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Abstract

This thesis describes a new approach for achieving a non-planar 3D printing with an industrial

manipulator. In recent years 3D printing is becoming a promising new industry. It is applied in

more and more areas. Simultaneously, with the improvement of production efficiency, the cost

for industrial robots is decreasing. Our motivation is to combine the two technologies, and to

develop a method using a robot to expand the practical range of 3D printing. In this work firstly

the basic concepts about robot kinematic modelling are introduced. Then the essential hard- and

software equipment that is chosen to solve the problem is described. A method is presented using

a laser distance sensor mounted on a robot to scan an arbitrary surface. Levenberg-Marquardt

method is applied to find a least-mean-square approximation and to reconstruct the non-planar

surface in real-time during the motion of the robot, which carries also a 3D printer head. For

testing the algorithms a virtual reality simulation model of the robot was used. Finally the solution

is successfully implemented in a Matlab/Simulink environment that controls the robot drives in

real-time. With this work the feasibility of a non-planar 3D printing with an industrial robot is

proved. A practicable approach consisting of surface scanning and printing is successfully applied

on a real robot. At last some tracking error considerations are given.
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Zusammenfassung

Diese Diplomarbeit beschreibt einen neuen Ansatz für das 3D-Drucken auf einer gekrümmten

Oberfläche mit einem industriellen Manipulator. In den letzten Jahren wird das 3D-Drucken mehr

und mehr zu einer vielversprechenden neuen Industrie und wird in immer mehr Anwendungsberei-

chen eingesetzt. Gleichzeitig sind die Kosten für Industrieroboter auf Grund gestiegener Produkti-

vität reduziert worden. Die Motivation für diese Arbeit ist, die beiden Technologien zu kombinie-

ren, um mit Hilfe eines Roboters neue Anwendungsbereiche des 3D-Druckens zu ermöglichen. Zu

Beginn wird in die Grundkenntnisse über Roboter-Kinematik eingeführt. Es werden die verwen-

dete Ausrüstung und die Software-Werkzeuge beschrieben. Eine Methode wird vorgestellt, um

durch einen auf dem Roboter montierten Lasersensor eine beliebige Oberfläche abzutasten. Die

Levenberg-Marquardt Methode wird verwendet, um aus den gemessenen Daten Parameter für ei-

ne Approximation der Oberfläche zu finden. Für die Bewegung eines auf dem Roboter montierten

3D-Druckkopfes über diese Oberfläche wird diese in Echtzeit rekonstruiert. Vor den Versuchen

am realen Roboter wird diese Methode zuerst mit einem Simulationsmodell getestet. Schließlich

wird das Programm in einer Matlab/Simulink-Umgebung implementiert, das die Antriebe des Ro-

boters in Echtzeit steuert. Durch diese Arbeit wurde die Möglichkeit des 3D-Druckens auf ei-

ner gekrümmten Fläche geschaffen. Die notwendigen Programme, um eine Oberfläche abzutasten

und danach darauf zu drucken, wurden erfolgreich auf einem realen Roboter implementiert. Zum

Schluss werden Betrachtungen über die Genauigkeit der Bahnbewegung gemacht.
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Chapter 1

Introduction

In this chapter an overview about the 3D printing technology is included and it explains the prob-

lem which 3D printing faces under the new applications requirements. And it also presents the

proposal of this thesis to fulfill the applications requirements.

1.1 3D Printing Technology

1.1.1 Development of the Technology

The 3D printing, also known as additive layer manufacturing, is nowadays a very popular technol-

ogy. It was developed in 1980s by Chuck Hull, he is also known as the inventor of 3D printing

technology. In 1984 Chuck Hull invented a process known as stereolithography, the first commer-

cial rapid prototyping technology. And he also developed the STL file format1, which is widely

accepted by 3D printing software. At first this technology was used to cure the photopolymers.

With the development of this technology, today it is already applied to variety of materials and

in many practical fields, such as architecture, construction, industrial design, automotive industry,

aerospace, military, engineering, and even biological technology (human tissue replacement).

1.1.2 Description of the Process

3D Printing is a kind of rapid prototyping technology. It’s a manufacturing process for the rapid

production of three dimensional object directly from computer models. A solid object is built on

a layer-by-layer basis, through a series of cross-sectional slices. The roughly description of this

process is as below [1].

• A computer model of the desired object is created, and a slicing algorithm draws detailed

information for every layer.

1STL (STereoLithography) is a file format native to the stereolithography CAD software created by 3D Systems.

7
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• Using a technology similar to ink-jet printing, for printing each layer, a thin distribution of

material powder (or liquid sometimes) spread over a basis surface. Then a selective applica-

tion of a binder material is used to harden and join each layer in the specified cross-section

pattern.

• This layer-by-layer process repeats until the object is completed. Following a heat treatment,

unbound powder is removed, leaving the fabricated object.

1.1.3 Characteristics of 3D Printing

Advantages According to the characteristics of this manufacturing process, it can produce a

object almost with any arbitrary desired shape. Compared with the other rapid prototyping tech-

nologies 3D printing has the following advantages [2].

• It can economically build custom products in small quantities. No need for costly tools or

milling or sanding equipments.

• It has the ability to recycle waste material.

• 3D printer can seamlessly integrate with computer assisted design (CAD) software and other

digital files. It’s easily to share the design.

• It’s possible more rapid and easier to design and modify the products.

Current limitations This technology also has some current limitations [2], such as:

• relatively higher costs for large production compared with other technologies,

• relatively few choice for materials, colors and surface finishes,

• relatively lower precision compared to other technologies,

• limited strength and resistance to heat and moisture, and color stability.

1.1.4 3D Printer

An industry grade 3D printer is capable to be applied to more diversity of materials, such as metal

or biological material, but in general it’s also very expensive. Nowadays more and more companies

are developing affordable desktop 3D printer for laboratory using and even the home consumer, the

so-called consumer grade 3D printer. A consumer grade 3D printer generally consists of following

parts [3]:

frame . . . holds all printer parts together, and gives the printer its stiffness;

constructions of x-axis, y-axis and z-axis . . . are driven by motors and move together to enable

the printing nozzle to move in the workspace;
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print plate . . . provides a working plane for printing process;

extruder . . . consists of two parts, a cold top part that feeds the plastic filament and a hot bottom

part that melts and extrudes the plastic;

electronics board . . . controls the printing process;

stepper motors and motor controllers . . . drive three axes and extruder;

end stop . . . is the homing position for the extruder.

In Figure (1.1) are two typical consumer grade 3D printers seen.

(a) Airwolf 3D AW3D v.4 (b) MakerBot Replicator 2X

Figure 1.1: Consumer grade 3D printers

Through the introduction above it can be seen, that the workspace of the desktop 3D printers is

generally restricted by the size of frame and the moving pattern of the extruder.

1.2 New Requirements and Problems

With the expansion of the scope of applications, 3D printing is facing some new requirements. For

example, in a prototype production for synthetic substance, the 3D printer is expected to achieve a

curved surface printing. Out of consideration of the material strength and the function, this object

is expected to be directly printed on a working surface with the same curvature as the prototype.

Through the introduction above, it’s obvious that those desktop 3D printers support only the trans-

lation movement of the extruder along the printing plane. For a curved surface printing, it can only

fulfill with the additive of sequential printed two-dimensional layers.
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1.3 New Concept

For a 6 DOF industrial robot, it’s capable to accomplish almost any curve movement in its workspace.

And its workspace is significantly larger than a desktop 3D printer. With the decrease of the cost

for an industrial manipulator, it’s already affordable for a laboratory or small company. Therefore

a new concept is proposed, to combine the industrial robot with 3D printing extruder.

The proposal is so, that a printing block is mounted on the robot’s end effector. And this block

can fulfill the function of an extruder. Such a combination makes full use of the agility of a 6

DOF robot. So it can expand the working range of the 3D printer and endue the 3D printer more

application possibilities. In the next several chapters the attempt to implement this concept will be

detailed described.



Chapter 2

Experimental Environment and Design
Procedure

This chapter introduces generally the experimental environment. This environment contains the

manipulator Stäubli RX60, a 3D printer block and the software application for simulation and con-

trolling the manipulator. In addition the design of experimental procedure is generally described.

2.1 Robot Stäubli RX60

In the practical experiment of this thesis the Robot Stäubli RX60 is used. The RX60 is a medium

payload robot from the manufacturer Stäubli. It features a highly precise articulated arm with 6

DOF (degrees of freedom) for optimum flexibility, see Figure (2.1). And a spherical work envelope

allows maximum utilization of the workspace. Compared with a normal desktop 3D printer the

workspace of this robot is obviously larger. This feature of the robot ensure that 3D printing can be

complied in a more flexible working rang. The technical data of robot RX60 are shown as Table

(2.1). More detailed size and accuracy explanation see appendix.

