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Abstract/Kurzfassung

Abstract

In this Master Thesis two different methodologies for building atomic models of planar faults

in γ-TiAl are implemented. The generalized stacking fault energy for stoichiometric TiAl is

calculated within the framework of Density Functional Theory and Molecular Dynamics with

the code packages VASP and LAMMPS, respectively. Different energy profiles corresponding

to different dislocation dissociation schemes are discussed. The impact on the stacking fault

energies for different relaxation methods, varying cell volume and using different exchange

correlation potentials is examined. A simple model is implemented to get trends for different

alloying elements. The most striking results are that the stacking fault energies depend on

the chosen relaxation method due to the fact that their energy minimum do not lie exactly

on their hard-sphere model positions and that the ratio Ti+X
Al

has a huge impact, generally

finding lower stacking fault energy values for ratios bigger than 1.

Kurzfassung

In dieser Masterarbeit wurden zwei verschiedene Methoden um die atomaren Modelle der

planaren Fehler in γ-TiAl zu implementieren angewandt. Die generalisierte Stapelfehleren-

ergie für stöchiometrisches TiAl wurde mit Hilfe der Dichtefunktionaltherorie und Molekular-

dynamik mit den entsprechenden Codes VASP und LAMMPS berechnet. Verschiedene En-

ergieprofile, welche zu verschiedenen Versetzungsaufspaltungen gehören, wurden behandelt.

Des Weiteren wurde der Einfluss von verschiedenen Relaxations-Methoden, variierten Ein-

heitszellvolumen und verschiedenen Austausch-Korrelationspotentialen auf die Stapelfehleren-

ergie untersucht. Ein einfaches Modell zur Untersuchung des Einflusses von Legierungsele-

menten wurde implementiert. Die herausragendsten Ergebnisse sind, dass die Stapelfehleren-

ergien von der gewählten Relaxationsart abhängen, aufgrund der Tatsache, dass deren wirk-

liche Energieminima nicht an den Kugelmodell-Positionen liegen, und das Verhältnis Ti+X
Al

einen großen Einfluss auf sie hat. Für Ti+X
Al

-Verhältnisse größer als 1 wurden generell kleinere
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Stapelfehlerenergien gefunden.

2



Chapter 1

Introduction

Today, intermetallic Titanium Aluminides are materials already in use. Their applications

range from low-pressure turbine blade materials in the aircraft industry to turbo charger

wheels and valves in the automotive industry [1]. Their outstanding properties include low

density, high specific strength, high specific stiffness, and good creep properties up to 750 ◦C.

Additionally, their good oxidation behavior and burn resistance in comparison with titanium

alloys, is an advantage [2]. In contrast to ceramic materials, Titanium Aluminides also ex-

hibit the ability to plastically deform at room temperature [3].

The state of the art TiAl alloys consist of an α2 (Ti3Al) phase, a γ (TiAl) phase, a β/B2

phase, and possibly additional phases [4]. The main constituent is the γ-TiAl phase which

fundamentally influences the alloy properties in its as-used state.

The γ-TiAl phase has an L10 structure, which is closely related to a tetragonally strained

ordered fcc lattice. Therefore, the topic of stacking faults can be treated similar to a fcc

metal. In general, a stacking fault in an fcc lattice is a deviation from the normal stacking

sequence “ABCABC...” of the (111) planes [4, 5].

The stacking fault energy has a huge impact on the plastic deformation behavior of fcc met-

als. It determines the spreading of dissociated partial dislocations, and therefore influences

the cross-slip properties of screw dislocations. It is observed that metals with smaller stack-

ing fault energies exhibit more mechanical twinning which can be an additional deformation

mechanism [6, 7].

The stacking fault energy is not directly obtainable in experiment as it is only possible to

measure the separation of partial dislocations. The experimental measurements are time

consuming since transmission electron microscopy (TEM) is needed, and sample prepara-

tion can be difficult. Hence, a theoretical study of stacking fault energies is a reasonable

alternative to examine stacking faults, and it is often applied today.

The aim of the present study is to investigate stacking fault energies and planar faults
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1. Introduction

in γ-TiAl via ab initio and Molecular Dynamics approaches using the VASP (ab initio) and

LAMMPS (Molecular Dynamics) codes. The main focus is put on building up of a method-

ology for calculating the stacking fault energies. Additional points include an investigation

on deformation-relevant quantities, and a study of the impact of ternary alloying elements

on the γ-TiAl phase.
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Chapter 2

TiAl-based alloys and their planar faults

2.1 Crystallography

The L10 structure of the γ-TiAl phase (Fig. 2.1) is an ordered tetragonally strained fcc

structure with alternating occupation of the (002) planes. The c/a-ratio of the L10 structure

for TiAl is greater than 1 which is unusual for this structure; the intermetallic compounds

CdPd, AuCd, MnPt, NbIr all show c/a ratios smaller than 1, only AgTi exhibits c/a ∼
1 [8]. The experimental lattice constants of stoichiometric γ-TiAl are a = 0.3999 nm and

c = 0.4077 nm, thus c/a = 1.02 [4].

The close-packed [110], [101] and [011] directions are crystallographically not equivalent due

to the fact that the cell is ordered and tetragonally stretched in the c⃗ direction. Consequently

the Miller notation has been modified to mixed parenthesis ⟨uvw] for directions and {hkl)
for planes to differentiate the first two equivalent indices from the third on. This means that

the first two indices can be permuted while the third index is fixed [4, 9].

Figure 2.1: A conventional unit cell of the L10 structure(red and blue spheres denote Ti and
Al atoms, respectively)

The other important bulk phases in titanium aluminide alloys are the α2 (Ti3Al) and the

β/B2 TiAl phase. The α2 (Ti3Al) phase has theD019 structure which is an ordered hexagonal

structure. The β/B2 TiAl phase has the bcc lattice and the ordered form of it is the B2

5



2.2 Microstructure and technical alloys

structure (CsCl prototype) [4]. The latter phase plays an important role in the alloying

concept of the TNM alloys [1, 2].

2.2 Microstructure and technical alloys

The commonly used TiAl-alloys exhibit four different important in-use microstructures: a

fully lamellar, a nearly lamellar, a duplex, and a near gamma microstructure. The coarse

grained fully lamellar and the nearly lamellar microstructure show good creep and fracture

toughness behavior, but low tensile plastic elongation capability at the room temperature.

On the other hand, the fine-grained equiaxed nearly gamma and the duplex structures show

lower fracture toughness and creep resistance but moderate tensile ductility at ambient

temperatures ??.

Figure 2.2: Microstructural types: left half of the micrographs are light-optical microscope
(LOM) images, the right half are scanning electron images (SEM) in back scattered electron
(BSE) contrast [2, 10]. Desired microstructure can be obtained by adjusting the annealing
temperature and holding time before cooling, and by varying the cooling rate in the cooling
process.

The appearance of the microstructure depends on the alloy chemistry and applied heat treat-

ment route as shown in Fig. 2.2. The fully lamellar type consists of grains containing α2/γ

colonies. The nearly gamma microstructure consists of globular γ-TiAl grains and small

amounts of α2-Ti3Al situated at triple points. The duplex microstructure has grains with

6



2.2 Microstructure and technical alloys

globular γ-TiAl and grains with α2/γ colonies. The nearly lamellar is in between the fully

lamellar and the duplex microstructures with significantly smaller amount of the γ-TiAl

grains [2].

Technical γ-TiAl-based materials all have Al lean compositions. The binary Ti-Al phase

diagram shown in Fig. 2.3 suggests that their equilibrium constitution at room temperature

is a mixture of α2 and γ.

Figure 2.3: Binary phase diagram of the Ti-Al system [11].

The third generation alloys do have chemical compositions in the range of [2]:

Ti− (42− 48)Al− (0− 10)X− (0− 3)Y− (0− 1)Z− (0− 0.5)RE, (2.1)

where X= Cr, Mn, Nb, Ta; Y=Mo, W, Hf, Zr; Z=C, B, Si and RE are rare earth elements.

The addition of alloying elements modifies the phase fields, so that additional phases may

occur. Nb and Mo are β/B2-stabilizing elements which can lead also to fractions of an ω

phase. The ω phase is unwanted because it causes embrittlement. B, Si and C can build

borides, silicides and carbides, respectively, but exact form of occurrence depends on the

overall alloying composition. For example, C is reported to act as a solid solution hardening

agent or to build precipitates, but it is also known to change transformation properties of the

alloy, such as the refinement effect on the α2/γ lamellae. Nb slows down diffusion processes

7



2.3 Stacking faults and planar faults

and enhances the oxide layer properties. Ta, W and Mo improve the creep strength, however,

Mo and W have negative effects on the oxidation behavior. Alloys containing Hf, Zr and

rare earth elements are not yet in technical application [2].

The alloying elements can alter the the boundaries of the phase fields in a quasi binary cut

diagram so that equilibrium concentration with respect to Ti and Al content in the γ-TiAl

is changed. Fig. 2.4 shows the influence of adding 8 a% Nb: the equilibrium concentration

of Al in the γ-TiAl decreases. Examples of the 3rd generation TiAl alloys are the so-called

TNB and TNM alloys [2].

Figure 2.4: The effect of Nb on the binary Ti-Al phase diagram (full and dashed lines
correspond to 0 at.% and 8 at.% Nb respectively [12].

2.3 Stacking faults and planar faults

2.3.1 The fcc lattice

Fcc and the hcp structures can be generated by different stacking of the same closed-packed

planes on top of each other. The closed-packed layers in the fcc and hcp structure are the

{111} and the {0001} planes, respectively. Let “A” denote the first layer, “B” the second

layer, and let “C” be the third possible arrangement. When stacking the third layer over two

already stacked layers, there are two different possibilities where to place the third layer, as

demonstrated in the [111] projection in Fig. 2.5. One possibility is to place the third layer in

a region which no hard sphere occupies yet; then the position becomes distinguishable from

the other two positions. The second possibility is to put it over the projection of the “A”

layer so the third layer becomes again the “A” layer. The last possibility is to place the third

layer on a “B” position; this however fails to build a closed-packed structure. The stacking of

sequence “ABCABC...” generates the fcc structure, while the sequence “ABAB...” generates

8



2.3 Stacking faults and planar faults

Figure 2.5: Stacking positions in close-packed structures in the [111] projection [5].

the hcp structure. In the fcc structure the {111} planes are also the glide planes and the

coherent twin planes. Twins can be described by a mirror reflection with an {111} layer as

a mirror plane. With the “ABC”-notation the twin can easily be described as:

ABCABCAB
|
CBACBACBAC. (2.2)

Other deviations from the stacking sequence “ABCABC...” of {111} are called stacking

faults. There are two different types of stacking faults in the fcc lattice, the intrinsic and

the extrinsic stacking fault. The stacking sequence is maintained on either side of the fault

plane until the fault plane is reached. In the stacking sequence corresponding to the intrinsic

stacking fault, there is a layer “missing”:

ABCABC|BCABC. (2.3)

On the contrary the extrinsic stacking fault can be seen as an inserted plane in the stacking

sequence:

ABCAB
|
C|B|

|
ABCABC. (2.4)

This fault is equivalent to two twin planes separated by two atomic layers.

