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I

Abstract
The accurate prediction of thermodynamic properties of systems in thermodynamic
equilibrium is crucial for the design of efficient processes in the chemical industry.
The model employed in this thesis is the heterosegmental Perturbed Chain Statistical
Associating Fluid Theory equation of state (PC-SAFT). PC-SAFT is a widely used
thermodynamic model, which is especially suited to describe the behavior of complex
fluids and associating substances. The heterosegmental approach of PC-SAFT allows for
separation of molecules into various segments which are each characterized by a set of
model parameters.
The model was utilized to predict the behavior of butane - alcohol systems, revealing that
the two-phase region widens with an increasing number of C-atoms on the alcohol and
narrows with higher temperatures. Furthermore, the mixture approaches the behavior
of an ideal solution as the number of carbon atoms increases. When modeling butanol
- alkane systems, it was observed that the two-phase region narrows with increasing
temperature, but no widening trend was observed with an increase in the number of
carbon atoms in the alkane.
The application of the model to predict the behavior of binary n-alcohol - carbon
dioxide (CO2) systems revealed limited accuracy in modeling the complete miscibility
gap. Although the results show no significant improvement over the results obtained
with the homosegmental approach, the heterosegmental approach offers the advantage of
a single temperature-dependent binary parameter for all CO2 - alcohol systems, whereas
the homosegmental approach requires fitting multiple parameters for each unique system.
While neither approach precisely predicts the vapor-liquid equilibria across the entire
temperature and pressure range, the heterosegmental approach yields comparable or
superior outcomes with the convenience of fitting a single binary parameter.
Additionally, it was demonstrated that the modeling results for ethane - butanol and
propane - butanol systems also exhibit deviations near the critical region, akin to those
observed in CO2 - alcohol systems.
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Kurzfassung
Die Vorhersage und Modellierung thermodynamischer Eigenschaften von Systemen im
Gleichgewicht ist von großer Bedeutung für die Auslegung und Gestaltung effizienter
Prozesse in der chemischen Industrie. Das in dieser Arbeit verwendete Modell ist die
heterosegmentelle Perturbed Chain Statistical Associating Fluid Theory (PC-SAFT). PC-
SAFT ist ein weit verbreitetes Modell für Zustandsgleichungen, das besonders gut geeignet
ist, das Verhalten komplexer Fluide und assoziierender Substanzen zu beschreiben. Der
heterosegmentelle PC-SAFT Ansatz differenziert Moleküle in verschiedene Segmente, die
jeweils durch einen Satz von Parametern charakterisiert sind.
In der vorliegenden Arbeit wurde das Modell verwendet, um das Verhalten von Butan-
Alkohol-Systemen vorherzusagen, wobei gezeigt werden konnte, dass das Zweiphasengebiet
mit zunehmender Anzahl von C-Atomen im Alkohol größer wird und sich mit höheren
Temperaturen verengt. Darüber hinaus nähert sich die Mischung mit zunehmender An-
zahl von C-Atomen dem Verhalten einer idealen Lösung an. Für Butanol-Alkan-Systeme
konnte gezeigt werde, dass das Zweiphasengebiet ebenfalls mit steigender Temperatur
schrumpft.
Die Anwendung des Modells zur Vorhersage des Verhaltens von binären Alkohol - Kohlen-
dioxid (CO2)-Systemen zeigt, dass die Modellierung nicht im gesamten Druckbereich gut
mit den experimentellen Daten übereinstimmt. Obwohl die Ergebnisse keine signifikante
Verbesserung gegenüber den mit dem homosegmentellen Ansatz erzielten Ergebnissen
zeigen, bietet der heterosegmentelle Ansatz den Vorteil eines einzigen temperaturabhängi-
gen binären Parameters für alle CO2-Alkohol-Systeme, während der homosegmentelle
Ansatz eine Anpassung des Parameters für jedes einzelne System erfordert. Obwohl keiner
der Ansätze in der Lage ist, die Phasengleichgewichte über den gesamten Temperatur-
und Druckbereich genau vorherzusagen, liefert der heterosegmentelle Ansatz vergleichbare
oder sogar bessere Ergebnisse mit dem Vorteil, dass nur ein einziger binärer Parameter
angepasst werden muss.
Zusätzlich wurde gezeigt, dass die Modellierungsergebnisse für Ethanol-Butanol- und
Propan-Butanol-Systeme ebenfalls Abweichungen in der Nähe der kritischen Region
aufweisen, ähnlich wie bei CO2-Alkohol-Systemen beobachtet.
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4 1. Introduction

1. Introduction

Accurate prediction of thermodynamic properties can aid in the selection of appropriate
equipment, optimization of operating conditions, and design of new materials. However,
there is no universally valid model that can provide precise results for the phase equilibria
of all substances under all conditions, and the choice of the applied prediction method de-
pends on the considered substances, the area of application and the desired qualities, like
the required accuracy, predictive ability, or the computational speed. Over time, a wide
range of models have been developed that can be broadly classified into two categories:
Activity coefficient models and equations of state. Activity coefficient models describe
the non-ideal behavior of mixtures by introducing the concept of activity coefficients,
equations of state are mathematical models that describe the thermodynamic behavior of
pure substances and mixtures in terms of their pressure, volume, and temperature. They
are based on the fundamental principles of thermodynamics and statistical mechanics.

The model employed in this thesis is the Perturbed Chain Statistical Associating Fluid
Theory, short PC-SAFT [1]. PC-SAFT is a widely used equation of state model in
chemical engineering and thermodynamics. It was developed in the early 2000s as an
improvement over the earlier SAFT equation of state (Statistical Associating Fluid
Theory [2]). The model is based on statistical mechanics and uses a perturbation theory
approach to capture the intermolecular interactions between molecules in the fluid. It is
especially suited to predict the thermodynamic properties of complex fluids and associat-
ing substances which exhibit significant deviations from ideal behavior. In PC-SAFT,
molecules are modeled as chains of spherical segments which are characterized by a set
of parameters. For mixtures an additional binary interaction parameter is introduced,
which characterizes the deviation of the mixture’s dispersion energy from the geometric
mean of the pure substances’ dispersion energy.
The task of this thesis was the implementation of the heterosegmental PC-SAFT ap-
proach [3]. In comparison to the homosegmental approach, which assumes the molecules
consist of identical spheres of equal size, the heterosegmental approach allows for the
differentiation of molecules into various segments. This division reflects the composition
of molecules like n-alcohols, which consist of an alkyl-residue and the hydroxyl group. In
the heterosegmental approach, the binary interaction parameter can be defined between
each part of the molecules present in a mixture.

In the chemical industry, alcohol - CO2 systems are used in various applications, such as
extraction, purification, and separation processes. Accurately predicting the thermody-
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namic properties of these systems is particularly challenging due to the associating nature
of alcohols and the presence of polar moments in CO2 molecules. Ramirez et al. [4]
demonstrated that the homosegmental PC-SAFT approach is not capable of predicting
the vapor- liquid equilibria of these systems adequately over the entire pressure and
composition range and raised the question, whether an improvement of the predictive
ability of the model can be obtained by introducing a second binary interaction parameter.
The heterosegmental approach provides the framework for two binary parameters used
to correct the dispersion energy of the alcohol - CO2 mixture, one between the alkyl
residue and CO2 and the other between the head segment (–CH2OH) and CO2. In order
to evaluate the performance of the heterosegmental approach for predicting the behavior
of alcohol - CO2 systems, in the context of this thesis a comprehensive comparison
is conducted between the results obtained with this approach and experimental data
available in the literature, as well as with results obtained with the homosegmental
approach.
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2. State of the Art

The following chapter provides a theoretical framework for the PC-SAFT model and
the calculation of phase equilibria and thermodynamic properties, introducing the basic
concepts and mathematical methods which are necessary to understand the model and
its application.

2.1. Thermodynamic equilibrium

The discipline of thermodynamics deals with energy, heat and a system’s ability to do
work [5]. In classical thermodynamics, systems are described in terms of measurable
physical quantities, like temperature, pressure and volume. The principles of classical
thermodynamics are based on a set of laws, such as the first and second law of thermody-
namics, which describe the conservation of energy, the transfer of heat, and the direction
of thermodynamic processes.
Equilibrium thermodynamics describe the state of a system in thermodynamic equilib-
rium. When a system is in a state of thermodynamic equilibrium no macroscopic flows
of matter or energy occur within the system or from one system to another and the
state variables are constant [6]. Thermodynamic equilibrium is therefore characterized
as thermal, mechanical and chemical equilibrium in a system.

• Thermal equilibrium describes the state of a system in which the temperature is
homogenous and where there are no macroscopic heat flows. As shown in equation
2.1, the temperature T must be the same for all phases (α, β,...,θ) in the considered
system.

T α = T β = ... = T θ (2.1)

• Mechanical equilibrium is a state where the sum of all forces acting on a system
is zero. It is characterized by the equality of pressure p in all phases.

pα = pβ = ... = pθ (2.2)

• A system reaches a state of chemical equilibrium if the chemical potentials µ

for each component i in all ocurring phases of the system are equal:

µα
i = µβ

i = ... = µθ (2.3)

The chemical potential is a measure of the stability of substances or their tendency
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to change [7]. In an incompressible multicomponent system, the chemical potential
corresponds to the partial derivative of the Gibbs energy G with respect to the
amount of substance ni when pressure and temperature are held constant, and thus
describes the change in Gibbs energy per mole or per particle. In a single-component
system, the chemical potential of the substance is identical to the molar Gibbs
energy of the system.

µi =
(

∂G

∂ni

)
p,T,nj ̸=i

(2.4)

Similarly, the chemical potential in a multicomponent system can be defined for the
Helmholtz energy A. The chemical potential µi of component i can be expressed
as the partial derivative of the Helmholtz energy A with respect to the amount of
substance ni, when temperature and volume are held constant:

µi =
(

∂A

∂ni

)
T,V,nj ̸=i

(2.5)

While thermodynamic equilibrium can occur in a single phase or multiple phases of
a system, the term phase equilibrium, on the other hand, specifically refers to the
condition where two or more phases of a substance coexist in thermodynamic equilibrium.