Axes 1 2 3 4 5 6

Working range (◦) 320 255 269 540 230 540

Working range A B C D E F

division (◦) +/-160 +/-127,5 +/-134,5 +/-270 +120,5,-109,5 +/-270

Nominal velocity

(◦/s)

287 287 319 410 320 700

Angular resolution

(◦ · 10−3)

0,724 0,724 0,806 1,177 0,879 2,747

Maximum linear

speed (m/s)

1.8

Table 2.1: Technical data of RX 60

11



CHAPTER 2. EXPERIMENTAL ENVIRONMENT AND DESIGN PROCEDURE 12

Figure 2.1: Image of the Stäubli RX60
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2.2 3D Printer Block

For this experiment a specific designed tool block, 3D printer block, is built. This tool block

consists of a printer holding frame, an extruder and a laser distance sensor. It is mounted on the

end effector of the robot. Figure (2.2) shows a schematic sketch about the mounting position of

the block.

Figure 2.2: Schematic drawing of the mounting position of 3D printer block

The Extruder contains these components, a material heating device, a cooling ventilator, a material

feeder as well as the printer nozzle. And they are assembled on the printer holding frame, see

Figure (2.3). In addition, the laser sensor is mounted on the other side of the frame. And the

Figure (2.4) shows a top view of the assembled 3D printer block.

2.3 Laser Distance Sensor

As we mentioned before, a laser distance sensor is also mounted on the printer holding frame, see

Figure (2.5). It is used to scan a surface model, and the scanning process will be introduced in

chapter 4. This laser distance sensor is from the manufacturer Mel Microelectronic Ltd., with

model ‘M5L/10’. It has the following characteristics:

• Big invisible light spot,

• consistent measuring values,

• and qualified for textiles with consistent colors.

The technical data of this sensor are as shown in Table (2.2).
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Figure 2.3: Components of the 3D printer block

Figure 2.4: Top view of the printer block
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Figure 2.5: Laser sensor mounted on end effector

Type Measuring

Range

(mm)

Reference

Distance

(mm)

Linearity

Error (μm)

Resolution

(μm)

Light Spot

Diameter

(mm)

M5L/10 ±5 45 30 3 0,6

Table 2.2: Technical data of laser sensor

2.4 Manipulator Control

In this experiment several means are available to control the manipulator. The manual control with

control panel and two software applications, B&R robotic project and Matlab Simulink.

2.4.1 Control Panel

The manufacturer of Stäubli RX60 robot provides a control panel. Via this control panel the robot

can be intuitively and continuously driven to any desired position in the defined workspace. But

the manual operation can not ensure the accuracy of the reached position. And of course this

control method is not programmable. But for some tasks such as homing position setting it’s still

usable and necessary.
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2.4.2 B&R Robotic Project

The B&R (Bernecker & Rainer) Automation Studio is a very friendly software development envi-

ronment, and is suitable for a variety of automation control projects. The B&R robotic project is

a for robot control established project under this environment. It consists of two main parts. The

first part is the Motion-Handling block, which is installed on a industrial computer. It deals with

the path planning and controls the movement of the six axes of the manipulator. The second part is

the Human-Machine-Interface block, and it runs on a PC (personal computer). It provides the user

a graphical control interface, and also provides user a simulation environment with a visualized

robot. This simulation enabled a pre-test of the robot control software before it is implemented

on the real robot. Figure (2.6) shows the software interface of the simulation environment of the

robotic project.

Figure 2.6: B&R robot project environment

2.4.3 G-code Programming

G-code, which has many variants, is the common name for the most widely used numerical control

(NC) programming language. It is used mainly in computer-aided manufacturing for controlling

automated machine tools. The G-code programming language has some specific commands and

grammars, these will not be introduced in this thesis.

Using the G-code file is a programmable controlling method. That means, we can select several
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points, use the G-code programming language to describe the absolute coordinates of these points

or describe the relative position between each two points. All these codes are saved in one file,

then the file presents a specific motion path for the manipulator. This procedure is so-called path

planning. The path planning file can be imported through the B&R robotic project to drive the

robot to achieve a movement along the preset path.

2.4.4 MATLAB�, Simulink� Programming

Using MATLAB� function is another programmable control method. Simulink� is a very useful

product family from the MathWorks company. It’s a block diagram environment for multido-

main simulation and Model-Based Design. It supports simulation, automatic code generation, and

continuous test and verification of embedded systems.

Simulink provides a graphical editor, customizable block libraries, and solvers for modeling and

simulating dynamic systems. It is integrated with Matlab, enabling the user to incorporate Matlab

algorithms into models and export simulation results to Matlab for further analysis [4]. For us it’s

a more friendly programming interface. Furthermore Simulink provides us a rich choices of the

Control Toolbox, that enable us through a Simulink function to control, configure, and transfer

data with the real manipulator over UDP(User Datagram Protocol).

In the experiment a Simulink simulation program is built, seen in Figure (2.7). The program

consists of four blocks: the space mouse control block, the path planing block, the forward and

inverse kinematics block and a 3D virtual reality environment. The space mouse control complies

a similar function as the robot’s control panel. It enables a intuitively and continuously drive of

the robot. The path planing block accepts importing a preset motion path file for the robot. And

this block processes these coordinates into usable translation and orientation vectors and delivers

further to kinematics block. In the 3D virtual environment a virtual robot simulated Stäubli RX60

is assembled. Also a tool block and a surface object are in the virtual environment included. This

3D virtual environment provides us the possibility to observe the robot’s motion in a pre-test. More

description about the establishing of the 3D virtual reality environment refers to Li’s thesis [5].

2.5 Experimental Design Procedure

With those hardware and software environment a experimental procedure is designed. This proce-

dure contains the following steps:

1. surface scanning,

2. surface rebuilding,

3. programming,

4. simulation in Simulink,

5. simulation in B&R robotic project,
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Figure 2.7: Simulink simulation program

6. robot operation.

At first the laser distance sensor is used to scan a surface object. Then with the measurement data

an approximated surface will be by a mathematical tool in Matlab function rebuilt. By third step the

translation and orientation vectors setting for inverse kinematics will be programmed with Matlab

function. Then the algorithm will be verified in Simulink simulation environment. In addition a

simulation in B&R environment will be implemented. Finally the operation on real robot will be

executed.
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Figure 2.8: Experiment workflow



Chapter 3

Robot Kinematic Model

The purpose of this chapter is to introduce the widely applied robot kinematic modeling method,

Denavit-Hartenberg (D-H) Model. And the Denavit-Hartenberg parameters setting based on the

manipulator Stäubli RX60 will be also introduced. In addition a brief introduction about Hayati

Model is concluded. Furthermore the forward and inverse kinematics concepts will be lead into

this thesis. The robot kinematic model is a important foundation for the whole experiment.

3.1 Denavit-Hartenberg Modeling

A serial manipulator usually consists of a group of rigid bodies (are also typically known as links),

which are connected together by joints. In most industrial robots, each link is connected to two

other members. Therefore, each link has two joints. The Denavit-Hartenberg Modeling is widely

used to describe the kinematic structure of the link in terms of physical link parameters [6]. A fig-

urative description may refer to Figure (3.1). The following conventions indicate how to determine

the D-H parameters:

ai . . . link’s length, the length of the common normal of the two joints

αi . . . twist angle between joint i and joint i+ 1

di . . . distance between link i− 1 and link i along the common joint i

θi . . . rotation angle of link i about joint i

We can tell, that among the four D-H parameters (ai, αi, di, θi), two parameters (ai, αi) describe

the link shape, and the other two (di, θi) describe the relative positions of two neighboring links.

Of cause by determining the D-H parameters it also have to be taken into account, that the estab-

lishment of each coordinate system Σi on each joint i. There are a set of rules about locating the

origin Oi for Σi and choosing the axes xi, yi ,zi. These rules are not discussed here, the detailed

description please see the reference [6–8].

