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Abstract 

Switch components, especially switch blades, are highly loaded rails. The high loads are a 

result of small bending radii during the manufacturing process and high dynamic forces due to 

the wheel contact transition from the stock to the switch rail. Dealing with those high loads, it 

requires an improvement of the wear resistance and the application of high strength materials. 

The implementation of new material types demands applications of new design concepts and 

the comparison to the manufacturing processes of conventional materials. For this reason, in 

the present thesis, modified and new damage tolerant design concepts, for the static failure 

during the bending process and the dynamic behavior in track, have been investigated. 

Furthermore, the application of four different material types with different tensile strengths 

and microstructures have been analyzed. 

For the development of a design criterion in the bending process, specimens with different 

crack lengths have been tested until failure. In consideration of the load and small flaws, a 

new concept, the somewhat modified static strain based Kitagawa-Takahashi diagram, is 

investigated. Here, the nominal failure strain in the outer fiber, due to the bending load, is 

plotted over the flaw size. The failure strain is estimated by fracture mechanics criteria, using 

the J-integral as a crack driving force and compared with the experimental results for the 

different material types. 

For cyclically loaded components, two different approaches are compared. The Smith 

diagram for different loads and surface conditions is presented in the stress based approach. 

Additionally, the estimated failure curves are compared with fatigue experiments at selected 

load ratios and surface conditions. Considering cracks, the Kitagawa-Takahashi diagram 

represents the endurable stress range and is represented for the different material types and 

stress ratios in the fracture mechanics approach. 

Furthermore, for the analytical calculation of the crack growth, an enhanced method for the 

calculation of the geometry factor is investigated. This method provides the possibility to 

calculate the stress intensity of semi-elliptical cracks, where the crack is close to the specimen 

boundaries for tension and bending around two axes. 

Moreover, the influence of the stress concentration of a notch on the crack growth behavior of 

short cracks is investigated by experiments. For this purpose, an advanced method with 

respect to the direct current potential drop method is used for estimation of crack lengths, 

considering semi-elliptical shapes. The experimental results are then compared with the 

analytically calculated solutions of the crack growth behavior, considering plastic deformation 

in front of the notch root.  



 

Kurzfassung 

Weichenbestandteile, im Speziellen Zungenschienen, sind hochbeanspruchte 

Schienenbauteile. Diese Beanspruchung entsteht durch kleine Biegeradien im 

Herstellungsprozess und im Betrieb durch hohe dynamische Kräfte während des Wechsels des 

Radkontaktes von der Backen- auf die Zungenschiene. Diese hohen Belastungen fordern die 

Verbesserung der Verschleißfestigkeit und den Einsatz hochfester Materialien. Bei 

Verwendung neuer Materialien sind neue Auslegungskonzepte und der Vergleich zu den 

Herstellungsprozessen der derzeitig verwendeten Materialien notwendig. In der vorliegenden 

Arbeit werden dazu abgeänderte und neue Schädigungskonzepte für das statische Versagen 

im Biegeprozess und der dynamischen Schädigung im Betrieb untersucht. Dies wird anhand 

von vier unterschiedlichen Materialien mit verschiedenen Zugfestigkeiten und 

Mikrostrukturen durchgeführt. 

Zur Entwicklung eines Schädigungsparameters für den Biegeprozess wurden Proben mit 

unterschiedlichen Risslängen bis hin zum statischen Versagen getestet. Unter 

Berücksichtigung der Last und der Fehlergröße wurde ein neues Konzept, das statisch 

dehnungsbasierende Kitagawa-Takahashi Diagramm, entwickelt. Dabei wird die nominelle 

Dehnung in der Randfaser bei Biegung über die Fehlergröße aufgetragen. Die Bruchdehnung 

wird dabei über bruchmechanische Ansätze, genauer gesagt mit dem J-integral als 

risstreibende Kraft, verwendet und mit den experimentellen Ergebnissen verglichen. 

Für die Beurteilung von zyklisch belasteten Bauteilen werden zwei Ansätze verglichen. 

Einerseits wird das Smith Diagramm für verschiedene Belastungen und 

Oberflächenbeschaffenheiten in einem spannungsbasierenden Konzept verwendet. Zusätzlich 

werden die berechneten Fehlerkurven mit Dauerfestigkeitsexperimenten für verschiedene 

Belastungen und Oberflächenqualitäten miteinander verglichen. Andererseits wird im 

bruchmechanischen Konzept, unter Berücksichtigung von Rissen, das Kitagawa-Takahashi 

Diagramm zur Beurteilung der ertragbaren Spannungsschwingbreite für die verschiedenen 

Werkstoffe und Spannungsverhältnisse dargestellt. 

Des Weiteren wurde für die analytische Berechnung des Rissfortschrittes eine erweiterte 

Geometriefunktion entwickelt, welche die Berechnung der Spannungsintensität für halb-

elliptische Risse nahe der Probenoberfläche unter Zug und Biegung um zwei Achsen 

ermöglicht. 

Zusätzlich wurde der Einfluss der Spannungsintensität einer Kerbe auf das Kurzrisswachstum 

anhand von Experimenten untersucht. Dazu wurde ein erweitertes Verfahren anhand der 

Potentialmessmethode zur Abschätzung der Risslänge von halb-elliptischen Rissen 

entwickelt. Die experimentellen Ergebnisse werden dann unter Berücksichtigung der 

plastischen Verformung vor der Kerbe mit den analytisch berechneten Ergebnissen 

verglichen.  



 

Acknowledgements 

Financial support by the Austrian Federal Government (in particular from Bundesministerium 

für Verkehr, Innovation und Technologie and Bundesministerium für Wissenschaft, 

Forschung und Wirtschaft) represented by Österreichische Forschungsförderungsgesellschaft 

mbH and the Styrian and the Tyrolean Provincial Government, represented by Steirische 

Wirtschaftsförderungsgesellschaft mbH and Standortagentur Tirol, within the framework of 

the COMET Funding Programme is gratefully acknowledged. 

 

The studies underlying this thesis have been performed at the Erich Schmid Institute of 

Materials Science and the Material Center Leoben Forschung GmbH in cooperation with 

voestalpine Schienen GmbH and voestalpine VAE GmbH. 

First of all, I would like express my gratitude to Univ.-Prof. R. Pippan not only because he 

was my supervisor, but also for his valuable help and fruitful discussions during my scientific 

work for this thesis. His door was always open for me, also after my time as a scientific 

employee. His recommendations and valuable critical discussions on results were always 

supportive and helpful for understanding challenging topics.  

Furthermore, I want to thank Univ.-Prof. Antretter from the Institute for Mechanics for his 

suggestions and helpful solutions regarding challenges in applied mechanics and also finite 

element simulation related topics during my thesis. 

For the opportunity to work on this thesis and the freedom to develop myself during my 

studies, my thanks go to the Materials Center Leoben Forschung GmbH. My special thanks 

go to my colleagues Franz, Peter and Toni from the Erich Schmid Institute and Hans-Peter, 

Jürgen, Masoud and Thomas from the Materials Center Leoben for spending cheerful time 

after work. 

In particular, I would like to thank my girlfriend Marianne for her support and appreciation 

and for giving me time to undertake my work and studies. She reminds me on the beautiful 

side of life and shows me a different opinion in difficult situations.  

Finally I would like to thank my family, especially my mother for all their support during my 

whole life, for their persistent help and all the wonderful time we had and still have together.  



 

Table of contents 

1. Introduction ..................................................................................................................... 1 

1.1. Railway Switches ........................................................................................................ 1 

1.2. Stress based damage tolerant design ........................................................................... 3 

1.2.1. Endurance limit .................................................................................................... 3 

1.2.2. Fatigue strength .................................................................................................... 6 

1.3. Fracture mechanics design concept ............................................................................. 8 

1.3.1. Basics in fracture mechanics ................................................................................ 8 

1.3.2. Static fracture ..................................................................................................... 12 

1.3.3. Fatigue fracture .................................................................................................. 17 

2. Damage tolerance design for the manufacturing process .............................................. 23 

2.1. Materials .................................................................................................................... 23 

2.2. Experimental determination of the failure curve ....................................................... 24 

2.3. Determination of the failure strain in a static strain based Kitagawa-Takahashi type 

diagram ................................................................................................................................. 25 

2.4. Proof of J-integral determination based on strain energy density ............................. 35 

2.4.1. Finite element (FE) simulations ......................................................................... 36 

2.4.2. Results of FE simulations and analytical determination of J ............................. 37 

3. Endurance limit as a design criterion ............................................................................ 41 

3.1. Stress based design concept ....................................................................................... 41 

3.2. Experimental results of the crack resistance for the threshold and fatigue crack 

growth curves. ....................................................................................................................... 43 

3.3. Fracture mechanics approach .................................................................................... 46 

4. Fatigue strength vs. crack growth as a design criterion ................................................ 50 

4.1. Crack growth based on finite element simulations .................................................... 50 

4.2. Analytical estimation of the Crack growth ................................................................ 51 

4.2.1. Determination of the geometry factor by finite element simulations ................. 54 

4.2.2. Results and comparison with the Newman-Raju approximation ....................... 56 

4.2.3. Development of a new prediction for the geometry function Y ......................... 59 

4.2.4. Comparison of results for the new approximate geometry factor solutions ...... 65 

5. Influence of the notch parameter on crack growth ........................................................ 68 



 

5.1. Fatigue experiments of notched specimens ............................................................... 69 

5.2. The shape of the crack and deviation from the Johnson approach ............................ 71 

5.3. Numerical prediction of the crack growth from initiation to failure ......................... 77 

5.3.1. Fracture mechanics experiments ........................................................................ 77 

5.3.2. Crack growth of a notched specimen ................................................................. 79 

5.3.3. Consideration of the load ratio R ....................................................................... 80 

5.3.4. Calculation of crack growth ............................................................................... 81 

6. Summary and Conclusions ............................................................................................ 85 

7. Nomenclature ................................................................................................................ 88 

Roman alphabet .................................................................................................................... 88 

Greek alphabet ...................................................................................................................... 93 

8. List of Figures ............................................................................................................... 95 

9. References ................................................................................................................... 100 

Appendix A ............................................................................................................................ 107 

 

 



 

1 

1. Introduction 

1.1. Railway Switches 

Railways are commonly used hauling systems all over the world. Depending on the location 

and application the requirements on the rails are different. Nevertheless, standardized profiles 

are used. In general, additionally to the main track, railway switches are used to change the 

direction of a train. In Fig. 1 a switch is schematically plotted, where the stock rail represents 

the rail for the straight rolling direction and the switch rail is responsible for the direction 

change. 

 

Fig. 1.: Schematic sketch of a railway switch and the distinction of the stock rail and the 

switch blade. 

 

To force a passing train to change the rolling direction, the switch blade is moved by a 

mechanism to the stock rail and so the train wheels are switching from the stock rail to the 

switch blade. Due to the wheel transition from the stock rail to the switch rail and the radius 

of the switch rail, high dynamic forces are applied on the rails. Hence, switch rails are highly 

loaded components and require high quality standards. 

The stock rail and the switch rail have different profiles, shown in Fig. 2. 

 

Fig. 2.: Sketch of the profiles indicating the stock and the switch rail. 
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Due to high loads and the frequency of passing trains, the demand for wear resistance 

increases and high strength materials have to be adapted. In the literature most of the 

scientific work focuses on rolling contact fatigue (RCF) between the wheel and the rail head. 

Nevertheless, neglecting the wheel contact, the highest applied structural stress occurs in the 

rail foot area due to the bending load. 

In this thesis the focus is set on a damage tolerant design concept for the application of high 

strength materials for railway switches especially for switch rails. The static and dynamic 

behavior of four different material types with different strength and microstructure is 

investigated. 

• pearlite with a tensile strength of 1070 MPa, 

• fine-pearlite with a tensile strength of 1120 MPa, 

• bainite with a tensile strength of 1120 MPa, 

• ferrite-martensite with a tensile strength of 1510 MPa 

 

For this purpose, for application to railway switches, standard fatigue strength and fracture 

mechanics methods have been adapted for the static and dynamic assessment [1], [2]. 

Additionally, new concepts for static failure during the manufacturing process have been 

investigated by using a fracture mechanics approach [3], [4]. Furthermore an enhanced 

method for the analytical calculation of the crack growth assuming different loading 

conditions is provided [5] and the influence of notches on the crack growth from initiation to 

the end of lifetime has been analyzed [6], [7]. 
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1.2. Stress based damage tolerant design 

1.2.1. Endurance limit 

Common design concepts use the endurance limit as a safety limit for cyclically loaded 

components. Fatigue strength diagrams ([8], [9]) are used as a limitation criterion, where the 

dependency of the applied stress amplitude a or the stress range  = 2·a is plotted over the 

mean stress m. In Fig. 3 the Haigh diagram [10] is schematically presented, in which the 

stress amplitude on the vertical axis is plotted over the mean stress on the horizontal axis. The 

red line represents the admissible stress amplitude, which is equivalent to the endurance limit 

e,0(R), where index "0" denotes a constant applied stress for tension/compression loading. As 

a static limitation the flow stress F,0 is used, which is the mean value of the yield stress ys 

and the ultimate tensile stress UTS.  

 

Fig. 3.: Schematic plot of the Haigh diagram; dependency of the stress amplitude on the mean 

stress. 

 

The dependency of the admissible stress amplitude on the mean stress is often denoted by the 

stress ratio R, which is proportional to m and can be calculated by the ratio of the minimum 

min and maximum stress amplitude max. 

am

am

max

min












R  1.1 

The mean stress m or the stress ratio R is changing due to dynamic forces and residual 

stresses caused by heat treatment and different manufacturing processes also have an 

influence on the mean stress and stress ratio, respectively. 

Amplitudes below the endurance limit, which is marked by the green area in Fig. 3, are 

considered as safe. The higher the mean stress, the lower is the admissible stress. A lot of 

different approaches [11], [12], [13] can be found in the literature to describe the dependency 

of the admissible stress amplitude over the mean stress. 
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For the damage tolerant design in engineering approaches, the FKM guideline [14] is 

commonly used. The admissible stress amplitude or the endurance limit is calculated from the 

static material behavior extracted from tensile experiments. 

In Eq. 1.2 the endurance limit e,0(R), depending on R, is calculated from the ultimate tensile 

strength UTS, reduced by the endurance limit constant fe, which is depending on the material 

class (~ 0.4- 0.45 for steel). The dependency of the mean stress is considered by the mean 

stress sensitivity factor Km(R). 

   RKfR meUTSe,0   1.2 

 

Km(R) can be calculated with the FKM guideline, where the mean stress sensitivity is 

distinguished into three areas and can be calculated with Eq. 1.3, of which the different 

gradients are shown in Fig. 4. 
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1.3 

 

Mσ describes the mean stress sensitivity depending on the ultimate tensile stress UTS using 

the material constants am and bm depending on the material class. 

m
m3

mσ
MPa

10 b
R

aM    1.4 

 

Fig. 4.: Distinction of the endurance limit into areas depending on the mean stress or stress 

ratio in the Haigh diagram and limited by the flow stress F,0. 
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In the field of railway engineering a different fatigue strength diagram, the Smith diagram 

[15] is commonly used and is schematically plotted in Fig. 5. In comparison with the Haigh 

diagram, the mean stress is tilted by 45° counter clockwise. The red line denotes the minimum 

(lower) and maximum (upper) endurable stress. The green area is described by the upper and 

lower endurable stress amplitude and denotes the stress range e,0(R) = 2·e,0(R). 

 

Fig. 5.: Endurable stress amplitude depending on the stress ratio, plotted schematically in the 

Smith diagram. 

 

As already mentioned, Index "0" denotes a constant stress distribution for 

tension/compression loading. Nevertheless, rails are loaded in general with a bending load. 

Due to the different stress gradients, the endurable stress amplitude is higher in case of a 

bending load than for pure tension/compression. The difference can be considered by 

including the elastic support factor nσ for cyclic loading 

σe,0bendinge, n   1.5 

and the plastic support factor npl factor for static loading 

plF,0bendingF, n  . 1.6 

 

Considering notches, the endurance limit is reduced by shape factors and can be found in the 

literature ([8], [9], [14]) for different approaches. A commonly used approximation for the 

notch shape factor k can be estimated by Eq. 1.7. 
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


t
k  21 . 1.7 

where t represents the notch depth and  the notch radius. 

 

Estimating the endurance limit directly from tensile experiments is only valid for polished 

surface conditions. Due to the rail manufacturing process the surface roughness due to hot 

rolling can be considered by the surface reduction factor Ksurface following FKM [14]. 

surface

e,0

skinbending,e,
K


  . 1.8 

 

The endurance limit as a design criterion is a conservative approach due to an assumed safe 

area of no damage for an infinite lifetime. In general, notches, surface conditions etc. reduce 

the endurance limit and hence they are considered by safety factors in standards. 

Nevertheless, considering very sharp resp. deep notches or rough surfaces, applied loads can 

exceed acceptable values acc. to standards. In such cases, the endurance limit cannot be used 

as a design criterion anymore and the fatigue strength has to be considered. 

 

1.2.2. Fatigue strength 

The estimation of the lifetime by consideration of the fatigue strength is commonly carried 

out by the damage cumulative approach of Palmgren and Miner [16], [17]. 

In Fig. 6 the stress amplitude over the number of cycles N to failure is shown in a log-log plot. 

 

 

Fig. 6.: Schematic plot to the damage cumulative concept from Palmgren and Miner. 



7 

Stress amplitudes ai beyond the endurance limit e, can be considered as damage Di at each 

cycle Ni. The damage in each cycle Di is denoted by the reciprocal value of the number of 

cycles at each cycle (Di = 1/Ni), where D = Di = 1 represents the failure of the component. 

The slope in the fatigue strength is described by the gradient kf (~ 5 for steel) and the number 

of cycles Ne at the endurance limit (~10
6
 for steel). These two parameters are depending on 

the material class. The stress over the number of cycles (SN-curve) can then be calculated 

with the following relationship: 

ff

eea

kk

ii σNσN  . 1.9 

 

Different approaches have been investigated at the intersection point Ne and e. The 

elementary form of the Miner rule is a simple approach, where the endurance limit is 

neglected. Nevertheless, this method is too conservative, because every load generates a 

cumulative damage, even for stresses smaller than the endurance limit which is considered in 

the original form of the Miner rule like in Fig. 6. However, Haibach [18] investigated a more 

precise approach for damages in the high cycle fatigue regime (N > 10
7
), called the modified 

Miner rule. 

  



8 

1.3. Fracture mechanics design concept 

1.3.1. Basics in fracture mechanics 

Considering very sharp notches, where the notch radius  → 0, the notch can be assumed as a 

crack and in front of a crack high stresses are acting, which result in high deformations. In 

case of an elastic-plastic material behavior, a plastic zone is built up in front of the crack. In 

the linear elastic fracture mechanics (LEFM), called the regime of small scale yielding, where 

the size of the plastic zone is small compared to the other dimensions, the stress intensity 

factor K is used as a crack driving force to describe the stress field in front of the crack tip 

outside the plastic zone. 

r

K







2
 1.10 

Where r is the distance from the crack tip and denotes the 1/√r singularity [19], shown in Fig. 

7. 

 

Fig. 7.: Stress distribution in front of the crack denoted by 1/√r singularity. 

 

K can be estimated from the applied stress appl with 

aYK   appl , 1.11 

where a represents the crack length and Y denotes a dimensionless geometry factor which can 

be found in stress intensity factor handbooks (e.g. [20]). 

 

If the size of the plastic zone is not small compared to the other dimensions, the J-integral can 

be used as a crack driving force. This is then called the regime of large scale yielding or the 

field of elastic plastic fracture mechanics (EPFM). 
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The J-integral is calculated by the path independent line integral J [21]. 




 











 ds

x

u
TwdyJ i

i  1.12 

where  denotes the counter clockwise path from the lower to the upper crack flank, w the 

strain energy density, Ti the components of traction vector, ui the displacement vector and ds 

the incremental length of the path (Fig. 8). 

 

Fig. 8.: Counter clockwise path for the calculation of the J-integral. 

 

In the regime of large scale yielding, the stress in front of the crack tip can be calculated by 

the HRR-field (Hutchinson, Rice and Rosengren) [22], [23] which is depending on the 

hardening exponent n and the angle , shown in Fig. 9. 

 

Fig. 9.: Stress element in front of the crack tip. 

 

The stress acting in front of the crack tip can be calculated with 

 θ,nσ
rIεσα

J
σσ ij

n

ij
~

1

1

n00

0 













 1.13 



 = 0° denotes the direction along the crack propagation path and  = 90° refers to the normal 

direction on the crack surfaces. 0, 0, n and  are the material parameters of the Ramberg-

Osgood material law, shown in Eq. 1.14 and can be extracted from tensile experiments. 
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n

E 









0

0






  1.14 

 

The material constants In and  θ,nσ ij
~  have been determined by finite element (FE) simulations 

from Shih et al. (1983) and can be extracted from tables [24] for plane stress and plane strain 

conditions. 

 

In Fig. 10 three different stress situations are plotted to indicate the different regimes: a) for 

small scale yielding b) for large scale yielding and c) general or full scale yielding. The red 

line denotes the stress acting in front of the crack tip, in the crack opening direction over the 

distance r in a log-log plot. 

a) b) c) 

 

Fig. 10.: Stress distributions acting in front of the crack for different applied stresses, 

distinction for the K-dominated zone in the LEFM, (green), the HRR-field in the regime of 

large scale yielding (blue) and the large strain region (grey). a) for small scale yielding, b) for 

large scale yielding and c) full scale or general yielding. 

 

For small loads in a) and a resulting small size of the plastic zone, the LEFM can be used, 

where K describes the stress field in the K-dominated zone (green area). Due to the 1/√r 

singularity, the gradient of LEFM stress slope is -1/2 in the log-log plot. 

Assuming a higher load in b), will induce a larger plastic zone and K cannot be used anymore 

as a crack driving force. Nevertheless, the HRR-field denoted by J in the J-dominated zone 

(blue area) is still valid. Here the gradient of the HHR-slope is due to Eq. 1.13, -1/(n+1). 

With increasing load the increasing plastic zone will induce general or full scale yielding. 

Here, the plastic zone is dominated by the boundaries of the specimen or component. The so 

called in-plane constraint has to be considered.  
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In general, the stresses in front of a crack, in the center of the specimen are higher compared 

to the boundary. Due to the high stress triaxiality in the center, plane strain conditions are 

assumed, whereas at the surface plane stress conditions are prevalent. The smaller the 

specimen thickness, the higher is the influence from the surface to the center of the crack 

which influences the plane strain condition. 

Barsom and Rolfe [25] showed the dependency of the critical stress intensity K on the 

thickness. Different methods have been investigated to consider the geometry dependency, 

called the constraint. In the field of LEFM the T-stress [26] concept is used to describe this 

constraint effect. Hence, the 1/√r singularity is valid and the stress triaxiality can be modified 

by the T-stress. 

 

For higher deformations at the crack tip, the J-Q-locus has to be considered, which is part of 

the EPFM. In this case, the Q-stress [27], [28], [29] is the describing parameter for the J-

integral and is defined by the difference between the actual stress field (estimated from FE 

simulations) and the theoretical solution of the HRR field over the dimensionless distance 

r/(J∙0). O’Dowd and Shih [29], [30] tested the Q-parameter in the range 0 < r/(J∙0) < 5. In 

the literature, it is usually recommended to extract the Q-stress at r/(J∙0) = 2. 

0/20

HRRθθ,FEMθθ,

σJr
σ

σσ
Q




  1.15 

 

Using the Q-stress, the critical K or J can then calculated with Eq. 1.16, where the Q-stress is 

depending on the ratio of the crack length and specimen thickness a/W. 

  h
QKK  1mat

 1.16 

 

where Kmat denotes the fracture toughness derived from experiments;  and h are material 

constants to describe the constraint dependency. 
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1.3.2. Static fracture 

1.3.2.1. Experimental determination of K 

In contradiction to general stress based designs, where the yield stress, the ultimate strength or 

the fracture strain is used as a design criterion, the fracture toughness from experiments is not 

proportional to the static strength due to a different fracture mechanism. Standards [31], [32], 

[33] provide different test methods depending on the loading and the geometry for the fracture 

toughness. In general for a valid experimentally determined fracture toughness KIc , where the 

index "I" denotes the crack in Mode I [19], the dimensions have to fulfil the following 

criterion: 

2

ys

I5.2,,
















K
Bba  1.17 

where a is the crack length, b the ligament length (b = W - a) and B is the specimen thickness. 

This criterion ensures that the fracture toughness is independent of geometry effects. 

 

1.3.2.2. Experimental determination of J 

Compared to K, the experimental determination of the J-integral is more challenging. It is 

recommended in standards [33] or can be estimated by additional FE simulation using Eq. 

1.12. Only in case of small scale yielding in the field of LEFM, J can be calculated from K by 

using 

 2

2

Ic
el 1 

E

K
J  1.18 

in a plane strain state. 

 

For short cracks (a << W) Shih and Hutchinson [34] and enhanced by Dowling [35] suggested 

an analytical estimation of the J-integral from the experimental data, where J is calculated 

from the strain energy density w. Dowling [35] showed an acceptable correlation between the 

experimental data and an analytically calculated J-integral, using this method. 

 

Dowling`s approach by application of pre-factors implies a semi-circular crack in plane stress 

state. For a more general investigation in plane strain conditions the approach from Dowling 

has to be adapted. It was investigated in [3], [4] and is explained below. 
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The J-integral is split into an elastic and a plastic part: 

plel JJJ  . 1.19 

 

Jel can be calculated from the true stress-strain curves using the strain energy density wel in the 

plane strain state and a trough thickness crack. 
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el 12 w
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a
YaJ 








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with 

E
w







22

2

el
el


 1.21 

where  in combination with el represents the true stress and strain in the linear elastic 

regime and Y(a/W) denotes the geometry function. 

 

The plastic part of the J-integral can be calculated in a similar way by inserting wpl instead of 

wel into Eq. 1.20 

    pl

22

pl 12 wnfYaJ    1.22 

where wpl denotes the plastic work and f(n) a plastic correction factor depending on the strain 

hardening exponent n from Eq. 1.14, provided by Shih and Hutchinson [34] and can be 

calculated for the approach in Eq. 1.22 with 
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
. 1.23 

 

The plastic work wpl beyond the yield stress has to be derived from the true stress strain 

curves using the Ramberg Osgood material law (Eq. 1.14). 
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The plastic part of the J-integral can then be calculated from Eqns. 1.22 and 1.25. 
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To determine the J-integral, this method is quite useful as the experimental data can be used 

directly from the measured stress strain curve. 

 

1.3.2.3. Damage tolerant concepts for static fracture 

Using the information of the material and fracture characteristics, a failure curve can be 

constructed and then compared with the nominal applied stress or strain at failure which can 

be derived from experimental data. For designing a failure curve by using fracture mechanics 

criteria, several different approaches are provided depending on the material type and damage 

behavior. The failure assessment diagram (FAD) is a widely used approach in failure analysis 

like in the R6 method [36], [37], [38]. In this diagram, the limiting parameters Lr and Kr are 

used as follows: 

y

ref
r




L  1.27 

matmat

r
J

J

K

K
K   1.28 

where again Kmat represents the fracture toughness. 

 

The failure curve can then be calculated by different approaches e.g. an empirical formulation 

in combination with the strip yield assumption [37], [38]. 
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212
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

 1.29 

 

Nevertheless, the influence of the material behavior on the failure curve is negligible. Option 

2 in the R6 approach considers the true stress-strain curve [19]. 
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where Lr
max

 is defined by the relation of the yield and ultimate tensile stress. 
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Nevertheless, those methods only consider small scale yielding. In the regime of large scale 

yielding, the geometry dependency, especially for small a/W-ratios, has to be considered by 

the Q-stress. Betegòn [39], [40] investigated a potential function to describe the failure curve 

of the critical J-integral for different a/W ratios, where J is up to 6 times higher than the 

fracture toughness Jmat. 

Using the Q-stress, a constraint-based diagram can be designed [41], [42] by increasing the 

critical K-value in the form of a potential function depending on the crack length. In the 

literature mostly the following approach is recommended to describe the increasing fracture 

toughness [37], [38], [41], cf. Eq. 1.16. 

  h
LKK rmat 1  

 1.32 

where  and h are material constants and  implies the constraint using the Q-stress by 

rLQ    1.33 

Instead of using the stress as a failure criterion, the strain can be used in a similar approach as 

for the stress based R6 procedure, e.g. [44], [43]. In this case, the parameter Lr is exchanged 

by Dr. 

ys

ref
r




D  1.34 

where εref denotes the nominal strain of the un-cracked specimen and εys the strain at the yield 

stress. 

Similar to the stress based approach, different options are investigated for the strain based 

failure curve. Details are shown in Budden and Ainsworth [43] where the advantages of the 

different approaches are worked out. 

For small scale yielding Budden [44] provided a strain based failure curve for two regions, 

equal to the stress-based failure line: 
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Nevertheless, this is not conservative for high deformations. Therefore, for large Dr the 

following equation (strain based FAD option 2) is used: 
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Another approach is called Option 3, where Budden [44] proposed to use directly the J-

integral from finite element (FE) simulations. 

 
J

J
Df el

r

*   1.37 

 

The R6 method and strain based failure assessment diagram is an established approach to 

describe the static failure in fracture mechanics. Furthermore, by considering the constraint 

due to small a/W-ratios, a constraint based diagram can be designed.  
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1.3.3. Fatigue fracture 

Similar to the static fracture the stress intensity is used as a crack driving force for cyclically 

loaded components. Following Paris [45], [46] and Rice [47], the stress intensity factor range 

ΔK of the crack is used to describe the crack propagation. 

aYK    1.38 

where Δσ denotes the applied stress range and denotes 2·a. 

 

1.3.3.1. Damage tolerant concepts for fatigue fracture 

In fracture mechanics, for cyclically loaded components, the Kitagawa-Takahashi diagram 

[48] is commonly used as a design criterion. It represents a similar approach as the Smith 

diagram, already explained in chapter 1.2.1. In the Kitagawa-Takahashi diagram the 

admissible stress range Δσ of cyclically loaded components is plotted as a function of the 

crack length a (Fig. 11). 

 

Fig. 11.: Schematic plot of the endurable stress range Δσ depending on the crack length 

(Kitagawa-Takahashi diagram) [1]. 

 

Considering un-cracked components or micro structural short cracks the endurance limit can 

be used as limitation, like in the Smith diagram. For long cracks the admissible stress range is 

denoted by the long crack threshold ΔKth,lc. Beyond ΔKth,lc, considering a constant applied 

stress range, cracks will grow until failure. Furthermore, the green area in Fig. 11 represents 

stress range and crack length combinations where cracks do not propagate. 

The red line denotes the transition from the endurance stress range e to the long crack 

threshold and was first used by El-Haddad [49] by introducing an intrinsic crack length a0,H. 



18 

Furthermore, in Fig. 11, the parallel slope to the long crack threshold denotes the effective 

(intrinsic) threshold ΔKth,eff (~2.5 MPa√m for steel), which constitutes the limit for crack 

propagation. This means for loads below ΔKth,eff no crack propagation takes place. Between 

the long crack and the effective threshold, the crack growth threshold depends on the build-up 

of crack closure. The blue line represents the transition from the effective to the long crack 

threshold and was presented by Tabernig [50]. Maierhofer [51] proposed a modified 

description by a double exponential function (Eq. 1.39), where each summand characterizes a 

different closure mechanism. 
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where li and i denote fit parameters. 

 

The cyclic resistance curve (R-curve) describes the short crack growth and is represented by a 

different closure mechanism ([52], [53], [54]), depending on the material behavior. The R-

curve is schematically plotted in Fig. 12 and distinguishes between an effective threshold, a 

contribution from plasticity induced and a roughness induced crack closure. While the 

plasticity induced closure effect depends on the plastic properties, the roughness induced 

closure effect is related to the microstructure. 

 

Fig. 12.: Illustration of the crack resistance curve caused by two different closure 

mechanisms; each closure mechanism is built up completely after a specific crack extension 

(described by the fictitious length scales li) [51]. 

 

The crack tip loading is a function of the total crack length a = a0 + a, where a0 denotes the 

initial crack length assuming no closure effects [55] and a the crack extension where closure 

effects are built up by Eq. 1.39. 
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Moreover, not only the endurance limit e, also the long crack threshold ΔKth,lc is depending 

on the stress ratio R. The dependency of the ΔKth,lc on R can be estimated by a bi-linear 

approximation with Eq. 1.40 [51]. 
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The higher R, is the lower is the endurance limit and the long crack threshold. Due to a linear 

relationship between the threshold for long cracks and the load ratio, the range for any stress 

intensity factor can be calculated. 

 

The admissible stress range  depends therefore on three variables, Δa, a0 and R ([1], [2]). 
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Eq 1.41 describes a three-dimensional surface for each stress ratio R, which is shown in Fig. 

13. Each surface represents the admissible stress range depending on the crack extension Δa, 

the initial crack (notch) depth a0 where each surface denotes a different load ratios R. 

 

Fig. 13.: Three-dimensional plot of admissible stress range Δ depending on a0, Δa, R [2]. 
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1.3.3.2. Crack growth modelling for cyclically loaded components 

For stress and crack length combinations beyond the area of no crack propagation in the 

Kitagawa-Takahashi diagram (cf. Fig. 11), cracks will grow until failure. The NASGRO 

equation is commonly used to describe the crack growth behavior of cyclically loaded 

components and different approaches can be found in literature [53], [56]. Maierhofer [51] 

provided a modified NASGRO equation in consideration of the crack resistance of physically 

short cracks (R-curve), depending on the stress ratio R and the crack extension a. 

 ppm aRKKKaRFC
dN

da
),(),( th  

 1.42 

ΔKth(R, Δa) is denoted by the dependency of R. Additional to the commonly used parameters 

C and m in the Paris slope ([57], [58]), illustrated in Fig. 14, the constant p governing the 

transition from the near-threshold stage to the Paris slope of crack growth is included.  

 

Fig. 14.: Schematical plot for the long crack behavior and the Paris slope characterized by the 

parameters C and m. 
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is depending on the stress ratio R, the built up of crack closure (R-curve) and Newman’s crack 

opening function f (R). 
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The parameters can be calculated with 
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where the ratio of the maximum applied stress and the flow stress max/F = 0.3 and =3.0 

for plane strain conditions. 

 

1.3.3.3. Experimental determination of the R-curve and NASGRO parameters 

The determination of the crack resistance curve for physically short cracks and the long crack 

growth behavior beyond ΔKth,lc, requires a number of fracture mechanics experiments. 

Therefore, SENB (single edge notched bending) specimens with a specimen height W = 20 

mm, specimen thickness B = 6 mm and a length L = 100 mm are tested at different stress 

ratios R, each in a four-point bending device, shown in Fig. 15. 

 

Fig. 15.: SENB specimen in a four point bending device [55]. 
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A notch is eroded on one side and sharpened by a razor blade. Following this, a pre-crack is 

induced by compression loading [59]. The cyclic fracture behavior is then tested by the load 

increasing method, where the load is increased in a stepwise manner (shown in Fig. 16). At 

each load when the crack arrests, a point on the crack resistance curve for Kth can be 

obtained. 

 

Furthermore, for loads beyond the long crack threshold (K > Kth,lc) no further increase of 

the crack closure effects occurs and the crack propagates until failure. 

 

 

Fig. 16.: Load increasing method to determine the cyclic crack resistance curve for Kth 

device [50]. 

 

To obtain the crack length, the direct current potential drop (DCPD) method with the 

formulation of Johnson [60] and Schwalbe [61] is used.  
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2. Damage tolerance design for the manufacturing process 

The application of high strength materials poses new challenges for the manufacturing 

process, especially in bending the curvature radius which has been worked out in [3] and is 

presented in this section. The applied load during bending – as a central element of the 

manufacturing process for switches – is about ten times higher than the typical load observed 

during a train passage. As a characteristic quantity for the bending process one can take the 

strain at the outer fiber of the component. Consequently, commonly used rail standards 

prescribe a minimum rupture strain of 8-9% in the tensile test. It is understood that the 

standard tensile specimens have a ground and polished surface, whereas the finishing of the 

rail surface is much coarser; due to the surface roughness and flaws generated during 

processing – which acts much the same as small surface flaws – the actual rupture strain for 

the rail will be lower than for the standard specimen. For this reason, the tensile properties 

generally do not represent a design criterion but an acceptance criterion for rail production. 

In order to analyze the fracture behavior and to design a failure curve of the nominal strain in 

the outer fiber depending on the size of such surface flaws, three-point bending specimens 

with surface cracks of varying lengths have been manufactured from four typical rail 

materials with different microstructures and have then been tested until fracture. A 

comparison of fracture mechanics estimation with experimental results will be performed in 

order to deliver a simple failure criterion for the bending process. 

2.1. Materials 

The different material hardening behaviors are specified by the Ramberg-Osgood material law 

(Eq. 1.14). 

The parameters 0, 0, n and  are determined by a statistical analysis from the true stress-

strain curves of the tensile experiments. The material parameters describing these curves are 

listed in Table 1 and the resulting true stress-strain curves are plotted in Fig. 17. 

 

Table 1: Ramberg-Osgood parameters 

material n [-]  [-] σ0 [MPa] ε0 [-] 

pearlite 4.56 0.1329 316 0.001497 

fine-pearlite 3.82 0.1872 302 0.001465 

bainite 9.18 0.1207 685 0.003567 

ferrite-martensite 12.55 0.0321 944 0.004796 
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Fig. 17.: Results of the tension experiments in the true stress-strain diagram. 

2.2. Experimental determination of the failure curve 

For the determination of the failure curve, the fracture toughness of four different materials 

with different strengths is tested in a three-point bending support (Fig. 18). The specimen has 

a height W = 20 mm and a thickness B = 10 mm; the distance 2·s between the supports is 200 

mm. On one side of the specimen a notch is eroded and sharpened by a razor blade. Then a 

pre-crack is generated by cyclic compression loading in a four-point bending support using a 

load ratio of R = -10 [59]. The total crack length a varies from about 8 to 0.1 mm; in addition 

a specimen with ground surface without crack is tested for each material for comparison of 

the numerical model and material behavior. The specimens are loaded by a force in the center 

of the specimen by the upper cylinder until rupture. During the experiment the deflection v 

(load line displacement) is measured. In this way, a force vs. deflection curve is obtained. 

 

Fig. 18.: Schematic of the three-point bending test. 

 

To obtain the crack length, the fracture surface is characterized in the optical microscope after 

the test. This is shown exemplarily in Fig. 19, where the total crack length a is composed of 

the depth of the eroded notch and the initiated pre-crack generated by compression loading. 
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Fig. 19.: Exemplary fracture surface; distinction of notch depth and pre-crack length for the 

extraction of the crack length a. 

 

2.3. Determination of the failure strain in a static strain based Kitagawa-
Takahashi type diagram 

FAD diagrams presented in chapter 1.3.2.3 are used to describe the static failure by a fracture 

mechanic approach. However, the influence of the parameters Kr, Lr or Dr in the R6 method 

are difficult to understand in the field of engineering. In order to design a direct link between 

the nominal strain in the outer fiber of an un-cracked specimen and the failure size, a direct 

approach more suitable for mechanical engineering applications comes to mind; namely, to 

generate a direct relation between the nominal strain at failure and the crack length a. This 

approach is, in a certain sense, the static strain based equivalent to the Kitagawa-Takahashi 

diagram for the fatigue endurance limit stress of cracked specimens. We will therefore refer to 

this diagram as the “static strain based Kitagawa-Takahashi diagram” in what follows.  

For plotting this diagram, the nominal strain at the outer fiber upon failure has to be 

determined. In our study, it is computed by means of FE simulations.  

Using the hardening behavior from the tensile tests, a three-dimensional FE simulation of the 

bending experiment is performed for an un-cracked specimen. The specimen is loaded with 

the maximum force Fmax from the experiment so that the nominal failure strain at the outer 

fiber can be extracted. The numerical model is shown in Fig. 20, where the symmetry of the 

bending specimen is used and a quarter symmetric model is generated. The force is applied by 

an analytical rigid cylinder with a radius of 30 mm, the same is used for the support on the 

lower side of the specimen. A penalty surface-to-surface contact with a friction coefficient of 

0.1 is used between the rigid cylinders and the specimen. The finite element program 

ABAQUS is used with large deformations. 
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For meshing the specimen, 20 node elements with a quadratic shape functions and a global 

element size of maximum 1 mm are used. Additionally a refinement in the area of interest, the 

center of the specimen with an element size of 0.1 mm was generated. In this way, the error of 

the extracted strain is kept as small as possible. 

 

Fig. 20.: Numerical model extracting the maximum strain in crack opening direction yy. 

Additionally, the boundary conditions with the symmetry planes and the rigid bodies 

representing the support and the stamp for the applied force are shown. 

 

To validate the numerical model, the applied force and resulting deflection are compared with 

the experimental force-deflection curve of the un-cracked specimen. In Fig. 21 the 

experimental results in comparison with the numerical simulation are exemplarily shown for 

the pearlitic material, where the markers denote the experiments at failure. 

  

Fig. 21.: Exemplary force-deflection curves of the experiments with different crack lengths in 

comparison with numerical simulation without a crack for the pearlitic steel. In the insert the 

force-displacement curves for smaller deflections are shown.  
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The nominal strain at failure can now be plotted against the crack length in a log-log plot (Fig. 

22). Looking at the experimental results, the diagram can be roughly divided into two regions 

with different gradients of the failure line. 

 

 

Fig. 22.: Nominal strain at failure at the outer fiber (calculated by numerical simulation using 

the maximum load from the experiments) against the crack length. Additionally typical strains 

are displayed for the bending process and when a train is passing the switch. 

 

The theoretical approach is shown in Fig. 23; a distinction into two regions can be explained 

by the validity of linear-elastic fracture mechanics (LEFM, grey area) and the K-concept for 

long cracks down to a certain transition length apl, from where on the J-concept of elastic-

plastic fracture mechanics (EPFM, green area) has to be used. For even shorter cracks the 

fracture strain is nearly equivalent to the strain of un-cracked and polished specimens (left 

area). 



28 

 

Fig. 23.: Schematic of theoretical approach for the failure strain in the static strain based 

Kitagawa-Takahashi diagram. 

 

To calculate the failure curve in the LEFM area, the stress intensity factor K from Eq. 1.11 is 

equated to the fracture toughness KIc, 

Icb K
W

a
YaK 








  . 2.1 

The geometry factor Y(a/W) is estimated from the function f(a/W), 






















W

a
f

a

W

W

a
Y

3

2
 2.2 

with the geometry function f(a/W) for the three-point bending specimen [62] 
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In consideration of linear-elastic material behavior (Hooke´s law), σ = E∙, the fracture strain 

 f-LEFM can be obtained from Eq. 2.1 as 













W

a
YEa

K



 Ic
LEFMf . 

2.4 

 

 



29 

Due to the fact that the fracture toughness KIc and Young´s modulus E are constants, one 

obtains a slope of -1/2 in the log-log diagram of fracture strain vs. crack length, 

    









W

a
Yalog

2

1
log LEFMf . 2.5 

 

For short cracks, a < apl, the K-concept is not valid anymore, and the J-integral has to be used 

as a fracture criterion. The critical J-integral can be calculated based on the strain energy 

density w [34], [35], for Jpl with Eqns. 1.22 and 1.23. 

Finally the plastic strain pl can then be expressed by Eq. 1.22 and 1.23. Due to the assumed 

integration limits where plastic strain starts at pl = 0, the elastic strain energy density wel at 

the yield point 0 has to be subtracted: 
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where wel(0) is derived from Eq. 1.21, 
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The transition between LEFM and EPFM, denoted with apl in Fig. 5, is defined at f = 0 and 

the maximum strain is assumed conservatively as the fracture strain from the tensile tests. 

Finally the fracture strain of the cracked specimens can be calculated with Eq. 2.8. 
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In Fig. 24, the failure curves determined analytically from Eq. 2.8 are compared with the 

experimental results. A good correlation is observed in the LEFM regime, where, due to the 

geometry function (Eqns. 2.2 and 2.3), the slope of the failure line steepens for longer cracks. 

In the EPFM regime the failure curve is too conservative for all materials. Considering short 

cracks, fracture is significantly affected by the stress in the process zone and not by the local 

strain and therefore the Q-stress has to be considered like in the constraint based diagrams 

[41], [42] or similar work [27]. 

 

 

Fig. 24.: Prediction of failure curves with constant KIc and Jc and comparison with the 

experimental results. Additionally typical strains are displayed for the bending process and 

when a train is passing the switch. 

 

In order to address the behavior of the increasing nominal strain at failure for very short 

cracks, the constraint effect due to plasticity has to be considered. 

To this end, the HRR field from Eq. 1.13 can be calculated using the Ramberg-Osgood Eq. 

1.14 and the parameters from Table 1 and the material constants In and  θ,nσij
~ from the tables 

of Shih [24] for plane strain condition. 
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For numerical calculations, the FE-solver ABAQUS was used, including large deformations 

under plane strain condition. On this basis, FE simulations have been performed for each 

individual experiment (i.e. for each crack length a and maximum load Fmax) to determine the 

J-integral and the stress in the crack opening direction at the point of failure. An exemplary 

numerical model is shown in Fig. 25. The loading and support cylinder was modelled by a 2D 

rigid part. The focus is set on the refinement of the crack tip with a maximum element size 

depending on the crack length of a
(e)

 = a/100 and a linear shape function following the 

recommendations in [63] and [64].  

 

  

Fig. 25.: Exemplary model of the meshed crack in plane strain condition for the calculation of 

the J-integral and the stress in crack opening direction to determine the Q-stress. 

 

The Q-stress [27], [28], [29] is defined by Eq. 1.15 as the difference between the actual stress 

field (computed by numerical simulation) and the approximate HRR field at the 

dimensionless distance r/(J∙0) and is calculated at r/(J∙0) = 2, as recommended in the 

literatures. 

 

The analytical (HRR) approach provides higher stresses due to lower constraint effects in the 

numerical simulation. The negative Q-stress determined with Eq. 1.15 is plotted in Fig. 26 

with inverted signs so that the Q-stress is positive, as used in Eq.1.32. 

The trend of the Q-stress, as plotted in Fig. 26, can be described by a functional dependence 

on the crack length; the respective parameters are listed in Table 2. 

 

  kaDaQ   2.9 
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Fig. 26.: Q-stress vs. crack length; experimental results and approximation by Eq. 2.9. 

 

Table 2: Parameters of Eq. 2.9 for the prediction of the Q-stress depending on the crack 

length. 

material D k 

pearlite 1.78 -0.20 

fine-pearlite 1.98 -0.13 

bainite 1.14 -0.38 

ferrite-martensite 1.03 -0.13 

 

The J-integral at failure, extracted from the performed numerical simulations, can be plotted 

against the Q-stress [28]. An approximate prediction of the dependence of the critical J-

integral on the Q-stress is given by a function similar to Eq. 1.32, whose parameters are listed 

in Table 3. 

   h
aQJJ  1matc

 2.10 

 

where Jmat can be estimated from the fracture toughness KIc (Eq. 1.18). 

 



33 

 

Fig. 27.: Critical J-integral against Q-stress extracted from the numerical simulations by using 

the maximum load from the experiments and its approximate prediction by Eq. 2.10 for the 

different materials.  

 

Table 3: Parameters of Eq. 2.10 for the approximate prediction of the critical J-integral 

depending on the Q-stress. 

material  h 

pearlite 0.0121 7.01 

fine-pearlite 0.0008 8.69 

bainite 0.1856 5.47 

ferrite-martensite 0.2032 3.85 

 

The higher the positive Q-stress is, the higher is the critical J-integral. Inserting Eq. 2.9 in Eq. 

2.10, the critical J-integral at failure can be predicted as a function of the crack length a: 

  hkaDJJ  1matc

 2.11 

 

In Fig. 28 the calculated critical J-integral from the experiments is plotted against the crack 

length together with the prediction from Eq. 2.11.  
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Fig. 28.: Critical J-integral depending on the crack length a from the numerical simulations 

using the maximum load from the experiments and its approximate prediction by Eq. 2.11 for 

the different materials. 

 

Using Eq. 2.11 describing Jc and Eq. 2.8, the predicted failure curves can be calculated for the 

regimes of LEFM, EPFM and virtually flawless specimens. For validation, the result of this 

calculation is plotted together with the experimental results in Fig. 29. 

 

Fig. 29.: Failure strain in the static Kitagawa-Takahashi diagram using the J-Q concept. 

Additionally typical strains are displayed for the bending process and when a train is passing 

the switch. 
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It can be seen that the failure curves show a good correlation with the experimental data. 

Therefore, this method provides a good prediction of the failure strain depending on the flaw 

size with only a few experiments needed. This means that by combination of a tensile 

experiment to estimate the Ramberg-Osgood parameters as well as the fracture toughness and 

bending experiments with very short cracks to obtain the Q-stress dependency, the failure line 

can be determined completely. 

In addition, Fig. 29 represents the strain range of the three-point bending process (blue area) 

during manufacturing and the resulting strains (green area) when a train is passing through the 

switch. 

 

2.4. Proof of J-integral determination based on strain energy density 

A proof of the validity of the used strain energy based determination of J by Shih and 

Hutchinson [34] and the extension of Dowling [35] (Eqns. 1.19 - 1.26) is done for single edge 

notch tension (SENT) specimens for various hardening materials in [4]. 

Special attention on this study is devoted to the effect of hardening and when the estimation 

breaks down. In this work, the geometry function is estimated by a polynomial function from 

[65] for a trough thickness crack in a tension specimen. 
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Four different hardening exponents n, following the Ramberg Osgood material law, and also 

an ideal-plastic material is calculated by FE simulations. 

All materials have been calculated with a Young's modulus of E = 210 GPa, a Poisson ratio of 

 = 0.3 and the material constants σ0 = 500 MPa and Eq. 2.13 for  (cf. Eq. 1.14). 

0

2.0






E
  2.13 

with 0.2 = 0.002. 

 

The ideal-plastic material behavior is defined by the following true stress- strain data points, 

listed in Table 4, where a slight gradient beyond the yield point is used in order to provide 

numerical stability. 
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Table 4: Stress strain data points defining the ideal-plastic and small strain softening material 

behavior. 

material σpl [MPa] εpl [-] 

ideal-plastic 500 0 

 

520 2 

 

The ideal-plastic material is then compared with four different strain hardening materials. All 

materials are shown in Fig. 30, where the colours denote the different material hardening 

behaviors for n = 5, n= 6, n = 12, n = 15 and ideal-plastic behavior. 

 

Fig. 30.: Comparison of the different material behaviors, n = 5, n = 7, n = 12, n = 15 and 

ideal-plastic material behavior in the true stress-strain diagram. 

 

2.4.1. Finite element (FE) simulations 

The underlying geometry of the following calculations by the FE solver ABAQUS is a 

displacement controlled tension sample in plane strain conditions. In Fig. 31 a) the geometry 

of the upper half of the specimen and its partitions are shown. The half-height of the specimen 

is H/2 = 50 mm, the specimen width W = 50 mm. The crack length is varying for a/W = 

2/100, a/W = 1/10 and a/W = 1/5. The upper red line represents the boundary condition for the 

displacement in y direction uy/2 and the lower red line represents the symmetry, representing 

the ligament, defined by uy = 0. The applied displacement of the half-specimen is uy/2 = 0.2 

mm and implies a total strain of about 0.4 %. 

 

 

― n = 5 

― n = 7 

― n = 12 

― n = 15 

― ideal-plastic 
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In Fig. 31 b) the global and refined mesh in the vicinity of the crack tip is shown. The focus is 

set on the refinement of the mesh on crack tip with a maximum element size depending on the 

crack length of a
(e)

 = a/100 and the refinement of the shear band by an element sizes a
(e)

 = 

100m. All elements denote a linear shape function following the recommendations [63] and 

[64]. 

 

a) b) 

  

Fig. 31. Numerical model of the half-specimen with boundary conditions and in a) the 

geometry and the partitions and in b) detail of the refinement on the crack tip. 

 

To set the different material hardening behaviors, the command deformation plasticity in 

ABAQUS is used, which represents the Ramberg-Osgood material law. 

Furthermore, the J-integral is calculated by the path independent line integral J with Eq. 

1.12, implemented in ABAQUS. 

 

2.4.2. Results of FE simulations and analytical determination of J 

In the following diagrams, the results from the numerical simulations and strain based method 

for J are plotted and compared for each crack length in a) a = 1mm, b) a = 5 mm and c) a = 

10mm. Again, different colours denote different material hardening resp. softening behaviors 

(n = 5, n= 7, n = 12, n = 15 and ideal-plastic). 

In Fig. 32 the ratio of the total reaction force F in the symmetry line (Fig. 31) to the specimen 

thickness B is plotted over the displacement uy. 
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 a) b) c) 

 

― n = 5 /  ― n = 7 /  ― n = 12 /  ― n = 15 /  ― ideal plastic 

Fig. 32.: Force to specimen thickness ratio F/B over the displacement uy for the different 

hardening exponents n = 5, n= 7, n = 12, n = 15 and ideal-plastic behavior for the different 

crack lengths a) a = 1mm, b) a = 5 mm and c) a = 10mm. 

 

The curves correlate for each crack length with the material law from Fig. 30. The ideal-

plastic material clearly shows the different global forces at the yield point, depending on the 

crack length a due to varying ligament lengths (b = W - a). 

The J-integral J, using the results from the line integral of the FE simulations, is plotted as a 

function of the displacement uy in Fig. 33. 

 a) b) c) 

 

― n = 5 /  ― n = 7 /  ― n = 12 /  ― n = 15 /  ― ideal plastic 

Fig. 33.: J-integral J determined from the finite element simulation as a function of the 

displacement uy for the different hardening exponents n = 5, n= 7, n = 12, n = 15 and ideal-

plastic behavior for the different crack lengths a) a = 1mm, b) a = 5 mm and c) a = 10mm. 
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The J-integral for all material types is equal until the onset of large scale yielding, which 

defines the regime of small scale yielding. In the following large scale yielding region, a 

nearly linear increase of J as a function of the displacement is observed as expected and is 

proportional to n. Moreover, considering an ideal-plastic behavior, J is increasing 

significantly for small crack lengths as a result of higher deformations at the crack tip in the 

regime of large and full scale yielding for these material behaviors. 

 

In the plot of Fig. 34 the J-integral J(w), calculated from strain energy density w using Eqns. 

1.19 - 1.26 and 2.12, is plotted as a function of the line integral J derived from FE 

simulations. For the calculation of the strain energy density, pl and pl are derived from the 

FE results. 

 a) b) 

  

 c) 

 

Fig. 34.: J-integral determined from w. and the stress-strain curves and a variable function 

f(n), over the J-integral J determined from the finite element simulation for the different 

hardening exponents n = 5, n= 7, n = 12, n = 15 and ideal-plastic behavior for the different 

crack lengths a = 1mm, b) a = 5 mm and c) a = 10mm. 

 

― n = 5 

― n = 7 

― n = 12 

― n = 15 

― ideal-plastic 
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Estimating the strain based J(w) reproduces the line integral J for short cracks up to a/W = 

1/10 and a hardening exponent n. Nevertheless, for long cracks, shown in Fig. 34 c), J(w) is 

over-estimating J with increasing hardening exponent n. Furthermore, for ideal-plastic 

material behavior J(w) is infinity, due to Eq. 1.23, beyond the yield strength in the regime of 

full scale yielding, shown in [34]. 

 

Nevertheless, those simple calculations, prove the good correlation of the strain energy based 

J-integral which is used as crack driving force in the static strain based Kitagawa-Takahashi 

diagram resulting in Fig. 29. Further conclusion to the strain based J-integral, especially to 

non-hardening materials can be found in [4]. 
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3. Endurance limit as a design criterion 

For cyclically loaded components the endurance limit is commonly used as a design criterion. 

In this chapter two different approaches for calculation of the endurable stress are presented: a 

stress based design and a fracture mechanics approach, following the article [1]. The focus is 

on plain fatigue, excluding issues related to rolling contact fatigue (RCF) in the region of the 

running tread. 

3.1. Stress based design concept 

For the estimation of the endurance limit under tension/compression loading, the ultimate 

tensile stress σUTS is reduced by a fatigue strength factor fe following FKM [14]. Furthermore 

the endurance limit depends on the stress ratio R. Hence, the endurance limit can be calculated 

by Eq.1.2 where Km(R) is the mean stress factor which can be calculated with Eq. 1.3. 

As already mentioned, rails are exposed to bending loads. Therefore, the endurable stress 

amplitude is higher than for a tension/compression loading. This is considered by the elastic 

support factor nσ for cyclic loading (Eq.1.5) and the plastic support factor npl factor for static 

loading (Eq. 1.6). 

The endurance limit in the stress based analysis is reduced by several factors such a notches, 

surface roughness etc.. Hence, regarding rail production and the resulting surface roughness in 

the as-rolled condition, a reduction factor Ksurface, following FKM [14] has to be taken into 

account by Eq. 1.8. 

In the rail industry, for the stress based analysis, the Smith diagram is commonly used for 

prediction of the endurance limit. This diagram is exemplarily displayed for the pearlitic 

material in Fig. 35 for one material under tension/compression (cyan line), bending load (light 

blue line) and bending load including an assumed surface roughness of the rolling skin (blue 

line). In addition, the black dotted line represents the mean stress and the dashed lines the 

different stress ratios R. 
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Fig. 35.: Smith diagram of the pearlitic material for tensile load (cyan line) and bending load 

(light blue line) assuming polished surface condition, for bending including an assumed 

surface roughness from the rolling skin (blue line) and fatigue strength experiments (crosses). 

 

To validate the predicted endurable stress amplitudes, several fatigue experiments to 

determine the endurance limit have been done by voestalpine. Specimens are loaded in 

tension/compression and bending at different stress ratios. Additionally the influence of the 

surface roughness on the endurance limit has been tested. Therefore, the endurance limit of 

polished specimens and samples with the real rolling skin were analyzed. The experimental 

results are additionally displayed by crosses in the Smith diagram in Fig. 35. 

 

For tension/compression loading at stress ratios of R = -1 and R = 0.1 the prediction correlates 

almost perfectly with the experiments. However, the predicted light blue line for the bending 

load is lower than the experimental result. Nevertheless, the difference is in an acceptable 

range and implies a conservative prediction. Also the prediction and the experiment for the 

endurance limit with the surface roughness correlate well. 

 

Finally, Fig. 36 shows the predictions for all different materials investigated under bending 

including the influence of the surface roughness. 
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Fig. 36.: Comparison of all considered different materials for bending load and surface 

roughness in the as-rolled condition in the Smith diagram. 

 

3.2. Experimental results of the crack resistance for the threshold and 
fatigue crack growth curves. 

If notches are very sharp and hence can be considered as cracks, the stress based design is not 

valid anymore and a fracture mechanics approach has to be used as a design criterion. The 

stress intensity factor range ΔK of the crack can be calculated by Eq. 1.38. 

Several parameters are necessary for application of design concepts based on the cyclic 

fracture mechanics approach, as already explained in section 1.3.3. Therefore, the cyclic crack 

growth behavior is determined by using single edge notch bending (SENB) specimens in a 

four point bending device (Fig. 15), starting from an initial crack length. Using the load 

increasing method at different stress ratios R, explained in chapter 1.3.3.3, the cyclic crack 

resistance curve (R-curve) and the long crack threshold Kth,lc for each material have been 

measured. The results provide the necessary information for the admissible stress range Δ, 

depending on the crack length Δa in the Kitagawa-Takahashi diagram. 

In Fig. 37 the experimental results of the crack growth resistance curve are plotted for each 

material: a) pearlite, b) fine-pearlite, c) bainte and d) ferrite-martensite. Different colours 

denote different stress ratios: purple R = -1, blue R = 0.1 and green R = 0.7. Each symbol 

represents an applied load K at a crack length a, where the crack arrests due to closure 

mechanisms (shown in Fig. 12). 
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a) b) 

   

c) d) 

   

Fig. 37.: Comparison of the experimental results of the crack resistance curves for the 

different materials in a) pearlite, b) fine-pearlite, c) bainite and d) ferrite-martensite. The 

purple symbols denote the stress ratio R = -1, the blue symbol R = 0.1 and green symbol        

R = 0.7. 

 

The experimental results of the R-curve for Kth in Fig. 37 represent the increase of threshold 

as a function of crack extension depending on the material type. The pearlite in a) and fine-

pearlite in b) represents a typical tendency of an R-curve (Fig. 12), from the effective 

threshold Keff (~2.5 MPa√m) to the long crack threshold Kth,lc, explicitly for R = -1, where 

Kth,lc(R = -1) ≈ 12-13 MPa√m. However, the initial gradient Kth,lc/a of the bainitic and 

ferrite-martensitic material is steeper and Kth,lc(R = -1) ≈ 9-10 MPa√m. 

The different Kth,lc, exhibit a linear dependency on R as already shown in Eq. 1.40. At the 

stress ratio R = 0.7 almost no closure effects occur which means Kth,lc ≈ Keff and hence is 

nearly independent of the material type. 

 

 

pearlite fine-pearlite 

bainite ferrite-martensite 

R = -1 

R = 0.1 

R = 0.7 

R = -1 

R = 0.1 

R = 0.7 

R = -1 

R = 0.1 

R = 0.7 

R = -1 

R = 0.1 

R = 0.7 
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The differences of the short crack behavior, the gradient of the slope and Kth,lc, denoted by 

the cyclic crack resistance curve of each material type, can be explained by the different 

closure mechanisms as a result of the different hardening behavior and the differences in the 

microstructures. 

 

Beyond the long crack threshold Kth,lc, the crack growth behavior is commonly calculated 

with the NASGRO equation (Eqns. 1.42 and 1.48). Therefore, several parameters have to be 

determined by fracture mechanics experiments, again with SENB specimens. In Fig. 38 the 

experimental results of the crack growth da/dN is plotted as a function of K for the different 

materials; a) pearlite, b) fine-pearlite, c) bainte and d) ferrite-martensite. The different colours 

again denote different stress ratios: purple R = -1, blue R = 0.1 and green R = 0.7.  

a) b) 

  

c) d) 

  

Fig. 38.: Comparison of the experimental results of the crack growth curves for the different 

materials in a) pearlite, b) fine-pearlite, c) bainite and d) ferrite-martensite. The purple dots 

correspond to the stress ratio R = -1, the blue dots to R = 0.1 and green dots to R = 0.7. 
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In the diagrams of Fig. 38 the almost vertical slopes at da/dN < 10
-7

 represent approximately 

the long crack threshold Kth,lc. Nevertheless, the gradient in the Paris regime (shown in Fig. 

14) is nearly the same for each material. However, the transition from the Kth,lc to the Paris 

regime, characterized by the value p in the NASGRO equation (Eq. 1.42) is different, 

depending on the material type. 

 

3.3. Fracture mechanics approach 

If notches are very sharp and hence can be considered as cracks, the stress based design is not 

valid anymore and a fracture mechanics approach has to be used as a design criterion. The 

stress intensity factor range ΔK of the crack is calculated by Eq. 1.38. 

Using the Smith diagram, an endurance limit can be calculated, yet in the fracture mechanics 

approach it is based on the crack length and represented in the Kitagawa-Takahashi diagram 

[48], cf. Fig. 11. 

For a simplified illustration of the behavior described by Eq. 1.41, the endurable stress range 

is calculated for a surface crack with a0 → 0 and a geometry factor Y = 0.8. The resulting 

Kitagawa-Takahashi diagram is displayed for the different materials in Fig. 5 at stress ratios R 

= 0.1 and R = 0.7. 

 

Fig. 39. Comparison of different materials in the Kitagawa-Takahashi diagram at stress ratios 

R of 0.1 and 0.7, for near surface cracks with Y = 0.8. 
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In consideration of a pre-cracked sample the pearlitic and fine-pearlitic materials denote the 

highest long crack threshold. The endurance limit for the ferrite-martensite material is the 

highest of all considered materials, whereas for crack lengths a > 0.1 mm the endurable stress 

range is smaller compared to the others. 

For higher stress ratios, e.g. R = 0.7, shown by the dashed lines, the long crack threshold is 

roughly equal for all materials because closure is almost vanishing.  

 

Furthermore, the experimental data of the endurance limit under bending with surface 

roughness (cf. green crosses in Fig. 35) can be displayed. For this the fracture surfaces, 

exemplarily shown in Fig 6 a) and b) were analyzed using an optical microscope. The initial 

notch, considered as a crack, is measured and approximated by a semi-elliptical shape (Fig. 40 

c)). 

a) b) c) 

             

Fig. 40. Flaw size determination from the fatigue strength experiments: a) view of the total 

fracture surface, b) detailed view of the failure initiation point and c) schematic sketch of the 

measured, idealized flaw geometry. 

 

In consideration of a semi-elliptical crack, K can be calculated depending on the applied 

stress range from the experiment, the crack length and the geometry factor from Newman and 

Raju ([67], [68], [69]): 

a
B

a

W

a

c

a
YK 








 ,,, . 3.1 

 

Using Eq. 3.1, the experimental data of the fatigue experiments at the load ratio R = 0.1 can 

then be displayed in the Kitagawa-Takahashi diagram (Fig. 41). 
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Fig. 41. Comparison of different materials in the Kitagawa-Takahashi diagram at stress ratios 

R of 0.1, for near surface cracks with Y = 0.8 and fatigue strength experiments. 

 

It can be seen that the proposed approach gives a good, even though conservative estimation 

of the safe region. 

 

Finally, instead of choosing the stress ratio R as a parameter for visualizing Eq. 1.41, one can 

also take the crack size. This leads to the crack size dependent Smith diagram displayed in 

Fig. 42, where the endurable stresses are plotted for crack lengths 0.1 mm ≤ a ≤ 0.5 mm. 

 



49 

 

Fig. 42.: Endurable stress depending on the defect size from Eq. 16 plotted for the pearlitic 

material in the Smith diagram. 
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4. Fatigue strength vs. crack growth as a design criterion 

For cyclically loaded components with applied stress ranges beyond the endurance limit, the 

fatigue strength has to be considered. Due to the information of the gradient kf of the fatigue 

strength slope (cf. Fig. 6), the Miner rule is commonly used to calculate the end of life with 

Eq. 1.9 in a stress based design concept. Notches reduce the fatigue strength slope similar to 

the endurance limit by certain factors. 

Considering cracks in the regime of LEFM with loads beyond the long crack threshold, the 

cracks will grow until failure and the propagation can be calculated by the NASGRO equation 

(Eq. 1.42). 

 

4.1. Crack growth based on finite element simulations 

Due to complex geometries and therefore accompanying challenges of calculating the stress 

intensity of cracks, numerical simulations are often used in combination with the NASGRO 

equation to calculate the crack growth. 

Therefore, a load spectrum from measurements, classified in different load blocks is required 

(cf. Fig. 43 a)). Assuming a linear material behavior and an applied unit force, the stress 

intensity along the crack front can be extracted from FE simulations, shown in Fig. 43 b). 

a) b) 
 

  

Fig. 43.: a) Schematically plotted load spectrum and b) a switch blade with a semi-elliptical 

crack front and applied unit load. 

 

Nevertheless, the initial step has to be calculated using a starting crack length of a = a0.  

The threshold value Kth,i along the crack front of each load block can then be calculated by 

the relationship of Eq. 4.1 assuming linear behavior. 
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unit

FEMith,


 iΔKΔK

  4.1 

where unit denotes the stress by an applied unit load, at the position of the measured load 

spectrum. The stress intensity KFEM along the crack front is extracted from FE simulations 

and i means the stress range from the load spectrum at the load block i. Using the 

information of the threshold and the number of cycles Ni of each block, the crack growth ai 

can be calculated with Eqns. 1.42 - 1.45, which includes the modified NASGRO equation. 

The main advantage of the crack growth calculation by using FE simulations, is the accuracy 

of K along the whole crack front. Nevertheless, FE simulation, especially for complex parts 

can be challenging due to numerical stability problems and hence may be time consuming. 

 

4.2. Analytical estimation of the Crack growth 

Analytical calculations of the stress intensity factor if available, considering different crack 

shapes and part dimensions circumvent the need of time consuming FE simulations.  

The stress intensity factor in mode I, considering LEFM is calculated by 

a
B

c

W

a

c

a
YK 








  ,,applI  4.2 

where appl and the crack length a are known and KI just depends on the geometry factor Y, 

which in turn depends on the crack depth a, the crack width 2·c, the specimen thickness W 

and the specimen width 2·B, see Fig. 44. 

Early works [66] represent simple analytical equations of the geometry factor in 2D boundary 

problems and were extended in 3D geometries with a satisfying accuracy. Newman and Raju 

(NR) et al. [67], [68], [69] published approximate solutions for the geometry factor of semi-

elliptical cracks under tension and bending (Mx), which are nowadays commonly used in the 

structural stress concept. For these calculations, a maximum difference to the FE results of 

±5% is mentioned and is valid for ratios 0.2 ≤ a/c ≤ 1.0, c/B < 0.5 and a/W ≤ 1.0. 

Additionally, Newman [70] provided an enhanced formulation for higher c/B ratios (c/B ≤ 

0.8) under tensile loading with an accuracy of 5 %. 

 

Based on the work by Newman and Raju a lot of investigations have been performed. Isida 

[71] uses the body force method to provide weight functions for a/W ratios ≤ 0.6 and based 

on this work Fett et. al. [72] improves the angular dependency for the near surface points. 

Furthermore, Wang and Lambert [73] provide stress intensity functions depending on the 

stress distribution for ratios a/W ≤ 0.8 and a comparison with the investigations from 
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Shiratori [74], which can be found in the stress intensity factor handbook by Murakami [20]. 

Vainshtock [75] pointed out the different validities and accuracies of commonly used 

geometry factor formulations for center, semi-elliptical and corner edge cracks by several FE 

simulations. While commonly available results assume a Poisson’s ratio of  = 0.3 typical for 

metals, Strobl [76] provides an analytical function for different , valid for a/W and c/B ≤ 

0.5. 

 

These works depend on different crack shapes and specimen dimensions with straight 

boundaries (prism). Additionally several articels provide stress intensity factors for cylindrical 

specimens like pipes or shafts ([77], [78]) and also for the consideration of the root stress 

concentration when a crack starts from a notch ([79], [80]). For welded joints different 

solutions depending on the crack shape and boundary dimensions are available ([81], [82]) 

including, e.g., the situation in a Francis turbine runner [83]. 

Nevertheless, all equations denote a limiting range of validity with respect to the relation of 

the crack to specimen boundary dimensions and therefore an enhanced approximate solutions 

for the stress intensity factor under tension and bending around two axes have been proposed 

in [5]. The proposed formulas extend the range of validity and comprise cases where the crack 

width 2·c and the crack depth a are close to the specimen width 2·B and the specimen 

thickness W, respectively. 

 

In Fig. 44 the dimensions of a specimen with a semi-elliptical surface crack are illustrated. 

Additionally, the applied loads on the specimen are sketched, which are the tensile force Fz, 

bending around the horizontal x-axis with the moment Mx and additionally bending around 

the vertical y-axis with the moment My. With these load types all possible external loadings 

occurring in the structural stress concept can be covered using superposition, i.e., 

unsymmetrical bending (Mx and My) and membrane (tensile) loading (Fz). 
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Fig. 44.: Dimensions of the specimen and the semi-elliptical surface crack. 

 

As mentioned, the geometry factor Y depends on the geometry of the specimen and the 

geometry of the crack front. For given crack and specimen dimensions a, c, W, B and the 

applied stress  the stress intensity factor KI has been computed by a finite element (FE) 

simulation, the geometry factor Y can subsequently be calculated by transforming Eq. 4.2 into 

a

K
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c

W

a

c

a
Y I







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




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Newman and Raju (NR) published approximate solutions for the geometry factor of semi-

elliptical cracks under tension and bending (Mx), which are nowadays commonly used in the 

structural stress concept. For these calculations, an accuracy of the FE results of ±3% is 

mentioned. Furthermore, to keep the approximate solutions sufficiently simple, a difference to 

the FE results of ±5% was accepted. Overall, this gives a total precision of about ±8%. The 

NR formulation is valid for ratios c/B ≤ 0.8 and a/W ≤ 0.8 and can be used from Appendix A. 

The goal is to enhance the NR formulation for larger ratios of crack to specimen width (c/B) 

and crack length to specimen thickness (a/W). Moreover a geometry factor solution for 

bending around the vertical axis (My) will be developed. 

 

 



54 

Referring to Fig. 44 a new empirical solution for the geometry factor has been developed for 

the following ranges of validity: 

 ratio of crack semi-axes a vs. c: 0.2 ≤ a/c ≤ 1.0 

 ratio of crack length a vs. specimen thickness W: 0.01 ≤ a/W ≤ 0.9 

 ratio of crack width 2·c vs. specimen width 2·B: 0.01 ≤ c/B ≤ 0.9. 

 

4.2.1. Determination of the geometry factor by finite element simulations 

The nominal stress for an un-cracked specimen can be calculated using the conventional 

equations for a beam with rectangular cross section (2∙B)×W (see Fig. 45) under tension and 

bending: 
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The mode I stress intensity factor KI is calculated by using the FE package ABAQUS 

assuming linear-elastic material behavior for steel (E = 210000 MPa, = 0.3). For the crack 

front, the J-integral is computed via the virtual crack extension method [84]. From this 

information the stress intensity KI can be calculated, assuming plane strain conditions with 

Eq. 1.18. 

 

KI is calculated at the deepest point and at the surface points of the crack front as shown in 

Fig. 45, i.e., A (, C1 (≈and C2 (≈. For accuracy reasons discussed in 

detail in [77], points C1 and C2 are positioned not directly at the free surface of the specimen 

but as close as possible, which means  ≤ 1.40° for point C1 and  ≥ 178.60° for point C2. 
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Fig. 45.: Section view for the dimensions of specimen, crack front and related positions of the 

deepest and surface points of the crack. 

 

The geometry factor Y depending on the crack shape can then be calculated by using Eqns. 

4.3 - 4.6 and the results of the FE simulations. 

The accuracy of the geometry factor depends crucially on the mesh quality. Therefore 

obtaining a high quality mesh has to be the main focus of FE model preparation. To calculate 

the line integral (Eq. 1.12), the semi-elliptical crack is modelled with a fan-shaped structured 

mesh swept along the crack front and discretized with 35 elements in radial direction. The 

semi-ellipse is subdivided into 150 elements along the crack front. The crack tip is modelled 

with 8-node hexahedral elements and in the center with 6-node wedge elements. 

In Fig. 46 an exemplary mesh for a/c = 0.8, a/W = 0.9 and c/B = 0.9 is shown. Generating an 

accurate mesh for such high ratios a/W and c/B is very challenging as can be guessed from 

this figure. 

a) b) 

  

Fig. 46.: Example of the FE-mesh for a/c = 0.8, a/W = 0.9 and c/B = 0.9. a) front view of the 

specimen and crack front; b) detailed view of the meshed crack front. 

 

At points A, C1 and C2, 20 contour integrals were calculated for each load. The J-integral was 

regarded as correct when the minimum error of 5 successive contours was within a difference 

of ±0.1 % related to the maximum value. 
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In Table 5 all considered geometry parameters are listed; FE simulations were performed for 

all 240 parameter combinations. The focus on high a/W and c/B ratios is evident. 

 

Table 5: Considered geometry parameters 

a/c a/W c/B 

0.2 0.01 0.01 

0.3 0.3 0.5 

0.5 0.5 0.6 

0.6 0.7 0.7 

0.7 0.9 0.8 

0.8  0.9 

0.9  
 

1.0  
 

 

 

4.2.2. Results and comparison with the Newman-Raju approximation 

In Fig. 47 and Fig. 48 the results of the FE simulations (horizontal axis) are compared with 

the Newman-Raju approximate solution [67], [68], [69], [70] (vertical axis) of each 

combination from Table 5, for loading in pure tension and by a bending moment Mx at points 

A ( = 90°) and C (in these cases, C1 at  ≈ 0° and C2 at  ≈ 180° give identical results). The 

full line represents the exact solution, which means that the analytical approximation is equal 

to the FE result. The dashed and dotted lines represent 10% and 20% over- and under-

prediction with respect to the FE solution, respectively. 
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 a) b) 

 

Fig. 47.: Comparison of the FE results with the approximate solution by Newman and Raju 

for pure tension Fz a) all results for point A, color/symbol distinction of a/W; b) all results for 

point C (C = C1 = C2), color/symbol distinction of c/B. 

 

In Fig. 47 a) the comparison of the Y factors for point A is plotted for all parameter 

combinations. The different marks represent different a/W ratios, as the a/W ratio will have 

the highest influence on the geometry factor at point A. It can be seen that the NR solution fits 

almost perfectly to the FE results for a/W ≤ 0.5; however, for a/W ≥ 0.7 the FE results are 

under- and for a/W ≥ 0.9 over-predicted. 

Fig. 47 b) shows the comparison for point C. In this figure, the different marks represent 

different c/B ratios indicating how far point C approaches the specimen boundary. It can be 

observed that the NR approach again fits perfectly inside the original range of validity, but 

under-predicts the FE results for c/B ≥ 0.5, outside the original range of validity. 

 

The results in Fig. 48 for the specimen loaded by a bending moment Mx also exhibit good 

agreement with the NR formulation fitting acceptably well up to a/W = 0.5 for point A and 

c/B = 0.5 for point C. 

 

 

 

 

― exact 

- - 10% over-prediction 

··· 10% under-prediction 

- - 20% over-prediction 

··· 20% under-prediction 

― exact 

- - 10% over-prediction 

··· 10% under-prediction 

- - 20% over-prediction 

··· 20% under-prediction 
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 a) b) 

 

Fig. 48.: Comparison of the FE results with the approximate solution by Newman and Raju 

for bending MX a) all results for point A, color/symbol distinction of a/W; b) all results for 

point C (C = C1 = C2), color/symbol distinction of c/B. 

 

In general, the results of the FE simulations compared to the NR approach for tension and 

bending around the x-axis Mx show an acceptable prediction for all a/c ratios and small a/W 

and c/B ratios, respectively, up to 0.5. For higher values of a/W and c/B the NR approximation 

over-predicts YA and under-predicts YC. For this reason the development of an alternative 

approximate solution suitable for higher a/W and c/B ratios is required. 

 

For a bending moment Mx, the stress intensity factor at point A becomes negative for a/W ~ 

0.8 (which was excluded in the original Newman-Raju approximation), slightly depending on 

the a/c and c/B ratios, due to the bending stress distribution (Fig. 49 a). 

 

For a bending moment My, the existing solution for a quarter-elliptical crack [20], [19] is not 

usable due to the anti-symmetric stress distribution. For this bending load, YA is zero due to 

symmetry as point A marks the neutral axis (shown in Fig. 49b). Another result due to 

symmetry is YC1 = – YC2, where YC1 is positive regarding the convention of a positive moment 

My around the y-axis (Fig. 49b). 

 

 

 

― exact 

- - 10% over-prediction 

··· 10% under-prediction 

- - 20% over-prediction 

··· 20% under-prediction 

― exact 

- - 10% over-prediction 

··· 10% under-prediction 

- - 20% over-prediction 

··· 20% under-prediction 
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a) b) 

  

Fig. 49.: a) Compression at point A due to stress distribution for a bending moment Mx and 

high a/W ratio; b) tension resp. compression for YC at point C1 resp. C2 due to the stress 

distribution for a bending moment My. 

 

4.2.3. Development of a new prediction for the geometry function Y 

Based on the good agreement between the NR equations and the FE simulations for the ratios 

a/W ≤ 0.5, c/B ≤ 0.5 and a/c ≤ 1.0, new equations only have to be developed for higher ratios. 

This is illustrated in Fig. 7a where the grey area represents the range of validity of the NR 

approach; the blue area and green areas display the regions for which enhanced formulations 

for the geometry function will be developed in the following sections. 
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 a) b) 

  

Fig. 50.: Area of validity and enhancement of the geometry function depending on the a/c, 

a/W and c/B ratios and introduction of the auxiliary variables x and z characterizing the 

boundaries. 

 

To this purpose, two auxiliary variables x and z are introduced for simplicity, each ranging 

from -1 to 1 for the relevant c/B and a/W ranges, cf. Fig. 50 a). 

In Fig. 50 b) the geometry function Y depends on the ratios a/W and c/B. The extension of c/B 

(blue area) follows the characterization variable x which is -1 for c/B = 0.5 at the boundary of 

the NR equation and 1 for c/B = 0.9 (the highest c/B value for which FE results are available). 

To consider high a/W ratios (green area), the characterization variable z is introduced, 

equaling -1 at a/W = 0.5 and 1 at a/W = 0.9. 

To generate a new prediction for the geometry function Y for different loadings, depending on 

all geometry ratios shown in Table 5, a statistical analysis with a linear regression model [85] 

and the method of least squares is conducted. The results of the empirical equations for 

different loadings are specified below (Sections 4.2.3.1 - 0, Eqns. 4.6 - 4.35). 
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4.2.3.1. Tension Fz 

Enhancement for high ratios 0.5 < c/B ≤ 0.9 

The geometry function is decomposed into a linear interpolation YA,C-lin-c/B-Fz and a higher 

order term YA,C-c/B-Fz for 0.5 < c/B < 0.9, 

Fz-c/B-CA,Fzc/B-lin-CA,Fzc/BCA, YYY   . 4.7 

 

For the linear interpolation between the NR approach and the solution at c/B = 0.9, the 

auxiliary variable x (Eq. 4.9) is used: 
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Here, the solutions at the boundaries are given by the NR solution (shown in the Appendix A) 

YA,C-NR-Fz at x = -1(i.e., c/B = 0.5) and by the following approximation functions determined 

by linear regression from the FE results at x = -1 (i.e., c/B = 0.9): 
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The higher order terms YA-c/B-Fz and YC-c/B-Fz for point A (Eq. 4.12) and C (Eq. 4.13) are 

fitted by polynomial functions whose parameters are determined by means of linear 

regression from the difference between FE results and linear approximation for 0.5 < c/B < 

0.9. 
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Enhancement for high ratios 0.5 < a/W ratios ≤ 0.9 

Similar to the enhanced formulation for higher c/B ratios, the extension is here done for the 

range 0.5 < a/W ≤ 0.9. Using the values from Eqns 4.7 - 4.13 for a/W = 0.5 and a statistically 

determined function for YA,C-Fz (a/W = 0.9) extracted from the FE results, the geometry 

function can then be calculated as follows: 

Fz-a/W-CA,Fza/W-lin-CA,Fza/WCA, YYY    4.14 
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and the statistically determined functions at a/W = 0.9 for points A (Eq. 4.17) and C (Eq. 

4.18). 
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Finally, the higher order terms for the ranges 0.5 < a/W ≤ 0.9, 0 < c/B ≤ 0.9 and 0 < a/c ≤ 1.0 

can then be described for points A (Eq. 4.19) and C (Eq. 4.20) as 
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Regarding pure tension and symmetry, points C1 and C2 have the same applied stress and 

hence the same value for the geometry factor. 

 

4.2.3.2. Bending Mx 

The same approach as above is used for bending around the x-axis for 0.5 < c/B ≤ 0.9 and 0.5 

< a/W ≤ 0.9: 

Enhancement of 0.5 < c/B ≤ 0.9 
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Enhancement of 0.5 < a/W ≤ 0.9 
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4.2.3.3. Bending My 

For bending around the y-axis, a new function for the geometry factor has to be developed. 

Based on the symmetry shown in Fig. 49 b), YA is situated on the neutral axis under the 

bending load My and therefore is consequently zero, independent of the geometry ratio: 

0My-A Y  4.33 

 

Assuming a positive bending moment My, point C1 is under tensile and point C2 is under 

compressive stress, shown in Fig. 49 b). The distance of both points to the neutral axis is 

equal; therefore the magnitude is also the same, only the sign changes from positive to 

negative. 
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My-C1My-C2 YY   4.34 
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The residual standard errors for the new empirical equations appear acceptable for all 

different loadings. On this basis, the new geometry functions are now compared with all FE 

results in order to verify their range of validity. 

 

4.2.4. Comparison of results for the new approximate geometry factor 
solutions 

In Fig. 51 -Fig. 53, the new approximate solutions for Y are compared to the FE results. The 

different marks denote different ratios a/W for YA and c/B for YC the same way as in section 

4.2.2. The full lines represent again the exact prediction, the dashed lines 10% and 20% over-

prediction and the dotted lines 10% resp. 20% under-prediction respectively. 

 

 a) b) 

 

Fig. 51.: Comparison of the FE results with the new approximate solution for pure tension Fz 

a) all results for point A and color/symbol distinction of a/W; b) all results for point C (C = C1 

= C2) and color/symbol distinction of c/B. 

 

― exact 

- - 10% over-prediction 

··· 10% under-prediction 

- - 20% over-prediction 

··· 20% under-prediction 

― exact 

- - 10% over-prediction 

··· 10% under-prediction 

- - 20% over-prediction 

··· 20% under-prediction 
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Due to the region-wise approximation, the prediction in the original region of validity (0 ≤ c/B 

≤ 0.5 and 0 ≤ a/W ≤ 0.5) is unchanged by the NR equations. For higher c/B and a/W ratios the 

prediction is now more precise and lies within an error band of ±20% for all and ±10% for 

most cases. 

 

Fig. 52 shows that the new formulas give a very satisfactory estimate of the FE results for a 

bending moment Mx. Most importantly, the new prediction works well for high a/W ratios, 

where point A is beyond the neutral axis. 

 

 a) b) 

  

Fig. 52.: Comparison of the FE results with the new approximate solution for bending Mx a) 

all results for point A and color/symbol distinction of a/W; b) all results for point C (C = C1 = 

C2) and color/symbol distinction of c/B. 

 

In Fig. 52 it can be observed that for bending with the moment My, the prediction for point C 

fits within a maximum error of ±5% to the FE results. As mentioned, YA is constantly zero 

due to the position of point A on the neutral axis (Fig. 49 b). 

― exact 

- - 10% over-prediction 

··· 10% under-prediction 

- - 20% over-prediction 

··· 20% under-prediction 

― exact 

- - 10% over-prediction 

··· 10% under-prediction 

- - 20% over-prediction 

··· 20% under-prediction 
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Fig. 53.: Comparison of the FE results with the new approximate solution for bending My for 

point C (C = C1 = C2) and color/symbol distinction of c/B. 

 

In this way the crack growth in a rails can so analytically be estimated with the enhanced 

formulation, even for cracks close to the boundary of the rail and different loading conditions.  

― exact 

- - 10% over prediction 

··· 10% under prediction 

- - 20% over prediction 

··· 20% under prediction 
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5. Influence of the notch parameter on crack growth 

The estimation of the lifetime of notched components is an important technical issue. Notches 

significantly reduce the lifetime of cyclically loaded components with cracks due to their 

stress concentration and early crack initiation. The lifetime can be subdivided into a crack 

initiation and a crack growth period. In order to specify inspection intervals, the information 

about the initiation and crack growth periods will be essential. 

For this purpose, single edge notched bending (SENB) specimens are manufactured with two 

different notch geometries and two different load levels are applied until failure. For 

measuring the crack length during the experiment, the direct current potential drop (DCPD) 

technique was used. In [6] and [7] a method is proposed to determine the crack initiation as 

well as the crack growth lifetime within a conventional fracture mechanics setup. 

The influence of notches on the fatigue limit and crack propagation have been studied since 

years. An interesting work on this topic, considering circumferential notched bars in torsion 

and tension is presented by Tanaka [86]. In this study the crack initiation and end of lifetime 

is determined for different notch radii using the DCPD method for the measurement of the 

crack length. The results indicate, the higher the notch radius is the lower is the lifetime and 

the lower is the crack propagation in the first stage. Berto [87] reanalyzed the results using the 

strain energy density method of Lazzarin and Zambardi [88]and provides a good prediction of 

the experimental results of Tanaka. 

The consequences of the notch concentration on the endurance limit and Woehler curves is 

presented by Atzori [89], where approaches of the general notch mechanic and fracture 

mechanics are compared. Based on the suggestions of Glinka [90], Atzori [91] provides 

analytical equations of the stress distribution of U- and V-shaped notches, considering 

bending and tension loads. 

The DCPD method is commonly used to determine the initiation and propagation of cracks. 

Nevertheless, the change of the electrical potential depends on the measuring position, the 

specimen and notch geometry and calibrations based on experimental results [92], [93] or 

using finite element simulations [94] are recommended. 
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5.1. Fatigue experiments of notched specimens 

SENB specimens with two different notch geometries are tested at two different load levels 

notch, each in a four-point bending device, shown in Fig. 15. 

The stress range notch at the notch tip is given by the applied bending stress range appl and 

the notch shape factor k from Eq. 1.14. 

kapplnotch    5.1 

The tested material is a pearlitic steel with a tensile strength of 1070 MPa. The height of the 

specimens is W = 20 mm, the width B = 0.15·W and the length L = 5.5·W. Due to a different 

notch width 2·ρ, the measuring distance 2·y for the electric potential drop ΔU varies 

depending on the notch radius (Fig. 1). 

 

a) b) 

  

Fig. 54.: Schematic representation of the notch geometries and distances of the measuring 

points of the DCPD method. a) mild notch and b) sharp notch. 

 

In Fig. 54 a) the mild notch with a depth t = 0.2·W, a notch radius ρ = 0.05·W and a measuring 

distance 2·y = 0.375·W and in Fig. 54 b) the sharp notch with a depth t = 0.2·W, a notch 

radius of ρ = 0.01·W and measuring distance 2·y = 0.15·W mm are displayed. 

 

All specimens were subjected to cyclic loading with a constant load ratio R = 0.1. By using 

the direct current potential drop (DCPD) method and the formulation of Johnson [60] and 

Schwalbe [61] assuming a straight through-thickness crack, the crack length can be computed.  
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In Fig. 55 the experimental results for the crack length as a function of the number of cycles 

are displayed for the different notch geometries. 

a) b) 

  

 c) d) 

  

Fig. 55.: Crack growth curves between initiation and failure: (a) ρ = 0.05·W, t = 0.2·W and 

Δσnotch = 1540 MPa; (b) ρ = 0.05·W, t = 0.2·W and Δσnotch = 1260 MPa; (c) ρ = 0.01·W, t = 

0.02·W and Δσnotch = 1085 MPa; (d) ρ = 0.01·W, t = 0.02·W and Δσnotch = 945 MPa. 

 

It can be seen that in general the crack growth period for a given notch geometry and applied 

stress is nearly the same. The crack initiation varies within the same notch geometry and 

applied load, supposedly depending on the initiation site. Judging from these results – 

obtained by assuming a straight through-thickness crack, the initiation period is a major part 

of the total lifetime. 

 

mild notch: 

t = 0.2·W 

 = 0.05·W  

Δσnotch = 1260 MPa 

sharp notch: 

t = 0.2·W 

 = 0.01·W  

Δσnotch = 945 MPa 

sharp notch: 

t = 0.2·W 

 = 0.01·W  

Δσnotch = 1085 MPa 

mild notch: 

t = 0.2·W 

 = 0.05·W  

Δσnotch = 1540 MPa 
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5.2. The shape of the crack and deviation from the Johnson approach 

Using the DCPD method with the Johnson equation [60] assumes a straight through-thickness 

crack front. Nevertheless, experiments stopped at some cycles, show a semi-elliptical crack 

front on the fracture surface. To estimate the short crack growth behavior, starting with a 

semi-elliptical crack shape, several experiments have been conducted and stopped at crack 

lengths Δa ≤ af, where af denotes the crack length at failure. The analyzed fracture surfaces of 

selected experiments are displayed in Fig. 56, where the dimensions of approximated semi-

elliptical cracks of depth a and width 2·c are shown. 

 

Fig. 56.: Light microscopic fracture surface analysis of interrupted experiments and measured 

crack length for a) ΔaJohnson = 0.1 mm, b) ΔaJohnson = 0.25 mm and c) ΔaJohnson = 0.2 mm, the 

fractographs clearly illustrate the very large underestimation of the crack length by the 

Johnson approximation. 

 

The experiments have been stopped at different pre-defined lengths of a fictitious straight 

through-thickness cracks as estimated by the DCPD method and the Johnson equation [60]; 

here, for Fig. 56 a) 0.1 mm, Fig. 56 b) 0.25 mm and Fig. 56 c) 0.2 mm. In comparison to the 

analyzed real crack shape, the estimated straight crack length from the Johnson equation is 

markedly smaller than the actual depth of the semi-elliptical crack. 

 

The influence of different crack shapes and the resulting measured potential drop ΔU was 

already investigated for different configurations by Riemelmoser [95]. Extending this work, 

several finite element (FE) simulations were performed to determine the potential drop ΔU for 

different configurations of semi-elliptical cracks with respect to the specimen dimensions, 
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where the focus was set on different ratios Δa/c and c/B to estimate the transition from the 

semi-elliptical to the straight (through-thickness) crack front. In addition, the difference 

between the crack growth of a single and a double semi-elliptical crack is worked out. 

 

In Fig. 57 the schematic cross sections for determination of the normalized potential drop 

ΔU/U0 is displayed. The geometry configurations were performed for different crack lengths 

for ratios in-between 0.3 ≤ Δa/c ≤ 1.0, 0 ≤ c/B ≤ 1.0 and 0.1 ≤ t/W ≤ 0.3. 

 

a) b) 

    

Fig. 57.: Schematic sections in the crack plane for the determination of the normalized 

potential drop ΔU/U0 in the DCPD method: a) single, b) double ellipse. 

 

In Fig. 58 the results of the normalized potential drop ΔU/U0 as a function of the crack length 

Δa are exemplarily displayed for the notch geometries from the experiments (t/W = 0.2 and 

/W = 0.05 resp. /W = 0.01); a) for the mild notch and a single crack, b) for the sharp notch 

and a single crack, c) for the mild notch and a double crack and d) for the sharp notch and a 

double crack. The different marks represent different Δa/c ratios and for comparison, the 

black circles show the results for the straight through-thickness crack. Additionally the 

solution from the Johnson equation is displayed by the dashed black lines. 
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 a) b) 

 

 c) d) 

   

Fig. 58.: Comparison of the normalized potential drop for different crack and specimen 

geometries with a straight crack front and the solution derived from the Johnson equation. 

Exemplarily shown for different ratios a/c and t/W = 0.2 a) for /W = 0.05 and b) /W = 

0.01, both for a single crack; c) for /W = 0.05 and d) /W = 0.01, both for a double crack. 

 

The different combinations in Fig. 58 clearly show that the fictitious straight crack length 

clearly underestimates the actual crack depth. Even with the straight crack front a difference 

between FE results (black cycles) and Johnson’s prediction (black dots) is recognizable 

because the latter is only valid for an ideally sharp cracks and does not account for the notch 

radius and the distance of the notch flanks. 

 

For designing a prediction of the potential ΔU/U0, a model based on linear regression model 

was devised [85]. The equations for different ratios (Δa/c, a/W, c/B, and t/W) can then be 

calculated by Eqns. 5.2 - 5.4 for the semi-elliptical crack and Eqns. 5.3- 5.5 for the straight 

crack front by using the parameters shown in Table 6. 

 

single ellipse: 

 = 0.05·W  

double ellipse: 

 = 0.05·W 

single ellipse: 

 = 0.01·W 

double ellipse: 

 = 0.01·W 
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The potential drop across the semi-elliptical crack or the two semi-elliptical cracks, 

respectively, is 

3

7

3

6

2

5

2

4321

0

            

+ + +++1









































W

a
qC

B

c
qC

W

a
qC

W

t
qC

W

a
qC

W

t
qC

B

c
qC

U

U

 5.2 

where  











W

t

W

a
q  5.3 

and a describes the added notch and crack length consisting of the fatigue crack extension Δa 

and the initial notch depth t, 

taa  . 5.4 

 

The potential drop across the straight through-thickness crack is 
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The range of validity of Eqns 5.2 and 5.5 is 0.1 ≤ a/W ≤ 0.7, 0.1 ≤ t/W ≤ 0.3, 0 ≤ c/B ≤ 1. 

 

Table 6: Parameters for prediction of the potential drop for a single and double semi-elliptical 

and a straight crack front. 

Parameter 
mild notch (/W = 0.05) sharp notch (/W = 0.01) 

1 ellipse 2 ellipses straight 1 ellipse 2 ellipses straight 

C1 0.53 0.49 0.92 2.07 3.11 8.19 

C2 -5.06 -7.72 -13.90 -24.46 -30.79 -59.83 

C3 3.85 6.53 17.21 27.94 32.52 20.47 

C4 4.58 6.12 11.63 49.18 61.19 88.65 

C5 0 0 -25.14 -86.88 -87.82 -32.62 

C6 0.48 3.15 16.51 0.80 6.10 23.00 

C7 -6.14 -9.62 - 76.26 61.00 - 
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In Fig. 59 the comparison of the FE results (horizontal axis) and the analytical prediction by 

Eqns 5.2 and 5.5 (vertical axis) is displayed. Here the blue marks represent the prediction for 

the mild notch and the red resp. yellow marks the sharp notch in a) for a single and a double 

semi-elliptical crack front and in b) for the straight crack front. Furthermore, the full black 

line represents the exact and the dashed and dotted lines the 2.5% in a) and 10% in b) over- 

and under- prediction of the FE results, respectively. 

 

a) b) 

 

 

Fig. 59.: Comparison of the analytical prediction of the potential drop with the FE results and 

the 2.5%/10% over- and under-prediction scatter lines, respectively, in a) for the semi 

elliptical crack shape and b) the straight (through thickness) crack. 

 

The comparison between the approximation and the FE results of the potentials in Fig. 59 

shows an acceptable residual error of less than 2.5% for the single and double semi-elliptical 

cracks and 10% for the straight through-thickness crack. 

 

To validate this approach, the new prediction is compared with the experiments depicted in 

Fig. 56. The depth of the semi-elliptical crack is computed from the potential drop via Eq. 5.2 

using the Δa/c ratio from the micrograph, and then compared with the actual crack length 

determined from the fracture surface (Fig. 60 and Table 7). 

― exact 

- - 2.5% over-prediction 

··· 2.5% under-prediction 

― exact 

- - 10% over-prediction 

··· 10% under-prediction 
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Fig. 60.:Comparison of crack lengths as estimated by the Johnson formula and by Eq. 5.2 for 

a semi-elliptical crack with Δa/c from the micrograph Fig. 56. 

 

Table 7: Comparison of crack lengths as estimated by the Johnson formula, by Eq. 5.2 and as 

determined from experiment. 

sample 
ΔaJohnson 

[mm] 

Δasemi-ellipse 

[mm] 

Δaexperiment 

[mm] 

Fig. 56 a) 0.10 0.84 0.778 

Fig. 56 b) 0.25 1.03 1.072 

Fig. 56 c) 0.20 0.87 0.890 

 

 

The predicted crack lengths using Eq. 5.2 are acceptably close to the actual crack lengths 

determined from the micrographs. Hence, Eqns. 5.2-5.4 will be used for the numerical 

prediction of the crack growth. 
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5.3. Numerical prediction of the crack growth from initiation to failure 

5.3.1. Fracture mechanics experiments 

After initiation, the fatigue crack growth can be calculated by commonly used fracture 

mechanics approaches. Here, the crack growth is described by a modified NASGRO equation 

(Eq. 1.42) and the NASGRO parameters are necessary. Therefore several fracture mechanics 

experiments with SENB specimens have been conducted and analysed statistically. 

In Fig. 61 the results of cyclic fracture mechanics experiments of the pearlitic material, 

already shown in Fig. 38 and their statistical evaluation are shown. Different colors mark 

different load ratios R. Experimental results are illustrated by single dots, whereas the 

continuous and dashed lines represent the mean estimate as well as the upper and lower 

predictions (denoted by COV-up and COV-low) obtained by combining the respective upper 

(97.5%) and lower (2.5%) confidence limits of the parameters. 

 

  

Fig. 61.: Experimentally determined and fitted da/dN-curves for different stress ratios. 

 

It can be observed that the statistical analysis gives a good correlation at R = -1 but the 

resulting long crack threshold ΔKth,lc is lower compared to the experiments. In this case the 

lower COV-curve fits best. In consideration of the stress ratios R = 0.1 and R = 0.7 the upper 

COV-curve represents the best estimate for the experimental results although the long crack 

threshold is lower compared to the experiments. For R = 0.1 the estimated long crack 

threshold fits best to the experiments. 

 

R = -1 

R = 0.1 

R = 0.7 
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To describe the crack growth threshold of physically short cracks, the cyclic crack resistance 

curve by Eq. 1.39 is used. The experimental results of the pealitic material, already shown in 

Fig. 37 and the analytical prediction are shown in Fig. 62. For the analytical description the 

proposal by Maierhofer [51] (Eq. 1.39) is used. 

 

   

Fig. 62.: Experimentally determined and fitted cyclic crack resistance curves for the threshold 

of stress intensity factor range for different stress ratios. 

 

The analytical estimate with mean curve and confidence limits is again represented by 

continuous and dashed lines. For the stress ratio R = 0.1, the mean curve fits well, whereas at 

R = -1 the lower confidence limit gives the best result in comparison to the experiments. 

 

The parameters of the NASGRO equation obtained by the statistical analysis are listed in 

Table 8 and will be used for the further calculations of the crack propagation. 

 

 

 

 

 

 

R = -1 

R = 0.1 

R = 0.7 
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Table 8: NASGRO parameters of the statistical determination of the fatigue crack growth 

experiments: 

Parameter mean COV upper COV lower 

ΔKth,lc(R = 0) [MPa√m] 5.318 4.365 6.271 

C [mm/cyc] 2.02E-9 2.42E-9 1.69E-9 

m [-] 3.581 3.748 3.414 

p [-] 0.198 0.149 0.248 

l1 [mm] 0.034 0.072 0.013 

 

5.3.2. Crack growth of a notched specimen 

The calculation of a crack starting from a notch is somewhat different from the one for a crack 

in a smooth specimen. As long as the crack extension is small and the crack tip is near the 

notch root, the crack tip loading is fully governed by the stress concentration at the notch root; 

as the crack propagates further, it grows out of the notch stress concentration, which leads to a 

reduction of the crack tip load. 

 

Depending on the notch depth t and radius ρ, the geometry factor can be calculated by the 

approach from Neuber [96] for a straight crack. For a semi-elliptical shape, the equation has 

to be modified as follows: 
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Here, YA,C denotes the geometry factor for the semi-elliptical crack front at points A and C, 

respectively (cf. Fig. 45) and with the notch stress concentration factor from Eq. 1.7. 

Therefore, the enhanced solution of the geometry factor for 0.5 ≤ c/B ≤ 0.9 from point 4.2 

which represents [5] is used. 
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5.3.3. Consideration of the load ratio R 

As can be seen from Fig. 61 and Fig. 62, the load ratio R has a marked influence on the crack 

growth rate. In the notched specimens, cyclic plastic deformation at the notch root causes a 

long-range residual stress field in front of the notch whose extension depends on the notch 

acuity t/. This residual stress field influences the local load ratio at the crack tip until the 

crack has grown beyond its range (the short-range crack tip plastic zone of the standard SENB 

specimens is accounted for already by Eqns. 1.40 and 1.42 - 1.45). In the experiments the two 

different notch types were loaded at the applied stress ratio R = 0.1, each with two different 

applied stresses appl. These conditions were simulated by using the Finite Element Method 

(FEM). It is assumed that the plastic zone is stabilized after 10 cycles. The resulting local 

stress ratio R as a function of the distance from the notch root is shown in Fig. 63. 

 

 

Fig. 63.: Local stress ratio in front of the notch for different geometries and notch stress levels 

for a global stress ratio R = 0.1 

 

It can be observed that the plastic zone depends on the notch geometry as well as on the 

externally applied notch root stress range. The local stress ratio starts for all specimens at a 

negative value at the notch root and changes to a positive value after a certain distance. This 

varying stress ratio has to be considered when using Eq. 1.42 for calculating the crack growth. 
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5.3.4. Calculation of crack growth 

In summary, the crack growth and the evaluation of the crack shape can be predicted with the 

modified NASGRO equation, the enhanced geometry factor in combination with the stress 

concentration in front of the notch and the varying local stress ratio. 

 

To calculate the crack growth, a forward integration with a semi-elliptical starting crack shape 

and an initial crack length depending on the effective threshold ΔKth,eff is suggested. The 

initial crack length astart is depending on the applied notch stress, the effective threshold and 

the crack shape. 
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This estimation assumes the lowest possible starting crack. This should be a good estimation 

for the smaller load amplitude, where the stress range  is near the endurance limit e. 

As mentioned in chapter 4.2, the enhanced geometry function is valid up to c/B = 0.9. 

Assuming that the crack growth from c/B = 0.9 to c/B = 1.0 and the subsequent transformation 

into a straight crack front will take comparatively few cycles, this phase is approximated as 

follows: the geometry function is extrapolated up to c/B = 1.0; directly afterwards, the crack is 

assumed to exhibit a straight crack front. The geometry factor of a straight through-thickness 

crack can then be calculated by an existing solution from Tada [20]. 

In addition to the information of the crack shape and the specimen dimensions, the normalized 

potential drop ΔU/U0 can then be calculated by Eqns. 5.2 and 5.5 and converted into the 

fictitious straight through-thickness crack length computed from the DCPD measurements 

using the Johnson equation. 

 

In Fig. 64 the crack growth of point A and the Δa/c ratio (vertical right axis) is displayed as a 

function of the number of cycles for the case Δa/cstart = 0.6, t/W = 0.2, /W = 0.05 and Δσnotch 

= 1260 MPa. Additionally, the growth of a single semi-elliptical crack (black) is compared 

with that of a double semi-elliptical crack (blue). The full lines represent the calculated crack 

growth and the dotted lines the crack lengths as estimated from the DCPD measurements by 

Eqns. 5.2 - 5.4. Furthermore the growth of the semi-elliptical crack is compared with the 

resulting growth of a straight through-thickness crack (full red line). 
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Fig. 64.: Crack growth and evolution of the Δa/c ratio for single and double semi-elliptical 

cracks and corresponding fictitious crack lengths from the Johnson equation for a single and 

double semi-elliptical crack front and a straight through-thickness crack; for Δa/c = 0.6, t/W = 

0.2, /W = 0.05 and Δσnotch = 1260 MPa. 

 

Starting at Δa/c = 0.6, extracted from Fig. 56 a), the Δa/c ratio increases rapidly nearly to 0.9 

and then decreases due to the higher stress intensity factor at point C. At a crack length Δa ~ 

1.3 mm, the crack width 2c reaches the specimen width and the crack is assumed to continue 

as a straight through-thickness crack. 

Compared to the single ellipse, the crack growth of the double semi-elliptical crack is about 6 

times faster and the transition point from the semi-elliptical shape to the straight crack front 

occurs at a crack length Δa of approximately 0.8 mm. 

 

The straight crack grows much faster than the semi-elliptical crack due to a higher stress 

intensity factor at the crack tip. In comparison to the actual crack dimensions, the estimates 

from the DCPD measurements using the Johnson equation (dashed lines) underestimate the 

actual crack growth behavior in the early stage. 
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The differences in total lifetime depend markedly on the failure initiation site. Assuming that 

failure initiation occurs at a microstructural flaw of a certain size, this behavior can be 

modelled by assuming different initial crack lengths corresponding to different 

microstructural flaw sizes. In Fig. 65 the crack growth is exemplarily calculated for Δa/c = 

0.6, t/W = 0.2, /W = 0.05 and Δσnotch = 1260 MPa and different initial crack lengths Δastart 

from 10 μm up to 100 μm. 

 

 

Fig. 65.: Comparison of the crack growth behavior for different initial crack sizes 10 ≤ Δastart 

≤ 100 μm exemplary shown for Δa/c = 0.6, t/W = 0.2, /W = 0.05 and Δσnotch = 1260 MPa and 

assuming a single semi-elliptical crack front. 

 

The crack growth curves show clearly that the lifetime can be about two times higher if the 

initial flaw is about 10 times smaller. This explains well the scatter in the curves from Fig. 55. 

Starting from a given initial crack length and shape, the crack growth is calculated for 

different notch geometries and various applied stresses and displayed in Fig. 66. The colored 

lines represent the experimental data from the DCPD measurements and the Johnson equation 

(cf. Fig. 55); the black dashed and dotted lines describe the growth of a single and a double 

semi-elliptical shape, resp. converted to the length of a fictitious straight through-thickness 

crack equal to the Johnson approach. Due to the fact that the number of cycles at initiation 

depends on the microstructural flaw size, the experimentally determined crack growth curves 

where shifted such that they result in the same number of cycles at failure. 
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a) b) 

 

c) d) 

  

Fig. 66.: Crack growth curves (full lines: experiment, dashed lines: single semi-elliptical 

crack, dotted lines: double semi-elliptical crack): (a) ρ = 0.05·W, t = 0.2·W and Δσnotch = 1540 

MPa; (b) ρ = 0.05·W, t = 0.2·W and Δσnotch = 1260 MPa; (c) ρ = 0.01·W, t = 0.2·W and Δσnotch 

= 1085 MPa; (d) ρ = 0.01·W, t = 0.2·W and Δσnotch = 945 MPa; 

 

The prediction with a single semi-elliptical crack growth fits acceptably to the experimentally 

determined crack growth curves, whereas the double semi-elliptical crack overestimates the 

crack growth. The remaining differences between the predicted and the measured crack 

growth are quite small and may be explained by deviations from the idealized semi-elliptical 

shape and a possible initiation of several cracks with different shapes. 

This study clearly indicates that the number of cycles for crack initiation of a previously 

damaged component is very small compared to the number of cycles at failure. A significant 

portion of the life time is attributable to the crack initiation, as those may be assumed from a 

first examination of these experiments, is required for crack propagation from few 10 m to 

few 100 m.  

mild notch: 

t = 0.2·W 

 = 0.05·W  

Δσnotch = 1540 MPa 

mild notch: 

t = 0.2·W 

 = 0.05·W  

Δσnotch = 1260 MPa 

sharp notch: 

t = 0.2·W 

 = 0.01·W  

Δσnotch = 1085 MPa 

sharp notch: 

t = 0.2·W 

 = 0.01·W  

Δσnotch = 945 MPa 
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 to a-Johnson 

··· 2 semi-ellipses converted  

 to a-Johnson 
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 to a-Johnson 

··· 2 semi-ellipses converted  

 to a-Johnson 

- - 1 semi-ellipses converted  

 to a-Johnson 
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 to a-Johnson 
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6. Summary and Conclusions 

In this thesis, different methods for the evaluation of high strength materials in railway switch 

components, especially switch blades, have been presented. The analysis distinguishes 

between a static failure during the manufacturing process and dynamic failure during the in-

service application in the track. 

 

During manufacturing, the bending process of the rail curvature leads to high strains at the 

outer fiber of the rail. Considering small flaws in rails, the failure strain of tensile experiments 

cannot be used as a design criterion anymore. Therefore, different options using the R6 

method are available in standards. Nevertheless, a direct connection between the failure 

criterion and manufacturing loads are difficult in engineering approaches. For this case, a 

static strain based Kitagawa-Takahashi diagram is introduced to describe the nominal failure 

strain in the outer fiber depending on the crack length. 

For long cracks, the fracture toughness KIC is used as strength limit. Considering small cracks 

the J-integral is used as a crack driving force and the failure strain is estimated in combination 

with the strain energy density. For an accurate prediction, depending on the hardening 

behavior, the Q-stress has to be used to describe the in-plane constraint effect for very short 

cracks. 

Hence, the important material parameter for the manufacturing process is not the fracture 

strain in tension but the fracture toughness. 

 

Afterwards, using the strain energy density, the calculation of the J-integral was tested by 

using a single edge-notched tension specimen. This is done by comparing an analytical 

estimation of the J-integral based on the strain energy density with the line integral calculated 

from finite element simulations for materials with different hardening exponents and 

additionally for an ideal plastic material behavior. 

For positive hardening exponents and short crack lengths, the analytical solution for the J-

integral based on the strain energy density corresponds perfectly with the line integral and 

confirms the correct estimation of the failure strain in the bending experiments. However, for 

an ideal plastic material, the J-integral is infinity, which is due to the plastic correction factor. 
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For cyclic loading in service, two different approaches are compared. In the stress based 

design approach, the Haigh or the commonly used Smith diagram is used to describe the 

endurable stress range, depending on the mean stress. Here, the endurable stress is denoted by 

the material strength, estimated from tensile experiments. Notches or surface conditions 

reduce the endurance limit which is accounted for by correction factors.  

It was shown that a good correlation between the fatigue experiments and the estimated 

endurance limit can be determined. In the stress based approach, high strength materials 

exhibit a higher endurance limit. 

In consideration of cracks, the Kitagawa-Takahashi diagram is used to calculate the endurable 

stress range depending on the crack length. For long cracks, the long crack threshold is used 

as a limiting factor, for physically short cracks the cyclic crack resistance curve caused by 

different closure mechanisms has to be considered. Different stress ratios are presented by 

separate slopes. Again, the predicted curves correlate in an acceptable range with the 

experiments. Considering higher stress ratios R, the limiting curves are almost similar for long 

cracks.  

Moreover, it has been shown, that the design curves of the endurance stress limit of the 

Kitagawa-Takahashi diagram can be transferred into the Smith diagram, where each crack 

length will correspond to an endurable stress curve. 

 

Crack growth calculations in the linear elastic fracture mechanics (LEFM), estimated by finite 

element (FE) simulations, beyond the long crack threshold has been presented schematically 

and their disadvantages have been discussed. In addition providing a more appropriate 

solution, a new enhanced geometry function has been presented for the analytical calculation 

of the crack growth of a semi-elliptical crack for a/W and c/B ratios close to 1. Additionally, 

solutions for bending around the x-axis, where the crack tip crosses the neutral bending axis, 

as well as for bending around the y-axis have been provided in order to describe all possible 

loadings in Mode I occurring in the structural stress concept. 

The derived equations are valid for the range 0.2 ≤ a/c ≤ 1.0, 0.01 ≤ a/W ≤ 0.9, 0.01 ≤ 

c/B ≤ 0.9 with an error of typically less than ±10%. These new approximate equations for 

the geometry factor are expected to allow an acceptable estimate of the crack tip loading even 

if the crack depth and width are close to the specimen thickness and width, respectively. 

 

Finally, the influence of the stress concentration of a notch on the crack growth behavior has 

been investigated. For this case, fatigue experiments with two different notch geometries at 

two different applied stress ranges have been evaluated. It was shown that the crack starts 

with a semi-elliptical shape. Hence, the commonly used DCPD method with the Johnson 
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equation underestimates the real crack length. Therefore, a new method has been presented to 

estimate the crack length by considering the potential change, the crack shape and existing 

boundaries.  

The experimental results of the crack length development as a function of the number cycles 

have then been compared with the analytical calculation of the crack growth using the 

modified NASGRO equation, the varying stress ratio and crack shape. The improved 

analytical calculation method correlates acceptably well to the experimental data. The higher 

the stress ratio, the earlier the transition from the semi-elliptical to the straight crack front 

occurs. It has been shown that the number of cycles at crack initiation highly depends on the 

size of the individual microstructural flaw and that the crack growth period dominates the 

total lifetime. 

 

Concluding it can be said, that for a correct prediction of the lifetime of a switch rail, a 

suitable design concept has to be chosen as it highly depends on several factors such as flaw 

size, the loading (cyclic, static) and also of the material behavior itself. It is shown that for an 

accurate prediction it is necessary to create new or modify existing design concepts, as has 

was successfully been demonstrated in the present thesis.   
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7. Nomenclature 

Roman alphabet 

a crack length [mm] 

a0 initial crack length [mm] 

a0,H intrinsic crack length by El Haddad [mm] 

a
(e)

 size of the finite element [mm] 

af crack length at fracture [mm] 

am material constant for the mean stress sensitivity [-] 

apl transition point between LEFM and EPFM [mm] 

Δa crack extension [mm] 

Δaexperiment crack length from the fracture surface [mm] 

Δastart initial crack length [mm] 

ΔaJohnson crack extension of a straight crack front as calculated by the Johnson 

formula [mm] 

Δasemi-ellipse crack extension of a semi-elliptical crack front [mm] 

Δastraight crack extension of a straight crack front [mm] 

A0 constant in Newman’s crack opening function [-] 

A1 constant in Newman’s crack opening function [-] 

A2 constant in Newman’s crack opening function [-] 

A3 constant in Newman’s crack opening function [-] 

b length of the ligament [mm] 

bm material constant for the mean stress sensitivity [-] 

B thickness of the specimen [mm] 

c half of the crack width (major semi-axis of the semi-elliptical crack) [mm] 

celliptical crack width of a semi-elliptical crack [mm] 

C material constant describing the Paris slope in the NASGRO equation [-] 

C1 … C7 constants to describe the potential drop depending on the crack geometry 

and specimen [-] 

D material constant to calculate the Q-stress depending on the crack length 

[-] 
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Dr parameter in the failure assessment diagram [-] 

ex distance between outer fiber and neutral x-axis [mm] 

ey distance between outer fiber and neutral y-axis [mm] 

E Young’s modulus [MPa] 

D damage in the Miner rule [-] 

Di damage in the Miner rule of cycles each load cycle [-] 

f(a/W) geometry function [-] 

f(Lr) function to describe Kr in the FAD [-] 

f(n) plastic correction function of the J-integral beyond the yield strength [-] 

f(R,Δa)  Newman’s crack opening function [-] 

fe endurance limiting constant [-] 

F(R,Δa) crack velocity factor in the NASGRO equation [-] 

Fmax maximum applied force at failure [N] 

Fz tension force [N] 

h material constant to calculate the critical J-integral depending on the Q-

stress [-] 

H height of the specimen [mm] 

In material constant of the HRR field [-] 

Ix axial moment of inertia around the x-axis [mm
4
] 

Iy axial moment of inertia around the y-axis [mm
4
] 

J J-integral [kN/m] 

J(w) J-integral denoted by strain energy density [kN/m] 

Jc critical J-integral [kN/m] 

Jel elastic part of the J-integral [kN/m] 

Jmat material dependent J-integral [kN/m] 

Jpl plastic part of the J-integral [kN/m] 

J J-integral denoted by the line integral [kN/m] 

k material constant for the Q-stress depending on the crack length [-] 

kf gradient of the slope for the fatigue strength [-] 
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K stress intensity factor [MPa√m] 

KI stress intensity factor in fracture mode I [MPa√m] 

KIc fracture toughness [MPa√m] 

Km(R) mean stress sensitivity factor [-] 

Kmat material dependent fracture toughness [MPa√m] 

Kr parameter in the failure assessment diagram [-] 

Ksurface reduction factor due to surface condition [-] 

ΔK stress intensity factor range [MPa√m] 

ΔKFEM stress intensity range from FE simulations [MPa√m] 

ΔKth threshold value of the stress intensity factor range [MPa√m] 

ΔKth,eff intrinsic (effective) threshold value of the stress intensity factor range 

[MPa√m] 

ΔKth,lc long crack threshold value of the stress intensity factor range [MPa√m] 

li length scale for the build-up of crack closure [mm] 

L specimen length [mm] 

Lr parameter in the failure assessment diagram [-] 

m material constant describing the Paris slope in the NASGRO equation [-] 

Mx bending moment around x-axis [Nmm] 

My bending moment around y-axis [Nmm] 

M mean stress sensitivity [-] 

n hardening exponent of the Ramberg-Osgood hardening equation [-] 

npl plastic support factor for static loading [-] 

n elastic support factor for cyclic loading [-] 

N total number of cycles [-] 

Ne number of cycles at the intersection of the endurance limit and fatigue 

strength [-] 

Ni number of cycles each load block [-] 

ΔN number of cycles between crack initiation and failure [-] 

Nf number of cycles at failure [-] 
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p material constant describing the transition from near threshold to Paris 

slope [-] 

q variable for the initial crack length [-] 

Q Q-stress [MPa] 

r distance from the crack tip [mm] 

R stress ratio [-] 

s distance between the load line and the support [mm] 

t notch depth [mm] 

Ti component of the traction vector [MPa] 

U0 initial electric potential drop [V] 

ΔU electric potential drop [V] 

v deflection [mm] 

w strain energy density [MPa] 

wel elastic part of the strain energy density [MPa] 

wel(0) elastic part of the strain energy density at yield point [MPa] 

wpl plastic part of the strain energy density [MPa] 

W specimen height [MPa] 

x characterization variable for 0.5 < c/B < 1.0 enhancement [-] 

Y geometry factor [-] 

Y(a/W) geometry function [-] 

Y(a/c,a/W,c/B) geometry factor, analytical approximation [-] 

YA,C-a/W-Fz geometry factor for point A or C and pure tension, enhanced for 0.5 < a/W 

≤ 0.9 [-] 

YA,C-a/W-Mx geometry factor for point A or C and bending around the x-axis, enhanced 

for 0.5 < a/W ≤ 0.9 [-] 

YA,C-c/B-Fz geometry factor point A or C and pure tension, enhanced for 0.5 < c/B < 

1.0 [-]  

YA,C-c/B-Mx geometry factor point A or C and bending around the x-axis, enhanced for 

0.5 < c/B < 1.0 [-]  

YA,C-Fz (a/W = 0.9) geometry factor for point A or C and pure tension for the ratio a/W = 0.9, 

determined from the FE simulations [-] 
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YA,C-Fz (c/B = 0.9) geometry factor for point A or C and pure tension for the ratio c/B = 0.9, 

determined from the FE simulations [-] 

YA,C-lin-a/W-Fz linear approximation for point A or C and pure tension between NR and 

a/W = 0.9, enhanced for 0.5 < a/W ≤ 0.9 [-] 

YA,C-lin-a/W-Mx linear approximation for point A or C and bending around the x-axis 

between NR and a/W = 0.9, enhanced for 0.5 < a/W ≤ 0.9 [-] 

YA,C-lin-c/B-Fz linear approximation for point A or C and pure tension between NR and 

c/B = 0.9, enhanced for 0.5 < c/B < 1.0 [-] 

YA,C-lin-c/B-Mx linear combination for point A or C and bending around the x-axis 

between NR and c/B = 0.9, enhanced for 0.5 < c/B < 1.0 [-] 

YA,C-Mx (a/W = 0.9) geometry factor for point A or C and bending around the x-axis for the 

ratio a/W = 0.9, determined from the FE simulations [-] 

YA,C-Mx (c/B = 0.9) geometry factor for point A or C and bending around the x-axis for the 

ratio c/B = 0.9, determined from the FE simulations [-] 

YA,C-NR-Fz geometry factor by Newman and Raju for pure tension [-] 

YA,C-NR-Mx geometry factor by Newman and Raju for bending around x- axis [-] 

YFE(a/c,a/W,c/B) geometry factor extracted from FE simulations [-] 

YN (Δa) geometry factor for a crack emanating from a notch [-] 

Ystraight geometry factor for a straight (through-thickness) crack front by Tada [-] 

ΔYA,C -a/W-Fz alternative geometry factor for point A or C and pure tension, varying 

around the linear combination between the boundaries, enhanced for 0.5 < 

a/W ≤ 0.9 [-] 

ΔYA,C -a/W-Mx alternative geometry factor for point A or C and bending around the x-

axis, varying around the linear combination between the boundaries, 

enhanced for 0.5 < a/W ≤ 0.9 [-] 

ΔYA,C-c/B-Fz alternative geometry factor for point A or C and pure tension, varying 

around the linear combination between the boundaries, enhanced for 0.5 < 

c/B < 1.0 [-] 

ΔYA,C-c/B-Mx alternative geometry factor for point A or C and bending around the x-

axis, varying around the linear combination between the boundaries, 

enhanced for 0.5 < c/B < 1.0 [-] 

z characterization variable for 0.5 < a/W < 0.9 enhancement [-] 



93 

Greek alphabet 

 material constant of the Ramberg-Osgood hardening equation [-] 

αk elastic stress concentration factor at the notch root [-] 

αN Newman’s plane stress / plane strain tuning factor [-] 

 material constant to calculate the dependency of the Q-stress [-] 

ε total strain [-] 

εel elastic strain until yield point [-] 

εf failure strain [-] 

εf,exp failure strain from tensile experiments [-] 

εf-EPFM failure strain in elastic-plastic fracture mechanics [-] 

εf-LEFM nominal failure strain in linear-elastic fracture mechanics [-] 

εpl plastic strain beyond yield point [-] 

εref nominal applied strain at rupture [-] 

εys elastic strain until yield point [-] 

ε0 strain at the yield stress in the Ramberg-Osgood hardening equation [-] 

 path around the crack tip of the line integral [mm] 

 material constant to calculate the critical J-integral depending on the Q-

stress [-] 

 Poisson ratio [-] 

 material constant for the cyclic crack resistance curve [-] 

ρ notch radius [mm] 

 total stress [MPa] 

0 yield stress in the Ramberg-Osgood hardening equation [MPa] 

σa stress amplitude [MPa] 

σa,i stress amplitude of each load block [MPa] 

σappl applied stress amplitude [MPa] 

σbending-x-x stress due to bending around the x-axis [MPa] 

σbending-y-y stress due to bending around the y-axis [MPa] 
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σe,0 endurance stress for tension/compression loading [MPa] 

σe,bending endurance limit for polished specimen under bending [MPa] 

σe,bending,skin endurance limit considering the surface of the rolling skin under bending 

[MPa] 

el nominal elastic stress until yielding point [MPa] 

σF,0 flow stress for tension/compression loading [MPa] 

ij stress tensor of the HRR field [MPa] 

ij
~σ  tabulated material parameter for calculation of the HRR field [-] 

σm mean stress [MPa] 

σmax maximum applied stress [MPa] 

σmin minimum applied stress [MPa] 

ref nominal applied stress at failure [MPa] 

σtension stress due to tension load [MPa] 

σunit stress due to the applied unit load [MPa] 

UTS ultimate tensile strength [MPa] 

ys yield stress [MPa] 

θθ,FEM stress in tangential direction obtained from the numerical simulation 

[MPa] 

θθ,HRR stress in tangential direction obtained from the HRR field [MPa ] 

Δ stress range [MPa] 

Δe endurable stress range [MPa] 

Δnotch stress range acting in front of the notch [MPa] 

 angle for the position of the stress element in the HRR field [°] 
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Appendix A 

Below, the equations for the NR solution [67], [68], [69] with  = 0° for point A and  = 90° 

for point C are summarized: 
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and with the factor fw for tension 
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The factor fw for bending around the x-axis can be calculated as following 
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