

Bestimmung bruchmechanischer Eigenschaften als Funktion der Temperatur am Beispiel eines PTC-Werkstoffes

Diplomarbeit am Institut für Struktur- und Funktionskeramik Montanuniversität Leoben

November 2013 Eugenia Sharova

Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass ich diese Arbeit selbstständig verfasst, andere als die angegebenen Quellen und Hilfsmittel nicht benützt und mich auch sonst keiner unerlaubten Hilfsmittel bedient habe.

Leoben, am

Eugenia Sharova

Danksagung

Ich möchte mich bei allen Mitarbeitern des Instituts für Struktur- und Funktionskeramik für die wertvolle Zusammenarbeit herzlich bedanken, vor allem beim Vorstand des Instituts o. Univ. Prof. Dr. Robert Danzer, sowie dem Betreuer der Diplomarbeit ao. Univ. Prof. Dr. Peter Supancic, die trotz ihrer umfangreichen Arbeiten Zeit gefunden haben mich zu unterstützen.

Besonderer Dank gilt Dipl. Ing. Stefan Strobl und Dipl. Ing. Clemens Krautgasser für die umfassenden Hilfestellungen und die fortwährende Motivation.

Auch den Firmen EPCOS (TDK-EPC Corporation, Deutschlandsberg, Österreich) und FCT Ingenieurkeramik (Rauenstein, Deutschland) möchte ich für die Bereitstellung des Probenmaterials meinen Dank aussprechen.

Der österreichischen Bundesregierung (insbesondere dem Bundesministerium für Verkehr, Innovation und Technologie und dem Bundesministerium für Wirtschaft, Familie und Jugend) sowie dem Land Steiermark, vertreten durch die Österreichische Förderungsgesellschaft mbH und die Steirische Wirtschaftsförderungsgesellschaft mbH, wird für die finanzielle Unterstützung der Forschungsarbeiten im Rahmen des von der Materials Center Leoben Forschung GmbH abgewickelten K2 Zentrums für "Materials, Processing und Product Engineering" im Rahmen des Österreichischen COMET Kompetenzzentren Programms sehr herzlich gedankt.

Danken möchte ich auch meiner Familie und meinen Freunden, für die aufbauenden Worte und ihre Zuversicht. Besonders dankbar bin ich meinem Partner Thomas, dafür, dass er mich in meinem Tun stets bestärkt hat.

Kurzfassung

Bariumtitanat-basierte Elektrokeramiken erfahren bei der Curie-Temperatur (z.B. ca. 125°C) eine Phasenumwandlung. Dabei verändern sie nicht nur ihre elektrischen, sondern auch die mechanischen Eigenschaften. Bei Materialien mit einem positiven Temperatur-koeffizienten (PTC-Materialien), die üblicherweise auf Bariumtitanat-Basis hergestellt werden, ist gerade der hochohmige Bereich über der Curie-Temperatur hinsichtlich mechanischer Eigenschaften nur wenig untersucht. In dieser Arbeit wurde eine ausgewählte PTC-Masse mit dem biaxialen "Ball-on-3-Balls-Test" (B3B-Test) auf Festigkeit geprüft, sowohl bei Raumtemperatur als auch bei 200°C. Es konnte eine geringe Festigkeitssteigerung (um 7%), bei gleichzeitigem signifikanten Abfall des Weibull-Moduls festgestellt werden. Zusätzlich wurden die Einflüsse von Luftfeuchtigkeit und Prüfgeschwindigkeit untersucht. Hierbei stellte sich heraus, dass die Festigkeit mit zunehmender Luftfeuchtigkeit stark abnimmt. Auch kleinere Spannungsraten führen zu geringeren Festigkeitswerten (um bis zu 22%). Das beweist, dass unterkritisches Risswachstum auftritt.

Eine weitere wichtige bruchmechanische Kenngröße bei Keramiken stellt die Bruchzähigkeit dar. Ausgehend von dem Wunsch, diese Kenngröße an Originalbauteilen und darüber hinaus bei unterschiedlichen Temperaturen möglichst einfach bestimmen zu können, lag das methodische Hauptziel dieser Arbeit in der Übertragung der bestehenden genormten "Surface-Crack-in-Flexure"-Methode (SCF-Methode) auf scheibenförmige Proben in Kombination mit dem B3B-Test. Die Vorgangsweise wurde zunächst bei Raumtemperatur an einem gut untersuchten linear-elastischen Referenzmaterial, nämlich Siliziumnitrid, analysiert. Im Vergleich zu herkömmlichen standardisierten Zähigkeitsmessmethoden ergab die modifizierte SCF-Methode übereinstimmende Bruchzähigkeits-Werte für Siliziumnitrid. Schließlich wurde die Bruchzähigkeitsmessung am nicht linearelastischen PTC-Material sowohl bei Raumtemperatur als auch deutlich über der Curie-Temperatur durchgeführt. Sowohl die standardisierte, als auch die modifizierte SCF-Methode ergaben übereinstimmende Bruchzähigkeitswerte. Aufgrund einer fraktographischen Besonderheit bei 200°C lassen sich die Anfangsrissgrößen und somit die Bruchzähigkeitswerte mit überraschend geringer Streuung bestimmen.

Abstract

Barium titanate - based electro-ceramics show a phase transformation at the so-called Curie temperature. Due to this transformation they change their electrical, but also their mechanical properties. For materials exhibiting a positive temperature coefficient (PTC materials), which are based on barium titanate, the high-resistance region above the Curie temperature with respect to mechanical properties is poorly investigated. In this work, the strength of a selected PTC material was tested with the biaxial "Ball-on-3-Balls" test (B3B test), both at room temperature and at 200 °C, i.e. well above the Curie temperature. A slight increase in strength could be observed with a concurrent significant decrease of the Weibull modulus. Furthermore, the influence of air moisture and test speed has been studied. It emerged that the strength decreases strongly with increasing humidity. In addition, smaller testing rates lead to lower strength values by up to 22 %, which proves clearly subcritical crack growth.

Another important fracture mechanical property for ceramics is the fracture toughness. Based on the request to determine the fracture toughness on original components and moreover at different temperatures as simply as possible, the methodic main objective of this work was the modification of the existing standardized "Surface-Crack-in-Flexure" method (SCF method) on disk-shaped samples in combination with the B3B test. First the procedure was analyzed at room temperature on a well-studied linear elastic reference material, namely silicon nitride. In comparison with conventional measuring techniques for toughness, the results of the modified SCF method agree well with the fracture toughness-values for silicon nitride. Finally, the fracture toughness measurement was performed both at room temperature and well above the Curie temperature of the non-linear-elastic PTC material. Both the standard, as well as the modified SCF method yielded matching toughness values. Due to a specific fractographic feature at 200°C, the initial crack sizes and therefore the fracture toughness values could be determined with surprisingly low scatter.

Inhaltsverzeichnis

1.		Einle	eitur	ıg	. 1
2.		Gru	ndla	gen	. 3
	2.	1.	Biax	iale Festigkeitsprüfung an Scheiben (B3B-Test)	. 3
		2.1.	1.	Statistische Beschreibung der Festigkeit bei Keramiken (Weibullverteilung)	5
	2.	2.	Bru	chmechanik	. 6
		2.2.	1.	Steigendes Risswiderstandsverhalten	. 7
	2.	3.	Bru	chzähigkeitsprüfmethoden	. 8
		2.3.	1.	SEVNB-Methode	. 8
		2.3.	2.	SCF-Methode	. 9
	2.	4.	Unt	erkritisches Risswachstum	. 9
3.		Мос	difizio	erte SCF-Methode an Scheiben	12
4.		Verv	wend	letes Probenmaterial	17
	4.	1.	Siliz	iumnitrid	17
	4.	I.2. PTC		-Material	18
		4.2.	1.	Struktur und Phasenumwandlungen von Bariumtitanat	18
		4.2.	2.	Gefüge und Eigenschaften bei RT	19
		4.2.3.		Änderung der mechanischen Eigenschaften über der Curie-Temperatur	20
5.		Vers	such	sdurchführung und Ergebnisse	22
	5.	1.	Fest	igkeitsprüfung vom PTC-Material	22
		5.1.	1.	Festigkeitsprüfung bei Raumtemperatur (mit unterschiedlichen Lastraten	
		und	in u	nterschiedlichen Medien)	24
		5.1.	2.	Festigkeitsprüfung bei 200°C	26
		5.1.	3.	Fraktographie	28
	5. ela	2. astis	Met cher	hodenentwicklung der Bruchzähigkeitsmessung an Scheiben am linear- n Referenzmaterial Siliziumnitrid	29
		5.2.	1.	SCF-Standardmethode an Balkenproben	29
		5.2.	2.	Modifizierte SCF-Methode an Scheiben	31
	5.	3.	Bru	chzähigkeitsmessungen am PTC-Material	33
		5.3.	1.	SCF-Standardmethode an Balkenproben	33
		5.3.	2.	Modifizierte SCF-Methode an Scheiben	35

	5.3.3.	Modifizierte SCF-Methode an Scheiben bei 200°C	35
6.	Zusamm	enfassung und Ausblick	37
Que	llenverze	ichnis	39
Anh	ang A: Di	chtebestimmung	12
Anh	ang B: Ge	fügecharakterisierung des PTC-Materials A197	14
Anh	ang C: Pr	otokolle der Festigkeitsmessungen	46
Anh	ang D: Pr	otokolle der Zähigkeitsmessungen	53

Verwendete Abkürzungen und Symbole

B3B-Test	engl. Ball-on-3-Balls Test bzw. 4-Kugel-Versuch
FEM	Finite Elemente Methode
HF-Säure	Flusssäure
HV	Vickers-Härte
ISFK	Institut für Struktur- und Funktionskeramik
NBT	engl. Notched Ball Test
РТС	engl. Positive Temperature Coefficient
R-Kurve	Risswiderstandskurve
REM	Rasterelektronenmikroskop
RT	Raumtemperatur
SCCG	engl. Slow or Subcritical Crack Growth
SCF	engl. Surface Crack in Flexure
SEVNB	engl. Single-Edge V-Notched Beam
Si ₃ N ₄	Siliziumnitrid
UV	Ultra-Violett (Licht)
đ	Durschmannen
Ø	Durchmesser
α	Probendickenvernaltnis
в	Auflagerradienverhaltnis
θ	
μ	Reibungskoeffizient zwischen Auflagerkugeln und Probe
<i>v</i>	Querkontraktionszahl des untersuchten Materials
<i>V_K</i>	Querkontaktionszahl der Auflagerkugeln
<i>v</i> _L	Querkontraktionszahl der Lastkugel
ν	Risswachstumsgeschwindigkeit
v ₀	temperatur- und umgebungsabhängiger Materialparameter
π	Kreiszahl Pi
ρ	.Kerbradius
σ	Spannung
σ_{B3B} bzw. σ_B	.Bruchspannung im B3B-Test
σ_f	.Mittelwert der Festigkeit
σ_0	.charakteristische Festigkeit
σ	Spannungsrate
φ	Rissaustrittswinkel
φ	Winkel, der die Position entlang der Rissfront beschreibt
<i>a</i>	Risslänge, Risstiefe
<i>a_i</i>	Risslänge, bei der die Bruchzähigkeit K ₁₀ beträgt
Δ <i>a</i>	Rissfortschritt
b	Probenbreite des Biegebalkens.

<i>c</i>	Rissbreite
<i>c</i> ⁰ bis <i>c</i> ₆	Fitkonstanten
Ε	Elastizitätsmodul der Probe
Ε _κ	Elastizitätsmodul der Auflagerkugeln
<i>E</i> _{<i>L</i>}	.Elastizitätsmodul der Lastkugel
F	Prüfkraft
<i>F</i> (<i>V</i> , <i>σ</i>)	Versagenswahrscheinlichkeit
<i>F</i> _{<i>B</i>}	.Bruchkraft
<i>F_V</i>	Vorkraft
<i>f</i>	Vorfaktor
<i>G</i> _{<i>IR</i>}	.Energiefreisetzungsrate in Abhängigkeit von der Risslänge
К	Spannungsintensitätsfaktor
<i>K</i> ₁	Spannungsintensitätsfaktor für eine Mode I Belastung
<i>K</i> _{<i>IR</i>}	Spannungsintensitätsfaktor in Abhängigkeit von der Risslänge
К _с	.kritischer Spannungsintensitätsfaktor, Bruchzähigkeit
<i>K</i> _{<i>Ic</i>}	.kritischer Spannungsintensitätsfaktor für eine Mode I Belastung
<i>m</i>	.Weibull-Modul
<i>m</i> _{korr}	korrigierter Weibull-Modul
<i>n</i>	Paris-Exponent
<i>R</i>	Probenradius
<i>R_K</i>	.Radius der Auflagerkugeln
<i>R</i> _{<i>L</i>}	.Radius der Lastkugel
<i>R</i> _{<i>a</i>}	Auflagerradius
S _B	Zeit zum Bruch
<i>t</i>	Probendicke
t	Zeit
V	Probenvolumen
<i>V</i> ₀	.Bezugsvolumen
Δx	.Abstand vom Zentrum
Υ	Geometriefaktor

1. Einleitung

Keramiken sind spröde. Im Vergleich zu Metallen können sie Spannungen nicht durch plastische Verformung abbauen. Ausgehend von Defekten im Gefüge, an denen Spannungsüberhöhungen auftreten, breiten sich Risse aus. Das Versagen durch Bruch tritt bei Keramiken unvorhergesehen, meist einhergehend mit dem Verlust der Funktionsfähigkeit, auf.

Die Kenntnis bruchmechanischer Eigenschaften ist zur Beurteilung der Zuverlässigkeit von keramischen Bauteilen unentbehrlich. Die Festigkeit und die Bruchzähigkeit einer Keramik stellen hierbei entscheidende Kenngrößen dar. Es bestehen einige standardisierte Methoden zur Messung dieser Kenngrößen, wobei dafür meist balkenförmige Standardproben benötigt werden. Die Herausarbeitung von Standardproben aus Bauteilen, oder die explizite Herstellung dieser, ist mit einigen Nachteilen verbunden. Einerseits muss natürlich mit entsprechendem Zeit- und Kostenaufwand gerechnet werden, andererseits können bei der Bearbeitung der Standardproben Defekte in die Oberfläche eingebracht werden, die das Ergebnis der Festigkeitsmessung beeinflussen können. Darüber hinaus ist es von großem Interesse gerade die Festigkeit an bauteilnahen Geometrien, oder noch besser direkt an Originalbauteilen, prüfen zu können.

Am Institut für Struktur- und Funktionskeramik der Montanuniversität Leoben (ISFK) wurden Festigkeitsprüfmethoden für unterschiedliche Probengeometrien realisiert. So eignet sich der 4-Kugel-Versuch (bzw. B3B-Test) hervorragend für die biaxiale Prüfung von scheiben- und plattenförmigen Proben oder Bauteilen [1, 2]. Auch für kugelförmige Proben, z.B. für keramische Wälzkörper in Kugellagern, besteht bereits die Möglichkeit die Festigkeit mit dem Kerbkugelversuch (engl. Notched Ball Test bzw. NBT) zu ermitteln. Mit einer modifizierten SCF-Methode kann mittlerweile sogar die Bruchzähigkeit an gekerbten Kugeln geprüft werden [3, 4].

Ausgehend von früheren Festigkeitsmessungen mit dem B3B-Test an scheibenförmigen PTC-Bauteilen in Abhängigkeit von der Temperatur entstand die Motivation auch die Bruchzähigkeit des PTC-Materials an Originalbauteilen und darüber hinaus bei unterschiedlichen Temperaturen möglichst einfach bestimmen zu können.

Die Besonderheit der bariumtitanat-basierten Elektrokeramik liegt in der Phasenumwandlung bei der sogenannten Curie-Temperatur, die nicht nur die elektrischen, sondern auch die mechanischen Eigenschaften verändert. In einer Diplomarbeit am ISFK wurde festgestellt, dass PTC-Materialien über der Curie-Temperatur, d.h. im hochohmigen Zustand, eine signifikant höhere Festigkeit als bei Raumtemperatur aufweisen [5]. Dieses Ergebnis wird für die ausgewählte PTC-Masse A197 überprüft und zusätzlich wird auf die Einflüsse von Luftfeuchtigkeit und Prüfgeschwindigkeit im Hinblick auf unterkritisches Risswachstum eingegangen.

Das methodische Hauptziel dieser Arbeit ist die Übertragung der bestehenden SCF-Methode auf scheibenförmige Proben, die mit dem B3B-Test auch bei unterschiedlichen Temperaturen beansprucht werden. Die Vorgangsweise wird zunächst bei Raumtemperatur an einem gut untersuchten linear-elastischen Referenzmaterial, nämlich Siliziumnitrid, analysiert und zur Verifizierung mit Ergebnissen der standardisierten Messmethoden für die Bruchzähigkeit verglichen. Schließlich soll die Bruchzähigkeitsmessung am nicht linear-elastischen PTC-Material sowohl bei Raumtemperatur als auch deutlich über der Curie-Temperatur erfolgen.

2. Grundlagen

In diesem Kapitel werden die wichtigsten theoretischen Grundlagen zu den durchgeführten Experimenten angeführt und die relevanten Versuchsanordnungen beschrieben.

2.1. Biaxiale Festigkeitsprüfung an Scheiben (B3B-Test)

Der 4-Kugel-Versuch (engl. Ball-on-3-Balls bzw. B3B-Test) stellt eine zuverlässige, kostengünstige und schnelle Methode zur biaxialen Festigkeitsprüfung spröder Werkstoffe dar. Unter typischen Betriebsbelastungen versagen Bauteile oft unter mehrachsigen Spannungszuständen (z.B. durch thermische Spannungen). Aus diesem Grund ist bei Keramiken eine biaxiale Festigkeitsprüfung der üblichen einachsigen Biegeprüfung vorzuziehen. Zudem können gesinterte scheibenförmige Bauteile beim 4-Kugel-Versuch ohne Bearbeitung direkt geprüft werden. Ein weiterer Vorteil im Vergleich zum Biegeversuch besteht darin, dass die Randzonen, vor allem Kanten, die aufgrund der Bearbeitung häufig bruchauslösende Defekte aufweisen, bei dieser Prüfmethode nicht belastet werden [1, 6].

In Abb. 2.1 ist ein schematischer Aufbau des 4-Kugel-Versuchs zu sehen. Die Probe wird mithilfe einer Schablone auf drei gleich großen, sich berührenden Stützkugeln, die ein gleichseitiges Dreieck bilden, zentriert. Nach Aufbringen der Vorkraft (maximal 10 % der zu erwartenden Bruchkraft, typischerweise 10 N für die in dieser Arbeit verwendeten Proben) wird die Schablone nach Entfernen des Einlegekeils vorsichtig abgesenkt. Anschließend wird die Kraft mittig über die Lastkugel gleichmäßig steigend eingeleitet bis die Probe bricht.

Abb. 2.1: Skizze der Prüfvorrichtung für den B3B-Test. Zur genauen Positionierung von Last- und Auflagerkugeln, sowie der Probe, wird eine absenkbare Schablone verwendet [7].

Für die maximale Zugspannung σ (Prüfspannung) gegenüber der Lastkugel gilt in Abhängigkeit der Prüfkraft *F* und der Probendicke *t*:

$$\sigma = f(\alpha, \beta, v) \frac{F}{t^2}$$
(1)

Der dimensionslose Vorfaktor *f* hängt vom Probendickenverhältnis $\alpha = \frac{t}{R}$, vom Auflagerradienverhältnis $\beta = \frac{R_a}{R}$, wobei *R* den Probenradius und R_a den Auflagerradius bezeichnet, und der Querkontraktionszahl des untersuchten Materials *v* ab.