20
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Figure 3.1: D-H modeling convention

The D-H Modeling convention of a link can be considered as a transformation Ai, which presents

the transformation from coordinate system Σi to Σi+1 in terms of the four parameters. That means:

Ai = Rot(z, θi)Trans(0, 0, di)Trans(ai, 0, 0)Rot(x, αi), (3.1)

We can write this equation in a matrix form:

Ai =

[
1 0T

0 Rz(θi)

] [
1 0T

di I

] [
1 0T

ai I

] [
1 0T

0 Rx(αi)

]
. (3.2)

Where Rz means the rotation matrix about axis z, and Rx means the rotation matrix about axis

x [7]. If we sit the rotation matrix in this equation, then we get:

Ai =

⎡
⎢⎢⎣
1 0 0 0
0 cos(θi) − sin(θi) 0
0 sin(θi) cos(θi) 0
0 0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣
1 0 0 0
ai 1 0 0
0 0 cos(αi) − sin(αi)
di 0 sin(αi) cos(αi)

⎤
⎥⎥⎦ . (3.3)

For a robot with n joints, there are n transformation matrices from A1 to An.

3.2 D-H Parameters Based on Stäubli RX60

Robot Stäubli RX60 was used in the experiment. A roughly representation about this manipulator

has been in chapter 2 included. Following the D-H convention the local coordinates systems are
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Figure 3.2: Robot Stäubli RX60
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Joints ai αi di θi
1 0 0 d1 θ1
2 0 -90 d2 θ2
3 a3 0 0 θ3
4 0 90 d4 θ4
5 0 -90 0 θ5
6 0 90 0 θ6

Table 3.1: D-H parameters for Stäubli RX60

for each joint set, then we get the D-H parameters for robot Stäubli RX60 shown as Table (3.1). A

figurative presentation is shown in Figure (3.2).

More specific explanation about setting these parameters is informed in Kollment’s Thesis [8].

3.3 Hayati’s Modified D-H Modeling

Many alternative kinematic models or modified forms of D-H model have been proposed. For

example Hayati has proposed a modified D-H model. As in his work introduced [9], most of the

current industrial or research manipulators consistent at least one set of consecutive parallel joints.

By Stäubli RX60 the joint 2 and joint 3 are two consecutive parallel joints. When two joints are

parallel or near parallel, following the D-H convention we have θi = 0, di = 0, ai = L, αi = 0.

Assume that due to manufacturing tolerances the joint zi is misaligned by a small angle β as shown

in Figure (3.3). Now the two joints are regarded as two axes with an intersection at a very far away

point. Therefor the D-H parameters can be totally different. The small error in the alignment of

joint zi causes a large error in D-H parameters.

Figure 3.3: Schematic drawing of two consecutive parallel joints

So Hayati introduced us in his work a modified D-H model to overcome this problem [9]. He put
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the angle β in as the fifth parameter, when the consecutive parallel joints situation exists. Through

the following four steps he obtained the link coordinate frame.

1. Pass a plane perpendicular to the axis zi−1. The intersection of this plane with joint i is Oi.

2. Rotate the frame i − 1 about zi−1 to align the axis xi−1 with the line connecting the points

Oi−1 and Oi.

3. Translate the origin of the last frame to Oi.

4. Perform two rotations about the resulting frame’s x and y axes to align its z axis with that of

joint i

And he got the transformation as Equation (3.4),

Ai = Rot(z, θi)Trans(x
′, di)Rot(x′′, αi)Rot(y′′, β). (3.4)

By the other joints, they maintain to follow the D-H convention. So we call this Hayati’s modeling

as a modified D-H modeling. In Hayati’s article, it was proved that this modeling method improved

the absolute positioning accuracy of serial robots. In spite of the advantage of Hayati’s modeling,

still D-H modeling was used as the kinematic model in this thesis.

3.4 Forward and Inverse Kinematics

3.4.1 Forward Kinematics

Forward kinematic, also known as direct kinematic, is a mathematical approach to calculate the

position of the end effector through giving the D-H parameters in. For Stäubli RX60, the robot

with six joints, the complete transformation matrix from robot’s base coordinates system to the

end effector’s coordinates system should be like Equation (3.5) built,

T = A1A2A3A4A5A6, (3.5)

matrix Ai is the transformation matrix from coordinate system Σi to Σi+1 in Equation (3.3) intro-

duced. We set the robot’s base coordinates system as frame Σ0, and the end effector’s coordinates

system as frame Σ6. When the global coordinates X of the origin of Σ0 is given, then we can

through the transformation matrix get the global coordinates X∗ of the end effector as,

X∗ = T ·X. (3.6)

From the equation above we can tell, that the forward kinematic is easier to implement. But it

make just little significance for the practical applications. Because it’s a large work to calculate

every rotation angle for each movement.
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3.4.2 Inverse Kinematics

In most cases, we have only the desired coordinates of the end effector, so a mathematical method

is needed to inversely calculate the possible rotation angles for six axes. That is the so-called

inverse kinematics.

Because transformation matrix for the forward kinematics exists already, it’s easy to understand,

that it exists for sure also an algebraic approach to fulfill the inverse kinematics. This algebraic

approach will be accomplished through splitting the transformation matrix and trigonometric op-

erations. We will not discuss further about this method, since we didn’t use it in the experiment.

The detailed derivation and explanation see the reference [8, 10].

In the experiment a geometric approach was used to solve this inverse kinematics problem. As it is

previously introduced, the robot Stäubli RX60 consists of six joints. For each movement to reach

a particular spatial position, it needs the series rotations of six axes. And the whole movement of

the manipulator could be also split into two sub-motions:

translation . . . is the movement which is achieved through the rotation of axes 1, 2 and 3;

orientation . . . is the movement which is completed through the rotation of axes 4, 5 and 6.

The rotation of axes 1, 2 and 3 determines the global coordinates of the intersection of axes 4, 5,

and 6. This intersection point is in Figure (3.2) as point P indicated. Conversely when the desired

coordinates of P is given and it’s within defined workspace, besides the geometric parameters of

the robot arms are already known, the rotation angles for axes 1, 2 and 3 are by trigonometric

functions solvable. Because we can see this motion as taking point P from the origin to the desired

position, so it is called as translation.

Joints 4, 5 and 6 intersect by point P, this configuration imitates a human’s wrist action. The

combination of rotation of these tree joints decides in which direction the end effector points. Due

to this feature this motion is called as orientation. The inverse kinematics solving is similar to it

by sub-motion of translation. A desired pointing direction for end effector should be provided, it’s

determined by the task for robot. And this direction can be presented as a vector. With this vector,

as long as this configuration is physically possible, then the rotation angles are solvable.

Specific introduction about the solving procedures see Kollment’s thesis [8]. And the calculating

about the coordinates of point P and the direction vector will be in chapter 5 specifically discussed.



Chapter 4

Surface Scanning and Reconstruction

In this chapter it will be detailed described, how the essential data are from an observed surface ob-

ject obtained in the experiment. And a useful mathematic method, Levenberg-Marquardt method,

is introduced, with the mathematical tool which is provided by Matlab an approximated surface is

practically reconstructed.

4.1 Surface Scanning With a Laser Distance Sensor

For describing a certain surface in the global coordinate system, first of all we need the coordinates

of several points on this surface. To obtain these coordinates, a laser distance sensor is used, which

is already in chapter 2 introduced. By using the space mouse we can drive the robot roughly to any

chosen points. And the laser spot can be also used to indicate those selected points.

For each point a set of x, y and z-coordinates is read from the manipulator’s controller. But they

are just the coordinates of the point P. Through the introduction in chapter 2, and referred to Figure

(2.4), it can be confirmed that between the read coordinates and the coordinates of the laser spot

exists offset. Therefore a coordinates conversion is needed. The x and y-coordinates of point P are

set as (x, y), and the x and y-coordinates of laser spot are set as (x∗, y∗). Then the conversion is

presented as below:

x∗ = x− 45.5, (4.1)

y∗ = y + 11.5. (4.2)

The sensor works not just as a perfect laser pointer, and it can provide the real z-coordinate of a

surface point at the same time. The reference distance between the laser head and the indicated

point is 45 mm. The sensor exports a voltage value, which can be read from a voltmeter. That

shows the distance bias about ±5 mm around 45 mm, see Figure (4.1). Through this voltmeter

reading we get the real distance from laser apparatus to the measured surface. Combination of this

value and the z-coordinate read from controller, here means the z-coordinate of point P, presents

the real z-coordinate of laser spot. The real z-coordinate conversion is presented in Equation (4.3),

z∗ = z − 57− (45− V · (−5/10)), 1 (4.3)

1This equation presents the translation of z-coordinate, based on Figure (4.1) and Figure (2.2)

26
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Figure 4.1: Schematic drawing of the position of laser sensor

where V means voltage value. The z∗ presents the real z-coordinate. Since the surface model

could not be a perfectly smooth surface, the variations of z-coordinates in experimental data are

totally reasonable.

