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Abstract

This thesis presents a collection of methods on the topic of evidence based change detec-
tion from discrete data. Some of the methods deal with detecting changes in the data and in its
derivatives. Others are focused on modeling systems with the purpose of condition monitor-
ing. The goal in all of them is to monitor and analyze the changes in behavior of mechanical
systems governed by physical principles, which themselves are described by differential equa-
tions. The methods are demonstrated through a series of peer reviewed papers. The thesis is
divided in the following chapters: polynomial methods, optimal control, the variable projec-
tion method, and industrial applications.

Matrix-algebraic formulations of polynomial problems allow for the development of new
approaches in analyzing data. Using double-sided constrained Taylor approximations of dis-
crete data, a measure of discontinuity is developed similar in concept to Lipschitz continuity.
Additionally, using discrete orthogonal polynomials, a generalized framework for solving con-
strained inverse problems emanating from cyber-physical systems is presented.

With respect to optimal control, new algebraic formulations for discretizing the Euler-
Lagrange equations are presented. These provide good approximations to solutions for numer-
ically and physically stiff systems.

Further, it was shown how to use the variable projection method to model periodic func-
tions with, or without a background signal. In this manner, spectral leakage and the Gibbs
error were avoided, which led to highly stable and numerically efficient solutions.

Finally, through a consequent use of mathematical methods, the desired information was
extracted from large volumes of industrial data, which can be corrupted by both statistical and
systematic noise. With this, the interdisciplinary nature of data analysis in industrial applica-
tions was demonstrated.
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evant local maxima and minima of the difference respectively. According to this,
the red and blue lines are drawn in the top-most graph. The bottom graph shows
the approximation error evaluated at every interstitial point. . . . . . . . . . . . . . 33

5 The two error functions, Ee and Efg as defined in Section 4, for the example from
Fig. 4. One can see that the location of the peaks doesn’t change, and the two
errors don’t differ significantly. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

10



1 Principle of the computation at an interstitial point. The data to the left and right
of the interstitial points are considered to be the functions f (x) and g(x); modelled
by the polynomials f(x,α) and g(x,β). The coupled approximation ensured that
f (x) and g(x) are Cn−1 continuous at the interstitial point. . . . . . . . . . . . . . . 38

2 The convolution sequences sn for Cn discontinuity detection, each with support
length of ls = 100 points: (top) C2-; (middle) C3- and (bottom) C4-, discontinuity.
Note if n is odd then sn is anti-symmetric and for even n, sn is symmetric. This
ensures that the convolution operators have liner phase response. . . . . . . . . . . 41

3 (Top) - sensor data obtained during the observation of a geo-drilling process. (Mid-
dle) - Measure for the C1 discontinuity and (bottom) measure of the C2 disconti-
nuity. These were computed with a support length ls = 10. . . . . . . . . . . . . . 42

4 (Top) - A cubic spline f (x) with double knots at x = 2 and x = 3. This ensures that
f (x) is C2 discontinuous at those points. (Middle) - f ′(x), with it’s C1 disconti-
nuities at the double knots. (Bottom) - a measure of the C2 discontinuity of f (x).
This was computed with a support length ls = 10. . . . . . . . . . . . . . . . . . . 42

5 The convolutional computation of the first and second order derivatives as well as
the curvature κ(x) for the same data as shown in Figure 3. These computations are
performed with a total support length of ls = 11, i.e., a colocative result. . . . . . . 44

1 Example of a cyber-physical measurement system: a low number of spatially dis-
tributed sensors are used to monitor a tunnel structure, during construction in the
vicinity. The figure shows from left to right: 1) Schematic of the tunnel profile;
2) Locations of the individual sensors on the tunnel supporting strut; 3) Concept
for mounting the sensors of the strut and 4) a schematic reconstruction. The aim is
to monitor the bending of the structural beam as a function of time. This involves
solving the constrained inverse problem and interpolating to obtain the complete
bending curve. In this example the constraints and sensors are not collocated,
whereas the interpolation points possibly are; consequently, both interstitial and
colocative methods are required. . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2 Top: Example of a cantilever with additional support: This is a generic exam-
ple, since arbitrary constraints associated with a specific structure are possible.
Bottom: The first four homogeneously constrained discrete polynomials from Bc

corresponding to the constraints defined above. . . . . . . . . . . . . . . . . . . . 52
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3 Results of the Monte Carlo test of the reconstruction algorithm for the cantilever
shown in Figure 2. There were n = 1000 synthetic data sets, each with i.i.d. Gaus-
sian noise with σ = 5e−3, yielding a SNR = 1.91. The results of the reconstruc-
tions of the function y(x), the first y′(x) and second derivatives y′′(x) are organized
from left to right. Top: result of the constrained approximation. Bottom: an un-
constrained approximation. Red: Is the median value of the reconstructions; black:
the upper and lower statistical bounds for outlier detection, i.e., q75 +1.5 IQR and
q25−1.5 IQR. The circles indicate the constraint values in the respective domains,
i.e., in the function values and its derivatives. The constrained reconstruction has
zero error and no propagation of noise at the respective constraints. . . . . . . . . . 54

4 Relative local uncertainty along the curve for: y(x) (top), y′(x) (middle) and for
y′′(x) (bottom), for iid noise at the input. There results are consistent with those
obtained by the Monte-Carlo simulation, see Fig. 3. . . . . . . . . . . . . . . . . . 55

5 Laboratory test setup used to verify the method, consisting or a bending beam with
an additional support. A light sectioning head on a linear drive to measure the
actual deflection of the beam. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6 Reconstruction of the bending curve form the experimental data. Note: there are
some measurements with larger errors, this is to be expected and desirable when
testing the stability of the measurement algorithm. . . . . . . . . . . . . . . . . . 57

7 Reconstruction of the bending curve using a subset n = 10 of the measurements
selected from the data shown in Figure 6. Note the irregular spacing of the mea-
surement data. This result verifies the stability of the algorithm with a low number
of observations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

1 A hydraulic system with two independent metering valves, including a flow con-
troller on the actuating (A) and a pressure controller on the back side (B). The
load (m) of the system is position controlled. Auxiliary components, like pressure
compensators and load sensing are not shown in this figure. . . . . . . . . . . . . . 74

2 Block diagram for the system presented in Fig. 1. The system is controlled on both
sides, where yset and PBset are the desired position and pressure values. Here kA and
kB are the proportional parts of the PID controllers for both sides respectively. . . . 75

3 Results of the first simulation where all initial and final values are set to zero,
except for the end position which is set to y1 = 0.01m. For the position and the
pressure PB it can be seen that the LQR and PID controller overshoot and will not
end at the desired values. On the other hand, the optimal control algorithm meets
the set limits at the exact positions. It also shows improved energy performance
compared to PID and LQR, which can be seen in the curves of the velocity and the
pressure PA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
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4 Results of the second simulation where the t ∈ [0,0.6]s . All initial and final values
are set to zero, except for the final position which is set to y1 = 0.01m and the
pressure which is set to PB = 10 · 105 Pa. For the position and the pressure PB it
can be seen that the LQR and PID controller have a steady state error and will not
end at the desired values. On the other hand, the optimal control algorithm meets
the set limits at the exact positions. It also shows improved energy performance
compared to PID and LQR, which can be seen in the curves of the velocity and the
pressure PA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

1 Simplified model of the hydraulic and mechanical system. The mechanical system
is position controlled. The hydraulic system consist of two independent metering
valves which are flow controlled (piston side) and pressure controlled (rod side).
Auxiliary components, like pressure compensators and load sensing are not shown
in this figure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

2 State of the art block diagram for the system presented in Fig. 1. The system is
controlled on both sides, where yset and PBset are the desired position and pressure
values. Here kA and kB are the proportion parts of the PID controllers for both sides
accordingly. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

3 Implementation of the calculated control variables u1 and u2 into the simulation
model of the system as a feed-forward. . . . . . . . . . . . . . . . . . . . . . . . 93

4 (Top and middle graph) - Results of the path tracking algorithm for time t ∈ [0,4]s.
The states x3 and x2 (position and pressure respectively) are being tracked. The
followed values and the simulated values deviate only slightly from the desired
values. (Bottom graphs) - The behavior of the remaining two states of the system. . 94

5 Error curves for the followed and simulated positions and pressures in Fig. 4 ac-
cordingly. It is clear that the inaccuracy for both graphs is smaller than 1 %. . . . . 94

6 (Top and middle graph) - Results of the path tracking algorithm for time t ∈ [0,8]s.
The states x3 and x2 (position and pressure respectively) are being tracked. (Bottom
graphs) - The system is tracking the same distance over a longer period of time,
which results in smaller pressure values on the piston side and a decreased velocity. 95

7 Error curves for the followed and simulated positions and pressures in Fig. 6 ac-
cordingly. Here the path tracking method shows maximum offset of 0.005 %. . . . 95

1 Normalized cost functions E(ω) and Ed(ω) for integer cr = 10. Note the C1 dis-
continuity at the optimum. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

2 Normalized cost functions E(ω) and Ed(ω) for non-integer cr = 10.5. Note how
the cost functions diverge slightly at the optimum. . . . . . . . . . . . . . . . . . . 106

3 Normalized cost functions E(ω) and Ed(ω) for low value of cr, in this example
cr = 0.5. Note the minimum of Ed(ω) does not correspond to the cr values. . . . . 106

4 Condition number κ (B(ω)) in a log scale as function of ω . . . . . . . . . . . . . 107
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5 Synthetic sine wave used to demonstrate the computation of cavariances. The
model parameters were: ω = 4.15, d = 0.5, ac = as = 1/

√
(2) with iid noise with

a standard deviation of σ = 0.5 and n = 1000 samples were used. The estimation
results are: ω = 4.1530, d = 0.4837, ac = 0.7064 and as = 0.7058. The corre-
sponding covariance of the linear coefficients is shown in Table 4.1. . . . . . . . . 108

6 Box plots of cost functions obtained from Monte Carlo simulation with m = 500
repetitions: (top) the new solution, (bottom) Chen’s implementation [14]; note,
that where no data is shown, Chen’s method failed to converge at least once during
the m simulations. The signals over the given frequency range were all generated
with n = 1000 samples, and the parameters d = 0.1, ac = 0, as = 1. . . . . . . . . 109

7 Box plots for the error in the estimated frequency, results are from the same Monte
Carlo simulations shown in Figure 6. No results are shown where Chen’s method
failed to converge. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

8 Box plots for the execution times te for each algorithm: (top) new solution, (bot-
tom) Chen. Note, the times for Chen’s algorithm, although it did not converge,
are shown, since the algorithm must run to this extend to be able to detect non-
convergence. The results are from the same Monte Carlo simulations shown in
Figure 6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

9 Box plots for the residual error ε(φ) with cr = 0.5 for phase shifts in the range
0 ≤ φ ≤ 2π . Only the results for the new algorithm are shown, since this value of
cr the Chen approach does not converge. . . . . . . . . . . . . . . . . . . . . . . . 111

1 First synthetic test signal, consisting of the periodic component yp(t) here with the
number of cycles in record cr = 6.25 and the trend component yt(t) created by a
DOP of degree four. The final test signal y(t) is the sum of those two components
superimposed with i.i.d. Gaussian noise with a standard deviation of σ = 0.02. . . 122

2 Second synthetic test signal, consisting of the periodic component yp(t) here with
the number of cycles in record cr = 6.25 and the trend component yt(t) created by
a DOP of degree 13. The final test signal y(t) is the sum of those two components
superimposed with i.i.d. Gaussian noise with a standard deviation of σ = 0.02. . . 123

3 Box plots of the estimated frequency deviation for the first test signal, which
has an aperiodic component modeled by a DOP of degree four, obtained from
Monte Carlo simulations: (top) the presented approach based on the Eckart-Young-
Mirsky matrix approximation (Equ. (4.51)), (bottom) the classical variable projec-
tion approach (Equ. (4.37)). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

4 Detailed view of Fig. 3 for 2.75 ≤ cr ≤ 9.75 . . . . . . . . . . . . . . . . . . . . . 124
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5 Box plots of the the estimated frequency deviation for the second test signal,
which has an aperiodic component modeled by a DOP of degree 13, obtained
from Monte Carlo simulations: (top) the presented approach based on the Eckart-
Young-Mirsky matrix approximation (Equ. (4.51)), (bottom) the classical variable
projection approach (Equ. (4.37)). . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6 Box plots of the execution times for the first test signal, which has an aperiodic
component modeled by a DOP of degree four, obtained from Monte Carlo sim-
ulations: (top) the presented approach based on the Eckart-Young-Mirsky matrix
approximation (Equ. (4.51)), (bottom) the classical variable projection approach
(Equ. (4.37)). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

7 Box plots of the execution times for the second test signal, which has an aperiodic
component modeled by a DOP of degree 13, obtained from Monte Carlo simu-
lations: (top) the presented approach based on the Eckart-Young-Mirsky matrix
approximation (Equ. (4.51)), (bottom) the classical variable projection approach
(Equ. (4.37)). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

8 First synthetic test signal, consisting of the periodic component yp(t) here with
the number of cycles in record being 6.25 and the trend component yt(t) created
by a polynomial of degree four. The final test signal y(t) is the sum of those two
components superimposed with i.i.d. Gaussian noise. . . . . . . . . . . . . . . . . 127

9 Second synthetic test signal, consisting of the periodic component yp(t) here with
the number of cycles in record being 6.25 and the trend component yt(t) created
by a polynomial of degree 13. The final test signal y(t) is the sum of those two
components superimposed with i.i.d. Gaussian noise. . . . . . . . . . . . . . . . . 128

1 Box plots of of the parameter estimation error Θ = ||θ̂ −θ || obtained from Monte
Carlo simulations with m = 500 repetitions: (top) proposed RVP algorithm, (bot-
tom) MGN algorithm [12]; note, that simulations where the algorithm failed to
converge are not considered here. The signals with different SNR were all gener-
ated with n = 200 samples, and the parameters ω = 100π , ac = 0.732, as = 0.682
and d = 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

2 Comparison of the RVP and MGN algorithm with respect to their success rate
depending on the SNR. Success rate is defined as the number of simulations for
which the algorithm converged divided by the total number of simulations. . . . . . 139

3 Laboratory test setup for the generation and acquisition of the test signals: (a)
National Instruments data acquisition USB box, (b) signal conditioner, (c) 1-axis
acceleration reference-sensor, (d) 10 DOF smart sensor system including a 3-axis
accelerometer, (e) electrodynamic shaker. . . . . . . . . . . . . . . . . . . . . . . 140

4 Convergence of the parameter estimate for a measurement signal with a step change
in the linear parameters ac and as, using the RVP algorithm. After the covariance
resetting at t = 3.6 s it takes about one cycle to converge to the new parameter values.141
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5 Measurement data with a change in the phase used to demonstrate the tracking
ability of the RVP algorithm. (top) The measurement data y with a change in the
phase at t = 3.6 s and the signal model determined by the RVP algorithm. (bottom)
Residual r of the signal model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

6 Convergence of the parameter estimate for a measurement signal with a step change
in the linear parameters ac and as as well as the nonlinear parameter ω , using the
RVP algorithm. After the covariance resetting at t = 4.9 s it takes about one second
for all parameters to converge to the new values. . . . . . . . . . . . . . . . . . . . 143

7 Measurement data with a change in the frequency, phase and amplitude of the
signal used to demonstrate the tracking ability of the RVP algorithm. (top) The
measurement data y with a change in the signal change at t = 4.9 s and the signal
model determined by the RVP algorithm. (bottom) Residual r of the signal model. . 144

1 The used UWB modules on a tripod-mount in a previous experiment of range tests. 155
2 Measurement setup with two containers at a ship quay. . . . . . . . . . . . . . . . 156
3 The two containers C-I and C-II with UWB module positions P1, P2 and Q1, Q2,

the 4 measured distances l11 l12 l21 l22 and the calculated parameters δx, δy and φ . 157
4 Box-and-whiskers plots of the measurement errors. The measurements are used

to determine the position of the moving container between 2m to 10m in 1m
intervals. The red dots are outliers. The offsets of the straight-line measurement
errors ε11 and ε22 at at 2m are smaller than the offsets of ε12 and ε21 of the diagonal
measured distances. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

5 Box-and-whiskers plots of the errors centred at their respective medians to visual-
ize the difference in their spread. . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

6 The joint histograms of the measurements [l11, l21] and [l12, l22] taken at 4m. The
shape resembles that of a bivariate normal distribution (considering the discretiza-
tion of the measurements) and the Henze-Zirkler’s test confirms this at the 95%
significance level, as can be seen from the p-values. . . . . . . . . . . . . . . . . . 159

7 The positioning results of uncertain measurements: The analytical result of possi-
ble positions is defined as the area bounded by the dashed circles. The practical
results measured in this experiment are shown as black dots. Based on the prin-
ciple of triangulation the measured lengths are interpreted as circles centred at P1

and P2. The reference distances are represented by l11 and l21. The uncertain dis-
tances are limited by l11 ± 2σ and l21 ± 2σ , where σ is the standard deviation of
all measurements. Both shapes are almost identical. . . . . . . . . . . . . . . . . . 160
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8 The accuarcy of the distance measurement at 5m depending on different antenna
angles. The blue crosses are the differences of the median of the measured dis-
tances and the reference. The red line is a polynomial of degree 5, which ap-
proximates the data. The dashed lines are 2σ confidence intervals, where σ is the
standard deviation of each measurement. . . . . . . . . . . . . . . . . . . . . . . . 162

9 The comparison of positioning results for 3 different methods: Trilateration, con-
strained approximation and weighted constrained approximation using the lengths
l11, l12, l21 and l22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

10 Comparison of the errors εd of positioning using different methods. The covari-
ance weighting (red box-plots) increases the positioning accuracy compared to
pure trilateration (blue box-plots) and unweighted approximation (green box-plots). 165

1 Schematic representation of relative spatial arrangement of the tool and workpiece.
(Left) Shows the cutting orientation of the tool and (Right) defines the cutting
parameters: ap in the axial- and ae in the lateral-direction, relevant for Job 3. . . . . 171

2 The first 20% of a complete time-series for one cut lane as acquired from the ma-
chine. The data is sampled at 1.6kHz and a typical data set has m= 15000 . . .20000
samples depending on the length of the lane being cut. Here the cutting-in process
can be seen, i.e., the time where the milling tool has not reached the phase with
constant ap, see Figure 1b. A similar phase can be observed at the end of the lane.
This data set is from Part-1, Job-3 at Lane-2. The red dots indicate points where
there was a brief loss of data, due to interference of the transmission. . . . . . . . . 172

3 Flower pattern for the time-series data shown in Figure 2. The colour of the scat-
ter plot is used to represent normalized time when the data was created during
the cutting process. The arms apparently spiraling into and out of the center are
associated with the cutting-in and cutting-out phases. . . . . . . . . . . . . . . . . 173

4 Polar plot of the segmented and resampled moments in x and y. Note, the colour
indicates the probability density of a measurement at that specific angle. That is
the density of data points at a specific angle. The width of the line indicates the
interquartile range at each angle, in this case it is almost uniform. This is for the
data shown in Figure 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

5 Torsion (Left) and tension (Right) from the data binned into angular portion ∆

φ = 1◦, i.e. 360 bins per revolution. Each figure shows the median values together
with the Q25 and Q75 quantiles. . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

6 The median curves for all 18 parts manufactured. The data is in all cases for job 3
lane 2, so that it is compatible with previous figures. It can be observed that: the
pattern rotates with the increasing number of parts produced, the area enclosed by
the median curves grows larger and the pdf spreads more evenly. . . . . . . . . . . 177
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7 Left scale: Work required to mill the lane relative to part one. Right scale: the
relative rotation of the median curve. There are eight lanes milled for each of the
18 parts. The first lane in each part may have some variation due to misalignment
of the metal block relative to the tool path. . . . . . . . . . . . . . . . . . . . . . . 177

8 The first n = 32 harmonic components of the moment m(t). This spectrum is free
from Gibbs and spectral leakage error, since the data is perfectly cyclic. Two main
issues can be determined directly from the spectrum. 1) The fourth harmonic is due
to the mill having four flutes. This harmonic and multiples of it (i.e. 4, 8, 12,...)
describe the shape of the moment in terms of the Elliptical Fourier Descriptors
EFD. It is a relative measure and independent of scale and rotation. 2) The first
harmonic is that portion that changes once per revolution. . . . . . . . . . . . . . 178

9 The first harmonic (runout) as a function of part and lane milled. Note: part 16 has
an exceptional runout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

10 The ratio of the power in the fourth harmonic to the power in the first 7-overtones.
This is a shape factor which is scale and phase invariant. As can be seen, the signal
becomes more sinusoidal up to part 16. See Figure 6 for a comparison of parts 1
to 18. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

11 Moments for parts 1 and 18. The rotation of the flower pattern is seen here as a
phase shift. Additionally, the curve is more sinusoidal for part 18, indicating lower
harmonic components. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

12 Change in performance as determined by statistics. (Left) Bivariate distribution
of moment and torsion for parts 1 and 13. (Right) The corresponding histograms
when projected onto the first principal component. . . . . . . . . . . . . . . . . . 181

13 Histograms for the first principal component of moments and torsion as a function
of part and lane milled. Part number noted on the top and lane number at the
bottom. Note: there is a major change in the distribution at part 13. See Figure 12
for a comparison of part 1 and 13. . . . . . . . . . . . . . . . . . . . . . . . . . . 182

14 Width of the respective histogram distribution (data) as a function of the number
of parts manufactured, an exponential model for the data and the determination of
the 3dB break point, n3dB = 12.1. . . . . . . . . . . . . . . . . . . . . . . . . . . 182

15 Magnitudes of the two dominant peaks of the bimodal histograms as a function
of part number. Note: the convergence of the two values close to part 13. See
Figure 12 for a comparison of distributions for parts 1 and 13. . . . . . . . . . . . 183

16 An image of the milling tool with the region of interest marked with a red rectangle. 183
17 Edge-wear-width as measured from the images of the tool after manufacturing each

part. Note: for small wear the width could not be reliably measured also due to
some uncertainty introduced by volatile workpiece material transfer features on the
tool surface with similar reflectivity as hard metal tool material. The wear width as
a function of part production appears to be well-modelled by an exponential function.184
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18 Digital images of the milling tool after having milled different amounts of work-
pieces. Black arrows indicate the positions of breakouts at the cutting edge that
influence the distributions of the sensor signals discussed in the current work. The
increase in wear and damage feature size is visibly increasing with the number of
workpieces milled, which is expected. . . . . . . . . . . . . . . . . . . . . . . . . 185

19 Optical: normalized edge-wear-width as manually measured from the images.
Work: normalized relative work required to manufacture a part, measured from
the bending moments. Stats: The width of the respective histogram of the first
principal components. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

1 Schematic layout of the individual applied steps with an overview of the used
MATLAB functions for the image-processing step. . . . . . . . . . . . . . . . . . 193

2 RBG image (left), greyscale image (middle), and binary image (right) of singlified
waste particle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

3 Left: Particle with polygon perimeter (solid line), max. Feret diameter (dashed
line) and min. Feret diameter (dotted line); right: Particle outline with exemplary
bounding shapes (bounding box, bounding triangle, bounding circle (dashed line),
inscribed circle of the circumscribing polygon (dash-dotted line)) . . . . . . . . . . 199

1 Vibro-Replacement production process as an example for ground improvement. . . 213
2 Example for an element protocol of a vibro-replacement column . . . . . . . . . . 214
3 2D- and 3D- evaluation of the parameter ”built-in gravel material per column” with

the VibroScan-tool. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
4 Geo referenced simultaneous presentation of two KPIs - one as color, one as sym-

bol size for each point (column) of a construction site. Note: in this example,
a series of planned but not executed points can be seen at the top (white circles).
Furthermore, a systematic variation of the KPI (color) can be seen from the top left
towards the bottom right; this reveals a systematic change in underground proper-
ties. The panels on the right permit the definition of filters for the KPIs, with the
aim of detecting and marking outlier points. Additionally, points manually flagged
as being exceptional can be indicated. . . . . . . . . . . . . . . . . . . . . . . . . 216

5 Heat map representation of selected KPIs for all points of the construction site
(same data as in Fig. 4 ); sorted according to when they were executed. The non
executed points can be seen on the right of this table. The heat map supports the
visual detection of patterns over multiple KPIs. . . . . . . . . . . . . . . . . . . . 217
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6 Visualization of a selected sub set of the real time machine data; here for point
190. The real time machine data for each point in Fig. 4 and Fig. 5 are available
in the system. They are directly linked to support the visualization of detailed
machine behavior. The data is automatically segmented to indicate the penetration
and compaction phases. This example shows a pre-drilled point, identified by the
fact that the vibrator enters the ground without significant pull down force while
the electric motor was even turned off. Anomalous points can be flagged and
commented in this view. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

7 Outliers in the KPI penetration time of the executed points ; the concentration on
the left part of the site . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
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Chapter 1

Introduction

This thesis presents a series of methods on the topic of evidence based change detection from
discrete data, presented through a collection of peer reviewed papers. In the beginning, the methods
deal with detecting changes in the data and its derivatives, which is a fundamental task when
detecting changes in systems governed by physical laws. Such systems have to be continuous by
definition, so detecting discontinuities is of great importance. Later, methods focusing on modeling
mechanical systems with the purpose of condition monitoring are presented. The goal is to observe
the behaviors and changes of such systems, which can facilitate well-informed decision making.

The common theme throughout all methods is the rigorous matrix-algebraic formulation of the
problems, which allows for various mathematical methods to be utilized when solving engineer-
ing problems. Additionally, the use of matrices and vectors allows for easy implementation of
these methods using powerful tools, such as MATLAB or Python. The papers are grouped in four
different chapters, according to the main methods used in them:

1. Polynomial Methods

2. Optimal Control

3. Variable Projection Method

4. Industrial Applications

The methods described in the first chapter are essential for the entire thesis. When dealing with
discrete data sets, working with polynomials is a computationally efficient and mathematically
accurate way to model the data locally or globally. The concise matrix-algebraic formulations
allow for the definitions of new approaches for detecting discontinuities in discrete data, which
can be thought of as a discrete version of the Lipschitz continuity definition. Additionally, a
generalized framework for solving inverse problems emanating from cyber-physical systems was
introduced, which can deal with many different kinds of data sets as well as constraints imposed
on them.
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In the chapter on optimal control, solutions to two optimal control problems for a numerically
and physically stiff system are introduced using interstitial derivatives. Each physical system has
a state space representation which has the form of a system of differential equations. The goal of
optimal control is to determine the optimal input with which a system will be brought from one
state to another. Since the input of a system can change with time and be a function itself, calculus
of variation is a very useful tool for solving such problems. The method to use the calculus of
variation and the Euler-Lagrange equations to solve these problems, instead of the Hamiltonian,
has been developed at the Chair of Automation at the University of Leoben. After discretizing
and taking numerical derivatives, one can transform the system of differential equations into a
system of ordinary equations, which can be solved using standard methods. The added benefit of
the papers presented here is in the discretization using interstitial derivatives, which enables the
accurate numerical solutions of physically and numerically stiff systems.

Chapter 3 deals with modeling periodic functions without spectral leakage or Gibbs error. This
is achieved using the variable projection method. It is used when the model equation is a linear
combinations of nonlinear functions. The variable projection method can utilize this special struc-
ture to deal with the two problems separately, thus reducing the dimensionality of the nonlinear
problem which needs to be solved. This results in highly stable, numerically efficient solutions.

Finally, Chapter 4 contains the papers focused on consequent use of mathematical methods to
extract useful information from large volumes of industrial data. In some cases, the data is very
noisy and one needs to separate the data from the systematic noise as well as the statistical noise. In
others, the data isn’t necessarily corrupted by noise, but severely affected by human behavior and
as such proper classification is necessary. The chapter includes papers dealing with the following
topics

• Milling and analyzing data emanating from milling processes;

• Determining position and orientation using UWB modules;

• Particle size determination of shredded mixed commercial waste;

• Analyzing data and building a digital twin for a ground improvement process.

The methods used in the papers above show the interdisciplinary nature of data science and wide
applicability of mathematics in industrial applications.
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Chapter 2

Polynomial Methods

This chapter addresses basic polynomial methods necessary for understanding the papers included
in it. Polynomials are a very powerful tool for handling discrete data. This is due to the Weierstrass
approximation theorem, which states that any real-valued function defined on a finite interval can
be approximated by a polynomial to any accuracy. Hence, understanding the basics of polynomials
is crucial to handling data and detecting changes in it.

2.1 Introduction to Polynomials

A monomial is an expression of the form anxn where n is a non-negative integer, an is called a
constant, or a coefficient, and x is the variable. Consequently, a polynomial p(x) is a sum of
monomials

p(x) = anxn +an−1xn−1 + . . .+a1x+a0 =
n

∑
i=0

aixi. (2.1)

Note that equation (2.1) represents a polynomial in one variable (monovariate), x, but polynomials
can have more variables than one. The degree of a monomial is defined as the sum of the expo-
nents of its variables. For example, x4y4z3 is a monomial of degree 11. The degree or order of a
polynomial is defined as the highest degree of its monomials. The polynomial in equation (2.1) is
of degree n.

Suppose a dataset of m distinct discrete points is given as (x1,y1) ,(x2,y2) , . . . ,(xm,ym). Addi-
tionally, let p(x) be a polynomial of degree n−1

p(x) = an−1xn−1 +an−2xn−2 + . . .+a1x+a0 (2.2)

for which the coefficients ai are unknown. In order to determine the coefficients, assuming that the
polynomial goes through the given points, one has to solve the following system of m equations in
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n variables
an−1xn−1

1 +an−2xn−2
1 + . . .+a1x1 +a0 = y1

an−1xn−1
2 +an−2xn−2

2 + . . .+a1x2 +a0 = y2

...

an−1xn−1
m +an−2xn−2

m + . . .+a1xm +a0 = ym

. (2.3)

Depending on the relationship between m and n, there are the three cases:

-1 -0.5 0 0.5 1
x

-2

-1.5

-1

-0.5

0

0.5

1

1.5

f(
x
)

Interpolation

-1 -0.5 0 0.5 1
x

Approximation

Figure 1: An example of interpolating (left) and approximating (right) noisy data. It can be seen
that approximation is better when dealing with noisy data.

• If m < n, the system is underdetermined and there are infinitely many solutions, often called
a family of solutions. This case is of particular interest in practical applications when dealing
with constrained optimization.

• If m = n, the system has a unique solution and there is a single polynomial which goes
through the given points. This polynomial is called an interpolating polynomial and deter-
mining the coefficients is called polynomial interpolation.

• If m > n, the system is overdetermined and there is no solution which satisfies all equations.
One can solve the system approximately, by looking at polynomials which fit all the points
the ”best” way. This is done by minimizing some pre-defined cost function. The result-
ing polynomial is called an approximating polynomial and the process is called polynomial
approximation.
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The focus in the rest of this chapter will be on polynomial approximation. This is particularly
useful in industrial applications when a dataset is corrupted by noise. If a noisy data set is inter-
polated, the resulting polynomial will not only have a higher degree than necessary, it will also
not give accurate results since it follows the noisy data exactly. This is called overfitting. Hence,
polynomial approximation is the better option. The difference can be seen in Fig. 1.

2.1.1 Linear Approximation

The simplest case one can start with is a polynomial of degree 1 which is just a line. Given a noisy
data set,

{(xk,yk) ,k = 1, . . . ,n}. (2.4)

assume that the data comes from some true equation, but is affected by Gaussian noise, namely

y = yt+ϵ (2.5)

where yt represents the true (but unknown) values, y are the measured values and ϵ represents the
Gaussian noise. In other words, ϵ can be thought of as a random variable having a Gaussian distri-
bution ϵ∼ N(µ,σ2), where µ and σ represent the mean and standard deviation of the distribution
respectively. The goal here is to model the data with a line,

ŷ = ax+b (2.6)

where ŷ is the modelled (predicted) value. Ideally ŷ = yt, However, since yt isn’t known, the
following difference is of interest

r = y− ŷ. (2.7)

If the model is good, then the residual vector r should be Gaussian with mean 0. This means, that
for every k

rk ∼ N
(
0,σ2) . (2.8)

However, normally there is just one value for rk and in order to check if this value comes from a
normally distributed variable, one needs to utilize the likelihood function. The likelihood that a
value rk comes from a random variable N

(
0,σ2) is

L (rk,σ) =
1√

2πσ
e−

r2
k

2σ2 . (2.9)

Consequently, the likelihood that all values r1,r2, . . . ,rn come from independent, identically dis-
tributed (i.i.d.) Gaussian variables is

L (r1,r2, . . . ,rn,σ) =
n

∏
k=1

1√
2πσ

e−
r2
k

2σ2 =

(
1√

2πσ

)n

e−
∑r2

k
2σ2 (2.10)
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This can be written in terms of the unknown parameters, a and b, using 2.7 as

L (a,b) =
(

1√
2πσ

)n

e−
∑(yk−axk−b)2

2σ2 . (2.11)

Taking logarithms, one gets the logarithmic likelihood function

logL (a,b) =−n ln
(√

2πσ

)
− 1

2σ2 ∑(yk −axk −b)2 . (2.12)

Since the residuals should be normally distributed, one should maximize the likelihood function, or
the logarithmic likelihood (since the logarithmic function is an increasing function). Maximizing
the logarithmic function is equivalent to minimizing the sum in equation 2.12. In other words, one
should minimize the squares of the difference of the modeled and measured values. This is where
the name least squares comes from. The difference can be written in vector form as

r1

r2
...

rn

=


y1

y2
...

yn

−


x1 1
x2 1
...

...
xn 1


[

a
b

]
or

r = y−Aα.

(2.13)

Having this, the cost function which needs to be minimized becomes

C (α) =
n

∑
k=1

d2
k = dTd= (y−Aα)T (y−Aα) =

(
yT −αTAT)(y−Aα) =

yTy−yTAα−αTATy︸ ︷︷ ︸
=yTAα

+αTATAα= yTy−2yTAα+αTATAα.
(2.14)

In the previous equation, the equality αTATy = yTAα is true since αTATy is a scalar, and
transposing a scalar doesn’t change its value. Now, using some rudimentary matrix calculus one
obtains,

dC
dα

=0−2
d

dα
(
yTAα

)
+

d
dα

(
αTATAα

)
=

−2
(
yTA

)T
+
(
ATA+

(
ATA

)T
)
α=−2ATy+2ATAα= 0

(2.15)

thus

ATAα=ATy or (2.16)

α=
(
ATA

)−1
ATy. (2.17)

1 Note that Eq. 2.16 is called a normal equation, since y−Aα is normal to the range of A.
Additionally,

(
ATA

)−1
AT ≜A+ is called the Moore-Penrose pseudo inverse of the matrix A.

1Note that this solution assumes that the matrix ATA is invertible. This fact is discussed later in the chapter.
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Now that α is calculated, the estimated values can be computed as

ŷ = ax+b =Aα=A
(
ATA

)−1
ATy. (2.18)

It is easy to confirm that the matrix P = A
(
ATA

)−1
AT = AA+ is idempotent, i.e. has the

property P 2 =P , hence it is a projection matrix projecting onto the space spanned by the columns
of the matrix A. Thus, the modeled values ŷ are obtained by projecting the measured values y

onto the space spanned by the columns of A. Similarly,

r = y− ŷ =
(
I−A

(
ATA

)−1
AT

)
y = (I−AA+)y (2.19)

and it can be proven that the matrix I−AA+ is a projection matrix onto the orthogonal comple-
ment of the space spanned by the columns of A. So, to summarize, when the measured values
in y are projected onto the space generated by A, one gets the modeled values ŷ and when the
measured values y are projected onto the orthogonal compliment of A, one gets the residual vector
r.

2.1.2 Polynomial Approximation

The problem now is similar to the one before, except a polynomial of degree n is used to model
the data.

ŷ = αnx
n +αn−1x

n−1 + . . .+α1x+α0. (2.20)

In the same manner as before, it can be shown that in order to maximize the likelihood function
that the error is Gaussian, one needs to minimize the sum of the squares. In other words

r1

r2
...

rm

=


y1

y2
...

ym

−


xn

1 xn−1
1 . . .x1 1

xn
2 xn−1

2 . . .x2 1
...

... . . . ...
xn

m xn−1
m . . .xm 1




αm

αm−1
...

α0

 or

r = y−Aα

(2.21)

and

C (α) =
n

∑
k=1

d2
k = dTd= yTy−2yTAα+αTATAα. (2.22)

The matrix A is called the Vandermonde matrix. The solution will have the exact same form as
before, since the only thing changed is the matrix A. Namely,

α=
(
ATA

)−1
ATy (2.23)

and
r = y− ŷ =

(
I−A

(
ATA

)−1
AT

)
y. (2.24)

28



2.1.3 The Invertibility of the Matrix ATA

In both solutions the fact that the matrix ATA is invertible was used. This result follows from the
following theorem.

Theorem 1. If the columns of A are linearly independent, then the matrix ATA is invertible.

In the case of polynomial fitting, the columns of the matrix A are just different powers of
the vector x, as can be seen in 2.21. These columns are linearly independent, since if assumed
otherwise, one would get something of the form

x(m) = α0x
(0)+α1x

(1)+ . . .+αm−1x
(m−1) (2.25)

which means that a polynomial of degree m is equal to a polynomial of degree m−1, which is only
possible if all the x’s are 0. This means that in the case of polynomial fitting, the matrix ATA is
invertible. At least theoretically. If, however, the matrix looks as follows

A=


0d 0d−1 . . . 1

0.1d 0.1d−1 . . . 1
...

... . . . ...
0.9d 0.9d−1 . . . 1

 (2.26)

then for high values of d, the two columns might appear the same numerically, and as such the
matrix might not be invertible numerically. In general, numerical inversions of the Vandermonde
matrix are computationally expensive and the rate of inaccuracy increases very rapidly with the
increase of the number of points [1, 2].

2.1.4 Taylor Series

Taylor series provide a way to approximate a function around a point, with a polynomial of arbi-
trary degree. This is a very useful approximation and is especially used in non-linear fitting. Now,
suppose a polynomial is given as

p(x) = c0 + c1x+ c2x2 (2.27)

and one wishes to examine the behavior of this polynomial around the point a. So in order to
examine that, small number h is added to a. Namely,

p(a+h) = c0 + c1 (a+h)+ c2 (a+h)2 = c0 + c1a+ c1h+ c2a2 +2c2ah+ c2h2

p(a+h) =
(
c0 + c1a+ c2a2)︸ ︷︷ ︸

p(a)

+h(c1 +2c2a)︸ ︷︷ ︸
p′(a)

+h2 c2︸︷︷︸
1
2 p′′(a)

(2.28)
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In the case of a higher order polynomial, the result would have the form

p(a+h) = p(a)+ p′ (a)h+ p′′ (a)
h2

2!
+ p′′′ (a)

h3

3!
+ . . . (2.29)

This representation is true for any function which is infinitely times differentiable. Additionally,
in the case of a = 0, the Taylor series is called a Maclaurin series.

