristischen Werte aller ständigen Einwirkungen, die den gleichen Ursprung besitzen, werden mit $\gamma_{G, SUP}$ multipliziert, wenn ihre gesamte Auswirkung ungünstig ist; für den Fall, dass alle ständigen Einwirkungen eine günstige Wirkung verursachen, ist $\gamma_{G, Jrr}$ zu verwenden. Zum Beispiel können alle Einwirkungen aus dem Eigengewicht des Tragwerks als aus einem Ursprung herrührend betrachtet werden: dies odit auch bei Verwendung unterschiedlicher Materialien.												
ANMERKUNG 4 1,05 bis 1,15 ven	ANMERKUNG 4 Im Sonderfall können die Werte γ_G und γ_Q und γ_Q und die Werte γ_{Bd} für die Modellunsicherheit aufgeteilt werden. In den meisten Fällen kann für γ_{Bd} ein Wert im Bereich von 1,05 bis 1,15 verwendet werden, wobei diese Festlegung im Nationalen Anhang geändert werden kann.											
a Die verände	rlichen Einwirkung	en sind die in Ta	abelle 3.2	gegebenen.								

6.1.5.5 Nachweis für Grenzzustände der Gebrauchstauglichkeit

6.1.5.5.1 Nachweise

Nachzuweisen ist, dass:

$$E_d \le C_d \tag{G1.21}$$

C_d Bemessungswert der Grenze für das maßgebende Gebrauchstauglichkeitskriterium
 E_d Bemessungswert der Auswirkung der Einwirkung in der Dimension des Gebrauchstauglichkeitskriteriums

6.1.5.5.2 Kombination der Einwirkungen

Je nachdem wie sich die Anlage verhält, sind die Kombinationen der Einwirkungen zu wählen. Kombinationen für die Einwirkungen welche einen Gebrauchstauglichkeitsnachweis liefern, sind wie folgt definiert:

- a) Charakteristische Kombination
- b) Häufige Kombination
- c) Quasi ständige Kombination

zu a) (i.d.R. für nicht umkehrbare Auswirkungen)

$$E_{d} = E \{G_{k,j}; P; Q_{k,1}; \psi_{0,i} Q_{k,1}\} \qquad j \ge 1; i > 1$$
(Gl.22)

Die Kombination in der Klammer {} kann wie folgt ausgedrückt werden:

$$\sum_{(j\geq 1)} G_{k,j} + P_k + Q_{k,1} + \sum_{(i\geq 1)} \psi_{0,i} Q_{k,i}$$
(Gl.23)

<u>zu b)</u> (i.d.R. für umkehrbare Auswirkungen)

$$E_{d} = E \{G_{k,j}; P; \psi_{1,1}Q_{k,1}; \psi_{2,i}Q_{k,1}\} \qquad j \ge 1; i > 1$$
(G1.24)

Die Kombination in der Klammer {} kann wie folgt ausgedrückt werden:

$$\sum_{(j\geq 1)} G_{k,j} + P' + \psi_{1,1} Q_{k,1} + \sum_{(i\geq 1)} \psi_{2,i} Q_{k,i}$$
(GI.25)

<u>zu c</u>) (i.d.R. für Langzeitauswirkungen)

$$E_{d} = E \{G_{k,j}; P; \psi_{2,i}Q_{k,1}\} \qquad j \ge 1; i > 1$$
(Gl.26)

Die Kombination in der Klammer {} kann wie folgt ausgedrückt werden:

$$\sum_{(j\geq 1)} G_{k,j} + P' + \sum_{(i\geq 1)} \psi_{2,i} Q_{k,i}$$
(GI.27)

 Tabelle 6-5: Bemessungswerte der Einwirkungen für den Grenzzustand der Gebrauchstauglichkeit; Tabelle A1.4 aus [1]

Kombination	Ständige Ein	wirkungen G _d	Veränderliche Einwirkungen \mathcal{Q}_{d}			
	Ungünstig	Günstig	Leiteinwirkung	Weitere		
Charakteristisch	$G_{\rm k,j,sup}$	G _{k,j,inf}	$Q_{k,1}$	$\psi_{0,i} Q_{k,i}$		
Häufig	$G_{\rm k,j,sup}$	G _{k.j,inf}	<i>Ψ</i> 1,1 <i>Q</i> k,1	<i>Ψ</i> 2,i <i>Q</i> k,i		
Quasi-ständig	G _{k.j.sup}	G _{k.j.inf}	Ψ _{2,1} Q _{k,1}	$\psi_{2,i} \mathcal{Q}_{k,i}$		

6.2 EN 1991-1-1 – Einwirkungen auf Tragwerke – Allgemeine Einwirkungen auf Tragwerke – Eigengewicht und Nutzlasten

6.2.1 Einteilung der Einwirkungen

6.2.1.1 Eigengewicht

Unter dem Eigengewicht versteht man eine dauerhafte, nicht veränderliche ortsfeste Einwirkung auf ein Tragwerk bzw. auf eine Anlage. Kurzzeitig auftretende Einwirkungen sind dabei als außergewöhnliche Lasten zu erfassen und nicht permanent einwirkende Lasten sind als Nutzlasten zu deklarieren.

6.2.1.2 Nutzlasten

Unter Nutzlasten versteht man alle veränderlichen frei einwirkenden Lasten. Sie werden jedoch als quasi statische Lasten behandelt. Einwirkungen wie z.B. Explosionen oder Anprallen eines Kranes fallen in die Kategorie der außergewöhnlichen Einwirkungen.

6.2.1.3 Außergewöhnliche Lasten

Als außergewöhnliche Lasten werden all jene Einwirkungen bezeichnet, welche nicht als Eigengewicht bzw. Nutzlasten eingestuft werden.

6.2.2 Bemessungssituationen

6.2.2.1 Allgemein

Es sind für jede Bemessungssituation sämtliche Eigen-, Nutz- sowie außergewöhnliche Lasten zu definieren.

6.2.2.2 Eigengewicht

Für eine Lastkombination ist das gesamte Eigengewicht als eine einzeln auftretende Last anzusehen. Es sind bei der Bestimmung des Eigengewichtes ebenfalls die Medien an der Anlage (z.B. Wasserstände) zu berücksichtigen.

6.2.2.3 Nutzlasten

Für unterschiedliche Nutzungsarten ist bei der Bemessung der ungünstigste Lastfall anzusetzen. Für den Fall, dass neben der üblichen Nutzlast noch weitere veränderliche Einwirkungen (z.B. Windlasten, ...) auftreten, ist für den gewählten Lastfall eine Gesamtnutzlast anzuwenden.

6.3 EN 1991-3 – Einwirkungen auf Tragwerke – Einwirkungen infolge von Kranen

6.3.1 Einwirkungen aus Hebezeugen und Kranen auf Kranbahnträger

6.3.1.1 Einteilung der Einwirkungen

6.3.1.1.1 Allgemeines

Alle Einwirkungen auf einen Kranbahnträger welche von Kranen oder Hebezeugen resultieren, sind als veränderlich oder außergewöhnlich zu deklarieren.

6.3.1.1.2 Veränderliche Einwirkungen

Im Verlaufe des Arbeitens mit einem Kran ergeben sich mehrere zeitlich und örtlich veränderliche Einwirkungen, wie z.B. Hublasten, Beschleunigungs- und Verzögerungskräfte sowie Kräfte welche aus dem Schräglauf resultieren.

Man unterteilt die verschiedenen veränderlichen Kraneinwirkungen in vertikale und in horizontale veränderliche Einwirkungen.

Statische Lasten, welche beispielsweise aufgrund von Schwingungen einen dynamischen Anteil erhalten, sind mit einem dynamischen Faktor ϕ_i zu multiplizieren.

-															· · · ·
Γ _{φ.k} =	ψ _i ··г _i	K											(Gl	.28)
Б —	ωE														

$F_{\phi,k}$	charakteristischer Wert der Kraneinwirkung
φi	dynamischer Faktor; siehe Tabelle 6-6
\dot{F}_k	charakteristischer statischer Anteil der Kraneinwirkung

Die Kombination der einzelnen Kranlastanteile erfolgt durch die Bildung von sogenannten Lastgruppen. In den einzelnen Lastgruppen wird berücksichtigt, dass zum jeweiligen Zeitpunkt nur eine horizontale Krafteinwirkung auftritt; siehe Tabelle 6-7.

Dynamische Faktoren	Einfluss, der berücksichtigt wird	Anzuwenden auf
φ_1	 Schwingungsanregung des Krantragwerks infolge Anheben der Hublast vom Boden 	Eigengewicht des Krans
φ_2 oder	– dynamische Wirkungen beim Anheben der Hublast vom Boden	Hublast
φ_3	 dynamische Wirkungen durch plotzliches Loslassen der Nutzlast, wenn zum Beispiel Greifer oder Magneten benutzt werden 	
φ_4	 – dynamische Wirkung hervorgerufen durch Fahren auf Schienen oder Fahrbahnen 	Eigengewicht des Krans und Hublast
φ_5	 – dynamische Wirkungen verursacht durch Antriebskräfte 	Antriebskräfte
φ_6	 dynamische Wirkungen infolge einer Pr	Prüflast
φ_7	– dynamische elastische Wirkungen verursacht durch Pufferanprall	Pufferkräfte

Tabelle 6-6: Dynamische Faktoren φ_i; Tabelle 2.1 aus [3]

				Lastgruppen									
		Symbol	Abschnitt	ULS							Prüf- last	Au g wö li	ßer- e- bhn- ch
				1	2	3	4	5	6	7	8	9	10
1	Eigengewicht des Krans	Q _c	2.6	<i>9</i> 1	φ_1	1	φ_4	φ_4	φ_4	1	φ ₁	1	1
2	Hublast	Q _h	2.6	φ2	φ_3	-	φ4	φ4	φ_4	η ¹⁾	-	1	1
3	Beschleunigung der Kranbrücke	H _L , H _T	2.7	φ_5	φ_5	<i>φ</i> 5	<i>φ</i> 5	-	-	-	φ_5	-	-
4	Schräglauf der Kran- brücke	Hs	2.7	-	-	-	-	1	-	-	-	1	-
5	Beschleunigen oder Bremsen der Lauf-katze oder Hubwerk	H _{T3}	2.7	-	-	-	-	-	1	-	-	-	-
6	Wind in Betrieb	Fw*	Anhang A	1	1	1	1	1	-	-	1	-	-
7	Prüflast	QT	2.10	-	-	-	-	-	-	-	φ_6	-	-
8	Pufferkraft	H _B	2.11	-	-	-	-	-	-	-	-	φ_7	-
9	Kippkraft	H _{TA}	2.11	-	-	-	-	-	-	-	-	-	1
AN	IMERKUNG Zu Wind außer	halb Betrieb	, siehe Anhang	JA.									
1	η ist der Anteil der Hublast, der nach Entfernen der Nutzlast verbleibt, jedoch nicht im Eigengewicht des Krans enthalten ist.										t des Kra	ans	

Tabelle 6-7: Lastgruppen mit dynamischen Faktoren, die als eine einzige charakteristische Einwirkung anzusehen sind; Tabelle 2.2 aus [3]

6.3.1.1.3 Außergewöhnliche Einwirkungen

Außergewöhnliche Einwirkungen resultieren aus z.B. Puffer- oder Kippkräften. Die Kombination der einzelnen außergewöhnlichen Kräfte erfolgt durch die Bildung von sogenannten Lastgruppen; siehe Tabelle 6-7.

6.3.1.2 Lastanordnungen

6.3.1.2.1 Brückenlaufkrane

6.3.1.2.1.1 Vertikale Lasten

Die Bestimmung der vertikalen Lasten sollte unter Berücksichtigung der kritischen Lastanordnung erfolgen; siehe Abbildung 6-1 und 6-2.

Abbildung 6-1: Lastanordnung des belasteten Krans zur Bestimmung der maximalen Belastung des Kranbahnträgers; Bild 2.1 aus [3]

Abbildung 6-2: Lastanordnung des unbelasteten Krans zur Bestimmung der minimalen Belastung des Kranbahnträgers; Bild 2.1 aus [3]

Q _{r,max}	maximale Last je Rad des belasteten Krans
Q _{r,(max)}	zugehörige Last je Rad des belasteten Krans
$\sum Q_{r,max}$	Summe der maximalen Radlasten Q _{r,max} des belasteten Krans je Kranbahn
$\sum Q_{r,(max)}$	Summe der zugehörigen Radlasten Q _{r,(max)} des belasteten Krans je Kranbahn
Q _{r,min}	minimale Last je Rad des unbelasteten Krans
Q _{r,(min)}	zugehörige Last je Rad auf dem mehrbelasteten Kranbahnträger
$\sum Q_{r,min}$	Summe der minimalen Radlasten Q _{r,min} des unbelasteten Krans je Kranbahn
$\sum Q_{r,(min)}$	Summe der zugehörigen Radlasten Q _{r,(min)} des unbelasteten Krans je Kranbahn
Q _{h,nom}	Nennhublast

6.3.1.2.1.2 Horizontalkräfte

Folgende horizontale Kräfte, welche berücksichtigt werden müssen, treten einzeln in den oben genannten Lastgruppen auf:

- Kräfte aus Beschleunigung / Verzögerung; Abbildung 6-3
- Kräfte aus Schräglauf; Abbildung 6-4
- Pufferkräfte.

Abbildung 6-3: Anordnung der horizontalen Radlast infolge von Beschleunigung und Verzögerung längs und quer zur Fahrbahn; Bild 2.3 aus [3]

Kräfte aus dem Schräglauf treten bei konstanter Geschwindigkeit auf (siehe Abbildung 6-4).

Abbildung 6-4: Anordnung der horizontalen Radlast aus Schräglauf längs und quer zu Fahrbahn (links: mit zusätzlichen Führungsmitteln / rechts: Spurführung mittels Spurkränzen) ; Bild 2.4 aus [3]

- 1 Schiene i = 1
- 2 Schiene i = 2
- 3 Bewegungsrichtung
- 4 Radpaar j = 1
- 5 Radpaar j = 2
- 6 Führungsmittel

6.3.1.3 Vertikale Kranlasten – charakteristische Werte

Die charakteristischen Werte für die vertikalen Kranlasten werden im Allgemeinen nach Tabelle 6-8 bestimmt.

		Werte für dynamische Faktoren							
<i>\\ \ \ \</i> 1	0,9 < <i>φ</i> ₁ < 1	$0.9 < \varphi_1 < 1.1$							
	Die beiden Werte des S	Die beiden Werte 1,1 und 0,9 decken die unteren und oberen Werte des Schwingungsimpulses ab.							
φ_2	$\varphi_2 = \varphi_{2,\min}$	$\varphi_2 = \varphi_{2,\min} + \beta_2 \cdot v_h$							
	v _h - konstan	te Hubgeschwindigkeit in m/s							
	$\varphi_{2,\min}$ und j	$\varphi_{2,\min}$ und β_2 siehe Tabelle 5							
<i>φ</i> ₃	$\varphi_3 = 1 - \frac{\Delta m}{m} (1 + \beta_3)$								
	Dabei ist								
	Δm	der losgelassene oder abgesetzte Teil der Masse der Hublast;							
	m	die Masse der gesamten Hublast;							
	$\beta_{3} = 0,5$	bei Kranen mit Greifern oder ähnlichen Vorrichtungen für langsames Absetzen;							
	β ₃ = 1,0	bei Kranen mit Magneten oder ähnlichen Vorrichtungen für schnelles Absetzen;							
φ ₄	φ ₄ = 1,0	vorausgesetzt, dass die in EN 1993-6 festgelegten Toleranzen für Kranschienen eingehalten werden.							
ANMERKU eingehalten Modell best	ANMERKUNG Für den Fall, dass die in EN 1993-6 festgelegten Toleranzen nicht eingehalten werden, kann der Faktor φ_4 mit dem in CEN/TS 13001-2 enthaltenen Modell bestimmt werden.								

Tabelle 6-8: Dynamische Faktoren ϕ_i für vertikale Lasten; Tabelle 2.4 aus $\left[3\right]$

Hubklasse	β ₂	φ _{2,min}					
HC1	0,17	1,05					
HC2	0,34	1,10					
HC3	0,51	1,15					
HC4	0,68	1,20					
ANMERKUNG Die Krane werden zur Berücksichtigung der dyna- mischen Wirkungen beim Aufheben der Last vom Boden in die Hubklassen HC1 bis HC4 eingestuft. Die Auswahl der Hubklasse hängt vom jeweiligen Krantyp ab,							

Tabelle 6-9: Werte für β_2 und $\phi_{2,min};$ Tabelle 2.5 aus [3]

6.3.1.4 Horizontale Kranlasten – charakteristische Werte

6.3.1.4.1 Horizontale Kräfte H_{Li} längs der Fahrbahn und $H_{T,i}$ quer zur Fahrbahn aus Beschleunigung und Bremsen eines Krans

Horizontale Last entlang des Kranbahnträgers:

$$H_{L.i} = \varphi_5 \cdot K \cdot \frac{1}{n_r}$$

(Gl.29)

 n_r Anzahl der KranbahnträgerKAntriebskraft; siehe Kapitel 6.3.1.4.2 ϕ_5 dynamischer Faktor; siehe Tabelle 6-10iKranbahnträger (i=1;2)

Abbildung 6-5: Horizontale Lasten H_{L,i} längs der Fahrbahn; Bild 2.5 aus [3]

Durch die Antriebskraft K greift im Massenschwerpunkt ein Moment M an. Dieses Moment steht im Gleichgewicht mit den horizontalen Kräften quer zur Fahrbahn; siehe Abbildung 6-6.

$$H_{T.1} = \varphi_5 \cdot \zeta_2 \cdot \frac{M}{a}$$

$$H_{T.2} = \varphi_5 \cdot \zeta_1 \cdot \frac{M}{a}$$
(GI.30)
(GI.31)

$$\zeta_{1} = \frac{\sum_{i}^{Q_{r.max}}}{\sum_{i}^{Q_{r}}} \qquad \zeta_{2} = 1 - \zeta_{1}$$
;
$$(Gl.32); (Gl.33)$$

$$\sum_{i}^{Q_{r}} = \sum_{i}^{Q_{r.max}} + \sum_{i}^{Q_{r}(max)} \qquad (Gl.34)$$

$\sum_{i} Q_{r.max}$	siehe Abbildung 6-1	
$\sum_{i} Q_r(max)$	siehe Abbildung 6-1	
a	Abstand zwischen den Führungsrollen	
$M = K \cdot l_{S}$	Drehmoment verursacht durch Antriebskraft	(Gl.35)
$l_{s} = (\zeta_{1} - 0, 5) \cdot 1$	Hebelarm der Antriebskraft	(Gl.36)
1	Spannweite der Kranbrücke	
φ ₅ Κ	dynamischer Faktor; nach Tabelle 6-10 Antriebskraft; siehe Kapitel 6.3.1.4.2	

Abbildung 6-6: Horizontale Kräfte $H_{T,i}$ quer zur Fahrbahn; Bild 2.6 aus [3]

Zahlenwerte für für den Faktor <i>φ</i> 5	Anzuwenden auf
$\varphi_5 = 1,0$	Fliehkräfte
$1,0 \le \varphi_5 \le 1,5$	Systeme mit stetiger Veränderung der Kräfte
$1,5 \le \varphi_5 \le 2,0$	wenn plötzliche Veränderungen der Kräfte auftreten
$\varphi_5 = 3,0$	bei Antrieben mit beträchtlichem Spiel

Tabelle 6-10: Dynamischer Faktor ϕ_5

6.3.1.4.2 Antriebskraft K

Die Antriebskraft K kann wie folgt berechnet werden:

$$\mathbf{K} = \mathbf{K}_1 + \mathbf{K}_2 = \mu \sum \mathbf{Q}^*_{r,min}$$

(Gl.37)

 $\begin{array}{ll} \mu & \text{Reibungsbeiwert; } \mu=0,2 \text{ für Stahl/Stahl und } \mu=0,5 \text{ für Stahl/Gummi} \\ -\text{Einzelantrieb:} & \sum Q^*_{r,min} = m_w \ Q_{r,min}; \ \text{dabei ist } m_w \ \text{die Anzahl der einzeln angetriebenen} \\ & \text{Räder} \end{array}$

-Zentralantrieb: $\sum Q_{r,min}^* = Q_{r,min} + Q_{r,(min)}$

Abbildung 6-7: Definition der Antriebskraft K (links: Zentralantrieb / rechts: Einzelantrieb) ; Bild 2.7 aus [3]

6.3.1.4.3 Horizontale Kräfte Hs,i,jk und Führungskraft S infolge von Schräglauf eines Krans

Die Führungs- und Seitenkräfte können nach folgenden Gleichungen berechnet werden:

$S = f \; \lambda_{S,j} \sum Q_r$			(Gl.38)
$H_{S,1,j,L} = f \lambda_{S,1,j,L} \sum Q_r$	(j	angetriebene Radpaarachse)	(Gl.39)
$H_{S,2,j,L} = f \lambda_{S,2,j,L} \sum Q_r$	(j	angetriebene Radpaarachse)	(Gl.40)
$H_{S,1,j,T} = f \lambda_{S,1,j,T} \sum Q_r$			(Gl.41)
$H_{S,2,j,T}=f\lambda_{S,2,j,T}\sum Q_r$			(Gl.42)

f	Kraftschlussbeiwert
$\lambda_{S.2.j.k}$	Kraftbeiwert; nach Tabelle 6-13
i	Schienenachse
j	Radpaarachse
k	Kraftrichtung (L = Längsrichtung; T = Querrichtung)
Kraftschlussbeiwert:

$$f = 0,3 (1 - \exp(-250 \alpha)) \le 0,3$$
 (Gl.43)

α Schräglaufwinkel

Schräglaufwinkel:

 $\alpha = \alpha_F + \alpha_V + \alpha_0 \qquad \qquad \leq 0{,}015 \ rad$

 $\alpha_{\rm F}$, $\alpha_{\rm V}$ und α_0 ; nach Tabelle 6-11

v	Winkel α_i Mindestwerte von α_i						
α _F =	0,75x	$0,75x \ge 5 \text{ mm}$ bei Führungsrollen					
	-ext	$0,75x \ge 10$ mm bei Spurkränzen					
α _V =	<u>y</u> a	$y \ge 0.03b$ in mm bei Führungsrollen					
	ext	$y \ge 0,10b$ in mm bei Spurkränzen					
α0		α ₀ = 0,001					
Dabe	i ist						
a _{ext}	der Abstand der äußeren Führungsrollen bzw. Spurkränze an der Schiene;						
b	die Schienenkopfbreite;						
x	der Freiraum zwischen Schiene und Führungsmittel (Querschlupf);						
у	die Abnutzung der Schiene und Führungsmittel;						
α0	die Toleranz fü	ir Rad und Schienenrichtung.					

Tabelle 6-11: Definition von $\alpha_F \alpha_V$ und α_0 ; Tabelle 2.7 aus [3]

(Gl.44)

Abbildung 6-8: Definition des Winkels a und des Abstandes h; Bild 2.8 aus [3]

- 1 Schiene i = 1
- 2 Schiene i = 2
- 3 Bewegungsrichtung
- 4 Richtung der Schiene
- 5 Führungsmittel
- 6 Radpaar i
- 7 Momentaner Gleitpol

Befestig Rades be	ung des ezüglich	Kombination v	h			
seitliche	r Bewegung	gekoppelt (c)	unabhängig (i)			
Fest/Fest	t			$m\xi_1\xi_2\ell^2 + \Sigma e_j^2$		
FF				Σej		
Fest/Bew	veglich			$m\xi_1\ell^2 + \Sigma e_j^2$		
FM				Σ _{ej}		
Dabei ist						
h	der Abstand zwis	chen dem momentanen Gle	eitpol und dem relevanten Fi	ührungsmittel;		
m	die Anzahl der Pa	aare mit gekoppelten Räder	n (<i>m</i> = 0 für unabhängige R	adpaare);		
ξ1l	der Abstand zwischen dem momentanen Gleitpol und der Kranbahnachse 1;					
ξ ₂ ℓ	der Abstand zwischen dem momentanen Gleitpol und der Kranbahnachse 2;					
l	die Spannweite des Krans;					
e _j	der Abstand zwis	chen der Radpaarachse ju	nd dem relevanten Führung	smittel.		

Tabelle 6-12: Bestimmung des Abstandes h; Tabelle 2.8 aus [3]

System	$\lambda_{\mathrm{S},\mathrm{j}}$	$\lambda_{S,1,j,L}$	$\lambda_{S,1,j,T}$	λ _{S,2,j,L}	$\lambda_{S,2,j,T}$			
CFF	$\sum e_j$	$\frac{\xi_1\xi_2}{n}\frac{\ell}{h}$	$\frac{\xi_2}{n} \left(1 - \frac{e_j}{h} \right)$	$\frac{\xi_1\xi_2}{n}\frac{\ell}{h}$	$\frac{\xi_1}{n} \left(1 - \frac{e_j}{h} \right)$			
IFF	1- <u></u> 0		$\frac{\xi_2}{n} \left(1 - \frac{e_j}{h} \right)$	0	$\frac{\xi_1}{n} \left(1 - \frac{e_j}{h} \right)$			
CFM	$F_{-}\left(1-\frac{\sum e_{j}}{\sum}\right)$	$\frac{\xi_1\xi_2}{n}\frac{\ell}{h}$	$\frac{\xi_2}{n} \left(1 - \frac{e_j}{h} \right)$	$\frac{\xi_1\xi_2}{n}\frac{\ell}{h}$	0			
IFM	${}^{\circ 2} \left({}^{-} nh \right)$	0	$\frac{\xi_2}{n} \left(1 - \frac{e_j}{h} \right)$	0	0			
Dabei ist	:							
n	die Anzahl der Radpaar	e;						
$\xi_1 \ell$	der Abstand zwischen dem momentanen Gleitpol und der Kranbahnachse 1;							
ξ2l	der Abstand zwischen dem momentanen Gleitpol und der Kranbahnachse 2;							
l	die Spannweite des Krans;							
ej	der Abstand zwischen d	er Radpaarachse j un	d dem relevanten l	Führungsmittel;				
h	der Abstand zwischen d	em momentanen Glei	itpol und dem relev	anten Führungsn	nittel.			

Tabelle 6-13: Definition von $\lambda_{S,i,j,k}$ – Werten; Tabelle 2.9 aus [3]

6.4 EN 1993-1-1 – Bemessung und Konstruktion von Stahlbauten – Allgemeine Bemessungsregeln

6.4.1 Grundlagen für die Tragwerksplanung

6.4.1.1 Anforderungen

6.4.1.1.1 Grundlegende Anforderungen

Für die Tragwerksplanungen gilt grundsätzlich die DIN EN 1990 / 1991, wobei in diesem Abschnitt speziell auf Tragwerke aus Stahlbauteilen eingegangen wird.

6.4.1.1.2 Nutzungsdauer, Dauerhaftigkeit und Robustheit

Es sind folgende Punkte zu erfüllen um die Nutzungsdauer, Dauerhaftigkeit sowie Robustheit einer Anlage zu gewährleisten:

- Korrosionsgerechte Gestaltung
- Gestaltung auf ausreichende Ermüdungssicherheit
- Möglichst verschleißarme Konstruktionen
- Außergewöhnliche Einwirkungen sollten berücksichtigt werden
- Inspektions- und Wartungsmaßnahmen

6.4.1.2 Nachweisverfahren mit Teilsicherheitsbeiwerten

6.4.1.2.1 Bemessungswerte der Beanspruchbarkeit

Für Stahlbauteile gilt für die Bemessung der Beanspruchbarkeit die Definition nach EN 1990 (Gl.12):

$$R_d = \frac{R_k}{\gamma_M}$$

 $\begin{array}{ll} R_k & \mbox{charakteristischer Wert einer Beanspruchbarkeit} \\ \gamma_M & \mbox{globaler Teilsicherheitsbeiwert für die Beanspruchbarkeit} \end{array}$

6.4.2 Werkstoffe

6.4.2.1 Allgemeines

Alle angegebenen Werkstoffdaten werden nach diesem Abschnitt als charakteristische Werte behandelt.

6.4.2.2 Baustahl

6.4.2.2.1 Werkstoffeigenschaften

Die Streckgrenze f_y (R_{eH}) sowie die Zugfestigkeit f_u (R_m) werden entweder direkt aus der Produktnorm oder vereinfacht aus der Tabelle 6-14 entnommen.

		Erzeugn	isdicke <i>t</i>		
Werkstoffnorm	t < 40) mm	40 mm <	/ < 80 mm	
und Stahlsorte	f	f	f. f.		
	N/mm ²	N/mm ²	N/mm ²	N/mm ²	
EN 10025-2					
S 235	235	360	215	360	
S 275	275	430	255	410	
S 355	355	AC) 490 (AC	335	470	
S 450	440	550	410	550	
EN 10025-3					
S 275 N/NL	275	390	255	370	
S 355 N/NL	355	490	335	470	
S 420 N/NL	420	520	390	520	
S 460 N/NL	460	540	430	540	
EN 10025-4					
S 275 M/ML	275	370	255	360	
S 355 M/ML	355	470	335	450	
S 420 M/ML	420	520	390	500	
S 460 M/ML	460	540	430	530	
EN 10025-5					
S 235 W	235	360	215	340	
S 355 W	355	AC) 490 (AC	335	490	
EN 10025-6					
S 460 Q/QL/QL1	460	570	440	550	
EN 10210-1					
S 235 H	235	360	215	340	
S 275 H	275	430	255	410	
S 355 H	355	510	335	490	
S 275 NH/NLH	275	390	255	370	
S 355 NH/NLH	355	490	335	470	
S 420 NH/NLH	420	540	390	520	
S 460 NH/NLH	460	560	430	550	
EN 10219-1					
S 235 H	235	360			
S 275 H	275	430			
S 355 H	355	510			
S 275 NH/NLH	275	370			
S 355 NH/NLH	355	470			
S 460 NH/NLH	460	550			
S 275 MH/MLH	275	360			
S 355 MH/MLH	355	470			
S 420 MH/MLH	420	500			
S 460 MH/MLH	460	530			

Tabelle 6-14: Nennwerte der Streckgrenze f_y und Zugfestigkeit f_u für warmgewalzten Baustahl; Tabelle 3.1 aus [4]

6.4.2.2.2 Anforderungen an die Duktilität

Mindestduktilitätswerte für Stahl:

- $f_u / f_y \ge 1,10$
- Bruchdehnung mindestens 15 %; 5,65 $\sqrt{A0}$;

A₀ entspricht der Ausgangsquerschnittsfläche

• Gleichmaßdehnung $\epsilon_u \ge 15 \epsilon_y$; ϵ_u ist der Zugfestigkeit f_u zugeordnet; Fließdehnung $\epsilon_y = f_y / E$

Bei den angegebenen Stahlsorten aus der Tabelle 6-14 dürfen jene Anforderungen als erfüllt angesehen werden.

6.4.2.2.3 Bemessungswerte der Materialkonstanten

Für die Bemessung sind folgende Werte anzunehmen:

• Elastizitätsmodul $E = 210\ 000\ \text{N/mm}^2$ • Schubmodul $G = \overline{2(1 + \nu)} \approx 81\ 000\ \text{N/mm}^2$ • Poissonsche Zahl $\nu = 0,3$ • Wärmeausdehnungskoeffizient $\alpha = 12\ 10^{-6}\ 1/\text{K}$ (für T $\leq 100^{\circ}\text{C}$)

6.4.3 Tragwerksberechnung

6.4.3.1 Statische Systeme

Das statische Berechnungsmodell ist so zu wählen, dass es für die geforderten Grenzzustände sowie für das Tragwerksverhalten im betrachteten Grenzzustand mit der vorgegebenen Genauigkeit ausreicht.

6.4.3.2 Untersuchung von Gesamttragwerken

6.4.3.2.1 Einflüsse der Tragwerksverformung

Die Berechnung der Schnittgrößen kann nach folgenden beiden Theorien erfolgen:

- Theorie I. Ordnung; über die Ausgangsgeometrie des Tragwerks
- Theorie II. Ordnung; Berücksichtigung der Tragwerksverformung

Wenn die durch die Verformung hervorgerufene Erhöhung der Schnittgröße das Tragwerksverhalten maßgeblich beeinflusst, so ist das Tragwerk nach der Theorie II. Ordnung zu bemessen. Können die durch die Verformung hervorgerufenen Erhöhungen der Schnittgrößen jedoch vernachlässigt werden, so ist die Theorie I. Ordnung zulässig, wenn folgende Bedingungen erfüllt sind:

• $\alpha_{cr} = \frac{Fcr}{FEd}$	≥10	für die elastische Berechnung	(Gl.45)
• $\alpha_{\rm cr} = \frac{Fcr}{FEd}$	≥15	für die plastische Berechnung	(Gl.46)

α_{cr}	Faktor, um	den	der	Bemessungswert	der	Belastung	erhöht	werden	muss	um	die	ideale
	Verzweigun	gslast	t (kri	itische Last) zu er	reich	nen						

F_{Ed} Bemessung der Einwirkung auf das Tragwerk

F_{cr} ideale Verzweigungslast des Gesamttragwerks; es ist von der elastischen Anfangssteifigkeit auszugehen

6.4.3.2.2 Stabilität von Tragwerken

Ist die Auslegung eines Bauwerks nach der Theorie I. Ordnung zulässig, so dürfen die Schnittgrößen ohne auftretende Imperfektionen ermittelt werden.

6.4.3.3 Imperfektionen

6.4.3.3.1 Grundlagen

Imperfektionen werden angesetzt um Einflüsse wie z.B. Eigenspannungen, geometrische Schiefstellungen, Abweichungen von der Geradheit sowie grundlegenden Toleranzen, welche größer sind als jene nach EN 1090-2, zu berücksichtigen.

6.4.3.3.2 Imperfektionen für die Tragwerksberechnung

Weist das Tragwerk aufgrund seiner Eigenform eine anfängliche Schiefstellung auf, so kann bei der Berechnung der Einfluss der Imperfektionen über eine äquivalente Ersatzverformung berücksichtigt werden. Dabei werden die Imperfektionen wie folgt ermittelt:

Globale Anfangsschiefstellung, siehe Abbildung 6-9:

$$\Phi = \Phi_0 \alpha_h \alpha_m \tag{G1.47}$$

$$\Phi_0$$
 Ausgangswert: $\Phi_0 = 1/200$ (Gl.48)

 α_h Abminderungsfaktor für die Höhe h von Stützen: $\alpha_h = \frac{2}{\sqrt{h}}$ jedoch $2/3 \le \alpha_h \le 1,0$ (Gl.49)

- h Höhe des Tragwerks [m]
- $\alpha_{\rm m}$ Abminderungsfaktor für die Anzahl der Stützen in einer Reihe: $\alpha_{\rm m} = \left[0, 5\left(1 + \frac{1}{m}\right)\right]$ (Gl.50)
- m Anzahl der Stützen in einer Reihe; lediglich Stützen mit einer Vertikalbelastung größer als 50% der durchschnittlichen Stützlast

Abbildung 6-9: Äquivalente Schiefstellung; Bild 5.2 aus [4]

Abbildung 6-10: Ersatz der Vorverformung durch äquivalente horizontale Ersatzlasten; Bild 5.4 aus [4]

Anfangsschiefstellungen dürfen wie in Abbildung 6-10 durch äquivalente Ersatzlasten an den Stützen ersetzt werden. Die auftretenden Verformungen sind für alle maßgebenden Richtungen zu untersuchen, jedoch immer nur für eine Richtung zugleich.

Anfangsschiefstellungen dürfen vernachlässigt werden wenn folgende Beziehung erfüllt wird:

 $H_{\rm Ed} \ge 0,15 V_{\rm Ed}$

(Gl.51)

6.4.3.4 Berechnungsmethoden

6.4.3.4.1 Allgemeines

Ermittlung der Schnittgrößen entweder nach:

- Elastischen Tragwerksberechnung oder
- Plastischen Tragwerksberechnung

Die Anwendung der elastischen Tragwerksberechnung ist immer gültig, wogegen eine plastische Tragwerksberechnung nur dann angewendet werden darf, wenn das Bauteil über ausreichend Rotationskapazität an den Stellen verfügt an denen sich ein plastisches Gelenk bildet.

6.4.3.4.2 Elastische Tragwerksberechnung

Bei der elastischen Tragwerksberechnung verlaufen die Spannungs-Dehnungsbeziehungen in jedem Spannungszustand linear. Die Berechnung darf ebenfalls dort angewandt werden wo die Beanspruchbarkeit durch lokales Beulen begrenzt wird.

6.4.3.4.3 Plastische Tragwerksberechnung

Die plastische Tragwerksberechnung berücksichtigt bei der Bemessung des Tragwerkes den Einfluss aus dem nichtlinearen Werkstoffverhalten.

6.4.3.5 Klassifizierung von Querschnitten

6.4.3.5.1 Grundlagen

Durch die Klassifizierung werden die Querschnitte je nach zulässiger Beanspruchbarkeit einer der folgenden vier Querschnittsklassen zugeordnet.

6.4.3.5.2 Klassifizierung

Die Querschnitte werden nach dem c/t-Verhältnis ihrer druckbeanspruchten Teile klassifiziert. Es werden vier Querschnittsklassen definiert:

- "Querschnitte der Klasse 1 können plastische Gelenke oder Fließzonen mit ausreichender plastischer Momententragfähigkeit und Rotationskapazität für die plastische Berechnung ausbilden";
- "Querschnitte der Klasse 2 können die plastische Momententragfähigkeit entwickeln, haben aber aufgrund örtlichen Beulens nur eine begrenzte Rotationskapazität";
- "Querschnitte der Klasse 3 erreichen für eine elastische Spannungsverteilung die Streckgrenze in der ungünstigsten Querschnittsfaser, können aber wegen örtlichen Beulens die plastische Momententragfähigkeit nicht entwickeln";
- "Querschnitte der Klasse 4 sind solche, bei denen örtliches Beulen vor Erreichen der Streckgrenze in einem oder mehreren Teilen des Querschnitts auftritt".

In den folgenden Tabellen (Tabelle 6-15, 6-16 und 6-17) sind die Grenzwerte für die druckbeanspruchten Querschnittsteile für die Klassen 1, 2 und 3 aufgelistet. Jene Querschnittsteile, welche die Anforderungen der Klasse 3 nicht mehr erfüllen, müssen als Klasse 4 Querschnitte eingestuft werden.