Die Berechnung der Prüfspannung beim 4-Kugel-Versuch ist sehr aufwendig und nur mit numerischen Verfahren (FEM) möglich. Durch Definition von Standardprüfbedingungen kann die Zahl der Einflussparameter deutlich reduziert werden und eine einfache analytische Funktion zur Approximation herangezogen werden. Dabei hat die Probendicke t den stärksten Einfluss auf die Prüfspannung. In Tab. 1 sind die Einflussparameter auf den dimensionslosen Vorfaktor f und somit auf die maximale Zugspannung in der Probe angeführt. Unter dem Punkt b) der Tab. 1 finden sich die Gültigkeitsbereiche für Standardprüfbedingungen [7, 8].

a) Parameter, die Einfluss auf <i>f</i> haben können					
Parameter	Symbol	Einheit	Gültigkeitsbereich		
Radius der Probe	R	m	≥ 1 mm		
Dicke der Probe	t	m	≥ 0,2 mm		
Elastizitätsmodul der Probe	Ε	MPa	≥ 50 GPa		
Querkontraktionszahl der Probe	v	-	0,1 < <i>v</i> < 0,4		
Radius der Auflagerkugeln	R _K	m	$R_{\kappa} \approx 0,6 R - 0,8 R$		
Elastizitätsmodul der Auflagerkugeln	Eκ	MPa	<i>E</i> = 210 GPa		
Querkontraktionszahl der Auflagerkugeln	V _K	-	<i>v_K</i> = 0,33		
Radius der Lastkugel	RL	m	$R_{K} = R_{L}$		
Elastizitätsmodul der Lastkugel	EL	MPa	<i>E</i> = 210 GPa		
Querkontraktionszahl der Lastkugel	V _L	-	<i>v</i> _L = 0,33		
Auflagerradius	R _a	m	$R_a = \frac{2\sqrt{3}R_{\kappa}}{3}$		
Reibungskoeffizient zwischen Auflagerkugeln und Probe	μ	-	Rollreibung		
Prüfkraft	F	N	in [7] definiert		

Tab. 1: Einflussparameter und Standardprüfbedingungen für den 4-Kugel-Versuch [7]

Tab. 1: Fortsetzung

b) Parameter die unter Standardprüfbedingungen Einfluss auf <i>f</i> haben					
Probendickenverhältnis	$\alpha = \frac{t}{R}$	-	$0,1 \le \alpha \le 0,5^{-1}$		
Auflagerradienverhältnis	$\mathcal{B} = \frac{R_a}{R}$	-	$0,7 \le \theta \le 0,9$		
Querkontraktionszahl der Probe	v	-	$0,1 \le v \le 0,4$		

 $\alpha = 0,2 - 0,4$ wird als besonders günstige Probenform empfohlen

Die Auswertung der Prüfspannung unter Standardprüfbedingungen erfolgt nach Gleichung (2) mit den dazugehörenden Fitkonstanten aus Tab. 2, wobei für exakte Werte der Querkontraktionszahl *v* eine lineare Interpolation vorgenommen werden kann:

$$f(\alpha, \beta, \nu) = c_0 + \frac{c_1 + c_2 \alpha + c_3 \alpha^2 + c_4 \alpha^3}{1 + c_5 \alpha} (1 + c_6 \beta)$$
(2)

v	0,10	0,15	0,20	0,25	0,30	0,35	0,40
С0	-39,96	-42,09	-42,54	-46,07	-47,82	-46,84	-49,70
<i>C</i> ₁	42,24	44,50	45,07	48,72	50,60	49,74	52,72
C2	499,46	532,09	538,14	592,59	618,42	602,64	645,51
C 3	-11,69	-12,53	-13,07	-14,14	-14,86	-15,22	-16,12
<i>C</i> ₄	4,69	5,18	5,49	6,14	6,57	6,76	7,31
C 5	12,34	12,47	12,47	12,68	12,75	12,67	12,79
<i>C</i> ₆	0,0242	0,0232	0,0216	0,0216	0,0210	0,0216	0,0206

Tab. 2: Fitkonstanten für Gleichung (2) [7]

2.1.1. Statistische Beschreibung der Festigkeit bei Keramiken (Weibullverteilung)

Die Festigkeitsmessung einer Serie von keramischen Proben ergibt immer Festigkeitswerte mit einer mehr oder weniger stark ausgeprägten Streuung. Diese Tatsache beruht auf der Größenverteilung der bruchauslösenden Defekte im geprüften Probenvolumen. Während bei Metallen die Festigkeit als Werkstoffkennwert angegeben werden kann, müssen für die Festigkeitsbestimmung bei keramischen Werkstoffen statistische Methoden herangezogen werden um eine Versagenswahrscheinlichkeit bei einer bestimmten Belastung angeben zu können [9, 10].

Ausgehend von der "weakest link" Hypothese wird für die Versagenswahrscheinlichkeit $F(V,\sigma)$ in den meisten Fällen die Weibullverteilung angenommen:

$$F(V,\sigma) = 1 - exp\left[-\frac{V}{V_0} \left(\frac{\sigma}{\sigma_0}\right)^m\right]$$
(3)

Die Weibull-Parameter m und σ_0 werden mit der Maximum-Likelihood-Methode aus den Bruchspannungen der Einzelversuche ermittelt. Die grafische Darstellung der Messergebnisse erfolgt üblicherweise im sogenannten Weibulldiagramm nach Gleichung (4), sodass der Weibull-Modul m als Geradensteigung und die charakteristische Festigkeit σ_0 als Nullstelle interpretiert werden kann [10-13].

$$\ln \ln \frac{1}{1-F} = m \ln \frac{\sigma}{\sigma_0} \tag{4}$$

2.2. Bruchmechanik

Die Aufgabe der Bruchmechanik besteht darin, das mechanische Verhalten eines Einzelrisses zu analysieren. Keramiken versagen aufgrund von instabilem Risswachstum ausgehend von statistisch verteilten Fehlern im Probenvolumen, die durch den Herstellungs- oder Bearbeitungsprozess eingebracht werden und in weiterer Folge als Anrisse angesehen werden können. Bei Keramiken kann die plastische Verformung vernachlässigt und die linear-elastische Bruchmechanik zur Beschreibung herangezogen werden [13-15].

Bereits 1920 formulierte Griffith ein Bruchkriterium basierend auf einem Energiegleichgewicht, welches besagt, dass, wenn bei Fortschreiten eines Risses mehr Energie frei wird als durch die Erzeugung neuer Oberflächen verbraucht wird, ein Riss spontan weiterwächst. Irwin erweiterte diese Hypothese nach dem 2. Weltkrieg, sodass das Kriterium abhängig von der Bruchzähigkeit *K*_c angeschrieben werden konnte [14]:

$$K \ge K_c$$
 (5)

Der Spannungsintensitätsfaktor K (SIF) beschreibt das lokale Spannungsfeld an der Rissspitze und ist definiert als:

$$K = \sigma Y \sqrt{\pi a} \tag{6}$$

Dabei bezeichnet σ die nominell angelegte Spannung im einachsigen Belastungsfall der Probe ohne Riss, Y einen Geometriefaktor, der von der Ausrichtung und der Form des Risses abhängig ist, und α die Risslänge.

Der kritische Spannungsintensitätsfaktor wird als Bruchzähigkeit K_c (engl. = fracture toughness) bezeichnet und stellt einen Werkstoffkennwert dar. Sobald der K_c -Wert überschritten wird, kommt es zu spontaner Rissausbreitung im Material, d.h. die Probe bzw. das Bauteil versagt. K_{lc} ist der entsprechende kritische Spannungsintensitätsfaktor für eine Mode I – Belastung, welche die gefährlichste Rissöffnungsart charakterisiert, wobei die Kraft senkrecht zur Rissfläche angreift. Die Rissflanken können auch auf Längsscherung (Mode II) und Querscherung (Mode III) belastet werden (vgl. Abb. 2.2). Diese Belastungszustände sind aber weniger gefährlich und nur in Sonderfällen von technischer Bedeutung [10].

Abb. 2.2: Risse wachsen in der Praxis meist unter komplizierten Spannungsfeldern wobei diese durch Überlagerung von den drei charakteristischen Beanspruchungsarten, die als Modi bezeichnet werden, beschrieben werden können. Mode I ist die gefährlichste Rissöffnungsart [14].

Abb. 2.3: Darstellungen einer geraden und einer steigenden R-Kurve in Abhängigkeit von $\Delta a = a - a_i$ mit dem Spannungsintesitätsfaktor K_{IR} in a) und b) und mit der Energiefreisetzungsrate G_{IR} in c) und d). a_i kennzeichnet jene Risslänge, bei der die Bruchzähigkeit K_{I0} beträgt bzw. G_{I0} , wenn man die Energiefreisetzungsrate betrachtet [15].

2.2.1. Steigendes Risswiderstandsverhalten

Ideal spröde Materialien weisen bei gegebener Temperatur einen konstanten K_{lc} -Wert bezüglich der Rissgröße auf. Bei vielen Keramiken beobachtet man jedoch eine Steigerung des K_{lc} -Wertes mit wachsendem Riss bzw. steigender Risslänge. Üblicherweise wird dieses Verhalten als sogenannte Risswiderstandkurve bzw. R-Kurve dargestellt, wobei meistens die Energiefreisetzungsrate G_{lR} über dem Rissfortschritt Δa aufgetragen wird (Abb. 2.3). Grund für diese Abhängigkeit der Bruchzähigkeit von der Risslänge liegt in diversen zähigkeitssteigernden Mechanismen (z.B. Rissbrückenverstärkung bei Siliziumnitrid durch langgezogene Körner), die durch die Annahmen der linear-elastischen Bruchmechanik unberücksichtigt bleiben [15]. Aus der Literatur ist bekannt, dass auch bariumtitanatbasierte Werkstoffe ein R-Kurven-Verhalten aufweisen [16-18]. Dadurch können unterschiedliche K_{lc} -Werte desselben Materials, gemessen mit verschiedenen Methoden, aufgrund unterschiedlicher eingebrachter Risslängen erklärt werden.

2.3. Bruchzähigkeitsprüfmethoden

Die Ermittlung der Bruchzähigkeit eines Materials basiert auf dem Griffith/Irwin-Kriterium (Glg. 5). Im Folgenden werden zwei Standardmethoden für Keramiken, die in dieser Arbeit angewandt wurden, vorgestellt und miteinander verglichen.

2.3.1. SEVNB-Methode

Die SEVNB (Single-Edge V-Notched Beam) - Methode stellt zur Zeit den gängigen Standard zur Bruchzähigkeitsermittlung von Keramiken dar und ist in der Norm ISO/FDIS 23146 (2008) festgelegt [19]. In eine Standardbiegeprobe ($45 \times 4 \times 3 \text{ mm}^3$) wird ein scharfer Kerb durch Polieren mit Rasierklingen und Diamantpolierpaste eingebracht. Danach wird im 4-Punkt-Biegeversuch die Spannung beim Bruch im Mode I ermittelt. Durch Auswertung der Rissgeometrie nach dem Bruch ("post mortem") kann der K_{lc} -Wert nach Glg. 6 berechnet werden.

Vorteilhaft an dieser Methode sind die relativ einfache Handhabung und die gute Reproduzierbarkeit. Der Theorie nach werden durch den Einbringungsprozess der Kerbe Mikrorisse im Kerbgrund erzeugt, sodass der Bruch nicht direkt vom Kerbgrund ausgeht (Abb. 2.4). Aus diesem Grund liegen die mit dieser Methode ermittelten K_{lc} -Werte mit kurzen Anrissen am Anfang einer eventuell bestehenden ansteigenden R-Kurve (wie z.B. bei Siliziumnitrid).

Abb. 2.4: Durch das Kerben von SEVNB-Proben werden Mirkorisse ins Material eingebracht [20].

Abb. 2.5: Schematische Darstellung der Abhängigkeit des K_{lc} -Wertes vom Kerbradius ρ einer SEVNB-Probe [15].

Überdies ist eine Abhängigkeit des K_{lc} -Wertes vom Kerbgrundradius zu beobachten. Ein Kerbradius, der größer ist als die durchschnittliche Korngröße des Materials, führt zu einer Überschätzung der Bruchzähigkeit (siehe Abb. 2.5). Erfahrungsgemäß sind Kerbradien von mindestens 3 µm realistisch, somit ist die SEVNB-Methode nicht für sehr feinkörnige Materialien (Korngröße < 1 µm) geeignet [13].

2.3.2. SCF-Methode

Die SCF (Surface Crack in Flexure) - Methode an Balken ist in den Normen EN ISO 18756 (2005) und ASTM C1421-01b (2007) beschrieben [21], [22]. Mit einem Knoop-Härteeindruck wird in die später zugbelastete Oberfläche einer Standardbiegeprobe ein halbelliptischer Riss eingebracht. Nach Abtrag der plastischen Zone vom Härteeindruck werden die Proben in 4-Punkt-Biegung gebrochen und die Rissgeometrie ausgemessen, sodass die Bruchzähigkeit ausgewertet werden kann.

Die SCF-Methode hat den Vorteil, dass offensichtlich ein echter Riss in die Probe eingebracht wird. Im Vergleich zur SEVNB-Methode fallen die Werte für die Bruchzähigkeit bei steigendem Risswiderstandsverhalten etwas höher aus [4].

Die experimentelle Durchführung bei diesem Verfahren ist jedoch komplexer und zeitaufwändiger und verlangt penible Prozessführungen z.B. um einen µm-genauen und planebenen Abtrag der plastischen Zone zu gewährleisten. Problematisch kann auch die Anfangsrissausmessung nach dem Bruch werden, vor allem bei grobkörnigen oder porösen Materialien. Bei fast allen Keramiken sind dazu Hilfsstellungen notwendig, wie das Einbringen der Härteeindrücke unter ¼° bis ½°, sodass die Rissebene zur späteren Bruchebene etwas verkippt ist, oder die Verwendung von Risseindringfarbe.

2.4. Unterkritisches Risswachstum

Wenn Risse bei einem Spannungsintensitätsfaktor unter der Bruchzähigkeit K_{lc} wachsen spricht man von unterkritischem Risswachstum (engl. = slow or subritical crack growth bzw. SCCG). Dadurch können Materialien versagen, auch wenn sie unter dem K_{lc} -Wert belastet werden, indem die Risse bis zur kritischen Risslänge anwachsen. Dieses Phänomen wurde zunächst in Gläsern entdeckt und konnte mit Hilfe der Spannungsrisskorrosion unter dem Einfluss der Luftfeuchtigkeit erklärt werden. Durch Anlagerung von Hydroxidionen können die Bindungen eines Glasnetzwerks bei Raumtemperatur und bei vergleichsweise kleinen Kräften aufgebrochen werden [23]. Unterkritisches Risswachstum wurde bei vielen Keramiken nachgewiesen, vor allem bei Materialien mit glashaltiger Korngrenzenphase. Der daraus resultierende Abfall der Festigkeit mit der Zeit muss im Hinblick auf die Zuverlässigkeit bei der Auslegung von keramischen Bauteilen berücksichtigt werden [13]. Die Beschreibung des unterkritischen Risswachstums erfolgt in einer doppeltlogarithmischen Darstellung der Risswachstumsgeschwindigkeit v über dem Spannungsintensitätsfaktor K_1 (Abb. 2.6). Für den Bereich I der v- K_1 -Kurve kann eine empirische Beziehung, das sogenannte Paris-Gesetz nach Gleichung (7), aufgestellt werden. Hierbei bezeichnen v₀ und *n* temperatur- und umgebungsabhängige Materialparameter. Ist der Exponent *n*, oft auch als Paris-Exponent benannt, groß, besteht für das Material weniger Gefährdung durch SCCG.

$$\mathbf{v} = \frac{da}{dt} = \mathbf{v}_0 \cdot \left(\frac{K_l}{K_{lc}}\right)^n \tag{7}$$

Risswachstumsgeschwindigkeit durch Erhöhung Im Bereich 11 kann die des Spannungsintensitätsfaktors nicht weiter gesteigert werden, da bei höheren Diffusion Wassermoleküle Geschwindigkeiten die der zur Rissspitze einen geschwindigkeitslimitierenden Schritt darstellt. Im Bereich III steigt v enorm an, bis die Schallgeschwindigkeit im Material erreicht wird und der K_I-Wert den Wert der Bruchzähigkeit eines Materials annimmt. Für die Lebensdauerabschätzung von Bauteilen ist nur der Bereich I relevant, v nimmt bei den Bereichen II und III bereits ziemlich große Werte an, sodass hier die Restlebensdauer relativ kurz bleibt [13, 15].

Abb. 2.6: Chrakteristische v- K_I -Kurve zur Beschreibung von unterkritischem Risswachstum. Unter einem Schwellwert $K_{I th}$ tritt kein unterkritisches Risswachstum auf [15].

Abb. 2.7: Diagramm der Ergebnisse von Tests mit konstanter Spannungsrate an Aluminiumoxid. Aufgetragen ist der Mittelwert der Festigkeit σ_f über der Spannungsrate $\dot{\sigma}$ in doppelt logarithmischer Darstellung [24].

Die Ermittlung von v-*K*₁-Kurven kann indirekt durch Festigkeitsprüfungen bei unterschiedlichen Spannungsraten erfolgen. Erstmals wurde diese Versuchsführung von Charles 1958 beschrieben [15]. Auch die Norm EN 843-3 schreibt zur Bestimmung der Parameter des unterkritischen Risswachstums Biegeversuche mit Variation von konstanten Spannungsraten vor [25]. Mit sinkender Spannungsrate erreicht man immer geringere Festigkeitswerte. Ab einem bestimmten Grenzwert für $\dot{\sigma}$ kann ein einfacher Zusammenhang in Form eines Potenzgesetzes hergestellt und der Paris-Exponent *n* ermittelt werden [13]:

$$\sigma_{f \propto} \dot{\sigma}^{\frac{1}{n+1}} \tag{8}$$

Beispielsweise findet sich für Aluminiumoxidkeramiken ein Grenzwert der Spannungsrate bei ca. $\dot{\sigma} = 100$ MPa/s. Steigt die Belastungsgeschwindigkeit über diesen Wert, stellt sich ein Plateau-Wert für die Bruchspannung σ_f ein (vgl. Abb. 2.7). Dieser Wert wird als Inertfestigkeit bezeichnet, bei dem kein unterkritisches Risswachstum stattfindet.

Diese Methode erlaubt es Proben mit realen Defekten im Probenvolumen zu prüfen (im Vergleich zu Messungen mit makroskopisch großen Rissen) und ist einfach auszuführen. Allerdings muss im Vorhinein bekannt sein, ob das untersuchte Material mit dem Paris-Gesetz beschrieben werden kann. Nachteilig wirkt sich auch aus, dass Prüfungen mit sehr niedrigen Spannungsraten sehr zeitintensiv und kostspielig werden, zudem hierbei sehr teure und präzise Prüfmaschinen benötigt werden.

