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Leoben, 6. Juni 2014 Werner Kollment



2

Abstract

This thesis describes the design of a control unit for a six degree of freedom (6-DOF) industrial

robot. A fundamental theoretical introduction into robot kinematics is provided, whereby multi-

ple state-of-the-art approaches are explained and compared. The goal of this thesis is to establish

a kinematic framework, which is fully transparent for educational use. Furthermore, interfacing

additional algorithms and hardware components such as sensors is simplified; hence, expansion of

the system requires less effort compared to conventional controllers. The robot control is based on

an industrial personal computer (PC), which is divided into a real-time programmable logic con-

troller (PLC) and a conventional Windows desktop system. The robot is actuated by six frequency-

inverter driven servo motors, which are controlled by the PLC. The PLC is equipped with a generic

network interface, which enables execution of remote positioning commands. In this thesis, the

forward and inverse kinematic computations for the PLC are implemented in MATLAB. Simulink

is utilized to provided a real-time environment for the MATLAB functions on a remote PC in or-

der to communicate with the PLC. The network connection is established via the user datagram

protocol (UDP), whereby real-time capabilities are ensured. The overall system’s safety related

functions are controlled by a dedicated safety PLC. The correct functionality of this customized

implementation is validated with the existing industrial solution provided by Bernecker & Rainer.

As result of this thesis, a fully operational robot control is obtained, which is utilized for educa-

tional purposes such as student projects as well as research on robotic related topics.
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Zusammenfassung

Diese Diplomarbeit beschreibt die Entwicklung einer Steuerung für einen Industrieroboter mit

sechs Freiheitsgraden. Für ein besseres Verständnis der Kinematik werden die notwendigen Grund-

lagen im Text zusammengefasst und geläufige Methoden erläutert. Die Zielsetzung dieser Diplom-

arbeit ist es, ein offenes Steuerungssystem für die Ausbildung zu schaffen. Durch das neue Kon-

zept wird eine Einbindung von zusätzlichen Algorithmen und Hardware, wie zum Beispiel Sen-

soren, erleichtert. Die Steuerung basiert auf einem Industrie PC, die über ein Echtzeitbetriebssy-

stem und ein parallel laufendes Windows System verfügt. Die sechs Servomotoren des Roboters

werden von sechs Frequenzumrichtern versorgt, welche vom Industrie PC gesteuert werden. Zur

Ansteuerung des Roboters wurde eine Netzwerkschnittstelle geschaffen, welche Positionierungs-

befehle entgegen nimmt und ausführt. Die Vorwärts- und Rückwärtskinematik für die Netzwerk-

schnittstelle wird in MATLAB berechnet. Die Kinematik wurde auf einen externen Computer im-

plementiert und über das UDP-Protokoll über eine Netzwerkschnittstelle kommuniziert. Um die

Echtzeitfähigkeit zu gewährleisten wurde in Simulink eine Echtzeitumgebung für die MATLAB-

Funktionen der Kinematik geschaffen. Alle sicherheitsrelevanten Funktionen der Steuerung wer-

den von einer Sicherheits- SPS überwacht. Das Ergebnis dieser Diplomarbeit ist eine voll funkti-

onsfähige Robotersteuerung, die für die Ausbildung und Forschung genutzt wird.
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1.3.1 Plücker Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.3.2 Inversion of a Screw . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2 Denavit-Hartenberg Convention 27

2.1 Denavit-Hartenberg Convention . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.1.1 Denavit-Hartenberg-Parameters for Stäubli RX60 . . . . . . . . . . . . . . 29

2.2 Screw-Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3 Forward Kinematics 32

3.1 Articulated Manipulator with Spherical Wrist . . . . . . . . . . . . . . . . . . . . 32

4 Inverse Kinematics 34

4.1 Iterating Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.2 Closed Form Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4



CONTENTS 5

4.2.1 Kinematic Decoupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2.2 Geometric Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2.3 Algebraic Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.2.4 Orientation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

II Engineering Process 42

5 Development of the Software Concept 43

5.1 B&R Robotic Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.1.1 Important Robot Specific NC Commands . . . . . . . . . . . . . . . . . . 43

5.2 B&R MATLAB via OPC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.3 B&R MATLAB via UDP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.4 B&R Motion Sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.4.1 Cyclic Velocity Function Block . . . . . . . . . . . . . . . . . . . . . . . 48

5.4.2 Cyclic Position Function Block . . . . . . . . . . . . . . . . . . . . . . . 49

6 Design and Assembly of the Controller Hardware 50

6.1 Main Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6.2 Industrial PC APC810 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6.3 Safety PLC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6.4 Estimation of the Gear Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

7 Programming of the Axis Controller 55

7.1 Single Axis Task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

7.2 Robot Control Task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

7.3 Interpolation Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

7.4 Programming of the Safety PLC . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

8 Implementation of Robot Kinematics 61

8.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

8.1.1 Inverse Kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

8.1.2 Border Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

8.1.3 Implementation in MATLAB . . . . . . . . . . . . . . . . . . . . . . . . . 66

8.1.4 Implementation in Simulink . . . . . . . . . . . . . . . . . . . . . . . . . 67



CONTENTS 6

8.1.5 Test of the Kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

9 Conclusion and Future Work 69

A Source Code 70

A.1 Kinematics Test in MATLAB . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

A.2 Kinematics Test in Simulink . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
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Introduction

The field of robotic conquers more and more parts of daily life. Although, robots are capable

of much more than pick and place tasks, they are primary used for such tasks. Most standard

robot controllers are therefore optimized for pick and place tasks. This leads to a limitation of

the applicability of robots in research. Most robot manufacturers also provide more advanced

controllers, but they cost twice as much as a standard robot. Due to this high cost and the fact, that

the mechanic system of the robots has hardly advanced in the last ten years, it was decided to build

a new controller for an already existing six degree of freedom serial robot. There are three main

issues, to be dealt with. The first one is the hardware components and their compatibility with the

motors and encoders of the existing robot arm. The second issue is the control software and the

different methods to control the six axes. The last issue is the mathematically complex kinematics

and the ways to use it. The main components of the hardware were supplied by Bernecker & Rainer

(B&R). They consist of six frequency converters to power the motors and a standard industrial PC,

which controls the whole system. Also necessary is a transformer to reduce the output voltage of

the inverter and make it compatible with the motors. In order to control the robot two different

types of control software are used. The first one is a standard robot control software from B&R.

The intention for this is to maintain the compatibility with industrial standards. The second control

software is a self developed control software. In this particular control software the kinematics is

excluded and implemented on a remote pc with more computation power instead. Both programs

use the UDP to communicate with each other. The kinematics itself was implemented in MATLAB

and Simulink, which allows a rapid prototyping of new kinematic concepts or the easy use of

machine vision.
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Chapter 1

Basic Concepts of Robot Kinematics

The intention of this chapter is to give an overview of the elementary concepts of robot kinematic.

The first section explains how a rotation in three dimensional space can be formulated as a rota-

tion matrix and outlines its special properties. The next sections gives a summary of methods to

describe a rotation matrix such as Euler angles, Roll-Pitch-Yaw angles, Axis-Angle concept and

quaterions. The last two are a different description of the same kinematic concept. The last two

sections introduce homogeneous coordinates and the screw concept.

1.1 Rotation Matrix

Points are simply describable in three-dimensional space. In contrast, the description of a body’s

orientation in three-dimensional space is a complex task. For this purpose, a frame Σuvw of three

orthogonal unit vectors u,v,w is attached to the body. The frame and its origin indicates the

orientation and the position of the body. This frame acts as a local coordinate system. [15, p24-

p25] [16, p38-p47] [3, p21-p23]

This local frame Σuvw describes the rotation of a body or point from a previous frame Σxyz into a

new frame, when both frames share the same origin.

Position vector p of point P in Σxyz:

p =

⎡
⎣pxpy
pz

⎤
⎦ , (1.1)

Position vector p of point P in Σuvw:

p =

⎡
⎣pupv
pw

⎤
⎦ . (1.2)

9
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Figure 1.1: The two coordinate frames Σ share the same origin. The length of the position vector

p in both frames is the same but to represent the same point P in space in the second frame the

vector p needs to be rotated.

This is achieved by choosing a random point P and describing it as linear combination of three unit

vectors i, j,k . If this is done for the global frame Σxyz as well as the local frame Σuvw, then two

equivalent descriptions for the same point are acquired. This is shown in Figure 1.1 and Equation

1.3 and 1.4.

Σxyz:

pxyz = pxixyz + pyjxyz + pzkxyz, (1.3)

Σuvw:

puvw = puiuvw + pvjuvw + pwkuvw. (1.4)

The position vector p is multiplied with the direction vectors ixyz, jxyz,kxyz of the global frame

Σxyz. As a result, the components px, py, pz of the position vector p are:

px = p ixyz, (1.5)

py = p jxyz, (1.6)

pz = pkxyz. (1.7)

px = (puiuvw + pvjuvw + pwkuvw) ixyz, (1.8)

py = (puiuvw + pvjuvw + pwkuvw) jxyz, (1.9)

pz = (puiuvw + pvjuvw + pwkuvw)kxyz. (1.10)
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In concise matrix form,⎡
⎣pxpy
pz

⎤
⎦

︸ ︷︷ ︸
pxyz

=

⎡
⎣iuvwixyz juvxixyz kuvwixyz
iuvwjxyz juvxjxyz kuvwjxyz
iuvwkxyz juvxkxyz kuvwkxyz

⎤
⎦

︸ ︷︷ ︸
R

⎡
⎣pupv
pw

⎤
⎦

︸ ︷︷ ︸
puvw

. (1.11)

Rearranging the variables as shown in Equation 1.11 simplifies the operation to a simple matrix

transformation. The rotation matrix R describes the rotation of the local frame Σuvw in reference

to the global frame Σxyz. The relation ab = |a||b| cos(ϕ) is used to substitute the scalar product

with the cosine function. This is shown in Figure 1.2, for a rotation about the z-axis.

Rz(ϕ) =

⎡
⎣ cos(ϕ) cos(90 + ϕ) 0
cos(90− ϕ) cos(ϕ) 0

0 0 1

⎤
⎦ . (1.12)

The previous rotation matrix is simplified by using the trigonometric identity sin(ϕ) = cos(90−ϕ)
and − sin(ϕ) = cos(90 + ϕ).

Rz(ϕ) =

⎡
⎣cos(ϕ) − sin(ϕ) 0
sin(ϕ) cos(ϕ) 0

0 0 1

⎤
⎦ , (1.13)

Rx(ϕ) =

⎡
⎣1 0 0
0 cos(ϕ) − sin(ϕ)
0 sin(ϕ) cos(ϕ)

⎤
⎦ , (1.14)

Ry(ϕ) =

⎡
⎣cos(ϕ) 0 − sin(ϕ)

0 1 0
sin(ϕ) 0 cos(ϕ)

⎤
⎦ . (1.15)

By switching the vectors p, ixyz, jxyz,kxyz, inversion of the rotation matrix is achieved.

⎡
⎣pupv
pw

⎤
⎦

︸ ︷︷ ︸
puvw

=

⎡
⎣iuvwixyz iuvxjxyz iuvwkxyz

juvwixyz juvxjxyz juvwkxyz

kuvwixyz kuvxjxyz kuvwkxyz

⎤
⎦

︸ ︷︷ ︸
R-1

⎡
⎣pxpy
pz

⎤
⎦

︸ ︷︷ ︸
pxyz

. (1.16)

1.1.1 General Properties of the Rotation Matrix

The rotation matrix is an orthogonal matrix RTR = I 1 and the properties are displayed in Equation

1.17 and Equation 1.18. Most of this properties are inherited from the cosine function,

1in this case also orthonormal
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Figure 1.2: Rotation of the coordinate frame Σ about z axis.

Rk(−ϕ) = Rk(ϕ)
T = Rk(ϕ)

−1, (1.17)

Rk(α)Rk(β) = Rk(α + β). (1.18)

The rotation matrix can be interpreted as:

1. Rotational transformation from local frame Σuvw to the global frame Σxyz.

2. Rotation of a vector about one axis k and a given angle ϕ.

Practical problems in kinematics require multiple rotations. This can be achieved by rotating a

position vector p from frame to frame, as shown in Equations 1.19 and 1.20. This approach

is inefficient for multiple rotations. A better way, is to merge all individual rotations into one

transformation, like shown in Equation 1.21. This equation exposes, that multiple rotations can be

described as product of the single rotation matrices.

Σ0 to Σ1:

p1 = R1p0, (1.19)

Σ1 to Σ2:

p2 = R2p1, (1.20)
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Σ0 to Σ2:

p2 = R2R1p0. (1.21)

Matrix multiplication is not commutative. For this reason, it has to be distinguished between

the matrix multiplication from left the pre-multiplication and the matrix multiplication from left

the post-multiplication. In many cases these two can only be distinguished by the indices of the

matrices or in case of the rotation matrix, by the order of the angles. For the rotation matrix these

two types of matrix multiplication have the following meaning: [15, p25-p30] [16, p49-p52]

pre-multiplication: local frame Σuvw rotates about the fixed global frame Σxyz,

post-multiplication: local frame Σuvw rotates about its principal axis.