Tabelle 6-15: Maximales c/t-Verhältnis druckbeanspruchter Querschnittsteile (1/3) ; Tabelle 5.2 aus [4]

	Einseitig gestützte Flansche							
								C
	auf	f Druck			auf beanspi	Druck und	Biegung schnittsteile	
Klasse	bean Querso	spruchte chnittsteile		im	freier Rand Druckberei	ch	freier R im Zugbe	and ereich
Spannungs- verteilung über Querschnittsteile (Druck positiv)		+ C		-	+ ac + +	•	+ ac +	-
1	ci	lt ≤ 9ε			$clt \leq \frac{9\varepsilon}{\alpha}$		$c t \leq \frac{9\varepsilon}{\alpha\sqrt{\alpha}}$	
2	cli	t≤ 10 <i>ε</i>		$c/t \leq \frac{10\varepsilon}{\alpha}$		-	$c/t \leq \frac{10\varepsilon}{\alpha\sqrt{\alpha}}$	
Spannungs- verteilung über Querschnittsteile (Druck positiv)	gs- über tsteile sitiv)		+ + C +		-			
3 <i>clt</i> ≤ 14 <i>ε</i>				Für	$c/t \le 21\varepsilon$ k_{σ} siehe EN	√ <i>k_σ</i> 1993-1-5		
$\varepsilon = \sqrt{23}$	$5/f_{y}$	fy ε		235 1.00	275 0,92	355 0,81	420 0,75	460 0.71

Tabelle 6-16: Maximales c/t-Verhältnis druckbeanspruchter Querschnittsteile (2/3); Tabelle 5.2 aus [4]

Tabelle 6-17: Maximales c/t-Verhältnis druckbeanspruchter Querschnittsteile (3/3); Tabelle 5.2 aus [4]

6.4.4 Grenzzustände der Tragfähigkeit

6.4.4.1 Allgemeines

Für die Teilsicherheitsbeiwerte nach diesem Abschnitt werden, falls nicht anders vorgeschrieben, folgende Werte empfohlen:

$\gamma_{M0} = 1,00$	Teilsicherheitsbeiwert für die Beanspi	ruchbarkeit von Querschnitten (unabhängig
	von seiner Querschnittsklasse)	
γ _{M1} =1,00	Teilsicherheitsbeiwert für die I	Beanspruchbarkeit von Bauteilen bei
	Stabilitätsversagen	
γ _{M2} =1,25	Teilsicherheitsbeiwert für die Be	anspruchbarkeit von Querschnitten bei
	Bruchversagen infolge Zugbeanspruch	lung

6.4.4.2 Beanspruchbarkeit von Querschnitten

6.4.4.2.1 Allgemeines

Es darf in keinem Querschnitt der Bemessungswert der Belastung die zulässigen Bemessungswerte überschreiten. Für den Nachweis mit der Elastizitätstheorie darf jenes Fließkriterium für einen kritischen Punkt eines Querschnittes verwendet werden:

$$\left(\frac{\sigma_{x.Ed}}{\frac{f_{y}}{\gamma_{M0}}}\right)^{2} + \left(\frac{\sigma_{z.Ed}}{\frac{f_{y}}{\gamma_{M0}}}\right)^{2} - \left(\frac{\sigma_{x.Ed}}{\frac{f_{y}}{\gamma_{M0}}}\right) \cdot \left(\frac{\sigma_{z.Ed}}{\frac{f_{y}}{\gamma_{M0}}}\right) \le 1$$
(GI.52)

$\boldsymbol{\sigma}_{x.Ed}$	Bemessungswert der Normalspannung in Längsrichtung
$\boldsymbol{\sigma}_{z.Ed}$	Bemessungswert der Normalspannung in Querrichtung
τ_{Ed}	Bemessungswert der Schubspannung

Als konservative Lösung kann für den Ausnutzungsgrad folgende Näherung herangezogen werden:

N _{Ed} M _{y.Ed} M _{z.Ed}	
$\frac{1}{N_{Rd}} + \frac{1}{M_{v,Rd}} + \frac{1}{M_{z,Rd}} \le 1$	(Cl 53)
y	(01.55)

N_{Rd}; M_{v,Rd} und M_{z,Rd} Bemessungswerte der Tragfähigkeit

6.4.4.2.2 Querschnittswerte

- a) Bruttoquerschnitte; Nennwerte der Abmessungen Löcher von z.B. Verbindungsmittel müssen nicht abgezogen werden, jedoch größere Öffnungen
- b) Nettofläche; Bruttoquerschnittsfläche abzüglich Löcher von z.B. Verbindungsmittel
- c) Mittragende Breite; ist in EN 1993-1-5 geregelt (findet Anwendung bei Querschnitten der Klasse 4 – wird jedoch nicht n\u00e4her ausgef\u00fchrt; im weiteren Verlauf wird mit dem Verfahren der reduzierten Spannungen gerechnet, wodurch die Zul\u00e4ssigkeit von Querschnitten der Klasse 3 gegeben ist)

6.4.4.3 Zugbeanspruchung

Es ist folgender Nachweis zu erfüllen:

$$\frac{N_{Ed}}{N_{t.Rd}} \le 1$$

(Gl.54)

N_{Ed} Bemessungswert der einwirkenden Zugkraft

- N_{t,Rd} Bemessungswert der Zugbeanspruchbarkeit; es ist i.d.R. der kleinere der folgenden Werte anzusetzen:
 - a) der Bemessungswert der plastischen Beanspruchbarkeit des Bruttoquerschnitts:

$$N_{pl.Rd} = \frac{A \cdot f_y}{\gamma_{M0}}$$
(Gl.55)

b) der Bemessungswert der Zugbeanspruchbarkeit des Nettoquerschnitts längs der kritischen Risslinie durch die Löcher:

$$N_{u.Rd} = \frac{0.9 \cdot A_{net} \cdot f_u}{\gamma_{M2}}$$
(G1.56)

6.4.4 Druckbeanspruchung

Es ist folgender Nachweis zu erfüllen:

$$\frac{N_{\rm Ed}}{N_{\rm c.Rd}} \le 1 \tag{G1.57}$$

N _{Ed}	Bemessungswert der einwirkenden Druckkraft	ť	
N _{c,Rd}	Bemessungswert der Druckbeanspruchbarkeit		
	Querschnitte der Klasse 1, 2 oder 3:	$N_{c.Rd} = \frac{A \cdot f_y}{\gamma_{M0}}$	(Gl.58)
	Ouerschnitte der Klasse 4:	$N_{c.Rd} = \frac{A_{eff} \cdot f_y}{\gamma_{M0}}$	(Gl.59)

Sind Löcher mit Verbindungsmitteln gefüllt, so müssen sie vom Querschnitt nicht abgezogen werden, außer übergroße bzw. Langlöcher nach EN 1090.

6.4.4.5 Biegebeanspruchung

Es ist folgender Nachweis zu erfüllen:

 $\frac{M_{\rm Ed}}{M_{\rm c.Rd}} \le 1 \tag{Gl.60}$

 M_{Ed} Bemessungswert der einwirkenden Biegemomente $M_{c,Rd}$ Bemessungswert der Biegebeanspruchbarkeit:

Querschnitte der Klasse 1 oder 2: $M_{c.Rd} = \frac{W_{pl} \cdot f_y}{\gamma_{M0}}$ (Gl.61)Querschnitte der Klasse 3: $M_{c.Rd} = M_{el.Rd} = \frac{W_{el.min} \cdot f_y}{\gamma_{M0}}$ (Gl.62)Querschnitte der Klasse 4: $M_{c.Rd} = \frac{W_{eff.min} \cdot f_y}{\gamma_{M0}}$ (Gl.63)W_{el,min} und W_{eff,min}Widerstandsmomente für die Querschnittsfaser mit der maximalen Normalspannung

Für zweiachsige Biegung ist das Verfahren nach 6.4.4.6 anzuwenden. Löcher für Verbindungsmittel dürfen im zugbeanspruchten Flansch vernachlässigt werden, wenn

folgende Bedingung erfüllt ist:

$\underline{\mathbf{A}_{f.net} \cdot 0, 9 \cdot \mathbf{f}_u}$	$\geq \frac{A_f \cdot fy}{f}$	
γ_{M2}	γ_{M0}	(Gl.64)

A_f Fläche des zugbeanspruchten Flansches

6.4.4.6 Beanspruchung aus Biegung und Normalkraft

Für Querschnitte der Klasse 3 ist folgender Nachweis zu erfüllen:

$$\sigma_{x.Ed} \le \frac{f_y}{\gamma_{M0}}$$
(Gl.65)

 σ_{xEd} Bemessungswert der größten einwirkenden Normalspannung aus Biegung und Normalkraft

6.4.5 Stabilitätsnachweis

6.4.5.1 Gleichförmige Bauteile mit planmäßig zentrischem Druck

6.4.5.1.1 Biegeknicken

Es ist folgender Nachweis zu erfüllen:

$$\frac{N_{Ed}}{N_{b.Rd}} \le 1$$
(Gl.66)

Seite 51

N_{Ed} Bemessungswert der einwirkenden Druckkraft $N_{b,Rd}$ Bemessungswert der Biegeknickbeanspruchbarkeit

	$N_{b Rd} = \frac{\chi \cdot A \cdot f_y}{2}$	
Querschnitte der Klasse 1, 2 und 3	γ_{M1}	(Gl.67)
	$N_{b, P, d} = \frac{\chi \cdot A_{eff} \cdot f_{y}}{2}$	
Querschnitte der Klasse 4	γ_{M1}	(Gl.68)

6.4.5.1.2 Knicklinien

Für eine zentrische Belastung ist der Abminderungsbeiwert χ wie folgt zu bestimmen:

$$\chi = \frac{1}{\Phi + \sqrt{\Phi^2 - \lambda^2}} \quad \text{aber} \quad \chi \le 1$$
(GI.69)

$$\Phi = 0, 5 \cdot \left[1 + \alpha \cdot (\lambda - 0, 2) + \lambda^2 \right]$$
(G1.70)

Der Abminderungsbeiwert χ kann ebenfalls aus der Abbildung 6-11 herausgelesen werden.

Φ	Funktion zur Bestimmung des Abminderungsbeiwertes χ	
λ	Schlankheitsgrad	
	für Querschnitte der Klasse 1, 2 und 3 $\lambda = \sqrt{\frac{A \cdot f_y}{N_{cr}}}$	(Gl.71)
	für Querschnitte der Klasse 4 $\lambda = \sqrt{\frac{N_{cr}}{N_{cr}}}$	(Gl.72)
α	Imperfektionsbeiwert, lt. Tabelle 6-18	
N _{cr}	ideale Verzweigungslast (kritische Last) [10]	
	$N_{cr} = \frac{\pi^2 \cdot E \cdot I}{L_{cr}^2}$	(Gl.73)
L _{cr}	Knicklänge	. ,
Ι	Axiale Flächenträgheitsmoment	

$$\lambda \leq 0.2 \text{ oder } N_{Ed}/N_{cr} \leq 0.04$$

Biegeknicknachweis darf entfallen; es sind ausschließlich Querschnittsnachweise zu führen

Knicklinie	a ₀	а	b	с	d
Imperfektionsbeiwert α	0,13	0,21	0,34	0,49	0,76

 Tabelle 6-18: Imperfektionsbeiwerte der Knicklinie; Tabelle 6.1 aus [4]

Abbildung 6-11: Knicklinien; Bild 6.4 aus [4]

Tabelle 6-19: Auswahl der Knicklinie eines Querschnitts; Tabelle 6.2 aus [4]

6.4.5.1.3 Schlankheitsgrad für Biegeknicken

Querschnitte der Klasse 4

Der Schlankheitsgrad ist nach folgender Gleichung zu ermitteln:

• Querschnitte der Klasse 1, 2 und 3
$$\lambda = \sqrt{\frac{A \cdot f_y}{N_{cr}}} = \frac{L_{cr}}{i} \cdot \frac{1}{\lambda_1}$$
(Gl.74)

$$\lambda = \sqrt{\frac{A_{eff} f_y}{N_{cr}}} = \frac{L_{cr}}{i} \cdot \frac{\sqrt{\frac{A_{eff}}{A}}}{\lambda_1}$$
(Gl.75)

 $\begin{array}{ccc} L_{cr} & \text{Knicklänge} \\ i & \text{Trägheitsradius unter Verwendung des Bruttoquerschnittes} \\ \lambda_{1} = \pi \cdot \sqrt{\frac{E}{f_{y}}} = 93, 9 \cdot \epsilon & \epsilon = \sqrt{\frac{235 - \frac{N}{m^{2}}}{\frac{mm^{2}}{f_{y}}}} \\ & \text{(Gl.76); (Gl.77)} \end{array}$

6.4.5.1.4 Schlankheitsgrad für Drillknicken oder Biegedrillknicken

Der Schlankheitsgrad ist nach folgender Gleichung zu ermitteln:

Querschnitte der Klasse 1, 2 und 3

$$\lambda_{T} = \sqrt{\frac{A \cdot f_{y}}{N_{cr}}}$$

$$\lambda_{T} = \sqrt{\frac{A_{eff} \cdot f_{y}}{N_{cr}}}$$
(Gl.78)
(Gl.79)

$N_{cr} = N_{cr,TF}$	jedoch	$N_{cr} < N_{cr,T}$
N _{cr,TF}	ideale Verzweigu	ngslast für Biegedrillknicken
N _{cr,T}	ideale Verzweigu	ngslast für Drillknicken

6.4.5.2 Gleichförmige Bauteile mit Biegung um die Hauptachse

6.4.5.2.1 Biegedrillknicken

Es ist folgender Nachweis zu erfüllen:

$$\frac{M_{Ed}}{M_{b,Rd}} \le 1$$
(G1.80)
$$M_{b,Rd} = \chi_{LT} W_{y} \cdot \frac{f_{y}}{\gamma_{M1}}$$
(G1.81)

Seite 55

M _{Ed}	Bemessungswert des einwirkenden Bieg	emomentes
M _{b,Rd}	Bemessungswert der Biegedrillknickbea	nspruchbarkeit
Wy	Widerstandsmoment	
-	• Querschnitte der Klasse 1 oder 2:	$\mathbf{W}_{y} = \mathbf{W}_{p1,y}$
	• Querschnitte der Klasse 3:	$W_y = W_{e1,y}$
	• Querschnitte der Klasse 4:	$W_y = W_{eff,y}$
χlt	Abminderungsfaktor	

6.4.5.2.2 Knicklinie für das Biegedrillknicken – Allgemeiner Fall

Die Ermittlung der Knicklinie ist mit Ausnahme von 6.4.5.2.3 nach folgender Gleichung zu ermitteln:

$$\chi_{LT} = \frac{1}{\Phi_{LT} + \sqrt{\Phi_{LT}^2 - \lambda_{LT}^2}} \qquad \text{jedoch} \qquad \chi_{LT} \le 1$$
(G1.82)

$$\Phi_{LT} = 0, 5 \cdot \left[1 + \alpha_{LT} \left(\lambda_{LT} - 0, 2 \right) + \lambda_{LT}^{2} \right]$$
(G1.83)

$$\lambda_{\rm LT} = \sqrt{\frac{W_{\rm y} \cdot f_{\rm y}}{M_{\rm cr}}} \tag{G1.84}$$

 α_{LT} Imperfektionsbeiwert

- M_{cr} ideales Biegedrillknickmoment; Ermittlung unter Berücksichtigung des Bruttoquerschnittes $M_{cr} = \alpha_{cr} M$ [11] (Gl.85)
- α_{cr} Verzweigungslastfaktor; Ermittlung mittels FEM
- M einwirkendes Biegemoment

Knicklinie	а	b	с	d
Imperfektionsbeiwert at_T	0,21	0,34	0,49	0,76

Tabelle 6-20: Empfohlene Imperfektionsbeiwerte der Knicklinien für das Biegedrillknicken; Tabelle 6.3 aus [4]

Querschnitt	Grenzen	Knicklinien
gewalztes I-Profil	$h/b \le 2$ h/b > 2	a b
geschweißtes I-Profil	$h/b \le 2$ $h/b > 2$	c d
andere Querschnitte	_	d

Tabelle 6-21: Empfohlene Knicklinien für das Biegedrillkicken nach Gl.81; Tabelle 6.4 aus [4]

;

$$\lambda_{LT} \leq \lambda_{LT,0} \text{ oder } M_{Ed}/M_{cr} \leq {\lambda_{LT,0}}^2$$

Biegeknicknachweis darf entfallen; es sind ausschließlich Querschnittsnachweise zu führen

6.4.5.2.3 Biegedrillknicken gewalzter Querschnitte oder gleichartiger geschweißter Querschnitte

Die Ermittlung der Knicklinie ist nach folgender Gleichung zu führen:

$$\chi_{LT} = \frac{1}{\Phi_{LT} + \sqrt{\Phi_{LT}^2 - \beta \cdot \lambda_{LT}^2}} \qquad jedoch \qquad \chi_{LT} \le \frac{1}{\lambda_{LT}^2} \qquad (Gl.86)$$
$$\Phi_{LT} = 0.5 \cdot \left[1 + \alpha_{LT} \left(\lambda_{LT} - \lambda_{LT.0} \right) + \beta \lambda_{LT}^2 \right] \qquad (Gl.87)$$

 $\lambda_{LT,0} = 0.4$ (Höchstwert) $\beta = 0.75$ (Mindestwert)

Querschnitt	Grenzen	Biegedrillknicklinien
anualates I Drefi	$h/b \leq 2$	b
gewaiztes I-Prolii	h/b > 2	с
geoglywei@teo I Drofi	$h/b \leq 2$	с
geschweißtes I-Prolii	h/b > 2	d

Tabelle 6-22: Empfohlene Biegedrillknicklinien nach Gl.84; Tabelle 6.5 aus [4]

Modifizierung des Abminderungsfaktors um Momentenverteilung zu berücksichtigen:

$$\chi_{\text{LT.mod}} = \frac{\chi_{\text{LT}}}{f} \qquad \text{jedoch} \qquad \qquad \chi_{\text{LT.mod}} \le \frac{1}{\chi_{\text{LT}}}$$
(G1.88)

$$f = 1 - 0, 5 \cdot (1 - k_c) \cdot [1 - 2 \cdot (\lambda_{LT} - 0, 8)^2]$$
 jedoch $f \le 1$ (Gl.89)

Momentenverteilung	k _e
$\psi = 1$	1,0
$-1 \le \psi \le 1$	<u>1</u> 1,33 – 0,33ψ
	0,94
	0,90
	0,91
	0,86
	0,77
	0,82

Tabelle 6-23: Empfohlene Korrekturbeiwerte kc; Tabelle 6.6 aus [4]

6.4.5.3 Auf Biegung und Druck beanspruchte gleichförmige Bauteile

Es ist folgender Nachweis zu erfüllen:

.

χlt

k_{yy}, k_{yz}, k_{zy}, k_{zz}

$$\frac{\frac{N_{Ed}}{\frac{\chi_{y} \cdot N_{Rk}}{\gamma_{M1}}} + k_{yy} \cdot \frac{M_{y,Ed} + \Delta M_{y,Ed}}{\chi_{LT} \cdot \frac{M_{y,Rk}}{\gamma_{M1}}} + k_{yz} \cdot \frac{M_{z,Ed} + \Delta M_{z,Ed}}{\frac{M_{z,Rk}}{\gamma_{M1}}} \leq 1$$

$$\frac{N_{Ed}}{\frac{\chi_{z} \cdot N_{Rk}}{\gamma_{M1}}} + k_{zy} \cdot \frac{M_{y,Ed} + \Delta M_{y,Ed}}{\chi_{LT} \cdot \frac{M_{y,Rk}}{\gamma_{M1}}} + k_{zz} \cdot \frac{M_{z,Ed} + \Delta M_{z,Ed}}{\frac{M_{z,Rk}}{\gamma_{M1}}} \leq 1$$

$$\frac{N_{Ed}, M_{y,Ed} \text{ und } M_{z,Ed}}{\Delta M_{y,Ed}, \Delta M_{z,Ed}} \quad Bemessungs werte der einwirkenden Druckkraft und Momente Momente aus der Verschiebung der Querschnittsachsen; Querschnittsklasse 4 nach Tabelle 6-24$$

$$\chi_{y} \text{ und } \chi_{z} \qquad Abminderungsbeiwerte für Biegeknicken nach 6.4.5.1 \\ Abminderungsbeiwert für Biegedrillknicken nach 6.4.5.2$$

Interaktionsfaktoren nach Tabelle 6-25

Klasse	1	2	3	4
$A_{\rm i}$	Α	Α	Α	A_{eff}
Wy	$W_{\mathrm{pl,y}}$	$W_{\mathrm{pl,y}}$	$W_{el,y}$	$W_{\rm eff,y}$
Wz	$W_{\mathrm{pl,z}}$	$W_{\mathrm{pl,z}}$	$W_{el,z}$	$W_{\rm eff,z}$
$\Delta M_{\rm y, Ed}$	0	0	0	$e_{ m N,y}~N_{ m Ed}$
$\Delta M_{ m z, Ed}$	0	0	0	$e_{\mathrm{N,z}} \; N_{\mathrm{Ed}}$

Tabelle 6-24: Werte für N_{Rk} = $f_y \; A_i$; $M_{i,Rk}$ = $f_y \; W_i$ und $\Delta M_{i,Ed}$; Tabelle 6.7 aus [4]

Bemessungsannahmen				
Interaktions- beiwerte	Art des Querschnitts	elastische Querschnittswerte der Klasse 3, Klasse 4	plastische Querschnittswerte der Klasse 1, Klasse 2	
k _{yy}	I-Quersc <mark>h</mark> nitte rechteckige Hohlquers <mark>ch</mark> nitte	$\begin{split} & C_{\rm my} \!\! \left(1\! + \! 0.6 \overline{\lambda}_{\rm y} \frac{N_{\rm Ed}}{\chi_{\rm y} N_{\rm Rk} / \gamma_{\rm MI}}\right) \\ & \leq C_{\rm my} \!\! \left(1\! + \! 0.6 \frac{N_{\rm Ed}}{\chi_{\rm y} N_{\rm Rk} / \gamma_{\rm MI}}\right) \end{split}$	$\begin{split} & C_{\text{my}}\!\!\left(1\!+\!\left(\!\overline{\lambda}_{\text{y}}\!-\!0,\!2\right)\!\!\frac{N_{\text{Ed}}}{\chi_{\text{y}}N_{\text{Rk}}/\gamma_{\text{MI}}}\right) \\ & \leq & C_{\text{my}}\!\left(1\!+\!0,\!8\frac{N_{Ed}}{\chi_{\text{y}}N_{\text{Rk}}/\gamma_{\text{MI}}}\right) \end{split}$	
k _{yz}	I-Querschnitte rechteckige Hohlquerschnitte	k _{zz}	0,6 k _{zz}	
k _{zy}	I-Querschnitte rechteckige Hohlquerschnitte	0,8 k _{yy}	0,6 k _{yy}	
$k_{zz} = \frac{1 - \text{Querschnitte}}{k_{zz}} = \frac{C_{\text{max}} \left(1 + 0.6\overline{\lambda}_z - \frac{1}{2}\right)}{\leq C_{\text{max}} \left(1 + 0.6\overline{\lambda}_z - \frac{1}{2}\right)}$	$C_{\rm ma} \left(1 + 0.6\overline{\lambda}_z \frac{N_{\rm Ed}}{\chi_z N_{\rm Rk} / \gamma_{\rm MI}} \right)$	$\frac{N_{\text{Ed}}}{N_{\text{Rk}}/\gamma_{\text{MI}}}\right) \leq C_{\text{ms}} \left(1 + \left(2\overline{\lambda}_{z} - 0, 6\right) \frac{N_{\text{Ed}}}{\chi_{z} N_{\text{Rk}}/\gamma_{\text{MI}}}\right)$ $\leq C_{\text{ms}} \left(1 + 1, 4 \frac{N_{\text{Ed}}}{\chi_{z} N_{\text{Rk}}/\gamma_{\text{MI}}}\right)$		
	rechteckige Hohlquerschnitte	$\leq C_{\rm ms} \left(1 + 0.6 \frac{N_{\rm Ed}}{\chi_{\rm z} N_{\rm Bk} / \gamma_{\rm MI}} \right)$	$\begin{split} & C_{\mathrm{mz}}\!\!\left(1\!+\!\left(\!\overline{\lambda}_{\mathrm{z}}\!-\!0,\!2\right)\!\frac{N_{\mathrm{Ed}}}{\chi_{\mathrm{z}}N_{\mathrm{Rk}}/\gamma_{\mathrm{MI}}}\right) \\ & \leq & C_{\mathrm{mz}}\!\left(1\!+\!0,\!8\frac{N_{\mathrm{Ed}}}{\chi_{\mathrm{z}}N_{\mathrm{Rk}}/\gamma_{\mathrm{MI}}}\right) \end{split}$	

Tabelle 6-25: Interaktionsbeiwerte für verdrehsteife Bauteile; Tabelle B.1 aus [4]

Momentenverlauf	Ber	eich	C_{my} und C_{mz} und C_{mLT}		
montentenvendur		cion	Gleichlast	Einzellast	
Μ ψΛ	_1 ≤	<i>ψ</i> ≤1	0,6 +	0,4 <i>ψ</i> ≥ 0,4	
1	$0 \le \alpha_s \le 1$	$-1 \le \psi \le 1$	0,2 + 0,8 <i>α</i> _s ≥ 0,4	$0,2 + 0,8 \alpha_s \ge 0,4$	
M_h $M_s \rightarrow \psi M$		$0 \le \psi \le 1$	$0,1-0,8\alpha_{s} \ge 0,4$	0,8 α _s ≥ 0,4	
$\alpha_{\rm s} = M_{\rm s}/M_{\rm h}$	[−] −1 ≤ α _s < 0	$-1 \leq \psi < 0$	$0,1(1-\psi) - 0,8 \alpha_s \ge 0,4$	$0,2(-\psi)-0,8\alpha_{s}\geq 0,4$	
ψΜ _h	$0 \le \alpha_h \le 1$	$-1 \le \psi \le 1$	0,95 + 0,05 <i>a</i> h	0,90 + 0,10 <i>a</i> h	
M _h M _s		$0 \le \psi \le 1$	0,95 + 0,05 <i>a</i> h	0,90 + 0,10 <i>a</i> h	
$\alpha_{\rm h} = M_{\rm h}/M_{\rm s}$	$-1 \le \alpha_{\rm h} < 0$	$-1 \leq \psi < 0$	$0 0,95 + 0,05 a_{\rm h}(1 + 2\psi) \boxed{\mathbb{N}} 0,90 + 0,10 a_{\rm h}(1 + 2\psi)$		
Für Bauteile mit Knicken C_{my} = 0,9 bzw. C_{mz} = 0,	in Form seitlich 9 angenommer	en Ausweiche werden.	ens sollte der äquivalente	Momentenbeiwert als	
C _{my} , C _{mz} und C _{mLT} s maßgebenden seitlich ge	C_{my} , C_{mz} und C_{mLT} sind in der Regel unter Berücksichtigung der Momentenverteilung zwischen der maßgebenden seitlich gehaltenen Punkten wie folgt zu ermitteln:				
Momenten- beiwert Biegeac	geachse In der Ebene gehalt		en		
C _{my} y-y	Z-Z				
C _{mz} z-z	у-у				
C _{mLT} y-y	у-у				

Tabelle 6-26: Äquivalente Momentenbeiwerte C_m zu Tabelle 6-25; Tabelle B.3 aus [4]

6.4.5.4 Allgemeines Verfahren für Knick- und Biegedrillknicknachweise für Bauteile

Dieses Verfahren kommt zur Anwendung, wenn die oben angeführten Verfahren nicht zutreffen.

Der Widerstand gegen Knicken kann mit folgendem Kriterium nachgewiesen werden:

$$\frac{\chi_{op} \cdot \alpha_{ult.k}}{\gamma_{M1}} \ge 1 \qquad \qquad \frac{\frac{N_{Ed}}{N_{Rd}}}{\gamma_{M1}} + \frac{\frac{M_{Ed}}{M_{y.Rd}}}{\gamma_{M1}} < \chi_{op} \qquad (Gl.92)$$

Der Schlankheitsgrad wird mit folgender Gleichung ermittelt:

$$\lambda_{\rm op} = \sqrt{\frac{\alpha_{\rm ult.k}}{\alpha_{\rm cr.op}}} \tag{G1.93}$$

$\alpha_{ult,k}$	kleinster Vergrößerungsfaktor für die Bemessungswerte der Belastung, mit dem die
	charakteristische Tragfähigkeit der Bauteile mit Verformungen in der Tragwerksebene
	erreicht wird.
	$\frac{1}{1} = \frac{N_{Ed}}{1} + \frac{M_{y.Ed}}{1}$
	$\alpha_{ult.k.xy}$ N _{Rk} M _{y.Rk}
α_{cr}	kleinster Vergrößerungsfaktor für die Bemessungswerte der Belastung, mit dem die
	ideale Verzweigungslast mit Verformungen aus der Haupttragwerksebene erreicht wird.
χop	Abminderungsfaktor für den Schlankheitsgrad λ_{op}

6.5 EN1993-1-5 – Bemessung und Konstruktion von Stahlbauten – Plattenförmige Bauteile

6.5.1 Grundlagen für die Tragwerksplanung und Verfahren

In welchem Ausmaß sich das Beulen von Platten bei auftretenden Längsdruckspannungen auf den Grenzzustand der Tragfähigkeit, der Gebrauchstauglichkeit sowie der Ermüdung auswirkt, kann mit folgenden Kriterien ermittelt werden:

- Verfahren der "Wirksamen Breiten"
- Methode der reduzierten Spannungen

Das Verfahren der "Wirksamen Breiten" findet Anwendung für Querschnitte der Querschnittsklasse 4. Der Nachteil bei diesem Verfahren besteht darin, dass der Querschnitt nach bestimmten Regeln des Eurocode EN 1993-1-5 abgemindert werden muss. Dabei wird der Querschnitt auf sogenannte "Wirksame Breiten" reduziert, wodurch sich eine neue Geometrie des Querschnittes ergibt. Diese neue Geometrie, welche eine Verschiebung des Schwerpunktes von seiner ursprünglichen Lage zur Folge hat, übt nun ein zusätzliches Biegemoment auf das Bauwerk aus.

Der gesamte Aufwand für das Verfahren der "Effektiven Breiten" kann jedoch unberücksichtigt bleiben, wenn das Verfahren für die "Methode der reduzierten Spannungen" zulässig ist. Es ist lediglich der nachfolgend angeführte Nachweis zu erbringen. Hat das Verfahren für die "Methode der reduzierten Spannungen" Gültigkeit, so darf mit Querschnitten der Querschnittsklasse 3 gerechnet werden. Der große Vorteil bei Querschnitten der Klasse 3 besteht darin, dass der Querschnitt mit seiner ursprünglichen Ausgangsgeometrie für die weitere Berechnung herangezogen werden darf.

6.5.2 Methode der reduzierten Spannungen

Folgendes Kriterium muss bei den gemeinsam wirkenden Spannungen $\sigma_{x,Ed}$ und $\sigma_{z,Ed}$ erfüllt werden:

$$\frac{\rho \cdot \alpha_{ult.k}}{\gamma_{M1}} \ge 1 \tag{G1.94}$$

$\alpha_{ult,k}$	kleinster Faktor für die Vergrößerung der Bemessungslast, um den charakteristischen Wert der Beanspruchbarkeit am kritischen Punkt des Blechfeldes zu erreichen
ρ	Reduktionsbeiwert (Abhängig vom Schlankheitsgrad des Blechfeldes)
γ _{M1}	Teilsicherheitsbeiwert nach Kapitel 6.4

Um den Reduktionsbeiwert bestimmen zu können, muss zunächst der modifizierte Schlankheitsgrad nach folgender Gleichung ermittelt werden:

$$\lambda_{\rm p} = \sqrt{\frac{\alpha_{\rm ult.k}}{\alpha_{\rm cr}}} \tag{G1.95}$$

Seite 61

α_{cr} kleinster Faktor für die Vergrößerung der Bemessungslast, um die elastische Verzweigungsbelastung für das gesamte einwirkende Spannungsfeld zu erreichen

Das Fließkriterium kommt zur Anwendung um $\alpha_{ult,k}$ bestimmen zu können:

$$\frac{1}{\alpha_{\text{ult,k}}^{2}} = \left(\frac{\sigma_{\text{x.Ed}}}{f_{\text{y}}}\right)^{2} + \left(\frac{\sigma_{\text{z.Ed}}}{f_{\text{y}}}\right)^{2} - \left(\frac{\sigma_{\text{x.Ed}}}{f_{\text{y}}}\right) \cdot \left(\frac{\sigma_{\text{z.Ed}}}{f_{\text{y}}}\right)$$
(Gl.96)

$\sigma_{x,Ed}$, $\sigma_{z,Ed}$ Komponenten des Spannungsfeldes im Grenzzustand der Tragfähigkeit

Der Abminderungsbeiwert ρ darf wie folgt ermittelt werden:

$$\rho = (\rho_b - \chi_c) \cdot \zeta \cdot (2 - \zeta) + \chi_c \tag{GI.97}$$

$$\zeta = \frac{\sigma_{cr.p}}{\sigma_{cr.c}} - 1 \qquad \text{jedoch} \qquad 0 \le \zeta \le 1$$

 χ_c Abminderungsbeiwert, berücksichtigt knickstabähnliches Verhalten; nach Abbildung 6-11 ρ_b Abminderungsbeiwert zur Berücksichtigung des Plattenbeulens:

$$\rho_{b} = 1 \qquad \qquad \text{für} \qquad \lambda_{p} \le 0, 5 + \sqrt{0,085 - 0,055 \psi}$$

$$\rho_{b} = \frac{\lambda_{p} - 0,055(3 + \psi)}{\lambda_{p}^{2}} \le 1 \qquad \text{für} \qquad \lambda_{p} > 0, 5 + \sqrt{0,085 - 0,055 \psi} \qquad (G1.99)$$

 $\sigma_{cr,p}$ elastische Plattenbeulspannung: $\sigma_{cr,p} = k_{\sigma,p} \cdot \sigma_E$

(Gl.100)

(Gl.98)

dabei ist der Beulwert:

mit

$$\gamma = \frac{I_{sl}}{I_p}; \quad \delta = \frac{A_{sl}}{A_p}; \quad \alpha = \frac{a}{b} \ge 0.5; \quad I_p = \frac{b \cdot t^3}{12 \cdot (1 - v^2)} = \frac{b \cdot t^3}{10,92} \quad (Gl.102); \quad (Gl.103); \quad (Gl.104); \quad (Gl.105); \quad (Gl.105); \quad (Gl.104); \quad (Gl.105); \quad (Gl.105); \quad (Gl.104); \quad (Gl.105); \quad (Gl.$$

Isl Flächenträgheitsmoment des gesamten längsversteiften Blechfeldes

 $\begin{array}{ll} I_p & \mbox{Flächenträgheitsmoment für Plattenbiegung} \\ \mbox{und} \end{array}$

$$\sigma_{\rm E} = \frac{\pi^2 \cdot {\rm E} \cdot {\rm t}^2}{12 \cdot \left(1 - {\rm v}^2\right) \cdot {\rm b}^2} = 190000 \left(\frac{{\rm t}}{{\rm b}}\right)^2 \tag{G1.106}$$

 $\sigma_{cr,c}$ elastische kritische Knickspannung:

$$\sigma_{cr.c} = \sigma_{cr.sl} \cdot \frac{b_c}{b_{sl.1}}$$
(Gl.107)

mit der Knickspannung für den Ersatzdruckstab nach Abbildung 6-12:

$$\sigma_{\rm cr.sl} = \frac{\pi^2 \cdot E \cdot I_{\rm sl.1}}{A_{\rm sl.1} \cdot a^2}$$
(Gl.108)

 $I_{sl,1} \quad \ \ Flächenträgheitsmoment \ des \ Ersatzdruckstabes$

- Asl,1 Bruttoquerschnittsfläche des Ersatzdruckstabes
- a Länge des ausgesteiften Blechfeldes

_

Es muss jedoch folgendes Kriterium erfüllt werden:

$$\left(\frac{\sigma_{x.Ed}}{\frac{f_{y}}{\gamma_{M1}}}\right)^{2} + \left(\frac{\sigma_{z.Ed}}{\frac{f_{y}}{\gamma_{M1}}}\right)^{2} - \left(\frac{\sigma_{x.Ed}}{\frac{f_{y}}{\gamma_{M1}}}\right) \cdot \left(\frac{\sigma_{z.Ed}}{\frac{f_{y}}{\gamma_{M1}}}\right) \leq \rho^{2}$$
(Gl.109)

Die Werte für α_{cr} können nach dem folgenden Kriterium für das gesamte Blechfeld ermittelt werden:

$$\frac{1}{\alpha_{\rm cr}} = \frac{1 + \psi_{\rm x}}{4 \cdot \alpha_{\rm cr.x}} + \frac{1 + \psi_{\rm z}}{4 \cdot \alpha_{\rm cr.z}} + \left[\left(\frac{1 + \psi_{\rm x}}{4 \cdot \alpha_{\rm cr.x}} + \frac{1 + \psi_{\rm z}}{4 \cdot \alpha_{\rm cr.z}} \right)^2 + \frac{1 - \psi_{\rm x}}{2 \cdot \alpha_{\rm cr.x}^2} + \frac{1 - \psi_{\rm z}}{2 \cdot \alpha_{\rm cr.2}^2} \right]^2$$
(Gl.110)

$$\alpha_{\rm cr.x} = \frac{\sigma_{\rm cr.x}}{\sigma_{\rm x.Ed}}$$
(Gl.111)

$$\alpha_{\rm cr.z} = \frac{\sigma_{\rm cr.z}}{\sigma_{\rm z.Ed}}$$
(GI.112)

Abbildung 6-12: Längsausgesteiftes Blechfeld / Ersatzdruckstab; Bild A.1 aus [5]

- 1 Schwerlinie der Längssteife
- 2 Schwerlinie des Ersatzdruckstabes
- 3 Einzelfeld
- 4 Längssteife
- 5 Blechdicke

Tabelle 6-27: Bezeichnungen des längsausgesteiften Blechfeldes; Bild A.1 aus [5]

	Breite bei Bruttoquerschnittsfläche	Breite bei wirksamen Flächen	Bedingung für ψ_i
b _{1,inf}	$\frac{3-\psi_1}{5-\psi_1}b_1$	$\frac{3-\psi_1}{5-\psi_1}b_{1,\text{eff}}$	$\psi_1 = \frac{\sigma_{\rm cr,sl,1}}{\sigma_{\rm cr,p}} > 0$
b _{2,sup}	$\frac{2}{5-\psi_2}b_2$	$\frac{2}{5-\psi_2}b_{2,\text{eff}}$	$\psi_2 = \frac{\sigma_2}{\sigma_{\rm cr,sl,1}} > 0$
b _{2,inf}	$\frac{3-\psi_2}{5-\psi_2}b_2$	$\frac{3-\psi_2}{5-\psi_2}b_{2,\text{eff}}$	$\psi_2 > 0$
b _{3,sup}	0,4 b _{3c}	0,4 b _{3c,eff}	$\psi_3 = \frac{\sigma_3}{\sigma_2} < 0$

6.6 EN1993-1-9 – Bemessung und Konstruktion von Stahlbauten – Ermüdung

6.6.1 Bemessungskonzepte

Man unterscheidet zwischen folgenden zwei Kriterien:

• Konzept der Schadenstoleranz

und

• Konzept der ausreichenden Sicherheit gegen Ermüdungsversagen ohne Vorankündigung.

Die beiden Konzepte unterscheiden sich dadurch, dass bei dem Konzept der Schadenstoleranz in regelmäßigen Abständen Inspektionen und Wartungen durchgeführt werden müssen, wogegen man bei dem Konzept der ausreichenden Sicherheit von einer Zuverlässigkeit über die gesamte Nutzungsdauer ausgeht.

Bemessungskonzent	Schadensfolgen	
Demessungskonzept	niedrig	hoch
Schadenstoleranz	1,00	1,15
Sicherheit gegen Ermüdungsver- sagen ohne Vorankündigung	1,15	1,35

Tabelle 6-28: γ_{Mf} -Faktoren für die Ermüdungsfestigkeit; Tabelle 3.1 aus [6]

6.6.2 Berechnung der Spannungsschwingbreiten

Der Ermüdungsnachweis wird auf Basis der Spannungsschwingbreiten nach folgenden Verfahren ermittelt:

- Nennspannungen
- Korrigierte Nennspannungen (bei z.B. Querschnittsübergängen)
- Strukturspannungen (Kerbspannungen)

6.6.2.1 Bemessungswert der Spannungsschwingbreite der Nennspannungen

 $\gamma_{Ff} \cdot \Delta \sigma_{E,2} = \lambda_1 \cdot \lambda_2 \cdot \lambda_i \dots \lambda_n \cdot \Delta \sigma (\gamma_{Ff} \cdot Q_k)$

(Gl.113)

$\Delta \sigma_{\mathrm{E.2}}$	schadensäquivalente konstante Spannungsschwingbreite bezogen auf 2×10 ⁶			
	Schwingspiele			
γ_{Ff}	γ -Faktor für die schadensäquivalenten Spannungsschwingbreiten $\Delta \sigma_E$			
$\Delta\sigma(\gamma_{Ff} Q_k)$	Spannungsschwingbreite; nach EN 1991			
λ_{i}	Schadensäquivalenzfaktor; nach EN 1993			

Für den Fall, dass keine λ_i – Werte vorhanden sind, darf folgendes Kriterium nach Palmgren-Miner angewendet werden:

D_d Schädigung nach Palmgren-Miner
 n_{Ei} Anzahl der Spannungsschwingspiele i bezogen auf die Spannungsschwingbreite Δσ_i γ_{Ff}
 N_{Ri} Lebensdauer für die Anzahl der Schwingspiele der Spannungsschwingbreite Δσ_i γ_{Ff}, bezogen auf die Bemessungs-Wöhlerlinie Δσ_C/γ_{Mf} - N_R
 m Steigung der Zeitfestigkeitlinie im Wöhlerdiagramm
 Δσ_C Bezugswert für die Ermüdungsfestigkeit bei N_C=2×10⁶ Schwingspielen

 N_{Ri} darf jedoch nur unter der Vorraussetzung ermittelt werden, dass die Spannungsschwingbreite $\Delta \sigma_i$ mit γ_{Ff} multipliziert und der Ermüdungsfestigkeitskennwert $\Delta \sigma_C$ durch γ_{Mf} dividiert wird.