3. Modifizierte SCF-Methode an Scheiben

Die Motivation die SCF-Methode auf scheibenförmige Proben zu übertragen entstand aus dem Wunsch Bruchzähigkeiten an Originalbauteilen, wie einem PTC, möglichst einfach bestimmen zu können. Insbesondere schien die Kombination mit dem B3B-Test sehr vielversprechend, zudem Ergebnisse einer biaxialen Prüfung besser auf typische mehrachsige Betriebsbelastungen umgelegt werden können als Ergebnisse uniaxialer Prüfverfahren und überdies keine zusätzliche Herstellung bzw. Bearbeitung von Standard-Biegeproben notwendig ist. Ein weiterer Vorteil besteht darin, dass der Lastfall sehr gut definiert ist und die Bruchspannungen beim B3B-Test genau bestimmt werden können, an dieser Stelle wird noch einmal auf die entsprechende Literatur verwiesen [1, 7, 8]. Der generelle Vorteil der SCF-Methode gegenüber anderen K_{lc} -Prüfverfahren liegt in der Einbringung eines echten Risses.

Zur *K_{lc}*-Bestimmung in dieser neuen Anordnung wurde eine FEM-Berechnung für den Geometriefaktor notwendig. Diese wurde am ISFK, mit Hilfe eines kommerziellen FE-Programmpakets ANSYS[®] Workbench (Version 13) und mit der Einbeziehung des *J*-Integral-Konzeptes [14], ausgeführt. Das FE-Modell wurde parametrisch aufgebaut. In den Abb. 3.1 und 3.2 ist das FE-Netz einer scheibenförmigen Probe dargestellt, wobei der Rissbereich um Vieles feiner unterteilt wurde.

Abb. 3.1: FE-Netz einer scheibenförmigen Probe mit einem Durchmesser von 20 mm.

Abb. 3.2: Vergößerung des mittleren Bereichs, in dem der Riss eingebaut wird.

Allgemein wird der K_{lc}-Wert über folgende Gleichung bestimmt:

$$K_{lc} = \sigma_{B3B} Y \sqrt{a \pi}$$
⁽⁹⁾

Die Bruchspannung σ_{B3B} wird wie bei der Festigkeitsprüfung nach Gleichung (1) eruiert. Die Rissgröße oder in diesem Fall die Risstiefe *a* muss nach dem Bruch an der Probe ausgemessen werden. Somit bleibt die einzige Unbekannte der Geometriefaktor *Y*, der eine Funktion mit folgenden dimensionslosen Abhängigkeiten darstellt:

$$Y = Y\left(\frac{a}{c}, \frac{a}{t}, \frac{t}{R_a}, \varphi, \nu\right)$$
(10)

Mit der Variablen *a* wird wie vorhin die Risstiefe, mit *c* wird die Rissbreite gekennzeichnet, *t* steht wieder für die Dicke der Probe, R_a für den Auflagerradius und *v* für die Querkontraktionszahl des untersuchten Materials. In Abb. 3.3 und 3.4 sind die einzelnen Größen ersichtlich. Für die Auswertung der K_{lc} -Werte wurde jeweils der maximale Wert für den Geometriefaktor *Y* entlang der Rissfront, abhängig vom Winkel φ (gekennzeichnet in Abb. 3.3), herangezogen.

Abb. 3.3: Rissparameter eines semielliptischen Oberflächenrisses nach [26].

Abb. 3.4: Dreifach symmetrische Spannungsverteilung einer scheibenförmigen Probe im B3B-Test mit eingezeichnetem Auflagerradius *R*_a.

Die FEM-Berechnung fand für die in Tab. 3 angegebenen Parameterbereiche statt. Das Auflagerradienverhältnis $\beta = \frac{R_a}{R} = 0,87$ floss als Konstante in die Berechnung ein (R steht für den Scheibenprobenradius, der mit 10 mm angenommen wurde). Für die Rissgröße wurde ein durchschnittlicher Riss in Siliziumnitrid, ausgehend von einem Knoop-

Härteeindruck mit 10 kg Last, angenommen. Die Größen für diesen Standardriss sind ebenfalls der Tab. 3 zu entnehmen.

Parameterbereiche						
Rissgrößenverhältnis	Verhältnis: Probendicke zu Auflagerradius	$0,05 \le \frac{t}{R_a} \le 0,35$				
Verhältnis: Risstiefe zu Probendicke	$0,01 \le \frac{a}{t} \le 0,4$	Querkontraktionszahl der Probe	$0,1 \le v \le 0,4$			
Standardrissgrößen für Siliziumnitrid						
Risstiefe a	100 µm	Querkontraktionszahl v	0,3			
Rissbreite 2 <i>c</i>	300 µm	Probendicke <i>t</i>	3 mm			

Tab. 3: Parameterbereiche und Standardrissgrößen für die Y-Berechnung für die modifizierte SCF-Methode mittels FEM

Das Ergebnis für den Geometriefaktor über die ganze Rissfront für den Standardriss ist graphisch in Abb. 3.5 dargestellt. Außerdem wurde ein Vergleich mit der Auswertung nach Newman und Raju [27] für den Geometriefaktor beim Biegebalken, entsprechend den Normen für die SCF-Methode angestellt. Der Verlauf abhängig von der Position an der Rissfront ist ebenso in Abb. 3.5 ersichtlich. Die Abhängigkeiten des Geometriefaktors bei Newman und Raju sind sehr ähnlich, der Unterschied liegt tatsächlich nur in der Geometrie der Prüfkörper:

$$Y = Y\left(\frac{a}{c}, \frac{a}{t}, \frac{c}{b}, \varphi, v = 0, 3\right)$$
(11)

Die Größe *b* kennzeichnet dabei die Probenbreite der Oberfläche des Biegebalkens, in welche der Härteeindruck eingebracht wird. Die anderen Größen entsprechen denselben wie bei Gleichung (10) erläutert.

Abb. 3.5: Geometriefaktor Y abhängig von Winkel φ (gekennzeichnet in Abb. 3.3) berechnet mit FEM für die Scheibengeometrie (blau) und nach Newman und Raju für die Balkengeometrie (rot) im Vergleich. Die größeren Werte für Y sind um die Position A anzutreffen, die Rissausbreitung geht von der Position mit dem größten Geometriefaktor aus.

Die FE-Berechnung des Geometriefaktors ging davon aus, dass der Riss selbst perfekt in der Mitte positioniert und optimal nach der Spannungsverteilung (vgl. auch Abb. 3.4) ausgerichtet war. Die beste Orientierung des Risses liegt dann vor, wenn die gedachte Verlängerung einer Rissspitze genau zu einer der drei Stützkugeln zeigt und die Verlängerung auf der anderen Rissspitze genau zwischen den übrigen zwei Stützkugeln zu liegen kommt. Folgend musste der Einfluss der Rissposition zusätzlich untersucht werden. Zum einen wurde eine Abweichung von der Mitte durch den Parameter Δx betrachtet, zum anderen die Abweichung von der optimalen Ausrichtung im Spannungsfeld durch den Verkippungswinkel θ (Abb. 3.6).

Abb. 3.6: Darstellung der möglichen Fehler der Rissposition im FE-Netz

Beim Einbringen der Härteeindrücke in die Mitte der Scheiben wurde die maximale Abweichung im Versuch von $\pm 0,4$ mm detektiert. Die Fehlerabweichung in Abhängigkeit von der Position des Risses von der Mitte ist in Abb. 3.7 übersichtlich dargestellt. Bis zu einer Abweichung von $\pm 0,3$ mm besteht ein Fehler von kleiner als -2%. Bei der Rissorientierung bezüglich des dreifach symmetrischen Spannungsfeldes ist nur die Abweichung von 0 bis $\pm 30^{\circ}$ relevant. In Abb. 3.8 ist aus diesem Grund der Arbeitsbereich rot umrandet.

Abb. 3.7: Fehlerabweichung in Abhängigkeit vom Parameter Δx . Bis zu einer Abweichung von $\pm 0,3$ mm besteht ein Fehler von kleiner als -2%.

Abb. 3.8: Fehlerabweichung in Abhängigkeit vom Verkippungswinkel θ und unterschiedlichen Werten von Δx . Der Fehler wird trotzdem nicht größer als -2%.

4. Verwendetes Probenmaterial

4.1. Siliziumnitrid

Siliziumnitrid findet durch die hervorragende Kombination seiner Materialeigenschaften zunehmend Anwendung in den verschiedensten Bereichen und ist bereits seit den siebziger Jahren Gegenstand intensiver wissenschaftlicher Untersuchungen [10]. Als linear-elastisches Referenzmaterial ist Siliziumnitrid zur Verifizierung von neuen Testmethoden sehr gut geeignet [28, 29].

In dieser Arbeit wurden Proben eines heißgepressten Siliziumnitrids der Firma FCT Ingenieurkeramik (Rauenstein, Deutschland) für Zähigkeitsmessungen herangezogen um die modifizierte SCF-Methode zu überprüfen. Die mechanischen Eigenschaften der verwendeten Siliziumnitridkeramik mit dem Eigennamen FSNI-grau sind in Tab. 4 zusammengefasst. Die Querkontraktionszahl für die Auswertung der biaxialen Versuche wurde mit 0,27 nach Datenblättern von vergleichbaren Siliziumnitridqualitäten angenommen [30]. Sowohl die Scheibenproben für die biaxiale mechanische Prüfung (Abb. 4.1) als auch die Standard-Biegeproben wurden aus heißgepressten Scheiben mit den Maßen Ø 250×5 mm³ entnommen und auf die erforderliche Dicke geschliffen. Eine Oberfläche der Scheibenproben lag im geläppten Zustand vor, die Oberfläche der Biegeproben an der Zugseite hingegen wurde nach EN 843-1 mit einer Schleifscheibe der Körnung D15 bearbeitet. Abb. 4.2 zeigt eine REM-Gefügeaufnahme von FSNI-grau [31].

Tab. 4. Am ISFN gemessene mechanische Ligenscharten von FSM-grad [32]					
Statischer Elastizitätsmodul	297 ± 1,9	[GPa]			
Wahre Härte H (mit HV5 ermittelt)	15,5 ± 0,3	[GPa]			
Bruchzähigkeit (SEVNB - Standardproben 45×4×3 mm ³)	5,0 ± 0,2	[MPa·m ^½]			
Dichte	3203 ± 1	[kg/m ³]			

Abb. 4.1: Siliziumnitrid-Scheibenproben für biaxiale mechanische Prüfung

Abb. 4.2: Gefüge von FSNI-grau (plasmageätzt) [31]

4.2. PTC-Material

Eine PTC-Keramik (engl. PTC = Positive Temperature Coefficient) wird durch ihren temperaturabhängigen Widerstand charakterisiert, der innerhalb einer relativ engen Temperaturspanne bis zu sieben Größenordnungen zunehmen kann. Dieser sogenannte PTC-Effekt kommt nur in ferroelektrischen Materialien vor und korreliert mit der Curie-Temperatur T_c. Als Grundmaterial wird donatordotiertes polykristallines Bariumtitanat verwendet, wobei abhängig von den unterschiedlichen Beimengungen die Curie-Temperatur angehoben oder gesenkt werden kann [33-35].

Die verwendeten PTC-Proben der Firma EPCOS (TDK-EPC Corporation, Deutschlandsberg, Österreich) mit der Kennzeichnung A197 werden als Motorstart-Applikation z.B. in Kühlschrank-Kompressoren eingebaut. Nach dem Starten des Kompressors erwärmt sich der PTC-Widerstand und schaltet dadurch bei einer bestimmten Temperatur die Hilfswicklung, die die Anlaufphase des Asynchronmotors unterstützt, verzögert ab. Kühlt der PTC ab und erreicht seinen niederohmigen Zustand wird die Hilfswicklung für den nächsten Startvorgang wieder freigegeben [36].

Zur Messung der bruchmechanischen Eigenschaften dieses PTC-Typs kamen sowohl Standard-Balkenproben (Abb. 4.3), aus Bulk-Material herausgearbeitet, als auch Scheibenproben mit den durchschnittlichen Maßen von \emptyset 19,4×3,2 mm³ im "as sintered"-Zustand zum Einsatz.

Abb. 4.3: PTC-Biegeproben weisen herstellungsbedingt eine geringere Dichte als Scheibenproben auf.

Abb. 4.4: Perowskit-Strukturaufbau von Bariumtitanat [37]

4.2.1. Struktur und Phasenumwandlungen von Bariumtitanat

Der Kristallaufbau von Bariumtitanat entspricht einer Perowskitstruktur, die Ionen in der Einheitszelle sind dabei wie in Abb. 4.4 dargestellt angeordnet. Oberhalb der Curie-Übergangstemperatur (bei ca. 120°C) ist die Einheitszelle ideal kubisch und das Material paraelektrisch. Unterhalb der Curie-Temperatur wird diese zu einer tetragonalen Modifikation der Perowskitstruktur verzerrt, wobei ein spontaner Dipol durch die Ladungsverschiebungen in Richtung der c-Achse entsteht und der Werkstoff ferroelektrisch wird. Weitere Umwandlungen finden bei ca. 0°C zu einer orthorhombischen und bei ca. -90°C zu einer trigonalen Perowskit-Modifikation statt [34, 38].

4.2.2. Gefüge und Eigenschaften bei RT

Um das Gefüge des verwendeten Materials zu charakterisieren wurden Porositäts- und Korngrößenmessungen am Balken- als auch am Scheibenmaterial durchgeführt, die Ergebnisse sind in Tab. 5 zusammengetragen.

Die Porosität wurde jeweils an 10 Aufnahmen, auf einer Gesamtfläche von ca. 0,94 mm², auf beiden Probengeometrien separat untersucht. In Abb. 4.5 ist eine lichtmikroskopische Aufnahme eines Schliffes vom Scheibenmaterial zu sehen, wobei die detektierten Poren grün hinterlegt sind. Der Helligkeitsschwellwert für die automatische Intensitätsauswertung wurde so gewählt, dass die dunklere Phase nicht als Poren detektiert werden konnte.

	Porosität	Korngröße
Balkenproben	3,57 ± 0,77 %	5,13 ± 0,43 μm
Scheibenproben	2,57 ± 0,27 %	5,13 ± 0,32 μm

Tab. 5: Am ISFK gemessene Gefügeparameter vom PTC-Material A197

Um das Korngefüge sichtbar zu machen, wurden polierte Schliffe mit verdünnter HF-Säure einige Sekunden lang geätzt (siehe Abb. 4.6). Die Auswertung mit dem Linienschnittverfahren von jeweils 10 Aufnahmen (ca. 60 Körner pro Aufnahme) pro Probengeometrie ergab dieselbe mittlere Korngröße.

Die mechanischen Eigenschaften des verwendeten PTC-Materials sind in Tab. 6 zusammengefasst. Die höhere Dichte der Scheibenproben, die viel besser gepresst und gesintert werden können, ist somit durch den Herstellungsprozess leicht erklärbar, was durch die geringere Porosität zusätzlich unterstrichen wird.

Die Messprotokolle zur Charakterisierung des PTC-Materials sind im Anhang B angeführt.

Wahre Härte H (mit HV1 ermittelt)	5,4 ± 0,2	[GPa]				
Bruchzähigkeit (SEVNB - Standardproben 45×4×3 mm ³)	1,27 ± 0,03	[MPa·m ^½]				
Dichte Balkenproben	5418 ± 6	[kg/m ³]				
Dichte Scheibenproben	5483 ± 14	[kg/m ³]				

Tab. 6: Am ISFK gemessene mechanische Eigenschaften vom PTC-Material A197

Abb. 4.5: Lichtmikroskopische Aufnahme vom ungeätzten Schliff einer PTC-Scheibenprobe mit Porositätsauswertung. Die Poren sind grün markiert.

Abb. 4.6: Lichtmikroskopische Aufnahme vom geätzten Schliff einer PTC-Scheibenprobe, die die Korngrenzen deutlich erkennen lässt.

4.2.3. Änderung der mechanischen Eigenschaften über der Curie-Temperatur

Ausgehend von den unterschiedlichen Kristallstrukturen von Bariumtitanat, wie unter 4.2.1. erläutert, stellt sich die Frage, inwieweit sich die mechanischen Eigenschaften des PTC-Materials aufgrund der technisch wichtigsten Phasenumwandlung bei der Curie-Temperatur verändern.

Von I. Hahn wurde bei PTC-Materialien ein temperaturabhängiger Elastizitätsmodul mit zwei unterschiedlichen Methoden gemessen. Die Ergebnisse zeigten im Bereich des Phasenübergangs einen Anstieg des E-Moduls um etwa 100% (Abb. 4.7). Die Bruchzähigkeit hingegen soll bei Überschreiten der Curie-Temperatur sinken [39-41]. Auch die Festigkeit der Kaltleitermaterialien ändert sich beim Phasenübergang, wie unter [42] und [5] experimentell nachgewiesen wurde. Sowohl die Biegefestigkeitsprüfung, wie auch der B3B-Test an Scheiben (Abb. 4.8) ergaben denselben Trend zu steigender charakteristischer Festigkeit um ca. 15 % und fallendem Weibullmodul bei zunehmender Temperatur.

Abb. 4.7: Darstellung eines experimentell bestimmten Verlaufes des E-Moduls als Funktion der Temperatur [39].

Abb. 4.8: Auftragung der Festigkeitswerte vom B3B-Test an Scheiben bei Raumtemperatur und bei 200°C mit den entsprechenden Weibullgeraden. Der Festigkeitsanstieg bei 200°C gegenüber der Messserie bei 20°C ist statistisch signifikant, gleichzeitig fällt der Weibullmodul [5].

5. Versuchsdurchführung und Ergebnisse

Die Ausführung des experimentellen Teils ist in drei separate Abschnitte gegliedert. Der erste Abschnitt handelt von den Festigkeitsmessungen am PTC-Material mit unterschiedlichen Prüfbedingungen. Die beiden anderen Abschnitte beschreiben die durchgeführten Zähigkeitsmessungen, zum einen am Siliziumnitrid und zum anderen am PTC-Material.

5.1. Festigkeitsprüfung vom PTC-Material

Die biaxiale Festigkeitsprüfung an PTC-Scheiben bei Raumtemperatur wurde mit einer Universalprüfmaschine Z010 der Fa. Zwick durchgeführt (Abb. 5.1). Für die vorliegende Scheibengeometrie (Ø 19,4×3,2 mm³) konnte ein bereits bestehendes 4-Kugel-Lager mit der Bezeichnung "9E" verwendet werden. Entsprechend den Standardprüfbedingungen wurden Kugeln aus Kugellagerstahl mit einem Radius $R_{\kappa} = 7,54$ mm gewählt, die einen Auflagerradius R_a von 8,7 mm bilden (Abb. 5.2). Für die Auswertung der Festigkeiten wurde die Querkontraktionszahl des PTC-Materials mit v = 0,29 angenommen. Die prinzipielle Vorgehensweise der Festigkeitsmessung und Auswertung ist im Grundlagenkapitel 2.1. ausführlich geschildert.

Abb. 5.1: Universalprüfmaschine ZWICK® Z010

Abb. 5.2: 4-Kugel-Lager für B3B-Prüfung bei Raumtemperatur mit gebrochener und ungebrochener PTC-Scheibe (Bezeichnung: 9E)

Um auf die Einflüsse von Luftfeuchtigkeit und Prüfgeschwindigkeit im Hinblick auf unterkritisches Risswachstum näher einzugehen, wurden die B3B-Versuche bei drei unterschiedlichen Anordnungen der Prüfbedingungen ausgeführt:

- 1. Festigkeitsprüfung an Luft mit hoher Spannungsrate
- 2. Festigkeitsprüfung an Luft mit niedriger Spannungsrate
- 3. Festigkeitsprüfung in Wasser mit niedriger Spannungsrate

Diese drei Anordnungen gewährleisten den Vergleich der Festigkeitsmessungen sowohl bei unterschiedlichen Spannungsraten, als auch in unterschiedlichen Medien.