4.2 The Levenberg-Marquardt Method

With those measured coordinates from the surface, an approximated surface equation can be rebuilt

with a certain mathematical method. First of all we take a quick look at least squares problem. The

least squares problems arise when fitting a function to a set of measured data points by minimizing

the sum of the squares of the errors between the data points and the function [11]. That means,

given a fitting model M(x, ti), and this model depends on the parameters x = [x1, . . . , xn]. For

any choice of x we can compute the residuals,

fi(x) = yi −M(x, ti) , i = 1, . . . ,m. (4.4)
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So the least squares problem can be defined as the following equation:

F (x) =
1

2

m∑
i=1

(fi(x))
2, (4.5)

where m ≥ n, and n is the number of parameters. We assume that there exists an x∗, it is the local

minimizer for Equation (4.5). Find the x∗, then the least squares problem is solved [12].

For a function of a linear line, this method is already sufficient, but for a nonlinear function, such

as a quadric surface, we need some new methods. According to the introduction from Madsen et

al, all methods for nonlinear optimization are iterative. That means, from a starting point x0 the

method produces a series of vectors x1, x2,. . . , which should converge to the minimizer x∗ for

the given function. For each iterate, one step from the previous one to the next, it consists two

procedures:

1. Find a descent direction hd, and

2. find a step length giving a good decrease in the function value.

Here it’s not going to go into more details about the two procedures. The detailed explanation refer

to the Madsen’s article [12].

Madsen introduced us a useful nonlinear least squares problems method in his work, the Levenberg-
Marquardt method. The step hlm is defined by the following equation,

(JTJ+ μI)hlm = −JT f , μ ≥ 0, (4.6)

here f = f(x) is the given function and J = J(x) is its Jacobian matrix. Furthermore μ is a

damping parameter, and it should have the following effects:

1. For all μ > 0, the coefficient matrix is positive definite, that ensures the hlm is a descent

direction.

2. For a large value of μ we get

hlm � − 1

μ
JT f = − 1

μ
F′(x), (4.7)

it likes a gradient descent method, the sum of the squared errors is reduced by updating the

parameters in the direction of the greatest reduction.

3. For a very small value of μ, then hlm � hgn. It likes a Gauss-newton method. When x is

close to x∗, then we get locally quadratic final convergence [12].

Now we can tell that, the Levenberg-Marquardt method acts more like a gradient-descent method
when the parameters are far from their optimal value, and acts more like the Gauss-Newton method
when the parameters are close to their optimal value. It’s actually a combination of the other two

minimization methods [11]. More detailed description see the reference.
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Fortunately the Matlab Software has contained the Levenberg-Marquardt method tool, the function

’lsqcurvefit’. So we don’t have to be anxious about finding the descent direction or step length.

The function code is shown as below,

x = lsqcurvefit(FUN, x0, XDATA, Y DATA).

It starts at x0 and finds coefficients x to best fit the nonlinear functions in FUN to the data YDATA.

Where XDATA are the variants of FUN. More specific explanation about the using of this function

please see the Matlab help file. The following sections present how to achieve the surface fitting

by using the lsqcurvefit function.

4.3 The Plane Fitting

Before doing a surface fitting, a plane fitting is a simple start to check the feasibility of algorithm

and the scanning method, although it’s not a nonlinear problem. A general plane is defined as

following equation:

Ax+ By + Cz +D = 0. (4.8)

And it can be rewritten as this:

z = a1x+ a2y + a3, (4.9)

where a1 = −A
C
, a2 = −B

C
, a3 = −D

C
. Then this function is set as a fitting model, and there

are three parameters in this function. That means at least 4 sets of measurement data are needed

for solving this equations system. In this experiment six points were picked, and we obtained six

sets of coordinates. Measurement data are as shown in Table (4.1).

Points 1 2 3 4 5 6

x (mm) 488,6 447,0 411,0 411,0 449,3 487,9

y (mm) 57,39 57,39 57,4 20,44 20,44 20,44

z (mm) 114,2 114,2 110,5 110,5 110,5 110,5

voltage (v) 9,2 8,55 3,55 1,28 3,22 1,26

Table 4.1: Measuring data for a plane

By application of the function lsqcurvefit x and y-coordinates are set as XDATA. And as already

known in Equation (4.3), the real z-coordinate of laser spot, z∗, is set as YDATA. The vector

a0 = [1, 1, 10] is as starting value given in. And the fitting results are shown as below:

a =

0.0055 -0.0033 5.1232

So the plane’s equation as results of the fitting function is ‘z = 0.0055x− 0.0033y + 5.1232’, and

the objective function should be ‘z = 0’. From the comparison of the two equations above we can

tell, that lsqcurvefit function does its job quite well. Matlab source codes are shown as below.
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function [a] = planefit(coord)
zv = coord(:,4);
zz = coord(:,3)+71-(45 - zv*(-5/10))-63-65;
% height correction for laser head

x = [coord(:,1),coord(:,2)];

f = @(a,x)a(3) + a(2)*x(:,2) + a(1)*x(:,1);
ydata = zz;
a0 = [1 1 10];
[a,resnorm,residual,exitflag,output,lambda,jacobian]

= lsqcurvefit(f,a0,x,ydata);

4.4 The Quadric Surface Fitting

The surface fitting should follow the same principle. The main point is how to define the surface

equation and the parameters. According to the surface object which was used in the experiment, it

is close to a cone form. A cone form can be classified as a quadric. In mathematics, a quadric, or

quadric surface, is any n-dimensional hypersurface in (n+1)-dimensional space defined as the locus

of zeros of a quadratic polynomial [13]. In coordinates {x1, x2, . . . , xn+1}, the general quadric is

defined by the algebraic equation:

D+1∑
i,j=1

Qijxixj +
D+1∑
i,j=1

Pixi +R = 0. (4.10)

Then in the three-dimensional space the general equation of a quadric should be:

Ax2 +By2 + Cz2 +Dxy + Eyz + Fxz +Gx+Hy + Iz + J = 0. (4.11)

There are some normal forms of quadric in three-dimensional space shown as following:

• Sphere: x2

a2
+ y2

a2
+ z2

a2
= 1;

• Circular Cone: x2

a2
+ y2

a2
− z2

b2
= 0;

• Circular Cylinder: x2

a2
+ y2

a2
= 1;

• Hyperbolic Paraboloid: x2

a2
− y2

b2
− z = 0.

Figure (4.2) shows the Matalb output of these four quadric surfaces.
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(a) Sphere (b) Circular Cone

(c) Circular Cylinder (d) Hyperbolic Paraboloid

Figure 4.2: Some normal forms of quadric in three-dimensional space

As introduced before, in this experiment the surface object to be scanned is close to a cone surface,

see Figure (4.3). So the objective function is set on the basis of a circular cone. By measuring

the dimensional characteristics of the object and its position in the robot coordinate system, the

parameters of the objective function could be determined, and the function is presented in Equation

(4.12). And Figure (4.4) demonstrates the simulation result of this circular cone in Matlab.

0, 047x2 − y2 − z2 − 70x+ 130y + 22344 = 0 (4.12)
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Figure 4.3: Scanning of a cone surface

Basically speaking, through a rewrite of this equation the nonlinear function for the lsqcurvefit can

be already settled. But for a further application and a better versatility, a more general expression

of z is needed. As previously mentioned, Equation (4.11) is the general expression of a quadric

surface, so the z expression derived from this equation should fit for all quadric models. Here the

quadratic formula is used to solve this problem. Equation (4.11) could be as following rewritten:

Cz2 + (Ey + Fx+ I)z + (Ax2 +By2 +Dxy +Gx+Hy + J) = 0. (4.13)

If we set,

a = C,

b = Ey + Fx+ I ,

c = Ax2 +By2 +Dxy +Gx+Hy + J ,

then according to quadratic formula we get the expression of z shown as below,

z =
−b±√

b2 − 4ac

2a
. (4.14)

We took Equation (4.14) as the nonlinear function for the lsqcurvefit and set appropriate starting

values of the parameters based on Equation (4.12), the surface fitting can be done. Because there

are total ten parameters to solve, a total of 25 points were picked from the surface object. These 25

points located in an area around 50 by 50 mm. The 25 sets of coordinates can ensure the equations

be able to be solved. The measurement data are seen in Appendix.
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Figure 4.4: Simulation of the cone surface in Matlab
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But in the practical experiment it’s found out that determining ten parameters is still a large work

for the Matlab function. The equation system is solvable, and the minimization is able to be found.

But an approximation with ten parameters still leads to a big deviation from the ideal values. That

reduces the precision of the rebuild quadric surface. Therefor the following two steps are taken to

solve this problem:

1. The maximal iteration’s number was modified from the default value ‘1000’ to ‘1500’.

2. The DOF of the equation is restricted. Since it’s already known that the desired surface

equation is a circular cone, through comparing the circular cone’s equation and the general

quadric equation, four parameters of the ten should be zeros. So we can restrict these four

parameters within a small range around ‘0’. This can be done by setting an upper and a

lower boundary for the parameters in lqscurvefit’s option.

