DIPLOMARBEIT

zur Erlangung des akademischen Grades Diplom-Ingenieur

Thema:

Schmelzequalität einer Al-Gusslegierung am Beispiel AlSi7MgCu0,5 und LM25

eingereicht am Lehrstuhl für Gießereikunde, Department Metallurgie der Montanuniversität Leoben

von

Katharina Haberl

Betreuer: Univ.-Prof. Dipl.-Ing. Dr.phil. Peter Schumacher Dipl.-Ing. Bernhard Stauder

Leoben, im Oktober 2007

Eidesstattliche Erklärung

Ich erkläre ehrenwörtlich, dass ich die vorliegende Arbeit selbständig und ohne fremde Hilfe verfasst, andere als die angegebenen Quellen nicht benutzt und die den benutzten Quellen wörtlich oder inhaltlich entnommenen Stellen als solche gekennzeichnet habe.

Die Arbeit wurde bisher in gleicher oder ähnlicher Form keiner anderen Prüfungskommission vorgelegt und auch nicht veröffentlicht.

Leoben, 5. Oktober 2007

Kurzfassung

Die Schmelzereinheit einer Al-Gusslegierung wurde mit Hilfe von erweiterten Unterdruck-Dichte-, H₂-, PoDFA-, Schwing- und Zuganalysen bestimmt. Besonderes Augenmerk wurde auf die Einflüsse der Oxide als Porenkeim gelegt.

Ziel in dieser Arbeit war es, neben der Erfassung der Istsituation, geeignete Messmethoden für die Ermittlung der Schmelzequalität unter Industriebedingungen zu finden und Verbesserungsvorschläge für eine höhere Reinheit der Schmelze aufzuzeigen.

Es wurden ein Vorversuch gemacht zur Abklärung der Messmethoden und Prüfparameter, sowie 4 Hauptversuche. Diese dienten dem Erfassen der Istsituation, dem Test von möglichen Verbesserungsmaßnahmen, wobei der Einfluss der akkumulierten Verunreinigungen und der Einfluss des Umfüllens der Schmelze betrachtet wurden, sowie dem Vergleich der Istsituationen zweier Legierungen.

Unterschiedliche Arten der Verunreinigungen werden von differenzierten Messmethoden erfasst, wobei die Schmelzequalität nicht nur von einem Parameter beschrieben werden konnte.

Die Poren im Metall sind eher verantwortlich für das Versagen des Werkstoffes im Schwingversuch, diese wurden durch die Anzahl der Poren pro Fläche am Schliff der UD-Probe und der Größe des Dichte-Index gemessen. Die Einschlüsse im Metall sind eher verantwortlich für das Verssagen des Werkstoffes im Zugversuch, diese wurden durch den PoDFA-Versuch gemessen.

Es zeigte sich, dass bezüglich der Oxide in der Schmelze zwischen neuen und alten Oxiden unterschieden werden muss. Die neuen Oxide haben einen Einfluss auf die Poren als Bifilm, die alten Oxide bilden harte Einschlüsse.

Basierend auf den Messergebnissen wurden Vorschläge zur Verbesserung der Schmelzequalität erarbeitet.

Abstract

The melt quality of an AI casting alloy has been examined by employing different experiments: reduced pressure test, H_2 -meassurement, PoDFA, fatigue and tensile test. Special emphasis has been given to the influence of oxides.

The aim of this work was to determine the existing melt quality and to evaluate various methods used with respect to improve the quality.

Experiments were conducted to check first the measuring methods and test parameters. When the current melt quality was ascertained, tests for potential improvements were made that determine the influence of accumulated impurities and handling, and finally two alloys are compared.

The influences on the melt quality have varying degrees of affect on the tests used.

It was seen that it was necessary to differ between new and old oxides in the melt, because of their differing influence: new oxides impact on the pores while old oxides impact on the inclusions.

The pores in the metal are mainly responsible for the failure of the material during the fatigue testing. The amount of pores can be assessed in the metallographic cross section of the reduced-pressure-test and the density-index. The hard inclusions in the metal are mainly responsible for failure of the material in the tensile test and can be measured by the sum impurities of the PoDFA.

Based on the results of the measurements suggestions for improvement for the melt quality were developed.

Danksagung

Mein besonderer Dank gilt Hr. Univ.-Prof. Dipl.-Ing. Dr.phil. Schumacher, der mir die Möglichkeit gab, meine Diplomarbeit am Lehrstuhl für Gießereikunde zu absolvieren. Er stand mir stets als in jeder Hinsicht kompetenter und hilfsbereiter Betreuer zur Seite, obwohl er noch vielen anderen Aufgaben gerecht werden musste.

Ebenso bedanke ich mich bei der Firma Nemak Linz die es mir ermöglichte, Versuche und Probenahmen in ihrer Gießerei durchzuführen. Hr. Dipl.-Ing. Stauder betreute meine Arbeit mit vielen hilfreichen Anregungen und Feedback. Des weiteren möchte ich mich bei allen Mitarbeitern der Nemak Linz für die konstruktive und herzliche Zusammenarbeit bedanken, speziell bei Hr. Dipl.-Ing. (FH) Eisendraut, Hr. Bardocz, Hr. Dipl.-Ing. Neulinger und Hr. Tupa.

An dieser Stelle bedanke ich mich auch bei Hr. Dr. Badowski und Hr. Dipl.-Ing. Müller von Hydro Aluminium Deutschland GmbH und Hr. Dipl.-Ing. (FH) Fröscher von Foseco GmbH, die mir neben ihrer Hilfe bei der Probenahme auch Bild- und Informationsmaterial für meine Diplomarbeit zur Verfügung stellten.

Ich bedanke mich bei Hr. Ing. Holzer und bei Hr. Dipl.-Ing. Geier vom ÖGI für die ausgezeichnete Zusammenarbeit. Weiters möchte ich allen anderen Mitarbeitern des ÖGI für die großen und kleinen Aushilfen zwischendurch danken, im besonderen Hr. Schider und Hr. Rabelhofer.

Für Hilfe bei der Rasterelektronenmikroskopie danke ich Hr. Dr. McKay, bei Hr. Hochleithner vom Lehrstuhl für Gießereikunde bedanke ich mich für die Probenvorbereitung und Hilfestellungen unterschiedlichster Art.

Zu guter Letzt möchte ich meiner Familie danken, die mich ideell und mit viel Verständnis für den Zeitbedarf unterstützt hat.

Inhaltsverzeichnis

1	Einleitung	Seite 1
1.1	Aufgabenstellung	Seite 1
1.2	Definition Schmelzequalität	Seite 1
2	Theorie	Seite 3
2.1	Oxide	Seite 3
2.2	Porositäten	Seite 6
2.3	Keimbildung von Gasporositäten	Seite 8
2.4	Kombinierte Keimbildung von Gas- und Schrumpfungsporositäten	Seite 13
2.5	Messung der Schmelzequalität	Seite 15
0		0-:4- 04
3		Selte 21
3.1		Selte 21
3.Z	Durchtunrung	Selte 21
3.3	verwendete Geratschaften	Selle 27
4	Auswertung	Seite 37
4.1	Vorversuch	Seite 37
4.2	1. Hauptversuch: Istsituation	Seite 51
4.3	2. Hauptversuch: Einfluss Sumpf	Seite 58
4.4	3. Hauptversuch: Einfluss Rinne	Seite 62
4.5	4. Hauptversuch:LM25	Seite 66
5	Fraebnisse & Diskussion	Seite 70
5.1	Vorversuch	Seite 70
5.2	1. Hauptversuch: Istsituation	Seite 72
5.3	2. Hauptversuch: Einfluss Sumpf	Seite 79
5.4	3. Hauptversuch: Einfluss Rinne	Seite 84
5.5	4. Hauptversuch: LM25	Seite 90
5.6	Allgemein	Seite 95
5.6	Allgemein	Seite 95

6	Zusammenfassung & Konklusion	Seite 98
6.1	Allgemein	Seite 98
6.2	1. Hauptversuch: Istsituation	Seite 98
6.3	2. Hauptversuch: Einfluss Sumpf	Seite 98
6.4	3. Hauptversuch: Einfluss Rinne	Seite 99
6.5	4. Hauptversuch: LM25	Seite 99
6.6	Folgerung	Seite 99
6.7	Zukünftige Arbeiten	Seite 100
Literatu	urverzeichnis	Seite 101
Anhan	g A Abbildungsverzeichnis	Seite 103
Anhan	g B Diagrammverzeichnis	Seite 132
Anhan	g C Tabellenverzeichnis	Seite 149

1 Einleitung

1.1 Aufgabenstellung

Die Qualität der Schmelze einer Gießerei ist von entscheidender Bedeutung. Es gibt viele Einflussfaktoren auf die Qualität der Schmelze. Auf Grund des steigenden Wissens des Einflusses der Oxide auf die Schmelzequalität soll deren Rolle genauer untersucht werden.

Ziel der Arbeit ist es, die Auswirkungen der Oxide auf die Schmelzequalität einer AlSi-Legierung, und somit ihren Einfluss auf die Eigenschaften, darzustellen, geeignete Messmethoden für Oxide bzw. deren Einfluss zu finden und Verbesserungsmaßnahmen für höhere Schmelzereinheit aufzuzeigen.

Die vorliegende Arbeit enthält als Praxisteil technologische Versuche in der Gießerei. Diese Versuche des Praxisteiles wurden in der Gießerei von Nemak Linz gegossen. Die Firma Nemak Linz stellte sich auch als Betreuer der Diplomarbeit zur Verfügung

1.2 Definition Schmelzequalität

Unter Schmelzequalität versteht man die Güte des flüssigen zu gießenden Metalls. Die Schmelzequalität ist abhängig von folgenden Faktoren:

- dem Keimzustand (positiv bzw. negativ, d.h. von primären und sekundären Phasen sowie Poren)
- der Kapazität Gasporen zu bilden
- den Verunreinigungen (gelöst z.B. H₂, Fe und ungelöst z.B. Oxide, Nitride)
- der chemische Zusammensetzung

Diese Faktoren sind nicht unabhängig voneinander und stehen in Wechselwirkung miteinander.

Diese wechselseitigen Beeinflussungen sind in Abbildung 1-1 schematisch dargestellt. So kann der Keimzustand von Partikeln (z.B. TiB₂) beeinflusst werden, welche auch gleich-

zeitig Verunreinigungen (Einschlüsse) darstellen, diese beeinflussen die chemische Zusammensetzung (z.B. den Ti-Gehalt), des weiteren können sich an diesen Partikeln Gasporen bilden. Die chemische Zusammensetzung wiederum kann die Bildung von Gasporen beeinflussen, beispielsweise durch H_2 anziehende Elemente wie z.B. Mg. Auch kann eine Variation der chemischen Zusammensetzung den Keimzustand beeinflussen und Verun-reinigungen darstellen, Gasporen können an Verunreinigungen keimen, usw.

Abbildung 1-1: schematischer Überblick über Einflussfaktoren Schmelzequalität

2 Theorie

2.1 Oxide

2.1.1 Einführung

Aluminium neigt stark zur Bildung von Oxiden, da es sehr sauerstoffaffin ist.

Bereits bei Raumtemperatur überziehen sich Aluminium und Al-Legierungen mit einer Oxidschicht. Diese Oxidschicht wird stärker mit zunehmender Temperatur. Kommt es zu einer Reaktion des Luftsauerstoffs mit der Badoberfläche, so entsteht augenblicklich ein Film an der Oberfläche. Dieser Film kann je nach Bestandteilen unterschiedlich sein: dick, dünn, stark, schwach etc. [1].

Die Ausbildung eines solchen geschlossenen Aluminiumoxidfilms an der Oberfläche der Schmelze ist erwünscht, da die Schmelze dadurch vor weiterer Oxidation mit dem Sauerstoff der Luft geschützt wird.

Die Oberflächenprodukte von Leichtmetallen wie Aluminium zeichnen sich durch ihre große Stabilität aus. Haben sie sich einmal an der Oberfläche gebildet, so gehen sie nicht wieder in die flüssige Metallschmelze zurück um sich aufzulösen. An dieser Stelle sei auch erwähnt, dass Aluminium praktisch keine Löslichkeit für Sauerstoff hat.

Durch Turbulenzen entstehen aus den Oxidfilmen der Oberfläche gefaltete Oberflächenfilme, die im Gussstück zu nichtmetallischen Einschlüssen werden, den Gefügeverbund unterbrechen und somit als Gussfehler zu bezeichnen sind. [2,3]

"Gefaltete Oberflächenfilme haben das Potential zu einem der größten Defekte in Gussteilen zu werden." So schreibt John Campbell in [4].

Unter gefalteten Oberflächenfilmen versteht Campbell die sogenannten Oxidhäute. Dies sind filmförmige, dünne Oxide, die sich auf der Oberfläche oxidierbarer flüssiger Metalle und Legierungen in Berührung mit dem Luftsauerstoff bilden [2].

2.1.2 Entstehung

Ist die Schmelzeoberfläche Turbulenzen unterworfen, so passiert es, dass sich die Oberfläche durch die geschlagenen Wellen faltet. Auch kommt es vor, dass hochgeschleuderte flüssige Metallteilchen wieder in das Schmelzebad fallen. Dadurch gelangen Oxidfilme die sich an der Oberfläche gebildet haben, in das flüssige Schmelzebad (siehe Abbildung 2-1).

Häufige Gründe für Turbulenzen der Schmelze sind das Umfüllen des Metalls, z.B. vom Schmelzofen in die Transportpfanne und weiter in den Gießofen, aber auch das Füllen der Gießform selbst.

Die dimensionslose Weber Zahl (We) liefert Informationen darüber, ob die Strömung innerhalb der Oberfläche turbulent oder laminar erfolgt [5]. Sie ist definiert als das Verhältnis des inneren Druckes der Schmelze ($\rho v^2/2$) zu dem Druck resultierend aus der Oberflächenspannung ($2\gamma/r$), siehe Abbildung 1. Formel (1) drückt diesen Zusammenhang aus [6]:

 $We = \rho L v^2 / \gamma$ (1)

In dieser Formel ist ρ die Dichte und v die Geschwindigkeit. L ist die charakteristische Länge und beinhaltet den Radius r. γ ist die Oberflächenspannung.

Abbildung 2-1: Darstellung einer Schmelzebadoberfläche bei Oberflächenturbulenzen nach [7]

Wichtige Werte für We [6]:

- We < 1: die Oberfläche ist vollkommen ruhig
- We = 1: der innere Druck und der Druck resultierend aus der Oberflächenspannung sind gleich; dieser Wert ist der Übergangswert, ab hier beginnen die Oberflächenturbulenzen
- We = 100: Oberflächenturbulenzen sind sehr stark

2.1.3 Arten von Oxiden

Prinzipiell kann man zwischen 2 Arten von Oxiden unterscheiden:

- alte Oxide
- neue Oxide (Bifilme)

Alte Oxide entstehen bereits vor oder während dem Schmelzen und haben eine voluminöse Morphologie. Neue Oxide bilden sich während dem Füllen und Gießen und haben eher eine flächige Morphologie [8].

2.1.4 Bifilme

Dies sind jene Oxide die sich durch das Falten von Oxidoberfläche an Oxidoberfläche bilden. Das entstehende Produkt besteht aus 2 Oxidfilmen, daher ergibt sich auch der Name Bifilm.

Die beiden festen Bifilme binden sich gegenseitig nicht an die flüssige Schmelze. Der Bifilm stellt daher in der Schmelze, und in weiterer Folge im erstarrten Metall, einen Fehler dar mit hoher Kerbwirkung. [9]

Der junge gebildete Bifilm hat zwischen seinen Hälften Luft eingeschlossen. Diese eingeschlossene Luft wird langsam verbraucht. Zuerst bildet sich Aluminiumoxid, dann Aluminiumnitrid. Wasserstoff aus der Schmelze kann in die eingeschlossene Luftschicht diffundieren, wenn sich ein höherer H₂-Gehalt in der Schmelze als in der Luft befindet. Dies geschieht so lange, bis sich ein Gleichgewicht einstellt. [10]

Durch die fortschreitende Al₂O₃- bzw. AlN-Bildung werden die Hälften dicker, sie werden noch stärker aneinandergedrückt durch den metallostatischen Druck [11]. Auch können sich die Oxidhälften wegen des Verbrauchs des Gases im Bifilm aneinander, in einem gewissen Ausmaß, binden [12,13].

Der Fehler in der Schmelze ist nicht so groß, da der Bifilm meist im gefalteten Zustand vorliegt. In der Schmelze gibt es turbulente Badbewegungen, dadurch wird der Bifilm eingefaltet bzw. eingewickelt. Beginnt die Schmelze jedoch zu erstarren, kann sich der Bifilm, bedingt durch den internen (H₂-)Druck, entfalten und seine flächige ursprüngliche Form wieder einnehmen. Dieser Vorgang ist zeitabhängig und wird durch lange Erstarrungszeiten begünstigt. Der Fehler im erstarrten Metall ist daher von großer Bedeutung.

Für das Öffnen der Bifilme verantwortlich zeigen sich folgende Punkte [14]:

- Wasserstoff, der sich innerhalb des Bifilmes befindet
- Schrumpfung, reduziert den Druck auf den Film
- Eisen (in Form der β-Phase) oder andere intermetallische Ausscheidungen
- große Korngröße, unterstützt große Dendritenarme den Film durch Druck darauf zu glätten bzw. einhergehen mit langen Erstarrungszeiten

Abhängig vom Metall ist die Dichte des Bifilmes und in weiterer Folge seine Position in der Metallschmelze (Aufsteigen oder Sinken). Bei den Bifilmen des Aluminiums kommt sowohl Aufsteigen als auch Sinken vor: die Dichte der Oxide ist sehr ähnlich wie die des Metalls, daher befinden sie sich in Schwebe.

2.2 Porositäten

2.2.1 Allgemein

Porositäten haben negative Auswirkungen auf das Gussstück. Sie verschlechtern neben den mechanischen Eigenschaften auch die Gebrauchseigenschaften. Es gibt 2 extreme Fälle von Porositäten:

- Gasporositäten
- Schwindungsporositäten

Ihre Bildung kann nicht von einander getrennt betrachtet werden. In der Regel hat eine Pore einen Anteil von Gas- und Schwindungsporosität (siehe auch Kapitel 2.4).

2.2.2 Gasporositäten

Das Aussehen von Gasporen ist üblicherweise kugelförmig. Die Rundheit der Poren hängt vom Wasserstoffgehalt der Schmelze ab und auch vom Zusammentreffen der Phasen die bereits erstarren [15].

Gasporen entstehen durch in der Schmelze gelöste Gase. Die Löslichkeit für Gase ist bei sinkenden Temperaturen der Schmelze geringer. Meist nimmt die Löslichkeit der Schmelze für gasbildende Fremdatome wie H, N oder O sprunghaft bei der Erstarrungstemperatur ab [16], siehe Diagramm 2-1. Dieses zeigt die Temperaturabhängigkeit des Lösungsvermögens für Wasserstoff in Aluminium. Daher scheiden sich die Gase während des Abkühlens der Schmelze aus und entweichen in Form von Gasporen. Erstarrt das Metall noch währenddessen, so bleiben Gasporositäten als Hohlräume im Gussstück zurück.

Stünden keine Keimstellen für H₂-Poren zur Verfügung, würde H₂ zwangsgelöst werden und dann später hinaus diffundieren. Erst durch die Gegenwart von Keimen wie Bifilmen kommt es zur Entstehung von Poren.

Diagramm 2-1: Löslichkeitsvermögen für H₂ in Aluminium in Abhängigkeit von der Temperatur [17]

2.2.3 Schwindungsporositäten

Das Aussehen von Schwindungsporen (Lunker) zeigt üblicherweise eine unregelmäßig gewundene 3-dimensionale Morphologie die auf die dentritische Erstarrungsstruktur am Ende der Erstarrung hinweist [15].

Lunker entstehen durch die Volumenabnahme (Schwindung) beim Erstarren der Schmelze. Die Volumenabnahme bei Abkühlung einer Schmelze besteht aus der Schwindung im flüssigen Zustand (Flüssigkeitskontraktion), einer sprunghaften Schwindung bei Erreichen der Erstarrungstemperatur (Erstarrungskontraktion) und einer stetigen Schwindung im festen Zustand (Festkörperkontraktion). Entscheidend für die Lunkerbildung ist die Erstarrungskontraktion beim Phasenübergang von flüssig zu fest. Kommt es bei der Erstarrung zu einem Einschluss der Schmelze von bereits erstarrtem Metall, kann weitere Schmelze nicht mehr nachfließen, um die Erstarrungsschrumpfung auszugleichen, ein Lunker entsteht an Keimstellen wie z.B. an Bifilmen [16].

2.3 Keimbildung von Gasporositäten

Die Keimbildung von Porositäten ist ähnlich der Keimbildung von metallischen Phasen [18]. Es kann unterschieden werden zwischen:

- homogene Keimbildung
- heterogene Keimbildung
- alternative Porenbildung

2.3.1 Homogene Keimbildung

Es ist Arbeit damit verbunden, wenn sich eine Gasblase im flüssigen Metall bildet. Die Schmelze muss weit genug zurückgedrängt werden, um eine Blase mit dem Volumen V zu produzieren. Die erforderliche Arbeit hierfür ist P_eV. P_e ist der lokale Druck in der Schmelze.

Das Bilden und Ausdehnen der neuen Flüssigkeit/Gas Grenzfläche auf die Fläche A beansprucht die Arbeit γ A, wobei γ die Oberflächenenergie pro Einheitsfläche ist. Die Arbeit die erforderlich ist die Gasblase mit Dampf oder Gas bei einem Druck P_i zu füllen, ist negativ (da die Arbeit bzw. Gesamtenergie des Systems erniedrigt wird) und hat die Größe –P_iV. Die gesamte Arbeit wird nach Formel (2) berechnet:

$$\Delta G = \gamma A + V (P_e - P_i)$$

$$\Delta G = 4\gamma \pi r^2 + (4/3) \pi r^3 (P_e - P_i)$$
(2)

 (P_e-P_i) ist die Druckdifferenz ΔP zwischen dem Äußeren und dem Inneren der Gasblase. Zur Bildung einer Gasblase muss P_i größer als P_e sein, damit wird der Term negativ. Ähnlich der Keimbildung der porenfreien Phase, ergibt sich ein Maximum wenn ΔG gegen den Gasblasenradius r aufgetragen wird.

Der kritische Radius ergibt sich für diesen Fall aus Formel (3):

$$r^* = 2\gamma / P_f \tag{3}$$

P_f ist die kritische Druckdifferenz bei der die Keimbildung auftritt. Gasblasen mit einem Radius kleiner r* werden verschwinden. Auch das Erscheinen einer Gasblase, die einen

Radius größer r* hat ist ein seltenes Ereignis. Diese Gasblase hat dann das Potential zu einer beobachtenswerten Größe heranzuwachsen.

Eine weitere wichtige Aussage ist, dass der Druck der erforderlich ist für die Keimbildung, sehr hoch ist. Und dies zeigt die Schwierigkeit der homogenen Keimbildung von Poren in flüssigen Metallen, die im Allgemeinen nicht beobachtet wird.

2.3.2 Heterogene Keimbildung

Wir betrachten den Fall der Keimbildung einer Gasblase an der Oberfläche eines festen Substrates. Die Flüssigkeit steht mit einem bestimmten Winkel θ in Kontakt mit dem Festkörper. Dieser Kontaktwinkel definiert das Ausmaß der Benetzung:

- $\theta = 0^{\circ}$ bedeutet eine komplette Benetzung
- $\theta = 180^{\circ}$ bedeutet eine komplette Nicht-Benetzung

Die heterogene Keimbildung ist um einen gewissen Faktor einfacher [19]. Dieser ist in Formel (4) ersichtlich:

 $P^{\text{thet}/P^{\text{thom}}} = 1,12 \left(\left(2 - \cos\theta\right) (1 + \cos\theta)^2 / 4 \right)^{1/2}$ (4)

Abbildung 2-2 zeigt die Geometrie einer Gasblase in Kontakt mit einer festen Oberfläche bei unterschiedlichen Benetzungszuständen.

In der Realität kommt die Keimbildung an festen Oberflächen nicht vor, solange der Kontaktwinkel 60°-70° nicht übertrifft. Aus diesem Grund ist die Keimbildung von Poren an einem wachsenden Festkörper, wie z.B. einem Dendriten, nicht begünstigt (da die Schmelze die das Erstarrte ihrerseits benetzt) [18,20].

Abbildung 2-2: Geometrie einer Gasblase in Kontakt mit einer festen Oberfläche [18]

Keimbildung von Porositäten an nicht planen Oberflächen [21]:

Erfolgt die Keimbildung an nicht planen Oberflächen so ist P_f anders. Grund hierfür ist, dass der Winkel φ , der bei planen Flächen 90° beträgt, anders ist. Von diesem Winkel abhängig ist auch der kritische Druck P_f (siehe auch Abbildung 2-5). Formel (5) beschreibt P_f: P_f = - ((16 $\pi\gamma^{3}\Phi$) / (3kT ln (6N^{2/3}kT/h)))^{1/2} (5)

N ist die Avogadro-Konstante, k die Bolzmankonstante und h ist das Planksche Wirkungsquantum.

Abbildung 2-3: schematischer Überblick möglicher Variationen der Geometrie der festen Oberfläche [21]

Abbildung 2-3 zeigt schematisch mögliche Variationen der Oberfläche.

In [21] wurde festgestellt, dass die Porenbildung an Kavitäten (siehe Abbildung 2-3, (b) Kavität) gegenüber planen Oberflächen bevorzugt ist, da hierbei P_f geringer ist. P_f verringert sich an Kavitäten umso stärker, je kleiner der Winkel φ ist.

Einem Bifilm entspricht $\varphi = 0$.

Der Winkel ϕ bewirkt bei Vorsprüngen ein genau gegensätzliches Verhalten: P_f wird umso größer, je kleiner ϕ ist. Daher ist die Keimbildung von Porositäten an Vorsprüngen nicht bevorzugt.

Diese Erkenntnis verdeutlichen auch die Formeln (6), (7) und (8). Sie geben die Formel für Φ , dieses ist erforderlich für Gleichung (5), an.

- plane Oberfläche: $\Phi = (2 + 3\cos\theta - \cos^3\theta) / 4$ (6)
- Kavität (konisch): $\Phi = (2 - 2\sin(\theta - \phi) + \cos\theta \cos^2(\theta - \phi)/\sin\phi) / 4$ (7)
- Vorsprung (konisch): $\Phi = (2 + 2\sin(\theta + \phi) + \cos\theta\cos^2(\theta + \phi)/\sin\phi) / 4$ (8)

Es ist auch wichtig festzuhalten, dass nicht alle Einschlüsse gute Keimbildungsstellen sind für Porositäten. Jene die gut benetzt sind werden nicht bevorzugt. Dies inkludiert die eher metallischen Einschlüsse wie Boride, Karbide und Nitride (diese sind üblicherweise gut als Keimstellen für die Erstarrung und bewirken somit Kornfeinung). Die Benetzungserfordernisse für die Keimbildung von Poren sind komplett anders als bei der Keimbildung für die Erstarrung: gute Keime müssen schlecht benetzend sein. Solche Substrate inkludieren die Nichtmetalle wie Oxide. [18]

Obwohl die klassische homogene Keimbildung von Poren in flüssigen Metallen schwierig ist, ist die klassische heterogene Keimbildung an einem festen Partikel auch nicht die Erklärung für die Keimbildung von Poren [22]. Klassische Keimbildung von einer Gasblase kann nicht auftreten, sogar nicht an stark unbenetzbaren festen Partikeln. Es müssen andere, alternative Prozesse verantwortlich sein [18].

2.3.3 alternative Porenbildung

Hierzu zählen nach Campbell [18]:

- hochenergetische Strahlung
- Gasblasensuspensionen die bereits zuvor vorhanden sind
- Porenbildung an Bifilmen

Der wahrscheinlichsten Mechanismus für die Poreninitiation sind mitgerissene Defekte, d.h. die Porenbildung an Bifilmen. Daher wird dieser Punkt nachfolgend näher erläutert.

2.3.3.1 Porenbildung an Bifilmen

Im Gegensatz zu allen anderen Porenbildungsmechanismen, abgesehen von den Gasblasensuspensionen die bereits zuvor vorhanden sind, mit denen diese Bildungsart viele Ähnlichkeiten hat, kann über den Bifilm gesagt werden, dass er das Potential besitzt Poren ohne große Aktivierungsbarrieren zu bilden.

Die Porositäten werden einfach geöffnet, indem sich die 2 aneinanderliegenden Bifilmhälften trennen. Dies ist ein einfacher mechanischer Schritt. Das Aufblasen des Bifilms verläuft so wie in Abbildung 2-4 verdeutlicht.

Abbildung 2-4: Modell des Entfalten eines Bifilmes [18]

Der gefaltete Bifilm ist zu Beginn nur an den äußeren Bereichen wenig mit Gas gefüllt (siehe Abbildung 2-4). Mit der Zeit oder mit höherer Gaskonzentration werden im Bifilm weitere

Bereiche aufgeblasen. Es werden auch die geteilten Bereiche ausreichend aufgeblasen, so dass sich der ganze Bifilm entfaltet und er sich aufbläst wie ein Ballon.

Die Entfaltungsgeschwindigkeit des Bifilms hängt stark von seiner Geometrie ab. Des weiteren ist es wichtig festzuhalten, dass ein bestimmter Wasserstoffgehalt in der Schmelze vorhanden sein muss, um das Aufblasen des Bifilmes zu ermöglichen.

Das Wachsen über die Größe des ursprünglichen Bifilms hinaus ist möglich, wenn der aufgeblasene Bifilm durch den Gasdruck platzt und die Gaspore weiterwächst.

Da Bifilme üblicherweise in der Schmelze vorhanden sind, kann das Auftreten von Porositäten somit am besten erklärt werden.

2.4 Kombinierte Keimbildung von Gas- und Schrumpfungsporositäten

Bei der Porositätenbildung gibt 2 Extremfälle (siehe auch Kapitel 2.2.2 und 2.2.3):

- es bilden sich nur Gasporen (gute Speisung)
- es bilden sich nur Schrumpfungsporen (schlechte Speisung)

Veranschaulicht wird dies in Abbildung 2-5. Hierbei ist auf der x-Achse der Gasdruck in der Schmelze P_g aufgetragen, auf der y-Achse ist die hydrostatische Spannung P_s aufgetragen. Den Zusammenhang von P_g und P_s beschreibt Formel (9) [23,24]: $P_f = P_g + P_s$ (9)

P_f ist der kritische Keimbildungsdruck (siehe auch Kapitel 2.3), der für die Bildung einer Porosität erforderlich ist.

Hat man ein Metall mit gutem Speisungsverhalten, so steigt während dem Abkühlen der Schmelze der Gasdruck P_g in der verbleibenden Schmelze an. Die hydrostatische Spannung P_s hingegen bleibt konstant. Dies entspricht in Abbildung 2-5 einem Verlauf von A nach E. An E sind die Bedingungen erfüllt die zur heterogenen Bildung einer Gaspore am Keim 1 führen. Durch die Bildung der Gaspore kommt es zu einer Verarmung an Gas in der umgebenden Schmelze, Pg sinkt und wandert Richtung D.

Hat man ein Metall mit schlechtem Speisungsverhalten (ohne Gas in der Schmelze), so fällt P_s von A auf F. An F wird der erforderliche Druck für die Bildung eines Lunkers erreicht.

Durch die Bildung eines Lunkers kommt es zu einer Reduzierung der hydrostatischen Spannung und P_s wandert Richtung A.

In der Praxis liegen üblicherweise beide Zustände vor: dadurch bewegt sich die Kurve von A nach B. Es formt sich eine Pore an Keim 1. Dadurch geht der Druck der Schmelze auf C zurück. Die folgende Diffusion des Gases in die Pore lässt die Umgebung an Gas verarmen, P_g geht auf D zurück.

Schmelze, die sich weit entfernt von diesem Ereignis befindet, hat keinen hydrostatischen Druck und geht zu E. Hier kommt es zur Bildung neuer Gasporen an Keimen.

Schmelze, die sich zwar in der Nähe des Ereignisses aber nicht in der unmittelbaren befindet und deren hydrostatischer Druck daher davon betroffen ist, wird eine Senkung von P_s auferlegt, die sie aber nicht bis zu C führen muss. Man bewegt sich in diesem Fall nur bis G. Ein weiteres Keimbildungsereignis kann dann an H vorkommen, dann an I, J, usw.

Abbildung 2-5: Übersichtsplan über Bildung einer Pore nach [25]

Innerhalb der Schmelze kommen verschiedene heterogene Keime mit unterschiedlichen Keimpotentialen vor. Doch auf Grund der höheren erforderlichen Drücke sind diese nicht bevorzugt (siehe Abb. 2-5: P_f' hat einen niedrigeren erforderlichen Druck als P_f'' oder P_f).

Insgesamt muss von einer Verteilung von Keimen ausgegangen werden die bei bestimmten kritischen Drücken P* aktiv werden.

2.5 Messung der Schmelzequalität

Die Messung der Schmelzequalität ist nicht trivial, denn die Oxide, die die Schmelzequalität stark beeinflussen, können mitunter sehr dünn sein (Dicke der Bifilme: wenige nm). Daher lassen sich Bifilme durch viele Messmethoden nicht bestimmen. Die Schwierigkeit ist es eine geeignete Messung zu finden, in der die Bifilme aufgefunden werden können. In diesem Kapitel werden einige Methoden zur Messung von Oxiden und anderen Verunreinigungen erläutert.

Es gibt 4 wesentliche Messmethoden um Oxide in der Schmelze festzustellen:

- Unterdruck-Dichte-Test
- PoDFA & PREFIL
- Ultraschall-Prüfsystem
- LiMCA

Je nach betrachteter Messung werden bestimmte Oxide besser in der Schmelze aufgefunden als andere. Manche dieser Messungen sind sehr kompliziert und zeitaufwendig und finden daher oft in der Gießereipraxis keine Anwendung.

2.5.1 Unterdruck-Dichte-Test

Dieses Verfahren ist auch bekannt, mit geringen Variationen in der Durchführung, als Straube Pfeiffer Test, Foseco Portec Test oder IDECO Test [26].

Das UD-Gerät dient im normalen Gießereibetrieb zur qualitativen Kontrolle des Gasgehaltes in flüssigen Metallen. Es wird eine Schmelzprobe geprüft, indem man diese in einer Vakuumkammer unter genormt reduziertem Druck erstarren lässt. Bei Anwesenheit von gelöstem Gas wird die Probe aufgewölbt, da das gelöste Gas frei wird und sich ausdehnt. [27]

Diagramm 2-1 (siehe Kapitel 2.2.2) zeigt die abnehmende Löslichkeit für Wasserstoff im Aluminium bei sinkenden Temperaturen und den Sprung in der Löslichkeit beim Wechseln des Aggregatszustands.

Das Gas in der Probe bewirkt eine Änderung der Dichte. Gravimetrisch kann der Dichte-Index bestimmt werden und somit eine Aussage über den Gasgehalt gemacht werden. Die Formel des Dichte-Index befindet sich in Formel (10):

Dichte Index = $(\rho_{Atm}-\rho_{UD}) * 100 / \rho_{Atm}$

(10)

Der theoretisch berechnete Gasgehalt stimmt jedoch nicht exakt mit dem praktisch gemessenen Gasgehalt überein. Der theoretisch errechnete Gehalt ist niedriger als der tatsächliche Gehalt. Je niedriger der Dichte-Index wird, desto größer wird die Diskrepanz. Gründe hierfür sind die Erschwerung der Porenkeimbildung bei kleinem Dichte-Index und damit zu wenigen Stellen an welchen die Keimbildung stattfindet und sich somit Gasblasen zum Ausgleich des H₂-Haushaltes bilden könnten.

Erweiterter UD-Test:

Die Gasporen, die sich im flüssigen Metall bilden, entstehen an Keimstellen. Als Keimstellen bevorzugt werden in der Schmelze vorhandene Oxide und andere Einschlüsse. Somit stellt jede Gaspore in der UD-Probe einen vorhandenen Oxidfilm bzw. anderen Einschluss dar der durch den stark erniedrigten Druck P_e aktiviert wurde eine Pore zu bilden. Durch die Auswertung der Anzahl der Gasporen kann schnell auf die Anzahl der Oxide bzw. anderen Einschlüsse als Keimbildner geschlossen werden [14].

