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Kurzfassung  

Das sich entwickelnde digitale Ölfeld eröffnet viele neue Möglichkeiten für neue auf Daten gestützte 

Methoden zur Pumpenüberwachung. Elektrische Tauchkreiselradpumpen sind mit Untertagesensoren 

ausgestattet und liefern Daten welche für automatische Fehlererkennung verwendet werden können. 

Die vorgestellte Methode der automatischen Dateninterpretation mittels neuronaler Netze kann die 

Pumpenüberwachung erleichtern und ermöglicht effektivere Datenintegration. 

In dieser Arbeit wird eine Methode zur Datenanalyse und Fehlerklassifizierung beruhend auf dem 

Konzept der Heuristik vorgestellt. Dabei werden neuronale Netze verwendet um geeignete 

Dateninterpretationsmodelle zu entwickeln. 

Die extrahierten Datensätze wurden analysiert und gefiltert um verschiedenste Probleme  bezüglich 

Datenkonsistenz während der Messung und des Speicherns in der Datenbank zu beheben. Dabei 

wurden messbedingte Ausreißer entfernt, Zeitstempel bearbeitet, logische Filter implementiert und ein 

Filter zur Bearbeitung fehlender Werte angewandt. 

Die Untertagedaten wurden mit Obertagedaten kombiniert um Bruttoproduktionsraten während 

messungsfreier Zeiten zu modellieren. Die Genauigkeit bei der Berechnung dieser Raten mittels 

neuronaler Netze beträgt 3 - 6 m3/d. Es wurden verschieden manipulierte Daten verwendet um den 

Effekt des Beobachters der während der Messung der Produktionsraten via Separator auftritt zu 

eliminieren.  

Zur Fehlerklassifizierung wurden neben echten Daten auch mittels Sensordaten künstlich erzeugte 

Datensätze verwendet. Die Evaluierung der mittels künstlich erzeugter Daten trainierten neuronalen 

Netze wurde mit echten Daten von Pumpenausfällen durchgeführt. Die verschiedenen Datensätze der 

Produktionsstätten wurden separat und in Kombination zum Trainieren der neuronalen Netze verwendet 

um eine Sensitivitätsanalyse durchzuführen und deren Leistung zu vergleichen. Die automatische 

Fehlerklassifizierung mittels Daten von Tauchkreiselradpumpen ist mit einer Genauigkeit von über 80% 

möglich. Abschließend wird ein Ausblick für zukünftige Forschungsarbeiten im Bereich der 

Fehlerklassifizierung und Früherkennung diskutiert.  
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Abstract  

The evolving digital oilfield offers new possibilities for data based approaches to pump 

monitoring. Electrical submersible pumps equipped with downhole sensors provide data which 

can be used for automatic malfunction detection. The proposed method of intelligent 

interpretation facilitates pump monitoring and integrates data more effectively. 

In this thesis, an approach based on data driven model builders was chosen to create neural 

networks which are capable of classifying ESP conditions and modelling operating parameters.  

In order to obtain a clean data set for machine learning, data cleansing including different types 

of filtering operations was applied. Techniques included: outlier removal, time stamp handling, 

missing values treatment and plausibility checks.  

The downhole sensor data in combination with surface data was used to model gross 

production rates during measurement gaps with an accuracy of 3 - 6 m3/d. Different ways of 

data manipulation and data arrangements are presented to overcome difficulties related to the 

observer effect when using surface separator measurements for production rate determination.  

Sensor data was also applied to generate realistic artificial data sets for failure classification. 

Real life examples of pump failures were then used to evaluate the capability of feed forward 

neural networks for failure classification. Individual and combinatorial training data sets were 

investigated to analyze sensitivities. Classification of pump failure with artificial neural networks 

can be carried out with an accuracy of greater than 80%. To conclude, a brief outlook for future 

research regarding failure classification and prediction is given. 

 

  



 
      

 

v 

List of Tables 

Table 1 - Typical failures of centrifugal pumps [10] ...............................................................39 

Table 2 - Typical failures of protectors [10] ...........................................................................44 

Table 3 - Measured Parameters ...........................................................................................45 

Table 4 - Typical failures of ESP cables [10] ........................................................................50 

Table 5 - Example of data set partitioning ............................................................................59 

Table 6 - Available failure events for machine learning .........................................................68 

Table 7 - Data statistics (reduced parameters) of a single well for QC ..................................69 

Table 8 - Features and field of application ............................................................................72 

Table 9 - Task list and training arrangements .......................................................................74 

Table 10 - Features for model building for pump wear and shaft break (Task 3) ..................75 

Table 11 - Confusion matrix of well 3 (Task 1) ......................................................................78 

Table 12 - Confusion matrix of the built predictive model for classifying pump wear and shaft 

break (Task 3) ...............................................................................................................81 

Table 13 - Comparison of the confusion matrices of the leave-one-out approach for real and 

artificial data of well 5 for testing....................................................................................83 

Table 14 - Overall correct classification rates of different cross validation families for training 

arrangement “all” ...........................................................................................................85 

Table 15 - Training and testing results of task 1 - Training arrangement “single” and “all” ....95 

Table 16 - Training and testing results of task 1 - Training arrangement “leave-one-out” and 

“all” ................................................................................................................................95 

Table 17 - Training and testing results of task 2 - Training arrangement “single” and “all” ....96 

Table 18 - Training and testing results of task 2 - Training arrangement “leave-one-out” and 

“all” ................................................................................................................................96 

Table 19 - Training and testing results of task 4 - Training arrangement “single” and “all” ....96 

Table 20 - Training and testing results of task 4 - Training arrangement “leave-one-out” and 

“all” ................................................................................................................................97 

Table 21 - Training and testing results of task 5 - analysis on cross validation, multi-linear 

regression models, training arrangement “all” ................................................................97 

Table 22 - Training and testing results of task 5 - multi-linear regression models, training 

arrangement “single” and “all” .......................................................................................97 

Table 23 - Training and testing results of task 5 - multi-linear regression models, training 

arrangement “leave-one-out” and “all” ...........................................................................98 



 
      

 

vi 

Table 24 - Training and testing results of task 5 - multi-linear regression models, training 

arrangement “leave-two-out” and “all” ...........................................................................98 

 

 

  



 
      

 

vii 

List of Figures 

Figure 1 - 16th Torton horizon on the Vienna Basin depth structure map [3], [4] ....................15 

Figure 2 - Production and injection history of the 16th TH [6] .................................................16 

Figure 3 - Life cycle cost analysis of ESP and SRP systems [6] ...........................................18 

Figure 4 - Geological cross section along a planned and drilled well trajectory [5] ................18 

Figure 5 - Injection profile of the 16th TH [5] ..........................................................................19 

Figure 6 - Production profile of the 16th TH [5] ......................................................................20 

Figure 7 - Cumulative captured variance over number of principal components [7] ..............23 

Figure 8 - Scatter plot of principal components [7] ................................................................24 

Figure 9 - ESP analytics workflow [7] ...................................................................................24 

Figure 10 - Ammeter card examples [9] ................................................................................25 

Figure 11 - Feed forward neural network ..............................................................................26 

Figure 12 - Pressure build up schematics [9] ........................................................................27 

Figure 13 - Comparison of different artificial lift systems [10] ................................................30 

Figure 14 - Pump performance curves [10] ...........................................................................31 

Figure 15 - Power losses in a centrifugal pump stage [10] ....................................................32 

Figure 16 - Pump curves at different speeds [10] .................................................................33 

Figure 17 - Overview of an ESP system [10] ........................................................................34 

Figure 18 - Single ESP stage [10] ........................................................................................35 

Figure 19 - Nomenclature of ESP impeller parts [10] ............................................................36 

Figure 20 - ESP operation ranges [10] .................................................................................37 

Figure 21 - Radial (left) and mixed flow impeller (right) [10] ..................................................38 

Figure 22 - Comparison of impeller types [11] ......................................................................39 

Figure 23 - Torque generation and slip [10] ..........................................................................40 

Figure 24 - Tandem motor configuration [10] ........................................................................41 

Figure 25 - Motor and pump power curves [10] ....................................................................42 

Figure 26 - Labyrinth type (left) and bag type chamber (right) [10] .......................................43 

Figure 27 - Shaft seal [10] ....................................................................................................44 

Figure 28 - Separator designs [11] .......................................................................................46 

Figure 29 - Gas handling via stage recirculation [10] ............................................................47 

Figure 30 - Gas handling performance of different ESP systems [10] ...................................48 



 
      

 

viii 

Figure 31 - Flat ESP cable [10] .............................................................................................49 

Figure 32 - Surface facilities arrangement [10] .....................................................................50 

Figure 33 - ESP design process [12] ....................................................................................53 

Figure 34 - LOWIS user interface .........................................................................................55 

Figure 35 - Troubleshooting aid ............................................................................................56 

Figure 36 - Broken Zirconium bearing ..................................................................................56 

Figure 37 - Structure of a biological neuron [13] ...................................................................57 

Figure 38 - Principle of an artificial neuron [14] .....................................................................57 

Figure 39 - Multi-layer perceptron [14] ..................................................................................58 

Figure 40 - Supervised learning [14] .....................................................................................61 

Figure 41 - Learning rate and weight adjustment ..................................................................62 

Figure 42 - Cluster learning ..................................................................................................62 

Figure 43 - Training and validation error [14] ........................................................................63 

Figure 44 - Evaluation of the network size by validation .......................................................64 

Figure 45 - Sequential forward selection ..............................................................................65 

Figure 46 - Signal schematics and data flow ........................................................................68 

Figure 47 - Cross-plot matrix of different parameters from a single well ...............................69 

Figure 48 - Example for outlier removal ................................................................................70 

Figure 49 - Example for plausibility check.............................................................................71 

Figure 50 - Sequential forward selection for failure classification ..........................................73 

Figure 51 - Data visualization of an artificial data set including a combination of pump wear 

and shaft break .............................................................................................................76 

Figure 52 – Periodic shaft break data of well 3 including data labels ....................................77 

Figure 53 - Model evaluation of artificial data set based classifiers for pump wear: Task 1, 

Training arrangement “single” & “all together” ...............................................................78 

Figure 54 - Model evaluation of artificial data set based classifiers for pump wear: Task 1, 

Training arrangement “leave one out” & “all together” ...................................................79 

Figure 55 - Model evaluation of artificial data set based classifiers for shaft break: Task 2, 

Training arrangement “single” & “all together” ...............................................................79 

Figure 56 - Model evaluation of artificial data set based classifiers for shaft break: Task 2, 

Training arrangement “leave one out” & “all together” ...................................................80 

Figure 57 - Probability curves of the built predictive model for classifying pump wear and 

shaft break (Task 3) ......................................................................................................81 



 
      

 

ix 

Figure 58 - Model evaluation of artificial and real data based classifiers for pump wear: Task 

4, Training arrangement “single” & “all together” ...........................................................82 

Figure 59 - Model evaluation of artificial and real data based classifiers for pump wear: Task 

4, Training arrangement “leave one out” & “all together” ...............................................82 

Figure 60 - Result of the sequential forward selection for task 5 ...........................................84 

Figure 61 - Comparison of CCR of the test set of different cross validation families for training 

arrangement "all" ...........................................................................................................85 

Figure 62 - Comparison of the single well based classifiers ..................................................86 

Figure 63 - Comparison of models built by the leave-one-out arrangement ..........................86 

Figure 64 - Data and probability curves of the model "Left out well 3" (Task 5).....................87 

Figure 65 - Comparison of models built by the leave-two-out arrangement ..........................88 

Figure 66 - Sequential forward selection for production rate modeling ..................................89 

Figure 67 - Production rate modelling with exact separator data allocation...........................90 

Figure 68 - Production rate modelling with partial separator data shift ..................................90 

Figure 69 - Production rate modelling with total separator data shift .....................................91 

 

  



 
      

 

x 

Abbreviations 

AI Artificial intelligence 
ANN Artificial neural network 
CBT Bottom hole temperature 
CCP Completely connected perceptron 
CCR Correct classification rate 
CSP Casing pressure 
FF Feed-forward 
FRE Frequency 
GOR Gas oil ratio 
ESP Electrical submersible pump 
LWD Logging while drilling 
MOC Motor current 
MOP Motor power 
MWT Motor winding temperature 
NN Neural network 
PDP Pump discharge pressure 
PIP Pump intake pressure 
RT Real time 
SCADA Supervisory control and data acquisition 
SFS Sequential forward selection 
SRP Sucker rod pump 
TBP Tubing pressure 
TH Torton horizon 
VIB Vibration 
VSD Variable speed drive 
WC Water cut 

 
 
 
 



 
      

 

xi 

Table of content 

Page 

1 INTRODUCTION ................................................................................................. 13 

2 PROBLEM DESCRIPTION ................................................................................. 14 

2.1 Scope ............................................................................................................ 14 

2.2 Problem Solution........................................................................................... 14 

3 LITERATURE REVIEW ...................................................................................... 15 

3.1 Austrian Matzen Field ................................................................................... 15 

3.2 Re-Development of the Matzen Field ............................................................ 17 

3.2.1 Measures & Production Increase ..................................................................... 17 

3.2.2 Outcome .......................................................................................................... 20 

3.3 Monitoring & Diagnosis of ESPs ................................................................... 21 

3.3.1 Principal Component Analysis for Failure Prediction ........................................ 22 

3.3.2 Advanced ESP Ammeter Card Analysis ........................................................... 25 

4 ELECTRICAL SUBMERSIBLE PUMP ............................................................... 29 

4.1 General ......................................................................................................... 29 

4.1.1 Pump Performance Curves .............................................................................. 30 

4.1.2 Affinity Laws..................................................................................................... 32 

4.2 ESP System Components ............................................................................ 33 

4.2.1 Centrifugal Pump ............................................................................................. 35 

4.2.2 Motor ............................................................................................................... 40 

4.2.3 Protector .......................................................................................................... 42 

4.2.4 Measurement Equipment ................................................................................. 45 

4.2.5 Gas Handling ................................................................................................... 45 

4.2.6 Cable ............................................................................................................... 48 

4.2.7 Surface Facilities ............................................................................................. 50 

4.3 Design Considerations .................................................................................. 51 

4.4 Troubleshooting ............................................................................................ 54 

4.4.1 Monitoring ........................................................................................................ 54 

4.4.2 Methodology .................................................................................................... 55 

4.4.3 Dismantling and Inspection .............................................................................. 56 

5 INTRODUCTION TO ARTIFICIAL NEURAL NETWORKS ................................ 57 

5.1.1 Feed Forward Neural Network ......................................................................... 58 



 
      

 

xii 

5.1.2 Training, Validation and Testing ....................................................................... 59 

6 MODEL BUILDING ............................................................................................. 67 

6.1 Data Acquisition ............................................................................................ 67 

6.2 Quality Control .............................................................................................. 68 

6.3 Data Cleansing ............................................................................................. 70 

6.4 Data Preparation ........................................................................................... 71 

6.5 Failure Classification ..................................................................................... 72 

6.5.1 Feature Preparation ......................................................................................... 72 

6.5.2 Feature Selection ............................................................................................. 73 

6.5.3 Methodology .................................................................................................... 73 

6.5.4 Results and Quality Control ............................................................................. 77 

6.6 Production Rate Modeling ............................................................................. 88 

6.6.1 Feature Selection ............................................................................................. 89 

6.6.2 Results ............................................................................................................. 89 

7 CONCLUSION .................................................................................................... 92 

8 REFERENCES .................................................................................................... 93 

APPENDICES ........................................................................................................... 95 

Appendix A ............................................................................................................. 95 

Appendix B ............................................................................................................. 99 

 



Chapter 1 - Introduction 13 

   

 

1 Introduction 

Electrical submersible pumps (ESP) are commonly used in petroleum industry for artificial lift 

system applications. Those pumps are typically equipped with various sensors to observe and 

monitor the pump to ensure proper functionality. An ESP itself consists mainly of a multistage 

centrifugal pump, a seal-chamber section as well as a driving motor and therefore offers a 

variety on failure possibilities. This thesis provides an overview about the principles of ESPs 

as well as their design. Additionally failure mechanisms are covered in detail. Furthermore, 

sensor data which is acquired downhole in order to analyze and predict the pumps behavior 

by using artificial intelligence is discussed. 

The field, where the investigated pumps are located, is called the Austrian Matzen field. It can 

be found about 25km northeast of Vienna and is one of the largest onshore oil fields in Europe. 

The deployed wells are operated by OMV Austria E&P and were mainly implemented during 

the re-development project of the 16th Torton horizon. The project was started in 2011 with the 

objective of doubling the gross production rate. Therefore, sucker rod pumps (SRP) were 

replaced by ESPs after a candidate screening process to increase production and optimize the 

reservoir potential. Additionally, new wells were drilled horizontally and equipped with ESPs. 

In total, 46 electrical submersible pumps are contributing to the production of the Matzen field 

[1]. An increase of about 62% in total oil production was obtained by re-development 

measures. Currently, 16% of the produced oil in Austria is lifted by ESPs. 

Each of the installed pumps is equipped with sensor technology and a variable speed drive 

(VSD). Measuring certain parameters allows monitoring, optimization and improved control of 

ESPs. The downhole sensor allows pressure, temperature, vibration and current related 

metering. Additionally, surface sensors are installed to measure and record casing and tubing 

pressure as well as frequency. The data is transmitted and fed into the Austrian OMV process 

control network. The measurements are recorded and stored by the use of software provided 

by Weatherford. This computer program is called life-of-well information software (LOWIS) and 

allows also accessing and visualizing data. 

The recorded data shall be used to create a model, which analyses the operating mode of the 

pump to indicate proper functionality or malfunctions. In order to build a reliable model, artificial 

intelligence (AI) in terms of artificial neural networks (ANN) is used. The objective of the model 

is to classify the operating mode of the ESPs and allow prediction of upcoming failure or 

malfunction events. Therefore, the model is built by learning from historical data sets which 

are including different examples of failure and malfunction. Before the data can be used for 

machine learning, data cleansing and quality control must be performed to result in a reliable 

and accurate model.  



Chapter 2 - Problem Description 14 

   

 

2 Problem Description 

At the current situation, the pumps are observed and monitored remotely by using a software 

tool which accesses a data base continuously fed by the pump sensors. Additionally, 

measurements on production rates of the wells are taken in the field. The warning system 

which is currently used to inform the engineer about malfunction is reliable but gives many 

false alarms due to a simple lower and upper threshold value alarm system. In order to ease 

and simplify pump monitoring, a new approach for sensor data interpretation will be introduced 

and tested.  

2.1 Scope 

The scope of this thesis includes model building for pump status classification as well as for 

pump failure prediction. Therefore, artificial neural networks shall be used to build those 

models. Since the tasks of the two desired models are different, different model architectures 

will be used and tested. Additionally, production rate modeling will be conducted since the 

production rate measurements are performed discontinuously via separator measurements. 

The objective of this proof of concept is to build a model which can be used to classify the 

current operation mode of the pump in order to give an indication on proper functionality or 

malfunction.   

2.2 Problem Solution 

To solve the previous described tasks of this work, data extraction and acquisition will be done 

by accessing different available databases. The data sources which are incorporated are 

subsurface ESP sensor data, surface measurements at the wellhead and separator 

measurements at metering stations. The obtained data will be checked in order to meet 

appropriate data quality control (QC) standards. To avoid problems with data leaks, time 

stamps or measurement errors, data cleansing will be performed by applying different filtering 

techniques and time series operations. After reviewing the cleaned data in terms of quality 

assurance (QA), it can be used for training and building models. 

For classification and production rate modeling, the data is fed to feed forward neural networks 

and many different models of different configurations are generated. Those models are 

evaluated and tested to identify the best one. For computing the models, cVision, a software 

tool from Neuro Genetic Solutions GmbH is used. 
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3 Literature Review 

In this section, an investigation regarding the Austrian Matzen field, recent field development 

activities as well as pump monitoring and automatization is described in order to point out 

important background information as well as similar research work. 