Stacking faults can be produced through shearing operations on the {111} planes. When

the upper half of a crystal is sheared by a distinct vector, for example for the fcc lattice by

a vector 1/6[211], the planes undergo a transition A→ B, B → C and C → A relative to a

fixed coordinate system of the bottom half of the crystal. So the starting sequence:

ABCA|BCABCABC (2.5)

9



2.3 Stacking faults and planar faults

becomes:

ABCA|CABCABCA (2.6)

producing the intrinsic stacking fault. If the planes above the fault plane, except for the first

“C” plane next to the fault, get sheared again by the same vector the following sequence is

generated:

ABCA|C|BCABCAB (2.7)

This way an extrinsic stacking fault is generated. Applying this scheme repeating produces

a coherent twin [5].

Using a simple neighbor model approximating the interaction with a central force poten-

tial, and comparing energies of different stacking sequences, approximation for the relations

in between different stacking fault energies can be given [5]. It is concluded that the coherent

twin boundary energy is approximately half the intrinsic stacking fault energy:

γISF ∼ 2γT. (2.8)

The intrinsic stacking fault energy and the extrinsic stacking fault energy are nearly the

same:

γISF ∼ γESF (2.9)

and the twin energy is about the energy needed to transform to the hcp lattice:

γT ∼ γH (2.10)

2.3.2 The L10 structure

The L10 structure of the γ-TiAl can be treated in a similar way since it can also be built

from a stacking sequence “ABCABC...” of closed-packed (111) planes 2.6. Differences to the

fcc lattice arise due to the ordering of the L10 structure and its tetragonality. Applying the

hard sphere model on the (111) plane, the displacement of the upper part of a perfect crystal

with any of the three vectors 1/6[211], 1/6[112] and 1/6[121] produces an intrinsic stacking

fault in the fcc lattice, while for the L10 structure only a displacement by the vector 1/6[112]

produces a stacking fault where the nearest neighbor coordination is not destroyed. The

fault generated by this b⃗3 = 1/6[112] vector is called a superlattice intrinsic stacking fault

(SISF) and is shown in Fig. 2.7. The other two fault vectors b⃗1 = 1/6[211] and b⃗2 = 1/6[211]

are altering the chemical environment of the atoms in the plane, the created fault is called

a complex stacking fault (CSF) and is shown in Fig. 2.8. Assuming a stacking “ABC” of

three layers, and only the “C” layer gets shifted by the distinct fault vector, the positions of

the atoms of the “C” layer get shifted over the positions of the “A” layer atoms in a [111]

projection. The occupation now for the “C” layer changes, the position of a projected “A”

10



2.3 Stacking faults and planar faults

[11-2]

[-110]

[111] [11-2]

[111]

[-110]

Figure 2.6: Pattern of TiAl {111} planes, same colors mean the same plane different radii
of atoms indicate different element. The color sequence of the shown “ABCA” layers is
green/blue/red/green.

(a) The [111] projection, 4th layer overlays
(green) the second blue plane.

[11-2]

[111]

[-110]

(b) The [110] projection.

Figure 2.7: Superlattice intrinsic stacking fault pattern “ABCB”.

layer Ti atom gets occupied by a “C” layer Al atom and vice versa. It should be mentioned

that the vectors b⃗1 and b⃗2 in contrast to the b⃗3 vector are not only producing different stacking

faults, but also have a different length, caused by the tetragonality of the crystal.

Another planar fault can be created in this way of displacing a part of the perfect crystal

by a vector of b⃗4 = 1/2[011]. This fault is called an antiphase boundary and can be seen in

Fig. 2.9. The vector b⃗4 restores the perfect crystal in the fcc lattice, which is not the case

for the L10 structure. The stacking positions do not get changed through this displacement,

but Ti positions are now occupied with Al atoms and vice versa in the sheared plane [4].

Consequently the CSF can be seen as a combination of APB and SISF, a SISF with an

inverted occupation.

The CSF and the SISF are specific to the {111} planes, unlike the APB. For the γ-TiAl, the

{111} and the {010) are the most important ones.

Also the extrinsic stacking fault, here called the superlattice extrinsic stacking fault (SESF),

and twins exist in the L10 structure. They obey the same restrictions as for the SISF.

There exists only a true twin direction for a distinct {111} plane [4]. Further different γ/γ

11



2.4 Deformation mechanisms

(a) The [111] projection.

[11-2]

[111]

[-110]

(b) The [110] projection.

Figure 2.8: Complex stacking fault patterns.

(a) The [111] projection.

[11-2]

[111]

[-110]

(b) The [110] projection.

Figure 2.9: Antiphase boundary patterns.

interfaces can occur in the γ-TiAl: The pseudotwin variants are mutually misoriented by

60 ◦, the atomic stacking of the parent fcc lattice is reversed at the pseudotwin interface and

the order is rotated. In the 120 ◦ rotational fault, the “ABC...” fcc stacking is maintained,

when one neglects the tetragonality of the crystal. The true twin boundary can be created

by a 180 ◦ rotation of the upper half of a perfect crystal. Only the stacking sequence of the

L10 structure is altered similarly to the SISF and SESF. [4]

2.4 Deformation mechanisms

2.4.1 Partial dislocations in the fcc lattice

The fcc glide systems are the ⟨110⟩{111}. Considering again the hard-sphere model of

closed-packed (111) planes, and displacing an upper half of the crystal against the bottom

half along the direction b⃗ = 1/2[101], one will observe a larger displacement normal to the

closed packed planes during the movement than when moving the planes along b⃗1 = 1/6[211]

and subsequently along b⃗2 = 1/6[112], so that the latter path should be favored. The

local arrangement generated by the displacement of b⃗1 = 1/6[211] is equal to the intrinsic

stacking fault. The displacement b⃗2 = 1/6[112] restores again the crystal symmetry. The

12



2.4 Deformation mechanisms

Figure 2.10: Dissociated dislocation bounding an intrinsic stacking fault (hatched area), b⃗1
is the Burgers vector of the perfect dislocation, b⃗2 and b⃗3 are partials. The corresponding ξ⃗i
are the line directions [5].

same consideration is true for dislocations, the perfect dislocation with the Burgers vector

of b⃗ can split up into two partial dislocations b⃗1 and b⃗2. Partial dislocations of the type

1/6⟨112⟩ are called Shockley partials. The partial dislocations can enclose a fault plane

in between them (the intrinsic stacking fault), and are then separated by the fault plane.

The dissociated dislocations repel each other by elastic forces, but their separation length

is limited due to the fact that energy is needed to create the fault area between them. The

equilibrium condition yield a relation between the distance of the partial dislocation distance

and the stacking fault energy. Assuming isotropic behavior one gets [5]:

γISF =
µ

2πre


(⃗b2 · ξ⃗2)(⃗b3 · ξ⃗3) +

(⃗b2 × ξ⃗2)(⃗b3 × ξ⃗3)

1− ν


, (2.11)

where ν is the Poisson’s ratio, re the partial dislocation separation, µ is the shear modulus, b⃗i

are the Burgers vectors of the partial dislocations, and the ξ⃗i the dislocation line directions [5].

A model of a dissociated dislocation is shown in Fig. 2.10.

It should be noted that dynamical as well as static effects can change the partial dislocation

distance re, e.g., when taking into account moving partials and pinned partials. Even the

radii of curvature of the two partial lines can be different [5].

2.4.2 Dislocations in γ-TiAl

The most favorable slip systems should be the closed-packed lattice planes and the shortest

translation vectors in these planes. Hence, in γ-TiAl the dislocations glide on the {111}
planes, and their preferred Burgers vectors are directions ⟨110⟩. The Burgers vector must

be a lattice translation vector. Due to the reduced symmetry of γ-TiAl in comparison to

the fcc lattice, the glide direction for a perfect dislocation must be, e.g., the [101] instead

13



2.4 Deformation mechanisms

Figure 2.11: (111) planes with Burgers vectors discussed in the text.

of the 1/2[101] vector. In contrast the b⃗⟨110] = 1/2⟨110] Burgers vector defines the same

dislocation as in the fcc case, so dislocations with this Burgers vector are referred to as

ordinary dislocations. The directions involving c⃗ direction, i.e. the Burgers vectors b⃗⟨011] =

⟨011] and b⃗⟨112] = 1/2⟨112] are thought of to dissociate usually with also building an APB

in between their bounding partials and are therefore referred to as the superdislocation

directions [4]. The other two b⃗⟨121] = 1/2⟨121] directions are not translation vectors in the

L10 structure but lead to the formation of an APB.

Screw dislocations have their Burgers vectors parallel to the the line direction. In principle,

they can glide on every plane that intersects the dislocation line. Cross-slip is the change

of the gliding plane of a screw dislocation. It is of importance in deformation, work hard-

ening, creep and recovery. Cross-gliding planes for dislocations are usually closed-packed

or relatively closed-packed planes that intersect the primary gliding and have the common

direction [4, 5].