1.1.2 Euler Angles

The Euler angles describe a rotation about the axes of three local frames. The sequence of the

rotations is important. Euler angles are commonly used to describe the orientation of a body in

space. Euler angles have the advantage, that there is no conversion to the actuating angle of the

drives necessary. This is possible because the actuating angle of the drive is measured between

stator and rotor, which is also the angle between the joints, where they are fixed. This is similar to

the Euler angle, which is measured between two frames.

Euler Angles ZYX Order

Figure 1.3 shows a rotation in ZYX order. The grey body shows the result of the previous rotation

and the black one the result of the actual one. Equation 1.22 displays the order of the single

rotations and Equation 1.23 shows the result of the multiplication. In Equation 1.23 the cosine and

sine function are substituted by cosα � cα and sinα � sα to improve the readability.

R = Rz(α)Rv1(β)Ru2(γ), (1.22)

R =

⎡
⎣cαcβ cαsβcγ − sαcγ cαsβcγ + sαsγ
sαcβ sαsβsγ + cαcγ sαsβcγ − cαsγ
−sβ cβsγ cβcγ

⎤
⎦ . (1.23)

Inversion for ZXY Order

The rotation matrix is known for most orientation problems in kinematics . The rotations param-

eters are of interest. In case of the Euler-Angles are these the three angles α, β, γ for the known

rotation order, here ZYX. These angles are extracted from the rotation matrix, like in Equation

1.23, for the particular rotation order. This is done by searching for suitable entries and calculating
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(a) Rotation about Z-axis
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z
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w1

(c) Rotation about X-axis

Figure 1.3: The figure shows the three single rotations of the Euler angle. It can be seen, that all

rotations are relative rotations.
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the inverse tangent for each angle with the entries. All entries are suitable where the term with

the second angle can be eliminated by division or the trigonometric identity 1 = sinα2 + cosα2.

Instead of the normal inverse tangent function the inverse tangent-two function is used to avoid

problems with the sign. The inverse tangent-two requires two parameters α = atan2(x, y). This

parameters are x � sinα and y � cosα.

R =

⎡
⎣r11 r12 r13
r21 r22 r23
r31 r32 r33

⎤
⎦ . (1.24)

There are two sets of inversion formulas for the Euler-angles. The reason for this are inverse

function of the trigonometric functions, which deliver two results for one input value 2.

π
2
, −π

2
:

β = atan2(−r31,
√
r211 + r221), (1.25)

α = atan2(r21, r11), (1.26)

γ = atan2(r32, r33). (1.27)

π
2
, 3π

2
:

β = atan2(−r31,−
√
r211 + r221), (1.28)

α = atan2(−r21,−r11), (1.29)

γ = atan2(−r32,−r33). (1.30)

Euler Angles ZYZ Order

Many robots, which have a spherical wrist, use a ZYZ order for the wrist axes. The purpose for

this are design and manufacturing advantages. For this reason the ZYZ order is more important

than the previous introduced ZYX order.

R(φ) = Rz(γ)Rv1(β)Rw2(α), (1.31)

R =

⎡
⎣cγcβcα− sγsα −cγcβsα− sγcα cγsβ
sγcβcα− cγsα −sγcβsα + cγcα sγsβ

−sβcα sβsα cβ

⎤
⎦ . (1.32)

2There would be more results but for the solution only the interval [0, 2π] is of interest.
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Inversion for ZYZ Order

The inversion problem for the ZYZ order is solved as shown for the XYZ order. Only the entries

from the rotation matrix change. [16, p53-p56] [3, p48-p50] [15, p53-p56]

0, π:

β = atan2(
√

r213 + r223, r33), (1.33)

α = atan2(r32,−r31), (1.34)

γ = atan2(r23, r13). (1.35)

−π, 0:

β = atan2(−
√

r213 + r223, r33), (1.36)

α = atan2(−r32,−r31), (1.37)

γ = atan2(−r23, r13). (1.38)

1.1.3 Roll-Pitch-Yaw Angles

The formulation of the Roll-Pitch-Yaw Angles is quite similar to the Euler angles. Contrary to the

Euler angles, which rotate about an axis of the previous frame Σuvw, the Roll-Pitch-Yaw angles

always rotate about the fixed frame ΣZY X . This becomes visible in the order of the matrix multi-

plication. In Equation 1.39 can be seen, that the order for Roll-Pitch-Yaw is γ, β, α. In contrast,

the order for the Euler angles is α, β, γ. This relation is also displayed in the Figure 1.3 and Figure

1.4, which shows the results for the same value of the angles α, β, γ.

R = Rz(γ)Ry(β)Rx(α), (1.39)

R =

⎡
⎣cαcβ cαsβcγ − sαcγ cαsβcγ + sαsγ
sαcβ sαsβsγ + cαcγ sαsβcγ − cαsγ
−sβ cβsγ cβcγ

⎤
⎦ . (1.40)

Inversion

The inverse problem for the Roll-Pitch-Yaw angles is equivalent to the inverse problem for the

Euler angles. [15, p32-p33] [16, p56-p57] [3, p45-p48]

R =

⎡
⎣r11 r12 r13
r21 r22 r23
r31 r32 r33

⎤
⎦ (1.41)
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(a) Rotation about X-axis
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(b) Rotation about Y-axis
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w3

(c) Rotation about Z-axis

Figure 1.4: This figure shows the three single rotations of Roll-Pitch-Yaw. It can be seen, that all

these rotation are absolute rotations (compare with Figure 1.3).
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z

u1

v1
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Figure 1.5: The Axis Angle rotation is a rotation about a axis, which is defined by an unit vector

r.

−π
2
, π
2
:

β = atan2(−r31,
√
r211 + r221), (1.42)

α = atan2(r21, r11), (1.43)

γ = atan2(r32, r33). (1.44)

π
2
, 3π

2
:

β = atan2(−r31,−
√
r211 + r221), (1.45)

α = atan2(−r21,−r11), (1.46)

γ = atan2(−r32,−r33). (1.47)

1.1.4 Axis-Angle

The Axis-Angle concept describe a rotation about an axis, which is defined by unit vector r and

the rotation angle ϑ. This is done by following steps:

1. Rotate the unit vector r in such a way, that it is aligned with the z-axis of the global frame;

2. distribute the rotation with the angle ϑ about the z-axis;

3. rotate the unit vector r back into its original configuration.
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Figure 1.6: Angles of the rotation axis.

All the described steps can be seen in Equation 1.48. The first step is achieved by post multiplying

with the inverse rotation matrices Rz(−α),Ry(−β) of the angle α, β. After that the rotation is

done by multiplying Rz(ϑ). The last step is obtained by pre-multiplying the rotation matrices

Ry(β),Rz(α).

Rr(ϑ) = Rz(α)Ry(β)Rz(ϑ)Rz(−α)Ry(−β) (1.48)

The angles α, β are extracted form the unit vector r. This derivation is shown in Figure 1.6 and

Equations 1.49 and 1.50.

sinα =
ry√

r2x + r2y
, cosα =

rx√
r2x + r2y

, (1.49)

sin β =
√

r2x + r2y, cos β = rz. (1.50)

In [11, p27-p30] is shown that the matrix exponential function can be transformed into the Ro-

drigues formula.

exp(r φ) = I+ r sinφ+ r2 (1− cosφ). (1.51)

The Rodrigues formula is just another representation of the Axis-Angle rotation and leads to the

same rotation matrix. This matrix is shown in the following equation.

Rr(ϑ) =

⎡
⎣ r2x(1− cϑ) + cϑ rxry(1− cϑ)− rzsϑ rxrz(1− cϑ) + rysϑ
rxry(1− cϑ) + rzsϑ r2y(1− cϑ) + cϑ ryrz(1− cϑ)− rxsϑ
rxrz(1− cϑ)− rysϑ ryrz(1− cϑ) + rxsϑ r2z(1− cϑ) + cϑ

⎤
⎦ . (1.52)
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R−r(−ϑ) = Rr(ϑ). (1.53)

Inversion

The inversion for axis angles uses the known entries of the rotation matrix R to calculate the axis

r and the rotation angle ϑ. The equations for axis r and the rotation angle ϑ can be derived by

comparing the entries of the rotation matrix R with the entries of the generalized rotation matrix

Rr(ϑ) from Equation 1.52. [3, p51-p55] [15, p33-p35] [16, p52-p59]

R =

⎡
⎣r11 r12 r13
r21 r22 r23
r31 r32 r33

⎤
⎦ , (1.54)

ϑ = cos−1(
r11 + r22 + r33 − 1

2
), (1.55)

r =
1

2 sinϑ

⎡
⎣r32 − r23
r13 − r31
r21 − r12

⎤
⎦ . (1.56)

1.1.5 Unit Quaterion

Quaterion can be explained as expansion of complex numbers for the three-dimensional space. A

quaterion consists of a scalar η and a vector ε. The square sum of a quaterion η2 + ε2x + ε2y + ε2z =
1 equals one, which is the reason why it is called Unit Quaterion. In some applications, such

as interpolation or calculation of multiple rotations, the quaterion notation preferred because the

quaterions need less computation time than the equivalent matrix notation [17, p512]. Therefore,

they are also used to describe robot kinematics [13].

η = cos
ϑ

2
, (1.57)

ε = sin
ϑ

2
r. (1.58)

The vector r defines the rotation axis and ϑ the rotation angle. Quaterion rotations are equivalent

to the Axis-Angle rotations and rotations performed by matrix exponential function.

R =

⎡
⎣2(η

2 + ε2x)− 1 2(εxεy − ηεz) 2(εxεz − ηεy)
2(εxεy − ηεz) 2(η2 + ε2y)− 1 2(εyεz − ηεx)
2(εxεz − ηεy) 2(εyεz − ηεx) 2(η2 + ε2z)− 1

⎤
⎦ . (1.59)
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Inversion

The inversion of the quaterions is similar to the axis-angle inversion and can be derived the same

way. [11, 33-34] [3, p55-p56] [15, p35-p37] [4]

η =
1

2

√
r211 + r222 + r233 + 1, (1.60)

ε =
1

2

⎡
⎣sgn(r32 − r23)

√
r211 − r222 − r233 + 1

sgn(r13 − r31)
√
r222 − r233 − r211 + 1

sgn(r21 − r12)
√
r233 − r211 − r222 + 1

⎤
⎦ . (1.61)

1.2 Homogeneous Transformation Matrix

Every movement in three dimensional space can be described with a translation d and a rotation

R. Usually this is done by the vector equation 1.62. This form of a transformation is only suitable

for small systems or manual calculations. To simplify the calculation, one dimension is added by

using homogeneous coordinates, which enables a matrix form of the equation. The resulting 4× 4
matrix is called homogeneous transformation matrix A.

p1 = d+ R1
0 p0, (1.62)

[
1
p1

]
=

[
1 0T

d R1
0

] [
1
p0

]
, (1.63)

A =

[
1 0T

d R1

]
. (1.64)

The transformation matrix can be separated in following parts:

A =

[
scale factor perspective transformation

position vector rotation matrix

]
.

The position of the entries varies in literature. In this thesis the European convention is used as

shown in the previous equation. In most of the literature the American convention is used, which

looks as follows:

A =

[
rotation matrix position vector

perspective transformation scale factor

]
.
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Figure 1.7: The homogeneous coordinates can be interpreted a coordinate frame, where the vector

d defines the origin and the unit vectors u,v,w the coordinate axes.

1.2.1 Properties of the Transformation Matrix

The transformation matrix is quite similar to the rotation matrix, which sometimes leads to a mix-

up. Contrary to the Rotation Matrix, the inverse of transformation matrix T can ’t be achieved by

transposing the matrix.

A−1 �= AT. (1.65)

A fast way to achieve the inverse of the transformation matrix is to use its structure, like Equation

1.66 shows. This equation can be interpreted as rotation R1
0

T
in the opposite direction and a linear

movement −R1
0

T
d also in the opposite direction.

A−1 =

[
1 0

−R1
0

T
d R1

0
T

]
(1.66)

The indices on the bottom of the transformation matrix A2
0 indicates the start frame Σ0 and the

indices on the top the end frame Σ2 of the transformation [15, p37-p39] [12, p45-p54] [3, p29-

p31] [16, p60-p63].

A2
0 = A1 A2 =

[
1 0T

p1 R1

] [
1 0T

p2 R2

]
, (1.67)

A2
0 = A1 A2 =

[
1 0T

R1p1 + p1 R1R2

]
. (1.68)

1. The homogeneous transformation matrix A moves and rotates a point from a local frame

Σuvw to the global frame ΣZY X ;
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Figure 1.8: The similarity transformation can be represented as vector addition of the position

vector of the origins and rotations of the frames.