After these steps the fitted surface equation is already very near the objective function. The Matlab

source code is seen below.

function [a,x,y,cov,J,sigma,resnorm,residual] = identQuadric2(coord)

v = coord(:,5); % Voltmeter reading from laser measure instrument

%z value calculating, bases on the original labor data ’dataSet’
y = coord(:,4)+70-(45 - v*(-5/10))-63-65;

x = [coord(:,2)-45.5, coord(:,3)+11.5];

% Starting value setting bases on the original cone (’dataSet’)
% function: a*xˆ2 + b*yˆ2 + c*zˆ2 + g*x +h*y + j
a0 = [0.04 -1 -1 0 0 0 -75 100 0 2.7e4];

% surface fitting’s boundary setting for the original cone
lb = [-2 -2 -5 -0.5 -0.5 -0.5 -105 100 -0.5 1e4];
ub = [ 2 0 0 0.5 0.5 0.5 -45 150 1.5 6e4];

% increasing the max evaluation’s limit from
% default ’1000’ to ’1500’
options = optimset(’MaxFunEvals’,1500);
[a,resnorm,residual,exitflag,output,lambda,jacobian]
= lsqcurvefit(@fquadric, a0,x, y,lb,ub,options);
J = jacobian;
cov = inv(J’*J);
sigma = sqrt(diag(cov));
z = fquadric(a, x);

%rewriting the x,y,z data into the same size 5*5 matrics
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xx = x(:,1);
X = reshape(xx,5,5);
yy = x(:,2);
Y = reshape(yy,5,5);
Z = reshape(z,5,5);

surf(X, Y, Z)

hold on
plot3(x(:,1), x(:,2), y, ’o’ )

hold off

The Matlab operation’s results are shown as following, and Figure (4.5) also shows the rebuilt

surface. The surface fitting is done.

a=[0.044843283119378, -1.099931905262076, -1.061442712789104,
0.038787388696698, -0.039591515413684, 0.035412367741600,
-73.216117468512660, 1.200000060888018e+02, 0.021540558901372,
2.329189141280282e+04]

It is proved by the experiment, that this method completes very well the requirements about re-

building a desired quadric surface. And this method has certain versatility for the other forms of

quadric surface. But by using this method, the choosing of starting value for lsqcurvefit should

be cautious. Because the solving of z, that includes a square root operation, can be easily led to

complex results by inappropriate variables setting. Those complex results make the lsqcurvefit no

solution. So the starting value choosing should be not too far from the ideal value.
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Figure 4.5: Surface fitting’s output by Matlab



Chapter 5

Path Planning and Implementation

In this chapter the path planning concept of this thesis will be explained, and the algorithm of

orientation and translation computing for the manipulator will be introduced. This algorithm will

be implemented in a Simulink program.

5.1 The Purpose of Path Planning

Through the introduction in chapter 4, an approximated surface is already available for the ex-

periment. If we attempt to print this rebuilt surface, we need the robot accomplish two function.

One is to make sure the printer nozzle follow a motion path, which can accurately restitute the

approximated surface. The other is to make sure the nozzle always point perpendicularly towards

the surface, because that’s the optimal approaching angle for the 3D printer nozzle.

At first the motion path of the nozzle should match those points coordinates on the fitted surface.

Through the completed work in chapter 4, these coordinate are informed. As in chapter 3 already

introduced, the inverse kinematics calculating is split into two procedures, translation and orienta-

tion. Then two end conditions are needed, the position of point P and a direction vector. In this

thesis the path planning doesn’t mean only the picking of path coordinates. It also considers the

computing of apposite translation coordinates and orientation vector.

5.2 Implementing the Path Planning on Stäubli RX60

G-code Importing a G-code programming file is one method to implement the path planning

for robot Stäubli RX60. G-code programming is already in chapter 2 introduced. Although the

G-code programming language has already provided some functions to achieve a circle movement

or a curve movement, or a movement along an arbitrary spline, the radius for the curve must be

known in the first place. And it’s difficult to suit a movement with the real-time changes in the

curvature. So this method for the experiment is not practical.

37
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Matlab function The another way to implement the path planning, as we in chapter 2 already

introduced, is using a Simulink function.

In the Simulink program, which developed for the simulation, tree variables o, f1 and f2 are de-

fined. The variable o delivers a vector containing the translation coordinates to the inverse kinemat-

ics block. The by inverse kinematics block calculated rotation angles are through UDP transferred

back to the robot. With those angles the robot is driven to the desired position. How to get the

value for o will be introduced in the later section.

Figure 5.1: Computing the robot pose in Simulink program

The other two variables, f1 and f2, contain two vectors. Here we name the two vectors as �f1 and
�f2. They are used to implement the orientation. In the following sections the detailed introduction

about setting these variables will be presented.

5.3 Implementation of the Orientation Vector

According to the introduction about the geometric characteristics and mounting position of the 3D

printer block in chapter 2, it’s known that the nozzle’s axis is parallel to the end effector’s central

axis. Therefor the orientation problem for printer nozzle is obviously the same problem for robot

orientation.

We set a local coordinate system for the end effector, and name it as
∑

6, and �x, �y, �z are three

unit vectors for x, y and z-axes in
∑

6. In our Simulink function vector �f1 is set to overlap on the

unit vector �x. That means they point the same direction, but �f1 can be a scalar vector of �x. And

similarly the vector �f2 overlaps on unit vector �y, it points the same direction as �y with a scalar size.
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So according to the definition above, if we set �f3 = �f1 × �f2, then we can get, that the vector �f3
should point the same direction as �z and with a scalar size, schematic figure is shown as following.

Figure 5.2: Schematic drawing of vectors �f1, �f2 and �f3

Theoretically speaking, when the vectors �f1 and �f2 are setting up, the orientation of the robot end

effector is done. Obviously through setting up appropriate �f1 and �f2 can let �f3 point the inverse

direction as the surface normal. This setting makes the nozzle vertical to the surface. In the next

section it will be detailed introduced, how to find the surface normal.

5.4 Computing the Normal of the Surface

In the three-dimensional case, a surface normal to the surface at a point Q, is a vector that is

perpendicular to the tangent plane to that surface at Q. Such a tangent plane can be determined

by two tangent lines, because of the geometric theorem that two intersecting straight lines can

establish a plane. So through the partial differential of variable x of this surface equation, one

tangent line can be determined. And the other one is through partial differential in direction y
determined. If we get a function,

F (x, y, z) = 0, (5.1)
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and the variable z can also be presented as a equation of variables x and y,

z = f(x, y), (5.2)

then we get a rewrite of Equation (5.1) like this,

F (x, y, f(x, y)) = 0. (5.3)

Based on the chain rule, the expression for partial derivation in direction x of Equation (5.3) is

shown as following:
∂F

∂x
+

∂F

∂z
· ∂f
∂x

= 0. (5.4)

According to our definition z = f(x, y), so Equation (5.4) will be rewritten as this,

∂F

∂x
+

∂F

∂z
· ∂z
∂x

= 0. (5.5)

Naturally we also get,

∂z

∂x
= −

∂F
∂x
∂F
∂z

. (5.6)

The tangent line in direction x should be a line in XOZ plane, and ∂z
∂x

shows the slope of this

tangent line. As we in chapter 4 already introduced, the quadric surface function can be presented

in a expression of z. Now with the surface function and Equation (5.6) we can calculate the tangent

line in direction x at any point on this quadric surface. And similarly we can get the slope of tangent

line in direction y at the same point,

∂z

∂y
= −

∂F
∂y

∂F
∂z

. (5.7)

The next step, we set the equation for a general quadric surface as in chapter 4 mentioned Equation

(4.11). According to the description above, now we get

∂F

∂x
= 2Ax+Dy + Fz +G, (5.8)

∂F

∂y
= 2By +Dx+ Ez +H, (5.9)

∂F

∂z
= 2Cz + Ey + Fx+ I. (5.10)

And now the slopes for two tangent lines are in following expression presented,

∂z

∂x
= −2Ax+Dy + Fz +G

2Cz + Ey + Fx+ I
, (5.11)

∂z

∂y
= −2By +Dx+ Ez +H

2Cz + Ey + Fx+ I
. (5.12)

Now two tangent lines are available, the tangent plane is naturally identified, and also the normal

of the surface at each point is identified.
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In the practical application, we need not to accurately calculate the normalized vector1 of each

normal, only the direction of the normal is what we are interested. That means, we can set a

vector, that is in the same direction as normal, but with arbitrary scalar size of the normal. This

characteristic offers us a great freedom to set the vectors.