Dislocations in γ-TiAl can dissociate in partial dislocations bounding faults in between them,

according to Frank’s energy criterion. Instead of only one now three planar faults need to be

considered as possible faults when dislocations dissociate. Several dislocation dissociation

reactions have been proposed:

• for the ordinary dislocations the following dissociation reaction has been considered:

1/2[110] → 1/6[211] + CSF + 1/6[121] (2.12)
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2.4 Deformation mechanisms

• for the b⟨011] = ⟨011] several dissociation reactions have been proposed [4, 13]:

[011] → 1/2[011] + APB + 1/2[011] (2.13)

[011] → 1/6[112] + SISF + 1/6[121] + APB + 1/6[112] + CSF + 1/6[121] (2.14)

[011] → 1/6[112] + SISF + 1/6[121] + APB + 1/2[011] (2.15)

[011] → 1/6[112] + SISF + 1/6[154] (2.16)

[011] → 1/6[112] + SISF + 1/2[011] + CSF + 1/6[121] (2.17)

• for the b⟨112] = 1/2⟨112] dislocation [4]:

1/2[112] → 1/2[101] + APB + 1/2[011] (2.18)

1/2[112] → 1/6[112] + SISF + 1/6[211] + APB + 1/6[112] + CSF + 1/6[121] (2.19)

1/2[112] → 1/6[112] + SISF + 1/6[211] + APB + 1/2[011] (2.20)

1/2[112] → 1/6[112] + SISF + 1/3[112] (2.21)

Additionally several non-planar dissociations have been proposed but will not be discussed

in this thesis. The interested reader is referred to [4].

2.4.3 Mechanical twinning in γ-TiAl

“Twinning is a particularly important deformation mechanism in crystals with only a limited

number of slip systems” [5]. In general, a polycrystal needs five independent slip systems in

order to plastically deform (Mises criterion). Twinning can contribute as a glide system to

fulfill this condition. In higher symmetry crystals, such as bcc and fcc, twinning is observed

at lower temperatures. There are two types of twinning: deformation twinning and growth

twins generated by heat treatment. Here we focus on the deformation twins [5].

The geometrical aspects of twinning are usually represented by parameters K1, K2, S, η⃗1 and

η⃗2 as shown in Fig. 2.12. The plane S, which contains the η⃗1 direction and the normal of the

K1, is called the plane of shear. During twinning, all the points above K1 are displaced in

the direction eη⃗1, where e is proportional to the distance above the K1 plane. ψ is the acute

angle between the directions η⃗1 and η⃗2, and therefore g = 2 cot(ψ) is the shear that occurs

in the twinned state. K1 is called the undistorted plane or the twin plane. The plane K2 is

perpendicular to the shear plane S, and is deflected from K1 by equal angles before and after

shear. K2 is also undistorted and therefore called the second undistorted plane. Mechanical

twinning reproduces the crystal structure in a particular new orientation, and involves a

fixed amount of shear specific to the to the crystal structure. If the shear plane S and the

shear g are the same but K1 is interchanged with K2 as are η⃗1 with η⃗2 the twinning modes

are said to be conjugate. Often K1 and K2 are equivalent planes due to higher symmetry

metal crystals. A conjugate twinning system can be defined as K1 and −η⃗1, which describes
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2.5 Literature findings regarding planar faults

Figure 2.12: Geometrical aspects of twins: K1 and K2 are respectively the first and the
second undistorted plane, S is the plane of shear, η⃗1 is the shear direction and η⃗2 lies along
the intersection of K2 and S [5].

a shear in the reverse direction. The primary twinning modes in L10 are called true twins

due to the fact that they restore the crystal ordering [4, 5]. The build-up of the true twins

has already been mentioned in the section 2.3.

The parameters for the true twinning are the following: K1 = (111), K2 = (111), η⃗1 =

1/2[112] and η⃗2 = 1/2[112]. For the conjugate mode, the parameters are: K1 = (111),

K2 = (001), η⃗1 = 1/2[112] and η⃗2 = 1/2[110] [8]. The conjugate or antitwinning are unlikely

to appear because they have to overcome the high energy stacking “AA” [4].

The fact that there are only four true twinning systems in the L10 structure, possesses a re-

striction on possible twinning modes in γ-TiAl. Consequently there exist crystal orientation/loading

direction combinations which hinder the deformation twinning. The reader is referred to [4]

for more details.

2.5 Literature findings regarding planar faults

Several studies have been carried out to investigate planar fault energies in γ-TiAl. Both,

theoretical methods and experimental measurements have been applied. A short overview

of the theoretical studies for stoichiometric γ-TiAl is given in Tab. 2.1.

The main differences between the applied theoretical studies is the build up of the super-

cells, the different exchange correlation potentials, and the different pseudo potentials for

the wave functions (e.g., the ultrasoft pseudo potentials in [17] in contrast to the projector

augmented wave method in [15]). Additionally different lattice constants and differences in

cut-off energies, k -point mesh density and convergence settings contribute to discrepancies

for the different DFT calculations. Nevertheless, they all predict the same energy hierarchy

of the planar faults: APB(111) > CSF > SISF .

Some experimentally found values for near stoichiometric binary alloys are represented in

Tab. 2.2. Comparing the experimental values with the calculated ab initio data yields that
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the experimental values are generally smaller. Especially for the APB(111), the calculated

values are by factor 2.5 larger. It was found that the [011] superdislocations have a three-fold

spreading and the ordinary dislocation do not dissociate [4]. There has been some contro-

versy, about which fault dissociation scheme according to Eq. 2.16 or Eq. 2.15 is the correct

one and hence should be applied interpret the findings. Wiezorek and Humphreys [21] sug-

gest that Eq. 2.15 is the correct scheme supported through weak beam image simulations of

different dislocation cores and comparing them with experimental data. It should be noted

that here always a stoichiometric γ-TiAl is assumed in the theoretical calculations, Al-rich

compositions appear in the experiments.

A special property of the APB(111) in the stoichiometric TiAl was found in the theoretical

study [14, 16], namely the mechanical instability of the APB(111) with respect to the CSF.

There is no local minimum on the γ-surface along the path from the APB to the CSF. This

is counter-intuitive since the APB position corresponds to atom positions with just inverted

occupation.

Experimental and theoretical studies have also been carried out examining alloying influ-

ence on the stacking fault energies.

Asta and Quong [23] studied the behavior of the APB(111) due to off-stoichiometry (Al-rich)

and temperature effects with a mixed basis potential (MBP). They distinguished in between

an equilibrated and an unequilibrated APB. The two states differ in a step function behavior

for the order parameter and a constant concentration over the fault plane in the unequili-

brated state, and a continuous change of the order parameter and a higher Al concentration

in the vicinity of the fault than in the bulk for the equilibrated state. Starting from a value

of 720 mJ
m2 for stoichiometric TiAl at 0K, the values for 54% Al at 1300K change to 590 mJ

m2

and 230 mJ
m2 for unequilibrated and equilibrated state, respectively.

Woodward and Maclaren [24] studied the effect of off-stoichiometry and ternary additions

on the planar fault energies using the LKKR-CPA method. They found decreasing SF val-

ues for increasing Al content in binary alloys. Starting from stoichiometric TiAl, the SISF

Table 2.1: Literature values for stacking fault energies in stoichiometric γ-TiAl, all values in
mJ
m2


Ref. APB(010) APB(111) CSF SISF twin method

[14] 438 667 363 172 96 LDA-FLAPW

[15] 355 184 PAW PW91-GGA (VASP)

[16] 710 314 134 FP-LMTO

[17] 499 329 137 UPP PW91-GGA (CASTEP)

[18] 663 400 170 UPP PW91-GGA (VASP)
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2.6 Generalized stacking fault energy

energy drops from 123 mJ
m2 to 98 mJ

m2 for Ti-54Al. They proposed also decrease in the SISF

for ternary additions of 2 at% Cr and 2 at% Nb keeping the Al concentration 48 at%. With

increasing amount of Al (keeping Nb or Cr amount constant) the SFE increase. The SISF

values for ternary additions increase in comparison to stoichiometric values for Al concentra-

tions greater than 50 at% Al. The SISF energy predicted for the alloy Ti-48Al-2Nb is 56 mJ
m2

and for Ti-48Al-2Cr is 70 mJ
m2 . Wen and Sun [15] predicted decreasing the SISF energy to

64 mJ
m2 for 48.3% Al (in comparison to 184 mJ

m2 ), but an increased value of 212 mJ
m2 for increased

Al concentration of 51.7% in binary alloys.

It has been reported experimentally that the tendency for deformation twinning increases

with lower Al concentrations for binary single crystals [25].

The stacking fault energies in Nb-containing alloys and/or Al-poor alloys have been exper-

imentally investigated by Zhang and Appel [26]. The SISF increases with increasing Al

concentration in binary alloys, e.g. SISF of Ti-49Al is 91 mJ
m2 while in Ti-45Al is has a value

of 67 mJ
m2 . The values obtained for Nb additions are 69 mJ

m2 for Ti-45-10Nb and 66 mJ
m2 for Ti-

49-10Nb. It should be noted that the stacking fault energies were evaluated using isotropic

elasticity and that the shear modulus at 1273K (µ=57GPa) is used in the evaluation. In

a similar study, Yuan et al. [27] reports values 63 mJ
m2 for Ti-48Al-1Nb and 34 mJ

m2 for Ti-

48Al-10Nb, assuming isotropic elastic behavior with a shear modulus µ=70GPa. A two fold

dissociation was found which was assumed to correspond to the dissociation scheme given

in Eq. 2.21, where only the SISF is bound by partials.

2.6 Generalized stacking fault energy

After cutting a perfect crystal across a single plane into two parts, mutually displacing

them by an arbitrary vector f⃗ and rejoining the crystal, the rejoined crystal will have a

surplus in energy. Normalizing this surplus energy with respect to the cross-section area

gives “generalized” stacking fault energy surface, γ(f⃗). For an arbitrary fault vector f⃗ , there

Table 2.2: Experimental values for planar fault energies in γ-TiAl, all values represented in
mJ
m2


. a) Analysis of data with cubic elastic constants,b) data re-evaluated with tetragonal

elastic constants,c) data attained through image shift corrections. Given temperatures are
the deformation temperatures of the samples. “WB” stands for weak beam TEM. Modified
table after [4].

Ref. APB(010) APB(111) SISF method note

[9, 19] 145 77 WBa), 25 ◦C 54% Al

[9, 19, 20] 210 253 143 WBb), 25 ◦C 54% Al

[9, 21] >250 140 WBc), 25 ◦C 54% Al

[22] 116(185c)) WB, 25 ◦C 56% Al
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2.7 Critical twinning shear from an ab initio criterion

is a restoring stress across the cut plane [28].

F⃗ (f⃗) = −∇(γ(f⃗)) (2.22)

The restoring stress is non-zero except for periodic points or for f⃗ = 0 and has at least

maxima in between the periodic lattice points. In different structures there exist additional

metastable minimum on this surface for non-zero f⃗s. The restoring stress at local minimum

becomes zero, and a classical stacking fault or planar fault with the vector f⃗s can occur [28,

29].

