
Automatic Scene Interpretation
with Totally Occluded Objects

Martin Antenreiter

Dissertation
submitted to

Montanuniversität Leoben

in partial fulfilment of
the requirements for the degree of

Doktor der montanistischen Wissenschaften

Leoben, July 2016





To Nicole
and my children Jana and Lena





Affidavit:
I declare in lieu of oath that I wrote this thesis and performed the associated
research myself, using only literature cited in this volume.

Martin Antenreiter





Contents

Contents vii

Abstract ix

1 Introduction 1

1.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Cognitivism Paradigm . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Problems of the Cognitivism Paradigm . . . . . . . . . 4

2 System Architecture 9

2.1 Design Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Interaction of Low-Level Objects Appearance and High-
Level Location Reasoning . . . . . . . . . . . . . . . . 9

2.1.2 Interchangeability of Components and Interface Sim-
plicity . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Overview of the Proposed Architecture . . . . . . . . . . . . . 11

2.2.1 Low-Level Vision Module . . . . . . . . . . . . . . . . 12

2.2.2 High-Level Reasoning Module . . . . . . . . . . . . . . 14

2.3 Components of the Low-Level Vision Module . . . . . . . . . 16

2.3.1 Adaptive Template Tracker . . . . . . . . . . . . . . . 16

2.3.2 Interest-point Based Tracker . . . . . . . . . . . . . . 18

2.3.3 Mean-Shift Tracker . . . . . . . . . . . . . . . . . . . . 25

2.3.4 Hand Detector . . . . . . . . . . . . . . . . . . . . . . 28

2.4 Components of the Reasoning Module . . . . . . . . . . . . . 29

2.4.1 Hypothesis Graph . . . . . . . . . . . . . . . . . . . . 30

2.4.2 Vision Controller . . . . . . . . . . . . . . . . . . . . . 37

2.4.3 Hypothesis Generator . . . . . . . . . . . . . . . . . . 38

2.4.4 Hypothesis Inspector . . . . . . . . . . . . . . . . . . . 39

2.4.5 Hypothesis Visualizer . . . . . . . . . . . . . . . . . . 43

3 Experimental Evaluation 47

3.1 Test Scenario I . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.1.1 Used Vision Components . . . . . . . . . . . . . . . . 47

3.1.2 Visual Display of Results . . . . . . . . . . . . . . . . 49

3.2 Test Scenario II . . . . . . . . . . . . . . . . . . . . . . . . . . 51

vii



viii

3.2.1 Used Vision Components . . . . . . . . . . . . . . . . 54
3.2.2 Results of Model Updates . . . . . . . . . . . . . . . . 56
3.2.3 Visual Display of Results . . . . . . . . . . . . . . . . 57

3.3 Static Models vs Dynamic Models . . . . . . . . . . . . . . . 65
3.3.1 Template Tracker . . . . . . . . . . . . . . . . . . . . . 66
3.3.2 Interest-point Based Tracker . . . . . . . . . . . . . . 67

3.4 Surveillance Camera . . . . . . . . . . . . . . . . . . . . . . . 67
3.4.1 Used Vision Components . . . . . . . . . . . . . . . . 68
3.4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.5 Adding Task Specific Knowledge . . . . . . . . . . . . . . . . 73
3.5.1 Motion Models . . . . . . . . . . . . . . . . . . . . . . 73
3.5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4 Combining Detectors with Low-Level Features 79
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.2 General Considerations . . . . . . . . . . . . . . . . . . . . . . 82
4.3 The Basic Algorithm . . . . . . . . . . . . . . . . . . . . . . . 82
4.4 Algorithm Specification for Image Classification . . . . . . . . 83
4.5 Some Related Work . . . . . . . . . . . . . . . . . . . . . . . 84
4.6 Other Ways of Feature/Classifier Combination . . . . . . . . 84

4.6.1 Using All Features . . . . . . . . . . . . . . . . . . . . 84
4.6.2 Binary Stacking . . . . . . . . . . . . . . . . . . . . . 85
4.6.3 The Best Binary Base Classifier . . . . . . . . . . . . . 85

4.7 Data Sets and Setup . . . . . . . . . . . . . . . . . . . . . . . 85
4.8 Experiments on the VOC 2006 Dataset . . . . . . . . . . . . 86

4.8.1 Texture Statistics of Segmented Regions . . . . . . . . 86
4.8.2 Features from Regions of Interest . . . . . . . . . . . . 87
4.8.3 SIFT Based Features from Regions of Interest . . . . . 92
4.8.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.9 Experiments on the VOC 2007 Dataset . . . . . . . . . . . . 97
4.10 Experiments on the VOC 2009 Dataset . . . . . . . . . . . . 99
4.11 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5 Conclusion 107

Nomenclature 109

List of Figures 111

List of Tables 113

Bibliography 115



Abstract

In this thesis we propose and evaluate a customizable computer vision sys-

tem with cognitive abilities that tracks multiple objects over a long period of

time, even if several of the relevant objects are totally occluded by other ob-

jects. At any time the system gives plausible object locations of all relevant

objects, independently of their visibility, by maintaining possible interpreta-

tions of the observed visual input data. We use an approach that combines

bottom-up visual processing with top-down reasoning and inference. Fur-

thermore, our computer vision system has learning capabilities. These learn-

ing capabilities are used to obtain more robust tracking results if the visual

appearance of relevant objects changes gradually over time. Our modular

vision system allows to use several tracking algorithms from the literature,

as long as they fit our minimum interface requirements. Template trackers,

mean-shift trackers, and interest-point based trackers are employed to show

the adaptability of our vision system.

Consequently, in the second part of this thesis, we study the effect of com-

bining different types of low-level visual features. The key intuition is that

a system using a rich set of low-level visual features should be more robust

than a system relying on only a single visual feature. The problem is which

visual features are well suited for a specific relevant object. A method is

proposed which combines the outcome of detectors based on different visual

features using a support vector machine (SVM). Our feature combination

is tested on the standard Visual Object Classes challenges (VOC) datasets.

Results on the VOC datasets show that our method significantly improves

over the performance of detectors which use only a single visual feature.

ix





Kurzfassung

In dieser Arbeit wird ein Computer Vision System mit kognitiven Fähig-

keiten vorgeschlagen und evaluiert. Dieses System verfolgt mehrere Objekte

über einen langen Zeitraum, sogar wenn diese Objekte vollkommen von an-

deren Objekten verdeckt sind. Zu jedem Zeitpunkt liefert das System plausi-

ble Positionen der relevanten Objekte, unabhängig von der aktuellen Sicht-

barkeit der Objekte. Dies wird dadurch erreicht, dass das System mögliche

Interpretationen auf Grundlage der beobachteten visuellen Eingangsdaten

erzeugt. Der verwendete Ansatz kombiniert eine Bottom-up-Verarbeitung

mit einer Top-down-Schlussfolgerung. Das System hat zusätzlich die Fähig-

keit zu lernen. Diese Lernfähigkeit wird dazu verwendet, um Objekte besser

verfolgen zu können, wenn diese ihr visuelles Aussehen über den Beobach-

tungszeitraum langsam verändern. Das modulare System ermöglicht es, ver-

schiedene Algorithmen zur Objektverfolgung aus der Literatur zu verwen-

den, wenn diese die geforderte Minimalschnittstelle erfüllen können. In den

Versuchen werden Template-Tracker, Mean-Shift-Tracker und Interest-Point

basierende Tracker eingesetzt, um die Anpassungsfähigkeit des Systems zu

zeigen.

Im zweiten Teil der Arbeit wird die Kombination von verschiedenen vi-

suellen Merkmalen untersucht. Die Intuition dahinter ist, dass ein System

mit vielen visuellen Merkmalen stabiler funktionieren sollte als ein System

welches nur ein visuelles Merkmal verwendet. Das Problem ist jedoch, dass

die richtigen visuellen Merkmale für ein bestimmtes Objekt zuerst ermittelt

werden müssen. Es wird ein Verfahren vorgeschlagen, welches die Ergebnis-

se von verschiedenen Detektoren mit unterschiedlichen visuellen Merkma-

len kombiniert. Die Kombination der Detektoren wird mit der Hilfe einer

Support-Vector-Maschine (SVM) erreicht und mit den Datensätzen der Vi-

sual Object Classes Challenge (VOC) getestet. Die Ergebnisse auf den VOC

Datensätzen zeigen, dass die kombinierten Detektoren signifikant besser sind

als jene die nur ein visuelles Merkmal verwenden.

xi



This page intentionally contains only this sentence.



Chapter 1

Introduction

1.1 Problem Definition

An important research field in computer vision is object tracking [72, 18, 93,

71, 35]. There exists a vast number of algorithms for object tracking, and

typically these algorithms rely on assumptions like constant illumination,

uniform background, smoothness of motion or a minimal amount of occlu-

sion. In constraint environments these assumptions can be fulfilled and thus

the trackers work well and mostly in real-time.

In realistic environments not all assumptions are satisfied, though. This

violation of assumptions limits the applicability in automated surveillance,

traffic monitoring, vehicle navigation, and personal assistance system. Most

of these tracking algorithms ignore that objects of interest may be occluded

by other objects and—in the worst case—are not visible during an extended

period of time. Only a few publications focus on the problem of occlusion

in video sequences [76, 11, 5, 12, 89, 43]. In contrast, humans deal with

occlusion events very well, e.g. experiments have shown that even infants

at the age of 4 month accurately predict the reappearance of objects after

total occlusion [109, 44]. Hence our goal is to build a vision system with

cognitive abilities that is able to give possible object locations even if the

object of interest is totally occluded over an extended period of time.

As motivating example a video sequence from a surveillance camera is

shown in Figure 1.1. In the first row of Figure 1.1, the person opens the

car door and enters the car. After that, the person closes the door, starts

the engine, and drives the car until it crashes into another car. There is no

visual evidence of the person, but a human is able to give answers to the

1



1 INTRODUCTION 2

Figure 1.1: Images of a surveillance camera: A person enters a car and
crashes this car into another car. In some frames there is no visual evidence
of the person and the car. A human can predict the positions of both. A
cognitive vision system should be able to give similar position predictions.



Problem Definition 3

following questions:

1. Where is the person after the third image?

2. Where can the person reappear, after the car is driven to a different

location?

Simple tracking algorithms cannot answer these questions, because they only

rely on visual information.

In this work we follow the idea that a customizable vision system with

cognitive abilities is divided into modules, in particular into a high-level

reasoning module and a low-level vision module. The high-level reasoning

module consists of all the components that are needed to answer the above

questions. The low-level vision module is composed of tracking algorithms

from the literature. These tracking algorithms are separate components and

we term them as low-level vision components.

The objectives of our cognitive vision system are:

1. It can describe the interactions between the relevant objects in a video

stream.

2. It can give plausible object locations of all relevant objects even if

several of the relevant objects are totally occluded by others.

3. It can learn new visual appearance information of the relevant objects

to improve future tracking results.

We model the cognitive vision system given the objectives above and the ba-

sic structure using a high-level reasoning module and a low-level vision mod-

ule. Based on this structure we describe a possible solution. We introduce

interfaces between the modules and describe the minimum requirements of

each module.

If the visual input is unambiguous then the system relies on bottom-up

processing. This is the common method to process visual input. Bottom-

up and top-down processing are used in combination, when objects interact

and ambiguities arise. For our solution we define interface requirements

that can be easily fulfilled by many existing tracking algorithms. Our main

requirement for low-level vision components is that they can provide confi-

dence values for object locations. Additional possible object locations and

their related confidence values may be requested by the high-level reasoning



1 INTRODUCTION 4

module. With this approach, special properties of the tracking algorithms

are ignored, and we obtain a simple and generic interface between the high-

and the low-level modules. In this work we show the capabilities of a system

with such a generic interface between low-level vision module and high-level

reasoning module.

Our approach for the high-level reasoning module is based on the idea

that a system which builds a consistent scene interpretation using all relevant

objects, is more robust than a system which uses only a set of independent

object trackers. Therefore, our system maintains possible interpretations

of the observed visual input data. We show that for each interpretation

a quality measure can estimate the consistency of the interpretation. The

most consistent interpretations can be used to answer question like: “Where

will a person reappear, after driving a car to a different location?”, as in the

above motivating example.

1.2 Cognitivism Paradigm

There are different types of cognition and several research paradigms. In

this section we explain the cognitivism paradigm which we follow in this

thesis. The cognitivism paradigm assumes that cognitive behavior is a type

of information processing. Input data is fed into a cognitive system, it is

processed and new generated data is stored into a knowledge base. Based

on the data from the knowledge base the cognitive system acts accordingly

and shows cognitive behavior. Traditional artificial intelligence treats this

aspect of cognitive behavior. Information about the world is represented by

abstract symbols, called facts. These facts are processed by rules to generate

new facts. Therefore, these rules are often referred to as production rules.

Production rules represent knowledge about the world. This knowledge is

often domain specific. An inference engine controls which facts and rules

are applied in a given situation. New facts can be used to plan or act in

the world. This approach is called the information processing approach to

cognition [73, 48, 87, 58].

1.2.1 Problems of the Cognitivism Paradigm

Systems with deterministic inference engines were successfully applied to

organic chemistry [16], medical diagnosis [15, 49], and computer configura-



Cognitivism Paradigm 5

tion [75]. Some of these rule-based systems performed as well as experts in

their fields. An overview of those systems can be found in [110]. However,

even thought there were successful systems, the cognitivism paradigm failed

in other domains. The major points of criticism were the frame problem,

the symbol grounding problem, and the combinatorial explosion problem. We

discuss all three problems and their influences on our solution.

The Frame Problem

The frame problem is the difficulty to formally handle properties of the cur-

rent state that are not affected by an action or event. It was first described

as a technical problem in deductive logic based reasoning engines [74]. In

a frame we have a set of properties with assigned values. This properties

define the current state of our problem domain. An action is executed and

as a result, we have a new frame with almost the same values for most of

the properties. Only a few properties will change from one frame to the

next frame. These consequences can be defined by a rule. However, in de-

ductive logic we also have to define rules for all the unchanged properties,

otherwise the reasoning engine cannot conclude that some properties have

not changed. This is impractical.

An example with two actions shows the frame problem. If we want to

describe two actions placing and painting an object A, then we have two

rules of the form

1. “Object A has color X” holds after “painting object A with color X”

2. “Object A is in object Y” holds after “placing object A in object Y”

Now, we assume the initial state of object A as following: object A has

color red and is placed on a desk. First, the color of the object is changed

by painting it blue. After that, the object is placed in a drawer. Intuitively,

we can conclude that the object A is now in the drawer and has color blue.

However, this cannot be concluded by a reasoning engine using deductive

logic. The problem is that one rule is missing. We do not have a rule which

states that the color of an object does not change during placement. Thus,

we can only conclude that the object A is in the drawer. If we want a system

which can conclude the intuitively correct results, then we have to add two

additional rules:



1 INTRODUCTION 6

1. “Object A has color X” holds after “placing object A in object Y” if

“object A had color X before”

2. “Object A is in object Y” holds after “painting object A with color X”

if “object A was in object Y before”

Writing such rules for actions are annoying and leads to errors if rules are

forgotten. Suppose, we have N properties for an object and M actions to

modify the properties, then we have to specify N ×M rules expressing the

effect of the actions, even if most of the actions effect only one property.

One solution to this problem is that everything remains unchanged if

not explicated mentioned; this is called the common sense law of inertia. A

formal solution was introduced in [95] and Shanahan concluded in [104] that

the frame problem is solved from a mathematical viewpoint.

In this thesis we follow the approach that everything remains unchanged

if not explicated mentioned and we define rules only for changing properties.

Our problem of tracking occluded objects is quite specific and therefore only

a few rules have to be defined (see Sec. 2.4.3).

The Symbol Grounding Problem

Harnad defines the Symbol Grounding Problem [45] using Searle’s Chinese

Room argument [101]: A human who only understands English is sitting

in a room with a rule book written in English, paper sheets, and a pencil.

The door has a slot where paper sheets can be exchanged with a person

outside of the room. The rule book gives instructions on how to deal with

incoming Chinese characters. Further, it gives instructions which Chinese

characters have to be drawn on an empty sheet and passed through the slot

as an answer. A Chinese-speaking expert—sitting outside the room—can

throw a question on a sheet of paper into the room. Chinese characters are

used to express the question. The human inside generates an appropriate

answer with the help of the rule book and writes the answer in Chinese

characters on a sheet and throws it through the slot. Thus, a Chinese-

speaking expert can communicate with the English speaking person inside

the room. The expert can be convinced that he or she is communicating

with another Chinese-speaking person.

Searle’s Chinese Room is an illustrative example to argue about cog-

nitive behavior. Harnad argues in [45] that the human inside the room is



Cognitivism Paradigm 7

manipulating symbols and does not understand the meaning of the sym-

bols, therefore this information processing cannot be cognitive behavior.

The room can be seen as a computer. The computer program is the rule

book and the central processing unit (CPU) of a computer is the human op-

erator inside the room. Harnad writes in [45] that understanding cannot be

just symbol manipulation and that symbols have to be grounded bottom-up

by sensor data. Otherwise, the system processes meaningless symbols and

produces new meaningless symbols.

Alan Turing proposed the Turing test in [113]. It is intended to test the

presence of intelligence in machines. The test consists of an interrogator and

two test candidates sitting in separated rooms. One of the test candidates

is a computer and one a human. The interrogator uses a keyboard to com-

municate with both test candidates. The interrogator’s task is to determine

which candidate is the computer. Therefore, the interrogator asks questions

to both candidates. The human operator sees the questions on a screen

and uses a keyboard for writing the answers. The computer and the human

operator send their answers back to a screen device in the interrogator’s

room. After the conversation the interrogator has to decide which of the

two candidates is the computer. If the interrogator can only guess then the

computer has passed the Turing test, because it shows intelligent behavior

like a human.

Searle argues in [101] that passing the Turing test does not imply un-

derstanding. In this work we ignore the philosophical question of what

constitutes understanding. We are just interested in the external behavior

of the system.

The Combinatorial Explosion Problem

In 1973 the Lighthill report [65] criticized that artificial intelligence suffers

from the combinatorial explosion problem. The combinatorial explosion

problem is the problem that an agent takes an enormous amount of time to

execute an single action because it is searching for the perfect sequence of

actions to reach a goal. The problem is encountered when an agent can in

every step choose from multiple actions to reach different states. Only very

small problems with a limit number of actions and states can be fully solved

in this way.

The combinatorial explosion can be seen by analyzing chess. If a com-



1 INTRODUCTION 8

puter wants to find the best move for a given chess position then we have to

try out all legal moves from the starting position. After that, we have to find

the best move for the opponent and also try out all legal moves; followed

by the search for the next best move of the computer. This procedure is

repeated until the end of the game is reached. After calculating all possible

plays we can choose a play that results in a win. C. E. Shannon analyzed

the chess game in this way in [105]. The mean number of legal moves in a

typical chess position is 32.3 [24, 25, page 22]. Therefore, we have approxi-

mately 103 different chess positions after one move by white and black. If we

assume a typical game lasts 40 moves then there will be 10120 different pos-

sible games (game-tree complexity). A computer which analyzes 109 games

per second will need approximately 3.2 · 10106 years for the first move. This

brute-force search is impractical for many practical problems. Therefore, ar-

tificial intelligence researchers have discovered good heuristics for reducing

the combinatorial explosion. Nowadays, chess programs use an evaluation

function which evaluates if a given variation is worth to be examined. The

search space is reduced enormously after rejecting many variations after a

few move calculations. After 47 years of research the computer Deep Blue

from IBM [3, 17] won against world chess champion Garri Kasparov in 1997.

In this thesis we propose a heuristic to reduce the search space for cog-

nitive vision application. Our proposed approach will not compute all pos-

sibilities, it has to compute all reasonable ones.



Chapter 2

System Architecture

This chapter explains the desired properties of the system. It also proposes a

suitable architecture with its interfaces. Antenreiter and Auer first described

this architecture in [5].

2.1 Design Goals

2.1.1 Interaction of Low-Level Objects Appearance and High-

Level Location Reasoning

Image processing can be seen as a simple bottom-up process. A bottom-up

process extracts low-level features from an image such as edges, corners, and

blobs. Next, it groups images features to parts and aligns these parts to a

3D model. The 3D model is assigned to a particular object [14]. The object

represents high-level information. This high-level information can be used to

interpret the scene, e.g. how objects are interacting in a given scene. Thus,

bottom-up processing accumulates low-level information to build high-level

information.

Figure 2.1: An am-

biguous image [106].

However, images can be ambiguous; and there-

fore, biological vision systems apply a more complex

processing. Figure 2.1 shows an ambiguous image.

It shows a woman’s face in shadow, or the silhouette

of a man playing a saxophone. The same low-level

image features have two interpretations.

This example exposes that the human vision sys-

tem involves top-down processing. A hypothesis is

9



2 SYSTEM ARCHITECTURE 10

proposed and its validity is verified. Also, neuroscientists have shown that

feedback structures from higher-level processing exist in the macaque mon-

key vision system [98, 97]; and similar feedback structures have been found

in the cat vision system [107, 108]. Thus, higher-level visual processing areas

transfer information to the low-level areas.

Biological vision systems seem to use bottom-up and top-down process-

ing, a so-called hybrid control structure [91]. This motivates the control

structure for our system. The goal is that the architecture supports bottom-

up as well as top-down processing.

2.1.2 Interchangeability of Components and Interface Sim-

plicity

Complex system are usually divided into components. Each component has

defined interfaces to other components. This approach reduces the depen-

dencies between components, and components can be more easily exchanged

if components with different properties are needed [83]. Therefore, compo-

nents should be connected only via well defined interfaces. This simplifies

the communication between them.

The next goal is that the interface between the low-level vision processing

and high-level vision processing can be fulfilled by many image processing

algorithms. Interfaces which rely on special properties of a specific image

processing algorithm are not desirable. Therefore, the interfaces should be

simple and generic. This results in a system where the components can be

easily exchanged. For example, if objects can only be distinguished by their

color information, then a suitable image processing algorithm will be an

algorithm that uses color as a visual feature. In a new scenario all objects

have the same color and they can only be distinguished by their contours.

It should be enough to exchange the low-level image processing algorithm

to adapt the system to the new scenario.

However, one drawback of this approach is that the system cannot use

special properties of the image processing algorithm, even if these special

properties would simplify the work in the high-level vision processing. This

disadvantage must be accepted if a simple and generic interface is favored.



Overview of the Proposed Architecture 11

2.2 Overview of the Proposed Architecture

Our proposed system consists of two main modules. The first module

processes the incoming image data and reports possible object locations

(bottom-up processing). The second module builds possible scene interpre-

tations (bottom-up processing) and refines these interpretations incorporat-

ing additional data from the earlier interpretations (top-down processing).

The first module extracts low-level features from the images. Therefore,

its name is low-level vision module. The low-level vision module is decom-

posed into low-level vision components. A low-level vision component exists

for each object of interest. It works with a suitable vision algorithm for

detecting the object and uses a model of the object’s visual appearance. If

the low-level vision component detects the object, then it reports the posi-

tion with a confidence value to the second module—the high-level reasoning

module.

The high-level reasoning module collects all reported positions and con-

fidence values of all objects. The confidence value gives an indication of how

well the object model fits the visual appearance. Positions and confidence

values are used to build hypotheses. A hypothesis is an assumption about

the states of all relevant objects; and thus, an interpretation of the scene.

It is constructed from the vision inputs of the current input image and from

one of the hypotheses about the previous input image.

The high-level reasoning module has five main components. It consists

of the vision controller , the hypothesis generator , the hypothesis inspector ,

the hypothesis graph, and the hypothesis visualizer . The vision controller

sends commands to the low-level vision components in the low-level vision

module. The state of an object in a hypothesis affects the commands for

the low-level vision component, such as requests to detect a specific object

at a certain location, or the command to update the object model with new

visual features at a specified position.

When new detection results are available, the hypothesis generator con-

structs with construction rules new hypotheses. Construction rules are gen-

eral rules of how physical objects can interact in the physical world. The

new hypotheses are inspected by the hypothesis inspector. The hypothe-

sis inspector uses an evaluation function to evaluate the consistency of a

sequence of hypotheses.



2 SYSTEM ARCHITECTURE 12

0
25

50
75

100

0255075100
0

0.25

0.5

0.75

1

x
1x

2

c
o
n
fid

e
n
c
e

(a) 3d plot

x
1

x 2

25 50 75 1000

25

50

75

100

0

(b) Heat map

Figure 2.2: Detector’s confidence values are shown from a region of interest
of 100 × 100 pixels. Figure 2.2(a) is a 3d-plot of the confidence values.
Figure 2.2(b) is a heat-map of the confidence values. More than one local
maximum exists in the detection result. In this case, the low-level vision
component reports all good detection results to the high-level reasoning
component.

The data storage of the high-level reasoning module is the hypothesis

graph. The hypothesis graph stores all maintained hypotheses. A hypothesis

has forward and backward connections to hypotheses for the previous and

the next frame.

The last component is the hypothesis visualizer. It displays a selected

hypothesis as an image. The hypothesis visualizer draws the boundaries

of the objects, even the estimated positions of the occluded objects, into

the corresponding input image. Additionally, a textual description of the

hypothesis can be generated.

2.2.1 Low-Level Vision Module

In this section, the low-level vision module is described in more detail. The

low-level vision module is responsible for the processing of the image data.

The module is divided into low-level vision components. Each component

is assigned to an object in the scene. The visual properties of an object

determine suitable low-level vision components for detection. Every low-

level vision component is usable if it is able to detect the object reliably

and if it implements the following interface. This interface between the low-

level vision components and the high-level reasoning module consists of five



Overview of the Proposed Architecture 13

commands issued by the high-level reasoning module:

1. Search: The low-level vision component searches in a region of in-

terest and reports all likely locations of an object. Figure 2.2 shows

a typical detection result of a template detector. The low-level vision

component may find many local maxima in the region of interest. In

our proposed system the detector does not decide which local max-

imum is the best one. The low-level vision component only reports

good candidates of possible locations. Therefore, the low-level vision

component does a pre-selection. However, the decision about the best

location of an object is done in the high-level reasoning module. In or-

der to accomplish this, we require that the low-level vision component

reports a confidence value between zero and one for each detection.

A value of zero means: ’no object is detected at that position’ and a

value of one means: ’object is detected with very high probability’.

Additionally, we require that the low-level vision component reports

the boundary of the object as a two dimensional polygon. The Java

code for this interface is

class DetectorResult {

double confidence;

Polygon boundary;

}

and

List <DetectorResult > searchWindow(int x, int y,

int width , int height ).

A rectangle specifies the region of interest; it is defined by the upper-

left (x, y) coordinate, width, and height.

2. Update: The low-level vision component updates its appearance model

of the object with pixel information at a given position. The reasoning

module reports the visible object area. The low-level vision component

can use this information to update the appearance model. Therefore,

the definition for the update command is

void updateModel(List <Polygon > visibleBoundaries ).

A correctly updated model, with the given visible boundaries, gives

better detection results in future frames. A wrong update unlearns the



2 SYSTEM ARCHITECTURE 14

appearance model. Then, the detection rates and confidence values of

the component will decrease in future frames. As a consequence, the

high-level reasoning can release components with wrong appearance

models, see below.

3. Set location: The object’s location is provided by the high-level rea-

soning module. The high-level reasoning module adapts the boundary

of the object according to a hypothesis state.

void setLocation(Polygon boundary)

This operation can be used when the low-level vision component main-

tains an internal state on the position of an object, e.g. a Kalman

tracker [56], and the high-level reasoning module decides that the vi-

sual input data is not informative enough; for example, when an object

is highly occluded by other objects.

4. Clone: The low-level vision component creates a copy of itself and

passes it to the high-level reasoning module. The command is defined

as

Detector clone ().

In ambiguous situations—a low-level vision component reports two

or more good detection results— a correct update of the appearance

model may be difficult. Therefore, the high-level reasoning module

can duplicate the detector and update both detectors with different

visual information.

5. Release: The low-level vision component is released. This operation

can be used if the high-level reasoning module is confident that it does

not need the low-level vision component anymore.

void release ()

2.2.2 High-Level Reasoning Module

Figure 2.3 depicts the main parts of our system, the processed video, and the

resulting hypotheses graph. In addition, dashed lines with arrows show the

data flow in the system. The processing steps are explained using Figure 2.3.



Overview of the Proposed Architecture 15

v
id
eo

ItIt−1It−2It−3

h
ig
h
-l
ev
el

v
is
io
n
m
o
d
u
le

lo
w
-l
ev
el

v
is
io
n
m
o
d
u
le

vision
controller

hypothesis
generator

hypothesis
inspector

hypothesis
visualizator

hypothesis graph

controlling
rules

learning
rules

construction
rules

evaluation
function

pruning
rules

description
language

component 1 component 2

HtHt−1Ht−2Ht−3

1

2,9 2,9

3 3

4 4

5

6 78

Figure 2.3: Overview of the system architecture with data flow. Dashed
lines with arrows show the data flow. The numbers near the arrows indicate
the processing order.

It is assumed that a video was processed until image It−1. According to Fig-

ure 2.3, there exists a set Ht−1 with four hypotheses for the image It−1; these

hypotheses are marked as black dots in the hypothesis graph.

In the first step, the vision controller reads all four hypotheses from

set Ht−1 (step 1). It sends control commands to low-level vision compo-

nents depending on the state of the hypotheses (step 2). The low-level

vision components process the next image It (step 3). The hypothesis gen-

erator receives the detection results (step 4). It generates new hypotheses

using the construction rules. If additional visual information is needed for

hypotheses, then the hypothesis generator is handing over the control to the



2 SYSTEM ARCHITECTURE 16

vision controller again. The steps 2–4 are repeated until no new hypotheses

needs additional visual information from image It. After that, the hypoth-

esis generator stores all generated hypotheses Ht into the hypothesis graph

(step 5). In the sixth step, the hypothesis inspector evaluates the generated

hypotheses. It uses an evaluation function to calculate for each hypothesis

a confidence value (step 6). Next, the hypothesis inspector marks unlikely

hypotheses according to the pruning rules. Marked hypotheses are ignored

in subsequent images. The hypothesis visualizer displays the most likely

hypothesis on a screen (step 7).

The last steps are the clean-up and learning phase. First, the vision

controller reads all hypotheses from set Ht. The hypotheses are analyzed

(step 8). The vision controller releases resources for unlikely hypotheses.

For the remaining hypotheses, it generates learning commands depending

on the objects’ states. These learning commands are sent to the low-level

vision components (step 9). After that, the system is ready to process the

next image of the video sequence.

2.3 Components of the Low-Level Vision Module

In this section all low-level vision components which were tested with the

system are introduced. There exist various methods for tracking objects. An

overview can be found in [119] where trackers are grouped by their methods.

However, there exists no general-purpose tracker. The visual properties of

the target objects influence the selection of the low-level vision components.

Therefore, a subset of the described low-level vision components is used

simultaneously in the test videos.

2.3.1 Adaptive Template Tracker

An advantage of a template tracker is that it stores spatial and appearance

information of an object. Template trackers gave good localization results

for two test videos. Template trackers work well if the appearance does

not change over time. This is partially fulfilled in some test videos because

objects are shown from their side view most of the time.

The tracker is made more robust against modest changes of the appear-

ance by learning. It stores the original template T0 and an adaptive tem-

plate Tt. The high-level reasoning module can update the adaptive template



Components of the Low-Level Vision Module 17

to incorporate new appearance information. Eq. (2.1) defines a weighted av-

erage of appearance information using a learning rate α.

Tt = α · Tt−1 + (1− α) · Itx,y (2.1)

Tt
β = β · T0 + (1− β) · Tt (2.2)

It
x,y is a region at location (x, y) in frame t. The region has the same size

as the template T . The location (x, y) is obtained by template matching or

by the high-level reasoning module. Eq. (2.2) with the parameter β controls

the amount of information used from the original template and the adaptive

template. If β is set to one then the tracker only uses the information from

original template T0. On the other hand, if β is set to zero it only uses the

information from the adaptive template.

As measure of similarity between templates and image regions the nor-

malized cross-correlation cx,y is used. The definition of the normalized cross-

correlation cx,y is

cx,y =

∑
x′, y′

(
Tt

β
(
x′, y′

)− T
β

t

)
· (It (x+ x′, y + y′

)− I
x,y

t

)
√∑

x′, y′

(
Tt

β
(
x′, y′

)− T
β

t

)2 ·
∑
x′, y′

(
It
(
x+ x′, y + y′

)− I
x,y

t

)2 (2.3)

where the summation x′, y′ is over the pixels of the template.

T
β

t
=

1

rows · cols
∑
x′, y′

Tt
β
(
x′, y′

)
(2.4)

I
x,y

t
=

1

rows · cols
∑
x′, y′

It
(
x+ x′, y + y′

)
. (2.5)

It has several advantages compared to other similar measures like sum

of absolute differences (SAD) or cross-correlation. First, the normalized

cross-correlation cx,y is immutable against intensity changes across the im-

age. Second, the value of cx,y does not depend on the size of the template.

These properties are obtained by subtracting the mean of the template T
β

t

from every template pixel Tt
β (x′, y′). Accordingly, the mean of the image

region I
x,y

t
, where the template is placed at (x, y), has to be calculated and

subtracted from the image pixels It (x+ x′, y + y′). The resulting values are



2 SYSTEM ARCHITECTURE 18

(a) (b)

Figure 2.4: (a) A target object and its marked boundary (image source [90]).
(b) A part based model which stores the spatial configuration of important
parts to the object center (star model).

scaled to unity norm. Therefore, the normalized cross-correlation cx,y has a

range from −1 to 1. A perfect match of template and image region gives a

similarity of 1.

2.3.2 Interest-point Based Tracker

Another low-level vision component is a detector using a part based model.

The model consists of small parts of the object where the spatial configu-

rations between the parts are stored. Figure 2.4(a) shows an image with a

marked target object. In Figure 2.4(b) important parts of the object are

selected (red circles). A simple model is to store all spatial configuration

between any two parts. This object representation was introduced by Agar-

wal et al. in [2]. An improved model was proposed by Leibe et al. [61]. It

stores the spatial configuration of parts in respect to the object center. The

model is a star-shaped representation. Figure 2.4(b) shows this representa-

tion. It is used in the low-level vision component. For each part the spatial

configuration to the object center is stored (green circle in Figure 2.4(b)).

A part based object representation has several advantages. It is robust

against partial occlusion of the target object. If a small number of parts

cannot be detected then the object center can still be determined by the

remaining parts. Part based models can also deal with local variations in

object structure, like human body parts in different configurations. Addi-

tionally, if we use an interest-point detector for detecting the local parts and

this interest-point detector returns a scale for each detected part, then the



Components of the Low-Level Vision Module 19

Algorithm 1: Incremental clustering of the codebook entries.

Input: codebook, descriptors, threshold
Output: codebook

1 foreach descriptor ∈ descriptors do
2 min ← ∞
3 nearest ← descriptor
4 foreach entry ∈ codebook do
5 d ← distance(entry, descriptor)
6 if d < threshold ∧ d < min then
7 min ← d
8 nearest ← entry

9 end

10 end
11 codebook ← codebook \ nearest ∪ merge(nearest, descriptor)

12 end
13 return codebook

scale of an object can be inferred. The exhaustive search over all possible

scales can be avoided.

Scale invariant interest-point detectors exist since several years. Their

properties were studied extensively in [23, 67, 69, 81, 54, 78, 79, 10]. We

have selected the Difference-of-Gaussian (DoG) operator for the detection of

local parts. The SIFT descriptors [68] represent the local parts in the model.

After applying the DoG operator and calculating the SIFT descriptors, the

detector obtains for each detected local part a 2D position (x1, x2), a scale s,

an orientation o, and a 128-dimensional SIFT descriptor. The SIFT descrip-

tor is scale invariant but varies with rotation. Therefore, the orientation of

the SIFT descriptor has to be considered in a part based model.

Building Codebook

In an ideal experimental setup with a static scene, the detector extracts equal

SIFT descriptors for each frame. However, in a practical experiment the de-

tector has to deal with noise, e.g. noise from the camera sensor. Additionally,

the camera observes moving objects in a scene. A frame is a 2D projection

of a 3D world; therefore, the local parts in a 2D projection can show up

slightly distorted, depending on the movements of the 3D object. Hence,

the algorithm averages SIFT descriptors detected from the current frame



2 SYSTEM ARCHITECTURE 20

(a) (b)

Figure 2.5: (a) Shows detected local parts as circles. A larger scale is rep-
resented by a larger diameter of a circle. (b) The star-shaped object repre-
sentation is sketched with the centroid of the boundary. The lines from the
centroid represent the recorded information of codebook entries and relative
position to the centroid (Images from [7]).

with similar SIFT descriptors in the codebook. SIFT descriptors which are

dissimilar to existing codebook entries are added as new codebook entries.

Alg. 1 describes the incremental clustering procedure.

The averaged SIFT descriptors build our vocabulary of local appear-

ances; it is called codebook. An averaged SIFT descriptor in the codebook

is termed as codebook entry. The detector uses the codebook entries to

construct a star-shaped object representation.

Building Model

A target object has at least one star-shaped object representations, termed

model. These models are build from training images. In every training image

the boundary of the object is marked. The DoG operator is applied and all

detected local parts within the boundary are used to build the model. The

SIFT descriptors are computed from the local parts and matched with our

codebook entries. The reference point of the model is the centroid of the

boundary. The model records for each matched codebook entry the relative

position to the centroid. Figure 2.5(a) shows the detected local parts of an

object and Figure 2.5(b) an example of a star-shaped model.



Components of the Low-Level Vision Module 21

Detecting Objects

Objects are detected using a voting schema to find object centers. First,

the DOG operator detects regions of interests. SIFT descriptors describe

the regions of interest. Each SIFT descriptor is matched with stored code-

book entries. After that, each model is considered and the detected SIFTs

assigned to codebook entries vote for possible object centers. This voting is

done with the generalized Hough transform [50, 9] using a four dimensional

voting space. The detected local parts vote for a scale svote, an object loca-

tion xvote = (x1, x2), and an object model m. The scale svote and the object

location xvote are defined as

svote =
sdetect
socc

(2.6)

and

xvote = Rxoccsvote + xdetect. (2.7)

In Eq. (2.6) sdetect is the scale of the detected interest point in the current

image and socc denotes the scale of the occurrence in the object model.

In Eq. (2.7) xdetect is the location of the detected interest point in the current

image, xocc denotes the location of the object center with respect to an

occurrence of the model, and R is a rotation matrix. The matrix describes

the rotation from the model to the image orientation.

Figure 2.6(a) shows a voting for an object model. The star-shaped model

of the car is shown in Figure 2.4(b). Three SIFT descriptors are found on the

target object, marked as red circles. One SIFT descriptor is located on the

upper right corner of the roof. The two other SIFT descriptors are located on

the two tires. We assume that the two tires look similar. Therefore, they are

matched with the same codebook entry. The corner of the roof is assigned

to a different codebook entry. Given an object model m, the codebook entry

of the roof will vote for one object center xvote and object scale svote. For

each tire the generalized Hough transform obtains two votes; one on the

left side of the tire and one on the right side. Votes are accumulated in

the Hough accumulator array. Entries in the Hough accumulator array with

many votes have a high correlation to the original object model.

The generalized Hough transform has high computational and memory



2 SYSTEM ARCHITECTURE 22

(a) (b)

Figure 2.6: (a) Three SIFT descriptors are found (red circles) and matched
to two codebook entries: one for the right corner of the roof and one for the
two tires. The detected parts votes for three possible object centers (green
circles). The object center has three votes. (b) SIFT descriptor of the left
tire has slightly orientation offset error. Therefore, one vote is stored in a
bin below the object center. Bin locations are drawn as dashed rectangles.
The mean shift refinement uses the connected neighbors (green box) to find
the correct object center.

requirements. Therefore, in the implementation continuous values of xvote

and svote are discretized to bins. For example, values between 0.875 – 1.125

vote for an object scale of 1.0. Similar rounding applies for values of xvote.

Coordinates between (�xi�−0.5, �xi�+0.5] vote for �xi�. The discretization
reduces the computational efforts and memory requirements. However, it

also introduces boundary effects.

Figure 2.6(b) shows a boundary effect for 2D-coordinates. Green dashed

rectangles mark the bins. One SIFT descriptor—the one for the left tire—

has an orientation offset error. Therefore, the vote is stored in a bin below

the correct object center.

The mean-shift refinement addresses the boundary effects in a post-

processing step. It examines the connected neighbor bins. The green box

in Figure 2.6(b) surrounds the immediate neighbor bins. If neighbor bins

contain votes which supports the initial object center then a refined object

center is calculated by weighting each vote to the initial object center and

re-estimate a new mean object center. These steps are repeated until a

stable object center is found. Figure 2.6(b) is a schematic representation

and shows only a 2D-neighborhood. The implementation of the mean-shift

refinement operates in a 3D-space, using the 2D-coordinates xvote and the

scale svote.

Codebook entries which vote for an object center, scale, and model are

the result of the mean-shift refinement. The detector uses the positions of



Components of the Low-Level Vision Module 23

the voting codebook entries to estimate the rotation, scaling, shear, and

translation in respect to the original learned object model. The goal is to

project the object boundary of the model to the current image. An affine

transformation [46] is assumed; therefore, the detector uses the codebook

correspondences to estimate the affine homography Haff . The Eq. (2.8) de-

fines the affine transformation for homogeneous coordinate vectors p and p′

p′ = Haff · p =

⎛
⎜⎝

h11 h12 h13

h21 h22 h23

0 0 1

⎞
⎟⎠ ·

⎛
⎜⎝

x1

x2

1

⎞
⎟⎠ (2.8)

The affine homography is a 3× 3 project matrix where the last rows equals

to (0, 0, 1). A least median of squares linear fitting method [99, 47] esti-

mates the six parameters1 of the matrix Haff . The original boundary is

transformed with the estimated Haff , marking the object boundary in the

current image.

Model Updates

Additionally, our high-level reasoning module can update the object model.

Local parts may exist inside the projected object boundary which are not

matched with the object model. These local parts are possible candidates

for a model improvement. If a learning event is triggered by the high-

level reasoning module, then the low-level vision component distinguishes

between two cases. This is done to avoid the learning of new model parts

which does not belong to the object. The first case is a non-moving object.

In this case, the low-level vision component adds new parts represented as

codebook entries into the model. In the second case the object is moving

and the algorithm uses motion information. The low-level vision component

estimates the motion of the object vobject and the motion for each part vpart.

The motion from a part vpart is estimated from the current input image and

previous input image. After that, the low-level vision component adds parts

with similar motion to the model. A similar motion is defined as

||vpart − vobject||2 <
vobject

2
. (2.9)

1http://www.ics.forth.gr/~lourakis/homest/: Homest version 1.2 is used. Homest
is a C/C++ Library for robust, non-linear homography estimation from Manolis Lourakis.



2 SYSTEM ARCHITECTURE 24

Algorithm 2: Detecting and updating part-based object models.

Input: codebook, object models, image It
Output: object locations, codebook, object models

1 Detect keypoints in image It
2 Assign keypoints to codebook entries
3 Codebook entries vote for models m, scale svote and position xvote

4 Sort candidate locations ordered by the number of votes
5 foreach candidate ci do
6 Mean-shift refinement of candidate ci
7 Compute affine homography Haff

8 Project object boundary to image space
9 Compute confidence nvoted

ndetected

10 if learning is triggered by reasoning then
11 Add new parts to model
12 if nvoted

ndetected
> 0.2 then

13 Update part statistics rm,i

14 Delete unreliable parts from model m

15 end

16 end

17 end
18 Update codebook entries with Alg. 1
19 return object locations, codebook, object models

With this approach the low-level vision component can add codebook entries

of local parts that were not detected in learning images.

We want to keep the number of parts in a model at a moderate size.

Therefore, a recognition rate ri,m for each part pi in the model m is calcu-

lated and depending on these recognition rates the low-level vision compo-

nent decides if parts are deleted from a model. Recognition rates are only

updated if an object model is detected reliably.

Only a few SIFT descriptors are needed to detect a model reliable [68]

thus we define that an object model is detected reliably if more than 20%

of the detected SIFT descriptors inside the projected boundary vote for the

object model.

Reliability of Detection

The ratio of
nvoted

ndetected

(2.10)



Components of the Low-Level Vision Module 25

defines the reliability for an object model m. The number of SIFT descrip-

tors inside the projected boundary are counted in ndetected. The value nvoted

contains the descriptors which voted for the model m. This reliably mea-

sure fulfills the properties for confidence values. Therefore, it is used in the

high-level reasoning module.

The recognition rate for a part in a model m is defined as

ri,m =
ni,m

Ni,m

(2.11)

where ni,m is how often a part pi is detected during tracking divided by

the number of frames Ni,m the object model was found reliably since the

part pi was added. After updating the recognition rates, local parts with

a low recognition rate ri,m < 0.25 are deleted from models. This threshold

was found using a test video where the recognition rates where analyzed.

Final Remarks

The initial codebook entries and object models are generated from a set of

learning images. In every learning image we mark the object boundary of the

target objects. In our experiments we used one image for learning the object

models and codebook entries. We trust our online learning procedure to

build good object models and meaningful codebook entries during tracking.

A summary of all steps of the detection is given in Alg. 2.

2.3.3 Mean-Shift Tracker

The mean-shift tracker was proposed by Comaniciu et al. in [21]. In mean-

shift tracking the object’s model is represented by a probability density

function (pdf) in the feature space. The feature space in our implementation

is the RGB color space. The pdf q represents the model of the object to be

tracked by the tracker. A histogram with m bins is used to estimate the

pdf q from the first image

q̂ = {q̂u}u=1...m with constrain

m∑
u=1

q̂u = 1. (2.12)

In subsequent frames pdfs p (x) of candidate regions at locations x = (x1, x2)

have to be estimated. Therefore, we calculate m bin histograms at different



2 SYSTEM ARCHITECTURE 26

locations x:

p̂ (x) = {p̂u (x)}u=1...m with constrain

m∑
u=1

p̂u (x) = 1. (2.13)

In our implementation the histograms are calculated from pixels xi lo-

cated in a
√
n×√

n squared region. The value of
√
n depends on the object

size. The squared region is centered at the centroid xc of the target object.

The function b maps the RGB color pixel at position xi to the correct bin

of the m bin histogram. A convex and monotonic decreasing kernel pro-

file k(x) is used to assign smaller weights to pixels farther from the centroid.

A profile of a kernel K(x) is defined as a function k : [0,∞) → R such that

K(x) = k
(
||x||2

)
. For each bin of the histogram, q̂u is calculated as

q̂u = Cq

n∑
i=1

k

(∣∣∣∣
∣∣∣∣xc − xi

h

∣∣∣∣
∣∣∣∣
2
)
δ [b (xi)− u] (2.14)

where δ [n] is the Kronecker delta function. It returns one at n = 0, otherwise

the function returns the value zero. The bandwidth h defines the number of

pixels considered around the centroid xc. Finally, Cq is the normalization

constant to enforce the condition
∑

m

u=1 q̂u = 1. Therefore, we have

Cq =
1∑

n

i=1 k
(∣∣∣∣xc−xi

h

∣∣∣∣2) . (2.15)

The pdf of a candidate region centered at x is estimated accordingly as

p̂u (x) = Cp

n∑
i=1

k

(∣∣∣∣
∣∣∣∣x − xi

h

∣∣∣∣
∣∣∣∣
2
)
δ [b (xi)− u] (2.16)

using the normalization constant Cp

Cp =
1∑

n

i=1 k
(∣∣∣∣x−xi

h

∣∣∣∣2) . (2.17)

The distance between the target and candidate distributions is defined as

d(x) =
√

1− ρ [p̂ (x) , q̂] (2.18)



Components of the Low-Level Vision Module 27

where

ρ̂(x) ≡ ρ [p̂ (x) , q̂] =
m∑

u=1

√
p̂u (x) · q̂u (2.19)

is the Bhattacharyya coefficient between p̂ (x) and q̂. The Bhattacharyya

coefficient is a divergence-type measure [55, 66].

The distance between the two distributions in Eq. (2.18) has to be mini-

mized. Finding the best candidate region in an image is equivalent to maxi-

mizing the Bhattacharyya coefficient ρ̂(x) in Eq. (2.19). A Taylor expansion

of ρ̂(x) is done around the initial location x(0). Then a gradient-based op-

timization is used to shift from the initial location towards the location

maximizing the Bhattacharyya coefficient. One optimization step from the

initial location x(0) to the next location x(1) where ρ̂
(
x(0)

) ≤ ρ̂
(
x(1)

)
is

x(1) =

∑
n

i=1 xiwik
′

(∣∣∣∣∣∣x(0)
−xi

h

∣∣∣∣∣∣2)
∑

n

i=1wik′
(∣∣∣∣∣∣x(0)

−xi

h

∣∣∣∣∣∣2) (2.20)

where the weight wi are

wi =
m∑

u=1

√
q̂u

p̂u
(
x(0)

) · δ [b (xi)− u] . (2.21)

The complete derivation of Eq. (2.20)–(2.21) can be found in [19]. Eq. (2.20)

is used with the new location x(1) to calculate the next best location x(2).

Calculations of Eq. (2.20)–(2.21) are repeated until the Euclidean distance

between the previous and the new location is less than ε.

Additionally, an Epanechnikov kernel [116, page 312] is used; therefore,

the derivation of kernel profile k′(x) is constant [19]. The mean-shift step in

Eq. (2.20) reduces to a weighted average

x(k) =

∑
n

i=1 xiwi∑
n

i=1wi

. (2.22)

In [63], the efficiency of mean-shift tracking is improved by using ran-

dom subsampling from the
√
n × √

n squared region. Therefore, in each

optimization step the algorithm extracts ns random subsamples from the

region centered at x(k−1) and then the weighted average Eq. (2.22) becomes



2 SYSTEM ARCHITECTURE 28

Algorithm 3: Mean-shift tracker with random subsampling.

Input: model q̂, target candidates p̂ (x) from current image,
previous location x(0), number of random samples ns,
maximum number of mean-shift iterations itmax

Output: estimated location x(k) and Bhattacharyya coefficient ρ̂
at x(k)

1 for k = 1 to itmax do

2 X = randomSamples(x(k−1), region, ns)

3 foreach xi ∈ X do

4 wi =
∑

m

u=1

√
q̂u

p̂u(x(k−1))
· δ [b (xi)− u]

5 end

6 x(k) =
∑ns

i=1 xiwi∑ns
i=1 wi

7 if
∣∣∣∣x(k) − x(k−1)

∣∣∣∣
2
< ε then break

8 end

9 ρ̂
(
x(k)

)
=

∑
m

u=1

√
p̂u

(
x(k)

) · q̂u
10 return

(
x(k), ρ̂

(
x(k)

))

(see Alg. 3, step 6)

x(k) =

∑
ns
i=1 xiwi∑
ns
i=1wi

. (2.23)

The computational complexity of mean-shift tracking with random subsam-

pling is independent of the object size. The random subsampling is done in

step 2 of Alg. 3.

2.3.4 Hand Detector

We use a color blob detector for detecting the hands of a human. First, every

frame is converted from the RGB color space to the HSV color space [36].

After that, a median filter with a 3 × 3 mask is used on the transformed

frame to reduce color and luminance noise. A pixel is classified as skin

if all channels of the HSV image are between predefined thresholds. The

thresholds for the skin color are estimated from a few frames of each video.

After classifying the skin pixels in a frame, we have a binary image. The

binary image is then processed with morphological operations [102, 103].

Morphological operations add or delete pixels from an image. These are

applied to enhance the resulting boundaries of the hands. First, scattered



Components of the Reasoning Module 29

Algorithm 4: A detector for skin color blobs

Input: RGB image I = (IR, IG, IB), skin color intervals (θH , θS , θV ),
blob size θsize

Output: Bounding boxes and boundaries of detected blobs

1 (IH , IS , IV ) ← rgb2hsvImage(I)
2 (I ′

H
, I ′

S
, I ′

V
) ← (filter3×3(IH), filter3×3(IS), filter3×3(IV ))

3 mask ← apply(θH , I ′
H
) ∧ apply(θS , I

′

S
) ∧ apply(θV , I

′

V
)

4 se ← createStructureElement(’circle’, 3)
5 mask ← close(open(mask, se), se)
6 blobs ← findBlobs(mask)
7 bigblobs ← {b : b ∈ blobs ∧ sizeOf(b) > θsize}
8 return {(boundary(b), boundingBox(b)) : b ∈ bigblobs}

and false positive pixels are removed by the morphological operation erode

followed by a dilate. This operation is also known as morphological open

operation.

Resulting regions can contain holes; therefore, the detector removes these

holes with a morphological close operation. The morphological close opera-

tion is a dilation followed by an erosion. Every morphologic operation needs

a structure element. A structure element defines the neighbor pixels which

are taken into account. Thus, it defines the working radius. The used struc-

ture element is a circle with radius three. The remaining regions, referred

to as blobs, are candidates for hands of a human being. The detector re-

jects blobs which have fewer pixels than a given threshold. This threshold is

adapted depending on the typical size of a hand in a video sequence. After

that, we extract the bounding boxes and the boundaries of the blobs. An

overview of the blob detector algorithm can be found in Alg. 4.

2.4 Components of the Reasoning Module

The high-level reasoning module consist of five components (see Figure 2.7),

the vision controller, the hypothesis generator, the hypothesis inspector, the

hypothesis visualizer, and the hypothesis graph. The hypothesis graph is

the main data structure of the high-level reasoning module.



2 SYSTEM ARCHITECTURE 30

vision
controller

hypothesis
generator

hypothesis
inspector

hypothesis
visualizator

hypothesis graph

controlling
rules

learning
rules

construction
rules

evaluation
function

pruning
rules

description
language

HtHt−1Ht−2Ht−3

Figure 2.7: Overview of the high-level reasoning module

2.4.1 Hypothesis Graph

Every image in a video sequence has at least one interpretation in our system.

An interpretation stores the locations of the observed objects. Interpreta-

tions are termed hypotheses.

If a scene is ambiguous the system generates additional hypotheses for

one image. Ambiguous scenes arise by more than one reasonable detection

result of a low-level vision component as explained in Sec. 2.2.1. Addition-

ally, a scene can be ambiguous if there is no visual evidence for an object

anymore. Even if there is no visual evidence for an object the system stores

a location for it. The simplest case is a temporal detection failure of a low-

level vision component. If this situation occurs, the reasoning system has to

predict the most likely locations of an object. It uses the previous detection

results for the prediction.



Components of the Reasoning Module 31

Events: Occlusion and Reappearance

An occlusion event occurs when one or more objects occlude the visual

appearance of another object. This is a challenging case because the object

may be disappeared over a long time. The goal of our cognitive vision

system is that it can give plausible object locations even for occluded objects.

Additional, this information is needed to reinitialize the tracker during the

reappearance of the object.

Occlusion events will happen if an object is placed inside a larger object

or is occluded by one or more other objects. The larger object may be moved

to a different location and then the smaller object is taken out. Therefore,

objects can reappear at different places after a period of time. In these

situations, the system has to take the past hypotheses into account. We use

a graph structure to represent these dependencies. Each hypothesis has one

or more forward connections to hypotheses for the next frame. Additionally,

it has backward connections to its parent hypotheses for the previous frame.

A hypothesis can have more than one parent. This occurs when the

visual data are ambiguous and the visual data are not sufficient. In this

case, we have two or more hypothesis paths which merge into one hypothesis.

A hypothesis path is a sequence of consecutive hypotheses in the hypothesis

graph. A hypothesis path corresponds to a particular interpretation of the

video sequence.

Example: The Visual Data is Insufficient

Figure 2.8 illustrates an example of a sequence where the visual data is in-

sufficient. A mug disappears behind a pot (Figure 2.8(a)–(c)). The system

generates two hypotheses. One hypothesis interprets the visual information

as the mug is behind the pot. The other hypothesis assumes that the mug

is inside the pot. Then the mug is taken out and reappears (Figure 2.8(d)–

(f)). At the end of the sequence, the system has a hypothesis which has two

parent hypotheses. The observed event has two possible interpretations and

none can be falsified. Figure 2.9 shows the input images on the left side,

starting with the first image at the top. On the right side the hypothesis

graph is shown with two hypothesis paths. Hypotheses are drawn as per-

spective views. Figure 2.9 shows that both hypothesis paths are correct

interpretations. The visual data are inadequate and the hypothesis paths



2 SYSTEM ARCHITECTURE 32

(a) Frame 1 (b) Frame 10 (c) Frame 30

(d) Frame 40 (e) Frame 50 (f) Frame 60

Figure 2.8: A mug disappears and reappears on top of a pot.

are merged into one hypothesis.

Example: The Visual Data is Sufficient

If the sequence of input images is slightly different, the system is able to

reject wrong interpretations and stop the processing of unlikely hypothesis

paths. Figure 2.10 sketches this situation. The pot moves to a different

location before the mug is taken out. The reasoning can reject the wrong

hypothesis path. In this case, the information of the remaining hypothesis

path is used by the vision controller to find the mug at reasonable locations—

nearby the pot2.

In addition, if we slightly vary the input images then the left hypothesis

path is more likely as shown in Figure 2.11. These simple examples show

that small variations in the sequence of input images can lead to different

interpretations.

2 Figure 2.10 is simplified because it ignores another possible interpretation of the image
data. The third interpretation would be that both objects moved to the left side. Our
system takes care of this situation, we omitted it only in our explanation for simplicity.



Components of the Reasoning Module 33

Figure 2.9: A mug disappears and reappears on top of a pot. The input
images are shown on the left side from top to bottom, the corresponding
part of the hypothesis graph is shown on the right side. The sequence has
two possible interpretations and none can be falsified. Therefore, the last
hypothesis in the hypothesis graph has two parent hypotheses.



2 SYSTEM ARCHITECTURE 34

Figure 2.10: A mug disappears and then the pot is moved to a new location.
The high-level reasoning has additional data compared to Figure 2.9. In this
situation, the right path of the hypothesis graph is more likely than the left
path. Further processing of the left path is discontinued by the high-level
reasoning (marked as a red cross).



Components of the Reasoning Module 35

Figure 2.11: A mug disappears. It reappears after the pot is moved to
a new location. The high-level reasoning receives different data compared
to Figure 2.10. Therefore, the left path of the hypothesis graph is more
likely.



2 SYSTEM ARCHITECTURE 36

Object States

The above examples also show that hypotheses need to store a state for

each object. An object can have the following states: visible, behind , and

attached . State visible is for visible objects, and the reasoning system can use

the results from the low-level vision components. State behind indicates that

an object is partially or fully occluded by other objects. Depending on the

occlusion the reasoning system has to estimate the locations of objects and

cannot use the output from the low-level vision component. State attached

is used if an object is linked to another object. An object which is attached

to another object can reappear at locations nearby the attached object. The

reasoning system uses the state attached if it assumes that two objects move

jointly, e.g. when an object is placed or wrapped in another object.

Object Hierarchies

A simple description with states is not sufficient if the system wants to de-

termine the visible area of objects and more than two objects are observed.

The system stores a depth ordering for each hypothesis, called object hier-

archies.

Let us assume we have three objects labeled as A, B, and C. If object A

partially occludes the two other objects, then there are three possible inter-

pretations:

1. Object C is behind object B and object B is behind object A.

2. Object B is behind object C and object C is behind object A.

3. Object B is behind object A and object C is behind object A.

If hypotheses maintain hierarchies of occluded objects then these possible

interpretations can be described. Additionally, these hierarchies give the

system the capability to estimate the visual areas of each occluded object in

an image. Later, the estimated visual areas are used to reject inconsistent

hypotheses and to improve visual appearance models.

Summarized, a hypothesis graph H consists of hypotheses. Each hy-

pothesis describes the content of a particular frame of the video, and it is

linked to plausible hypotheses for the previous as well as the next frame.

A hypothesis is an assumption about the states of all relevant objects. A



Components of the Reasoning Module 37

hypothesis consists of a set of object descriptions. Visible objects are stored

directly in such a hypothesis. Occluded objects, with state behind, are

stored within the description of the occluding object. The same applies to

the state attach. Attached objects are linked to the description of its parent.

2.4.2 Vision Controller

The vision controller makes use of the information from the hypothesis graph

to control the low-level vision components. The controller generates different

commands depending on the objects’ states. Additionally, the controller is

used in different working steps of the reasoning component. In the first step,

the controller gives a search window and appearance model to the low-level

vision component. The rules for generating the commands are given below.

Rules for Generation of Search Commands

1. If an object has state visible then the low-level vision component ob-

tains its appearance model from the previous hypothesis and a search

window. A search window defines the range where the object cen-

ter x = (x1, x2) is expected in the new image. The system defines a

quadratic search window around the previous position of the object3.

2. If an object is occluded and has state behind then the low-level vision

component has to process two search commands. First, the controller

uses rule 1 to define a search window. Second, the system query explic-

itly at the last visible position that was known before the occlusion.

The vision controller assumes in this case that the object does not

move. In both commands, the appearance model before the occlusion

event started is used as model.

3. If an object is attached to a parent object then an extended search

window is defined. All positions of the parent object are recorded from

the current hypothesis to the hypothesis where the object was attached

to the parent object. The recorded positions are the trajectory of the

parent object. The search window is defined by the maximum and

minimum coordinates of the trajectory. Finally, the search window is

enlarged in every direction by vmax pixels.4

3It assumes a maximum velocity vmax of 50 pixels.
4A more elegant solution would be to search only along the trajectory.



2 SYSTEM ARCHITECTURE 38

The low-level vision components process the search instructions and give

the result to the hypothesis generator. The hypothesis generator constructs

and adds new hypotheses to the hypothesis graph. After that, the vision

controller updates the appearance models. The rule for improving the ob-

jects’ appearance models is summarized below.

Rule for Improving the Object Models

One simple rule is used for improving the object models. This rule states

that if an object is visible and reliably detected, then the system updates

the appearance model of the low-level vision component. The assumption

is that model updates of reliably detected objects are correct.

Although, the system estimates the visible object area of each object, we

decided to ignore use this information and do no partial updates of object

models, because an incorrectly estimated visible object area and correspond-

ing incorrect model update would have negative effects on the detection

performance.

2.4.3 Hypothesis Generator

The hypothesis generator constructs new plausible hypotheses and adds

them to the hypothesis graph. It uses the information from the previous

hypotheses Ht−1 and the input from the low-level vision components for

image It. The hypothesis generator splits a previous hypothesis into two

or more plausible hypotheses, if the correct hypothesis cannot be inferred

using the provided data from the low-level vision components. What can

be inferred mainly depends on what can be observed. Our setup consists

of one static camera which is not calibrated. Thus, the distance of objects

from the camera cannot be measured. Additionally, our generic interface

to the low-level vision components does not permit us to examine certain

pixel regions. This is the drawback of a generic interface as mentioned in

Sec. 2.1.2. Therefore, if the contours of two objects intersects, it cannot be

decided immediately which object is in front of the other. However, we show

that our high-level reasoning can infer the correct depth ordering by using

the hypothesis inspector (Sec. 2.4.4). The system uses the following rules

for hypothesis construction:



Components of the Reasoning Module 39

Construction Rules

1. If the contours of two objects intersect, then split the previous hypoth-

esis into two. One hypothesis states that the first object is in front,

the other hypothesis states that the second object is in front. If the

contours of more than two objects intersect simultaneously, then the

system calculates every permutation.

2. If an object is occluded by another object (occluder), then the system

generates two hypotheses. One hypothesis states that the object does

not move (object’s state: behind) and reappears at the old position.

The other hypothesis states that the occluded object can reappear

along the trajectory of the occluder (object’s state: attached).

3. If the low-level vision component returns two or more possible ob-

ject positions with similar confidence for an object, then generate one

hypothesis for each plausible object position.

4. If no occlusion is detected or if the object is found along the trajectory

of an occluder, then the system sets the object’s state to visible.

The system stores one or more hypotheses after processing the construc-

tion rules. Each generated hypothesis is evaluated by the hypothesis inspec-

tor.

2.4.4 Hypothesis Inspector

As shown in the previous sections, there are several hypothesis paths in the

hypothesis graph. The number of hypothesis paths depends on the complex-

ity of the observed scene. The most likely hypothesis path—which explains

the video sequence—must be determined by the hypothesis inspector. Thus,

the hypothesis inspector evaluates each hypothesis path using an evaluation

function Q(H|I). It is a quality measure of a hypothesis path compared to

other paths. The hypothesis path H = 〈h1, . . . , hm〉 is a selected path from

the hypothesis graph. The hypothesis path starts from the root hypothe-

sis h1. The hypothesis path ends at a hypothesis for the current image Im.

The corresponding sequence of images is defined as I = 〈I1, . . . Im〉. The

result of the evaluation function Q(H|I) is a number between zero and one.

The value from Q(H|I) indicates how well the hypotheses from the hypoth-

esis path fit to the observed images. A value of one is a perfect fit.



2 SYSTEM ARCHITECTURE 40

Evaluation Function

We use the mean quality of the hypotheses as evaluation function for a path.

The quality measures q for all hypotheses on the path are summed, divided

by the number of hypotheses considered,

Q(H|I) = 1

m

m∑
i=1

q(hi|Ii). (2.24)

We calculate a normalized plausibility value for each object of interest.

The normalized plausibility value is a mapping of the confidence value of the

low-level vision component and the current state of the hypothesis hi. The

quality measure q(hi|It) for a hypothesis hi of image It is then the mean of

all normalized plausibility values,

q(hi|It) = 1

N

N∑
j=1

pnorm(oj |hi, It), (2.25)

where N is the number of tracked objects. The range of the normalized

plausibility is from zero to one. A value of one means that the state of the

object oj and the confidence value of the low-level vision component is the

most convincing value pair:

pnorm(oj |hi, It) = p(oj |hi, It)
maxh∈Ht p(oj |h, It)

, (2.26)

where Ht is the set of all hypotheses for image It.

The plausibility value uses an inconsistency value ι(oj |hi, It) which de-

fines a mapping between the hypothesis state for an object and the confi-

dence value of the low-level vision component. For objects which are not

totally occluded we define

p(oj |hi, It) := 1− ι(oj |hi, It). (2.27)

The inconsistency function ι : R2 → R maps the confidence value of a

detector conf (oj |hi, It) and the relative occluded area areaocc (oj |hi) given a

hypothesis hi to an inconsistency value. The inconsistency value is between

zero and one, where a value of zero means that the result from the detector

and the hypothesis state has zero inconsistency.



Components of the Reasoning Module 41

d

0.0 1.0

1.0

co
nf

id
en

ce

occluded area

(a) linear

0.0 1.0

1.0

co
nf

id
en

ce

occluded area

(b) nonlinear

Figure 2.12: Two possible inconsistency mappings are shown. In the linear
mapping the inconsistency value is zero on the line. The nonlinear mapping
defines zero inconsistency on the curve. Therefore, the same confidence and
occluded area values have different inconsistency values. A confidence and
occluded area pair is depicted as a point in both figures. In the linear case
ι(oj |hi, It) = d and in the nonlinear mapping it is zero.

The inconsistency function can incorporate additional knowledge about

low-level vision components. The results of the detector can be measured

depending on the occlusion of the target object. Using that measurements

the inconsistency value can be calibrated by an operator. Figure 2.12 shows

two possible inconsistency mappings. On the curve the inconsistency value ι

is zero. If a value pair of conf (oj |hi, It) and areaocc (oj |hi) does not lie on

the curve than ι(oj |hi, It) will have a value between (0.0, 1.0].

These mappings can be useful for the following circumstances. First, a

low-level vision component can react differently to small occlusions than to

large occlusion. If this is the case, it can be taken into account with a special

inconsistency mapping for all objects as seen in Figure 2.12(b). Second, if

low-level vision components using different visual properties are used for

detections. These various low-level vision components may need individual

mappings such that same inconsistency values between various low-level

vision components have equal meaning. This is a calibration process which

can be done before the system is used.

We assume in all experiments a linear behavior between occlusion and



2 SYSTEM ARCHITECTURE 42

detection results conf (oj |hi, It) as in Figure 2.12(a). Therefore, our incon-

sistency function ι is defined as

ι(oj |hi, It) = |conf (oj |hi, It) + areaocc (oj |hi)− 1| . (2.28)

A different definition of plausibility is needed if an object is totally oc-

cluded. It would be misleading if a plausibility value of 1.0 were assigned

to totally occluded objects, since a visible object will not typically receive a

plausibility value of 1.0 due to imperfect recognition by the low-level vision

component. Therefore, we bound the plausibility of a total occluded object

by its maximal plausibility when it is visible:

p(o|hi, It) = max
h ∈ Ht

o is visible|h

p(o|h, It) (2.29)

If there does not exists a hypothesis h ∈ Ht such that object o is visible,

then the plausibility value p(o|hi, It) is set to one. This is the case where all

hypotheses assume that the object o is totally occluded.

Pruning Rules

Pruning strategies are implemented as rules and use the results of the eval-

uation function. The system rejects a hypothesis if one of the following

pruning rules match:

1. Reject a hypothesis if an object has the state visible and very low

confidence over the last few frames. (A visible object must have at

least a minimum confidence value and should be reliably detected over

a time period, to be valid.)

2. Reject a hypothesis if an object’s state is ’attached’, the occluded

area is very small, and the confidence is low. (If an occluded object

reappears, the low-level vision should recognize the object and provide

an appropriate confidence value.)

3. If hypotheses describe the same state then the system merges these

hypotheses.



Components of the Reasoning Module 43

hypothesis = "hypothesis", id , "for frame", number

"total confidence", decimal number ,

"parent hypotheses", hyp-list ,

"(", {visible objects }, ");";

visible objects = "(", "obj", id , "state", "visible",

{other objects },
reasoning data , vision data , ")";

other objects = "(", "obj", id , "state", state ,

{other objects },
reasoning data , vision data , ")";

reasoning data = "conf", decimal number ,

"visible area", decimal number ;

vision data = "vision component", id ,

"vision conf", decimal number ,

"contour pixels", "[", {pixel }, "]";

state = "behind" | "attached";

hyp-list = "none" | id , {",", id };
id = number ;

pixel = "(", number , ",", number , ")";

decimal number = "0.", number | "1.0";

number = digit , {digit };
digit = "0" | "1" | "2" | "3" | "4" |

"5" | "6" | "7" | "8" | "9";

Figure 2.13: The grammar in Extended Backus-Naur Form notation
used by the hypothesis visualizer to export the hypothesis graph.

4. If the number of hypotheses exceeds a threshold then the system rejects

hypothesis paths with low Q(H|I). The Q(H|I) has to be lower than

the arithmetic mean Q(H|I) multiplied by some ε ∈ [0, 1).

The thresholds for these rules were selected in a very conservative manner,

such that it is very unlikely—across a wide range of videos—that a pruning

rule deletes a correct hypothesis. Pruning is used only for efficiency to reduce

the number of nodes in the hypotheses graph.

2.4.5 Hypothesis Visualizer

Each hypothesis of the graph can be visualized on a screen or exported as a

description. The hypothesis visualizer exports the generated data using the

description language in Figure 2.13. The description language is expressed



2 SYSTEM ARCHITECTURE 44

hypothesis 91 for frame 30

total confidence 0.905

parent hypotheses 89

(

( obj 1 state visible

( obj 2 state behind

conf 1.0

visible area 0.0

vision component 8

vision conf 0.0

contour pixels [ (53,123) (54,123) . . . ]

)

conf 0.975

visible area 1.0

vision component 7

vision conf 0.950

contour pixels [ (40, 105) (41, 105) . . . ]

)

);

Figure 2.14: The description language applied on the last hypothesis
from the left hypothesis path of Figure 2.10.

by an extension of the Backus-Naur Form [8] (EBNF) and it is defined

in ISO/IEC 14977:1996 [51]. The important rules of the EBNF notation

are: a comma is a concatenation operator, a vertical bar is used for choices

of one from many, the construct {c } indicates zero or more repetitions of

the enclosed construct c , and a semicolon terminates a construct.

Additionally, Figure 2.14 shows a description of a hypothesis using the

description language. It is the last hypothesis of Figure 2.10 (left hypothesis

path, third row). The input image and hypothesis can be found in the

third line. Additional line breaks and indentations are used to make the

description more readable to the human eye.

The description of the hypothesis gives us the following information:

In the first line, the hypothesis number 91 is shown. Every hypothesis is

assigned a unique number and the hypothesis was generated for frame 30.

The total confidence of the hypothesis path was evaluated as 0.905 by the

evaluation function. The hypothesis path contains all hypotheses from the

first hypothesis to the 91th hypothesis. Therefore, all image data from the



Components of the Reasoning Module 45

first image to the current image are taken into account. The value from the

evaluation function is used to decide the most likely hypothesis path. The

next line includes the identifier of the parent hypothesis.

After that, the object descriptions of the visible objects are shown be-

tween the first round parenthesis and the last round parenthesis. The fol-

lowing descriptions of the visual objects state that only object 1 is visible.

Furthermore, object 1 totally occludes object 2. For each object its confi-

dence values, relative size of its visible area, the associated visual compo-

nent, the confidence of the visual component, and the contour of the object is

given. The description of the occluded object is nested into the description

of the occluding object. The detection was unsuccessful, thus the visual

confidence value is 0.0 and the confidence value was set to be 1.0 by the

high-level reasoning module. The contour pixels of object 2 are estimated

by the high-level reasoning module, because of the lake of visual evidence.



This page intentionally contains only this sentence.



Chapter 3

Experimental Evaluation

3.1 Test Scenario I

We evaluate the performance of the proposed system with video sequences

of different levels of difficulty. Videos are recorded with a static camera

observing a scene with a desktop. Cups are placed on the desktop and a

human moves these cups. In the first video sequence two cups are moved.

As a result of the setup a cup can be partially occluded by the hands of

the human and/or by the other cup. Figure 3.1 from (a) to (c) shows three

frames from the first video. In Figure 3.1(b) the yellow cup is highly occluded

by the hands of the human and the cup with colored stripes. The cup with

colored stripes is slightly occluded by one hand. Even in this simple setup

some object trackers will fail to track the yellow cup reliably. However, if we

find an object tracker which tracks the yellow cup reliably then it will fail on

our next video. We increase the difficulty by adding another big cup which

can hide other cups. In the second video the human hides the cup with

colored stripes inside the white cup. Figure 3.1(d)–(f) shows three frames

from the second video. A cup can be inside another cup and can therefore

reappear elsewhere. Additionally, sometimes one cup is total hidden as a

result of a cup which is in front and due to one or more hands.

3.1.1 Used Vision Components

Initially, we tested different trackers on the videos. In our test videos tar-

get objects have similar color distributions with some background regions.

Therefore, trackers using color histograms (e.g. [20, 84]) fail. Keypoint based

47



3 EXPERIMENTAL EVALUATION 48

(a)

(b)

(c)

(d)

(e)

(f)

Figure 3.1: Shows three frames of two test videos from test scenario I.
Figure 3.1(a)–(c): Video sequence cup 1 with partial occlusions of two cups.
Figure 3.1(d)–(f): Video sequence cup 2 where a smaller cup is hidden inside
a larger cup.



Test Scenario I 49

trackers [70, 62] have problems if they cannot find a suitable number of stable

keypoints between two successively frames. The videos have a high signal-

to-noise and only a few stable keypoints are found on the target objects.

Movements of the target objects introduce a significantly amount of mo-

tion blur that removes almost all stable keypoints. Therefore, these types

of trackers are not suitable for our videos. On the other hand, template

trackers from Sec. 2.3.1 performed well and are used in this set of tests.

We use the OpenCV implementation of the fast matching algorithm

from [64]. The algorithm computes the normalized cross-correlation in the

frequency domain. The author Lewis in [64] showed that the normalization

values can be calculated by using pre-calculated tables (integral images)

which yields to a fast matching algorithm.

The Eq. (2.3)–(2.5) on page 17 define the normalized cross-correlation cx,y

for a gray scale image. The normalized cross-correlation for each channel

(RGB) are averaged and scaled to give a value in [0, 1]. Therefore, the input

value for the high-level reasoning module is

conf (o|hi, It) = 1

6

(
cx,y
R

+ cx,y
G

+ cx,y
B

+ 3
)
. (3.1)

We use the hand detector from Sec. 2.3.4. The thresholds are adjusted

to match the lighting conditions of the scene. Every detection result of the

hand detector is represented in our system with confidence value of one.

3.1.2 Visual Display of Results

The results of our vision system can be visually inspected, see Figure 3.2 - 3.4.

The green/white bounding boxes show the location of the objects according

to the most likely hypothesis. The object label is written inside the corre-

sponding bounding box. The line position of the label indicates the relative

depth between the objects. If the label is written near the upper bounding

box line, then the object is in front of all the other intersecting boxes. The

label is bracketed if the occlusion reasoning does not use the low-level vision

input. Question marks indicate that the reasoning has assumed a low-level

vision failure. The best low-level vision input is drawn with a dashed box,

if the reasoning supposes an error.

Figure 3.3 shows four frames from the video. The hypothesis for frame 486

shows that the reasoning component does not trust the low-level vision com-



3 EXPERIMENTAL EVALUATION 50

Figure 3.2: A test sequence with three cups. The best hypothesis assumes
that ’cup 2’ is behind ’cup 3’.

ponent for cup 2, because of the high occlusion. The relative depth between

the cups is correct. The next picture (frame 489) shows that the tracker

is confused by the hand. The best detection result is on the right hand.

The hypothesis assumes that the yellow cup is attached to the left hand,

therefore the tracker search window is set along the trajectory of the left

hand. In frame 493 the tracker and hypothesis position of cup 2 converge

to the same position. Two frames later, the reasoning system believes that

the tracker of cup 2 is once again trustworthy, and therefore the system uses

the position of the vision component. The video sequence in Figure 3.4

shows a total occlusion and re-detection event. The big cup 1 hides cup 3.

After that the two cups are moved together; during that situation the sys-

tem shows the estimated position of cup 2. The human wants to trick the

system and moves the yellow cup in front of cup 1. The hypothesis assumes

the following relative depth order: cup 2, cup 1, cup 3. From frame 605

to 620 cup 3 is released, but due to the high occlusion there exists very little

visual evidence for the fact that cup 3 is behind the yellow cup. Therefore,



Test Scenario II 51

(a) (b)

(c) (d)

Figure 3.3: Sequence with occluded cup and low-level vision failure.

the best hypothesis assumes that cup 3 is inside cup 1. After the actor

moves cup 2 away from cup 3, the low-level vision component provides good

confidence values at a previous position of cup 1. The best hypothesis with

correct depth values is shown in the last picture.

3.2 Test Scenario II

We show with the second data set that the system is modular and not

tailored to a specific type of trackers. The system can be easily adapted

if the constrains of the tracking task are changing. For this we allow that

objects have different scale and are rotated during the video sequence.

First, experiments with the adaptive template tracker introduced in

Sec. 2.3.1 were done. The detection results were, as expected, weak. Our

second set of test videos cannot be solved with the adaptive template tracker.



3 EXPERIMENTAL EVALUATION 52

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3.4: Sequence with an occlusion and re-detection event from video
sequence cup 2.



Test Scenario II 53

(a) Frame 120 (b) Frame 280

(c) Frame 460 (d) Frame 815

Figure 3.5: Shows the box 1 sequence from the second test scenario.
(a) Shows the initial positions of the five target objects from video box 1.
(b) One target object is placed behind other target objects. (c) Three tar-
get objects are only partially visible. The hand and another target object
occlude them. (d) Two objects are hidden and a third one is rotated.

The objects are rotated by 90 degrees and scaled by a factor of 1.35. These

appearance changes cannot be handled by the template tracker. Therefore,

we use a tracker which stores small local parts of an object, introduced in

Sec. 2.3.2. This type of tracker can handle scale changes and rotation.

Figure 3.5 shows four frames from the first video sequence from the

second test scenario. The video sequence is called box 1. Figure 3.5(a)

shows five target objects placed on a desktop. In the next frames, a person

moves, rotates, and hides objects. Figure 3.5(b) shows one target object is

moved behind other target objects and it is placed behind two other target

objects in Figure 3.5(c). In the third image the hand and one target object

hide three target objects. The fourth image shows that two target objects are



3 EXPERIMENTAL EVALUATION 54

partially visible and another one is rotated. It can be seen that the occlusion

of some target objects is high. The human visual system with its marvelous

performance can detect the position of the target objects from the shown

frames. A detector, using a model with local parts, fails if only a few parts

of the model can be detected. The results shows that the detector combined

with the high-level reasoning module is robust against partial occlusion of

the target object.

Figure 3.6 shows from the test videos box 2, box 3, and cup 3 two frames.

In the box 1 sequence, objects are only hidden behind other objects. The

second test video, box 2 sequence, introduces another difficulty: smaller

objects reappear at different positions. They are placed into a big box and

the big box is moved. After the big box is moved, the smaller objects are

taken out of the big box.

In the box 3 sequence, the human tries to trick the system. The two small

boxes are covered by the hands, removing almost all visual evidence, and

after that they are moved by the human, e.g. see frame 280 in Figure 3.6(c).

However, even this situations can be handled by the system.

The cup 3 sequence in Figure 3.6(e)–(f) tests the system with extreme vi-

sual input data for the part-based tracker. The colored cups have less texture

and only a few local parts can be found inside the boundaries. Therefore,

detections are unstable and objects are not detected continuously through

the video. The overall system can overcome this problems. Additionally, the

cup sequence shows the capabilities of the system to cope with hierarchic

composition.

3.2.1 Used Vision Components

Detection of the objects of interest is done with the detector using a part

based model from Sec. 2.3.2. The detector stores the number of parts used in

the model. During detection, the detector counts the number of SIFTs which

vote for an object model. One definition for a confidence value conf (o|hi, It)
is the ratio of SIFTs which vote for a model nvoted to the number of parts in

the model nparts. However, this definition assumes that the interest-point

detector detects all parts in every frame. In reality, this assumption does

not hold; therefore, the above definition includes the systematic error of the

interest-point detector.

In our experiments, we use a confidence value definition which uses the



Test Scenario II 55

(a) box 2: frame 1 (b) box 2: frame 600

(c) box 3: frame 280 (d) box 3: frame 1294

(e) cup 3: frame 350 (f) cup 3: frame 1335

Figure 3.6: Figure 3.6(a) - 3.6(b) show two frames from the box 2 sequence.
All three objects are moved and the two smaller boxes are placed into the
right box. Figure 3.6(c) - 3.6(d) are from the box 3 sequence. In this sequence
four objects are used. Additionally, the human tries to trick the system. He
covers small objects by hand and moves them. An example of such an action
can be seen in Figure 3.6(c). Frames of the cup 3 sequence are shown in
Figure 3.6(e) - 3.6(f). Simple textured, colored cups are nested to show the
ability of the system to deal with hierarchic composition.



3 EXPERIMENTAL EVALUATION 56

number of detected interest points ndetected in the denominator. This re-

duces the influence from missing parts due to interest-point detector errors.

Therefore, the confidence value is defined as

conf (o|hi, It) = nvoted

ndetected

. (3.2)

Detection failures of the interest-point detector are not considered. Only

detected parts which cannot be matched to the object model have an effect

on the confidence conf (o|hi, It).
The hand detector from Sec. 2.3.4 is applied. The system assigns the

detection result of the hand detector a confidence value of 1.0.

3.2.2 Results of Model Updates

In our first video sequence we arranged the objects within three layers. A

person moves the objects between the layers and the objects are partially or

totally occluded.

The system has to interpret the sequence correctly, such that it can

update the object models accordingly. This is important, because wrong

model updates can accumulate to a wrong model, which can lead to false

detection results. On the other hand – without updating the object models

– the system will not be able to detect the objects reliably. Small objects

are usually not reliably detected during motion and rotation. In our first

test sequence the object with id ’I-2’ is an example of such a small object.

Figure 3.7 shows an occlusion event and two possible interpretation of

the detection results. In Figure 3.7(a) the system concludes that the object

with id ’I-1’ is occluded by the two objects ’I-4’ and ’I-5’. It therefore

can update the model for ’I-1’ accordingly. The system draws the visible

boundary for the object ’I-1’.

In Figure 3.7(b) the system tries to explain the scene with a different

object ordering. This leads to a different and wrong object model for object

’I-1’. The new learned model for object ’I-1’ gives good detection result,

because the system learned additional keypoints from the surrounding ob-

jects, but the overall hypothesis cannot explain the scene properly. The

contradiction is that all detectors give good detection results even under

occlusions.

The evaluation function can detect such a contradiction, the correspond-



Test Scenario II 57

(a) (b)

Figure 3.7: Two possible interpretation of an observed scene are shown.
Figure 3.7(a) shows the best interpretation of the frame 290, which is the
correct one. The confidence value of this hypothesis path is 0.9669, com-
pared to the other interpretation in Figure 3.7(b), which is only 0.8913. The
system explained the occlusion event correctly.

ing hypothesis of Figure 3.7(a) has a confidence value of 0.9669, which is

higher than the confidence value 0.8913 of the hypothesis from Figure 3.7(b).

Pruning rules may remove the wrong interpretation in later processing steps.

3.2.3 Visual Display of Results

We tested our system with four video sequences. In Figure 3.8 a more

complex arrangement of objects is shown from the first sequence. Every

object has an id label and a boundary. The system draws the estimated

visible boundary, therefore the images show the estimated relative depth

between objects. The id label, within the boundary, is bracketed if the

reasoning does not use the detection result. Question marks indicate that

the reasoning has assumed a detection failure. A dashed box around the last

known object position is drawn, if the reasoning has not enough evidence for

an exact object position. In frame 420 (Figure 3.8(a)) the object with id ’I-1’

is placed between the objects ’I-4’ and ’I-5’. The relative depth is correctly

estimated. The next frame (Figure 3.8(b)) shows nearly total occlusion of

object ’I-1’, ’I-4’, and ’I-5’. In Figure 3.8(c) detection results are used for

objects ’I-2’ and ’I-3’, but not for object ’I-4’ which is totally occluded by

the hand and object ’I-2’. In the frames 570 and 595 (Figure 3.8(d) - 3.8(e))

there is less occlusion and the reasoning uses the detection results (bottom-



3 EXPERIMENTAL EVALUATION 58

(a) Frame 420 (b) Frame 495

(c) Frame 545 (d) Frame 570

(e) Frame 595 (f) Frame 845

Figure 3.8: The first box sequence showing the various occlusion events.
The relative depth between the objects is correct in every frame.



Test Scenario II 59

(a) Frame 150 (b) Frame 200

(c) Frame 400 (d) Frame 500

(e) Frame 600 (f) Frame 700

(g) Frame 750 (h) Frame 800

Figure 3.9: Results of the box 2 scene



3 EXPERIMENTAL EVALUATION 60

(i) Frame 850 (j) Frame 900

(k) Frame 1000 (l) Frame 1050

(m) Frame 1200 (n) Frame 1250

(o) Frame 1300 (p) Frame 1400

Figure 3.9: Results of the box 2 scene (continued)



Test Scenario II 61

(a) Frame 250 (b) Frame 300

(c) Frame 350 (d) Frame 400

(e) Frame 550 (f) Frame 600

(g) Frame 650 (h) Frame 750

Figure 3.10: Results of the box 3 scene



3 EXPERIMENTAL EVALUATION 62

(i) Frame 850 (j) Frame 900

(k) Frame 1000 (l) Frame 1050

(m) Frame 1150 (n) Frame 1300

(o) Frame 1450 (p) Frame 1650

Figure 3.10: Results of the box 3 scene (continued)



Test Scenario II 63

(a) Frame 300 (b) Frame 350

(c) Frame 450 (d) Frame 500

(e) Frame 550 (f) Frame 650

(g) Frame 700 (h) Frame 800

Figure 3.11: Results of the cup 3 scene



3 EXPERIMENTAL EVALUATION 64

(i) Frame 900 (j) Frame 950

(k) Frame 1050 (l) Frame 1100

(m) Frame 1150 (n) Frame 1250

(o) Frame 1300 (p) Frame 1335

Figure 3.11: Results of the cup 3 scene (continued)



Static Models vs Dynamic Models 65

up processing). In the last frame the object ’I-3’ is rotated and placed on

top of the object ’I-4’. The object ’I-1’ and ’I-2’ are totally occluded by the

other objects in the scene.

Figure 3.9 - 3.11 show the results of the other test videos. In Figure 3.9

the box 2 sequence is shown. In this video three boxes of different size are

moved and rotated. The two smaller boxes are packed into the largest box

and the largest box is moved to a different location. After that, the human

unpacks it and the system redetects the two smaller boxes again.

A box that occludes or contains other boxes, has the id labels of the

hidden boxes below its own id label. The system does not use the detector

results of hidden boxes; therefore, the id labels are bracketed. The correct

depth ordering is shown in the images, e.g. Figure 3.9(i) shows that the

largest box (marked blue) contains the box with the label ’I-2’. And the

most likely hypothesis is that the smallest box with label ’I-1’ is packed into

box with label ’I-2’.

Figure 3.10 shows the box 3 sequence. The system tracks four boxes and

the human tries to trick the system. He covers small objects by hand and

moves them; this is shown in Figure 3.10(a) - 3.10(b). The tracking result

are reliable and the depth-ordering is almost correct.

Finally, in Figure 3.11 the cup 3 sequence is shown. In this sequence

simple textured, colored cups are nested into other cups. The correct depth

order is shown with the bracked id labels in the correct order. The objects in

this video sequence have only a few stable keypoints on the cups. Therefore,

the interest-point detector fails if model updates are disabled, as will be

shown in the next section. Figure 3.11 shows the results with learning

enabled. The high-level reasoning module provides additional information

for the interest-point detector (top-down processing). Hence, the detection

results are improved and the correct depth ordering is extracted.

3.3 Static Models vs Dynamic Models

In this section we compare the performance of our system with continuous

learning enabled or disabled. If continuous learning is disabled then we only

use the learned model from the first frame. The model does not change over

time and therefore the results are denoted as static model. In the other case

we use a model that may change over time, through our proposed top-down



3 EXPERIMENTAL EVALUATION 66

video static model dynamic model
sequence detection rate depth order detection rate depth order

cup 1 55.25% 51.50% 100.0% 92.13%

cup 2 49.67% 42.94% 99.78% 88.05%

Table 3.1: Performance of the template tracker using static models versus
dynamic models.

reasoning. The results are in the columns called dynamic model.

There are perhaps two main objections against updating the models

during tracking. First, a good tracker may not need model updates, in

particular for relatively simple videos. We show that this is not true for our

used videos.

The second objection is that model updates during tracking are risky

and can lead to wrong models. As a consequence, the performance can be

lower than without updates.

The experiments show that it is important to update the models to ob-

tain a good performance. Depending on the difficulty of the video sequence,

the difference of the detection rate can be more than 67%. For each tracker

we compare the mean detection rate with and without model updates. A de-

tection is counted as correct if the system has found the correct localization

and scale of the target objects. The localization is wrong if the projected

bounding box is shifted more than five pixels away from the true bounding

box. In our experiments we found out that the scale is always correct if the

detector find the correct location.

3.3.1 Template Tracker

Template trackers with static models work in simple videos. However, our

test videos do not fall in this category. Tab. 3.1 shows the performance of

the system using a static model versus a dynamic model. The first column

is the detection rate for all visible objects. The second column indicates

how well the reasoning can infer the correct depth ordering.

The template tracker which uses a static model cannot track the object

reliable. It fails if the visual appearance changes because of illumination

changes, motion blur, and scale variations. All these effects are present in

our videos. The human produces shadow with its hands, moves the cups

quickly, and places cups near or far away from the camera. About 50%



Surveillance Camera 67

video static model dynamic model
sequence detection rate depth order detection rate depth order

box 1 95.90% 88.86% 97.81% 85.05%

box 2 74.31% 66.43% 98.71% 97.84%

box 3 81.43% 74.80% 99.07% 91.24%

cup 3 32.86% 21.40% 99.95% 93.21%

Table 3.2: Performance of the interest-point based tracker using static mod-
els versus dynamic models.

percent of the video the tracker with a static model fails.

Continuous learning using a dynamic model is important for our de-

manding videos. The gradually illumination change, the motion blur, and

small changes in the visual appearance through scale variations are processed

by the template tracker with a dynamic model. Good tracking results can

be used to even extracted the correct depth order of the objects by the

high-level reasoning module most of the time.

3.3.2 Interest-point Based Tracker

In Tab. 3.2 contains the results of our system with the interest-point based

tracker. As can be seen from Tab. 3.2, our dynamic model from Sec. 2.3.2

improves the detection results, compared to the static model. Additionally,

the reasoning component can prevent the system to learn a wrong model

even under occlusion events. The cup 3 sequence is only solved with learning

enabled (top-down processing). The simple bottom-up processing (static

model) gives poor results.

3.4 Surveillance Camera

The surveillance camera example in Figure 3.12 was shown in the first chap-

ter as an introductory example. The real-world sequence allows us to evalu-

ate the system performance in realistic, not carefully staged scenarios. The

sequence is a car-parking scene with a person entering a car and getting out

after crashing the car.



3 EXPERIMENTAL EVALUATION 68

Figure 3.12: Images of a surveillance camera: A person enters a car and
crashes this car into another car. In some frames there is no visual evidence
of the person and the car.

3.4.1 Used Vision Components

The example video is processed with the mean-shift tracker algorithm with

random subsambling from Leung and Gong [63] which was introduced in

Sec. 2.3.3. We tested other vision components, however the template tracker

and interest-point detector failed to reliably detect the objects. The main

reason for the poor performance of the template tracker is that it cannot

deal with the scale changes of the target objects. The interest-point detector

has too few stable keypoints on the target objects which is the reason why

it failed. Thus, we use a mean-shift tracking algorithm. The object model

of the mean-shift tracker is a color histogram.

The confidence value conf (o|hi, It) for the high-level reasoning module is

the Bhattacharyya coefficient ρ̂. The Bhattacharyya coefficient in Eq. (2.19)

on page 27 has a geometric interpretation, because it is the cosine of the angle

between the unit vectors (
√
q̂1, . . . ,

√
q̂m)T and (

√
p̂1 (x), . . . ,

√
p̂m (x))T . In

our case ρ̂ will range from 0 to 1, since the values of p̂u (x) and q̂u are positive.



Surveillance Camera 69

The Bhattacharyya coefficient ρ̂ is 1 if there is a perfect match between the

pdf of a candidate region and the pdf of the object. See [55, 38] for additional

properties of the Bhattacharyya coefficient. The Bhattacharyya coefficient

ρ̂(x) fulfills our requirements for the confidence value.

The mean-shift tracker has parameters which have to be set before it can

be used. We set the parameters using the first frames such that the tracking

is reliable and fast. In our experiment we used 300 random samples in each

iteration. The other parameters in the experiment were: ε was set to 1, the

number of bins for each RGB channel was set to 8, yielding a feature space

of 8× 8× 8 = 512, and the number of iteration itmax until the optimization

stops was set to 25. We observed that the mean-shift optimization usually

converged after 4–13 steps and itmax was never reached.

3.4.2 Results

In Figure 3.13 the object of interest are the car and the observed person.

They are surrounded by a bounding box with a label. The label, within

the boundary, is bracketed if the reasoning does not use a tracker result due

to occlusion. Question marks indicate that the reasoning has assumed a

tracker failure. A dashed box around the best detection position is drawn,

if the reasoning has not enough evidence for an exact object position.

As shown in first row of Figure 3.13, the person opens the car door and

enters the car while being partially occluded. From the second row to the

third row, the person enters the car completely and closes the door. The

person then starts the car which goes into the parking lot. Our reasoning

algorithm correctly determines that the person is totally occluded by the

car and the person is associated with the car. In the fourth row, the tracked

car crashes into another car and smoke begins to come out. After that, the

person tries to get out of the car. The tracker is re-initialized by the system

when the person is detected reliably.

To conclude, our framework addresses the occlusion problem for mean-

shift tracking. The problem of incorrect convergence to wrong neighboring

local maxima due to occlusion of the target object is solved by the high-level

reasoning module. It is shown that the robustness of the mean-shift tracker

is improved by considering the states of all relevant objects. Results are

demonstrated with a real-world sequence with severe occlusions.



3 EXPERIMENTAL EVALUATION 70

(a) Frame 329 (b) Frame 403

(c) Frame 460 (d) Frame 463

(e) Frame 486 (f) Frame 533

Figure 3.13: Results of the car crash scene. Figure 3.13(a) - 3.13(d) The
person goes to the car and opens the car door.



Surveillance Camera 71

(g) Frame 639 (h) Frame 727

(i) Frame 742 (j) Frame 808

(k) Frame 823 (l) Frame 868

Figure 3.13: Results of the car crash scene (continued).



3 EXPERIMENTAL EVALUATION 72

(m) Frame 899 (n) Frame 999

(o) Frame 1049 (p) Frame 1170

(q) Frame 1216 (r) Frame 1218

Figure 3.13: Results of the car crash scene (continued).



Adding Task Specific Knowledge 73

3.5 Adding Task Specific Knowledge

In the previous sections, we showed that the system is adjustable. In accor-

dance with the requirements of a video sequence, the right low-level vision

components can be selected and integrated into the system. In this section,

we show that our system can also address shortcomings of the low-level vi-

sion components by adding additional task specific knowledge. Due to the

modular structure of the system, task specific knowledge can be integrated

easily without changing the system. The previously introduced mean-shift

tracking algorithm with subsampling is used in our experiments. It is known

that the mean-shift tracking algorithm can converged to the wrong local

maxima of the Bhattacharyya coefficient if the velocity of the target object

is high. There are two possible solution to this problem. First, a camera

with higher frame rates can be used. Then the original mean-shift tracker is

applicable. However, a higher frame rate means more data to be processed

and therefore the processing requires more computing power. In addition,

cameras with high frame rates are expensive. The second solution is to add

task specific knowledge, in our case we add different motion models. In this

case, we do not need specialized and expensive hardware to solve the prob-

lem. The next section describes the motion models and the incorporation

of the motion models into the existing system.

3.5.1 Motion Models

The hypothesis generator will generate additional hypotheses, if the veloc-

ity of an object changed too fast in the last frames (motion prediction).

The generator chooses from three motion models depending on the previous

possible object locations. Currently, the system uses zero velocity, constant

velocity, and constant acceleration motion models. For every new generated

hypothesis, the reasoning component gives the mean-shift tracker different

initial positions.

1. Velocity and acceleration are zero: In our first motion model

both values are zero. Therefore, the mean-shift tracker is initialized

at the old object location. This is usually the default usage of the

mean-shift tracker and works quit well if the movement of the target

object is small between two consecutively frames.



3 EXPERIMENTAL EVALUATION 74

2. Constant velocity: The second motion model assumes a constant

velocity of the target object. The system calculates a velocity v̂ from

the previous frames and predicts the new position x (t) of the target

object with

x (t) = v̂t+ x̂. (3.3)

The predicted position x (t) is used as initial position for the mean-

shift tracker.

3. Constant acceleration: The third motion model assumes that the

target object has constant acceleration. The previous frames are used

to evaluate velocity v̂ and acceleration â of the target object. The

predicted position in this case is therefore

x (t) =
ât2

2
+ v̂t+ x̂. (3.4)

In Eq. (3.3)–(3.4) x̂ is the estimated position from the previous frame of the

target object and t depends on the frame rate of the camera.

3.5.2 Results

We use two video sequences where the standard mean-shift tracker fails.

The velocity or acceleration is very high such that the tracker converges to

a wrong local maxima. The use of the motion models gives additional input

to the reasoning system. The system decide automatically the best fitting

motion model using the evaluation function.

Coin Sequence 1

In this video sequence, a person plays a shell game with a bottle cap and a

coin. The results are shown in Figure 3.14. The person hides a coin with a

bottle cap, moves the cap around in rapid movements and the coin reappears.

At times, the coin is totally occluded by the bottle cap. Additionally, the

person accelerates the bottle cap very rapidly. It is shown that the system

is able to track the bottle cap and the coin with rapid movements and total

occlusions. As we can see in the first row of the figure, the cap covers the

coin and our system reasons correctly that the coin is occluded by the cover.

The last position reported by the tracker is used during the occlusion of the



Conclusion 75

coin, the reasoning updates that position depending on the movement of the

occluder. Then, the cap and the coin are moved around. In the third row,

the coin is released from the cap and the coin is detected and tracked again.

After that, it is occluded again. In the fourth row, the bottle cap is moved

around with the coin.

Coin Sequence 2

Figure 3.15 shows the second coin sequence. In this video three objects of

interest are tracked: a coin, a cap, and a hand. The system can track all

the objects even under full occlusion and generates a correct depth ordering

of the objects. In the first row the cap is partially and the coin is totally

occluded. After that, the coin reappears on the right side. The second row

shows that the cap has changed its position with the coin. Then the cap

is totally occluded by the hand and is released near the coin. The third

row shows that the coin is covered by the cap and than the cap is occluded

by the hand. About 300 frames the user tries to trick the system with fast

movements, until he releases the cap. A likely interpretation of the last

frame is that the coin is still under the cap.

3.6 Conclusion

We showed that our system can update object models in a reliable manner.

This was done for an adaptive template tracker and an interest-point based

tracker based on SIFT features. The high-level reasoning module has a

representation of the entire scene and can therefore trigger the correct model

updates for the low-level vision components.

In the last section, we showed that our unified framework addresses two

problems of the mean-shift tracker. First, the mean-shift tracking may con-

verges to wrong local maxima, because of rapid movements of the target

object. Second, it cannot deal with occlusion events. Additional domain

knowledge is added to the high-level reasoning module. The domain knowl-

edge, defined as different motion models, solves the convergence problem. It

is shown that the robustness of the mean-shift tracker is greatly improved

by considering these two problems together in a unified fashion, while our

reasoning algorithm selects the best globally consistent scene interpretation.



3 EXPERIMENTAL EVALUATION 76

Figure 3.14: Results of coin sequence 1



Conclusion 77

Figure 3.14: Results of coin sequence 1 (continued)



3 EXPERIMENTAL EVALUATION 78

Figure 3.15: Results of coin sequence 2



Chapter 4

Combining Detectors with
Low-Level Features

In the previous chapter we introduced the overall system. In the follow-

ing chapter we will focus on improvements for the proposed system. One

drawback is that the presented low-level vision components are using only

one type of visual feature (e.g. SIFTs). Therefore, reliable detection or

tracking of the target objects is only possible in restricted environments.

Additionally, it is obvious that such a cognitive system cannot accomplish

its objectives if it is used in a new environment where the pre-selected fea-

ture type is meaningless, e.g. all objects of interest have the same color and

different shapes but the pre-selected feature type is a normalized color his-

togram. Depending on the given setting, a real system should learn and

select suitable features from a sufficiently large pool.

Another drawback is that information between low-level vision compo-

nents is not shared and utilized. For example, if the system has four low-level

vision components—one for detecting a cup, a car, a desk, and for detecting

roadways—and the first two detectors response with high confidence that

they found a cup and a car in an image frame, then our system trusts both

detectors even if there is evidence that the car detector is wrong, for example

if the desk detector finds a desk but the road detector cannot find a road.

It is more likely to find a car on a road, than a car beside a desk with a

cup on it and no road in sight. We call this class relationship information.

Such class relationship is ignored in the current system but it can be used

to improve the overall performance.

In this chapter we introduce a novel approach to deal with both men-

79



4 COMBINING DETECTORS WITH LOW-LEVEL FEATURES 80

tioned drawbacks in a unified way: First, we show how a system can learn

suitable feature types for an object category; second, how the system can

use results from other object categories to improve the overall performance

for each category. To develop our approach, we focus on object classification

instead of videos sequences. This allows to compare our results on standard

image databases with other published results. In addition, we can use re-

sults from other research groups and improve their results with our novel

approach.

4.1 Introduction

Our main idea is that we use a two step learning approach. In the first

learning step classifiers are learned for each object category and for each

feature type, e.g. if we have N object categories and M different feature

types we learn N × M classifiers. These classifiers from the first step are

named base classifiers. In the second learning step we combine the output

of the base classifiers. This is done to gather additional information from

the data which a base classifier could not extract easily. We want to extract

how well each pair of feature type and classifier performs. Some feature

types may have a poor performance because they are not very suitable for

a given object category. Other feature types perform superior, therefore we

want to have a higher influence from better performing feature types for the

final prediction. Additionally, we want to use class relationship information.

Class relationship information can be programmed by hand, but this can be

inconvenient if a large number of object categories have to be considered.

Therefore, our approach learns relevant class relationships during the second

learning step.

We use the standard image database for object detection from the PAS-

CAL Visual Object Classes Challenge [34] and we apply the evaluation pro-

tocol of the challenge. The evaluation protocol prescripts every important

step, from the splitting of the data to the final evaluation formula.

The idea of combining classifiers in order to obtain improved prediction

accuracy has been considered by many researchers (see e.g. [27, 59] for an

overview and further references) and has sparked the development of seminal

methods such as boosting [37, 100]. Here we consider multilabel learning

problems where each instance may have several labels (unlike in multiclass



Introduction 81

problems where each instance is assigned to a unique class, i.e., has a single

label). We present a very simple method for multilabel learning based on

the combination of binary base classifiers. That is, we propose to train

for each label a binary base classifier. Then we feed the output (i.e., the

confidence scores) of these binary base learners into a support vector machine

(SVM) [115, 22] in order to improve prediction accuracy.

The basic concept underlying this simple approach resembles stacking [118]

methods: In the stacking framework the output of several (distinct) base

classifiers is combined by a meta-level learner to give an improvement in

(binary or multiclass) classification. In the multiclass case usually multi-

class classifiers are used as base learners and as meta-level learners (cf. [29]).

While the idea behind stacking is that the metalearner shall be able to com-

bine the base learners in a more sophisticated way than doing simple voting

or cross-validation [118], in our method the meta-level learner shall grasp

interdependencies between the single classes that the base learners have not

properly captured.

There has been some discussion whether stacking really gives any im-

provement over choosing the best base classifier [29] (see also [96] for a

related discussion). In any case, it is known that the success of stacking

methods depends on the choice of the meta-level learner as well as the kind

of input this learner takes from the base learners [112]. Recent suggestions

(see [29] for an overview) usually use the probability distributions predicted

by the base learners (in some form) as input for the meta-level learner.

Similarly, we use the base learners’ confidence scores, which is usually sim-

pler than working with probability distributions, as obtaining the latter re-

quires additional optimization methods [88]. The choice for the meta-level

learners in stacking approaches ranges from nearest neighbor [77] to tree

methods [29]. SVMs have been used as metalearners as well [1, 28, 60].

We tested our algorithm on the popular image classification databases,

provided for the VOC challenges in 2006, 2007, and 2009 [33, 30, 32, 34].

Instead of combining essentially different base learners, we kept the base

learning algorithm fixed, while using different features for describing the

image data. Results show that the combined classifiers outperform the base

classifiers in every experiment, which indicates that the combined classifiers

are indeed able to extract interdependencies between the individual classes

and also the individual classifiers.



4 COMBINING DETECTORS WITH LOW-LEVEL FEATURES 82

4.2 General Considerations

In multilabel classification problems there are usually interdependencies be-

tween classes. For example, when labeling images it is rather unlikely that

an image containing a sheep also shows an aeroplane. On the other hand,

images containing cars will usually also contain roads. The art of multilabel

classification lies in reliably detecting and exploiting these interdependen-

cies. A base classifier that is trained on enough examples will also learn

these interdependencies. However, in the common case where the training

set is not sufficiently large, a base learner for cars may not fully grasp the

interdependency between cars and roads. This defect can be corrected by

having a base learner for roads that will be able to learn roads from more

training examples than just those where also cars appear. That way, com-

bining the road classifier with the car classifier in a suitable way will also

improve the performance for classification of cars.

Our algorithm uses binary base classifiers that are trained to recognize

single classes. In order to better capture interdependencies between the

individual classes we propose combining the confidence scores of the differ-

ent base classifiers by simply feeding them into a support vector machine

(SVM) [115, 22].

4.3 The Basic Algorithm

We consider the following multilabel problem: Given is a set of training

examples {x1, . . . , xn} ⊂ X together with labels for N different classes

{C1, . . . , CN} (where each Ck ⊆ X). That is, for each training instance

xi and each class Ck the respective label is

yik :=

⎧⎨
⎩+1 if xi ∈ Ck

−1 otherwise.

As the problem is assumed to be multilabel but not necessarily multiclass,

yik = 1 not necessarily implies that yi� = 0 for 	 �= k. Thus, the classes Ck

in general will not partition the instance space X.

We first train for each class Ck a corresponding (binary) base learner

hk that shall be able to predict the labels yik well. More generally, when

using M distinct classification algorithms for each single class Ck, we have



Algorithm Specification for Image Classification 83

a total of N · M base classifiers. Each base classifier returns a confidence

score s for each training example xi. In our case this will be a real value

(the distance to the separating hyperplane) that is positive if the classifier

predicts that xi is in the target class and negative otherwise. However, more

generally this score could also be a real number with a different interpreta-

tion (e.g. a probability distribution as in recent stacking approaches). Let

sjk(x) be the confidence score returned by base classifier hjk for class Ck on

training instance x. The collected confidence scores are then combined by

N metalearners, one for each class Ck, where the training set consists of the

vectors

vi =
(
s1,1(xi), s1,2(xi), ..., s1,N (xi), s2,1(xi), ..., s2,N (xi), ..., sM,N (xi)

)
(4.1)

for all training instances xi. The label of each vi is simply the label yik of

xi with respect to class Ck.

4.4 Algorithm Specification for Image Classifica-

tion

A state-of-the-art approach for image classification is the following: First,

features are extracted from the images. Then these features are clustered to

generate a visual codebook. Based on that codebook a histogram of “visual

words” for every image is built. This approach was inspired by the text clas-

sification community where it is called “bag-of-words”. In text classification

the input features are words, while in image classification descriptors take

over this part. A powerful descriptor is the scale-invariant feature trans-

form (SIFT) [68], although there are other very good descriptors for certain

image classes. A common approach is to build for every descriptor type a

histogram and concatenate these histograms.

Our base classifiers work with different features that are learned with a

fixed learning algorithm to give the confidence scores. In our experiments the

learning algorithm are either LPBoost [26] or SVMs with linear, polynomial,

radial basis function (RBF) [22] and Fisher kernels [52]. As metalearner

SVMs [115] are deployed.



4 COMBINING DETECTORS WITH LOW-LEVEL FEATURES 84

4.5 Some Related Work

There are several papers dealing with multilabel problems in far more com-

plex ways than our straightforward approach. In [60] SVMs are used for

combining different types of features for mapping of proteins to Gene On-

tology. Their method trains N ·(N−1)
2 binary classifiers for a problem with N

labels. A function for combining and normalizing the output of the N ·(N−1)
2

binary classifiers is used and the normalization parameters have to be es-

timated. Additional knowledge of the problem domain is integrated by a

directed acyclic graph to speed up the final classification.

Actually, it is quite common to model and use some additional context

information in order to process the output of the base learners. This work

is subsumed under the term of Context Based Concept Fusion (CBCF). For

some references and an integrated approach see e.g. [92].

A simpler approach that has more in common with our method has

been suggested in [40]. There it is proposed to use the base learners’ output

labels as additional coordinates in the training vectors. However, unlike our

algorithm this does not consider the confidence of the base learners.

Additionally, other researchers are working on methods using classical

stacking. Stacking is an approaches of classifier combination that resembles

our method. See e.g. the recent [1] which suggests stacking with SVMs in a

multiclass image classification problem.

Compared to these exemplary alternative approaches, we find that our

method is appealingly simple, and — as will be seen — works surprisingly

well.

4.6 Other Ways of Feature/Classifier Combination

In the experiments, we compared our approach with other ways to combine

the base classifiers.

4.6.1 Using All Features

As a baseline on the first dataset (VOC 2006) we compare our approach

to the more direct combination of the features by jointly using them for

training the base classifiers. More precisely, the base learner — the boosting

algorithm LPBoost — may choose in each boosting iteration the best single



Data Sets and Setup 85

feature type for a decision stump. We used the boosting approach with

decision stumps, because it is very suitable for combining different kinds of

feature types.

4.6.2 Binary Stacking

In order to show that our algorithm profits from the confidence information

of the other classes, we also did a comparison to the following alternative

method where the metalearner uses for learning class Ck not the whole

vectors vi as given in (4.1) but only the confidence information for the class

Ck at question. That is, the training vectors in this case are

vi =
(
s1,k(xi), ..., sM,k(xi)

)
for each training instance xi with label yik. This corresponds to classical

stacking on a binary classification problem, and we call this method binary

stacking in what follows. Indeed, binary stacking with some minor modifica-

tions has been considered and empirically evaluated (among other multilabel

algorithms) in [28].

4.6.3 The Best Binary Base Classifier

Finally, we do a challenging comparison of our approach to the best binary

base classifier. That is, we choose for the prediction of each class Ck the

base classifier hi that gives the best prediction accuracy on the test examples.

Note that this classifier is usually unknown beforehand, so that choosing this

best binary base classifier has an advantage over our method. However, even

in this setting we show that our method gives better results.

4.7 Data Sets and Setup

We conducted experiments on the well-known image classification databases

taken from the Pascal Visual Object Classes Challenges 2006 (VOC 2006) [33],

2007 (VOC 2007) [30], and 2009 (VOC 2009) [32]. The VOC 2006 dataset

contains 10 classes in 5,304 images, on which a total of 9,507 annotated ob-

jects can be found. The VOC 2007 and VOC 2009 dataset contain 20 classes,

where VOC 2007 has 9,963 images with 24,640 annotated objects and VOC



4 COMBINING DETECTORS WITH LOW-LEVEL FEATURES 86

dataset training images validation images test images total

VOC 2006 1,277 1,341 2,686 5,304

VOC 2007 2,501 2,510 4,952 9,963

VOC 2009 3,473 3,581 6,650 13,704

Table 4.1: Overview of training, validation and test set images of the Pascal
Visual Object Classes Challenges datasets.

2009 has 13,704 images with 34,047 annotated objects. All datasets are mul-

tilabel. They are split into a fixed training, validation, and test set. Tab. 4.1

shows an overview of the datasets.

The training of the base learners was done on the training dataset. The

selection of the kernel and the parameters was done using 5-fold cross-

validation on the training data. The independent validation set is used

for training the SVM metalearners. We learned the combined classifiers us-

ing the validation data. All reported results are from the evaluation on the

test data. As evaluation criterion we use the average precision as for the

original VOC challenges.

4.8 Experiments on the VOC 2006 Dataset

In the experiments on the VOC 2006 dataset, we trained for each of the

ten classes a classifier using LPBoost [13, 26]. In every boosting round the

best feature for a decision stump is selected from a pool of nine different

feature types. The following pages describe the feature types as used by the

decision stumps.

4.8.1 Texture Statistics of Segmented Regions

The first feature type uses texture statistics of segmented regions. We use

the segmentation algorithm from Fussenegger et al. [39]. After applying the

segmentation algorithm on an image, seven basic moments are calculated

for each segment. In the basic moments Eq. (4.2)–(4.7) all N pixels from a

segment are used and I (xn) returns the gray value of the nth pixel from a



Experiments on the VOC 2006 Dataset 87

segment. We used the following basic moments: the arithmetic mean μ

μ =
1

N

N∑
n=1

I (xn) , (4.2)

the variance σ2

σ2 =
1

N

N∑
n=1

(I (xn)− μ)2, (4.3)

the coefficient of variation

cov =
σ

μ
, (4.4)

the smoothness

R = 1− 1

1 + σ2
, (4.5)

the skewness

γ1 =
1
N

∑
N

n=1(I (xn)− μ)3

σ3
, (4.6)

the kurtosis

γ2 =
1
N

∑
N

n=1(I (xn)− μ)4

σ4
, (4.7)

and the gray value energy1

E =
C∑
c=1

(hist (c))2 . (4.8)

These seven basic moments are our first feature type.

4.8.2 Features from Regions of Interest

In this section we introduce six feature types with similar preprocessing

which were also used in [4, 82]. In the first step, the regions of interest

are obtained by a scale invariant Harris-Laplace detector [81]. The detector

gives for each detected region of interest the center coordinate (x1, x2) and

their corresponding scale s. Square regions of interest with a size of r ×
r are extracted, where r depends on the reported scale s of the detector

1In Eq. (4.8) the function hist (c) delivers the cth value of the normalized histogram
from a segment. We note that the gray value energy E returns 1 if the segment is plain-
colored. If the gray values are uniformly distributed in a segment then the gray value
energy is 1

C
.



4 COMBINING DETECTORS WITH LOW-LEVEL FEATURES 88

multiplied by constant factor2. The regions of interest have to be normalized

depending on the reported scale. We subsample the regions of interest to

a l × l scaled normalized region if l < r and we use linear interpolation

otherwise3. The above preprocessing is used for the three feature types

subsample gray values, intensity moments, and moment invariants.

Additionally, we do an illumination normalization on the scaled normal-

ized regions. This gives us three additional feature types. We use homo-

morphic filtering [41, page 191] to make the illumination of the region more

even. This is done by applying a Fast Fourier Transformation to the loga-

rithm image ln(I) of the region, under the assumption that image intensity

I(x, y) can be modeled as a product of the intensity i(x, y) and reflectance

r(x, y) components [41, page 50]. In general, the illumination component of

an image changes slowly. The reflectance component changes abruptly and

can be associated to the high frequency components after the Fast Fourier

Transformation. Therefore, a high-pass filter is used in the frequency do-

main to suppress the effect of the illumination term i(x, y). After the inverse

transformation we have an illumination normalized region. These feature

types are marked as ’illumination normalized’ in Tab. 4.2 on page 93. The

illumination normalized feature types with the same preprocessing were also

used by Opelt et al. in [82].

Subsampled Gray Values

The second feature type is a simple vector of gray values. The gray values

are extracted from the preprocessed regions of interest. We subsample the

squared regions in every direction by two to reduce the storage requirements.

The feature vector has a length of l2/4 from a normalized region of the size

l × l.

2In our experiments we used 6. We used this small value to capture only information
near center coordinates.

3Our scale normalized regions have a side length of l = 16. It controls the trade-off
between runtime behavior and storage requirements. A smaller value results in faster
training time but stores less information.



Experiments on the VOC 2006 Dataset 89

Basic Intensity Moments

The third feature type is based on basic intensity moments. An intensity

moment of degree d and order p and q is defined as

M
Idpq

=
∑
x∈XΩ

∑
y∈YΩ

Id(x, y)xpyq , (4.9)

where the sets XΩ = {x1, . . . , xN} and YΩ = {y1, . . . yN} contain all x and

y coordinates of the entire considered region Ω. The final feature vector

consist of 10 values from the intensity moments

(
M

I
1
10
,M

I
1
01
,M

I
1
11
,M

I
1
20
,M

I
1
02
,M

I
2
10
,M

I
2
01
,M

I
2
11
,M

I
2
20
,M

I
2
02

)
. (4.10)

Moment Invariants

The fourth feature type are based on a subset of affine and photometric

moment invariants from the work of Gool et al. in [42]. On the preprocessed

regions the moment invariants are calculated by moments up to the order

of two, which have been found to be more robust against noise [111].

In the following equations the pair (x, y) represents the coordinates of a

region pixel and I(x, y) returns the gray value at (x, y). The equation

MSCpq
=

∑
x∈XΩ

∑
y∈YΩ

xpyq (4.11)

defines the shape moment of the order p and q using the closed contour C

of the region Ω [42]. The intensity moment of the order p and q is defined

by

MICpq
= M

I
1
Cpq

=
∑
x∈XΩ

∑
y∈YΩ

I(x, y)xpyq . (4.12)

The notations of the above equations are simplified to MSpq and MIpq if only

one closed contour C is used in the calculation.

Two assumptions are made by Gool et al. for the moment invariant

features: First, the camera is positioned relatively far away from the object

and the second one is that the regions are planar. The two assumptions are

used to classify moment invariants that are affine and photometric invariant

based on a combination of intensity and shape moments. Gool et al. used

two photometric models to subclassify the moment invariants. The first



4 COMBINING DETECTORS WITH LOW-LEVEL FEATURES 90

model is pure scaling of the intensity values

I ′(x, y) = s · I(x, y) ; (4.13)

the second one is scaling of the intensity values plus an offset

I ′(x, y) = s · I(x, y) + o. (4.14)

Moments invariants invariant to the second model have been found more

stable in practice [94, 117]. On the next pages the selected affine and pho-

tometric invariants are listed with a brief description of their properties.

Selection of First-order Moment Invariants Our first selected mo-

ment is affine and photometric invariant using the model from Eq. (4.13).

It uses two intensity moments and one shape moment.

1

MSC00

∣∣∣∣∣∣∣
MIC10
MIC00

− MSC10
MSC00

MIC10
MIC00

− MID10
MID00

MIC01
MIC00

− MSC01
MSC00

MIC01
MIC00

− MID01
MID00

∣∣∣∣∣∣∣ (4.15)

Our second selected moment invariant uses four moments: two shape mo-

ments and two intensity moments. The resulting combination is invariant

in respect of affine transformations and again only photometric scaling.∣∣∣∣∣∣∣
MIC10
MIC00

− MSC10
MSC00

MID10
MID00

− MCC10
MSC00

MIC01
MIC00

− MSC01
MSC00

MID01
MID00

− MSC01
MSC00

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

MIC10
MIC00

− MSC10
MSC00

MSD10
MSD00

− MSC10
MSC00

MIC01
MIC00

− MSC01
MSC00

MSD01
MSD00

− MSC01
MSC00

∣∣∣∣∣∣∣
(4.16)

The next two moment invariants are affine and photometric invariant, where

the photometric model is Eq. (4.14).

MIC00

MIC00
MSD00

−MID00
MSC00

∣∣∣∣∣∣∣
MIC10
MIC00

− MSC10
MSC00

MIC10
MIC00

− MSD10
MSD00

MIC01
MIC00

− MSC01
MSC00

MIC01
MIC00

− MSD01
MSD00

∣∣∣∣∣∣∣ (4.17)

MIC00
MID00

MSD00

(MIC00
MSD00

−MID00
MSC00

)2

∣∣∣∣∣∣∣
MIC10
MIC00

− MSC10
MSC00

MIC10
MIC00

− MSD10
MSD00

MIC01
MIC00

− MSC01
MSC00

MIC01
MIC00

− MSD01
MSD00

∣∣∣∣∣∣∣ (4.18)



Experiments on the VOC 2006 Dataset 91

Selection of Second-order Moment Invariants The combination of

the moments to second-order affine and photometric moment invariants is

more complex. Therefore, we define the following auxiliary variables:

α = MI11MI00 −MI10MI01

β = MI20MI00 −M2
I10

γ = MI02MI00 −M2
I01

δ = MS00MI10 −MS10MI00

ε = MS00MI01 −MS01MI00

A = MS11MS00 −MS10MS01

B = MS20MS00 −M2
S10

C = MS02MS00 −M2
S01

The next three moment invariants are affine invariant, but not photometric

invariant. Eq. (4.19) uses one intensity moment and it is defined on page 648,

Eq. 5 in [42]. The Eq. (4.20)–(4.21) consist of an intensity moment and a

shape-moment. Eq. (4.21) combines intensity and shape moments up to the

second order.
βγ − α2

M6
I00

(4.19)

βε2 − 2αδε+ γδ2

M8
S00

(4.20)

(αA− γB)2 + (αA− βC)2 + 2(βA− αB)(γA− αC)

M6
I00

M6
S00

(4.21)

The Eq. (4.22)–(4.23) are affine and photometric invariant. These moment

invariants are based on model Eq. (4.13) which considers only pure scaling

of the intensity values.
βγ − α2

M4
I00

M2
S00

(4.22)

βε2 − 2αδε+ γδ2

M4
I00

M2
S00

(4.23)

Some moment invariants need two shape moments with different con-

tours C and D. The first contour C is the boundary of our region of interest.

A fraction of the region of interest is used as the second contour D. The

squared region of interest is divided into four equal region as seen in Fig-

ure 4.1. The shape moments of the entire region and one out of four of the

region are used to calculated the moment invariants with two contours. This

approach is not invariant and therefore we repeat the calculation for the re-

maining three contours D2, . . . , D4 and all four result values are summed as



4 COMBINING DETECTORS WITH LOW-LEVEL FEATURES 92

D3

D2D1

D4

C
���

f ′(C,D) =
4∑

m=1

f(MSC
,MSDm

) (4.24)

Figure 4.1: The partitioning of a region of interest into two contours. For
example, Eq. (4.16) needs two contours C and D therefore the function f is
replaced by Eq. (4.16).

it can be seen in Eq. (4.24). The result of the summation is used as one

feature value. The feature vector consists of nine feature values based on

Eq. (4.15)–(4.23).

4.8.3 SIFT Based Features from Regions of Interest

We use two scale-invariant feature transform (SIFT) features from regions

of interest. The first feature type is the original SIFT feature from Lowe [69,

68]. The sift feature is invariant to translation, rotation, and scaling trans-

formations [67]. It is to some degree robust against perspective transforma-

tions and illumination changes [80]. The feature vector is based on mag-

nitudes and orientations of image gradients in a histogram representation.

The dimension is 128.

The second feature type is based on the original SIFT feature and is

called PCA-SIFT [57]. The detection procedure is the same as for the SIFT

features. The feature calculation is different and is based on magnitudes

of gradients in the region of interest. These gradient patches are normal-

ized to 39× 39 patches and all normalized patches are projected to a lower

subspace using principal component analysis (PCA) [53]. The authors Ke

and Sukthankar claim that the PCA-SIFT can be more distinctive. A de-

tailed evaluation of image features and their properties can be found in [80].

One PCA-SIFT feature property is obvious: a PCA-SIFT feature can be

faster matched with a reference database of PCA-SIFT features, because

the feature dimension is only 20.



Experiments on the VOC 2006 Dataset 93

label feature type

h1 texture statistics of segments

h2 sub-sampled gray values

h3 sub-sampled gray values (illumination normalized)

h4 intensity moments

h5 intensity moments (illumination normalized)

h6 moment invariants

h7 moment invariants (illumination normalized)

h8 SIFTs

h9 PCA-SIFTs

Table 4.2: Feature types for the experiments on the VOC 2006 dataset.

4.8.4 Results

For our algorithm we used each feature type together with LPBoost. An

overview over the used feature types is given in Tab. 4.2. We obtain for

each class a total of nine binary classifiers as base learners. The output (the

distance to the separating hyperplane) of these base learners (for all classes)

was then fed into an SVM metalearner. For completeness, we tested our

approach with different kernels. However, results show that the choice of

the SVM kernel function is not critical.

We compared our approach to the best of the base classifiers. An

overview of the performance of each descriptor on the ten classes can be

found in Tab. 4.3. It can be seen from Tab. 4.4 and Figure 4.3 that our

combined classifier outperforms the individual classifiers, even if we choose

for each class that base classifier that gives the best performance on the test

set.

As already indicated before, another comparison was made to the al-

gorithm where the weak learner of LPBoost may choose in each boosting

iteration one reference feature among the nine different feature types. Thus,

in this setting the boosting algorithm is not restricted to a single feature type

and may choose the best feature with the optimal threshold. This approach

(denoted ‘original classifier h1..9’ in Tab. 4.4 and 4.2) has been used in the

VOC 2006 Challenge and is used as a base line for our experiments. For

more details see [6]. While the results for this alternative algorithm some-

times improve even over the best single classifier, it is still outperformed by

our algorithm. The collected results can be found in Tab. 4.4.



4 COMBINING DETECTORS WITH LOW-LEVEL FEATURES 94

class h1 h2 h3 h4 h5 h6 h7 h8 h9

bicycle 17.5 40.9 40.6 41.8 39.4 37.9 31.2 56.8 54.7

bus 9.6 25.9 30.2 25.4 19.4 13.6 16.3 16.0 25.6

car 40.8 70.7 70.0 48.7 51.3 38.2 41.4 56.9 60.5

cat 16.2 29.6 28.7 15.5 15.3 14.5 14.9 15.7 15.1

cow 9.0 18.2 15.4 17.6 18.7 10.2 17.5 17.6 26.1

dog 14.1 20.1 20.2 18.1 14.4 15.9 15.4 22.9 15.7

horse 9.9 12.3 16.9 19.6 13.1 14.7 11.5 10.1 12.2

motorbike 13.2 27.1 29.1 33.0 39.9 28.4 26.2 10.5 12.3

person 29.7 39.9 36.9 38.3 43.5 36.0 42.6 31.5 32.0

sheep 9.0 25.0 25.3 21.9 19.5 11.1 15.9 29.4 36.4

avg 16.9 31.0 31.3 28.0 27.4 22.0 23.3 26.8 29.1

Table 4.3: Average precision of the individual classifiers on the VOC 2006
dataset in percent. Bold values indicate the best classifier on a given class
for the test set.

original our
class max(h1, . . . , h9) h1..9 linear polynomial RBF

bicycle 56.84 61.12 61.36 56.16 60.77

bus 30.17 27.32 51.66 50.00 51.54

car 70.72 70.92 74.03 76.30 74.83

cat 29.60 24.41 37.13 41.15 37.98

cow 26.14 18.92 23.41 24.20 25.56

dog 22.86 25.88 32.16 34.95 36.41

horse 19.58 12.12 22.44 27.44 20.86

motorbike 39.90 33.19 47.09 46.92 48.35

person 43.47 35.16 42.55 46.56 43.04

sheep 36.37 29.39 41.87 37.07 40.55

avg 37.57 33.84 43.37 44.07 43.99

Table 4.4: Comparison of the best individual classifier, the classifier using
all descriptor types in the beginning, and our approach on the VOC 2006
dataset. Results are in percentage using the average precision measure. Bold
values indicate the optimal method.



Experiments on the VOC 2006 Dataset 95

class h1..9 stacking our (RBF)

bicycle 61.12 56.77 60.77

bus 27.32 27.52 51.54

car 70.92 65.86 74.83

cat 24.41 14.75 37.98

cow 18.92 11.83 25.56

dog 25.88 17.55 36.41

horse 12.12 12.42 20.86

motorbike 33.19 30.21 48.35

person 35.16 34.25 43.04

sheep 29.39 34.00 40.55

avg 33.84 30.52 43.99

Table 4.5: Comparison of the classifier using all descriptor types in the
beginning, binary stacking, and our approach on the VOC 2006 dataset.
Results are in percentage using the average precision measure. For binary
stacking and our method we report the values obtained for the RBF kernel.

Figure 4.2 and Tab. 4.5 show a comparison of our method with the binary

stacking approach. For binary stacking we used the same nine base classifiers

that are combined by an SVM. We report only the results of binary stack-

ing with an RBF-kernel SVM as metalearner, which performed best. The

resulting performance of binary stacking is on some classes slightly better

than our base line where all features are used from the beginning. However,

on some other classes binary stacking suffers a performance decrease of up

to 9.6%. The mean average precision of binary stacking is 30.52%, which

compared to our base line means a performance loss of 3.32%. These exper-

iments may also confirm doubts concerning the utility of stacking. However,

as already mentioned before, usually class probabilities instead of confidence

scores are used for stacking. The choice of the latter may affect the results to

the negative. Indeed, a similar stacking method [1] in an image classification

problem where class probabilities are the input for the metalearner has been

more successful. That confidence scores work fine in our proposed method

can be interpreted the way that our metalearner SVMs do the normalization

that also has to be done when trying to obtain probability distributions from

confidence scores.



4 COMBINING DETECTORS WITH LOW-LEVEL FEATURES 96

  0%

  20%

  40%

  60%

  80%

  100%

bi
cy

cl
e

bu
s

ca
r

ca
t

co
w

do
g

ho
rs

e

m
ot

or
bi

ke

pe
rs

on

sh
ee

p

A
ve

ra
ge

 P
re

ci
si

on

Classes

original classifier
stacking
our method (RBF)

Figure 4.2: Comparison of the classifier using all descriptor types in the
beginning, binary stacking, and our approach on the VOC 2006 dataset.
Results are in percentage using the average precision measure. For binary
stacking and our method we report the values obtained for the RBF kernel.

  0%

  20%

  40%

  60%

  80%

  100%

bi
cy

cl
e

bu
s

ca
r

ca
t

co
w

do
g

ho
rs

e

m
ot

or
bi

ke

pe
rs

on

sh
ee

p

A
ve

ra
ge

 P
re

ci
si

on

Classes

original classifier
our method (linear)
our method (polynomial)
our method (RBF)

Figure 4.3: Comparison of the classifier using all descriptor types in the
beginning and our approach using different kernels on the VOC 2006 dataset.
Results are in percentage using the average precision measure. The choice
of the SVM kernel function can be seen to be not critical.



Experiments on the VOC 2007 Dataset 97

4.9 Experiments on the VOC 2007 Dataset

In the experiments on the VOC 2007 database we used base classifiers

which gives state-of-the-art performance on the VOC 2007 database. The

authors Perronnin and Dance gave us the two base classifiers from their

work [85]. We show in the experiments that our algorithm improves the

classification results using their base classifiers.

The first classifier h1 is based on texture information using the SIFT

descriptor [68]. Dimension reduction of the final SIFT description is done

using principal component analysis (PCA) [53], which gives us a reduced 50

dimensional vector.

The second classifier h2 is based on Gaussian weighted local color infor-

mation (h2) [86, page 8]. The color information is extracted from an RGB

image. The region of interest is divided into 4 × 4 sub-regions. On each

sub-region the mean and standard deviation of each RGB channel is calcu-

lated. This gives us a 4× 4× 3× 2 = 96 feature vector. The feature vector

is projected to a 50 dimensional subspace using PCA.

Both descriptors are extracted from a dense grid at five different scales.

Each classifier is learned with the Fisher kernels framework [85]. Tab. 4.6

shows that the performance of the classifier using the SIFT descriptor yields

consistently better results than the descriptor based on the local color in-

formation (with the only exception being the class ‘pottedplant’). In spite

of this and the fact that the information of two classifiers is quite limited,

our method was able to improve the mean of the average precision across all

the 20 categories by up to 3.46% (for the RBF kernel). When using cross-

validation to choose the kernel, the RBF kernel is selected for all classes

except one (cf. Tab. 4.6) giving the same average precision as for the RBF

kernel. The collected results can be found in Tab. 4.6. Figure 4.4 shows the

data as a bar diagram.

In Tab. 4.7 and Figure 4.5 we compare our method with binary stacking.

In this experiment a linear kernel gave the best results for binary stacking,

but it can be seen that our method gives better results for 14 classes. Our

average improvement to the base classifiers is 3.46%, whereas binary stacking

only improves by 1.66%.



4 COMBINING DETECTORS WITH LOW-LEVEL FEATURES 98

cl
a
ss

h
1

h
2

o
u
r
(l
in
ea
r)

im
p
r.

o
u
r
(p
ol
y.
)

im
p
r.

o
u
r
(R

B
F
)

im
p
r.

a
er
o
p
la
n
e

6
6
.4
1

5
9
.5
1

6
5
.8
8

-0
.5
3

6
5
.4
7

-0
.9
4

6
6
.7
1
∗

0
.3
0

b
ic
y
cl
e

4
7
.3
1

3
5
.4
5

5
1
.0
9

3
.7
8

5
3
.2
3

5
.9
2

5
3
.4
2
∗

6
.1
1

b
ir
d

4
4
.4
5

4
2
.6
7

4
9
.9
9

5
.5
4

5
3
.0
6

8
.6
1

5
3
.4
7
∗

9
.0
2

b
oa

t
5
8
.8
7

4
1
.1
2

6
3
.2
1

4
.3
4

6
3
.2
6

4
.3
9

6
2
.3
8∗

3
.5
1

b
ot
tl
e

2
4
.1
8

1
5
.1
6

2
5
.9
7

1
.7
9

2
7
.5
3

3
.3
5

2
3
.9
3∗

-0
.2
5

b
u
s

5
2
.4
2

3
4
.2
4

5
1
.6
5

-0
.7
7

4
3
.6
4

-8
.7
8

4
5
.7
5∗

-6
.6
7

ca
r

7
0
.7
0

5
6
.4
7

7
0
.6
7

-0
.0
3

7
3
.3
2
∗

2
.6
2

7
3
.3
2

2
.6
2

ca
t

4
5
.3
0

3
9
.4
9

4
4
.8
7

-0
.4
3

4
4
.7
8

-0
.5
2

4
6
.3
0
∗

1
.0
0

ch
a
ir

4
7
.1
1

3
7
.7
8

5
0
.6
8

3
.5
7

4
9
.8
2

2
.7
1

5
0
.7
2
∗

3
.6
1

co
w

3
1
.2
5

1
5
.0
3

2
9
.0
0

-2
.2
5

3
1
.2
8

0
.0
3

3
2
.9
9
∗

1
.7
4

d
in
in
g
ta
b
le

3
8
.2
1

3
5
.7
5

4
2
.2
9

4
.0
8

4
3
.1
2

4
.9
1

4
4
.7
1
∗

6
.5
0

d
o
g

4
0
.9
8

3
3
.4
4

3
8
.7
7

-2
.2
1

4
0
.4
2

-0
.5
6

4
1
.9
5
∗

0
.9
7

h
o
rs
e

6
7
.7
7

6
4
.4
8

7
1
.4
4

3
.6
7

7
3
.4
6

5
.6
9

7
3
.4
8
∗

5
.7
1

m
o
to
rb
ik
e

5
2
.3
7

4
6
.0
2

5
5
.0
7

2
.7
0

5
6
.0
5

3
.6
8

5
7
.8
5
∗

5
.4
8

p
er
so
n

8
0
.1
7

7
8
.3
3

8
2
.4
3

2
.2
6

8
3
.0
1

2
.8
4

8
3
.2
2
∗

3
.0
5

p
ot
te
d
p
la
n
t

2
4
.3
0

2
7
.1
4

2
8
.7
1

1
.5
7

2
9
.1
1

1
.9
7

3
2
.9
2
∗

5
.7
8

sh
ee
p

2
7
.3
2

2
5
.4
8

3
6
.4
7

9
.1
5

2
8
.7
6

1
.4
4

3
8
.7
9
∗

1
1
.4
7

so
fa

4
4
.3
6

3
1
.5
7

4
1
.8
1

-2
.5
5

4
0
.6
7

-3
.6
9

4
0
.7
3∗

-3
.6
3

tr
a
in

6
5
.2
1

5
4
.4
2

6
6
.8
8

1
.6
7

6
9
.5
2

4
.3
1

6
9
.8
7
∗

4
.6
6

tv
m
o
n
it
o
r

4
1
.3
4

3
4
.2
6

4
4
.5
4

3
.2
0

4
8
.2
7

6
.9
3

4
6
.6
6∗

5
.3
2

a
v
g

4
8
.5
0

4
0
.3
9

5
0
.5
7

2
.0
7

5
0
.8
9

2
.3
9

5
1
.9
6

3
.4
6

Table 4.6: Average precision on the VOC 2007 dataset in percent for the
two base classifiers as well as for our method with linear, polynomial and
RBF kernel. The best method for each class is indicated by a bold entry.
Starred values indicate which kernel is chosen by cross-validation.



Experiments on the VOC 2009 Dataset 99

  0%

  20%

  40%

  60%

  80%

  100%

ae
ro

pl
an

e

bi
cy

cl
e

bi
rd

bo
at

bo
ttl

e

bu
s

ca
r

ca
t

ch
ai

r

co
w

di
ni

ng
ta

bl
e

do
g

ho
rs

e

m
ot

or
bi

ke

pe
rs

on

po
tte

dp
la

nt

sh
ee

p

so
fa

tr
ai

n

tv
m

on
ito

r

A
ve

ra
ge

 P
re

ci
si

on

Classes

classifier h1 (SIFT)
classifier h2 (color)
our method (linear)
our method (polynomial)
our method (RBF)

Figure 4.4: Average precision on the VOC 2007 dataset in percent for the
two base classifiers as well as for our method with linear, polynomial and
RBF kernel.

4.10 Experiments on the VOC 2009 Dataset

We used traditional graylevel SIFT [69] and SIFT with color information

[114] for the VOC 2009 dataset. The authors van de Sande et al. showed

that color information can boost the recognition performance up to 8 per-

cent. They won the challenge in 2008 [31]. The implementation from [114]

extracted the features in our experiments. Two different methods for choos-

ing the region of interest are applied. First, the Harris-Laplace detector [79]

detects region of interest. The second method applies a dense grid on the im-

age. At grid points SIFT descriptors are extracted. Cross-validation selected

the cluster size for the codebook. Additionally, cross-validation decided

which color spaces are processed in the color SIFT descriptors. Tab. 4.8

shows an overview of the features used for the base classifiers. The base

classifiers are trained with an SVM on the training dataset.

Tab. 4.9 shows the performance of the base classifiers. It shows that



4 COMBINING DETECTORS WITH LOW-LEVEL FEATURES 100

class h1 h2 stacking impr. our (RBF) impr.

aeroplane 66.41 59.51 68.16 1.75 66.71 0.30

bicycle 47.31 35.45 48.61 1.30 53.42 6.11

bird 44.45 42.67 49.37 4.92 53.47 9.02

boat 58.87 41.12 60.65 1.78 62.38 3.51

bottle 24.18 15.16 25.76 1.58 23.93 -0.25

bus 52.42 34.24 51.15 -1.27 45.75 -6.67

car 70.70 56.47 69.72 -0.98 73.32 2.62

cat 45.30 39.49 46.86 1.56 46.30 1.00

chair 47.11 37.78 45.18 -1.93 50.72 3.61

cow 31.25 15.03 30.96 -0.29 32.99 1.74

diningtable 38.21 35.75 38.51 0.30 44.71 6.50

dog 40.98 33.44 43.20 2.22 41.95 0.97

horse 67.77 64.48 70.61 2.84 73.48 5.71

motorbike 52.37 46.02 56.45 4.08 57.85 5.48

person 80.17 78.33 81.83 1.66 83.22 3.05

pottedplant 24.30 27.14 29.50 2.36 32.92 5.78

sheep 27.32 25.48 30.97 3.65 38.79 11.47

sofa 44.36 31.57 45.15 0.79 40.73 -3.63

train 65.21 54.42 67.76 2.55 69.87 4.66

tvmonitor 41.34 34.26 42.75 1.41 46.66 5.32

avg 48.50 40.39 50.16 1.66 51.96 3.46

Table 4.7: Average precision on the VOC 2007 dataset in percent for the
two base classifiers as well as for binary stacking and our method with RBF
kernel.

label pre-processing cluster size feature type

h1 Harris-Laplace 5400 SIFT

h2 Harris-Laplace 10240 Color-SIFT

h3 Harris-Laplace 5120 Color-SIFT

h4 Harris-Laplace 40960 Color-SIFT

h5 Harris-Laplace 81920 Color-SIFT

h6 dense grid 5120 HSV-SIFT

h7 dense grid 20480 Opponent-SIFT

h8 dense grid 40960 Opponent-SIFT

h9 dense grid 40960 RG-SIFT

h10 dense grid 20480 transformed Color-SIFT

Table 4.8: Feature types for the experiments on the VOC 2009 dataset.



Conclusion 101

  0%

  20%

  40%

  60%

  80%

  100%

ae
ro

pl
an

e

bi
cy

cl
e

bi
rd

bo
at

bo
ttl

e

bu
s

ca
r

ca
t

ch
ai

r

co
w

di
ni

ng
ta

bl
e

do
g

ho
rs

e

m
ot

or
bi

ke

pe
rs

on

po
tte

dp
la

nt

sh
ee

p

so
fa

tr
ai

n

tv
m

on
ito

r

A
ve

ra
ge

 P
re

ci
si

on

Classes

classifier h1 (SIFT)
classifier h2 (color)
stacking
our method (RBF)

Figure 4.5: Average precision on the VOC 2007 dataset in percent for the
two base classifiers as well as for binary stacking and our method with RBF
kernel.

traditional SIFT descriptors have a good performance. Color information is

useful for some categories, e.g. cow and pottedplant.

Tab. 4.10 compares the best individual classifier with the results of our

method. Our method improves the result for every category. The RBF ker-

nel has the best performance on nine categories, followed by the polynomial

kernel.

Tab. 4.11 shows the comparison between the best individual classifiers,

stacking, and our method. Stacking has a performance loss of −3.06%

compared to the best individual classifiers worse. Our method improves

by 4.58%.

4.11 Conclusion

Figure 4.6 shows an summary of the results. For all three image databases

the proposed method improves the results. The RBF kernel of the support

vector machine is a good choice over all test data. While our presented



4 COMBINING DETECTORS WITH LOW-LEVEL FEATURES 102

cl
a
ss

h
1

h
2

h
3

h
4

h
5

h
6

h
7

h
8

h
9

h
1
0

a
er
o
p
la
n
e

7
3
.5
0

7
2
.1
5

7
1
.6
3

7
2
.6
3

7
3
.0
1

7
1
.2
3

7
2
.5
5

7
2
.2
0

7
2
.6
9

7
2
.0
3

b
ic
y
cl
e

4
5
.1
7

3
9
.0
2

3
8
.4
0

4
3
.4
6

4
4
.2
3

3
7
.6
8

3
9
.2
4

4
0
.4
5

4
0
.4
8

3
9
.2
1

b
ir
d

4
6
.7
8

4
7
.8
7

4
6
.2
8

4
8
.2
3

4
8
.9
9

3
6
.4
9

3
8
.3
1

3
9
.2
7

4
0
.0
8

4
0
.5
1

b
oa

t
5
4
.8
4

5
0
.1
9

5
1
.1
4

5
2
.2
6

5
2
.1
7

4
4
.3
6

4
6
.8
5

4
5
.7
3

4
3
.4
6

4
3
.5
8

b
ot
tl
e

2
0
.4
8

2
1
.8
8

2
1
.3
8

2
2
.7
6

2
2
.8
9

2
3
.0
0

2
0
.4
5

2
1
.2
2

2
0
.0
8

1
9
.2
1

b
u
s

5
8
.3
4

5
3
.6
8

5
2
.2
6

5
4
.6
4

5
5
.3
1

5
2
.2
3

5
5
.6
5

5
5
.2
4

5
3
.4
0

5
4
.9
2

ca
r

5
0
.2
4

4
4
.1
5

4
3
.8
4

4
5
.8
8

4
7
.2
1

4
0
.4
1

4
1
.1
4

4
0
.7
2

3
8
.3
4

4
0
.1
3

ca
t

4
7
.0
2

4
2
.6
4

4
1
.8
8

4
3
.5
0

4
3
.6
4

4
3
.2
9

4
5
.1
1

4
3
.5
7

4
4
.4
6

4
2
.5
4

ch
a
ir

4
4
.8
7

4
5
.6
9

4
5
.5
4

4
7
.3
8

4
6
.8
4

4
3
.7
5

4
4
.8
5

4
6
.0
2

4
7
.3
8

4
5
.3
5

co
w

2
5
.3
4

2
9
.0
5

2
6
.9
2

2
9
.2
4

2
8
.5
5

2
3
.4
8

2
0
.3
9

1
7
.7
4

2
5
.6
6

2
1
.1
1

d
in
in
g
ta
b
le

3
2
.8
7

3
3
.4
5

3
2
.8
5

3
5
.9
2

3
5
.8
6

3
4
.2
7

3
3
.9
0

3
3
.5
9

3
5
.1
3

3
1
.1
6

d
o
g

4
1
.1
4

3
3
.0
3

3
3
.6
4

3
4
.1
0

3
4
.5
1

3
2
.5
1

3
1
.2
1

3
1
.5
2

3
1
.9
3

3
3
.9
7

h
o
rs
e

5
0
.4
0

4
8
.7
7

4
7
.2
4

5
0
.6
1

5
0
.1
7

3
9
.7
2

4
3
.6
4

4
1
.7
6

4
4
.3
1

4
3
.5
4

m
o
to
rb
ik
e

4
9
.8
4

4
2
.6
7

4
0
.3
1

4
4
.8
2

4
6
.0
9

3
5
.6
8

3
8
.0
5

3
6
.9
3

3
9
.2
7

3
6
.2
4

p
er
so
n

7
5
.4
3

7
5
.0
6

7
4
.3
9

7
6
.1
0

7
6
.4
9

7
2
.0
5

7
2
.2
6

7
2
.3
0

7
4
.4
0

7
0
.4
3

p
ot
te
d
p
la
n
t

1
3
.8
5

2
4
.7
7

1
7
.7
8

2
5
.1
6

2
5
.6
7

1
9
.8
1

1
8
.4
7

1
4
.8
0

2
4
.1
6

1
8
.4
3

sh
ee
p

3
0
.4
4

3
3
.8
8

3
2
.4
8

3
5
.8
2

3
5
.7
4

2
6
.8
5

3
1
.2
1

3
2
.6
3

2
9
.3
8

3
3
.2
2

so
fa

4
1
.7
0

3
0
.0
4

3
0
.2
7

3
1
.4
5

3
1
.0
5

2
7
.4
5

2
8
.8
8

2
8
.7
1

2
4
.6
5

2
8
.9
6

tr
a
in

6
6
.7
7

6
5
.7
0

6
3
.8
3

6
7
.6
9

6
8
.1
5

6
1
.7
2

6
4
.0
9

6
2
.7
1

6
1
.7
7

6
3
.4
9

tv
m
o
n
it
o
r

5
1
.7
6

5
0
.6
7

5
0
.8
9

5
4
.2
1

5
4
.7
0

4
3
.3
8

4
7
.3
4

4
6
.5
0

4
8
.1
4

4
5
.2
5

a
v
g

4
6
.0
4

4
4
.2
2

4
3
.1
5

4
5
.7
9

4
6
.0
6

4
0
.4
7

4
1
.6
8

4
1
.1
8

4
1
.9
6

4
1
.1
6

Table 4.9: Average precision on the VOC 2009 dataset in percent for the
ten base classifiers.



Conclusion 103

cl
a
ss

m
a
x
(h

1
,.
..
,h

1
0
)

o
u
r
(l
in
ea
r)

im
p
r.

p
ol
y
2

im
p
r.

p
ol
y
3

im
p
r.

o
u
r
(R

B
F
)

im
p
r.

a
er
o
p
la
n
e

7
3
.5
0

7
8
.8
5

5
.3
5

7
8
.6
0

5
.1
0

7
7
.9
1

4
.4
1

7
9
.0
7
∗

5
.5
7

b
ic
y
cl
e

4
5
.1
7

4
9
.3
0

4
.1
3

4
9
.9
1

4
.7
4

4
9
.4
7

4
.3
0

4
9
.6
2∗

4
.4
5

b
ir
d

4
8
.9
9

5
3
.3
7

4
.3
8

5
4
.8
6
∗

5
.8
7

5
4
.7
7

5
.7
8

5
6
.9
7

7
.9
8

b
oa

t
5
4
.8
4

5
8
.7
6

3
.9
2

6
0
.2
1

5
.3
7

6
0
.6
7

5
.8
3

6
0
.1
8∗

5
.3
4

b
ot
tl
e

2
3
.0
0

2
6
.7
9

3
.7
9

2
6
.8
3

3
.8
3

2
3
.5
6

0
.5
6

2
7
.3
9
∗

4
.3
9

b
u
s

5
8
.3
4

6
2
.7
3

4
.3
9

6
4
.9
3

6
.5
9

6
3
.6
1

5
.2
7

6
4
.6
2∗

6
.2
8

ca
r

5
0
.2
4

5
1
.9
7

1
.7
3

5
2
.2
3

1
.9
9

5
1
.4
5

1
.2
1

5
3
.6
9
∗

3
.4
5

ca
t

4
7
.0
2

5
0
.7
4

3
.7
2

5
2
.5
3

5
.5
1

5
1
.5
9

4
.5
7

5
2
.7
1
∗

5
.6
9

ch
a
ir

4
7
.3
8

4
9
.4
5

2
.0
7

5
0
.8
1

3
.4
3

5
0
.4
7

3
.0
9

5
0
.0
0∗

2
.6
2

co
w

2
9
.2
4

2
6
.9
0

-2
.3
4

3
1
.0
8

1
.8
4

3
0
.7
9

1
.5
5

3
6
.9
2
∗

7
.6
8

d
in
in
g
ta
b
le

3
5
.9
2

4
2
.4
8

6
.5
6

4
3
.1
9

7
.2
7

4
3
.4
4
∗

7
.5
2

4
4
.3
8

8
.4
6

d
o
g

4
1
.1
4

4
1
.0
8

-0
.0
6

4
3
.1
2

1
.9
8

3
8
.5
5

-2
.5
9

3
9
.7
6∗

-1
.3
8

h
o
rs
e

5
0
.6
1

5
2
.8
3

2
.2
2

5
5
.8
4
∗

5
.2
3

5
5
.3
5

4
.7
4

5
5
.6
7

5
.0
6

m
o
to
rb
ik
e

4
9
.8
4

5
4
.3
3

4
.4
9

5
4
.1
8

4
.3
4

5
3
.8
2

3
.9
8

5
5
.4
2
∗

5
.5
8

p
er
so
n

7
6
.4
9

7
9
.2
0

2
.7
1

8
0
.3
1

3
.8
2

8
0
.3
0

3
.8
1

8
0
.4
1
∗

3
.9
2

p
ot
te
d
p
la
n
t

2
5
.6
7

2
8
.9
3

3
.2
6

2
9
.7
2

4
.0
5

2
8
.7
1

3
.0
4

2
9
.1
6∗

3
.4
9

sh
ee
p

3
5
.8
2

4
1
.7
5

5
.9
3

4
3
.6
3

7
.8
1

4
1
.7
4

5
.9
2

4
1
.3
2∗

5
.5
0

so
fa

4
1
.7
0

4
2
.0
4

0
.3
4

4
0
.4
8

-1
.2
2

3
7
.9
9

-3
.7
1

4
2
.4
4
∗

0
.7
4

tr
a
in

6
8
.1
5

7
4
.0
6

5
.9
1

7
3
.7
7
∗

5
.6
2

7
4
.7
6

6
.6
1

7
3
.8
3

5
.6
8

tv
m
o
n
it
o
r

5
4
.7
0

5
9
.5
1

4
.8
1

5
8
.7
6
∗

4
.0
6

5
6
.9
9

2
.2
9

5
5
.9
6

1
.2
6

a
v
g

4
7
.8
9

5
1
.2
5

3
.3
7

5
2
.2
5

4
.3
6

5
1
.3
0

3
.4
1

5
2
.4
8

4
.5
9

Table 4.10: Average precision on the VOC 2009 dataset in percent for the
best individual classifier and our method with linear, polynomial and RBF
kernel. The best method for each class is indicated by a bold entry. Starred
values indicate which kernel is chosen by cross-validation.



4 COMBINING DETECTORS WITH LOW-LEVEL FEATURES 104

class max(h1, . . . , h10) stacking impr. our (Kernel) impr.

aeroplane 73.50 75.43 1.93 79.07 (r) 5.57

bicycle 45.17 46.65 1.48 49.62 (r) 4.45

bird 48.99 50.72 1.73 54.86 (p2) 5.87

boat 54.84 54.84 0.00 60.18 (r) 5.34

bottle 23.00 17.89 -5.11 27.39 (r) 4.39

bus 58.34 58.21 -0.13 64.62 (r) 6.28

car 50.24 49.22 -1.02 53.69 (r) 3.45

cat 47.02 46.44 -0.58 52.71 (r) 5.69

chair 47.38 45.30 -2.08 50.00 (r) 2.62

cow 29.24 29.17 -0.07 36.92 (r) 7.68

diningtable 35.92 20.97 -14.95 43.44 (p3) 7.52

dog 41.14 39.81 -1.33 39.76 (r) -1.38

horse 50.61 45.15 -5.46 55.84 (p2) 5.23

motorbike 49.84 50.54 0.70 55.42 (r) 5.58

person 76.49 77.39 0.90 80.41 (r) 3.92

pottedplant 25.67 16.64 -9.03 29.16 (r) 3.49

sheep 35.82 22.10 -13.72 41.32 (r) 5.50

sofa 41.70 36.87 -4.83 42.44 (r) 0.74

train 68.15 72.55 4.40 73.77 (p2) 5.62

tvmonitor 54.70 40.67 -14.03 58.76 (p2) 4.06

avg 47.89 44.83 -3.06 52.47 4.58

Table 4.11: Average precision on the VOC 2009 dataset in percent for the
best individual classifier, stacking as well as for our method with kernel
selected by cross-validation.

method of combining classifiers for multilabel classification is appealingly

simple, it works very well. Our main goal was to investigate the gain of

our approach with respect to the base learners and simpler methods for

combining features or classifiers.



Conclusion 105

  −4%

  −2%

  0%

  2%

  4%

  6%

  8%

  10%

  12%

A
ve

ra
ge

 im
pr

ov
em

en
t

Datasets

stacking              
our method (linear)
our method (polynomial)
our method (RBF)

VOC-2006 VOC-2007 VOC-2009

Figure 4.6: Average improvement of the methods on the VOC 2006, VOC
2007, and VOC 2009 datasets in percent.



This page intentionally contains only this sentence.



Chapter 5

Conclusion

Feedback structures discovered in biological vision systems have long been

known to affect the processing of visual input data. However, most com-

puter vision systems lack feedback structures completely. They rely on sim-

ple bottom-up processing, from low-level features to high-level descriptions.

This thesis proposes a cognitive system which incorporates feedback struc-

tures. It does bottom-up and top-down processing depending on the visual

input.

It is known that biological vision systems can track objects reliably even

if they are occluded. In addition, they can predict possible locations if

the objects are totally occluded. There exist various methods for tracking

objects. However, most of these tracking methods fail if objects are totally

occluded. This thesis offers an architecture of a cognitive vision system

which can process videos with highly occluded and totally occluded objects.

It builds interpretations of the observed visual data. An evaluation function

selects the most likely interpretation.

Can the cognitive vision system incorporate results from various trackers

with different low-level features? Such a property would increase the stabil-

ity of a cognitive vision system. If one tracker fails but the other remaining

trackers can track the object, then there will be no influence on the result.

This thesis shows in the second part that information from additional detec-

tors can improve results. This was shown for detection of object categories

in images. Further research is needed for the case where many low-level

vision components track the objects of interest.

What does the cognitive vision system do if additional trackers report

different locations for the same object? The system can calculate a mean

107



5 CONCLUSION 108

location. However, this simple approach only works if the locations are close.

If there is a large disagreement between the trackers then strategies on how

to handle such situations have to be found end evaluated.

In the second part, supervised learning was used to learn the weights for

the combination of the detectors. One drawback is that supervised learning

needs feedback. What can be used to provide feedback in a cognitive vision

system? One possible solution may be to use reinforcement learning with

its delayed feedback. A cognitive agent with a vision system uses actions

to reach a defined goal. The delayed feedback can be used to update the

internal structure of the vision system.

The cognitive vision system in this thesis keeps track of the objects of

interest even if they are totally occluded and can give answers where the

objects are. The latter information may serves as an input for a higher-level

cognitive system which understands actions in videos and infers context,

e.g. “Is this man stealing a car from the parking lot?” or “Was my cup in

the dishwasher and is it clean now?”. Therefore, future work will be needed

to find a reliably cognitive vision system for scene understanding.



Nomenclature

areaocc (oj |hi) relative occluded area of an object oj given a hypothesis hi

conf (oj |hi, It) confidence value of an object oj given a hypothesis hi and

image It

Haff 3× 3 affine homography matrix

hist (n) returns the nth entry of a normalized histogram

Ht all hypotheses of an image at time t

I image matrix

I
x,y

t
average of an image region at center (x, y) and time t

I (xn) returns the nth pixel from a segment of image I at position

x.

It image matrix at time t

o orientation of an interest-point

p (x) probability density function in the feature space at loca-

tion x (candidate region)

p̂ (x) estimated probability density function of p (x)

p̂u (x) histogram bin u of p̂ (x)

q probability density function in the feature space (model)

q̂ estimated probability density function of q

q̂u histogram bin u of q̂

R 3× 3 rotation matrix

s scale of an interest-point

T template matrix

T0 original template matrix

T
β

t
average of template matrix at time t

Tt template matrix at time t

xt vector x at time t

109



This page intentionally contains only this sentence.



List of Figures

1.1 Images of a surveillance camera . . . . . . . . . . . . . . . . . 2

2.1 An ambiguous image . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Detector’s confidence values are shown from a region of inter-

est of 100× 100 pixels . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Overview of the system architecture with data flow . . . . . . 15

2.4 A part-based model . . . . . . . . . . . . . . . . . . . . . . . 18

2.5 A star-shaped object representation . . . . . . . . . . . . . . 20

2.6 SIFT descriptors vote for a star-shaped model . . . . . . . . . 22

2.7 Overview of the high-level reasoning module . . . . . . . . . . 30

2.8 A mug disappears and reappears on top of a pot. . . . . . . . 32

2.9 A sequence with two possible interpretations and none can be

falsified . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.10 A sequence with two possible interpretations (right path) . . 34

2.11 A sequence with two possible interpretations (left path) . . . 35

2.12 Two possible inconsistency mappings . . . . . . . . . . . . . . 41

2.13 The grammar in Extended Backus-Naur Form notation . . . 43

2.14 The description language applied on the last hypothesis from

the left hypothesis path of Figure 2.10. . . . . . . . . . . . . 44

3.1 Three frames of two test videos from test scenario I . . . . . . 48

3.2 A test sequence with three cups . . . . . . . . . . . . . . . . . 50

3.3 Sequence with occluded cup and low-level vision failure. . . . 51

3.4 Sequence with an occlusion and re-detection event from video

sequence cup 2. . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.5 Box 1 sequence from the second test scenario . . . . . . . . . 53

3.6 Two frames from the videos box 2, box 3, and cup 3 . . . . . 55

3.7 Two possible interpretation of an observed scene . . . . . . . 57

3.8 Box 1 sequence with various occlusion events . . . . . . . . . 58

111



LIST OF FIGURES 112

3.9 Results of the box 2 scene . . . . . . . . . . . . . . . . . . . . 59

3.10 Results of the box 3 scene . . . . . . . . . . . . . . . . . . . . 61

3.11 Results of the cup 3 scene . . . . . . . . . . . . . . . . . . . . 63

3.12 Images of a surveillance camera . . . . . . . . . . . . . . . . . 68

3.13 Results of the car crash scene . . . . . . . . . . . . . . . . . . 70

3.14 Results of coin sequence 1 . . . . . . . . . . . . . . . . . . . . 76

3.15 Results of coin sequence 2 . . . . . . . . . . . . . . . . . . . . 78

4.1 Partitioning of a region of interest . . . . . . . . . . . . . . . 92

4.2 Comparison of the classifier (VOC 2006) . . . . . . . . . . . . 96

4.3 Comparison of the classifier using different kernels (VOC 2006) 96

4.4 Average precision on the VOC 2007 dataset in percent for

the two base classifiers as well as for our method with linear,

polynomial and RBF kernel. . . . . . . . . . . . . . . . . . . . 99

4.5 Average precision on the VOC 2007 dataset in percent for

the two base classifiers as well as for binary stacking and our

method with RBF kernel. . . . . . . . . . . . . . . . . . . . . 101

4.6 Average improvement of the methods on the VOC 2006, VOC

2007, and VOC 2009 . . . . . . . . . . . . . . . . . . . . . . . 105



List of Tables

3.1 Performance of the template tracker using static models ver-

sus dynamic models. . . . . . . . . . . . . . . . . . . . . . . . 66

3.2 Performance of the interest-point based tracker using static

models versus dynamic models. . . . . . . . . . . . . . . . . . 67

4.1 Overview of training, validation and test set images of the

Pascal Visual Object Classes Challenges datasets. . . . . . . . 86

4.2 Feature types for the experiments on the VOC 2006 dataset. 93

4.3 Average precision of the individual classifiers (VOC 2006) . . 94

4.4 Comparison of the best individual classifier (VOC 2006) . . . 94

4.5 Comparison of the classifier (VOC 2006) . . . . . . . . . . . . 95

4.6 Average precision on the VOC 2007 dataset in percent for

the two base classifiers as well as for our method with linear,

polynomial and RBF kernel . . . . . . . . . . . . . . . . . . . 98

4.7 Average precision on the VOC 2007 dataset in percent for

the two base classifiers as well as for binary stacking and our

method with RBF kernel. . . . . . . . . . . . . . . . . . . . . 100

4.8 Feature types for the experiments on the VOC 2009 dataset. 100

4.9 Average precision on the VOC 2009 dataset in percent for the

ten base classifiers. . . . . . . . . . . . . . . . . . . . . . . . . 102

4.10 Average precision for the best individual classifier and our

method (VOC 2009) . . . . . . . . . . . . . . . . . . . . . . . 103

4.11 Average precision for the best individual classifier, stacking

and our method (VOC 2009) . . . . . . . . . . . . . . . . . . 104

113



This page intentionally contains only this sentence.



Bibliography

[1] Azizi Abdullah, Remco Veltkamp, and Marco Wiering. Spatial pyra-

mids and two-layer stacking SVM classifiers for image categorization:

A comparative study. In International Joint Conference on Neural

Networks (IJCNN 2009), pages 5–12, 2009.

[2] Shivani Agarwal, Aatif Awan, and Dan Roth. Learning to detect ob-

jects in images via a sparse, part-based representation. IEEE Transac-

tions on Pattern Analysis and Machine Intelligence, 26(11):1475–1490,

2004.

[3] Thomas S. Anantharaman, Murray Campbell, and Feng hsiung Hsu.

Singular extensions: Adding selectivity to brute-force searching. Ar-

tificial Intelligence, 43(1):99–109, 1990.

[4] Martin Antenreiter. Object recognition using geometric properties.

Master’s thesis (Diplomarbeit), Graz University of Technology, Aus-

tria, 2005.

[5] Martin Antenreiter and Peter Auer. A reasoning system to track move-

ments of totally occluded objects. In Second International Cognitive

Vision Workshop (ICVW06), ECCV’06, Graz, Austria, May 2006.

Published electronically on CD-ROM.

[6] Martin Antenreiter, Christian Savu-Krohn, and Peter Auer. Visual

classification of images by learning geometric appearances through

boosting. In Artificial Neural Networks in Pattern Recognition (AN-

NPR 2006), pages 233–243, 2006.

[7] Martin Antenreiter, Johann Prankl, Markus Vincze, and Peter Auer.

Using a spatio-temporal reasoning system to improve object models on

the fly. In Visual Learning, pages 25–36. Oesterreichische Computer

Gesellschaft, May 2009. ISBN 978-3-85403-254-0.

115



BIBLIOGRAPHY 116

[8] John W. Backus, Friedrich L. Bauer, Julien Green, C. Katz, John Mc-

Carthy, Alan J. Perlis, Heinz Rutishauser, Klaus Samelson, Bernard

Vauquois, Joseph Henry Wegstein, Adriaan van Wijngaarden, Michael

Woodger, and Peter Naur. Revised report on the algorithm language

algol 60. Communications of the ACM, 6(1):1–17, 1963.

[9] Dana H. Ballard. Generalizing the hough transform to detect arbitrary

shapes. Pattern Recognition, 13(2):111–122, 1981.

[10] Herbert Bay, Andreas Ess, Tinne Tuytelaars, and Luc J. Van Gool.

Speeded-up robust features (SURF). Computer Vision and Image

Understanding, 110(3):346–359, 2008.

[11] Brandon Bennett, Derek R. Magee, Anthony G. Cohn, and David C.

Hogg. Using spatio-temporal continuity constraints to enhance visual

tracking of moving objects. In Ramon López de Mántaras and Lorenza

Saitta, editors, ECAI, pages 922–926. IOS Press, 2004. ISBN 1-58603-

452-9.

[12] Brandon Bennett, Derek R. Magee, Anthony G. Cohn, and David C.

Hogg. Enhanced tracking and recognition of moving objects by reason-

ing about spatio-temporal continuity. Image and Vision Computing,

26(1):67–81, 2008. ISSN 0262-8856. Cognitive Vision-Special Issue.

[13] Kristin P. Bennett, Ayhan Demiriz, and John Shawe-Taylor. A col-

umn generation algorithm for boosting. In Proceedings of the 17th

International Conference on Machine Learning (COLT 2000), pages

65–72. Morgan Kaufmann, 2000.

[14] Irving Biederman. Recognition-by-components: A theory of human

image understanding. Psychological Review, 94(2):115–147, 1987.

[15] Bruce G. Buchanan and Edward H. Shortliffe. Rule Based Expert

Systems: The Mycin Experiments of the Stanford Heuristic Program-

ming Project (The Addison-Wesley series in artificial intelligence).

Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,

1984. ISBN 0201101726.

[16] Bruce G. Buchanan, Georgia L. Sutherland, and Edward A. Feigen-

baum. Heuristic DENDRAL: a program for generating explanatory



BIBLIOGRAPHY 117

hypotheses in organic chemistry. In Bernard Meltzer, Donald Michie,

and Michael Swann, editors, Machine Intelligence 4, pages 209–254.

Edinburgh University Press, Edinburgh, Scotland, 1969.

[17] Murray Campbell, A. Joseph Hoane Jr., and Feng hsiung Hsu. Deep

blue. Artificial Intelligence, 134(1-2):57–83, 2002.

[18] Sheng Chen, Alan Fern, and Sinisa Todorovic. Multi-object tracking

via constrained sequential labeling. In Computer Vision and Pattern

Recognition (CVPR), pages 1130–1137, 2014.

[19] Dorin Comaniciu and Peter Meer. Mean shift: A robust approach

toward feature space analysis. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 24(5):603–619, 2002.

[20] Dorin Comaniciu, Visvanathan Ramesh, and Peter Meer. Real-time

tracking of non-rigid objects using mean shift. In Computer Vision

and Pattern Recognition (CVPR 2000), pages 142–149, 2000.

[21] Dorin Comaniciu, Visvanathan Ramesh, and Peter Meer. Kernel-

based object tracking. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 25(5):564–575, 2003.

[22] Nello Cristianini and John Shawe-Taylor. An Introduction to Support

Vector Machines and Other Kernel-based Learning Methods. Cam-

bridge University Press, 2000. ISBN 0521780195.

[23] James L. Crowley and Alice C. Parker. A representation for shape

based on peaks and ridges in the difference of low-pass transform.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 6

(2):156–170, 1984.

[24] Adrianus D. De Groot. Het denken van den schaker. PhD thesis,

University of Amsterdam, Amsterdam, 1946.

[25] Adrianus D. De Groot. Thought and choice in chess. Mouton : The

Hague, 1965.

[26] Ayhan Demiriz, Kristin P. Bennett, and John Shawe-Taylor. Linear

programming boosting via column generation. Machine Learning, 46

(1-3):225–254, 2002.



BIBLIOGRAPHY 118

[27] Thomas G. Dietterich. Machine-learning research: Four current direc-

tions. The AI Magazine, 18(4):97–136, 1998.

[28] Anastasios Dimou, Grigorios Tsoumakas, Vasileios Mezaris, Ioannis

Kompatsiaris, and Ioannis Vlahavas. An empirical study of multi-label

learning methods for video annotation. In 7th International Workshop

on Content-Based Multimedia Indexing (CBMI 2009), pages 19–24,

2009.

[29] Sašo Džeroski and Bernard Ženko. Is combining classifiers with stack-

ing better than selecting the best one? Machine Learning, 54(3):

255–273, 2004.

[30] Mark Everingham, Luc J. Van Gool, Christopher K. I. Williams,

John Winn, and Andrew Zisserman. The PASCAL Visual Ob-

ject Classes Challenge 2007 (VOC2007) Results. http://www.pascal-

network.org/challenges/VOC/voc2007/workshop/index.html, .

[31] Mark Everingham, Luc J. Van Gool, Christopher K. I. Williams,

John Winn, and Andrew Zisserman. The PASCAL Visual Ob-

ject Classes Challenge 2008 (VOC2008) Results. http://www.pascal-

network.org/challenges/VOC/voc2008/workshop/index.html, .

[32] Mark Everingham, Luc J. Van Gool, Christopher K. I. Williams,

John Winn, and Andrew Zisserman. The PASCAL Visual Ob-

ject Classes Challenge 2009 (VOC2009) Results. http://www.pascal-

network.org/challenges/VOC/voc2009/workshop/index.html, .

[33] Mark Everingham, Andrew Zisserman, Christopher K. I. Williams,

and Luc J. Van Gool. The PASCAL Visual Object Classes Challenge

2006 (VOC2006) Results, .

[34] Mark Everingham, Luc J. Van Gool, Christopher K. I. Williams,

John M. Winn, and Andrew Zisserman. The PASCAL Visual Object

Classes (VOC) Challenge. International Journal of Computer Vision,

88(2):303–338, 2010.

[35] Luca Fiaschi, Ferran Diego, Konstantin Gregor, Ullrich Köthe, Marta

Zlatic, and Fred A. Hamprecht. Tracking indistinguishable translu-

cent objects over time using weakly supervised structured learning. In



BIBLIOGRAPHY 119

Computer Vision and Pattern Recognition (CVPR), pages 2736–2743,

2014.

[36] James D. Foley, Andries van Dam, Steven K. Feiner, and John F.

Hughes. Computer Graphics: Principles and Practice (2nd Ed.).

Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,

1990. ISBN 0-201-12110-7.

[37] Yoav Freund. Boosting a weak learning algorithm by majority. In

Proceedings of the Third Annual Workshop on Computational Learn-

ing Theory (COLT 1990), pages 202–216, 1990.

[38] Keinosuke Fukunaga. Introduction to Statistical Pattern Recognition.

Academic Press, Second edition, October 1990. ISBN 0122698517.

[39] Michael Fussenegger, Andreas Opelt, Axel Pinz, and Peter Auer. Ob-

ject recognition using segmentation for feature detection. In Interna-

tional Conference on Pattern Recognition (ICPR) (3), pages 41–44,

2004.

[40] Shantanu Godbole and Sunita Sarawagi. Discriminative methods for

multi-labeled classification. In Advances in Knowledge Discovery and

Data Mining, 8th Pacific-Asia Conference (PAKDD 2004), pages 22–

30. Springer, 2004.

[41] Rafael C. Gonzalez and Richard E. Woods. Digital Image Processing.

Prentice Hall, Second edition, January 2002. ISBN 0201180758.

[42] Luc J. Van Gool, Theo Moons, and Dorin Ungureanu. Affine/photo-

metric invariants for planar intensity patterns. In ECCV ’96: Proceed-

ings of the 4th European Conference on Computer Vision – Volume I,

pages 642–651. Springer, 1996. ISBN 3-540-61122-3.

[43] Helmut Grabner, Jiri Matas, Luc J. Van Gool, and Philippe C. Cattin.

Tracking the invisible: Learning where the object might be. In Com-

puter Vision and Pattern Recognition (CVPR 2010), pages 1285–1292.

IEEE, 2010.

[44] Gustaf Gredebäck. Infants’ Knowledge of Occluded Objects: Evidence

of Early Spatiotemporal Representation. PhD thesis, Acta Universi-



BIBLIOGRAPHY 120

tatis Upsaliensis; Faculty of Social Sciences, 2004. ISBN 91-554-5898-

X.

[45] Stevan Harnad. The symbol grounding problem. Physica D: Nonlinear

Phenomena, 42(1-3):335–346, June 1990. ISSN 01672789.

[46] Richard Hartley and Andrew Zisserman. Multiple View Geometry in

Computer Vision. Cambridge University Press, New York, NY, USA,

Second edition, 2003. ISBN 0521540518.

[47] Richard I. Hartley. In defense of the eight-point algorithm. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 19:580–

593, June 1997. ISSN 0162-8828.

[48] John Haugland. Semantic engines: an introduction to mind design. In

John Haugland, editor, Mind Design: Philosophy, Psychology, Artifi-

cial Intelligence, Cambridge, 1982. Bradford Books, MIT Press.

[49] David E. Heckermann. Probabilistic similarity networks. MIT Press,

Cambridge, MA, USA, 1991. ISBN 0-262-08206-3.

[50] Paul V. C. Hough. Machine analysis of bubble chamber pictures. In

International Conference on High Energy Accelerators and Instrumen-

tation, pages 554–556, 1959.

[51] ISO/IEC 14977:1996. Information technology – Syntactic metalan-

guage – Extended BNF. International Organization for Standardiza-

tion, Geneva, Switzerland.

[52] Tommi Jaakkola and David Haussler. Exploiting generative models in

discriminative classifiers. In Advances in Neural Information Process-

ing Systems 11, pages 487–493. MIT Press, 1998.

[53] Ian T. Jolliffe. Principal component analysis. Springer, New York,

1986.

[54] Timor Kadir and Michael Brady. Saliency, scale and image description.

International Journal of Computer Vision, 45(2):83–105, 2001.

[55] Thomas Kailath. The divergence and Bhattacharyya distance mea-

sures in signal selection. IEEE Transactions on Communications Tech-

nology, 15(1):52–60, 1967.



BIBLIOGRAPHY 121

[56] Rudolph E. Kalman. A new approach to linear filtering and prediction

problems. Transactions of the ASME–Journal of Basic Engineering,

82(Series D):35–45, 1960.

[57] Yan Ke and Rahul Sukthankar. PCA-SIFT: A more distinctive repre-

sentation for local image descriptors. In Computer Vision and Pattern

Recognition (CVPR 2004), pages 506–513. IEEE Computer Society,

2004.

[58] John F. Kihlstrom. The cognitive unconscious. Science, 237:1445–

1452, 1987.

[59] Josef Kittler, Mohamad Hatef, Robert P. W. Duin, and Jiri Matas.

On combining classifiers. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 20(3):226–239, 1998.

[60] Hans-Peter Kriegel, Peer Kröger, Alexey Pryakhin, and Matthias

Schubert. Using support vector machines for classifying large sets

of multi-represented objects. In Proceedings of the Fourth SIAM In-

ternational Conference on Data Mining (SDM 2004), pages 102–113.

SIAM, 2004.

[61] Bastian Leibe, Ales Leonardis, and Bernt Schiele. Robust object detec-

tion with interleaved categorization and segmentation. International

Journal of Computer Vision, 77(1-3):259–289, 2008.

[62] Vincent Lepetit and Pascal Fua. Keypoint recognition using random-

ized trees. IEEE Transactions on Pattern Analysis and Machine In-

telligence, 28(9):1465–1479, 2006.

[63] Alex Po Leung and Shaogang Gong. Optimizing distribution-based

matching by random subsampling. In Computer Vision and Pattern

Recognition (CVPR), pages 1–8. IEEE Computer Society, 2007.

[64] John P. Lewis. Fast template matching. Vision Interface, pages 120–

123, 1995.

[65] Michael J. Lighthill. Artificial intelligence: A general survey. In M. J.

Lighthill, N. S. Sutherland, R. M. Needham, H. C. Longuet-Higgins,

and D. Michie, editors, Artificial Intelligence: A Paper Symposium.

Science Research Council of Great Britain, London, 1973.



BIBLIOGRAPHY 122

[66] Jianhua Lin. Divergence measures based on the Shannon entropy.

IEEE Transactions on Information theory, 37:145–151, 1991.

[67] Tony Lindeberg. Feature detection with automatic scale selection.

International Journal of Computer Vision, 30(2):79–116, 1998.

[68] David G. Lowe. Distinctive image features from scale-invariant key-

points. International Journal of Computer Vision, 60(2):91–110, 2004.

[69] David G. Lowe. Object recognition from local scale-invariant features.

In International Conference on Computer Vision (ICCV), pages 1150–

1157, 1999.

[70] Bruce D. Lucas and Takeo Kanade. An iterative image registration

technique with an application to stereo vision. In Proceedings of the

7th international joint conference on Artificial intelligence - Volume

2, pages 674–679, San Francisco, CA, USA, 1981. Morgan Kaufmann

Publishers Inc.

[71] Ziyang Ma and Enhua Wu. Real-time and robust hand tracking with

a single depth camera. The Visual Computer, 30(10):1133–1144, Oc-

tober 2014. ISSN 0178-2789.

[72] Emilio Maggio and Andrea Cavallaro. Video Tracking - Theory and

Practice. Wiley, 2011. ISBN 978-0-470-74964-7.

[73] David Marr. Artificial intelligence - a personal view. Artificial Intel-

ligence, 9(1):37–48, 1977.

[74] John Mccarthy and Patrick J. Hayes. Some philosophical problems

from the standpoint of artificial intelligence. In Machine Intelligence,

pages 463–502. Edinburgh University Press, 1969.

[75] John P. McDermott. R1: A rule-based configurer of computer systems.

Artificial Intelligence, 19(1):39–88, 1982.

[76] Stephen J. McKenna, Sumer Jabri, Zoran. Duric, Azriel Rosenfeld,

and Harry Wechsler. Tracking groups of people. Computer Vision

and Image Understanding, 80(1):42–56, 2000.

[77] Christopher J. Merz. Using correspondence analysis to combine clas-

sifiers. Machine Learning, 36(1-2):33–58, 1999.



BIBLIOGRAPHY 123

[78] Krystian Mikolajczyk and Cordelia Schmid. An affine invariant in-

terest point detector. In Proceedings of the 7th European Conference

on Computer Vision-Part I, ECCV ’02, pages 128–142, London, UK,

UK, 2002. Springer-Verlag. ISBN 3-540-43745-2.

[79] Krystian Mikolajczyk and Cordelia Schmid. Scale & affine invariant

interest point detectors. International Journal of Computer Vision,

60(1):63–86, 2004.

[80] Krystian Mikolajczyk and Cordelia Schmid. A performance evalua-

tion of local descriptors. IEEE Transactions on Pattern Analysis &

Machine Intelligence, 27(10):1615–1630, 2005.

[81] Krystian Mikolajczyk and Cordelia Schmid. Indexing based on scale

invariant interest points. In International Conference on Computer

Vision (ICCV), pages 525–531, 2001.

[82] Andreas Opelt, Michael Fussenegger, Axel Pinz, and Peter Auer.

Generic object recognition with boosting. IEEE Transactions on Pat-

tern Analysis and Machine Intelligence, 28(3):416–431, March 2006.

[83] David L. Parnas. On the criteria to be used in decomposing systems

into modules. Communications of the ACM, 15(12):1053–1058, De-

cember 1972.

[84] Patrick Pérez, Carine Hue, Jaco Vermaak, and Michel Gangnet. Color-

based probabilistic tracking. In 7th European Conference on Computer

Vision, pages 661–675. Springer, 2002.

[85] Florent Perronnin and Christopher Dance. Fisher kernels on visual

vocabularies for image categorization. In Computer Vision and Pat-

tern Recognition (CVPR 2007), pages 1–8. IEEE Computer Society,

2007. ISBN 1-4244-1179-3.

[86] Florent Perronnin, Jorge Sánchez, and Thomas Mensink. Improv-

ing the fisher kernel for large-scale image classification. In Proceed-

ings of the 11th European Conference on Computer Vision: Part IV,

ECCV’10, pages 143–156, Berlin, Heidelberg, 2010. Springer-Verlag.

ISBN 3-642-15560-X, 978-3-642-15560-4.



BIBLIOGRAPHY 124

[87] Steven Pinker. Visual Cognition: An introduction. In Steven Pinker,

editor, Visual Cognition, pages 1–64, Cambridge, 1984. MIT Press.

[88] John C. Platt. Probabilistic outputs for support vector machines

and comparisons to regularized likelihood methods. In Peter J.

Bartlett, Bernhard Schölkopf, Dale Schuurmans, and Alex J. Smola,

editors, Advances in Large Margin Classifiers, pages 61–74. MIT Press,

Boston, 1999.

[89] Johann Prankl, Martin Antenreiter, Peter Auer, and Markus Vincze.

Consistent interpretation of image sequences to improve object models

on the fly. In Mario Fritz, Bernt Schiele, and Justus H. Piater, editors,

ICVS, volume 5815 of Lecture Notes in Computer Science, pages 384–

393. Springer, 2009. ISBN 978-3-642-04666-7.

[90] Prior Design NA. PD Mercedes E Klasse C207, May 2011. URL http:

//www.flickr.com/photos/priordesignna/5762730657/. Shared

under the Attribution-NonCommercial-ShareAlike 2.0 Generic (CC

BY-NC-SA 2.0) license, Accessed on 29 Jun. 2011.

[91] Andrzej W. Przybyszewski. Vision: does top-down processing help us

to see? Current Biology, 8(4):R135–R139, 1998.

[92] Guo-Jun Qi, Xian-Sheng Hua, Yong Rui, Jinhui Tang, Tao Mei, and

Hong-Jiang Zhang. Correlative multi-label video annotation. In Pro-

ceedings of the 15th International Conference on Multimedia 2007

(MM 2007), pages 17–26. ACM, 2007.

[93] Chen Qian, Xiao Sun, Yichen Wei, Xiaoou Tang, and Jian Sun. Real-

time and robust hand tracking from depth. In Computer Vision and

Pattern Recognition (CVPR), pages 1130–1137, 2014.

[94] Thomas H. Reiss. Recognizing planar objects using invariant image

features, volume 679 of Lecture Notes in Computer Science. Springer-

Verlag, Berlin, 1993. ISBN 3-540-56713-5.

[95] Ray Reiter. The frame problem in the situation calculus: A simple

solution (sometimes) and a completeness result for goal regression.

In Vladimir Lifschitz, editor, Artificial Intelligence and Mathematical



BIBLIOGRAPHY 125

Theory of Computation: Papers in Honor of John McCarthy, pages

359–380. Academic Press, San Diego, CA, 1991.

[96] Ryan M. Rifkin and Aldebaro Klautau. In defense of one-vs-all clas-

sification. Journal of Machine Learning Research, 5:101–141, 2004.

[97] Kathleen S. Rockland and Genny W. Drash. Collateralized divergent

feedback connections that target multiple cortical areas. The Journal

of comparative neurology, 373(4):529–548, 1996.

[98] Kathleen. S. Rockland and Agnes Virga. Terminal arbors of individ-

ual ”feedback” axons projecting from area V2 to V1 in the macaque

monkey: a study using immunohistochemistry of anterogradely trans-

ported Phaseolus vulgaris-leucoagglutinin. The Journal of comparative

neurology, 285(1):54–72, Jul 1989. ISSN 0021-9967.

[99] Peter J. Rousseeuw. Least median of squares regression. Journal of

The ACM, 79(388):871–880, December 1984.

[100] Robert E. Schapire. The strength of weak learnability. Machine Learn-

ing, 5:197–227, 1990.

[101] John R. Searle. Minds, brains, and programs. Behavioral and Brain

Sciences, 3:417–457, 1980.

[102] Jean Serra. Image analysis and mathematical morphology. Number 1

in Image Analysis and Mathematical Morphology. Academic Press,

1982. ISBN 978-0-126-37240-3.

[103] Jean Serra. Image analysis and mathematical morphology. Number 2

in Image Analysis and Mathematical Morphology. Academic Press,

1988. ISBN 978-0-126-37241-0.

[104] Murray Shanahan. Solving the frame problem: a mathematical inves-

tigation of the common sense law of inertia. MIT Press, Cambridge,

MA, USA, 1997. ISBN 0-262-19384-1.

[105] Claude E. Shannon. Programming a computer for playing chess. Philo-

sophical Magazine, 41(314):256–275, 1950.



BIBLIOGRAPHY 126

[106] Roger N. Shepard. Mind sights: original visual illusions, ambiguities,

and other anomalies, with a commentary on the play of mind in per-

ception and art. W.H. Freeman and Co., New York, NY, USA, 1990.

ISBN 9780716721338.

[107] Adam M. Sillito, Helen E. Jones, George L. Gerstein, and David C.

West. Feature-linked synchronization of thalamic relay cell firing in-

duced by feedback from the visual cortex. Nature, 369(6480):479–482,

Jun 1994.

[108] Adam M. Sillito, Kenneth L. Grieve, Helen E. Jones, Javier Cudeiro,

and Justin Davls. Visual cortical mechanisms detecting focal orienta-

tion discontinuities. Nature, 378(6556):492–496, Nov 1995.

[109] Elizabeth S. Spelke and Claes von Hofsten. Predictive reaching for

occluded objects by 6-month-old infants. Journal of Cognition and

Development, 2:261–281, 2001.

[110] Markus Stumptner. An overview of knowledge-based configuration.

AI Communications, 10(2):111–125, 1997. ISSN 0921-7126.

[111] Cho-Huak Teh and Roland T. Chin. On image analysis by the meth-

ods of moments. Pattern Analysis and Machine Intelligence, IEEE

Transactions on, 10(4):496–513, 1988. ISSN 0162-8828.

[112] Kai Ming Ting and Ian H. Witten. Issues in stacked generalization.

Journal of Artificial Intelligence Research, 10:271–289, 1999.

[113] Alan M. Turing. Computing machinery and intelligence. Mind, 59:

433–460, 1950.

[114] Koen E. A. van de Sande, Theo Gevers, and Cees G. M. Snoek. Evalu-

ating color descriptors for object and scene recognition. IEEE Transac-

tions on Pattern Analysis and Machine Intelligence, 32(9):1582–1596,

2010.

[115] Vladimir N. Vapnik. The Nature of Statistical Learning Theory.

Springer-Verlag New York, Inc., New York, NY, USA, 1995. ISBN

0-387-94559-8.



BIBLIOGRAPHY 127

[116] Larry Wasserman. All of Statistics: A Concise Course in Statistical

Inference. Springer, December 2004. ISBN 0387402721.

[117] Lawrence B. Wolff. On the relative brightness of specular and diffuse

reflection. In Computer Vision and Pattern Recognition (CVPR 1994),

pages 369–376. IEEE Computer Society, 1994.

[118] David H. Wolpert. Stacked generalization. Neural Networks, 5(2):

241–259, 1992.

[119] Alper Yilmaz, Omar Javed, and Mubarak Shah. Object tracking: A

survey. ACM Computing Surveys, 38(4), December 2006. ISSN 0360-

0300.



“Evolution does not produce something that is perfect,

it just produces something that works.”

– Tim Skern