3.1 Austrian Matzen Field 

The Austrian Matzen field is a mature oil field, which is situated 25km northeast of Vienna 

(Figure 1). It is located in the center of the tertiary pull-apart structure in the Vienna Basin. The 

16th Torton horizon (TH) is part of this onshore oil field giant and consists mainly out of 

Badenian aged sandstone, also called Matzen sand. It is the most important reservoir in the 

Matzen field. With a maximum thickness of 70m, the horizon shows excellent reservoir 

properties and contains the bulk volumes of hydrocarbons of the Matzen field. Nonconformities 

which are causing reservoir heterogeneity in terms of vertical flow barriers are thin, fine grained 

layers in a range of 0.1 to 1m thickness. Those small-scale heterogeneities have a strong 

impact on field development and well placement and are typically linked to abnormal 

production behavior [2].  

 

Figure 1 - 16th Torton horizon on the Vienna Basin depth structure map [3], [4] 

The Matzen sand was discovered in 1949 and covers an area of about 26km2. The initial gas 

in place was found to be 17.6 million m3. The oil in place was estimated to be 94.6 million m3 

originally. Since a gas cap was already in place, the reservoir conditions were considered 

saturated. From core analysis an average net porosity of 27% and an average permeability of 
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1190mD were derived. The boundaries limiting the permeability distribution are 18mD on the 

lower and 10D on the upper end point. The oil in the field is asphalt based and owns a specific 

gravity of 0.905 which is corresponding to 24.9°API. The oil water contact (OWC) was 

determined by electrical measurements and production tests at an average depth of 1490m. 

The reservoir pressure was calculated via mass balance at a depth of 1490m resulting in 

120bar. This reservoir pressure level could be stabilized since 1971. The drive mechanism of 

the reservoir is mainly governed by water drive and was identified and qualitatively proven in 

1957. About 80% of the energy driving the reservoir is contributed from a huge aquifer. The 

other 20% are shared by gas cap drive and solution gas drive with 10% each [2].  

Overall, OMV operates about 1,100 wells in the Gänserndorf area, whereas 438 are accessing 

the 16th TH. Around 80 of those wells are located in the Bockfliess area, which is from special 

interest since the data for this thesis is derived from ESP wells and facilities in this area [5].  

The cumulative production from the 16th TH is about 283 MM bbl of oil. The peak production 

of 50,000 barrels per day was reached in 1954. Today the amount of liquid which is produced 

per day is approximately 85,500 barrels. With a water cut (WC) of about 97% the oil production 

results in about 2,400 barrels per day. The gas oil ratio (GOR) of 737 scf per barrel indicates 

rather small amounts of associated gas. The entire production history of the 16th TH is 

illustrated in Figure 2 below [5]. 

 

Figure 2 - Production and injection history of the 16th TH [6] 

In Figure 2, the start of water injection using a flank water injection strategy can be identified 

in the end of 1967. The implementation of this pressure maintaining measure reduced the 

slope of the production decline by the half.  
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3.2 Re-Development of the Matzen Field 

In 2011, a campaign with the objective of doubling the gross production in the Matzen field 

started. The project involved a re-development of the existing measures and infrastructure and 

was applying the basic concept of water injection to maximize oil displacement. Moreover new 

wells were drilled in order to achieve improved reservoir penetration. Those wells were drilled 

horizontally and are placed in the upper as well as lower parts of the reservoir. In terms of 

subsurface operations, several additional perforations were added. Drilling and perforating was 

done in order to allow production of the so called attic oil. Furthermore, pump units were 

exchanged to increase production rates using high-rate artificial lift systems. The injection 

strategy was adjusted to sweep as much oil as possible from the reservoir [5]. 

3.2.1 Measures & Production Increase 

After the planning phase, the first actions were about quick wins in production realized with 

additional perforations and bean-ups. Therefore, 19 SRPs were upgraded by exchanging 

beam pumping units, equipped with more powerful electric motors and switched to higher 

pumping speeds. Additionally, 13 wells were perforated in higher intervals to gain additional 

reservoir access and also to identify sweet spots for planned horizontal wells of the project. 

In order to achieve the declared goal of doubling the gross production rate, a high-rate artificial 

lift system had to be designed and tested. For this reason, ESPs were installed in two pilot 

wells and evaluated whether the high production rates with accompanying effects such as 

possible sand production and lower dynamic liquid levels are feasible or not. The experiment 

was successful and the lessons learnt were used as valuable input for completion design and 

material selection. Run-life optimization of the pumps was from main interest concerning the 

design specifications. As a result, ESP strings were installed consisting of a compression 

pump, intake gas separator, two protectors, a motor and a sensor. Additionally, the pumps 

were upgraded with tungsten carbide bearings and the carbon steel housing was coated with 

Monel to enhance corrosion resistance of the material. 

For SRP to ESP conversion, a life cycle cost analysis was conducted to get an idea about the 

optimum artificial lift system for usage. The result of the investigation was that at a production 

rate of about 1500 bbl/d, the total cost of ownership is lower when using an ESP instead of a 

SRP. Taking into account the newly won knowledge as well as certain reservoir and production 

parameters, candidates were selected and sensor equipped ESPs were installed. The 

measured sensor data is transmitted via the ESP cable to the surface and then fed into the 

process control system. 
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Figure 3 - Life cycle cost analysis of ESP and SRP systems [6] 

As part of the re-development project 5 new wells were drilled horizontally. Three of those 5 

wells were planned as producer and two as injector wells. The well placement was chosen in 

a way that more attic oil is accessed to increase recovery. During the drilling operations, real 

time (RT) logging while drilling (LWD) measurements were required to update the geological 

model built by offset well data and also to support potential well placement decisions. For 

drilling the wells, a geo-steering system was used to avoid permeability degradation as well as 

early water production. Therefore, a target corridor was defined in a range of 0.5 to 3 m TVD 

below the top of the sandstone. In Figure 4, a geological cross section along planned and 

drilled trajectories is shown.  

 

Figure 4 - Geological cross section along a planned and drilled well trajectory [5] 

To allow optimal production via ESP systems, a completion design consisting of a 9 5/8’’ 

production casing and a 7’’ liner was selected. The large diameter was chosen to enable the 

placement of a high performance ESPs and to fulfill the requirements for the expected high 

production rates. For an optimal operation in terms of increased run life, a 100 m MD long 
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straight section was required within the build section, where the ESP was planned to be placed. 

The straight section is necessary to keep bending stresses in the equipment low and thus 

decrease chances for pump failure. The horizontal penetrated reservoir sections were about 

400 to 500 m MD long and only partially kept open for production to avoid producing from 

unfavorable reservoir parts. Moreover, autonomous inflow control devices (AICD) were 

implemented in the completion design of the production string for improved sweep efficiency. 

Those devices are sensitive to fluid viscosity and impose an additional pressure drop to highly 

watered-out zones [5]. 

The highly increased production profile of the reservoir required additional pressure 

maintaining measures. Before the re-development project six injection wells were used to 

support the aquifer in maintaining the reservoir pressure. Due to the production increase a new 

injection strategy had to be developed. After evaluation of several possibilities, a compromise 

between drilling new injector wells and converting old producer wells was found. Two 

horizontal injector wells were drilled at the southern flank and nine production wells were 

converted for injection purposes. All of the new converted injector wells are located at the 

northern and northwestern flanks of the Bockfliess area. Additionally, a high quality water 

treatment plant for the injection water was implemented in order to avoid formation damage or 

fracturing. The treatment facilities, also called gas-oil-separation plant is located downstream 

of the separator stations and consists out of a slug catcher, separators, hydro-cyclones and oil 

tanks for separated residual oil [5].  

 

Figure 5 - Injection profile of the 16th TH [5] 

In Figure 5, the injection profile and the contributions of old and new measures over the last 

years is illustrated. Next to the significant amount of injection volume by new drilled horizontal 
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injectors, it can be seen, that the voidage replacement ratio (VRR) is increased from 0.6 to 

about 1. The obtained ratio is necessary to maintain the reservoir pressure at the current level 

[5]. 

3.2.2 Outcome 

By the end of 2016, 32 ESPs were deployed by replacing already existing sucker rod pumping 

units. Additionally, the three new drilled horizontal wells were equipped with ESPs. The results 

of the project can be seen in Figure 6 below. 

 

Figure 6 - Production profile of the 16th TH [5] 

The undertaken actions during the re-development project of the 16th Torton horizon resulted 

in a significant incremental oil production. The major contribution to the production increase is 

coming from converted wells as wells as from the three high-rate ESP wells. At the end of 

2015, a steep decline in oil production can be seen. This decline is resulting from postponed 

activities due to investment constraints after the oil price crash in 2015 [5]. 

During the campaign, 32 SRP wells were converted to ESP wells and three new wells were 

drilled for ESP installations. The gain in oil production of 62% is composed of 43% from 

converted wells and 19% from new wells. Currently, there are 46 ESPs operated, producing 

around 17% of the total oil production. The majority of the oil is still produced via conventional 

SRPs [5]. 
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3.3 Monitoring & Diagnosis of ESPs 

In order to achieve efficient run time and operations of ESPs, potential problems need to be 

detected early and remedied immediately. Therefore, pump monitoring and sensor data 

analysis is crucial and a powerful contributor for maintaining optimum production and 

extending pump life of downhole installations. Moreover, it is very important that by extending 

the pump life, repair costs as well as production losses due to downtime are reduced. Today 

it is very common for upstream operating companies to deploy web-based monitoring 

platforms for real time sensor data surveillance. The data therefore is gathered from various 

sources and combined to build models, which are able to identify abnormal pump behavior 

and other types of failure in the production system [7].  

Typical failures which can occur are discussed by Gupta et al. (2016) and are presented below. 

For this thesis, especially the orange colored text is from interest. 

Mechanical failure 

 Leaking 

 Failed pressure test 

 Stuck 

 Burst 

 Bent 

 Broken 

 Disconnected 

Material related failure 

 Burn 

 Corroded 

 Worn 

 Melted 

 Overheated 

Electrical failure 

 Short circuit 

 Open circuit 

 Faulty power 

Other 

 Plugged with solids 

 Contaminated fluid 

The causes, which are leading to failure according to Gupta et al. (2016), can be classified into 

six categories. For this thesis, especially the orange colored text is from interest. 

Design related 

 Equipment capacity 

 Material selection 

 System configuration 

Fabrication 

 Manufacturing 

problem 

 Improper QC 

Storage/Transport 

 Improper storage 

 Improper 

transportation 

Installation 

 Assembly procedure 

 Installation 

procedure 

Operational 

 Normal wear and tear 

 Inadequate training 

Reservoir 

 Reservoir fluids 

 Reservoir 

performance 
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Since many failure possibilities are offered within the category of mechanical failure, it is very 

important to minimize incidents related to it. In previous studies it is revealed, that excessive 

trips (condition which makes the motor controller to shut down the pump) and pump shutdowns 

can have strong influence on the run life of an ESP. Therefore, it is very important to distinguish 

between real failure events and false alarms triggered during operations [8]. 

During the last decades, more and more data has been gathered in the E&P industry. The 

traditional approach of using static data (structural and lithological maps, well trajectories, logs, 

seismic data, production history, etc.), which is measured infrequently with low quality and 

lacks of integration, is very likely leading to high uncertainty in the decision process. Nowadays, 

it is very common to gather data from various sources in real time allowing the incorporation 

of dynamic behavior. This new trend in data collection enables data scientists and engineers 

to use complex analytics and models to extract more meaningful information and ease decision 

making with regards to further actions and problem solving [7]. 

In the following subchapters, different approaches and models for failure classification and 

prediction are presented and discussed. This literature review shall provide an insight of similar 

research work. 

3.3.1 Principal Component Analysis for Failure Prediction 

The model introduced by Gupta et al. (2016) is using principal component analysis (PCA), a 

statistical method which is used for dimensionality reduction. This linear dimensionality 

reduction technique allows extraction of important features while removing correlated variables 

and revealing strong patterns. 

The PCA model which is used in their approach was introduced by Eriksson, Byrne et al. 

(2013): 

𝑋 = 𝑇𝑃𝑇 + 𝐸  (1) 

Where X Input matrix 

 T Scores matrix 

 P Loading matrix  

 E Residual matrix 

 

PCA is a purely data driven method which is employing multivariate statistics to find 

representative data in reduced dimensional space. By applying this technique, the first 

principal component captures the highest possible variance, while any additional component 

is orthogonal to its preceding components and captures the next highest possible variance. 

The covariance between a pair of principal components is zero. This ensures that all 

dependencies within the selected variables are gone and only the uncorrelated variables that 

best explain variance in the data are kept [7]. 
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Additionally, the Hotelling T-square statistic was used to introduce a measure representing the 

collective variation of all variables at each time step. The Hotelling T square statistic is 

described by the following equation (Westerhuis, Gurden et al. in 2000): 

𝐻𝑜𝑡𝑒𝑙𝑙𝑖𝑛𝑔 𝑇𝑖 =  𝑡𝑖𝜆−1𝑡𝑖
𝑇 (2) 

Where 𝑡𝑖 Timestamp of T 

 𝜆−1 Inverse of the covariance matrix of T 

  

For training the PCA model, a training data set was created from historical data. For this set, 

only data from stable operation times was included. The training data was normalized and 

configured before it was fed into the PCA model as input. The number of principal components 

was chosen in a way that the proportion of variance captured by the remaining principal 

components is insignificant. As it can be seen it Figure 7 below, six principal components were 

able to capture more than 96% of variance in the data and thus considered as sufficient. The 

result was obtained in the form of the corresponding T, P and E matrices as well as the Tstable 

matrix and Hotelling Tstable square for the stable operations. The latter ones were stored for 

comparison [7]. 

 

Figure 7 - Cumulative captured variance over number of principal components [7] 

As the next step, the derived model in terms of matrices was tested and used for prediction. 

Different data sets which are representing unstable operation corresponding to a later pump 

trip or failure were used as testing data. The obtained Tunstable and Hotelling Tunstable square 

were used for comparison. Furthermore, ESP health maintenance key performance indicators 

(KPIs) were introduced to describe normal and abnormal behavior. The two presented KPIs 

are based on Scores of principal components and on the Hotelling T square statistic. Both 

indicators can be used to identify abnormal behavior which is going to give a trip or failure with 

a high likelihood in the future [7]. 
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In Figure 8, a scatter plot of principal component 1 and 2 is illustrated. In green, the stable 

operation conditions are indicated. The unstable operation points are colored in blue. It can be 

seen, that for stable operations, all points are located close to zero, while for unstable operation 

the points can be found scattered in another region of the plot. 

 

Figure 8 - Scatter plot of principal components [7] 

Additionally, a prescriptive model has been built. Based on model diagnostics and prescriptive 

analytics the appropriate measures and actions are identified and given as recommendation 

for action. In case of an alarm due to an abnormal pump behavior, the system allows the 

engineer in charge to act immediately by getting information about which adjustable parameter 

to trigger to restore proper pump conditions. In Figure 9, the workflow of the presented 

approach is illustrated [7].  

 

Figure 9 - ESP analytics workflow [7] 
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Conclusion 

The approach which is introduced by Gupta et al. (2016) is showing a data driven analytical 

solution derived from a database with failure and trip events. The obtained model can be 

reliably used for failure or trip prediction and additionally gives recommendations in terms of 

parameter selection for corrective adjustments. It can be integrated into supervisory control 

and data acquisition (SCADA) systems for RT analysis resulting in minimization of downtime 

and possible losses of production.  

3.3.2 Advanced ESP Ammeter Card Analysis 

In ESP monitoring, ammeter cards obtained from current measurements are a fast 

troubleshooting method for engineers. The interpretation of such cards requires a certain level 

of experience to be able to draw the correct conclusions. This requirement makes it difficult to 

allow consistent results with this approach, since each engineer brings her or his personal 

contribution. For illustrative purpose, different types of ammeter card measurements are 

shown in Figure 10 below. 

 

Figure 10 - Ammeter card examples [9] 
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In a study carried out by Han et al. (2015), 10 different working modes were investigated for 

classification. The different modes were shown below:  

 Frequent stop and restart  Emulsification 

 Sand influence  Electric power fluctuation 

 Pump off by gas locking  Gas interference 

 Pump off by stuck pump  Pump off by overloading 

 Insufficient reservoir inflow  Normal operation 

 

For this classification or interpretation task, a feed forward neural network with error back 

propagation was chosen. This machine learning tool allows automation of card interpretation 

based on a heuristic model approach. The input consisted out of 45 different features, which 

were hand-crafted such as number of pump stops or number of current fluctuations. The 

architecture of the net was built by 45 neurons in the input layer, 45 neurons in the hidden 

layer and 10 neurons in the output layer, since the output units in the last layer are 

corresponding to the operation modes. In Figure 11 below, the network and its main 

components are illustrated [9]. 

 

Figure 11 - Feed forward neural network 

To train the network appropriately, many different cards were analyzed and features were 

extracted. In order to cover all ten named operation modes, a certain number of training 

examples was required. Therefore, ammeter cards were generated via simulation to ensure 

that all different categories are captured in the training data set. For each operation mode, 

about 50 different feature sets from ammeter cards were used [9]. 

A more detailed description of neural networks and their working principle is given in Chapter 5 

(Introduction to Artificial Neural Networks).  
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After training, the derived model was tested against a data set from an offshore well, were 

constant current measurements together with a sharp decline in production were observed. 

According to Han et al. (2015), the test failed, since the model was not able to classify the 

status appropriately. It has to be mentioned, that there is no similar case mentioned to be used 

during training, which makes a positive classification by the derived model nearly impossible, 

since a neural network is a data driven tool based on historical data. 

Analytical Model 

In order to support the previously described model, Han et al. (2015) derived an analytical 

model based on pressure build up data. The supportive model aims to detect different types 

of malfunction or problems such as gas interference, equipment leakage downstream of the 

pump, emulsification or viscosity changes, pump wear or shaft break. The proposed model is 

using wellhead pressure data from surface sensors [9].  

In Figure 12 below, a pressure build up curve for a well shut-in procedure is illustrated. Figure 

A, is showing the well before it is put on production. In Figure B, a constant production rate is 

indicated and the liquid level is reduced before the well is shut in (Figure C). In Figure D, 

equilibrium is reached, which means that the wellhead pressure reaches a static level.  

 

Figure 12 - Pressure build up schematics [9] 

The model uses the measured data to compute certain decision variables which are fed to a 

decision tree. These variables are calculated via an analytical approach. For the computation, 

the measured time period is split up into two halves. This step is necessary to differentiate 

between different pressure build up gradients during the shut-in operation. As a result, the 

model identifies the reason for malfunction without giving a further ranking of other possible 

failing mechanisms [9]. 
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The analytical model was evaluated and tested for a case where tubing leakage occurs and it 

manages to give the correct source of malfunction. For further investigations it would be 

interesting to have broader testing activities to identify limitations and weaknesses of the 

model.  

Conclusion 

The proposed models by Han et al. (2015) are using different approaches, which allows smart 

combination of both to support each other. The neural network based model lacks in testing 

documentation which doesn’t allow further profound evaluation of the performance. 

Furthermore, the given testing result is misleading and not representative considering the 

training data which was used to build this model. For further research, an investigation on 

ammeter cards with deep learning algorithms and image processing would be of high interest, 

since similar analyses have been done using dynamometer cards of sucker rod pumping units. 