Abbildung 2-6 zeigt den Aufbau des Unterdruck-Dichte-Messgerätes.

Abbildung 2-6: Aufbau Unterdruck-Dichte-Messgerät

Abbildung 2-7 zeigt 2 Unterdruck-Dichte-Proben. Die linke Probe weist einen niedrigen Gasgehalt auf, die rechte Probe hat einen höheren Gasgehalt und viele Keimstellen für die Gasporen.

Abbildung 2-7: Unterdruck-Dichte-Proben (links: niedriger Gasgehalt, rechts: hoher Gasgehalt) [28]

Diese Methode wird auch im nachfolgenden experimentellen Teil dieser Diplomarbeit angewendet.

2.5.2 PoDFA (Porous Disc Filtration Analysis) & PREFIL (Pressure Filtration)

Mit der PoDFA- bzw. PREFIL Messung können ungelöste Verunreinigungen in der Metallschmelze qualitativ bestimmt werden.

Die Schmelze wird geprüft in dem man sie zuerst in einen Feuerfesttiegel füllt, in dessen Boden sich ein Filter mit genau definierter Porengröße befindet. Auf den Tiegel wird Überdruck angebracht, der die Schmelze durch den Filter drückt. Rückstände im Tiegel werden metallographisch untersucht, das Auswerteergebnis ist die Summe der in der Schmelze befindlichen Verunreinigungen in mm²/kg.

Das typische Spektrum einer AlSiMg-Schmelze enthält als wesentliche Verunreinigungen Al-Oxid, Al-Karbid, Ti-Borid, Al-Nitrid, Mg-Oxid, Spinell.

Während des Filtervorgangs bildet sich ein Filterkuchen oberhalb des Filters aus in dem auch Partikel, die kleiner als der Porendurchmesser des Filters sind, aufgefangen werden. Jedoch werden Bifilme auf Grund ihrer flächigen Morphologie nur schwierig metallographisch detektiert und deshalb nicht angegeben in den gemessenen Verunreinigungen.

Des weiteren ist zu beachten, dass das Ergebnis nichts über die Größenverteilungen der detektierten Verunreinigungen aussagt, wobei die Größe einen wichtigen Einfluss auch die mechanischen Eigenschaften hat (Kerbwirkung).

Abbildung 2-8 zeigt die Funktionsweise der PoDFA-Einrichtung.

Abbildung 2-8: Schematischer Überblick PoDFA-Einrichtung [29]

Die PoDFA-Methode wird auch im nachfolgenden experimentellen Teil dieser Diplomarbeit angewendet.

2.5.3 Ultraschall-Prüfsystem

Hierbei wird mittels Ultraschall entweder die Sauberkeit (Klasseneinteilung) oder die Partikelgrößen der in der Schmelze befindlichen Verunreinigungen gemessen. Innerhalb einer bestimmten Zeitspanne ermittelt das Ultraschallgerät einen zuverlässigen Wert aus einer hohen Zahl an Einzelmessungen.

Ein Signalgeber sendet ein US-Signal an einen Reflektor. Eine Sonde empfängt das vom Reflektor zurückgestrahlte Signal. Das emittierte Signalband kann dann über das reflektierte Signalband gelegt werden, die Differenz ist die Reflektion an den Partikeln.

Abbildung 2-9 zeigt den schematischen Aufbau eines Ultraschallprüfgeräts. In der Abbildung ist links der Messkopf mit dem Signalgeber und –empfänger zu sehen. Rechts ist der gesamte Messaufbau der Einrichtung ersichtlich.

Abbildung 2-9: Ultraschallprüfsystem, links: Messkopf, rechts: Messaufbau [30]

Das neu entwickelte Ultraschall-Prüfsystem MetalVision von Hydro Bonn sollte im nachfolgenden experimentellen Teil dieser Diplomarbeit angewendet werden. Abbildung 2-10 zeigt das MetalVision Prüfsystem, der linke Teil des Bildes zeigt den Messkopf der in die Schmelze eingetaucht wird.

Abbildung 2-10: MetalVision Ultraschall-Prüfsystem

Auf Grund einiger technischer Schwierigkeiten konnten mit dem MetalVision jedoch keine aussagekräftigen Ergebnisse unter Bedingungen der Gießerei Nemak Linz erzielt werden.

2.5.4 LiMCA (Liquid Metal Cleanliness Analyzer)

Das LiMCA-System besteht aus einer geschlossenen Röhre mit einer kleinen Öffnung die in ein großes Metallbad getaucht wird (z.B. in eine Gießrinne). Es wird ein Vakuum in der Röhre erzeugt. Dadurch wird das Metall, mit den in Schwebe befindlichen Verunreinigungen die detektiert werden sollen, durch die kleine Öffnung in die Röhre gesaugt. Eine Elektrode befindet sich in der Röhre, eine weiter außerhalb. Die elektrische Leitfähigkeit des Metalls, dass sich zwischen den Elektroden befindet, wird durch vorhandene Verunreinigungen abgeschwächt. Die Größe des geleiteten Stromimpulses ist eine Funktion des Volumens der Einschlusspartikeln.

Metallische Verbindungen erzeugen ein Signal, das die Leitfähigkeit des Einschlusses wiederspiegelt, während nichtmetallische Einschlüsse ein gegenläufiges Signal ergeben. Die Stromimpulse werden erfasst, digitalisiert und die Größenverteilung und Gesamtkonzentration der Verunreinigungen kann über einen Computer ausgegeben werden. [31]

Abbildung 2-11 zeigt den Aufbau von LiMCA.

Abbildung 2-11: Aufbau LiMCA

3 Experimentelle Methoden

3.1 Allgemein

Die Versuche wurden in der Gießerei von Nemak Linz gegossen. Der Grundriss der Gießereibereiche, in welchen Versuche gemacht wurden, befindet sich im Anhang im Abbildungsverzeichnis (Abb. A1).

3.2 Durchführung

3.2.1 Allgemein

Es wurden ein Vorversuch zur Abklärung der Messmethoden und Prüfparameter, ein 1. Hauptversuch zur Erfassung der Istsituation der Primärlegierung AlSi7MgCu0,5, ein 2. und 3. Hauptversuch zum Test von möglichen Verbesserungsmaßnahmen und ein 4. Hauptversuch zur Erfassung der Istsituation der Sekundärlegierung LM25, durchgeführt.

3.2.2 Legierungen

Die Grenzwerte der Legierungsbestandteile der in dieser Arbeit verwendeten Legierungen sind in Tabelle 3-1 und 3-2 angeführt. Tab. 3-1 zeigt die Primärlegierung AlSi7MgCu0,5 und Tab. 3-2 zeigt die Sekundärlegierung LM25.

Element	unterer Grenzwert [%]	oberer Grenzwert [%]
В		0,0300
Bi		0,0300
Са		0,0020
Cd		0,0100
Cr		0,0300
Cu	0,470	0,6000
Fe		0,2000
Li		0,0005
Mg	0,300	0,4500
Mn		0,1000
Na		0,0050
Ni		0,0300
Р		0,0015
Pb		0,0300
Sb		0,0050
Si	6,500	7,5000
Sn		0,0300
Sr	0,025	0,0400
Ti	0,100	0,2000
Zn		0,0700
Zr		0,0300

Tabelle 3-1: Grenzwerte Legierungsbestandteile der AlSi7MgCu0,5

Tabelle 3-2: Grenzwerte Legierungsbestandteile der LM25

Element	unterer Grenzwert [%]	oberer Grenzwert [%]	
В		0,0300	
Bi		0,0300	
Са		0,0020	
Cd		0,0100	
Cr		0,0300	
Cu	0,150	0,2500	
Fe		0,4500	
Li		0,0005	
Mg	0,230	0,4500	
Mn	0,150	0,3500	Legierungs-
Na		0,0050	verhältnis:
Ni		0,1000	Mn~0,7*Fe
Р		0,0015	
Pb		0,1000	
Sb		0,0050	
Si	6,500	7,5000	
Sn		0,0500	
Sr	0,015	0,0250	
Ti	0,080	0,1600	
Zn		0,1000	
Zr		0,0300	

3.2.3 Durchgeführte Versuche

Nachfolgende Aufstellung gibt einen Überblick über die durchgeführten Versuche:

- 1. Hauptversuch: diente dem Erfassen der Istsituation der Schmelzequalit\u00e4t der AlSi7MgCu0,5
- 2. Hauptversuch: diente dem Erfassen des Einflusses des Ofensumpfes im Gießofen (akkumulative Verunreinigungen)
- 3. Hauptversuch: diente dem Erfassen des Einflusses der Füllrinne für den Gießofen
- 4. Hauptversuch: diente dem Erfassen der Istsituation der LM25

3.2.3.1 Vorversuch

Ziel war es die Messmethoden in einem Vorversuch zu testen und die Prüfungsparameter auf ihre beste Einstellung hin zu bestimmen. Weiters sollte das Optimum der Anzahl der Proben bestimmt werden.

In Tabelle 3-3 befindet sich die Auflistung der Anzahl der genommenen Proben an den jeweiligen Positionen der Versuchsdurchführung.

Die Proben wurden in der Gießerei 1 genommen (Gießereiplan siehe Anhang Abbildungen A1). Erwähnenswert ist die schräge Stellung der Längsachse des Impellers in Gießerei 1.

Messung Position	UD-Test Anhang Tab. C1	Thermoanalyse	H2-Messung	Schwingproben Anhang Tab. C2	Zugproben Anhang Tab. C3	PoDFA
Gießofen vor Impellern	3	-	-	19	9	-
Gießofen nach Impellern	3	-	-	20	15	-

Tabelle 3-3: Anzahl der Proben bei jeweiligen Probenahmepositionen des Vorversuches

3.2.3.2 1. Hauptversuch

Ziel war es den Istzustand in der Gießerei genau zu erfassen. Es wurde der Weg der Schmelze vom Einschmelzen bis zum Gussstück verfolgt und untersucht.

In Tabelle 3-4 befindet sich die Auflistung der Anzahl der genommenen Proben an den jeweiligen Positionen der Versuchsdurchführung.

Die Proben wurden in der Gießerei 1 genommen (Gießereiplan siehe Anhang Abbildungen A1). Erwähnenswert ist die schräge Stellung der Längsachse des Impellers in Gießerei 1.

Messung Position	UD-Test Anhang Tab. C7	Thermoanalyse Anhang Tab. C8	H2-Messung Anhang Tab. C9	Schwingproben Anhang Tab. C10	Zugproben Anhang Tab. C11	PoDFA Anhang Tab. C12
Gasschmelzofen	9	ja	ja	13	13	3
Transportpfanne	8	ja	ja	13	9	4
Gießofen vor Impellern	10	ja	ja	13	13	3
Gießofen nach Impellern	10	ja	ja	17	9	3
Gießwanne	6	-	-	-	-	-

Tabelle 3-4: Anzahl der Proben bei jeweiligen Probenahmepositionen des 1. Hauptversuches

Auf Grund von örtlichen Gegebenheiten konnten aus der Gießwanne nicht alle Proben genommen werden. Des weiteren müssen die Ergebnisse aus der Gießwanne wegen der niedrigen Schmelzetemperatur und -menge kritisch betrachtet werden.

3.2.3.3 2. Hauptversuch

Ziel war es Positionen schlechter Schmelzequalität, die im 1. Hauptversuch ermittelt wurden, zu verbessern. Der 2. Hauptversuch erfasste den Einfluss des Ofensumpfes des Gießofens auf die Schmelzequalität.

In Tabelle 3-5 befindet sich die Auflistung der Anzahl der genommenen Proben an den jeweiligen Positionen der Versuchsdurchführung.

Die Proben wurden in der Gießerei 1 genommen (Gießereiplan siehe Anhang Abbildungen A1). Erwähnenswert ist die schräge Stellung der Längsachse des Impellers in Gießerei 1.

Messung Position	UD-Test Anhang Tab. C20	Thermoanalyse	H2-Messung	Schwingproben Anhang Tab. C21	Zugproben Anhang Tab. C22	PoDFA Anhang Tab. C23
Transportpfanne	7	-	-	-	-	3
Gießofen vor Impellern mit Sumpf	6	-	-	10	11	3
Gießofen nach Impellern mit Sumpf	6	-	-	10	10	5
Gießofen vor Impellern ohne Sumpf	6	-	-	10	10	1
Gießofen nach Impellern ohne Sumpf	6	-	-	10	10	9

Tabelle 3-5: Anzahl der Proben bei jeweiligen Probenahmepositionen des 2. Hauptversuches

3.2.3.4 3. Hauptversuch

Ziel war es Positionen schlechter Schmelzequalität, die im 1. Hauptversuch ermittelt wurden, zu verbessern. Der 3. Hauptversuch erfasste den Einfluss der Rinne zum Befüllen des Gießofens auf die Schmelzequalität.

In Tabelle 3-6 befindet sich die Auflistung der Anzahl der genommenen Proben an den jeweiligen Positionen der Versuchsdurchführung.

Die Proben wurden in der Gießerei 3 genommen (Gießereiplan siehe Anhang Abbildungen A1). Erwähnenswert ist die gerade Stellung der Längsachse des Impellers in Gießerei 1.

Messung Position	UD-Test Anhang Tab. C29	Thermoanalyse	H2-Messung	Schwingproben Anhang Tab. C30	Zugproben Anhang Tab. C31	PoDFA Anhang Tab. C32
Transportpfanne	-	-	-	-	-	4
Gießofen vor Impellern mit Rinne	6	-	-	9	11	2
Gießofen nach Impellern mit Rinne	6	-	-	10	10	3
Gießofen vor Impellern ohne Rinne	7	-	-	10	11	3
Gießofen nach Impellern ohne Rinne	6	-	-	10	11	2

Tabelle 3-6: Anzahl der Proben bei jeweiligen Probenahmepositionen des 3. Hauptversuches

3.2.3.5 4. Hauptversuch

Ziel war es die Istsituation der Schmelzequalität einer LM25-Legierung zu erfassen. Des weiteren wurde in diesem Hauptversuch die LM25 mit einer AlSi7MgCu0,5 Legierung verglichen.

Die LM25 enthält auf Grund ihrer Legierung und Schmelzung im Induktionsofen ein höheres Maß an Oxiden und anderen Einschlüssen (siehe Tabelle 3-2).

In Tabelle 3-7 befindet sich die Auflistung der Anzahl der genommenen Proben an den jeweiligen Positionen der Versuchsdurchführung.

Die Proben wurden in der Gießerei 1 genommen (Gießereiplan siehe Anhang Abbildungen A1). Erwähnenswert ist die schräge Stellung der Längsachse des Impellers in Gießerei 1.

Messung Position	UD-Test Anhang Tab. C38	Thermoanalyse	H2-Messung	Schwingproben Anhang Tab. C39	Zugproben Anhang Tab. C40	PoDFA Anhang Tab. C41
Transportpfanne	6	-	-	10	10	6
Gießofen vor Impellern	6	-	-	10	10	5
Gießofen nach Impellern	7	-	-	10	10	7

Tabelle 3-7: Anzahl der Proben bei jeweiligen Probenahmepositionen des 4. Hauptversuches

3.3 Verwendete Gerätschaften

3.3.1 Unterdruck-Dichte-Prüfgerät

Das Unterdruck-Dichte-Gerät (UD-Gerät) (siehe Kapitel 2.5.1) ist in Abbildung 3-1 gezeigt. Es handelte sich um ein Gerät von BOC Edwards, CG 16K.

Die Schmelze wurde mit einem vorgewärmten Gießlöffel entnommen. Sie wurde aus dem Gasschmelzofen, bzw. der Transportpfanne, bzw. dem voll gefüllten Gießofen im oberen Bereich der Schmelze gezogen. Bei Entnahme aus dem Gießofen erfolgte zuerst ein Abkrätzen. Die Schmelze wurde in einen kleinen, vorgewärmten Stahltiegel gegossen. Es wurde ein Unterdruck von 80 mbar eingestellt, der 5 Minuten gehalten wurde.

Abbildung 3-1: UD-Gerät

3.3.2 Thermoanalyse-Prüfgerät

Ein Thermoanalyse-System TA 100 der MK Industrievertretungen GmbH wird verwendet. Abbildung 3-2 zeigt das Gerät das hier zum Einsatz kam.

Die Thermoanalyse dient der Erstellung von Abkühlkurven eines Stoffes. Sie kann auch zur quantitativen Analyse von Legierungen, sowie im Schmelz- und Gießereibetrieb zur Prüfung und Kontrolle bestimmter legierungstechnischer Qualitätsmerkmale benutzt werden. In dieser Arbeit wurde die Thermoanalyse angewendet, um die Gleichmäßigkeit der Kornfeinung bzw. Veredelung der Schmelze zu kontrollieren und somit Veränderungen auf die Schmelzequalität, und damit auch auf die mechanischen Eigenschaften, die daraus resultieren könnten, auszuschließen.

Wichtiger Ausgabewert bei der Thermoanalyse ist die Unterkühlung bei der Liquidustemperatur. Tritt eine solche Unterkühlung auf, bedeutet dies, dass Keimmangel herrscht und daher ein grobkörniges Gefüge zu erwarten ist. Geringe oder gar keine Unterkühlung besagt, dass Kristallisationskeime in genügender Zahl vorhanden sind und gute Kornfeinung resultieren wird. Die vom Thermoanalysegerät gemessene Unterkühlung bei Liquidustemperatur ist also ein Maß für den Kornfeinungsgrad [32].

Ein Ergebnis der thermischen Analyse ist die Ausgabe des Kornfeinungsgrades. Befindet sich dieser innerhalb vorgegebener Grenzen, so ist die Kornfeinung korrekt.

Die Schmelze wurde mit einem vorgewärmten Gießlöffel entnommen. Sie wurde aus dem Gasschmelzofen, bzw. der Transportpfanne, bzw. dem voll gefüllten Gießofen im oberen Bereich der Schmelze gezogen. Bei Entnahme aus dem Gießofen erfolgte zuerst ein Abkrätzen. Diese Schmelze wurde in einen kleinen Stahltiegel gegossen. Die Ausgabe der so erhaltenen Abkühlkurve erfolgt über einen Computer.

Mit Hilfe der Thermoanalyse konnte die richtig abgelaufene Kornfeinung bzw. Veredelung geprüft werden.

Abbildung 3-2: Thermoanalyse-Gerät

3.3.3 Französische Kokille

Die französische Kokille ist eine spezielle Zugproben-Kokille, die zum Abgießen von Probestäben für Zug- und Schwingfestigkeitsversuche dient.

Die französische Kokille wurde aus Warmarbeitsstahl (1.2343) gefertigt. Abbildung 3-3 zeigt die Abmessungen der Kokille. In Abbildung 3-4 ist die Kokille mit einem angebrachten Thermoelement und Temperaturmessgerät zu sehen, sodass der Temperaturverlauf gespeichert werden konnte.

Abbildung 3-3: Abmessungen französische Kokille

Proben wurden mit Hilfe eines vorgewärmten Gießlöffels entnommen. Sie wurde aus dem Gasschmelzofen, bzw. der Transportpfanne, bzw. dem voll gefüllten Gießofen im oberen Bereich der Schmelze gezogen. Bei Entnahme aus dem Gießofen erfolgte zuerst ein Abkrätzen.

Der Abguss der Probe erfolgte bei einer Kokillentemperatur von 300°C (+/- 5°C). Nach Erstarrung der Probe wurde diese aus der Kokille genommen, die Kokille mit Hilfe von Druckluft abgekühlt und dann bei 300°C die nächste Probe abgegossen.

Abbildung 3-4: Französische Kokille mit Temperaturmesseinrichtung

Um die Gleichmäßigkeit des Sekundärdendritenarmabstand (DAS) der genommenen Probestäbe zu gewährleisten und somit eine Beeinflussung der Ergebnisse der Probestabprüfungen von etwaigen Unterschieden des DAS auszuschließen, wurde auch eine Korngrößenuntersuchung des Gefüges durchgeführt. Die Untersuchung zeigte, dass die Unterschiede des DAS gering sind (siehe Diagramm 3-1), d.h. als konstant betrachtet werden können, und keine Auswirkungen auf Messergebnisse haben. Der DAS wurde in Schliffen, die von den Probestäben der Schwingversuche angefertigt wurden, unter Zuhilfenahme des Lichtmikroskops und der Auswertesoftware NIS Elements Br 2.30, Nikon, bestimmt.

Im Diagramm 3-1 wird der DAS gegen die ertragbare Schwingspielzahl aufgetragen.

Diagramm 3-1: Verlauf DAS und erreichte Schwingspielzahl (Proben aus 1.-4. Hauptversuch)

3.3.4 Wasserstoff-Messgerät

Bei dem verwendeten H₂-Messgerät handelte es sich um ALSPEK H von Foseco (Abb. 3-5). ALSPEK H ist ein Gerät zur direkten Wasserstoffmessung in Aluminiumschmelzen, das einen elektrochemischen Sensor zur Messung benutzt.

Abbildung 3-5: Alspek H, Foseco [33]

Die Messlanze tauchte dabei in die Schmelze. In der Lanze befindet sich ein elektrochemischer Sensor. Zusätzlich wurde auch die Temperatur gemessen. Die Messergebnisse wurden über einen Bildschirm am Anzeigegerät ausgegeben.

Es war beim Versuch möglich, sowohl Einzelwerte zu messen als auch Dauermessungen/Echtzeitmessungen durchzuführen.

3.3.5 **PoDFA (Porous Disc Filtration Analysis)**

Die Abbildung 3-6 zeigt die PoDFA-Einrichtung (siehe auch Kapitel 2.5.2).

Es wurden Proben von ca. 1,4 kg flüssigen Metall in einen Feuerfesttiegel gefüllt, in dessen Boden sich ein Aluminiumoxidfilter mit definierter Porengröße befand. Der Tiegel wurde in eine Druckkammer gestellt und das Metall wurde durch Aufbringen eines geringen Überdrucks durch den Filter gedrückt. Nach Filtrieren von 1 - 1,2 kg oder nach Einfrieren des Metalls wurde der Druck abgebaut, der Tiegel entnommen, und nach dem Abkühlen wurde das Restmetall mitsamt Filter aus dem Tiegel entfernt. [34]

Die Bestimmung der Ergebnisse aus Filter und Restmetall erfolgte metallographisch.

Abbildung 3-6: Überblick PoDFA-Einrichtung

3.3.6 Wärmebehandlung

Die Zugfestigkeits- und Schwingfestigkeitsproben wurden vor ihrer Prüfung einer T6 Wärmebehandlung zugeführt. Die Wärmebehandlung bestand aus Lösungsglühen, Luftabschrecken und Auslagern. Es wurde ein eigenes Wärmebehandlungsprogramm zur Gewährleistung der Reproduzierbarkeit erstellt.

Um die regelmäßige Temperaturführung über alle Proben zu kontrollieren, wurden Thermoelemente an einigen Proben angebracht. Im Diagrammteil des Anhanges befinden sich unter Nr. B1, B2 und B3 die Temperaturverläufe der Wärmebehandlungen von Vorversuch, 1., 2. und 3. Hauptversuch. Diese zeigen, dass die Verläufe kaum Abweichungen aufweisen. Die Wärmebehandlung wurde für den 4. Hauptversuch ebenso durchgeführt. Die Thermoelemente wurden längs in die Probestäbe gesteckt, die Tiefe der Bohrung hierfür betrug 17 mm.

3.3.7 Schwingfestigversuche

Die Schwingfestigkeit ist eine immer wichtiger werdende Größe bei der Beurteilung der Qualität eines Gussteiles.

Einen wesentlichen Einfluss auf den Schwingversuch haben neue Oxide (Bifilme) sowie große Einschlüsse. Diese Fehler haben einen dominierenden Einfluss auf die Schwing-festigkeit [35,36].

Die Schwingversuche wurden im Schwinglabor des ÖGI (Österreichisches Gießerei-Institut Leoben) nach akkreditiertem Prüfverfahren (nach DIN 50100) durchgeführt. Bei der verwendeten Maschine handelte es sich um eine Resonanzprüfmaschine der Firma Russenberger Prüfmaschinen AG, Bauart Mikrotron 9201/129.

Zur Prüfung der Schwingfestigkeitsproben wurden Zug-Schwell-Prüfungen durchgeführt. Das Spannungsverhältnis R betrug +0,05. Die Versuche erfolgten bei Raumtemperatur. Das Ergebnis der Prüfung zeigte die erreichte Schwingspielzahl N beim Bruch bzw. die Durchläufer (=10.000.000 Schwingspiele) bei bestimmtem Lastniveau.

Für die Auswertung wurde eine Log-Normalverteilung durchgeführt.

Es wurde für Analysen das Computerprogramm Visual-XSel 9.0 verwendet.

Diagramm 3-2 zeigt als Beispiel das Wahrscheinlichkeitsnetzdiagramm der Proben des 1. Hauptversuches (Position Gasschmelzofen, σ_{max} =160MPa). Auf der y-Achse befindet sich die Ausfallswahrscheinlichkeit (siehe Formel (11)), auf der x-Achse ist die Schwingspielzahl ersichtlich.

Diagramm 3-2: Wahrscheinlichkeitsnetzdiagramm 1. Hauptversuch Gasschmelzofen

Aus dem Wahrscheinlichkeitsnetz der Log-Normalverteilung lassen sich N90%, N50% und N10% von bestimmten Bauteilen oder Komponenten ablesen.

Wichtige Kenngrößen der Log-Normalverteilung:

- N90%: 90 % der Proben überleben die gegebene Belastung mit mindestens dieser Schwingspielzahl.
- N50%: 50 % der Proben überleben die gegebene Belastung mit mindestens dieser Schwingspielzahl.
- N10%: 10 % der Proben überleben die gegebene Belastung mit mindestens dieser Schwingspielzahl.

Die Ausfallswahrscheinlichkeit ergibt sich aus der Überlebenswahrscheinlichkeit, wie in Formel (11) dargestellt.

Ausfallswahrscheinlichkeit [%] = 100 - Überlebenswahrscheinlichkeit [%] (11)

Streuspanne TN bzw. Standardabweichung σ der Log-Normalverteilung ergeben sich aus Formel (12) bzw. (13):

TN = N90% / N10%	(12)

 $\sigma = (1/(n-1) * \sum (\log Ni - \log N50\%)^2)^{0.5}$ (13)

3.3.8 Zugprüfmaschine

Die mechanischen Kennwerte sind einfache und schnell zu bestimmende Größen im Zugversuch. Einfluss auf den Zugversuch haben insbesondere alte harte Oxide (Einschlüsse) sowie größere Poren.

Die Zugprüfungen wurden im Labor der Fa. Nemak Linz durchgeführt. Bei der verwendeten Zugprüfmaschine handelte sich um eine Zwick/Roell Z050. Die gefertigten Zugproben wiesen einen Durchmesser von 10 mm und eine Anfangsmesslänge von 50 mm auf. Als Prüfnorm wurde die EN 10002 angewendet. Die Bestimmung der Bruchdehnung A₅ erfolgte über die Traversenbewegung.

Die Prüftemperatur war Raumtemperatur.

Bestimmt wurden im Zugversuch:

- Elastizitätsmodul,
- 0,2%-Dehngrenze R_{p0,2},
- Zugfestigkeit R_m und
- Bruchdehnung A₅.

Für die Auswertung der Gussqualität nach Gesichtspunkten von mechanischen Kennwerten wurde unter anderem der Qualitätsindex Q herangezogen. Dieser wird für Aluminiumlegierungen nach folgender Formel (14) berechnet [37]:

$$Q = R_m + k * lg(A)$$
(14)

Der Faktor k ist eine Konstante und beträgt für AlSi-Legierungen 150.

Q reagiert empfindlich auf die Erstarrungsgeschwindigkeit, den Gasgehalt, die Schwindungsporosität und die Anwesenheit von Einschlüssen [37]. Das heißt, je höher der Wert für Q ist, desto besser ist die Schmelzequalität.

3.3.9 Lichtmikroskopie

Für lichtmikroskopische Aufnahmen wurden Schliffe mit handelsüblichen Schleifmitteln hergestellt. Die Proben wurden auf einem Nikon MM40 Lichtmikroskop betrachtet und gegebenenfalls mit der Bildanalyse NIS Elements Br 2.30, Nikon, bearbeitet.

3.3.10 Computertomographie

Untersuchungen zur Größenverteilung von Poren in UD-Proben wurden mittels CT bestimmt. Hierfür wurden Messungen am ÖGI (Österreichisches Gießerei-Institut Leoben) mit einem Phonix x-ray-System, V-Tomex und an der FH Wels (FH OÖ F&E GmbH, Computer-Tomographie, Campus Wels) mit einem Wälischmiller, Rayscan 250XE durchgeführt. Beide Messungen wurden mit einem Matrixdetektor aufgenommen. Der prinzipielle Aufbau dieser Anlagen ist in Abbildung 3-7 zu erkennen. Unterschiedliche Messergebnisse resultieren aus den Einstellungen der jeweiligen CT. Diese sind die Definition der Grenzfläche zwischen Material und Probe, sowie die minimal vernachlässigbare Größe einer Pore.

Abbildung 3-7: prinzipieller Aufbau einer CT mit Flächendetektor [38]

3.3.11 Rasterelektronenmikroskop

Für die Untersuchungen der Bruchoberflächen von Schwing- und Zugproben wurde ein Rasterelektronenmikroskop (REM) benutzt. Dabei handelte es sich um ein FEI Quanta 200 3D mit Dual-Strahl (Ionen-Eisen- und Elektronenstrahl), Spannung 20 kV. Aufnahmen wurden mit dem Back-Scattered-Detector (BSD) und dem Everhart Thornley Detector (ETD) durchgeführt.

Zusätzlich war auch eine Röntgenmikroskopanlage (EDX) von Oxford Instrument, Programm Inca, zur Analyse vorhanden.

4 Auswertung

4.1 Vorversuch

4.1.1 UD-Proben

Mit den UD -Proben wurden 2 verschiedene Auswertungen durchgeführt:

- bildanalytische Auswertung der Poren
- Computertomographie

4.1.1.1 Bildanalytische Auswertung der Poren: erweiterter UD-Test

Von je einer Hälfte der Probe wird ein metallographischer Schliff angefertigt (siehe Abb. 4-1), der im Lichtmikroskop Nikon MM40 betrachtet wird.

Abbildung 4-1: Schnittführung UD-Probe

Da der Probenausschnitt, der mit dem Objektiv erfasst wird, wesentlich kleiner ist als der Querschliff der UD-Probe wird mit der Fotoeinrichtung Sony DFW-X700 ein Mosaik-Bild der gesamten Probe erstellt (Beispiel siehe Abb. 4-2).

Abbildung 4-2 zeigt ein typisches Schliffbild einer UD-Probe (Probe 1_10a), diese wurde nach dem Impellern entnommen. Sie hat bezogen auf die anderen Proben, eher eine niedrige Porenanzahl. In der Mitte des oberen Drittels ist eine Anhäufung von Porositäten zu erkennen. Dies ist der Makrolunker, der durch Einfallen auf Grund der mangelnden Speisung entstanden ist.

Im Abbildungsteil des Anhanges werden alle Mosaikbilder der Proben des Vorversuches in Abbildung A2 bis A7 gezeigt.

Abbildung 4-2: Mosaikbild Probe Nr. 1_10a

Das Bild wird dem Programm NIS Elements Br 2.30, Nikon zugeführt.

Es wird ein Messrahmen in das Bild eingezeichnet, innerhalb dieses Rahmens misst und berechnet das Programm (siehe Abb. 4-3).

Abbildung 4-3: Bild Probe Nr. 1_10a mit rot eingezeichnetem Messrahmen

Das Bildausarbeitungsprogramm erkennt die Anzahl der Poren. In der untenstehenden Auswertung dieser Daten wurden jedoch nur jene Poren gewertet, die bestimmte Kriterien erfüllen:

- Rundheitskriterium: Die Rundheit der Poren (Circularity) muss mind. 0,5 betragen (1,0 höchst möglicher Wert, entspricht Kreis). Somit fallen Poren, die nicht durch das Gas kommen und daher auch nicht annähernd kugelrund sind, weg.
- Mindestdurchmesserkriterium: Der Durchmesser der Pore muss mindestens 60 µm sein. Dies entspricht dem DAS. Somit entfallen die Mikrolunker.
- Maximaldurchmesserkriterium: Die Fläche der Pore muss kleiner sein als 7 mm², dies entspricht einem Durchmesser von ca. 3 mm. Somit entfallen die Makrolunker, die durch die Einfallserstarrung entstanden.

Die Zusammenfassung der bildanalytischen Auswertung der UD-Proben ist in Tab. 4-1 ersichtlich. Die Tabelle zeigt deutlich, dass die Anzahl der Poren pro Fläche der Proben des Gießofens vor Impellern höher ist als die Anzahl des Gießofens nach Impellern. Auch die Porosität der Proben vor Impellern ist höher als jene der Proben nach Impellern.

Die genaue Aufstellung der Auswertung des Vorversuches befindet sich im Tabellenteil des Anhanges in Tabelle C4.

Tabelle 4-1: Ergebnisse bildanalytische Auswertung UD-Proben Vorversuch Zusammenfassung

Position	Anzahl der Poren	Fläche der Probe [cm ²]	Poren/cm ²	Porosität [%]
Gießofen vor Impellern	432	11,4	38	12,2
Gießofen nach Impellern	338	10,1	33	2,7

Im Diagramm 4-1 ist der Verlauf der Porendichte über die Abstehzeit nach Ende des Impellerns aufgetragen. Es ist ersichtlich, dass die Porenanzahl mit steigender Abstehzeit abnimmt. Jedoch kann die Porengröße durch Gasaufnahme steigen, dies beeinflusst die mechanischen Kennwerte.

Diagramm 4-1: Verlauf der Porendichte über die Abstehzeit nach Ende Impellern

Im Diagramm 4-2 ist die typische Größenverteilung eines Schliffes der UD-Proben dargestellt. Es ist deutlich zu erkennen, dass die Anzahl der Poren mit zunehmendem Durchmesser sinkt. Die meisten Poren sind jene die einen Durchmesser nahe 60 µm haben.

Diagramm 4-2: Größenverteilung der UD-Probe der Poren, Probe 1_06 (im Querschliff)

4.1.1.2 Computertomographie CT

Die CT wurden von 2 verschiedenen Instituten durchgeführt:

- ÖGI, Österreichisches Gießerei-Institut Leoben (siehe Kapitel 3.3.9.1)
- FH OÖ F&E GmbH, Computer-Tomographie, Campus Wels (siehe Kapitel 3.3.9.2)

Es wurden idente Proben von den Instituten ausgewertet. Es handelte sich um die Probe Nr. 1_6 (Gießofen vor Impellern) und Probe Nr. 1_10a (Gießofen nach Impellern).

Der Vergleich der Tomographien der beiden Institute ist schwierig, da die Anlagen mit verschiedenen Parametereinstellungen der CT gefahren werden, die sehr komplex und unterschiedlich sind.

Beide Anlagen erkennen Poren, jedoch sind die Größenverteilungen unterschiedlich. Das jeweilige Bearbeitungsprogramm der Auswertung der CT erkennt die Anzahl der Poren. In der untenstehenden Auswertung dieser Daten wurden jedoch nur jene Poren gewertet, die bestimmte Kriterien erfüllen. Diese Kriterien lauten:

Rundheitskriterium: Die Flächen des Porenschnittes in x-, y- und z-Richtung (PX, PY, PZ) dürfen in ihrem Verhältnis zueinander nicht mehr als um 50% kleiner, bzw. 100% größer sein.

Somit fallen Poren die nicht durch das Gas kommen, und daher auch nicht annähernd kugelrund sind, weg.

 Maximaldurchmesserkriterium: Das Volumen der Pore muss kleiner als 14 mm³ sein, dies entspricht einem Durchmesser von ca. 3 mm.

Somit fällt der Makrolunker, der durch die Erstarrung entstanden ist, weg.

• Qualitätskriterium: Das Qualitylimit (sofern vorhanden) muss mind. 1 betragen.