2.2. State variables

State variables are physical variables that describe the current macroscopic state of
a system, regardless of how this state came about [6]. A system is a limited area in
space to which the investigation is intended to relate. The boundaries of the system
are not defined by physical conditions but are chosen according to the requirements of
the calculation. Three forms of systems can be distinguished depending on the system’s
interaction with its environment:

• In isolated systems there is no flow of matter and energy over the boundary of
the system.

• In closed systems there is no flow of matter over the boundary of the system,
but there is a flow of energy.

• In open systems there is a flow of matter and energy over the boundary of the
system.

Examples for state variables are volume, pressure and temperature, as well as internal
energy, enthalpy, Helmholtz free energy, Gibbs free energy, entropy and isobaric and
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isochoric heat capacities. State variables are distinguished according to their dependence
on the size of the system:

• Extensive state variables depend on the size of the system and are proportional
to the considered amount of matter in this system. (e.g. mass, volume, enthalpy...)

• Intensive state variables are independent from the size of the system. (e.g.
pressure, temperature, density...)

Extensive state variables can be transformed into intensive variables by dividing the
extensive variable through the mass or the amount of the substance.
The number of intensive state variables that can be arbitrarily changed simultaneously
without destroying the equilibrium between the phases and without changing the number
of phases of the system corresponds to the degrees of freedom given by the Gibbs phase
rule:

degrees of freedom = number of components − number of phases + 2 (2.6)

2.3. Phase diagrams
A phase diagram is a graphical representation of the equilibrium phases of a substance
or mixture as a function of temperature, pressure, and composition [6]. It shows the
regions of stability for each phase (solid, liquid, gas) and the conditions (pressure, tem-
perature, and composition) at which phase transitions occur between them. The phase
diagram shows the relationship between these variables and provides a useful tool for
understanding and predicting the behavior of a substance under different conditions.
Examples of phase diagrams are p − T diagrams, where the pressure of the system is
plotted as a function of the temperature at constant volume, p − V diagrams, where the
pressure is plotted as a function of the volume at constant temperature, or p − x and
T − x diagrams, where respectively the pressure or temperature is plotted as a function
of composition. In general, the composition is indicated for the more volatile component
and is typically given on a scale from zero to one.

Figure 2.1a shows a temperature-composition phase diagram for a binary mixture.
Above the dew curve, the system exists as a homogeneous gas phase, below the bubble
point curve as a homogeneous liquid phase. An example of a pressure-composition phase
diagram is illustrated in figure 2.1b. Here, the system is a homogeneous liquid phase at
high pressures, above the bubble point curve, and a homogeneous vapor phase below the
dew curve. In binary phase diagrams, the two-phase region refers to a specific region
where two distinct phases coexist in equilibrium. In the given example, the dew curve
and the bubble point curve meet at the boiling point of pure component 1 and the boiling
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Figure 2.1.: Schematic illustration of an arbitrary (a) temperature-composition phase
diagram and an arbitrary (b) pressure-composition phase diagram for
binary systems.

point of pure component 2.
In ideal solutions, where intermolecular forces are absent, the vapor pressure follows
Raoult’s law, resulting in a straight line connecting the vapor pressures of pure component
1 and pure component 2. The absence of intermolecular forces allows for ideal mixing
behavior, where the vapor pressure of each component is directly proportional to its mole
fraction in the liquid phase. Therefore, the shape of the line reflects deviations from ideal
behavior.
Another important concept is the critical point. In the case of pure substances, it corre-
sponds to the temperature and pressure at which the liquid and gaseous phases combine
to form a single phase, a so-called supercritical fluid. The critical temperature and
critical pressure are the specific conditions at which this phase transition occurs. In
pressure-temperature diagrams, the critical point is represented as the termination point
of a phase equilibrium curve. In a pressure-volume diagram, a critical point is located on
an isotherm that exhibits an inflection point with a horizontal tangent.

2.4. Statistical Thermodynamics

Statistical thermodynamics, closely related to statistical mechanics, is a branch of
thermodynamics that uses the laws of statistics to explain the behavior of thermodynamic
systems on a microscopic level [6]. It provides a framework for understanding the
thermodynamic properties of systems in terms of the behavior of their individual particles,
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such as atoms and molecules. The macroscopic quantities of compounds are derived by
considering translation, rotation and oscillation of individual particles. The set of physical
properties of all particles is called the microstate of the system. For systems which
consist of a large number of particles, the properties of the particles can be determined
with statistical methods and distributions of position and momenta. The microstate
of the system changes constantly due to the motion of the particles, however, if the
mean values remain the same, the observable macroscopic state of the system (pressure,
temperature, volume) is constant. Each macrostate is realizable by a certain number of
microstates. This number defines the thermodynamic probability of the macrostate. In
thermodynamics it is assumed that all microstates with the same total energy hold the
same probability.
Statistical thermodynamics makes use of the concept of the partition function, which
provides a way to calculate the probability of the system being in a particular macrostate
[8]. The partition function, denoted by the symbol Q, is defined as the sum or integral
of the Boltzmann factor over all possible energy microstates of the system.

Q =
∑

i

e

(
− Ei

kBT

)
(2.7)

Here, Ei is the total energy of the system in the microstate i, kB is Boltzmann’s
constant, and T is the temperature of the system. The partition function can be used to
calculate various thermodynamic properties, such as the entropy, internal energy, and
free energy of a system. For example, the internal energy U can be calculated as the
sum of the energy of each state multiplied by its probability:

U = 1
Q

∑
i

(Eie

(
− Ei

kBT

)
) (2.8)

Similarly, the entropy S can be calculated as:

S = kB ln(Q) (2.9)

If the partition function of a fluid is known, it is possible to calculate its thermodynamic
properties exactly. However, the definition of the partition function requires knowledge
of the intermolecular interactions between all the molecules in the system (see chapter
2.5.2), which can be extremely complex and difficult to model, especially for highly
non-ideal fluids.



2. State of the Art 11

2.5. Molecular Interactions
As atoms and molecules consist of charged particles, electromagnetic forces account for
attraction and repulsion between them [8]. At short distances, repulsive forces prevail.
At long distances, attractive forces take over, decreasing as the distance between the
molecules increases. Intermolecular forces determine the physical properties of molecules,
like their melting and boiling point, their density dependent on the temperature, the
respective enthalpies of fusion and vaporizationas well as their ability to form mixtures
with other substances. They are also responsible for effects such as surface tension,
capillarity, and adhesion and cohesion forces.

2.5.1. Types of intermolecular forces

Dependent on the composition of the considered molecule, the intermolecular forces are
usually categorized as follows [8]:

• Repulsive interactions occur when the valence orbitals of two molecules overlap.
This phenomenon is described by the Pauli exclusion principle, which states that
an orbital cannot be occupied by more than two electrons. If an orbital is occupied
by two electrons, their spin must be oppositional [9].

• Electrostatic interactions occur between the partially positively charged part
and the partially negatively charged part of molecules. This applies to molecules
that hold for example a permanent dipole (e.g. ketones) or quadrupole (e.g. CO2),
as they consist of covalently bonded atoms with large differences in electronegativ-
ity. Hydrogen bonding is a special form of dipole-dipole interaction and occurs
between a covalently bonded hydrogen atom and an atom with bigger electronega-
tivity, especially oxygen, nitrogen, or fluorine. Hydrogen bonding is the strongest
form of intermolecular interaction and leads to an increased melting and boiling
point, relative to the molar mass, of substances able to form hydrogen bonds, such
as water, alcohols, or acids.

• London dispersion forces are weak forces of attraction that arise from sponta-
neous fluctuations in electron density. This creates an electric dipole moment in
one molecule, which induces another dipole moment in a neighboring molecule. The
magnitude of attraction increases with the number of involved electrons. London
forces exist between all types of molecules and thus the existence of liquid and solid
state for non-polar substances can be explained.

• Induction or polarization is a hybrid form and describes the interaction between
a molecule with a permanent multipole and a molecule in which a spontaneous
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polarization is induced.

Figure 2.2 shows a qualitative comparison of the intermolecular interaction strength or
bond energy for different categories of interactions. In simple fluids, dispersion forces

Figure 2.2.: Qualitative comparison of intermolecular interaction strength, according
to [10]

prevail, which are comparatively weak. Associative interaction between molecules
is an interaction which is highly directional and short ranged [11]. The term is used to
describe electrostatic interactions in substances with polar components or components
with the ability to form hydrogen bonds. The formation of hydrogen bonds between
molecules of the same kind is described as self-association, while cross-association refers
to the formation of hydrogen-bonds between unlike molecules. The strong intramolecular
interactions between atoms within a molecule are so-called chemical bonds.

2.5.2. Intermolecular potentials

Molecular interactions can be described mathematically in the form of intermolecular
potentials. Intermolecular potentials describe the potential energy between two or more
interacting atoms or molecules as a function of the distance between the particles. Positive
values of the potential correspond to a repulsive interaction, negative values to attraction.
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Figure 2.3.: Schematic graphs illustrating four types of intermolecular potentials as
a function of the radial distance.

The simplest model of intermolecular potential is the hard-sphere or hard-core
model [12]. It accounts for the repulsive forces between molecules by modeling them as
incompressible hard-core spheres that cannot overlap in space. Attractive forces are not
considered. The hard-sphere pair potential Φij between two molecules or atoms i and j

is given in equation 2.10:

Φij(r) =


0 if r ≥ σ

∞ if r < σ
(2.10)

Where r indicates the distance between the cores of two molecules or atoms i and j,
|ri − rj|, σ the hard-core diameter. Figure 2.3a shows the hard-sphere potential as a
function of the distance.
The hard-sphere repulsion is only physically correct when particles collide at infinitely slow
speed. To model elastic diameters which become smaller during collision the soft-sphere
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potential was introduced [13]:

Φij(r) =


0 if r ≥ σ

ϵ
(

σ
r

)n
if r < σ

(2.11)

ϵ is the interaction energy. The case of n → ∞ corresponds to the hard-sphere potential.
Figure 2.3b illustrates the soft-sphere potential as a function of the distance r between
the cores of the considered particles.
The total intermolecular pair potential is calculated as the sum of the intermolecular
potential due to repulsive forces and the potential due to attractive forces. The Lennard-
Jones potential considers repulsive as well as attractive forces and is widely used
because of its simplicity [14]. The pair potential is expressed as follows:

Φij(r) = 4ϵ

[(
σ

r

)12
−
(

σ

r

)6
]

(2.12)

In this case, σ is not the molecular diameter, but the distance between the cores of two
particles at which the intermolecular potential Φij becomes zero. The maximum energy
of attraction ϵ occurs at r = 2 1

6 σ. At this distance, the particles experience the strongest
attraction. The Lennard-Jones potential as a function of r is illustrated in figure 2.3c.
Another model which incorporates repulsive and attractive molecular interactions is
the square-well potential [15]. In the square-well potential, the initial hard-sphere
repulsion is followed by an attractive potential well. Attraction between two molecules
occurs, if their relative distance is between σ, the particle diameter, and λσ (cf. figure
2.3d). λ factors the width of the attractive well.
Square-well potentials are applied to model short-range interactions between molecules,
like hydrogen bonds. Their potential is given by:

Φij(r) =



0 if r ≥ λσ

ϵ if σ ≤ r < λσ

∞ if r < σ

(2.13)

2.6. Modeling of thermodynamic properties

There are two main types of thermodynamic models or approaches available to predict
the thermodynamic properties of a substance or mixture in phase equilibrium, activity



2. State of the Art 15

coefficient models and equations of state.