2.7 Critical twinning shear from an ab initio criterion

Classical models predict that the critical twinning stress depends on the intrinsic stacking

fault energy only. As an example the relation:

τcrit. ∼
KγISF

|⃗btwin|
, (2.23)

where K is a fitting constant, is often used. The energy pathways for twinning can be

discussed in the framework of the generalized planar fault energy/ generalized stacking fault

energy [6, 30, 31]. In the paper of Kibey et al. [30] a dislocation based theory for twinning

stress of fcc metals is developed. The key properties of the model are summarized below.

Different dislocation based mechanisms have been proposed to explain twin nucleation in fcc

materials, their common feature is the glide of Shockley partial dislocations on successive

{111} planes to create multi-layered faults to then generate a twin. A three layer twin nucleus

is assumed and the dislocations are treated as co-planar. Only one partial dislocation is

glissile in this configuration and will cause widening of the twin nucleus [32]. A total elastic

energy approach is made for the partial dislocations involved.

Etotal = Eedge + Escrew −Wτ + EGPFE, (2.24)

where Eedge is the energy of the edge dislocation, Escrew the screw dislocation energy part,

Wτ the work done by applied stress τ to displace the leading partials through the width d

and EGPFE the generalized planar energy consideration. The edge components are treated as

single pileup [33] and the screw components of the partials as finite sized vertical wall [34].

The energy EGPFE is decomposed in two parts, the part of forming an intrinsic stacking

fault, Eγ-SF, and the part of forming a twin nucleus, Eγ-twin. It is mentioned that Eγ-SF is

correlated with the energy required for cross-slip at the onset of stage III hardening. The

total energy is minimized with respect to the width d and the number of the layers for the

twin nucleus, N [30]. A closed form expression was found [30]:
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τ(d) =
G{111}N

πd
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√
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(2.25)

b⃗s and b⃗e are the screw and edge components of the Burgers vector, and b⃗twin the twinning

partial of the dislocation configuration. w is the dislocation core width, and G{111} is the

shear modulus of the activated {111} plane [30]. For a cubic crystal the shear modulus

is [35]:

G{111} =
3C44 (C11 − C12)

4C44 + C11 + C12

, (2.26)

where the Cij are the components of the stiffness tensor in the Voigt’s notation.

Further simplification through neglecting the first term, setting N = 3, and assuming w ≪ d

leads to [15]:

τcrit. =
5

18btwin


γut +

2γtsf + γisf
2


− 2

9btwin

(γus + γisf) . (2.27)

Therefore the critical twinning shear does not only dependent on the intrinsic stacking fault

energy, but also depends on the twin boundary energy and the respective unstable energies

(energy barriers) and the twinning partial length.
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Chapter 3

Theoretical methods

3.1 Density Functional Theory

3.1.1 Schrödinger equation

The equation for the quantum mechanical description of the electron, was postulated by

Schrödinger and states:

Ĥϕ(r⃗, t) = iℏ
∂

∂t
ϕ(r⃗, t), (3.1)

where Ĥ is the Hamiltonian operator, ℏ is the reduced Planck constant, r⃗ is the position, t

the time and ϕ the wave function of the electron. The Hamiltonian operator is defined as:

Ĥ = − ℏ2

2m
∇2 + V (r⃗, t) (3.2)

The first term is the kinetic energy of the electron and V (r⃗, t) describes the potential in

which the electron “lives”. The time independent equation is:

Ĥψ(r⃗) = Eψ(r⃗) (3.3)

E is the energy of the state (the energy eigenvalue of the state). Multiplying the wave

function with its complex conjugate is interpreted as the probability density of finding the

electron/particle at a given location, and not the charge or mass distribution [36].

3.1.2 Formulation of a many-body problem

For more than one particle, the eigenvalue equation, Eq. 3.3, changes to:

Ĥψ(r⃗i, R⃗i, t) = Eψ(r⃗i, R⃗i, t), (3.4)

where r⃗i and R⃗i are coordinates of the electrons and nuclei [37].
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3.1 Density Functional Theory

A solid can be viewed as a collection of positively charged ions at positions R⃗i, and much

lighter electrons at positions r⃗i. Let Z be the atomic number (assuming all atoms are the

same) and N be the number of atoms. The problem translates into solving a system of

N + ZN mutually interacting objects. This is called a many-body problem. The exact

Hamiltonian considering only electrostatic interactions between particles is:

Ĥ = −ℏ2

2


i

∇2
R⃗i

Mn

−ℏ2

2


i

∇2
r⃗i

me

− 1

4πϵ0


i,j

e2Z

|R⃗i − r⃗j|
+

1

8πϵ0


i ̸=j

e2

|r⃗i − r⃗j|
+

1

8πϵ0


i ̸=j

e2Z2

|R⃗i − R⃗j|
.

(3.5)

The first term is the kinetic energy of the nuclei, the second term is the kin. energy of the

electrons, the third one is the Coulomb interaction between the nuclei and electrons. The

fourth term is the electron-electron Coulomb interaction and the last one is the nuclei-nuclei

interaction. For practical applications, it is impossible to solve such an equation without

further approximations.

Compared to electrons, nuclei are several orders of magnitude heavier (mass of an electron

me = 9.1 × 10−31 kg vs. mass of a proton mp = 1.7 × 10−27 kg). For a given constant

momentum this means that a nucleus moves much slower than an electron. Therefore,

nuclei can be taken as static, and only the electronic part of the wave function remains to be

solved. The nuclei interact with the electrons through a static positive background potential.

This approximation is known as the Born-Oppenheimer approximation.

Under this approximation the kinetic energy of the nuclei is zero, and the nucleus-nucleus

interaction reduces to a constant. In Eq. 3.5, only kinetic energy of the electrons, T̂ , the

electron-electron potential energy, V̂ , and the electron-nucleus interaction which can be

interpreted as an external potential, V̂ext, remain. So the Hamiltonian becomes [38, 39]:

Ĥ = T̂ + V̂ + V̂ext . (3.6)

3.1.3 Theorems of Hohenberg, Kohn and Sham

Today several different ways exist to further simplify the Schrödinger equation to be solved.

A modern method for solid state calculations is the Density Functional Theory (DFT) [40].

DFT works with the electron density, ρ(r⃗), as the main variable, hence replacing the many-

body wave-function.

The central ideas of DFT were formulated in several theorems. The first theorem states

Theorem 1: There is a one-to-one correspondence between the ground state

density ρ(r⃗) of a many-electron system and the external potential V̂ext ( up to an

additive constant).
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3.1 Density Functional Theory

The electron charge density ρ(r⃗) can be calculated from the many-electron wave function as

ρ(r⃗) =
N
i=1


Ψ∗(r⃗1, r⃗2, . . . , r⃗i ≡ r⃗, . . . , r⃗N) ·Ψ(r⃗1, r⃗2, . . . , r⃗i ≡ r⃗, . . . , r⃗N)dr⃗1dr⃗2 . . . dr⃗N .

(3.7)

For an external potential V̂ext ρ(r⃗) is fully determined through the many-electron wave func-

tion Ψ. However, the consequence of the first theorem of Kohn & Hohenberg is that the

electron density has the same amount of information contained as the many-electron wave

function in terms of what knowledge can be extracted about atoms and material behavior.

Theorem 2: For the Hamiltonian Ĥ (Eq. 3.6), the ground state total energy

functional H[ρ] = EVext [ρ] is of the form

EVext [ρ] = ⟨Ψ|T̂ + V̂ |Ψ⟩  
FHK [ρ]

+⟨Ψ|V̂ext|Ψ⟩

= FHK [ρ] +


ρ(r⃗)Vext(r⃗)d

3r⃗

(3.8)

where the Hohenberg-Kohn density functional FHK [ρ] is universal for any many-

electron system. EVext [ρ] reaches its minimal value (equal to the ground state

total energy) for the ground state density corresponding to Vext [38, 39].

Consequently, it is possible to use variational principle to find the ground state electron

density which minimizes EVext [ρ]. The HK-functional can be further split up into:

FHK [ρ] = T0[ρ] + VH [ρ] + Vxc[ρ]. (3.9)

T0[ρ] is the kinetic energy of fictitious non-interacting electron gas, VH is the Hartree and

Vxc is the exchange-correlation potential.

Theorem 3: The exact ground state electron density ρ(r⃗) of an N -electron

system is

ρ(r⃗) =
N
i=1

ϕ∗
i (r⃗)ϕi(r⃗) (3.10)

where the single-particle wave functions ϕ(r⃗) are the N -lowest energy solutions

of the Kohn-Sham equation

ĤKSϕ = ϵϕ (3.11)

where

ĤKS = − ℏ2

2me

∇2  
T̂0

+
e2

4πϵ0


ρ(r⃗′)

|r⃗′ − r⃗|
d3r⃗′  

V̂H

+V̂xc + V̂ext . (3.12)
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3.1 Density Functional Theory

The single particle wave functions do have only a meaning in terms of the electron density,

alone they are i a way artificial. A important note is that the Hartree potential , VH , and

the exchange-correlation potential, Vxc, depend on the electron density ρ itself. Hence the

problem is solved by an iterative procedure, where the initial electron density ρ0(r⃗) is guessed

to construct the potentials and to solve the Kohn-Sham equation after which a new electron

density ρn(r⃗) is constructed from the solution. This scheme is repeated until self-consistency

is reached.

In summary, solving many coupled partial differential equations corresponding to a many-

body Schrödinger equation is transformed to solving a Schrödinger-like equation of non-

interacting particles in the framework of the Kohn-Sham theory, or the Density Functional

Theory. It gives the possibility to solve systems with sizes of around hundred to thousand

particles [38, 39]

3.1.4 The exchange-correlation potential

The exact form of the exchange-correlation potential, Vxc, is unknown and needs to be

approximated. A widely used form is the local density approximation (LDA) proposed

by Kohn and Sham [41]:

V LDA
xc [ρ] =


ρ(r⃗)ϵxc(ρ(r⃗)) d

3r⃗. (3.13)

The function ϵxc is the density of the exchange-correlation energy derived for a homogeneous

electron gas (jellium model). The exchange-correlation energy density depends on the value

of electron density at a particular point r⃗ only. Another approach is the generalized gradient

approximation (GGA) which depends on the electron density and it’s gradient:

V GGA
xc [ρ] =


ρ(r⃗)ϵxc(ρ(r⃗), |∇ρ(r⃗)|) d3r⃗ . (3.14)

There exist different forms for the functional ϵxc optimized to best fit various properties of a

large set of experimental data. The often used parametrization is the one of Perdew, Burke,

and Ernzerhof [42] usually termed as PBE.