We set two vectors �a and�b as the following,

�a = (1, 0,
∂z

∂x
), (5.13)

�b = (0, 1,
∂z

∂y
). (5.14)

Then we can tell, that �a is a vector in XOZ plane, and points the same direction as the tangent line

which we’ve mentioned. And�b lies in Y OZ plane pointing the same direction as the other tangent

line. And now we let,

�f2 = �a = (1, 0,
∂z

∂x
), (5.15)

�f1 = �b = (0, 1,
∂z

∂y
). (5.16)

Schematic drawing is seen in Figure (5.3). Now vector �f3 obviously points the inverse direction

as the surface normal. These expressions of �f1 and �f2 will be in a function block in the Simulink

program file written. Then along the surface we get at each point a pair of the vectors with real-time

calculated values. They are delivered to the kinematics block for accomplishing the orientation.

5.5 Implementation of the Translation Coordinates

In the experiment, what we are informed are the coordinates of the desired surface. Those co-

ordinates are computed through surface fittings function. By introduction in the section above,

orientations vector is already known. The position of the nozzle should undoubtedly match the

coordinates of the surface points. But the vector �o delivers the position of the point P, that point

has been in chapter 3 introduced. This means, that a deviation exists between what we know and

what the robot should know. The task is to find out the convention between them.

From the Figure (2.4) we can tell, that due to the mounting position of the 3D-printer’s, the central

axis of nozzle doesn’t concentric with the central axis of end effector. The relative horizontal

position offset is shown as the Figure (5.4).

Due to the own length of the end effector, the printer holding frame and the printer nozzle, there

exists of cause also a vertical offset between nozzle and the point P . The Figure (5.5) shows

a schematic drawing about the vertical offset. In the drawing an additional height offset valued

‘1 mm’ is set. That’s for the little interval between nozzle and the surface.

So according to Figure (5.5) the vertical offset can be calculate with the following equation,

z∗ = z + 1 + 30 + (75− 7) + 65. (5.17)

1Here the normalized vector means the unit vector, the vector in same direction but with norm length 1
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Figure 5.3: Schematic drawing of the orientation

Figure 5.4: Horizontal offset between nozzle and central axis
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Figure 5.5: Vertical offset between nozzle and point P
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And the whole translation relation between the nozzle peak and the point P could be presented

in following equations. If we set the coordinate of nozzle peak as (x, y, z), and the coordinate of

point P as (x∗, y∗, z∗), then we get,

x∗ = x+ 5, (5.18)

y∗ = y + 32, (5.19)

z∗ = z + 164. (5.20)

Starting from the desired coordinates, along the direction of orientation’s vector, with the relative

horizontal offset and vertical offset, we can calculate the coordinate of �o.

The relative position between these two points is fixed during the robot motion. But the global

coordinates of them changes in time. For more intuitively understanding the computation of the

coordinates, based on their relative position, the two points are imagined as two vertices on the

diagonal of a cuboid, seen in Figure (5.6).

Figure 5.6: Relative position between nozzle peak and point P

Now the point where the nozzle peak locates is set as point O. And with the point O as origin

point we build a local coordinate system. The orientation’s vector is already known. We name
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it as vector �n in this coordinate system. Through rotating this rigid cuboid about tree axes x, y
and z, in accordance with a certain order, we can let the cuboid stay in the same direction as the

vector �n points. Then the mathematical expression about this rotation sequence is the coordinates

conversion between nozzle peak and P.

At first the rotation matrices are going to introduce here as basics. As we have in chapter 3 already

mentioned, we can use the trigonometric to build the rotation matrices. They are shown as below:

Rx(u1), the rotation matrix about axis x with angle u1,

Rx(u1) =

⎡
⎣1 0 0
0 cos(u1) − sin(u1)
0 sin(u1) cos(u1)

⎤
⎦ ; (5.21)

Ry(u2), the rotation matrix about axis y with angle u2,

Ry(u2) =

⎡
⎣ cos(u2) 0 sin(u2)

0 1 0
− sin(u2) 0 cos(u2)

⎤
⎦ ; (5.22)

and Rz(u3), the rotation matrix about axis z with angle u3,

Rz(u3) =

⎡
⎣cos(u3) − sin(u3) 0
sin(u3) cos(u3) 0

0 0 1

⎤
⎦ . (5.23)

In the experiment we followed such a rotation sequence, that first of all the rigid rotated about axis

z with −90◦, then it rotated about axis y with angle u2, at last it rotated about axis x with angle u1.

A schematic explanation is seen in Figure (5.7).

Following the sequence above each rotation angle is in geometry solvable. The rotation angle in

clockwise is set as negative, and the rotation angle in anticlockwise as positive. The first rotation

angle about axis z is already known as −90◦.

The second rotation angle u2 about axis y will be solved with help of the vector dot product rule.

The vector dot product rule says,

�a ·�b =‖ �a ‖‖ �b ‖ cos θ θ ∈ (0, 180◦) (5.24)

The geometric meaning of this equation is, that θ is the angle between �a and �b. With two known

vectors the angle is of cause able to be computed. Vector �n is already known as orientation’s vector.

We set the unit vector of x-axis as �x, then �x = (1, 0, 0). So according to the dot product rule and

combined with the rotation direction’s setting, we get the expression for angle u2 as following,

u2 = 90◦ − arccos(
�n · �x

‖ �n ‖‖ �x ‖). (5.25)

By calculating the third rotation angle u1 about x-axis we also used the vector dot product rule.

We set the unit vector of axis y as �y, then �y = (0, 1, 0). For the calculation we set additionally a

vector �n2, and �n2 = �n× �y. Then the expression for angle u1 is as following,

u1 = arccos(
�n2 · �y

‖ �n2 ‖‖ �y ‖). (5.26)
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(a) Original position (b) Rotation about axis z

(c) Rotation about axis y (d) Rotation about axis x

Figure 5.7: Rotation sequence
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Now followed the rotation sequence, and with the corresponding rotation angles, the entire rotation

matrix could be built,

R = Rx(u1) ·Ry(u2) ·Rz(−90◦). (5.27)

Then the coordinates of point P in this local coordinate system after a series of rotation should be,

P = R ·
⎡
⎣ 5
32
164

⎤
⎦ . (5.28)

Of cause the coordinates of P in the global coordinate system are required. If the coordinates of

origin O in the global system is known as o, then the global coordinates of P can be presented as,

P∗ = o+R ·
⎡
⎣ 5
32
164

⎤
⎦ . (5.29)

By this solution, the consistence of the rotation sequence should be drawn attention. It’s under-

standable, that the translation could be equally effective when it follows another rotation sequence.

But when the sequence is changed, the calculation of rotation angles should be also reformed

and suit itself to the new sequence. Exactly based on this reason, the sequence is at first to be

determined, then the rotation angles. The Matlab source codes are shown as below.

function o = transf(o1,f1,f2,pos)
%#codegen

ff = cross(f1,f2);
f = -ff;
e1 = [1,0,0]’;
e2 = [0,1,0]’;

% Rotating sequence, first about e2 , then about e1
if (f(3)>=0)

u2 = 90 - acosd(dot(f,e1)/norm(f));
else

if (f(1)>=0)
u2 = 90 + acosd(dot(f,e1)/norm(f));

else
u2 = 270 - acosd(dot(f,e1)/norm(f));

end
end

n2 = cross(f,e1);
if (f(3)>=0)
if (f(2)<=0) % When ny in 3rd and 4th quadrant
u1 = acosd(dot(n2,e2)/norm(n2));
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else
u1 = -acosd(dot(n2,e2)/norm(n2));

end
else
if (f(2)>=0)
u1 = 180 - acosd(dot(n2,e2)/norm(n2));

else
u1 = acosd(dot(n2,e2)/norm(n2)) - 180;

end
end

% Building the rotation matrix
Rz = [cosd(-90), -sind(-90), 0;

sind(-90), cosd(-90), 0;
0 , 0 , 1];

c2 = cosd(u2);
s2 = sind(u2);
Ry = [c2, 0, s2;

0, 1, 0;
-s2, 0, c2];

c1 = cosd(u1);
s1 = sind(u1);
Rx = [1, 0, 0;

0, c1, -s1;
0, s1, c1];

% The rotation sequence must be first about axis-y,
% then aboutaxis-x
R = Rx*Ry*Rz;

o = R*pos + o1;



Chapter 6

Test Runs and Possibility of Improving the
Accuracy

In this chapter the experimental results are analyzed. The possibility about reducing the pose error

is presented. An overview about robot calibration is led into this thesis. This work completed some

meaningful theoretical preparation for the further accuracy enhancing of this 3D printing method.

