Steinbruch Wanko/NÖ: Optimierung der Rohstoffgewinnung auf der Basis von geowissenschaftlichen Untersuchungen: eine multi-disziplinäre Studie

Masterarbeit

angefertigt von Cand. Dipl.-Ing. Birgit KAIN

zur Erlangung des akademischen Grades eines Diplom-Ingenieurs der Studienrichtung Angewandte Geowissenschaften an der Montanuniversität Leoben

eingereicht am Department für Angewandte Geowissenschaften und Geophysik Lehrstuhl für Mineralogie und Petrologie bei

> Ao. Univ.-Prof. Dr. phil. Oskar A. R. Thalhammer Mag. rer. nat Kurt Stadlober

> > Leoben, Juni 2010

Für meine Mutter

Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass ich diese Arbeit selbständig verfasst, andere als die angegebenen Quellen und Hilfsmittel nicht benutzt und mich auch sonst keiner unerlaubten Hilfsmittel bedient habe.

Affidavit

I declare in lieu of oath, that I wrote this thesis and performed the associated research myself, using only literature cited in this volume.

Datum

Unterschrift

Danksagung

An dieser Stelle möchte ich mich herzlich bei all jenen bedanken, die mich bei der Verwirklichung dieser Diplomarbeit unterstützt haben:

Herrn Ao. Univ.-Prof. Dr. phil. Oskar A. R. Thalhammer für seine Betreuung und seine aufmunternden Worte als kein Ende in Sicht war.

Herrn Mag. rer. nat. Kurt Stadlober für die Idee zu der Arbeit und sein kritisches Hinterfragen.

Der ASAMER Kies- und Betonwerke GmbH für ihre finanzielle Unterstützung bei der Realisierung dieser Arbeit, insbesondere Herrn Dipl. Ing. Roland Raffelsberger für seine Betreuung.

Allen Personen des Departments für Angewandte Geowissenschaften und Geophysik, insbesondere dem Lehrstuhl für Mineralogie und Petrologie für ihre Hilfe und Beistand. Besonders sei gedankt Herrn Helmut Mühlhans und Frau Dr. Federica Zaccarini für die Bemühungen bei meinen Gesteinsanalysen.

Dem Department für Analytische Chemie für die Möglichkeit meine chemischen Analysen selbst vorzubereiten und für die Messungen, insbesondere Herrn Falk und Herrn Ao. Univ. Prof. Dr. T. Meisel für seine Hilfe bei der Auswertung der Ergebnisse.

Meinen "Mädls" Daniela Gallhofer, Tamara Portugaller und Lisa Riedler für die Zerstreuung und den Austausch über unsere Diplomarbeiten. Ich bin froh diese Zeit gemeinsam verbracht zu haben. Meiner Freundin Christina Reisch möchte ich für die außeruniversitäre Unterstützung danken.

Meiner Familie, die besonders in meinen Studienjahren mit ihrem bedingungslosen Vertrauen, wie ein Fels in der Brandung stand.

Meinem Lebensgefährten Bernhard für seinen Beistand in jeder Hinsicht gilt ganz besonderer Dank.

Kurzfassung

Die vorliegende Diplomarbeit über den Granulitsteinbruch Wanko, Niederösterreich wurde in Zusammenarbeit mit der ASAMER Kies- und Betonwerke GmbH erstellt. Auf der Basis einer detaillierten mineralogischen, und geochemischen Charakterisierung der petrologischen auftretenden sollte ein Zusammenhang dieser Charakteristika mit den Granulittypen, mechanischen Eigenschaften (LA-Wert und PSV), die die entscheidenden Kriterien für die wirtschaftliche Nutzung dieser Gesteine darstellen, hergestellt werden.

Der Steinbruch Wanko liegt im Granulitkomplex des Dunkelsteiner Waldes innerhalb des Moldanubikums der Böhmischen Masse in Niederösterreich. Farblich und aufgrund ihres Mineralbestandes konnten 3 Granulittypen unterschieden werden: a) Typ Violett, b) Typ Hell und c) Typ Dunkel. Sie differenzieren sich durch die Minerale Biotit, Orthopyroxen und Granat. Der pyroxenreiche Granulit (Typ Dunkel) besitzt einen erhöhten Anteil an Granat und Erzmineralen sowie einen geringeren Biotitgehalt, gegenüber den felsischen Granulittypen (Typ Violett und Typ Hell). Anhand der Haupt-, Spuren- und Seltenen Erdelemente wurden die Granulittypen geochemisch klassifiziert und diskriminiert. Es zeigt sich, dass sämtliche Granulite vom Steinbruch Wanko einer ko-genetischen Gesteinssequenz angehören. Als Protolith der Granulite kann mit großer Wahrscheinlichkeit Granite eines S-Typ Magmas angenommen werden. Es konnte gezeigt werden, dass die Granulite an einem destruktiven Plattenrand gebildet worden sind. Auf der Basis des Granat-Biotit-Orthopyroxen Geothermobarometers konnten die P-T- Bedingungen der Metamorphose mit 13,7± 2,3kbar und 950± 55°C abgeschätzt werden. Der Vergleich der Materialkennwerte (LA-Wert und PSV) hat ergeben, dass bezüglich des LA- Wertes alle drei Granulittypen der Baurohstoff- Güteklasse G1 angehören. Bezüglich des PSV konnte der pyroxenreiche Granulit der Baurohstoff- Güteklasse G1 zugeordnet werden, die felsischen Granulittypen der Güteklasse G2. Die Ursache für die schlechtere Einstufung der felsischen Granulittypen (bez. des PSV) liegt im höheren Biotitgehalt. Die straffe, schieferungsparallele Einregelung dieser Minerale führt zu einem Anisotropie- Effekt, der bei den felsischen Granulittyp (Typ Violett und Typ Hell) während der Materialprüfung (PSV) zu schlechteren, wiederholbaren homogenen Ergebnissen führt.

Schlagwörter: Granulit, Steinbruch Wanko, Materialeigenschaften, S-Typ Granit

Abstract

The subject of the present MSc thesis is the granulite quarry Wanko, Niederösterreich. The study was carried out in cooperation with the ASAMER Kiesund Betonwerke GmbH. The task of the present study was a comparison between the mineralogical, petrological and geochemical characteristics of the occurring granulite types with the mechanical properties (LA, PSV), which represent the most important criterias for the industrial use of these rocks.

The Wanko quarry is located within the Granulite- Complex of the Dunkelsteiner Wald as part of the Moldanubian Zone of the Bohemian Massiv of Niederösterreich. Three types of granulites could be distinguished on the basis of colour and the mineralogical composition: a) Violet Type, b) Light Type and c) Dark Type. The major mineralogical differences are defined by the contents of biotite, orthopyroxene and garnet. The pyroxene- rich granulite (Dark Type) is characterized by a higher content of garnet and ore minerals and less biotite, if compared with the felsic types of granulite (Violet Type and Light Type). A geochemical classification and discrimination was carried out on the basis of major, trace and rare earth element concentrations. It is shown that all granulites of the Wanko quarry are part of a co-genetic rock sequence. The protolith of the granulites was, most likely, a granite that derived from a S-type magma. Furthermore, it could be shown, that the granulites were formed at a destructive plate margin. The P-T- conditions of metamorphism could be estimated at 13,7± 2,3kbar and 950± 55°C using garnet- biotite- orthopyroxene geothermobarometry. Comparing the mineralogical and petrological characteristics with the mechanical properties (LA, PSV) showed that all granulites correspond to the highest quality class G1 in respect to the LA. However, regarding PSV the pyroxene rich granulite belongs to the highest quality class G1, whereas the felsic granulite types belong to the lower quality class G2. The higher biotite content represents the reason for the lower quality of the mechanical properties of the felsic granulite types (i.e. PSV). The strict schistosity parallel orientation of the biotite causes higher rock anisotropy of the felsic granulite types (Violett Type and Light Type), resulting in less reproducible homogenous properties during material testing (i.e. PSV).

Keywords: granulite, quarry Wanko, material properties, S-type granite

Inhaltsverzeichnis

Eidesstattliche Erklärung	3
Danksagung	4
Kurzfassung	5
Inhaltsverzeichnis	7
Abbildungsverzeichnis	9
Tabellenverzeichnis	12
Abkürzungsverzeichnis	1.3
1 Finleituna	
2 Geologischer Überblick	
2. Geologischer Oberblick	
2.1 Molanubikum	17
2.2 Monotone Serie	10
2.2.2 Bunte Serie	
2.2.3 Gföhl Einheit	19
2.2.4 Südböhmische Pluton	20
3. Methodenbeschreibung	21
3.1 Probenahme und Bearbeitung	21
3.2 Mikroskopie	22
3.3 Röntgenfluoreszenzanalyse (RFA)	22
3.4 Massenspektrometrie mit Plasmaionisation (ICP-MS)	23
3.5 Elektronenstrahl- Mikrosonde (EMS)	23
3.6 Los Angeles Wert (LA-Wert)	25
3.7 Polierwert (PSV)	25
3.8 Geothermometrie	26
3.9 Geomagnetik	27
4. Geologisch-lagerstättenkundliche Beschreibung	29
4.1 Örtliche Lage	29
4.2 Geländemorphologie	
4.3 Hydrogeologische Verhältnisse	
4.4 Geologische Beschreibung des Vorkommens	30
4.5 Beschreibung der geotechnischen Gegebenheiten	31
4.6 Geologische Kartierung	33
5. Petrographische Beschreibung	36
5.1 Granulit	
5.1.1 Typenbeschreibung	36
5.1.2 Gefüge	
5.1.3 Zusammentassung	
5.2 Serpentinit	

5.3	Vergleich mit der Literatur	45
6. G	eochemie	48
6.1	Die Protolithe der Granulite	48
6.2	Klassifikation der Protolithe	54
6.3	Der geochemische Charakter der Protolithe	55
6.4	Die geotektonische Position der Protolithe	57
6.5	Metamorphe Charakteristika der Granulite	59
6.5	5.1 ACF- A'KF- Diagramme	59
6.5	5.2 Granatanalysen und Geothermometrie	61
6.6	Der geochemische Charakter der Serpentinite	66
7. M	aterialprüfungen	68
8. G	eomagnetik	71
9. Di	skussion	76
Literat	urverzeichnis	81
A) Ar	nhang: Analysen	86
B) Ar	nhang: Geothermometrie	91
C) Ar	nhang: Geomagnetik	96
D) Ar	nhang: Karte	98

Abbildungsverzeichnis

Abbildung 1: Variszische Einheiten in Mitteleuropa, verändert nach WALTER (1995)	. 15
Abbildung 2: Vereinfachte geologische Übersichtskarte des österreichischen Moldanubikums,	
verändert nach COOKE (2000), hauptsächlich nach FUCHS & SCHARBERT (1979)	17
Abbildung 3: Druck- Temperatur Diagramm der moldanubischen Granulite (felsische und	
mafische Typen) aus JANOUS EK ET AL. (2004).	20
Abbildung 4: Geographische Lage des Steinbruches (roter Kreis), Ausschnitt aus ÖK50	29
Abbildung 5: Ausschnitt aus der geologischen Karte von Krems an der Donau, Kartenblatt 38,	
roter Kreis: Umgebung Steinbruch Wanko.	31
Abbildung 6: Großkreisdarstellung mit Pi-Plot aller gemessenen Schieferungsflächen	32
Abbildung 7: Kluftrose und Countorplot mit den Einfallrichtungen aller gemessenen Trennflächer	า.32
Abbildung 8: Etage SH310, Abschnitt vom großen Serpentinitkörper (rechts) bis TD (links)	34
Abbildung 9: Profilabschnitt 246-326m, Wechsellagerung TV (links), TH mit TD, braune	
Verwitterung.	35
Abbildung 10: Dünnschliftbild SWL01 ohne und mit gekreuzten Nicolson. Mitte Gr, braun Bt, link	.s
Qz, links unten Kfs mit perthitischen Entmischungen, Balken 1mm	37
Abbildung 11: Dunnschliftbild SWL01 ohne und mit gekreuzten Nicolson. Mitte Ky-Kristall, strahl Sil braun Bt. Balken 1mm	ig 38
Abbildung 12: Dünnschliffbild SWI 02 ohne und mit gekreuzten Nicolson. Mitte Diskengz und Kf	
mit perthitischen Entmischung, braun Bt, Balken 1mm	38
Abbildung 13: Dünnschliffbild SW09SP01 mit gekreuzten Nicolson. Grt mit Bt	39
Abbildung 14: Dünnschliffbild SW09H01 mit gekreuzten Nicolson. Besteht aus Qz und Kfs in	
groben und feinen Lagen.	40
Abbildung 15: Dünnschliffbild SW09D01 ohne und mit gekreuzten Nicolson. Hohes Relief Opx,	
braun Bt, Balken 1mm	41
Abbildung 16: Dünnschliffbild SW09D02 ohne und mit gekreuzten Nicolson. Rechts PI, links Kfs	
mit antiperthitischer Entmischung, Balken 1mm.	42
Abbildung 17: Dünnschliffbild SWS01 ohne und mit gekreuzten Nicolson. Mitte braun Spl,	44
Abbildung 18: Dünnschliffbild SWS02 ohne und mit gekreuzten Nicolson. Karbonatgang	44
Abbildung 19: Dünnschliffbild Serpentinit ohne und mit gekreuzten Nicolson. Antigorit mit	
Olivinrelikten	45
Abbildung 20: Dünnschliffbild S02 ohne und mit gekreuzten Nicolson. Mitte Spl mit	
kelyphitischem Rand.	45
Abbildung 21: P-T-Diagramm der einzelnen P-T-Wege der Serpentinite der Böhmischen Masse	in
Niederösterreich. 1 Bildung der Pyroxenkumulate, 2 Isobarische Abkühlung, 3	
Dekompression, <i>4</i> Entmischung von Spinell in Pyroxen, <i>5</i> Bildung der Kelphyite,	
aus Becker (1997)	47
Abbildung 22: Harker Diagramme der untersuchten Granulittypen in Gew%	49
Abbildung 23: Spider- Diagramm der untersuchten Granulitproben, Upper crust-normiert nach	
I AYLOR & MCLENNAN (1985), orange gestrichelt Vergleichswerte von felsische	F 2
moldanubische Granulite aus JANOUS EK ET AL. (2004).	50
Appliquing 24: Spider- Diagramme, Upper crust- normiert nach TAYLOR & MCLENNAN (1985), links	S:
Gioni Gneis, gemillerie Daten aus VELLMER (1992); rechts: Feisische meldenubische Grenulite aus Janous'skist at (2004)	E1
moluanubische Granuille aus JANOUS EK ET AL. (2004).	

Abbildung 25	: Spider Diagramm, ORG- normiert nach PEARCE ET AL. (1984), Vergleich Granulit	
	mit Graniten aus orogen Zonen (Rieserferner und italienische Alpen), Granitdaten	
	(lila) aus Pearce et al. (1984).	52
Abbildung 26	Chondrit – normierter REE Plot der Granulittypen TD und TV mit der Sonderprobe SP1. Normalisierung nach BOYNTON (1984).	53
Abbilduna 27	Chondrit – normierter REE Plot von Granuliten aus dem Moldanubikum (n= 209)	
,	aus Janous FK et al (2004)	53
Abbilduna 28	Chondrit – normierter REE Plot von Graniten (Kössein Granitmassiv	
	Fichtelgebirge) eines S- Typ Magmas, aus SCHÖDI BAUER ET AL (1997)	54
Abbilduna 29	$M_{\rm energy}$ (rec 2) and 2) magnine, and 2) represented the rection of the rest of the	• •
	Gerade definiert die Grenze zwischen ortho- und paragenen Granuliten	54
Abbilduna 30	Klassifikationen der bearbeiteten Granulitoroben nach MIDDI EMOST (1985)	55
Abbildung 31	Thompson Diagramm der bearbeiteten Granulite	56
Abbildung 32	1 Margor $2 Margor$ 2	00
	Schwarz TD, Grün TV, Rot TH, Blau SP1	56
Abbildung 33	\cdot Diskriminierung des Al ₂ O ₂ /(CaO+Na ₂ O+K ₂ O) gegen Al ₂ O ₂ /(Na ₂ O+K ₂ O)	
	Molekularverhältnisses der bearbeiteten Proben nach SHAND (1943)	57
Abbildung 34	: Harker Diagramme der Elemente Rb. Ba und Sr der untersuchten Granulite	01
	Legende siehe Abhildung 33	57
Abbildung 35	Ceptektonische Position nach BACHELOR & BOWDEN (1985)	58
Abbildung 36	Diskriminierungsdiagramm für die geotektonische Position der Granulite nach	00
	PEARCE ET AL (1984) Legende siehe Abbildung 35	59
Abbildung 37	· ACE-Diagramm der Phasenbeziehung Kvanit, Granat und Plagioklas	60
Abbildung 38	· AKE Diagramm mit der Phasenbeziehung Kvanit, Granat und Kalifeldspat	61
Abbildung 39	: Dreiecksdiagramm Pyrop, Grossular, Almandin der untersuchten Granate in	• ·
	Mol.%.	62
Abbilduna 40	BSE-Bild eines almandinreichen Granates mit Monazit. Helle Punkte sind Apatite	-
0	als "Perlenschnur" um Monazit. Dunkelgrau Quarz, mittleres Grau perthitischer	
	Kalifeldspat. Probe L01.	63
Abbildung 41	BSE-Bild eines Granates mit Einschlüssen von Quarz, Plagioklas und Ilmenit,	
-	Probe D02.	63
Abbildung 42	: BSE- Bild der Messung 3 des Dünnschliffes D01.	64
Abbildung 43	: BSE- Bild der Messung 2 des Dünnschliffes D02.	65
Abbildung 44	: BSE- Bild der Messung 4 des Dünnschliffes D02.	65
Abbildung 45	Normativer Mineralbestand nach CIPW- Norm der untersuchten Serpentinit im Ol-	
	Opx-Cpx- Diagramm für ultramafische Gesteine.	66
Abbildung 46	Chondrit normiertes REE Muster der untersuchten Serpentinite.	67
Abbildung 47	: Lage der Messpunkte und Profile 1 bis 6, unv. Bericht SCHOLGER (2009)	71
Abbildung 48	: Profil 1 der geophysikalische Prospektion Etage SH 310, unv. Bericht SCHOLGER	
	(2009).	72
Abbildung 49	: Großer Serpentinitkörper mit eingeschalteter Granulitlinse, Blick Richtung E,	
	Standort Etage SH 260.	73
Abbildung 50	: Serpentinitkörper unter Auffahrt zur Etage SH 310, zweite Doppelanomalie, rote	
	Linie im Gelände sichtbare Grenze zwischen Granulit und Serpentinit, Blick	
	Richtung NE.	73
Abbildung 51	: Profil 2 der geomagnetischen Prospektion, Etage SH 270, unv. Bericht SCHOLGER	
	(2009)	74

Abbildung 52: Profil 4 der geoma	agnetischen Prospektion, Etage SH 270,	unv. Bericht SCHOLGER
(2009)		75
Abbildung 53: Modell für die geo	tektonische Entwicklung der Böhmischen	n Massen von Devon bis
Perm aus NEUBAU	er & Handler (2000)	

Tabellenverzeichnis

Tabelle 1: Probenliste und Ort der Entnahme	21
Tabelle 2: Nachweisgrenzen der Mikrosondenanalysen, Angaben sind Mittelwerte	25
Tabelle 3: Modalbestand der Mineralphasen des Typs Violett	39
Tabelle 4: Modalbestand der Mineralphasen des Typs Hell.	40
Tabelle 5: Modalbestand der Mineralphasen des Typs Dunkel.	42
Tabelle 6: Mineralbestand der Granulittypen aus dem Steinbruch Wanko.	43
Tabelle 7: Mineralbestand der Granulite sensu stricto, Lokalität Meidling im Tal	46
Tabelle 8: Quarz und SiO ₂ -Gehalt in den Granulitproben	48
Tabelle 9: CIPW- Norm Berechnung der untersuchten Serpentinitproben.	66
Tabelle 10: Zusammenfassung der Ergebnisse der Materialprüfungen	68
Tabelle 11: Mineralbestand der Granulite und Eigenschaften der Minerale.	69

Abkürzungsverzeichnis

Ab	Albit
Akz	Akzessorien
An	Anorthit
Ар	Apatit
Atg	Antigorit
BSE	back scattered electron emission (Rückstreuelektronen)
Bt	Biotit
Di	Diopsid
Grt	Granat
HFS	high field strength
HG	Hauptgemengteil
Hm	Hämatit
HREE	heavy rare earth elements
Hy	Hypersthen
II	Ilmenit
Kfs	Kalifeldspat
Ky	Kyanit
LIL	large ion lithophile
LREE	light rare earth elements
Mnz	Monazit
Mol-%	Molprozent
Ms	Muscovit
Mt	Magnetit
NG	Nebengemengteil
OI	Olivin
Орх	Orthopyroxen
Or	Orthoklas
PI	Plagioklas
Qz	Quarz
REE	rare earth elements (Seltene Erdelemente)
S	Serpentinit
Sil	Sillimanit
SP	Sonderprobe
Spl	Spinell
SW	Steinbruch Wanko
TD	Typ Dunkel
ΤН	Typ Hell
TV	Typ Violett
ü.A.	über Adria

1. Einleitung

Das Thema dieser Diplomarbeit ist der Granulitsteinbruch Wanko in Niederösterreich. Geologisch befindet sich der Steinbruch in einem der vier Granulitkomplexe des Moldanubikums der Böhmischen Masse in Österreich. Die ASAMER Kies- und Betonwerke GmbH betreibt den Steinbruch seit 2002. Es handelt sich um hochmetamorphe Gesteine der Granulitfazies, aus denen hochwertige Edelsplitte produziert werden. Innerhalb des Steinbruches könne farblich drei Granulite unterschieden werde. außerdem sind Serpentinitkörper schieferungsparallel eingeschaltet. Ziel dieser Arbeit war es diese Typen näher zu charakterisieren, einerseits mineralogisch, geochemisch und andererseits mit Hilfe verschiedener Materialprüfungen. Wie hängen diese Eigenschaften miteinander zusammen? Kann man diese Erkenntnisse in die Abbauplanung einfließen lassen? Diese Fragen sind zentrale Themen dieser Arbeit. Außerdem wurde Augenmerk auf die Prospektionsmöglichkeit mithilfe der Geomagnetik gelegt und versucht Druck und Temperatur der Metamorphosebedingungen abzuschätzen.

Am Anfang stand klassisch die Geländearbeit im Steinbruch mit einer geologischen Kartierung. Makroskopisch konnten drei Granulittypen unterschieden werden: a) Typ Violett (TV), b) Typ Hell (TH) und c) Typ Dunkel (TD). Alle Granulittypen und die eingeschalteten Serpentinitkörper wurden beprobt. Für die mineralogische Untersuchung wurden Dünnschliffe gefertigt und für die chemischen Analysen das Probenmaterial vorbereitet. Die ASAMER Kiesund Betonwerke GmbH führte die Materialprüfungen (LA-Wert, PSV etc.) in ihrem Labor in Ohlsdorf selbst durch. Die Granulittypen und die Serpentinite wurden unter dem Mikroskop anhand ihres Mineralbestandes charakterisiert und mithilfe der Haupt-, Spuren- und Seltenen Erdelemente diskriminiert und Mit dem Computerprogramm eine interpretiert. THERMOCALC wurde Geothermobarometrie durchgeführt um die Druck- und Temperaturbedingungen der Metamorphose abzuschätzen. Die Daten dafür lieferten mikroanalytische Untersuchungen, mittels Elektronenstrahlmikrosonde. Die Ergebnisse wurden mit der existierenden Literatur verglichen.

2. Geologischer Überblick

Die Böhmische Masse bildet in Österreich die südlichste Einheit der Varisziden (Abbildung 1). Bei der variszischen Gebirgsbildung kollidierte im mittleren Paläozoikum Gondwana mit Laurussia unter Eingliederung einiger Mikrokontinente. Der Superkontinent Pangäa entstand. Die Orogenese begann während des Devons (380 Ma), die Phase der Kompression erfolgte im Karbon (325 Ma). Für die geodynamische Entwicklung sind einige Modelle vorhanden. Durch das Fehlen von Ophiolithzonen werden ozeanische Bereiche ausgeschlossen.

Abbildung 1: Variszische Einheiten in Mitteleuropa, verändert nach WALTER (1995).

Zwei große strukturbildende Ereignisse im Zusammenhang mit der variszischen Gebirgsbildung stehen fest. Eines entlang der heutigen Grenze zwischen Saxothuringischer und Moldanubischer Zone in frühpaläozoischer Zeit mit Krustendehnung und daraus entstehender Beckenbildung, andererseits bei der Schließung dieser Beckenzonen im Mitteldevon. Hier folgte die eigentliche variszische Prägung und Metamorphose des Grundgebirges. Zwischen 380 und 300 Ma intrudierten mehrere granitische Plutone. Aufgrund dieser Schmelzen und weiterer Krustenverdickung wanderte die variszische Deformation und Metamorphose vom Zentrum zum Rand des Gebirges. Während des Mittel- und

Oberdevons war die Moldanubische Zone von der Deformation und Anhebung betroffen, danach folgte die Erosion. Die terrestrischen Ablagerungen von Zöbing belegen die Einsetzung der Erosion. Sie sind die Reste der postvariszischen Sedimenthülle der Böhmischen Masse. Die Sedimentation begann im Ober-Karbon und reichte vermutlich bis in das Ober-Perm. Im Liegenden treten 200m mächtige Silt- und Sandsteine mit Kohleflözen auf. Der mittlere Anteil besteht aus 500m mächtigen Arkosen mit Geröllen. Diese Gerölle bestehen aus Granulit, Gföhl-Gneis, Marmor und verschiedenen Vulkaniten. Der Hangendabschnitt der Zöbing-Formation setzt sich aus einer Wechsellagerung von Siltstein mit Arkose zusammen.