Für die Festigkeitsmessung bei 200°C, also deutlich über der Curie-Temperatur des PTC-Materials, musste ein anderer Prüfaufbau realisiert werden. Durch den Einsatz einer Temperaturkammer der Fa. Carbolite (Modell CTC60/400) war die Verwendung einer Spindelprüfmaschine der MIDI-Serie von der Fa. Messphysik Materials Testing GmbH zweckmäßiger. Für diesen Aufbau wurde ein eigenes Lager mit der Bezeichnung HT angefertigt (siehe Abb. 5.3 und 5.4).

Die Messprotokolle zur Festigkeitsprüfung des PTC-Materials sind im Anhang Cangeführt.

Abb. 5.3: Temperaturkammer bei geöffneter Tür, die Stempel der Spindelprüfmaschine werden durch Ausnehmungen in das Innere geführt. Zwischen den Stempeln ist das Auflager zu sehen, welches zusätzlich auf einen Metallblock gestellt werden musste um die notwendige Höhe zu erreichen.

Abb. 5.4: Lager für B3B-Prüfung in der Temperaturkammer mit PTC-Scheibe (Bezeichnung: HT)

5.1.1. Festigkeitsprüfung bei Raumtemperatur (mit unterschiedlichen Lastraten und in unterschiedlichen Medien)

Tab. 7 zeigt zusammenfassend die Ergebnisse der unterschiedlichen Festigkeitsmessungen bei Raumtemperatur. Mit fallender Spannungsrate oder steigender Luftfeuchtigkeit bzw. Anwesenheit von Wasser ist die Tendenz zu fallender charakteristischer Festigkeit σ_0 eindeutig zu erkennen. Der korrigierte Weibull-Modul m_{korr} soll laut Norm EN 843-5 [11] angegeben werden und unterscheidet sich vom unkorrigierten insofern, dass die Anzahl der geprüften Proben in Bezug auf die Grundgesamtheit berücksichtigt wird. Unterkritisches Risswachstum nimmt bei bariumtitanat-basierten Werkstoffen somit offensichtlich eine wichtige Rolle ein. Das Diagramm in Abb. 5.5 zeigt die Weibull-Auftragungen der gemessenen Serien, die jeweils mit einer Geraden angenähert sind.

Die Spannungsraten $\dot{\sigma}$ [MPa/s] wurden ausgehend von der Zeit zum Bruch, nach folgender Formel zurückgerechnet:

$$\dot{\sigma} = \frac{(F_B - F_V) \cdot \sigma_B}{s_B \cdot F_B} \tag{12}$$

Dabei bezeichnet F_B die Kraft beim Bruch, F_V die aufgebrachte Vorkraft, σ_B die aufgebrachte Spannung und s_B die Zeit bis zum Bruch.

۸n	Anzahl der geprüften	Umgobungsmodium	Spappupgerato	charakteristische	Weibull-
All-		rel. Luftfeuchtigkeit		Festigkeit	Modul
orunung	Proben			σ_{o} [MPa]	<i>m_{korr}</i> [-]
1	20	Luft, 14%	20.1 ± 0.7	109	22,4
1	50		29,1 ± 0,7	[108 – 111]	[17,5 – 28,6]
1	30	30 Luft, 51%	27,2 ± 0,8	101	17,5
Ŧ				[100 – 103]	[13,7 – 22,4]
2	15	15 Juft 10%	0.072 ± 0.002	96	18,5
2		Luit, 19%	0,073 ± 0,002	[94 – 99]	[13,1 – 26,6]
2	15	15 Wasser, 100%	0.079 ± 0.001	85	16,3
5			0,078 ± 0,001	[83 – 88]	[11,5 – 23,5]

Tab. 7: Festigkeitswerte vom PTC-Material A197 bei unterschiedlichen Prüfbedingungen

Abb. 5.5: Weibullauftragung der bei Raumtemperatur gemessenen Festigkeitswerte

Aus den Daten der Festigkeitsprüfung an Luft bei niedriger und hoher Spannungsrate konnte ein Grenzwert für den Paris-Exponenten *n* ermittelt werden. Wie in Kapitel 2.4. beschrieben, nutzt man die doppelt logarithmische Darstellung der Festigkeit, in unserem Fall σ_0 , über der Spannungsrate $\dot{\sigma}$ (siehe Abb. 5.6). Der aus der Steigung der durchgelegten Gerade berechnete Paris-Exponent ergab einen Wert von *n* = 48. Dieser Wert ist als oberer Grenzwert zu betrachten, weil aufgrund der erfassten Messdaten nicht erkennbar ist, ob die Inertfestigkeit eventuell schon bei niedrigeren Spannungsraten erreicht wird. PTC-Werkstoffe beinhalten einen Glasphasenanteil von ca. 1 %, der bereits für unterkritisches Risswachstum offensichtlich wirksam wird. Im Vergleich weisen andere Materialien mit einem amorphen Glasphasenanteil an den Korngrenzen bzw. auch Glas einen Exponenten zwischen 30 und 50 auf [13].

Abb. 5.6: Ermittlung des Paris-Exponenten *n* aus der Steigung in einer doppelt logarithmischen Skalierung

5.1.2. Festigkeitsprüfung bei 200°C

Wie unter 5.1. erwähnt wurde für die Versuche bei 200°C das Auflager mit der Bezeichnung "HT" verwendet. Um einen möglichen Einfluss auf die Festigkeitswerte ausschließen zu können, wurde zunächst eine Serie von 30 Proben mit dem neuen Auflager auf der Universalprüfmaschine Z010 der Fa. Zwick bei Raumtemperatur geprüft. Die Kugeln dieses Auflagers weisen einen Radius R_{k} von 7,50 mm auf und bilden einen Auflagerradius R_{a} von 8,66 mm. Die Ergebnisse in Tab. 5 zeigen, dass kein signifikanter Unterschied durch die Verwendung der unterschiedlichen 4-Kugel-Auflager besteht.

۸n	Anzahl der Temperatur,		Spappungerato	charakteristische	Weibull-
AII-	geprüften	Umgebungsmedium,		Festigkeit	Modul
orunung	Proben	rel. Luftfeuchtigkeit		$\sigma_{o}[{\sf MPa}]$	<i>m_{korr}</i> [-]
Lagor OF	20	DT 1f+ 1/10/	20.1 ± 0.7	109	22,4
Lager 9E	50	KT, LUIL, 1470	29,1 ± 0,7	[108 – 111]	[17,5 – 28,6]
	20	20 PT Luft 27%		108	18,4
Lager III	50	KT, LUIL, 2770	29,0 ± 1,0	[106 – 110]	[14,4 – 23,5]
	20	20 200°C Luft		116	6,7
Lager III	50	200 C, Luit	32,0 ± 1,0	[111 – 122]	[5,3 – 8,6]

Tab. 8: Festigkeitswerte vom PTC-Material A197 bei unterschiedlichen Temperaturen

Die PTC-Proben wurden vor der Prüfung und vor dem Einlegen ins 4-Kugel-Auflager im Ofen vortemperiert. Nach jedem Öffnen der Temperaturkammer, zum Einlegen der Proben oder zum Absenken der Schablone nach Aufbringung der Vorkraft, wurde nach Erreichen der 200°C eine Durchwärmzeit von mindestens zehn Minuten eingehalten.

Die nach Norm EN 843-5 [11] ausgewerteten Ergebnisse, dargestellt in Tab. 8 und als Weibull-Auftragung in Abb. 5.7, zeigen eine leichte Steigerung der charakteristischen Festigkeit um 7,4 %. Der Weibull-Modul sinkt hingegen eindeutig rapide ab. In diesem Fall könnte auch eine bimodale Auswertung (Interpretation) sinnvoll sein.

Abb. 5.7: Weibullauftragung der Festigkeitswerte, geprüft mit dem Auflager HT bei Raumtemperatur und bei 200°C.

Ein Einfluss durch die Verwendung einer anderen Prüfmaschine wurde nicht gesondert untersucht. Bei der Spindelprüfmaschine MIDI sind jedoch etwas höhere Spannungsraten zu verzeichnen, obwohl die Traversen- bzw. Prüfgeschwindigkeit bei beiden Prüfanordnungen mit 2 mm/min gleich eingestellt wurde. Diese Abweichung könnte daher rühren, dass der thermische Drift der Versuchsanordnung nicht berücksichtigt wurde.

5.1.3. Fraktographie

In den Abb. 5.8 und 5.9 sind die Bruchflächen jeweils einer bei Raumtemperatur und einer bei 200°C geprüften Probe gegenübergestellt. Die Bilder wurden mit einem Stereo-Lichtmikroskop aufgenommen, die Zugseite befindet sich jeweils innen. So führen auch die Bruchstrahlen zum Bruchausgang in diesen Bereich. Aufgrund der Phasenumwandlung über der Curie-Temperatur ist bei der Probe Nr. 144 eine andere Bruchmorphologie zu erwarten, in der Abb. 5.9 erkennt man eindeutig mehr zerklüftete Bereiche als auf der Bruchfläche der Probe Nr. 62. Auch bereits mit freiem Auge kann man einen Unterschied der Bruchflächen erkennen – die bei höheren Temperaturen geprüften Proben weisen eine glänzende und die bei Raumtemperatur geprüften eine matte Bruchfläche auf.

Abb. 5.8: Bruchfläche der Probe Nr. 62, geprüft auf Festigkeit bei Raumtemperatur, aufgenommen mit einem Stereo-Lichtmikroskop, Bruchspannung σ = 82 MPa

Abb. 5.9: Bruchfläche der Probe Nr. 144, geprüft auf Festigkeit bei 200°C, aufgenommen mit einem Stereo-Lichtmikroskop, Bruchspannung σ = 97 MPa

5.2. Methodenentwicklung der Bruchzähigkeitsmessung an Scheiben am linearelastischen Referenzmaterial Siliziumnitrid

In diesem Abschnitt werden die Ergebnisse der verschiedenen K_{lc} -Prüfmethoden, auch der modifizierten SCF-Methode, an Siliziumnitrid als linear-elastisches Referenzmaterial miteinander verglichen (vgl. Tab. 9). Die Versuchsführung der standardisierten Methoden zur K_{lc} -Bestimmung erfolgt, wie in 2.3. erläutert, nach den entsprechenden Normen. Die Arbeitsweise bei der modifizierten SCF-Methode unterscheidet sich von der herkömmlichen Methode im Wesentlichen nur durch eine andere Probengeometrie und den Einsatz des B3B-Tests statt der Biegeprüfung und verläuft ansonsten analog zur Standard-SCF-Methode.

Die Auswertung der K_{lc} -Werte mit der Standard-SCF-Methode basiert auf den Geometriefaktor-Berechnungen von Newman und Raju [27]. Dabei wird jedoch eine Querkontraktionszahl von v = 0,3 angenommen und ein Rissaustrittswinkel von 90°, d.h. die Rissform entspricht einer perfekten Semi-Ellipse. Für genauere Ergebnisse können Interpolationen für bestimmte Querkontraktionszahlen bzw. für die ausgemessenen Rissaustrittswinkel angewendet werden, die am ISFK mit FEM-Analysen erarbeitet wurden [43]. In dieser Arbeit erfolgt die Auswertung der Standard-SCF-Methode nach Newman und Raju, so wie es die Norm vorschreibt.

Die Protokolle zu Zähigkeitsmessungen am Siliziumnitrid sind im Anhang D angeführt.

Methode	Probenform	Anzahl der ausgewerteten Brobon	<i>K_{lc}</i> -Wert [MPa∙m ^½]	
		Probeit		
SEVNB	Standardproben 45×4×3 mm ³	4	5,0 ± 0,2 [32]	
SCF-Standard	Standardproben 45×4×3 mm ³	8	5,1 ± 0,2	
SCF-B3B	Scheiben Ø 19,2×2,0 mm ³	5	5,0 ± 0,3	

Tab. 9	: <i>K_{Ic}</i> -Werte	vom Siliziumnitrid	mit unterschiedlichen	Methoden ermittelt
--------	--------------------------------	--------------------	-----------------------	--------------------

5.2.1. SCF-Standardmethode an Balkenproben

Der Standardablauf der K_{lc} -Bestimmung mit der SCF-Methode wird folgend zusammengefasst dargestellt:

 Die Risseinbringung erfolgte mit einem Knoop-Härteeindruck, mit einer Last von 10 kg, mittig und im rechten Winkel zur Hauptnormalspannung im späteren Biegeversuch. Die Standardbalkenproben wurden hierbei auf einem Block unter ½° zur Horizontalen positioniert, wodurch die spätere Rissgrößenbestimmung erleichtert werden sollte.

- Zusätzlich wurde fluoreszierende Eindringfarbe der Marke WB-200 (RIL-Chemie) verwendet, welche zur Rissausmessung mit UV-Licht einen sehr guten Kontrast zur Restbruchfläche bietet.
- 3. Die Ausmessung der Anfangsrisslänge auf der Oberfläche (lange Diagonale mit den von den Kanten ausgehenden Rissen) wurde herangezogen, um die Größe der plastischen Zone des Härteeindrucks abzuschätzen und so die notwendige Abtraghöhe zu bestimmen.
- 4. Der Abtrag erfolgte mit einer Schleifscheibe der Körnung D46.
- 5. Die Bruchkräfte wurden im Biegeversuch ermittelt, wobei der Riss im Zugspannungsfeld zum Bruch der Probe führt.
- 6. Anschließend wurde die Rissgeometrie "post mortem" im Lichtmikroskop mit der UV-Quelle Olympus U-RFL-T ausgemessen.

Die Rissgrößen sind bei der SCF-Methode sehr gut reproduzierbar (siehe Abb. 5.10 und 5.11), die Bruchkräfte sehr ähnlich. Voraussetzung hierfür ist aber eine präzise Prozessführung, sodass ein planebener, µm-genauer Abtrag gewährleistet werden kann. Da die Fluoreszenzfarbe schlecht trocknet, kann die Ausmessung der Rissgeometrie problematisch werden, z.B. wenn die Fluoreszenzfarbe nach dem Bruch der Probe durch Kapillarkräfte auf der Bruchfläche weiterkriecht.

Abb. 5.10: Si₃N₄-Biegebalken Nr. 5, SCF-Methode, Rissgrößenausmessung mit Hilfe der Fluoreszenzfarbe sehr genau.

Abb. 5.11: Si₃N₄-Biegebalken Nr. 4, SCF-Methode, Rissgrößenausmessung, die Überstrahlung durch die Fluoreszenzfarbe bzw. durch deren "Weiterkriechen" darf hier nicht mitgemessen werden. Die Anfangsrissgröße ist dank der Risseinbringung unter ½° zur Horizontalen trotzdem gut sichtbar.

5.2.2. Modifizierte SCF-Methode an Scheiben

Wie eingangs in diesem Abschnitt erwähnt, verläuft die Prozessführung sehr ähnlich zur SCF-Standardmethode. Die wichtigsten Unterschiede sind:

- Die Risseinbringung erfolgte mit einem Knoop-Härteeindruck, mit einer Last von 10 kg, in die Mitte der Scheiben mit einer Mindest-Genauigkeit von ± 0,4 mm, ohne Neigung um ½° zur Horizontalen.
- 2. Die Bruchkräfte wurden im B3B-Test ermittelt, wobei der Riss im Zugspannungsfeld zum Bruch der Probe führt.

Siliziumnitrid erwies sich bei diesen Versuchen leider als nicht sehr einfach. Durch die hohen Bruchkräfte zersplitterten die Proben meist in drei oder mehr Teile (siehe Abb. 5.12). Durch die zusätzlich verhältnismäßig kleine Rissgröße war aber eine Ausmessung der Rissgeometrie nur mit Hilfe des UV-Lichts mit dem Lichtmikroskop möglich. Die Positionierung der kleinen Einzelstückchen unter dem Mikroskop, sodass die Anfangsrissebene unter der Linse genau planeben zu liegen kam, erwies sich als äußerst schwierig. Im Stereo-Mikroskop konnten bessere Aufnahmen erzielt werden, wobei die Ausmessung nach wie vor durch die Neigung der Rissebene möglicherweise verfälscht wurde (vgl. Abb. 5.14 und 5.15). Aus diesem Grund wurden die Ausmessungen der Oberflächenrisse direkt vor der mechanischen Prüfung für die Rissbreite (2c) für die Auswertung herangezogen (Abb. 5.13). Die Risstiefe wurde entweder aus den UV-Licht-Aufnahmen, oder aus den Aufnahmen mit dem Stereomikroskop nach dem Bruch ermittelt. Unsicherheiten bestehen auch beim richtigen Positionieren des Risses im Auflager des 4-Kugel-Versuchs. Der Riss müsste mit einer Spitze genau zwischen zwei Kugeln und mit der anderen genau zu einer Kugel hin zeigen, damit dieser optimal im Spannungsfeld liegt.

Insgesamt konnten aufgrund der aufgezählten Schwierigkeiten nur fünf von zwanzig Proben ausgewertet werden, wobei auch eine leicht höhere Streuung der *K*_{*lc*}-Werte besteht. Für hochfeste Keramiken und scheibenförmige Geometrien ist die modifizierte SCF-Methode somit nicht sehr gut geeignet.

Abb. 5.12: Aufnahme der Bruchstücke nach der mechanischen Prüfung der Si₃N₄-Scheibe Nr.9, man erkennt am Rand der Scheibe noch zwei Bleistiftmarkierungen, die die Lage des Risses kennzeichnen. Diesen Markierungen zufolge wurde die Probe richtig orientiert ins Auflager des B3B-Tests eingelegt.

Abb. 5.13: Oberflächenriss der Si₃N₄-Scheibe Nr.9 vor der mechanischen Prüfung.

82 μm 100 μm

Abb. 5.14: Si₃N₄-Scheibe Nr. 9, da die Rissgeometrie in Längsrichtung schief zur Fokussierebene des Lichtmikroskops liegt, ist die Auswertung der Rissbreite (2c) mehr als fragwürdig. Aus diesem Grund werden die gemessenen Oberflächenrisse vor dem Bruch zur Auswertung herangezogen. **Abb. 5.15:** Si_3N_4 -Scheibe Nr. 10, stereomikroskopische Aufnahme, Anfangsriss gut erkennbar.

5.3. Bruchzähigkeitsmessungen am PTC-Material

Dieselben K_{lc} -Prüfmethoden wie am Siliziumnitrid wurden auch auf das PTC-Material angewendet. Zusätzlich wurden K_{lc} -Werte bei 200°C bestimmt, um den Einfluss der Phasenumwandlung oberhalb der Curie-Temperatur auf die bruchmechanischen Eigenschaften des PTC-Materials zu untersuchen. Hierzu war ein ähnlicher Prüfaufbau, der bereits bei der Festigkeitsprüfung verwendet wurde, notwendig (vgl. Abschnitt 5.1.). Die Ergebnisse sind in Tab. 10 zusammengefasst.

Die Protokolle zu Zähigkeitsmessungen am PTC-Material sind ebenfalls im Anhang D angeführt.