Example 1. Here are the Maclaurin series for some standard functions.

ex = 1+ x+
x2

2!
+

x3

3!
+ . . .=

∞

∑
n=0

xn

n!
(2.30)

ln(1+ x) = x− x2

2
+

x3

3
− . . .=

∞

∑
n=1

(−1)n+1 xn

n
(2.31)

sinx = x− x3

3!
+

x5

5!
− . . .=

∞

∑
n=0

(−1)n x2n+1

(2n+1)!
(2.32)

The same can be done for a function in multiple variables. Again, the start is with a polynomial
of degree two for simplicity.

p(x,y) = α00 +α10x+α01y+α20x2 +α11xy+α02y2 (2.33)

and it is examined in an area around the point (a,b).

p(a+h,b+ k) =

α00 +α10 (a+h)+α01 (b+ k)+α20 (a+h)2 +α11 (a+h)(b+ k)+α02 (b+ k)2 =(
α00 +α10a+α01b+α20a2 +α11ab+α02b2)+h(α10 +2α20 +α11b)+

k (α01 +α11a+2α02)+hk (α11)+h2 (α20)+ k2 (α02)

(2.34)

and similarly as before one notices that

p(a+h,b+ k) =

p(a,b)+ px (a,b)h+ py (a,b)k+
1
2
(

pxx (a,b)h2 +2pxy (a,b)hk+ pyy (a,b)k2) (2.35)

where px denotes the partial derivative with respect to x and pxy denotes the second partial deriva-
tive with respect to x and y. Same as before, this can be generalized to any function, not just
polynomials, in the following way:

f (x+∆x) = f (x)+( fx1 (x)∆x1 + . . .+ fxm (x)∆xm)+ . . .︸︷︷︸
nonlinear part

. (2.36)

This is particularly useful, since a very common technique for dealing with nonlinear problems
is to linearize them and deal with them as linear problems later on. The Taylor expansion of a
function an easy way to approximate a function by a linear function around a point. This also
justifies the use of polynomials in many applications.
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2.2 Discrete Data Analysis

When handling discrete sets of data, emanating from heavy machinery for example, one very often
uses polynomials to model said data locally, due to their excellent approximating nature. This is
partially due to the Taylor series in 2.1.4, but also due to the following fundamental mathematical
theorem.

Theorem 2 (Weierstrass approximating theorem). If f (x) is a continuous real-valued function
defined on the real interval x ∈ [a,b], then for every ε > 0, there exists a polynomial p(x) such
that for all x ∈ [a,b], the supremum norm ∥ f (x)− p(x)∥∞ < ε . That is, any function f (x) can be
approximated by a polynomial to an arbitrary accuracy ε given a sufficiently high degree.

2.2.1 Derivatives using Polynomials

Polynomials are very useful when approximating derivatives of discrete data. For example, assume
a dataset is given as (x1,y1) ,(x2,y2) , . . . ,(xm,ym). One way to approximate the derivative of this
data at a point xi is by interpolating the dataset with a polynomial m−1 and taking the derivative of
the polynomial at the point xi. However, this isn’t particularly useful in practical applications, since
datasets emanating from heavy machinery are very often very long and additionally corrupted by
noise. Instead, a better approach would be to approximate the data with a polynomial locally and
use this to approximate the derivatives.

As an example, it is not difficult to check that a polynomial of degree 2 interpolating the first
three points (x1,y1) ,(x2,y2) ,(x3,y3) has the form

p(x) =
(x− x2)(x− x3)

(x1 − x2)(x1 − x3)
y1 +

(x− x1)(x− x3)

(x2 − x2)(x2 − x3)
y2 +

(x− x1)(x− x2)

(x3 − x1)(x3 − x2)
y3. (2.37)

The derivative of this polynomial can be calculated as

p′ (x) =
(x− x2)+(x− x3)

(x1 − x2)(x1 − x3)
y1 +

(x− x1)+(x− x3)

(x2 − x1)(x2 − x3)
y2 +

(x− x1)+(x− x2)

(x3 − x1)(x3 − x2)
y3. (2.38)

In industrial applications, the sampling rate of the sensors is very often constant, thus the emanating
data is uniformly spaced, which makes calculations simpler. In this case, if one assumes that
x1 = a,x2 = a+h,x3 = a+2h, the derivatives evaluated at the different points will have the form

p′ (a) =− 3
2h

y1 +
2
h

y2 −
1
h

y3

p′ (a+h) =− 1
2h

y1 +
1

2h
y3

p′ (a+2h) =
1

2h
y1 −

2
h

y2 +
3

2h
y3

(2.39)

31



which can be written compactly in matrix form as p′ (a)
p′ (a+h)

p′ (a+2h)

=

− 3
2h

2
h −1

h
− 1

2h 0 1
2h

1
2h −2

h
3
2h

y1

y2

y3

=
1

2h

−3 4 −1
−1 0 1
1 −4 3


︸ ︷︷ ︸

D1

y1

y2

y3

 . (2.40)

The benefit of using this formulation, is that the calculation only depends on the step size and
the values yi, hence one could easily generalize this calculation for the entire dataset. Namely,
assuming that the quadratic interpolation is done at every three points locally, one can approximate
the derivatives of the entire dataset by simply doing matrix multiplication.

y′1
y′2
y′3
...

y′n−1
y′n


≈ 1

2h



−3 4 −1 0 . . . 0
−1 0 1 0 . . . 0
0 −1 0 1 . . . 0
...

...
...

... . . . ...
0 . . . 0 −1 0 1
0 . . . 0 1 −4 3





y1

y2

y3
...

yn−1

yn


(2.41)

Note that such calculations could also be done using polynomials of higher order. Additionally,
the derivatives do not have to be evaluated at the sampling points (collocative), but could also be
evaluated between the sampling points (interstitial).

2.2.2 Constrained Optimization

Constrained optimization is the problem of minimizing or maximizing a function given some con-
straints or conditions. In this thesis, two methods are used when dealing with constrained opti-
mization problems: the method of Lagrange multipliers and the so-called subspace method.

Lagrange Multipliers

The method of Lagrange multipliers is used for solving constrained optimization problems of the
form
Minimize f (x) subject to the constraints g(x) = 0.

In order to solve a problem using this method, one has to perform the following steps:

1. Formulate the Lagrange function

L (x,λ ) = f (x)−λg(x) (2.42)

2. Differentiate with respect to x and λ

∂L

∂x
=

d f
dx

−λ
d f
dx

∂L

∂λ
=−g(x)

(2.43)
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3. Equate the derivatives to zero
∂L

∂x
= 0,

∂L

∂λ
= 0.

(2.44)

4. Solve for x and λ .

The advantage of this method is that it’s very generally applicable and easy to understand. How-
ever, for each constraint one needs to introduce an additional variable and thus increasing the
number of unknown variables. The subspace method circumvents this.

Subspace Method

This method has been mostly used for problems of the type

min
α

∥y−Bα∥ (2.45)

given Hα=w. (2.46)

From the second equation, one can write α as

α= H+w︸ ︷︷ ︸
Particular

+ Ṽ γ︸︷︷︸
Homogeneous

(2.47)

where Ṽ is a basis for the nullspace of H and γ is the vector of coefficients for the remaining
degrees of freedom. Consequently, this substitution transforms the minimization problem into

min
α

∥y−B(H+w+ Ṽ γ)∥= min
γ

∥y−BH+w−BṼ γ∥= min
γ

∥y1 −BṼ γ∥ (2.48)

where y1 ≜ y−BH+w. This transforms the problem from a constrained optimization problem
into an unconstrained optimization problem of lower dimension, since the vector of unknowns γ
has fewer dimensions than α.

2.2.3 Discrete Orthogonal Polynomials

Discrete orthogonal polynomials (DOP) are a type of polynomials that greatly simplify the calcu-
lations when performing any of the tasks mentioned so far, such as polynomial approximation or
derivation. They simplify the algebraic formulations of said tasks as well as increase the compu-
tational speed by changing the properties of some of the matrices needed to be inverted. This text
here is just a brief introduction to DOP, and for a more detailed approach to DOP, the reader is
referred to [3–5].
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Orthogonal Polynomials

The polynomials p(x) and q(x) are said to be orthogonal if∫ b

a
p(x)q(x)dx = 0. (2.49)

Note that orthogonality can be defined with respect to any inner product, and
∫ b

a p(x)q(x)dx is just
one example of such an inner product. For simplicity, in the remainder of the text, it is assumed
that a = 0,b = 1. Using this definition, one can define a basis of orthogonal polynomials

p0(x) =c00 (2.50)

p0(x) =c10 + c11x (2.51)
...

pd(x) =cd0 + cd1x+ . . .+ cddxd (2.52)

such that any other polynomial f (x) can be written as a linear combination of them, namely

f (x) = a0 p0(x)+a1 p1(x)+ . . .+ad pd(x). (2.53)

The coefficients ai can be calculated as [5]

ai =
1
si

∫ 1

0
f (x)pi(x)dx, for i = 0, . . . ,d (2.54)

where

si =
∫ 1

0
p2

i (x)dx. (2.55)

Since this is true for any polynomial, it must be true for the polynomial xpk(x) as well. Thus, since
this is a polynomial of degree k+1, it can be written as

xpk(x) = a0 p0(x)+a1 p1(x)+ . . .+ak+1 pk+1(x). (2.56)

The coefficients, according to equation 2.55, are calculated as

a j =
1
s j

∫ 1

0
xpk(x)p j(x)dx, for j = 0, . . . ,k+1. (2.57)

Additionally, for the indices j = 0, . . . ,k− 2, the term xp j(x) is a polynomial of degree smaller
than k and can therefore be written as

xp j(x) = b0 p0(x)+b1 p1(x)+ . . .+bm pm(x), for m < k. (2.58)

Since xp j(x) is composed of the polynomials p0, . . . , pk−1 at most, and all these are orthogonal to
pk, one obtains

a j = 0, for j = 0, . . . ,k−2. (2.59)
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Hence, one gets
xpk(x) = ak−1 pk−1(x)+ak pk(x)+ak+1 pk+1(x) (2.60)

and by rearranging this one finally gets the three term recurrence relation for orthogonal polyno-
mials, namely

ak+1 pk+1(x) = (x−ak)pk(x)−ak−1 pk−1(x). (2.61)

This recurrence relation is useful for generating orthogonal polynomials of very high degrees.

The Discrete Case

In the discrete case, the polynomials are represented by vectors and the discrete orthogonality
condition can be written as

n

∑
k=1

pi(xk)p j(xk) = 0, for i ̸= j. (2.62)

If one defines the vectors

pi =


pi(x1)

pi(x2)
...

pi(xn)

 , for i = 0,1, . . . ,d (2.63)

and consequently the matrix P as

P =
[
p1 p2 . . . pd

]
(2.64)

then the orthogonality condition can be written as

P TP = S = diag(s0,s1, . . . ,sd). (2.65)

This is one of the reasons why discrete orthogonal polynomials are so computationally efficient.
Namely, if a discrete dataset is approximated by a set of such polynomials, the coefficients will be
calculated as

α =
(
P TP

)−1
P Ty (2.66)

as is shown in 2.1.2. However, since the matrix P TP is diagonal, inverting it is very simple and
thus this calculation is much simpler as well.

A generalization of eq. 2.65 is

P TWP = diag(s0,s1, . . . ,sd), (2.67)

which is used for weighted discrete orthogonal polynomial approximation. Here, the matrix W

contains the associated weights with the dataset. This is particularly useful when dealing with
datasets with known, but varying levels of noise throughout. For more properties of discrete or-
thogonal polynomials and their derivatives, the reader is referred to [3–5].
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2.2.4 Covariance Propagation

When fitting polynomials (or other functions) to a dataset, one might as how the coefficients of
the model change with respect to changes in the data, or in other words, how do the errors and the
covariances propagate through the fitting procedure. Assume that the model coefficients can be
calculated via the following equation:

α=Mx+c. (2.68)

Additionally, assume that the measurements which give the vector x have been performed n
times, and since the vector x is corrupted by noise, n different model coefficients are obtained
α1,α2, . . . ,αn. The mean of the vectors αi can be calculated as

µα =
1
n

n

∑
i=1

αi =
1
n

n

∑
i=1

(Mxi +c) =M
1
n

n

∑
i=1

xi +
1
n

n

∑
i=1

c=Mµx +
1
n

nc=Mµx +c (2.69)

and thus, the covariance matrix of the vectors αi is calculated as

Λα =
1
n

n

∑
i=1

(αi −µα)(αi −µα)
T =

1
n

n

∑
i=1

(Mxi +c−Mµx −c)(Mxi +c−Mµx −c)T =

1
n

n

∑
i=1

(Mxi +c−Mµx −c)
(
xT

i M
T +cT −µT

xM
T −cT)=

1
n

n

∑
i=1

(Mxi −Mµx)
(
xT

i M
T −µT

xM
T)=M

{
1
n

n

∑
i=1

(xi −µx)
(
xT

i −µT
x
)}

MT.

(2.70)

This leads to the following equation

Λα =MΛxM
T. (2.71)

If the error in x is i.i.d., meaning
Λx = σ

2I (2.72)

one obtains
Λα =Mσ

2IMT = σ
2MMT (2.73)
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Abstract

This paper presents a new approach to the detection of discontinuities in the n-th deriva-
tive of observational data. This is achieved by performing two polynomial approximations at
each interstitial point. The polynomials are coupled by constraining their coefficients to en-
sure continuity of the model up to the (n-1)-th derivative; while yielding an estimate for the
discontinuity of the n-th derivative. The coefficients of the polynomials correspond directly to
the derivatives of the approximations at the interstitial points through the prudent selection of
a common coordinate system. The approximation residual and extrapolation errors are inves-
tigated as measures for detecting discontinuity. This is necessary since discrete observations
of continuous systems are discontinuous at every point. It is proven, using matrix algebra,
that positive extrema in the combined approximation-extrapolation error correspond exactly to
extrema in the difference of the Taylor coefficients. This provides a relative measure for the
severity of the discontinuity in the observational data. The matrix algebraic derivations are pro-
vided for all aspects of the methods presented here; this includes a solution for the covariance
propagation through the computation. The performance of the method is verified with a Monte
Carlo simulation using synthetic piecewise polynomial data with known discontinuities. It is
also demonstrated that the discontinuities are suitable as knots for B-spline modelling of data.
For completeness, the results of applying the method to sensor data acquired during the moni-
toring of heavy machinery are presented.

Keywords: Data analysis, Discontinuity detection, Free-knot splines.
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1 Introduction

In the recent past physics informed data science has become a focus of research activities, e.g., [9].
It appears under different names e.g., physics informed [12]; hybrid learning [13]; physics-based [17],
etc.; but with the same basic idea of embedding physical principles into the data science algorithms.
The goal is to ensure that the results obtained obey the laws of physics and/or are based on physi-
cally relevant features. Discontinuities in the observations of continuous systems violate some very
basic physics and for this reason their detection is of fundamental importance. Consider Newton’s
second law of motion,

F(t) =
d
dt

{
m(t)

d
dt

y(t)
}
= ṁ(t) ẏ(t)+m(t) ÿ(t). (2.74)

Any discontinuities in the observations of m(t), ṁ(t), y(t), ẏ(t) or ÿ(t) indicate a violation of some
basic principle: be it that the observation is incorrect or something unexpected is happening in
the system. Consequently, detecting discontinuities is of fundamental importance in physics based
data science. A function s(x) is said to be Cn discontinuous, if s ∈ Cn−1 \Cn, that is if s(x) has
continuous derivatives up to and including order n− 1, but the n-th derivative is discontinuous.
Due to the discrete and finite nature of the observational data, only jump discontinuities in the n-
th derivative are considered; asymptotic discontinuities are not considered. Furthermore, in more
classical data modelling, Cn jump discontinuities form the basis for the locations of knots in B-
Spline models of observational data [15].

1.1 State of the Art

There are numerous approaches in the literature dealing with estimating regression functions that
are smooth, except at a finite number of points. Based on the methods, these approaches can be
classified into four groups: local polynomial methods, spline-based methods, kernel-based meth-
ods and wavelet methods. The approaches vary also with respect to the available a priori knowledge
about the number of points of discontinuity or the derivative in which these discontinuities appear.
For a good literature review of these methods, see [3]. The method used in this paper is relevant
both in terms of local polynomials as well as spline-based methods; however, the new approach
requires no a priori knowledge about the data.

In the local polynomial literature, namely in [8] and [14], ideas similar to the ones presented
here are investigated. In these papers, local polynomial approximations from the left and the right
side of the point in question are used. The major difference is that neither of these methods use
constraints to ensure that the local polynomial approximations enforce continuity of the lower
derivatives, which is done in this paper. As such, they use different residuals to determine the
existence of a change point. Using constrained approximation ensures that the underlying physical
properties of the system are taken into consideration, which is one of the main advantages of the
approach presented here. Additionally, in the aforementioned papers, it is not clear whether only
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co-locative points are considered as possible change points, or interstitial points are also consid-
ered. This distinction between colocative and interstitial is of great importance. Fundamentally,
the method presented here can be applied to discontinuities at either locations. However, it has
been assumed that discontinuities only make sense between the sampled (co-locative) points, i.e.,
the discontinuities are interstitial.

In [11] on the other hand, one polynomial instead of two is used, and the focus is mainly on
detecting C0 and C1 discontinuities. Additionally, the number of change-points must be known
a-priori, so only their location is approximated; the required a-priori knowledge make the method
unsuitable in real sensor based system observation.

In the spline-based literature there are heuristic methods (top-down and bottom-up) as well
as optimization methods. For a more detailed state of the art on splines, see [2]. Most heuristic
methods use a discrete geometric measure to calculate whether a point is a knot, such as: discrete
curvature, kink angle, etc, and then use some (mostly arbitrary) threshold to improve the initial
knot set. In the method presented here, which falls under the category of bottom-up approaches,
the selection criterion is based on calculus and statistics, which allows for incorporation of the
fundamental physical laws governing the system, in the model, but also ensures mathematical
relevance and rigour.

1.2 The New Approach

This paper presents a new approach to detecting Cn discontinuities in observational data. It uses
constrained coupled polynomial approximation to obtain two estimates for the nth Taylor coeffi-
cients and their uncertainties, at every interstitial point. These correspond approximating the local
function by polynomials, once from the left f(x,α) and once from the right g(x,β). The con-
straints couple the polynomials to ensure that αi = βi for every i ∈ [0 . . .n−1]. In this manner the
approximations are Cn−1 continuous at the interstitial points, while delivering an estimate for the
difference in the nth Taylor coefficients. All the derivations for the coupled constrained approxima-
tions and the numerical implementations are presented. Both the approximation and extrapolation
residuals are derived. It is proven that the discontinuities must lie at local positive peaks in the ex-
trapolation error. The new approach is verified with both known synthetic data and on real sensor
data obtained from observing the operation of heavy machinery.

2 Detecting Cn Discontinuities

Discrete observations s(xi) of a continuous system s(x) are, by their very nature, discontinuous at
every sample. Consequently, some measure for discontinuity will be required, with uncertainty,
which provides the basis for further analysis.

The observations are considered to be the co-locative points, denoted by xi and collectively by
the vector x; however, we wish to estimate the discontinuity at the interstitial points, denoted by
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ζi and collectively as ζ. Using interstitial points, one ensures that each data point is used for only
one polynomial approximation at a time. Furthermore, in the case of sensor data, one expects the
discontinuities to happen between samples. Consequently the data is segmented at the interstitial
points, i.e. between the samples. This requires the use of interpolating functions and in this work
we have chosen to use polynomials.

Polynomials have been chosen because of their approximating, interpolating and extrapolat-
ing properties when modelling continuous systems: The Weierstrass approximation theorem [16]
states that if f (x) is a continuous real-valued function defined on the real interval x ∈ [a,b], then
for every ε > 0, there exists a polynomial p(x) such that for all x ∈ [a,b], the supremum norm
∥ f (x)− p(x)∥∞ < ε . That is any function f (x) can be approximated by a polynomial to an arbi-
trary accuracy ε given a sufficiently high degree.

The basic concept (see Figure 1) to detect a Cn discontinuity is: to approximate the data to the
left of an interstitial point by the polynomial f(x,α) of degree dL and to the right by g(x,β) of
degree dR, while constraining these approximations to be Cn−1 continuous at the interstitial point.
This approximation ensures that,

f(k−1)(ζi) = g(k−1)(ζi), for every k ∈ [1 . . .n] . (2.75)

while yielding estimates for f(n)(ζi) and g(n)(ζi) together with estimates for their variances λ f (ζi)

and λg(ζi). This corresponds exactly to estimating the Taylor coefficients of the function twice for
each interstitial point, i.e., once from the left and once from the right. It they differ significantly,
then the function’s nth derivative is discontinuous at this point. The Taylor series of a function f (x)

Figure 1: Schematic of a finite set of discrete observations (dotted circles) of a continuous function.
The span of the observation is split into a left and right portion at the interstitial point (circle), with
lengths lL and lR respectively. The left and right sides are considered to be the functions f (x) and
g(x); modelled by the polynomials f(x,α) and g(x,β) of degrees dL and dR.

around the point a is defined as,

f (x) =
∞

∑
k=0

f (k) (a)
k!

(x−a)k (2.76)
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for each x for which the infinite series on the right hand side converges. Furthermore, any function
which is n+1 times differentiable can be written as

f (x) = f̃(x)+R(x) (2.77)

where f̃(x) is an nth degree polynomial approximation of the function f (x),

f̃(x) =
n

∑
k=0

f (k) (a)
k!

(x−a)k (2.78)

and R(x) is the remainder term. The Lagrange form of the remainder R(x) is given by

R(x) =
f (n+1) (ξ )

(n+1)!
(x−a)n+1 (2.79)

where ξ is a real number between a and x.
A Taylor expansion around the origin (i.e. a = 0 in Equation 2.76) is called a Maclaurin

expansion; for more details, see [1]. In the rest of this work, the nth Maclaurin coefficient for the
function f (x) will be denoted by

t(n)f ≜
f (n) (0)

n!
. (2.80)

The coefficients of a polynomial f(x,α) = αnxn + ...+α1x+α0 are closely related to the coeffi-
cients of the Maclaurin expansion of this polynomial. Namely, it’s easy to prove that

αk = t(k)f , for every k ∈ [0 . . .n] . (2.81)

A prudent selection of a common local coordinate system, setting the interstitial point as the origin,
ensures that the coefficients of the left and right approximating polynomials correspond to the
derivative values at this interstitial point. Namely, one gets a very clear relationship between the
coefficients of the left and right polynomial approximations, α and β, their Maclaurin coefficients,
t(n)f and t(n)g , and the values of the derivatives at the interstitial point

t(n)f = αn =
f(n) (0)

n!
and t(n)g = βn =

g(n) (0)
n!

. (2.82)

From equation 2.82 it is clear that performing a left and right polynomial approximation at an
interstitial point is sufficient to get the derivative values at that point, as well as their uncertainties.

3 Constrained and Coupled Polynomial Approximation

The goal here is to obtain ∆t(n)fg ≜ t(n)f − t(n)g via polynomial approximation. To this end two poly-
nomial approximations are required; whereby, the interstitial point is used as the origin in the
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common coordinate system, see Figure 1. The approximations are coupled [6] at the interstitial
point by constraining the coefficients such that αi = βi, for every i ∈ [0 . . .n−1]. This ensures that
the two polynomials are Cn−1 continuous at the interstitial points. This also reduces the degrees of
freedom during the approximation and with this the variance of the solution is reduced. For more
details on constrained polynomial approximation see [4, 7].

To remain fully general, a local polynomial approximation of degree dL is performed to the
left of the interstitial point with the support length lL creating f(x,α); similarly to the right dR, lR,
g(x,β). The x coordinates to the left, denoted as xL are used to form the left Vandermonde matrix
VL, similarly xR form VR to the right. This leads to the following formulation of the approximation
process,

yL = VLα and yR = VRβ. (2.83)[
VL 0

0 VR

] [
α

β

]
=

[
yL

yR

]
(2.84)

A Cn−1 continuity implies αi = βi, for every i ∈ [0 . . .n−1] which can be written in matrix form as

[
0 In−1 0 −In−1

] [α
β

]
= 0 (2.85)

Defining

V ≜

[
VL 0

0 VR

]
, γ ≜

[
α

β

]
, y ≜

[
yL

yR

]
andC ≜

[
0 In−1 0 −In−1

]
We obtain the task of least squares minimization with homogeneous linear constraints,

min
γ

∥y−V γ∥2
2

Given Cγ = 0. (2.86)

Clearly γ must lie in the null-space of C; now, given N , an ortho-normal vector basis set for
null{C}, we obtain,

γ =N δ. (2.87)

Back-substituting into Equation 2.86 yields,

min
δ

∥y−V N δ∥2
2 (2.88)

The least squares solution to this problem is,

δ = (V N)+ y, (2.89)

and consequently,

γ =

[
α

β

]
=N (V N)+ y (2.90)
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Formulating the approximation in the above manner ensures that the difference in the Taylor coef-
ficients can be simply computed as

∆t(n)fg = t(n)f − t(n)g = αn = βn. (2.91)

Now defining d= [1, 0dL−1,−1, 0dR−1]
T, ∆t(n)fg is obtained from γ as

∆t(n)fg = dTγ = dTN (V N)+ y. (2.92)

3.1 Covariance Propagation

Defining, K =N (V N)+, yields, γ =Ky. Then given the covariance of y, i.e., Λy, one gets
that,

Λγ =KΛyK
T. (2.93)

Additionally, from equation 2.92 one could derive the covariance of the difference in the Taylor
coefficients

Λ∆ = dΛγd
T (2.94)

Keep in mind that, if one uses approximating polynomials of degree n to determine a discontinuity
in the nth derivative, as done so far, Λ∆ is just a scalar and corresponds to the variance of ∆t(n)fg .

4 Error Analysis

In this paper we consider three measures for error:

1. the norm of the approximation residual;

2. the combined approximation and extrapolation error;

3. the extrapolation error.

4.1 Approximation Error

The residual vector has the form

r = y−V γ =

[
yL −VLα

yR −VRβ

]
.

The approximation error is calculated as

Ea = ∥r∥2
2 = ∥yL −VLα∥2

2 +∥yR −VRβ∥2
2

=(yL −VLα)T (yL −VLα)+(yR −VRβ)
T (yR −VRβ)

=yTy−2αTV T
L yL +αTV T

L VLα−2βTV T
R yR +βTV T

R VRβ.
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Figure 2: Schematic of the approximations around the interstitial point. Red: left polynomial
approximation f(x,α); dotted red: extrapolation of f(x,α) to the RHS; blue: right polynomial
approximation, g(x,β); dotted blue: extrapolation of g(x,β) to the LHS; εi is the vertical distance
between the extrapolated value and the observation. The approximation is constrained with the
conditions: f(0,α) = g(0,β) and f ′(0,α) = g′(0,β).

4.2 Combined Error

The basic concept, which can be seen in Figure 2, is as follows: the left polynomial f (x,α), which
approximates over the values xL, is extended to the right and evaluated at the points xR. Analo-
gously, the right polynomial g (x,β) is evaluated at the points xL. If there is no Cn discontinuity in
the system, the polynomials f and g must be equal and consequently the extrapolated values won’t
differ significantly from the approximated values.

Analytical Combined Error

The extrapolation error in a continuous case, i.e. between the two polynomial models, can be
computed with the following 2-norm,

εx =
∫ xmax

xmin

{f(x,α)−g(x,β)}2 dx. (2.95)

Given, the constraints which ensure that αi = βi i ∈ [0, . . . ,n−1], we obtain,

εx =
∫ xmax

xmin

{(αn −βn)xn}2 dx. (2.96)

Expanding and performing the integral yields,

εx = (αn −βn)
2

{
x2n+1

max − x2n+1
min

2n+1

}
(2.97)

Given fixed values for xmin and xmax across a single computation implies that the factor,

k =
x2n+1

max − x2n+1
min

2n+1
(2.98)

is a constant. Consequently, the extrapolation error is directly proportional to the square of the
difference in the Taylor coefficients,

εx ∝ (αn −βn)
2

∝

{
∆t(n)fg

}2
. (2.99)
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Numerical Combined Error

In the discrete case, one can write the errors of f(x,α) and g(x,β) as

ef = y− f(x,α) and eg = y−g(x,β) (2.100)

respectively. Consequently, one could define an error function as

Efg = ∥ef −eg∥2
2 = ∥(an −bn)z∥2

2 = (an −bn)
2zTzn = (an −bn)

2
∑xn

i (2.101)

where z ≜ x.̂ n. From these calculations it is clear that in the discrete case the error is also directly
proportional to the square of the difference in the Taylor coefficients and that Efg ∝ εx. This proves
that the numerical computation is consistent with the analytical continuous error.

4.3 Extrapolation Error

One could also define a different kind of error, based just on the extrapolative properties of the
polynomials. Namely, using the notation from the beginning of Section 3, one defines

ref = yL −g(xL,β) = yL −VLβ and reg = yR − f(xR,α) = yR −VRα

and then calculates the error as

Ee = rT
efref +rT

egreg

=(yL −VLβ)
T (yL −VLβ)+(yR −VRα)T (yR −VRα)

=yTy−2βTV T
L yL +βTV T

L VLβ−2αTV T
R yR +αTV T

R VRα.

In the example in section 5, it will be seen that there is no significant numerical difference between
these two errors.

5 Numerical Testing

The numerical testing is performed with: synthetic data from a piecewise polynomial, where the
locations of the Cn discontinuities are known; and with real sensor data emanating from the moni-
toring of heavy machinery.

5.1 Synthetic Data

In the literature on splines, functions of the type y(x) = e−x2
are commonly used. However, this

function is analytic and C∞ continuous; consequently it was not considered a suitable function for
testing. In Figure 3 a piecewise polynomial with a similar shape is shown; however, this curve
has C2 discontinuities at known locations. The algorithm was applied to the synthetic data from

46



Figure 3: A piecewise polynomial of degree d = 2, created from the knots sequence xk =

[0,0.3,0.7,1] with the corresponding values yk = [0,0.3,0.7,1]. The end points are clamped with
y′(x)0,1 = 0. Gaussian noise is added with σ = 0.05. Top: the circles mark the known points of
C2 discontinuity; the blue and red lines indicate the detected discontinuities; additionally the data
has been approximated by the b-spline (red) using the detected discontinuities as knots. Bottom:
shows ∆t(n)fg = t(n)f − t(n)g , together with the two identified peaks.

the piecewise polynomial, with added noise with σ = 0.05 and the results for a single case can be
seen in Figure 3. Additionally, a Monte Carlo simulation with m = 10000 iterations was performed
and the results of the algorithm were compared to the true locations of the two known knots. The
mean errors in the location of the knots are: µ1 = (5.59±2.05)×10−4 with 95% confidence, and
µ2 = (−4.62±1.94)×10−4. Errors in the scale of 10−4, in a support with a range [0, 1], and 5%
noise amplitude in the curve can be considered a highly satisfactory result.

5.2 Sensor Data

The algorithm was also applied to a set of real-world sensor data1 emanating from the monitoring
of heavy machinery. The original data set can be seen in Figure 4 (top). It has many local peaks
and periods of little or no change, so the algorithm was used to detect discontinuities in the first
derivative, in order to determine the peaks and phases. The peaks in the Taylor differences were
used in combination with the peaks of the extrapolation error to determine the points of disconti-
nuity. A peak in the Taylor differences means that the Taylor coefficients are significantly different
at that interstitial point, compared to other interstitial points in the neighbourhood. However, if
there is no peak in the extrapolation errors at the same location, then the peak found by the Tay-
lor differences is deemed insignificant, since one polynomial could model both the left and right
values and as such the peak isn’t a discontinuity. Additionally, it can be seen in Figure 5 that both
the extrapolation error and the combined error, as defined in Section 4, have peaks at the same
locations, and as such the results they provide do not differ significantly.

1For confidentiality reasons the data has been anonymized.
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Figure 4: The top-most graph shows a function y(x), together with the detected C1 discontinuity
points. The middle graph shows the difference in the Taylor polynomials ∆t(n)fg calculated at every
interstitial point. The red and blue circles mark the relevant local maxima and minima of the
difference respectively. According to this, the red and blue lines are drawn in the top-most graph.
The bottom graph shows the approximation error evaluated at every interstitial point.

Figure 5: The two error functions, Ee and Efg as defined in Section 4, for the example from
Fig. 4. One can see that the location of the peaks doesn’t change, and the two errors don’t differ
significantly.

6 Conclusion and Future Work

It may be concluded, from the results achieved, that the coupled constrained polynomial approxi-
mation yield a good method for the detection of Cn discontinuities in discrete observational data of
continuous systems. Local peaks in the square of the difference of the Taylor polynomials provide
a relative measure as a means of determining the locations of discontinuities.

Current investigations indicate that the method can be implemented directly as a convolutional
operator, which will yield a computationally efficient solution. The use of discrete orthogonal poly-
nomials [5, 10] is being tested as a means of improving the sensitivity of the results to numerical
perturbations.
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Abstract

This paper presents a convolutional method for the calculation of a measure for C-n dis-
continuities at interstitial points. This measure can be used to determine locations where the
observational data is discontinuous in the n-th derivative. This is achieved by calculating the
Taylor coefficients of the data from the left and right at each interstitial point. The calcula-
tion of the Taylor coefficients is constrained to ensure continuity of the model up to degree
n-1, while yielding an estimate for the discontinuity of the n-th derivative. These constrains,
together with a symmetric support length and a uniform spacing of the observational data, en-
sure a special block structure of the matrices in the least squares formulation of the minimiza-
tion problem. This special structure enables an orthogonal residualization corresponding to
a generalized Eckart-Young-Mirsky matrix approximation, which then yields a convolutional
sequence required to calculate the difference of the n-th Taylor coefficients. Additionally,
thanks to the symmetric support length and uniform spacing, it is seen that the convolutional
sequences are symmetric or antisymmetric, which ensures a linear phase response. Finally,
the results of applying the method to: sensor data emanating from the observation of a drilling
process; and synthetic data from a cubic spline with known knots, are presented.

Keywords: Taylor coefficients, Convolution, Eckart-Young-Mirsky, Discontinuity, Local poly-
nomials.

1 Introduction

The detection of discontinuities in observational data is a fundamental task; e.g., in the analysis of
earth quake data [1]. In this case only jump discontinuities in the time series are considered. If a
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more general class of discontinuities, i.e., Cn jump discontinuities, are considered then the derived
methods become more generally applicable.

If a function f (x) has continuous derivatives up to and including order n−1, but the nth deriva-
tive is discontinuous at the point xa, meaning f (xa) ∈Cn−1 \Cn, this function is called Cn discon-
tinuous at the point xa.

The more general case of Cn discontinuities is also relevant when defining the locations of knots
for B-spline functions when modelling observational data [2]. Furthermore, systems governed by
differential equations, with some exceptions [3, 4], should not exhibit Cn discontinuities. Con-
sequently, their detection in observational data is an important issue when examining anomalous
behaviour. The issue is also important when defining features in data which are being evaluated in
what is called physics informed [5] machine learning.

In [6] the authors presented a generalized method of detecting Cn discontinuities based on
constrained local polynomial approximation. Although very general, it was numerically very in-
tensive, since it involves the inversion of matrices for every interstitial point. Here the method is
adapted to the special case more generally encountered in measurement and control:

1. It is assumed that the data is sampled at uniform intervals. This does not restrict the applica-
tion in measurement and control; however, it leads to a uniform definition of the problem at
every interstitial point.

2. To ensure linear phase response, symmetry around the interstitial point is enforced in terms
of the support and local degrees of the polynomials.

3. A coefficient coupled, rather than a constrained, least squares approximation was introduced.

These conditions lead to a special structure of the matrices involved in the least squares approxi-
mation. This enables an orthogonal residualization of the design matrix corresponding to a gener-
alized Eckart-Young-Mirsky matrix approximation. Solving in this manner yields a convolutional
sequence s, which can be used to compute a measure for the Cn discontinuity. The value of the
convolutional approach is seen in the high numerical efficiency with which they can be computed.
First tests indicate an acceleration by a factor of a ≈ 300 with respect to the solution presented
in [6]. Furthermore, GUP systems offer a hardware parallel acceleration for the computation of
convolutions.

2 Detecting Cn discontinuities

Discrete observations of sensor data are, by their very nature, discontinuous at every point. Conse-
quently, it is necessary to introduce a measure for discontinuity. This is achieved by approximating
the data to the left of an interstitial point xa, by f (x) and right by g(x), with two continuous func-
tions, in this case polynomials, see Figure 2.
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Polynomials are the logical choice, since their coefficients relate directly to Taylor coefficients
and secondly, the Weierstrass approximation theorem [7] states that: any function f (x) can be
approximated by a polynomial to an arbitrary accuracy ε given a polynomial of sufficiently high
degree. That is, they are suitable for any function we might encounter locally in the data.

Figure 1: Principle of the computation at an interstitial point. The data to the left and right of the
interstitial points are considered to be the functions f (x) and g(x); modelled by the polynomials
f(x,α) and g(x,β). The coupled approximation ensured that f (x) and g(x) are Cn−1 continuous at
the interstitial point.

The n term Taylor expansion of a function f (x) around the point a is defined as:

f (x) =
n

∑
k=0

{
f (k)(a)

k!

}
(x−a)k +R(x), (2.102)

whereby, R(x) is the residual error. Given a polynomial approximation for f (x) at the location a,
i.e., f(x−a,α),

f (x)≈ f(x−a,α) =
n

∑
k=0

αk(x−a)k, (2.103)

similarly for g(x). A judicious selection of the interstitial point xa as the origin for both the left and
right approximations yields: f(x,α), g(x,β). Furthermore, the Taylor series becomes a Maclaurin
series, i.e.,

f (x)≈
n

∑
k=0

{
f (k)(0)

k!

}
xk. (2.104)

When using a Taylor expansion to approximate a polynomial f (x,α), there is a close relationship
between the coefficients of the polynomial α and the coefficients of the Taylor expansion. These
relationships yield two estimates for the Taylor coefficients of the data at each interstitial point,
one from the left and one from the right. Denoting t(n)f as the nth Taylor coefficient of f (x,α) and

similarly t(n)g from g (x,β), one gets

t(n)f = αn and t(n)g = βn. (2.105)

In conjunction with the definition for Cn discontinuity, it is now possible to define a measure:

∆
(n)
t = t(n)f − t(n)g

given t(k)f = t(k)g for all k ∈ [0 . . .n−1]. (2.106)
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This measure considers jump discontinuities in the n-th derivative, asymptotic discontinuities are
not considered. Furthermore, in more classical data modelling, Cn jump discontinuities form the
basis for the locations of knots in B-Spline models of observational data [2].

3 Algebraic Formulation

The measure defined by Equation 2.106 implies that f(x,α) and g(x,β ) are both polynomial
approximations of degree n; whereby, their coefficients are coupled such that αk = βk for all
k ∈ [0 . . .n− 1]. The support for the left and right approximations is defined as xL for f(x,α)

and xR for g(x,β ); whereby they share the interstitial point as their common origin. Symmetric
support lengths are selected in this paper to ensure either symmetric or antisymmetric convolu-
tional sequences. This has been performed to obtain linear phase response. The cost function of
this approximation task is

E = ∥yL −Vn(xL)α∥2
2 +∥yR −Vn(xR)β∥2

2

Consequently, the least squares minimization problem becomes

min
α,β

E = min
α

∥yL −Vn(xL)α∥2
2 +min

β
∥yR −Vn(xR)β∥2

2

Given αk = βk for all k ∈ [0 . . .n−1]. (2.107)

Since the constraint corresponds directly to equating the coefficients, the approximation can be
implemented, by correct partitioning of the matrices, in the following manner:

[
xn

L 0 Vn−1(xL)

0 xn
R Vn−1(xR)

]


αn

βn

αn−1
...
α0

=

[
yL

yR

]
(2.108)

The structure of the matrices in this equation are very closely related to those encountered in
coupled approximation of geometric objects [8]. The method proposed there, of orthogonal resid-
ualization, is utilized here to obtain an efficient solution.

Defining1,

zL ≜ xL ◦xL . . .◦xL︸ ︷︷ ︸
n

, zR ≜ xR ◦xR . . .◦xR︸ ︷︷ ︸
n

Z ≜

[
zL 0

0 zR

]
, γ ≜

[
αn

βn

]
, δ ≜

αn−1
...

α0


1The symbol ◦ denotes the Hadamard product in the following equations.
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Vn−1 ≜

[
Vn−1(xL)

Vn−1(xR)

]
and y ≜

[
yL

yR

]
yields a partitioned formulation of the least squares problem

Zγ+Vn−1δ = y. (2.109)

4 Orthogonal Residualization

In the case being considered here, only the coefficients γ are required. Consequently, the common
coefficients δ can be eliminated from Equation 2.109. This is done by projecting y onto the or-
thogonal compliment of the subspace spanned by Vn−1, as follows: the coefficients δ are computed
as follows

δ = V+
n−1y.

