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Abstract
This Master thesis is the result of a cooperative project between the Chair of Mechanics at the
University of Leoben and HOERBIGER Wien GmbH. The aim of this thesis is to investigate the
mechanical behaviour of polymer-based packing rings in industrial reciprocating piston com-
pressors by means of the finite element (FE) method. Polymers show some specific features in
their mechanical behaviour, among others that they tend to creep already at room temperature.

The FE model is generated automatically using a Python script. To validate the modelling
assumptions of the FE model, the FE results are compared with the analytical solution from
plate theory (Kirchhoff and Mindlin-Reissner) under the assumption of linear-elastic material
behaviour. The comparison with the analytical solution shows that the deformations due to
shear stress outweigh the deformations due to bending.

The parameters of a viscoelastic/viscoplastic material model are calibrated from the mate-
rial data provided by HOERBIGER Wien GmbH. The material model takes into account the
time dependence of the mechanical material behaviour as well as the temperature and load
dependence.

Furthermore, the influence of the different system parameters (time, pressure difference, tem-
perature, friction, and pressure gap width) on the creep behaviour of the packing ring is
investigated. The influence of the geometry parameters is also studied. The results show
that temperature, pressure difference and pressure gap width have the strongest impact on
the creep behaviour. The results also show that the axial ring thickness is the only relevant
geometrical parameter.

Using the FE analysis and the calibrated material model, the behaviour of the packing ring
is simulated over the operating time. With this simulation data, an interpolation function for
the displacement depending on pressure and pressure gap width is proposed. Using this inter-
polation function and a defined deformation limit value, the permissible pressure gap widths
are determined.

With the help of automatically generated three-dimensional FE models, the influence of pres-
sure balancing elements (pressure balancing bores) on the creep behaviour of the material
is investigated. In a parameter study, the diameter and position of the pressure balancing
bores are varied. Furthermore, the influence of asymmetry of the pressure gap on the creep
behaviour of the material is investigated.
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Zusammenfassung
Die vorliegende Masterarbeit ist das Ergebnis einer Kooperation des Lehrstuhls für Mechanik
der Montanuniversität Leoben und der HOERBIGER Wien GmbH. Ziel dieser Arbeit ist die
Untersuchung des mechanischen Verhaltens von kunststoffbasierten Packungsringen in indus-
triellen Kolbenkompressoren mit Hilfe der Finite Elemente (FE) Methode. Polymere weisen
einige Besonderheiten in ihrem mechanischen Verhalten auf, unter anderem dass sie bereits
bei Raumtemperatur zum Kriechen neigen.

Das FE-Modell wird automatisiert mithilfe eines Python Skriptes generiert. Zur Validierung
der Modellierungsannahmen des FE Modells werden die FE-Ergebnisse unter Voraussetzung
von linear-elastischem Materialverhaltens mit der analytischen Lösung der Plattentheorie ver-
glichen (Kirchhoff und Mindlin-Reissner). Der Vergleich mit der analytischen Lösung zeigt,
dass die Verformungen zufolge der Schubbeanspruchung gegenüber den Verformungen zufolge
der Biegung überwiegt.

Aus den von HOERBIGER Wien GmbH. zur Verfügung gestellten Materialdaten werden die
Parameter eines viskoelastisch/viskoplastischen Materialmodells kalibriert. Das Materialmod-
ell berücksichtigt neben der Zeitabhängigkeit des mechanischen Materialverhaltens auch die
Temperatur- sowie die Lastabhängigkeit.

Weiters wird der Einfluss der unterschiedlichen Systemparameter (Zeit, Druckdifferenz, Tem-
peratur, Reibung, und Druckspaltweite) sowie der Geometrieparameter auf das Kriechverhalten
des Packungsringes untersucht. Die Ergebnisse zeigen, dass Temperatur, Druckdifferenz und
Druckspaltweite das Kriechverhalten am stärksten beeinflussen. Die Ergebnisse zeigen auch,
dass die axiale Ringdicke der einzig relevante Geometrieparameter ist.

Mithilfe der Finite Elemente Methode und dem kalibrierten Materialmodell wird das Verhalten
des Packungsringes über die Betriebsdauer simuliert. Mit diesen Simulationsdaten wird die
Verschiebung als Interpolationsfunktion von Druck und Druckspaltweite bestimmt. Mithilfe
der Interpolationsfunktion und eines definierten Verformungsgrenzwertes werden die zulässigen
Druckspaltweiten bestimmt.

Mithilfe von automatisiert generierten dreidimensionalen FE Modellen wird der Einfluss von
Druckausgleichselementen (Druckausgleichsbohrungen) auf das Kriechverhalten des Materials
untersucht. In einer Parameterstudie werden die Durchmesser und deren Positionen variiert.
Weiters wird der Einfluss von Asymmetrie des Druckspaltes auf das Kriechverhalten des Ma-
terials untersucht.
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Personal motivation
After completing my first Master’s thesis on the topic of "FE-based design of cylinder rings of
reciprocating piston compressors", I became highly motivated to dig deeper into the simulation
of plastic components of compressors and to thus deepen my knowledge. The focus in my
second Master’s thesis is no longer on the analysis of a classical fatigue problem as in the first
Master’s thesis, but on a creep problem. Consequently, the packing rings are to be dimensioned
for maximum displacement values rather than a critical stress value.

Material data
Material data required for the calculations were not provided in this Master’s thesis at the
request of the company partner.
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1.1 Nomenclature
In this section, all symbols which can be found in further chapters and sections of this thesis,
are listed in the order they appear.

1.1.1 Thermodynamic essentials of piston compressors
p...pressure [Pa]
V ...volume [m3]
T ...temperature [K]
S...entropy [J/K]
Vc...compression volume [m3]
Vh...stroke volume [m3]
κ...isentropic exponent [-]
W ...volume change work [J]

1.1.2 Continuum mechanics of large strains
u...displacement vector [m]
r...position vector for a material point in current configuration [m]
R...position vector for a material point in reference configuration [m]
F ...deformation gradient [-]
I...identity matrix [-]
R...rotational tensor [-]
U ...right stretch tensor [-]
V ...left stretch tensor [-]
CR...right Cauchy-Green tensor [-]
CL...left Cauchy-Green tensor [-]
E∗...Green-Lagrange strain tensor [-]
σ...Cauchy stress tensor [MPa]
σn...Stress vector [MPa]
P ...first Piola-Kirchhoff stress tensor [MPa]
F ...external force vector [N]
k...volume force density in the current configuration [N/m3]
ρ...mass density in the current configuration [kg/m3]
ü...acceleration vector in the current configuration [m/s2]
ρo...mass density in the reference configuration [kg/m3]
Ü ...acceleration vector in the reference configuration [m/s2]
K...volume force density in the reference configuration [N/m3]
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1.1.3 Material models for thermoplastic polymers
σij ... Cauchy stress tensor [MPa]
εkl...linearised strain tensor [-]
Eijkl... elasticity tensor [MPa]
αkl...thermal expansion tensor [1/K]
∆T (r, t)...change in temperature field [K]
YS ...yield surface [-]
J2...second invariant of the stress deviator [MPa2]
I1...first invariant of the stress tensor [MPa]
α,d...material parameters of the Drucker-Prager model
σy...yield stress [MPa]
A,B,C...parameters of the Johnson-Cook model
εpl...plastic strain [-]
n...hardening exponent [-]
ε̇pl...plastic strain rate [1/s]
ε̇0...reference strain rate [1/s]
Θ...temperature coefficient [-]
TG...transition temperature [K]
T ...temperature [K]
Tm...melting temperature
ε̇...strain rate [1/s]
A,m,n...material parameters of the Norton Bailey law
σ... stress [MPa]
t...time [s]
K...bulk modulus [MPa]
ε̇(vol)...volumetric strain rate [1/s]
δij ...Kronecker delta [-]
G...shear modulus [MPa]
ε̇

(dev)
ij ...deviatoric strain rate tensor [1/s]

τ ...relaxation time [s]

1.1.4 Plate theory according to Kirchhoff
w...bending displacement [mm]
∆...Laplace operator [1/m2]
q0...surface load [MPa]
K...plate stiffness []
p...surface pressure [MPa]
r...radius [mm]
C1...C4...integration constants
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1.1.5 Criterion for maximum pressure gap
astat...static degree of utilisation [-]
σV max...maximum equivalent stress [MPa]
umax...maximum displacement [mm]
ε̇pl...equivalent plastic strain rate [1/s]
ε̇pl

ij ...plastic strain rate tensor [1/s]
εpl...plastic equivalent strain [-]

1.1.6 Dimensioning of the pressure gap
u(∆p,g)...displacement into the pressure gap after ∆t = 28.8 ·106s [mm]
∆p...pressure difference [bar]
g...pressure gap width [mm]
C1,m,n...parameters of the interpolation function
K0K1,K2,m,n,α,β...parameters of the interpolation function
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1.2 Compressors
Compressed gas is needed in many applications, whether in technical or private use. The
compressed gas is produced by compressors. Their main task is to compress a gaseous medium
according to the laws of thermodynamics. Rotary compressors are designed for large volume
flows but small pressure differences, while piston compressors are designed for large pressure
differences but smaller volume flows [19].

1.2.1 Piston compressors
Piston compressors are used in a wide range of applications. Smaller designs of piston com-
pressors are used in the private sector whereas for industrial applications larger designs are
commonly encountered, e.g. to ensure the supply of compressed gas. Figure 1.1 shows the
basic structure of a piston compressor. Its most important components are the piston, the
piston rod, the cylinder rings and the rider rings. The working space is defined by the cylinder
and the piston. [19]

Figure 1.1: Double acting piston compressor [19]

During a working cycle, the following steps take place in the working chamber.
1) Gas intake (Suction stroke):
Here the piston moves towards the bottom dead centre. This creates a low pressure in the
working chamber, which leads to gas being sucked in. Then the inlet valve closes.
2) Compressing the gas:
The piston moves in the direction of top dead centre. The sucked gas is compressed. This
leads not only to an increase in pressure but also to an increase in temperature.
3) Pushing out the compressed gas:
Before reaching top dead centre, the exhaust valve is opened. The compressed gas is pushed
out of the working chamber by the piston.
4.) Re-expansion:
This creates a low pressure in the working chamber.
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1.2.2 Thermodynamic essentials of a piston compressor
The individual working steps of the reciprocating compressor are idealised by using the changes
of states from classical thermodynamics. Figure 1.2 shows the idealised cycle of a piston
compressor, where VH is the displacement of the compressor and VC is the compression
volume.

Figure 1.2: Idealised thermodynamic cycle for a piston compressor, a.) p-V-diagram, b.) T-
S-diagram

The intake of fresh gas is idealised by an isobaric process. Here, the volume of the working
chamber increases due to the movement of the piston in the direction of bottom dead centre
(1→ 2). The ejection process from the work chamber is also modelled as an isobaric process
(3 → 4). For the isobaric change of state applies:

V

T
= const. (1.1)

where p is the pressure in the system and V is the volume of the system. This is followed by
an isentropic compression of the sucked air (2 → 3). The re-expansion stroke is also modelled
as an isentropic change of state(4 → 1). For the isentropic change of state applies:

pV κ = const. (1.2)

where κ is the isentropic exponent. The total work done during a cycle is defined as follows.

W =
∮

pdV (1.3)

In contrast to combustion engines, more work is consumed by the system than is delivered,
since mechanical work needs to be added to the system in order to take the working medium
to a higher pressure level.

Chair of Mechanics

Franz-Josef-Str. 18/III, 8700 Leoben
mechanik@unileoben.ac.at



©Marcel Ruetz, 01.03.2023 7

1.2.3 Kinematics of double acting piston compressors
In piston compressors, motion is transmitted from the crankshaft using a thrust crank mech-
anism. The kinematics of the crank mechanism follows from the geometric configuration. A
schematic sketch of the crank mechanism of the double-acting piston compressor is shown in
Figure 1.3.

Figure 1.3: Schematic of the crank mechanism of a double-acting compressor

Figure 1.4: Kinematics of the crank drive for r
l = 0.5. a) Normalised displacement of the

piston, b) Normalised velocity of the piston, c) Normalised acceleration of the piston rod.
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Figure 1.4 shows the normalised curves of the piston rod movement, as well as the speed
of the piston rod and the acceleration for the given ratio of the crank length to the push
rod length. The shape of the piston rod movement always corresponds to a sine or cosine
function, independent of the specific r/l ratio. The normalised course of the acceleration
function changes significantly depending on the specific r/l ratio. This was a brief overview
of the design and operation of compressors. More detailed information regarding compressors
can be found in [?].

1.2.4 Packing rings
This Master’s thesis focuses on the packing rings. The packing rings have the task of sealing
the crank end side against atmospheric pressure. This is important for effective operation of
the compressor. The packing rings are loaded by bending as well as shear due to the pressure
difference at the gap and by compression due to the compressive stress. If the load is high
enough, the material creeps into the gap between piston rod and packing housing. Further-
more, there is a tribological load at the packing ring-piston rod contact. This is characterised
by a contact pressure and a relative movement of the components. This leads to material
abrasion and wear in general. Figure 1.5 shows the different packing rings manufactured by
HOERBIGER Wien GmbH.

Figure 1.5: Typical designs of packing rings [8]
a) 3 piece radial cut ring, b) 3 piece tangential cut ring with wear stop, c) 3 piece tangential
to rod cut ring without wear stop, d) 6 piece tangential cut ring ("bridge"), e) 4 piece ring
design, f) balanced cap design (BCD) ring (f1 shows the pressure side, f2 the sealing side)

Figure 1.6 shows a sectional view of the pressure packing.
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Figure 1.6: Cut view through a pressure packing [18]

1.3 State of the art packing rings
Although packing rings have already been used in machines for a long time, the design is still
strongly reliant on experimental data and empirically determined formulas. The reason for this
is the complex local stress state inside the ring, which is not analytically describable, as well
as the complex material behaviour. However, the use of powerful computers in combination
with the use of numerical methods such as the finite element analysis (FEA) allow detailed
predictions about the behaviour of the packing rings in operation.

Scientific works that have already dealt with packing rings. Kaufmann [11], [12] deals in
detail with the wear of the packing rings. Humpel [10] investigated the influence of material,
processing and test parameters on the leakage of polymer-based sealing materials for recipro-
cating piston compressors. Radcliffe [18] deals with materials for the use of packing rings in
compressors. [22] investigated the temperature distribution in packing rings of reciprocating
compressors. In [23], the pressure distribution and the heating due to friction in packing rings
are investigated. Although there are many other scientific papers dealing with the tribological
properties of the packing rings, the material of the packing rings and the temperature devel-
opment within the packing rings, there are hardly any papers dealing with the design of the
pressure gap.

The central research questions of this Master’s thesis are the determination of the maxi-
mum possible pressure gap width as well as the determination of the influence of pressure
balancing elements. Furthermore, the influence of the geometry parameters as well as other
system parameters are investigated in more detail.
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2.1 Continuum mechanics of large deformations

2.1.1 Large strain theory
Large strains and displacements occur during the creep of the packing ring in operation time.
Thus, regardless of the material behaviour, the linearised strain-displacement relationships are
no longer valid. It should be noted, that for these strain and displacement levels the large
strain theory should be used. Many authors, like Bergstroem [6] recommend the large strain
theory for strain magnitudes larger than 1%.

Lagrangian and Eulerian description

When considering the kinematics of the continuum, a distinction is made between two modes
of description. With the description after Lagrange the temporal change of the material prop-
erties of a defined material point is considered. The reference configuration is considered as
the configuration at time t = 0. This approach is common in solid mechanics.

In the description according to Euler the current configuration is considered as the refer-
ence configuration. The Eulerian description method is common in fluid mechanics.

Figure 2.1 shows a deformable continuum in the reference and current configurations. The
reference configuration is at time t =0 and the current configuration at time t > 0s. The ref-
erence configuration represents the undeformed continuum, whereas the current configuration
represents the deformed continuum.

Figure 2.1: Kinematics of a solid continuum in the reference coordinate system and the current
coordinate system
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Deformation gradient

The displacement vector for the current configuration is calculated according to equation 2.1

u = r(R)−R (2.1)

where u is the displacement vector, r(R) = [x,y,z] is the position vector of the considered
material point in the current configuration (deformed position) and R = [ξ,η,ζ] is the position
vector of the considered material point in the reference configuration (initial position). The
formation of the partial derivatives after the reference configuration provides the deformation
gradient F .

F = ∇r =


∂x
∂ξ

∂x
∂η

∂x
∂ζ

∂y
∂ξ

∂y
∂η

∂y
∂ζ

∂z
∂ξ

∂z
∂η

∂z
∂ζ

 (2.2)

The deformation gradient is an important quantity in continuum mechanics for assessing
the deformation of the continuum.The deformation gradient does not necessarily have to be
symmetrical. It allows the transformation from the reference configuration to the current
configuration, as equation 2.3 shows.

dr = FdR (2.3)

The deformation gradient therefore corresponds to the Jacobian matrix. For the reverse
transformation from the current configuration to the reference configuration, the inverse of
the deformation gradient must be applied.

dR = F −1dr (2.4)

According to the rules of matrix calculus, the following must also apply

F F −1 = I (2.5)

where I is the identity matrix.The determinant of the deformation gradient is a measure of
the volume change during a transformation. In the case that F is not a function of position,
the deformation is homogeneous. If the deformation depends on the position (i.e. F (R)), it is
inhomogeneous. In the case that det(F ) = 1 the deformation is isochoric, i.e. it occurs under
constant volume. Any large deformation can be decomposed into a rotational and an stretch
component(see equation 2.6).

F = R U (2.6)
where R is the rotational tensor and U is the right stretch tensor. U is positively defined and
is symmetric, R is volume-preserving and orthogonal. Alternatively, the deformation gradient
can also be decompoesed according to equation 2.7, where

F = V R (2.7)

V is the left stretch tensor. Just like the right stretch tensor this tensor is symmetric. For the
definition of a strain tensor either the right or the left stretch tensor, respectively, is relevant.
The rotation tensor, by contrast, does not contribute to a straining of the material. In fact, it
cancels out when formulating the right or the left Cauchy-Green tensor, respectively [6].
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CR = F T F (2.8)

where CR is the right Cauchy-Green tensor. Considering the orthogonality of the rotation
tensor (RT R) it is very simple to show with equation 2.7 that,

CR = UT U = U2 (2.9)

By analogy, the left Cauchy-Green [6] tensor follows.

CL = FF T (2.10)

where CL is the left Cauchy-Green tensor. Again considering the orthogonality of the rotation
tensor (RRT ) and equation 2.7 yields

CL = V V T = V 2 (2.11)

Strain tensors

Numerous strain tensors exist in the literature. In the Lagrangian approach, the strain tensors
are typically formed with the right stretch tensor whereas in the Eulerian approach they are
formed with the left stretch tensor. In the context of this Master’s thesis, only the Green-
Lagrange strain tensor is presented because FE programmes typically use this definition. It is
defined as follows.

E∗ = 1
2
[
U2 − I

]
(2.12)

The strain tensor entries are directly calculated from the deformation gradient using equation
2.8 and equation 2.11.

E∗ = 1
2
[
F T F − I

]
(2.13)

For reasons of clarity the index notation is now used.

E∗
kl = 1

2

[
∂rj

∂Rk

∂rj

∂Rl
− δkl

]
(2.14)

where δkl is the Kronecker delta, which represents the unit tensor.

δkl =

1, if k = l

0, if k ̸= l
(2.15)

Considering equation 2.1 and the tensor calculation rules, the expression for describing the
entries of the strain tensor using the displacements follows

E∗
kl = 1

2

(
∂uk

∂Rl
+ ∂ul

∂Rk
+ ∂um

∂Rk

∂um

∂Rl

)
(2.16)
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2.1.2 Stress state
Stresses are induced in the material as a result of external loads. The stress state in each point
of the material is characterised by the stress tensor. Like the displacement state, the stress
state can be formulated both in the reference configuration and in the current configuration.

Stress state in the current configuration

The stress state in the current configuration is characterised by the symmetric second order
Cauchy stress tensor. The symmetry results from the moment equilibrium for an infinitesimal
volume element leading to the well-known duality of the shear stresses.

σ =

σx τxy τxz

τyx σy τyz

τzx τzy σz

 (2.17)

Cauchy’s law (equation 2.18) describes the relationship between the stress tensor σ and the
traction vector σn acting on an arbitrary section plane characterised by the normal vector n.

σn = σn (2.18)

Stress state in the reference configuration

Analogous to strains, the stresses can also be described in the reference configuration. The
corresponding tensor P is called the first Piola Kirchhoff stress tensor. As with the strain state,
a relationship between the stress formulation in the reference configuration and the current
configuration is established via the deformation gradient (equation 2.19).