Abbildung 6-13: Prinzipieller Ablauf der Schadensakkumultion nach Palmgren-Miner; Bild A.1 aus [6]

6.6.2.2 Bemessungswert der Spannungsschwingbreite korrigierter Nennspannungen

$$\gamma_{Ff} \Delta \sigma_{E,2} = k_f \lambda_1 \lambda_2 \lambda_i \dots \lambda_n \Delta \sigma (\gamma_{Ff} Q_k)$$

(Gl.115)

 $\begin{array}{ll} k_f & Spannungskonzentrationsfaktor; berücksichtigt die lokale Spannungserhöhung \\ Q_k & charakteristischer Wert einer einzeln auftretenden variablen Last \end{array}$

6.6.2.3 Bemessungswert der Spannungsschwingbreite der Strukturspannungen (Kerbspannungen)

 $\gamma_{\text{Ff}} \Delta \sigma_{\text{E},2} = k_{\text{f}} (\gamma_{\text{Ff}} Q_{\text{E},2})$

(Gl.116)

k_f Spannungskonzentrationsfaktor

6.6.3 Ermüdungsfestigkeit

Für eine konstante Spannungsschwingbreite sind für unterschiedliche Kerbfallkategorien die Ermüdungsfestigkeitskurven (Wöhlerkurven) wie folgt definiert:

Abbildung 6-14: Ermüdungskurve für Längsspannungsschwingbreiten; Bild 7.1 aus [6]

- 1 Kerbfall $\Delta \sigma_{C}$
- 2 Dauerfestigkeit $\Delta \sigma_D$
- 3 Schwellwert der Ermüdungsfestigkeit $\Delta \sigma_L$
- 4 Ertragbare Ermüdungsbeanspruchung $\Delta \sigma_R$

6.6.4 Ermüdungsnachweis

Die auftretrettenden Spannungsschwingbreiten sind in der Regel zu begrenzen durch:

$$\Delta \sigma \le 1, 5 \cdot f_y$$
 für Längsspannungen (Gl.118)

Zu erfüllendes Ermüdungskriterium:

$$\frac{\frac{\gamma_{\text{Ff}} \cdot \Delta \sigma_{\text{E},2}}{\Delta \sigma_{\text{C}}}}{\frac{\gamma_{\text{Mf}}}{\gamma_{\text{Mf}}}} \le 1$$
(Gl.119)

 $\begin{array}{ll} \gamma_{Ff} & Teilsicherheitsbeiwert zur Berücksichtigung des einwirkenden Belastungskollektivs; bezogen auf die schadensäquivalente Spannungsschwingbreite $\Delta \sigma_E$; siehe Tabelle 6-31 und Abbildung 6-16 \end{array}$

Für den Ermüdungsnachweis muss das Bauteil einer Kerbfallkategorie zugeordnet werden. Dabei unterscheidet man zwischen geschweißten und ungeschweißten Bauteilen bzw. Anschlüssen. In den folgenden Tabellen werden Beispiele für einzelne Kerbfallkategorien dargestellt:

Kerbfall	Konstruktionsdetail	Beschreibung	Anforderungen		
160	ANMERKUNG Der Kerbfall 160 ist der höchst mögliche; kein Kerbfall kann bei irgendeiner Anzahl an Spannungsschwingspielen eine höhere Ermüdungsfestigkeit erreichen.	Gewalzte oder gepresste <u>Erzeugnisse:</u> (AC) Imo Bleche und Flachstähle mit gewalzten Kanten; (AC) Imo Walzprofile mit gewalzten Kanten; (AC) S) Nahtlose rechteckige oder runde Hohlprofile.	<u>Kerbfälle 1) bis 3):</u> Scharfe Kanten, Oberflächen- und Walzfehler sind durch Schleifen zu beseitigen und ein nahtloser Übergang herzustellen.		
140	4	Gescherte oder brenngeschnittene Bleche: 4) Maschinell brenngeschnittener Werkstoff mit nachträglicher mechanischer Bearbeitung 5) Maschinell brenngeschnittener Werkstoff mit seichten und regelmäßigen Brennriefen oder	4) Alle sichtbaren Randkerben sind zu beseitigen, Schnittflächen zu überschleifen und Kanten zu brechen. Riefen infolge mechanischer Bear- beitung (z. B. Schleifen) müssen parallel zu den Spannungen verlaufen.		
125	5	von Hand brenngeschnittener Werkstoff mit nachträglicher mechanischer Bearbeitung. Maschinell brenngeschnittener Werkstoff der Schnittqualität entsprechend EN 1090. Keine Ausbesserung Verfüllen mit Schwei	Kerbtalle 4) und 5); Einspringende Ecken sind durch Schleifen (Neigung ≤ ¼) zu bearbeiten oder durch einen ent- sprechenden Spannungskonzentr- ationsfaktor zu berücksichtigen keine Ausbesserungen durch Verfüllen mit Schweißgut		
100 m = 5		6) und 7) Gewalzte oder gepresste Erzeugnisse entsprechend der Kerbfälle 1), 2), 3) (C	<u>Kerbfälle 6) und 7):</u> Δt berechnet nach: $\tau = \frac{V S(t)}{I t}$		
Für Kerbfal	Für Kerbfall 1–5 ist bei Einsatz von wetterfestem Stahl der nächsttiefere Kerbfall zu verwenden.				

Kerbfall	Konstruktionsdetail	Beschreibung	Anforderungen	
		Durchgehende Längsnähte: 1) 🐼 Mit Automaten oder voll	Kerbfälle 1) und 2): Es dürfen keine	
125		durchgeschweißte Nähte.	Schweißansatzstellen vorhanden sein, ausgenommen bei Durchfüh- rung einer Reparatur mit anschlie- ßender Überprüfung der Repara- turschweißung.	
		2) A Mit Automaten oder voll mechanisiert geschweißte A Kehlnähte. Die Enden von aufge- schweißten Gurtplatten sind gem. Kerbfall 6) oder 7) in Tabelle 8.5 nachzuweisen.		
442		 M Mit Automaten oder voll mechanisiert geschweißte (M Doppelkehlnähte oder beidseitig durchgeschweißte Nähte, beide mit Ansatzstellen. 		
112		4) A mit Automaten oder voll mechanisiert (periode einseitig durch- geschweißte Naht mit nicht unter- brochener Schweißbadsicherung, aber ohne Ansatzstellen.	 Weist dieser Kerbfall Ansatzstellen auf, ist er der Kerbgruppe 100 zuzuordnen. 	
		5) Handgeschweißte Kehlnähte oder HV-Nähte oder DHV-Nähte.	5) und 6) Zwischen Flansch und Stegblech ist eine sehr gute Pass-	
100		6) On Hand oder mit Auto- maten oder voll mechanisiert einseitig durchgeschweißte Nähte, speziell bei Hohlkästen.	genauigkeit erforderlich. Dabei ist bei HV-Nähten das Stegblech so anzuschrägen, dass die Wurzel ausreichend und ohne Heraus- fließen von Schweißgut erfasst werden kann.	
100	T	 Ausgebesserte automaten- oder voll mechanisiert geschweißte (A) oder handgeschweißte Kehlnähte oder Stumpfnähte nach Kerbfall 1) bis 6). 	 Durch Nachschleifen aller sicht- baren Fehlstellen durch einen Spe- zialisten sowie einer entsprechen- den Überprüfung kann der ur- sprüngliche Kerbfall wiederherge- stellt werden. 	
80	8 g/h ≤ 2,5	8) Unterbrochene Längsnähte.	8) Δσwird mit der Längsspannung im Flansch berechnet.	
71	e contraction of the contraction	9) Längsnähte, Kehlnähte oder unterbrochene Nähte mit Frei- schnitten (kleiner 60 mm). Bei Freischnitten > 60 mm gilt Kerbfall 1) in Tabelle 8.4.	9) Δσwird mit der Längsspannung im Flansch berechnet.	
125		10) Längsbeanspruchte Stumpf- naht, beidseitig in Lastrichtung blecheben geschliffen, 100 % ZFP.		
112	10	10) Ohne Schleifen und ohne Ansatzstellen.		
90		10) Mit Ansatzstellen.		
140		 Mit Automaten oder voll mechanisiert geschweißte (E Längsnaht in Hohlprofilen ohne Ansatzstellen. 	11)	
125		11) 🐼 Mit Automaten oder voll mechanisiert geschweißte 🐼 Längsnaht in Hohlprofilen ohne Ansatzstellen.	11) Wanddicke t > 12,5 mm	
90		11) Mit Ansatzstellen.		
Werden die Kerbfälle 1 bis 11 mit voll mechanisierter Schweißung ausgeführt, gelten die Kerbfallkategorien für Automatenschweißung.				

Tabelle 6-30: Kerbfälle von geschweißten zusammengesetzten Querschnitten; Tabelle 8.2 aus [6]

Ermittlung der schadensäquivalenten konstanten Spannungsschwingbreite $\Delta \sigma_E$:

Abbildung 6-15: Überführung eines einwirkenden Belastungskollektivs in ein schadensäquivalentes Spannungskollektiv mit konstanter Belastungsamplitude; Kapitel 7 aus [13]

$\Delta \sigma_{\rm E} = \gamma_{\rm Ff}$	$\Delta\sigma_{ m max}$	(Gl.120)
$\Delta \sigma_{max}$	Maximal auftretende Spannungsschwingbreite des Belastungskollektives	
$\Delta \sigma_{\rm E}$	schadensäquivalente Spannungsschwingbreite bezogen auf n _{max}	

 $\gamma_{\rm Ff}$ ist abhängig vom auftretenden Belastungskollektiv und für einige Belastungsfälle standardisiert:

Abbildung 6-16: Standardisierte Belastungskollektive; Kapitel 7 aus [13]

	m = 3	m = 5	
S ₀	0,26	0,33	
S1	0,47	0,49	
S ₂	0,73	0,73	
S ₃	1,0	1,0	

Tabelle 6-31: Beiwerte γ_{Ff} für die Belastungskollektive; Kapitel 7 aus [13]

7 Anwendung des Eurocode

7.1 Problembeschreibung

Es soll die prinzipielle Anwendung des Eurocode 3 anhand der Drehsäule einer ESU – Anlage aufgezeigt werden. Dabei wurde zwischen zwei Lastfällen unterschieden.

- *Lastfall 1*: Elektroden- und Haubenwagen befinden sich an ihrer jeweils obersten Position an der Säule und verharren in Lage. Es kommt zu zweierlei Einwirkungen:
 - 1) ständige Belastung durch das Eigengewicht und
 - 2) Nutzlast durch die Schmelzelektrode.
- <u>Lastfall 2</u>: Es wird eine Not-Aus-Situation dargestellt. Elektroden- und Haubenwagen befinden sich ebenfalls an ihrer obersten Position an der Säule und werden bei der Abwärtsbewegung abrupt abgebremst (zum Stillstand gebracht). Dabei kommt zusätzlich zu der ständigen Belastung und der Nutzlast noch eine außergewöhnliche Belastung, welche aus der Beschleunigung bzw. der Verzögerung herrührt.

Abbildung 7-1: Ofenkopf einer ESU-Anlage; Allgemeine Darstellung

In beiden Lastfällen sind folgende Nachweise zu erbringen:

Abbildung 7-2: Nachweisführung nach Eurocode 3

Dabei erfolgt die Nachweisführung nach dem Prinzip Elastisch – Elastisch, was soviel bedeutet wie, dass die Schnittgrößen bzw. die daraus resultierenden Spannungen sowie die Beanspruchbarkeit von Querschnitten nach der Elastiziätstheorie ermittelt werden [12]. Der Berechnungsablauf ist in beiden Lastfällen derselbe. Jedoch wird im Lastfall 2 die Anwendung zur DIN EN 1991-3 [3] (Berücksichtigung von außergewöhnlichen Kräften) näher gebracht.

7.1.1 Werkstoff

Die gesamte Säule besteht aus einer Blech-Schweißkonstruktion mit dem Werkstoff S235 (1.0038)

f _v =	235	N/mm ²	Streckgrenze
f _u =	360	N/mm ²	Zugfestigkeit
E=	210000	N/mm2	Elastizitätsmodul
G=	81000	N/mm2	Schubmodul
ν=	0,3		Poissonsche Zahl
α=	12 10-6	1/K	Wärmeausdehnungskoeffizient

Tabelle 7-1: Werkstoffdaten S235 (1.0038)
7.1.2 Einwirkungen

Einwirkungen:

Ständige-Lasten					
Elektrodenwagen-Eigengewicht	G _{EW}	5200	kg	52000	N
Haubenwagen-Eigengewicht	$G_{\rm HW}$	6200	kg	62000	N
Hubantrieb-Eigengewicht	G_{hub}	2000	kg	20000	N
Säule-oben	G _{S1}	3710	kg	37100	N
Säule-mitte	G _{S2}	1965	kg	19650	N
Säule-unten	G _{S3}	870	kg	8700	N
Säule-Eigengewicht	Gs	6545	kg	65450	N

Nutz-Lasten					
Elektrodenmasse	Q _{EL}	5000	kg	50000	N

7.1.3 Abmessungen

x-Achse			
Obere zu untere Führungsschiene	x _{1EW}	1200	mm
Obere zu untere Führungsschiene	$\mathbf{x}_{1\mathrm{HW}}$	1200	mm
Säuleneinspannung-betrachteter Querschnitt	x _{0S}	255	mm
betrachteter Querschnitt-Haubenwagen	x _{1S}	5660	mm
Haubenwagen-Elektrodenwagen	x _{2S}	417	mm
Obere Säule	x _{1S-OS}	5770	mm
Mittlere Säule	x _{2S-MS}	2510	mm
Untere Säule	X _{3S-US}	975	mm
Säulenhöhe	h	9255	mm

y-Achse			
Spkt. Elektrodenwagen-Führungsschienen	$y_{1\text{EW}}$	1161	mm
Spkt. Elektrode-Führungsschienen	$y_{2\text{EW}}$	1361	mm
Halterung-Führungsschienen	y _{3EW}	46	mm
Spkt. Haubenwagen-Führungsschienen	$y_{1\mathrm{HW}}$	1057	mm
Halterung-Führungsschienen	y _{2HW}	46	mm
Spkt. untere Säule-Führungsschiene	y _{0s}	568	mm
Halterung-Spkt. untere Säule	y 1s	351,5	mm
Spkt. obere Säule-Spkt. untere Säule	y ₂₈	122	mm
Spkt. mittlere Säule-Spkt. obere Säule	y ₃₈	157,5	mm

z-Achse			
Spkt. Elektrodenwagen-Führungsschienen	$z_{1\mathrm{EW}}$	268	mm
Spkt. Elektrode-Führungsschienen	$\mathbf{z}_{2\mathrm{EW}}$	300	mm
Halterung-Führungsschienen	z_{3EW}	290	mm
Führungsschiene-Führungsschiene	$\mathbf{Z}_{4\mathrm{EW}}$	600	mm
Spkt. Haubenwagen-Führungsschienen	z_{1HW}	184	mm
Halterung-Führungsschienen	z _{2HW}	290	mm
Führungsschiene-Führungsschiene	z _{3HW}	600	mm
Halterung-Spkt. Säule	z _{1S}	595	mm
Führungsschiene 1-Spkt. Säule	z ₂₈	300	mm
Führungsschiene 2-Spkt. Säule	z _{3S}	300	mm

7.2 Lastfall 1

7.2.1 Ermittlung der maßgebenden Kräfte

7.2.1.1 Elektrodenwagen

Durch Ansetzen der drei Gleichgewichtbedingungen können die Kräfte, welche auf das System einwirken ermittelt werden. Dabei wird zwischen "Ständiger Last" (Eigengewicht) und "Nutzlast" (Elektrodengewicht) unterschieden.

Kräfte auf Führung in x-y-Ebene:

Abbildung 7-3: Elektrodenwagen x-y-Ebene; LF1

Ständige Last:

∑М=0	$G_{EW} y_{1EW} - F_{oyEW} x_{1EW} - F_{HEW} y_{3EW} = 0$			
	$F_{oyEW}=(G_{EW} y_{1EW}-F_{HEW} y_{3EW})/x_{1EW}$	$F_{oyEW} =$	48316,7	N
$\sum F_y=0$	F_{oyEW} - F_{uyEW} =0			
	$F_{uyEW} = F_{oyEW}$	$F_{uyEW}\!\!=\!$	48316,7	N
$\sum F_x=0$	G_{EW} - F_{HEW} =0			
	$F_{HEW}=G_{EW}$	$F_{HEW}=$	52000	N
<u>Nutzlast:</u>				
∑M=0	$Q_{EL} y_{2EW}$ - $F_{oyEL} x_{1EW}$ - $F_{HEL} y_{3EW}$ =0			
	$F_{oyEL}=(Q_{EL} y_{2EW}-F_{HEL} y_{3EW})/x_{1EW}$	F _{oyEL} =	54791,7	Ν
$\sum F_y=0$	F_{oyEL} - F_{uyEL} =0			
	$F_{uyEL}=F_{oyEL}$	$F_{uyEL} =$	54791,7	Ν
$\sum F_x=0$	Q_{EL} - F_{HEL} =0			
	$F_{HEL}=Q_{EL}$	F _{HEL} =	50000	N

Kräfte auf Führung in x-z-Ebene:

Abbildung 7-4: Elektrodenwagen x-z-Ebene; LF1

<u>ständige Last:</u>

∑М=0	$G_{EW} \ z_{1EW} \text{-} F_{ozEW} \ x_{1EW} \text{+} F_{HEW} \ z_{3EW} \text{=} 0$			
	F_{ozEW} =($G_{EW} z_{1EW}$ + $F_{HEW} z_{3EW}$)/ x_{1EW}	$F_{ozEW}\!\!=\!$	24180	Ν
$\Sigma F_z=0$	F _{ozEW} -F _{uzEW} =0			
	$F_{uzEW} = F_{ozEW}$	$F_{uzEW}\!\!=\!$	24180	Ν
$\Sigma F_x=0$	G_{EW} - F_{HEW} =0			
	$F_{HEW}=G_{EW}$	$F_{HEW}=$	52000	Ν
<u>Nutzlast:</u>				
∑М=0	$Q_{EL} \ z_{2EW} \text{-} F_{ozEL} \ x_{1EW} \text{+} F_{HEL} \ z_{3EW} \text{=} 0$			
	$F_{ozEL}=(Q_{EL} z_{2EW}+F_{HEL} z_{3EW})/x_{1EW}$	$F_{ozEL}=$	24583,3	N
$\Sigma F_z=0$	F_{ozEL} - F_{uzEL} =0			
	$F_{uzEL}=F_{ozEL}$	$F_{uzEL} =$	24583,3	Ν
$\Sigma F_x=0$	G_{EW} - F_{HEL} =0			
	$F_{HEL}=Q_{EL}$	$F_{HEL}=$	50000	Ν

7.2.1.2 Haubenwagen

Durch Ansetzen der drei Gleichgewichtbedingungen können die Kräfte, welche auf das System einwirken ermittelt werden. Am Haubenwagen werden keine Nutzlasten eingeleitet wodurch lediglich eine "Ständige Last" (Eigengewicht) am System wirkt.

Kräfte auf Führung in x-y-Ebene:

Abbildung 7-5: Haubenwagen x-y-Ebene; LF1

∑M=0	$G_{HW} y_{1HW} - F_{oyHW} x_{1HW} - F_{HHW} y_{2HW} = 0$			
	$F_{oyHW}=(G_{HW} y_{1HW}-F_{HHW} y_{2HW})/x_{1HW}$	$F_{oyHW}=$	52235	N
$\Sigma F_y=0$	F_{oyHW} - F_{uyHW} =0			
	F _{uyHW} =F _{oyHW}	$F_{uyHW}=$	52235	N
$\sum F_x=0$	G_{HW} - F_{HHW} =0			
	$F_{HHW}=G_{HW}$	$F_{HHW}=$	62000	N

Kräfte auf Führung in x-z-Ebene:

Abbildung 7-6: Haubenwagen x-z-Ebene; LF1

ständige	Last:

∑M=0	$G_{HW} z_{1HW}$ - $F_{ozHW} x_{1HW}$ + $F_{HHW} z_{2HW}$ =0			
	$F_{ozHW}=(G_{HW} z_{1HW}+F_{HHW} z_{2HW})/x_{1HW}$	$F_{ozHW}=$	24490	N
$\Sigma F_z=0$	F _{ozHW} -F _{uzHW} =0			
	$F_{uzHW} = F_{ozHW}$	$F_{uzHW}=$	24490	Ν
$\sum F_x=0$	G_{HW} - F_{HHW} =0			
	$F_{HHW}=G_{HW}$	$F_{HHW}=$	62000	Ν

7.2.1.3 Säule

Die am Elektroden- und Haubenwagen ermittelten Kräfte werden im Weiteren durch das Freimachen der Bauteile auf die Drehsäule übertragen.

In der x-y-Ebene wird die Drehsäule aufgrund ihres nicht konstanten Querschnittes in drei Abschnitte unterteilt, wodurch sich durch die "Exzentrität" der oberen beiden Abschnitte zusätzliche Biegemomente ausbilden.

Kräfte auf Säule in x-y-Ebene:

Abbildung 7-7: Drehsäule x-y-Ebene; LF1

Kräfte auf Säule in x-z-Ebene:

Abbildung 7-8: Drehsäule x-z-Ebene; LF1

7.2.2 Tragwerksberechnung

7.2.2.1 Einfluss der Tragwerksverformung

$$\alpha_{\rm cr} = \frac{F_{\rm cr}}{F_{\rm Ed}} \ge 10 \tag{nach Gl.45}$$

Aus dem Finite-Elemente-Modell ergibt sich für α_{cr} ein Wert von 35,204.

 $\alpha_{cr} = 35.204 > 10$ Die elastische Berechnung des Tragwerks nach der Theorie I. Ordnung ist demnach zulässig.

7.2.2.2 Imperfektionen

Der Einfluss der Bauteil-Imperfektionen darf aufgrund der Zulässigkeit der Theorie I. Ordnung vernachlässigt werden. Sie werden jedoch bei dieser Anwendung aus Sicherheitsgründen mitberücksichtigt.

Eine globale Anfangsschiefstellung kann vernachlässigt werden, wenn folgende Beziehung nach Gl.51 erfüllt wird:

 $H_{Ed} \geq 0,\!15~V_{Ed}$

<u>x-y-EBENE:</u>

$H_{Ed,xy} = \gamma_{G,sup} \left(F_{oyEW} - F_{uyEW} + F_{oyHW} - F_{uyHW}\right) + \gamma_Q \left(F_{oyEL} - F_{uyEL}\right)$	$H_{Ed,xy}=$	0	N
$V_{Ed,xy} = \gamma_{G,sup} (G_S + F_H) + \gamma_Q F_{HEL}$	$V_{Ed,xy}=$	272395	N
$H_{ed,xy} \ge 0,15 V_{ed,xy}$ \longrightarrow Schiefstellung			
<u>x-z-EBENE:</u>			
$H_{Ed,xz} = \gamma_{G,sup} \left(F_{ozEW} - F_{uzEW} + F_{ozHW} - F_{uzHW}\right) + \gamma_Q \left(F_{ozEL} - F_{uzEL}\right)$	$H_{Ed,xz}=$	0	N
$V_{Ed,xz} = \gamma_{G,sup} (G_S + F_H) + \gamma_Q F_{HEL}$	$V_{Ed,xz}$ =	272395	N

 $H_{ed,xz} \ge 0,15 V_{ed,xz}$ \longrightarrow Schiefstellung

 $\gamma_{G,sup}$ und $~\gamma_Q$ nach Tabelle 6-3 $(\gamma_{G,sup}$ =1,1 / γ_Q = 1,5)

Schiefstellung nach Gl.47:

$$\begin{split} \phi_0 &= \frac{1}{200} \\ \alpha_h &= \frac{2}{\sqrt{h}} \quad \text{jedoch} \quad \frac{2}{3} \leq \alpha_h \leq 1 \quad \longrightarrow \quad \alpha_h = 0,657 \\ \alpha_m &= \sqrt{0,5 \cdot \left(1 + \frac{1}{m}\right)} \quad \text{mit m=1} \quad \longrightarrow \quad \alpha_m = 1 \end{split}$$

 $\phi = \phi_0 \cdot \alpha_h \cdot \alpha_m \qquad \longrightarrow \qquad \phi = 0,00329$

Verschiebung des Schwerpunkts (Exzentrizität):

 $e_N=\Box h$ $\Box << ---> tan(\Box) \approx \Box$ $e_{N,xy}=\Box h$ $e_{N,xy}= 30,422 \text{ mm}$ $e_{N,xz}=\Box h$ $e_{N,xz}= 30,422 \text{ mm}$

7.2.2.3 Querschnitt

Ermittlung des Schwerpunktes und der Widerstandsmomente im betrachteten Querschnitt:

Abbildung 7-9: Betrachteter Querschnitt; LF1

Äußere Randfaser-Abstände vom fiktiven Ursprung:

 $h_{y1} = 538mm$ $h_{z1} = 460mm$ $h_{y2} = 990mm$ $h_{z2} = 460mm$

Schwerpunktskoordinaten und Flächenträgheitsmomente 2. Grades:

$$y_{S} = \frac{\sum_{i} y_{i} \cdot A_{i}}{\sum_{i} A_{i}} \quad ; \quad z_{S} = \frac{\sum_{i} z_{i} \cdot A_{i}}{\sum_{i} A_{i}} \quad ; \quad I_{y} = \sum_{i} \left(\frac{y_{i} \cdot z_{i}^{3}}{12} + z_{Si}^{2} \cdot A_{i} \right) \quad ; \quad I_{z} = \sum_{i} \left(\frac{z_{i} \cdot y_{i}^{3}}{12} + y_{Si}^{2} \cdot A_{i} \right)$$

	y_i	Zi	A _i	y _{ai}	z _{ai}	y _{ai} A _i	z _{ai} A _i	y_{si}	Z _{si}	I _y	Iz
	[mm]	[mm]	$[mm^2]$	[mm]	[mm]	[mm [°]]	[mm ²]	[mm]	[mm]	[mm⁴]	[mm ^⁴]
<u>1</u>	38,0	225,0	8550,0	519,0	212,5	4437450,0	1816875,0	531,6	212,5	422156250,0	2416998655,0
<u>2</u>	20,0	100,0	2000,0	510,0	50,0	1020000,0	100000,0	522,6	50,0	6666666,7	546231184,1
<u>3</u>	20,0	100,0	2000,0	510,0	-50,0	1020000,0	-100000,0	522,6	-50,0	6666666,7	546231184,1
<u>4</u>	38,0	225,0	8550,0	519,0	-212,5	4437450,0	-1816875,0	531,6	-212,5	422156250,0	2416998655,0
<u>5</u>	519,0	20,0	10380,0	259,5	325,0	2693610,0	3373500,0	272,1	325,0	1096733500,0	1001361929,0
<u>6</u>	510,0	20,0	10200,0	255,0	0,0	2601000,0	0,0	267,6	0,0	340000,0	951355694,5
<u>7</u>	519,0	20,0	10380,0	259,5	-325,0	2693610,0	-3373500,0	272,1	-325,0	1096733500,0	1001361929,0
<u>8</u>	15,0	135,0	2025,0	0,0	392,5	0,0	794812,5	12,6	392,5	315039375,0	358067,7
<u>9</u>	10,0	325,0	3250,0	0,0	162,5	0,0	528125,0	12,6	162,5	114427083,3	540822,4
<u>10</u>	10,0	325,0	3250,0	0,0	-162,5	0,0	-528125,0	12,6	-162,5	114427083,3	540822,4
<u>11</u>	15,0	135,0	2025,0	0,0	-392,5	0,0	-794812,5	12,6	-392,5	315039375,0	358067,7
<u>12</u>	100,0	20,0	2000,0	-50,0	325,0	-100000,0	650000,0	-37,4	325,0	211316666,7	4468267,7
<u>13</u>	100,0	20,0	2000,0	-50,0	-325,0	-100000,0	-650000,0	-37,4	-325,0	211316666,7	4468267,7
<u>14</u>	79,5	20,0	1590,0	-739,8	325,0	-1176202,5	516750,0	-727,2	325,0	167996750,0	841608415,3
<u>15</u>	79,5	20,0	1590,0	-739,8	-325,0	-1176202,5	-516750,0	-727,2	-325,0	167996750,0	841608415,3
<u>16</u>	15,0	135,0	2025,0	-779,5	392,5	-1578487,5	794812,5	-766,9	392,5	315039375,0	1191097278,0
<u>17</u>	15,0	135,0	2025,0	-779,5	-392,5	-1578487,5	-794812,5	-766,9	-392,5	315039375,0	1191097278,0
<u>18</u>	70,5	20,0	1410,0	-814,8	325,0	-1148797,5	458250,0	-802,2	325,0	148978250,0	907902608,4
<u>19</u>	70,5	20,0	1410,0	-814,8	-325,0	-1148797,5	-458250,0	-802,2	-325,0	148978250,0	907902608,4
<u>20</u>	15,0	245,0	3675,0	-857,5	202,5	-3151312,5	744187,5	-844,9	202,5	169080625,0	2623659089,0
<u>21</u>	15,0	160,0	2400,0	-857,5	0,0	-2058000,0	0,0	-844,9	0,0	5120000,0	1713410018,0
<u>22</u>	15,0	245,0	3675,0	-857,5	-202,5	-3151312,5	-744187,5	-844,9	-202,5	169080625,0	2623659089,0
<u>23</u>	132,5	15,0	1987,5	-923,8	80,0	-1835953,1	159000,0	-911,2	80,0	12757265,6	1653017736,0
<u>24</u>	132,5	15,0	1987,5	-923,8	-80,0	-1835953,1	-159000,0	-911,2	-80,0	12757265,6	1653017736,0
			A_{ges} [mm ²]			$\frac{\sum(y_i A_i)}{[mm^3]}$	$\frac{\sum(z_i A_i)}{[mm^3]}$			I _{y,ges} [mm ⁴]	I _{z,ges} [mm ⁴]
			90385,0			-1136386,3	0,0			5965843614,6	25039253819,0

Tabelle 7-2: Querschnittswerte im betrachteten Querschnitt; LF1

<u>Schwerpunktskoordinaten im</u> <u>betrachteten Querschnitt:</u>

- y_s= -12,57 mm
- $z_s = 0$ mm

Äußerer-Randfaser-Abstand:

$h_{z,min}=h_{z1}-z_s$	$h_{z,min} = 460,0 \text{ mm}$	$W_{y,min}\!\!=\!\!I_{y,ges}\!/h_{z,max}$	$W_{y,min}$ = 12969225,3 mm ³
$h_{z,max}=h_{z2}+z_s$	h _{z,max} = 460,0 mm	$W_{y,max}=I_{y,ges}/h_{z,min}$	$W_{y,max}$ = 12969225,3 mm ³
$h_{y,min}=h_{y1}-y_s$	h _{y,min} = 550,6 mm	W _{z,min} =I _{z,ges} /h _{y,max}	$W_{z,min}$ = 25617511,0 mm ³
$h_{y,max}=h_{y2}+y_s$	h _{y,max} = 977,4 mm	W _{z,max} =I _{z,ges} /h _{y,min}	$W_{z,max}$ = 45478557,9 mm ³

7.2.2.4 Spannungen im betrachteten Querschnitt

Analytische Ermittlung der Spannungen:

<u>ständige Lasten:</u>

Druckspannung:	Biegespannung um z-Achse:	Biegespannung um y-Achse:
$\sigma_{d,xy,st} = (F_H + G_S) / A_{ges}$	$\sigma_{b,xy,st} = M_{xy,st}/W_z$	$\sigma_{b,xz,st}$ = $M_{xz,st}/W_y$
$\sigma_{d,xy,st}$ = -2,21 N/mm ²	$\sigma_{b1,xy,st}$ = -3,94 N/mm ²	$\sigma_{b1,xz,st}$ = -2,11 N/mm ²
	$\sigma_{b2,xy,st}$ = -3,94 N/mm ²	$\sigma_{b2,xz,st}$ = 2,11 N/mm ²
	$\sigma_{b3,xy,st}$ = 0,63 N/mm ²	$\sigma_{b3,xz,st}$ = -2,11 N/mm ²

Biegemoment um z-Achse:

 $M_{xy,st} = F_{oyEW} (x_{1EW} + x_{2S} + x_{1HW} + x_{1S}) - F_{uyEW} (x_{2S} + x_{1HW} + x_{1S}) + F_{oyHW} (x_{1HW} + x_{1S}) - F_{uyHW} x_{1S} + F_{H} (y_{1S} + e_{N,xy}) + G_{S} e_{N,xy} + G_{S1} y_{2S} + G_{S2} (y_{3S} - y_{2S}) - G_{S2} (y_{3S} - y_{2S}) -$

M_{xy,st}= 1790544449,18 Nmm

Biegemoment um y-Achse:

 $M_{xz,st} = F_{ozEW} (x_{1EW} + x_{2S} + x_{1HW} + x_{1S}) - F_{uzEW} (x_{2S} + x_{1HW} + x_{1S}) + F_{ozHW} (x_{1HW} + x_{1S}) - F_{uzHW} x_{1S} - F_{H} (z_{1S} + e_{N,xz}) - G_{S} e_{N,xz} - G_{N,xz} -$

M_{xz,st}= -27393674,18 Nmm

<u>Nutz-Lasten:</u>		
Druckspannung:	Biegespannung um z-Achse:	Biegespannung um y-Achse:
$\sigma_{d,xy,EL} = F_{HEL} / A_{ges}$	$\sigma_{b,xy,EL}\!\!=\!\!M_{xy,EL}\!/W_z$	$\sigma_{b,xz,EL} = M_{xz,EL} / W_y$
$\sigma_{d,xy,EL}$ = -0,55 N/mm ²	$\sigma_{b1,xy,EL}$ = -1,78 N/mm ²	$\sigma_{b1,xz,EL}$ = -0,14 N/mm ²
	$\sigma_{b2,xy,EL}$ = -1,78 N/mm ²	$\sigma_{b2,xz,EL}$ = 0,14 N/mm ²
	$\sigma_{b3,xy,EL}$ = 0,30 N/mm ²	$\sigma_{b3,xz,EL}$ = -0,14 N/mm ²

Biegemoment um z-Achse:

$$\begin{split} M_{xy,EL} = & F_{oyEL} \left(x_{1EW} + x_{2S} + x_{1HW} + x_{1S} \right) - F_{uyEL} \left(x_{2S} + x_{1HW} + x_{1S} \right) + F_{HEL} \left(y_{1S} + e_{N,xy} \right) \\ M_{xy,EL} = 84846101,57 \ Nmm \end{split}$$

Biegemoment um y-Achse:

 $M_{xz,EL} = F_{ozEL} (x_{1EW} + x_{2S} + x_{1HW} + x_{1S}) - F_{uzEL} (x_{2S} + x_{1HW} + x_{1S}) - F_{HEL} (z_{1S} + e_{N,zy})$

 $M_{xz,EL}$ = -1771101,57 Nmm

Spannungen im Querschnitt:

Maximale Spannung im Punkt 2: $\sigma_{x,max,2}=(\sigma_{d,xy,st}+\sigma_{b2,xy,st}+\sigma_{b2,xz,st})+(\sigma_{d,xy,EL}+\sigma_{b2,xy,EL}+\sigma_{b2,xz,EL})$ $\sigma_{x,max,2}=-6,31$ N/Maximale Spannung im Punkt 3: $\sigma_{x,max,3}=(\sigma_{d,xy,st}+\sigma_{b3,xy,st}+\sigma_{b3,xz,st})+(\sigma_{d,xy,EL}+\sigma_{b3,xy,EL}+\sigma_{b3,xz,EL})$ $\sigma_{x,max,3}=-4,09$ N/Bemessung der Spannung im Punkt 1: $\sigma_{x,Ed,1}=\gamma_{G,j,sup}(\sigma_{d,xy,st}+\sigma_{b1,xy,st}+\sigma_{b1,xz,st})+\gamma_{Q,1}(\sigma_{d,xy,EL}+\sigma_{b1,xz,EL})$ $\sigma_{x,Ed,1}=-14,98$ N/nBemessung der Spannung im Punkt 2: $\sigma_{x,Ed,2}=\gamma_{G,j,sup}(\sigma_{d,xy,st}+\sigma_{b2,xy,st}+\sigma_{b2,xz,st})+\gamma_{Q,1}(\sigma_{d,xy,EL}+\sigma_{b2,xy,EL}+\sigma_{b2,xz,EL})$ $\sigma_{x,Ed,2}=-8,87$ N/nBemessung der Spannung im Punkt 3: $\sigma_{x,Ed,3}=\gamma_{G,j,sup}(\sigma_{d,xy,st}+\sigma_{b3,xy,st}+\sigma_{b3,xz,st})+\gamma_{Q,1}(\sigma_{d,xy,EL}+\sigma_{b3,xy,EL}+\sigma_{b3,xz,EL})$ $\sigma_{x,Ed,3}=-5,58$ N/n	Maximale Spannung im Punkt 1:	$\sigma_{x,max,1} = (\sigma_{d,xy,st} + \sigma_{b1,xy,st} + \sigma_{b1,xz,st}) + (\sigma_{d,xy,EL} + \sigma_{b1,xy,EL} + \sigma_{b1,xz,EL})$	$\sigma_{x,max,1}$ = -10,81 N/mm ²
Maximale Spannung im Punkt 3: $\sigma_{x,max,3} = (\sigma_{d,xy,st} + \sigma_{b3,xy,st} + \sigma_{b3,xz,st}) + (\sigma_{d,xy,EL} + \sigma_{b3,xy,EL} + \sigma_{b3,xz,EL})$ $\sigma_{x,max,3} = -4,09$ N/Bemessung der Spannung im Punkt 1: $\sigma_{x,Ed,1} = \gamma_{G,j,sup} (\sigma_{d,xy,st} + \sigma_{b1,xy,st} + \sigma_{b1,xz,st}) + \gamma_{Q,1} (\sigma_{d,xy,EL} + \sigma_{b1,xz,EL})$ $\sigma_{x,Ed,1} = -14,98$ N/nBemessung der Spannung im Punkt 2: $\sigma_{x,Ed,2} = \gamma_{G,j,sup} (\sigma_{d,xy,st} + \sigma_{b2,xy,st} + \sigma_{b2,xz,st}) + \gamma_{Q,1} (\sigma_{d,xy,EL} + \sigma_{b2,xy,EL} + \sigma_{b2,xz,EL})$ $\sigma_{x,Ed,2} = -8,87$ N/nBemessung der Spannung im Punkt 3: $\sigma_{x,Ed,3} = \gamma_{G,j,sup} (\sigma_{d,xy,st} + \sigma_{b3,xy,st} + \sigma_{b3,xz,st}) + \gamma_{Q,1} (\sigma_{d,xy,EL} + \sigma_{b3,xy,EL} + \sigma_{b3,xz,EL})$ $\sigma_{x,Ed,3} = -5,58$ N/n	Maximale Spannung im Punkt 2:	$\sigma_{x,max,2} = (\sigma_{d,xy,st} + \sigma_{b2,xy,st} + \sigma_{b2,xz,st}) + (\sigma_{d,xy,EL} + \sigma_{b2,xy,EL} + \sigma_{b2,xz,EL})$	$\sigma_{x,max,2}$ = -6,31 N/mm ²
Bemessung der Spannung im Punkt 1: $\sigma_{x,Ed,1}=\gamma_{G,j,sup} (\sigma_{d,xy,st}+\sigma_{b1,xy,st}+\sigma_{b1,xz,st})+\gamma_{Q,1} (\sigma_{d,xy,EL}+\sigma_{b1,xy,EL}+\sigma_{b1,xz,EL})$ $\sigma_{x,Ed,1}=-14,98$ N/nBemessung der Spannung im Punkt 2: $\sigma_{x,Ed,2}=\gamma_{G,j,sup} (\sigma_{d,xy,st}+\sigma_{b2,xy,st}+\sigma_{b2,xz,st})+\gamma_{Q,1} (\sigma_{d,xy,EL}+\sigma_{b2,xy,EL}+\sigma_{b2,xz,EL})$ $\sigma_{x,Ed,2}=-8,87$ N/nBemessung der Spannung im Punkt 3: $\sigma_{x,Ed,3}=\gamma_{G,j,sup} (\sigma_{d,xy,st}+\sigma_{b3,xy,st}+\sigma_{b3,xy,st}+\sigma_{b3,xy,sL}+\sigma_{b3,xy,EL}+\sigma_{b3,xy,EL}+\sigma_{b3,xz,EL})$ $\sigma_{x,Ed,3}=-5,58$ N/n	Maximale Spannung im Punkt 3:	$\sigma_{x,max,3} = (\sigma_{d,xy,st} + \sigma_{b3,xy,st} + \sigma_{b3,xz,st}) + (\sigma_{d,xy,EL} + \sigma_{b3,xy,EL} + \sigma_{b3,xz,EL})$	$\sigma_{x,max,3}$ = -4,09 N/mm ²
	Bemessung der Spannung im Punkt 1: Bemessung der Spannung im Punkt 2: Bemessung der Spannung im Punkt 3:	$\begin{split} &\sigma_{x,Ed,1} = \gamma_{G,j,sup} \left(\sigma_{d,xy,st} + \sigma_{b1,xy,st} + \sigma_{b1,xz,st} \right) + \gamma_{Q,1} \left(\sigma_{d,xy,EL} + \sigma_{b1,xy,EL} + \sigma_{b1,xz,EL} \right) \\ &\sigma_{x,Ed,2} = \gamma_{G,j,sup} \left(\sigma_{d,xy,st} + \sigma_{b2,xy,st} + \sigma_{b2,xz,st} \right) + \gamma_{Q,1} \left(\sigma_{d,xy,EL} + \sigma_{b2,xy,EL} + \sigma_{b2,xz,EL} \right) \\ &\sigma_{x,Ed,3} = \gamma_{G,j,sup} \left(\sigma_{d,xy,st} + \sigma_{b3,xy,st} + \sigma_{b3,xz,st} \right) + \gamma_{Q,1} \left(\sigma_{d,xy,EL} + \sigma_{b3,xy,EL} + \sigma_{b3,xz,EL} \right) \end{split}$	$\sigma_{x,Ed,1}$ = -14,98 N/mm ² $\sigma_{x,Ed,2}$ = -8,87 N/mm ² $\sigma_{x,Ed,3}$ = -5,58 N/mm ²

 $\gamma_{G,j,sup}$ und $\gamma_{Q,1}$ nach Tabelle 6-4 ($\gamma_{G,j,sup} = 1,35 / \gamma_{Q,1} = 1,5$)

Ermittlung der Spannungen mittels FEM:

Abbildung 7-10: Längsspannungen im betrachteten Querschnitt nach FEM; LF1

Abbildung 7-11: Spannungsverteilung nach von Mises im betrachteten Querschnitt; LF1

Beurteilung der Spannungen:

Die Spannungen aus der analytischen und der FEM Berechnung stimmen sehr gut überein. Die geringen Unterschiede resultieren aus einer geringfügigen Idealisierung des Querschnittes in der analytischen Betrachtung.