And also a simple method to determine the joints error is introduced.

6.1 Test Runs

After completing the orientation and translation computation, several test runs were executed. For

the test run such a motion path is planed. Several points from the outermost boundary of the

scanned surface are picked out. And they are sequentially ordered to form the motion path. At

first the test run was executed in Simulink virtual world simulation, then in B&R simulation, that

includes the simulation of the motor drive controllers. Finally it was run on the real robot. Figure

(6.1) shows the robot pose during a test run.

6.2 Analysis of Experimental Results

In the test runs the printer nozzle has maintained the correct orientation, and the motion tracks

were generally according to the right slopes and curvatures of the surface object. These test runs

verified the series of work accomplished before. But there are still light deviations between the

motion track and the real surface possible. The reasons, that cause the deviation, might be found

in two aspects.

1. One reason might be the measuring deviation by surface scanning, that causes the fitted

surface deviating from the real surface.

2. Another reason could be the inaccuracy of the robot’s gears, that causes the inaccuracy of

the reaching position for robot’s end effector.

49



CHAPTER 6. TEST RUNS AND POSSIBILITY OF IMPROVING THE ACCURACY 50

Figure 6.1: Robot pose in test run

As Klimchik presented in his work, there are two approaches to improve the identification accuracy

[14],

• optimization of the manipulator measurement configurations and

• enhancing the objective function, minimized impact of the measurement noise.

Assuming that the laser sensor instrument will not be replaced, there exists another possibility

to improve the accuracy. Robot calibration process could be led into this experiment. It will be

introduced in next section.

6.3 Overview of Robot Calibration

Robot calibration is a process by which robot positioning accuracy can be improved by modifying

the positioning software instead of changing the design of robot or its control system [15]. Here

the accuracy doesn’t mean resolution or repeatability. Accuracy is ability of the robot to move

to a pose defined in the workspace [16]. Most of the research works have concentrated on the

kinematic model-based calibration [17–19]. Of course there is also non-kinematic calibration.

In non-kinematic calibration the robot’s joints or links are no longer considered as perfect rigid.

In those cases more non-geometrical error sources such as temperature or backslash have been

considered. Therefor the non-kinematic calibration is more complicated.
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Kinematic calibration is considered as global calibration method [15]. It consists of four sequence

steps:

• Modeling

• Measurement

• Identification

• Compensation or Correction

These four steps will be generally introduced below.

6.3.1 Modeling

Modeling is to find a mathematical description of the geometry and motion of the manipulator. It

fulfils the conversion of the definition of poses in workspace into joint space. In chapter 3 the most

famous modeling conversion, D-H modeling is already described. There are also some other well

known modeling methods such as Hayati’s model and Mooring’s Zero-reference model [20].

6.3.2 Measurement

The goal of the second step is to determine the position of either end effector or tool of the robot.

The actual measured positions will be compared with the predicted positions to obtain the inaccu-

racy data. By many research works different methods and different measuring devices have been

used.

6.3.3 Identification

By identification, the kinematic errors are identified, and an error model is established. And by

applying numerical methods such as least square algorithm or Levenberg-Marquardt algorithm

the inaccuracy will be minimized. Here a nearer introduction about establishing an error model

follows.

As introduced in chapter 3 Equation (3.1), Ai is the transformation from coordinate system Σi to

Σi+1. And ai, αi, di and θi are the four parameters. If small parameter errors Δai, Δαi, Δdi and

Δθi happen to the four kinematic parameters, then under error propagation rule [21] the error of

transformation matrix can be presented as

ΔAi =
∂Ai

∂ai
Δai +

∂Ai

∂αi

Δαi +
∂Ai

∂di
Δdi +

∂Ai

∂θi
Δθi. (6.1)

Also based on Equation (3.5) the error of whole transformation matrix T can be written as [22]

ΔT =
∂T

∂a1
Δa1+

∂T

∂α1

Δα1+
∂T

∂d1
Δd1+

∂T

∂θ1
Δθ1+. . .+

∂T

∂a6
Δa6+

∂T

∂α6

Δα6+
∂T

∂d6
Δd6+

∂T

∂θ6
Δθ6,

(6.2)
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where

∂T

∂ai
= A1 · . . . · ∂Ai

∂ai
· . . . ·A6 (6.3)

∂T

∂αi

= A1 · . . . · ∂Ai

∂αi

· . . . ·A6 (6.4)

∂T

∂di
= A1 · . . . · ∂Ai

∂di
· . . . ·A6 (6.5)

∂T

∂θi
= A1 · . . . · ∂Ai

∂θi
· . . . ·A6 (6.6)

According to Gong’s introduction in his article [22], with Equation (6.2) the final positional and

orientational changes due to parameter errors can be calculated. Rewriting this function, it can be

presented in a more compact form

ΔX = JΔP, (6.7)

where

ΔX presents total positional and orientational errors of the end effector, including geometric error,

compliance error and thermal error.

ΔP presents the total parameters errors.

J is the Jacobian matrix. Until here the error synthesis model is established.

6.3.4 Compensation or Correction

In this phase, using the information obtained from the previous steps, a new and accurate kine-

matic model is established. This new model should be a modification from the nominal model

accomplished by joints compensation. Through implementation of the new model the manipulator

performance for reaching a desired position will be improved.

Generally calibration can enhance the robot positioning accuracy. It can be predicted, that the

robot can follow the approximated surface more accurately.

6.4 Simple Measurement of Joints Errors

Normally speaking by a classic robot calibration process, the robot end effector with a calibration

tool is controlled to reach a number of points in the workspace. By each position, the coordi-

nates and the robot pose are measured and recorded. The error model is normally a huge matrix

expression with a dozen parameters and parameter errors.

In this thesis just a simple measuring method is proposed to determine the joints errors. Through

the introduction about D-H modeling in chapter 3, it is known that the model consists of geometri-

cal parameters and rotation angles of joints. These rotation angles determine the pose of the robot,

therefor the measurement errors of the rotation angles are very important for the accuracy of the

robot.
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The basic principle of this measuring method is using horizontal distance and vertical offsets to

indirectly measure the rotated angles. Figure (6.2) shows the conversion relation between angle

and offsets.

Figure 6.2: Conversion relation between angle and offsets

According to the schematic drawing, when the rotated angle is sufficiently small, the angle in

degrees can be calculated by Equation (6.8).

θ = tan θ =
y

x

180

π
(6.8)

To implement this measuring method, the following measure instruments were used:

• A laser pointer is mounted on the 3D printing block or on the end effector to point the

position, see Figure (6.3). The mounting position should be able to sense the rotated angle.

• A scale was set on the opposite wall, shown as in Figure (6.4). The position of laser spot

before rotation and after rotation will be marked. The vertical offset is designated as y.

• Furthermore a distance measurement instrument was applied to determine the distance be-

tween laser emission point and the wall, see Figure (6.5). This distance is labeled as x.

The measurement results are shown in Table (6.1).

Axes nominal θ(◦) x(mm) y(mm) measured θ(◦)
1 0,5 5474,15 48 0.5024

2 1 8048 143 1.0179

3 1 8048 137 0.9752

4 1 5436 84 0.8853

5 1 7464 100 0.7676

6 1 5431 92 0.9705

Table 6.1: Identification of angle deviations of six joints

In Table (6.1) the ‘nominal θ’ represents the angle value entered to the robot controller. And the

‘measured θ’ represents the values calculated from the measurements. The measurement error of

x is ±1 mm, which is specified in the data sheet of the instrument. And the measurement error of y
is estimated with ±0.5 mm, determined by the size of the laser spot and the recognition capability

of the human eye.
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Figure 6.3: Laser pointer mounted on end effector
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Figure 6.4: Scale for measuring vertical offset
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Figure 6.5: Distance measurement instrument

According to error propagation rule and Equation (6.8), the rotation angle’s error model expression

follows with

Δθ = (| − y

x2
||Δx|+ |1

x
||Δy|)180

π
, (6.9)

where Δx and Δy are the absolute errors of measurement. Table (6.2) shows the angles’ error

results according to Equation (6.9).

Axes measured θ(◦) Δθ(◦)
1 0.5024 0.0053

2 1.0179 0.0037

3 0.9752 0.0037

4 0.8853 0.0054

5 0.7676 0.0039

6 0.9705 0.0055

Table 6.2: Computing results of angles’ errors

Equation (6.8) could be considered as the error model of this simple measurement. The error

minimizing work will not be further discussed in this thesis. And also the compensation work

is not included in our scope. Here it just proposed a simple model to understand the calibration

process and completed some elementary work for calibration.