Die Entwicklung der Böhmischen Masse innerhalb des variszischen Gebirges ist das Ergebnis einer Folge von mehreren Deformations- und Metamorphoseprozesse. Die Böhmische Masse in Österreich untergliedert sich klassisch nach SUESS (1903, 1912) in das Moldanubikum im Westen und in das Moravikum im Osten. Außerdem wird der Südböhmische Pluton als eigenständige Einheit im Westen des Moldanubikums gesehen. Während der variszischen Gebirgsbildung wurde das höher metamorphe Moldanubikum auf die Einheiten des Moravikums aufgeschoben (SUESS, 1912). Es gibt Hinweise dafür im frühen Karbon (FRITZ & NEUBAUER, 1993).

Das postvariszische Störungssystem der Böhmischen Masse wird von den Richtungen NW-SE (z.B. Donaustörung) und NE-SW bestimmt. Es handelt sich hierbei um Blattverschiebungen, die in der Übergangszone zwischen spröder und duktiler Deformation liegen. Das System setzt sich bis nach Tschechien fort. Die Richtung NW-SE verläuft parallel zum Elbe-Lineament und der Tornquist-Linie. Das gleiche orthogonale System von Scherzonen ist auch im Moravikum vorhanden. Während der alpinen Gebirgsbildung wurden die Scherzonen reaktiviert. Für beide Scherzonenrichtungen (NW-SE und NE-SW) wurden folgende Anordnungen der Hauptnormalspannungen berechnet: Die Größte σ_1 verläuft N-S, die Kleinste σ_3 E-W und die Mittlere σ_2 steht senkrecht darauf (WALLBRECHER ET AL., 1993).

Das Waldviertel ist durch zwei bedeutende Störungszonen mit NE-SW-Richtung zerschnitten, der Vitis-Störung und der Diendorf-Störung. Die Bewegungsrichtung verläuft sinistral. Die Diendorf-Störung zerschneidet die Granulitmassen von Pöchlarn-Wieselburg und des Dunkelsteiner Waldes mit einem Versatz von etwa 25km. Die Störung wird nahe Maissau von neogenen Molassesedimenten überlagert.

Abbildung 2: Vereinfachte geologische Übersichtskarte des österreichischen Moldanubikums, verändert nach COOKE (2000), hauptsächlich nach FUCHS & SCHARBERT (1979).

Innerhalb der Großeinheiten Moldanubikum und Moravikum werden noch weitere Decken und Einheiten unterschieden (Abbildung 2). Als Unterlage der folgenden Beschreibung dient die Geologische Karte von Niederösterreich 1: 200 000 (Nordteil, 2002).

2.1 Moravikum

Das Moravikum befindet sich am Südostrand der Böhmische Masse und ist in zwei "Kuppeln" unterteilt, in die Svratka-Kuppel (Mähren) und in die Thaya-Kuppel (Großteil im Waldviertel) (KLÖTZLI ET AL., 1999).

Der **Thaya-Batholith** intrudierte im späten Proterozoikum und hat während der variszischen Orogenese eine schwache Metamorphose erfahren. Er erstreckt sich über das Waldviertel im Osten bis Tschechien im Norden. Mehr als die Hälfte des Plutons besteht aus Hauptgranit, weitere drei Granit- und Granodiorit-

Varietäten sind bekannt. Im Hangenden des Batholithen folgt die Pleißing-Decke mit der Pernegg-Formation, welche tektonisch von dem stark deformierten Weitersfeld-Stengelgneis separiert ist (FRITZ & NEUBAUER, 1993). Die höchste Einheit des Moravikums ist die Bittescher-Gneis-Decke. Diese Decke beinhaltet einen porphyrischen Orthogneis mit Amphibolitlagen (Bittesch-Gneis), der als kennzeichnender Gesteinstyp des Moravikums gilt (MATURA, 2006). MATURA (2003) zählt zu dieser Decke noch den Dobra-Gneis und die Drosendorf-Formation (entspricht weitgehend der Bunten Serie. siehe Moldanubikum). Diese Theorie widerspricht der Vorstellung von SUESS (1903, 1912), der die Überschiebung an der Hangendgrenze des Bittesch-Gneises in der Glimmerschieferzone postulierte hat. Auch FUCHS (2005) bietet einige Argumente gegen die Theorie von MATURA (2003).

Das Moravikum tritt in zwei großen tektonischen Fenstern am südöstlichen Rand der Böhmischen Masse auf. Der Metamorphosegrad (grünschiefer- bis amphibolitfaziell) nimmt vom Liegenden zum Hangenden und von Osten nach Westen zu (Höck, 1974). Die Metamorphosezonen schneiden die lithologischen und tektonischen Grenzen, daraus ergibt sich eine inverse Zonierung (Höck, 1995).

2.2 Moldanubikum

Die moldanubische Zone der Böhmischen Masse stellt ein kristallines Segment innerhalb des variszischen Faltengürtels dar. Das Moldanubikum wird im Allgemeinen unterteilt in die **Monotone Serie**, die **Bunte Serie** und die **Gföhl Einheit**. Seit SUESS (1912) haben sich einige Begriffe verändert und der Deckenaufbau des Moldanubikums wurde verfeinert. Für einen detaillierten Überblick über die verschiedenen Modelle und Ansätze für die Interpretationen siehe FUCHS & MATURA (1976), FUCHS (1976, 1986, 1991, 1995, 1998, 2005), MATURA (1976, 1984, 2003, 2006), THIELE (1984), TOLLMANN (1982), MATTE ET AL. (1990), FRITZ (1995), FRITZ & NEUBAUER (1993), PETRAKAKIS (1997), KLÖTZLI ET AL. (1999) und andere. Eine Zusammenfassung über die ältere Literatur bieten EBNER (1997) und Höck (1996).

2.2.1 Monotone Serie

Die Monotone Serie (*Ostrong Einheit*) tritt als schmaler Streifen unmittelbar östlich des Südböhmischen Plutons auf. Sie beinhaltet vor allem homogene Paragneise, die sich in cordieritführende und cordieritfreie Gneise unterteilen lassen. Die Cordieritgneise werden als ehemalige Grauwacke eines Beckens am Kontinentalrand interpretiert (FUCHS, 1995). Untergeordnet treten Orthogneise, Kalksilikatgesteine und Eklogitamphibolite auf. Die Eklogite zeigen sich parallel und nahe der tektonischen Grenze zur Bunten Serie.

Niederdruck-Hochtemperatur amphibolitfazielle Metamorphose ist typisch für die Monotone Serie. Die Peak P-T- Bedingungen werden mit 720°C und >4,5kbar angegeben (PETRAKAKIS, 1997). Die Monotone Serie ist durch einen Scherhorizont von der überlagernden Bunten Serie getrennt.

2.2.2 Bunte Serie

Im Liegenden der Bunten Serie befindet sich der Dobra Gneis. Dieser granitische bis granodioritische Orthogneis besitzt ein ausgeprägtes Augengneisgefüge mit cm-großen Kalifeldspat- und Plagioklasklasten. Den höchsten Anteil (Drosendorf Einheit) der Bunten Serie bilden Paragneise mit Einschaltungen von Kalksilikatgesteinen, Quarziten, Marmoren, Graphitschiefern und Amphiboliten.

Die Metamorphosebedingungen werden mit 700-800°C und einem Druck von 7-8kbar angegeben (PETRAKAKIS, 1997).

2.2.3 Gföhl Einheit

Den Liegendanteil der Gföhl Einheit bildet die Raabs Serie. Diese Serie wird als Sutur-Zone zwischen der Gföhl Einheit und der darunterliegenden Bunten Serie interpretiert. Die tektonische Melange besteht aus einem unvollständigen Ophiolith mit kalkalkalinen Begleitserien (FRITZ, 1995). Sie besteht vor allem aus Orthoamphibolit, Biotit-Plagioklasgneis und untergeordnet aus Orthogneisen mit Karbonaten.

Im Hangenden der Raabs Serie tritt der Gföhl Gneis auf. In diesen sind linsenförmig ultramafische Gesteine (serpentinisierte Peridotite) eingeschaltet. Charakteristisch ist das fein- bis mittelkörniges Gefüge und eine homogene Zusammensetzung. Der Gföhl Gneis besteht hauptsächlich aus Quarz und Feldspat. Als Nebengemengteile treten Granat, Kyanit und Sillimanit auf (FUCHS & MATURA, 1976). Lokal sind Übergänge zu gebändertem Granulit erkennbar. Durch die starke Deformation und das migmatitische Auftreten wird der Gföhl Gneis als Hauptdeformationszone des Moldanubikums angesehen (KLÖTZLI ET AL., 1999). Die Metamorphosebedingungen lagen bei 8,3-9,0kbar und 700-750°C (PETRAKAKIS, 1997).

Den obersten Anteil der Gföhl Einheit bilden die Granulite, die als Komplexe bei Pöchlarn-Wieselburg, Dunkelsteiner Wald, St. Leonhard und Blumau auftreten (Abbildung 2). Da Einschaltungen von Granulit im Gföhl Gneis und umgekehrt auftreten, wird ihre Bildung in benachbarten Räumen bzw. der Gföhl Gneis als retrograd gebildeter Granulit gesehen (COOKE & O'BRIEN, 2001). Außerdem

weisen sie eine gewisse geochemische Ähnlichkeit auf und der Bulk- Chemismus deutet auf einen S-Typ-Graniten als Protolith hin (VELLMER, 1992). Die Hauptmasse der Granulite besteht aus lichten, teils grau-violett gebänderten bis feinkörnigen felsischen Gesteinen. Untergeordnet treten dunkle Pyroxengranulite im Dunkelsteiner Wald und bei St. Leonhard auf. Eine detaillierte Petrographie über die Granulite der südlichen Böhmischen Masse stammt von SCHARBERT (1963, 1964). In die Granulite eingeschaltet finden sich linsenförmige Serpentinit-körper. Vermehrt treten sie an den Rändern der Granulitkomplexe auf.

Der Höhepunkt der Metamorphose für die Granulite (felsische und mafische) liegt bei 15-20kbar und 950-1050°C (Abbildung 3, CARSWELL & O'BRIEN (1993); COOKE (2000)). Retrograd bildeten sich ein Metamorphosehöhepunkt einerseits bei der Exhumierung der Granulitmassive bei 8-12kbar und 800-900°C und ein weiterer bei 5-8kbar und 800-500°C. Der letzte Metamorphosehöhepunkt wird mit der Stapelung der moldanubischen Decken in Zusammenhang gebracht (CARSWELL & O'BRIEN (1993); COOKE (2000)).

Abbildung 3: Druck- Temperatur Diagramm der moldanubischen Granulite (felsische und mafische Typen) aus JANOUS[°]EK ET AL. (2004).

2.2.4 Südböhmische Pluton

Der 6000km² große Batholith intrudierte vor 350 bis 310 Mio. Jahren in die Monotone Serie (Höck, 1996). Vier große Gruppen von granitischen Intrusionen können anhand von Mineralogie und Geochemie voneinander unterschieden werden. Die Altersdatierung der verschiedenen Granite ist konträr und wird diskutiert. Einen guten Überblick und eine zusammenfassende Literaturangabe findet sich in KLÖTZLI ET AL. (1999, pp. 381-382).

3. Methodenbeschreibung

Für die Arbeit wurden verschiedene Methoden zur Bestimmung der Eigenschaften der Gesteine im Steinbruches Wanko verwendet.

3.1 Probenahme und Bearbeitung

Die Entnahme der Proben erfolgte auf der Etage SH 310m und der Etage SH 260m. Jeder der drei Granulittypen und ein Serpentinitkörper wurden zu je 3kg beprobt (Tabelle 1, Anhang D). Aus einem Teil der Proben wurden Dünnschliffe gefertigt. Der verbleibende Teil wurde für die chemischen Analysen gebrochen und mit einer Achat- Scheibenschwingmühle analysefein aufgemahlen.

Name	Gestein	Ort	Beschreibung
SW09H01	Granulit Hell	Steinbruch Wanko	Etage SH 310
SW09L01	Granulit Lila	Steinbruch Wanko	Etage SH 310
SW09L02	Granulit Lila	Steinbruch Wanko	Etage SH 310
SW09L03	Granulit Lila	Steinbruch Wanko	Etage SH 260
SW09D01	Granulit Dunkel	Steinbruch Wanko	Etage SH 310
SW09D02	Granulit Dunkel	Steinbruch Wanko	Etage SH 310
SW09D03	Granulit Dunkel	Steinbruch Wanko	Etage SH 260
SW09S01	Serpentinit	Steinbruch Wanko	Etage SH 310
SW09S02	Serpentinit	Steinbruch Wanko	Etage SH 310
SW09S03	Serpentinit	Steinbruch Wanko	Etage SH 260
SW09SP01	Granulit Granat	Steinbruch Wanko	Etage SH 310

Tabelle 1: Probenliste und Ort der Entnahme.

Die Gesteinsproben für die Prüfverfahren des PSV und des LA-Wertes wurden von Hr. Ribeiro im Abbaugelände (Hauwerk zu je 80kg) an denselben Stellen entnommen und im Labor ASAMER Kies- und Betonwerke GmbH in Ohlsdorf (Bereich Produkttechnik & Entwicklung) aufbereitet. Die Teilproben wurden mittels Backenbrecher durch mehrmaliges brechen (min 3x) auf Größtkorn <16mm zerkleinert, homogen durchmischt und gemäß EN 932-2 in prüffähige Teilproben unterteilt. Weitere Teilproben wurden in Würfel (50 x 50 x 50mm) geschnitten um die Druckfestigkeit zu bestimmten.

Die Kornformkennzahl SI wurde ebenfalls bestimmt. Bei diesem Verfahren mit dem Kornformmessschieber wird die Kornform über die Anzahl der ungünstig geformten Körner (Länge/Dicke-Verhältnis > 3) berechnet. Der Prozentsatz der ungünstig geformten Körner ist die Kornformkennzahl SI.

Bearbeitung für die chemische Analyse:

Für die RFA wurden Presslinge und Schmelztablette hergestellt. Das Verhältnis Wachs zu Probe bei den Presslingen lag bei 1:4. Vor der Herstellung der Schmelztabletten wurde der Glühverlust bestimmt. Die Proben wurden für 3 Stunden bei 1000°C geglüht. Danach wurden die Proben im Verhältnis 1:4 mit Di-Lithiumtetraborat versetzt. Für jede Probe wurden 2 Schmelztabletten angefertigt. Die Schmelztabletten wurden mit dem Gerät FUSION MACHINE TYPE VAA2 der Firma FLUXANA HD ELEKTRONIK hergestellt.

3.2 Mikroskopie

Für die mikroskopische Untersuchung der Dünnschliffe im Durch- und Auflicht wurde ein Olympus BX40F4 Polarisationsmikroskop verwendet. Charakteristische Ausschnitte wurden mittels einer Digitalkamera aufgenommen und mit dem U-EYE Softwareprogramm bearbeitet.

Der Modalbestand der Minerale des Granulites wurde mithilfe eines Zählokulars (25 Punkte, 8fach Vergrößerung) von Zeiss bestimmt. Es wurden 350 Punkte pro Dünnschliff ausgezählt.

3.3 Röntgenfluoreszenzanalyse (RFA)

Mit der Röntgenfluoreszenzanalyse können chemische Elemente einer Probe qualitativ und quantitativ bestimmt werden. Es werden zwei Methoden unterschieden: die wellenlängendispersive und die energiedispersive RFA. Die Nachweisgrenze liegt je nach Gerät meist bei 1- 10ppm (WEBER-DIEFENBACH, 2000). Die Probe sollte frei von Verwitterung und Alteration sein. Um ein repräsentatives Ergebnis zu erhalten wird die Probe homogenisiert, dies erfolgt durch Brechen und Mahlen. Aus diesem Pulverpräparat werden Pulverpresslinge oder Schmelztabletten hergestellt.

Durch Röntgenstrahlung aus einer Röntgenröhre wird die Probe angeregt ihre charakteristische Eigenstrahlung auszusenden. Jedes Element zeigt eine einzigartige Wellenlänge, wobei die Intensität dieser, die Konzentration angibt. Bei der wellenlängendispersiven RFA wird die emittierte Röntgenstrahlung mit einem Kollimator parallel ausgerichtet, an dem Analysatorkristall gebeugt und trifft auf einen Detektor. Die Grundlage dieser Methode ist die Bragg'sche Gleichung. Bei der energiedispersiven RFA trifft die Eigenstrahlung direkt auf einen Halbleiterdetektor. Die Methoden unterscheiden sich in ihrer spektralen Auflösung, welche bei der wellenlängendispersiven RFA besser ist.

Für die Untersuchung der Haupt- und Spurenelemente wurde ein Röntgenfluoreszenzspektrometer der Firma PANALYTICAL, Typ Axios verwendet.

3.4 Massenspektrometrie mit Plasmaionisation (ICP-MS)

Die Massenspektrometrie (MS) mit induktiv gekoppelter Plasmaionisation (ICP) ist eine Multielementspuren-Analyse. Die ICP-MS beruht auf der Ionisierung des zu analysierenden Materials in einem Plasma bei etwa 5000°C. Zur Erzeugung des Plasmas wird ein hochfrequenter Strom in ionisiertes Argon induziert. Aus diesem Plasma werden die Ionen durch zwei Blenden in das Vakuum-System des Massenspektrometers überführt. Nach dem Fokussieren in der Ionenoptik wird der Ionenstrahl im eigentlichen Massenspektrometer in Ionen unterschiedlicher Masse getrennt.

Weil jedes Element mindestens ein Isotop aufweist, dessen Masse bei keinem natürlichen Isotop eines anderen Elements auftritt, ist die Masse eine charakteristische Eigenschaft der Elemente. Dies wird sowohl zum qualitativen als auch zum quantitativen Nachweis genutzt. Darüber hinaus ist die Bestimmung von Isotopenverhältnissen möglich. Die Nachweisgrenze liegt zwischen 0,1 und 0,001µg/l.

Die Granulit und Serpentinit Proben wurden am Lehrstuhl für Allgemeine und Analytische Chemie an der Montanuniversität Leoben mithilfe eines Sinteraufschlusses vorbereitet und als Aerosol in den Plasmastrom eingebracht. Das verwendete Gerät ist ein induktiv gekoppeltes Quadrupol Plasma Massenspektrometer (ICP-QMS) der Firma HEWLETT PACKARD (HP 4500).

3.5 Elektronenstrahl- Mikrosonde (EMS)

Mit der Elektronenstrahl- Mikrosonde ist es möglich an einem ausgewählten Punkt (\emptyset 1µm), auf einem Dünnschliff einer Gesteinsprobe, zerstörungsfrei Elementkonzentrationen qualitativ und quantitativ zu messen. Alle Elemente ab der Ordnungszahl 5 (Bor) bis 92 (Uran) können analysiert werden.

Das Prinzip der EMS beruht darauf, dass Atome, die mit Elektronen beschossen werden, Röntgenstrahlung mit einer elementspezifischen Wellenlänge emittieren. Je höher die Konzentration des Elementes in der Probe ist, desto höher ist die Intensität der emittierten Eigenstrahlung. Die Abhängigkeit der Intensität verläuft annähernd linear zur Konzentration der Probe. Quantitative Analysen erfordern deshalb eine Korrekturrechnung. Das System wird mit Standards einer bekannten Zusammensetzung geeicht. Anhand der gemessen Wellenlänge der emittierten Röntgenstrahlung kann auf das Element und aus der Intensität auf die Konzentration geschlossen werden.

Funktionsweise der EMS:

Eine im Hochvakuum arbeitende Elektronenkanone erzeugt einen Elektronenstrahl. Ebenfalls im Hochvakuum befindet sich die Probe auf einem beweglichen Tisch. Die Probe wird anpoliert und mit Kohlenstoff bedampft. Die Analysepunkte auf der Probe werden mit einem optischen Mikroskop eingestellt. Das Röntgenspektrum, das emittiert wird, kann mit zwei Systemen analysiert werden.

Im wellenlängendispersiven System (WDS) werden Einkristallspektrometer verwendet, die entsprechend der Bragg'schen Gleichung in einem bestimmten Winkel zum Strahl eine definierte Wellenlänge reflektieren. Die Intensität dieser Wellenlänge wird mit einem Zählrohr gemessen. Das WDS besitzt eine hohe Auflösung für Wellenlänge und Intensität. Beim energiedispersiven System (EDS) wird elektronisch die Energie und Menge der auftreffenden Röntgenquanten gemessen und als komplettes Spektrum dargestellt. Mit dem EDS sind dadurch schnelle qualitative Analysen der jeweils gemessenen Phase möglich. Beim Messvorgang werden WDS und EDS kombiniert verwendet. Mit dem EDS werden unbekannte Phasen zuerst auf schnellem Wege identifiziert, die quantitative Messung erfolgt mit dem WDS.

Rückstreuelektronen (BSE, back scattered electrons) können zu BSE-Bildern auf einem Bildschirm verarbeitet werden. Der Elektronenstrahl wird rasterartig über die Probe bewegt. Die BSE-Bilder zeigen chemische Unterschiede innerhalb des Rasters, wobei man lediglich leichte Elemente von schweren Elementen unterscheiden kann.

Ausgewählte Dünnschliffe wurden im Eugen F. Stumpfl Labor des UZAG am Lehrstuhl für Mineralogie und Petrologie in Leoben mit einer Mikrosonde des Typs JEOL JXA 8200 untersucht.

Die Messbedingungen lagen bei einer Beschleunigungsspannung von 15kV und einem Strahlstrom von 10nÅ. Die Messdauer je Peak betrug 15 Sekunden und für den Hintergrund 5 Sekunden. Die quantitative Analyse erfolgte über die Kα-Strahlung mit Hilfe eines wellenlängendispersiven Detektors. Als Standards für die Granatanalyse wurden folgende Minerale verwendet: Granat, Adular, Klinopyroxen, Rhodonit, Kaersutit. Als Standards für die Geothermobarometrie wurden verwendet: Klinopyroxen, Labradorit, Adular, Ilmenite, Albit, Rhodonit, Kaersutit und Fluorit. Die Nachweisgrenzen sind in Tabelle 2 ersichtlich.

			- j ,
Geothermometrie		Granatanalyse	
Element	ррт	Element	ppm
Mg	1005	AI	88
Ca	483	Na	91
Si	217	К	96
AI	172	Са	201
К	186	Mn	150
Ti	149	Mg	79
Na	188	Si	151
Mn	187	Fe	159
Fe	313		
F	501		

Tabelle 2: Nachweisgrenzen der Mikrosondenanalysen, Angaben sind Mittelwerte.

3.6 Los Angeles Wert (LA-Wert)

Der LA- Wert ist ein Maß für die Bruchfestigkeit eines Gesteines. Bei dem Verfahren wird eine Probe in der Größenordnung von 10 kg in einem Zylinder, zusammen mit mehreren Stahlkugeln (Ø 47mm) mit einer Geschwindigkeit von 33U/min 500mal, um seine Achse gedreht. So wird eine Beanspruchung wie Abrieb, Schlag und Mahlen simuliert. Die Probe wird nach Ablauf des Tests mit dem 1,6mm-Sieb gesiebt. Je härter das Gestein, desto weniger Material wird in der Trommel zerstört und umso niedriger (besser) ist der LA-Wert.

Der Los-Angeles-Wert errechnet sich wie folgt:

$$LA = \frac{m}{M} \cdot 100\%$$

m ... Gewicht der abgesiebten Fraktion M ... Gewicht der Probe

LA-Wert der Gesteinsproben wurde im Labor der ASAMER Kies- und Betonwerke GmbH in Ohlsdorf mittels EN 1097-2, Prüfverfahren für mechanische und physikalische Eigenschaften von Gesteinskörnungen – Teil 2: Verfahren zur Bestimmung des Widerstandes gegen Zertrümmerung mit dem Los Angeles-Prüfverfahren, bestimmt.

3.7 Polierwert (PSV)

Der Polierwert (PSV, Polished Stone Value) von Splitt ist eine Angabe für die Festigkeit eines mineralischen Rohstoffes gegen die polierende Wirkung von Fahrzeugreifen. Die Mineralkörner bestimmen die Griffigkeit des Straßenbelages. Die Körnung des Prüfsplittes beträgt 8- 10mm. Die Körner werden mit Kunstharz auf einen Prüfkörper aufgeklebt. Dieser Prüfkörper wird unter Zugabe des Poliermittels Korund in einem genau definierten Poliervorgang sechs Stunden lang poliert. Nach dem Polieren wird der Reibungswert des Prüfkörpers mit einem Pendelmessgerät ermittelt. Aus diesem Reibungsbeiwert errechnet sich dann der PSV.

Das Griffigkeitsverhalten verschiedener Gesteinstypen beruht zum größten Teil auf deren Feinrauheit, Polierfestigkeit und Kantigkeit. Diese Eigenschaften werden durch die Größe der Mineralkörner, ihre Härte und Spaltbarkeit bestimmt. Ein porphyrisches Gefüge ist von Vorteil, da die gröberen Kristalle beim Poliervorgang herausgebildet werden. Gegensätze in den Eigenschaften Härte und Spaltbarkeit der Minerale wirken sich ebenfalls auf das Griffigkeitsverhalten aus. Das kann zur Bildung eines sekundären Reliefs im Straßenbelag führen.

Der Polierwert der Gesteinsproben wurde im Labor der ASAMER Kies- und Betonwerke GmbH in Ohlsdorf mittels EN 1097-8, Prüfverfahren für mechanische und physikalische Eigenschaften von Gesteinskörnungen – Teil 8: Bestimmung des Polierwertes, bestimmt.

3.8 Geothermometrie

Die einfachste Möglichkeit zur Abschätzung von Druck-Temperatur-Bedingungen für ein Gestein besteht im Nachweis bestimmter Indikatorminerale. Polymorphe Phasenübergänge, wie die Phasenübergänge Quarz – Zoesit und Graphit – Diamant, ermöglichen eine schnelle Bestimmung von Mindestdrücken allein durch mikroskopische Beobachtung. Die polymorphen Phasenübergänge gehören zu den diskontinuierlichen Reaktionen, die durch einen Freiheitsgrad von 1 gekennzeichnet sind. Diese univarianten Reaktionen sind im P-T-Raum durch eine Gerade charakterisiert.