Volumen der Probekörper:

- 1_6: 39,33 cm³
- 1_10a: 35,26 cm³

Die Zusammenfassung der Auswertung der Probe 1_6 der CT des ÖGI befindet sich in Tabelle 4-2, die der FH Wels in Tabelle 4-3. Tabelle 4-2 weist eine höhere Anzahl an detektierten Poren auf als Tabelle 4-3.

Tabelle 4-2: Auswertung ÖGI: Probe 1_6

	Anzahl	Anzahl/cm ³
Poren insgesamt	9013	229,2
Poren die Kriterien nicht erfüllen	1148	29,2
Poren die Kriterien erfüllen	7865	200,0

Tabelle 4-3: Auswertung FH Wels: Probe 1_6

	Anzahl	Anzahl/cm ³
Poren insgesamt	4776	121,4
Poren die Kriterien nicht erfüllen	176	4,5
Poren die Kriterien erfüllen	4600	117,0

Die Zusammenfassung der Auswertung der Probe 1_10a der CT des ÖGI zeigt Tabelle 4-4, die der FH Wels Tabelle 4-5. Tabelle 4-4 weist eine höhere Anzahl an detektierten Poren auf als Tabelle 4-5.

Tabelle 4-4: Auswertung ÖGI: Probe 1_10a

	Anzahl	Anzahl/cm ³
Poren insgesamt	2657	75,3
Poren die Kriterien nicht erfüllen	538	15,3
Poren die Kriterien erfüllen	2119	60,1

Tabelle 4-5: Auswertung FH Wels: Probe 1_10a

	Anzahl	Anzahl/cm ³
Poren insgesamt	1783	50,6
Poren die Kriterien nicht erfüllen	7	0,2
Poren die Kriterien erfüllen	1776	50,4

In Diagramm 4-3 wird das Ergebnis der Anzahl der Poren (die Kriterien erfüllen) pro cm³ des ÖGI und der FH Wels graphisch dargestellt. Dieses zeigt, dass bei den Messungen des ÖGI mehr Poren detektiert wurden als bei den Messungen der FH-Wels. Des weiteren zeigt sich bei beiden eine Verringerung der Porenanzahl nach dem Impellern verglichen mit vor dem Impellern.

Diagramm 4-3: Vergleich Porenanzahl/cm³ ÖGI und FH Wels

Diagramm 4-4 zeigt die Porengrößenverteilung der Probe 1_06 (nach den Werten des ÖGI). Die Größenverteilung zeigt hier, dass die meisten Poren einen Durchmesser ca. 600 µm haben.

Diagramm 4-4: Größenverteilung des CTs der Poren in Probe 1_06 (im Volumen)

4.1.2 Schwingfestigkeitsproben

Es wurden je 9 Proben, die vor dem Impellern aus dem Gießofen gezogen wurden, mit einer Lasthöhe von σ_{max} = 150 MPa (=Oberspannung) bzw. σ_{max} = 105 MPa bis zum Bruch belastet. Weitere 9 Proben, die nach dem Impellern gezogen wurden, wurden mit einer Lasthöhe von σ_{max} = 150 MPa bis zum Bruch beaufschlagt. 3 Proben, die nach dem Impellern gezogen wurden, wurden mit σ_{max} = 105 MPa belastet. Dabei zeigte sich, dass eine Prüfung bei σ_{max} = 160 MPa sinnvoll ist. Daher wurden 7 weitere Proben, die ebenfalls nach dem Impellern gezogen wurden, bei σ_{max} = 160 MPa geprüft.

Für die Auswertung wurde eine Log-Normalverteilung aufgestellt (siehe auch Kapitel 3.3.7). Im Anhang befinden sich die Diagramme Nr. B4 bis B7, die die Wahrscheinlichkeitsnetze der Log-Normalverteilung zeigen.

In Tabelle 4-6 sind die Überlebenswahrscheinlichkeiten der Proben des Vorversuches aus den Positionen Gießofen vor und nach Impellern bei verschiedenen Oberspannungen angegeben. Bei einer Oberspannung von 105 MPa wurden nur Durchläufer (d.h. Schwingspielzahl N = 10.000.000) erzielt, auch bei einer Oberspannung von 150 MPa wurden einige Durchläufer gemessen.

Die Versuchsdurchführung bei den 3 verschiedenen Lastniveaus zeigt, welche Oberspannung am besten geeignet ist, um das Optimum zwischen repräsentativer Aussagekraft und niedriger Schwingspielzahl des Messergebnisses zu finden. Die erreichten Schwingspielzahlen bei den verschiedenen Lastniveaus/Oberspannungen sind im Tabellenteil des Anhanges in Tabelle C5 aufgelistet.

Position	Ober- spannung [MPa]	N10%	N50%	N90%	Streu- spanne TN	Standard- abweichung σ
Gießofen vor Impellern	150	2.500.000	225.000	31.000	0,12	0,458
Gießofen vor Impellern	105	10.000.000	5.700.000	1.600.000	0,16	0,195
Gießofen nach Impellern	150	4.000.000	1.400.000	505.000	0,13	0,119
Gießofen nach Impellern	105	10.000.000	10.000.000	10.000.000	1,00	0,000
Gießofen nach Impellern	160	2.300.000	1.050.000	420.000	0,18	0,086

Tabelle 4-6: Zusammenfassung der Kenndaten in Log-Normalverteilung des Vorversuches

4.1.3 Zugfestigkeitsproben

Die Proben wurden im statischen Zugfestigkeitsversuch geprüft. Die Zugprüfmaschine sowie Grundlegendes zur Zugprüfung werden in Kapitel 3.3.8 näher beschrieben.

Als weiterer Parameter der Zugversuchsauswertung wird die Bruchdehnung A5 benutzt.

Die Auflistung der wichtigsten statistischen Kenngrößen für die beiden verschiedenen Positionen Gießofen vor Impellern und Gießofen nach Impellern für A_5 befindet sich in Tabelle 4-7. Es ist in dieser Tabelle ersichtlich, dass die A_5 für den Gießofen nach Impellern viel höher ist als für den Gießofen vor Impellern.

Die detaillierte Aufstellung der Versuchsergebnisse des Zugversuches finden sich im Tabellenteil des Anhanges in Tabelle C6 wieder.

	Gießofen vor Impellern	Gießofen nach Impellern
Mittelwert [%]	3,7	5,5
Standardabweichung	1,5	2,3
min. Wert [%]	1,2	2,1
Median [%]	3,2	5,7
max. Wert [%]	5,5	8,8

				-	-
Tabelle	4-7:	Statistische	Kennarößen	für	A
100010		010100110	i torinigi olooni		

Diagramm 4-5 zeigt den Verlauf von A₅ über die Abstehzeit nach dem Ende des Impellerns. Die Messpunkte lassen keine Aussagen über Tendenzen zu.

Diagramm 4-5: Verlauf A₅ über Abstehzeit

In Diagramm 4-6 befindet sich das Qualitätsindex-Diagramm. Es ist ersichtlich, dass die Messpunkte für den Gießofen nach Impellern bei höheren Bruchdehnungen liegen und tendenziell auch bei höheren Zugfestigkeiten.

Diagramm 4-6: Qualitätsindex-Diagramm für Vorversuch

4.1.4 Rasterelektronenmikroskop

Es wurden Untersuchungen einiger der Bruchflächen von Ausreißern am REM (siehe Kapitel 3.3.11) durchgeführt.

Es wird festgestellt, dass die Bruchoberflächen der Proben meist ähnlich für die jeweiligen Zug- bzw. Schwingproben aussehen. Die gefundenen intermetallischen Phasen (Mn-Fe-, Sr-, sowie Pb-Phase) sind homogen über die Oberfläche verteilt und sind im Abbildungsteil des Anhangs ersichtlich (Nr. A8-A11).

4.1.4.1 Bruchausgang von Schwingproben

Die Bruchfläche teilt sich in 2 Bereiche:

- Bereich 1: Von hier geht der Bruch aus. Charakteristisch sind glatte Flächen (Facetten); Schwingbruch [39].
- Bereich 2: Die Struktur ist wabenförmig. Dies ist der duktile Gewaltbruchanteil.

Bereich 1 ist in den untersuchten Proben viel kleiner als Bereich 2. Abbildung 4-4 zeigt eine schematische Skizze. Abbildung 4-5 zeigt den Bereich 1. In Abbildung 4-6 sieht man Bereich 2, mit der typischen Wabenstruktur einer Bruchfläche eines Materials mit duktilem Bruchverhalten.

Bei Proben mit niedrigen Schwingspielzahlen ist der Bereich 1 größer als bei Proben mit hohen erreichten Schwingspielen.

Abbildung 4-4: Skizze Bruchoberfläche

Abbildung 4-5: Probe 2_20, ETD, glatte Flächen, Vergr. 800x, Schwingbruch

Abbildung 4-6: Probe 2_27, ETD, Waben-Struktur, Vergr. 800x, duktiler Restbruch

Im Fall der Probe 2_42 wurden viele Mikrolunker über den Querschnitt verteilt gesehen. Diese sind für die extrem niedrige erreichte Schwingspielzahl verantwortlich. Ein Bild hierzu befindet sich in Abb. 4-7.

Abbildung 4-7: Probe 2_42, große Anhäufung von Mikrolunkern über die gesamte Oberfläche verteilt, Vergr. 400x

Generell kann festgehalten werden, dass an den Bruchoberflächen der Schwingproben oftmals Poren gefunden werden.

4.1.4.2 Bruchausgang von Zugproben

Bei den Zugproben wird unterschieden zwischen

- Zugproben mit Einschluss in der Bruchoberfläche
- Zugproben ohne Einschluss in der Bruchoberfläche

Die Zugproben mit Einschluss haben deutlich schlechtere Zugprüfungsergebnisse. Bei allen Proben mit überdurchschnittlich schlechtem Ergebnis konnte mit Hilfe des REM ein Einschluss ausgemacht werden (Bsp. siehe Abbildung 4-8 und 4-9).

Bei den Einschlüssen handelt es sich um Oxide, weitere vorhandene Elemente in den Einschlüssen sind Mg und Al. Die genaue EDX-Analyse befindet sich Tabelle 4-8 (Abbildung 4-10 zeigt die exakte Position der EDX-Analyse).

Abbildung 4-8: Probe 3_18 Einschluss, BSD, Vergr. 100x

Abbildung 4-9: Probe 3_18 Einschluss, ETD, Vergr. 100x

Element	Gewichts-%	Atom-%
СК	7,07	13,31
ОК	17,44	24,65
Mg K	2,49	2,32
AI K	69,39	58,15
Si K	1,34	1,08
Cu K	0,40	0,14
Sr L	0,59	0,15
Ag L	0,46	0,10
W M	0,83	0,10

Tabelle 4-8: EDX-Analyse Einschluss (Spektrum 1: siehe Abb. 4-10)

Abbildung 4-10: Position der EDX-Analyse (Spectrum 1)

4.1.5 Schlussfolgerungen Vorversuch

- UD-Proben: es zeigte sich, dass für die weiteren Hauptversuche je zu bestimmendem Wert mindestens 4 Proben genommen werden müssen.
- Schwingversuchen: es zeigte sich, dass die maximale Oberspannung mit 160 MPa festgelegt werden soll. Des weiteren müssen je zu bestimmendem Wert mindestens 10 Proben genommen werden.
- Zugproben: es zeigte sich, dass auf Grund der starken Streuung je zu bestimmendem Wert mindestens 10 Proben genommen werden müssen.

4.2 1. Hauptversuch: Istsituation

4.2.1 UD-Proben

Mit den UD -Proben werden 2 verschiedene Auswertungen durchgeführt:

- Dichte-Index
- bildanalytische Auswertung der Poren

4.2.1.1 Dichte-Index

In Tabelle 4-9 finden sich eine Zusammenfassung in der die Mittelwerte der Dichte-Indizes der genommenen Proben je Position aufgelistet sind. Tab. 4-9 zeigt deutlich, dass der Dichte-Index von Position zu Position geringer wird. Begründen lässt sich dies dadurch, dass die Schmelze aus dem Gasschmelzofen mit H₂ übersättigt (relativ zur Umgebung) ist und diesen durch bloßes Abstehen an die Umgebung abgeben kann. Es kommt zu einer wesentlichen Reduzierung des Dichte-Index im Gießofen durch den Vorgang des Impellerns. Der Dichte-Index an der Position Gießwanne ist kritisch zu betrachten (siehe auch Kapitel 3.2.3.2).

Position	Dichte-Index [%]	Standardabweichung
Gasschmelzofen	10,29	1,56
Transportpfanne	8,00	1,94
Gießofen vor Impellern	8,65	1,36
Gießofen nach Impellern	1,14	0,20
Gießwanne	1,86	0,40

Tabelle 4-9: Mittelwerte der Dichte-Indizes

Tabelle C13 im Tabellenteil des Anhanges zeigt die gesamte Aufstellung der genommenen UD-Proben mit den gemessenen Dichte-Indizes.

4.2.1.2 Bildanalytische Auswertung der Poren

Tabelle 4-10 zeigt eine Zusammenfassung der bildanalytischen Auswertung (siehe auch Kapitel 4.1.1.1) der Poren. Hier sind die Mittelwerte je Position aufgelistet. Es ist ersichtlich, dass die Anzahl der Poren je Fläche in der Transportpfanne am geringsten ist. Der größte Wert ergibt sich an der Position Gießofen vor Impellern.

Position	Anzahl der Poren	Fläche der Probe [cm²]	Poren/cm ²	Porosität [%]
Gasschmelzofen	290	10,13	28	14,9
Transportpfanne	235	11,09	21	12,4
Gießofen vor Impellern	436	10,88	40	12,5
Gießofen nach Impellern	261	9,84	26	2,7
Gießwanne	263	8,52	31	4,4

Tabelle 4-10: Mittelwerte der bildanalytischen Auswertung

Die Detailaufstellung der Auswertung des 1. Hauptversuches befindet sich in Tabelle C14 im Tabellenteil des Anhanges.

Im Abbildungsteil des Anhanges werden alle Mosaikbilder der Proben des 1. Hauptversuches in Abbildung A12 bis A42 gezeigt.

4.2.2 Thermische Analyse

Alle Kornfeinungswerte der Thermoanalysen befinden sich innerhalb der vorgegebenen Grenzen. Eine genaue Aufstellung der gemessenen Kornfeinungswerte befinden sich im Anhang im Tabellenteil in Tabelle C15. Die zugehörigen Abkühlungskurven sind im Diagrammteil des Anhangs ersichtlich (Nr. B8 bis B13).

4.2.3 H₂-Messung

Tabelle 4-11 zeigt eine Zusammenfassung der Mittelwerte der H₂-Gehalte pro Position. Es ist aus dieser Tabelle ersichtlich, dass die H₂-Gehalte von Position zu Position sinken. Die Erklärung hierfür wurde im Kapitel 4.2.1.1 bereits erläutert.

Position	H ₂ Gehalt [ml/100g]
Gasschmelzofen 1	0,51
Transportpfanne	0,40
Gießofen vor Impellern	0,31
Gießofen nach Impellern	0,11

Tabelle 4-11: H₂-Gehalt der Schmelze pro Position 1. Hauptversuch Zusammenfassung

Die detaillierte Aufstellung der Werte der H_2 -Messung sind im Anhang im Tabellenteil in Tabelle C16 ersichtlich. Die H_2 /Zeit-Verläufe des Gießofens die bei den Dauermessungen bestimmt wurden, befinden sich im Diagrammteil des Anhangs (Nr. B14 bis B17).

4.2.4 Schwingfestigkeitsproben

Die Oberspannung σ_{max} beträgt für alle zu prüfenden Proben 160 MPa.

Für die Auswertung wurde eine Log-Normalverteilung aufgestellt (siehe auch Kapitel 3.3.7). Im Anhang befinden sich die Diagramme Nr. B18 bis B21, die die Wahrscheinlichkeitsnetze der Log-Normalverteilung zeigen.

In Tabelle 4-12 sind die Überlebenswahrscheinlichkeiten der Proben des 1. Hauptversuches der 4 Positionen angegeben. Es ist deutlich ersichtlich, dass die Überlebenswahrscheinlichkeiten für die Proben des Gießofens nach Impellern am größten sind.

Position	N10%	N50%	N90%	Streuspanne TN	Standard- abweichung σ
Gasschmelzofen	460.000	325.000	250.000	0,543	0,101
Transportpfanne	605.000	420.000	280.000	0,463	0,120
Gießofen vor Impellern	360.000	290.000	220.000	0,611	0,077
Gießofen nach Impellern	2.005.000	820.000	350.000	0,175	0,344

Tabelle 4-12: Zusammenfassung der Kenndaten in Log-Normalverteilung des 1. Hauptversuches

Eine detaillierte Aufstellung der erreichten Schwingspielzahlen des 1. Hauptversuches sind in Tabelle C17 im Tabellenteil des Anhanges aufgelistet.

4.2.5 Zugfestigkeitsproben

Die Auflistung der wichtigsten statistischen Kenngrößen (Auswertung siehe auch Kapitel 3.3.8) für die 4 Positionen für A_5 befindet sich in Tabelle 4-13. Der Mittelwert der A_5 ist für die Positionen Transportpfanne und Gießofen nach Impellern am höchsten.

Die Ergebnisse des Zugversuches des 1. Hauptversuches finden sich in Tabelle C18 im Tabellenteil des Anhanges wieder.

Tabelle 4-13: Statistische	Kenngrößen für A ₅
----------------------------	-------------------------------

	Gasschmelz- ofen	Transport- pfanne	Gießofen vor Impellern	Gießofen nach Impellern
Mittelwert [%]	4,1	5,3	3,6	5,3
Standardabweichung	1,0	0,7	0,9	1,2
min. Wert [%]	2,4	4,0	2,0	3,7
Median [%]	4,3	5,4	3,7	4,8
max. Wert [%]	5,4	6,3	4,9	7,1

Diagramm 4-7 zeigt den Verlauf von A₅ über die unterschiedlich langen Abstehzeiten nach Ende des Impellerns. Es ist eine leichte Tendenz der Bruchdehnungen zu höheren Werten bei längerer Abstehzeit zu erkennen.

Diagramm 4-7: Verlauf A₅ über Abstehzeit nach Impellern

In Diagramm 4-8 befindet sich das Qualitätsindex-Diagramm. Dieses zeigt, dass die Werte des Gießofens vor Impellern bei besonders niedrigen Bruchdehnungen und Zugfestigkeiten liegen. Die höchsten Werte der Bruchdehnungen und Zugfestigkeiten weisen die Proben des Gießofens nach Impellern auf.

Diagramm 4-8: Qualitätsindex-Diagramm für 1. Hauptversuch

Diagramm 4-9 zeigt den Zusammenhang des Qualitätsindex mit N90% an den verschiedenen Positionen. Der Zusammenhang ist nicht linear.

Diagramm 4-9: Zusammenhang Qualitätsindex und N90% je Position für 1. Hauptversuch

4.2.6 PoDFA-Messung

Die Zusammenfassung der Mittelwerte je Position der PoDFA-Messung ist in Tabelle 4-14 ersichtlich. Sie zeigt, dass die Summe der Verunreinigungen im Gießofen nach Impellern deutlich am größten ist, die Summe der Verunreinigungen ist in der Transportpfanne am niedrigsten.

|--|

Position	Mittelwert Summe [mm²/kg]
Gasschmelzofen	0,601
Transportpfanne	0,065
Gießofen vor Impellern	1,628
Gießofen nach Impellern	2,079

Die detaillierte Aufstellung der Ergebnisse der PoDFA-Messung des 1. Hauptversuches finden sich in Tabelle C19 im Tabellenteil des Anhanges wieder.

Diagramm 4-10: Ergebnisse PoDFA-Messung [40]

Diagramm 4-10 ist die graphische Darstellung der Werte aus Tabelle C19. Dieses zeigt deutlich, dass die Werte der Verunreinigungen in den Messungen der Transportpfanne am

niedrigsten ist. Der Hauptbestandteil der Verunreinigungen sind Al-Oxid, Al-Karbid und Spinell.

Es wurde von jeder Probe ein repräsentatives Mikrofoto bei 100-facher Vergrößerung angefertigt. Diese Bilder befinden sich im Abbildungsteil des Anhanges (A43-A46).

4.2.7 Rasterelektronenmikroskop

4.2.7.1 Bruchausgang von Schwingproben

Es wurden die Proben 2_111 und 2_112 untersucht. Diese zeigten im Unterschied zu den Proben des Vorversuches eindeutig einen Bruchausgang von einem Einschluss (Abb. 4-11). Um diesen befindet sich der flache Bereich (= Bereich 1) der Oberfläche. Wie eine Analyse des Bruchausganges ergab, handelt es sich dabei um ein (altes) Oxid.

Abbildung 4-11: Probe 2_111, BSD, Bruchausgang, Vergr. 100x

Die Probe mit der geringeren ertragbaren Schwingspielzahl (2_111) hat einen größeren flachen Bereich als die Probe mit hoher Schwingspielzahl (2_112).

Der Bruchauslöser der Probe 2_111 und 2_112 unterscheidet sich damit deutlich von den anderen Bruchauslösern der Schwingproben, denn diese waren üblicherweise Poren.

4.2.7.2 Bruchausgang von Zugproben

Ein Beispiel für einen Einschluss in der Bruchoberfläche befindet sich im Anhang im Abbildungsteil A47-A48. Es handelt sich mehrheitlich um harte nichtmetallische Einschlüsse wie auch schon in 4.1.4.2 ersichtlich.

4.2.8 Schlussfolgerungen 1. Hauptversuch

Es zeigte sich, dass die Ergebnisse der Transportpfanne meist sehr gute Wert aufweisen (siehe PoDFA, A₅, Porenanzahl). Auf Grund dieser Erkenntnis wurde beschlossen in einem weiteren Hauptversuch den Einfluss des Gießofensumpfes näher zu untersuchen. Da die Schmelzequalität nach Überführung der Schmelze von der Transportpfanne in den Gießofen oft deutliche Verschlechterungen aufwies, wurde des weiteren beschlossen in einem weiteren Hauptversuch den Einfluss der Rinne näher zu untersuchen.

4.3 2. Hauptversuch: Einfluss Sumpf

4.3.1 UD-Proben

Mit den UD -Proben werden 2 verschiedene Auswertungen durchgeführt:

- Dichte-Index
- bildanalytische Auswertung der Poren

4.3.1.1 Dichte-Index

In Tabelle 4-15 befinden sich eine Zusammenfassung der Mittelwerte je Position der Dichte-Indizes. Es ist ersichtlich, dass es nur einen sehr geringen Unterschied (Proben aus Gießofen mit Sumpf geringfügig besser) zwischen den Proben aus den Gießöfen mit und ohne Sumpf gibt.

Tabelle C24 im Tabellenteil des Anhanges zeigt die gesamte Aufstellung der genommenen UD-Proben mit den gemessenen Dichte-Indizes.

Position	Sumpf	Dichte-Index [%]	Standardabweichung
Transportpfanne		11,86	1,63
Gießofen vor Impellern	ja	10,52	1,16
Gießofen nach Impellern	ja	1,24	0,15
Gießofen vor Impellern	nein	12,42	1,47
Gießofen nach Impellern	nein	1,51	0,33

Tabelle 4-15: Mittelwerte der Dichte-Indizes

4.3.1.2 Bildanalytische Auswertung der Poren

Tabelle 4-16 zeigt eine Zusammenfassung der bildanalytischen Auswertung (siehe auch Kapitel 4.1.1.1) der Poren. Hier sind die Mittelwerte je Position aufgelistet. Es ist ersichtlich, dass die Anzahl der Poren je Fläche vor Impellern aus dem Gießofen ohne Sumpf etwas geringer ist als aus dem Gießofen mit Sumpf. Nach Impellern jedoch ist die Anzahl der Poren je Fläche aus dem Gießofen ohne Sumpf höher als aus dem Gießofen mit Sumpf. Die Transportpfanne weist eher niedrige Porenanzahlen verglichen mit den Anzahlen aus dem Gießöfen auf.

Position	Sumpf	Anzahl der Poren	Fläche der Probe [cm²]	Poren/cm ²	Porosität [%]
Transportpfanne		124	11,2	11	4,92
Gießofen vor Impellern	ja	202	11,2	18	3,57
Gießofen nach Impellern	ja	95	10,3	9	0,13
Gießofen vor Impellern	nein	170	10,9	16	0,19
Gießofen nach Impellern	nein	160	11,3	14	5,45

Tabelle 4-16: Mittelwerte der bildanalytischen Auswertung

Die Detailaufstellung der Auswertung des 2. Hauptversuches befindet sich im Anhang im Tabellenteil Tabelle C25.

Im Abbildungsteil des Anhanges werden alle Mosaikbilder der Proben des 2. Hauptversuches in Abbildung A49 bis A68 gezeigt.

4.3.2 Schwingfestigkeitsproben

Die Oberspannung σ_{max} beträgt für alle zu prüfenden Proben 160 MPa.

Für die Auswertung wurde eine Log-Normalverteilung aufgestellt (siehe auch Kapitel 3.3.7). Im Anhang befinden sich die Diagramme Nr. B22 bis B25, die die Wahrscheinlichkeitsnetze der Log-Normalverteilung zeigen. In Tabelle 4-17 sind die Überlebenswahrscheinlichkeiten der Proben des 2. Hauptversuches angegeben. Es ist deutlich ersichtlich, dass die Überlebenswahrscheinlichkeiten für die Proben des Gießofens mit Sumpf größer sind als jene ohne Sumpf.

Position	Sumpf	N10%	N50%	N90%	Streu- spanne TN	Standard- abweichung σ
Gießofen vor Impellern	ja	450.000	180.000	79.000	0,176	0,298
Gießofen nach Impellern	ja	1.100.000	650.000	390.000	0,355	0,174
Gießofen vor Impellern	nein	350.000	255.000	165.000	0,471	0,127
Gießofen nach Impellern	nein	920.000	420.000	190.000	0,207	0,263

Tabelle 4-17: Zusammenfassung der Kenndaten in Log-Normalverteilung des 2. Hauptversuches

Eine detaillierte Aufstellung der erreichten Schwingspielzahlen des 2. Hauptversuches sind in Tabelle C26 im Tabellenteil des Anhanges aufgelistet.

4.3.3 Zugfestigkeitsproben

Die Auflistung der wichtigsten statistischen Kenngrößen (Auswertung siehe auch Kapitel 3.3.8) für die Positionen für A_5 befindet sich in Tabelle 4-18. Die Mittelwerte der A_5 ist für die Proben aus dem Gießofen ohne Sumpf sind deutlich höher als für jene aus dem Ofen mit Sumpf.

Die Ergebnisse des Zugversuches des 2. Hauptversuches finden sich in Tabelle C27 im Tabellenteil des Anhanges wieder.

	Gießofen Gießofen vor Impellern nach Impellern		Gießofen Gießofer vor Impellern nach Impell		Gießofen vor Impellern	Gießofen nach Impellern
	mit Sumpf	mit Sumpf	ohne Sumpf	ohne Sumpf		
Mittelwert [%]	3,3	4,8	3,8	5,4		
Standardabweichung	1,6	1,4	1,4	1,9		
min. Wert [%]	1,5	2,9	1,2	2,7		
Median [%]	2,8	4,9	4,2	5,8		
max. Wert [%]	6,1	6,8	5,7	7,8		

Tabelle 4-18: Statistische Kenngrößen für A5

Das Qualitätsindex-Diagramm für den 2. Hauptversuch ist im Diagrammteil des Anhanges in Diagramm B26 ersichtlich. Diagramm B27 im Diagrammteil des Anhanges zeigt den Zusammenhang des Qualitätsindex mit N90% an den verschiedenen Positionen. Diese beiden Diagramme zeigen in ihren Verläufen und Tendenzen keine wesentlichen Unterschiede zu den Diagrammen aus Kapitel 4.2.5.

4.3.4 PoDFA-Messung

Die Zusammenfassung der Mittelwerte je Position der PoDFA-Messung ist in Tabelle 4-19 ersichtlich. Sie zeigt, dass die Summe der Verunreinigungen in der Transportpfanne am niedrigsten ist. Des weiteren ist ersichtlich, dass die Summe der Verunreinigungen aus dem Gießofen ohne Sumpf vor Impellern leicht niedriger ist als die Summe aus dem Ofen mit Sumpf vor Impellern. Nach Impellern ist dies genau umgekehrt.

Tabelle 4-19: Zusammenfassung der PoDFA-Ergebnisse

Position	Sumpf	Mittelwert Summe [mm²/kg]
Gießofen vor Impellern	nein	0,148
Gießofen nach Impellern	nein	0,334
Gießofen vor Impellern	ја	0,171
Gießofen nach Impellern	ја	0,317
Transportpfanne		0,023

Die detaillierte Aufstellung der Ergebnisse der PoDFA-Messung des 2. Hauptversuches finden sich in Tabelle C28 im Tabellenteil des Anhanges wieder.

Diagramm 4-11: Ergebnisse PoDFA-Messung [41]

Diagramm 4-11 ist die graphische Darstellung der Werte aus Tabelle C28. Dieses zeigt deutlich, dass die Werte der Verunreinigungen in den Messungen der Transportpfanne am niedrigsten ist. Der Hauptbestandteil der Verunreinigungen sind Al-Oxid und Al-Karbid.

Es wurde von jeder Probe ein repräsentatives Mikrofoto bei 100-facher Vergrößerung angefertigt. Diese Bilder befinden sich im Abbildungsteil des Anhanges (A69-A73).

4.3.5 Schlussfolgerungen 2. Hauptversuch

Es zeigte sich, dass die Schmelzequalität durch ein Entfernen des Gießsumpfes teilweise verbessert (A₅) und teilweise verschlechtert (N90%, Porenanzahl) wurden.

4.4 3. Hauptversuch: Einfluss Rinne

4.4.1 UD-Proben

Mit den UD -Proben werden 2 verschiedene Auswertungen durchgeführt:

- Dichte-Index
- bildanalytische Auswertung der Poren

4.4.1.1 Dichte-Index

In Tabelle 4-20 befinden sich eine Zusammenfassung der Mittelwerte je Position der Dichte-Indizes. Es ist ersichtlich, dass es kaum einen Unterschied zwischen den Proben aus den Gießöfen befüllt mit und ohne Rinne gibt.

Tabelle C33 im Tabellenteil des Anhanges zeigt die gesamte Aufstellung der genommenen UD-Proben mit den gemessenen Dichte-Indizes.

Position	Rinne	Dichte-Index [%]	Standardabweichung
Gießofen vor Impellern	ja	14,38	5,74
Gießofen nach Impellern	ja	1,15	6,40
Gießofen vor Impellern	nein	14,02	0,25
Gießofen nach Impellern	nein	1,37	1,05

Tabelle 4-20: Mittelwerte der Dichte-Indizes

4.4.1.2 Bildanalytische Auswertung der Poren

Tabelle 4-21 zeigt eine Zusammenfassung der bildanalytischen Auswertung (siehe auch Kapitel 4.1.1.1) der Poren. Hier sind die Mittelwerte je Position aufgelistet. Es ist ersichtlich, dass die Anzahl der Poren je Fläche an der Position Gießofen vor Impellern bei dem Gießofen der ohne Rinne befüllt wurde niedriger ist als bei dem Gießofen der mit Rinne befüllt wurde. Allerdings kommt es zu einer Erhöhung der Porenanzahl im Gießofen befüllt ohne Rinne nach dem Impellern. Beim Gießofen befüllt mit Rinne nimmt die Anzahl der Poren nach dem Impellern ab.

Position	Rinne	Anzahl der Poren	Fläche der Probe [cm²]	Poren/cm ²
Gießofen vor Impellern	ja	164	10,8	15
Gießofen nach Impellern	ja	126	9,9	13
Gießofen vor Impellern	nein	116	11,3	10
Gießofen nach Impellern	nein	126	9,6	13

Tabelle 4-21: Mittelwerte der bildanalytischen Auswertung je Position 3. Hauptversuch

Die Detailaufstellung der Auswertung des 3. Hauptversuches befindet sich in Tabelle C34 im Tabellenteil des Anhanges.

Im Abbildungsteil des Anhanges werden alle Mosaikbilder der Proben des 3. Hauptversuches in Abbildung A74 bis A89 gezeigt.

4.4.2 Schwingfestigkeitsproben

Die Oberspannung σ_{max} beträgt für alle zu prüfenden Proben 160 MPa.

Für die Auswertung wurde eine Log-Normalverteilung aufgestellt (siehe auch Kapitel 3.3.7). Im Anhang befinden sich die Diagramme Nr. B28 bis B31, die die Wahrscheinlichkeitsnetze der Log-Normalverteilung zeigen. In Tabelle 4-22 sind die Überlebenswahrscheinlichkeiten der Proben des 3. Hauptversuches angegeben. Es ist ersichtlich, dass die Überlebenswahrscheinlichkeiten für die Proben des Gießofens befüllt mit Rinne höher sind als jene des Ofens befüllt ohne Rinne.

Eine detaillierte Aufstellung der erreichten Schwingspielzahlen des 3. Hauptversuches sind in Tabelle C35 im Tabellenteil des Anhanges aufgelistet.

Position	Rinne	N10%	N50%	N90%	Streu- spanne TN	Standardab- weichung σ
Gießofen vor Impellern	ja	250.000	181.000	132.000	0,528	0,107
Gießofen nach Impellern	ja	3.300.000	1.300.000	470.000	0,142	0,336
Gießofen vor Impellern	nein	205.000	171.000	143.000	0,698	0,061
Gießofen nach Impellern	nein	2.950.000	1.100.000	420.000	0,142	0,328

Tabelle 4-22: Zusammenfassung der Kenndaten in Log-Normalverteilung des 3. Hauptversuches

4.4.3 Zugfestigkeitsproben

Die Auflistung der wichtigsten statistischen Kenngrößen (Auswertung siehe auch Kapitel 3.3.8) für die Positionen für A_5 befindet sich in Tabelle 4-23. Die Mittelwerte der A_5 sind für den Gießofen befüllt mit Rinne größer als für den Ofen befüllt ohne Rinne.

Die Ergebnisse des Zugversuches des 3. Hauptversuches finden sich in Tabelle C36 im Tabellenteil des Anhanges wieder.

Tabelle 4-23: Statistische Kenngrößen für A₅

	Gießofen vor Impellern	Gießofen nach Impellern	Gießofen vor Impellern	Gießofen nach Impellern
	mit Rinne	mit Rinne	ohne Rinne	ohne Rinne
Mittelwert [%]	3,3	6,5	3,2	5,2
Standardabweichung	0,5	1,4	1,2	1,7
min. Wert [%]	2,0	3,9	1,3	1,2
Median [%]	3,6	6,5	3,4	5,3
max. Wert [%]	3,8	8,2	4,9	7,0

Das Qualitätsindex-Diagramm für den 3. Hauptversuch ist im Diagrammteil des Anhanges in Diagramm B32 ersichtlich. Diagramm B33 im Diagrammteil des Anhanges zeigt den Zusammenhang des Qualitätsindex mit N90% an den verschiedenen Positionen. Diese beiden Diagramme zeigen in ihren Verläufen und Tendenzen keine wesentlichen Unterschiede zu den Diagrammen aus Kapitel 4.2.5.

4.4.4 PoDFA-Messung

Die Zusammenfassung der Mittelwerte je Position der PoDFA-Messung ist in Tabelle 4-24 ersichtlich. Sie zeigt, dass die Summe der Verunreinigungen im Gießofen befüllt ohne Rinne vor Impellern deutlich niedriger ist als im Ofen befüllt mit Rinne. Nach Impellern stellte sich jedoch heraus, dass die Summe der Verunreinigungen im Gießofen befüllt ohne Rinne größer ist als im Ofen befüllt mit Rinne.

Position	Rinne	Mittelwert Summe [mm²/kg]
Gießofen vor Impellern	ја	0,274
Gießofen nach Impellern	ja	0,165
Gießofen vor Impellern	nein	0,053
Gießofen nach Impellern	nein	0,210
Transportpfanne		0,052

Tabelle 4-24: Zusammenfassung der PoDFA-Ergebnisse des 3. Hauptversuches

Die detaillierte Aufstellung der Ergebnisse der PoDFA-Messung des 3. Hauptversuches finden sich in Tabelle C37 im Tabellenteil des Anhanges wieder.