2. The homogeneous transformation matrix A moves and rotates vectors;

3. The homogeneous transformation matrix A describes position and orientation of an object in

three-dimensional space;

4. The homogeneous transformation matrix A represents a frame, which was moved and ro-

tated.

pre-multiplication: Manipulates a local frame Σuvw about principal axis of the global frame Σxyz

post-multiplication: Manipulates a local frame Σuvw about principal axis of the previous local

frame

1.2.2 Similarity Transformation

The Similarity Transformation is used to shift between the coordinate systems. This is shown in

Figure 1.8 [3, p99-p103].

ATool
Global = AGlobal

Basis

−1
AEndef
Basis A

Tool
Endef (1.69)

It gets applied for following tasks:

1. Describe the tool frame in reference to other frames such as the global frame,
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Figure 1.9: Graphical representation of a screw motion of a point.

2. describe local coordinates in the global frame;

3. describe the origin of camera frames in reference to other frames.

1.3 Screws

Another way to describe kinematic transformations in three-dimensional space is the screw [8,

p303] [7]. An advantage of the screw is that it is possible to describe rotation and linear movements

at the same time. Equation 1.70 shows the equation for a screw in parameter form, where p stands

for the pitch and r for the radius.

x(t) =

⎡
⎣r cosϕ(t)r sinϕ(t)

pϕ(t)

⎤
⎦ , (1.70)

x(t) =

⎡
⎣ 0

0
pϕ(t)

⎤
⎦+

⎡
⎣cosϕ(t) sinϕ(t) 0
sinϕ(t) cosϕ(t) 0

0 0 1

⎤
⎦
⎡
⎣r0
0

⎤
⎦ . (1.71)

The screw equation is transformed into a homogeneous transformation matrix, which allows the

usage of the homogeneous transformation properties and an easier calculation in matrix form.

Ascrew =

[
1 0T

ϕ(t)
2π

pd Rd(ϕ(t))

]
(1.72)
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Figure 1.10: This figure shows a graphical interpretation of the Plücker-coordinates of a screw. It

can be seen, that the unit vector d represents the screw axis and the vector a the distance of the

footpoint.

1.3.1 Plücker Coordinates

Usually the screw axis isn’t placed in the origin of the coordinate system nor is it congruent with

the principal axis. To overcome this problem, a similarity transformation is performed on the

original screw.

A′
screw = NAN−1, (1.73)

A′
screw =

[
1 0T

a I

] [
1 0T

ϕ(t)
2π

pd Rd(ϕ(t))

] [
1 0T

−a I

]
, (1.74)

A′
screw =

[
1 0T

ϕ(t)
2π

pd+ (I− Rd(ϕ(t)))a Rd(ϕ(t))

]
. (1.75)

The vector q is the crossproduct of the position vector a and the direction vector d of the screw

axis. The vector q and the direction vector d are combined to the so called Plücker coordinates

[d, q]. This coordinates frequently appear in calculation of velocities and static torques.

q = a× d (1.76)
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1.3.2 Inversion of a Screw

In many cases in practical work is the inversion of the screw needed. The inversion starts with a

comparison of the entries t and R of A with the entries from the screw matrix A′
screw.The first step

is to get the rotation angles ϕ and the rotation axis d from the rotation matrix Rd, the inversion of

Axis-Angle rotation is used.

A =

[
1 0T

t R

]
. (1.77)

t =
ϕ

2π
pd+ (I− Rd)a, (1.78)

d (I− Rd)a = d (t− ϕ

2π
pd), (1.79)

Rd d = d this is caused by the fact that d is the rotation axis and rotation axes are never effected

by the rotation. To enable a further simplification; the position vector a has to be chosen that way

that it is orthogonal to the direction vector d, which leads to: da = 0. This means also that Rd a
and d are orthogonal.

0 = d (t− ϕ

2π
pd), (1.80)

t =
ϕ

2π
pd, (1.81)

p =
2π

ϕ
(d t). (1.82)



Chapter 2

Denavit-Hartenberg Convention

This chapter introduces two methods for a systematic description for an open kinematic chain. A

kinematic chain is a mechanical structure, where every joint is connected to the next by a variable

link. The first method is the Denavit-Hartenberg convention, which can be found in literature. The

second method is the screw method, which is based on screws.

2.1 Denavit-Hartenberg Convention

The Denavit-Hartenberg convention is one of the most simple methods to describe a kinematic

chain. This method only needs four scalar parameters to describe a joint. One of these parameters

varies with the joint motion. This parameter is called joint variable and is usually the parameter d
for prismatic joints or for revolute joints the parameter θ. The four parameter have the following

meanings:

di . . . Coordinate of origin Oi along the z axis zi−1 of the previous frame,

ai . . . Distance between origin Oi and origin Oi−1,

αi . . . Angle between axis zi−1 and axis zi about the axis xi,

θi . . . Angle between axis xi−1 and axis xi about the axis zi−1.

These four parameter describe how a coordinate frame Σ has to be rotated and moved to achieve

the next frame. Figure 2.1 shows a graphical representation of the parameters. This is done by

matrix multiplication and is shown in the following Equation.

A =

[
1 0T

0 Rx(α)

] [
1 0T

d I

] [
1 0T

a I

] [
1 0T

0 Rz(θ)

]
,

=

⎡
⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 cos(α) − sin(α)
0 0 sin(α) cos(α)

⎤
⎥⎥⎦
⎡
⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 0
d 0 0 1

⎤
⎥⎥⎦
⎡
⎢⎢⎣
1 0 0 0
a 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦
⎡
⎢⎢⎣
1 0 0 0
0 cos(θ) − sin(θ) 0
0 sin(θ) cos(θ) 0
0 0 0 1

⎤
⎥⎥⎦ ,

27
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Figure 2.1: Denavit-Hartenberg paramter of a additional coordinate frame.

To achieve a readable form, it is common to write the result of the previous equation as two ma-

trices. The first one contains all static Denavit-Hartenberg parameters and the second one contains

the joint variable. [15, p42-p46] [16, p76-p89]

=

⎡
⎢⎢⎣
1 0 0 0
0 cos(θ) − sin(θ) 0
0 sin(θ) cos(θ) 0
0 0 0 1

⎤
⎥⎥⎦
⎡
⎢⎢⎣
1 0 0 0
a 1 0 0
0 0 cos(α) − sin(α)
d 0 sin(α) cos(α)

⎤
⎥⎥⎦ ,

=

⎡
⎢⎢⎣

1 0 0 0
a cos θ cos θ − cosα sin θ sinα sin θ
a sin θ sin θ cosα cos θ − cos θ sinα

d 0 sinα cosα

⎤
⎥⎥⎦ . (2.1)

The Denavid-Hartenberg parameters for a serial kinematic chain can be extracted with the follow-

ing procedure [15, p43]:

1. Define global coordinate frame;

2. Define reference configuration for example homing position;

3. Choose axis zi along the joint axis;

4. Locate the origin Oi at the intersection with the common normal to axis zi−1 and zi;
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5. Choose xi along the common normal to axis zi with direction to joint i+ 1;

6. Choose yi to complete the right-handed frame;

7. Determine homogeneous transformation for the joint.

There are some cases, where the rules of this convention aren’t clearly defined. This exceptions

are shown in the following list:

1. Two consecutive axes are parallel −→ origin Oi can be freely chosen;

2. Two consecutive axes are intersect −→ axis xi is arbitrary;

3. Joint i is prismatic −→ direction of axis zi−1 is arbitrary;

4. In frame 0 only z0 is specified −→ origin O0 and axis x0 can be freely choose;

5. Last frame n zn is not uniquely defined while xn is normal to zn−1.

In order to reduce the complexity of the calculation, it is intended to reduce the number of the

non-zero Denavit-Hartenberg parameters. A possible way is to select the free-settable parameter

in a way, that most of the following parameters get zero.

2.1.1 Denavit-Hartenberg-Parameters for Stäubli RX60

(a) Front view (b) Isometric view

Figure 2.2: This figure shows the single coordinate frames, which are used to extract the Denavit-

Hartenberg parameters for Stäubli RX60 .
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The search of the Denavit-Hartenberg parameter is started with the definition of the initial frame

Σ0.

Σ0toΣ1: Frame Σ1 by shifting the origin of frame Σ0 along the z-axis to the intersection of the

first two axes. The distance d1, which the frame Σ0 was shifted, is the first parameter.

A1 =

⎡
⎢⎢⎣
1 0 0 0
0 cos θ1 − sin θ1 0
0 sin θ1 cos θ1 0
d1 0 0 1

⎤
⎥⎥⎦ . (2.2)

Σ1toΣ2: In order to enable a transformation according to the Denavit-Hartenberg convention, a

rotation of the frame Σ1 is necessary. The frame Σ1 is rotated α1 about the x-axis and θ1
about the z-axis. Afterwards it is shifted about d2 along the z-axis to achieve the frame Σ2.

The distance d2 is free-settable because the axis 2 and axis 3 are parallel.

A2 =

⎡
⎢⎢⎣
1 0 0 0
0 sin θ2 cos θ2 0
d2 0 0 1
0 cos θ2 − sin θ2 0

⎤
⎥⎥⎦ . (2.3)

Σ2toΣ3: Frame Σ3 is achieved by shifting the frame Σ2 along the x-axis and rotate it θ3 about the

z-axis.

A3 =

⎡
⎢⎢⎣
1 0 0 0
a3 − sin θ3 − cos θ3 0
0 cos θ3 − sin θ3 0
0 0 0 1

⎤
⎥⎥⎦ . (2.4)

Σ3toΣ4: Frame Σ4 is achieved by rotating frame Σ3 α3 about the x-axis and

A4 =

⎡
⎢⎢⎣
1 0 0 0
0 cos θ4 sin θ4 0
0 0 0 −1
0 sin θ4 cos θ4 0

⎤
⎥⎥⎦ . (2.5)

Σ4toΣ5: frame Σ5 is achieved by translating frame Σ4 d4 along the z-axis and rotate it α5 about

the x-axis.

A5 =

⎡
⎢⎢⎣
1 0 0 0
0 cos θ5 − sin θ5 0
0 0 0 1
d4 − sin θ5 − cos θ5 0

⎤
⎥⎥⎦ . (2.6)
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Σ5toΣ6: The last frame Σ6 is calculated by rotating frame Σ5 α6 about the x-axis

A6 =

⎡
⎢⎢⎣
1 0 0 0
0 cos θ6 sin θ6 0
0 0 0 −1
0 sin θ6 cos θ6 0

⎤
⎥⎥⎦ . (2.7)

All these parameters for the Stäubli RX60 are given in Table 2.1.

joint di ai αi θi

1 d1 0 0 θ1
2 d2 0 -90 θ2 − 90
3 0 a3 0 θ3 + 90
4 0 0 90 θ4
5 d5 0 -90 θ5
6 0 0 90 θ6

Table 2.1: Denavit-Hartenberg-parameters for Stäubli RX60 .

The designer of Stäubli RX60 chose the geometric parameter in a way, that the kinematic equations

gets as simple as possible.

2.2 Screw-Method

The screw method is an alternative method to the Denavit-Hartenberg convention. The screw pa-

rameters are easier to evaluate than the Denavit-Hartenberg parameters, where a special orientation

of the previous coordinate frame is necessary to achieve the next frame.The screw method is also

more flexible in its usage [14]. This allows less experienced users to describe the kinematics.

The screw parameters are extracted with the following procedure:

1. Choose fixed coordinate system;

2. Define reference configuration for example homing position;

3. Identify screw axis d and distance a for each joint also identify the joint variable;

4. Determine homogeneous transformation matrix for each joint;

The transformation matrix is calculated by the following formula:

A =

[
1 0T

ϕ
2π
td+ (I− Rd(θ))a Rd(θ)

]
. (2.8)



Chapter 3

Forward Kinematics

This chapter introduces the forward kinematics and how it can be achieved using the transformation

matrix of the Denavit-Hartenberg convention or the screw method. The second topic of this chapter

is the forward kinematics for a 6 degree of freedom manipulator with spherical wrist.

The forward kinematic 1 is a mathematical method to calculate the position and orientation of a

kinematic chain from the joint variables. For a better separation T is used instead of A for the

transformation matrix of a kinematic chain.

T6
0 = A1 A2 A3 A4 A5 A6, (3.1)

T6
0 = A1

⎡
⎢⎢⎣
1 0 0 0
px nx sx ax
py ny sy ay
pz nz sx az

⎤
⎥⎥⎦ . (3.2)

position vector: p =

⎡
⎣pxpy
pz

⎤
⎦ , normal vector: n =

⎡
⎣nx

ny

nz

⎤
⎦ ,

sliding vector: s =

⎡
⎣sxsy
sz

⎤
⎦ , approach vector: a =

⎡
⎣axay
az

⎤
⎦ .