Substituting this into Equation 2.109 yields

Zγ+Vn−1V
+
n−1y = y. (2.110)

Defining Pn−1 ≜ Vn−1V
+
n−1, which is the projection matrix associated with Vn−1, and taking this

to the right hand side gives

Zγ = y−Pn−1y = {I−Pn−1}y. (2.111)

Clearly y is being projected onto the orthogonal complement, denoted by P⊥
n−1 = I −Pn−1, of

the subspace spanned by Vn−1, this corresponds to a generalized Eckart-Young-Mirsky matrix
approximation [9]. Now the coefficient vector γ is calculated as

γ = Z+P⊥
n−1y. (2.112)

Finally,

∆
(n)
t = αn −βn = [1,−1]γ (2.113)

= [1,−1]Z+P⊥
n−1y. (2.114)

This shows that the convolutional sequence s, required to calculate the difference of the n-th Taylor
coefficients, is given by

s= [1,−1]Z+P⊥
n−1y. (2.115)
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5 Example Convolutional Sequences

The convolution sequences required to detect C2,C3 and C4 discontinuities are shown in Figure 2.
Each of these sequences has been computed with a support length ls = 100 points. Note that for
even or odd n, symmetric or antisymmetric convolutional sequences are obtained respectively. This
ensures a linear phase response.

Figure 2: The convolution sequences sn for Cn discontinuity detection, each with support length
of ls = 100 points: (top) C2-; (middle) C3- and (bottom) C4-, discontinuity. Note if n is odd then
sn is anti-symmetric and for even n, sn is symmetric. This ensures that the convolution operators
have liner phase response.

6 Test Applications

The proposed method has been tested on a set of sensor data obtained from the observation of a
drilling process, see Figure 3; and on a set of synthetic data from a cubic spline with known knots,
see Figure 4.

6.1 Sensor Data

For demonstration purposes, measures for C1 and C2 discontinuities were computed for all inter-
stitial points in the sensor data, with a support length ls = 10.

6.2 Cubic Spline Data

For the purpose of testing on a set of synthetic data, a cubic spline f (x) was generated with dou-
ble knots at x = 2 and x = 3, which ensured that f (x) is C2 discontinuous at these points. For
better visualisation f ′(x) is also shown, with its C1 discontinuities. In this case, measures for C2

discontinuities were computed for all interstitial points with a support length ls = 10.
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Figure 3: (Top) - sensor data obtained during the observation of a geo-drilling process. (Middle)
- Measure for the C1 discontinuity and (bottom) measure of the C2 discontinuity. These were
computed with a support length ls = 10.

Figure 4: (Top) - A cubic spline f (x) with double knots at x = 2 and x = 3. This ensures that
f (x) is C2 discontinuous at those points. (Middle) - f ′(x), with it’s C1 discontinuities at the double
knots. (Bottom) - a measure of the C2 discontinuity of f (x). This was computed with a support
length ls = 10.

7 Other Physics Relevant Features

The approach presented here is easily applied to the convolutional computation of regularized
derivatives. Furthermore, this leads to the derivation of a very efficient computation of local cur-
vature κ(x).

7.1 Convolutional Computation of Regularized Derivatives

In order to compute regularized derivatives using the approach presented here, one should initially
define a local support for xs, such that −1 ≤ x ≤ 1 with ms samples; note, ms odd leads to a
colocative- and even to an interstitial-, computation respectively. The next step is computing a
Vandermonde matrix Vd for xs of degree d. For ms > d + 1 regularized derivatives are the result.
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Locally, the coefficients α = V +
d ys are obtained. In the case of the geometric polynomials, the

derivatives d(n) at the origin of the local coordinate system are related to the coefficients as follows:

dn =MV +
d ys, (2.116)

whereby,

dn ≜

d(n)

...
d(1)

 and M ≜

n! 0 0
. . . ...

0 1 0

 . (2.117)

Consequently, the convolutional sequence s
(k)
n required to compute the kth regularized derivative

is,
s(k) =MV +

d (d − k+1, :). (2.118)

That is, each row of MV +
d corresponds to a convolution sequence to compute a specific degree

of derivative. This is effectively a generalization of the concept of Savitzky-Golay smoothing [10],
to regularized derivatives. The method is demonstrated in Figure 5 where the first and second
regularized derivatives are computed in this manner.

7.2 Curvature

Let f (t) = (x(t),y(t)) be a proper parametric representation of a twice differentiable planar curve.
Here proper means that on the domain of the parametrization, the derivative d f (t)/dt is defined,
differentiable and nowhere equal to the zero vector. Then the signed curvature is given by,

κ(t) =
x′ y′′− y′ x′′

{(x′)2 +(y′)2}3/2 . (2.119)

In the case of uniformly sampled data, where x is the monotonic parameter, this simplifies to,

κ(x) =
y′′(x)

{1+ y′(x)2}3/2 . (2.120)

Given the numerically efficient method of computing the regularized derivatives, y′(x) and y′′(x);
computing κ(x) becomes trivial, see Figure 5.
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[3] O. Hájek, “Discontinuous differential equations, i,” Journal of Differential Equations, vol. 32,
no. 2, pp. 149 – 170, 1979.

[4] D. E. Stewart and M. Anitescu, “Optimal control of systems with discontinuous differential
equations,” Numerische Mathematik, vol. 114, no. 4, pp. 653–695, Feb 2010. [Online].
Available: https://doi.org/10.1007/s00211-009-0262-2

[5] M. Raissi, P. Perdikaris, and G. Karniadakis, “Physics-informed neural networks: A deep
learning framework for solving forward and inverse problems involving nonlinear partial

59



differential equations,” Journal of Computational Physics, vol. 378, pp. 686 – 707, 2019.
[Online]. Available: http://www.sciencedirect.com/science/article/pii/S0021999118307125

[6] D. Ninevski and P. O’Leary, “Detection of derivative discontinuities in observational data,”
2019, to be published.
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Abstract

This paper generalizes and extends the theory of approximating measurement data with
constrained basis functions. The new method is particularly well suited for modelling sensor
data in cyber-physical systems, where the physics of the system being monitored needs to be
embedded. The extension includes both co-located and interstitial constraints. The complete
derivation of all required equations is presented in a matrix algebraic framework. The new
approach enables the reconstruction of curves with a lower statistical uncertainty from fewer
measurement points. The method is demonstrated here with examples from structural mon-
itoring. A Monte Carlo simulation is presented where the new approach is compared with
unconstrained approximation. The new approach has a significantly narrow band of uncer-
tainty around the reconstructed curve. Furthermore, approximations are presented for real data
acquired in a laboratory bending beam setup. This data is used to validate the claim that,
with this method, reliable reconstructions can be obtained from a low number of measurement
points.

Keywords: Constrained approximation, structural monitoring, bending beams, discrete or-
thogonal polynomials.

1 Introduction

A pertinent definition of CPS, is given by the IEEE [1] and ACM1:

1ACM/IEEE International Conference on Cyber-Physical Systems (ICCPS) (iccps.acm.org)
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‘A CPS is a system with a coupling of the cyber aspects of computing and communications
with the physical aspects of dynamics and engineering that must abide by the laws of physics. This
includes sensor networks, real-time and hybrid systems.’
Consequently, the approximations computed from the sensor data must obey the equations describ-
ing the physics of the system and the known constraints.

Recently, physics informed data science has become a focus of research, e.g., [2]; denoted by
different names e.g., physics informed [3]; hybrid- [4]; or physics based-learning [5], etc. They
embody the same basic idea of embedding physical principles into the data science algorithms.
The goal is to ensure that the computed results are consistent with the laws of physics governing
the system. These types of constrained inverse problems are very rarely addressed in literature on
mining sensor data, see for example [6–8].

The advent of CPS is supporting the implementation of multi-sensor measurement systems;
whereby the distributed sensor-data is synchronously sampled: yielding a vector of spatially sam-
pled data at each sampling time point. An example of such a cyber-physical monitoring system is
shown in Figure 1. The data now has both temporal and spatial aspects, which need to be correctly
modelled. Temporal problems are often associated with a single sensor whose signal is sampled
at uniform intervals, see for example [9], causal filtering [10] is an appropriate approach for such
cases. In contrast spatial measurements, e.g. [11–15], are often at non-uniform intervals, due to the
physical location of the sensors. Furthermore, the solution in the spatial domain is subject to the
physical constraints of the system being observed. Spatial problems commonly lead to boundary
value problems (BVP), as does a-causal filtering.

This paper proposes a computation framework for the definition and solution of generalized
constrained inverse problems. Inverse problems associated with systems modelled by Sturm-
Liouville [16] equations fall into this class of problems, making the methods widely applicable
in physics. More specifically, there is a large class of constrained inverse problems associated
with mechanical engineering and structure monitoring applications; one such example is used as a
demonstration in this paper, see Figure 2.

The need for solutions at predetermined, but arbitrarily nodes2 due to the placement of the sen-
sors, precludes the use of the Chebyshev matrix approach, see Sezer [17] and others [18–21]. Col-
location techniques [22] use piecewise polynomials functions to find a solution to a BVP; however,
they do not provide a mechanism to deal with over-determined systems as encountered in inverse
problems and data mining. A global basis function approach was published in the paper [11] and
later extended in [15]. In those papers a finite difference approach was taken to computing discrete
approximations. This approach works well for some specific types of constraint. However, finite
differences lead to inaccurate estimates for derivatives in spatial problems, particularly when there
is only a low number of measurement locations available. The main contributions of this paper

2Nodes define formally the points at which the basis functions are evaluated, for example the Fourier basis func-
tions are discrete orthogonal polynomials evaluated on uniformity spaced points on the unit circle in the complex plain
and the Gram polynomials are evaluated on points uniformly spaced on the real axis.
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Figure 1: Example of a cyber-physical measurement system: a low number of spatially distributed
sensors are used to monitor a tunnel structure, during construction in the vicinity. The figure
shows from left to right: 1) Schematic of the tunnel profile; 2) Locations of the individual sensors
on the tunnel supporting strut; 3) Concept for mounting the sensors of the strut and 4) a schematic
reconstruction. The aim is to monitor the bending of the structural beam as a function of time. This
involves solving the constrained inverse problem and interpolating to obtain the complete bending
curve. In this example the constraints and sensors are not collocated, whereas the interpolation
points possibly are; consequently, both interstitial and colocative methods are required.

are:

1. A new computation approach for the solution of inverse constrained problems; whereby the
simultaneous use of both finite difference and pseudo-spectral constraints is permitted. This
removes some limitations from the possible locations of the sensors.

2. The formulation of a pseudo-spectral approach to the derivatives of discrete orthogonal poly-
nomials (DOP).

3. A clear and complete algebraic formulation of the problem, together with the derivation of
the solution.

4. The formulation of the constrained approximation as a subspace problem, rather than in
a Lagrange manner. This reduces the dimensionality of the problem; leading to a higher
degree of regularization wrt. noise in the observational data. Additionally, the numerical
computations are more stable.

2 Task at hand

A formal definition of the class of problems will make the versatility of the new approach visible.
The task is to approximate a set of n measurement values ym, at the locations xm, by a smooth
function f (α,x), which fulfils a set of k generalized constraints. These constraints may be spe-
cific to a location xc or a relationship between different locations. The result of the computation
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f (α,xi) is required as a set of interpolative locations xi; that is, the solution simultaneously im-
plements both approximation and interpolation. This is, by definition, a constrained minimization
problem and as such, is normally approached using Lagrange multipliers [23]. However, direct La-
grangian approaches lead to higher dimensionality in the solution space, since for each constraint
the multiplier λi must be determined, in addition to the coefficients α.

The approach taken here is to start from a set of discrete orthogonal polynomials (DOP), which
form a Hilbert space3 [24], as the columns of a matrix B. Given the constraints, it is possible
to compute a subspace of B that fulfil the constraints. The constrained basis functions Bc, also
form a Hilbert space and correspond to a set of admissible functions that fulfil the constraints in a
homogeneous manner. In this sub-space the problem is now an unconstrained approximation. This
reduces the dimensionality of the coefficient space by the number of unique constraints; yielding
a numerically more efficient solution.

3 Algebraic formulation

Given the locations xm, xc and xi, a unique sorted complete vector of locations x is formed,

x= unique([xc;xm;xi]) . (2.121)

This removes issues associated with co-locations. Note the vector x will, in general, not be uni-
formly spaced.

A set of discrete orthogonal polynomials [25] are synthesized at the locations x, up to degree
d; these form the columns of the matrix B. This ensures that the functions are consistent across
the measurement, constraint and interpolation locations. The property of DOP, i.e. BTB = I ,
ensures optimal conditioning of the matrix [26].

The elimination matrices Em and Ei, are defined, such that:

xm =Emx, (2.122)

xi =Eix. (2.123)

These matrices permit the selection of the measurement and interpolation locations from the vector
x as required. They provide a clear formulation of the algebra; however, in code indexing is
used since it is numerically more efficient, e.g., if im are the indices require to select xm, then
xm(im) =Emx.

The constrained minimization problems can be written as,

min
α

∥ym−EmBα∥2
2, (2.124)

3The dimensions of the vectors and matrices vary according to the number of sensors and interpolation required.
Consequently, in algebraic derivations it is established practice to formulate the matrices generically; without explicit
definition of their dimensions.
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given a set of k constraints each of the form,

cT
j BM jα= w j j ∈ [1 . . .k]. (2.125)

Each constraint definition forms a row vector and is later denoted by:

h j = cT
j BM j. (2.126)

The coefficients α obtained from this approximation are used to compute the final result as follows

yi =EiBα. (2.127)

The definition (2.125) for the constraints is more general than past solutions [11,15,27]; since,
it permits the simultaneous combination of finite difference and pseudo-spectral methods.

3.1 Pseudo-spectral derivative constraints

A generalized derivative constraint is defined here as:

y(δ )(x) = w. (2.128)

This permits the constraining the δ th derivative of the function y(x) at the locations x to the value
w. Multiple constrains of this form are permitted. This definition requires the computation of
accurate derivatives of the basis functions at arbitrary locations within the support.

In the case at hand, there may be a low number of measurement points and constraints. As
a result, finite differences my lead to inaccuracy in the computation of estimates for higher order
derivatives. Pseudo-spectral techniques, on the other hand, permit the exact computation of the
derivatives of the basis functions at arbitrary locations. Consequently, in this paper we propose
the use of the pseudo-spectral approach to implement derivative constraints, while maintaining the
finite difference approach where appropriate.

3.2 Derivatives of the basis

A discrete orthogonal polynomials B can be computed from the three term relationship [25],

bn = α x◦bn−1 +β bn−2, (2.129)

such that BTB = I , the symbol ◦ denotes the Hadamard product of two vectors. The correspond-
ing matrix of first derivatives dB is obtained using the chain rule,

b
′
n = α

(
x

′
◦bn−1 +x◦b

′
n−1

)
+β b

′
n−2. (2.130)
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The derivatives of polynomials are also polynomials; consequently, the matrix of derivatives dB
can be regarded as linear combinations of the columns of B. The matrix P is determined such
that BP = dB; consequently,

P =BTdB. (2.131)

Given P any desired order of derivative k can be computed from the bases as,

B(k) =BP k (2.132)

whereby B(k) denotes the kth derivative of the columns of B.

3.3 Relational constraints

The vector c j in Eqn. 2.125 also permits the definition of constraints on relationships between
the solution at different locations. This is a common requirement when approximating data from
systems governed by Sturm-Liouville equations. For example, if it is necessary to have the sec-
ond derivative y′′(x) to have the same value at both ends of the support, the following values are
required

cT
j = [1,0, . . . ,0,−1], M j = P 2, and w j = 0. (2.133)

Substituting, these values into Eqn. 2.125, yields the required implementation of the constraint.
Integral constraints can also be implemented, if e.g.,

cT
j = [1/2,1, . . . ,1,1/2], (2.134)

M j = I and w j is assigned a value; then a constrain is placed on the Trapezoidal approximation
to the integral over y(x).

The simultaneous combination of: the rows of B via c and columns via M enables the imple-
mentation of a very general class of constraints; a major extension over previous solutions.

3.4 The constrained basis functions

Each of the k constraint conditions, Eqn. 2.125, yields a row vector, h j; these are vertically con-
catenated to form the matrix H . Consequently, Hα=w defines the complete set of constraints.
With this we obtain, an algebraic formulation of the constrained minimization problem.

min
α

∥ym−EmBα∥2
2 (2.135)

given Hα=w. (2.136)

Such constrained problems are most commonly approached with Lagrangian multipliers. This has
the disadvantage of increasing the dimensionality of the minimization, since both the coefficients
and the Lagrange multipliers must be determined.
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Figure 2: Top: Example of a cantilever with additional support: This is a generic example, since
arbitrary constraints associated with a specific structure are possible. Bottom: The first four ho-
mogeneously constrained discrete polynomials from Bc corresponding to the constraints defined
above.

The alternative is to split this problem into a particular and a homogeneous portion. Starting
from Eqn. 2.136 to obtain,

α = H+w+Nγ, (2.137)

whereby, N is a unitary vector basis set for the null space of H , and γ is the vector of coefficients
for the remaining degrees of freedom. The coefficients α can be considered in the particular
αp = H+w and homogeneous αh =N γ portions. The corresponding portions of y are,

yp =Bαp =BH+w, (2.138)

yh =BN γ. (2.139)

The particular part of the solution yp can be computed in advance, since the values for the con-
straints are known a-priori. The homogeneous portion yh is a linear combination of homoge-
neously constrained basis functions Bc =BN such that yh =Bcγ. The constrained basis func-
tions Bc are also orthonormal, since both B and N are orthonormal.

Residualizing the original measurement data ym wrt. the particular solutions yields, yr =

ym −Emyp. Now the minimization can be formulated as an unconstrained problem, with the cost
function E(γ),

E(γ) = ‖yr−EmBcγ‖2
2. (2.140)
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Given an initial polynomial of degree d and k independent constraints, the subspace Bc has the
dimensionality dc = d−k+1, This is 2k lower dimensionality than the Lagrangian approach. The
solution yields γ,

γ = {EmBc}+ yr. (2.141)

Given γ we can calculate αh = Nγ. Finally, the solution yi is evaluated for the interpolative
points xi,

yi =Ei
{
Bαp +Bcγ

}
. (2.142)

3.5 Covariance propagation

The continuous nature of the polynomials, together with the constraints lead to a positional depen-
dence in the propagation of errors, i.e., an error at the input will propagate differently depending
on its location. Assuming independent identically distributed (iid) noise at the input, with standard
deviation σy and given Eqn. 2.139; the covariance propagation Λr for the value of y(x) can be
computed as,

Λr = σ
2
y BcB

T
c . (2.143)

An estimate for the standard deviation σr at each point in the reconstruction can be computed as4,

σr =
√

diag{Λr}. (2.144)

This can be considered to be a local variation in the confidence interval along the reconstruction
curve, given iid noise at the input, see Fig. 4.

4 Numerical testing

An example problem, generic to mechanical engineering and structural monitoring, is defined in
Figure 2. It has been selected since it has constraints on values as well as on first and second
derivatives; furthermore, it is a BVP with an additional inner constraint. The four constraints
defined in this problem are: two value constraints y(−1) = 0 and y(0.5) = 0; a constraint on the
first derivative y′(−1) = 0 and the constraint of the second derivative y′′(1) = 0. The corresponding
constrained basis functions are also shown in Figure 2.

A Monte Carlo simulation was performed for the same generic example. There were n = 1000
synthetic data sets, each with i.i.d. Gaussian noise with σ = 5e− 3, yielding a signal to noise
ratio SNR = 1.91. Both a constrained and unconstrained reconstructions were performed to permit
a comparison. The reconstructions in terms of the values, first and second order derivatives are

4Similar computation can be performed for the propagation of uncertainty to the derivatives; however, these are
not presented here due to the lack of available space.
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Figure 3: Results of the Monte Carlo test of the reconstruction algorithm for the cantilever shown in
Figure 2. There were n = 1000 synthetic data sets, each with i.i.d. Gaussian noise with σ = 5e−3,
yielding a SNR = 1.91. The results of the reconstructions of the function y(x), the first y′(x) and
second derivatives y′′(x) are organized from left to right. Top: result of the constrained approx-
imation. Bottom: an unconstrained approximation. Red: Is the median value of the reconstruc-
tions; black: the upper and lower statistical bounds for outlier detection, i.e., q75 + 1.5 IQR and
q25−1.5 IQR. The circles indicate the constraint values in the respective domains, i.e., in the func-
tion values and its derivatives. The constrained reconstruction has zero error and no propagation
of noise at the respective constraints.

shown in Figure 3. Additionally, the statistical upper bu and lower bl bounds,

bu = q75 +1.5 IQR, (2.145)

bl = q25 −1.5 IQR. (2.146)

for outlier detection were determined from the Monte Carlo simulation; these are also shown in
Figure 3.

As can be seen in Figure 3 the proposed method has fulfilled the constraints in each of the three
required domains. The median reconstruction shows that both the constrained and unconstrained
reconstruction converge statistically to their expected values. However, the uncertainty of the
reconstruction is significantly better for the constrained algorithm, see Table.2.1 where the 2-norm
of the inter-quantile range (IQR) is given for the function, its first and second derivatives. In
particular, for higher order derivatives the unconstrained approximation yields results with a very
high uncertainty, see e.g. the case with the second derivative shown in Figure 3. This is particularly
important for structural monitoring, since the bending of the structure is directly related to the
second derivative.

69



0

0.5

1
<
(B

)

0

0.5

1

<
(
B B
)

-1 -0.5 0 0.5 1
0

0.5

1

<
(

_ B
)

Figure 4: Relative local uncertainty along the curve for: y(x) (top), y′(x) (middle) and for y′′(x)
(bottom), for iid noise at the input. There results are consistent with those obtained by the Monte-
Carlo simulation, see Fig. 3.

5 Experimental verification

A laboratory test bench was assembled to enable the experimental verification of the new method.
It yields measurement data for the deflection of a real beam, as shown in Figure 5. The setup
was designed to correspond as closely as possible to the synthetic case presented in Figure 2.
It consisted of a bending beam, clamped at one end and with an additional support and a light
sectioning camera mounted on a linear drive. This permits the scanning and measurement of the
actual beam bending profile.

In the first test, all the experimental measurement data were used during the reconstruction,
see Figure 6. As expected the method fulfils the constraints and delivers the interpolated result
at a regular set of locations, whereas the measurements and constraints are irregularly spaced. To
verify the claim that a reliable reconstruction can be achieved with a low number of measurements,
a subset n = 10 points were selected from the original measurement data. The points have been
selected equal spaced along the support x with an additional random perturbation. This subset
was then used to reconstruct the bending curve, see Figure 7. The constrained approximation has
reliably reconstructed the deflection curve, while maintaining the desired constraints.
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Table 2.1: Comparison of the constrained and unconstrained reconstruction wrt. 2-norm of the
IQR of the uncertainty obtained from the Monte Carlo simulation.

Constrained Unconstrained
y(x) 0.037 0.058
dy(x)

dx 0.141 0.572

d2y(x)
dx2 0.633 5.873

Figure 5: Laboratory test setup used to verify the method, consisting or a bending beam with an
additional support. A light sectioning head on a linear drive to measure the actual deflection of the
beam.

6 Conclusions

This paper has extended the theory of constrained approximations. The new method is based on
matrix algebra to identify embedded subspaces that fulfill constraints. Homogeneous approxima-
tions in these subspaces are of lower dimensionality than the corresponding Lagrangian approach.
This yields numerically more efficient computations and more stable results. The new formulation
has functioned well with both synthetic and real measurement data. It provides a more general
framework for defining and performing constrained approximations.

Future plans to extend this research include:

1. In the case of linear differential operators, iid noise is mapped to the eigenfunctions inversely
proportional to their corresponding eigenvalues. This will enable a weighted approximation
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Figure 6: Reconstruction of the bending curve form the experimental data. Note: there are some
measurements with larger errors, this is to be expected and desirable when testing the stability of
the measurement algorithm.

based on the Rayleigh quotient.

2. To extend the current spectra regularization, with a Tikhonov regularization term relating to
the second derivative. This is simple to implement, since, defining B

(2)
c � BcP

2 then the
regularization term can be calculated as L = λ (B

(2)
c α)TB

(2)
c α . This will penalize curves

with high rates of curvature.

3. It is common to monitor ground subsidence using inclinometers, see Machan and Ben-
nett [28] for a good overview. Consequently, it would be valuable to implement constrained
curve reconstruction from measured gradients; given the basis functions and derivatives this
can be achieved.
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Figure 7: Reconstruction of the bending curve using a subset n = 10 of the measurements selected
from the data shown in Figure 6. Note the irregular spacing of the measurement data. This result
verifies the stability of the algorithm with a low number of observations.
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Chapter 3

Optimal Control

Optimal control deals with problems of controlling a dynamical system that in an optimal manner,
by optimizing some objective function. In this thesis, the systems dealt with can be described by
a linear system of ordinary differentail equations (ODEs), thus only such cases will be introduced
in the text. This chapter addresses the mathematical foundations necessary for solving optimal
control problems for linear systems numerically.

1 Collocative and Interstitial Numerical Derivatives

In chapter 2 it was described how to numerically approximate the derivatives of a discrete dataset.
The result was an equation of the form

y′1
y′2
y′3
...

y′n−1
y′n


≈ 1

2h



−3 4 −1 0 . . . 0
−1 0 1 0 . . . 0
0 −1 0 1 . . . 0
...

...
...

... . . . ...
0 . . . 0 −1 0 1
0 . . . 0 1 −4 3





y1

y2

y3
...

yn−1

yn


. (3.1)

Note that in this case, the approximation is performed using polynomials of degree 2 and the
locations of the derivative approximations coincides with the locations of the available data points.
So, for n available datapoints y1, . . . ,yn, one gets n derivative values y′1, . . . ,y

′
n. In some applications

however, calculating the derivatives between the sampling points is also beneficial. So if one has
n data points, one would need to calculate n− 1 interstitial derivatives, since there are n− 1 gaps
between the n points.
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1.1 Interstitial Derivatives

In the case at hand, the data is assumed to be uniformly spaced and the interstitial derivatives are
always located in the middle between two data points. As in the case considered in 2.2.1, assume
there are three equally spaced data points (x1,y1),(x2,y2),(x3,y3) such that x1 = a,x2 = a+h and
x3 = a+2h. The interpolating quadratic polynomial is denoted by p(x). The interstitial derivatives
of interest are located at the points xa = a+ h

2 and xb = a+ 3h
2 . Consequently

y′a = p′(xa) =−1
h

y1 +
1
h

y2 (3.2)

y′b = p′(xb) =−1
h

y2 +
1
h

y3 (3.3)

hence one gets the following matrix equation

[
y′a
y′b

]
=

1
h

[
−1 1 0
0 −1 1

]y1

y2

y3

 . (3.4)

Using higher order polynomials and increasing the number of points can provide more accurate
approximations of the derivatives.

2 Singular Value Decomposition

The Singular Value Decomposition (SVD) is a decomposition of a matrix A such that

A=USV T (3.5)

where the matrices U and V are orthonormal, meaning

UTU =UUT = I

V TV = V V T = I
(3.6)

and the matrix S is diagonal, i.e.,

S =


σ1

σ2 0
. . .

0 σn

 . (3.7)

The diagonal elements, σk,1 ≤ k ≤ n are called the singular values and are ordered in decreasing
order

σ1 ≥ σ2 ≥ . . .≥ σn ≥ 0. (3.8)
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The matrix S can be written as

S =

[
Sr 0

0 ∆

]
(3.9)

where ∆ is a diagonal matrix containing the singular values which are 0, or very small when
calculated numerically. This leads to a partitioning of U and V , which looks like

U =
[
Ur Ũ

]
, V =

[
Vr Ṽ

]
(3.10)

so one can write

A=USV T =
[
Ur Ũ

][Sr 0

0 ∆

][
V T

r
Ṽ T

]
=UrSrV

T
r + Ũ∆Ṽ T. (3.11)

Since ∆ is practically a zero matrix, the matrix A can be approximated as

A≈UrSrV
T

r (3.12)

2.1 Range and Rank of A

The partitioning of the matrix in such a way can provide useful properties of the matrix A. As an
example, one can take the range of A.

y︸︷︷︸
vector in range of A

=A x︸︷︷︸
coefficients

(3.13)

y =USV Tx=UrSrV
T

r x+ Ũ∆Ṽ Tx≈UrSrV
T

r x︸ ︷︷ ︸
z

=Urz. (3.14)

This shows that A and Ur have the same range. On the other hand, the columns of Ur are or-
thonormal, so

rank{A}= rank{Ur }= r. (3.15)

2.2 Nullspace of A

Let x be a vector in the nullspace of A, meaning

Ax= 0. (3.16)

It follows that
0=USV Tx=UrSrV

T
r x+ Ũ∆Ṽ Tx≈UrSrV

T
r x. (3.17)

Let’s assume that
x= Ṽ z. (3.18)
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One now gets
0=UrSrV

T
r x=UrSrV

T
r Ṽ︸ ︷︷ ︸
0

z (3.19)

which means that the above equality is true for all vectors z, so that

nullity{A}= rank
{
Ṽ

}
= n− r. (3.20)

3 SVD and the Least Squares Problem

In 2.1.2 it was shown that, when minimizing the following cost function

C (x) = ∥Ax−b∥ (3.21)

using vertical distance least squares, the solution is

x=
(
ATA

)−1
ATb. (3.22)

If A=USV T, one gets
C (x) = ∥USV Tx−b∥ (3.23)

Now, note that in the case when U is orthonormal,

∥UTr∥2
2 =

(
UTr

)T (
UTr

)
= rTUUT︸ ︷︷ ︸

I

r = ∥r∥2
2. (3.24)

This means that

C (x) = ∥UT (USV Tx−b
)
∥= ∥UTUSV Tx−UTb∥= ∥SV Tx−UTb∥ (3.25)

Substituting
V Tx= z (3.26)

would mean that
x= V z, (3.27)

thus one obtains

C (z) =∥Sz−UTb∥2
2 =

∣∣∣∣∣
∣∣∣∣∣
[
Sr 0

0 ∆

][
α

β

]
−

[
UT

r
ŨT

]
b

∣∣∣∣∣
∣∣∣∣∣
2

2

=

∣∣∣∣∣
∣∣∣∣∣
[
Srα

∆β

]
−

[
UT

r
ŨT

]
b

∣∣∣∣∣
∣∣∣∣∣
2

2

=∣∣∣∣∣
∣∣∣∣∣
[
Srα−UT

r b

∆β− ŨTb

]∣∣∣∣∣
∣∣∣∣∣
2

2

=
∣∣∣∣Srα−UT

r b
∣∣∣∣2

2 +
∣∣∣∣∣∣∆β− ŨTb

∣∣∣∣∣∣2
2
,

(3.28)

so the cost function can be written as

C (α,β) =
∣∣∣∣Srα−UT

r b
∣∣∣∣2

2 . (3.29)
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The solution to this is
α=

(
ST

r Sr
)−1

ST
r U

T
r b= S−1

r UT
r b (3.30)

Note that β will not change anything in the cost function, since ∆β ≈ 0. Once z is calculated, x
can be computed as

x= V z =
[
Vr Ṽ

][α
β

]
= Vrα+ Ṽ β = VrS

−1
r UT

r b︸ ︷︷ ︸
minimizes C

+ Ṽ β︸︷︷︸
doesn’t influence C

. (3.31)

When looking at the solution in equation 3.22, one sees that this required A to be full rank. If A
isn’t full rank, the inverse of ATA wouldn’t exist and then the solution is given by equation 3.31.
The matrix

A+ = VrS
−1
r UT

r (3.32)

is called the Moore-Penrose1 pseudo inverse. Additionally, since the columns of the matrix Ṽ

form a basis for the nullspace of A, β is a vector of parameters in order to find all solutions. If a
unique solution is necessary, some constraints will be needed.

4 Numerical Solutions to Linear Systems of ODEs

A linear system of ordinary differential equations (ODEs) has the form

y′1(x) =a11y1(x)+a12y2(x)+ . . .+a1pyp(x)+b1u(x)

y′2(x) =a21y1(x)+a22y2(x)+ . . .+a2pyp(x)+b2u(x)
...

y′p(x) =ap1y1(x)+ap2y2(x)+ . . .+appyp(x)+bpu(x)

(3.33)

or, it can be written compactly in matrix form as

y′ =Ay+ub. (3.34)

Systems of ODEs are very often used in engineering. In control theory, the functions yi(x) repre-
sent the states of the system, such as position, velocity, and the function u(x) represents an input
to the system. Systems of this form can be solved numerically using the derivative matrix methods
discussed in 2.1.2.

The first step is to discretize the system on some interval [a,b] wrt. the variable x, namely
a = x0 < x1 < x2 < .. . < xn = b. The transpose of equation 3.34 can be written as

y′T = yTAT +ubT. (3.35)

1This is one way of calculating it.
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Discretizing the vector of functions y one gets

Y ≜


yT

1
yT

2
...
yT

p

=


y1(x1) y1(x2) . . . y1(xn)

y2(x1) y2(x2) . . . y2(xn)
...

... . . . ...
yp(x1) yp(x2) . . . yp(xn)

 . (3.36)

Using a derivative matrix D, one can write

y′
i =Dyi, for 1 ≤ i ≤ p (3.37)

and discretizing the vector of derivatives y′ one gets

Y ′ ≜


y′T

1
y′T

2
...

y′T
p

=


yT

1D
T

yT
2D

T

...
yT

pD
T

= Y DT. (3.38)

The last function to discretize is u(x) which is done as

u=


u1

u2
...

un

 . (3.39)

Thus equation 3.35 can be discretized as

Y ′T = Y TAT +ubT (3.40)

and using equation 3.38 one obtains

DY T −Y TAT −ubT = 0. (3.41)

By vectorizing the left hand side of the last equation one obtains

vec
(
DY T)−vec

(
Y TAT)−vec

(
ubT) (3.42)

and using the equality [6]
vec(ABC) =

(
CT ⊗A

)
vec(B) (3.43)

one finally gets
(I⊗D−A⊗I)vec

(
Y T)= vec

(
ubT) . (3.44)

Note that the equation 3.44 represents an ordinary system of linear equations which can be solved
using any standard method for systems of equations, such as SVD.
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5 Calculus of Variations

Definition 1. A functional is a real valued function on a vector space V , usually of functions. In
other words, it is a correspondence which assigns real numbers to each function (or curve) in a
given class.

Calculus of variations is a part of mathematics dealing with optimizing functionals. Normal
calculus looks for points which maximize or minimize certain functions, whereas calculus of vari-
ations looks for curves which optimize certain cost functions. A typical example of a functional is
the length of a curve

J(y(x)) =
∫ b

a

√
1+ y′(x)2dx. (3.45)

So the functional J assigns to each curve y(x) its length. In order to find the function which
minimizes a given functional, the Euler-Lagrange equations need to be introduced. What follows
will be two Lemmas, necessary for the derivation of the Euler-Lagrange equations. They will be
given without proof and for more details and proofs, the reader is referred to [7].

Lemma 1. If α(x) is continuous on the interval [a,b] and if∫ b

a
α(x)h′(x)dx = 0 (3.46)

for every continuously differentiable function h(x) for which h(a) = h(b) = 0, then α(x) is a
constant, i.e. α(x) = c.

Lemma 2. If α(x) and β (x) are continuous on the interval [a,b] and if∫ b

a
[α(x)h(x)+β (x)h′(x)]dx = 0 (3.47)

for every continuously differentiable function h(x) for which h(a) = h(b) = 0, then α(x) = β ′(x).
α(x) = c1x+ c0.

5.1 Euler-Lagrange Equations

The most fundamental problem in calculus of variations is the minimization of the following func-
tional

J =
∫ b

a
F(x,y,y′)dx (3.48)

subject to the boundary conditions

y(a) = A,y(b) = B. (3.49)

The following theorem is one of the most fundamental theorems of calculus of variations.
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Theorem 3. Let J be a functional like in equation 3.48, defined for all continuously differentiable
functions satisfying the boundary conditions defined in equation 3.49. Then a necessary condition
for J to have an optimum for a given function y(x) is that y(x) satisfy the Euler-Lagrange equation

Fy −
d
dx

Fy′ = 0. (3.50)

Proof. Consider a small increment h(x) is added to the function y(x), such that h(a) = h(b) = 0.
Then the function y(x)+ h(x) also satisfies the boundary conditions. Consider now the following
difference

∆J = J(y(x)+h(x))− J(y(x)) =
∫ b

a
F(x,y+h,y′+h′)dx−

∫ b

a
F(x,y,y′)dx. (3.51)

Using Taylor’s theorem, one gets

∆J =
∫ b

a
[Fy(x,y,y′)h+Fy′(x,y,y

′)h′]dx+ . . . (3.52)

where the dots represent the higher order terms in h and h′. It is easy to check, that a necessary
(but not sufficient) condition that y(x) is an optimum for the functional J is that∫ b

a
[Fy(x,y,y′)h+Fy′(x,y,y

′)h′]dx = 0. (3.53)

In other words, ∫ b

a
[Fyh+Fy′h

′]dx = 0 (3.54)

for all h with the property h(a) = h(b) = 0 and according to Lemma 2, it follows that

Fy −
d
dx

Fy′ = 0. (3.55)

Thus, in order to minimize a functional of the form from equation 3.48, one has to solve the
Euler-Lagrange equation 3.50.

5.2 Calculus of Variations in Optimal Control

The state space representation of a physical system has the form

y′(t) =Ay(t)+Bu(t) (3.56)

where y is the vector of states of the system, u(t) is the control variable vector, or input vector of
the system, and A and B are matrices of coefficients. The optimal control problem is to determine
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the input which would bring a system from one state to another in an optimal manner. Hence,
calculus of variations methods are particularly useful when solving such problems. A simple cost
function in optimal control is

C(u(t)) =
∫ t f

t0
uTu(t)dt. (3.57)

However, it is worth noting that if any control is applied to the system, the changes in the state
of the system will be governed by the system of ODEs defining the system. In other words, the
final solution should satisfy the defining equation of the system. Thus, the optimization problem
becomes a constrained optimization problem

min
u

∫ t f

t0
uTu(t)dt given the constraints y′(t) =Ay(t)+Bu(t). (3.58)

This can be solved using Lagrange multipliers. Thus, the following functional is formulated

J(y(t),y′(t),u(t),λ(t)) =
1
2

∫ t f

t0
uTu(t)dt −

∫ t f

t0
λT(t)(y′(t)−Ay(t)−Bu(t))dt (3.59)

where the 1
2 is added for algebraic simplicity later on in the calculations and doesn’t affect the end

result. The integrand of the functional has the form

F(y(t),y′(t),u(t),λ(t)) =
1
2
uTu(t)−λT(t)(y′(t)−Ay(t)−Bu(t)). (3.60)

The Euler-Lagrange equations for this functional are

Fy −
d
dt

Fy′ = 0

Fu −
d
dt

Fu′ = 0

Fλ − d
dt

Fλ ′ = 0.

(3.61)

Calculating the partial derivatives, one gets

Fy =ATλ(t), Fy′ =−λ(t) (3.62)

Fu = u(t)+BTλ(t), Fu′ = 0 (3.63)

Fλ =−y′(t)+Ay(t)+Bu(t), Fλ ′ = 0 (3.64)

and thus

ATλ(t)+λ′(t) = 0 (3.65)

u(t)+BTλ(t) = 0 (3.66)

y′(t)−Ay(t)−Bu(t) = 0. (3.67)
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Substituting u(t) = −BTλ(t) from the second equation into the other two, one obtains a system
of differential equations,

y′(t) =Ay(t)−BBTλ(t)

λ′(t) =−ATλ(t)
(3.68)

which can now be solved using the techniques described earlier in the chapter.
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Abstract

This paper describes a new approach for solving an optimal control problem for a numer-
ically stiff system. The objective is to move a load from its initial states to its final states in
an optimal way. This was achieved by means of Lagrange multipliers. The resulting Euler-
Lagrange equations lead to a system of differential equations, which was solved using a mass
matrix method and discretized interstitial derivatives to obtain a numerically stable solution.
In addition, the performance of the method was compared with both LQR and PID controllers.
As a result, it can be seen for the example that is given, that the proposed method has an im-
proved energy efficiency. The new method always attains the desired boundary values exactly
with high precision.

