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1. Introduction 

1.1. Background and motivation 

Mining activities negatively affect the environment, requiring monitoring both during and 

after mining. The nature of these effects varies substantially depending on the mining 

methods used. For opencast mining, such as lignite mining, the main problem is land 

occupation, particularly agricultural and forest land. Another issue that needs to be 

addressed is mining drainage, resulting in environmental degradation and large-scale 

changes in land use. After closing such mines there is always post-mining land that has 

to be taken care of.  

European Union laws require large companies to disclose information on the way they 

operate and manage social and environmental challenges. One of the company’s 

requirements is to provide detailed reports on the environmental impacts, which might be 

production of carbon dioxide, water contamination or land degradation. Improving 

monitoring of rehabilitated landscapes, that were once mining areas, would help meet 

European standards. 

It’s important to constantly monitor the condition of a given area, and right now it is 

starting to get easier with the help of remote sensing. These past two decades, there was 

a significant increase in the technical level of remote sensing methods and computational 

techniques, which dramatically expanded the possibilities of remote study of phenomena 

occurring in the environment, both natural and anthropogenic. Remote sensing data is 

now widely available. With the help of observation programme such as Copernicus Land 

Monitoring Service all information is free and openly accessible to all users, as it provides 

geographical information on land cover, land use, land cover-use changes over the years, 

vegetation state or water cycle.  

1.2. Objective 

The purpose of this study is to research suitable satellite based spectral indexes with the 

intention to use them for designing a project workflow that would be useful for 

monitoring the health and condition of (reclaimed) post-mining landscapes. The study 

will be carried out on a chosen opencast mine located in Profen, Germany. The research 

will focus on Landsat satellite data and multispectral imagery. The condition of the post-

mining landscape will be determined by an analysis of vegetation indexes in time for 

selected post-mining test zones. 

1.3. Scope of the study 

The whole study is divided into two parts. The first, theoretical part consists of a literature 

study associated with sustainable development, mining and reclamation. In addition, a 

large section of the theoretical part is devoted to a comprehensive review of satellite 

missions and multispectral bands registered by their sensors, but also on spectral indexes 

that can be helpful with establishing the condition of the land. The second part introduces 

a case study in Profen, Germany. The knowledge acquired in the theoretical part will be 

used to develop and test a methodological workflow for monitoring postmining landscape 

health. The condition of the post-mining landscape would be assessed by time series 

analysis. Monitoring would be conducted in QGIS, which is free and open-source 

software. 
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2. State-of-the-art 

2.1. Mining and Post-mining Landscapes 

The mining industry is considered to have one of the most detrimental impacts on the 

environment. Extraction of minerals often results in irreversible changes. This chapter 

discusses the impact of mining on the environment and describes post-mining areas.  

2.1.1. Impact of mining 

Mineral extraction is influencing the environment in various ways. The noticeable 

negative effects are bad air quality, water and soil contamination, disturbance of the 

groundwater table level and negative impact on people’s health. In addition, it has 

negative impact on the development of agriculture, deterioration of the landscape and loss 

of forest and biodiversity. To understand how and why mining affects the environment 

so much, it is important to understand the basic processes involved in the extraction and 

processing of minerals and at what stages environmental impacts can occur (Jain et al., 

2016). Figure 1 presents a chart with simplified mining operations. 

 

Figure 1. Simplified flow chart of a surface mining operations 

In the exploration phase information about the location and value of the mineral ore 

deposit is obtained, by performing surveys, field studies and drilling boreholes. In this 

case, clearing the vegetation is an indispensable process.  

The development of the mine may consist of the construction of access roads and mining 

facilities, for that there has to be carried out site preparation and land clearing. It brings 

stress to ecologically sensitive areas, increased traffic volumes and general stress related 

to development activities.  

Where the ore deposit extends from the surface deep into the ground, removal of the 

overburden has to be performed, as well as drilling and blasting to initiate open pit mining. 

Getting rid of the overburden is destroying natively vegetated areas. Due to this, surface 

mining is the most environmentally-destructive type of mining, especially within tropical 

rainforests, it has a huge impact on wildlife habitats.  

Site reclamation and closure

Tailings disposal

Benefication / Enrichment

Ore extraction

Disposal of overburden and waste rock

Development

Exploration
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In some cases, when the open pit mine extends below the groundwater table, the 

groundwater must be pumped permanently out of the pit to allow mining activities. As a 

result, a pit lake will form after the mine is closed. 

As stated, before overburden must be excavated to allow access to the orebody, 

consequently waste rocks are being dumped on the mining site, creating piles on the 

surface, at times containing significant levels of toxic substances.  

Extraction of the orebody with specialized equipment by drilling and blasting, followed 

by transport of material to processing facilities with e.g., loaders, creates a unique set of 

environmental impacts depending on the ore type, mine type and mining method. These 

impacts can be air (particle) pollution, excessive noise, vibrations and shock waves.  

Activities such as crushing, separation or flotation, that make up the enrichment, 

contribute to air pollution, creation of tailings or dump leach residuals. The beneficiation 

processes generate high-volume waste, that usually contain toxic metals (Pb, As, Cd). A 

mining project which involves the extraction of some hundred million tons of ore 

minerals, involves also the generation of a similar quantity of tailings. Mine tailings also 

pose a risk of acid mine drainage and subsequent water contamination (ELAW - 

Environmental Law Alliance Worldwide, 2010). 

2.1.2. Post-mining landscape 

The term post-mining landscape generally refers to the cultural landscape that is created 

or developed in large-scale areas of mining during mining or after its end, during 

reclamation processes. A distinction must be made between the mining landscape and the 

post-mining landscape. According to the technical definition, the post-mining landscape 

is a mining landscape that has been released from mining control, regardless of whether 

and how many technical measures have taken place to restore near-natural habitats. The 

post-mining landscape has to be transferred to a reusable state. 

2.2. Reclamation 

Every mining company will sooner or later have to end its mining activity. The process 

of renewal of such areas by natural reclamation could take a very long time, therefore 

reclamation is an element of spatial management, which results in restoring the values 

and most often assigning a new purpose to the areas transformed by mining.  

For all mines, land reclamation should be carried out as the land becomes redundant for 

mining operations. Therefore, there is no need to wait for the end of mining, but it is even 

necessary to recultivate areas where mining activity has been completed at the stage of 

exploitation. All activities should be specified at the beginning stage of a mine. In Poland 

it is specified as a reclamation project, which is a technical document that assumes the 

performance of specific works aimed at restoring utility or natural values to land that has 

been degraded or devastated  (Krzemiński, 2021). 

Not only areas where the extraction took place are subject to reclamation - these are also 

soils or water reservoirs, which are often contaminated as a result of industrial activity, 

e.g., with heavy metals.  

2.2.1. Stages of reclamation 

From ecological perspective reclamation is the process of construction of topographic, 

soil and plant conditions that are not identical but permits the degraded landmass to 

function adequately in the ecosystem of which it was and is part.  
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Recultivation refers to technically and materially complex measures to restore or return a 

landscape to a usable state, which has been impaired or destroyed by massive 

interventions as a result of human economic activities.  

Land recultivation is carried out in two stages: 

1. Technical recultivation consists of levelling the surface, ground re-contouring, 

removing or neutralizing toxic substances for plants, constructing reclamation and other 

structures, including drainage systems.  

2. Biological reclamation consists of measures aimed at restoration of soil fertility 

on technically prepared areas, including agrotechnical and phytomeliorative methods 

aimed at restoration of flora and fauna (revegetation and seeding), but also initial planting.  

Simultaneously with the changes caused by reclamation, there has to be constant 

monitoring of the soil and water quality and vegetation establishment (Land Reclamation 

in Canada | Land Reclamation Projects & Action | CAPP, n.d.)(Land Recultivation ⋆ 

Arable Farming, n.d.). 

2.2.2. Types of reclamation 

The newly created or restored cultural landscapes are planned and mostly serve 

subsequent uses. There are different ways of reclamation that can be applied to various 

circumstances, for example:  

➢ agriculture for cropping and breeding animals,  

➢ forestry to help increase forest resources and plantation, protect endangered 

species,  

➢ aquatic, increasing water areas, water retention and regulation, recreation, 

➢ natural for preserving, proper use and recreating natural resources, especially 

wildlife vegetation and animals, ecosystems, 

➢ economic for expanding industrial, communal and service as well as recreational 

and sports areas,  

➢ cultural to preserve and promote artistic objects (Kasprzyk, 2009). 

The selection of the way for reclamation-specific areas is guided by the opinion of the 

public, investors and officials. It is also conditioned by environmental factors. 

2.3. Mining Law and Federal Nature Conservation Law 

Reclamation of lignite mines and dumps in Germany began in the early twentieth century, 

but the progress of these activities was very slow compared with the creation of newly 

disturbed areas at an ever-increasing rate. This is why the Federal Mining Law 

(Bundesberggesetz, BBergG) was adopted in 1980, which began regulating all aspects of 

mining, from extraction to closure and reclamation of mines This law was also integrated 

and applied in the new “east” federal states after the reunification of Germany in 

1989(Tymchuk et al., 2021). The BBergG requires mine operators to submit reclamation 

plans and to carry out reclamation measures on time. These measures may include soil 

stabilization, vegetation restoration, and water management. 
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Companies linked to mining (coking plants, chemical plants etc.) are also regulated by 

several environmental and area planning laws. The most significant of them is the Federal 

Soil Protection Act (Bundesbodenschutzgesetz). It obliges the originator to clean up 

contaminated sites. If remedial measures are necessary, the polluter is responsible for 

preparing the reclamation analysis and the reclamation plan (Wirth & Lintz, 2006). 

Another important aspect of mining and environmental law in Germany is monitoring. 

The BImSchG (Bundes-Immissionsschutzgesetz) requires mine operators to conduct 

regular monitoring of the environmental impacts of their operations, such as air and water 

quality, noise levels, and land use changes. This monitoring is used to ensure that mining 

operations are not causing significant harm to the environment and to identify any issues 

that may need to be addressed. According to § 15 Abs. 4 BNatSchG 

(Bundesnaturschutzgesetz), compensatory and replacement measures must be secured 

and, if necessary, maintained by the polluter or his legal successor for the period required 

in each case. In addition, the effectiveness of the measures must be verified by monitoring 

(Knipfer & Schierack, 2018). 

Overall, mining and environmental law in Germany is designed to balance the economic 

benefits of mining with the protection of the environment and the health and well-being 

of local communities. The laws place strict requirements on mine operators to ensure that 

mining activities are conducted in an environmentally responsible manner and that the 

land is properly reclaimed after mining is completed. 

2.4. Sustainable development (in mining) 

The concept of sustainable development was introduced in 1980, by the ‘International 

Union for Conservation of Nature and Natural Resources’ (IUCN). In the report 

“strategies to preserve natural resources”, they used the term SD to define the situation 

that isn’t damaging for nature, on the contrary, supports it. In addition, this concept was 

introduced with the approach of the World Commission on Environment and 

Development (WCED) in 1987. It was only in the 1990s that social and economic aspects 

were added to the SD principle (Asr et al., 2019). Perhaps the best expression for SD is 

the definition proposed by the Brundtland Commission: “Sustainable development is 

development that meets the needs of the present without compromising the ability of 

future generations to meet their own needs.” Therefore, SD is a development plan that 

not only considers improving the life of the present generation but also future generations 

(Cerin, 2006), (Dernbach, 2003), (Dernbach, 1998), (Asr et al., 2019).  

Each year, there is an increasing amount of discussion about sustainable development in 

mining. An ideal goal of sustainable development of mineral resources is to maintain a 

balance between the development of the economy, the protection of the environment, the 

benefits to the local community, and the responsibilities of the government as a whole. 

The extraction of minerals from the earth presents opportunities, challenges and risks to 

sustainable development. The Agenda 2030 for Sustainable Development of the United 

Nations concerns, among other things, the minimization of negative mining impacts 

(Transforming Our World: The 2030 Agenda for Sustainable Development | Department 

of Economic and Social Affairs, n.d.). Reclamation, responsible for reviving damaged and 

contaminated post-mining areas should be seen as a process that contributes to the 

achievement of the Sustainable Development Goals (Kretschmann, 2020).  