Die zweite wichtige Gruppe von Reaktionen sind die kontinuierlichen Reaktionen mit einem Freiheitsgrad von zwei oder mehr, die im P-T-Raum eine Fläche belegen. Es gibt zwei wichtige Typen dieser multivarianten Reaktionen, die Austauschreaktionen und die Netto-Transfer-Reaktionen. Austauschreaktionen beinhalten den Transfer von Elementen zwischen zwei weiter bestehenden Mineralphasen, z. B. der Fe²⁺-Mg-Austausch zwischen Granat und Klinopyroxen. Bei den Netto-Transfer-Reaktionen kommt es zum Abbau und Aufbau von Mineralphasen.

Die Mehrzahl der verwendeten Geothermometer basieren auf Austauschreaktionen. Als Geothermometer werden Reaktionen verwendet, die eine geringe Drucksensibilität (geringe ΔV) und eine starke Temperaturempfindlichkeit (große ΔS) haben, da *dP/dT* gemäß folgender Gleichung große Werte annehmen muss:

$$\frac{\Delta S}{\Delta V} = \frac{dP}{dT}$$

Die Verteilung der Elemente in einem Mineralpaar wird durch den Verteilungskoeffizienten K_D ausgedrückt:

$$K_{D} = \frac{X_{C}^{A} \cdot X_{D}^{B}}{X_{D}^{A} \cdot X_{C}^{B}}$$

$$X_{C,D} \quad \text{Molenbrüche}$$

$$A,B \quad \text{Phase A und B}$$

Stehen die beteiligten Phasen im Gleichgewicht miteinander, so ist die freie Enthalpie gleich Null. Die folgende Gleichung beschreibt formal das thermodynamische Gleichgewicht von Druck, Temperatur und Mineralzusammensetzung, wobei ΔG , ΔS und ΔH auf eine Reaktion bzw. Mineralgleichgewicht bezogen sind:

$$\Delta G = 0 = \Delta H - T \Delta S + (P - 1) \cdot \Delta V + RT lnK$$

H Enthalpie, S Entropie, T Temperatur, V Molvolumen, R Gaskonstante, P Druck, K Gleichgewichtskonstante

Die Gleichgewichtskonstante Produkt setzt sich dem aus von Verteilungskoeffizient und Aktivitätskoeffizient zusammen. Bei idealer Mischbarkeit zwischen den Endgliedern einer Phase ist der Aktivitätskoeffizient 1 und die Gleichgewichtskonstante entspricht K_D .

Ein häufig verwendetes Thermometer für metamorphe Gesteine beruht auf dem Austausch von Fe²⁺ und Mg. Es kann bei den Mineralen Olivin, Granat, Klinopyroxen, Orthopyroxen, Spinell, Ilmenit, Cordierit, Biotit, Chlorit und Hornblende angewendet werden.

Für die Berechnung wurde zuerst mit dem Programm Ax die Aktivitäten der Minerale Granat, Orthopyroxen, Plagioklas, Kalifeldspat, Biotit und Ilmenit berechnet. Danach wurden diese Daten in das Programm THERMOCALC eingespeist.

3.9 Geomagnetik

Der Geomagnetik gehört zu den Potentialverfahren der Angewandten Geophysik. Diese Methode beruht auf dem Magnetfeld der Erde, durch das alle Stoffe eine induzierte Magnetisierung erhalten. Die messbare Eigenschaft ist die

magnetische Suszeptibilität. Außerdem besitzen bestimmte Minerale (Magnetit, Magnetkies, Titanomagnetit etc.) eine remanente Magnetisierung.

Ein magnetisierbarer Stoff in einem Magnetfeld wird selbst zu einem sekundären Magneten mit seinem eigenen Feld, was sich wiederum auf das Normalfeld der Erde auswirkt und eine Anomalie erzeugt.

Anhand dieses Effektes können Gesteinskörper mit unterschiedlichen Suszeptibilitäten bei Untersuchungen im Gelände charakterisiert werden.

Im Steinbruch Wanko wurden im Dezember 2008 Messungen von Ao. Univ. Prof. Dr. Robert Scholger und Dipl.-Ing. Georg Walach, vom Lehrstuhl für Geophysik der Montanuniversität Leoben, mittels eines Protonenmagnetometers (Typ GEM19TG) durchgeführt. Die tägliche Variation des Erdmagnetfeldes im Untersuchungsgebiet wurde mit einem Protonenmagnetometer (Typ GEM19OH) als Basisstation, während der Dauer der Messungen registriert. Die Messgenauigkeit eines Protonenmagnetometers liegt bei ungefähr 0,5nT.

4. Geologisch-lagerstättenkundliche Beschreibung

4.1 Örtliche Lage

Der Steinbruch Wanko bei Meidling im Tal besteht seit 1898. 2002 wurde der Betrieb von der ASAMER Kies- und Betonwerke GmbH übernommen. Der Abbau (Abbildung 4) befindet sich im Gemeindegebiet von Paudorf östlich der Ortschaft Hörfarth. Die Entfernung zur Landeshauptstadt St. Pölten liegt bei rund 15km in Richtung Süden. Die Kremser Straße L100 verläuft unmittelbar westlich vom Steinbruch.

Katastralgemeinde:	Hörfarth, Meidling
Marktgemeinde:	Paudorf
Gerichtsbezirk:	Krems an der Donau
Verwaltungsbezirk:	Krems
Bundesland:	Niederösterreich

Abbildung 4: Geographische Lage des Steinbruches (roter Kreis), Ausschnitt aus ÖK50.

4.2 Geländemorphologie

Die Betriebsstätte befindet sich an der östlichen Randzone des Dunkelsteiner Waldes. Die Seehöhen liegen zwischen 255m ü.A. und 330m ü.A. an der nach Westen abfallenden Geländeflanke eines NS-verlaufenden Geländerückens. Dieser wird im Westen von der Fladnitz, welche in die Donau entwässert, begrenzt. Im Süden und Osten schließt das Meidlinger Thal an.

4.3 Hydrogeologische Verhältnisse

In der näheren Umgebung des Abbaugebietes können hinsichtlich des Grundwasservorkommens im Wesentlichen drei Teilbereiche unterschieden werden. Im Steinbruch selbst das Grundwasser im Festgestein von Granulit mit den eingelagerten Serpentinitvorkommen, der Fladnitz begleitende Talgrundwasserkörper (Porengrundwasserleiter) und das westlich der Fladnitz in den Hangbereichen liegende Grundwasservorkommen.

Ein unmittelbarer hydraulischer Zusammenhang zwischen Bergwasser (Grundwasser und Festgestein) und Fladnitz konnte nicht nachgewiesen werden. Wesentlich ist, dass die Durchlässigkeit im liegenden Festgestein (Gebirgsdurchlässigkeit) um mehrere Größenordnungen geringer ist als jene des Lockergesteins, so dass ein Wasseraustausch zwischen Talgrundwasser und Festgestein vernachlässigbar klein ist. Dadurch kann es zu keinem Grundwassereinstrom in den künftigen Bergbautiefgang trotz geänderter Vorflutverhältnisse kommen.

Derzeit werden die im Steinbruch anfallenden Kluft- und Oberflächenwässer mittels Tauchpumpe gefördert und im Bereich der Feinsediment-Deponie verregnet. Da es bei größeren Wassermengen aus Gründen der Standsicherheit der Böschungen zu Problemen kommen kann, sollen die anfallenden Kluft- und Oberflächenwässer in Zukunft in die Fladnitz geleitet werden. Die Wässer werden davor noch gefiltert und gereinigt.

4.4 Geologische Beschreibung des Vorkommens

Die Lagerstätte besitzt einige Variationen von Granulittypen. Grob sind drei farblich und petrographisch unterschiedliche Typen vorhanden (siehe Kapitel 5). In den Granulit sind schieferungsparallel Serpentinitkörper eingeschaltet. Die Serpentinite treten typisch an den Rändern der Granulitkomplexe der Böhmischen Masse auf (Abbildung 5). Die Serpentinitkörper selbst sind verfaltet und stark deformiert. Teilweise tritt eine hell/dunkel Bänderung auf. Die hellen Bänder sind meist karbonatreicher. Außerdem treten Serpentinitbrekzien auf, deren Matrix bildet Karbonat, selten kryptokristalliner Magnesit. In unmittelbarer Nähe zu den Linsen ist der Granulit tektonisch kleinklüftig zerlegt. Der interne Bau des Granulitkomplexes wird durch eine mittelsteil bis steile E-W streichende, N-einfallende Schieferung geprägt (Abbildung 6). Die Verwitterung des Gesteines kann zum Teil aufgrund der steilen Schieferung tiefgreifend sein, mit einer rostbraunen Farbe, die von den verwitterten Erzmineralen bzw. vom Granat stammt. Dies vermindert nicht nur die Gesteinsqualität, sondern wirkt sich auch negativ auf die Stabilität der Etagenwände aus.

Abbildung 5: Ausschnitt aus der geologischen Karte von Krems an der Donau, Kartenblatt 38, roter Kreis: Umgebung Steinbruch Wanko.

4.5 Beschreibung der geotechnischen Gegebenheiten

Zusätzlich zur Foliation (Abbildung 6) treten weitere Trennflächen auf. Hierzu zählen Klüfte und Störungen. Im Abbau kommen E-W, NNE-SSW bis N-S und NW-SE streichende Kluftflächen häufig vor (Abbildung 7). Kluftflächen fallen demnach gehäuft nach ca. W, S, NE-E und ESE ein. Der Einfallswinkel der Flächen beträgt oftmals >60°, liegt jedoch gehäuft zwischen ca. 30-40° (z.T. zur

Etage hin einfallend). Kluftflächen sind häufig wellig und glatt ausgebildet. Die Abstände der Trennflächen liegt mitunter bei 5-20cm, können aber auch bis 1m reichen. Die Öffnungsweiten im Norden des Abbaus betragen 1mm und mehr, in den anderen Bereichen treten wenige offene Klüfte auf, gehäuft am Kontakt Granulit zu Serpentinit. Im Bereich von Störungen und am lokalen Kontakt zum Serpentinit ist der Granulit stark tektonisch beansprucht.

Abbildung 6: Großkreisdarstellung mit Pi-Plot aller gemessenen Schieferungsflächen.

Abbildung 7: Kluftrose und Countorplot mit den Einfallrichtungen aller gemessenen Trennflächen.

4.6 Geologische Kartierung

Die Kartierung erfolgte im Maßstab 1: 2000. Zur Zeit der geologischen Aufnahme des Steinbruches waren 2 Etagen vollständig begehbar (Etage SH260 und Etage SH310). Auf der Etage SH310 wurde ein N-S-Profil mit 485m und auf Etage SH260 mit 425m aufgenommen. Ausgespart wurde der gesperrte Nordbereich beider Etagen. Die Bruchwand wurde mit verschiedenen Klüftigkeitsmerkmalen bewertet. Der derzeitige Abbau konzentriert sich auf die Grundetage um für den geplanten Tiefabbau den nötigen Platz zu schaffen. Dafür wird die Sohle nach Süden und Osten zurückgezogen und der Abbau im Osten auf Endstand gebracht.

Zur Übersicht sei auf die geologische Karte im Anhang D verwiesen.

Etage SH310: S-N-Profil

0-190m: Wechsellagerung von TD und TH. Die Verwitterung ist bei beiden Typen stark und ist deutlich durch einen braunen Belag an den Flächen erkennbar. Es gestaltet sich schwierig einen frischen Bruch herzustellen. Auffällig ist der Wechsel des Granat- und Biotitgehaltes in beiden Typen, welche im Kartenmaßstab nicht aufgelöst werden konnten. Eigentlich sollte im TH kein Biotit vorhanden sein, jedoch lokal beim Übergang zum TD können Biotitbänder vorkommen. Bis Profilmeter 74 sind beide Gesteine stark beansprucht und zerklüftet, dann sind sie bis zu Profilmeter 190 massig und die Verwitterung lässt nach.

190-205m: TV in unmittelbarer Nähe zum kleineren Serpentinitkörper. Das Gestein ist stark zerklüftet.

205-218m: Serpentinit

218-223m: TV in unmittelbarer Nähe zum kleineren Serpentinitkörper. Das Gestein ist stark zerklüftet.

223-251m: TV ist massig mit einer hell/dunkel violetten Bänderung. Die Granate sind bis zu 2mm im Durchmesser und von einem Biotitsaum umgeben. Der Biotitanteil tritt im Gestein zurück. Von Profilmeter 248 bis 251 ist eine starke Vergrünung des Granulites zu erkennen. Dies ist auf den unmittelbaren Kontakt zum großen Serpentinitkörper zurückzuführen.

251-323m: Im Serpentinitkörper tritt eine hellgrün/dunkelgrün Bänderung auf.

323-437m: Dieser Abschnitt besteht aus TV. Im Lokalbereich (ca. 6m) besteht eine starke Vergrünung und das Gestein ist kleinräumig zerklüftet. Von Profilmeter 373 bis 403 ist das Gestein massig (Abbildung 8) und mit Biotitlagen durchsetzt. Danach ist eine Zunahme der Klüftigkeit vorhanden.

Abbildung 8: Etage SH310, Abschnitt vom großen Serpentinitkörper (rechts) bis TD (links).

437-456m: In diesem Bereich tritt TD auf.

456-485m: In diesem Profilabschnitt tritt TV auf mit stark variierenden Granatund Biotitgehalt. Teilweise sind Übergänge zu TH vorhanden, jedoch im Kartenmaßstab nicht auflösbar. Außerdem treten linsenförmige Bereiche mit Granatgehalt von über 10% auf.

Etage SH260: N-S-Profil

0-10m: TV, stark geklüftet

10-13m: TD, stark geklüftet

13-113m: TV, stark geklüftet, Störungen

113-152m: Der Serpentinitkörper ist intern verfaltet und besitzt hellgrüne/ dunkelgrünen Bänderung.

152-162m: TV ist stark geklüftet und vergrünt. Dieser Granulit liegt als "Span" im Serpentinitkörper.

162-199m: Der Serpentinitkörper ist intern verfaltet und besitzt hellgrüne/ dunkelgrünen Bänderung.

199-244m: Rampe für die Auffahrt zur Etage SH 266.

244-246m: Kleiner Serpentinitkörper

246-326m: Dieser Profilabschnitt besteht aus einer Wechsellagerung von TV und TD (Abbildung 9). Die Mächtigkeit der TD-Lagen liegt bei ca. 2m. Im Lokalbereich zum kleinen Serpentinitkörper tritt eine Vergrünung des TV auf. Beide Typen sind von braunem Verwitterungsüberzug betroffen.

Abbildung 9: Profilabschnitt 246-326m, Wechsellagerung TV (links), TH mit TD, braune Verwitterung.

326-425m: TD, massig, kaum Verwitterungsüberzüge.

Klüftigkeit:

Die stark bis sehr stark geklüfteten Bereiche befinden sich gehäuft am Kontakt von Serpentinit zu Granulit (3 bis 5m beim Kontakt). Generell sind die Kluftabstände bei der derzeitigen Grundetage höher, als auf der Etage SH310. Jedoch ist die Etage SH310 schon im Endzustand und wird nicht mehr weiter abgebaut. Die massigen bis schwach geklüfteten Zonen treten bei TV und TD auf der Etage SH260 auf.

5. Petrographische Beschreibung

Der Steinbruch Wanko wurde im Maßstab 1: 2000 kartiert. Es wurden vier Gesteinstypen identifiziert: Granulit Typ Violett, Granulit Typ Hell, Granulit Typ Dunkel und Serpentinit.

5.1 Granulit

Als Granulit wird ein fein- bis mittelkörniges metamorphes Gestein bezeichnet, das ein überwiegend granoblastisches, geregeltes Korngefüge besitzt. Die Hauptmineralgemengteile sind Quarz und Feldspat (Orthoklasperthit und Plagioklas). Die dunklen Gemengteile sind Pyroxen (Ortho- und Klinopyroxen) und Granat. Als Nebengemengteile treten Kyanit, Sillimanit, Cordierit und Biotit auf. Typisch ist eine gebänderte Textur, bestimmt durch einen Lagenwechsel von hellen und dunklen Mineralen. Die Typlokalität ist das Granulitgebirge in Sachsen/Deutschland, das zu den Varisziden zählt.

Für die Granulitfazies ist das Zurücktreten oder Fehlen von OH-haltigen Mineralien charakteristisch. Metamorphe Gesteine dieser Fazies treten am häufigsten als Bestandteile des präkambrischen Grundgebirges auf oder sind an Orogenzonen gebunden. Generell wird zwischen hellem leukrokratem Granulit und dunklem Pyroxengranulit unterschieden. Helle Granulite leiten sich entweder von klastischen Sedimenten oder felsischen Magmatiten ab. Metabasite liegen in der Granulitfazies als basische Pyroxengranulite vor.

5.1.1 Typenbeschreibung

Typ Violett (TV):

Das augenscheinlichste Merkmal ist die violette Färbung des Gesteins. Zum Teil treten auch Bänderungen und Verfaltungen mit weißen Lagen auf. Außerdem sind unregelmäßige Biotitbänder (variierende Mächtigkeit) in den Granulit eingeschaltet. Die hellrosa Granate besitzen eine Größe von <1mm bis zu 3mm und sind disseminiert verteilt. Einige Granate sind von Biotit nestartig umgeben. Der Granatanteil ist in den Biotitbändern höher als in den violetten oder weißen Zonen, allerdings ist der Großteil der Granate kleiner als 1mm. Bis zu 1mm große Kyanite treten in den helleren Lagen auf. Sie zeigen eine blassblaue Eigenfarbe und die charakteristische längliche Form.
Probe: SW09L01

HG: Quarz, perthitischer Kalifeldspat, Biotit, Granat,

NG: Sillimanit, Kyanit

Akz.: Rutil, Ilmenit, Plagioklas, Zirkon, Magnetit

Abbildung 10: Dünnschliffbild SWL01 ohne und mit gekreuzten Nicolson. Mitte Gr, braun Bt, links Qz, links unten Kfs mit perthitischen Entmischungen, Balken 1mm.

Quarz tritt als Disken- bzw. Plattenquarz mit undulöser Auslöschung und rekristallisiert auf. In den grobkörnigen Kristallen sind netzwerkartig verteilte Einschlüsse erkennbar (Abbildung 10, Mitte links). Im Kalifeldspat treten perthitische Entmischungen auf, die faserig oder tropfenförmig verteilt sind (Abbildung 10, unten links). Biotit besitzt eine stark rotbraune Eigenfarbe. Die einzelnen Biotit-Kristalle sind feinverteilt in Lagen angeordnet. Als Gemenge treten sie nur um Granat und Sillimanit auf. Granat weist eine runde Ausbildung mit Einschlüssen von Quarz und Kalifeldspat auf. Im Schliff tritt der Granat, wie auch der Sillimanit, nur selten ohne direkten Kontakt zu Biotit auf. Der bis zu 3mm große Sillimanit besitzt ein strahlenförmiges Aussehen und ein hohe Relief. Teilweise ist der Sillimanit aus Kyanit gesprossen (Abbildung 11). Der Modalbestand ist in Tabelle 3 angegeben.

Abbildung 11: Dünnschliffbild SWL01 ohne und mit gekreuzten Nicolson. Mitte Ky-Kristall, strahlig Sil, braun Bt, Balken 1mm.

Interpretation: Bei diesem Gestein handelt es sich um einen Granulit sensu stricto (siehe Kapitel 5.3)

Probe: SW09L02

HG: Quarz, perthitischer Kalifeldspat, Biotit

NG: Granat, Kyanit

Akz.: Sillimanit

Abbildung 12: Dünnschliffbild SWL02 ohne und mit gekreuzten Nicolson. Mitte Diskenqz und Kfs mit perthitischen Entmischung, braun Bt, Balken 1mm.

Quarz tritt als Disken- bzw. Plattenquarz mit undulöser Auslöschung und rekristallisiert auf (Abbildung 12). In den grobkörnigen Kristallen sind netzwerkartig verteilte Einschlüsse erkennbar. Im Kalifeldspat treten perthitische Entmischung auf, die faserig oder tropfenförmig verteilt sind. In den rekristallisierten Lagen kann er eine Größe von bis zu 2mm erreichen. Biotit tritt vorwiegend in den feinkörnigen Lagen als Einzelkristall auf. Granat ist disseminiert verteilt. Der Modalbestand ist in Tabelle 3 angegeben. **Interpretation:** Bei diesem Gestein handelt es sich um einen Granulit sensu stricto (siehe Kapitel 5.3)

Probe: SW09SP01

HG: Quarz, Granat, PlagioklasNG: Biotit, KalifeldspatAkz.: Serizit, Myrmekit

Quarz ist vor allem als rekristallisierte feinkörnige Phase vorhanden. Granat tritt als Hauptgemengteil mit einer Größe von bis zu 3mm auf. Meist besitzen sie mehrere Einschlüsse von Quarz und Plagioklas. Biotit ist grobblättrig und ist stets als Gemenge um oder in der Nähe der Granate vertreten. Insgesamt ist das dominierende Gefüge mit Ausnahme der Granate granoblastisch (Abbildung 13). Der Modalbestand ist in Tabelle 3 angegeben.

Abbildung 13: Dünnschliffbild SW09SP01 mit gekreuzten Nicolson. Grt mit Bt.

Interpretation: Bei diesem Gestein handelt es sich um einen Granulit sensu stricto (siehe Kapitel 5.3) mit erhöhter Granat und Plagioklas Führung.

Schliff	Qz	Kfs	PI	Bt	Grt	Sil	Ку
L01	60,0%	19,1%	-	10,0%	8,0%	2,0%	0,9%
L02	56,0%	33,3%	-	5,1%	4,0%	-	1,6%
SP01	73,3%	2,5%	8,4%	3,7%	11,2%	-	-

Tabelle 3: Modalbestand der Mineralphasen des Typs Violett.

Typ Hell (TH):

Der helle Granulit besitzt eine weißgräuliche Eigenfarbe. Verheilte weiße Klüfte durchziehen das Gestein. Der Granatgehalt ist geringer als in den anderen Granulit-Typen. Die Granate weisen eine Größe von bis zu 1mm auf. Charakteristisch ist das Fehlen von Biotit. Eine lagenförmige Anordnung der Minerale ist aufgrund von verschiedenen Korngrößen gegeben.

Probe: SW09H01

HG: Quarz, perthitischer Kalifeldspat

NG: Granat

Akz.: Plagioklas, Muscovit, opake Minerale, Spinell

Quarz tritt in unterschiedlichen Erscheinungsformen auf. Charakteristisch sind die in Zeilen angeordneten Plattenquarze mit undulöser Auslöschung. Außerdem können die Quarze als runde rekristallisierten Körner auftreten (Abbildung 14). Kalifeldspat besitzt immer perthitische Entmischungen mit faseriger Ausbildung. Granat ist stets unregelmäßig verteilt und meist als rundes Einzelkorn vertreten. Zum Teil sind Einschlüsse von Quarz und Kalifeldspat im Granat vorhanden. Der Modalbestand ist in Tabelle 4 angeben.

Abbildung 14: Dünnschliffbild SW09H01 mit gekreuzten Nicolson. Besteht aus Qz und Kfs in groben und feinen Lagen.

Interpretation: Bei diesem Gestein handelt es sich um einen leukrokraten Weißstein.

Tabelle 4: Modalbestand der Mineralphasen des Typs Hell.

Schliff	Qz	Kfs	PI	Grt	Ms		
H01	57,0%	37,7%	0,3%	4,5%	0,3%		

Typ Dunkel (TD):

Dieser Granulit-Typ besitzt eine dunkelgraue Farbe und eine Bänderung, die durch hohen Biotitanteil gekennzeichnet ist. Aus den Dünnschliffen geht als weiteres dunkles Gemengteil der Orthopyroxen hervor. Die Granate sind bis zu 2mm groß. Die Farbe der Granate ist dunkler als in den anderen beiden Typen (TV, TH).

Probe: SW09D01

HG: Quarz, Plagioklas, OrthopyroxenNG: Granat, BiotitAkz.: opake Minerale, Kalifeldspat, Spinell

Abbildung 15: Dünnschliffbild SW09D01 ohne und mit gekreuzten Nicolson. Hohes Relief Opx, braun Bt, Balken 1mm.

Quarz und Plagioklas sind als Gemenge zeilenartig entlang der Schieferung vorhanden. In grobkörnigen Lagen treten sie rekristallisiert auf. Teilweise ist der Plagioklas von Serizit "zerfressen". Granat und Orthopyroxen sind meist als Einzelkorn, in Lagen angeordnet, anwesend (Abbildung 15). Der Anteil an opaken Mineralen ist erhöht. Kalifeldspat tritt nur sehr untergeordnet auf, meist in Verbindung mit Plagioklas. Der Modalbestand ist in Tabelle 5 angegeben.

Interpretation: Bei diesem Gestein handelt es sich um einen Pyroxengranulit.

Probe: SW09D02

HG: Quarz, Plagioklas, OrthopyroxenNG: Granat, BiotitAkz.: opake Minerale, Kalifeldspat

Abbildung 16: Dünnschliffbild SW09D02 ohne und mit gekreuzten Nicolson. Rechts PI, links Kfs mit antiperthitischer Entmischung, Balken 1mm.

Quarz ist in Lagen angeordnet. Einzelne grobkörnige Lagen bestehen aus rekristallisierten Quarzkörnern. Im Quarz sind netzwerkartige Einschlüsse vorhanden. Plagioklas liegt in der Korngröße immer unter Quarz. Zum Teil treten antiperthitische Entmischungen auf (Abbildung 16). Orthopyroxen tritt ebenfalls, wie auch Quarz, Biotit und Granat, in Lagen von Einzelkristallen auf. Er besitzt einen Pleochroismus von blassrosa zu blassgrün. Granat ist als Einzelkorn mit Einschlüssen von Quarz und Plagioklas anwesend. Der Modalbestand ist in Tabelle 5 angegeben.

Interpretation: Bei diesem Gestein handelt es sich um einen Pyroxengranulit.