Diagramm 4-12 ist die graphische Darstellung der Werte aus Tabelle C37. Dieses zeigt, dass die Werte der Verunreinigungen in den Messungen der Transportpfanne am niedrigsten ist. In diesem Versuch sind auch die Werte der Verunreinigungen in den Gießöfen niedrig mit 2 Ausnahmen. Der Hauptbestandteil der Verunreinigungen sind Al-Oxid und Al-Karbid bzw. auch Spinell.

Diagramm 4-12: Ergebnisse PoDFA-Messung [42]

Es wurde von jeder Probe ein repräsentatives Mikrofoto bei 100-facher Vergrößerung angefertigt. Diese Bilder befinden sich im Abbildungsteil des Anhanges (A90-A94).
4.4.5 Schlussfolgerungen 3. Hauptversuch

Es zeigte sich, dass die Schmelzequalität durch ein Entfernen der Rinne zum Befüllen des Gießofens an der Position Gießofen vor Impellern verbessert (PoDFA, Porenanzahl) werden konnte. An der Position Gießofen befüllt ohne Rinne nach Impellern kam es jedoch verglichen mit den Proben aus dem Gießofen befüllt mit Rinne entweder zu einem Egalisieren der Verbesserung bzw. zu einer Verschlechterung (N90%, A₅).

4.5 4. Hauptversuch: LM25

4.5.1 UD-Proben

Mit den UD -Proben werden 2 verschiedene Auswertungen durchgeführt:

- Dichte-Index
- bildanalytische Auswertung der Poren

4.5.1.1 Dichte-Index

In Tabelle 4-25 befinden sich eine Zusammenfassung der Mittelwerte je Position der Dichte-Indizes. Es ist ersichtlich, dass der Dichte-Index von Position zu Position geringer wird. Eine deutliche Verringerung des Dichte-Index gibt es nach dem Impellern im Gießofen. Tabelle C42 im Tabellenteil des Anhanges zeigt die gesamte Aufstellung der genommenen UD-Proben mit den gemessenen Dichte-Indizes.

Position	Dichte-Index [%]	Standardabweichung
Transportpfanne	10,81	1,19
Gießofen vor Impellern	9,20	1,02
Gießofen nach Impellern	0,78	0,16

Tabelle 4-25: Mittelwerte der Dichte-Indizes

4.5.1.2 Bildanalytische Auswertung der Poren

Tabelle 4-26 zeigt eine Zusammenfassung der bildanalytischen Auswertung (siehe auch Kapitel 4.1.1.1) der Poren. Hier sind die Mittelwerte je Position aufgelistet. Es ist ersichtlich, dass die Anzahl der Poren je Fläche von Position zu Position abnimmt.

Tabelle 4-26	· Mittelwerte	der hi	Idanalyti	schen /	Auswertung
		uel bi	iuanaiyua		Susweilung

Position	Anzahl der Poren	Fläche der Probe [cm²]	Poren/cm ²	Porosität [%]
Transportpfanne	436	11	39	8,15
Gießofen vor Impellern	342	11	32	6,11
Gießofen nach Impellern	157	10	17	0,15

Die Detailaufstellung der Auswertung des 4. Hauptversuches befindet sich in Tabelle C43 im Tabellenteil des Anhanges.

Im Abbildungsteil des Anhanges werden alle Mosaikbilder der Proben des 4.Hauptversuches in Abbildung A95 bis A106 gezeigt.

4.5.2 Schwingfestigkeitsproben

Die Oberspannung σ_{max} beträgt für alle zu prüfenden Proben 160 MPa.

Für die Auswertung wurde eine Log-Normalverteilung aufgestellt (siehe auch Kapitel 3.3.7). Im Anhang befinden sich die Diagramme Nr. B34 bis B36, die die Wahrscheinlichkeitsnetze der Log-Normalverteilung zeigen.

In Tabelle 4-27 sind die Überlebenswahrscheinlichkeiten der Proben des 4. Hauptversuches der 3 Positionen angegeben. Es ist deutlich ersichtlich, dass die Überlebenswahrscheinlichkeiten von Position zu Position steigen udn für die Proben des Gießofens nach Impellern am größten sind.

Tabelle 4-27: Zusammenfassung der Kenndaten in Log-Normalverteilung des 4. Hauptversuches

Position	N10%	N50%	N90%	Streuspanne TN	Standard- abweichung σ
Transportpfanne	340.000	205.000	120.000	0,353	0,179
Gießofen vor Impellern	405.000	230.000	140.000	0,346	0,182
Gießofen nach Impellern	1.270.000	520.000	220.000	0,173	0,291

Eine detaillierte Aufstellung der erreichten Schwingspielzahlen des 4. Hauptversuches sind in Tabelle C44 im Tabellenteil des Anhanges aufgelistet.

4.5.3 Zugfestigkeitsproben

Die Auflistung der wichtigsten statistischen Kenngrößen (Auswertung siehe auch Kapitel 3.3.8) für die 4 Positionen für A₅ befindet sich in Tabelle 4-28. Der Mittelwert der A₅ ist für die Position Gießofen nach Impellern am höchsten.

Die Ergebnisse des Zugversuches des 4. Hauptversuches finden sich in Tabelle C45 im Tabellenteil des Anhanges wieder.

	Transportpfanne	Gießofen vor Impellern	Gießofen nach Impellern
Mittelwert [%]	4,3	2,7	4,6
Standardabweichung	1,3	1,3	1,7
min. Wert [%]	1,2	1,3	2,0
Median [%]	4,4	2,7	4,3
max. Wert [%]	6,0	4,6	7,2

Tabelle 4-28: Statistische Kenngrößen für A5

Das Qualitätsindex-Diagramm für den 4. Hauptversuch ist im Diagrammteil des Anhanges in Diagramm B37 ersichtlich. Diagramm B38 im Diagrammteil des Anhanges zeigt den Zusammenhang des Qualitätsindex mit N90% an den verschiedenen Positionen. Diese beiden Diagramme zeigen in ihren Verläufen und Tendenzen keine wesentlichen Unterschiede zu den Diagrammen aus Kapitel 4.2.5.

4.5.4 PoDFA-Messung

Die Zusammenfassung der Mittelwerte je Position der PoDFA-Messung ist in Tabelle 4-29 ersichtlich. Sie zeigt, dass die Summe der Verunreinigungen im Gießofen nach Impellern am geringsten ist.

Tabelle 4-29: Zusammenfassur	ng der PoDFA-Ergebnisse
------------------------------	-------------------------

Position	Mittelwert Summe [mm²/kg]	
Transportpfanne	0,552	
Gießofen vor Impellern	1,131	
Gießofen nach Impellern	0,395	

Die detaillierte Aufstellung der Ergebnisse der PoDFA-Messung des 4. Hauptversuches finden sich in Tabelle C46 im Tabellenteil des Anhanges wieder.

Diagramm 4-13 ist die graphische Darstellung der Werte aus Tabelle C46. Dieses zeigt, dass die Hauptbestandteil der Verunreinigungen Al-Oxid und Spinell sind. Auch befindet sich in einigen Proben Feuerfest-Material. Die Anzahl der Verunreinigungen sinkt bei der Position nach Impellern verglichen mit der Position vor Impellern.

Diagramm 4-13: Ergebnisse PoDFA-Messung [43]

Es wurde von jeder Probe ein repräsentatives Mikrofoto bei 100-facher Vergrößerung angefertigt. Diese Bilder befinden sich im Abbildungsteil des Anhanges (A107-A109).

4.5.5 Schlussfolgerungen 4. Hauptversuch

Es zeigte sich, dass die Schmelzequalität von Position zu Position verbessert wird (N90%, Porenanzahl, Dichte-Index), bzw. zumindest an der Position Gießofen nach Impellern die beste Schmelzequalität aufweist (PoDFA, A₅).

5 Ergebnisse & Diskussion

5.1 Vorversuch

5.1.1 UD-Proben

Die Ergebnisse der bildanalytischen Porenauswertung zeigen, dass auf Grund der großen Streuung zumindest 4 Proben pro zu bestimmenden Wert genommen werden.

Es wurde gezeigt, dass die Proben, die aus dem Gießofen vor dem Impellern genommen wurden, mehr detektierbare Poren und somit vermutlich mehr Bifilme nach Campbell als aktive Keime enthalten, als die Proben nach dem Impellern (siehe Tabelle 4-1). Auch zeigte sich, dass die Anzahl der Poren mit steigender Abstehzeit nach dem Impellern fällt (siehe Diagramm 4-1). Dies lässt auf das Absinken der keimbildenden Oxide und Einschlüsse über die Zeit schließen.

Die Ergebnisse der CT der beiden Institute zeigen, dass zwar die Tendenz der Anzahl der Poren, und somit die der Oxide, die gleiche ist, jedoch große Abweichung bezüglich der Anzahl der Poren bestehen (siehe Diagramm 4-3).

Auf Grund der leicht unterschiedlichen Einstellungen, die jedoch eine große Auswirkung auf die Anzahl der Poren hat, der beiden Anlagen, macht es keinen Sinn, Auswertungen auf 2 Anlagen durchzuführen. Es wurde entschieden, gegebenenfalls weitere CT am ÖGI in Auftrag zu geben, da die Ergebnisse des ÖGIs eine genauere Detektierung der Poren aufwiesen.

Die Ergebnisse der CT sind allgemein kritisch zu bewerten.

Aussagen über die gefundene Anzahl der Poren müssen auf Grund der gewählten Parameter des Auswerteprogrammes als relativ angesehen werden. Da diese Parameter jedoch pro Institut immer gleich gewählt werden können, bleibt auch der Umfang des "Fehlers" relativ gesehen gleich. Wird dies berücksichtigt, so lassen sich gut Unterschiede der Schmelzequalität der verschiedenen UD-Proben finden.

Eine Kalibrierung der gemessenen CT-Dichte mit der tatsächlichen Dichte ist anzustreben.

Die Größenverteilung der Poren bei bildanalytischer Auswertung des Schliffes und CT-Auswertung ist unterschiedlich (siehe Diagramm 4-2 und 4-4): das Maximum der Porenanzahl liegt bei der bildanalytischen Auswertung bei 60 µm (entspricht dem kleinsten möglichen Durchmesser laut Zulassungskriterien), bei der CT-Auswertung jedoch bei 600 µm. Die CT-Auswertung spiegelt eher die reale Porenverteilung wieder. Bei der bildanalytischen Auswertung des Schliffes kommt es zu einem stereologischen Problem: Auch bei gleichem Porendurchmesser können die Schnittkreise in Abhängigkeit vom Abstand des Porenmittelpunktes von der Schnittebene unterschiedlich groß sein [44].

5.1.2 Schwingfestigkeitsproben

Die Auswertung zeigt deutlich, dass die Schwingspielzahlen der Proben aus dem Gießofen, die nach dem Impellern entnommen wurden, höher sind als jene vor dem Impellern (siehe Tabelle 4-6). Des weiteren ergeben die Versuche, dass eine max. Oberspannung von 105 MPa auf Grund der großen Anzahl an Durchläufern zu niedrig ist. Die im Versuch ermittelte Schwingspielzahl sollte, um aussagekräftige Werte zu erhalten, zumindest 1*10⁵ betragen. Dies ist sowohl bei 150 als auch bei 160 MPa gegeben.

Auf Grund der kürzeren Prüfdauer fiel die Entscheidung auf eine Oberspannung von 160 MPa.

Die Auswertungen zeigen, dass sich große Standardabweichungen durch vorhandene Ausreißer einstellen. Es ist somit unbedingt erforderlich, zumindest 10 Proben pro ermittelter Schwingspielzahl zu prüfen.

Auch anzudenken ist es, den Prüfdurchmesser der Proben zu erhöhen.

5.1.3 Zugfestigkeitsproben

Die Auswertung zeigt deutlich, dass die Zugfestigkeitswerte der Proben aus dem Gießofen, die nach dem Impellern entnommen wurden, höher sind als jene vor dem Impellern (siehe Tabelle 4-7).

Es lässt sich im Vorversuch noch kein Zusammenhang zwischen Höhe der Bruchdehnung A₅ und Länge der Abstehzeit nach Impellern finden (siehe Diagramm 4-5).

Im Qualitätsindex-Diagramm (siehe Diagramm 4-6) überschneiden sich die Punktewolken für die Werte vom Gießofen vor und nach Impellern, jedoch weisen die Proben die nach Impellern genommen wurden auch deutlich höhere Werte auf.

Das Ergebnis des Zugversuches ist stark beeinflusst durch die Gegenwart von harten Einschlüssen. Auch hier streuen die Ergebnisse stark, zumindest 10 Proben sollten pro ermittelten Wert geprüft werden.

Es ist anzudenken, den Prüfdurchmesser der Proben zu erhöhen.

5.2 1. Hauptversuch: Istsituation

5.2.1 UD-Proben

Der Verlauf der Anzahl der Poren pro Fläche an den verschiedenen Positionen ist in Diagramm 5-1 dargestellt. Wobei eine kleinere Porenanzahl selbstverständlich eine höhere Schmelzereinheit bedeutet.

Diagramm 5-1: Trendlinie Anzahl der Poren je Position UD-Proben

Die Versuche zeigten deutlich, dass die Anzahl der Poren in der Transportpfanne am geringsten ist. Im Gießofen vor dem Impellern ist die Porenzahl am größten, nach dem Impellern sinkt die Anzahl. Des weiteren wurde festgestellt, dass die Anzahl der Poren tendenziell kleiner ist, je länger die Abstehzeit nach dem Impellern dauert (siehe Diagramm 5-2).

Diagramm 5-2: Verlauf Anzahl der Poren über Abstehzeit nach Impellern

Der Dichte-Index weist ein lineares Verhältnis zur Porosität der UD-Proben (ermittelt in der bildanalytischen Auswertung) auf. Dies wird in Diagramm 5-3 gezeigt.

Diagramm 5-3: Porosität und Dichte-Index

5.2.2 Schwingfestigkeitsproben

Der Verlauf der 90%igen Überlebenswahrscheinlichkeit (N90%) an den verschiedenen Positionen ist in Diagramm 5-4 dargestellt.

Diagramm 5-4: Trendlinie N90% je Position der Schwingproben

Die Anzahl der ertragbaren Schwingspiele ist in der Transportpfanne mäßig hoch. Nach dem Umfüllen in den Gießofen ist N90% vor dem Impellern sehr niedrig. Nach dem Impellern steigt N90% auf den höchsten Wert aller gemessenen Positionen an.

5.2.3 Zugfestigkeitsproben

Der Verlauf der Bruchdehnung A₅ an den verschiedenen Positionen ist in Diagramm 5-5 dargestellt.

Die Bruchdehnung A_5 ist in der Transportpfanne sehr hoch. Nach dem Umfüllen in den Gießofen ist A_5 vor dem Impellern sehr niedrig. Nach dem Impellern steigt A_5 wieder, erreicht aber nicht die Zugfestigkeitswerte der Transportpfanne.

Diagramm 5-5: Trendlinie A je Position der Zugproben

Das Qualitätsindex-Diagramm (siehe Diagramm 4-8) zeigt zum einen, dass sich die Werte von A_5 und R_m linear verhalten. Zum anderen zeigt es, dass die Werte für Q für die Positionen Transportpfanne und Gießofen nach Impellern am höchsten sind.

Wird der Qualitätsindex gegen N90% aufgetragen (siehe Diagramm 4-9) so ist erkennbar, dass die Werte zwar die selbe Tendenz aufweisen, allerdings nicht linear sind.

5.2.4 Zusammenfassung aller Messungen

In Diagramm 5-6 befindet sich eine Zusammenstellung aller Messergebnisse des 1. Hauptversuches. Die Skalierung des Diagramms ist normiert um alle Messergebnisse darstellen zu können. Hierbei sind die Werte die eine höhere Schmelzequalität aufweisen, am oberen Rand des Diagramms ersichtlich.

Diagramm 5-6: Trendlinien der Messergebnisse 1. Hauptversuch

Es wird damit gezeigt, dass sich die Qualität der Schmelze verändert in Bezug auf:

- Wasserstoff: Wasserstoffgehalt fällt je Position
- PoDFA: Summe der Verunreinigungen steigt ab der Transportpfanne je Position
- Dichte-Index: Dichte-Index fällt je Position (Ausnahme: leichte Steigerung in Gießwanne)
- Porenanzahl: siehe Kapitel 5.2.1
- Schwingspielzahl: siehe Kapitel 5.2.2
- Bruchdehnung: siehe Kapitel 5.2.3

Weiters ist ersichtlich, dass folgende Größen die gleichen Tendenzen aufweisen:

- Bruchdehnung A₅ mit Schwingspielzahl N90% (Diagramm 5-7),
- Dichte-Index mit Schwingspielzahl (Diagramm 5-8),
- Dichte-Index mit H₂-Gehalt (Diagramm 5-9),
- Porenanzahl mit Schwingspielzahl N90% (Diagramm 5-10).

Dies ist in den nachfolgenden Diagrammen dargestellt.

Diagramm 5-8: Trendlinien Dichte-Index und N90%

Diagramm 5-9: Trendlinien Dichte-Index und H₂-Gehalt

Diagramm 5-10: Trendlinien Porenanzahl und N90%

5.3 2. Hauptversuch: Einfluss Sumpf

5.3.1 UD-Proben

Der Verlauf der Trendlinie der Anzahl der Poren pro Fläche an den verschiedenen Positionen ist in Diagramm 5-11 dargestellt.

Die Mittelwerte der Anzahl der Poren pro Fläche, zeigen, dass für sich für den Gießofen mit Sumpf besseren Ergebnisse ergeben (siehe Diagr. 5-11).

Die Mittelwerte der Dichte-Indizes zeigen, dass diese etwas geringer sind im Gießofen mit Ofensumpf (siehe Tabelle 4-15).

In diesem Versuch kann nicht festgestellt werden, dass die Anzahl der Poren tendenziell kleiner ist, je länger die Abstehzeit nach dem Impellern dauert (vergleiche 5.2.1).

5.3.2 Schwingfestigkeitsproben

Der Verlauf der Trendlinie der 90% igen Überlebenswahrscheinlichkeit (N90%) an den verschiedenen Positionen ist in Diagramm 5-12 dargestellt.

Diagramm 5-12: Trendlinie N90% je Position der Schwingproben

Die Anzahl der ertragbaren Schwingspiele ist zu Beginn im Gießofen vor Impellern bei den Proben die aus der Schmelze ohne Sumpf gegossen werden, höher. Nach dem Impellern steigt N90% bei allen Proben an, jedoch ist N90% bei den Proben die aus Schmelze mit Sumpf gegossen werden deutlich höher (siehe Diagramm 5-12).

5.3.3 Zugfestigkeitsproben

Der Verlauf der Trendlinie der Bruchdehnung A₅ an den Positionen Gießofen vor und nach Impellern ist in Diagramm 5-13 dargestellt. Es sind die Verläufe für den Gießofen mit Sumpf und ohne Sumpf dargestellt.

Die Bruchdehnung A_5 nimmt nach dem Impellern erwartungsgemäß zu. Es zeigt sich, dass die Proben die aus dem Gießofen ohne Gießsumpf entnommen wurden, ein höheres Niveau der Werte für A_5 aufweisen, d.h. dass diese duktiler sind.

Diagramm 5-13: Trendlinie A₅ der Zugproben je Position für Gießofen mit und ohne Sumpf

Im Diagramm-Anhang wird in Diagramm B27 der Qualitätsindex gegen N90% aufgetragen. Hierbei ist erkennbar, dass die Werte die selbe Tendenz aufweisen, sie sind allerdings nicht linear (siehe auch Kapitel 5.2.3).

Beachtlich verhält sich auch die Anzahl der Einschlüsse, die Bruchauslöser für die Zugproben sind (siehe Tabelle 5-1). Es ist deutlich zu erkennen, dass die Anzahl der Einschlüsse in der Bruchoberfläche im Gießofen vor Impellern ohne Sumpf geringer ist als nach Impellern. Beim Gießofen mit Sumpf tritt das Gegenteil auf.

Eine detaillierte Aufstellung aller Zugproben ist im Anhang in Tabelle C27 zu sehen.

	Gießofen	Gießofen	Gießofen	Gießofen
	vor Impellern	nach Impellern	vor Impellern	nach Impellern
	mit Sumpf	mit Sumpf	ohne Sumpf	ohne Sumpf
Einschluss in Bruchoberfläche	64%	10%	10%	70%

Tabelle 5-1: Prozentueller Anteil der Zugproben die Einschluss in Bruchoberfläche aufweisen

Aus Tabelle 5-1 lässt sich schließen, dass durch das Ausheben des Sumpfes eine Reduktion der Oxide und anderen Verunreinigungen in der Schmelze erreicht wird. Das Impellern des Gießofen mit ausgehobenem Sumpf jedoch verschlechtert die Schmelzequalität hinsichtlich Einschlüsse drastisch.

5.3.4 PoDFA-Proben

Die Proben der Versuchsreihen vor bzw. nach Impellern weisen in etwa den gleichen Verunreinigungsgehalt aufweisen, unabhängig ob der Gießofen Sumpf enthält oder nicht.

Es fällt auf, dass durch das Impellern der Verunreinigungsgehalt ansteigt. Offensichtlich setzen sich Verunreinigungen am Ofenboden ab, die unter gewissen Umständen, z.B. bei starker Strömung während des Impellerns, abgelöst werden und dann in der Schmelze nachweisbar sind. [45]

Die Transportpfanne liefert die beste Qualität bei der PoDFA-Untersuchung (siehe auch Kapitel 5.2.4)

5.3.5 Zusammenfassung aller Messungen

In Diagramm 5-14 und 5-15 befindet sich eine Gegenüberstellung aller Messergebnisse des 2. Hauptversuches. Diagramm 5-14 zeigt die Werte des Gießofens mit Sumpf, Diagramm 5-15 zeigt die Werte ohne Sumpf. Die Skalierung der Diagramme ist normiert um alle Messergebnisse darstellen zu können. Hierbei sind die Werte die eine höhere Schmelzequalität aufweisen, am oberen Rand des Diagramms ersichtlich.

Diagramm 5-14: Trendlinien der Messergebnisse mit Sumpf

Diagramm 5-15: Trendlinien der Messergebnisse ohne Sumpf

Es wird damit gezeigt, dass sich die Qualität der Schmelze bei vorhandenem bzw. ausgehobenem Gießofensumpf unterschiedlich verhält. Durch das Ausheben des Gießofensumpfes ergaben sich folgende Resultate:

- Porenanzahl: siehe auch Kapitel 5.3.1
 Es konnte definitiv keine Verbesserung der Porenanzahl nach dem Impellern erzielt werden (Verschlechterung).
- Schwingspielzahl: siehe auch Kapitel 5.3.2
 Es konnte definitiv keine Verbesserung der Schwingspielzahl erzielt werden (Verschlechterung).
- Bruchdehnung: siehe Kapitel auch 5.3.3
 Es konnte eine Verbesserung der Bruchdehnung erzielt werden.
- PoDFA: siehe Kapitel auch 5.3.4
 Summe der Verunreinigungen steigt ab der Transportpfanne je Position, die Proben ohne Sumpf weisen keine signifikante Minderung der Summe der Einschlüsse auf.
 Es konnte keine Verbesserung der PoDFA-Ergebnisse nach dem Impellern erzielt werden.
- Dichte-Index: Dichte-Index fällt je Position (Ausnahme: leichte Steigerung bei Gießofen ohne Sumpf vor Impellern)
 Es konnte definitiv keine Verbesserung des Dichte-Index erzielt werden (leichte Verschlechterung).

5.4 3. Hauptversuch: Einfluss Rinne

5.4.1 UD-Proben

Der Verlauf der Trendlinie der Anzahl der Poren pro Fläche an den verschiedenen Positionen ist in Diagramm 5-16 dargestellt.

Die Mittelwerte der Anzahl der Poren pro Fläche zeigen, dass für sich für den Gießofen, der mit Rinne befüllt wurde, vor dem Impellern eine geringere Anzahl der Poren je Fläche ergeben als nach dem Impellern. Des weiteren ist die Anzahl vor Impellern hierbei niedriger als bei Füllung mit Rinne. Nach dem Impellern erreichen beide Gießöfen wieder einen ähnlichen Wert (siehe Diagr. 5-16).

In Tabelle 4-20 wird gezeigt, dass es keinen signifikanten Unterschied der Dichte-Indizes zwischen Füllung des Gießofens mit oder ohne Rinne gibt.

Diagramm 5-16: Trendlinie Anzahl der Poren je Position UD-Proben

5.4.2 Schwingfestigkeitsproben

Der Verlauf der Trendlinie der 90%igen Überlebenswahrscheinlichkeit (N90%) an den verschiedenen Positionen ist in Diagramm 5-17 dargestellt.

Die Anzahl der ertragbaren Schwingspiele ist vor Impellern beim mit Rinne befüllten Gießofen geringfügig niedriger, als beim Gießofen der ohne Rinne befüllt wurde. Nach dem Impellern hat der Gießofen der mit Rinne befüllt wurde leicht höhere Schwingspielwerte.

Diagramm 5-17: Trendlinie N90% je Position der Schwingproben

5.4.3 Zugfestigkeitsproben

Der Verlauf der Trendlinie der Bruchdehnung A_5 an den Positionen Gießofen vor und nach Impellern ist in Diagramm 5-18 dargestellt. Es sind die Verläufe für den Gießofen befüllt mit Rinne und ohne Rinne dargestellt.

Diagramm 5-18: Trendlinie A₅ der Zugproben je Position für Gießofen befüllt mit und ohne Rinne

Die Bruchdehnung A₅ nimmt nach dem Impellern erwartungsgemäß zu.

Die Proben die vorm Impellern entnommen wurden, haben ähnliche Werte für A₅. Es zeigt sich jedoch, dass die Proben die aus dem Gießofen der mit Rinne befüllt wurde nach dem Impellern entnommen wurden, deutlich niedrigere Werte für A₅ aufweisen.

Im Diagramm-Anhang wird in Diagramm B33 der Qualitätsindex gegen N90% aufgetragen. Hierbei ist erkennbar, dass die Werte die selbe Tendenz aufweisen (siehe auch Kapitel 5.2.3).

Zu beachten ist auch die Anzahl der Einschlüsse, die Bruchauslöser für die Zugproben sind (siehe Tabelle 5-2), denn die Zugproben des 3. Hauptversuches weisen viel weniger Einschlüsse an den Bruchoberflächen auf als die Zugproben des 2. Hauptversuches (vergleiche Tabelle 5-1).

Tabelle 5-2: Prozentueller Anteil der Zugproben die Einschluss in Bruchoberfläche aufweisen

	Gießofen	Gießofen	Gießofen	Gießofen
	vor Impellern	nach Impellern	vor Impellern	nach Impellern
	mit Rinne	mit Rinne	ohne Rinne	ohne Rinne
Einschluss in Bruchoberfläche	9%	0%	18%	9%

Da eine Bruchdehnung A₅ hauptsächlich von harten oxidischen Einschlüssen beeinflusst wird kann aus Tabelle 5-2 geschlossen werden, dass die A₅ dieses Hauptversuches höher ist als im 2. Hauptversuch. Tatsächlich ist dies auch der Fall.

5.4.4 PoDFA-Proben

Die genommenen Proben aus dem Gießofen vor Impellern der ohne Rinne gefüllt wurde sind sehr sauber, allerdings liegt der Verunreinigungsgehalt nach dem Impellern auch bei diesen Proben auf dem gleichen Niveau wie bei den übrigen. D.h. nach dem Impellern liegen, abgesehen von einer gewissen Streuung, alle Werte im gleichen Verunreinigungsbereich, unabhängig vom Ausgangsgehalt.

Das Befüllen mit Gießrinne verbessert offensichtlich nicht die Qualität des Metalls [46].

Summe der Verunreinigungen verhält sich in dieser Versuchsreihe anders als im 1. und 2. Hauptversuch. Bei Füllen des Gießofens ohne Rinne wurde festgestellt, dass es zu keiner Verschlechterung der Qualität von Transportpfanne auf Gießofen kommt.

5.4.5 Zusammenfassung aller Messungen

In Diagramm 5-19 und 5-20 befindet sich eine Gegenüberstellung aller Messergebnisse des 3. Hauptversuches. Diagramm 5-19 zeigt die Werte des Gießofens befüllt mit Rinne, Diagramm 5-20 zeigt die Werte des Gießofens befüllt ohne Rinne. Die Skalierung der Diagramme ist normiert um alle Messergebnisse darstellen zu können. Hierbei sind die Werte die eine höhere Schmelzequalität aufweisen, am oberen Rand des Diagramms ersichtlich.

Es wird damit gezeigt, dass sich die Qualität der Schmelze bei mit bzw. ohne Rinne befülltem Gießofen unterschiedlich verhält. Durch das Befüllen ohne Rinne ergaben sich folgende Resultate nach dem Impellern:

- Porenanzahl: siehe auch Kapitel 5.4.1
 Durch das Füllen ohne Rinne konnte keine Verbesserung der Porenanzahl nach dem Impellern erzielt werden.
- Schwingspielzahl: siehe auch Kapitel 5.4.2
 Es konnte keine Verbesserung der Porenanzahl erzielt werden (leichte Verschlechterung).
- Bruchdehnung: siehe auch Kapitel 5.4.3
 Es konnte keine Verbesserung der Bruchdehnung erzielt werden (Verschlechterung).
- PoDFA: siehe auch Kapitel 5.4.4
 Es konnte keine Verbesserung der PoDFA-Ergebnisse erzielt werden.
- Dichte-Index:
 Es konnte keine Verbesserung des Dichte-Index erzielt werden.

Diagramm 5-19: Trendlinien aller Messergebnisse, Ofen gefüllt mit Rinne

Diagramm 5-20: Trendlinien aller Messergebnisse, Ofen gefüllt ohne Rinne

5.5 4. Hauptversuch: LM25

5.5.1 UD-Proben

Der Verlauf der Trendlinie der Anzahl der Poren pro Fläche an den verschiedenen Positionen ist in Diagramm 5-21 dargestellt.

Anders als beim 1. Hauptversuch (vergleiche Diagramm 5-1) ist beim 4. Hauptversuch die Schmelzequalität hinsichtlich Anzahl der Poren in der Transportpfanne am schlechtesten (siehe Diagramm 5-21). Die Schmelzequalität wird mit Fortschritt des Prozesses deutlich besser.

Die Schmelzequalität im Gießofen nach Impellern hinsichtlich Porenanzahl ist im 4. Hauptversuch besser als im 1. Hauptversuch.

Diagramm 5-21: Trendlinie Anzahl der Poren je Position UD-Proben

Des weiteren wurde festgestellt, dass die Anzahl der Poren kleiner ist, je länger die Abstehzeit nach dem Impellern dauert (siehe Diagramm 5-22).

Diagramm 5-22: Trendlinie Anzahl der Poren über Abstehzeit

5.5.2 Schwingfestigkeitsproben

Der Verlauf der Trendlinie der 90%igen Überlebenswahrscheinlichkeit (N90%) an den verschiedenen Positionen ist in Diagramm 5-23 dargestellt.

Diagramm 5-23: Trendlinie N90% je Position der Schwingproben

Die Anzahl der ertragbaren Schwingspiele ist in der Transportpfanne vergleichsweise niedrig. Nach dem Umfüllen in den Gießofen vor dem Impellern steigt N90%. Nach dem Impellern steigt N90% weiter.

Der Anstieg der ertragbaren Schwingspielzahl könnte im Zusammenhang stehen mit der Erniedrigung des H₂-Gehaltes der Schmelze (siehe auch Kapitel 4.2.1.1). Die vergleichsweise schlechten Werte der Transportpfanne (verglichen mit den Trendlinien von Hauptversuch 1-3) ergeben sich aus den legierungsbedingten, anfänglich vorhandenen großen Einschlüssen.

5.5.3 Zugfestigkeitsproben

Der Verlauf der Trendlinie der Bruchdehnung A₅ an den Positionen Transportpfanne, Gießofen vor und nach Impellern ist in Diagramm 5-24 dargestellt.

Der Verlauf der Trendlinie der Schmelzequalität verhält sich beim 1. (vergleiche Diagramm 5-5) und 4. Hauptversuch (siehe Diagramm 5-24) hinsichtlich der Bruchdehnung ähnlich. Doch erreicht die Qualität der Schmelze des 4. Hauptversuch (A_5 bei Gießofen nach Impellern = 4,6\%) deutlich niedrigere Werte als die Schmelze des 1. Hauptversuches (A_5 bei Gießofen nach Impellern = 5,3\%):. Detaillierte Aufstellungen hierzu befindet im Tabellenteil des Anhanges in Tabelle C18 und C45).

Diagramm 5-24: Trendlinie A₅ der Zugproben je Position

Im Diagramm-Anhang wird in Diagramm B38 der Qualitätsindex gegen N90% aufgetragen. Hierbei ist erkennbar, dass die Werte die selbe Tendenz aufweisen, sie sind allerdings nicht linear (siehe auch Kapitel 5.2.3).

Zu beachten ist auch die Anzahl der Einschlüsse, die Bruchauslöser für die Zugproben sind. Eine Zusammenfassung je Position davon befindet sich in Tabelle 5-3.

Die detaillierte Auflistung der Zugproben befindet sich im Tabellenteil des Anhanges Tabelle C45.

Tabelle 5-3: Prozentueller Anteil der Zugproben die Einschluss in Bruchoberfläche aufweisen

	Transportpfanne	Gießofen vor Impellern	Gießofen nach Impellern
Einschluss in Bruchoberfläche	20%	100%	80%

Aus Tabelle 5-3 lässt sich schließen, dass durch das Impellern tendenziell eine leichte Reduktion der Oxide und anderen Verunreinigungen in der LM25-Schmelze erreicht wird.

5.5.4 PoDFA-Proben

Die Schmelzequalität ist in der Transportpfanne bedeutend schlechter, als im 1.-3.Hauptversuch (AlSi7MgCu0,5). Das schlechtere Ausgangsniveau ergibt sich hierbei zum einen aus der Legierung (LM25) und zum andern aus dem Schmelzofen (Induktionsofen). Nach dem Fallen der Qualität im Gießofen vor Impellern kommt es nach dem Impellern zu einer Verbesserung der Schmelze. Im Gießofen nach Impellern werden die besten PoDFA-Messungen erzielt.

Die Qualität im Gießofen nach Impellern ist höher als an den anderen Positionen dieser Messreihe.

5.5.5 Zusammenfassung aller Messungen

In Diagramm 5-25 befindet sich eine Zusammenstellung aller Messergebnisse des 4.Hauptversuches. Die Skalierung des Diagramms ist normiert um alle Messergebnisse darstellen zu können. Hierbei sind die Werte die eine höhere Schmelzequalität aufweisen, am oberen Rand des Diagramms ersichtlich.

Diagramm 5-25: Trendlinien der Messergebnisse 4. Hauptversuch

Es wird damit gezeigt, dass sich die Qualität der Schmelzen der LM25 bzw. der AlSi7MgCu0,5 Legierung unterschiedlich verhalten. Bei der LM25 ergeben sich folgende Resultate:

- Porenanzahl: siehe auch Kapitel 5.5.1
 Die Qualität ist am schlechtesten in der Transportpfanne und am besten im Gießofen nach Impellern.
 - Die Porenanzahl in der LM2 hat sich verglichen mit der AlSi7MgCu0,5 verbessert.
- Schwingspielzahl: siehe auch Kapitel 5.5.2
 Die Qualität ist am schlechtesten in der Transportpfanne und am besten im Gießofen nach Impellern.
 Die Schwingspielzahl verschlechtert sich.
- Bruchdehnung: siehe auch Kapitel 5.5.3
 Der Verlauf der Bruchdehnung verhält sich ähnlich wie im 1. Hauptversuch, jedoch ist die Qualität der Schmelze allgemein schlechter.
- PoDFA: siehe auch Kapitel 5.5.4
 Die beste Qualität wird im Gießofen nach Impellern erreicht.
 Die PoDFA-Ergebnisse verbessern sich.
- Dichte-Index:
 Der Dichte-Index verändert sich kaum.