3.1.5 The VASP code

The ab initio calculations in this thesis are all carried out with the Vienna Ab initio Simu-

lation Package (VASP).

“VASP is a complex package for performing ab initio quantum-mechanical molecular dy-

namics (MD) simulations using pseudo potentials or the projector-augmented wave (PAW)

method and a plane wave basis set. The approach implemented in VASP is based on the

(finite-temperature) local-density approximation with the free energy as variational quan-

tity and an exact evaluation of the instantaneous electronic ground state at each MD time

step.” [43, 44]
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3.2 Molecular Dynamics

3.2 Molecular Dynamics

Molecular Dynamics (MD) treats the atoms as classical particles, i.e. the system’s evolution

is described by Newton’s equations of motion. The interatomic potentials to describe the

behavior of the atoms are fitted to empirical data. Once the starting positions and the

velocities are given, the time-evolution of the atoms can be straightforwardly modeled.

If F⃗ is the sum of all forces acting on an atom, the corresponding equation of motion reads

F⃗ = ma⃗ = m
dv⃗

dt
= m

d2r⃗

dt2
=

dp⃗

dt
(3.15)

where a⃗ is the acceleration, v⃗ is the velocity, r⃗ is the position, and p⃗ the momentum of the

atom. For an isolated system, F⃗ is:

F⃗ = −∇U (3.16)

the gradient of the potential, which is a function of interatomic distances. [37]

Potentials for specific systems are created by fitting certain functions to experimental data

or calculated data from ab initio methods. Out of many different potentials available today,

in this study the embedded atom method potentials are applied.

The embedded atom method takes the effective electron density at a given atomic site as

one of it’s parameters. Therefore, some electronic effects can be captured. The embedding

energy describes energy required to embed positively charged atom cores into the electron

cloud. The potentials are of the form

UEAM =

i ̸=j

Uij(rij) +

i

Fi(ρi) (3.17)

where Fi(ρi) is the embedding energy function, and the rij the distance between the ith and

the jth atom. The electron density ρi is a linear superposition of the electron clouds from

all other atoms

ρi = 1/2

j(̸=i)

ρj(rij) (3.18)

For alloys, the fitting of the embedding functions for constituting elements is difficult, so

there is only a limited number of potentials available [37].

3.3 The LAMMPS code

”LAMMPS is a classical molecular dynamics code that models an ensemble of particles in a

liquid, solid, or gaseous state. It can model atomic, polymeric, biological, metallic, granular,

and coarse-grained systems using a variety of force fields and boundary conditions.” [45]
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3.4 Visualization

The acronym LAMMPS stands for Large-scale Atomic/Molecular Massively Parallel Simu-

lator. It is especially capable of using EAM potentials and has freely available potentials for

a large variety of elements [46].

3.4 Visualization

All images of atomic arrangements in this thesis were built with the VESTA 3 [47].
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Chapter 4

Results

4.1 Calculation settings

If not mentioned otherwise the same settings for the self consistent solver are applied for

all of calculations. The k-point mesh was chosen to be automatically generated with the

built-in method of the Monkhorst-Pack scheme using a “length” input parameter 70. The

KPOINT file of VASP looks like as followed:

k-points

0

A

70

The cut-off energy for the plane wave basis set is set to 400 eV, and the convergence criterion

for the electronic loop was set to 10−7 eV in the total energy. As TiAl is a non-magnetic

system, spin polarization was not included in our calculations. For the ionic relaxation, if

applied, the forces were relaxed to 3× 10−2 eV/Å. A representative example of the INCAR

file which is used with this settings is given below:

Ti-Al gamma

ENCUT = 400

PREC = accurate

ALGO = Fast

EDIFF = 1E-07

ISPIN = 1

NSW = 100

IBRION = 2

EDIFFG = -3E-02
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4.2 Build up of the planar fault geometries

ISIF = 2

LREAL = T

LCHARG = False

LWAVE = False

The used potential for the Ti atoms is the “PAW GGATi sv 07Sep2000”, and the “PAW GGA

Al 05Jan2001” for the Al atoms.

The standard lattice constants in this thesis were defined to be a=3.9675 Å, and c=4.0489 Å.

4.2 Build up of the planar fault geometries

4.2.1 The layer model

In contrast to the conventional unit cell representation of the L10 structure as shown in

Fig. 2.1, the same structure can be also be seen as a stacking of (111) planes “ABC...”(see

Sec. 2.3.2). The planar unit cell generating the (111) planes contains 2 atoms, one Al and one

Ti. The supercell a⃗ and supercell b⃗ direction are chosen to be a⃗ = 1/2[112] and b⃗ = 1/2[110],

the coordinates of the first atom (Al) are [000] the second occupies the position a⃗+b⃗
2
. Let

v⃗ be the direction v⃗ = 1/3[111] and b⃗3 = 1/6[112]. Then the second layer starts with the

position of the first layer Al atom
−→
Al0 = [000] shifted by v⃗ and b⃗3,

−→
Al1 =

−→
Al0 + b⃗3 + v⃗. The

second Ti atom sits at
−→
Ti1 =

−→
Al1 + a⃗/2+ b⃗/2. The layers “AB” are now built, the “C” layer

follows the same scheme: the position of the second Al atom is shifted by v⃗ and b⃗3, and−→
Tii =

−→
Ali + a⃗/2 + b⃗/2. The fourth layer position is defined by the position of the first layer

Al atoms
−→
Al0 shifted by [111], and the procedure of building the two following “BC” layers

is repeated again. The supercell lattice vector of an n-layer cell of γ-TiAl is c⃗ = n/3[111].

To preserve the crystal symmetry, n must be a multiple of three. The scheme is shown in

Fig. 4.1.

Due to the application of periodic boundary conditions (PBC) by the VASP code calcula-

tions, there are different approaches to build the stacking fault supercell structures. Two

different methods to generate the stacking fault “geometries” are applied in this thesis. They

are discussed in the following subsections 4.2.2 and 4.2.3.

4.2.2 Displacement geometries

This approach uses the supercell after the procedure described in Sec. 4.2.1. The the number

of (111) planes is adjusted to ensure that the sequence is not violated through the PBC, and

the upper part of the crystal gets translated through a fault vector which creates the fault

in the supercell. The atoms in the fault part of the crystal are translated by the fault vector

b⃗i to their new position. The supercell lattice vectors stay the same as in the layer model of
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4.2 Build up of the planar fault geometries

Figure 4.1: Build-up of the L10 structure with the layer model in the b⃗ = 1/2[110] projection,

v⃗ = 1/3[111], b⃗3 = 1/6[112].

the L10 structure. If the absolute position of the shifted atom is not inside supercell, VASP

automatically maps it back into the cell through the PBC. The SISF, SESF, CSF, APB(111)

and the twin boundary have been implemented this way.

SISF

The supercell can be build so that it contains only one stacking fault in the supercell geom-

etry. For that, the total number of layers must fulfill n = 5 + 3m to maintain the correct

sequence, where m is a positive integer (see Fig. 4.2). The correct sequence here means that

the last layer in this model a, “C” layer, is followed along the supercell c⃗ direction by an

“A” layer through the periodic image of the first layer. This constraint causes that the total

number of layers, n, is not a multiple of three any more.

SESF

The superlattice extrinsic stacking fault can also be build containing only one stacking fault

per supercell. The relation n = 7+3m has to be fulfilled for the correct sequence. The fault

is shown in Fig. 4.3.
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4.2 Build up of the planar fault geometries

Figure 4.2: A SISF supercell, the dashed line indicates the position of the stacking fault.
Atoms enclosed in a blue rectangular are shifted by the b⃗3 vector from their ideal positions
to create the SF. Supercell directions as described in Sec. 4.2.1.

Figure 4.3: A SESF supercell, dashed line is at the position of the fault layer. Atoms
enclosed in a blue rectangular are translated by the fault vector b⃗3, atoms enclosed in an
orange rectangular are translated by −b⃗3 from their ideal positions.

CSF

For the complex stacking fault it is not possible to build a supercell containing only one

stacking fault. Again, starting from a supercell from perfect γ-TiAl the positions are trans-

lated the way shown in Fig. 4.4. It should be noted that in this model the fault-fault spacing

is different for the primed and unprimed region.
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4.2 Build up of the planar fault geometries

Figure 4.4: A CSF supercell. The dashed lines illustrate the complex stacking faults. Blue
enclosed atoms are displaced by a vector of b⃗1 = 1/6[211] from their ideal positions, the red

line enclosed atoms are displaced by the vector of −2⃗b1 from their ideal L10 position. Primed
letters indicate reversed occupation in the cell, i.e., Al atoms on Ti positions and vice versa.

APB

A similar situation arises also for the APB, where two faults have to be present in the

supercell, and inverted occupation appears. The exact geometry is discussed in the Fig. 4.5.

The total number of layers, n, is a multiple of three; to maintain equal spacing between the

faults, n should be chosen as n = 12 + 2m.

Twin

It is more intuitive that two boundaries exist in the supercell in the case of the twin geometry.

To build the true twin geometry as described in Sec. 2.4.3 the layers above a chosen twin

boundary are translated by o⃗b3, where o denotes the number of layer distances from the

twin boundary (which becomes the mirror plane). The geometry of the model is shown in

Fig. 4.6.

The fault-fault spacing is chosen to be the same for both twin variants.
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4.2 Build up of the planar fault geometries

Figure 4.5: An APB supercell, dashed lines show the actual APB position. Primed letter
indicate the inverted occupation of the lattice.

4.2.3 Pseudo-shear approach

A starting point for this build up of the fault geometries is again the supercell as described

in Sec. 4.2.1. In contrast to the previous approach the absolute coordinates of the atoms

do not change. The fault is produced by the application of PBC and tilting the supercell

c⃗ lattice vector. In a perfect supercell, c⃗ = n/3[111], while the c⃗ direction is tilted by the

fault producing vector b⃗i. Hence, the changed supercell direction c⃗ fulfills the condition

c⃗ = b⃗i + n/3[111]. The supercell a⃗ and supercell b⃗ lattice vectors remain unchanged. In this

way, it is always possible to build a supercell containing only one fault layer per supercell.

The application is demonstrated in Fig. 4.7 for an APB(111). In this approach n = 3m is

used to have perfect L10 structure between the fault layers.