On the other hand, pressure build up analysis seems to be a valuable tool and indicator to 

identify malfunction in production technology. It is easy to implement but needs a shut in period 

in order to obtain the pressure build up curve, which implies a production loss in that time 

frame. 
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4 Electrical Submersible Pump 

The electrical submersible pump as an artificial lift system was invented around 1910. Armais 

Arutunoff started doing experiments with ESPs in the Baku oilfields near the Caspian sea. Due 

to his pioneering work in this field of production technology, Arutunoff received about 90 

patents related to submersible equipment. Today, around 10% of the world’s total crude oil 

production is lifted via ESP units. Since its invention, those pumping units were improved and 

developed in order to handle more difficult production conditions such as higher gas liquid 

ratios, changing liquid production rates or viscous crudes. In recent years, the application of 

monitoring systems became more and more established and is today a state of the art 

technology for enhancing lifetime of such downhole equipment. The main applications today 

are onshore production and injection operations as well as offshore production activities. ESP 

units are used in cases where electricity is easily available and large amounts of liquids need 

to be lifted [10].  

In the following subchapters, the principles and basic theory as well as the main components 

of ESPs are explained and discussed. 

4.1 General 

An electrical submersible pump is a downhole used equipment and belongs to the group of 

impeller or centrifugal pumps. The two most important parts, considering the working principle, 

are the rotating impellers and the stationary diffusers. Both together are called a stage. When 

the fluid enters a stage through the impeller eye, it is radially accelerated by centrifugal forces 

by the rotational movement of the impeller. This process is adding kinetic energy to the 

production fluid. Next, the fluid is led into the diffuser where it is diffused and the previously 

gained velocity is converted to pressure. Thereby, kinetic energy is transformed to potential 

energy according to Bernoulli’s principle. An ESP typically consists out of multiple stages, 

which are arranged serially in order to reach required discharge pressure conditions and pump 

fluid to the surface. 

Other important parts of the ESP are the electric driving motor, the sealing chamber or 

protector as well as several other smaller components. Additionally to the downhole deployed 

equipment, surface equipment such as transformers or variable speed drives is necessary to 

control and monitor ESP production operations. The different components and their specific 

function are explained in Chapter 4.2 (ESP System Components). 

An ESP system is a high rate artificial lift setup. A comparison of similar producing systems is 

illustrated in Figure 13. The operational range for an ESP can be found between 1,000 bpd for 

very deep applications and 30,000 bpd for shallower operations. The length of ESP production 

strings is limited to around 110ft to ensure proper assembly, handling and installation [10]. 
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Figure 13 - Comparison of different artificial lift systems [10] 

The advantages, disadvantages and limitations of electrical submersible pumps are listed 

below [10]: 

 Wide range of production (100 – 64,000 bpd) 

 Operating depth of up to 15,000 ft 

 Relatively high energy efficiency at production rates above 1,000 bpd 

 Deployment in deviated wells possible 

 Low maintenance required 

 Small surface footprint (offshore operations) 

 Electric power supply must be available and reliable 

 Variable speed drive for adapting production rates (additional investment) 

 Usage of gas handling devices is required in case of more than 5% of free gas at the 

pump intake 

 Sensitive to wear due sand or other abrasive materials 

 Limited temperature ranges for operation (maximum of 120 – 200 °C) 

 Problematic for viscous crudes 

4.1.1 Pump Performance Curves 

In this chapter, pump performance curves are discussed. Those curves are typically used to 

describe the behavior of a pump at different pumping conditions. In general, there are three 

different types: Head, efficiency and brake horsepower. Since the density of the fluid is 

increasing when the pressure is increasing, the property head can be calculated by dividing 

the pressure through the density. This ratio is a constant for a given pumping rate and is usually 
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used to present performance of a pump, because it is constant for any liquid. It is important to 

mention here, that only head and efficiency are not influenced by the fluid’s density. However, 

horsepower is changing for fluids with different densities. 

In Figure 14, a plot of pump performance curves is illustrated. It can be seen, that the delivered 

pressure or head is decreasing with increasing flow rates. Moreover, the pump is showing a 

range of optimum efficiency. Normal ESP operations are designed in a way, which allows the 

pump to be operated within this range.  

 

Figure 14 - Pump performance curves [10] 

The brake horsepower curve is describing the necessary amount of horsepower to pump fluid 

at different flow rates. It is the power which is required to drive the pump and has to be delivered 

by the driving motor. Brake horsepower includes several types of losses which occur in the 

system. An illustration of those is given in Figure 15. Comparing the different types of losses, 

especially the friction losses are very interesting since their contribution is depending on the 

flow rate. The other losses such as bearing losses, disk friction losses and leakage losses are 

more or less constant or only slightly changing. The turbulence losses are shaping the 

hydraulic power curve in a way that it looks similar to the efficiency curve. The range where no 

turbulence losses are occurring is the overlapping with the range of optimal operation [10]. 
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Figure 15 - Power losses in a centrifugal pump stage [10] 

4.1.2 Affinity Laws 

The pump affinity laws are used to demonstrate the relationship between variables in pump 

performance. They are useful, since centrifugal pumps are very often operated at constant 

speed because no frequency converters are available. However, the pump performance 

parameters have been investigated a long time and certain rules, the so-called affinity laws, 

were found. Below, the three different relationships were presented [10]: 

𝑄2 =  𝑄1 ∗  
𝑁2

𝑁1
  (3) 

𝐻2 =  𝐻1 ∗  (
𝑁2

𝑁1
)2  (4) 

𝐻𝑃2 =  𝐻𝑃1 ∗  (
𝑁2

𝑁1
)3 (5) 

Where Ni Pumping speeds [RPM] 

 Qi Pumping rates at Ni [bpd] 

 HPi Required brake horsepower at Ni [hp] 

 

Equation 3, 4 and 5 are showing proportional behavior towards a change in speed. The higher 

the speed, the higher is the performance parameter. The different laws only differ in the 

exponent of the speed ratio, which is two for the head-speed relation and three for the 
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horsepower-speed relation. The fourth rule of the affinity laws is stating that the efficiency of a 

pump is not changing with speed changes. However, this statement is often not true and can 

cause some experimental error. 

 

Figure 16 - Pump curves at different speeds [10] 

In Figure 16, different pump curves at different pumping speeds are illustrated. The pumping 

speeds are increasing from N5 to N1. The efficiency (η) isolines are showing the path of 

constant efficiencies across different pump curves or pumping speeds. With increasing speed, 

the efficiency range grows and shifts the optimum range to higher flow rates. Nevertheless, 

the system represented by the system curve is determining where the operation point is located 

[10].   

4.2 ESP System Components 

An ESP System is a complex equipment consisting out of multiple different components. In 

Figure 17, an overview of a complete electrical submersible pump system is illustrated. The 

main parts of such a system are the centrifugal pump, the protector and the electric motor. The 

motor is supplied with three-phase AC current from the surface via a special cable, which is 

mounted on the tubing string. At the surface, different electrical equipment processes electricity 

to ensure that appropriate voltage and current are provided to the driving motor. In modern 

systems, a sensor unit is located at the bottom of the production string to allow continuous 

pump parameter monitoring and gives additional information for troubleshooting in case of 

malfunction. 
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Figure 17 - Overview of an ESP system [10] 

The amount of liquid, which is produced with an ESP system, is mainly depending on the 

following list of factors [10]: 

 Rotational speed of the motor 

 Impeller diameter 

 Impeller type or design 

 Actual head which has to be delivered 

 Thermodynamic or transport properties of the pumped fluid such as density, viscosity 

etc. 

In the following subchapters, the different components are described and discussed in detail. 
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4.2.1 Centrifugal Pump 

The centrifugal pump with its multiple stages is the heart of an ESP system and the most 

important part in terms of design and planning. The number of stages governs the production 

rate, the delivered head or pressure and the required power. The stages of an ESP are 

operating in a vertical position and are operating in a series. During operations, an ESP is 

submerged in well fluids. 

A typical stage is illustrated in Figure 18 below. Arrows in the right half of the picture indicate 

the fluid flow path. The fluid is entering a stage from the bottom through the impeller’s eye 

(suction side). An impeller operates self-priming and consists out of a set of vanes, which are 

rotating during operation. First, energy is imparted to the fluid by centrifugal force and the fluid 

exits the impeller with high velocity. Then added kinetic energy is converted to potential energy 

in the form of pressure in the diffuser. Therefore, the velocity of the fluid is reduced significantly. 

The impeller is mounted on the shaft and rotates with it. The diffuser is static and does not 

move. It is also equipped with a set of vanes to guide the fluid [10]. 

The maximum number of stages is depending on different factors. Typically, several hundred 

stages can be installed. The number of those is mainly influenced by the mechanical strength 

of the pump shaft (shaft’s horsepower rating), the burst pressure rating of the pump housing 

and the maximum allowable load on the main thrust bearing. 

 

Figure 18 - Single ESP stage [10] 

The rotational movement of the shaft is transferred to the impellers via so-called keys. In Figure 

18, the key way is shown directly at the line of symmetry. It is also illustrated in Figure 19 

below. In case of a free-floating configuration, the impellers are not fixed in axial direction, 

which allows them to float. Fixed impeller pumps or so-called compression pumps have fixed 

impeller configurations and are the second type in this regard. The latter ones, are more 

modern in design and are equipped with additional bearings to compensate for forces [10]. 
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Figure 19 - Nomenclature of ESP impeller parts [10] 

During operation, forces develop and push the impellers up or downwards. This so-called axial 

thrust forces develop due to pressure differences across the impeller and different cross 

sections on the top and the bottom of the impeller. Balancing holes and rings are used to 

reduce this effect to a certain degree but not totally [10].  

Floating and Fixed Impeller Pumps 

Due to the axial thrust forces, floating impellers are moving at a certain position according to 

the pumping speed since they are not fixed in axial direction. In case of low pumping rates, 

low forces occur and the impeller is rotating while contacting the previous diffuser at the 

bottom. At high rates on the other hand, high axial thrust forces are pushing the impeller 

upward so that it contacts the diffuser above. To avoid severe material degradation, thrust 

washers (also called synthetic pads) are located at the points of contact [10].  

Figure 20 illustrates different pump operation ranges. The optimal operation range is limited 

by a minimum and maximum flow rate and gray shaded in the figure above. Outside of this 

recommended region, a strong decline in efficiency can be observed. 
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Figure 20 - ESP operation ranges [10] 

In case that the pump is operated in up- or downthrust region, most of the forces are 

compensated by frictional forces arising in the washers at the top or the bottom of the impeller. 

Thus, thrust bearings with smaller capacity are required since those take less load. When fixed 

impeller pumps are used, all axial forces are transmitted via the shaft and are balanced by the 

main thrust bearing, which is located in the protector of the ESP [10].  

Both, the compression pumps as well as the floating impeller pumps have their advantages 

and disadvantages. The benefits of the floating impeller design are listed below: 

 No fixing of impellers necessary – time consuming process 

 Pumps with several hundred stages possible 

 Thrust bearings with smaller capacity needed 

 Lower investment cost compared to compression pumps 

Compression pumps are typically built in diameters above 6 inches and are capable of 

producing large volumes of liquids. Fixed impellers allow operating the pump in a wider range 

and thus add flexibility. The maximum number of stages for compression pumps in one pump 

is limited to about 80 to 100 [10]. 

Main Thrust Bearing 

As already mentioned, the main thrust bearing is located in the protector (Chapter 4.2.3) of the 

ESP string. It is from high importance when the pump is designed in fixed impeller configuration 

since it is responsible for the elimination of the bulk of the thrust forces. In ESP systems mainly 
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pad-type plane thrust bearings are used because they show significant advantages compared 

to bearings with rolling elements. The advantages of this bearing type are listed below [10]: 

 Less heat generation during operation 

 Not sensitive to solid contaminants in the lubrication oil 

 Support higher thrust loads 

The main thrust bearing consists out of two shoes and a thrust runner in between. During 

operations, the bearing is lubricated with oil to ensure a fluid film in between the different parts 

of the main thrust bearing. In case of lubrication problems, metal-to-metal contact leads to 

severe damage and typically ends the lifetime of an ESP. Known sources for destruction of the 

lubrication film are reduction of oil viscosity due to high temperature, misalignment of the thrust 

runner and shoes, vibrations or solid particles which are scratching contact surfaces [10]. 

Impeller Types 

As there are different pump configurations, there are also different types of impellers available 

for ESP application. The two types are radial and mixed flow impellers and an illustration is 

given in Figure 21.  

 

Figure 21 - Radial (left) and mixed flow impeller (right) [10] 

The different pump designs can be compared by the concept of specific speed, which was 

introduced and defined as the rotational speed required to produce a liquid rate of 1 gallon per 

minute against 1ft of head. The definition is the following [10]: 

𝑁𝑆 =  
𝑁√𝑄

𝐻0.75
  (6) 

Where N Pump speed [RPM] 

 Q Pumping rate [gpm] 

 H Developed head per stage [ft] 
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The specific speed is only used for comparing different designs and has no practical 

importance. Characteristic values for radial impeller pumps are ranging between 500 and 

1,800. Radial impellers are typically resulting in higher head but lower flow rates compared to 

mixed flow impeller configurations. Mixed flow impeller pumps can reach a maximum value 

of specific speed around 4,500 and thus are capable of handling more free gas than radial 

impeller pumps [10]. 

In Figure 22 below, the efficiency curves of both impeller types are plotted over the flow rate. 

It is clearly visible, that mixed flow impellers are more suitable for lifting large volumes of 

fluids. 

 

Figure 22 - Comparison of impeller types [11] 

Typical Failures 

ESPs are offering a variety of possible failure types. Considering just the pump, the main failure 

prone parts are the shaft and bearings. Both are exposed to harsh conditions during operations 

and have to withstand high loads. Table 1 provides an overview of typical failures and 

associated reasons. 

Table 1 - Typical failures of centrifugal pumps [10] 

Failure Reason 

Torsional yield failure (shaft) Torque capacity exceeded 

Torsional twist (shaft) Startup inertia 

Torsional fatigue (shaft) Repeated torsional vibrations 

Bearing wear Abrasive conditions 

Galling of bearings Lost lubrication 

Upthrust wear Too high flow rates 

Downthrust wear Too low flow rates 

Radial wear (journal bearings) Abrasive-laden fluids 

Erosion in pump stages Abrasive-laden fluids 

Scale buildup Chemical composition 
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4.2.2 Motor 

Electrical motors for ESP applications are three-phase, two-pole, squirrel cage induction type 

electric machines. They are the most reliable motors because the rotor is not connected to the 

electric power supply. Furthermore, this type shows the best efficiency which explains its 

popularity in the oil and gas industry. 

An alternating current (AC) is flowing through stator windings inducing a current in the rotor. 

The magnetic field developed by the current in the stator is rotating and interacts with the 

magnetic field of the induced rotor current. This interaction results in movement of the rotor, 

which is trying to keep up with the rotating magnetic field developed in the stator. The 

difference in speed between the two magnetic fields is called slip and plays an important role 

when it comes to generation of motor torque (Figure 23). The speed of the rotor is determined 

by the frequency of the AC current. To control the rotational speed of such a motor, a variable 

speed drive (VSD) or frequency converter is necessary. This type of equipment allows 

adaption of the frequency to influence the motor towards the desired speed and adds flexibility 

to operations. Nevertheless, a VSD is rather expensive and thus increases capital expenditure 

[10]. 

 

Figure 23 - Torque generation and slip [10] 

During operations, the long motor shaft, which can be up to 30ft long, needs to be kept as free 

of vibrations as possible. This is ensured by radial bearings, so-called journal bearings. They 

are located at several locations along the shaft and consist out of two parts. The journal part 

of the bearing is rotating with the shaft while the stationary part of it is fitted between the stator 

and the journal. The axial load of the rotor and shaft weight is taken by a thrust bearing which 

is installed at the top of the motor [10]. 

The lubrication of the motor and all its bearings is provided via highly refined oil with a specific 

gravity between 0.8 and 0.83. The oil brings the required dielectric strength to prevent short 

circuit between motor parts, proper lubrication for the bearings and provides good thermal 

conductivity to transport the generated heat of the motor to the outside [10]. 
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Since the diameter of a borehole is rather small, the ratio of length to motor diameter is large. 

The most important differences of ESP motors to conventional electric machines (at surface) 

are listed below [10]:  

 High length-diameter ratio 

 Motor power increases with length 

 Better cooling via oil and wellbore fluids  

 Higher electric current density due to better cooling 

 Significant voltage drop due to high cable length needs to be considered 

The power of a single motor can be up to 300hp. Since the wellbore diameter is constraining 

the size of the motor, only length can be increased to reach higher power requirements. 

Therefore, tandem configurations can be used. Tandem motors are assemblies of more than 

one motor in a series, where each motor has its own electrical supply. Figure 24 illustrates a 

tandem motor configuration with two independent electrical systems. Such motor assemblies 

are capable of supplying more than 1,000hp and offer great flexibility since different motors 

can be combined. The motors thereby are mechanically coupled but operated independently 

in an electrical sense [10]. 

 

Figure 24 - Tandem motor configuration [10] 

In case of VSD application (see Chapter 4.2.7), the frequency of a motor can be changed 

easily to operate the pump at different rates. Generally, the horsepower rating of a motor is 

provided at 50 or 60 Hz power. But changing the frequency influences the torque or 

horsepower rating of a motor, since the horsepower output of a motor is directly proportional 

to the frequency [10].  
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This relation is very important to understand since the affinity laws constrain the range of 

operation due to required pump horsepower. Equation 3 and 5 (Chapter 4.1.2) are showing 

that when the flowrate is doubled by increasing speed, the required horsepower is 8 times 

larger. If the speed is increased without considering this fast increasing power demand, the 

motor is not capable of delivering the required power and will overheat. An illustration of this 

relationship is given in Figure 25. The intersection point of the power curves is showing the 

maximum allowable frequency fmax for safe operations. 

 

Figure 25 - Motor and pump power curves [10] 

Typical Failures 

ESP motors are mostly failing due to electrical reasons. Excessive heating of the motor’s wiring 

by overloading can cause damage or burnout. Thereby, overloading can occur due to several 

reasons such as undersized motors, changes in total dynamic head, pump failures or irregular 

voltages (harmonics). Moreover, the protector can leak causing contamination of the dielectric 

oil and thus short circuit and an eventual burnout. Insufficient cooling can lead to damage of 

insulating materials due to increased temperatures. Poor heat exchange can be caused by low 

fluid velocities around the motor or inadequate design [10]. 

4.2.3 Protector 

The protector or sealing section is a part of equipment which is located between the pump and 

the motor. It is used to seal off the motor from conducting well liquids to avoid short circuit or 

other electric failure. Therefore, the protector is filled with the same high dielectric strength oil 

as the motor is. Furthermore, the seal section is necessary since the motor cannot be in a 

closed housing due to expansion of the oil at elevated operating temperatures and risk of burst. 

Additionally, the main thrust bearing is located at the lower end of the sealing section [10]. 



Chapter 4 - Electrical Submersible Pump 43 

   

 

The most important functions of a protector are listed below [10]: 

 Takes axial thrust load 

 Isolation of the motor from well fluids 

 Allows motor oil expansion and contraction 

 Provides pressure equalization by communication 

 Transmits the torque from the motor to the pump shaft 

To fulfill all listed tasks and requirements, two types of isolation chambers are available: The 

labyrinth- and the bag- (or bladder-) type. They differ in the manner of isolation, which is used 

to prevent communication between motor oil and well fluids [10].  

 

Figure 26 - Labyrinth type (left) and bag type chamber (right) [10] 

For labyrinth type chambers it is important, that there is a density difference between the motor 

oil and well fluids. For motor oils with a specific gravity of 0.8 to 0.83 the minimum value for 

the SG of the well fluid is 0.9 to ensure proper functionality. Moreover, this chamber type is 

designed to be operated in vertical position since its ability to absorb expanding oil from the 

motor decreases as the angle deviates from vertical position [10].  

Bag type chambers can be used for applications where the motor density and well fluids 

densities are quite similar. There is no direct physical contact between the fluids since this type 

is designed as a closed vessel system. Also the oil storage ability is not influenced by the angle 
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which enables application of bag type chambers even in wells with 30° deviation or more from 

vertical position [10]. 