7.2.2.5 Methode der reduzierten Spannungen

Es wird der Nachweis erbracht, dass die Bemessung des Bauwerks mit Querschnitten der Klasse 3 zulässig ist. Dabei werden zwei Blechfelder näher betrachtet.

Blechfeld 1:

a) Ausgesteiftes Blechfeld:

Zur Bestimmung des Flächeträgheitsmoments für das gesamte längsversteifte Blechfeld 1, welches in weiterer Folge zur Ermittlung des Beulwertes benötigt wird.

Abbildung 7-12: Ausgesteiftes Blechfeld 1; LF1

Tabelle 7-3:	Querschnittswerte	fiir	das ausgesteifte	Blechfeld	1:	LF	71
Tabelle 7-3.	Quel schintiswer te	Tur	uas ausgestente	Diecifieiu	т,		. •

	y _i [mm]	z _i [mm]	A _i [mm ²]	y _{ai} [mm]	z _{ai} [mm]	$y_{ai} A_i$ [mm ³]	$z_{ai} A_i$ [mm ³]	y _{si} [mm]	z _{si} [mm]	I _z [mm ⁴]	
<u>1</u>	495	20	9900	-267,5	0	-2648250	0	-144,20	0	408002661	b= 630 mm
<u>2</u>	20	630	12600	-10	0	-126000	0	113,30	0	162164814	a= 960 mm
			A_{ges} [mm ²]			$\frac{\sum(y_i A_i)}{[mm^3]}$	$\frac{\sum(z_i \ A_i)}{[mm^3]}$			$I_{z,ges} = I_{sl}$ [mm ⁴]	b ₁ = 305 mm
			22500			-2774250	0			570167475	b ₂ = 305 mm

Schwerpunktskoordinaten für das ausgesteifte Blechfeld 1:

y_s= -123,30 mm

 $z_s = 0,00 \text{ mm}$

b) Ersatzdruckstab:

Ermittlung des Flächenträgheitsmoments des Ersatzdruckstabes zur Bestimmung der kritischen Knickspannung.

Abbildung 7-13: Ersatzdruckstab Blechfeld 1; LF1

Tabelle 7-4: Querschnittswerte des Ersatzdruckstabes; LF1

	y _i [mm]	z _i [mm]	A _i [mm ²]	y _{ai} [mm]	z _{ai} [mm]	$y_{ai} A_i$ [mm ³]	$z_{ai} A_i$ [mm ³]	y _{si} [mm]	z _{si} [mm]	I _z [mm ⁴]
<u>1</u>	495	20	9900	-267,5	0	-2648250	0	-102,06	-5,57	305262247
<u>2</u>	20	325	6500	-10	-14,06	-65000	-91373,52	-155,44	-8,49	157271214
			$A_{ges} = A_{sl,1}$ $[mm^2]$			$\sum(y_i A_i)$ [mm ³]	$\frac{\sum(z_i A_i)}{[mm^3]}$			$I_{z,ges} = I_{sl,1}$ $[mm^4]$
			16400			-2713250	-91373,5			462533461

Schwerpunktskoordinaten des Ersatzdruckstabes:

y_s= -165,44 mm

z_s= -5,57 mm

Nachweis der Zulässigkeit der Methode der reduzierten Spannungen:

Ermittlung von $\alpha_{ult,k}$ über das Fließkriterium nach Gl.96:

$$\frac{1}{\alpha_{\text{ult.k}}^{2}} = \left(\frac{\sigma_{\text{x.Ed}}}{f_{\text{y}}}\right)^{2} + \left(\frac{\sigma_{\text{z.Ed}}}{f_{\text{y}}}\right)^{2} - \left(\frac{\sigma_{\text{x.Ed}}}{f_{\text{y}}}\right) \cdot \left(\frac{\sigma_{\text{z.Ed}}}{f_{\text{y}}}\right) \qquad \sigma_{\text{z,Ed}} = 0$$

$$\longrightarrow \qquad \alpha_{\text{ult.k.xz}} = \min\left(\frac{f_{\text{y}}}{\sigma_{\text{x.Ed}}}\right) \qquad \longrightarrow \qquad \alpha_{\text{ult.k.xz}} = 15,61$$

 $\sigma_{x.\text{Ed}}$ ist die größte auftretende Längsspannung im Blechfeld

Ermittlung des modifizierten Schlankheitsgrades nach Gl.95:

-Spannungsverhältnis im Blechfeld nach Abschnitt 6.5.2: $\Psi_x = \sigma_2/\sigma_1 = \sigma_{x,Ed,2}/\sigma_{x,Ed,1}$ $\Psi_x = 0,59$ $\Psi_z = 0,00$ -Elastische kritische Knickspannung nach Abschnitt 6.5.2:

$$\sigma_{cr.x} = \frac{\pi^2 \cdot E \cdot I_{sl.1}}{A_{sl.1} \cdot a^2} \cdot \frac{b}{2} = 12685450 \frac{N}{mm^2} \longrightarrow \alpha_{cr.x} = \frac{\sigma_{cr.x}}{\sigma_{x.Ed}} = 8428,97$$

-*Ermittlung von* α_{cr} *nach Gl.110*:

$$\frac{1}{\alpha_{\rm cr}} = \frac{1+\psi_{\rm x}}{4\cdot\alpha_{\rm cr.x}} + \frac{1+\psi_{\rm z}}{4\cdot\alpha_{\rm cr.z}} + \left[\left(\frac{1+\psi_{\rm x}}{4\cdot\alpha_{\rm cr.x}} + \frac{1+\psi_{\rm z}}{4\cdot\alpha_{\rm cr.z}} \right)^2 + \frac{1-\psi_{\rm x}}{2\cdot\alpha_{\rm cr.x}^2} + \frac{1-\psi_{\rm z}}{2\cdot\alpha_{\rm cr.2}^2} \right]^2$$
$$\longrightarrow \quad \alpha_{\rm cr} = 8428,97$$

$$\lambda_{\rm p} = \sqrt{\frac{\alpha_{\rm ult.k}}{\alpha_{\rm cr}}} = 0,043$$

Ermittlung der elastischen kritischen Plattenbeulspannung nach Gl.100:

-Flächenträgheitsmoment für Plattenbiegung nach Gl.105:

$$I_{p} = \frac{b \cdot t_{b}^{3}}{12 \cdot (1 - v^{2})} = 46153846 \text{mm}^{4}$$

-Beulwert der orthotropen Platte nach Gl.101:

$$k_{\sigma,p} = \frac{2 \cdot \left[\left(1 + \alpha^2 \right) + \gamma - 1 \right]}{\alpha^2 \cdot (\psi + 1) \cdot (1 + \delta)} = 376,89 \qquad \longrightarrow \qquad \sigma_{cr,p} = k_{\sigma,p} \cdot \sigma_E = 72093,42 \frac{N}{mm^2}$$

mit:

$$\sigma_{\rm E} = \frac{\pi^2 \cdot {\rm E} \cdot {\rm t}^2}{12 \cdot (1 - {\rm v}^2) \cdot {\rm b}^2} = 191,28 \frac{{\rm N}}{{\rm mm}^2}$$

$$\gamma = \frac{I_{sl}}{I_p} = 1235,36$$
, $\delta = \frac{A_{sl}}{A_p} = 0,79$, $\alpha = \frac{a}{b} = 1,52 \ge 0,5$ $\longrightarrow \alpha \le \sqrt[4]{\gamma}$

Ermittlung des endgültigen Abminderungsbeiwertes ρ_c nach Gl.97:

$$\rho = \left(\rho_b - \chi_c\right) \cdot \zeta \cdot \left(2 - \zeta\right) + \chi_c = 1$$

Bedingung:

$$\left(\frac{\sigma_{x.Ed}}{\frac{f_{y}}{\gamma_{M1}}}\right)^{2} + \left(\frac{\sigma_{z.Ed}}{\frac{f_{y}}{\gamma_{M1}}}\right)^{2} - \left(\frac{\sigma_{x.Ed}}{\frac{f_{y}}{\gamma_{M1}}}\right) \cdot \left(\frac{\sigma_{z.Ed}}{\frac{f_{y}}{\gamma_{M1}}}\right) = 0,0041 < \rho^{2}$$

mit:

$$\zeta = \frac{\sigma_{cr,p}}{\sigma_{cr,x}} - 1 = -0,432 \qquad \longrightarrow \qquad \zeta = 0$$

$$\lambda_p < 0,5 + \sqrt{0,085 - 0,055 \cdot \psi_x} = 0,73 \qquad \longrightarrow \qquad \rho_b = 1$$

$$\chi_c = 1$$

$$\frac{\rho \cdot \alpha_{\text{ult.k}}}{\gamma_{\text{M1}}} = 15,61 > 1 \quad \longrightarrow \quad \text{Methode der reduzierten Spannungen ist zulässig}$$

Blechfeld 2:

a) Ausgesteiftes Blechfeld:

Zur Bestimmung des Flächeträgheitsmoments für das gesamte längsversteifte Blechfeld 2, welches in weiterer Folge zur Ermittlung des Beulwertes benötigt wird.

Abbildung 7-14: Ausgesteiftes Blechfeld 2; LF1

Tabelle 7-5: (Querschnittswerte für	das ausgesteifte	Blechfeld 2	; LF1

	y _i [mm]	z _i [mm]	A _i [mm²]	y _{ai} [mm]	z _{ai} [mm]	y _{ai} A _i [mm ³]	z _{ai} A _i [mm ³]	y _{si} [mm]	z _{si} [mm]	l _z [mm ⁴]	b= 600 mm
<u>1</u>	10	450	4500	-500	90	-2250000	405000	-145,45	65,45	95216838,8	a = 450 mm
<u>2</u>	600	20	12000	-300	0	-3600000	0	54,55	24,55	7629752,1	a- 450 mm
			A _{ges}			∑(y _i A _i)	∑(z _i A _i)			$I_{z,ges} = I_{sl}$	b ₁ = 495 mm
			[mm ²]			[mm ³]	[mm³]			[mm ⁴]	b ₂ = 95 mm
			16500			-5850000	405000			102846590,9	

Schwerpunktskoordinaten für das ausgesteifte Blechfeld 2:

y_s= -354,55 mm

z_s= 24,55 mm

b) Ersatzdruckstab:

Ermittlung des Flächenträgheitsmoments des Ersatzdruckstabes zur Bestimmung der kritischen Knickspannung.

Abbildung 7-15: Ersatzdruckstab Blechfeld 2; LF1

Tabelle 7-6:	Ouerschnittswerte	des Ersatzdi	ruckstabes:	LF1
rabene 7-0.	Quel semmes wer te	ues Ersatzu	uchstabes,	TAL T

6										
	y i	Zi	Ai	y ai	Z _{ai}	y _{ai} A _i	z _{ai} A _i	y _{si}	Z _{si}	lz
	[mm]	[mm]	[mm ²]	[mm]	[mm]	[mm ³]	[mm ³]	[mm]	[mm]	[mm ⁴]
<u>1</u>	10	450	4500	-286,19	90	-1287838,43	405000	71,59	53,66	88894278,3
<u>2</u>	332,22	20	6644,43	-166,11	0	-1103709,71	0	-48,49	36,34	8996581,65
			$A_{ges} = A_{sl,1}$			∑(y _i A _i)	∑(z _i A _i)			$I_{z,ges} = I_{sl,1}$
			[mm ²]			[mm ³]	[mm ³]			[mm ⁴]
			11144,43			-2391548,14	405000			97890859,9

Schwerpunktskoordinaten des Ersatzdruckstabes:

y_s= -214,60 mm

Nachweis der Zulässigkeit der Methode der reduzierten Spannungen:

Ermittlung von $\alpha_{ult.k}$ über das Fließkriterium nach Gl.96:

$$\frac{1}{\alpha_{\text{ult,k}}^2} = \left(\frac{\sigma_{\text{x.Ed}}}{f_{\text{y}}}\right)^2 + \left(\frac{\sigma_{\text{z.Ed}}}{f_{\text{y}}}\right)^2 - \left(\frac{\sigma_{\text{x.Ed}}}{f_{\text{y}}}\right) \cdot \left(\frac{\sigma_{\text{z.Ed}}}{f_{\text{y}}}\right) \qquad \sigma_{\text{z,Ed}} = 0$$

 $\sigma_{x.\text{Ed}}$ ist die größte auftretende Längsspannung im Blechfeld

$$\longrightarrow \alpha_{ult,k,xz} = min \left(\frac{f_y}{\sigma_{x,Ed}} \right) \longrightarrow \alpha_{ult,k,xz} = 15,61$$

Ermittlung des modifizierten Schlankheitsgrades nach Gl.95:

-Spannungsverhältnis im Blechfeld nach Abschnitt 6.5.2:

$$\Psi_x = \sigma_2 / \sigma_1 = \sigma_{x,Ed,2} / \sigma_{x,Ed,1}$$
 $\Psi_x = 0.37$
 $\Psi_z = 0.00$

-Elastische kritische Knickspannung nach Abschnitt 6.5.2:

$$\sigma_{cr.x} = \frac{\pi^2 \cdot E \cdot I_{sl.1}}{A_{sl.1} \cdot a^2} \cdot \frac{b_1 + \frac{t_S}{2} + y_s}{b_1 + \frac{t_S}{2}} = 92164, 56 \frac{N}{mm^2} \longrightarrow \alpha_{cr.x} = \frac{\sigma_{cr.x}}{\sigma_{x.Ed}} = 6123, 96$$

-Ermittlung von α_{cr} nach Gl.110:

$$\frac{1}{\alpha_{\rm cr}} = \frac{1+\psi_{\rm x}}{4\cdot\alpha_{\rm cr.x}} + \frac{1+\psi_{\rm z}}{4\cdot\alpha_{\rm cr.z}} + \left[\left(\frac{1+\psi_{\rm x}}{4\cdot\alpha_{\rm cr.x}} + \frac{1+\psi_{\rm z}}{4\cdot\alpha_{\rm cr.z}}\right)^2 + \frac{1-\psi_{\rm x}}{2\cdot\alpha_{\rm cr.x}^2} + \frac{1-\psi_{\rm z}}{2\cdot\alpha_{\rm cr.2}^2}\right]^2$$

$$\lambda_{\rm p} = \sqrt{\frac{\alpha_{\rm ult.k}}{\alpha_{\rm cr}}} = 0,050$$

Ermittlung der elastischen Plattenbeulspannung nach Gl.100:

-Flächenträgheitsmoment für Plattenbiegung nach Gl.105:

$$I_{p} = \frac{b \cdot t_{b}^{3}}{12 \cdot (1 - v^{2})} = 439560.44 \text{mm}^{4}$$

-Beulwert der orthotropen Platte nach Abschnitt Gl.101:

$$k_{\sigma,p} = \frac{2 \cdot \left[\left(1 + \alpha^2 \right) + \gamma - 1 \right]}{\alpha^2 \cdot (\psi + 1) \cdot (1 + \delta)} = 444,41 \qquad \longrightarrow \qquad \sigma_{cr,p} = k_{\sigma,p} \cdot \sigma_E = 93721,64 \frac{N}{mm^2}$$

mit:

$$\sigma_{\rm E} = \frac{\pi^2 \cdot {\rm E} \cdot t^2}{12 \cdot (1 - v^2) \cdot b^2} = 210,89, \frac{N}{mm^2}$$

$$\gamma = \frac{I_{\rm sl}}{I_{\rm p}} = 233,98 \qquad \delta = \frac{A_{\rm sl}}{A_{\rm p}} = 0,38 \qquad \alpha = \frac{a}{b} = 0,75 \ge 0,5 \longrightarrow \alpha \le \sqrt[4]{\gamma}$$

Ermittlung des endgültigen Abminderungsbeiwertes p nach Gl.97:

$$\rho = \left(\rho_b - \chi_c\right) \cdot \zeta \cdot \left(2 - \zeta\right) + \chi_c = 1$$

Bedingung:

$$\left(\frac{\sigma_{x.Ed}}{\frac{f_{y}}{\gamma_{M1}}}\right)^{2} + \left(\frac{\sigma_{z.Ed}}{\frac{f_{y}}{\gamma_{M1}}}\right)^{2} - \left(\frac{\sigma_{x.Ed}}{\frac{f_{y}}{\gamma_{M1}}}\right) \cdot \left(\frac{\sigma_{z.Ed}}{\frac{f_{y}}{\gamma_{M1}}}\right) = 0,0041 < \rho^{2}$$

mit:

$$\zeta = \frac{\sigma_{\text{cr.p}}}{\sigma_{\text{cr.x}}} - 1 = 0,017$$

$$\lambda_{p} < 0.5 + \sqrt{0.085 - 0.055 \psi_{x}} = 0.75$$
 \longrightarrow $\rho_{b} = 1$

$$\chi_c = 1$$

$$\frac{\rho_c \cdot \alpha_{ult.k}}{\gamma_{M1}} = 15,61 > 1 \longrightarrow \text{Methode der reduzierten Spannungen ist zulässig}$$

7.2.2.6 Grenzzustände der Tragfähigkeit

7.2.2.6.1 Lagesicherheit (EQU)

Der Nachweis der Lagesicherheit, die Sicherheit gegen das Abheben des Auflagers von seiner ursprünglichen Position, erfolgt nach Abschnitt 6.1.5.4.2:

<u>x-y-EBENE:</u>

Destabilisierendes Moment:	
<u>Ständige Lasten:</u>	<u>Nutzlast:</u>
$M_{dstxyst} = F_{oyEW} (x_{1EW} + x_{2S} + x_{1HW} + x_{1S} + x_{0S}) + F_{oyHW} (x_{1HW} + x_{1S} + x_{0S})$	$M_{dstxyEL} = F_{oyEL} (x_{1EW} + x_{2S} + x_{1HW} + x_{1S} + x_{0S})$
M _{dstxyst} = 793553158 Nmm	M _{dstxyEL} = 478440833 Nmm

 $M_{Ed,dstxy} = \gamma_{G,sup,EQU} M_{dstxyst} + \gamma_{Q,EQU} M_{dstxyEL}$ $M_{Ed,dstxy} = 1590569724 Nmm$

```
\gamma_{G,j,sup,EQU} und \gamma_{Q,EQU} nach Tabelle 3-3 (\gamma_{G,j,sup} = 1, 1 / \gamma_{Q,1} = 1, 5)
```

Stabilisierendes Moment:

<u>Ständige Lasten:</u>

 $M_{stbxyst} = F_{uyEW} (x_{2S} + x_{1HW} + x_{1S} + x_{0S}) + F_{uHW} (x_{1S} + x_{0S}) + F_{H} (y_{0S} - y_{1S} - e_{N,xy}) + G_{S3} (y_{0S} - e_{N,xy}) + G_{S2} (y_{0S} - y_{2S} + y_{3S} - e_{N,xy}) + G_{S1} (y_{0S} - y_{2S} - e_{N,xy}) + G_{S2} (y_{0S} - y_{2S} - e_{N,xy}) + G_{S1} (y_{0S} - y_{2S} - e_{N,xy}) + G_{S2} (y_{0S} - y_{2S} - e_{N,xy}) + G_{S1} (y_{0S} - y_{2S} - e_{N,xy}) + G_{S2} (y_{0S} - y_{2S} - e_{N,xy}) + G_{S1} (y_{0S} - y_{2S} - e_{N,xy}) + G_{S2} (y_{0S} -$

M_{stbxyst}= 729181459 Nmm

<u>Nutzlast:</u>

```
M_{stbxyEL}=F_{uyEL} (x_{2S}+x_{1HW}+x_{1S}+x_{0S})+F_{HEL} (y_{0S}-y_{1s}-e_{N,xy})M_{stbxyEL}= 421994732 \text{ Nmm}
```

 $M_{Rd,stbxy} = \gamma_{G,inf,EQU} M_{stbxyst} + \gamma_{Q,EQU} M_{stbxyEL}$

M_{Rd,stbxy}= 1289255411 Nmm

 $\gamma_{G,j,sup,EQU}$ und $\gamma_{Q,EQU}$ nach Tabelle 6-3 ($\gamma_{G,j,sup} = 0.9 / \gamma_{Q,1} = 1.5$)

 $M_{Ed,dst,xy} \leq M_{Rd,stb,xy} + M_{Rd,xy}$

M_{Rd,xy}= 301314313 Nmm

Widerstand, welcher durch die Verschraubung (50 x M20 Schrauben) zwischen Drehsäule und Drehlager aufgebracht werden muss.

x-z-EBENE:

Leiteinwirkung Nutzlast:
Destabilisierendes Moment:Nutzlast:Ständige Lasten:Nutzlast: $M_{dstxzst}=F_{uzEW}(x_{2S}+x_{1HW}+x_{1S}+x_{0S})+F_{uzHW}(x_{1S}+x_{0S})+F_{H}(z_{1S}+e_{N,xz})$ $M_{dstxzEL}=F_{uzELEW}(x_{2S}+x_{1HW}+x_{1S}+x_{0S})+F_{HEL}(z_{1S}+e_{N,xz})$ $M_{dstxzst}=410788662,22 Nmm$ $M_{dstxzeL}=216432768,24 Nmm$

 $M_{Ed,dstxz} = \gamma_{G,sup,EQU} M_{dstxzst} + \gamma_{Q,EQU} M_{dstxzEL}$ $M_{Ed,dstxz} = 776516680,8 \text{ Nmm}$

 $\gamma_{G,j,sup,EQU}$ und $\gamma_{Q,EQU}$ nach Tabelle 6-3 ($\gamma_{G,j,sup} = 1, 1 / \gamma_{Q,1} = 1, 5$)

Stabilisierendes Moment:

Ständige Lasten:

 $M_{stbxzst} = F_{ozEW} \left(x_{1EW} + x_{2S} + x_{1HW} + x_{1S} + x_{0S} \right) + F_{ozHW} \left(x_{1HW} + x_{1S} + x_{0S} \right) + G_S^* (z_{2S} - e_{N,xz})$

M_{stbxzst}= 403029988 Nmm

<u>Nutzlast:</u>

 $M_{stbxzEL}{=}F_{ozEL}\left(x_{1EW}{+}x_{2S}{+}x_{1HW}{+}x_{1S}{+}x_{0S}\right)$

M_{stbxzEL}= 214661667 Nmm

 $M_{Rd,stbxz} = \gamma_{G,sup,EQU} M_{1stbxzst} + \gamma_{Q,EQU} M_{1stbxzEL}$ $M_{Rd,stbxz} = 684719489 Nmm$

 $\gamma_{G,i,sup,EQU}$ und $\gamma_{Q,EQU}$ nach Tabelle 6-3 ($\gamma_{G,i,sup} = 0.9 / \gamma_{Q,1} = 1.5$)

 $M_{Ed,dst,xz} \le M_{Rd,stb,xz} + M_{Rd,xz}$ $M_{Rd,xz} = 91797191,6$ Nmm Widerstand, welcher durch die Verschraubung (50 x M20) zwischen Drehsäule und Drehlager aufgebracht werden muss.

Die Schwenksäule wird mit der Stützsäule über ein Drehgelenk mittels fünfzig M20-Schrauben der Festigkeitsklasse 10.9 verbunden.

$\label{eq:werkstoffkennwerte:full} \begin{array}{l} \hline Werkstoffkennwerte: \\ f_{ub} = 1000 \ N/mm^2 \\ f_{yb} = 900 \ N/mm^2 \end{array}$			
Resultierendes Moment:			
$M_{res} = (M_{Rd,xy}^2 + M_{Rd,xz}^2)^{1/2}$	$M_{res} = 314987364$	Nmm	
<u>Minimaler Normalabstand der S</u> L= 300 mm	Schrauben zur Kippkante:		<u>Anzahl der Schrauben:</u> n= 50
Einwirkung auf eine einzelne So	chraube:		
$F_E = M_{res}/(L*n)$	F _E = 20999 N		
Bemessung der Vorspannkraft:			
$F_{V}\text{=}~0,7~f_{ub}~A_{s}~\text{/}~\gamma_{M7}$	F _v = 137757 N	mit $\gamma_{M7}=$	1,1
Zugtragfähigkeit der Schraubve k ₂ = 0,9	rbindung:		
$d_s = 17,5 \text{ mm}$	Kerndurchmesser einer M20-Schra	aube	
$A_s = 240,5 \text{ mm}$ $\gamma_{M2} = 1,25$			
F _{t,Rd} = 173180,3 N			
<u>Schraubenkraft:</u>			
F _s = 140570 N	aus Verspannungsdreieck; Abbild	ung 7-16	
Nachweis der Schraubverbindur	<u>ıg:</u>		
$F_{\rm S}/F_{\rm t,Rd} = 0.81 < 1$			

Verspannungsdreieck:

-Ermittlung der Nachgiebigkeit der Schraube:

$$\delta_{\rm S} = \delta_{\rm K} + \delta_1 + \delta_{\rm M} = 2,415\,10^{-6}\,\frac{\rm mm}{\rm N}$$

mit

$$\delta_{\rm K} = \frac{0.4 \cdot d_{\rm S}}{{\rm E} \cdot {\rm A}} = 1,386\,10^{-7}\,\frac{{\rm mm}}{{\rm N}} \quad ; \quad \delta_1 = \frac{1}{{\rm E} \cdot {\rm A}} = 1,980\,10^{-6}\,\frac{{\rm mm}}{{\rm N}} \quad ; \quad \delta_{\rm M} = \frac{{\rm l}_{\rm M}}{{\rm E} \cdot {\rm A}} = 2,970\,10^{-7}\,\frac{{\rm mm}}{{\rm N}}$$

Abbildung 7-16: Prinzipdarstellung der Nachgiebigkeit einer Schraube und der verspannten Bauteile; Kapitel 8.1.8 aus [15]

-Ermittlung der Nachgiebigkeit der verspannten Teile:

$$\delta_{\mathbf{P}} = \frac{\mathbf{l}_{\mathbf{k}}}{\mathbf{E} \cdot \mathbf{A}_{\mathrm{ers}}} = 3,731 \cdot 10^{-7} \, \frac{\mathrm{mm}}{\mathrm{N}}$$

mit

$$A_{\text{ers}} = \frac{\pi}{4} \cdot \left[\left(1, 5 \cdot d_{\text{W}} \right)^2 - d^2 \right]$$

-Ermittlung von dem Verspannungsbild:

Abbildung 7-17: Verspannungsdreieck bei statischer Belastung für den Lastfall 1 und 2

-Elastische Verformung der Schraube und der Bauteile:

 $f_{sv} = \delta_s \cdot F_V$; $f_{pv} = \delta_p \cdot F_V$

7.2.2.6.2 Beanspruchbarkeit von Querschnitten

Die Beanspruchbarkeit von Querschnitten untersucht, ob das Bauteil den Belastungen im betrachteten Querschnitt standhält. Dabei muss die Zulässigkeit sowohl in den einzelnen Ebenen als auch für die zusammengesetzte Beanspruchung gegeben sein.

Allgemein:

Fließkriterium im Punkt 1 des betrachteten Querschnitts nach Gl.52:

$$\left(\frac{\sigma_{x.Ed}}{\frac{f_{y}}{\gamma_{M0}}}\right)^{2} + \left(\frac{\sigma_{z.Ed}}{\frac{f_{y}}{\gamma_{M0}}}\right)^{2} - \left(\frac{\sigma_{x.Ed}}{\frac{f_{y}}{\gamma_{M0}}}\right) \cdot \left(\frac{\sigma_{z.Ed}}{\frac{f_{y}}{\gamma_{M0}}}\right) = 0,0041 < 1$$

konservative Lösung nach Gl.53:

$$\frac{N_{Ed}}{N_{Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} = 0,064 < 1$$

Grenznormalkraft:

$$\frac{N_{Ed}}{N_{Rd}} = 0,016 < 1$$

$$N_{Rd} = \frac{A \cdot f_y}{\gamma_{M0}} = 21240475N$$
 (nach Gl.58)

$$N_{Ed} = \gamma_{G.sup.STR} \cdot (G_S + F_{Hst}) + \gamma_{Q.STR} \cdot F_{HEL} = 344257,5N$$
 (nach 6.1.5.4.2)

Grenzbiegemoment um die z-Achse:

$$\frac{M_{z.Ed}}{M_{z.Rd}} = 0.035 < 1$$
 (nach Gl.60)

$$M_{z.Rd} = \frac{W_{z.max} f_y}{\gamma_{M0}} = 1068746111 \text{Nmm}$$
(nach Gl.62)

$$M_{z.Ed} = \gamma_{G.sup.STR} \cdot M_{xy.st} + \gamma_{Q.STR} \cdot M_{xy.EL} = 3722290138Nmm$$

(nach 6.1.5.4.2)

(nach Gl.57)

Grenzbiegemoment um die y-Achse:

$$\frac{M_{y.Ed}}{M_{y.Rd}} = 0.013 < 1$$
 (nach Gl.60)

 $M_{y.Rd} = \frac{W_{y.max} \cdot f_y}{\gamma_{M0}} = 3047768014 \text{Nmm}$

.

(nach Gl.62)

(nach 6.1.5.4.2)

 $M_{y.Ed} = \gamma_{G.sup.STR} \cdot M_{xz.st} + \gamma_{Q.STR} \cdot M_{xz.EL} = 3963811251Nmm$

Beanspruchung aus Biegung und Normalkraft:

$$\sigma_{x.Ed} = 15,05 \frac{N}{mm^2} < \frac{f_y}{\gamma_{M0}} = 235 \frac{N}{mm^2}$$
 (nach Gl.65)

7.2.2.6.3 Stabilitätsnachweis

Der Nachweis für die Stabilität eines Bauteils ist zu bringen um sicherzustellen, dass es zu keinem Versagen aufgrund von Knicken bzw. Biegedrillknicken kommt. Im Allgemeinen sind Bauteile wie die Drehsäule, welche in Form eines Kastenprofiles aufgebaut ist, nicht gegen Knicken oder Biegedrillknicken gefährdet.

Gleichförmige Bauteile mit Biegung um die Hauptachse:

Biegedrillknicken: x-y-Ebene:

$$\frac{M_{z.Ed}}{M_{b.Rd}} = 0,079 < 1$$
(nach Gl.80)
$$M_{b.Rd} = \chi_{LT} W_{z.max} \frac{f_y}{\gamma_{M1}} = 4612551310 \text{Nmm}$$
(nach Gl.81)

Knicklinie für Biegedrillknicken – allgemeiner Fall:

$$\chi_{\rm LT} = \frac{1}{\Phi_{\rm LT} + \sqrt{\Phi_{\rm LT}^2 - \lambda_{\rm LT}^2}} = 0,43 \le 1$$
(nach Gl.82)

$$\Phi_{LT} = 0.5 \left[1 + \alpha_{LT} \left(\lambda_{LT} - 0.2 \right) + \lambda_{LT}^{2} \right] = 1.41 \quad \text{mit} \quad \alpha_{LT} = 0.76 \quad (\text{nach GI.83})$$

$$\lambda_{\rm LT} = \sqrt{\frac{W_{\rm z} \cdot fy}{M_{\rm cr.xy}}} = 1.073$$
(nach Gl.84)

mit

$$M_{cr.xy} = \alpha_{cr} \cdot M_z = 929035498$$
 mm für $\alpha_{cr} = 35.204$ aus FEA (nach Gl.85)

x-z-Ebene:

$$\frac{M_{y.Ed}}{M_{b.Rd}} = 0,058 < 1$$
(nach Gl.80)
$$M_{b.Rd} = \chi_{LT} W_{y.max} \frac{f_y}{\gamma_{M1}} = 6833007631 \text{Nmm}$$
(nach Gl.81)

Knicklinie für Biegedrillknicken – allgemeiner Fall:

$$\chi_{LT} = \frac{1}{\Phi_{LT} + \sqrt{\Phi_{LT}^2 - \lambda_{LT}^2}} = 0, 22 \le 1$$
(nach Gl.82)

$$\Phi_{LT} = 0.5 \cdot \left[1 + \alpha_{LT} (\lambda_{LT} - 0.2) + \lambda_{LT}^{2} \right] = 2.56 \qquad \text{mit} \qquad \alpha_{LT} = 0.76 \qquad (\text{nach Gl.83})$$

$$\lambda_{\text{LT}} = \sqrt{\frac{W_{\text{y}} \cdot fy}{M_{\text{cr.xz}}}} = 1.723$$
(nach G.84)

mit

$$M_{cr.xz} = \alpha_{cr} M_y = 102671676$$
 mm für $\alpha_{cr} = 35.204$ aus FEA (nach Gl.85)

Auf Biegung und Druck beanspruchte gleichförmige Bauteile:

$$\frac{N_{Ed}}{\frac{\chi_{y} \cdot N_{Rk}}{\gamma_{M1}}} + k_{yy} \cdot \frac{M_{y,Ed} + \Delta M_{y,Ed}}{\chi_{LT}} + k_{yz} \cdot \frac{M_{z,Ed} + \Delta M_{z,Ed}}{\frac{M_{z,Rk}}{\gamma_{M1}}} = 0,055 \le 1$$
(nach Gl.90)

$$\frac{N_{Ed}}{\frac{\chi_{z} \cdot N_{Rk}}{\gamma_{M1}}} + k_{zy} \cdot \frac{M_{y.Ed} + \Delta M_{y.Ed}}{\chi_{LT}} + k_{zz} \cdot \frac{M_{z.Ed} + \Delta M_{z.Ed}}{\frac{M_{z.Rk}}{\gamma_{M1}}} = 0,049 \le 1$$
(nach Gl.91)

mit

$$k_{yy} = C_{my} \cdot \left(1 + 0.6 \cdot \frac{N_{Ed}}{\chi_y \cdot \frac{N_{Rk}}{\gamma_{M1}}} \right) = 0.85 \qquad k_{yz} = k_{zz} = 0.76$$

$$k_{zz} = C_{mz} \cdot \left(1 + 0.6 \cdot \frac{N_{Ed}}{\chi_z \cdot \frac{N_{Rk}}{\gamma_{M1}}} \right) = 0.76 \qquad k_{zy} = 0.8 \cdot k_{yy} = 0.68$$

$$C_{my} = 0.6 + 0.4 \psi_y = 0.84 > 0.4$$

$$C_{mz} = 0.6 + 0.4 \psi_z = 0.75 > 0.4$$

Allgemeines Verfahren für Knick- und Biegedrillknicknachweise:

x-y-Ebene:

$$\frac{\chi_{\text{op}} \cdot \alpha_{\text{ult.k}}}{\gamma_{\text{M1}}} = 12,06 > 1 \qquad \text{und} \qquad \frac{\frac{N_{\text{Ed}}}{N_{\text{Rd}}}}{\frac{N_{\text{Rd}}}{\gamma_{\text{M1}}}} + \frac{\frac{M_{\text{Ed}}}{M_{\text{SRd}}}}{\frac{M_{\text{y.Rd}}}{\gamma_{\text{M1}}}} = 0,051 < \chi_{\text{op}}$$
(nach Gl.92)

mit

$$\frac{1}{\alpha_{\text{ult.k.xy}}} = \frac{N_{\text{Ed}}}{N_{\text{Rk}}} + \frac{M_{\text{y.Ed}}}{M_{\text{y.Rk}}} \longrightarrow \alpha_{\text{ult.k.xy}} = 19.71$$
(nach 6.4.5.4)

$$\chi_{\rm op} = \frac{1}{\Phi_{\rm op} + \sqrt{\Phi_{\rm op}^2 - \lambda_{\rm op}^2}} = 0,61 < 1,0$$
(nach 6.4.5.2)

$$\Phi_{LT} = 0.5 \cdot \left[1 + \alpha_{op} \cdot (\lambda_{op} - 0.2) + \lambda_{op}^2 \right] = 0.99 \quad \text{mit} \quad \alpha_{op} = 0.76 \quad (\text{nach } 6.4.5.2)$$

und

$$\lambda_{\rm op} = \sqrt{\frac{\alpha_{\rm ult.k}}{\alpha_{\rm cr.op}}} = 0,75$$
 mit $\alpha_{\rm cr.op} = 35,204$ aus FEA (nach Gl.93)

(nach Tabelle 6-25)

x-z-Ebene:

$$\frac{\chi_{\text{op}} \cdot \alpha_{\text{ult.k}}}{\gamma_{\text{M1}}} = 16,23 > 1 \qquad \text{und} \qquad \frac{N_{\text{Ed}}}{\frac{N_{\text{Rd}}}{\gamma_{\text{M1}}}} + \frac{M_{\text{Ed}}}{\frac{M_{\text{y.Rd}}}{\gamma_{\text{M1}}}} = 0,029 < \chi_{\text{op}} \tag{nach Gl.92}$$

mit

$$\frac{1}{\alpha_{\text{ult.k.xy}}} = \frac{N_{\text{Ed}}}{N_{\text{Rk}}} + \frac{M_{\text{y.Ed}}}{M_{\text{y.Rk}}} \longrightarrow \alpha_{\text{ult.k.xy}} = 34.23$$

$$\chi_{\rm op} = \frac{1}{\Phi_{\rm op} + \sqrt{\Phi_{\rm op}^2 - \lambda_{\rm op}^2}} = 0,47 < 1,0$$
(nach 6.4.5.2)

$$\Phi_{LT} = 0.5 \cdot \left[1 + \alpha_{op} \cdot (\lambda_{op} - 0.2) + \lambda_{op}^{2} \right] = 1.28 \qquad \text{mit} \qquad \alpha_{op} = 0.76 \qquad (\text{nach } 6.4.5.2)$$

und

$$\lambda_{\rm op} = \sqrt{\frac{\alpha_{\rm ult.k}}{\alpha_{\rm cr.op}}} = 0,99$$
 mit $\alpha_{\rm cr.op} = 35,204$ aus FEA

(nach Gl.93)

(nach 6.4.5.4)

7.2.2.7 Grenzzustand der Gebrauchstauglichkeit

Im Grenzzustand der Gebrauchstauglichkeit müssen die Verschiebungen des Bauwerks innerhalb der vorgegebenen zulässigen Werte liegen. Die auftretenden Verschiebungen wurden sowohl analytisch als auch mittels der Finite-Elemente-Analyse ermittelt.