The APB(010) is built in a similar manner the difference being that conventional unit cells

are stacked along the [010] direction (which is tilted by the distinct fault vector) instead of

stacking (111) planes.

This approach is additionally suitable to calculate GSFE in a straight forward way. The fault

vectors b⃗i are replaced by arbitrary vectors of the “generalized” fault t⃗, so c⃗ = t⃗+ n/3[111].

The fault vector is t⃗ = u/2[112] + w/2[110], where u and w are in the range of [0...1].
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4.3 Results for the planar faults

Figure 4.6: A supercell containing twin boundaries. Blue dashed lines are eye guides for a
better interpretation of the structure. Blue solid lines indicate the coherent twin boundaries.
The supercell is shown along the −b⃗ direction.

4.3 Results for the planar faults

The total energy for the conventional cell and the supercell for the perfect γ-TiAl were

calculated with the lattice constants given in Sec. 4.1. The energy per two atoms is equal

for both cases within the numerical accuracy.

The evaluation of the stacking fault energies for supercells containing one stacking fault is

done via:

γ =
E − E0

A
(4.1)

where γ is the stacking fault energy, E is the total energy of the supercell with the fault, E0

the energy of the perfect crystal with the same number of layers and A is the cross-section

area of the fault in one cell. For the (111) stacking faults:

A = |⃗a× b⃗| (4.2)

is used to calculate the cross-section area, when a⃗ and b⃗ are the supercell lattice vectors.

For faulted supercells, where a perfect crystal can not be build due to the reason that the

number of layers n is not a multiple of three in the fault containing cell, and/or the number
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4.3 Results for the planar faults

Figure 4.7: APB(111) with n = 15 layers implemented, dashed orange line indicates the

fault plane. Differences in the supercell c⃗ directions are drawn additionally. b⃗4 = 1/2[011]

of faults in the supercell is larger than one, a modified formula is used:

γ =
E − nEperlayer

NA
. (4.3)

Eperlayer is the energy per (111) layer in the perfect crystal model and N is the number of

faults in 1 supercell. For a large enough n, Eqs. 4.1 and 4.3 converge to a constant defining

the particular stacking fault energy/planar fault energy.

The results for the calculated stacking fault energies are summarized in Tab. 4.1 for the

build-up of the cells as discussed in Sec. 4.2.2, and for the scheme of Sec. 4.2.3 in Tab. 4.2.

During the calculation, all the atoms were allowed to relax along the supercell c⃗ direction

except for the the calculation of the APB(010) where they have been allowed to relax along

the supercell b⃗ direction. It should be noted that the cross-sectional area A is different for

the APB(010) than for the other faults. For a more detailed discussion of the influence of a

particular relaxation scheme, the reader is referred to Sec. 4.4.1.
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4.3 Results for the planar faults

Table 4.1: Results for stacking fault energies with the “displacement geometries” approach as
described in Sec. 4.2.2. All values are rounded and in [mJ

m2 ], except for n and N which denote
the number of layers in the used model and the number of faults per supercell respectively.
Results marked with ∗) are obtained with an energy convergence criterion for the ionic
relaxation in contradiction to the force criterion applied by default (Sec. 4.1).

n N APB CSF SISF SESF twin

13 2 417

19 2 415

31 2 414

14 1 188

17 1 188

18 2 711

24 2 711
∗)12 2 704
∗)7 1 191
∗)10 1 188
∗)13 1 189
∗)8 1 187
∗)11 1 187

12 2 115

Table 4.2: Results for stacking fault energies with the “pseudo-shear” approach 4.2.3. All
values are rounded and in [mJ

m2 ], except for n which denotes the number of layers in the
applied model (or numbers of conventional cells for the APB(010)).

n APB CSF SISF APB(010)

6 416

15 717 415 188

7 340
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4.3 Results for the planar faults

Generally, it is observed that1:

APB > CSF > SISF (4.4)

SISF ∼ SESF (4.5)

APB(111) > APB(010) (4.6)

4.3.1 LDA vs. GGA

To estimate the impact of different exchange-correlation potentials also the local density

approximation (LDA) has been used to calculate the SFE. Specifically the “PAW Ti sv

07Sep2000” and the “PAW Al 17Apr2000” potentials were used for Ti and Al atoms, respec-

tively. The results are summarized in Tab. 4.3. The build-up from Sec. 4.2.3 was used with

n = 15.

The ordering of the stacking fault energies stays the same only their absolute values are

lowered for the LDA.

4.3.2 Effect of volume change

The effect of the changing cell volume was investigated for relative changes of ±5%. The

results are shown in Fig. 4.8. The supercells with increased/decreased volume were optimized

with respect to the cell shape, yielding to corresponding lattice parameters. These were

further used to build supercells with SF as described in Sec. 4.2.3. The SFEs were evaluated

for with different cross-sectional area and Eperlayer, e.g. A+0.05 ̸= A−0.05 ̸= Astandard so that

this change has to be considered in the post-processing.

The SFEs decrease and increase with expanding and shrinking of the cell, respectively. The

overall change for SISF is negligible for the studied cases though, the differences are about

∼ 2mJ
m2 . This can be used to as a rough prediction for the temperature effects on SFEs: they

decrease with raising temperature. It should be noted, however, that temperature effects

are usually more complex as, e.g. phonons and other interactions take place.

1For the sake of simplicity, APB refers both to the fault as well as its energy γAPB. The same applies to
other abbreviations.

Table 4.3: A comparison of LDA and GGA-based stacking fault energies. Values presented
in

mJ
m2


SF LDA GGA

APB 694 717

CSF 392 415

SISF 179 188
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4.3 Results for the planar faults
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Figure 4.8: Stacking fault energies for different cell volumes.

4.3.3 Equilibrium lattice constants

The conventional unit cell of the L10 structure (as shown in Fig. 2.1) is used to determine

the equilibrium lattice constants. There are four atoms in the conventional unit cell, two Al

atoms at the position [000] and 1/2[110], two Ti atoms at 1/2[101] and 1/2[011]. The c/a

ratio is hold constant c/a = 1.0195 and the a lattice constant is varied between a = 3.9 Å

to a = 4.05 Å. For every fixed volume, a cell shape relaxation is allowed. The energies are

fitted to the Murnaghan equation of state [48] (EoS), Eq. 4.7, and the Birch-Murnaghan

EoS [49], Eq. 4.8.

E (V ) = E0 +
B0V

B0,p


V0

V

B0,p

B0,p − 1
+ 1


− B0V0
B0,p − 1

(4.7)

E (V ) = E0 +
9V0B0

16




V0
V

 2
3

− 1

3
B0,p +


V0
V

 2
3

− 1

2 
6− 4


V0
V

 2
3

 (4.8)
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4.3 Results for the planar faults
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Figure 4.9: Fitted curves of observed data points to EoS. Vertical line indicates position of
volume throughout this thesis as “standard”(Sec. 4.1)

B0 is the bulk modulus, and B0,p is the bulk modulus derivative with respect to the pres-

sure at p = 0. E (V ) denotes the energy as a function of the volume. E0 and V0 are the

equilibrium energy and the equilibrium volume respectively. The data points were fitted to

the EoS through the Levenberg-Marquardt algorithm implemented within the SciPy envi-

ronment [50]. The fitting curves are shown in Fig. 4.9. The thus obtained parameters are

summarized in Tab. 4.4.

The equilibrium volume has been used to determine the equilibrium lattice constants through

a calculation where the cell was allowed to change its cell shape with given, fitted, volume,

yielding lattice constants to be a=3.9915 Å and c=4.0793 Å. The so obtained energy per

atom was E0 = −6.15321. The agreement between the two different methods is good, only

the B0,p differs slightly.

The equilibrium volume is about 2% bigger than the as standard used lattice constants in

this thesis. Using a linear interpolation, the stacking fault energies for the equilibrium lattice

Table 4.4: Fitted equilibrium parameters.

method V0


Å

3


B0 [ GPa] B0,p [ 1] E0 [ eV/atom]

Murnaghan 16.2485 113.3 3.7668 -6.15319

Birch-Murnaghan 16.2482 113.4 3.8245 -6.15319
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4.4 Generalized stacking fault energy

constants can be gained from Fig. 4.8. For the APB, CSF and SISF, the energies change to

692, 400 and 187 [mJ
m2 ], respectively.

4.4 Generalized stacking fault energy

The (111) plane

The GSFE as described in Sec. 2.6 was calculated with the scheme discussed in Sec. 4.2.3.

The resulting contour plot is represented in Fig. 4.10. The atoms were allowed to move

along the [111] direction and a model with n = 15 layers was used. The GSFE was mapped

with equidistant points with 5 points along the supercell b⃗ direction and 11 points along the

supercell a⃗ direction. Data in between the grid points were interpolated. It is used as an

overview and more detailed mapping is discussed in the following sections.

As can be seen from Figs 4.10 and 4.13 only in the case of APB a grid point is mapped

exactly at the corresponding hard-sphere position. The minimum for the other two faults

are easily seen on the plot. Finally, the energy barriers are smaller in the direction b⃗ than

in the a⃗ direction.

4.4.1 Influence of the relaxation

Relaxation direction

VASP has the capability to choose the relaxation direction along any of the supercell di-

rections [44], maximum the three supercell directions. This is usually sufficient since all

directions can be chosen this way to relax the structure, only the coordinates have to be

transformed. However, when using the methodology from Sec. 4.2.3 to build supercells with

stacking faults, it is not any more possible to specify the “correct” direction. By the correct

direction here is meant the [111] direction along which the atoms are allowed to move during

the relaxation, but since the supercell c⃗ direction is always differs from n/3[111] by the fault

producing vector f⃗ , the relaxation direction is always wrong. For large enough n, though,

the error gets smaller, since the fault vector stays constant, but the n/3[111] increases with

n.