For proper sealing, at least two chambers are installed in series. For increased safety during 

operations, protectors with more chambers or tandem protectors are available. 

 

Figure 27 - Shaft seal [10] 

The mechanical shaft seal avoids communication between the motor oil and well fluids along 

the shaft inside the protector. This seal is usually located at the top of each chamber and is 

rotating during operations. Therefore, it consists out of a stationary seal ring, which is fixed to 

the protector’s housing and a rotating seal ring [10]. 

Typical Failures 

Protector section failure directly influences motor operations. Typical failures of this protective 

equipment are listed in Table 2. 

Table 2 - Typical failures of protectors [10] 

Failure Reason 

Broken or damaged seals Vibrations, faulty equipment, improper installation 

Broken main thrust bearing Excessive down- or upthrust conditions 

Failed seal (labyrinth type) Deviation of vertical position > 30° 
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4.2.4 Measurement Equipment 

During operations, several parameters are measured at different locations. To ensure 

successful monitoring and troubleshooting in case of malfunction, three different measurement 

positions are available. The measuring is done at the wellhead, the ESP downhole and at the 

separator. Table 3 lists all measured parameters with their associated position. 

Table 3 - Measured Parameters 

Parameter Position 

Tubing pressure Wellhead 

Casing pressure Wellhead 

Motor current Variable speed drive 

Motor power Variable speed drive 

Frequency Variable speed drive 

Pump intake pressure Downhole 

Pump discharge pressure Downhole 

Bottom hole temperature Downhole 

Motor winding temperature Downhole 

Vibrations Downhole 

Current leakages Downhole 

Gross production rate Separator 

 

Typical applications for downhole sensors are ESP wells where performance monitoring is 

required or where instability problems are likely to occur. The usage of such sensors improves 

the ESP run life, can lower operating costs and reduces early failure rates. 

The downhole data used in this thesis is measured with the downhole sensor unit Phoenix 

XT150 from Schlumberger. It is a high temperature ESP monitoring system and allows 

surveillance of ESPs by measuring several key parameters as listed in Table 3. 

4.2.5 Gas Handling 

In the following, different gas handling methods are described and discussed. 

Intake Gas Separator 

In order to prevent free gas from entering the pump, intake gas separators are used and 

installed below the centrifugal pump unit. Gas separation is necessary because free gas 

reduces pump performance since the pressure increase per stage decreases as free gas is 

present. Free gas can influence an ESP system in the following ways [10]: 

 Decreasing head 

 Fluctuating output and possible cavitation 

 Gas locking 
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The most common gas separators are the reverse flow type, the vortex type and the rotary 

type separator. An overview of all three designs is illustrated in Figure 28. Another possibility 

of gas separation can be the installation of the pump below perforations to allow natural 

separation in the annulus. 

 

Figure 28 - Separator designs [11] 

The simplest type of gas separation units is the reverse flow gas separator or reverse flow 

intake. This equipment works on the principle of gravitational separation and can be used in 

wells with low to moderate liquid and gas rates. There are no moving parts (although the 

inducer section can include rotating parts) inside the separator, which is also a main advantage 

next to its simplicity [11].  

The two other design types for gas separation are the vortex type and rotary centrifuge type 

separator. The difference between them is that the rotary type has a rotating chamber instead 

of the vortex generator (Nr. 7 in Figure 28). Both are working on the principal of centrifugal 
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gas-liquid separation. Since the liquids are pushed outwards, a crossflow after the flow divider 

is necessary to direct the fluid into the pump. On the other hand, gas is guided to separator 

outlets to allow gas production through the annulus. Due to the rotating parts, the vortex and 

rotary type separators are offering additional potential for failure. Nevertheless, both types can 

handle more free gas compared to the simple reverse flow separator [10]. 

Gas Handling Equipment 

In case gas cannot be prevented from entering the ESP, appropriate gas handling is crucial to 

maintain high performance.  

Overstaged pumps were the earliest solution for the problem of gas interference. Those pumps 

are equipped with additional stages to increase the pressure to the desired level and 

compensate for the first few stages with lower performance due to gas interference [10]. 

Tapered pumps are another type of equipment, which are a successful and energy efficient for 

handling free gas. The pumps include at least two different stage designs. The flow rate is 

decreasing, as the fluid is moving through the pump. The gas is highly compressed and 

partially dissolved in the lower stages, whereas in the upper ones lower flow rates allow optimal 

head generation. All stages of such a system should be designed to operate in their optimum 

range. Therefore, detailed knowledge about the well conditions is required [10]. 

Another possibility to handle entered gas is stage recirculation (Figure 29). This modification 

aims to break up gas pockets, which are created in stages. Additionally, a better 

homogenization of the fluid shall be reached. The recirculation path is formed by holes in the 

bottom shroud of the diffuser and in the top shroud of the impeller. Although stage recirculation 

greatly reduces gas locking, it decreases pumping efficiency by 20 to 30% [10].  

 

Figure 29 - Gas handling via stage recirculation [10] 

Moreover, gas handlers can be installed upstream of the pump to ease pump operation. Pre-

compression of the mixture and gas dispersion are improving the ESP’s tolerance to free gas 

production by reducing the risk of gas locking. Such systems allow well fluids with up to 75% 

of free gas at the intake to be lifted. Nevertheless, additional horsepower is required to drive 

gas handling equipment [10]. 

To conclude gas handling, Figure 30 illustrates gas handling performance of different ESP 

systems. Mixed flow pumps are already giving good results considering the conventional 
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design method. Advanced designs such as separator included ones are resulting in 

significantly improved gas handling performance. 

 

Figure 30 - Gas handling performance of different ESP systems [10] 

Typical Failures 

Failure of rotary gas separators often occurs when solids are present in the produced fluid. 

Abrasives are accelerated by centrifugal forces resulting in severe wear and damage. 

Additionally, solids or precipitations can plug the intake causing a decrease in flowrate and 

energy losses. In the worst case, solids are entering and plugging the rotating parts of the 

separator which can lead to a shaft damage or break. 

4.2.6 Cable 

The electric power, which is required to operate the ESP is transmitted via a special three-

phase electric power cable. Due to harsh operating conditions of cables the type and material 

selection are an important factor and the design procedure.  

Copper or aluminum can be used for conducting the electric current. Even though aluminum 

is less expensive and lighter, copper is used more often since it is easier to splice and provides 

better conductivity. Insulator materials are used to withstand high temperatures, provide oil 

resistance and prevent gas from migrating into the cable body. Moreover, insulation prevents 

short circuits and leakage currents between the different conductors. The insulator material is 

protected by so-called jackets, which are usually made of nitrile rubber and EPDM (ethylene 

propylene diene monomer). Additionally, metal armor is used to protect the cable by providing 

mechanical strength.  

ESP cables are available in two different construction designs: Round and flat. The flat type 

cable is very often used since it offers the advantage of its slim geometry. The cable 

construction is illustrated in Figure 31. 
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Figure 31 - Flat ESP cable [10] 

For the design procedure, the resistance of the cable is a very important parameter since it is 

directly influencing the occurring voltage drop. For cable selection, voltage drop diagrams are 

used to identify losses associated to a certain current. The voltage drop can be calculated with 

the following equation [10]: 

∆𝑈𝐶𝑎𝑏𝑙𝑒 =  √3 ∗ 𝑅𝑇 ∗ 𝐼  (7) 

Where ΔU Voltage drop [V] 

 RT Resistance of the cable [Ohm] 

 I Electric Current [A] 

 

To install the cable, a special wellhead tool is required: A wellhead penetrator is used for 

feeding the downhole cable through the wellhead. The penetrator and the cable connection 

is frequently found as a source of malfunction. Therefore, the installation and connection of it 

needs to be carried out with special attention. On the other end of the cable, a connection to 

the motor lead extension has to be made. The procedure of joining two cables together is 

called splicing. Most splices are made by wrapping tape splicing but also others such as 

molded or vulcanized splicing are known. For integrity reasons, a splice-free cable is always 

preferred [10].  
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Typical Failures 

The ESP cable is connecting the motor to the power supply. In case of failure of this 

component, shut down of the system will follow immediately.  

Table 4 gives an overview of typical failures. 

Table 4 - Typical failures of ESP cables [10] 

Failure Reason 

Mechanical damage Unwary running or pulling operations 

Corrosion Harsh environment, insufficient protection 

Insulation deterioration High temperature, gases 

Insulation breakdown Increasing current, Temperature increase 

No connection Connection problems, improper splicing 

 

4.2.7 Surface Facilities 

ESP systems require certain surface facilities. Figure 32 illustrates an overview of surface 

facilities of an ESP system. 

 

Figure 32 - Surface facilities arrangement [10] 

As already discussed, special wellheads with penetrators are used to allow electrical 

connection. The penetrator allows higher wellhead pressures compared to conventional 

wellheads with cable feed-through. Additionally, the wellhead is supporting the weight of the 

production string and maintaining control of the annulus [10].  

The junction box, also known as vent box, is the connection point of downhole and surface 

cable. As the name says, it vents any gas to the atmosphere which might has reached this 

point by migrating up through the cable. It is also used as measurement station to check for 

electrical failure and malfunction [10]. 

The switchbox is used to control the ESP and also protects surface and downhole equipment 

from a variety of electrical problems. Moreover, it enables monitoring and recording of 

measured data [10].  
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In case of insufficient electrical power supply, transformers are delivering required levels of 

voltage. The transformer design must take the voltage drop in the power cable into account to 

provide the necessary voltage to the motor downhole [10].  

In order to allow a more flexible range of operation, variable speed drives are used. A VSD 

consists out of three major components. Those are the rectifier section, the DC voltage control 

section and the inverter section. In ESP applications, voltage source inverters are typically 

used. These inverters are controlling the voltage output while keeping the current constant. 

Indeed the current fluctuates due to changing loads on the unit [10]. 

4.3 Design Considerations 

Designing an ESP system is a straightforward engineering process, but it can get quite 

complicated when gassy wells are concerned or VSD units are required. In order to select a 

proper design, the following input data must be included according to Takacs (2009): 

1. Well data 

Casing and liner sizes, weights and setting depths 

Tubing size, weight and thread 

Total well depth 

Depth of perforations or openhole section 

Well inclination data 

 

2. Well performance data 

Tubing head pressure at the desired rate 

Casing head pressure 

Desired liquid production rate 

Static bottom hole pressure or static liquid level 

Flowing bottom hole pressure or dynamic liquid level 

Productivity data 

Producing gas oil ratio (GOR) 

Producing water cut or water oil ratio 

Bottom hole temperature at desired rate 

 

3. Fluid properties 

Specific or API gravity of produced oil 

Specific gravity of water 

Specific gravity of produced gas 

Bubble point pressure 

Viscosity of produced oil 

PVT data of produced fluids 

 

4. Surface power supply data 

Primary voltage available at the wellsite 
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Frequency of the power supply 

Available power supply capacity 

 

5. Unusual operating conditions 

Production of abrasives, especially sand 

Paraffin deposition 

Emulsion formation 

Type and severity of corrosion 

Extremely high well temperatures 

A recommended workflow to calculate and design the different components of an ESP system 

in an appropriate order is provided by API’s recommended practice for sizing and selection of 

electric submersible pump installations. Figure 33 illustrates the design process recommended 

by API. 
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Figure 33 - ESP design process [12] 

The pump selection is the first and most important step, since it is the heart of an ESP system. 

The parameters, which have to be defined are the pump series (outside diameter), pump type, 

number of stages and the mechanical strength. The number of stages is from main interest 

since it influences the majority of later design variables. It can be calculated with the following 

equation [10]: 

𝑆𝑡𝑎𝑔𝑒𝑠 =  
𝑇𝑜𝑡𝑎𝑙 𝑑𝑦𝑛𝑎𝑚𝑖𝑐 ℎ𝑒𝑎𝑑 [𝑓𝑡]

ℎ𝑒𝑎𝑑 𝑝𝑒𝑟 𝑠𝑡𝑎𝑔𝑒 [𝑓𝑡]
  (8) 
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4.4 Troubleshooting 

Troubleshooting is the procedure of finding the source in case of failure or malfunction. It is 

used to obtain a logical and technical explanation for saliences occurring during production 

operations. Therefore, certain sources of information are necessary. Modern ESP systems are 

equipped with state of the art sensor technology. Those sensors enable constant monitoring 

of downhole conditions allowing the engineer in charge to identify problems and set remedial 

actions accordingly. Additionally, information is gathered at surface facilities which are 

including wellhead and separator. Data sources used during this thesis are already discussed 

in Chapter 4.2.4 (Measurement Equipment) and shown in Table 3. 

According to Takacs (2009), the most important parameters are the liquid production rate 

measured at surface, the motor current from an ammeter chart and the pump intake pressure. 

The last parameter can be obtained either by acoustic dynamic liquid level measurement or 

downhole measurement. Those three variables allow quite detailed diagnosis to investigate on 

pump’s operation point, wear and leaks, electrical or mechanical damages, pump 

performance, well inflow, etc. [10]. 

4.4.1 Monitoring 

Nowadays, pump monitoring is not just limited to surface sensor measurements. Expensive 

ESP systems justify additional investment in downhole sensor technology to improve 

operations and enhance the run life of an ESP. Monitoring systems are usually web-based 

user interfaces, which allow the engineer to observe and supervise relevant pump parameters. 

Alarm settings can help to notify and early detect abnormal operation conditions. 

During the thesis, Life-of-well information software (LOWIS), a software tool from Weatherford, 

was used for monitoring of ESP wells. The program allows accessing measured data in tabular 

or graphical manner. Figure 34 shows a screenshot of the LOWIS user interface. 
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Figure 34 - LOWIS user interface 

4.4.2 Methodology 

In case an ESP failed, troubleshooting is performed to identify the reason and set remedial 

actions. Troubleshooting requires some experience, since often more different interpretations 

of sensor data is possible. To ease this procedure, troubleshooting guides from different pump 

manufacturers are available. These aids typically use the exclusion principle by telling which 

parameter must change to result in a certain failure. Moreover, remedial actions are 

recommended to restore optimal operation conditions. A part of a troubleshooting aid for failure 

or reason identification is shown in Figure 35. The different symbols are indicating small or 

strong changes. Empty positions are expressing no change in the associated parameter. 

Next to different manufacturer’s guides, the American Petroleum Institute published their 

recommended practice 11S with the title “Operation, maintenance and troubleshooting of 

electric submersible pump installations” in 1994. 



Chapter 4 - Electrical Submersible Pump 56 

   

 

 

Figure 35 - Troubleshooting aid 

In case of severe pump damage, the pump must be pulled and replaced by a new production 

string. If the pump is not or just slightly damaged, remedial actions can be performed. A simple 

example is reverse rotation because the only parameter which must be changed is the direction 

of rotation. 

4.4.3 Dismantling and Inspection 

To obtain more detailed information about the failing mechanism of a damaged pump, the 

pulled pump is dismantled and inspected. It is a valuable source of information which adds 

value to future pump designs and operations. Moreover the inspection allows validation of 

previous failure identification. A better understanding of the pump failure can be obtained. 

One lesson learnt by dismantling and inspection, included the replacement of zirconium based 

bearings by tungsten carbide bearings. The latter ones are showing higher resistance against 

abrasive solids due to harder material surface. During operation, the zirconium bearings were 

damaged and broken leading to a shaft break. Figure 36 shows the dismantled pump and the 

white broken bearing. 

 

Figure 36 - Broken Zirconium bearing 
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5 Introduction to Artificial Neural Networks 

A neural network is the complement of a human brain in computer science. For both, the 

architecture is very similar and the training procedure is influencing connections between the 

different neurons to improve the outcome. Figure 37 illustrates the architecture of a single 

biological neuron and its connections. The input from other units is transmitted by dendrites 

and summarized before the neuron. Regarding the figure, there are different inputs entering 

the neuron. In the neuron the inputs are processed and the output is handed over to other 

neurons by the so-called axon.  

 

Figure 37 - Structure of a biological neuron [13] 

In artificial intelligence, the complement to a biological neuron is the artificial neuron (Figure 

38). The input is transmitted by the different connections and multiplied with so-called weights. 

When entering the neuron, the different inputs are summarized and processed by an activation 

function, which is sizing the output. Finally, the output is transmitted to the next neuron via 

another connection with a different weight. 

 

Figure 38 - Principle of an artificial neuron [14] 
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As in the human brain, an artificial neural network can consist out of many neurons. The 

number of neurons is directly influencing required computation power of the computing 

machines to obtain results in appropriate time. The architecture of a simply neural network is 

illustrated in Figure 11. The main components are the input layer, the hidden layer and the 

output layer. The number of neurons or units in the input layer is equal the number of inputs 

fed to the network, the so-called features. The number of output units is equal to the number 

of outputs. In terms of classification, each class or category is represented by one output 

neuron. For example, the classification of a motor status to tell whether the motor is turning or 

not requires two output units. The hidden layer is located between the input and output layer 

and consists out of hidden neurons, which can be arranged in a layered structure. This means, 

that instead of ten hidden neurons in one layer, two layers with five hidden neurons each can 

be in place. As the architecture varies in complexity, the performance may change as well.  

5.1.1 Feed Forward Neural Network 

Feed forward (FF) neural networks are networks where the information is propagating through 

the network with fixed weights in forward direction resulting in an output. In the backward 

phase, an error signal which is produced by comparing the actual output to the desired output 

is propagating backwards through the network, layer by layer. The weights between the 

neurons are successively adjusted during this process also known as error back propagation 

[14].  

A simple type of a FF neural network is the multi-layer perceptron (MLP). Figure 39 illustrates 

a MLP with two hidden layers and three output units in the output layer. Moreover, there are 

also other architectures available, such as the completely connected perceptron (CCP) and 

recurrent neural networks (RNN).  

 

Figure 39 - Multi-layer perceptron [14] 
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A CCP would additionally have connections between hidden neurons within the hidden layer. 

This adds performance improvement and increases the complexity of the network architecture. 

FF neural networks are capable of handling time independent tasks. For classification, one 

observation of different measured parameters for each time stamp is fed to the network. By 

training the network with appropriate examples or so-called labeled data, the network learns 

to classify as desired.  

5.1.2 Training, Validation and Testing 

In this chapter, the different steps of setting up a model by training of a neural network are 

explained in detail. Additionally, further features such as sequential forward selection and 

softmax layer are described. 

Data Partitioning 

The first thing before a data set can be used for machine learning is partitioning of the data 

set. The reason for this operation is the need of quality control, which allows evaluating a 

created network. Therefore, the data is split into three different classes: Training, validation 

and testing data. Training data will be used while the network is learning by examples. 

Validation data, which is also part of training data is used to judge on each individual trained 

network to choose the best one. Testing data is a subset, which is unknown to the network. It 

is fed to the network for further evaluation on network performance.  

Table 5 shows a small part of a data set which is already partitioned. The last column of the 

table includes three different labels for data splitting which is additionally indicated by colors. 

A typical data partitioning would be 60% of a data set for learning, 20% for validation and 20% 

for testing. The partitions can be either in series or randomly as shown in Table 5 below.  

Table 5 - Example of data set partitioning 

Time stamp MWT PIP PDP MOC Status Data Split 

10.01.2017 06:00 60.7 88.8 143.8 205.3 Normal T 

10.01.2017 06:10 61.2 88.8 143.8 206.0 Normal V 

10.01.2017 06:20 60.6 88.8 143.8 206.0 Normal L 

10.01.2017 06:30 61.0 88.8 143.8 205.2 Normal L 

10.01.2017 06:40 60.6 88.8 143.8 206.4 Wear V 

10.01.2017 06:50 60.8 88.8 143.7 205.4 Wear T 

10.01.2017 07:00 61.2 88.8 143.8 206.4 Wear L 

… … … … … … … 

 Input (features or channels) Output  

 

Where MWT Motor winding temperature 

 PIP Pump intake pressure 
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 PDP Pump discharge pressure 

 MOC Motor current 

 L Learning or training data 

 V Validation data 

 T Testing data 

 

As seen in Table 5, labeled data is used during training, validation and testing. One observation 

is a set of measurements at a certain time and includes four different channels or features. For 

classifying the status of an ESP, the status for each observation was given to the network as 

categorical output as well. This output is used during supervised learning to quantify the error, 

which is used for weight adjustment and model improvement. 