5.6 Allgemein

5.6.1 Einfluss der Schmelzequalität auf mechanische Eigenschaften

Wie schon in Kapitel 2.1 erwähnt, sind Oxide Fehler in der Schmelze. Der Einfluss auf die Schmelzequalität wurde in den Hauptversuchen 1-4 untersucht. Bei Betrachtung der mechanischen Eigenschaften hat sich die unterschiedliche Auswirkung der Arten der Oxide (neu und alt) gezeigt.

Im Zugversuch wurde festgestellt, dass hierbei insbesondere alte Oxide einen Einfluss hatten. Diese haben keine flächige 2-dimensionale-Struktur sondern sind ein 3-dimensionaler Einschluss. Von diesen aus bildet sich der Anriss, der schließlich zum Bruch der Zugprobe führt. Es wurden auch flächige Oxide gefunden Dies lies sich im Rasterelektronenmikroskop (REM) gut feststellen.

Waren in der Metallschmelze vorwiegend Oxide in Form von Einschlüssen vorhanden, so reduzierten diese die Höhe der Zugfestigkeit (und die der anderen Größen des Zugversuches) drastisch. Oxide in Form von Bifilmen hatten nicht einen so starken Einfluss auf die Zugfestigkeitswerte.

Im Schwingversuch wurde festgestellt, dass hierbei insbesondere neue Oxide (Bifilme) einen Einfluss hatten. Diese Oxidfilme hatten einen dominierenden Einfluss auf die Schwingfestigkeit [35,47]. Sie führen zu Ermüdungsrisskeimbildung und waren somit Rissinitiatoren. Alte Oxide haben einen geringeren Einfluss auf das Versagen der Schwingproben [12]. Des weiteren führten Oxidfilme zu Porositäten und der Theorie, dass diese Porositäten selbst ein Resultat des Aufblasens des Filmes sind [36]. Dies lies sich im REM gut feststellen.

In den meisten Fällen ging der Schwingprobenanriss von einer einzelnen Pore aus. Waren in der Metallschmelze vorwiegend Oxide in Form von Bifilmen vorhanden, so reduziert dies die erreichte Schwingspielzahl bis zum Bruch der Probe drastisch [15].

5.6.2 Bruchauslöser Zugversuch bzw. Schwingversuch

Es kann festgehalten werden, dass die Auslöser für das Versagen des Werkstoffes unterschiedliche sind bei Zug- bzw. Schwingproben. Diagramm 5-26 stellt eine schematische Interpretation hiervon dar. War die Spannung sehr hoch und die Schwingspiele gering, so sind die alten Oxide (Einschlüsse) die Bruchauslöser, Extremfall: Zugprüfung. Bei niedrigen Spannungen und höheren Schwingspielzahlen waren die neuen Oxide (Bifilme und somit Poren) die Bruchauslöser. Es ist jedoch nicht bekannt, wo dieser Übergang der Bruchauslöser liegt.

Bei der Auswertung der Bruchauslöser der Schwing- bzw. Zugproben wurden in dieser Arbeit nur unter Betriebsbedingungen vorkommende Poren bzw. Einschlüsse berücksichtigt. Sehr wahrscheinlich ist es jedoch, dass die Größe der Oxide eine entscheidende Rolle beim Versagen spielt.

Diagramm 5-26: schematischer Verlauf der bruchauslösenden Oxide

6 Zusammenfassung & Konklusion

6.1 Allgemein

Die Schmelzereinheit einer AlSi-Legierung wurde in verschiedenen Versuchen bestimmt. Die Versuche wurden variiert indem Prozessparameter verändert wurden. Die Versuche reagierten unterschiedlich stark auf in der Schmelze vorhandene Arten der Einschlüsse.

Es zeigte sich, dass bezüglich der Oxide in der Schmelze zwischen neuen und alten Oxiden unterschieden werden muss. Die neuen Oxide haben eher einen Einfluss auf die Poren, die alten Oxide haben eher einen Einfluss auf die Einschlüsse.

Die Poren im Metall sind eher verantwortlich für das Versagen des Werkstoffes im Schwingversuch, die Anzahl der Poren pro Fläche am Schliff der UD-Probe und die Größe des Dichte-Index.

Die nichtmetallischen Einschlüsse im Metall sind eher verantwortlich für das Versagen des Werkstoffes im Zugversuch und für die Größe des Messergebnisses des PoDFA-Versuches (größere Oxide).

6.2 **1. Hauptversuch: Istsituation**

Im 1. Hauptversuch, der die Ist-Situation der Gießerei erfasste, wurde eine sehr gute Schmelzequalität der Transportpfanne hinsichtlich Einschlüsse und eine gute Qualität hinsichtlich Poren gemessen. Der Gießofen nach Impellern zeigte eine sehr gute Qualität in Bezug auf Poren.

Hinsichtlich einiger Messungen musste festgestellt werden, dass sich die Schmelzequalität mit fortschreitender Behandlung verschlechterte.

6.3 2. Hauptversuch: Einfluss Sumpf

Im 2. Hauptversuch, der den Einfluss des Gießofensumpfes erfasste, zeigte sich, dass durch das Entfernen des Sumpfes Einschlüsse aus der Schmelze entfernt wurden. Dies führte zu einer positiven Auswirkung auf die Qualität bei einigen Versuchen. Jedoch wurde durch das Entfernen des Sumpfes auch der Effekt der Kornfeinung, die vom Sumpf zusätzlich hervorgerufen wurde, verhindert. Dies wirkte sich negativ auf die Qualität aus.

6.4 3. Hauptversuch: Einfluss Rinne

Im 3. Hauptversuch, der den Einfluss der Rinne die den Gießofen befüllt erfasste, zeigte sich, dass das Füllen ohne Rinne eine positive Auswirkung auf die Qualität der Schmelze im Gießofen vor Impellern hatte. Jedoch wurde diese Verbesserung der Schmelze nach dem Impellern wieder egalisiert. Es stellte sich somit, unabhängig von der Ausgangsqualität der Schmelze vor Impellern, nach dem Impellern ein immer relativ ähnlicher Wert der Schmelzequalität ein.

Des weitern war das Niveau der Schmelzequalität (N90%, Porenanzahl, A₅, PoDFA) bei den Gießöfen des 3. Hauptversuches höher als im 1. und 2. Hauptversuch. Grund hierfür war, dass bei diesem Versuch in der Gießerei 3 gegossen wurde, nicht wie bei den anderen in Gießerei 1.

6.5 4. Hauptversuch: LM25

Im 4. Hauptversuch, der den Legierungseinfluss erfasste, wurde eine LM25 untersucht. Die Transportpfanne wies eine wesentlich schlechtere Schmelzequalität auf als die anderen Positionen. Diese Legierung enthielt von Anfang an bereits mehr Einschlüsse und Poren. Der Gießofen nach Impellern wies die beste Qualität auf.

Des weitern war das Niveau der Schmelzequalität bei dieser Legierung niedriger als bei der Legierung des 1.- 3. Hauptversuches.

Dennoch konnte festgestellt werden, dass sich die Schmelzequalität mit fortschreitender Behandlung verbesserte.

6.6 Folgerung

In der Gießerei von heute sind als Kennwerte für die mechanischen Eigenschaften meist die Ergebnisse der dynamischen Prüfung von Bedeutung.

Im Laufe dieser Arbeit hat sich gezeigt, dass die Bestimmung der Anzahl der Poren pro Fläche am Schliff der UD-Probe ein guter Indikator für die Höhe der erreichbaren Schwingspiele ist. Tendenzen in der dynamischen Festigkeit können sich an Hand der Porenauswertung gut, einfach und schnell feststellen lassen. Es ist denkbar, dass von der Porenauswertung auf die Höhe der dynamischen Festigkeit geschlossen werden kann. Hierzu sind jedoch noch weitere Untersuchungen erforderlich. Weiters hat sich auch gezeigt, dass ein guter Zusammenhang der Messergebnisse der Zugfestigkeitswerte (Bruchdehnung) und der Ergebnisse der PoDFA-Messung besteht. Jedoch sollte die PoDFA-Messung erweitert werden um die Größenverteilung der Einschlüsse mitzuerfassen.

6.7 Zukünftige Arbeiten

Da bei der betrachteten AlSi7MgCu0,5-Legierung die Transportpfanne immer sehr gute Werte aufwies, muss festgehalten werden, dass es durch das Impellern vielfach zu einer Verschlechterung der Schmelzequalität kommt. Dies ist insbesondere der Fall, wenn vor dem Impellern schon eine gute Schmelzequalität vorlag. Auf die Impeller der Gießöfen ist daher besonderes Augenmerk zu legen. Diese sollten einer Optimierung unterzogen werden (Zustand, Wirksamkeit, Stellung der Längsachse, etc.).

Es sollte der negative Einfluss des Sumpfes eliminiert werden. Leider wird dabei der zusätzliches positive Kornfeinungseffekt zerstört. Daher sollte parallel dazu eine zusätzliche Kornfeinung im Gießofen erfolgen.

Des weiteren sollte die Rinne, die zur Befüllung des Gießofens dient, optimiert werden. Im Versuch hat sich die positive Auswirkung auf die PoDFA-Messung und die Messung der Porenanzahl beim Füllen ohne Rinne gezeigt. Ebenfalls sollten weitere Untersuchungen angestrebt werden um die Wirkung des Impellerns in diesem Zusammenhang genauer zu untersuchen.

Bei weiteren Untersuchungen zur Schmelzequalität muss bei der Wahl der Messmethoden unbedingt beachtet werden, dass Methoden gewählt werden, die eine möglichst breite Palette der vorkommenden Verunreinigungen ermitteln können. Um aussagekräftige und wirtschaftliche Ermittlungen der Qualität einer Schmelze zu machen, wird empfohlen, die Methoden erweiterter UD-Test (Porenbestimmung pro Fläche) und Zugversuch durchzuführen.

Literaturverzeichnis

- [1] J. Campbell: Castings, Butterworth-Heinemann, Oxford 2003, S. 12.
- [2] E. Brunnhuber (Herausgeber), Giesserei Lexikon, Schiele & Schön, Ausgabe 1994, S. 864.
- [3] Aluminium-Zentrale (Herausgeber), Aluminium-Taschenbuch, Aluminium-Verlag GmbH, Düsseldorf 1983, S. 377.
- [4] J. Campbell: Castings, Butterworth-Heinemann, Oxford 2003, S. 18.
- [5] H. Kaufmann, A. Mundl, D. Limburg: Untersuchung zum Verschmelzen von Füllfronten im Semi-solid-Guss, Druckguss Praxis 4/2004, S. 173.
- [6] J. Campbell: Castings, Butterworth-Heinemann, Oxford 2003, S. 33-36.
- [7] J. Campbell: Castings, Butterworth-Heinemann, Oxford 2003, S. 17.
- [8] P. Crepeau, M. Tiryakioglu, Shape Casting: The John Campbell Symposium, TMS, Warrendale, Pennsylvania, 2005, S. 205.
- [9] J. Campbell: Castings, Butterworth-Heinemann, Oxford 2003, S. 19.
- [10] P. Crepeau, M. Tiryakioglu, Shape Casting: The John Campbell Symposium, TMS, Warrendale, Pennsylvania, 2005, S. 13.
- [11] J. Campbell: Castings, Butterworth-Heinemann, Oxford 2003, S. 54.
- [12] C. Nyahumwa, N.R. Green, J. Campbell: Influence of Casting Technique and HIP on the Fatigue of an AI7SiMg Alloy, Met. and Mat. Trans. A, 32A, 2001, S.349-357.
- [13] P. Crepeau, M. Tiryakioglu, J. Campbell, Shape Casting: 2nd International Symposium, TMS, Warrendale, Pennsylvania, 2007, S. 35-42.
- [14] D. Dispinar: Determination of Metal Quality of Aluminium and Its Alloys, Birmingham 2005, S. 15.
- [15] P. Crepeau, M. Tiryakioglu, Shape Casting: The John Campbell Symposium, TMS, Warrendale, Pennsylvania, 2005, S. 206.
- [16] W. Bergmann.: Werkstofftechnik 2, Carl Hanser Verlag, München Wien 1987, S. 62.
- [17] W. Kättlitz: On-line Messung des Wasserstoffgehaltes in Aluminiumschmelzen, Giesserei-Praxis 11/2006, S. 339.
- [18] J. Campbell: Castings, Butterworth-Heinemann, Oxford 2003, S. 178-186.
- [19] J. Fisher: J. App. Phys., 1948, S. 1062-1067.
- [20] H.K. Livingston, C.S. Swingley, 1971, Surface Science, 24, S. 625-634.
- [21] O.J. Ilegbusi, J. Yang: Porosity Nucleation in Metal-Matrix Composites, Met. and Mat. Trans. A, 31A, 2000, S.2069-2074.
- [22] J. Campbell, 1968, Trans Met. Soc. AIME, 242, S. 264-271.
- [23] E.J. Whittenberger, R.N. Rhines, J. Metals, 4(4), 1952, S. 409-420.
- [24] E.J. Whittenberger, R.N. Rhines, Trans. AIME, 194, 1952, S. 409-420.
- [25] J. Campbell: Castings, Butterworth-Heinemann, Oxford 2003, S. 225.
- [26] J. Campbell: Castings, Butterworth-Heinemann, Oxford 2003, S. 65.
- [27] E. Brunnhuber (Herausgeber), Giesserei Lexikon, Schiele & Schön, Ausgabe 1994, S. 1262.
- [28] www.schumann-gmbh.de (Datum: 28.9.07).
- [29] Hydro Aluminium, Präsentation Information zur Schmelzereinheit.
- [30] Hydro Aluminium, Präsentation Schmelzereiheitsmessungen mittels MetalVision.
- [31] ABB Inc., Broschüre: AnalyzeIT LiMCA II.
- [32] E. Brunnhuber (Herausgeber), Giesserei Lexikon, Schiele & Schön, Ausgabe 1994, S. 1217.
- [33] Foseco, Broschüre: Alspek H.
- [34] Hydro Aluminium Bonn, Untersuchungsbericht RDB-07-032, S. 3.
- [35] P. Crepeau, M. Tiryakioglu, Shape Casting: The John Campbell Symposium, TMS, Warrendale, Pennsylvania, 2005, S. 213.
- [36] P. Crepeau, M. Tiryakioglu, Shape Casting: The John Campbell Symposium, TMS, Warrendale, Pennsylvania, 2005, S. 235.
- [37] E. Brunnhuber (Herausgeber), Giesserei Lexikon, Schiele & Schön, Ausgabe 1994, S. 927-928.
- [38] www.ogi.at (Datum: 28.9.07).
- [39] G. Lange (Herausgeber), Systematische Beurteilung technischer Schadensfälle, Deutsche Gesellschaft für Metallkunde E.V., 1983, S. 163.
- [40] Hydro Aluminium Bonn, Untersuchungsbericht RDB-07-032, S. 9.
- [41] Hydro Aluminium Bonn, Untersuchungsbericht RDB-07-054, S. 8.
- [42] Hydro Aluminium Bonn, Untersuchungsbericht RDB-07-054, S. 9.
- [43] Hydro Aluminium Bonn, Untersuchungsbericht RDB-07-054, S. 11.
- [44] J. Ohser, U. Lorz, Metallurgie und Werkstofftechnik-Werkstoffeinsatz: Quantitative Gefügeanalyse, Deutscher Verlag für Grundstoffindustrie, Leipzig 1994, S. 125.
- [45] Hydro Aluminium Bonn, Untersuchungsbericht RDB-07-054, S. 4.
- [46] Hydro Aluminium Bonn, Untersuchungsbericht RDB-07-054, S. 4-5.
- [47] C. Nyahumwa: Multiple defect distributions on weibull statistical analysis of fatiguelife of cast aluminium alloys, AJST, Vol. 6, No. 2, S. 43-54.

Anhang A Abbildungsverzeichnis

A1: Grundriss Nemak Linz Gießerei 1 und 3

Abbildung A2: Mosaikbild Probe 1_06

Abbildung A3: Mosaikbild Probe 1_10a

Abbildung A4: Mosaikbild Probe 1_11a

Abbildung A6: Mosaikbild Probe 1_13a

Abbildung A5: Mosaikbild Probe 1_12a

Abbildung A7: Mosaikbild Probe 1_14a

Abbildung A8: Intermetallische Mn-Fe-Phase, BSD, Vergrößerung 1500x

Abbildung A9: Intermetallische Sr-Phase, BSD, Vergrößerung 4000x

Abbildung A10: Pb-Phase, BSD, Vergr. 4000x

Abbildung A11: Pb-Phase, ETD, Vergr. 4000x

Abbildung A12: Mosaikbild Probe 1_16

Abbildung A13: Mosaikbild Probe 1_18

Abbildung A14: Mosaikbild Probe 1_22

Abbildung A15: Mosaikbild Probe 1_23

Abbildung A16: Mosaikbild Probe 1_25

Abbildung A17: Mosaikbild Probe 1_26

Abbildung A18: Mosaikbild Probe 1_28

Abbildung A19: Mosaikbild Probe 1_29

Abbildung A20: Mosaikbild Probe 1_30

Abbildung A21: Mosaikbild Probe 1_31

Abbildung A22: Mosaikbild Probe 1_32

Abbildung A23: Mosaikbild Probe 1_33

Abbildung A24: Mosaikbild Probe 1_34

Abbildung A26: Mosaikbild Probe 1_37

Abbildung A25: Mosaikbild Probe 1_35

Abbildung A27: Mosaikbild Probe 1_38

Abbildung A28: Mosaikbild Probe 1_40

Abbildung A29: Mosaikbild Probe 1_41

Abbildung A30: Mosaikbild Probe 1_45

Abbildung A31: Mosaikbild Probe 1_46

Abbildung A32: Mosaikbild Probe 1_47

Abbildung A33: Mosaikbild Probe 1_48

Abbildung A34: Mosaikbild Probe 1_49

Abbildung A35: Mosaikbild Probe 1_51

Abbildung A36: Mosaikbild Probe 1_52

Abbildung A38: Mosaikbild Probe 1_54

Abbildung A37: Mosaikbild Probe 1_53

Abbildung A39: Mosaikbild Probe 1_55

Abbildung A40: Mosaikbild Probe 1_56

Abbildung A41: Mosaikbild Probe 1_57

Abbildung A42: Mosaikbild Probe 1_58

Abbildung A43: Mikrofotos Gasschmelzofen

Abbildung A44: Mikrofotos Transportpfanne

Abbildung A45: Mikrofotos Gießofen vor Impellern

Abbildung A46: Mikrofotos Gießofen nach Impellern

Abbildung A47: Probe 2_70 Einschluss, BSD, Vergr. 120x

Abbildung A49: Mosaikbild Probe 1_60

Abbildung A51: Mosaikbild Probe 1_63

Abbildung A48: Probe 2_70 Einschluss, ETD, Vergr. 120x

Abbildung A50: Mosaikbild Probe 1_61

Abbildung A52: Mosaikbild Probe 1_64A

Abbildung A53: Mosaikbild Probe 1_65

Abbildung A55: Mosaikbild Probe 1_68

Abbildung A57: Mosaikbild Probe 1_71

Abbildung A54: Mosaikbild Probe 1_67

Abbildung A56: Mosaikbild Probe 1_70

Abbildung A58: Mosaikbild Probe 1_73

Abbildung A59: Mosaikbild Probe 1_75

Abbildung A60: Mosaikbild Probe 1_76

Abbildung A61: Mosaikbild Probe 1_78

Abbildung A62: Mosaikbild Probe 1_80

Abbildung A63: Mosaikbild Probe 1_81

Abbildung A64: Mosaikbild Probe 1_82

Abbildung A65: Mosaikbild Probe 1_83

Abbildung A66: Mosaikbild Probe 1_84

Abbildung A67: Mosaikbild Probe 1_86

Abbildung A68: Mosaikbild Probe 1_87

Abbildung A69: Mikrofotos Gießofen vor Impellern ohne Sumpf

Abbildung A70: Mikrofotos Gießofen nach Impellern ohne Sumpf

Abbildung A71: Mikrofotos Gießofen vor Impellern mit Sumpf

Abbildung A72: Mikrofotos Gießofen nach Impellern mit Sumpf

Abbildung A73: Mikrofotos Transportpfanne

Abbildung A74: Mosaikbild Probe 1_89

Abbildung A75: Mosaikbild Probe 1_91

Abbildung A76: Mosaikbild Probe 1_92

Abbildung A77: Mosaikbild Probe 1_94

Abbildung A78: Mosaikbild Probe 1_96

Abbildung A79: Mosaikbild Probe 1_97

Abbildung A80: Mosaikbild Probe 1_98

Abbildung A81: Mosaikbild Probe 1_100

Abbildung A82: Mosaikbild Probe 1_101

Abbildung A83: Mosaikbild Probe 1_104

Abbildung A84: Mosaikbild Probe 1_106A

Abbildung A85: Mosaikbild Probe 1_106B

Abbildung A86: Mosaikbild Probe 1_107

Abbildung A87: Mosaikbild Probe 1_110

Abbildung A88: Mosaikbild Probe 1_111

Abbildung A89: Mosaikbild Probe 1_112

Abbildung A90: Mikrofotos Gießofen vor Impellern mit Rinne

Abbildung A91: Mikrofotos Gießofen nach Impellern mit Rinne

Abbildung A92: Mikrofotos Gießofen vor Impellern ohne Rinne

Abbildung A93: Mikrofotos Gießofen nach Impellern ohne Rinne

Abbildung A94: Mikrofotos Transportpfanne

Abbildung A95: Mosaikbild Probe 1_113

Abbildung A96: Mosaikbild Probe 1_115

Abbildung A97: Mosaikbild Probe 1_117

Abbildung A99: Mosaikbild Probe 1_120

Abbildung A98: Mosaikbild Probe 1_118

Abbildung A100: Mosaikbild Probe 1_121

Abbildung A101: Mosaikbild Probe 1_123

Abbildung A102: Mosaikbild Probe 1_124

Abbildung A103: Mosaikbild Probe 1_125

Abbildung A105: Mosaikbild Probe 1_128

Abbildung A104: Mosaikbild Probe 1_127

Abbildung A106: Mosaikbild Probe 1_130B

Abbildung A107: Mikrofotos Transportpfanne

Abbildung A108: Mikrofotos Gießofen vor Impellern

Abbildung A109: Mikrofotos Gießofen nach Impellern

Anhang B Diagrammverzeichnis

Temperaturverlauf Thermoelemente 600 500 400 Temperatur [°C] 300 200 100 0 00:00 01:00 02:00 03:00 04:00 05:00 Zeit [hh:mm] Thermoelement #2 Thermoelement #3 Thermoelement #4 Thermoelement #1 Thermoelement #5 Thermoelement #6 Thermoelement #7

Diagramm B1: Temperaturverlauf der Thermoelemente bei Wärmebehandlung des Vorversuches

Diagramm B2: Temperaturverlauf der Thermoelemente bei Wärmebehandlung des 1. Hauptversuches

Diagramm B3: Temperaturverlauf der Thermoelemente bei Wärmebehandlung des 2. und 3. Hauptversuches

Diagramm B4: Wahrscheinlichkeitsnetzdiagramm Schwingproben, vor Impellern, omax=150Mpa

Diagramm B5: Wahrscheinlichkeitsnetzdiagramm Schwingproben, vor Impellern, omax=105MPa

Diagramm B6: Wahrscheinlichkeitsnetzdiagramm Schwingproben, nach Impellern, omax=150MPa

Diagramm B7: Wahrscheinlichkeitsnetzdiagramm Schwingproben, nach Impellern, omax=160MPa

Diagramm B8: Thermoanalyse Probe 5_15

Diagramm B9: Thermoanalyse Probe 5_16

Diagramm B10: Thermoanalyse Probe 5_18

Diagramm B11: Thermoanalyse Probe 5_19

Diagramm B12: Thermoanalyse Probe 5_20

Diagramm B13: Thermoanalyse Probe 5_21

Diagramm B14: H₂/Zeit-Verlauf in Gießofen vor Impellern, Probe 6_07

Diagramm B15: H₂/Zeit-Verlauf in Gießofen nach Impellern, Probe 6_09

Diagramm B16: H₂/Zeit-Verlauf in Gießofen vor Impellern, Probe 6_08

Diagramm B17: H₂/Zeit-Verlauf in Gießofen nach Impellern, Probe 6_08

Diagramm B18: Wahrscheinlichkeitsnetzdiagramm Schwingproben, Gasschmelzofen, omax=160MPa

Diagramm B19: Wahrscheinlichkeitsnetzdiagramm Schwingproben, Transportpfanne, omax=160Mpa

Diagramm B20: Wahrscheinlichkeitsnetzdiagramm Schwingproben, vor Impellern omax=160Mpa

Diagramm B21: Wahrscheinlichkeitsnetzdiagramm Schwingproben nach Impellern, omax=160MPa

Diagramm B22: Wahrscheinlichkeitsnetzdiagramm Schwingproben, mit Sumpf, omax=160MPa

Diagramm B24: Wahrscheinlichkeitsnetzdiagramm Schwingproben, ohne Sumpf, omax=160MPa

Diagramm B25: Wahrscheinlichkeitsnetzdiagramm Schwingproben, ohne Sumpf, omax=160Mpa

Diagramm B26: Qualitätsindex-Diagramm 2. Hauptversuch

Diagramm B27: Zusammenhang Qualitätsindex und N90% je Position für 2. Hauptversuch

Diagramm B28: Wahrscheinlichkeitsnetzdiagramm Schwingproben, mit Rinne, omax=160Mpa

Diagramm B29: Wahrscheinlichkeitsnetzdiagramm Schwingproben, mit Rinne, omax=160MPa

Diagramm B30: Wahrscheinlichkeitsnetzdiagramm Schwingproben, ohne Rinne, omax=160MPa

Diagramm B31: Wahrscheinlichkeitsnetzdiagramm Schwingproben, ohne Rinne, omax=160Mpa

Diagramm B32: Qualitätsindex-Diagramm 3. Hauptversuch

Diagramm B33: Zusammenhang Qualitätsindex und N90% je Position für 3. Hauptversuch

Diagramm B34: Wahrscheinlichkeitsnetzdiagramm Schwingproben, Transportpfanne, omax=160MPa

Diagramm B35: Wahrscheinlichkeitsnetzdiagramm Schwingproben, Gießofen nach Impellern, σ max=160MPa

Diagramm B36: Wahrscheinlichkeitsnetzdiagramm Schwingproben, Gießofen vor Impellern, $\sigma\text{max}\text{=}160\text{MPa}$

Diagramm B37: Qualitätsindex-Diagramm 4. Hauptversuch

Diagramm B38: Zusammenhang Qualitätsindex und N90% je Position für 4. Hauptversuch

Anhang C Tabellenverzeichnis

Probe Nr.	Datum	Probe- nahme- zeit	Legierung	Position	Ofen	Abstehzeit nach Impellern [h:min]
1_6	05.02.07	12:14	AlSi7MgCu0,5	Gießofen vor Impellern	15	
1_11a	05.02.07	14:15	AlSi7MgCu0,5	Gießofen vor Impellern	16	
1_12a	05.02.07	14:24	AlSi7MgCu0,5	Gießofen vor Impellern	16	
1_10a	05.02.07	13:06	AlSi7MgCu0,5	Gießofen nach Impellern	15	0:22
1_13a	05.02.07	16:04	AlSi7MgCu0,5	Gießofen nach Impellern	16	0:04
1_14a	05.02.07	16:17	AlSi7MgCu0,5	Gießofen nach Impellern	16	0:17

Tabelle C1: UD-Proben Vorversuch

Probe-Abstehzeit Probe Datum Legierung Position Ofen nach Imnahme-Nr. pellern [h:min] zeit 2_4 30.1.07 9:03 AlSi7MgCu0,5 Gießofen vor Impellern 15 2_5 9:06 30.1.07 AlSi7MgCu0,5 Gießofen vor Impellern 15 2 15 5.2.07 12:13 AlSi7MgCu0,5 Gießofen vor Impellern 15 2_16 5.2.07 12:22 AlSi7MgCu0,5 15 Gießofen vor Impellern 2 28 5.2.07 14:53 AlSi7MgCu0,5 Gießofen vor Impellern 16 2_29 5.2.07 15:00 AlSi7MgCu0,5 Gießofen vor Impellern 16 2 30 15:08 Gießofen vor Impellern 16 5.2.07 AlSi7MgCu0,5 2_31 5.2.07 15:16 AlSi7MgCu0,5 Gießofen vor Impellern 16 2_32 5.2.07 15:24 AlSi7MgCu0,5 Gießofen vor Impellern 16 2_33 5.2.07 15:30 AlSi7MgCu0,5 Gießofen vor Impellern 16 2_34 5.2.07 15:38 AlSi7MgCu0,5 Gießofen vor Impellern 16 2_35 5.2.07 16:40 AlSi7MgCu0,5 Gießofen vor Impellern 15 2 36 5.2.07 16:46 AlSi7MgCu0,5 Gießofen vor Impellern 15 2_37 5.2.07 16:52 AlSi7MgCu0,5 Gießofen vor Impellern 15 2_38 5.2.07 17:00 AlSi7MgCu0,5 Gießofen vor Impellern 15 2 39 5.2.07 17:06 AlSi7MgCu0,5 Gießofen vor Impellern 15 2 40 17:14 5.2.07 AlSi7MgCu0,5 Gießofen vor Impellern 15 17:22 2_41 5.2.07 AlSi7MgCu0,5 Gießofen vor Impellern 15 2 42 5.2.07 17:30 AlSi7MgCu0,5 Gießofen vor Impellern 15 2_6 5.2.07 10:47 AlSi7MgCu0,5 Gießofen nach Impellern 15 2_7 5.2.07 10:55 AlSi7MgCu0,5 Gießofen nach Impellern 15 2_8 5.2.07 11:04 AlSi7MgCu0,5 Gießofen nach Impellern 16 0:04 29 5.2.07 11:12 AlSi7MgCu0,5 Gießofen nach Impellern 16 0:12 2_10 5.2.07 11:21 AlSi7MgCu0,5 Gießofen nach Impellern 16 0:21 2_11 5.2.07 11:29 AlSi7MgCu0,5 Gießofen nach Impellern 16 0:29 2 12 11:37 5.2.07 AlSi7MgCu0,5 Gießofen nach Impellern 16 0:37 2 13 5.2.07 11:47 AlSi7MgCu0,5 Gießofen nach Impellern 16 0:47 2_14 11:56 5.2.07 AlSi7MgCu0,5 Gießofen nach Impellern 16 0:56 2 17 12:30 AlSi7MgCu0,5 Gießofen nach Impellern 16 1:30 5.2.07 2_19 5.2.07 12:45 AlSi7MgCu0,5 Gießofen nach Impellern 15 0:03 2 20 5.2.07 12:53 AlSi7MgCu0,5 Gießofen nach Impellern 15 0:11 2_22 5.2.07 13:11 AlSi7MgCu0,5 Gießofen nach Impellern 15 0:29 2 23 5.2.07 13:20 AlSi7MgCu0,5 Gießofen nach Impellern 15 0:38 5.2.07 2 24 13:30 AlSi7MgCu0,5 Gießofen nach Impellern 15 0:48 2 25 5.2.07 13:38 AlSi7MgCu0,5 Gießofen nach Impellern 15 0:56 2 26 5.2.07 13:46 AlSi7MgCu0,5 Gießofen nach Impellern 15 1:04 2 27 5.2.07 13:55 AlSi7MgCu0,5 Gießofen nach Impellern 15 1:13 P_10 12:56 22.2.07 AlSi7MgCu0,5 Gießofen nach Impellern 16 0:56 P_11 13:02 AlSi7MgCu0,5 Gießofen nach Impellern 16 1:02 22.2.07

TabelleC2: Schwingfestigkeitsproben Vorversuch

Tabelle C3: Zugfestigkeitsproben Vorversuch

Probe Nr.	Datum	Probe- nahme- zeit	Legierung	Position	Ofen	Abstehzeit nach Impellern [h:min]
3_11	30.01.07	17:26	AlSi7MgCu0,5	Gießofen vor Impellern	13	
3_12	30.01.07	17:35	AlSi7MgCu0,5	Gießofen vor Impellern	13	
3_13	30.01.07	17:44	AlSi7MgCu0,5	Gießofen vor Impellern	13	
3_14	05.02.07	10:32	AlSi7MgCu0,5	Gießofen vor Impellern	16	
3_15	05.02.07	10:40	AlSi7MgCu0,5	Gießofen vor Impellern	16	
3_17	05.02.07	14:14	AlSi7MgCu0,5	Gießofen vor Impellern	16	
3_18	05.02.07	14:23	AlSi7MgCu0,5	Gießofen vor Impellern	16	
3_19	05.02.07	14:30	AlSi7MgCu0,5	Gießofen vor Impellern	16	
3_20	05.02.07	14:39	AlSi7MgCu0,5	Gießofen vor Impellern	16	
3_2	30.01.07	16:07	AlSi7MgCu0,5	Gießofen nach Impellern	16	
3_3	30.01.07	16:13	AlSi7MgCu0,5	Gießofen nach Impellern	14	0:13
3_4	30.01.07	16:20	AlSi7MgCu0,5	Gießofen nach Impellern	14	0:20
3_5	30.01.07	16:29	AlSi7MgCu0,5	Gießofen nach Impellern	14	0:29
3_6	30.01.07	16:36	AlSi7MgCu0,5	Gießofen nach Impellern	14	0:36
3_7	30.01.07	16:46	AlSi7MgCu0,5	Gießofen nach Impellern	14	0:46
3_8	30.01.07	16:56	AlSi7MgCu0,5	Gießofen nach Impellern	14	0:56
3_9	30.01.07	17:06	AlSi7MgCu0,5	Gießofen nach Impellern	14	1:06
3_16	05.02.07	14:05	AlSi7MgCu0,5	Gießofen nach Impellern	15	1:23
P_2	22.02.07	12:10	AlSi7MgCu0,5	Gießofen nach Impellern	16	0:10
P_3	22.02.07	12:15	AlSi7MgCu0,5	Gießofen nach Impellern	16	0:15
P_5	22.02.07	12:26	AlSi7MgCu0,5	Gießofen nach Impellern	16	0:26
P_7	22.02.07	12:39	AlSi7MgCu0,5	Gießofen nach Impellern	16	0:39
P_8	22.02.07	12:45	AlSi7MgCu0,5	Gießofen nach Impellern	16	0:45
P_9	22.02.07	12:51	AlSi7MgCu0,5	Gießofen nach Impellern	16	0:51

Tabelle C4: Auswertungsergebnisse	bildanalytische Auswertung	UD-Proben Vorversuch
-----------------------------------	----------------------------	-----------------------------

Probe Nr.	Position	Abstehzeit nach Impellern [min]	Anzahl der Poren	Fläche der Probe [cm²]	Poren/cm ²	Porosität [%]
1_6	Gießofen vor Impellern		619	11,32	55	8,0
1_11a	Gießofen vor Impellern		395	11,89	33	14,4
1_12a	Gießofen vor Impellern		283	10,92	26	14,1
1_10a	Gießofen nach Impellern	0:22	273	10,18	27	2,3
1_13a	Gießofen nach Impellern	0:04	412	10,52	39	2,7
1_14a	Gießofen nach Impellern	0:17	328	9,51	34	3,1