3.1 Articulated Manipulator with Spherical Wrist

This kind of manipulator has a spherical wrist, which is achieved by an intersection of the last three

joint axes. Any movement of the last three joints only changes the orientation of the end effector

but not the position. Now the forward kinematic can be separated in two problems, which is used

as an important simplification for the inverse problem.

1Sometimes the name direct kinematics is used for the forward kinematics.

32
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Figure 3.1: Home position of the Stäubli RX60 .

The following equations show the result of the forward kinematic for a Stäubli RX60 robot. The

equation for n and s are simplified using the angle sum:

cos(θ1 + θ2) = cos θ1 cos θ2 − sin θ1 sin θ2, (3.3)

sin(θ1 + θ2) = cos θ1 sin θ2 + sin θ1 cos θ2. (3.4)

In order to improve the readability, the cosine and sine function are substituted by cos θi � ci and

sini � si.

p =

⎡
⎣d4 (c1 c2 s3 + c1 c3 s2)− d2 s1 + a2 c1 s2
d4 (c2 s1 s3 + c3 s1 s2) + d2 c1 + a2 s1 s2

d1 + d4 c23 + a2 c2

⎤
⎦ , (3.5)

n =

⎡
⎣−c6 (s5 c1 s23 − c5 (c4 c1 c23 − s1 s4))− s6 (s4 c1 c23 + c4 s1)
−c6 (s5 s1 s23 − c5 (c4 s1 c23 + c1 s4))− s6 (s4 s1 s23 − c1 c4)

c6 (s5 (s2 s3 − c2 c3)− c4 c5 s23) + s4 s6 s23

⎤
⎦ , (3.6)

s =

⎡
⎣s6 (s5 c1 s23 − c5 (c4 c1 c23 − s1 s4))− c6 (s4 c1 c23 + c4 s1)
s6 (s5 s1 s23 − c5 (c4 s1 c23 + c1 s4))− c6 (s4 s1 c23 − c1 c4)

c6 s4 s23 − s6 (s5 (s2 s3 − c2 c3)− c4 c5 s23)

⎤
⎦ , (3.7)

a =

⎡
⎣c5 (c1 c2 s3 + c1 c3 s2) + s5 (c4 (c1 c2 c3 − c1 s2 s3)− s1 s4)
c5 (c2 s1 s3 + c3 s1 s2) + s5 (c4 (c2 c3 s1 − s1 s2 s3) + c1 s4)

−c5 (s2 s3 − c2 c3)− c4 s5 (c2 s3 + c3 s2)

⎤
⎦ . (3.8)



Chapter 4

Inverse Kinematics

This chapter presents methods for solution of the inverse kinematics.

Figure 4.1: Overview of solution methods for the inverse kinematics.

4.1 Iterating Methods

Figure 4.1 shows, that there are many different ways to solve the inverse kinematics. The iterating

methods are one of them. One dominant group of the iterating methods are the meta-heuristics.

The advantage of the meta-heuristics are, that the solvability of the inverse kinematics doesn’t de-

pend on the degree of freedom but they only deliver one solution of all possible. The most common

meta-heuristic algorithms for robots are the Artificial Neural Networks [5] [6] [10], the evolution-

ary algorithm [9]. Another group of the iterating algorithms are the Jacobian based methods. These

methods use the inverse of the Jacobian to solve the inverse kinematics. The use of the inverse of

34
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the Jacobian is risky, because of the singularity of the Jacobian at special robot configurations, but

there are algorithms, which cope with this problem [15, p104-p110].

4.2 Closed Form Solutions

Closed form solutions for the inverse kinematics are preferred in robotic. This solutions have the

advantage, that their behaviour can be predicted [16, p95]. Another aspect of the closed form

solution is that all possible solutions are calculated and it is possible to choose the most suitable

one. For a general six degree of freedom serial robot there exist sixteen possible solutions [1, p288-

p289] for the inverse kinematics. The number of solutions can be reduced by special arrangement

of the axes. Most of the closed form solutions are only practicable for these small group of 6

degree of freedom robots.

The following examples are based on the articulated manipulator Stäubli RX60. This robot type

has in general eight possible solutions for the inverse kinematics but not all of these solutions are

physically practicable as Figure 4.2.2 shows.

4.2.1 Kinematic Decoupling

The kinematic decoupling uses the intersection of three axes in one point to divide the inverse kine-

matics problem into two sub-problems. This two sub-problems are the position and the orientation.

There are two approaches to solve the position problem. The geometric approach [3, 126-129] con-

siders the inverse kinematics problem as a geometric problem, which can be solved with geometric

concepts. The algebraic approach [3, p122-p126] considers the inverse kinematics as an algebraic

problem , which can be solved by equation systems. A clear separation of the two approaches is

difficult because of the geometric nature of the problem, which always allows a geometric inter-

pretation. The choice of the approach depends on the user and his knowledge in this areas.

4.2.2 Geometric Approach

The geometric approach uses trigonometric functions, such as the law of cosine, to extract the

joint parameters. The robot in the example has an additional shoulder offset d2. This offset has

the purpose to avoid the shoulder singularity. Singularities are arm configurations, where the robot

loses at least one of its six possibilities to move. This improvement leads to a more difficult inverse

kinematics than it would be without shoulder offset.

Left Arm Configuration

The geometry of the robot allows to reduce the three dimensional problem into a two dimensional

problem in the xy-plane. The shoulder offset d2 causes the demand of additional angles ψ and α
to calculate the angle θ1. The first angle ψ is calculated form px and py of the position vector. The
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(a) (b) elbow up and down configuration

(c) left arm configuration (d) right arm configuration

Figure 4.2: Geometric solution for the inverse kinematics but not all solutions are physically pos-

sible.
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second angle α is calculated from r =
√
p2x + p2y and the shoulder offset d2. In Figure 4.2.2 can

be seen, that θ1 can be achieved by subtracting α from ψ.

ψ = atan2(px, py), (4.1)

α = atan2(
√
r2 − d22, d2), (4.2)

θ1 = ψ − α. (4.3)

Right Arm Configuration

The solution for the right arm configuration is quite similar to the left arm configuration, except

one more additional angle β is needed.

ψ = atan2(x, y), (4.4)

α = atan2(
√
r2 − d22, d2), (4.5)

β = α + π, (4.6)

θ1 = β + ψ. (4.7)

Elbow Configurations

For the calculation of the angles θ2 and θ3 is the origin coordinate system translated to the in-

tersection of the first two axis. The coordinate system itself is rotated by an angle θ1 about the

z-axis. This new coordinate system allows a simplification to a two dimensional problem. Figure

4.2.2 shows, that the position vector and the connection lines between the axes form a triangle.

This triangle can be used to calculate the angle θ3 by using the cosine law and the inverse of the

tangens-two. For the angle θ2 two additional angles β and ψ are needed. The angle β is calculated

from the coordinates r and s. The second angle ψ is calculated by using again the cosine law

and the inverse of the tangens-two. Depending on the sign of the coordinate s, θ2 is calculated by

addition or subtraction of β from ψ. [16, p97-p104]

D = cos(180− θ3) =
s2 + r2 − a23 − d24

2 a3 d4
(4.8)

θ3 = atan2(±
√
1−D2, D) (4.9)
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β = atan2(s, r), (4.10)

(4.11)

C = cosψ =
r2 + s2 + a23 − d24

2
√
r2 + s2a3

,

(4.12)

ψ = atan2(
√
1− C2, C),

s > 0:

θ2 = ψ − β. (4.13)

s < 0:

θ2 = ψ + β. (4.14)

Alternative Solution The alternative solution is based on the idea, that every rotating joint de-

scribes a circle. This implies, that the link between two joints can only be placed in the intersections

of the circles of the two joints.

s2 + r2 = a23, (4.15)

(s− ps)
2 + (r − pr)

2 = d24, (4.16)

2 ps s+ 2 pr r − p2r − p2s = a23 − d24. (4.17)

θ2 = atan2(s3, r3), (4.18)

ψ = atan2(ps − s3, pr − r3), (4.19)

θ3 = ψ − θ2. (4.20)

4.2.3 Algebraic Approach

The algebraic approach also uses the kinematic decoupling to simplify the inverse kinematics. The

decoupling allows a splitting of the transformation matrix T6
0 into matrices. The first matrix T3

0

defines the position and the second matrix T6
3 the orientation of the robots wrist.

T3
0 = A1 A2 A3, (4.21)

T6
3 = A4 A5 A6, (4.22)

Ades = T3
0 T

6
3, (4.23)[

1 0T

pdes Rdes

]
=

[
1 0T

p3
0 R3

0

] [
1 0T

p6
3 R6

3

]
. (4.24)
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The rotation matrix R3
0 can be expressed as a matrix multiplication of the rotation matrices of the

Denavid-Hartenberg convention. The same relation also works for the position. The resulting

equation only has the variable parameters θ1, θ2 and θ3. All parameters, which are related to the

first axis, are shifted to the left side of the equation. The left side of the equation describe the

arm configuration problem and the right side the elbow configuration problem. The following

algorithm is a slight modification of the algorithm described in [8, p428-p436].

pdes = p3
0 + R3

0 p
6
3, (4.25)

Rdes = R3
0 R

6
3, (4.26)

R3
0 = Rx(α1)Rz(θ1)Rx(α2)Rz(θ2)Rx(α3)Rz(θ3). (4.27)

pdes = Rx(α1) {p1

+ Rz(θ1)Rx(α2)p2

+ Rz(θ1)Rx(α2)Rz(θ2)Rx(α3)p3

+ Rz(θ1)Rx(α2)Rz(θ2)Rx(α3)Rz(θ3)p4}. (4.28)

Rx(α1)
-1 pdes = p1

+ Rz(θ1)Rx(α2)p2

+ Rz(θ1)Rx(α2)Rz(θ2)Rx(α3)p3

+ Rz(θ1)Rx(α2)Rz(θ2)Rx(α3)Rz(θ3)p4, (4.29)

substitute p3 + Rz(θ3)p4 with p̃

Rx(α1)
-1 pdes = p1

+ Rz(θ1)Rx(α2)p2

+ Rz(θ1)Rx(α2)Rz(θ2)Rx(α3) p̃, (4.30)

Rx(α1)
-1 pdes − p1 = Rz(θ1)Rx(α2)p2

+ Rz(θ1)Rx(α2)Rz(θ2)Rx(α3) p̃, (4.31)

Rz(θ1)
-1
(
Rx(α1)

-1 pdes − p1

)
= Rx(α2) (p2 + Rz(θ2)Rx(α3) p̃) . (4.32)

The result of the previous equations with the parameters of the Stäubli RX60 look as follows:
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⎡
⎣px cos θ1 + py sin θ1
py cos θ1 − px sin θ1

pz − d1

⎤
⎦ =

⎡
⎣d4 sin(θ2 + θ3) + a3 sin θ2

d2
d4 cos(θ2 + θ3) + a3 cos θ2

⎤
⎦ (4.33)

The z-entry of the previous equation provides the first equation for the inverse kinematics of the

angles θ2 and θ3. The Euclidean norm of this equation delivers the second equation.

‖Rz(θ1)
-1
(
Rx(α1)

-1 pdes − p1

)
‖2 = ‖Rx(α2) (p2 + Rz(θ2)Rx(α3) p̃) ‖2 (4.34)√

d1
2 − 2 d1 pz + px2 + py2 + pz2 =

√
a23 + 2 a3 d4 cos θ3 + d22 + d24 (4.35)

For a general robot with wrist, there would be some trigonometric substitutions necessary to cal-

culate the angles θ2 and θ3. The structure of Stäubli RX60 simplifies the equations and enables to

calculate θ3. The same fact is also valid for θ1,which is calculated for the y-entry of Equation 4.33.

pz − d1 − a3 cos θ2 − d4 cos θ2 cos θ3 + d4 sin θ2 sin θ3 = 0 (4.36)

d21 − 2 d1 pz + p2x + p2y + p2z − a23 − 2 a3 d4 cos θ3 − d22 − d24 = 0 (4.37)

py cos θ1 − px sin θ1 − d2 = 0 (4.38)

As simplification the half-tangens substitution can be used:

t = tan
θ

2
, (4.39)

cos θ =
1− t2

1 + t2
, (4.40)

sin θ =
2t

1 + t2
. (4.41)

4.2.4 Orientation

The kinematic decoupling enables the separation of the rotation matrix R6
0 into two rotation matri-

ces. The first rotation matrix R3
0 describes the orientation of the wrist joint and is calculated from

the results of the inverse kinematics for the position. This implies, that the inverse of the position

has been solved. The second matrix R3
0 is the unknown rotation matrix for the orientation. The

orientation of the matrix R6
0 is known because it has to be equal with the desired orientation of

Rdes. This fact allows to calculate the unknown rotation matrix R6
3 by pre multiplying R6

0 with the

inverse of R3
0.