Chapter 7

Conclusion

This thesis introduced a new proposal about combining an industrial robot and a 3D printer ex-

truder. This concept was expected to expand the application area of 3D printing compared to

consumer grade 3D printers. And it was also expected to enable the printer extruder to achieve

printing on non-planar surfaces.

A measuring method was presented, applying a laser displacement sensor to scan a surface. With

the Levenber-Marquardt method, which is implemented as a mathematical tool in Matlab, the

scanned surface was approximated with a quadric surface. The applicability of this method for

surface fitting task is validated. It also was proved that the resolution of the laser sensor is suitable

for the scanning task. The approximation result was used in the next step for path planning.

In this thesis the robot kinematic modeling was based on Denavit-Hartenberg model. Around this

kinematics model a simulation program in Simulink was built. Besides the kinematics block, the

function contains a path planning block as well. The function of that block is computing the trans-

lation and orientation variables and delivering them to the kinematics block. Through the analysis

of requirement of 3D printing and the kinematics model as well as the geometric characteristics

of the hardware, an algorithm about computing the translation and orientation variables was de-

veloped. The algorithm was successively verified in Simulink simulation environment and in the

B&R simulation environment as well. Based on the coordinates of approximated surface, a motion

path for reconstructing the surface is planed. The robot pose for 3D printing is adjusted appro-

priately. And with a Simulink program the robot is controlled in order to accomplish this motion

path. The motion path was also proved to reconstruct the surface object very well.

For a more accurate surface printing, implementing the robot calibration process is an option. In

this thesis the theoretical preparation for calibration is also included.
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Appendix A

Measurement Data

A.1 Measurement Data of Surface Model

Points x y z voltage (v)

1 391 50.69 168.3 -8.54

2 390.9 39.25 173 -7.65

3 390.9 25.89 175.2 -7.7

4 390.9 9.221 175.2 -6.47

5 390.9 -5.085 175.2 0.72

6 403 -5.085 175.2 6.8

7 404.5 10.17 175.2 -0.6

8 404.4 25.98 175.2 -1.63

9 404.4 39.56 175.2 3.13

10 404.5 51.96 172.7 7.3

11 417.1 51.7 170.1 8.6

12 417.1 38.97 170.1 -1.64

13 417.6 24.62 170.1 -6.25

14 417.6 9.64 170.1 -4.74

15 417.6 -3.09 170 2.36

16 429.3 -3.1 169.9 8.02

17 431.2 10.87 169.8 0.8

18 431.2 25.79 169.8 -0.57

19 431.2 38.37 169.8 3.7

20 431.3 51.51 166.3 7.17

21 443.9 49.26 164.7 8.15

22 445.4 38.49 164.7 -0.25

23 445.4 26.07 164.7 -4.86

24 445.4 12.04 164.7 -3.56

25 445.4 -0.7254 164.6 3.73
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Technical Data of Stäubli RX60

Figure B.1: Dimensions of Stäubli RX60
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Figure B.2: Workspace of Stäubli RX60



Appendix C

Source Code and Simulink Program

C.1 Plane Fitting Function

function [u1,u2,a,n,jacobian] = planefit(coord)
zv = coord(:,4);
zz = coord(:,3)+71-(45 - zv*(-5/10))-63-65;
% height correction for laser head

x = [coord(:,1),coord(:,2)];

f = @(a,x)a(3) + a(2)*x(:,2) + a(1)*x(:,1);
ydata = zz;
a0 = [1 1 10];
[a,resnorm,residual,exitflag,output,lambda,jacobian]
= lsqcurvefit(f,a0,x,ydata);
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C.2 Quadric Surface Fitting Function

function [a,x,y,cov,J,sigma,resnorm,residual] = identQuadric2(coord)

v = coord(:,5); % Voltmeter reading from laser measure instrument

%z value calculating, bases on the original labor data ’dataSet’
y = coord(:,4)+71-(45 - v*(-5/10))-63-65;

x = [coord(:,2)-45.5, coord(:,3)+11.5];

% Starting value setting bases on the original cone (’dataSet’)
% function: a*xˆ2 + b*yˆ2 + c*zˆ2 + g*x +h*y + j
%a0 = [0.04 -1 -1 0 0 0 -75 100 0 2.7e4];
a0 = [0.04 -1 -1 0 0 0 -75 40 0 2.5e4];

% surface fitting’s boundary setting for the original cone
lb = [-2 -2 -2 -0.04 -0.04 -0.04 -90 30 -0.04 1e4];
ub = [ 2 0 0 0.04 0.04 0.04 -50 50 0.04 3e4];

% increasing the max evaluation’s limit from defult ’1000’ to ’1500’
options = optimset(’MaxFunEvals’,1500);
[a,resnorm,residual,exitflag,output,lambda,jacobian]
= lsqcurvefit(@fquadric, a0,x, y,lb,ub,options);

J = jacobian;
cov = inv(J’*J);
sigma = sqrt(diag(cov));
z = fquadric(a, x);

%rewriting the x,y,z data into the same size 5*5 matrics
xx = x(:,1);
X = reshape(xx,5,5);
yy = x(:,2);
Y = reshape(yy,5,5);
Z = reshape(z,5,5);

surf(X, Y, Z)

hold on
plot3(x(:,1), x(:,2), y, ’o’ )

hold off
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C.3 Z-coordinate Computing Function in Simulink

function Z = zCalculation(x,y,a)
%#codegen
aa = a(3);
bb = a(5)*y + a(6)*x + a(9);
cc = a(7)*x + a(1)*x*x + a(2)*y*y + a(4)*x*y + a(8)*y + a(10);

z1 = (-bb + sqrt( bb.*bb - 4*aa.*cc ))./(2*aa) ;
z2 = (-bb - sqrt( bb.*bb - 4*aa.*cc ))./(2*aa) ;
if (z1 >= z2) %insure that we always get the bigger value from

Z = z1; %the two roots, cause it should be the upper half of the
else

Z = z2;
end

C.4 Orientation Vectors Setting Function in Simulink

function [f1,f2] = orientation(x,y,z,a)
%#codegen

% the general quadric function
% F = axˆ2 + byˆ2 + czˆ2 + dxy + eyz + fxz + gx + hy + iz + j = 0
% F’s partial derivative of x,y and z, imported from mapel
Fx = 2*a(1)*x + a(4)*y + a(6)*z + a(7);
Fy = 2*a(2)*y + a(4)*x + a(5)*z + a(8);
Fz = 2*a(3)*z + a(5)*y + a(6)*x + a(9);

% the partial derivative of x and y for z
dzx = -Fx/Fz;
dzy = -Fy/Fz;

%e1 = [1,0,0];
%e2 = [0,1,0];

f2 = [1,0,dzx];
f1 = [0,1,dzy]; % let the axis with ball in this direction
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C.5 Translation Vector Setting Function in Simulink

function o = transf(o1,f1,f2,pos)
%#codegen

ff = cross(f1,f2);
f = -ff;
e1 = [1,0,0]’;
e2 = [0,1,0]’;

% Rotating sequence, first about e2 , then about e1
if (f(3)>=0)

u2 = 90 - acosd(dot(f,e1)/norm(f));
else

if (f(1)>=0)
u2 = 90 + acosd(dot(f,e1)/norm(f));

else
u2 = 270 - acosd(dot(f,e1)/norm(f));

end
end

n2 = cross(f,e1);
if (f(3)>=0)
if (f(2)<=0) % When ny in 3rd and 4th quadrant
u1 = acosd(dot(n2,e2)/norm(n2));

else
u1 = -acosd(dot(n2,e2)/norm(n2));

end
else
if (f(2)>=0)
u1 = 180 - acosd(dot(n2,e2)/norm(n2));

else
u1 = acosd(dot(n2,e2)/norm(n2)) - 180;

end
end

% Building the rotation matrix
Rz = [cosd(-90), -sind(-90), 0;

sind(-90), cosd(-90), 0;
0 , 0 , 1];

c2 = cosd(u2);
s2 = sind(u2);
Ry = [c2, 0, s2;

0, 1, 0;
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-s2, 0, c2];

c1 = cosd(u1);
s1 = sind(u1);
Rx = [1, 0, 0;

0, c1, -s1;
0, s1, c1];

R = Rx*Ry*Rz;
% The rotation sequence must be first about axis-y,then about
% axis-x
o = R*pos + o1;

C.6 Simulink Simulation Program
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Figure C.1: Simulink Program
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Figure C.2: Pose Computing Block
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Figure C.3: Orientation Computing Block
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