Probe Nr.	Position	Abstehzeit nach Impellern [h:min]	Ober- spannung [MPa]	Schwingspiele bis Bruch
2_5	Gießofen vor Impellern		105	10.000.000
2_15	Gießofen vor Impellern		150	717.000
2_16	Gießofen vor Impellern		105	10.000.000
2_28	Gießofen vor Impellern		150	511.000
2_29	Gießofen vor Impellern		105	494.800
2_30	Gießofen vor Impellern		150	347.900
2_31	Gießofen vor Impellern		105	10.000.000
2_32	Gießofen vor Impellern		150	454.700
2_33	Gießofen vor Impellern		105	3.175.400
2_34	Gießofen vor Impellern		150	444.300
2_35	Gießofen vor Impellern		105	10.000.000
2_36	Gießofen vor Impellern		150	280.800
2_37	Gießofen vor Impellern		105	10.000.000
2_38	Gießofen vor Impellern		150	280.900
2_39	Gießofen vor Impellern		105	4.684.900
2_40	Gießofen vor Impellern		150	314.000
2_41	Gießofen vor Impellern		105	10.000.000
2_42	Gießofen vor Impellern		150	4.100
2_6	Gießofen nach Impellern		150	1.445.100
2_7	Gießofen nach Impellern		105	10.000.000
2_8	Gießofen nach Impellern	0:04	150	1.109.400
2_9	Gießofen nach Impellern	0:12	105	10.000.000
2_10	Gießofen nach Impellern	0:21	150	1.480.700
2_11	Gießofen nach Impellern	0:29	105	10.000.000
2_12	Gießofen nach Impellern	0:37	150	1.666.200
2_13	Gießofen nach Impellern	0:47	160	2.042.700
2_14	Gießofen nach Impellern	0:56	150	571.000
2_17	Gießofen nach Impellern	1:30	160	1.087.700
2_19	Gießofen nach Impellern	0:03	150	551.700
2_20	Gießofen nach Impellern	0:11	160	1.938.700
2_22	Gießofen nach Impellern	0:29	150	1.551.200
2_23	Gießofen nach Impellern	0:38	160	634.300
2_24	Gießofen nach Impellern	0:48	150	1.179.600
2_25	Gießofen nach Impellern	0:56	160	388.700
2_26	Gießofen nach Impellern	1:04	150	10.000.000
2_27	Gießofen nach Impellern	1:13	160	568.900
P_10	Gießofen nach Impellern	0:56	150	1.558.800
P_11	Gießofen nach Impellern	1:02	160	1.806.600

Tabelle C5: Auswertungsergebnisse Schwingversuch Vorversuch

Probe Nr.	Position	Absteh- zeit nach Impellern [h:min]	E-Modul [GPa]	R _{p0,2} [MPa]	R _m [MPa]	A [%]	Ein- schluss
3_11	Gießofen vor Impell.		65,2	170,6	258,0	5,26	
3_12	Gießofen vor Impell.		67,9	167,1	241,8	3,17	ja
3_13	Gießofen vor Impell.		67,2	169,2	240,4	2,85	ja
3_14	Gießofen vor Impell.		68,6	173,4	260,5	5,51	-
3_15	Gießofen vor Impell.		69,2	171,9	241,3	2,75	ja
3_17	Gießofen vor Impell.		72,5	174,2	253,4	4,40	ja
3_18	Gießofen vor Impell.		68,5	178,8	224,5	1,21	ja
3_19	Gießofen vor Impell.		71,8	173,3	258,4	5,54	
3_20	Gießofen vor Impell.		67,7	180,5	244,8	2,64	ја
3_2	Gießofen nach Impell.		65,3	181,1	260,4	3,95	ja
3_3	Gießofen nach Impell.	0:13	73,6	182,7	273,4	6,24	
3_4	Gießofen nach Impell.	0:20	68,3	181,7	244,4	2,14	ja
3_5	Gießofen nach Impell.	0:29	71,2	174,7	241,1	2,17	ja
3_6	Gießofen nach Impell.	0:36	68,2	175,5	247,5	2,77	ja
3_7	Gießofen nach Impell.	0:46	68,0	179,2	268,8	5,74	ja
3_8	Gießofen nach Impell.	0:56	70,4	180,2	273,6	7,46	
3_9	Gießofen nach Impell.	1:06	69,9	175,8	254,7	3,46	ja
3_16	Gießofen nach Impell.	1:23	70,1	176,3	262,8	5,68	
P_2	Gießofen nach Impell.	0:10	70,7	176,2	271,3	8,80	
P_3	Gießofen nach Impell.	0:15	70,9	187,4	273,3	6,23	ja
P_5	Gießofen nach Impell.	0:26	68,4	173,2	256,6	4,66	ja
P_7	Gießofen nach Impell.	0:39	71,8	179,0	272,1	8,50	
P_8	Gießofen nach Impell.	0:45	66,8	179,2	270,3	8,56	
P_9	Gießofen nach Impell.	0:51	63,7	171,7	258,5	5,41	ја

Tabelle C6: Auswertungsergebnisse Zugversuch Vorversuch

Tabelle	C7:	UD-Proben	1.	Hauptversuch
---------	-----	------------------	----	--------------

Probe Nr.	Datum	Probe- nahme- zeit	Legierung	Position	Ofen	Absteh- zeit nach Impellern [h:min]
1_15	27.2.07	13:35	AlSi7MgCu0,5	Gasschmelzofen		
1_16	27.2.07		AlSi7MgCu0,5	Gasschmelzofen		
1_17	27.2.07		AlSi7MgCu0,5	Gasschmelzofen		
1_18	27.2.07		AlSi7MgCu0,5	Gasschmelzofen		
1_19	27.2.07		AlSi7MgCu0,5	Gasschmelzofen		
1_20	27.2.07	14:30	AlSi7MgCu0,5	Gasschmelzofen		
1_45	13.3.07	09:50	AlSi7MgCu0,5	Gasschmelzofen		
1_46	13.3.07	10:10	AlSi7MgCu0,5	Gasschmelzofen		
1_47	13.3.07	10:15	AlSi7MgCu0,5	Gasschmelzofen		
1_21	27.2.07	15:00	AlSi7MgCu0,5	Transportpfanne		
1_22	27.2.07		AlSi7MgCu0,5	Transportpfanne		
1_23	27.2.07		AlSi7MgCu0,5	Transportpfanne		
1_24	27.2.07		AlSi7MgCu0,5	Transportpfanne		
1_25	27.2.07		AlSi7MgCu0,5	Transportpfanne		
1_26	27.2.07	16:20	AlSi7MgCu0,5	Transportpfanne		
1_48	13.3.07	11:15	AlSi7MgCu0,5	Transportpfanne		
1_49	13.3.07	12:05	AlSi7MgCu0,5	Transportpfanne		
1_27	28.2.07	8:15	AlSi7MgCu0,5	Gießofen vor Impellern	12	
1_28	28.2.07	8:15	AlSi7MgCu0,5	Gießofen vor Impellern	12	
1_29	28.2.07	9:55	AlSi7MgCu0,5	Gießofen vor Impellern	11	
1_30	28.2.07		AlSi7MgCu0,5	Gießofen vor Impellern	11	
1_31	28.2.07	11:25	AlSi7MgCu0,5	Gießofen vor Impellern	12	
1_32	28.2.07		AlSi7MgCu0,5	Gießofen vor Impellern	12	
1_51	13.3.07	13:30	AlSi7MgCu0,5	Gießofen vor Impellern	11	
1_52	13.3.07	13:52	AlSi7MgCu0,5	Gießofen vor Impellern	11	
1_53	13.3.07	15:20	AlSi7MgCu0,5	Gießofen vor Impellern	12	
1_54	13.3.07	15:31	AlSi7MgCu0,5	Gießoten vor Impellern	12	
1_33	28.2.07	9:00	AlSi7MgCu0,5	Gießofen nach Impellern	12	0:05
1_34	28.2.07	9:11	AlSi7MgCu0,5	Gießofen nach Impellern	12	0:16
1_35	28.2.07	10:50	AlSi7MgCu0,5	Gießofen nach Impellern	11	0:13
1_36	28.2.07	10:50	AlSi7MgCu0,5	Gießofen nach Impellern	11	0:13
1_37	28.2.07	12:30	AlSi7MgCu0,5	Gießofen nach Impellern	12	0:07
1_38	28.2.07	12:41	AlSi7MgCu0,5	Gielsofen nach Impellern	12	0:18
1_55	13.3.07	14:20	AISI7MgCu0,5	Gielsofen nach Impellern	11	0:05
1_56	13.3.07	14:35	AlSi7MgCu0,5	Gielsofen nach Impellern	11	0:20
1_57	13.3.07	16:03	AlSi7MgCu0,5	Gielsofen nach Impellern	12	0:13
1_58	13.3.07	16:12	AISI/MgCu0,5	Gielsofen nach Impellern	12	0:22
1_39	28.2.07		AISI/MgCu0,5	Gielswanne		
1_40	28.2.07		AISI/MgCu0,5	Gleiswanne		
1_41	28.2.07		AISI/MgCu0,5	Gleiswanne		
1_42	28.2.07		AISI/MgCu0,5	Gielswanne		
1_43	28.2.07		AISI/MgCu0,5	Gielswanne		
1 44	28.2.07		AISI/MgCu0,5	Gielswanne		

Probe Nr.	Datum	Probennahme- zeit [h:min]	Legierung	Position	Ofen
5_15	27.02.2007	14:16	AlSi7MgCu0,5	Gasschmelzofen 1	
5_16	27.02.2007	15:32	AlSi7MgCu0,5	Transportpfanne	
5_18	28.02.2007	8:26	AlSi7MgCu0,5	Gießofen vor Impellern	12
5_19	28.02.2007	10:08	AlSi7MgCu0,5	Gießofen vor Impellern	11
5_20	28.02.2007	9:06	AlSi7MgCu0,5	Gießofen nach Impellern	12
5_21	28.02.2007	10:47	AlSi7MgCu0,5	Gießofen nach Impellern	11

Tabelle C8: Thermoanalysen 1. Hauptversuch

Tabelle C9: H₂-Messungen 1. Hauptversuch

Probe Nr. Position		Art der Messung
6_01	Gasschmelzofen 1	Einzelmessung
6_02	Gasschmelzofen 1	Einzelmessung
6_03	Transportpfanne	Einzelmessung
6_04	Transportpfanne	Einzelmessung
6_05	Transportpfanne	Einzelmessung
6_06	Transportpfanne	Einzelmessung
6_07	Gießofen vor Impellern	Dauermessung
6_08	Gießofen vor Impellern	Dauermessung
6_09 6_10	Gießofen nach Impellern Gießofen nach Impellern	Dauermessung Dauermessung

Tabelle C10: Schwingfestigkeitsproben 1. Hauptversuch

Probe Nr.	Datum	Probe- nahme- zeit	Legierung	Position	Ofen	Abstehzeit nach Impellern [h:min]
2_51	27.2.07		AlSi7MgCu0,5	Gasschmelzofen		
2_52	27.2.07		AlSi7MgCu0,5	Gasschmelzofen		
2_53	27.2.07	14:19	AlSi7MgCu0,5	Gasschmelzofen		
2_84	13.3.07	09:50	AlSi7MgCu0,5	Gasschmelzofen		
2_85	13.3.07		AlSi7MgCu0,5	Gasschmelzofen		
2_86	13.3.07		AlSi7MgCu0,5	Gasschmelzofen		
2_87	13.3.07		AlSi7MgCu0,5	Gasschmelzofen		
2_88	13.3.07	10:30	AlSi7MgCu0,5	Gasschmelzofen		
2_89	13.3.07		AlSi7MgCu0,5	Gasschmelzofen		
2_90	13.3.07		AlSi7MgCu0,5	Gasschmelzofen		
2_91	13.3.07	10:55	AlSi7MgCu0,5	Gasschmelzofen		
2_92	13.3.07		AlSi7MgCu0,5	Gasschmelzofen		
2_93	13.3.07		AlSi7MgCu0,5	Gasschmelzofen		

Probe Nr.	Datum	Probe- nahme- zeit	Legierung	Position	Ofen	Abstehzeit nach Impellern [h:min]
2_54	27.2.07	15:12	AlSi7MgCu0,5	Transportpfanne		
2_55	27.2.07		AlSi7MgCu0,5	Transportpfanne		
2_56	27.2.07		AlSi7MgCu0,5	Transportpfanne		
2_57	27.2.07		AlSi7MgCu0,5	Transportpfanne		
2_58	27.2.07		AlSi7MgCu0,5	Transportpfanne		
2_59	27.2.07		AlSi7MgCu0,5	Transportpfanne		
2_60	27.2.07		AlSi7MgCu0,5	Transportpfanne		
2_94	13.3.07	11:16	AlSi7MgCu0,5	Transportpfanne		
2 95	13.3.07		AlSi7MgCu0,5	Transportpfanne		
2_96	13.3.07	12:00	AlSi7MgCu0,5	Transportpfanne		
2 97	13.3.07		AlSi7MgCu0,5	Transportpfanne		
2_98	13.3.07		AlSi7MgCu0,5	Transportpfanne		
2 71	28.2.07		AlSi7MgCu0,5	Gießofen vor Impellern	11	
2 72	28.2.07	10:18	AlSi7MgCu0,5	Gießofen vor Impellern	11	
2_73	28.2.07	11:25	AlSi7MgCu0,5	Gießofen vor Impellern	12	
2 99	13.3.07	13:30	AlSi7MgCu0,5	Gießofen vor Impellern	11	
2 100	13.3.07		AlSi7MgCu0,5	Gießofen vor Impellern	11	
2 101	13.3.07		AlSi7MgCu0,5	Gießofen vor Impellern	11	
2 102	13.3.07		AlSi7MgCu0,5	Gießofen vor Impellern	11	
2 103	13.3.07	13:53	AlSi7MgCu0,5	Gießofen vor Impellern	11	
2 104	13.3.07		AlSi7MgCu0,5	Gießofen vor Impellern	12	
2 105	13.3.07		AlSi7MgCu0,5	Gießofen vor Impellern	12	
2_106	13.3.07		AlSi7MgCu0,5	Gießofen vor Impellern	12	
2_107	13.3.07		AlSi7MgCu0,5	Gießofen vor Impellern	12	
2_108	13.3.07	15:35	AlSi7MgCu0,5	Gießofen vor Impellern	12	
2 74	28.2.07	09:07	AlSi7MgCu0,5	Gießofen nach Impellern	12	0:12
2 75	28.2.07	09:14	AlSi7MgCu0,5	Gießofen nach Impellern	12	0:19
2_76	28.2.07	09:20	AlSi7MgCu0,5	Gießofen nach Impellern	12	0:25
2_77	28.2.07	09:27	AlSi7MgCu0,5	Gießofen nach Impellern	12	0:32
2_78	28.2.07	09:33	AlSi7MgCu0,5	Gießofen nach Impellern	12	0:38
2_79	28.2.07	10:46	AlSi7MgCu0,5	Gießofen nach Impellern	11	0:09
2_80	28.2.07	10:52	AlSi7MgCu0,5	Gießofen nach Impellern	11	0:15
2_109	13.3.07	14:23	AlSi7MgCu0,5	Gießofen nach Impellern	11	0:08
2_110	13.3.07	14:28	AlSi7MgCu0,5	Gießofen nach Impellern	11	0:13
2_111	13.3.07	14:35	AlSi7MgCu0,5	Gießofen nach Impellern	11	0:20
2_112	13.3.07	14:40	AlSi7MgCu0,5	Gießofen nach Impellern	11	0:25
2_113	13.3.07	14:46	AlSi7MgCu0,5	Gießofen nach Impellern	11	0:31
2_114	13.3.07	14:51	AlSi7MgCu0,5	Gießofen nach Impellern	11	0:36
2_115	13.3.07	14:56	AlSi7MgCu0,5	Gießofen nach Impellern	11	0:41
2_116	13.3.07	16:00	AlSi7MgCu0,5	Gießofen nach Impellern	12	0:10
2_117	13.3.07	16:09	AlSi7MgCu0,5	Gießofen nach Impellern	12	0:19
2_118	13.3.07	16:18	AlSi7MgCu0,5	Gießofen nach Impellern	12	0:28

Fortsetzung Tabelle C10: Schwingfestigkeitsproben 1. Hauptversuch

Tabelle C11: Zugproben 1. Hauptversuch

Probe Nr.	Datum	Probe- nahme- zeit	Legierung	Position	Ofen	Absteh- zeit nach Impellern [h:min]
2_44	27.2.07	13:40	AlSi7MgCu0,5	Gasschmelzofen		
2_45	27.2.07	13:42	AlSi7MgCu0,5	Gasschmelzofen		
2_46	27.2.07	13:55	AlSi7MgCu0,5	Gasschmelzofen		
2_47	27.2.07	13:57	AlSi7MgCu0,5	Gasschmelzofen		
2_48	27.2.07		AlSi7MgCu0,5	Gasschmelzofen		
2_49	27.2.07		AlSi7MgCu0,5	Gasschmelzofen		
2_50	27.2.07		AlSi7MgCu0,5	Gasschmelzofen		
3_22	27.2.07	14:23	AlSi7MgCu0,5	Gasschmelzofen		
3_23	27.2.07	14:27	AlSi7MgCu0,5	Gasschmelzofen		
3_24	27.2.07	14:30	AlSi7MgCu0,5	Gasschmelzofen		
3_25	27.2.07	14:36	AlSi7MgCu0,5	Gasschmelzofen		
3_26	27.2.07	14:38	AlSi7MgCu0,5	Gasschmelzofen		
3_27	27.2.07	14:46	AlSi7MgCu0,5	Gasschmelzofen		
2_61	27.2.07		AlSi7MgCu0,5	Transportpfanne		
2_62	27.2.07		AlSi7MgCu0,5	Transportpfanne		
2_63	27.2.07		AlSi7MgCu0,5	Transportpfanne		
3_28	27.2.07	15:52	AlSi7MgCu0,5	Transportpfanne		
3_29	27.2.07	15:53	AlSi7MgCu0,5	Transportpfanne		
3_30	27.2.07		AlSi7MgCu0,5	Transportpfanne		
3_31	27.2.07		AlSi7MgCu0,5	Transportpfanne		
3_32	27.2.07	16:05	AlSi7MgCu0,5	Transportpfanne		
3_33	27.2.07	16:07	AlSi7MgCu0,5	Transportpfanne		
2_64	28.2.07	08:25	AlSi7MgCu0,5	Gießofen vor Impellern	12	
2_65	28.2.07		AlSi7MgCu0,5	Gießofen vor Impellern	12	
2_66	28.2.07	08:35	AlSi7MgCu0,5	Gießofen vor Impellern	12	
2_67	28.2.07	09:40	AlSi7MgCu0,5	Gießofen vor Impellern	11	
2_68	28.2.07		AlSi7MgCu0,5	Gießofen vor Impellern	11	
2_69	28.2.07		AlSi7MgCu0,5	Gießofen vor Impellern	11	
2_70	28.2.07		AlSi7MgCu0,5	Gießofen vor Impellern	11	
3_34	28.2.07	11:30	AlSi7MgCu0,5	Gießofen vor Impellern	12	
3_35	28.2.07	11:36	AlSi7MgCu0,5	Gießofen vor Impellern	12	
3_36	28.2.07	11:42	AlSi7MgCu0,5	Gießofen vor Impellern	12	
3_37	28.2.07	11:48	AlSi7MgCu0,5	Gießofen vor Impellern	12	
3_38	28.2.07	11:53	AlSi7MgCu0,5	Gießofen vor Impellern	12	
3_39	28.2.07	11:58	AlSi7MgCu0,5	Gießofen vor Impellern	12	
2_81	28.2.07	10:57	AlSi7MgCu0,5	Gießofen nach Impellern	11	0:20
2_82	28.2.07	11:04	AlSi7MgCu0,5	Gießofen nach Impellern	11	0:27
2_83	28.2.07	12:32	AlSi7MgCu0,5	Gießofen nach Impellern	12	0:09
3_40	28.2.07	12:37	AISi7MgCu0,5	Gielsoten nach Impellern	12	0:14
3_41	28.2.07	12:42	AlSi7MgCu0,5	Gielsoten nach Impellern	12	0:19
3_42	28.2.07	12:48	AISi7MgCu0,5	Gielsoten nach Impellern	12	0:25
3_43	28.2.07	12:54	AISI/MgCu0,5	Gielsoten nach Impellern	12	0:31
3_44	28.2.07	13:00	AISI/MgCu0,5	Gielsoten nach Impellern	12	0:37
3_45	28.2.07	13:06	AISI/MgCu0,5	Gielsoten nach Impellern	12	0:43

Tabelle C12: PoDFA-Proben 1. Hauptversuch

Probe Nr.	Be- zeich- nung Hydro Bonn	Datum	Proben- nahme- zeit	Legierung	Position	Ofen	Ge- wicht [kg] (*:+/- 5g)
7_01	900-1	27.2.07	14:05	AlSi7MgCu0,5	Gasschmelzofen 1		1,015
7_02	900-2	27.2.07	14:10	AlSi7MgCu0,5	Gasschmelzofen 1		0,895
7_03	900-3	27.2.07	14:25	AlSi7MgCu0,5	Gasschmelzofen 1		1,005
7_04	901-1	27.2.07	15:35	AlSi7MgCu0,5	Transportpfanne		1,000
7_05	901-2	27.2.07	15:38	AlSi7MgCu0,5	Transportpfanne		1,005
7_06	901-3	27.2.07	16:00	AlSi7MgCu0,5	Transportpfanne		1,005
7_07	901-4	27.2.07	16:03	AlSi7MgCu0,5	Transportpfanne		1,000
7_08	902-1	28.2.07		AlSi7MgCu0,5	Gießofen vor Impellern	12	1,000*
7_09	902-2	28.2.07		AlSi7MgCu0,5	Gießofen vor Impellern	12	1,000*
7_10	902-3	28.2.07		AlSi7MgCu0,5	Gießofen vor Impellern	12	1,000*
7_11	903-1	28.2.07		AlSi7MgCu0,5	Gießofen nach Impellern	12	1,000*
7_12	903-2	28.2.07		AlSi7MgCu0,5	Gießofen nach Impellern	12	1,000*
7_13	903-3	28.2.07		AlSi7MgCu0,5	Gießofen nach Impellern	12	1,000*

Probe Nr.	Position	Abstehzeit nach Impellern [h:min]	Dichte-Index [%]
1_15	Gasschmelzofen		8,28
1_16	Gasschmelzofen		12,30
1_17	Gasschmelzofen		8,61
1_18	Gasschmelzofen		9,74
1_19	Gasschmelzofen		10,34
1_20	Gasschmelzofen		11,68
1_45	Gasschmelzofen		10,53
1_46	Gasschmelzofen		12,30
1_47	Gasschmelzofen		8,80
1_21	Transportpfanne		8,10
1_22	Transportpfanne		8,02
1_23	Transportpfanne		8,55
1_24	Transportpfanne		8,38
1_25	Transportpfanne		6,80
1_26	Transportpfanne		12,02
1_48	Transportpfanne		6,61
1_49	Transportpfanne		5,50
1_27	Gießofen vor Impellern		7,98
1_28	Gießofen vor Impellern		5,50
1_29	Gießofen vor Impellern		8,91
1_30	Gießofen vor Impellern		9,84
1_31	Gießofen vor Impellern		9,65
1_32	Gießofen vor Impellern		7,65
1_51	Gießofen vor Impellern		9,62
1_52	Gießofen vor Impellern		8,43
1_53	Gießofen vor Impellern		9,90
1_54	Gießofen vor Impellern		9,04
1_33	Gießofen nach Impellern	0:05	1,57
1_34	Gießofen nach Impellern	0:16	0,89
1_35	Gießofen nach Impellern	0:13	0,90
1_36	Gießofen nach Impellern	0:13	1,15
1_37	Gießofen nach Impellern	0:07	1,20
1_38	Gießofen nach Impellern	0:18	1,17
1_55	Gießofen nach Impellern	0:05	1,25
1_56	Gießofen nach Impellern	0:20	0,99
1_57	Gießofen nach Impellern	0:13	1,14
1_58	Gießofen nach Impellern	0:22	1,13
1_39	Gießwanne		1,93
1_40	Gießwanne		1,77
1_41	Gießwanne		1,17
1_42	Gießwanne		2,11
1_43	Gießwanne		2,37
1 44	Gießwanne		1.78

Tabelle C13: Dichte-Index der UD-Proben 1. Hauptversuch

Probe Nr.	Position	Abstehzeit nach Im- pellern [h:min]	Anzahl der Poren	Fläche der Probe [cm²]	Poren/cm ²	Porosität [%]
1_16	Gasschmelzofen		490	11,313	43	15,6
1_18	Gasschmelzofen		354	11,740	30	16,9
1_45	Gasschmelzofen		253	8,907	28	15,7
1_46	Gasschmelzofen		225	10,840	21	16,1
1_47	Gasschmelzofen		129	7,859	16	12,1
1_22	Transportpfanne		297	11,078	27	13,3
1_23	Transportpfanne		188	11,065	17	11,7
1_25	Transportpfanne		244	11,506	21	10,9
1_26	Transportpfanne		238	11,289	21	16,7
1_48	Transportpfanne		167	10,294	16	11,8
1_49	Transportpfanne		230	11,285	20	10,2
1_28	Gießofen vor Impellern		447	10,580	42	8,3
1_29	Gießofen vor Impellern		643	10,880	59	11,5
1_30	Gießofen vor Impellern		581	10,468	56	13,1
1_31	Gießofen vor Impellern		358	10,984	33	13,9
1_32	Gießofen vor Impellern		280	9,563	29	11,1
1_51	Gießofen vor Impellern		266	12,266	22	12,8
1_52	Gießofen vor Impellern		258	10,910	24	13,1
1_53	Gießofen vor Impellern		613	10,971	56	15,3
1_54	Gießofen vor Impellern		398	11,423	35	13,8
1_33	Gießofen nach Impellern	0:05	299	8,845	34	3,1
1_34	Gießofen nach Impellern	0:16	205	8,942	23	3,0
1_35	Gießofen nach Impellern	0:13	242	9,489	26	2,8
1_37	Gießofen nach Impellern	0:07	316	9,652	33	2,9
1_38	Gießofen nach Impellern	0:18	201	8,482	24	2,4
1_55	Gießofen nach Impellern	0:05	235	11,012	21	3,2
1_56	Gießofen nach Impellern	0:20	233	10,384	22	2,7
1_57	Gießofen nach Impellern	0:13	359	11,565	31	2,3
1_58	Gießofen nach Impellern	0:22	255	10,220	25	2,3
1_40	Gießwanne		216	8,135	27	4,0
1_41	Gießwanne		309	8,901	35	4,7

Tabelle C14: Auswertungsergebnisse bildanalytische Auswertung UD-Proben des 1. Hauptversuches

Tabelle C15: Kornfeinungswerte Thermoanalyse 1. Hauptversuch

Probe Nr.	Position	Kornfeinung
5_15	Gasschmelzofen 1	8,5
5_16	Transportpfanne	10,5
5_18	Vergießofen vor Impellern	8,6
5_19	Vergießofen vor Impellern	9,2
5_20	Vergießofen nach Impellern	8,2
5_21	Vergießofen nach Impellern	9,3

Probe Nr.	Position	Art der Messung	H ₂ Gehalt [ml/100g]
6_01	Gasschmelzofen 1	Einzelmessung	0,53
6_02	Gasschmelzofen 1	Einzelmessung	0,49
6_03	Transportpfanne	Einzelmessung	0,41
6_04	Transportpfanne	Einzelmessung	0,40
6_05	Transportpfanne	Einzelmessung	0,38
6_06	Transportpfanne	Einzelmessung	0,39
6_07	Gießofen vor Impellern	Dauermessung	0,31
6_08	Gießofen vor Impellern	Dauermessung	0,31
6_09	Gießofen nach Impellern	Dauermessung	0,11
6_10	Gießofen nach Impellern	Dauermessung	0,11

Tabelle C16: Auswertungsergebnisse H₂-Messung des 1. Hauptversuches

Tabelle C17: Einzelaufstellung Auswertungsergebnisse Schwingfestigkeitsproben 1. Hauptversuch

Probe Nr.	Position	Abstehzeit nach Impellern [h:min]	Oberspannung [MPa]	Schwingspiele bis Bruch
2_51	Gasschmelzofen		160	332.500
2_52	Gasschmelzofen		160	347.400
2_53	Gasschmelzofen		160	254.000
2_84	Gasschmelzofen		160	418.900
2_85	Gasschmelzofen		160	266.900
2_86	Gasschmelzofen		160	313.000
2_87	Gasschmelzofen		160	441.400
2_88	Gasschmelzofen		160	265.200
2_89	Gasschmelzofen		160	438.400
2_90	Gasschmelzofen		160	482.400
2_91	Gasschmelzofen		160	290.000
2_92	Gasschmelzofen		160	258.800
2_93	Gasschmelzofen		160	389.100
2_54	Transportpfanne		160	715.500
2_55	Transportpfanne		160	476.200
2_56	Transportpfanne		160	442.700
2_57	Transportpfanne		160	445.200
2_58	Transportpfanne		160	290.800
2_59	Transportpfanne		160	300.400
2_60	Transportpfanne		160	595.700
2_94	Transportpfanne		160	265.100
2_95	Transportpfanne		160	442.200
2_96	Transportpfanne		160	439.800
2_97	Transportpfanne		160	363.200
2_98	Transportpfanne		160	460.500

Fortsetzung Tabelle C17: Einzelaufstellung Auswertungsergebnisse Schwingfestigkeitsprober	า
1. Hauptversuch	

Probe Nr.	Position	Abstehzeit nach Impellern [h:min]	Oberspannung [MPa]	Schwingspiele bis Bruch
2_71	Gießofen vor Impellern		160	325.800
2_72	Gießofen vor Impellern		160	340.500
2_73	Gießofen vor Impellern		160	381.100
2_99	Gießofen vor Impellern		160	286.200
2_100	Gießofen vor Impellern		160	258.100
2_101	Gießofen vor Impellern		160	274.500
2_102	Gießofen vor Impellern		160	316.900
2_103	Gießofen vor Impellern		160	347.400
2_104	Gießofen vor Impellern		160	209.900
2_105	Gießofen vor Impellern		160	273.100
2_106	Gießofen vor Impellern		160	339.300
2_107	Gießofen vor Impellern		160	272.900
2_108	Gießofen vor Impellern		160	222.200
2_74	Gießofen nach Impellern	9:07	160	691.600
2_75	Gießofen nach Impellern	9:14	160	642.100
2_76	Gießofen nach Impellern	9:20	160	498.200
2_77	Gießofen nach Impellern	9:27	160	599.900
2_78	Gießofen nach Impellern	9:33	160	503.100
2_79	Gießofen nach Impellern	0:09	160	764.500
2_80	Gießofen nach Impellern	0:15	160	1.064.800
2_109	Gießofen nach Impellern	0:08	160	597.000
2_110	Gießofen nach Impellern	0:13	160	506.600
2_111	Gießofen nach Impellern	0:20	160	366.600
2_112	Gießofen nach Impellern	0:25	160	4.122.000
2_113	Gießofen nach Impellern	0:31	160	2.898.600
2_114	Gießofen nach Impellern	0:36	160	1.302.600
2_115	Gießofen nach Impellern	0:41	160	931.600
2_116	Gießofen nach Impellern	00:10	160	1.987.900
2_117	Gießofen nach Impellern	00:19	160	381.100
2_118	Gießofen nach Impellern	00:28	160	824.700

Probe Nr.	Position	Absteh- zeit nach Impellern [h:min]	E- Modul [GPa]	R _{p0,2} [MPa]	R _m [MPa]	A [%]	Ein- schluss
2_44	Gasschmelzofen		66,4	180,2	259,7	4,4	ja
2_45	Gasschmelzofen		67,4	172,7	238,2	2,4	ja
2_46	Gasschmelzofen		66,1	178,2	261,6	5,2	
2_47	Gasschmelzofen		68,4	179,2	253,7	3,5	ja
2_48	Gasschmelzofen		65,4	170,7	257,5	5,4	
2_49	Gasschmelzofen		65,9	175,7	254,4	4,2	ja
2_50	Gasschmelzofen		68,4	176,1	256,9	4,6	ja
3_22	Gasschmelzofen		68,3	184,6	262,7	4,2	
3_23	Gasschmelzofen		67,5	175,0	238,4	2,4	ja
3_24	Gasschmelzofen		66,7	178,9	258,6	4,6	
3_25	Gasschmelzofen		71,4	184,8	262,2	4,3	
3_26	Gasschmelzofen		65,7	184,4	253,8	3,3	ja
3_27	Gasschmelzofen		68,7	185,9	266,0	5,1	
2_61	Transportpfanne		68,8	172,8	257,5	4,8	
2_62	Transportpfanne		70,0	177,4	265,8	5,8	
2_63	Transportpfanne		67,7	182,0	258,6	4,0	
3_28	Transportpfanne		66,9	173,1	261,6	5,8	
3_29	Transportpfanne		68,5	182,1	264,1	4,8	
3_30	Transportpfanne		70,1	181,9	266,7	5,4	
3_31	Transportpfanne		69,8	174,1	258,0	4,8	Bruch außerhalb L0
3_32	Transportpfanne		66,7	169,1	260,6	6,3	ja
3_33	Transportpfanne		66,9	174,0	262,0	5,9	5
2 64	Gießofen vor Impellern		68,1	166,5	237,9	3,1	ja
2_65	Gießofen vor Impellern		63,3	164,5	240,9	3,8	ja
2_66	Gießofen vor Impellern		64,9	166,2	241,0	3,6	ja
2_67	Gießofen vor Impellern		66,1	170,0	251,2	4,6	
2_68	Gießofen vor Impellern		65,2	169,4	236,4	2,7	ja
2_69	Gießofen vor Impellern		66,2	168,7	245,4	3,7	ja
2_70	Gießofen vor Impellern		63,3	168,8	229,5	2,2	
3_34	Gießofen vor Impellern		69,2	165,3	250,2	4,9	ja
3_35	Gießofen vor Impellern		63,9	168,3	238,9	3,2	ja
3_36	Gießofen vor Impellern		67,4	172,0	231,1	2,0	ja
3_37	Gießofen vor Impellern		68,4	166,6	247,4	4,2	
3_38	Gießofen vor Impellern		69,4	169,9	248,9	4,1	
3_39	Gießofen vor Impellern		68,1	176,6	254,5	4,2	ja
2 81	Gießofen nach Impellern	0:20	64,5	173,7	262,1	6,4	
2 82	Gießofen nach Impellern	0:27	68,8	173,9	265,5	7,1	
2 83	Gießofen nach Impellern	0:09	66,5	174,9	255,9	4,4	ja
3_40	Gießofen nach Impellern	0:14	69,4	170,9	252,7	4,3	ja
3_41	Gießofen nach Impellern	0:19	66,8	169,8	253,6	4,8	
3 42	Gießofen nach Impellern	0:25	70,8	171,1	254,0	4,5	
3 43	Gießofen nach Impellern	0:31	64,9	167.1	258.1	6,4	
3 44	Gießofen nach Impellern	0:37	70.6	174.3	251.4	3.7	ja
3_45	Gießofen nach Impellern	0:43	66,7	175,4	263,0	5,9	

Tabelle C18: Auswertungsergebnisse Zugversuch des 1. Hauptversuches

Probe Nr.	Al- Oxid [mm²/kg]	Ti- Borid [mm²/kg]	Al- Karbid [mm²/kg]	AI- Nitrid [mm²/kg]	Mg- Oxid [mm²/kg]	Spi- nell [mm²/kg]	Ff- Ma- terial [mm²/kg]	spinell- ähnl. P. [mm²/kg]	Gra- phit [mm²/kg]	Fremd- ma- terial [mm²/kg]	Summe [mm²/kg]
7_01	0,545		0,341	0,136		0,273	0,068				1,363
7_02	0,076	0,007	0,014			0,042					0,139
7_03	0,196	0,009	0,021	0,015		0,030		0,030			0,302
7_04	0,066		0,003								0,069
7_05	0,033		0,004								0,037
7_06	0,101	0,006	0,006								0,112
7_07	0,030	0,002	0,008								0,040
7_08	0,566	0,189	0,434	0,094		0,415		0,094	0,094		1,887
7_09	0,614	0,102	0,716		0,102	0,409			0,102		2,046
7_10	0,361	0,048	0,380			0,143	0,019				0,951
7_11	0,469	0,031	0,312	0,234		0,469	0,047				1,562
7_12	0,489	0,122	0,734		0,122	0,611	0,122		0,245		2,445
7_13	0,669	0,067	0,602			0,780				0,111	2,229