P = det
(
F
)

σF −T (2.19)
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2.1.3 Conservation of linear momentum
The force is defined as the time derivative of the continuum’s linear momentum F = dp

dt . For
a generally loaded deformable body, the force vector F consists of the sum of the external
loads and the volume force.

F =
∮

A
σndA+

∫
V

kdV (2.20)

where, σn is the traction vector, n is the normal vector characterising the surface and k is
the volume force density. Using Cauchy’s law (equation 2.18), the following expression 2.21
follows

F =
∮

A
σndA+

∫
V

kdV (2.21)

Using the divergence theorem 2.22, surface integrals allow themselves to be converted into
volume integrals. The divergence theorem is defined as follows, where q is a tensorial quantity.

∮
A

qndA =
∫

V
∇· qdV (2.22)

As a consequence of the divergence theorem only external forces are affecting the motion of
the centre-of-mass. Applied to equation 2.23, conservation of linear momentum as an integral
equation provides

F =
∫

V
∇·σdV +

∫
V

kdV (2.23)

Using Newton’s second law yields∫
V

ρüdV =
∫

V
∇·σdV +

∫
V

kdV (2.24)

where ρ is the mass density in the current configuration and ü is the acceleration of a mass
point. Differentiating with respect to the volume delivers

ρü = ∇·σ +k (2.25)

By analogy, the conservation of linear momentum can be derived in the reference configuration
as

ρ0Ü = ∇·P +K (2.26)
where, ρ0 is the density in the reference configuration and K is the volume force density in
the reference configuration.
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2.2 Material models for thermoplastic polymers
The real deformation behaviour of polymer materials includes a spontaneous elastic, a time-
dependent viscoelastic and a time-dependent viscoplastic component, depending on the exist-
ing stress state and the load level. A large number of material models exist in the literature.
Some of these material models are well suited for describing the behaviour of polymeric mate-
rials. The choice of a suitable material model depends on the loading rate and the magnitude
of the loading. According to table 2.1, the following material models are recommended.

Table 2.1: Material models for thermoplastic materials according to Strommel [20]
Time period of loading load profile Material model

t < 1s shock, monotoneously rising elastic-plastic, viscoelastic
1s<t<1h, "short therm" constant, monotonously rising elastic, elastic-plastic

1h < t, "long term" constant, monotonously rising elastic, viscoelastic, creep
periodic cyclic, osciliating viscoelastic

2.2.1 Elasticity
A purely elastic constitutive law is in principle not well suited to describe the mechanical
behaviour of polymers, because the time dependence of the material properties is not taken into
account. However, it already allows first estimations of the influence of various parameters, e.g.
the influence of the load or geometry parameters on the maximum stresses and displacements.
The elastic material law is generally described by the generalized Hooke’s law

σij = Cijkl (εkl −αkl∆T ) (2.27)

where σij is the stress tensor, Cijkl is the fourth-order elasticity tensor, εkl is the strain tensor,
αij is the thermal expansion tensor and ∆T represents the difference of the temperature field
inside the continuum relative to a reference temperature. The entries of the elasticity tensor
do not necessarily have to be constant in space and time.
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2.2.2 J2 plasticity
Under load, ductile materials initially behave elastically. If the load is increased further, the yield
condition is reached at some point. From this point on, the material is plastically deformed.
When the yield strength of the material is reached, hardening effects occur. If the material is
unloaded a permanent deformation occurs. According to Mises, the yield condition is reached
when the second invariant of the stress deviator J2 reaches a critical value. Besides the Mises
yield condition, other yield conditions exist (Tresca, Drucker-Prager and Mohr-Colomb). These
flow conditions describe a surface in the stress space. In the case of the Mises criterion, it is
a cylinder along the hydrostatic axis. Elastic material behaviour is present for all states within
the yield surface YS . Yielding begins when the yield surface is reached [2].

dYS = ∂YS

∂σij
: dσij + ∂YS

∂εij
: dεij (2.28)

Isotropic hardening is characterised by the fact that the yield surface expands uniformly in the
stress space. The origin of the yield surface remains unchanged and the yield function there-
fore remains isotropic even after the onset of plastic deformation [15]. Figure 2.2 a) shows
the uniform expansion of the yield surface in principal stress space during isotropic hardening.
The dashed curve shows the yield surface in the initial state. The solid curve shows the yield
surface after exceeding the yield strength. Isotropic hardening is appropriate for predicting the
polymer material’s answer to monotonic loads.

Kinematic hardening is characterised by a pure translational movement of the yield surface
in the stress space. This translation causes the originally isotropic yield surface to become
anisotropic [15]. Figure 2.2 b) shows the translation in principal stress space of the yield
surface during kinematic hardening. For cyclic loads the kinematic hardening plasticity model
is recommended for polymer based materials. Like other plasticity models this model under-
estimates the magnitude of the recovery during the unloading phase. Kinematic hardening
plasticity yields for some polymers results that are not as accurate as the results of isotropic
hardening plasticity [6].

Figure 2.2: Hardening effects, Yield surface in the plane stress space for a) isotropic hardening,
b) kinematic hardening.
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2.2.3 Drucker-Prager plasticity
Polymeric materials exhibit a tension-compression asymmetry of the yield strength. The
Drucker-Prager criterion takes into account that the compressive yield strength is higher than
the tensile yield strength. Figure 2.3 shows the yield surface of the conical Drucker-Prager
criterion. Figure 2.3 shows that the material begins to yield at higher stress levels in the
compressive stress range than in the tensile range. The hydrostatic pressure is plotted on the
abscissa axis. The flow criterion is shown along the hydrostatic axis. This representation is
chosen because the Drucker-Prager criterion describes the dependence of the yield strength
on the hydrostatic stress component. The yield stress is plotted on the ordinate axis.

Figure 2.3: Yield surface of the Drucker-Prager criterion in the conical form

The yield surface YS is described by the following equation 2.29, where

YS =
√

3J2 − 1
3I1 tan(α)−d = 0 (2.29)

J2 is the second invariant of the deviatoric stress state, I1 is the first invariant of the stress
state. α and d are the material parameters of the Drucker-Prager model. In Abaqus, the
Drucker-Prager criterion has the ability to be coupled with a creep law, allowing viscoplastic
material behaviour to be modelled. More detailed information is available in e.g. [1].

Although the Drucker-Prager criterion describes the influence of the hydrostatic pressure on
the yield strength of a material, it is possible to calibrate the parameters of the model using
experimental data from one-dimensional tests. The hydrostatic pressure is calculated from the
uniaxial stress state.
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2.2.4 Johnson-Cook plasticity
For some materials the yield strength might depend on strain rates. For metals this influence
is typically low, except for very high strain rates and at elevated temperatures. For polymeric
materials, the strain rate dependency already occurs at low strain rates. The Johnson Cook
model provides a description of the hardening and strain rate dependence of the yield strength
of the material (see equation 2.31) [6].

σy =
[
A+Bεn

pl

][
1+C ln

(
ε̇pl

ε̇0

)]
(2.30)

where, A, B and C are the parameters of the Johnson-Cook model, εpl is the equivalent plastic
strain, n is the hardening exponent, ε̇pl is the plastic strain rate and ε̇0 is the reference strain
rate. The first term of this equation describes the hardening of the material with increasing
plastic deformation fraction. The second term describes the influence of the strain rate on the
yield stress of the material.

The Johnson-Cook model also allows to consider the influence of temperature on the yield
strength of the material.

σy =
[
A+Bεn

pl

][
1+C ln

(
ε̇pl

ε̇0

)]
(1 −Θ) (2.31)

where Θ is the temperature coefficient.

Θ =


0, if T < Tg
T −TG

Tm−TG
, if TG ≤ T ≤ Tm

1 if Tm < T

(2.32)

where T is the temperature, TG is the transition temperature and Tm is the melting tem-
perature. The transition temperature is the temperature at which the yield strength starts
to drop. Below the transition temperature, the yield stress according to equation 2.31 and
equation 2.32 is independent of temperature. When the melting temperature is reached, the
yield stress of the material drops to σy = 0, so that deviatoric stress components are no longer
transmitted.

Chair of Mechanics

Franz-Josef-Str. 18/III, 8700 Leoben
mechanik@unileoben.ac.at



©Marcel Ruetz, 01.03.2023 20

2.2.5 Creep models
Creep models describe the time-dependent material behaviour of materials. In contrast to the
viscoelastic material model, creep laws also allow the description of the material behaviour
when the yield strength is exceeded (viscoplasticity). Creep models allow a good approximation
of the material behaviour under load. However, they fail in the description of the unloading
process. For this reason, they are not suitable for cyclic loads. Usually, the Norton-Bailey
approach is used, where the creep rate is formulated as a power law 2.33.

ε̇ = Aσmtn (2.33)

where, ε̇ is the creep strain rate, A, m and n are material parameters. σ is the mechanical
stress and t is the time. Integrating over time gives the creep strain as a function of time.

ε = A

n+1σmtn+1 (2.34)

The determination scheme of material parameters is shown in Figure 2.4. The creep parameters
are calibrated by means of experimentally determined creep curves, i.e. creep strain versus
time. In a double logarithmic representation these date can well be approximated by straight
lines whose slopes as well as intercepts can be determined via regression.

Figure 2.4: Principle of determining the parameters of the creep model
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2.2.6 Viscoelasticity
Viscoelasticity describes the time dependent elastic behaviour of polymers. Viscoelasticity is
only valid as long as the yield strength of the material is not reached. The constitutive law
for linear viscoelasticity is shown in the equation 2.35 below.

σij(t) =
∫ t

0

[
K(t− τ)ε̇(vol)δij +2G(t− τ)ε̇(dev)

ij

]
dτ (2.35)

where K(t − τ) is the time dependent bulk modulus, ε̇(vol) is the volumetric strain rate, δij

is the Kronecker delta, G(t − τ) is the shear modulus and ε̇
(dev)
ij is the deviatoric strain rate

tensor. The relaxation time spectrum describes the change of the bulk modulus as well as
the shear modulus for the entire time range. However, the relaxation time spectrum is usually
unknown. Therefore, the continuous spectrum is replaced by a discrete series, the so-called
Prony series. The problem with using the Prony series is that the creep of the material over
time is only predictable up to the time range for which measured values are available.

K(t) =
n∑

i=1
Kie

− t
τi (2.36)

G(t) =
n∑

i=1
Gie

− t
τi (2.37)

By applying temperature shift approaches, the temperature dependence of the material be-
haviour is also taken into account. A large variety of temperature shift functions exist in the
literature. For more detailed information about the temperature shift approaches, please refer
to [6], [20].

The measurement data in figure 4.46 are determined in the creep test. An uniaxial ten-
sile stress state is present in the test specimen. The packing ring is in a multiaxial stress state
with a high hydrostatic stress component. Detailed information on the influence of hydro-
static pressure can be found in [16]. Further information on the (non-linear) creep behaviour
of polymeric materials can be found in [13] and [3].
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3.1 Mechanical model of the packing ring
Due to the symmetry in geometry and loading of the packing ring, an axi-symmetric model
is sufficient (see [?]). Because of the high contrast in the elastic constants between the steel
parts (rod and packing housing) and the polymer packing ring, it is possible to model the
piston rod and the packing housing as rigid bodies, whereas the packing ring is modelled as
deformable body. This simplification reduces the computation time but also guarantees a high
degree of accuracy (see [?]). Figure 3.1 shows a sketch of the axisymmetric model, a cut is
made through the packing ring in the r-z-plane. p1 and p2 are the pressures from the working
chamber- and atmospheric-side acting on the packing ring. g is the gap between the piston
rod and the packing house. RRT is the radial ring thickness, di is the inner radius of the
packing ring and b is the axial tickness of the packing ring. µ is the friction coefficient between
packing ring and piston rod or packing housing. urod denotes the oscillating displacement of
the piston rod during operation.

Figure 3.1: Schematic of the axisymmetric model with the relevant model parameters

3.1.1 3D-model of the packing ring
A fully axisymmetric model is no longer admissible if the influence of pressure compensation
elements (grooves or bores) and the influence of asymmetry in the pressure gap need to be
taken into account. For this reason, a 3D model of the packing ring has to be provided for
these analyses. However, some symmetries still apply and can thus be taken advantage of.
This means it is sufficient to model only a sector of the entire packing rather than the full
360◦. Figure 3.2 and Figure 3.3 show the modelled part of the packing ring with the pressure
balancing bores. The geometry definition of the model requires additional parameters, i.e.,
the diameters of the pressure compensation bores, the distance between the bores and their
distance from the edges. This 3D model is also used to determine the influence from the
asymmetry of the gap. The asymmetry is created by a displacement of the packing housing
in radial direction.
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Figure 3.2: 3D-model of the packing ring with the pressure balance holes

Figure 3.3: 3D-model of the packing ring with the pressure balance holes as wire-frame model

Chair of Mechanics

Franz-Josef-Str. 18/III, 8700 Leoben
mechanik@unileoben.ac.at



©Marcel Ruetz, 01.03.2023 25

3.1.2 Load definition
The loads due to the acting mechanical pressures are modelled as pressures. After consultation
with HOERBIGER Wien GmbH about the temporal development of the acting pressures, they
are considered to be constant. In the pack, the suction pressure is sealed. The last packing
rings no longer notice the pressure fluctuations, so constant pressure is expected. Here, the
pressure is applied in the load application step and then kept constant. The load is applied in
Abaqus in a step with the procedure type "STATIC", whereas simulating the time-dependent
creep process requires the procedure type "VISCO". The load application phase is therefore
executed as a "STATIC" step, as this is numerically more stable than the "VISCO" step and
therefore no convergence problems occur.

3.1.3 Piston Rod Movement
This subchapter is purely valid for the simulations with moving piston rod. The boundary
conditions of the piston rod are designed in such a way that displacement in the radial direction
is blocked (xsym). Only displacement in the axial direction is permitted. The movement of the
piston rod is modelled as a sinusoidal displacement signal. This displacement is characterised
by the frequency frod and the amplitude urod. For the implementation in Abaqus the actual
displacement history (see chapter 1.2.2) is approximated by a Fourier series.

3.1.4 Boundary Conditions
The boundary conditions of the rigidly modelled piston rod and packing housing are modelled
in the axisymmetric model as well as in the 3D model by a fixed clamping (encastre) of
a reference point. Since only a section of the 3D model is modelled, symmetric boundary
conditions must be applied at the bounding planes.

3.1.5 Contact
The normal contact is modelled as a "hard" contact. For the tangential contact a penalty
formulation is used. More detailed information about the different contact types and formu-
lation options can be found in the Abaqus User Manual [1]. According to [14], [17], [4], the
coefficient of friction grows with increasing temperature. According to [14], increasing contact
pressure has a friction-reducing effect (i.e., it reduces the coefficient of friction). Increasing
the speed at the contact point also has a friction-reducing effect. Although the packing rings
are not made of PA but of PTFE, this paper explains in great detail the dependence of the
coefficient of friction on temperature, contact pressure and relative velocity. The results are
not easily transferable to PTFE. This requires practical material tests. Since no information is
available on the influence of these variables on the coefficient of friction between the packing
ring and the steel rod, it is for the sake of simplicity subsequently assumed to be constant.
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3.2 Selection of analysis method
The selection of a suitable analysis method is important to guarantee useful results in ac-
ceptable time or to ensure convergence of the results. In general, a decision has to be made
between an implicit or and explicit analysis.

3.2.1 Implicit analysis
An implicit analysis is based on equilibrium iterations. The internal forces S corresponding to
a first guess of the displacement state u∗ are generally different from the external forces S∗

in a nonlinear behavior.

Figure 3.4: a.) Principle of implicit methods
a) Residuum after the first iteration step
b) Equilibrium iterations according to the Newton-Raphson procedure

The fundamental equation of the FE method reads,

S∗ = Ku (3.1)

with the linearised displacement u∗ instead of the displacement u at equilibrium. It is recog-
nisable in Figure 3.4 that the internal S and external forces S∗ are not in equilibrium, i.e., a
residual R occurs. The task is to determine the displacement such that the residual becomes
sufficiently small. This is typically done in an iterative manner using classical solution methods
such as the Newton-Raphson scheme.

R = S∗ −S (3.2)

There are many variations of the Netwon-Raphson scheme in the literature which will not be
discussed here. The aim of this subchapter is to select an analysis method for the subsequent
simulations. For more detailed information, please refer to [21]. Since the stiffness matrix has
to be recalculated for each iteration, these methods become ineffective if many time increments
are necessary. The great advantage of implicit time methods is there is no constraint on
the size of the time increment, i.e., the method is unconditionally stable, which means that
convergence is possible after only a few increments. This makes these methods particularly
suitable for non-linear quasi-static problems. Since there are no restrictions on the size of the
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time increments, implicit analysis is particularly suitable for analysing the long-term behaviour
of the material. The largest disadvantage is that convergence issues may arise, depending on
the degree of nonlinearity of the problem. This is especially true if contact conditions change
during the process.

3.2.2 Explicit analysis
In this case, explicit methods may be the better choice. Figure 3.5 shows the basic principle
of explicit procedures.Explicit methods do not require the system of equations to be resolved,
as in these methods the load path is approximated stepwise with the tangent stiffness matrix
(see Figure 3.5). The absence of equilibrium iterations, however, requires the time increment
to satisfy the Courant-Friedrichs-Levy condition, i.e., it has to be less than a critical value
which depends on the mesh size and the speed of sound, which in turn is a function of the
elastic constants and the density of the material. For the investigated model the maximum
allowable time increment is in the order of ∆tinc = 10−5s.

Figure 3.5: Principle of explicit analysis

Explicit analyses are much more suitable than implicit analysis for efficiently investigating the
influence of the moving piston rod. On the one hand, there is a non-linearity due to the
frictional contact, on the other hand, the increments must be chosen small enough to resolve
the motion anyway. However, the small time increments of (∆tinc = 10−5s) entail excessively
many increments and thus long computation times. They can be shortened by mass scaling,
i.e. by artificially increasing the density of the material, without degrading the accuracy of the
results. This is possible here because the influence of inertial forces is negligible.
The explicit analysis is only used in this Master’s thesis for the simulations considering the
moving piston rod. Implicit analysis are used for all other simulations.
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3.3 Element selection

3.3.1 Element selection for the mechanical problem
The choice of a suitable element type is highly important for the accuracy of a FE simulation.
Since there are several contact points in the present problem, it is recommended to use
elements with linear interpolation functions in the present mechanical problem. Thus, for
the axisymmetric model, axisymmetric continuum elements with linear interpolation functions
(CAX4) are chosen. For the 3D geometry, 3D continuum elements with linear interpolation
functions (C3D8) are used. Elements with reduced integration should not be used in the
present problem since they may cause numerical artifacts such as hourglassing. Figure 3.6
shows the meshing of the axisymmetric Fe model. In the area of the pressure gap, the mesh
is finer in order to resolve the displacements more precisely.

Figure 3.6: Meshing of the axisymmetric model of the packing ring using a finer meshing in
the area of the pressure gap

3.3.2 Element selection for the thermal problem
The packing ring is not subjected to a cyclic mechanical load. This means that there are
no mechanical hysteresis losses. In this case, the temperature profile in the cylinder ring
results from the heat conduction between the cylinder ring and the packing housing as well
as the dissipated frictional heat at the contact between the packing ring and the piston rod.
Since the piston rod speed as well as the contact pressure influence the friction coefficient
and thus the dissipated power, technically a fully thermo-mechanically coupled problem has
to be dealt with. However, for the considered case it is sufficiently accurate to calculate the
temperature field beforehand and impose it on the mechanical analysis in a decoupled manner.
For the thermal analysis DAX4 elements are used as the element type. These are elements for
axially-symmetric heat conduction problems with (bi-)linear interpolation function.
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3.3.3 Remeshing for large mesh deformations
Due to the time-dependent viscoelastic/viscoplastic yield, large distortions of the FE mesh
occur. As a result, the time increments are gradually reduced to guarantee convergence. This
continues until the simulation aborts because of excessively distorting elements. To avoid this,
it is necessary to remesh, i.e., to redefine the mesh during the simulation. ABAQUS CAE
allows several options for remeshing.

ALE adaptive meshing

With the help of the ALE (Arbitrary Lagrangian-Eulerian) remeshing concept, the element
distortions can be controlled. When remeshing, the deformed FE mesh is smoothed. This
is done by slightly repositioning the nodes without altering the element connectivities. This
method is only useful if a single FE mesh is usable throughout the entire analysis. For more
detailed information, see [1]

Adaptive meshing

The adaptive remeshing algorithm is normally used to control the accuracy of the results.
Within an iterative process, the FE mesh is optimised with respect to a good ratio between
accuracy and simulation time. This iterative process is performed separately from the analysis
steps. Furthermore, adaptive remeshing is not intended to control element distortion.

Mesh to mesh solution mapping

This adaptation technique is particularly suitable if large element distortions occur. Remeshing
takes place between the analysis steps. The principle is simple: As soon as the element
distortion becomes unacceptable, the simulation is interrupted. Then a remeshing takes place
in the deformed state and all solution variables of the previous analysis step are mapped onto
the new mesh. Afterwards, further loading takes place.

Selection of a suitable remeshing concept

The only remeshing concept that is useful for the problem at hand is mesh to mesh solution
mapping. However, this method has the disadvantage that it is not automatable and requires
a lot of manual intervention.
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3.4 Material characterisation
Either a viscoelastic material model or a creep model is used to describe the long-term material
behavior of thermoplastic polymers. The problem associated with the use of the viscoelastic
material model is the discrete description of the time dependence using the Prony series. With
the help of the Prony series, the behaviour is only reasonably predictable in the time decade of
the measurement data used for material modelling. At the end of the time decade, the creep
compliance converges and no longer changes. Furthermore, the viscoelastic material model is
not able to represent viscoplastic flow. The plastically deformed areas, which are located in the
area of the manufacturing radius on the housing, creep significantly more than the elastically
deformed areas of the packing ring.

3.4.1 Calibration of the Creep parameters
Figure 3.7 shows the calibrated Norton-Bailey model for the material at a temperature of
140◦C. The calibrated model shows good agreement with the measured data. As Figure
3.7 shows, the material model minimally underestimates the real measured values. The creep
behaviour of the materials is strongly dependent on temperature. With increasing temperature,
the material stiffness decreases and the creep rate increases at the same load level. Thus, it
is necessary to calibrate the creep parameters for several temperatures.

Figure 3.7: Determination of the creep parameters at a temperature of T=140°C
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Figure 3.8 shows the calibration of the Norton-Bailey creep model of the material at a
temperature of T = 110◦C. The calibrated model shows good agreement with the measurement
data. The measured data are minimally overestimated with the calibrated material model.

Figure 3.8: Determination of the creep parameters at a temperature of T=110°C
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Figure 3.9 shows the calibration of the Norton-Bailey creep model of the material at a
temperature of T = 80◦C. At this temperature, measurement data is available at three differ-
ent stress levels. The quality of the calibrated material model is sufficiently good for all stress
levels. At a stress level of σ = 5MPa the response of the material is well predicted. For a
load of σ = 1MPa, the material response to the load is somewhat underestimated. For σ = 2
the material response is slightly overestimated. The material model is calibrated with the load
levels of σ = 5MPa and σ = 2MPa.

A perfect prediction for all load levels is not possible already from a mathematical point
of view. When determining the material parameters based on the measurement data, a math-
ematically overdetermined system of equations exists. These equations have to be solved by
regression methods, e.g. based on a least squares approach.

Figure 3.9: Determination of the creep parameters at a temperature of T=80°C
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Figure 3.10 shows the calibrated material model and the test data used to calibrate the
material model for a temperature of T = 55◦C. The material model shows small deviations
from the test data at all three stress levels. Consequently, load levels that lie in this range are
also well approximated. The reasons are discussed in the "Discussion" chapter.

Figure 3.10: Determination of the creep parameters for a temperature of T=55°C
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Figure 3.11 shows the calibrated material model and the test data used to calibrate the
material model for a temperature of T = 23◦C. The material model shows good agreement
with the test data at all three stress levels. Consequently, load levels that lie in this range are
also well approximated.

Figure 3.11: Determination of the creep parameters for a temperature of T=23°C
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4.1 Influence of friction on the deformation
The purpose of this chapter is to determine the influence of friction between the piston rod
and packing ring on the maximum displacement into the pressure gap.

4.1.1 Influence of friction for the static case
Figure 4.1 shows the influence of friction between the piston rod and packing ring on the
displacement into the pressure gap for the static case (no movement of the piston rod) and
∆p=40bar. Figure 4.1 shows the deformed contour of the packing ring across the pressure
gap (which in this analysis is assumed to be 0.2mm) for four different friction coefficients. As
Figure 4.1 shows, an increase in the friction coefficient µ leads to a reduction in the maximum
displacement into the pressure gap. The maximum displacements occur when there is no
friction. For a friction coefficient of µ = 0.2, the maximum displacement is almost half of the
one evaluated for the frictionless case.

Figure 4.1: Contour of the packing ring across the pressure gap for different friction coefficients
for the static case.
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As Figure 4.2 shows for the case of ∆p=100bar, the friction between the piston rod and
the packing ring has a significant influence on the position of the maximum displacement. As
expected, in the frictionless case (see Figure 4.1) it is directly at the contact point between
packing ring and piston rod. As Figure 4.2 shows an increasing frictional influence leads to a
stronger bulging of the displacement curve. The position of the maximum displacement shifts
with increasing frictional influence in the direction of the packing housing.

Figure 4.2: Influence of friction on the position of maximum displacement for the static case
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4.1.2 Influence of friction for the dynamic case
In the following simulation results, it must be noted that ABAQUS CAE does not distinguish
between static friction coefficient and dynamic friction coefficient. This means that as soon as
the sticking friction is overcome sliding occurs with the same coefficient of friction. In reality,
the coefficient of dynamic friction is slightly lower than the coefficient of static friction.

Figure 4.3 shows the evolution of the displacement of the contact point between the pis-
ton rod and the packing ring as a function of time. The linear increase of the displacement at
the beginning is due to the load application phase (load application step). The movement of
the piston rod is added in the Creep step. The course of the displacement indicates stick-slip
effects (see Figure 4.4). This means that during the upward or downward movement of the
piston rod, there is initially adhesion between the packing ring and the piston rod and the ma-
terial point moves with the piston rod. At a certain point, the adhesion condition is violated
and the packing ring begins to slide on the piston rod. As soon as the piston has reached the
top or bottom dead center and the piston rod changes its direction of movement, adhesion is
initially restored. The process is repeated, but in the opposite direction.

Figure 4.3: Influence of the frictional contact with the piston rod in motion on the displacement
of the rod-ring contact point.
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As figure 4.3 shows, when the piston rod is moving, the displacement does not oscillate
around the corresponding displacement curve when the piston rod is stationary (same friction
coefficient). The displacement oscillates around the displacement curve with the piston rod
at rest and frictionless contact.

Figure 4.4 shows the evolution of the displacement from Figure 4.3 in more detail. The
stick-slip effect is recognisable here. For linear elastic material behaviour, the slip zone would
therefore be at the same displacement level after one stroke of the piston. Due to the creep
of the material, during the slip the displacement curve exhibits a negative slope. Furthermore,
the displacements are no longer at the same level after a stroke of the piston as a result of
the creep process.

Figure 4.4: Stick-slip effect between packing ring and piston rod during the piston rod move-
ment
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Figure 4.5 shows the contour of the packing ring across the pressure gap at three different
times (red curves) and for a pressure gap of g=0.5mm. At time t = 9.962s, the piston is
near crank end (CE). Consequently, the packing ring bulges further into the gap. At time
t = 9.979s, the piston moves towards head end (HE). As a result of the adhesion between the
packing ring and the piston rod, the ring contour shifts upwards. At time t = 10s the piston
rod continues to move upwards and the adhesion between packing ring and piston rod still
acts or the adhesion condition has been violated shortly before and sliding occurs. The blue
curve shows the ring contour for the frictionless case and stationary piston rod after a time of
10s.

Figure 4.5: Influence of the piston rod movement on the displacement of the ring contour
across the pressure gap at different times just before and at 10s.
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Figure 4.6 shows the influence of the friction coefficient on the time course of the displace-
ment of the rod-ring contact point. It is recognisable that the amplitude of the oscillation
becomes larger with increasing friction. This is explained by the fact that with increasing
friction coefficient the adhesion condition remains fulfilled longer and the contact surface on
the packing ring is displaced more by the piston rod. Furthermore, Figure 4.6 shows that
the displacements oscillate around the same values corresponding to the displacement curve
without any friction. This is not surprising, since it is clearly recognisable that the friction only
influences the amplitude of the oscillation but not its mean value.

Figure 4.6: Influence of the friction coefficient on the time-evolution of the displacement of
the ring-rod contact point.

Consequently, it is permissible to calculate further simulations quasistatically and frictionless.
This is permissible because with friction contact and a moving piston rod, the displacement
oscillates around the value when the piston rod is stationary and frictionless.
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4.2 Influence of the geometry
The initial simulations are performed assuming a linear elastic material model. When using
the linear elastic material model, temporal effects such as creep are not captured. The aim of
these first simulations is to capture the influence of the geometry on the maximum stresses
that occur, as well as the spontaneous elastic deformations. The axisymmetric model is defined
by three geometrical parameters, i.e., the radial ring thickness RRT , the axial ring thickness
b and the inner radius of the packing ring di.

4.2.1 Influence of geometry parameters for linear elastic behaviour
Figure 4.7 shows the influence of b on the maximum Mises stresses. It is evident that the
maximum stresses decrease with increasing b. For smaller dimensions, the influence of b is
more pronounced. With increasing ring thicknesses, the influence decreases and stabilizes at
an axial thickness of 10mm. Larger thicknesses no longer have any influence on the maximum
Mises stress.

Figure 4.7: Influence of the axial ring thickness on the maximum occurring Mises stress

In addition to the maximum Mises stress, the axial ring thickness also influences the maximum
deformation.
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Figure 4.8 shows the influence of the di on the maximum Mises equivalent stress under
the assumption of a linear elastic material behaviour. It is evident that an increase in di leads
to an increase in the equivalent stress. Figure 4.8 shows that the increase of the Mises stress
slows down with increasing di.

Figure 4.8: Influence of the inner ring diameter on the maximum Mises stress for linear elastic
material behaviour
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4.2.2 Influence of geometry using a realistic material model
Figure 4.9 shows the influence of the axial ring thickness on the maximum displacements into
the pressure gap. Evidently, that influence is significant. An increase in b leads to an increase
in the bending rigidity of the system. This reduces the displacements. The results in Figure
4.9 confirm the results in Figure 4.7. From an axial ring thickness of b = 10mm, the maximum
Mises stress no longer changes in the linear elastic case. In the case of the more realistic
material model, no changes in the maximum displacements occur for larger axial thicknesses.

Figure 4.9: Influence of the axial ring thickness on the maximum displacement into the pressure
gap using a creep model

With larger pressure gaps and larger pressure differences, the packing ring begins to collapse
into the pressure gap, resulting in partial lifting of the packing ring. This is avoided by
increasing the axial ring thickness.
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Figure 4.10 shows the influence of the inner packing ring diameter on the maximum dis-
placement into the pressure gap using the full material model including plasticity as well as
creep effects. An increase in the inner diameter results in an increase in the maximum dis-
placement. This phenomenon is explained by the reduction of the structural stiffness with
increasing inner ring diameter, since RRT does not grow along with it. However, figure 4.10
shows that the influence of the inner ring diameter is small compared to the influence of the
axial ring thickness. Evidently, the influence of the inner ring diameter is only pronounced in
the range between di = 20mm and di = 50mm. For larger dimensions, the maximum displace-
ment changes very little.

Figure 4.10: Influence of the inner ring diameter on the maximum displacement into the
pressure simulated with the full material model including plasticity and creep effects.
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Figure 4.11 shows the influence of RRT on the maximum displacement into the pressure
gap. The displacement increases minimally with increasing radial thickness. This is explained
by the reduction in structural stiffness. Compared with the influence of the axial ring thickness,
the influence of the radial ring thickness is negligible.

Figure 4.11: Influence of the radial ring thickness on the maximum displacement into the
pressure gap using a creep model

4.2.3 Influence of the geometry – Conclusion
The geometry analysis demonstrated above indicates that only the influence of the axial ring
thickness needs to be taken into account. The axial ring thickness has a significant influence
on the maximum displacement into the pressure gap. The influence of the radial ring thickness
and the inner ring diameter is negligible and is therefore not taken into account in the following.
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4.3 Influence of the temperature
Temperature has several influences in the present problem. On the one hand, an increase in
temperature causes a decrease in material stiffness. On the other hand, the yield strength of
the material is reduced. In the case of an isotropic thermal expansion behaviour, no additional
thermal stresses are induced in the case of a change of a homogeneous temperature field.
However, since the materials used exhibit an orthotropic expansion behaviour, thermal stresses
are induced even in the case of a homogeneous temperature field.

4.3.1 Influence of the temperature on the maximum displacement
Figure 4.12 shows the influence of temperature and gap width on the maximum displacement
in the direction of the gap between piston rod and packing housing. These simulations are
performed using a linear elastic material model. However, the use of a linear elastic material
model is unsuitable for dimensioning the compression gap, since the influence of time on the
deformation is not considered. Only the temperature dependence of the Young’s modulus is
recorded. As the temperature increases, the stiffness of the material decreases, resulting in
larger displacements. The displacement increases strongly non-linearly with increasing pressure
gap. This is due to the dependence of the bending on the gap.

Figure 4.12: Influence of the temperature and the gap on the maximum displacement assuming
a temperature dependent linear elastic material behaviour
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An interpolation surface can be fitted to the simulation data. For linear elasticity, it can
be determined by the following equation 4.1,

u(g,T ) = k1 +k2g2T (4.1)

where u is the displacement, T is the temperature, g ist the pressure gap width, k1 and k2
are coefficients of the interpolation function. The coefficients of the interpolation function are
shown in figure 4.12.
Figure 4.13 shows the contour plot of the interpolation surface 4.12. Although the simulations
are performed with the linear elastic material model, the maximum displacements for the given
conditions are already large in the upper temperature window and for larger gaps.

Figure 4.13: Contour plot of the displacement-temperature-gap surface shown in figure 4.12
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4.3.2 Thermal stresses and displacements
Due to the orthotropic thermal expansion, additional stresses are induced in the packing ring.
Figure 4.14 and 4.15 show the thermal stresses assuming a homogeneous temperature field
and a temperature increase of 60K. No additional stresses are induced in axial direction. The
orthotropic behaviour does not cause any additional shear stresses, only normal stresses. The
greatest stresses appear in the circumferential direction. Tensile stresses occur at the inner
edge and compressive stresses at the outer edge (see Figure 4.15).

Figure 4.14: Additional thermal stresses (in MPa) in radial direction through thermal expansion

Figure 4.15: Additional thermal stresses (in MPa) in circumferential direction through thermal
expansion
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Due to the orthotropic thermal expansion properties of the material, stresses result even when
the temperature field changes homogeneously. In the case of isotropic thermal expansion
behavior, the homogeneous change of the temperature field does not result in additional
stresses. In case of orthotropic expansion, the stresses are induced due to the non-uniform
thermal expansion. These stresses are residual stresses. Consequently, it is necessary that the
forces and moments resulting from the induced stresses are in equilibrium.

F =
∫

A
σndA = 0 (4.2)

where F is the resulting force vector and σn is the stress vector.

Chair of Mechanics

Franz-Josef-Str. 18/III, 8700 Leoben
mechanik@unileoben.ac.at



©Marcel Ruetz, 01.03.2023 51

4.3.3 Influence of the real temperature field
Until now, the temperature field inside the packing ring is considered to be constant. The
piston rod and the packing housing generally have different temperatures. From the heat con-
duction in the packing ring, an inhomogeneous temperature field results. Additional stresses
and distortions result from the inhomogeneous temperature field.

Figure 4.16 shows the temperature field in the packing ring in the steady state. It is ob-
vious that the maximum temperatures occur at the contact to the piston rod, while the lowest
temperatures occur at the contact to the housing wall. Due to the frictional contact between
the piston rod and the packing ring, energy is dissipated during the movement of the piston
rod.

Figure 4.16: Temperature field in ◦C inside the packing ring due to heat conduction for HY54
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Figure 4.17 shows the maximum displacement into the gap as a function of the temperature
of the piston rod as well as the temperature of the packing housing. Figure 4.17 shows that
the temperature of the piston rod has a greater influence on the maximum displacement than
the temperature of the packing house. The simulations are performed under the conditions
shown in 4.17 and the full material model. The maximum displacements occur for the case
of homogeneous heating of the packing ring. For this reason, a homogeneous temperature
field is used to determine the critical pressure gap width (chapter 4.8). Figure 4.18 shows the
contour plot of the displacement surface in Figure 4.17.

Figure 4.17: Influence of the temperatures of the rod and the packing on the maximum
displacement into the pressure gap

The maximum displacement as a function of rod and packing house temperature is well
described by the following interpolation function,

u(Trod,Tcup) = k1 +k2Trod +k3TrodTcup +k4T 2
rod (4.3)

where k1...k4 are the coefficients of the interpolations polynomial, Trod is the temperature of
the piston rod and Tcup is the temperature of the packing house.
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Figure 4.18: Contour plot of the displacement surface shown in 4.17

Chair of Mechanics

Franz-Josef-Str. 18/III, 8700 Leoben
mechanik@unileoben.ac.at



©Marcel Ruetz, 01.03.2023 54

4.3.4 Influence of the temperature to creep displacements
Figure 4.19 shows the influence of a homogeneous temperature field on the maximum displace-
ment of the packing ring into the pressure gap. As the temperature rises, the displacement
increases strongly due to a more pronounced creep of the material. With increasing temper-
ature, not only the stiffness of the material decreases, but also its yield strength. Thus, at
higher temperatures, a larger area of the material plastifies resulting in a stronger creep.

Figure 4.19: Influence of the temperature on the maximum deformation into the pressure gap
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4.4 Influence of the pressure difference
Figure 4.20 shows the influence of the pressure difference on the maximum displacement into
the gap between piston rod and pressure housing. As expected, the maximum displacement
increases with increasing pressure difference (load). The correlation is non-linear. Doubling the
pressure does not lead to a doubling of the displacement. This is due to the load dependence of
the creep model. Besides the pressure gap width and the temperature, the pressure difference
has the largest influence on the displacements into the pressure gap. The influences of the
geometry parameters are significantly smaller.

Figure 4.20: Influence of the pressure difference on the maximum displacement into the gap
between piston rod and pressure housing
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4.4.1 Influence of pressure and temperature on displacement
Figure ?? shows the influence of the pressure difference on the maximum displacement at three
different temperatures. The maximum displacement increases more steeply with increasing
pressure at higher temperatures than at lower temperatures. This is due to the fact that at
higher temperatures both the material stiffness and the yield strength are reduced.

Figure 4.21: Influence of the pressure difference and the temperature on the maximum dis-
placement into the pressure gap for a homogeneous temperature field
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4.5 Influence of the gap between piston rod and housing
Figure 4.22 shows the influence of the pressure gap width on the maximum displacements into
the gap. It is recognisable that the time-evolution of the maximum displacement increases
with increasing gap width. The displacement is composed of a bending component and a
shear component. As the gap increases, the influence of the bending dominates over the shear
influence. For the gaps relevant for practical applications, the displacement component due
to the shear is significantly larger than the component due to bending. The simulated range
is chosen as ∆t = 3.5 · 105s. In principle, a longer time period is also possible. The aim of
the parameter study is to determine the influence of the different system parameters on the
creep displacement. For qualitative statements regarding the influence of a parameter, it is
not necessary to simulate the entire period of use.

Figure 4.22: Influence of the gap width on the evolution of the maximum displacement into
the gap
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4.5.1 Influence of gap width and temperature on the displacement
Figure 4.21 shows the influence of the gap width on the maximum displacement for two
different homogeneous temperatures T = 110◦C and T = 140◦C. The maximum displacement
increases more steeply with increasing gap between piston rod and packing housing at higher
temperatures than at lower temperatures. This is due to the fact that at higher temperatures
both the material stiffness and the yield strength are reduced.

Figure 4.23: Influence of the pressure gap width and the temperature on the maximum dis-
placement into the pressure gap
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4.5.2 Influence of gap width and geometry on the displacement
Further simulations show the interactions between the different geometrical parameters of the
packing ring and the pressure gap. Figure 4.24 shows the influence of the pressure gap width
on the maximum displacement of the packing ring into the pressure gap for three different
inner ring diameters evaluated after a period of ∆t = 3.5 ·105s.

Figure 4.24: Influence of the pressure gap and the inner diameter on the axial displacementafter
∆t = 3.5 ·105s
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Figure 4.25 shows the influence of the pressure gap width on the maximum displacement
of the packing ring into the pressure gap for three different axial thicknesses evaluated after
a period of ∆t = 3.5 · 105s. Figure 4.25 also shows that the influence of the pressure gap
is greater when the axial thickness of the packing ring is smaller. The correlation is also
non-linear here.

Figure 4.25: Influence of the pressure gap and the axial ring thickness on the axial displacement
after ∆t = 3.5 ·105s
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4.6 Criterion for maximum pressure gap
The objective of this subchapter is to select a suitable criterion for the maximum pressure gap.
In principle, a distinction is made between stress-based design and deformation-based design.

4.6.1 Stress-based design
The stress-based design of machine components is usually carried out according to the FKM
guideline. Dimensioning is based on the degree of utilization. The static utilization factor
astat is defined as in equation (4.4).

astat = σV max

σlim
≤ 1 (4.4)

where σV max is the maximum equivalent stress and σlim is the permissible stress. For stress-
related dimensioning according to the FKM guideline, exceeding the yield point of the material
is not permitted. However, this means that the permissible pressure gaps would be very small.

4.6.2 Deformation based design
In deformation-based design, a maximum deformation is defined as a limit value. When the
yield point is exceeded, the material creeps further and further and does not reach a stationary
value within finite time. The limit value of the displacement after the operating time is then
calculated according to equation 4.5, where

umax = ut=28.8·106s (4.5)

umax is the displacement after the operation time of t = 8000h. One influencing factor that
is difficult to detect is the rate dependence of the mechanical behaviour. Polymeric materials
show a strong dependence on the strain rate. Various material models, such as the Johnson-
Cook model, are able to take strain rate dependence into account. However, the problem is
that the strain rates in creep are several orders of magnitude lower than in the tensile test,
with whose data the material model is calibrated.
In contrast to the stress-based design, plastic deformation zones are permitted here.
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4.6.3 Stress and strain fields in the packing ring
Figure 4.26 shows the stress field in the packing ring in the area of the pressure gap. The
maximum stresses occur directly in the area of the cup edge. In contrast to the linear-elastic
material behaviour, the maximum stresses do not occur below the surface here, but in a larger
area due to yielding. As a result of exceeding the yield point of the material, hardening of
the material occurs. A complex multi-axial stress state appears around the cup edge of the
packing housing.

Figure 4.26: Stress field (in MPa) inside the packing ring in the region of the pressure gap

Figure 4.27 shows the equivalent creep strain in the area of the pressure gap. The maximum
creep strains appear in the zone of maximum stresses.

Figure 4.27: Equivalent creep strain in the packing ring in the region of the pressure gap
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Figure 4.28 shows the equivalent plastic strain in the area of the pressure gap. Significant
plastic deformation occurs in the area of the transition to the pressure gap. The strongest
creep of the material takes place in this area.

Figure 4.28: Equivalent plastic strain in the packing ring in the region of the pressure gap

The equivalent plastic strain rate is calculated from the double contraction of the plastic strain
rates.

ε̇pl =
√

2
3 ε̇pl

ij ε̇pl
ij (4.6)

where, ε̇pl
ij is the plastic strain rate tensor. The double contraction of the tensors is defined as

follows.
ε̇pl

ij ε̇pl
ij = ε̇pl : ε̇pl = ε̇pl

11ε̇pl
11 + ε̇pl

12ε̇pl
12 + ...+ ε̇pl

33ε̇pl
33 (4.7)

The plastic equivalent strain is then obtained by integrating the equation 4.6 over time.

εpl =
∫ t

0
ε̇pldt (4.8)

The equivalent plastic strain is therefore the plastic strain accumulated over time.
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4.6.4 Extrapolation of the simulation data
After long creep durations and increasing displacments, some elements become severely dis-
torted. These distortions lead to a significant reduction of the time increments until it is no
longer tenable to continue the analysis. There are several ways to remedy this problem. On the
one hand, during the simulation, remeshing can be performed and the results obtained thus
far mapped onto the new mesh. On the other hand, the maximum displacement at t = 8000h
can be approximated using reasonable time extrapolation functions. The time history of creep
strain is defined by the Norton-Bailey law. Thus, the time evolution of the displacement can
be estimated reasonably well.

Figure 4.29 shows the simulation result of the evolution of the maximum displacement over
a period of 106s which can well be approximated by the fit curve provided in the figure. The
regression coefficient is R2 = 0.9984, which means that the temporal evolution of the dis-
placement is almost exactly described by the fit function.

Figure 4.29: Interpolation function for the simulation data in a time range of 106s
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Figure 4.30 shows the quality of the fit with the parameters shown in Figure 4.29 by compar-
ision with a full FE simulation (including multiple remeshing steps) over the entire operating
time of t = 28.8 · 106s. The fit-function proposed in Figure 4.29 shows excellent agreement
with the FE results. The relative error is ∆u[%] = 0.53 when extrapolating to operating time.

Figure 4.30: Extrapolation of the maximum axial displacement for the whole operation time
of the packing ring

The validity of the fit-function is further checked in the following figure for other load levels
and pressure gaps.
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The simulation data generally shows that the prediction accuracies are also good at other
load levels or pressure gap widths. In the right part of the figure 4.31 the simulation stops
after ∆t = 3 ·105s. By remeshing several times, the total operating time of ∆top = 28.8 ·106s
is achieved. However, remeshing requires manual mesh to mesh solution mapping and is thus
very time intensive, so the data up until ∆t = 3 ·105s is used for finding the fit-function. This
obviously gives poorer results than a fit based on a duration of ∆t = 106s, but it still allows
sufficiently accurate extrapolations.

Figure 4.31: Extrapolation of the simulation data for other pressure differences, other load
levels and other temperatures

The advantage of this extrapolation method is that the full operating time does not have to be
simulated. This requires repeated manual remeshing and is therefore very expensive in terms
of time. The extrapolation method also provides values that are sufficiently accurate.
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4.7 Dimensioning of the gap width
With the simulation data, a suitable function to describe the influence of different factors
is established. This interpolation function is used to determine the permissible limit curve
(pressure difference-gap width). As Figure 4.32 shows, the displacement surface as a function
of pressure difference and gap width between piston rod and packing housing. The coefficient
of determination R2 is close to 1.

Figure 4.32: Displacement surface as a function of pressure difference and pressure gap width

This displacement surface is well described by the determined interpolation function 4.9. The
best mathematical description of the displacement surface is described by a power law.

u(∆p,g) = C1∆pm+1gn (4.9)

where u is the maximum displacement, C1 is the coefficients of the interpolation function, m
as well as n are the exponents of the interpolation function. If a maximum permissible value
is specified for the displacement, the permissible pressure difference is described as a function
of the pressure gap width with the interpolation function 4.9.

∆p(g) =
(

u

C1gn

) 1
m+1

(4.10)

Chair of Mechanics

Franz-Josef-Str. 18/III, 8700 Leoben
mechanik@unileoben.ac.at



©Marcel Ruetz, 01.03.2023 68

4.7.1 Permissible gap widths for the worst case scenario
Figure 4.33 shows the isodisplacement curves for the material after the full operating time at
a temperature of T = 140◦C. The pressure difference is plotted over the gap width. Figure
4.33 and Figure 4.34 shows that with increasing pressure gap the pressure difference has to
be reduced to obtain the same displacement.

Figure 4.33: Iso-displacement curves as a function of pressure difference and gap width

Figure 4.33 shows that e.g. for a maximum axial displacement of u = 0.5mm at the maximum
pressure difference of ∆p = 100bar a maximum pressure gap of g = 0.78mm is permissible.
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Figure 4.34 shows the logarithmic representation of the iso-displacement lines shown in
Figure 4.33. For practical dimensioning of the pressure gap, the logarithmic representation of
these isocurves is more suitable. This display allows quick and easy reading of the permissible
pressure gap widths.

Figure 4.34: Logarithmised representation of the iso-displacement curves
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4.7.2 Consideration of the temperature influence
As Figure 4.21 and Figure 4.23 show, the parameters ∆p and g of the interpolation function
4.9 are in general a function of the temperature T .

u = u(∆p(T ),g(T )) (4.11)

To account for the influence of temperature, this function has to be described as a function of
temperature. An exponential approach is suitable for describing the temperature dependence.
This can be justified on the basics of polymer physics. Arrhenius approaches are often used to
describe the temperature dependence of semi-crystalline polymers. The Arrhenius approach is
based on the activation energy. The coefficient K0 is used to scale the function, since C1(T =

Figure 4.35: Mathematical description of the temperature-dependency of the the maximum
displacement

140◦C) = 4.129 · 10−5. By combining equation 4.9 as well as equation ??, the description
of the displacement surface as a function of temperature, pressure and pressure gap width
follows.

u(T,∆p,g) = K0∆pm+1gn
(
K1eαT +K2eβT

)m+n+1
(4.12)
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4.7.3 Permissible gap widths at 180◦C
Practical results show that the actual pressure gaps must be significantly smaller than the
results of Figure 4.34. The reason for this is that significantly higher temperatures might occur
during operation. No material data are available for temperatures of approx. T = 180◦C which
might appear very locally at the rod-ring contact. The reason is that at this temperature,
problems occur with the clamping of the specimens in common tensile testing devices due
to the high compliance of the material. Therefore, equation 4.9 is used to extrapolate the
displacements to T = 180◦. Figure 4.36 shows the iso-displacement curves for a temperature
of T = 180◦C. It has to be treated with caution since equation 4.12 has been calibrated in a
temperature interval ranging from room temperature to T = 140◦C. At T = 180◦C phenomena
may occur that are not taken care of by a simple extrapolation of equation 4.12.

Figure 4.36: Extrapolated iso-displacement curves for at a temperature of 180◦C
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Figure 4.37 shows the logarithmised plot of the iso displacement lines at a temperature
of T = 180◦C. The comparison of Figure 4.34 and Figure 4.37 shows that the permissibale
pressure gap at a temperature of 180◦C has to be reduced significantly compared to a tem-
perature of 140◦C.

Figure 4.37: Logarithmised representation of the iso-displacement curves for HY54 at a tem-
perature of 180◦C

The parameters of the mathematical model according to equation 4.12 are briefly summarised
again here in tabular form.

Table 4.1: Input parameters and for equation 4.12
Formula symbol value
K0 0.0014
m 1.13
n 1.64
K1 0.1236
α 0.005167
K2 0.0004588
β 0.04081
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4.7.4 Permissible gap widths for the best case scenario
Figure 4.7.4 shows the displacement surface, as well as the residuals plot for the best case
scenario with respect to the geometric dimensions at T = 140◦C. Geometrically best case
means that the axial ring thickness b ≥ 10mm. This is the best case because in this case
smaller displacements into the pressure gap result with the same mechanical and thermal load.
Nevertheless, in this case the material requirement is increased.

Figure 4.38: Displacement surface and the parameter that describe this surface
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Figure 4.39 shows the logarithmic representation of the iso-displacement curves after the
full operating time at a temperature of T = 140◦C and for b ≥ 10mm. The pressure difference
is plotted over the permissible pressure gap. Figure 4.39 shows that with increasing gap
between piston rod and packing housing the pressure difference has to be reduced to obtain
the same displacement.

Figure 4.39: Logarithmised representation of the iso-displacement curves for at a temperature
of 140◦C for larger axial thicknesses

The parameters of the mathematical model according to equation 4.12 are briefly summarised
again here in tabular form for b ≥ 10mm.

Table 4.2: Input parameters and for equation 4.12
Formula symbol value
K0 0.0014
m 1.13
n 1.64
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4.8 Influence of pressure balancing elements
The aim of this section is to determine the influence of pressure compensation elements on the
creep behaviour of the packing rings. In addition to bores, pressure compensation elements
are also available in the form of grooves. However, the focus of this Master’s thesis is on the
bore design.

4.8.1 Stress field in the ring due to the pressure balancing elements
The pressure balancing bores have an influence on the local stress field in the packing ring.
To analyse the stress state in the packing ring, purely linear elastic calculations are carried
out first in order to reduce computing time. Figure 4.40 shows the influence of the pressure
balancing bores on the stress field at the back of the packing ring. As with axially symmetrical
models, the stress field at the back of the packing ring is influenced by the pressure gap. A
periodic pattern appears in the stress field. It is recognisable that the influence of a single hole
on the local stress field quickly decays (principle of Saint Venant).

Figure 4.40: Stress field (in MPa) in the back of the packing ring due to the influence of the
pressure balancing bores for linear elastic material behaviour

Like in the axially symmetrical model, the maximum stresses occur near the contact point
between the pressure gap and the packing ring.
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Figure 4.41 shows the distribution of Mises stresses near the pressure balancing bores from
a different viewpoint

Figure 4.41: Stress field (in MPa) in the near of the balancing bores due to the influence of
the pressure balancing bores for linear elastic material behaviour
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4.8.2 Influence of the diameter of the pressure balancing bores
In these simulations, the influence of the pressure balancing bore diameter on the displacement
is investigated. The simulations are carried out for viscoelastic material behaviour without
accounting for viscoplastic creep effects in order to reduce the computation time. However,
this is not an incorrect simplification, as the intention of this study is to obtain qualitative
information about the influence of the pressure balancing bores. The results in Figure 4.42 show
the influence of the diameters of the pressure balancing bores on the maximum displacement
into the pressure gap. As the bore diameter increases, the displacement increases sharply
compared to the reference packing ring without pressure balancing bores. This is due to the
local reduction in structural stiffness as a result of the bores.

Figure 4.42: Influence of the diameter of the pressure balancing bores on the maximum
displacement into the pressure gap

The local reduction in stiffness results not only in locally higher displacements but also in an
increase in local stresses. This is of particular importance when the yield strength is exceeded,
since viscoelastic creep then occurs in addition to viscoelastic creep.
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4.8.3 Influence of the position of the pressure balancing bore
Figure 4.43 shows the influence of the position of the pressure balancing bores on the maxi-
mum displacement into the pressure gap. This simulation shows that the displacement into
the pressure gap increases the closer the pressure balancing bore is positioned to the pressure
gap. Figure 4.43 further shows that the displacement fluctuates. In the region of the pressure
equalisation bores, larger displacements occur than between the holes. This is due to the lo-
cally reduced stiffness of the packing ring. This is evident from the course of the displacement
(see figure 4.43.

Figure 4.43: Influence of the position of the pressure balancing bores on the axial displacement
(in mm) field for assuming viscoelastic material behaviour
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Figure 4.44 shows the influence of the position of the pressure balancing bores on the
maximum displacements into the pressure gap, assuming a viscoelastic material model. The
coordinate system is set in such a way that the eccentricity is related to the centre plane of the
packing ring. The eccentricity is positive for displacement in the direction of the free end and
negative for displacement in the direction of the housing. The closer the pressure balancing
hole is positioned in the area of the pressure gap, the greater the local displacement becomes.
The maximum local displacements increase rapidly.

Figure 4.44: Influence of the position of the pressure balancing bores on the maximum dis-
placements in the gap after ∆t = 105s using viscoelastic material model

Chair of Mechanics

Franz-Josef-Str. 18/III, 8700 Leoben
mechanik@unileoben.ac.at



©Marcel Ruetz, 01.03.2023 80

Figure 4.45 shows the course of the displacement into the gap between two pressure com-
pensation bores. If the pressure compensation hole is displaced eccentrically in the direction
of the pressure gap, significantly larger displacements occur in the area of the hole. The
displacement then drops in the area between the pressure compensation bores. Approximately
to the displacement of the packing ring without pressure compensation bores. If the pressure
compensation hole is displaced eccentrically in the direction away from the pressure compen-
sation hole, larger displacements still occur in the area of the bores. However, the maximum
displacements are then significantly smaller. In the area between the pressure compensation
bores, the displacement then drops to the value of the reference ring without pressure balancing
elements.

Figure 4.45: Course of the displacement into the pressure gap in the area between two pressure
balancing bores after ∆t = 105s
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4.8.4 Influence of the pressure balancing bores Conclusion
The results of subchapter 4.8 "Influence of the pressure balancing elements" show that the
pressure balancing bores do not lead to a reduction of the occurring displacements in the pres-
sure gap. In the area of the pressure balancing bores, the displacements are locally increased
to a an extent, that depends on the hole diameter and the position of the bores with respect
to off-centre arrangement. In the area between the pressure balancing bores, the occurring
displacements drop approximately to the level of the reference packing ring without pressure
balancing bores. However, the displacements never fall below the displacements of the ref-
erence packing ring. Therefore, the pressure balancing elements are counterproductive with
regard to the creep of the packing ring into the pressure gap.
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4.9 Influence of asymmetry between rod and housing
The aim of this chapter is to determine the influence of the asymmetry between piston rod
and packing housing on the displacement of the packing ring into the pressure gap. Due to
the assembly process, technical constructions are never mounted exactly centrally.
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4.10 Discussion

4.10.1 Comparison of simulation results and experimental results
Experimental tests by HOERBIGER Wien GmbH show that the permissible pressure gap widths
for typical operating temperatures and maximum pressure difference are in the same range as
determined in the context of this master’s thesis with the use of numerical simulations. This
indicates the validity of the simulation results and the formula obtained from the simulation
results to describe the maximum displacement.

4.10.2 Measures to reduce the maximum deformation
There are several ways to reduce the deformations of the ring into the pressure gap. For small
packing ring dimensions, the axial thickness can be increased. An increase in the range be-
tween 3mm and 10mm is reasonable. An increase above 10mm is, however, not useful because
above this value the deformations saturate and can no longer be reduced. The displacement
cannot be reduced with pressure compensation elements such as pressure balancing holes. On
the contrary, the pressure balancing elements have a negative effect on the occurring displace-
ments. Another way to reduce the displacements that occur is to reduce the temperature of
the packing ring. This requires efficient cooling of the packing housing and the piston rod.

4.10.3 Influence of the temperature on the ring design
The temperature has the strongest influence on the creep of the material. As a comparison
of Figure 4.34 and Figure 4.37 shows, a temperature increase of 40◦C leads to a reduction of
the permissible pressure gap width by a factor of about 5. For the exact dimensioning of the
pressure gap, the exact knowledge of the occurring maximum temperatures is indispensable.
However, this also requires material data in these temperature ranges. Since no material data
is available for temperatures in the range of 180◦C-200◦C due to the limitations given by
the testing device, the critical pressure gap width is determined by extrapolation allowing first
reasonable estimates. However, for more reliable results a methodology to measure the missing
material data will have to be devised.

4.10.4 Tertiary creep
From the representation of the experimental creep curves (Figure 3.7 to Figure 3.11) it is
not obvious whether primary, secondary or tertiary creep is occurring. In primary creep, the
creep strain rate slows down, whereas during secondary creep, the creep strain rate ε̇ remains
constant. The creep strain ε then increases linearly in the logarithmic diagram. In tertiary
creep, the creep strain rate increases as time progresses. The creep strain then also increases
non-linearly in the logarithmic representation. More detailed information about the creep
behaviour of materials can be found in [2] p279-p283.
Figure 4.46 shows the experimentally determined creep curves of the material for three different
temperatures and loads in a logarithmic representation. Here it is straightforward to detect
whether primary, secondary or tertiary creep occurs.

Chair of Mechanics

Franz-Josef-Str. 18/III, 8700 Leoben
mechanik@unileoben.ac.at



©Marcel Ruetz, 01.03.2023 84

Figure 4.46: Logarithmised experimental creep curves at different temperatures and load levels
in the experimental time range. a) Secondary creep for T = 80◦C and σ = 5MPa, b) primary
creep for T = 110◦C and σ = 2MPa, c) tertiary creep for T = 110◦C and σ = 2MPa.

Figure 4.46 shows primary, secondary and tertiary creep as they occur at their corrsponding
load and temperature levels. Figure 4.46 b) shows that primary creep occurs at a load of 2MPa
and a temperature level of 110◦. It exhibits a slower increase in creep strain over time. Figure
4.46 c) shows first secondary and then tertiary creep, identifiable by the accelerated increase
in creep strain towards the end of the experiment. Thus, in the range of maximum operating
temperatures of T = 180◦C-200◦C, tertiary creep occurs.
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4.10.5 Further deformation mechanisms
In the case of small pressure gaps, other deformation and above all damage mechanisms occur
in addition to creep. During the oscillating movement of the piston rod, material is sheared
into the narrow gap, which leads to high deformation rates and subsequently to strong heating
of the material due to dissipative effects. Over time, this process causes shearing of the
material and re-welding of the material, which is visible in a burr-like deformation. Figure 4.47
shows the extrusion of a packing ring.

Figure 4.47: Extrusion of a packing ring [24]

4.10.6 Predictive quality of the material model
In subchapter 3.5 "Material characterisation" it is noticeable that for some temperatures (T =
140◦C, T = 110◦C, T = 23◦C) the material response to the external load is predicted very
accurately for all load levels. At other temperature levels (T = 80◦C, T = 55◦C) there are
larger deviations between test data and calibrated material model due to the different creep
stages. The creep law used (Norton-Bailey) describes secondary (stationary) creep over time
very well but is unsuitable for tertiary creep. Subchapter 4.11.5 explains that the test data
are recorded at different creep stages. In the case at T = 80◦C, the creep curve is in the
secondary creep region at one load level and in the primary creep region at the other two load
levels. This means that it is no longer possible for the optimisation algorithm used to match
the curves as accurately as the set bounds allow.
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4.10.7 Comparison with analytical solutions
In this subchapter, the numerical solution is compared with the analytical solution according to
Kirchhoff’s plate theory. From this, an additional understanding of the mechanical behaviour
of the packing rings is gained.

Plate theory describes the deflection of a plate in the form of a partial differential equa-
tion. Kirchhoff’s plate theory is a generalisation of Bernoulli’s beam theory. This theory is
subject to a number of limitations.

• small displacements and strains (geometric linearity)

• linear elastic material behaviour (linear material model)

• thickness has to be small compared to the other dimensions

• the cross section of the plate remains flat and normal to the mid-plane of the plate

The governing equation for the deflection w reads

∂4w

∂x4 + ∂4w

∂x2∂y2 + ∂4w

∂y4 = ∆∆w = p

K
(4.13)

where w is the bending displacement, ∆ is the Laplace operator, p is the surface load and K
is the plate stiffness.

Mechanical model of the packing ring

Figure 4.48 shows the mechanical model of the packing ring for determining the analytical
solution. This is a plate that is partially bedded. Since the packing ring is regarded as a rigid
body due to the high Young’s modulus, Winkler’s bedding coefficient approaches infinity. The
pressure on the bedded area also prevents the plate from lifting off. Thus, the bearing at the
right end is considered as a fixed constraint. The contact with the piston rod is considered
frictionless. Thus, the bearing is modelled as a transverse sliding sleeve.

Figure 4.48: Mechanical modelling of the packing ring for the analytical solution
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From this model follow the boundary conditions to solve the plate’s differential equation.
Equation 4.14 to 4.17 lists the boundary conditions

w′′′(r = ri) = 0 (4.14)

w′(r = ri) = 0 (4.15)
w(r = ra) = 0 (4.16)
w′(r = ra) = 0 (4.17)

Derivation of the analytical solution

The starting point is Kirchhoff’s plate differential equation in cylindrical coordinates.

1
r

d

dr

[
r

d

dr

{
1
r

d

dr

(
r

dw

dr

)}]
= p

K
(4.18)

After integrating four times, the general solution of the differential equation follows.

w(r) = 1
64

p

K
r4 + 1

4C1r2 (lnr −1)+ 1
4C2r2 +C3 lnr +C4 (4.19)

The special solution of the differential equation 4.18 follows by substituting the boundary
conditions (equation 4.14 to 4.17) into equation 4.19. The special solution of the differential
equation 4.18 is given below (equation 4.20), although the expression is long and unmanage-
able.

w(r) = q0
K

[8r2r2
i −4r2r2

a −12r4
i logr+12ri logra +32r4

i logra +r4 +3r4
a −8r2r2

i logr+8r2r2
i

logra +8r2
ar2

i logr −8r2
ar2

i logra −16r4
i logr logra +16r4

i logr logri −16r4
i logra logri]

(4.20)
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The shape of the analytical solution for the displacement curve does not agree with the
FE solution for the axisymmetric model, see Figure 4.49. The displacement in the FEA
drops significantly sharper than in the analytical solution according to Kirchhoff. Even worse,
the maximum displacements differ strongly. The reason is that some basic assumptions of
Kirchhoff’s plate theory are violated. Among other things, the axial thickness of the packing
ring is greater than the bending length, whereas Kirchhoff’s plate theory is only valid for thin
plates. While for thin plates the shear deformations can be neglected (shear stiffness → ∞)
it has to be taken into account for thick plates where the shear deformations are no longer
negligible. The large difference in maximum deflections may partly be due to the neglect of
shear deformations. Taking them into account requires the plate theory according to Mindlin-
Reissner.

Figure 4.49: Analytical solution according to Kirchhoff’s plate theory compared to the FE
solution
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Figure 4.50 shows the analytical solution according to Mindlin-Reissner and the FE solution.
The maximum displacement evaluated with FEM is greater by a factor of 3 than the analytical
solution. This is due to the fact that the packing ring does not represent a plate in terms of
dimensions and bending length, so treating the ring as a plate is a too rough simplification.

Figure 4.50: Analytical solution according to Mindlin-Reisner plate theory compared to the FE
solution

A comparison of the results of figure 4.49 and 4.50 shows that the Mindlin-Reissner plate theory
describes both the shape of the displacement and the maximum displacement significantly
better than Kirchhoff’s plate theory. A comparison of the maximum displacements also shows
that the displacements mainly result from the shear and not from bending. When comparing
the analytical solution according to Kirchhoff and Mindlin-Reissner it is recognisable that in
the solution according to Mindlin-Reisner the slope

(
dw
dr

)
r=ra

is not zero. This is not an error
but rather is expected due to the shear deformation that is associated with angles changes.
The boundary conditions are therefore to be adjusted for Mindlin Reisner so that at the points
r = ri and r = ra only the slope is zero according to the bending constraint. If the support on
the right side is modelled with a fixed support instead of a sliding constraint, the FE solution
would be overestimated by a factor of 10.
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5.1 Conclusion
The central focus of this master’s thesis is to determine the maximum possible pressure gap
between the housing and the piston rod. Furthermore, the influence of the different system
parameters on the deformation behaviour of the packing ring has to be determined.

Within the scope of this Master’s thesis, it is shown that it a static analysis with the rod
at standstill yields the same mean displacement of the ring as a cyclic analysis with an oscil-
lating rod. This significantly reduces the computation time.

Furthermore, the results show that the influence of the axial ring thickness has a signifi-
cant impact on the deformation behaviour of the packing ring. Increasing axial thickness leads
to a reduction in creep deformation. However, the results also show that an increase in axial
thickness reduces the deformation only up to a value of about b = 10mm. Larger dimensions
have no influence and are therefore not useful. The radial ring thickness and the inner ring
diameter have only a minimal influence on the deformation behaviour of the packing ring. The
pressure and the pressure gap width have a large, non-linear influence on the deformation be-
haviour of the packing ring. Temperature has a significant influence on the creep behaviour of
the packing ring material. In the area of viscoelastic-viscoplastic material behaviour, this is due
to the temperature dependence of the yield strength and the Young’s modulus. An increasing
temperature leads to a reduction of the Young’s modulus which already results in larger defor-
mations in the elastic range. Higher temperatures also cause a reduction in the yield strength
of the material, which means that a larger region of the material plastifies, resulting in stronger
viscoplastic creep. For application temperatures in the range of up to T = 180◦ C the admissi-
ble pressure gap is very small and can only be increased for relatively small pressure differences.

The investigation of the influence of the pressure compensation elements shows that the
pressure compensation elements lead to a reduction of the deformations. It also shows that
the pressure compensation elements should not exceed a certain diameter in order not to re-
duce the stiffness of the structure too strongly. The diameters of the pressure compensation
holes should also not be too small, otherwise the desired effect is not achieved.
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5.2 Outlook

5.2.1 Additional damage modes
In further scientific work additional deformation mechanisms such as the shearing and re-
welding of the material due to the piston rod movement should be investigated in more detail.

5.2.2 Simulations with tertiary creep law
Furthermore, a tertiary creep law should be used to investigate the behaviour of the packing
ring at higher temperatures. It has been shown that already at a temperature of T = 140◦C
and a stress of σ = 2MPa tertiary creep occurs after a certain time. Thus, more precise
statements about the mechanical behaviour of the packing ring are possible. However, this
requires the availability of corresponding material data.

5.2.3 Temperature development due to friction and heat conduction
In addition, the actual temperature development in the packing ring can be investigated in
more detail in a future scientific work. In the context of this Master’s thesis, piston rod
temperatures and housing wall temperatures were specified by HOERBIGER Wien GmbH.
Due to the friction between the piston rod and the packing ring, energy is dissipated, which
leads to a temperature increase in the ring. Additional energy is dissipated in the material
through high strain rates.
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Appendix

Here are the relevant Python scripts for building the models.
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Python script for axisymmetric FEA model

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# 2. Mas t e r a r b e i t −Ruetz
# ( c ) D i p l .− I ng . Marce l Ruetz
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

from abaqus import ∗
from abaqusCons tant s import∗
import r e g i o nToo l s e t
import s e c t i o n
import r e g i o nToo l s e t
import d i sp l ayGroupMdbToo l s e t as dgm
import d i sp l ayGroupOdbToo l s e t as dgo

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# I m p o r t i e r e n de r Mes sda t en sae t z e
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

# I m p o r t i e r e n von Pythonmodul numpy
import numpy as np

# F e s t l e g e n de r Work D i r e c t o r y
import os

os . c h d i r ( r "D: \ 2 . ␣ Ma s t e r a r b e i t ␣Ruetz \Python␣ S k r i p t e " )

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# E r s t e l l e n des Mode l l s
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Model = mdb . models [ ’Model−1 ’ ]

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# E r s t e l l e n de r Komponenten
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

# I m p o r t i e r e n des Ze ichenmodu l s und des Stueckmoduls
import s k e t ch
import pa r t
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#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# P a r a m e t e r i s i e r u n g des Mode l l s
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

# Hie r werden d i e zu p a r a m e t e r i s i e r e n d e n Groes sen d e f i n i e r t , d i e
# r e s t l i c h e n ( abhaeng igen ) Groes sen werden ausgehend von d i e s e n
# Groes sen be r e chne t

# R a d i a l e R i ngd i c k e
RRT = 5 # mm
# Innendu r chmes s e r des Packung s r i ng s
d i = 20 # mm
# A x i a l e R i ngd i c k e
b = 3 .0 #mm
# S p a l t d i c k e
g = 0 .2 # mm
# D r u c k d i f f e r e n z
dp = 6 # MPa
# Temperatur
T_Ce l s iu s = 140 .0 # C e l s i u s
#T_rod = 200 .0 #
#T_Cup = 7 .0 #
# Ve rn e t z ung s g r o e s s e
Meshs i ze = 0.002 # mm
#Meshs i ze = 0.0075 # mm
Meshs i ze = 0.015# mm
# Elementtypen
Elementtype1 = CAX4 # 4−k n o t i g e s a x i a l s y m m e t r i s c h e Kont inuumse lemente
Elementtype2 = CAX3 # 3−k n o t i g e s a x i a l s y m m e t r i s c h e Kont inuumse lemente
# R e i b u n g s k o e f f i z i e n t
mu = 0.0
# S i m u l a t i o n s b e z e i c h n u n g
# Simulat ionsname_therm = ’ Simulation_dT_80_20 ’
Simulat ionsname_mech = ’Test_T=110_g=02 ’
# Berechne te Groes sen
T_Kelvin = 273.15 # K
T_Start = T_Kelvin + 60 .0 # C e l s i u s
T_Kelvin = T_Kelvin + T_Ce l s iu s # K
T_Start = T_Kelvin
p_Umgebung = 0 .1 # MPa
p_Zy l i nde r = dp+p_Umgebung # MPa
da = d i +2.0∗RRT # mm
b_f ine rmesh = −4.0+g−0.5 #mm
# F e r t i g u n g s r a d i u s des Gaps
r = 0 .10 # mm
#g = g − r
dg = d i /2.0+g # mm
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#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# D e f i n i t i o n de r Geometr i e des Models
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

s1 = Model . Con s t r a i n edSke t ch (name=’ Packungs r ing−Sk i z z e ’ ,
s h e e t S i z e =200.0)

g , v , d , c = s1 . geometry , s1 . v e r t i c e s , s1 . d imens ions , s1 . c o n s t r a i n t s
s1 . s k e t chOp t i on s . s e tVa l u e s ( v i ewS t y l e=AXISYM)
s1 . s e tP r ima r yOb j e c t ( op t i o n=STANDALONE)
s1 . C on s t r u c t i o n L i n e ( po i n t 1 =(0.0 , −100.0) , po i n t 2 =(0.0 , 1 00 . 0 ) )
s1 . F i x e dCon s t r a i n t ( e n t i t y=g [ 2 ] )

# E r s t e l l e n des a x i a l s y m m e t r i s c h e n Models ohne E n t l a s t u n g s n u t
s1 . r e c t a n g l e ( po i n t 1=( d i /2 . 0 , 0 . 0 ) , po i n t 2=(da /2 . 0 , b ) )
p = Model . Par t ( name=’ Packungs r i ng ’ , d im e n s i o n a l i t y=AXISYMMETRIC ,

type=DEFORMABLE_BODY)
p = Model . p a r t s [ ’ Packungs r i ng ’ ]
p . Ba s eSh e l l ( s k e t ch=s1 )
s1 . un s e tP r ima r yOb j e c t ( )
del Model . s k e t c h e s [ ’ Packungs r ing−Sk i z z e ’ ]

p = Model . p a r t s [ ’ Packungs r i ng ’ ]
f = p . f a c e s
p i c k edReg i on s = f . getSequenceFromMask (mask=( ’ [#1␣ ] ’ , ) , )
#p . de l e teMesh ( r e g i o n s=p i c k edReg i on s )
f1 , e , d1 = p . f a c e s , p . edges , p . datums

# Anpassung de r r a d i a l e n Dicke
i f d i == 20 . 0 :

x = 15 .
y = 2 .5

i f d i == 30 . 0 :
x = 20 .
y = 2 .5

i f d i == 40 . 0 :
x = 25 .
y = 2 .5

i f d i == 50 . 0 :
x = 30 .
y = 2 .5

i f d i == 60 . 0 :
x = 35 .
y = 2 .5

i f d i == 70 . 0 :
x = 40 .
y = 2 .5
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i f d i == 80 . 0 :
x = 45 .
y = 2 .5

i f d i == 90 . 0 :
x = 50 .
y = 2 .5

i f d i == 100 . 0 :
x = 55 .
y = 2 .5

i f d i == 110 . 0 :
x = 60 .
y = 2 .5

i f d i == 120 . 0 :
x = 65 .
y = 2 .5

i f d i == 130 . 0 :
x = 70 .
y = 2 .5

i f d i == 140 . 0 :

t = p . MakeSketchTransform ( sk e t chP l an e=f1 [ 0 ] , s k e t c hP l a n eS i d e=SIDE1 ,
o r i g i n =(x , y , 0 . 0 ) )

s1 = Model . Con s t r a i n edSke t ch (name=’ __prof i l e__ ’ ,
s h e e t S i z e =41.23 , g r i d Sp a c i n g =1.03 , t r an s f o rm=t )

g , v , d , c = s1 . geometry , s1 . v e r t i c e s , s1 . d imens ions , s1 . c o n s t r a i n t s
s1 . s e tP r ima r yOb j e c t ( op t i o n=SUPERIMPOSE)
p . p r o j e c tRe f e r e n c e sOn t oSk e t c h ( s k e t ch=s1 , f i l t e r=COPLANAR_EDGES)
s1 . r e c t a n g l e ( po i n t 1 =(−5.0 , −2.5) , p o i n t 2=(b_f inermesh , −1.6))
p = Model . p a r t s [ ’ Packungs r i ng ’ ]
f = p . f a c e s
p i c k edFac e s = f . getSequenceFromMask (mask=( ’ [#1] ’ , ) , )
e1 , d2 = p . edges , p . datums
p . Pa r t i t i o nFac eBySke t ch ( f a c e s=p i ckedFace s , s k e t ch=s1 )
s1 . un s e tP r ima r yOb j e c t ( )
del Model . s k e t c h e s [ ’ __prof i l e__ ’ ]

# D e f i n i t i o n de r F l a echen f u e r Kontakt mit Rod und Cup
p = Model . p a r t s [ ’ Packungs r i ng ’ ]
s = p . edges
s i d e1Edge s = s . getSequenceFromMask (mask=( ’ [#84] ’ , ) , )
p . Su r f a c e ( s i d e1Edge s=s ide1Edges , name=’ Kontakt_Rod ’ )
s i d e1Edge s = s . getSequenceFromMask (mask=( ’ [#18␣ ] ’ , ) , )
p . Su r f a c e ( s i d e1Edge s=s ide1Edges , name=’ Kontakt_Cup ’ )

# E r s t e l l e n de r Rod a l s s t a r r e n Koerper
s = Model . Con s t r a i n edSke t ch (name=’ Rod_Sketch ’ ,

s h e e t S i z e =200.0)
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g , v , d , c = s . geometry , s . v e r t i c e s , s . d imens ions , s . c o n s t r a i n t s
s . s k e t chOpt i on s . s e tVa l u e s ( v i ewS t y l e=AXISYM)
s . s e tP r ima r yOb j e c t ( op t i on=STANDALONE)
s . C on s t r u c t i o n L i n e ( po i n t 1 =(0.0 , −100.0) , po i n t 2 =(0.0 , 1 00 . 0 ) )
s . F i x e dCon s t r a i n t ( e n t i t y=g [ 2 ] )
s . L i n e ( po i n t 1=( d i /2 . 0 , −5.0) , p o i n t 2=( d i /2 . 0 , b+5.0))
s . V e r t i c a l C o n s t r a i n t ( e n t i t y=g [ 3 ] , addUndoState=Fa l s e )
p = Model . Par t ( name=’Rod ’ , d im e n s i o n a l i t y=AXISYMMETRIC ,

type=DISCRETE_RIGID_SURFACE)
p = Model . p a r t s [ ’ Rod ’ ]
p . An a l y t i cR i g i d Su r f 2DP l a n a r ( s k e t ch=s )
s . un s e tP r ima r yOb j e c t ( )
p = Model . p a r t s [ ’ Rod ’ ]
del Model . s k e t c h e s [ ’ Rod_Sketch ’ ]

# D e f i n i t i o n des Re f e r en zpunk t s an Rod
p = mdb . models [ ’Model−1 ’ ] . p a r t s [ ’ Rod ’ ]
v1 , e , d1 , n = p . v e r t i c e s , p . edges , p . datums , p . nodes
p . Re f e r e n c ePo i n t ( p o i n t=v1 [ 1 ] )

# E r s t e l l e n des Cup a l s s t a r r e n Koerper
s = Model . Con s t r a i n edSke t ch (name=’ Cup_Sketch ’ ,

s h e e t S i z e =200.0)
g , v , d , c = s . geometry , s . v e r t i c e s , s . d imens ions , s . c o n s t r a i n t s
s . s k e t chOpt i on s . s e tVa l u e s ( v i ewS t y l e=AXISYM)
s . s e tP r ima r yOb j e c t ( op t i on=STANDALONE)
s . C on s t r u c t i o n L i n e ( po i n t 1 =(0.0 , −100.0) , po i n t 2 =(0.0 , 1 00 . 0 ) )
s . F i x e dCon s t r a i n t ( e n t i t y=g [ 2 ] )
s . L i n e ( po i n t 1=(da /2 .0+5.0 , 0 . 0 ) , po i n t 2=(dg , 0 . 0 ) )
s . H o r i z o n t a l C o n s t r a i n t ( e n t i t y=g [ 3 ] , addUndoState=Fa l s e )
s . L i n e ( po i n t 1=(dg , 0 . 0 ) , p o i n t 2=(dg , −5.0))
s . V e r t i c a l C o n s t r a i n t ( e n t i t y=g [ 4 ] , addUndoState=Fa l s e )
s . P e r p e n d i c u l a r C o n s t r a i n t ( e n t i t y 1=g [ 3 ] , e n t i t y 2=g [ 4 ] ,

addUndoState=Fa l s e )
s . F i l l e t B yR a d i u s ( r a d i u s=r , cu r ve1=g [ 3 ] , n ea rPo i n t1=(dg+0.1 ,

0 ) , cu r ve2=g [ 4 ] , n ea rPo i n t2=(dg ,
−0.1))

p = Model . Par t ( name=’Cup ’ , d im e n s i o n a l i t y=AXISYMMETRIC ,
type=DISCRETE_RIGID_SURFACE)

Model . p a r t s [ ’Cup ’ ]
p . An a l y t i cR i g i d Su r f 2DP l a n a r ( s k e t ch=s )
s . un s e tP r ima r yOb j e c t ( )
del Model . s k e t c h e s [ ’ Cup_Sketch ’ ]
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# D e f i n i t i o n des Re f e r e n zpunk t e s am Cup
p = Model . p a r t s [ ’ Cup ’ ]
v2 , e1 , d2 , n1 = p . v e r t i c e s , p . edges , p . datums , p . nodes
p . Re f e r e n c ePo i n t ( p o i n t=v2 [ 2 ] )

# D e f i n i t i o n de r Kon t ak t f l a e ch en am Cup
p = Model . p a r t s [ ’ Cup ’ ]
s = p . edges
s i d e2Edge s = s . getSequenceFromMask (mask=( ’ [#7␣ ] ’ , ) , )
p . Su r f a c e ( s i d e2Edge s=s ide2Edges , name=’ Maste r sur face_Cup ’ )

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# D e f i n i t i o n des M a t e r i a l m o d e l l s
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

# Import des Moduls M a t e r i a l
import ma t e r i a l
# D e f i n i t i o n des M a t e r i a l s
Model . Ma t e r i a l ( name=’ Ma t e r i a lmod e l l ’ )

# D e f i n i t i o n de r t h e rm i s chen M a t e r i a l e i g e n s c h a f t e n
Model . m a t e r i a l s [ ’ Ma t e r i a lmod e l l ’ ] . Expans ion ( type=ORTHOTROPIC,

t a b l e =((8e−05, 0 .00014 , 8e−05) , ) )
Model . m a t e r i a l s [ ’ Ma t e r i a lmod e l l ’ ] . Den s i t y ( t a b l e =((1.32 e−09, ) , ) )
Model . m a t e r i a l s [ ’ Ma t e r i a lmod e l l ’ ] . C o n du c t i v i t y ( t a b l e =((0 .25 , ) , ) )
Model . m a t e r i a l s [ ’ Ma t e r i a lmod e l l ’ ] . S p e c i f i cH e a t ( t a b l e =((

2160000000.0 , ) , ) )

# D e f i n i t i o n de r mechan i schen E i g e n s c h a f t e n des M a t e r i a l s HY54
Model . m a t e r i a l s [ ’ Ma t e r i a lmod e l l ’ ] . E l a s t i c ( temperatureDependency=ON,

t a b l e =()
# D e f i n i t i o n des z e i t a b h a e n g i g e n V e r h a l t e n s de r Modul i
Model . m a t e r i a l s [ ’ Ma t e r i a lmod e l l ’ ] . e l a s t i c . s e tV a l u e s (

modu l i=INSTANTANEOUS)
# D e f i n i t i o n des P l a s t i z i t \" a t s g e s e t z
Model . m a t e r i a l s [ ’ Ma t e r i a lmod e l l ’ ] . P l a s t i c ( temperatureDependency=ON,

t a b l e =()
# Creep paramete r
Model . m a t e r i a l s [ ’ Ma t e r i a lmod e l l ’ ] . Creep ( t a b l e =((0.000133053 , 1 .38857 ,

−0.95954) , ) )
Model . m a t e r i a l s [ ’ Ma t e r i a lmod e l l ’ ] . c r e ep . s e tVa l u e s (

temperatureDependency=ON, t a b l e =()
p = Model . p a r t s [ ’ Packungs r i ng ’ ]
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# Fes t l e gung de r S e c t i o n
Model . HomogeneousSo l idSect ion (name=’ Se c t i o n ’ ,

m a t e r i a l= ’ Ma t e r i a lmod e l l ’ , t h i c k n e s s=None )
f = p . f a c e s
f a c e s = f . getSequenceFromMask (mask=( ’ [#3␣ ] ’ , ) , )
r e g i o n = p . Set ( f a c e s=fac e s , name=’ Set−6 ’ )
# Fes t l e gung des Ass ingment
p . Sec t i onAs s i gnment ( r e g i o n=reg i on , sect ionName=’ S e c t i o n ’ , o f f s e t =0.0 ,

o f f s e tTyp e=MIDDLE_SURFACE, o f f s e t F i e l d=’ ’ ,
t h i c kn e s sA s s i g nmen t=FROM_SECTION)

# D e f i n i t i o n de r M a t e r i a l o r i e n t i e r u n g
p = Model . p a r t s [ ’ Packungs r i ng ’ ]
f = p . f a c e s
f a c e s = f . getSequenceFromMask (mask=( ’ [#3␣ ] ’ , ) , )
r e g i o n = r e g i o nToo l s e t . Reg ion ( f a c e s=f a c e s )
o r i e n t a t i o n=None
Model . p a r t s [ ’ Packungs r i ng ’ ] . M a t e r i a l O r i e n t a t i o n ( r e g i o n=reg i on ,

o r i e n t a t i o nTyp e=SYSTEM, a x i s=AXIS_3 , l o c a l C s y s=o r i e n t a t i o n ,
f i e l dName=’ ’ , a d d i t i o n a lR o t a t i o nTyp e=ROTATION_NONE, ang l e =0.0 ,
a d d i t i o n a l R o t a t i o n F i e l d=’ ’ , s t a c kD i r e c t i o n=STACK_3)

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# D e f i n i t i o n des Assembly
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

# Import des Moduls Assembly
import as semb ly

a = Model . r oo tAssemb ly
a . DatumCsysByThreePoints ( coordSysType=CYLINDRICAL , o r i g i n=

( 0 . 0 , 0 . 0 , 0 . 0 ) , p o i n t 1 =(1.0 , 0 . 0 , 0 . 0 ) ,
p o i n t 2 =(0.0 , 0 . 0 , −1.0))

p = Model . p a r t s [ ’Cup ’ ]
a . I n s t a n c e ( name=’Cup−1 ’ , p a r t=p , dependent=ON)
p = Model . p a r t s [ ’ Packungs r i ng ’ ]
a . I n s t a n c e ( name=’ Packungs r ing −1 ’ , p a r t=p , dependent=ON)
p = Model . p a r t s [ ’ Rod ’ ]
a . I n s t a n c e ( name=’Rod−1 ’ , p a r t=p , dependent=ON)
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#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# D e f i n i t i o n de r Ana l y s e
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

# I m p o r t i e r e n des Moduls Step
import s t e p

# D e f i n i t i o n des L a s t a u f b r i n g u n g s s t e p
Model . S t a t i c S t e p (name=’ La s t a u f b r i n gung ’ , p r e v i o u s=’ I n i t i a l ’ ,

t imePe r i od =0.1 , i n i t i a l I n c =0.1 , min Inc=1e−06, maxInc =0.1 ,
nlgeom=ON)#, c e t o l =0.1)

# D e f i n i t i o n de r S t a b i l i s i e r u n g de r G l e i c h g e w i c h t s i t e r a t i o n
Model . s t e p s [ ’ L a s t a u f b r i n gung ’ ] . s e tVa l u e s (

s t a b i l i z a t i o nMa g n i t u d e =0.02 ,
s t a b i l i z a t i o nMe t h o d=DISSIPATED_ENERGY_FRACTION ,
cont inueDamp ingFacto r s=Fa l s e , adapt i veDampingRat io =0.5)

# D e f i n i t i o n des Kr i e chen Steps
Model . V i s coS tep (name=’ Kr i e chen ’ , p r e v i o u s=’ La s t a u f b r i n gung ’ ,

t imePe r i od =350000.0 , maxNumInc=1000000 , i n i t i a l I n c =0.5 ,
min Inc =0.000001 , maxInc =5000.0 , nlgeom=ON, c e t o l =0.1)

# D e f i n i t i o n de r S t a b i l i s i e r u n g de r G l e i c h g e w i c h t s i t e r a t i o n
Model . s t e p s [ ’ K r i e chen ’ ] . s e tVa l u e s (

s t a b i l i z a t i o nMa g n i t u d e =0.0002 ,
s t a b i l i z a t i o nMe t h o d=DISSIPATED_ENERGY_FRACTION ,
cont inueDamp ingFacto r s=Fa l s e , adapt i veDampingRat io =0.05)

# D e f i n i t i o n de r Ausgabeg roes sen
Model . F i e l dOutpu tReque s t ( name=’ Au sgab e v a r i a b l e n ’ ,

createStepName=’ La s t a u f b r i n gung ’ , v a r i a b l e s =( ’S ’ , ’U ’ ) )
Model . f i e l dOu t pu tR equ e s t s [ ’ Au s gab e v a r i a b l e n ’ ] . s e tV a l u e s (

f r e qu en c y=1)
Model . f i e l dOu t pu tR equ e s t s [ ’ Au s gab e v a r i a b l e n ’ ] . s e tV a l u e s I n S t e p (

stepName=’ Kr i e chen ’ , v a r i a b l e s =( ’S ’ , ’PEEQ ’ , ’CEEQ ’ , ’U ’ ) )
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#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# D e f i n i t i o n de r I n t e r a c t i o n
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

# Import des Moduls I n t e r a c t i o n
import i n t e r a c t i o n

# D e f i n i t o n de r K o n t a k t e i g e n s c h a f t e n
Model . Con tac tP rope r t y ( ’ Kontakt ’ )
Model . i n t e r a c t i o n P r o p e r t i e s [ ’ Kontakt ’ ] . NormalBehav ior (

p r e s s u r eO v e r c l o s u r e=HARD, a l l owS e p a r a t i o n=ON,
cons t r a i n tEn fo r c ementMethod=DEFAULT)

# E r s t e l l e n des r e i b u n g s b e h a f t e t e n Kontakts
Model . i n t e r a c t i o n P r o p e r t i e s [ ’ Kontakt ’ ] . Tang en t i a lB eha v i o r (

f o rmu l a t i o n=PENALTY, d i r e c t i o n a l i t y=ISOTROPIC ,
s l i pRa t eDependency=OFF , p re s su r eDependency=OFF ,
temperatureDependency=OFF , d ependenc i e s =0,
t a b l e =((mu, ) , ) , s h e a r S t r e s s L im i t=None ,
max imumE la s t i cS l i p=FRACTION , f r a c t i o n =0.005 ,
e l a s t i c S l i p S t i f f n e s s=None )

# E r s t e l l e n des Kontaktes zw i s chen Packungs r ing − und Rod
a = Model . r oo tAssemb ly
s1 = a . i n s t a n c e s [ ’Rod−1 ’ ] . edges
s i d e2Edge s1 = s1 . getSequenceFromMask (mask=( ’ [#1␣ ] ’ , ) , )
r e g i o n 1=a . Su r f a c e ( s i d e2Edge s=s ide2Edges1 , name=’m_Surf−2 ’ )
r e g i o n 2=a . i n s t a n c e s [ ’ Packungs r ing −1 ’ ] . s u r f a c e s [ ’ Kontakt_Rod ’ ]
Model . Su r f a ceToSu r f a ceContac tS td (name=’ In t −1 ’ ,

createStepName=’ I n i t i a l ’ , master=reg i on1 , s l a v e=reg i on2 ,
s l i d i n g=FINITE , t h i c k n e s s=ON, i n t e r a c t i o n P r o p e r t y=’ Kontakt ’ ,
ad justMethod=NONE, i n i t i a l C l e a r a n c e=OMIT, datumAxis=None ,
c l e a r a n c eReg i o n=None )

# E r s t e l l e n des Kontaktes zw i s chen Packungs r ing − und Rod
r e g i o n 1=a . i n s t a n c e s [ ’Cup−1 ’ ] . s u r f a c e s [ ’ Maste r sur face_Cup ’ ]
r e g i o n 2=a . i n s t a n c e s [ ’ Packungs r ing −1 ’ ] . s u r f a c e s [ ’ Kontakt_Cup ’ ]
Model . Su r f a ceToSu r f a ceContac tS td (name=’ In t −2 ’ ,

createStepName=’ I n i t i a l ’ , master=reg i on1 , s l a v e=reg i on2 ,
s l i d i n g=FINITE , t h i c k n e s s=ON, i n t e r a c t i o n P r o p e r t y=’ Kontakt ’ ,
ad justMethod=NONE, i n i t i a l C l e a r a n c e=OMIT, datumAxis=None ,
c l e a r a n c eReg i o n=None )
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#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# D e f i n i t i o n de r Las t und Randbedingungen
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

# I m p o r t i e r e n des Lastmodu l s
import l o ad

# D e f i n i t i o n des Z y l i n d e r d r u c k e s
s1 = a . i n s t a n c e s [ ’ Packungs r ing −1 ’ ] . edges
s i d e1Edge s1 = s1 . getSequenceFromMask (mask=( ’ [#60␣ ] ’ , ) , )
r e g i o n = a . Su r f a c e ( s i d e1Edge s=s ide1Edges1 , name=’ Sur f −4 ’ )
Model . P r e s s u r e ( name=’ Z y l i n d e r d r u c k ’ ,

createStepName=’ La s t a u f b r i n gung ’ , r e g i o n=reg i on ,
d i s t r i b u t i o nT y p e=UNIFORM, f i e l d=’ ’ , magnitude= dp ,
amp l i t ude=UNSET)

# D e f i n i t i o n de r Lagerung de r Rod
r1 = a . i n s t a n c e s [ ’Rod−1 ’ ] . r e f e r e n c e P o i n t s
r e f P o i n t s 1=( r1 [ 2 ] , )
r e g i o n = a . Set ( r e f e r e n c e P o i n t s=r e fPo i n t s 1 , name=’ Set−1 ’ )
Model . EncastreBC (name=’ Lagerung_Rod ’ , createStepName=’ I n i t i a l ’ ,

r e g i o n=reg i on , l o c a l C s y s=None )

# D e f i n i t i o n de r Lagerung de r Cup
r1 = a . i n s t a n c e s [ ’Cup−1 ’ ] . r e f e r e n c e P o i n t s
r e f P o i n t s 1=( r1 [ 2 ] , )
r e g i o n = a . Set ( r e f e r e n c e P o i n t s=r e fPo i n t s 1 , name=’ Set−2 ’ )
Model . EncastreBC (name=’ Randbedingung_Cup ’ ,

createStepName=’ I n i t i a l ’ , r e g i o n=reg i on , l o c a l C s y s=None )

# Ergaenzen des Tempe r a t u r f e l d e s im Packungs r i ng am Anfang
f 1 = a . i n s t a n c e s [ ’ Packungs r ing −1 ’ ] . f a c e s
f a c e s 1 = f1 . getSequenceFromMask (mask=( ’ [#3␣ ] ’ , ) , )
r e g i o n = a . Set ( f a c e s=face s1 , name=’ Set−3 ’ )
Model . Temperature ( name=’ Temperatur_Anfang ’ ,

createStepName=’ I n i t i a l ’ , r e g i o n=reg i on , d i s t r i b u t i o nT y p e=
UNIFORM, c r o s s S e c t i o nD i s t r i b u t i o n=CONSTANT_THROUGH_THICKNESS,
magn i tudes=(T_Start , ) )

# Ergaenzen des Tempe r a t u r f e l d e s im Packungs r i ng s t a t i o n a e r
f 1 = a . i n s t a n c e s [ ’ Packungs r ing −1 ’ ] . f a c e s
f a c e s 1 = f1 . getSequenceFromMask (mask=( ’ [#3␣ ] ’ , ) , )
r e g i o n = a . Set ( f a c e s=face s1 , name=’ Set−3 ’ )
Model . Temperature ( name=’ Temperatur_Ende ’ ,

createStepName=’ La s t a u f b r i n gung ’ , r e g i o n=reg i on ,
d i s t r i b u t i o nT y p e=UNIFORM, c r o s s S e c t i o nD i s t r i b u t i o n=
CONSTANT_THROUGH_THICKNESS, magn i tudes=(T_Kelvin , ) )
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#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# Verne tzen des Mode l l s
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

# I m p o r t i e r e n des Vernetzungsmodu l s
import mesh

# Verne tzen des Packung s r i nge s
p = Model . p a r t s [ ’ Packungs r i ng ’ ]
p . s e edPa r t ( s i z e =0.1 , d e v i a t i o n F a c t o r =0.1 , m inS i z eFac to r =0.1)
e = p . edges
p i ckedEdges = e . getSequenceFromMask (mask=( ’ [# f ␣ ] ’ , ) , )
p . seedEdgeByS ize ( edges=pickedEdges , s i z e=Meshs ize , d e v i a t i o n F a c t o r =0.1 ,

m inS i z eFac to r =0.1 , c o n s t r a i n t=FINER)
p . generateMesh ( )
elemType1 = mesh . ElemType ( elemCode=Elementtype1 , e l emL i b r a r y=STANDARD)
elemType2 = mesh . ElemType ( elemCode=Elementtype2 , e l emL i b r a r y=STANDARD)
f = p . f a c e s
f a c e s = f . getSequenceFromMask (mask=( ’ [#3␣ ] ’ , ) , )
p i c k edReg i on s =( f a c e s , )
p . se tE lementType ( r e g i o n s=p i ckedReg ion s , e lemTypes=(elemType1 , elemType2 ) )

# Verne tzen de r Cup
p = Model . p a r t s [ ’ Cup ’ ]
p . s e edPa r t ( s i z e =0.001 , d e v i a t i o n F a c t o r =0.1 , m inS i z eFac to r =0.1)
p . generateMesh ( )

# Verne tzen de r Rod
p = Model . p a r t s [ ’ Rod ’ ]
p . s e edPa r t ( s i z e =0.1 , d e v i a t i o n F a c t o r =0.1 , m inS i z eFac to r =0.1)
p . generateMesh ( )
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#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# D e f i n i t i o n de r du r chzu fueh r enden Jobs
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

# I m p o r t i e r e n des Jobmoduls
import j ob

# D e f i n i t i o n des Jobs
mdb . Job (name=Simulat ionsname_mech , model=’Model−1 ’ ,

d e s c r i p t i o n=’ Ana l y s e ␣ des ␣ K r i e c h v e r h a l t e n s , ␣Long_Time ’ ,
type=ANALYSIS , atTime=None , wa i tMinute s=0, wa i tHours=0,
queue=None , memory=90, memoryUnits=PERCENTAGE,
getMemoryFromAnalys i s=True , e x p l i c i t P r e c i s i o n=SINGLE ,
noda lOu t pu tP r e c i s i o n=SINGLE , e choP r i n t=OFF , mode lP r i n t=OFF ,
c o n t a c tP r i n t=OFF , h i s t o r y P r i n t=OFF , u s e r S ub r o u t i n e=’ ’ ,
s c r a t c h=’ ’ , r e s u l t s F o rma t=ODB, mu l t i p r o c e s s i ngMode=DEFAULT,
numCpus=1, numGPUs=0)

# St a r t e n des Jobs
mdb . j o b s [ Simulat ionsname_mech ] . submit ( c o n s i s t e n c yCh e c k i n g=OFF)
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Changes for the model with moving piston rod
Only a few changes need to be made in the preceding Python script so that the simulation
can be carried out with a moving piston rod.

When defining the step, EXPLICIT_ONLY must be set for the integration method. The
reason for this is that very small time increments must be selected in order to be able to
resolve the displacement process over time.
Model . s t e p s [ ’ K r i e chen ’ ] . s e tVa l u e s ( c e t o l =0.1 ,

i n t e g r a t i o n=EXPLICIT_ONLY)
When defining the boundary conditions, the boundary condition of the piston rod must be
changed. Movement in the axial direction has to be possible, but at the same time displacement
in the radial direction must be blocked.
Model .XsymmBC(name=’BC−2 ’ , createStepName=’ I n i t i a l ’ ,

r e g i o n=reg i on , l o c a l C s y s=None )
Furthermore, the movement of the piston rod needs to be defined.
Model . P e r i o d i cAmp l i t u d e (name=’Movement ’ , t imeSpan=STEP ,

f r e qu en c y= f r eq , s t a r t =0.0 , a_0=0.0 , data =((0 .0 , 1 . 0 ) , ) )
a = Model . r oo tAssemb ly
r1 = a . i n s t a n c e s [ ’Rod−1 ’ ] . r e f e r e n c e P o i n t s
r e f P o i n t s 1=( r1 [ 2 ] , )
r e g i o n = a . Set ( r e f e r e n c e P o i n t s=r e fPo i n t s 1 , name=’ Set−8 ’ )
Model . DisplacementBC (name=’ Bewegung_der_Kolbenstange ’ ,

createStepName=’ Kr i e chen ’ , r e g i o n=reg i on , u1=UNSET,
u2= u , ur3=UNSET, amp l i t ude=’Movement ’ , f i x e d=OFF ,
d i s t r i b u t i o nT y p e=UNIFORM, f i e l dName=’ ’ , l o c a l C s y s=None )
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Changes in the model to account for the inhomogeneous temperature
field
Since no mechanical hysteresis losses occur during creep of the packing ring, in contrast to
cyclic loading, the thermal and mechanical problems can be treated separately. In this case,
the mechanical model is copied and the boundary conditions are changed from mechanical to
thermal boundary conditions.
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# E r s t e l l e n des th e rm i s chen Mode l l s
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

# Kop ie r en des mechan i schen Models
mdb . Model ( name=’Model−1−t empe ra tu r e ’ , objectToCopy=Model )

# Umbenennen des th e rm i s chen Models
Model_therm = mdb . models [ ’Model−1−t empe ra tu r e ’ ]

# Loeschen de r n i c h t b e n o e t i g t e n Komponenten
del Model_therm . p a r t s [ ’Cup ’ ]
del Model_therm . p a r t s [ ’ Rod ’ ]

# Loeschen de r n i c h t b e n o e t i g t e n Steps
del Model_therm . s t e p s [ ’ L a s t a u f b r i n gung ’ ]
del Model_therm . s t e p s [ ’ K r i e chen ’ ]

# E r s t e l l e n des Steps f u e r s t a t i o n a r e s Tempe ra tu r f e l d
Model_therm . Hea tTran s f e rS t ep (name=’ t emp e r a t u r e f i e l d ’ ,

p r e v i o u s=’ I n i t i a l ’ , r e s p on s e=STEADY_STATE, amp l i t ude=RAMP)

# D e f i n i t i o n des F i e l d Outputs
Model_therm . F i e l dOutpu tReque s t ( name=’F−Output−1 ’ ,

createStepName=’ t emp e r a t u r e f i e l d ’ , v a r i a b l e s =( ’NT ’ , ) )

# Loeschen de r I n t e r a k t i o n e n
del Model_therm . i n t e r a c t i o n s [ ’ I n t −1 ’ ]
del Model_therm . i n t e r a c t i o n s [ ’ I n t −2 ’ ]

# Loeschen de r Randbedingungen des mechan i schen Mode l l s
del Model_therm . bounda r yCond i t i on s [ ’ Lagerung_Rod ’ ]
del Model_therm . bounda r yCond i t i on s [ ’ Randbedingung_Cup ’ ]

# D e f i n i t i o n de r Temperaturen am Rand
a = Model_therm . roo tAssemb ly
e1 = a . i n s t a n c e s [ ’ Packungs r ing −1 ’ ] . edges
edges1 = e1 . getSequenceFromMask (mask=( ’ [#84␣ ] ’ , ) , )
r e g i o n = a . Set ( edges=edges1 , name=’ Set−4 ’ )
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Model_therm . TemperatureBC (name=’BC−1 ’ ,
createStepName=’ t emp e r a t u r e f i e l d ’ , r e g i o n=reg i on , f i x e d=OFF ,
d i s t r i b u t i o nT y p e=UNIFORM, f i e l dName=’ ’ , magnitude=T_rod ,
amp l i t ude=UNSET)

edges1 = e1 . getSequenceFromMask (mask=( ’ [#10␣ ] ’ , ) , )
r e g i o n = a . Set ( edges=edges1 , name=’ Set−5 ’ )
Model_therm . TemperatureBC (name=’BC−2 ’ ,

createStepName=’ t emp e r a t u r e f i e l d ’ , r e g i o n=reg i on , f i x e d=OFF ,
d i s t r i b u t i o nT y p e=UNIFORM, f i e l dName=’ ’ , magnitude=T_Cup ,
amp l i t ude=UNSET)

# D e f i n i t i o n de r Ve rne t zungspa ramete r
p = Model_therm . p a r t s [ ’ Packungs r i ng ’ ]
p . de l e teMesh ( )
p . s e edPa r t ( s i z e =0.05 , d e v i a t i o n F a c t o r =0.1 , m inS i z eFac to r =0.1)
p . generateMesh ( )

elemType1 = mesh . ElemType ( elemCode=DCAX4, e l emL i b r a r y=STANDARD)
elemType2 = mesh . ElemType ( elemCode=DCAX3, e l emL i b r a r y=STANDARD)
f = p . f a c e s

f a c e s = f . getSequenceFromMask (mask=( ’ [#3␣ ] ’ , ) , )
p i c k edReg i on s =( f a c e s , )
p . se tE lementType ( r e g i o n s=p i ckedReg ion s , e lemTypes=(elemType1 ,

elemType2 ) )

# D e f i n i t i o n des th e rm i s chen Jobs
mdb . Job (name=Simulat ionsname_therm , model=’Model−1−t empe ra tu r e ’ ,

d e s c r i p t i o n=’ Long_Time ’ , type=ANALYSIS , atTime=None ,
wa i tMinute s=0, wa i tHour s=0, queue=None , memory=90,
memoryUnits=PERCENTAGE, getMemoryFromAnalys i s=True ,
e x p l i c i t P r e c i s i o n=SINGLE , noda lOu t pu tP r e c i s i o n=SINGLE ,
e choP r i n t=OFF , mode lP r i n t=OFF , c o n t a c tP r i n t=OFF ,
h i s t o r y P r i n t=OFF , u s e r S ub r o u t i n e=’ ’ , s c r a t c h=’ ’ ,
r e s u l t s F o rma t=ODB, mu l t i p r o c e s s i ngMode=DEFAULT,
numCpus=1, numGPUs=0)

# St a r t e n des Jobs
mdb . j o b s [ S imulat ionsname_therm ] . submit ( c o n s i s t e n c yCh e c k i n g=OFF)
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The output file (.odb) of the calculated stationary temperature field can then be read into
the mechanical model. So in the mechanical model, add:
# Auf ru f des t a t s a e c h l i c h e n Tempe r a t u r f e l d e s
Model . p r e d e f i n e d F i e l d s [ ’ Temperatur_Ende ’ ] . s e tV a l u e s (

d i s t r i b u t i o nT y p e=FROM_FILE ,
f i l eName=’D: \ \ 2 . ␣ Ma s t e r a r b e i t ␣Ruetz \\Python␣ S k r i p t e \\temp . odb ’ )
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Python script for the 3D FEA model

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# 2. Mas t e r a r b e i t −Ruetz
# ( c ) D i p l .− I ng . Marce l Ruetz
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

from abaqus import ∗
from abaqusCons tant s import∗
import r e g i o nToo l s e t
import s e c t i o n
import r e g i o nToo l s e t
import d i sp l ayGroupMdbToo l s e t as dgm
import d i sp l ayGroupOdbToo l s e t as dgo

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# I m p o r t i e r e n de r Mes sda t en sae t z e
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

# I m p o r t i e r e n von Pythonmodul numpy
import numpy as np

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# E r s t e l l e n des Mode l l s
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Model = mdb . models [ ’Model−1 ’ ]

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# E r s t e l l e n de r Komponenten
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

# I m p o r t i e r e n des Ze ichenmodu l s und des Stueckmoduls
import s k e t ch
import pa r t

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# P a r a m e t e r i s i e r u n g des Mode l l s
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

# Hie r werden d i e zu p a r a m e t e r i s i e r e n d e n Groes sen d e f i n i e r t , d i e
# r e s t l i c h e n ( abhaeng igen ) Groes sen werden ausgehend von d i e s e n
# Groes sen be r e chne t
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# R a d i a l e R i ngd i c k e
RRT = 5.0 # mm
# Innendu r chmes s e r des Packung s r i ng s
d i = 50 # mm
# A x i a l e R i ngd i c k e
b = 3 .0 #mm
# S p a l t d i c k e
g = 0 .6 # mm
# Durchmesser de r D ruckau sg l e i c h sboh rung
dB = 1 .0 #mm
# P o s i t i o n de r D ru ckau sg l e i c h sboh rung
pos = 1 .5#mm
# D r u c k d i f f e r e n z
dp = 10 .0 # MPa
# Temperatur
T_Ce l s iu s = 140 .0 # C e l s i u s
T_rod = 200 .0 #
T_Cup = 7 .0 #
# Ve rn e t z ung s g r o e s s e
Meshs i ze = 0.002 # mm
Meshs i ze = 0 .01 # mm
# Elementtypen
Elementtype1 = CAX4 # 4−k n o t i g e s a x i a l s y m m e t r i s c h e Kont inuumse lemente
Elementtype2 = CAX3 # 3−k n o t i g e s a x i a l s y m m e t r i s c h e Kont inuumse lemente
# R e i b u n g s k o e f f i z i e n t
mu = 0.0
# S i m u l a t i o n s b e z e i c h n u n g
Simulat ionsname_therm = ’ Simulation_dT_80_20 ’
Simulat ionsname_mech = ’Var_dB_d=1mm’
# Berechne te Groes sen
T_Kelvin = 273.15 # K
T_Start = T_Kelvin + 60 .0 # C e l s i u s
T_Kelvin = T_Kelvin + T_Ce l s iu s # K
T_Start = T_Kelvin
p_Umgebung = 0 .1 # MPa
p_Zy l i nde r = dp+p_Umgebung # MPa
da = d i +2.0∗RRT # mm
r a = da /2 .0
r i = d i /2 .0
dg = d i /2.0+g # mm
b_f ine rmesh = −4.0+g−0.5 #mm
# F e r t i g u n g s r a d i u s des Gaps
r = 0 .1 # mm
g = g − r
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#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# D e f i n i t i o n de r Geometr i e des Models
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# E r s t e l l e n des Bas i s −Mode l l s
s = Model . Con s t r a i n edSke t ch (name=’ __prof i l e__ ’ ,

s h e e t S i z e =100.0)
g , v , d , c = s . geometry , s . v e r t i c e s , s . d imens ions , s . c o n s t r a i n t s
s . s e tP r ima r yOb j e c t ( op t i on=STANDALONE)
s . C on s t r u c t i o n L i n e ( po i n t 1 =(0.0 , −50.0) , p o i n t 2 =(0.0 , 5 0 . 0 ) )
s . F i x e dCon s t r a i n t ( e n t i t y=g [ 2 ] )
s . r e c t a n g l e ( po i n t 1 =(25.0 , −1.5) , p o i n t 2 =(30.0 , 1 . 5 ) )
p = Model . Par t ( name=’ Packungs r i ng ’ , d im e n s i o n a l i t y=THREE_D,

type=DEFORMABLE_BODY)
p = Model . p a r t s [ ’ Packungs r i ng ’ ]
p . Ba s eSo l i dRe vo l v e ( s k e t ch=s , ang l e =90.0 , f l i p R e v o l v e D i r e c t i o n=OFF)
s . un s e tP r ima r yOb j e c t ( )
s e s s i o n . v i ewpo r t s [ ’ V iewpor t : ␣1 ’ ] . s e tVa l u e s ( d i s p l a y e dOb j e c t=p )
del mdb . models [ ’Model−1 ’ ] . s k e t c h e s [ ’ __prof i l e__ ’ ]

# D e f i n i t i o n de r Au sg l e i c h sboh rungen

p = Model . p a r t s [ ’ Packungs r i ng ’ ]
# Erzeugung e i n e s Datum Punktes im Ursprung
p . DatumPointByCoord inate ( coo rd s =(0.0 , 0 . 0 , 0 . 0 ) )
e = p . edges
# Erzeugung e i n e r H i l f s l i n i e
p . DatumAxisByTwoPoint ( po i n t 1=p . I n t e r e s t i n g P o i n t ( edge=e [ 5 ] , r u l e=MIDDLE) ,

po i n t 2=p . I n t e r e s t i n g P o i n t ( edge=e [ 8 ] , r u l e=MIDDLE) )
# Erzeugung de r r a d i a l e n H i l f s e b e n e
e1 , d1 = p . edges , p . datums
p . DatumPlaneByThreePoints ( po i n t 1=d1 [ 2 ] , p o i n t 2=p . I n t e r e s t i n g P o i n t (

edge=e1 [ 5 ] , r u l e=MIDDLE) , po i n t 3=p . I n t e r e s t i n g P o i n t ( edge=e1 [ 8 ] ,
r u l e=MIDDLE) )

# Erzeugung de r t a n g e n t i a l e n H i l f s e b e n e
d2 = p . datums
p . DatumPlaneByRotat ion ( p l ane=d2 [ 4 ] , a x i s=d2 [ 3 ] , a ng l e =90.0)
# Erzeugung de r Bohrung 1
e , d1 = p . edges , p . datums
p . HoleThruAl lFromEdges ( p l ane=d1 [ 5 ] , edge1=e [ 6 ] , edge2=e [ 9 ] ,

p l a n eS i d e=SIDE1 ,
d i ame te r=dB , d i s t a n c e 1=b /2 . 0 , d i s t a n c e 2=
ra ∗ cos ( 2 . 0∗ p i ∗45 . 0/360 . 0 ) )

# Erzeugung von H i l f s da tumspunk t en
p . DatumPointByCoord inate ( coo rd s=( ra ∗ cos (2∗ p i ∗30/360) , −b/2 ,

r a ∗ s i n (2∗ p i ∗30/360)+0.1))
p . DatumPointByCoord inate ( coo rd s=( ra ∗ cos (2∗ p i ∗30/360) , 0 ,
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ra ∗ s i n (2∗ p i ∗30/360)+0.1))
p . DatumPointByCoord inate ( coo rd s=( ra ∗ cos (2∗ p i ∗30/360) , b /2 ,

r a ∗ s i n (2∗ p i ∗30/360)+0.1))
# Erzeugung de r H i l s l i n i e
d2 = p . datums
p . DatumAxisByTwoPoint ( po i n t 1=d2 [ 9 ] , p o i n t 2=d2 [ 7 ] )
# Erzeugung de r r a d i a l e n H i l f s e b e n e
d1 = p . datums
p . DatumPlaneByThreePoints ( po i n t 1=d1 [ 2 ] , p o i n t 2=d1 [ 9 ] , p o i n t 3=d1 [ 7 ] )
# Erzeugung de r t a n g e n t i a l e n H i l f s e b e n
d2 = p . datums
p . DatumPlaneByRotat ion ( p l ane=d2 [ 1 1 ] , a x i s=d2 [ 1 0 ] , a ng l e =90.0)
# Erzeugung de r Bohrung
e1 , d1 = p . edges , p . datums
p . HoleThruAl lFromEdges ( p l ane=d1 [ 1 2 ] , edge1=e1 [ 1 4 ] , edge2=e1 [ 1 1 ] ,

p l a n eS i d e=SIDE1 , d i ame te r=dB , d i s t a n c e 1=pos , d i s t a n c e 2=
ra ∗ cos (2∗ p i ∗30/360))

# D e f i n i t i o n de r H i l f s d a tumspunk t e
p . DatumPointByCoord inate ( coo rd s=( ra ∗ cos (2∗ p i ∗60/360) , −b/2 ,

r a ∗ s i n (2∗ p i ∗60/360)+0.1))
p . DatumPointByCoord inate ( coo rd s=( ra ∗ cos (2∗ p i ∗60/360) , b /2 ,

r a ∗ s i n (2∗ p i ∗60/360)+0.1))
# Erzeugung de r H i l f s l i n i e
d2 = p . datums
p . DatumAxisByTwoPoint ( po i n t 1=d2 [ 1 5 ] , p o i n t 2=d2 [ 1 4 ] )
# Erzeugung de r r a d i a l e n H i l f s e b e n e
d1 = p . datums
p . DatumPlaneByThreePoints ( po i n t 1=d1 [ 1 5 ] , p o i n t 2=d1 [ 1 4 ] , p o i n t 3=d1 [ 2 ] )
# Erzeugung de r t a n g e n t i a l e n H i l f s e b e n e
d2 = p . datums
p . DatumPlaneByRotat ion ( p l ane=d2 [ 1 7 ] , a x i s=d2 [ 1 6 ] , a ng l e =90.0)
# Erzeugung de r Bohrung
e , d1 = p . edges , p . datums
p . HoleThruAl lFromEdges ( p l ane=d1 [ 1 8 ] , edge1=e [ 1 6 ] , edge2=e [ 1 3 ] ,

p l a n eS i d e=SIDE1 , d i ame te r=dB , d i s t a n c e 1=pos ,
d i s t a n c e 2=ra ∗ cos (2∗ p i ∗60/360))

# Erzeugung de r H i l f s d a tumspunk t e
p . DatumPointByCoord inate ( coo rd s=( ra ∗ cos (2∗ p i ∗15/360) , −b/2 ,

r a ∗ s i n (2∗ p i ∗15/360)+0.1))
p . DatumPointByCoord inate ( coo rd s=( ra ∗ cos (2∗ p i ∗15/360) , b /2 ,

r a ∗ s i n (2∗ p i ∗15/360)+0.1))
# Erzeugung de r H i l f s l i n i e
d2 = p . datums
p . DatumAxisByTwoPoint ( po i n t 1=d2 [ 2 1 ] , p o i n t 2=d2 [ 2 0 ] )
# Erzeugung de r r a d i a l e n H i l f s e b e n e
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d1 = p . datums
p . DatumPlaneByThreePoints ( po i n t 1=d1 [ 2 ] , p o i n t 2=d1 [ 2 1 ] , p o i n t 3=d1 [ 2 0 ] )
# Erzeugung de r t a n g e n t i a l e n H i l f s e b e n e
d2 = p . datums
p . DatumPlaneByRotat ion ( p l ane=d2 [ 2 3 ] , a x i s=d2 [ 2 2 ] , a ng l e =90.0)
# Erzeugung de r Bohrung
e1 , d1 = p . edges , p . datums
p . HoleThruAl lFromEdges ( p l ane=d1 [ 2 4 ] , edge1=e1 [ 1 8 ] , edge2=e1 [ 1 5 ] ,

p l a n eS i d e=SIDE1 , d i ame te r=dB , d i s t a n c e 1=pos ,
d i s t a n c e 2=ra ∗ cos (2∗ p i ∗15/360))

# Erzeugung de r H i l f s da tumspunk t en
v1 = p . v e r t i c e s
p . DatumAxisByTwoPoint ( po i n t 1=v1 [ 1 7 ] , p o i n t 2=v1 [ 1 5 ] )
# D e f i n i t i o n de r r a d i a l e n H i l f s e b e n e
v2 , d2 = p . v e r t i c e s , p . datums
p . DatumPlaneByThreePoints ( po i n t 1=d2 [ 2 ] , p o i n t 2=v2 [ 1 7 ] , p o i n t 3=v2 [ 1 5 ] )
# D e f i n i t i o n de r t a n g e n t i a l e n H i l f s e b e n e
d1 = p . datums
p . DatumPlaneByRotat ion ( p l ane=d1 [ 2 7 ] , a x i s=d1 [ 2 6 ] , a ng l e =90.0)
# Erzeugung de r Bohrung
e , d2 = p . edges , p . datums
p . HoleThruAl lFromEdges ( p l ane=d2 [ 2 8 ] , edge1=e [ 2 0 ] , edge2=e [ 1 7 ] ,

p l a n eS i d e=SIDE1 , d i ame te r=dB , d i s t a n c e 1=pos ,
d i s t a n c e 2=ra ∗ cos (2∗ p i ∗0/360))

# Erzeugung de r H i l f s d a tumspunk t e
p . DatumPointByCoord inate ( coo rd s=( ra ∗ cos (2∗ p i ∗75/360) , −b/2 ,

r a ∗ s i n (2∗ p i ∗75/360)+0.1))
p . DatumPointByCoord inate ( coo rd s=( ra ∗ cos (2∗ p i ∗75/360) , b /2 ,

r a ∗ s i n (2∗ p i ∗75/360)+0.1))
# Erzeugung de r H i l f s l i n i e
d1 = p . datums
p . DatumAxisByTwoPoint ( po i n t 1=d1 [ 3 0 ] , p o i n t 2=d1 [ 3 1 ] )
# Erzeugung de r r a d i a l e n H i l f s e b e n e
d2 = p . datums
p . DatumPlaneByThreePoints ( po i n t 1=d2 [ 2 ] , p o i n t 2=d2 [ 3 0 ] , p o i n t 3=d2 [ 3 1 ] )
p = Model . p a r t s [ ’ Packungs r i ng ’ ]
# Erzeugung de r t a n g e n t i a l e n H i l f s e b e n e
d1 = p . datums
p . DatumPlaneByRotat ion ( p l ane=d1 [ 3 3 ] , a x i s=d1 [ 3 2 ] , a ng l e =90.0)
# Erzeugung de r Bohrung
e , d1 = p . edges , p . datums
p . HoleThruAl lFromEdges ( p l ane=d1 [ 3 4 ] , edge1=e [ 2 7 ] , edge2=e [ 2 5 ] ,

p l a n eS i d e=SIDE1 , d i ame te r=dB , d i s t a n c e 1=pos ,
d i s t a n c e 2=ra ∗ cos (2∗ p i ∗75/360))
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# Erzeugung de r H i l f s l i n i e
v1 = p . v e r t i c e s
p . DatumAxisByTwoPoint ( po i n t 1=v1 [ 2 3 ] , p o i n t 2=v1 [ 2 1 ] )
# Erzeugung de r r a d i a l e n H i l f s e b e n e
v2 , d2 = p . v e r t i c e s , p . datums
p . DatumPlaneByThreePoints ( po i n t 1=d2 [ 2 ] , p o i n t 2=v2 [ 2 3 ] , p o i n t 3=v2 [ 2 1 ] )
# Erzeugung de r t a n g e n t i a l e n H i l f s e b e n e
d1 = p . datums
p . DatumPlaneByRotat ion ( p l ane=d1 [ 3 7 ] , a x i s=d1 [ 3 6 ] , a ng l e =90.0)
# Erzeugung de r Bohrung
e1 , d2 = p . edges , p . datums
p . HoleThruAl lFromEdges ( p l ane=d2 [ 3 8 ] , edge1=e1 [ 1 6 ] , edge2=e1 [ 1 5 ] ,

p l a n eS i d e=SIDE1 , d i ame te r=dB , d i s t a n c e 1=pos , d i s t a n c e 2 =30.0)

# E r s t e l l e n de r Rod
s1 = Model . Con s t r a i n edSke t ch (name=’ __prof i l e__ ’ ,

s h e e t S i z e =200.0)
g , v , d , c = s1 . geometry , s1 . v e r t i c e s , s1 . d imens ions , s1 . c o n s t r a i n t s
s1 . s e tP r ima r yOb j e c t ( op t i o n=STANDALONE)
s1 . C on s t r u c t i o n L i n e ( po i n t 1 =(0.0 , −100.0) , po i n t 2 =(0.0 , 1 00 . 0 ) )
s1 . F i x e dCon s t r a i n t ( e n t i t y=g [ 2 ] )
s1 . L i n e ( po i n t 1=( r i , −b/2−1) , po i n t 2=( r i , b/2+1))
s1 . V e r t i c a l C o n s t r a i n t ( e n t i t y=g [ 3 ] , addUndoState=Fa l s e )
p = Model . Par t ( name=’Rod ’ , d im e n s i o n a l i t y=THREE_D,

type=DISCRETE_RIGID_SURFACE)
p = Model . p a r t s [ ’ Rod ’ ]
p . Ba s eSh e l l R e v o l v e ( s k e t ch=s1 , ang l e =90.0 , f l i p R e v o l v e D i r e c t i o n=OFF)
s1 . un s e tP r ima r yOb j e c t ( )
s e s s i o n . v i ewpo r t s [ ’ V iewpor t : ␣1 ’ ] . s e tVa l u e s ( d i s p l a y e dOb j e c t=p )
del mdb . models [ ’Model−1 ’ ] . s k e t c h e s [ ’ __prof i l e__ ’ ]

# Erzeugung des Cups
s = Model . Con s t r a i n edSke t ch (name=’ __prof i l e__ ’ ,

s h e e t S i z e =200.0)
g , v , d , c = s . geometry , s . v e r t i c e s , s . d imens ions , s . c o n s t r a i n t s
s . s e tP r ima r yOb j e c t ( op t i on=STANDALONE)
s . C on s t r u c t i o n L i n e ( po i n t 1 =(0.0 , −100.0) , po i n t 2 =(0.0 , 1 00 . 0 ) )
s . F i x e dCon s t r a i n t ( e n t i t y=g [ 2 ] )
s . L i n e ( po i n t 1=(dg , −2) , po i n t 2=(dg , −b /2))
s . V e r t i c a l C o n s t r a i n t ( e n t i t y=g [ 3 ] , addUndoState=Fa l s e )
s . L i n e ( po i n t 1=(dg , −b /2) , po i n t 2=(da/2+1, −b /2))
s . H o r i z o n t a l C o n s t r a i n t ( e n t i t y=g [ 4 ] , addUndoState=Fa l s e )
s . P e r p e n d i c u l a r C o n s t r a i n t ( e n t i t y 1=g [ 3 ] , e n t i t y 2=g [ 4 ] , addUndoState=Fa l s e )
s . F i l l e t B yR a d i u s ( r a d i u s =0.1 , cu r ve1=g [ 3 ] , n ea rPo i n t1=(dg ,

−b /2.0 −0.2) , cu r ve2=g [ 4 ] , n ea rPo i n t2=(dg+1, −b /2 . 0 ) )
p = Model . Par t ( name=’Cup ’ , d im e n s i o n a l i t y=THREE_D,

type=DISCRETE_RIGID_SURFACE)
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p = Model . p a r t s [ ’ Cup ’ ]
p . Ba s eSh e l l R e v o l v e ( s k e t ch=s , ang l e =90.0 , f l i p R e v o l v e D i r e c t i o n=OFF)
s . un s e tP r ima r yOb j e c t ( )
s e s s i o n . v i ewpo r t s [ ’ V iewpor t : ␣1 ’ ] . s e tVa l u e s ( d i s p l a y e dOb j e c t=p )
del mdb . models [ ’Model−1 ’ ] . s k e t c h e s [ ’ __prof i l e__ ’ ]

# D e f i n i t i o n de r Kon t ak t f l a e ch en am Packungs r i ng
p = Model . p a r t s [ ’ Packungs r i ng ’ ]
s = p . f a c e s
s i d e 1Fa c e s = s . getSequenceFromMask (mask=( ’ [#2␣ ] ’ , ) , )
p . Su r f a c e ( s i d e 1Fa c e s=s i d e1Face s , name=’ Kontakt_Ring_Rod ’ )
s i d e 1Fa c e s = s . getSequenceFromMask (mask=( ’ [#1000␣ ] ’ , ) , )
p . Su r f a c e ( s i d e 1Fa c e s=s i d e1Face s , name=’ Kontakt_Ring_Cup ’ )

# D e f i n i t i o n de r Su r f a c e am Cup
p = Model . p a r t s [ ’Cup ’ ]
s = p . f a c e s
s i d e 2Fa c e s = s . getSequenceFromMask (mask=( ’ [#7␣ ] ’ , ) , )
p . Su r f a c e ( s i d e 2Fa c e s=s i d e2Face s , name=’ Rod_Flaeche ’ )

# D e f i n i t i o n de r Re f e r enzpunk t e de r s t a r r e n Koerper
p = Model . p a r t s [ ’Cup ’ ]
v1 , e , d2 , n1 = p . v e r t i c e s , p . edges , p . datums , p . nodes
p . Re f e r e n c ePo i n t ( p o i n t=v1 [ 0 ] )
p = Model . p a r t s [ ’ Rod ’ ]
v2 , e1 , d3 , n = p . v e r t i c e s , p . edges , p . datums , p . nodes
p . Re f e r e n c ePo i n t ( p o i n t=v2 [ 0 ] )
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#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# D e f i n i t i o n des M a t e r i a l m o d e l l s
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

# Import des Moduls M a t e r i a l
import ma t e r i a l
# D e f i n i t i o n des M a t e r i a l s
Model . Ma t e r i a l ( name=’ Ma t e r i a lmod e l l ’ )

# D e f i n i t i o n de r t h e rm i s chen M a t e r i a l e i g e n s c h a f t e n
#Model . m a t e r i a l s [ ’ M a t e r i a l m o d e l l ’ ] . Expans ion ( type=ORTHOTROPIC,
# t a b l e =((8e −05, 0 .00014 , 8e −05) , ) )
Model . m a t e r i a l s [ ’ Ma t e r i a lmod e l l ’ ] . Den s i t y ( t a b l e =((1.32 e−09, ) , ) )
Model . m a t e r i a l s [ ’ Ma t e r i a lmod e l l ’ ] . C o n du c t i v i t y ( t a b l e =((0 .25 , ) , ) )
Model . m a t e r i a l s [ ’ Ma t e r i a lmod e l l ’ ] . S p e c i f i cH e a t ( t a b l e =((

2160000000.0 , ) , ) )

# D e f i n i t i o n de r mechan i schen E i g e n s c h a f t e n des M a t e r i a l s HY54
Model . m a t e r i a l s [ ’ Ma t e r i a lmod e l l ’ ] . E l a s t i c ( temperatureDependency=ON,

t a b l e =())

# D e f i n i t i o n des z e i t a b h a e n g i g e n V e r h a l t e n s de r Modul i
Model . m a t e r i a l s [ ’ Ma t e r i a lmod e l l ’ ] . e l a s t i c . s e tV a l u e s (

modu l i=INSTANTANEOUS)

Model . m a t e r i a l s [ ’ Ma t e r i a lmod e l l ’ ] . P l a s t i c ( t a b l e =())
Model . m a t e r i a l s [ ’ Ma t e r i a lmod e l l ’ ] . p l a s t i c . s e tV a l u e s (

temperatureDependency=ON, t a b l e =()
Model . m a t e r i a l s [ ’ Ma t e r i a lmod e l l ’ ] . Creep ( t a b l e =())

# D e f i n i t i o n de r S e c t i o n
Model . HomogeneousSo l idSect ion (name=’ Se c t i o n ␣Ring ’ ,

m a t e r i a l= ’ Ma t e r i a lmod e l l ’ , t h i c k n e s s=None )
p = Model . p a r t s [ ’ Packungs r i ng ’ ]
c = p . c e l l s
c e l l s = c . getSequenceFromMask (mask=( ’ [#1␣ ] ’ , ) , )
r e g i o n = p . Set ( c e l l s=c e l l s , name=’ Set−1 ’ )
p . Sec t i onAs s i gnment ( r e g i o n=reg i on , sect ionName=’ S e c t i o n ␣Ring ’ ,

o f f s e t =0.0 , o f f s e tTyp e=MIDDLE_SURFACE, o f f s e t F i e l d=’ ’ ,
t h i c kn e s sA s s i g nmen t=FROM_SECTION)
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#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# D e f i n i t i o n des Assembly
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

# Import des Moduls Assembly
import as semb ly

a = Model . r oo tAssemb ly
a . DatumCsysByDefault (CARTESIAN)
p = Model . p a r t s [ ’ Cup ’ ]
a . I n s t a n c e ( name=’Cup−1 ’ , p a r t=p , dependent=ON)
p = Model . p a r t s [ ’ Packungs r i ng ’ ]
a . I n s t a n c e ( name=’ Packungs r ing −1 ’ , p a r t=p , dependent=ON)
p = Model . p a r t s [ ’ Rod ’ ]
a . I n s t a n c e ( name=’Rod−1 ’ , p a r t=p , dependent=ON)

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# D e f i n i t i o n de r Ana l y s e
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

# I m p o r t i e r e n des Moduls Step
import s t e p

# D e f i n i t i o n des L a s t a u f b r i n g u n g s s t e p
Model . S t a t i c S t e p (name=’ La s t a u f b r i n gung ’ , p r e v i o u s=’ I n i t i a l ’ ,

d e s c r i p t i o n=’ La s t a u f b r i n gung ’ , maxNumInc=10000 , i n i t i a l I n c =0.5 ,
min Inc=1e−09, maxInc =1.0 , nlgeom=ON)#, c e t o l =0.1)

# D e f i n i t i o n des Kr i e chen Steps
Model . V i s coS tep (name=’ Kr i e chen ’ , p r e v i o u s=’ La s t a u f b r i n gung ’ ,

t imePe r i od =100000.0 , maxNumInc=100000 , i n i t i a l I n c =0.5 ,
min Inc =0.0000001 , maxInc =1.0 , nlgeom=ON, c e t o l =0.1)

# D e f i n i t i o n de r S t a b i l i s i e r u n g de r G l e i c h g e w i c h t s i t e r a t i o n
Model . s t e p s [ ’ K r i e chen ’ ] . s e tVa l u e s (

s t a b i l i z a t i o nMa g n i t u d e =0.0002 ,
s t a b i l i z a t i o nMe t h o d=DISSIPATED_ENERGY_FRACTION ,
cont inueDamp ingFacto r s=Fa l s e , adapt i veDampingRat io =0.05)

# D e f i n i t i o n de r Ausgabeg roes sen
Model . F i e l dOutpu tReque s t ( name=’ Au sgab e v a r i a b l e n ’ ,

createStepName=’ La s t a u f b r i n gung ’ , v a r i a b l e s =( ’S ’ , ’U ’ ) )
Model . f i e l dOu t pu tR equ e s t s [ ’ Au s gab e v a r i a b l e n ’ ] . s e tV a l u e s (

f r e qu en c y=1)
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#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# D e f i n i t i o n de r I n t e r a c t i o n
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

# Import des Moduls I n t e r a c t i o n
import i n t e r a c t i o n

# D e f i n i t o n de r K o n t a k t e i g e n s c h a f t e n
Model . Con tac tP rope r t y ( ’ Kontakt ’ )
Model . i n t e r a c t i o n P r o p e r t i e s [ ’ Kontakt ’ ] . NormalBehav ior (

p r e s s u r eO v e r c l o s u r e=HARD, a l l owS e p a r a t i o n=ON,
cons t r a i n tEn fo r c ementMethod=DEFAULT)

# E r s t e l l e n des r e i b u n g s b e h a f t e t e n Kontakts
Model . i n t e r a c t i o n P r o p e r t i e s [ ’ Kontakt ’ ] . Tang en t i a lB eha v i o r (

f o rmu l a t i o n=PENALTY, d i r e c t i o n a l i t y=ISOTROPIC ,
s l i pRa t eDependency=OFF , p re s su r eDependency=OFF ,
temperatureDependency=OFF , d ependenc i e s =0, t a b l e =((mu, ) , ) ,
s h e a r S t r e s s L im i t=None , max imumE la s t i cS l i p=FRACTION ,
f r a c t i o n =0.005 , e l a s t i c S l i p S t i f f n e s s=None )

# D e f i n i t i o n des Kontaktes Ring−Rod
a = Model . r oo tAssemb ly
s1 = a . i n s t a n c e s [ ’Rod−1 ’ ] . f a c e s
s i d e 1Fa c e s 1 = s1 . getSequenceFromMask (mask=( ’ [#1␣ ] ’ , ) , )
r e g i o n 1=a . Su r f a c e ( s i d e 1Fa c e s=s ide1Face s1 , name=’m_Surf−1 ’ )
r e g i o n 2=a . i n s t a n c e s [ ’ Packungs r ing −1 ’ ] . s u r f a c e s [ ’ Kontakt_Ring_Rod ’ ]
Model . Su r f a ceToSu r f a ceContac tS td (name=’ Kontakt_Ring_Rod ’ ,

createStepName=’ I n i t i a l ’ , master=reg i on1 , s l a v e=reg i on2 ,
s l i d i n g=FINITE , t h i c k n e s s=ON, i n t e r a c t i o n P r o p e r t y=’ Kontakt ’ ,
ad justMethod=NONE, i n i t i a l C l e a r a n c e=OMIT, datumAxis=None ,
c l e a r a n c eReg i o n=None )

# D e f i n i t i o n des Kontaktes Ring−Cup
r e g i o n 1=a . i n s t a n c e s [ ’Cup−1 ’ ] . s u r f a c e s [ ’ Rod_Flaeche ’ ]
a = Model . r oo tAssemb ly
r e g i o n 2=a . i n s t a n c e s [ ’ Packungs r ing −1 ’ ] . s u r f a c e s [ ’ Kontakt_Ring_Cup ’ ]
Model . Su r f a ceToSu r f a ceContac tS td (name=’ Kontakt_Ring_Cup ’ ,

createStepName=’ I n i t i a l ’ , master=reg i on1 , s l a v e=reg i on2 ,
s l i d i n g=FINITE , t h i c k n e s s=ON, i n t e r a c t i o n P r o p e r t y=’ Kontakt ’ ,
ad justMethod=NONE, i n i t i a l C l e a r a n c e=OMIT, datumAxis=None ,
c l e a r a n c eReg i o n=None )
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#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# D e f i n i t i o n de r Las t und Randbedingungen
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

# I m p o r t i e r e n des Lastmodu l s
import l o ad

# D e f i n i t i o n des Kontak td ruckes
a = Model . r oo tAssemb ly
s1 = a . i n s t a n c e s [ ’ Packungs r ing −1 ’ ] . f a c e s
s i d e 1Fa c e s 1 = s1 . getSequenceFromMask (mask=( ’ [# fd9 ␣ ] ’ , ) , )
r e g i o n = a . Su r f a c e ( s i d e 1Fa c e s=s ide1Face s1 , name=’ Sur f −2 ’ )
Model . P r e s s u r e ( name=’ Load−1 ’ , createStepName=’ La s t a u f b r i n gung ’ ,

r e g i o n=reg i on , d i s t r i b u t i o nT y p e=UNIFORM, f i e l d=’ ’ ,
magnitude=dp , amp l i t ude=UNSET)

# D e f i n i t i o n de r Lagerung de r Rod
r1 = a . i n s t a n c e s [ ’Rod−1 ’ ] . r e f e r e n c e P o i n t s
r e f P o i n t s 1=( r1 [ 2 ] , )
r e g i o n = a . Set ( r e f e r e n c e P o i n t s=r e fPo i n t s 1 , name=’ Set−7 ’ )
Model . EncastreBC (name=’Rod ’ , createStepName=’ I n i t i a l ’ ,

r e g i o n=reg i on , l o c a l C s y s=None )

# D e f i n i t i o n de r Lagerung des Cups
a = Model . r oo tAssemb ly
r1 = a . i n s t a n c e s [ ’Cup−1 ’ ] . r e f e r e n c e P o i n t s
r e f P o i n t s 1=( r1 [ 3 ] , )
r e g i o n = a . Set ( r e f e r e n c e P o i n t s=r e fPo i n t s 1 , name=’ Set−8 ’ )
Model . EncastreBC (name=’Cup ’ , createStepName=’ I n i t i a l ’ ,

r e g i o n=reg i on , l o c a l C s y s=None )

# D e f i n i t i o n de r g eome t r i s chen Randbedingungen
a = Model . r oo tAssemb ly
f 1 = a . i n s t a n c e s [ ’ Packungs r ing −1 ’ ] . f a c e s
f a c e s 1 = f1 . getSequenceFromMask (mask=( ’ [#2004␣ ] ’ , ) , )
r e g i o n = a . Set ( f a c e s=face s1 , name=’ Set−5 ’ )
Model .XsymmBC(name=’ Geometr ie_1 ’ , createStepName=’ I n i t i a l ’ ,

r e g i o n=reg i on , l o c a l C s y s=None )

f 1 = a . i n s t a n c e s [ ’ Packungs r ing −1 ’ ] . f a c e s
f a c e s 1 = f1 . getSequenceFromMask (mask=( ’ [#4020␣ ] ’ , ) , )
r e g i o n = a . Set ( f a c e s=face s1 , name=’ Set−6 ’ )
Model . ZsymmBC(name=’ Geometr ie_2 ’ , createStepName=’ I n i t i a l ’ ,

r e g i o n=reg i on , l o c a l C s y s=None )

Chair of Mechanics

Franz-Josef-Str. 18/III, 8700 Leoben
mechanik@unileoben.ac.at



©Marcel Ruetz, 01.03.2023 126

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# Verne tzen des Mode l l s
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

# I m p o r t i e r e n des Vernetzungsmodu l s
import mesh

# Verneten des Cups
p = Model . p a r t s [ ’ Cup ’ ]
p . s e edPa r t ( s i z e =0.1 , d e v i a t i o n F a c t o r =0.1 , m inS i z eFac to r =0.1)
e = p . edges
p i ckedEdges = e . getSequenceFromMask (mask=( ’ [#50␣ ] ’ , ) , )
p . seedEdgeByS ize ( edges=pickedEdges , s i z e =0.01 , d e v i a t i o n F a c t o r =0.1 ,

m inS i z eFac to r =0.1 , c o n s t r a i n t=FINER)
p . generateMesh ( )

# Verne tzen des Rods
p = Model . p a r t s [ ’ Rod ’ ]
p . s e edPa r t ( s i z e =0.1 , d e v i a t i o n F a c t o r =0.1 , m inS i z eFac to r =0.1)
p . generateMesh ( )

# Verne tzen des Packungs r i ng
p = Model . p a r t s [ ’ Packungs r i ng ’ ]
p . s e edPa r t ( s i z e =0.075 , d e v i a t i o n F a c t o r =0.1 , m inS i z eFac to r =0.1)
p . generateMesh ( )

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# D e f i n i t i o n de r du r chzu fueh r enden Jobs
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

# I m p o r t i e r e n des Jobmoduls
import j ob

mdb . Job (name=Simulat ionsname_mech , model=’Model−1 ’ ,
d e s c r i p t i o n=’ Ana l y s e ␣ des ␣ K r i e c h v e r h a l t e n s , ␣Long_Time ’ ,
type=ANALYSIS , atTime=None , wa i tMinute s=0, wa i tHours=0,
queue=None , memory=90, memoryUnits=PERCENTAGE,
getMemoryFromAnalys i s=True , e x p l i c i t P r e c i s i o n=SINGLE ,
noda lOu t pu tP r e c i s i o n=SINGLE , e choP r i n t=OFF , mode lP r i n t=OFF ,
c o n t a c tP r i n t=OFF , h i s t o r y P r i n t=OFF , u s e r S ub r o u t i n e=’ ’ ,
s c r a t c h=’ ’ , r e s u l t s F o rma t=ODB, mu l t i p r o c e s s i ngMode=DEFAULT,
numCpus=1, numGPUs=0)

mdb . j o b s [ Simulat ionsname_mech ] . w r i t e I n p u t ( )
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