Analytische Ermittlung der Verschiebungen:

Vereinfacht wurde angenommen, dass die Säule einen konstanten Querschnitt über die Höhe aufweist. Ihr Flächenträgheitsmoment um die z-Achse wird mit 2/3 und um die y-Achse mit 1 des Flächenträgheitsmomentes des betrachteten Querschnittes (Abbildung 7-9) angenommen.

a) Verschiebungen in x-y-Ebene:

Biegelinie allgemein: E I w'' = $-M_{b(x)}$

Randbedingungen:

w(x=X)=0

w'(x=X)=0

mit X= $x_{1EW}+x_{2S}+x_{1HW}+x_{1S}+x_{0S}$

<u>Ständige Lasten:</u>

$M_{b(x)} =$	$F_{oyEW} x - F_{uyEW} (x - x_{1EW}) + F_{oyHW} (x - (x_{1EW} + x_{2S})) - F_{uyHW} (x - (x_{1EW} + x_{2S} + x_{1HW})) + F_H (y_{0S} + e_{N,xy}) + G_S e_{N,xy} + G_{S1} y_{2S} + G_{S2} (y_{3S} - y_{2S}) + G_{S2} (y_{3S} - y_{2S}) + G_{S2} (y_{3S} - y_{2S}) + G_{S3} (y_{3S} - y_{2S}) + G_{S$
$\int M_{b(x)} dx =$	$F_{oyEW} x^{2}/2 - F_{uyEW} (x^{2}/2 - x_{1EW} x) + F_{oyHW} (x^{2}/2 - (x_{1EW} + x_{2S}) x) - F_{uyHW} (x^{2}/2 - (x_{1EW} + x_{2S} + x_{1HW}) x) + F_{H} (y_{0S} + e_{N,xy}) x + G_{S} e_{N,xy} x + G_{S1} y_{2S} x + G_{S2} (y_{3S} - y_{2S}) x + $
$\int (\int M_{b(x)} d_x) dx =$	$ \begin{array}{l} x_{1} + C_{1} \\ F_{oyEW} x^{3}/6 - F_{uyEW} (x^{3}/6 - x_{1EW} x^{2}/2) + F_{oyHW} (x^{3}/6 - (x_{1EW} + x_{2S}) x^{2}/2) - F_{uyHW} (x^{3}/6 - (x_{1EW} + x_{2S} + x_{1HW}) x^{2}/2) + F_{H} (y_{0S} + e_{N,xy}) x^{2}/2 + G_{S} e_{N,xy} x^{2}/2 + G_{S1} y_{2S} x^{2}/2 + G_{S2} (y_{3S} - y_{2S}) x^{2}/2 + C_{1} x + C_{2} \end{array} $

Durch Einsetzen der Randbedingungen kommt man für die Verschiebung an der Stelle x=0 zu folgender Lösung:

 $w_{xy,st(x=0)} = F_{oyEW} X^{3}/3 - F_{uyEW} (X^{3}/3 - x_{1EW} X^{2}/2) + F_{oyHW} (X^{3}/3 - (x_{1EW} + x_{2S}) X^{2}/2) - F_{uyHW} (X^{3}/3 - (x_{1EW} + x_{2S} + x_{1HW}) X^{2}/2) + F_{H} (y_{0S} + e_{N,xy}) = 2,26 \text{ mm} X^{2}/2 + G_{S} e_{N,xy} X^{2}/2 + G_{S1} y_{2S} X^{2}/2 + G_{S2} (y_{3S} - y_{2S}) X^{2}/2$

<u>Nutzlasten:</u>

$M_{b(x)} =$	$F_{oyEL} x - F_{uyEL} (x - x_{1EW}) + F_{HEL} (y_{0S} + e_{N,xy})$
$\int M_{b(x)} dx =$	$F_{oyEL} x^2/2$ - $F_{uyEL} (x^2/2$ - $x_{1EW} x)$ + $F_{HEL} (y_{0S}+e_{N,xy}) x$ + C_3
$\int (\int M_{b(x)} d_x) dx =$	$F_{oyEL} x^{3}/6-F_{uyEL} (x^{3}/6-x_{1EW} x^{2}/2)+F_{HEL} (y_{0S}+e_{N,xy}) x^{2}/2+C_{3} x+C_{4}$

Durch Einsetzen der Randbedingungen kommt man für die Verschiebung an der Stelle x=0 zu folgender Lösung:

$W_{xy,EL(x=0)} =$	$F_{oyEL} X^3/3 - F_{uyEL} (X^3/3 - x_{1EW} X^2/2) + F_{HEL} (y_{0S} + e_{N,xy}) X^2/2$	= 1,04 mm
--------------------	---	-----------

Gesamtverschiebung in x-y-Ebene:	$W_{xy(x=0)} = W_{xy,st(x=0)} + W_{xy,EL(x=0)}$	= 3,30 mm
Bemessung der Verschiebung in x-y-Ebene:	$W_{xy,Ed(x=0)} = \gamma_G W_{xy,st(x=0)} + \gamma_Q W_{xy,EL(x=0)}$	= 3,30 mm
γ_{G} und γ_{Q} nach Tabelle 3-5 (γ_{G} =1,0 / γ_{Q} = 1,0)		
b) Verschiebungen in x-z-Ebene:		
Biegelinie allgemein: E I w'' = $-M_{b(x)}$		
Randbedingungen:		
w(x=X)=0		
w'(x=X)=0		
mit $X=x_{1EW}+x_{2S}+x_{1HW}+x_{1S}+x_{0S}$		

<u>Ständige Lasten:</u>

$M_{b(x)}=$	$F_{ozEW} x - F_{uzEW} (x - x_{1EW}) + F_{ozHW} (x - (x_{1EW} + x_{2S})) - F_{uzHW} (x - (x_{1EW} + x_{2S} + x_{1HW})) - F_H (z_{1S} + e_{N,xz}) - G_S e_{N,xz}$
$\int M_{b(x)} dx =$	$F_{ozEW} x^{2}/2 - F_{uzEW} (x^{2}/2 - x_{1EW} x) + F_{ozHW} (x^{2}/2 - (x_{1EW} + x_{2S}) x) - F_{uzHW} (x^{2}/2 - (x_{1EW} + x_{2S} + x_{1HW}) x) - F_{H} (z_{1S} + e_{N,xz}) x - G_{S} e_{N,xz} x + C_{5} + C_{1S} + C$
$\int (\int M_{b(x)} d_x) dx =$	$F_{ozEW} x^{3}/6 - F_{uzEW} (x^{3}/6 - x_{1EW} x^{2}/2) + F_{ozHW} (x^{3}/6 - (x_{1EW} + x_{2S}) x^{2}/2) - F_{uzHW} (x^{3}/6 - (x_{1EW} + x_{2S} + x_{1HW}) x^{2}/2) - F_{H} (z_{1S} + e_{N,xz}) x^{2}/2 - G_{S} e_{N,xz} x^{2}/2 + C_{5} x + C_{6} x^{2}/2 - C_{5} x + C_{6} x^{2}/2 - C_{5} x^{2}/2 - C_{$

Durch Einsetzen der Randbedingungen kommt man für die Verschiebung an der Stelle x=0 zu folgender Lösung:

$W_{xz,st(x=0)} =$	$F_{ozEW} X^{3}/3 - F_{uzEW} (X^{3}/3 - x_{1EW} X^{2}/2) + F_{ozHW} (X^{3}/3 - (x_{1EW} + x_{2S}) X^{2}/2) - F_{uzHW} (X^{3}/3 - (x_{1EW} + x_{2S} + x_{1HW}) X^{2}/2)$	= -0,83 mm
	$-F_{\rm H} (z_{1\rm S} + e_{\rm N,xz}) X^2/2 - G_{\rm S} e_{\rm N,xz} X^2/2$	

<u>Nutzlasten:</u>

$M_{b(x)} =$	$F_{ozEL} x - F_{uzEL} (x - x_{1EW}) - F_{HEL} (z_{1S} + e_{N,xz})$
$\int M_{b(x)} dx =$	$F_{ozEL} x^2/2-F_{uzEL} (x^2/2-x_{1EW} x)-F_{HEL} (z_{1S}+e_{N,xz}) x+C_7$
$\int (\int M_{b(x)} d_x) dx =$	$F_{ozEL} x^{3}/6-F_{uzEL} (x^{3}/6-x_{1EW} x^{2}/2)-F_{HEL} (z_{1S}+e_{N,xz}) x^{2}/2+C_{7} x+C_{8}$

Durch Einsetzen der Randbedingungen kommt man für die Verschiebung an der Stelle x=0 zu folgender Lösung:

$W_{xz,EL(x=0)} =$	$F_{ozel} X^3/3$ - $F_{uzel} (X^3/3$ - $x_{1ew} X^2/2$)- $F_{Hel} (z_{1S}+e_{N,xz}) X^2/2$	= -0,05 mm
--------------------	---	------------

Gesamtverschiebung in x-z-Ebene:	$W_{xz(x=0)} = W_{xz,st(x=0)} + W_{xz,EL(x=0)}$	= -0,88 mm
Bemessung der Verschiebung in x-y-Ebene:	$w_{xy,Ed(x=0)} = \gamma_{G} \ w_{xy,st(x=0)} + \gamma_{Q} \ w_{xy,EL(x=0)}$	= -0,88 mm
$\gamma_{\rm G}$ und $\gamma_{\rm Q}$ nach Tabelle 6-5 ($\gamma_{\rm G}$ =1,0 / $\gamma_{\rm Q}$ = 1,0)		

Resultierende Gesamtverschiebung:	W _{ges(x=0)}	= 3,42 mm
-----------------------------------	-----------------------	------------

Ermittlung der Verschiebungen mittels FEM:

Verschiebung in x-y-Ebene:

Resultierende Gesamtverschiebung:

Abbildung 7-18: a) Verschiebung in x-y-Ebene; LF1 ; b) Verschiebung in x-z-Ebene; LF1 ; c) Resultierende Verschiebung; LF1
Beurteilung der Verschiebungen:

Die Abweichungen zwischen den Ergebnissen aus der FEA und der analytischen Berechnung sind sehr gering, wodurch man davon ausgehen kann, dass die Annäherung für die analytische Berechnung richtig getroffen wurde.

Weiters sind die auftretenden Verschiebungen verschwindend gering und liegen weit unter dem zulässigen Bereich. Der Grenzzustand der Gebrauchstauglichkeit ist demnach gegeben.

7.2.2.8 Ermüdungsnachweis am betrachteten Querschnitt

Es wird ein Einstufenlastkollektiv dargestellt, in welchem sich die Spannungsschwingbreite zwischen ständiger Last und ständiger Last plus Nutzlast einstellt.

Spannungsschwingbreite (Amplitudenspannung):

<u>ständige Lasten:</u>		
Druckspannung:	Biegespannung um z-Achse:	Biegespannung um y-Achse:
$\sigma_{d,xy,st} = (F_H + G_S) / A_{ges}$	$\sigma_{b,xy,st}=M_{xy,st}/W_z$	$\sigma_{b,xz,st} = M_{xz,st} / W_y$
$\sigma_{d,xy,st}$ = -2,21 N/mm ²	$\sigma_{b,xy,st}$ = 6,99 N/mm ²	$\sigma_{b,xz,st}$ = 2,11 N/mm ²
Biegemoment um z-Achse: M _{xy,st} =F _{oyEW} (x _{1EW} +x _{2S} +x _{1HW} +x _{1S}) M _{xy,st} = 179054449,18 Nmm	$-F_{uyEW} (x_{2S}+x_{1HW}+x_{1S})+F_{oyHW} (x_{1HW}+x_{1S})-F_{uyHW}$	$x_{1S}+F_{H}(y_{1S}+e_{N,xy})+G_{S}e_{N,xy}+G_{S1}y_{2S}+G_{S2}(y_{3S}-y_{2S})$
Biegemoment um y-Achse:		
$M_{xz,st} = F_{ozEW} (x_{1EW} + x_{2S} + x_{1HW} + x_{1S})$	$-F_{uzEW}(x_{2S}+x_{1HW}+x_{1S})+F_{ozHW}(x_{1HW}+x_{1S})-F_{uzHW}$	x_{1S} - $F_H (z_{1S}$ + $e_{N,xz}$)- $G_S e_{N,xz}$
M _{xz,st} = -27393674,18 Nmm		
<u>Nutz-Lasten:</u>		
Druckspannung:	Biegespannung um z-Achse:	Biegespannung um y-Achse:
$\sigma_{d,xy,EL} = F_{HEL} / A_{ges}$	$\sigma_{b,xy,EL} = M_{xy,EL} / W_z$	$\sigma_{b,xz,EL} = M_{xz,EL} / W_y$
$\sigma_{d,xy,EL}$ = -0,55 N/mm ²	$\sigma_{b,xy,EL}$ = 3,31 N/mm ²	$\sigma_{b,xz,EL} = 0.14 \text{ N/mm}^2$

Biegemoment um z-Achse:

$$\begin{split} M_{xy,EL} = & F_{oyEL} \; (x_{1EW} + x_{2S} + x_{1HW} + x_{1S}) - F_{uyEL} \; (x_{2S} + x_{1HW} + x_{1S}) + F_{HEL} \; (y_{1S} + e_{N,xy}) \\ M_{xy,EL} = \; 84846101,57 \; \; Nmm \end{split}$$

Biegemoment um y-Achse:

 $M_{xz,EL} = F_{ozEL} \left(x_{1EW} + x_{2S} + x_{1HW} + x_{1S} \right) - F_{uzEL} \left(x_{2S} + x_{1HW} + x_{1S} \right) - F_{HEL} \left(z_{1S} + e_{N,zy} \right)$

 $M_{xz,EL}$ = -1771101,57 Nmm

Spannung im betrachteten Punkt:

Unterspannung:	$\sigma_{u} = (\sigma_{d,xy,st} + \sigma_{b,xy,st} + \sigma_{b,xz,st})$	σ_u = 6,90 N/mm ²
Oberspannung:	$\sigma_{o} = (\sigma_{d,xy,st} + \sigma_{b,xy,st} + \sigma_{b,xz,st}) + (\sigma_{d,xy,EL} + \sigma_{b,xy,EL} + \sigma_{b,xz,EL})$	σ_o = 9,79 N/mm ²
Spannungsverhältnis:	$R=\sigma_u/\sigma_o$	R= 0,71
Mittelspannung:	$\sigma_{\rm m} = (\sigma_{\rm u} + \sigma_{\rm o})/2$	$\sigma_m\text{=}~8,35~N/mm^2$
Spannungsamplitude:	$\sigma_a = (\sigma_o - \sigma_u)/2$	$\sigma_a\text{=}~1,45~\text{N/mm}^2$

Bemessung der Spannung im betrachteten Punkt:

Unterspannung:	$\sigma_{u,Ed} = \gamma_{G,j,sup} \left(\sigma_{d,xy,st} + \sigma_{b,xy,st} + \sigma_{b,xz,st} \right)$	$\sigma_{u,Ed}$ = 9,31 N/mm ²
Oberspannung:	$\sigma_{o,Ed} = \gamma_{G,j,sup} \left(\sigma_{d,xy,st} + \sigma_{b,xy,st} + \sigma_{b,xz,st} \right) + \gamma_{Q,1} \left(\sigma_{d,xy,EL} + \sigma_{b,xy,EL} + \sigma_{b,xz,EL} \right)$	$\sigma_{o,Ed}$ = 13,65 N/mm ²
Spannungsverhältnis:	$R_{Ed}\!\!=\!\!\sigma_{u,Ed}\!/\!\sigma_{o,Ed}$	$R_{Ed} = 0,68$
Mittelspannung:	$\sigma_{m,Ed} = (\sigma_{u,Ed} + \sigma_{o,Ed})/2$	$\sigma_{m,Ed}$ = 11,48 N/mm ²
Spannungsamplitude:	$\sigma_{a,Ed} = (\sigma_{o,Ed} - \sigma_{u,Ed})/2$	$\sigma_{a,Ed}$ = 2,17 N/mm ²

 $\gamma_{G,j,sup}$ und $\gamma_{Q,1}$ nach Tabelle 6-4 ($\gamma_{G,j,sup} = 1,35 / \gamma_{Q,1} = 1,5$)

Ermüdungsfestigkeit:

a) Ermittlung der ertragbaren Ermüdungsbeanspruchung $\Delta \sigma_R$:

Der betrachtete Querschnitt der geschweißten Blechkonstruktion wird nach Tabelle 6.30 der Kerbfallklasse 6 ($\Delta\sigma_C = 100 \text{ N/mm}^2$) zugeordnet. Aus Gl.117 lässt sich schließlich die ertragbare Ermüdungsbeanspruchung, für eine auftretende Lastspielzahl von N_R = 7,3 10⁴, ermitteln:

$$\Delta \sigma_{\rm R} = \left(\frac{2 \cdot 10^6}{\rm N_R}\right)^{\rm m} \cdot \Delta \sigma_{\rm C} \qquad \longrightarrow \qquad \Delta \sigma_{\rm R} = 301.46 \frac{\rm N}{\rm mm^2}$$

b) Ermittlung der zulässigen Ermüdungsbeanspruchung $\Delta \sigma_D$ nach Gl.117:

$$\Delta \sigma_{\rm D} = \left(\frac{2}{5}\right)^{\rm m} \cdot \Delta \sigma_{\rm C} \qquad \longrightarrow \qquad \Delta \sigma_{\rm D} = 73.68 \frac{\rm N}{\rm mm^2}$$

c) Ermittlung der zulässigen Ermüdungsbeanspruchung aus dem Smith-Diagramm:

Für eine Mittelspannung von 11,61 N/mm² und dem Werkstoff S235 erhält man aus dem Smith-Diagramm für die Biegedauerfestigkeit eine Biegewechselfestigkeit von 173 N/mm². Unter Berücksichtigung des Größeneinflusses (0,8) und der Kerbwirkung (2) kann man von einer zulässigen Spannung von 69 N/mm² ausgehen. Es ist ersichtlich, dass der Bemessungswert der auftretenden Spannungsschwingbreite (2,17 N/mm²) deutlich unter der zulässigen Spannung (69 N/mm²) liegt, wodurch es zu keiner Ermüdungserscheinung kommt.

Abbildung 7-19: Dauerfestigkeitsschaubild nach Smith für Biegedauerfestigkeit [7]

Ermüdungsnachweis:

Für ein Einstufen-Lastkollektiv ergibt sich nach Gl.120 eine schadensäquivalente konstante Spannungsschwingbreite von $\Delta \sigma_E$ =4,34N/mm².

Durch die lineare Beziehung der Wöhlerkurve im Zeitfestigkeitsbereich kann man auf die schadensäquivalente konstante Spannungsschwingbreite bei 2 10⁶ Lastwechsel schließen.

$$\Delta \sigma_{\rm E}^{\rm m} \cdot N_{\rm R} = \Delta \sigma_{\rm E.2}^{\rm m} \cdot 2 \cdot 10^6 \longrightarrow \Delta \sigma_{\rm E.2} = 1.44 \frac{\rm N}{\rm mm^2}$$
$$\frac{\gamma_{\rm Ff} \cdot \Delta \sigma_{\rm E.2}}{\frac{\Delta \sigma_{\rm C}}{\gamma_{\rm Mf}}} = 0,028 < 1$$

Dadurch ist der Ermüdungsnachweis für das Konzept der ausreichenden Sicherheit gegen Ermüdungsversagen mit einem γ_{Mf} – Faktor von 1,35 nach Tabelle 6-28 mit ausreichender Sicherheit gegeben.

Schädigung nach Miner:

Es wird von zehn Elektrodenwechseln pro Tag über 365 Tage im Jahr auf eine Laufzeit von zwanzig Jahren ausgegangen.

Die Spannungsamplitude $(2,17 \text{ N/mm}^2)$ liegt weit unter der zulässigen Biegewechselfestigkeit wodurch als zulässige Lastspielzahl die Ecklastspielzahl N_D von 5 10^6 Lastwechseln herangezogen wurde.

Somit ergibt sich für das Einstufen-Kollektiv über die gesamte Laufzeit eine Schädigung, welche nicht von Relevanz ist.

Schädigung nach Miner:

Dynamische Sicherheit:

 $D_d = \sum_i \frac{n_{Ei}}{N_{Ri}} = 1,46\%$

$$S_{dyn} = \frac{\sigma_{zul}}{\sigma_a} = 31,94$$

7.3 Lastfall 2

7.3.1 Ermittlung der maßgebenden Kräfte

7.3.1.1 Elektrodenwagen

Durch Ansetzen der drei Gleichgewichtbedingungen können die Kräfte, welche auf das System einwirken, ermittelt werden. Dabei wird zwischen "Ständiger Last" (Eigengewicht), "Nutzlast" (Elektrodengewicht) sowie "Außergewöhnliche Last" (Kräfte aus Beschleunigung/Verzögerung und Seitenführung) unterschieden.

Kräfte auf Führung in x-y-Ebene:

Abbildung 7-20: Elektrodenwagen x-y-Ebene; LF2

Ständige Last:

∑М=0	$G_{EW} y_{1EW}$ - $F_{oyEW} x_{1EW}$ - $F_{HEW} y_{3EW}$ + $m_{EW} a_{verz} y_{1EW}$ =0			
	$F_{oyeL}\text{=}(G_{EW} \; y_{1EW}\text{-}F_{HEW} \; y_{3EW}\text{+}m_{EW} \; a_{verz} \; y_{1EW})/x_{1EW}$	$F_{oyEW}\!\!=\!$	67643,3	N
$\sum F_y=0$	F _{oyEW} -F _{oyEW} =0			
	$F_{uyEW} = F_{oyEW}$	$F_{uyEW}\!\!=\!$	67643,3	N
$\sum F_x=0$	$G_{EW}+m_{EW} a_{verz}$ - $F_{HEW}=0$			
	$F_{HEW}=G_{EW}+m_{EW} a_{verz}$	$F_{HEW} =$	72800,0	N
<u>Nutzlas</u>	<u>t:</u>			
∑М=0	$Q_{EL} \ y_{2EW} \text{-} F_{oyEL} \ x_{1EW} \text{-} F_{HEL} \ y_{3EW} \text{+} m_{EL} \ a_{verz} \ y_{2EW} \text{=} 0$			
	$F_{oyEL} = (Q_{EL} \ y_{2EW} - F_{HEL} \ y_{3EW} + m_{EL} \ a_{verz} \ y_{2EW}) / x_{1EW}$	$F_{oyEL} =$	76708,3	N
$\sum F_y=0$	F_{oyEL} - F_{uyEL} =0			
	$F_{uyEL} = F_{oyEL}$	F_{uyEL} =	76708,3	N
$\sum F_x=0$	Q_{EL} - F_{HEL} + m_{EL} a_{verz} =0			
	$F_{HEL}=Q_{EL}+m_{EL} a_{verz}$	F _{HEL} =	70000,0	N

Kräfte auf Führung in x-z-Ebene:

Abbildung 7-21: Elektrodenwagen x-z-Ebene; LF2

ständige Last:

∑М=0	$G_{\text{EW}} z_{1\text{EW}} \text{-} F_{\text{ozeW}} x_{1\text{EW}} \text{+} F_{\text{HEW}} z_{3\text{EW}} \text{+} m_{\text{EW}} a_{\text{verz}} z_{1\text{EW}} \text{=} 0$			
	$F_{ozEW} {=} (G_{EW} \; z_{1EW} {+} F_{HEW} \; z_{3EW} {+} m_{EW} \; a_{verz} \; z_{1EW}) / x_{1EW}$	$F_{ozEW} =$	33852	N
$\sum F_z=0$	F_{ozEW} - F_{uzEW} =0			
	$F_{uzEW} = F_{ozEW}$	$F_{uzEW} =$	33852	N
$\sum F_x=0$	G_{EW} - F_{HEW} + m_{EW} a_{verz} =0			
	$F_{HEW}=G_{EW}+m_{EW} a_{verz}$	$F_{\text{HEW}}=$	72800	N
<u>Nutzlas</u>	<u>t:</u>			
∑М=0	$Q_{EL} \ z_{2EW} \text{-} F_{ozEL} \ x_{1EW} \text{+} F_{HEL} \ z_{3EW} \text{+} m_{EL} \ a_{verz} \ z_{2EW} \text{=} 0$			
	$F_{ozEL}=(Q_{EL} z_{2EW}+F_{HEL} z_{3EW}+m_{EL} a_{verz} z_{2EW})/x_{1EW}$	$F_{ozEL}=$	34416,7	N
$\sum F_z=0$	F _{ozEL} -F _{uzEL} =0			
	F_{uzEL} = F_{ozEL}	$F_{uzEL} =$	34416,7	N
$\sum F_x=0$	G_{EW} - F_{HEL} + $m_{EL} a_{verz}$ =0			
	$F_{HEL}=Q_{EL}+m_{EL} a_{verz}$	F _{HEL} =	70000,0	Ν

Außergewöhnliche Kräfte auf Führung:

a) Kräfte aus Beschleunigung und Verzögerung:

$K_{EW} = (m_{EW} +$	m_{EL}) a_{verz}	$K_{EW}=$	40800,0	Ν
$\Sigma G_r = \Sigma G_{r,max}$	+ $\Sigma G_{r,min}$ =(F_{uyEW} + F_{uyEL})+(F_{oyEW} + F_{oyEL})	$\Sigma G_r =$	288703,3	Ν
$\Sigma G_{r,max} = F_{uyE}$	$_{\rm W}+F_{\rm uyEL}$	$\Sigma G_{r,max} =$	144351,7	Ν
$M_{EW}=K_{EW}$ (2)	$z_{2EW}+z_{3EW}$)	$M_{\rm EW}$ =	24072000,0	Nmm
$\xi_1 = \Sigma G_{r,max} / \Sigma$	G _r	$\xi_1 =$	0,5	
$\xi_2 = 1 - \xi_1$		$\xi_2 =$	0,5	
"vertikal":	$H_{L,1,EW} = \phi_5 K_{EW} 1/n_r$	$H_{L,1,EW}\!\!=\!$	30600,0	Ν
	$H_{L,2,EW}=\phi_5 K_{EW} 1/n_r$	$H_{L,2,EW}\!\!=\!$	30600,0	Ν
quer:	$H_{T,1,EW} = \phi_5 \xi_2 M_{EW} / x_{1EW}$	$H_{T,1,EW}\!\!=\!$	15045,0	Ν
	$H_{T,2,EW}=\phi_5 \xi_1 M_{EW}/x_{1EW}$	$H_{T,2,EW}=$	15045,0	Ν

 ϕ_5 nach Tabelle 3-10 / $n_r=2$

Abbildung 7-22: Elektrodenwagen; Kräfte aus Beschleunigung und Schräglauf

b) Kräfte aus Schräglauf:

$\alpha_{\rm F}=0,75 \text{ x/x}$	IEW		$\alpha_{\rm F}=$	0,000625	
$\alpha_V = y/x_{1EW}$			$\alpha_{\rm V}=$	0,000083	
$\alpha = \alpha_F + \alpha_V + \alpha_C$	$0 \le 0.015$ rad		α=	0,001707	
f=0,3 (1-exp	$(-250 \alpha)) \le 0.3$		f=	0,104277	
"vertikal":	$H_{S,1,1,L,EW} = \phi_4 f \lambda_{S,1,1,L} \Sigma G_r$		H _{S,1,1,L,EW} =	0,0	N
	$H_{S,1,2,L,EW}\!\!=\!\!\phi_4\;f\;\lambda_{S,1,2,L}\Sigma G_r$		$H_{S,1,2,L,EW}\!\!=\!$	0,0	N
	$H_{S,2,1,L,EW} = \phi_4 f \lambda_{S,2,1,L} \Sigma G_r$		H _{S,2,1,L,EW} =	0,0	N
	$H_{S,2,2,L,EW}\!\!=\!\!\phi_4\;f\;\lambda_{S,2,2,L}\Sigma G_r$		H _{S,2,2,L,EW} =	0,0	N
	$\lambda_{S,1,1,L} = 0$	$\lambda_{S,2,1,L}=0$)	Tabelle 3-1	3
	$\lambda_{S,1,2,L} = 0$	$\lambda_{S,2,2,L} = 0$)	Tabelle 3-1	3
quer:	$S_{EW} = f \lambda_{S,1} \Sigma G_r$		S _{EW} =	15052,6	N
	$H_{S,1,1,T,EW} = f \lambda_{S,1,1,T} \Sigma G_r$		H _{S,1,1,T,EW} =	7526,3	N
	$H_{S,1,2,T,EW} \!\!=\!\! f \lambda_{S,1,2,T} \Sigma G_r$		$H_{S,1,2,T,EW}$ =	0,0	N
	$H_{S,2,1,T,EW}\!\!=\!\!f\lambda_{S,2,1,T}\Sigma G_r$		H _{S,2,1,T,EW} =	7526,3	N
	$H_{S,2,2,T,EW} = f \lambda_{S,2,2,T} \Sigma G_r$		H _{S,2,2,T,EW} =	0,0	N
	$\lambda_{S,1,1,T} = \xi_2/2 = 0,25$	$\lambda_{S,1,2,T} = 0$)	Tabelle 3-1	3
	$-\frac{1}{2}/2-0.25$	$\lambda_{n,2,2,T} = 0$)	Tabelle 3-1	3

 $\phi_4=1$ nach Tabelle 6-8 $n_r=2$ $\alpha_0=0,001$ nach Tabelle 6-11 x=1mm; gewählt y=0,1mm; gewählt $e_1=0$ und $e_2=x_{1EW} \rightarrow h=x_{1EW}$ nach Tabelle 6-12

7.3.1.2 Haubenwagen

Durch Ansetzen der drei Gleichgewichtbedingungen können die Kräfte, welche auf das System einwirken, ermittelt werden. Am Haubenwagen werden keine Nutzlasten eingeleitet, wodurch lediglich eine "Ständige Last" (Eigengewicht) sowie eine "Außergewöhnliche Last" (Kräfte aus Beschleunigung/Verzögerung und Seitenführung) am System wirken.

Kräfte auf Führung in x-y-Ebene:

Abbildung 7-23: Haubenwagen x-y-Ebene; LF2

ständige Last:

∑M=0	G _{HW} y _{1HW} -F _{oyHW} x _{1HW} -F _{HHW} y _{2HW} +m _{HW} a _{verz} y _{1HW} =0			
	$F_{oyHW}=(G_{HW} y_{1HW}-F_{HHW} y_{2HW}+ m_{HW} a_{verz} y_{1HW})/x_{1HW}$	$F_{oyHW}\!\!=\!$	73129,0	N
$\sum F_y=0$	F _{oyHW} -F _{uyHW} =0			
	$F_{uyHW} = F_{oyHW}$	$F_{uyHW}\!\!=\!$	73129,0	Ν
$\sum F_x=0$	G_{HW} - F_{HHW} + m_{HW} a_{verz} =0			
	$F_{HHW}=G_{HW}+m_{HW} a_{verz}$	$F_{HHW}=$	86800,0	Ν

Kräfte auf Führung in x-z-Ebene:

Abbildung 7-24: Haubenwagen x-z-Ebene; LF2

<u>ständige Last:</u>

∑М=0	$G_{HW} z_{1HW} - F_{ozHW} x_{1HW} + F_{HHW} z_{2HW} + m_{HW} a_{verz} z_{1HW} = 0$			
	$F_{ozHW}=(G_{HW}\;z_{1HW}+F_{HHW}\;z_{2HW}+m_{HW}\;a_{verz}\;z_{1HW})/x_{1HW}$	F _{ozHW} =	34286,0	N
$\sum F_z=0$	F _{ozHW} -F _{uzHW} =0			
	$F_{uzHW} = F_{ozHW}$	$F_{uzHW}=$	34286,0	N
$\sum F_x=0$	G_{HW} - F_{HHW} + m_{HW} a_{verz} =0			
	F _{HHW} =G _{HW} +m _{HW} a _{verz}	$F_{HHW}=$	86800,0	Ν

Außergewöhnliche Kräfte auf Führung:

a) Kräfte aus Beschleunigung und Verzögerung:

K _{HW} =m _{HW} a	verz	$K_{HW}=$	24800,0	N
$\Sigma G_r = \Sigma G_{r,max}$	$+\Sigma G_{r,min} = F_{uyHW} + F_{oyHW}$	$\Sigma G_r =$	146258,0	Ν
$\Sigma G_{r,max} = F_{uyH}$	ſW	$\Sigma G_{r,max} =$	73129,0	Ν
$M_{HW} = K_{HW}$ ($z_{1HW}+z_{2HW})$	$M_{HW}=$	11755200,0	Nmm
$\xi_1 = \Sigma G_{r,max} / \Sigma$	G _r	$\xi_1 =$	0,5	
$\xi_2 = 1 - \xi_1$		ξ ₂ =	0,5	
"vertikal":	$H_{L,1,HW}=\phi_5 K_{HW} 1/n_r$	$H_{L,1,HW}\!\!=\!$	18600,0	Ν
	$H_{L,2,HW}=\phi_5 K_{HW} 1/n_r$	$H_{L,2,HW}=$	18600,0	Ν
quer:	$H_{T,1,HW}=\phi_5 \xi_2 M_{HW}/x_{1HW}$	$H_{T,1,HW}\!\!=\!$	7347,0	Ν
	$H_{T,2,HW}=\phi_5 \xi_1 M_{HW}/x_{1HW}$	$H_{T,2,HW}\!\!=\!$	7347,0	Ν

 ϕ_5 nach Tabelle 3-10 / $n_r=2$

Abbildung 7-25: Haubenwagen; Kräfte aus Beschleunigung und Schräglauf

b) Kräfte aus Schräglauf:

EW		$\alpha_{\rm F}=$	0,000625	
		$\alpha_V =$	0,000083	
\leq 0,015 rad		α=	0,001707	
$(-250 \alpha)) \le 0.3$		f=	0,104277	
$H_{S,1,1,L,HW}=\phi_4 \ f \ \lambda_{S,1,1,L} \ \Sigma G_r$		H _{S,1,1,L,HW} =	0,0	N
$H_{S,1,2,L,HW} {=} \phi_4 \; f \; \lambda_{S,1,2,L} \; \Sigma G_r$		$H_{S,1,2,L,HW}=$	0,0	N
$H_{S,2,1,L,HW} \!\!=\!\! \phi_4 \; f \; \lambda_{S,2,1,L} \; \Sigma G_r$		H _{S,2,1,L,HW} =	0,0	N
$H_{S,2,2,L,HW} = \phi_4 f \lambda_{S,2,2,L} \Sigma G_r$		$H_{S,2,2,L,HW}=$	0,0	Ν
$\lambda_{S,1,1,L} = 0$	$\lambda_{S,2,j}$	$_{1,L}=0$	Tabelle 3-1	3
$\lambda_{S,1,2,L} = 0$	λ _{S,2,}	$_{2,L}=0$	Tabelle 3-1	3
$S_{HW} = f \lambda_{S,1} \Sigma G_r$		S _{HW} =	7625,7	N
$H_{S,1,1,T,HW}\!\!=\!\!f\lambda_{S,1,1,T}\Sigma G_r$		H _{S,1,1,T,HW} =	3812,9,3	N
$H_{S,1,2,T,HW}\!\!=\!\!f\lambda_{S,1,2,T}\Sigma G_r$		$H_{S,1,2,T,HW}$ =	0,0	N
$H_{S,2,1,T,HW}=f \lambda_{S,2,1,T} \Sigma G_r$		H _{S,2,1,T,HW} =	3812,9	N
$H_{S,2,2,T,HW}=f \lambda_{S,2,2,T} \Sigma G_r$		H _{S,2,2,T,HW} =	0,0	Ν
$\lambda_{S,1,1,T} = \xi_2/2 = 0,25$	$\lambda_{S,1,j}$	_{2,T} = 0	Tabelle 3-1	3
$\lambda_{S,2,1,T} = \xi_1/2 = 0,25$	$\lambda_{S,2,2}$	$_{2,T} = 0$	Tabelle 3-1	3
	NEW $A \le 0,015 \text{ rad}$ $A \le 0,015 \text{ rad}$ $A = 0,(-250 \alpha)) \le 0,3$ $H_{S,1,1,L,HW} = \phi_4 f \lambda_{S,1,1,L} \Sigma G_r$ $H_{S,1,2,L,HW} = \phi_4 f \lambda_{S,2,1,L} \Sigma G_r$ $H_{S,2,2,L,HW} = \phi_4 f \lambda_{S,2,2,L} \Sigma G_r$ $\lambda_{S,1,1,L} = 0$ $\lambda_{S,1,2,L} = 0$ $S_{HW} = f \lambda_{S,1} \Sigma G_r$ $H_{S,1,2,T,HW} = f \lambda_{S,1,2,T} \Sigma G_r$ $H_{S,1,2,T,HW} = f \lambda_{S,2,2,T} \Sigma G_r$ $H_{S,2,2,T,HW} = f \lambda_{S,2,2,T} \Sigma G_r$ $H_{S,2,2,T,HW} = f \lambda_{S,2,2,T} \Sigma G_r$ $\lambda_{S,1,1,T} = \xi_2/2 = 0,25$ $\lambda_{S,2,1,T} = \xi_1/2 = 0,25$	IEW $3 \le 0,015 \text{ rad}$ $9(-250 \alpha)) \le 0,3$ H _{S,1,1,L,HW} = $\phi_4 f \lambda_{S,1,1,L} \Sigma G_r$ H _{S,1,2,L,HW} = $\phi_4 f \lambda_{S,1,2,L} \Sigma G_r$ H _{S,2,2,L,HW} = $\phi_4 f \lambda_{S,2,2,L} \Sigma G_r$ H _{S,2,2,L,HW} = $\phi_4 f \lambda_{S,2,2,L} \Sigma G_r$ $\lambda_{S,1,1,L}= 0$ $\lambda_{S,1,2,L}= 0$ $\lambda_{S,1,2,L}= 0$ $\lambda_{S,1,2,L}= 0$ $\lambda_{S,1,2,L}= 0$ $\lambda_{S,1,2,L}= 0$ $\lambda_{S,1,2,L} \Sigma G_r$ H _{S,1,2,T,HW} = $f \lambda_{S,1,2,T} \Sigma G_r$ H _{S,2,2,T,HW} = $f \lambda_{S,2,2,T} \Sigma G_r$ H _{S,2,2,T,HW} = $f \lambda_{S,2,2,T} \Sigma G_r$ $\lambda_{S,1,1,T}=\xi_2/2=0,25$ $\lambda_{S,2,1,T}=\xi_1/2=0,25$	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{llllllllllllllllllllllllllllllllllll$

 $\begin{array}{l} \varphi_4=1 \text{ nach Tabelle 6-8} \\ n_r=2 \\ \alpha_0=0,001 \text{ nach Tabelle 6-11} \\ x=1\text{ nm; gewählt} \\ y=0,1\text{ nm; gewählt} \\ e_1=0 \text{ und } e_2=x_{1\text{EW}} \rightarrow h=x_{1\text{EW}} \text{ nach Tabelle 6-12} \end{array}$

7.3.1.3 Säule

Die am Elektroden- und Haubenwagen ermittelten Kräfte werden im Weiteren durch das Freimachen der Bauteile auf die Drehsäule übertragen.