1

1Remember that the rotation matrix is a orthonormal matrix (RTR = I).
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R6
0 = R3

0 R
6
3, (4.42)

R3
0

-1
R6
0 = R6

3, (4.43)

R3
0

-1
Rdes = R6

3. (4.44)

The result is the rotation matrix R6
3 which is equal to the rotation matrix for the Euler-angles. The

last three joint angles can be calculated by using the inversion formula of the Euler-angles. The

rotation order of the Euler-angles depends on the wrist type but in many cases the ZYZ-order is

suitable.

R6
3 = REuler, (4.45)

R6
3 =

⎡
⎣cθ6cθ5cθ4 − sθ6sθ4 −cθ6cθ5sθ4 − sθ6cθ4 cθ6sθ5
sθ6cθ5cθ4 − cθ6sθ4 −sθ6cθ5sθ4 + cθ6cθ4 sθ6sθ5

−sθ5cθ4 sθ5sθ4 cθ5

⎤
⎦ . (4.46)

As mentioned in chapter one, the inverse function of sine and cosine delivers two solutions in an

interval from 0 to 2π for one input-value. This is lead to two solutions for the inverse orientation

[16, p105-p109].

0, π:

θ5 = atan2(
√
r213 + r223, r33), (4.47)

θ4 = atan2(r32,−r31), (4.48)

θ6 = atan2(r23, r13). (4.49)

−π, 0:

θ5 = atan2(−
√

r213 + r223, r33), (4.50)

θ4 = atan2(−r32,−r31), (4.51)

θ6 = atan2(−r23, r13). (4.52)
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Chapter 5

Development of the Software Concept

The design of a robot controller is an uncommon task in engineering. This reduces the number of

experienced people in this topic. In order to compensate this lack of knowledge, a demo version of

a robot control was analysed. The demo version was provided by the hardware supplier Bernecker

& Rainer (B&R). It is intended to use the robot for teaching and research. Therefore it was nec-

essary to provide an interface between the robot controller and MATLAB as a rapid prototyping

platform. Two possible interfaces are the OPC-interface and the UDP-interface.

5.1 B&R Robotic Project

For a priori test the B&R AR00 PLC simulation environment was used and the robot was visualized

with the B&R robotic visualisation software. The software enabled a priori test of the robot control

software and helped to develop new code1 before the hardware was available. Figure 5.1 shows

the simulation environment of the robotic project. The robotic project is divided into two main

parts. The first part is the Human-Machine-Interface block and is used to control the graphical

user interface. The second block is the Motion-Handling block, which takes care of path planning

and the control of the motion. Both blocks are designed to be reusable. Therefore, they are also

applied in other B&R applications. The Motion-Handling block can be divided into three tasks.

The first task is called the system task and is in charge of controlling states of the system, such as

homing or power up all axes. The next task is the CNC task and is used for path planning and to

coordinate the axes states. The last task is the Axes task and is applied to control the state of the

single axes.

5.1.1 Important Robot Specific NC Commands

The robotic project of B&R uses G-code to control the different robot tasks. G-code is the standard

code for programming numerical controlled (NC) machines, such as CNC mills or CNC lathes.

Most of the commands are equal to the standardized G-code commands, but there are also some

machine specific commands. The most important commands are listed in the following list.

1The whole robotic project itself was developed with these simulation tools
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(a) Menu visualization (b) Panel visualization

(c) Robot visualization

Figure 5.1: Simulation environment of the B&R robotic project.



CHAPTER 5. DEVELOPMENT OF THE SOFTWARE CONCEPT 45

commands description

g
en

er
al

G00 Rapid linear interpolation

G01 linear interpolation

G02 circle interpolation clockwise

G03 circle interpolation counter clockwise

G90 Absolute position coordinates

G91 Relative position coordinates

G92 Zero point offset and rotation of coordinate frame

B
&

R

G100 Rapid joint interpolation

G101 joint interpolation

G102 circle interpolation with general orientation

D FULL Tool definition

WS MAIN DEF Workspace definition

G801 \G802 Start \End command for a cubic spline

Table 5.1: Frequently used G-code commands

The following section shows examples of use for frequently used commands.

Examples for G01 command

1. Linear movement with defined path orientation:

G01 X100 Y300 Z30 A30 B40 C00 SEG=5

X,Y,Z point coordinates

A,B,C Euler angles for the orientation

SEG=5 Command for segmentation of the path to the desired point.

This is necessary for points near a singularities of the robot

2. Movement of the six single axes:

G01 Q1=0 Q2=45 Q3=90 Q4=0 Q5=45 Q6=0

Q1,. . . ,Q6 Joint angles of the single axis

3. Joint interpolated movement:

G101 X100 Y300 Z30 A30 B40 C00

X,Y,Z point coordinates

A,B,C euler angles for the orientation
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Examples for G02

1. Circle interpolation

G02 X7.5 Y40 I-30 J-22.5

X,Y coordinates of the end point

I,J coordinates of the circle center

2. Helix

G02 I50 H2160 Z100 (6 full rotations)

X,Y coordinates of the end point

I,J coordinates of the circle center

H Rotation in angle

Splines command

Cubic Spline:

G801 CE=0.01 BC1 X-1 Y1
G1 Y0 Y0 (interpolation point 1)
G1 X10 Y10 (interpolation point 2)
G1 X20 Y10 (interpolation point 3)
G1 X30 Y0 (interpolation point 4)

G802 BC1 X-1 Y0

X,Y,Z interpolation point coordinates

BC1 Boundary condition for the first point defined as first derivative

CE Chord error of the spline

Example for Workspace and Tool definition

1. Definition of the tool offset and orientation

D_FULL DX=20 DY=0 DZ=5 PHI=0 THETA=0 PSI=0

DX,DY,DZ Distance to the tool coordinate system

PHI,THETA,PSI Orientation angles of the tool coordinate system
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2. Definition of the workspace border cuboid

WS_MAIN_DEF X1=100 Y1=100 Z1=0 X2=500 Y2=500 Z2=400

X1,Y1,Z1 First corner of the workspace cuboid

X2,Y2,Z2 Second corner of the workspace cuboid

5.2 B&R MATLAB via OPC

Figure 5.2: Schematic diagram of the OPC-interface.

For the first attempts to enable a real time communication between MATLAB/Simulink and the

PLC the OPC-interface was used. This interface uses a server where the OPC variable is declared

and stored. This variable can be accessed and also manipulated from MATLAB and the PLC.

The advantage of the OPC-interface is, that it is a simple way to communicate between two or

more applications without the need of caring about the communication issues. During the tests it

was recognized, that the OPC-interface wasn’t stable. This behaviour can be explained through

the different implementation status of the actual OPC standard in MATLAB and the B&R PLC

runtime.

5.3 B&R MATLAB via UDP

An alternative to the OPC-interface was the User Datagram Protocol (UDP), which is used to

stream data over a network. Contrary to the TCP/IP protocol, where the reception of the sent

data is guaranteed, data losses in the UDP protocol are possible. Vice versa the UDP protocol

is much faster than the TCP/IP protocol and in many applications a small degree of data loss is

tolerable. Contrary to the OPC-interface, the UDP-interface required some modifications before

it was usable. In order to speed up the developing process, a B&R UDP sample program was
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Figure 5.3: Structure diagram of the UDP-interface.

taken as design template. One issue, which caused a little irritation during the developing process,

was the byte order of the different platforms. MATLAB uses as default order big endian and the

PLC runtime little endian. Another issue was the watchdog, which has to ensure a stable real-time

communication. The last issue was the error handling, which was necessary to avoid unintended

movements of the robot.

5.4 B&R Motion Sample

B&R provides sample programs for the user, which shall help to simplify the development of their

own applications. For the robot controller the motion sample was used. This sample program pro-

vides all functions for a basic control of a single axis. In order to enable the control via MATLAB,

the functions of the axis have to react on cyclic changes of the set value. Unfortunately these im-

portant functions , which are necessary for a control over MATLAB, were missing. Hence, it was

decided to expand the Motion sample about the cyclic velocity and the cyclic position function.

Both blocks are defined by the PLCopen standard.

5.4.1 Cyclic Velocity Function Block

The cyclic velocity block is a PLCopen function block, which allows a cyclical change of the speed

set value for the controlled drive2. Figure 5.4 shows the cyclic velocity block and its parameters.
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Figure 5.4: PLCopen function block cyclic velocity.

Figure 5.5: PLCopen function block cyclic position.

5.4.2 Cyclic Position Function Block

The cyclic position block is also a PLCopen function block and allows a cyclical change of the

set value for the position. One of the special properties of this block is, that it has two inputs for

the position. This can be seen in Figure 5.5. The first input accepts integer values as inputs and is

intended for a fast positioning task. The second input accepts only real values and is intended for

a precise positioning tasks.

2During the test period the PLCopen standard was modified, which leads to a modification of the function block

itself. This issue caused some problems



Chapter 6

Design and Assembly of the Controller
Hardware

6.1 Main Components

The controller consists of following main parts :

APC810 industrial PC B&R standard PLCs provide a storage for the user application the so

called USERROM. The maximum size of this USERROM is limited to 3008 kbyte for a

PLC with 4MB FLASH. This memory is consumed quiet fast from task such as visualization

or motor control. In order to overcome this limitation an industrial PC was used.

ACOPOS variable-frequency drives ACOPOS are variable-frequency drives which can be con-

trolled from PLC by using the Powerlink interface.

Remote I/O The remote I/O block is used to control analogue devices and to read analogue sensor

data. It is also controlled from the PLC via the Powerlink interface.

Mobile Panel In order fulfil the recommendation of the robotic standard EN ISO 10218-1, it was

necessary to install a mobile panel. This mobile panel acts as single pendant control for the

robot.

Transformer The transformer is used to supply the variable-frequency drives. The transformer

provides two different voltage levels. The first one is 100 Volt and is the voltage limit for the

motors. The second one is 30 Volt and is used to reduce the maximum speed of the robot.

Safety PLC In order to fulfil the recommendation of the robotic standard EN ISO 10218-1, such

as enable button, light curtain or interlock switch, it was necessary to build in a Safety PLC

to supervise the system.

All of these parts were tested before they were assembled to a controller. The intention of these

tests were to exclude hardware errors during the controller software developing. An overview of

the whole controller unit and the used parts is presented in Figure 6.1.
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(a) Frontside (b) Backside

Figure 6.2: A priori test of the hardeware components.

6.2 Industrial PC APC810

Figure 6.3: Function diagram of the APC810.

The simultaneous control of six axes is a memory consuming task. Standard PLC reach their limit

quite fast, especially if they are also used for visualization and other task. For this reason, it was

decided to use an industrial PC, which provided more memory and computation power, instead

of a normal PLC. It was decide to use the B&R APC810 industrial PC, which can use the two

operating systems Windows XP and the real time operating system ARWIN simultaneously. Each

of the operating systems uses one core of the dual core processor and a defined part of the RAM-

disk. A RAM disk is a virtual storage, which uses a part of the memory of the random access

memory (RAM) to store data. Figure 6.3 shows the schematic diagram of the APC810. Originally
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it was intended to run MATLAB on the industrial PC, but MATLAB was too resource hungry to

allow a stable operation of the ARWIN system.

6.3 Safety PLC

The standard EN ISO 10218-1 demands some special safety features from the robot. One of the

requirements was, that the robot only can be switched on if a enabling button was pressed. Another

requirement is the emergency stop of the robot if the light curtain or alternatively the interlock

switch of the robot cage door is activated. The robot Stäubli RX60 has a holding brake, which is

used to hold the robot arm in position if the power is lost. This brake is lifted if power is available.

In the case of power loss, the brake is activated and stops the system. In order to reduce the braking

torque in case of an emergency stop, it was decided to slow down the arm first with the motors and

use the holding brake to bring the arm to a complete stop. This behaviour was realized by a switch

off delay of 300 ms and a quick stop command which is send to the drives. After the delay time

the drive controllers are disabled

6.4 Estimation of the Gear Ratio

The Stäubli RX60 uses synchron servomotors to rotate its joints. Servomotors have a rotary en-

coder mounted on the motor shaft. This encoder allows a control of the position and the speed of

the motor shaft. The robot designer tried to reduce the mass of the moved parts to achieve a good

dynamical behaviour. Therefore, they used small motors with a small moment of inertia. This

motor are to weak to drive the joint directly and therefore a gear is needed. In order to reduce the

cost, the designer the motor used encoder to determine the actual joint angle. This task is simple

if the joints are driven directly, where the joint angle is equal with the motor angle. In case of gear

driven joint, the joint angle has to be calculated by multiplying the motor angle with the gear ratio.