‘Sustainability Schemes for Mineral Resources: A Comparative Overview’ made several 

recommendations related to the development of standards on sustainability issues for 

which guidance is still lacking. For instance, sustainability in mining is more often 
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included in programs and references are used for legitimation, when international 

guidance documents and norms are available, such as the International Labour 

Organization (ILO) Conventions and Recommendations. Still, some sub-issues in the 

areas of environment, social welfare and company governance are not addressed and are 

less frequently included in the systems. There is a need to analyze in which areas 

international guidance documents are missing and could contribute to the development of 

standards and schemes. In addition, mining-specific issues such as site closures and 

reclamation may require mining guidelines, which are already provided by some mining 

associations. Moreover, mining standards on specific sub-issues such as sustainability 

reporting (Global Reporting Initiative – GRI) and safe handling of cyanide (cyanide code) 

are referenced by several programs, indicating that they help standardize systems issues 

(Kickler & Franken, 2017). 

According to (OCP Group - Sustainability Integrated Report, 2021) some of the 

sustainable goals connected with reclamation might be the ambition to accelerate the rate 

of rehabilitation in the coming years to cover most of the land exploited in the past, 

choosing the most suitable crops for the disturbed soils, tolerant to drought and of high 

added value in parallel with the development of agroforestry and valorization of organic 

waste, taking actions to protect local biodiversity and rehabilitate the areas that have 

undergone transformation. In addition, all mining companies have to run the so-called 

environmental monitoring. 

2.5. European directives 

Companies are increasingly required to disclose non-financial information to investors, 

so a set of guidelines has been developed to improve the standardization of 

environmental, social, and corporate governance (ESG) disclosure. In terms of (non-

financial) reporting obligations, Directive 2014/95/EU covers the current requirements, 

but there have been a few recent regulatory developments. Among the most significant 

are the international initiative TCFD (Task Force on Climate-Related Financial 

Disclosures), as well as the CSRD (Corporate Sustainability Reporting Directive) 

package accompanied by ESRS (European Sustainability Reporting Standards) and 

Taxonomy system (Sustainable Finance Disclosure Regulation) SFDR. As a result of its 

adoption by Member States and implementation into national law, the CSRD recently 

replaced the existing NFRD (Woźniak et al., 2022). 

2.6. Monitoring 

The term monitoring describes a task area that involves the systematic monitoring of 

processes, procedures, behaviour and condition. Examples of this are environmental 

monitoring, which might include water, soil or air monitoring. 

Any mining activity, from exploration to mining and reclamation, as well as infrastructure 

projects associated with mining, have an inevitable impact on ecosystems. To control and 

minimize the influence, it’s critical to perform constant monitoring. Observation of land 

cover throughout the years helps notice the temporal, sometimes abnormal changes.  

Monitoring the study area can be carried out in various ways. Depending on what needs 

to be documented and measured, field studies might be performed. Water or soil samples 

can be taken and later analyzed in laboratory conditions. Remedial measures such as 

fertilizers are selected and based on those studies.  
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2.6.1. Remote Sensing 

In addition to ground-based monitoring, remote sensing and multispectral images play an 

important role in environmental monitoring. The use of GIS-supported analytical 

methods in assessing mining impacts has also been highlighted by Lechner et al., 2019.  

The use of remote sensing techniques and geographic information systems has clearly 

shown advantages over standard laboratory measurements and field monitoring for 

assessing long- and short-term landscape dynamics. In large areas, where ground 

levelling and soil sampling are time-consuming, expensive, and labour-intensive. Remote 

Sensing and Geographic Information System provide prompt and efficient information 

about geological changes, the environment, and subsidence. Using these techniques, it is 

also possible to identify changes in the productivity and cover of vegetation, as well as 

flood dynamics, based on land-use and landcover maps. As a result of multispectral 

satellite images processing, it is possible to detect changes in landscapes that are both 

gradual and sudden (Padmanaban et al., 2017).  

The application of RS and GIS in monitoring mining impacts on landscapes and the 

environment and associated geological changes and vegetation productivity is 

unfortunately limited. In some cases, remote monitoring of rehabilitated lands can be very 

challenging or impossible due to the land’s inherently heterogeneous character. The 

rehabilitated land is usually created from patches of different vegetation in various 

development stages with specific soils. Landforms, slopes and topography, can vary 

greatly in a small area (McKenna et al., 2020). The quality and resolution of the spectral 

band might also cause a problem in the scientific description of the data.  

RS derives data, which are later processed and analysed using GIS tools. It is a trivial and 

trending approach that enables analysis of large areas in a relatively short time. It’s 

inexpensive because of open-access satellite missions and software. 

Photogrammetry, as a technology that analyses photographs and enables geodetic 

measurements of distances, areas, or volume, can also be used as a tool to determine the 

extent of mining damage. It’s important to carry out geodetic measurements regardless of 

whether the mine is active or closed down. These measurements usually consist of site 

surveys and levelling. Terrestrial laser scanning (LiDAR) is one of the most trending 

methods of land mapping in the modern world and has developed greatly. In this way, it 

is possible to determine horizontal displacements, subsidence, and deformations. 

2.6.2. Satellite missions 

Landsat 1 became the first earth-observing satellite explicitly designed to study planet 

Earth. It contributed invaluable data and launched a revolution in remote sensing 

technology. The aim is to constantly observe the entire planet and help in various research 

by expanding knowledge about remote sensing (Landsat 1 | U.S. Geological Survey, n.d.).  

The SPOT series (French for "Satellite pour l'Observation de la Terre") has been 

providing high-resolution, wide-area optical images since 1986. Designed by France's 

National Center for Space Research (CNES), the five satellites were launched between 

1986 and 2015 and their detailed discovery of the Earth's surface, have led to new 

applications in mapping, vegetation monitoring, land use and land cover and localizing 

the effects of natural disasters. 
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Sentinel-2's goal is to monitor land, and the mission will consist of two pole-orbiting 

satellites providing high-resolution optical images. Vegetation, soil and coastal areas are 

among the targets for monitoring. The first Sentinel-2 satellite was launched in June 2015.  

The type of information collected varies depending on the needs and purpose of each 

mission. Not all data are seen as useful for every analysis. Some of them have 

characteristics that are deficient in some studies. For that reason, before collecting the 

data, proper criteria have to be defined. A possible set of criteria might be: 

➢ temporal resolution (revisit time),  

➢ spatial resolution,  

➢ spectral resolution, 

➢ open access data,  

➢ cloud cover, 

➢ swath width (Pawlik et al., 2021).  

Table 1 contains a summary of chosen satellite missions and sensors that were reviewed 

for this study, presenting mentioned criteria.  
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Table 1. Comparison of satellite missions 

Mission Launch date  Swath width [km] Spatial resolution [m] / Sensors1 
Revisit 

time [days] 

Spectral 

resolution 

Landsat 1 July 23, 1972 – Jan. 6, 1978 185 RBV: 80, MSS: 80 (NIR) 18 4 bands 

Landsat 2 Jan. 22, 1975 – Feb. 25, 1982 170/185 RBV: 80, MSS: 80 (NIR) 18 4 bands 

Landsat 3 March 5, 1978 – Sep. 7, 1983 180 RBV: 40, MSS: 80 (NIR) 18 4 bands 

Landsat 4 July 16, 1982 – June 15, 2001 185 MSS: 30 (80), 30/120 (TIR), TM: 30 16 7 bands 

Landsat 5 March 1, 1984 – June 5, 2013 185 MSS: 30 (80), 30/120 (TIR), TM: 30 16 7 bands 

Landsat 7 Apr. 15, 1999 -  185 ETM+: 30, 15 (PAN), 30/60 (TIR) 16 8 bands 

Landsat 8 Feb. 11, 2013  185 OLI: 15 (PAN), 30 (MS), TIRS: 100 16 11 bands 

Landsat 92 Sep. 27, 2021 -  185 OLI: 15 (PAN), 30 (MS), TIRS: 100 16 11 bands 

MODIS3 Dec. 18, 1999 -  2330 250 (VNIR), 500 (VNIR, SWIR), 1000 (TIR) 2 35 bands 

ASTER4 Dec. 18, 1999 -  60 15 (VNIR), 60 (SWIR), 90 (TIR) 16 14 bands 

DESIS5 June 29, 2018 -  30 30 3-5 235 bands 

Sentinel-26 June 23, 2015 -  290 10 (VNIR), 20 (VNIR, SWIR), 60 (CAVIS) 5 13 bands 

GeoEye-17 Sep. 6, 2008 - 15.2 0.41 (PAN), 1.64 (MS) 1.7 - 4.6 5 bands 

 

1 The abbreviations used in the table refer to products obtained from different spectral channels: RBV - Return Beam Vidicon, MSS -  Multispectral Scanner, TM - Thematic 

Mapper, ETM+ - Enhanced Thematic Mapper Plus, OLI - Operational Land Imager, TIRS - Thermal Infrared Sensor, CAVIS - Clouds, Aerosols, Vapours, Ice and Snow, 

LISS-3 (LISS-4) - Linear Imaging Self-Scanning Sensor, AWiFS - Advanced Wide Field Sensor 
2 Landsat missions (Landsat 9 | Landsat Science, n.d.; Landsat Satellite Missions | U.S. Geological Survey, n.d.; Satellites | Landsat Science, n.d.) 
3 MODIS (MODIS Web, n.d.) 
4 ASTER (LP DAAC - ASTER Overview, n.d.) 
5 DESIS (DLR - Earth Observation Center - DESIS, n.d.; Krutz et al., 2019) 
6 Sentinel-2 (ESA - The Sentinel Missions, n.d.) 
7 GeoEye-1 (GeoEye-1 - Earth Online, n.d.) 
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Mission Launch date  Swath width [km] Spatial resolution [m] / Sensors1 
Revisit 

time [days] 

Spectral 

resolution 

SPOT 1 Feb. 22,1986 – Nov. 2003 60 10 (PAN), 20 (MS) 2 - 3 4 bands 

SPOT 2 Jan 22, 1990 - July 2009 60 10 (PAN), 20 (MS) 2 - 3 4 bands 

SPOT 3 Sep. 26, 1993 – Nov. 1996 60 10 (PAN), 20 (MS) 2 - 3 4 bands 

SPOT 4 March 24, 1998 – June 2013 60 10 (PAN), 20 (MS) 5 5 bands 

SPOT 5 May 4, 2002 - March 2015 60 5/2,5 (PAN), 10 (MS), 20 (SWIR) 2 - 3 5 bands 

SPOT 6 Sep. 9, 2012 -  60 1.5 (PAN), 6 (MS) 1 - 3 5 bands 

SPOT 78 June 30, 2014 -  60 1.5 (PAN), 6 (MS) 1 - 3 5 bands 

WorldView-2 Oct. 8, 2009 -  16.4 0.46 (PAN), 1.8 (MS) 1.1 – 3.7 9 bands 

WorldView-39 Aug. 13, 2014 -  13.1 
0.31 – 0.34 (PAN), 1.24 – 1.38 (VNIR),  

3.70 - 4.10 (SWIR), 30 (CAVIS) 
1 – 4.5 29 bands 

QuickBird210 Oct. 18, 2001 – Jan. 27, 2015 16,5 0,61 – 0,72 (PAN); 2,4 – 2,6 (MS) 1,5 – 2,8 5 bands 

IRS-1C  

IRS -1D 

Dec. 28, 1995 – Sep. 21, 2007  

Sep. 29, 1997 – 2010  

PAN: 70;  

LISS-III: 142, 148; 

WiFS: 810 

PAN: ≤10, 5,6;  

LISS-III: 23,5 (VNIR), 70,5 (SWIR);  

WiFS: 188 

24 5 bands 

IRS-R2 11 April 20, 2011 -  

LISS-4: 23.9, 70; 

LISS-3: 141; 

AWiFS: 740 

LISS-4: ≤5.8;  

LISS-3: 23.5;  

AWiFS: 56, 70 

24 4 bands 

 

 

8 SPOT (Satellite Pour l’Observation de la Terre) missions (SPOT - Earth Online, n.d.) 
9 WorldView Missions (WorldView Series - Earth Online, n.d.) 
10 QuickBird-2 (QuickBird-2 - Earth Online, n.d.) 
11 IRS (Indian Remote Sensing) missions (IRS-1C - Earth Online, n.d.; IRS-1D - Earth Online, n.d.; IRS-R2 (ResourceSat-2) - Earth Online, n.d.) 
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The temporal resolution depends on the location of the sensor in relation to the target at 

the moment data is collected. It is described as nadir or off-nadir imagery with a given 

angular value. Another factor that impacts the revisit time is the swath width. The larger 

the area covered in each swath, the shorter the revisit time (Dwivedi, 2017).  