1 Introduction

Independent metering valves today offer more flexible strategies for handling high inertia loads [1].
They can control the flow and the pressure simultaneously and accurately [2]. Increasing the pres-
sure of the hydraulic system on one side will increase the overall mechanical stiffness of the system



which will lead to less oscillations [3]. This is very valuable for systems with high inertia load.
Such machines include the tunnel boring machines, whose simplified system is described in Fig. 1.
However, servo valves usually react much faster than the natural frequency of the load system.
This leads to numerically stiff systems [4], [5], [6]. The solution of these systems cannot be com-
puted with conventional solvers [7]. Furthermore, Rath in [8] shows that the exponential matrix
method cannot be used to solve numerically stiff systems.
Several approaches are used for finding the optimal control of such systems. In [9] an optimization
based on the Hamiltonian is used to find the optimal flows for a hydraulic system. Even though
the system’s linear friction parameter is set to zero, the system achieves the desired values without
oscillations. Dupree in [10] uses the implicit learning capabilities of the RISE control to solve the
Hamilton-Jacobi-Bellman (HJB) equation. In [11] an improvement in the control of different hy-
draulic systems is achieved using the Lagrangian force method. Pourebrahim in [12] uses a linear
quadratic regulator (LQR) for trajectory control of a clutch actuated by a servo valve mechanism.
In [13] the LQR control is used to design a digital autopilot for a reusable launch vehicle. Optimal
non-linear feedback control based on the state-dependent Riccati equation (SDRE) is proposed
in [14]. Snuegucki, in [15] an optimal control method based on mixed integer quadratic program-
ming in a model predictive control framework is presented. In [16] an optimization scheme based
on discretization of the distribution of the parameters into a fixed number of points and finding
their optimal locations by methods of constrained non-linear programming is proposed.
This paper describes a new matrix based approach for solving the optimal control problem for a nu-
merically stiff system, using the Euler-Lagrange equations and discretized interstitial derivatives.
Additionally, the mass matrix method [17] is used to reduce the numerical stiffness of the system.
The new method is then simulated for a position-controlled hydraulic system and compared with
both LQR and PID controllers. The results show that the new method precisely attains the set
target values for the position and pressure of the system. In addition, the Euler-Lagrange method
shows improved energy-efficient performance compared to an LQR [18] and PID [19] controller
in the example discussed in this paper.

2 System Model

2.1 Mechanical System

The mechanical system consists of a rotating load that performs a cutting operation. In this case,
Fig. 1 shows a simplified model of the mechanical system in which the cylinder exerts a force
on a large mass moving in a positive or negative direction. The position of the mass in Fig. 1 is
described as y1. Furthermore, b is the viscous friction coefficient term and PA and PB represent
the pressures on both piston and rod side respectively. Following this the equation of motion one
obtains is:

mÿ1 = PAAA −PBAB −bẏ1. (3.69)



Figure 1: A hydraulic system with two independent metering valves, including a flow controller
on the actuating (A) and a pressure controller on the back side (B). The load (m) of the system is
position controlled. Auxiliary components, like pressure compensators and load sensing are not
shown in this figure.

2.2 Hydraulic System

The hydraulic system consists of several parts: a hydraulic pump, two independent metering valves
and a hydraulic actuator. In such systems all of the components can be the source of friction. The
oil flow through the valve orifice, the movement of the load and the steel structure of the system
can cause damping. However the hydraulic cylinder has highly non linear friction behaviour. A
complete mathematical model of the friction includes the Stribeck and stiction effect as well as
viscous and Coulomb friction [20]. In our case the assumption is made that the greatest contri-
bution comes from the rotating load that performs the cutting operation. Therefore in (3.100) the
friction is assumed to be viscous with coefficient b.

2.3 System dynamics

The position of the mass in Fig. 1 is controlled by a position controller. The position controller then
actuates the independent metering valves, which have the embedded flow and pressure controllers,
accordingly. The valves offer different operating modes for different load scenarios [2]. In our case
shown in Fig. 1, the load will be passive for all directions as gravity does not affect the movement
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Figure 2: Block diagram for the system presented in Fig. 1. The system is controlled on both
sides, where yset and PBset are the desired position and pressure values. Here kA and kB are the
proportional parts of the PID controllers for both sides respectively.

of the system. For this scenario, the piston side (A) of the system is always flow controlled and
the rod side (B) is pressure controlled. The hydraulic system was linearized using the method of
small perturbations [21]. The linearized equations for the valve flows are a function of the spool
positions of the valves and the pressures

QA =Cq1xv1 −Cp1PA, QB =Cq2xv2 +Cp2PB. (3.70)

In (3.101), xv1 ,xv2 are spool positions of the valves and Cq1 ,Cq2 ,Cp1 ,Cp2 are the linearized terms
for the valve flows. If (3.101) is now combined with the equations for the flow through the cylinder
[22] one obtains

PA =
Cq1xv1 −AAv

VA
β

s+Cp1

, PB =
ABv−Cq2xv2

VB
β

s+Cp2

, (3.71)

where VA and VB are the volumes and AA and AB are the areas of the piston and rod side of the
cylinder respectively. Additionally, β is the bulk modulus of the oil. In Fig. 2 the system is po-
sition controlled on the piston side with a set value of yset . In practice, the independent metering
valves shown in Fig. 1 react much faster when compared to the natural frequency of the mechanical
system. For this reason no flow controller was implemented on the piston side in Fig. 2. The po-
sition is controlled with a proportional P-controller with coefficient kA. On the rod side a pressure
controller was implemented with set value of PBset . The pressure is controlled with a proportional
P-controller with a coefficient kB.

As a result, the state space form for the LTI system is

Πẋ(t) =Ax(t)+Bu(t) (3.72)



where Π is the mass matrix [17]. Furthermore,

Π=


1
β

0 0 0
0 1

β
0 0

0 0 1 0
0 0 0 m

 , x=


PA

PB

y1

y2

 , u=

[
yset

PBset

]
, (3.73)

A=


−Cp1

VA
0

−kACq1
VA

−AA
VA

0
−(kBCq2+Cp2)

VB
0 −AB

VB

0 0 0 1
AA
m −AB

m 0 − b
m

 , (3.74)

B =


kACq1

VA
0

0
−kBCq2

VB

0 0
0 0

 . (3.75)

Note that the value of the parameter β , the bulk modulus, appears only in the mass matrix. On
the other hand only a portion of the value of m, the mass, was stored in the mass matrix in order
to have a numerically stable solution. This was done to improve the computational stability of the
solving algorithm. When all parameters are on the right hand side and no mass matrix is used, the
coefficients on the right hand side become too large and the computation too unstable to obtain a
solution. The initial and final conditions of the system are defined as

IC =
[
PA(t0) PB(t0) y1(t0) y2(t0)

]T

BC =
[
PA(t f ) PB(t f ) y1(t f ) y2(t f )

]T (3.76)

where t0 and t f are the start and final value of the time vector. The values in both IC and BC in
(3.76) represent the real physical values of the system start and end values.

3 Solution of the problem

The task at hand is to bring the mass in Fig. 1 from its initial state x(t0) to a final state x
(
t f
)

within the desired time t f in an optimal manner. This is an optimal control problem, which can be
solved by minimizing the norm of the control variable defined as,∫ t f

t0
uT (t)u(t)dt (3.77)

Minimizing this integral, one has to consider that the system must satisfy the set of differential
equations. This leads to a constrained optimization problem which can be solved using methods



from the Calculus of Variations, namely the method of Lagrange multipliers. Following this, the
functional which needs to be minimized will have the following form:

J (x(t) , ẋ(t) ,u(t) ,λ(t)) =
1
2

∫ t f

t0
uT (t)u(t)dt

−
∫ t f

t0
λT (t)(Πẋ(t)−Ax(t)−Bu(t))dt

(3.78)

The Euler-Lagrange equations [23] for this variational problem are as follows:

ATλ(t)+ΠTλ̇(t) = 0.

BTλ(t)+u(t) = 0

Πẋ(t)+Ax(t)+Bu(t) = 0

(3.79)

From these three equations the following system of differential equations is derived:

Πẋ(t) =Ax(t)−BBTλ(t)

ΠTλ̇(t) =−ATλ(t) .
(3.80)

These equations can be written compactly in matrix form as:

Π1γ̇ (t)−A1γ (t)= 0 (3.81)

where

Π1 =

[
Π 0

0 ΠT

]
,γ (t)=

[
x(t)
λ(t)

]
(3.82)

and

A1 =

[
A −BBT

0 −AT

]
. (3.83)

This is a system of eight differential equations. A total of eight initial or boundary conditions are
required to obtain a unique solution.

3.1 Numerical Solution

Transposing (3.114) one obtains,

γ̇ (t)TΠT
1−γ (t)TAT

1 = 0 (3.84)

Now this is an ordinary system of differential equations and can be solved numerically by dis-
cretizing with the methods described in [24] and in [25]. The outline of the method is as follows:



the vector of states is discretized at the intersitital points, i.e., between the sample tk < sk < tk+1

for k = 1, ...,n−1. The resulting discretized states are written in a matrix as follows:
γT
1

γT
2
...
γT

n

=


γ1 (s0) γ1 (s1) . . . γ1

(
s f
)

γ2 (s0) γ2 (s1) . . . γ2
(
s f
)

...
... . . . ...

γn (s0) γn (s1) . . . γn
(
s f
)
DT

0 = ΓTDT
0 (3.85)

Additionally, the derivatives of the state vector can be discretized similarly, by taking derivatives
at the interstitial points. The resulting discretized derivatives of the states are written in a matrix
as: 

γ̇1
T

γ̇2
T

...
γ̇n

T

=


γ1 (s0) γ1 (s1) . . . γ1

(
s f
)

γ2 (s0) γ2 (s1) . . . γ2
(
s f
)

...
... . . . ...

γn (s0) γn (s1) . . . γn
(
s f
)
DT

1 = ΓTDT
1 (3.86)

The matrices D0 and D1 are an identity operator and a numerical first derivative operator respec-
tively. The details about their structures as well as the discretization done can be found in [25].
Finally, the discretized form of equation (3.116) is

D1ΓΠ
T
1−D0ΓA

T
1 = 0. (3.87)

where Γ and Ξ are the matrices derived from discretizing γ and ξ respectively. Finally, by vector-
izing the last equation, one obtains

(Π1⊗D1−A1⊗D0)vec(Γ) = 0 (3.88)

which is a linear system of equations and can be solved using standard methods for linear systems
of equations. In this paper, this linear system with the constraints from (3.76) was solved using
SVD. The system and the constraints have the form

Ly = 0

CTy = d
(3.89)

where
L= (Π1⊗D1−A1⊗D0) , y = vec(Γ) (3.90)

C =


E 0 0 0 0 . . . 0

0 E 0 0 0 . . . 0

0 0 E 0 0 . . . 0

0 0 0 E 0 . . . 0


T

, (3.91)

d=
[
IT
C ,BT

C

]T
. (3.92)



In (3.91) E is the 2×n matrix (where n is the number of discretization steps) of the form

E =

[
1 0 . . . 0
0 0 . . . 1

]
. (3.93)

Using singular value decomposition on the matrix L one gets

L=USV T =
[
Ur Ũ

][Sr 0

0 ∆

][
V T
r

Ṽ T

]
, (3.94)

where ∆ is the block matrix with zero (or very small) singular values, r is the rank of the matrix
L, and U and V have been partitioned accordingly [26]. It is important to note that the columns
of Ṽ form a basis for the nullspace of L and as such the solution to the equation Ly = 0 will be
of the form

y = Ṽ α (3.95)

where α is a vector of parameters. This represents the set of solutions to the homogeneous dif-
ferential equation. To determine the values of the parameters in α one can use the constraints.
Namely

CTy =CTṼ α= d, and thus

α=
(
CṼ

)−1
d,

(3.96)

which finally leads to the solution of the equations in the form

y = Ṽ
(
CṼ

)−1
d (3.97)

4 Computation and Results

4.1 Computation

The canonical system in (3.114) was solved using (3.97). The system parameters are cylinder
areas of AA = AB = 6 ·10−2 m2, friction parameter b = 1.4 ·107 Ns

m , mass m = 4 ·105kg and a bulk
modulus of β = 1.5 ·109 Pa. The value for the friction parameter b was identified during a cutting
experiment. Additionally, the values for the linearized terms Cq1 ,Cq2 ,Cp1 and Cp2 were calculated
for the supply pressure of 300 · 105 Pa and it is assumed that the initial values for the pressures
on the both sides will be 10 · 105 Pa. The values for the proportional parts of the controllers were
determinated experimentally. Furthermore, the value of the weighting matrices Q and R are

Q =


0 0 0 0
0 0 0 0
0 0 0.001 0
0 0 0 0.001

 ,R =

0.1 0 0
0 0.1 0
0 0 0.1

 . (3.98)



The optimal control solution was then compared to both PID and LQR controllers. The main
purpose was to compare the results of these two controllers with the optimal control solution. Fur-
thermore, the performance and energy efficiency are two important factors which were observed.
All algorithms were computed in MATLAB®.

4.2 Results

LQR PID EulerLagr

Figure 3: Results of the first simulation where all initial and final values are set to zero, except for
the end position which is set to y1 = 0.01m. For the position and the pressure PB it can be seen that
the LQR and PID controller overshoot and will not end at the desired values. On the other hand,
the optimal control algorithm meets the set limits at the exact positions. It also shows improved
energy performance compared to PID and LQR, which can be seen in the curves of the velocity
and the pressure PA.

Two different experiments were performed for the same system. First, for both cases the initial
values for the system are defined as IC =

[
0 0 0 0

]T
. In the first case the system was simulated

for a time of t ∈ [0,0.3]s. The final values of the system are BC =
[
0 0 0.01 0

]T
. For the PID

and LQR controllers, step functions with an input values of y1 = 0.01m for position and PB = 0Pa
for pressure have been defined.

In Fig. 3 the optimal control algorithm achieves the set boundary values at the exact location.
It is also more energy efficient when compared with the PID and LQR.
In the second case the simulation time was set to t ∈ [0,0.6]s. The final values in this case are
set to BC =

[
0 10 ·105 0.01 0

]T
. As in the first case, step functions with set values of y1 =

0.01m for position and PB = 10 ·105 Pa for pressure are defined as the input for the PID and LQR



controllers. Fig. 4 shows that in this case both the LQR and PID controller have a steady-state error
for both the position and the pressure. On the other hand the optimal control algorithm successfully
attains the set values accurately. The system in both cases Fig. 3 and Fig. 4 achieves its maximum
velocity near the mid point of the path, demonstrating the energy efficient performance of this
method.

LQR PID EulerLagr

Figure 4: Results of the second simulation where the t ∈ [0,0.6]s . All initial and final values
are set to zero, except for the final position which is set to y1 = 0.01m and the pressure which is
set to PB = 10 · 105 Pa. For the position and the pressure PB it can be seen that the LQR and PID
controller have a steady state error and will not end at the desired values. On the other hand, the
optimal control algorithm meets the set limits at the exact positions. It also shows improved energy
performance compared to PID and LQR, which can be seen in the curves of the velocity and the
pressure PA

5 Conclusions

The results in this paper show that the new matrix-based approach, which uses the mass matrix
method and interstitial derivatives, can be used to solve systems of stiff differential equations.
The optimal control method was tested for two different time spans and boundary conditions. In
both cases, the proposed method shows improved overall and energy efficiency compared to a
linear quadratic regulator (LQR) and a PID controller. It reaches the final values at exact locations
without overshoot or steady state error.
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Abstract

This paper presents a new approach for solving an optimal control problem in a hydraulic
system, using a variational calculus method. It uses a path tracking method of two different
states with different units and of different magnitude. To ensure the uniqueness of the solution,
two regularization terms were introduced, whose influence is regulated by regularization pa-
rameters. The system of differential equations, obtained from the Euler-Lagrange equations of
the variational problem, was solved by a mass matrix method and discretized with linear dif-
ferential operators at the interstitial points for numerical stability. This enabled the calculation
of the control variables, despite the stiffness of the numerical problem. The results obtained
show an energy-efficient performance and no oscillations. Finally, a Simulink model of the
hydraulic system was created in which the calculated control variables were inserted as feed-
forward inputs, to verify the results.

Keywords: Hydraulics, Optimal control, Independent metering, Euler-Lagrange.

1 Introduction

The theory of optimal control has existed for several centuries [1]. When applied to a hydraulic
system, it dampens all vibrations at the end of the motion and still achieves the desired values
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[2]. However, due to the extremely non-linear dynamics its use in hydraulics is a challenge [3].
With the increasing demands for accuracy and performance in mining, especially for tunnel boring
machines, the demand for new methods is also increasing. In addition, these new methods must
deliver energy efficient control results and reduce the operating costs of the entire process. The
new state of the art independent metering valves, which are an essential part of these systems, offer
very flexible control strategies [4]. Since the valves move much faster than the natural frequency
of the load system, the ODEs to be solved become numerically very stiff [5]. For this reason
these systems cannot be solved with conventional solvers [6]. Rath in [5] shows that the use of
exponential matrix results in unstable solutions for these type of systems. In this paper, the mass
matrix method and interstitial derivatives are used to compute a stable numerical solution. Since
tunnel boring machines have a given profile which has to be cut, optimal path tracking methods are
suitable for this type of systems. Compared to conventional methods, optimal path tracking is often
used for the navigation of mining equipment in mines. It increases efficiency and reduces working
time, which in turn increases the safety of the process [7] [8]. In most cases, there is a given path
that the system must follow [9] [10]. One of the methods that is frequently used is model predictive
control (MPC) [11] [12] because it can take the constraints of the system into account [13]. Wang
in [14] improves the efficiency of the ant colony algorithm to find the optimal path for barrier
environments of varying complexity. Path tracking is also frequently used for control of multi-
dimensional hydraulic manipulators. In [15], the trajectory of a one-armed hydraulic manipulator
is tracked by a digital hydraulic system. Kalaiarassan also shows that the 5-bit digital flow control
unit performs much better than the 4-bit system. Rudolfsen [16] solves the kinematics of a crane
for operation in the vertical plane. He uses the inverse to compensate and identify the non-linearity
of the static dead zone input signals. A global least squares method is used in [17] to determine the
optimal control input for multi-dimensional path tracking of a hydraulic crane driven by electric
drives. In [18], a new control law based on the sliding perturbation observer (SPO) is designed.
Here the SPO is used to eliminate all disturbances that come from the environment, dynamic
uncertainties and modeling errors. Chin in [19] presents a new type of contour tracking control
which uses the force calculation for hydraulic parallel manipulators. Zhang in [20] uses the D-H
(Denavit - Hartenberg) method to set the coordinates for the path of a hydraulic excavator. On
the other hand, Kang [21] uses a PD controller with dead zone compensation to track the three-
dimensional path. However, all of the above methods focus on tracking one or more parameters
which have the same unit and magnitude and, in most cases, the position of the given system is
tracked. Tunnel boring machines have very complex hydraulic circuits. In the case presented here,
the valve is equipped with pressure and flow controllers that actuate the system. Since the external
forces are very high, the set pressure value at the pressure controller is usually very high. This will
increase the mechanical stiffness of the hydraulic system which in turn increases the mechanical
stiffness of the overall system. However, the PID controllers normally used in these valves show
a very oscillating performance when the value of the pressure changes. In [22] it is shown that
different pressure values during a motion can lead to an improved energy performance of these



systems. The method proposed in this paper, which is based on the theory of optimal control,
solves the tracking problem as a boundary value problem by means of variational calculus. The
method is then applied to a simulated model of the actual system in order to show its potential.
The contributions of this paper are:

1. A novel linearized state space model for the system presented in Fig. 1 is derived. For
the first time the embedded valve controllers (flow and pressure) and the position controller
(responsible for the position of the big mass) are included in the state space system.

2. A new method for multidimensional trajectory tracking of parameters with different units
and magnitudes is presented on the basis of calculus of variations.

3. The mass matrix method and interstitial derivatives are used to calculate a stable numerical
solution for this stiff numerical problem.

4. A simulation in Matlab Simulink is performed to verify the proposed control scheme.

P0

QP

QR

PB

PA QA QB

A B

v

y1(t ), ẏ1(t ) , F (t)

L

l

O
M

Figure 1: Simplified model of the hydraulic and mechanical system. The mechanical system
is position controlled. The hydraulic system consist of two independent metering valves which
are flow controlled (piston side) and pressure controlled (rod side). Auxiliary components, like
pressure compensators and load sensing are not shown in this figure.

The results show that the system can always achieve the desired paths for position and pressure.
Furthermore, although the pressure changes significantly, there are no oscillations present during
the motion.



2 System Model

2.1 Mechanical System

The mechanical system consists of a large mass rotating around a point O (Fig. 1) with a lever of
length L. The hydraulic cylinder exerts the force F on a smaller lever of length l. If we assume
that the system makes small movements around the fulcrum O, the effective mass of the system is

m =

(
l
L

)2

M. (3.99)

If the position of the mass m in Fig. 1 is labeled as y1, the equation of motion will have the form

mÿ1 = PAAA −PBAB −bẏ1. (3.100)

2.2 Hydraulic System

The hydraulic part of the system consists of a hydraulic pump, two independent metering valves
and a hydraulic actuator. In this system the friction consists of several components. The oil flow
through the valve orifice depends on the pressure which can cause damping. In addition, the
movement of the load and the steel structure also contribute to the overall friction. The hydraulic
cylinder has a highly non-linear friction behavior. A complete mathematical model of friction
includes the Stribeck and stiction effect as well as Coulomb and viscous friction [23]. In the actual
machine however, the greatest contribution comes from the rotating load that performs a cutting
operation. Therefore, in eq. (3.100) the friction is assumed to be viscous with coefficient b.

2.3 Dynamics of the system

The displacement of the mechanical system is controlled by a position controller which actuates
the two independent metering valves. The valves offer different operating modes for different load
scenarios [4]. In this case it is assumed that the load on the system is passive when the movement
is positive. This means that the actuating side of the system is flow controlled and the rear side is
pressure controlled. The flows supplied by the valves are a function of the spool movement xv and
the pressures PA,PB [24],

QA =Cq1xv1 −Cp1PA, QB =Cq2xv2 +Cp2PB (3.101)

where Cq1,Cq2,Cp1,Cp2 are the valve linearization coefficients and xv1 ,xv2 are the valves’ spool
positions. If eq. (3.101) is combined with the equations for the flow through the cylinder [25] the
pressure equations are obtained:

PA =
Cq1xv1 −AAv

VA
β

s+Cp1

, PB =
ABv−Cq2xv2

VB
β

s+Cp2

, (3.102)



where β is the bulk modulus of the oil, VA and VB the volumes and AA and AB the areas of the cylin-
der chambers. After deriving the linearized equations for the valve actuator system eq. (3.102), the
controllers of the system can be applied. The independent metering valves presented in Fig. 1

1
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1

CP2+
V B
β s
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PBPBset Cq2kB xv2
AB+- +

--+

1

CP1+
V A

β s
PAy set Cq1kA xv1
A A+- +-

A A

F
F A

FB

yactual

PBactual

-

Figure 2: State of the art block diagram for the system presented in Fig. 1. The system is controlled
on both sides, where yset and PBset are the desired position and pressure values. Here kA and kB are
the proportion parts of the PID controllers for both sides accordingly.

react much faster compared to the natural frequency of the load system. For this reason, no flow
controller is implemented into the system in Fig. 2. Here kA and kB are the proportional parts of
the PID controllers for both sides. The system shown in Fig. 2 is governed in state space form
with mass matrix Π by the following equations

Πẋ(t) =Ax(t)+Bu(t) (3.103)

where,

Π=


1
β

0 0 0
0 1

β
0 0

0 0 1 0
0 0 0 m

 ,x=


PA

PB

y1

v

 ,u=

[
yset

PBset

]
(3.104)

A=


−Cp1

β

VA
0 −kACq1

β

VA
−AA

β

VA

0 −
(
kBCq2 +Cp2

)
β

VB
0 −AB

β

VB

0 0 0 1
AA
m −AB

m 0 − b
m

 (3.105)



B =


kACq1

β

VA
0

0 −kBCq2
β

VB

0 0
0 0

 (3.106)

In eq. (3.104, eq. (3.105) and eq. (3.106) the value of the bulk modulus β and the mass m are on
both sides of the equations. Since β and m have very high values, a fraction of these values was
stored in the mass matrix to ensure a numerically stable solution.

3 Solution of the problem

The path tracking problem can be formulated as determining the input vector u, so that a desired
output of the system is achieved. This problem can be formulated in terms of variational calculus,
as finding the optimal input vector u for which the cost function

µ2
1

2

∫ t f

t0
(x2 (t)−ξ2 (t))

2 dt+
µ2

2
2

∫ t f

t0
(x3 (t)−ξ1 (t))

2 dt (3.107)

is minimized. Note that because of the way the vector u is defined, x2 tracks ξ2 and x3 tracks
ξ1. The integrals quantify the least-squares differences between the states x2 (t) ,x3 (t) and the
desired paths ξ2 (t) ,ξ1 (t) respectively. Since the states x2 (t) ,x3 (t) are measured in different units
of different magnitude, Pa and m respectively, a normalization of the least squares differences is
necessary. This is done with the parameters µ1,µ2. The previous equation can be rewritten as

µ2
1

2

∫ t f

t0

(
eT
2x(t)−ξ2 (t)

)2
dt+

µ2
2

2

∫ t f

t0

(
eT
3x(t)−ξ1 (t)

)2
dt, (3.108)

where e2 =
[
0 1 0 0

]T
and e3 =

[
0 0 1 0

]T
are coordinate unit vectors. In order to get a

unique solution, a regularization parameter is also necessary [26], which in the case discussed here
looks as follows:

µ2
3

2

∫ t f

t0
u̇T (t) u̇(t)dt+

µ2
4

2

∫ t f

t0
üT (t) ü(t)dt. (3.109)

Finally, the functional which needs to be minimized will have the following form:

J (x(t) ,u(t) ,λ(t)) =

µ2
1

2

∫ t f

t0

(
eT
2x(t)−ξ2 (t)

)2
dt+

µ2
2

2

∫ t f

t0

(
eT
3x(t)−ξ1 (t)

)2
dt

+
µ2

3
2

∫ t f

t0
u̇T (t) u̇(t)dt+

µ2
4

2

∫ t f

t0
üT (t) ü(t)dt

−
∫ t f

t0
λT (t)(Πẋ(t)−Ax(t)−Bu(t))dt

(3.110)



In eq. (3.110) only the ratio µ1 : µ2 : µ3 : µ4 is relevant, thus one of the parameters can be set
arbitrarily. That is why µ1 is set to be 1. The Euler-Lagrange equations [27] for this variational
problem are as follows:

e2e
T
2x−e2ξ2 +µ

2
2e3e

T
3x−µ

2
2e3ξ1 +ATλ+ΠTλ̇= 0.

BTλ−µ
2
3 ü+µ

2
4u

(4) = 0

Πẋ(t)+Ax(t)+Bu(t) = 0.

(3.111)

From these three equations the following system of differential equations is derived:

ΠTλ̇=−E23x+e2ξ2 +µ
2
2e3ξ1 −ATλ

u(4) =− 1
µ2

4
BTλ+

µ2
3

µ2
4
ü

Πẋ(t) =Ax(t)+Bu(t)

(3.112)

where
E23 = e2e

T
2+µ

2
2e3e

T
3. (3.113)

These equations can be written compactly in matrix form as:

Π1γ̇(t)−V γ(t)−Wξ(t) = 0 (3.114)

where

Π1 =



Π 0 0 0 0 0

0 ΠT 0 0 0 0

0 0 I 0 0 0

0 0 0 I 0 0

0 0 0 0 I 0

0 0 0 0 0 I


,γ (t)=



x(t)
λ(t)
u(t)
u̇(t)
ü(t)
u(3) (t)


,ξ =

[
ξ1

ξ2

]
,

V =



A 0 B 0 0 0

−E23 −AT 0 0 0 0

0 0 0 I 0 0

0 0 0 0 I 0

0 0 0 0 0 I

0 − 1
µ2

4
BT 0 0

µ2
3

µ2
4
I 0


,W =



0 0

e2 µ2
2e3

0 0

0 0

0 0

0 0


.

(3.115)

3.1 Numerical Solution

Transposing eq. (3.114) one gets,

γ̇T (t)ΠT
1−γT (t)V T −ξT (t)W T = 0 (3.116)



Now, for this system, the input vector is known (because it consists of the desired output) and can
be solved numerically by discretizing with the methods described in [28]. The methods can be
described as follows: note first that any state can be discretized directly as a vector,

γk =
[
γk (s0) γk (s1) . . . γk

(
s f
)]T

(3.117)

or, if the discretization is done at the interstitial points (the points ti, between the samples si), one
gets 

γk (t1)
γk (t2)

...
γk
(
t f
)
= J0


γk (s0)

γk (s1)
...

γk
(
s f
)
 (3.118)

J0 =
1

16



5 15 −5 1 0 . . . 0 0 0 0
−1 9 9 −1 0 . . . 0 0 0 0
0 −1 9 9 −1 . . . 0 0 0 0
...

...
...

...
... . . . ...

...
...

...
0 0 0 0 0 . . . −1 9 9 −1
0 0 0 0 0 . . . 1 −5 15 5



(3.119)

Using this, any vector of states γ can be discretized as a matrix in the following way

Γ=


γT
1

γT
2
...
γT

n

=


γ1 (s0) γ1 (s1) . . . γ1

(
s f
)

γ2 (s0) γ2 (s1) . . . γ2
(
s f
)

...
... . . . ...

γn (s0) γn (s1) . . . γn
(
s f
)
DT

0 (3.120)

where

D0 =


J0 0 . . . 0

0 J0 . . . 0
...

... . . . ...
0 0 . . . J0

 (3.121)

Additionally, the derivative of a state can be discretized as

γ̇k ≈Dγk, (3.122)

where D is a differentiation matrix, with the following form

1
24h



−23 21 3 −1 0 . . . 0 0 0 0
1 −27 27 −1 0 . . . 0 0 0 0
0 1 −27 27 −1 . . . 0 0 0 0
...

...
...

...
...

. . .
...

...
...

...
0 0 0 0 0 . . . 1 −27 27 −1
0 0 0 0 0 . . . 1 −3 −21 23



(3.123)



where it is assumed that the discretization is done uniformly with step size h. Hence, a vector of
first derivatives of states can be discretized as the following matrix

Γ=


γ̇1

T

γ̇2
T

...
γ̇n

T

=


γ1 (s0) γ1 (s1) . . . γ1

(
s f
)

γ2 (s0) γ2 (s1) . . . γ2
(
s f
)

...
... . . . ...

γn (s0) γn (s1) . . . γn
(
s f
)
DT

1 (3.124)

D1 =


D 0 . . . 0

0 D . . . 0
...

... . . . ...
0 0 . . . D

 (3.125)

Finally, the discretized form of eq. (3.116) is

D1ΓΠ
T
1−D0ΓV

T −D0ΞW
T = 0. (3.126)

where Γ and Ξ are the matrices derived from the discretization of γ and ξ respectively. For more
details, see [28, 29]. Finally vectorizing the last equation, one gets

(Π1⊗D1−V ⊗D0)vec(Γ) = (W ⊗D0)vec(Ξ) (3.127)

which is a linear system of equations and can be solved using standard methods for linear systems
of equations, along with appropriate constraints (SVD, QR decomposition). In order to get a
unique solution, an appropriate number of initial and final conditions need to be defined. From
the system of 16 differential equations eq. (3.116), a total of 16 initial or boundary conditions are
given.

γ1(t0) = 0

γ1(t f ) = 0

γ2(t0) = ξ2(t0)

γ2(t f ) = ξ2(t f )

γ3(t0) = ξ1(t0)

γ3(t f ) = ξ1(t f )

γ4−8(t0) = 0

γ4−8(t f ) = 0

γ9(t0) = ξ2(t0)

γ9(t f ) = ξ2(t f )

γ10(t0) = ξ1(t0)

γ10(t f ) = ξ1(t f )

γ11−16(t0) = 0

γ11−16(t f ) = 0

(3.128)

The values in eq. (3.128) represent the real physical values of the tracked paths.

4 Computation and Results

4.1 Computation

The results of the path tracking algorithm were computed for an effective mass of m = 4 · 105 kg,
cylinder areas AA = AB = 6 · 10−2 m2, friction parameter b = 1.4 · 107 NS

m and a bulk modulus of



β = 1.4 ·109 Pa. The value for the friction parameter b was identified during a cutting experiment.
Furthermore, the values for the linearized terms Cq1,Cq2,Cp1 and Cp2 were calculated for the sup-
ply pressure of 300 · 105 Pa and it is assumed that the initial values for the pressures on the both
sides will be 10 · 105 Pa. An oblique rectangular shape was chosen as the reference path for the
pressure. This increased the overall stiffness of the system during the motion. For the position
we have chosen a path that is followed by one of the cutting arms of the real machine. Due to
the different dimensions and magnitudes of the two tracked states, the values of the normalization
parameter µ2 was assumed to be µ2 = 104. The values of µ3 and µ4 were experimentally deter-
mined to be 5 · 10−5. The path tracking algorithm was firstly computed in MATLAB , where the
control variable u1 and u2 were calculated. Then the system presented in Fig. 2 was simulated in
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Figure 3: Implementation of the calculated control variables u1 and u2 into the simulation model
of the system as a feed-forward.

MATLAB Simulink where the control variables were inserted as feed forward inputs to the system
(see Fig. 3).

4.2 Results

The system presented in Fig. 1 was simulated for two different time intervals, namely for t ∈ [0,4]s
and for t ∈ [0,8]s. In Fig. 4 it can be seen that the system is following the given trajectories
smoothly and precisely. The maximum value of the pressure on the rod side is set to 20 · 105 Pa.
This increases the mechanical stiffness of the hydraulic system which will increase the mechanical
stiffness of the overall system. Although the pressure changes frequently during the time interval,
there are no oscillations in the solution. This is not the case when using conventional controllers.
The same applies for the position. The system reaches its maximum speed near the middle point
of the path, demonstrating the energy efficient performance of this method. To be able to observe



Desired path
Followed Path
Simulated Path

Desired PB
Followed PB
Simulated PB

PA
v

Figure 4: (Top and middle graph) - Results of the path tracking algorithm for time t ∈ [0,4]s. The
states x3 and x2 (position and pressure respectively) are being tracked. The followed values and
the simulated values deviate only slightly from the desired values. (Bottom graphs) - The behavior
of the remaining two states of the system.

Error in Followed Path
Error in Simulated Path

(a) Error curves for the followed and simulated posi-
tions in Fig. 4 .

Error in Followed PB
Error in Simulated PB

(b) Error curves for the followed and simulated pres-
sures in Fig. 4 .

Figure 5: Error curves for the followed and simulated positions and pressures in Fig. 4 accordingly.
It is clear that the inaccuracy for both graphs is smaller than 1 %.

the accuracy of the new method the inaccuracy of the path tracking method was observed for both
the position and the pressure in Fig. 5. It can be seen that the inaccuracy for the positions and the
pressures is smaller 0.01 % and 1 % accordingly. This shows that the path tracking method has a
very high accuracy.

In Fig. 6 on the other hand, the system follows the same path for position and pressure but in
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Followed Path
Simulated Path

Desired PB
Followed PB
Simulated PB

PA
v

Figure 6: (Top and middle graph) - Results of the path tracking algorithm for time t ∈ [0,8]s.
The states x3 and x2 (position and pressure respectively) are being tracked. (Bottom graphs) - The
system is tracking the same distance over a longer period of time, which results in smaller pressure
values on the piston side and a decreased velocity.

Error in Followed Path
Error in Simulated Path

(a) Error curves for the followed and simulated posi-
tions in Fig. 6

Error in Followed PB
Error in Simulated PB

(b) Error curves for the followed and simulated pres-
sures in Fig. 6

Figure 7: Error curves for the followed and simulated positions and pressures in Fig. 6 accordingly.
Here the path tracking method shows maximum offset of 0.005 %.

double the time. Accordingly, the pressure on the piston side PA are much smaller than in Fig. 4.
The same applies to the velocity. From Fig. 7 it can be seen that the path tracking method shows
even higher accuracy for longer movements. The maximum errors are in the magnitude of 0.005
%.



5 Conclusions and Future Works

5.1 Conclusions

From the results obtained it can be concluded that the path tracking method can be used success-
fully to track states in different units and of different magnitudes. The calculated control variables,
which were later used as feed forward inputs for the simulated system, provided paths that were
very similar to the desired and to the followed ones. Furthermore, the behavior of the other two
states shows that the method is energy efficient for both tested scenarios.

5.2 Future Works

In this paper we use the mass matrix method and the interstitial derivatives to find stable numerical
solution to a stiff numerical problem. Further we have implemented only P (proportional part of
PID) controllers on the pressure and flow controlled side. In practice however, the valves have also
I (integral part of PID) controllers. The numerical solution of the integro-differential equations for
these systems could be a question of future work. Additionally, the further implementation of this
method on the real system is of great interest.
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Chapter 4

The Method of Variable Projections

The variable projection method [8,9] is a method used for non-linear approximation; more specif-
ically for problems where the model equation is a linear combination of non-linear functions, such
as:

y = α1Φ1 (x,β1)+α2Φ2 (x,β2)+ . . .+αmΦm (x,βm) . (4.1)

The main advantage of this method is that it separates the problem into a linear and a non-linear
portion. If the nonlinear coefficients β are known, then solving for the linear coefficients α is a
least-squares problem. And in order to determine the non-linear coefficients β, one needs to solve
a non-linear problem of smaller dimension than the original problem. In other words, the benefit
is that the non-linear minimization problem works in a reduced space, and as such less initial
guesses are necessary. Additionally, it always converges in fewer iterations than the minimization
of the full functional. Like with linear optimization problems discussed in Chapter 2, the following
residual is of interest:

rk = yk −α1Φ1 (x,β1)−α2Φ2 (x,β2)− . . .+αmΦm (x,βm) . (4.2)

Written in matrix form this becomes:
r1

r2
...

rn

=


y1

y2
...

yn

−


Φ1 (x1,β1) . . . Φm (x1,βm)

Φ1 (x2,β1) . . . Φm (x2,βm)
... . . . ...

Φ1 (xn,β1) . . . Φm (xn,βm)




α1

α2
...

αm

 , (4.3)

or written more compactly
r = y−A(β)α (4.4)

The least squares solution to this problem is

α=
(
AT (β)A(β)

)−1
AT (β)y. (4.5)
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The cost function now has the form

C (α,β) =∥y−A(β)α∥= ∥y−A(β)
(
AT (β)A(β)

)−1
AT (β)y∥=

∥
(
I−A(β)

(
AT (β)A(β)

)−1
AT (β)

)
︸ ︷︷ ︸

projection matrix

y∥. (4.6)

The matrix I−A(β)
(
AT (β)A(β)

)−1
AT (β) is a projection matrix, which depends (varies) on

the variable β , which is where the name variable projections comes from. Note that the cost func-
tion now depends only on the parameters β and is non-linear, so a standard non-linear approach
can be used to minimize and solve for β. And once β is obtained, one can compute α using
equation 4.5.
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Abstract

This paper presents a new derivation and implementation of the method of variable pro-
jection for the estimation of the parameters of a sine wave model. The new approach yields
insights into the cost function associated with the model and how this behaves when there is
less than one cycle of the signal in the measurement period. Additionally, the new method
delivers the covariance matrix for the linear parameters; permitting computations of prediction
and confidence intervals for the approximation. The method is thoroughly tested using Monte
Carlo simulations and the results compared with those obtained by Chen.