Unfortunately,the data sheets of the Stäubli RX60 didn’t provide the gear ratio. Therefore the gear

ratio had to be estimated. For this purpose the single joints were rotated about a known or easy

measurable angle, for example 180 degrees. Afterwards the gear ratio was calculated by using the

measured value of the encoder.

i =
θout
θin

(6.1)

For an easier handling is θin substituted by

θin = c θ′in, (6.2)

i =
θout
c θ′in

. (6.3)

with:
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i . . . Gear ratio

θout . . . Rotation angle of the joint (gear output)

θin . . . Rotation angle of the motor (gear input)

θ′in . . . Rotation angle of the motor in encoder increments

c . . . Conversation factor

The B&R system uses motor revolution per one joint revolution to describe the gear ratio. For this

purpose the gear ratio has to be inverted.

motor revolution =
1

i
joint revolution (6.4)
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Programming of the Axis Controller

One of the main issues was the simultaneous control of the six robot axes. The control task for a

single axis was developed during the test phase; therefore, by utilizing the already existing code,

the development effort for the multi axes control task is reduced. This particular task supervises

the individual single axis control tasks. Figure 7.1 gives an overview of the controller concept.

7.1 Single Axis Task

The Single Axis Task controls the basic function of one axis. In order to achieve a clear com-

mand structure, four structured variables, that can be used for hierarchical structures, were defined.

Structured variables can be explained as objects of a class, which only contains attributes but no

functions. This four variables are:

Commands These variables enable the particular drive modes.

Parameters These variables contain the set-values for the particular drive mode.

Status These variables display the actual drive status, such as actual position, actual velocity and

also error messages.

Axis state These variables display the actual state of the axis.

The single axis task is based on a finite state machine, which controls the modes of the axis.

7.2 Robot Control Task

The aim of the Robot Control Task is to coordinate the six single axes of the robot. This task also

uses structured variables as command structure and is equivalent to the one described in single axis

task. Also the structure finite state machine is similar. The idea behind this finite state machine is

that a state of the Robot Control task leads the same action as the same state in the Single axis task
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Figure 7.1: Overview of the controller concept.
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but only with six axes. The state diagram of this finite state machine can be found in the appendix.

The following examples code shows the power on state and how all six axes are handled.

Listing 7.1: First solution for conjoining the status variables

1

2 POWERON:
3 ActualState := ’POWERON’;
4 //Send global command only ONCE
5

6 // Switch on of the controller of the single axes
7 IF (cycle = 0) THEN
8 FOR axes_index := 0 TO (max_loopcount) DO
9 GlobalControl[axes_index].Command.Power := TRUE

;
10 PowerCheck[axes_index] := 0;
11 END_FOR
12 cycle := 1;
13 END_IF
14

15 // Check if all axes controller are switched on
16 FOR axes_index := 0 TO (max_loopcount) DO
17 IF (axes_index = 0) THEN
18 Merker := TRUE;
19 END_IF
20 // Conjoin all status variables by using Merker
21 Merker := GlobalControl[axes_index].Status.DriveStatus.

ControllerStatus AND Merker;
22 END_FOR
23

24

25 // Exit state
26 IF (Merker = TRUE) AND (axes_index = max_index) THEN
27 RobStatus.VisuDrivesEnabled := TRUE;
28 STATE := READY;
29 END_IF

In this example code the for-loop was used to reduce the code and combine the status variables

of the axis to one variable. Therefore the variable Merkeris conjoined with the status variable

by AND. The result is stored again in the variable Merker. If all status variables of the axis are

TRUE, then the variable Merker is also TRUE. If one of the status variables is FALSE then the

variable Merker is also FALSE. Alternatively the same result could be achieved by conjoining

all status variables with AND. This is shown in the following example code.

Listing 7.2: Second solution for conjoining the status variables

1 //Check if all Axes are homed...
2 RobStatus.Homed:= GlobalControl[0].Status.DriveStatus.HomingOk
3 AND GlobalControl[1].Status.DriveStatus.

HomingOk
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4 AND GlobalControl[2].Status.DriveStatus.
HomingOk

5 AND GlobalControl[3].Status.DriveStatus.
HomingOk

6 AND GlobalControl[4].Status.DriveStatus.
HomingOk

7 AND GlobalControl[5].Status.DriveStatus.
HomingOk;

7.3 Interpolation Concept

In the first attempt, it was tried to move along a path by using the cyclic position function block.

This block didn’t allow a smooth movement. This behaviour can be explained by the acceleration

and deceleration ramp, which is applied after and before the desired point. If the distance between

the points is too short, there is a permanent acceleration and decelerating motion, which leads to

vibrations. Therefore it was decided to use the cyclic velocity function block instead. This block

has the disadvantage, that an interpolation controller is necessary to reach the desired position.

Figure 7.2: Interpolation concept for the Stäubli RX60 .

The following equations show, that the behaviour of the interpolation concept in Figure 7.2 is

equivalent to the behaviour of a first order system.

θi =
1

s
(θref − θi) k, (7.1)

s θi = k θref − k θi, (7.2)

s θi + k θi = k θref , (7.3)

θi (s+ k) = k θref , (7.4)

θi
θref

=
k

k + s
=

1
s
k
+ 1

. (7.5)
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7.4 Programming of the Safety PLC

The safety PLC has a simple programming environment, which is diagram based. The program-

ming environment always uploads the actual program for the storage of the safety PLC. This fea-

ture was very useful to deal with the version problem. The safety PLC has to take care of the

following tasks:

1. Enable all drive controllers.

2. Force robot to stop, if the light curtain of the robot cage or the interlock switch of the cage

door is activated.

3. Control the emergency stop buttons and force the robot to stop. This stop is performed by an

electrical brake. The final stop is achieved by the holding brake, which has a release delay

of 300 ms to allow an electrical braking before.

Figure 7.3 shows the program for the Stäubli RX60 .



CHAPTER 7. PROGRAMMING OF THE AXIS CONTROLLER 60

F
ig

u
re

7
.3

:
T

h
is

fi
g
u
re

sh
o
w

s
th

e
p
ro

g
ra

m
m

in
g

en
v
ir

o
n
m

en
t

o
f

th
e

sa
fe

ty
P

L
C

.
O

n
th

e
le

ft
se

ct
io

n
sh

o
w

s
th

e
in

p
u
t

ch
an

n
el

,
th

e
m

id
d
le

p
ar

t
th

e
se

q
u
en

ti
al

lo
g
ic

an
d

th
e

ri
g
h
t

se
ct

io
n

th
e

o
u
tp

u
t

ch
an

n
el

s.



Chapter 8

Implementation of Robot Kinematics

During the design process, it was decided to separate the control of the robot and the kinematics.

The kinematics and especially the inverse kinematics is a mathematical complex field. This is

the reason, why it is a popular test field for optimization algorithms, such as the artificial neural

network [10] [5] [6], evolutionary algorithm [9] or genetic algorithm [2]. MATLAB is optimized

for matrix and numerical calculation, which makes it a obvious tool for developing new algo-

rithm and software prototypes. Therefore, it was decided to implement the kinematics in MAT-

LAB\Simulink.

8.1 Implementation

The following section show the inverse kinematics. In order to improve the readability of the code,

the important mathematical relations are written in mathematical notation. Additionally, the same

line numbers as in the original code are used to simplify the comparison of the code segments. The

original code can be found in the appendix.

8.1.1 Inverse Kinematics

Position

The following section shows the inverse kinematics for the angles θ2 and θ3. The calculation of

the angle θ1 can be found in the border handling section.

Listing 8.1: border handling

200 % computing the solutions for u2, u3 in case of o beeing inside the
boundary sphere

201

202 numberSol2 = numberSol/2;
203

204 v2 = zeros(3, numberSol2);
205
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206 for i=1:numberSol2
207

208 m = px ∗ cos(v(i)) + py ∗ sin(v(i))
209 n = pz − d1
210

211 %sol := solve(2 ∗ (m ∗ x+ n ∗ z)− a22 + d24 −m2 − n2, x2 + z2 − a22, x, z):
212

213 aa = 2 ∗ (px ∗ cos(v(i)) + py ∗ sin(v(i)))
214 bb = 2 ∗ (pz − d1)
215 cc = −a22 + d24 −m2 − n2

216

217 if (abs(cc) < obj.eps)
218 t(1) = atan2(−aa, bb)
219 t(2) = t+ π
220 else
221 α = atan2(−bb/cc,−aa/cc)

222 β = atan2(

√
a22∗(aa2+bb2)−cc2

|cc| , 1)

223 t(1) = α− β
224 t(2) = α+ β
225 end
226

227 for j=1:2
228

229 %o3 := <subs(sol[j], x), subs(sol[j], z)>:
230

231 o3 = a2 ∗ [cos(t(j)); sin(t(j))]
232 v2(i, j) = atan2(o3(1), o3(2))
233 φ = atan2(m− o3(1), n− o3(2))
234 v3(i, j) = φ− v2(i, j)
235 end
236 end

Orientation

In order to optimize the computing time, some properties of the vector calculus are used. For an

easier reading of the source code some of the important relations are summarized.

Dot product:

ab = |a| |b| cos(ϕ) (8.1)

If a and b are unit vector:

ab = cos(ϕ) (8.2)
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Cross product:

|a× b| = |a| |b| sinϕ (8.3)

If a and b are unit vector:

|a× b| = sinϕ (8.4)

normalizing of vectors:

anorm =
a

|a| (8.5)

Listing 8.2: orienation

245 nos = 2*nos123
246 U = zeros(6,nos)
247

248 % Normalizing of the input vectors and calculation of the three
orientation vectors.

249

250 n6 = f1/|f1|
251 a6 = f1× f2
252 a6 = a6/|a6|
253 s6 = a6 × n6

254

255 for j=1:nos123
256 j2 = 2*j
257 j1 = j2-1
258

259 for i=1:3
260 U(i,j1) = U123(i,j)
261 U(i,j2) = U123(i,j)
262 end
263

264 % Calculation of the orientation vector of the third joint
265

266 sn1 = sin(U123(1,j))
267 cs1 = cos(U123(1,j))
268 sn23 = sin(U123(2,j)+U123(3,j))
269 cs23 = cos(U123(2,j)+U123(3,j))
270

271 a3 = [sn1; cs1; 0]
272

273

274 a4 = [cs1 sn23; sn1 sn23; cs23]
275

276 % Calculation of cos θ5
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277

278 cs5 = a4,a6

279

280 % Exactly two different solution triples for u4, u5, u6 for every
solution triple of u1, u2, u3

281

282 if (abs(abs(cs5) - 1.0) > obj.eps)
283

284 a5 = a4 × a6

285 denom = |a5|
286 fak = 1/denom
287 a5 = fak a5

288 sn5 = fak ∗ (1.0− cs52)
289

290 % Calculation of the two solutions for the angle θ4
291 cs4 = a3 a5

292 sn4 = fak ∗ (a3 a6)
293 U(4, j1) = atan2(sn4, cs4)
294 U(4, j2) = atan2(−sn4,−cs4)
295

296 % Calculation of the two solutions for the angle θ6
297 cs6 = a5 s6
298 sn6 = fak (a4 s6)
299 U(6, j1) = atan2(sn6, cs6)
300 U(6, j2) = atan2(−sn6,−cs6)
301 else
302 .
303 .
304 .
305 end
306 % Calculation of the two solutions for the angle θ4
307

308 U(5,j1) = atan2(sn5, cs5);
309 U(5,j2) = - U(5,j1);

8.1.2 Border Handling

The points in space, which are reachable with the robot, are limited by the physical properties of

the robot, such as arm length. This is an important issue which has to be dealt with inside the

kinematics because the boundaries are singularities of the robot. As Figure 8.1 shows, the Stäubli

RX60 has a spherical outer workspace boundary and a cylindrical inner workspace boundary. As

mentioned in chapter two, the design engineer tries to avoid singularities by design of the robot.

This design leads to an inner cylindrical border of the workspace.

Listing 8.3: border handling

142
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(a) Isometric view (b) Front view

Figure 8.1: Theoretical workspace of the Stäubli RX60 (axis limits are not reconsidered).