Typically, data set partitioning is performed more often to obtain different subsets for learning, 

validation and testing. During the training with the learning subset, a validation set is used to 

evaluate on progress and model performance to find the best model. In order to avoid that, the 

model which is chosen to be best, is overfitting the validation set, a test set which is different 

from the validation set is used. This procedure is necessary since the validation set is used for 

choosing parameters of the model such as network size. This statistical method is known as 

cross validation [14]. 

For all machine learning tasks, three to five cross validation families have been used. 

Training and Validation 

The training process of a FF neural network is based on quantifying the error followed by 

weight adjustment. The error is obtained by using supervised learning with labeled data. A so 

called training epoch includes feeding one observation to the input layer, forward propagation 

through the network, output calculation, error quantification and weights update. Depending 

on the amount of data, the number of training epochs can vary.  

During the training, a so called supervisor is used to look at the actual result while knowing the 

desired one and quantifying the error. This error is calculated as an error gradient in order to 

adjust weighs correctly. As described earlier, error back propagation is used to improve the 

network performance by distributing the calculated error back throughout the whole network 

from the output layer to the input layer. This learning method is called supervised learning and 

is illustrated in Figure 40 below.  
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Figure 40 - Supervised learning [14] 

Besides supervised learning, there are two other methods: Unsupervised learning and 

reinforcement learning. Unsupervised learning is used for data clustering which is a similar 

process to classification. Clustering is the process of grouping unlabeled data in a way that 

objects within a group are more similar to each other than to objects in other groups. 

The backpropagation of the error gradient can be controlled via three main factors: learning 

rate, backpropagation algorithm and the method of error calculation. Three different 

possibilities for learning rates are known: 

 Global learning  η = const. 

 Local learning   ηk = const. 

 Local adaptive learning ηk = ηk(t) 

Especially the last one, local adaptive learning is resulting in good training results. It allows 

adapting the learning rate locally to react on changes during the training by comparing learning 

rates and errors of previous epochs with the current one. On the other hand, the initialization 

of local learning rates is more complex than using global learning. To illustrate the method for 

calculating a new weight, the Vanilla backpropagation equation is written below: 

𝑤𝑡+1 =  𝑤𝑡 −  𝜂
𝛿𝐸

𝛿𝑤
 (9) 

For calculating the new weight, the old weight is modified by subtracting the product of the 

error gradient and the learning rate. In case the learning rate is well chosen, the error of the 

next weight will be lower than the one in the previous epoch. The aim of this procedure is to 

find the minima of the loss function, which is representing the error over all weights. Figure 41 
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illustrates the loss function (blue line) of weight wi. The black dot represents the weight 

configuration at the last epoch and the tangent shows the error gradient at this point. The green 

dot indicates the next value for the weight in case the learning rate is chosen appropriately as 

illustrated. In case the learning rate exceeds a certain level, the next weight would result in an 

higher error compared to the previous epoch. This is indicated by the red dot in Figure 41. 

 

Figure 41 - Learning rate and weight adjustment 

Since the loss function owns more than one minima, the goal is to find to global minima. 

Therefore, different weight initializations are necessary to avoid ending in local minima which 

would result in a non-optimal solution. These different initializations are realized by using 

cluster learning. The method uses a cluster of so-called experts which are trained with the 

same data at same data partitions. Figure 42 illustrates the learning progress of two different 

experts where Expert 1 (red dots) is ending in a local minima and Expert 2 (green dots) is 

ending in the global minima of the loss function.  

 

Figure 42 - Cluster learning 
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During the training, learning and validation errors are calculated to evaluate on error status. 

This allows to train the network appropriately and avoids overtraining. The effect of overtraining 

can be identified by comparing learning and validation error as illustrated in Figure 43. The 

early-stopping point is indicating the validation error minimum. Further training results in exact 

data modelling and increases the validation error. By comparing the validation error of previous 

epochs with the current one, an early stopping criteria can be applied to avoid overtraining and 

achieve time saving. Additionally, the fluctuation of the error can be observed for a certain 

amount of epochs to stop earlier since no performance improvement can be achieved. In this 

case, the two error lines of validation and learning would progress in parallel without changing.  

 

Figure 43 - Training and validation error [14] 

To identify the optimal network size of the neural network, different generations are trained, 

validated and tested. Therefore, the validation error is used to compare the different 

generations or network sizes. By choosing the network generation with the lowest validation 

error the effect of overtraining can be avoided in higher generations. Figure 44 illustrates the 

learning and validation errors of different neural network generations. 



Chapter 5 - Introduction to Artificial Neural Networks 64 

   

 

 

Figure 44 - Evaluation of the network size by validation 

Testing 

As described previously, a subset of labeled data is used for testing the performance of the 

trained and selected model. This allows further evaluation of the performance of the model 

since the test set is new to the network and statistically independent. 

Sequential Forward Selection 

The sequential forward selection is a well known statistical method which allows to identify 

data channels within the data set which are significant for model performance. During the 

process, each channel is used to train a neural network individually. The best performing 

model’s channel is selected to be the best and most significant one. This channel is then 

combined with all the other channels one by one to identify the next more significant data 

channel. In case of five available channels, 5 + 4 + 3 + 2 + 1 networks have to be trained to 

obtain a complete ranking.  

In Figure 45 below, the first four channels are giving the lowest validation and testing error 

(yellow bars and blue line). Additional channels are not adding improvement and can be 

neglected during the training procedure. This saves time due to less data processing. 
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Figure 45 - Sequential forward selection 

Where mwt Motor winding temperature 

 fre Frequency 

 pdp Pump discharge pressure 

 pip Pump intake pressure 

 moc Motor current 

 tbp Tubing pressure 

 csp Casing pressure 

 cbt Bottom hole temperature 

 

Softmax Layer 

A classification problem, where a non-numerical categorical output is used and desired 

requires the use of a softmax layer. This layer calculates probabilities for each class by using 

equation 10, which is also known as softmax function or normalized exponential function: 

𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑊𝑒𝑎𝑟 =  
𝑒𝑂𝑢𝑡𝑝𝑢𝑡 𝑊𝑒𝑎𝑟

𝑒𝑂𝑢𝑡𝑝𝑢𝑡 𝑊𝑒𝑎𝑟 + 𝑒𝑂𝑢𝑡𝑝𝑢𝑡 𝑁𝑜𝑟𝑚𝑎𝑙 + 𝑒𝑂𝑢𝑡𝑝𝑢𝑡 𝐵𝑟𝑒𝑎𝑘
  (10) 

Where Output Wear Numerical value of the output neuron designated to wear 

 Output Normal Numerical value of the output neuron designated to normal 

 Output Break Numerical value of the output neuron designated to shaft break 

 

Due to the properties of the exponential function, the largest positive numerical output of the 

three different output neurons results in the state with the highest probability. The state with 
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the highest probability is then selected as the categorical output. Considering all probabilities, 

the sum of all have to be one. 
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6 Model Building 

A model is required in order to process a certain input and produce a desired output of interest. 

It is the result of a process called model building. When it comes to model building, three 

different model types are available. Those are: 

 Deterministic models 

 Statistical models 

 Heuristic models 

A deterministic model excludes any randomness where the result from a certain input is 

absolutely reproducible. Perfect examples for deterministic systems are physical laws. 

A statistical model is a class of mathematical model and normally specified by mathematical 

equations which are based on one or more random variables. Also non-random variables can 

be included. Statistical models typically produce several solutions of equal likelihood which are 

not entirely reproducible. 

Heuristic models are models derived from historical data or observations. These models are 

built based on data which has been measured or rules which have been observed. A heuristic 

technique is any approach of problem solving which is sufficient to reach immediate goals. A 

famous example for such a model is the rule of thumb. The computation or execution of such 

models is typically very fast. 

This thesis is dealing with heuristic, fully data driven models. For model building, artificial 

intelligence or more precisely, artificial neural networks (ANN) are used.  

In the following subchapters, the theoretical approach and procedure of model building with 

ANNs is discussed. Furthermore, the workflow including data acquisition, quality control, data 

preparation and data cleansing is described. 

6.1 Data Acquisition 

The data, which is measured during operations is recorded and stored in a database. For 

classification, surface data measured at the wellhead and downhole sensor data was acquired 

by accessing LOWIS. The different data channels with associated measurement locations are 

listed in Table 3 in Chapter 4.2.4 (Measurement Equipment). Figure 46 illustrates the signal 

schematics of the process network and the data flow. The downhole data is directly collected 

at the high voltage side of the surface transformer and transferred via transmission control 

protocol / internet protocol (TCP/IP) to the process network where it is stored in a database. 

Within LOWIS, the data is stored in three different time intervals. Those are current, periodic 

and daily trend. The current trend stores one observation every 10 minutes. The periodic trend 

is averaging the current trend data over four hours and storing it including statistics such as 

mean, standard deviation, minimum and maximum value. The daily trend is doing the same 

averaging procedure for 24 hours and includes statistics over this period. 



Chapter 6 - Model Building 68 

   

 

 

Figure 46 - Signal schematics and data flow 

The monitoring tool LOWIS is not just storing the data in a database but also allows 

visualization of it. Since it was not possible to access the data by writing SQL queries, the data 

extraction was done with excel spreadsheets well by well. In total, data from 31 producing wells 

was extracted. Additionally, data from the production database, which contains production data 

measured at surface separators was extracted for the 31 ESP wells. The data was combined 

with downhole sensor data and surface data for production rate modelling. 

6.2 Quality Control 

After extracting the data from the databases, the data was screened for failure events which 

can be utilized for training of a neural network. Unfortunately only a few failure events were 

found in the stored data. The available failure events associated with the data trend in which 

the evenst are captured, can be found in Table 6 below. Column “Sampling” is related to the 

different data trends or sampling intervals current (10min), periodic (4h) and daily (24h). 

Table 6 - Available failure events for machine learning 

Stored trend Sampling Shaft break Pump wear Seized pump 

Current 10min 0 1 0 

Periodic 4h 3 1 1 

Daily 24h 3 1 1 

 

In order to get a better overview about the data itself, statistics were applied and the different 

channels were cross-plotted against each other. This allowed finding dependencies between 

different data channels and revealed information regarding data quality and consistency. 
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Furthermore, similarities between wells have been identified. Figure 47 illustrates a matrix 

cross-plot of one production well. 

 

Figure 47 - Cross-plot matrix of different parameters from a single well 

Where MWT Motor winding temperature [°C] 

 PDP Pump discharge pressure [bar] 

 MOC Motor current [A] 

 FRE Frequency [Hz] 

 Brutto Gross production rate [m3/d] 

 

Additionally, well specific statistics were computed and exported to tables. Table 7 shows a 

reduced parameter list and the calculated statistical features. The data for plotting Figure 47 

and computing Table 7 is originating from the same well. Hence, both are showing similar 

results. 

Table 7 - Data statistics (reduced parameters) of a single well for QC 

Parameter 
Motor winding 

temperature 

Pump discharge 

pressure 

Motor 

current 
Frequency 

Average 69.3 °C 123.8 bar 223.14 A 48.99 Hz 

Minimum 68.8 °C 122.9 bar 221.34 A 48.99 Hz 

Maximum 69.5 °C 126.6 bar 226.16 A 48.99 Hz 

Standard Dev. 0.08 °C 0.58 bar 0.63 A 0.00 Hz 

Variance 0.01 °C2 0.34 bar2 0.40 A2 0.00 Hz2 

Nr. of values 10000 10000 10000 10000 

Nr. of outliers 0 0 0 0 
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6.3 Data Cleansing 

In order to prepare the extracted data for later machine learning, data cleansing was 

necessary. By plotting the data in time series, it was possible to access the data visually. This 

gave a first idea about the data properties and allowed to write filters within R to get optimal 

results. Overall, four different filters were used: Outlier removal, time stamp handling, missing 

values treatment and plausibility check. Figure 48 illustrates a typical example of an outlier 

(upper left red circle), which can easily be removed by finding suitable limits for each channel. 

The limits were set in accordance with the sensor specifications. In case no measurement 

limitations were given, appropriate limits for each channel were chosen after analyzing the 

data with standard statistics such as average, minimum and maximum value.   

 

Figure 48 - Example for outlier removal 

Additionally, inconsistent time stamps were handled in order to get a proper synchronized data 

set. Therefore, the time stamps of each channel were aligned with respect to the different 

sampling intervals.  

In case of missing values, a moving window was used to detect and evaluate the size of the 

missing data. In case of small lacks, the last existing value was used to fill the gap. In case of 

too large sections, no data manipulating operation was performed to avoid possible distortion. 

Data statistics helped to monitor the effect of the treatment. The filling of missing values was 

carried out channel-wise.  
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Figure 49 - Example for plausibility check 

Figure 49 shows an example where a plausibility check was intended to interfere. Depending 

on system settings, data channels kept recording data even though the pump was switched 

off. The result of this misleading recording operation can be seen in the figure above, where 

the motor current and power should be zero when the frequency is zero. Since the frequency 

was given from the operator, it could be used to create a plausibility check. Therefore, channels 

such as motor current and power (Figure 49 – yellow and red line) were set to zero within the 

time period indicated within the red circles.  

6.4 Data Preparation 

Due to lack of different failure events and types, artificial data sets including shaft break and 

pump wear were modeled. The latter was created by using DesignRite, an artificial lift design 

and optimization software from Schlumberger. By changing head degradation within the 

software tool, different pumping efficiencies were simulated. The resulting pump curves were 

used to find proper settings for creating artificial pump wear trends. Therefore, real data 

channel trends of correctly working pumps were manipulated to show all characteristics of 

pump wear while maintaining measurement noise. Random variables were used to introduce 

different degrees of pump wear by influencing the various parameter gradients.  

Secondly, shaft break failure sets were created by manual data manipulation. Since shaft 

break events are over within a few minutes to hours, data manipulation was done by hand 

using an old real life example of a shaft break as reference. 

The artificially created data sets were built by manipulation of already cleaned data. Therefore, 

it was not necessary to perform data cleansing as described in Chapter 6.3 (Data Cleansing). 

In total, nine data sets including pump wear and nine data sets including shaft break have been 

prepared. On mixed case, including both failure types was created. All of those are referred to 

as artificial data sets. 

In order to use the clean data sets for machine learning, the data had to be labeled. This 

process of data interpretation was carried out by the hand of visualized time series data. 
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Visualization was done with dygraph, a plotting package written in the programming language 

R. The labels for classification included three different states: Normal (normal operation), wear 

(pump wear) and break (shaft break). 

6.5 Failure Classification 

In this subchapter, all steps of failure classification are described. 

6.5.1 Feature Preparation 

Features are the elements of the input vectors, where each element is fed to an input neuron. 

After data extraction, fourteen features were available within each data set. Four of those 

fourteen features, the leakage measurements, were ignored, because they are not contributing 

to mechanical failure. Instead, two features were created by calculation of the first derivative 

of pump intake and pump discharge pressure. A sequential forward selection can be used to 

find a subset of features, which represents the data appropriately and results in accurate 

model. Due to too long computation times, complete SFS were carried out only for production 

rate modeling and shaft break classification. The features selected for model building are listed 

in Table 8. A green colored field indicates a used feature while a red colored field is indicating 

a not used one. For some data set arrangements, it was not possible to use all features as 

indicated, since a few were not available in all corresponding data sets. Hence, slight 

modifications of the failure classification features were done and are indicated when 

applicable. 

Table 8 - Features and field of application 

Feature Type 
Failure 

Classification 

Production 

Modeling 

Motor winding temperature 

Measured 

Task 1, 2, 4, 5 Selected by SFS 

Bottom hole temperature Task 1, 2 - 

Pump intake pressure (PIP) Task 1, 2, 4, 5 Selected by SFS 

Pump discharge pressure (PDP) Task 1, 2, 4, 5 Selected by SFS 

Tubing pressure Task 1, 2 - 

Casing pressure Task 1, 2 - 

Motor current Task 1, 2, 4 - 

Motor power - - 

Frequency - Selected by SFS 

Vibrations Task 1, 2, 5 - 

1st derivative of PIP 
Calculated 

Task 1, 2, 4 - 

1st derivative of PDP Task 1, 2, 4 - 
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6.5.2 Feature Selection 

When artificial data is used, all available features were selected for training since the SFS did 

not result in a clear selection in an appropriate period. Hence, different features were used for 

the various tasks described in Table 9. 

The result of the SFS for failure classification is presented in Figure 50 below. The validation 

error during the SFS is only slightly decreasing, while the classification rates are showing an 

uptrend. Nevertheless, there is no significant improvement recognizable. However, the SFS 

was not completely run because of too long computation times as mentioned above.  

 

Figure 50 - Sequential forward selection for failure classification 

Where dpip 1st Derivative of pump intake pressure 

 mwt Motor winding temperature 

 vib Vibrations 

 pdp Pump discharge pressure 

 moc Motor current 

 pip Pump intake pressure 

 dpdp 1st Derivative of pump discharge pressure 

 CCR Correct classification rate 

 

6.5.3 Methodology 

Machine learning, which includes learning, validation and testing was performed in cVision 

(Version 4.0, Neuro Genetic Solutions), which automatically implements a softmax layer for 

output generation when using a categorical output. For data partitioning, the data was split in 

three parts for all tasks: 60% learning, 20% validation and 20% testing. This split varied, when 
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training arrangements such as leave-one-out or leave-two-out were used. Furthermore, a 

completely connected perceptron (FF neural network) was used for this time independent 

classification task. The architecture was varied from 0 (logistic regression) to a maximum of 

15 hidden neurons depending on the task. The feed forward neural net used is completely 

connected. Hence, no other layers are in place. 

In order to compare different models against each other, various combinations of data set 

arrangements were used for model building. Table 9 lists the different tasks roughly and shows 

the used training arrangements for each of them. Additionally, the available number of data 

sets is given. This number is equal to the number of wells, since each data set is obtained from 

another well. The different training arrangements are explained in the following: 

 Single: Each set is used for learning, validation and testing. 

 Leave one out: 

(LOO) 

All sets are used for learning and validation besides one. This left 

out is used for testing. 

 Leave two out: 

(LTO) 

One set is used for training and two others are used for testing.  

 All together: All sets are used for learning, validation and testing. 

 

Table 9 - Task list and training arrangements 

Task Description Sampling Nr. of sets Training arrangements 

1 Pump wear (ADS) 10min 9 Single, LOO, all together 

2 Shaft break (ADS) 10min 9 Single, LOO, all together 

3 Combination of 1 & 2 (ADS) 10min 1 Single 

4 Pump wear (RL + ADS) 10min 9 Single, LOO, all together 

5 Shaft break (RL) 4h 3 Single, LOO, LTO, all together 

 

Where ADS Artificial data sets 

 RL Real life data/example 

 

The results of the different tasks are presented in Chapter 6.5.4 (Results and Quality Control). 

Additionally, detailed information of all trained neural networks can be found in the appendix. 

Task 1 – Pump Wear (Artificial Data Sets) 

This task includes training all nine artificial data sets with pump wear individually, as leave-

one-out and all together. For model building, the features indicated in column “Failure 

Classification” of Table 8 were used. 
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Task 2 – Shaft Break (Artificial Data Sets) 

This task includes training all nine artificial data sets with shaft break individually, as leave-

one-out and all together. For model building, the features indicated in column “Failure 

Classification” of Table 8 were used. 