1 Introduction

The availability of low cost high performance MEMS accelerometers and gyroscopes [1], pri-
marily driven by the mobile telephone development, is opening new areas of application, e.g., in
medicine [2]; these are in addition to the already common use of accelerometers [3, 4]. With this,
there is the an increasing demand for methods and approaches to determine the exact frequency of
motion and the parameters for this motion. The four-parameter model for a sine wave is defined
in the IEEE-standard 1057 [5]. It is commonly used to determine the frequency of a signal, char-
acterize noise and signal to noise ratio in waveform digitizers, e.g. digital oscilloscopes, analog
to digital converters etc [6, 7]. However, it is also relevant in any application where there is a
dominant frequency of oscillation.

The ability of the MEMS devices to measure low frequencies, even down to DC, a task which
is very difficult with classical piezoelectric sensors [8], enables the automatic registration of the
coordinate system with respect to gravity. That is, the MEMS accelerometer can be simultaneously
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used as: an accelerometer for oscillations and as an inclinometer to determine the orientation
or the machine. However, this requires the reliable and exact separation of DC and oscillatory
components. This is the reason to select the four parameter sine wave model [5, 9].

A key issue for the computations to be performed here is that the sine wave, in general, will
not be perfectly periodic in the measurement time T ; consequently, direct Fourier methods such
as the FFT will be subject to Gibbs error [10]. This error makes it difficult to estimate the param-
eters of a single frequency exactly and to reliably separate the DC and oscillatory components.
Consequently, several efficient algorithms [6,11–13], primarily non-linear, have been developed to
estimate the desired parameters.

The paper by Chen [14] is the closest and most relevant paper for the work presented here. He
derives the equations required to perform separable nonlinear least squares analytically1 and solves
them approximately using Newton’s method. However, at low cycles in the record, cr, the matrices
involved become poorly conditioned and convergence to a minimum in cost is not guaranteed.

The value of this paper lies in: a through matrix algebraic derivation for the method of variable
projection applied to parameter estimation of sine waves. The availability of an explicit equation
for the variable projection functional VPF also permits the calculation of the region of convergence
for the algorithm. Given the algebraic formulation, it is then possible to calculate the covariance
matrix for the linear coefficients of the model in a simple manner. Via the condition number of the
projection matrix, it is possible to detect where the model becomes poorly conditioned. Numerical
results are presented to permit a thorough comparison with the work of Chen [14], showing that
the new implementation is superior in almost all respects. The salient m-code is provided so that
the reader can implement the method and independently verify the work.

2 The four parameter sine-model in algebraic form

Let us assume that there are n measurements y = [y1, . . . ,yn]
T, performed at the time points t =

[t1, . . . , tn]T. In this manner both y and t are n× 1 column vectors. The signal model ym, also an
n×1 vector, can be formulated as,

ym = a sin(ω t+φ)+d. (4.7)

The four parameters we wish to estimate are amplitude a, frequency ω , phase φ and the DC
component d. The above model can be equivalently formulated as,

ym = ac cos(ω t)+as sin(ω t)+d. (4.8)

This can be written as a linear combination of basis functions,

ym =
[
1 cos(ω t) sin(ω t)

]  d
ac

as

 . (4.9)

1In his paper he refers to variable projection; however, his implementation is clearly based on separability.



Note that 1 in this equation is an n×1 vector of ones.

3 Method of variable projection

The method of variable projection [15, 16], is characterized by the model being a linear combi-
nation of nonlinear functions; this is exactly how the sine wave model has been formulated in
Equation 4.9. Defining the basis functions as

b1 ≜ 1, b2(ω)≜ cos(ω t), b3(ω)≜ sin(ω t) (4.10)

and concatenating the individual basis functions into the matrix of basis functions, one gets

B(ω) = [b1,b2(ω),b3(ω)]. (4.11)

The notation B(ω) indicates that he contents of the matrix B is dependent on ω . Now defining
the coefficient vector

c≜ [d,ac,as]
T (4.12)

leads directly to the matrix vector equation,

ym =B(ω)c. (4.13)

Given an estimate for ω , a least squares estimate for c as is obtained from,

c=B+(ω)y, (4.14)

whereby, B+(ω) denotes the Moore-Penrose pseudo inverse of B(ω). Now substitution Equa-
tion 4.14 into 4.13 one obtains,

ym =B(ω)B+(ω)y. (4.15)

Note that P (ω) =B(ω)B(ω)+ is the projection onto the basis functions contained in B(ω).
This projection varies with ω , hence the name, method of variable projection. The residual vector
is computed as

r = y−ym (4.16)

leading to the cost function E(ω), defined as the sum of squares of the residual r, to be calculated
as

E(ω) = ∥r∥2 (4.17)

= ∥y−B(ω)B+(ω)y∥2, (4.18)

= ∥
{
I−B(ω)B+(ω)

}
y∥2. (4.19)

This is called the variable projection functional (VPF). Note that the estimation of ω is now a
non-linear least squares problem in one variable. Equation 4.17 permits us to explicitly calculate
the cost function E(ω) as a function of ω for a given measurement y. In Section 4 of [15], Golub
provides the formal proofs required to determine that the Fréchet derivatives over the pseudo-
inverse and projection yield the gradient of the cost function. This implies that gradient based
non-linear solvers can be used to find the value of ω which minimizes the cost function E(ω).



4 Range of convergence

The range of convergence of a non-linear algorithm is dependent of the shape of the cost function.
A well implemented gradient minimization procedure will converge to the optimal solution from
any initial value, e.g., ωi, in as far as the functional E(ω) has monotonic derivatives toward the
optimum. Since by using Equation 4.17, the functional E(ω) can be explicitly calculated for a
given measurement y, the range of convergence for this algorithm can be determined.

The discrete Fourier transform (DFT), or its faster implementation the FFT, is commonly used
to determine frequencies; for this reason, the cost functions for the method of variable projection
E(ω) and for the DFT Ed(ω) are compared in the following:

E(ω) =
(
I−BB+

)
y, (4.20)

Ed(ω) =
(
I−BW BT) y. (4.21)

whereby, scaling of the DFT with respect to the number of points and for a real signal, only half
the spectrum is required.

W =
1
n

1 0 0
0 2 0
0 0 2

 . (4.22)

For an integer number of cycles in the record, the two cost functions should agree exactly; indeed
they do, which can be seen in Figure 1. It is important to note that this cost function has a C1

discontinuity at the optimum. Such discontinuities can cause convergence difficulties with simple
Newton type algorithms as used in [14].

Figure 1: Normalized cost functions E(ω) and Ed(ω) for integer cr = 10. Note the C1 discontinuity
at the optimum.

In the case of non-integer cr, the two cost functions diverge at the optimum slightly, see Fig-
ure 2. The finite curvature in Ed(ω) at the optimum means the location of the minimum is not as
well defined for the DFT as it is for the variable projection.



Figure 2: Normalized cost functions E(ω) and Ed(ω) for non-integer cr = 10.5. Note how the
cost functions diverge slightly at the optimum.

At lower values of cr < 1 the two cost functions diverge strongly, see Figure 3; to the extent
that the minimum of Ed(ω), no longer corresponds to the cr value.

Figure 3: Normalized cost functions E(ω) and Ed(ω) for low value of cr, in this example cr = 0.5.
Note the minimum of Ed(ω) does not correspond to the cr values.

At low values of cr < 1 the four term sine wave model may become inappropriate. For example,
a sine wave close to the origin is very well approximated by a straight line; consequently, fewer
parameters are required than the four foreseen. This is reflected in the condition number of the
matrix of basis functions B as seen in Figure 4. A high condition number indicates that a matrix
is approaching degeneracy; which in this case, would imply that for cr < 0.5 the basis functions
are becoming linearly dependent.



Figure 4: Condition number κ (B(ω)) in a log scale as function of ω .
.

5 Covariance propagation and noise bandwidth

A further advantage of the method of variable projection is that it yields a direct method of calcu-
lating the covariance propagation for the linear coefficients. Given c = B+y, a linear mapping,
then Λc, the covariance matrix of c, can be computed as [17],

Λc =B+ΛyB
+T

. (4.23)

whereby, Λy is the covariance matrix of the data vector y. If y is perturbed by i.i.d. Gaussian noise
with the standard deviation σy, then the equation becomes

Λc = σ
2
y B

+B+T
. (4.24)

An estimate for σ2
y can be computed from the residual vector r as follows:

σ
2
y =

1
n−nd f

∥r∥2
2, (4.25)

where by nd f denotes the number of degrees of freedom, in this case nd f = 4, since four parameters
are being determined. In this manner, the covariance of the linear coefficients can be directly
computed.

An example for the approximation of a noisy sine wave is shown in Figure 5 and the corre-
sponding covariances of the linear coefficients are given in Table 4.1.



Figure 5: Synthetic sine wave used to demonstrate the computation of cavariances. The model
parameters were: ω = 4.15, d = 0.5, ac = as = 1/

√
(2) with iid noise with a standard deviation

of σ = 0.5 and n = 1000 samples were used. The estimation results are: ω = 4.1530, d = 0.4837,
ac = 0.7064 and as = 0.7058. The corresponding covariance of the linear coefficients is shown in
Table 4.1.

Cov d,d d,ac d,as

d,d 0.241 -0.015 -0.007
d,ac -0.015 0.474 -0.012
d,as -0.007 -0.012 0.491

Table 4.1: Table of covariances for the test case shown in Figure 5. The results are scaled by 103

since they were very small.

6 Numerical testing

The following presents a thorough numerical testing of the new method and its comparison to the
results obtained by Chen [14]. The results are obtained using Monte Carlo simulations, each run
consisting of m = 500 independent simulations; each simulation as n = 1000 samples; a sine wave
amplitude of a = 1 and independent identically distributed (iid) Gaussian noise with a standard
deviation of σ = 0.1 was chosen. Based on RMS signal values this corresponds to 17.1db. This
was repeated for k = 20 values of cr, such that 0 < cr ≤ 2. Then for each value of cr and each
performance indication, a box plot is created indicating the median, IQR, upper bound, lower
bound and outliers. The results are shown in figures 6, 7 and 8.



6.1 Residual error

The value of the cost functions after convergence of the algorithm is shown in Figure 6. The new
algorithm produces a consistent IQR for all the values of cr, this is exactly what one would expect,
since the noise level added to the signal is independent of ω . Note the implementation proposed
by Chen2 fails to converge for cr < 0.7.
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Figure 6: Box plots of cost functions obtained from Monte Carlo simulation with m = 500 repe-
titions: (top) the new solution, (bottom) Chen’s implementation [14]; note, that where no data is
shown, Chen’s method failed to converge at least once during the m simulations. The signals over
the given frequency range were all generated with n = 1000 samples, and the parameters d = 0.1,
ac = 0, as = 1.

6.2 Estimated frequency

The errors in the frequency estimates, εω , obtained by applying the method of variable projection,
as implemented in listings 1 and 2, are shown in Figure 7, together with the results from Chen’s
solution. Both methods yield comparable results for cr ≥ 1. Below this value the new method
performs better and the median estimate for the frequency is consistent for values as low as cr =

0.2.

2We have strictly adhered to the convergence conditions proposed by Chen in his paper [14].
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Figure 7: Box plots for the error in the estimated frequency, results are from the same Monte Carlo
simulations shown in Figure 6. No results are shown where Chen’s method failed to converge.

6.3 Computational time

The CPU elapse time for each algorithm is shown in Figure 8. Once again they are comparable for
cr ≥ 1. However, Chen’s implementation requires significant CPU time when it does not converge.
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Figure 8: Box plots for the execution times te for each algorithm: (top) new solution, (bottom)
Chen. Note, the times for Chen’s algorithm, although it did not converge, are shown, since the
algorithm must run to this extend to be able to detect non-convergence. The results are from the
same Monte Carlo simulations shown in Figure 6.



6.4 Residual error vs phase

The residual error as a function of phase for low number of cycles in the record cr = 0.5 is shown
in Figure 9. Only the results for the new approach presented in this paper are shown here, since
the implementation of Chen does not converge for low values of cr. The results demonstrate, as
one would expect, are statistically independent of phase. This is due to the nature of the projection
P = B(ω)B+(ω); the 2-norms of both, all columns and rows, have a single stationary point.
Consequently, there is non tendency for the iterative minimization to converge to a local minimum.
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Figure 9: Box plots for the residual error ε(φ) with cr = 0.5 for phase shifts in the range 0 ≤ φ ≤
2π . Only the results for the new algorithm are shown, since this value of cr the Chen approach
does not converge.

7 Code implementation

Here the salient snippets of code required to implement the method of variable projection for the
four parameter sine wave model are presented. The first piece of m-code is a function that is used
to compute the cost function E(ω) for the method of variable projection, see Listing 1.

1 function cost = sineCost( omega, t, y )

2 %

3 % Setup the basis functions

4 phi = omega * t ;

5 B = [cos(phi), sin(phi), ones(size(y)) ];

6 % Compute the projection

7 ys = B * ( B \ y );

8 % Evaluate the residual

9 r = y - ys;

10 % compute the corresponding cost



11 cost = norm( r );

Listing 4.1: Variable projection cost function for the four parameter sine wave model.

As in [18], here a standard high quality generic nonlinear iteration process3 is availed of to per-
form the optimization. The code required for this portion is shown in Listing 2. An autonomous
function fun is defined with one calling parameter, omega and one return parameter cost. Ad-
ditionally, there are two passively passed parameters t and y: the time vector and measurement
vector, respectively.

1 % Define the anonymous for the cost

2 fun = @(omega) sineCost( omega, t, y ) ;

3 % Wrap with the nonlinear iteration.

4 omega = lsqnonlin( fun, omega_Init );

Listing 4.2: Wrapping with a nonlinear solver

At the end of running the code in Listing 2, the optimal value for ω is obtained. The remaining
linear coefficients c, since ω is available, can be computed according to Equation 4.14, this is
implemented in Listing 3.

1 phi = omega * t ;

2 B = [cos(phi), sin(phi), ones(size(y)) ];

3 % Compute the projection

4 cfs = B \ y ;

Listing 4.3: Compute the linear parameters.

Finally, if required the covariances of the linear coefficients can be computed according to the
m-code in Listing 4.

1 nrParams = 4;

2 % Number of degrees of freedom

3 df = length(y) - nrParams ;

4 % Estimate the standard deviation of y

5 stdY = norm(r) / sqrt(df);
6 % Evaluate the covariance

7 Bp = pinv( B );

8 Cov = stdYˆ2 * ( Bp * Bp’ ) ;

Listing 4.4: Code required to compute the covariances.

8 Further improvements

Possible improvements of the algorithm and areas of future research are as follows:
3This is a common approach, since such solvers are available in most numerical computation packages.



1. The matrix B(ω) has a special structure with a constant column of 1’s. This column is
invariant with respect to ω; consequently, orthogonal residualization can be applied to re-
move this portion from the matrix. This is done prior to initiating the nonlinear iteration,
it reduces the dimension of B(ω) from n× 3 to n× 2. This makes the computation of the
pseudo-inverse B+(ω) numerically more efficient. This is important since this computation
is performed in the iteration loop.

2. When B has a large condition number, a regularized variable projection method [19] can be
used to improve the results obtained.

3. The discontinuity in the cost function, E(ω), see Figure 1, suggests that an optimization
based on a simplex method [20] may perform better than a gradient method.

9 Conclusions

This paper has presented a new derivation and implementation of the method of variable projection
for the estimation of the four parameter sine wave model. The new derivations give new insights
into the nature of the cost function and how it changes for low values of cr. Additionally, this
effect can be detected during evaluation by computing the condition number for the matrix of basis
functions. The new set of equations also provides a means of calculating the covariance of the
linear parameters; these can be used to compute confidence and prediction intervals. A thorough
numerical testing also revealed that the new implementation is more stable and faster than past
solutions.
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Abstract

This paper presents a new approach to separate a signal into its periodic and aperiodic
components; whereby, the exact frequency of the periodic component is unknown. In other
words, it is shown how to determine the underlying trend of a periodic perturbed signal and si-
multaneously identify the shape of the periodic perturbation. Therefore the signal is modeled
by a nonlinear design matrix containing periodic basis functions, which depend on the un-
known frequency, and aperiodic basis functions, more precisely discrete orthogonal polynomi-
als (DOP). The nonlinear least squares problem of computing the model coefficients is solved
by the method of variable projection. A well chosen partitioning of the design matrix enables
an orthogonal residualization corresponding to a generalized Eckart-Young-Mirsky matrix ap-
proximation, which yields an efficient implementation of the variable projection method. This
implementation is thoroughly tested using Monte Carlo simulations and the results are com-
pared with those obtained by the classical implementation of the method of variable projection.

Keywords: Signal separation, Nonlinear least squares; Variable projection; Eckart-Young-
Mirsky matrix approximation
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1 Introduction

The need to separate a signal into its periodic and aperiodic components is a well known problem
in many different fields of study, e.g. in medicine [1] or in economics, where it is usually known
as seasonal adjustment [2] [3]. Another area where this problem arises is in engineering. Here a
process which inherits a rotational motion, naturally can become the source of a periodic pattern,
e.g. the dynamic bulging process during steel casting [4] or the flow ripples in fluid gear pumps [5].
An eccentric mounting of rotational components leads to the so called runout, which is a common
problem of gear wheels [6] or in milling [7] [8]. It also occurs when measuring the roundness and
sphericity of a sphere [9]. For the active control of the lubrication gap of plain bearings [10] [11]
it is necessary to directly measure the lubrication gap or to measure the eccentricity of the journal
with respect to the bearing bushing. However, if the journal itself has a deviation of roundness the
eccentricity measurement will yield the actual eccentricity superimposed with a periodic pattern
originating from the deviation of roundness. So, in order to control the underlying process or
quantity, in this case the lubrication gap, it is necessary to separate the periodic perturbation from
the signal of interest.
For clarification it has to be mentioned, that the task of decomposing a signal into its periodic and
aperiodic components is also looked at in speech and audio processing [12] [13] when analyzing
and describing the characteristics of voice sources. However, in audio processing a stochastic (or
noise-like) signal is meant when talking about the aperiodic portion. This is not the task dealt
with here. This work proposes a method to separate a periodic perturbation superimposed on an
aperiodic (trend-like) signal.
With regard to a process that inherits a rotational motion, depending on the method of measuring
the rotational speed and the possible occurrence of slip effects the measured rotational speed might
not be exactly the same as the actual rotational speed. Consequently, this method considers the
frequency of the periodic perturbation as unknown. Due to this unknown frequency it has to
be assumed that the periodic pattern might not be perfectly periodic in the measurement interval.
Hence, direct Fourier methods such as the FFT will be subject to Gibbs error [14]. This error makes
it difficult to estimate the exact frequency of the periodic component. Therefore, the method of
variable projection [15–18] is used to overcome this problem.
The main contribution of this paper is a thorough matrix algebraic derivation of a new approach
to separate a signal into its periodic and aperiodic components. The proposed method is based
on a nonlinear least squares approximation of the measurement signal. The approximation model
consists of a combination of periodic and aperiodic basis functions. Once the model coefficients
are determined the periodic basis functions are used to reconstruct the periodic signal component
and the aperiodic basis functions are used to compute the aperiodic signal portion. A special
partitioning of the resulting matrix of basis functions yields a numerically efficient solution to the
signal separation task.



2 Separation Model

The goal is to decompose a signal y consisting of n measurements, so y= [y1, . . . ,yn]
T into its peri-

odic and aperiodic components and the measurements are taken at the time points t= [t1, . . . , tn]T.
In this manner both y and t are n×1 column vectors.

2.1 Periodic Component

Since the periodic component yp of the signal, also a n × 1 column vector, can have a shape
different to a perfect sine wave, it will be approximated by a sum of sine and cosine functions and
their k harmonics with the fundamental frequency ω0,

yp = a1 cos(ω0t)+a2 cos(2ω0t)+ · · ·+ak cos(kω0t)+

+b1 sin(ω0t)+b2 sin(2ω0t)+ · · ·+bk sin(kω0t) .
(4.26)

This can be written as a linear combination of basis functions,

yp =[cos(ω0t) · · · cos(kω0t)] [a1 · · · ak]
T+

+[sin(ω0t) · · · sin(kω0t)] [b1 · · · bk]
T .

(4.27)

Since the fundamental frequency ω0 is unknown, this model can be seen as a linear combination
of nonlinear functions. With the following definitions,

H(ω0) =[cos(ω0t) · · · cos(kω0t) sin(ω0t) · · · sin(kω0t)]

σ =[a1 · · · ak b1 · · · bk]
T (4.28)

it can be written short,
yp =H(ω0)σ , (4.29)

where H(ω0) is a matrix containing the harmonic basis functions and σ is the vector of coef-
ficients. For all further derivations it is assumed, that the number of measurements n ≥ 2k, this
ensures that H(ω0) has full column rank.

2.2 Aperiodic Component

The aperiodic component yt , also called the trend component here, is modeled by a polynomial,

yt =Bα , (4.30)

where B is the matrix with discrete orthogonal polynomial (DOP) basis functions [19] as its
columns and α are the coefficients of the polynomial.



2.3 Combined Basis

Finally the complete model ym is established by adding the periodic component and the trend
component,

ym = yt +yp =Bα+H(ω0)σ . (4.31)

It becomes apparent that by concatenating the two matrices B and H(ω0) this expression can be
written as,

ym = [B H(ω0)]

[
α

σ

]
. (4.32)

The following definitions,

M(ω0) = [B H(ω0)] and c=

[
α

σ

]
(4.33)

lead the matrix vector notation for the final model,

ym =M(ω0)c , (4.34)

where M(ω0) is the so called design matrix and c is the vector of linear coefficients.

3 Separation Procedure

The idea behind the method of variable projection is to define the model as a linear combination of
nonlinear functions. This is exactly how the proposed model here (Equ. 4.53) is chosen. The least
squares approximation of the data by the model is defined by minimizing the cost function,

E(ω0) = ||r||2 (4.35)

where r is the residual vector computed by,

r = y−ym . (4.36)

As shown in [18] this leads to the so called variable projection functional (VPF) being,

E(ω0) = ||{I−M(ω0)M(ω0)
+}y||2 , (4.37)

where M(ω0)
+ denotes the Moore-Penrose pseudo inverse. This nonlinear least squares problem

can be solved for ω0 with a standard nonlinear iteration process. However, this would lead to the
necessity of computing the pseudo inverse of M(ω0) in every iteration step, which is numerically
expensive. As it can be seen in Equ. (4.33) not every column of M(ω0) depends on ω0. This fact



can be used to derive a more efficient solution to the problem. So the cost function (Equ. (4.35))
can be expanded to,

E(ω0) = ||r||2 = rTr =(y−ym)
T (y−ym) =

=yTy−2yT
my+yT

mym .
(4.38)

By using the relationship from Equ. (4.31) this can also be written as,

E(ω0) =yTy−2αTBTy−2σTH(ω0)
Ty+2αTBTH(ω0)σ+

+αTBTBα+σTH(ω0)
TH(ω0)σ .

(4.39)

In order to get the linear coefficients α and σ which minimize the cost function E(ω0) the partial
derivatives have to be zero,

∂E
∂α

=−2BTy+2BTH(ω0)σ+2BTBα= 0 (4.40)

∂E
∂σ

=−2H(ω0)
Ty+2H(ω0)

TBα+2H(ω0)
TH(ω0)σ = 0. (4.41)

Equ. (4.41) can be solved for σ yielding,

σ =
(
H(ω0)

TH(ω0)
)-1 (

H(ω0)
Ty−H(ω0)

TBα
)

=
(
H(ω0)

TH(ω0)
)-1

H(ω0)
T (y−Bα) . (4.42)

By using the Moore-Penrose pseudo inverse Equ. (4.42) states,

σ =H(ω0)
+ (y−Bα) . (4.43)

This equation shows that σ and thereby the periodic signal portion depends on the difference of
y−Bα= y−yt. In order for this difference to contain as little aperiodic component as possible,
α is defined as,

α=BTy . (4.44)

Substituting this expression into Equ. (4.43) finally yields,

σ =H(ω0)
+ (I−BBT)y . (4.45)

Now it becomes apparent that, by defining Equ. (4.44) the signal y is first approximated solely
by the aperiodic model and the residual of this approximation is then used to approximate the
periodic portion. This approach corresponds to a generalized Eckart-Young-Mirsky matrix ap-
proximation [20], which will further lead to a numerical efficient computation of the VPF. It has to
be mentioned though, that the consequence of defining α the way it is done in Equ. (4.44) is, that
Equ. (4.40) does not hold anymore. Therefore, the result of this approximation is in general only



close to the optimum and not the true optimum. However, with the relation from Equ. (4.45), the
periodic model yp from Equ. (4.29) can be expressed as,

yp =H(ω0)H(ω0)
+ (I−BBT)y , (4.46)

and by substituting Equ. (4.44) into Equ. (4.30) the trend component yt is defined as,

yt =BBTy . (4.47)

Adding this two results the final model equation yields,

ym =BTBy+H(ω0)H(ω0)
+ (I−BBT)y . (4.48)

By using this model equation, the residual vector (Equ. (4.36)) can be written as,

r = (I−H(ω0)H(ω0)
+)
(
I−BBT)y . (4.49)

Defining PH(ω0) ≜H(ω0)H(ω0)
+, which is the projection matrix associated with H(ω0) and

PB ≜BBT, which is the projection matrix associated with B, gives

r = (I−PH(ω0))(I−PB)y . (4.50)

This equation shows that y is first projected onto the subspace orthogonal to the one spanned by
B, denoted by P⊥

B = I−PB and then onto the orthogonal complement of the subspace spanned
by H(ω0), denoted by P⊥

H(ω0) = I−PH(ω0). As stated before, this corresponds to a generalized
Eckart-Young-Mirsky matrix approximation. Using these definitions the VPF can now be written
as,

E(ω0) = ||P⊥
H(ω0)P

⊥
By||2 . (4.51)

If this result is compared to Equ. (4.37) the numerical advantage of this derivation becomes appar-
ent. Because rather than having to compute the pseudo inverse of M(ω0) in every iteration step,
now only the pseudo inverse of H(ω0) has to be computed during the nonlinear iteration process.
Once the nonlinear parameter ω0 is determined Equ. (4.46) yields an estimation for the periodic
signal portion yp and the trend component yt can be approximated with Equ. (4.47). The linear
coefficients of the model are computed by equations (4.44) and (4.45).

4 Numerical Testing

The proposed method is tested on two sets of synthetic data (see Fig. 1 and Fig. 2), each of which
consists of n = 1000 samples. The first test signal consists of an aperiodic component created by
a DOP of degree four and for the second test signal a DOP of degree 13 is used. The periodic
component is the same for both signals. The final test signal is the sum of those two components
superimposed with i.i.d. Gaussian noise with a standard deviation of σ = 0.02.



Figure 1: First synthetic test signal, consisting of the periodic component yp(t) here with the num-
ber of cycles in record cr = 6.25 and the trend component yt(t) created by a DOP of degree four.
The final test signal y(t) is the sum of those two components superimposed with i.i.d. Gaussian
noise with a standard deviation of σ = 0.02.

The proposed method is tested on both synthetic signals via Monte Carlo simulation with
respect to its execution time and its frequency estimation accuracy. Therefore, each run of the
Monte Carlo simulation consists of m = 500 independent simulations, which again were carried
out for different numbers of cycles in record cr of the periodic perturbation. These simulations are
used to compare the proposed method, based on the Eckart-Young-Mirsky matrix approximation
(Equ. (4.51)) with the classical variable projection approach (Equ. (4.37)). For solving the non-
linear optimization problem, the MATLAB solver lsqnonlin(), based on a trust-region reflective
algorithm [21], is used.

4.1 Estimated frequency

The deviation of the estimated frequency to the actual frequency for the first test signal is presented
in Fig. 3 and Fig. 4. It can be seen that the estimated frequency deviates strongly from the actual
frequency for a low number of cycles in record. Therefore, the aperiodic component can also be
thought of as a periodic signal with close to one cycle in record. Now, if the periodic perturbation
is also close to only one cycle in record the algorithm fails to separate the two signals correctly.
However, Fig. 4 shows, that for cr ≥ 2.75 the classical approach already provides an accurate
estimation of the frequency. Another interesting fact that becomes apparent from Fig. 4 is, that
the frequency estimation of the proposed algorithm gets more accurate the lager cr is. This can be



Figure 2: Second synthetic test signal, consisting of the periodic component yp(t) here with the
number of cycles in record cr = 6.25 and the trend component yt(t) created by a DOP of degree
13. The final test signal y(t) is the sum of those two components superimposed with i.i.d. Gaussian
noise with a standard deviation of σ = 0.02.

explained by looking at Equ. (4.51) more closely, because what the Eckart-Young-Mirsky matrix
approximation does is a kind of cascaded least squares. The signal is first approximated by the
DOP in a least squares sense and the residual of this fit is then approximated by the harmonic basis
functions. So the more periodicity the signal has the harder it is for the DOP to approximate it.
Hence, the remaining residual contains more of the true periodic portion which enables a more
accurate estimation of the frequency. The deviation of the estimated frequency for the second test
signal is presented in Fig. 5. The results show similar behavior to the first test signal.

4.2 Computational time

The result of the Monte Carlo simulations regarding the elapsed CPU time is shown in Fig. 6 for
the first test signal and in Fig. 7 for the second test signal respectively. These simulations show that
for the first test signal there is no noticeable difference in the computation time for either method.
It follows that the Eckart-Young-Mirsky matrix approximation provides no significant numerical
advantage for the DOP of degree 4. However, if the aperiodic component is approximated by a
higher order DOP, as it is the case for the second test signal (see Fig. 7) the advantage concerning
the numerical efficiency of the proposed algorithm becomes apparent.



-3

-2

-1

0

1

1.
25

1.
75

2.
25

2.
75

3.
25

3.
75

4.
25

4.
75

5.
25

5.
75

6.
25

6.
75

7.
25

7.
75

8.
25

8.
75

9.
25

9.
75

-10

-5

0

Figure 3: Box plots of the estimated frequency deviation for the first test signal, which has an aperi-
odic component modeled by a DOP of degree four, obtained from Monte Carlo simulations: (top)
the presented approach based on the Eckart-Young-Mirsky matrix approximation (Equ. (4.51)),
(bottom) the classical variable projection approach (Equ. (4.37)).
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Figure 4: Detailed view of Fig. 3 for 2.75 ≤ cr ≤ 9.75

4.3 Separation task

The result of the separation task for the first test signal is shown in Fig. 8, where cr = 6.25 is chosen
for the illustration. It can be seen, that the proposed algorithm is able to solve the separation task
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has an aperiodic component modeled by a DOP of degree 13, obtained from Monte Carlo sim-
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Figure 6: Box plots of the execution times for the first test signal, which has an aperiodic com-
ponent modeled by a DOP of degree four, obtained from Monte Carlo simulations: (top) the pre-
sented approach based on the Eckart-Young-Mirsky matrix approximation (Equ. (4.51)), (bottom)
the classical variable projection approach (Equ. (4.37)).
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Figure 7: Box plots of the execution times for the second test signal, which has an aperiodic
component modeled by a DOP of degree 13, obtained from Monte Carlo simulations: (top) the
presented approach based on the Eckart-Young-Mirsky matrix approximation (Equ. (4.51)), (bot-
tom) the classical variable projection approach (Equ. (4.37)).

very well. The result for the second test signal, also for cr = 6.25 is presented in Fig. 9. The
previous mentioned problem of the cascaded approximation becomes evident here. Due to the
high order of the DOP, parts of the periodic portion are already included by the aperiodic model,
which leads to the deviations in the periodic component, shown in the middle plot. Again, as stated
before, this effect becomes smaller the more cycles in record the signal has.

5 Conclusion

This paper presented a new approach for periodic/aperiodic signal separation where the exact fre-
quency of the periodic component is unknown. This is used to determine the underlying trend of a
periodic perturbed signal or for identifying the shape of a periodic pattern. The task is formulated
as a nonlinear least squares problem which is solved by the method of variable projection. Due
to a well chosen partitioning of the design matrix, a numerically efficient implementation of the
variable projection method was derived, based on an Eckart-Young-Mirsky matrix approximation.
Numerical tests via Monte Carlo simulations, lead to the insight that the advantage regarding the
computation time becomes more relevant the higher the polynomial degree of the trend estimation
model is. Furthermore, the estimation accuracy of the unknown frequency is better the more cycles
of the periodic pattern the investigated signal contains. These two results lead to the conclusion
that the proposed method has its strength when investigating signals containing a high number of
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Figure 8: First synthetic test signal, consisting of the periodic component yp(t) here with the
number of cycles in record being 6.25 and the trend component yt(t) created by a polynomial of
degree four. The final test signal y(t) is the sum of those two components superimposed with i.i.d.
Gaussian noise.

cycles of the periodic pattern and a complicated trend component which needs to be modeled by a
high order polynomial. These two things are usually present in the case of signals acquired over a
longer period of time with respect to perturbation period.
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Figure 9: Second synthetic test signal, consisting of the periodic component yp(t) here with the
number of cycles in record being 6.25 and the trend component yt(t) created by a polynomial of
degree 13. The final test signal y(t) is the sum of those two components superimposed with i.i.d.
Gaussian noise.
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Abstract

This paper presents a real-time parameter identification algorithm for periodic signals,
based on the recursive variable projection (RVP) algorithm. The recursive implementation
enables the tracking of time-varying parameters. The signal model is linear with respect to the
amplitude parameters while being nonlinear with respect to the phase and frequency. This fea-
ture motivates the use of a variable projection based approach. Its performance is tested using
Monte Carlo simulations and the results are compared with those obtained by a multiobjective
Gauss-Newton (MGN) algorithm. Furthermore, the RVP algorithm is applied to measurement
data acquired by a MEMS accelerometer and it is demonstrated that it can successfully track
time-varying linear and nonlinear parameters.

Keywords: Frequency estimation, Parameter identification, Recursive least squares, Periodic
signal, Variable projection method

1 Introduction

In the very recent past, there has been a rise in the implementation of low cost high performance
MEMS accelerometers in condition monitoring [1, 2]. Vibration measurement, in particular, is
essential for the detection and diagnosis of anomalous machine behavior [3–5]. Accelerometers
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are well suited for vibration measurements because the sensor signal can be directly linked to the
machine motion. This requires a method for the reliable identification of time-varying vibration
signal parameters, i.e. frequency, amplitude, phase and DC component. The second requirement
is a low computational complexity to enable embedded condition monitoring and inline process
control. Therefore, this paper introduces a new approach to real-time identification of time-varying
periodic signal parameters.

Considering the estimation of the sine wave parameters, defined in the IEEE-standard 1057 [6],
i.e. frequency, phase, amplitude and DC component, the accurate estimation of the frequency
received most attention in history. That is, because estimation of the other parameters is relatively
easy, once the frequency is known. Some well known frequency estimation methods are: zero
crossing detection [7], FFT based methods [8], recursive least squares (RLS) [9], gradient based
methods [10] and machine learning approaches [11].

There are also advances in methods, estimating not only the frequency but all of the sine wave
parameters. In [12], an adaptive estimation scheme based on a multiobjective Gauss-Newton
(MGN) algorithm is proposed. Different algorithms, based on gradient descent, have been in-
troduced by Xu et al. [13, 14]. Another approach, that has been presented recently, is based on
the method of variable projection [15]. In general, the method of variable projection yields an
efficient solution for separable nonlinear least squares problem [16, 17]. This is exactly the case
being addressed here, since the sine wave model is linear with respect to the amplitude parame-
ters, while being nonlinear with respect to the phase and frequency. However, the implementation
presented in [15], and the method of variable projection in general, aims at batch data analysis,
making it suboptimal for on-line parameter estimation. Fortunately, around the same time, Gan et
al. developed a Recursive Variable Projection (RVP) algorithm [18], however primarily motivated
by problems arising in machine learning.

The emergence of a general recursive formulation for the method of variable projection on the
one hand, and the promising results shown in [15] on the other hand, motivate the here proposed
approach. That is, a sine wave parameter estimation algorithm based on the RVP algorithm. The
recursive formulation not only facilitates the application to on-line parameter estimation but also
enables the tracking of time-varying parameters.

The value of this paper lies in: a detailed discussion of the RVP algorithm and its adaption
to parameter estimation of periodic signals, including valid simplifications of the original RVP
algorithm. The performance is compared to the MGN algorithm [12], since it is the closest and
most relevant algorithm to the work presented here. That is because the MGN algorithm is able
to estimate not only the frequency but also all the sine wave parameters. The proposed approach
performs significantly better, especially for SNR below 30 dB, see Section 3 for more details. Fur-
thermore, the successful implementation for MEMS accelerometer signals, having time-varying
parameters is also presented.



2 Recursive Variable Projection Algorithm

The Recursive Variable Projection (RVP) algorithm introduced in [18] is a special extension of the
Recursive Levenberg-Marquardt (RLM) algorithm [19], for separable nonlinear models.

In general, the method of variable projection [16,17] is used to eliminate the linear parameters
in a first step and compute solely the nonlinear parameters using a numerical iteration process, e.g.
Levenberg-Marquardt [20,21]. Once the nonlinear parameters are determined, the linear parameter
can be computed using linear least-squares.

The algorithm presented here follows the same concept. First, the variable projection approach
is used to reduce the cost function only being dependent on the nonlinear parameters. Considering
this cost function, a recursive update rule, for the nonlinear parameter only, is derived. In each
recursion the nonlinear parameter is updated and subsequently the linear parameters are estimated
using a Recursive Least-Squares (RLS) algorithm. In the following, the main steps presented
in [18] will be revisited and the adaptions to the here presented problem discussed.

2.1 Signal Model

The widely used amplitude and phase form of the sine wave model is given as,

g(t) = a sin(ωt +φ)+d, (4.52)

which is nonlinear with respect to the frequency ω and the phase φ . However, here the four
parameter form, also used in the IEEE-standard 1057 [6], is considered,

g(θ ; t) = ac cos(ωt)+as sin(ωt)+d. (4.53)

This has the advantage of reducing the number of nonlinear parameters right away. The four
parameters which now need to be identified are the frequency ω , the amplitudes ac and as and
the DC component d. These four parameters are collected in the vector θ . Using this model to
estimate a measurement signal y(t), the residual is defined as,

r(θ ; t) = y(t)−g(θ ; t) . (4.54)

2.2 Recursive Levenberg-Marquardt Algorithm

First of all, the cost function εt(θ) is chosen to consider an exponential forgetting mechanism [22],

εt(θ) =
1
2

t

∑
k=1

λ
t−kr2(θ ;k) (4.55)

where the forgetting factor λ is usually set as 0.95 ≤ λ ≤ 1.
The gradient vector and the Hessian matrix of the function εt(θ) are denoted by ∆εt(θ) and

Hεt (θ) respectively. The derivation of the RLM algorithm is based on a Taylor approximation of



εt(θ). Let θ(t − 1) be the estimation of the model parameter at time t − 1. The quadratic Taylor
approximation of εt(θ) around θ(t −1) is,

εt(θ)≈εt(θ(t −1))+∆T
εt(θ(t −1)) [θ −θ(t −1)]

+
1
2
[θ −θ(t −1)]THεt (θ(t −1)) [θ −θ(t −1)] .