_	Schliff	Qz	PI	Grt	Орх	Bt	Opak
	D01	57,0%	21,6%	8,0%	8,0%	5,4%	-
	D02	62,0%	18,8%	6,6%	10,0%	1,0%	0,6%

Tabelle 5: Modalbestand der Mineralphasen des Typs Dunkel.

5.1.2 Gefüge

Das charakteristische Gefüge für metamorphe Gesteine dieser Fazies ist eine kristalloblastische Anordnung der Minerale. Im Idealfall sind alle Minerale im Gleichgewicht miteinander und gleichzeitig gewachsen. Sie besitzen daher gerade Korngrenzen und sind idiomorph.

Die auftretenden Granulite sind straff schiefrig, etwas streifig durch den lagenweisen Wechsel des Mineralbestandes. Die Minerale bauen zusammen ein überwiegend granoblastisches Gefüge auf. Ausnahme bildet der Biotit, der blättrig und schuppig lagenweise vorkommt. Der Quarz bildet mm-lange flache Platten bzw. Scheiben (Disken), welche in paralleler Anordnung zusammen mit dem Kalifeldspat bzw. mit dem Plagioklas Hauptträger der Schieferung sind. Die Kornkontakte zwischen den Hauptgemengteilen treffen sich annähernd in einem Winkel von 120° in einem sogenannten Tripelpunkt. Granat, Kyanit und Orthopyroxen liegen als Einzelkörner oder als eingeregelte Aggregate von mehreren Körnern vor. Granate sind als Porphyroblasten gewachsen und besitzen Einschlüsse, meist Quarz oder Kalifeldfeldspat.

5.1.3 Zusammenfassung

In Tabelle 6 sind die Mineralbestände aller Granulittypen zusammengefasst dargestellt.

Das Gefüge der Granulite ist überwiegend granoblastisch, besitzt jedoch durch die straffe Einregelung der Minerale ein streifiges Aussehen.

Die Granulittypen unterscheiden sich deutlich im Mineralbestand. TD besitzt im Gegensatz zu den felsischen Granulittypen Orthopyroxen und Plagioklas. TV und TH unterscheiden sich im Biotit- und Kalifeldspatgehalt.

Тур	Qz	PI	Kfs	Grt	Орх	Bt	Ms	Sil/Ky	Opak
TV	58%	-	26,2%	6%	-	7,5%	-	2%	-
ТН	57%	0,3%	38%	4,5%	-	-	0,3%	-	-
TD	59%	20,2%	-	7%	9%	3%	-	-	1%

Tabelle 6: Mineralbestand der Granulittypen aus dem Steinbruch Wanko.

5.2 Serpentinit

Serpentinite sind dichte, massig bis schiefrige ultramafische Metamorphite, die vorwiegend dunkelgrün gefärbt sind. Sie bestehen überwiegend aus den Serpentin-Mineralen Lizardit, Antigorit oder Crysotil und enthalten häufig Magnetit, Talk, Chlorit, Amphibol und Karbonate. Häufige Mineralrelikte von Olivin, Orthopyroxen, diopsidreicher Klinopyroxen und pyropreiche Granat können beobachtet werden.

Die Serpentinisierung von Mantelgesteinen kann in drei unterschiedlichen Umgebungen passieren: im Mantel selbst, beim mittelozeanischen Rücken (Ozeanbodenmetamorphose) und in der Kruste während bei der Gebirgsbildung.

Probe: SW09S01 HG: Serpentin NG: Karbonat Akz.: Chromspinell Bei dem Serpentinmineral handel sich in erster Linie um Antigorit. Das Gestein ist vollständig serpentinisiert. Die Spinelle sind häufig von einem Magnetitrand umgeben. Das Gefüge ist fein blättrig bis faserig mit netzwerkartiger Struktur. Karbonat tritt als Nebengemengteil disseminiert auf.

Abbildung 17: Dünnschliffbild SWS01 ohne und mit gekreuzten Nicolson. Mitte braun Spl,

Interpretation: Das Gestein ist ein Serpentinit.

Probe: SW09S02

HG: Serpentin NG: Karbonat Akz.: Chromspinell

Bei dem Serpentin handelt es sich zum größten Teil um Antigorit. Das Gestein ist zu 100% serpentinisiert. Vereinzelt können Orthopyroxenrelikte, die völlig in Serpentin umgewandelt sind, an ihren Umrissen beobachtet werden Das Gefüge ist blättrig bis faserig mit dem für Serpentinite typischen netzwerkartigen Aufbau. Die Spinelle sind als Bruchstücke und stark umgewandelt vorhanden. Feine Gänge aus Karbonat durchzieht das Gestein.

Abbildung 18: Dünnschliffbild SWS02 ohne und mit gekreuzten Nicolson. Karbonatgang.

Interpretation: Das Gestein ist ein Serpentinit.

Die Serpentinite zeigen eine Bänderung mit hellgrüner zu dunkelgrüner Färbung. Relikte wurden bei den untersuchten Serpentiniten nicht gefunden, jedoch wurden bei früheren Bohrungen in der Nähe des Steinbruches Serpentinite angetroffen, welche Relikte beinhalteten. Als Relikte treten Olivin (Abbildung 19), Spinell (Abbildung 20), Pyroxen und Granat mit kelyphitischem Rand auf.

Abbildung 19: Dünnschliffbild Serpentinit ohne und mit gekreuzten Nicolson. Antigorit mit Olivinrelikten.

Abbildung 20: Dünnschliffbild S02 ohne und mit gekreuzten Nicolson. Mitte Spl mit kelyphitischem Rand.

5.3 Vergleich mit der Literatur

Granulit:

Die erste umfassende Arbeit über die südlichen moldanubischen Granulite stammt von SCHARBERT (1963, 1964). Seine Werke befassten sich mit den geologischen Eigenschaften, megaskopischen Gesteinsbeschreibungen, petrographischen, chemischen und mineralogischen Untersuchungen sowie der Frage des Ausgangsmaterials und der Genese der Granulite. Erst ein Jahrzehnt später wurde eine Gesamtdarstellung über die Böhmische Masse von FUCHS & MATURA (1976) publiziert. Diese beinhaltet eine detaillierte geologische Kartierung im Maßstab 1: 200.000, eine Beschreibung der Gesteinsarten (Metamorphite, Plutonite, Magmatite und Sedimentserien) sowie eine Darstellung über den geologischen Bau der Böhmischen Masse in Österreich. Über die Chemie und die Petrogenese der Granulite des Moldanubikums verfasste VELLMER (1992) seine unveröffentlichte Dissertation.

SCHARBERT (1963, 1964) unterscheidet vier Granulittypen im südlichen Moldanubikum: *Granulite sensu stricto, Plagio-Granulite, Pyroxen-Granulite und Pyriklas Granulite*.

Granulit sensu stricto: Der Mineralbestand setzt sich zusammen aus Quarz, perthitischem Kalifeldspat, (anitperthitischen) Plagioklas, Granat, Kyanit, Sillimanit, Biotit, Myrmekit, Rutil, Apatit, Zirkon, Graphit, Erze und Spinell. In Tabelle 7 sind der Mineralbestand des Granulits sensu stricto angegeben.

Probe	Qz	Kfs	PI	Grt	Ку	Sil	Bt
Nr. 202	62,7%	18,6%	9,2%	5,9%	0,1%	0,2%	2,5%
Nr. 210	58,7%	16,8%	14,4%	4,0%	-	0,3%	5,3%
Nr. 201	57,9%	29,3%	3,6%	3,3%	2,9%	-	1,9%

Tabelle 7: Mineralbestand der Granulite sensu stricto, Lokalität Meidling im Tal.

aus Scharbert (1964)

Biotit ist ein wichtiges Unterscheidungsmerkmal der einzelnen Varietäten. Der biotitfreie Weißstein erreicht nur geringe Mächtigkeit und tritt als leukokrate Bänder auf. Der Plagioklas tritt gegenüber dem Kalifeldspat zurück. Die einzelnen Körner der Hauptgemengteile sind in einer Zeilenstruktur ausgeprägt, vor allem die Diskenquarze (Plattenquarze) zeigen diese Anordnung. Bei einigen Gesteinen, die vom Mineralbestand dem Granulit sensu stricto zugeordnet werden, fehlen diese Gefügemerkmale und es treten Mosaike von Quarz und Feldspat auf. Sporadisch sind Lagen mit erhöhtem Granatgehalt vorzufinden. Dieser Granulit erscheint rosa und besitzt eine variable Korngrößenverteilung.

Plagio-Granulit: Dieser helle Typ tritt untergeordnet auf und besitzt den Mineralbestand des Granulites sensu stricto, jedoch tritt der Kalifeldspatgehalt gegenüber dem Plagioklas stark zurück. Der Plagioklas ist häufiger vertreten als Quarz. Sehr untergeordnet tritt Pyroxen auf.

Pyroxen-Granulit: Gemengteile zusätzlich zu Granulit sensu stricto sind Orthopyroxen, untergeordnet Klinopyroxen und Hornblende. Disthen und Sillimanit fehlen. Die Färbung des Gesteins ist dunkelgrün, dunkelgraugrün bis schwarzgrün. Die dunkle Farbe kommt von den grauen Quarzen und Feldspäten. Der Alkalifeldspat überwiegt gegenüber dem Plagioklas.

Pyriklas-Granulit: Bei diesem dunklen stark granoblastischen Typ tritt der Quarz zurück und ein absolutes Vorherrschen von Plagioklas ist charakteristisch. Der Quarzgehalt läuft der Plagioklasmenge entgegen. Hypersthen erscheint in unterschiedlicher Häufigkeit.

FUCHS & MATURA (1976) unterscheiden zwischen zwei Typen: Granulit sensu stricto und Pyroxengranulit. VELLMER (1992) trennt zwischen pyroxenfreien und pyroxenführenden Granuliten.

Serpentinit:

Im Granulit eingeschaltet finden sich Linsen von Serpentiniten mit variierender Mächtigkeit und Ausdehnung. Der Gesamt-Chemismus deutet auf den Ursprung der ehemaligen Peridotite im oberen Mantel hin (CARSWELL, 1991). Anhand von petrographischen Analysen wurde ein Metamorphosemodell mit einem Gleichgewicht bei ca. 3,1GPa und 1000-1100°C formuliert (CARSWELL, 1991).

Abbildung 21: P-T-Diagramm der einzelnen P-T-Wege der Serpentinite der Böhmischen Masse in Niederösterreich. *1* Bildung der Pyroxenkumulate, *2* Isobarische Abkühlung, *3* Dekompression, *4* Entmischung von Spinell in Pyroxen, *5* Bildung der Kelphyite, aus BECKER (1997).

Es wurden außerdem Granat- Pyroxenit-Lagen im Serpentinit näher untersucht. Die Geothermometrie dieser Pyroxene-Megakristalle ergab eine Temperatur von bis zu 1400°C, was darauf hinweist, dass die Pyroxenkumulate aus dem unteren lithosphärischen Mantel stammen könnten (BECKER, 1997, Abbildung 21).

6. Geochemie

In diesem Kapitel werden die gewonnenen geochemischen Daten aufbereitet und dargestellt. Die verschiedenen Diskriminierungsdiagramme, Harker Diagramme etc. wurden mit Hilfe der GCDKIT Software erstellt (JANOUS^{*}EK ET AL., 2003a).

Der SiO₂-Gehalt ist für die Klassifizierung, wie auch für diverse industrielle Anwendungsmöglichkeiten von entscheidender Bedeutung. Es wird hier unterschieden zwischen dem "freien" Quarz- Gehalt und dem analytisch aus dem Gesamt-Chemismus gewonnen "gebundenen" SiO₂- Gehalt. Der Quarz- Gehalt ist, außer bei reinem Quarzit, in der Regel kleiner als der SiO₂- Gehalt. Er kann durch Röntgenstrukturanalyse oder petrographisch durch Auszählen der Quarzkörner bestimmt werden. Die Standardmethode zur Bestimmung des SiO₂-Gehalt ist die Röntgenfluoreszenzanalyse. Die Beurteilung des SiO₂- Gehaltes erfolgt ohne Berücksichtigung des Glühverlustes.

In Tabelle 8 sind der Quarz- und SiO₂- Gehalt der untersuchten Granulite des Steinbruches Wanko zusammengefasst. Der Quarz- Gehalt wurde an Dünnschliffen durch Auszählen ermittelt. Für die Auszählung des modalen Mineralbestandes wurde ein Auszählokular verwendet, wobei mindestens 250 Treffer pro Schliff gezählt worden sind.

Granulit	SiO ₂ -Gehalt	Quarz-Gehalt
L01	75,21%	60,0%
L02	75,17%	56,0%
D01	68,82%	57,0%
D02	69,04%	56,0%
H01	74,91%	57,0%
SP1	73,60%	73,3%
ø	72,80%	59,90%

Tabelle 8: Quarz und SiO₂-Gehalt in den Granulitproben.

6.1 Die Protolithe der Granulite

Bei der Untersuchung von metamorphen Gesteinen stellt sich immer die Frage nach dem Ausgangsgestein. In Abbildung 22 sind Harker Diagramme (verschiedene Haupt- und Spurenelemente gegen SiO₂ aufgetragen) dargestellt, um einerseits einen Hinweis zu bekommen, ob die untersuchten Granulite einer gemeinsamen genetischen Abfolge angehören und weiters sollte ein Beleg für die Mobilität bzw. Immobilität einzelner Elemente bekommen werden. Die Elemente Mg, Al, Ca, Ti, Fe, Mn, Zr, V, Cr und Sc zeigen eine deutliche negative Korrelation mit SiO₂, während K, Rb und Y mit SiO₂ positiv korreliert sind (Abbildung 22).

Abbildung 22: Harker Diagramme der untersuchten Granulittypen in Gew.-%.

Die durchwegs klare negative bzw. positive Korrelation der Elemente Mg, Al, Ca, Ti, Fe, Mn, Zr, V, Cr und Sc mit SiO₂ lässt auf eine ko-genetische Abfolge der dunklen und hellen Typen der Granulite schließen. Weiters kann die Korrelation einen Hinweis darauf liefern, dass derartige Elemente als relativ immobil einzustufen sind. Die Elemente Na, Nb und Y zeigen teilweise signifikante Streuung und werden daher als relativ mobil eingestuft. In der weiteren geochemischen Klassifikation und Diskriminierung wird daher in erster Linie auf relativ immobile Elemente zurückgegriffen um zu einer möglichst stichhaltigen geochemischen Charakterisierung und Protolith-Interpretation der Granulite zu gelangen.

Spurenelemente - Ergebnisse und Interpretation:

Für die Aufbereitung der Spurenelementanalyse werden Multielement-Variations-Diagramme, so genannte "Spider- Diagramme", verwendet. Spider- Diagramme werden zur Evaluierung der geotektonischen Position verwendet. Die Normierung von basischen Gesteinen erfolgt üblicherweise auf der Basis von mittelozeanischen Rückenbasalten (MORB), Chondriten oder primitiven Mantelmaterial. Für Granulite eignet sich eine Normierung nach einer durchschnittlichen Oberkrusten- Zusammensetzung. Bei den verwendeten Multielement- Diagrammen nimmt die Kompatibilität der auf der X-Achse aufgetragenen Elemente von links nach rechts zu. Die inkompatiblen Elemente reichern sich z.B. bei partieller Aufschmelzung in der Restschmelze an. Sie können in sogenannte LIL- und HFS- Elemente untergliedert werden. HFS-Elemente (Th, U, Ce, Pb, Zr, Hf, Ti, Nb und Ta) können als relativ immobil betrachtet werten, hingegen sind LIL- Elemente (Cs, Rb, K, Ba, Pb, Sr und Eu) relativ mobil.

Abbildung 23: Spider- Diagramm der untersuchten Granulitproben, Upper crust-normiert nach TAYLOR & MCLENNAN (1985), orange gestrichelt Vergleichswerte von felsische moldanubische Granulite aus JANOUS^{*}EK ET AL. (2004).

Die bearbeiteten Granulitproben zeigen eine Abreicherung an Th, Nb, Sr, Zr, und Ti, im Vergleich mit Durchschnittsgesteinen der Oberen Kruste (Abbildung 23). Eine breite Streuung innerhalb der Probengruppen besitzen die Elemente Th, La, P, und Ti. Eine minimale Anreicherung ist bei Y festzustellen. Ähnliche Verläufe der normierten Elementverteilungskurven zeigen auch die von JANOUS^{*}EK ET AL. (2004) untersuchten felsischen Granulite aus verschiedenen Lokalitäten des Moldanubikums (Abbildung 24, rechts). Der Gföhl Gneis hingegen zeigt nur eine Abreicherung bei Sr und Tb (Abbildung 24, links). Vor allem im Th- Gehalt unterscheiden sich Granulit und Gföhl Gneis. Mit Ausnahme von U und Th beim Granulit und U beim Gföhl Gneis ähneln die Spider- Diagramme jenen von felsischen Graniten (JANOUS^{*}EK ET AL., 2004).

Abbildung 24: Spider- Diagramme, Upper crust- normiert nach TAYLOR & MCLENNAN (1985), links: Gföhl Gneis, gemittelte Daten aus VELLMER (1992); rechts: Felsische moldanubische Granulite aus JANOUS[°]EK ET AL. (2004).

Vergleicht man die Spurenelemente der untersuchten Granulitproben mit Graniten aus den Alpen spiegelt sich ein ähnliches Bild wider (Abbildung 25). Diskrepanzen ergeben sich bei dem Element Ta. Dieses Element ist bei den Graniten angereichert. Die inkompatibleren HFS- Elemente sind in den Granuliten und den Graniten deutlich abgereichert.

Abbildung 25: Spider Diagramm, ORG- normiert nach PEARCE ET AL. (1984), Vergleich Granulit mit Graniten aus orogen Zonen (Rieserferner und italienische Alpen), Granitdaten (lila) aus PEARCE ET AL. (1984).

Seltene Erden (REE) - Ergebnisse und Interpretation:

Bei den Seltenen Erden handelt es sich um 17 Elemente, bestehend aus Scandium, Yttrium und den Lanthaniden (Ordnungszahl 57 bis 71). Sie untergliedern sich in leichte und schwere Seltene Erdelemente (LREE und HREE). Die REE zeichnen sich durch eine große chemische Ähnlichkeit untereinander aus, da ihre äußere Elektronenhülle gleich besetzt ist. Sie sind lithophil. Bevorzugt werden sie bei Metamorphiten in die Minerale Granat, Zirkon, Monazit und Apatit eingebaut. Die Selten Erden werden üblicherweise Chondritnormiert in Spider- Diagrammen dargestellt.

Für das Seltene Erd- Muster wurden die Proben der Granulittypen TD, TV und der Sonderprobe SP1 verwendet. Es zeigt sich eine typische negative Eu-Anomalie (Abbildung 26). Basische Granulite besitzen im Allgemeinen eine geringere bis leicht positive Eu- Anomalie. Dies gilt für TD, welcher eine geringere negative Eu- Anomalie besitzt als TV. Die negative Eu- Anomalie bei den moldanubischen Granuliten nimmt mit Zunahme des SiO₂- Gehaltes an Ausmaß zu (Abbildung 27, JANOUS EK ET AL., 2004). Die LREE sind in allen Proben gegenüber den HREE angereichert. Außerdem sinken die Gehalte an LREE mit Zunahme des SiO₂- Gehaltes, während der HREE- Gehalt meist konstant bleibt (Abbildung 27, JANOUS EK ET AL., 2004). Das ist typisch für felsische granitische Magmen, die eine fraktionierte Kristallisation durchlaufen (MILLER & MITTLEFEHLDT, 1982).

SP1, Normalisierung nach BOYNTON (1984).

Abbildung 27: Chondrit – normierter REE Plot von Granuliten aus dem Moldanubikum (n= 209) aus JANOUS^{*}EK ET AL. (2004).

Abbildung 28: Chondrit – normierter REE Plot von Graniten (Kössein Granitmassiv, Fichtelgebirge) eines S- Typ Magmas, aus SCHÖDLBAUER ET AL. (1997).

Die Selten Erd- Mustern ähneln stark Graniten aus S-Typ Magmen, welche ebenfalls ein negative Eu-Anomalie und eine leichte Anreicherung der LREE gegenüber der HREE aufweisen (Abbildung 28). Die Spuren- und Seltenerdelement- Verteilung deutet auf einen plutonischen Protolithen hin.

6.2 Klassifikation der Protolithe

Ein speziell für Granulite erstelltes Diskriminierungsdiagramm nach WERNER (1987) (Abbildung 29) unterscheidet zwischen Ortho- bzw. Paragestein und geht von den Verhältnissen MgO/CaO zu P_2O_5/TiO_2 aus. Sämtliche untersuchten Granulittypen liegen im magmatischen Eduktbereich, wobei die dunklen Granulittypen (TD) näher an der Grenzlinie zum sedimentären Ausgangsgestein zu liegen kommen (Abbildung 29).

Abbildung 29: MgO/CaO vs. P_2O_5/TiO_2 – Diskriminierungsdiagramm nach WERNER (1987). Die Gerade definiert die Grenze zwischen ortho- und paragenen Granuliten.

Geht man davon aus, dass die untersuchten Granulite granitoide Protolithe hatten, soll mit folgenden Diagrammen eine nähere geochemische Charakterisierung und Diskriminierung vorgenommen werden. Nach der Einteilung von MIDDLEMOST (1985) für magmatische Gesteine plottet TD im Granodiorit- Feld und die felsischen Granulittypen (TH und TV) im Granit- Feld (Abbildung 30).

Abbildung 30: Klassifikationen der bearbeiteten Granulitproben nach MIDDLEMOST (1985).

6.3 Der geochemische Charakter der Protolithe

Die untersuchten Proben folgen im Thompson Diagramm dem kalkalkalischen Trend (Abbildung 31). TD setzt sich deutlich von den felsischen Granulittypen ab, jedoch verfolgen die Granulite einen zusammenhängenden Trend, der als kogenetische interpretiert wird. Dieser Trend lässt sich bei sämtlichen moldanubischen Granuliten erkennen (JANOUS^{*}EK ET AL., 2004, Fig. 5a).

Abbildung 31: Thompson Diagramm der bearbeiteten Granulite.

Eine deutliche Untermauerung bekommt der angeführte ko-genetische Trend im Diskriminierungsdiagramm von FROST ET AL. (2001), wo ein deutlicher Differentiationstrend von TD zu den felsischen Granulittypen zu erkennen ist (Abbildung 32). Die felsischen Granulittypen plotten im "peraluminium leucogranites"- Feld.

Abbildung 32: Na₂O+K₂O-CaO vs. SiO₂ – Diskriminierungsdiagramm nach FROST ET AL. (2001). Schwarz TD, Grün TV, Rot TH, Blau SP1.

Der Trend ist gekennzeichnet durch eine Zunahme des Ca- Gehaltes bei TD mit gleichzeitiger Abnahme des SiO₂- Gehaltes. TV und TH und die Sonderprobe SP1 sind angereichert an K.

Im Diskriminierungsdiagramm nach SHAND (1943) sind alle Granulittypen im "peraluminous" Feld (Abbildung 33).

Abbildung 33: Diskriminierung des Al₂O₃/(CaO+Na₂O+K₂O) gegen Al₂O₃/(Na₂O+K₂O) Molekularverhältnisses der bearbeiteten Proben nach SHAND (1943).

Ein weiteres Indiz für eine fraktionierte Kristallisation ist eine Zunahme des Rb-Gehaltes mit gleichzeitiger Abnahme von Ba und Sr mit steigendem SiO₂- Gehalt (Abbildung 34, JANOUS^{*}EK ET AL., 2004).

Abbildung 34: Harker Diagramme der Elemente Rb, Ba und Sr der untersuchten Granulite, Legende siehe Abbildung 33.

6.4 Die geotektonische Position der Protolithe

Für die geotektonische Position des Protolithen ist das R1- R2- Diskriminierungsdiagramm von BACHELOR & BOWDEN (1985) ein Ansatz. Dieses Diagramm berücksichtigt das variable K/Na- Verhältnis von Graniten. Die bearbeiteten Granulitproben plotten im Kollisionsgranit Feld. TD hebt sich von den felsischen Granulittypen ab und wandert in Richtung "Pre-plate Collision"- Feld (Abbildung 35). Nach dem Diskriminierungsdiagramm nach PEARCE ET AL. (1984) handelt es sich um Granite aus einem aktiven Kontinentalrand bzw. um einen Kontinent-Kontinent-Kollisionsgranite (Abbildung 36).

Man unterscheidet je nach geotektonischem Bildungsmilieu zwischen S-Typ, I-Typ, M-Typ und A-Typ Graniten. Beim S-Typ Granit ist das Ausgangsmaterial für die Magmenbildung in erster Linie Metasedimente aus der tieferen kontinentalen Kruste (z.B. Para- und Orthogneis). I-Typ Granite gehen auf Magmen zurück, die Produkte der Teilaufschmelzung von magmatischen Gesteinen der tieferen Kruste sind. M-Typ Granite weisen eindeutige geochemische Charakteristika des Erdmantels auf und stellen Differentiationsprodukte basaltischer Schmelzen dar. A-Typ Granite sind anorogene Granite, die in kontinentalen Riftzonen vorkommen und hochmetamorphe Gesteine als Ausgangsmaterial besitzen. Aufgrund des Molekularverhältnisses handelt sich um einen S- Typ Graniten nach der genetischen Einteilung von CHAPPEL & WHITE (1974). Dazu gehört das Al₂O₃/(CaO+Na₂O+K₂O)- Verhältnis über 1,1.

Abbildung 35: Geotektonische Position nach BACHELOR & BOWDEN (1985).

Abbildung 36: Diskriminierungsdiagramm für die geotektonische Position der Granulite nach PEARCE ET AL. (1984), Legende siehe Abbildung 35.

6.5 Metamorphe Charakteristika der Granulite

6.5.1 ACF- A'KF- Diagramme

Für die graphische Darstellung metamorpher Mineralparagenesen werden die Dreiecksdiagramme ACF und A'KF verwendet.