Task 3 – Combination of Pump Wear and Shaft Break (Artificial Data Sets) 

This case includes a combination of pump wear and shaft break in one artificial well data set. 

Furthermore, this is the only case that deals with an extended range of features than stated in 

Table 8. The training of the model was carried out by using all 9 artificial data sets of pump 

wear and all 9 of shaft break. The model was found to perform best with a network size 

including 10 hidden neurons. The data set with the failure combination was then used for 

testing. The used features for building the model are listed in Table 10:  

Table 10 - Features for model building for pump wear and shaft break (Task 3) 

Measured 

Motor winding temperature 

Motor current 

Tubing pressure 

Pump intake pressure 

Pump discharge pressure 

Vibrations 

Computed 

1st Derivative of motor winding temperature 

1st Derivative of motor current 

1st Derivative of tubing pressure 

1st Derivative pump intake pressure 

1st Derivative pump discharge pressure 

Pressure ratio (intake pressure over discharge pressure) 

 

A visualization including an engineers data interpretation is illustrated in Figure 51. The shaded 

areas are related to the data interpretations, where the white are represents the operation 

range where no failure or malfunction occurs. The blue area indicates pump wear and the red 

area indicates shaft break. The arrows shall indicated the trend of the individual feature during 

pump wear, since the trend change is difficult to observe on the plotted scale. On the very left 

of Figure 51, the shaft break event can be found. The pump discharge pressure is rapidly 

dropping and equilibrating with the pump intake pressure, which is increasing due to loss of 

production. As a result of production loss, the motor is no longer cooled and an increase in 

motor winding temperature occurs. 
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Figure 51 - Data visualization of an artificial data set including a combination of pump wear 

and shaft break 

Task 4 – Pump Wear (Real Life Example and Artificial Data Sets) 

Task 4 combines real life data with artificially created data. The real life data is obtained by 

measurements taken at well 5, which was also used for creating an artificial case of pump 

wear. Therefore, the concerned artificial data set is replaced by the real life data of the same 

well. The training arrangements including eight artificial data sets and one real life example 

were “leave one out” and “all together”. Additionally, the real life data set is trained individually 

as well. For model building, the features indicated in column “Failure Classification” of Table 8 

were used. 

Task 5 – Shaft Break (Real Life Examples) 

This task includes training of three different real life examples with shaft break individually, in 

leave-one-out, leave-two-out and all-together training arrangement. For modeling, artificial 

neural networks with no hidden unit were used because a linear model was found to perform 

appropriately. Hence, these models are based on logistic regression. Additionally, a sequential 

forward selection was carried out while training with all wells together. The three data sets 

including shaft break events are available in four hour sampled intervals and consist of just a 

few observations each. The data of well 3 including data labels is illustrated in Figure 52.  
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Figure 52 – Periodic shaft break data of well 3 including data labels 

Where MWT Motor winding temperature 

 PIP Pump intake pressure 

 PDP Pump discharge pressure 

 VIB Vibration 

 

In order to obtain better statistical representation, the data was extended by using the existing 

mean values and standard deviations. This interpolation procedure added 15 observations to 

each interval. For model building, the features indicated in column “Failure Classification” of 

Table 8 were used. 

6.5.4 Results and Quality Control 

The results of failure classification are presented according to the different classification tasks 

listed in Table 9. Plots which are presenting model summaries or comparisons including the 

correct classification rate are always referring to the testing set in this regard (unless stated 

otherwise). 

Task 1 - Pump Wear (Artificial Data Sets) 

The result of the model building of task 1 is presented in Figure 53. For each individual artificial 

data set, the performance in terms of correct classification rate (CCR) of the test set is 

excellent. In all cases, 97% are exceeded. Well “1 – 9” represents the result of the training 

including all data sets. The correct classification rate for this training arrangement is 99%.   
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Figure 53 - Model evaluation of artificial data set based classifiers for pump wear: Task 1, 

Training arrangement “single” & “all together” 

The confusion matrix of well 3 is presented in Table 11. The table is including the classification 

results of all three different data partitions. The green and red shaded cells are indicating the 

correct and incorrect classified observations respectively. There is no significant difference 

between the correct classification rates.   

Table 11 - Confusion matrix of well 3 (Task 1) 

Partition Learning Validation Testing 

Overall CCR 98.1% 98.5% 97.6% 

Status Normal Wear Normal Wear Normal Wear 

CCR 98.8% 97.7% 99.0% 98.2% 98.3% 97.1% 

Normal 2092 84 719 21 736 33 

Wear 25 3497 7 1152 13 1117 

 

The average network size including the best network generation of each case is 13 hidden 

neurons. The maximum network size during training was 15 neurons in the hidden layer. 

Figure 54 illustrates the result of the leave-one-out arrangement. From special interest is well 

5, which is classified with poor performance when tested. Low performances in classification 

occur most likely due to statistical differences of features between the training sets and testing 

set. No statistical analysis was performed to confirm this assumption. 
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Figure 54 - Model evaluation of artificial data set based classifiers for pump wear: Task 1, 

Training arrangement “leave one out” & “all together” 

More information regarding the models of the different well data sets can be found in the 

appendix. 

Task 2 – Shaft Break (Artificial Data Sets) 

The result of the model building for single well training as well for all wells together is showing 

correct classification rates of greater 99% in all cases. Figure 55 is illustrating the outcome of 

this analysis. The overall network architecture is rather simple in terms of network size. The 

average network size including the best network generation of each case is 6 hidden neurons. 

The maximum network size during training was 15 neurons in the hidden layer. 

 

Figure 55 - Model evaluation of artificial data set based classifiers for shaft break: Task 2, 

Training arrangement “single” & “all together” 
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Figure 56 shows the model evaluation when applying the training arrangement “leave one out”. 

Additionally, the result of the training when all wells are included is shown for comparison. All 

classifiers perform above an overall correct classification rate of 90% (related to testing) beside 

well 1 and well 9. Both fail in classifying normal pumping conditions. 

 

Figure 56 - Model evaluation of artificial data set based classifiers for shaft break: Task 2, 

Training arrangement “leave one out” & “all together” 

Since the test sets are all of comparable size and the validation error of all models is in the 

same range, the reason for this high miss-interpretation is most likely a significant difference 

in features’ magnitudes and data consistency between training sets and testing set. No 

statistical analysis was performed to confirm this assumption. 

More information regarding the models of the different well data sets can be found in the 

appendix. 

Task 3 – Combination of Pump Wear and Shaft Break (Artificial Data Sets) 

The result of testing with the failure combination data set is visualized in Figure 57. The status 

with the highest probability is giving the by the model predicted status. Especially, the shaft 

break probability curve (red line) immediately peaks when the shaft break occurs. In the 

beginning of pump wear (blue shaded area), miss-classification occurs for a short period when 

pump wear is wrongly classified as normal operation (green line). It can be observed, that the 

blue pump wear curve is climbing belated.  
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Figure 57 - Probability curves of the built predictive model for classifying pump wear and 

shaft break (Task 3) 

A better quantitative representation is given in Table 12. The table is presenting the confusion 

matrix of the testing data set. The overall correct classification rate is 98.3 %, where no 

individual correct classification rate lies below 95 %. Only a minor number of observations is 

classified wrong. Hundred four as pump wear labeled observations were classified as pump 

wear. Vice versa, nineteen observations were classified wrongly. 

Table 12 - Confusion matrix of the built predictive model for classifying pump wear and shaft 

break (Task 3) 

Confusion Matrix Normal Operation Pump wear Shaft Break 

Overall correct classification rate         98.3 % 

Correct classification Rate 99.6 % 95.0 % 100.0 % 

Normal operation 4978 104 0 

Pump wear 19 1991 0 

Shaft break 0 0 28 

Wrong predicted observations 19 104 0 

Nr. of observations 4997 2095 28 

 

The model for this task was created by a completely connected perceptron with 10 hidden 

units. 

Task 4 – Pump Wear (Real Life Example and Artificial Data Sets) 

In this task, different training arrangements were tested. Artificial and real life data (well 5 RD) 

is used individually and in combination to classify normal operation and pump wear. In Figure 

58, the result of the “single” and “all together” setup is presented. All models are predicting 

with a CCR of higher than 90%. Only well 3 and “1-9” (representing training of a model 

including all well data sets) are performing slightly below all the other classifiers. The result of 
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well 5 (real life data) shows that the model built with well-own data is capable of predicting 

pump conditions with an accuracy of about 99%. 

 

Figure 58 - Model evaluation of artificial and real data based classifiers for pump wear: Task 

4, Training arrangement “single” & “all together” 

In Figure 59, the results of the leave-one-out approach are presented. In order to highlight the 

miss-interpretation status-wise, the CCR of the test set for normal operation (green) and pump 

wear (red) are plotted. Almost all models show a very low CCR for one of the two states.  

 

 

Figure 59 - Model evaluation of artificial and real data based classifiers for pump wear: Task 

4, Training arrangement “leave one out” & “all together” 
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As stated in task 1, the leave-one-out training of these models also has been done by using 

artificial data of well 5 instead of the real life data. It can be said that the inclusion of well 5 

(RD) in training data is influencing the model negatively in terms of testing performance, since 

the CCRs of models in Figure 54 are showing better results. The reason might be the large 

size of the real life example, which is about double the size of an artificial data set.  

Moreover, the model which is built while leaving well 5 (RD) out performs low when tested. 

This indicates, that the training data (well 1 - 4 & 6 - 9) in this case might be significantly 

different from the test set well 5 (RD). Table 13 shall outline the data set size of well 5 (RD) as 

well as the fact, that also the artificial data set well 5 is failing when tested during task 1.  

Table 13 - Comparison of the confusion matrices of the leave-one-out approach for real and 

artificial data of well 5 for testing 

Partition Testing Testing 

Task Task 1 Task 4 

Data Left out well 5 (AD) Left out well 5 (RD) 

Overall CCR 39.7% 64.4% 

Status Normal Wear Normal Wear 

CCR 100.0% 0.0% 100.0% 0.0% 

Normal 3895 5904 25370 14002 

Wear 0 0 7 4 

 

The ESP in well 5 is located around 200m above all other pumps which are investigated in this 

thesis. This difference might be the reason for high miss-interpretation. The significant gap in 

features’ magnitudes between training sets and testing set is complicating model building.  

More information regarding the models of the different well data sets can be found in the 

appendix. 

Task 5 – Shaft Break (Real Life Examples) 

The results of the SFS are illustrated in Figure 60. The procedure was carried out with an 

arrangement of all wells together. The features pump discharge pressure and pump intake 

pressure are showing already very high CCRs and reduced validation and testing error. 
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Figure 60 - Result of the sequential forward selection for task 5 

Where PDP Pump discharge pressure 

 PIP Pump intake pressure 

 MWT Motor winding temperature 

 VIB Vibrations  

 VErrAV Averaged validation errors 

 LErrAV Averaged learning errors 

 TErrAV Averaged testing errors 

 VCRR Validation (overall) correct classification rate 

 LCCR Learning (overall) correct classification rate 

 TCCR Testing (overall) correct classification rate 

 

For the other presented results in this subchapter, all four features (as shown in Figure 60) are 

used. 

To investigate on cross validation, different CV subsets were used to evaluate the influence of 

data partitioning. Figure 61 shows the comparison of five models which were built by including 

all wells for training and testing. Five different cross validations were applied, where the result 

of the different models is presented below. All five CVs are performing well and above 98% of 

the correct classification rate (testing overall). Considering validation and testing errors, there 

is only a small variance between the different models. 
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Figure 61 - Comparison of CCR of the test set of different cross validation families for training 

arrangement "all" 

Table 14 shows the overall CCRs of all 5 different cross validations for learning, validation and 

testing. The fact, that almost no variance occurs in any CV set shows that the data is partitioned 

in a statistical representative manner. This analysis shows also that in this case a multilinear 

regression model performs successfully in failure classification of shaft break. 

Table 14 - Overall correct classification rates of different cross validation families for training 

arrangement “all” 

CV Learning Validation Testing 

1 99.3% 98.8% 99.6% 

2 99.7% 98.0% 99.6% 

3 99.3% 100.0% 98.4% 

4 99.1% 99.6% 100.0% 

5 99.6% 99.2% 98.4% 

 

The comparison of the models built by including each well individually is presented in Figure 

62. The validation and testing errors are relatively low and the classification rates exceed 99% 

in all cases. For comparison, the result of the model built when including all wells for training 

is presented as well. This classifier shows slightly less performance in terms of CCR. But due 

to more used data sets during training, the model is more generalized. Nevertheless, all models 

are capable of classifying shaft break with a high accuracy. 
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Figure 62 - Comparison of the single well based classifiers 

Figure 63 shows the results of the leave-one-out arrangement. The validation and testing error 

refers to the wells, which are used for training the models. When well 3 is left out for training 

and used for testing, the CCR indicate low classification performance, even though the 

validation error of the model is rather low. A higher testing and validation error can be identified, 

when well 3 is included in training (Left out well 1 and 2). 

 

Figure 63 - Comparison of models built by the leave-one-out arrangement 

The high miss-classification of the model built when well 3 is left out, as well as the increased 

validation and testing error of the three other models in Figure 63 occur due to wrong labelling 

of the data during data preparation. A pump-damaging event, which took place prior the actual 

shaft break was miss-interpreted. Since the model (Left out well 3) was trained with proper 

labeled data of well 1 and 2, the result is distorted.  
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Figure 64 shows the well data including interpolated values as well as the modeled probability 

curve for shaft break. The red line in the lower plot indicates the time range of shaft break 

labeled data. Further investigation regarding pump failure analysis showed, that the first 

pressure change on 30 October occurred most likely due to a hole in the pump’s stage. Hence 

the result given by the probability curve is classifying the shaft break correctly. The wrong 

labeled data which is used for calculating correct classification rates explains the low 

performance illustrated in Figure 63 (Left out well 3). 

 

Figure 64 - Data and probability curves of the model "Left out well 3" (Task 5) 

Where MWT Motor winding temperature 

 PIP Pump intake pressure 

 PDP Pump discharge pressure 

 VIB Vibration 

 

 The results of training a model with only one well while testing it with two others is illustrated 

in Figure 65. The validation and testing error are referring to the training data, which was 

applied also for testing during the training. The correct classification rates are showing the 

result of the testing using the two left out wells. Again, the wrong labeled data of well 3 distorts 

the results. Especially when well 3 is used for training, the created classifier is not capable of 

interpreting shaft break when testing with well 1 and 2. When well 3 is included in testing, the 

result is negatively influenced although the models interpret the actual shaft break correctly 

according to probability curves. The probability curves are showing the same characteristics 

as the one depicted in Figure 64. 
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Figure 65 - Comparison of models built by the leave-two-out arrangement 

More information regarding the models of the different well data sets can be found in the 

appendix. 

6.6 Production Rate Modeling 

In order to model gross production during measurement gaps, downhole and surface data 

were combined for model building. Therefore, measured production rates were assumed to be 

constant during the measurement interval of 12 hours. This assumption can be justified by a 

12-hour pre-flush period of the separator and agreement of experienced field personnel.  

Due to increased counter pressure during the measurement, the time when the well is 

connected to the separator can easily be identified. Tubing, Casing, pump intake and pump 

discharge pressure are showing a step in the measurement profile when the measurement 

starts and stops. By implementing a proper searching algorithm, gross production 

measurement can be allocated correctly time-wise. This procedure is necessary because of 

the inaccurate time stamp (only date) of separator data.  

The separator measurement is causing a pressure increase upstream the metering station. 

Since the pumps are working dynamically, this change in pressure reduces production. This 

effect is also known as observer effect and occurs everywhere where the measurement 

influences the result of the measurement itself. Therefore, different data allocation methods 

were used to overcome and minimize this distorting effect: 

 Production measurement is allocated exactly 

 Production measurement is allocated partially outside of the true measurement period 

 Production measurement is allocated fully outside of the true measurement period 
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6.6.1 Feature Selection 

A sequential forward selection was performed to find the most important data channels for 

production rate modeling. Figure 66 illustrates the result of this statistical investigation and 

shows that only the four channels motor winding temperature, frequency, pump discharge 

pressure and pump intake pressure are necessary to find an appropriate model, since more 

channels are not improving the performance. 

 

Figure 66 - Sequential forward selection for production rate modeling 

Where mwt Motor winding temperature 

 fre Frequency 

 pdp Pump discharge pressure 

 pip Pump intake pressure 

 moc Motor current 

 tbp Tubing pressure 

 csp Casing pressure 

 cbt Bottom hole temperature 

6.6.2 Results 

The first approach was carried out by aligning the separator measurement data exactly with 

the pressure increases observed in the pressure trends of pump intake and discharge 

pressure. The four features, which were selected by SFS as well as the measured gross 

production rate were applied for training. The results of the best model were presented in 

Figure 67. The completely connected FF neural network which was found to perform best with 

nine hidden neurons. This network size was applied for all three approaches.  
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Figure 67 - Production rate modelling with exact separator data allocation 

The measured gross production is always located at modeled production peaks, while outside 

of the measurement the production rate is decreased. This case highlights the difficulties 

coming from the observer effect and shows that this data arrangement is not resulting in a 

proper solution. 

Figure 68 illustrates the result obtained by using a partial data shift between measured gross 

production data and downhole data. The separator data is shifted partially outside of the actual 

measurement period to enhance the performance and decrease the impact of the observer 

effect. Nevertheless, the solution results in a possibly overestimating model, since the modeled 

production rate is higher than the measured one. To evaluate this result in detail, a second 

measurement method, which is not influencing the production system would have to be 

implemented. This could proof that the higher production is reasonable due to reduced counter 

pressure in the flow line in case of a measurement gap.  

 

 

Figure 68 - Production rate modelling with partial separator data shift 
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In the last presented approach, the measured gross production is fully allocated outside of the 

actual measurement period. As it can be seen in Figure 69, the separator data is shifted 

backwards in time. The result is showing an accurate fit of measured and modeled gross 

production, especially in the right half of Figure 69. Although, a underestimated modeled 

production rate is obtained around the 1st of January.  

 

Figure 69 - Production rate modelling with total separator data shift 

The approach of partial data shifting seems to be the most reasonable one regarding the 

elimination of the observer effect. The validation and testing errors of the models are in the 

range of 3 – 6 m3/d and can be decreased further by individual well training. Since production 

rates of ESPs are typically higher than 200 m3/d, this error is small and thus neglect able. To 

improve production rate modelling, improved measurement methods capable of measuring 

multiphase flow while not influencing the production system have to be implemented. This 

measure would eliminate the observer effect completely, but would add higher complexity in 

terms of maintenance and results in higher cost.  
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7 Conclusion 

The thesis showed that models built with artificial neural networks are capable of classifying 

pump failure with a high accuracy. Generated artificial data and real life data sets were 

successfully applied for training and testing.  

Pump wear and shaft break can be identified automatically after a model is trained and 

evaluated properly. Especially for single well training arrangements, the correct classification 

rates exceeded 95% in all cases. Models built by using the leave-one-out approach with 

different well data sets are resulting in a wider performance range. These differences occur 

because the wells are not identically completed and the pumps are not located in the same 

depth inside the wellbore. 

Results of various training arrangements showed that quality control of created classification 

models is from high importance. Evaluation of proper data labelling, model network size, test 

set size in comparison to the training set size and data statistics of individual well data sets is 

crucial to exclude problems resulting in low correct classification rates from the very beginning. 

The modeling of production rates during measurement gaps is resulting in an accurate 

prediction. The integration of separator data was successfully carried out under the assumption 

of constant production during the measurement. Data cleansing was implemented to ensure 

consistent and correct data sets for proper model building. Sequential forward selection was 

successfully used to reduce the dimensionality of the input data by identification of relevant 

features.  