To overcome this disadvantage a modified version of the VASP code [52] was used partly

in the thesis. In this modified code the relaxation direction can be selected as one of the

global Cartesian coordinate system, i.e. the global z-direction was chosen as the relaxation

direction for the calculations with the set up from Sec. 4.2.3. Therefore adjustments in the

build-up of the cells were needed: The [111] direction needs to be rotated into the global

z-axis. The rotation of the supercell is executed with the rotation point as the origin [000]
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4.4 Generalized stacking fault energy
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Figure 4.10: Contour plot of the GSFE for the (111) plane of stoichiometric γ-TiAl. Dots
represent calculated data (grid points). SISF, APB and CSF are labeled at their position
on the γ-surface. Plot was created with [51].
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4.4 Generalized stacking fault energy

of the coordinate system and direction vector a⃗ which fulfills

a⃗ = k (g⃗ × z⃗global) (4.9)

where k is a constant, g⃗ is the [111] direction and zglobal is the global z-direction. The

directions c⃗ and zglobal are tilted away by an angle ϕ:

ϕ = arccos


g⃗ · z⃗global
|⃗g||z⃗global|


. (4.10)

The rotated coordinates of an individual atom d⃗ is then calculated from the global positions

before x⃗ as [53]:

d⃗ (x⃗) = (cosϕ) x⃗+ (1− cosϕ)
x⃗ · a⃗
|⃗a|2

a⃗+
sinϕ

|⃗a|
a⃗× x⃗. (4.11)

To get an overview for the error introduced through different relaxation directions, two

figures are shown, one a cut through the GSFE of the (010) plane along the path to the

APB(010) (Fig. 4.11), and the GSFE cut along the path to the APB(111) (Fig. 4.12). Red

points are calculated using the supercell c⃗ direction as the relaxation direction, black dots

are gained through relaxing along the [111] direction for n = 15 for the (111) fault and n = 7

for the APB(010).

The two different types of points are in good agreement with another forming a single curve.

For direct comparison, the APB(111) calculated with both relaxation methods is represented

in Tab. 4.5.

Comparing the two graphs yields that the energy barrier along the straight way from the

perfect crystal to the particular fault, is bigger for the APB(010) than for the APB(111).

This is an interesting observation as together with Tabs 4.1 and 4.2 points out that a smaller

barrier has to be overcome to produce energetically more expensive fault. It should be also

noted that for the APB(111) other paths exist where the barriers are even smaller than

the straight line in Fig. 4.4.3, while for the APB(010), the straight line is very close to the

minimum energy pathway.

One expects larger errors in the values for larger fault vectors f⃗ with the supercell c⃗ as

relaxation direction, so mapping over a mirror plane of the crystal when calculating the

GSFE would result in slightly non-symmetric values. For the other discussed relaxation

direction this should not be the case, which is actually seen in 4.13 where the green and cyan

lines overlap perfectly.

Table 4.5: APB(111) in

mJ
m2


for different relaxation directions.

relaxation direction APB(111)

supercell c⃗ 717

[111] 712
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Relaxation scheme

Until now, the relative positions of the atoms in the supercell were allowed to relax only

along a single direction. To estimate the impact of this constraint, the following results were

obtained with fully relaxed atoms (i.e. all three supercell direction were chosen to be the

allowed relaxation directions). The results are summarized in Tab. 4.6.

The changes of the atom positions introduced by this relaxation scheme are in some cases

complex and span over several distances of the (111) layers (Fig. 4.14).

The figure shows the APB for which the Ti atoms increase their spacing over the fault plane

(layer in between the top plane, which is the periodic image of the first layer, and the one

above), along the supercell a⃗ and supercell c⃗ directions, and that the Al atoms behave in

the opposite sense, they decrease their spacing over the fault plane in the supercell a⃗ and

c⃗ directions. This movement of the atoms is not possible to observe in the used scheme for

Table 4.6: SFE for freely relaxed atoms. Build-up of 4.2.3 used, previous calculated SFEs
given for direct comparison. All values in


mJ
m2


SF c⃗ rel. dir. free to move

SISF 188 173

CSF 415 370

APB 717 635

twin 115 89

43



4.4 Generalized stacking fault energy

calculating the GSFE because they are only allowed to relax along one direction.

c c

a ab b

Figure 4.14: Overlaid picture of the supercell for calculating the APB(111) with n = 15

in the supercell b⃗ projection. Light blue and light red indicate the starting position of Al
and Ti atoms respectively and their darker colored counter parts are the relaxed positions.
When no movement occurs the initial positions are overlaid by the relaxed ones.

4.4.2 Real energy minimum of the GSFE

To have a better resolution in the vicinity of the exact hard-sphere stacking fault positions

at the GSFE, a dense mesh was used to investigate the energy landscape along the 1
6


112


direction. The relaxation supercell c⃗ direction and n = 15 were applied. The results are

presented in Figs. 4.15, 4.16 and 4.17. The data were interpolated with cubic polynomial

functions also shown in the graphs. As already seen in the coarse mapping in Figs. 4.10

and 4.13 here is no local minimum found for the APB (see Fig. 4.15). The values of the

fitted minimum for the CSF and the SISF are shown in Tab. 4.7.

4.4.3 Energy pathways

The energy pathways for several dislocation dissociation reactions have been calculated.

Presented in Fig 4.18 is the reaction after Eq. 2.19 and in Fig. 4.19 after Eq. 2.15. Other

energetic pathways balances can be constructed from these two graphs.
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Figure 4.15: GSFE cut along the 1/6[112] direction in the vicinity of the APB. Zero relative
translation indicates the hard-sphere position.
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Figure 4.16: GSFE cut along the [112] direction in the vicinity of the CSF. Zero relative
translation indicates the hard-sphere position.

Additionally, the energy pathway from twin to twin has been investigated to determine the

unstable twin energy γut, similarly to the way implemented in [30]. The barrier energy was

determined, through a polynomial fit of the fourth order, to be 359 mJ
m2 (see Fig. 4.20).

4.5 Results for the Molecular Dynamics

Due to the huge time saving potential of the MD, the GSFE of the stoichiometric γ-TiAl

has been calculated also with LAMMPS. Two different EAM potentials were used [54, 55].

LAMMPS needs the supercell a⃗ defined along the global x-axis. In order to apply the
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Figure 4.17: GSFE cut along the [112] direction in the vicinity of the SISF. Zero relative
translation indicates the hard-sphere position.

approach described in Sec. 4.2.3 with the relaxation direction parallel to [111], one needs to

adjust the orientation of the supercell to the global coordinate system in a different way than

for the DFT calculations. Beginning again with a supercell from Sec. 4.2.1, the supercell a⃗

is aligned along the x-axis through a rotation of the supercell with the procedure discussed

in Sec. 4.4.1. Then, a second rotation of the cell along the supercell a⃗ direction, turns the

supercell c⃗ = [111] direction into the global z-axis. The supercell c⃗ is then tilted away to

build the fault through using the periodic boundary, as described in Sec. 4.2.3.

The relaxation is allowed only along the z-axis through fixing the forces in the x and y

directions of the global coordinate system. The model consists of n = 15 layers with one

plane containing 32 atoms. The atoms were relaxed to their equilibrium positions with the

Polak-Ribiere version of the conjugate gradient scheme [45] with allowed stopping tolerance

of force 10−10 [eV/Å].

The calculated GSFE are shown in Fig. 4.21, and a short summary of important values is

given in Tab. 4.8.

It is clearly seen that for all three stacking faults, there exists a local minimum on the GSFE

surface for both used potentials, but the observed energies differ in absolute values (see

Table 4.7: Stacking fault energies obtained from fitting the GSFE minimum positions.

SF rel. 1
6


112


translation Min. GSFE Tab. 4.6

SISF 0.0653 176 173

CSF -0.1168 383 370

APB none none 635
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Figure 4.18: Energy profile along dissociation reaction according to Eq. 2.19. The analysed
dislocation reaction is indicated in the GSFE contour plot.
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Figure 4.19: Energy profile along dissociation reaction according to Eq. 2.15. The analysed
dislocation reaction is indicated in the GSFE contour plot.

Tab. 4.8), and result in different ordering. While the potential of Zope and Mishin [54] the

stacking faults ordering is as 4.12

CSF > APB > SISF (4.12)

and have higher energy barriers on the GSFE, the values calculated with the potential

of Farkas and Jones [55] declare the hierarchy is the same as determined from the DFT

method, and have generally lower barriers and a more non-spherical, strained shape of the

barriers.
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Figure 4.20: Energy profile from twin to twin. Twin geometry was implemented with n = 12,
and relaxed along the supercell c⃗ direction.

4.6 Alloying Influence via DFT

To dilute the concentration of alloying elements in the fault plane the cross-section was

extended to contain 4 × 2 atoms, i.e. the supercell a⃗ and b⃗ were doubled. To keep the

calculation time reasonable, the number of layers n was reduced to n = 6, i.e. so that in the

whole supercell contained 48 atoms.

Table 4.8: Stacking fault energies from MD calculations.

Potential hard-sphere pos. minimum GSFE

[54]

APB 200 182

CSF 290 290

SISF 117 102

[55]

APB 375 362

CSF 318 317

SISF 89 74
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Figure 4.21: GSFE for the two different potentials. Left hand side the potential [54], right
hand side the potential of [55].

An alloying element atom was placed at a plane neighboring with the fault. The alloyed γ-

TiAl model is then fully relaxed with respect to the cell shape, volume and atomic positions.

It should be noted that in contrast to the visualization in Fig. 4.22, all atoms are rigidly

shifted by 1
12
c⃗ before applying the fault-producing displacement. This is a purely technical

detail which, however, guarantees structural model of the planar faults. Subsequently the

supercell c⃗ direction is modified to build the fault. The three fault producing vectors are:

b⃗APB =
1

4


a⃗+ b⃗


, (4.13)

b⃗SISF =
1

6
a⃗, (4.14)

b⃗CSF = b⃗SISF − b⃗APB, (4.15)

where a⃗ and b⃗ are the supercell lattice vectors of the alloying supercell.

A relation between the supercell concentration and a “real alloy” concentration is difficult,

due to the limited supercell size and configuration. A lower limit for the “real” concentration

is the concentration of the whole supercell, i.e., 1
48
at.%. The upper limit is the concentration

in the vicinity of the fault plane, i.e. 1
16
at.%. It should be noted that the interaction of

alloying elements across the fault plane could have significant influence. However, since all

the alloying elements are treated the same way, this approximation still provides insight into

the trends related to alloying.
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4.6 Alloying Influence via DFT

a

c

b

Figure 4.22: Alloying supercell, Ti atoms in red, Al atoms in light blue and the alloying
element in green. Alloying element sits on Al position.

4.6.1 Influence of the alloying element to planar fault distance.

Owing to the constraints through the limited number of atoms in the supercell, the influence

of where the alloying atom sits relative to the fault plane was investigated. The considered

configurations are in Fig. 4.23.

Figure 4.24 gives the dependence of the SFE for SISF, CSF, and APB(111), for Ti-rich γ-

TiAl, i.e. when 1 Al atom is replaced by 1 Ti atom. It can be concluded, that the influence

of the alloying element is already shielded by two perfect layers between the fault and the

alloying element.