Tabelle C19: Auswertungsergebnisse der PoDFA-Messung 1. Hauptversuch

Tabelle C20: UD-Proben 2. Hauptversuch

Probe Nr.	Datum	Legierung	Position	Ofen	Sumpf	Absteh- zeit nach Impellern [min]
1_59	4.6.07	AlSi7MgCu0,5	Transportpfanne			
1_60	4.6.07	AlSi7MgCu0,5	Transportpfanne			
1_61	4.6.07	AlSi7MgCu0,5	Transportpfanne			
1_62	5.6.07	AlSi7MgCu0,5	Transportpfanne			
1_63	5.6.07	AlSi7MgCu0,5	Transportpfanne			
1_64a	5.6.07	AlSi7MgCu0,5	Transportpfanne			
1_64b	5.6.07	AlSi7MgCu0,5	Transportpfanne			
1_65	4.6.07	AlSi7MgCu0,5	Gießofen vor Impellern	16	ja	
1_66	4.6.07	AlSi7MgCu0,5	Gießofen vor Impellern	16	ja	
1_67	5.6.07	AlSi7MgCu0,5	Gießofen vor Impellern	16	ja	
1_68	5.6.07	AlSi7MgCu0,5	Gießofen vor Impellern	16	ja	
1_69	5.6.07	AlSi7MgCu0,5	Gießofen vor Impellern	16	ja	
1_70	5.6.07	AlSi7MgCu0,5	Gießofen vor Impellern	16	ja	
1_71	4.6.07	AlSi7MgCu0,5	Gießofen nach Impellern	16	ja	0:08
1_72	4.6.07	AlSi7MgCu0,5	Gießofen nach Impellern	16	ja	0:33
1_73	4.6.07	AlSi7MgCu0,5	Gießofen nach Impellern	16	ja	0:11
1_74	4.6.07	AlSi7MgCu0,5	Gießofen nach Impellern	16	ja	0:26
1_75	4.6.07	AlSi7MgCu0,5	Gießofen nach Impellern	16	ja	0:41
1_76	4.6.07	AlSi7MgCu0,5	Gießofen nach Impellern	16	ja	0:48
1_77	4.6.07	AlSi7MgCu0,5	Gießofen nach Impellern	15	nein	2:15
1_78	4.6.07	AlSi7MgCu0,5	Gießofen nach Impellern	15	nein	2:30
1_79	4.6.07	AlSi7MgCu0,5	Gießofen nach Impellern	15	nein	2:45
1_80	4.6.07	AlSi7MgCu0,5	Gießofen nach Impellern	15	nein	2:58
1_81	4.6.07	AlSi7MgCu0,5	Gießofen nach Impellern	15	nein	0:02
1_82	4.6.07	AlSi7MgCu0,5	Gießofen nach Impellern	15	nein	0:14
1_83	4.6.07	AlSi7MgCu0,5	Gießofen vor Impellern	15	nein	
1_84	4.6.07	AlSi7MgCu0,5	Gießofen vor Impellern	15	nein	
1_85	5.6.07	AlSi7MgCu0,5	Gießofen vor Impellern	15	nein	
1_86	5.6.07	AlSi7MgCu0,5	Gießofen vor Impellern	15	nein	
1_87	5.6.07	AlSi7MgCu0,5	Gießofen vor Impellern	15	nein	
1_88	5.6.07	AlSi7MgCu0,5	Gießofen vor Impellern	15	nein	

Tabelle C21:	Schwingfestigkeitsproben 2.	Hauptversuch
--------------	-----------------------------	--------------

Probe Nr.	Datum	Probe- nahme- zeit	Legierung	Position	Ofen	Sumpf	Absteh- zeit nach Impellern [h:min]
2_119	4.6.07	11:08	AlSi7MgCu0,5	Gießofen vor Impellern	16	ja	
2_120	4.6.07	11:14	AlSi7MgCu0,5	Gießofen vor Impellern	16	ja	
2_121	4.6.07	11:19	AlSi7MgCu0,5	Gießofen vor Impellern	16	ja	
2_122	4.6.07	14:10	AlSi7MgCu0,5	Gießofen vor Impellern	16	ja	
2_123	4.6.07	14:17	AlSi7MgCu0,5	Gießofen vor Impellern	16	ja	
2_124	4.6.07	14:23	AlSi7MgCu0,5	Gießofen vor Impellern	16	ja	
2_125	4.6.07	14:30	AlSi7MgCu0,5	Gießofen vor Impellern	16	ja	
2_126	5.6.07	9:13	AlSi7MgCu0,5	Gießofen vor Impellern	16	ja	
2_127	5.6.07	9:17	AlSi7MgCu0,5	Gießofen vor Impellern	16	ja	
2_128	5.6.07	9:20	AlSi7MgCu0,5	Gießofen vor Impellern	16	ja	
2_129	4.6.07	11:45	AlSi7MgCu0,5	Gießofen nach Impellern	16	ja	0:08
2_130	4.6.07	11:50	AlSi7MgCu0,5	Gießofen nach Impellern	16	ja	0:13
2_131	4.6.07	11:55	AlSi7MgCu0,5	Gießofen nach Impellern	16	ja	0:18
2_132	4.6.07	12:02	AlSi7MgCu0,5	Gießofen nach Impellern	16	ja	0:25
2_133	4.6.07	12:09	AlSi7MgCu0,5	Gießofen nach Impellern	16	ja	0:32
2_134	4.6.07	14:55	AlSi7MgCu0,5	Gießofen nach Impellern	16	ja	0:11
2_135	4.6.07	15:02	AlSi7MgCu0,5	Gießofen nach Impellern	16	ja	0:18
2_136	4.6.07	15:10	AlSi7MgCu0,5	Gießofen nach Impellern	16	ja	0:26
2_137	4.6.07	15:18	AlSi7MgCu0,5	Gießofen nach Impellern	16	ja	0:34
2_138	4.6.07	15:25	AlSi7MgCu0,5	Gießofen nach Impellern	16	ja	0:41
2_139	4.6.07	15:50	AlSi7MgCu0,5	Gießofen vor Impellern	15	nein	
2_140	4.6.07	15:55	AlSi7MgCu0,5	Gießofen vor Impellern	15	nein	
2_141	4.6.07	16:01	AlSi7MgCu0,5	Gießofen vor Impellern	15	nein	
2_142	4.6.07	16:06	AlSi7MgCu0,5	Gießofen vor Impellern	15	nein	
2_143	4.6.07	16:11	AlSi7MgCu0,5	Gießofen vor Impellern	15	nein	
2_144	5.6.07	10:40	AlSi7MgCu0,5	Gießofen vor Impellern	15	nein	
2_145	5.6.07	10:41	AlSi7MgCu0,5	Gießofen vor Impellern	15	nein	
2_146	5.6.07	10:48	AlSi7MgCu0,5	Gießofen vor Impellern	15	nein	
2_147	5.6.07	10:49	AlSi7MgCu0,5	Gießofen vor Impellern	15	nein	
2_148	5.6.07	14:25	AlSi7MgCu0,5	Gießofen vor Impellern	15	nein	
2_149	4.6.07	8:36	AlSi7MgCu0,5	Gießofen nach Impellern	15	nein	2:06
2_150	4.6.07	8:41	AlSi7MgCu0,5	Gießofen nach Impellern	15	nein	2:11
2_151	4.6.07	8:46	AlSi7MgCu0,5	Gießofen nach Impellern	15	nein	2:16
2_152	4.6.07	8:51	AlSi7MgCu0,5	Gießofen nach Impellern	15	nein	2:21
2_153	4.6.07	8:57	AlSi7MgCu0,5	Gießofen nach Impellern	15	nein	2:27
2_154	4.6.07	9:26	AlSi7MgCu0,5	Gießofen nach Impellern	15	nein	2:56
2_155	4.6.07	9:31	AlSi7MgCu0,5	Gießofen nach Impellern	15	nein	3:01
2_156	4.6.07	9:38	AlSi7MgCu0,5	Gießofen nach Impellern	15	nein	3:08
2_157	4.6.07	9:44	AlSi7MgCu0,5	Gießofen nach Impellern	15	nein	3:14
2_158	4.6.07	9:48	AlSi7MgCu0,5	Gießofen nach Impellern	15	nein	3:18

Tabelle C22 Zugproben 2. Hauptversuch

Probe Nr.	Datum	Probe- nahme- zeit	Legierung	Position	Ofer	Sumpl	Absteh- zeit nach Impellern [h:min]
3_46	05.06.2007	9:22	AlSi7MgCu0,5	Gießofen vor Impellern	16	ja	
3_47	05.06.2007	9:24	AlSi7MgCu0,5	Gießofen vor Impellern	16	ja	
3_48	05.06.2007	12:20	AlSi7MgCu0,5	Gießofen vor Impellern	16	ja	
3_49	05.06.2007	12:21	AlSi7MgCu0,5	Gießofen vor Impellern	16	ja	
3_50	05.06.2007	12:28	AlSi7MgCu0,5	Gießofen vor Impellern	16	ja	
3_51	05.06.2007	12:38	AlSi7MgCu0,5	Gießofen vor Impellern	16	ja	
3 52	05.06.2007	12:39	AlSi7MgCu0,5	Gießofen vor Impellern	16	ja	
3 53	05.06.2007	12:46	AlSi7MgCu0,5	Gießofen vor Impellern	16	ja	
3 54	05.06.2007	12:47	AlSi7MgCu0,5	Gießofen vor Impellern	16	ja	
3 55a	05.06.2007	12:54	AlSi7MgCu0,5	Gießofen vor Impellern	16	ja	
3_55b	05.06.2007	12:54	AlSi7MgCu0,5	Gießofen vor Impellern	16	ja	
3_56	04.06.2007	11:43	AlSi7MgCu0,5	Gießofen nach Impellern	16	ja	0:06
3_57	04.06.2007	11:55	AlSi7MgCu0,5	Gießofen nach Impellern	16	ja	0:18
3_58	04.06.2007	12:02	AlSi7MgCu0,5	Gießofen nach Impellern	16	ja	0:25
3_59	04.06.2007	12:08	AlSi7MgCu0,5	Gießofen nach Impellern	16	ja	0:31
3_60	04.06.2007	14:53	AlSi7MgCu0,5	Gießofen nach Impellern	16	ja	0:09
3_61	04.06.2007	14:59	AlSi7MgCu0,5	Gießofen nach Impellern	16	ja	0:15
3_62	04.06.2007	15:03	AlSi7MgCu0,5	Gießofen nach Impellern	16	ja	0:19
3_63	04.06.2007	15:15	AlSi7MgCu0,5	Gießofen nach Impellern	16	ja	0:31
3_64	04.06.2007	15:21	AlSi7MgCu0,5	Gießofen nach Impellern	16	ja	0:37
3_65	04.06.2007	15:22	AlSi7MgCu0,5	Gießofen nach Impellern	16	ja	0:38
3_66	05.06.2007	10:38	AlSi7MgCu0,5	Gießofen vor Impellern	15	nein	
3_67	05.06.2007	10:43	AlSi7MgCu0,5	Gießofen vor Impellern	15	nein	
3_68	05.06.2007	10:50	AlSi7MgCu0,5	Gießofen vor Impellern	15	nein	
3_69	05.06.2007	10:56	AlSi7MgCu0,5	Gießofen vor Impellern	15	nein	
3_70	05.06.2007	14:25	AlSi7MgCu0,5	Gießofen vor Impellern	15	nein	
3_71	05.06.2007	14:29	AlSi7MgCu0,5	Gießofen vor Impellern	15	nein	
3_72	05.06.2007	14:29	AlSi7MgCu0,5	Gießofen vor Impellern	15	nein	
3_73	05.06.2007	14:34	AlSi7MgCu0,5	Gießofen vor Impellern	15	nein	
3_74	05.06.2007	14:35	AlSi7MgCu0,5	Gießofen vor Impellern	15	nein	
3_75	05.06.2007	14:40	AlSi7MgCu0,5	Gießofen vor Impellern	15	nein	
3_76	04.06.2007	13:44	AlSi7MgCu0,5	Gießofen nach Impellern	15	nein	0:34
3_77	04.06.2007	13:45	AlSi7MgCu0,5	Gießofen nach Impellern	15	nein	0:35
3_78	04.06.2007	13:48	AlSi7MgCu0,5	Gießofen nach Impellern	15	nein	0:38
3_79	04.06.2007	13:55	AlSi7MgCu0,5	Gießofen nach Impellern	15	nein	0:45
3_80	04.06.2007	13:59	AlSi7MgCu0,5	Gießofen nach Impellern	15	nein	0:49
3_81	04.06.2007	16:31	AlSi7MgCu0,5	Gießofen nach Impellern	15	nein	0:01
3_82	04.06.2007	16:32	AlSi7MgCu0,5	Gießofen nach Impellern	15	nein	0:02
3_83	04.06.2007	16:36	AlSi7MgCu0,5	Gießofen nach Impellern	15	nein	0:06
3_84	04.06.2007	16:39	AlSi7MgCu0,5	Gießofen nach Impellern	15	nein	0:09
3_85	04.06.2007	16:47	AlSi7MgCu0,5	Gießofen nach Impellern	15	nein	0:17

Probe Nr.	Be- zeich- nung Hydro Bonn	Datum	Proben- nahme- zeit	Legierung	Position	Ofen	Sumpf	Ab- steh- zeit [h:min]
7_15	913-16	4.6.07	16:12	AlSi7MgCu0,5	Gießofen vor Impellern	15	nein	
7_16	913-17	4.6.07	16:38	AlSi7MgCu0,5	Gießofen nach Impellern	15	nein	0:08
7_16a	913-18	4.6.07	16:52	AlSi7MgCu0,5	Gießofen nach Impellern	15	nein	0:22
7_17	913-1	4.6.07	8:50	AlSi7MgCu0,5	Gießofen nach Impellern	15	nein	2:20
7_18	913-2	4.6.07	9:15	AlSi7MgCu0,5	Gießofen nach Impellern	15	nein	2:45
7_19	913-3	4.6.07	9:25	AlSi7MgCu0,5	Gießofen nach Impellern	15	nein	2:55
7_19a	913-4	4.6.07	9:35	AlSi7MgCu0,5	Gießofen nach Impellern	15	nein	3:05
7_19b	913-5	4.6.07	9:47	AlSi7MgCu0,5	Gießofen nach Impellern	15	nein	3:17
7_19c	913-6	4.6.07	10:35	AlSi7MgCu0,5	Gießofen nach Impellern	15	nein	4:05
7_19d	913-6b	4.6.07	12:15	AlSi7MgCu0,5	Gießofen nach Impellern	15	nein	5:45
7_20	913-7	4.6.07	11:14	AlSi7MgCu0,5	Gießofen vor Impellern	16	ja	
7_21	913-8	4.6.07	11:20	AlSi7MgCu0,5	Gießofen vor Impellern	16	ja	
7_22a	913-8b	4.6.07	14:20	AlSi7MgCu0,5	Gießofen vor Impellern	16	ja	
7_23	913-9	4.6.07	11:40	AlSi7MgCu0,5	Gießofen nach Impellern	16	ja	0:05
7_24	913-10	4.6.07	12:03	AlSi7MgCu0,5	Gießofen nach Impellern	16	ja	0:28
7_25	913-11	4.6.07	13:50	AlSi7MgCu0,5	Gießofen nach Impellern	16	ja	2:15
7_25a	913-11a	4.6.07	14:45	AlSi7MgCu0,5	Gießofen nach Impellern	16	ja	0:01
7_25b	913-11b	4.6.07	15:15	AlSi7MgCu0,5	Gießofen nach Impellern	16	ja	0:31
7_26	913-12	4.6.07	14:00	AlSi7MgCu0,5	Transportpfanne			
7_27	913-13	4.6.07	15:35	AlSi7MgCu0,5	Transportpfanne			
7_28	913-14	4.6.07	15:38	AlSi7MgCu0,5	Transportpfanne			

Probe Nr.	Position	Sumpf	Abstehzeit nach Impellern [h:min]	Dichte-Index [%]
1_59	Transportpfanne			14,93
1_60	Transportpfanne			11,52
1_61	Transportpfanne			11,67
1_62	Transportpfanne			11,82
1_63	Transportpfanne			12,02
1_64a	Transportpfanne			9,35
1_64b	Transportpfanne			11,74
1_65	Gießofen vor Impellern	ja		11,43
1_66	Gießofen vor Impellern	ja		11,50
1_67	Gießofen vor Impellern	ja		10,26
1_68	Gießofen vor Impellern	ja		11,09
1_69	Gießofen vor Impellern	ja		10,48
1_70	Gießofen vor Impellern	ја		8,37
1_71	Gießofen nach Impellern	ja	0:08	1,22
1_72	Gießofen nach Impellern	ja	0:33	1,46
1_73	Gießofen nach Impellern	ja	0:11	1,15
1_74	Gießofen nach Impellern	ja	0:26	1,02
1_75	Gießofen nach Impellern	ja	0:41	1,25
1_76	Gießofen nach Impellern	ja	0:48	1,35
1_77	Gießofen nach Impellern	nein	2:15	1,16
1_78	Gießofen nach Impellern	nein	2:30	1,58
1_79	Gießofen nach Impellern	nein	2:45	1,93
1_80	Gießofen nach Impellern	nein	2:58	1,82
1_81	Gießofen nach Impellern	nein	0:02	1,48
1_82	Gießofen nach Impellern	nein	0:14	1,11
1_83	Gießofen vor Impellern	nein		12,61
1_84	Gießofen vor Impellern	nein		13,19
1_85	Gießofen vor Impellern	nein		13,49
1_86	Gießofen vor Impellern	nein		11,69
1_87	Gießofen vor Impellern	nein		13,72
1_88	Gießofen vor Impellern	nein		9,81

Tabelle C24: Dichte-Index der UD-Proben 2. Hauptversuch

Probe Nr.	Position	Sumpf	Absteh- zeit nach Impellern [min]	Anzahl der Poren	Fläche der Probe [cm ²]	Poren/cm ²	Porosität [%]
1_60	Transportpfanne			125	11,63	11,75	5,06
1_61	Transportpfanne			124	10,76	11,67	6,22
1_63	Transportpfanne			119	11,67	10,19	5,10
1_64a	Transportpfanne			110	11,62	9,47	3,28
1_65	Gießofen vor Impellern	ja		373	10,99	33,94	9,48
1_67	Gießofen vor Impellern	ja		199	11,18	17,79	4,76
1_68	Gießofen vor Impellern	ja		142	11,34	12,52	4,72
1_70	Gießofen vor Impellern	ja		92	11,24	8,19	2,07
1_71	Gießofen nach Impellern	ja	0:08	134	10,13	13,23	0,14
1_73	Gießofen nach Impellern	ja	0:11	48	10,83	4,43	0,04
1_75	Gießofen nach Impellern	ja	0:41	73	10,27	7,11	0,10
1_76	Gießofen nach Impellern	ja	0:48	126	10,05	12,54	0,15
1_78	Gießofen nach Impellern	nein	2:30	218	11,66	18,69	0,23
1_80	Gießofen nach Impellern	nein	2:58	146	9,81	14,88	0,24
1_81	Gießofen nach Impellern	nein	0:02	132	10,25	12,87	0,14
1_82	Gießofen nach Impellern	nein	0:14	183	11,82	15,48	0,16
1_83	Gießofen vor Impellern	nein		657	12,11	54,25	13,05
1_84	Gießofen vor Impellern	nein		225	11,89	18,92	8,55
1_86	Gießofen vor Impellern	nein		106	10,69	9,91	5,16
1_87	Gießofen vor Impellern	nein		149	11,35	13,13	7,92

Tabelle C25: Auswertungsergebnisse bildanalytische Auswertung UD-Proben des 2. Hauptversuches

Probe Nr.	Position	Sumpf	Abstehzeit nach Impellern [h:min]	Ober- spannung [MPa]	Schwingspiele bis Bruch
2_119	Gießofen vor Impellern	ja		160	283.800
2_120	Gießofen vor Impellern	ja		160	126.200
2_121	Gießofen vor Impellern	ja		160	298.700
2_122	Gießofen vor Impellern	ja		160	254.800
2_123	Gießofen vor Impellern	ja		160	376.900
2 124	Gießofen vor Impellern	ja		160	177.000
2_125	Gießofen vor Impellern	ja		160	281.900
2_126	Gießofen vor Impellern	ja		160	157.400
2_127	Gießofen vor Impellern	ja		160	34.600
2_128	Gießofen vor Impellern	ja		160	223.400
2 129	Gießofen nach Impellern	ja	0:08	160	773.000
2_130	Gießofen nach Impellern	ja	0:13	160	385.300
2_131	Gießofen nach Impellern	ja	0:18	160	450.400
2_132	Gießofen nach Impellern	ja	0:25	160	745.200
2_133	Gießofen nach Impellern	ja	0:32	160	1.240.400
2_134	Gießofen nach Impellern	ja	0:11	160	878.300
2_135	Gießofen nach Impellern	ja	0:18	160	789.300
2_136	Gießofen nach Impellern	ja	0:26	160	641.800
2_137	Gießofen nach Impellern	ja	0:34	160	343.000
2_138	Gießofen nach Impellern	ja	0:41	160	794.200
2_139	Gießofen vor Impellern	nein		160	201.300
2_140	Gießofen vor Impellern	nein		160	262.200
2_141	Gießofen vor Impellern	nein		160	319.000
2_142	Gießofen vor Impellern	nein		160	412.100
2_143	Gießofen vor Impellern	nein		160	265.900
2_144	Gießofen vor Impellern	nein		160	202.000
2_145	Gießofen vor Impellern	nein		160	231.800
2_146	Gießofen vor Impellern	nein		160	282.700
2_147	Gießofen vor Impellern	nein		160	140.900
2_148	Gießofen vor Impellern	nein		160	273.000
2_149	Gießofen nach Impellern	nein	2:06	160	1.433.300
2_150	Gießofen nach Impellern	nein	2:11	160	304.400
2_151	Gießofen nach Impellern	nein	2:16	160	168.300
2_152	Gießofen nach Impellern	nein	2:21	160	376.100
2_153	Gießofen nach Impellern	nein	2:27	160	356.300
2_154	Gießofen nach Impellern	nein	2:56	160	233.400
2_155	Gießofen nach Impellern	nein	3:01	160	475.000
2_156	Gießofen nach Impellern	nein	3:08	160	453.500
2_157	Gießofen nach Impellern	nein	3:14	160	802.000
2_158	Gießofen nach Impellern	nein	3:18	160	499.700

Tabelle C26: Auswertungsergebnisse Schwingfestigkeitsproben des 2. Hauptversuchs

Probe Nr.	Position	Sumpf	Absteh- zeit nach Impellern [h:min]	E- Modul [GPa]	R _{p0,2} [MPa]	R _m [MPa]	A [%]	Ein- schluss
3_46	Gießofen vor Impellern	ja		66,3	173,7	230,6	1,80	ja
3_47	Gießofen vor Impellern	ja		65,3	166,5	219,3	1,51	ja
3_48	Gießofen vor Impellern	ja		67,9	181,6	262,3	4,50	
3_49	Gießofen vor Impellern	ja		66,5	173,6	244,3	2,80	ja
3_50	Gießofen vor Impellern	ja		66,2	178,5	261,7	5,23	
3_51	Gießofen vor Impellern	ja		68,0	169,5	258,9	6,09	
3_52	Gießofen vor Impellern	ja		66,1	172,3	256,7	5,25	
3_53	Gießofen vor Impellern	ja		64,6	174,9	240,0	2,43	ja
3_54	Gießofen vor Impellern	ja		68,0	175,4	238,9	2,22	ja
3_55a	Gießofen vor Impellern	ja		67,8	180,0	250,6	2,87	ja
3_55b	Gießofen vor Impellern	ja		64,0	173,7	234,2	2,03	ja
3_56	Gießofen nach Impellern	ja	0:06	70,5	174,5	267,1	5,60	
3_57	Gießofen nach Impellern	ja	0:18	70,0	171,6	253,8	3,68	
3_58	Gießofen nach Impellern	ja	0:25	70,3	172,4	247,0	2,85	ja
3_59	Gießofen nach Impellern	ja	0:31	69,1	175,3	259,7	4,27	
3_60	Gießofen nach Impellern	ja	0:09	69,1	181,5	272,0	5,52	
3_61	Gießofen nach Impellern	ja	0:15	72,0	181,8	276,2	6,84	
3_62	Gießofen nach Impellern	ja	0:19	69,8	185,7	270,8	4,75	
3_63	Gießofen nach Impellern	ja	0:31	68,7	180,8	274,4	6,61	
3_64	Gießofen nach Impellern	ja	0:37	69,3	183,1	270,4	5,08	
3_65	Gießofen nach Impellern	ja	0:38	70,5	191,8	263,5	2,98	
3_66	Gießofen vor Impellern	nein		65,5	165,4	255,2	5,69	
3_67	Gießofen vor Impellern	nein		71,5	177,9	256,7	3,86	
3_68	Gießofen vor Impellern	nein		68,2	168,1	253,5	4,82	
3_69	Gießofen vor Impellern	nein		68,8	178,2	261,1	4,67	
3_70	Gießofen vor Impellern	nein		68,9	173,4	221,5	1,21	ja
3_71	Gießofen vor Impellern	nein		65,3	169,4	233,4	2,30	
3_72	Gießofen vor Impellern	nein		66,0	176,0	249,4	3,30	
3_73	Gießofen vor Impellern	nein		67,3	173,4	247,1	3,06	
3_74	Gießofen vor Impellern	nein		69,6	187,2	268,1	4,75	
3_75	Gießofen vor Impellern	nein		64,3	178,0	258,8	4,45	
3_76	Gießofen nach Impellern	nein	0:34	64,8	181,8	275,3	7,81	
3_77	Gießofen nach Impellern	nein	0:35	66,2	186,9	278,2	7,65	
3_78	Gießofen nach Impellern	nein	0:38	67,6	176,0	266,6	5,92	ja
3_79	Gießofen nach Impellern	nein	0:45	65,6	179,8	259,6	4,12	ja
3_80	Gießofen nach Impellern	nein	0:49	64,8	177,8	246,5	2,72	ja
3_81	Gießofen nach Impellern	nein	0:01	67,6	180,6	255,1	3,21	ja
3_82	Gießofen nach Impellern	nein	0:02	64,0	179,1	267,7	6,16	ja
3_83	Gießofen nach Impellern	nein	0:06	64,7	182,6	259,5	3,65	ja
3_84	Gießofen nach Impellern	nein	0:09	69,6	183,6	275,6	7,44	
3_85	Gießofen nach Impellern	nein	0:17	57,4	184,3	270,4	5,75	ja

Tabelle C27: Auswertungseergebnisse Zugversuch des 2. Hauptversuches

Probe Nr.	Sumpf	Ab- steh- zeit [h:min]	Al-Oxid [mm²/kg]	Al- Karbid [mm²/kg]	Gra- phit [mm²/kg]	Mg- Oxid [mm²/kg]	Spinell [mm²/kg]	spinell- ähnl. P. [mm²/kg]	Ff- Ma- terial [mm²/kg]	Fremd- material [mm²/kg]	Summe [mm²/kg]
7_15	nein		0,089	0,044	0,003	0,000	0,012	0,000	0,000	0,000	0,148
7_16	nein	0:08	0,271	0,136	0,000	0,000	0,023	0,014	0,009	0,000	0,452
7_16a	nein	0:22	0,135	0,058	0,000	0,000	0,000	0,000	0,000	0,000	0,192
7_17	nein	2:20	0,243	0,086	0,007	0,019	0,019	0,000	0,000	0,000	0,374
7_18	nein	2:45	0,229	0,121	0,000	0,000	0,040	0,674	0,000	0,283	1,348
7_19	nein	2:55	0,060	0,090	0,000	0,000	0,000	0,000	0,000	0,000	0,149
7_19a	nein	3:05	0,130	0,052	0,004	0,000	0,000	0,000	0,000	0,000	0,186
7_19b	nein	3:17	0,075	0,030	0,000	0,000	0,002	0,000	0,000	0,000	0,108
7_19c	nein	4:05	0,053	0,023	0,000	0,000	0,000	0,000	0,000	0,000	0,076
7_19d	nein	5:45	0,091	0,024	0,000	0,000	0,006	0,000	0,000	0,000	0,121
7_20	ja		0,060	0,018	0,003	0,000	0,009	0,000	0,000	0,000	0,089
7_21	ja		0,195	0,035	0,005	0,010	0,005	0,000	0,000	0,000	0,250
7_22a	ja		0,139	0,017	0,000	0,000	0,017	0,000	0,000	0,000	0,173
7_23	ja	0:05	0,480	0,137	0,014	0,000	0,048	0,007	0,000	0,000	0,685
7_24	ja	0:28	0,114	0,049	0,000	0,003	0,009	0,000	0,000	0,000	0,175
7_25	ja	2:15	0,096	0,064	0,000	0,000	0,000	0,000	0,000	0,000	0,159
7_25a	ja	0:01	0,090	0,072	0,018	0,000	0,000	0,000	0,000	0,000	0,179
7_25b	ja	0:31	0,252	0,116	0,008	0,004	0,008	0,000	0,000	0,000	0,387
7_26			0,026	0,003	0,000	0,000	0,000	0,000	0,000	0,000	0,029
7_27			0,019	0,002	0,000	0,000	0,000	0,000	0,000	0,000	0,021
7_28			0,016	0,004	0,000	0,000	0,000	0,000	0,000	0,000	0,020

Tabelle C28: Auswertungsergebnisse der PoDFA-Messung 2. Hauptversuch
Probe Nr.	Datum	Legierung	Position	Ofen	Rinne	Abstehzeit nach Im- pellern [min]
1_89	6.6.07	AlSi7MgCu0,5	Gießofen vor Impellern	5	ja	
1_90	6.6.07	AlSi7MgCu0,5	Gießofen vor Impellern	5	ja	
1_91	6.6.07	AlSi7MgCu0,5	Gießofen vor Impellern	5	ja	
1_92	6.6.07	AlSi7MgCu0,5	Gießofen vor Impellern	5	ja	
1_93	6.6.07	AlSi7MgCu0,5	Gießofen vor Impellern	5	ja	
1_94	6.6.07	AlSi7MgCu0,5	Gießofen vor Impellern	5	ja	
1_95	5.6.07	AlSi7MgCu0,5	Gießofen nach Impellern	6	ja	0:15
1_96	5.6.07	AlSi7MgCu0,5	Gießofen nach Impellern	6	ja	0:23
1_97	5.6.07	AlSi7MgCu0,5	Gießofen nach Impellern	6	ja	0:35
1_98	5.6.07	AlSi7MgCu0,5	Gießofen nach Impellern	6	ja	1:10
1_99	5.6.07	AlSi7MgCu0,5	Gießofen nach Impellern	6	ja	1:17
1_100	5.6.07	AlSi7MgCu0,5	Gießofen nach Impellern	6	ja	1:20
1_101	5.6.07	AlSi7MgCu0,5	Gießofen vor Impellern	5	nein	
1_102	5.6.07	AlSi7MgCu0,5	Gießofen vor Impellern	5	nein	
1_103	5.6.07	AlSi7MgCu0,5	Gießofen vor Impellern	5	nein	
1_104	5.6.07	AlSi7MgCu0,5	Gießofen vor Impellern	5	nein	
1_105	5.6.07	AlSi7MgCu0,5	Gießofen vor Impellern	5	nein	
1_106a	6.6.07	AlSi7MgCu0,5	Gießofen vor Impellern	5	nein	
1_106b	6.6.07	AlSi7MgCu0,5	Gießofen vor Impellern	5	nein	
1_107	5.6.07	AlSi7MgCu0,5	Gießofen nach Impellern	5	nein	0:07
1_108	5.6.07	AlSi7MgCu0,5	Gießofen nach Impellern	5	nein	0:18
1_109	5.6.07	AlSi7MgCu0,5	Gießofen nach Impellern	5	nein	0:21
1_110	6.6.07	AlSi7MgCu0,5	Gießofen nach Impellern	5	nein	0:10
1_111	6.6.07	AlSi7MgCu0,5	Gießofen nach Impellern	5	nein	0:20
1_112	6.6.07	AlSi7MgCu0,5	Gießofen nach Impellern	5	nein	0:33

Tabelle C29: UD-Proben 3. Hauptversuch

Probe Nr.	Datum	Legierung	Position	Ofen	Rinne	Abstehzeit nach Impellern [h:min]
2_159	6.6.07	AlSi7MgCu0,5	Gießofen vor Impellern	6	ja	
2_160	6.6.07	AlSi7MgCu0,5	Gießofen vor Impellern	6	ja	
2_161	6.6.07	AlSi7MgCu0,5	Gießofen vor Impellern	6	ja	
2_162	6.6.07	AlSi7MgCu0,5	Gießofen vor Impellern	6	ja	
2_163	6.6.07	AlSi7MgCu0,5	Gießofen vor Impellern	6	ja	
2_164	6.6.07	AlSi7MgCu0,5	Gießofen vor Impellern	6	ja	
2_165	6.6.07	AlSi7MgCu0,5	Gießofen vor Impellern	6	ja	
2_166	6.6.07	AlSi7MgCu0,5	Gießofen vor Impellern	6	ja	
2_168	6.6.07	AlSi7MgCu0,5	Gießofen vor Impellern	6	ja	
2_169	5.6.07	AlSi7MgCu0,5	Gießofen nach Impellern	6	ja	0:15
2_170	5.6.07	AlSi7MgCu0,5	Gießofen nach Impellern	6	ja	0:16
2_171	5.6.07	AlSi7MgCu0,5	Gießofen nach Impellern	6	ja	0:20
2_172	5.6.07	AlSi7MgCu0,5	Gießofen nach Impellern	6	ja	0:20
2_173	5.6.07	AlSi7MgCu0,5	Gießofen nach Impellern	6	ja	0:26
2_174	5.6.07	AlSi7MgCu0,5	Gießofen nach Impellern	6	ja	0:30
2_175	5.6.07	AlSi7MgCu0,5	Gießofen nach Impellern	6	ja	0:38
2_176	5.6.07	AlSi7MgCu0,5	Gießofen nach Impellern	6	ja	0:40
2_177	5.6.07	AlSi7MgCu0,5	Gießofen nach Impellern	6	ja	0:46
2_178	5.6.07	AlSi7MgCu0,5	Gießofen nach Impellern	6	ja	0:55
2_179	5.6.07	AlSi7MgCu0,5	Gießofen vor Impellern	5	nein	
2_180	5.6.07	AlSi7MgCu0,5	Gießofen vor Impellern	5	nein	
2_181	5.6.07	AlSi7MgCu0,5	Gießofen vor Impellern	5	nein	
2_182	5.6.07	AlSi7MgCu0,5	Gießofen vor Impellern	5	nein	
2_183	5.6.07	AlSi7MgCu0,5	Gießofen vor Impellern	5	nein	
2_184	5.6.07	AlSi7MgCu0,5	Gießofen vor Impellern	5	nein	
2_185	5.6.07	AlSi7MgCu0,5	Gießofen vor Impellern	5	nein	
2_186	5.6.07	AlSi7MgCu0,5	Gießofen vor Impellern	5	nein	
2_187	5.6.07	AlSi7MgCu0,5	Gießofen vor Impellern	5	nein	
2_188	5.6.07	AlSi7MgCu0,5	Gießofen vor Impellern	5	nein	
2_189	5.6.07	AlSi7MgCu0,5	Gießofen nach Impellern	5	nein	0:07
2_190	5.6.07	AlSi7MgCu0,5	Gießofen nach Impellern	5	nein	0:07
2_191	5.6.07	AlSi7MgCu0,5	Gießofen nach Impellern	5	nein	0:16
2_192	5.6.07	AlSi7MgCu0,5	Gießofen nach Impellern	5	nein	0:16
2_193	5.6.07	AlSi7MgCu0,5	Gießofen nach Impellern	5	nein	0:21
2_194	5.6.07	AlSi7MgCu0,5	Gießofen nach Impellern	5	nein	0:21
2_195	5.6.07	AlSi7MgCu0,5	Gießofen nach Impellern	5	nein	0:29
2_197	6.6.07	AlSi7MgCu0,5	Gießofen nach Impellern	5	nein	0:10
2_198a	6.6.07	AlSi7MgCu0,5	Gießofen nach Impellern	5	nein	0:10
2_198b	6.6.07	AlSi7MgCu0,5	Gießofen nach Impellern	5	nein	0:18

Tabelle C30: Schwingfestigkeitsproben 3. Hauptversuch

Tabelle C31: Zugproben 3.	Hauptversuch
---------------------------	--------------