(4.56)

The optimal θ at time t needs to minimize εt(θ), i.e. dεt(θ)
dθ

= 0. Hence, differentiating (4.56) with
respect to θ and equating to zero yields,

θ(t) = θ(t −1)−H−1
εt

(θ(t −1))∆εt(θ(t −1)) , (4.57)

which is a recursive formulation for computing the parameters θ . Now a recursive update rule
for Hεt would also be desirable. Therefore, the gradient vector and Hessian matrix of the cost
function (4.55) are necessary. The gradient vector is:

∆εt(θ) = λ∆εt−1(θ)−η(θ ; t)r(θ ; t) , (4.58)

where,

∆r(θ ;k) =− dg(θ ;k)
dθ

=−η(θ ; t) . (4.59)

The Hessian matrix on the other hand is:

Hεt (θ) = λHεt−1(θ)+η(θ ; t)η(θ ; t)T −Hr(θ ; t)r(θ ; t) . (4.60)

Assuming that θ(t) is within a small neighborhood of θ(t − 1) the term Hr(θ ; t)r(θ ; t) can be
neglected, leading to

Hεt (θ) = λHεt−1(θ)+η(θ ; t)η(θ ; t)T . (4.61)

Substituting (4.58) and (4.61) into (4.57) leads to the recursive relationship,

θ(t) = θ(t−1)+

H−1
εt

(θ(t −1))η(θ(t −1); t)r(θ(t −1); t)
(4.62)

Hεt (θ(t −1)) = λHεt−1(θ(t −1))+

η(θ(t −1); t)η(θ(t −1); t)T (4.63)

To realize a type of Levenberg-Marquardt algorithm, R(t) = (1−λ )Hεt (θ(t −1))+δ I is chosen
for the approximation of the Hessian in (4.63) and its inverse in (4.62) is just scaled [19], which
finally leads to,

θ(t) =θ(t −1)+(1−λ )R(t)−1
η(θ(t −1); t)r(θ(t −1); t)

R(t) =λR(t −1)+

(1−λ )
[
η(θ(t −1); t)η(θ(t −1); t)T +δ I

] (4.64)



with δ being a small positive number.
Now, in [18] and [19] this equations are further simplified using a matrix inversion lemma,

since the inversion of R(t) in (4.64) requires a computational complexity of O(q3) where q =

dim(θ). However, this is not necessary here, because by using the method of variable projection q
is reduced to one.

2.3 Method of Variable Projection

The method of variable projection [16, 17], is suited for models defined as a linear combination of
nonlinear functions; this is exactly how the sine wave model g(θ ; t) is formulated in (4.53),

g(c;ω; t) = [cos(ω t) sin(ω t) 1]

ac

as

d

 (4.65)

where c is the vector containing the linear parameter ac, as and d.
Consider that the dynamical window data with length p are the measurements yp corresponding

to the time vector tp = [tk, tk−1, ..., tk−p+1], where tk is the current time; i.e. the dynamical window
data covers the last p measurement values. This results in the matrix of basis functions being,

Bp(ω) = [bp1(ω),bp2(ω),bp3 ] (4.66)

where,
bp1(ω)≜ cos(ω tp) bp2(ω)≜ sin(ω tp) bp3 ≜ 1 . (4.67)

The notation Bp(ω) indicates that the matrix Bp is dependent on the nonlinear parameter ω . With
the linear coefficient vector

c= [ac,as,d]T (4.68)

the model, considering the dynamical window data, can be written as the matrix vector equation,

g(c;ω;tp) =Bp(ω)c . (4.69)

For a given ω , a least squares estimate for c is obtained from,

c=B+
p (ω)yp (4.70)

whereby, B+
p (ω) denotes the Moore-Penrose pseudo inverse of Bp(ω). Now by defining the

vector of basis functions for the current time tk as,

bk(ω) = [cos(ω tk),sin(ω tk),1]T (4.71)

the model equation evaluated at tk, yields

g(ω; tk) = bT
k (ω)B+

p (ω)yp . (4.72)



Furthermore, the residual r defined in (4.54) becomes,

r(ω; tk) = yk −bT
k (ω)B+

p (ω)yp . (4.73)

Note that, both the model equation (4.72), as well as the residual (4.73) only depend on ω . By
using (4.72) and (4.73) instead of (4.53) and (4.54), in (4.64), R(t) reduces to a scalar. So, with the
method of variable projection approach, the recursive parameter identification in (4.64) now only
computes the nonlinear parameter ω . However, this is not a problem, since the linear parameter
can be determined using a RLS algorithm [23]. This will be discussed in more detail in the next
section.

In order to compute η(ω; tk) and in succession, the parameter update (4.64), the derivative of
g(ω; tk) w.r.t. ω needs to be determined, see (4.59). That again requires computing the differential
of the pseudo inverse matrix B+

p (ω). This is done by using the rule [16, 24],

∂B+ =−B+
∂ [B]B++

(
BTB

)−1
∂ [B]T

(
I−BB+

)
. (4.74)

Now, applying the product rule, the derivative of the model equation g(ω; tk) is calculated as,

η(ω; tk) =
dbT

k (ω)

dω
B+

p (ω)yp +bT
k (ω)

dB+
p (ω)

dω
yp . (4.75)

Defining,

Qp(ω) =
dBp(ω)

dω
= [−tp ◦ sin(ω tp),tp ◦ cos(ω tp),0] (4.76)

where ◦ denotes the Hadamard product and

qk(ω) =
dbk(ω)

dω
= [−tk sin(ω tk), tk cos(ω tk),0]T , (4.77)

equation (4.75) can finally be written as,

η(ω; tk) =
[
qT

k B
+
p −bT

kB
+
p QpB

+
p +

+ bT
k
(
BT

pBp
)−1

QT
p
(
I−BpB

+
p
)]

yp . (4.78)

With this, the parameter update for ω finally becomes,

ω(tk) =ω(tk−1)+
1−λ

R(tk)
η(ω(tk−1); tk)r(ω(tk−1); tk)

R(tk) =λR(tk−1)+(1−λ )
[
η(ω(tk−1); tk)2 +δ

]
.

(4.79)

The initial value R(t0) should be chosen small if there is little confidence in ω(t0). Moreover, to
improve the rate of convergence, λ is also updated recursively with λ (tk) = λrλ (tk−1)+(1−λr),
where typically 0.995 < λr < 1 and 0.95 ≤ λ (t0)≤ 1.



The computational complexity of the algorithm is determined by the numerical effort needed to
evaluate (4.79) or (4.73) and (4.78), respectively. Evaluating these equations requires the deriva-
tion of B+

p (ω), which has a computational complexity of O(3p2). Considering now (4.79) the
overall computational complexity of the algorithm is O(8p2+43p). So, p will be the determining
factor regarding the computational complexity of the recursive parameter update. Additionally, p
influences the stability of the frequency estimate, i.e. the larger p is, the more stable the estimate
becomes. Therefore, by selecting p, a trade-off between computational complexity and estimation
stability has to be made.

2.4 Linear Parameter Update

Once ω is updated the second part of the RVP algorithm is to update the linear parameters using a
RLS algorithm. In accordance with [18], a RLS algorithm with exponential forgetting factor [25]
is used, where the exponential forgetting factor λ is chosen to be the same as in the nonlinear
parameter update (4.79). However, if it is to be expected that the linear and nonlinear parameters
vary at different rates, two separate forgetting factors should be chosen. The linear parameter
update then follows as,

c(tk) =c(tk−1)+K(tk)r(c(tk−1);ω(tk); tk)

K(tk) =
P (tk−1)bk(ω(tk))

λ +bT
k (ω(tk))P (tk−1)bk(ω(tk))

P (tk) =
1
λ

[
I −K(tk)bT

k (ω(tk))
]
P (tk−1)

(4.80)

where P (tk) is the covariance matrix of the estimate c(tk) and K(tk) is a gain vector. Therefore,
P (t0) should be chosen with large positive elements if there is little confidence in c(t0); e.g.
P (t0) = 104I .

2.5 Complete Algorithm

The presented computation steps lead to the final recursive parameter identification algorithm as
presented in Algorithm 1.

3 Numerical Testing

The RVP algorithm is compared to the MGN algorithm [12] with respect to accuracy and numerical
stability. Note, that the MGN algorithm is not able to identify a DC component. Therefore, the
following parameters are selected to generate the synthetic test signal: ω = 100π , ac = 0.732,
as = 0.682 and d = 0. Note, that this synthetic signal is similar to the one used in [12] and it consists
of n = 200 samples with the sampling frequency fs = 1.6 kHz. Now Monte Carlo simulations,



Algorithm 1 RVP algorithm for sine wave parameter identification

Input: initial values ω(t0), c(t0), R(t0) and P(t0); the forgetting-factor λ (t0) and the rate λr;
Levenberg-Marquardt damping factor δ ;

Output: identified parameter ω(tn) and c(tn);
1: for k = 1 to n do
2: Compute the derivative of the model equation using (4.78);
3: Update the nonlinear parameter ω(tk) using (4.79);
4: Based on the updated ω(tk), compute the linear parameters c(tk) using the RLS algo-

rithm (4.80);
5: end for
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Figure 1: Box plots of of the parameter estimation error Θ = ||θ̂ − θ || obtained from Monte
Carlo simulations with m = 500 repetitions: (top) proposed RVP algorithm, (bottom) MGN al-
gorithm [12]; note, that simulations where the algorithm failed to converge are not considered
here. The signals with different SNR were all generated with n = 200 samples, and the parameters
ω = 100π , ac = 0.732, as = 0.682 and d = 0.

where each run consist of m = 500 independent simulations, are performed for k = 8 different
signal-to-noise ratios (SNR). The comparison of the parameter estimation error Θ = ||θ̂ − θ ||,
after the n = 200 recursions, for the different SNR levels is shown in Figure 1. It can be seen
that the RVP algorithm is about two orders of magnitude more accurate than the MGN algorithm.
Since in some cases the MGN algorithm became unstable and had to be terminated before reaching
n = 200, only successful runs were considered for creating the box plots. The rate of successful
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Figure 2: Comparison of the RVP and MGN algorithm with respect to their success rate depending
on the SNR. Success rate is defined as the number of simulations for which the algorithm converged
divided by the total number of simulations.

runs for the different SNR levels is presented in Figure 2. This shows that the RVP algorithm not
only has a significant higher accuracy but also is more robust, especially for low SNR.

4 Experimental Verification

The proposed algorithm was also applied to vibrational measurement data with time-varying pa-
rameters, acquired by a MEMS accelerometer. An electrodynamic shaker generates the vibration
and a 10 degree of freedom (DOF) smart sensor system, introduced in [26], was used to record
the vibration with a sampling-rate of 4096 Hz. A reference-sensor which is directly fixed to the
moving part of the shaker was used to verify the vibrational signal. See Figure 3 for the complete
experimental setup. Note, that in the following the MGN algorithm is not considered for compar-
ison due to multiple reasons. On the one hand it does not consider a DC component and on the
other hand the measurement noise is too large for it to converge.

4.1 Signal with Phase Shift

The first case considers a measurement signal with a change in the phase of the signal at t = 3.6 s.
Note, that this signal was generated by deleting a sequence of samples from a stationary vibration
measurement. With respect to condition monitoring this would indicate slipping effects in the
system. A phase change only effects the linear parameter ac and as. The ability of the RLS
algorithm to track time-varying parameters depends on P(t). If P(t)→ 0 the parameter adaptability



Figure 3: Laboratory test setup for the generation and acquisition of the test signals: (a) National
Instruments data acquisition USB box, (b) signal conditioner, (c) 1-axis acceleration reference-
sensor, (d) 10 DOF smart sensor system including a 3-axis accelerometer, (e) electrodynamic
shaker.
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Figure 4: Convergence of the parameter estimate for a measurement signal with a step change in
the linear parameters ac and as, using the RVP algorithm. After the covariance resetting at t = 3.6
s it takes about one cycle to converge to the new parameter values.

is lost. One way to avoid that is, to set an upper limit for λ (t), to insure λ (t) < 1 [25]. Another
way, especially suited to track step changes, is covariance resetting [27]. This method is used here;
once |r(t)| exceeds a certain threshold, P(t) is reset to its initial value. In Figure 4 the parameter
estimate is given as it changes over time. It can be seen, that it takes about 0.2 seconds for the
parameters to converge to the true value. The initial value of the parameters was set to 95% of
the true value and the dynamical window length p = 120, which corresponds to approximately
one third of a cycle. The true parameter values are the ones used to generate the input signal of
the electrodynamic shaker and they were also verified with an offline identification method [15].
Figure 4 further shows, that the covariance resetting happens right after the parameter change.
Afterwards the parameter estimate for ac and as rapidly convergences to the true value again. For
this time sequence, the measurement signal and the model residual are shown in Figure 5. One can
see, that the measurement signal is being well approximated. The fast reconvergence to the new
parameter becomes also visible in the residual, since it returns to being predominantly random in
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Figure 5: Measurement data with a change in the phase used to demonstrate the tracking ability of
the RVP algorithm. (top) The measurement data y with a change in the phase at t = 3.6 s and the
signal model determined by the RVP algorithm. (bottom) Residual r of the signal model.

nature right after the parameter change. This clearly shows the ability of the algorithm to successful
track step changes in the linear parameter.

4.2 Signal with Frequency Step

The second case additionally considers a step change in the frequency and the amplitude as well.
In the condition monitoring context, this can indicate a velocity change in a power system. As in
the previous example, the initial value of the parameters was set to 95% of the true value and the
dynamical window length p= 120. In addition to the resetting of P(t), here R(t) is also reinitialized
once |r(t)| exceeds a certain threshold. This enables a fast adaption of both, the nonlinear and linear
parameters.

Figure 6 shows that the presented algorithm is in the position to successfully identify and adapt
to these abrupt changing parameters. The actual signal model and residual can be seen in Figure 7.
Note that only a short time window around the parameter change is presented there.
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5 Conclusion

This paper presented a new approach for the real-time parameter estimation of periodic signals,
based on the Recursive Variable Projection (RVP) algorithm. The recursive implementation en-
ables the tracking of time-varying signal parameter. Furthermore, the computational complexity
of the new algorithm is O(8p2 + 43p) where p is the number of samples in the dynamic time
window. This, together with the applied hardware, determines the interval that can be achieved in
a real-time context. Numerical testing via Monte Carlo simulations revealed that the new imple-
mentation has a higher accuracy and is more robust to measurement noise than past solutions. The
successful tracking of time-varying parameter is shown using an experimental test setup, consisting
of a electrodynamic shaker and a MEMS accelerometer.
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Chapter 5

Industrial Applications

The focus of this chapter are mathematical methods in different industrial areas, presented through
a series of papers. It demonstrates the usefulness of mathematical concepts in a wide variety of
industrial applications. The mathematical topic covered in this chapter is dimensionality reduction,
which is a method commonly used in pre-processing of data, or as a first step of the analysis.

1 Dimensionality Reduction

Dimensionality reduction refers to a variety of methods which reduce the dimensions of a dataset,
with the goal of obtaining a lower-dimensional representation while still maintaining some key
properties of the original data. This is often done when the original dataset has many dimensions,
not all of which contain useful information necessarily. The methods which are relevant to the
papers in this chapter are: Principal Component Analysis (PCA), Partial Least Squares (PLS) and
Canonical Correlation Analysis (CCA).

1.1 Principal Component Analysis

Principal Component Analysis (PCA) is one of the most widely used dimensionality reduction
techniques. It aims to find a lower-dimensional representation of a dataset, while maintaining as
much of the variance of the data as possible. Suppose a multidimensional dataset is given as a
matrix X of dimension m× n. The rows (m) are different samples and the columns (n) represent
different channels. For example, if one monitors a machine with 11 sensors and collect data for 1
hour at a rate of 1Hz, the resulting matrix X would have dimension 3600×11.Thus each sample
represemts a point in 11 dimensional space, where each coordinate represents a different channel
(sensor). The first principal component p of the matrix X is a linear combination of the columns
of X , which can be written as

p=Xv (5.1)
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where the values of v (which are the coefficients of the linear combination) are determined so as
to maximize

max
v

|p|
|v|

. (5.2)

In other words, PCA finds the linear combination of columns with the biggest variance, or equiva-
lently the direction of maximal variance. This is equivalent to maximizing

max
v

(
vTXTXv

vTv

)
. (5.3)

Since directions are invariant wrt. scalar multiples, the coefficients of the linear combination are
relevant up to a scalar , so one can take that vTv = 1 and thus the maximization problem becomes
a constrained maximization problem of the form

max
v

(
vTXTXv

)
given that vTv = 1. (5.4)

This problem can be solved using Lagrange multipliers. Namely,

d
dv

(
vTXTXv−λ

(
vTv−1

))
= 0 (5.5)

which becomes
XTXv = λv. (5.6)

This means that v is an eigenvector for the matrix XTX , and thus it is a right singular vector for
the matrix X , denoted as v1. The first principal component is then calculated as

p=Xv1. (5.7)

Similarly, the other principal components will be the other right singular vectors. So the first k
principal components are calculated as

P︸︷︷︸
m×k

= X︸︷︷︸
m×n

Vk︸︷︷︸
n×k

(5.8)

where Vk contains the first k columns of the matrix V . The matrix P can be used as a lower
dimensional representation of X , since it has the same number of samples m, but less columns k
instead of n.

1.2 Partial Least Squares

Partial Least Squares (PLS) is another standard dimensionality reduction method, similar to PCA.
Given two matrices X and Y , which have the same number of rows (observations) but may have



different number of columns (variables), the goal of PLS is to find vectors a and b which maximize
the covariance of v =Xa and u= Y b. In other words, the goal is to maximize svu, where

svu =
1

n−1
(v− v̄)T (u− ū) . (5.9)

One can assume that the data has been made mean free before doing PLS, so the function that
should be maximized is

vTu= aTXTY b. (5.10)

Since the magnitudes of the vectors a and b are irrelevant, one can rewrite the cost function as

max
∥a∥=1,∥b∥=1

aTXTY b (5.11)

Using Lagrange multipliers, one gets

∂

∂a

[
aTXTY b+λ (∥a∥−1)+µ (∥b∥−1)

]
= 0

∂

∂b

[
aTXTY b+λ (∥a∥−1)+µ (∥b∥−1)

]
= 0

∂

∂λ

[
aTXTY b+λ (∥a∥−1)+µ (∥b∥−1)

]
= 0

∂

∂µ

[
aTXTY b+λ (∥a∥−1)+µ (∥b∥−1)

]
= 0

Looking at the first two equations, one gets

∂

∂a

[
aTXTY b+λ

(
aTa−1

)
+µ

(
bTb−1

)]
=XTY b+2λa= 0

∂

∂b

[
aTXTY b+λ

(
aTa−1

)
+µ

(
bTb−1

)]
= Y TXa+2µb= 0

Substituting for a=− 1
2λ
XTY b from the first into the second equation, one gets

− 1
2λ

Y TXXTY b+2µb= 0

In other words, b is an eigenvector of the matrix Y TXXTY Similarly, one gets that a is an
eigenvector of the matrix XTY Y TX . So, the vectors that would maximize the cost function
would be the eigenvectors corresponding to the largest eigenvalues.
Once the vectors a and b are found, the next step would be to do the same procedure for the
matrices X1 ≜X−XaaT and Y1 ≜ Y −Y bbT. This removes the variance associated with the
already computed vectors before computing the new vectors.



2 Canonical Correlation Analysis

Suppose now that two multidimensional datasets are given as matrices X and Y of dimension
m×n1 and m×n2, meaning they have the same number of rows (samples) but different numbers
of columns (sensors). Similar to PCA, the goal of Canonical Correlation Analysis (CCA) is to find
linear combinations of the columns of X and Y with the highest correlation. In other words, it
finds vectors a and b which maximize the correlation between Xa and Y b. The correlation of
any two mean free vectors u and v can be calculated as

cor(u,v) =
uTv

∥u∥∥v∥
(5.12)

so the correlation between the vectors Xa and Y b is

cor(Xa,Y b) =
aTXTY b√

aTXTXabTY TY b
. (5.13)

Similar to before, one can assume that a and b are unit vectors, so the maximization problem
becomes

max
∥a∥=1,∥b∥=1

aTXTY b√
aTXTXa bTY TY b

. (5.14)

Alternatively, one can impose a different assumption on the vectors a and b and write the problem
as

max
aTXTXa =1
bTY TY b=1

aTXTY b. (5.15)

Using Lagrange multipliers to solve this, one obtains

d
da

(
aTXTY b−λ

(
aTXTXa −1

)
−µ

(
bTY TY b−1

))
= 0 (5.16)

d
db

(
aTXTY b−λ

(
aTXTXa −1

)
−µ

(
bTY TY b−1

))
= 0. (5.17)

This becomes

XTY b−λ
(
2XTXa

)
= 0 (5.18)

Y TXa−µ
(
2Y TY b

)
= 0. (5.19)

Assuming that X and Y have linearly independent columns (meaning the sensors are independent
of each other), from Chapter 2 it is clear that XTX and Y TY are invertible, so from 5.18 one
obtains

a=
1

2λ

(
XTX

)−1
XTY b (5.20)

and substituting this into 5.19 one obtains

Y TX
1

2λ

(
XTX

)−1
XTY b= 2µ

(
Y TY b

)
(5.21)



so [(
Y TY

)−1
Y TX

(
XTX

)−1
XTY

]
b= 4µλb (5.22)

which means that b is an eigenvector of the matrix
(
Y TY

)−1
Y TX

(
XTX

)−1
XTY . Similarly,

we get that a is an eigenvector of the matrix
(
XTX

)−1
XTY

(
Y TY

)−1
Y TX.

There is a way to compute the required vectors a and b using the SVD of the data matrices.
Let

X =UxSxV
T

x , Y =UySyV
T

y , (5.23)

thus the correlation aTXTY b now becomes

aTXTY b= aTVxSxU
T
x UySyV

T
y b. (5.24)

Additionally, let the SVD of the matrix UT
x Uy be

UT
x Uy =UcScV

T
c . (5.25)

Then, it can be checked through substitution that the solutions for the vectors a and b are given as
the columns of the matrices A and B defined as

A= VxS
−1
x Uc, B = VyS

−1
y Vc. (5.26)

The benefit of this approach is that PCA is also performed at the start of the process of CCA, which
in many applications is useful.
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Abstract

This paper introduces a new approach to measure relative positioning and orientation
(RPO), by instrumenting mobile equipment with ultra-wideband (UWB) distance measure-
ments. In this experiment RPO is tested without a surrounding stationary UWB anchor net-
work; all necessary UWB devices are directly mounted on the machinery. This results in a
simplified implementation in the industry, but also challenges the RPO determination. Due
to this, the precision and uncertainty of the UWB measurements were characterized in a real
application environment, i.e., on a quay to determine if a large body of water would influence
the high frequency signals. It was determined that the UWB distance measurements had an
uncertainty of approximately 20mm when measuring orthogonal to the antenna and 35mm
at large angles; both results for 95% confidence. Based on these results a new approach to
calculating the RPO was implemented and tested. The goal was to minimize the effects of
horizontal dilution of precision. Three new algorithms were implemented and tested, the best
results were obtained with a non-linear covariance weighted least squares computation with
self calibration. With this approach the standard deviation of the x and y positions were 64mm
and 13mm respectively. This is a very significant improvement in performance with respect to
trilateration, which is currently the standard approach.

Keywords: Positioning, Orientation, Localization, Ultra wideband technology, Location aware-
ness.
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1 Introduction

This paper presents the instrumentation of mobile machinery with ultra-wideband (UWB) distance
measurements, so as to enable the measurement of their relative positions and orientations (RPO)
without the need of a surrounding UWB-anchor network. RPO measurements are important in
collision avoidance and to support the dynamic reconfiguration of plant and machinery. UWB has
been chosen since the RPO must function both in- and outdoors, as well as in underground situa-
tions, (see [1] for an example of underground applications). There are situations where GPS and/or
GNSS may not available. The uncertainties of the distance measurements are characterized and
probability models are established; from these results the horizontal dilution of precision (HDOP)
associated with trilateration are determined. A new approach to computing the RPO is presented,
which enables the use of a constrained covariance weighted least squares minimization to obtain
higher precision in the measurement with reduced uncertainty1.

Various wireless-based technologies are already introduced for positioning, each of them pro-
vides different characteristics in terms of positioning accuracy, reliability and reach. Bluetooth
Low Energy (BLE) [2, 3], Radio Frequency Identification (RFID) [4], Chirp Spread Spectrum
(CSS) [5] or Wi-Fi [5] do not fulfil the desired positioning accuracy of ±10cm, or do not cover the
required application reach of 3m to 20m.

The used UWB-modules in this test (see Fig. 1) should reach accuracies in distance measuring
or location information of 10cm within a reach of 0m to 20m according to the manufacturer spec-
ifications [6]. These results have already been shown under obstacle-free and line-of-sight (LOS)
conditions [7]. In the case of industrial conditions the distance measurement error increased [8].

Figure 1: The used UWB modules on a tripod-mount in a previous experiment of range tests.

The increase of measurement error is based on the high frequency radio signal behaviour,
affected by the environment. These effects appear as signal noise or outliers in the measured data.
This is mostly caused by multipath effects or signal loss during the ranging process. Metal surfaces

1The instrumentation and mathematical methods which enable the measurement of relative position and orienta-
tion with improved precision and reduced uncertainty is highly relevant to the I2MTC community.



and liquids especially influence the UWB measurements negatively [4] by an establishment of a
dense multi-path environment [9]; conditions that often exist in the industry. For this reason the
UWB-measurements were carried out on a ship quay under comparable settings.

Figure 2: Measurement setup with two containers at a ship quay.

2 Experimental setup

The experimental setup of UWB distance measurements was carried out between freight contain-
ers in an industrial environment under LOS conditions. Two 20ft-ISO-containers were directly
equipped with UWB-modules to represent an arbitrarily scalable industrial RPO-system. Each
UWB-module was mounted on the containers at the same height of 2m. A level plane of all con-
tainers was assumed, which reduced the RPO-task down to two dimensions. The container-1 (C-I)
was stationary positioned and defined the relative coordinate origin, container-2 (C-II) was moved
in one-meter steps in positions from 2 to 10m (Fig. 3). Four lengths l11, l12, l21, l22 were measured
through UWB and laser, to calculate the RPO of container-2 at each position. Due to further sta-
tistical investigation, each UWB length measurement was done with a sample number of n = 997.
Reference distances are measured via laser for comparability. The used UWB-modules are based
on the decaWave DW1000 UWB-chipset operating at a frequency of approximately 6.5GHz using
an external antenna.

The UWB-modules were placed in standard IP66 poly carbonate housings with an autonomous
power source inside; directly onto the containers C-I and C-II. All measurements were done suc-
cessively to avoid dependencies or interference between the measurements. The containers were
aligned via forklift to predefined marked reference positions.

3 Characterizing UWB measurement errors

Each of the four distances l11, l12, l21 and l22 (see Fig. 3) were measured with a laser and with
UWB, to enable a verification of the computational results. The laser measurements were consid-
ered to deliver the reference distances, lt(i j), multiple UWB measurements, lm(i j) were considered



Figure 3: The two containers C-I and C-II with UWB module positions P1, P2 and Q1, Q2, the 4
measured distances l11 l12 l21 l22 and the calculated parameters δx, δy and φ

as being perturbed with an error, εi j, such that,

lm(i j) = lt(i j)+ εi j. (5.27)

The box-and-whiskers for the errors εi j relative to the reference values is shown in Fig. 4, and
relative to the median of the UWB data in Fig. 5. The statistical errors are given as standard
deviations with their respective 95% confidence intervals in Table 5.3 . It was determined that the
dominant errors are due to systematic errors; caused primarily through the angular dependence of
the antenna.
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Figure 4: Box-and-whiskers plots of the measurement errors. The measurements are used to deter-
mine the position of the moving container between 2m to 10m in 1m intervals. The red dots are
outliers. The offsets of the straight-line measurement errors ε11 and ε22 at at 2m are smaller than
the offsets of ε12 and ε21 of the diagonal measured distances.

As seen in Fig. 4 and Fig. 5, the errors of the measurements ε11 and ε22 compared to ε12

and ε21 behave statistically different. Fig. 4 shows the largest offsets and standard deviations for
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Figure 5: Box-and-whiskers plots of the errors centred at their respective medians to visualize the
difference in their spread.

the diagonal measurements. According to Fig. 3, ε11 and ε22 correspond to straight-line distance
measurements, while ε12 and ε21 correspond to diagonal distance measurements. Also, with the
increase of distance, some measurements become less reliable. All of these things will be taken
into consideration in the model later.

Since the introduced methods for RPO (see chapter V) require statistically independent data,
this property must be checked. The fact that the measurements l11, l12, l21, l22 were made using
different UWB-modules suggests that the measurements were independent. The correlation coef-
ficients were calculated and the results were close enough to 0 to suggest the same (see Table 5.1).

Distance [m] ρ(l11, l21) ρ(l12, l22)

2m 0.034 0.059
3m 0.016 0.113
4m 0.033 0.027
5m 0.026 0.083
6m 0.017 0.021
7m 0.042 0.098
8m 0.051 0.058
9m 0.022 0.032
10m 0.058 0.055

Table 5.1: Correlation coefficients ρ of the measurement sets used to determine Q1(l11, l21) and
Q2(l12, l22). The correlation coefficients are small enough to justify the assumption that the mea-
surements are uncorrelated at any given distance.



This is an insufficient proof for independence. However, if the paired data, [l11, l21] which
was used for determining the position of Q1, and [l12, l22] for Q2, comes from a bivariate normal
distribution, then this would be sufficient to prove independence [10].

The test used to check this is the Henze-Zirkler Test for Multivariate Normality [11]. Using a
MATLAB implementation of this test [12], it was confirmed that the data comes from a bivariate
normal distribution (at the 95% significance level).

Figure 6: The joint histograms of the measurements [l11, l21] and [l12, l22] taken at 4m. The shape
resembles that of a bivariate normal distribution (considering the discretization of the measure-
ments) and the Henze-Zirkler’s test confirms this at the 95% significance level, as can be seen
from the p-values.

Having proven that the paired data follows a bivariate normal distribution, together with the
fact that they are uncorrelated, implies independence of the measurements. Also, this implies
that the measurements themselves come from a normal distribution (since they are the marginal
distributions of a bivariate normal distribution).

If only univariate normality is checked, the fact that the data is uncorrelated wouldn’t be enough
to prove that it is independent (for a counter-example, check [13]). However, checking that the
paired data follows a bivariate normal distribution goes around this problem.

4 Trilateration and Uncertainty

A common method to determine an unknown position P(x,y) in a two dimensional space is trilat-
eration [4, 14]. Given two distances l11 and l21 from two different origins, it uses circle geometry
to determine P. The positions of both UWB-modules on container C-I are denoted by P1 (x1,y1)

and P2 (x2,y2). The point being trilaterated, Q1, is the intersection of two circles centred at P1 and
P2 with radii l11 and l21 (or l12 and l22 for Q2) respectively.



Considering all possible values of the pairs (l11, l21) and (l12,l22), different coordinates for Q1

and Q2 are obtained. So, if there are u different l11 values and v different l12 values with different
frequencies, there will be uv different values for the Q1. The same applies to Q2. This gives a 2-D
grid of possible positions, which is graphically shown in Fig. 7.

Figure 7: The positioning results of uncertain measurements: The analytical result of possible
positions is defined as the area bounded by the dashed circles. The practical results measured in
this experiment are shown as black dots. Based on the principle of triangulation the measured
lengths are interpreted as circles centred at P1 and P2. The reference distances are represented by
l11 and l21. The uncertain distances are limited by l11 ±2σ and l21 ±2σ , where σ is the standard
deviation of all measurements. Both shapes are almost identical.

The dashed circle arcs in Fig. 7 represent the 2σ confidence intervals of l11 and l21, where σ is
the standard deviation of all measurements. The area bounded by these circles defines theoretically
the possible positions of Q1. The dots represent the actual position of Q1 calculated through the
UWB measured lengths, centred around the intersection of the full circles. This shows that the
calculated positions Q lie within this area. The positions are centred in x and y to compensate the
measurement offset and make the shape of positioning area comparable to the analytical result.
Almost all measured positions are in the bounded area. Without centring the trilaterated points it
would be apparent that the deviations in y are greater than in x direction due to the offset of the
diagonal measurements.

The description of the possible accuracy in positioning depending on the enclosed area is al-
ready characterized as Horizontal Dilution of Precision (HDOP); this occurs in trilateration of
positions through noise affected distance measurements. The computed HDOP [15] for the 2-
dimensional case with a distance 2d between the UWB-modules and a distance x between the
container is:



HDOP(x) =
√

2

√
x2 +4d2

2d
(5.28)

Distance [m] HDOP Interpretation

2m 2.1 good
3m 2.7 good
4m 3.4 good
5m 4.2 good
6m 4.9 good
7m 5.7 moderate
8m 6.4 moderate
9m 7.2 moderate
10m 8.0 moderate

Table 5.2: The HDOP evaluated at 1m intervals from 2m to 10m. Low values (< 5) correspond
to smaller dilution and more precise results.

The HDOP value is an indicator for the possible accuracy of a trilateration based on uncertain
distance measurements. A larger HDOP value is more uncertain in terms of positioning accuracy
than a smaller value. This correlated to the analytical result, represented by the area between the
boundaries in Fig. 7. However the trilaterated position at 2m showed larger deviations than the
HDOP indicates. Since the trilateration of each position is based on two lengths, at least one of
those lengths includes the distance which caused the deviations. According to Fig. 4, this behaviour
is based on the more uncertain diagonal length measurements. The diagonal measurements had the
common feature that the angle between the antennas changed depending on the container distance.
The larger the distance between the containers, the smaller the antenna angle. This circumstance
indicates a possible influence of the antenna angle on the accuracy of the UWB measurement.

In order to assess this influence, the angular dependence is measured separately at a distance
of 5m between −50◦ and 50◦ antenna angle in 10◦ steps.

The inaccuracy of measurement increases towards positive and negative increasing antenna
angles (see Fig. 8). In this experiment, the difference between the 10◦ an the −50◦ measurement
is approximately 6cm, which is already close to the application limit of ±10cm.

5 Positioning models

The calculation of x and y positions through purely trilateration did not provide the desired accu-
racy. Therefore, improvements of the position determination were required. The UWB-modules



Figure 8: The accuarcy of the distance measurement at 5m depending on different antenna angles.
The blue crosses are the differences of the median of the measured distances and the reference.
The red line is a polynomial of degree 5, which approximates the data. The dashed lines are 2σ

confidence intervals, where σ is the standard deviation of each measurement.

were mounted on fixed places on the containers, therefore the euclidean distance between them
was invariant. Furthermore, the relative position and orientation of container-2 is modelled as the
result of a rotation about the relative origin between P1 and P2 followed by a translation in δx and
δy. Let

t=

[
δx
δy

]
, R=

[
cosφ −sinφ

sinφ cosφ

]
(5.29)

be the translation vector and rotation matrix respectively. The position vector q is given by

q =Rp+ t (5.30)

This model has 3 degrees of freedom δx,δy,φ and 4 independent measurements l11, l12, l21, l22.
This results in an overdetermined system of equations. Therefore, the system must be approxi-
mated by the minimization of a cost function.

To determine δx,δy,φ given four measurements l11, l12, l21, l22, a Cartesian coordinate system
is used. It is centred at the median of the two sensor positions on container-1. The coordinates of
the UWB-modules on container-1 are P1 (0,d) and P2 (0,−d), where 2d is the distance between
them. Then, the position vectors of the points Q1 and Q2 will be

q1 =

[
δx−d sin(φ)
δy+d cos(φ)

]
, q2 =

[
δx+d sin(φ)
δy−d cos(φ)

]
, (5.31)

By the determination of the distances between P1,P2,Q1,Q2, 4 equations in 3 variables can
be obtained. Solving this approximately gives a solution, which is then back-substituted into the
coordinates of the points Q1 and Q2 to recalculate 4 distances m11,m12,m21,m22. Thus, it is now
possible to compare the via UWB measured distances li j and the model-based recalculated dis-
tances mi j.



l11 l12 l21 l22

σ 20.4+0.3032
−0.2944 23.6+0.3508

−0.3406 34.9+0.5183
−0.5033 21.8+0.3245

−0.3150

Table 5.3: Standard deviations for the lengths l11, l12, l21 and l22, together with and 95% confidence
intervals. These results are computed over the ensemble of all measurements, i.e., there are n =

8793 individual measurements for each σ . The standard deviations are given in millimetres.

6 Constrained, covariance weighted, least squares model

Four different measurements of four different lengths on different positions (2m to 10m) were
done. The lengths are denoted by l11, l12, l21, l22. Each length measurement at each position is
done 997 times. The results of the measurements are collected in the vectors l11, l12, l21, l22. As
explained in the previous section, the vectors m11,m12,m21,m22, are calculated.

The deviation of the measured lengths and the recalculated lengths are determined by

r11 = l11 −m11

r12 = α1l12 +α0 −m12

r21 = β1l21 +β0 −m21

r22 = l22 −m22.

Because the diagonal measurements are less reliable than the straight measurements (see Table
5.3), linear models with the coefficients α0,α1,β0 and β1 are introduced in r12 and r21. Also,
because the measurements have different variances at the same distances, the actual residual con-
strained covariance weighted vector rcw can be defined as

rcw =
[

1
σ11

r11,
1

σ12
r12,

1
σ21

r21,
1

σ22
r22

]T
(5.32)

where σi j is the standard deviation of li j −mi j for i, j ∈ {1,2}. The standard deviations weigh
each residual, so that larger standard deviations will decrease the individual residuals and weigh it
less. The way r is defined also avoids the need for calibration prior to determining the position.

Finally, the cost function is defined as

C = rT
cwrcw

which will be minimized.
For comparison, the residual vector and the cost function are also calculated without con-



straints:

r(u)11 = l11 −m11

r(u)12 = l12 −m12

r(u)21 = l21 −m21

r(u)22 = l22 −m22

using two different methods: with weighting

ruw =
[

1
σ11

r(u)11,
1

σ12
r(u)12,

1
σ21

r(u)21,
1

σ22
r(u)22

]T
(5.33)

and without weighting

rn =
[
r(u)11, r(u)12, r(u)21, r22

]T
(5.34)

Figure 9: The comparison of positioning results for 3 different methods: Trilateration, constrained
approximation and weighted constrained approximation using the lengths l11, l12, l21 and l22

The different positioning methods are compared in Fig.9. It is apparent, that the covariance
weighted constrained method gives the most accurate results. It can be seen how uncertain the
positions are at far distances, especially at 10m. Due to this, the variance of these measurements
compared to the others is significantly larger, hence it makes sense to weigh them less.

Furthermore, the constrained models enable much more accurate positioning at 2m than purely
trilateration. This is apparent in Fig. 10.

7 Conclusions

This paper introduces a new method for determining the relative position and orientation (RPO) of
objects to align mobile machinery in industrial environments, without a surrounding UWB-anchor



Figure 10: Comparison of the errors εd of positioning using different methods. The covariance
weighting (red box-plots) increases the positioning accuracy compared to pure trilateration (blue
box-plots) and unweighted approximation (green box-plots).

rn ruw rcw

∆x ∆y ∆x ∆y ∆x ∆y
[mm] [mm] [mm]

d1 88.59 -198.34 46.69 -176.34 -59.24 6.93
d2 -8.78 -49.78 -8.94 -53.06 -18.16 36.40
d3 48.41 -33.48 46.71 -44.52 69.85 43.09
d4 48.94 -68.56 41.79 -48.28 19.75 27.53
d5 85.99 19.98 74.60 -45.87 51.28 54.51
d6 117.74 58.00 118.74 86.64 70.85 44.26
d7 156.43 -18.68 154.02 122.75 103.78 38.35
d8 176.05 321.23 163.94 310.49 123.37 36.88
d9 189.13 608.21 144.20 -66.76 130.07 36.06

σp 65.82 244.83 60.56 142.72 64.05 13.16

Table 5.4: The comparison between three different methods of positioning: Unweighted rn; un-
constrained weighted ruw; constrained weighted rcw. σp represents the standard deviation of all
positioning errors.

network. Due to this challenging conditions, the need for optimization in positioning became ap-
parent. The algorithms developed for this use-case were applied to the recorded data. Through
comparison, it can be concluded that the method with constrained approximation and covariance
weighting provides the best results overall. It reduced the standard deviation of the error in the
y-direction down to 13mm and the x-direction to 64mm, which is within the desired accuracy of



±10cm. Compared to existing methods like trilateration, it has increased the accuracy signifi-
cantly. Due to the fact that some algorithms are more accurate in x-direction than in y-direction, a
future improvement will be the development of separate algorithms for x and y coordinate compo-
nents. Another further step will be the combination of information of machinery acceleration and
UWB distance measurement in a sensor-fusion model, including the existing method. This should
provide more robust and stable results.
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Abstract

The current paper presents a new computational approach to detect wear and damage to
milling tools’ cutting edges. The proposed approach is independent from exact information
on tool-workpiece interaction conditions and only requires that they remain constant for com-
pared milling operations. Additionally, the approach was thoroughly tested on time-series data
obtained from an industrial-scale milling process, instrumented by commercially available in-
strumentation equipment, during which 18 identical parts were milled. The time-series data
contains the bending moments in the x and y directions as well as the torque and tension acting
on the milling tool. Some measures used are systematic in nature, based on shape, rotation and
work needed for milling, whereas others are statistical in nature, describing the change in the
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distribution of the data. All of the measures proposed in the current work are relative and mu-
tually invariant, meaning they address different information content of the data independently.
A comparison of the mentioned measures with the real-world damage evolution of the milling
tool’s cutting edges for multiple produced parts yielded consistent results and suggests a high
potential for practical tool damage detection in industrial production.