4.6.2 Impact of ternary elements on Ti-rich TiAl

The impact of ternary elements on Ti-rich γ-TiAl has been investigated for Mo, V, Zr, Hf,

Ta, Nb, W, Ti, and Cr. To achieve a Ti-rich environment in the vicinity of the fault the

atomic arrangement shown in Fig. 4.25 was used. The alloying element X is put on a Ti site,

and the Ti atom from this site is put on an Al site in the same plane. This arrangement is

a consequence of an assumption that all chosen elements preferentially occupy Ti sites. The

values predicted values are presented in Fig. 4.26. All values are calculated at the hard-sphere

model positions, and the applied relaxation direction was the supercell c⃗ direction.

For all considered cases the APB drops significantly in comparison with the stoichiometric

case. The CSF energy also decreases for all alloying elements, the most pronounced effect

being obtained for Mo, V, W, Ti and Cr. The SISF is most influenced by Ti, and has similar
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4.6 Alloying Influence via DFT

(a) Alloying element in fault neighbor plane. (b) One layer distance.

(c) Two layers distance. (d) Three layers distance.

Figure 4.23: Alloying supercells for different fault-alloying element spacing. Green is the
alloying element, light blue are the Al atoms and red are the Ti atoms. In this sketch, the
alloying element is exchanged with an Al atom.

values for all the other chosen alloying elements.

4.6.3 Impact of ternary elements on Al-rich TiAl

The effect of ternary elements in Al-rich alloys has been investigated only for Nb, the cal-

culated results are reported in Fig. 4.27. The relaxation direction along the supercell c⃗

direction was used, and the fault values were investigated at the hard-sphere positions. the

values for the stoichiometric TiAl with the standard lattice constants from Sec. 4.1 are given

for reference.

The CSF and SISF energies are slightly increase from 415 to 429 [mJ
m2 ] and from 188 to 206

[mJ
m2 ], respectively, while APB decreases from 717 to 662 [mJ

m2 ] for alloying with Nb in the

Al-rich concentration region.
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Figure 4.24: Influence of the fault-alloying element distance for X=Ti. N is the number of
layers interspace separating the alloying element and the fault neighboring plane. Values for
stoichiometric γ-TiAl are shown by the full horizontal line.
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a

b

c

Figure 4.25: Arrangement of atoms in the plane neighboring the fault, shown in the [111]
projection. The green sphere is the alloying element, red are the Ti atoms and light blue are
the Al atoms.
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Figure 4.26: Impact of alloying element X in Ti-rich TiAl. The overall composition of the
supercell was Ti24Al23X1 in the whole supercell, while the fault neighboring layers have a
composition of Ti8Al7X1. Arrangement of atoms in the alloyed plane is shown in Fig. 4.25.
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Figure 4.27: Impact of alloying elements in Al-rich TiAl. The overall composition of the
supercell was Ti23Al24X1 in the whole supercell, while the fault neighboring layers have a
composition of Ti7Al8X1. Alloyed atoms are exchanged with a Ti atom in the alloyed plane.
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Chapter 5

Summary and discussion

In this Master Thesis the build-up of the geometries for different planar faults in γ-TiAl SISF,

APB, CSF, SESF, twin and APB(010) was discussed. Two different methodologies to build

the stacking faults were applied: the displacement geometries Sec. 4.2.2 and the pseudo-shear

approach Sec. 4.2.3. These different build-ups were compared and showed to exhibit good

agreement to each other (Sec. 4.3). The ordering APB > CSF > APB(010) > SISF was

obtained from our ab initio calculations.

The study of different exchange-correlation potentials showed that the LDA the values for

the SISF, CSF and APB are lower than when GGA is applied (Sec. 4.3.1).

Further, the effect of different cell volumes was investigated (Sec. 4.3.2) and the equilibrium

lattice constants were examined in Sec. 4.3.3. The SISF, CSF and APB energies increase

with decreasing cell volume, and decrease with larger cell volumes, though the influence for

the SISF is very small. The standard lattice constants as used in this thesis were found to

correspond to a lattice under hydrostatic pressure.

The influence for different relaxation directions and schemes was also studied. For supercells

with a number of layers, n = 15, the influence of the relaxation direction was found to be

negligible. When the atoms were fully relaxed significant lower values than those for the

hard-sphere model positions were obtained.

The GSFE was calculated for the (111) plane (Sec. 4.4) and detailed for several profiles

corresponding to dislocation dissociation reactions, the twin to twin path and the energy

pathway for the APB(010). The largest energy barrier was found on the way from SISF

to the APB on the (111) plane. For the paths along the cell vectors, the energy barrier

on the ordinary dislocation direction 1
2
[110] is lower than on the superdislocation direction

1
6
[112], which corresponds to the global maximum on the GSFE. The barriers for the straight

lines from the perfect cell to APB(111) and APB(010) were calculated yielding that a larger

barrier has to be overcome for the APB(010). The real energy minimum for the SISF and

CSF were found to differ from the hard-sphere model positions. No local minimum was

found along the 1
6
[112] direction for the APB.
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5. Summary and discussion

The GSFE of the (111) plane was calculated using the MD program LAMMPS for two

different potentials. The values differ from the DFT predictions. For one of the potentials,

the ordering of the SFE is different to that of the ab initio calculations. Generally, all SFE

(APB, CSF and SISF) have lower values, and correspond to local minimum on the GSFE.

Energy minimum positions are again different from their hard-sphere model positions of the

faults.

Finally, the alloying influence was investigated using DFT for the three faults on the (111)

plane. The calculations were divided into two groups, yielding the Ti-rich and the Al-rich

compositions. The elements were assumed to occupy Ti sites. The stacking fault energies

were observed to strongly depend on the Ti+X
Al

ratio. The SISF, CSF and APB energies

decrease for ternary additions in a Ti-rich region in the vicinity to the fault. While the SISF

and CSF increase for ternary additions in a Al-rich region in the vicinity to the fault, the

APB slightly decreases. For the SISF energy, the influence was largest when the “ternary”

alloying element was X = Ti. It should be noted, that the values for the “hard-sphere model

positions” are discussed in this section, and the real energy minimum may give a slightly

different picture in the hierarchy of the influence of a particular element.
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Chapter 6

Outlook

The future work should include the evaluation of GSFE and the stacking faults for the DFT

equilibrium constants. For the stacking fault energies and the calculations for investigating

the impact of alloying elements on the stacking fault energies, the relaxation scheme for fully

relaxed atoms will be a fine adjustment for seeing trends more clearly.

The twin to twin energy-profile will give prediction of critical twin stresses for different al-

loying elements. Further work will include the general way to investigate alloying effects via

DFT by the further development of the LKKR-CPA and/or the SQS methods.

A big step will be to examine the influence of temperature on the stacking fault energies

which had been neglected throughout this thesis, despite a rough approximation via volume

expansion. The MD with an accurate potential is an attractive candidate to investigate the

temperature and off-stoichiometric effects. To get alloying trends under consideration finite

temperature DFT calculations will be needed.

On the experimental side, there are several possibilities to investigate effects regarding stack-

ing fault energies. Measuring the partials separations in the TEM on model alloys for chosen

alloying agents could be used to confirm the alloying influence on the stacking fault energies.

Diffraction methods, the atom location channeling enhanced microanalysis (ALCHEMI), as

well as atomic probe tomography (APT) are options to investigate the site occupancy of the

elements which influences the SFEs. The local chemistry effects (Suzuki effect) should be

also possible to be observed with the APT, the EDS and electron energy loss spectroscopy

(EELS) within the TEM.

As David Hilbert once said:

“We must know — we will know!”
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[1] H. Clemens, BHM Berg- und Hüttenmännische Monatshefte 153, 337 (2008).

[2] H. Clemens and S. Mayer, Advanced Engineering Materials 15, 191 (2013).

[3] D. Dimiduk, Materials Science and Engineering A 263, 281 (1999).

[4] F. Appel, J. D. H. Paul, and M. Oehring, eds., Gamma Titanium Aluminide Alloys

(Wiley-VCH, Weinheim, 2011).

[5] J. Hirth and J. Lothe, Theory of dislocations (McGraw-Hill, New York, 1968).

[6] E. Tadmor and N. Bernstein, Journal of the Mechanics and Physics of Solids 52, 2507

(2004).

[7] G. Gottstein, Physikalische Grundlagen der Materialkunde (Springer-Verlag, Berlin,

2007).

[8] M. Yoo, Intermetallics 6, 597 (1998).

[9] G. Hug, A. Loiseau, and P. Veyssiere, Philosophical Magazine A: Physics of Condensed

Matter, Structure, Defects and Mechanical Properties 57, 499 (1988).

[10] H. Kestler and H. Clemens, Titanium and Titanium Alloys, edited by C. Leyens and

M. Peters (WILEY-VCH,, Weinheim, 2003) p. 351.

[11] J. Schuster and M. Palm, Journal of Phase Equilibria and Diffusion 27, 255 (2006).

[12] G. L. Chen, W. J. Zhang, Z. C. Liu, S. J. Li, and Y.-W. Kim, Gamma Titanium

Aluminides 371 (1999).

[13] S. Znam, BOND ORDER POTENTIALS FOR ATOMISTIC STUDIES OF DISLO-

CATIONS AND OTHER EXTENDED DEFECTS IN TiAl, Ph.D. thesis, University of

Pennsylvania (2001).

59

http://dx.doi.org/10.1007/s00501-008-0396-z
http://dx.doi.org/10.1002/adem.201200231
http://www.scopus.com/inward/record.url?eid=2-s2.0-0000657455&partnerID=40&md5=d21b2e0b281c08fe6d2b6a42601e7f04
http://dx.doi.org/10.1016/j.jmps.2004.05.002
http://dx.doi.org/10.1016/j.jmps.2004.05.002
http://www.scopus.com/inward/record.url?eid=2-s2.0-0032300845&partnerID=40&md5=3422383ea9475bc012d282056f416b31
http://www.scopus.com/inward/record.url?eid=2-s2.0-0023981388&partnerID=40&md5=12f42d7cd80eb1cd68db5937c99a8a40
http://www.scopus.com/inward/record.url?eid=2-s2.0-0023981388&partnerID=40&md5=12f42d7cd80eb1cd68db5937c99a8a40
http://dx.doi.org/10.1361/154770306X109809


BIBLIOGRAPHY
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