The impact of the observer effect caused by the separator was reduced by applying different 

separator data allocations concerning actual measurement periods. These time-shift 

approaches resulted in accurate production rates. Although further evaluation of the modeled 

gross production is necessary to confirm that, the result is correctly in terms of error 

quantification.  

For future research, data including more failure events than presented in this thesis might 

significantly increase the outcome of the presented approaches. In case of combined training 

approaches, clustering of wells by using well data statistics might allow model building of group 

specific classifiers. However, the introduction of well independent features might increase the 

model performance when trained with different well data sets. 

Gross production rate modeling can be further investigated by implementing additional 

measurement methods, which are not influencing the production system. This possibly allows 

more accurate modeling of true production rates during measurement gaps. 
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Appendices 

Appendix A 

Table 15 - Training and testing results of task 1 - Training arrangement “single” and “all” 

Well 
Nr. 

Normal 
operation 
CCR [%] 

Pump 
wear 

CCR [%] 

Overall 
CCR 
[%] 

Validation 
Error 

Testing 
Error 

Best 
Network 

Size 

1 99.6 99.8 99.7 0.0298 0.0475 15 

2 100.0 99.2 99.7 0.0598 0.0637 6 

3 98.3 97.1 97.6 0.1185 0.1416 12 

4 100.0 99.9 100.0 0.0102 0.0267 9 

5 99.0 98.4 98.7 0.1120 0.1065 5 

6 100.0 100.0 100.0 0.0031 0.0059 14 

7 100.0 99.3 99.7 0.0481 0.0619 13 

8 100.0 99.9 100.0 0.0217 0.0188 14 

9 99.9 99.9 99.9 0.0396 0.0365 5 

All 98.4 99.1 98.7 0.1047 0.1013 13 

 

Table 16 - Training and testing results of task 1 - Training arrangement “leave-one-out” and 

“all” 

Well 
Nr. 

Normal 
operation 
CCR [%] 

Pump 
wear 

CCR [%] 

Overall 
CCR 
[%] 

Validation 
Error 

Best 
Network 

Size 

LOO 1 0.0 100.0 59.2 0.1169 13 

LOO 2 89.8 100.0 94.3 0.1102 15 

LOO 3 0.0 100.0 62.2 0.2259 7 

LOO 4 100.0 53.5 69.9 0.1392 9 

LOO 5 100.0 0.0 39.7 0.1095 11 

LOO 6 97.9 99.9 98.9 0.1251 15 

LOO 7 81.9 100.0 91.2 0.0939 15 

LOO 8 98.4 99.6 99.1 0.1214 11 

LOO 9 89.7 99.6 94.6 0.0803 12 

All 98.4 99.1 98.7 0.1047 13 
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Table 17 - Training and testing results of task 2 - Training arrangement “single” and “all” 

Well Nr. 
Normal 

operation 
CCR [%] 

Shaft 
Break 

CCR [%] 

Overall 
CCR 
[%] 

Validation 
Error 

Testing 
Error 

Best 
Network 

Size 

1 100.0 100.0 100.0 0.0030 0.0042 7 

2 100.0 100.0 100.0 0.0044 0.0042 0 

3 100.0 100.0 100.0 0.0040 0.0043 15 

4 100.0 100.0 100.0 0.0039 0.0035 5 

5 100.0 100.0 100.0 0.0063 0.0086 6 

6 100.0 100.0 100.0 0.0064 0.0073 0 

7 100.0 100.0 100.0 0.0035 0.0023 9 

8 100.0 100.0 100.0 0.0079 0.0655 3 

9 100.0 100.0 100.0 0.0033 0.1808 11 

All 100.0 100.0 100.0 0.0015 0.0016 2 

 

Table 18 - Training and testing results of task 2 - Training arrangement “leave-one-out” and 

“all” 

Well 
Nr. 

Normal 
operation 
CCR [%] 

Shaft 
Break 

CCR [%] 

Overall 
CCR 
[%] 

Validation 
Error 

Testing 
Error 

Best 
Network 

Size 

LOO 1 0.0 100.0 14.2 0.0014 0.8831 3 

LOO 2 100.0 100.0 100.0 0.0010 0.0017 3 

LOO 3 100.0 100.0 100.0 0.0006 0.0059 2 

LOO 4 100.0 73.9.0 96.6 0.0018 0.1257 3 

LOO 5 100.0 100.0 100.0 0.0006 0.0023 2 

LOO 6 100.0 100.0 100.0 0.0015 0.0078 1 

LOO 7 100.0 100.0 100.0 0.0009 0.0013 2 

LOO 8 100.0 69.0 91.4 0.0014 0.2862 3 

LOO 9 0.0 100.0 19.2 0.0007 0.8990 3 

All 100.0 100.0 100.0 0.0015 0.0016 2 

 

Table 19 - Training and testing results of task 4 - Training arrangement “single” and “all” 

Well 
Nr. 

Normal 
operation 
CCR [%] 

Pump 
wear 

CCR [%] 

Overall 
CCR 
[%] 

Validation 
Error 

Testing 
Error 

Best 
Network 

Size 

1 99.6 99.8 99.7 0.0298 0.0475 15 

2 100.0 99.2 99.7 0.0598 0.0637 6 

3 98.3 97.1 97.6 0.1185 0.1416 12 

4 100.0 99.9 100.0 0.0102 0.0267 9 

5 (RD) 100.0 100.0 100.0 0.0223 0.0667 2 

6 100.0 100.0 100.0 0.0031 0.0059 14 

7 100.0 99.3 99.7 0.0481 0.0619 13 

8 100.0 99.9 100.0 0.0217 0.0188 14 

9 99.9 99.9 99.9 0.0396 0.0365 5 

All 98.2 92.3 95.3 0.1973 0.1939 6 
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Table 20 - Training and testing results of task 4 - Training arrangement “leave-one-out” and 

“all” 

Well Nr. 
Normal 

operation 
CCR [%] 

Pump 
wear 

CCR [%] 

Overall 
CCR 
[%] 

Validation 
Error 

Best 
Network 

Size 

LOO 1 100.0 65.1 79.4 0.1713 7 

LOO 2 1.8 99.9 45.2 0.2119 4 

LOO 3 0.0 100.0 62.2 0.1623 5 

LOO 4 100.0 39.3 60.7 0.1630 8 

LOO 5 (RD) 100.0 0.0 64.4 0.2349 5 

LOO 6 0.0 100.0 50.9 0.2287 5 

LOO 7 0.0 100.0 51.6 0.2077 5 

LOO 8 100.0 52.3 72.7 0.2176 5 

LOO 9 0.1 99.9 49.7 0.2116 5 

All 98.2 92.3 95.3 0.1973 6 

 

Table 21 - Training and testing results of task 5 - analysis on cross validation, multi-linear 

regression models, training arrangement “all” 

CV 
Normal 

operation 
CCR [%] 

Shaft 
Break 

CCR [%] 

Overall 
CCR 
[%] 

Validation 
Error 

Testing 
Error 

1 100.0 99.2 99.6 0.1392 0.1183 

2 100.0 99.2 99.6 0.1445 0.1072 

3 97.7 99.2 98.4 0.1205 0.1302 

4 100.0 100.0 100.0 0.1141 0.1113 

5 98.5 98.3 98.4 0.1583 0.1369 

 

Table 22 - Training and testing results of task 5 - multi-linear regression models, training 

arrangement “single” and “all” 

Well Nr. 
Normal 

operation 
CCR [%] 

Shaft 
Break 

CCR [%] 

Overall 
CCR 
[%] 

Validation 
Error 

Testing 
Error 

1 100.0 100.0 100.0 0.0639 0.0424 

2 100.0 100.0 100.0 0.1226 0.0235 

3 100.0 100.0 100.0 0.1370 0.0832 

All 100.0 99.2 99.6 0.1392 0.1183 
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Table 23 - Training and testing results of task 5 - multi-linear regression models, training 

arrangement “leave-one-out” and “all” 

Well Nr. 
Normal 

operation 
CCR [%] 

Shaft 
Break 

CCR [%] 

Overall 
CCR 
[%] 

Validation 
Error 

Testing 
Error 

LOO 1 99.3 99.7 99.6 0.1583 0.1270 

LOO 2 99.4 100.0 99.5 0.1279 0.1362 

LOO 3 100.0 23.0 63.3 0.0958 0.0618 

All 100.0 99.2 99.6 0.1392 0.1183 

 

Table 24 - Training and testing results of task 5 - multi-linear regression models, training 

arrangement “leave-two-out” and “all” 

Well Nr. 
Normal 

operation 
CCR [%] 

Shaft 
Break 

CCR [%] 

Overall 
CCR 
[%] 

Validation 
Error 

Testing 
Error 

LTO 1 100.0 38.1 76.3 0.0639 0.0424 

LTO 2 99.6 76.9 87.5 0.1226 0.0235 

LTO 3 100.0 0.0 51.8 0.1370 0.0832 

All 100.0 99.2 99.6 0.1392 0.1183 

 (LTO X means well X was used for training) 
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Appendix B 

Code (Programming language R) for data import and data cleansing 

library(xts) 

library(zoo) 

library(padr) 

library(lubridate) 

library(tidyr) 

library(readxl) 

library(xlsx) 

 

### Choose Wells (Welllist) 

 

# single: Welllist <- c("Bo118") 

# working:      

Welllist <-

c("Bo3","Bo6a","Bo23","Bo24","Bo25","Bo28","Bo35","Bo37","Bo43","Bo4

5","Bo48", 

"Bo68","Bo78","Bo80","Bo81","Bo85","Bo89","Bo96","Bo102","Bo111","Bo

117","Bo118","Bo121","Bo152","Bo203","Bo204","Bo208") 

# not working: Welllist <- c("Bo63","Bo66","Bo95","Bo110") 

# all: Welllist <- 

c("Bo3","Bo6a","Bo23","Bo24","Bo25","Bo28","Bo35","Bo37","Bo43","Bo4

5","Bo48","Bo63","Bo66","Bo68","Bo78","Bo80","Bo81","Bo85","Bo89","B

o95","Bo96","Bo102","Bo110","Bo111","Bo117","Bo118","Bo121","Bo152",

"Bo203","Bo204","Bo208") 

 

### Change Settings 

 

Interval  <- "Current" # No Change possible here - use different 

Source File 

Timeframe <- "Adapted" # No change possible here - use older Version 

to access 8/12/16h Timeframes    

POffset   <- 0.7       # Comparison Value for Production Data 

Association 

setPFRE   <- T         # T or F to enable/disable: FRE = 0 & MOC < 3 

-> BRU = 0 

setPDIP   <- T         # T or F to enable/disable: DIP < 2 -> BRU = 

0 

Excel     <- F         # write to Excel 

writeNA   <- T         # write NA values 

 

### Initialization  
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VTS1   <- logical(length=500000) 

VTS2   <- c(1:500000) 

for (vts in 2:500000) {VTS2[vts] <- VTS2[vts-1]+10} 

for (vts in VTS2) {VTS1[vts]<-T 

                   if (vts > 500000){break}} 

 

MLSets <- matrix(0, nrow = length(Welllist), ncol = 6) 

colnames(MLSets) <- c("Well","all","no CSP/TBP","Top 

5","PIP,PDP,FRE,MOC","PIP,PDP,FRE") 

# Cols <- as.character(c(1:length(Welllist))) 

 

CTime <- gsub(":","_",substring(as.character(Sys.time()),0,16)) 

DirectoryName <- paste("C:/Users/student/Dropbox/Montanuni/MT 

MUL/R/Output/Current/",CTime) 

dir.create(DirectoryName) 

dir.create(paste(DirectoryName,"/Statistics",sep = "")) 

if (writeNA) {writeNA1 <- "NA"} else {writeNA1 <- ""} 

 

### Start of the Well Loop  

 

for (z in 1:length(Welllist)) { 

 

Sonde <- Welllist[z] 

 

#### Load & extract Data  

 

DALINK1 <- ".xlsx" 

DALINK2 <- "C:/Users/student/Dropbox/Montanuni/MT MUL/R/Daten zum 

Plotten/Mit Header/" 

DAlink <- paste(DALINK2,Sonde,"/",Sonde,"_",Interval,DALINK1,sep = 

"") 

DA <- read_excel(DAlink) 

AD <- read_excel("C:/Users/student/Dropbox/Montanuni/MT 

MUL/Daten/Datum der Ausfälle und Restarts.xlsx") 

PDAlink <- paste("C:/Users/student/Dropbox/Montanuni/MT 

MUL/Daten/GDB/",Sonde,DALINK1, sep = "") 

ProdDA <- read_excel(PDAlink) 

TimeProd <- ProdDA[,6] 

SOBGrund <- ProdDA[,19] 

DataProd <- ProdDA[,21:28] 

Production <- cbind(TimeProd,DataProd) 

Production <- drop_na(Production) 

Statistics <- matrix (0,nrow = 9,ncol = 14) 
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row.names(Statistics) <- c("Average","Min","Max","Values","Outlier < 

Min","Outlier > Max","NA","Std.Dev","Variance") 

colnames(Statistics) <- 

c("CBT","MWT","FCL","ZCL","CSP","TBP","PIP","PDP","DCA","DCP","MOC",

"MOP","FRE","VIB") 

ReadLinkFD <- paste("C:/Users/student/Dropbox/Montanuni/MT 

MUL/R/Settings/Failure Dates/",Sonde,".xlsx",sep = "") 

FDExists = F 

Proceed  = F 

 

### In case no Data is available, a TS is added to allow proper 

running of the code, NULL values are filtered later again 

 

for (ts in c(1,3,5,7,9,11,13,15,17,19,21,23,25,27,29)){ 

  if (!is.na(DA[1,ts])) { 

    MissingTS <- DA[1,ts]   

    break 

  } 

} 

for (ts in c(1,3,5,7,9,11,13,15,17,19,21,23,25,27,29)){ 

  if (is.na(DA[1,ts])) { 

    DA[1,ts]  <- MissingTS 

    DA[1,(ts+1)] <- -999 

  } 

} 

 

### CHOOSING COLUMNS ACCORDING TO THE INTERVAL TYPE  

 

if (Interval == "Current") { 

  dCBT<-DA[,1:2] 

  dFCL<-DA[,3:4] 

  dZCL<-DA[,5:6] 

  dDIP<-DA[,7:8] 

  dDCA<-DA[,9:10] 

  dDCP<-DA[,11:12] 

  dVIB<-DA[,13:14] 

  dMWT<-DA[,15:16] 

  dPDP<-DA[,17:18] 

  dPIP<-DA[,19:20] 

  dCSP<-DA[,21:22] 

  dMOC<-DA[,23:24] 

  dMOP<-DA[,25:26] 

  dTBP<-DA[,27:28] 

  dFRE<-DA[,29:30] 
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} else { 

  dCBT<-DA[,1:5] 

  dFCL<-DA[,6:10] 

  dZCL<-DA[,11:15] 

  dDIP<-DA[,16:20] 

  dDCA<-DA[,21:25] 

  dDCP<-DA[,26:30] 

  dVIB<-DA[,31:35] 

  dMWT<-DA[,36:40] 

  dPDP<-DA[,41:45] 

  dPIP<-DA[,46:50] 

  dCSP<-DA[,51:55] 

  dMOC<-DA[,56:60] 

  dMOP<-DA[,61:65] 

  dTBP<-DA[,66:70] 

  dFRE<-DA[,71:75] 

  } 

 

### REMOVE ALL ROWS WITH NA VALUES  

 

CBT<-drop_na(dCBT) 

FCL<-drop_na(dFCL) 

ZCL<-drop_na(dZCL) 

DIP<-drop_na(dDIP) 

DCA<-drop_na(dDCA) 

DCP<-drop_na(dDCP) 

VIB<-drop_na(dVIB) 

MWT<-drop_na(dMWT) 

PDP<-drop_na(dPDP) 

PIP<-drop_na(dPIP) 

CSP<-drop_na(dCSP) 

MOC<-drop_na(dMOC) 

MOP<-drop_na(dMOP) 

TBP<-drop_na(dTBP) 

FRE<-drop_na(dFRE) 

 

rm(dCBT,dFCL,dZCL,dDIP,dDCA,dDCP,dVIB,dMWT,dPDP,dPIP,dCSP,dMOC,dMOP,

dTBP,dFRE) 

 

### DEFINE FORMAT FOR TIME AND DATE  

 

CBT$TS_CBT <-as.POSIXct(CBT$TS_CBT,format="%m/%d/%Y 

%H:%M:%S",tz="GMT") 
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FCL$TS_FCL <-as.POSIXct(FCL$TS_FCL,format="%m/%d/%Y 

%H:%M:%S",tz="GMT") 

ZCL$TS_ZCL <-as.POSIXct(ZCL$TS_ZCL,format="%m/%d/%Y 

%H:%M:%S",tz="GMT") 

DIP$TS_DIP <-as.POSIXct(DIP$TS_DIP,format="%m/%d/%Y 

%H:%M:%S",tz="GMT") 

DCA$TS_DCA <-as.POSIXct(DCA$TS_DCA,format="%m/%d/%Y 

%H:%M:%S",tz="GMT") 

DCP$TS_TCP <-as.POSIXct(DCP$TS_TCP,format="%m/%d/%Y 

%H:%M:%S",tz="GMT") 

VIB$TS_VIB <-as.POSIXct(VIB$TS_VIB,format="%m/%d/%Y 

%H:%M:%S",tz="GMT") 

MWT$TS_MWT <-as.POSIXct(MWT$TS_MWT,format="%m/%d/%Y 

%H:%M:%S",tz="GMT") 

PDP$TS_PDP <-as.POSIXct(PDP$TS_PDP,format="%m/%d/%Y 

%H:%M:%S",tz="GMT") 

PIP$TS_PIP <-as.POSIXct(PIP$TS_PIP,format="%m/%d/%Y 

%H:%M:%S",tz="GMT") 

CSP$TS_CSP <-as.POSIXct(CSP$TS_CSP,format="%m/%d/%Y 

%H:%M:%S",tz="GMT") 

MOC$TS_MOC <-as.POSIXct(MOC$TS_MOC,format="%m/%d/%Y 

%H:%M:%S",tz="GMT") 

MOP$TS_MOP <-as.POSIXct(MOP$TS_MOP,format="%m/%d/%Y 

%H:%M:%S",tz="GMT") 

TBP$TS_TBP <-as.POSIXct(TBP$TS_TBP,format="%m/%d/%Y 

%H:%M:%S",tz="GMT") 

FRE$TS_FRE <-as.POSIXct(FRE$TS_FRE,format="%m/%d/%Y 

%H:%M:%S",tz="GMT") 

 

 

### GENERATE XTS 

 

if (Interval == "Current"){ 

xtCBT<- xts(x=CBT$DA_CBT,order.by=CBT$TS_CBT) 

xtFCL<- xts(x=FCL$DA_FCL,order.by=FCL$TS_FCL) 

xtZCL<- xts(x=ZCL$DA_ZCL,order.by=ZCL$TS_ZCL) 

xtDIP<- xts(x=DIP$DA_DIP,order.by=DIP$TS_DIP) 

xtDCA<- xts(x=DCA$DA_DCA,order.by=DCA$TS_DCA) 

xtDCP<- xts(x=DCP$DA_TCP,order.by=DCP$TS_TCP) 

xtVIB<- xts(x=VIB$DA_VIB,order.by=VIB$TS_VIB) 

xtMWT<- xts(x=MWT$DA_MWT,order.by=MWT$TS_MWT) 

xtPDP<- xts(x=PDP$DA_PDP,order.by=PDP$TS_PDP) 

xtPIP<- xts(x=PIP$DA_PIP,order.by=PIP$TS_PIP) 

xtCSP<- xts(x=CSP$DA_CSP,order.by=CSP$TS_CSP) 
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xtMOC<- xts(x=MOC$DA_MOC,order.by=MOC$TS_MOC) 

xtMOP<- xts(x=MOP$DA_MOP,order.by=MOP$TS_MOP) 

xtTBP<- xts(x=TBP$DA_TBP,order.by=TBP$TS_TBP) 

xtFRE<- xts(x=FRE$DA_FRE,order.by=FRE$TS_FRE) 