Keywords: Condition monitoring, Milling tool damage, Time-series sensor data.

1 Introduction

Today, the unexpected failure of cutting edges of milling tools in industrial-scale production pro-
cesses of metal parts is an issue of high relevance to process safety and productivity. During
milling, the cutting edges of the tools involved are unavoidably subject to deterioration. This can
lead to unsatisfactory surface quality of the manufactured workpiece and in some cases, even lead
to damage of the milling machine. The associated costs can be reduced by introducing Condition
monitoring (CM) of the cutting tools. The primary goal is the diagnosis of the used tool’s damage
state at a given point in time within the machining process, in order to facilitate decision-making
on modifications to the milling process parameters [1, 2] or replacement of tooling.

A possible approach to CM is based on automated but sporadic visual inspection of the tool’s
cutting edge contours aided by automated image recognition techniques [3]. The discontinuous
nature of this CM approach inherently limits the productivity of industrial production processes,
which ought to be performed without interruptions.

Another important class of CM approaches for milling tools involves analytic modelling of the
cutting forces and bending moments that change with the progressing deterioration of a milling
tool’s cutting edges during milling [4]. These model-based approaches enable the indication of
significant deviations from the undamaged tool state [5]. Unfortunately, they are also associated
with considerable computational effort to determine optimal model parametrization. Additionally,
this requires knowledge of the tool-workpiece interaction, such as the axial and radial penetration
of the workpiece by the milling tool. These are not readily provided with the required µm-scale
resolution by conventional CAD-CAM software solutions. Furthermore, the model parameters are
a function of the applied cutting speed and the feed per tooth [6]. This complicates the monitoring
during the production of complex workpieces with changing cutting conditions.

Direct monitoring techniques are based on the analysis of data acquired from additional sensors
used to instrument the machine. This permits diagnosis of the tool condition during the milling
process. Instrumented collet chucks provide a means of measuring as close to the cutting process
as possible, ensuring a higher information content of the sensor signal wrt. the process state [7].
In general, machining experiments in a controlled laboratory environment often apply custom
or specialized sensor solutions [1, 8]. These may deliver more detailed information on cutting
edge temperatures, particular relevant when monitoring surface coatings [9]; however, they often



require time-consuming off-line data analysis [8]. Instrumented tool holders have become available
for industrial processes, which yield information on the temporal evolution of the distribution of
forces, bending moments, torque [10] and cutting edge temperature [8].

Machine learning approaches have been applied to the evaluation of data from instrumented
tool holders. They are able to estimate a milling tool’s damage state from two-dimensional dis-
tributions, i.e. polar plots of bending moment without the prior knowledge of the tool-workpiece
interaction conditions, but require a large set of training data to train the involved algorithms [11].
Especially in the case of industrial milling applications with small workpiece batch sizes, these
training data may not be available for new tool-workpiece combinations.

Pro-Micron GmbH & Co. KG has applied for, and been awarded the US Patent [12]. The
claims of the patent, i.e., the legally relevant portion, define exactly what has been patented. Here
they describe the device and some parameters that may be derived from the acquired data. Start-
ing with claim 3, they mention the possibility of deriving parameters relating to the shape and
temporal changes in the form of the measured curves. However, few to no details are provided
on which characteristics are relevant and how they may be computed. The new computational
methods presented in this paper go far beyond those inferred in the Pro-Micron patent or otherwise
available [8, 10].

The organization and main contributions of this paper are as follows:

• Section 2 describes in detail the experimental work performed to acquire the data used in
this paper.

• Section 3 describes the preprocessing of the data. Whereby, Figure 3 shows a typical flower
pattern, such patterns are also presented by Pro-Micron. Here the representation has been
enriched with the temporal nature of the data. More significantly the data is resampled in a
polar coordinate system, so as to provide information on the statistical behaviour of the data.
This provides a method for dealing with missing data, a ubiquitous feature of the acquired
data. The statistics also provide a quantification of the uncertainty of the data and permits
the calculation of confidence intervals, a new aspect in the data processing.

• Section 4 describes the data analysis performed. A probability density function for the cut-
ting action is computed, see Figure 4. This yields new information as to the location on the
tool where the statistically dominate portion of the work is being performed. This distribu-
tion changes over time without any significant change in the shape of the flower, see the data
for parts 1 . . .10 as shown in Figure 6. A change in the tool performance without this being
reflected in any significant change to the flower pattern is an aspect not addressed in previ-
ous work. The concept of work is also used, which is a physically meaningful metric for the
effort required by the tool and how it changes with use. Finally in this section, the Elliptical
Fourier Descriptors are applied to obtain dimensionless relative measures for various aspects
of the shape of the flower pattern.



• Section 5, describes a totally new approach to the evaluation of the data. It is based on
characterizing the statistical nature of the data, not the shape of the flower pattern.

• Section 6 describes the optical inspection of the tool during the experiment. It provides some
optical verification on the state of the tool as time progresses.

The final two sections discuss the results and draw conclusions from the work. The mathemat-
ical models for the progress of wear, see e.g. Figure 19, indicate that the analytical and statistical
metrics provide comparable results and are consistent with the optical inspection.

Figure 1: Schematic representation of relative spatial arrangement of the tool and workpiece. (Left)
Shows the cutting orientation of the tool and (Right) defines the cutting parameters: ap in the axial-
and ae in the lateral-direction, relevant for Job 3.

2 Experimental Data Acquisition

The data analysed in the current work was attained in an industrial-scale milling process of 18
cylindrical workpieces of a diameter of 204mm made of Ti6Al4V. Portions of the milling opera-
tions necessary to produce the final part were performed with a commercially available wireless
instrumented tool holder [13]. Details of the tooling and instrumentation can be found in [8, 9].
The occurring cutting force in spindle axis direction, the torsion around the spindle axis direction,
as well as the bending moments in two perpendicular directions x and y, oriented normal to the
milling tool’s rotational axis were acquired at a sampling rate of 1600Hz. The milling tool used in
all these instrumented milling operations was a cylindrical end mill, made of WC-Co hard metal
hard-coated with a TiAlN-based coating, with four cutting edges and a diameter of 16mm.

The applied values of cutting speed and feed per tooth were 90m/min and 0.125mm, respec-
tively. The instrumented milling operations were divided in four different jobs, with their respec-
tive numbering in the nomenclature of the production program being 2, 3, 4 and 5, see Figure 1.
Note that there were two pairs of jobs with identical geometrical tool-workpiece interaction con-
ditions, namely jobs 2 and 4, and jobs 3 and 5, see Figure 1b). Each job was subdivided in eight



linear cut lanes. The radial immersion of the tool into the workpiece ae, see Figure 1b), was 1.5mm
for all the cut lanes in each of the jobs, except for the first lanes of jobs 3 and 5, in which ae was
smaller with a nominal value of 0.9mm. Note, that there is some uncertainty in the actual values of
ae for the first cut lanes in each of the jobs, due to possible differences in the workpiece contours
stemming from the previous workpiece shaping procedure. Therefore, the first cut lanes of the
individual jobs have not been considered in the following data analysis. To reduce the complexity
of the data analysis, it was performed only for data from job 3, with its quasi-constant axial depth
of cut ap, see Figure 1b), of 22mm for a portion of 144mm of its linear path length of 178mm.
To compare milled lanes with equivalent tool-workpiece interaction conditions, the data analysis
procedure was performed comparing cut lanes with equal lane index for job 3 for the 18 milled
workpieces. After each individual workpiece had been machined by the four described milling
jobs, digital microscopy (VHX5000, Fa. Keyence) was applied to characterize the damage status
of the four involved cutting edges.

One important thing to note about the data acquisition is that unfortunately, there are brief,
temporally random interruptions of the transmission, leading to missing data. This is due to the
harsh electromechanical environment in which the equipment is being operated. Later in the data
handling, steps are taken to circumvent this issue.
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Figure 2: The first 20% of a complete time-series for one cut lane as acquired from the machine.
The data is sampled at 1.6kHz and a typical data set has m = 15000 . . .20000 samples depending
on the length of the lane being cut. Here the cutting-in process can be seen, i.e., the time where
the milling tool has not reached the phase with constant ap, see Figure 1b. A similar phase can be
observed at the end of the lane. This data set is from Part-1, Job-3 at Lane-2. The red dots indicate
points where there was a brief loss of data, due to interference of the transmission.



3 Data pre-processing

The real-time data acquired from the machine has four relevant channels: tension and torsion
experienced by the tool, as well as the bending moments in the x and y directions, denoted by mx

and my respectively. The data is sampled at 1600Hz and a typical data set has m = 15000 . . .20000
samples depending on the length of the lane being cut. The first 20% of a complete time-series1

for one cut lane, as acquired from the machine, is shown in Figure 2.

-100 -50 0 50 100

Moment x [Nm]

-100

-50

0

50

100
M

om
en

t
y

[N
m

]

0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

 ti
m

e

Figure 3: Flower pattern for the time-series data shown in Figure 2. The colour of the scatter plot is
used to represent normalized time when the data was created during the cutting process. The arms
apparently spiraling into and out of the center are associated with the cutting-in and cutting-out
phases.

The task now is to extract information from this data which yields relevant knowledge about
the wear and possible damage to the tool. This has been classically approached by analysing the
so called flower pattern of the moment data. The flower pattern is created by simply using the x−
and y−moment values as coordinates for a scatter plot. In the example shown here, see Figure 3,
the flower has been extended to represent the time when the value occurred as colour in the scatter
plot. This makes the run-in and run-out processes at the start and end of the milling process visible.

The flower pattern is more suitable for qualitative evaluation of the data; since, with the struc-
ture of the data in this form it is difficult to extract more detailed information.

The random locations of missing data in the time-series make the direct quantitative compar-
isons between lanes difficult: for example, FFTs with missing data lose their numerical efficiency:
since, given n points, an FFT has the computational efficiency O(n) = n logn, whereas with miss-
ing points the pseudo-inverse [14] will require approximately O(n3). Furthermore, the flower
pattern does not deliver any information of the density of the sampled points. It is necessary to
remember that there is no direct measurement of the angle of rotation of the tool. The values for
mx and my are used to determine the angle; however, there may be local retarding of the angular

1Only the first 20% is shown, since the inner structure of the data is not visible if a complete data set is plotted.



velocity with respect to the cutting moment. This will yield a non-uniform spacing of the samples
in terms of angles, which will become more evident later.

Consequently, a new approach is taken here, where the data is pre-processed, based on auto-
matically segmenting and re-sampling the data in a polar coordinate frame.

3.1 Segmentation and resampling

The segmentation is relatively simple, the unsteady regions at the start and end of data, corre-
sponding to the cutting-in and cutting-out, are detected and removed. Local descriptive statistics
are computed, these permit the automatic detection of the stable cutting region within the data. The
cropped data set is considered to represent the stable milling process suitable for characterisation
of tool wear.

Since the milling process is a rotary process, it is fully cyclic in 360◦ (2π); consequently, the
vectors of data can be converted to polar coordinates without loss of information or generality, i.e.,

mx,my 7→mφ ,mr. (5.35)

The data is now binned, as with a histogram, but into k equi-angular segments. The desired
polar resolution δφ is defined via the number of bins k in 360◦, i.e.,

δφ =
2π

k
, (5.36)

here, for convenience, k = 360 has been chosen, yielding δφ = 1◦. In this manner a vector of
uniformly spaced bin edges be = δφ [0,1, . . . ,k] is computed. All the data channels are binned into
the corresponding be. This data can now be used to compute the properties of the data and their
statistical variations in a polar frame. A major advantage of this re-sampling process is, that the
data is now equally spaced in φ , and has the same number of samples for each measurement and
channel, independent of the length of the original data sequence.

4 Data analysis

The preprocessing provides all the necessary data in a structured manner for analysis.

4.1 Median curve and its properties

The first analysis consists of computing four properties for each element of the structure S (k):

1. The median angle φm(k) and median moment mm(k) for each of the k segments. These can
be used to create a polar plot for the moment as a function of angle, similar to the flower
pattern. However, sampled to have a constant number of samples per revolution.
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Figure 4: Polar plot of the segmented and resampled moments in x and y. Note, the colour indicates
the probability density of a measurement at that specific angle. That is the density of data points at
a specific angle. The width of the line indicates the interquartile range at each angle, in this case it
is almost uniform. This is for the data shown in Figure 2

.

2. With a constant sampling frequency fs and a uniform rotational speed, a constant number of
samples n(k) per angular segment would be expected. However, when n(k) is determined,
it is observed that they are not constant. The probability density as a function PDF(k) of
angle, can be computed by normalizing n(k) so that the integral around the 360◦ is one.

3. Furthermore, the 25% and 75% quartiles, q25(k) and q75(k) are computed for each segment.
Additionally, using these values the interquartile range (IQR) can be calculated as IQR(k) =
q75(k)−q25(k).

These four quantities can be represented in a single polar scatter plot, see Figure 4. With this
data set, the interquartile range indicates that there is a low uncertainty in the observed moments
over the full revolution. However, the angular PDF reveals a non-uniform loading of the tool during
a rotation. This is the first new result which can be obtained with the proposed computational
technique. The fact, that the PDF is not uniform for each of the four flutes indicates that they do
not experience equal loading.

4.2 Torsion and tension

The torsion and tension data is resampled in the same manner as the moments and the resulting
information is added to the structure S (k). The angular PDF for torsion and tension will be the
same as for the moments, since the number of samples is the same. Consequently, only the median
curve and the respective interquartile range (IQR) are computed and visualized, see Figure 5.
The torsion and tension are subject to much higher uncertainties as can be seen from the figures.
Consequently, they are not used for further analysis.
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Figure 5: Torsion (Left) and tension (Right) from the data binned into angular portion ∆ φ = 1◦,
i.e. 360 bins per revolution. Each figure shows the median values together with the Q25 and Q75
quantiles.

4.3 Comparison across multiple parts

In the data acquisition for this project 18 identical parts were manufactured in sequence. This now
makes it possible to compare the performance of the milling tool, for exactly the same operation,
across the manufacturing of multiple parts.

To enable a first comparison, the median moment curves with probability density functions are
shown for job 3 and lane 2 for all the 18 parts in Figure 6. There are some obvious patterns which
can be observed immediately:

1. The orientation of the pattern rotates with an increasing number of parts being milled. This
would indicate, that the median angle of cutting engagement is changing.

2. The area enclosed by the median moment curves grows larger with increasing part num-
ber. This will yield a relative measure for the increased work required to produce the parts.
Moment has the dimension Nm, which is the same as force times distance, i.e., work. Con-
sequently, the integral of the area enclosed by the curve is proportional to the work required
for the operation. Normalization with respect to the work required for the same operation
with a new tool yields a relative measure for degradation of the tools performance. This is
a practical measure, since it does not need to know anything about the cutting profile, it is
only required to be the same from one part to the next.

3. The PDF for the measurements around the tool spreads more evenly as time proceeds.



Part 1 Part 2 Part 3 Part 4 Part 5

Part 6 Part 7 Part 8 Part 9 Part 1

Part 11 Part 12 Part 13 Part 14 Part 15

Part 16 Part 17 Part 18

Figure 6: The median curves for all 18 parts manufactured. The data is in all cases for job 3 lane
2, so that it is compatible with previous figures. It can be observed that: the pattern rotates with
the increasing number of parts produced, the area enclosed by the median curves grows larger and
the pdf spreads more evenly.
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Figure 7: Left scale: Work required to mill the lane relative to part one. Right scale: the relative
rotation of the median curve. There are eight lanes milled for each of the 18 parts. The first lane in
each part may have some variation due to misalignment of the metal block relative to the tool path.



4.4 Determining rotation and relative work

If part 1 is defined to be a reference, i.e. a part produced with a new tool, then its median moment
m(φ) as a function of φ , can be used as a reference rre f vector, to which the measurement data
from all other parts are compared. To determine the relative rotation and scaling, the circular
convolution of rre f with rk, the radii obtained from the other measurements is calculated. The
location of the maximum peak in the circular convolution corresponds to the group delay between
the two data sets. Since the data is perfectly cyclic and circular convolution is being used, the group
delay is directly proportional to the relative rotation of the patterns. Additionally, the magnitude
of the peak normalized by the 2-norm of rre f yields the ratios of the areas enclosed by the two
curves. This is a relative measure with respect to the first part for the work required to produce the
subsequent parts.

The results of this calculation for all 18 parts and all lanes for job 3 is shown in Figure 7. These
measures yield qualitative relative values to compare the condition of the tool from the production
of one part to the next.

4.5 Fourier Spectrum and Fourier Elliptical Descriptors

The resampling of the data into polar coordinates ensures that the data is perfectly cyclic over
360◦. Consequently, discrete Fourier spectra can be computed without being corrupted by spectral
leakage and Gibbs errors [15]. There is no need to performing windowing [16] prior to computing
an FFT. The magnitude of the Fourier spectrum is shown in Figure 8, for the same data as in
Figure 2. This spectrum yields a number of insights:
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Figure 8: The first n = 32 harmonic components of the moment m(t). This spectrum is free
from Gibbs and spectral leakage error, since the data is perfectly cyclic. Two main issues can be
determined directly from the spectrum. 1) The fourth harmonic is due to the mill having four flutes.
This harmonic and multiples of it (i.e. 4, 8, 12,...) describe the shape of the moment in terms of the
Elliptical Fourier Descriptors EFD. It is a relative measure and independent of scale and rotation.
2) The first harmonic is that portion that changes once per revolution.



1. The magnitude of the Fourier spectrum is independent of phase, when no windowing is being
applied. Consequently, these results are independent of the rotary position of the tool and/or
the pattern.

2. The dominant fourth harmonic is associated with the mill having four flutes. Mills with
different numbers of flutes should be evaluated correspondingly.

3. The ratio of the 4th harmonic to its overtones is a description of the shape of the median
curve; this is known as an elliptical Fourier descriptor [17]. The scalar value it yields is
dimensionless and invariant with respect to scale and rotation of the pattern. It yields a
relative measure to compare the patterns.

4. The first harmonic is the change in the moment once per revolution, this measure corresponds
to the runout of the tool. A different term may be more appropriate here, since this is the
runout observed in the bending moments, not in its physical motion.

4.6 Comparison of tool runout

As seen above, the elliptical Fourier descriptors of the median moment curves yield a measure for
tool runout as observed in the bending moment. This was computed for all lanes for job 3 in all the
manufactured parts. The results are shown in Figure 9. Note, part 16 has an exceptional runout.
There is need for some care when interpreting this result: after each part the tool was removed
for optical inspection, then replaced in the collet. The tool may have some offset when mounted
for part 16; nevertheless, this descriptor does provide a means of detecting exceptional bending
moment runout.
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Figure 9: The first harmonic (runout) as a function of part and lane milled. Note: part 16 has an
exceptional runout.



4.7 Shape factor

The elliptical Fourier descriptors offer the possibility of computing scale and phase independent
shape descriptors. Here it is desirable to define a shape descriptor that is independent of the relative
work and rotation of the pattern, but nevertheless is characteristic for changes in the shape of
the pattern. This gives the measure an orthogonality to previous measures, i.e., it is accessing a
different information aspect in the data.
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Figure 10: The ratio of the power in the fourth harmonic to the power in the first 7-overtones. This
is a shape factor which is scale and phase invariant. As can be seen, the signal becomes more
sinusoidal up to part 16. See Figure 6 for a comparison of parts 1 to 18.

Here the ratio of the power in the primary frequency - the 4th harmonic since the mill has
four flutes - to its first seven overtones is proposed. The results of this calculation are shown in
Figure 10 for all lanes and parts. A systematic tendency towards lower harmonics is shown up to
part 16. The lower harmonics suggest that the curves are becoming more sinusoidal as more lanes
are milled; this is demonstrated in Figure 11 for parts 1 and 18. This shape factor is invariant with
respect to magnitude and phase of the pattern.

The change in runout at part 16 and the change in shape factor suggest not only runout caused
by the removing of the tool from the collet, as mentioned in 4.6, but also some damage to the
tool at this point in time. The methods presented here can detect both these sources of runout, but
further investigation is required in order to distinguish between them based on the data available.

5 Statistical changes in the data

The focus up until now has been on systematic changes in the median curve pattern as more and
more milling time proceeds. The goal here is to view changes in the statistical behaviour of the
acquired data.

The first observation is that there is a relationship between the bending moment and torsion.
On the left hand side of Figure 12 the plots of moments vs. torsion are presented for parts 1
and 13: note, the distributions of the points has changed significantly. Principal component analy-
sis (PCA) [18] was applied to the moment and torsion data as a mean of capturing the maximum
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Figure 11: Moments for parts 1 and 18. The rotation of the flower pattern is seen here as a
phase shift. Additionally, the curve is more sinusoidal for part 18, indicating lower harmonic
components.

amount of information in these signals. The histograms for the first principle components are
shown on the right hand side of Figure 12. Note, the histograms are bimodal, it can be seen that
there is a significant change in the distributions.
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Figure 12: Change in performance as determined by statistics. (Left) Bivariate distribution of
moment and torsion for parts 1 and 13. (Right) The corresponding histograms when projected
onto the first principal component.

Performing the same computation for all lanes, for job 3, across all parts yields a data-set
that can be viewed as a heatmap, see Figure 13. Each column of the heatmap corresponds to
the histogram for a single lane; in this manner the significant change in statistical behaviour as a
function of time can be clearly seen. The distribution becomes wider and the bi-modal parameters
change. This reveals a significant change from part 12 to 13.

Two measures are calculated from the histograms in Figure 13: i.e., the width of the respective
distribution, see Figure 14 and the magnitudes of the two bi-modal dominant peaks, see Figure 15.
The width of the histogram is determined as the distance from the left to the right outer edges.
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Figure 13: Histograms for the first principal component of moments and torsion as a function of
part and lane milled. Part number noted on the top and lane number at the bottom. Note: there is a
major change in the distribution at part 13. See Figure 12 for a comparison of part 1 and 13.

The width of the distributions follows an exponential function, see Figure 14. Consequently,
the data is modelled by Equation 5.37, yielding the results: a = 1.4002, b = 0.2439 and c =

72.5046. Given the parameterized model, the 3dB break point for the curve was computed, yield-
ing n3dB = 12.1. The 3dB point is the level where the power required to perform a task had
doubled. This is a commonly used criterion in digital signal processing [19]. It is proposed here
as a means of defining an appropriate decision level as to when significant wear has occured.
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Figure 14: Width of the respective histogram distribution (data) as a function of the number of
parts manufactured, an exponential model for the data and the determination of the 3dB break
point, n3dB = 12.1.

The break point between parts 12 and 13 is further collaborated by determining the magnitude
of the two dominant peaks of the bi-modal histograms, see Figure 15, which converge at the same
location.

6 Optical inspection

After the milling of each part the tool was removed for optical inspection and photographic doc-
umentation, an example of such an image can be seen in Figure 16. The goal is to provide inde-
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Figure 16: An image of the milling tool with the region of interest marked with a red rectangle.

pendent quality measures to which the results of the newly proposed methods can be compared.
For each of the four cutting edges the width of the edge wear mark was measured, the results are
shown in Figure 17. Note that the mentioned wear mark width represents the maximum extent of
a form of wear, including homogeneous cutting edge blunting and breakouts at the cutting edge. It
was observed that this edge wear width is well modelled as an exponential of the form,

w(n) = aexpbn + c, (5.37)

where n is the part number. This exponential model was selected, since both the data and its first
derivatives are well modelled by exponentials. This is a characteristic for selecting such a model.
This model is also shown in Figure 17. For a selected number of parts, which are most relevant
for the discussion of our results, the zoomed images of the cutting edges are shown in Figure 18.
Note, that microscopic breakouts were observed at the cutting edge of the milling tool for part 12
that increase in size with increasing number of milled parts.



7 Discussion

To enable a comparison of the results of the manual optical measurement of the edge-wear-width
(from Figure 17); the work2 required per part manufactured (from Figure 7) and the width of the
histograms of the first principal component of moment and torsion (from Figure 13), are shown to-
gether in Figure 19. As can be seen the results derived from the statistics and from the relative work
correspond highly. The relative work curve is somewhat smoother; this is to be expected, since the
correlation method used to determine these values is optimal in terms of noise propagation.

There is a strong correlation between the optical measurements of edge wear width and the
results obtained from the data processing. Whereby, the relative work and the statistical measures
give earlier indications of changes to the cutting edge damage state than the manual inspection of
the microscopy images of the cutting edges. This is due to the fact that the edge wear width is
difficult to determine reliably for small extent of wear due to volatile workpiece material transfer
features on the tool surface with similar reflectivity as hard metal tool material and the helical
shape on the tool’s cutting edge that is associated with a limited depth of field in the microscopy
images.

The rotation of the flower-pattern, the relative work and the Fourier descriptors are all mutually
invariant. That is, they provide independent measures for the damage state of the tool and describe
a trajectory in 3D space characteristic for the wear of the tool. This will provide a better view for
the estimation of anomalous behaviour that can be achieved with a single parameter.

The new data processing also yields the probability density function for the bending moment
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Figure 17: Edge-wear-width as measured from the images of the tool after manufacturing each
part. Note: for small wear the width could not be reliably measured also due to some uncertainty
introduced by volatile workpiece material transfer features on the tool surface with similar reflec-
tivity as hard metal tool material. The wear width as a function of part production appears to be
well-modelled by an exponential function.

2Note: torque has the dimension Newton-meters [Nm], the same as physical work. Consequently, the integral over
360◦ in the polar plot yields a measure for the physical work required to manufacture a part.



Figure 18: Digital images of the milling tool after having milled different amounts of workpieces.
Black arrows indicate the positions of breakouts at the cutting edge that influence the distributions
of the sensor signals discussed in the current work. The increase in wear and damage feature size
is visibly increasing with the number of workpieces milled, which is expected.
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Figure 19: Optical: normalized edge-wear-width as manually measured from the images. Work:
normalized relative work required to manufacture a part, measured from the bending moments.
Stats: The width of the respective histogram of the first principal components.

around the flower pattern and how this changes with the deterioration of the tool, see Figure 6. This
needs further investigation as it would suggest that it is possible to statistically identify changes to
individual flutes which have no visible effect on the pattern as a whole.

The statistical characterization of the tool performance as can be seen in Figure 13, is attractive
for tool condition monitoring purposes because of the low numerical effort required to do the
involved computations. The convergence of the magnitude of the two dominant peak heights in the
bi-model histogram plotted in Figure 13 occurs simultaneously with the emergence of breakouts
at the cutting edges shown exemplarily in Figure 18. This fact can be used as an efficient means
of indication of the change in the damage mode of the tool, since breakout formation is associated



with a significant rise in the deterioration kinetics of the tool’s cutting edge, compare Figure 17.
Note that the proposed measure for the tools damage state indicates the system damage mode
change shortly before the limit of edge wear width of 300µm is reached, above which the tool is
considered not any longer suitable for cutting. This finding is interpreted to facilitate the efficient
and not overly conservative use of the proposed approach for condition monitoring of milling tools.

8 Conclusion

The systematic collection of measurement data over a series of parts manufactured with the same
instrumented milling tool has proved very valuable for the development of reliable measures for
the damage state of milling tools.

The approach taken here relies on relative measures and does not need to have exact informa-
tion of the absolute interaction of the cutter and work piece other than that, they are equal for the
compared milling jobs. This is suitable for use with CNC machine tools since the repeatability
of the tool’s motions can be achieved. In this case the tool damage state can be compared on a
path-to-path basis. Compared to other condition monitoring approaches this greatly simplifies the
reliable detection of changes in the tool damage state.

The tool wear was demonstrated to be highly non-linear as a function of milling time. The
different measures provided consistent results in this respect. The rotation of the flower pattern, as
the number of parts manufactured increases, is the most linear measure. It also indicates that the
load distribution of the cutting edges of the tool changes with progressing tool deterioration.

The new computational approaches taken to evaluate the real-time moments, tension and tor-
sion data as measured with the used milling tool has yielded new insights into possibilities for
detecting wear and the formation of breakouts at the cutting edges of milling tools. A number of
mutually invariant measures have been defined, computed and successfully compared with manual
visual inspection results for the tool. The resampling of the data into a polar coordinate system
with a constant number of sub-divisions, has proven to be highly effective in reducing the numeri-
cal effort required to compute spectra, while eliminating spectral leakage and Gibbs phenomena.
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Abstract

To optimize output streams in mechanical waste treatment plants dynamic particle size con-
trol is a promising approach. In addition to relevant actuators – such as an adjustable shredder
gap width – this also requires technology for online and real-time measurements of the particle
size distribution. The paper at hand presents a model in MATLAB which extracts information
about several geometric descriptors – such as diameters, lengths, areas, shape factors – from
2D images of individual particles taken by RGB cameras of pre-shredded, solid, mixed com-
mercial waste and processes this data in a multivariate regression model using the Partial Least
Squares Regression (PLSR) to predict the particle size class of each particle according to a
drum screen. The investigated materials in this work are lightweight fraction, plastics, wood,
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paper-cardboard and residual fraction. The particle sizes are divided into classes defined by the
screen cuts (in mm) 80, 60, 40, 20 and 10. The results show assignment reliability for certain
materials of over 80%. Furthermore, when considering the results for determining a complete
particle size distribution – for an exemplary real waste – the accuracy of the model is as good
as 99% for the materials wood, 3D-plastics and residual fraction for each particle size class
respectively as assignment errors partially compensate each other.

Keywords: Particle size determination, Sensor-based measurement, Municipal Solid Waste,
Particle size descriptors, PLS.

1 Introduction

The concept of a Smart Waste Factory Network 4.0 (SWFN4.0) is a research vision for mechanical
waste treatment plants. According to the definition from [1], Smart Waste Factory Network means:

“The SWFN4.0 describes a system consisting of several waste treatment plants, which perform
different tasks in the waste management system and are interconnected via data streams and logis-
tics systems (e.g. sorting plants, production plants for Solid Recovered Fuels, etc.). The individual
processes and machines within the plants as well as the individual plants are digitally connected
with each other. This connection of the individual machines and systems and the real-time analysis
of the waste streams enable dynamic process control and various actuator systems actively inter-
vene in the processes. In addition, people can cooperate interactively with the technology around
them.”.

Such Smart Waste Factory concepts and plants will support further waste management devel-
opments and the reaching of higher sorting and recycling rates for valuable waste particles avail-
able in mixed non-hazardous waste streams. The status of recycling in European municipal waste
management is given in [2] and as it can be seen, technical developments are required to reach
high recycling targets set up by the European Commission within the “Circular Economy Package
2018” [3].

In mechanical waste treatment plants, a shredder is usually the first machine for the treatment
of solid municipal and commercial waste [4–6]. Together with the properties of the input material
it affects the particle sizes of the materials and thus influences the efficiency of all subsequent
machines, such as screens, magnetic separators, or sensor-based sorting machines. To beneficially
influence the particle sizes in real-time – e. g. to keep them as constant as possible regardless
of the variability of the input material – three things are required according to [7]: optimization
algorithms (for example based on artificial neural networks), controllable actuators such as the gap
width or the speed of the shaft rotation of the shredding unit, as addressed for example by [8], as

Abbreviations: NIR, near-infrared; pa, paper-cardboard; PLS(R), Partial Least Squares (Regression); re, residual
fraction; RD, realistic distribution; RGB, red-green-blue; SWFN4.0, Smart Waste Factory Network 4.0; UD, uniform
distribution; wo, wood.



well as real-time measurements of the particle size distribution, where the latter being the focus of
this work.

For an output stream characterization in waste treatment plants, material composition and par-
ticle size distribution are basic information. At present, this data is determined when the material
has already left the plant, which does not allow further manipulation of the quality. [9] investigated
an image analysis tool for characterising the composition of waste-derived fuels in a test set-up.
Additionally, methods that use 3D laser triangulation and special techniques of image analysis to
detect objects on a conveyor or from bulk [10–12] give information regarding particle measure-
ments, however, neither of the mentioned authors used the methods on mixed (non-hazardous)
waste materials. Another approach for the characterization of material streams is to determine
measurements and descriptors of particles – such as projected area/circumference, Feret diame-
ters, shape factors, bounding shapes – from two-dimensional images which is presented in this
contribution. This approach was also tested on coal particles by [12].

To enable particle size analysis in real-time, machines must be equipped with the necessary
sensors/cameras to record image data. It is necessary to create prediction models for particle sizes
that use for example image analysis, mathematical or statistical methods to evaluate image data
by software. In order to evaluate the effect on the particle size distribution the models must be
combined with the information regarding individual particle weights. [13] already investigated
material-specific surface weights for Solid Recovered Fuels. This approach could be used in com-
bination with the prediction models to produce true screening lines.

To describe the size and shape of irregularly formed objects different options are possible. On
one hand, projected area and circumference are common measurements, whereas the indication of
meaningful lengths or diameters due to the irregularity of the outlines often turns out to be prob-
lematic. For example, in the field of process engineering equivalent diameters are often used (e.g.
diameter of a circle of the same area, Sauter diameter, Martin diameter [14]). Additionally, it is
possible to describe a two-dimensional object through geometrical shapes (e.g. circle, triangle,
rectangle), which enclose the particle with the smallest possible area. A special type of diameter,
which is often used for screening, is the Feret diameter, which is defined by the distance between



two parallel tangents that fully enclose the particle (principle of a calliper) [14]. Also, dimension-
less coefficients like roundness or ratios between the projected area of the object and the areas of
bounding shapes are possible options to describe particle shapes and sizes [12, 15–20]. Another
approach to describe shapes is by applying Elliptical Fourier Transformation. This method has
been in use for decades and uses Fourier descriptors to describe ellipses to approximate the closed
contour of a shape based on a chain-code [21].

This paper presents results which were gained by using the regression method partial least
squares (PLS). Here, this method was chosen because multiple, correlated variables are present to
predict the corresponding particle size class of each particle. PLS extracts orthogonal factors that
further allow building a regression model and identifies latent variables that are linear combina-
tions from the original variables. These latent variables fulfil the criterion of maximal covariance
between the explanatory X and response Y variables and allow modelling Y as a function of X. If
Y consists of a single vector of data, the method is known as PLS1 if it represents a table of data
with two or more variables PLS2 can be applied as well, but might not lead to better results in all
cases [22]. PLS enables one to find a small number of factors to fit the data. Here, the choice of
the considered number of components affects the ability of prediction of the model and must be
chosen individually for each investigation. [23] A high number of components will usually benefit
the prediction of the data, but increases the risk of overfitting (fitting the model to the noise in the
data). Therefore, the ratio of components to data points must be well considered. To examine for
overfitting, k-fold cross-validation [22] is a proposed method for choosing the correct number of
components, which doesn’t use the same data for the calibration of the model and the error pre-
diction. Here, the data set is randomly split into k calibration steps (5¡k¡15), where each subset of
data is tested on the model that was built from the remaining sets. k is often chosen to be five or
ten, which is based on experience [24].

The paper at hand presents methods to generate image material of individual objects with
known particle size- and material class, and software that was developed in MATLAB 2019 to pro-
cess and analyse the image data. The software calculates particle descriptors from binary images,
which were transformed from RGB images, to predict the particle size class through a regression
model. The outcomes of the regression model are combined with a theoretical approach applied to
a realistic waste composition to show the accuracy of the model.

2 Materials and methods

Here, the methods to generate binary image data from particles with assigned information regard-
ing material and particle-size are described. Additionally, the used ways to calculate particle de-
scriptors, as well as the applied regression models, are presented. A visualization of the individual
steps is shown in Fig 1.



Figure 1: Schematic layout of the individual applied steps with an overview of the used MAT-
LAB functions for the image-processing step.



2.1 Preparation of material

The work subsequently presents results that are obtained from images of individual particles from
coarsely shredded solid mixed commercial waste which was collected in Styria (AUT) in Octo-
ber 2019. The processing of the material was performed with industrially sized machinery from
the company Komptech and included a shredding step with following particle size classification
through a screening process and additional manual sorting into six material classes. In total, 32 in-
dividual, representative samples were used to generate fractions with defined particle size and ma-
terial class. The shredding process was performed through single-shaft shredding units (Komptech
Terminator 5000 SD with cutting units F, V and XXF, described in detail by [8]) with different set-
tings regarding shaft rotation speed and width of the radial cutting gap. This ensured the influence
of different settings to be considered in the results. The screening was carried out with a drum
screen (Komptech Nemus 3000), where cylindrical drums with 2m in diameter and 5.5m in length
were used. All used drums had round holes with the diameters (in mm) 80, 60, 40, 20 and 10.
To approximate ideal screening, a maximum volume of 1m3 of material was used per batch. This
amount was spread out on the conveyor belt of the feeding bunker of the screen over a length of
4m. The speed of the conveyor was set to 0.026m/s, while the rotation speed of the drum was set
to 10 rpm. The sorting process involved the assignment for each particle to one of the following
material classes: lightweight fraction (e. g. foils, 2D-plastics), plastics (3D-plastics), wood, metal,
paper-cardboard and residual fraction.

To reduce the effort for manual sorting due to the large number of samples, machine-aided
separation was used to gain the lightweight fraction. Here, a perforated tube with air nozzles was
attached in the expansion cover of a sensor-based sorting machine. The tube was of the length of
the working width of the sorting machine and fed via compressed air. The lightweight fraction was
separated from the rest of the material stream based on the principle of an air classifier. Due to
this, the lightweight fraction contained mainly two-dimensional material like plastic foils, but also
light objects of styrofoam and foamed plastic. Manual post-sorting of the material was carried out
after the separation to make sure each object was assigned to the correct fraction. Hence, a manual
evaluation was still the final criterion for sorting decisions.

