

Department Metallurgie – Department of Metallurgy
Nichteisenmetallurgie – Nonferrous Metallurgy

MASTERARBEIT

Thema:

Untersuchung des Einflusses von einzelnen Parametern auf die Zinnausbringung im Konverterstaub

Ersteller: Florian Kaisergruber, B.Sc.

Betreuer: Dipl.-Ing. Christoph Sorger Priv.-Doz. Dipl.-Ing. Dr.mont. Stefan Luidold

Leoben, Oktober 2015

Untersuchung des Einflusses von einzelnen Parametern auf die Zinnausbringung im Konverterstaub

Bei den Montanwerken Brixlegg (MWB) wird der Konverterprozess zur Raffination des Schwarzkupfers verwendet. Zweck des Konvertierens ist die Verschlackung von Verunreinigungen. In der 1. Blasphase werden vornehmlich die unedlen Elemente wie z.B. Eisen und Zink entfernt. Die 2. Konvertierungsstufe verschlackt Zinn, Blei und teilweise Nickel.

Ein weiteres Ziel stellt das Ausbringen des Zinns im Filterstaub dar, welcher einen möglichst hohen Sn-Gehalt aufweisen soll. Grundsätzlich oxidiert Zinn relativ leicht zu SnO₂ (Dioxid) und verschlackt. Um es in eine flüchtige Form überzuführen, ist eine Reduktion auf SnO (Monoxid) erforderlich. Dazu wird Reduktionsmittel (z.B. Koks) auf die Schlacke chargiert. Eine ausreichende Verflüchtigung erfordert auch eine Prozesstemperatur von > 1300 °C sowie eine möglichst lange Prozessdauer. Ein wirtschaftliches Ziel beim Konverterprozess bildet der möglichst hohe Einsatz von Legierungsschrott, um die Verarbeitungskapazität für Sekundärrohstoffe zu steigern insbesondere jene von "Low-grade"-Materialien.

Aus dieser Zielsetzung resultiert die Aufgabenstellung für die Diplomarbeit:

- 1. Methodische Auswertung und Darstellung des Wissenstandes zum Thema
- 2. Versuchsplanung und -vorbereitung
- 3. Betreuung von Versuchskampagnen, Erfassung von Chargen-/Prozessdaten sowie Verfolgung von Proben
- 4. Sammeln von allen erforderlichen Daten als auch deren methodische Aufbereitung und Auswertung

Leoben, Oktober 2015

EIDESSTATTLICHE ERKLÄRUNG

Ich erkläre an Eides statt, dass ich diese Arbeit selbstständig verfasst, andere als die angegebenen Quellen und Hilfsmittel nicht benutzt und mich auch sonst keiner unerlaubten Hilfsmittel bedient habe.

AFFIDAVIT

I declare in lieu of oath, that I wrote this thesis and performed the associated research myself, using only literature cited in this volume.

Datum

Vorname Nachname

Leoben, Oktober 2015

Kurzfassung

Aufgrund der steigenden Menge an Schrotten und den immer größeren Bedarf an diversen Metallen ist es notwendig, die üblich angewendeten Produktionsschritte zu verbessern, um eine hohe Ausbringung und Qualität gewährleisten zu können. Beim Kupferrecycling fallen neben dem Hauptprodukt auch Reststoffe an, welche sich in anderen Prozessen verwerten lassen. Diese Arbeit befasst sich mit dem Zinnstaub, welcher beim Konverterprozess entsteht, und wie sich durch die Veränderung diverser Parameter, z.B. des Reduktionsmittels oder durch die Zugabe von Zusatzstoffen wie Schrotten und Schlackenbildner, eine verbesserte Ausbeute von diesem Nebenprodukt erzielen lässt, ohne dabei das Ausbringen der Kupferschmelze negativ zu beeinflussen. Dabei konnten durch Versuchsreihen an Produktionsanlagen unterschiedlichste Ergebnisse erzielt werden, welche ausführlich erfasst und analysiert wurden. Des Weiteren kam es zu einem Vergleich mit bekannten Literaturstellen, um Möglichkeiten für eine Verbesserung des üblichen Konverterprozesses zu erhalten.

Abstract

The increasing amount of scrap and growing demand of numerous metals require improvements in the typical recycling processes to meet customer specifications for quanitity and quality. Copper recycling produces for example oxidic byproducts in addition to the Cumelt, which can later be recovered and reduced into their metallic form. The following thesis describes the influence of various parameters during the converter process, such as the addition of reducing agents and other components like slag-formers. The main goal of the research was to increase the tin output in the off-gas during the converter process without decreasing the quality of the copper melt. As part of this thesis it was necessary to carry out experiments at the production facilities. The obtained results had to be analyzed and compared to different scientific papers, so it was possible to achieve some improvements for the typical converter process.

Inhaltsverzeichnis

1	EI	INLEITUNG1
2	A	LLGEMEINES
2.1		Bedeutung des Kupferrecyclings3
2.2		Arten des Recyclingmaterials3
2.3		Verwendung von Kupfer4
2.4		Produktion von Kupfer5
2.5		Aggregate5
2.6	1	Konverterprozess
2.6	. י .2	Hoboken-Konverter
2.6	.3	TMC (EI-Teniente-Modified-Konverter)9
2.6	.4	TBRC (Top-Blown-Rotary-Converter)9
2.6	.5	ISASMELT-Prozess
3	S	TAND DES WISSENS12
3.1		Grund für die Notwendigkeit der Zinnverflüchtigung12
3.2		Auftreten von Zinn in Schlacke14
3.3		Aktivitätskoeffizient von Zinn in Kupfer und Schlacke16
3.4		Chemisches Verhalten von SnO18
3.5		Einfluss des CO ₂ /CO-Verhältnisses auf die Zinnausbringung
3.6		CO/CO ₂ -Gehalt in der Praxis22
3.7		Schlacke23
3.8		Einfluss von CaO und SiO ₂ in der Schlacke24
4	VI	ERSUCHSDURCHFÜHRUNG26
4.1		Konverterprozess
4.2		OPC-Messung29
5	EI	RGEBNISSE
5.1		Versuchsreihen mit unterschiedlichen Rahmenbedingungen

5.1.	1 "Konventionelle" Versuchsreihe mit 200 kg Koks
5.1.	2 Versuchsreihe "Koksstückigkeit" (150 kg fein + 75 kg grob)
5.1.	3 Versuchsreihe "Schlackenbildner Quarz 2. Phase"
5.1.	.4 Versuchsreihe "Koksstückigkeit mit 80 kg fein, 80 kg mittel, 80 kg grob"
5.1.	5 Versuchsreihe "Eisenstanzmaterial als Reduktionsmittel"
5.1.	6 Versuchsreihe "Schlackenbildner Quarz in 1. Phase und 2. Phase"
5.1.	7 Versuchsreihe "Schlackenbildner Quarz in 1. Phase und Kalkstein in 2. Phase" 40
5.1.	8 Versuchsreihe "Gusseisenbriketts als Reduktionsmittel"
5.2	Analyse der Einzelstaubproben43
5.3	Messung von Staub am Abgasrohr44
5.4	Schlackenanalysen46
5.5	Kühlerstaub47
5.6	Erfassung der Mengen49
6	DISKUSSION DER ERGEBNISSE
7	ZUSAMMENFASSUNG UND AUSBLICK57
8	LITERATUR
9	ABBILDUNGSVERZEICHNIS60
10	TABELLENVERZEICHNIS63
11	ANHANG

1 Einleitung

Um dem heutigen Bedarf an Kupfer weltweit zu decken, ist nicht nur die Primärproduktion von Bedeutung, sondern auch der sekundäre Prozessweg, da dieser sowohl in ökologischer als auch ökonomischer Hinsicht eine sinnvolle Variante darstellt. [1, 2]

Als Einsatzmaterialien wird versucht vor allem Reststoffe, wie Schlacken, Stäube, Schlämme, etc. sowie eine große Variation an Schrotten einzusetzen. Um dabei die geeigneten Qualitäten zu erhalten, sind verschiedenste Produktionsschritte durchzuführen, um unerwünschte Elemente abzutrennen und somit reineres Kupfer zu erhalten. Dabei entstehen Reststoffe, welche nicht nur als Abfall anfallen, sondern auch eine Weiterverwendung für die Gewinnung von anderen Elementen ermöglichen. Eines dieser zusätzlichen Produkte stellt der Zinnstaub dar, welcher im Laufe des Konverterprozesses auftritt. Durch einen Oxidationsschritt und einer anschließenden Reduktion kann sich dieser als SnO aus SnO₂ oder Sn bilden. Dieses ist dann im Gegensatz zu den anderen auftretenden Sn-Verbindungen bei den vorliegenden Temperaturen im Konverter verflüchtigbar und gelangt in das Abgas, von welchem es sich durch eine Filteranlage abtrennen lässt und als gesammeltes Konzentrat der Zinngewinnung dient. [1, 2, 3, 4]

Durch den hohen Preis von Zinn erscheint eine möglichst hohe Ausbringung des Metalls von Vorteil, um die Wirtschaftlichkeit des Konverterprozesses und somit der Kupferproduktion zu verbessern. [1]

Zur Erreichung dieses Ziels wurden im Laufe dieser Diplomarbeit verschiedenste Versuche an den Produktionsanlagen der Montanwerke Brixlegg AG durchgeführt, um die Auswirkung diverser Prozessparameter genauer untersuchen zu können und um eine Möglichkeit zu finden, die Ausbringung zu erhöhen. Dabei kam es zur Variation von verschiedenen Einsatzmaterialien, des Reduktionsmittels (Stückigkeit und Art des Einsatzstoffes) sowie der Menge und der Zusammensetzung der Schlackenbildner. Des Weiteren sollte versucht werden, die optimale Dauer für die zwei auftretenden Blasphasen zu finden, um eine hohe Verflüchtigung zu gewährleisten.

Zur Erfassung dieser Daten waren neben der Versuchsdurchführung auch über einen längerer Zeitraum verschiedenste Staubproben während des Prozesses zu entnehmen und zu analysieren, um die Auswirkung der abgeänderten Parameter genauer untersuchen zu können.

1

Als zusätzliches Hilfsmittel diente ein angebrachtes Gerät der Firma "Semtech", welches zum Einsatz kam, um sowohl die Prozessdauer, als auch diverse Elementverläufe, wie die des SnO-Signals oder die Reaktivität des Koks, aufzuzeichnen und somit kontrollieren zu können.

2 Allgemeines

Dieses Kapitel gibt einen Überblick von der Bedeutung des Kupferrecyclings sowie die verschiedenen Möglichkeiten der Produktion von diesem Metall.

2.1 Bedeutung des Kupferrecyclings

Durch den ansteigenden Verbrauch an Kupfer und den länderspezifisch begrenzten Ressourcen an Erzen (48 % der Weltreserven befinden sich in Chile, Peru und den USA) nimmt das Recycling einen immer höheren Stellenwert ein. Durch die gute Recyclierbarkeit und die nicht vorhandenen Qualitätsverluste ist mehr als die Hälfte des jährlichen Kupferbedarfs in Deutschland und ein Viertel des weltweiten Verbrauchs auf diesem Weg gedeckt (Tabelle 2.1). Des Weiteren benötigt diese Wiederverwertung nur einen Bruchteil der Energie für die Produktion des Endproduktes. So sind etwa 20,5 GJ/t Cu für die Sekundärkupfererzeugung erforderlich, im Vergleich zu 56,8 (80) GJ/t Cu für das Primärmetall. Dieser Bedarf setzt sich aus der aufzubringenden Energie für den Bergbau (bis 35 GJ/t) und den Verbrauch der Kupferhütte (21,8 GJ/t) zusammen. [1, 2]

Region	Einsatzquote in %
Europa	41,0
Nordamerika (USA, Kanada, Mexiko)	32,8
Asien	33,7
Rest der Welt	19,7
Insgesamt Welt	34,8
Zum Vergleich Deutschland	56,4

Tabelle 2.1: Weltweite Bedeutung von Sekundärkupfer [2]

Trotz dieser großen Vorteile lässt sich nur ein Teil des weltweiten Kupferbedarfs durch Recycling decken, da viele Produkte erst nach jahrelanger Nutzung (z. B. Dächer 60–80 Jahre, Autos rund 10 Jahre) wieder in den Produktionszyklus zurückkehren. [1]

2.2 Arten des Recyclingmaterials

Schrotte unterscheiden sich sowohl in ihrem Kupfergehalt, als auch in ihrer Herkunft. So können grundsätzlich folgende Gruppen unterschieden werden: [1]

3

- Neu- und Produktionsschrotte (Produktionsabfälle, im Wesentlichen ohne Verunreinigungen)
- Altkupfer und Legierungsschrotte (besitzen zumeist einen hohen Kupfergehalt)
- Kupferhaltige Produktionsrückstände (z.B. Altsande, Schlämme, Krätzen oder Schlacken mit einem geringeren Metallgehalt)
- Elektronikschrott (zeichnet sich durch eine Vielfalt an Komponenten, wie anderen Metallen oder Kunststoffen aus)

2.3 Verwendung von Kupfer

Kupfer findet sich in vielen Bereichen des Alltags wieder. So spielt es durch seine gute elektrische Leitfähigkeit (59,5 MS/m) eine große Rolle in der Elektrotechnik. Hier kommt es in verschiedenen Geräten zum Einsatz. Darüber hinaus ist es aufgrund seiner guten Wärmeleitfähigkeit (394 W/m·K) auch für Kühler, Wärmetauscher, Klimaanlagen, etc. zu gebrauchen. Weitere wichtige Eigenschaften stellen eine gute Umformbarkeit, die Korrosionsbeständigkeit (besonders in Hinblick auf die Verwendung im Meerwasser) und seine ausgezeichnete Legierbarkeit dar. Beispiele hierfür sind etwa Messing (Cu-Zn) und Bronzen (z.B. Cu-Sn). Die antibakterielle Wirkung sowie die Ästhetik hat für die Architektur entsprechende Bedeutung. [1]

Die Abbildung 2.1 zeigt die unterschiedliche Einsetzbarkeit des Metalls in den jeweiligen Branchen.

Abbildung 2.1: Einsatzgebiete des Kupfers [1]

Die Automobil-Industrie zählt als einer der größten Abnehmer von Kupfer. So befinden sich in einem Mittelklassewagen ca. 25 kg Cu, wobei etwa die Hälfte im Verbrennungsmotor und seinen Hilfsaggregaten verbaut ist. In den kommenden Jahren lässt sich jedoch ein Zuwachs

4

dieser Menge erwarten, da durch die Nutzung von Elektro- und Hybridfahrzeugen Kupfer immer mehr an Bedeutung gewinnen wird. [1]

2.4 Produktion von Kupfer

Allgemein lässt sich die Kupferproduktion in die primäre und sekundäre Route aufteilen. Erstere nutzt als Einsatzmaterialien sulfidische bzw. sulfidische und oxidische Erze mit Zugabe von Sekundärstoffen, während letztere oxidische und metallische Produkte verarbeitet. Weitere Einsatzstoffe sind Schlackenbildner, Zusätze sowie Reduktionsmittel, wie z.B. Kohle, Koks, Heizöl und Erdgas. [3]

Der Verfahrensweg der Cu-Gewinnung (siehe Abbildung 2.2) hängt vom Einsatzmaterial ab. So werden sulfidische Erze als auch Cu-Schrotte pyrometallurgisch (siehe Abbildung 2.2 und 2.3), oxidische und schwach sulfidische Erze hydrometallurgisch (siehe Abbildung 2.2) aufgearbeitet. [24]

Abbildung 2.2: Bedeutung der unterschiedlichen Kupferproduktionsmöglichkeiten [24]

Abbildung 2.3:Verteilung des weltweit hergestellten Kupfers [24]

2.5 Aggregate

Für den ersten Schritt des Prozesses wird sehr häufig ein Schachtofen eingesetzt. Dieser besitzt den Vorteil, dass viele verschiedene Einsatzmaterialien Verwendung finden können. So kommt es zur Vermischung von kupferärmeren Stoffen, wie Schlacken, Schlämme, Legierungsschrotte, etc. mit Eisen, Kalk und Silika als Schlackenbildner und Koks. Die so erhaltene Schmelze und Schlacke können daraufhin getrennt abgezogen werden oder sind durch einen anschließenden Vorherd zu separieren. Einige Verunreinigungen wie Zink, Blei und Zinn lassen sich im Schachtofen zuerst reduzieren und verdampfen. Diese finden sich anschließend als Oxide im Abgas wieder. [3]

Weitere Aggregate zu Beginn des Prozesses können der TBRC (Top Blown Rotary Converter), der TSL-Konverter (Top Submerged Lance) und Elektroöfen sein. Der TBRC und insbesondere der TSL bieten den großen Vorteil der guten Baddurchmischung, während der E-Ofen eine geringere Menge an Abgas produziert. [3]

Der zweite Schritt des Verfahrensablaufes findet im Konverter (Peirce-Smith-Converter) statt. In diesen gelangt das Schwarzkupfer sowie kupferreichere Schrotte, Bronzen, Cu-Fe-Schrotte als auch Zinnlegierungen, etc., wobei Koks und eisenreiches Material hierbei als Wärmeträger und Reduktionsmittel dienen. Mittels Düsen wird sauerstoffangereicherte Luft in den Ofen geblasen, wodurch Elemente, welche eine höhere Sauerstoffaffinität als Cu besitzen, oxidiert und somit entfernt werden können. Dazu zählen Eisen als auch Aluminium, welche in die Schlacke gelangen, sowie Zink, Zinn und Blei, die sowohl in der Schlacke als auch im Abgas wiederzufinden sind. Es erfolgt entweder eine Rückführung dieser Reststoffe in den Prozess, wie die kupferreiche Schlacke oder die Erzeugung eines verkaufbaren Nebenprodukts (zinnreicher Staub). [3]

Anschließend ist noch eine weitere Befreiung des Kupfers von Verunreinigungen im Flammofen sowie in der Elektrolyse nötig [3]. Die Abbildung 2.4 stellt den Prozessverlauf des Recyclings in einem Fließdiagramm dar.

Abbildung 2.4: Verfahrensablauf bei der Sekundärerzeugung von Kupfer [5]

2.6 Konverterprozess

Im Jahre 1880 erfanden Mabhes und David den Konverterprozess für die Kupferindustrie, welcher bis dato nur noch für die Erzeugung von Stahl üblich ist. Heutzutage gibt es verschiedene nachfolgend beschriebene Konstruktionen. [6]

2.6.1 Peirce-Smith-Konverter

Weltweit finden sich über tausend Öfen dieser Art wieder und somit gilt dieser als das am häufigsten verwendete Aggregat. Es handelt sich hierbei um einen horizontalen Zylinder, welcher sich während des Prozesses drehen lässt. Eine schematische Darstellung ist in Abbildung 2.5 angeführt. [6]

Die Ofenabmessung kann bis zu 11 m Länge bei einem Durchmesser von 4,5 m betragen. Zusätzlich verfügt dieses Aggregat über Blasdüsen, die für eine gute Baddurchmischung und die Oxidation sorgen sollen. Darüber hinaus ist ein Brenner montierbar, der für eine zusätzliche Wärmezufuhr sorgen kann. [6]

Abbildung 2.5: Schematische Darstellung eines Peirce-Smith-Konverters [7]

2.6.2 Hoboken-Konverter

Diese veränderte Version des Peirce-Smith-Konverters, welche in verschiedensten Ländern weltweit verwendet wird, entwickelte "Metallurgie Hoboken N.V.", in Belgien. Der wesentliche Vorteil dieses Prozesses besteht darin, dass sich der SO₂-Gehalt besser regulieren lässt. Dies ist durch das veränderte Ofendesign, siehe Abbildung 2.6, zu erklären, wobei jedoch die Effizienz der Kupferproduktion durch die verursachten kleineren Abmessungen leidet. Der wesentliche Unterschied liegt am sogenannten "goose neck" an einem Ende des Ofens, welcher das Abgas effektiver ableitet. [6, 8, 9]

Abbildung 2.6: Querschnitt eines Hoboken-Konverters [10]

2.6.3 TMC (EI Teniente Modified Konverter)

Diese Art des Peirce-Smith-Konverters fand erstmals 1977 kommerziell Verwendung. Der Vorteil liegt bei der Erzielung einer höheren SO₂-Konzentration, wodurch sich das Abgas auch für die Produktion von Schwefelsäure eignet. Der TMC unterscheidet sich von den anderen Konvertervarianten durch sein längeres Design, wie in Abbildung 2.7 ersichtlich ist. Dadurch lässt sich an einem Ende eine Öffnung für die Ableitung des Gases und am anderen ein Loch für die Chargierung der Einsatzmaterialien ausführen. [6, 11]

Abbildung 2.7: Schema eines TMC-Konverters [7]

2.6.4 TBRC (Top-Blown Rotary Converter)

Der TBRC, welcher zunächst Anwendung in der Stahlindustrie fand, wurde erstmals bei INCO in Kanada für die Produktion von Kupfer verwendet. Der große Vorteil dieses Verfahrens liegt in der großen Flexibilität und der Möglichkeit verschiedenste Einsatzmaterialien (Elektroschrotte, Stäube, Schlämme, Schlacken) verwerten zu können. Durch eine wassergekühlte Lanze, welche zum Schmelzen, zur Oxidation, aber auch zur Reduktion dient, wird sauerstoffangereicherte Luft, normale Luft oder Sauerstoff eingebracht. Des Weiteren ist sowohl durch das Einblasen als auch durch die Rotation des Konverters eine hohe Effizienz erreichbar. Für das Abschlacken bzw. das Ausgießen des Gefäßes lässt sich der Ofen kippen [6, 12]. Ein solches Aggregat stellt die folgende Abbildung 2.8 dar.

9

Abbildung 2.8: Schematische Darstellung eines TBRCs [13]

2.6.5 ISASMELT-Prozess

Diese Verfahrensweise vereinigt den Schachtofen und den Konverter in einem Prozess. Als Einsatzmaterialien dienen zumeist Kupfer- und Elektroschrotte, welche einen Gehalt von 1–80 % Cu besitzen. Im ersten Schritt kommt es zu einer Reduktion, wodurch eine Schmelze mit 60–80 % Cu entsteht. Anschließend ist durch einen Oxidationsschritt ein noch höherer Metallgehalt erzielbar. Auch in diesem Prozess findet eine wassergekühlte Lanze Anwendung (siehe Abbildung 2.9), durch welche sowohl Luft, O₂, aber auch Erdgas oder Öl injizierbar sind. So lässt sich eine gute Baddurchmischung erzeugen, welche zu schnelleren Reaktionen führt. [14]

- und Staub Brennmittel Luft, O_2 und werden durch die Lanze eingebracht
- Einsatzstoffe gelangen durch eine Öffnung in das turbulente Bad
- Turbulenzen sorgen für eine schnelle Reaktion
- Lanze ist gekühlt und wird auch durch die Schlacke geschützt
- Flüssiges Kupfer und Schlacke können abgestochen werden

Ableitung für Abgas

Abbildung 2.9: Charakteristika und Schema des ISASMELT-Prozesses [14]

3 Stand des Wissens

Dieses Kapitel gibt einen Einblick in die durchgeführte Literaturrecherche und somit in den aktuellen Stand der Technik zur Verflüchtigung von Zinn im Konverter.

3.1 Grund für die Notwendigkeit der Zinnverflüchtigung

Wegen des immer häufigeren Auftretens von Zinn in Schrotten, wie z.B. in Elektrogeräten oder Kupferlegierungen, sowie der Seltenheit des Metalls in der Erdkruste (2 ppm Zinn im Vergleich zu z.B. 50 ppm Kupfer), wird die Rückgewinnung dieses Elements in unterschiedlichsten Prozessen immer wichtiger. Auch der relativ hohe Preis mit rund 15000 \$/t (zum Vergleich: Cu ~ 5800 \$/t, AI ~ 1700 \$/t, Zn ~ 2000 \$/t) spielt eine große Rolle. [4, 15]

Die Abbildung 3.1 zeigt die Entwicklung des Zinnpreises im laufenden Jahr 2015.

Abbildung 3.1: Zinnpreisverlauf von Jänner bis August 2015 [15]

Beim Kupferrecycling findet sich Zinn vor allem im Schachtofen sowie im Konverter wieder. Dabei gelangt dieses sowohl in die Schmelze als auch in die Schlacke und in das Abgas. Um eine leichte Rückgewinnung zu ermöglichen, muss das Metall in die letztgenannte Phase überführt werden. Dies geschieht im Konverter, dessen Prozessablauf in zwei Blasperioden unterteilt wird. Dabei lässt sich eine Temperatur erzielen, welche eine SnO-Verflüchtigung begünstigt. Die Bildung von diesem erfolgt durch die Zugabe eines Reduktionsmittels, zumeist Koks, und die dadurch auftretende reduzierende Fahrweise in der zweiten Blasperiode, welche das in der Schlacke vorhandene SnO₂ reduziert. Dies ist nötig, da SnO₂ und Sn bei den vorliegenden Temperaturen nicht verflüchtigbar wären. [4]

Für die Entfernung von unerwünschten Elementen im Kupfer kommt zuvor in der ersten Periode die selektive Oxidation zum Einsatz. Dieser Vorgang kann für unedlere Elemente Anwendung finden, wie etwa Sn, Ni, Fe und Zn. In der anschließenden Abbildung 3.2 sind die hierbei extrahierbaren Metalle, welche unter der Linie des Kupfers liegen, zu sehen. Diese umfassen jene, deren freie Bildungsenthalpien der Metalloxide einen negativeren Wert als der von Cu₂O aufweisen. [16]

Abbildung 3.2: Freie Bildungsenthalpie von verschiedenen Metalloxiden als Funktion der Temperatur [17]

Des Weiteren ist für die Möglichkeit der Entfernung eine geringe Löslichkeit des entstehenden Metalloxides in Kupfer sowie ein genügend großer Dichteunterschied und eine passende Kristallform Voraussetzung. [16]

Für Zinn sind diese Bedingungen prinzipiell gegeben. Die Herausforderung bei diesem Metall stellt die Struktur von SnO₂ dar, welche lange, spießige Nadeln, Hohlkristalle und sternförmige Formen annehmen kann. Aus diesem Grund wird der Aufstieg der SnO₂-Teilchen in der Schmelze verzögert. Somit erfolgt eine langsamere Abnahme des Zinngehaltes. Des Weiteren können sich Hohlkristalle mit Kupfer füllen, wodurch keine Abtrennung mehr von der Schmelze geschieht und stets ein Gehalt an Zinn zurückbleibt. [16]

Dieses Element kann in der Gasphase als Sn, SnO₂, SnO, Sn₂O₂, Sn₃O₃, Sn₄O₄ vorliegen, jedoch gelten in Form von festen Reinstoffen nur Sn, Sn₃O₄ und SnO₂ als stabil. Für die Entstehung von gasförmigen SnO lässt sich ein idealer Sauerstoffpartialdruck berechnen. [16]

In der folgenden Abbildung 3.3 zeigt sich an der B-B-Linie der Koexistenzbereich von Sn und SnO₂, wobei links davon nur Sn und rechts nur SnO₂ als stabil gelten. [16]

Abbildung 3.3: Dampfdrücke des Sn-O-Systems bei einer Temperatur von 1250 °C [18]

3.2 Auftreten von Zinn in Schlacke

Zinn tritt in der Schlacke in den drei verschiedenen Phasen, Sn, SnO und SnO₂ auf, wobei sich dies durch den Sauerstoffpartialdruck beeinflussen lässt. In Calcium-Ferrit-Schlacken liegt bei 1250 °C und einem Partialdruck > 10^{-8} atm SnO₂ als Hauptphase des Zinns vor und bei einem Druck < 10^{-8} atm ist SnO vermehrt präsent. [4, 19]

Auch für Eisen-Silika-Schlacken gelten ähnliche Voraussetzungen, wobei bei dieser keine genaue Aussage über das Auftreten von Sn über einem Partialdruck > 10⁻⁸ getroffen werden kann, da es hier zur Bildung von festen Magnetitformen in der Schlacke kommt. Dies zeigt sich in Abbildung 3.4. [4, 19]

Abbildung 3.4: Verteilung von Zinn zwischen Schlacke und Kupfer als Funktion von Sauerstoffpartialdruck, Temperatur und Art der Schlacke [4]

Darüber hinaus ist das Auftreten der Phasen SnO (Sn^{2+}) und SnO₂ (Sn^{4+}) in der Schlacke bei 10⁻⁸ atm durch eine thermodynamische Berechnung mit Hilfe der Gleichung 3.1 und der folgenden Gleichgewichtskonstante (3.2) kalkulierbar. [4]

$$SnO(l) + 0.5O_2(g) = SnO_2$$
 3.1

$$K = \frac{a_{SnO_2}}{a_{SnO}} \times p_{O_2}^{0.5}$$
 3.2

Die Abbildung 3.5 stellt einen Vergleich der bei der Produktion üblich auftretenden Verteilungsverhältnisse (für den Schachtofen 0,8 und für den Konverter 16) mit den von Takeda et al. [19] ermittelten Daten dar. In diesem Diagramm sind die idealen Partialdrücke eingezeichnet, wobei jedoch nur der Konverter dies erfüllt und der Schachtofen mit üblicherweise 10⁻¹⁰ atm vom Gleichgewicht abweicht. Somit tritt ein vermehrter Verlust von Zinn in der Schlacke auf als dem vorliegenden Sauerstoffpartialdruck entspricht. [4]

3.3 Aktivitätskoeffizient von Zinn in Kupfer und Schlacke

Obwohl es bereits mehrere Untersuchungen über die Aktivität von Zinn im Kupfer gibt, kann keine eindeutige Aussage über den auftretenden Koeffizienten gemacht werden, da verschiedenste Ergebnisse (bedingt auch durch unterschiedliche Temperaturen sowie Partialdrücke) vorliegen (siehe Tabelle 3.1). [4]

Tabelle 3.1: Vergleich der Sn-Aktivitätskoeffizienten im Kupfer von verschiedenen Autoren [4]

Referenz	Temperatur [°C]	Sauerstoff- Partialdruck [atm]	Akitivitätskoeffizient $\gamma^0_{Sn(l)}$
Hager et al. (1970)	1320	-	0,055
Hultgren et al. (1973)	1127	-	0,007
Sigworth and Elliott (1974)	1200	-	0,048
Azakami and Yazawa (1976)	1200	6,5·10 ⁻⁶	0,11
Nagamori and Mackey (1977)	1200	10 ⁻¹¹ -10 ⁻⁶	0,0465
Nagamori and Mackey (1977)	1300	10 ⁻¹¹ -10 ⁻⁶	0,0529
Takeda et al. (1983)	1250	10 ⁻⁹	0,12

Für den Aktivitätskoeffizienten in der Schlacke ist eine bessere Aussage erzielbar, da die verschiedenen Untersuchungen genauer übereinstimmen. So lässt sich erkennen, dass $\gamma_{SnO(I)}$ bei einer Eisen-Silika-Schlacke bei Temperaturen zwischen 1200–1300 °C in Bereich von 0,8–2 liegt. Für Calcium-Ferrit-Schlacken kommt es bei den selben Temperaturen und einem O₂-Partialdruck von 10⁻¹² atm bis 10⁻⁹ atm zu Werten zwischen 0,7 und 1,2. Auch Takeda et al. geben Werte innerhalb von 2 und 5 für $\gamma_{SnO(I)}$ bei 1250 °C an. Des Weiteren lässt sich aus dieser Arbeit eine Unabhängigkeit des Aktivitätskoeffizienten vom Sauerstoffpartialdruck bei 1250 °C erkennen (Abbildung 3.6). [4, 19]

Abbildung 3.6: Aktivitätskoeffizient von SnO als Funktion von p_{O2} (durchgezogene Linie: Calcium-Ferrit-Schlacke, gestrichelte Linie: Eisen-Silika Schlacke) [4]

Zusätzlich zeigen Takeda et al. [19] Ergebnisse zum Aktivitätskoeffizienten von SnO in dem Dreiphasendiagramm von einer FeO_x -SiO₂-CaO-Schlacke. Dieses wird in Abbildung 3.7 dargestellt [20]. Daraus lässt sich ablesen, dass es bei hohen CaO-Konzentrationen ab einer Aktivität > 2 zu großen Schwankungen der Werte kommt. Weiters ist zu erkennen, dass das FeO_x /SiO₂-Verhältnis im Vergleich zum CaO-Gehalt nur einen geringen Einfluss hat. [20]

Abbildung 3.7: Aktivitätskoeffizient von SnO in einer FeO_x-SiO₂-CaO-Schlacke [20]

3.4 Chemisches Verhalten von SnO

Einen Anhaltspunkt für das Auftreten von Metalloxiden liefert ihr saures oder basisches Verhalten. Eine Abschätzung kann durch folgende Mittel getroffen werden: [4]

- Verhalten der Nachbarn im Periodensystem
- Chemische Bindung zwischen dem Metallkation und dem oxidischen Ion
- Basische Oxide geben ein oxidisches Ion ab (schwache elektrostatische Kräfte)
- Saure Oxide neigen zur Absorption (starke elektrostatische Kräfte)
- Thermodynamische Berechnungen
- Experimente, die das Verhalten sowohl in saurer als auch in basischer Schlacken untersuchen

Durch die Betrachtung dieser verschiedenen Aspekte kann für SnO der Rückschluss erfolgen, dass es sich um ein neutrales Metalloxid in der Schlacke handelt, wodurch sich das gleiche Verhalten in saurer (Eisen-Silikat) und basischer (Kalzium-Ferrit) Schlacke begründen lässt. Nur in einer FeO_x -SiO₂-CaO-Schlacke können höhere Werte vermutet werden, was auch in der folgenden Abbildung 3.8 zu erkennen ist. [4]

Abbildung 3.8: Iso-Aktivitätskoeffizienten-Linien von $\gamma_{SnO(I)}$ in FeO_x-SiO₂-CaO-Schlacke in Abhängigkeit von deren Gewichts-% [4]

3.5 Einfluss des CO₂/CO-Verhältnisses auf die Zinnausbringung

Eine wesentliche Rolle für die SnO-Verflüchtigung spielt das CO₂/CO-Verhältnis, welches durch die Hinzugabe von Koks während der Produktion im Konverter beeinflussbar ist. Dieses muss so eingestellt sein, dass es zu einer Umwandlung von SnO₂ zu SnO kommt und dennoch keine zu stark reduzierenden Bedingungen entstehen, bei denen nicht verflüchtigbares Zinnmetall entstehen könnte [19]. Im Laufe des Prozesses können folgende Reaktionen 3.3–3.11 auftreten. Diese laufen bei den Temperaturen im Konverter ausschließlich nach rechts ab: [16]

SnO(g) + C = Sn(I) + CO	3.3
SnO(I) + C = Sn(I) + CO	3.4
$SnO_2 + 2C = Sn + 2CO$	3.5
$SnO_2 + C = SnO(g) + CO$	3.6
$SnO_2 + C = SnO(I) + CO$	3.7
$C + \frac{1}{2}O_2 = CO$	3.8

$$C + O_2 = CO_2$$

 $CO + \frac{1}{2}O_2 = CO_2$
3.9
3.10

$$CO_2 + C = 2 CO$$
 3.11

Die in Abbildung 3.9 gezeigten Diagramme veranschaulichen, dass das CO_2/CO -Verhältnis einen wesentlichen Einfluss auf die Sn-Verflüchtigung hat. Hierbei ist bei fast jeder Temperatur ein Maxima bei einem CO-Gehalt von 30–35 % erkennbar. Untersuchungen von Stibich [16] geben das thermodynamische Gleichgewicht bei 24 % CO und 76 % CO_2 an. [16]

Des Weiteren lässt sich ein unterschiedliches Verhalten bei den jeweiligen Temperaturen verzeichnen. So kann durch höhere Werte ein besserer Zielwert erreicht werden. Die stärkste Verflüchtigung laut dieser Diagramme liegt bei 1350 °C, welche auch etwa der erzielten Temperatur im Konverter entspricht. [16]

Abbildung 3.9: Einfluss der Gaszusammensetzung auf die Sn-Verflüchtigung [21]

Die Abbildung 3.10, welche der Form eines Baur-Glaessner-Diagramms entspricht, weist auf einen Zusammenhang zwischen der Temperatur und der Aktivität von SnO hin. Hieraus zeigt sich sehr gut, dass sowohl eine steigende Temperatur, als auch eine Abnahme der SnO-Aktivität zu einer Verbreiterung des SnO-Gebiets führen, so dass ein größeres Stabilitätsfeld

vorhanden ist. Jedoch kommt es auch zu einer Verminderung des Dampfdrucks, wodurch ungünstigere Bedingungen für eine Verflüchtigung vorliegen würden. [16]

Abbildung 3.10: Zustandsdiagramm für das System Sn-C-O als Funktion der Temperatur [22]

Eine weitere Untersuchung mit Hilfe einer HSC-Berechnung deutet wie die vorangegangen Literaturstellen darauf hin, dass eine Temperatursteigerung für eine Erweiterung des SnO-Bereichs sorgt. Des Weiteren lässt sich unter Berücksichtigung, dass p_{CO} und p_{CO2} logarithmisch aufgetragen sind, bestätigen, dass eine gute Stabilität bei ca. 80 % CO₂ und 20 % CO gegeben ist [23]. Die Diagramme in Abbildung 3.11 zeigen jeweils log p_{CO2} über log p_{CO} in Abhängigkeit von der Temperatur, wobei der graue Bereich das SnO₂-Gebiet darstellt, blau SnO und grün Sn.

Abbildung 3.11: Abhängigkeit der Stabilitätsbereiche von Sn und Sn-Oxiden als Funktion der Partialdrücke von CO und CO₂ sowie der Temperatur (links oben 1000 °C, rechts oben 1100 °C, links unten 1200 °C, rechts unten 1300 °C) [23]

3.6 CO/CO₂-Gehalt in der Praxis

Die von Stibich [16] durchgeführten Untersuchungen ergaben, dass es wegen einiger Parameter sehr schwer ist, die optimalen Bedingungen zu erreichen. Eine unterschiedliche Stückigkeit von Koks sorgt z.B. aufgrund der verschiedenen spezifischen Oberflächen für starke Schwankungen des CO-Gehalts in einer Charge. Des Weiteren kann nicht über den gesamten Verlauf des Prozesses ein konstantes CO₂/CO-Verhältnis erzielt werden. Dies lässt sich durch die unterschiedlich auftretenden Reaktionen von Koks mit Sauerstoff und Metalloxiden erklären. Es tritt vor allem am Beginn der Blasperiode eine Reduktion der Oxide auf, wodurch laut der folgenden Gleichungen (3.12 und 3.13) ein hoher Anteil an CO₂ zu erwarten ist. [16]

$2 \operatorname{MeO} + \mathrm{C} = 2 \operatorname{Me} + \mathrm{CO}_2$	3.12
$MeO + CO = Me + CO_2$	3.13

Ein weiterer Anstieg des CO_2 resultiert aus einer Verlängerung der Blasphase. Das große Angebot an Sauerstoff ermöglicht eine gezielte Weiterverbrennung von CO, da durch die zunehmende Dauer des Prozesses immer weniger O_2 vom Metallbad verbraucht wird und dadurch für die CO_2 -Bildung zur Verfügung steht. [16]

Somit sind vor allem am Beginn und am Ende von jeder Charge gute Bedingungen für eine Verflüchtigung des Sn vorhanden. Dies erweist sich jedoch als problematisch, wenn berücksichtigt wird, dass in den ersten Minuten noch sehr wenig zweiwertiges Zinn zur Verflüchtigung zur Verfügung stehen, da sich dieses erst im Laufe der Zeit stetig ausbilden. Gegen Abschluss der Phase ist dann bereits ein Großteil des Kokses verbrannt. Deswegen liegen nur noch kleine Mengen SnO₂ für die Reduktion vor. [16]

3.7 Verhalten der Schlacke bei der Sn-Verflüchtigung

Die im Konverter-Prozess entstehende Schlacke spielt eine wesentliche Rolle bei der Gewinnung von Zinn aus der Schmelze. Sowohl eine hohe Oberflächenspannung als auch eine niedrige Viskosität und Dichte erweisen sich in diesem Zusammenhang als günstig. Das Zinn, welches großteils als Oxid vorliegt, da durch Einblasen von Sauerstoff die Bildung von SnO₂ verursacht wird, kann mit Hilfe des Koks reduziert und verflüchtigt werden. Der Rest verteilt sich als metallisches Zinn in Metalltropfen in der Schlacke. Eine gezielte SnO-Bildung ist mittels eines Oxidationsprozesses nicht durchführbar, weil SnO im Metallbad als unbeständig gilt und so eine sofortige Bildung von SnO₂ erfolgt. Zinndioxid wird somit in die Schlacke überführt, wo es aufgrund seines hohen Schmelzpunktes in fester Form vorliegt. [16]

Die folgenden Bildungsreaktionen 3.14-3.18 können auftreten: [16]

$Sn(I) + O_2 = SnO_2(s)$	3.14
Sn (l) + ½ O ₂ = SnO (g)	3.15
SnO (g) + $\frac{1}{2}O_2 = SnO_2(s)$	3.16
$Sn(I) + \frac{1}{2}O_2 = SnO(I)$	3.17
SnO (I) + $\frac{1}{2}O_2 = SnO_2(s)$	3.18

3.8 Einfluss von CaO und SiO₂ in der Schlacke

Verschiedenste Untersuchungen ergaben, dass eine Abnahme des Schlacken-Schmelze-Verteilungsverhältnisses von Zinn durch die Zunahme des CaO-Gehalts der Schlacke erzielbar ist. Dies stellt Abbildung 3.12 dar. [4]

Abbildung 3.12: Abhängigkeit der Zinnverteilung von der CaO-Konzentration in der Schlacke bei konstantem Fe/SiO₂-Verhältnis [4]

Des Weiteren steigt durch die Zugabe von Kalk in die Schlacke die SnO-Aktivität. Dadurch lässt sich der Vorgang der Verflüchtigung erleichtern. Jedoch kann die Kinetik der Silikatbildung (nSnO·SiO₂) bei größeren Werten die SnO-Entfernung noch immer verhindern [16]. Im Gegensatz dazu hat das Fe/SiO₂-Verhältnis einen kleineren Einfluss auf dieses Phänomen. Dies wird durch mehrere Literaturstellen [4, 16, 19, 20] bestätigt und lässt sich in folgender Abbildung 3.13 unter Berücksichtigung von Messfehlern erkennen. [4]

Abbildung 3.13: Abhängigkeit der Zinnverteilung vom Fe/SiO₂-Verhältnis in der Schlacke bei konstanter CaO-Konzentration [4]

4 Versuchsdurchführung

Im Laufe dieser Arbeit erfolgte die Durchführung verschiedener Versuchsreihen an den Produktionsanlagen des Unternehmens "Montanwerke Brixlegg AG" in Brixlegg, Tirol. Ziel war es die Zinnausbringung im Flugstaub durch die Veränderung von diversen Parametern zu erhöhen. Untersucht wurde der Einfluss durch:

- Änderung der Stückigkeit des Kokses als klassisches Reduktionsmittel (Mischung von bis zu drei verschiedenen Fraktionsgrößen)
- Verwendung eines Ersatz- bzw. Zusatzreduktionsmittels (Stanzabfälle und Gusseisenbriketts)
- Unterschiedliche Schlackenbildner (Kalkstein und Quarz) und ihre Zugabe sowohl in der ersten, als auch in der zweiten Blasphase.

4.1 Konverterprozess

Bei der für die Versuche verwendeten Anlage handelt es sich um einen Peirce-Smith Konverter, welcher in Abbildung 4.1 und Abbildung 4.2 dargestellt ist. In diesen wird sowohl Schwarzkupfer vom Schachtofen (bis ca. 22 t), als auch verschiedene Schrottsorten, wie Fe-(20 % Cu) und Zn-haltige (75 % Cu) Materialien sowie Shredderschrott (65 % Cu) oder verzinntes Material (97 % Cu) chargiert. Des Weiteren erfolgt die Zugabe von Schlackenbildnern und von Reduktionsmitteln.

Abbildung 4.1: Konverter der Montanwerke Brixlegg

Abbildung 4.2: Abguss am Konverter

Der Konverter besteht aus einem liegenden, feuerfest ausgemauerten Stahlzylinder. An einem Ende kommt es zur Ableitung des Abgases, am anderen lässt sich ein Brenner durch eine Öffnung zuschalten (siehe Abbildung 4.3). Dabei handelt es sich um einen AIROX-Brenner mit 5 MW. Dieser dient zum Warmhalten der Schmelze und des Ofens sowie zur Aufwärmung von Kaltschrotten. Während des Verblaseprozesses besteht üblicherweise kein Bedarf an zusätzlicher Energie, da diese durch die Oxidation von Elementen sowie durch das Reduktionsmittel eingebracht wird. Als Brenngas dient Erdgas (50–500 Nm³/h) und zur Verbrennung erfolgt die Zugabe von entweder reinem Sauerstoff oder Luft. Über zehn Winddüsen, die in Abbildung 4.4 ersichtlich sind, erfolgt das Einbringen der Luft in die Schmelze, wodurch es zum erwünschten Oxidationsprozess kommt. Dafür werden etwa 4000 Nm³/h Luft benötigt.

Abbildung 4.3: Am Ende des Konverter installierter Brenner

Abbildung 4.4: Blasdüsen am Umfang des Konverters

Der Prozess läuft in zwei Schritten ab:

- Blasphase: Anfangs kommt es zur Zugabe von Schwarzkupfer sowie von Schrotten, rückgeführter Schlacke und Schlackenbildnern. Anschließend startet der erste Blasprozess, welcher etwa 45 min dauert. Danach geschieht die Entfernung der Schlacke durch Ausleeren. Dies wird durch die Schwenkbarkeit des Ofens ermöglicht.
- 2. Blasphase: Nach dem Abschlacken werden das gewünschte Reduktionsmittel (meistens ca. 200–300 kg Koks) sowie Schlackenbildner hinzugegeben. Dann kommt es wiederum zu einem Blasprozess, der 60–90 min dauert. Durch ständige Probenahme des Kupfers kann der Schmelzer ein Ende des Vorganges erkennen. Anschließend erfolgt erneut das Abschlacken bzw. das Ausleeren des Kupfers,

welches entweder in Blöcke gegossen wird oder sich flüssig in den Anodenofen chargieren lässt.

Temperaturen während des gesamten Prozesses liegen meist zwischen 1400 und 1500 °C. In der anschließenden Abbildung 4.5 werden die üblichen Einsätze und der Ablauf im Zuge des Konverterprozesses bei den Montanwerken dargestellt.

Abbildung 4.5: Schematische Darstellung des Konverterprozesses bei den Montanwerken Brixlegg [5]

Das Abgas wird während des ganzen Prozesses abgezogen und gelangt durch eine Absetzkammer in einen Rauchgaskühler, wo es von 600 °C auf etwa 150 °C abkühlt und weiters in einen Spülluftfilter, welcher zur Abfiltrierung des Staubes dient. Dieser lässt sich dann in "Big Bags" sammeln und ist als Nebenprodukt aufgrund seiner Zinn- und Zinkgehalte verkaufbar. Das entstaubte Abgas kann dann mit einer MgO-haltigen Waschsuspension in zwei Ebenen in Kontakt gebracht werden, wodurch sich aus dem enthaltenen SO₂ ein MgSO₄-Produkt bildet. Als Endprodukte entstehen je nach Charge ca. 13–16 t Rohkupfer (siehe Abbildung 4.6) sowie 2–4 t Schlacke in der ersten und 3–5 t in der zweiten Blasphase aber auch ca. 1 t Staub.

Abbildung 4.6: Abguss von Kupferblöcken

Für die Auswertung der verschiedenen Chargen erfolgte eine Probenahme bei der ersten sowie zweiten Schlacke und des Kupfers am Ende des Prozesses. Des Weiteren sollten die standardisierten Tagesanalysen (Mischung der gesamten Menge an Staub eines Tages) des Konverterstaubs Berücksichtigung finden. Die Staub- und Schlackenproben wurden anschließend im Labor für eine Analyse mittels RFA präpariert.

4.2 OPC-Messung

Als zusätzliches Instrument für die Untersuchung der Reaktionen im Konverter war ein Gerät der Firma "Semtech", siehe Abbildung 4.7, installiert. Dieses konnte mit Hilfe eines kleinen Spaltes zwischen dem Ofen und dem Abgasrohr (Abbildung 4.8) eine Messung durchführen. Das OPC (Optical Production Control) basiert auf der Idee, dass es durch die hohen Temperaturen bei metallurgischen Prozessen zu einer Emittierung von Licht kommt, welches für verschiedenste Elemente und ihre Verbindungen charakteristisch ist (SnO, PbO, CN). Diese Technologie ermöglicht es, den Prozessverlauf in Echtzeit zu überwachen und anschließend eine Aussage über die Dauer und Stärke der Reaktion zu treffen.

Abbildung 4.7: OPC-Messgerät zur Abgasanalyse

Abbildung 4.8: Messstelle an der Abgasöffnung

In Abbildung 4.9 ist die Abfolge von verschiedenen Chargen im Laufe eines Tages dargestellt. Dabei zeigt die braune Linie die SnO-Konzentration und die grüne die Intensität des Lichtes. Des Weiteren steht "Blau" für das CN-Signal und "Gelb" für PbO während des Prozesses. Der Verlauf der grünen Linie zeigt deutlich das Auftreten der zwei unterschiedlichen Blasphasen, da die Unterbrechung durch das notwendige Abschlacken und die Chargierung der Reduktionsmittel zu einer Unterbrechung des Lichtsignals führt. Es lässt sich auch sehr gut erkennen, dass erst die Zuführung des Kokses oder des Ersatzreduktionsmittels ein markantes Auftreten des SnO im Abgas ermöglicht. Nach etwa zwei Drittel der Blaszeit in der zweiten Phase ist das zu erwartende Absinken des Zinnverlaufs ersichtlich. Das CN-Signal wird maßgeblich durch die Einbringung von Koks verändert, so führt die Verringerung von dessen Menge und der Ersatz durch ein anderes Reduktionsmittel (wie etwa Stanzschrotte) zu einem erheblichen Absinken der blauen Kurve. Dies muss jedoch nicht heißen, dass die Sn-Ausbringung dadurch stark abnimmt, da auch andere Reduktionsreaktionen auftreten können. Die anschließende Abbildung 4.9 befindet sich noch einmal vergrößert im Anhang.

Abbildung 4.9: Darstellung eines üblichen OPC-Verlaufs

5 Ergebnisse

Dieses Kapitel beschreibt die einzelnen Versuchsreihen und gibt die unterschiedlichen Ergebnisse wieder.

5.1 Versuchsreihen mit unterschiedlichen Rahmenbedingungen

Um den gewünschten Sn-Gehalt im Staub von 21 % zu erreichen, kam es zur Veränderung von verschiedenen Versuchsparametern. Die dadurch erhaltenen Ergebnisse wurden aufgezeichnet, analysiert und verglichen.

5.1.1 "Konventionelle" Versuchsreihe mit 200 kg Koks

Im Laufe der Untersuchungen in Brixlegg kam es neben der Durchführung von Versuchsreihen auch zur Erfassung der Daten von "konventionellen" Chargen. Bei diesen finden 200 kg gröberer Koks Einsatz, ohne speziellen Zusatz von Schlackenbildner oder großen Mengen an anderen Schrotten. Während dieser Chargen wurde ausschließlich auf die Blaszeit der zwei Phasen geachtet.

Wie in Abbildung 5.1 ersichtlich ist, schwankt der Zinngehalt im Staub während dieser Versuche erheblich. Obwohl auch vereinzelt Werte von bis zu 30 % auftreten, kann durch einen teilweisen Abfall auf bis zu rund 12 % nicht von einem wünschenswerten Ergebnis gesprochen werden, da durch die großen Schwankungen die durchschnittliche Konzentration nicht mehr als 21 % erreicht. Die wechselnde Zusammensetzung erschwert zusätzlich den Verkauf des Produktes. Um dies zu verhindern, erfolgte die Durchführung der bereits genannten verschiedenen Versuchsreihen, die im weiteren Verlauf der Diplomarbeit konkreter beschrieben werden.

Abbildung 5.1: Zinnkonzentration im Staub bei der "konventionellen" Prozessführung mit 200 kg Koks als Funktion der Zeit

5.1.2 Versuchsreihe "Koksstückigkeit" (150 kg fein + 75 kg grob)

Um sowohl eine Koksverbrennung am Beginn als auch möglichst gegen Ende des Prozesses gewähren zu können, kam es zum Einsatz von zwei verschiedenen Fraktionen des Reduktionsmittels. Der gröbere Koks (Durchmesser > 100 mm), welcher üblicherweise im Schachtofen Einsatz findet, ist in Abbildung 5.3 dargestellt. Den feineren (Durchmesser < 80 mm), welcher bei diesem Prozess im Regelfall angewendet wird, zeigt Abbildung 5.2.

Abbildung 5.2: Feinerer Koks mit d < 80 mm

Abbildung 5.3: Gröberer Koks mit d > 100 mm

Durch diese Zugabe war wiederum keine wirkliche Konstanz der Konzentration gewährleistet, jedoch lag der geringste Wert bei rund 16 % Sn und der höchste bei über 24 % Sn im Staub. Der Mittelwert betrug etwa 20,8 %. Die Abbildung 5.4 zeigt die unterschiedlichen Sn-Gehalte in einem Diagramm.

Abbildung 5.4: Versuchsergebnisse bei der Verwendung von unterschiedlicher Koksstückigkeit (150 kg grob und 75 kg fein) als Funktion der Zeit

5.1.3 Versuchsreihe "Schlackenbildner Quarz 2. Phase"

In einer anderen Versuchsreihe kam Quarz zum Einsatz (Abbildung 5.5), welcher eine Zusammensetzung von 89 % SiO₂, 5 % AI_2O_3 , 2 % CaO, 2 % Fe_2O_3 und 2 % Feuchte aufwies.

Abbildung 5.5: Darstellung des Quarzes für die 2. Stufe im Konverter

Durch den Einfluss des Schlackenbildners, welcher gemeinsam mit verschieden stückigem Koks eingesetzt wurde, ließen sich Konzentrationen weit über den gewünschten 21 % erzielen und der Mittelwert der Gehalte in den Stäuben lag bei 26,9 % Sn. Die einzelnen Versuchsergebnisse sind im Diagramm der Abbildung 5.6 dargestellt.

5.1.4 Versuchsreihe "Koksstückigkeit mit 80 kg fein, 80 kg mittel, 80 kg grob"

Um die Koksverbrennung noch weiter zu verbessern und auf den Prozess aufzuteilen, sollte mit Hilfe einer Siebmaschine (Abbildung 5.7) der feine Koks gesiebt werden, um drei verschiedene Fraktionen zu erhalten. Dabei ließ sich mit einem Sieb mit einer Maschenweite von 40 mm (Abbildung 5.8) eine Aufspaltung des verwendeten Koks erreichen. Somit erfolgte der Einsatz von 80 kg des Reduktionsmittels mit einem Durchmesser < 40 mm, 80 kg zwischen 40–80 mm und 80 kg mit > 100 mm, was dem groben Koks entspricht. Zusätzlich fand aufgrund der positiven Ergebnisse des Vorversuches die Anwendung von Quarz als Schlackenbildner in der 2. Phase statt.

Abbildung 5.7: Siebanlage zur Klassierung des Kokses

Abbildung 5.8: Sieb mit 40 mm Maschenweite

Das Diagramm in Abbildung 5.9 zeigt den Verlauf der Zinnkonzentration, welche wiederum ausschließlich über 21 % betrug. Mit einem Mittelwert von 24,2 % ist unter dem Ausschluss des ersten Wertes eine gewisse Beständigkeit der Ausbringung erkennbar.

Abbildung 5.9: Versuchsergebnisse durch den Einsatz von Quarz in der 2. Phase und drei verschiedenen Koksstückigkeiten (80 kg fein, 80 kg mittel, 80 kg grob) als Funktion der Zeit

5.1.5 Versuchsreihe "Eisenstanzmaterial als Reduktionsmittel"

Um eine Ausbringung mit geringerem Kokszusatz zu untersuchen, kam Eisenstanzmaterial als "Ersatzreduktionsmittel" zum Einsatz, wie in Abbildung 5.10 dargestellt ist. Zusätzlich erfolgte noch der Einsatz von ca. 100 kg Koks, welcher auf zwei unterschiedliche Fraktionen aufgeteilt wurde. Auch die Zugabe von Quarz blieb konstant, um die gewünschte Ausbringung zu erzielen.

Abbildung 5.10: Fe-Stanzmaterial als alternatives Reduktionsmittel

Durch diese Materialien konnte wiederum der gewünschte Zinnanteil im Staub erreicht werden, der auch keine großen Schwankungen aufwies und nie unter 21 % fiel (siehe Abbildung 5.11).

Abbildung 5.11: Versuchsergebnisse durch den Einsatz von Eisenstanzmaterial als Reduktionsmittel + Koks (50 kg fein, 50 kg grob) und Quarz in der 2. Phase als Funktion der Zeit

5.1.6 Versuchsreihe "Schlackenbildner Quarz in 1. Phase und 2. Phase"

Da die Werte des Vorversuches dem Ziel entsprachen, ließ sich in einer weiteren Chargenreihe der Einfluss von Quarz als Schlackenbildner sowohl in der ersten als auch in der zweiten Blasphase untersuchen. Dabei zeigt die folgende Abbildung 5.12, dass es zum ersten Mal zu einer gewissen Stabilität des Sn-Gehalts im Staub kam und auch der Mittelwert von 25,4 % weit über dem Ziel von 21 % lag.

Abbildung 5.12: Versuchsergebnisse beim Einsatz von Schlackenbildner Quarz in der ersten und zweiten Blasphase + Fe-Stanzmaterial + Koks (50 kg fein, 50 kg grob)

5.1.7 Versuchsreihe "Schlackenbildner Quarz in 1. Phase und Kalkstein in 2. Phase"

Da in vielen Literaturstellen [4, 16, 19, 20] auf einen möglichen positiven Effekt von Kalk hingewiesen wird, erfolgte die Durchführung einer Versuchsreihe bei der in der zweiten Blasphase Kalkstein (siehe Abbildung 5.13) den Quarz ersetzte. Dieser wies die Zusammensetzung 92 % CaCO₃, 3 % SiO₂, 2 % Al₂O₃, 1 % Fe₂O₃ und 2 % Feuchte auf. Aufgrund einer besseren Vermischung durch die Zersetzung von CaCO₃ zu CaO und gasförmigem CO₂ wurde des Weiteren ein zusätzlicher positiver Effekt vermutet.

Abbildung 5.13: Darstellung des Kalksteins als Ersatz für Quarz in der 2. Phase

Jedoch ließ sich der erhoffte positive Effekt des Kalks nicht beobachten (siehe Abbildung 5.14). Die mittlere Sn-Ausbringung wies hierbei 18,2 % auf. Dabei lag keiner der gemessenen Werte über 21 % Sn im Staub.

5.1.8 Versuchsreihe "Gusseisenbriketts als Reduktionsmittel"

Beim letzten Versuch kam wiederum Fe-Schrott als Ersatzreduktionsmittel für Koks zur Anwendung. Dieses Mal wurden Gusseisenbriketts eingesetzt (Abbildung 5.15). Durch ihre Zusammensetzung (fast ausschließlich Eisen und Kohlenstoff) sollte eine hohe Sn-Konzentration möglich sein.

Abbildung 5.15: Gusseisenbriketts als Alternative zu Koks

Mit einem Mittelwert von 24 % Zinn im Staub war ein zufriedenstellender Wert erzielbar, jedoch muss berücksichtigt werden, dass dies nur aus einem sehr hohen zweiten Tageswert resultierte. Um einen Messfehler ausschließen zu können, wäre eine erneute Untersuchung der ersten Probe von Nöten gewesen. Diese ließ sich jedoch nicht mehr analysieren, da der erhaltene Staub bereits aus dem Labor aussortiert wurde. Aufgrund eines notwendigen Betriebsstillstandes gab es keine weiteren Versuche, welche den Effekt der Gusseisenbriketts auf die Zinnausbringung veranschaulicht hätten. Die Abbildung 5.16 zeigt die erzielten Werte in einem Diagramm.

Abbildung 5.16: Versuchsergebnisse beim Einsatz von Gusseisenbriketts + Koks (50 kg grob, 50 kg fein), + Quarz in der 1. und 2. Phase

5.2 Analyse der Einzelstaubproben

Da routinemäßig ausschließlich die Untersuchung eines Tageswertes des Zinngehalts im Labor erfolgte, mussten für einige Chargen auch die Einzelproben berücksichtigt werden, um einen Rückschluss auf den dadurch verursachten Messfehler zu erhalten. Daher kam es zu einer zusätzlichen Analyse der Proben, welche normalerweise nach Befüllung eines "Big Bag" (dies entspricht etwa einer Charge und keinem konkreten Zeitpunkt) genommen wurde und am Ende des Tages mit den restlichen Proben vermischt werden sollte. Hierzu sind in Abbildung 5.17 die verschiedenen Sn-Konzentrationen ersichtlich, wobei die blauen Werte den Einzelproben entsprechen, die roten Punkte den üblichen Tagesproben und die grünen Markierungen den berechneten Tagesmittelwert widerspiegeln. Die einzelnen Nummern geben die Reihenfolge der Probennahme an.

Abbildung 5.17: Vergleich der Zinngehalte der Messungen der Einzelstaubproben zu den Tagesanalysen (Einzelproben: blau, Tagesproben: rot, berechneter Mittelwert: grün)

Zusammengefasst lässt sich zum Großteil keine wesentliche Abweichung erkennen, jedoch ist diese (wie z.B. an den Proben vom 11.03.15 ersichtlich) auch nicht gänzlich auszuschließen.

5.3 Messung von Staub am Abgasrohr

Eine zusätzliche Untersuchung diente dazu, den Konzentrationsverlauf während einer Charge zu erhalten. Dabei fand mit Hilfe einer speziellen Vorkehrung am Abgasrohr (siehe Abbildung 5.18) ca. alle 15 min die Entnahme einer Probe des Staubes statt. Diese wurden anschließend im Labor mittels RFA untersucht.

Abbildung 5.18: Darstellung des Abgasrohres mit Messstelle

Die Abbildung 5.19 zeigt die erhaltenen RFA-Proben während des Prozesses. Anhand der Farbe lässt sich erkennen, dass im Laufe des Prozesses unterschiedliche Gehalte der Elemente zu vermuten waren.

Abbildung 5.19: Darstellung der unterschiedlichen Staubproben (Prozessbeginn: links, Prozessende: rechts)

Dabei ergaben sich folgende Elementgehalte in Abhängigkeit von der Zeit (siehe Abbildung 5.20 und Abbildung 5.21).

Abbildung 5.20: Verlauf der Metallgehalte im Abgas während der Charge 143 in Abhängigkeit von der

Zeit

Abbildung 5.21: Verlauf der Metallgehalte im Abgas während der Charge 145 in Abhängigkeit von der Zeit

Bei beiden Diagrammen lassen sich die Veränderung der Ausbringung von unterschiedlichen Metallen im Laufe des Konverterprozesses sehr gut erkennen. Dabei sind der Zink- und Zinnverlauf wesentlich, wobei Zink vor allem in der ersten Blasphase sehr präsent war und Zinn erst ab der Zugabe des Reduktionsmittels. Deshalb wäre eine gesonderte Abtrennung der erhaltenen Stäube in der ersten und der zweiten Blasphase sehr vorteilhaft, da sich dadurch neben einer höheren Zinnkonzentration im Filterstaub auch ein mögliches verkaufbares zinkreiches Produkt erzielen ließe. Für die anderen zwei Hauptelemente (Kupfer und Blei) des Konverterprozesses treffen folgende Aussagen zu:

- Der Bleigehalt weist einen gleichbleibenden Verlauf mit nur kleinen Schwankungen auf.
- Kupfer verhält sich ähnlich zu Zinn und zeigt nach dem Hinzufügen des Reduktionsmittels einen geringen Anstieg des Gehaltes im Staub im Verlauf des Prozesses.

5.4 Schlackenanalysen

Um eine genauere Untersuchung der Metallverteilungen zwischen Kupfer, Schlacke als auch Staub zu erhalten, erfolgte bei fast allen Chargen die Untersuchung der Schlacken nach dem ersten und dem zweiten Blasprozess. Diese ließen sich wiederum nach einem Mahlprozess zu Proben verarbeiten, welche anschließend mit Hilfe der RFA-Anlage untersucht wurden. Die Abbildung 5.22 zeigt die erhaltenen Proben für die Messung der Metallgehalte in der Schlacke.

Abbildung 5.22: Schlackenproben für die Gehaltsbestimmung mittels RFA

Anschließend konnte mit den vorhanden Staubanalysen, den Werten der standardisierten Kupferproben und den neu erhaltenen Schlackengehalten eine Verteilung des Zinns auf die Phasen berechnet werden. Die erhaltenen Ergebnisse sind in Form eines Kuchendiagramms in Abbildung 5.23 dargestellt. Dabei war zwar stets ein großer Anteil von Zinn im Staub vorhanden, jedoch gelangte auch ein hoher Betrag in das Konverterkupfer. In diesem Produkt ist es am wenigsten wünschenswert, da die Rückgewinnung im darauffolgenden Flammofenprozess nur erschwert erfolgen kann. Zusätzliche Diagramme, wie die Verteilung von Zn, Cu und die von Zinn für die einzelnen Versuchsreihen sind im Anhang zu finden.

Abbildung 5.23: Beispielhafte Zinnverteilung auf die vier auftretenden Phasen

5.5 Kühlerstaub

Wie auch schon in Literaturstelle [16] beschrieben, ist eine Differenz der Zinngehalte im tatsächlichen Staub in den "Big Bags" und des Kühlerstaubes erkennbar. Dabei fällt der Metallgehalt im letztgenannten Bereich meistens kleiner aus. Bezüglich der Ursache dafür, muss im Wesentlichen auf die Vermutung von Stibich [16] verwiesen werden, der dieses Phänomen durch strömungstechnische Vorgänge begründet. Hierbei wird Zn im Kühler

vermehrt zurück gehalten, während das Sn in den Filterstaub gelangt, wodurch sich unterschiedliche Metallgehalte ergeben können. Auch diese Messungen mussten wiederum mittels RFA durchgeführt werden. In Abbildung 5.24 ist eine so erhaltene Kühlerstaubprobe dargestellt.

Abbildung 5.24: Kühlerstaubprobe für die RFA-Messung

Das folgende Diagramm (Abbildung 5.25) zeigt den Vergleich der Gehalte der wichtigsten Elemente (Cu, Pb, Sn und Zn) im Kühler- und im normalen Filterstaub.

Abbildung 5.25: Vergleich der Zusammensetzung von Kühler- und Filterstaub

5.6 Erfassung der Mengen

Um eine genauere Analyse der Auswirkungen der Einsatzstoffe untersuchen zu können, musste jeden Tag eine Erfassung der Produktionsdaten erfolgen. Dabei handelte es sich sowohl um die Menge der Einsatzstoffe (Schachtofenkupfer, Schrott, Koks, Schlackenbildner, etc.) als auch der Massen der Produkte (Kupfer und Staub) und Abfallstoffe (Schlacke). Dadurch konnte beobachtet werden, wie sich die Einbringung von Schlackenbildner auf das Ausbringen der Schlacke auswirkte. Außerdem ließen sich die erhobenen Daten nutzen, um einen Vergleich mit dem Tochterunternehmen in der Slowakei zu ermöglichen und somit auch den dortigen Prozess zu analysieren und zu verbessern.

Die folgende Tabelle 5.1 zeigt nur einen kleinen Ausschnitt der aufgezeichneten Daten für unterschiedliche Versuchsreihen ("Schlackenbildner Quarz 2. Phase" zwei und "Koksstückigkeit mit 80 kg fein, 80 kg mittel und 80 kg grob). Aus dieser Tabelle lassen sich auch die Temperaturen der Kupferschmelze sowohl nach der ersten Blasphase als auch nach der zweiten Blasphase herauslesen. Auf diese wird jedoch nicht genauer eingegangen, da sie niemals in einen kritischen Bereich fielen, welcher sich negativ auf die Produktion auswirken könnte. Des Weiteren kann allgemein gesagt werden, dass ca. 20-22 t Schwarzkupfer sowie 1–1,2 t Repetierschlacke Einsatz finden und dabei 13–15 t Rohkupfer, 2-3 t Schlacke in der ersten als auch 3-5 t in der zweiten Blasphase und 1-2 t Staub pro Charge anfallen. Alle aufgezeichneten Versuchsdaten, wie die Einsatzstoffe, Ausbringung, Blaszeit und später erhaltenen Probenwerte sind im Anhang beigefügt.

						Einsätz	e							Produktion					
Chr. Nr:	schw. Cu fl.	Temp.	Cu, °C	Schlacke		Kok	s		Schro	ott	Schlackent	oildner	Roh Cu	Schlacke 1	Schlacke 2	Staub- menge			
	zinnarm				klein	groß	Mi	schung											
	kg	Abschl.	Ende	kg	kg	kg	%	%	Art	kg	Art	kg	kg	kg	kg	kg			
84	22040	k.M.	k.M	1160		100	0	100					13500	2700	4600	2020			
85	20710	1480	1448	1090	190	160	54.29	45.71			Quarz m. Koks	200	15100	3000	3200	2030			
86	21000	k.M.	k.M	1100	150	110	57.69	42.31			Quarz m. Koks	200	13700	3000	3600				
87	20520	1476	1444	1080	150	100	60.00	40.00			Quarz m. Koks	200	12400	2600	5800	4590			
88	21380	k.M.	k.M	1120	150	110	57.69	42.31					15500	2700	2000	4300			
89	20520	1466	1449	1080	140	95	59.57	40.43					15000	3300	2000				
90	21660	1484	1460	1140	140	100	58.33	41.67			Quarz m. Koks	200	13600	2800	5800				
91	20610	1459	1441	1090	150	90	62.5	37.5			Quarz m. Koks	200	12800	2400	4900				
92	21850	1432	1429	1150	170	110	60.71	39.29			Quarz m. Koks	200	14900	2900	3300	3490			
93	20620	1442	1442	1080	150	110	57.69	42.31			Quarz m. Koks	200	15000	2300	3000				
94	20330	1436	1433	1070	160	90	64	36			Quarz m. Koks	200	15100	1800	3500				
95	21570	1469	1440	1130	160	100	61.54 38.46				Quarz m. Koks	200	15200	3100	4700				
96	21180	1445	1441	1120	150	100	60	40			Quarz m. Koks	200	14600	2500	4500				
97	21280	1446	1438	1120	170	100	62.96	37.04			Quarz m. Koks	200	14300	3700	3100	5490			
98	20430	1463	1456	1070	160	90	64	36			Quarz m. Koks	200	14700	2100	3000				
99	20430	1443	1440	1070	160	100	61.54	38.46			Quarz m. Koks	200	14500	2400	3000				
100	21760	1460	1443	1140	80/8	0/80		33.33			Quarz m. Koks	200	15800	2800	4800				
101	21180	1443	1438	1120	80/8	80/80		33.33			Quarz m. Koks	200	14300	2200	4000	4460			
102	20040	1457	1441	1060	80/8	80/80		33.33			Quarz m. Koks	200	12400	2800	4100	4400			
103	20330	1490	1461	1070	80/8	80/80	11	33.33			Quarz m. Koks	200	12500	2200	5600				
104	20710	1491	1460	1090	80/8	80/80	1	33.33			Quarz m. Koks	200	12800	2600	5400	2020			
105	21660	1508	1476	1140	80/8	80/80		33.3			Quarz m. Koks	200	13800	2200	5300	2020			
106	21090	1484	1465	1110	80/8	80/80	3	33.33			Quarz m. Koks	200	14200	2500	4800	2210			
107	21560	1497	1462	1140	80/8	80/80	100	33.33			Quarz m. Koks	200	13000	2300	6100	2510			
108	21280			1120	80/8	80/80		33.33			Quarz m. Koks 200		14700	2500	4400				
109	22140	1430	1423	1160	80/8	80/80	3	33.33			Quarz m. Koks	200	16000	2200	3800	2430			
110	20610			1090	80/8	0/80	3	33.33			Quarz m. Koks	200	13700	2300	4700				
111	21570	1445	1423	1130	80/8	0/80		33.33			Quarz m. Koks 2		15000	1600	4900	2400			
112	20890	1464	1442	1110	80/7	0/90	33,3/	29,2/37,5			Quarz m. Koks	200	13500	2900	4500	3400			
113	20900	1432	1428	1100	80/8	0/80		33.33			Quarz m. Koks	200	15700	3000	3200				

Tabelle 5.1: Einsatzstoffe und Ausbringung der Versuchsreihen "Schlackenbildner Quarz 2. Phase" und Koksstückigkeit mit 80 kg fein, 80 kg mittel und 80 kg grob

6 Diskussion der Ergebnisse

Durch die verschiedenen Versuchsreihen, welche im Laufe dieser Diplomarbeit durchgeführt wurden, konnte zum großen Teil das gewünschte Ziel der Zinnausbringung im Staub mit Gehalten von über 21 % Sn erreicht werden. Dies lässt darauf schließen, dass sich noch eine weitere Verbesserung des Prozesses erzielen ließe. Eine große Rolle hierbei spielen die Einsatzmaterialien, welche nachfolgend näher erläutert werden.

Schlackenbildner: Die Annahme, dass Kalk als Schlackenbildner zu Vorteilen bei der Ausbringung von Zinn führt, ließ sich mit den durchgeführten Versuchen nicht bestätigen. Wie Abbildung 5.14 zeigt, sind die erhaltenen Sn-Gehalte sogar unter 21 %. Jedoch kann am Ende der Versuchsreihe eine Steigerung beobachtet werden. Um diesen Aspekt weiter zu untersuchen, haben noch weitere Experimente zu erfolgen. Durch die Zugabe von Quarz war neben einer geringeren Schwankung der Konzentration auch ein erhöhter Endwert erreichbar. Vor allem die Beimengung in beiden Phasen (siehe Abbildung 5.12) sorgte für die erhofften Werte.

Der erhöhte Gehalt an Zinn im Staub lässt sich durch die Veränderung der Aktivitäten der Zinnoxide begründen. Zusätzlich kommt es zu einem Aufbrechen verschiedener Verbindungen, wodurch wiederum eine erhöhte Ausbringung ermöglicht wird.

Unter Berücksichtigung dieser positiven Aspekte darf jedoch nicht vergessen werden, dass die Zugabe von Quarz und Kalkstein zu größeren Masse an Schlacke führt und dies auch die anderen Prozessschritte beeinflusst, da normalerweise eine Rückführung der Reststoffe in den Schachtofen erfolgt. Neben dem erhöhten Ausbringen von Zinn ist nach dem momentanen Stand des Wissens keine Aussage möglich, wie die veränderte Zusammensetzung der Konverterschlacke (z.B. SiO₂-reich) den Vorprozess (Schachtofen) beeinflusst, jedoch könnte ein erhöhter Reduktionsmittelbedarf im Schachtofen als negativer Aspekt auftreten.

Die folgende Tabelle 6.1 veranschaulicht die abweichende Zusammensetzung und die erhöhte Menge der Schlacke durch die Beimengung von Quarz in der ersten und Kalkstein in der zweiten Blasphase.

Versuchsreihe	Mas	sse	Si-G	ehalt	Ca-Gehalt					
	Schlacke 1	Schlacke 2	Schlacke 1	Schlacke 2	Schlacke 1	Schlacke 2				
Silika 1. Phase + Kalktstein 2. Phase	2600	4100	5,2 %	2,7 %	1,3 %	1,7 %				
Konventionelle Verfahrensweise	2500	3300	4,0 %	2,4 %	1,5 %	0,8 %				

Tabelle 6.1: Vergleich von den Versuchsreihen mit "Quarz sowie Kalkstein" und "konventionelle Verfahrensweise"

Koks als Reduktionsmittel: Im konventionellen Prozessablauf wird Koks als Reduktionsmittel eingebracht. Um die Reduktionsreaktion zu verbessern, fand eine Veränderung der Stückigkeit bei verschiedenen Versuchen statt. Dies ist dadurch zu begründen, dass die Bildung von SnO über den gesamten Chargenverlauf erfolgt und somit stets Reduktionsmittel vorhanden sein sollte. Jedoch sorgt eine Einbringung von Koks mit einheitlicher Stückigkeit für keine lang anhaltende Reaktion, da eine uniforme Größe mit einem ähnlichen Reduktionsverhalten gleichzusetzen ist. Somit wurde mit verschiedenen Fraktionen versucht, ein möglichst langes Auftreten von Koks im Konverter zu erzielen. Die Ergebnisse zeigen zwar einen weniger schwankenden Zinnausbringungsverlauf und auch zum Großteil sehr hohe Gehalte im Staub (siehe Abbildung 5.6 und Abbildung 5.9) im Vergleich zur konventionellen Fahrweise (Abbildung 5.1) ließ sich jedoch eine gleichmäßige Koksverteilung erst durch mehrmaliges Chargieren erreichen. Dies würde allerdings bei dem vorhandenen Konverter zu einer erheblichen Steigerung des Arbeitsaufwandes führen. Des Weiteren müsste für eine wirklich kontrollierbare Stückigkeit des Kokses für jede Charge eine Siebung stattfinden, da bei der größeren Fraktion auch kleinere Brocken auftreten. Aufgrund der gegebenen Einflussfaktoren, wie Reibung und Druckkräfte, lassen sich diese nicht verhindern. Der erhebliche Mehraufwand ist beim momentanen technischen Stand der Prozessanlagen nicht durchführbar.

Einsatz von Ersatzreduktionsmitteln: Um die Reduktionsausbeute zu erhöhen, kamen zwei verschiedene Einsatzstoffe anstelle von Koks zum Einsatz. Durch die Einbringung von Fe-Stanzmaterial, welches wenig Verunreinigungen enthielt, ließ sich, bis auf die Versuchsreihe mit Kalk, stets ein zufriedenstellendes Ergebnis erzielen. Dem gegenüberstehend stellte sich bei den Experimenten mit den "Gusseisenbriketts" eine große Schwankung der erhaltenen Sn-Konzentrationen im Staub ein. Da jedoch die Briketts sowohl einen hohen Eisen- als auch Kohlenstoffgehalt enthalten, erscheint eine weitere Untersuchung als sinnvoll, um zu analysieren, ob die niedrigeren Messwerte durch andere

Gegebenheiten verursacht wurden, wie z.B. Probenahme- oder Messfehler. Der Vorteil für das Ersetzen des Koks stellen die Verringerung der Nebenreaktionen, die eventuell auftretende bessere Durchmischung der Schmelze, das leichtere Absinken des Materials, die Einsparung von Kosten und somit die Erhöhung der Wirtschaftlichkeit des Konverterprozesses dar. Auch könnte durch eine Vermengung von verschiedenen Reduktionsmitteln eine ausgedehnte Reaktionszeit auftreten. Dies würde wiederum eine längere Reduktion von SnO₂ bewirken.

Als negativer Effekt des Koksersatzes lässt sich ein erhöhter Feuerfestverschleiß erwarten. Dies kann die Folge von Reaktionen, Temperaturveränderung im Konverter sowie mechanischer Verschleiß während der Chargierung sein. Auch muss die Auswirkung auf die Schlacke beobachtet werden, da ein zu klebriges Verhalten negative Konsequenzen haben könnte, wie z.B. Anbackungen. Des Weiteren hat eine Veränderung der Zusammensetzung Auswirkungen auf den Schachtofen, da die Schlacke dort normalerweise als Einsatzstoff dient.

Grundeinsatzstoffe (Schachtofenschmelze, Schrotte etc.): Da die Versuche an den Produktionsanlagen der Montanwerke in Brixlegg durchgeführt wurden, ließen sich diverse andere Einflüsse nicht vermeiden. So fand als Einsatzmaterial Schwarzkupfer vom Schachtofen Verwendung, welches zwar gewisse Spezifikationen erfüllte, dennoch traten Schwankungen bei den Metallgehalten von Kupfer, Blei, Zink, Eisen und auch Zinn auf. Dies kann ebenfalls die Zinnverflüchtigung im Konverter beeinflussen und so zu den Variationen der Zinnkonzentration führen. Dasselbe gilt auch für die eingesetzten Schrotte, da diese geringe Verunreinigungen oder unterschiedliche Anteile von Metallen enthalten können.

Des Weiteren muss noch berücksichtigt werden, dass die Menge der chargierten Stoffe variieren kann. Es wurden zwar stets die Massen erfasst, jedoch ist aufgrund der gegebenen Ungenauigkeit der Waage oder durch die Bedienung der Einwaage von verschiedenen Personen eine Abweichung zwischen den einzelnen Chargen nicht auszuschließen.

Eine Baddurchmischung ergibt sich aufgrund der angeordneten Blasdüsen. Diese werden während des Prozesses und vor allem durch eine erhöhte Anzahl von Chargen verstopft. Deshalb muss stets eine Reinigung erfolgen. Dies geschieht mittels einer Metallstange, welche zum "Freistoßen" dient. Die aufgrund blockierter Düsen gegebene reduzierte Lufteinbringung kann über einen längeren Zeitraum für eine verringerte Ausbringung im Staub führen, da eventuell ungeeignetere Produktionsbedingungen auftreten. Um diesen Effekt auszuschließen, sollten kurz vor dem Stillstand des Konverters und nach diesem eine gewisse Anzahl von Chargen ohne Versuchsbedingungen produziert werden.

Weiters stellt die Dauer der Blasphase einen wesentlichen Einflussfaktor dar. Durch eine Verringerung der Blaszeit in der ersten Stufe und eine Verlängerung in der zweiten Blasperiode ist eine Verschlackung von Sn verringerbar, wodurch sich die Ausbringung im Staub verbessert. Jedoch kann hierbei eine Verkürzung der Prozesszeit unter 40 min im ersten Produktionsschritt nicht erfolgen, da dies sonst die Schlackenbildung und somit auch die Qualität des Kupfers erheblich beeinträchtigen würde. Ein gutes Ausbringen des Zinns und eine geeignete Qualität des Kupfers ließ sich bei einer maximalen Blaszeit von 45 min in der ersten Phase und einer minimalen Blaszeit von 60 min in der zweiten beobachten. Eine Fixierung dieser Zeiten stellt dennoch keine Option dar, da die Qualität des Kupfers stets durch die eingebrachten Einsatzstoffe beeinflusst wird und somit die benötigte Prozessdauer schwanken kann. Deshalb muss immer der zuständige Schmelzer nach eigenem Ermessen entscheiden, wann die jeweiligen Vorgänge zu beenden sind.

Die Vereinfachung einzelner Prozessschritte kann des Weiteren diverse Schwankungen bei den Ergebnissen verursachen. So lässt sich durch die Staubprobennahme nur ein Schätzwert erhalten, da lediglich eine Tagesanalyse erfolgt. Dabei wird von jedem "Big Bag" eine Einzelprobe genommen, welche später vermengt werden. Jedoch kann es passieren, dass bei einer Charge, die eine geringe Menge an Staub ausbringt, sich dieser mit dem der nächsten Ofenfüllung im "Big Bag" vermischt. Das ist auch der Grund, warum an Tagen, an denen vier Chargen produziert werden, teilweise nur drei Einzelproben zur Verfügung stehen. Auch erfolgt die Vermengung der Proben zur Tagesanalyse nicht in einem Labor und ohne Wiegung, so dass nicht gewährleistet ist, dass von jedem Staub das selbe Verhältnis vorliegt. Darüber hinaus findet die Beprobung mittels eines Löffels statt, woraus sich Unregelmäßigkeiten ergeben können. Zusätzlich ist nicht garantierbar, dass der gesamte Staub aus der Filteranlage und dem Abgasrohr im "Big Bag" landet, da sich die Rückstände nicht vollständig aus der Anlage entfernen lassen und somit eine Verunreinigung der Stäube von den Chargen am nächsten Tag geschieht.

Eine Filteranlage, welche eine Abtrennung des Staubes der ersten Phase sowie der zweiten ermöglicht, erzielt einen weiteren Vorteil. Diese erlaubt es ein zinkreiches Produkt im ersten Prozessschritt und einen zinnreicheren Staub im weiteren Verlauf, da durch die Abtrennung von Zn eine geringere Verdünnung auftritt.

Einen zusätzlichen Einflussfaktor auf die Versuchsergebnisse stellt die generelle Planung der Produktion dar. Aufgrund der Durchführung von je zwei Chargen am Samstag, Sonntag sowie Montag und der Nachtstillstände des Konverters stehen jeweils unterschiedliche Produktionsbedingungen zur Verfügung, da es in der Nichtproduktionszeit zu einer Abkühlung des Ofens kommt und dieser nur auf geringerer Temperatur gehalten wird. Deshalb fand auch stets die erste Charge des Tages keine Berücksichtigung, dennoch ließ sich der Staub von dieser nicht aus der Tagesprobe entfernen. Daher kam es täglich zu einer Verringerung der tatsächlichen Zinngehalte im Staub. Längere Stillstände, welche für eine Reinigung des Konverters genutzt wurden, könnten auch für eine Veränderung der Prozessbedingungen verantwortlich sein, jedoch war weder ein negativer noch ein positiver Effekt in den erhaltenen Probenwerten erkennbar.

Die verschiedenen notwendigen Produktionsschritte, wie die Abschlackung und Chargierung, sind als Einflussfaktoren zu berücksichtigen, da für diese Maßnahmen stets die Tür am Ofen geöffnet werden musste. Dies kann je nach Bedingungen unterschiedlich lange dauern. Des Weiteren ist danach diese Türe wieder zu schließen und die Lücken mit einer Masse abzudichten. Auch die Dauer der Chargierung kann je nach Laderfahrer unterschiedlich schnell erfolgen und somit die Prozesstemperatur verändern, woraus Auswirkungen auf die Prozessbedingungen resultieren, da sich eine Absenkung der Temperatur negativ auf die Aktivitäten der Reaktionen auswirken kann.

Das in Kapitel 4.2 erwähnte OPC-Messgerät wird bei dieser Ergebnisdiskussion nicht berücksichtigt, da durch technische Probleme und Signalstörungen fast ausschließlich nicht reelle Verläufe auftraten. Dabei kam es vor allem durch ein zu starkes Lichtsignal zu einer Abflachung des SnO-Signals, wodurch der erhaltene Messwert nicht dem tatsächlichen entsprach. Ein Beispiel für dies ist im Anhang zu finden (siehe Abbildung 11.11).

In der nachfolgenden Abbildung 6.1 sind die durch die Versuche erzielten Ergebnisse zusammengefasst. Im Wesentlichen zeigt sich, dass durch die Veränderung von den diversen Parametern während der Dauer der Experimente erhöhte Zinn-Ausbringungen erzielt wurden. Vor allem im Zeitraum Februar waren fast ausschließlich Gehalte über 21 % Sn im Staub beobachtbar. Dabei ist zu berücksichtigen, dass diese Zeitspanne genau zwischen den beiden Stillständen lag und somit eventuell auch verbesserte Produktionsbedingungen Einfluss hatten. Trotzdem scheint eine Implementierung von diversen Versuchsparametern, wie etwa die Erhöhung des Schlackenbildneranteils sowie die Beimengung von Fe-Stanzmaterial von Vorteil zu sein und sollten somit auch Anwendung im Produktionsalltag finden.

Abbildung 6.1: Zusammenfassung der erzielten Zinnausbringungen aufgrund der durchgeführten

Versuche

7 Zusammenfassung und Ausblick

Im Rahmen der vorliegenden Diplomarbeit erfolgte eine umfangreiche Literaturrecherche, welche Einflüsse für die Anpassung von Prozessparametern zur Erhöhung der Zinnausbringung im Konverterstaub zeigte. Mit Hilfe von Versuchen an Industrieanlagen, bei denen sich die Einsatzstoffe (Schlackenbildner, Reduktionsmittel und Schrotte), aber auch Blaszeiten verändern ließen, konnte die Sn-Ausbringung gezielt beeinflusst werden. Dabei ließen sich großteils positive Auswirkungen beobachten, sodass der Sn-Gehalt die geforderten 21 % erreichte.

Neben den Einsatzmaterialien kann auch eine Veränderung der Staubprobenahme einen Vorteil mit sich bringen, da auf diese Weise Fehlerquellen ausgeschlossen werden können. Es erscheint sinnvoll, die Tagesprobe aus genau abgewogenen Mengen der Einzelproben zu erstellen. Zusätzlich stellt die Überprüfung, ob am Ende des Tages stets die gesamte Menge des Staubs aus dem Filter entfernt wurde, um eine Vermischung der Stäube auszuschließen, einen essentiellen Faktor dar.

Darüber hinaus zeigten die Versuchsdurchführungen, dass eine Abtrennung der Stäube von den zwei Blasphasen durchwegs sinnvoll wäre, um sowohl ein zinn- als auch ein zinkreiches Produkt zu erzielen. Dies müsste jedoch neben der technologischen Sicht auch noch ökonomisch betrachtet werden, da die Wirtschaftlichkeit dieser Maßnahmen zu analysieren wäre.

Ob die mehrfache Chargierung von Reduktionsmitteln, wie angenommen, zu einer erhöhten Ausbringung führt, ist anhand der Literaturrecherche zu dieser Diplomarbeit nur vermutbar. Wahrscheinlich könnte dies die geeigneten Bedingungen für die Verflüchtigung ermöglichen und so eine Erhöhung der Zinnausbringung gewährleisten. Da dies jedoch wiederum eine Maßnahme an der Ofenanlage bedeutet, die bei dem jetzigen Stand der Ofentechnik einen erheblichen Mehraufwand der Arbeit zur Folge hätte, ist eine Untersuchung der momentanen CO- und CO₂-Partialdruckverhältnisse nötig, um über diesen eventuellen Verbesserungsschritt eine Aussage treffen zu können.

8 Literatur

- [1] Deutsches Kupferinsitut: Recycling von Kupferwerkstoffen, Düsseldorf, 2011.
- [2] Angerer, G. et al.: Kupfer für Zukunftstechnologien, Frauenhofer ISI, Karlsruhe, 2010.
- [3] Rentz, O. et al.: Report on Best Available Techniques (BAT) in Copper Production, University of Karlsruhe, Karlsruhe, 1999.
- [4] Anindya, A.: Minor Elements Distribution during the Smelting of WEEE with Copper Scrap, RMIT University, 2012.
- [5] Montanwerke Brixlegg: Technische Anlagenbeschreibung, Brixlegg, 2012.
- [6] Valdespino R.: Concepts for the Pyrometallurgical Refining of Secondary Copper, Magisterarbeit, Montanuniversität Leoben, Leoben, 2004.
- [7] Schlesinger, M. E. et al.: Extractive Metallurgy of Copper, 5th Edition, Elsevier, 2011.
- [8] Mikesell, F. R.: The World Copper Industry, Structure and Economic Analysis, Earthscan, 2011.
- [9] Biswas, A. K. und W. G. Davenport: Extractive Metallurgy of Copper, Elsevier Science Ltd, 1994.
- [10] DKL Engineering Inc., Sulphuric Acid, Technology Manual, Online im Internet: http://www.sulphuric-acid.com/techmanual/MetallurgicalProcess/ metalprocess_copper.htm, Abruf: 15.03.2015.
- [11] Brundenuis, C.: Technological Change and the Environmental Imperative, Challenges to the Copper Industry, Edward Elgar Publishing Limited, 2003.
- [12] Andritz AG, Copper Furnaces, Online im Internet: http://www.andritz.com/me-copperfurnaces_en.pdf, Abruf: 16.03.2015.
- [13] Vignes, A.: Extractive Metallurgy 3, Processing Operations and Routes, ISTE Ltd, 2011.
- [14] Gerardo R. F., et al.: ISASMELT[™] for the Recycling of E-Scrap and Copper in the U.S., Case Study Example of a New Compact Recycling Plant, The Minerals, Metals & Materials Society, 2014, 823–832.

- [15] London Metal Exchange, Online im Internet: https://www.lme.com/metals/nonferrous/, Abruf: 15.03.2015
- [16] Stibich, R.: Ermittlung der Einflüsse auf die Zinnmonoxidverflüchtigung im Konverterbetrieb, Diplomarbeit Montanuniversität Leoben, 1982.
- [17] Gerlach, J.: Beitrag zur Kupferraffination, Metallwissenschaft und Technik 21, 1961, 1115–1122.
- [18] Kellog, H.: Vaporisation Chemistry in Extractiv Metallurgy, Trans. of the Metallurgical Soc. of Aime, 236, 1966, 602–615.
- [19] Takeda et al.: Distribution Equilibria of Minor Elements between Liquid Copper and Calcium Ferrite Slag, Transaction of the Japan Institute of Metals, 24, 1983, 518–528.
- [20] Takeda et al.: Equilibria between Liquid Tin and FeO_x-CaO-SiO₂ Slag, Materials Transactions, 31, 1990, 793–801.
- [21] Lange, A.: Verflüchtigung von Zinn in sulfidischer und oxidischer Bindung nach dem Schwebeschmelzverfahren, Neue Hütte, 1, 1955, 39–45.
- [22] Leipner, K.: Thermodynamische Untersuchung zur Verflüchtigung von Zinn auf der Grundlage des Systems Sn-S-O-C, Neue Hütte, 16, 1971, 395–399.
- [23] Roine, A. Et al.: HSC Chemistry v. 8.0.6 Pori, Finnland: Outotec Research Oy, 2015.
- [24] International Copper Study Group: The World Copper Factbook: online in Internet: http://www.scribd.com/doc/34543265/2009-World-Copper-Factbook-Final, abgerufen am 30.9.2015

9 Abbildungsverzeichnis

Abbildung 2.1:	Einsatzgebiete des Kupfers [1]	4
Abbildung 2.2:	Bedeutung der unterschiedlichen Kupferproduktionsmöglichkeiten [24]	5
Abbildung 2.3:	Verteilung des weltweit hergestellten Kupfers [24]	6
Abbildung 2.4:	Verfahrensablauf bei der Sekundärerzeugung von Kupfer [5]	7
Abbildung 2.5:	Schematische Darstellung eines Peirce-Smith-Konverters [7]	8
Abbildung 2.6:	Querschnitt eines Hoboken-Konverters [10]	8
Abbildung 2.7:	Schema eines TMC-Konverters [7]	9
Abbildung 2.8:	Schematische Darstellung eines TBRCs [13]10	0
Abbildung 2.9:	Charakteristika und Schema des ISASMELT-Prozesses [14]1	1
Abbildung 3.1:	Zinnpreisverlauf von Jänner bis August 2015 [15]12	2
Abbildung 3.2:	Freie Bildungsenthalpie von verschiedenen Metalloxiden als Funktion	
	der Temperatur [17]13	3
Abbildung 3.3:	Dampfdrücke des Sn-O-Systems bei einer Temperatur von 1250 °C [18].14	4
Abbildung 3.4:	Verteilung von Zinn zwischen Schlacke und Kupfer als Funktion von	
	Sauerstoffpartialdruck, Temperatur und Art der Schlacke [4]1	5
Abbildung 3.5:	Verteilungsbereich von Sn als Funktion von Produktionsdaten und	
	Laborversuchen [4]10	6
Abbildung 3.6:	Aktivitätskoeffizient von SnO als Funktion von p_{O2} (durchgezogene Linie:	
	Calcium-Ferrit-Schlacke, gestrichelte Linie: Eisen-Silika Schlacke) [4]1	7
Abbildung 3.7:	Aktivitätskoeffizient von SnO in einer FeO _x -SiO ₂ -CaO-Schlacke [20] 18	8
Abbildung 3.8:	Iso-Aktivitätskoeffizienten-Linien von $\gamma_{SnO(I)}$ in FeO _x -SiO ₂ -CaO-Schlacke	
	in Abhängigkeit von deren Gewichts-% [4]19	9
Abbildung 3.9:	Einfluss der Gaszusammensetzung auf die Sn-Verflüchtigung [21]20	0
Abbildung 3.10:	Zustandsdiagramm für das System Sn-C-O als Funktion der	
	Temperatur [22]2	1
Abbildung 3.11:	Abhängigkeit der Stabilitätsbereiche von Sn und Sn-Oxiden als Funktion	
	der Partialdrücke von CO und CO2 sowie der Temperatur (links oben	
	1000 °C, rechts oben 1100 °C, links unten 1200 °C, rechts unten	
	1300 °C) [23]22	2
Abbildung 3.12:	Abhängigkeit der Zinnverteilung von der CaO-Konzentration in der	
	Schlacke bei konstantem Fe/SiO ₂ -Verhältnis [4]24	4
Abbildung 3.13:	Abhängigkeit der Zinnverteilung vom Fe/SiO2-Verhältnis in der Schlacke	
	bei konstanter CaO-Konzentration [4]29	5
Abbildung 4.1:	Konverter der Montanwerke Brixlegg20	6
Abbildung 4.2:	Abguss am Konverter	6

Abbildung 4.3:	Am Ende des Konverter installierter Brenner	. 27
Abbildung 4.4:	Blasdüsen am Umfang des Konverters	. 27
Abbildung 4.5:	Schematische Darstellung des Konverterprozesses bei den	
	Montanwerken Brixlegg [5]	. 28
Abbildung 4.6:	Abguss von Kupferblöcken	. 29
Abbildung 4.7:	OPC-Messgerät zur Abgasanalyse	. 30
Abbildung 4.8:	Messstelle an der Abgasöffnung	. 30
Abbildung 4.9:	Darstellung eines üblichen OPC-Verlaufs	. 31
Abbildung 5.1:	Zinnkonzentration im Staub bei der "konventionellen" Prozessführung	
	mit 200 kg Koks als Funktion der Zeit	. 33
Abbildung 5.2:	Feinerer Koks mit d < 80 mm	. 34
Abbildung 5.3:	Gröberer Koks mit d > 100 mm	. 34
Abbildung 5.4:	Versuchsergebnisse bei der Verwendung von unterschiedlicher	
	Koksstückigkeit (150 kg grob und 75 kg fein) als Funktion der Zeit	. 34
Abbildung 5.5:	Darstellung des Quarzes für die 2. Stufe im Konverter	. 35
Abbildung 5.6:	Versuchsergebnisse bei Einsatz von Schlackenbildner Quarz in der	
	zweiten Blasphase und mit Koks unterschiedlicher Stückigkeit (150 kg	
	grob, 100 kg fein) als Funktion der Zeit	. 36
Abbildung 5.7:	Siebanlage zur Klassierung des Kokses	. 37
Abbildung 5.8:	Sieb mit 40 mm Maschenweite	. 37
Abbildung 5.9:	Versuchsergebnisse durch den Einsatz von Quarz in der 2. Phase und	
	drei verschiedenen Koksstückigkeiten (80 kg fein, 80 kg mittel,	
	80 kg grob) als Funktion der Zeit	. 37
Abbildung 5.10:	Fe-Stanzmaterial als alternatives Reduktionsmittel	. 38
Abbildung 5.11:	Versuchsergebnisse durch den Einsatz von Eisenstanzmaterial als	
	Reduktionsmittel + Koks (50 kg fein, 50 kg grob) und Quarz in der	
	2. Phase als Funktion der Zeit	. 39
Abbildung 5.12:	Versuchsergebnisse beim Einsatz von Schlackenbildner Quarz in der	
	ersten und zweiten Blasphase + Fe-Stanzmaterial + Koks (50 kg fein,	
	50 kg grob)	.40
Abbildung 5.13:	Darstellung des Kalksteins als Ersatz für Quarz in der 2. Phase	.41
Abbildung 5.14:	Versuchsergebnisse bei Verwendung von Kalkstein als Schlackenbildner	r
	in der 2. Blasphase + Quarz in der 1. Phase + Fe-Stanzmaterial +	
	Koks (50 kg fein, 50 kg grob)	.41
Abbildung 5.15:	Gusseisenbriketts als Alternative zu Koks	.42
Abbildung 5.16:	Versuchsergebnisse beim Einsatz von Gusseisenbriketts + Koks (50 kg	
	grob, 50 kg fein), + Quarz in der 1. und 2. Phase	.43

Abbildung 5.17:	Vergleich der Zinngehalte der Messungen der Einzelstaubproben zu	
	den Tagesanalysen (Einzelproben: blau, Tagesproben: rot, berechneter	
	Mittelwert: grün)4	4
Abbildung 5.18:	Darstellung des Abgasrohres mit Messstelle4	4
Abbildung 5.19:	Darstellung der unterschiedlichen Staubproben (Prozessbeginn: links,	
	Prozessende: rechts)4	-5
Abbildung 5.20:	Verlauf der Metallgehalte im Abgas während der Charge 143 in	
	Abhängigkeit von der Zeit4	-5
Abbildung 5.21:	Verlauf der Metallgehalte im Abgas während der Charge 145 in	
	Abhängigkeit von der Zeit4	-6
Abbildung 5.22:	Schlackenproben für die Gehaltsbestimmung mittels RFA4	7
Abbildung 5.23:	Beispielhafte Zinnverteilung auf die vier auftretenden Phasen4	.7
Abbildung 5.24:	Kühlerstaubprobe für die RFA-Messung4	.8
Abbildung 5.25:	Vergleich der Zusammensetzung von Kühler- und Filterstaub4	.8
Abbildung 6.1:	Zusammenfassung der erzielten Zinnausbringungen aufgrund der	
	durchgeführten Versuche5	6
Abbildung 11.1:	Sn-Verteilung auf die vier auftretenden Phasen für die Versuchsreihe	
	"Koksstückigkeit + Quarz in 2. Phase"	57
Abbildung 11.2:	Sn-Verteilung auf die vier auftretenden Phasen für die Versuchsreihe	
	"Koksstückigkeit 80 kg fein, 80 kg mittel, 80 kg grob + Quarz in der 2.	
	Phase"	8
Abbildung 11.3:	Sn-Verteilung auf die vier auftretenden Phasen für die Versuchsreihe	
	"Fe-Stanzmaterial und Schlackenbildner Quarz in der 2. Phase"	8
Abbildung 11.4:	Sn-Verteilung auf die vier auftretenden Phasen für die Versuchsreihe	
	"Eisenstanzmaterial als Reduktionsmittel + Quarz in 1. und 2. Phase"8	8
Abbildung 11.5:	Sn-Verteilung auf die vier auftretenden Phasen für die Versuchsreihe	
	"Schlackenbildner Quarz 1. Phase und Kalkstein 2. Phase + Fe-	
	Stanzmaterial und Koks"	9
Abbildung 11.6:	Sn-Verteilung auf die vier auftretenden Phasen für die Versuchsreihe	
	"Gusseisenbriketts als Reduktionsmittel + Quarz in 1. und 2. Phase" 8	9
Abbildung 11.7:	Cu-Verteilung in % auf die vier auftretenden Phasen	9
Abbildung 11.8:	Pb-Verteilung in % auf die vier auftretenden Phasen9	0
Abbildung 11.9:	Zn-Verteilung in % auf die vier auftretenden Phasen	0
Abbildung 11.10:	Aufgezeichneter OPC-Verlauf von mehreren Chargen9	1
Abbildung 11.11:	OPC-Verlauf mit geschwächtem SnO-Signal9	2

10 Tabellenverzeichnis

Tabelle 2.1:	Weltweite Bedeutung von Sekundärkupfer [2]	3
Tabelle 3.1:	Vergleich der Sn-Aktivitätskoeffizienten im Kupfer von verschiedenen	
	Autoren [4]	16
Tabelle 5.1:	Einsatzstoffe und Ausbringung der Versuchsreihen "Schlackenbildner	
	Quarz 2. Phase" und Koksstückigkeit mit 80 kg fein, 80 kg mittel und	
	80 kg grob	50
Tabelle 6.1:	Vergleich von den Versuchsreihen mit "Quarz sowie Kalkstein" und	
	"konventionelle Verfahrensweise"	52
Tabelle 11.1:	Einsatz und Ausbringung von Versuchsreihe "Koksstückigkeit"	65
Tabelle 11.2:	Einsatz und Ausbringung von Versuchsreihe "Quarz 2. Phase"	66
Tabelle 11.3:	Einsatz und Ausbringung von Versuchsreihe "Koksstückigkeit 80 kg fein,	
	80 kg mittel, 80 kg grob"	67
Tabelle 11.4:	Einsatz und Ausbringung von Versuchsreihe "Eisenstanzmaterial als	
	Reduktionsmittel"	68
Tabelle 11.5:	Einsatz und Ausbringung von Versuchsreihe "Quarz in der 1. Phase und	
	2. Phase"	69
Tabelle 11.6:	Einsatz und Ausbringung von Versuchsreihe "Quarz 1. Phase und	
	Kalkstein 2. Phase"	70
Tabelle 11.7:	Einsatz und Ausbringung von Versuchsreihe "Gusseisenbriketts als	
	Reduktionsmittel"	71
Tabelle 11.8:	Probenwerte von Schwarz- und Konverterkupfer für die Versuchsreihe	
	"Koksstückigkeit"	72
Tabelle 11.9:	Probenwerte der Schlacken für die Versuchsreihe "Koksstückigkeit"	73
Tabelle 11.10:	Probenwerte von Schwarz- und Konverterkupfer für die Versuchsreihe	
	"Schlackenbildner Quarz 2. Phase"	74
Tabelle 11.11:	Probenwerte der Schlacken für die Versuchsreihe "Schlackenbildner	
	Quarz 2. Phase"	74
Tabelle 11.12:	Probenwerte von Schwarz- und Konverterkupfer für die Versuchsreihe	
	"Koksstückigkeit 80 kg fein, 80 kg mittel, 80 kg grob"	75
Tabelle 11.13:	Probenwerte der Schlacken für die Versuchsreihe "Koksstückigkeit	
	80 kg fein, 80 kg mittel, 80 kg grob"	75
Tabelle 11.14:	Probenwerte von Schwarz- und Konverterkupfer für die Versuchsreihe	
	"Eisenstanzmaterial als Reduktionsmittel"	76
Tabelle 11.15:	Probenwerte der Schlacken für die Versuchsreihe "Eisenstanzmaterial	
	als Reduktionsmittel"	77

Tabelle 11.16:	Probenwerte von Schwarz- und Konverterkupfer für die Versuchsreihe
	"Schlackenbildner Quarz in 1. und 2. Phase"77
Tabelle 11.17:	Probenwerte der Schlacken für die Versuchsreihe "Schlackenbildner
	Quarz in 1. und 2. Phase"
Tabelle 11.18:	Probenwerte von Schwarz- und Konverterkupfer für die Versuchsreihe
	"Schlackenbildner Quarz in 1. Phase und Kalkstein in 2. Phase"
Tabelle 11.19:	Probenwerte der Schlacken für die Versuchsreihe "Schlackenbildner
	Quarz in 1. Phase und Kalkstein in 2. Phase"79
Tabelle 11.20:	Probenwerte von Schwarz- und Konverterkupfer für die Versuchsreihe
	"Gusseisenbriketts als Reduktionsmittel"
Tabelle 11.21:	Probenwerte der Schlacken für die Versuchsreihe "Gusseisenbriketts als
	Reduktionsmittel"
Tabelle 11.22:	Blaszeit und OPC-Daten für die Versuchsreihe "Koksstückigkeit"
Tabelle 11.23:	Blaszeit und OPC-Daten für die Versuchsreihe "Schlackenbildner
	Quarz 2. Phase"
Tabelle 11.24:	Blaszeit und OPC-Daten für die Versuchsreihe "Koksstückigkeit 80 kg
	fein, 80 kg mittel und 80 kg grob"
Tabelle 11.25:	Blaszeit und OPC-Daten für die Versuchsreihe "Eisenstanzmaterial als
	Reduktionsmittel"
Tabelle 11.26:	Blaszeit und OPC-Daten für die Versuchsreihe "Schlackenbildner Quarz
	in 1. Phase und 2. Phase"85
Tabelle 11.27:	Blaszeit und OPC-Daten für die Versuchsreihe "Schlackenbildner Quarz
	in 1. Phase und Kalkstein in 2. Phase"
Tabelle 11.28:	Blaszeit und OPC-Daten für die Versuchsreihe "Gusseisenbriketts als
	Reduktionsmittel"

11 Anhang

Die folgenden Tabellen enthalten die aufgezeichneten Daten bezüglich der Einsatzstoffe und der erhaltenen Produkte der verschiedenen Versuchsreihen.

	Sn (im Staub)		%	17 C	4T 77	1, 1,	ct.01		00.00	74, 52			10 00	CO '01			10 CC	10.62			00.00	CC 107		00 OF	00.'ST	10 04	10.01		30 55	CC (7	
	Staub- menge		kg	175.0	057	0000	0677		0411	ntcc			0070	0.0Hc			ACEN	0004			UCCV	1000		OFFC	0/77	0611	0711		AECO	nort-	
roduktion	Schlacke 2		kg	4600	2500	3200	2200	3800	1800	2500	4600	3100	2900	3000	4300	3400	2800	3200	4900	3200	3100	2200	3900	3700	3500	5400	3300	3300	2700	2800	3500
4	Schlacke 1		kg	3300	2800	3500	2400	3100	2600	2400	3100	2600	2200	2100	2600	2100	2300	1800	1700	1800	2600	2700	4200	2200	2300		2600	3200	3400	1700	1000
	Roh Cu 1		kg	12900	16400	15500	15800	15000	16800	15500	12200	15600	18600	17000	15500	15900	16000	16000	12200	13400	15500	17000	13500	13600	16500	16500	16000	13400	13500	17000	17600
	bildner		kg																												
	Schlackenb		Art																												
	ott		kg		1370		1020		1040				1550	1040	1280		1440														
	Schrot		Art		Cu verzinnt		Cu verzinnt		Cu verzinnt				Cu verzinnt	Cu verzinnt	Cu verzinnt		Cu verzinnt														
		schung	%	31.91	7 33.33	2 34.88	1 36.59	3 28.57	30.00	3 27.27	2 34.88	9 23.81	2 31.58	1 36.36	7 30.43	2 34.88	7 33.33	7 33.33	31.91	31.91	0 15.00	2 34.78	7 30.23	7 30.43	7 33.33	31.82	3 28.57	8 31.82	7 30.43	31.91	7 33.33
	ks	B Mis	%	68.09	66.65	65.13	63.41	71.4	70:02	72.75	65.12	76.19	68.42	63.64	69.57	65.13	69:99	69:99	68.09	68.09	85.00	65.22	69.77	69.57	66.67	68.18	71.45	68.18	69.57	68.09	66.67
sätze	Š.	gro	kg	75	75	75	75	99	99	60	75	50	60	80	70	75	70	75	75	75	3 HI	80	65	70	80	70	60	70	02	75	75
ιĒ	<u>e</u>	kleir	kg	160	150	140	130	150	140	160	140	160	130	140	160	140	140	150	160	160	170	150	150	160	160	150	150	150	160	160	150
	Schlack		kg	1130	1070	1140	1070	1130	1120	1060	1060	1120	1150	1060	1110	1140	1160	1060	1030	1040	1040	1100	1100	1060	1040	1120	1050	1070	1030	1150	1180
	Badspüler	M ittelwert	l/min	20.87	20.7	19.73	19.82	19.5	20.47	21.3	18.16	18.13	17.97	18.07	18.07	17.4	21.3	19.03	18.73	20	18.3	17.9	17.5	17.3	17.2	16.4	16.5	16.6	16.6	15.7	29.5
	Blaswind	Mittelwert	u/⊧m	4540.9	4340	4420.7	4331.6	4492.8	4162.8	4532.9	4450.4	4339.7	4450.4	4505.8	4498	4299.9	4181.7	3225.9	3252	3551	3784.8	3859	3902.9	3683.9	3915.4	3571	3426.2	3894.4	3896.5	3839.5	3618.1
	Cu, °C		Ende	k.M	k.M	k.M	k.M	k.M	1396	k.M	k.M	k.M	1410	k.M	k.M	k.M	1415	k.M	k.M	k.M	1385	k.M	k.M	k.M	k.M	k.M	k.M	k.M	k.M	k.M	k.M
	Temp. (Abschl.	k.M.	k.M.	k. M.	k.M.	k. M.	1470	k. M.	k. M.	k. M.	k. M.	k. M.	1463	k. M.	1486	1475	k. M.	k. M.	k. M.	k.M.	k. M.	k. M.	k. M.	k. M.	k. M.	k. M.	k. M.	k. M.	k.M.
	hw. Cu	zinnarm	kg	21470	20330	21660	20430	21470	21380	20240	20140	21280	21950	20140	20990	21660	22040	20140	19570	19660	19860	20900	20900	20040	19860	21280	20050	20230	19570	21850	22420
	Chr. Nr::			50	51	52	53	54	55	56	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	Ľ
	Datum C			1/10/1015	cT07/81/t	1100,001	<107/61/t		1,00,001				1/21/2015 66			1/22/2015			1/23/2015				1/24/2015 1/25/2015			CTN7/C7/T	1/26/2015				

Tabelle 11.1: Einsatz und Ausbringung von Versuchsreihe "Koksstückigkeit"

	Sn (im Staub)		%	18.61			30.00	nc (c7				26.42			30.27								
	Staub- menge		kg	UCUC	0502		AFOD	0004				3490			5490								
roduktion	Schlacke 2		kg	4600	3200	3600	5800	2000	2000	5800	4900	3300	3000	3500	4700	4500	3100	3000	3000				
	Schlacke 1		kg	2700	3000	3000	2600	2700	3300	2800	2400	2900	2300	1800	3100	2500	3700	2100	2400				
	Roh Cu 1		kg	13500	15100	13700	12400	15500	15000	13600	12800	14900	15000	15100	15200	14600	14300	14700	14500				
	oildner		kg		200	200	200			200	200	200	200	200	200	200	200	200	200				
	Schlackenl		Art		Quarz m. Koks	Quarz m. Koks	Quarz m. Koks			Quarz m. Koks													
	ott		kg																				
	Schr		Art																				
		schung	%	100	45.71	42.31	40.00	42.31	40.43	41.67	37.5	39.29	42.31	36	38.46	40	37.04	36	1 38.46				
	oks Mis Mis		%	0	54.29	57.69	60.00	57.69	59.57	58.33	62.5	60.71	57.69	64	61.54	60	62.96	64	61.54				
sätze	Ko	groß	kg	100	160	110	100	110	95	100	06	110	110	6	100	100	100	6	100				
Eing		klein	kg		190	150	150	150	140	140	150	170	150	160	160	150	170	160	160				
	Schlacke		kg	1160	1090	1100	1080	1120	1080	1140	1090	1150	1080	1070	1130	1120	1120	1070	1070				
	Badspüler	Mittelwert	l/min	27.7	28.1	27.6	27.8	26.6	25.9	26.5	26.2	26.7	26.9	27.0	26.6	26.5	26.8	26.9	27.0				
	Blaswind	Mittelwert	ų/ε <i>m</i>	4509.3	4311.7	4329.3	4080.3	4587.5	4529.3	4427.3	4610.3	4523	4586	4408.3	4166.2	4546.4	4328.0	4583.9	4537.2				
	cu, °c		Ende	k.M	1448	k.M	1444	k.M	1449	1460	1441	1429	1442	1433	1440	1441	1438	1456	1440				
	Temp.		A bschl.	k.M.	1480	k.M.	1476	k.M.	1466	1484	1459	1432	1442	1436	1469	1445	1446	1463	1443				
	:hw.Cu	zinnarm	kg	22040	20710	21000	20520	21380	20520	21660	20610	21850	20620	20330	21570	21180	21280	20430	20430				
	Chr. Nr:			84	85	86	87	88	89	90	91	92	93	94	95	96	97	98	66				
	Datum			3100/0/0	CTU2 /2 /2		3100/0/0	CT07 /c /7				2/4/2015					2/5/2015						

Tabelle 11.2: Einsatz und Ausbringung von Versuchsreihe "Quarz 2. Phase"
Tabelle 11.3: Einsatz und Ausbringung von Versuchsreihe "Koksstückigkeit 80 kg fein, 80 kg mittel, 80 kg grob"

	Sn (im Staub)		%		20.77	06.17		רע אר	74:47		07.22	1 C CC	77.34			74.20	
	Staub- menge		kg		AACO	00#		OFUE	07R7	0100	0167	00.00	2430		0000	nn t s	
roduktion	Schlacke 2		kg	4800	4000	4100	5600	5400	5300	4800	6100	4400	3800	4700	4900	4500	3200
e.	Schlacke 1		kg	2800	2200	0082	2200	2600	2200	2500	2300	2500	2200	0082	1600	0067	000E
	Roh Cu 1		kg	15800	14300	12400	12500	12800	13800	14200	13000	14700	16000	13700	15000	13500	15700
	ildner		kg	200	200	200	200	200	200	200	200	200	200	200	200	200	200
	Schlackenb		Art	Quarz m. Koks	Quarz m. Koks												
	ott		kg														
	Schr		Art														
		Mischung	% %	33.33	33.33	33.33	33,33	33.33	33.3	33.33	33.33	33.33	33.33	33.33	33.33	33,3/29,2/37,5	33.33
ätze	Koks	groß	kg	30/80	30/80	30/80	30/80	30/80	30/80	30/80	30/80	30/80	30/80	30/80	30/80	06/02	30/80
Eins		klein	kg	80/	80/8	80/8	80/	80/	80/8	80/8	80/8	80/	80/8	80/	80/8	80/	80/
	Schlacke		kg	1140	1120	1060	1070	1090	1140	1110	1140	1120	1160	1090	1130	1110	1100
	Badspüler	Mittelwert	l/min	26.8	26.7	26.6	26.6	26.8	26.6	28.4	27.5	30.9	30.2	29.2	29	28.3	28.8
	Blaswind	Mittelwert	µ/⊧m	4203.4	4406.9	4276.5	4336.5	4285.4	4417.4	4474.9	4389.5	4429.8	4437.0	4463.8	4602.1	4546.0	4496.1
	Cu, °C		Ende	1443	1438	1441	1461	1460	1476	1465	1462		1423		1423	1442	1428
	Temp.		Abschl.	1460	1443	1457	1490	1491	1508	1484	1497		1430		1445	1464	1432
	:hw. Cu	zinnarm	kg	21760	21180	20040	20330	20710	21660	21090	21560	21280	22140	20610	21570	20890	20900
	Chr. Nr:			100	101	102	103	104	105	106	107	108	109	110	111	112	113
	Datum				3100/3/0	CT07/b/7		2/201E	CT N7 /1 /7	310/10/C	CT 07 /0 /7	2 (0/201F	CTN7/k/7		100/00/0		

	Sn (im Staub)		%		11 50	11.62			0E 72	C/:C7			5	10.62	
	Staub- menge		kg		0000	0600			UVCV	0474			0270	34/0	
roduktion	Schlacke 2		kg	4500	3200	4500	4000	5600	5400	3800	3200	6400	4900	4000	3000
Ā	Schlacke 1		kg	2500	2400	2600	3000	2900	2200	3100	2800	2800	3600	2400	2300
	Roh Cu 1		kg	12200	13700	15000	15000	13200	12700	15000	16000	12400	12900	15600	16000
	ildner		kg	200	200	210	200	200	220	200	210	220	210	200	200
	Schlackenb		Art	Quarz m. Koks											
	ţţ		kg		250	250	250	260	260	260	250	240	260	250	250
	Schro		Art		Fe Stanzmat.	Fe Stanzmat.	Fe Stanzmat.		Fe Stanzmat.	Fe Stanzmat.	Fe Stanzmat.		Fe Stanzmat.	Fe Stanzmat.	Fe Stanzmat.
		chung	%	36/32	100	33.33	70	45.45	50	50	50	50	50	50	50
	s	Miso	%	32/	0	66.67	30	54.55	50	20	50	50	20	50	20
ätze	Kok	groß	kg	08/06	100	30	70	50	50	50	50	50	50	50	50
Eins		klein	kg	80/6		60	30	60	50	50	50	50	50	50	50
	Schlacke		kg	1070	1090	1100	1100	1110	1070	1100	1100	1080	1110	1170	1120
	Badspüler	Mittelwert	l/min	29.3	30	29.9	28	27.3	26.9	29.1	28.6	28.7	27.4	26	26.1
	Blaswind	Mittelwert	ų/ε ш	4449.6	4309.5	4430.1	4340.2	4286.6	4200.9	4509.1	4216.1	4222.6	4065.9	4026.5	3922.3
	ču, °C		Ende		1337	1446	1446			1446	1440			1466	1452
	Temp. (Abschl.		1417	1425	1425			1444	1424			1458	1462
	IW. Cu	cinnarm	kg	20330	20810	20900	20900	20990	20330	20900	20900	20420	21090	22130	21380
	Chr. Nr: 2			114	115	116	117	118	119	120	121	122	123	124	125
	Datum C				3/11/2ME	CT07/TT /7			3 MC/ CL/ C	כדוהל /אד /א				CTU2/61/2	

Tabelle 11.4: Einsatz und Ausbringung von Versuchsreihe "Eisenstanzmaterial als Reduktionsmittel"

	Sn (im Staub)		%		AC 30	4/.07			25.15			25.23	
	Staub- menge		kg		01.00	NTOC			3310			2320	
roduktion	Schlacke 2		kg	4200	3000	5000	6200	4000	4500	4500	4300	3200	3000
ď	Schlacke 1		kg	2800	2000	2100	1900	3000	3000	2100	3200	2800	2200
	Roh Cu 1		kg	15000	16000	14000	12600	15000	14000	15500	14500	15000	15000
	bildner		kg		200/200	200/210	200/200		200/200	210/210		215/215	205/205
	Schlacken		Art		Quarz 1P+2P	Quarz 1P+2P	Quarz 1P+2P		Quarz 1P+2P	Quarz 1P+2P		Quarz 1P+2P	Quarz 1P+2P
	ott		kg		260	260	260		260	270		240	250
	Schr		Art		Fe Stanzmat.	Fe Stanzmat.	Fe Stanzmat.		Fe Stanzmat.	Fe Stanzmat.		Fe Stanzmat.	Fe Stanzmat.
		chung	%	0	54.545	50	50	0	54.545	50	0	54.545	50
	s	Mis	%	100	45.45	22	8	100	45.45	55	100	45.45	20
ätze	Kok	groß	kg		60	50	20		60	20		60	50
Eins		klein	kg	220	50	50	50	170	50	50	200	50	50
	Schlacke		kg	1120	1100	1070	1090	1180	1070	1110	1080	1070	1100
	Badspüler	M ittel wert	l/min	28.8	31.9	49.4	50.5	49.7	47.2	47.5	47.5	50	49.5
	Blaswind	Mittelwert	ų/ε ш	3639.5	3804.1	3621.7	3405	3708.8	3523.6	3525.4	3668.3	3477.5	3423.9
	cu, °C		Ende						1472	1443			
	Temp.(Abschl.						1442	1430			
	ıw.Cu	innarm	kg	21180	00602	20330	20610	22520	20430	20990	20620	20430	21000
	Chr. Nr:#	2		137	138	139	140	141	142	143	144 2062 145 2043 145 2043		
	Datum (21/10/04/C	CT07 /0T /7			2/19/2015			2/20/2015	

Tabelle 11.5: Einsatz und Ausbringung von Versuchsreihe "Quarz in der 1. Phase und 2. Phase"

	Sn (im Staub)		%		10.07	/C.01			10.01	10.41			19.24			10.00	+C.U2	
	Staub- menge		kg		0000	ncoc			0000	0070			4520			2020	Dece	
roduktion	Schlacke 2		kg	4100	4400	2600	3800	4200	4800	3700	4700	3900	3800	3100	4100	4200	4800	4600
Δ.	Schlacke 1		kg	3000	2100	2200	1900	2700	2100	2400	1800	4200	2600	2800	3200	3400	3000	2300
	Roh Cu 1		kg	13100	14700	16400	15100	12300	13700	14900	14400	11200	14500	16200	11800	13500	13000	14200
	bildner		kg		200/100	220/100	200/100		210/300	220/300	200/300		240/300	250/300		220/300	200/300	190/300
	Schlacken		Art		Quarz/Kalk	Quarz/Kalk	Quarz/Kalk		Quarz/Kalk	Quarz/Kalk	Quarz/Kalk		Quarz/Kalk	Quarz/Kalk		Quarz/Kalk	Quarz/Kalk	Quarz/Kalk
	ott		kg		120/270	120/270	190/260		120/250	120/300	130/260		120/280	120/270		130/280	120/260	120/240
	Schr		Art		Stanzmat	Stanzmat	Stanzmat		Stanzmat	Stanzmat	Stanzmat		Stanzmat	Stanzmat		Stanzmat	Stanzmat	Stanzmat
		schung	%		50	50	50	0	50	50	50	0	50	50	0	50	50	50
	ks	Mis	%	100	50	50	50	100	50	50	50	100	50	50	100	50	50	50
sätze	Ko	groß	kg		50	50	50		50	50	50		50	50		50	50	50
ΕİŮ		klein	kg	220	20	05	92	180	05	20	50	180	20	20	200	20	20	20
	Schlacke		kg	1100	1110	1100	1090	1070	1100	1090	1100	1050	1140	1150	1050	1110	1090	1120
	Badspüler	M ittelwert	l/min	8.44.8	43.7	47.1	46.4	45.8	45.6	47.4	46.5	45.4	6.44	47.2	44.3	45.8	47.4	47.8
	Blaswind	Mittelwert	ų/ε m	4434.1	4194.3	4433	4432	4231.6	4450.6	4558.6	4568	4400.7	4130.6	4542	4307.6	4392	4503	4509
	cu, °C		Ende							1414				1452			1430	
	Temp.		Abschl.		1395					1438				1458			1448	
	hw.Cu	zinnarm	kg	20800	21090	21000	20710	20330	20800	20810	20900	19850	21660	21950	19950	20990	20610	21280
	Chr. Nr::			179	180	181	182	183	184	185	186	187	188	189	190	191	192	193
	Datum				3100/01/0	crnz /nr /c			3100/11/0	croz/rr/c			3/12/2015			3100/01/0	CTO7 /CT /C	

Tabelle 11.6: Einsatz und Ausbringung von Versuchsreihe "Quarz 1. Phase und Kalkstein 2. Phase"

Tabelle 11.7: Einsatz und Ausbringung von Versuchsreihe "Gusseisenbriketts als Reduktionsmittel"

	Sn (im Staub)		%		17.77	21/17			10.00	TCINC	
	Staub- menge		kg		OWLC	P in			ADED	Pro-	
roduktion	Schlacke 2		kg	5100	5300	6400	7100	5400	5700	6900	4800
•	Schlacke 1		kg	3300	2500	3100	2200	2300	2600	3600	3400
	Roh Cu 1		kg	11600	13500	10700	11100	13600	13800	10400	13900
	bildner		kg		200/200	200/200	210/200		210/210	200/200	200/200
	Schlacken		Art		Quarz	Quarz	Quarz		Quarz	Quarz	Quarz
	rott		kg		250	250	120/270		120/250	120/250	120/250
	Sch		Art		Briketts	Briketts	Briketts		Briketts	Briketts	Briketts
		schung	%	0	8	8	95	0	8	8	50
	S	Ä	%	100	50	50	50	100	50	50	50
itze	Kol	groß	kg		75	75	75		75	75	75
Einsä		klein	kg	200	75	75	52	210	52	75	75
	Schlacke		kg	1140	1120	1060	1050	1120	1140	1070	1110
	Badspüler	Mittelwert	l/min	48.3	46.5	47.1	45.6	48.3	47.8	47.1	46.5
	Blaswind	Mittelwert	ul∕t	4521	4491	4353	4460	4414	4549	4220	4335
	cu, °C		Ende		1470				1458		
	Temp.(Abschl.		1490				1465		
	ıw. Cu	innarm	ß	21660	21180	20140	19950	21180	21660	20230	20990
	Chr. Nr: #	N		200	201	202	203	204	205	206	207
	Datum (3000/20/6	CTO7 / IT /C			3100/01/C	CTOZ /OT /C	

Anschließend sind die chemischen Analysen des Schwarzkupfers, des Rohkupfers, des Konverterstaubs und der Schlacken für die verschiedenen Versuchsreihen in Tabellen dargestellt.

				so	Schwarz	- Cu				KOR	oh - Cu			KO-Staub
]		(% Mittelwe	rt					%			%
Datum	Probe	Charge	Cu	Fe	Ni	Sn	Zn	Leco O ₂	Cu	Ni	Pb	Sn	Ag	Sn (Oxid)
Grenzwerte i	in Cu-Ende►		0.75	< 6%	0.03	0.05	0.03	< 1%	93-95%	< 5%	< 2%	< 1%		Soll > 21 %
	Cu vor Red.	50								2.04	0.67	0.05	0.004	_
1/18/2015	Culvor Red		72.67	10.16	5.87	5.70	2.08	0.98	93.14	3.84	0.67	0.85	0.061	22.14
	Cu-Ende	51						1 12	92.4	4 22	0.66	1.09	0.059	-
	Cu vor Red.							1.12	52.1		0.00	1.05	0.000	
4/10/2015	Cu-Ende	52	75 47	0.00	F 10	5.62	2.02	1.10	90.54	4.56	0.92	2.34	0.065	16.15
1/19/2015	Cu vor Red.	53	/5.4/	8.08	5.18	5.63	2.03							16.15
	Cu-Ende								91.05	3.96	1.13	3.28	0.073	
	Cu vor Red.	54							00.50			4.05	0.000	-
	Culvor Red							0.48	92.59	4.15	0.88	1.35	0.083	
	Cu-Ende	55						0.45	92 51	4 38	0.85	1 26	0.085	
1/20/2015	Cu vor Red.	50	74.82	7.95	5.64	6.09	2.18							24.39
	Cu-Ende	50						1.26	93.45	3.42	0.44	0.94	0.077	
	Cu vor Red.	57												
	Cu-Ende							1.21	94.15	3.1	0.38	0.67	0.074	
	Cu vor Red.	58						0.01	00.24	4.2	1 20	2.74	0.081	-
	Cu vor Red.							0.91	90.54	4.2	1.28	2.74	0.081	-
	Cu-Ende	59						0.9	93.92	3.29	0.48	0.91	0.064	
1/21/2015	Cu vor Red.	60	75.43	7.67	5.30	6.02	2.32							18.85
	Cu-Ende	00						1.17	93.27	3.59	0.46	1.03	0.073	
	Cu vor Red.	61												
	Culler Rod							1.06	92.95	3.8	0.56	1.14	0.076	
	Cu Voi Reu.	62						0.49	95.93	2 12	0.6	03	0.087	
	Cu vor Red.							0.15	55.55	LITE	0.0	0.0	0.007	
1/22/2015	Cu-Ende	63	75.00	7.02	5.25	F 70	2.20	1.41	92.9	3.6	0.59	0.94	0.088	22.01
1/22/2015	Cu vor Red.	64	/5.65	7.02	5.25	5.79	2.50							25.01
	Cu-Ende							0.73	94.24	3.25	0.47	0.8	0.078	
	Cu vor Red.	65						1.26	02.02	4.16	0.02	1.07	0.070	-
	Cu vor Red.							1.50	92.02	4.10	0.85	1.07	0.079	
	Cu-Ende	66						0.51	93.33	3.99	0.52	1.2	0.074	
	Cu vor Red.	67												
1/23/2015	Cu-Ende	0/	75.96	8.75	5.39	5.50	2.33	0.77	92.72	4.19	0.58	1.19	0.087	20.92
_,,	Cu vor Red.	68						0.04	05.07	2.07		0.25	0.004	
	Cu-Ende							0.84	95.87	2.07	0.4	0.25	0.084	
	Cu-Ende	69						0.79	96.74	1.35	0.42	0.12	0.089	-
	Cu vor Red.	70												
1/24/2015	Cu-Ende	70	75.86	7 75	5 31	5 54	2.49	0.88	93.90	3.13	0.43	1.09	0.081	19.00
1/24/2015	Cu vor Red.	71	75.80	1.15	5.51	5.54	2.45							15.00
	Cu-Ende							0.73	94.70	2.91	0.43	0.64	0.083	
	Cu Vor Red.	72						0.62	01.26	4.09	0.66	1.01	0.092	-
1/25/2015	Cu vor Red.		74.16	8.61	5.93	6.19	2.17	0.05	91.20	4.50	0.00	1.91	0.062	18.84
	Cu-Ende	73						0.70	90.03	5.57	0.92	2.25	0.062	
	Cu vor Red.	74												
	Cu-Ende	/4						0.61	95.77	2.37	0.42	0.3	0.063	
	Cu vor Red.	75									L			
1/26/2015	Cu-Ende		75.16	8.07	5.93	5.87	1.97	0.88	95.27	2.54	0.42	0.37	0.063	23.95
	Cu-Ende	76						0.98	91.69	4.21	0.89	1.6	0.061	
	Cu vor Red.		1											1
	Cu-Ende							0.28	93 18	3.84	1 20	0.93	0.059	1

Tabelle 11.8: Probenwerte von Schwarz- und Konverterkupfer für die Versuchsreihe "Koksstückigkeit"

						ко	Schlacker	bild					
			-			-	%						
Charge	Fe	NI	Cu	Zn	Pb	Sn	0	Na	Mg	AI	SI	Са	Cr
-												-	
50	<u> </u>												
51													
52	50.35	1.305	3.813	1.486	1.438	1.545	29.75	0.1062	0.3417	1.634	4.525	1.68	0.678
52	23.04	7.9	22.58	0.6198	5.029	11.66	24.22	0.06743	0.1346	0.6616	2.182	0.7712	0.2068
53	47.61	2.609	6.783	1.322	2.532	3.787	28.02	0.0567	0.2358	1.034	3.258	1.274	0.4329
	21.58	7.112	26.68	0.6792	4.349	10.63	24.1	0.1182	0.1177	0.6407	2.182	0.6739	0.2446
54	22.43	7.631	23.02	0.9313	4.962	11.46	24.33	0.1631	0.1232	0.6496	2.441	0.7403	0.1655
	22.13	7.534	23.47	0.9101	4.867	11.28	24.37	0.2109	0.1152	0.6974	2.465	0.7316	0.1766
55	43.89	6 535	7.547	1.525	2.433	4.149	28.47	0.07745	0.2864	1.309	2.649	1.547	0.0337
	44.08	2.278	6.66	2.278	2.174	3.325	28.95	0.1061	0.343	1.491	4.355	1.937	0.6739
56	16.69	8.013	30.37	0.799	3.448	10.35	23.48	0.1357	0.1349	0.6878	1.904	0.6971	0.3258
	37.98	2.569	8.346	2.169	2.613	4.07	29.88	0.1042	0.3644	1.832	4.857	1.895	0.873
57	16.61	7.361	30.37	0.7884	3.762	10.31	24.48	0.1774	0.1681	1.018	2.653	0.8452	0.2861
58	37.09	4.131	13.17	1.285	2.863	6.006	27.37	0.158	0.3289	1.104	3.808	1.293	0.3404
	24.06	7.207	22.79	0.6899	3.646	10.72	25.02	0.103	0.2241	0.7941	2.768	0.8941	0.3044
59	44.08	3.234	9.111	1.2	2.248	4.471	27.88	0,0,06753	0.3073	1.03	3.448	1.388	0.4799
	23.03	7.374	23.86	0.5645	3.937	11.55	24.3	0.1102	0.1799	0.653	2.181	0.7447	0.1726
60	40.55	3.0/9	20.74	1.310	2.737	5.469	27.40	1.339	0.2959	1.067	3.434	1.339	0.4672
	44 94	2 051	5 958	2 208	2 224	3 053	29.40	0.1035	0.1382	1 51	4 938	1 459	0.3314
61	17.31	7.381	28.75	0.8233	4.451	11.56	24.15	0.168	0.1744	0.7433	2.788	0.6465	0.2017
	38.26	3.79	12.65	1.353	2.938	5.996	27.22	0.2225	0.3554	1.064	3.453	1.251	0.4415
62	21	7.328	27.74	0.6333	3.54	10.56	24.24	0.1464	0.2053	0.7156	2.235	0.7058	0.2375
63	45.71	2.676	7.893	1.235	2.125	3.904	27.91	0.07788	0.3372	1.103	3.321	1.186	0.4827
	24.17	6.915	23.11	0.6195	4.178	11.67	24.47	0.1023	0.1653	0.6772	2.25	0.6658	0.1816
64	41.26	3.331	9.87	1.678	2.708	4.845	27.87	0.09006	0.3547	1.182	3.781	1.382	0.5655
	26.65	6.632	18.44	0.8609	4.191	11.05	25.52	0.1441	0.3227	0.9139	2.986	0.9511	0.3611
65	46.28	2.002	5.739 25.16	2.759	5.096	2.34/	29.46	0.1232	0.3866	1.406	4.63	0.6616	0.427
	41 12	3 613	9 949	1 108	2 398	4 592	23.00	0.1074	0.4343	1 346	4 255	1 36	0.3468
66	28.81	6.608	19.37	0.6844	3.036	8.457	26.12	0.137	0.3475	1.029	3.346	0.991	0.2418
67	43.71	2.791	8.044	1.121	2.227	3.706	28.83	0.07502	0.431	1.374	4.56	1.45	0.4299
67	23.55	6.876	23.92	0.4661	3.379	9.76	25.05	0.1194	0.2654	0.8817	2.896	0.8702	0.2416
68	38.37	3.676	11.66	1.402	2.468	4.787	28.21	0.08831	0.3465	1.378	4.528	1.401	0.4538
	23.48	7.673	24.05	0.6794	3.578	10.1	24.8	0.122	0.1957	0.7086	2.641	0.832	0.2433
69	36.96	3.963	11.46	1.751	3.261	5.789	27.86	0.0993	0.3237	1.244	4.505	1.366	0.4112
	14.59	7.901	33.6/	0.7015	3.56/	10	23.95	0.177	0.1655	0.7296	2.795	0.6349	0.2037
70	32.34	5.797	22.1	3.244	3.570	8 137	28.08	0 2789	0.3334	1.413	5.395	2.039	0.2031
	42.11	3.082	9.484	1.587	2.435	4.455	28.08	0.1072	0.3086	1.207	3.987	1.632	0.4385
71	19.56	7.183	28.26	0.6083	3.379	10.03	24.81	0.1384	0.1706	0.972	3.039	0.7857	0.223
70	48.88	1.422	4.136	2.87	1.586	1.937	29.37	0.1344	0.2894	1.275	4.605	1.682	0.541
/2	27.61	5.999	17.28	1.498	4.662	10.14	25.89	0.07192	0.1624	0.8461	3.729	0.982	0.1695
72	45.89	2.652	6.816	1.446	2.071	3.616	28.66	0.1169	0.298	1.216	4.171	1.308	0.4964
,,,	23.06	7.773	20.78	0.6694	4.46	11.88	25.16	0.1219	0.159	0.7607	3.365	0.7071	0.1544
74	38.08	3.088	7.873	2.414	2.992	4.462	29.2	0.1416	0.3055	1.577	5.584	1.619	0.851
	16.03	8.396	30.18	0.8907	4.045	10.9	23.96	0.1748	0.1657	0.5764	2.751	0.7389	0.2104
75	41.3/	3.498	10.07	1.742	2./1	4.903	27.68	0.1333	0.1274	0.5456	3./34	1.222	0.5233
	36.56	0.709 4 284	33.02 13.7	2 501	3,763	9.918 8 179	25.32	0.1883	0.1274	0.5198	2.12	0.4018	0.2208
76	18.53	8.54	26.64	1.058	4,853	14.71	22.84	0.1535	0.0498	0.3153	1,153	0.3132	0.1626
	31.78	5.84	14.47	3.136	4.804	13.23	24.17	0.0992	0.03626	0.317	1.197	0.2604	0.1514
11	17.51	7.624	25.93	1.496	6.213	15.83	22.71	0.1044	0.02854	0.2101	1.394	0.2156	0.05319

Tabelle 11.9: Probenwerte der Schlacken für die Versuchsreihe "Koksstückigkeit"

				SO	Schwarz ·	Cu				KO Ro	oh - Cu			KO-Staub
		1		G	% Mittelwei	rt					%			%
Datum	Probe	Charge	Cu	Fe	Ni	Sn	Zn	Leco O ₂	Cu	Ni	Pb	Sn	Ag	Sn (Oxid)
Grenzwerte	in Cu-Ende ►		0.75	< 6%	0.03	0.05	0.03	< 1%	93-95%	< 5%	< 2%	< 1%		Soll > 21 %
	Cu vor Red.	9/1												
2/2/2015	Cu-Ende	04	74 96	8 87	5 97	5 14	2 25	0.5	94.5	3.35	0.49	0.7	0.073	18.61
2, 2, 2020	Cu vor Red.	85	7 1150	0.07	5.57	5.11	2.25							
-	Cu-Ende							1.12	93.29	3.7	0.38	0.83	0.102	
	Cu vor Red.	86							04.07	0.00	0.64	0.05	0.00	
	Cu-Ende							0.5	94.37	3.06	0.61	0.96	0.08	
	Cu Vor Red.	87						0.5	04.42	2.40	0.25	0.67	0.099	
2/3/2015	Cu vor Red		74.78	8.28	6.39	5.44	2.15	0.5	54.45	5.45	0.55	0.07	0.066	23.95
	Cu-Ende	88						0 34	89.16	73	0.65	2 01	0.078	
	Cu vor Red.							0.01	05.10	7.5	0.05	2.01	0.070	
	Cu-Ende	89						0.5	94.25	3.55	0.39	0.75	0.088	
	Cu vor Red.													
	Cu-Ende	90						1.26	93.8	3.36	0.37	0.66	0.087	
	Cu vor Red.	91												
	Cu-Ende							1.4	93.16	3.71	0.39	0.78	0.084	
2/4/2015	Cu vor Red.	92	77.01	5.37	6.37	6.02	2.15							26.42
	Cu-Ende							2.04	92.77	3.63	0.29	0.74	0.087	
	Cu vor Red.	93						0.00	02.64	2.50	0.55	0.77	0.070	
	Culvor Red							0.96	95.04	3.36	0.55	0.77	0.076	
	Cu-Ende	94						1 47	94.04	3.05	0.28	0.62	0.086	
}	Cu vor Red.							1.47	54.04	5.05	0.20	0.02	0.000	
	Cu-Ende	95						1.71	94.32	2.61	0.4	0.4	0.086	
	Cu vor Red.													
	Cu-Ende	96						1.86	93.79	2.95	0.38	0.48	0.085	1
2/5/2015	Cu vor Red.	07	79 20	E 67	4 50	E 42	1.04							20.27
2/3/2015	Cu-Ende	97	78.20	5.07	4.50	5.45	1.04	1.58	94.4	2.71	0.32	0.47	0.088	50.27
	Cu vor Red.	98												
	Cu-Ende	20						1.76	94.19	2.72	0.31	0.49	0.091	
	Cu vor Red.	99												
1	Cu-Ende						1	1.52	94.08	3	0.34	0.54	0.088	

Tabelle 11.10: Probenwerte von Schwarz- und Konverterkupfer für die Versuchsreihe "Schlackenbildner Quarz 2. Phase"

Tabelle 11.11: Probenwerte der Schlacken für die Versuchsreihe "Schlackenbildner Quarz 2. Phase"

						ко	Schlacken	bild					
							%						
Charge	Fe	Ni	Cu	Zn	Pb	Sn	0	Na	Mg	AI	Si	Са	Cr
	42.09	3.464	11.02	1.416	1.418	3.039	28.48	0.192	0.1997	1.518	4.116	1.207	0.5902
84	15.13	10.13	30.81	0.4575	3.419	11.33	22.98	0.1191	0.0818	0.547	1.605	0.434	0.1692
	39.38	4.544	11.99	1.266	2.477	4.754	27.56	0.1926	0.2624	1.346	3.5	1.217	0.5097
85	19.69	8.358	30.94	0.6472	3.124	8.589	24	0.1276	0.1227	0.6748	2.064	0.6385	0.2931
	35.16	5.642	16.72	0.8138	2.65	5.963	26.47	0.1375	0.218	1.037	2.89	0.9571	0.3744
86	23.42	8.023	26.24	0.5162	3.058	8.584	24.82	0.1229	0.1244	0.7358	2.634	0.6646	0.1956
07	38.13	4.568	12.31	1.026	2.496	5.136	27.72	0.09389	0.2768	1.266	3.963	1.418	0.3622
8/	17.82	8.478	31.38	0.5399	3.228	8.889	24.15	0.1555	0.1563	0.8391	2.425	0.7752	0.1987
	44.36	3.122	7.384	1.48	2.149	3.635	28.61	0.1265	0.3337	1.271	4.201	1.621	0.3835
88	14.78	9.876	33.02	0.5168	3.38	10.46	23.45	0.1655	0.1214	0.5332	2.096	0.5764	0.2002
00	42.29	3.956	9.487	1.507	2.285	4.448	27.77	0.1111	0.2451	1.089	3.483	1.753	0.3381
89	12.95	9.799	35.56	0.5399	3.261	9.981	23.29	0.2367	0.1142	0.6258	2.038	0.5694	0.1773
00	31.54	5.868	15.62	2.163	3.171	7.836	26.26	0.2542	0.2538	1.056	3.089	1.419	0.3186
50	16.57	8.687	32.34	0.985	3.076	9.481	23.78	0.1767	0.1308	0.6589	2.205	0.782	0.1935
91	33.89	4.959	12.83	2.351	3.521	7.309	27.02	0.1261	0.2099	1.156	3.863	1.299	0.258
51	16.57	9.309	34.29	0.8231	3.895	11.06	23.51	0.1855	0.099	0.5506	2.671	0.5116	0.1742
92	30.15	5.093	14.46	2.776	4.188	8.299	26.73		0.2387	1.147	4.174	1.37	0.1749
	12.27	8.586	35.36	1.038	3.727	10.26	23.56	0.232	0.1091	0.654	2.681	0.6119	0.1375
93	35.89	4.11	10.73	3.195	3.5	6.79	27.25	0.1846	0.2638	1.008	3.924	1.723	0.2195
	11.88	8.882	34.27	0.9393	4.103	11.31	23.52	0.2543	0.1299	0.5554	2.721	0.6019	0.1471
94	32.5	4.4	12.1	3.769	4.073	7.616	26.94	0.2337	0.269	1.07	4.044	1.713	0.1551
	13.58	8.451	32.56	1.382	4.208	11.15	23.52	0.2405	0.1239	0.5807	2.529	0.7758	0.1295
95	24.27	6.266	17.34	4.003	4.504	11.11	25.33	0.429	0.1967	1.094	3.046	1.244	0.2202
	13.12	8.187	32.77	1.973	4.105	10.66	23.66	0.3229	0.1338	0.6026	2.74	0.7061	0.155
96	28.61	5.294	15.04	2.645	4.256	9.378	26.64		0.2249	1.299	4.238	1.173	0.1584
	9.878	8.803	36.82	3.942	0.9371	10.74	23.49	0.2183	0.1161	0.6487	2.976	0.4551	0.1486
97	27.83	5.656	15.66	2.749	4.509	9.669	26.18	0.1539	0.2664	1.03	3.851	1.177	0.1831
	10.02	8.674	38.19	0.9564	3.485	10.19	23.38	0.2293	0.1237	0.6172	2.745	0.4696	0.1377
98	35.25	4.201	11.79	3.244	4.006	7.61	26.77	0.1524	0.2646	0.839	3.716	0.8899	0.2294
	11.31	8.619	36.34	0.936	4.019	11.24	23.16	0.1798	0.1257	0.4292	2.499	0.3554	0.153
99	31.01	4.582	13.43	3.227	4.341	8.557	25.86	0.131	0.2412	0.7314	3.542	0.7696	0.1997
	11.2	8.535	35.74	1.045	4.004	10.86	23.53	0.2493	0.1488	0.4797	3.001	0.3384	0.1477

				SO	Schwarz -	Cu				KO Ro	oh - Cu			KO-Staub
				0	% Mittelwei	rt					%			%
Datum	Probe	Charge	Cu	Fe	Ni	Sn	Zn	Leco O ₂	Cu	Ni	Pb	Sn	Ag	Sn (Oxid)
Grenzwerte i	in Cu-Ende ►		0.75	< 6%	0.03	0.05	0.03	< 1%	93-95%	< 5%	< 2%	< 1%		Soll > 21 %
	Cu vor Red. Cu-Ende	100						1.48	93.57	3.29	0.39	0.77	0.061	-
	Cu vor Red. Cu-Ende	101						1.59	94.39	2.64	0.4	0.42	0.084	
2/6/2015	Cu vor Red. Cu-Ende	102	77.91	4.21	5.71	6.77	2.19	0.81	94.69	3.04	0.35	0.57	0.075	27.96
	Cu vor Red. Cu-Ende	103						1.08	92.53	3.98	0.33	1.55	0.071	1
2/7/2015	Cu vor Red. Cu-Ende	104	72.25	0.05	5.01	6.24	2.22	0.71	94.08	3.47	0.42	0.74	0.082	
2/7/2015	Cu vor Red. Cu-Ende	105	/3.25	9.05	5.81	6.24	2.33	0.68	95.04	2.87	0.4	0.51	0.061	24.42
2/0/2015	Cu vor Red. Cu-Ende	106	74.24	0.20	5 50	6.00	2.20	1.63	93.56	2.71	0.63	0.97	0.085	
2/8/2015	Cu vor Red. Cu-Ende	107	74.54	0.20	5.58	6.00	2.38	0.93	93.36	3.64	0.43	0.96	0.122	22.20
2/0/2015	Cu vor Red. Cu-Ende	108	75.24	7.50	F 05	5 75	2.49	1.1	94.08	3	0.33	1.01	0.036	
2/9/2015	Cu vor Red. Cu-Ende	109	75.24	7.50	5.95	5.75	2.40	0.47	94.48	3.31	0.43	0.72	0.087	22.34

Tabelle 11.12: Probenwerte von Schwarz- und Konverterkupfer für die Versuchsreihe "Koksstückigkeit 80 kg fein, 80 kg mittel, 80 kg grob"

Tabelle 11.13: Probenwerte der Schlacken für die Versuchsreihe "Koksstückigkeit 80 kg fein, 80 kg mittel, 80 kg grob"

						ко	Schlacker	bild					
							%						
Charge	Fe	Ni	Cu	Zn	Pb	Sn	0	Na	Mg	AI	Si	Ca	Cr
100	24.54	5.523	17.31	4.347	4.318	10.28	25.7		0.3137	1.009	3.822	0.6767	0.3803
100	14.19	7.449	10.32	2.249	3.942	10.32	25.54		0.2053	1.159	4.913	0.4343	0.1795
101	28.5	4.979	15.48	3.071	4.367	9.396	26.49		0.2512	1.061	4.235	0.9091	0.2283
101	15.1	7.589	27.52	1.503	4.352	10.95	25.29	0.233	0.1711	0.9431	4.607	0.5762	0.1834
102	30.97	4.486	13.28	2.475	3.664	7.521	27.62	0.147	0.3489	1.282	4.989	1.761	0.314
102	17.89	7.617	17.89	1.301	3.622	9.895	25.26	0.1143	0.2206	0.8869	3.952	1.097	0.1957
103	35.26	4.413	13.52	1.41	3.025	6.917	27.12	0.1771	0.3037	0.953	3.861	1.396	0.3484
105	16.62	8.047	31.58	0.6528	3.338	10.42	24.05	0.1487	0.1802	0.572	2.665	0.7117	0.2183
10/	36.05	4.351	12.47	1.9	3.13	6.819	27.26	0.08372	0.3372	1.017	3.888	1.209	0.4688
104	17.91	7.884	28.11	0.8374	3.556	10.21	25	0.1894	0.2366	0.8	3.642	0.6534	0.2245
105	43.25	3.074	9.113	0.7661	2.162	4.185	28.53	0.06845	0.4466	1.354	4.189	1.325	0.4002
105	24.47	6.785	22.33	0.4445	3.275	9.087	26.11	0.09419	0.2844	1.053	4.021	0.8009	0.2995
106	48.48	2.609	7.562	0.8528	1.438	2.875	28.52	0.0663	0.3491	1.166	3.478	1.116	0.4338
100	22.26	7.888	23.68	0.4416	4.003	10.91	24.99	0.0894	0.1831	0.794	3.03	0.6042	0.298
107	43.02	3.449	8.826	0.9028	2.288	4.471	28.34	0.06661	0.3556	1.29	4.067	1.332	0.3826
107	20.69	7.22	26.31	0.4363	3.114	9.014	24.73	0.08633	0.1842	0.8269	3.062	0.6838	0.2503
109	47.83	2.425	6.643	1.685	1.583	2.768	28.65	0.08945	0.2916	1.226	3.751	1.426	0.5035
100	22.41	7.874	23.03	0.8364	4.119	11.07	24.86	0.113	0.147	0.7038	3.029	0.7287	0.236
100	38.84	3.634	9.45	2.635	3.121	5.492	27.83	0.1229	0.297	1.173	4.213	1.341	0.4581
109	19.86	7.753	24.05	1.219	4.243	11.21	24.68	0.1467	0.1489	0.7071	3.268	0.7684	0.1516

				SO	Schwarz	- Cu				KO Ro	oh - Cu			KO-Staub
				Ģ	% Mittelwe	rt					%			%
Datum	Probe	Charge	Cu	Fe	Ni	Sn	Zn	Leco O ₂	Cu	Ni	Pb	Sn	Ag	Sn (Oxid)
Grenzwerte	in Cu-Ende►		0.75	< 6%	0.03	0.05	0.03	< 1%	93-95%	< 5%	< 2%	< 1%		Soll > 21 %
	Cu vor Red.	110												
	Cu-Ende	110						0.71	93.66	3.66	0.38	0.98	0.104	
	Cu vor Red.	111												
2/10/2015	Cu-Ende		77.55	4.56	6.32	6.28	2.29	0.54	93.29	4.16	0.44	0.99	0.1	24.20
_,,	Cu vor Red.	112												
	Cu-Ende							0.99	93.9	3.41	0.34	0.74	0.102	_
	Cu vor Red.	113						1.05	04.00		0.00			-
	Cu-Ende							1.06	91.39	5.3	0.36	1.31	0.104	
	Cu Vor Red.	114						0.00	04.95	2.04	0.20	0.47	0.009	-
	Cupper Red							0.88	94.85	2.64	0.50	0.47	0.098	-
	Cu-Ende	115						0.49	92.4	4 97	0.36	1 18	0.098	-
2/11/2015	Cu vor Red		77.62	4.58	6.51	6.09	2.28	0.45	52.4	4.57	0.50	1.10	0.050	23.11
	Cu-Ende	116						0.63	94.61	3.03	0.51	0.59	0.098	-
	Cu vor Red.													
	Cu-Ende	117						0.82	93.1	4.12	0.41	0.95	0.099	
	Cu vor Red.													
	Cu-Ende	118						1.2	93.41	3.63	0.35	0.82	0.09	
	Cu vor Red.	440												
2/12/2015	Cu-Ende	119	77.01	E 01	6 55	6 27	2 10	0.96	93.88	3.46	0.35	0.76	0.09	25.72
2/12/2013	Cu vor Red.	120	77.01	5.01	0.55	0.27	2.15							23.75
	Cu-Ende	120						1.55	92.77	3.8	0.42	0.9	0.081	
	Cu vor Red.	121												
	Cu-Ende							1.71	93.25	3.36	0.39	0.76	0.08	
	Cu vor Red.	122												-
	Cu-Ende							0.5	94.77	3.31	0.27	0.61	0.083	-
	Cu vor Red.	123						0.24	04.50	2.42	0.45	0.72	0.070	-
2/13/2015	Culver Red		73.09	8.82	6.93	6.30	2.02	0.24	94.58	3.43	0.45	0.73	0.073	23.57
	Cu-Ende	124						0.6	96.58	1.69	0.30	0.18	0.080	-
	Cu vor Red							0.0	50.36	1.05	0.35	0.10	0.069	-
	Cu-Ende	125						0.69	95.09	2.76	0.4	0.48	0.094	

Tabelle 11.14: Probenwerte von Schwarz- und Konverterkupfer für die Versuchsreihe "Eisenstanzmaterial als Reduktionsmittel"

						ко	Schlacker	bild					
							%						
Charge	Fe	Ni	Cu	Zn	Pb	Sn	0	Na	Mg	AI	Si	Ca	Cr
	26.66	5.138	12.93	5.06	4.926	9.972	26.46	0.1893	0.2085	0.9248	4.554	1.579	0.3185
110	14.92	7.509	26.47	2.417	4.46	10.56	25.44		0.142	0.987	4.836	0.984	0.1148
	31.37	5.288	13.43	3.429	3.926	8.855	26.28	0.1894	0.1979	0.8532	3.483	1.396	0.2355
111	14.93	8.668	29.57	1.705	422	11.29	24.05		0.1004	0.5745	3.116	0.7646	0.1318
112	31.48	4.027	10.37	2.344	2.951	6.249	29.53	0.1289	0.2671	2.106	6.958	1.837	0.2561
112	12.68	8.825	33.61	0.8948	3.231	10.2	24.27	0.1985	0.1159	0.7608	3.381	0.8195	0.1699
112	26.82	5.762	17.6	2.254	3.519	8.195	26.88	0.1224	0.1715	1.27	4.68	1.329	0.2302
113	13.48	9.049	28.35	1.119	4.531	12.77	24.32	0.1807	0.1031	0.8249	3.529	0.6996	0.1544
114													
114													
115	28.9	4.343	10.48	4.094	4.106	6.588	28.97		0.31	1.497	7.194	1.876	0.2845
115	19.05	7.692	25.53	1.828	3.578	9.324	25.42	0.2715	0.1291	0.8239	4.128	1.052	0.1293
116	28.45	4.778	12.03	3.995	4.127	7.209	28.13	0.1946	0.2766	1.325	6.149	1.876	0.2845
110	19.05	8.245	27.83	1.557	3.458	9.984	24.58	0.2383	0.1204	0.6959	3.127	0.983	0.1715
117	27.18	5.057	12.96	4.051	4.636	7.955	27.83		0.2659	1.185	6.218	1.283	0.2562
117	15.08	8.049	29.7	1.244	3.101	9.038	25.7	0.2538	0.1154	1.395	4.679	0.5776	0.1587
118	27.13	5.132	13.5	3.798	4.049	7.458	28.01		0.303	1.258	6.288	1.542	0.2708
110	19.52	7.741	25.05	1.959	3.454	9.499	25.46	0.2428	0.176	0.7621	4.113	0.982	0.1698
110	32.99	4.279	10.81	3.036	3.485	6.502	28.22	0.1566	0.2856	1.163	5.616	2.014	0.2473
115	21.84	7.927	23.16	1.473	3.307	9.902	25.4	0.1845	0.1493	0.7461	3.617	1.204	0.1822
120													
121													
	22.42	4 671	12 12	2 271	2 217	6 54	20.22	0 1020	0.2049	1 102	E 672	1 651	0 2022
122	17.66	7 588	20 /2	0.083	2 653	8 /175	25.23	0.1035	0.3048	1.105	J.073	0.9027	0.2923
	20.02	2 502	0.212	1 912	2.000	5 124	20.57	0.1411	0.1005	1.030	5 1/7	1 029	0.1675
123	19.1	8.869	27 52	0.6743	3 088	11 02	20.5	0.1335	0.2337	0.6809	2 864	0.4205	0.3338
	13.1	0.305	27.52	0.0745	5.000	11.02	24.33	0.1333	0.1442	0.0005	2.304	0.4205	0.2101
124													
-	36.83	4.815	12.04	1.359	2.577	5.873	27.81	0.05777	0.2575	1.081	4.378	1.405	0.29
125	24.43	8.117	20.54	0.6175	2.994	10.26	25.93	0.1177	0.1712	1.07	3.62	0.834	0.2614

Tabelle 11.15: Probenwerte der Schlacken für die Versuchsreihe "Eisenstanzmaterial als Reduktionsmittel"

Tabelle11.16:ProbenwertevonSchwarz-undKonverterkupferfürdieVersuchsreihe"Schlackenbildner Quarz in 1. und 2. Phase"

			so	Schwarz -	Cu				KO Ro	oh - Cu			KO-Staub
			G	% Mittelwer	t					%			%
Probe	Charge	Cu	Fe	Ni	Sn	Zn	Leco O ₂	Cu	Ni	Pb	Sn	Ag	Sn (Oxid)
n Cu-Ende ►		0.75	< 6%	0.03	0.05	0.03	< 1%	93-95%	< 5%	< 2%	< 1%		Soll > 21 %
Cu vor Red.	137						0.27	03.00	2.95	0.44	0.95	0.058	-
Cu vor Red							0.37	93.90	3.85	0.44	0.85	0.058	
Cu-Ende	138	74.42	7 12	6.74	6 70	2.04	0.37	93.31	4.27	0.45	1.06	0.058	25.74
Cu vor Red.	120	74.43	7.13	6.74	6.78	2.04							25.74
Cu-Ende	135						0.31	92.41	4.5	0.46	1.8	0.06	
Cu vor Red.	140												
Cu-Ende	140						0.26	92.3	4.59	0.49	1.84	0.059	
Cu vor Red.	141												
Cu-Ende							0.23	95.88	2.47	0.48	0.34	0.132	
Cu vor Red.	142	75.12	6.49	6.56	6.77	2.05							25.15
Cu-Ende							0.27	95.23	2.95	0.46	0.52	0.129	
Cu vor Red.	143						0.00	04.70	5.00	0.40	47	0.455	-
Cu-Ende							0.33	91.78	5.06	0.49	1.7	0.155	
Cu vor Red.	144						1.00	02.75	2.00	0.50	0.5	0.110	
Cu-Ende	u-Ende						1.38	93.75	3.06	0.56	0.5	0.116	_
Cu Ende	145	76.84	4.89	6.56	6.31	2.02	1.25	02.25	2 57	0.55	0.62	0.116	25.23
Cupper Red							1.25	55.25	5.57	0.55	0.65	0.116	-
Cu-Ende	146						0.84	03.58	3 7/	0.43	0.83	0.1	-
	Probe Cu-Ende ► Cu-Ende Cu	Probe Charge cu-Ende ≻ 137 Cu-Ende 138 Cu-Ende 138 Cu-Ende 139 Cu-Ende 140 Cu-Ende 141 Cu-Ende 142 Cu-Ende 142 Cu-Ende 143 Cu-Ende 143 Cu-Ende 143 Cu-Ende 143 Cu-Ende 144 Cu-Ende 144 Cu-Ende 143 Cu-Ende 144 Cu-Ende 144 Cu-Ende 145 Cu-Ende 145 Cu-Ende 146	Probe Charge Cu ncu-Ende ≻ 0.75 0.75 Cu-Ende 137 2000000000000000000000000000000000000	Probe Charge Cu Fe ncu-Ende> 0.75 < 6% Cu-Ende 137 Cu-Ende 137 Cu-Ende 138 Cu-Ende 138 <	SO Schwarz - Probe Charge Cu Fe Ni ncu-Ende> 0.75 < 6% 0.03 Cu-Ende 137	SO Schwarz - Cu Probe Charge Cu Fe Ni Sn ncu-Ende> 0.75 < 6% 0.03 0.05 Cu-Ende 137	SO Schwarz - Cu Probe Charge Cu Fe Ni Sn Zn ncu-Ende≻ 0.75 < 6% 0.03 0.05 0.03 Cu-Ende 137	SO Schwarz - Cu Probe Charge Cu Fe Ni Sn Zn Leco 02 ncu-Ende ▶ 0.75 < 6% 0.03 0.05 0.03 < 1% Cu-Ende ▶ 0.75 < 6% 0.03 0.05 0.03 < 1% Cu-Ende Cu-Ende 137	SO Schwarz - Cu Probe Charge Cu Fe Ni Sn Zn Leco 02 Cu ncu-Ende ▶ 0.75 < 6% 0.03 0.05 0.03 < 1% 93.95% Cu-Ende ▶ 0.75 < 6% 0.03 0.05 0.03 < 1% 93.95% Cu-Ende 137	SO Schwarz - Cu KO Rec Probe Charge Cu Fe Ni Sn Zn Leco O2 Cu Ni nou-Ende> 0.75 < 6% 0.03 0.05 0.03 < 1% 93.95% < 5% Cu-Ende 137	SO Schwarz - Cu KO Roh - Cu Probe Charge Cu Fe Ni Sn Zn Leco O2 Cu Ni Pb nou-Ende> 0.75 < 6% 0.03 0.05 0.03 < 1% 93-95% < 5% < 2% Cu-Ende 137	SO Schwarz - Cu KO Roh - Cu Wite/wert state/wert KO Schwarz - Cu KO Roh - Cu Probe Charge Cu Fe Ni Sn Zn Leco O2 Cu Ni Pb Sn Ag ncu-Ende 0.75 < 6% 0.03 0.05 0.03 < 1% 93.95% < 5% < 2% < 1% Ag Ag Ag Ni Pb Sn Ag Ni	

						ко	Schlacker	bild					
							%						
Charge	Fe	Ni	Cu	Zn	Pb	Sn	0	Na	Mg	Al	Si	Ca	Cr
137													
138	49.89	1.527	4.119	2.169	1.267	1.82	29.42	0.1238	0.3497	1.176	4.475	1.663	0.5592
150	19.87	8.764	25.43	0.7216	4.04	11.57	24.38	0.1298	0.1463	0.5342	2.811	0.57	0.2353
130	42.12	2.395	5.804	2.278	2.619	3.509	29.82	0.1326	0.3432	1.305	6.376	1.578	0.3804
135	21.7	7.754	22.07	0.8942	3.496	10.22	25.66	0.1758	0.174	0.7767	4.2	0.7346	0.2473
140	36.83	3.04	7.797	2.862	3.109	4.48	29.64	0.1511	0.2994	1.424	6.865	1.728	0.3426
140	21.09	7.973	22.28	1.225	3.853	10.83	25.6	0.19	0.1576	0.7029	4.187	0.866	0.2058
141													
141													
143	40.18	3.522	7.728	2.506	2.985	4.858	28.69	0.1087	0.2606	1.018		1.33	0.3536
142	20.24	8.424	23.67	1.013	3.968	11.44	25.09	0.143	0.1267	0.5	3.807	0.5791	0.1877
142	31.75	4.747	11.67	3.405	4.061	7.099	27.86	0.1641	0.1943	0.938	5.747	1.114	0.2248
143	17.85	8.842	24.58	1.408	4.146	12.16	24.85	0.2317	0.1589	0.5123	3.825	0.5717	0.1695
144													
144													
145	33.05	4.062	9.615	3.7	4.691	5.895	28.38	0.148	0.2149	1.143	6.249	1.392	0.2725
145	18.54	8.714	23.21	1.318	4.979	12.26	24.82	0.1825	0.109	0.6322	3.754	0.6192	0.161
4.45	34.2	3.649	8.723	3.847	4.661	5.43	28.54	0.1688	0.2703	1.104	6.287	1.593	0.2833
146	21.08	7.724	20.6	1.699	5.032	10.85	25.63	0.09255	0.1297	0.7164	4.511	0.8308	0.1337

Tabelle 11.17: Probenwerte der Schlacken für die Versuchsreihe "Schlackenbildner Quarz in 1. und 2. Phase"

Tabelle11.18:ProbenwertevonSchwarz-undKonverterkupferfürdieVersuchsreihe"Schlackenbildner Quarz in 1. Phase und Kalkstein in 2. Phase"

				SO	Schwarz	- Cu				KO Ro	oh - Cu			KO-Staub
				0	% Mittelwe	rt				'	%			%
Datum	Probe	Charge	Cu	Fe	Ni	Sn	Zn	Leco O ₂	Cu	Ni	Pb	Sn	Ag	Sn (Oxid)
Grenzwerte i	in Cu-Ende►		0.75	< 6%	0.03	0.05	0.03	< 1%	93-95%	< 5%	< 2%	< 1%		Soll > 21 %
	Cu vor Red.	170												
	Cu-Ende	1/9						0.7	92.7	4.24	0.72	0.99	0.189	
	Cu vor Red.	180												
3/10/2015	Cu-Ende	100	78 54	4 52	5 39	5.64	2 58	0.42	92.12	4.52	0.73	1.56	0.18	18 37
3, 10, 2013	Cu vor Red.	181	70.54	4.52	5.55	5.04	2.50							10.57
	Cu-Ende							0.4	94.96	2.89	0.58	0.55	0.17	
	Cu vor Red.	182												-
	Cu-Ende							0.54	94.36	3.13	0.62	0.73	0.158	
	Cu vor Red.	183						0.20	02.02	2.0	0.50	0.02	0.140	
	Cupper Bod							0.29	93.83	3.9	0.56	0.83	0.148	-
	Cu Voi Reu.	184						0.22	02 77	2 76	0.67	0.0	0.126	-
3/11/2015	Cu vor Red		77.90	4.56	5.84	5.87	2.67	0.32	55.77	3.70	0.07	0.5	0.150	14.31
	Cu-Ende	185						0.66	94.94	2.74	0.61	0.48	0.129	
	Cu-Ende Cu vor Red.													
Cu	Cu-Ende	186						0.57	94.3	3.4	0.37	0.76	0.13	
	Cu vor Red.	107												
	Cu-Ende	16/						0.75	93.32	3.86	0.52	0.96	0.111	
3/12/2015	Cu vor Red.	188	78.06	1 69	5.64	5 57	2 97							19.24
5,12,2015	Cu-Ende	100	78.00	4.05	5.04	5.57	2.57	0.66	93.23	4.12	0.34	1.02	0.228	15.24
	Cu vor Red.	189												
	Cu-Ende							0.59	94.5	3.23	0.48	0.62	0.111	
	Cu vor Red.	190												
	Cu-Ende							0.25	93.42	4.11	0.57	1.09	0.094	
	Cu vor Red.	191						0.20	02.12	-	0.67	1.21	0.000	-
3/13/2015	Culvor Red		76.56	5.54	5.80	5.94	2.97	0.38	92.12	5	0.67	1.31	0.086	20.94
	Cu-Ende	192						0.36	94 54	3 33	0.56	0.68	0.091	
	Cu vor Red							0.30	54.54	3.35	0.50	0.08	0.091	
	Cu-Ende	193						0.24	96.58	1.81	0.62	0.22	0.099	

						ко	Schlacker	nbild					
							%						
Charge	Fe	Ni	Cu	Zn	Pb	Sn	0	Na	Mg	Al	Si	Ca	Cr
179													
	39.54	2,268	6.408	4,777	3.833	3.836	29.04		0.2554	1.102	6.168	1.233	0.3119
180	20.66	7.219	21.68	1.751	5.851	11.72	24.9	0.2381	0.1051	0.5593	3.861	0.5302	0.1127
101	33.05	3.839	11.01	4.404	5.208	7.14	27.16	0.1932	0.2011	0.8004	4.969	1.029	0.1887
181	17.52	7.452	28.55	1.559	4.58	10.93	23.99	0.2227	0.09034	0.568	2.728	0.992	0.1705
107	31.85	3.675	10.67	4.949	4.951	6.761	27.51		0.2335	0.9538	5.419	1.427	0.2147
182	20.21	7.036	24.3	2.076	4.606	10.55	24.7	0.2962	0.1193	0.6258	3.24	1.373	0.1455
183													
	36.08	3.861	10.32	3.79	4,419	6.236	27.31	0.1464	0.1725	0.6834	4.634	1.038	0.2783
184	17.42	8.528	27.1	1.246	4.114	11.8	23.87	0.2237	0.08432	0.4283	2.338	2.139	0.1571
405	31.83	4.051	10.87	4.593	4.756	6.931	27.56		0.2462	0.9191	5.456	1.416	0.2099
185	14.92	8.254	28.43	1.644	4.27	11.68	23.73	0.2339	0.1047	0.4788	2.565	2.37	0.1009
100	31.43	3.883	10.68	4.468	4.307	6.377	28.14		0.3573	1.263	5.91	1.603	0.233
180	18.39	6.995	28.39	1.825	3.699	8.523	25.14	0.336	0.1709	0.7191	3.974	0.8184	0.1855
187													
	26.0	2.070	0 606	E CEQ	2 505	1 676	20.2		0.2062	0.9036	E E70	1.076	0.2507
188	16 75	S.079	0.000	3.036	2 9/2	4.070	20.5	0.2622	0.2905	0.6950	2 205	2 117	0.2507
	35 /1	3 596	10.24	3 763	3.845	5 867	23.87	0.2022	0.1105	1 012	5 131	1 300	0.175
189	16.69	8 518	30.75	0 9071	3.026	10.52	27.54	0 1868	0.1298	0 5191	1 989	1.355	0.2423
	10.05	0.510	30.75	0.5071	5.020	10.52	23.5	0.1000	0.1250	0.5151	1.505	1.705	0.1701
190													
	41.8	2.133	6.308	3.116	2.375	2.929	30.46		0.263	0.8097	4.752	1.079	0.6658
191	17.54	8.257	27.59	0.8243	3.699	11.71	24.16	0.08814	0.1203	0.3869	2.043	2.317	0.2743
102	33.91	3.579	9.928	4.285	4.068	6.345	27.81	0.1685	0.2807	0.9556	5.167	1.897	0.2942
192	17.14	7.893	27.65	1.411	3.524	10.71	24.47	0.2119	0.1153	0.7833	2.8	2.354	0.19
102	30.67	4.485	12.91	3.767	4.528	8.052	26.92	0.1866	0.2099	0.8406	4.392	1.549	0.2728
193	16.07	7.98	28.86	1.342	3.892	11.65	23.92	0.2367	0.0993	0.4796	2.264	2.141	0.176

Tabelle 11.19: Probenwerte der Schlacken für die Versuchsreihe "Schlackenbildner Quarz in 1. Phase und Kalkstein in 2. Phase"

Tabelle 11.20: Probenwerte von Schwarz- und Konverterkupfer für die Versuchsreihe "Gusseisenbriketts als Reduktionsmittel"

				so	Schwarz	Cu				KO Ro	oh - Cu			KO-Staub
				Q	% Mittelwe	rt					%			%
Datum	Probe	Charge	Cu	Fe	Ni	Sn	Zn	Leco O ₂	Cu	Ni	Pb	Sn	Ag	Sn (Oxid)
Grenzwerte i	n Cu-Ende ►		0.75	< 6%	0.03	0.05	0.03	< 1%	93-95%	< 5%	< 2%	< 1%		Soll > 21 %
	Cu vor Red.	200												
	Cu-Ende	200						0.76	93.96	3.22	0.6	0.82	0.169	
	Cu vor Red.	201												
3/17/2015	Cu-Ende	201	74.03	7 20	6.55	7 22	1 79	0.45	95.29	2.87	0.42	0.52	0.034	17 72
3,17,2013	Cu vor Red.	202	74.05	7.20	0.55	1.22	1.75							17.72
	Cu-Ende							0.4	94.83	3.27	0.3	0.76	0.038	
	Cu vor Red.	203												
	Cu-Ende							0.53	95.5	2.65	0.44	0.43	0.038	
	Cu vor Red.	204												
	Cu-Ende							0.59	93.04	4.27	0.66	0.97	0.036	
	Cu vor Red.	205												
3/18/2015	Cu-Ende	205	76.66	5.39	6.01	7.34	1.62	0.46	95.3	2.89	0.38	0.53	0.04	30.31
3/18/2015 Cu w	Cu vor Red.	206												
	Cu-Ende							0.4	94.18	3.66	0.34	0.96	0.041	
	Cu vor Red.	207												
	Cu-Ende							0.4	91.88	4.62	0.68	1.85	0.079	

						ко	Schlacken	bild					
							%						
Charge	Fe	Ni	Cu	Zn	Pb	Sn	0	Na	Mg	Al	Si	Ca	Cr
200	36.45	4.336	10.43	2.09	4.344	7.516	27.15	0.1393	0.2445	1.14	3.935	0.7474	0.4253
200	16.17	9.034	30.09	0.8175	4.394	11.92	23.4	0.1803	0.1007	0.5899	2.043	0.3499	0.1811
201	46.76	2.634	6.352	1.291	2.537	3.713	28.71	0.1891	0.3066	1.08	4.377	0.5625	0.5875
201	18.12	8.741	30.42	0.4353	3.554	10.97	23.88		0.1403	0.4338	2.431	0.2035	0.2699
202	41.21	2.804	7.259	1.787	3.257	4.238	29.17	0.1169	0.368	1.437	5.695	1.013	0.4911
202	18.04	7.332	31.22	0.5802	3.322	8.938	24.71	0.1277	0.1529	0.7199	3.402	0.4041	0.2313
202	32.18	4.806	13.82	2.304	5.712	10.36	25.65	0.1069	0.112	0.4258	3.391	0.2389	0.2529
203	10.69	8.62	38.02	0.5476	4.124	11.5	22.88		0.1448	0.4136	2.287	0.1173	0.1984
204	26.29	5.972	16.87	2.515	5.799	12.94	24.69	0.1103	0.17	0.7069	2.589	0.4304	0.2019
204	12.58	9.006	34.6	1.022	4.372	13.05	22.51		0.1001	0.4681	1.438	0.2379	0.1894
205	37.58	3.617	9.553	2.055	4.349	7.068	27.79	0.1042	0.2513	0.999	4.804	0.5224	0.3598
205	13.39	7.769	34.12	0.5869	3.397	10.01	23.57		0.1469	0.6012	2.809	0.192	0.2687
206	36.23	3.863	9.4	2	3.965	6.034	28.61	0.1114	0.3611	1.352	5.637	0.7647	0.4595
200	16.9	7.662	28.89	0.6937	3.323	9.443	24.91	0.1628	0.1539	0.6352	3.375	0.3324	0.3327
207						keine	Probe geno	mmen					

Tabelle 11.21: Probenwerte der Schlacken für die Versuchsreihe "Gusseisenbriketts als Reduktionsmittel"

Die durch das OPC erfassten Daten sind in den nächsten Tabellen zusammengefasst.

		[h:min]	[nim:r			::min]	nde [h:min:sec]	2. Blaszeit bis Abstich [h:min:sec]	t) in der 2. Blaszeit	Mittelwert) in der 2.
Datum	Chargen Nr:	Blasen 1 Beginn	Blasen 1 Ende [I	Abstich [h:min]	Dauer 1 [h:min]	Dauer Abstich [ł	OPC (light) - Zeit 1. Peak bis Blase	CN - Zeit in der 1. Peak (ab 10%)	% SnO (Mittelwe	% CN-Radikale (Blaszeit
			WinCC			0:10		0:min:sec		
1/18/2015	50	4:50	5:45	7:15	0:55	1:20	/	0:28	35.7	4.6
1/10/2013	51	9:00	9:45	11:00	0:45	1:05	0:34	0:13	14.7	0.5
1/10/2015	52	5:00	5:45	7:15	0:45	1:20	0:32	0:24	35.3	9.2
1/13/2013	53	9:20	10:05	11:30	0:45	1:15	0:27	0:13	25.6	6
	54	4:00	4:50	6:19	0:50	1:19				
1/20/2015	55	8:15	9:01	10:30	0:46	1:19	0:30	0:15	28.5	8.1
1/20/2013	56	13:05	13:45	15:22	0:40	1:27	0:25	0:24	13.6	6.9
	57	16:06	16:52	18:19	0:46	1:17	0:29		17.4	3.6
	58	4:01	4:47	5:58	0:46	1:01	0:33	0:10	12.9	8.1
1/21/2015	59	8:30	9:18	10:42	0:48	1:14	0:32	0:18	25.5	9.4
1/21/2015	60	12:50	13:45	15:11	0:55	1:16	0:35	0:28	17.3	6.7
	61	16:01	16:45	18:20	0:44	1:25	0:32	0:15	26.8	4
	62	4:03	4:51	6:03	0:48	1:02				
1/22/2015	63	8:50	9:36	10:51	0:46	1:05	0:28	0:15	33.5	4.4
1/22/2013	64	13:20	14:05	15:41	0:45	1:26	0:27	0:15	32.3	15.2
	65	16:27	17:14	18:51	0:47	1:27	0:49	0:12	44.1	8
	66	4:03	4:50	6:05	0:47	1:05	0:44	0:09	21.1	15
1/23/2015	67	8:32	9:17	10:33	0:45	1:06	0:31	0:11	25.6	11.9
1/25/2015	68	12:40	13:22	14:38	0:42	1:06		0:18	30.4	15
	69	15:32	16:15	17:42	0:43	1:17	0:28	0:17	38.2	17.1
1/24/2015	70	5:01	5:45	7:18	0:44	1:23	0:39	0:07	58	24.3
1/27/2013	71	9:13	9:58	11:20	0:45	1:12	0:31	0:17	19.2	11.4
1/25/2015	72	5:05	5:50	7:31	0:45	1:31				
1/23/2013	73	9:16	10:00	11:27	0:44	1:17				
1/26/2015	74	4:00	4:44	6:18	0:44	1:24				
1, 20, 2013	75	8:00	8:41	10:15	0:41	1:24				
	76	12:50	13:36	14:55	0:46	1:09		0:11	41.2	21
	77	15:33	16:33	17:41	1:00	0:58		0:05	54.9	23.6

Tabelle 11.22: Blaszeit und OPC-Daten für die Versuchsreihe "Koksstückigkeit"

Datum	Chargen Nr:	Blasen 1 Beginn [h:min]	Blasen 1 Ende [h:min]	Abstich [h:min]	Dauer 1 [h:min]	Dauer Abstich [h:min]	OPC (light) - Zeit 1. Peak bis Blasende [h:min:sec]	CN - Zeit in der 2. Blaszeit 1. Peak (ab 10%) bis Abstich [h:min:sec]	% SnO (Mittelwert) in der 2. Blaszeit	% CN-Radikale (Mittelwert) in der 2. Blaszeit
			WinCC			0:10		0:min:sec		
2/2/2015	84	5:04	5:51	7:25	0:47	1:24				
	85	9:32	10:25	11:45	0:53	1:10	0:16	0:18	22.2	11.1
	86	4:04	4:58	6:12	0:54	1:04	0:39	0:12	33	14.1
2/3/2015	87	7:50	8:35	10:12	0:45	1:27	0:21	0:16	29.3	2.7
	88	12:55	13:41	15:11	0:46	1:20	0:26	0:16	34.5	4.1
	89	16:04	16:49	18:10	0:45	1:11	0:24	0:18	37.5	6.7
	90	4:00	4:44	5:53	0:44	0:59	0:38	0:15	21.9	7.5
	91	7:46	8:30	9:53	0:44	1:13	0:31	0:13	14.2	4.5
2/4/2015	92	10:56	11:41	13:02	0:45	1:11				
	93	13:46	14:25	15:46	0:39	1:11		0.47	10.0	
	94	16:26	1/:05	18:25	0:39	1:10	0:15	0:1/	18.3	5.8
	95	4:00	4:43	5:55	0:43	1:02	0:39	0:11	10.8	14.9
2/5/2015	96	/:42	8:25	9:40	0:43	1:05	0:35	0:15	15.2	8.7
2/5/2015	97	10:50	14.25	12:54	0:46	1:08	0:29	0:17	3.2	0.1 2 E
	98	15:47	14:25	15:42	0:38	1:07	0:25	0:24	10.7	3.5
	99	10:25	17:05	18:20	0:40	1:05	0:21	0:11	12.2	5.4

Tabelle 11.23: Blaszeit und OPC-Daten für die Versuchsreihe "Schlackenbildner Quarz 2. Phase"

Datum	Chargen Nr:	Blasen 1 Beginn [h:min]	Blasen 1 Ende [h:min]	Abstich [h:min]	Dauer 1 [h:min]	Dauer Abstich [h:min]	OPC (light) - Zeit 1. Peak bis Blasende [h:min:sec]	CN - Zeit in der 2. Blaszeit 1. Peak (ab 10%) bis Abstich [h:min:sec]	% SnO (Mittelwert) in der 2. Blaszeit	% CN-Radikale (Mittelwert) in der 2. Blaszeit
			WinCC			0:10		0:min:sec		
	100	4:02	4:44	5:58	0:42	1:04				
2/6/2015	101	8:40	9:23	10:31	0:43	0:58		0:06	56.8	20.1
2/0/2013	102	13:00	13:42	14:55	0:42	1:03	0:28	0:11	25.8	9.8
	103	16:08	16:53	18:07	0:45	1:04	0:33	0:12	23.5	6.6
2/7/2015	104	4:00	4:41	5:58	0:41	1:07				
2,7,2015	105	8:30	9:20	10:32	0:50	1:02				
2/8/2015	106	4:03	4:44	6:06	0:41	1:12				
2, 0, 2020	107	8:29	9:15	10:41	0:46	1:16				
2/9/2015	108	5:02	5:46	7:16	0:44	1:20				
, , ,	109	9:19	10:01	11:22	0:42	1:11	0:33	0:12	24.5	3.4
	110	4:02	4:44	6:00	0:42	1:06	0:23	0:18	42.5	7.7
2/10/2015	111	8:20	9:04	10:22	0:44	1:08	0:33	0:15	22.2	13
,,	112	13:00	13:44	15:16	0:44	1:22	0:34	0:16	15.1	6.2
	113	16:34	17:22	18:30	0:48	0:58	0:37	0:18	25.2	6.7

Tabelle 11.24: Blaszeit und OPC-Daten für die Versuchsreihe "Koksstückigkeit 80 kg fein, 80 kg mittel und 80 kg grob"

Datum	Chargen Nr:	Blasen 1 Beginn [h:min]	Blasen 1 Ende [h:min]	Abstich [h:min]	Dauer 1 [h:min]	Dauer Abstich [h:min]	OPC (light) - Zeit 1. Peak bis Blasende [h:min:sec]	CN - Zeit in der 2. Blaszeit 1. Peak (ab 10%) bis Abstich [h:min:sec]	% SnO (Mittelwert) in der 2. Blaszeit	% CN-Radikale (Mittelwert) in der 2. Blaszeit
			WinCC			0:10		0:min:sec		
	114	4:05	4:51	6:08	0:46	1:07		0:11	27.5	1.4
2/11/2015	115	8:24	9:08	10:36	0:44	1:18	0:38	0:15	22.1	13.9
2, 11, 2013	116	12:50	13:34	14:50	0:44	1:06	0:18	0:04	37.2	1.7
	117	16:28	17:12	18:31	0:44	1:09	0:23	0:11	17.8	0.8
	118	4:02	4:47	6:00	0:45	1:03	0:28	0:09	11.9	1.4
2/12/2015	119	8:20	9:05	10:32	0:45	1:17	0:38	0:06	33.9	2.2
2, 12, 2013	120	12:58	13:42	15:04	0:44	1:12	0:34	0:29	24.4	8.3
	121	16:35	17:17	18:28	0:42	1:01	0:31	0:09	14.2	1.4
	122	4:05	4:50	6:16	0:45	1:16	0:32	0:57	18.2	0.4
2/13/2015	123	8:16	9:00	10:21	0:44	1:11	0:35	0:10	22.8	2.2
2/ 13/ 2013	124	12:54	13:33	15:10	0:39	1:27	0:31	0:31	13.1	2.5
царана 2/11/2015 2/12/2015 2/13/2015	125	16:36	17:20	18:45	0:44	1:15	0:29	0:16	22.4	0.5

Tabelle 11.25: Blaszeit und OPC-Daten für die Versuchsreihe "Eisenstanzmaterial als Reduktionsmittel"

Datum	Chargen Nr:	Blasen 1 Beginn [h:min]	Blasen 1 Ende [h:min]	Abstich [h:min]	Dauer 1 [h:min]	Dauer Abstich [h:min]	OPC (light) - Zeit 1. Peak bis Blasende [h:min:sec]	CN - Zeit in der 2. Blaszeit 1. Peak (ab 10%) bis Abstich [h:min:sec]	% SnO (Mittelwert) in der 2. Blaszeit	% CN-Radikale (Mittelwert) in der 2. Blaszeit
			WinCC	-		0:10		0:min:sec		
	137	3:55	4:51	6:30	0:56	1:29	0:32		37.6	2.3
2/18/2015	138	8:31	9:08	10:45	0:37	1:27	0:15	0:24	13.5	0.6
2/ 10/ 2015	139	12:46	13:30	15:11	0:44	1:31		0:10	42.4	5.4
	140	16:10	16:55	18:43	0:45	1:38		0:09	20	0.8
	141	3:53	4:50	6:10	0:57	1:10				
2/19/2015	142	8:28	9:23	10:36	0:55	1:03				
	143	13:00	13:45	15:22	0:45	1:27	0:28	0:13	16.1	1
	144	3:58	4:56	6:16	0:58	1:10				
2/20/2015	145	8:26	9:11	10:37	0:45	1:16				

Tabelle 11.26: Blaszeit und OPC-Daten für die Versuchsreihe "Schlackenbildner Quarz in 1. Phase und 2. Phase"

Datum	Chargen Nr:	Blasen 1 Beginn [h:min]	Blasen 1 Ende [h:min]	Abstich [h:min]	Dauer 1 [h:min]	Dauer Abstich [h:min]	OPC (light) - Zeit 1. Peak bis Blasende [h:min:sec]	CN - Zeit in der 2. Blaszeit 1. Peak (ab 10%) bis Abstich [h:min:sec]	% SnO (Mittelwert) in der 2. Blaszeit	% CN-Radikale (Mittelwert) in der 2. Blaszeit
			WinCC			0:10		0:min:sec		
3/10/2015	179	4:18	5:10	6:20	0:52	1:00		0:18	38	6.8
	180	7:51	8:36	9:57	0:45	1:11		0:12	24.7	1.2
	181	12:35	13:20	14:30	0:45	1:00	0:32	0:24	30.9	1.6
3/11/2015	182	16:16	17:00	18:05	0:44	0:55	0.22	0:13	26.9	1
	103	4:00	4:52	10.20	0:40	1:04	0:22	0.15	20	1.5
	185	12.29	13.13	14.24	0.35	1.04	0.27	0.20	87	1.3
	186	16:17	17:02	18:14	0:45	1:02	0:22	0:22	26	2.6
	187	4:10	4:55	5:58	0:45	0:53		0:27	14.6	1
3/12/2015	188	8:26	9:07	10:40	0:41	1:23	0:23	0:25	18.1	1
	189	13:31	14:13	15:33	0:42	1:10	0:31	0:21	42.9	2.4
	190	4:19	5:17	6:20	0:58	0:53	0:40	0:16	27.3	7.5
2/12/2015	191	8:27	9:07	10:36	0:40	1:19	0:26	0:21	17.4	1.5
3/13/2015	192	12:31	13:15	14:31	0:44	1:06		0:12	26.5	1.6
	193	16:02	16:56	18:04	0:54	0:58		0:18	36.1	2

Tabelle 11.27: Blaszeit und OPC-Daten für die Versuchsreihe "Schlackenbildner Quarz in 1. Phase und Kalkstein in 2. Phase"

Datum	Chargen Nr:	Blasen 1 Beginn [h:min]	Blasen 1 Ende [h:min]	Abstich [h:min]	Dauer 1 [h:min]	Dauer Abstich [h:min]	OPC (light) - Zeit 1. Peak bis Blasende [h:min:sec]	CN - Zeit in der 2. Blaszeit 1. Peak (ab 10%) bis Abstich [h:min:sec]	% SnO (Mittelwert) in der 2. Blaszeit	% CN-Radikale (Mittelwert) in der 2. Blaszeit
			WinCC			0:10		0:min:sec		
3/17/2015	200	4:04	4:56	6:16	0:52	1:10		0:34	26.8	4.2
	201	8:16	9:00	10:31	0:44	1:21	0:22	0:33	40.6	9
	202	12:28	13:10	14:45	0:42	1:25		0:28	28.6	2.3
	202 203	12:28 16:06	13:10 16:49	14:45 18:09	0:42 0:43	1:25 1:10	0:17	0:28	28.6	2.3
	202 203 204	12:28 16:06 4:00	13:10 16:49 4:48	14:45 18:09 5:56	0:42 0:43 0:48	1:25 1:10 0:58	0:17	0:28	28.6	2.3
3/18/2015	202 203 204 205	12:28 16:06 4:00 8:04	13:10 16:49 4:48 8:45	14:45 18:09 5:56 10:16	0:42 0:43 0:48 0:41	1:25 1:10 0:58 1:21	0:17	0:28	28.6 24.6	2.3
3/18/2015	202 203 204 205 206	12:28 16:06 4:00 8:04 12:57	13:10 16:49 4:48 8:45 13:40	14:45 18:09 5:56 10:16 15:02	0:42 0:43 0:48 0:41 0:43	1:25 1:10 0:58 1:21 1:12	0:17	0:28 0:35 0:35	28.6 24.6 29.9	2.3 1.9 3.7

Tabelle 11.28: Blaszeit und OPC-Daten für die Versuchsreihe "Gusseisenbriketts als Reduktionsmittel"

Die folgenden Kuchendiagramme zeigen die Veränderung der Sn-Verteilung auf die auftretenden Phasen durch die durchgeführten Versuchsreihen.

Abbildung 11.1: Sn-Verteilung auf die vier auftretenden Phasen für die Versuchsreihe "Koksstückigkeit + Quarz in 2. Phase"

Abbildung 11.2: Sn-Verteilung auf die vier auftretenden Phasen für die Versuchsreihe "Koksstückigkeit 80 kg fein, 80 kg mittel, 80 kg grob + Quarz in der 2. Phase"

Abbildung 11.3: Sn-Verteilung auf die vier auftretenden Phasen für die Versuchsreihe "Fe-Stanzmaterial und Schlackenbildner Quarz in der 2. Phase"

Abbildung 11.5: Sn-Verteilung auf die vier auftretenden Phasen für die Versuchsreihe "Schlackenbildner Quarz 1. Phase und Kalkstein 2. Phase + Fe-Stanzmaterial und Koks"

Abbildung 11.6: Sn-Verteilung auf die vier auftretenden Phasen für die Versuchsreihe "Gusseisenbriketts als Reduktionsmittel + Quarz in 1. und 2. Phase"

Die weiteren Kuchendiagramme fassen die durchschnittliche Verteilung von Cu, Pb und Zn auf die vier vorliegenden Phasen im Konverter zusammen.

Abbildung 11.8: Pb-Verteilung in % auf die vier auftretenden Phasen

Abbildung 11.9: Zn-Verteilung in % auf die vier auftretenden Phasen

Die Abbildung 11.10 zeigt den vergrößerten OPC-Verlauf von verschiedenen Chargen.

Abbildung 11.10: Aufgezeichneter OPC-Verlauf von mehreren Chargen

In dieser ist die Auswirkung eines zu starken Lichtsignals auf das SnO-Signal dargestellt

Abbildung 11.11: OPC-Verlauf mit geschwächtem SnO-Signal