143 dist12 = p2x + p2y
144 dist22 = p2x + p2y + (pz − d1)

2

145

146 % Point is in workspace
147 if(dist12 > r2in)&&(dist2

2 < R2
out)

148 % Point lies on the boundary cylinder
149 if((dist12 < r2in)
150 % Point lies on lower or upper boundary circle
151 if(dist22 > R2

out)
152 numberSol=1
153 θ1 = atan2(−px, py)
154 % Point lies on the upper boundary circle
155 if(|pz − d1 − a3 − d4|<tolerance)
156 θ2 = 0
157 % Point lies on the lower boundary circle
158 else
159 θ2 = π
160 end
161 θ3 = 0
162 % Point lies on the boundary cylinder and inside the boundary sphere
163 else
164 numberSol=2
165 v(1) = atan2(−px, py)
166 θ1(1) = v(1)
167 θ1(2) = θ1(1)
168 end
169 % Point lies outside the boundary cylinder
170 else
171 α = atan2(−px, py)

172 β = atan2(
√

dist12 − d22, d2)
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173

174 v(1) = α− β
175 v(2) = α+ β
176 for j=1:2
177 if(v(j) > π)
178 v(j) = v(j)− 2π
179 end
180 if(v(j) < −π)
181 v(j) = v(j) + 2π
182 end
183 end
184 % Point lies on the boundary sphere
185 if(dist22 > R2)
186 numberSol=2
187 θ1(1) = v(1)
188 θ1(2) = v(2)
189 for j=1:2
190 θ2(j) = atan2(px cos v(j) + py sin v(j), pz − d1)
191 θ3(j) = 0
192 end
193 end
194 % Point lies inside the boundary sphere and out side the boundary

cylinder
195 else
196 numberSol=4
197 θ1(1) = v(1)
198 θ1(2) = v(1)
199 θ1(3) = v(2)
200 θ1(4) = v(2)
201 end

8.1.3 Implementation in MATLAB

The first version of the kinematic was written as MATLAB class. This class contains two functions

beside the robot parameters. The first function is called DK and calculates the transformation

matrix of the forward kinematics. The second function is called IK and calculates the possible

solutions and evaluates the closest solution to the actual configuration. Just as the B&RRobotic

Project this kinematic was developed with a simulation tool, which leads to problems with the

rotation direction. Not all assumed rotation directions of simulation did fit with rotation directions

of the robot axes.

Closest Solution

In the general case the inverse kinematic of Stäubli RX60 has eight solutions, but the robot can ex-

ecute only one of them. Therefore an algorithm is needed to find the most suitable of the solutions.
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The algorithm for the Stäubli RX60 uses the euclidean norm of the difference between the actual

joint angles vector and the solution vector. The solution vector, whose norm has the smallest value,

is the closest solution to the actual robot position.

Listing 8.4: Choose solution

304 dist=1000;
305 sol=1;
306

307 for i=1:numSolutions
308

309 dist1=‖θ(i)− θact‖22
310

311 if (dist<dist1)
312 sol=i
313 dist1=dist
314 end
315 end

Wrist Singularity Handling

The wrist singularity appears, if the axis of joint 4 and 6 are collinear and their motions are redun-

dant.

Listing 8.5: Singularity Handling

283 cs5=a4 a6

284 sn5=0.0
285 csw=a3 s3
286 snw=(a3 × s3)a4

287

288 w=atan2(snw, csw)
289

290 if(cs5>0)
291 θ4(i) =

θ4act−θ6act+w
2

292 θ6(i) = w − θ4(i)
293 else
294 θ4(i) =

θ4act−θ6act+w
2

295 θ6(i) = −w + θ4(i)
296 end

8.1.4 Implementation in Simulink

Simulink is compiled to C and therefore much faster than MATLAB. Therefore, it was decided to

implement the kinematics in Simulink. Simulink provides a function block, which allows to use

MATLAB script functions in Simulink. The disadvantage of this function block is, that it only

supports the basic data types of MATLAB.
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Real-time in Simulink

MATLAB\Simulink doesn’t operate in real time.1 A communication with a real time system

requires a synchronisation of MATLAB\Simulink with the real time. This is achieved with the

MATLAB function waitfortreal, which keeps MATLAB in busy wait state till the set time is over.

8.1.5 Test of the Kinematics

In order to test the functionality of the kinematics two different test programs were written. The

first program was written in MATLAB and the second one in Simulink.

MATLAB

The original kinematics was written as MATLAB class and therefore it was obvious to write a test

script in MATLAB. The MATLAB script is suitable to define a path and let it be executed from the

robot. During the test the following difficulties appeared:

1. In case, that the script is aborted, the UDP-connecting has to be closed manually via com-

mand line, which is sometimes forgotten. Therefore an error handling routine is necessary.

2. The calculation in MATLAB aren’t executed in real-time. In case, that MATLAB sends the

points of the path too fast for the PLC, data gets lost. Therefore a synchronization with the

real-time is necessary.

3. The standard user interaction are limited. Therefore a controlled program flow would be

necessary.

The test showed, that it is possible to control the robot via MATLAB but it is more effort necessary

to deal with the difficulties than in Simulink.

Simulink

The kinematics was also tested in Simulink. Simulink provides for many common input devices,

such as joysticks or cameras, function block to read their values. Therefore, a standard 3D-mouse

was used to generate the path and perform the test. In order to achieve a real-time behaviour some

changes in the solver parameters were necessary. Instead of the default variable-steps time of the

solver were a fixed-steps time of 0.01 s was used and the simulation time was set to infinity.

1Depending on the task, it is faster or slower than real-time.
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Conclusion and Future Work

This thesis presented the development and engineering of a control unit for a 6 DOF industrial

robot. The new controller concept provides a transparent framework and enables a separation of

the robot kinematics from the control hardware. For this purpose a generic network interface for the

PLC has been developed, which enables the real-time execution of remote positioning commands.

The network interface allows the use of more powerful PC and the scientific computation plat-

form MATLAB. Therefore, MATLAB is used as platform for the robot kinematics computations.

Due to the use of standard industrial components the maintenance is simplified. The transparent

framework simplifies the embedding and parametrizing of new sensors.

For standard application, the robot interprets G-codes stored in CNC files, that are generated with

several tools. A direct control from MATLAB/Simulink was implemented successfully and opens

new facilities for future applications. Research on methods for robot calibration and registration

may be done with the actual equipment.

It would be interesting to test, whether real-time control would be possible with the use of WLAN

instead of LAN. This implies the application of mobile devices, such as phones and tablets, for

controlling the robot. In future cyber-physical systems, this techniques will become more impor-

tant.

For educational purposes it is possible to integrate the control of the robot into student projects. For

example, during writing this thesis a project was carried out successfully, where students controlled

the robot with a KinectTMmotion sensor. Integration of such sensors is possible without the need

of downloading software to the robot controller.

A further new idea is to use the robot for 3D printing on surfaces of arbitrary geometry. A dedicated

printing head for this purpose is already under construction.
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Source Code

A.1 Kinematics Test in MATLAB

Listing A.1: Test of the kinematics in MATLAB

1 close all; clc;
2 %% Create path for robot
3 z=327:1:476;
4

5 winkel=linspace(0,2*pi,600)
6

7 xcenter=374
8 ycenter=49
9 zcenter=320

10 r=50
11

12 x=xcenter+r*cos(winkel);
13 y=ycenter+r*sin(winkel);
14 z=linspace(zcenter,zcenter,600);
15

16 % Break for the user to control data
17 disp(’ENTER, um Bahnmatrix zu erstellen...’)
18 pause;
19

20 % Figure for a visualization of the path
21 figure(1)
22 plot3(x,y,z,’*’)
23 grid on
24

25 % Merge the single vectors of the path coordinates to one Matrix [x,y,
z’];

26 Bahnmatrix=[x;y;z]’;
27

28 [zeile,spalte]=size(Bahnmatrix);
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29

30 zaehler=0;
31

32 %% Setup a connetion to PLC via UDP-Object
33

34 u = udp(’10.43.70.10’, 25000, ’LocalPort’,30000, ’ByteOrder’, ’
littleEndian’);

35

36 fopen(u);
37

38 pause(0.2)
39

40 % Create object of the class which deals with the kinematic
41 my_robot = StaeubliRX60(290.0, 341.0, 49.0, 310.0);
42

43 actAnglegrd(1)=0;
44

45 % Create data to enable the comunictation with the PLC. The PLC waits
till

46 % it recives from the remote PC, therefore it is necesssary to send
data

47 % first
48 data(1) = 11;
49

50 % Convert value to Integer
51 senddata = int32(data);
52

53 fwrite(u,senddata, ’int32’);
54

55 pause(0.2);
56

57 actAnglegrd = fread(u,6,’single’);
58

59 sendactAnglegrd = int32(actAnglegrd);
60

61 disp(’ENTER, um Initialposition zu übergeben... (RICHTIGKEIT PRÜFEN!!!’
)

62 pause;
63

64 fwrite(u,sendactAnglegrd, ’int32’);
65

66 %%
67

68 disp(’ENTER, um Bahn abzuarbeiten...’)
69 pause;
70

71 for zahl=1:zeile
72
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73 % Reading of the actual axes angles
74 actAnglegrd = fread(u,6,’single’);
75

76 % Convertation from deg to rad
77 actAngle=(pi/180000)*actAnglegrd;
78

79 % Invertation of values for axis 5 to be equiavalent with the positiv
80 % direction of the robot
81 actAngle(5)=-actAngle(5)
82 % Correction of movement of axis 6, which is caused by the gears
83 actAngle(6) = actAngle(6)-actAngle(5);
84 %
85 % Calculation of the actual position of the robot arm by using the

forward
86 % kinematc.
87 my_Pos = DK(my_robot,actAngle);
88

89 % Calculation of the endefector orientation
90 hv = my_Pos{6}*[0; 1; 0; 0];
91 f1 = hv(2:4); % Convert 4x1 vetor to 3x1 vector
92 hv = my_Pos{6}*[0; 0; 1; 0];
93 f2 = hv(2:4);
94 f3 = cross(f1, f2);
95

96 % Calculation of the inverse kinematic
97 [j0, U] = my_robot.IK(o6, f1, f2,actAngle);
98

99 % Convertation from rad to deg
100 solution=(180/pi)*U(:,j0);
101 % Invertation of values for axis 5
102 solution(5) = -solution(5);
103 % Correction of movement of axis 6
104 solution(6) = solution(6) - solution(5);
105

106 % Scaling of the solution angles to fit with the PLC representation
107 solution = 1000*solution;
108 sendsolution = int32(solution);
109

110 fwrite(u,sendsolution, ’int32’);
111

112 pause(0.02);
113

114 end
115

116 %% Closing the UDP-Connection and deleting of the udp-object
117 fclose(u);
118 delete(u);
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A.2 Kinematics Test in Simulink
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A.3 Kinematics of the Stäubli RX60

Listing A.2: Source code of the class Stäubli RX60

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2 % class ’StaeubliRX60’:
3 % this implements the direct kinematics (DK) and the inverse kinematics

(IK)
4 % of the Staeubli RX60 robot
5

6 classdef StaeubliRX60
7

8 properties
9 % the relevant DH-parameters of the robot:

10 a2;
11 d1;
12 d2;
13 d4;
14

15 eps; % a small value for determining the numerical
accuracy

16

17 a2_sq;
18 d2_sq;
19 d4_sq;
20 R; %R ... radius of the allowed sphere (workspace)
21 rMinusEps_sq; % r = d[2] ... radius of the forbidden cylinder (

workspace)
22 rPlusEps_sq;
23 RPlusEps_sq;
24 RMinusEps_sq;
25

26 end
27

28 methods
29 % constructor:
30 function obj = StaeubliRX60(a2, d1, d2, d4)
31 obj.a2 = a2;
32 obj.d1 = d1;
33 obj.d2 = d2;
34 obj.d4 = d4;
35

36 obj.eps = 0.0001;
37

38 obj.R = sqrt((obj.a2+obj.d4)ˆ2 + obj.d2ˆ2);
39 obj.a2_sq = obj.a2ˆ2;
40 obj.d2_sq = obj.d2ˆ2;
41 obj.d4_sq = obj.d4ˆ2;
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42 obj.rMinusEps_sq = (obj.d2-obj.eps)ˆ2;
43 obj.rPlusEps_sq = (obj.d2+obj.eps)ˆ2;
44 obj.RPlusEps_sq = (obj.R+obj.eps)ˆ2;
45 obj.RMinusEps_sq = (obj.R-obj.eps)ˆ2;
46 end
47

48 %%
49 % function ’DK’:
50 % computes the transformation matrices B(i)
51 % belonging to the input angles (u1, u2, u3, u4, u5, u6)
52 % INPUT: u ... vector of the 6 rotation angles:
53 % u = (u1, u2, u3, u4, u5, u6);
54 % OUTPUT: the matrices B
55 function B = DK(obj, u)
56 %local cs, sn, Rz, B;
57

58 B = cell(6, 1);
59

60 % transformation matrix B{1}
61 % for the rotation around axis number 1
62 % (i.e., the motion Sigma1/Sigma0):
63 cs = cos(u(1));
64 sn = sin(u(1));
65 B{1} = [ 1.0 0.0 0.0 0.0;
66 0.0 cs -sn 0.0;
67 0.0 sn cs 0.0;
68 obj.d1 0.0 0.0 1.0];
69

70

71 % transformation matrix B{2}
72 % for the combination of the first two rotations (axis number 1

and 2);
73 % (i.e., the motion Sigma2/Sigma0):
74 cs = cos(u(2));
75 sn = sin(u(2));
76 B{2} = B{1}*[ 1.0 0.0 0.0 0.0;
77 0.0 sn cs 0.0;
78 obj.d2 0.0 0.0 1.0;
79 0.0 cs -sn 0.0];
80