} else { 

xtCBT<- xts(x=CBT[2:5],order.by=CBT$TS_CBT) 

xtFCL<- xts(x=FCL[2:5],order.by=FCL$TS_FCL) 

xtZCL<- xts(x=ZCL[2:5],order.by=ZCL$TS_ZCL) 

xtDIP<- xts(x=DIP[2:5],order.by=DIP$TS_DIP) 

xtDCA<- xts(x=DCA[2:5],order.by=DCA$TS_DCA) 

xtDCP<- xts(x=DCP[2:5],order.by=DCP$TS_TCP) 

xtVIB<- xts(x=VIB[2:5],order.by=VIB$TS_VIB) 

xtMWT<- xts(x=MWT[2:5],order.by=MWT$TS_MWT) 

xtPDP<- xts(x=PDP[2:5],order.by=PDP$TS_PDP) 

xtPIP<- xts(x=PIP[2:5],order.by=PIP$TS_PIP) 

xtCSP<- xts(x=CSP[2:5],order.by=CSP$TS_CSP) 

xtMOC<- xts(x=MOC[2:5],order.by=MOC$TS_MOC) 

xtMOP<- xts(x=MOP[2:5],order.by=MOP$TS_MOP) 

xtTBP<- xts(x=TBP[2:5],order.by=TBP$TS_TBP) 

xtFRE<- xts(x=FRE[2:5],order.by=FRE$TS_FRE) 

} 

### ASSOCIATE XTS WITH NAMES  

 

if (Interval == "Current"){ 

names(xtCBT)<-c("CBT") 

names(xtFCL)<-c("FCL") 

names(xtZCL)<-c("ZCL") 

names(xtDIP)<-c("DIP") 

names(xtDCA)<-c("DCA") 

names(xtDCP)<-c("DCP") 

names(xtVIB)<-c("VIB") 

names(xtMWT)<-c("MWT") 

names(xtPDP)<-c("PDP") 

names(xtPIP)<-c("PIP") 

names(xtCSP)<-c("CSP") 

names(xtMOC)<-c("MOC") 

names(xtMOP)<-c("MOP") 

names(xtTBP)<-c("TBP") 

names(xtFRE)<-c("FRE") 

} else { 

names(xtCBT)<-c("CBT","MaxCBT","MinCBT","StdCBT") 

names(xtFCL)<-c("FCL","MaxFCL","MinFCL","StdFCL") 

names(xtZCL)<-c("ZCL","MaxZCL","MinZCL","StdZCL") 

names(xtDIP)<-c("DIP","MaxDIP","MinDIP","StdDIP") 
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names(xtDCA)<-c("DCA","MaxDCA","MinDCA","StdDCA") 

names(xtDCP)<-c("DCP","MaxDCP","MinDCP","StdDCP") 

names(xtVIB)<-c("VIB","MaxVIB","MinVIB","StdVIB") 

names(xtMWT)<-c("MWT","MaxMWT","MinMWT","StdMWT") 

names(xtPDP)<-c("PDP","MaxPDP","MinPDP","StdPDP") 

names(xtPIP)<-c("PIP","MaxPIP","MinPIP","StdPIP") 

names(xtCSP)<-c("CSP","MaxCSP","MinCSP","StdCSP") 

names(xtMOC)<-c("MOC","MaxMOC","MinMOC","StdMOC") 

names(xtMOP)<-c("MOP","MaxMOP","MinMOP","StdMOP") 

names(xtTBP)<-c("TBP","MaxTBP","MinTBP","StdTBP") 

names(xtFRE)<-c("FRE","MaxFRE","MinFRE","StdFRE") 

} 

 

### ALIGNING DATA TO ROUNDED INTERVALS  

 

if (Interval == "Current"){ 

  xtCBTa <- align.time(xtCBT,600) 

  xtFCLa <- align.time(xtFCL,600) 

  xtZCLa <- align.time(xtZCL,600) 

  xtDIPa <- align.time(xtDIP,600) 

  xtDCAa <- align.time(xtDCA,600) 

  xtDCPa <- align.time(xtDCP,600) 

  xtVIBa <- align.time(xtVIB,600) 

  xtMWTa <- align.time(xtMWT,600) 

  xtPDPa <- align.time(xtPDP,600) 

  xtPIPa <- align.time(xtPIP,600) 

  xtCSPa <- align.time(xtCSP,600) 

  xtMOCa <- align.time(xtMOC,600) 

  xtMOPa <- align.time(xtMOP,600) 

  xtTBPa <- align.time(xtTBP,600) 

  xtFREa <- align.time(xtFRE,600) 

} 

if (Interval == "Periodic"){ 

  xtCBTa <- align.time(xtCBT,14400) 

  xtFCLa <- align.time(xtFCL,14400) 

  xtZCLa <- align.time(xtZCL,14400) 

  xtDIPa <- align.time(xtDIP,14400) 

  xtDCAa <- align.time(xtDCA,14400) 

  xtDCPa <- align.time(xtDCP,14400) 

  xtVIBa <- align.time(xtVIB,14400) 

  xtMWTa <- align.time(xtMWT,14400) 

  xtPDPa <- align.time(xtPDP,14400) 

  xtPIPa <- align.time(xtPIP,14400) 

  xtCSPa <- align.time(xtCSP,14400) 
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  xtMOCa <- align.time(xtMOC,14400) 

  xtMOPa <- align.time(xtMOP,14400) 

  xtTBPa <- align.time(xtTBP,14400) 

  xtFREa <- align.time(xtFRE,14400) 

} 

if (Interval == "Daily"){ 

  xtCBTa <- align.time(xtCBT,86400) 

  xtFCLa <- align.time(xtFCL,86400) 

  xtZCLa <- align.time(xtZCL,86400) 

  xtDIPa <- align.time(xtDIP,86400) 

  xtDCAa <- align.time(xtDCA,86400) 

  xtDCPa <- align.time(xtDCP,86400) 

  xtVIBa <- align.time(xtVIB,86400) 

  xtMWTa <- align.time(xtMWT,86400) 

  xtPDPa <- align.time(xtPDP,86400) 

  xtPIPa <- align.time(xtPIP,86400) 

  xtCSPa <- align.time(xtCSP,86400) 

  xtMOCa <- align.time(xtMOC,86400) 

  xtMOPa <- align.time(xtMOP,86400) 

  xtTBPa <- align.time(xtTBP,86400) 

  xtFREa <- align.time(xtFRE,86400) 

} 

 

Temperatures <- cbind(xtCBTa,xtMWTa) 

Leakages <- cbind(xtFCLa,xtZCLa) 

SPressures <- cbind(xtCSPa,xtTBPa) 

DPressures <- cbind(xtPIPa,xtPDPa) 

Currents <- cbind(xtDCAa,xtDCPa) 

Motor <- cbind(xtMOCa,xtMOPa) 

FREVIB <-cbind(xtFREa,xtVIBa) 

 

comb1 <- cbind(Temperatures,Leakages) 

comb2 <- cbind(SPressures,DPressures) 

comb3 <- cbind(Currents,Motor) 

comb4 <- cbind(comb1,comb2) 

comb5 <- cbind(comb3,FREVIB) 

Allxts <- cbind(comb4,comb5) 

 

#### Change Allxts storage mode 

 

storage.mode(Allxts) <- "numeric" 

 

### Production Data  
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Production <- xts(x=Production[,2:9],order.by=Production$DATUM) 

 

FirstSensorData <- substring(as.character(index(Allxts[1])),0,10); 

CutProduction <- 

(which(substring(FirstSensorData,0,8)==substring(as.character(index(

Production)),0,8))[1]-5) 

if (is.na(CutProduction)) {CutProduction <- 1} 

 

Production <- Production [(CutProduction:dim(Production)[1]),] 

 

prows <- c(1:dim(Production)[1]); prows[] <- NA 

 

for(pi in 1:dim(Production)[1]) {prows[pi] <- 

which(as.character(index(Production[pi])) == 

substring(as.character(index(Allxts)),0,10))[1]} 

 

prows[which(prows < 101)] <- NA 

prows[] <- prows[]-100 

prows1  <- !is.na(prows) 

prows   <- subset(prows,prows1) 

prows1  <- subset(1:length(prows1),prows1) 

 

AllxtsProd <- Allxts[,-c(9:500)] 

names(AllxtsProd) <- 

c("Brutto","Oil","WC","DensityBH","Density","GOR","Gas","Water") 

AllxtsProd[,] <- NA 

  

for (pi in 1:length(prows)) { 

   

  if (prows[pi]-100 < 1) {paverage <- mean(Allxts[(1:500),8], na.rm 

= T)} else {if (prows[pi]+400 > dim(Allxts)[1]) {paverage <- 

mean(Allxts[((dim(Allxts)[1]-500):dim(Allxts)[1]),8], na.rm = T)} 

else {paverage <- mean(Allxts[((prows[pi]-100):(prows[pi]+400)),8], 

na.rm = T)}} 

   

  if (is.nan(paverage)) {next} 

   

  allow = F 

   

  for(pii in (prows[pi]:(prows[pi]+300))) { 

   

  if (is.na(Allxts[pii,8])) {next} 
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  if ((Allxts[pii,8] - paverage) > POffset) {AllxtsProd[pii,1:8] <- 

Production[prows1[pi],1:8]; if (is.na(AllxtsProd[(pii-1),1])){if 

(allow) {AllxtsProd[(pii-1),1:8] <- Production[prows1[pi],1:8]}}; 

allow = T} 

   

  if (pii == dim(Allxts)[1]) {break} 

     

}} 

 

### Production in Case FRE = 0 & MOC < 3 

 

if (setPFRE) {AllxtsProd[which(Allxts$FRE == 0 & Allxts$MOC < 3),1] 

<- 0} 

 

if (setPDIP) {AllxtsProd[which(abs(Allxts$PDP - Allxts$PIP) < 2),1] 

<- 0}  

 

### Filter Outliers and replace them  

 

MinMaxValues <- matrix(0,nrow = 2,ncol = 14) 

row.names(MinMaxValues) <- c("Min","Max") 

colnames(MinMaxValues) <- colnames(Statistics) 

NAValues <- c(0,0,0,0,0,0,0,0,0,0,0,0,0,0) 

MinMax <- read_excel("C:/Users/student/Dropbox/Montanuni/MT 

MUL/R/Daten zum Plotten/Mit Header/MinMax.xlsx") 

MinMax <- as.matrix(MinMax) 

storage.mode(MinMax) <- "numeric" 

 

### Filter Outliers  

 

for (f in 1:14) { 

  for (u in 1: dim(Allxts)[1])   { 

    if (is.na(Allxts[u,f])) {NAValues[f] <- NAValues[f] +1} else { 

      check <- Allxts[u,f] 

      if (check < MinMax[1,f]) {Allxts[u,f] <- NA 

      MinMaxValues[1,f] <- (MinMaxValues[1,f]+1)} 

      if (check > MinMax[2,f]) {Allxts[u,f] <- NA 

      MinMaxValues[2,f] <- (MinMaxValues[2,f]+1)} 

      Statistics[4,f] <- Statistics[4,f] +1 

    } 

  }}     

 

### get Failure Dates and prepare for Classification  
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if (file.exists(ReadLinkFD)) {  

 

FDExists = T 

   

FD <- read_excel(ReadLinkFD, col_names = T) 

FD$Date   <-as.POSIXct(FD$Date,format="%Y-%m-%d %H:%M:%S",tz= "GMT") 

 

xtFD <- xts(x = FD$Failure,order.by = FD$Date) 

if (Interval == "Current")  {xtFD <- align.time(xtFD,600)} 

if (Interval == "Periodic") {xtFD <- align.time(xtFD,14400)} 

names(xtFD) <- c("Failure") 

 

if (index(Allxts[1]) < index(xtFD[1]) & 

index(Allxts[dim(Allxts)[1]]) > index(xtFD[dim(xtFD)[1]])) { 

   

Proceed = T 

 

Failure <- as.character(xtFD$Failure) 

Failure <- c("Normal",Failure) 

FIntervals <- c(1:(length(Failure)+1)) 

 

for (fd in 2:(length(FIntervals)-1)) {FIntervals[fd] <- 

which(index(xtFD[fd-1]) == index(Allxts))} 

FIntervals[length(FIntervals)] <- dim(Allxts)[1]+1 

 

}} 

 

### add Columns for Classes  

 

Classes   <- Allxts[,1:11] 

colnames(Classes) <- c("Normal","Separator","Wear","Shaft 

Break","Plugged Intake","Short Circuit","Low PI","Tbg 

Leak","Mode","Measurement","Cut") 

Classes[] <- 0 

Classes[which(!is.na(AllxtsProd[,1])),2] <- 1 

 

if (FDExists & Proceed) { 

 

for(fd in 1:(length(FIntervals)-1)) { 

   

  if (Failure[fd] == "Wear")    

{Classes[(FIntervals[fd]:(FIntervals[(fd+1)]-1)),3]  <- 1} 

  if (Failure[fd] == "Break")   

{Classes[(FIntervals[fd]:(FIntervals[(fd+1)]-1)),4]  <- 1} 



Appendices 110 

   

 

  if (Failure[fd] == "Plugged") 

{Classes[(FIntervals[fd]:(FIntervals[(fd+1)]-1)),5]  <- 1} 

  if (Failure[fd] == 

"SCircuit"){Classes[(FIntervals[fd]:(FIntervals[(fd+1)]-1)),6]  <- 

1} 

  if (Failure[fd] == "LowPI")   

{Classes[(FIntervals[fd]:(FIntervals[(fd+1)]-1)),7]  <- 1} 

  if (Failure[fd] == "Leak")    

{Classes[(FIntervals[fd]:(FIntervals[(fd+1)]-1)),8]  <- 1} 

  if (Failure[fd] == "Cut")     

{Classes[(FIntervals[fd]:(FIntervals[(fd+1)]-1)),11] <- 1} 

  if (Failure[fd] == "Normal")  

{Classes[(FIntervals[fd]:(FIntervals[(fd+1)]-1)),1]  <- 1} 

   

}} else {Classes[which(is.na(AllxtsProd[,1])),1]  <- 1} 

   

### merge xts  

 

Result <- cbind(Allxts,AllxtsProd,Classes) 

ResultNA <- as.data.frame(Result) 

ResultStats <- ResultNA 

 

### add Measurement to ResultNA (Separator: On/Off)  

 

ResultNA[which(!is.na(AllxtsProd[,1])),32] <- "On" 

ResultNA[which(is.na(AllxtsProd[,1])),32]  <- "Off" 

 

### Data Statistics  

 

ResultStats = as.data.frame(ResultStats) 

ResultStats1 <- ResultStats 

ResultStats <- as.matrix(ResultStats) 

 

# change to numeric for using function cor 

 

storage.mode(ResultStats) <- "numeric" 

 

# calculate Std Deviation 

 

SDandVar <- matrix(nrow = 2,ncol = 14) 

for(o in 1:14) { 

  SDandVar[1,o] <- round(sd(Allxts[,o], na.rm = TRUE),3) 

  SDandVar[2,o] <- round(var(Allxts[,o], na.rm = TRUE),3)   

} 
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for (s in 1:dim(Statistics)[2]){ 

  Statistics[1,s] <- round(mean(ResultStats[,s], na.rm = TRUE),3) 

  Statistics[2,s] <- min(ResultStats[,s], na.rm = TRUE) 

  Statistics[3,s] <- max(ResultStats[,s], na.rm = TRUE) 

  Statistics[5,s] <- MinMaxValues[1,s] 

  Statistics[6,s] <- MinMaxValues[2,s] 

  Statistics[7,s] <- NAValues[s] 

  Statistics[8,s] <- SDandVar[1,s] 

  Statistics[9,s] <- SDandVar[2,s] 

} 

 

### Machine Learning Sets  

 

MLSets[z,1] <- Welllist[z] 

MLSets[z,2] <- dim(drop_na(ResultStats1))[1] 

MLSets[z,3] <- dim(drop_na(subset(ResultStats1, select = 

c("CBT","MWT","PIP","PDP","FRE","MOC","MOP","FRE","VIB","Brutto"))))

[1] 

MLSets[z,4] <- dim(drop_na(subset(ResultStats1, select = 

c("MWT","PIP","PDP","FRE","MOC","Brutto"))))[1] 

MLSets[z,5] <- dim(drop_na(subset(ResultStats1, select = 

c("PIP","PDP","FRE","MOC","Brutto"))))[1] 

MLSets[z,6] <- dim(drop_na(subset(ResultStats1, select = 

c("PIP","PDP","FRE","Brutto"))))[1] 

 

### Check if all time stamps are present  

 

ResultNA <- cbind(rownames(ResultNA),ResultNA) 

colnames(ResultNA)[1] <- "TS" 

ResultNA <- subset(ResultNA,!duplicated(ResultNA$TS)) 

ResultNA$TS <- as.POSIXct(ResultNA$TS,format="%Y-%m-%d 

%H:%M:%S",tz="GMT") 

ResultNA <- pad(ResultNA) 

 

VTS <- VTS1[(1:dim(ResultNA)[1])] 

ResultNA <- subset(ResultNA,VTS) 

rownames(ResultNA) <- NULL 

 

### EXPORT TO CSV  

 

write.csv(ResultNA, file = paste(DirectoryName,"/",Sonde,".csv", sep 

= ""), row.names = F, na = writeNA1) 
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if (Excel) {write.xlsx(ResultNA, file = 

paste(DirectoryName,"/",Sonde,".xlsx", sep = ""), row.names = F, 

showNA = writeNA)} 

 

write.csv(Statistics, file = 

paste(DirectoryName,"/Statistics/",Sonde,"_Stats.csv", sep = "")) 

 

} # end of the first for loop 

 

### write final Files  

 

write(c("Interval:",Interval,"Timeframe [h]:",Timeframe,"Production 

Offset",POffset,"set FRE/BRU",setPFRE), file = 

paste(DirectoryName,"/Settings.txt", sep = "")) 

write.csv(MLSets,file = 

paste(DirectoryName,"/Statistics/MLSets.csv", sep = "")) 
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Code (Programming language R) for creating a Crossplot Matrix 

library(car) 

library(RColorBrewer) 

library(tidyr) 

 

### Read Data 

 

data <- read.csv("C:/Users/student/Dropbox/Montanuni/MT 

MUL/R/Output/Current/Adapted/Bo80.csv") 

stats <- read.csv("C:/Users/student/Dropbox/Montanuni/MT 

MUL/R/Output/Current/Adapted/Statistics/Bo80_Stats.csv") 

 

Data <- drop_na(data)  

 

### Vector for choosing channels for cross-plotting 

 

vector <- c(F, F, T, F, F, F, F, F, T, F, F, T, F, T, F, T, F, F, F, 

F, F, F, F, F, F, F, F, F, F, F, F, F, F, F) 

 

data <- Data[,vector] 

 

### create Plot and safe as picture (format png) 

 

png(file = paste("C:/Users/student/Dropbox/Montanuni/MT 

MUL","Plot.jpg",sep = ""), width = 2000, height = 2000) 

 

### create cross-plot matrix with histograms in diagonal windows 

### factor could be used to color data according to data split 

(RColorBrewer) 

 

scatterplotMatrix(~MWT+PDP+MOC+FRE+Brutto, data = data, diagonal = 

c("density"),reg.line = "", smoother = F, col=my_color,smoother.args 

= list(col="grey"),cex = 1, cex.axis = 2, pch = c(15,16,17), 

main="Scatter Plot", legend.plot = F) 

 

dev.off() 