Probe Nr.	Datum	Legierung	Position	Ofen	Rinne	Abstehzeit nach Impellern [h:min]
3_86	6.6.07	AlSi7MgCu0,5	Gießofen vor Impellern	6	ja	
3_87	6.6.07	AlSi7MgCu0,5	Gießofen vor Impellern	6	ja	
3_88	6.6.07	AlSi7MgCu0,5	Gießofen vor Impellern	6	ja	
3_89	6.6.07	AlSi7MgCu0,5	Gießofen vor Impellern	6	ja	
3_90	6.6.07	AlSi7MgCu0,5	Gießofen vor Impellern	6	ja	
3_91	6.6.07	AlSi7MgCu0,5	Gießofen vor Impellern	6	ja	
3_92	6.6.07	AlSi7MgCu0,5	Gießofen vor Impellern	6	ja	
3_93	6.6.07	AlSi7MgCu0,5	Gießofen vor Impellern	6	ja	
3_94	6.6.07	AlSi7MgCu0,5	Gießofen vor Impellern	6	ja	
3_95a	6.6.07	AlSi7MgCu0,5	Gießofen vor Impellern	6	ja	
3_95b	6.6.07	AlSi7MgCu0,5	Gießofen vor Impellern	6	ja	
3_96	5.6.07	AlSi7MgCu0,5	Gießofen nach Impellern	6	ja	1:08
3_97	5.6.07	AlSi7MgCu0,5	Gießofen nach Impellern	6	ja	1:08
3_98	5.6.07	AlSi7MgCu0,5	Gießofen nach Impellern	6	ja	1:15
3_99	5.6.07	AlSi7MgCu0,5	Gießofen nach Impellern	6	ja	1:15
3_100	5.6.07	AlSi7MgCu0,5	Gießofen nach Impellern	6	ja	1:23
3_101	5.6.07	AlSi7MgCu0,5	Gießofen nach Impellern	6	ja	1:23
3_102	5.6.07	AlSi7MgCu0,5	Gießofen nach Impellern	6	ja	1:30
3_103	5.6.07	AlSi7MgCu0,5	Gießofen nach Impellern	6	ja	1:30
3_104	5.6.07	AlSi7MgCu0,5	Gießofen nach Impellern	6	ja	1:39
3_105	5.6.07	AlSi7MgCu0,5	Gießofen nach Impellern	6	ja	1:39
3_106	5.6.07	AlSi7MgCu0,5	Gießofen vor Impellern	5	nein	
3_107	6.6.07	AlSi7MgCu0,5	Gießofen vor Impellern	5	nein	
3_108	6.6.07	AlSi7MgCu0,5	Gießofen vor Impellern	5	nein	
3_109	6.6.07	AlSi7MgCu0,5	Gießofen vor Impellern	5	nein	
3_110	6.6.07	AlSi7MgCu0,5	Gießofen vor Impellern	5	nein	
3_111	6.6.07	AlSi7MgCu0,5	Gießofen vor Impellern	5	nein	
3_112	6.6.07	AlSi7MgCu0,5	Gießofen vor Impellern	5	nein	
3_113	6.6.07	AlSi7MgCu0,5	Gießofen vor Impellern	5	nein	
3_114	6.6.07	AlSi7MgCu0,5	Gießofen vor Impellern	5	nein	
3_115a	6.6.07	AlSi7MgCu0,5	Gießofen vor Impellern	5	nein	
3_115b	6.6.07	AlSi7MgCu0,5	Gießofen vor Impellern	5	nein	
3_116	6.6.07	AlSi7MgCu0,5	Gießofen nach Impellern	5	nein	0:18
3_117	6.6.07	AlSi7MgCu0,5	Gießofen nach Impellern	5	nein	0:24
3_118	6.6.07	AlSi7MgCu0,5	Gießofen nach Impellern	5	nein	0:24
3_119	6.6.07	AlSi7MgCu0,5	Gießofen nach Impellern	5	nein	0:30
3_120	6.6.07	AlSi7MgCu0,5	Gießofen nach Impellern	5	nein	0:30
3_121	6.6.07	AlSi7MgCu0,5	Gießofen nach Impellern	5	nein	0:37
3_122	6.6.07	AlSi7MgCu0,5	Gießofen nach Impellern	5	nein	0:37
3_123	6.6.07	AlSi7MgCu0,5	Gießofen nach Impellern	5	nein	0:42
3_124	6.6.07	AlSi7MgCu0,5	Gießofen nach Impellern	5	nein	0:42
3_125a	6.6.07	AlSi7MgCu0,5	Gießofen nach Impellern	5	nein	0:50
3_125b	6.6.07	AlSi7MgCu0,5	Gießofen nach Impellern	5	nein	0:50

Tabelle C32: PoDFA-Proben 3. Hauptversuch

Probe Nr.	Be- zeich- nung Hydro Bonn	Datum	Probe- nahme- zeit	Legierung	Position	Dfen	Rinne	Ab- steh- zeit [h:min]
7_29	913-30	6.6.07	10:15	AlSi7MgCu0,5	Gießofen vor Impellern	6	ja	
7_31	913-32	6.6.07	10:30	AlSi7MgCu0,5	Gießofen vor Impellern	6	ja	
7_32	913-19	5.6.07	14:56	AlSi7MgCu0,5	Gießofen nach Impellern	6	ja	00:11
7_33	913-20	5.6.07	15:03	AlSi7MgCu0,5	Gießofen nach Impellern	6	ja	00:18
7_34	913-21	5.6.07	16:20	AlSi7MgCu0,5	Gießofen nach Impellern	6	ja	01:35
7_35	913-22	5.6.07	17:07	AlSi7MgCu0,5	Gießofen vor Impellern	5	nein	
7_36	913-23	5.6.07	17:14	AlSi7MgCu0,5	Gießofen vor Impellern	5	nein	
7_37	913-24	5.6.07	17:27	AlSi7MgCu0,5	Gießofen vor Impellern	5	nein	
7_38	913-25	5.6.07	17:57	AlSi7MgCu0,5	Gießofen nach Impellern	5	nein	0:14
7_39	913-26	5.6.07	18:04	AlSi7MgCu0,5	Gießofen nach Impellern	5	nein	0:21
7_41	913-28	6.6.07	8:30	AlSi7MgCu0,5	Transportpfanne			
7_42	913-29	6.6.07	9:14	AlSi7MgCu0,5	Transportpfanne			
7_43	913-33	6.6.07	11:15	AlSi7MgCu0,5	Transportpfanne			
7_44	913-34	6.6.07	11:30	AlSi7MgCu0,5	Transportpfanne			

Probe Nr.	Position	Ofen	Rinne	Abstehzeit nach Impellern [min]	Dichte-Index [%]
1_89	Gießofen vor Impellern	5	ja		14,45
1_90	Gießofen vor Impellern	5	ja		16,50
1_91	Gießofen vor Impellern	5	ja		14,88
1_92	Gießofen vor Impellern	5	ja		12,43
1_93	Gießofen vor Impellern	5	ja		14,68
1_94	Gießofen vor Impellern	5	ја		13,36
1_95	Gießofen nach Impellern	6	ja	0:15	0,73
1_96	Gießofen nach Impellern	6	ja	0:23	1,10
1_97	Gießofen nach Impellern	6	ja	0:35	1,36
1_98	Gießofen nach Impellern	6	ja	1:10	0,96
1_99	Gießofen nach Impellern	6	ja	1:17	1,49
1_100	Gießofen nach Impellern	6	ја	1:20	1,24
1_101	Gießofen vor Impellern	5	nein		16,90
1_102	Gießofen vor Impellern	5	nein		12,86
1_103	Gießofen vor Impellern	5	nein		12,06
1_104	Gießofen vor Impellern	5	nein		13,73
1_105	Gießofen vor Impellern	5	nein		14,20
1_106a	Gießofen vor Impellern	5	nein		15,06
1_106b	Gießofen vor Impellern	5	nein		13,37
1_107	Gießofen nach Impellern	5	nein	0:07	1,52
1_108	Gießofen nach Impellern	5	nein	0:18	1,48
1_109	Gießofen nach Impellern	5	nein	0:21	1,72
1_110	Gießofen nach Impellern	5	nein	0:10	1,04
1_111	Gießofen nach Impellern	5	nein	0:20	1,28
1_112	Gießofen nach Impellern	5	nein	0:33	1,20

Tabelle C33: Dichte-Index der UD-Proben 3. Hauptversuch

Probe Nr.	Position	Rinne	Absteh- zeit nach Impellern [min]	Anzahl der Poren	Fläche der Probe [cm²]	Poren/cm ²	Porosität [%]
1_89	Gießofen vor Impellern	ja		209	11,71	17,85	6,89
1_91	Gießofen vor Impellern	ja		197	10,50	18,76	8,27
1_92	Gießofen vor Impellern	ja		123	10,62	11,58	3,63
1_94	Gießofen vor Impellern	ja		125	10,50	11,90	4,51
1_96	Gießofen nach Impellern	ja	0:23	123	9,44	13,03	0,25
1_97	Gießofen nach Impellern	ja	0:35	115	9,78	11,76	0,14
1_98	Gießofen nach Impellern	ja	1:10	110	9,24	11,91	0,12
1_100	Gießofen nach Impellern	ja	1:20	157	11,23	13,98	0,12
1_101	Gießofen vor Impellern	nein		105	12,06	8,71	7,46
1_104	Gießofen vor Impellern	nein		104	11,09	9,38	2,57
1_106a	Gießofen vor Impellern	nein		130	11,70	11,11	5,00
1_106b	Gießofen vor Impellern	nein		123	10,23	12,03	5,09
1_107	Gießofen nach Impellern	nein	0:07	173	9,70	17,84	0,23
1_110	Gießofen nach Impellern	nein	0:10	111	9,64	11,52	0,12
1_111	Gießofen nach Impellern	nein	0:20	120	9,50	12,63	0,13
1_112	Gießofen nach Impellern	nein	0:33	98	9,49	10,32	0,08

Tabelle C34: Auswertungsergebnisse bildanalytische Auswertung UD-Proben des 3. Hauptversuches

Probe Nr.	Position	Rinne	Abstehzeit nach Impellern [h:min]	Ober- spannung [MPa]	Schwing- spiele bis Bruch
2_159	Gießofen vor Impellern	ja		160	248.000
2_160	Gießofen vor Impellern	ja		160	202.500
2_161	Gießofen vor Impellern	ja		160	145.900
2_162	Gießofen vor Impellern	ja		160	116.300
2_163	Gießofen vor Impellern	ja		160	185.500
2_164	Gießofen vor Impellern	ja		160	241.700
2_165	Gießofen vor Impellern	ja		160	211.600
2_166	Gießofen vor Impellern	ja		160	170.000
2_168	Gießofen vor Impellern	ja		160	158.300
2_169	Gießofen nach Impellern	ja	0:15	160	706.700
2_170	Gießofen nach Impellern	ja	0:16	160	469.300
2_171	Gießofen nach Impellern	ja	0:20	160	6.940.800
2_172	Gießofen nach Impellern	ja	0:20	160	1.584.700
2_173	Gießofen nach Impellern	ja	0:26	160	1.128.700
2_174	Gießofen nach Impellern	ja	0:30	160	1.017.300
2_175	Gießofen nach Impellern	ja	0:38	160	1.970.100
2_176	Gießofen nach Impellern	ja	0:40	160	1.284.500
2_177	Gießofen nach Impellern	ja	0:46	160	1.806.800
2_178	Gießofen nach Impellern	ja	0:55	160	544.200
2_179	Gießofen vor Impellern	nein		160	215.700
2_180	Gießofen vor Impellern	nein		160	203.300
2_181	Gießofen vor Impellern	nein		160	156.200
2_182	Gießofen vor Impellern	nein		160	149.600
2_183	Gießofen vor Impellern	nein		160	178.200
2_184	Gießofen vor Impellern	nein		160	185.500
2_185	Gießofen vor Impellern	nein		160	144.800
2_186	Gießofen vor Impellern	nein		160	145.600
2_187	Gießofen vor Impellern	nein		160	178.000
2_188	Gießofen vor Impellern	nein		160	178.900
2_189	Gießofen nach Impellern	nein	0:07	160	575.300
2_190	Gießofen nach Impellern	nein	0:07	160	3.396.400
2_191	Gießofen nach Impellern	nein	0:16	160	746.000
2_192	Gießofen nach Impellern	nein	0:16	160	1.777.800
2_193	Gießofen nach Impellern	nein	0:21	160	366.900
2_194	Gießofen nach Impellern	nein	0:21	160	2.995.300
2_195	Gießofen nach Impellern	nein	0:29	160	594.900
2_197	Gießofen nach Impellern	nein	0:10	160	887.400
2_198a	Gießofen nach Impellern	nein	0:10	160	1.043.500
2_198b	Gießofen nach Impellern	nein	0:18	160	2.093.000

Tabelle C35: Auswertungsergebnisse der Schwingfestigkeitsproben 3. Hauptversuch

Probe Nr.	Position	Rinne	Absteh- zeit nach Impellern [h:min]	E- Modul [GPa]	R _{p0,2} [MPa]	R _m [MPa]	A [%]	Ein- schluss
3_86	Gießofen vor Impellern	ja		64,8	179,7	254,8	3,55	
3_87	Gießofen vor Impellern	ja		65,5	178,4	249,6	3,06	
3_88	Gießofen vor Impellern	ja		67,1	181,5	251,9	2,89	
3_89	Gießofen vor Impellern	ja		66,7	173,0	236,6	2,04	ja
3_90	Gießofen vor Impellern	ja		63,6	170,5	242,6	2,97	-
3_91	Gießofen vor Impellern	ja		67,0	174,6	251,3	3,75	
3_92	Gießofen vor Impellern	ja		66,7	175,4	250,0	3,33	
3_93	Gießofen vor Impellern	ja		66,8	178,0	254,6	3,65	
3_94	Gießofen vor Impellern	ja		63,4	177,3	253,0	3,74	
3_95a	Gießofen vor Impellern	ja		63,1	178,9	252,6	3,73	
3_95b	Gießofen vor Impellern	ja		62,8	176,1	252,6	3,74	
3_96	Gießofen nach Impellern	ja	1:08	68,3	173,0	270,9	6,45	
3_97	Gießofen nach Impellern	ja	1:08	67,1	172,7	270,2	7,22	
3_98	Gießofen nach Impellern	ja	1:15	67,7	169,4	265,8	6,33	
3_99	Gießofen nach Impellern	ja	1:15	68,3	173,4	256,0	3,85	
3_100	Gießofen nach Impellern	ja	1:23	66,2	168,8	271,7	8,18	
3_101	Gießofen nach Impellern	ja	1:23	69,8	166,6	258,3	4,85	
3_102	Gießofen nach Impellern	ja	1:30	69,5	171,4	273,7	8,02	
3_103	Gießofen nach Impellern	ja	1:30	72,1	173,1	273,0	8,03	
3_104	Gießofen nach Impellern	ja	1:39	70,0	174,7	271,7	6,56	
3_105	Gießofen nach Impellern	ja	1:39	68,7	175,2	268,4	5,73	
3_106	Gießofen vor Impellern	nein		66,7	175,8	259,2	4,84	
3_107	Gießofen vor Impellern	nein		62,9	176,4	247,4	2,90	
3_108	Gießofen vor Impellern	nein		61,9	164,1	239,6	3,36	
3_109	Gießofen vor Impellern	nein		65,0	170,8	248,7	3,77	
3_110	Gießofen vor Impellern	nein		67,1	171,3	221,4	1,27	ja
3_111	Gießofen vor Impellern	nein		65,2	175,4	247,1	2,97	
3_112	Gießofen vor Impellern	nein		66,4	170,3	249,6	3,86	
3_113	Gießofen vor Impellern	nein		63,0	167,0	251,6	4,91	
3_114	Gießofen vor Impellern	nein		65,7	178,1	230,3	1,37	ja
3_115a	Gießofen vor Impellern	nein		64,7	179,1	254,1	3,35	
3_115b	Gießofen vor Impellern	nein		63,5	170,2	241,3	3,03	
3_116	Gießofen nach Impellern	nein	0:18	70,7	181,3	261,0	3,58	
3_117	Gießofen nach Impellern	nein	0:24	69,8	180,9	276,3	6,70	
3_118	Gießofen nach Impellern	nein	0:24	69,1	183,3	277,0	6,89	
3_119	Gießofen nach Impellern	nein	0:30	71,4	182,7	232,4	1,15	ja
3_120	Gießofen nach Impellern	nein	0:30	70,5	182,3	274,3	5,63	
3_121	Gießofen nach Impellern	nein	0:37	65,5	180,7	268,4	4,88	
3_122	Gießofen nach Impellern	nein	0:37	69,4	176,3	272,1	7,03	
3_123	Gießofen nach Impellern	nein	0:42	64,9	177,3	264,9	4,93	
3_124	Gießofen nach Impellern	nein	0:42	67,5	184,8	268,4	4,39	
3_125a	Gießofen nach Impellern	nein	0:50	69,4	187,1	275,2	5,29	
3_125b	Gießofen nach Impellern	nein	0:50	68,1	184,8	276,9	6,39	

Tabelle C36: Auswertungsergebnisse Zugversuch des 3. Hauptversuches

⊃robe Nr.	Rinne	Ab- steh- zeit [h:min]	Ge- wicht [kg]	Al- Oxid [mm²/kg]	Al- Karbic [mm²/kg]	Graphit [mm²/kg]	Mg- Oxid [mm²/kg]	Spinell [mm²/kg]	spinell- ähnl. P. [mm²/kg]	Ff- Material [mm²/kg]	Summe [mm²/kg]
7_29	ja		1,20	0,009	0,000	0,000	0,000	0,000	0,026	0,051	0,085
7_31	ja		1,20	0,231	0,046	0,000	0,046	0,139	0,000	0,000	0,462
7_32	ja	00:11	1,20	0,102	0,047	0,000	0,000	0,008	0,000	0,000	0,156
7_33	ja	00:18	1,20	0,108	0,050	0,000	0,000	0,008	0,000	0,000	0,166
7_34	ja	01:35	1,20	0,113	0,052	0,000	0,000	0,009	0,000	0,000	0,173
7_35	nein		1,20	0,048	0,015	0,000	0,000	0,006	0,000	0,000	0,069
7_36	nein		1,20	0,035	0,013	0,000	0,000	0,003	0,000	0,000	0,050
7_37	nein		1,20	0,027	0,010	0,000	0,000	0,002	0,000	0,000	0,039
7_38	nein	0:14	1,20	0,124	0,054	0,000	0,000	0,013	0,000	0,000	0,191
7_39	nein	0:21	1,20	0,148	0,068	0,000	0,000	0,011	0,000	0,000	0,228
7_41			1,20	0,027	0,012	0,000	0,000	0,000	0,000	0,000	0,039
7_42			1,20	0,057	0,011	0,000	0,000	0,004	0,000	0,000	0,072
7_43			1,28	0,010	0,001	0,000	0,000	0,000	0,000	0,000	0,011
7_44			1,20	0,048	0,017	0,004	0,000	0,017	0,000	0,000	0,087

Tabelle C37: Auswertungsergebnisse der PoDFA-Messung 3. Hauptversuch

Tabelle C38: UD-Proben 4. Hauptversuch

Probe Nr.	Datum	Legierung	Position	Ofen	Abstehzeit nach Impellern [min]
1_113	18.6.07	LM25	Transportpfanne		
1_114	18.6.07	LM25	Transportpfanne		
1_115	18.6.07	LM25	Transportpfanne		
1_116	18.6.07	LM25	Transportpfanne		
1_117	18.6.07	LM25	Transportpfanne		
1_118	18.6.07	LM25	Transportpfanne		
1_119	18.6.07	LM25	Gießofen vor Impellern	9	
1_120	18.6.07	LM25	Gießofen vor Impellern	9	
1_121	18.6.07	LM25	Gießofen vor Impellern	9	
1_122	18.6.07	LM25	Gießofen vor Impellern	9	
1_123	18.6.07	LM25	Gießofen vor Impellern	9	
1_124	18.6.07	LM25	Gießofen vor Impellern	9	
1_125	18.6.07	LM25	Gießofen nach Impellern	9	0:11
1_126	18.6.07	LM25	Gießofen nach Impellern	9	0:28
1_127	18.6.07	LM25	Gießofen nach Impellern	9	0:39
1_128	18.6.07	LM25	Gießofen nach Impellern	9	0:55
1_129	18.6.07	LM25	Gießofen nach Impellern	9	0:55
1_130a	18.6.07	LM25	Gießofen nach Impellern	10	0:11
1_130b	18.6.07	LM25	Gießofen nach Impellern	10	0:11

Probe Nr.	Datum	Probe- nahme- zeit	Legierung	Position	Ofen	Abstehzeit nach Impellern [h:min]
2_199	18.6.07	10:15	LM25	Transportpfanne		
2_200	18.6.07	10:21	LM25	Transportpfanne		
2_201	18.6.07	12:28	LM25	Transportpfanne		
2_202	18.6.07	12:29	LM25	Transportpfanne		
2_203	18.6.07	12:35	LM25	Transportpfanne		
2_204	18.6.07	12:36	LM25	Transportpfanne		
2_205	18.6.07	12:45	LM25	Transportpfanne		
2_206	18.6.07	12:45	LM25	Transportpfanne		
2_207	18.6.07	13:14	LM25	Transportpfanne		
2_208	18.6.07	13:18	LM25	Transportpfanne		
2_209	18.6.07	10:30	LM25	Gießofen vor Impellern	9	
2_210	18.6.07	10:35	LM25	Gießofen vor Impellern	9	
2_211	18.6.07	13:10	LM25	Gießofen vor Impellern	10	
2_212	18.6.07	13:10	LM25	Gießofen vor Impellern	10	
2_213	18.6.07	14:44	LM25	Gießofen vor Impellern	9	
2_214	18.6.07	14:55	LM25	Gießofen vor Impellern	9	
2_215	18.6.07	14:56	LM25	Gießofen vor Impellern	9	
2_216	18.6.07	15:00	LM25	Gießofen vor Impellern	9	
2_217	18.6.07	15:03	LM25	Gießofen vor Impellern	9	
2_218	18.6.07	15:04	LM25	Gießofen vor Impellern	9	
2_219	18.6.07	10:10	LM25	Gießofen nach Impellern	10	0:40
2_220	18.6.07	10:45	LM25	Gießofen nach Impellern	10	1:15
2_221	18.6.07	11:11	LM25	Gießofen nach Impellern	9	0:10
2_222	18.6.07	11:19	LM25	Gießofen nach Impellern	9	0:18
2_223	18.6.07	11:26	LM25	Gießofen nach Impellern	9	0:25
2_224	18.6.07	11:35	LM25	Gießofen nach Impellern	9	0:34
2_225	18.6.07	11:44	LM25	Gießofen nach Impellern	9	0:43
2_226	18.6.07	11:55	LM25	Gießofen nach Impellern	9	0:54
2_227	18.6.07	11:55	LM25	Gießofen nach Impellern	9	0:54
2_228	18.6.07	12:00	LM25	Gießofen nach Impellern	9	0:59

Tabelle C39: Schwingfestigkeitsproben 4. Hauptversuch

Tabelle C40: Zugproben 4. Hauptversuch

Probe Nr.	Datum	Probe- nahme- zeit	Legierung	Position	Ofen	Abstehzeit nach Impellern [h:min]
3_126	18.6.07	13:20	LM25	Transportpfanne		
3_127	18.6.07	13:23	LM25	Transportpfanne		
3_128	18.6.07	13:28	LM25	Transportpfanne		
3_129	18.6.07	13:30	LM25	Transportpfanne		
3_130	18.6.07	13:36	LM25	Transportpfanne		
3_131	18.6.07	13:39	LM25	Transportpfanne		
3_132	18.6.07	16:00	LM25	Transportpfanne		
3_133	18.6.07	16:01	LM25	Transportpfanne		
3_134	18.6.07	16:06	LM25	Transportpfanne		
3_135	18.6.07	16:06	LM25	Transportpfanne		
3_136	18.6.07	15:11	LM25	Gießofen vor Impellern	9	
3_137	18.6.07	15:12	LM25	Gießofen vor Impellern	9	
3_138	18.6.07	16:25	LM25	Gießofen vor Impellern	10	
3_139	18.6.07	16:34	LM25	Gießofen vor Impellern	10	
3_140	18.6.07	16:34	LM25	Gießofen vor Impellern	10	
3_141	18.6.07	16:39	LM25	Gießofen vor Impellern	10	
3_142	18.6.07	16:39	LM25	Gießofen vor Impellern	10	
3_143	18.6.07	17:43	LM25	Gießofen vor Impellern	10	
3_144	18.6.07	17:44	LM25	Gießofen vor Impellern	10	
3_145	18.6.07	16:47	LM25	Gießofen vor Impellern	10	
3_146	18.6.07	12:02	LM25	Gießofen nach Impellern	9	1:01
3_147	18.6.07	12:06	LM25	Gießofen nach Impellern	9	1:05
3_148	18.6.07	12:11	LM25	Gießofen nach Impellern	9	1:10
3_149	18.6.07	12:14	LM25	Gießofen nach Impellern	9	1:13
3_150	18.6.07	12:20	LM25	Gießofen nach Impellern	9	1:19
3_151	18.6.07	12:21	LM25	Gießofen nach Impellern	9	1:20
3_152	18.6.07	13:39	LM25	Gießofen nach Impellern	10	0:10
3_153	18.6.07	13:40	LM25	Gießofen nach Impellern	10	0:11
3_154	18.6.07	13:44	LM25	Gießofen nach Impellern	10	0:15
3_155	18.6.07	13:45	LM25	Gießofen nach Impellern	10	0:16

Tabelle C41: PoDFA-Proben 4. Hauptvers	uch
--	-----

Probe Nr.	Be- zeich- nung Hydro Bonn	Datum	Proben- nahme- zeit	Legierung	Position	Ofer	Ab- steh- zeit h:min	Ge- wicht [kg]
7_45	914-1	18.06.2007	10:09	LM25	Transportpfanne			1,005
7_46	914-2	18.06.2007	10:13	LM25	Transportpfanne			1,005
7_47	914-3	18.06.2007	12:25	LM25	Transportpfanne			1,000
7_48	914-4	18.06.2007	12:40	LM25	Transportpfanne			1,000
7_49	914-5	18.06.2007	14:13	LM25	Transportpfanne			1,010
7_50	914-6	18.06.2007	14:22	LM25	Transportpfanne			0,995
7_51	915-1	18.06.2007	10:30	LM25	Gießofen vor Impellern	9		1,005
7_52	915-2	18.06.2007	10:38	LM25	Gießofen vor Impellern	9		1,005
7_53	915-3	18.06.2007	13:10	LM25	Gießofen vor Impellern	10		1,000
7_54	915-4	18.06.2007	14:52	LM25	Gießofen vor Impellern	9		1,000
7_55	915-5	18.06.2007	14:58	LM25	Gießofen vor Impellern	9		1,005
7_56	916-1	18.06.2007	10:01	LM25	Gießofen nach Impellern	10	00:35	1,000
7_57	916-2	18.06.2007	11:10	LM25	Gießofen nach Impellern	9	00:11	0,995
7_58	916-3	18.06.2007	11:24	LM25	Gießofen nach Impellern	9	00:25	1,000
7_59	916-4	18.06.2007	13:38	LM25	Gießofen nach Impellern	10	00:05	1,000
7_60	916-5	18.06.2007	13:50	LM25	Gießofen nach Impellern	10	00:17	1,005
7_61	916-6	18.06.2007	15:40	LM25	Gießofen nach Impellern	9	00:05	1,000
7_62	916-7	18.06.2007	15:50	LM25	Gießofen nach Impellern	9	00:15	1,005

Tabelle C42: Dichte-Index der UD-Proben 4. Hauptversuch

Probe Nr.	Position	Abstehzeit nach Impellern [min]	Dichte-Index [%]
1_113	Transportpfanne		9,83
1_114	Transportpfanne		10,97
1_115	Transportpfanne		11,83
1_116	Transportpfanne		8,96
1_117	Transportpfanne		11,24
1_118	Transportpfanne		12,02
1_119	Gießofen vor Impellern		8,61
1_120	Gießofen vor Impellern		8,09
1_121	Gießofen vor Impellern		9,24
1_122	Gießofen vor Impellern		9,93
1_123	Gießofen vor Impellern		10,82
1_124	Gießofen vor Impellern		8,50
1_125	Gießofen nach Impellern	0:11	0,59
1_126	Gießofen nach Impellern	0:28	0,63
1_127	Gießofen nach Impellern	0:39	0,70
1_128	Gießofen nach Impellern	0:55	0,73
1_129	Gießofen nach Impellern	0:55	0,80
1_130a	Gießofen nach Impellern	0:11	1,03
1_130b	Gießofen nach Impellern	0:11	0,95

Probe Nr.	Position	Abstehzeit nach Im- pellern [min]	Anzahl der Poren	Fläche der Probe [cm²]	Poren/cm ²	Porosität [%]
1_113	Transportpfanne		321	11,31	28,39	2,95
1_115	Transportpfanne		351	12,38	28,35	9,96
1_117	Transportpfanne		634	10,01	63,31	10,15
1_118	Transportpfanne		436	10,92	39,94	9,53
1_120	Gießofen vor Impellern		347	10,05	34,53	4,50
1_121	Gießofen vor Impellern		399	11,41	34,97	4,86
1_123	Gießofen vor Impellern		343	10,44	32,85	7,44
1_124	Gießofen vor Impellern		277	10,97	25,26	4,19
1_125	Gießofen nach Impellern	0:11	185	9,62	19,23	0,19
1_127	Gießofen nach Impellern	0:39	129	9,81	13,15	0,10
1_128	Gießofen nach Impellern	0:55	110	9,23	11,92	0,09
1_130b	Gießofen nach Impellern	0:11	204	9,35	21,82	0,22

Tabelle C43: Auswertungsergebnisse bildanalytische Auswertung UD-Proben des 4. Hauptversuches

Probe Nr.	Position	Abstehzeit nach Impellern [h:min]	Oberspannung [MPa]	Schwingspiele bis Bruch
2_199	Transportpfanne		160	239.200
2_200	Transportpfanne		160	272.300
2_201	Transportpfanne		160	78.900
2_202	Transportpfanne		160	135.000
2_203	Transportpfanne		160	260.300
2_204	Transportpfanne		160	224.700
2_205	Transportpfanne		160	291.300
2_206	Transportpfanne		160	204.300
2_207	Transportpfanne		160	180.100
2_208	Transportpfanne		160	291.800
2_209	Gießofen vor Impellern		160	254.400
2_210	Gießofen vor Impellern		160	319.700
2_211	Gießofen vor Impellern		160	254.400
2_212	Gießofen vor Impellern		160	206.300
2_213	Gießofen vor Impellern		160	447.400
2_214	Gießofen vor Impellern		160	89.400
2_215	Gießofen vor Impellern		160	209.500
2_216	Gießofen vor Impellern		160	282.900
2_217	Gießofen vor Impellern		160	255.400
2_218	Gießofen vor Impellern		160	277.000
2_219	Gießofen nach Impellern	0:40	160	696.400
2_220	Gießofen nach Impellern	1:15	160	502.800
2_221	Gießofen nach Impellern	0:10	160	137.200
2_222	Gießofen nach Impellern	0:18	160	639.200
2_223	Gießofen nach Impellern	0:25	160	291.600
2_224	Gießofen nach Impellern	0:34	160	776.000
2_225	Gießofen nach Impellern	0:43	160	291.600
2_226	Gießofen nach Impellern	0:54	160	1.155.800
2_227	Gießofen nach Impellern	0:54	160	815.100
2_228	Gießofen nach Impellern	0:59	160	1.027.000

Tabelle C44: Auswertungsergebnisse der Schwingfestigkeitsproben 4. Hauptversuch

Probe Nr.	Position	Abstehzeit nach Impellern [h:min]	E- Modul [GPa]	R _{p0,2} [MPa]	R _m [MPa]	A [%]	Ein- schluss
3_126	Transportpfanne		61,0	164,0	234,8	4,09	
3_127	Transportpfanne		59,6	154,5	230,2	4,40	
3_128	Transportpfanne		60,0	153,0	233,3	6,01	
3_129	Transportpfanne		60,9	157,4	236,7	5,53	
3_130	Transportpfanne		61,2	160,3	233,9	4,34	
3_131	Transportpfanne		63,4	162,0	236,6	4,49	
3_132	Transportpfanne		55,9	150,8	187,7	1,18	ja
3_133	Transportpfanne		56,8	151,3	226,7	4,50	
3_134	Transportpfanne		61,1	160,5	233,1	4,65	
3_135	Transportpfanne		62,2	162,3	230,0	3,67	ja
3_136	Gießofen vor Impellern		62,7	165,8	232,7	3,60	ja
3_137	Gießofen vor Impellern		58,5	157,8	221,5	2,98	ja
3_138	Gießofen vor Impellern		62,8	176,2	219,1	1,51	ja
3_139	Gießofen vor Impellern		59,8	152,0	192,6	1,30	ja
3_140	Gießofen vor Impellern		61,7	176,4	216,7	1,30	ja
3_141	Gießofen vor Impellern		62,6	180,6	246,2	4,03	ja
3_142	Gießofen vor Impellern		62,5	156,6	228,7	4,59	ja
3_143	Gießofen vor Impellern		61,7	155,8	223,3	3,61	ja
3_144	Gießofen vor Impellern		60,1	179,0	218,1	1,28	ja
3_145	Gießofen vor Impellern		64,3	170,5	227,9	2,51	ja
3_146	Gießofen nach Impellern	1:01	61,5	168,5	220,1	2,01	ja
3_147	Gießofen nach Impellern	1:05	65,3	167,5	244,9	5,93	ja
3_148	Gießofen nach Impellern	1:10	64,9	171,3	235,9	3,25	ja
3_149	Gießofen nach Impellern	1:13	63,7	162,3	237,8	4,79	ja
3_150	Gießofen nach Impellern	1:19	64,4	175,0	248,2	5,64	ja
3_151	Gießofen nach Impellern	1:20	61,5	162,3	244,7	7,23	
3_152	Gießofen nach Impellern	0:10	60,3	158,6	228,0	3,69	ja
3_153	Gießofen nach Impellern	0:11	62,6	158,7	228,3	3,79	ja
3_154	Gießofen nach Impellern	0:15	63,3	170,7	233,1	2,95	ja
3_155	Gießofen nach Impellern	0:16	65,1	173,9	252,5	6,60	

Tabelle C45: Auswertungsergebnisse Zugversuch des 4. Hauptversuches

Probe Nr.	Absteh- zeit [h:min]	Al- Oxid [mm²/kg]	Ti- Borid [mm²/kg]	Al- Karbid [mm²/kg]	Graphit [mm²/kg]	Mg- Oxid [mm²/kg]	spinell- ähnl. P. [mm²/kg]	Ff- Material [mm²/kg]	Summe [mm²/kg]
7_45		0,210	0,000	0,014	0,000	0,000	0,039	0,017	0,279
7_46		0,758	0,000	0,051	0,000	0,000	0,202	0,000	1,011
7_47		0,343	0,000	0,026	0,000	0,000	0,158	0,000	0,528
7_48		0,170	0,000	0,092	0,000	0,000	0,046	0,000	0,308
7_49		0,340	0,000	0,025	0,000	0,000	0,484	0,000	0,849
7_50		0,085	0,000	0,118	0,000	0,000	0,135	0,000	0,338
7_51		0,347	0,039	0,039	0,000	0,000	0,668	0,193	1,285
7_52		0,658	0,047	0,047	0,000	0,000	1,246	0,353	2,350
7_53		0,396	0,036	0,036	0,022	0,000	0,230	0,000	0,719
7_54		0,551	0,020	0,030	0,020	0,000	0,380	0,000	1,001
7_55		0,150	0,000	0,015	0,009	0,000	0,006	0,120	0,301
7_56	00:35	0,122	0,000	0,046	0,000	0,000	0,137	0,000	0,305
7_57	00:11	0,290	0,000	0,062	0,000	0,000	0,062	0,000	0,415
7_58	00:25	0,232	0,015	0,015	0,000	0,000	0,046	0,000	0,309
7_59	00:05	0,399	0,022	0,022	0,000	0,000	0,296	0,000	0,740
7_60	00:17	0,258	0,020	0,020	0,000	0,000	0,099	0,000	0,397
7_61	00:05	0,176	0,015	0,015	0,000	0,000	0,088	0,000	0,294
7_62	00:15	0,229	0,015	0,015	0,000	0,000	0,046	0,000	0,305

Tabelle C46: Auswertungsergebnisse der PoDFA-Messung 4. Hauptversuch