2.2 Image acquisition and processing

The developed software requires images of single objects. In this work, this criterion was met
by photographing each object individually. Due to technical and time limitations, two different
approaches (image acquisition methods) for the recording of the images were applied. Particles
assigned to particle sizes ≥40mm were recorded by an RGB-camera in *.png format from the
sensor-based sorting machine Redwave 2i. Depending on the particle size, the images were roughly
200x250 pixels in size with a resolution of 2.403mm2/pixel. Here, the camera was mounted over
the accelerating conveyor and able to photograph each particle on the conveyor individually, as
long as near-infrared (NIR)-spectra were detected from the particle (as NIR information is used



by the machine for defining objects). Also, it must be noted that an individual particle was de-
fined as a cluster of material-pixels, surrounded by a defined background, which was the conveyor
belt. Therefore, overlapping or touching particles were detected as one object in an image and
sorted out manually in the image-processing step. Images from objects smaller than 40mm were
taken with an ordinary digital camera. This size threshold was chosen because the small objects
would have been difficult to handle in the experimental setup of the sensor-based sorting machine,
because of the large-scale equipment with several transfer points on conveyor belts where the ob-
jects might have been lost during the process. The images were saved in *.jpg format, where
each particle was photographed manually. Here, the resolution of the images for the software was
originally set to 6,000x4,000 pixels, but later downsized and cropped to size in the software to
roughly 400x500 pixels for faster processing. Despite the downsizing of the images, a resolution
of 0.0511mm2/pixel was reached. In both cases of image acquisition, the cameras were mounted
parallel to the surface where the objects were placed, and the position of the cameras was fixed
to ensure a consistent distance between particle and camera lens. For manual image recording,
this can be achieved using a tripod or similar. Additionally, LED-lights were used to ensure the
high visibility of the particles and a well-lit area for the recording of the images. High contrast
between the background and the particle itself helps to obtain images with sufficient quality for the
further processing steps. In this case, all images were taken using a black background, which leads
to the discarding of dark objects in the investigation, which were also not recorded by the sorter
due to missing NIR-signal of black particles [25]. Due to the use of different methods for image
acquisition, several steps were considered to ensure comparability between all images. Firstly, two
(one for each image acquisition method) individual scaling factors – which allow the transforma-
tion between the pixel and metric measurements – were calculated as well as a distortion factor
to remove the elongation which was detected on the images taken from the RGB-camera in the
sorting machine due to the used combination of conveyor belt speed and imaging frequency of the
line-camera. The scaling and distortion factors were calculated from images of objects with known
measurements and stored in variables in the software for later access.

The software evaluates calculated measurements of objects in binary images, which were con-
verted from the RGB-photos. In MATLAB this was achieved through transforming the original
image (with the distortion factor considered, if required by the method of image acquisition) over
a greyscale image (function “rgb2gray”) to a binary data set (function “imbinarize”), where back-
ground information was indicated with zero (black) and pixels of the particle with one (white).
The individual steps are shown in Fig. 2 Additionally, Table 1 gives an overview of all the used
functions with a short description as well as additional information regarding in- and output data
of each function. To receive the best results, several steps for image improvement were applied.
These involve transforming the image to a negative image or enhancing the colours, where all
entered parameters must be matched with the colour of the chosen background and/or particle.
In MATLAB the functions “imcomplement”, “imreducehaze” and “imadjust” were used for these
steps. Latter considered a “gamma factor” of 0.2, for the transformation to a binary image a global



Figure 2: RBG image (left), greyscale image (middle), and binary image (right) of singlified waste
particle.

threshold according to Otsus Method [26] was calculated (function “graythresh”), to achieve the
best results.

Due to the image processing, small holes were detected in the binary data of the objects. In
this context, holes are identified as regions indicated as background within the particle. To ignore
falsely identified holes, all pixels of holes with a size smaller than 1% of the total image size
were relabelled in the binary image from background to particle. Holes bigger than the chosen
threshold were ignored in this step. Mechanical stressing from the sorting process of the material
led to the separation of dust and fine particles, which were detected in the images. To ignore these
objects in the evaluation only the biggest region of connected pixels was detected as the particle
and displayed in the final binary image. The mentioned steps for identification and relabelling of
holes as well as identifying the biggest region were achieved with the functions “bwareaopen”,
“imfill” and “regionprops”.

To assure that the software only considers images where the binary data represents an object
correctly (no overlapping, no cropped images due to missing contrast or NIR data) a manual check
was necessary, where the best of three options was chosen. The first option considered the steps for
image improvement as well as the gamma factor, which is stated in the text above. In the second
option, the methods for colour improvement and the gamma factor are not applied. If the binary
image was wrongly transformed, the third option allowed to not consider the image in the following
analysis. Research shows that the extraction of individual particles (no touching/overlapping) from
one image is possible [15]. MATLAB allows this with the function “regionprops”.



2.3 Calculation of particle descriptors

With the correctly displayed binary images available the next step was to calculate individual par-
ticle descriptors based on the binary data. To calculate the area of the particles, simply the number



of pixels of the projected area was counted. The perimeter of the object was calculated with the
option “bwboundaries”. Due to the high image quality, the edge of the particles was displayed
comparatively unevenly, and the length of the perimeter would have been wrongly calculated for
the use here. To even out the irregular edge of the objects the perimeter was formed by a sur-
rounding polygon with a shrink factor of 0.5 (see Fig. 3, left), which was achieved by applying
the MATLAB function “boundary”. This resulted in the overall best approximation of the particle
outline. It must be pointed out as well, that especially for objects with a low number of pixels
(small objects and/or low-resolution images), the squared shape of the pixels (resulting in a stair-
like boundary) may affect the calculation of parameters. Since in this work, all relevant objects
were far over a few hundred pixels in size (APart), this was not considered here. The Feret diam-
eters were calculated with software-codes from [27–29] (function “feretProperties”). This work
considers the maximal as well as the minimal Feret diameter (see Fig. 3 (left)) because they are
also successfully used in other works for particle description [17, 18, 30].

The aim of using bounding shapes was to describe irregularly shaped particles more simply.
In the work the following forms were determined: Smallest circumscribing rectangle (bounding
box) of the particle, smallest circumscribing circle of the particle (bounding circle), largest circle
in the circumscribing polygon (inscribed circle of the polygon) as well as the maximum inscribing
circle of the particle (incircle) and the smallest circumscribing triangle of the particle. Of all the
mentioned shapes, the dimensions that are needed to describe the shape (edge lengths, radius) were
calculated and used to determine the circumference and area of the shape. Later these values were
used to compare the measurements of the particle with the assigned bounding shapes. Fig. 3 (right)
shows an example of some of the mentioned bounding shapes. In the software, functions from [31]
(“minboundrect”, “minboundcircle”, “incircle”, “minboundtri”) and [32] (”max inscribed circle”)
were used for the calculation.

Shape factors s fi are dimensionless factors and show the ratio between different particle de-
scriptive areas. Here, the following sf are considered: bounding box, bounding circle, bounding
triangle, inner circle polygon and incircle. Additionally, the circularity was considered as a shape
factor as well, which explains the difference of the particle from a circle. This factor was defined
through Eq.( 5.38) according to [16], where APart is the projected area of the particle and PPart is
the perimeter of the circumscribing polygon, and was defined in a way, so that it becomes 1 for a
circle.

Circularity =
4πApart

P2
part

(5.38)

The descriptors with additional information regarding particle size and material were calculated for
each image and stored in table form, resulting in a data table containing the information regarding
each particle in one row and the values for the individual descriptors in columns. All measurements
were calculated in the unit pixel and were transformed in millimetre measurements. Here, the
previously evaluated scale factor for the respective particle size class was considered in addition
to the dimension of the unit of the descriptor (two dimensions for e. g. areas, one dimension for



e.g. lengths, diameters and zero dimensions for shape factors). In the whole software the material
fractions are examined separately, which leads to five individual data tables. These were used as
input for the regression models, where one for each material class was considered.

Figure 3: Left: Particle with polygon perimeter (solid line), max. Feret diameter (dashed line) and
min. Feret diameter (dotted line); right: Particle outline with exemplary bounding shapes (bound-
ing box, bounding triangle, bounding circle (dashed line), inscribed circle of the circumscribing
polygon (dash-dotted line))

2.4 Regression model

Prior investigations from this work show that the prediction performance of the particle sizes based
on only one parameter performs poorly, because of the broad scattering of the values and collinear-
ity between the variables [33]. Therefore, the regression was performed with PLS1, where all the
information of particle descriptors was used as predictor variables, and the information regarding
particle size class was used as the one-dimensional response variable. The PLS method was chosen
because it offers solutions for highly collinear or linearly dependent predictors [34], which were
determined in this case. The basic concept of PLS is stated with the following explanations and
formulae from [23, 34] and [22, 35].



The idea of PLS is to find a regression model for multivariate data for predicting purposes
of new data by a small number of relevant factors. Here, the matrix of explanatory variables X
is decomposed in a set of orthogonal factors which are used for fitting the matrix of response
variables Y. In PLS latent variables (cannot be measured directly) are built that account for as
much of the manifest variable (can be measured directly) variation as possible and are represented
as linear combinations of the manifest variables. The final regression model is in the linear form
of Y=XB, with B being regression coefficients which are calculated over the PLS factors between
the explanatory and the response variables. The general model that underlies the PLS is given in
Matrix form in equation (5.39) and (5.40) from [35] as

X = TP T +E (5.39)

Y = TCT +F (5.40)

where X is an n×m matrix of predictors, Y is an n/timesp matrix of responses. T is an n×
1 matrix containing projections of X (X-score, component or factor matrix). P is an m × 1



orthogonal loading matrix, C is an m× 1 matrix and contains the regression coefficients which
relate T to the variables in Y . The residuals are collected in the matrices E and F which are the
error terms. PLS allows a variable reduction where the available variables are combined through
linear combinations to fewer ones with more significance. Additionally, the method allows finding
certain variables, that are essential for the description of the data and identify the ones that don’t
provide additional information. This can be done by interpreting the values of the weights w, which
can be identified through the scores T .

To evaluate the models properly the available data tables were split into two separate groups,
one containing 90% of the data from each particle size class, which was randomly picked. This data
is later called the calibration data. The remaining data is used to test the quality of the developed
model and is therefore called test data. In MATLAB the function “plsregress” was applied, which
is based on the algorithm from [34]. Additionally, the MATLAB function “zscore” was used to
standardize the variables in a way that each column in the data set had a mean of 0 and a standard
deviation of 1. A list of the used predictor variables and their explanation is given in Table 2. Due
to the chosen methods of material preparation and image acquisition an unequal amount of images
in each material-particle size class was available. To consider this fact in the regression model and
avoid the more precise modelling of particle size classes with a higher number of images a way
to compensate this factor was necessary. This was done by adding a weighting factor, which is
defined as the inverse value of the number of available images in each material-particle size class,
respectively. Since the PLS is a method that allows the reduction of dimensions and eliminates
noise in the data, the number of considered dimensions was chosen to be four. This was evaluated
as the best option for the regression models, without under- and overfitting the data based on k-
folds cross-validation with k being chosen to be 10, where at least 94% of the explained variance
in Y was considered in the models.

The result of the models were regression coefficients for the predictor variables based on the
calibration data, which were later applied to the test data sets to predict the particle size. Based
on the fact that in this work five different particle size classes are present, the classification for the
values to the particle size classes was implemented by considering a limit value for each particle
size class. This limit value was calculated as the mean value between the predicted values of the
80th percentile of the lower particle size class and the 20th percentile of the higher particle size
class (e. g. the limit value to divide particle size class 40–60mm from 60–80mm was the mean
from the 80th percentile of the predicted values of the 40–60mm particles and 20th percentile of
the predicted values of the 60–80mm particles).

3 Results and discussion

In this investigation in total over 11,000 particles were characterized with the chosen descriptors
listed in Table 2. The breakdown according to particle size class and material fraction are shown
in Table 3. Here, the values show the number of particles that were used for the regression models



due to the manual selection of the binary images. The values in brackets show the share from the
total amount of images that were taken from the cameras that is represented through the number of
characterized particles. It can be detected that less than half of the amount of the available pictures
in total were used in the regression. The following different factors explain the issue for particles
≥ 40mm. Firstly, especially large objects were cropped and not fully displayed on one image,
but on two or even more. This was also detected on particles with a very small expansion in one
dimension, which often led to the detection of two or more individual objects. Additionally, images
were often cropped when objects consisted of several different materials (composite materials) and
the material was partly not reflecting NIR-signals, and therefore not detected by the sensor. It is
important to mention that latter was only relevant for particles ≥ 40mm since only they were
recorded by the sensor-based sorting machine. Further, the surface condition was an important
factor for image quality. If the particle was too dark in colour, see-through, too shiny, or had a
reflective surface the image was often not properly transformed into a binary image and was not
suitable for the regression model. These factors explain the significantly lower number of particles
in the residual fraction when compared to the other materials, where e.g. glass, metal-coated
plastics, composite materials and dark textile fibres and fabrics accounted for a high number of
particles. Due to the composition and structure of the lightweight and the residual fraction (fluffy
material that was tangled up with other particles) no photos were taken for these two material
fractions in the particle size 10–20mm. Also, it should be noted that the metal fraction was not
considered in the evaluation. Here, a low number of objects was initially found in the samples. A
significant amount of these metallic objects were wires, which were often not correctly displayed
on the images due to the one-dimensional appearance, flat metallic objects were often too shiny.
Therefore, only an exceedingly small number of usable image files (less than 40 images in all
particle size classes combined) was available and forced the fraction to be taken out from the
investigation.

The given regression coefficients from the regression models were applied to the test data sets
for each material fraction. The results were values that were assigned to a particle size class
based on the classification method explained in the previous chapter. Because the size of the test
data sets was dependent on the number of available images some material-particle size specific
fractions held less than ten images. To evaluate the regression models in a way that even a small
number of available objects gives meaningful information regarding the accuracy of the models the
results presented here are calculated as a mean of 1,000 individual runs. In more detail, this means
that 1,000 calibration data sets with data from randomly selected particles were used to generate
the regression models. Each of the models was then tested by applying the resulting regression
coefficients to the respective test data set and calculate the falsely and correctly assigned particles
for each size class. These values can be seen as instant results from the regression models and are
used for the prediction of the particle size. The mean results from 1,000 runs for the individual
materials are presented in Table 4 as a significant result to show the accuracy of the method.
Overall, the models for the materials wood and residual fraction show the best results regarding



the correct classification of the particles. However, the fraction paper-cardboard shows a very low
correct classification of particles between the sizes 20–60mm. To better evaluate the effects of the
wrongly classified objects, the results from Table 4 are applied on particle size distributions. As no
information regarding the individual particle weights was examined during this investigation, for
this first approach it was assumed that each object in the same material-particle size class has the
same weight. Two different options were investigated here.

Firstly, a uniformly distributed (UD) composition of the individual particle size classes within
the material fractions was considered. Since five different particle classes were examined, each
class was considered with a 20% mass fraction. For the material groups lightweight and residual
fraction no images in the particle size class 10–20mm were available, which is why these could not
be included in the regression. In these cases, the particle size classes were each taken into account
with 25% of the mass fraction.

Additionally, a realistic distribution (RD) of particle size classes within individual material
fractions in mixed solid commercial waste according to [36] was considered. This distribution
was chosen because it deals with the same input material, similar individual material fractions and
similar particle size classes. The individual fractions are split up in more detailed material classes
as in the present paper, but their combination allows the representation of the investigated fractions
in this contribution. For this, the individual fractions “paper” and “cardboard” were summed up
for the representation of the paper fraction. For the residual fraction the values from the “inert
material” and “textiles” were added to the “residual fraction”. The used values for the further
calculations are presented in Chapter 4. Since in that study no data according to material-specific
composition in fractions smaller 20mm was investigated, the particle size class 10–20mm was not
considered in the results presented here.

The aforementioned assumption regarding particle masses combined with the two options of
particle size distributions allows to constitute the impacts of the regression models and compare
the original particle size distribution with the one predicted through the respective model. The
extent of incorrectly assigned particles on the particle size distribution is shown, considering the
partially compensating effect of wrong classifications. The results of the according hypothetical
sensor-based screening analysis in form of the percentual error of the mass fractions between the
predicted values and the original particle size distribution is shown in Table 5. Furthermore, the
errors of the models can be given by calculating the mean error in terms of mass share for all



particle size classes, which are also presented in Table 5. Here, it is shown that the approach of
uniformly distributed (UD) material regarding particle size classes shows overall better results than
considering the realistic particle size distribution (RD). Nevertheless, the accuracy of the predicted
particle size distribution for the fractions wood, plastics (3D) and residuals was at least 99% for
each particle size class respectively. It is also shown that the error between UD and RD for each
material is in the same range, except for lightweight material. Here, the difference in error can
be interpreted by the difference between the particle size shares in the distributions, where RD
considers approx. 70% of particles ¿80mm, while UD just 25%.



4 Conclusions

The presented methodology, which predicts the particle size based on parameters from 2D images,
shows promising results for measuring the particle size distribution of the investigated material
fractions. Considering a realistic particle size distribution with the approach of identical particle
weights in each particle size class the regression model led to a correct prediction of at least 99%
the individual particle size classes for wood, plastics (3D) and residual fraction. The fractions
paper-cardboard and lightweight materials showed significant errors but were still over 96% accu-
rate for each particle size class respectively. Nevertheless, the following points should be noted as
a limitation of the stated method.

For the recording of images by the RGB sensor of the sensor-based sorting machine a detected
NIR-signal was crucial. This factor mainly caused dark (especially black and grey) objects not
to be considered in the evaluation. Additionally, certainly shaped objects (one-dimensional) were
recorded on multiple separate images and therefore not useable in the investigation. The chosen
way of image processing in the software requires a manual check of the binary images. This is
not feasible for a practical application and could not be implemented due to the real-time request
in a plant. Hence, a software extension is necessary, by which this this control can be carried out
automatically to eliminate the manual effort.

Another point of criticism is that large objects were often cropped on the images due to the lim-
iting size of the images. This led to missing particle information in bigger particle size classes. The
fine fraction below 10mm was not considered in the investigation at all but is crucial information
when evaluating particle size distributions.

The lightweight fraction was classified by the air classifier and consisted mostly of plastic foils.
Additionally, the whole material stream was checked by hand as well to avoid wrongly classified
objects (e. g. foils wrapped up with wires). In this paper, an approach to evaluate the material-
specific particle size class from the whole (mixed) material stream was investigated. Especially
the differentiation between the materials lightweight fraction and 3D plastics based only on the
information from a NIR-sorting machine is very limited in a real plant, since both fractions include
objects from the same materials [37]. Also, an efficient singlification of the material stream on a
conveyor for sufficient detection of particle shapes is not always possible due to limited space and
upkeeping of the mandatory throughput of the plants. Here, a bypass for smaller quantities could be
used as a technical solution for material analysis. Additionally, the image recording must be tested
when the particle size classes are not separately recorded by the cameras. Here, especially large
foils ¿80mm would probably cover up smaller particles on the conveyor belt, so that a screening
step might be necessary. Nevertheless, although further research is needed to develop a Smart
Waste Factory, the presented approach shows high potential to be used as an automated method to
measure particle size distributions of solid, mixed waste streams to process large amounts of data.

Besides, particle weights must be examined and combined with the models to evaluate the
effect of the wrongly classified particles for more realistic information regarding particle size dis-



tribution. I.e. waste management will become particle-, sensor- and data-based-management and
information from every single particle will become increasingly relevant in the future, especially
because of higher recycling rates set up by the EU Circular Economy Package.

Further, approaches regarding machine learning could be investigated to evaluate if additional
information about particle shapes can be extracted based on the chosen particle descriptors, or
other information in the images. The images (true colour or greyscale) can also be processed over
Convolutional Neural Networks, which can detect characteristic shapes and edges of objects and
may lead to better identification of shapes.

Ultimately, it must be mentioned that the results are based on material that is classified by a
drum screen. If the method should be applied on other screen types or drum screens with differ-
ent screen perforations, the efficiency of the respective screen on material fractions and particle
size classes must be investigated separately but could give information about particle sizes when
combined with the presented method here.
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Abstract

This paper presents the implementation of a digital twin for the vibro - replacement ground
improvement process, as part of a digital construction site. The goal is to implement an
evidence-based quality assurance for each produced element (column or point). The system
uses a combination of planning data and real-time machine data collected automatically from
construction equipment. In addition to the quality assurance, feedback is provided in a num-
ber of areas, e.g., condition monitoring of the equipment. The digital twin builds upon the
real-time sensor and machine data, fused with metadata, to implement a digital model for the
process. A hierarchical data evaluation, using rule-based Key Performance Indicators (KPIs),
permits viewing of the spatial variation of data over the construction site. This permits the
modelling of systematic variations in subsurface properties across the site, enabling the de-
tection of anomalous individual elements, the diagnosis of their cause and the prediction of
properties as construction proceeds over the site. All time-series data and KPIs are represented
by standard classes of objects, leading to a generic coding of the data analysis; this minimizes
the effort required to add additional sites and/or new KPIs. Examples are presented for a num-
ber of sites, where the system was used to identify anomalous columns.

Keywords: Deep vibro, Ground improvement, Digital twin, Time series analysis, Key per-
formance indicators

227



1 Introduction

This paper addresses the issues involved in the implementation of a digital twin of the vibro-
replacement ground improvement process. The digitalization of the construction sector is becom-
ing an increasingly popular topic. Recently, COVID-19 has motivated various contributions, which
have sped up this process significantly. Additionally, there is an even more important change on-
going in the field of construction, namely the digitalization of the construction site itself. Focusing
now on the geotechnical sector, design data can be transmitted to sites in a digital format [1]. This
can be seen in the context of the Building Information Modelling (BIM), which has been a crucial
aid to improve construction quality during its whole life cycle [2], [3]. The approach here is to
extend the BIM concept with real-time machine data from the construction site [4]. In this manner,
the digital twin can combine both site design data with real-time operational data, collected from
a wide range of sensors mounted on various equipment across the site. This permits a validation
of the execution of the planned elements (columns or points). This relies on the quality of data
acquisition, which has improved remarkably during the last years. The time-series data can now
be used to assist the rig operator during production, helping to detect anomalous behavior [5]. The
large volume of data, now collected from a construction site, necessitate the development of tools
to evaluate the quality and performance of the process [6], [7]

The execution of ground improvement techniques is especially dependent on the availability of
process data. Simple quality control methods, such as visual inspections or sample-taking are not
suitable to check the correct installation of foundation elements. Simple geometrical parameters,
such as length or inclination of columns, can be checked easily, using the data acquired by the rig.
Installation reports show the basic installation parameters, which are generated for every element.
However, a typical characteristic of soil improvement techniques is the execution procedure and
therefore the properties of the elements depend on the soil conditions. Unfortunately, soil explo-
ration campaigns are often not sufficiently precise, so the installation of every element is supposed
to deliver additional information on layering and mechanical properties of the soil. A new ap-
proach, enabled by the digital twin, is to use rule-based algorithms to compute Key Performance
Indicators (KPI) and to view their spatial distributions over a complete site. The KPI can be used
to detect, diagnose [7], [8] and predict subsurface properties.

2 Current State of Ground Improvement Monitoring

The Vibro-Replacement is a common ground improvement process; hereby, the ground is pen-
etrated by a deep-vibrator, then during retraction of the vibrator, gravel is pressed into the open
space below the tip of the vibrator and vibrated to obtain a higher gravel stiffness. For the purposes
of monitoring, the process can be segmented into two phases (a portion of such real-time data set
is shown in Fig. 2):

Penetration: In this phase, the vibrator penetrates the ground. During penetration, the in-situ



Figure 1: Vibro-Replacement production process as an example for ground improvement.

soil is displaced with the help of flushing with compressed air. The vibratory motion is produced
by an eccentric weight powered by an electric motor, where both the frequency and power of
the vibrator are monitored. The vertical penetration is driven by the pull-down force / activation
force. The vibratory power and pull-down force result in a penetration rate that is related to the
stiffness of the ground. Consequently, these parameters are also logged in real-time. Additionally,
the temperature of the vibrator is monitored, since the work performed to compact the ground
results in heating. It must be ensured that the vibrator does not exceed a specific temperature limit.
The penetration process continues to a defined design depth, which in most cases is a bearable
soil layer. However, there are additional abort criteria, based on vibration power and activation
force. These are triggered when a sufficiently strong bearing level is reached. A series of KPIs is
computed specifically to characterize the penetration phase.

Compaction: The start of the compaction phase is taken as the moment the final depth has been
reached. The vibrator string is filled with gravel, so a vertical reciprocating process is started. This
reciprocating motion consists of a cyclic process of retraction and compaction. Each reciprocation
introduces gravel into the hole and compacts it to the required stiffness; this is determined from
the vibrator power and pull-down force. Thus, the actual diameter of the column as a function
of depth depends on the local density and the load-carrying capacity of the soil, see Fig. 1. The
reciprocation steps continue until the column is completed, with pauses needed to reload gravel.
Consequently, the monitoring permits the computation of built-in volume of gravel per meter as a
function of depth. This is one of a number of quality-relevant KPIs computed for the compaction
phase.

The result of the penetration and compaction phase is an improvement of the ground load-
carrying capacity. The monitoring permits an evidence-based verification of the correct execution



Figure 2: Example for an element protocol of a vibro-replacement column

of each column and the achievement of the required stiffness. Additionally, specific KPIs are com-
puted for the complete element, which permit an evaluation of the total efficiency of the process.

The fusion of the real-time machine data, with geo-referencing data for the machine at each
column, enables a location-based viewing and evaluation of the KPI. In this manner, systematic
changes over the site can be determined and prediction of behavior can be made.

This data is displayed on the data monitor inside the rig during production for the rig operator,
as well as recorded and documented in the element protocols. A typical element protocol of a
vibro-replacement column shows - besides the production time and depth - also the electric power
used by the vibrator (current in Ampere) and/or the activation force.

The real-time machine data is logged internally on an industrial PC and transmitted to a web
server for external recording and evaluation. This server provides data services so that the data
can be searched or accessed for further evaluations. A protocol is produced for each executed
element, resulting in 20 to 70 element logs per rig and day which need to be evaluated to ensure
the quality of each and every element. Of course, the quality of every column can be ensured in
this manner; however, getting a good overview of the columns of the whole site, small deviations
from column to column or abnormalities in a certain area of the site is difficult. Due to variations
in sub-surface soil properties across the site, there is no average element that shows the whole
site’s characteristics. Consequently, no standard valid column can be detected via simple cross-
correlation. Considering the data represented in Fig. 4, it can be seen that there is a systematic
change in the maximum depth of columns required across the site. Therefore, there is no standard



Figure 3: 2D- and 3D- evaluation of the parameter ”built-in gravel material per column” with the
VibroScan-tool.

valid column detectable for the whole site. Furthermore, coherences between different parameters
sometimes get lost, when parameters are changing during the site, due to the large amount of data
that would need to be viewed.

Evaluation tools, such as VibroScan [9], [10], help to preserve the overview of execution quality
of a whole site. But such tools are only capable to show one single parameter at a time, such as
the depth of all columns of a site, the built-in material per column-meter or the needed electric
energy, for instance, in the lowest meter of a column, where the bearable soil is penetrated. These
evaluations result in a 2D- or 3D-plan view of the chosen parameter.

However, coherences between different parameters in certain areas of the site are likely to be
missed. For example, the production time of the columns can increase in an area of the site, due to
idle times during the column production as a result of over-temperature of the vibrator. Probably
this is caused by changed soil conditions – possibly a harder soil layer in this area? High ampere
values or a high activation force as well as less volume of built-in gravel at a certain depth of all of
these columns may confirm this suspicion.

The aim of the toolbox and collection of apps is to give a structure handling of data and meta-
data, with the goal of improving the monitoring of the process as a whole. Fusing the data from
multiple sources and providing an overview of different parameters on a site leads to an even better
information about the in-situ soil conditions, the production process and the execution quality. It
also yields insights into possible efficiency improvements that can be achieved. Furthermore, the
data-centric nature of the implementation enables the creation of multiple data views as required



by different personnel, see for example Fig. 4, Fig. 5 and Fig. 6 for different views. The evidence-
based validation or negation of a hypothesis is enabled by the structured availability of all the
real-time machine data for a complete site.

3 Conceptual Design of the Toolbox

The concept behind this development is to provide a data-centric framework, which enables mul-
tiple hierarchical and structured views of real-time machine data, relating to the vibro ground
improvement process. The aim is to provide an overview of all the points on any selected con-
struction site, while maintaining a direct link to the details of the real-time machine data. The goal
is to identify points which are possibly anomalous, enabling the timely initiation of mitigating ac-
tions. Additionally, the overview reveals systematic spatial changes in ground behavior over the
site. The collection of applications is designed to be used by a site manager and does not need
specialist knowledge of data analysis techniques. The system does, however, enable process and
analysis experts to perform in-depth analysis of the data for a site or a specific point.

Figure 4: Geo referenced simultaneous presentation of two KPIs - one as color, one as symbol size
for each point (column) of a construction site. Note: in this example, a series of planned but not
executed points can be seen at the top (white circles). Furthermore, a systematic variation of the
KPI (color) can be seen from the top left towards the bottom right; this reveals a systematic change
in underground properties. The panels on the right permit the definition of filters for the KPIs, with
the aim of detecting and marking outlier points. Additionally, points manually flagged as being
exceptional can be indicated.



The hierarchical concept starts with the real-time machine data, which is segmented into the
penetration and compaction phases using a rule-based approach. Then a series of KPIs is calculated
for each point and used to form an in-memory hierarchical index into the point data files. This index
provides the data required to produce both spatial and heat-map overviews for a site.

Figure 5: Heat map representation of selected KPIs for all points of the construction site (same
data as in Fig. 4 ); sorted according to when they were executed. The non executed points can be
seen on the right of this table. The heat map supports the visual detection of patterns over multiple
KPIs.

A geo-referenced view of the points on a specific site is shown in Fig. 4. With this view, two
out of a large collection of KPIs can be viewed simultaneously; one represented by the color and
the other by the size of the point symbol. The KPIs to be viewed are dynamically selectable,
using simple drop-down menus. An automatic detection of anomalous points is provided based
on statistical definitions for an outlier; however, it is also possible to filter the KPIs to investigate
other structure within the site data. In this view both outliers and flagged points can be marked
automatically. Furthermore, a point can be selected and an additional application started to view
the real-time machine data associated with that point, see Fig. 6 for an example.

A heat-map view of the same site as in Fig. 4 is shown in Fig. 5. This view provides an overview
of all points on the site for multiple selectable KPIs. Correlations between KPIs and clustering of
behavior are revealed, sorted either by the time when the point was executed or according to the
point name. For example, see the clustering in the KPI idle time due to vibrator over-temperature.

A time-series of the machine data for a specific point is shown in Fig. 6; here a subset of
channels has been selected for visualization. Additionally, the rule-based, automatic segmentation



Figure 6: Visualization of a selected sub set of the real time machine data; here for point 190. The
real time machine data for each point in Fig. 4 and Fig. 5 are available in the system. They are
directly linked to support the visualization of detailed machine behavior. The data is automatically
segmented to indicate the penetration and compaction phases. This example shows a pre-drilled
point, identified by the fact that the vibrator enters the ground without significant pull down force
while the electric motor was even turned off. Anomalous points can be flagged and commented in
this view.

into penetration and compaction phases can be seen in this figure. Specific characteristics of a
point can be identified in the real-time machine data. In the case shown here this is a pre-drilled
point in the first 4 m; identifiable by the fact that the vibrator enters to a significant depth without
any significant pull-down force while the electric motor is even turned off.

Separate applications are provided to enable parameterization of the metadata for a site, the
segmentation parameters and the KPIs. The structured management of multiple types of metadata
proved to be a very important issue in the implementation of the framework. It is essential if the
framework is to be generic and extendable with minimal resources.



4 Implementation Strategy

The implementation is based on the data, computation and visualization paradigm; whereby, it is
data-centric. This means the real-time machine data is ingested into a pool of binary files. The
computations analyze the real-time data to provide segmentation and KPI values for each point.
These results are stored with the real-time data or in a point index, whichever is appropriate. The
visualization applications can trigger computations; however, they access results exclusively via
the data index or from the implemented data services. This ensures a consistent access to data
and makes the implementation of multiple views simpler. It is akin to a publish and subscribe
mechanism; whereby, one visualization may trigger a computation and the data services publish
the results, so that they are simultaneously available for all views.

An object model has been implemented for the data, which consists of three objects:

1. An object to handle multi-channel time series; here it is called a timetable. For example, the
real-time machine data is maintained in such timetables, as are events relating to the machine
data.

2. A table object to handle tabular data, such as the point index which contains a table of KPIs.

3. A structured type, primarily used to manage metadata.

These objects are serialized to binary files in the Hierarchical Data Format (HDF5). The hier-
archical data format (see [11]) is a set of file formats designed to organize and store large amounts
of scientific data. The format supports the partial reading of data from the binary files on disk
using B-trees. B-trees are a tree data structure suitable for handling large blocks of data; they en-
able search, access, insertion, and deletion of data and are proper for indexing table objects [12].
The use of B-trees to index table objects makes the format faster than SQL when dealing with
time-series data and data summarized in tables. The use of objects to represent the time-series data
permits the addition of functionality via the methods defined for the class. Each data set is stored
with its associated metadata; consequently, when the object is passed to a method, both the data
and metadata are available. Furthermore, the generic concept of events and segments are attached
to the time-series object. This simplifies the handling of the phases and segmentation of the data
for the vibro process. The use of standard objects, independent of specific content, permits the im-
plementation of generic functions, e.g., a heat-map view. The goal is to enable a minimal resource
implementation and extension of applications.

The structural implementation is centered around a data index. This is an in-memory object
containing references to the binary files for each point and a table of KPIs for all points. The
KPIs are organized into groups and members. This is similar to the concept of Google’s Bigtable,
whereby, the data in the table is in column format arranged into families (groups here) and address-
able by name-value pairs. All KPI computations return their results to this index, from where the
visualizations obtain their data and references to binary files. Consequently, additional views can



be implemented with minimal resources, since they only interact with the index, through a defined
structure. The information and references required to populate the drop-down menus are automat-
ically extracted from this index. This avoids the necessity to hard-code the content of the menus;
furthermore, they automatically extend when new results are published in the index. To support
multi-language development, the machine data channels and KPIs are assigned aliases and display
names in the metadata. Consequently, a machine may use local languages to support the operator,
while an automatic mapping to the alias is performed to simplify development of the applications.

5 Case Study

Figure 7: Outliers in the KPI penetration time of the executed points ; the concentration on the left
part of the site

One example for the application of the framework to a test site is shown in the following figures.
A poorer performance was observed for one production shift, with respect to the performance
estimated used to calculate the site. The evaluation of the penetration time of the points, see in
Fig. 7, revealed that the outliers are concentrated on the left part of the site.

Another KPI for the travelled length of the vibrator in the penetration process in Fig. 8 leads
to similar results. Outliers in Fig. 7 are concentrated in the same area of the site as the outliers in
Fig. 8. The travelled length of the vibrator during the penetration phase is high, when the vibrator
has to be pulled back and pushed into the soil again several times as a result of a high soil density.

Comparing the element protocols of a typical point on the test site in Fig. 9 with one of the
outlier-points No. 465 in Fig. 10 shows the longer penetration phase of point 465, as well as
the larger travelled length of the vibrator in the Depth-chart as a result of the modified execution
procedure due to the stiffer soil conditions.



Figure 8: Penetration phase KPI: ratio of traveled length to max. penetration depth of the vibrator
. This is a result for a reciprocating motion being required to penetrate the ground; with this, the
cause for the loss in efficiency as seen in Fig. 7 has been identified.

Figure 9: Element protocol of a standard point on the test site shown in Fig. 7

The automatic analysis of the site data led to the information, that approx. 10% of the executed
points needed abnormal additional time for the penetration process. The outlier points are marked
automatically for the site manager for further, more detailed inspection. The site manager noticed
from a detailed observation of these points, the result of the lower shift performance on this site -
in that case it was an in-situ soil of a higher density - as expected in one area of the site.



Figure 10: Element protocol of an outlier in penetration time of Fig. 7 and a high ratio in travelled
length to max. penetration depth of Fig. 8 (point No. 465). Note: the vibrator need ed to be
extracted during the penetration phase at time 15 15, this is due to encountering soil with an
unexpectedly high stiffness. This is also evidenced in the pull down force and vibrator amperage,
both indicating that a very high stiffness had be en encountered in the soil.

6 Conclusions and Outlook

The toolbox and framework presented in this paper are a significant extension of the current partial
digitalization of the construction site. The fusion of data from different sources into a structured
availability of all real-time machine data for a complete site, has made new analysis approaches
possible. For example, it has been demonstrated that the systematic spatial variation in process
values over a site can be efficiently viewed. The data-centric approach also enables the viewing
of multiple KPIs for all points as a heat-map; providing a good overview of the performance over
the site as a whole. The structured management of data and the required corresponding metadata
enables the extraction of a higher degree of added value from the available data.

The automatic segmentation of the data, together with the computation of a large number of
KPIs, relieves the site manager from arduous tasks; this also avoids the errors often occurring dur-
ing tedious work. Hence, the time dedicated to quality control can either be reduced or spent more
effectively. Correlations between several KPIs can reveal specific characteristics like a change of
sub-soil conditions that might have been overlooked with classical quality control procedures.

Future work will focus on extending the functionality of the system. For example, to imple-
ment automatic operations-recognition, so that human behavior can be separated from sub-surface
properties which can only be observed indirectly. Currently deep learning is being investigated as a
means of learning the implicit structures in the processes reflected in the data, this is facilitated by
the structured interface to the complete data. The combination of classical descriptive statistics for
the KPI, with the results of variational auto-encoders should enable a more complete description



of the process from the data. In particular, it will reduce the number of false positives, i.e., judging
an element as being positive in terms of quality, although it is not; similarly, for false negatives.
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Chapter 6

Summary and Future Work

1 Summary

The methods presented in this thesis summarize the tools commonly used in evidence based change
detection from discrete data. The following methods were developed in this thesis:

1. An algorithm for discontinuity detection of any non-negative integer order. The method
proposed uses double-sided Taylor approximations of data as a measure of the difference
of the left and right derivatives at a point. It bears similarities to the definition of Lipschitz
continuity, where the first derivatives are bound by a constant. The algebraic formulation
using matrix algebra allows for a neat expression of the solution and an easy implementation
of the algorithm in MATLAB .

2. A framework for solving generalized constrained inverse problems, emanating from cyber-
physical systems. It includes the implementation of both pseudo-spectral and finite-difference
method constraints, which allow for solving a very wide array of problems.

3. New algebraic formulations for discretizing problems in optimal control. The method used
avoids the Hamiltonian approach and provide accurate approximations to solutions for nu-
merically and physically stiff systems.

4. Modeling periodic functions without spectral leakage or Gibbs error using the variable pro-
jection method. This method provides highly stable and numerically efficient solutions,
since the non-linear problem needed to be solved is only one dimensional.

5. Consequent use of mathematical methods to extract desired information from large volumes
of industrial data. This shows the interdisciplinary nature of data science in industrial appli-
cations.
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2 Future Work

The following list contains open problems and directions for future work.

1. The discontinuity detection algorithm can be extended to allow for different definitions of
continuity. Discrete data is always discontinuous in the classical mathematical sense. Conse-
quently, new definitions that have significance need to be determined. Initial research results
indicate that there is a great significance in data science for detecting locations in time series
where, e.g. y(t) is discontinuous but y′(t),y′′(t) could be continuous. Such cases are not cov-
ered by the classical Cn continuity definition. An additional open question is, whether data
sets from industrial applications can be found demonstrating these kinds of discontinuities?
If so, these generalizations would become more applicable.

2. There are many methods for approximating data with rational functions, which are quotients
of polynomials. Can the variable projection method be used to do this sensibly? Will it
perform better than current methods?

3. Solving optimal control problems for systems with a proportional-integral-derivative (PID)
controller. The methods presented here can be used to determine the optimal coefficients
kp,ki,kd for the proportional, integral and derivative terms respectively. This is done by
introducing more regularization terms in the cost function which needs to be minimized,
also called Tikhonov regularization. The issue currently is, that there are three regularization
terms (one for each coefficient) which need to be adjusted accordingly, to determine the
optimal coefficients, and this translates into a multi-dimensional problem which requires a
lot of computational power to be solved in this manner.

4. Possibly the theoretically most demanding proposal for future research is to extend the work
presented in the paper ”A Computational Framework for Generalized Constrained Inverse
Problems” to deal with discrete calculus of variations in combination with machine learn-
ing. Some mechanical problems have been addressed and solved in this manner. Physics
Informed Autoencoders have been implemented in collaboration with my colleagues at the
University of Leoben and the Know-Center Graz. This opens the door to the current hot
research topic of hybrid learning.