ACF-Diagramm

Anhand der Hauptelementanalysen mittels RFA wurden die Ergebnisse in Mole umgerechnet und die A-, C-, F- Komponente wie folgt berechnet:

$$A = [Al_2O_3] + [Fe_2O_3] - [Na_2O] - [K_2O]$$

C = [CaO]

F = [MgO]+[FeO]+[MnO]

Wie in Abbildung 37 ersichtlich plotten die Ergebnisse im Kyanit- Plagioklas-Granat Feld. Die Punkte nahe der Plagioklas – Granat Linie stellen den TD dar.

Abbildung 37: ACF-Diagramm der Phasenbeziehung Kyanit, Granat und Plagioklas.

Die felsischen Granulittypen bilden eine Punktwolke mit einem Ca- Anteil unter 20 Mol-% und einer F- Komponente bei ca. 40 Mol-%. Die A- Komponente liegt zwischen 40 und 50 Mol-%. Bei TD steigt der Ca- Anteil zum Teil über 20 Mol-% und die A- Komponente sinkt unter 40 Mol-%.

<u>A'KF-Diagramm</u>

Anhand der Hauptelementanalysen mittels RFA wurden die Ergebnisse in Mole umgerechnet und die A'-, K-, F- Komponente wie folgt berechnet:

$$A^{\circ} = [Al_2O_3] + [Fe_2O_3] - [Na_2O] - [K_2O] - [CaO]$$

$$\mathsf{K} = [\mathsf{K}_2\mathsf{O}]$$

F = [MgO]+[FeO]+[MnO]

Wie in Abbildung 38 ersichtlich plotten die Ergebnisse im Kyanit- Kalifeldspat-Granat Feld. Der Punkt unterhalb der Kalifeldspat – Granat Linie stellt eine Gesteinsprobe von TD dar. Gut zu erkennen ist der unterschiedliche K- Gehalt der einzelnen Granulite.

Abbildung 38: AKF Diagramm mit der Phasenbeziehung Kyanit, Granat und Kalifeldspat.

Die Kaliumkomponente ist bei allen Granulittypen unter 50 Mol-%. Die F-Komponente ist bei TD zwischen 60 -70 Mol-%. Bei den hellen Typen liegt sie unter 40 Mol-%. Die Sonderprobe SP1 ist durch eine erhöhte F- Komponente charakterisiert (FeO und MgO sind angereichert), obwohl sie einen hellen Granulittyp darstellt. Dies könnte mit der erhöhten Granatführung zusammenhängen, die, die wie in Abbildung 39 dargestellt, von Almandin- und Pyrop-Komponenten dominiert ist.

6.5.2 Granatanalysen und Geothermometrie

Granatanalyse:

Mithilfe der Elektronstrahlmikrosonde wurden insgesamt 45 Granate von jedem Granulittyp und der Sonderprobe SP1 analysiert. Die Darstellung erfolgte mittels Dreiecksdiagramm (Abbildung 39) mit den Eckpunkten der reinen Endgliedern der Granat-Gruppe Grossular (Ca-Granat), Pyrop (Mg-Granat) und Almandin (Fe-Granat). Im Allgemeinen sind Granate in Granuliten Pyrop-Almandin betont. Bei basischen Granuliten ist der Granat pyropreicher, als in felsischen.

Wie aus Abbildung 39 hervorgeht, lassen sich die untersuchten Granulite auf der Basis der chemischen Zusammensetzung der Granate deutlich in drei Gruppen gliedern:

 Granate mit einer Grossular-Komponente < 5 Mol.% und einem Almandin-Anteil von 80 Mol.%. Dazu gehören die Proben der felsischen Granulittypen (TV, TH),

- Granate mit einem Grossular-Anteil von < 10 Mol.% und einer Pyrop-Komponente bis 45 Mol.%. Dazu gehört die Sonderprobe SP1 die eine erhöhte Granatführung aufweist und
- mit einer deutlich höheren Grossular-Komponente (bis 20 Mol.%) und einem Pyrop-Anteil bis 25 Mol.%. Dazu gehören der dunkle Granulittyp TD.

Abbildung 39: Dreiecksdiagramm Pyrop, Grossular, Almandin der untersuchten Granate in Mol.%.

Alle untersuchten Granate zeigen keine signifikante Zonierung, dies wurde anhand von Profilen mit einem Messabstand von 20-50µm verifiziert. Eine leichte Abreicherung im Randbereich von Ca (0,2 Gew.-%) ist zu beobachten. Häufig tritt Monazit und Apatit mit Granat auf (Abbildung 40).

In den meisten Granaten sind je nach Typ unterschiedliche größere Einschlüsse vorhanden. In TV und TH treten vor allem Quarz und Kalifeldspat auf. In TD sind es Pyrit, Ilmenit, Quarz oder Plagioklas (Abbildung 41).

Abbildung 40: BSE-Bild eines almandinreichen Granates mit Monazit. Helle Punkte sind Apatite als "Perlenschnur" um Monazit. Dunkelgrau Quarz, mittleres Grau perthitischer Kalifeldspat, Probe L01.

Abbildung 41: BSE-Bild eines Granates mit Einschlüssen von Quarz, Plagioklas und Ilmenit, Probe D02.

Geothermometrie:

Für die Abschätzung der Druck und Temperaturverhältnisse bei der Metamorphose der Granulite wurden die Dünnschliffe der Proben D01 und D02 verwendet. Sie besitzen die Paragenese Quarz- Plagioklas- Kalifeldspat-Orthopyroxen- Granat. Bei dieser Mineralvergesellschaftung ist es möglich Kationenaustauschreaktionen und Massentransfer Reaktionen für die Berechnung zu verwenden. Überdies treten geringen Mengen von Kyanit und Ilmenit auf. Im Anhang B sind die Messpunkte mit der Benennung vorhanden. Die Berechnung erfolgte mit dem Programm THERMOCALC. Am Dünnschliff D01 wurden an 3 Stellen die anwesenden Phasen gemessen, bei Dünnschliff D02 waren es 4 Stellen. Um eine Aussage über die P-T- Bedingungen mit geringer Unsicherheit zu treffen, wurden bei Dünnschliff D01 die Messung 3 (Abbildung 42) und bei Dünnschliff D02 die Messungen 2 (Abbildung 43) und 4 (Abbildung 44) ausgewählt. Bei diesen 3 Messungen lag der Fit mit 95% Wahrscheinlichkeit unter 1. Bei den anderen Messungen lag der Fit mit 95% Wahrscheinlichkeit zwischen 1 und 1,7. Bei den Berechnungen wurde angenommen, dass H₂O und CO₂ als fluide Phasen vorhanden waren und dass H₂O nicht im Überschuss verfügbar war. Sämtliche Berechnungsschritte des Programmes THERMOCALC befinden sich im Anhang B.

Messung 3 D01:

Die Berechnungen ergaben eine Temperatur von 927±52 °C bei einem Druck von 14,7±1,5kbar. Der Fit liegt im 95%- Konfidenzintervall bei 0,64.

Abbildung 42: BSE- Bild der Messung 3 des Dünnschliffes D01.

Messung 2 D02:

Die Berechnungen ergaben eine Temperatur von 981±64 °C bei einem Druck von 13,5±2,7kbar. Der Fit liegt im 95%- Konfidenzintervall bei 0,89.

Abbildung 43: BSE- Bild der Messung 2 des Dünnschliffes D02.

Messung 4 D02:

Die Berechnungen ergaben eine Temperatur von 930±56 °C bei einem Druck von 12,9±2,6kbar. Der Fit liegt im 95%- Konfidenzintervall bei 0,97.

Abbildung 44: BSE- Bild der Messung 4 des Dünnschliffes D02.

Die durchgeführten geothermobarometrischen Kalkulationen ergeben damit als mittlere p/T-Bedingungen für die Metamorphose der Granulite eine Temperatur von 950±55°C bei einem Druck von 13,7±2,3kbar. Diese Werte stimmen gut mit

den Ergebnissen von CARSWELL & O'BRIEN (1993) und COOKE (2000) überein, die p/T- Werte von 950-1050°C und 15-20kbar angeben.

6.6 Der geochemische Charakter der Serpentinite

Es handelt sich bei den untersuchten Serpentiniten nach dem normativen Mineralbestand der CIPW- Norm (Tabelle 9) um Peridotite, im Detail Harzburgite (S03) bis Lherzolithe (S01+S02) (Abbildung 45).

 Probe	Or	Ab	An	Di	Ну	OI	Mt	Ш	Hm	Ар	Sum
 S03	0,2 2	0,77	3,79	0,22	32,39	54,35	0,25	0,07	8,10	0,03	100,18
S03	0,22	0,75	3,76	0,20	32,19	54,53	0,25	0,07	8,08	0,02	100,08
S01+S02	0,07	0,91	4,29	6,82	35,08	44,26	0,24	0,07	8,73	0,04	100,51
S01+S02	0,07	0,85	4,36	6,70	34,78	44,49	0,24	0,07	8,72	0,04	100,31

Tabelle 9: CIPW- Norm Berechnung der untersuchten Serpentinitproben.

Abbildung 45: Normativer Mineralbestand nach CIPW- Norm der untersuchten Serpentinit im Ol-Opx-Cpx- Diagramm für ultramafische Gesteine.

Die Chondrit-normierten REE Pattern zeigen eine deutliche Anreicherung der LREE. Diese Verteilungsmuster der untersuchten Serpentinite des Steinbruches Wanko lassen sich mit REE Mustern von Peridotitkörper unterschiedlicher Größe die in Granulitkomplexen des österreichischen Moldanubikums vorkommen vergleichen (BECKER, 1996).

7. Materialprüfungen

Allgemeine technische Werte sind nach Angaben der DIN 52 100 und anderen Quellen zusammengestellt und geben die Spannweite mechanischer Parameter für den Granulit wieder:

Druckfestigkeit:	160-280N/mm ²
Wasseraufnahme:	0,1-0,6Gew%
Rohdichte:	2,6- 3,0g/cm ³
Schlagbeständigkeit:	70%
Schleifabnutzung:	4-10cm ³ /50cm ²

Im Labor der ASAMER Kies- und Betonwerke GmbH in Ohlsdorf wurden die Gesteinsproben verschiedenen Materialprüfungen unterzogen. Bestimmt wurden die Kornformkennzahl (SI, EN 933-4), der LA- Wert (EN 1097-2), der Polierwert (PSV, EN 1097-8) und die Druckfestigkeit (EN 1926). Eine Zusammenfassung der Werte findet sich in Tabelle 10.

Tabelle 10: Zusammenfassung der Ergebnisse der Materialprüfungen.

Bezeichnung	SI	LA	PSV	Druckfestigkeit
SW09H01	SI ₁₅	LA ₁₅	PSV ₄₄	CS ₈₀
SW09L01/L02	SI ₁₅	LA ₁₅	PSV ₅₀	CS ₈₀
SW09L03	SI ₁₅	LA ₁₅	PSV ₄₄	CS ₈₀
SW09D01/D02	SI ₁₅	LA ₂₀	PSV ₅₀	CS ₈₀
SW09D03	SI ₁₅	LA ₁₅	PSV ₅₀	CS ₈₀
SW09S01/S02	SI ₁₅	LA ₂₀	-	CS80
SW09S03	SI ₁₅	LA ₂₀	-	CS ₈₀
SW09SP01	SI ₁₅	LA ₂₅	PSV ₅₀	CS ₈₀

Interpretation:

Granulit wird überwiegend für Bauzwecke (Verkehrswege- und Wasserbau) genutzt, hauptsächlich als Betonzuschlagstoff und Gleisschotter. Die Verwendbarkeit hängt von verschiedenen Eigenschaften ab. Die Druck- und Schlagfestigkeit wird im Wesentlichen von der Kornform bestimmt. Der Mineralbestand wirkt auf die Witterungsbeständigkeit, die Griffigkeit, die Einrüttelbarkeit und die Bitumenhaftfähigkeit. Von Straßenbaumaterial wird außerdem eine gedrungene Kornform mit scharfkantigen und selbst bei starker Beanspruchung feinrau bleibenden Bruchflächen gefordert. Die wichtigsten Kriterien der Gesteine für die Verwendung als Straßen- und Verkehrswegebau, sowie Gleisbau sind:

- Mineralbestand und Zersetzungsgrad, Gehalt an Mineralen mit sehr guter bis vollkommener Spaltbarkeit.
- Härte der das Gestein aufbauenden Mineralphasen (innere Festigkeitsverhältnisse der Einzelkörner)
- Porosität, Struktur, Textur, Korngrößenverhältnisse im Gestein, Ausbildung der im Kontakt befindlichen Mineraloberflächen, Stärke der Oberflächenkräfte
- Rissbildung im Gestein

Der Mineralbestand ist für das Festigkeitsverhalten von Bedeutung. In Tabelle 11 sind alle Minerale, die im Granulit auftreten, mit ihren Eigenschaften zusammengefasst dargestellt.

Name	Chemische Formel	Härte	Spaltbarkeit	Dichte
Qz	SiO ₂	7	schlecht	2,66g/cm ³
PI	(Na,Ca)AI ₁₋₂ Si ₃₋₂ O ₈	6	sehr gut	2,62-2,76g/cm ³
Kfs	(K,Na)AlSi₃O ₈	6	sehr gut	2,55-2,63g/cm ³
Орх	(<i>Mg</i> , <i>Fe</i>) ₂ Si ₂ O ₆	5-6	sehr gut	3,2g/cm³
Bt	K(Mg,Fe,Mn) ₃ (Al,Fe,Ti)Si ₃ O ₁₀ (OH) ₂	2-3	vollkommen	2,8-3,2g/cm ³
Ку	AI_2SiO_5	4-7	gut	3,6-3,7g/cm ³
Grt	(Fe,Mg,Mn,Ca) ₃ (Al,Fe,Cr) ₂ (Si,Fe,Al) ₃ O ₁₂	6-8	keine	3,1-4,3g/cm ³

Tabelle 11: Mineralbestand der Granulite und Eigenschaften der Minerale.

Feldspäte (Kfs und PI), Biotit und Orthopyroxen besitzen eine sehr gute bis vollkommene Spaltbarkeit. Ihr Anteil in den Granulittypen TV und TD beträgt 30%. Im Granulittyp TH steigt der Wert auf bis zu 39%. Die höchste Zermalmungsfestigkeit zeigen Minerale mit geringer oder fehlender Spaltbarkeit wie z.B. Quarz und Granat. Ihr Anteil beträgt im Mittel ca. 65%. Die Härte der einzelnen Minerale ist bis auf Biotit stets über 5. Die Porosität ist sehr niedrig (Wasseraufnahmefähigkeit <0,1%). Der Granulit besitzt ein überwiegend granoblastisches Gefüge, jedoch durch die straffe Einregelung der Minerale eine streifige Textur. Der Granulit bricht bevorzugt an der Schieferungsfläche und bildet eine gerade raue Brauchfläche. Aufgrund der straffen Einregelung kommt es bei Materialprüfungen (z.B. PSV) zu einem Anisotropieeffekt.

Die wichtigsten physikalischen Kennwerte der Gesteine für die Verwendung als Straßen- und Verkehrswegebau, sowie Gleisbau sind:

- ♦ PSV
- Los-Angeles- Wert
- Schlagfestigkeit
- Druckfestigkeit
- Verwitterungsbeständigkeit
- und andere...

In Österreich werden Gesteinskörnungen für die Asphaltherstellung in 10 Klassen eingeteilt (G1 bis G9 und GS). Definiert werden diese in der ON B 3580. Je nach Anforderung (Deckschicht, Tragschicht) werden andere Kennwerte (LA, PSV) von der Gesteinskörnung verlangt.

Für die drei Gesteinsklassen G1, G2, und G3 (für Asphalt-Deckschichten, höchste Güteklasse) gilt:

- Widerstand gegen Zertrümmerung: G1: LA₂₀; G2 & G3: LA₂₅
- ♦ Widerstand gegen Polieren: G1: PSV₅₀; G2: PSV₄₄; G3:PSV₍₎

Granulittyp TD erfüllt die Voraussetzung hinsichtlich LA und PSV für die Güteklasse G1. TV und TH sind in der G2 angesiedelt. TD tritt zum größten Teil im südlichen Bereich des Steinbruches auf, in den höheren Etagen in Wechsellagerungen mit TH. TV tritt im mittleren Bereich des Abbaue auf, meist um die Serpentinitkörper.

8. Geomagnetik

Die Daten der geophysikalischen Prospektion und einige Abbildungen wurden aus einem unveröffentlichten Bericht von Ao. Univ. Prof. Dr. Robert Scholger (2009) mit seiner Genehmigung entnommen und mit der geologischen Kartierung (Kapitel 4.6) verglichen.

Der Untersuchungsraster im Tagbaubereich umfasste ca. 1000 Messpunkte. Die Messung erfolgte am 5. und 6. Dezember 2008 in Form von Profilen mit einem Abstand von ca. 5 Metern je nach den örtlichen Gegebenheiten. Die Ergebnisse wurden nachfolgend zu 6 synthetischen Profilen mit N-S-Orientierung verarbeitet (Abbildung 47).

Abbildung 47: Lage der Messpunkte und Profile 1 bis 6, unv. Bericht SCHOLGER (2009).

Jeder Punkt wurde einzeln mittels GPS vermessen. Außerdem wurden alle erkennbaren lokalen Störkörper, die einen Einfluss auf die magnetischen Anomalien verursachen können (z.B. Lader, Bohrgerät und etwaige andere Metallteile) eingemessen. Der Medianwert der magnetischen Totalintensität im Gebiet liegt bei 48239nT (1,0 Meter Sensorhöhe). Der magnetische Kontrast über den geologischen Störkörpern beträgt ca. 2000nT.

Für die Berechnung der magnetischen Anomaliewerte wurden die Messwerte mit der tägliche Variation des Erdmagnetfelds an der Basisstation subtrahiert. Es wurden keine weiteren Reduktionen (Filterung oder Glättung) durchgeführt. Einzelne extreme Ausreißer im direkten Nahbereich von erkannten Störkörpern wurden aus dem Datensatz entfernt.

Abbildung 48: Profil 1 der geophysikalische Prospektion Etage SH 310, unv. Bericht SCHOLGER (2009).

Profil 1 (Abbildung 48) verläuft Nord- Süd auf der Etage SH 310m. Im Nordteil ist eine auffallende Doppelanomalie mit ca. 1000 nT Anomaliestärke und eine kleinere magnetische Anomalie zu beobachten. Es handelt sich hierbei um den großen Serpentinitkörper, die kleinere magnetische Anomalie in der Mitte der Doppelanomalie stellt eine Granulitlinse im Inneren des Körper dar (Abbildung 49). Der kleinere Peak nach Doppelanomalie entspricht dem geringmächtigen Serpentinitkörper (siehe Kapitel 4.6, S-N Profil Etage SH 310, Meter 205 bis 218).

Abbildung 49: Großer Serpentinitkörper mit eingeschalteter Granulitlinse, Blick Richtung E, Standort Etage SH 260.

Im Südteil tritt entlang der Auffahrt zur Etage SH 310 eine weitere Doppelanomalie auf. Es handelt sich hierbei um einen weiteren Serpentinitkörper (Abbildung 50), der die Südgrenze des aktuellen Abbaugebietes darstellt. Am Ende des Profils steigen die Werte der magnetischen Totalintensität wieder an. Dieser Anstieg repräsentiert einen weiteren Serpentinitkörper.

Abbildung 50: Serpentinitkörper unter Auffahrt zur Etage SH 310, zweite Doppelanomalie, rote Linie im Gelände sichtbare Grenze zwischen Granulit und Serpentinit, Blick Richtung NE.

Profil 2 (Abbildung 51) liegt ca. 150 Meter westlich und 20 bis 50 Meter unter Profil 1. Das Profil beginnt im Norden auf der Grundetage und springt im Bereich der Serpentinitfalte auf die Etage auf SH 270m. Hier treten die magnetischen Anomalien mit höherer Amplitude aber geringerer Nord-Süd-Erstreckung als im Profil 1 auf. Der Peak nach der Doppelanomalie repräsentiert einen kleinen Serpentinitkörper (siehe Kapitel 4.6, S-N Profil Etage SH 260, Meter 244 bis 246). Nach Süden folgt ein Abschnitt ohne Indikation für Serpentinit bis zur Auffahrt am Südrand dieses Steinbruchbereiches.

Abbildung 51: Profil 2 der geomagnetischen Prospektion, Etage SH 270, unv. Bericht SCHOLGER (2009).

Die magnetische Anomalie bei der Auffahrt ist wieder als Doppelstruktur ausgebildet und umfasst den gesamten Rücken bis zur Böschungskante. Der Anomaliebereich hat hier geringere Amplituden, aber eine größere Nord-Süd-Erstreckung als im Profil 1. Die Anomalie geht zwischen den beiden Amplituden auf sehr kleine Werte zurück, was auf eine Granulitlinse im Zwischenbereich hinweist. Am Beginn der Auffahrt läuft das Profil 4 (Abbildung 52) vorbei. Dort ist ein Peak ersichtlich, jedoch ohne charakteristische Doppelanomalie.

Profil 4 folgt dem Weg von der nördlichen Begrenzung des Steinbruchareals bis zur Auffahrt im Süden. Die Doppelanomalie des großen Serpentinitkörpers ist über der Abfahrt zur Sohle lokalisiert und stark asymmetrisch ausgebildet. Auffallend ist die schwache Ausprägung der Anomalie des Südschenkels der Serpentinitfalte. Im Mittelteil des Profils befinden sich mehrere Störkörper (Metallteile, Sieb, Förderband), die kleinräumige magnetische Anomalien verursachen. Die magnetische Anomalie des Serpentinitkörpers unterhalb der Auffahrt ist im Profil 4 durch eine wesentlich geringere Amplitude charakterisiert. Die magnetischen Anomaliebereiche am Südende des Profils 4 werden von mehreren geparkten LKW erzeugt.

Abbildung 52: Profil 4 der geomagnetischen Prospektion, Etage SH 270, unv. Bericht SCHOLGER (2009).

Profil 3 (siehe Anhang) beinhaltet sehr gestörte Werte und wird für die weitere Interpretation nicht herangenommen. Profile 5 und 6 (siehe Anhang) verlaufen westlich des geplanten Tiefbaubereiches und beinhalten einige anthropogene Störkörper. Die magnetischen Anomalien sind in diesen Profilen generell wesentlich schwächer und anders ausgeprägt als in den Profilen 1 bis 4.

Für Prospektionsarbeiten ist die Geomagnetik eine hervorragende Methode um Serpentinitkörper zu identifizieren und ihre Geometrie abzuschätzen. Die geomagnetischen Messungen im Dez. 2008 haben gezeigt, dass es möglich ist den Serpentinit eindeutig vom Granulit hinsichtlich seiner Suszeptibilität zu unterscheiden. Der magnetische Kontrast liegt zwischen 1000 bis 1500nT mit einer charakteristischen Doppelanomalie. Selbst Granulitlinsen im Serpentinit können erfasst werden. Außerdem können Serpentinitkörper in größerer Teufe bzw. die Indikatoren dafür, festgestellt werden.

9. Diskussion

Die mineralogisch-petrologisch-geochemische Signifikanz der Granulite des Steinbruch Wanko

Mineralogisch und petrologisch lassen sich drei Granulittypen im Steinbruch Wanko unterschieden. Die felsischen Granulittypen (TH und TV) besitzen eine hellen Farbeindruck von weiß bis violett. Der Mineralbestand von TV besteht aus Quarz, Kalifeldspat, Granat, Biotit und Kyanit. TH enthält im Gegensatz zu TV keinen Biotit und Kyanit. Die dunklen Granulite sind durch Hauptgemengteile von Quarz, Plagioklas, Orthopyroxen, Granat und Biotit als Nebengemengteil charakterisiert. Das Gefüge der Granulite ist überwiegend granoblastisch, besitzt jedoch durch die straffe Einregelung der Minerale ein streifiges Aussehen. Die Minerale Granat, Orthopyroxen und Biotit treten lagenförmig zusammen auf und wechseln sich mit den Quarz-Feldspat-Lagen ab.

Ein weiteres deutliches Unterscheidungskriterium liefert die chemische Zusammensetzung der Granate. TD besitzt einen höheren Anteil an Pyrop und Grossular, während bei TV und TH der Grossular- Anteil gering und ein hoher Almandin-Anteil charakteristisch ist.

Geochemisch lassen sich zwei Granulittypen unterscheiden: Die hellen Granulite TH und TV sind durch höhere Gehalte an Si, K und Rb charakterisiert, während die dunklen Granulite TD (SiO₂-Gehalt unter 70%) durch höhere Konzentrationen von Mg, Ca, Fe und der Übergangselemente V, Cr, Co, Ni, Cu und Zn gekennzeichnet sind. Letztere lassen sich durch erhöhte Erzmineralführung erklären. Der signifikante Unterschied zwischen hellen (TH, TV) und dunklen (TD) Granuliten spiegelt sich am besten im A'KF- Diagramm (Abbildung 38) wider, da sich die A'- und F- Komponenten des dunklen Granulites deutlich von den felsischen Typen unterscheidet.

Anhand von Harker Diagrammen (Abbildung 22) konnte gezeigt werden, dass die Granulite des Steinbruchs Wanko zu einer genetischen Gesteinssequenz gehören. Im AFM Diagramm (Abbildung 31) verfolgen die Granulite einen deutlichen Trend, wie er für kalkalkaline Serien typisch ist (FROST ET AL., 2001).

Die REE- Verteilungskurven zeigen eine typisch negative Eu- Anomalie, die mit Zunahme des SiO₂- Gehaltes deutlicher wird (Abbildung 26). Diese geochemischen Charakteristika lassen den Schluss zu, dass die hellen Granulite vom Steinbruch Wanko höher differenziert sind als die dunklen Typen. Die

Granulite des Steinbruch Wanko sind, auf der Basis der Geochemie (Abbildungen 22, 23, 25, 26), mit typischen moldanubischen Granuliten (JANOUS^{*}EK ET AL., 2004, Abbildung 27), wie auch mit dem Gföhl Gneis (VELLMER, 1992, Abbildung 24, links) zu vergleichen.