81 % transformation matrix B{3}
82 % for the combination of the first three rotations (axis number

1, 2 and 3);
83 % (i.e., the motion Sigma3/Sigma0):
84 cs = cos(u(3));
85 sn = sin(u(3));
86 B{3} = B{2}*[ 1.0 0.0 0.0 0.0;
87 obj.a2 -sn -cs 0.0;
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88 0.0 cs -sn 0.0;
89 0.0 0.0 0.0 1.0];
90

91 % transformation matrix B{4}
92 % for the combination of the first four rotations (axis number

1,...,4);
93 % (i.e., the motion Sigma4/Sigma0):
94 cs = cos(u(4));
95 sn = sin(u(4));
96 B{4} = B{3}*[1.0 0.0 0.0 0.0;
97 0.0 cs -sn 0.0;
98 0.0 0.0 0.0 -1.0;
99 0.0 sn cs 0.0];

100

101 % transformation matrix B{5}
102 % for the combination of the first five rotations (axis number

1,...,5);
103 % (i.e., the motion Sigma5/Sigma0):
104 cs = cos(u(5));
105 sn = sin(u(5));
106 B{5} = B{4}*[ 1.0 0.0 0.0 0.0;
107 0.0 cs -sn 0.0;
108 0.0 0.0 0.0 1.0;
109 obj.d4 -sn -cs 0.0];
110

111 % transformation matrix B{6}
112 % for the combination of all six rotations (axis number 1,...,6);
113 % this is the end-effector motion Sigma6/Sigma0:
114 cs = cos(u(6));
115 sn = sin(u(6));
116 B{6} = B{5}*[1.0 0.0 0.0 0.0;
117 0.0 cs -sn 0.0;
118 0.0 0.0 0.0 -1.0;
119 0.0 sn cs 0.0];
120 end
121

122 %%
123

124 % function ’IK’:
125 % inverse kinematics of the Staeubli RX60 robot:
126 % INPUT: o ... position vector of the origin of the endeffectors’

coordinate system;
127 % f1... direction vector of the x-axis of the endeffectors’

coordinate system;
128 % f2... another direction vector parallel to the xy-plane
129 % of the endeffectors’ coordinate system;
130 % u ... a vector of 6 start values for the angles u1, ...,

u6 to be found
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131 % OUTPUT: 6x(nos)-matrix U (nos = number of solutions),
132 % each of its columns contains a solution
133 % 6-tupel u_1, ..., u_6 for the rotation angles";
134 % integer value j0, index of the solution 6-tupel closest

to u
135 function [j0, U] = IK(obj, o, f1, f2, u)
136

137 % local U123, U, nos123, nos1232, nos, dist1_sq, dist2_sq, indic,
138 % i, j, j0, j1, j2, insideSphere, m, n, phi, o3, sol, v1, v2,

v3,
139 % sn1, cs1, sn23, cs23, sn4, cs4, sn5, cs5, sn6, cs6,
140 % e, denom, fak, csw, snw, w, dist, dist1, res;
141

142 dist1_sq = o(1)ˆ2 + o(2)ˆ2;
143 dist2_sq = dist1_sq + (o(3)-obj.d1)ˆ2;
144

145 if (dist1_sq > obj.rMinusEps_sq) && (dist2_sq < obj.RPlusEps_sq)
% point o is in workspace

146 insideSphere = false;
147 if (dist1_sq < obj.rPlusEps_sq) % o lies on the boundary

cylinder
148 if (dist2_sq > obj.RMinusEps_sq) % o lies on the upper or

lower boundary circle
149 nos123 = 1;
150 U123 = zeros(3, 1);
151 U123(1,1) = atan2(-o(1), o(2));
152 if (abs(o(3) - obj.d1 - obj.a2 - obj.d4) < 0.001) % o lies

on the upper boundary circle
153 U123(2,1) = 0.0;
154 else % o lies on

the lower boundary circle
155 U123(2,1) = pi;
156 end
157 U123(3,1) = 0.0;
158 else % o lies on the boundary cylinder AND inside

the boundary sphere
159 v1(1) = atan2(-o(1), o(2));
160 nos123 = 2;
161 U123 = zeros(3, nos123);
162 U123(1,1) = v1(1);
163 U123(1,2) = U123(1,1);
164 insideSphere = true;
165 end
166 else % o lies outside the boundary cylinder
167 %v1 = solve(o(1)*sin(u1) - o(2)*cos(u1) + d(2), u1);
168 alph = atan2(-o(1), o(2));
169 bet = atan2(sqrt(dist1_sq - obj.d2_sq), obj.d2);
170 v1(1) = alph - bet;
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171 v1(2) = alph + bet;
172 for j=1:2
173 if (v1(j) > pi)
174 v1(j) = v1(j) - 2*pi;
175 end
176 if (v1(j) < -pi)
177 v1(j) = v1(j) + 2*pi;
178 end
179 end
180 if (dist2_sq > obj.RMinusEps_sq) % o lies on the

boundary sphere
181 nos123 = 2;
182 U123 = zeros(3,nos123);
183 U123(1,1) = v1(1);
184 U123(1,2) = v1(2);
185 for j=1:2
186 U123(2,j) = atan2(o(1)*cos(v1(j)) + o(2)*sin(v1(j)), o(3)

-obj.d1);
187 U123(3,j) = 0.0;
188 end
189 else % o lies outside the boundary cylinder AND inside

the boundary sphere
190 nos123 = 4;
191 U123 = zeros(3,nos123);
192 U123(1,1) = v1(1);
193 U123(1,2) = v1(1);
194 U123(1,3) = v1(2);
195 U123(1,4) = v1(2);
196 insideSphere = true;
197 end
198 end
199

200 if (insideSphere == true) % computing the solutions for u2, u3
in case of o beeing inside the boundary sphere

201 nos1232 = nos123/2;
202 v2 = zeros(3, nos1232);
203 for i=1:nos1232
204 m = o(1)*cos(v1(i)) + o(2)*sin(v1(i));
205 n = o(3) - obj.d1;
206 %sol := solve({2*(m*x + n*z) - a2_sq + d[4]ˆ2 - mˆ2 - nˆ2,

xˆ2 + zˆ2 - a2_sq}, {x, z}):
207 aa = 2*(o(1)*cos(v1(i)) + o(2)*sin(v1(i)));
208 bb = 2*(o(3) - obj.d1);
209 cc = - obj.a2_sq + obj.d4_sq - mˆ2 - nˆ2;
210 if (abs(cc) < obj.eps)
211 t(1) = atan2(-aa, bb);
212 t(2) = t + pi;
213 else
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214 alph = atan2(-bb/cc, -aa/cc);
215 bet = atan2(sqrt(obj.a2_sq*(aaˆ2 + bbˆ2) - ccˆ2)/abs(cc),

1);
216 t(1) = alph-bet;
217 t(2) = alph+bet;
218 end
219

220 for j=1:2
221 %o3 := <subs(sol[j], x), subs(sol[j], z)>:
222 o3 = obj.a2*[cos(t(j)); sin(t(j))];
223 v2(i,j) = atan2(o3(1), o3(2));
224 phi = atan2(m-o3(1), n-o3(2));
225 v3(i,j) = phi - v2(i,j);
226 end
227 end
228 U123(2,1) = v2(1,1);
229 U123(2,2) = v2(1,2);
230 U123(3,1) = v3(1,1);
231 U123(3,2) = v3(1,2);
232 if (nos123 == 4)
233 U123(2,3) = v2(2,1);
234 U123(2,4) = v2(2,2);
235 U123(3,3) = v3(2,1);
236 U123(3,4) = v3(2,2);
237 end
238 end
239

240

241 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
242 %%% Berechnung der Loesungen fuer u_4, u_5, u_6;
243 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
244

245 nos = 2*nos123;
246 U = zeros(6,nos);
247

248 e61 = f1/norm(f1);
249 e63 = cross(f1, f2);
250 e63 = e63/norm(e63);
251 e62 = cross(e63, e61);
252 for j=1:nos123
253 j2 = 2*j;
254 j1 = j2-1;
255 for i=1:3
256 U(i,j1) = U123(i,j);
257 U(i,j2) = U123(i,j);
258 end
259 sn1 = sin(U123(1,j));
260 cs1 = cos(U123(1,j));
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261 sn23 = sin(U123(2,j)+U123(3,j));
262 cs23 = cos(U123(2,j)+U123(3,j));
263 e33 = [-sn1; cs1; 0];
264 e43 = [cs1*sn23; sn1*sn23; cs23];
265

266 cs5 = dot(e43, e63);
267 if (abs(abs(cs5) - 1.0) > obj.eps) % exactly two different

solution triples for u4, u5, u6
268 % for every solution triple

of u1, u2, u3
269

270 e53 = cross(e43, e63);
271 denom = norm(e53);
272 fak = (1.0/denom);
273 e53 = fak*e53;
274 sn5 = fak*(1.0 - cs5ˆ2);
275 cs4 = dot(e33, e53);
276 sn4 = fak*dot(e33, e63);
277 U(4,j1) = atan2(sn4, cs4);
278 U(4,j2) = atan2(-sn4, -cs4);
279 cs6 = dot(e53, e62);
280 sn6 = fak*dot(e43, e62);
281 U(6,j1) = atan2(sn6, cs6);
282 U(6,j2) = atan2(-sn6, -cs6);
283 else % special case: axes g4 and g6 are the

same
284 sn5 = 0.0;
285 csw = dot(e33, e62);
286 snw = dot(cross(e33, e62), e43);
287 w = atan2(snw, csw);
288 if (cs5 > 0)
289 U(4,j1) = 0.5*(u(4)-u(6)+w);
290 U(6,j1) = w - U(4, j);
291 else
292 U(4, j) = 0.5*(u(4)+u(6)+w);
293 U(6, j) = -w + U(4, j);
294 end
295 U(4,j2) = U(4,j1);
296 U(6,j2) = U(6,j2);
297 end
298 U(5,j1) = atan2(sn5, cs5);
299 U(5,j2) = - U(5,j1);
300 end
301

302 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
303 % determine the optimal angle 6-tupel w.r.t. u among the nos

solution 6-tupels:
304 dist1 = 10000.0;
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305 for j=1:nos
306 dist = norm(U(:,j) - u);
307 if (dist < dist1)
308 j0 = j;
309 dist1 = dist;
310 end
311 end
312

313

314 else
315 j0 = 0;
316 U = 0;
317 end
318 end
319

320

321

322

323

324

325

326

327

328 % function ’pedalPoint’:
329 % INPUT: a ... column vector; point a whose pedal point "p" has to

be found
330 % acc ... accuracy of the procedure (a small number)
331 % tStart ... optional input; a start value for the

parameter t
332 % OUTPUT: pedalPointFound ... boolean variable which is returned as

"1"
333 % in case of success and as "0" else;
334 % p ... pedal point (column vector)
335 % t ... parameter value of the pedal point of the curve (

number)
336 function [pedalPointFound, p, t] = pedalPoint(obj, a, acc, tStart)
337 if (nargin==3)
338 % determination of a proper intitial parameter value tP:
339 t0 = obj.t0;
340 t1 = obj.t1;
341 anz = 30;
342 dist = 1000000;
343 t_inc = (t1 - t0)/(anz - 1);
344 for i = 0:anz-1
345 t = t0 + i*t_inc;
346 x = obj.point(t);
347 dist1 = norm(a - x);
348 if dist1 < dist
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349 tP = t;
350 dist = dist1;
351 end
352 end
353 else
354 % using the intial parameter value "tStart" prescribed by the

user:
355 tP = tStart;
356 end
357

358 t = tP;
359 x = obj.point(t);
360 c = a - x;
361

362 delta = 0.0001;
363 xt = obj.tangentVector(t, delta);
364

365 cs = dot(c, xt);
366

367 eps = abs(cs);
368

369 zaehler = 1;
370 maxSteps = 20;
371 while (eps > acc) && (zaehler < maxSteps)
372 % 2nd derivative vector
373 xtt = obj.derivativeVector(t, 2, delta);
374

375 % 1st derivative of the function cs(t) = <a - x(t), xt(t)>
376 % to find the root of this function:
377 cst = - dot(xt, xt) + dot(c, xtt);
378

379 epsilon = 0.0001;
380 if abs(cst) < epsilon
381 if cst < 0
382 cst = -epsilon;
383 else
384 cst = epsilon;
385 end
386 end
387

388 % new t
389 t = t - cs/cst;
390 x = obj.point(t);
391 c = a - x;
392 xt = obj.tangentVector(t, delta);
393 cs = dot(c, xt);
394

395 eps = abs(cs);
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396

397 p = x;
398 zaehler = zaehler + 1;
399 end
400 if zaehler == maxSteps
401 pedalPointFound = false;
402 else
403 pedalPointFound = true;
404 end
405 end
406

407 end
408 end
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A.4 Statediagram of the RobotControl Task
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