In der x-y-Ebene wird die Drehsäule aufgrund ihres nicht konstanten Querschnittes in drei Abschnitte unterteilt, wodurch sich durch die "Exzentrität" der oberen beiden Abschnitte zusätzliche Biegemomente ausbilden.

Kräfte auf Säule in x-y-Ebene:

Abbildung 7-26: Drehsäule x-y-Ebene; LF2

Kräfte auf Säule in x-z-Ebene:

Abbildung 7-27: Drehsäule x-z-Ebene; LF2

<u>Ständige Lasten:</u>

Gs	65450,0	N
F _{ozEW}	33852,0	N
F_{uzEW}	33852,0	N
F _{ozHW}	34286,0	N
F _{uzHW}	34286,0	N
${}^{*}F_{H}$	179600,0	N
<u>Nutzlasten:</u>		
F _{ozEL}	34416,7	N
F _{uzEL}	34416,7	N

Außergewöhnliche Lasten:

70000,0 N

$H_{T,1,EW}$	15045,0	N
$H_{T,2,EW}$	15045,0	N
$^{*}H_{L,EW}$	61200,0	N
$H_{T,1,HW}$	7347,0	N
$H_{T,2,HW}$	7347,0	N
$^{\ast}H_{L,HW}$	37200,0	N
Schräglauf:		
$H_{S,1,1,T,EW} \\$	7526,3	N
$H_{S,2,1,T,EW} \\$	7526,3	Ν
$H_{S,1,1,T,HW} \\$	3812,9	Ν
$H_{S,2,1,T,HW} \\$	3812,9	Ν

 $F_{H}=F_{HEW}+F_{HHW}+G_{hub}$

 ${}^{*}H_{L,EW} = H_{L,1,EW} + H_{L,2,EW}$

 ${}^{*}H_{L,HW} = H_{L,1,HW} + H_{L,2,HW}$

7.3.2 Tragwerksberechnung

7.3.2.1 Einfluss der Tragwerksverformung

$$\alpha_{\rm cr} = \frac{f_{\rm u}}{\sigma_{\rm x.Ed.1}} = 12,73 \tag{nach Gl.45}$$

 $\alpha_{cr} > 10$ Die elastische Berechnung des Tragwerks nach der Theorie I. Ordnung ist demnach zulässig.

7.3.2.2 Imperfektionen

Der Einfluss der Bauteil-Imperfektionen darf aufgrund der Zulässigkeit der Theorie I. Ordnung vernachlässigt werden. Es wird der Einfluss jedoch bei dieser Anwendung aus Sicherheitsgründen mitberücksichtigt.

Eine globale Anfangsschiefstellung kann vernachlässigt werden wenn folgende Beziehung nach Gl.51 erfüllt wird:

 $H_{\rm Ed} \ge 0,15 V_{\rm Ed}$

<u>x-y-EBENE:</u>

$H_{Ed,xy} = \gamma_{G,sup} \left(F_{oyEW} - F_{uyEW} + F_{oyHW} - F_{uyHW}\right) + \gamma_Q \left(F_{oyEL} - F_{uyEL}\right)$		0,0	Ν
$V_{Ed,xy} = \gamma_{G,sup} \left(G_S + F_H \right) + \gamma_Q F_{HEL} + \gamma_Q \psi_0 \left(H_{L,EW} + H_{L,HW} \right)$	$V_{Ed,xy}=$	477875,0	Ν
$H_{ed,xy} \ge 0,15 V_{ed,xy}$ \longrightarrow Schiefstellung			
<u>x-z-EBENE:</u>			
$H_{Ed,xz} = \gamma_{G,sup} \left(F_{ozEW} - F_{uzEW} + F_{ozHW} - F_{uzHW} \right) + \gamma_Q \left(F_{ozEL} - F_{uzEL} \right)$	$H_{Ed,xz}$ =	0,0	Ν
$V_{Ed,xz} = \gamma_{G,sup} \left(G_S + F_H\right) + \gamma_Q F_{HEL} + \gamma_Q \psi_0 \left(H_{L,EW} + H_{L,HW}\right)$	$V_{Ed,xz}=$	477875,0	Ν
$H_{ed,xz} \ge 0,15 V_{ed,xz}$ \longrightarrow Schiefstellung			

 $\gamma_{G,sup}$, γ_Q und ψ_0 nach Tabelle 6-2/6-3 ($\gamma_{G,sup}$ =1,1 / γ_Q = 1,5 / ψ_0 = 0,7)

Schiefstellung nach Gl.47 (siehe 7.2.2.2):

Verschiebung von Schwerpunkt (Exzentrizität):

 $e_{N}=□ h \qquad anticeleft h = b \\ e_{N,xy}=□ h \qquad e_{N,xy}= 30,422 \text{ mm} \\ e_{N,xz}=□ h \qquad e_{N,xz}= 30,422 \text{ mm} \\ e_{N,xz}=0 h \qquad e_{N,xz}= 30,422 \text{ mm} \\ e_{N,xz}=0 h \qquad e_{N,xz}=0,422 \text{ mm} \\ e_{N,xz}=0,422 \text{$

7.3.2.3 Querschnitt

Ermittlung des Schwerpunktes wie in Abschnitt 7.2.2.3

7.3.2.4 Spannungen im betrachteten Querschnitt:

Analytische Ermittlung der Spannungen:

<u>ständige Lasten:</u>

Druckspannung:	Biegespannung um z-Achse:	Biegespannung um y-Achse:
$\sigma_{d,xy,st} = (F_H + G_S) / A_{ges}$	$\sigma_{b,xy}=M_{xy,st}/W_z$	$\sigma_{b,xz,st} = M_{xy,st} / W_y$
$\sigma_{d,xy,st}$ = -2,71 N/mm ²	$\sigma_{b1,xy,st}$ = -5,38 N/mm ²	$\sigma_{b1,xz,st}$ = -2,51 N/mm ²
	$\sigma_{b2,xy,st}$ = -5,38 N/mm ²	$\sigma_{b2,xz,st}$ = 2,51 N/mm ²
	$\sigma_{b3,xy,st} = 0,85 \text{ N/mm}^2$	$\sigma_{b3,xz,st}$ = -2,51 N/mm ²

Biegemoment um z-Achse:

 $M_{xy,st} = F_{oyEW} (x_{1EW} + x_{2S} + x_{1HW} + x_{1S}) - F_{uyEW} (x_{2S} + x_{1HW} + x_{1S}) + F_{oyHW} (x_{1HW} + x_{1S}) - F_{uyHW} x_{1S} + F_H (y_{1S} + e_{N,xy}) + G_S e_{N,xy} + G_{S1} y_{2S} + G_{S2} (y_{3S} - y_{2S}) + G_{$

Biegemoment um y-Achse:

$$\begin{split} M_{xz,st} = & F_{ozEW} \left(x_{1EW} + x_{2S} + x_{1HW} + x_{1S} \right) - F_{uzEW} \left(x_{2S} + x_{1HW} + x_{1S} \right) + F_{ozHW} \left(x_{1HW} + x_{1S} \right) - F_{uzHW} \left(x_{1S} - F_H \left(z_{1S} + e_{N,xz} \right) - G_S \left(e_{N,xz} - 2 \right) \right) \\ M_{xz,st} = -32551318,82 \quad Nmm \end{split}$$

Nutz-Lasten:

Druckspannung:	Biegespannung um z-Achse:	Biegespannung um y-Achse:
$\sigma_{d,xy,EL}{=}F_{HEL}/A_{ges}$	$\sigma_{b,xy,EL} = M_{xy,EL} / W_z$	$\sigma_{b,xz,EL} = M_{xz,EL} / W_y$
$\sigma_{d,xy,EL}$ = -0,77 N/mm ²	$\sigma_{b1,xy,EL}$ = -2,61 N/mm ²	$\sigma_{b1,xz,EL}$ = -0,19 N/mm ²

$\sigma_{b2,xy,EL}$ = -2,61	N/mm ²
$\sigma_{b3,xy,EL} = 0.53$	N/mm ²

 $\sigma_{b2,xz,EL}=0.19 \text{ N/mm}^2$ $\sigma_{b3,xz,EL}=-0.19 \text{ N/mm}^2$

Biegemoment um z-Achse:

 $M_{xy,EL} = F_{oyEL} (x_{1EW} + x_{2S} + x_{1HW} + x_{1S}) - F_{uyEL} (x_{2S} + x_{1HW} + x_{1S}) + F_{HEL} (y_{1S} + e_{N,xy})$ $M_{xv,EL} = 118784542,2 \text{ Nmm}$

Biegemoment um y-Achse:

$$\begin{split} M_{xz,EL} = & F_{ozEL} \; (x_{1EW} + x_{2S} + x_{1HW} + x_{1S}) - F_{uzEL} \; (x_{2S} + x_{1HW} + x_{1S}) - F_{HEL} \; (z_{1S} + e_{N,zy}) \\ M_{xz,EL} = \; -2479542,2 \; \; Nmm \end{split}$$

Außergewöhnliche Lasten:

Druckspannung:	Biegespannung um z-Achse:	Biegespannung um y-Achse:
$\sigma_{d,xy,au\beta} = (H_{L,EW} + H_{L,HW}) / A_{ges}$	$\sigma_{b,xy,au\beta}\!\!=\!\!M_{xy,au\beta}\!/W_z$	$\sigma_{b,xz,au\beta}\!\!=\!\!M_{xz,au\beta}\!/W_y$
$\sigma_{d,xy,au\beta}$ = -1,09 N/mm ²	$\sigma_{b1,xy,aub}$ = -1,29 N/mm ²	$\sigma_{b1,xz,au\beta}$ = -4,37 N/mm ²
	$\sigma_{b2,xy,au\beta}$ = -1,29 N/mm ²	$\sigma_{b2,xz,au\beta}$ = 4,37 N/mm ²
	$\sigma_{b3,xy,au\beta} = 0,21 \text{ N/mm}^2$	$\sigma_{b3,xz,au\beta}$ = -4,37 N/mm ²

Biegemoment um z-Achse:

 $M_{xy,aub} = (H_{L,EW} + H_{L,HW}) (y_{0S} + e_{N,xy})$

M_{xy,EL}= 58884727,9 Nmm

Biegemoment um y-Achse:

$$\begin{split} M_{xz,au\beta} = -(H_{T,1,EW} + H_{T,2,EW}) & (x_{1EW} + x_{2S} + x_{1HW} + x_{1S}) + (H_{T,1,EW} + H_{T,2,EW}) & (x_{2S} + x_{1HW} + x_{1S}) - (H_{T,1,HW} + H_{T,2,HW}) & (x_{1HW} + x_{1S}) + (H_{T,1,HW} + H_{T,2,HW}) & x_{1S} - (H_{L,1,EW} + H_{L,1,HW}) & (z_{2S} + e_{N,xz}) + (H_{L,2,EW} + H_{L,2,HW}) & (z_{3S} + e_{N,xz}) \end{split}$$

 $M_{xz,EL}$ = -56734327,9 Nmm

Spannungen im Querschnitt:

im Punkt 1:	$\sigma_{x,max,1} = (\sigma_{d,xy,st} + \sigma_{b1,xy,st} + \sigma_{b1,xz,st}) + (\sigma_{d,xy,EL} + \sigma_{b1,xy,EL} + \sigma_{b1,xz,EL}) + (\sigma_{d,xy,au\beta} + \sigma_{b1,xy,au\beta} + \sigma_{b1,xz,au\beta})$	$\sigma_{x,max,1}$ = -20,94 N/mm ²
im Punkt 2:	$\sigma_{x,max,2} = (\sigma_{d,xy,st} + \sigma_{b2,xy,st} + \sigma_{b2,xz,st}) + (\sigma_{d,xy,EL} + \sigma_{b2,xy,EL} + \sigma_{b2,xz,EL}) + (\sigma_{d,xy,au8} + \sigma_{b2,xy,au8} + \sigma_{b2,xz,au8})$	$\sigma_{x,max,2}$ = -6,79 N/mm ²
im Punkt 3:	$\sigma_{x,\max,3} = (\sigma_{d,xy,st} + \sigma_{b3,xy,st} + \sigma_{b3,xz,st}) + (\sigma_{d,xy,EL} + \sigma_{b3,xy,EL} + \sigma_{b3,xz,EL}) + (\sigma_{d,xy,au\beta} + \sigma_{b3,xy,au\beta} + \sigma_{b3,xz,au\beta})$	$\sigma_{x,max,3}$ = -10,06 N/mm ²

Bemessung der auftretenden Spannungen:

Leiteinwirkung – Nutzlast:

im Punkt 1:	$\sigma_{x,Ed,1} = \gamma_{G,j,sup} \left(\sigma_{d,xy,st} + \sigma_{b1,xy,st} + \sigma_{b1,xz,st}\right) + \gamma_{Q,1} \left(\sigma_{d,xy,EL} + \sigma_{b1,xy,EL} + \sigma_{b1,xz,EL}\right) + \gamma_{Q,1} \psi_0 \left(\sigma_{d,xy,au\beta} + \sigma_{b1,xy,au\beta} + \sigma_{b1,xz,au\beta}\right)$	$\sigma_{x,Ed,1}$ = -26,78 N/mm ²
im Punkt 2:	$\sigma_{x,Ed,2} = \gamma_{G,j,sup} \left(\sigma_{d,xy,st} + \sigma_{b2,xy,st} + \sigma_{b2,xz,st}\right) + \gamma_{Q,1} \left(\sigma_{d,xy,EL} + \sigma_{b2,xy,EL} + \sigma_{b2,xz,EL}\right) + \gamma_{Q,1} \psi_0 \left(\sigma_{d,xy,au\beta} + \sigma_{b2,xy,au\beta} + \sigma_{b2,xz,au\beta}\right)$	$\sigma_{x,Ed,2}$ = -10,24 N/mm ²
im Punkt 3:	$\sigma_{x,Ed,3} = \gamma_{G,j,sup} \left(\sigma_{d,xy,st} + \sigma_{b3,xy,st} + \sigma_{b3,xz,st}\right) + \gamma_{Q,1} \left(\sigma_{d,xy,EL} + \sigma_{b3,xy,EL} + \sigma_{b3,xz,EL}\right) + \gamma_{Q,1} \psi_0 \left(\sigma_{d,xy,au\beta} + \sigma_{b3,xy,au\beta} + \sigma_{b3,xz,au\beta}\right)$	$\sigma_{x,Ed,3}$ = -12,06 N/mm ²
Leiteinwirkung	g – Außergewöhnliche Last:	
im Punkt 1:	$\sigma_{x,Ed,1} = \gamma_{G,j,sup} \left(\sigma_{d,xy,st} + \sigma_{b1,xy,st} + \sigma_{b1,xz,st}\right) + \gamma_{Q,1} \left(\sigma_{d,xy,au\beta} + \sigma_{b1,xy,au\beta} + \sigma_{b1,xz,au\beta}\right) + \gamma_{Q,1} \psi_0 \left(\sigma_{d,xy,EL} + \sigma_{b1,xy,EL} + \sigma_{b1,xz,EL}\right)$	$\sigma_{x,Ed,1}$ = -28,21 N/mm ²
im Punkt 2:	$\sigma_{x,Ed,2} = \gamma_{G,j,sup} \left(\sigma_{d,xy,st} + \sigma_{b2,xy,st} + \sigma_{b2,xz,st}\right) + \gamma_{Q,1} \left(\sigma_{d,xy,au\beta} + \sigma_{b2,xy,au\beta} + \sigma_{b2,xz,au\beta}\right) + \gamma_{Q,1} \psi_0 \left(\sigma_{d,xy,EL} + \sigma_{b2,xy,EL} + \sigma_{b2,xz,EL}\right)$	$\sigma_{x,Ed,2}$ = -7,90 N/mm ²
im Punkt 3:	$\sigma_{x,Ed,3} = \gamma_{G,j,sup} \left(\sigma_{d,xy,st} + \sigma_{b3,xy,st} + \sigma_{b3,xz,st}\right) + \gamma_{Q,1} \left(\sigma_{d,xy,au\beta} + \sigma_{b3,xy,au\beta} + \sigma_{b3,xz,au\beta}\right) + \gamma_{Q,1} \psi_0 \left(\sigma_{d,xy,EL} + \sigma_{b3,xy,EL} + \sigma_{b3,xz,EL}\right)$	$\sigma_{x,Ed,3}$ = -11,87 N/mm ²
Bemessungswe	erte für die weitere Berechnung:	
im Punkt 1:		$\sigma_{x,Ed,1}$ = -28,21 N/mm ²
im Punkt 2:		$\sigma_{x,Ed,2}$ = -10,24 N/mm ²
im Punkt 3:		$\sigma_{x,Ed,3}$ = -12,06 N/mm ²

 $\gamma_{G,j,sup}\,,~\gamma_{Q,1}\,und~\psi_0$ nach Tabelle 6-2/6-4 $(\gamma_{G,j,sup}$ =1,35 / $\gamma_{Q,1}$ = 1,5 / ψ_0 = 0,7)

Ermittlung der Spannungen mittels FEM:

Abbildung 7-28: Längsspannungen im betrachteten Querschnitt nach FEM; LF2

Abbildung 7-29: Spannungsverteilung nach von Mises im betrachteten Querschnitt; LF2

Beurteilung der Spannungen:

Die Spannungen aus der analytischen und der FEM-Berechnung stimmen sehr gut überein. Die geringen Unterschiede resultieren aus einer geringfügigen Idealisierung des Querschnitts in der analytischen Betrachtung.

7.3.2.5 Methode der reduzierten Spannungen

Es wird der Nachweis erbracht, dass die Bemessung des Bauwerks mit Querschnitten der Klasse 3 zulässig ist. Dabei werden zwei Blechfelder näher betrachtet.

Blechfeld 1:

- a) Ausgesteiftes Blechfeld:
- -Siehe Abschnitt 7.2.2.5-
- b) Ersatzdruckstab:

$b_{1,inf}=(3-\Psi_x)/(5-\Psi_x) b_1$	$b_{1,inf} =$	173,40 mm
$b_{2,sup}=2/(5-\Psi_x) b_2$	b _{2,sup} =	131,60 mm
1.Steife:	$t_s =$	20,00 mm
	$l_s =$	495,00 mm
2.Blech:	t _b =	20,00 mm
	$l_b =$	325,00 mm

Abbildung 7-30: Ersatzdruckstab Blechfeld 1; LF2

Tabelle 7-7: Querschnittswerte des Ersatzdruckstabes; LF2

	y i	Zi	A _i	y ai	Z _{ai}	y _{ai} A _i	z _{ai} A _i	y _{si}	Z _{si}	l _z
	[mm]	[mm]	[mm ²]	[mm]	[mm]	[mm ³]	[mm ³]	[mm]	[mm]	[mm ⁴]
<u>1</u>	495	20	9900	-267,5	0	-2648250	0	-102,06	-8,28	305262247
<u>2</u>	20	325	6500	-10	-20,9	-65000	-135877,99	-155,44	-12,62	157271214
			$A_{ges} = A_{sl,1}$			∑(y _i A _i)	∑(z _i A _i)			$I_{z,ges} = I_{sl,1}$
			[mm ²]			[mm ³]	[mm ³]			[mm ⁴]
			16400			-2713250	-91373,5			462533461

Schwerpunktskoordinaten des Ersatzdruckstabes:

 y_s = -165,44 mm

```
z_s = -8,29 \text{ mm}
```

Nachweis der Zulässigkeit der Methode der reduzierten Spannungen:

Ermittlung von $\alpha_{ult.k}$ über das Fließkriterium nach Gl.94:

$$\frac{1}{\alpha_{\text{ult.k}}^{2}} = \left(\frac{\sigma_{\text{x.Ed}}}{f_{\text{y}}}\right)^{2} + \left(\frac{\sigma_{\text{z.Ed}}}{f_{\text{y}}}\right)^{2} - \left(\frac{\sigma_{\text{x.Ed}}}{f_{\text{y}}}\right) \cdot \left(\frac{\sigma_{\text{z.Ed}}}{f_{\text{y}}}\right) \qquad \sigma_{\text{z.Ed}} = 0$$

 $\sigma_{x.\text{Ed}}$ ist die größte auftretende Längsspannung im Blechfeld

Ermittlung des modifizierten Schlankheitsgrades nach Gl.95:

-Spannungsverhältnis im Blechfeld nach Abschnitt 7.5.2: $\Psi_x = \sigma_2/\sigma_1 = \sigma_{x,Ed,2}/\sigma_{x,Ed,1}$ $\Psi_x = 0,36$ $\Psi_z = 0,00$

-Elastische kritische Knickspannung nach Abschnitt 7.5.2:

$$\sigma_{cr.x} = \frac{\pi^2 \cdot E \cdot I_{sl.1}}{A_{sl.1} \cdot a^2} \cdot \frac{b}{\frac{b}{2}} = 12685450 \frac{N}{mm^2} \qquad \longrightarrow \qquad \alpha_{cr.x} = \frac{\sigma_{cr.x}}{\sigma_{x.Ed}} = 4486.01$$

1

-*Ermittlung von* α_{cr} *nach Gl.110*:

$$\frac{1}{\alpha_{\rm cr}} = \frac{1+\psi_{\rm x}}{4\cdot\alpha_{\rm cr.x}} + \frac{1+\psi_{\rm z}}{4\cdot\alpha_{\rm cr.z}} + \left[\left(\frac{1+\psi_{\rm x}}{4\cdot\alpha_{\rm cr.x}} + \frac{1+\psi_{\rm z}}{4\cdot\alpha_{\rm cr.z}} \right)^2 + \frac{1-\psi_{\rm x}}{2\cdot\alpha_{\rm cr.x}^2} + \frac{1-\psi_{\rm z}}{2\cdot\alpha_{\rm cr.2}^2} \right]^2$$

$$\longrightarrow \quad \alpha_{\rm cr} = 4486,01$$

$$\lambda_{\rm p} = \sqrt{\frac{\alpha_{\rm ult.k}}{\alpha_{\rm cr}}} = 0,043$$

Ermittlung der elastischen Plattenbeulspannung nach Gl.100:

-Flächenträgheitsmoment für Plattenbiegung nach Gl.105:

$$I_{p} = \frac{b \cdot t_{b}^{3}}{12 \cdot (1 - v^{2})} = 461538.46 \text{mm}^{4}$$

-Beulwert der orthotropen Platte nach Gl.101:

$$k_{\sigma,p} = \frac{2 \cdot \left[\left(1 + \alpha^2 \right) + \gamma - 1 \right]}{\alpha^2 \cdot (\psi + 1) \cdot (1 + \delta)} = 440, 21 \qquad \longrightarrow \qquad \sigma_{cr.p} = k_{\sigma,p} \cdot \sigma_E = 84205, 05 \frac{N}{mm^2}$$

mit:

$$\sigma_{\rm E} = \frac{\pi^2 \cdot {\rm E} \cdot {\rm t}^2}{12 \cdot (1 - \nu^2) \cdot {\rm b}^2} = 191,28 \frac{{\rm N}}{{\rm mm}^2}$$

$$\gamma = \frac{{\rm I}_{\rm Sl}}{{\rm I}_{\rm p}} = 1235,36 \qquad \delta = \frac{{\rm A}_{\rm Sl}}{{\rm A}_{\rm p}} = 0,79 \qquad ; \qquad \alpha = \frac{{\rm a}}{{\rm b}} = 1,52 \ge 0,5 \qquad \longrightarrow \qquad \alpha \le \sqrt[4]{\gamma}$$

Ermittlung des endgültigen Abminderungsbeiwertes ρ nach Gl.97:

$$\rho = (\rho_b - \chi_c) \cdot \zeta \cdot (2 - \zeta) + \chi_c = 1$$

Bedingung:

$$\left(\frac{\sigma_{x.Ed}}{\frac{f_{y}}{\gamma_{M1}}}\right)^{2} + \left(\frac{\sigma_{z.Ed}}{\frac{f_{y}}{\gamma_{M1}}}\right)^{2} - \left(\frac{\sigma_{x.Ed}}{\frac{f_{y}}{\gamma_{M1}}}\right) \cdot \left(\frac{\sigma_{z.Ed}}{\frac{f_{y}}{\gamma_{M1}}}\right) = 0,0145 < \rho^{2}$$

mit:

$$\zeta = \frac{\sigma_{cr,p}}{\sigma_{cr,x}} - 1 = -0,336 \longrightarrow \zeta = 0$$

$$\lambda_p < 0,5 + \sqrt{0,085 - 0,055 \cdot \psi_x} = 0,75 \longrightarrow \rho_b = 1$$

$$\chi_c = 1$$

 $\frac{\rho_c \cdot \alpha_{ult.k}}{\gamma_{M1}} = 8,31 > 1 \quad \longrightarrow \quad \text{Methode der reduzierten Spannungen ist zulässig}$

Blechfeld 2:

a) Ausgesteiftes Blechfeld:

-Siehe Abschnitt 7.2.2.5-

b) Ersatz Druckstab:

b _{1,inf} = 277	',47 mm
b _{2,sup} = 41	,75 mm
t _s = 10	,00 mm
l _s = 450	,00 mm
t _b = 20	,00 mm
I _b = 329,	22 mm
	$b_{1,inf} = 277$ $b_{2,sup} = 41$ $t_s = 10$ $l_s = 450$ $t_b = 20$ $l_b = 329$

Abbildung 7-31: Ersatzdruckstab Blechfeld 2; LF2

Tabelle 7-8:	Querschnittswerte	des	Ersatzdruckstabes;	LF2
--------------	-------------------	-----	--------------------	-----

	y _i	Zi	Ai	y ai	Z _{ai}	y _{ai} A _i	$z_{ai} \; A_i$	y _{si}	Z _{si}	lz
	[mm]	[mm]	[mm ²]	[mm]	[mm]	[mm ³]	[mm ³]	[mm]	[mm]	[mm ⁴]
<u>1</u>	10	450	4500	-282,47	90	-1271115,59	405000	70,01	53,46	88799358,65
<u>2</u>	329,22	20	6584,37	-164,61	0	-1083846,81	0	-47,85	36,54	9009750,54
			$A_{ges} = A_{sl,1}$			∑(y _i A _i)	∑(z _i A _i)			$I_{z,ges} = I_{sl,1}$
			[mm ²]			[mm ³]	[mm ³]			[mm⁴]
			11084,37			-2354962,41	405000			97809109,19

Schwerpunktskoordinaten des Ersatzdruckstabes:

 y_s = -212,46 mm

 $z_s = 36,54 \text{ mm}$

Nachweis der Zulässigkeit der Methode der reduzierten Spannungen:

Ermittlung von $\alpha_{ult.k}$ über das Fließkriterium nach Gl.96:

$$\frac{1}{\alpha_{ult,k}^{2}} = \left(\frac{\sigma_{x.Ed}}{f_{y}}\right)^{2} + \left(\frac{\sigma_{z.Ed}}{f_{y}}\right)^{2} - \left(\frac{\sigma_{x.Ed}}{f_{y}}\right) \cdot \left(\frac{\sigma_{z.Ed}}{f_{y}}\right) \qquad \sigma_{z,Ed} = 0$$

 $\sigma_{x.\text{Ed}}$ ist die größte auftretende Längsspannung im Blechfeld

$$\longrightarrow \alpha_{ult.k.xz} = min \left(\frac{f_y}{\sigma_{x.Ed}}\right) \longrightarrow \alpha_{ult,k,xz} = 8,31$$

Ermittlung des modifizierten Schlankheitsgrades nach Gl.95:

-Spannungsverhältnis im Blechfeld nach Abschnitt 7.5.2: $\Psi_x = \sigma_2/\sigma_1 = \sigma_{x,Ed,2}/\sigma_{x,Ed,1}$ $\Psi_x = 0,45$ $\Psi_2 = 0,00$

-Elastische kritische Knickspannung nach Abschnitt 7.5.2:

$$\sigma_{cr.x} = \frac{\pi^2 \cdot E \cdot I_{sl.1}}{A_{sl.1} \cdot a^2} \cdot \frac{b_1 + \frac{t_S}{2} + y_s}{b_1 + \frac{t_S}{2}} = 91892.64 \frac{N}{mm^2} \longrightarrow \qquad \alpha_{cr.x} = \frac{\sigma_{cr.x}}{\sigma_{x.Ed}} = 3249,64$$

-*Ermittlung von* α_{cr} *nach Gl.110:*

$$\frac{1}{\alpha_{\rm cr}} = \frac{1+\psi_{\rm x}}{4\cdot\alpha_{\rm cr.x}} + \frac{1+\psi_{\rm z}}{4\cdot\alpha_{\rm cr.z}} + \left[\left(\frac{1+\psi_{\rm x}}{4\cdot\alpha_{\rm cr.x}} + \frac{1+\psi_{\rm z}}{4\cdot\alpha_{\rm cr.z}} \right)^2 + \frac{1-\psi_{\rm x}}{2\cdot\alpha_{\rm cr.x}^2} + \frac{1-\psi_{\rm z}}{2\cdot\alpha_{\rm cr.z}^2} \right]^2$$

$$\lambda_{\rm p} = \sqrt{\frac{\alpha_{\rm ult.k}}{\alpha_{\rm cr}}} = 0,051$$

Ermittlung der elastischen Plattenbeulspannung nach Gl.100:

-Flächenträgheitsmoment für Plattenbiegung nach Gl.105:

$$I_{p} = \frac{b \cdot t_{b}^{3}}{12 \cdot (1 - v^{2})} = 439560,44 \text{mm}^{4}$$

-Beulwert der orthotropen Platte nach Gl.101:

$$k_{\sigma,p} = \frac{2 \cdot \left[\left(1 + \alpha^2 \right) + \gamma - 1 \right]}{\alpha^2 \cdot (\psi + 1) \cdot (1 + \delta)} = 420,15 \qquad \longrightarrow \qquad \sigma_{cr,p} = k_{\sigma,p} \cdot \sigma_E = 88605,07 \frac{N}{mm^2}$$

mit:

$$\sigma_{\rm E} = \frac{\pi^2 \cdot {\rm E} \cdot {\rm t}^2}{12 \cdot (1 - {\rm v}^2) \cdot {\rm b}^2} = 210,89, \frac{{\rm N}}{{\rm mm}^2}$$

$$\gamma = \frac{I_{sl}}{I_p} = 233,98 \qquad \qquad \delta = \frac{A_{sl}}{A_p} = 0,38 \qquad \qquad \alpha = \frac{a}{b} = 0,75 \ge 0,5 \quad \longrightarrow \quad \alpha \le \sqrt[4]{\gamma}$$

Ermittlung des endgültigen Abminderungsbeiwertes ρ nach Gl.97:

$$\rho = (\rho_b - \chi_c) \cdot \zeta \cdot (2 - \zeta) + \chi_c = 1$$

Bedingung:

$$\left(\frac{\sigma_{x.Ed}}{\frac{f_{y}}{\gamma_{M1}}}\right)^{2} + \left(\frac{\sigma_{z.Ed}}{\frac{f_{y}}{\gamma_{M1}}}\right)^{2} - \left(\frac{\sigma_{x.Ed}}{\frac{f_{y}}{\gamma_{M1}}}\right) \cdot \left(\frac{\sigma_{z.Ed}}{\frac{f_{y}}{\gamma_{M1}}}\right) = 0,0145 < \rho^{2}$$

mit:

$$\zeta = \frac{\sigma_{cr.p}}{\sigma_{cr.x}} - 1 = -0,036 \quad \longrightarrow \quad \zeta = 0$$

$$\lambda_{\rm p} < 0.5 + \sqrt{0.085 - 0.055 \,\psi_{\rm x}} = 0.75$$
 \longrightarrow $\rho_{\rm b} = 1$

$$\chi_c = 1$$

$$\frac{\rho_c \cdot \alpha_{ult.k}}{\gamma_{M1}} = 8,31 > 1 \quad \longrightarrow \quad \text{Methode der reduzierten Spannungen ist zulässig}$$

7.3.2.6 Grenzzustände der Tragfähigkeit

7.3.2.6.1 Lagesicherheit (EQU)

Der Nachweis der Lagesicherheit, der Sicherheit gegen das Abheben des Auflagers von seiner ursprünglichen Position, erfolgt nach Abschnitt 6.1.5.4.2:

<u>x-y-EBENE:</u> Destabilisierendes Moment: <i>Ständige Lasten:</i>	Nutzlast:
$M_{dstxyst} = F_{oyEW} (x_{1EW} + x_{2S} + x_{1HW} + x_{1S} + x_{0S}) + F_{oyHW} (x_{1HW} + x_{1S} + x_{0S})$	$M_{dstxyEL} = F_{oyEL} (x_{1EW} + x_{2S} + x_{1HW} + x_{1S} + x_{0S})$
M _{dstxyst} = 1110974421,7 Nmm	M _{dstxyEL} = 669817166,7 Nmm
Außergewöhnliche Lasten:	
$M_{dstxyau\beta} = (H_{L,EW} + H_{L,EW}) e_{N,xy}$	
M _{dstxyauß} = 2993527,9 Nmm	
Leiteinwirkung – Nutzlast:	
$M_{Ed,dstxy} = \gamma_{G,sup,EQU} M_{dstxyst} + \gamma_{Q,EQU} M_{dstxyEL} + \gamma_{Q,EQU} \psi_{0,EQU} M_{dstxyauB}$	M _{Ed,dstxy} = 2229940818 Nmm
Leiteinwirkung – Außergewöhnliche Last:	
$M_{Ed,dstxy} = \gamma_{G,sup,EQU} \ M_{dstxyst} + \gamma_{Q,EQU} \ M_{dstxyauB} + \gamma_{Q,EQU} \ \psi_{0,EQU} \ M_{dstxyEL}$	M _{Ed,dstxy} = 1929870181 Nmm
Bemessung des Destabilisierenden Momentes:	M _{Ed,dstxy} = 2229940818 Nmm

 $\gamma_{G,j,sup,EQU}$, $\gamma_{Q,EQU}$ und $\psi_{0,EQU}$ nach Tabelle 6-2/6-3 ($\gamma_{G,j,sup} = 1, 1 / \gamma_{Q,1} = 1, 5 / \psi_{0,EQU} = 0, 7$)

Stabilisierendes Moment:

<u>Ständige Lasten:</u>

 $M_{stbxyst} = F_{uyEW} (x_{2S} + x_{1HW} + x_{1S} + x_{0S}) + F_{uyHW} (x_{1S} + x_{0S}) + F_{H} (y_{0S} - y_{1S} - e_{N,xy}) + G_{S3} (y_{0S} - e_{N,xy}) + G_{S2} (y_{0S} - y_{2S} + y_{3S} - e_{N,xy}) + G_{S1} (y_{0S} - y_{2S} - e_{N,xy}) + G_{S1} (y_{0S} - y_{2S} - e_{N,xy}) + G_{S1} (y_{0S} - y_{2S} - e_{N,xy}) + G_{S2} (y_{0S} - y_{2S} - y_{3S} - e_{N,xy}) + G_{S1} (y_{0S} - y_{2S} - e_{N,xy}) + G_{S2} (y_{0S} - y_{2S} - y_{3S} - e_{N,xy}) + G_{S1} (y_{0S} - y_{2S} - e_{N,xy}) + G_{S2} (y_{0S} - y_{2S} - y_{3S} - e_{N,xy}) + G_{S1} (y_{0S} - y_{2S} - e_{N,xy}) + G_{S2} (y_{0S} - y_{2S} - y_{3S} - e_{N,xy}) + G_{S1} (y_{0S} - y_{2S} - e_{N,xy}) + G_{S2} (y_{0S} - y_{2S} - y_{3S} - e_{N,xy}) + G_{S2} (y_{0S} - y_{2S} - y_{3S} - e_{N,xy}) + G_{S1} (y_{0S} - y_{2S} - e_{N,xy}) + G_{S2} (y_{0S} - y_{2S} - y_{3S} - e_{N,xy}) + G_{S1} (y_{0S} - y_{2S} - e_{N,xy}) + G_{S2} (y_{0S} - y_{2S} - y_{3S} - e_{N,xy}) + G_{S2} (y_{0S} - y_{2S} - y_{3S} - e_{N,xy}) + G_{S2} (y_{0S} - y_{2S} - y_{3S} - e_{N,xy}) + G_{S2} (y_{0S} - y_{2S} - y_{3S} - e_{N,xy}) + G_{S2} (y_{0S} - y_{2S} - y_{3S} - e_{N,xy}) + G_{S2} (y_{0S} - y_{2S} - y_{3S} - e_{N,xy}) + G_{S2} (y_{0S} - y_{2S} - y_{3S} - e_{N,xy}) + G_{S2} (y_{0S} - y_{2S} - y_{2S} - e_{N,xy}) + G_{S2} (y_{0S} - y_{2S} - y_{2S} - e_{N,xy}) + G_{S2} (y_{0S} - y_{2S} - y_{2S} - e_{N,xy}) + G_{S2} (y_{0S} - y_{2S} - y_{2S} - e_{N,xy}) + G_{S2} (y_{0S} - y_{2S} - y_{2S} - e_{N,xy}) + G_{S2} (y_{0S} - y_{2S} - y_{2S} - e_{N,xy}) + G_{S2} (y_{0S} - y_{2S} - y_{2S} - e_{N,xy}) + G_{S2} (y_{0S} - y_{2S} - y_{2S} - y_{2S} - e_{N,xy}) + G_{S2} (y_{0S} - y_{2S} - y_{2S}$

<u>Nutzlast:</u>	<u>Außergewöhnliche Lasten:</u>
$M_{stbxyEL} = F_{uyEL} (x_{2S} + x_{1HW} + x_{1S} + x_{0S}) + F_{HEL} (y_{0S} - y_{1s} - e_{N,xy})$	
M _{stbxyEL} = 590792624,5 Nmm	M _{stbxyauß} = 0 Nmm
Leiteinwirkung – Nutzlast:	
$M_{Rd,stbxy} = \gamma_{G,sup,EQU} \; M_{stbxyst} + \gamma_{Q,EQU} \; M_{stbxyEL} + \gamma_{Q,EQU} \; \psi_{0,EQU} \; M_{stbxyauB}$	M _{Rd,stbxy} = 1792329707 Nmm
Leiteinwirkung – Außergewöhnliche Last:	
$M_{Rd,stbxy} = \gamma_{G,sup,EQU} \; M_{stbxyst} + \gamma_{Q,EQU} \; M_{stbxyau\beta} + \gamma_{Q,EQU} \; \psi_{0,EQU} \; M_{stbxyEL}$	M _{Rd,stbxy} = 1526473026 Nmm
Bemessung des stabilisierenden Momentes:	M _{Rd,stbxy} = 1526473026 Nmm
$\gamma_{G,j,sup,EQU}$, $\gamma_{Q,EQU}$ und $\psi_{0,EQU}$ nach Tabelle 3-2/3-3 ($\gamma_{G,j,sup} = 1, 1 / \gamma_{Q,1} = 1, 5 / \psi_{0,EQU} = 0, 7$)

 $M_{Ed,dst,xy} \le M_{Rd,stb,xy} + M_{Rd,xy}$ $M_{Rd,xy}$ = 703467792 Nmm Widerstand, welcher durch die Verschraubung (50 x M20 Schrauben) zwischen Drehsäule und Drehlager aufgebracht werden muss.

x-z-l	E	BE	N	E

<u>x-z-EBENE:</u>	
Destabilisierendes Moment:	

Ständige Lasten:

 $M_{dstxzst} = F_{uzEW} (x_{2S} + x_{1HW} + x_{1S} + x_{0S}) + F_{uzHW} (x_{1S} + x_{0S}) + F_{H} (z_{1S} + e_{N,xz})$ M_{dstxzst}= 570100750,9 Nmm

Nutzlast:

M_{Ed,dstxz}= 1498452676 Nmm

 $M_{dstxzEL} = F_{uzEL} (x_{2S} + x_{1HW} + x_{1S} + x_{0S}) + F_{HEL} (z_{1S} + e_{N,xz})$ M_{dstxzEL}= 30300875,5 Nmm

Außergewöhnliche Lasten:

 $M_{dstzzau\beta} = (H_{T,1,EW} + H_{T,2,EW}) (x_{1EW} + x_{2S} + x_{1HW} + x_{1S} + x_{0S}) + (H_{T,1,HW} + H_{T,2,HW}) (x_{1HW} + x_{1S} + x_{0S}) + (H_{L,1,EW} + H_{L,1,HW}) (e_{N,x2}) + (H_{L,1,HW} + H_{L,1,HW})$ M_{dstxzau} = 368790454,0 Nmm

Leiteinwirkung – Nutzlast:

$M_{Ed,dstxz} = \gamma_{G,sup,EQU} \; M_{dstxzst} + \gamma_{Q,EQU} \; M_{dstxzEL} + \gamma_{Q,EQU} \; \psi_{0,EQU} \; M_{dstxzauB}$	M _{Ed,dstxz} = 1468849616 Nmm
Leiteinwirkung – Außergewöhnliche Last:	
$M_{Ed,dstxz} = \gamma_{G,sup,EQU} M_{dstxzst} + \gamma_{Q,EQU} M_{dstxzaub} + \gamma_{Q,EQU} \psi_{0,EQU} M_{dstxzEL}$	M _{Ed,dstxz} = 1498452676 Nmm

Bemessung des destabilisierenden Moments:

 $\gamma_{G,j,sup,EQU}$, $\gamma_{Q,EQU}$ und $\psi_{0,EQU}$ nach Tabelle 6-2/6-3 ($\gamma_{G,j,sup} = 1, 1 / \gamma_{Q,1} = 1, 5 / \psi_{0,EQU} = 0, 7$)

Stabilisierendes Moment:

<u>Ständige Lasten:</u>	<u>Nutzlasten:</u>
$M_{stbxzst} = F_{ozEW} (x_{1EW} + x_{2S} + x_{1HW} + x_{1S} + x_{0S}) + F_{ozHW} (x_{1HW} + x_{1S} + x_{0S}) + G_S (z_{2S} - e_{N,xz})$	$M_{stbxzEL}\!\!=\!\!F_{ozEL}\left(x_{1EW}\!\!+\!\!x_{2S}\!\!+\!\!x_{1HW}\!\!+\!\!x_{1S}\!\!+\!\!x_{0S}\right)$
M _{stbxzst} = 557184432,0 Nmm	M _{stbxzEL} = 300526333,3 Nmm

Außergewöhnliche Nutzlasten:

 $M_{stbxzau8} = (H_{T,1,EW} + H_{T,2,EW}) (x_{2S} + x_{1HW} + x_{1S} + x_{0S}) + (H_{T,1,HW} + H_{T,2,HW}) (x_{1S} + x_{0S}) + (H_{L,2,EW} + H_{L,2,HW}) (z_{2S} + z_{3S} - e_{N,xz}) + (H_{L,2,HW} + H_{L,2,HW}) (x_{2S} + x_{2S} - H_{L,2,HW}) + (H_{L,2,HW} + H_{L,2,HW}) (x_{2S} +$ M_{stbxzauß}= 341576126,1 Nmm

Leiteinwirkung – Nutzlast:

$M_{Rd,stbxz} = \gamma_{G,sup,EQU} \; M_{stbxzst} + \gamma_{Q,EQU} \; M_{stbxzEL} + \gamma_{Q,EQU} \; \psi_{0,EQU} \; M_{stbxzau\beta}$	M _{Rd,stbxz} = 1310910421 Nmm
Leiteinwirkung – Außergewöhnliche Last:	
$M_{Rd,stbxz} = \gamma_{G,sup,EQU} M_{stbxzst} + \gamma_{Q,EQU} M_{stbxzau\beta} + \gamma_{Q,EQU} \psi_{0,EQU} M_{stbxzEL}$	M _{Rd,stbxz} = 1329382828 Nmm
Bemessung des stabilisierenden Momentes:	M _{Rd,stbxz} = 1310910421 Nmm
$\gamma_{G,j,sup,EQU}$, $\gamma_{Q,EQU}$ und $\psi_{0,EQU}$ nach Tabelle 3-2/3-3 ($\gamma_{G,j,sup} = 1, 1 / \gamma_{Q,1} = 1, 5 / \psi_{0,EQU} = 0, 7$	7)

 $M_{Ed,dst,xz} \le M_{Rd,stb,xz} + M_{Rd,xz}$ $M_{Rd,xz}$ = 187542255,0 Nmm Widerstand, welcher durch die Verschraubung (50 x M20 Schrauben) zwischen Drehsäule und Drehlager aufgebracht werden muss.

Nachweis der Zulässigkeit der Schraubverbindung nach DIN EN 1993-1-8 [14]:

Die Schwenksäule wird mit der Stützsäule über ein Drehgelenk mittels fünfzig M20-Schrauben der Festigkeitsklasse 10.9 verbunden.

Werkstoffkennwerte:				
$f_{ub} = 1000 \text{ N/mm}^2$				
f_{yb} = 900 N/mm ²				
<u>Resultierendes Moment:</u>				
$M_{res} = (M_{Rd,xy}^2 + M_{Rd,xz}^2)^{1/2}$		M _{res} = 728037796	Nmm	
Minimaler Normalabstand der	Schrauben zur	Kippkante:		<u>Anzahl der Schrauben:</u>
L= 300 mm				n= 50
Einwirkung auf eine einzelne S	Schraube:			
$F_E = M_{res}/(L*n)$	F _E = 48535,9 N	N		
Bemessung der Vorspannkraft:	<u>.</u>			
$F_{\text{V}}\text{=}~0,7~f_{ub}~A_s~/~\gamma_{\text{M7}}$	F _v = 153063,4	Ν	mit $\gamma_{M7}=$	1,1
Zugtragfähigkeit der Schraubv	erbindung:			
$k_2 = 0.9$				
$d_{s} = 17,5 \text{ mm}$	Kerndurchme	sser einer M20 Schr	aube	
$A_s = 240,5 \text{ mm}^2$				
$\gamma_{M2} = 1,25$				
$F_{t,Rd} = k_2 f_{ub} A_s / \gamma_{M2}$	$F_{t,Rd} = 173180$,3 N		
<u>Schraubenkraft:</u>				
F _s = 144030 N	aus Verspannt	ingsdreieck; Abbild	ung 7-16	

<u>Nachweis der Schraubverbindung:</u> $F_S / F_{t,Rd} = 0.83 < 1$

7.3.2.6.2 Beanspruchbarkeit von Querschnitten

Die Beanspruchbarkeit von Querschnitten untersucht, ob das Bauteil den Belastungen im betrachteten Querschnitt standhält. Dabei muss die Zulässigkeit sowohl in den einzelnen Ebenen als auch für die zusammengesetzte Beanspruchung gegeben sein.

Allgemein:

Fließkriterium im Punkt 1 des betrachteten Querschnitts nach Gl.52:

$$\left(\frac{\sigma_{x.Ed}}{\frac{f_{y}}{\gamma_{M0}}}\right)^{2} + \left(\frac{\sigma_{z.Ed}}{\frac{f_{y}}{\gamma_{M0}}}\right)^{2} - \left(\frac{\sigma_{x.Ed}}{\frac{f_{y}}{\gamma_{M0}}}\right) \cdot \left(\frac{\sigma_{z.Ed}}{\frac{f_{y}}{\gamma_{M0}}}\right) = 0,0145 < 1$$

konservative Lösung nach Gl.53:

 $\frac{N_{Ed}}{N_{Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} = 0,201 < 1$

Grenznormalkraft:

 $\frac{N_{Ed}}{N_{Rd}} = 0,104 < 1$ (nach Gl.57) $N_{Rd} = \frac{A \cdot f_y}{\gamma_{NR0}} = 21240475N$ (a) (nach Gl.57)

Leiteinwirkung – Nutzlast: $N_{Ed} = \gamma_{G.sup.STR} \cdot (G_S + F_H) + \gamma_{Q.STR} \cdot F_{HEL} + \gamma_{Q.STR} \cdot \psi_{0.STR} \cdot (H_{L.EW} + H_{L.HW}) = 539137,5N$ Leiteinwirkung – Außergewöhnliche Last: $N_{Ed} = \gamma_{G.sup.STR} \cdot (G_S + F_H) + \gamma_{Q.STR} \cdot (H_{L.EW} + H_{L.HW}) + \gamma_{Q.STR} \cdot \psi_{0.STR} \cdot (F_{HEL}) = 551917,5N$

Grenzbiegemoment um die z-Achse:

 $\frac{M_{z.Ed}}{M_{z.Rd}} = 0,054 < 1$ (nach Gl.60) $M_{z.Rd} = \frac{W_{z.max}f_y}{\gamma_{M0}} = 1068746111$ (nach Gl.62)

(nach Gl.58)

Leiteinwirkung – Nutzlast: $M_{z.Ed} = \gamma_{G.sup.STR} \cdot M_{xy.st} + \gamma_{Q.STR} \cdot M_{xy.EL} + \gamma_{Q.STR} \cdot \Psi_{0.STR} \cdot M_{xy.au\beta} = 5736342393Nmm$ Leiteinwirkung – Außergewöhnliche Last: $M_{z.Ed} = \gamma_{G.sup.STR} \cdot M_{xy.st} + \gamma_{Q.STR} \cdot M_{xy.au\beta} + \gamma_{Q.STR} \cdot \Psi_{0.STR} \cdot M_{xy.EL} = 5466793228Nmm$

Grenzbiegemoment um die y-Achse:

 $\frac{M_{y.Ed}}{M_{y.Rd}} = 0,013 < 1$

 $M_{y.Rd} = \frac{W_{y.max} \cdot f_y}{\gamma_{M0}} = 3047768014 \text{Nmm}$

(nach Gl.62)

(nach Gl.60)

Leiteinwirkung – Nutzlast: $M_{y.Ed} = \gamma_{G.sup.STR} \cdot M_{xz.st} + \gamma_{Q.STR} \cdot M_{xz.EL} + \gamma_{Q.STR} \cdot \Psi_{0.STR} \cdot M_{xz.au\beta} = 1072346380Nmm$ Leiteinwirkung – Außergewöhnliche Last: $M_{y.Ed} = \gamma_{G.sup.STR} \cdot M_{xz.st} + \gamma_{Q.STR} \cdot M_{xz.au\beta} + \gamma_{Q.STR} \cdot \Psi_{0.STR} \cdot M_{xz.EL} = 1316492916Nmm$

Beanspruchung aus Biegung und Normalkraft:

$$\sigma_{x.Ed} = 28,28 \frac{N}{mm^2} < \frac{f_y}{\gamma_{M0}} = 235 \frac{N}{mm^2}$$

(nach Gl.65)

7.3.2.6.3 Stabilitätsnachweis

Der Nachweis für die Stabilität eines Bauteils ist zu bringen um sicherzustellen, dass es zu keinem Versagen aufgrund von Knicken bzw. Biegedrillknicken kommt. Im Allgemeinen sind Bauteile wie die Drehsäule, welche in Form eines Kastenprofiles aufgebaut ist, nicht gegen Knicken oder Biegedrillknicken gefährdet.

Gleichförmige Bauteile mit Biegung um die Hauptachse:

Biegedrillknicken:
x-y-Ebene:

 $\frac{M_{z.Ed}}{M_{b.Rd}} = 0,136 < 1$ $M_{b.Rd} = \chi_{LT} W_{z.max} \frac{f_y}{\gamma_{M1}} = 4195189522 \text{Nmm}$

(nach Gl.80)

(nach Gl.81)

Knicklinie für Biegedrillknicken – Allgemeiner Fall:

$$\chi_{\rm LT} = \frac{1}{\Phi_{\rm LT} + \sqrt{\Phi_{\rm LT}^2 - \lambda_{\rm LT}^2}} = 0,39 \le 1$$
(nach Gl.82)

$$\Phi_{LT} = 0.5 \cdot \left[1 + \alpha_{LT} (\lambda_{LT} - 0.2) + \lambda_{LT}^{2} \right] = 1.54$$
 mit $\alpha_{LT} = 0.76$ (nach Gl.83)

$$\lambda_{\text{LT}} = \sqrt{\frac{W_{z} \cdot fy}{M_{\text{cr.xy}}}} = 1.16$$
(nach Gl.84)

mit

$$M_{cr.xy} = \alpha_{cr} M_z = 793908626 \text{ Nmm}$$
 für $\alpha_{cr} = 18.795$ aus FEA (nach Gl.85)

x-z-Ebene:

$$\frac{M_{y.Ed}}{M_{b.Rd}} = 0,107 < 1$$
(nach Gl.80)
$$M_{b.Rd} = \chi_{LT} W_{y.max} \frac{f_y}{\gamma_{M1}} = 1000885039 \text{Nmm}$$
(nach Gl.81)

Knicklinie für Biegedrillknicken – Allgemeiner Fall:

$$\chi_{LT} = \frac{1}{\Phi_{LT} + \sqrt{\Phi_{LT}^2 - \lambda_{LT}^2}} = 0,33 \le 1$$
(nach Gl.82)

$$\Phi_{LT} = 0,5 \cdot \left[1 + \alpha_{LT} \left(\lambda_{LT} - 0, 2 \right) + \lambda_{LT}^{2} \right] = 1,81 \qquad \text{mit} \qquad \alpha_{LT} = 0,76 \qquad (\text{nach GI.83})$$

$$\lambda_{\rm LT} = \sqrt{\frac{W_{\rm y} \cdot fy}{M_{\rm cr.xz}}} = 1.329$$
(nach Gl.84)

mit

$$M_{cr.xz} = \alpha_{cr} \cdot M_y = 1724726726 \text{Nmm}$$
 für $\alpha_{cr} = 18.795$ aus FEA (nach Gl.85)

Auf Biegung und Druck beanspruchte gleichförmige Bauteile:

$$\frac{\frac{N_{Ed}}{\gamma_{M1}} + k_{yy} \cdot \frac{M_{y.Ed} + \Delta M_{y.Ed}}{\chi_{LT} \frac{M_{y.Rk}}{\gamma_{M1}}} + k_{yz} \cdot \frac{M_{z.Ed} + \Delta M_{z.Ed}}{\frac{M_{z.Rk}}{\gamma_{M1}}} = 0,178 \le 1$$
(nach Gl.90)

$$\frac{N_{Ed}}{\frac{\chi_{z} \cdot N_{Rk}}{\gamma_{M1}}} + k_{zy} \cdot \frac{M_{y.Ed} + \Delta M_{y.Ed}}{\chi_{LT} \cdot \frac{M_{y.Rk}}{\gamma_{M1}}} + k_{zz} \cdot \frac{M_{z.Ed} + \Delta M_{z.Ed}}{\frac{M_{z.Rk}}{\gamma_{M1}}} = 0,170 \le 1$$
(nach Gl.91)

mit

$$k_{yy} = C_{my} \cdot \left(1 + 0.6 \cdot \frac{N_{Ed}}{\chi_y \cdot \frac{N_{Rk}}{\gamma_{M1}}} \right) = 0.75 \qquad k_{yz} = k_{zz} = 0.78 \qquad \text{(nach Tabelle 6-25)}$$

$$k_{zz} = C_{mz} \left(1 + 0.6 \cdot \frac{N_{Ed}}{\gamma_{M1}} \right) = 0.78 \qquad k_{zy} = 0.8 \cdot k_{yy} = 0.60$$

$$k_{zz} = C_{mz} \left(\begin{array}{c} 1 + 0, 6 \cdot \frac{N_{Ed}}{\chi_{z}} \cdot \frac{N_{Rk}}{\gamma_{M1}} \end{array} \right) = 0,78 \qquad k_{zy} = 0,8 \cdot k_{yy} = 0,60$$

 $C_{my} = 0.6 + 0.4 \psi_y = 0,75 > 0,4$

$$C_{mz} = 0.6 + 0.4 \psi_z = 0,78 > 0,4$$

Allgemeines Verfahren für Knick- und Biegedrillknicknachweise:

x-y-Ebene:

$$\frac{\chi_{\text{op}} \cdot \alpha_{\text{ult.k}}}{\gamma_{\text{M1}}} = 4,58 > 1 \qquad \text{und} \qquad \frac{N_{\text{Ed}}}{\frac{N_{\text{Rd}}}{\gamma_{\text{M1}}}} + \frac{M_{\text{Ed}}}{\frac{M_{\text{y.Rd}}}{\gamma_{\text{M1}}}} = 0,158 < \chi_{\text{op}} \tag{nach Gl.92}$$

mit

$$\frac{1}{\alpha_{\text{ult.k.xy}}} = \frac{N_{\text{Ed}}}{N_{\text{Rk}}} + \frac{M_{\text{y.Ed}}}{M_{\text{y.Rk}}} \longrightarrow \alpha_{\text{ult.k.xy}} = 6.34$$
(nach 3.4.5.4)

$$\chi_{\rm op} = \frac{1}{\Phi_{\rm op} + \sqrt{\Phi_{\rm op}^2 - \lambda_{\rm op}^2}} = 0,72 < 1,0$$
(nach 6.4.5.2)

$$\Phi_{\text{LT}} = 0.5 \cdot \left[1 + \alpha_{\text{op}} \cdot (\lambda_{\text{op}} - 0.2) + \lambda_{\text{op}}^2 \right] = 0.81 \qquad \text{mit} \qquad \alpha_{\text{op}} = 0.76 \qquad (\text{nach } 6.4.5.2)$$

und
$$\lambda_{\rm op} = \sqrt{\frac{\alpha_{\rm ult.k}}{\alpha_{\rm cr.op}}} = 0.58$$
 mit $\alpha_{\rm cr.op} = 18,795$ aus FEA (nach Gl.93)

x-z-Ebene:

$$\frac{\chi_{op} \cdot \alpha_{ult.k}}{\gamma_{M1}} = 7,72 > 1 \qquad \text{und} \qquad \frac{N_{Ed}}{\frac{N_{Rd}}{\gamma_{M1}}} + \frac{M_{Ed}}{\frac{M_{y.Rd}}{\gamma_{M1}}} = 0,629 < \chi_{op}$$
(nach Gl.92)

mit

$$\frac{1}{\alpha_{\text{ult.k.xy}}} = \frac{N_{\text{Ed}}}{N_{\text{Rk}}} + \frac{M_{\text{y.Ed}}}{M_{\text{y.Rk}}} \longrightarrow \alpha_{\text{ult.k.xy}} = 14.45$$
(nach 6.4.5.4)

$$\chi_{\rm op} = \frac{1}{\Phi_{\rm op} + \sqrt{\Phi_{\rm op}^2 - \lambda_{\rm op}^2}} = 0,53 < 1,0$$
(nach 6.4.5.2)

$$\Phi_{LT} = 0.5 \cdot \left[1 + \alpha_{op} \cdot (\lambda_{op} - 0.2) + \lambda_{op}^{2} \right] = 1.14 \quad \text{mit} \quad \alpha_{op} = 0.76 \quad (\text{nach } 6.4.5.2)$$

und

Г

$$\lambda_{\rm op} = \sqrt{\frac{\alpha_{\rm ult.k}}{\alpha_{\rm cr.op}}} = 0,88$$
 mit $\alpha_{\rm cr.op} = 18,795$ aus FEA (nach Gl.93)

7.3.2.7 Grenzzustand der Gebrauchstauglichkeit

Im Grenzzustand der Gebrauchstauglichkeit müssen die Verschiebungen des Bauwerks innerhalb der vorgegebenen zulässigen Werte liegen. Die auftretenden Verschiebungen wurden sowohl analytisch als auch mittels der Finite-Elemente-Analyse ermittelt.

Analytische Ermittlung der Verschiebungen:

Vereinfacht wurde angenommen, dass die Säule einen konstanten Querschnitt über die Höhe aufweist. Ihr Flächenträgheitsmoment um die z-Achse wird mit 2/3 und um die y-Achse mit 1 des Flächenträgheitsmoments des betrachteten Querschnittes (Abbildung 7-9) angenommen.

a) Verschiebungen in x-y-Ebene:

Biegelinie allgemein: E I w'' = $-M_{b(x)}$

Randbedingungen:

w(x=X)=0

w'(x=X)=0

mit X= $x_{1EW}+x_{2S}+x_{1HW}+x_{1S}+x_{0S}$

<u>Ständige Lasten:</u>

M _{b(x)} =	$F_{oyEW} x - F_{uyEW} (x - x_{1EW}) + F_{oyHW} (x - (x_{1EW} + x_{2S})) - F_{uyHW} (x - (x_{1EW} + x_{2S} + x_{1HW})) + F_H (y_{0S} + e_{N,xy}) + G_S e_{N,xy} + G_{S1} y_{2S} + G_{S2} (y_{3S} - y_{2S}) + G_{S$
$\int M_{b(x)} dx =$	$F_{oyEW} x^{2}/2 - F_{uyEW} (x^{2}/2 - x_{1EW} x) + F_{oyHW} (x^{2}/2 - (x_{1EW} + x_{2S}) x) - F_{uyHW} (x^{2}/2 - (x_{1EW} + x_{2S} + x_{1HW}) x) + F_{H} (y_{0S} + e_{N,xy}) x + G_{S} e_{N,xy} x + G_{S1} y_{2S} x + G_{S2} (y_{3S} - y_{2S}) x + $
$\int (\int M_{b(x)} d_x) dx =$	$\frac{x+C_9}{F_{oyEW} x^3/6-F_{uyEW} (x^3/6-x_{1EW} x^2/2)+F_{oyHW} (x^3/6-(x_{1EW}+x_{2S}) x^2/2)-F_{uyHW} (x^3/6-(x_{1EW}+x_{2S}+x_{1HW}) x^2/2)+F_H (y_{0S}+e_{N,xy}) x^2/2+G_S e_{N,xy} x^2/2+G_{S1} y_{2S} x^2/2+G_{S2} (y_{3S}-y_{2S}) x^2/2+C_0 x+C_{10}}$

Durch Einsetzen der Randbedingungen kommt man für die Verschiebung an der Stelle x=0 zu folgender Lösung:

 $w_{xy,st(x=0)} = F_{oyEW} X^{3}/3 - F_{uyEW} (X^{3}/3 - x_{1EW} X^{2}/2) + F_{oyHW} (X^{3}/3 - (x_{1EW} + x_{2S}) X^{2}/2) - F_{uyHW} (X^{3}/3 - (x_{1EW} + x_{2S} + x_{1HW}) X^{2}/2) + F_{H} (y_{0S} + e_{N,xy}) = 3,08 \text{ mm} X^{2}/2 + G_{S} e_{N,xy} X^{2}/2 + G_{S1} y_{2S} X^{2}/2 + G_{S2} (y_{3S} - y_{2S}) X^{2}/2$

Nutzlasten:

$M_{b(x)} =$	$F_{oyEL} x - F_{uyEL} (x - x_{1EW}) + F_{HEL} (y_{0S} + e_{N,xy})$
$\int M_{b(x)} dx =$	$F_{oyEL} x^2/2 - F_{uyEL} (x^2/2 - x_{1EW} x) + F_{HEL} (y_{0S} + e_{N,xy}) x + C_{11}$
$\int (\int M_{b(x)} d_x) dx =$	$F_{oyEL} x^{3}/6-F_{uyEL} (x^{3}/6-x_{1EW} x^{2}/2)+F_{HEL} (y_{0S}+e_{N,xy}) x^{2}/2+C_{11} x+C_{12}$

Durch Einsetzen der Randbedingungen kommt man für die Verschiebung an der Stelle x=0 zu folgender Lösung:

$w_{xy,EL(x=0)}$ $\Gamma_{oyEL} \Lambda / J^{-} \Gamma_{uyEL} (\Lambda / J^{-} \Lambda_{1EW} \Lambda / Z)^{+} \Gamma_{HEL} (y_{0S} + c_{N,xy}) \Lambda / Z$ $-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, $	$W_{xy,EL(x=0)} =$	$F_{oyEL} X^3/3 - F_{uyEL} (X^3/3 - x_{1EW} X^2/2) + F_{HEL} (y_{0S} + e_{N,xy}) X^2/2$	= 1,46 mi
--	--------------------	---	-----------

Außergewöhnliche Lasten:

$M_{b(x)} =$	$(H_{L,EW}+H_{L,HW}) (y_{0S}+e_{N,xy})$
$\int M_{b(x)} dx =$	$(H_{L,EW}+H_{L,HW}) (y_{0S}+e_{N,xy}) x+C_{13}$
$\int (\int M_{b(x)} d_x) dx =$	$(H_{L,EW}+H_{L,HW}) (y_{0S}+e_{N,xy}) x^2/2+C_{12} x+C_{14}$

Durch Einsetzen der Randbedingungen kommt man für die Verschiebung an der Stelle x=0 zu folgender Lösung:

$w_{xy,au\beta(x=0)} = (H_{L,EW} + H_{L,HW}) (y_{0S} + e_{N,xy}) x^2/2$

Gesamtverschiebung in x-y-Ebene:	$W_{xy(x=0)} = W_{xy,st(x=0)} + W_{xy,EL(x=0)} + W_{xy,au\beta(x=0)}$	= 5,18 mm
Bemessung der Verschiebung in x-y-Ebene:		
Leiteinwirkung Nutzlast:	$\mathbf{W}_{xy,Ed(x=0)} = \boldsymbol{\gamma}_{G} \ \mathbf{W}_{xy,st(x=0)} + \boldsymbol{\gamma}_{Q} \ \mathbf{W}_{xy,EL(x=0)} + \boldsymbol{\gamma}_{Q} \ \boldsymbol{\psi}_{0} \ \mathbf{W}_{xy,au\beta(x=0)}$	= 4,99 mm
Leiteinwirkung außergewöhnliche Last:	$w_{xy,Ed(x=0)} = \gamma_{G} w_{xy,st(x=0)} + \gamma_{Q} w_{xy,au\beta(x=0)} + \gamma_{Q} \psi_{0} w_{xy,EL(x=0)}$	= 4,74 mm

 γ_G / γ_Q und ψ_0 nach Tabelle 6-2/6-5 (γ_G =1,0 / γ_Q = 1,0 / ψ_0 =0,7)

= 0.64 mm

b) Verschiebungen in x-z-Ebene:

Biegelinie allgemein: E I w'' = $-M_{b(x)}$

Randbedingungen:

w(x=X)=0

w'(x=X)=0

mit X= $x_{1EW}+x_{2S}+x_{1HW}+x_{1S}+x_{0S}$

<u>Ständige Lasten:</u>

$M_{b(x)}=$	$F_{ozEW} x - F_{uzEW} (x - x_{1EW}) + F_{ozHW} (x - (x_{1EW} + x_{2S})) - F_{uzHW} (x - (x_{1EW} + x_{2S} + x_{1HW})) - F_H (z_{1S} + e_{N,xz}) - G_S e_{N,xz}$
$\int M_{b(x)} dx =$	$F_{ozEW} x^{2}/2 - F_{uzEW} (x^{2}/2 - x_{1EW} x) + F_{ozHW} (x^{2}/2 - (x_{1EW} + x_{2S}) x) - F_{uzHW} (x^{2}/2 - (x_{1EW} + x_{2S} + x_{1HW}) x) - F_{H} (z_{1S} + e_{N,xz}) x - G_{S} e_{N,xz} x + C_{15} (x_{1EW} + x_{2S}) x - F_{uzHW} (x_{1EW} + x_{2EW} + x_{2EW} + x_{2EW} (x_{1EW} + x_{2EW} + x_{2EW} + x_{2EW} $
$\int (\int M_{b(x)} d_x) dx =$	$F_{ozEW} x^{3}/6 - F_{uzEW} (x^{3}/6 - x_{1EW} x^{2}/2) + F_{ozHW} (x^{3}/6 - (x_{1EW} + x_{2S}) x^{2}/2) - F_{uzHW} (x^{3}/6 - (x_{1EW} + x_{2S} + x_{1HW}) x^{2}/2) - F_{H} (z_{1S} + e_{N,xz}) x^{2}/2 - G_{S} e_{N,xz} x^{2}/2 + C_{15} x + C_{16} x^{2}/2) - F_{H} (x_{1S} + e_{N,xz}) x^{2}/2 - G_{S} e_{N,xz} x^{2}/2 + C_{15} x + C_{16} x^{2}/2) - F_{H} (x_{1S} + e_{N,xz}) x^{2}/2 - G_{S} e_{N,xz} x^{2}/2 + C_{15} x + C_{16} x^{2}/2) - F_{H} (x_{1S} + e_{N,xz}) x^{2}/2 - G_{S} e_{N,xz} x^{2}/2 + C_{15} x + C_{16} x^{2}/2) - F_{H} (x_{1S} + e_{N,xz}) x^{2}/2 - G_{S} e_{N,xz} x^{2}/2 + C_{15} x + C_{16} x^{2}/2) - F_{H} (x_{1S} + e_{N,xz}) x^{2}/2 - G_{S} e_{N,xz} x^{2}/2 + C_{15} x + C_{16} x^{2}/2) - F_{H} (x_{1S} + e_{N,xz}) x^{2}/2 - G_{S} e_{N,xz} x^{2}/2 + C_{15} x + C_{16} x^{2}/2) - F_{H} (x_{1S} + e_{N,xz}) x^{2}/2 - G_{S} e_{N,xz} x^{2}/2 + C_{15} x + C_{16} x^{2}/2) - F_{H} (x_{1S} + e_{N,xz}) x^{2}/2 - G_{S} e_{N,xz} x^{2}/2 + C_{15} x + C_{16} x^{2}/2) - F_{H} (x_{1S} + e_{N,xz}) x^{2}/2 - G_{S} e_{N,xz} x^{2}/2 + C_{15} x + C_{16} x^{2}/2) - F_{H} (x_{1S} + e_{N,xz}) x^{2}/2 - G_{S} e_{N,xz} x^{2}/2 + C_{15} x + C_{16} x^{2}/2) - F_{H} (x_{1S} + e_{N,xz}) x^{2}/2 - G_{S} e_{N,xz} x^{2}/2 + C_{15} x + C_{16} x^{2}/2) - F_{H} (x_{1S} + e_{N,xz}) x^{2}/2 - G_{N} (x_{1S} + e_{N} (x_{1S} + $

Durch Einsetzen der Randbedingungen kommt man für die Verschiebung an der Stelle x=0 zu folgender Lösung:

 $w_{xz,st(x=0)} = F_{ozEW} X^{3}/3 - F_{uzEW} (X^{3}/3 - x_{1EW} X^{2}/2) + F_{ozHW} (X^{3}/3 - (x_{1EW} + x_{2S}) X^{2}/2) - F_{uzHW} (X^{3}/3 - (x_{1EW} + x_{2S} + x_{1HW}) X^{2}/2) = -0,99 \text{ mm}$ -F_H (z_{1S}+e_{N,xz}) X²/2-G_S e_{N,xz} X²/2

Nutzlasten:

$M_{b(x)} =$	$F_{ozEL} x - F_{uzEL} (x - x_{1EW}) - F_{HEL} (z_{1S} + e_{N,xz})$
$\int M_{b(x)} dx =$	$F_{ozEL} x^2/2$ - $F_{uzEL} (x^2/2$ - $x_{1EW} x$)- $F_{HEL} (z_{1S}+e_{N,xz}) x$ + C_{17}
$\int (\int M_{b(x)} d_x) dx =$	$F_{ozEL} x^{3}/6-F_{uzEL} (x^{3}/6-x_{1EW} x^{2}/2)-F_{HEL} (z_{1S}+e_{N,xz}) x^{2}/2+C_{17} x+C_{18}$

Durch Einsetzen der Randbedingungen kommt man für die Verschiebung an der Stelle x=0 zu folgender Lösung:

$W_{xz,EL(x=0)} = F_{ozEL} X^3/3 - F_{uzEL} (X^3/3 - x_{1EW} X^2/2) - F_{HEL} (z_{1S} + e_{N,xz}) X^2/2$
--

Außergewöhnliche Lasten:

- $M_{b(x)} = -(H_{T,1,EW} + H_{T,2,EW}) + (H_{T,1,EW} + H_{T,2,EW}) (X x_{1EW}) (H_{T,1,HW} + H_{T,2,HW}) (X (x_{1EW} + x_{2S} + x_{1HW})) (H_{L,1,EW} + H_{L,2,HW}) (H_{L,1,EW} + H_{L,$
- $\int M_{b(x)} dx = -(H_{T,1,EW} + H_{T,2,EW}) \quad x^2/2 + (H_{T,1,EW} + H_{T,2,EW}) \quad (x^2/2 x_{1EW} x_{1EW} + H_{T,2,HW}) \quad (x^2/2 (x_{1EW} + x_{2S}) x_{1EW} + H_{T,2,HW}) \quad (x^2/2 (x_{1EW} + x_{2EW} + x_{2EW}) + H_{T,2,HW}) \quad (x^2/2 (x_{1EW} + x_{2EW})$
- $\int (\int M_{b(x)} d_x) dx = -(H_{T,1,EW} + H_{T,2,EW}) x^3/6 + (H_{T,1,EW} + H_{T,2,EW}) (x^3/6 x_{1EW} + x^2/2) (H_{T,1,HW} + H_{T,2,HW}) (x^3/6 (x_{1EW} + x_{2S}) x^2/2) + (H_{T,1,HW} + H_{T,2,HW}) (x^3/6 (x_{1EW} + x_{2S} + x_{1HW}) x^2/2) (H_{L,1,EW} + H_{L,1,HW}) (z_{2S} + e_{N,xZ}) x^2/2 + (H_{L,2,EW} + H_{L,2,HW}) (z_{3S} e_{N,xZ}) x^2/2 + (H_{L,2,EW} + H_{L,2,HW}) (z_{3S} e_{N,xZ}) x^2/2 + (H_{L,2,EW} + H_{L,2,HW}) (x^3/6 (x_{1EW} + x_{2S}) x^2/2) + (H_{T,1,HW} + H_{T,2,HW}) (x^3/6 (x_{1EW} + x_{2S} + x_{1HW}) x^2/2) (H_{L,1,EW} + H_{L,1,HW}) (z_{2S} + e_{N,xZ}) x^2/2 + (H_{L,2,EW} + H_{L,2,HW}) (z_{3S} e_{N,xZ}) x^2/2 + (H_{L,2,EW} + H_{L,2,HW}) (z_{3S} e_{N,xZ}) x^2/2 + (H_{L,2,EW} + H_{L,2,HW}) (x^3/6 (x_{1EW} + x_{2S}) x^2/2) + (H_{L,2,HW} + H_{L,2,HW}) (x^3/6 (x_{1EW} + x_{2S} + x_{1HW}) x^2/2) (H_{L,2,EW} + H_{L,2,HW}) (z_{2S} e_{N,xZ}) x^2/2 + (H_{L,2,EW} + H_{L,2,HW}) (z_{3S} e_{N,xZ}) x^2/2 + (H_{L,2,EW} + H_{L,2,HW}) (z_{3S} e_{N,xZ}) x^2/2 + (H_{L,2,EW} + H_{L,2,HW}) (x^3/6 (x_{1EW} + x_{2S} + x_{1HW}) x^2/2) (H_{L,2,EW} + H_{L,2,HW}) (x^3/6 (x_{1EW} + x_{2S} + x_{1HW}) x^2/2 + (H_{L,2,EW} + H_{L,2,HW}) (x^3/6 (x_{1EW} + x_{2S} + x_{1HW}) x^2/2) (H_{L,2,EW} + H_{L,2,HW}) (x^3/6 (x_{1EW} + x_{2S} + x_{1HW}) x^2/2 + (x_{1EW} + x_{2S} + x_{2H}) x^2/2 + (x_{1EW} + x_{2H}) x^2/2$

Durch Einsetzen der Randbedingungen kommt man für die Verschiebung an der Stelle x=0 zu folgender Lösung:

 $w_{xy,au6(x=0)} = -(H_{T,1,EW} + H_{T,2,EW}) x^{3}/6 + (H_{T,1,EW} + H_{T,2,EW}) (x^{3}/6 - x_{1EW} x^{2}/2) - (H_{T,1,HW} + H_{T,2,HW}) (x^{3}/6 - (x_{1EW} + x_{2S}) x^{2}/2) + (H_{T,1,HW} + H_{T,2,HW}) = -1,73 \text{ mm} (x^{3}/6 - (x_{1EW} + x_{2S} + x_{1HW}) x^{2}/2) - (H_{L,1,EW} + H_{L,1,HW}) (z_{2S} + e_{N,xz}) x^{2}/2 + (H_{L,2,EW} + H_{L,2,HW}) (z_{3S} - e_{N,xz}) x^{2}/2$

Gesamtverschiebung in x-z-Ebene:	$W_{xz(x=0)} = W_{xz,st(x=0)} + W_{xz,EL(x=0)} + W_{xz,au\beta(x=0)}$	= -2,79 mm
Bemessung der Verschiebung in x-z-Ebene:		
Leiteinwirkung Nutzlast:	$w_{xz,Ed(x=0)} = \gamma_{G} \ w_{xz,st(x=0)} + \gamma_{Q} \ w_{xz,EL(x=0)} + \gamma_{Q} \ \psi_{0} \ w_{xz,au\beta(x=0)}$	= -1,21 mm
Leiteinwirkung außergewöhnliche Last:	$w_{xz,Ed(x=0)} = \gamma_{G} \ w_{xz,st(x=0)} + \gamma_{Q} \ w_{xz,auB(x=0)} + \gamma_{Q} \ \psi_{0} \ w_{xz,EL(x=0)}$	= -1,73 mm

 γ_G / γ_Q und ψ_0 nach Tabelle 6-2/6-5 (γ_G =1,0 / γ_Q = 1,0 / ψ_0 =0,7)

Resultierende Gesamtverschiebung:	W _{ges(x=0)}	= 5,89 mm
-----------------------------------	-----------------------	-----------

Ermittlung der Verschiebungen mittels FEM:

Verschiebung in x-y-Ebene:

Verschiebung in x-z-Ebene:

Resultierende Gesamtverschiebung:

Abbildung 7-32: a) Verschiebung in x-y-Ebene; LF2 ; b) Verschiebung in x-z-Ebene; LF2 ; c) Resultierende Verschiebung; LF2

Beurteilung der Verschiebungen:

Die Abweichungen zwischen den Ergebnissen aus der FEA und der analytischen Berechnung sind sehr gering, wodurch man davon ausgehen kann, dass die Annäherung für die analytische Berechnung richtig getroffen wurde.

Weiters sind die auftretenden Verschiebungen verschwindend gering und liegen weit unter dem zulässigen Bereich. Der Grenzzustand der Gebrauchstauglichkeit ist demnach gegeben.

7.3.2.8 Ermüdungsnachweis am betrachteten Querschnitt

Es wird ein Einstufenkollektiv dargestellt, in dem sich eine Spannungsschwingbreite zwischen der konstanten Abwärtsbewegung und dem abrupten Abbremsen der Massen einstellt.

 $\sigma_{hxz st 2} = 2,51 \text{ N/mm}^2$

Spannungsschwingbreite (Amplitudenspannung):

ständige Lasten:

Konstante Abwärtsbewegung: Biegespannung um z-Achse: Biegespannung um y-Achse: Druckspannung: $\sigma_{d.st.1} = (F_H + G_S)/A_{ges}$ $\sigma_{b,xy,st,1} = M_{xy,st,1}/W_z$ $\sigma_{b,xz,st,1} = M_{xz,st,1}/W_v$ $\sigma_{d \text{ st } 1} = -2,21 \text{ N/mm}^2$ $\sigma_{h xy st 1} = 6.99 \text{ N/mm}^2$ $\sigma_{h xz st l} = 2,11 \text{ N/mm}^2$ Verzögerung: Biegespannung um z-Achse: Biegespannung um y-Achse: Druckspannung: $\sigma_{d.st,2} = (F_H + G_S)/A_{ges}$ $\sigma_{b,xy,st,2} = M_{xy,st,2}/W_z$ $\sigma_{b,xz,st,2} = M_{xz,st,2}/W_v$

 $\sigma_{b,xy,st,2} = 9,55 \text{ N/mm}^2$

 $\sigma_{d \text{ st } 2}$ = -2,71 N/mm²

Biegemoment um z-Achse:

Konstante Abwärtsbewegung:

 $M_{xy,st,1} = F_{oyEW} (x_{1EW} + x_{2S} + x_{1HW} + x_{1S}) - F_{uyEW} (x_{2S} + x_{1HW} + x_{1S}) + F_{oyHW} (x_{1HW} + x_{1S}) - F_{uyHW} x_{1S} + F_{H} (y_{1S} + e_{N,xy}) + G_{S} e_{N,xy} + G_{S1} y_{2S} + G_{S2} (y_{3S} - y_{2S}) + G_{S2} (y_{3S} - y_{2S}) - F_{uyHW} (x_{1HW} + x_{1S}) - F_{uyHW} (x_{1HW} + x_{1HW} + x_{1S}) - F_{uyHW} (x_{1HW} + x_{1HW} +$

M_{xy,st,1}= 179054449,18 Nmm

Verzögerung:

 $M_{xy,st,2} = F_{oyEW} (x_{1EW} + x_{2S} + x_{1HW} + x_{1S}) - F_{uyEW} (x_{2S} + x_{1HW} + x_{1S}) + F_{oyHW} (x_{1HW} + x_{1S}) - F_{uyHW} x_{1S} + F_H (y_{1S} + e_{N,xy}) + G_S e_{N,xy} + G_{S1} y_{2S} + G_{S2} (y_{3S} - y_{2S}) + G$

Biegemoment um y-Achse:

Konstante Abwärtsbewegung:

$$\begin{split} M_{xz,st,1} = & F_{ozEW} \left(x_{1EW} + x_{2S} + x_{1HW} + x_{1S} \right) - F_{uzEW} \left(x_{2S} + x_{1HW} + x_{1S} \right) + F_{ozHW} \left(x_{1HW} + x_{1S} \right) - F_{uzHW} x_{1S} - F_{H} \left(z_{1S} + e_{N,xz} \right) - G_{S} e_{N,xz} \\ M_{xz,st,1} = -27393674, 18 \text{ Nmm} \end{split}$$

Verzögerung:

$$\begin{split} M_{xz,st,2} = & F_{ozEW} \left(x_{1EW} + x_{2S} + x_{1HW} + x_{1S} \right) - F_{uzEW} \left(x_{2S} + x_{1HW} + x_{1S} \right) + F_{ozHW} \left(x_{1HW} + x_{1S} \right) - F_{uzHW} \left(x_{1S} - F_H \left(z_{1S} + e_{N,xz} \right) - G_S \left(e_{N,xz} - F_{$$

Nutz-Lasten:

Konstante Abwärtsbewegung:

Druckspannung:	Biegespannung um z-Achse:	Biegespannung um y-Achse:
$\sigma_{d,xy,EL,1}{=}F_{HEL}/A_{ges}$	$\sigma_{b,xy,EL,1} = M_{xy,EL,1}/W_z$	$\sigma_{b,xz,EL,1}\!\!=\!\!M_{xz,EL,1}\!/W_y$
$\sigma_{d,xy,EL,1} = -0.55 \text{ N/mm}^2$	$\sigma_{b,xy,EL,1} = 3,31 \text{ N/mm}^2$	$\sigma_{b,xz,EL,1} = 0,14 \text{ N/mm}^2$

Verzögerung:

Druckspannung:	Biegespannung um z-Achse:	Biegespannung um y-Achse:
$\sigma_{d,xy,EL,2} = F_{HEL}/A_{ges}$	$\sigma_{b,xy,EL,2}\!\!=\!\!M_{xy,EL,2}\!/W_z$	$\sigma_{b,xz,EL,2}\!\!=\!\!M_{xz,EL,2}\!/W_y$
$\sigma_{d,xy,EL,2}$ = -0,77 N/mm ²	$\sigma_{b,xy,EL,2}$ = 4,64 N/mm ²	$\sigma_{b,xz,EL,2}$ = 0,19 N/mm ²

Biegemoment um z-Achse: Konstante Abwärtsbewegung: M_{xy,EL,1}=F_{oyEL} (x_{1EW}+x_{2S}+x_{1HW}+x_{1S})-F_{uyEL} (x_{2S}+x_{1HW}+x_{1S})+F_{HEL} (y_{1S}+e_{N,xy}) M_{xy,EL,1}= 84846101,57 Nmm

Verzögerung:

$$\begin{split} M_{xy,EL,2} = & F_{oyEL} \; (x_{1EW} + x_{2S} + x_{1HW} + x_{1S}) - F_{uyEL} \; (x_{2S} + x_{1HW} + x_{1S}) + F_{HEL} \; (y_{1S} + e_{N,xy}) \\ M_{xy,EL,2} = \; 118784542,20 \; \; Nmm \end{split}$$

Biegemoment um y-Achse:

Konstante Abwärtsbewegung:

$$\begin{split} M_{xz,EL,1} = & F_{ozEL} \; (x_{1EW} + x_{2S} + x_{1HW} + x_{1S}) - F_{uzEL} \; (x_{2S} + x_{1HW} + x_{1S}) - F_{HEL} \; (z_{1S} + e_{N,zy}) \\ M_{xz,EL,1} = \; -1771101,57 \; Nmm \end{split}$$

Verzögerung:

$$\begin{split} M_{xz,EL,2} = & F_{ozEL} (x_{1EW} + x_{2S} + x_{1HW} + x_{1S}) - F_{uzEL} (x_{2S} + x_{1HW} + x_{1S}) - F_{HEL} (z_{1S} + e_{N,zy}) \\ M_{xz,EL,2} = & -2479542,20 \text{ Nmm} \end{split}$$

Außergewöhnliche-Lasten:

Konstante Abwärtsbewegung:

Druckspannung:

 $\sigma_{d,xy,au\beta,1}\!\!=\!\!0$

 $\sigma_{d,xy,au\beta,1}=0,00 \text{ N/mm}^2$

Biegespannung um z-Achse: $\sigma_{b,au\beta,EL,1}=M_{xy,au\beta,1}/W_z$ $\sigma_{b,au\beta,EL,1}=0,00 \text{ N/mm}^2$ Biegespannung um y-Achse:

 $\sigma_{b,xz, au\beta, 1} = M_{xz, au\beta, 1}/W_y$ $\sigma_{b,xz, au\beta, 1} = 11,77 \text{ N/mm}^2$

Verzögerung:

Druckspannung:	Biegespannung um z-Achse:	Biegespannung um y-Achse:
$\sigma_{d,xy,\ au \beta,2} = (H_{L,EW} + H_{L,HW}) / A_{ges}$	$\sigma_{b,xy,\ au \&,2} = M_{xy,\ au \&,2} / W_z$	$\sigma_{b,xz, au \beta,2} = M_{xz, au \beta,2} / W_y$
$\sigma_{d,xy, au B,2}$ = -1,09 N/mm ²	$\sigma_{b,xy, aub,2}$ = 2,30 N/mm ²	$\sigma_{b,xz, au\beta,2}$ = 4,37 N/mm ²

Biegemoment um z-Achse: Konstante Abwärtsbewegung: M_{xy,auß,1}= 0

 $M_{xy, au \beta, 1} = 0,00 \text{ Nmm}$

Verzögerung:

 $M_{xy, \ au \beta, 2} = (H_{L, EW} + H_{L, HW}) \ (y_{0S} + e_{N, xy})$

 $M_{xy, au \beta, 2}$ = 58884727,90 Nmm

Biegemoment um y-Achse: Konstante Abwärtsbewegung: $M_{xz, au6,1}$ =-($H_{S,1,1,T,EW}$ + $H_{S,2,1,T,EW}$) (x_{2S} + x_{1HW} + x_{1S})-($H_{S,1,1,T,HW}$ + $H_{S,2,1,T,HW}$) x_{1S} $M_{xz, au6,1}$ = -152699136,78 Nmm

Verzögerung:

 $M_{xz, au\beta,2} = -(H_{T,1,EW} + H_{T,2,EW}) (x_{1EW} + x_{2S} + x_{1HW} + x_{1S}) + (H_{T,1,EW} + H_{T,2,EW}) (x_{2S} + x_{1HW} + x_{1S}) - (H_{T,1,HW} + H_{T,2,HW}) (x_{1HW} + x_{1S}) + (H_{T,1,HW} + H_{T,2,HW}) (x_{2S} + e_{N,zz}) + (H_{L,2,EW} + H_{L,2,HW}) (z_{3S} + e_{N,zz}) + (H_{L,2,HW} + H_{L,2,HW}) (z_{3S}$

M_{xz, auß,2}= -56734327,90 Nmm

Spannungen im betrachteten Punkt:

Unterspannung:	$\sigma_{u} = (\sigma_{d,st,2} + \sigma_{b,xy,st,2} + \sigma_{b,xz,st,2}) + (\sigma_{d,EL,2} + \sigma_{b,xy,EL,2} + \sigma_{b,xz,EL,2}) + (\sigma_{d,au\beta,2} + \sigma_{b,xy,au\beta,2} + \sigma_{b,xz,au\beta,2})$	$\sigma_u = 1$	8,99 N/mm ²
Oberspannung:	$\sigma_{o} = (\sigma_{d,st,1} + \sigma_{b,xy,st,1} + \sigma_{b,xz,st,1}) + (\sigma_{d,EL,1} + \sigma_{b,xy,EL,1} + \sigma_{b,xz,EL,1}) + (\sigma_{d,au\beta,1} + \sigma_{b,xy,au\beta,1} + \sigma_{b,xz,au\beta,1})$	$\sigma_o = 2$	1,56 N/mm ²
Spannungsverhältnis:	$R=\sigma_u/\sigma_o$	R=	0,88
Mittelspannung:	$\sigma_{\rm m} = (\sigma_{\rm u} + \sigma_{\rm o})/2$	$\sigma_m = 2$	20,28 N/mm ²
Spannungsamplitude:	$\sigma_a = (\sigma_o - \sigma_u)/2$	$\sigma_a =$	1,29 N/mm ²

Bemessung der Spannungen im betrachteten Punkt:

Unterspannung:	$\sigma_{u,Ed} = \gamma_{G,j,sup} \left(\sigma_{d,st,2} + \sigma_{b,xy,st,2} + \sigma_{b,xz,st,2} \right) + \gamma_{Q,1} \left(\sigma_{d,EL,2} + \sigma_{b,xy,EL,2} + \sigma_{b,xz,EL,2} \right) + \gamma_{Q,1} \psi_0 \left(\sigma_{d,au\beta,2} + \sigma_{b,xy,au\beta,2} + \sigma_{b,xz,au\beta,2} \right)$	$\sigma_{u,Ed}$ = 24,57 N/mm ²
Oberspannung:	$\sigma_{o,Ed} = \gamma_{G,j,sup} \left(\sigma_{d,st,1} + \sigma_{b,xy,st,1} + \sigma_{b,xz,st,1} \right) + \gamma_{Q,1} \left(\sigma_{d,EL,1} + \sigma_{b,xy,EL,1} + \sigma_{b,xz,EL,1} \right) + \gamma_{Q,1} \psi_0 \left(\sigma_{d,au\beta,1} + \sigma_{b,xy,au\beta,1} + \sigma_{b,xz,au\beta,1} \right)$	$\sigma_{o,Ed}$ = 26,01 N/mm ²

Leiteinwirkung – Außergewöhnliche Last:

Unterspannung:	$\sigma_{u,Ed} = \gamma_{G,j,sup} \left(\sigma_{d,st,2} + \sigma_{b,xy,st,2} + \sigma_{b,xz,st,2}\right) + \gamma_{Q,1} \left(\sigma_{d,au\beta,2} + \sigma_{b,xy,au\beta,2} + \sigma_{b,xz,au\beta,2}\right) + \gamma_{Q,1} \psi_0 \left(\sigma_{d,EL,2} + \sigma_{b,xy,EL,2} + \sigma_{b,xz,EL,2}\right)$	$\sigma_{u,Ed}$ = 25,26 N/mm ²
Oberspannung:	$\sigma_{o,Ed} = \gamma_{G,j,sup} \left(\sigma_{d,st,1} + \sigma_{b,xy,st,1} + \sigma_{b,xz,st,1}\right) + \gamma_{Q,1} \left(\sigma_{d, au\beta,1} + \sigma_{b,xy, au\beta,1} + \sigma_{b,xz, au\beta,1}\right) + \gamma_{Q,1} \psi_0 \left(\sigma_{d,EL,1} + \sigma_{b,xy,EL,1} + \sigma_{b,xz,EL,1}\right)$	$\sigma_{o,Ed}$ = 30,01 N/mm ²

Bemessungswerte für die weitere Berechnung:

Unterspannung:		$\sigma_{u,Ed} = c$	24,57 N/mm ²
Oberspannung:		$\sigma_{o,Ed} = 1$	30,01 N/mm ²
Spannungsverhältnis:	$R_{Ed}\!\!=\!\!\sigma_{u,Ed}\!/\!\sigma_{o,Ed}$	R_{Ed} =	0,82
Mittelspannung:	$\sigma_{m,Ed} = (\sigma_{u,Ed} + \sigma_{o,Ed})/2$	$\sigma_{m,Ed} =$	27,29 N/mm ²
Spannungsamplitude:	$\sigma_{a,Ed} = (\sigma_{o,Ed} - \sigma_{u,Ed})/2$	$\sigma_{a,Ed}\!\!=\!$	2,72 N/mm ²

 $\gamma_{G,j,sup}$ / $\gamma_{Q,1}$ und ψ_0 nach Tabelle 6-2/6-4 ($\gamma_{G,j,sup}$ =1,35 / $\gamma_{Q,1}$ = 1,5 / ψ_0 = 0,7)

Ermüdungsfestigkeit:

a) Ermittlung der ertragbaren Ermüdungsbeanspruchung $\Delta \sigma_R$:

Der betrachtete Querschnitt der geschweißten Blechkonstruktion wird nach Tabelle 6.30 der Kerbfallklasse 6 ($\Delta\sigma_C = 100 \text{ N/mm}^2$) zugeordnet. Aus Gl.117 lässt sich schließlich die ertragbare Ermüdungsbeanspruchung für eine auftretende Lastspielzahl von N_R = 7,3 10⁴, ermitteln:

$$\Delta \sigma_{\rm R} = \left(\frac{2 \cdot 10^6}{N_{\rm R}}\right)^{\rm m} \cdot \Delta \sigma_{\rm C} \qquad \longrightarrow \qquad \Delta \sigma_{\rm R} = 301.46 \frac{\rm N}{\rm mm^2}$$

b) Ermittlung der zulässigen Ermüdungsbeanspruchung $\Delta \sigma_D$ nach Gl.117:

$$\Delta \sigma_{\rm D} = \left(\frac{2}{5}\right)^{\rm m} \cdot \Delta \sigma_{\rm C} \qquad \longrightarrow \qquad \Delta \sigma_{\rm D} = 73.68 \frac{\rm N}{\rm mm}^2$$

a) Ermittlung der zulässigen Spannung aus dem Smith-Diagramm:

Für eine Mittelspannung von 27,29 N/mm² und dem Werkstoff S235 erhält man aus dem Smith-Diagramm für die Biegedauerfestigkeit eine Biegewechselfestigkeit von 173 N/mm². Unter Berücksichtigung des Größeneinflusses (0,8) und der Kerbwirkung (2) kann man von einer zulässigen Spannung von 69 N/mm² ausgehen. Es ist ersichtlich, dass der Bemessungswert der auftretenden Spannungsschwingbreite (2,72 N/mm²) deutlich unter der zulässigen Spannung (69 N/mm²) liegt, wodurch es zu keiner Ermüdungserscheinung kommt.

Abbildung 7-33: Dauerfestigkeitsschaubild nach Smith für Biegedauerfestigkeit [7]

Ermüdungsnachweis:

Für ein Einstufen-Lastkollektiv ergibt sich nach Gl.120 eine schadensäquivalente, konstante Spannungsschwingbreite von $\Delta \sigma_E$ =5,44N/mm².

Durch die lineare Beziehung der Wöhlerkurve im Zeitfestigkeitsbereich lässt sich auf die schadensäquivalente konstante Spannungsschwingbreite bei 2 10⁶ Lastwechseln schließen.

$$\Delta \sigma_{\rm E}^{\rm m} \cdot N_{\rm R} = \Delta \sigma_{\rm E.2}^{\rm m} \cdot 2 \cdot 10^6 \longrightarrow \Delta \sigma_{\rm E.2} = 1.80 \frac{N}{mm^2}$$

$$\frac{\gamma_{\rm Ff} \cdot \Delta \sigma_{\rm E.2}}{\frac{\Delta \sigma_{\rm C}}{\gamma_{\rm Mf}}} = 0,024 < 1$$

Dadurch ist der Ermüdungsnachweis für das Konzept der ausreichenden Sicherheit gegen Ermüdungsversagen mit einem γ_{Mf} – Faktor von 1,35 nach Tabelle 6-28 mit ausreichender Sicherheit gegeben.

Schädigung nach Miner:

Es wird von zehn Elektrodenwechseln pro Tag über 365 Tage im Jahr auf eine Laufzeit von zwanzig Jahren ausgegangen.

Die Spannungsamlitude (2,17 N/mm²) liegt weit unter der zulässigen Biegewechselfestigkeit wodurch als zulässige Lastspielzahl die Ecklastspielzahl N_D von 5 10^6 Lastwechseln herangezogen wurde.

Somit ergibt sich für das Einstufen-Kollektiv über die gesamte Laufzeit eine Schädigung welche nicht von Relevanz ist.

Schädigung nach Miner:

Dynamische Sicherheit:

 $D_d = \sum_i \frac{n_{Ei}}{N_{Ri}} = 1,46\%$

$$S_{dyn} = \frac{\sigma_{zul}}{\sigma_a} = 25,40$$

8 Zusammenfassung

Es wurde mittels der Berechnung nach Eurocode 3 nachgewiesen, dass für den Grenzzustand der Tragfähigkeit (Lagesicherheit, Beanspruchbarkeit von Querschnitten, Stabilitätsnachweis), den Grenzzustand der Gebrauchstauglichkeit (Verschiebungen) sowie für den Ermüdungsnachweis die Bemessungen sowohl für den Lastfall 1 als auch für den Lastfall 2 mit ausreichender Sicherheit gegeben sind. Des Weiteren wurde mittels der <u>Methode der reduzierten Spannungen</u> nachgewiesen, dass die Bemessung des Tragwerkes mit Querschnitten der Klasse 3 zulässig ist.

Sowohl im Lastfall 1 als auch im Lastfall 2 wird die <u>Lagesicherheit</u> gemäß dem Grenzzustand der Tragfähigkeit durch die fünfzig M20-Schrauben, mit welchen die Schwenksäule mit der Stützsäule verbunden ist, gewährleistet.

Für die <u>Beanspruchbarkeit des Querschnitts</u> gemäß dem Grenzzustand der Tragfähigkeit liegt in beiden Lastfällen die "kritischste" Auslastung für den konservativen Lösungsansatz bei 6,4 % bzw. bei 20,1 %. Auch für den <u>Stabilitätsnachweis</u> sind die "kritischen" Einwirkungen für Biegedrillknicken mit 7,9 % für den Lastfall 1 und mit 17,8 % für den Lastfall 2 weit unter der zulässigen Bemessungsgrenze von 100%.

Die auftretenden resultierenden <u>Verschiebungen</u> gemäß dem Grenzzustand der Gebrauchstauglichkeit, welche mittels Finite-Elemente-Analyse ermittelt wurden, sind mit 3,67 mm bzw. mit 5,99 mm für Bauwerke dieser Größenordnung innerhalb der geforderten Toleranzen.

Neben der Verschiebung ist auch die <u>Ermüdung</u> für den Lastfall 1, welche mit einer lineare Schadensakkumulation nach Palmgren Miner von 1,46 % und mit der Nachweisführung der Ermüdung von 2,8 % gemäß Eurocode relativ niedrig. Des Weiteren ergibt sich eine dynamische Sicherheit von 32 bei gestaltfester Bemessung. Für den Lastfall 2 betragen die Schädigung ebenfalls 1,46 % sowie der Nachweis der Ermüdung 2,4 % und die Sicherheit im Gestaltfestigkeitsnachweis ergibt sich zu 25. Somit ist die dynamische Beanspruchung vergleichsweise gering. Es ist zu erwähnen, dass die Ermüdung anhand eines einstufigen Lastkollektivs repräsentativ für den höchstbelasteten Zustand ermittelt wurde. In der praktischen Anwendung von ESU-Anlagen sind gemäß den Erfahrungen des Anlagenbauers die realen Lastkollektive geringer anzusetzen. Daraus folgt, dass die Schädigung keinen wesentlichen Einfluss haben wird.

Bei der Anwendung des Eurocode im Verlaufe dieser Arbeit wurde die Lage des "kritischen" Querschnitts, welcher für die Bemessung herangezogen wurde, zunächst aufgrund von Erfahrungen abgeschätzt. Diese Abschätzung stellte sich durch die Nachrechnungen mittels Finite-Elemente-Methode als korrekt heraus. Für die zukünftigen Anwendungen des Eurocodes sollte jedoch im Vorhinein eine Finite-Elemente-Analyse vorgenommen werden, damit anhand dieser Ergebnisse die Bemessungen optimal auf das Tragwerk übertragen werden können.

Weiters würde man durch eine vorlaufende Finite-Elemente-Analyse die kritischen bzw. nicht kritischen Stellen im System auf einen Blick erkennen und eine Strukturoptimierung wäre schnell und einfach durchzuführen. Für nachfolgende Bemessungen mit den Grenzzuständen können höhere Auslastungsgrade nach Norm erreicht werden, wodurch man wiederum an überdimensionierten Stellen Material bzw. Kosten einsparen kann, um eine technisch wirtschaftlich optimale Lösung zu erzielen.

9 Anhang

9.1 Literaturverzeichnis

- [1] Eurocode: Grundlagen der Tragwerksplanung; Deutsche Fassung EN 1990:2002 + A1:2005 + A1:2005/AC:2010.
- [2] Eurocode 1: Einwirkungen auf Tragwerke Teil 1-1: Allgemeine Einwirkungen auf Tragwerke – Wichten, Eigengewicht und Nutzlasten im Hochbau; Deutsche Fassung EN 1991-1-1:2002 + AC:2009.
- [3] Eurocode 1: Einwirkungen auf Tragwerke Teil 3: Einwirkungen infolge von Kranen und Maschinen; Deutsche Fassung EN 1991-3:2006.
- [4] Eurocode 3: Bemessung und Konstruktion von Stahlbauten Teil 1-1: Allgemeine Bemessungsregeln und Regeln f
 ür den Hochbau; Deutsche Fassung EN 1993-1-1:2005 + AC:2009.
- [5] Eurocode 3: Bemessung und Konstruktion von Stahlbauten Teil 1-5: Plattenförmige Bauteile; Deutsche Fassung EN 1993-1-5:2006 + AC:2009.
- [6] Eurocode 3: Bemessung und Konstruktion von Stahlbauten Teil 1-9: Ermüdung; Deutsche Fassung EN 1993-1-9:2005 + AC:2009.
- [7] Professor Dr.-Ing.Dietz, Peter: Fritz-Süchting-Institut für Maschinenwesen der technischen Universität Clausthal (26.01.2004), <u>http://www.imw.tuclausthal.de/fileadmi</u> <u>n/Studium/SkripteundUebungen/Winter0304/KE_II/2005_08_04_014.pdf</u> (16.01.2012).
- [8] Inteco GmbH, BHB 01-257 Xingtai (Bruck/Mur 2011)
- [9] Inteco GmbH, 01-220 ESR Plant 16t (Bruck/Mur 2010)
- [10] DIN 18800 Teil 2: Stahlbauten: Stabilitätsfälle, Knicken von Stäben und Stabwerken (November 1990)
- [11] Beier-Tertel, Judith: Geometrische Ersatzimperfektionen für Tragfähigkeitsnachweise zum Biegedrillknicken von Trägern aus Walzprofilen (Bochum. Dezember 2008)
- [12] Univ.-Prof.Dr.-Ing.Kindmann, Rolf: Plastische Bemessung im Stahlbau (26.04.2003), http://www.vpi-bw.com/ingenieure/derpruefing/kindmann_nr_22.pdf (16.01.2012).
- [13] Prof. Harald Unterweger, Dr. Andreas Taras: Auslegung und Berechnung schweißtechnischer Konstruktionen: TU Graz. Version 11
- [14] Eurocode 3: Bemessung und Konstruktion von Stahlbauten Teil 1-8: Bemessung von Anschlüssen; Deutsche Fassung EN 1993-1-8:2005 + AC:2009

- [15] Univ. Prof. Dipl.-Ing. Dr. Wilfried Eichelseder, Dipl.-Ing. Dr. Istvan Godor: MASCHINENELEMENTE Ia und Ib. Leoben: WS 2011 / SS 2012
- [16] Ioannis Vayas, John Ermopoulos, George Ioannidis: Anwendungsbeispiele zum Eurocode 3. Berlin: Ernst & Sohn. 1998
- [17] Ioannis Vayas, John Ermopoulos, George Ioannidis: Bemessungsbeispiele im Stahlbau nach Eurocode 3. Berlin: Ernst & Sohn. 11.2001
- [18] Sivo Schilling: Beispiele zur Bemessung von Stahltragwerken nach DIN EN 1993 Eurocode 3: Bauforumstahl e.V., Düsseldorf: Ernst & Sohn. 10.2011
- [19] Ausführung von Stahltragwerken und Aluminiumtragwerken Teil 1: Konformitätsnachweisverfahren für tragende Bauteile; Deutsche Fassung EN 1090-1:2009
- [20] Ausführung von Stahltragwerken und Aluminiumtragwerken Teil 2: Technische Regeln für die Ausführung von Stahltragwerken; Deutsche Fassung EN 1090-2:2008
- [21] Erwin Piechatzek: Einführung in den Eurocode 3: Konzept, Bemessung, Beispiele, Tabellen: Vieweg. 2002
- [22] Rolf Kindmann, Jörg Frickel: Elastische und plastische Querschnittstragfähigkeit: Grundlagen, Methoden, Berechnungsverfahren, Beispiele: Ernst & Sohn. 2003
- [23] Manfred A. Hirt, Rolf Bez, Alain Nussbaumer: Stahlbau: Grundbegriffe und Bemessungsverfahren: PPUR presses polytechniques. 2007
- [24] Gerd Wagenknecht: Stahlbau-Praxis: Tragwerksplanung Grundlagen: Bauwerk. 2005
- [25] Richard Greiner, Andreas Lechner, Markus Kettler: Berechnungsrichtlinie für die Querschnitts- und Stabbemessung nach Eurocode 3 mit Schwerpunkt auf Semi-Kompakten Querschnitten: TU – Graz, University of Technology, Institut für Stahlbau (12.06.2011)
- [26] Frans Bijlaard: Eurocode 3, a basis for further development in joint design: Journal of Constructional Steel Research, Volume 62, Issue 11, November 2006, Pages 1060-1067
- [27] Marco Gettel, Werner Schneider: Buckling strength verification of cantilevered cylindrical shells subjected to transverse load using Eurocode 3: Journal of Constructional Steel Research, Volume 63, Issue 11, November 2007, Pages 1467-1478
- [28] C. Rebelo, N. Lopes, L. Simões da Silva, D. Nethercot, P.M.M. Vila Real: Statistical evaluation of the lateral-torsional buckling resistance of steel I-beams, Part 1: Variability of the Eurocode 3 resistance model: Journal of Constructional Steel Research, Volume 62, Issue 12, December 2006, Pages 1290-1294
- [29] V Barreto, D Camotim: Computer-aided design of structural steel plane frames according to Eurocode 3: Journal of Constructional Steel Research, Volume 46, Issues 1–3, April–June 1998, Pages 367-368

- [30] N Boissonnade, J.-P Jaspart, J.-P Muzeau, M Villette: Improvement of the interaction formulae for beam columns in Eurocode 3: Computers & Structures, Volume 80, Issues 27–30, November 2002, Pages 2375-2385
- [31] M.P. Byfield, D.A. Nethercot: A new look at Eurocode 3: Engineering Structures, Volume 19, Issue 9, September 1997, Pages 780-787
- [32] Martin Steenhuis, Cock Dol, Leon van Gorp: Computerised calculation of force distributions in bolted end plate connections according to Eurocode 3: Journal of Constructional Steel Research, Volume 31, Issue 1, 1994, Pages 135-144

9.2 Abbildungsverzeichnis

Abbildung 3-1: Abfolge der Tätigkeiten	9
Abbildung 5-1: Prinzipielle Funktionsweise einer ESU-Anlage [9]	11
Abbildung 5-2: Darstellung der Gesamtanlage Xingtai [8]	12
Abbildung 5-3: Elektrodenwagen (Elektrodenstange in Schnittdarstellung)	14
Abbildung 5-4: Haubenwagen	14
Abbildung 5-5: Gleittiegelstation	15
Abbildung 5-6: Standtiegelstation (T-Kokille)	15
Abbildung 6-1: Lastanordnung des belasteten Krans zur Bestimmung der maximalen Belastung des	
Kranbahnträgers; Bild 2.1 aus [3]	31
Abbildung 6-2: Lastanordnung des unbelasteten Krans zur Bestimmung der minimalen Belastung des	
Kranbahnträgers; Bild 2.1 aus [3]	31
Abbildung 6-3: Anordnung der horizontalen Radlast infolge von Beschleunigung und Verzögerung längs und	1
quer zur Fahrbahn; Bild 2.3 aus [3]	32
Abbildung 6-4: Anordnung der horizontalen Radlast aus Schräglauf längs und quer zu Fahrbahn (links: mit	
zusätzlichen Führungsmitteln / rechts: Spurführung mittels Spurkränzen); Bild 2.4 aus [3]	32
Abbildung 6-5: Horizontale Lasten H _{L,i} längs der Fahrbahn; Bild 2.5 aus [3]	34
Abbildung 6-6: Horizontale Kräfte H _{T,i} quer zur Fahrbahn; Bild 2.6 aus [3]	35
Abbildung 6-7: Definition der Antriebskraft K (links: Zentralantrieb / rechts: Einzelantrieb) ; Bild 2.7 aus [3]	36
Abbildung 6-8: Definition des Winkels α und des Abstandes h; Bild 2.8 aus [3]	38
Abbildung 6-9: Äquivalente Schiefstellung; Bild 5.2 aus [4]	43
Abbildung 6-10: Ersatz der Vorverformung durch äquivalente horizontale Ersatzlasten; Bild 5.4 aus [4]	44
Abbildung 6-11: Knicklinien; Bild 6.4 aus [4]	53
Abbildung 6-12: Längsausgesteiftes Blechfeld / Ersatzdruckstab; Bild A.1 aus [5]	64
Abbildung 6-13: Prinzipieller Ablauf der Schadensakkumultion nach Palmgren-Miner; Bild A.1 aus [6]	66
Abbildung 6-14: Ermüdungskurve für Längsspannungsschwingbreiten; Bild 7.1 aus [6]	67
Abbildung 6-15: Überführung eines einwirkenden Belastungskollektivs in ein schadensäquivalentes	
Spannungskollektiv mit konstanter Belastungsamplitude; Kapitel 7 aus [13]	70
Abbildung 6-16: Standardisierte Belastungskollektive; Kapitel 7 aus [13]	70
Abbildung 7-1: Otenkopt einer ESU-Anlage; Allgemeine Darstellung	71
Abbildung 7-2: Nachweisführung nach Eurocode 3	72
Abbildung 7-3: Elektrodenwagen x-y-Ebene; LFI	75
Abbildung 7-4: Elektrodenwagen x-z-Ebene; LF1	/6
Abbildung 7-5: Haubenwagen x-y-Ebene; LF1	70
Abbildung 7-0: Haubenwagen X-Z-Ebene; LF1	70
Abbildung 7-7: Drehsäule x-y-Ebene; LF1	/9
Abbildung 7-0: Ditensaule X-Z-Ebene; LFT	00 00
Abbildung 7-7. Deutachteter Queisehnnt, Er I	02 86
Abbildung 7-10. Langsspannungsverteilung nach von Mises im betrachteten Querschnitt: LE1	80
Abbildung 7-11. Spannungsvertenung nach von Wises im betrachteten Querschnitt, Er 1	0/
Abbildung 7-12. Ausgesteintes Diechfeld 1: LF1	80
Abbildung 7-13. Ersatzurückstab Dicement 1, Er 1	02
Abbildung 7-15: Ersatzdruckstab Blechfeld 2: I Fl	93
Abbildung 7-16: Prinzindarstellung der Nachgiebigkeit einer Schraube und der versnannten Bauteile: Kanitel	1
8 1 8 aus [15]	99
Abbildung 7-17: Verspannungsdreieck bei statischer Belastung für den Lastfall 1 und 2	99
Abbildung 7-18: a) Verschiebung in x-y-Ebene: LE1 : b) Verschiebung in x-z-Ebene: LE1 : c) Resultierende.	//
Verschiebung: LF1	108
Abbildung 7-19: Dauerfestigkeitsschaubild nach Smith für Biegedauerfestigkeit [7]	112
Abbildung 7-20: Elektrodenwagen x-v-Ebene: LF2	114
Abbildung 7-21: Elektrodenwagen x-z-Ebene; LF2	115
Abbildung 7-22: Elektrodenwagen; Kräfte aus Beschleunigung und Schräglauf	116
Abbildung 7-23: Haubenwagen x-y-Ebene; LF2	118
Abbildung 7-24: Haubenwagen x-z-Ebene; LF2	119
Abbildung 7-25: Haubenwagen; Kräfte aus Beschleunigung und Schräglauf	120
Abbildung 7-26: Drehsäule x-y-Ebene; LF2	122
Abbildung 7-27: Drehsäule x-z-Ebene; LF2	123

Abbildung 7-28: Längsspannungen im betrachteten Querschnitt nach FEM; LF2	128
Abbildung 7-29: Spannungsverteilung nach von Mises im betrachteten Querschnitt; LF2	129
Abbildung 7-30: Ersatzdruckstab Blechfeld 1; LF2	130
Abbildung 7-31: Ersatzdruckstab Blechfeld 2; LF2	133
Abbildung 7-32: a) Verschiebung in x-y-Ebene; LF2 ; b) Verschiebung in x-z-Ebene; LF2 ; c) Resultierence	le
Verschiebung; LF2	150
Abbildung 7-33: Dauerfestigkeitsschaubild nach Smith für Biegedauerfestigkeit [7]	156

9.3 Tabellenverzeichnis

Tabelle 6-1: Klassifizierung der Nutzungsdauer; Tabelle 2.1 aus [1]	19
Tabelle 6-2: Empfehlungen zu Kombinationsbeiwerten; Tabelle A.1.1 aus [1]	22
Tabelle 6-3: Bemessungswerte der Einwirkungen für EQU; Tabelle A1.2(A) aus [1]	25
Tabelle 6-4: Bemessungswerte der Einwirkung für STR; Tabelle A1.2(B) aus [1]	26
Tabelle 6-5: Bemessungswerte der Einwirkungen für den Grenzzustand der Gebrauchstauglichkeit; Tabel	le A1.4
aus [1]	27
Tabelle 6-6: Dynamische Faktoren φ_i ; Tabelle 2.1 aus [3]	30
Tabelle 6-7: Lastgruppen mit dynamischen Faktoren, die als eine einzige charakteristische Einwirkung	
anzusehen sind; Tabelle 2.2 aus [3]	30
Tabelle 6-8: Dynamische Faktoren φ_i für vertikale Lasten; Tabelle 2.4 aus [3]	33
Tabelle 6-9: Werte für β_2 und $\varphi_{2,\min}$; Tabelle 2.5 aus [3]	33
Tabelle 6-10: Dynamischer Faktor ϕ_5	35
Tabelle 6-11: Definition von $\alpha_F \alpha_V$ und α_0 ; Tabelle 2.7 aus [3]	37
Tabelle 6-12: Bestimmung des Abstandes h; Tabelle 2.8 aus [3]	39
Tabelle 6-13: Definition von $\lambda_{S,i,j,k}$ – Werten; Tabelle 2.9 aus [3]	39
Tabelle 6-14: Nennwerte der Streckgrenze fy und Zugfestigkeit fu für warmgewalzten Baustahl; Tabelle 3	.1 aus
[4]	41
Tabelle 6-15: Maximales c/t-Verhältnis druckbeanspruchter Querschnittsteile (1/3); Tabelle 5.2 aus [4]	46
Tabelle 6-16: Maximales c/t-Verhältnis druckbeanspruchter Querschnittsteile (2/3); Tabelle 5.2 aus [4]	47
Tabelle 6-17: Maximales c/t-Verhältnis druckbeanspruchter Querschnittsteile (3/3); Tabelle 5.2 aus [4]	48
Tabelle 6-18: Imperfektionsbeiwerte der Knicklinie; Tabelle 6.1 aus [4]	52
Tabelle 6-19: Auswahl der Knicklinie eines Querschnitts; Tabelle 6.2 aus [4]	54
Tabelle 6-20: Empfohlene Imperfektionsbeiwerte der Knicklinien für das Biegedrillknicken; Tabelle 6.3 a	us [4]
	56
Tabelle 6-21: Empfohlene Knicklinien für das Biegedrillkicken nach Gl.81; Tabelle 6.4 aus [4]	56
Tabelle 6-22: Empfohlene Biegedrillknicklinien nach Gl.84; Tabelle 6.5 aus [4]	57
Tabelle 6-23: Empfohlene Korrekturbeiwerte k _c ; Tabelle 6.6 aus [4]	58
Tabelle 6-24: Werte für $N_{Rk} = f_y A_i$; $M_{i,Rk} = f_y W_i$ und $\Delta M_{i,Ed}$; Tabelle 6.7 aus [4]	59
Tabelle 6-25: Interaktionsbeiwerte für verdrehsteife Bauteile; Tabelle B.1 aus [4]	59
Tabelle 6-26: Aquivalente Momentenbeiwerte C_m zu Tabelle 6-25; Tabelle B.3 aus [4]	60
Tabelle 6-27: Bezeichnungen des längsausgesteiften Blechfeldes; Bild A.1 aus [5]	64
Tabelle 6-28: γ _{Mf} -Faktoren für die Ermüdungsfestigkeit; Tabelle 3.1 aus [6]	65
Tabelle 6-29: Kerbfälle von ungeschweißten Bauteilen; Tabelle 8.1 aus [6]	68
Tabelle 6-30: Kerbfälle von geschweißten zusammengesetzten Querschnitten; Tabelle 8.2 aus [6]	69
Tabelle 6-31: Beiwerte $\gamma_{\rm Ff}$ für die Belastungskollektive; Kapitel 7 aus [13]	70
Tabelle 7-1: Werkstoffdaten S235 (1.0038)	72
Tabelle 7-2: Querschnittswerte im betrachteten Querschnitt; LF1	83
Tabelle 7-3: Querschnittswerte für das ausgesteifte Blechfeld 1; LF1	88
Tabelle 7-4: Querschnittswerte des Ersatzdruckstabes; LF1	89
Tabelle 7-5: Querschnittswerte für das ausgesteifte Blechfeld 2; LF1	92
Tabelle 7-6: Querschnittswerte des Ersatzdruckstabes; LF1	93
Tabelle 7-7: Querschnittswerte des Ersatzdruckstabes; LF2	130
Tabelle 7-8: Querschnittswerte des Ersatzdruckstabes; LF2	133

9.4 Abkürzungsverzeichnis

Gl.	Gleichung
FEM	Finite-Elemente-Methode
FEA	Finite-Elemente-Analyse
ESU	Elektro-Schlacke-Umschmelz-Anlage
ESR	Electro-Slag-Remelting-Plant
ESRR	Electro- Slag- Rapit- Remelting- Plant
i.a.	im Allgemeinen
z.B.	zum Beispiel
bzw.	beziehungsweise
bzw.	beziehungsweise