Es konnte weiters gezeigt werden, dass es sich bei den untersuchten Granuliten des Steinbruch Wanko um Orthogesteine handelt (Abbildung 29), die als Granodiorite (dunkle Granulite) und Granite (helle Granulite, Abbildung 30) klassifiziert werden können.

Bei der Untersuchung von Granitoiden erhebt sich die Frage aus welchem Magmentyp derartige Gesteine kristallisiert sind. Generell unterscheidet man, entsprechend dem anatektischen aufgeschmolzenen Ausgangsmaterial, zwischen S-, I-, A- Typ Magmen. Mit ihren Haupt-, Spuren- und Seltenen Erd-Charakteristika, wie eines A/NK über 1 (SHAND 1943, CHAPPEL & WHITE, 1974, Abbildung 33) und die typische negative Eu- Anomalie (Abbildung 26), deuten die untersuchten Granulite eine Herkunft aus einem S- Typ Magma an.

Weiters konnte gezeigt werden, dass die Protolithe der Granulite des Steinbruch Wanko vermutlich an einem aktiven Kontinentalrand entstanden sind (Abbildungen 35, 36). Die Evolution dieses S-Typ Magmas war durch Differentiation gekennzeichnet, die in Granodioriten und Graniten resultierte. Datierungen von Zirkonkernen zeigen ein Alter von 450- 400 Ma, was als Bildungsalter der granitoiden Gesteine gesehen wird (FRIEDL ET AL., 2003).

In weiterer Folge wurden die granitoiden Gesteine während der variszischen Orogenese von einer granulitfaziellen Metamorphose, deren P-T- Bedingungen mit 950±55°C und 13,7±2,3kbar (entspricht einer Tiefe von 50km) angegeben werden können, mit den Paragenesen Kyanit- Plagioklas- Granat bzw. Kyanit-Kalifeldspat- Granat (Abbildungen 37, 38) überprägt. Aus den Granodioriten entstanden dabei die dunklen, aus den Graniten die hellen Varietäten der untersuchten Granuliten.

Diese Ergebnisse stimmen gut mit der geotektonischen Entwicklung und Metamorphose des Moldanubikums als Teil der Böhmischen Masse überein (NEUBAUER & HANDLER, 2000, Abbildung 53). In der Rekonstruktion von NEUBAUER & HANDLER (2000) wird die geotektonische Position der Gföhl Einheit als Teil eines aktiven Kontinentalrandes deutlich (Abbildung 53). Die granulitfazielle Metamorphose fand im frühen Karbon statt, ein vermutliches Alter von 340 Ma wurde von FRIEDL ET AL. (2003) angegeben. Danach folgte eine Exhumierung und retrograde Überprägung der Metamorphose (CARSWELL, 1991). Die Serpentinitlinsen innerhalb der Granulitabfolge sind vermutlich im frühen Karbon als Keile von Mantelmaterial in die Gföhl Einheit eingeschuppt worden (NEUBAUER & HANDLER, 2000).

Abbildung 53: Modell für die geotektonische Entwicklung der Böhmischen Massen von Devon bis Perm aus NEUBAUER & HANDLER (2000)

Die Serpentinitlinsen innerhalb der Granulite

Die Serpentinitlinsen innerhalb der Granulitabfolge im Steinbruch Wanko zeigen deutliche tektonische Grenzen, was eine tektonische Einschuppung dieser Linsen in die Granulite, nach dem Modell von NEUBAUER & HANDLER (2000), rechtfertigt. Der primäre Mineralbestand der Serpentinit ist völlig umgewandelt, sodass keine Relikte primärer Mineralphasen vorhanden sind. Auf der Basis der geochemischen Untersuchungen konnte die Serpentinite als Lherzolithe bis Harzburgite klassifiziert werden (Abbildung 45). Die Chondrit- normierten REE Verteilungsmuster sind durch eine deutliche Anreicherung der LREE charakterisiert (Abbildung 46). Derartige Muster sind für refraktäre

Mantelgesteine untypisch (McDonough & Frey, 1989; Melcher et al., 2002). Die REE Verteilungskurve der Granulite zeigen keine außergewöhnliche Anreicherung der LREE. Daher ist eine im Zuge der metamorphen Überprägung stattgefundenen Remobilisation der LREE und damit ein Stoffaustausch zwischen den Serpentinitlinsen und den Granuliten wohl auszuschließen. Damit liegt die Wahrscheinlichkeit nahe, dass die Form der REE Pattern der Serpentinite primär ist. Die REE Pattern lassen sich mit jenen von Peridotitkörpern, ebenso innerhalb Granulitkomplexen auftretend. des österreichischen Moldanubikums vergleichen (BECKER, 1996), zeigen jedoch signifikante Unterschiede zu Peridotiten der Gföhl Einheit in der Tschechischen Republik (MEDARIS ET AL., 2005). BECKER (1997) erklärt die LREE Anreicherung mit Kontamination von lithosphärischen Mantelmaterial mit pyroxenitischen Schmelzen.

Die materialtechnischen Eigenschaften der Granulite des Steinbruch Wanko

Die wirtschaftliche Bedeutung des Rohstoffes Granulit hängt stark mit seinen physikalischen Eigenschaften zusammen. Granulite besitzen eine hohe Druckfestigkeit, Schlagbeständigkeit, Griffigkeit und eine gute Witterungsbeständigkeit. Die Einstufung der materialtechnischen Eigenschaften eines Gesteines basiert auf den LA- Wert und PSV. Die hellen Granulite (TH, TV) weisen durchwegs einen LA- Wert von kleiner 15 auf, womit sie eindeutig der Güteklasse G1 zugeordnet werden können. Bezüglich des PSV liegen die hellen Granulite zwischen 44 und 50. Damit ist eine Einstufung in die Güteklasse G1 bis G2 gegeben. Die dunklen Granulite des Steinbruch Wanko weisen einen LA-Wert zwischen 15 und 20 auf, das ebenfalls einer Einstufung in die Güteklasse G1 entspricht. Der PSV der dunklen Granulite lässt in allen untersuchten Proben die Einstufung in die Güteklasse G1 zu. Daraus folgt, dass die dunklen Granulite in ihrer Anwendung in jeder Hinsicht als hochwertiges Material der Güteklasse G1 einzustufen sind. Weniger hochwertig sind die hellen Granulittypen, bezüglich ihres Polierwertes (PSV). Folgende Argumente können bezüglich der Relation der mechanischen mit den mineralogisch- petrographischen Eigenschaften der Granulite festgehalten werden:

 Die Minerale Orthopyroxen und Biotit definieren auf der Basis ihrer Wachstumsform, die deutlicher ausgeprägte Schieferung in den dunklen Granuliten. Auf der Basis dieses Gefüges wäre zu erwarten, dass die dunklen Granulite schlechtere mechanische Eigenschaften aufweisen, als die hellen Granulite. Da dem nicht so ist, ist die Schieferung als Parameter für die Ursache des teilweiseren niedrigeren PSV nicht heranzuziehen.

- Ein hoher Granatgehalt, wie z. B. bei Probe SP1, scheint sich positiv auf den Polierwert auszuwirken, jedoch ungünstig für den LA-Wert.
- Die Feldspäte, weder der Plagioklas noch der Kalifeldspat, haben einen Einfluss auf die mechanischen Eigenschaften.
- Der Mineralanteil an Quarz in den beiden untersuchten Granulittypen unterscheidet sich nicht signifikant. Daher scheint der Quarzgehalt im Granulit, obwohl der Quarz die best-polierbare Mineralphase in den Granuliten darstellt, ebenfalls keine entscheidende Rolle zu spielen.

Aus den oben dargelegten Argumenten ist daher kein unmittelbarer Zusammenhang zwischen der Mineralogie und der Petrographie (Gefüge des Gesteins) und den mechanischen Eigenschaften der Granulite zu erkennen.

Spekulativ kann auf der Basis der durchgeführten Untersuchungen vermutet werden, dass geringfügige Unterschiede in der Art wie die Granulitkomponenten, während des Prüfverfahrens für den PSV auf die Platten aufgebracht werden, eine Rolle spielen.

Literaturverzeichnis

BATCHELOR, R. A. & BOWDEN, P.: Petrogenetic interpretation of granitoid rock series using multicationic parameters – Chemical Geology 48, pp. 43–55. **1985**

BECKER, H.: Geochemistry of garnet peridotite massifs from lower Austria and the composition of deep lithosphere beneath a Palaezoic convergent plate margin – Chemical Geology, 134, pp. 49-65, **1996**

BECKER, H.: Petrological constraints on the cooling history of high-temperature garnet peridotite massifs in lower Austria – Contrib. Mineral. Petrol., 128, pp. 272-286, **1997**

BOYNTON, W. V.: Cosmochemistry of the rare earth elements: meteorite studies – In HENDERSON, P. (ed.): Rare Earth Element Geochemistry – pp. 63–114, Amsterdam (Elsevier) **1984**

CARSWELL, D.A.: Variscan high P-T metamorphism and uplift history in the Moldanubian Zone of the Bohemian Massif in Lower Austria – Eur. J. Mineral., 3, pp. 323-342, Stuttgart **1991**

CARSWELL, D.A & O'BRIEN, P.J.: Thermobarometry and geotectonic significance of high-pressure granulites: examples from the Moldanubian Zone of the Bohemian Massif in Lower Austria – J. Petrol., 34, pp. 427-459, **1993**

CHAPPELL, B. W. & WHITE, A. J. R.: Two contrasting granite types – Pac. Geo. 8, pp. 173-174, **1974**

COOKE, R.A.: High-pressure/temperature metamorphism in the St. Leonhard Granulit Massif, Austria: evidence from intermediate pyroxene-bearing granulites – Int. J. Earth Sciences, 89, pp. 631-651, **2000**

COOKE, R.A. & O'BRIEN, P.J.: Resolving the relationship between high P-T rocks and gneisses in collisional terranes: an example from Gföhl gneiss-granulite association in the Moldanubian Zone, Austria – Lithos, 58, pp. 33-54, **2001**

EBNER, F.: Die geologischen Einheiten Österreichs und ihre Rohstoffe. – In: Weber, L. (ed.): Archiv für Lagerstättenforschung, vol. 19, pp. 49-229, Wien **1997**

FRIEDL, G., COOKE, R., FINGER, F., MCNAUGHTON, N. J. & FLETCHER, I.: U-Pb shrimp dating and trace element investigations on multiple zircon from a South-Bohemian granulite – J. Czech Geol. Soc., 48, pp.51-2, **2003**

FRITZ, H.: The Raabs Series: A probable variscan suture in the SE bohemian massif – Jb. Geol. B.-A., 138/4, pp. 639-653, Wien **1995**

FRITZ, H. & NEUBAUER, F.: Kinematics of crustal stacking and dispersion in the south-eastern Bohemian Massif – Geol. Rundschau, 82, pp. 556-565, Heidelberg **1993**

FROST, B.R., BARNES, C.G., COLLINS, W.J., ARCULUS, R.J., ELLIS, D.J. & FROST, C.D.: A Geochemical Classification for Granitic Rocks – J. Petrol., 42/11, pp. 2033-2048, **2001**

FUCHS, G.: Zur Entwicklung der Böhmischen Masse – Jb. Geol. B.-A., 119, pp. 45-61, Wien **1976**

FUCHS, G.: Zur Diskussion um den Deckenbau der Böhmischen Masse – Jb. Geol. B.-A., 129/1, pp. 41-49, Wien **1986**

FUCHS, G.: Das Bild der Böhmischen Masse im Umbruch – Jb. Geol. B.-A., 134/4, pp. 701-710, Wien **1991**

FUCHS, G.: The Austrian Part of the Moldanubicum – In: DALLMEYER, R. D. (ed): Pre-permian geology of Central and Eastern Europe – pp. 422-428, Berlin (Springer Verlag) **1995**

FUCHS, G.: Kritische Gedanken zur neueren geodynamischen Forschung in der östlichen Böhmischen Masse– Jb. Geol. B.-A., 141/1, pp. 39-43, Wien **1998**

FUCHS, G.: Der geologische Bau der Böhmischen Masse im Bereich des Strudengaus (Niederösterreich) – Jb. Geol. B.-A., 145/3+4, pp. 281-291, Wien **2005**

FUCHS, G. & MATURA, A.: Zur Geologie des Kristallins der südlichen Böhmischen Masse – Jb. Geol. B.-A., 119, pp. 1-43, Wien **1976**

FUCHS, G. & SCHARBERT, H.G.: Kleinere Granulitvorkommen im niederösterreichischen Moldanubikum und ihre Bedeutung für die Granulitgenese – Verhandl. Geol. B.-A., 2, pp. 29-49, Wien, **1979**

Geologische Karte von Niederösterreich 1:200.000, Nordteil – Schnabel, W. (Koord.), Geol. B.-A., **2002**

Höcκ, V.: Mineralzonen in Metapeliten und Metapsammiten der Moravischen Zone in Niederösterreich – Mitt. Österr. Geol. Ges., 66, pp. 49-60, Wien **1974**

HÖCK, V.: Morvian zone: Metamorphic evolution – In: DALLMEYER, R. D. (ed): Prepermian geology of Central and Eastern Europe – pp. 541-553, Berlin (Springer Verlag) **1995**.

HÖCK, V.: Der geologische Bau des Grundgebirges – In: STEININGER, F. F. (ed): . Erdgeschichte des Waldviertels – pp. 37-60, Horn (Waldviertler Heimatbund) **1996** JANOUŠEK, V., FARROW, C.M. & ERBAN, V.: GCDkit: new PC software for interpretation of whole-rock geochemical data from igneous rocks – Geochimica et Cosmochimica Acta, 67, A186, **2003a**

JANOUŠEK, V., FINGER, F., ROBERTS, M.P., FRÝDA, J., PIN, C. & DOLEJŠ, D.: Deciphering petrogenesis of deeply buried granites: whole-rock geochemical constraints on the origin of largely undepleted felsic granulites from the Moldanubian Zone of the Bohemian Massif – Transactions of the Royal Society of Edinburgh, Earth Sciences, 95, **2004**

KLÖTZLI, U., FRANK, W., SCHARBERT S. & THÖNI, M.: Evolution of the SE Bohemian Massif Based on Geochronological Data – A Review – Jb. Geol. B.-A., 141/4, pp. 377-394, Wien **1999**

MATTE, P., MALUSKI, H., RAJLICH, P. & FRANKE, W.: Terrane boundaries in the Bohemian Massif: Result of large-scale Variscan shearing – Tectonophysics, 177, pp. 151-170, Amsterdam **1990**

MATURA, A.: Hypothesen zum Bau und zur geologischen Geschichte des kristallinen Grundgebirges von Südwestmähren und dem niederösterreichischen Waldviertel – Jb. Geol. B.-A., 119, pp. 63-74, Wien **1976**

MATURA, A.: Das Kristallin am Südostrand der Böhmischen Masse zwischen Ybbs/Donau und St. Pölten – Jb. Geol. B.-A., 127/1, pp. 13-27, Wien **1984**

MATURA, A.: Zur tektonischen Gliederung der variszischen Metamorphite im Waldviertel Niederösterreichs – Jb. Geol. B.-A., 143/2, pp. 221-225, Wien **2003**

MATURA, A.: Böhmische Masse – In: WESSELY, G.: Niederösterreich – pp. 25-39, Wien (Geol. B.-A.) **2006**

MCDONOUGH, W. F. & FREY, F. A.: Rare earth elements in the upper mantle rocks. – Rev. Mineral. 21, pp. 99-145, **1989**

MEDARIS, L.G., WANG, H., JELÍNEK, E., MIHALJEVIC^{*}, M. & JAKEŠ, P.: Characteristics and origins of diverse Variscan peridotites in the Gföhl Nappe, Bohemian Massif, Czech Republic – Lithos, 82, pp. 1-23, **2005**

MELCHER, F., MEISEL, T., PUHL, J. & KOLLER, F.: Petrogenesis and geotectonic setting of ultramafic rocks in the Eastern Alps: constraints from geochemistry. – Lithos, 65, pp. 69-112, **2002**

MIDDLEMOST, E. A. K.: Naming materials in the magma/igneous rock system – Earth-Sciences Reviews, 37, **1985**

MILLER, C. F. & MITTLEFEHLDT, D. W.: Depletion of light rare-earth elements in felsic magmas – Geology, 10, pp. 129-33, **1982**

NEUBAUER, F. & HANDLER, R.: Variscan orogeny in the Eastern Alps and Bohemian Massif: How do these units correlate? – Mitt. Österr. Geol. Ges., 92, pp. 35-59, **2000**

PEARCE, J.A., HARRIS, N.B.W. & TINDLE, A.G.: Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. – J. Petrol., 25/4, pp. 956-983, Oxford **1984**

PETRAKAKIS, K.: Evolution of Moldanubian rocks in Austria: review and synthesis – J. metamorphic Geol., 15/2, pp. 203-220, **1997**

SCHARBERT, H. G.: Die Granulite des südlichen niederösterreichischen Moldanubikums (1. Teil) – N. Jb. Miner. Abh., 100, pp. 59-86, Stuttgart **1963**

SCHARBERT, H. G.: Die Granulite des südlichen niederösterreichischen Moldanubikums (2. Teil und 3. Teil) – N. Jb. Miner. Abh., 101, pp. 27-66, pp. 210-131, Stuttgart **1964**

SCHOLGER, R.: Geomagnetische Prospektion im Steinbruch Wanko – Unv. Bericht, Leoben **2009**

SCHÖDLBAUER, S., HECHT, L., HÖHNDORF, A., MORTEANI, G.: Enclaves in the S-type granites of the Kösseine massif (Fichtelgebirge, Germany): implications for the origin of granites – Geol. Rundschau, 86, suppl.1, pp. 125-140, **1997**

SHAND, S. J.: Eruptive Rocks: Their Genesis, Composition, Classification, and Their Relation to Ore-Deposits with a Chapter on Meteorite. – New York: John Wiley & Sons, **1943**

SUESS, F. E.: Bau und Bild der Böhmischen Masse. – In: C. DIENER et al.: Bau und Bild Österreichs, 322S., Wien (Verlag Tempsky-Freytag) **1903**

SUESS, F. E.: Die moravischen Fenster und ihre Beziehung zum Grundgebirge des Hohen Gesenke. – Österr. Akad. Wiss., mathem.-naturwiss. Kl., Denkschr., 88, pp. 541-631, Wien **1912**

TAYLOR, S. R. & MCLENNAN, S. M.: The continental crust: Its composition and evolution – Blackwell, Oxford **1985**

THIELE, O.: Zum Deckenbau und Achsenplan des Moldanubikums der südlichen Böhmischen Masse (Österreich) – Jb. Geol. B.-A., 126, pp. 513-523, Wien **1984**

TOLLMANN, A.: Großräumiger variszischer Deckenbau im Moldanubikum und neue Gedanken zum Variszikum Europas – Geotekt. Forsch., 64, pp. 1-91, Stuttgart **1982**

WALLBRECHER, E., BRANDMAYR, M., HANDLER, R., LOIZENBAUER, J., MADERBACHER, F., PLATZER, R.: Konjugierte Scherzonen in der südlichen Böhmischen Masse:

Variszische und alpidische kinematische Entwicklungen Projekt S4713 – Mitt. Österr. Miner. Ges., 138, pp. 237-252, **1993**

WALTER, R.: Geologie von Mitteleuropa, 566S, Stuttgart (E. Schweizerbart'sche Verlagsbuchhandlung), **1995**

WEBER-DIEFENBACH, K.: Röntgenfluoreszenzanalyse (RFA) – In: PAVIĆEVIĆ, M. K., AMTHAUER, G.: Physikalisch-chemische Untersuchungsmethoden in den Geowissenschaften, Band 1. – pp. 115-132, Stuttgart (E. Schweizerbart'sche Verlagsbuchhandlung) **2000**

WERNER, C.D: Saxonian Granulites – a contribution to the geochemical diagnosis of original rocks in high-metamorphic complexes – Gerlands Beitr. Geophysik, 96, 3/4, pp. 271-290, **1987**

VELLMER, C.: Stoffbestand und Petrogenese von Granuliten und granitischen Gesteinen der südlichen Böhmischen Masse – Unv. Diss., Universität Göttingen, 112S, Göttingen **1992**

A) Anhang: Analysen

Probe	SiO ₂	TiO₂		Fe ₂ O ₃	MnO	MgO	CaO	Na₂O	K ₂ O	P_2O_5	SO ₃	Total
D01+D02	68,83	0,51	14,93	4,62	0,06	1,84	3,49	3,38	2,47	0,09	b.d.l.	100,21
D01+D02	69,01	0,51	14,95	4,61	0,06	1,84	3,49	3,36	2,47	0,09	b.d.l.	100,39
D03	66,86	0,82	15,75	6,74	0,10	2,26	2,57	3,61	1,60	0,17	0,01	100,49
D03	66,72	0,82	15,72	6,75	0,10	2,27	2,56	3,59	1,60	0,17	0,01	100,30
H01	74,92	0,23	13,64	2,12	0,03	0,49	1,37	3,22	4,02	0,13	b.d.l.	100,16
H01	74,85	0,23	13,61	2,12	0,03	0,49	1,37	3,38	4,02	0,13	b.d.l.	100,24
L01+L02	75,21	0,20	13,25	1,79	0,02	0,40	0,79	2,89	4,97	0,19	b.d.l.	99,71
L01+L02	75,18	0,20	13,23	1,79	0,02	0,40	0,80	2,90	4,95	0,19	b.d.l.	99,66
L03	72,53	0,34	14,71	2,59	0,03	0,73	1,66	3,06	4,37	0,16	b.d.l.	100,18
L03	72,73	0,34	14,67	2,59	0,03	0,71	1,66	3,08	4,37	0,17	b.d.l.	100,34
S01+S02	46,21	0,04	1,76	8,89	0,11	40,71	2,65	0,11	0,01	0,02	0,03	100,54
S01+S02	46,04	0,03	1,77	8,89	0,10	40,70	2,63	0,10	0,01	0,02	0,03	100,33
S03	45,02	0,04	1,58	8,27	0,11	44,18	0,84	0,09	0,04	0,01	0,30	100,48
S03	44,95	0,04	1,56	8,26	0,11	44,20	0,82	0,09	0,04	0,01	0,29	100,37
SP01	73,59	0,31	14,42	2,86	0,04	0,88	1,47	3,60	3,18	0,05	b.d.l.	100,42
SP01	73,62	0,32	14,37	2,86	0,04	0,89	1,47	3,58	3,17	0,05	b.d.l.	100,38

a) Hauptelemente in Gew.-%

b) Spurenelemente in ppm

Probe	Sc	V	Cr	Co	Ni	Cu	Zn	Ga	Rb	Sr	Y	Zr	Nb	Ва	Pb	Th
D01+D02	13	79	41	10	18	13	58	18	64	86	27	135	6	698	1	7
D01+D02	13	82	42	11	16	15	56	16	53	86	32	126	6	700	5	b.d.l
D03	12	98	57	14	21	20	94	20	44	96	33	142	13	348	b.d.l	7
D03	14	89	64	14	24	25	99	21	42	91	35	143	13	354	5	4
H01	9	23	5	b.d.l	1	3	18	18	131	76	43	80	4	392	11	b.d.l
H01	3	19	9	2	3	3	24	16	134	78	44	79	3	383	8	b.d.l
L01+L02	4	13	4	3	b.d.l	1	30	18	235	62	38	90	7	299	23	1
L01+L02	6	17	5	1	3	b.d.l	30	16	229	65	35	90	8	312	9	b.d.l
L03	10	35	33	1	17	5	32	19	150	84	41	115	4	538	5	4
L03	9	24	11	4	6	5	36	20	145	80	46	112	6	558	4	b.d.l
S01+S02	11	52	2901	111	2402	8	52	b.d.l	3	36	2	5	3	45	4	5
S01+S02	15	48	2824	111	2405	11	53	2	5	34	3	6	b.d.l	48	b.d.l	6
S03	13	42	2669	115	2403	10	47	3	5	b.d.l	b.d.l	9	3	37	7	5
S03	10	42	2760	113	2404	8	51	b.d.l	6	15	1	4	b.d.l	25	6	6
SP01	9	46	30	5	2	4	32	18	108	66	31	77	5	463	9	9
SP01	10	48	30	b.d.l	2	b.d.l	32	18	101	72	32	82	4	479	6	1

c) Seltene Erden in ppm

Probe	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu	Hf	Та	Pb	Th	U
L01+L02	16,17	30,36	4,37	15,50	3,85	0,46	4,19	0,83	5,92	1,27	3,83	0,59	3,67	0,50	2,58	0,24	8,88	0,76	0,40
D01+D02	37,00	75,00	6,31	16,00	5,35	1,00	4,80	1,05	6,30	1,50	4,20	0,64	3,85	0,55	2,49	0,37	5,00	7,00	0,11
S01+S02	0,68	1,38	0,19	0,70	0,14	0,04	0,14	0,02	0,16	0,03	0,11	0,02	0,12	0,02	0,05	0,02	b.d.l	0,26	0,31
S03	0,67	1,34	0,21	0,79	0,17	0,03	0,15	0,02	0,14	0,03	0,08	0,01	0,09	0,01	0,06	0,02	b.d.l	0,32	0,27
SP01	22,16	38,99	5,43	19,30	4,19	0,70	4,63	0,81	5,39	1,15	3,44	0,53	3,54	0,52	1,97	0,87	0,83	5,49	0,48