Archived imagery from Landsat dates back to 1972. The sensor is one of the most 

commonly used for mapping vegetation (Xie et al., 2008). By combining Landsat 8 with 

Landsat 7 and the newly launched Landsat 9, Landsat 8's temporal resolution can be 

increased (Landsat 9 | Landsat Science, n.d.), (What Are the Band Designations for the 

Landsat Satellites? | U.S. Geological Survey, n.d.), (Landsat Missions | U.S. Geological 

Survey, n.d.).  

Several competitive products have been developed from the ESA Sentinel program. The 

main advantage is the higher number of spectral bands and better spatial resolution (Table 

2). In addition, the temporal resolution is 5 days (ESA - The Sentinel Missions, n.d.).  

Missions such as Landsat or Sentinel distribute data free of charge, while some missions 

are commercial, so data must be bought. A discussion of that issue was conducted by 

(Radočaj et al., 2020). In recent years, attention has been drawn to the increase in 

applications of open data missions. It was the first Sentinel satellite launched in 2014 that 

played a critical role in this process. Additionally, as of 2 April 2016, the entire catalogue 

of ASTER image data became publicly available online at no cost (Advanced Spaceborne 

Thermal Emission and Reflection Radiometer - Wikipedia, n.d.).  

ASTER and IRS series imagery have low temporal resolution, which means it is 

characterized by a long revisit period. Unlike the MODIS satellite, which provides an 

image every two days. Unfortunately, its weak point is that it presents a very low spatial 

resolution, which is unable to recognize minor changes (MODIS Web, n.d.), (Moderate 

Resolution Imaging Spectroradiometer (MODIS) - LAADS DAAC, n.d.). DESIS is a 

hyperspectral instrument located at the ISS. It is a type of mission, that works on request. 

For scientific purposes, there is a possibility to obtain DESIS imagery without charge. 

Unfortunately, the data is usually very limited, and for this study, there were only few 

images available (DLR - Earth Observation Center - DESIS, n.d.).  

The WorldView series, GeoEye-1 and QuickBird2 satellites, like DESIS, also work on 

demand. These programs provide images with very high spatial resolution. Compared to 

other satellite data, monitoring relatively small areas would be possible with it. As a 

consequence, high-resolution data are stored in large files and need high computing 

power. The WorldView-1 is a panchromatic-only instrument which produces black-and-

white imagery, that’s why it wasn’t taken into account. WorldView-4 also wasn’t 

included in the compilation because it was launched in 2016 and ended in 2019 due to a 

failure (WorldView-4 - Earth Online, n.d.). The latest SPOT missions are other high-

resolution commercial missions operating on request.  

The sensors listed in Table 1 gathered multispectral and hyperspectral data (DESIS). 

Especially for vegetation studies, it's crucial to select space missions that carry 

multispectral scanners (MSS). Not all space missions are equipped with appropriate 

sensors for research on vegetation indices. Spectral bands of space missions that met the 

required criteria are presented in Table 2.  
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Table 2. Characteristics of spectral bands and spatial resolution of satellite missions 

Satellite 

mission 
Sentinel 2 Landsat 8 Landsat 7 Landsat 4, 5 

Band 1 0,443 coastal 

aerosol 

60 0.43-0.45 coastal 

aerosol 

30 0.45-0.52 blue 30 0.45-0.52 blue 30 

Band 2 0,490 blue 10 0.45-0.51 blue 30 0.52-0.60 green 30 0.52-0.60 green 30 

Band 3 0,560 green 10 0.53-0.59 green 30 0.63-0.69 red 30 0.63-0.69 red 30 

Band 4 0,665 red 10 0.64-0.67 red 30 0.77-0.90 NIR 30 0.77-0.90 NIR 30 

Band 5 0,705 VRE 20 0.85-0.88 NIR 30 1.55-1.75 SWIR 30 1.55-1.75 SWIR 30 

Band 6 0,740 VRE 20 1.57-1.65 SWIR 30 10.40-12.50 TIR 60 (30) 10.40-12.50 TIR 120 (30) 

Band 7 0,783 VRE 20 2.11-2.29 SWIR 30 2.09-2.35 SWIR 30 2.09-2.35 SWIR 30 

Band 8 0,842 NIR 10 0.50-0.68 PAN 15 0.52-0.90 PAN 15   

Band 8a 0,865 VRE 20       

Band 9 0,945 Water 

vapour 

60 1.36-1.38 Cirrus 30     

Band 10 1,375 SWIR-

Cirrus 

60 10.60-11.19 TIRS 1 100     

Band 11 1,610 SWIR 20 11.50-12.51 TIRS 2 100     

Band 12 2,190 SWIR 20       

  w
av

el
en

g
th

 (
µ

m
) 

  re
so

lu
ti

o
n

 (
m

) 

w
av

el
en

g
th

 (
µ

m
) 

  re
so

lu
ti

o
n

 (
m

) 

w
av

el
en

g
th

 (
µ

m
) 

  re
so

lu
ti

o
n

 (
m

) 

w
av

el
en

g
th

 (
µ

m
) 

  re
so

lu
ti

o
n

 (
m

) 



18 

 

Table 1, as well as Table 2, do not show data for Sentinel 1, Sentinel 3 and Sentinel 5P, 

as they are used in other areas: Sentinel 1- radar imaging mission for land and ocean 

services, observing Earth movements, Sentinel 3 –observation of sea, supports ocean 

forecasting systems, as well as environmental and climate monitoring and Sentinel 5P – 

in the study of the composition of the Earth’s atmosphere, providing timely data on a 

multitude of trace gases and aerosols affecting air quality and climate (Pawlik et al., 

2021).  

For vegetation observations, the Landsat 7, Landsat 8 and Sentinel-2 data display the best 

fit of the spectral ranges in terms of spatial resolution and frequency. Consequently, in 

most studies, research in this area is based on data from Landsat 7, Landsat 8 and 

Sentinel-2 (Buczyńska, 2020). A better understanding of the individual spectral bands of 

satellites allows for the calculation of vegetation indices, which are crucial for the process 

of geomonitoring post-mining conditions.  

Multispectral images are recorded by a sensor located on the satellite. Satellite sensors 

receive signals in different wavebands (Table 2). These spectral ranges are called 

channels. Figure 2 presents the reflectance of water, soil and vegetation in different 

wavelengths. The wavelenghts are presented for Landsat TM channels: 1 (0.45-0.52 μm), 

2 (0.52-0.60 μm), 3 (0.63-0.69 μm), 4 (0.76-0.90 μm), 5 (1.55-1.75 μm) and 7 (2.08-2.35 

μm). The spectral signature for green vegetation is very characteristic. In growing plants 

chlorophyll absorbs visible (blue and red) light to be used in photosynthesis, while near-

infrared light is reflected effectively. The reflection from vegetation in the near-infrared 

and in the visual range of the spectrum varies considerably. The spectral signature of soils 

exhibits an increasing trend. Reflectance grows with increasing wavelength 

(Classification Algorithms and Methods, n.d.). 

 

Figure 2. Reflectance of water, soil and vegetation in different wavelengths and Landsat TM channels 

(Classification Algorithms and Methods, n.d.) 

2.6.3. Future satellite missions 

Currently, there are several satellite missions planned to launch in the upcoming years. 

One of them, the FLuorescence EXplorer (FLEX) mission, will provide global maps of 

vegetation fluorescence that can reflect photosynthetic activity and plant health and stress, 

to do that it will be equipped with a high-resolution Fluorescence Imaging Spectrometer. 
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It will be the first satellite capable of measuring photosynthetic activity (FLEX - Earth 

Online, n.d.). 

Next planned mission, Biomass, will provide crucial information about the state of our 

forests and how they are changing. The data will be used to further our knowledge of the 

role forests play in the carbon cycle. Furthermore, biomass will support UN treaties 

aiming to reduce deforestation and forest degradation emissions (Biomass - Earth Online, 

n.d.). For the first time from space, the satellite will carry a P-band Synthetic Aperture 

Radar (SAR) instrument to determine the amount of biomass and carbon stored in forests.  

2.7. Environmental monitoring 

2.7.1. Environmental indices 

Acquiring data in many spectral ranges was the beginning to the creation of a new tool 

for assessing the components of the natural environment, which are environmental 

indices. To date, many indices have been developed for, among others, the assessment of 

the condition of vegetation cover and soils, estimation of water content in the 

environment, but also geological and landscape analyses (Buczyńska, 2020). 

2.7.2. Monitoring of surface mining 

Mining and subsequent restoration of the area manifest as sudden changes in vegetation 

cover. The vegetation happens to be severely damaged, especially during surface mining. 

Activities, such as soil reconstruction and planting trees, performed after completion of 

mining works, aim to achieve land and ecological restoration in opencast mines. As 

shown in Figure 3, the trajectory of the vegetation index can reflect the dynamic process 

of environmental impacts resulting from disturbances and recovery of vegetation. In 

terms of duration and magnitude, they indicate how long the event lasted and how much 

the vegetation index changed. It depends on the background environmental conditions, 

the spatial distribution pattern, and the mining development process (Liu et al., 2022).  

 

Figure 3. Schematic diagram of the vegetation index trajectory over time at a mine site (Liu et al., 2022) 

2.7.3. Spectral indexes 

Spectral indexes in post-mining refer to the use of spectral analysis techniques to monitor 

and assess the environmental impacts of mining activities on the landscape. These 

techniques involve analyzing the reflected light in different wavelength bands of remotely 

sensed images to identify changes in vegetation, soil, water quality, and other indexes of 
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environmental health. By measuring the reflected light in different bands, a spectral index 

can be created which can be used to map the changes in the environment over time. 

Spectral indexes are a useful tool for post-mining land reclamation and monitoring, as 

they can provide valuable information about the recovery of the ecosystem and any 

remaining impacts of mining activities. These indexes also can be used to detect early 

signs of degradation and track the effectiveness of reclamation efforts over time. 

The purpose of this part of the work is to present a wide spectrum of possible applications 

of the environmental indexes created so far and indicate the most frequently chosen 

indexes. It's meant to summarize the research conducted in post-mining areas concerning 

the application of multispectral imaging to analyze changes in the elements of the natural 

environment. Selected indexes were presented and characterized in Table 3.  

Many indexes have been developed that are used to analyze the state of elements in the 

natural environment. Therefore, there is a great deal of literature review available on the 

subject. These include, for example, the publication by (Pawlik et al., 2021), in which 

authors reviewed 42 vegetation indexes and their modified versions, and assessed their 

usefulness for geomonitoring of post-mining landscapes. It shared the definition of the 

vegetation index by (Jackson et al., 1983): “An ideal vegetation index would be highly 

sensitive to vegetation, insensitive to soil background changes, and only slightly 

influenced by atmospheric path radiance”. Indexes presented in the study were divided 

into four groups. The first of these should be defined as basic, based on as few spectral 

channels as possible. These include e.g., NDVI, AVI, EVI, GNDVI. The second group 

are the indices based on the "soil line". These include e.g., SAVI1, SAVI2, TSAVI, 

MSAVI. The third group are indices, which take into account the influence of the 

atmosphere: ARVI, VARI. The fourth group consists of indices that study the chlorophyll 

content in vegetation e.g., CARI, MCARI, TCI (Pawlik et al., 2021). 