2.6.1. Activity coefficient models

Activity coefficient models are methods to predict the activity coefficient, which accounts
for the non-ideal behavior of mixtures. These models typically involve empirical corre-
lations or theoretical models that describe the deviations from ideality, and are often
based on thermodynamic concepts such as excess Gibbs energy or excess enthalpy. Some
examples of activity coefficient models include Wilson, NRTL, UNIQUAC, and UNIFAC
[16].
The activity coefficient γ is a dimensionless quantity that describes the deviation of a
solution from ideality. It is a measure of the non-ideal behavior of a solution and reflects
the effect of intermolecular interactions between the solute and solvent molecules. The
activity coefficient is defined as the ratio of the actual activity a of a substance i in a
solution to its ideal activity, which is equal to the mole fraction x of the substance.

γi = ai

xi

(2.14)

The activity coefficient can be calculated from the excess Gibbs energy GE as follows
[17]:

ln γi =
(

∂GE/RT

∂ni

)
p,T,nj ̸=i

(2.15)

The excess Gibbs energy describes the difference between the Gibbs energy of a real
mixture and that of an ideal mixture of the same components. R is the universal gas
constant, T the temperature and n the number of moles of component i.
As activity cofficient models describe systems at constant volume, they are not able to
predict pressure and density.

2.6.2. Equations of state

Equations of states consist of an equation of states or a set of equations relating state
variables of a given system in thermodynamic equilibrium. There is no universally valid
equation of states that produces exact results for all substances under all conditions.
Therefore, equations are defined in consonance with a thermodynamic model and their
accuracy is limited. The equations are either derived from experimental data or based on
physical and statistical considerations. The choice of the equation of state depends on
the area of application and desired qualities, like the required accuracy, predictive ability,
or the computational speed [18]. In the following, a few equations and the corresponding
thermodynamic models will be illustrated.
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The simplest example of an equation of state is the ideal gas law [19]:

p = RT

v
(2.16)

It relates the thermic values of state, temperature T , pressure p and molar volume v, of
an ideal gas. The concept of an ideal gas is based on the physical model of its molecules
as infinitely small, hard spheres which are moving in random directions. The particles
do not interact with each other except through perfectly elastic collisions as there are
no intermolecular forces or attractions between them. The molecules themselves take
up zero volume. The ideal gas law cannot predict the behavior of liquids or phase
transformations, as these occur due to intermolecular forces.
A real gas never behaves exactly like an ideal gas, but under conditions of low pressure
and high temperatures, real gases approach the ideal state. Lower pressure means the
distance between molecules is large and interactive forces reach a minimum. At higher
temperatures, the kinetic energy of the molecules is higher and thereby, their ability to
overcome intermolecular forces is higher. The deviation of the real gas’ behavior from
the ideal is reflected in the compressibility factor Z [6]:

Z = vreal

videal

(2.17)

The compressibility factor of an ideal gas is 1. If Z < 1, the gas is compact and attractive
forces between the molecules prevail. If Z > 1, the volume of the gas is bigger than the
ideal volume and the molecules are repelling each other. The compressibility factors can
be determined experimentally and are given as a function of pressure and temperature
for many substances in the literature (e.g. [20]). The ideal gas law is then modified to
reflect the behavior of real gases as follows:

p = ZRT

v
(2.18)

A well-used category of equations of state are cubic equations of states. They are
derived semi-empirically and are characterized by a cubic polynomial function. The first
of these equations was the van der Waals equation [6]. It is a modification of the
ideal gas law and accounts for the deviation of real gases from ideal behavior by adding
two corrective terms:

p = RT

v − b
− a

v2 (2.19)

The term a
v2 accounts for the measured pressure being lower than predicted by the

ideal gas law due to intermolecular attractive forces. The parameter b factors the finite
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volume of real gas molecules, which reduces the volume of the gas and therefore the
space for the motion of the molecules. This accounts for the repulsive forces, modeled
as a one dimensional hard sphere repulsion. The van der Waals constants a and b are
characteristics of a substance and calculated via its critical quantities. The equation is
able to predict the p,V,T-behavior of liquid and gaseous phases, the process of liquification
and vaporization as well as the equilibrium of liquids and vapor. However, the quantitative
results show large deviations from measured values under conditions of low temperature
and high pressure.
Other cubic equations of state are the Soave-Redlich-Kwong equation (equation
2.20) and the Peng-Robinson equation (equation 2.21) [21]. While the repulsive terms
remain the same as in the van der Waals equation, the models provide two different
modifications of the associative term. The model parameters a and b are fitted to
experimental data or calculated using critical pressure and temperature.

p = RT

v − b
− a(T )

v(v + b) (2.20)

p = RT

v − b
− a(T )

v(v + b) + b(v − b) (2.21)

The equations are used for the calculation of thermodynamic behavior in the petroleum
and chemical industries [21], as they can be applied over a wide range of pressures and
temperatures and predict both liquid and vapor phases of substances such as hydrocarbons,
in which dispersive and repulsive forces prevail.
In addition to ideal gas and cubic equations of state, there are other types of equations
of state available, such as the virial equations [22], Lennard-Jones Truncated and
Shifted equations of state (LJTS) [23], Co-Oriented Fluid Functional Equation
for Electrostatic interactions (COFFEE) [24] or physically-based equations like the
Statistical Associating Fluid Theory (SAFT) family [2]. These types of equations
of state are typically formulated based on the Helmholtz energy. The model employed in
this thesis is PC-SAFT, a widely used modification of SAFT.

2.6.3. Association models

Another category of models to predict thermodynamic properties are the so-called
association models [21]. They were developed to describe the behavior of associating
substances, such as water, alcohols and amines, which show great deviation from ideal
behavior. Some association models are equations of state, however not all of them.
Association models can be categorized in three groups:

• Chemical theories treat association like a chemical reaction and the associating
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molecules as new and distinct chemical species [10]. The contribution of association
to the total energy is related to the number of oligomers formed in the considered
substance.

• In Lattice Cluster Theory (LCT), fluids are modeled as having a lattice-like
structure [10]. The extent of association is based on the number of hydrogen bonds
formed between segments of molecules located on neighbouring sites in the lattice.

• In perturbation theories, the associative contribution is related to the number
of bonding sites per molecule. To calculate the number of bonding sites, methods
of statistical mechanics are applied. In mathematics, perturbation theory describes
methods to find solutions for complex problems by adding corrective terms to a
known solution for a related simpler problem [25].

While models of the first two groups are semi-empirical equations of state, perturbation
theories are theoretically derived [11]. The PC-SAFT equation of state and the SAFT
equation of state are both examples of perturbation theories. Therefore, the theoretical
framework underlying this category will be elaborated in the upcoming chapters.

2.6.3.1. Perturbation Theory

SAFT and PC-SAFT are equations of state that belong to the category of perturbation
theories. Perturbation theory is a mathematical method used to approximate the
properties of a complex system by considering it as a perturbed version of a simpler
system [26]. The starting point is a well-understood reference state, a solvable problem,
which is then perturbed by adding small, incremental changes that make the problem
more complex. The sought-after solution is calculated by expanding it in a power series
of a small parameter that characterizes the perturbation. The first term in the series is
the solution to the unperturbed problem, higher-order terms represent corrections due to
the perturbation.

2.6.3.2. Wertheim’s Thermodynamic Perturbation Theory

In thermodynamics, perturbation theories are used to approximate the thermodynamic
properties of a fluid by relating it to a simple reference fluid. The target fluid’s energy
is described as the sum of the reference fluid’s properties (e.g. expressed in terms of
its Helmholtz energy) and perturbation or correction terms. The analytical equation
for the target fluid is obtained by creating a Taylor expansion around the reference
fluid [27]. This expansion converges quickly only when the structure of the reference
fluid is similar to the target fluid’s structure. Therefore, conventional perturbation
theory cannot be applied to fluids in which strong associating forces are present [10]. In
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Wertheim’s thermodynamic perturbation theory [28][29][30][31] a multi-density formalism
is introduced, in which the total number density can be written as the sum of the density
of molecules present as monomers and the density of molecules bonded via association.
In this notation, perturbation theory can be applied to any arbitrary reference fluid.
In Wertheim’s contribution, all interactions between molecules are described by inter-
molecular potentials. A hard-sphere potential constitutes the reference potential, hence
only representing the repulsive forces present between molecules. The molecule’s ability
to form associating bonds is modeled by introducing theoretical association sites on the
molecule. The total intermolecular potential of the fluid Φij(r)is written as the sum of
the intermolecular potential of the reference fluid Φref

ij (r) and the sum of the potentials
between the association site A on molecule i and association site B on molecule j ΦAB

ij (r):

Φij(r) = Φref
ij (r) +

∑
A

∑
B

ΦAB
ij (r) (2.22)

The division of the pair potential into attractive and repulsive components enables the
definition of the fluid’s partition function, thereby facilitating the computation of its
thermodynamic properties.
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3. Theory

The following chapter provides a detailed overview of the Statistical Associating Fluid
Theory (SAFT) and the Perturbed-Chain Statistical Associating Fluid Theory (PC-
SAFT), including the underlying assumptions, equations, and applications. PC-SAFT
is considered a variation of SAFT, the heterosegmental PC-SAFT uses the same set of
equations as the original PC-SAFT, however modified to fit the heterosegmental depiction
of molecules.