d) Granatanalysen in Gew.-%

Probe	Mineral	SiO ₂	AI_2O_3	FeO	MnO	MgO	CaO	Na ₂ O	K ₂ O	Total	Si	AI	Fe	Mn	Mg	Са	Na	κ	Kationen
SW09L01	Grt	36,880	21,301	34,876	0,741	4,825	0,802	b.d.l.	b.d.l.	99,425	2,965	2,018	2,345	0,050	0,578	0,138	0,000	0,000	8,1
SW09L01	Grt	37,079	21,269	34,887	0,706	4,974	0,835	0,015	b.d.l.	99,765	2,969	2,007	2,336	0,048	0,594	0,143	0,002	0,000	8,1
SW09L01	Grt	36,734	21,155	34,520	0,726	5,164	0,803	0,015	b.d.l.	99,117	2,960	2,009	2,326	0,050	0,620	0,139	0,002	0,000	8,1
SW09L01	Grt	37,026	21,003	34,128	0,700	4,902	1,345	b.d.l.	b.d.l.	99,104	2,981	1,993	2,298	0,048	0,588	0,232	0,000	0,000	8,1
SW09L01	Grt	36,468	21,069	36,287	0,773	3,947	0,793	b.d.l.	0,012	99,349	2,958	2,014	2,462	0,053	0,477	0,138	0,000	0,001	8,1
SW09L01	Grt	37,000	20,953	35,704	0,756	4,204	0,894	0,027	0,017	99,555	2,984	1,991	2,408	0,052	0,505	0,154	0,004	0,002	8,1
SW09L01	Grt	36,874	21,159	35,542	0,745	4,429	0,822	b.d.l.	b.d.l.	99,571	2,970	2,008	2,394	0,051	0,532	0,142	0,000	0,000	8,1
SW09L01	Grt	37,614	21,090	34,907	0,715	4,823	0,971	0,031	b.d.l.	100,151	2,998	1,981	2,327	0,048	0,573	0,166	0,005	0,000	8,1
SW09L01	Grt	36,912	20,736	34,516	0,736	4,378	1,512	0,035	b.d.l.	98,825	2,990	1,979	2,338	0,050	0,529	0,262	0,005	0,000	8,2
SW09L01	Grt	36,755	21,064	35,251	0,726	4,755	0,743	b.d.l.	b.d.l.	99,294	2,966	2,003	2,379	0,050	0,572	0,128	0,000	0,000	8,1
SW09L01	Grt	37,178	21,060	35,847	0,744	4,460	0,800	b.d.l.	0,012	100,101	2,980	1,990	2,403	0,051	0,533	0,137	0,000	0,001	8,1
SW09L01	Grt	37,419	21,216	34,465	0,693	5,394	0,762	b.d.l.	b.d.l.	99,949	2,981	1,992	2,296	0,047	0,641	0,130	0,000	0,000	8,1
SW09L01	Grt	36,558	20,725	34,437	0,664	4,427	1,169	0,019	b.d.l.	97,999	2,985	1,994	2,351	0,046	0,539	0,205	0,003	0,000	8,1
SW09L01	Grt	36,650	21,819	35,129	0,728	4,290	0,720	b.d.l.	b.d.l.	99,336	2,951	2,071	2,366	0,050	0,515	0,124	0,000	0,000	8,1
SW09L01	Grt	37,121	21,288	34,187	0,730	5,281	1,101	b.d.l.	b.d.l.	99,708	2,967	2,005	2,285	0,049	0,629	0,189	0,000	0,000	8,1
SW09L01	Grt	36,706	21,261	34,549	0,691	5,145	0,874	b.d.l.	b.d.l.	99,226	2,955	2,017	2,326	0,047	0,617	0,151	0,000	0,000	8,1
SW09L01	Grt	36,869	21,117	35,854	0,749	4,085	0,794	b.d.l.	b.d.l.	99,468	2,977	2,009	2,421	0,051	0,492	0,137	0,000	0,000	8,1
SW09L01	Grt	36,727	21,117	35,543	0,769	4,451	0,840	0,014	b.d.l.	99,461	2,964	2,008	2,399	0,053	0,535	0,145	0,002	0,000	8,1
SW09L01	Grt	37,003	21,232	35,825	0,749	4,154	0,839	b.d.l.	b.d.l.	99,802	2,976	2,012	2,409	0,051	0,498	0,145	0,000	0,000	8,1
SW09L01	Grt	36,799	21,005	37,285	0,910	3,281	0,744	b.d.l.	b.d.l.	100,024	2,976	2,002	2,522	0,062	0,396	0,129	0,000	0,000	8,1
SW09L01	Grt	37,194	21,095	36,663	0,811	3,646	0,782	0,022	0,012	100,225	2,989	1,998	2,464	0,055	0,437	0,135	0,003	0,001	8,1
SW09L01	Grt	37,027	21,176	34,867	0,742	4,783	1,086	0,010	b.d.l.	99,691	2,970	2,002	2,339	0,050	0,572	0,187	0,002	0,000	8,1
SW09L01	Grt	37,208	21,050	35,241	0,740	4,461	1,013	0,034	b.d.l.	99,747	2,987	1,991	2,366	0,050	0,534	0,174	0,005	0,000	8,1
SW09L01	Grt	37,340	21,220	35,304	0,749	4,907	0,802	b.d.l.	b.d.l.	100,322	2,977	1,994	2,354	0,051	0,583	0,137	0,000	0,000	8,1
SW09L01	Grt	36,673	20,910	35,128	0,721	4,658	0,817	b.d.l.	b.d.l.	98,907	2,971	1,997	2,380	0,049	0,563	0,142	0,000	0,000	8,1
SW09L01	Grt	37,181	21,188	36,084	0,710	4,622	0,556	0,025	0,012	100,378	2,972	1,996	2,412	0,048	0,551	0,095	0,004	0,001	8,1
SW09L01	Grt	36,550	20,763	35,601	0,763	4,371	0,916	b.d.l.	b.d.l.	98,964	2,969	1,988	2,419	0,052	0,529	0,159	0,000	0,000	8,1
SW09L01	Grt	36,758	21,121	35,357	0,801	4,796	0,726	b.d.l.	b.d.l.	99,559	2,960	2,004	2,381	0,055	0,576	0,125	0,000	0,000	8,1
SW09L01	Grt	36,842	21,454	35,522	0,748	4,988	0,846	b.d.l.	b.d.l.	100,400	2,942	2,019	2,372	0,051	0,594	0,145	0,000	0,000	8,1
SW09L01	Grt	36,817	21,129	35,947	0,727	4,338	0,835	b.d.l.	b.d.l.	99,793	2,965	2,005	2,421	0,050	0,521	0,144	0,000	0,000	8,1
SW09L01	Grt	37,200	21,315	35,506	0,747	4,678	0,939	0,017	b.d.l.	100,402	2,968	2,004	2,369	0,050	0,556	0,161	0,003	0,000	8,1
SW09L01	Grt	37,158	21,223	35,054	0,769	5,043	0,785	b.d.l.	b.d.l.	100,032	2,969	1,999	2,343	0,052	0,601	0,134	0,000	0,000	8,1
SW09L01	Grt	36,689	21,071	35,065	0,742	4,923	1,048	b.d.l.	b.d.l.	99,538	2,954	1,999	2,361	0,051	0,591	0,181	0,000	0,000	8,1
SW09L01	Grt	37,027	21,111	35,574	0,742	4,579	0,806	b.d.l.	b.d.l.	99,839	2,973	1,998	2,389	0,050	0,548	0,139	0,000	0,000	8,1
SW09L01	Grt	37,088	21,221	36,451	0,781	4,088	0,850	b.d.l.	0,014	100,493	2,970	2,003	2,441	0,053	0,488	0,146	0,000	0,001	8,1
SW09L01	Grt	36,712	20,900	35,572	0,762	4,525	0,915	0,011	0,015	99,412	2,966	1,990	2,404	0,052	0,545	0,158	0,002	0,002	8,1
SW09L01	Grt	36,906	21,087	35,289	0,791	4,546	0,997	b.d.l.	b.d.l.	99,616	2,970	2,000	2,375	0,054	0,545	0,172	0,000	0,000	8,1

SW09L01	Grt	36,536	20,777	35,896	0,753	4,139	0,782	0,013	b.d.l.	98,896	2,973	1,992	2,443	0,052	0,502	0,136	0,002	0,000	8,1
SW09L01	Grt	37,036	20,926	36,610	0,782	3,910	0,842	b.d.l.	b.d.l.	100,106	2,981	1,985	2,465	0,053	0,469	0,145	0,000	0,000	8,1
SW09L01	Grt	37,272	21,025	34,441	0,710	5,402	0,801	b.d.l.	b.d.l.	99,651	2,981	1,982	2,304	0,048	0,644	0,137	0,000	0,000	8,1
SW09L01	Grt	37,203	21,139	35,261	0,735	4,457	1,157	b.d.l.	b.d.l.	99,952	2,981	1,996	2,363	0,050	0,532	0,199	0,000	0,000	8,1
SW09L01	Grt	37,315	20,892	35,560	0,781	4,317	1,336	b.d.l.	b.d.l.	100,201	2,989	1,972	2,382	0,053	0,515	0,229	0,000	0,000	8,1
SW09L01	Grt	36,683	21,127	34,444	0,734	4,709	1,804	0,011	b.d.l.	99,512	2,952	2,004	2,318	0,050	0,565	0,311	0,002	0,000	8,2
SW09L01	Grt	37,242	21,024	34,459	0,729	4,725	1,664	0,017	b.d.l.	99,860	2,981	1,983	2,307	0,049	0,564	0,285	0,003	0,000	8,2
SW09SH01	Grt	36,849	21,000	34,559	1,550	4,597	1,101	0,018	b.d.l.	99,674	2,966	1,992	2,326	0,106	0,552	0,190	0,003	0,000	8,1
SW09SH01	Grt	37,264	21,028	34,331	1,528	4,797	0,929	b.d.l.	b.d.l.	99,877	2,984	1,985	2,299	0,104	0,573	0,159	0,000	0,000	8,1
SW09SH01	Grt	37,673	21,243	34,185	1,518	4,629	0,990	0,043	b.d.l.	100,281	2,998	1,993	2,275	0,102	0,549	0,169	0,007	0,000	8,1
SW09SH01	Grt	37,074	21,225	33,994	1,536	4,610	0,643	0,059	b.d.l.	99,141	2,985	2,014	2,289	0,105	0,553	0,111	0,009	0,000	8,1
SW09SH01	Grt	37,424	20,824	34,044	1,561	4,619	0,735	b.d.l.	b.d.l.	99,207	3,011	1,975	2,291	0,106	0,554	0,127	0,000	0,000	8,1
SW09SH01	Grt	37,605	20,949	33,930	1,474	4,776	0,509	0,018	b.d.l.	99,261	3,017	1,981	2,277	0,100	0,571	0,088	0,003	0,000	8,0
SW09SH01	Grt	37,263	21,007	34,509	1,588	4,608	0,912	b.d.l.	b.d.l.	99,887	2,987	1,984	2,313	0,108	0,551	0,157	0,000	0,000	8,1
SW09SH01	Grt	37,499	20,810	34,453	1,518	4,687	0,939	b.d.l.	b.d.l.	99,906	3,002	1,964	2,307	0,103	0,559	0,161	0,000	0,000	8,1
SW09SH01	Grt	37,040	20,810	34,217	1,521	4,656	0,801	0,049	b.d.l.	99,094	2,991	1,980	2,311	0,104	0,560	0,139	0,008	0,000	8,1
SW09SH01	Grt	36,837	20,995	34,378	1,578	4,622	1,013	0,022	b.d.l.	99,445	2,969	1,994	2,317	0,108	0,555	0,175	0,003	0,000	8,1
SW09SH01	Grt	37,217	21,175	34,436	1,559	4,672	0,749	b.d.l.	0,030	99,838	2,982	2,000	2,307	0,106	0,558	0,129	0,000	0,003	8,1
SW09SH01	Grt	36,984	21,051	34,287	1,560	4,617	0,736	0,035	0,032	99,302	2,980	1,999	2,311	0,106	0,555	0,127	0,005	0,003	8,1
SW09SH01	Grt	37,161	21,065	34,442	1,589	4,717	0,769	b.d.l.	b.d.l.	99,743	2,981	1,992	2,311	0,108	0,564	0,132	0,000	0,000	8,1
SW09SH01	Grt	37,154	21,138	34,162	1,488	4,584	0,597	0,027	0,017	99,167	2,992	2,006	2,301	0,101	0,550	0,103	0,004	0,002	8,1
SW09SH01	Grt	37,089	21,013	34,448	1,568	4,528	0,766	0,033	0,033	99,478	2,985	1,993	2,319	0,107	0,543	0,132	0,005	0,003	8,1
SW09SH01	Grt	37,124	20,903	34,498	1,496	4,636	0,943	0,031	b.d.l.	99,631	2,984	1,980	2,319	0,102	0,556	0,162	0,005	0,000	8,1
SW09SH01	Grt	36,629	20,806	34,582	1,566	4,552	0,763	b.d.l.	b.d.l.	98,898	2,972	1,990	2,347	0,108	0,551	0,133	0,000	0,000	8,1
SW09SH01	Grt	37,521	21,033	34,110	1,535	4,635	0,813	b.d.l.	b.d.l.	99,647	3,005	1,985	2,285	0,104	0,553	0,140	0,000	0,000	8,1
SW09SH01	Grt	36,854	21,278	33,973	1,515	4,715	0,855	0,018	b.d.l.	99,208	2,968	2,020	2,288	0,103	0,566	0,148	0,003	0,000	8,1
SW09SH01	Grt	37,544	20,813	34,348	1,560	4,692	0,680	0,029	0,024	99,690	3,010	1,966	2,303	0,106	0,561	0,117	0,005	0,002	8,1
SW09SH01	Grt	36,432	21,091	34,217	1,563	4,659	0,858	b.d.l.	0,024	98,844	2,955	2,016	2,321	0,107	0,563	0,149	0,000	0,002	8,1
SW09SH01	Grt	37,798	21,046	34,565	1,599	4,771	0,566	b.d.l.	0,023	100,368	3,008	1,974	2,300	0,108	0,566	0,097	0,000	0,002	8,1
SW09SH01	Grt	36,584	21,056	34,242	1,590	4,793	0,908	0,065	b.d.l.	99,238	2,955	2,005	2,313	0,109	0,577	0,157	0,010	0,000	8,1
SW09SH01	Grt	37,142	20,900	34,338	1,523	4,743	0,766	0,055	b.d.l.	99,467	2,988	1,981	2,310	0,104	0,569	0,132	0,009	0,000	8,1
SW09SH01	Grt	37,228	21,004	34,556	1,493	4,683	0,738	b.d.l.	b.d.l.	99,702	2,988	1,987	2,319	0,101	0,560	0,127	0,000	0,000	8,1
SW09SH01	Grt	37,343	20,847	34,483	1,471	4,574	0,829	0,061	b.d.l.	99,608	3,000	1,974	2,316	0,100	0,548	0,143	0,010	0,000	8,1
SW09SH01	Grt	37,044	21,051	34,312	1,497	4,567	0,583	0,069	0,017	99,140	2,988	2,001	2,314	0,102	0,549	0,101	0,011	0,002	8,1
SW09SH01	Grt	36,975	21,030	34,287	1,582	4,656	0,806	0,031	b.d.l.	99,367	2,978	1,996	2,310	0,108	0,559	0,139	0,005	0,000	8,1
SW09SH01	Grt	37,469	20,825	34,533	1,527	4,579	0,710	b.d.l.	b.d.l.	99,643	3,007	1,970	2,318	0,104	0,548	0,122	0,000	0,000	8,1
SW09SH01	Grt	37,114	20,779	33,777	1,555	4,435	1,684	0,043	b.d.l.	99,387	2,989	1,973	2,275	0,106	0,533	0,291	0,007	0,000	8,2
SW09SH01	Grt	37,533	20,910	34,541	1,559	4,664	0,752	0,029	0,020	100,008	3,002	1,971	2,310	0,106	0,556	0,129	0,004	0,002	8,1
SW09SH01	Grt	36,296	19,795	33,720	1,592	4,484	0,647	0,081	0,112	96,727	3,011	1,935	2,339	0,112	0,555	0,115	0,013	0,012	8,1
SW09SH01	Grt	37,254	20,775	34,403	1,464	4,683	0,776	0,035	b.d.l.	99,390	2,998	1,971	2,316	0,100	0,562	0,134	0,005	0,000	8,1

SW09SH01	Grt	37,122	20,835	34,216	1,535	4,644	0,898	b.d.l.	b.d.l.	99,250	2,992	1,979	2,306	0,105	0,558	0,155	0,000	0,000	8,1
SW09SH01	Grt	36,984	20,904	34,451	1,524	4,784	0,730	0,020	b.d.l.	99,397	2,979	1,985	2,321	0,104	0,575	0,126	0,003	0,000	8,1
SW09SH01	Grt	37,492	20,863	34,623	1,558	4,564	0,827	0,053	0,016	99,996	3,001	1,968	2,318	0,106	0,545	0,142	0,008	0,002	8,1
SW09SH01	Grt	36,816	20,855	34,410	1,511	4,669	0,739	0,039	b.d.l.	99,039	2,978	1,988	2,328	0,104	0,563	0,128	0,006	0,000	8,1
SW09SH01	Grt	37,070	20,889	34,694	1,525	4,634	0,701	0,051	b.d.l.	99,564	2,984	1,982	2,335	0,104	0,556	0,121	0,008	0,000	8,1
SW09SH01	Grt	37,587	20,845	34,312	1,575	4,708	0,721	b.d.l.	b.d.l.	99,748	3,010	1,967	2,298	0,107	0,562	0,124	0,000	0,000	8,1
SW09SH01	Grt	37,281	20,972	34,043	1,599	4,587	0,988	b.d.l.	b.d.l.	99,470	2,995	1,986	2,287	0,109	0,549	0,170	0,000	0,000	8,1
SW09SH01	Grt	37,137	20,625	34,159	1,493	4,606	0,805	0,018	b.d.l.	98,843	3,005	1,967	2,311	0,102	0,556	0,140	0,003	0,000	8,1
SW09SH01	Grt	37,576	20,821	34,363	1,571	4,620	0,862	0,057	b.d.l.	99,870	3,008	1,964	2,301	0,107	0,551	0,148	0,009	0,000	8,1
SW09SH01	Grt	37,313	20,663	34,268	1,483	4,678	0,732	b.d.l.	b.d.l.	99,137	3,009	1,964	2,311	0,101	0,562	0,126	0,000	0,000	8,1
SW09SH01	Grt	36,691	20,953	34,488	1,472	4,719	0,737	b.d.l.	b.d.l.	99,060	2,968	1,998	2,333	0,101	0,569	0,128	0,000	0,000	8,1
SW09SP01	Grt	39,378	21,367	25,614	0,532	10,593	2,063	b.d.l.	b.d.l.	99,547	3,021	1,932	1,644	0,035	1,212	0,339	0,000	0,000	8,2
SW09SP01	Grt	39,046	21,403	25,850	0,526	10,320	2,578	b.d.l.	b.d.l.	99,723	3,001	1,939	1,661	0,034	1,182	0,425	0,000	0,000	8,2
SW09SP01	Grt	38,905	21,730	26,254	0,551	10,477	1,991	b.d.l.	b.d.l.	99,908	2,985	1,965	1,685	0,036	1,198	0,327	0,000	0,000	8,2
SW09SP01	Grt	39,278	21,896	25,702	0,528	10,856	2,098	b.d.l.	b.d.l.	100,358	2,990	1,964	1,636	0,034	1,232	0,342	0,000	0,000	8,2
SW09SP01	Grt	38,899	21,948	25,470	0,456	11,132	1,647	0,030	0,021	99,603	2,979	1,981	1,631	0,030	1,271	0,270	0,004	0,002	8,2
SW09SP01	Grt	39,421	21,624	25,441	0,525	10,777	1,641	b.d.l.	b.d.l.	99,429	3,020	1,953	1,630	0,034	1,231	0,269	0,000	0,000	8,1
SW09SP01	Grt	38,515	21,755	25,264	0,540	10,856	1,942	0,038	0,057	98,967	2,974	1,980	1,631	0,035	1,250	0,321	0,006	0,006	8,2
SW09SP01	Grt	39,167	22,024	25,018	0,491	11,328	2,209	b.d.l.	b.d.l.	100,237	2,977	1,973	1,590	0,032	1,284	0,360	0,000	0,000	8,2
SW09SP01	Grt	39,215	21,628	24,794	0,477	10,955	2,813	b.d.l.	b.d.l.	99,882	2,994	1,946	1,583	0,031	1,247	0,460	0,000	0,000	8,3
SW09SP01	Grt	38,906	21,688	25,356	0,453	10,751	2,674	0,029	b.d.l.	99,857	2,980	1,958	1,624	0,029	1,228	0,439	0,004	0,000	8,3
SW09SP01	Grt	39,009	21,591	25,696	0,455	10,438	2,229	b.d.l.	b.d.l.	99,418	3,000	1,957	1,653	0,030	1,197	0,367	0,000	0,000	8,2
SW09SP01	Grt	39,004	21,121	25,535	0,418	10,960	1,804	0,054	b.d.l.	98,896	3,012	1,922	1,649	0,027	1,262	0,299	0,008	0,000	8,2
SW09SP01	Grt	38,861	21,008	25,436	0,460	11,282	1,868	0,021	b.d.l.	98,936	3,002	1,912	1,643	0,030	1,299	0,309	0,003	0,000	8,2
SW09SP01	Grt	39,135	21,445	25,632	0,450	10,890	1,958	0,050	b.d.l.	99,560	3,003	1,939	1,645	0,029	1,246	0,322	0,007	0,000	8,2
SW09SP01	Grt	39,128	21,214	25,174	0,482	11,160	2,293	0,025	b.d.l.	99,476	3,003	1,919	1,616	0,031	1,277	0,377	0,004	0,000	8,2
SW09SP01	Grt	39,396	21,262	24,999	0,454	10,892	2,403	b.d.l.	b.d.l.	99,406	3,021	1,922	1,603	0,029	1,245	0,395	0,000	0,000	8,2
SW09SP01	Grt	39,383	21,763	25,220	0,506	11,184	1,959	b.d.l.	b.d.l.	100,015	3,000	1,954	1,607	0,033	1,270	0,320	0,000	0,000	8,2
SW09SP01	Grt	39,339	21,778	24,926	0,435	11,284	2,006	0,027	b.d.l.	99,795	2,999	1,957	1,589	0,028	1,283	0,328	0,004	0,000	8,2
SW09SP01	Grt	39,920	20,891	25,211	0,446	11,250	2,055	0,043	b.d.l.	99,816	3,046	1,879	1,609	0,029	1,280	0,336	0,006	0,000	8,2
SW09SP01	Grt	37,994	21,741	24,540	0,464	11,018	2,637	0,048	b.d.l.	98,442	2,948	1,988	1,593	0,030	1,275	0,439	0,007	0,000	8,3
SW09SP01	Grt	40,323	22,189	25,009	0,486	10,802	1,504	b.d.l.	b.d.l.	100,313	3,045	1,975	1,579	0,031	1,216	0,243	0,000	0,000	8,1
SW09SP01	Grt	39,058	21,641	24,821	0,475	10,886	2,869	b.d.l.	0,018	99,768	2,988	1,951	1,588	0,031	1,242	0,470	0,000	0,002	8,3
SW09SP01	Grt	39,132	21,487	25,205	0,474	11,429	1,716	b.d.l.	b.d.l.	99,443	2,998	1,940	1,615	0,031	1,306	0,282	0,000	0,000	8,2
SW09SP01	Grt	38,638	21,390	24,770	0,416	11,270	1,960	0,025	b.d.l.	98,469	2,990	1,951	1,603	0,027	1,300	0,325	0,004	0,000	8,2
SW09SP01	Grt	39,155	21,826	25,039	0,446	11,271	2,029	0,032	0,027	99,825	2,988	1,963	1,598	0,029	1,282	0,332	0,005	0,003	8,2
SW09SP01	Grt	39,208	21,603	25,659	0,496	10,809	1,559	0,038	b.d.l.	99,372	3,010	1,955	1,647	0,032	1,237	0,256	0,006	0,000	8,1
SW09SP01	Grt	38,279	21,629	25,842	0,484	11,099	1,573	b.d.l.	b.d.l.	98,906	2,963	1,973	1,673	0,032	1,281	0,261	0,000	0,000	8,2
SW09SP01	Grt	39,179	21,595	25,988	0,459	11,005	1,531	b.d.l.	b.d.l.	99,757	3,000	1,949	1,664	0,030	1,256	0,251	0,000	0,000	8,2
SW09SP01	Grt	39,677	21,479	25,899	0,503	10,410	1,994	b.d.l.	b.d.l.	99,962	3,031	1,934	1,655	0,033	1,186	0,326	0,000	0,000	8,2