In the publication by (Buczyńska, 2020) the following division of indexes determined on 

the basis of multispectral imagery was adopted: 

➢ vegetation indexes - based on the characteristics of the reflection coefficient of 

the vegetation cover, it is possible to determine its condition, temperature, 

chlorophyll and carbohydrate content, the type of plants forming it and many other 

properties (Xue & Su, 2017), 

➢ indexes determining the water content in the soil or vegetation, 

➢ geological indexes to identify different types of rocks and minerals, 

➢ indexes designed to detect areas that have been damaged by fires. 

(Buczyńska, 2020) analyzed 20 publications focusing on the use of spectral indexes for 

post-mining areas. The results of the analysis of publications indicate that the scientific 

community in researching the natural environment in post-mining areas concentrates 

primarily on the analysis of the condition of the flora, the water content in the soil and 

plant cover, as well as the detection of areas where sedimentation of a certain type of 

minerals has occurred. Therefore, the review of the literature was narrowed down to 

vegetation, geological and water indexes. The subject of research on the use of vegetation 

indexes in the areas of mining extraction or those where mining activities have been 

discontinued is extremely wide. For the vegetation indices, the most frequently discussed 

topic was the monitoring of the reclamation process consisting of the analysis of spatio-

temporal changes in the range of vegetation cover and its condition.  
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In the review prepared by (McKenna et al., 2020) the research for papers associated with 

spectral indexes was limited to years 1970-2019. The fifty years were chosen to 

adequately capture the beginning of earth observation through to the current era, and thus 

provide insight into the progress of rehabilitation assessments from relatively coarse 

resolution satellites to modern, high spatial and temporal sensors. 99 papers were 

analysed based on many features such as year of publication, place, types of ore and mine, 

type of sensor or spectral indexes. Landsat sensors were the dominant choice of sensor in 

50% of studies over the 50-year period, but in the last decade, multiple earth observation 

and drone-based sensors across a diverse range of study locations contributed to our 

increased understanding of vegetation development post-mining. Thus, most of the 

studies (67%) were published from 2010-2019. In 2017, 2018, and 2019 drones were used 

in 25% of studies, aerial hyperspectral in 8%, aerial optical in 4%, and high-resolution 

earth observation Satellite Pour l’Observation de la Terre (SPOT) in 5% and WorldView 

in 3% of studies (McKenna et al., 2020). Remote sensing studies were mostly conducted 

on coal mines (62%), followed by metalliferous mines (17%) and quarries (5%). The 

study (McKenna et al., 2020) shows that out of 99 researched papers, NDVI was the most 

common index used, with 44 studies using this index. The next commonly applied index 

was SAVI with 7% of studies. EVI, NMDI and SR were used in 6 (6%) studies.  

Currently, the Sentinel-2 images allow the use of about 250 unique vegetation indexes, 

which can find application in environmental monitoring (IDB - Show Indices for Selected 

Sensor, n.d.). Most vegetation indices have the same main purpose. However, each is 

specific in terms of emphasizing certain properties of vegetation or reducing noise due to 

the reflectivity of bare soil. Although the NDVI is the world's most widely applied 

vegetation index for a wide range of applications in monitoring vegetation properties (de 

Jong et al., 2011), it suffers from the limitation of low sensitivity to small differences in 

the case of high content of chlorophyll and biomass, the so-called saturation effect 

(Schaefer et al., 2016). The NDRE offers an alternative due to the enhanced sensitivity of 

the red coastal strip to these vegetation properties (Eitel et al., 2010). Soil adjusted 

vegetation index (SAVI) uses a correction factor to reduce the impact of bare soil 

reflection. And in the case of EVI, the blue band is applied to reduce the impact of 

atmospheric effects during remote sensing (Jiang et al., 2008). The secondary purpose of 

vegetation indices is to isolate areas under vegetation from soils and artificial land covers 

due to their sensitivity to chlorophyll content. The Modified Normalized Differential 

Water Index (MNDWI) is used to supplement vegetation indices when monitoring 

vegetation because it is sensitive to the water content in vegetation as well as in soil. It is 

a modified version of the Normalized Differential Water Index (NDWI). It was improved 

by using the green band instead of the near-infrared spectral band to reduce noise in the 

detection of soil and vegetation water content (Xu, 2006). By achieving maximum values 

for water surfaces, MNDWI is also used in land cover mapping (Radočaj et al., 2020).  

2.7.4. Recent publications on spectral indexes application 

Reclaimed areas located close to the mine, where they may be contaminated, e.g., by dust, 

related to active mining, require additional monitoring. Sedimentation or dust on the 

surface of the vegetation cover changes the reflection coefficient in individual spectral 

channels. This property was used in the work of (Ma et al., 2017), in which the authors, 

using 8 vegetation indexes (SR, NDVI, SAVI, TSAVI, PVI, NLI, MSR and TCgreenness), 

identified the amount and spatial distribution of dust deposited on leaves. Based on the 

laboratory tests and satellite images, the spectral responses of vegetation were analyzed 

depending on the mass of the accumulated dust. The obtained results indicate that with 



22 

 

the increase in the amount of dust, the reflection coefficient in the red channel increases, 

while it decreases in the near-infrared channel. The studies also showed that the 

vegetation indices are linearly or logarithmically related to the mass of dust deposited on 

the leaf surface. Finally, the authors concluded that the SAVI, TSAVI, PVI, NI and MSR 

indexes are not suitable for the study of tall and multi-species vegetation.  

In addition to the use of vegetation indexes, spectral geological indexes can be used to 

detect deposits of mining origin and identify areas where sedimentation of a specific rock 

formation or minerals has occurred. Water reservoirs created as a result of mining 

activities are characterized by a significant content of heavy metals. Therefore, the 

spectral curves resulting from the reflection of the electromagnetic wave from the surface 

of the contaminated tank will differ from the curves recorded for tanks that do not contain 

heavy metals. Research aimed at identifying post-mining reservoirs among existing 

bodies of water was undertaken by (Mukherjee et al., 2018). The authors, using the 

images of the Landsat 8 satellite, used the NDWI, Bare Soil Index (BI) and Clay Minerals 

Ratio. The NDWI index enabled the detection of water reservoirs among other forms of 

land use. Then the BI index, whose task was to eliminate the misinterpretation of the 

exposed soil as a body of water. The implementation of the goal set by the authors was 

made possible by the Clay Minerals Ratio index. In their next publication (Mukherjee et 

al., 2019), the authors continued this research, showing that the Iron Oxide Ratio allows 

for higher accuracy in identifying post-mining reservoirs than the Clay Minerals Ratio. 

Remote sensing showed potential for soil organic carbon (SOC) mapping in exposed 

croplands. Unfortunately, some disturbing factors interfere with SOC prediction, such as 

photosynthetic and nonphotosynthetic active vegetation, variation in soil moisture or 

surface roughness. There are methods to stabilize soil reflectance by building image 

composites. They tend to minimize disturbing effects by using sets of criteria. The study 

by (Dvorakova et al., 2021) deals with using satellite imagery from the Sentinel-2 satellite 

to create a composite image to predict soil organic carbon levels in exposed soil. Authors 

selected all S-2 cloud-free images covering the Belgian Loam Belt from January 2019 to 

December 2020 and later built nine exposed soil composites based on four sets of criteria: 

lowest Normalized Burn Ratio (NBR2), (NDVI) and the ‘greening-up’ period of a crop. 

The ‘greening-up’ period was selected based on the NDVI timeline, where ‘greening-up’ 

is considered as the last date of acquisition where the soil is exposed (NDVI < 0.25) 

before the crop develops (NDVI > 0.25). The ‘greening-up’ method combined with a 

strict NBR2 threshold allows the selection of the purest exposed soil pixels suitable for 

SOC prediction. In two years, this method covered 62% of the total cropland area, 

compared with 95% if only the NDVI threshold was used. 

Due to the faster development of society and the increased demand for raw materials, 

there is a need to explore the Earth to identify new, potential deposits of mineral deposits. 

Geological indexes developed based on high-resolution multi-spectral imaging provide 

an opportunity to achieve this goal remotely and economically. An example of an analysis 

of this type is the research conducted in the Bau mining area on the island of Borneo 

(Pour & Hashim, 2014). The authors, based on indices such as: Clay minerals ratio, ferric 

iron oxide index or ferrous iron oxide index, identified areas hydrothermally changed as 

a result of gold mineralization.  

The use of spectral indexes determining water content in post-mining areas has been 

presented in the paper from (Yu et al., 2016). The authors analyzed changes in the spatial 

range of rivers in the years 2002-2014 located near the Xinjiang hard coal mine. The 

authors based their research on two spectral indices: MNDWI and Blue and Near Infrared 
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Band based Water Index (BNWI) developed based on Landsat 5 and 8 satellite images. 

The obtained results confirmed that the analyzed watercourses decreased in size. The 

overall accuracy of the method used in the study was over 90%. 

Publication (Gadal et al., 2021) describes a study that uses Sentinel 2 satellite images to 

analyze the soil degradation risk on the Cameroonian shores of Lake Chad and its 

surrounding area. The study combines spectral indices and statistical analysis to develop 

a new method of analyzing soil degradation. Four vegetation indices, such as greenery 

index and water stress index, and nine soil indices, such as moisture, luminosity or organic 

matter content, were selected and calculated to characterize vegetation cover and bare soil 

condition. All these indices were aggregated to produce one image and then regressed by 

individual indices to retrieve correlation and determination coefficients. Principle 

Component Analysis and factorial analysis were applied to all spectral indices to 

summarize information, obtain factorial coordinates, and detect positive/negative 

correlations. The first factor contained soil information, the second factor contained 

vegetation information. The final equation of the model was obtained by weighting each 

index with both its coefficient of determination and factorials coordinates. This result 

generated figures cartography of five classes of soils potentially exposed to the risk of 

soil degradation. Five levels of exposition risk were obtained from the "Lower" level to 

the "Higher". 

In (Madasa et al., 2021) study, remote sensing was used to quantify land-use/cover 

changes in the Welkom – Virginia Goldfields. The aim was to analyse Landsat images 

with a 5-year interval from 1988 to 2018 using geospatial indices: Global Environmental 

Monitoring Index (GEMI), the Normalized Difference Built-up Index (NDBI), the NDVI, 

the Normalized Difference Soil Index (NDSI) and the NDWI to distinguish different 

types of land cover. To classify the images, the maximum likelihood method was 

implemented for supervised classification. Various land-use changes were found, with 

fluctuating values for each index, ranging from 88% to 96% for the overall accuracy of 

the classified images. Thus, these indexes are reliable for tracking changes in land use in 

mining areas over a wide area. 

This chapter was devoted to the general topic of the use of spectral indices in determining 

the state of the environment or using them for land classification. The next chapter focuses 

exclusively on methods of monitoring in post-mining landscapes.  
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Table 3. Selected vegetation and water indices found in the literature 

Index Abb. Formula12 Description References 

Vegetation Indices 

Normalised 

Difference 

Vegetation 

Index NDVI =
𝑁𝐼𝑅 − 𝑅𝐸𝐷

𝑁𝐼𝑅 + 𝑅𝐸𝐷
 

Used to evaluate the chlorophyll activity of plants and 

also for monitoring the state of the vegetation cover. It 

has a limitation in the form of low sensitivity to minor 

differences in the case of high chlorophyll content and 

biomass, known as the saturation effect. Sensitive to 

atmospheric phenomena, light, and sand oil colour, 

leading to decreased accuracy. 

(Karan et al., 2016) 

(Ma et al., 2017) 

(Tuominen et al., 

2009) 

(Dvorakova et al., 

2021) 

(Köhler, 2019) 

Enhanced 

Vegetation 

Index 

EVI1 

= 𝐺 ∗
𝑁𝐼𝑅 − 𝑅𝐸𝐷

𝑁𝐼𝑅 + 𝐶1𝑅𝐸𝐷 − 𝐶2𝐵𝐿𝑈𝐸 + 𝐿
 

G – gain factor, 

C1 – coefficient of aerosol resistance,  

C2 – coefficient of aerosol resistance,  

L – soil adjustment factor. 

A blue band for the calculation of EVI1 is used to 

correct the effects of atmospheric factors and soil 

signals at the same time, especially in areas with dense 

crowns, EVI1 performs better in areas characterized by 

significant ‘woodiness’. 

(Karan et al., 2016) 

(Buczyńska & 

Blachowski, 2021) 

(Liu & Huete, 1995) 

(A. Huete et al., 2002) 

EVI2 = 2,5 ∗
𝑁𝐼𝑅 − 𝑅𝐸𝐷

𝑁𝐼𝑅 + 2,4 ∗ 𝑅𝐸𝐷 + 𝐿
 

The index is designed achieve similar values to EVI1, 

applied for instruments without a blue band. The role 

of the blue band in the EVI1 doesn’t provide additional 

biophysical information on vegetation properties.  

(Jiang et al., 2008) 

 

Soil Adjusted 

Vegetation 

Index 
SAVI =

𝑁𝐼𝑅 − 𝑅𝐸𝐷

𝑁𝐼𝑅 + 𝑅𝐸𝐷 + 𝐿
∗ (1 + 𝐿) 

This transformation is most appropriate for identifying 

soil-induced changes in vegetation indices. It 

minimalizes soil-brightness influences with constant L. 

(Ma et al., 2017) 

(A. R. Huete, 1988) 

(Major et al., 1990) 

(Jiang et al., 2008) 

 

12 Coefficients used in formulas refer to spectral bands (NIR – near infrered, SWIR - shortwave infrared, MIR – mid infrared) 
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Index Abb. Formula12 Description References 

Modified Soil 

Adjusted 

Vegetation 

Index 

MSAVI2 =
2𝑁𝐼𝑅 + 1 − √(2𝑁𝐼𝑅 + 1)2 − 8(𝑁𝐼𝑅 − 𝑅𝐸𝐷)

2
 

Describes vegetation density and reduces the effects of 

soil, in particular when the canopy is sparse, especially 

in arid and semi-arid environments. Used in the 

analysis of plant growth, desertification research, 

analysis of soil organic matter, drought monitoring and 

the analysis of soil erosion. 

(Chen, 1996) 

(Qi et al., 1994) 

(Gadal et al., 2021) 

 

Simple Ratio 

SR =
𝑁𝐼𝑅

𝑅𝐸𝐷
 

The index responds better to changes in biomass in later 

stages of growth. On the other hand, it is of little use to 

describe biomass with less than 50% vegetation cover, 

as it is sensitive to atmospheric effects. 

(Ma et al., 2017) 

(Xue & Su, 2017) 

(Viña et al., 2011) 

(Erener, 2011) 

Ratio 

Vegetation 

Index 
RVI =

𝑅𝐸𝐷

𝑁𝐼𝑅
 

Ratios are usually designed to highlight the target 

features as high-ratio Digital Numbers (DNs). RVI is 

also well-known as an effective technique for 

suppressing topographic shadows. 

(Karan et al., 2016) 

(Bannari et al., 1995) 

(Richardson & 

Wiegand, 1977) 

Green 

Normalized 

Difference 

Vegetation 

Index 

GNDVI =
𝑁𝐼𝑅 − 𝐺𝑅𝐸𝐸𝑁

𝑁𝐼𝑅 + 𝐺𝑅𝐸𝐸𝑁
 

It is most often used to assess plant leaves' moisture 

content and nitrogen concentration according to 

multispectral data that do not have an extreme red 

channel. It is more sensitive to the presence of 

chlorophyll. It is used to assess depressed and ageing 

vegetation. 

(Buczyńska & 

Blachowski, 2021) 

(Sanjerehei, 2014) 

(Gitelson et al., 1995) 

Visible 

Atmospheric 

Resistant 

Index 

VARI =
𝐺𝑅𝐸𝐸𝑁 − 𝑅𝐸𝐷

𝐺𝑅𝐸𝐸𝑁 + 𝑅𝐸𝐷 − 𝐵𝐿𝑈𝐸
 

It aims to emphasize vegetation in the visible part of 

the spectrum while softening differences in lighting 

and atmospheric effects.  

(Gitelson et al., 2002) 

Bare Soil 

Index BSI (BI) =
(𝑆𝑊𝐼𝑅1 + 𝑅𝐸𝐷) − (𝑁𝐼𝑅 + 𝐵𝐿𝑈𝐸)

(𝑆𝑊𝐼𝑅1 + 𝑅𝐸𝐷) + (𝑁𝐼𝑅 + 𝐵𝐿𝑈𝐸)
 

Higher values of this index detect the bareness of a 

region. The bare soil map is removed from the water 

map for further processing. 

 

(Mukherjee et al., 

2018) 
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Index Abb. Formula12 Description References 

Water Content Indices 

Normalized 

Difference 

Water Index 
NDWI 

=
𝐺𝑅𝐸𝐸𝑁 − 𝑁𝐼𝑅

𝐺𝑅𝐸𝐸𝑁 + 𝑁𝐼𝑅
 (McFeeters, 1996) 

 

This index is designed to maximize the reflectance of 

water by using green wavelengths; minimize the low 

reflectance of NIR by water features; and take 

advantage of the high reflectance of NIR by vegetation 

and soil features. As a result, water features have 

positive values and are thus enhanced, while vegetation 

and soil usually have zero or negative values and are 

suppressed.  

(Xu, 2006) 

(Yu et al., 2016) 

(McFeeters, 1996) 

(Acharya et al., 2018) 

(Mukherjee et al., 

2018) 

Normalised 

Differenced 

Moisture 

Index 

NDMI  

(NDWIGao (Gao, 

1996)) 
=

𝑁𝐼𝑅 − M𝐼𝑅

𝑁𝐼𝑅 + M𝐼𝑅
  

NDMI, also described as NDWIGao, is correlated with 

the canopy water content. Thus, it is better for tracking 

changes in water stress and plant biomass. 

(Xu, 2006) 

(Karan et al., 2016) 

(Wilson & Sader, 

2002) 

Modified 

Normalized 

Difference 

Water Index MNDWI =
𝐺𝑅𝐸𝐸𝑁 − 𝑆𝑊𝐼𝑅

𝐺𝑅𝐸𝐸𝑁 + 𝑆𝑊𝐼𝑅
 

The contrast between water and built-up land will be 

considerably enlarged owing to increasing values of 

water feature and decreasing values of built-up land 

from positive down to negative. The greater 

enhancement of water will result in more accurate 

extraction of open water features as the built-up land, 

soil and vegetation all have negative values and thus 

are notably suppressed and even removed. 

(Xu, 2006) 

(Yu et al., 2016) 

(Radočaj et al., 2020) 

Blue and 

Near Infrared 

Band-based 

Water Index 

BNWI =
𝑁𝐼𝑅 − 𝐵𝐿𝑈𝐸

𝑁𝐼𝑅 + 𝐵𝐿𝑈𝐸
 

Introduced to separate shadows and water pixels. (Yu et al., 2016) 

Moisture 

Stress Index 
MSI =

𝑆𝑊𝐼𝑅1

𝑁𝐼𝑅
 

Used to evaluate the spatial extent of less soil moisture, 

due to the higher level of evapotranspiration 

(Gadal et al., 2021) 
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2.8. Reclamation monitoring methods in recent publications 

This literature review provides an understanding of the topics related to this study. GIS 

and remote sensing have been used extensively in the literature to monitor landscapes that 

have been affected by mining. In most research studies, researchers concentrate on 

agricultural vegetation, since flora constitutes a valid indication of the current state of 

restoration of the land. Presented in Table 4 five example cases are focusing on 

monitoring post-mining landscapes. They were selected based on the year of publication, 

the type of monitored area, type of satellite data and the vegetation indexes used in the 

analysis. The presented case studies were used to understand the topic and to help develop 

the study.  

Table 4. Summary of chosen case studies found in recent research publications. 

Study Study area 
Satellite 

mission 
Method Indices 

(Liu et al., 2022) 

Inner 

Mongolia, 

China (1986-

2020) 

Landsat 

5, 7, and 

8 

Vegetation 

trajectory – 

Landtrendr 

algorithm 

NDVI 

(Kuzevic et al., 2022) 

Rohožník-

Konopiská 

and 

Sološnica-

Hrabník 

deposit, 

Slovakia 

(1990-2021) 

Landsat 

5, 7, 8, 

Corine 

land 

cover 

(CLC) 

Land Cover and 

Vegetation 

Coverage 

Changes 

NDVI 

(Buczyńska & 

Blachowski, 2021) 

Babina lignite 

mine, Poland 

(1989-2019) 

Landsat 

Time series 

analysis, 

correlation, 

change detection 

NDVI, 

EVI, 

RVI, 

NDMI 

(Li et al., 2020) 

Shengli coal 

mine, Inner 

Mongolia 

Autonomous 

Region, 

China 

Landsat 

Reclamation 

trajectory, 

Random Forest 

classification  

NDII, 

MSAVI2 

(Karan et al., 2016) 

Jhartia 

coalfield, 

Damodar 

River Valley, 

India 

Landsat 

Support Vector 

Machines 

(SVM) 

classification, 

change detection 

NDVI, 

RVI, 

EVI, 

NDMI 

 

In a study by (Liu et al., 2022), long-term monitoring from 1986 to 2020 was implemented 

by the LandTrendr algorithm to reveal the ecological impacts of two concentrated and 

contiguous surface mining sites with different mining patterns and surrounding 

environments in Inner Mongolia, China. The LandTrendr algorithm is a suitable method 
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for monitoring vegetation dynamics, which includes both disturbance and recovery. The 

algorithm captures mining and restoration events at the mining sites by the point in time 

when the change in the spectral–temporal trajectory occurs. The study used archived 

Landsat TM/ETM+/OLI image data (Landsat 5, 7, and 8). Based on the NDVI 

characteristics of the study area, loss and increase of vegetation indicated disturbance and 

recovery respectively. Results showed that the application of the LandTrendr algorithm 

for surface mining site monitoring is appropriate, with an overall accuracy of around 75% 

for disturbance and recovery. The magnitude of recovery decreases first with increasing 

duration and then reaches the natural fluctuation state after 20 years of recovery. 

Therefore, surface mining sites in ecologically fragile areas are more suitable for long-

term mining, and monitoring should extend more than 20 years after restoration. 

The main objective of the paper by (Kuzevic et al., 2022) was the mapping of spatio-

temporal changes in the landscape in connection with the extraction of minerals due to 

mining activities on the landscape. The study used Corine land cover (CLC) data and 

Landsat 5, 7, and 8 satellite images for selected years in the period 1990–2021. The study 

was specific to the presence of four mineral deposits (three of them are under active 

mining). The Rohožník-Konopiská deposit in Slovakia was abandoned and the area was 

subsequently reclaimed. NDVI was calculated for vegetation cover analysis, which was 

further combined with the forest spatial division units (FSDU) layer. Areas near the mine 

were selected for a detailed analysis of changes in vegetation. An average NDVI index 

value was calculated using the FSDU data and the Zonal statistics function for each plot. 

The results showed that for the two deposits Rohožník-Konopiská (inactive) and 

Sološnica-Hrabník (active), there have been changes indicating an improvement in the 

landscape condition by reclamation operations. 

The purpose of the publication by (Buczyńska & Blachowski, 2021) was to present the 

changes in the condition of plant cover within the Pustków mining field of the closed 

lignite “Friendship of Nations - Babina Shaft” mine. The analysis was carried out from 

1989 to 2019 based on NDVI, EVI and GNDVI spectral indices, developed using 

multispectral images of the Landsat TM/ETM+/OLI missions. The obtained results 

indicate a systematic improvement in flora conditions in the analysed region, but also an 

increase in green areas. Observations included overgrown shorelines at anthropogenic 

lakes and heaps, as well as a reservoir with a decreasing surface area due to vegetation 

succession. Additionally, local plant cover degradation was observed in Pustków's north-

western area in 2016. According to the obtained results, continuous monitoring of the 

flora’s health is necessary not only in the area of the analysed mine but also in other post-

mining areas. 

In some cases (Li et al., 2020), monitoring by remote sensing is enhanced by field 

surveying. The study examined the succession trajectory types of revegetation at three 

coal-waste dump sites with different reclamation methods to determine if revegetation 

had been restored to its pre-disturbance state. To this end, the authors proposed an 

analysis method that uses a machine learning method with a traditional method of 

statistical analysis using multi-time Landsat images and geodetic data. Landsat imagery 

was used in order to assess vegetation characteristics. MSAVI2 provided information on 

greening, while the Normalized Difference Infrared Index (NDII) described vegetation 

moisture and canopy water thickness. The study showed the time series remote sensing 

trajectory analysis and field investigation analysis were complementary to each other and 

could reflect the mining influence and reclamation effect more comprehensively and 

effectively.  
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The subject of monitoring the reclamation process consisting in the analysis of spatial-

temporal changes in the range of the vegetation cover and its condition is addressed in 

the publication (Karan et al., 2016), in which the flora in the reclaimed block II of the 

Jharia coal mining area was analysed. By using Landsat 5 and 8 satellite images, three 

vegetation indexes (NDVI, EVI, RVI) and an index enabling the analysis of water content 

in vegetation (NDMI) were developed. The process allowed for the identification of land 

cover forms in the study area, along with an indication of their changes over the last 15 

years. It also made it possible to assess the condition of the existing vegetation. The 

authors found a correlation between some of the indexes, particularly NDVI and EVI, as 

well as NDVI and NDMI. 

2.9. Summary  

A review of the literature presented in several chapters gives an insight into the scope of 

the study. Reclamation requires monitoring. Using GIS and RS monitoring of reclaimed 

post-mining landscapes can be accomplished. According to most publications, vegetation 

analysis is the most reliable measure of reclamation success. Additionally, multispectral 

imagery was reviewed as part of the literature review. Various satellite missions were 

characterised with the aim of selecting the most appropriate for this study. 

Based on the characteristics of the spectral indexes, results of literature review and 

specification of the case study site presented in previous chapters Landsat satellite data 

and vegetation spectral indexes were selected and the methodology described in the next 

chapter. 

3. Data requirement and methodology 

The first step in processing satellite images for spectral indexes is to acquire the images. 

This can be done by using a variety of satellite platforms, such as Landsat, Sentinel, or 

MODIS, that were mentioned before, which collect images at different wavelengths of 

light. Once the images have been acquired, they must be pre-processed to remove any 

errors or distortions that may be present. This can include removing cloud cover, 

correcting for atmospheric effects, and removing sensor noise. Next, the images must be 

calibrated to ensure that they are accurately measuring the reflectance of the earth's 

surface. After the images are calibrated, the spectral indexes can be calculated. This is 

done by using mathematical algorithms that use the reflectance of different wavelengths 

of light to identify specific features on the earth's surface.  

3.1. Data acquisition 

This study focuses on imagery data from the Landsat 4, 5, 7 and 8 mission. Data was 

collected through the United States Geological Survey (USGS). The imagery can be 

downloaded directly through the web page (EarthExplorer, n.d.), but also using the Semi-

Automatic Classification Plugin (SCP) which is a free open-source plugin for QGIS. Data 

must be selected by specifying the area of interest and time.  

3.2. Processing 

The aim of pre-processing is to correct the radiance differences caused by variations in 

solar illumination, atmospheric conditions, sensor performance and geometric distortions 

respectively. Another aim is to enhance the image data information by filtering or data 

fusion techniques (Nussbaum & Niemeyer, 2009). Not all data require pre-processing. 
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Some of the newest satellite images have already gone through the process of necessary 

corrections. Various image processed levels for Landsat are presented on Figure 4. 

Landsat data are available within Collection 2 in two levels of processing, Level-1 and 

Level-2. Level-1 data are in the form of Digital Numbers ready for preprocessing in 

connection with the conversion to Top of Atmosphere (TOA) reflectance or radiance. The 

Landsat satellite imagery used in this study was downloaded from Collection 2 Level-2 

already with surface reflectance values and no further atmospheric correction is required. 

The Level-2 images are directly usable for the spectral indexes calculation. 

 

Figure 4. Landsat Level-2 and Level-3 Science Products (Landsat Level-2 and Level-3 Science Products | 

U.S. Geological Survey, n.d.) 

Downloaded images have been checked for cloud disruption or shadows. The project’s 

coordinate reference system was WGS 84/Zone 33N. Some of the downloaded data were 

assigned to Zone 32N. Reprojection of these images was performed using Warp 

(reproject) tool.  

Build virtual raster tool was used to process the imagery. Bands used for calculating the 

indexes were added to build the multiband rasters. The images were limited by using a 

Clip raster by mask layer to reduce the size of data and speed up subsequent operations. 

Calculation of the indices was executed for each scene in the dataset using the Raster 

Calculator tool. In the case of Landsat 4-5 and 7 imagery, the blue channel is marked as 

band 1, and the red channel is marked as band 3. Reflectance in NIR is stored in band 4 

and SWIR is stored in band 5. For Landsat 8-9 the blue channel is marked as band 2, the 

red channel as band 4, reflectance in NIR is stored in band 5 and SWIR stored in band 6. 

Statistics including mean value and standard deviation were derived using the Zonal 

Statistics tool for each scene.  

3.3. Indexes 

The targeted monitoring concept is based on spectral indexes based on a literature review 

and open source, tested on an example in Germany. The suitable indexes presented in 

Table 3 have been selected to monitor the changes in post-mining landscape, as a part of 

the workflow.  

Various indexes of vegetation can be used to monitor the state of the environment. One 

of the most popular is the Normalized Difference Vegetation Index (Rouse J.~W. et al., 

1974). The NDVI index is the most frequently used vegetation index in scientific research 

and in practice. The analysis of the NDVI value allows to distinguish vegetation from 
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other (artificial) types of land cover and determine the stage of development and condition 

of plants. NDVI allows you to define and visualize areas covered with vegetation on the 

map, as well as detect abnormal changes in the process of plant growth. Red and near-

infrared (NIR) reflectance values are used to calculate the NDVI value. It is highly 

sensitive to aerosols and atmospheric phenomena, leading to decreased accuracy. There 

are also some limitations due to soil background brightness. 

The calculation of the NDVI is as follows (1):  

𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅 − 𝑅𝑒𝑑

𝑁𝐼𝑅 + 𝑅𝑒𝑑
 (1) 

NIR - reflectance in the near-infrared channel, 

Red - reflectance in the red channel.  

EVI1 performs better in areas characterized by significant ‘woodiness’, for which the land 

cover with NDVI may show irregularities (NDVI saturation occurs in areas characterized 

by high biomass). In addition, using the blue band EVI1 reduces the influences of the 

atmosphere and minimizes canopy background brightness (Pettorelli, 2013).  

It is described by (2): 

𝐸𝑉𝐼1 = 𝐺 ∗
𝑁𝐼𝑅 − 𝑅

𝑁𝐼𝑅 + 𝐶1𝑅 − 𝐶2𝐵 + 𝐿
 (2) 

G – gain factor, by default set to 2.5, 

C1 – coefficient of aerosol resistance, set by default to 6,  

C2 – coefficient of aerosol resistance, set by default to 7.5,  

L – soil adjustment factor, set by default to = 1 (Pawlik et al., 2021). 

The relationship between red and blue reflectances is highly correlated. The blue band 

does not contribute much additional information about the land surface than the red band 

at the canopy level and when atmospheric effects are insignificant. By simply assuming 

the relationship, 𝑅𝑒𝑑 = 𝑐 ∗ 𝐵𝑙𝑢𝑒, the EVI1 equation (2) can be reduced to a 2-band EVI2 

equation (3) using the 𝐿, 𝐶1, 𝑎𝑛𝑑 𝐶2 values mentioned above (Jiang et al., 2008). 

𝐸𝑉𝐼2 = 𝐺 ∗
𝑁𝐼𝑅 − 𝑅

𝑁𝐼𝑅 + (6 − 7,5/𝑐) ∗ 𝑅 + 1000
 (3) 

c - the ratio of red to blue reflectances. 

EVI2 can also be expressed as a function of the ratio of red to blue reflectances, 𝑐. The 

mean absolute difference between EVI and EVI2 is minimum when 𝑐 =  2.08, with the 

corresponding G equal to 2.5. The optimal 𝑐 𝑎𝑛𝑑 𝐺 values render previous equation to 

be the same as (with scaling factor set to 1000) (4): 

𝐸𝑉𝐼2 = 2,5 ∗
𝑁𝐼𝑅 − 𝑅

𝑁𝐼𝑅 + (6 − 7,5/2,08) ∗ 𝑅 + 1000
= 𝐺 ∗

𝑁𝐼𝑅 − 𝑅

𝑁𝐼𝑅 + 2,4 ∗ 𝑅 + 1000
 (4) 

The NDVI value may be influenced by parameters such as soil colour and moisture, as 

well as vegetation density. In addition, with a dense vegetation cover, the NDVI index 

experiences a saturation of the reflection, i.e., with a large biomass, its further increase 

does not increase the value of the index. To minimize the effect of soil brightness, the 

SAVI (Soil Adjusted Vegetation Index; (A. R. Huete, 1988)) can be used to assess the 

condition of vegetation, which performs better than NDVI in areas with low vegetation 
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density. The SAVI index is calculated based on the same spectral ranges as the NDVI, 

but with an additional soil parameter L ranging from 0 (for very dense vegetation cover) 

to 1 (for very little vegetation cover), most often 0.5 (numerous modifications are also 

used SAVI with a function describing the value of L).  

The formula for calculating the SAVI index (5): 

𝑆𝐴𝑉𝐼 =
𝑁𝐼𝑅 − 𝑅𝑒𝑑

𝑁𝐼𝑅 + 𝑅𝑒𝑑 + 𝐿
∗ (1 + 𝐿) (5) 

NIR - reflectance in the near-infrared channel, 

Red - reflectance in the red channel. 

4. Input data 

4.1. Satellite data 

Landsat-5 Enhanced Thematic Mapper (ETM) and Landsat-8 Operational Land Imager 

(OLI)/Thermal Infra-Red Sensor (TIRS) and a few additional Landsat 7 data of 30 × 30 

m spatial resolution were acquired for ten chosen years at four-year interval (1986, 1990, 

1994, 1998, 2002, 2006, 2010, 2014, 2018 and 2022) and analysed to determine the 

change in the vegetation cover in the study area. The study focuses on months high in 

vegetation, that is June, July and August. Most of the acquired images had 0% cloud 

coverage and were downloaded from the United States Geological Survey (USGS) 

website (EarthExplorer, n.d.). Majority of the available images from Landsat 7 were 

omitted due to the failure of Landsat 7’s Scan Line Corrector on the 31st of May 2003. 

The Scan Line Corrector’s role was to compensate for the forward movement of the 

satellite as it orbits, and the failure means instead of mapping in straight lines, a zigzag 

ground track is followed. This causes parts of the edge of the image not to be mapped 

(Five Landsat Quirks You Should Know | Pixalytics Ltd, n.d.). Hence presenting the black 

stripe effect and resulting in a useless image.  

The four-year interval was chosen to minimize the size of the data and better represent 

changes in the landscape. The selected years turned out to be the most suitable. After 

preliminary analyzes of satellite images and the selection of a five-year range, the years 

1985, 2000 and 2005 showed a lack of data, due to cloud cover.  

In the end, a total of 33 images were selected and downloaded. The dates and satellite 

missions of images used for this study have been presented in Table 5.  

Table 5. Landsat images acquired from 1 June to 31 August in the years 1986-2022 

 

Lack of data for June and August in some years have resulted in exclusion of these 

months. According to the literature it is important to analyse vegetation spectral indexes 

acquired in the same phenological season, therefore data from the same month in the 

selected years were selected. Only 15 images presented on Table 5 with bold font, were 

chosen for processing and later analysis. These images will be processed and used in later 

analysis.  
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4.1. Study area 

The area of interest is located in the Profen opencast mine in the south of Saxony-Anhalt 

in Germany (Figure 5). It stretches across the Profen Süd, Schwerzau and Domsen mining 

fields. It is operated by the Mitteldeutsche Braunkohlengesellschaft (MIBRAG) (Figure 

6). Annual extraction reaches up to 5 to 6 million tons of raw brown coal (Tagebau Profen 

- MIBRAG MbH, n.d.).  

 

Figure 5. Map showing the location of the Profen mine in Germany 



34 

 

 

Figure 6. Map of the Profen mine (Braunkohlengesellschaft mbH MIBRAG & Kappa GmbH, n.d.) 

Modern opencast mining and rehabilitation are inseparable. Together with regional 

planning, municipalities, associations, authorities and citizens, MIBRAG plans and 

designs a versatile and ecologically valuable post-mining landscape 

(Braunkohlengesellschaft mbH MIBRAG & Kappa GmbH, n.d.). 

Since there was mainly agricultural land before the Profen opencast mine, a large 

proportion of the dumping ground is also being prepared for agricultural use (Figure 7). 

For this purpose, the areas are cultivated in a fixed crop rotation over a period of seven 

years. This enriches and homogenizes the soil with organic substances. This helps build 

a stable soil structure. The recultivated mining areas also offer numerous animal and plant 

species new habitats and people opportunities for recreation (Braunkohlengesellschaft 

mbH MIBRAG & Kappa GmbH, n.d.).  

This study focuses on post-mining landscapes reclaimed towards forestry. The detailed 

information regarding forest reclamation process was obtained from MIBRAG Company. 

Each site is treated differently. Before plantation of trees, a soil survey is carried out. 

Profen reclamation sites are usually very heterogeneous, with pH-values ranging from 2,5 

to 8,0. The soil composition and nutrient contents might vary strongly. 
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The forestry reclamation generally starts with a ground cover (a mixture of clover 

species), while the soil survey is carried out. The clover cover prevents erosion and starts 

adding organic matter and nutrients to the soil. With the results from the soil survey lime 

is being added to the sites to adjust the pH-value. The lime is worked into the soil with a 

deep-tillage machine, which is attached to a tractor (this mixes the lime into the ground 

to about 1 m depth). Ideally, a year needs to pass for the lime to react in the soil and then 

another soil survey is carried out to make sure the desired effects have been reached. 

After the soil melioration (“Grundmelioration”) and the adding of fertiliser, the site can 

be planted with forest trees. There are different approaches here, depending on the site 

and the soil quality, but usually a mixture of birches, alder, poplar, and oak is planted. 

The soil survey is very important in determining how the site is prepared and which tree 

species are planted.  

 

Figure 7. A vision of the post-mining landscape at The Profen mine (Braunkohlengesellschaft mbH 

MIBRAG & Kappa GmbH, n.d.) 
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4.2. Droughts in Germany 

The drought intensities and drought magnitudes are dimensionless measures to estimate 

the severity of a drought over a specific period or for a specific region. The length of the 

drought period and the absolute dryness over time are included in the calculation. In 

comparison to the drought magnitudes, the drought intensity is also normalized over time 

(i.e. the days of the vegetation period). This means that the drought intensity can reach a 

maximum value of 0.2 (Dürren 1952 - 2022 (Jährlich) - Helmholtz-Zentrum Für 

Umweltforschung UFZ, n.d.).  

The following Figure 8 and Figure 9 show drought intensities and drought magnitudes in 

the growing season (April to October) for each 4x4km grid cell for the years 1981 - 2022. 

For the entire soil, the actual soil thickness is shown in the drought monitor, however, it 

is only up to a maximum depth of 2 meters. 

 

Figure 8. Drought intensities in the growing season from April to October (1981-2022) (Dürren 1952 - 

2022 (Jährlich) - Helmholtz-Zentrum Für Umweltforschung UFZ, n.d.) 
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Figure 9. Drought magnitudes in the April to October growing season (1981-2022) (Dürren 1952 - 2022 

(Jährlich) - Helmholtz-Zentrum Für Umweltforschung UFZ, n.d.) 

5. Result analyses 

5.1. Indices statistics 

The study is based on indices that are commonly used for vegetation condition monitoring 

(Buczyńska & Blachowski, 2021; Karan et al., 2016; Kuzevic et al., 2022). These are 

NDVI, EVI2 and SAVI.  

After calculating the indexes for all the scenes, zones were added to the project as new 

layers. The zones were selected based on: way of reclamation, year of reclamation and 

availability of vegetation data. The year of extraction and reclamation, as well as the way 

of reclamation and the type of vegetation were determined based on the documents 

provided by MiBRAG, Period of mining was presented on Figure 10. 
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Figure 10. Mining area of Profen with zoning plan (Braunkohlenrevier, n.d.) 

Selected zones represent several stages of reclamation within the post-mining landscape. 

Zone 1 was reclaimed in 2003 and zone 2 in 1994, in both zones mining took place in the 

years 1940-1970. Zone 3 was reclaimed in 2018. Zone 4 was reclaimed in 1976 and 

according to Figure 10 is a planned mining area. Apart from reclaimed post-mining sites 

two reference areas were chosen. Zone 5 covered with forest located beyond the extent 

of the mine and zone 6 located within the mine. Until the late 1980s, zone 6 was used as 

agricultural land, and mining began in 1987. Non reclaimed, area underwent natural 

reclamation and landscaping processes. Single points were selected within the limits of 

the selected study zones. The specific locations within these zones they were chosen 

randomly. Figure 11 presents those study zones.  
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Figure 11. Location of the post-mining region, study zones and points 

The vegetation data provided by MIBRAG Company were collected and summarized for 

each zone (apart from reference ZONE5) in Table 6. Data describe the area size, type of 

vegetation, trees species and age of vegetation.  

 

Table 6. Summary of vegetation information for study zones 

 Area Forest type Forest inventory Condition and age 

ZONE1 6,98 ha Oak type with a high 

proportion of 

deciduous trees >20% 

Quercus petraea, Tilia cordata, 

Carpinus betulus, Sorbus 

aucuparia, Cornus sanguinea 

and fruit trees 

Young growth, in 

rows or strips, 15-10 

years old 

ZONE2 7,05ha Oak type with a high 

proportion of 

deciduous trees >20% 

Quercus petraea, Tilia cordata, 

Acer pseudoplatanus, Hybrid 

form of Populus species, Betula 

pendula, Carpinus betulus, 

Sorbus aucuparia, Cornus 

sanguinea 

Young growth to 

weak polewood, in 

rows or strips, 20 

years old 
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 Area Forest type Forest inventory Condition and age 

ZONE3 

1,64ha  Mostly bareness; planned trees 

species: Quercus petraea, 

Carpinus betulus, Tilia cordata 

 

1,9ha Oak type with a high 

proportion of 

deciduous trees >20% 

Quercus petraea, Tilia cordata, 

Salix caprea, Acer platanoides, 

Carpinus betulus 

5 years 

2,7ha  Mostly bareness; trees left on the 

surface: Quercus petraea, Acer 

platanoides, Carpinus betulus, 

Planned planting: Quercus 

petraea, Carpinus betulus, Tilia 

cordata 

 

ZONE4  high proportion of 

deciduous trees >20% 

Weak tree wood: Betula 

pendula, Populus species, 

Robinia pseudoacacia, Acer 

platanoides; Other shrub species 

60years +/- 10years; 

10 years 

ZONE6  high proportion of 

deciduous trees >20% 

Weak polewood: Betula 

pendula, Pinus sylvestris, 

Hybrid form of Populus species, 

Robinia pseudoacacia 

Around 15 years +/- 

5years 

 

 

Chart presented on Figure 12 combined with the information obtained from MIBRAG 

Company presented in Table 6 gives an insight on differences in spectral reflectance for 

various species. Some of the species discussed in the publication by Maschler et al., 2018, 

overlap with the species in this study (Quercus petraea and Betula pendula).  

 

Figure 12. Average spectral signatures of the 13 tree species (Maschler et al., 2018) 
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The reflectance values of the different species are particularly widespread around 

wavelengths > 800 nm. The reflectance of Oak Species (Quercus) is comparatively high, 

while the average value among all species is shown by birch (Betula). Finding the 

differences in reflectance values for various tree species might later explain the changes 

in values of spectral indexes. 

5.1.1. Monthly statistics 

Rasters with mean values for month July for each year were created using GRASS 

r.series. The purpose of analyzing rasters of average monthly values is to detect and 

identify general temporal changes within the zones of the study area.  

Comparison of the results throughout the years enables identification of areas that 

changed over time. Additional image comparison provides insight into reclamation 

progress. From looking at the generated maps it is possible to easily detect mine site, as 

it presents itself as barren land with low index values. In case of NDVI, the values 

oscillate in the range from 0 to 0,15. For EVI2 and SAVI the obtained results are similar 

and for barren land reach 0,25. The mining area is characterised by low NDVI values, 

due to the lack of vegetation. Objects such as puddles and small pools of water are 

reflected in negative vegetation index values, reaching values near to -1. For NDVI 

healthy vegetation in this case presents with value range 0,35-0,6. The results for SAVI 

and EVI2 vary a little and the range for healthy vegetation is 0,55-0,85. Detailed 

comparison is presented in appendices 1A-1E, 2A-2E and 3A-3E. 

Statistics including mean value and standard deviation were derived using the Zonal 

Statistics tool for each zone. Data was extracted and processed in excel. The results were 

presented on charts. 

 

Figure 13. Mean NDVI values in years 1986-2022 

The values of NDVI vary depending on the zone (Figure 13). The most stable is ZONE4, 

reclaimed in the 1970s’, the values vary slightly between 0,295 and 0,394. Apart from 

ZONE4, the reference ZONE5, which has vegetation undisturbed by mining, looks very 

stable, with values ranging from 0,286 to 0,403. Similar average NDVI values and a trend 

in time of ZONE4 in relation to the reference ZONE5 testify to the good condition of the 

reclaimed zone in the 1970s. The highest average value, which is 0,425, presented on the 
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chart belongs to ZONE2, reclaimed in 1994. Decrease from 1986 to 1990 was caused by 

getting rid of self-sown seedlings from non-reclaimed, post-mining areas. ZONE3 has 

been the mine boundary since 2014. In 2018, reclamation was carried out and the chart 

shows a slight improvement from 0,207 to 0,229. Before the start of mining works, it 

belonged to agricultural land. In the years preceding the mine's affiliation, the changes in 

the average NDVI values were conditioned by changes in crops. In ZONE1 until the mid-

1990s self-sown plants grew there, the noticeable change from year 1994 to year 1998 is 

due to the removal of self-sown vegetation. In 2002 the reclamation was completed, that’s 

why a slight increase of mean NDVI value from 0,201 to 0,205 in 2006, and later in 2010 

to 0,288.  

A steady increase in average values can be seen, which indicates an improvement in the 

state of vegetation in ZONE1, ZONE2 and ZONE6. Unfortunately, the same cannot be 

said for ZONE3, which due to recent mining activity has not been able to regenerate.  

Higher values in case of ZONE2, as well as ZONE1 might be connected with younger 

vegetation but also with a type of species (Quercus petraea) that dominates those zones 

and is characterized by a higher reflectance (Figure 12).  

Low values might be caused by the presence of small pools of water or patches of dry 

land within the borders of chosen zones.  

 

Figure 14. Standard deviation of NDVI in years 1986-2022 

The diversity of vegetation and its condition, represented as mean NDVI values, are 

described by standard deviation. The standard deviation of NDVI is diverse in ZONE1, 

ZONE3 and ZONE6 (Figure 14). The largest deviation is observed in ZONE6, that’s due 

to getting rid of vegetation, at the cost of starting mining works. The highest value of 

0,112 is observed in 1986, at the same time it is an outlier value. The NDVI of vegetation 

in ZONE5 and ZONE6 is the least dispersed.  
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Figure 15. Mean EVI2 values in years 1986-2022 

The EVI2 values range from 0,126 in ZONE1 to 0,742 in ZONE2 (Figure 15). In the zone 

restored in 1994, the EVI2 increases value in 1998, reaching 0,428. In the next time 

stamp, there is a decrease to the level of 0,413, in the upcoming years it will get better. 

EVI2 values for ZONE4 and the reference ZONE5 look similar. They both seam stable, 

apart from that, a slight increase can be noticed, which indicate improvement in 

vegetation’s condition. EVI2 values differ from NDVI values of ZONE3, in EVI2 values, 

a significant deterioration from 2010 to 2014 is noticeable, it may be due to the start of 

mining activities. ZONE6, that was left without restoration, from 1994 is showing 

increase in EVI2 value.  

ZONE1, ZONE2 and ZONE6 show an improvement in vegetation status through a steady 

increase in mean EVI2 values.  

 

Figure 16. Standard deviation of EVI2 in years 1986-2022 

The standard deviation of the EVI2 in ZONE2, ZONE4 and ZONE5 is on a stable level, 

which indicates low variety within the zone (Figure 16). The largest fluctuations of values 

occur in the non-reclaimed region, where the standard deviation varies from 0.202 to 
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0.021. It suggests the time of starting mine works. For ZONE1 there is also an aberration 

in 1998 when the standard deviation is significantly lower. 

 

Figure 17. Mean SAVI values in years 1986-2022 

The lowest SAVI values presented in the chart belong to ZONE1 (0,126), ZONE3 (0,189) 

and ZONE6 (0,134) (Figure 17). These values are conditioned by the commencement of 

mining operations or, in the case of ZONE1, technical recultivation and land preparation 

for tree plantings. For ZONE2, there is a slight increase, referring to reclamation process 

finished in 1994. The values of SAVI for ZONE4 and 5 are stable with a slight increase. 

They share similar SAVI values, which means the condition of trees and other vegetation 

is comparable. Steady increase in average values can be seen for ZONE1, ZONE2 and 

ZONE6, which indicates an improvement in the state of vegetation.  

 

Figure 18. Standard deviation of SAVI in years 1986-2022 

The lowest variability of standard deviation is observed in ZONE2, ZONE4 and ZONE5 

(Figure 18). It indicates a constant vegetation cover, which consists of different plant 

species. The largest fluctuations of values occur again in the non-reclaimed region, where 

the standard deviation varies from 0,168 to 0,020. For ZONE3 noticeable changes are in 

2018 where the value from 0,088 decreases to 0,038. 
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5.1.2. Monthly statistics for single zone points 

Single points/pixels were selected in new layers, within the limits of the selected study 

zones, The specific locations within these zones were chosen randomly. Each pixel value 

was calculated for every year using Point Sampling Tool. For NDVI the result was 

presented on the chart (Figure 19).  

 

Figure 19. NDVI value for point in years 1986-2022 

Comparing the results from single point values with the results from mean zone values, 

in some cases there is a noticeable difference. The difference may be due to the fact that 

the previous analysis deals with averaged values and here the values for a single pixel are 

presented. This means that if there are areas with water or bare soil in a given zone, they 

affect the average value. The highest NDVI value of 0,469 corresponds to point 2 in 2022. 

For majority of points the highest values of NDVI fall in 2022. The value 0,086 is the 

lowest one on the chart, it belongs to point 1, the cause of low value may be preparation 

for technical recultivation and land preparation for tree plantings. The NDVI values for 

ZONE4 and ZONE5 are stable.  
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Figure 20. EVI2 value for point in years 1986-2022 

Point EVI2 values (Figure 20) in comparison to zonal EVI2 values don’t differ strongly. 

It’s because EVI2 is used to correct the effects of soil signals, especially in areas with 

dense crowns. The highest EVI2 value corresponds to point 2 in 2022. For half of points 

the highest values of EVI2 fall on 2022. The value 0,129 is the lowest one on the chart, it 

belongs to point 1. 

 

Figure 21. SAVI value for point in years 1986-2022 

Point SAVI values (Figure 21) in comparison to zonal SAVI values don’t differ strongly. 

It’s due to ability of SAVI to identify soil-induced changes in vegetation indices. It 

minimalizes soil-brightness influences.  

The highest SAVI value (0,704) corresponds to point 2 in 2022, which might prove that 

the state of vegetation has improved, regardless of the droughts in recent years.  
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5.1.3. Differential rasters 

Based on the monthly average values, the difference between the state in July 2022 and 

July 1986 is calculated using Raster Calculator. Differential rasters for month July were 

created using raster calculator. The purpose of this calculation is to obtain information 

about temporal and spatial changes in the conditions of the post-mining landscape. 

Differential rasters are presented in Figure 22, Figure 23 and Figure 24 for NDVI, EVI2 

and SAVI respectively.  

 

Figure 22. Difference raster of the NDVI values in 1986-2022 
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Figure 23. Difference raster of the EVI2 values in 1986-2022 

 

Figure 24. Difference raster of the SAVI values in 1986-2022 

The difference rasters of the indexes values for the period of 1986-2022 show similar 

change trajectories and spatial dependencies.  
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The majority of area presented in Figure 22, Figure 23 and Figure 24 the difference 

between 2022 and 1986 generally fluctuates around 0.  

5.1.4. Discussion 

Temporal profiles of the indices across the study areas exhibit comparable trends and 

patterns. It is therefore possible to compare and analyze the results together to gain a 

comprehensive understanding of the region. The range of valid values for NDVI and 

SAVI, analysed in sections 5.1.1 and 5.1.2 is from -1 to 1.  

One of the problems is the range of EVI2, which ranges from -0,4 to 1,2 (Figure 15). 

Bright features such as clouds and white buildings, along with dark features such as water, 

can result in anomalous pixel values in an EVI2 image. In spite of this, the EVI2 results 

are comparable to those of other indexes. NDVI is widely used together with other 

indices. In moderately vegetated arid areas, such as post-mining landscapes one of the 

recommended indexes is SAVI. It is adjusted to mitigate the influence of bare soil. EVI2 

takes atmospheric factors into account.  

The calculation of average annual values was not possible due the low availability of data 

and the four-year interval was chosen to better represent changes in the landscape. 

However, depending on the area of interest, the time range might be different or reduced 

when going into a more detailed analysis. In this case, choosing one month (July), allowed 

to formulate the basic properties of vegetation in region, adjacent to the mine and to 

determine time dependencies. Fortunately, selected month is usually characterized in high 

chlorophyll content for most plants. The reference area, not related to the mine, as well 

as the area reclaimed in the late 1970s’, are covered with healthy vegetation, as evidenced 

by constant and higher values of vegetation indices. According to the analyses, all zones, 

apart from zone 3, show an improvement in the condition of the vegetation over the years. 

Zone 3, which in recent years has been transformed from agricultural land into mining 

land, was reclaimed in 2018. Currently, the saplings on it are no older than 5 years. The 

droughts prevailing in the years 2018-2022 could have caused the deterioration of the 

newly reclaimed land, which is why the growth of new vegetation, as can be seen on the 

index charts, was not so active. The NDVI chart (Figure 13) showed a deterioration in the 

condition of vegetation in the reference zone 6 in 2022. Comparing the years 2014, 2018 

and 2022, it can be seen that not only the reference zone suffered damage due to the 

prevailing droughts.  

The difference rasters presented in 5.1.3 show similar change trajectories and spatial 

dependencies. Additional evaluation of coefficient of variation achievable through QGIS 

software with the use of r.series tool could characterize spatial variability.  

Unfortunately, no in-situ data was available for the above analysis. However, the study 

had the opportunity to use the information about the plant species presented in 5.1. The 

spectral characteristics of plants (trees) were learned from the literature and used for data 

analysis.  

6. Conclusions 

The study was aimed at collecting information related to the monitoring of reclaimed land 

belonging to the mine in order to create an appropriate course of action to support such 

monitoring.  

The first part of the thesis included literature study, one of which purpose was to briefly 

describe impacts of mining on the environment and post-mining landscapes. Further, the 
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reclamation aspects were discussed, such as steps and ways of reclamation. In the 

following chapters, it was possible to see that the need to monitor mining and post-mining 

areas is justified by many laws and European Union reports and directives.  

Related aim of this study was to investigate the relevant spectral indices with the intention 

to use them for designing a project workflow that is useful for monitoring the health and 

condition of reclaimed post-mining landscapes. The following indexes were selected: 

NDVI, EVI2 and SAVI. The research focused on satellite data and multispectral imagery 

resulted in selecting several Landsat satellite missions. They were selected based on the 

ability to offer data dating back to the 1970s. The study was carried out on a chosen 

opencast mine located in Profen, Germany. The investigated period covered vegetation 

season in years 1986-2022, in the form of a four-year interval.  

Monitoring was conducted in QGIS, which is free and open-source software. The satellite 

images were preprocessed. Multiraster layers were created with QGIS software. Six study 

zones were selected within the mine area, based on forest way of reclamation. Rasters of 

average monthly and annual values were generated and compared using time series 

analysis. Other products of this part were differential rasters, the created maps of changes 

subjected to statistical analysis, determining the general area, where there was a decrease 

or increase in the vegetation index, were used for a detailed visual analysis. 

The conducted time series analysis confirmed the stability in one of the reference zones, 

not belonging to the mine. Average values of the indexes were mostly stable, with higher 

levels, suggesting healthy vegetation. In the post-mining region, indexes values were 

distributed in a more diverse manner over time. In the second reference zone, non-

reclaimed post-mining land, was behaving better than expected, the vegetation found its 

way and has improved throughout the years. Zone 3 well reflects the changes taking place 

in its area, the change of use. Zones 1 and 2 noted a constant increase in vegetation health 

throughout the analysis period. It took respectively 20 and 15-10 years for the new 

vegetation planted in 1994, 2003 to reach similar NDVI values as the vegetation in the 

undisturbed environment. 

In addition, the study took into account archival information on droughts occurring in 

Germany, which could have had a negative impact on vegetation. Universal value 

decrease can be found in 1990 and 2006. Decrease in 1990 can be related to drought 

occurring in the study area. Unfortunately, this cannot be said for 2006, as the fall could 

have been caused by an error in the satellite image, this year only one scene was found 

corresponding to the study.  

This study faced a number of limitations and issues during the practical portion. One of 

the problems was the unavailability of most of the scenes. Due to the high cloud coverage, 

many of satellite images was rejected. As a result, the study focused only on July, as it 

was the month with the largest amount of data, with data throughout the whole analysis 

period, apart from one day. Second problem was the age and type of data. Due to the use 

of Landsat 4-5 data, some spectral bands are missing, which prevents some indexes from 

being used.  

Mineral extraction is associated with disturbance of vegetation in the surrounding area 

that might lead to loss of valuable habitats. The study showed potential of using remote 

sensing data for evaluating condition of reclaimed forests. The suggested workflow was 

based on comparing post-mining reclaimed zones using three spectral indices (NDVI, 

EVI2 and SAVI). The index analyses characterized condition of vegetation throughout 

years (1986-2022). In addition, the analyzes were compared with archived data on 
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droughts and data on tree species. The collected data made it possible to understand how 

various factors affect the state of plant vegetation. The proposed methodology with the 

use of spectral satellite data is a preliminary approach to the subject, which allows for 

digressions and the development of the scope of analyzes and collected data in the future. 

Using selected indicators, it’s possible to design the monitoring of areas that will be 

subject to reclamation and propose that in-situ data be collected at the same time and to a 

lesser extent, because satellite images for the entire reclaimed area can be used based on 

in-situ correlation with remote sensing. 

7. Future recommendations  

In order to improve the results of the analysis of the state of the environment in a given 

area in the future and to gain a wider perspective on the health of the vegetation, more 

indexes analysis should be considered, e.g., water indexes like NDWI or NDMI, so as to 

identify the factors that influenced a given change in the state of vegetation (e.g., lack or 

excess of water, late start of the season growing season, natural changes during the 

growing season). Additionally, to improve analysis more years and wider spectrum of 

vegetation months should be investigated and compared. Future research should also 

consider adding images from other sensors. This would allow for a wider time coverage, 

which is very important when detecting and forecasting long-term trends.  

In order to assess ecosystem development on a large scale, long-term ground monitoring 

data should be integrated with remote sensing metrics, since comprehensive ground 

monitoring data sets are often required by regulators to demonstrate rehabilitation 

progress. Remote sensing images provided by satellites should be supported by the 

unmanned aerial vehicle (UAV) sensors and platforms that nowadays are being used in 

almost every application (e.g., agriculture, forestry, and mining). The UAV are equiped 

with hyperspectral cameras that are becoming more available.  

Although remote sensing monitoring has been used for more than 50 years, there is still 

no scientific consensus on how to determine the success of rehabilitation with the use of 

remote sensing. 
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