Methode	Probenform	Anzahl der ausgewerteten Proben	<i>K_{lc}</i> -Wert [MPa·m ^½]
SEVNB	Standardproben 45×4×3 mm ³	7	1,27 ± 0,03
SCF-Standard	Standardproben 45×4×3 mm ³	6	1,59 ± 0,18
SCF-B3B	Scheiben Ø 19,4×3,2 mm ³	11	1,41 ± 0,10
SCF modifiziert bei 200°C	Scheiben Ø 19,4×3,2 mm ³	8	1,32 ± 0,06

Tab. 10: K_{lc} -Werte vom PTC-Material mit unterschiedlichen Methoden ermittelt bei Raumtemperatur und mit der modifizierten SCF-Methode bei 200°C

5.3.1. SCF-Standardmethode an Balkenproben

Die Versuchsführung beim PTC-Material verlief genau gleich zu der bei Siliziumnitrid (vgl. Abschnitt 5.2.1.). Die Härteeindrücke mit 10 kg Last verursachten jedoch sehr viel größere Risse als beim Siliziumnitrid. Die Aufnahmen der Rissgeometrien wurden aufgrund der höheren Ausmaße mit dem Stereomikroskop bei kleineren Vergrößerungen und mit Hilfe einer UV-Taschenlampe Optimax OPX-365 der Firma Spectroline ausgeführt. In Abb. 5.16 ist eine derartige Aufnahme zu sehen.

Ein allgemeines Problem bei der Auswertung der Rissgeometrien mit der fluoreszierenden Eindringfarbe stellt die Tatsache dar, dass die Farbe sehr schlecht trocknet. So kann es gerade beim Bruch der Probe durch die vertikale Position der Bruchfläche zu einem Verlaufen der Farbe kommen. Zusätzlich stellt das poröse und grobkörnigere Gefüge des PTC-Materials weitere Herausforderungen bei der Ausmessung der Rissgrößen. Die Fluoreszenzfarbe diffundiert durch das poröse Grundgefüge des Bariumtitanats weiter. Aus diesem Grund ist die Auswertung trotz der viel größeren Rissgröße einer enormen Unsicherheit unterworfen. Auch die Abweichung der Anfangsrissebene von der Restbruchfläche, welche durch die Risseinbringung unter ½° zur Horizontalen entsteht, konnte bei den stereomikroskopischen Aufnahmen aufgrund des grobkörnigen und porösen Gefügeaufbaus nicht detektiert werden.

Abb. 5.16: PTC-Biegebalken Nr. 4, SCF-Methode, Rissgrößenausmessung mit Hilfe der Fluoreszenzfarbe.

In der Auswertung der Biegebalken nach ASTM C1421-01b [21] stellte sich weiters heraus, dass die Risse immer an der Oberfläche kritisch wurden (gekennzeichnet als Punkt C in Abb. 3.3), die berechneten Geometriefaktoren waren an der Oberfläche stets größer. Die Verwendung eines semi-elliptischen Modells für den Startriss trifft jedoch dann am ehesten zu, wenn die Geometriefaktoren am Punkt A am größten sind. Die Norm schreibt in derartigen Fällen vor, die Form der Anfangsrisse zu überprüfen und nur wenn sie der semi-elliptischen Form nicht entsprechen, zu verwerfen. Demzufolge konnte alle geprüften Biegebalken in die Auswertung aufgenommen werden.

Nach Möglichkeit sollten aber Bruchausgänge vom Punkt A angestrebt werden, um eine weitere einfließende Unsicherheit wegen der bedingten Gültigkeit des verwendeten theoretischen Modells zu vermeiden. Bruchausgänge vom Punkt A erreicht man mit

einem größeren Abtrag bzw. mit einem kleineren Rissgrößenverhältnis $\frac{a}{c}$.

Überdies sollten noch andere Methoden zur Risskennzeichnung für die spätere Ausmessung untersucht werden. Die verwendete Fluoreszenzfarbe der Marke WB-200 (RIL-Chemie) führte beim PTC-Material zu ungenauen Ergebnissen, weil auf der Bruchfläche keine klare Begrenzung des eingefärbten Bereichs erkennbar war.

5.3.2. Modifizierte SCF-Methode an Scheiben

Die Auswertung der Rissgeometrie an Scheiben unterlag demselben Problem mit der Weiterdiffusion der Fluoreszenzfarbe wie an Biegebalken. Die Versuchsführung blieb analog zur Beschreibung in Abschnitt 5.2.2., Abb. 5.17 zeigt ein typisches Beispiel. Vorteilhaft an der modifizierten Methode an PTC-Scheiben waren die geringen Bruchkräfte, die meisten Proben brachen mittig und nur in zwei Teile, was das Ausmessen im Vergleich zu Siliziumnitrid-Scheiben um Einiges erleichterte. Die Folge war eine geringere Standardabweichung als bei der Standard-SCF-Methode an PTC-Balken.

Abb. 5.17: PTC-Scheibe Nr. 2, modifizierte SCF-Methode, Rissgrößenausmessung mit Hilfe der Fluoreszenzfarbe.

5.3.3. Modifizierte SCF-Methode an Scheiben bei 200°C

Die mechanische Prüfung der Scheibenproben mit den eingebrachten Rissen in der Temperaturkammer erfolgte wie bei der Festigkeitsprüfung in Kombination mit der MIDI-Spindelprüfmaschine von der Fa. Messphysik Materials Testing GmbH. Um die Prüfung mit dem B3B-Lager bei höheren Temperaturen leichter auszuführen, wurde der Einsatz eines eigens von Dipl.-Ing. Clemens Krautgasser konstruierten Revolvers untersucht (Abb. 5.18). Durch die Verwendung dieses Revolvers und zehn bauartgleichen Auflagern "HT" konnte das Absenken der Schablone nach der Beaufschlagung mit der Vorkraft durch Hebel erfolgen ohne, dass die Temperaturkammer geöffnet werden und anschließend nochmal temperiert werden musste. Diese Lösung spart enorm viel Zeit ein und ist auch leichter zu bedienen. Zur Verifizierung wurde ein Durchlauf mit PTC-Scheiben auf Festigkeit geprüft, die Ergebnisse (vgl. Tab 11) lassen diese Vereinfachung ohne Bedenken zu.

An-ordnung	Anzahl der geprüften Proben	Umgebungsmedium, rel. Luftfeuchtigkeit	charakteristische Festigkeit σ_0 [MPa]	Weibull-Modul m _{korr} [-]
Lager HT	30	RT, Luft, 27%	108	18,4
-			[106 – 110]	[14,4 – 23,5]
Lager HT MIDI	0	DT 1ft 270/	111	16,7
Revolver Multi	9	κι, Luil, 37%	[108 – 115]	[10,5 – 27,2]

Tab. 11: Festigkeitswerte vom PTC-Material A197 bei unterschiedlichen Temperaturen

Die Auswertung der Rissgrößen nach dem Bruch erfolgte in diesem Fall erstaunlich einfach. Die Risseinbringung findet bei Raumtemperatur statt, der Restbruch hingegen bei 200°C. Aufgrund der Phasenumwandlung über der Curie-Temperatur bildet sich eine unterschiedliche Rissmorphologie aus, die die Anfangsrissgröße sehr deutlich erkennen lässt (Abb. 5.19).

Abb. 5.18: Blick in die Temperaturkammer bei geöffneter Tür: Zehn "HT"-Auflager sind auf einer drehbaren Scheibe positioniert. Die Scheibe kann durch Hebel, die durch Ausnehmungen aus der Temperaturkammer ins Freie führen, bedient werden.

Abb. 5.19: PTC-Scheibe Nr. 85, modifizierte SCF-Methode bei 200°C, Rissgrößenausmessung ohne weitere Hilfsmittel sehr präzise

6. Zusammenfassung und Ausblick

Die mechanischen Eigenschaften des PTC-Materials verändern sich über der Curie-Temperatur aufgrund der Phasenumwandlung des Bariumtitanats vom tetragonalen zum kubischen Strukturaufbau der Einheitszelle. In der vorliegenden Arbeit sind sowohl die Festigkeit als auch die Bruchzähigkeit dieses Werkstoffes bei Raumtemperatur und deutlich über der Curie-Temperatur untersucht worden.

Erkenntnisse aus den Festigkeitsprüfungen:

- Die charakteristische Festigkeit ist bei 200°C nur unbedeutend größer als bei Raumtemperatur (ca. 7%). Hier sei jedoch angemerkt, dass die Festigkeitssteigerung von Masse zu Masse verschieden ausfallen kann, abhängig von den unterschiedlichen Beimengungen zum Bariumtitanat.
- Durch Festigkeitsprüfungen bei unterschiedlichen Spannungsraten und in Abhängigkeit von der Luftfeuchtigkeit wurde unterkritisches Risswachstum eindeutig nachgewiesen. Somit ist ein daraus resultierender Abfall der Festigkeit mit der Zeit bei PTC-Bauteilen zu berücksichtigen. Der ermittelte Grenzwert für den Paris-Exponenten liegt bei 48.

Erkenntnisse aus den Bruchzähigkeitsprüfungen:

- Die Übertragung der bestehenden genormten SCF-Methode auf scheibenförmige Proben in Kombination mit dem B3B-Test konnte allgemein erfolgreich ausgeführt werden. Die Bruchzähigkeitswerte des Referenzmaterials stimmten mit den Werten von der SEVNB-Methode und der Standard-SCF-Methode sehr gut überein.
- Die SCF-Methode lieferte beim PTC-Material bei Raumtemperatur generell ungenauere Werte im Vergleich zur SEVNB-Methode. Der poröse und grobkörnige Gefügeaufbau des PTC-Materials erschwert die Ausmessung der Rissgeometrie prinzipiell, der Einsatz von fluoreszierender Eindringfarbe ist notwendig. Die Fluoreszenzfarbe diffundiert jedoch durch das poröse Grundgefüge des Bariumtitanats weiter. So ist anzunehmen, dass die gemessenen Rissgrößen, sowie auch die daraus berechneten *K*_{*lc*}-Werte überschätzt werden. Allgemein ergaben sowohl die standardisierte, als auch die modifizierte SCF-Methode übereinstimmende Bruchzähigkeitswerte, was die Verwendung der neuen modifizierten Methode zusätzlich verifiziert. Mit der modifizierten SCF-Methode an scheibenförmigen Proben konnte sogar eine geringere Standardabweichung erreicht werden, als mit der Standardmethode an Balken. Ein denkbarer Grund wäre die unterschiedliche

herstellungsbedingte Porosität der Balken- und Scheibenproben, da die Fluoreszenzfarbe bei den Scheiben mit der geringeren Porosität eventuell schwerer diffundieren kann.

 Die Bruchzähigkeitsprüfung mit der modifizierten SCF-Methode bei 200°C ergab überraschenderweise sehr geringe Streuwerte. Aufgrund der unterschiedlichen Rissmorphologie der tetragonalen und kubischen Modifikation des Bariumtitanats besteht ein natürlicher Kontrast zwischen Anfangsriss, der bei Raumtemperatur eingebracht wird, und der Restbruchfläche, die bei 200°C entsteht. So können die Rissgrößen exakt ausgemessen werden.

Allgemein bietet die behandelte Thematik viele Möglichkeiten für weiterführende Arbeiten. Die Problematik der Rissgrößenausmessung bei der SCF-Methode besteht bei grobkörnigen und porösen Keramiken generell. Hier wäre es wünschenswert andere Mittel oder Methoden zur Anfangsrissbestimmung zu untersuchen. Für die Bruchzähigkeitsbestimmung an PTC-Keramiken im Besonderen, könnte die Idee zielführend sein, die Risse über der Curie-Temperatur einzubringen und die Bruchzähigkeit anschließend wieder bei Raumtemperatur zu prüfen. Auf diese Weise könnte der natürliche Kontrast für eine exakte Ausmessung der Rissgrößen bei Raumtemperatur ausgenutzt werden.

Besonders die neue SCF-Methode eröffnet neue Perspektiven. Durch die Möglichkeit an platten- und scheibenförmigen Proben bzw. Bauteilen K_{lc} -Werte direkt bestimmen zu können, entfällt die aufwendige Herausarbeitung von Standardbalkenproben aus Bauteilen, oder die explizite Herstellung dieser. Es besteht ein großes Interesse die modifizierte SCF-Methode auch an anderen keramischen Materialien zu untersuchen.

7. Quellenverzeichnis

[1] Börger, A., Supancic, P. und Danzer, R.: The Ball on three Balls Test for Strength Testing of Brittle Discs - Stress Distribution in the Disc, Journal of the European Ceramic Society 22 (2002) 1425–1436

[2] Danzer, R., Supancic, P. und Harrer, W.: Biaxial Tensile Strength Test for Brittle Rectangular Plates, Journal of the Ceramic Society of Japan 114 (2006) 1054–1060

[3] Supancic, P., Danzer, R., Witschnig, S., Polaczek, E. und Morrell, R.: A New Test to Determine the Tensile Strength of Brittle Balls - The Notched Ball Test, Journal of the European Ceramic Society 29 (2009) 2447–2459

[4] Witschnig, S.: Zähigkeitsmessung an keramischen Kugeln, Diplomarbeit, Montanuniversität Leoben, Leoben (2010)

[5] Salik, Y.Z.: Bestimmung der Festigkeit von PTC-Elektrokeramiken in Abhängigkeit von der Temperatur, Diplomarbeit, Montanuniversität Leoben (2011)

[6] Börger, A.: Eine Methode zur biaxialen Festigkeitsprüfung von Scheiben aus sprödem Werkstoff, Dissertation, Montanuniversität Leoben, Leoben (2004)

[7] Danzer, R., Supancic, P. und Harrer, W.: Der 4-Kugelversuch zur Ermittlung der biaxialen Biegefestigkeit spröder Werkstoffe, in Jochen Kriegesmann, Ed., Technische keramische Werkstoffe, Bd. 113. Ergänzungslieferung, HvB Verlag GbR, Ellerau (2009) S. 1–48

[8] Börger, A., Supancic, P. und Danzer, R.: The Ball on three Balls Test for Strength Testing of Brittle Discs - Part II: Analysis of Possible Errors in the Strength Determination, Journal of the European Ceramic Society 24 (2004) 2917–2928

[9] Wachtman, J.B.: Mechanical Properties of Ceramics, John Wiley & Sons, Inc. (1996)

[10] Kollenberg, W. (Hg.): Technische Keramik, 2. Aufl., Vulkan-Verlag GmbH, Essen (2009)

[11] EN 843-5: Hochleistungskeramik - Mechanische Eigenschaften monolithischer Keramik bei Raumtemperatur - Teil 5: Statistische Auswertung (2007)

[12] Weibull, W.: A Statistical Theory of the Strength of Materials, Ingeniörs vetenskaps akademien Handlingar 151 (1939)

[13] Danzer, R., Lube, T., Morrell, R. und Supancic, P.: Chapter 9.1 - Mechanical Properties of Ceramics, in S. Somiya (Hg.) Handbook of Advanced Ceramics (Second Edition), second edition Aufl., Academic Press, Oxford (2013) S. 609 – 632

[14] Anderson, T.L.: Fracture Mechanics: Fundamentals and Applications, Taylor & Francis Group (2005)

[15] Munz, D.; Fett, T.: Ceramics: Mechanical Properties, Failure Behavior, Materials Selection, Springer-Verlag, Berlin, Heidelberg (2001)

[16] Cook, R.F., Lawn, B.R. und Fairbanks, C.J.: Microstructure-Strength Properties in Ceramics: I. Effect of Crack Size on Toughness., Journal of the American Ceramic Society 68 (1985) 604–615, cited By (since 1996)74

[17] Meschke, F., Kolleck, A. und Schneider, G.: R-curve behaviour of BaTiO3 due to stress-induced ferroelastic domain switching, Journal of the European Ceramic Society 17 (1997) 1143 – 1149

[18] Förderreuther, A., Thurn, G., Zimmermann, A. und Aldinger, F.: R-curve effect, influence of electric field and process zone in BaTiO3 ceramics, Journal of the European Ceramic Society 22 (2002) 2023 – 2031

[19] ISO/FDIS 23146: Fine ceramics (advanced ceramics, advanced technical ceramics) - Test methods for fracture toughness of monolithic ceramics - Single-edge V-notch beam (SEVNB) method

[20] Damani, R., Gstrein, R. und Danzer, R.: Critical Notch Root Radius in SENB-S Fracture Toughness Testing, Journal of the European Ceramic Society 16 (1996) 695–702

[21] ASTM C 1421-01b: Standard Test Methods for Determination of Fracture Toughness of Advanced Ceramics at Ambient Temperature (2007)

[22] EN ISO 18756: Fine ceramics (advanced ceramics, advanced technical ceramics) - Determination of fracture toughness of monolithic ceramics at room temperature by the surface crack in flexure (SCF) method (2005)

[23] Wiederhorn, S.M., Freiman, S.W., Fuller Jr, E. und Simmons, C.: Effects of water and other dielectrics on crack growth, Journal of Materials Science 17 (1982) 3460–3478

[24] Lube, T. und Baierl, R.: Sub-critical crack growth in alumina - a comparison of different measurement and evaluation methods, Berg- und Hüttenmännische Monatshefte 156 (2011) 450–458

[25] EN 843-3: Hochleistungskeramik - Mechanische Eigenschaften monolithischer Keramik bei Raumtemperatur - Teil 3: Bestimmung der Parameter des unterkritischen Risswachstums aus Biegefestigkeitsprüfungen mit konstanter Spannungsrate (2005)

[26] Fett, T.: Estimation of stress intensity factors for semi-elliptical surface cracks, Engineering Fracture Mechanics 66 (2000) 349 – 356

[27] Jr., J.N. und Raju, I.: An empirical stress-intensity factor equation for the surface crack, Engineering Fracture Mechanics 15 (1981) 185 – 192

[28] Lube, T., Danzer, R., Dusza, J., Kübler, J., Erauw, J.P., Klemm, H. und Sglavo, V.M.: ESIS Reference Material Testing Program - Strength and Fracture Toughness, in Proceedings of the Conference Fractography 2003, IMR SAS Kosice, Stará Lesná, November 9-12, 2003, Slovac Republik, IMR SAS Kosice, S. 86–93

[29] Lube, T. und Dusza, J.: A Silicon Nitride Reference Material - A Testing Program of ESIS TC6, Journal of the European Ceramic Society 27 (2007) 1203–1209

[30] http://accuratus.com/silinit.html (abgerufen am 22.7.2013)

[31] Harrer, W.: Oberflächenzustand und Festigkeit von kommerziellem Siliziumnitrid, Dissertation, Montanuniversität Leoben (2012)

[32] Harrer, W., Danzer, R., Supancic, P. und Lube, T.: Influence of the Sample Size on the Results of B3B-Tests, Key Engineering Materials 409 (2009) 176–184, Fractography of Advanced Ceramics III, September 7 - 10, 2008, Stará Lesná, Slovakia

[33] Michalowsky, L. (Hg.): Neue keramische Werkstoffe, 1. Aufl., Deutscher Verlag für Grundstoffindustrie, Leipzig, Stuttgart (1994)

[34] Moulson, A. J.; Herbert, J.: Electroceramics: Materials, Properties, Applications, 1. Aufl., Chapman & Hall, London, UK (1997)

[35] Salmang, H.; Scholze, H.: Keramik, 7. Aufl., Springer-Verlag, Berlin, Heidelberg (2007)

[36] TDK-EPC:

http://www.epcos.de/web/generator/Web/Sections/ProductCatalog/CeramicComponent s/MotorStarting/Page,locale=nn.html (abgerufen am 26.9.2013)