SW09SP01	Grt	37,874	21,804	26,719	0,510	10,128	1,800	0,062	b.d.l.	98,897	2,948	2,000	1,739	0,034	1,175	0,300	0,009	0,000	8,2	
SW09SP01	Grt	38,761	21,764	24,094	0,461	10,755	3,678	0,016	b.d.l.	99,529	2,972	1,966	1,545	0,030	1,229	0,604	0,002	0,000	8,3	
SW09SP01	Grt	38,797	21,867	25,370	0,486	11,363	1,678	b.d.l.	b.d.l.	99,561	2,973	1,975	1,626	0,032	1,298	0,276	0,000	0,000	8,2	
SW09SP01	Grt	39,281	21,914	24,504	0,449	10,967	3,139	b.d.l.	b.d.l.	100,254	2,985	1,963	1,558	0,029	1,243	0,511	0,000	0,000	8,3	
SW09SP01	Grt	39,190	21,879	24,911	0,456	11,418	2,102	0,039	b.d.l.	99,995	2,984	1,964	1,586	0,029	1,296	0,343	0,006	0,000	8,2	
SW09SP01	Grt	39,523	22,236	24,886	0,476	11,265	1,993	b.d.l.	b.d.l.	100,379	2,992	1,984	1,576	0,031	1,271	0,323	0,000	0,000	8,2	
SW09SP01	Grt	39,204	21,847	24,374	0,460	11,322	2,303	b.d.l.	b.d.l.	99,510	2,994	1,966	1,557	0,030	1,289	0,377	0,000	0,000	8,2	
SW09SP01	Grt	38,828	21,556	24,718	0,427	11,503	2,088	b.d.l.	b.d.l.	99,120	2,983	1,952	1,588	0,028	1,318	0,344	0,000	0,000	8,2	
SW09SP01	Grt	39,290	21,429	24,735	0,411	11,477	2,122	b.d.l.	b.d.l.	99,464	3,005	1,932	1,582	0,027	1,309	0,348	0,000	0,000	8,2	
SW09SP01	Grt	38,662	21,572	24,366	0,428	11,628	1,954	b.d.l.	b.d.l.	98,610	2,981	1,960	1,571	0,028	1,337	0,323	0,000	0,000	8,2	
SW09SP01	Grt	39,392	21,193	23,953	0,434	11,167	2,761	b.d.l.	0,035	98,935	3,025	1,918	1,538	0,028	1,278	0,454	0,000	0,003	8,2	
SW09SP01	Grt	38,878	21,746	25,158	0,443	10,902	1,923	b.d.l.	b.d.l.	99,050	2,992	1,972	1,619	0,029	1,251	0,317	0,000	0,000	8,2	
SW09SP01	Grt	38,846	21,602	25,015	0,470	10,191	3,299	b.d.l.	b.d.l.	99,423	2,990	1,959	1,610	0,031	1,169	0,544	0,000	0,000	8,3	
SW09SP01	Grt	38,871	21,171	25,436	0,508	10,358	2,377	b.d.l.	b.d.l.	98,721	3,012	1,933	1,648	0,033	1,197	0,395	0,000	0,000	8,2	
SW09SP01	Grt	38,482	21,488	25,914	0,502	10,338	2,119	0,029	0,021	98,893	2,984	1,964	1,680	0,033	1,195	0,352	0,004	0,002	8,2	
SW09SP01	Grt	39,250	21,477	27,127	0,494	10,041	1,599	b.d.l.	b.d.l.	99,988	3,014	1,944	1,742	0,032	1,150	0,263	0,000	0,000	8,1	
SW09D01	Grt	37,560	21,041	28,124	1,088	6,450	4,197	0,045	0,034	98,539	2,986	1,972	1,870	0,073	0,764	0,715	0,007	0,003	8,4	
SW09D01	Grt	37,886	21,017	28,374	1,174	6,316	4,297	0,032	b.d.l.	99,096	2,997	1,959	1,877	0,079	0,745	0,728	0,005	0,000	8,4	
SW09D01	Grt	37,985	20,960	28,567	1,213	5,996	4,611	0,022	0,020	99,374	3,002	1,952	1,888	0,081	0,706	0,781	0,003	0,002	8,4	
SW09D01	Grt	38,947	20,728	27,709	1,144	6,680	4,120	0,065	0,024	99,417	3,052	1,914	1,816	0,076	0,780	0,692	0,010	0,002	8,3	
SW09D01	Grt	38,435	21,086	27,939	1,104	6,601	4,514	b.d.l.	b.d.l.	99,679	3,012	1,948	1,831	0,073	0,771	0,758	0,000	0,000	8,4	
SW09D01	Grt	37,548	21,080	28,071	1,129	6,565	4,363	0,019	b.d.l.	98,775	2,979	1,971	1,862	0,076	0,776	0,742	0,003	0,000	8,4	
SW09D01	Grt	37,366	21,033	27,663	1,150	5,925	5,054	0,026	0,032	98,249	2,983	1,979	1,847	0,078	0,705	0,865	0,004	0,003	8,5	
SW09D01	Grt	38,028	21,010	25,246	0,700	6,552	7,274	0,065	b.d.l.	98,875	2,992	1,948	1,661	0,047	0,768	1,226	0,010	0,000	8,7	
SW09D01	Grt	37,830	20,942	28,471	1,255	5,810	4,439	0,024	b.d.l.	98,771	3,006	1,961	1,892	0,084	0,688	0,756	0,004	0,000	8,4	
SW09D01	Grt	37,938	20,700	28,024	1,170	6,154	4,377	0,037	b.d.l.	98,400	3,019	1,941	1,865	0,079	0,730	0,746	0,006	0,000	8,4	
SW09D01	Grt	36,696	20,570	27,597	1,057	6,327	4,683	0,034	b.d.l.	96,964	2,971	1,963	1,869	0,072	0,764	0,812	0,005	0,000	8,5	
SW09D01	Grt	37,239	21,057	28,546	1,144	6,269	4,391	0,017	0,029	98,692	2,967	1,977	1,902	0,077	0,745	0,750	0,003	0,003	8,4	
SW09D01	Grt	37,479	20,875	28,071	1,124	6,271	4,384	0,020	b.d.l.	98,224	2,991	1,964	1,874	0,076	0,746	0,750	0,003	0,000	8,4	
SW09D01	Grt	37,834	21,118	26,991	0,987	6,135	6,003	0,031	b.d.l.	99,099	2,987	1,965	1,782	0,066	0,722	1,015	0,005	0,000	8,5	
SW09D01	Grt	37,310	20,998	27,566	1,108	5,924	5,617	b.d.l.	b.d.l.	98,523	2,973	1,972	1,837	0,075	0,704	0,959	0,000	0,000	8,5	
SW09D01	Grt	37,426	21,109	27,851	1,055	6,262	4,241	0,041	b.d.l.	97,985	2,989	1,987	1,860	0,071	0,745	0,726	0,006	0,000	8,4	
SW09D01	Grt	37,389	21,014	28,801	1,203	5,734	4,326	0,021	b.d.l.	98,488	2,986	1,978	1,924	0,081	0,683	0,740	0,003	0,000	8,4	
SW09D01	Grt	37,992	20,918	24,868	0,914	5,190	9,099	b.d.l.	0,018	98,999	2,999	1,946	1,642	0,061	0,611	1,539	0,000	0,002	8,8	
SW09D01	Grt	36,684	21,038	28,407	1,205	5,920	4,649	0,047	0,019	97,969	2,950	1,994	1,911	0,082	0,710	0,801	0,007	0,002	8,5	
SW09D01	Grt	37,243	20,586	28,717	1,224	5,865	4,675	0,041	b.d.l.	98,351	2,985	1,945	1,925	0,083	0,701	0,803	0,006	0,000	8,4	
SW09D01	Grt	38,102	21,055	28,770	1,330	5,760	4,488	0,032	b.d.l.	99,537	3,007	1,959	1,899	0,089	0,678	0,759	0,005	0,000	8,4	
SW09D01	Grt	38,396	20,965	28,356	1,160	5,982	5,182	0,043	b.d.l.	100,084	3,010	1,937	1,859	0,077	0,699	0,871	0,007	0,000	8,5	_

B) Anhang: Geothermometrie

a. Benennung der Messpunkte

D01				
Bezeichnung	Mineral, Ort			
Grtke03	Granat, Kern			
Grtke04	Granat, Kern			
Plra06	Plagioklas, Rand			
Plke06	Plagioklas, Kern			
Btke03	Biotit, Kern			
Btra03	Biotit, Rand			
Opxra03	Orthopyroxen, Rand			
Opxke03	Orthopyroxen, Kern			
Kfsra03	Kalifeldspat, Rand			
Kfske03	Kalifeldspat, Kern			
			D 00	
D02		Messung 4	D02	
D02 Bezeichnung	Mineral, Ort	Messung 4 Punkt	D02 Bezeichnung	Mineral, Ort
D02 Bezeichnung Grtke04	Mineral, Ort Granat, Kern	Messung 4 Punkt 1	Bezeichnung Grtke06	Mineral, Ort Granat, Kern
D02 Bezeichnung Grtke04 Grtra04	Mineral, Ort Granat, Kern Granat, Rand	Messung 4 Punkt 1 2	Bezeichnung Grtke06 Grtra07	Mineral, Ort Granat, Kern Granat, Rand
D02 Bezeichnung Grtke04 Grtra04 Plra04	Mineral, Ort Granat, Kern Granat, Rand Plagioklas, Rand	Messung 4 Punkt 1 2 3	Bezeichnung Grtke06 Grtra07 Opxke06	Mineral, Ort Granat, Kern Granat, Rand Orthopyroxen, Kern
D02 Bezeichnung Grtke04 Grtra04 Plra04 Plke04	Mineral, Ort Granat, Kern Granat, Rand Plagioklas, Rand Plagioklas, Kern	Messung 4 Punkt 1 2 3 4	Bezeichnung Grtke06 Grtra07 Opxke06 Opxra05	Mineral, Ort Granat, Kern Granat, Rand Orthopyroxen, Kern Orthopyroxen, Rand
D02 Bezeichnung Grtke04 Grtra04 Pira04 Pike04 Opxra04	Mineral, Ort Granat, Kern Granat, Rand Plagioklas, Rand Plagioklas, Kern Orthopyroxen, Rand	Messung 4 Punkt 1 2 3 4 5	Bezeichnung Grtke06 Grtra07 Opxke06 Opxra05 Plke06	Mineral, Ort Granat, Kern Granat, Rand Orthopyroxen, Kern Orthopyroxen, Rand Plagioklas, Kern
D02 Bezeichnung Grtke04 Grtra04 Plra04 Plke04 Opxra04 Opxke04	Mineral, Ort Granat, Kern Granat, Rand Plagioklas, Rand Plagioklas, Kern Orthopyroxen, Rand Orthopyroxen, Kern	Messung 4 Punkt 1 2 3 4 5 5 6	Bezeichnung Grtke06 Grtra07 Opxke06 Opxra05 Plke06 Plra05	Mineral, Ort Granat, Kern Granat, Rand Orthopyroxen, Kern Orthopyroxen, Rand Plagioklas, Kern Plagioklas, Rand
D02 Bezeichnung Grtke04 Grtra04 Plra04 Plke04 Opxra04 Opxke04 Kfske04	Mineral, Ort Granat, Kern Granat, Rand Plagioklas, Rand Plagioklas, Kern Orthopyroxen, Rand Orthopyroxen, Kern Kalifeldspat, Kern	Messung 4 Punkt 1 2 3 4 5 6 7	Bezeichnung Grtke06 Grtra07 Opxke06 Opxra05 Plke06 Plra05 Grtra08	Mineral, Ort Granat, Kern Granat, Rand Orthopyroxen, Kern Orthopyroxen, Rand Plagioklas, Kern Plagioklas, Rand Granat, Rand
D02 Bezeichnung Grtke04 Grtra04 Pira04 Pike04 Opxra04 Opxke04 Kfske04 Kfsra04	Mineral, Ort Granat, Kern Granat, Rand Plagioklas, Rand Plagioklas, Kern Orthopyroxen, Rand Orthopyroxen, Kern Kalifeldspat, Kern Kalifeldspat, Rand	Messung 4 Punkt 1 2 3 4 5 6 7 8	Bezeichnung Grtke06 Grtra07 Opxke06 Opxra05 Plke06 Plra05 Grtra08 Btra06	Mineral, Ort Granat, Kern Granat, Rand Orthopyroxen, Kern Orthopyroxen, Rand Plagioklas, Kern Plagioklas, Rand Granat, Rand Biotit, Rand
D02 Bezeichnung Grtke04 Grtra04 PIra04 PIke04 Opxra04 Opxke04 Kfske04 Kfsra04 Btra04	Mineral, Ort Granat, Kern Granat, Rand Plagioklas, Rand Plagioklas, Kern Orthopyroxen, Rand Orthopyroxen, Kern Kalifeldspat, Kern Kalifeldspat, Rand Biotit, Rand	Messung 4 Punkt 1 2 3 4 5 6 7 8 9	Bezeichnung Grtke06 Grtra07 Opxke06 Opxra05 Plke06 Plra05 Grtra08 Btra06 Btke06	Mineral, Ort Granat, Kern Granat, Rand Orthopyroxen, Kern Orthopyroxen, Rand Plagioklas, Kern Plagioklas, Rand Granat, Rand Biotit, Rand Biotit, Kern
D02 Bezeichnung Grtke04 Grtra04 Plra04 Plke04 Opxra04 Opxke04 Kfske04 Kfsra04 Btra04 Btke04	Mineral, Ort Granat, Kern Granat, Rand Plagioklas, Rand Plagioklas, Kern Orthopyroxen, Rand Orthopyroxen, Kern Kalifeldspat, Kern Kalifeldspat, Rand Biotit, Rand Biotit, Kern	Messung 4 Punkt 1 2 3 4 5 6 7 8 9 10	Bezeichnung Grtke06 Grtra07 Opxke06 Opxra05 Plke06 Plra05 Grtra08 Btra06 Btke06 Kfske07	Mineral, Ort Granat, Kern Granat, Rand Orthopyroxen, Kern Orthopyroxen, Rand Plagioklas, Kern Plagioklas, Rand Granat, Rand Biotit, Rand Biotit, Kern Kalifeldspat, Kern
D02 Bezeichnung Grtke04 Grtra04 Pira04 Pike04 Opxra04 Opxke04 Kfske04 Kfsra04 Btra04 Btke04 Pike05	Mineral, Ort Granat, Kern Granat, Rand Plagioklas, Rand Plagioklas, Kern Orthopyroxen, Kern Kalifeldspat, Kern Kalifeldspat, Rand Biotit, Rand Biotit, Kern	Messung 4 Punkt 1 2 3 4 5 6 7 8 9 10 11	Bezeichnung Grtke06 Grtra07 Opxke06 Opxra05 Plke06 Plra05 Grtra08 Btra06 Btke06 Kfske07 Plke07	Mineral, Ort Granat, Kern Granat, Rand Orthopyroxen, Kern Orthopyroxen, Rand Plagioklas, Kern Plagioklas, Rand Granat, Rand Biotit, Rand Biotit, Kern Kalifeldspat, Kern
	D01 Bezeichnung Grtke03 Grtke04 Plra06 Plke06 Btke03 Btra03 Opxra03 Opxra03 Kfsra03 Kfsra03	D01 Bezeichnung Mineral, Ort Grtke03 Granat, Kern Grtke04 Granat, Kern Plra06 Plagioklas, Rand Plke06 Plagioklas, Kern Btke03 Biotit, Kern Btra03 Biotit, Kern Opxra03 Orthopyroxen, Rand Kfsra03 Kalifeldspat, Kern	D01BezeichnungMineral, OrtGrtke03Granat, KernGrtke04Granat, KernPlra06Plagioklas, RandPlke06Plagioklas, KernBtke03Biotit, KernBtra03Biotit, RandOpxra03Orthopyroxen, RandOpxke03Orthopyroxen, KernKfsra03Kalifeldspat, RandKfske03Kalifeldspat, Kern	D01BezeichnungMineral, OrtGrtke03Granat, KernGrtke04Granat, KernPlra06Plagioklas, RandPlke06Plagioklas, KernBtke03Biotit, KernBtra03Biotit, KernOpxra03Orthopyroxen, RandOpxke03Kalifeldspat, RandKfsra03Kalifeldspat, Kern

b. Hauptelementanalysen der Messpunkte in Gew.%

Messung	Bezeichnung	SiO2	TiO2	AI2O3	FeO	MnO	MgO	CaO	Na2O	K2O	Total	Mineral
D01_03	D01grtke03	37,92	0,00	21,45	29,03	0,88	5,46	4,52	0,00	0,00	99,25	Grt
D01_03	D01plke06	58,09	0,00	24,90	0,24	0,03	0,00	6,79	7,69	0,42	98,16	PI
D01_03	D01kfske03	61,92	0,04	18,33	0,00	0,00	0,00	0,07	0,83	17,20	98,39	Kfs
D01_03	D01btke03	35,62	5,17	14,38	16,23	0,00	13,08	0,00	0,05	11,28	96,73	Bt
D01_03	D01opxke03	49,98	0,09	1,40	28,84	0,34	17,58	0,31	0,00	0,00	98,54	Орх
D01_03	D01ilke01	0,01	49,89	0,04	46,64	0,58	0,17	0,00	0,00	0,017	97,35	II
D02_02	D02grtke04	38,41	0,00	21,53	28,03	0,86	4,93	5,83	0,03	0,00	99,63	Grt
D02_02	D02plra04	58,97	0,00	23,90	0,31	0,00	0,00	6,34	7,95	0,43	97,90	PI
D02_02	D02plke04	59,42	0,00	23,71	0,15	0,00	0,00	6,20	7,78	0,51	97,77	PI
D02_02	D02kfske04	61,56	0,02	18,18	0,12	0,00	0,00	0,14	0,84	17,09	97,94	Kfs
D02_02	D02btke04	32,88	4,19	15,29	19,96	0,06	13,76	0,18	0,00	5,68	92,00	Bt
D02_02	D02opxke04	50,42	0,07	1,56	29,43	0,28	17,13	0,29	0,00	0,00	99,17	Орх
D02_02	D02ilke01	0,01	49,69	0,04	46,84	0,53	0,17	0,00	0,00	0,017	97,30	П
D02_04	D02grtke06	38,07	0,00	21,43	27,20	0,97	4,96	7,08	0,02	0,00	99,73	Grt
D02_04	D02plke06	58,64	0,00	23,40	0,52	0,00	0,21	6,29	7,11	0,72	96,88	PI
D02_04	D02kfske07	60,64	0,00	18,17	0,04	0,00	0,00	0,10	0,61	17,69	97,24	Kfs
D02_04	D02btra06	36,51	4,02	14,53	14,36	0,03	14,64	0,00	0,00	11,15	96,10	Bi
D02_04	D02opxra06	50,75	0,10	1,04	28,64	0,32	18,68	0,23	0,00	0,00	99,76	Орх
D02_04	D02ilke04	0,01	49,89	0,04	46,64	0,61	0,17	0,00	0,00	0,017	97,38	Ш

c. THERMOCALC Ausgabe: Messung 3 D01:

Activities	and their uncer	tainties for M	13_D01				
	gr	an	ab	san	ab	phl	ann
а	0.00390	0.470	0.620	0.920	0.186	0.108	0.0390
sd(a)/a	0.63897	0.08427	0.05000	0.05000	0.19407	0.24691	0.27706
	en	fs	ilm	ky	q	ru	H2O
а	0.270	0.200	0.920	1.00	1.00	1.00	0.400
sd(a)/a	0.13846	0.19200	0.10000	0	0	0	0

¥¥INCOMPLETE¥¥ independent set of reactions

1) gr + 2ky + q = 3an

2) fs + 2ru = 2ilm + 2q

3) 18an + 2phl = 6gr + 2san + 3en + 12ky + 2H2O

4) 18an + 2ann = 6gr + 2san + 3fs + 12ky + 2H2O

Calculations for the independent set of reactions

(for x(CO	2) = 0.6 and x(H	H2O) = 0.4)						
	P(T)	sd(P)	а	sd(a)	b	с	ln_K	sd(ln_K)
1	15.0	1.12	41.23	0.57	- 0.13758	6.273	3.282	0.687
2	15.2	5.00	-2.70	0.49	0.01691	0.573	1.443	0.277
3	15.0	1.16	-108.38	3.49	0.69778	-36.661	-19.334	4.174
4	14.7	1.18	-140.76	4.12	0.70616	-36.471	-18.197	4.201

Single end-member diagnostic information

avP, avT, sd's, cor, fit are result of doubling the uncertainty on In a :

a In a suspect if any are v different from Isq values.

e* are In a residuals normalised to In a uncertainties :

large absolute values, say >2.5, point to suspect info.

hat are the diagonal elements of the hat matrix :

large values, say >0.33, point to influential data.

For 95% confidence, fit (= sd(fit)) < 1.73

	Ρ	sd(P)	т	sd(T)	cor	fit	e*	hat
gr	15.11	2.32	930	54	0.654	0.62	-0.14	0.79
an	14.78	1.71	927	52	0.702	0.64	0.06	0.12
san	14.73	1.56	928	55	0.741	0.64	-0.03	0.04
phl	14.25	1.79	903	70	0.810	0.53	-0.35	0.41
ann	14.88	1.56	941	56	0.729	0.43	0.59	0.16
en	14.35	1.74	908	66	0.797	0.56	0.30	0.29
fs	14.82	1.58	931	54	0.750	0.61	-0.27	0.08
ilm	14.65	1.54	929	52	0.715	0.59	-0.35	0.07
ky	14.71	1.54	927	52	0.732	0.64	0	0
q	14.71	1.54	927	52	0.732	0.64	0	0
ru	14.71	1.54	927	52	0.732	0.64	0	0
H2O	14.71	1.54	927	52	0.732	0.64	0	0

T = 927jC, sd = 52,

P = 14.7 kbars, sd = 1.5, cor = 0.732, sigfit = 0.64

Messung 2 D02:

Activities and their uncertainties for M2_D02									
	gr	an	ab	san	ab	phl	ann		
а	0.00750	0.390	0.680	0.920	0.188	0.0710	0.0250		
sd(a)/a	0.58215	0.11163	0.05000	0.05000	0.19249	0.30897	0.40000		
	en	fs	mgts	ilm	ky	q	ru	H2O	
а	0.250	0.230	0.0150	0.910	1.00	1.00	1.00	0.400	
sd(a)/a	0.15000	0.17787	0.66667	0.10000	0	0	0	0	

¥¥INCOMPLETE¥¥ independent set of reactions

1) gr + 2mgts + 3q = 3an + en

2) 6an + 2phl = 2gr + 2san + en + 4mgts + 2H2O

3) 2gr + 3fs + 4mgts + 6ru = 6an + 2en + 6ilm

4) 3gr + 2ann + 6mgts + 9q = 9an + 2phl + 3fs

Calculations for the independent set of reactions

(for x(CO2) = 0.6 and x(H2O) = 0.4)										
	P(T)	sd(P)	а	sd(a)	b	с	ln_K	sd(ln_K)		
1	11.1	3.10	-39.60	0.71	0.08782	4.922	9.081	1.500		
2	11.5	3.51	218.21	1.55	0.04796	-8.866	-17.198	3.054		
3	12.1	2.74	-87.30	2.01	- 0.22636	11.563	22.005	3.106		
4	11.2	3.15	-151.20	3.02	- 0.25509	14.958	29.081	4.622		

Single end-member diagnostic information

avP, avT, sd's, cor, fit are result of doubling the uncertainty on In a :

a In a suspect if any are v different from Isq values.

 \mathbf{e}^{\star} are In a residuals normalised to In a uncertainties :

large absolute values, say >2.5, point to suspect info.

hat are the diagonal elements of the hat matrix :

large values, say >0.33, point to influential data.

For 95% confidence, fit (= sd(fit)) < 1.73

	Р	sd(P)	т	sd(T)	cor	fit	e*	hat
gr	14.11	3.09	988	66	0.529	0.84	-0.27	0.10
an	13.71	2.87	984	65	0.504	0.87	0.16	0.03
san	13.48	2.74	981	66	0.479	0.89	0.00	0.03
phl	13.32	2.84	969	87	0.528	0.88	-0.15	0.46
ann	13.38	2.78	987	69	0.390	0.88	0.19	0.26
en	13.41	2.75	970	77	0.458	0.87	0.18	0.23
fs	12.92	2.87	969	66	0.529	0.76	0.58	0.09
mgts	15.64	3.80	1004	70	0.602	0.68	-0.63	0.54
ilm	12.23	3.05	981	64	0.443	0.60	-0.80	0.23
q	13.48	2.74	981	64	0.489	0.89	0	0
ru	13.48	2.74	981	64	0.489	0.89	0	0
H2O	13.48	2.74	981	64	0.489	0.89	0	0

T = 981¡C, sd = 64,

P = 13.5 kbars, sd = 2.7, cor = 0.489, sigfit = 0.89

Messung 4 D02:

Activities and their uncertainties for M4_D02									
	gr	an	ab	san	ab	phl	ann		
а	0.0126	0.410	0.650	0.940	0.136	0.109	0.0163		
sd(a)/a	0.52988	0.10443	0.05000	0.05000	0.23906	0.24553	0.61350		
	en	fs	mgts	ilm	ky	q	ru	H2O	
а	0.240	0.230	0.0150	0.920	1.00	1.00	1.00	0.400	
sd(a)/a	0.15612	0.17787	0.66667	0.10000	0	0	0		

¥¥INCOMPLETE¥¥ independent set of reactions

1) gr + 2mgts + 3q = 3an + en

2) 6an + 2phl = 2gr + 2san + en + 4mgts + 2H2O

3) 2gr + 3fs + 4mgts + 6ru = 6an + 2en + 6ilm

4) 3gr + 2ann + 6mgts + 9q = 9an + 2phl + 3fs

Calculations for the independent set of reactions

(for x(CO2) = 0.6 and x(H2O) = 0.4)										
	P(T)	sd(P)	а	sd(a)	b	с	ln_K	sd(ln_K)		
1	12.0	3.05	-39.60	0.71	0.08782	4.922	8.672	1.477		
2	11.4	3.43	218.21	1.55	0.04796	-8.866	-17.315	2.984		
3	12.8	2.70	-87.30	2.01	- 0.22636	11.563	21.252	3.061		
4	10.8	3.15	-151.20	3.02	0.25509	14.958	29.687	4.631		

Single end-member diagnostic information

avP, avT, sd's, cor, fit are result of doubling the uncertainty on In a :

a In a suspect if any are v different from Isq values.

e* are In a residuals normalised to In a uncertainties :

large absolute values, say >2.5, point to suspect info.

hat are the diagonal elements of the hat matrix :

large values, say >0.33, point to influential data.

For 95% confidence, fit (= sd(fit)) < 1.73

	Р	sd(P)	т	sd(T)	cor	fit	e*	hat
gr	13.20	2.88	932	57	0.438	0.96	-0.13	0.09
an	13.03	2.70	931	57	0.416	0.97	0.08	0.03
san	12.93	2.59	930	58	0.394	0.97	0.02	0.03
phl	13.12	2.64	951	80	0.419	0.94	0.23	0.44
ann	13.24	2.61	918	58	0.346	0.79	-0.82	0.16
en	12.97	2.59	945	76	0.335	0.95	-0.18	0.38
fs	12.06	2.74	921	57	0.430	0.69	0.82	0.09
mgts	14.05	3.65	940	61	0.524	0.92	-0.33	0.57
ilm	12.18	2.86	929	56	0.378	0.87	-0.52	0.19
q	12.93	2.59	930	56	0.401	0.97	0	0
ru	12.93	2.59	930	56	0.401	0.97	0	0
H2O	12.93	2.59	930	56	0.401	0.97	0	0

T = 930¡C, sd = 56,

P = 12.9 kbars, sd = 2.6, cor = 0.401, sigfit = 0.97

C) Anhang: Geomagnetik

D) Anhang: Karte