3.1. SAFT Equation of States
Wertheim’s theory is the basis of SAFT, which was developed by Chapman et al. [2][32]
and Huang and Radosz [33][34]. It is especially suited to describe the behavior of
associating molecules with non-spherical shape, which are conceived as chains of spherical
segments in the SAFT model. The SAFT equations of state are formulated in terms of
the residual Helmholtz energy ares, as properties like the pressure, compressibility factors
and density can be derived from the Helmholtz energy. The residual Helmholtz energy
describes the difference between the total Helmholtz energy a and the Helmholtz energy
of an ideal gas aideal at the same pressure, temperature, and composition:

ares = a − aideal (3.1)

The reference fluid in SAFT equations is modeled differently in different versions of
SAFT, e.g. by using a square-well potential [33] or Lennard-Jones [32] spheres. The
residual Helmholtz energy of a real fluid ares is given as the sum of the contributions due
to different intermolecular forces (equation 3.2). aseg describes the energy of segment-
segment interactions (repulsion and dispersion), achain the energy due to chain formation
and aassoc the contribution due to association of the molecules. Further contributions
can be added in a similar manner to model fluids that exhibit dipolar or quadrupolar
interactions.

ares = aseg + achain + aassoc + ... (3.2)

The three major contributions to the total intermolecular potential of associating fluids
according to SAFT are illustrated in figure 3.1. While the chain and the association
term remain mostly unchanged [35], various modifications of the segment term have
been proposed in variations of the SAFT model. These variations include for example
simplified SAFT [36], the LJ–SAFT [37][38], the soft–SAFT [39][40], the SAFT–VR [41]
and the PC–SAFT [1][42][43].
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Figure 3.1.: Schematic representation of SAFT. Molecules are assumed to consist of
equal-sized spherical segments (a), which are then connected to form
chains (b). The ability to form hydrogen bonds (indicated by dotted
arrows) is modeled by adding a certain number of association sites on
the molecule (c).

In the following, the contributions to the total residual Helmholtz energy in equation 3.2
are illustrated according to Chapman et al. [32].

3.1.1. Segment contribution

The term aseg in equation 3.2 refers to the Helmholtz energy per mole of molecules
of spherical segments, which interact with repulsive and attractive dispersion forces.
Physically, these segments correspond to a part of a complex molecule, a functional
group, a monomer-section of a polymer or simple molecules like methane or argon [10].
The segment term is calculated as follows:

aseg = aseg
0
∑

i

ximi (3.3)

aseg
0 is the segment molar Helmholtz energy per mole of segments, xi the mole fraction, mi

the effective number of segments of molecule i. In the original SAFT model by Chapman
et al. [32] the segments are defined to be Lennard-Jones spheres and their energy is
composed of two parts:

aseg
0 = ahs

0 + adisp
0 (3.4)

The term ahs
0 describes the energy of the reference fluid, a hard-sphere fluid, adisp

0 the
dispersion or perturbation. The hard-sphere term is calculated according to Carnahan
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and Sterling [44]:
ahs

0
RT

= 4η − 3η2

(1 − η)2 (3.5)

Here, η describes the packing fraction or reduced density.

η = πNAv

6 ρd3∑
i

ximi (3.6)

The maximum packing fraction that can be achieved is 0.74, a value known as the
close-packing limit or the densest packing fraction [45]. NAv is Avogadro’s constant. d

is the temperature dependent segment diameter according to the theory of Barker and
Henderson [25].

d(T ) =
∫ σ

0

[
1 − exp

(
−Φ(r)

kT

)]
dr (3.7)

For mixtures, d is calculated by applying the van der Waals mixing rules.
In the SAFT model by Chapman et al. [32] the dispersion term adisp

0 is defined according
to Cotterman et al. [46]

adisp
0 = ϵR

k

(
adisp

01 + adisp
02
TR

)
(3.8)

Here, TR is the reduced temperature

TR = kBT

ϵ
(3.9)

ϵ is the characteristic energy of the system.

3.1.2. Chain contribution

In SAFT, the non-spherical molecular shape of the molecules is accounted for by chain
formation. The formation of chains is modeled by placing association sites on the seg-
ments and strong interactions between them, representing the covalent bonds between
atoms that form a molecule. Two diametrical sites enable the formation of chains, one
site the formation of dimers. The calculation of the chain contribution to the total
Helmholtz energy is given by:

achain

RT
=
∑

i

xi(1 − mi) ln
[
gii(dii)hs

]
(3.10)

gii(dii)hs is the radial distribution function, which expresses the probability of finding
a particle at a certain distance from a reference particle [47]. The radial distribution
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function for hard spheres is derived by Reed and Gubbins [48] as:

gij(dij)hs = 1
1 − ζ3

+ 3diidjj

dii + djj

ζ2

(1 − ζ3)2 + 2
[

diidjj

dii + djj

]2 (ζ2)2

(1 − ζ3)3 (3.11)

ζk is a function of the density and is calculated as follows for k = {0, 1, 2, 3}:

ζk = πNAv

6 ρ
∑

i

ximid
k
ii (3.12)

ζ3 is equivalent to the packing fraction η given in equation 3.6.

3.1.3. Association contribution

In the SAFT model, as well as in Wertheim’s original contribution, the molecules’ ability
to form associative bonds is modeled by placing association sites on the molecules.
The associative interaction between two association sites is modeled with square-well
potentials. Each molecule can contain multiple association sites. Due to the short-range
and highly directional associative interactions, each association site is usually only singly
bonded. In a ”rigorous” definition, all electron-donor and -acceptor sites on a molecule
are assigned association sites [33]. However, as the rigorous placement of association
sites often does not lead to the most accurate results, alternative, arbitrary placements
are defined which are then tested against experimental data and compared with the
rigorous placement. In table 3.1 the rigorous placement of association sites, as well as
one alternative placement, is illustrated for alkanols and water.

Alkanols Water

formula bond type formula bond type

rigorous 3B 4C

alternative 2B 3B

Table 3.1.: Placement of association sites in alkanols and water [33]. The association
sites are indicated by red, capital letters.

The association contribution is calculated as follows:

aassoc

RT
=
∑

i

xi

∑
Ai

(
ln XAi − XAi

2

)
+ Mi

2

 (3.13)
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where Mi is the number of bonding sites at component i, XAi the mole fraction of
molecules of component i not bonded at association site A given by:

XAi = [1 + NAv

∑
j

∑
Bj

ρjX
Bj ∆AiBj ]−1 (3.14)

ρj is the molar density of the molecules of component j. The association strength ∆AiBj

between the bonding sites A and B on molecule i and j can be approximated as:

∆AiBj = d3
ijgij(dij)segκAiBj

[
exp ϵAiBj

kT
− 1

]
(3.15)

κAiBj describes the volume, ϵAiBj the energy of the association between association site
A on component i and association site B on component j. The temperature dependent
segment diameter dij corresponds to the arithmetic mean of diameter dii of molecule i

and djj of molecule j.
dij = dii + djj

2 (3.16)

The segment radial distribution function gij(dij)seg is approximated to be equal to the
hard sphere radial distribution function gij(dij)hs given in equation 3.11, as the segments
are assumed as hard spheres.
In order to render equation 3.14 XAi explicit, a series of simplifying approximations can
be made [33]. By assuming for example that the association strength between equal
association sites is equal to zero and the strength of different hydrogen bonds is equivalent,
the analytical expressions for XAi given in table 3.2 can be obtained for the types of
bonds mentioned in table 3.1.

Bond
type

∆ approximations X approximations explicit XA

2B ∆AA = ∆BB = 0
∆AB ̸= 0

XA = XB −1+(1+4ρ∆)1/2

2ρ∆

3B ∆AA = ∆AB = ∆BB = ∆CC = 0
∆AC = ∆BC ̸= 0

XA = XB

XC = 2XA − 1
−(1−ρ∆)+((1+ρ∆)2+4ρ∆)1/2

4ρ∆

4C ∆AA = ∆AB = ∆BB = ∆CC = ∆CD = ∆DD = 0
∆AC = ∆AD∆BC = ∆BD ̸= 0

XA = XB = XC = XD −1+(1+8ρ∆)1/2

4ρ∆

Table 3.2.: Simplified approximations for association strengths ∆ between association
sites and explicit equations for the mole fraction X not bonded at the
association site according to [33].
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3.1.4. SAFT parameters

In the SAFT model each component is characterized by five pure parameters, which
are given in table 3.3. In most versions of SAFT models, the parameters are obtained
by fitting them to experimental data of the pure compounds, like vapor pressure and
saturated liquid density.

SAFT parameter

mi number of segments of component i

σi diameter of segment of component i

ϵi energy of segment of component i

κAiBj
association volume between association site A on component i and association site
B on component j

ϵAiBj
association energy between association site A on component i and association site
B on component j

Table 3.3.: The molecule specific parameters used in SAFT equations of states.

3.2. PC-SAFT Equation of States

The Perturbed-Chain Statistical Association Fluid Theory, short PC-SAFT, is a modifi-
cation of SAFT, developed by Gross and Sadowski [1][42][43]. Instead of hard-spheres,
PC-SAFT uses a hard-chain fluid as reference fluid for the perturbation. The dispersion
potential is added between the connected segments instead of between segments. Like
the SAFT equation of state, PC-SAFT equation of state is formulated in terms of
residual Helmholtz energy. The perturbation terms, which are added to the energy of
the reference fluid ahc, are the dispersion energy adisp, and the energy due to association
aassoc for associating substances. Later, the theory was expanded to describe quadrupolar
interaction by adding the quadrupole contribution aquad [49]. Further terms, for example
to model dipolar contributions, can be added in a similar matter.

ares = ahc + adisp + aassoc + aquad + ... (3.17)

In the following, the equations to calculate the amount of each contribution to the total
residual Helmholtz energy of the fluid are illustrated in the notation of [1][42][43].
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3.2.1. Chain contribution

The pair potentials of the individual segments which comprise a chain are modeled with
a modified square-well potential [50]:

Φij(r) =



0 if r ≥ λσ

−ϵ if σ ≤ r < λσ

3ϵ if (σ − s1) ≤ r < σ

∞ if r < (σ − s1)

(3.18)

In comparison to the square-well potential given in equation 2.13, in the modified square-
well potential a repulsion energy 3ϵ is added at radial distances r that lie between the
diameter σ and σ − s1. Gross and Sadowski [1] assume, in accordance with Chen and
Kreglewski [50], a s1/σ ratio of 0.12. λ factors the well width. The step function approx-
imates a soft repulsion (see figure 2.3b). The resulting modified square-well potential is
illustrated in figure 3.2.

Po
te

nt
ia

l f

Distance r
 

s1

3

Figure 3.2.: Modified square-well potential according to [50] used in the PC-SAFT
equations of state [1].

The reference fluid in PC-SAFT is a hard-chain fluid, constituting the repulsive inter-
actions of the molecules. The segments of a chain interact with hard repulsion, their
diameter d is calculated temperature-dependent (see equation 3.7). For the potential
given in equation 3.18, the diameter is calculated as follows:

di(T ) = σi

[
1 − 0.12 exp

(
− 3ϵi

kT

)]
(3.19)
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The hard-chain term (equation 3.20) is formulated analog to the hard-chain term in
SAFT equations (equation 3.10).

ãhc = m̄ãhs −
∑

i

xi(1 − mi) ln [gii(dii)] (3.20)

In the notation of Gross et al. the tilde indicates reduced properties which are obtained
by normalizing a given variable with respect to the Boltzmann’s constant and the
temperature as illustrated in equation 3.21.

ã = a

kBT
(3.21)

The mean segment number m̄ of the mixture is:

m̄ =
∑

i

ximi (3.22)

The Helmholtz energy of the segment ãhs is calculated as follows:

ãhs = 1
ζ0

[
3ζ1ζ2

(1 − ζ3)
+ (ζ2)3

ζ3(1 − ζ3)2 +
(

(ζ2)3

(ζ3)2 − ζ0

)
ln(1 − ζ3)

]
(3.23)

The calculation of ζk is given in equation 3.12.

3.2.2. Dispersion contribution

Within the PC-SAFT framework, the second order perturbation theory of Barker and
Henderson [25][51] is applied to calculate the attractive part of the chain interactions, the
contribution to the residual Helmholtz energy due to dispersion ãdisp (equation 3.24). The
theory was originally derived for spherical segments and is extended to chain molecules
by adding up the individual segment-segment interactions between chain molecules.

ãdisp = −2πρI1(m̄, η)
∑

i

∑
j

xixjmimj

(
ϵij

kT

)
σ3

ij−

πρm̄

(
1 + Zhc + ρ

∂Zhc

∂ρ

)−1

I2(m̄, η)
∑

i

∑
j

xixjmimj

(
ϵij

kT

)2
σ3

ij

(3.24)

In order to solve the functions I1 (equation 3.25) and I2 (equation 3.26), universal model
constants (equations 3.27 and 3.28) are fitted to experimental pure component data of
the series of n-alkanes. The values of these constants are given in [1]. The dependence of
the coefficients ai(m̄) and bi(m̄) on the segment number (equations 3.27 and 3.28) has
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been derived by Liu and Hu [52].

I1(η, m̄) =
6∑

i=0
ai(m̄)ηi (3.25)

I2(η, m̄) =
6∑

i=0
bi(m̄)ηi (3.26)

ai(m̄) = a0i + m̄ − 1
m̄

a1i + m̄ − 1
m̄

m̄ − 2
m̄

a2i (3.27)

bi(m̄) = b0i + m̄ − 1
m̄

b1i + m̄ − 1
m̄

m̄ − 2
m̄

b2i (3.28)

3.2.3. Association contribution

In PC-SAFT, the association contribution is calculated exactly like the association
contribution introduced in chapter 3.1.3. The reduced Helmholtz energy due to association
in the fluid is given by:

ãassoc =
∑

i

xi

∑
Ai

(
ln XAi − XAi

2

)
+ Mi

2

 (3.29)

3.2.4. Quadrupole contribution

The contribution to the total Helmholtz energy due to quadrupole-quadrupole interactions
is defined in a later publication by Gross [49] as

ãquad = ã2

1 − ã3/ã2
(3.30)

Here, ã2 and ã3 are the second and third order perturbation terms to the reference fluid,
which are given as:

ã2 = −π
(3

4

)2
ρ
∑

i

∑
j

xixj
ϵii

kBT

ϵjj

kBT

σ5
iiσ

5
jj

σ7
ij

nQ,inQ,jQ
∗2

i Q
∗2

jJ2,ij (3.31)

ã3 = π

3

(3
4

)3
ρ
∑

i

∑
j

xixj

(
ϵii

kBT

)3/2 ( ϵjj

kBT

)3/2 σ
15/2
ii σ

15/2
jj

σ12
ij

×nQ,inQ,jQ
∗3
i Q∗3

j J3,ij + 4π2

3

(3
4

)3
ρ2∑

i

∑
j

∑
k

xixjxk

× ϵii

kBT

ϵjj

kBT

ϵkk

kBT

σ5
iiσ

5
jjσ

5
kk

σ3
ijσ

3
ikσ3

jk

nQ,inQ,jnQ,kQ∗2
i Q

∗2
jQ

∗2
kJ3,ijk

(3.32)
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nQ is the number of quadrupolar moments per molecules of component i. Q∗2
i is the

squared dimensionless quadrupolar moment, calculated from the squared quadrupolar
moment Q2

i as follows:

Q∗2
i = Q2

i

miϵiiσ5
ii

(3.33)

To solve the functions J2,ij, J3,ij and J3,ijk (equations 3.34, 3.35 and 3.36), the model
constants a0,n, b0,n, c0,n, a1,n, a2,n, b1,n, b2,n, c1,n and c2,n are adjusted to simulation data.

J2,ij =
4∑

n=0

(
an,ij + bn,ij

ϵij

kBT

)
ηn (3.34)

J3,ijk =
4∑

n=0
cn,ijkηn (3.35)

J3,ij = 0 (3.36)

an,ij = a0n + mij − 1
mij

a1n + mij − 1
mij

mij − 2
mij

a2n (3.37)

bn,ij = b0n + mij − 1
mij

b1n + mij − 1
mij

mij − 2
mij

b2n (3.38)

cn,ijk = c0n + mijk − 1
mijk

c1n + mijk − 1
mijk

mijk − 2
mijk

c2n (3.39)

The dependence of the constants on the chain length was derived by Hu et al.[53][52]. mij

and mijk are obtained from the chain length parameters with the following combining
rules:

mij = (mimj)1/2 (3.40)

mijk = (mimjmk)1/3 (3.41)

3.2.5. PC-SAFT parameters

The nomenclature of the parameters in the PC-SAFT equations remains the same as
given for SAFT in table 3.3. However, due to differences in the equations, the parameter
values for a given substance are not the same. Gross et al. [1][42] obtained the parameters
by fitting them to pure-component data for different fluids such as alkanes, alkenes,
aromatics, chlorinated hydrocarbons, ethers and esters. For systems which consist of two
or more components, the parameters of unlike segments are determined by applying the
Berthelot-Lorentz combining rules [54] (see equations 3.42 and 3.43). Unlike segments
are for example considered in the calculation of the dispersion energy in equation 3.24.

σij = 1
2(σi + σj) (3.42)
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ϵij = √
ϵiϵj(1 − kij) (3.43)

Here, a correction term is introduced in the form of the binary interaction parameter kij .
This correction term can be defined to be a constant for a specific mixture of component
i and j, temperature dependent or dependent on the concentration.

3.3. Heterosegmental PC-SAFT equation of state
In order to model polymers, Gross et al. extended the PC-SAFT model to describe
heterosegmental molecules [3]. While homopolymers are composed of a single repeating
monomer type, copolymers consist of two or more monomers arranged in repeat units
[55]. The sequence of these repeat units is random in many technical copolymers. In
comparison to the homosegmental approach, where molecules are considered to consist
of equal-sized identical spheres, the heterosegmental approach allows the division of
molecules into different segments, reflecting the different components of copolymers.
Figure 3.3 shows a copolymer molecule comprised of two different segments.
Each type of segments is characterized by a set of parameters (table 3.5) which are
the same as in the SAFT model. In contrast to SAFT and PC-SAFT however, these
parameters are not defined for a specific molecule but for one type of segments.
The order of the spheres within the polymer chain is not considered in the approach.

Figure 3.3.: Schematic representation of a copolymer in the heterosegmental PC-
SAFT approach of Gross et al. [3]. Spheres of different segments are
indicated by α and β.

The composition of different segments is reflected by introducing the segment fraction
ziα and the bonding fraction Biαiβ. The letter i indicates the component, the greek letter
subscripts the segment. Equation 3.44 shows the calculation of the segment fraction.

ziα = miα

mi

(3.44)

The calculation of the bonding fraction between segment α and β according to Gross et
al. [3] depends on the repeat unit composition and is given in table 3.4a. Haarmann et al.
[57][56] applied the heterosegmental model to polar and associating long-chain molecules,
e.g. methyl alkanoates and alcohols. These molecules consist of a functional head moiety
and n-alkylic residues, modeled as ”head” and ”tail” segments of the molecule (see figure
3.4). Due to the known sequence of segments in this approach, the bonding fraction is
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Biαiβ Biαiα Biβiβ BiT iT BiHiH BiT iH

ziβ < ziα 2
ziαmi

mi − 1
1 − Biαiβ − Biβiα 0

(a) ziβ > ziα 2
ziβmi

mi − 1
0 1 − Biαiβ − Biβiα (b) miT − 1

mi − 1
miH − 1
mi − 1

1
mi − 1

ziβ = ziα 1 0 0

Table 3.4.: (a) Calculation of the bonding fraction in PC-SAFT approach according
to Gross and Sadowski [3]. (b) Calculation of the bonding fraction in
PC-SAFT approach according to Haarmann et al. [56].

Figure 3.4.: Schematic representation of a molecule in the heterosegmental PC-SAFT
approach of Haarmann et al. [57][56]. A molecule with tail segment
and head segment.

calculated as given in table 3.4b. The subscripts T and H indicate the tail and head
segment and replace tha α and β subscripts of Gross et al. [3]. The head segment in
Haarmann’s model consists of what is known as the functional group in organic chemistry
plus the first adjacent carbon atom of the alkyl residue and its hydrogen atoms. A
pentanol molecule for example is divided into two segments. The head segment is the
hydroxyl functional group plus the first carbon atom and its hydrogen atoms (–CH2OH).
The alkyl residue for pentanol is a butyl residue (–C4H7). The structure of n-pentanol
in the heterosegmental approach is shown schematically in figure 3.5.
The chain, dispersion, association and quadrupole contributions to the total Helmholtz

Figure 3.5.: Schematic representation of the molecule n-pentanol in the heteroseg-
mental PC-SAFT approach.

energy of the fluid are calculated analog to the original PC-SAFT. The respective
equations in the notation of the heterosegmental PC-SAFT can be found in the appendix.

3.3.1. Heterosegmental PC-SAFT parameters

The model parameters used in the heterosegmental PC-SAFT equations of states remain
the same as in the previously discussed SAFT and the homosegmental PC-SAFT. However,
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the parameters have to be defined for each type of segments of a molecule. Gross et al.

Heterosegmental PC-SAFT parameter

miα segment number of segment-type α of component i

σiα segment diameter of segment-type α of component i

ϵiα segment energy of segment-type α of component i

κAiαBjβ
association volume between association site A on segment-type α of component i and
association site B on segment-type β of component j

ϵAiαBjβ
association energy between association site A on segment-type α of component i and
association site B on segment-type β of component j

Table 3.5.: The parameters used in the heterosegmental PC-SAFT equations of
states. In the notation of Haarmann et al. [57][56] α and β is replaced
by T and H (head and tail segment)

[3] apply the heterosegmental model to copolymers. For a copolymer consisting of joined
n-alkanes, each part of the molecule or segment type is assigned the parameters of the
corresponding pure component homosegmental n-alkane.
Haarmann et al. [57][56] modify the heterosegmental model to describe molecules
comprised of head and tail segments. The tail segment is the alkyl-residue of the molecule.
It is modeled with the parameters of the corresponding n-alkane. The parameters for
the head segment, e.g. the primary-alcohol domain (–CH2OH), the primary-amine
domain (–CH2NH2), and the carboxylic-acid domain (–COOH), are then fitted to the
vapor-pressure data and saturated liquid-density data of n-octanol, n-octyl amine, and
n-octanoic acid respectively.
The binary dispersive interaction parameter (see equation 3.43) can be applied for each
individual segment-segment interaction.
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4. Implementation of the
Heterosegmental PC-SAFT Model

The heterosegmental PC-SAFT equations are used to predict thermodynamic properties
of systems in thermodynamic eqilibrium. The equilibrium conditions employed in the
implementation of the model are the equality of chemical potential for each substance
in all phases and the equality of pressure in all phases. The present work focuses on
vapor-liquid equilibria for pure and binary systems.
The workflow of the implemented model is illustrated in figure 4.1 and 4.2. For pure
systems (figure 4.1), the method calculates the pressure-temperature relationship for the
substance in question, while for binary systems (figure 4.2), the pressure-composition
relationship is calculated at a specific temperature. In both methods, the volume is
constant.

4.1. Pure systems

For pure systems, the model conducts iterative calculations over a range of temperatures.
Prior to the iteration process, it is necessary to define the initial temperature and the
corresponding liquid density. An initial value for the vapor pressure is calculated with the
Wagner equation, then, the initial density of the vapor phase is calculated as a function
of the obtained initial pressure.
The initial values are passed to a solver to calculate the density, the compressibility factor,
the chemical potential and the pressure for the vapor and liquid phase at equilibrium
conditions. At equilibrium conditions the differences between the chemical potential
in the liquid and vapor phase and the pressure in the liquid and vapor phase reach a
minimum. The solver algorithm is based on the Powell’s method. The obtained values
are then used as initial values for the next temperature step. The calculation terminates,
when the set maximum iteration steps are reached or when the densities of the vapor and
liquid phase become indistinguishable, signifying that the critical point has been reached.

4.2. Binary sytems

For binary systems, the model iterates over the composition of the liquid phase at a
set temperature, commencing from a liquid mole fraction xliquid of the light volatile
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Set Tstart and initial value for ρliquid

START

Calculation of initial values for
ρvapor, pvapor

Calculation of ρliquid, ρvapor, Zliquid,
Zvapor, µliquid, µvapor, pliquid, pvapor

at
|µliquid − µvapor| = min.

AND
|pliquid − pvapor| = min.

number of iterations = max. number of iterations
OR

ρliquid = ρvapor

ρliquid, ρvapor,
pvapor

=
initial values for

next iteration step

T n = T n−1 + Tstep

EXIT

yes

no

Figure 4.1.: Flow diagram of the implemented PC-SAFT model for pure systems.
The calculation of thermodynamic properties is iterated over tempera-
ture.
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component of 0 and advancing towards 1. The initial values are the same as for pure
systems. For the first iteration step, where the percentage of the light volatile component
is zero, the method for pure systems is applied to calculate the vapor pressure, liquid and
vapor densities for the second component at the set temperature. The obtained values
serve as the initial values for the next iteration, where the liquid mole fraction of the
first component is incremented by the specified step size. In each step, the Powell solver
calculates the compressibility factor, the density and the pressure for both the vapor
and the liquid phase, the chemical potential for each component in the vapor and the
liquid phase, as well as the vapor mole fraction of the volatile component at equilibrium
conditions. The calculation is terminated when the maximum iteration steps are reached,
when the liquid mole fraction of the volatile component reaches 1, or when the system
reaches its critical point.

4.3. Average relative deviation (ARD)

The evaluation of the results was performed by calculating the percentage average
relative deviation (%ARD). ARD is a statistical measure commonly used to evaluate
the agreement between two sets of data, such as simulation results and experimental
measurements. The %ARD formula can be expressed mathematically as:

%ARD = 1
Ndata

Ndata∑
i=1

∣∣∣∣∣1 − f set1
d

f set2
d

∣∣∣∣∣ 100% (4.1)

where f set1
d and f set2

d represent the data points of the compared data sets (e.g. experi-
mental and model data), and Ndata is the total number of data points. The resulting
value of %ARD provides an indication of the average percentage deviation between the
two sets of data, with lower values indicating better agreement.
To discuss pure systems, the %ARD is calculated as the deviation between the experi-
mental vapor pressure and the modeled pressure at the same temperature. For binary
systems two different %ARDs are defined. %ARD∆p gives the deviation of experimental
and modeled vapor pressure at the same liquid mole fraction of the volatile component,
%ARD∆y is the deviation of the respective vapor mole fraction of the volatile component
at the same liquid composition.

4.4. Fitting of the binary correction parameters

The binary parameter kij is used to correct the dispersive cross-interaction between two
substances in the PC-SAFT equations (cf. equation 3.24 and A.3).
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Set T and initial value for ρ2,liquid

START

Calculation of p2,vapor, ρ2,liquid, ρ2,vapor

with approach for pure systems
at set T and x1,liquid = 0
as initial values for iteration

xn
1,liquid = xn−1

1,liquid + xstep

Calculation of ρliquid, ρvapor, x1,vapor,
Zliquid, Zvapor, pliquid, pvapor,

µ1,liquid, µ1,vapor, µ2,liquid, µ2,vapor

at
|µ1,liquid − µ1,vapor| = min.

AND
|µ2,liquid − µ2,vapor| = min.

AND
|pliquid − pvapor| = min.

number of iterations = max. number of iterations
OR

ρliquid = ρvapor

OR
x1,liquid = 1

ρliquid, ρvapor,
pvapor

=
initial values for

next iteration step

EXIT

yes

no

Figure 4.2.: Flow diagram of the implemented PC-SAFT model for binary systems
consisting of component 1 and component 2. The calculation of thermo-
dynamic properties is iterated over the liquid mole fraction of component
1 at a set temperature.
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In the present work the binary parameters between alkanes and the alkyl-residue of
alcohols were set to zero, due to their similarity. In accordance with Haarmann et al.
[56] the binary parameter between the head moiety of alcohols and alkanes was set to
zero to keep the predictive ability of the model.
To model binary alcohol - CO2 systems with the heterosegmental PC-SAFT approach
two binary parameters are defined which correct the alkyl residue - CO2 interaction and
the (–CH2OH) - CO2 interaction as illustrated in figure 4.3. The alkyl residue - CO2

Figure 4.3.: Schematic illustration of the binary parameters used to correct the alkyl
residue CO2 interaction and the (–CH2OH)-CO2 interaction between
the head segment of the alcohol molecule and CO2 in the heterosegmen-
tal PC-SAFT approach.

parameters were assumed to be consistent with the respective homosegmental alkane -
CO2 parameters. Perez et al. [58] established that the values of the binary parameter for
the n-alkane - CO2 interaction fluctuate around a mean value, independent of the number
of C-atoms and the temperature. However, the authors did not consider quadrupole
interactions in their simulation, hence the tabulated binary parameters can not be used
to correct the interactions in simulations considering quadrupole moments.
To obtain the alkane - CO2 binary parameters pertinent to this thesis, the binary
parameters of CO2 - propane, CO2 - heptane and CO2 - dodecane systems were fitted
to experimental data. The binary parameters and the computed mean value are given
in table 4.1. The alkane - CO2 interaction parameter is assumed to be a constant and
independent of the temperature and the number of C-atoms.
Then, the binary parameter for the (–CH2OH) - CO2 interaction was adjusted to the
CO2 - octanol system at different temperatures, while the alkyl residue - CO2 binary
parameter was set to kij = 0.04 (see table 4.1). This is in accordance with the approach
of Haarmann et al.[57][56], who obtained the PC-SAFT parameters of the head segments
by fitting them to experimental data of n-octanol, n-octyl amine, and n-octanoic acid. As
shown in figure 4.4, for higher pressures and CO2-concentrations the curve shows great
deviation from the experimental results. For this reason, the binary parameters were
fitted to experimental data points of the bubble point curve up to 40 % of the maximum
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Binary system Temperature kij

CO2 - Propane 277.59 K 0.04
CO2 - Heptane 310.64 K 0.03
CO2 - Dodecane 417.91 K 0.05

Mean value - 0.04

Table 4.1.: Binary parameters fitted for the systems CO2 - propane, CO2 - heptane
and CO2 - dodecane at given T . The mean value is used as a constant
to model the binary alkyl residue - CO2 parameter in alcohol - CO2
systems.

experimental pressure of the data. The fitting process was performed using the ARD
method, minimizing the error between the modeled vapor pressure and the experimental
vapor pressure at the same liquid composition. The binary parameter for the (–CH2OH)
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Figure 4.4.: The model results for the CO2 - octanol system at T = 403.15 K are
plotted against experimental data [59] (bubble point curve: blue squares;
dew curve: red triangles). A dashed line indicates 40% of the maximum
pressure of the experimental data. Only data points below this line
were considered in the fitting process of the binary (–CH2OH) - CO2
parameter.

- CO2 interaction as a function of the temperature is illustrated in figure 4.5. A line
of best fit shows the binary parameter as a function of temperature is approximately
linear. The obtained temperature-dependent binary parameter was then used to model
the alcohol - CO2 systems shown in chapter 5.
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Figure 4.5.: The binary parameter for the (–CH2OH) - CO2 interaction as a function
of temperature. Fitted for CO2 - octanol systems below 40% of the
maximum experimental pressure. The binary parameter between the
alkyl residue and CO2 is kij=0.04.
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5. Results and Discussion

The implementation of the model was validated by applying it to the same systems
modeled by Haarmann et al. [56], who implemented the heterosegmental PC-SAFT
approach for associating systems. The model was first assessed for pure and binary
associating systems and then applied to predict the behavior of three different binary
butane - alcohol systems at two different temperatures.
Then, the model was expanded to incorporate a quadrupolar interaction term based
on Gross [49]. The term was modified to be consistent with the heterosegmental PC-
SAFT approach and applied in the modeling of binary CO2 - alcohol systems. The
simulation results were compared to experimental data in terms of their average relative
deviation. Additionally, the results of the heterosegmental approach were compared to
the homosegmental approach to assess if the inclusion of a second binary parameter can
enhance the model’s ability to accurately predict the behavior of binary CO2 - alcohol
systems.

5.1. Validation of the model implementation
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Figure 5.1.: Logarithm of pure-component vapor pressure as a function of the inverse
temperature for n-butanol, n-octanol and n-dodecanol. Solid lines show
the model results, symbols the experimental data. References are given
in table 5.1.
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System Ndata %ARD references

n-Butanol 5 5.21 [60][61][62][63][64]
n-Octanol 5 7.37 [65][66][67][68][69]
n-Dodecanol 5 11.64 [70][71][72][73][74]

Table 5.1.: %ARD values for the model predictions for pure systems (figure 5.1).
References for experimental data points are given in ascending order of
T , Ndata indicates the number of data points.

System Temperature Ndata %ARD∆p %ARD∆y ref

(a) Butane and Butanol 364.5 K 26 4.13 0.95 [75]
(b) Undecane and Butanol 373.12 K 15 4.8 1.38 [76]

Table 5.2.: %ARD values for the heterosegmental PC-SAFT predictions for the
binary systems butane - butanol and butanol - undecane shown in figure
5.2. Ndata indicates the number of data points.

Figure 5.1 shows the vapor pressure of three n-alcohols with differing number of
C-atoms dependent on the temperature. The heterosegmental PC-SAFT predictions are
plotted parallel to experimental data given in the literature. Experimental data indicates
that an increase in chain length leads to a decrease in vapor pressure, and that the
vapor pressure exhibits a logarithmic relationship with the temperature. These empirical
observations are consistent with the predictions of the model. Moreover, the %ARD
values given in table 5.1 show a good agreement between model results and experimental
data. Minor disparities in the %ARD values compared to Haarmann’s values [56] can
be attributed to the use of different experimental data and temperature ranges. In this
work, alcohols are modeled by applying a 2B association scheme (see Table 3.1). The
PC-SAFT parameters for the alkyl residue and the (–CH2OH) head domain are taken
from [56].
To validate the implementation of the heterosegmental PC-SAFT approach for binary
systems, the model results for butanol-butane and butanol-undecane mixtures are com-
pared with experimental data as shown in figure 5.2. The results are given in the form of
the pressure of the mixture as a function of the composition. The low %ARDs presented
in table 5.2 indicate very good consistence between model results and experimental data
for both systems. The model accurately predicts the vapor pressure of the mixture and
the composition of the vapor phase.
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(a) Butane and Butanol at 364.5 K
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(b) Undecane and Butanol at 373.12 K

Figure 5.2.: Comparison of the heterosegmental PC-SAFT predictions for binary
alkane-alcohol systems with experimental data (bubble point curve:
blue squares; dew curve: red triangles)

5.2. Binary alkane - alcohol systems

As Haarmann et al. [56] already demonstrated that the heterosegmental PC-SAFT
model is able to predict the thermodynamic behavior of alkane - alcohol systems, in the
following, the model is applied to predict the pressure and mixture behavior of binary
butane - alcohol systems and butanol - alkane systems. Phase diagrams provide valuable
information for determining the appropriate operating conditions of technical processes
and possible applications of the considered systems. In absorption processes for example,
the solubility, as indicated by the maximum concentration achievable in a homogeneous
solution, reflects the extent to which a substance in the gas phase can be effectively
removed through absorption into the liquid phase [77].
Figure 5.3 shows the predicted pressure-composition phase diagrams for butane and

three different alcohols at 350 K and at 400 K. The shape of the bubble point curve
indicates positive deviation from Raoult’s law for alcohols with a lower number of C-atoms
(figure 5.3a and 5.3b), with the vapor pressure of the mixture being higher than expected
for an ideal solution. This suggests that the intermolecular forces between butane and
ethanol are weaker compared to the forces between butane - butane and ethanol - ethanol
respectively. Consequently, the molecules of the components in the solution have a
higher tendency to escape, resulting in each component having a partial vapor pressure
greater than expected. For alcohols with higher number of C-atoms (figure 5.3e and
5.3f) this deviation becomes smaller and the behavior of the mixture approaches ideal
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(a) Butane and Ethanol at 350 K
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(b) Butane and Ethanol at 400 K

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Pr
es

su
re

 [M
Pa

]

mole fraction Butane [-]

(c) Butane and Hexanol at 350 K
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(d) Butane and Hexanol at 400 K
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(e) Butane and Dodecanol at 350 K
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(f) Butane and Dodecanol at 400 K

Figure 5.3.: Heterosegmental PC-SAFT predictions for binary butane and alcohol
systems at two different temperatures. (dew curve: red dashed line;
bubble point curve: blue line)
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behavior. As temperature increases, the miscibility gap or difference of liquid and vapor
composition decreases in all systems, although this trend becomes less apparent with
increasing number of C-atoms in the alcohol.
The almost vertical dew curve in butane - dodecanol systems (figure 5.3e and 5.3f),
and the sudden transition from zero to approximately one, can be attributed to the
significant difference in volatility between butane and dodecanol. At low pressures the
two-phase region occupies a vast portion of the range, indicating immiscibility between
the substances. The vapor phase consists mostly of the more volatile component butane.
This is consistent with experimental data in a similar temperature range (e.g. [78]),
indicating the predictive power of the heterosegmental PC-SAFT model for the miscibility
of higher chain systems. Figure 5.4 illustrates the phase diagrams of butanol and three
different alkanes at 350 K and 400 K, representing the pressure-composition relationship.
The x-axis represents the mole fraction of the more volatile component, which is the
alkane for the butane - butanol and hexane - butanol systems, while for dodecane -
butanol mixtures, dodecane is the component with the lower boiling point, thus the mole
fraction of butanol is plotted on the x-axis.
All three systems show positive deviations from Raoult’s law. In the butanol - dodecane
systems (figure 5.4 and figure 5.4f) this deviation is more pronounced at lower butanol-
concentrations, the shape of the bubble point curve approximates ideal behavior at
butanol-concentrations close to one.
As the temperature increases, the miscibility gap reduces in size for all three systems. The
hexane - butanol system (5.4c and figure 5.4d) with an alkane containing an intermediate
number of carbon atoms exhibits the smallest miscibility gap.

5.3. Binary alcohol - CO2 systems

Figure 5.5 shows the model results of the heterosegmental PC-SAFT approach for three
different CO2 - alcohol systems at a lower and a higher temperature alongside the
corresponding experimental data. In addition, the homosegmental PC-SAFT results for
the CO2 - ethanol system, obtained using binary interaction parameters listed by [4], are
also presented. The comparison indicates that the model results are in good agreement
with the experimental data at lower pressures, but show significant overprediction of
pressure closer to the critical point. The extent of overprediction diminishes for all
systems at higher temperatures. It is important to note that model results based on
equations of states often exhibit significant deviations when approaching the critical
point. This can be attributed to the sharp increase in density fluctuations near the
critical point [79].
The %ARD values for the investigated systems are given in table 5.3. The %ARD∆y of
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(a) Butane and Butanol at 350 K
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(b) Butane and Butanol at 400 K
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(c) Hexane and Butanol at 350 K
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(d) Hexane and Butanol at 400 K

0.0 0.2 0.4 0.6 0.8 1.0

0.000

0.005

0.010

0.015

0.020

Pr
es

su
re

 [M
Pa

] 

mole fraction Butanol [-]

(e) Butanol and Dodecane at 350 K
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Figure 5.4.: Heterosegmental PC-SAFT predictions for binary butanol and alkane
systems at two different temperatures. (dew curve: red dashed line;
bubble point curve: blue line)
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CO2 - hexanol systems are notably larger compared to the other systems, however this
can be attributed to differences in the distribution of experimental data. In particular,
the experimental data for CO2 - hexanol systems comprise a larger number of data points
close to the critical point than the other systems, leading to a more pronounced deviation
of modeled results and experimental data. The same argument holds true for the higher
%ARD∆y of the CO2 - dodecanol system at T = 392.2 K.
The experimental data indicates that the miscibility gap of CO2 - ethanol systems
decreases with increasing temperature, while this behavior is not observed for CO2 -
hexanol and CO2 - dodecanol systems. Since the binary interaction parameter was fitted
based on the CO2 - octanol system, the model is not able to replicate this deviating
behavior of the CO2 - ethanol systems.
The comparison between the heterosegmental and homosegmental approaches for CO2

- ethanol systems shows that the heterosegmental approach provides an improved fit
to the experimental data in comparison to the homosegmental approach. Nevertheless,
for the lower temperature (T = 353.15 K), the homosegmental approach appears to
provide a better fit in the region closer to the critical point. However it is crucial to
acknowledge that discrepancies between the models also stem from variations in the
methodology employed to fit the binary parameters. Ramirez et al. [4] optimized the
binary interaction parameters for the entire pressure range using vapor-liquid equilibrium
data for alcohol - CO2 systems from methanol to n-nonanol. In the present work the
poor predictive ability of the PC-SAFT model at higher pressures was anticipated and
only data points below 40% of the maximum experimental pressure were considered in
the fitting process (cf. chapter 4.4.). Because of the distinct fitting methodologies, it is
anticipated that the homosegmental approach utilizing the binary parameters provided
in [4] would exhibit slightly better results in the critical region. On the other hand, the
heterosegmental approach with binary parameters fitted as in this study is expected to
exhibit better conformity with the experimental data at lower pressures.
The remarkable advantage of the heterosegmental approach however is its predictive
capability. A single temperature-dependent binary parameter was fitted for the CO2 -
octanol system and then utilized for all the CO2 - alcohol systems shown in figure 5.5.
In contrast, for the homosegmental approach a temperature-dependent binary parameter
has to be fitted for each individual CO2 - alcohol system [4].

In this thesis, it was demonstrated that while neither the heterosegmental nor the
homosegmental PC-SAFT model can accurately model the vapor-liquid equilibria of CO2

- alcohol systems over the entire temperature and pressure range considered, fitting a
single binary parameter for all systems using the heterosegmental approach resulted in
comparable or even better results than the homosegmental approach, which requires
fitting of multiple parameters. A possibility to improve the accuracy of the prediction
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System T Ndata %ARD∆p %ARD∆y %ARD∆p %ARD∆y ref

CO2 + [K] - hetero hetero homo homo

(a) Ethanol 353.15 12 2.98 5.36 4.14 15.01 [82]
(b) Ethanol 391.96 9 8.85 5.91 6.46 30.27 [83]

(c) Hexanol 353.15 13 0.39 50.67 - - [84]
(d) Hexanol 397.78 11 1.13 54.54 - - [84]

(e) Dodecanol 353.15 9 0.18 2.65 - - [85]
(f) Dodecanol 393.2 6 0.85 10.63 - - [86]

Table 5.3.: %ARD values for the heterosegmental PC-SAFT predictions for the
binary systems CO2 and alcohols shown in figure 5.5. Ndata indicates
the number of data points.

would be to explore concentration-correlations of the binary interaction parameters.
This was investigated by Villablanca-Ahues et al. [80] for n-Butanol - CO2 systems for
the homosegmental PC-SAFT, following the approach of Niño-Amézquita and Enders
[81], who introduced a concentration-dependent binary parameter for methane - water
systems. In this thesis, the incorporation of a second binary interaction parameter, as
suggested by Ramirez et al. [4], did not yield satisfactory results in terms of reproducing
the thermodynamic behavior of CO2 - alcohol systems, opposed to the homosegmental
approach.

5.4. Deviation in critical region in alkane - butanol
systems

In their study, Haarmann et al. [56] showed that the PC-SAFT model accurately predicts
the behavior of mixtures containing n-butanol and alkanes ranging from four to sixteen
carbon atoms, as well as n-decanol with alkanes ranging from four to ten carbon atoms,
with good agreement to experimental data. However, during the course of this thesis, it
was observed that the ethane - butanol systems exhibit a similar pattern of deviation from
experimental data as the CO2 - alcohol systems discussed in Chapter 5.3. In figure 5.6a
the comparison between the model results and experimental data for the ethane - butanol
system is presented. Exactly like observed in the CO2 - alcohol systems, the results
show good agreement at lower pressure and butanol-concentrations, and overpredict the
pressure close to the critical point of the mixture significantly. Similar trends can be
observed in propane - butanol systems (figure 5.6b), although to a lesser extent. This
deviation pattern is not present in butane - butanol systems, as shown in figure 5.2a.
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For both the ethane - butanol and the propane - butanol systems, the binary parameters
have been set to zero, following the approach adopted by Haarmann et al. [56] for alkane
- alcohol systems.
These findings suggest that the observed deviation at higher pressures is not specific
to systems with quadrupolar interactions. As discussed in chapter 5.3, the predictive
capabilities of models generally decrease in the critical region of fluids due to their
complex behavior [79]. This deviation is not observed in mixtures of butanol with
alkanes containing higher numbers of carbon atoms, (see figure 5.4), although it is
noteworthy, that butane, hexane and dodecane are below their respective critical points
at the temperature investigated in this thesis, whereas ethane, propane, and CO2 are
above their critical points. However, this difference alone cannot explain the magnitude
of deviations in the critical region, as the deviation is much greater in the ethane -
butanol system compared to the propane - butanol system. Further investigations will
be necessary to uncover the underlying reasons for this behavior.
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(c) CO2 and Hexanol at 353.15 K
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(d) CO2 and Hexanol at 397.78 K
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(e) CO2 and Dodecanol at 353.15 K
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(f) CO2 and Dodecanol at 393.2 K

Figure 5.5.: Comparison of the heterosegmental PC-SAFT predictions (solid line)
for binary CO2 - alcohol systems with experimental data (bubble point
curve: blue squares; dew curve: red triangles. ref: see table 5.3) and
the homosegmental PC-SAFT predictions (dashed line)
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(b) Propane and Butanol at 390.8 K

Figure 5.6.: Comparison of the heterosegmental PC-SAFT predictions for (a) ethane
- butanol [87] and (b) propane - butanol [88] systems with experimental
data (bubble point curve: blue squares; dew curve: red triangles). There
is no experimental data available for the dew curve of the propane-
butanol system.
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6. Conclusion

The objective of this thesis was to implement the heterosegmental Perturbed Chain
Statistical Associating Fluid Theory (PC-SAFT) equation of state. The implementation
was validated by modeling the same systems modeled by Haarmann et al. [56] utilizing
the heterosegmental approach. The comparison of the modeling results with experimental
phase equilibria data available in the literature showed good agreement for pure n-alcohol
systems as well as binary alcohol - alkane mixtures.
Subsequently, the model was applied to predict the behavior of butane - ethanol, butane
- hexanol and butane - dodecanol systems at two different temperatures. The results
indicated that the miscibility gap expands with an increase in the number of carbon
atoms in the alcohol and diminishes with rising temperature. Moreover, as the number
of C-atoms increases, the mixture approaches the characteristics of an ideal solution.
Moreover, the model was employed to simulate the binary systems of butane - butanol,
hexane - butanol, and butanol - dodecane. The findings indicate that the miscibility gap
decreases from butane to hexane, but expands again in the butanol - dodecane mixture.
The size of the gap diminishes with increasing temperature for all systems.
For the purpose of modeling the thermodynamic behavior of n-alcohol - CO2 systems,
first the binary interaction parameters were obtained. The parameter correcting the alkyl
residue - CO2 interaction was assumed to be a constant independent of temperature and
the number of C-atoms, consistent with previous research [58]. The binary parameter for
the (–CH2OH) - CO2 interaction was adjusted to fit the vapor-pressure of CO2 - octanol
across a broad temperature range. A linear correlation with temperature was established
for the parameter, which was assumed to be independent of the number of C-atoms of
the alkyl residue of the alcohol molecule.
The evaluation of the results for CO2 - alcohol systems obtained with the heterosegmental
PC-SAFT model revealed its limited accuracy in modeling the complete pressure range
of the studied systems. At lower pressure, the modeling results showed good agreement
between calculation and experiment, while at higher pressures close to the critical region
of the mixture, significant deviations were observed. These findings coincide with the
results of the homosegmental approach as demonstrated by Ramirez et al. [4]. Although
neither approach can precisely predict the vapor-liquid equilibria of CO2 - alcohol systems
across the entire temperature and pressure range investigated, fitting a single binary
parameter for all systems using the heterosegmental approach resulted in comparable or
superior outcomes relative to the homosegmental approach, which requires the fitting of
multiple parameters.
To enable a quantitative comparison of the results obtained from both the homosegmental



52 6. Conclusion

and heterosegmental approaches, a consistent approach to fitting the binary interaction
parameters should be implemented. Moreover, it is necessary to investigate a range of
systems encompassing alcohols with various chain lengths across a wide temperature
range.
While Haarmann et al. [56] reported good agreement between the heterosegmental
PC-SAFT model results and experimental data for various n-alcohol - alkane systems,
this thesis observed similar behavior to the CO2 - alcohol systems in the modeling results
of ethane - butanol and propane - butanol systems. These systems also exhibit an
overprediction of pressure near the critical region, although the effect is more pronounced
in the ethane - butanol systems. These findings suggest that this type of deviation is not
solely attributed to the presence of quadrupolar interactions in the mixtures. Further
research is needed to investigate the underlying reasons for these deviations.
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η packing fraction, η = ζ3
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σ segment diameter, Å
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A. Heterosegmental PC-SAFT
equations

A.1. Chain contribution

ãhs = 1
ζ0

[
3ζ1ζ2

(1 − ζ3)
+ (ζ2)3

ζ3(1 − ζ3)2 +
(

(ζ2)3
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)
ln(1 − ζ3)

]
(A.1)

ãhc = m̄ãhs −
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i

xi(1 − mi)
∑

α

∑
β

Biαiβ ln [giαiβ(diαiβ)] (A.2)

It should be noted that the last summations of the equation as it is given here can only
be applied in combination with the bonding fractions defined by Gross et al. (Table 3.4).
In Haarmann’s modification of the equation [57][56], mixed indices are considered only
once.

A.2. Dispersion contribution

ãdisp = −2πρI1(m̄, η)
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(A.3)

A.3. Association contribution
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(A.5)
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A.4. Quadrupole contribution

ãquad = ã2

1 − ã3/ã2
(A.8)

ã2 = −π
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Q∗2
iα = Q2

iα

miαϵiαiβσ5
iαiβ

(A.11)
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kBT

)
ηn (A.12)

J3,iαjβkγ =
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n=0
cn,iαjβkγηn (A.13)

J3,iαjβ = 0 (A.14)

an,iαjβ = a0n + miαjβ − 1
miαjβ
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miαjβ

miαjβ − 2
miαjβ

a2n (A.15)
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miαjβ = (miαmjβ)1/2 (A.18)

miαjβkγ = (miαmjβmkγ)1/3 (A.19)
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