[37] http://afnurwahyudi.wordpress.com/2007/11/14/barium-titanate-batio3/ (abgerufen am 24.11.2013)

[38] White, W.B.: Handbook of Advanced Ceramics, Bd. 1, Kap. 1.1 Basic Science of Advanced Ceramics, Academic Press, Elsevier Inc. (2003) S. 67–70

[39] Hahn, I.; Retting, U.B.U.R.J.: Thermomechanical behavior of positive temperature coefficient resistors under pure thermal shock loading, in Proceedings of Electroceramics V, Portugal, S. 475–478

[40] Hahn, I.: Wärmekapazität und Wärmeleitfähigkeit von EB 251 und E-Moduln diverser Kaltleitermassen in Abhängigkeit von der Temperatur, ZT-Laborbericht MF 2/97/16, Siemens, München (1997)

[41] Hahn, I.; Bast, U.R.U.: Materialkennwerte und Thermoschockverhalten funktionskeramischer Werkstoffe - Teil III: Messungen an Kaltleitern, ZFE-Laborbericht MR 2/95/10, Siemens, München (1995)

[42] Geith, M.: Mechanische Eigenschaften von Elektrokeramiken, Diplomarbeit, Montanuniversität Leoben, Leoben (1998)

[43] Strobl, S., Supancic, P., Lube, T. und Danzer, R.: Surface Crack in Tension or in Bending - A Reassessment of the Newman and Raju Formula in Respect to Fracture Toughness Measurements in Brittle Materials, Journal of the European Ceramic Society 32 (2012) 1491–1501

8. Anhang A: Dichtebestimmung

Dichteauswertung vom Siliziumnitrid:

	Dichtebestimmung						
Methode:	Archimedes		Datum:	06.03.2013			
Prüfer:		eus		Material:	Siliziumnitrid FSN	l grau	
Temperatu	r:	19,6 bis 19,8 °	С	Waage:	Sartorius Basic Lit	te BL210s	
Auftraggeb	er:		1	í.		1	
Scheibe Pi	ODE 1		-	3	(3	3 ()) () ())	
Messung	<i>m</i> _{Luft} /g	M Wasser/g	Iwasser / °C	ρ _{Wasser} / g cm [~]	ρ/g cm ⁻	ρ/g cm [~] (onne Lutt-Korrektur)	
1	1,0000	1,3011	19,7	0,99629	3,200	3,208	
2	1,0000	1,3011	19,7	0,99629	3,200	3,208	
5	1,0000	1,3011	19,0	0,99027 Mittelwert	3,200	3,208	
				St Abweichung	3,206	3,208	
				St. Abweichung	0,000	0,000	
Sahaiha Du	inha 2				0,00%	0,00%	
Messung		<i>m</i>	Twassor / °C	- / a cm ⁻³	~ /a cm ⁻³	o (a cm ⁻³ (obno Luft Korroktur)	
1	1 8208	1 2540	19.6	ρ _{Wasser} / g cm	ρ/g cm 3 204		
2	1,8208	1,2540	19,0	0,99031	3,204	3,207	
3	1,8208	1,2540	19,6	0,99831	3 204	3,207	
5	1,0200	1,2040	13,0	Mittelwert	3,204	3,207	
				St Abweichung	3,204	0,0000	
				ot./towclending	0.00%	0,00%	
Scholbo P	obo 3				0,0078	0,0078	
Messung		mwaaaa/a	Twasser / °C		o / a cm ⁻³	a/a cm ⁻³ (obne Luft-Korrektur)	
1	1 8072	1 2448	19.6	0 99831	3 205	3 208	
2	1,8072	1,2449	19.6	0.99831	3,206	3,200	
3	1.8072	1,2448	19.6	0.99831	3.205	3 208	
-	.,	.,	,.	Mittelwert 2.0		3 208	
				St.Abweichung	0.0003	0 0003	
					0.01%	0.01%	
Biegebalke	en Probe 1				0,0170	0,0170	
Messung	m _{Luft} /g	m _{Wasser} /g	Twasser / °C	Owasser / g cm ⁻³	$\rho/g \text{ cm}^{-3}$	$o /g \text{ cm}^{-3}$ (ohne Luft-Korrektur)	
1	1,7226	1,1867	19,6	0,99831	3,206	3.209	
2	1,7226	1,1867	19,6	0,99831	3,206	3,209	
3	1,7226	1,1867	19,6	0,99831	3,206	3,209	
				Mittelwert	3,206	3,209	
				St.Abweichung	0,0000	0,0000	
					0,00%	0,00%	
Biegebalke	en Probe 2						
Messung	<i>m</i> _{Luft} /g	<i>m</i> _{Wasser} /g	Twasser / °C	ρ _{Wasser} / g cm ⁻³	ρ /g cm ⁻³	ρ /g cm ⁻³ (ohne Luft-Korrektur)	
1	1,6958	1,1682	19,6	0,99831	3,206	3,209	
2	1,6958	1,1682	19,6	0,99831	3,206	3,209	
3	1,6958	1,1682	19,6	0,99831	3,206	3,209	
				Mittelwert	3,206	3,209	
				St.Abweichung	0,0000	0,0000	
					0,00%	0,00%	
Biegebalke	en Probe 3						
Messung	<i>m</i> _{Luft} /g	m _{Wasser} /g	Twasser / °C	ρ _{Wasser} / g cm ⁻³	ρ /g cm ⁻³	ρ /g cm ⁻³ (ohne Luft-Korrektur)	
1	1,6920	1,1657	19,7	0,99829	3,207	3,209	
2	1,6920	1,1657	19,7	0,99829	3,207	3,209	
3	1,6920	1,1657	19,7	0,99829	3,207	3,209	
				Mittelwert	3,207	3,209	
				St.Abweichung	0,0000	0,0000	
					0,00%	0,00%	

Dichteauswertung vom PTC-Material A197:

	Dichtebestimmung					
Methode:		Archimedes		Datum:	07.03.2013	
Prüfer:		eus		Material:	PTC (A197)	
Temperatu	r:	20,2 bis 20,3 °	С	Waage:	Sartorius Basic Lit	e BL210s
Auftraggeb	er:					
Scheibe Pr	obe 1				3	
Messung	m _{Luft} /g	m _{Wasser} /g	Twasser / °C	ρ _{Wasser} / g cm [∞]	ρ/g cm ⁻	ρ/g cm [~] (onne Luft-Korrektur)
1	5,0895	4,1005	20,2	0,99819	5,499	5,504
2	5,0895	4,1665	20,2	0,99819	5,499	5,504
3	5,0895	4,1666	20,2	0,99819 Mittelwart	5,499	5,505
	E 0040			Millelwert St Abwoisbung	5,499	5,504
	5,0940			St.Abweichung	0,0003	0,0003
					0,01%	0,01%
Scheibe Pr	obe 2		T	1	(
wessung	E 1174	Masser/9	Twasser / °C	ρ _{Wasser} / g cm ⁻	ρ/g cm -	ρ/g cm ⁻ (onne Luft-Korrektur)
1	5,1174	4,1857	20,3	0,99817	5,477	5,482
2	5,1174	4,1860	20,3	0,99817	5,479	5,484
3	5,1174	4,1857	20,3	0,99817	5,477	5,482
	F 4400			Mittelwert	5,478	5,483
	5,1192			St.Abweichung	0,0008	0,0008
					0,02%	0,02%
Scheibe Pr	obe 3			3	(-3	
Messung	<i>m</i> _{Luft} /g	m _{Wasser} /g	Twasser / °C	ρ _{Wasser} / g cm ⁻⁵	ρ/g cm ⁻³	ρ/g cm [~] (ohne Luft-Korrektur)
1	5,1270	4,1930	20,3	0,99817	5,474	5,479
2	5,1270	4,1929	20,3	0,99817	5,473	5,479
3	5,1270	4,1929	20,3	0,99817	5,473	5,479
				Mittelwert	5,473	5,479
	5,1275			St.Abweichung	0,0003	0,0003
					0,01%	0,01%
Biegebalke	n Probe 1					2
Messung	m _{Luft} /g	m _{Wasser} /g	Twasser / °C	ρ _{wasser} / g cm ⁻³	ρ /g cm ⁻³	ρ /g cm ^{-s} (ohne Luft-Korrektur)
1	2,7901	2,2760	20,3	0,99817	5,412	5,417
2	2,7901	2,2760	20,3	0,99817	5,412	5,417
3	2,7901	2,2765	20,3	0,99817	5,417	5,422
				Mittelwert	5,414	5,419
	2,7905			St.Abweichung	0,0025	0,0025
					0,05%	0,05%
Biegebalke	n Probe 2					
Messung	m _{Luft} /g	m _{Wasser} /g	Twasser / °C	ρ _{wasser} / g cm ⁻³	ρ /g cm ⁻³	ρ /g cm ^{-s} (ohne Luft-Korrektur)
1	2,8175	2,2987	20,3	0,99817	5,416	5,421
2	2,8175	2,2987	20,3	0,99817	5,416	5,421
3	2,8175	2,2988	20,3	0,99817	5,417	5,422
				Mittelwert	5,416	5,421
	2,8180			St.Abweichung	0,0005	0,0005
					0,01%	0,01%
Biegebalke	n Probe 3					
Messung	m _{Luft} /g	m _{Wasser} /g	Twasser / °C	ρ _{wasser} / g cm ⁻³	ρ /g cm ⁻³	ρ/g cm ⁻³ (ohne Luft-Korrektur)
1	2,8027	2,2876	20,3	0,99817	5,426	5,431
2	2,8027	2,2875	20,3	0,99817	5,425	5,430
3	2,8027	2,2876	20,3	0,99817	5,426	5,431
				Mittelwert	5,425	5,431
	2,8036			St.Abweichung	0,0005	0,0005
					0,01%	0,01%

9. Anhang B: Gefügecharakterisierung des PTC-Materials A197

Porosität:

Es wurden jeweils 10 Aufnahmen (Lichtmikroskop, 200-fache Vergrößerung) für Scheibenund Balkenproben ausgewertet.

Porosität PTC-Balken					
Schwellwert: 0 - 80	Fläche				
μm²	%				
2676,60	2,79				
2526,87	2,63				
3078,91	3,21				
3469,26	3,61				
2992,08	3,12				
4513,78	4,70				
4808,09	5,01				
3258,89	3,39				
3241,31	3,38				
3693,37	3,85				
Mittelwert	3,57				
Standardabweichung	0,77				

Porosität PTC-Scheiben					
Schwellwert: 0 - 80	Fläche				
μm²	%				
2594,56	2,70				
2382,76	2,48				
2856,34	2,97				
2334,20	2,43				
2108,53	2,20				
2130,66	2,22				
2546,12	2,65				
2450,57	2,55				
2881,10	3,00				
2426,53	2,53				
Mittelwert	2,57				
Standardabweichung	0,27				

Korngröße:

Es wurden jeweils 10 Aufnahmen (Lichtmikroskop, 200-fache Vergrößerung) für Scheibenund Balkenproben ausgewertet. Die Schliffe wurden 60 sec lang mit 1,5%-HF-Lösung geätzt.

Korngröße PTC-Balken				
Statistische Funktion	Linie			
	Länge			
Grundeinheit	μm			
Anzahl	592			
Mittelwert	5,10			
Minimum	1,11			
Maximum	15,09			
Standardabweichung	2,50			

Korngröße PTC-Scheiben				
Statistische Funktion	Linie			
	Länge			
Grundeinheit	μm			
Anzahl	586			
Mittelwert	5,12			
Minimum	1,57			
Maximum	19,42			
Standardabweichung	2,63			

Abb. B.1: Aufnahme PTC_Balken_quer_20

Abb. B.2: Aufnahme PTC_Scheiben_quer_20

<u>Vickershärte:</u>

Wahre Härte HV1 vom PTC-Material						
Bildname	Diagonale Länge	d	d ²	MPa	GPa	HV1
	μm	mm	mm ²			
Haerte_PTC_HV1_3	64					
Haerte_PTC_HV1_3	60	0,0620	0,00384	5099	5,099	481,84
Haerte_PTC_HV1_4	59					
Haerte_PTC_HV1_4	58	0,0585	0,00342	5727	5,727	541,22
Haerte_PTC_HV1_5	60					
Haerte_PTC_HV1_5	63	0,0615	0,00378	5182	5,182	489,71
Haerte_PTC_HV1_6	58					
Haerte_PTC_HV1_6	60	0,0590	0,00348	5631	5,631	532,09
Haerte_PTC_HV1_7	61					
Haerte_PTC_HV1_7	61	0,0610	0,00372	5267	5,267	497,77
Haerte_PTC_HV1_8	59					
Haerte_PTC_HV1_8	58	0,0585	0,00342	5727	5,727	541,22
Haerte_PTC_HV1_9	60					
Haerte_PTC_HV1_9	59	0,0595	0,00354	5536	5,536	523,18
Haerte_PTC_HV1_10	61					
Haerte_PTC_HV1_10	62	0,0615	0,00378	5182	5,182	489,71
Haerte_PTC_HV1_11	60					
Haerte_PTC_HV1_11	61	0,0605	0,00366	5355	5,355	506,03
Haerte_PTC_HV1_12	60					
Haerte_PTC_HV1_12	61	0,0605	0,00366	5355	5,355	506,03
Haerte_PTC_HV1_13	60					
Haerte_PTC_HV1_13	61	0,0605	0,00366	5355	5,355	506,03
Haerte_PTC_HV1_14	62					
Haerte_PTC_HV1_14	58	0,0600	0,00360	5444	5,444	514,50
Haerte_PTC_HV1_15	62					
Haerte_PTC_HV1_15	60	0,0610	0,00372	5267	5,267	497,77
				Mittelwert	5,394	509,78
				St.Abweichung	0.199	18.80

Abb. B.3: Haerte_PTC_HV1_3

10. Anhang C: Protokolle der Festigkeitsmessungen

	Au	swer	tung	4-Κι	ıgelv	versu	ch &	Weibu	ıllausv	vertun	g
				Statist	ische A	uswertu	ng nach	n EN 843-5	5		
14			1.	45.000				Data		17.00 0010	
Kugel	Idurchmes	sser D _k [mm	i]:	15,080				Datum:		17.08.2013	
Aufla	gerdurchn	nesser D a [r	nm]:	17,413				Prüfer:		yan .	
Aufla	gervarian	te:		Standar	dauflager	9E		Prüfmaschine	:	Zwick	
					~=`			nominelle Vor	rkraft:	10,0	N , .
Probe	enmateria	l:		PIC (A1	97) 227 7250			Belastungsges	scnw.:	2,00	mm/min
Charg	ge:			10//150	527, 2250	U5A93/		Temperatur:		27,0	
Oberi		arbeitung:	20	as sinte	rea			Luttreuchtigke		51,0	%
gepru		11. 	30	•				Ouerdebrung	anahl i	0.20	
Probe	enanzani <i>i</i>	<i>n</i> :	30					Querdennung	szani v:	0,29	
i	TD	FINI	<i>h</i> 1	<i>h</i> ₂ [mm]	<i>h</i> 3 [mm]	D [mm]	Bruch-	h _{mittel}	Spannungs rate o/t [MPa/s]	σ; [MPa]	Bruch- stücke
1	A 10	401.20	2 102	2 1 0 2	2 102	10 427	2 14	2 1 0 2	26 217	[PIF 8]	Stucke
2	A19	491,20 527.40	3,103	3,103	3,103	19,42/	3,14	3,103	20,217	04,0	2
2	A4 A22	528.00	3,172	3,172	3,172	19,427	2 2 2 2	3 160	25,791	91,0	2
4	A25	520,00	3,109	3 169	3 169	19,427	3,52	3 169	26,370	91,5	2
т 5	A26	534.80	3,109	3,109	3 150	19,427	3,72	3 159	26,272	91,0	2
6	420	540 50	3 166	3 166	3 166	10 427	3,7	3 166	26,075	93.6	2
7	Δ10	550.00	3 174	3 174	3 174	10 427	3,11	3 174	27 352	94.7	2
8	Δ5	549 50	3 171	3,174	3 171	19 427	3.6	3 171	25,866	94.8	2
9	Α7	554 30	3 158	3 1 5 8	3 158	19 427	3 56	3 158	26,645	96.6	2
10	A29	559.20	3,169	3,169	3,169	19,427	3,30	3,169	27,758	96.7	2
11	A28	566.70	3.182	3,182	3,182	19,427	3.5	3,182	27.231	97.0	2
12	A20	555,80	3,153	3,153	3,153	19,427	3,42	3,153	27,916	97,2	2
13	A15	562,80	3,160	3,160	3,160	19,427	3,52	3,160	27,328	97.9	2
14	A24	568,90	3,169	3,169	3,169	19,427	3,5	3,169	27,603	98,3	2
15	A3	, 571,00	, 3,172	, 3,172	, 3,172	, 19,427	3,56	3,172	27,179	98,5	2
16	A12	567,00	3,155	3,155	3,155	19,427	3,56	3,155	27,328	99,0	2
17	A14	574,00	3,170	3,170	3,170	19,427	3,56	3,170	27,365	99,1	2
18	A22	576,80	3,171	3,171	3,171	19,427	3,6	3,171	27,175	99,6	2
19	A13	586,00	3,177	3,177	3,177	19,427	3,58	3,177	27,647	100,7	2
20	A18	582,40	3,157	3,157	3,157	19,427	3,66	3,157	27,275	101,6	2
21	A25	592,80	3,177	3,177	3,177	19,427	3,72	3,177	26,921	101,9	2
22	A6	583,20	3,151	3,151	3,151	19,427	3,7	3,151	27,139	102,2	2
23	A30	593,40	3,171	3,171	3,171	19,427	3,62	3,171	27,816	102,4	2
24	A2	601,20	3,172	3,172	3,172	19,427	3,74	3,172	27,264	103,7	2
25	A16	605,70	3,179	3,179	3,179	19,427	3,76	3,179	27,184	103,9	2
26	A21	601,30	3,169	3,169	3,169	19,427	3,68	3,169	27,774	103,9	2
27	A17	600,80	3,163	3,163	3,163	19,427	3,66	3,163	28,027	104,3	2
28	A1	615,30	3,172	3,172	3,172	19,427	4,04	3,172	25,841	106,1	2
29	A27	617,70	3,158	3,158	3,158	19,427	3,66	3,158	28,936	107,6	2
30	A11	646,30	3,162	3,162	3,162	19,427	3,76	3,162	29,404	112,3	3
								Mittelwert	27,227		
								STA BW	0.804		

Messwerte zur PTC-Festigkeitsmessung bei 51% rel. Luftfeuchte:

Messwerte zur PTC-Festigkeitsmessung bei 14% rel. Luftfeuchte:

	Au	swer	tung	4-Kı	ıgelv	versu	ch &	Weibu	llausv	vertun	9
			ĺ	Statist	ische A	uswertu	ng nacł	n EN 843-5	5	·	
Kuga	ldurchmoo	oor D. Imr		15.000				Datum		12 02 2012	
Kuge	aardurchmes	ser $\boldsymbol{D}_{\mathbf{k}}$ [mm	[]]: [mm]:	17 412				Datum:		13.02.2013	
Aufle	iger uur chin gorvariant	\boldsymbol{D}_{a}	inni):	17,415 Standar	dauflagor	OF	• · · · · ·	Prüfmasching		eus Zwick	
Auna	iyel variarit	е.		Stanuar	uaunayei	92		nominelle Vor	kraft:	2WICK 10.0	N
Proh	enmaterial	•			07)			Belastungsge	schw.	2.00	mm/min
Char	ne.	•		107715	527 7250	054937		Temperatur		20 8 - 21 2	°C
Oher	ge. flächenhea	rheituna:		as sinte	red		•	Luftfeuchtiake	it•	15.2 - 13.0	%
aenr	üfte Prober	וי: וי:	30	•				Landoucindigite			
Prob	enanzahl n	 r:	30	•				Querdehnung	szahl v:	0.29	7
								Quei dei india		0,20	
			h.	ha	<i>b</i> -	<u>л</u>	Bruch-	human	Spannungs rate g/t	<i>.</i>	Bruch-
i	ID	<i>F</i> [N]	[mm]	[mm]	[mm]	[mm]	zeit [s]	[mm]	[MPa/s]	[MPa]	stücke
1	Probe_22	528,89	3,162	3,161	3,160	19,410	3,2	3,161	28,200	92,0	2
2	Probe_18	539,18	3,158	3,160	3,157	19,410	3,24	3,158	28,461	94,0	2
3	Probe_6	545,89	3,173	3,175	3,174	19,420	3,3	3,174	27,968	94,0	2
4	Probe_9	553,97	3,171	3,169	3,169	19,410	3,42	3,170	27,484	95,7	2
5	Probe_2	573,33	3,169	3,168	3,167	19,370	3,36	3,168	29,017	99,2	2
6	Probe_12	598,50	3,177	3,176	3,174	19,420	3,56	3,176	28,436	103,0	2
7	Probe_25	598,10	3,169	3,171	3,167	19,430	3,48	3,169	29,211	103,4	3
8	Probe_13	605,00	3,175	3,176	3,175	19,440	3,62	3,175	28,275	104,1	3
9	Probe_7	606,62	3,162	3,160	3,157	19,410	3,64	3,160	28,534	105,6	3
10	Probe_5	613,56	3,173	3,172	3,172	19,470	3,6	3,172	28,897	105,8	3
11	Probe_23	615,39	3,176	3,174	3,174	19,460	3,62	3,175	28,778	105,9	3
12	Probe_19	620,56	3,175	3,174	3,174	19,430	3,62	3,174	29,039	106,8	2
13	Probe_1	617,95	3,169	3,168	3,167	19,420	3,68	3,168	28,579	106,9	2
14	Probe_3	622,46	3,180	3,175	3,175	19,510	3,66	3,177	28,740	106,9	3
15	Probe_11	620,27	3,165	3,165	3,164	19,410	3,68	3,165	28,762	107,6	2
16	Probe_1/	625,25	3,169	3,168	3,168	19,370	3,62	3,168	29,408	108,2	3
1/	Probe_16	624,78	3,164	3,165	3,163	19,400	3,62	3,164	29,472	108,4	2
10	Probe_14	625.07	2,100 2,175	2,100 2,177	2 176	19,440	3,00	2,107	29,369	109,5	
20	Probe 30	630.18	3,173	3,177	3,170	19,410	3,0	3,170	29,900	109,4	3
20	Probe 20	629 47	3 161	3 161	3,105	19,420	3,02	3 161	29,740	109,4	- 3
21	Probe 27	626 72	3 154	3,101	3,100	10 380	3,04	3 153	29,007	109,5	- 3
22	Probe 15	643 79	3 183	3 181	3 180	19,300	3,04	3 181	29,042	110,0	3
23	Probe 28	636.63	3 157	3,157	3,159	19,400	3 62	3,158	30,182	111.0	3
25	Probe 26	646.73	3.179	3,177	3,173	19,410	3.76	3,176	29,118	111.2	3
26	Probe 4	636.52	3.156	3,154	3,155	19,400	3.68	3,155	29,744	111.2	3
27	Probe 21	655.63	3,183	3,178	3,180	19,450	3.74	3,180	29,585	112,4	3
28	Probe 24	646,36	3,158	3,160	3,157	19,410	3,68	3,158	30,133	112,6	3
29	Probe_8	659,87	3,169	3,166	3,167	19,440	3,8	3,167	29,594	114,2	4
30	Probe_10	670,82	3,163	3,165	3,163	19,410	3,82	3,164	30,025	116,4	3
								Mittelwert	29,104		
								STA BW	0,674		

Messwerte zur PTC-Festigkeitsmessung bei kleiner Spannungsrate:

	Au	swer	tung	4-Kı	ıgelv	ersu	ch &	Weibu	Illausv	vertund	
				Statist	ische A	uswertu	na nach	n EN 843-5	5		
										1	
Kuge	ldurchmes	ser D_k [mm	ו]:	15,080				Datum:		18.02.2013	
Aufla	gerdurchm	nesser D a [- mm]:	17,413				Prüfer:		eus	
Aufla	gervariant	e:		Standar	dauflager	9E		Prüfmaschine	:	Zwick	
								nominelle Vor	kraft:	10,0	N
Prob	enmaterial	:		PTC (A	97)			Belastungsges	schw.:	0,005	mm/ min
Char	ge:			107715	527, Z250	05A937		Temperatur:		20,5 - 21,6	°C
Ober	flächenbea	rbeitung:		as sinte	red			Luftfeuchtigke	it:	16,4 - 20,8	%
gepr	üfte Probei	ו:	15								
Prob	enanzahl <i>n</i>	:	15					Querdehnung	szahl v:	0,29	
`							/		Spannungs		_ /
i	ID	<i>F</i> [N]	<i>n</i> 1 [mm]	<i>n</i> ₂ [mm]	<i>n ₃</i> [mm]	[mm]	Bruch- zeit [s]	n _{mittel} [mm]	<i>rate</i> σ/t [MPa/s]	σ; [MPa]	Bruch- stücke
1	Probe_62	471,39	3,160	3,160	3,159	19,410	1124,08	3,160	0,071	82,1	2
2	Probe_50	524,63	3,178	3,177	3,175	19,420	1241,08	3,177	0,071	90,2	2
3	Probe_56	524,99	3,170	3,170	3,170	19,400	1261,26	3,170	0,071	90,7	2
4	Probe_49	534,36	3,190	3,189	3,188	19,420	1144,9	3,189	0,078	91,0	2
5	Probe_53	526,89	3,166	3,167	3,163	19,380	1243,82	3,165	0,072	91,4	2
6	Probe_33	536,92	3,173	3,172	3,172	19,420	1149,08	3,172	0,079	92,6	2
7	Probe_58	546,45	3,182	3,182	3,183	19,400	1283,92	3,182	0,072	93,6	2
8	Probe_57	540,82	3,162	3,162	3,161	19,400	1273,12	3,162	0,072	94,0	2
9	Probe_61	549,43	3,165	3,164	3,162	19,410	1277,16	3,164	0,073	95,4	2
10	Probe_52	551,54	3,169	3,166	3,166	19,420	1294,46	3,167	0,072	95,5	2
11	Probe_54	558,37	3,172	3,170	3,172	19,390	1306,52	3,171	0,072	96,4	2
12	Probe_60	567,94	3,190	3,190	3,189	19,400	1308,64	3,190	0,073	96,7	2
13	Probe_59	577,57	3,184	3,183	3,182	19,390	1355,6	3,183	0,072	98,8	2
14	Probe_55	574,74	3,163	3,162	3,161	19,410	1339,6	3,162	0,073	99,9	2
15	Probe_51	602,58	3,170	3,168	3,169	19,350	1418,18	3,169	0,072	104,2	2
								Mittelwert	0,073		
								STA BW	0,002		

Messwerte zur PTC-Festigkeitsmessung bei kleiner Spannungsrate in Wasser:

	Au	swer	tuna	4-Kı	Jaelv	versu	ch &	Weibu	llausv	vertund	1
				Ctatio	iccho A		na nach				
	1		1	Statist	ische A	uswertu	ng nacr	1 EN 843-3)	1	
Kuga	ldurchmoo	cor D. [mn		15 090				Datum		14.02.2012	
Kuge	acrdurchmes	ser <i>D</i> _k [mm	nj: mml	17 412				Datum:		14.02.2013	
Auria	igeraurchin	iesser D a [mmj:	17,413		.05		Pruier:		eus	
Aulia	igervariarit	e.		Stanuar	uaunayer	9E		Prunnaschine	kraft:		N
Droh	onmatorial				07)		-	Relacturgego	KIdil.	10,0	mm/min
Char				107715	277 7750	054027		Tomporature	SCI1VV	21.1 - 21.5	°C
Ober	ye. flächenhes	rheitung		10//15	127, 2250 rod	UJA 937	•	Luftfeuchtigke	i+•	186 - 174	9/6
depr	üfte Prober	n Deitung.	15		leu			Luitieuchtigke	1.	10,0 - 17,4	70
gepi		·.	15	•				Quardahnung	azahl	0.20	
PIOD		<i>l</i> .	15					Querdennung		0,29	
—	• •		•	•			• • •	• • •	Spannungs	•	
			h1	h ₂	h ₃	D	Bruch-	h mittel	<i>rate</i> σ/t	σι	Bruch-
<i>i</i>	ID	<i>F</i> [N]	[mm]	[mm]	[mm]	[mm]	<i>zeit</i> [s]	[mm]	[MPa/s]	[MPa]	stücke
1	Probe_34	435,98	3,178	3,177	3,176	19,340	931,96	3,177	0,079	75,0	2
2	Probe_39	441,64	3,183	3,184	3,180	19,390	975,42	3,182	0,076	75,6	2
3	Probe_38	444,58	3,170	3,169	3,168	19,430	960,14	3,169	0,078	76,8	2
4	Probe_40	452,58	3,173	3,167	3,172	19,400	1000,32	3,171	0,076	78,2	2
5	Probe_45	461,13	3,178	3,177	3,178	19,390	1022,82	3,178	0,076	79,2	2
6	Probe_42	457,00	3,165	3,165	3,164	19,410	992,92	3,165	0,078	79,3	2
7	Probe_35	471,49	3,172	3,170	3,175	19,410	1027,96	3,172	0,077	81,3	2
8	Probe_41	476,66	3,180	3,185	3,180	19,420	1036,98	3,182	0,077	81,6	2
9	Probe_37	480,50	3,158	3,156	3,159	19,420	1052,4	3,158	0,078	83,8	2
10	Probe_44	494,49	3,159	3,157	3,159	19,400	1078,62	3,158	0,078	86,2	2
11	Probe_36	508,11	3,183	3,184	3,183	19,390	1085,78	3,183	0,078	86,9	2
12	Probe_43	507,45	3,172	3,170	3,171	19,410	1104,82	3,171	0,078	87,6	2
13	Probe_48	509,25	3,167	3,165	3,168	19,420	1095,72	3,167	0,079	88,2	2
14	Probe_46	526,84	3,180	3,180	3,178	19,360	1141,68	3,179	0,078	90,4	2
15	Probe_47	524,47	3,173	3,173	3,169	19,410	1114,16	3,172	0,080	90,5	2
16								Mittelwert	0,078		
17								STA BW	0.001		

	Aus	swer	tuna	4-Kı	Jaelv	ersu	ch &	Weibu	Illausv	vertund	1
									_		
				Statist	ische A	uswertu	ng nach	<u>1 EN 843-5</u>	5		
Kuge	ldurchmess	er D_k [mm	ו]:	15,000				Datum:		11.04.2013	
Aufla	agerdurchme	esser D a [mm]:	17,321				Prüfer:		eus	
Aufla	agervariante	:		neues La	ager HT		ļ	Prüfmaschine	:	Zwick	
								nominelle Vor	·kraft:	10,0	N
Prob	enmaterial:			PTC (A1	L97)			Belastungsges	schw.:	2,00	mm/ min
Chai	ge:			1077156	527, Z250	05A937		Temperatur:		22,8	°C
Obe	rflächenbear	beitung:		as sinte	red			Luftfeuchtigke	eit:	27,4	%
gepr	üfte Proben:		30								
Prob	enanzahl n :		30					Querdehnung	szahl v:	0,29	
	•		•	• •	•	· · · ·	•		Spannungs		•
			h 1	h ₂	h3	D	Bruch-	h mittel	<i>rate</i> σ/t	σi	Bruch-
i	ID	<i>F</i> [N]	[mm]	[mm]	[mm]	[mm]	<i>zeit</i> [s]	[mm]	[MPa/s]	[MPa]	stücke
1	Probe_100	511,20	3,162	3,161	3,160	19,410	3,1	3,161	28,039	88,7	2
2	Probe_91	523,79	3,177	3,175	3,175	19,480	3,2	3,176	27,527	89,8	2
3	Probe_111	544,95	3,174	3,171	3,173	19,440	3,2	3,173	28,734	93,7	2
4	Probe_120	548,20	3,175	3,172	3,177	19,380	3,42	3,175	27,024	94,1	2
5	Probe_113	554,50	3,156	3,155	3,158	19,380	3,2	3,156	29,620	96,5	2
6	Probe_112	559,97	3,166	3,166	3,167	19,410	3,32	3,166	28,615	96,7	2
7	Probe_99	569,29	3,160	3,160	3,159	19,400	3,42	3,160	28,392	98,8	2
8	Probe_95	589,81	3,179	3,178	3,178	19,460	3,54	3,178	28,030	100,9	2
9	Probe_119	584,12	3,164	3,164	3,163	19,420	3,4	3,164	29,224	101,1	3
10	Probe_93	591,56	3,170	3,171	3,170	19,420	3,34	3,170	29,986	101,9	2
11	Probe_105	600,76	3,173	3,174	3,173	19,420	3,48	3,173	29,170	103,2	2
12	Probe_109	597,75	3,169	3,168	3,163	19,410	3,4	3,167	29,854	103,2	2
13	Probe_108	601,33	3,174	3,171	3,172	19,320	3,86	3,172	26,367	103,5	2
14	Probe_110	611,73	3,163	3,163	3,163	19,400	3,56	3,163	29,272	105,9	3
15	Probe_102	612,92	3,164	3,163	3,162	19,440	3,5	3,163	29,822	106,1	2
16	Probe_107	614,95	3,165	3,165	3,164	19,320	3,64	3,165	28,768	106,4	2
17	Probe_98	618,06	3,161	3,162	3,164	19,430	3,6	3,162	29,258	107,1	2
18	Probe_114	628,23	3,187	3,184	3,181	19,390	3,58	3,184	29,449	107,1	3
19	Probe_92	630,95	3,177	3,177	3,179	19,430	3,68	3,178	28,899	108,1	2
20	Probe_101	631,36	3,172	3,172	3,170	19,420	3,64	3,171	29,376	108,6	3
21	Probe_116	630,58	3,154	3,155	3,154	19,380	3,64	3,154	29,722	109,9	3
22	Probe_115	638,44	3,168	3,169	3,167	19,340	3,68	3,168	29,482	110,2	3
23	Probe_96	633,63	3,157	3,157	3,156	19,430	3,7	3,157	29,320	110,2	3
24	Probe_118	646,72	3,172	3,171	3,172	19,330	3,68	3,172	29,792	111,4	3
25	Probe_94	642,64	3,161	3,161	3,160	19,440	3,62	3,161	30,308	111,4	2
26	Probe_104	646,31	3,166	3,166	3,165	19,400	3,64	3,166	30,215	111,/	3
2/	Probe_103	653,80	3,180	3,175	3,179	19,390	3,/	3,1/8	29,804	112,0	3
28	Probe_11/	657,64	3,1/3	3,172	3,1/4	19,400	3,82	3,1/3	29,145	113,1	3
29	Probe_9/	661.40	3,1/4	3,176	3,1/5	19,420	4,08	3,1/5	27,388	113,5	3
30	Probe_106	001,40	3,100	3,166	3,164	19,400	3,/8	3,105	29,796	114,4	3
21								micceiweft	29,013		

Messwerte zur PTC-Festigkeitsmessung zur Verifizierung des neuen hitzebeständigen Lagers bei Raumtemperatur:

Messwerte zur PTC-Festigkeitsmessung bei RT mit der MIDI:

	Au	swer	tung	4-Kı	ıgelv	versu	ch &	Weibu	llausv	vertung	J
				Statist	ische A	uswertu	ng nacł	n EN 843-5	5		
Kuge	Idurchmes	ser D _k [mm	n]:	15,000				Datum:		16.07.2013	
Aufla	gerdurchn	nesser D a [I	mm]:	17,321				Prüfer:		clk, eus	
Aufla	gervariant	e:		Revolve	r Multi mi	t HT Auflag	jern	Prüfmaschine		MIDI	
								nominelle Vor	kraft:	10 bzw. 20	N
Probe	enmateria	:		PTC (A	L97)			Belastungsges	schw.:	1,00	mm/ min
Char	ge:			107715	627, Z250	05A937		Temperatur:		24,4	°C
Ober	flächenbea	arbeitung:		as sinte	red			Luftfeuchtigke	it:	36,6	%
gepri	üfte Probe	n:	9								
Probe	enanzahl <i>I</i>	7:	9	1				Querdehnung	szahl v:	0,29	
			h1	h ₂	h 3	D	Bruch-	h mittel	h _{St.abweich.}	σi	Bruch-
i	ID	<i>F</i> [N]	[mm]	[mm]	[mm]	[mm]	zeit [s]	[mm]	[mm]	[MPa]	stücke
1	PTC_71	555,49	3,164	3,166	3,168	19,450	9,62	3,166	0,002	95,9	2
2	PTC_76	582,81	3,173	3,174	3,173	19,435	7,04	3,173	0,001	100,1	2
3	PTC_72	601,66	3,170	3,171	3,169	19,420	8,19	3,170	0,001	103,6	2
4	PTC_77	616,20	3,165	3,163	3,163	19,435	8,68	3,164	0,001	106,6	3
5	PTC_74	628,18	3,159	3,161	3,161	19,435	9,34	3,160	0,001	109,0	2
6	PTC_80	652,62	3,164	3,166	3,162	19,435	8,29	3,164	0,002	112,9	3
7	PTC_75	653,90	3,158	3,166	3,159	19,410	7,91	3,161	0,004	113,4	3
8	PTC_79	671,80	3,168	3,167	3,168	19,430	9,27	3,168	0,001	115,9	3
9	PTC_78	672,43	3,160	3,164	3,161	19,440	9,65	3,162	0,002	116,5	3

Messwerte zur PTC-Festigkeitsmessung bei 200°C:

	Au	swer	tung	4-Kı	ıgelv	versu	ch &	Weibu	llausv	vertung	9
				Statist	ische A	uswertu	ng nach	n EN 843-5	5		
Kuge	Idurchmes	ser D _k [mn	n]:	15,000				Datum:		17.04.2013	
Aufla	gerdurchn	nesser D a [mm]:	17,321				Prüfer:		eus	
Aufla	gervariant	e:		neues A	uflager H	Т		Prüfmaschine	:	MIDI	
				DT0 (14	0-)		-	nominelle Vor	kraft:	10,0	N / -
Prob	enmaterial	:		PIC (AI	197) 197 - 725 04			Belastungsges	schw.:	2,00	mm/min
Char	ge: fläckenher	ula a itu un au		10//150	527, 22500 upd	U5A937		Temperatur:		200,0	°C
oper		n Deitung:	20		reu		_	Luitieuchtigke	11.	0,0	70
gepi Droh			30	•				Quardahnung	azabl	0.20	
PIOD			30					Querdennung		0,29	
, ,	ID	EIN	<i>h</i> 1	<i>h</i> ₂	<i>h</i> 3	D	Bruch-	h _{mittel}	Spannungs ⁵ rate o/t	σ_i	Bruch-
· ·	DTC 120	7 [N]	2 177	2.175	2.170	10.415	20% [3]	2,170	[HF4/5]		SLUCKE
1	PTC_129	509,94	3,1//	3,175	3,170	19,415	2,7	3,170	31,750	87,5	2
2	PTC_151	510,59	3,13Z	3,13Z	3,132 2,172	19,440	2,34	3,152	34,400	09,1	2
3	PTC_123	520,04	2 176	2 174	2 175	10 455	2,75	2 175	32,002	90,9	2
7	PTC_142	553.08	3,170	3,174	3,173	19,433	2,07	3,173	32,073	95,8	2
6	PTC 147	561 54	3,172	3,172	3 170	19,400	2,09	3 171	32,320	95,1	3
7	PTC 149	557 67	3 160	3 1 5 9	3 159	19 420	2,55	3 159	32,505	96.8	3
8	PTC 144	558 99	3 1 5 9	3 1 5 9	3 158	19 470	2,51	3 159	32,677	97.1	2
9	PTC 136	578.79	3,147	3,147	3,147	19,405	3.11	3,147	32.052	101.4	3
10	PTC 126	594.14	3,175	3,177	3,174	19,440	3.03	3,175	33.072	101.9	3
11	PTC 123	604,36	3,181	3,180	3,181	19,420	3,34	3,181	30,413	103,3	3
12	 PTC_133	, 597,00	3,150	, 3,149	3,150	, 19,420	3	3,150	34,218	104,4	3
13	PTC_121	608,36	3,172	3,171	3,172	19,410	3,31	3,172	31,104	104,7	4
14	PTC_122	606,76	3,162	3,162	3,163	19,390	3,16	3,162	32,725	105,1	3
15	PTC_150	617,28	3,169	3,169	3,169	19,410	3,13	3,169	33,449	106,4	3
16	PTC_134	626,07	3,168	3,168	3,166	19,425	3,21	3,167	33,123	108,1	3
17	PTC_131	630,06	3,169	3,168	3,166	19,410	3,38	3,168	31,658	108,7	3
18	PTC_143	630,22	3,167	3,167	3,167	19,415	3,22	3,167	33,254	108,8	3
19	PTC_141	651,94	3,164	3,163	3,163	19,420	3,72	3,163	29,872	112,9	4
20	PTC_130	659,45	3,175	3,172	3,171	19,410	3,52	3,173	31,722	113,4	3
21	PTC_146	669,51	3,177	3,175	3,176	19,435	3,47	3,176	32,589	114,8	4
22	PTC_145	672,54	3,166	3,163	3,165	19,415	3,5	3,165	32,738	116,3	4
23	PTC_132	688,67	3,167	3,167	3,166	19,415	3,49	3,167	33,582	118,9	4
24	PTC_137	702,57	3,174	3,175	3,174	19,420	3,66	3,174	32,491	120,6	4
25	PTC_139	709,12	3,168	3,168	3,168	19,430	3,59	3,168	33,592	122,3	4
26	PTC_148	715,82	3,158	3,154	3,158	19,420	3,7	3,157	33,187	124,5	4
27	PTC_127	725,30	3,169	3,170	3,169	19,440	3,67	3,169	33,584	125,0	3
28	PTC_124	/43,19	3,168	3,168	3,168	19,420	3,89	3,168	32,515	128,2	5
29	PTC_135	//5,8/	3,1/5	3,1/5	3,1/5	19,465	3,89	3,1/5	33,//5	133,1	6
30	PTC_128	898,00	3,165	3,167	3,166	19,435	4,58	3,100	33,493	155,1	6
31								STADW	32,038		
52								SIABW	1,025		

		[mm]	330		312	331	331	333	303	296	283	220															
		lissbreite 2c	327		314	326	335	332	304	295	289	227		amontar			ehr sichtbar										
01b		a [µm]	112		129	90	97	96	79	83	74	60		лод	2	gültig	keine FZF me	∕₅ größer	gültig								
-M C 1421-(Risstiefe	107		129	83	83	95	77	77	74	50		K _{Isc}	[Mpam ^{0.5}]	5,13		5,36	5,31	5,08	5,05	5,12	4,93	4,91	5,01	5,07	0,15
g laut AST		Bruch- kraft [N]	417,0	415,5	414,0	422,5	392,8	402,7	428,3	428,2	425,1	497,2		γ_{s}	(a,c,W)	1,269303		1,277636	1,233583	1,238428	1,249572	1,229467	1,240559	1,231583	1,222685	MM	STABW
swertung		MW _{Breite} [m]	0,003986	0,003943	0,003933	0,003929	0,003942	0,003968	0,003953	0,004003	0,003983	0,003991		S	(a,c,W)	0,898538		0,999308	0,798490	0,808987	0,833990	0,788813	0,809609	0,791460	0,771789		
thode Au	ragen	[3,989	3,929	3,910	3,922	3,935	3,972	3,962	4,002	3,982	3,993	gunu	H_1	(a,c,W)	0,984699		0,981000	0,988194	0,987527	0,986845	0,989414	0,989166	0,989949	0,992615		
u SCF-Met	Zum Eint	eite B [mm	3,987	3,942	3,933	3,928	3,942	3,967	3,951	4,003	3,983	3,990	Berechr	۲ _d	(a,c,W)	1,365606		1,227432	1,503946	1,488094	1,454529	1,521500	1,495187	1,520941	1,557811		
FSNI grai		Br	3,983	3,959	3,957	3,938	3,948	3,964	3,945	4,003	3,985	3,989		Η ₂	(a,c,W)	0,951919		0,941800	0,962002	0,959953	0,958011	0,965844	0,965212	0,967588	0,976067		
gebalken		MW _{Höhe} [m]	0,002958	0,002926	0,002924	0,002916	0,002882	0,002927	0,002922	0,002950	0,002922	0,002935		Μ	(a,c,W)	1,070667		1,056454	1,083205	1,081996	1,078949	1,084243	1,081754	1,083876	1,085966		
nitrid Bie		W [mm]	2,963	2,923	2,921	2,905	2,879	2,929	2,923	2,956	2,964	2,934		12/2/0	(1/a/ c)	1,749878		2,064303	1,508199	1,530527	1,586530	1,488242	1,532009	1,493707	1,454497		
Silizium		ch Abtrag '	2,962	2,929	2,928	2,919	2,895	2,929	2,920	2,955	2,928	2,933		halbe Bisshraita	c [m]	0,000164		0,000157	0,000164	0,000167	0,000166	0,000152	0,000148	0,000143	0,000112		
		Höhe na	2,949	2,927	2,923	2,923	2,873	2,923	2,922	2,940	2,875	2,939		Risstiefe	a [m]	0,000110		0,000129	0,000087	0,000090	0,000096	0,000078	0,000080	0,000074	0,000055		
		Proben- bezeichnung	FSNI_grau_1	FSNI_grau_2	FSNI_grau_3	FSNI_grau_4	FSNI_grau_5	FSNI_grau_6	FSNI_grau_7	FSNI_grau_8	FSNI_grau_9	FSNI_grau_10		Proben-	bezeichnung	FSNI_grau_1	FSNI_grau_2	FSNI_grau_3	FSNI_grau_4	FSNI_grau_5	FSNI_grau_6	FSNI_grau_7	FSNI_grau_8	FSNI_grau_9	FSNI_grau_10		

SCF-Standard Si $_{3}N_{4}$ -Biegebalken – Auswertung nach Newman und Raju:

11. Anhang D: Protokolle der Zähigkeitsmessungen

			Siliziu	Imnitrid 5	Scheiben FSNI	grau - modifizierte SC	CF-Methode		
		Probeng	eometrie				Angaben vo	m B3B-Test	
					Scheiben-	Durchmesser der	[-] ^		Spannings-
Proben-	Höhe ng	ich Ahtraø	W [mm]	MW _{Höhe}	Durchmesser	verwendeten	(Querkon-	Bruchkraft [N]	herechning vom
bezeichnung		0		[u]	[mm]	Auflagerkugeln beim B3B-Test [mm]	traktions- zahl)		B3B-Test [MPa]
Scheibe_7	1,790	1,791	1,792	1,791	19,360			597,9	387,8
Scheibe_9	1,806	1,806	1,807	1,806	19,300			620,1	394,7
Scheibe_10	1,802	1,801	1,802	1,802	19,320	15,000	0,27	634,1	405,9
Scheibe_14	1,815	1,814	1,814	1,814	19,260			729,1	459,5
Scheibe_17	1,812	1,811	1,810	1,811	19,220			857,5	542,8
	Rissgeom	letrie		٩¢	rgleich mit Ne	wman und Raju	Erge	bnisse der FEM-Aus	wertung
Risstiefe a	[mm]	Rissbreit	:e 2c [µm]	K (A)	[MPavm]	K (C) [MPavm]	Ymax	KIC /	Anmerkungen
61	99		287		4,857	3,672	0,849	4,649	
71,7	60		278		4,901	3,762	0,840	4,679	
82	83,3		304		5,377	4,552	0,773	5,058	
62	60		265		5,592	4,305	0,839	5,335	
40	41		218		5,757	3,939	0,827	5,062	
								_	
							MΜ	4,96	
							STABW	0,29	

 $Modifizierte \ SCF-Methode \ an \ Si_{3}N_{4}-Scheiben \ - \ FEM-Auswertung:$

SEVN-B F	racture	Tougl	hness	i				
nach ESIS P5-00/VAI	MAS							
Star	ndardproben	-						
Bruchzähigkeits	messuna	т	emperatur:	24.4 °C	Datum:	08.07.13		
SEVNB-Methode	l	roll	uftfeuchte	49 %	Prüfer	AUS		
			Imaebuna:	Laborluft	Prüfgeschw	0.5 mm/min		
			Singe Sung.	Laborian	Auflagorabeta		40	
Mada ala k			<u>.</u>		Auflagerabola		+0	
Material:	PIC_EB222				Auflagerabsta	na 5 ₂ [mm]:	20	
Firma:	EPCOS			<u> </u>				
Kerbe:	automatisch po	liert, Rasierklin	ge & 0,1 µm	Diamantpas	ste			
Probe	Breite [mm]	Höhe [mm]	F _{max} [N]	a [mm]	r [μm]	α	Υ(α)	K _{lc} [MPa√m]
	3,007	4,005		0,922				
	3,021	4,013		0,922				
PTC_EB222_1	3,035	4,019		0,919				
	3,021	4,012	34,572	0,921	3,250	0,230	1,286	1,23
		gültig	JA	0,003				
	3,023	4,002		0,997				
	3,024	4,016		1,008				
PTC_EB222_2	3,023	4,034		1,001				
	3,023	4,017	33,456	1,002	2,250	0,249	1,250	1,25
		gültig	JA	0,011				
	3,028	4,017		1,012				
	3,032	4,024		0,997				
PTC_EB222_3	3,030	4,028		0,988				
	3,030	4,023	34,654	0,999	3,500	0,248	1,252	1,29
		gültig	JA	0,024				
	3,016	3,994		1,072				
	3,009	4,002		1,068				
PTC_EB222_4	2,998	4,007		1,061				
	3,008	4,001	33,078	1,067	5,250	0,267	1,220	1,31
	· ·	aültia	ĴA	0.011			,	
	3.038	4.007		0.879				
	3 039	4 022		0.882				
PTC EB222 5	3 031	4 039		0.860				
	3.036	4.023	36.441	0.874	4,750	0.217	1.310	1.24
	0,000	aültia	JA	0.022	.,	0,211	.,	.,
	3 033	3 970		0.840				
	3 028	3 987		0.831				
PTC EB222 6	3 019	4 000		0.831				
	3 027	3 986	37 840	0,834	4 500	0 209	1 326	1 29
	0,027	aültia	.14	0,004	4,000	0,200	1,020	1,20
	3.011	4 022	0/1	1 032				
	3,002	4,022		1,032				
PTC EB222 7	2 088	3,007		1,020				
	2,900	4 006	33 150	1,032	5 250	0.257	1 226	1.28
	5,000	-,000	14	0.004	5,250	0,201	1,200	1,20
		guilig	57	0,004	4 107		K -	4.97
					4,107	m:	NIC=	1,27
						S:	s=	0,03

SEVNB-Standard PTC-Biegebalken – Auswertung nach ISO/FDIS 23146:

		ie 2c [µm]	1238 1192 037	1159	1369			L			swertung	ы					
		Rissbreit	1291 1239 037	1154	1289 1148			ommenta			en zur Aus	rangezog					
		e a [µm]	410 516 560	592	552 523			Ŕ			alle Probe	he					
21-01b		Risstiefe	443 541 476	574	574 476			K _{lsc} [Mpam ^{0.5}]	1,54	1,75	1,65	1,78	1,50	т, с.		1,59	0,18
STM C 14		Bruch- kraft [N]	69,1 70,0 60 5	70,07	74,3 68,1			Υ _s (a,c,W)	1,230769	1,220980	1,188856	1,198239	1,219084	1, с с с 4 с 4		MΜ	STABW
ing laut A		MW _{Breite} [m]	0,004002 0,003976	0,004015	0,003994 0,004002			S (a,c,W)	0,909576	1,036507	1,173508	1,118579	1,024500	EOCUCU,1			
Auswertu	ragen	[u	4,002 3,993 4,044	4,006	3,986 3,999		Jung	Н ₁ (а,с,W)	0,939570	0,921005	0,917181	0,909778	0,916428	0,923234			
Aethode	Zum Eint	eite B [mr	4,001 3,975 7 037	4,015	3,994 4,000		Berechi	Υ _d (a,c,W)	1,167692	0,971267	0,835611	0,860070	0,966856	0,312432			
197 SCF-N		Br	4,002 3,960 4,030	4,024	4,003 4,006			Н ₂ (a,c,W)	0,810812	0, 759389	0, 756512	0,730453	0,/4462/	ETCC//n			
balken A		MW _{Höhe} [m]	0,002923 0,002915	0,002914	0,002918 0,002932			M (a,c,W)	1,079339	1,061168	1,033937	1,046968	1,065046	DOT / CD/T			
PTC-Biege		W [mm]	2,920 2,917 2,917	2,908	2,912 2,925			Q (a/c)	1,764612	2,162570	2,752720	2,483896	2,11368/	2,22032			
-		ch Abtrag	2,920 2,912 2,912	2,913	2,920 2,923			halbe Rissbreite C [m]	0,000632	0,000608	0,000469	0,000578	0,00065	ەددىسە بە			
		Höhe na	2,930 2,915 2,915	2,920	2,923 2,948			Risstiefe a [m]	0,000427	0,000529	0,000523	0,000583	0,000563	00000000			
		Proben- bezeichnung	Balken_1 Balken_2 Balken_3	Balken_4	Balken_5 Balken_6			Proben- bezeichnung	Balken_1	Balken_2	Balken_3	Balken_4	Balken_5				

SCF-Standard PTC-Biegebalken – Auswertung nach Newman und Raju:

				PTC-Sch	- A197 -	modifizierte SCF-Meth	node		
		Probenge	ometrie				Angaben vo	m B3B-Test	
					Scheihen-	Durchmesser der	[-] ^		-søundueds
Proben-	Höhe nac	-h∆htraø∖	M [mm]	MW _{Höhe}	Durchmesser	verwendeten	(Querkon-	Briichkraft [N]	herechning vom
bezeichnung		0		[m]	[mm]	Auflagerkugeln beim B3B-Test [mm]	traktions- zahl)		B3B-Test [MPa]
Scheibe_1	2,918	2,914	2,918	2,917	19,405			274,8	58,434
Scheibe_2	2,883	2,876	2,874	2,878	19,430			252,4	55,384
Scheibe_3	2,874	2,883	2,872	2,876	19,435			253,9	55,761
Scheibe_4	2,838	2,837	2,835	2,837	19,440			254,9	57,827
Scheibe_5	2,756	2,751	2,749	2,752	19,435			254,3	61,920
Scheibe_6	2,817	2,820	2,820	2,819	19,415	15,000	0,29	255,9	58,907
Scheibe_23	2,964	2,934	2,970	2,956	19,350			273,6	56,404
Scheibe_24	2,999	2,987	3,020	3,002	19,410			318,5	63,310
Scheibe_25	2,945	2,883	2,964	2,931	19,410			277,8	58,407
Scheibe_26	2,962	2,982	2,950	2,965	19,365			306,7	62,790
Scheibe_27	2,985	3,017	2,972	2,991	19,415			291,3	58,385
	Rissgeome	etrie		٨٤	ergleich mit Ne	wman und Raju	Erge	bnisse der FEM-Aus	wertung
Risstiefe a	[mm]	Rissbreite	ະ 2c [µm]	K (A)	[MPavm]	K (C) [MPaVm]	Ymax	KIC A	۸nmerkungen
504			1062		1,229	1,597	0,666	1,548	
379			1039		1,240	1,337	0,680	1,299	
572			1145		1,158	1,602	0,655	1,548	
333			1045		1,316	1,303	0,671	1,255	
426			1084		1,369	1,578	0,666	1,509	
419			1015		1,271	1,489	0,666	1,424	
345			954		1,237	1,304	0,685	1,271	
360			959		1,387	1,495	0,682	1,452	
404			1214		1,397	1,448	0,669	1,391	
334			972		1,395	1,425	0,682	1,387	
414			978		1,255	1,470	0,670	1,412	
							MM	1,41	
							STABW	0,10	

Modifizierte SCF-Methode an PTC-Scheiben – FEM-Auswertung:

			PT(C-Scheibe	n A197 - mod	ifizierte SCF-Method€	: bei 200°C		
		Probeng	eometrie				Angaben vo	m B3B-Test	
					Scheiben-	Durchmesser der	v [-]		Spannungs-
Proben-	Höhe na	ch Abtrag	W [mm]	MW _{Höhe}	Durchmesser	verwendeten	(Querkon-	Bruchkraft [N]	berechnung vom
bezeichnung				٤	[mm]	Auflagerkugeln belm B3B-Test [mm]	traktions- zahl)		B3B-Test [MPa]
PTC_65	2,923	2,922	2,920	2,922	19,415			281,8	59,689
PTC_66	2,923	2,921	2,920	2,921	19,435			281,2	59,560
PTC_67	2,907	2,907	2,909	2,908	19,410			304,5	65,224
PTC_82	2,910	2,910	2,907	2,909	19,430			287,1	61,420
PTC_84	2,929	2,929	2,934	2,931	19,475	15,000	0,29	295,9	62,188
PTC_85	2,939	2,942	2,940	2,940	19,460			270,8	56,488
PTC_87	2,920	2,917	2,918	2,918	19,435			289,7	61,501
	Rissgeom	etrie		١٧	ergleich mit Ne	wman und Raju	Erge	bnisse der FEM-Aus	wertung
Risstiefe a	[mm]	Rissbreit	e 2c [µm]	K (A)	[MPavm]	K (C) [MPavm]	Үтах	KIC	Anmerkungen
330			991		1,336	1,344	0,678	1,303	
318			901		1,282	1,323	0,687	1,293	
312			841		1,363	1,438	0,688	1,405	
280			868		1,313	1,277	0,681	1,241	
320			876		1,321	1,388	0,688	1,356	
349			948		1,232	1,313	0,684	1,279	
344			883		1,297	1,421	0,681	1,376	
							MΜ	1,32	
							STABW	0,06	

Modifizierte SCF-Methode an PTC-Scheiben bei 200°C – FEM-Auswertung: