

www.vtiu.com

Magisterarbeit

Trockenentstaubung, Staubrückführung und Abgaswärmenutzung in Schmelzreduktionsanlagen

erstellt für

VOEST-ALPINE Industrieanlagenbau GmbH & Co

vorgelegt von:

Karin Fera 9935103 O.Univ.Prof.Dipl.-Ing.Dr.mont. Werner L. Kepplinger

Betreuer/Gutachter:

Leoben, 8. November 2006

EIDESSTATTLICHE ERKLÄRUNG

Ich erkläre an Eides statt, dass ich die vorliegende Magisterarbeit selbständig und ohne fremde Hilfe verfasst, andere als die angegebenen Quellen und Hilfsmittel nicht benutzt und die den benutzten Quellen wörtlich und inhaltlich entnommenen Stellen als solche erkenntlich gemacht habe.

Leoben, am 8. November 2006

Kurzfassung

Trockenentstaubung, Staubrückführung und Abgaswärme nutzung in Schmelzreduktionsanlagen

Diese Arbeit untersucht verschiedene Möglichkeiten einer Trockenentstaubung des Corex-Topgases anstatt der bisherigen Nasswäsche, die mit einem großen Schlammaufkommen (inkl. aufwendiger Weiterverarbeitung und teurer Entsorgung) verbunden ist. Darüber hinaus wird die Nutzung der fühlbaren Wärme des Corex-Topgases angestrebt. Bei Anwendung einer Trockenentstaubung kann der Staub, der einen hohen Anteil an Eisenoxiden (FeO und Fe₂O₃) enthält, leichter in den Prozess, z.B. Einschmelzvergaser, zurückgeführt werden. Es ergeben sich im Wesentlichen zwei Varianten, entweder eine Entstaubung mittels Zyklon und Elektrofilter mit anschließender Wärmeauskopplung oder eine Wärmeauskopplung zwischen Zyklon und Elektrofilter. In beiden Fällen können die geforderten Reingasbedingungen, 5 µm maximale Partikelgröße und 5 mg/m³_{STP} maximale Staubbeladung, erreicht werden.

Abstract

Dry Dedusting, Dust-Recirculation and Utilization of Offgas-Heat in Smelting-Reduction Plants

This thesis investigates the possibilities to replace the current wet dedusting of the Corex-Topgas which causes a lot of sludge (with a difficult further processing and an expensive disposal) with a dry dedusting system. Moreover it aims at a sensible heat-utilization of the Corex-Topgas. An application of a dry dedusting system allows to recirculate the dust, which contains high amounts of iron oxides (FeO and Fe₂O₃) into the process, e.g. into the melter gasifier. There are basically two alternatives for the dry dedusting system, either a dedusting process with a cyclone and an electrostatic precipitator with an additional utilization of the sensible heat or an utilization of the sensible heat between the cyclone and the electrostatic precipitator. In both cases the required cleangas-conditions, a maximum particle diameter of 5 μ m as well as a dust load below 5 mg/m³_{STP}, can be reached.

Inhaltsverzeichnis

Seite

1	Е	INI	_EI	ГUNG	5
	1.1		Pro	blemstellung6	3
	1.2		Ziel	setzung	3
2	Z	YK	LO	NABSCHEIDER	3
	2.1		Aufl	bau und Wirkungsweise	3
	2.2		Strö	omungsfeld	9
	2.3		Abs	cheidung)
	2.4		Abs	cheideverhalten	1
	2	.4.1		Einfluss der Geometrie11	I
	2	.4.2	2	Einfluss des Gasdurchsatzes	2
	2	.4.3	3	Einfluss der Partikelkonzentration12	2
	2.5		Ber	echnung der Gesamtabscheideleistung13	3
	2	.5.1		Grenzkorngleichgewichtsbetrachtung14	1
	2	.5.2	2	Grenzbeladungshypothese15	5
	2	.5.3	3	Gesamtabscheidegrad	3
	2.6		Dru	ckverlust	3
	2.7		Sch	altung von mehreren Zyklonen18	3
	2	.7.1		Reihenschaltung	3
	2	.7.2	2	Parallelschaltung18	3
3	Е	LE	κτι	ROFILTER)
	3.1	١	Wirl	kungsweise	9
	3.	.1.1		Erzeugung der negativen Korona20)
	3.	.1.2	2	Abscheidung der Partikel)
	3.2		Aus	legung des Elektrofilters	1
	3.3		Einf	lüsse auf die Abscheideleistung des Elektrofilters	3
	3.	.3.1		Elektrischer Staubwiderstand	3
	3	.3.2	2	Einfluss der Geometrie	1
		3.3	3.2.1	1 Einfluss der Gassenbreite24	1
		3.3	3.2.2	2 Sprühdrahtdurchmesser24	1
		3.3	3.2.3	3 Draht – Platten – Abstand24	1
	3.	.3.3	3	Einfluss der Gasgeschwindigkeit25	5
	3	.3.4	1	Einfluss der Partikel	5

3.3.5	Praktische Werte für die Auslegung	25
3.4 Ba	uformen	26
3.4.1	Elektrofilter	26
3.4.2	Abreinigungseinrichtungen	26
3.4.3	Niederschlagselektroden	27
3.4.4	Sprühelektroden	28
4 ALLGE	MEINE GRUNDLAGEN DER BERECHNUNG	29
4.1 Gr	undlagen zur Berechnung der benötigten Stoffwerte	29
4.1.1	Gasdichte	29
4.1.2	Gasviskosität	30
4.1.3	Staubdichte	30
4.2 Ko	rngrößenverteilung und Massenbilanz	33
4.2.1	Korngrößenverteilung	33
4.2.2	Massenbilanz	34
4.3 Erg	gebnisse der Berechnung der Stoffdaten	36
4.3.1	Gasdichte	36
4.3.2	Gasviskosität	37
4.3.3	Staubdichte	38
5 PRAK		40
5 PRAK	۲ ISCHER TEIL	40 40
5 PRAK 5.1 Ve 5.1.1	rfahrensbeschreibung Zyklon – Elektrofilter – Wärmeauskopplung	40 40 41
5 PRAK 5.1 Ve 5.1.1 5.1.2	rfahrensbeschreibung Zyklon – Elektrofilter – Wärmeauskopplung Zyklon – Wärmeauskopplung – Elektrofilter	40 40 41 42
5 PRAK 5.1 Ve 5.1.1 5.1.2 5.1.3	rfahrensbeschreibung Zyklon – Elektrofilter – Wärmeauskopplung Zyklon – Wärmeauskopplung – Elektrofilter Zyklon – Wärmeauskopplung – Gewebefilter	40 41 42 43
5 PRAK 5.1 Ve 5.1.1 5.1.2 5.1.3 5.2 Zy	rfahrensbeschreibung Zyklon – Elektrofilter – Wärmeauskopplung Zyklon – Wärmeauskopplung – Elektrofilter Zyklon – Wärmeauskopplung – Gewebefilter	40 40 41 42 43 44
5 PRAK 5.1 Ve 5.1.1 5.1.2 5.1.3 5.2 Zyl 5.3 Wa	rfahrensbeschreibung Zyklon – Elektrofilter – Wärmeauskopplung Zyklon – Wärmeauskopplung – Elektrofilter Zyklon – Wärmeauskopplung – Gewebefilter klonentstaubung	40 40 41 42 43 44
5 PRAK 5.1 Ve 5.1.1 5.1.2 5.1.3 5.2 Zyl 5.3 Wa 5.3.1	rfahrensbeschreibung Zyklon – Elektrofilter – Wärmeauskopplung Zyklon – Wärmeauskopplung – Elektrofilter Zyklon – Wärmeauskopplung – Gewebefilter dirmeauskopplung Allgemeines	40 40 41 42 43 44 47 47
5 PRAK 5.1 Ve 5.1.1 5.1.2 5.1.3 5.2 Zyl 5.3 Wa 5.3.1 5.3.2	rfahrensbeschreibung 4 Zyklon – Elektrofilter – Wärmeauskopplung 4 Zyklon – Wärmeauskopplung – Elektrofilter 4 Zyklon – Wärmeauskopplung – Gewebefilter 4 Klonentstaubung 4 Allgemeines 4 Stickstoff als Wärmeträger 4	40 41 42 43 44 47 47
5 PRAK 5.1 Ve 5.1.1 5.1.2 5.1.3 5.2 Zyl 5.3 Wa 5.3.1 5.3.2 5.3.3	rfahrensbeschreibung 4 Zyklon – Elektrofilter – Wärmeauskopplung 4 Zyklon – Wärmeauskopplung – Elektrofilter 4 Zyklon – Wärmeauskopplung – Gewebefilter 4 Klonentstaubung 4 Allgemeines 4 Stickstoff als Wärmeträger 4	40 41 42 43 44 47 47 49 51
5 PRAK 5.1 Ve 5.1.1 5.1.2 5.1.3 5.2 Zyl 5.3 Wa 5.3.1 5.3.2 5.3.3 5.3.3 5.3.3	rfahrensbeschreibung 4 Zyklon – Elektrofilter – Wärmeauskopplung 4 Zyklon – Wärmeauskopplung – Elektrofilter 4 Zyklon – Wärmeauskopplung – Gewebefilter 4 Klonentstaubung 4 Allgemeines 4 Stickstoff als Wärmeträger 4 1 Erzeugung der minimal notwendigen Dampfmenge	40 41 42 43 44 47 47 49 51 54
5 PRAK 5.1 Ve 5.1.1 5.1.2 5.1.3 5.2 Zyl 5.3 Wa 5.3.1 5.3.2 5.3.3 5.3.3 5.3.3 5.3.3 5.3.3	rfahrensbeschreibung 4 Zyklon – Elektrofilter – Wärmeauskopplung 4 Zyklon – Wärmeauskopplung – Elektrofilter 4 Zyklon – Wärmeauskopplung – Gewebefilter 4 Klonentstaubung 4 Allgemeines 4 Stickstoff als Wärmeträger 4 1 Erzeugung der minimal notwendigen Dampfmenge 2 Erzeugung der maximal möglichen Dampfmenge	40 41 42 43 44 47 47 47 51 54 55
5 PRAK 5.1 Ve 5.1.1 5.1.2 5.1.3 5.2 Zyl 5.3 Wa 5.3.1 5.3.2 5.3.3 5.3.3 5.3.3 5.3.3 5.3.3 5.3.3 5.3.3	rfahrensbeschreibung 4 Zyklon – Elektrofilter – Wärmeauskopplung 4 Zyklon – Wärmeauskopplung – Elektrofilter 4 Zyklon – Wärmeauskopplung – Gewebefilter 4 Klonentstaubung 4 Allgemeines 4 Stickstoff als Wärmeträger 4 1 Erzeugung der minimal notwendigen Dampfmenge 2 Erzeugung der maximal möglichen Dampfmenge	40 41 42 43 44 47 47 47 51 51 54 55 56
5 PRAK 5.1 Ve 5.1.1 5.1.2 5.1.3 5.2 Zyl 5.3 Via 5.3.1 5.3.2 5.3.3 5.3.3 5.3.3 5.3.3 5.3.3 5.3.4 5.4 Ele	rfahrensbeschreibung 4 Zyklon – Elektrofilter – Wärmeauskopplung 4 Zyklon – Wärmeauskopplung – Elektrofilter 4 Zyklon – Wärmeauskopplung – Gewebefilter 4 Zyklon – Wärmeauskopplung – Gewebefilter 4 Allgemeines 4 Stickstoff als Wärmeträger 4 1 Erzeugung der minimal notwendigen Dampfmenge 4 2 Erzeugung der maximal möglichen Dampfmenge 4 Ktrofilter 4 4	40 41 42 43 44 47 47 47 51 55 55 56 57
5 PRAK 5.1 Ve 5.1.1 5.1.2 5.1.3 5.2 Zyl 5.3 Wa 5.3.1 5.3.2 5.3.3 5.3.3 5.3.3 5.3.3 5.3.4 5.4 Ele 5.4.1	rfahrensbeschreibung 4 Zyklon – Elektrofilter – Wärmeauskopplung 4 Zyklon – Wärmeauskopplung – Elektrofilter 4 Zyklon – Wärmeauskopplung – Gewebefilter 4 Klonentstaubung 4 Allgemeines 4 Stickstoff als Wärmeträger 4 1 Erzeugung der minimal notwendigen Dampfmenge 4 2 Erzeugung der maximal möglichen Dampfmenge 4 ktrofilter 4	40 41 42 43 44 47 47 47 51 55 55 55 55 57
5 PRAK 5.1 Ve 5.1.1 5.1.2 5.1.3 5.2 Zyl 5.3 Wa 5.3.1 5.3.2 5.3.3 5.3.3 5.3.3 5.3.3 5.3.4 5.4 Ele 5.4.1 5.4.2	rfscher Teil. 4 rfahrensbeschreibung 4 Zyklon – Elektrofilter – Wärmeauskopplung 4 Zyklon – Wärmeauskopplung – Elektrofilter 4 Zyklon – Wärmeauskopplung – Gewebefilter 4 Konentstaubung 4 Allgemeines 4 Stickstoff als Wärmeträger 4 Dampf als Wärmeträger 4 1 Erzeugung der minimal notwendigen Dampfmenge 4 Zusammenfassung 4 Elektrofilter 5 Elektrofilter direkt nach dem Zyklon 5 Elektrofilter nach der Wärmeauskopplung 5	40 41 42 43 44 47 47 47 51 54 55 55 57 57 59
5 PRAK 5.1 Ve 5.1.1 5.1.2 5.1.3 5.2 Zyl 5.3 Wa 5.3.1 5.3.2 5.3.3 5.3.3 5.3.3 5.3.3 5.3.4 5.4 Ele 5.4.1 5.4.2 5.5 Ge	rISCHER TEIL. 4 rfahrensbeschreibung 4 Zyklon – Elektrofilter – Wärmeauskopplung 4 Zyklon – Wärmeauskopplung – Elektrofilter 4 Zyklon – Wärmeauskopplung – Gewebefilter 4 Zyklon – Wärmeauskopplung – Gewebefilter 4 Allgemeines 4 Stickstoff als Wärmeträger 4 Dampf als Wärmeträger 4 1 Erzeugung der minimal notwendigen Dampfmenge 4 Zusammenfassung 4 ktrofilter 5 Elektrofilter direkt nach dem Zyklon 5 Elektrofilter nach der Wärmeauskopplung 5	40 41 42 43 44 47 47 49 51 55 55 55 57 57 59 61

	5.6.1	Massenbilanz – Zyklon	.62
	5.6.2	Massenbilanz – Elektrofilter	63
	5.6.3	Gesamtmassenbilanz	64
6	ÜBERI	LEGUNGEN ZU DEN BENÖTIGTEN WÄRMETAUSCHERN	65
6	.1 Allę	gemeines zur Austauschfläche	65
6	.2 Allę	gemeines zur Medienführung	66
6	.3 Wá	ärmeträger: Stickstoff	67
6	.4 Wá	ärmeträger: Wasser/Dampf	68
	6.4.1	minimale Dampferzeugung	.68
	6.4.2	maximale Dampferzeugung	.69
7	WIRKU	JNGSGRAD UND SPEZIFISCHE WERTE	70
7	.1 Erg	gebnisse	72
8	ERGEI	BNISSE UND DISKUSSION	73
9	ZUSAN	MMENFASSUNG	75
10	VERZE	EICHNISSE	78
1	01 Lite	eratur	78
1	0.2 Tal	bellen	81
1	0.3 Ab	bildungen	82
11		NG	I
- 1	1 1 No	rmdiahta	1
1	1.1 INU 1.2 Mie		н н П
1	1.2 VIS 1.2 Au	alegungedeten Zuklen	. н ц
I	1.3 Au	Berelleleeheltung von 2 Zyklonen	
	11.3.1	Parallelschaltung von 5 Zyklonen	. IV VII
1	1 4 \N/à	armeauskonnlung – Stickstoff als Wärmeträger	X
1	1.5 Wa	ärmeauskopplung – Dampf als Wärmeträger	
	1151	Erzeugung der minimal notwendigen Dampfmenge	
	11.5.2	Erzeugung der maximal möglichen Dampfmenge	XX
1	1.6 Ele	ektrofilter XXV	/
	11.6.1	Elektrofilter (direkt nach dem Zyklon)XXV	VIII
	11.6.	1.1 Sprühdrahtdurchmesser $r_0 = 1,5$ mm	/
	11.6.	1.2 Sprühdrahtdurchmesser $r_0 = 2 \text{ mm}$	хх
	11.6.2	Elektrofilter (nach Wärmeauskopplung – max. Dampferzeugung)XX	XII
	11.6.	2.1 Gasgeschwindigkeit v = 0,8 m/sXX	XII

11.6.2.2 Gasgeschwindigkeit v = 1 m/s	XXXIV
11.7 Wärmeaustauschflächen	xxxvII
11.7.1 Stickstoff als Wärmeträger	XXXVII
11.7.2 Dampf als Wärmeträger	XXXVIII
11.7.2.1 minimale Dampferzeugung	XXXVIII
11.7.2.2 maximale Dampferzeugung	XXXIX
11.8 Wirkungsgrad	XL
11.9 Spezifischer Energieeinsatz	XLI

1 Einleitung

Bisher sind 5 COREX-Anlagen mit unterschiedlichen Produktionskapazitäten an verschiedenen Standorten weltweit errichtet worden. Die Standorte befinden sich in Südafrika (ISCOR Pretoria Works, SALDANHA STEEL), Korea (POSCO Pohang Works, HANBO STEEL) und Indien (JINDAL Vijayanagar Steel) [1]. Eine weitere Anlage befindet sich bei Baoshan.

COREX[®] ist ein Schmelzreduktionsprozess, welcher von der VAI – Gruppe entwickelt wurde. Dieser erlaubt die Produktion von flüssigem Roheisen in Hochofenqualität ohne den Einsatz von Hüttenkoks – der Betrieb einer eigenen Kokerei ist dabei nicht notwendig. Der Prozess wird im Folgenden kurz erläutert.

Abbildung 1: Fließschema einer COREX[®] - Anlage

In den Schmelzvergaser wird über ein Bunkerschleusensystem Kohle direkt zugegeben. Durch Vergasung mit eingeblasenem Sauerstoff entsteht ein hoch CO/H₂-hältiges Reduktionsgas, welches Eisenerz, Sinter oder Pellets zu Eisen reduziert. Aufgrund der in der Kuppel des Einschmelzvergasers vorherrschenden Temperaturen (über 1000°C) dissoziieren höhere Kohlenwasserstoffe zu Kohlenmonoxid und Wasserstoff, unerwünschte Nebenprodukte wie Teere und Phenole werden zerstört.

Das Reduktionsgas, welches den Schmelzvergaser mit hohen Staubgehalten verlässt, wird in einem Zyklon gereinigt; der Staub wird in den Prozess rückgeführt, während das gereinigte Gas auf die optimale Betriebstemperatur (800 – 850°C) gekühlt und in den Reduktionsschacht weitergeführt wird, wo die Erzreduktion abläuft. Das Topgas, welches den Reduktionsschacht verlässt, wird in einem Wäscher gereinigt und gekühlt. Danach ist es als hochwertiges Exportgas verfügbar, welches für verschiedene Anwendungen genutzt werden kann [2].

1.1 Problemstellung

Derzeit erfolgt die Reinigung des Topgases mit einer zweistufigen Nasswäsche (in **Abbildung 2** rot markiert). Durch die Reinigung im Wäscher entstehen große Mengen an Schlamm, welcher entwässert und zum Teil teuer entsorgt werden muss. Die wertvollen Bestandteile, wie beispielsweise Fe_2O_3 (Hämatit), können nur schwer in den Produktionsprozess rückgeführt werden. Weitere Nachteile sind der apparative Aufwand für den Wasserkreislauf sowie die hohen Verbrauchszahlen für Wasser und Energie, sowie die nicht genutzte Abwärme des Topgases.

Abbildung 2: Verfahrensroute mit Nasswäsche

Aus den eben genannten Gründen erscheint eine Trockenentstaubung sinnvoll, da der abgeschiedene Staub viel leichter in den Prozess rückgeführt werden kann. Da für die Weiterverwendung Vorgaben hinsichtlich Staubgehalt und maximaler Korngröße gegeben sind, soll im Rahmen dieser Arbeit überprüft werden, ob der alleinige Einsatz einer trockenen Entstaubung möglich ist. Im Falle eines Nichterreichens der geforderten Reinstaubparameter müsste der Trockenentstaubung ein Wäscher nachgeschaltet werden, wobei dann nur noch geringe Schlammmengen entstehen würden.

Bei einer vollständigen Trockenentstaubung wäre es außerdem möglich, die fühlbare Wärme aus dem Topgas auszukoppeln und in entsprechenden Wärmetauschersystemen zu nutzen, wie z.B. zur Dampferzeugung oder auch zur Vorwärmung von Sauerstoff.

1.2 Zielsetzung

Die Ziele dieser Arbeit beziehen sich nur auf das Topgas, das Reduktionsgas bleibt unberücksichtigt. Im Rahmen dieser Arbeit sollen zwei große Themenkreise, einerseits die Trockenenstaubung und andererseits die Nutzung der fühlbaren Wärme des Topgases, ausführlich behandelt werden. Im Bereich der Staubrückführung werden nur die Staubmengen ermittelt, welche durch die Trockenentstaubung abgeschieden werden. Diese

sollen danach durch eine pneumatische Förderung in den Prozess, z.B. in den Einschmelzvergaser, zurückgeführt werden.

Im Bereich der geplanten Trockenentstaubung wird zuerst untersucht, welche Verfahrensalternativen prinzipiell in Frage kommen. Für diese Alternativen soll ein verfahrenstechnisches Konzept inklusive einer Grundauslegung der Apparate erstellt werden, wobei auch eine Nutzung der fühlbaren Wärme des Topgases zu berücksichtigen ist.

Im ersten Teil der Arbeit wird ein Überblick über die wesentlichen Grundlagen der möglichen Trockenentstaubungsverfahren gegeben sowie der Einfluss verschiedener Auslegungsparameter auf die zu erwartende Abscheideleistung erläutert.

Im praktischen Teil (vgl. Kapitel 5) werden die Ergebnisse der Grundauslegung dargestellt und diskutiert. Auf die Nutzung der fühlbaren Wärme wird hier ebenfalls ausführlich eingegangen.

Dem praktischen Teil vorangestellt ist ein Kapitel über die Ermittlung der benötigten Stoffdaten für die Trockenentstaubung.

2 Zyklonabscheider

Die Zyklonabscheidung ist durch die relativ einfache Konstruktion und das große Anwendungsgebiet ein weit verbreitetes Entstaubungsverfahren. Der Anwendungsbereich reicht von 0,01 bar bis 100 bar und bis zu Temperaturen von 1000°C. Aufgrund des einfachen Aufbaues ohne bewegte Teile ist eine hohe Betriebssicherheit und Verfügbarkeit im Allgemeinen gewährleistet. Lediglich die starke Abhängigkeit der Abscheideleistung von Förderstromschwankungen und die allgemein schlechte Abscheidung von feinen Stäuben wirken sich auf den Einsatz nachteilig aus.

In den nun folgenden Kapiteln werden die Theorie der Zyklonabscheidung und ihre Anwendbarkeit im Bereich der Trockenentstaubung des Topgases erläutert.

2.1 Aufbau und Wirkungsweise

Der Zyklonabscheider, im Weiteren Zyklon genannt, besteht im Wesentlichen aus vier Elementen: dem Einlauf, dem zylindrischen und/oder konischen Abscheideraum, dem Tauchrohr und dem Staubaustrag (siehe **Abbildung 3**).

Die Abscheidung erfolgt unter Ausnutzung der Zentrifugalkräfte, welche in einer Wirbelströmung auftreten. Die Drehströmung selbst wird durch die Geometrie des Einlaufes bestimmt. Die Eigenschaften des Strömungsfeldes, wie Turbulenz und Geschwindigkeitsverteilungen, sowie die Geometrie des Zyklons bestimmen den Abscheidegrad und den Druckverlust.

Abbildung 3: Skizze eines Zyklonabscheiders [3]

Das staubbeladene Gas tritt im oberen Bereich des zylindrischen Körpers entweder tangential oder axial ein. Der zylindrische Körper induziert der Gas-Staub-Mischung ein rotierendes, wirbelndes Strömungsmuster. Zentrifugalkräfte scheiden den Staub aus dem Gas ab und der Staub wandert entlang der Wände des zylindrischen Körpers und des konischen Teils nach unten in den Staubaustrag. Das rotierende Gas wandert ebenfalls nach unten bis zum Abschirmkegel, kehrt dort aber in einer Spirale seine Richtung um und verlässt den Zyklon durch das Tauchrohr (Gasaustritt) [4].

2.2 Strömungsfeld

Das im Zyklon herrschende Strömungsfeld kann in vier Bereiche unterteilt werden, welche nachfolgend näher erklärt werden. Die Erläuterungen stellen nur einen Überblick dar und sind der Literatur entnommen [5].

<u>Einlaufströmung</u>

Die Strömungsführung im Einlaufbereich bestimmt die Drehströmung im Zyklon. Es wird zwischen Tangential- und Axialeinlauf unterschieden. Zur Gruppe der Tangentialeinläufe gehören Schlitzeinlauf, Spiraleinlauf und Wendeleinlauf.

Beim Schlitzeinlauf lassen sich Einlaufbreite (b_E) und Einlaufhöhe (h_E) relativ leicht variieren, darüber hinaus ist diese Einlaufform auch sehr kostengünstig.

Der Spiraleinlauf hat zwar Vorteile hinsichtlich Druckverlust und zentrierter Drehströmung, jedoch neigen stark haftende Stäube zum Absetzen an der horizontalen Einlauffläche.

Der Axialeinlauf zeichnet sich durch geringen Platzbedarf aus und wird daher vorwiegend bei großen Multizyklonanlagen verwendet.

<u>Hauptströmung</u>

Die Umfangsgeschwindigkeit ist die dominierende Geschwindigkeitskomponente. Dem radialen Verlauf dieser Komponente kommt entscheidende Bedeutung zu, da die Zentrifugalkraft die abscheidende Kraft in der Strömung darstellt. Die radiale und axiale Verteilung der Axialgeschwindigkeitskomponente und die damit verbundene Radialgeschwindigkeitskomponente legen die Verweilzeit der Partikel im Zyklon fest.

Grenzschichtströmung

Je größer die Gutbeladung ist, desto stärker wird die Abbremsung im konischen Teil des Zyklons und desto größer wird der in die Grenzschicht einfließende Volumenstrom. Dieser Mechanismus kann bereichsweise die Abscheidung bei zunehmender Gutbeladung verbessern, da mehr Partikel dem Bunker zugeführt werden.

<u>Tauchrohrströmung</u>

Die Geometrie des Tauchrohres beeinflusst das Strömungsfeld und damit die Abscheidung entscheidend. Die am Einlauf des Tauchrohres vorliegende Strömung bestimmt die Strömung im gesamten Bereich unterhalb des Tauchrohres. Vom Tauchrohrdurchmesser hängen die Eigenschaften des Strömungswirbels, aber auch die axial auftretende Umfangsgeschwindigkeit ab. Dementsprechend bestimmt das Tauchrohr auch wesentlich den Druckverlust des Zyklons.

2.3 Abscheidung

Die Abscheidung der Partikel beruht auf der Überlagerung von nach außen gerichteter Zentrifugalkraft und nach innen gerichteter Strömung. Je nach Größe des Partikels überwiegt eine der beiden Kräfte. Jene Partikelgröße, bei der ein Gleichgewicht zwischen den beiden Kräften herrscht, wird als Grenzkorndurchmesser (x_{GR}) oder Trennkorn (x_{T}) bezeichnet.

Im Idealfall einer Abscheidung werden große Partikel ($x > x_{GR}$) durch die Zentrifugalkraft nach außen zur Wand geschleudert und dann als Strähne der Wand entlang nach unten in den Staubaustrag (Staubsammelbehälter) transportiert. Bei kleinen Partikeln ($x < x_{GR}$) überwiegt die nach innen gerichtete Strömung und sie werden in Richtung Tauchrohr transportiert. Dort werden sie mit dem Gasstrom ausgetragen. Es ergibt sich eine Abscheidekurve, die in **Abbildung 4** als durchgehende blaue Linie dargestellt ist.

Abbildung 4: Abscheidekurven [6]

In der Praxis erfolgt die Abscheidung jedoch nicht so exakt – aufgrund von Partikelkollisionen oder Partikelaggregation werden auch kleinere Partikel ($x < x_T$) gemeinsam mit den großen Partikeln abgeschieden. Auf der anderen Seite können auch große Partikel ($x > x_T$) mit dem Reingasstrom ausgetragen werden, da sie durch Wirbel oder Prall in den inneren Wirbel getragen werden. Dadurch ergibt sich die in **Abbildung 4** rot strichliert dargestellte Fraktionsabscheidekurve.

Aufgrund der Tatsache, dass der Großteil der Partikel bereits im Einlaufbereich an die Wand geschleudert wird, sind besonders bei abrasiven Stäuben große Verschleißspuren im Einlaufbereich zu beobachten [7].

2.4 Abscheideverhalten

Im Rahmen dieses Kapitels wird der Einfluss verschiedener Parameter, wie Geometrie, Gasdurchsatz und Partikelkonzentration, auf die Abscheideleistung sowie deren Ursachen für die veränderte Abscheideleistung kurz dargestellt [8].

2.4.1 Einfluss der Geometrie

Die Geometrie des Zyklons hat einen großen Einfluss auf das Abscheideverhalten, da diese die verschiedenen Geschwindigkeitsverläufe und damit das Strömungsfeld stark beeinflusst, welches wiederum für die Ausbildung der Zentrifugalkraft und der nach innen gerichteten Strömung entscheidend ist.

<u>Einlaufgeometrie</u>

Bei einer Verringerung der Einlaufbreite (b_E) oder Einlaufhöhe (h_E) verschiebt sich die Trenngradkurve zu kleineren Partikeldurchmessern, d. h. die Partikelabscheidung wird besser. Dies lässt sich dadurch erklären, dass durch die kleineren Querschnitte höhere Umfangsgeschwindigkeiten erreicht werden, welche sich direkt auf die herrschenden Zentrifugalkräfte auswirken.

Auch das Verhältnis von Einlaufbreite (b_E) zu Einlaufhöhe (h_E) bei einer bestimmten Einlaufsquerschnittsfläche hat Auswirkungen auf die Partikelabscheidung. Ein kleines Verhältnis ist besser als ein großes. Ein schmaler längerer Einlaufquerschnitt verursacht einen größeren Drehimpulsstrom mit einer besseren Stabilisierung und Zentrierung der Wirbelströmung.

Tauchrohrgeometrie

Eine Verbesserung des Trenngrades kann auch mit einer Verringerung des Tauchrohrdurchmessers erzielt werden. Dies lässt sich dadurch begründen, dass die Partikel auf ihrem Weg zum Tauchrohr durch Zonen höherer Zentrifugalkraft transportiert werden.

Konusneigungswinkel

Einerseits wird bei Vergrößerung des Konusneigungswinkels die Umfangsgeschwindigkeit verringert, weil eine größere Wandoberfläche und daraus resultierend ein höherer Reibungsverlust entsteht. Dies führt insbesondere bei geringen Zyklonhöhen zu einer Verringerung der Zentrifugalkräfte, wodurch sich die Abscheidung verschlechtert.

11

Andererseits resultiert aus einem größeren Konusneigungswinkel ein größeres Abscheidevolumen, was zu einer längeren Verweilzeit der Partikel führt und daher steht mehr Zeit für den Transport zur Wand zur Verfügung. Der Einfluss des Konusneigungswinkels bei konstanter Zyklonhöhe auf die Trenngradkurve ist vernachlässigbar, da sich diese Effekte überlagern.

<u>Zyklonhöhe</u>

Für verschiedene Zyklonhöhen lassen sich keine Unterschiede in den Trenngradkurven feststellen. Bei größeren Höhen kommt es zu einer Verringerung der Umfangsgeschwindigkeit, was zu einer schlechteren Abscheidung führt. Dem entgegen steht die längere Verweilzeit im Zyklon aufgrund des größeren Abscheidevolumens.

In der Praxis heben sich diese beiden Effekte nahezu auf – bei sehr langen Zyklonen nimmt die Umfangsgeschwindigkeit aufgrund der großen Reibungsverluste zwischen Gas und Wand stark ab und der Wirbel endet bereits im Abscheideraum an der Konuswand. Bereits abgeschiedene Partikel werden von der Wand aufgewirbelt und mit dem Reingasstrom ausgetragen [9].

<u>Staubaustrag</u>

Das Abscheideverhalten wird oft dadurch verschlechtert, dass bereits abgeschiedene Partikel aus dem Staubsammelbehälter oder von der Konuswand aufgewirbelt werden und ins Reingas gelangen. Dies wird mit dem Einbau eines Abschirmkegels (Apex) verhindert. Man erzielt damit einen besseren Trenngrad, wobei durch Wahl des Abstandes zwischen unterem Konusende und Apexkegel eine Optimierung des Trenngrades erreicht werden kann.

2.4.2 Einfluss des Gasdurchsatzes

Mit zunehmendem Gasdurchsatz wird der Trenngrad zu kleineren Trenngrenzen hin verschoben. Die dadurch verbesserte Abscheideleistung beruht auf größeren Zentrifugalkräften, welche durch höhere Umfangsgeschwindigkeiten verursacht werden [10].

2.4.3 Einfluss der Partikelkonzentration

Bei steigender Partikelkonzentration nimmt die Abscheideleistung zu, obwohl die Zentrifugalbeschleunigung, welche für die Partikelabscheidung im Wirbel verantwortlich ist, abnimmt. Bei höheren Partikelkonzentrationen werden zusätzliche Abscheidemechanismen wie Partikelagglomeration und Grenzbeladung wichtig, um die Abscheidung im Wirbel zu ergänzen.

Es kann bei höheren Partikelkonzentrationen aber auch zu einer Zerkleinerung von Agglomeraten kommen, wodurch der Anteil feiner Staubpartikel zunimmt. In diesem Fall verschlechtert sich die Abscheideleistung des Zyklons.

2.5 Berechnung der Gesamtabscheideleistung

Die Berechnung der Gesamtabscheideleistung erfolgt mit Hilfe von Modellen, da die komplexen Vorgang (Strömungsfeld, Partikelabscheidung einen deterministische Partikelbewegung, zufällige Partikelbewegung) darstellt. In den Modellen werden verschiedene vereinfachende Annahmen getroffen, die die Berechnung der Gesamtabscheideleistung eines Zyklons zugänglich machen. Eine grobe Einteilung der Modelle ergibt [11]:

- Trennflächenmodelle (z. B. Barth, Muschelknautz, Stairmand)
- Verweilzeitmodelle (z.B. Leith/Licht)
- Kombiniertes Trennflächenverweilzeitmodell (z.B. Dietz)
- Diffusionsmodelle
- Agglomerationsmodelle
- Partikelbahnmodelle
- Empirische Modelle

Abbildung 5: Vergleich des anhand verschiedener mathematischer Modelle berechneten Fraktionsabscheidegrades [8]

Der Einfluss der Partikelkonzentration wird mit Hilfe der Grenzbeladungshypothese oder der agglomerationsbedingten Partikelabscheidung erfasst.

Bei der agglomerationsbedingten Partikelabscheidung geht man von dem Grundgedanken aus, dass Partikel, welche aufgrund ihrer geringen Masse im Zyklon nicht abgeschieden werden, während ihrer Verweilzeit im Zyklon mit größeren Partikeln agglomerieren und dann mit diesen gemeinsam aus dem Gas abgeschieden werden.

Da die Zyklonauslegung im vorliegenden Fall nach dem Modell von Barth/Muschelknautz erfolgt, wird die agglomerationsbedingte Partikelabscheidung hier nicht weiter ausgeführt und daher auf die entsprechende Literatur verwiesen [12].

Nach dem Modell von Barth/Muschelknautz treten bei der Partikelabscheidung im Zyklon zwei verschiedene Abscheidemechanismen auf:

- Abscheidung im Wirbel (Grenzkorn-Gleichgewichtsbetrachtung)
- Abscheidung der Partikel durch Bildung von Strähnen im Einlaufbereich bei Überschreiten der Grenzbeladung (Grenzbeladungshypothese)

Die beiden Mechanismen werden nachfolgend näher erläutert [13].

2.5.1 Grenzkorngleichgewichtsbetrachtung

Bei diesem Ansatz zur Beschreibung der Wirbelabscheidung wird vereinfachend angenommen, dass sich die Partikel in einer ebenen Wirbelströmung bewegen. Auf jedes Partikel wirken die Widerstandskraft des Fluids und die um die Auftriebskraft verminderte Zentrifugalkraft. Die vom Fluid ausgeübte Widerstandskraft wirkt nach innen zum Tauchrohr, während die nach außen gerichtete Zentrifugalkraft die Partikelabscheidung bewirkt.

Das Grenzkorn bzw. der Grenzkorndurchmesser errechnet sich nach **Gleichung (1)**.

$$x_{GR} = \sqrt{\frac{18 \cdot \eta \cdot v_r(r_i) \cdot r_i}{(\rho_P - \rho_F) \cdot v_{\varphi i}^2}}$$
(1)

- η ... Gasviskosität (im Betriebszustand) [Pas]
- $v_r(r_i)$... Radialgeschwindigkeit am Tauchrohrradius [m/s]
- *r_i* ... *Tauchrohrradius* [*m*]
- ρ_P ... Partikeldichte des Staubes [kg/m³]
- ρ_F ... Dichte des Fluids (Gas im Betriebszustand) [kg/m³]
- $v_{\varphi i}$... Umfangsgeschwindigkeit am Tauchrohrradius [m/s]

Mit Hilfe von vereinfachenden Annahmen hinsichtlich des Strömungsfeldes können die Umfangsgeschwindigkeiten und Radialgeschwindigkeiten berechnet werden. Die benötigten Formeln sowie die üblichen Geometrieverhältnisse sind der einschlägigen Literatur zu entnehmen [14].

Um den Einfluss der Staubbeladung (Zunahme der Abscheidung mit wachsender Partikelkonzentration) zu erfassen, erweiterte Muschelknautz sein Modell mit der Einführung der Grenzbeladung.

2.5.2 Grenzbeladungshypothese

Hierbei wird von der Annahme ausgegangen, dass die Hauptmasse des Staubes unmittelbar nach Eintritt in den Zyklon ausgeschleudert und als Strähne entlang der Wand nach unten transportiert wird. Das Gas kann nur bis zu einer gewissen Grenzbeladung die Partikel in Schwebe halten; der darüberliegende Anteil fällt infolge Zentrifugalkraft als Strähne aus. Dieses Ausfallen erfolgt unabhängig vom Partikeldurchmesser. Das Modell wird gegenüber großen Partikeln abgegrenzt (Beladung B > 0,05), die Berechnung der Abscheidung soll ohne deren Anteil durchgeführt werden.

$$B_{GR} = \frac{\lambda \cdot \eta \cdot \sqrt{r_A \cdot r_i}}{\left(1 - \frac{r_i}{r_A}\right) \cdot \rho_P \cdot x_{50,3}^2 \cdot \sqrt{v_{\varphi_A} \cdot v_{\varphi_i}}}$$
(2)

- B_{GR} ... Grenzbeladung [-]
- λ ... Wandreibungsbeiwert [-]
- η ... Viskosität des Gases (im Betriebszustand) [Pas]
- r_A ... Außenradius des Zyklons [m]
- r_i ... Tauchrohrradius [m]
- ρ_P ... Partikeldichte des Staubes [kg/m³]
- $x_{50,3}$... Medianwert der Aufgabe-Massensummenverteilung $Q_3(x)$ [m]
- $v_{\phi A}$... Umfangsgeschwindigkeit am Außenradius [m/s]
- $v_{\varphi i}$... Umfangsgeschwindigkeit am Tauchrohrradius [m/s]

2.5.3 Gesamtabscheidegrad

Bei der Berechnung des Gesamtabscheidegrades müssen zwei Fälle unterschieden werden.

<u>**1. Fall:**</u> $B_{Aufgabe} < B_{GR}$

In diesem Fall entspricht der Gesamtabscheidegrad (E) des Zyklons dem Abscheidegrad im Wirbel des Zyklons.

$$E = E_{Wirbel} \tag{3}$$

$$E = \sum \frac{T(x) \cdot \Delta Q_3(x)}{100} \tag{4}$$

<u>**2. Fall:**</u> $B_{Aufgabe} > B_{GR}$

In diesem Fall setzt sich der Gesamtabscheidegrad (E) aus dem Abscheidegrad im Einlauf $(E_{Einlauf})$ und der Abscheidung im Wirbel (E_{Wirbel}) zusammen.

$$E = E_{Wirbel} + E_{Einlauf}$$
⁽⁵⁾

$$E = 1 - \frac{B_{GR}}{B} + \frac{B_{GR}}{B} \cdot \sum \frac{T(x) \cdot \Delta Q_3(x)}{100}$$
(6)

$$E$$
...Abscheidegrad des Zyklons [%] B_{GR} ...Grenzbeladung [-] B ...Beladung (Aufgabe) [-] $T(x)$...Fraktionsabscheidegrad [%] $\Delta Q_3(x)$...Korngrößenverteilung (Aufgabe) [%]

2.6 Druckverlust

Die Berechnung des Druckverlustes erfolgt mit Hilfe des Ansatzes von Muschelknautz, der den Gesamtdruckverlust in mehrere Teildruckverluste aufteilt. Der Gesamtdruckverlust (Δp) umfasst den Teildruckverlust der Einlaufströmung, der Hauptströmung und der Tauchrohrströmung.

$$\Delta p = \frac{\rho}{2} \cdot v_i^2 \cdot \left(\zeta_{EA} + \zeta_{AI} + \zeta_{IM}\right) \tag{7}$$

ρ	 Dichte des Fluids (Gas – im Betriebszustand) [kg/m ³]
v_i	 Tauchrohrgeschwindigkeit [m/s]
ζ_{EA}	 Druckverlustbeiwert der Einlaufströmung [-]
ζ_{AI}	 Druckverlustbeiwert der Hauptströmung [-]
ζ_{IM}	 Druckverlustbeiwert der Tauchrohrströmung [-]

Druckverlustbeiwert der Einlaufströmung (ζ_{EA})

Für die verschiedenen Einlaufgeometrien existieren Näherungsformeln mit deren Hilfe der Druckverlustbeiwert berechnet werden kann (vgl. dazu [15]). Der Schlitzeinlauf wird als verlustfrei angenommen.

<u>Druckverlustbeiwert der Hauptströmung (ζ_{Al})</u>

Der Druckverlust zwischen Außenradius (r_A) und Tauchrohrradius (r_i) kann mit einem modifizierten Bernoulli-Ansatz berechnet werden. Daraus ergibt sich:

$$\zeta_{AI} = U^2 \cdot \frac{r_i}{r_A} \cdot \left(\frac{1}{1 - \frac{U \cdot \lambda \cdot h}{r_i}}\right)$$
(8)

wobei

$$U = \frac{1}{\frac{F_E \cdot \alpha \cdot r_i}{F_i \cdot r_E} + \frac{\lambda \cdot h}{r_i}}$$
(9)

- r_i ... Tauchrohrradius [m]
- r_A ... Außenradius [m]
- λ ... Wandreibungsbeiwert [-]
- h ... Zyklonhöhe [m]
- F_E ... Einlaufquerschnittsfläche [m²]
- F_i ... Tauchrohrquerschnittsfläche $[m^2]$
- α ... Einlaufbeiwert [-]
- r_E ... mittlerer Einlaufradius [m]

Druckverlustbeiwert der Tauchrohrströmung (ζ_{IM})

Der Druckverlust am reingasseitig gewählten Messquerschnitt kann ebenfalls mit einem modifizierten Bernoulli-Ansatz berechnet werden. Dabei ergibt sich für den Druckverlustbeiwert bei nicht zu geringen Reynoldszahlen:

$$\zeta_{IM} = 2 + 3 \cdot U^{\frac{4}{3}} + U^2 \tag{10}$$

Die höhere Gasgeschwindigkeit bei kleineren Einlaufquerschnitten ist mit einem Anstieg des Druckverlustes verbunden. Auch die Verringerung des Tauchrohrdurchmessers führt zu einem erhöhten Druckverlust. Bei konstanter Zyklonhöhe und zunehmendem Konusneigungswinkel, aber auch bei konstantem Konusneigungswinkel und zunehmender Zyklonhöhe, nimmt der Gesamtdruckverlust ab [16], [17].

Der Druckverlust nimmt mit steigender Partikelkonzentration ab, weil die Umfangsgeschwindigkeit des Gases reduziert wird und dadurch der Druckverlust im Tauchrohr stark abnimmt. Die Zunahme des Druckverlustes im Abscheideraum ist im Verhältnis dazu gering [18].

2.7 Schaltung von mehreren Zyklonen

2.7.1 Reihenschaltung

Die Reihenschaltung bringt nur geringe Verbesserungen in der Abscheideleistung, erhöht jedoch stark den Druckverlust. Eine Reihenschaltung ist daher nur für sehr hohe Staubbeladungen (Beladung > 1) oder stark schwankende Eintrittsbeladungen sinnvoll. Bei einer Reihenschaltung ist es möglich, verschiedene Zyklontypen zu kombinieren. Beispielsweise kann in einer ersten Stufe ein Zyklon mit einem hohen Durchmesser-Höhe-Verhältnis für die hohen Staubbeladungen verwendet werden, während in der zweiten Stufe ein Zyklon mit einem kleinen Durchmesser-Höhe-Verhältnis für eine hohe Abscheideleistung installiert wird.

2.7.2 Parallelschaltung

Eine Parallelschaltung von mehreren gleichen Zyklonen wird bei hohen Gasdurchsätzen bzw. kleinem Grenzkorndurchmesser angewandt. Der Gasvolumenstrom verteilt sich auf die Einzelzyklone, wodurch es zu einer Verbesserung der Abscheideleistung bei gleich bleibendem Druckverlust kommt. Die Schwierigkeit einer Parallelschaltung besteht darin, dass eine möglichst gleichmäßige Verteilung auf die Einzelzyklone erreicht werden muss, um den Abscheidegrad des Einzelzyklons auch in der Parallelschaltung zu erzielen.

3 Elektrofilter

Im Elektrofilter können auch sehr große Volumenströme mit sehr feinen Partikeln entstaubt werden. Der Elektrofilter basiert auf elektrostatischen Kräften, die nur auf die vorhandenen Partikel und nicht auf das Medium wirken – es können Abscheideleistungen von über 90% erreicht werden, wobei der Druckverlust vernachlässigbar ist [19].

Ein entscheidender Vorteil des Elektrofilters besteht im großen Anwendungsbereich sowohl hinsichtlich der Gastemperaturen als auch der Abscheideleistung. Ebenso ist eine Anwendung bei höheren Drücken möglich, wenn der Elektrofilter in einem Druckgehäuse installiert wird [20].

Gase sind nahezu ideale elektrische Isolatoren – erhöht man aber die Potentialdifferenz über ein kritisches Maß, kommt es zum Übergang vom nicht leitenden in den leitenden Zustand. Diesen Übergang bezeichnet man als Durchbruch oder Gasentladung. Erscheinungsformen der Gasentladung sind die Funken-, Lichtbogen-, Korona- und Glimmentladung.

In der industriellen Entstaubung werden hauptsächlich Plattenelektrofilter mit negativer Korona eingesetzt.

3.1 Wirkungsweise

Die Abscheidung der Partikel im Elektrofilter erfolgt in 3 Schritten:

- Aufladung der Partikel (die vorhandene, bipolare Ladung ist für die Abscheidung zu gering)
- Abscheidung der geladenen Partikel im elektrischen Feld
- Entfernung der abgeschiedenen Partikel aus dem durchströmten Abscheideraum

Die Aufladung der Partikel erfolgt durch Ladungsträger, die in einer Koronaentladung erzeugt werden. Bei der Anwendung von Koronaströmen wird zwischen einem dünnen Draht (Sprühelektrode) und einer geerdeten Platte (Niederschlagselektrode) ein elektrisches Feld aufgebaut. Zur Aufrechterhaltung des elektrischen Feldes wird an die Sprühelektrode eine Hochspannung angelegt.

Abbildung 6: Querschnittsskizze eines Elektrofilters [21]

3.1.1 Erzeugung der negativen Korona

Die Erzeugung der Ladungsträger erfolgt durch Stoßionisation – im Gas vorhandene Elektronen werden stark zur Niederschlagselektrode hin beschleunigt und können dadurch beim Zusammenprall mit neutralen Gasmolekülen aus diesen Elektronen herausschlagen. Dadurch entstehen weitere Elektronen und positive Gasionen. Die Entstehung der positiven Gasionen kann nur bis zu einem gewissen Abstand von der Sprühelektrode erfolgen, da nur in diesem Bereich die Ionisierungsenergie entsprechend groß ist.

Für die Aufrechterhaltung der Korona-Entladung (selbständige Gasentladung) müssen weitere Elektronen (Ladungsträger) erzeugt werden – einerseits dadurch, dass positive Gasionen zur Sprühelektrode beschleunigt werden und dort weitere Elektronen herausschlagen, andererseits durch Lichtemission der Gasmoleküle und Gasionen [22].

Die positive Korona ist in Bezug auf die Abscheidung der negativen Korona unterlegen – daher wird in der industriellen Entstaubung fast ausnahmslos die negative Korona angewendet. Dies gilt für Luft und alle industriellen Gase, die einen gewissen Anteil an elektronegativen Gasen enthalten. Zu den elektronegativen Gasen zählen Sauerstoff, Wasserdampf, Kohlendioxid und Schwefeldioxid [23].

3.1.2 Abscheidung der Partikel

Die Abscheidung der Partikel erfolgt dadurch, dass die geladenen Partikel durch den Einfluss des elektrischen Feldes zur Niederschlagselektrode transportiert werden. Diese Transportgeschwindigkeit wird im Allgemeinen mit Wanderungsgeschwindigkeit bezeichnet. Als effektive Wanderungsgeschwindigkeit (w_E) bezeichnet man jene Geschwindigkeit, die man aus dem Vergleich der Staubkonzentrationen von Roh- und Reingas erhält. Dabei wird der abgeschiedenen Staubmenge ein Partikelstrom der Geschwindigkeit w_E(d_P) zugeordnet.

3.2 Auslegung des Elektrofilters

Die Aufgabe bei der Elektrofilterauslegung besteht darin, für gegebene Partikelkorngrößenverteilung, Gasvolumenstrom und Abscheideleistung die Filterabmessungen – Querschnittsfläche, Niederschlagsfläche, Länge – zu bestimmen.

Der Fraktionsabscheidegrad eines Elektrofilters kann mit Hilfe der Deutsch-Gleichung (siehe **Gleichung (11)**) berechnet werden:

$$T(x) = 1 - e^{\left(-\frac{A \cdot w(x)}{V}\right)}$$
(11)

T(x)Fraktionsabscheidegrad [-]A... $Fläche der Niederschlagselektroden [m^2]$ w(x)...Wanderungsgeschwindigkeit der Partikel [m/s] \dot{V} ... $Gasvolumenstrom [m^3/s]$

Das Verhältnis von Niederschlagsfläche zu Volumenstrom wird auch als spezifische Niederschlagsfläche bezeichnet. Grundsätzlich ist zu sagen, dass sich hohe Wanderungsgeschwindigkeiten und große Filterlängen positiv auswirken, während große Gassenbreiten und hohe Gasgeschwindigkeiten ungünstig sind.

Die Formeln für die Auslegung des Elektrofilters sind der einschlägigen Literatur entnommen; praktische Werte für die Auslegung sind in Kapitel 3.3.5 angeführt. Die angeführten Formeln beziehen sich auf einen Plattenelektrofilter.

Um die Koronaeinsatzspannung (U₀) berechnen zu können, benötigt man die Koronaeinsatzfeldstärke (E₀) – diese kann mit Hilfe von **Gleichung (12)** und **Gleichung (13)** berechnet werden [24].

$$E_0 = 30 \cdot \delta + 9 \cdot \sqrt{\delta/r_0} \tag{12}$$

- E_0 ... Koronaeinsatzfeldstärke [kV/cm]
- δ ... relative Luftdichte [-]
- r_0 ... Sprühdrahtdurchmesser [cm]

$$\delta = \frac{T_0 \cdot p}{p_0 \cdot T} \tag{13}$$

- $T_0 \quad \dots \quad Standardtemperatur [K] 293 K$
- p ... Betriebsdruck [Pa]
- T ... Betriebstemperatur [K]
- p_0 ... Standarddruck [Pa] 101325 Pa

Bei Kenntnis der Koronaeinsatzfeldstärke kann somit auch die Koronaeinsatzspannung (U₀) berechnet werden (**Gleichung (14)** - [25]).

$$U_0 = r_0 \cdot E_0 \cdot \ln \frac{2 \cdot b}{r_0 \cdot \pi} \tag{14}$$

$$U_0$$
...Koronaeinsatzspannung $[kg^{0.5}m^{0.5}s^{-1}]$ r_0 ...Sprühdrahtdurchmesser $[m]$ b...Abstand zwischen Sprühelektrode und Niederschlagselektrode $[m]$

Für die Umrechnung in elektrostatische SI-Einheiten gilt:

$$1 \ kV = 1,05^{*}10^{-2} \ [kg^{0,5}m^{0,5}s^{-1}]$$
$$1 \ A = 9,49^{*}10^{4} \ [kg^{0,5}m^{1,5}s^{-2}]$$

Der spezifische Koronastrom beträgt für kleine und mittlere Stromstärken, welche in den meisten praktischen Ausführungsformen gegeben sind [26]:

$$I = \frac{K \cdot U \cdot (U - U_0)}{b^2 \cdot \ln\left(\frac{4 \cdot b}{r_0 \cdot \pi}\right)}$$
(15)

I...spezifischer Koronastrom
$$[kg^{0.5}m^{0.5}s^{-2}]$$
K...Ionenbeweglichkeit $[m^{1.5}kg^{-0.5}]$ U...Betriebsspannung $[kg^{0.5}m^{0.5}s^{-1}]$

Die Betriebsspannung ergibt sich aus der Durchschlagsspannung (U_{max}) – für die Durchschlagsspannung sind Werte in der Größenordnung von 6 bis 8 kV/cm üblich.

Die Abscheidefeldstärke (E_P) kann für relativ große Stromstärken und Punkte, die genügend weit vom Sprühdraht entfernt liegen, näherungsweise mit Hilfe von **Gleichung (16)** bestimmt werden [27].

$$E_p = \sqrt{\frac{2 \cdot I}{K}} \tag{16}$$

Neben der Abscheidefeldstärke (E_P) wird auch noch die Aufladefeldstärke (E_A) benötigt. Sie kann über die mittlere Feldstärke in guter Näherung ermittelt werden [28], [29]. Die Berechnung erfolgt durch **Gleichung (17)**:

$$E_A = \frac{U}{b} \tag{17}$$

Die Teilchenwanderungsgeschwindigkeit w(x) kann nun mittels **Gleichung (18)** berechnet werden [30]:

$$w(x) = \frac{E_A \cdot E_P \cdot x}{4 \cdot \pi \cdot \eta}$$
(18)

E_A	 Abscheidefeldstärke [kg ^{<math>0,5m$0,5s-1$]</math>}
E_P	 Aufladefeldstärke [kg ^{$0,5$} m ^{$0,5$} s ⁻¹]
x	 Partikeldurchmesser [m]
η	 dynamische Viskosität des Gases (Betrieb) [Pas]

Wie bereits zu Beginn dieses Kapitels erläutert, wird das Verhältnis von Abscheidefläche zu Volumenstrom als spezifische Niederschlagsfläche bezeichnet. Die spezifische Niederschlagsfläche berechnet sich nach folgender Gleichung [31]:

$$A_{spezifisch} = \frac{L}{b \cdot v_{Gas}}$$
(19)

3.3 Einflüsse auf die Abscheideleistung des Elektrofilters

Es gibt verschiedenste Einflussfaktoren auf die Abscheideleistung des Elektrofilters, wobei hier nur auf einige wichtige Faktoren eingegangen wird – der Einfluss dieser Parameter wurde der einschlägigen Literatur [32] entnommen, weitere Literaturstellen sind entsprechend gekennzeichnet.

3.3.1 Elektrischer Staubwiderstand

Die auf der Niederschlagselektrode abgeschiedenen Partikel bilden eine Staubschicht mit hoher Porosität – die Schichtdicken können bis zu 10 mm erreichen. Diese Staubschicht wird durch verschiedenste Haftkräfte an der Niederschlagselektrode festgehalten. Von entscheidender Bedeutung dabei ist das elektrische Verhalten der Staubschicht, das durch den spezifischen elektrischen Widerstand charakterisiert wird. Für die Abscheidung günstig ist ein spezifischer Staubwiderstand von 10^4 bis 10^{11} Ω cm.

Partikel mit geringerem Widerstand geben ihre Ladung an der Niederschlagselektrode sehr schnell ab, wodurch die Haftung verringert wird. Es kann sogar zu einer Abstoßung der Partikel kommen, wenn die Partikel auf das Potential der Niederschlagselektrode umgeladen werden. Dies ist beispielsweise bei Koksteilchen der Fall.

Bei einem höheren Widerstand fließt die Ladung nicht ab und es baut sich an der Niederschlagselektrode ein Feld auf, das die Potentialdifferenz im Abscheideraum verringert. Es kommt dadurch zu einer Verringerung des Koronastromes und damit auch zu einer Verringerung der Abscheideleistung. In der Staubschicht treten elektrische Überschläge auf, welche als Rücksprühen bezeichnet werden. Aufgrund der Überschläge muss die angelegte Spannung verringert werden – dies führt wiederum zu einer Verschlechterung der Abscheideleistung.

Der elektrische Staubwiderstand hängt neben der Staubzusammensetzung auch von der Gaszusammensetzung und der Temperatur ab. Bei zunehmenden Temperaturen kommt es zunächst zu einer Zunahme des Widerstandes, weil durch Desorption die Leitfähigkeit abnimmt; ab einer bestimmten Temperatur nimmt aber der Widerstand wieder ab, da in diesem Bereich die Volumenleitfähigkeit den Widerstand bestimmt – diese nimmt mit steigender Temperatur zu.

Der elektrische Widerstand kann durch Zugabe von bestimmten Verbindungen, wie beispielsweise H_2O , SO_3 , NH_3 , in einen günstigeren Bereich gebracht werden.

3.3.2 Einfluss der Geometrie

3.3.2.1 Einfluss der Gassenbreite

Bei einer Vergrößerung der Gassenbreite (Abstand zwischen zwei Niederschlagselektroden) kommt es zu einer Erhöhung der effektiven Wanderungsgeschwindigkeit sowie zu einer Verbreiterung des stabilen Arbeitsbereiches des Elektrofilters. In der Praxis haben sich Gassenabstände von 400 bis 600 mm bewährt.

3.3.2.2 Sprühdrahtdurchmesser

Eine Vergrößerung des Sprühdrahtdurchmessers führt zu einer Verringerung der Abscheideleistung. Durch den größeren Sprühdrahtdurchmesser erhöht sich die Koronaeinsatzspannung und es resultieren daraus niedrigere Feldintensitäten auf der Drahtoberfläche. Erfolgt die Vergrößerung des Sprühdrahtdurchmessers, um eine bestimmte mittlere Stromdichte auf der Niederschlagselektrode aufrecht zu erhalten, muss gleichzeitig auch die angelegte Spannung erhöht werden [33].

3.3.2.3 Draht – Platten – Abstand

Die Verringerung des Draht-Platten-Abstandes (Abstand zwischen Sprühelektrode und Niederschlagselektrode) führt zu einer Verringerung der Koronaeinsatzspannung (corona onset voltage). Obwohl die angelegte Spannung klein ist, verändert sich der Koronastrom sehr stark – bei steigender angelegter Spannung kommt es zu Überschlägen aufgrund der unausgeglichenen Raumladungsdichten. Bei einer Vergrößerung des Draht-Platten-Abstandes sinkt die Abscheideleistung [33].

3.3.3 Einfluss der Gasgeschwindigkeit

Mit steigender Gasgeschwindigkeit kommt es auch zu einer Zunahme der effektiven Wanderungsgeschwindigkeit. Dem ist entgegen zu halten, dass bei höheren Gasgeschwindigkeiten die Gefahr einer Wiederaufwirbelung von bereits abgeschiedenen Partikeln zunimmt.

Die Abscheideleistung sinkt bei steigender Gasgeschwindigkeit, jedoch nimmt sie mit zunehmender Partikelgröße und steigender Betriebsspannung zu [34].

3.3.4 Einfluss der Partikel

Während des Betriebs des Elektrofilters kommt es zu Staubansätzen sowohl auf den Sprühdrähten als auch den Niederschlagselektroden. Staubansätze an den Sprühelektroden beeinflussen die Koronaentladung auf zwei Arten:

- dünne Ansätze lassen Zonen hoher Feldstärke entstehen, die dazu neigen, bei niedrigen Spannungen zu sprühen. Die gesamte Strom-Spannungs-Kurve wird in Richtung geringerer Spannungen verschoben.
- bei starken Ansätzen besteht die Tendenz, dass der Filterstrom unterdrückt wird. Ursache dafür ist die Vergrößerung des effektiven Drahtdurchmessers und der Spannungsabfall über der Staubschicht.

Ansätze an den Sprühelektroden treten zumeist dann auf, wenn im Gas sehr feine Staubteilchen enthalten sind. Enthält das Gas noch Anteile an groben Partikeln, reinigen diese aufgrund ihrer Reibungswirkung die Sprühdrähte recht gut ab. Ist dies nicht der Fall, müssen entsprechende Drahtreinigungseinrichtungen (Klopfwerke) in den Elektrofilter eingebaut werden [35].

3.3.5 Praktische Werte für die Auslegung

Die in **Tabelle 1** angeführten Werte dienen als Richtwerte und repräsentieren die praktischen Erfahrungen verschiedenster Elektrofilterauslegungen. Bei der Auslegung ist zu beachten, dass der Abstand zwischen zwei Sprühdrähten mindestens dem doppelten Plattenabstand entsprechen sollte, da der spezifische Koronastrom sonst zu stark unterdrückt werden kann.

Tabelle 1: Praktische	werte fur die	Ausiegung	von Elek	trofiltern	
					-

mittlere Gasgeschwindigkeit	0,5 – 2,5 [m/s]
Druckverlust	20 – 100 [Pa]
Spannung	20 – 70 [kV]
Strom pro Niederschlagsflächeneinheit	0,1 – 0,5 [mA/m²]
spezifischer Energiebedarf	0,05 – 2 [kWh/1000 m³]
Abstand Sprühelektrode – Niederschlagselektrode	100 – 300 [mm]
Abstand Sprühelektrode – Sprühelektrode	300 – 500 [mm]

3.4 Bauformen

3.4.1 Elektrofilter

Elektrofilter werden als Röhrenfilter oder Plattenfilter ausgeführt, wobei für die industrielle Entstaubung fast ausschließlich Plattenfilter in einstufiger Ausführung verwendet werden. Daher wird nachfolgend nur der Plattenelektrofilter beschrieben [36].

Plattenelektrofilter können trocken oder nass betrieben werden – bei Nasselektrofiltern erfolgt die Abreinigung durch Besprühen der Platten mit Wasser, dabei fließt der Staub als Schlamm von den Platten ab. Im trockenen Betrieb wird die abgeschiedene Staubschicht an der Niederschlagselektrode durch Klopfeinrichtungen (Schlagwerkzeuge) in regelmäßigen Abständen abgereinigt. Die Sprühelektroden müssen ebenfalls in bestimmten Abständen durch Klopfeinrichtungen gereinigt werden.

Während der Abreinigung strömt das Gas ununterbrochen weiter und Staubpartikel können vom Gas wieder aufgenommen und abgeschieden werden. Eine Unterteilung des Elektrofilters in mehrere Zonen ist zweckmäßig – einerseits können die Emissionen während der Abreinigung verringert werden, andererseits kann auch die angelegte Spannung besser an die vorliegenden Verhältnisse angepasst werden.

Im Rahmen dieser Arbeit werden nur trockene Elektrofilter untersucht, um Kondensation zu verhindern.

3.4.2 Abreinigungseinrichtungen

Die Leistung eines Elektrofilters nimmt mit der Zeit ab, da durch die Anlagerung der Partikel an der Niederschlagselektrode ein Rücksprühen in der Staubschicht stattfindet. Dies führt zu einer Reduktion der Überschlagsspannung sowie zu einer Änderung der Koronaerscheinungsform an der Sprühelektrode [33].

Für eine erfolgreiche Abreinigung muss eine bestimmte Schichtdicke des Staubes erreicht sein – bei zu geringen Schichtdicken reichen die Beschleunigungen beim Klopfen für die Abreinigung nicht aus, bei zu großen Schichtdicken kommt es zum Rücksprühen. Der Staubaustrag erfolgt senkrecht zur Strömungsrichtung nach unten, wodurch die Wiederaufwirbelung des Staubes reduziert wird [37]. Durch den Einbau von Trennblechen in den Staubsammelräumen (unterhalb der Niederschlagsplatten) kann die Wiederaufwirbelung des Staubes vermieden werden [36].

Prinzipiell gibt es zwei Philosophien hinsichtlich der Entfernung und des Abtransportes der Partikel von der Niederschlagselektrode [33]:

- periodisches Klopfen zur Erreichung einer maximalen Klopfbeschleunigung bei jedem Klopfvorgang, um die Schichtdicke der verbleibenden Staubschicht zu minimieren
- variieren der Intensität und Frequenz des Klopfvorganges, um die Menge des wiederaufgewirbelten Staubes zu minimieren

Mit steigenden Klopfintervallen steigt auch die Leistung der Abreinigung - bei dicken Schichten fallen die großen Agglomerate tendenziell eher in den Staubsammelbehälter. Bei dünnen Schichten bilden sich nur feine Agglomerate, welche leicht aufgewirbelt werden können.

Die wiederaufgewirbelten Partikel besitzen größere Partikeldurchmesser als die ursprünglichen Staubpartikel – dies kann durch Agglomerationsvorgänge erklärt werden (Kompaktierung während der Abscheidung). Mit steigenden Klopfintervallen steigt auch die Konzentration der wiederaufgewirbelten Partikel an bis eine maximale Konzentration erreicht ist; danach kommt es zu einem steilen Abfall der Konzentration.

3.4.3 Niederschlagselektroden

Grundsätzlich sollten ebene Platten als Niederschlagselektroden verwendet werden – diese sind auch aus elektrischen Gründen vorteilhaft. Eine Versteifung der Platten durch Profilierung ist aus Festigkeitsgründen notwendig.

Abbildung 7: verschiedene Ausführungsformen von Niederschlagselektroden [36]

Einige Plattenformen verfolgen aber auch die Absicht, eine Wiederaufwirbelung des Staubes zu vermeiden, indem der Staub in einen strömungsgeschützten Bereich gebracht wird.

3.4.4 Sprühelektroden

Die einfachste Form einer Sprühelektrode ist ein runder, dünner Draht von 2-3 mm. Zur Erhöhung der Stabilität verwendet man auch andere Formen mit dickeren Querschnitten – durch Aufprägung zahlreicher Spitzen kann eine Erhöhung der örtlichen Feldstärke und damit eine Verbesserung der Korona erreicht werden.

Abbildung 8: verschiedene Ausführungsformen von Sprühelektroden [36]

. . .

4 Allgemeine Grundlagen der Berechnung

4.1 Grundlagen zur Berechnung der benötigten Stoffwerte

Im folgenden Kapitel soll die Berechnung der benötigten Stoffdaten erklärt werden. Für die Auslegung der Trockenentstaubung werden die Gasdichte, die Gasviskosität und die Staubdichte benötigt. Die verwendeten Tabellenwerke befinden sich im Anhang (siehe Anhang 11.1 und 11.2).

4.1.1 Gasdichte

Die Dichte eines Gasgemisches im Normzustand kann einerseits über die Zusammensetzung, die Molmassen und die mittleren molaren Volumina, andererseits über die Zusammensetzung und die Normdichten ermittelt werden. Im Rahmen dieser Arbeit wurde letztere Möglichkeit verwendet, da hier die entsprechenden tabellierten Werte leichter zugänglich waren.

$$\rho_{G,STP} = \sum x_i \cdot \rho_i$$

$$\rho_{G,STP} \dots \quad Gasdichte \ im \ Normzustand \ [kg/m^3]$$

$$x_i \dots \quad Komponentenanteil \ im \ Gas \ [m^3_{Komponente}/m^3_{Gas}]$$
(20)

$$\rho_i$$
 ... Normdichte der Komponente [kg/m³]

Unter Verwendung von Gleichung (20) und der gegebenen Zusammensetzung kann die Dichte für Standardbedingungen berechnet werden. Für die weiteren Berechnungen im Rahmen der Trockenentstaubung benötigt man jedoch die Dichte bei Betriebsbedingungen. Diese kann wie folgt berechnet werden:

$$\rho_{G,B} = \rho_{G,STP} \cdot \frac{T_{STD} \cdot p}{p_{STD} \cdot T}$$
(21)

$$\rho_{G,B} \dots \qquad Gasdichte im Betriebszustand [kg/m3]$$

$$T_{STD} \dots \qquad Temperatur bei Standardbedingungen [K] - 273,15 K$$

$$p \dots \qquad Druck bei Betriebsbedingungen [Pa]$$

$$p_{STD} \dots \qquad Druck bei Standardbedingungen [Pa] - 101325 Pa$$

$$T \dots \qquad Temperatur bei Betriebsbedingungen [K]$$

4.1.2 Gasviskosität

Die Viskosität eines Gases ist stark temperaturabhängig. In der Literatur sind die Werte meist nur für bestimmte Temperaturen tabelliert und ein linearer Zusammenhang zwischen Temperatur und Viskosität kann nicht vorausgesetzt werden. Aus diesen Gründen wird für die Berechnung eine Näherungsformel verwendet, welche die Temperaturabhängigkeit berücksichtigt.

$$\eta(T) = \frac{A + T^{B}}{\left(1 + \frac{C}{T} + \frac{D}{T^{2}}\right)}$$

$$\eta(T) \qquad \dots \qquad Viskosität [Pas]$$

$$A/B/C/D \qquad \dots \qquad stoffspezifische Werte$$

$$T \qquad \dots \qquad Temperatur [K]$$
(22)

Sowohl die Formel als auch die Werte für die Koeffizienten A bis D der einzelnen Komponenten wurden ChemCAD [38] entnommen. Da es sich bei **Gleichung (22)** um eine empirische Gleichung handelt, ist auf den Gültigkeitsbereich und die Einheiten zu achten.

Die Viskosität des Topgases kann über die Zusammensetzung und die Viskosität der Reinkomponenten bei der entsprechenden Temperatur errechnet werden.

$$\eta_{Gas}(T) = \sum x_i \cdot \eta_i(T)$$

$$\eta_{Gas}(T) \dots \quad Gasviskosit ät bei entsprechender Temperatur [Pas]$$

$$x_i \dots \quad Komponentenanteil im Gas [m_{Komponente}^3/m_{Gas}^3]$$
(23)

 $\eta_i(T)$... Viskosität der Reinkomponente bei entsprechender Temperatur [Pas]

4.1.3 Staubdichte

Die Berechnung der Staubdichte erfolgt in vier Schritten:

- Berechnung der Molmengen anhand der gegebenen Staubanalyse
- Berücksichtigung von Vorgaben (Reduktionsgrad, u. a.)
- Ermittlung der Reindichte
- Ermittlung der Partikeldichte

Bei der vorliegenden Staubanalyse ist zu beachten, dass nur Angaben für die gesamte Eisenmenge (Fe-total), Eisenoxid (FeO – Wüstit) und metallisches Eisen (Fe-met) vorliegen. Jener Anteil der gesamten Eisenmenge, welcher nicht als Eisenoxid oder metallisches Eisen vorliegt, liegt in Form von Hämatit (Fe₂O₃) vor.

30

Wie aus **Tabelle 2** ersichtlich, ist im Staub maximal 50% Eisen enthalten (Fe-total = 50%), davon sind maximal 30% Eisenoxid (FeO) und maximal 30% metallisches Eisen, d.h. die restlichen 40% der Eisenmenge sind Hämatit (Fe₂O₃).

Tabelle 2: Staubanalyse

	Anteil in Masseprozent
Fe-total	10 — 50
\rightarrow FeO(s)	10 — 30
ightarrow Fe met	0 - 30
CaO	5 – 15
MgO	0 - 10
С	10 — 50
SiO ₂	1 – 5
Al ₂ O ₃	1 – 3
Sonstige (S, TiO ₂)	1 – 5

Die Berechnung der Molmengen der Komponenten der gegebenen Staubanalyse erfolgt mit Hilfe von **Gleichung (24)**.

$$n_{i} = \frac{m_{i}}{M_{i}} \qquad wobei \quad m_{i} = \frac{x_{i}}{100}$$

$$n_{i} \quad \dots \qquad Molmenge \ der \ Komponente \ [mol]$$

$$m_{i} \quad \dots \qquad Masse \ der \ Komponente \ im \ Staubgemisch \ [g]$$

$$M_{i} \quad \dots \qquad Molmasse \ der \ Komponente \ [g/mol]$$

$$x_{i} \quad \dots \qquad Masse \ anteil \ der \ Komponente \ im \ Staubgemisch \ [\%]$$

$$(24)$$

Der Reduktionsgrad gibt das Verhältnis von reduziertem Sauerstoff zu gesamtem Sauerstoff an. Ein FeO-Reduktionsgrad von 20% bedeutet, dass der Molmenge nach 20% des Eisenoxids (FeO) als metallisches Eisen (Fe-met) vorliegen.

$$n_{FeO,neu} = \left(1 - \frac{R}{100}\right) \cdot n_{FeO}$$
(25)

$$n_{Fe-met, neu} = n_{Fe-met} + \frac{R}{100} \cdot n_{FeO}$$
(26)

 R
 ...
 Reduktionsgrad [%]

 n_{Fe-met, neu}
 ...
 Molmenge metallisches Eisen –einschl. Reduktionsgrad [mol]

Weiters ist anzumerken, dass in der vorliegenden Staubanalyse Anteile an Calciumoxid (CaO) und Magnesiumoxid (MgO) angegeben werden, diese jedoch im Staub eigentlich als Calciumcarbonat (CaCO₃) und Magnesiumcarbonat (MgCO₃) vorliegen.

$$n_{CaCO_3} = n_{CaO} \qquad \qquad n_{MgCO_3} = n_{MgO}$$
(27)

Unter Berücksichtigung der Vorgaben bzgl. Reduktionsgrad und des Vorliegens von Calciumoxid und Magnesiumoxid in Form von Carbonaten ergibt sich dann nach Umrechnung der Molmengen in Massen und Normierung auf 100% eine neue prozentuelle Staubzusammensetzung (siehe **Gleichung (28)** und **Gleichung (29)**).

$$m_{i,neu} = n_{i,neu} \cdot M_i \tag{28}$$

$$x_{i,neu} = \frac{m_{i,neu}}{m_{ges,neu}} \cdot 100$$
⁽²⁹⁾

$$m_{i, neu}$$
...Masse der Komponente (inkl. Vorgaben) [g] $n_{i, neu}$...Molmenge der Komponente (inkl. Vorgaben) [mol] M_i ...Molmasse der Komponente [g/mol] $x_{i, neu}$...Masseanteil der Komponente im Staubgemisch (inkl. Vorgaben) [%] $m_{ges, neu}$...Gesamtmasse des Staubes (inkl. Vorgaben) [g]

Für die Ermittlung der Reindichte des Staubgemisches wurden die Reindichten der Komponenten aus der Software HSC entnommen [42]. ChemCAD konnte als Datenbasis hierfür nicht verwendet werden, da dort keine Werte für Aluminiumoxid (Al_2O_3) und Magnesiumcarbonat (MgCO₃) vorhanden sind.

$$\rho_{Staub, R} = \sum x_{i, neu} \cdot \rho_i$$

$$\rho_{Staub, R} \dots \qquad Reindichte \ des \ Staubes \ [kg/m^3]$$

$$x_{i, neu} \dots \qquad Komponentenanteil \ im \ Staubgemisch \ [\%]$$

$$\rho_i \dots \qquad Reindichte \ der \ Komponente \ [kg/m^3]$$
(30)

Für die Staubabscheidung ist jedoch nicht die Reindichte, sondern die Partikeldichte entscheidend. Die Partikeldichte ergibt sich aus der Reindichte unter Berücksichtigung der Porosität.

$$\rho_{Staub, Partikel} = \rho_{Staub, R} \cdot (1 - \varepsilon)$$
(31)

4.2 Korngrößenverteilung und Massenbilanz

Dieses Kapitel beinhaltet die Berechnung der Korngrößenverteilung nach der Entstaubung und die Erstellung der Massenbilanz für die Entstaubung.

4.2.1 Korngrößenverteilung

Bei der Korngrößenverteilung ist zwischen einer Fraktionsverteilung ($\Delta Q_3(x)$) und einer Massensummenverteilung ($Q_3(x)$) zu unterscheiden.

Die Fraktionsverteilung gibt an, wie viel Prozent des Staubes einer bestimmten Kornfraktion angehören, d. h. deren Partikeldurchmesser zwischen den Grenzen der Kornfraktion liegen.

Die Massensummenverteilung ist die Aufsummierung der Fraktionsverteilung, d. h. bei x_{min} beträgt $Q_3(x)=0\%$ und bei x_{max} beträgt $Q_3(x)=100\%$.

Der Fraktionsabscheidegrad wird entsprechend über die Gleichungen zur Auslegung für Zyklone, Elektrofilter, etc. berechnet. Dieser gibt an, welcher Anteil einer bestimmten Korngrößenfraktion abgeschieden wird. Ausgehend von der Korngrößenverteilung des Aufgabegutes kann mit Hilfe des Fraktionsabscheidegrades die neue Korngrößenverteilung berechnet werden.

$$\Delta Q_{3}(x)_{AB} = \frac{\Delta Q_{3}(x)_{E} \cdot T(x)}{100}$$
(32)

$$\Delta Q_3(x)_{RG} = \Delta Q_3(x)_E - \Delta Q_3(x)_{AB}$$
(33)

Bei der Berechnung der Abscheideleistung ist zu beachten, dass die Abscheidung nicht ideal erfolgt. Für die Berechnung wird angenommen, dass der Anteil der Partikel mit einem Partikeldurchmesser größer dem Grenzkorndurchmesser, die trotzdem ins Reingas gelangen und ausgetragen werden, gleich ist groß ist wie der Anteil der Partikel mit Durchmessern kleiner dem Grenzkorndurchmesser, die abgeschieden werden (vgl. Kapitel 2.3).

$$E = \sum_{x=x_{\min}}^{x_{\max}} \Delta Q_3(x)_{AB}$$
(34)

Legt man der Berechnung eine idealisierte Abscheidung zugrunde, dann müsste man die Gesamtabscheideleistung folgendermaßen berechnen:

$$E_{Ideal} = 100 - \sum_{x=x_{min}}^{x=x_{GR}} \Delta Q_3(x)_{RG}$$
(35)

Im Rahmen dieser Arbeit wird die Abscheideleistung über alle Partikelgrößen (**Gleichung** (34)) berechnet, obwohl in diesem Fall die Abscheideleistung geringer ist als die mit **Gleichung** (35) berechnete; diese entspricht aber den Verhältnissen im tatsächlichen Betrieb.

Nach der Entstaubung ist im Reingas nur ein bestimmter Staubanteil enthalten. Für die neue Korngrößenverteilung, die für die weiteren Berechnungen notwendig ist, muss dieser Anteil auf 100% normiert werden. Dies erfolgt mit **Gleichung (36)**:

$$\Delta Q_3(x) = \frac{\Delta Q_3(x)_{RG}}{\sum \Delta Q_3(x)_{RG}}$$
(36)

4.2.2 Massenbilanz

Um den Staubgehalt im Reingas berechnen zu können, wird eine Massenbilanz erstellt. Die Grundlagen für die Erstellung dieser Bilanz werden nachfolgend dargestellt.

Abbildung 9: Bilanzraum für die Massenbilanz der Entstaubung

Wie aus **Abbildung 9** ersichtlich, tritt in den Bilanzraum (z.B. Zyklon) ein bestimmter Volumenstrom mit einer Staubbeladung von c_{Aufgabe} ein. Daraus ergibt sich ein eintretender Massenstrom (**Gleichung (37)**).

$$\dot{m}_{Staub} = \dot{V}_{STP} \cdot c_{Aufgabe} \cdot 10^{-3}$$

$$\dot{m}_{Staub} \quad \dots \quad eintretender \ Massenstrom \ Staub \ [kg/h]$$

$$\dot{V}_{STP} \quad \dots \quad Volumenstrom \ des \ Gases \ [m^{3}_{STP}/h]$$

$$c_{Aufgabe} \quad \dots \quad Staub \ beladung \ am \ Eintritt \ [g/m^{3}_{STP}]$$
(37)

Aus dem Bilanzraum treten zwei Massenströme aus – einerseits der Massenstrom des abgeschiedenen Staubes und andererseits der Massenstrom des Staubes im Reingas. Für

beide Ströme kann die Staubbeladung berechnet werden, wobei in der Praxis meist nur die Staubbeladung des Reingases relevant ist (z.B. Emissionsgrenzwerte).

Für die Ermittlung des Massenstromes "abgeschiedener Staub" benötigt man die Gesamtabscheideleistung des Systems. Aus der Bilanz ergibt sich dann auch der Massenstrom des Staubes im Reingas (siehe **Gleichung (38)** und **Gleichung (39)**)

$$\dot{m}_{AB} = \frac{\dot{m}_{Aufgabe} \cdot E}{100}$$
(38)

$$\dot{m}_{RG} = \dot{m}_{Aufgabe} \cdot \left(1 - \frac{E}{100}\right) = \dot{m}_{Aufgabe} - \dot{m}_{AB}$$
(39)

$$\dot{m}_{AB}$$
...abgeschiedener Massenstrom [kg/h] $\dot{m}_{Aufgabe}$...eintretender Massenstrom [kg/h] E ...Gesamtabscheidegrad [%] \dot{m}_{RG} ...Massenstrom des Staubes im Reingas [kg/h]

Die Staubkonzentration im Reingas kann nach der Ermittlung der entsprechenden Massenströme berechnet werden:

$$c_{RG} = \frac{\dot{m}_{RG} \cdot 10^3}{\dot{V}_{STP}}$$
(40)

 c_{RG} ... Konzentration des Staubes im Reingas [g/m³_{STP}]

4.3 Ergebnisse der Berechnung der Stoffdaten

4.3.1 Gasdichte

Die für das Topgas gegebene Zusammensetzung und die entsprechenden Normdichten sind in **Tabelle 3** angeführt. Die Normdichten wurden der Literatur entnommen [39] – nur der Wert für H_2S wurde einer anderen Literaturquelle ([40]) entnommen, wobei die Werte der anderen Komponenten in beiden Quellen nahezu ident waren (siehe Anhang 11.1).

	Zusamme	nsetzung	Normdichte ^{*)}
		[kg/kg]	[kg/m³]
со	38,5 Vol.%	0,385	1,2500
CO ₂	31,5 Vol.%	0,315	1,9770
H ₂	15,5 Vol.%	0,155	0,0899
H₂O	11 Vol.%	0,110	0,8040
CH₄	1,5 Vol.%	0,015	0,7170
N ₂	2 Vol.%	0,020	1,2500
H₂S	70 ppm	0,00007	1,5392
SUMME:		1,00007	

Tabelle 3: Zusammensetzung und Normdichten – Topgas

*) Dichte im Normzustand – 273,15 K und 101325 Pa

Unter Verwendung der bereits erwähnten Gleichungen (siehe **Gleichung (20)** und **Gleichung (21)**) auf Basis der Betriebsbedingungen kann die Dichte sowohl im Standardzustand als auch im Betriebszustand berechnet werden. Da bei der Trockenentstaubung die Gasdichte nur für die Auslegung des Zyklons benötigt wird, gibt es nur einen Betriebszustand, unabhängig von der Wärmeauskopplung.

Tabelle 4: Dichte –	Topgas	(Standardzustand	und	Betriebszustand)
---------------------	--------	------------------	-----	------------------

Betriebsbedingungen:		
Temperatur	400	[°C]
Druck	3,3	[bar(g)]
Dichte:		
Dichte (Normzustand) - $\rho_{G, STP}$	1,2422	[kg/m³]
Dichte (Betriebszustand) - $ ho_{G,B}$	2,1458	[kg/m³]

4.3.2 Gasviskosität

Wie aus **Tabelle 5** ersichtlich, sind lediglich für Wasserstoff (H_2), Wasserdampf (H_2 O) und Methan (CH_4) alle Koeffizienten verfügbar. Wie aber aus der Beschreibung im Anhang (siehe Anhang 11.2) hervorgeht, sind für die Berechnung mindestens zwei Koeffizienten notwendig.

	А	В	С	D
со	1,1127E-06	0,5338	94,7	
CO ₂	2,148E-06	0,46	290	
H ₂	1,560E-07	0,706	-5,87	210
H₂O	2,699E-06	0,498	1257,7	-19570
CH₄	1,323E-05	0,1798	718	-8900
N ₂	7,632E-07	0,58823	67,75	
H₂S	4,286E-07	0,6715	167,1	

Tabelle 5: Werte für A/B/C/D zur Berechnung der Viskosität

Die Viskosität des Gases wird sowohl bei der Auslegung des Zyklons, als auch bei der Auslegung des Elektrofilters benötigt. Wie in Kapitel 5.1 näher erläutert, erfolgt die Wärmeauskopplung entweder nach der gesamten Entstaubung oder zwischen Zyklon und Elektrofilter. Daher ist es notwendig die Viskosität für beide Betriebszustände (unterschiedliche Temperatur des Topgases vor und nach der Wärmeauskopplung) zu berechnen.

	Zusammens	Zusammensetzung			
		[kg/kg]	[Pas]		
со	38,5 Vol.%	0,385	3,154E-05	Tomporatur	100 °C
CO ₂	31,5 Vol.%	0,315	3,002E-05	remperatur.	400 C
H ₂	15,5 Vol.%	0,155	1,561E-05		
H ₂ O	11 Vol.%	0,110	2,446E-05		
CH ₄	1,5 Vol.%	0,015	2,084E-05	Viskositat:	2,7662*10° Pas
N ₂	2 Vol.%	0,020	3,196E-05		
H₂S	70 ppm	0,00007	2,722E-05		
SUMME:	· ·	1,00007			

Tabelle 6	: Viskosität –	Topdas	(vor der	Nutzuna	der fühlbaren	Wärme)
Tuberie o	. VISKOSItat	ropgas		naccung		H anne,

	Zusammens	Zusammensetzung			
		[kg/kg]	[Pas]		
со	38,5 Vol.%	0,385	2,631E-05	Temperatur:	241 °C
CO ₂	31,5 Vol.%	0,315	2,426E-05		
H ₂	15,5 Vol.%	0,155	1,294E-05		
H ₂ O	11 Vol.%	0,110	1,792E-05	Viskosität:	2,2539*10 ⁻⁵ Pas
CH4	1,5 Vol.%	0,015	1,720E-05		
N ₂	2 Vol.%	0,020	2,652E-05		
H ₂ S	70 ppm	0,00007	2,140E-05		
SUMME:		1,00007			

Tabelle 7: Viskosität – Topgas (maximale Nutzung der fühlbaren Wärme)

4.3.3 Staubdichte

Aus der gegebenen Staubanalyse (siehe **Tabelle 2**) wurde eine mittlere Staubzusammensetzung gewählt, auf deren Basis die weitere Ermittlung der Partikelstaubdichte erfolgte (vgl. Kapitel 4.1.3). Die mittlere Staubzusammensetzung ist in **Tabelle 8** angeführt.

	Zusammensetzung		Molmasse	Stoffmenge
	[%]	[g]	[g/mol]	[mol]
Fe (total)	36,20			
=> Fe ₂ O ₃	45	16,29	159,687	0,1020
=> FeO(s)	28	10,14	71,844	0,1411
=> Fe met	27	9,77	55,845	0,1750
CaO	11,55	11,55	56,077	0,2060
MgO	6,55	6,55	40,304	0,1625
С	36,20	36,20	12,011	3,0139
SiO ₂	3,62	3,62	60,084	0,0602
Al ₂ O ₃	2,31	2,31	101,961	0,0227
TiO ₂	1,07	1,07	79,668	0,0134
S	2,50	2,50	32,066	0,0780
Summe	100,00	100,00		

Tabelle 8: mittlere Staubzusammensetzung

Für Eisenoxid (FeO) soll ein Reduktionsgrad von 33% gelten - Fe₂O₃ soll einen Reduktionsgrad von 0% und metallisches Eisen einen Reduktionsgrad von 100% aufweisen.

Die neuen Molmengen und die daraus resultierende neue Staubzusammensetzung mit Angabe der Reindichten der Komponenten ist in **Tabelle 9** zusammengefasst.

	Stoffmenge	Molmasse	Zusammensetzung		Dichte
	[mol]	[g/mol]	[g]	[%]	[kg/m³]
Fe (total)			35,448	30,70	
=> Fe ₂ O ₃	0,1020	159,687	16,290	14,11	5240
=> FeO(s)	0,0941	71,844	6,757	5,85	6000
=> Fe met	0,2220	55,845	12,400	10,74	7860
CaCO ₃	0,2060	100,086	20,614	17,85	2710
MgCO₃	0,1625	84,313	13,702	11,87	3050
С	3,0139	12,011	36,200	31,35	2620
SiO ₂	0,0602	60,084	3,620	3,14	2600
Al ₂ O ₃	0,0227	101,961	2,310	2,00	3965
TiO ₂	0,0134	79,668	1,070	0,93	4230
S	0,0780	32,066	2,500	2,17	2070
Summe			115,464	100,00	

Tabelle 9: Staubzusammensetzung (neu)

Für die Porosität wird ein Wert von 50% angenommen, was einem konservativen Wert im Bereich der Staubabscheidung entspricht. Unter Verwendung von **Gleichung (30)** und **Gleichung (31)** ergibt sich für die Staubdichte:

Zur ermittelten Staubdichte ist anzumerken, dass es sich dabei um eine mittlere Dichte handelt, da die Korngrößenverteilung für die einzelnen Komponenten nicht bekannt ist.

Ein großes Teilchen (große Dichte) wird in einem Zyklon besser abgeschieden, als ein gleichgroßes aber leichteres Teilchen (geringere Dichte). Dieses wird jedoch besser abgeschieden als ein kleines leichtes Teilchen (vgl. Kapitel 2.3).

Bei der Berechnung wurde davon ausgegangen, dass bei allen Komponenten eine annähernd gleiche Korngrößenverteilung von großen und kleinen Partikeln vorliegt.

5 Praktischer Teil

5.1 Verfahrensbeschreibung

Für den Ersatz der bisherigen zweistufigen Nasswäsche kommen drei Varianten in Betracht. Alle Varianten umfassen eine zweistufige Entstaubung und die Auskopplung der fühlbaren Wärme, jedoch in unterschiedlicher Reihenfolge.

Eine Wärmeauskopplung ohne vorhergehende, zumindest teilweise Entstaubung ist nicht sinnvoll, da die Wärmetauscher sehr stark erosivem Verschleiß ausgesetzt wären (siehe **Tabelle 10**).

Tabelle 10: Vergleich: auftretende Staubmassenstr	röme an der Wärmeauskopplung
---	------------------------------

Zyklon – Elektrofilter – Wärmeauskopplung	c _{Ein Wärmeausk} = 5 mg/m ³ _{STP}	1,5 kg/h
		12 t/Jahr
Zyklon Wärmegyskopplung Filter	$-6 a/m^{3}^{*}$	1.800 kg/h
Zykion – Warneauskoppiung – Filter	CEin, Wärmeausk. – O 9/III STP	14.400 t/Jahr
Wärmaguskapplung Zyklan Eiltor	-20a/m^3	6.000 kg/h
	CEin, Wärmeausk. – 20 g/III STP	48.000 t/Jahr

*) bei einer angenommenen Zyklonabscheideleistung von ~ 70%

Die in **Tabelle 10** angeführten Staubmassenströme beruhen auf einer angenommenen jährlichen Betriebszeit von 8.000 Stunden. Neben der Staubmenge ist auch die Gasgeschwindigkeit im Wärmetauscher zu beachten. Wird der Wärmetauscher mit geringen Gasgeschwindigkeiten betrieben, um die Auswirkungen von Partikeln, welche auf die Wärmetauscherrohre prallen, gering zu halten, kommt es zu Anbackungen, der Wärmeübergang wird schlechter und der Wärmetauscher muss größer gebaut werden. Erfolgt der Betrieb des Wärmetauschers bei hohen Gasgeschwindigkeiten, verringert sich die Baugröße, weil der Wärmeübergang besser wird, allerdings steigt der erosive Verschleiß. Der vorhandene Staub wirkt wie ein Sandstrahlmittel.

Neben der Staubmenge hat auch die Partikelgröße einen entscheidenden Einfluss auf den erosiven Verschleiß, da kleine Partikel eher an den Rohrwänden vorbeiströmen. Darüber hinaus ist der Schaden, falls sie doch auf die Rohre prallen, weitaus geringer.

Aus diesen Gründen sollte vor der Wärmeauskopplung in jedem Fall eine Vorabscheidung des Staubes mittels Zyklon erfolgen. Die einzelnen Varianten berücksichtigen diese Überlegungen und werden nachfolgend näher ausgeführt. Die entsprechenden Berechnungen für die Auslegung können den darauf folgenden Kapiteln (Kapitel 5.2 bis 5.4) entnommen werden.

5.1.1 Zyklon – Elektrofilter – Wärmeauskopplung

Diese Verfahrensvariante ist dadurch gekennzeichnet, dass eine vollständige Entstaubung auf die geforderten Reingasbedingungen erfolgt, und erst danach die fühlbare Wärme des Topgases ausgekoppelt wird (siehe **Abbildung 10**).

Abbildung 10: Verfahrensschema (Zyklon – Elektrofilter – Wärmeauskopplung)

Im Zyklon erfolgt eine erste deutliche Reduktion des Staubgehaltes im Topgas – mit Hilfe des nachgeschalteten Elektrofilters soll der Staubgehalt auf unter 5 mg/m $^{3}_{STP}$ gebracht werden bei einem gleichzeitigen maximalen Partikeldurchmesser von 5 µm.

Nach der Entstaubung wird die Wärme ausgekoppelt, wobei in diesem Fall die Ausnutzung variabel erfolgen kann, d. h. eine teilweise Nutzung oder eine maximale Ausnutzung. Dies resultiert in unterschiedlichen Temperaturen des Topgases.

Der Vorteil dieser Variante liegt darin, dass nur geringe Mengen an Staub und diese mit kleinen Partikeldurchmessern in die Wärmetauscher gelangen, wodurch die mechanischen Belastungen durch den abrasiven Staub wesentlich geringer sind. Die Gefahr von Anbackungen ist relativ gering, da die Staubpartikel mit der Strömung mitgerissen werden. Anbackungen können jedoch nicht vollständig ausgeschlossen werden.

Nachteilig ist allerdings, dass das Topgas mit Temperaturen von 400°C in den Elektrofilter eintritt. Dies wirkt sich sowohl auf die Baugröße aus, weil sich unter Betriebsbedingungen ein großer Volumenstrom ergibt, als auch auf die Wahl des Materials. Es muss ein Material mit hoher thermischer Belastbarkeit im Dauerbetrieb gewählt werden.

5.1.2 Zyklon – Wärmeauskopplung – Elektrofilter

Wie bei der in Kapitel 5.1.1 beschriebenen Variante wird das Topgas zuerst in einem Zyklon mit einer möglichst guten Abscheideleistung entstaubt. Anschließend wird die Wärme ausgekoppelt, wobei auch hier wiederum eine teilweise oder vollständige Ausnutzung der fühlbaren Wärme erfolgen kann. Danach wird das Topgas einem Elektrofilter zugeführt, um dort auf die geforderten Reingasbedingungen von 5 mg/m³_{STP} maximaler Staubbeladung und 5 µm maximaler Partikelgröße entstaubt zu werden.

Abbildung 11: Verfahrensschema (Zyklon – Wärmeauskopplung – Elektrofilter)

Der große Nachteil dieser Variante besteht darin, dass ein deutlich staubbeladeneres Gas in die Wärmetauscher eintritt und diese mechanisch belastet. Durch den höheren Staubgehalt und die größeren Partikeldurchmesser des Staubes werden die Wärmetauscherrohre poliert und abgenutzt. Mit den höheren Staubgehalten steigt auch die Gefahr von Anbackungen.

Dem entgegen wirkt sich die Wärmeauskopplung auf den nachfolgenden Elektrofilter positiv aus. Einerseits verringert sich die Baugröße, weil die Abscheidung bei niedrigeren Temperaturen erfolgt, woraus auch ein geringerer Betriebsvolumenstrom resultiert, und andererseits können andere, meist günstigere, Stähle verwendet werden. Darüber hinaus ergibt sich bei niedrigeren Temperaturen auch eine niedrigere Gasviskosität, woraus eine bessere Abscheidung resultiert.

In diesem Zusammenhang erscheint eine möglichst vollständige Ausnutzung der auskoppelbaren Wärme sinnvoll, weil sich dadurch die Temperatur des Topgases stark verringert.

5.1.3 Zyklon – Wärmeauskopplung – Gewebefilter

Der erste Teil des Verfahrens, Zyklonentstaubung und anschließende Wärmeauskopplung, ist mit dem in Kapitel 5.1.2 genannten Verfahren ident. Allerdings muss hier die Wärme möglichst vollständig ausgekoppelt werden, um die Anwendung eines Gewebefilters überhaupt erst zu ermöglichen.

Abbildung 12: Verfahrensschema (Zyklon – Wärmeauskopplung – Gewebefilter)

Da die Anwendbarkeit von Gewebefiltern temperaturmäßig sehr stark eingeschränkt ist, kommt der vollständigen Wärmeauskopplung besondere Bedeutung zu. Sollte die Temperatur des Topgases nach der Wärmeauskopplung noch zu hoch sein, müsste diese mittels Kühler entsprechend weiter verringert werden, natürlich nur unter Berücksichtigung etwaiger Kondensation (z.B. Teerkondensation).

Der Vorteil dieser Variante besteht darin, dass Gewebefilter auf Schwankungen des Staubgehaltes bzw. der Gasmenge hinsichtlich Grenzkorn viel weniger empfindlich reagieren als Elektrofilter.

Nachteilig ist, dass durch den Einsatz von weiteren Kühlern die restliche Energie ungenutzt abgeführt werden muss.

5.2 Zyklonentstaubung

Für die Entstaubung im Zyklonabscheider wird eine Parallelschaltung gleicher Zyklone gewählt, da der Volumenstrom für einen einzigen Zyklon viel zu groß wäre.

Bei der Auslegung des Zyklons nach Barth/Muschelknautz war das primäre Ziel, eine möglichst gute Abscheideleistung zu erzielen. Der Gesamtdruckverlust war hierbei nur sekundär.

Tabelle 11 gibt einen Überblick über die gewählten Parameter des Zyklons. Bei der Auswahl der Geometrieverhältnisse fließen selbstverständlich auch die theoretischen Überlegungen aus Kapitel 2.4 ein.

	gewählt	in der Praxis üblich
Vi	15 m/s	5 – 15 m/s
r _A /r _i	4	3 – 4
h/r _i	11	10 – 13
h _i /r _i	10	7,5 — 10
b _E /r _A	0,19	0,19 - 0,27
F _E /F _i	0,44	0,44 - 0,9
Einlauftyp	Schlitzeinlauf	

Tabelle 11: Übersicht – gewählte Parameter

Die gesamten Ergebnisse der Auslegungsberechnung sind im Anhang (siehe Anhang 11.3.1) angeführt. Es sollen hier nur die wichtigsten Ergebnisse diskutiert werden. **Tabelle 12** enthält eine Zusammenfassung der Ergebnisse aus der Parallelschaltung von drei Zyklonen mit den in **Tabelle 11** genannten Geometrieverhältnissen.

Tabelle 12: Ergebnisse der Zyklonauslegung (3 Parallelzyklone)

Grenzkorndurchmesser – x _{GR}	3,97	[µm]
Abscheidegrad – E	72,82	[%]
Staubkonzentration im Reingas – c _{RG}	5,46	[g/m³ _{STP}]
Druckverlust - ∆p	18,68	[kPa]

Der Grenzkorndurchmesser liegt unterhalb der geforderten maximalen Partikelgröße von 5 µm. Aufgrund der Abscheideleistung und der gegebenen Korngrößenverteilung ergibt sich für das Reingas eine Staubbeladung von 5,46 g/m³_{STP}.

Der vorliegende Staub enthält einen geringen Anteil kleiner Partikel mit bis zu 3 μ m. Die Hauptmasse des Staubes besitzt Partikeldurchmesser im Bereich von 4 μ m bis zu 24 μ m, wobei hier ein Maximum bei rund 10 μ m liegt. Ein relativ kleiner Anteil besitzt Partikeldurchmesser von rund 30 μ m und mehr. Diese Verhältnisse und die Auswirkungen der Zyklonabscheidung auf die einzelnen Kornfraktionen soll **Abbildung 13**

veranschaulichen. Für mittlere Korngrößen von 5 µm bis 10 µm kann mittels Zyklonabscheidung eine deutliche Reduktion erreicht werden.

Korngrößenverteilung

Abbildung 13: Korngrößenverteilung (3 Parallelzyklone)

Für Partikel mit einem Durchmesser über 12 μ m ergibt sich eine nahezu vollständige Abscheidung (Fraktionsabscheidegrad über 90 %). Für sehr feine Partikel (Durchmesser bis 3 μ m) ist die Abscheidung jedoch nur gering. Die Berechnung der Abscheideleistung gemäß einer idealisierten Abscheidung, d.h. alle Partikel mit einem Durchmesser größer dem Grenzkorndurchmesser werden vollständig abgeschieden, würde in dem vorliegenden Fall einen Abscheidegrad von rund 85 % ergeben (vgl. Kapitel 5.6.1) – ein doch deutlich höherer Wert (siehe **Tabelle 12**).

Hinsichtlich der Anzahl parallelgeschalteter Zyklone ist zu sagen, dass hier ein Optimum zwischen zu erreichender Abscheideleistung und technischer Durchführbarkeit gefunden werden muss. Eine größere Anzahl an Parallelzyklonen bringt grundsätzlich eine Verbesserung der Abscheideleistung. Dies hat jedoch einen steigenden apparativen und finanziellen Aufwand, wie z.B. Kosten für die Zyklone und die Aufteilung des Gasstromes, zur Folge.

Zu Vergleichszwecken wurde die eben beschriebene Zyklonabscheidung auch als Parallelschaltung von 5 Zyklonen berechnet (siehe Anhang 11.3.2). Eine Zusammenfassung der Ergebnisse zeigt **Tabelle 13**.

Grenzkorndurchmesser – x _{GR}	3,50	[µm]
Abscheidegrad – E	76,86	[%]
Staubkonzentration im Reingas – c _{RG}	4,65	[g/m³ _{STP}]
Druckverlust - ∆p	18,68	[kPa]

Tabelle 13: Ergebnisse der Zyklonauslegung (5 Parallelzyklone)

Trotz der Erhöhung der Anzahl der Parallelzyklone ändern sich der Trennkorndurchmesser (~ 0,4 µm) und die Abscheideleistung nur mehr geringfügig. Da es sich nur um eine geringe Veränderung handelt, aber ein deutlich höherer Aufwand zu erwarten ist, erscheint eine Parallelschaltung von drei Zyklonen optimal. Sie verbindet eine recht gute Abscheideleistung mit einem vertretbaren technischen und wirtschaftlichen Aufwand.

Die Zyklonabscheidung dient vorwiegend der Vorabscheidung des Staubes. Da mit der gewählten Anordnung rund 70 % des Staubes bereits abgeschieden werden können, werden nachfolgende Verfahrensstufen, wie z.B. eine Wärmeauskopplung oder auch die Sekundärentstaubung deutlich geringer belastet. Der abgeschiedene Staub wird in entsprechenden Behältern gesammelt und dann mittels pneumatischer Förderung in den Einschmelzvergaser rückgeführt.

46

5.3 Wärmeauskopplung

5.3.1 Allgemeines

Aufgrund der Zusammensetzung des Topgases kann ein direkter Wärmeübergang auf den vorzuwärmenden Sauerstoff aus Explosionsschutzgründen nicht erfolgen. Es wird daher ein Wärmeträger verwendet, der die Wärme des Topgases aufnimmt und im weiteren Verlauf an den Sauerstoff abgibt. Als Wärmeträger dienen im vorliegenden Fall Stickstoff und Wasser/Dampf.

Bei der Verwendung von Wasser/Dampf als Wärmeträger kann entweder genau soviel Dampf erzeugt werden, wie für die gewünschte Vorwärmung des Sauerstoffes benötigt wird, oder es wird eine größere Menge an Dampf erzeugt, wobei die zusätzliche Dampfmenge als Exportdampf für andere Prozessschritte genutzt werden kann. Die maximal erzeugbare Dampfmenge hängt von der minimalen Topgastemperatur ab.

Zur Berechnung der Bilanzfließschemata ist zu sagen, dass die benötigten Werte für die Enthalpie von Wasser/Dampf und Stickstoff einschlägigen Tabellenwerken ([43], [44], [45]) entnommen werden, während die Enthalpie von Topgas und Sauerstoff über die mittleren spezifischen Wärmekapazitäten ([42]) berechnet wird, da hierfür die Daten in den Tabellenwerken nicht ausreichend vorhanden sind.

Die Berechnung der gesamten Wärmeauskopplung erfolgt verlustfrei, da für die Berücksichtigung der Verluste die Spezifikation der verwendeten Wärmetauscher und des Rohrleitungssystems bekannt sein müsste.

Die Berechnung der einzelnen Bilanzpunkte erfolgt nach folgender Überlegung: für das aufzuwärmende Medium sind die Eintritts- und Austrittsbedingungen (Druck und Temperatur) vorgegeben. Daher sind auch die Enthalpien am Eintritt und am Austritt des Wärmetauschers bekannt. Die Enthalpiedifferenz zwischen Eintritt und Austritt des Wärmetauschers muss vom Wärmeträger bereitgestellt werden. Die benötigte Wärmemenge ergibt sich aus der Enthalpiedifferenz bezogen auf den entsprechenden Strom (siehe **Gleichung (41)**).

$$Q_{benötigt, Aufwärmung} = \Delta H_{Aufwärmung} \cdot \dot{m}$$
(41)

\mathcal{Q} benötigt, Aufwärmung	z	benötigte Wärmemenge - Aufwärmung [J/s]
ΔH		Enthalpiedifferenz - aufzuwärmendes Medium [J/kg]
ṁ		Massenstrom - aufzuwärmendes Medium [kg/s]

Bezieht man diese benötigte Wärmemenge auf den Massenstrom des Wärmeträgers, erhält man die Enthalpiedifferenz des Wärmeträgers.

$$\Delta H_{Warmeträger} = \frac{Q_{benötigt, Aufwärmung}}{\dot{m}_{Warmeträger}}$$
(42)

 $\Delta H_{Warmetrager} \qquad \dots \qquad Enthalpiedifferenz - Wärmeträger [J/kg] \\ Q_{benötigt, Aufwarmung} \qquad benötigte Wärmemenge - Aufwärmung [J/s] \\ \dot{m}_{Warmeträger} \qquad \dots \qquad Massenstrom des Wärmeträgers [kg/s]$

Bei Kenntnis der Eintrittsbedingungen des Wärmeträgers in den Wärmetauscher (Enthalpie, Temperatur) kann somit aus der Enthalpiedifferenz die Austrittstemperatur bzw. die Enthalpie am Austritt berechnet werden. Die Berechnung erfolgt entweder durch Interpolation der Werte vorhandener Tabellen oder im Falle von Topgas durch Berechnung mit Hilfe der mittleren spezifischen Wärmekapazitäten (siehe **Gleichung (43)**).

$$T_{Aus, W\bar{a}rmetr\bar{a}ger} = T_{Ein} - \frac{\Delta H_{W\bar{a}rmetr\bar{a}ger} \cdot \dot{m}_{W\bar{a}rmetr\bar{a}ger}}{c_{p, W\bar{a}rmetr\bar{a}ger, T_{Ein}} \cdot \dot{V}_{W\bar{a}rmetr\bar{a}ger}}$$
(43)

$T_{Aus, W\"armetr\"ager}$	 Austrittstemperatur des Wärmeträgers [K]
T_{Ein}	 Eintrittstemperatur des Wärmeträgers [K]
${\it \Delta} H$ Wärm et räger	 Enthalpiedifferenz des Wärmeträgers [J/kg]
$\dot{m}_{_{W\!armetrager}}$	 Massenstrom des Wärmeträgers [kg/h]
${\cal C}_{p, W \" armetr \" ager, T_{En}}$	 mittlere spezifische Wärmekapazität des Wärmeträgers
	bei Eintrittstemperatur [J/m³K]
$\dot{V}_{\scriptscriptstyle W\!\ddot{a}rmetr\"{a}ger}$	 Volumenstrom des Wärmeträgers [m³/h]

Für die Berechnung der Enthalpie des Wärmeträgers am Austritt des Wärmetauschers wird nachfolgende Formel verwendet:

$$H_{Austritt} = \frac{c_{p,T_{Aus}} \cdot (T_{Aus} - 273,15) \cdot \dot{V}}{\dot{m}}$$
(44)

- H_{Austritt} ... Enthalpie am Austritt aus dem Wärmetauscher [J/kg]
- $c_{p,T_{Aus}}$... mittlere spezifische Wärmekapazität [J/m³K]
- *T_{Aus}* ... *Temperatur am Austritt aus dem Wärmetauscher [K]*
- \dot{V} ... Volumenstrom des Wärmeträgers [m³/h]
- *m* ... Massenstrom des Wärmeträgers [kg/h]

5.3.2 Stickstoff als Wärmeträger

Bei der Verwendung von Stickstoff als Wärmeträger wird der Stickstoff im Kreislauf geführt, wobei der Massenstrom so gewählt wird, dass der Sauerstoff auf die geforderte Temperatur erwärmt werden kann.

Abbildung 14: vereinfachtes M&R-Schema (Stickstoff)

Wie in **Abbildung 14** dargestellt, können bestimmte Teile der Anlage mittels Bypass im Schadens- oder Wartungsfall umgangen werden, sodass nicht die gesamte Anlage niedergefahren werden muss. Die Messung des Stickstoffdurchflusses (FIR) vor und nach den Wärmetauschern dient dem Auffinden von Leckagen in den Rohrleitungen. Sobald unterschiedliche Durchflüsse gemessen werden, gibt es eine Rohrleitungsleckage.

Der Verdichter nach dem O₂-Wärmetauscher hat die Aufgabe, den Betriebsdruck des Systems von 3,3 bar(g) wieder herzustellen, der durch die Verluste in den Wärmetauschern und den Rohrleitungen reduziert wird.

Der Sauerstoff soll von 25°C auf 300°C aufgewärmt werden, wobei die Temperaturspreizung am Austritt des O₂-Wärmetauschers mindestens 25°C betragen soll. D.h. die Austrittstemperatur des Stickstoffs beträgt zumindest 50°C. In den beiden Stickstoffwärmetauschern wird der Stickstoff von etwa 50°C (Mindesttemperatur nach O₂-Wärmetauscher) auf 350°C aufgewärmt. Eine Temperatur von 350°C ist sinnvoll, um am Eintritt in den O₂-Wärmetauscher eine Temperaturspreizung von 50°C zu haben. Bei dieser Temperaturspreizung wird der Wärmetauscher nicht zu groß.

Im Stickstoffzulauf wird ein Verdichter installiert, der den Stickstoff mit dem vorherrschenden Betriebsdruck des Systems von 3,3 bar(g) bereitstellt.

^{*)} für die Inbetriebnahme und das Anfahren der Anlage nach Stillständen

Abbildung 15: Bilanzfließschema - Stickstoff als Wärmeträger

Der Stickstoff-Massenstrom wird so groß gewählt, dass die Sauerstoff-Vorwärmung ohne Probleme erfolgen kann. Die gesamte Berechnung der Wärmeauskopplung mit Stickstoff als Wärmeträger ist dem Anhang (siehe Anhang 11.4) zu entnehmen.

Für eine nachfolgende Entstaubung mittels Gewebefilter müsste ein weiterer Kühlschritt erfolgen, da die Topgastemperatur deutlich über 240°C (Anwendungstemperatur von PTFE-Filtern) liegt. Da hierbei Wärme ungenutzt bliebe, scheint eine Wärmeauskopplung mit Dampf als Trägermedium sinnvoll, da durch die größere Wärmenutzung niedrigere Topgastemperaturen erreicht werden.

5.3.3 Dampf als Wärmeträger

Die Dampferzeugung umfasst drei Wärmetauscher, die nacheinander durchlaufen werden. Im ersten Wärmetauscher, dem Economiser, wird das Wasser auf eine Temperatur knapp unterhalb der Siedetemperatur (beim entsprechenden Druck) gebracht und gelangt dann in eine Art "Abhitzekessel" (Steam Collector Drum, siehe **Abbildung 16**). Von dort gelangt das Wasser mit geringen Anteilen an Nassdampf in den Verdampfer (Evaporator), wo das gesamte Wasser in die Dampfphase gebracht wird und in den "Abhitzekessel" zurückgeführt wird. Aus dem obersten Teil des "Abhitzekessels" tritt der Sattdampf aus und wird im Überhitzer (superheater) in den Zustand des überhitzten Dampfes gebracht.

Abbildung 16: M&R-Schema Dampferzeugung (VAI)

Das Corexgas wird den Wärmetauschern entgegengesetzt zugeführt. Da für die Überhitzung sehr viel Energie benötigt wird, tritt das heiße Topgas als erstes in den Überhitzer ein. Für die Aufwärmung im Economiser wird weniger Energie benötigt, deswegen wird dort das mittlerweile kühlere Topgas genutzt.

Um eine bestimmte, vorgegebene Eintrittstemperatur in den Economiser halten zu können, wird im Speisewassertank (feed water storage) überhitzter Dampf zugeführt.

Der vorliegende Fall weicht hinsichtlich der Sauerstoffmenge und der minimalen Topgastemperatur von den Angaben in **Abbildung 16** ab. Es soll eine Sauerstoffmenge von 95.000 m³/h vorgewärmt werden und weiters darf die Topgastemperatur 240°C nicht unterschreiten. Bei Unterschreitung dieser Temperatur könnten nachgeschaltete Aggregate auf der Topgasseite verkleben. Da der Teerinhalt im Topgas zur Zeit nicht bekannt ist, kann

der exakte Taupunkt nicht bestimmt werden. Dazu wären Teermessungen und/oder Wärmetauscherversuche notwendig.

Für die im Rahmen dieser Arbeit durchgeführten Berechnungen wird zur Vermeidung von Teerkondensation im Topgas eine minimale Topgastemperatur von 240°C vorgegeben; diese Temperatur schließt Teerkondensation an den Rohrwänden des Wärmetauschers jedoch nicht vollständig aus.

Abbildung 17: Bilanzfließschema – Dampf als Wärmeträger (allgemein)

Im Wasserzulauf befindet sich eine Speisewasserpumpe, die das Wasser auf einen Druck, der dem Systemdruck inklusive der Verluste in Rohrleitungen und Wärmetauschern entspricht, bringt. Im Speisewassertank wird soviel Dampf zugeführt, dass die Eintrittstemperatur in den Economiser 105°C nicht unterschreitet.

Sollten die Kondensationstemperaturen bzw. Sublimationstemperaturen der im Topgas enthaltenen Bestandteile (Wasserdampf, Teer, etc.) unter 105°C liegen, müsste das Speisewasser mit zusätzlichen Wärmetauschern auf eine Temperatur oberhalb der Kondensationstemperatur bzw Sublimationstemperatur gebracht werden.

Für den Fall, dass die Kondensationstemperaturen bzw. Sublimationstemperaturen der im Topgas enthaltenen Bestandteile über 105°C liegen, sollte aus Korrosionsschutzgründen eine Temperatur von 105°C am Economiser-Eintritt nicht unterschritten werden. Bei dieser Temperatur und einem Druck von ca. 0,2 bar könnte der gelöste Sauerstoff aus dem Speisewasser entfernt (ausgetrieben) werden. Dadurch wäre es möglich, den Economiser anstatt in Edelstahl in normalem Stahl auszuführen.

Die Sauerstoffvorwärmung erfolgt zweistufig. Im ersten Wärmetauscher (Wärmetauscher 1 bzw. "Überhitzer") wird die Energie des überhitzten Dampfes genutzt, d. h. der Dampf wird auf eine Temperatur oberhalb der Kondensationstemperatur beim entsprechenden Druck abgekühlt. Die freiwerdende Wärme fließt in die Sauerstoffvorwärmung. Durch die Drossel wird der Druck auf jenen Druck, der einer bestimmten Siedetemperatur entspricht, abgesenkt. Im zweiten Wärmetauscher wird die Verdampfungswärme genutzt. Der Dampf kondensiert und das Wasser wird anschließend bei entsprechendem Druck mit einer Temperatur knapp unterhalb der Siedetemperatur wieder in den Speisewassertank rückgeführt. Die Pumpe nach dem zweiten Wärmetauscher erzeugt einen Druck, der dem Systemdruck inklusive der Rohr- und Wärmetauscherverluste entspricht.

Bei der Verwendung von Dampf als Trägermedium ist zwischen folgenden Grenzfällen zu unterscheiden:

- Erzeugung der für die Sauerstoffvorwärmung minimal notwendigen Dampfmenge (Kriterium ist die Sauerstoffvorwärmung)
- Erzeugung der maximal möglichen Dampfmenge (Kriterium ist die minimal erlaubte Topgastemperatur)

Selbstverständlich können auch Dampfmengen zwischen diesen beiden Grenzfällen erzeugt werden. im Rahmen dieser Arbeit wurden aber nur die beiden Grenzfälle berechnet.

VAI

5.3.3.1 Erzeugung der minimal notwendigen Dampfmenge

Bei der Erzeugung der minimal notwendigen Dampfmenge wird nur soviel Dampf erzeugt, wie für die gewünschte Sauerstoffvorwärmung notwendig ist, d.h. es wird nur ein Teil der fühlbaren Wärme des Topgases genutzt.

Die Verdampfungstemperatur bei 65 bar beträgt 280,81°C ([43]) – die Temperatur nach dem Economiser wird mit 260°C angenommen. Damit kann gewährleistet werden, dass sich das Wasser noch im flüssigen Zustand befindet.

Abbildung 18: Bilanzfließschema – minimale Dampferzeugung

In **Abbildung 18** sind alle Massenströme im flüssigen Zustand blau markiert, Massenströme im dampfförmigen Zustand sind rot gekennzeichnet. Durch die Drossel wird der Druck auf 0,3 bar abgesenkt, dies entspricht einer Siedetemperatur von 70°C. Das Wasser sollte mit einer Temperatur von ca. 68°C in den Speisewassertank eingeleitet werden, um mit Sicherheit im flüssigen Bereich zu liegen.

Die gesamte Berechnung der Wärmeauskopplung mit minimaler Dampferzeugung ist dem Anhang (siehe Anhang 11.5.1) zu entnehmen.

5.3.3.2 Erzeugung der maximal möglichen Dampfmenge

Hierbei wird die fühlbare Wärme des Topgases größtmöglich ausgenutzt. Jene Dampfmenge, die nicht für die Sauerstoffvorwärmung benötigt wird, kann als Exportdampf abgeführt und anderen Prozessschritten zur Verfügung gestellt werden.

Abbildung 19: Bilanzfließschema - maximale Dampferzeugung

Auch in **Abbildung 19** sind die Massenströme im flüssigen Zustand blau, jene im dampfförmigen Zustand rot markiert. Die erzeugbare Dampfmenge ist nur durch die minimale Topgastemperatur von 240°C begrenzt. Wie bei der Erzeugung der minimalen Dampfmenge wird auch bei der maximalen Dampfmengenerzeugung die Temperatur nach dem Economiser mit 260°C angenommen. Damit kann gewährleistet werden, dass sich das Wasser noch im flüssigen Zustand befindet. Durch die Drossel wird der Druck auf 0,3 bar gesenkt, was einer Siedetemperatur von 70°C entspricht. Die Weiterführung zum Speisewassertank sollte bei einer Temperatur von ca. 68°C erfolgen, um sicherzustellen, dass es zu keiner Verdampfung kommt. Die gesamte Berechnung der maximalen Dampferzeugung ist im Anhang (siehe Anhang 11.5.2) angeführt.

5.3.4 Zusammenfassung

Die gerade angestellten Überlegungen ermöglichen es, die Wärmeauskopplung näher zu beurteilen. Vorerst sind in **Tabelle 14** die entsprechenden Vorgaben angeführt.

Topgas:		
Volumenstrom	300.000	[m³ _{STP} /h]
Massenstrom	372.673	[kg/h]
Eintrittstemperatur	400	[°C]
minimale Austrittstemperatur	240	[°C]
Sauerstoff:		
Volumenstrom	95.000	[m³ _{STP} /h]
Massenstrom	135.760	[kg/h]
Eintrittstemperatur	25	[°C]
geforderte Austrittstemperatur	300	[°C]

Tabelle 14: Vorgaben für die Wärmeauskopplung

In **Tabelle 15** sind die wichtigsten Ergebnisse der verschiedenen Möglichkeiten der Wärmeauskopplung zusammengefasst.

Wärmeträger: Stickstoff			
Volumenstrom	92.000	[m³ _{STP} /h]	
Massenstrom	115.092	[kg/h]	
Topgas - Temperatur	323	[°C]	
Wärmeträger: Dampf – minimale Dampfer	zeugung		
Massenstrom	15.150	[kg/h]	
Massenstrom - Exportdampf	0	[kg/h]	
Topgas - Temperatur	316	[°C]	
Wärmeträger: Dampf – maximale Dampferzeugung			
Massenstrom	28.450	[kg/h]	
Massenstrom - Exportdampf	9.950	[kg/h]	
Topgas - Temperatur	241	[°C]	

Tabelle 15: Ergebnisse – Wärmeauskopplung mit verschiedenen Wärmeträgern

Entscheidend für eine nachfolgende Entstaubung mittels Gewebefilter ist, wieweit die Topgastemperatur durch Kühlung noch gesenkt werden muss. Die Wärmeauskopplung bei maximaler Dampferzeugung ist für eine nachfolgende Entstaubung mittels Gewebefilter sicherlich von Vorteil, da die Topgastemperatur schon sehr nahe an der Anwendungstemperatur von PTFE-Filtern liegt.

5.4 Elektrofilter

Die Auslegung des Elektrofilters basiert auf den in Kapitel 3 angeführten Formeln und Überlegungen. Die Auslegung erfolgt für zwei Verfahrensalternativen, einerseits für einen Einsatz direkt nach dem Zyklon und andererseits für eine Anwendung nach vorheriger Wärmeauskopplung (maximale Dampferzeugung). Die Vor- und Nachteile der beiden Anordnungen wurden bereits in Kapitel 5.1 ausgeführt.

Anhand der Korngrößenverteilung des Reingases aus dem Zyklon kann mit Hilfe der in Kapitel 4.2.1 genannten Gleichungen die Aufgabegut-Korngrößenverteilung des Zyklons ermittelt werden.

Eine Entstaubung auf einen Reingasstaubgehalt von unter 5 mg/m³_{STP} ist sowohl nach einer vorherigen Wärmeauskopplung als auch im Heißbetrieb ohne vorherige Wärmeauskopplung möglich, wie die nachfolgenden Kapitel zeigen.

5.4.1 Elektrofilter direkt nach dem Zyklon

Das vorgereinigte Topgas tritt direkt in den Elektrofilter ein, wo die Entstaubung auf die geforderten Reingasbedingungen erfolgt. Anschließend wird das gereinigte Topgas für die Wärmeauskopplung genutzt.

Tabelle 16: Betriebsbedingungen – Elektrofilter (nach Zyklon)

Volumenstrom (Topgas)	300.000	[m³ _{STP} /h]
	173.678	[m³ _B /h]
Temperatur (Topgas)	400	[°C]
c _{Eintritt} (Staub)	5,46	[g/m³ _{STP}]

Um eine möglichst gute Abscheideleistung zu erzielen, ist die richtige Wahl der Gasgeschwindigkeit von großer Bedeutung. Bei zu hohen Gasgeschwindigkeiten wird die Abscheideleistung schlechter bzw. muss die Länge des Elektrofilters größer werden, damit eine bestimmte Abscheideleistung erreicht wird. Dieser Zusammenhang lässt sich dadurch erklären, dass bei hohen Gasgeschwindigkeiten und kurzer Länge die Partikel den Elektrofilter schon wieder verlassen, bevor sie sich an der Niederschlagselektrode abscheiden können.

Daher wurde, um eine möglichst kompakte Bauweise zu ermöglichen, eine geringe Gasgeschwindigkeit gewählt.

Abstand Sprühelektrode – Niederschlagselektrode	0,1	[m]
Sprühdrahtdurchmesser	1,5	[mm]
Gasgeschwindigkeit	1,0	[m/s]
Breite	6,55	[m]
Höhe	7,37	[m]
Länge	12,41	[m]
spezifische Abscheidefläche	124,07	[s/m]
C _{Reingas}	4,88	[mg/m³ _{STP}]

Tabelle 17: Charakteristische Daten des Elektrofilters (nach Zyklon)

Eine Vergrößerung des Sprühdrahtdurchmessers wirkt sich auf die Abscheideleistung insofern negativ aus, als dass die Länge des Filters, bei ansonsten gleicher Auslegung und gleicher Reingaskonzentration, zunimmt. Für den in **Tabelle 17** angeführten Elektrofilter würde sich bei einem Sprühdrahtdurchmesser von 2 mm ein Filterlänge von 14,19 m ergeben (siehe Anhang 11.6.1.1 und 11.6.1.2).

Korngrößenverteilung

Abbildung 20: Korngrößenverteilung Elektrofilter (direkt nach dem Zyklon)

Im Elektrofilter werden, wie **Abbildung 20** deutlich zeigt, auch sehr feine Partikel sehr gut abgeschieden. Selbst für Partikeldurchmesser von 2 µm ergibt sich bereits ein Fraktionsabscheidegrad von 100 % (siehe Anhang 11.6.1.1).

5.4.2 Elektrofilter nach der Wärmeauskopplung

Das vorgereinigte Topgas wird für die Wärmeauskopplung verwendet und erst anschließend im Elektrofilter auf die geforderten Reingasbedingungen entstaubt. Die Berechnung des Elektrofilters erfolgt für den Fall maximaler Dampferzeugung, da hieraus die niedrigst mögliche Topgastemperatur resultiert.

Tabelle 18: Betriebsbedingungen	– Elektrofilter (nach	Wärmeauskopplung)
---------------------------------	-----------------------	-------------------

Volumenstrom (Topgas)	300.000	[m³ _{STP} /h]
	132.663	[m³ _B /h]
Temperatur (Topgas)	241	[°C]
c _{Eintritt} (Staub)	5,46	[g/m³ _{STP}]

Wie bereits erwähnt, ist die richtige Wahl der Gasgeschwindigkeit von großer Bedeutung. Durch die niedrigere Topgastemperatur verringert sich der Betriebsvolumenstrom und somit auch die Querschnittsfläche. Um die benötigte Abscheidefläche zu erreichen, muss entweder die Filterlänge vergrößert oder die Gasgeschwindigkeit verringert werden. Im aktuellen Fall wurde die Gasgeschwindigkeit etwas verringert, um weiterhin eine möglichst kompakte Bauweise des Elektrofilters zu ermöglichen.

Tabelle 19: Charakteristische Daten des Elektrofilters	(nach	Wärmeauskopplung)
--	-------	-------------------

Abstand Sprühelektrode – Niederschlagselektrode Sprühdrahtdurchmesser	0,1 1,5	[m] [mm]
Gasgeschwindigkeit	0,8	[m/s]
Breite	6,39	[m]
Höhe	7,21	[m]
Länge	10,58	[m]
spezifische Abscheidefläche	132,23	[s/m]
C _{Reingas}	4,87	[mg/m³ _{STP}]

Zum Vergleich wurde der Elektrofilter auch für eine Gasgeschwindigkeit von 1 m/s berechnet. Dabei würden sich für den Elektrofilter folgende Abmessungen ergeben: $5,67 \times 6,5 \times 13,22$ m (siehe Anhang 11.6.2.1 und 11.6.2.2).

Korngrößenverteilung

Abbildung 21: Korngrößenverteilung Elektrofilter (mit vorheriger Wärmeauskopplung)

Abbildung 21 zeigt, dass nach der Entstaubung im Elektrofilter nur noch geringe Mengen an Staubpartikeln im Topgas verbleiben. Diese Partikel haben einen maximalen Durchmesser von ca. 1 μm. Der Anteil der Staubpartikel im Reingas beträgt rund 0,09% der Aufgabemenge. Daraus resultiert eine Staubkonzentration im Reingas von 4,87 mg/m³_{STP}.

5.5 Gewebefilter

Für eine Entstaubung mittels Gewebefilter wurde im Rahmen dieser Arbeit eine entsprechende Anfrage an einen Gewebefilterproduzenten (Firma Scheuch) gemacht. Die wesentlichen Punkte werden hier kurz angeführt.

Die Auswahl eines Gewebefilters wird von verschiedensten Kriterien, wie Anwendungstemperaturen, Hochtemperaturausführung des Filtergehäuses, Druckverlust, Kosten für Erneuerung des Filtermaterials, Regeneration des Filters, Platzbedarf, etc. beeinflusst.

Die Entstaubung im vorliegenden Fall könnte mittels PTFE-Materialien oder PTFE-Membranen auf Glasfasergewebe erfolgen, allerdings müsste die Topgastemperatur vorher in einem Kühler entsprechend reduziert werden. Als Kühler könnten Röhrenkühler eingesetzt werden. Inwieweit das Topgas noch abgekühlt werden kann, ohne dass es zur Teerkondensation kommt, müsste noch genauer untersucht werden.

Die Abreinigung (Online-Verfahren) erfolgt mittels Druckluftstoß Schlauchreihe für Schlauchreihe. Bei einer Offline-Reinigung des Filters müsste jede Filterkammer mit entsprechenden Klappen versehen werden, um sie aus dem Gasstrom nehmen zu können.

Im Allgemeinen wäre die Filterflächenbelastung mit rund 1 bis 1,2 m³/m²min anzunehmen. Für die Online-Reinigung ist mit einer Filterflächenbelastung von rund 1,02 m³/m²min zu rechnen, während bei der Offline-Reinigung eine Filterflächenbelastung von 1,19 m³/m²min zu erwarten ist. Für den Druckverlust im Filter sind rund 10 bis 20 mbar zu erwarten.

Derzeit laufen Untersuchungen, mineralische Fasern für den Filtrationsprozess einzusetzen, da diese höhere Temperaturbeständigkeiten aufweisen. Eine Anwendung scheitert derzeit aber noch an der Verarbeitung der Fasern zu Schläuchen entsprechender Qualität.

5.6 Massenbilanzen

Die Massenbilanzen wurden für die Abscheidung im Zyklon, im Elektrofilter und für den gesamten Entstaubungsvorgang erstellt. Wie bereits in Kapitel 2.3 beschrieben, tritt im Zyklon in der Praxis keine ideale Abscheidung auf, daher wird für die Berechnung der Massenbilanzen des Zyklons die Abscheideleistung zu Vergleichszwecken sowohl über alle Partikelgrößen als auch bis zur Grenzkorngröße berechnet.

5.6.1 Massenbilanz – Zyklon

Für die Berechnung der Massenbilanz wird der in **Abbildung 22** dargestellte Bilanzraum herangezogen.

 $c_{\text{AB}},\ m_{\text{AB}}$

Abbildung 22: Bilanzraum – Zyklon

Wie aus **Tabelle 20** ersichtlich ist, ergeben sich doch deutliche Unterschiede in der berechneten Abscheideleistung. Wird die Abscheideleistung über alle Partikelgrößen ermittelt, ergibt sich eine um rund 13 % niedrigere Abscheideleistung als bei einer Ermittlung bis zum Grenzkorndurchmesser (ideale Abscheidung).

Tabelle 20: Massenbilana	z Zyklon (V	ergleich ideale i	und reale Abscheidung)
--------------------------	-------------	-------------------	------------------------

Variante 1 (alle Partikeldurchmesser)		Variante 2 (Grenzkorndurchmesser)	
v	300000 [m³ _{STP} /h]	V	300000 [m³ _{STP} /h]
C ₀	20000 [mg/m ³ STP]	C ₀	20000 [mg/m ³ _{STP}]
mo	6000 [kg/h]	m _o	6000 [kg/h]
Zyklon:		Zyklon:	
Austritt ins Reingas	27,29 [%]	Austritt ins Reingas	14,24 [%]
m _{RG}	1637,12 [kg/h]	m _{RG}	854,10 [kg/h]
C _{RG}	5457,08 [mg/m³ _{STP}]	C _{RG}	2847,01 [mg/m ³ _{STP}]
Abscheidung	72,71 [%]	Abscheidung	85,76 [%]
m _{AB}	4362,88 [kg/h]	m _{AB}	5145,90 [kg/h]
C _{AB}	14542,92 [mg/m ³ STP]	C _{AB}	17152,99 [mg/m ³ STP]

Für die weitere Berechnung der Entstaubung wurde die Abscheideleistung über alle Partikelgrößen verwendet, da diese den tatsächlichen Verhältnissen im Betrieb am ehesten entspricht.

5.6.2 Massenbilanz – Elektrofilter

Bei der Massenbilanz für den Elektrofilter ist zwischen den beiden Varianten, Elektrofilter vor der Wärmeauskopplung bzw. Elektrofilter nach der Wärmeauskopplung zu unterscheiden. Da in beiden Fällen ein Reingasstaubgehalt von unter 5 mg/m³_{STP} erzielt werden muss, und die Elektrofilter dahingehend ausgelegt werden, ergeben sich nur geringe Unterschiede.

Abbildung 23: Bilanzraum – Elektrofilter

Die in den Elektrofilter eintretende Staubbeladung und der dazugehörige Massenstrom entsprechen dem Reingasaustritt des Zyklons.

Variante 1 (vor Wärmeauskopplung)		Variante 2 (nach Wärmeauskopplung)	
v	300000 [m³ _{STP} /h]	V	300000 [m³ _{STP} /h]
C ₀	5457,08 [mg/m ³ STP]	C ₀	5457,08 [mg/m ³ STP]
mo	1637,12 [kg/h]	m _o	1637,12 [kg/h]
Elektrofilter:		Elektrofilter:	
Austritt ins Reingas	0,09 [%]	Austritt ins Reingas	0,09 [%]
m _{RG}	1,46 [kg/h]	m _{RG}	1,47 [kg/h]
C _{RG}	4,88 [mg/m ³ _{STP}]	C _{RG}	4,90 [mg/m ³ _{STP}]
Abscheidung	99,91 [%]	Abscheidung	99,91 [%]
m _{AB}	1635,66 [kg/h]	m _{AB}	1635,65 [kg/h]
CAB	5452,20 [mg/m ³ STP]	C _{AB}	5452,17 [mg/m ³ STP]

Tabelle 21: Massenbilanz Elektrofilter (mit und ohne vorheriger Wärmeauskopplung)

Die Ergebnisse aus **Tabelle 21** zeigen zwar nur geringe Unterschiede in der Abscheideleistung, allerdings unterscheiden sich die Abmessungen der beiden Elektrofilter doch beträchtlich voneinander. Die Abmessungen der beiden Elektrofilter-Varianten sind **Tabelle 17** und **Tabelle 19** zu entnehmen.

5.6.3 Gesamtmassenbilanz

Für die Gesamtbilanz wird der Bilanzraum über den gesamten Entstaubungsvorgang gelegt. Es bleibt dabei unberücksichtigt, wie gut die Abscheidung im Zyklon oder im Elektrofilter ist, lediglich der Reingasstaubgehalt am Ende der Entstaubung ist relevant.

Abbildung 24: Bilanzraum – gesamtes Entstaubungssystem

Wie bereits erwähnt, wird auch im Falle einer Wärmeauskopplung zwischen Zyklon und Elektrofilter auf den annähernd gleichen Reingasstaubgehalt entstaubt wie bei der Wärmeauskopplung nach der Entstaubung. Die Gesamtabscheidegrade dieser beiden Varianten unterscheiden sich nur geringfügig voneinander (siehe **Tabelle 22**).

Variante 1 (alle Partikeldurchmesser) ¦ohne Wärmeauskopplung)		Variante 2 (alle Partikeldurchmesser) (mit Wärmeauskopplung)	
v	300000 [m³ _{STP} /h]	V	300000 [m³ _{STP} /h]
C ₀	20000 [mg/m ³ _{STP}]	c ₀	20000 [mg/m ³ _{STP}]
m _o	6000 [kg/h]	m₀	6000 [kg/h]
Zyklon:		Zyklon:	
Austritt ins Reingas	27,29 [%]	Austritt ins Reingas	27,29 [%]
m _{RG}	1637,12 [kg/h]	m _{RG}	1637,12 [kg/h]
C _{RG}	5457,08 [mg/m ³ STP]	C _{RG}	5457,08 [mg/m ³ _{STP}]
Abscheidung	72,71 [%]	Abscheidung	72,71 [%]
m _{A B, 1}	4362,88 [kg/h]	m _{A B, 1}	4362,88 [kg/h]
C _{AB,1}	14542,92 [mg/m ³ _{STP}]	C _{AB,1}	14542,92 [mg/m ³ _{STP}]
Elektrofilter:		Elektrofilter:	
Austritt ins Reingas	0,09 [%]	Austritt ins Reingas	0,09 [%]
m _{RG}	1,46 [kg/h]	m _{RG}	1,47 [kg/h]
C _{RG}	4,88 [mg/m ³ _{STP}]	C _{RG}	4,90 [mg/m ³ _{STP}]
Abscheidung	99,91 [%]	Abscheidung	99,91 [%]
m _{AB,2}	1635,66 [kg/h]	m _{AB,2}	1635,65 [kg/h]
C _{AB,2}	5452,20 [mg/m ³ _{STP}]	C _{AB,2}	5452,17 [mg/m ³ _{STP}]
Gesamtabscheidung:		Gesamtabscheidung:	
Gesamtabscheidung	99,9756 [%]	Gesamtabscheidung	99,9755 [%]

Tabelle 22: Massenbilanz – gesamtes System

6 Überlegungen zu den benötigten Wärmetauschern

In dieser Arbeit wird nur eine prinzipielle Auslegung der Wärmetauscher vorgenommen, konstruktive Details und eine Kostenabschätzung sind nicht enthalten. Die Auslegung umfasst:

- Wärmetauschertyp
- Medienführung
- benötigte Austauschfläche

6.1 Allgemeines zur Austauschfläche

Die Austauschfläche kann nach folgender Gleichung berechnet werden:

$$A = \frac{Q}{k \cdot \Delta T}$$

$$Q \qquad \dots \qquad \ddot{u} bertragene \ W \ddot{a} rmemenge \ [W]$$
(45)

k ... Wärmedurchgangskoeffizient [W/m²K]

- A ... Austauschfläche [m²]
- ΔT ... Temperaturdifferenz [K]

Die übertragene Wärmemenge ergibt sich aus der Enthalpiedifferenz des Mediums zwischen Eintritt und Austritt in den Wärmetauscher bezogen auf den Massenstrom des Mediums.

$$Q = \frac{Enthalpie_{Ein} - Enthalpie_{Aus}}{\dot{m}}$$
(46)

EnthalpieEnthalpie des Mediums am Wärmetauschereintritt [J/kg]EnthalpieEnthalpie des Mediums am Wärmetauscheraustritt [J/kg] \dot{m} ...Massenstrom des Mediums [kg/s]

Für die Berechnung der Austauschfläche werden die k-Werte für die verschiedenen Wärmetauschertypen dem VDI-Wärmeatlas entnommen [46]. Die kleineren k-Werte gelten für ungünstige Betriebsbedingungen, wie kleine Strömungsgeschwindigkeiten, zähe Flüssigkeiten, freie Konvektion und Neigung zu Verschmutzungen. Die großen Werte sind bei besonders günstigen Verhältnissen, d. h. bei großer Strömungsgeschwindigkeit, dünnen Flüssigschichten, optimalem Mengenverhältnis der beiden Stoffe zueinander und sauberen Oberflächen einzusetzen. In den k-Werten sind die Wärmeleitwiderstände von Isolier- und Schutzschichten nicht berücksichtigt. Die k-Werte werden auch vom verwendeten Material beeinflusst – Kohlenstoffstahl hat eine deutlich höhere Wärmeleitfähigkeit als beispielsweise Edelstahl.

Die Temperaturdifferenz wird als logarithmisches Mittel (Gegenstrom) berechnet:

$$\Delta T = \Delta T_{LM} = \frac{\Delta T_{EIN} - \Delta T_{AUS}}{\ln \frac{\Delta T_{EIN}}{\Delta T_{AUS}}}$$
(47)

 ΔT_{EIN} ... Temperaturdifferenz am Eintritt in den Wärmetauscher [K] ΔT_{AUS} ... Temperaturdifferenz am Austritt aus dem Wärmetauscher [K]

Für einen Kondensationsvorgang wird die Temperaturdifferenz zwar auch als logarithmisches Mittel berechnet, jedoch sind andere Differenzwerte einzusetzen. Die Berechnung erfolgt nach **Gleichung (48)** - [47]:

$$\Delta T_{LM,Kondensation} = \frac{(\mathcal{G}_{S} - \mathcal{G}_{KM,Ein}) - (\mathcal{G}_{S} - \mathcal{G}_{KM,Aus})}{\ln \frac{\mathcal{G}_{S} - \mathcal{G}_{KM,Ein}}{\mathcal{G}_{S} - \mathcal{G}_{KM,Aus}}}$$
(48)

6.2 Allgemeines zur Medienführung

Zur Medienführung ist zu sagen, dass jenes Medium innerhalb der Wärmetauscherrohre strömt, das eines oder mehrere der folgenden Kriterien erfüllt:

- erhöhter Druck
- zur Verschmutzung neigend
- korrodierende Eigenschaften

Im vorliegenden Fall wird das Topgas innerhalb der Wärmetauscherrohre und der Wärmeträger, Stickstoff oder Dampf, außerhalb der Rohre geführt. In den Rohren kann eine gleichmäßigere und größere Strömungsgeschwindigkeit aufrechterhalten werden und somit gibt es weniger Totzonen. Die Verschmutzungen können im Rahmen von Betriebsstillständen aus den Rohren entfernt werden.

6.3 Wärmeträger: Stickstoff

Bei der Verwendung von Stickstoff als Wärmeträger gilt für alle Wärmetauscher ein Gas-Gas-Wärmeübergang. Im vorliegenden Fall herrscht ein Druck von rund 4 bar in den Rohren, daher wird für eine erste Abschätzung der Austauschfläche mit einem k-Wert von 25 W/m²K gerechnet (siehe **Tabelle 23**).

Wärmetauschertyp			/ert
Rohrbündel – Wärmetauscher	Gas innerhalb und außerhalb der Rohre (~ 1 bar)	5 – 35	[W/m²K]
Doppelrohr – Wärmetauscher	Gas innerhalb und außerhalb der Rohre (~ 1 bar)	10 – 35	[W/m²K]

Tabelle 23: Mö	gliche Wärmetaus	cher für Stickstoff	als Wärmeträger
----------------	------------------	---------------------	-----------------

Rohrbündelwärmetauscher können sowohl waagrecht als auch senkrecht ausgeführt werden. Bei der waagrechten Ausführung müssen Kompensatoren eingebaut werden, um die Wärmespannungen ausgleichen zu können. Weil es keine Einbauten im Wärmetauscher gibt, ist der Aufwand bei Reparaturen, z.B. Austausch von Rohren, gering. Der Vorteil des senkrechten Rohrbündelwärmetauschers besteht in der Gegenstromführung, allerdings ist der Aufwand beim Austausch von Rohren deutlich größer, da im Wärmetauscher Leitbleche eingebaut sind.

Der Doppelrohrwärmetauscher ist für die vorliegende Anwendung nicht zu empfehlen, da die Reinigung der Rohre sehr schwierig wäre. Wärmetauscher mit Haarnadel-Rohren sind gegenüber Temperaturschwankungen unempfindlich, jedoch ist ihre Reinigung aufwendig. Unter den vorliegenden Bedingungen ist daher deren Einsatz nicht sinnvoll.

Da der zweite Wärmetauscher der Stickstoffaufwärmung (siehe **Abbildung 15**) eine relativ geringe Temperaturdifferenz aufweist, resultiert daraus eine große Austauschfläche. Die Austauschfläche des Stickstoff-Sauerstoff-Wärmetauschers wird deshalb so groß, weil eine sehr große Wärmemenge bei geringer Temperaturdifferenz übertragen werden muss.

Tabelle 24: Austauschflächen für Stickstoff als Wärmeträger

1. Stickstoffwärmetauscher	939,1	[m²]
2. Stickstoffwärmetauscher	2.161,3	[m²]
Stickstoff - Sauerstoff – Wärmetauscher	10.770,2	[m²]

Bei einer Vorwärmung des Stickstoffes in einem einzigen Wärmetauscher müsste die gesamte Wärmemenge in diesem übertragen werden. Die Ein- und Austrittstemperaturen bleiben gleich, auch der k-Wert von 25 W/m²K wird beibehalten. Die resultierende Austauschfläche ergibt sich zu 3.083,8 m². Die gesamte Austauschfläche der beiden Stickstoffwärmetauscher beträgt 3.100,4 m². Ein Vergleich der beiden Werte zeigt, dass die Verringerung der Austauschfläche nicht einmal 20 m² beträgt (siehe Anhang 11.7.1).

6.4 Wärmeträger: Wasser/Dampf

Wird als Wärmeträger Wasser/Dampf verwendet, erfolgt der Wärmeübergang zwischen Gas und Flüssigkeit bzw. zwischen Gas und Dampf. Die Auswahl der Wärmetauschertypen ist von der erzeugten Dampfmenge unabhängig. Je nach erzeugter Wärmemenge ergeben sich aber unterschiedliche Austauschflächen.

Tabelle 25 gibt für die benötigten Wärmetauscher eine Übersicht über die möglichen Wärmetauschertypen sowie die geltenden k-Werte [46].

Economiser		
Rohrbündel – Wärmetauscher	Flüssigkeit außerhalb (innerhalb) und Gas (~ 1 bar) innerhalb (außerhalb) der Rohre	15 – 70 [W/m²K]
Taschen – Wärmetauscher	Gas an Flüssigkeit	20 – 60 [W/m²K]
Platten – Wärmetauscher	Ebene Kanäle, Gas an Wasser	20 – 60 [W/m²K]
Verdampfer (evaporator)		
Verdampfer	Heizmedium außerhalb der Rohre mit natürlichen Umlauf dünne Flüssigkeiten	600 – 1700 [W/m²K]
Überhitzer (superheater)		
Rohrbündel – Wärmetauscher	Gas (~ 1bar) innerhalb und Gas (~ 1 bar) außerhalb der Rohre	5 – 35 [W/m²K]
Dampfkühler		
Gaserhitzer	Wasserdampf oder Heißwasser innerhalb der Rippenrohre und Gas außerhalb der Rippenrohre freie Strömung	5 – 12 [W/m²K]
Dampfkondensator		
Gaserhitzer mit Kondensat- sammlung	Wasserdampf oder Heißwasser innerhalb der Rippenrohre und Gas außerhalb der Rippenrohre freie Strömung	5 – 12 [W/m²K]
Kondensator	Dampfturbinenkondensator (reiner Wasserdampf; dünne Messing- rohre)	1500 – 4000 [W/m²K]

Tabelle 25: Mögliche Wärmetauscher für Wasser/Dampfals Wärmeträger

6.4.1 minimale Dampferzeugung

Bei der minimalen Dampferzeugung werden folgende Wärmetauschertypen mit den entsprechenden k-Werten für die Berechnung der Austauschfläche verwendet:

• Economiser: Rohrbündel-Wärmetauscher; Topgas innerhalb und Flüssigkeit außerhalb der Rohre; k-Wert: 50 W/m²K

- Verdampfer: Verdampfer mit Naturumlauf; Topgas innerhalb der Rohre und Flüssigkeit außerhalb der Rohre; k-Wert: 600 W/m²K
- Überhitzer: Rohrbündel-Wärmetauscher; Topgas innerhalb der Rohre und Dampf außerhalb der Rohre; k-Wert: 25 W/m²K
- Dampfkühler: Gaserhitzer; Dampf innerhalb der Rohre und Sauerstoff außerhalb der Rohre; k-Wert: 8 W/m²K
- Dampfkondensator: Dampfturbinenkondensator; Sauerstoff innerhalb der Rohre und Dampf außerhalb der Rohre; k-Wert: 1500 W/m²K

Aufgrund der gewählten Wärmetauschertypen und der Temperaturdifferenzen ergeben sich folgende Austauschflächen (siehe Anhang 11.7.2.1):

Tabelle 26: Austauschflächen bei minimaler Dampferzeugung

Economiser	433,3	[m²]
Verdampfer	130,1	[m²]
Überhitzer	584,7	[m²]
Dampfkühler	2.528,4	[m²]
Dampfkondensator	241,6	[m²]

6.4.2 maximale Dampferzeugung

Bei der maximalen Dampferzeugung bleibt die Auswahl der Wärmetauschertypen und deren k-Werte gleich. Wegen der größeren Wärmemengen, die übertragen werden müssen, benötigt man größere Austauschflächen. Die notwendigen Austauschflächen sind in **Tabelle 27** angeführt.

Tabelle 27: Austauschflächen bei maximaler Dampferzeugung

Economiser	1.683,1 [m²]
Verdampfer	468,7 [m²]
Überhitzer	1.1423, [m²]
Dampfkühler	3.363,6 [m²]
Dampfkondensator	187,4 [m²]

Lediglich beim Dampfkondensator wird eine kleinere Austauschfläche benötigt, da im Falle einer maximalen Dampferzeugung eine größere Temperaturspreizung ausgenutzt werden kann (siehe Anhang 11.7.2.2).

7 Wirkungsgrad und spezifische Werte

Bei der Angabe eines Wirkungsgrades ist eine genaue Definition der Bezugsgrößen von entscheidender Bedeutung. Aus diesem Grund werden anhand nachfolgender Skizze der Bilanzraum und die entsprechenden Bezugsgrößen definiert sowie die Berechnungsformeln für die verschiedenen Wirkungsgrade und spezifischen Werte angegeben. Am Ende des Kapitels werden die berechneten Ergebnisse zusammengefasst.

Gesamtsystemwirkungsgrad:

Der Wirkungsgrad des Gesamtsystems ist vom verwendeten Wärmeträger unabhängig.

Abbildung 25: Bilanzraum für die Berechnung des Wirkungsgrades (Gesamtsystem)

Da das kalte Topgas nicht weiter genutzt wird, bezieht sich der Systemwirkungsgrad nur auf das heiße Topgas.

$$\eta_{System} = \frac{\Delta H_{Sauerstoff}}{H_{Topgas, hei\beta}}$$
(49)

$$\begin{array}{ll} \eta_{System} & \dots & Wirkungsgrad \ des \ Gesamtsystems \ [-] \\ \Delta H_{Sauerstoff} & \dots & Enthalpie \ differenz \ des \ Sauerstoffs \ (kalt - heiß) \ [kJ/kg] \\ H_{Topgas, \ heiß} & \dots & Enthalpie \ des \ heißen \ Topgases \ [kJ/kg] \end{array}$$

<u> Wirkungsgrad – Wärmeträgersystem</u>

In diesem Fall wird die Sauerstoffaufwärmung auf den Wärmeträger, also Stickstoff bzw. Dampf, bezogen. Damit ist es möglich, die beiden Wärmeträgersysteme zu vergleichen. Die erzeugte Dampfmenge hat jedoch keinen Einfluss auf den Wirkungsgrad.

Abbildung 26: Bilanzraum für die Berechnung des Wärmeträger – Wirkungsgrades

$$\eta_{Warmeträger} = \frac{\Delta H_{Sauerstoff}}{H_{Warmeträger, hei\beta}}$$

$$\eta_{Warmeträger} \qquad \dots \qquad Wirkungsgrad \ des \ Wärmeträgers \ [-]$$

$$\Delta H_{Sauerstoff} \qquad \dots \qquad Enthalpie \ des \ heißen \ Wärmeträgers \ [kJ/kg]$$

$$H_{Warmeträger, hei\beta} \qquad \dots \qquad Enthalpie \ des \ heißen \ Wärmeträgers \ [kJ/kg]$$

Neben den Wirkungsgraden wird auch noch ein spezifischer Wert angegeben, nämlich die für die Sauerstoffaufwärmung eingesetzte Energie bezogen auf die Produktionskapazität der Anlage.

$$Energiee insatz_{Anlagenbezogen} = \frac{\Delta H_{Topgas}}{3600 \cdot 1000 \cdot Anlagenle istung}$$
(51)

$$Energiee insatz_{Anlagenbezogen} \dots eingesetzte Energie [kWh/t_{Roheisen}]$$

$$\Delta H_{Topgas} \dots Enthalpie differenz Topgas (Eintritt - Austritt) [J/h]$$

$$3600 \dots Umrechnungsfaktor: Stunde \rightarrow Sekunden [s/h]$$

$$Anlagenle istung \dots Produktionskapazit ät der Anlage [t_{Roheisen}/h]$$

7.1 Ergebnisse

Die Berechnung der Wirkungsgrade und des spezifischen Wertes ist im Anhang (siehe Anhang 11.8) angeführt. Nachfolgend werden die Ergebnisse der Berechnung der Wirkungsgrade in **Tabelle 28** zusammengefasst.

Tabelle 28: Wirkungsgrade des Gesamtsystems und der Wärmeträgersysteme

Gesamtsystemwirkungsgrad	0,53 [-]
Wirkungsgrad: Wärmeträger Stickstoff	0,41 [-]
Wirkungsgrad: Wärmeträger Dampf	0,09 [-]

Der Wirkungsgrad des Wärmeträgers Dampf ist sehr niedrig, allerdings ist dabei zu berücksichtigen, dass hinsichtlich des Dampfes Druck und Temperatur vorgegeben waren. Unter diesen Bedingungen (60 bar, 350°C) beträgt die Enthalpie des Dampfes rund 3040 kJ/kg, während die Enthalpiedifferenz des Sauerstoffes rund 267 kJ/kg beträgt.

Für die Berechnung des Energieeinsatzes wird eine Produktionskapazität von 180 Tonnen Roheisen pro Stunde angenommen. Beim Energieeinsatz wird zwischen den drei Fällen – Wärmeträger Stickstoff, minimale und maximale Dampferzeugung – unterschieden, da sich unterschiedliche Topgasendtemperaturen ergeben. Die Berechnungsergebnisse können dem Anhang (siehe Anhang 11.9) entnommen werden. Der spezifische Energieeinsatz für die einzelnen Wärmeträger ist in **Tabelle 29** zusammengefasst.

Tabelle 29: spezifischer Energieeinsatz

Wärmeträger: Stickstoff	63,884	[kWh/t _{Roheisen}]
Wärmeträger: Dampf – minimale Menge	69,245	[kWh/t _{Roheisen}]
Wärmeträger: Dampf – maximale Menge	128,070	[kWh/t _{Roheisen}]

8 Ergebnisse und Diskussion

Ziel der Arbeit war es, Möglichkeiten für den Ersatz der bisherigen Nasswäsche des Topgases durch eine Trockenentstaubung zu finden. Aufgrund der vorherrschenden Temperaturen kommen Zyklonabscheidung und Abscheidung im Elektrofilter in Betracht. Eine Entstaubung mittels Gewebefilter ist nur möglich, wenn das Topgas vorher auf Temperaturen unter 240°C gekühlt wird.

Im Falle einer Trockenentstaubung könnte auch die fühlbare Wärme des Topgases ausgekoppelt und zur Erzeugung von Dampf bzw. zur Vorwärmung von Sauerstoff genutzt werden.

Im Bereich der Trockenentstaubung erfolgt eine prinzipielle Auslegung des Zyklons und des Elektrofilters dahingehend, dass die geforderten Reingasbedingungen von 5 μm maximale Partikelgröße und 5 mg/m³_{STP} maximale Reingasstaubbeladung erreicht werden können.

Die Wärmeauskopplung wurde sowohl mit den Wärmeträgern Stickstoff als auch Wasser/Dampf berechnet. Bei der Verwendung von Dampf wird zwischen einer minimalen und einer maximalen Dampferzeugung unterschieden.

Mit einer Zyklonanordnung von 3 Parallelzyklonen gewählter Geometrie wird ein Grenzkorndurchmesser von rund 4 µm erreicht, wodurch rund 75% des Staubes abgeschieden werden können.

Eine anschließende Wärmeauskopplung reduziert je nach Wärmeträger die Topgastemperatur auf Werte zwischen 323°C bei Stickstoff und 240°C bei maximaler Dampferzeugung. Der nachfolgende Elektrofilter kann daher in Materialien mit geringerer Temperaturbeständigkeit ausgeführt werden. Im Falle der maximalen Dampferzeugung kann nach einer weiteren Abkühlung des Topgases auch der Einsatz von Gewebefiltern auf PTFE-Basis überlegt werden. Derzeit sind Gewebefilter auf PTFE-Basis bei Temperaturen bis zu 230°C im industriellen Einsatz.

Es kann auch bei einer minimalen Dampferzeugung oder bei Stickstoffeinsatz nach einer entsprechenden Kühlung ein Gewebefilter auf PTFE-Basis eingesetzt werden. In diesen Fällen muss aber eine relativ große Wärmemenge ungenutzt abgeführt werden. Daher erscheint dessen Nutzung im Rahmen der maximalen Dampferzeugung für die Sauerstoffvorwärmung und eine entsprechende Menge Exportdampf wirtschaftlicher.

Alternativ kann nach der Vorentstaubung im Zyklon auch sofort die Feinentstaubung mittels Elektrofilter erfolgen. In diesem Fall werden die Wärmetauscher der Wärmeauskopplung nur mit sehr geringen Staubmengen durchfahren und der erosive Verschleiß ist deutlich geringer. Nachteilig ist, dass der Elektrofilter in entsprechend temperaturbeständigen Materialien ausgeführt werden muss.

Je nach Einsatzort des Elektrofilters, vor oder nach der Wärmeauskopplung, ergeben sich auch unterschiedliche Hauptabmessungen des Elektrofilters. Bei einem Einsatz direkt nach dem Zyklon ergibt sich eine Größe von 6,6 x 7,4 x 12,4 m bei einer Gasgeschwindigkeit von 1 m/s. Alternativ ergibt sich nach vorheriger Wärmeauskopplung eine Größe von

 $6,4 \ge 7,2 \ge 10,6$ m bei einer Gasgeschwindigkeit von 0,8 m/s. In beiden Fällen kann jedoch ein Reingasstaubgehalt von 5 mg/m³_{STP} erreicht werden. Die maximale Partikelgröße von 5 µm wird im Wesentlichen schon durch den Zyklon erreicht. Jener Anteil an Partikeln mit einem Durchmesser größer dem Grenzkorndurchmesser, die dennoch ins Reingas gelangen, werden im Elektrofilter problemlos abgeschieden.

Bei der Berechnung der Wärmeauskopplung sind Verluste der Wärmetauscher und Rohrleitungen nicht berücksichtigt. Um die Verluste berechnen zu können, müssten die Abmessungen der Wärmetauscher und Rohrleitungen bekannt sein. Im vorliegenden Fall sind diese Spezifikationen jedoch nicht bekannt. Für eine Berechnung müssten daher sehr viele Annahmen getroffen werden, wodurch das Ergebnis mit großen Unsicherheiten behaftet wäre. Darüber hinaus war die Hauptaufgabe dieser Arbeit, prinzipielle Möglichkeiten aufzuzeigen und dementsprechende erste Berechnungen durchzuführen. Weitere Untersuchungen, wie beispielsweise minimal mögliche Topgastemperatur für die Wärmeauskopplung, sind in jedem Fall noch erforderlich.

Zur Anwendung der angeführten Trockenentstaubungsverfahren im Rahmen von Finex-Anlagen ist zu sagen, dass dort eine geringere Abscheideleistung des Zyklons zu erwarten ist, da der Staub eine Korngrößenverteilung mit größeren Anteilen an Fein- und Feinststaub aufweist als das Corex-Topgas. Bei Finex-Anlagen kommt der Sekundärentstaubung besondere Bedeutung zu, da diese im Vergleich zur Entstaubung im Corex-Verfahren unter der Vorraussetzung gleicher Reingasbedingungen eine größere Abscheideleistung zu erbringen hat.

9 Zusammenfassung

Das Topgas wird derzeit in einer zweistufigen Nasswäsche (Packungswäscher und Venturiwäscher) entstaubt. Dieses Verfahren besitzt jedoch zwei wesentliche Nachteile: einerseits fällt ein hohes Schlammaufkommen an, das nur aufwendig weiterverarbeitet bzw. teuer entsorgt werden kann, und andererseits wird die fühlbare Wärme des Topgases ungenutzt abgeführt. Darüber hinaus enthält der Staub noch große Mengen an Eisen und Eisenoxid, die nicht in den Prozess zurückgeführt werden können.

Aus diesen Gründen erscheint ein Ersatz durch ein Trockenentstaubungssystem sinnvoll, da neben einer Verringerung der Verbrauchszahlen bei Wasser und Energie auch eine Rückführung des vorhandenen Staubes in den Prozess, z.B. in den Einschmelzvergaser, und eine Nutzung der fühlbaren Wärme des Topgases ermöglicht wird.

Im Rahmen dieser Arbeit werden daher die prinzipiellen Möglichkeiten einer Trockenentstaubung und einer Wärmeauskopplung der fühlbaren Wärme des Topgases untersucht. Die Wärmeauskopplung wird verlustfrei berechnet, da für eine Berücksichtigung der Verluste in den Wärmetauschern und Rohrleitungen deren Spezifikationen bekannt sein müssten, um realistische Ergebnisse erhalten zu können.

Hinsichtlich der Trockenentstaubung muss ein Reingasstaubgehalt unter 5 mg/m $^{3}_{STP}$ und eine maximale Partikelgröße von 5 µm erreicht werden. Als erste Stufe der Entstaubung wird eine Parallelschaltung von 3 Zyklonen verwendet, wobei hier ein Grenzkorn von rund 4 µm erzielt werden kann. Geringe Anteile an Partikeln mit Durchmessern größer dem Grenzkorndurchmesser gelangen ins Reingas, diese werden jedoch in der zweiten Stufe der Entstaubung problemlos abgeschieden. Bei der Vorentstaubung im Zyklon werden rund 75% des Staubes bereits abgeschieden.

Für die weitere Vorgehensweise ergeben sich zwei Alternativen:

- anschließende zweite Stufe der Entstaubung und nachgeschaltete Wärmeauskopplung
- anschließende Wärmeauskopplung und nachgeschaltete zweite Stufe der Entstaubung

Der Vorteil einer endgültigen Entstaubung und erst anschließender Wärmeauskopplung liegt vor allem darin, dass die Wärmetauscher nur von einem gereinigten Topgas durchströmt werden. Der erosive Verschleiß in den Wärmetauschem ist deutlich geringer. Kleinere Partikel strömen eher an den Rohrwänden vorbei und ihre Schadensauswirkung ist im Fall eines Auftreffens deutlich geringer. Nachteilig wirkt sich eine nachgeschaltete Wärmeauskopplung aus, da die zweite Stufe der Entstaubung unter Heißgasbedingungen erfolgt und daher entsprechend qualitativ hochwertige und damit kostenintensive Stähle verwendet werden müssen.

Erfolgt die Wärmeauskopplung zwischen den beiden Entstaubungsstufen, können für die zweite Entstaubungsstufe je nach vorheriger Wärmeauskopplung Stähle mit geringeren Qualitätsanforderungen verwendet werden, andererseits werden die Wärmetauscher stärker

erosivem Verschleiß ausgesetzt. Dies kann dadurch erklärt werden, dass nun eine größere Staubmenge und vor allem größere Partikel in die Wärmetauscher eintreten. Durch die größeren Partikel sind die Auswirkungen eines Aufpralls auf die Rohrwände größer und natürlich steigt auch mit zunehmendem Staubgehalt die Wahrscheinlichkeit eines Auftreffens. Werden die Wärmetauscher mit geringeren Gasgeschwindigkeiten betrieben, um die Auswirkungen des Aufpralls von Partikeln zu reduzieren, wird der Wärmeübergang schlechter und es kommt zu Anbackungen.

Eine Wärmeauskopplung ohne vorherige Entstaubungsstufe ist aus den eben genannten Gründen nicht sinnvoll, da im vorliegenden Fall bei einer jährlichen Betriebszeit von 8.000 Stunden rund 48.000 t_{Staub}/Jahr durch die Wärmetauscher geführt werden würden. Der Staub wirkt dabei wie ein Sandstrahlmittel.

Die fühlbare Wärme des Topgases wird zur Vorwärmung des Sauerstoffs auf eine Vorwärmtemperatur von 300°C verwendet. Durch die Zusammensetzung des Topgases ist ein direkter Wärmeaustausch aus Explosionsschutzgründen nicht möglich. Daher müssen Wärmeträger verwendet werden, im konkreten Fall Stickstoff oder Wasser/Dampf.

Bei der Verwendung von Stickstoff als Wärmeträger werden 94.000 m³_N/h Stickstoff benötigt, um die gewünschte Sauerstoffmenge von 95.000 m³_N/h auf die entsprechende Vorwärmtemperatur aufzuwärmen. Das Topgas kühlt sich dabei von 400°C auf rund 323°C ab.

Wird als Wärmeträger Wasser/Dampf verwendet, muss zwischen zwei Grenzfällen unterschieden werden:

- Erzeugung jener Dampfmenge, die für die Sauerstoffvorwärmung benötigt wird
- Erzeugung einer maximal möglichen Dampfmenge

Im ersten Fall benötigt man rund 15.150 kg/h Dampf, um die Sauerstoffvorwärmung durchführen zu können. Das Topgas verlässt das System mit rund 316°C.

Bei der maximalen Dampferzeugung ist die minimal erlaubte Topgastemperatur nach Durchlaufen aller Wärmetauscher entscheidend. Für die Berechnungen in dieser Arbeit wurde diese Temperatur mit 240°C angenommen, um eine Teerkondensation im Wärmetauscher zu vermeiden. Durch zusätzliche Messungen des Teergehaltes und/oder Wärmetauscherversuche könnte diese Temperatur exakt bestimmt werden. Unter den gegebenen Bedingungen beträgt die maximal erzeugbare Dampfmenge 28.450 kg/h. Davon könnten rund 9.950 kg/h als Exportdampf anderen Verbrauchern zur Verfügung gestellt werden. Die Topgastemperatur beträgt dann rund 241°C.

Als zweite Stufe der Entstaubung wird ein Elektrofilter verwendet. Dabei ist auf die richtige Wahl der Gasgeschwindigkeit zu achten, um entsprechende Verweilzeit der Partikel im Filter zu gewährleisten. Ist die Verweilzeit zu gering, verlassen die Partikeln den Filter bevor sie abgeschieden werden können.

Für die Entstaubung direkt nach dem Zyklon wird eine Gasgeschwindigkeit von 1 m/s gewählt, wobei sich für die Hauptabmessungen des Filters folgende Werte ergeben: $6,6 \times 7,4 \times 12,4$ m. Die Reingaskonzentration beträgt 4,88 mg/m³_{STP}.

Für eine Entstaubung nach vorheriger Wärmeauskopplung wird die Gasgeschwindigkeit auf 0,8 m/s reduziert. Als Hauptabmessungen ergeben sich $6,4 \times 7,2 \times 10,6$ m bei einem Reingasstaubgehalt von 4,9 mg/m³_{STP}. Bei einer Gasgeschwindigkeit von 1 m/s würde sich ein Elektrofilter in der Größe von 5,7 x 6,5 x 13,2 m ergeben.

Eine Entstaubung mittels Gewebefilter auf PTFE-Basis (Teflon) ist bei Temperaturen bis zu 230°C möglich. Für die Anwendung im vorliegenden Fall müsste die Topgastemperatur durch weitere Kühlung entsprechend abgesenkt werden. Daher scheint ein Einsatz nach der Wärmeauskopplung mit maximaler Dampferzeugung sinnvoll, da die fühlbare Wärme des Topgases hier größtmöglich ausgenutzt wurde und der nachfolgende zusätzliche Kühlschritt nur eine Temperaturverringerung um rund 10-15°C erzielen muss, im Gegensatz zu einer Verringerung um rund 100°C bei minimaler Dampferzeugung oder Stickstoff als Wärmeträger.

10 Verzeichnisse

10.1 Literatur

- [1] A New Process for Continous Sludge and Dust Granulation in the Iron and Steel Industry. In: Reduction Technology (hrsg. VAI), S. 5
- [2] Eberle A., Zeller S., Kepplinger W.: Smelting Reduction and Direct Reduction of Iron Ores – VAI-Technologies for Scrap Substitutes (COREX[®], FINMET, etc.). In: BHM, 141 (1996), 7, S. 281
- [3] Löffler F.: Staubabscheiden. New York: Georg Thieme Verlag Stuttgart, ISBN: 3-13-712201-5, S. S.92
- [4] Coker A. K.: Understand Cyclone Design. In: Chemical Engineering Progress, Vol. 51 (1993), S. 51
- [5] Löffler F.: Staubabscheiden. New York: Georg Thieme Verlag Stuttgart, ISBN: 3-13-712201-5, S. 37-46
- [6] Stairmand C. J.: The Design and Performance of Cyclone Separators. In: Trans. Inst. Chem. Eng., Vol. 29 (1951), S. 358
- [7] Löffler F.: Staubabscheiden. New York: Georg Thieme Verlag Stuttgart, ISBN: 3-13-712201-5, S. 35
- [8] Mothes H., Löffler F.: Prediction of Particle Removal in Cyclone Separators. In: International Chemical Engineering, Vol. 28 (1988), 2, S. 236ff
- [9] Löffler F.: Staubabscheiden. New York: Georg Thieme Verlag Stuttgart, ISBN: 3-13-712201-5, S. 53
- [10] Löffler F.: Staubabscheiden. New York: Georg Thieme Verlag Stuttgart, ISBN: 3-13-712201-5, S. 54f
- [11] VDI Berichte 1511, 1999, S. 2 Online im Internet: <<u>http://www.amft.tugraz.at/</u> science/zyklon/leverkusen 1999 zyklon.pdf> (Abruf: 29. Oktober 2006)
- [12] Löffler F.: Staubabscheiden. New York: Georg Thieme Verlag Stuttgart, ISBN: 3-13-712201-5, S. 72- 81
- [13] Löffler F.: Staubabscheiden. New York: Georg Thieme Verlag Stuttgart, ISBN: 3-13-712201-5, S. 57f und 63f
- [14] Löffler F.: Staubabscheiden. New York: Georg Thieme Verlag Stuttgart, ISBN: 3-13-712201-5, S. 58-63
- [15] Löffler F.: Staubabscheiden. New York: Georg Thieme Verlag Stuttgart, ISBN: 3-13-712201-5, S. 81-83
- [16] Löffler F.: Staubabscheiden. New York: Georg Thieme Verlag Stuttgart, ISBN: 3-13-712201-5, S. 48f

- [17] Löffler F.: Staubabscheiden. New York: Georg Thieme Verlag Stuttgart, ISBN: 3-13-712201-5, S. 51f
- [18] Löffler F.: Staubabscheiden. New York: Georg Thieme Verlag Stuttgart, ISBN: 3-13-712201-5, S. 56
- [19] Castle G. S. P.: Industrial Applications of Electrostatics: the Past, Present and Future. In: Journal of Electrostatics, Vol. 51-52 (2001), S. 1-7
- [20] Frisch N. W.: Electrostatic Precipitator Sizing Methodologies a Review. In: 2nd International Conference on Electrostatic Precipitation, Kyoto, 1984, S. 324-353
- [21] Online im Internet: <<u>http://www.gkm.de/technik/umwelt/main_entstaubung.htm</u>> (Abruf: 9. November 2006)
- [22] Löffler F.: Staubabscheiden. New York: Georg Thieme Verlag Stuttgart, ISBN: 3-13-712201-5, S. 317
- [23] White H. J.: Entstaubung industrieller Gase mit Elektrofiltern. VEB Deutscher Verlag für Grundstoffindustrie, Leipzig 1969, S. 79
- [24] White H. J.: Entstaubung industrieller Gase mit Elektrofiltern. VEB Deutscher Verlag für Grundstoffindustrie, Leipzig 1969, S. 83
- [25] Siebenhofer M.: Skriptum zur Vorlesung "Offgas Treatment/Abgasreinigung", 2002, deutsche Fassung, S. 41
- [26] White H. J.: Entstaubung industrieller Gase mit Elektrofiltern. VEB Deutscher Verlag für Grundstoffindustrie, Leipzig 1969, S. 90
- [27] White H. J.: Entstaubung industrieller Gase mit Elektrofiltern. VEB Deutscher Verlag für Grundstoffindustrie, Leipzig 1969, S. 102
- [28] Siebenhofer M.: Skriptum zur Vorlesung "Offgas Treatment/Abgasreinigung", 2002, deutsche Fassung, S. 42
- [29] Jedrusik M., Swierczok A., Teisseyre R.: Experimental Study of Fly Ash Precipitation in a Model Electrostatic Precipitator with Discharge Electrodes of Different Design. In: Powder Technology, Vol. 135-136 (2003), S. 295-301
- [30] White H. J.: Entstaubung industrieller Gase mit Elektrofiltern. VEB Deutscher Verlag für Grundstoffindustrie, Leipzig 1969, S. 144
- [31] Siebenhofer M.: Skriptum zur Vorlesung "Offgas Treatment/Abgasreinigung", 2002, deutsche Fassung, S. 44
- [32] Löffler F.: Staubabscheiden. New York: Georg Thieme Verlag Stuttgart, ISBN: 3-13-712201-5, S. 332-339
- [33] Kim S. H., Lee K. W.: Experimental Study of Electrostatic Precipitator Performance and Comparison with Existing Theoretical Prediction Models. In: Journal of Electrostatics, Vol. 48 (1999), S. 3-25

- [34] Kocik M., Dekowski J., Mizeraczyk J.: Particle Precipitation Efficiency in an Electrostatic Precipitator. In: Journal of Electrostatics, Vol. 63 (2005), S. 761-766
- [35] White H. J.: Entstaubung industrieller Gase mit Elektrofiltern. VEB Deutscher Verlag für Grundstoffindustrie, Leipzig 1969, S. 111
- [36] Löffler F.: Staubabscheiden. New York: Georg Thieme Verlag Stuttgart, ISBN: 3-13-712201-5, S. 341-343
- [37] Forschungsbericht: Theoretische Untersuchungen zur Topgas-Entstaubung COREX (Voest-Alpine Industrieanlagenbau) – S. 31
- [38] ChemCAD 5.5.4 Vers. 06072006 © 1998-2005 Chemstations Inc.
- [39] Meyer G., Schiffner E.: Technische Thermodynamik. Leipzig: Fachbuchverlag, 4. Auflage 1989, ISBN: 3-343-00221-6, Tafelanhang, S. 350
- [40] Beschreibung von Schwefelwasserstoff Online im Internet: <<u>http://de.wikipedia.org/</u> wiki/Schwefelwasserstoff> (Abruf: 26. Oktober 2006)
- [41] Dichte gasförmiger Stoffe Online im Internet: <<u>http://de.wikipedia.org/wiki/</u> Liste der Dichte gasf%C3%B6rmiger Stoffe> (Abruf: 26. Oktober 2006)
- [42] HSC Chemistry Ver. 4.0
- [43] VDI Wärmeatlas: VDI Gesellschaft Verfahrenstechnik und Chemieingenieurwesen (Hrsg.), Springer Verlag: Berlin, Heidelberg, New York, ISBN: 3-540-41200X 9. Auflage, 2002
- [44] Wasserdampftafel Online im Internet: <<u>http://www.higgins.ucdavis.edu/</u> webMathematica/MSP/Examples/SteamTable> (Abruf: 5. November 2006)
- [45] Wasserdampftafel: gesättigter Dampf Online im Internet:
 <<u>http://www.higgins.ucdavis.edu/webMathematice/MSP/Examples/SatProp</u>> (Abruf: 5. November 2006)
- [46] VDI Wärmeatlas: VDI Gesellschaft Verfahrenstechnik und Chemieingenieurwesen (Hrsg.), Springer Verlag: Berlin, Heidelberg, New York, ISBN: 3-540-41200X 9. Auflage, 2002, S. Cc1-Cc3
- [47] VDI Wärmeatlas: VDI Gesellschaft Verfahrenstechnik und Chemieingenieurwesen (Hrsg.), Springer Verlag: Berlin, Heidelberg, New York, ISBN: 3-540-41200X 9. Auflage, 2002, S. Ja1-Ja2

10.2 Tabellen

Tabelle 1: Praktische Werte für die Auslegung von Elektrofiltern	
Tabelle 2: Staubanalyse	
Tabelle 3: Zusammensetzung und Normdichten – Topgas	I
Tabelle 4: Dichte – Topgas (Standardzustand und Betriebszustand)	i
Tabelle 5: Werte für A/B/C/D zur Berechnung der Viskosität	
Tabelle 6: Viskosität – Topgas (vor der Nutzung der fühlbaren Wärme)	
Tabelle 7: Viskosität – Topgas (maximale Nutzung der fühlbaren Wärme)	ı
Tabelle 8: mittlere Staubzusammensetzung	
Tabelle 9: Staubzusammensetzung (neu)	
Tabelle 10: Vergleich: auftretende Staubmassenströme an der Wärmeauskopplung40	I
Tabelle 11: Übersicht – gewählte Parameter44	
Tabelle 12: Ergebnisse der Zyklonauslegung (3 Parallelzyklone)	
Tabelle 13: Ergebnisse der Zyklonauslegung (5 Parallelzyklone)	I
Tabelle 14: Vorgaben für die Wärmeauskopplung56	I
Tabelle 15: Ergebnisse – Wärmeauskopplung mit verschiedenen Wärmeträgern56	i
Tabelle 16: Betriebsbedingungen – Elektrofilter (nach Zyklon)	
Tabelle 17: Charakteristische Daten des Elektrofilters (nach Zyklon)	
Tabelle 18: Betriebsbedingungen – Elektrofilter (nach Wärmeauskopplung)59	ł
Tabelle 19: Charakteristische Daten des Elektrofilters (nach Wärmeauskopplung)59	,
Tabelle 20: Massenbilanz Zyklon (Vergleich ideale und reale Abscheidung)62	
Tabelle 21: Massenbilanz Elektrofilter (mit und ohne vorheriger Wärmeauskopplung)63	ì
Tabelle 22: Massenbilanz – gesamtes System64	
Tabelle 23: Mögliche Wärmetauscher für Stickstoff als Wärmeträger67	
Tabelle 24: Austauschflächen für Stickstoff als Wärmeträger67	
Tabelle 25: Mögliche Wärmetauscher für Wasser/Dampf als Wärmeträger	
Tabelle 26: Austauschflächen bei minimaler Dampferzeugung	
Tabelle 27: Austauschflächen bei maximaler Dampferzeugung69	
Tabelle 28: Wirkungsgrade des Gesamtsystems und der Wärmeträgersysteme72	
Tabelle 29: spezifischer Energieeinsatz72	

10.3 Abbildungen

Abbildung 1: Fließschema einer COREX [®] - Anlage
Abbildung 2: Verfahrensroute mit Nasswäsche6
Abbildung 3: Skizze eines Zyklonabscheiders [3]8
Abbildung 4: Abscheidekurven [6]10
Abbildung 5: Vergleich des anhand verschiedener mathematischer Modelle berechneten Fraktionsabscheidegrades [8]13
Abbildung 6: Querschnittsskizze eines Elektrofilters [21]20
Abbildung 7: verschiedene Ausführungsformen von Niederschlagselektroden [36]27
Abbildung 8: verschiedene Ausführungsformen von Sprühelektroden [36]
Abbildung 9: Bilanzraum für die Massenbilanz der Entstaubung
Abbildung 10: Verfahrensschema (Zyklon – Elektrofilter – Wärmeauskopplung)41
Abbildung 11: Verfahrensschema (Zyklon – Wärmeauskopplung – Elektrofilter)42
Abbildung 12: Verfahrensschema (Zyklon – Wärmeauskopplung – Gewebefilter)43
Abbildung 13: Korngrößenverteilung (3 Parallelzyklone)45
Abbildung 14: vereinfachtes M&R-Schema (Stickstoff)49
Abbildung 15: Bilanzfließschema - Stickstoff als Wärmeträger
Abbildung 16: M&R-Schema Dampferzeugung (VAI)51
Abbildung 17: Bilanzfließschema – Dampf als Wärmeträger (allgemein)
Abbildung 18: Bilanzfließschema – minimale Dampferzeugung54
Abbildung 19: Bilanzfließschema - maximale Dampferzeugung
Abbildung 20: Korngrößenverteilung Elektrofilter (direkt nach dem Zyklon)58
Abbildung 21: Korngrößenverteilung Elektrofilter (mit vorheriger Wärmeauskopplung)60
Abbildung 22: Bilanzraum – Zyklon62
Abbildung 23: Bilanzraum – Elektrofilter63
Abbildung 24: Bilanzraum – gesamtes Entstaubungssystem64
Abbildung 25: Bilanzraum für die Berechnung des Wirkungsgrades (Gesamtsystem)70
Abbildung 26: Bilanzraum für die Berechnung des Wärmeträger – Wirkungsgrades71

11 Anhang

11.1 Normdichte

Die Normdichten wurden folgenden Literaturstellen entnommen: [39], [40], [41]

Gasart	$M ext{ in } rac{ ext{kg}}{ ext{kmol}}$	$\overline{v}_n \text{ in } rac{\mathrm{m}^3}{\mathrm{kmol}}$	$\varrho_n \ in \ \frac{kg}{m^3}$	$R \text{ in } \frac{\text{kJ}}{\text{kg K}}$	$c_p \text{ in } rac{\mathrm{kJ}}{\mathrm{kg } \mathrm{K}}$	$c_v \text{ in } rac{\mathrm{kJ}}{\mathrm{kg} \ \mathrm{K}}$	×
H ₂	2,016	22,43	0,0899	4,1243	14,21	10,09	1,41
He	4,003	22,43	0,1785	2,0772	5,194	3,117	1,66
N ₂	28,01	22,41	1,250	0,2968	1,040	0,743	1,40
O_2	32,00	22,39	1,429	0,2598	0,915	0,655	1,40
Luft	28,96	22,40	1,293	0,2871	1,004	0,718	1,40
CO	28,01	22,41	1,250	0,2968	1,040	0,743	1,40
CO_2	44,01	22,26	1,977	0,1889	0,818	0,628	1,30
H_2O_D	18,02	22,4	0,804	0,4615	1,858	1,396	1,33
SO_2	64,07	21,89	2,926	0,1298	0,607	0,477	1,27
NH ₃	17,03	22,08	0,771	0,4883	2,055	1,567	1,32
CH_4	16,04	22,38	0,717	0,5184	2,158	1,640	1,32
C_2H_2	26,04	22,17	1,175	0,3193	1,629	1,310	1,23
C_2H_4	28,05	22,26	1,260	0,2964	1,496	1,200	1,24
C_2H_6	30,07	22,17	1,357	0,2765	1,654	1,377	1,20
C_3H_8	44,10	21,94	2,010	0,1886	1,512	1,325	1,14
n-C4H10	58,12	21,28	2,732	0,1430	1,623	1,480	1,10

Molare Masse M, molares Volumen \bar{v}_n , Normdichte ϱ_n bei $t_n = 0$ °C und $p_n = 1,013 \cdot 10^5$ Pa, spezielle Gaskonstante R, spezifische Wärmekapazität c_p und c_v bei p = 0 bar und t = 0°C, $\varkappa = c_p/c_v$ bei t = 0°C

	Liste der Dichte gasförmiger Stoffe			
	n Tabelle I sind unterschiedliche Gase nach ihren Dichten aufgelistet. Auch hier nicht aufgelistete Gase enthalten dabei oft Angaben zur Dichte in ihren jeweiligen Stammartikeln. Für Flüssigkeiten und Feststoffe, siehe Liste der Dichte flüssiger Stoffe und	Tabelle I: Dicht Norr	e verschiedene nbedingungen	er Gase bei
WIKIPEDIA Die freie Enzyklopädie	Liste der Dichte fester Stoffe.	Gas	Dichte / kg·m ⁻³	Formel
avigation Temperatur von 273,15 K (= 0 °C). Das Volumen dieser Gase beträgt unter diesen Bedingungen, nach dem Gesetz von Avogadro,	Wasserstoff	0,08988	H ₂	
Über Wikipedia	näherungsweise 22,4 l/mol.	Helium	0,178	He
Themenportale Von A bis Z		Leuchtgas	0,550	H ₂ , CH ₄ & CC
Zufälliger Artikel		Methan	0,717	СН4
tmachen		Ammoniak	0,771	NH3
Hilfe Wikipedia-Portal		Neon	0,840	Ne
Letzte Änderungen		Wasserdampf	0,880	H ₂ O
		Acetylen	1,171	C ₂ H ₂
Kohlendioxid		Luft bei 20 °C	1,204	-
Artikel Suche		Kohlenmonoxid	1,250	со
erkzeuge	Stick	Stickstoff	1,251	N ₂
Links auf diese Seite Änderungen an		Äthylen	1,261	C ₂ H ₄
verlinkten Seiten		Luft bei 0 °C	1,292	-
Spezialseiten		Luft (CO ₂ frei)	1,293	
Druckversion		Stickstoffmonoxid	1,340	NO
Artikel zitieren		Äthan	1,356	C ₂ H ₆
		Sauerstoff	1,429	02
		Fluor	1,695	F ₂
		Argon	1,784	Ar
		Propylen	1,915	C ₃ H ₆
		Kohlenstoffdioxid	1,977	C02
		Lachgas	1.978	N ₂ O

11.2 Viskosität

CHEMCAD	D 5 Help	×
File Edit E	Bookmark Options Help	
Help Topics	Back Print 😒 沙	
M .	Physical Property Databank: Library Viscosities	
VISCOSILY	Library equations are used by CHEMCAD to calculate values of temperature dependent transport properties.	_
Valve	Data may be regressed for a user component using the Pure Regression command on the Tools menu.	
Valve Tra		
Pres: Pressi	The shear stress per unit area at any point in a confined Newtonian liquid fluid divided by the velocity gradient in the direction perpendicular to the direction of flow.	
Valve Tra Valve Tyj	The equation and coefficients are used to calculate liquid viscosity as a function of temperature. The range of applicability and values at Tmin and Tmax are shown. The values predicted by a library equation may not by valid outside the temperature range of applicability.	se
Van Laar Vapor T	Recommended Equation: 101 Coefficients: 3; 2 if data is sparse, 5 if data is extensive	
Vapor be Vapor Ph	Liquid Viscosity may be calculated by various models. The default model is the Library equation, if coefficients are available. To change the model go to the Thermophysical menu and choose Transport Property	ies
Vapor Pr VAPOR P		
Vapor Vi: VBA	Vapor Viscosity (Pa/s) The shear stress per unit area at any point in a confined Newtonian vapor divided by the velocity gradient in the direction perpendicular to the direction of flow.	
Venturi S VESL	The equation and coefficients are used to calculate vapor viscosity as a function of temperature. The range of applicability and values at Tmin and Tmax are shown. The values predicted by a library equation may not valid outside the temperature range of applicability.	be
Vibration	Recommended Equation: 102 Coefficients: 2 to 4, as appropriate	
Visual Ba VSCR	Vapor Viscosity may be calculated by various models. The default model is the Library equation, if coefficients are available. To change the model go to the Thermophysical menu and choose Transport Properties	es
WAR - W WASH	Library Equations	
Washer WATER/ł	To wew fins dialog go to the memophysical meno, select viewicali , and choose a component. Select viscosity from the options.	
WATER- Watson I	See Also	
Wegsteir		
Weightin		
WILSON		
Wilson S		
Word		
Using		
workboo		
Workshe		
Display		

11.3 Auslegungsdaten – Zyklon

11.3.1 Parallelschaltung von 3 Zyklonen

AUSGANGSDATEN

Gasvolumenstrom (V _{STP})	300.000	[m³ _{STP} /h]
Betriebstemperatur (T)	400	[°C]
Betriebsdruck (p)	3,3	[bar(g)]
Gasdichte (p _{STP})	1,2422	[kg/m³]
Gasvolumenstrom (V _B)	173677,6289	[m³ _B /h]
Gasdichte (ρ ₈)	2,1458	[kg/m³]
Gasviskosität (ŋ _G)	2,7662E-05	[Pas]
Staubdichte (p _{Staub, Partikel})	1923,2921	[kg/m³]
Staubgehalt (c _{ROH})	20	[g/m³ _{STP}]

Geometrieverhältnisse - Zyklon				
Schlitzeinlauf				
	gewählt			
v _i = 5-15 m/s	15 [m/s]			
$r_A/r_i = 3 - 4$	4			
h/r _i = 10 - 13	11			
h _i /r _i = 7,5 - 10	10			
b _E /r _A = 0,19 - 0,27	0,19			
F _E /F _i = 0,44 - 0,9	0,44			

AUSLEGUNG - ZYKLON

V _{B,gesamt}	173677,6289 [m³ _B /h]			
V _{B,Zyklon}	57892,5430 [m³ _B /h]	=> Parallelschaltung von 3 Zyklonen		
V _{B,Z}	16,0813 [m³ ₈ /s]			
Tauchrohrg	eschwindigkeit v _i :	15,00 [m/s]		
Tauchrohrq	uerschnittsfläche F _i :	1,0721 [m ²]		
Tauchrohrra	adius r _i :	0,5842 [m]		
Zyklonradius	s r _A :	2,3367 [m]		
Zyklonhöhe	h:	6,4259 [m]		
Konushöhe	h _i :	5,8417 [m]		
Schlitzeinlau	ufbreite b _E :	0,4440 [m]		
Einlauffläch	e F _E :	0,4717 [m]		
Schlitzeinlau	ufhöhe h _e :	1,0625 [m]		
Tauchrohrei	ntauchtiefe h _T :	0,5842 [m]		
Einlaufgesc	hwindigkeit v _e :	34,0909 [m/s]		
Rohgasbela	dung B:	0,0161 [-]		
Wandreibur	ngsbeiwert λ:	0,0063 [-]		
Einlaufbeiwe	ert α:	0,8869 [-]		
Einlaufradiu	s r _e :	2,1147 [m]		
Umfangsgeschwindigkeit (Außenr.) $v_{\phi A}$:		34,7867 [m/s]		
Umfangsgeschwindigkeit (Tauchrohrr.) $v_{\phi i}$:		84,8622 [m/s]		
Radialgeschwindigkeit (Tauchrohrr.) v _R (ri):		0,7500 [m/s]		
Grenzbeladung B _{GR} *):		0,0259 [-]		
Grenzkornd	urchmesser x _T :	3,9709E-06 [m]		
Grenzkorn	durchmesser x_{τ}	3,9709 [µm]		

 $^{5)}$ Medianwert $\times_{50,3} \sim 10~\mu m$ (aus Korngrößenverteilung)

DRUCKVERLUST - BERECHNUNG

Geometriezusammenfassung U:	5,6575	
Druckverlustbeiwert - Einlauf ξ _{F≜} :	0,0000	
Druckverlustbeiwert - Hauptströmung ξ _{al} :	13,1203	
Druckverlustbeiwert - Tauchrohr ξ _{ιΜ} :	64,2496	
Druckverlust - gesamt Δp:	18677,05 [Pa]	

KORNG	RÖSSEN	VERTEIL	UNG
-------	--------	---------	-----

d _u - d _o	x	$\Delta Q_3(X)_E$	T(x)	ΔQ ₃ (X) _{AB}	$\Delta Q_3(X)_{RG}$
[µm]	[µm]	[%]	[%]	[%]	[%]
0 - 1	0,5	3,5	0,0046	0,0002	3,4998
1 - 1,5	1,25	0,8	0,2597	0,0021	0,7979
1,5 - 2	1,75	1,1	1,1160	0,0123	1,0877
2 - 3	2,5	4,7	4,9491	0,2326	4,4674
3 - 4	3,5	5,3	17,3179	0,9178	4,3822
4 - 6	5	14,5	45,8670	6,6507	7,8493
6-8	7.	11,7	74,7899	8,7504	2,9496
8 - 12	10	22,5	91,5207	20,5922	1,9078
12 - 16	14	8,0	97,2987	7,7839	0,2161
16 - 24	20	15,0	99,2287	14,8843	0,1157
24 - 32	28	2,8	99,7664	2,7935	0,0065
32 - 48	40	7,6	99,9344	7,5950	0,0050
48 - 64	56	1,2	99,9802	1,1998	0,0002
64 - 96	80	1,2	99,9944	1,1999	0,0001
96 - 128	112	0,2	99,9983	0,2000	0,0000
128 - 180	154	0,0	99,9995	0,0000	0,0000
Summe:		100,1		72,8146	27,2854

MASSENBILANZ - ZYKLON

Staubgehalt (c _{Aufgabe})	20 [g/m³ _{STP}]
Volumenstrom (V _{STP})	300.000 [m³ _{STP} /h]
Massenstrom Staub (m _{staub})	6000 [kg/h]
Abscheidung: ΣΔQ ₃ (x) _{AB}	72,8146 [%]
Reingas: ΣΔQ3(x) _{RG}	27,2854 [%]
abgeschiedener Staub (m _{AB}) Staub im Reingas (m _{RG})	4368,8772 [kg/h] 1637,1228 [kg/h]
Staubgehalt - Reingas (c _{RG})	5,4571 [g/m³ _{STP}]

11.3.2 Parallelschaltung von 5 Zyklonen

AUSGANGSDATEN

Gasvolumenstrom (V _{STP})	300.000 [m³ _{STP} /h]
Betriebstemperatur (T)	400 [°C]
Betriebsdruck (p)	3,3 [bar(g)]
Gasdichte (ρ _{sτΡ})	1,2422 [kg/m³]
Gasvolumenstrom (V _B)	173677,6289 [m³ _в /h]
Gasdichte (ρ _θ)	2,1458 [kg/m³]
Gasviskosität (ŋ _e)	2,7662E-05 [Pas]
Staubdichte (p _{Staub, Partikel})	1923,2921 [kg/m³]
Staubgehalt (с _{кон})	20 [g/m³ _{STP}]

Geometrieverhältnisse - Zyklon				
Schlitzeinlauf				
	gewählt			
v _i = 5-15 m/s	15 [m/s]			
$r_{A}/r_{i} = 3 - 4$	4			
h/r _i = 10 - 13	11			
h _i /r _i = 7,5 - 10	10			
b _E /r _A = 0,19 - 0,27	0,19			
$F_{E}/F_{i} = 0.44 - 0.9$	0,44			

AUSLEGUNG - ZYKLON

V _{B,gesamt}	173677,6289 [m³ _B /h]			
V _{B,Zyklon}	34735,5258 [m³ _B /h]	=> Parallelschaltung von 5 Zyklonen		
V _{B,Z}	9,6488 [m³ _B /s]			
Tauchrohrg	eschwindigkeit v _i :	15,00 [m/s]		
Tauchrohrq	uerschnittsfläche F _i :	0,6433 [m ²]		
Tauchrohrra	adius r _i :	0,4525 [m]		
Zyklonradiu	s r _A :	1,8100 [m]		
Zyklonhöhe	h:	4,9775 [m]		
Höhe (Konu	is) h _i :	4,5250 [m]		
Schlitzeinlau	ufbreite b _e :	0,3439 [m]		
Einlauffläch	e F _E :	0,2830 [m]		
Schlitzeinlau	ufhöhe h _E :	0,8230 [m]		
Tauchrohre	intauchtiefe h _T :	0,4525 [m]		
Einlaufgesc	hwindigkeit v _e :	34,0909 [m/s]		
Rohgasbela	dung B:	0,0161 [-]		
Wandreibur	ngsbeiwert λ:	0,0063 [-]		
Einlaufbeiw	ert α:	0,8869 [-]		
Einlaufradiu	IS r _e :	1,6380 [m]		
Umfangsges	schwindigkeit (Außenr.) v _{φA} :	34,7867 [m/s]		
Umfangsges	schwindigkeit (Tauchrohrr.) ν _{φi} :	84,8622 [m/s]		
Radialgesch	nwindigkeit (Tauchrohrr.) v _R (ri):	0,7500 [m/s]		
Grenzbelad	ung B _{GR} *):	0,0200 [-]		
Grenzkornd	urchmesser x _t :	3,4948E-06 [m]		
Grenzkorn	durchmesser x_{τ}	3,4948 [µm]		

 $^{*)}$ Medianwert $\times_{50,3}\sim$ 10 μm (aus Korngrößenverteilung)

DRUCKVERLUST - BERECHNUNG

Druckverlust - gesamt Δp:	18677,05 [Pa]
Druckverlustbeiwert - Tauchrohr ξ _Μ :	64,2496
Druckverlustbeiwert - Hauptströmung ξ _{ΑΙ} :	13,1203
Druckverlustbeiwert - Einlauf ξ _{EA} :	0,0000
Geometriezusammenfassung U:	5,6575

d _u - d _o	х	ΔQ ₃ (x) _E	T(x)	$\Delta Q_3(X)_{AB}$	$\Delta Q_3(X)_{RG}$
[µm]	[µm]	[%]	[%]	[%]	[%]
0 - 1	0,5	3,5	0,0081	0,0003	3,4997
1 - 1,5	1,25	0,8	0,4529	0,0036	0,7964
1,5 - 2	1,75	1,1	1,9219	0,0211	1,0789
2 - 3	2,5	4,7	8,1696	0,3840	4,3160
3 - 4	3,5	5,3	25,8607	1,3706	3,9294
4 - 6	5	14,5	57,8314	8,3856	6,1144
6-8	7	11,7	82,5294	9,6559	2,0441
8 - 12	10	22,5	94,4651	21,2546	1,2454
12 - 16	14	8,0	98,2709	7,8617	0,1383
16 - 24	20	15,0	99,5095	14,9264	0,0736
24 - 32	28	2,8	99,8517	2,7958	0,0042
32 - 48	40	7,6	99,9584	7,5968	0,0032
48 - 64	56	1,2	99,9874	1,1998	0,0002
64 - 96	80	1,2	99,9965	1,2000	0,0000
96 - 128	112	0,2	99,9989	0,2000	0,0000
128 - 180	154	0,0	99,9997	0,0000	0,0000
Summe:		100,1		76,8564	23,2436

KORNGRÖSSENVERTEILUNG

MASSENBILANZ - ZYKLON

Staubgehalt (c _{Aufgabe})	20	[g/m³ _{STP}]
Volumenstrom (V _{STP})	300.000	[m³ _{STP} /h]
Massenstrom Staub (m _{staub})	6000	[kg/h]
Abscheidung: ΣΔQ ₃ (x) _{AB}	76,8564	[%]
Reingas: ΣΔQ3(x) _{RG}	23,2436	[%]
abgeschiedener Staub (m _{AB}) Staub im Reingas (m _{RG})	4611,3820 1394,6180	[kg/h] [kg/h]
Staubgehalt - Reingas (c _{RG})	4,6487	[g/m³ _{STP}]

11.4 Wärmeauskopplung – Stickstoff als Wärmeträger

Bilanz - Topgas

Gaszusammensetzung				mittlere spezifische Wärmekapazität (Reinkomponenten)		
Ouszusuiiii	ensetzung.			T (Fintritt)	amenapuznat (nemnon	ponenceny
CO	38 5	+/-5	0.385	1330 655 L.I/m³K1	T (Fintritt)	
CO-	31.5	+/-5	0,305	1944 503 [J/m³k]	400 0	n °C
U 2	15 5	+/5	0,515	1207 784 [J/m³k]	400,0 672 1	51/
	13,3	+/5	0,133	1237,704 [J/mi/d]	075,1	5 1
CLL	11	1/-5	0,11	2010 COD [J(m3/4]		
	1,0	+/-	0,015	2018,609 [J///PK]		
N ₂	2	+/-1	0,02	1321,409 [J/mºK]		
H ₂ S (ppm)	70	~100	0,00007	1639,492 [J/m°K]		
SUMME:	100,007		1,00007			
				activity in the second		
				mittlere spezifische Wa	årmekapazität (Gemisch)
Volumensstrom	(STP)	300.000 [m ³	³ _{STP} /h]	cpm (T (Eintritt))	1565,526 [J/m³K]	
Volumensstrom	(Betrieb)	173.678 [m [:]	³ _B /h]			
Dichte (STP)		1,242 [kg	ı/m³]	Enthalpie	626210,331 [J/m³]	
Dichte (Betrieb)	2,146 [kg	ı/m³]		504,097 [kJ/kg]	Bilanzpunkt 3
Massenstrom (Gas)	372.673 [kg	µ/h]			
		103,52 [kg	ı/s]			
Retriebebedin	aupaep.					
Druck	gungen.	33 [ha	ar (a)]			
Temperatur - E	intritt	400 [°C	21			
Careful de Constantes - 1975		Collect R 2	-			
				mittlere snezifische Märmeka	nazität (Reinkomnonente	n)
				T (Eintritt)	paziai (itointoinpononto	,
			со	1330.655 [J/m³K]	T (Eintritt)	
			CO ₂	1944,503 [J/m ³ K]	400,00 °C	
			H ₂	1297,784 [J/m ³ K]	673,15 K	
			H ₂ O	1661,151 [J/m³K]		
			CH₄	2018,609 [J/m ³ K]		
			N ₂	1321,409 [J/m ³ K]		
			H ₂ S	1639,492 [J/m³K]		
			-			
				mittlere snezifische Märmeka	nazität (Gemisch)	
				cpm (T (Eintritt)) 15	65.526 [J/m ³ K]	
				Enthalpie		
N	lassenstrom (Stic	okstoff)		benötigt (für Stickstoff-Aufwärmung	i) 160,266 [kJ/kg]	
		32,665 [kg/s]		honôtiat (hozogon auf Tongon)	5235,U78 [KJ/s] 50,571 [KJ/kg]	
				Temperatur	359.87 [°C1	
					558561,4785 [J/m³]	
				Enthalpie (Austritt)	449,640 [kJ/kg]	Bilanzpunkt 4
				mittlere spezifische Wärmeka	pazität (Reinkomponente	n)
			0	1325 78404 [/m³k1	T (Fintritt)	
			CO.	1914 84302 [J/m³K]	359.87 °C	
			Ha	1296 09534 [J/m³K]	633.02 K	
			њо	1651.43282 [J/m³K]		
			CH₄	1966,63698 [J/m ³ K]		
			N_2	1317,10994 [J/m ³ K]		
			H ₂ S	1623,41417 [J/m ³ K]		
				mittlere snezifische Märmeka	nazität (Gemisch)	
				cpm (T (Eintritt)) 15	52,110 [J/m³K]	
				Enthalpie		
N	lassenstrom (Stic	ekstoff)		benötigt (für Stickstoff-Aufwärmung) 148,104 [kJ/kg]	
		ə∠,000 [K <u>Q</u> /S]		benötigt (bezogen auf Tongas)	4037,021 [KJ/S] 46 733 [k,J/km]	
				Temperatur	322,47 [°C]	
					496417,252 [J/m³]	
				Enthalpie (Austritt)	399,614 [kJ/kg]	Bilanzpunkt 5

Bilanz - Sauerstoff

Zusammensetzung:

O ₂	99,5		0,995
N ₂	0,5		0,005
SUMME:	100,0		1,000
Volumensstrom	ı (STP)	95.000	[m³ _{STP} /h]
Volumensstrom	(Betrieb)	11.657,15	[m³ _B /h]
Dichte (STP)		1,428	[kg/m³]
Dicilie (Dellieb	9	11,038	[Kg/in]
Massenstrom (Gas)	135.670 37,686	[kg/h] [kg/s]
Betriebsbedin	gungen:		
Eintrittstempera	atur	25	[°C]
Vorwärmtempe	ratur	300	[°C]
Druck (Eintritt)		8	[bar (g)]
Druck (Austritt)		6	[bar (g)]

T (Eintritt)	raimekapazna	u (nonno	mpononionj	
1309 661 [J/m³K]		T (Fintritt)		
1300 015 [J/m ^a K]		25	00 °C	
constants formeral		298	15 K	
mittlere spezifische M	/ärmekapazitä	it (Gemise	ch)	
cpm (T (Eintritt))	1309,613	[J/m³K]		
Enthalpie	32740.321	[J/m³]		
		27300 / CONTRACTOR		
	22,926	[kJ/kg]	Bilanzpunkt 1	
mittlere spezifische M T (Austritt) 1381 853 [J//m³K]	22,926 /ärmekapazitä	[kJ/kg] it (Reinko	Bilanzpunkt 1	
mittlere spezifische ₩ T (Austritt) 1381,853 [J/m³K] 1311 408 [J/m³K]	22,926 /ärmekapazitä	[kJ/kg] It (Reinko T (Austritt) 300	Bilanzpunkt 1 mponenten)	
mittlere spezifische W T (Austritt) 1381,853 [J/m³K] 1311,408 [J/m³K]	22,926 /ärmekapazitä	[kJ/kg] it (Reinko T (Austritt) 300, 573,	Bilanzpunkt 1 mponenten) .00 °C .15 K	
mittlere spezifische M T (Austritt) 1381,853 [J/m³K] 1311,408 [J/m³K] mittlere spezifische M cpm (T (Eintritt))	22,926 /ärmekapazitä /ärmekapazitä 1381,501	[kJ/kg] it (Reinko T (Austritt) 300, 573, it (Gemiso [J/m³K]	Bilanzpunkt 1 mponenten) .00 °C .15 K ch)	
mittlere spezifische M T (Austritt) 1381,853 [J/m³K] 1311,408 [J/m³K] mittlere spezifische M cpm (T (Eintritt)) Enthalpie	22,926 /ärmekapazitä /ärmekapazitä 1381,501 414450,182	[kJ/kg] it (Reinko T (Austritt) 300, 573, 573, it (Gemiso [J/m³K] [J/m³]	Bilanzpunkt 1 mponenten) .00 °C .15 K ch)	

Stickstoff		
Eintrittstemperatur (Wärmetauscher)	350	[°C]
Druck am Eintritt	3,3	[bar (g)]
Massenstrom	32,665	[kg/s]
Enthalpie	652,2	[kJ/kg]
Sauerstoff		
benötigte Enthalpiemenge (für Vorwärmung)	267,283	[kJ/kg]
Massenstrom	37,686	[kg/s]
benötigte Enthalpiemenge (für Vorwärmung)	10072,899	[kJ/s]
Wärmetauscher		
benötigte Enthalpiemenge (bezogen auf Sauerstoff)	10072,899	[kJ/s]
benötigte Enthalpiemenge (bezogen auf Stickstoff)	308,370	[kJ/kg]
Enthalpie des Stickstoffes (nach dem Wärmetauscher)	343,830	[kJ/kg]
Temperatur des Stickstoffes (nach dem Wärmetauscher)	58,56	[°C]

	T = 50 °C	T = 50 °C	T = 75 °C	T = 75 °C
p [bar]	1	5	1	5
h [kJ/kg]	335,3	334,6	361,4	360,7
VDI - Wärme	atlas - 9. Auflage,	2002 - S. Dbc 7		
	17 - 19 -	334 8975		360.9975

4

VDI-Wärmeatlas 9. Auflage 2002 Stoffwerte von Stickstoff	VDI-Wärmeatlas 9. Auflage 2002	Stoffwerte von Stickstoff	
---	-----------------------------------	---------------------------	--

Tabelle 6. Spezifische Enthalpie h von Stickstoff in kJ kg⁻¹

C

Druck						Tempera	atur in °C					
in bar	-200	-175	-150	-125	-100	-75	-50	-25	0	25	50	75
1	-130,6	99,92	126,5	152,8	179,0	205,1	231,1	257,2	283,2	309,3	335,3	361,4
5	-130,3	91,95	121,7	149,4	176,4	203,1	229,5	255,9	282,2	308,4	334,6	360,7
10	-129,9	-77,40	115,0	145,0	173,2	200,6	227,5	254,3	280,8	307,3	333,6	360,0
20	-129,1	-77,15	97,97	135,4	166,4	195,5	223,5	251,0	278,2	305,1	331,8	358,5
30	-128,4	-76,84	-5,654	124,5	159,4	190,3	219,6	247,9	275,6	303,0	330,1	357,0
40	-127,6	-76,48	-12,73	112,0	152,1	185,1	215,6	244,7	273,1	300,9	328,4	355,6
50	-126,9	-76,08	-15,80	97,49	144,6	179,9	211,7	241,6	270,6	298,9	326,7	354,3
60	-126,1	-75,64	-17,67	81,40	136,8	174,8	207,8	238,6	268,2	296,9	325,1	352,9
70	-125,3	-75,18	-18,92	66,46	129,2	169,7	204,0	235,7	265,8	295,0	323,6	351,7
80	-124,6	-74,68	-19,78	55,50	121,7	164,7	200,4	232,9	263,6	293,2	322,1	350,5
90	-123,8	-74,17	-20,36	48,20	114,7	159,9	196,8	230,1	261,4	291,4	320,6	349,3
100	-123,0	-73,63	-20,75	43,25	108,3	155,3	193,4	227,5	259,3	289,7	319,3	348,2
150	-119,0	-70,67	-20,92	32,52	87,93	137,2	179.1	216,0	250,1	282,3	313,3	343,3
200	-115,0	-67,38	-19,49	29,74	: 79,60	126,8	169,3	207,8	243,2	276,7	308,7	339,7
250	-110,8	-63,88	-17,23	_ 29,67	. 76,44	. 121,5	163,5	202,3	238,5	272,8	305,5	337,2
300	-106,7	-60,22	-14,47	30,92	75,77	119,2	160,4	199,1	235,6	270,3	303,6	335,7
350	-102,5	-56,44	-11,37	32,97	76,49	118,7	159,2	197,6	234,1	269,0	302,6	335,1
400	-98,30	-52,56	-8,032	35,52	78,10	119,4	159,2	197,3	233,8	268,8	302,5	335,2
450	-94,06	-48,61	-4,515	38,44	. 80,31	121,0	160,2	198,0	234,3	269,3	303,1	336,0
500	-89,80	-44,61	-0,8618	41,62	82,93	123,0	161,8	199,3	235,4	270,4	304,3	337,3
600	-81,23	-36,45	6,745	48,53	89,05	128,3	166,5	203,4	239,3	274,1	308,0	341,0
700	-72,61	-28,16	14,63	55,94	95,92	134,7	172,3	208,9	244,5	279,1	313,0	346,1
800	-63,96	-19,78	22,71	63,68	103,3	141,7	179,0	215,3	250,6	285,1	318,9	352,0
900	-55,29	-11,33	30,93	71,64	111,0	149,1	186,1	222,2	257,4	291,8	325,5	358,6
1000	-46,61	-2,841	39,24	79,76	118,9	156,8	193,7	229,6	264,7	299,0	332,6	365,7
					- The	1 1						
Druck		7	i contra	 come 	- TIV	Temper	atur in °C		i vezer i	1	1	F
in bar	100	125	150	200	300	400	500	600	700	800	900	1000
1	387,4	413,5	439,7	492,1	598,2	706,2	816,6	929,4	1044	1162	1281	1402
5	386,9	413,1	439,3	491,9	598,1	706,3	816,8	929,6	1045	1162	1281	1402
10	386,3	412,6	438,9	491,7	598,1	708,4	817,0	929,9	1045	1162	1281	1402
20	385,0	411,6	438,1	491,1	598,0	706,6	817,4	930,4	1046	1163	1282	1403
30	383,8	410,6	437,3	490,6	597,9	706,8	817,8	931,0	1046	1164	1283	1404
40	382,7	409,6	436,5	490,2	597,9	707,0	818,2	931,6	1047	1165	1284	1405
50	381,6	408,7	435,8	489,7	597,9	707,3	818,6	932,1	1048	1165	1285	1406
60	380,5	407,9	435,1	489,3	597,9	707,5	819,1	932,7	1048	1166	1286	1407
70	379,5	407,0	434,4	488,9	597,9	707,8	819,5	933,3	1049	1167	1287	1408
80	378,5	406,2	433,8	488,6	597,9	708,1	820,0	933,9	1050	1168	1287	1409
90	377,5	405,5	433,2	488,3	597,9	708,4	820,5	934,5	1051	1169	1288	1410
100	376,6	404,8	432,6	488,0	598,0	708,7	821,0	935,1	1051	1169	1289	1410
150	372,8	401,7	430,3	486,8	598,5	710,4	823,5	938,3	1055	1173	1293	1415
200	369,9	399,6	428,8	486,3	599,5	712,4	826,2	941,6	1059	1178	1298	1420
250	368,0	398,2	427,9	486,3	600,8	714,6	829,1	945,0	1063	1182	1302	1424
300	367,0	397,6	427,7	486,8	602,4	717,0	832,2	948,6	1066	1186	1307	1429
350	366,8	397,7	428,1	487,8	604,3	719,7	835,4	952,2	1071	1190	1311	1434
400	367,1	398,4	429,0	489,1	606,5	722,5	838,7	956,0	1075	1195	1316	1439
450	368,1	399,5	430,4	490,9	608,9	725,5	842,2	959,8	1079	1199	1321	1443
500	369,5	401,0	432,1	492,9	611,6	728,7	845,8	963,8	1083	1204	1325	1448
600	373,4	405,2	436,5	497,8	617,4	735,4	853,2	971,9	1092	1213	1335	1458
700	378,5	410,4	441,8	503,5	623,9	742,6	861,0	980,2	1100	1222	1344	1468
800	384,5	416,5	448,0	509,9	630,9	750,1	869,1	988,7	1109	1231	1354	1478
900	391,1	423,1	454,7	516,8	638,3	758,0	877,4	997,5	1118	1240	1364	1488
1000	398 2	430.2	461.9	524.1	646.0	766.1	886.0	1006	1128	1250	1373	1498

Dbc 7

11.5 Wärmeauskopplung – Dampf als Wärmeträger

11.5.1 Erzeugung der minimal notwendigen Dampfmenge

Bilanz - Topgas

Gaszusamr	nensetzuna:			mittlere spez	ifische Wärmekapazität (Reinko	mponenten)
				T (Eintritt)		
CO	38,5	+/-5	0,385	1330,655 [J/m³K] T (Eintritt)
CO ₂	31,5	+/-5	0,315	1944,503 [J/m³K] 40	D,00 °C
H ₂	15,5	+/-5	0,155	1297,784 [J/m³K] 67:	3,15 K
H ₂ O	11	+/-5	0,110	1661,151 [J/m³K]	
CH ₄	1,5	+/-1	0,015	2018,609 [J/m³K]	
N_2	2	+/-1	0,020	1321,409 [J/m³K]	
H ₂ S (ppm)	70	~100	0,00007	1639,492 [J/m³K]	
SUMME:	100,007		1,00007			
	- (CTD)	200.000 [3	10.1	mittiere spez	ITISCHE Warmekapazitat (Gemiso	:n)
Volumenstron	n(SIP)	300.000 [mº	STP/N]	cpm (T (EIntritt)) 1565,526 [J/M*K]	
Volumenstron	n (Betrieb)	1/3.6/8 [mª	ˈə/h]			
Dichte (STP)	b)	1,2422 [Kg. 2,1459 [kg	/m²] /m³]	Enthalple	626.210,331 [J/M*] 504.007 [k-l/ka]	Pilanzaugkt 22
Dicitie (Delite	in)	2,1400 [Ky	/111-]		504,097 [KJ/KJ]	Bilanzpunkt 22
Massenstrom	(Gas)	372.673 [ka	/h]	3 		
		103,520 [kg	/s]			
Betriebsbedi	ingungen:					
Druck		3,3 [ba	r (g)]			
remperatur		400 [~C	1			
				mittlere spezifische Wär	nekapazität (Reinkomponenten)	
		—		I (Eintritt)		
		CO		1330,655 [J/m³K]	T (Eintritt)	
		CO	2	1944,503 [J/mªK]	400,00 °C	
		H ₂		1297,784 [J/m³K]	673,15 K	
		H ₂ C)	1661,151 [J/m³K]		
		СН	4	2018,609 [J/m³K]		
		N ₂		1321,409 [J/m³K]		
		H ₂ S	ŝ	1639,492 [J/m³K]		
				mittlara snazifischa Märi	mekanazität (Gemisch)	
				com (T (Fintritt))	1565 526 [J/m ³ K]	
				(- (
				Enthalpie		
	Massenstrom (D	ampf)		benötigt (für Dampferzeugung	i) 265,175 [kJ/kg]	
		4,208 [kg	/s]		1115,946 [kJ/s]	
				benötigt (bezogen auf Topgas) 10,780 [kJ/kg]	
				Temperatur	391,45 [°C]	
				Eptholpio (Austritt)	611.708,224 [J/M ³]	Bilanzpunkt 22
				churaipie (Austritt)	492,423 [KJ/KG]	Diranzpunkt 25

	mittlere spezifische Wärme	ekapazität (Reinkomponenten)	
	T (Eintritt)		
CO	1329,58516 [J/m ^a K]	T (Eintritt)	
CO ₂	1938,30727 [J/m³K]	391,45 °C	
H ₂	1297,40264 [J/m ³ K]	664,60 K	
H ₂ O	1659,06130 [J/m³K]		
CH₄	2007,54672 [J/m³K]		
N ₂	1320,46551 [J/m³K]		
H ₂ S	1635,85967 [J/m³K]		
	mittlere spezifische Wärme	ekapazität (Gemisch)	
	cpm (T (Eintritt))	1562,688 [J/m³K]	
	Enthalpie		
Massenstrom (Dampf/Wasser)	benötigt (für Dampferzeugung)	1602,827 [kJ/kg]	
4,316 [kg/s]	han that (hans non-out Tanana)	6918,183 [kJ/s]	
	Tomporatur	66,829 [KJ/KG]	
	remperatur	522 643 154 [.l/m³]	
	Enthalpie (Austritt)	420,726 [kJ/kg]	Bilanzpunkt 24
	mittlere snezifische Märme	ekanazität (Reinkomnonenten)	
	T (Fintritt)	ekapazitat (itemkomponenten)	
СО	1323.324 [J/m³K]	T (Eintritt)	
CO ₂	1898,350 [J/m³K]	338,32 °C	
- H ₂	1295,301 [J/m ³ K]	611.47 K	
H₂O	1646.280 [J/m ³ K]		
CH.	1938 684 [J/m ³ K]		
No.	1314 948 [.l/m³k]		
H-S	1616 122 [/m³k]		
1120			
	mittlere spezifische Wärme	ekapazität (Gemisch)	
	cpm (T (Eintritt))	1544,815 [J/m³K]	
	Enthalpie		
Massenstrom (Wasser)	benötigt (für Dampferzeugung)	688,504 [kJ/kg]	
4,208 [kg/s]		2897,453 [kJ/s]	
	benötigt (bezogen auf Topgas)	27,989 [kJ/kg]	
	remperatur	315,81 [*U] 485,456,534 [1/m³1	
	Enthalpie (Austritt)	390.791 [kJ/ka]	Bilanzpunkt 25

Bilanz - Wasser/Dampf

Austritt aus dem Ab	hitzeke	ssel:	Bilanzpunkt	: 1			Bilanzpunk	t 6	
Massenstrom	15.150	[kg/h]		Druck	60	bar		Druck	65 bar
	4,208	[kg/s]		Temperatur	105,22	°C		Temperatur	280,81 °C
Druck	65	[bar]		Massenstrom	4,208	kg/s		Massenstrom	4,208 kg/s
Temperatur	280,81	[°C]		Enthalpie	445,549	kJ/kg		Enthalpie	2.778,725 kJ/kg
	1.0.00							-	
Nassdampf (Bilanzp	unkt 4)		Bilanzpunk	:2	70	10	Bilanzpunk	c 7	00 1
Innait Nassdampf am	Tiussigei	n vvasser		Druck	105.00	bar		Druck	bu bar
	2,3	70		Massonstrom	105,22	lka(c		Massonstrom	4.209 kala
	0,100	[kg/s]		Enthalpio	4,200	ky/s kulka		Enthalpio	3 043 000 k lika
				Entitopio	440,230	Rong		Chinalpio	5.045,500 Kong
Exportdampf									
abgeführt	C	[% der Gesamtdampfmenge]	Bilanzpunkt	3			Bilanzpunk	18	
Massenstrom	C	[ka/h]		Druck	65	bar		Druck	60 bar
				Temperatur	260	°C		Temperatur	350 °C
				Massenstrom	4,208	kg/s		Massenstrom	3,653 kg/s
				Enthalpie	1.134,800	kJ/kg		Enthalpie	3.043,900 kJ/kg
						_			_
			Bilanzpunkt	t 4			Bilanzpunk	t 9	
				Druck	65	bar		Druck	60 bar
				Temperatur	268,55	°C		Temperatur	350 °C
				Massenstrom	4,316	kg/s		Massenstrom	3,653 kg/s
				Enthalple	1.175,898	KJ/Kg		Enthalple	3.043,900 KJ/Kg
			Bilanzpunkt	5					
			Dilarizpuriki	Druck	65	bar			
				Temperatur	280.81	°C			
				Massenstrom	4 3 16	kals			
				Enthalpie	2 778 725	k.l/ka			
				Letter sub-ro	2.1.1.0,1.2.0	(Norrig)			
			Bilanzpunkt	10			Bilanzpunk	: 15	
			Bilanzpunkt	10 Druck	60	bar	Bilanzpunk	t 15 Druck	60 bar
			Bilanzpunkt	10 Druck Temperatur	60 300,00	bar °C	Bilanzpunk	t 15 Druck Temperatur	60 bar 350 °C
			Bilanzpunkt	10 Druck Temperatur Massenstrom	60 300,00 3,653	bar °C kg/s	Bilanzpunk	t 15 Druck Temperatur Massenstrom	60 bar 350 °C 0,555 kg/s
			Bilanzpunkt	10 Druck Temperatur Massenstrom Enthalpie	60 300,00 3,653 2.885,500	bar °C kg/s kJ/kg	Bilanzpunk	t 15 Druck Temperatur Massenstrom Enthalpie	60 bar 350 °C 0,555 kg/s 3.043,900 kJ/kg
			Bilanzpunkt	10 Druck Temperatur Massenstrom Enthalpie	60 300,00 3,653 2.885,500	bar °C kg/s kJ/kg	Bilanzpunk	: 15 Druck Temperatur Massenstrom Enthalpie	60 bar 350 °C 0,555 kg/s 3.043,900 kJ/kg
			Bilanzpunkt	10 Druck Temperatur Massenstrom Enthalpie	60 300,00 3,653 2.885,500	bar °C kg/s kJ/kg	Bilanzpunki	t 15 Druck Temperatur Massenstrom Enthalpie	60 bar 350 °C 0,555 kg/s 3,043,900 kJ/kg
			Bilanzpunkt Bilanzpunkt	10 Druck Temperatur Massenstrom Enthalpie	60 300,00 3,653 2.885,500	bar °C kg/s kJ/kg	Bilanzpunki Bilanzpunki	t 15 Druck Temperatur Massenstrom Enthalpie	60 bar 350 °C 0,555 kg/s 3.043,900 kJ/kg 60 bar
			Bilanzpunkt Bilanzpunkt	10 Druck Temperatur Massenstrom Enthalpie 11 Druck Temperatur	60 300,00 3,653 2.885,500 0,31201 300.00	bar °C kg/s kJ/kg bar °C	Bilanzpunki Bilanzpunki	t 15 Druck Temperatur Massenstrom Enthalpie t 16 Druck Temperatur	60 bar 350 °C 0,555 kg/s 3.043,900 kJ/kg 60 bar 350 °C
			Bilanzpunkt Bilanzpunkt	10 Druck Temperatur Massenstrom Enthalpie 11 Druck Temperatur Massenstrom	60 300,00 3,653 2.885,500 0,31201 300,00 3,653	bar °C kg/s kJ/kg bar °C kg/s	Bilanzpunki Bilanzpunki	t 15 Druck Temperatur Massenstrom Enthalpie t 16 Druck Temperatur Massenstrom	60 bar 350 °C 0,555 kg/s 3.043,900 kJ/kg 60 bar 350 °C 0,555 kg/s
			Bilanzpunkt Bilanzpunkt	10 Druck Temperatur Massenstrom Enthalpie 11 Druck Temperatur Massenstrom Enthalpie	60 300,00 3,653 2.885,500 0,31201 300,00 3,653 2885,500	bar °C kg/s kJ/kg bar °C kg/s kJ/kg	Bilanzpunki Bilanzpunki	t 15 Druck Temperatur Massenstrom Enthalpie t 16 Druck Temperatur Massenstrom Enthalpie	60 bar 350 °C 0,555 kg/s 3.043,900 kJ/kg 60 bar 350 °C 0,555 kg/s 3.043,900 kJ/kg
			Bilanzpunkt Bilanzpunkt	10 Druck Temperatur Massenstrom Enthalpie 11 Druck Temperatur Massenstrom Enthalpie	60 300,00 3,653 2,885,500 0,31201 300,00 3,653 2885,500	bar °C kg/s kJ/kg bar °C kg/s kJ/kg	Bilanzpunki Bilanzpunki	t 15 Druck Temperatur Massenstrom Enthalpie t 16 Druck Temperatur Massenstrom Enthalpie	60 bar 350 °C 0,555 kg/s 3.043,900 kJ/kg 60 bar 350 °C 0,555 kg/s 3.043,900 kJ/kg
			Bilanzpunkt Bilanzpunkt	10 Druck Temperatur Massenstrom Enthalpie 11 Druck Temperatur Massenstrom Enthalpie	60 300,00 3,653 2,885,500 0,31201 300,00 3,653 2885,500	bar ℃ kg/s kJ/kg °C kg/s kJ/kg	Bilanzpunki Bilanzpunki	 15 Druck Temperatur Massenstrom Enthalpie 16 Druck Temperatur Massenstrom Enthalpie 	60 bar 350 °C 0,555 kg/s 3.043,900 kJ/kg 60 bar 350 °C 0,555 kg/s 3.043,900 kJ/kg
			Bilanzpunkt Bilanzpunkt Bilanzpunkt	10 Druck Temperatur Massenstrom Enthalpie 11 Druck Temperatur Massenstrom Enthalpie	60 300,00 3,653 2.885,500 0,31201 300,00 3,653 2885,500	bar ℃ kg/s kJ/kg bar ℃ kg/s kJ/kg	Bilanzpunki Bilanzpunki Bilanzpunki	 15 Druck Temperatur Massenstrom Enthalpie 16 Druck Temperatur Massenstrom Enthalpie 17 	60 bar 350 °C 0,555 kg/s 3.043,900 kJ/kg 60 bar 350 °C 0,555 kg/s 3.043,900 kJ/kg
			Bilanzpunkt Bilanzpunkt Bilanzpunkt	10 Druck Temperatur Massenstrom Enthalpie 11 Druck Temperatur Massenstrom Enthalpie	60 300,00 3,653 2.885,500 0,31201 300,00 3,653 2885,500 0,31201	bar ℃ kg/s kJ/kg bar ℃ kg/s kJ/kg bar	Bilanzpunki Bilanzpunki Bilanzpunki	 15 Druck Temperatur Massenstrom Enthalpie 16 Druck Temperatur Massenstrom Enthalpie 17 Druck 	60 bar 350 °C 0,555 kg/s 3.043,900 kJ/kg 60 bar 350 °C 0,555 kg/s 3.043,900 kJ/kg 60 bar
			Bilanzpunkt Bilanzpunkt Bilanzpunkt	10 Druck Temperatur Massenstrom Enthalpie 11 Druck Temperatur Massenstrom Enthalpie	60 300,00 3,653 2,885,500 0,31201 300,00 3,653 2885,500 0,31201 68,00	bar ℃ kg/s kJ/kg bar ℃ kg/s kJ/kg bar ℃	Bilanzpunk Bilanzpunk Bilanzpunk	 15 Druck Temperatur Massenstrom Enthalpie 16 Druck Temperatur Massenstrom Enthalpie 17 Druck Temperatur 	60 bar 350 °C 0,555 kg/s 3.043,900 kJ/kg 60 bar 350 °C 0,555 kg/s 3.043,900 kJ/kg 60 bar 350 °C
			Bilanzpunkt Bilanzpunkt Bilanzpunkt	10 Druck Temperatur Massenstrom Enthalpie 11 Druck Temperatur Massenstrom Enthalpie 12 Druck Temperatur Massenstrom	60 300,00 3,653 2,885,500 0,31201 300,00 3,653 2885,500 0,31201 68,00 3,653	bar °C kg/s kJ/kg bar °C kg/s kJ/kg	Bilanzpunki Bilanzpunki Bilanzpunki	 15 Druck Temperatur Massenstrom Enthalpie 16 Druck Temperatur Massenstrom Enthalpie 17 Druck Temperatur Massenstrom 	60 bar 350 °C 0,555 kg/s 3.043,900 kJ/kg 60 bar 350 °C 0,555 kg/s 3.043,900 kJ/kg 60 bar 350 °C 0,000 kg/s
			Bilanzpunkt Bilanzpunkt Bilanzpunkt	10 Druck Temperatur Massenstrom Enthalpie 11 Druck Temperatur Massenstrom Enthalpie 12 Druck Temperatur Massenstrom Enthalpie	60 300,00 3,653 2,885,500 0,31201 300,00 3,653 2885,500 0,31201 68,00 3,653 284,644	bar °C kg/s kJ/kg bar °C kg/s kJ/kg kJ/kg	Bilanzpunki Bilanzpunki Bilanzpunki	 15 Druck Temperatur Massenstrom Enthalpie 16 Druck Temperatur Massenstrom Enthalpie 17 Druck Temperatur Massenstrom Enthalpie 	60 bar 350 °C 0,555 kg/s 3.043,900 kJ/kg 60 bar 350 °C 0,555 kg/s 3.043,900 kJ/kg 60 bar 350 °C 0,000 kg/s 3.043,900 kJ/kg
			Bilanzpunkt Bilanzpunkt Bilanzpunkt	10 Druck Temperatur Massenstrom Enthalpie 11 Druck Temperatur Massenstrom Enthalpie 12 Druck Temperatur Massenstrom Enthalpie	60 300,00 3,653 2,885,500 0,31201 300,00 3,653 2885,500 0,31201 68,00 3,653 284,644	bar °C kg/s kJ/kg bar ℃ kg/s kJ/kg kg/s kJ/kg	Bilanzpunki Bilanzpunki Bilanzpunki	 15 Druck Temperatur Massenstrom Enthalpie 16 Druck Temperatur Massenstrom Enthalpie 17 Druck Temperatur Massenstrom Enthalpie 	60 bar 350 °C 0,555 kg/s 3.043,900 kJ/kg 60 bar 350 °C 0,555 kg/s 3.043,900 kJ/kg 60 bar 350 °C 0,000 kg/s 3.043,900 kJ/kg
			Bilanzpunkt Bilanzpunkt Bilanzpunkt	10 Druck Temperatur Massenstrom Enthalpie 11 Druck Temperatur Massenstrom Enthalpie 12 Druck Temperatur Massenstrom Enthalpie	60 300,00 3,653 2,885,500 0,31201 300,00 3,653 2885,500 0,31201 68,00 3,653 284,644	bar ℃ kg/s kJ/kg bar ℃ kg/s kJ/kg	Bilanzpunki Bilanzpunki Bilanzpunki	 15 Druck Temperatur Massenstrom Enthalpie 16 Druck Temperatur Massenstrom Enthalpie 17 Druck Temperatur Massenstrom Enthalpie 	60 bar 350 °C 0,555 kg/s 3.043,900 kJ/kg 60 bar 350 °C 0,555 kg/s 3.043,900 kJ/kg 60 bar 350 °C 0,000 kg/s 3.043,900 kJ/kg
			Bilanzpunkt Bilanzpunkt Bilanzpunkt	10 Druck Temperatur Massenstrom Enthalpie 11 Druck Temperatur Massenstrom Enthalpie 12 Druck Temperatur Massenstrom Enthalpie	60 300,00 3,653 2,885,500 0,31201 300,00 3,653 2885,500 0,31201 68,00 3,653 284,644	bar ℃ kg/s kJ/kg bar ℃ kg/s kJ/kg bar bar	Bilanzpunki Bilanzpunki Bilanzpunki	 15 Druck Temperatur Massenstrom Enthalpie 16 Druck Temperatur Massenstrom Enthalpie 17 Druck Temperatur Massenstrom Enthalpie 18 Druck 18 Druck 218 Druck 	60 bar 350 °C 0,555 kg/s 3.043,900 kJ/kg 60 bar 350 °C 0,555 kg/s 3.043,900 kJ/kg 60 bar 350 °C 0,000 kg/s 3.043,900 kJ/kg
			Bilanzpunkt Bilanzpunkt Bilanzpunkt	 10 Druck Temperatur Massenstrom 11 Druck Temperatur Massenstrom Enthalpie 12 Druck Temperatur Massenstrom Enthalpie 13 Druck Temperatur 	60 300,00 3,653 2,885,500 0,31201 300,00 3,653 2885,500 0,31201 68,00 3,653 284,644	bar ℃kg/s kJ/kg bar ℃ kg/s kJ/kg bar ℃ kg/s kJ/kg bar ℃	Bilanzpunkt Bilanzpunkt Bilanzpunkt	 15 Druck Temperatur Massenstrom Enthalpie 16 Druck Temperatur Massenstrom Enthalpie 17 Druck Temperatur Massenstrom Enthalpie 18 Druck Temperatur Massenstrom 	60 bar 350 °C 0,555 kg/s 3.043,900 kJ/kg 60 bar 350 °C 0,555 kg/s 3.043,900 kJ/kg 60 bar 350 °C 0,000 kg/s 3.043,900 kJ/kg
			Bilanzpunkt Bilanzpunkt Bilanzpunkt	10 Druck Temperatur Massenstrom Enthalpie 11 Druck Temperatur Massenstrom Enthalpie 12 Druck Temperatur Massenstrom Enthalpie	60 300,00 3,653 2,885,500 0,31201 0,31201 68,00 3,653 284,644 65 68,00 3,653	bar °C kg/s kJ/kg bar °C kg/s kJ/kg bar °C kg/s kJ/kg bar °C kg/s	Bilanzpunk Bilanzpunk Bilanzpunk	 15 Druck Temperatur Massenstrom Enthalpie 16 Druck Temperatur Massenstrom Enthalpie 17 Druck Temperatur Massenstrom Enthalpie 18 Druck Temperatur Massenstrom 	60 bar 350 °C 0,555 kg/s 3.043,900 kJ/kg 60 bar 350 °C 0,555 kg/s 3.043,900 kJ/kg 60 bar 350 °C 0,000 kg/s 3.043,900 kJ/kg 65 bar 25 °C 0,000 kg/s
			Bilanzpunkt Bilanzpunkt Bilanzpunkt	10 Druck Temperatur Massenstrom Enthalpie 11 Druck Temperatur Massenstrom Enthalpie 12 Druck Temperatur Massenstrom Enthalpie	60 300,00 3,653 2,885,500 0,31201 300,00 3,653 2885,500 0,31201 68,00 3,653 284,644 655 68,00 3,653 284,654	bar °C kg/s kJ/kg bar °C kg/s kJ/kg bar °C kg/s kJ/kg	Bilanzpunki Bilanzpunki Bilanzpunki	 15 Druck Temperatur Massenstrom Enthalpie 16 Druck Temperatur Massenstrom Enthalpie 17 Druck Temperatur Massenstrom Enthalpie 18 Druck Temperatur Massenstrom Enthalpie 	60 bar 350 °C 0,555 kg/s 3.043,900 kJ/kg 60 bar 350 °C 0,555 kg/s 3.043,900 kJ/kg 60 bar 350 °C 0,000 kg/s 3.043,900 kJ/kg 65 bar 25 °C 0,000 kg/s 110,840 kJ/kg
			Bilanzpunkt Bilanzpunkt Bilanzpunkt	 10 Druck Temperatur Massenstrom Enthalpie 11 Druck Temperatur Massenstrom Enthalpie 12 Druck Temperatur Massenstrom Enthalpie 13 Druck Temperatur Massenstrom Enthalpie 	60 300,00 3,653 2,885,500 0,31201 300,00 3,653 2885,500 0,31201 68,00 3,653 284,644 65 68,00 3,653 289,992	bar °C kg/s kJ/kg bar °C kg/s kJ/kg bar °C kg/s kJ/kg kJ/kg	Bilanzpunki Bilanzpunki Bilanzpunki	 15 Druck Temperatur Massenstrom Enthalpie 16 Druck Temperatur Massenstrom Enthalpie 17 Druck Temperatur Massenstrom Enthalpie 18 Druck Temperatur Massenstrom Enthalpie 	60 bar 350 °C 0,555 kg/s 3.043,900 kJ/kg 60 bar 350 °C 0,555 kg/s 3.043,900 kJ/kg 60 bar 350 °C 0,000 kg/s 3.043,900 kJ/kg 65 bar 25 °C 0,000 kg/s 110,840 kJ/kg
			Bilanzpunkt Bilanzpunkt Bilanzpunkt	10 Druck Temperatur Massenstrom Enthalpie 11 Druck Temperatur Massenstrom Enthalpie 12 Druck Temperatur Massenstrom Enthalpie	60 300,00 3,653 2,885,500 0,31201 300,00 3,653 2885,500 0,31201 68,00 3,653 284,644 65 68,00 3,653 289,992	bar °C kg/s kJ/kg bar °C kg/s kJ/kg bar °C kg/s kJ/kg bar °C kg/s kJ/kg	Bilanzpunki Bilanzpunki Bilanzpunki	 15 Druck Temperatur Massenstrom Enthalpie 16 Druck Temperatur Massenstrom Enthalpie 17 Druck Temperatur Massenstrom Enthalpie 18 Druck Temperatur Massenstrom Enthalpie 	60 bar 350 °C 0,555 kg/s 3.043,900 kJ/kg 60 bar 350 °C 0,555 kg/s 3.043,900 kJ/kg 60 bar 350 °C 0,000 kg/s 3.043,900 kJ/kg 65 bar 25 °C 0,000 kg/s 110,840 kJ/kg
			Bilanzpunkt Bilanzpunkt Bilanzpunkt Bilanzpunkt	 10 Druck Temperatur Massenstrom Enthalpie 11 Druck Temperatur Massenstrom Enthalpie 12 Druck Temperatur Massenstrom Enthalpie 13 Druck Temperatur Massenstrom Enthalpie 14 	60 300,00 3,653 2,885,500 0,31201 300,00 3,653 2885,500 0,31201 68,00 3,653 284,644 65 68,00 3,653 289,992	bar °C kg/s kJ/kg bar °C kg/s kJ/kg bar °C kg/s kJ/kg bar °C kg/s kJ/kg	Bilanzpunki Bilanzpunki Bilanzpunki	 15 Druck Temperatur Massenstrom Enthalpie 16 Druck Temperatur Massenstrom Enthalpie 17 Druck Temperatur Massenstrom Enthalpie 18 Druck Temperatur Massenstrom Enthalpie 	60 bar 350 °C 0,555 kg/s 3.043,900 kJ/kg 60 bar 350 °C 0,555 kg/s 3.043,900 kJ/kg 60 bar 350 °C 0,000 kg/s 3.043,900 kJ/kg 65 bar 25 °C 0,000 kg/s 110,840 kJ/kg
			Bilanzpunkt Bilanzpunkt Bilanzpunkt Bilanzpunkt	 10 Druck Temperatur Massenstrom Enthalpie 11 Druck Temperatur Massenstrom Enthalpie 12 Druck Temperatur Massenstrom Enthalpie 13 Druck Temperatur Massenstrom Enthalpie 14 Druck 	60 300,00 3,653 2,885,500 0,31201 300,00 3,653 2885,500 0,31201 68,00 3,653 284,644 65 68,00 3,653 289,992	bar ℃kg/s kJ/kg bar ℃kg/s kJ/kg bar ℃kg/s kJ/kg bar kg/s kJ/kg	Bilanzpunk Bilanzpunk Bilanzpunk	 15 Druck Temperatur Massenstrom Enthalpie 16 Druck Temperatur Massenstrom Enthalpie 17 Druck Temperatur Massenstrom Enthalpie 18 Druck Temperatur Massenstrom Enthalpie 	60 bar 350 °C 0,555 kg/s 3.043,900 kJ/kg 60 bar 350 °C 0,555 kg/s 3.043,900 kJ/kg 60 bar 350 °C 0,000 kg/s 3.043,900 kJ/kg 65 bar 25 °C 0,000 kg/s 110,840 kJ/kg
			Bilanzpunkt Bilanzpunkt Bilanzpunkt Bilanzpunkt	 10 Druck Temperatur Massenstrom Enthalpie 11 Druck Temperatur Massenstrom Enthalpie 12 Druck Temperatur Massenstrom Enthalpie 13 Druck Temperatur Massenstrom Enthalpie 14 Druck Temperatur 	60 300,00 3,653 2,885,500 0,31201 300,00 3,653 2885,500 0,31201 68,00 3,653 284,644 65 68,00 3,653 289,992 65 68,03	bar °C kg/s kJ/kg bar °C kg/s kJ/kg bar °C kg/s kJ/kg bar °C kg/s kJ/kg	Bilanzpunk Bilanzpunk Bilanzpunk	 15 Druck Temperatur Massenstrom Enthalpie 16 Druck Temperatur Massenstrom Enthalpie 17 Druck Temperatur Massenstrom Enthalpie 18 Druck Temperatur Massenstrom Enthalpie 	60 bar 350 °C 0,555 kg/s 3.043,900 kJ/kg 60 bar 350 °C 0,555 kg/s 3.043,900 kJ/kg 60 bar 350 °C 0,000 kg/s 3.043,900 kJ/kg 65 bar 25 °C 0,000 kg/s 110,840 kJ/kg
			Bilanzpunkt Bilanzpunkt Bilanzpunkt	 10 Druck Temperatur Massenstrom Enthalpie 11 Druck Temperatur Massenstrom Enthalpie 12 Druck Temperatur Massenstrom Enthalpie 13 Druck Temperatur Massenstrom Enthalpie 14 Druck Temperatur Massenstrom 	60 300,00 3,653 2,885,500 0,31201 300,00 3,653 2885,500 0,31201 68,00 3,653 284,644 655 68,00 3,653 289,992 655 68,03 3,653	bar °C kg/s kJ/kg bar °C kg/s kJ/kg bar °C kg/s kJ/kg bar °C kg/s kJ/kg	Bilanzpunk Bilanzpunk Bilanzpunk	 15 Druck Temperatur Massenstrom Enthalpie 16 Druck Temperatur Massenstrom Enthalpie 17 Druck Temperatur Massenstrom Enthalpie 18 Druck Temperatur Massenstrom Enthalpie 	60 bar 350 °C 0,555 kg/s 3,043,900 kJ/kg 60 bar 350 °C 0,555 kg/s 3,043,900 kJ/kg 60 bar 350 °C 0,000 kg/s 3,043,900 kJ/kg 65 bar 25 °C 0,000 kg/s 110,840 kJ/kg

Quelle: http://www.higgins.ucdavis.edu/webMathematica/MSP/Examples/SteamTable Quelle: http://www.higgins.ucdavis.edu/webMathematica/MSP/Examples/Satprop

$ \begin{array}{c} p = 60 \ bar & p = 60 \ bar \\ \Gamma [C] & 100 & 125 \\ VD - Warmeatias - 9. Auflage, 2002, S. Dbe7 \\ \hline T = 105 °C \\ 445,549 \ [k,Jkg] & 444,567 \ [k,Jkg] \\ VD - Warmeatias - 9. Auflage, 2002, S. Dbe7 \\ \hline T = 105 °C \\ 446,296 \ [k,Jkg] & 424,29 & 529,75 \\ VD - Warmeatias - 9. Auflage, 2002, S. Dbe7 \\ \hline T = 105 °C \\ 446,296 \ [k,Jkg] & 454,308 \ [k,Jkg] \\ VD - Warmeatias - 9. Auflage, 2002, S. Dbe3 \\ \hline T = 105 °C \\ 446,296 \ [k,Jkg] & 454,308 \ [k,Jkg] \\ VD - Warmeatias - 9. Auflage, 2002, S. Dbe3 \\ \hline T = 105 °C \\ 446,296 \ [k,Jkg] & 1134,540 \ [k,Jkg] \\ VD - Warmeatias - 9. Auflage, 2002, S. Dbe3 \\ \hline T = 105 °C \\ 446,296 \ [k,Jkg] & 1134,540 \ [k,Jkg] \\ VD - Warmeatias - 9. Auflage, 2002, S. Dbe3 \\ \hline T = 280 °C \\ 280,81 \ [^{C}] & 280 8 290 \\ h [k,Jkg] & 2778, 2766,6 \\ VD - Warmeatias - 9. Auflage, 2002, S. Dbe3 \\ \hline T = 281 °C \\ 1241,187 \ [k,Jkg] \\ VD - Warmeatias - 9. Auflage, 2002, S. Dbe3 \\ \hline T = 281 °C \\ 1241,187 \ [k,Jkg] \\ VD - Warmeatias - 9. Auflage, 2002, S. Dbe3 \\ \hline T = 281 °C \\ 2778,725 \ [k,Jkg] \\ VD - Warmeatias - 9. Auflage, 2002, S. Dbe3 \\ \hline T = 281 °C \\ 2778,725 \ [k,Jkg] \\ VD - Warmeatias - 9. Auflage, 2002, S. Dbe3 \\ \hline T = 281 °C \\ 2778,725 \ [k,Jkg] \\ 2778,682 \ [k,Jkg] \\ VD - Warmeatias - 9. Auflage, 2002, S. Dbe3 \\ \hline T = 281 °C \\ 2778,725 \ [k,Jkg] \\ 2778,682 \ [k,Jkg] \\ VD - Warmeatias - 9. Auflage, 2002, S. Dbe3 \\ \hline T = 281 °C \\ 2778,725 \ [k,Jkg] \\ 2778,682 \ [k,Jkg] \\ VD - Warmeatias - 9. Auflage, 2002, S. Dbe3 \\ \hline T = 275 °C \\ 2784,313 \ [k,Jkg] \\ 2784,427 \ [k,Jkg] \\ VD - Warmeatias - 9. Auflage, 2002, S. Dbe3 \\ \hline T = 275 °C \\ 2784,313 \ [k,Jkg] \\ 2784,427 \ [k,Jkg] \\ 2784,427 \ [k,Jkg] \\ VD - Warmeatias - 9. Auflage, 2002, S. Dbe3 \\ \hline T = 300 °C \\ 2885,500 \ [k,Jkg] \\ VD - Warmeatias - 9. Auflage, 2002, S. Dbe3 \\ \hline T = 300 °C \\ 2885,500 \ [k,Jkg] \\ \hline T = 300 °C \\ 2885,500 \ [k,Jkg] \\ \hline T = 300 °C \\ 2885,500 \ [k,Jkg] \\ \hline T = 300 °C \\ 2885,500 \ [k,Jkg] \\ \hline T = 300 °C \\ 2885,500 \ [k,Jkg] \\ \hline T = 300 °C \\ 2885,500 \ [k,Jkkg] \\ \hline T = 300 °C \\ 2885,500 \ [k,Jkg] \\ \hline T = 300 °C \\ 2885$	für Bilanzpuni	(t 1:				
$ \begin{array}{c} [T_{C}^{e}C] & 100 & 125 \\ h [k,Ukg] & 423,53 & 529,05 \\ VD - Warmeattes - 9 & Autrage, 2002, S. Dea7 \\ \hline \end{tabular}{triangle$		p = 60 bar p = 60	bar			
$ \begin{array}{c c c lkg } & 423.53 & 529.05 \\ VD - Warmeatlas - 9. Auflage, 2002, S. Dba7 \\ \hline VD - Warmeatlas - 9. Auflage, 2002, S. Dba7 \\ \hline VD - Warmeatlas - 9. Auflage, 2002, S. Dba7 \\ \hline VD - Warmeatlas - 9. Auflage, 2002, S. Dba7 \\ \hline VD - Warmeatlas - 9. Auflage, 2002, S. Dba7 \\ \hline VD - Warmeatlas - 9. Auflage, 2002, S. Dba3 \\ \hline VD - Warmeatlas - 9. Auflage, 2002, S. Dba3 \\ \hline VD - Warmeatlas - 9. Auflage, 2002, S. Dba3 \\ \hline VD - Warmeatlas - 9. Auflage, 2002, S. Dba3 \\ \hline VD - Warmeatlas - 9. Auflage, 2002, S. Dba3 \\ \hline VD - Warmeatlas - 9. Auflage, 2002, S. Dba3 \\ \hline VD - Warmeatlas - 9. Auflage, 2002, S. Dba3 \\ \hline VD - Warmeatlas - 9. Auflage, 2002, S. Dba3 \\ \hline TC = 280 & 290 \\ VD - Warmeatlas - 9. Auflage, 2002, S. Dba3 \\ \hline TC = 280 & 290 \\ VD - Warmeatlas - 9. Auflage, 2002, S. Dba3 \\ \hline TC = 281 °C \\ 2778,725 [kJ/kg] & 2778,682 [kJ/kg] \\ \hline TD - Warmeatlas - 9. Auflage, 2002, S. Dba3 \\ \hline TF Bilanzpunkt 7: \\ Enthalpie (gesattigter Dampf) \\ VD - Warmeatlas - 9. Auflage, 2002, S. Dba3 \\ \hline TF Bilanzpunkt 10: \\ Kondensationstemperatur \\ p [ba1 & 55.028 & 64,165 \\ TC = 270 & 280 \\ VD - Warmeatlas - 9. Auflage, 2002, S. Dba3 \\ \hline TF Bilanzpunkt 10: \\ Kondensationstemperatur \\ p [ba1 & 55.028 & 64,165 \\ TC = 270 & 280 \\ VD - Warmeatlas - 9. Auflage, 2002, S. Dba3 \\ \hline T = 275 °C \\ TC = 270 & 280 \\ VD - Warmeatlas - 9. Auflage, 2002, S. Dba3 \\ \hline T = 275 °C \\ 2784,313 [kJ/kg] & 2784,427 [kJ/kg] \\ \hline T = 275 °C \\ 2784,427 [kJ/kg] \\ \hline T = 300 °C \\ 2885,500 [kJ/kg] \\ \hline T = 300 °C \\ 2885,500 [kJ/kg] \\ \hline T = 300 °C \\ 2885,500 [kJ/kg] \\ \hline T = 300 °C \\ 2885,500 [kJ/kg] \\ \hline T = 300 °C \\ 2885,500 [kJ/kg] \\ \hline T = 300 °C \\ 2885,500 [kJ/kg] \\ \hline T = 300 °C \\ 2885,500 [kJ/kg] \\ \hline T = 300 °C \\ 2885,500 [kJ/kg] \\ \hline T = 300 °C \\ 2885,500 [kJ/kg] \\ \hline T = 300 °C \\ 2885,500 [kJ/kg] \\ \hline T = 300 °C \\ 2885,500 [kJ/kg] \\ \hline T = 300 °C \\ 2885,500 [kJ/kg] \\ \hline T = 300 °C \\ 2885,500 [kJ/kg] \\ \hline T = 300 °C \\ 2885,500 [kJ/kg] \\ \hline T = 300 °C \\ 2885,500 [kJ/kg] \\ \hline T = 300 °C \\ 2885,500 [kJ/kg] \\ \hline T = 300 °C \\ 2885,500 [kJ/kg] \\ \hline T = 300 °C \\ 2885,500 [kJ/kg] \\ $	T[°C]	100	125	T = 105 °C		
VO - Warmeatles - 9. Autlage, 2002, S. Dba7 fir Bilanzpunkt 2: T(°C) 100 125 h[kJkq] 424,29 529,75 VD - Warmeatlas - 9. Autlage, 2002, S. Dba7 446,296 [kJ/kg] 454,308 [kJ/kg] fir Bilanzpunkt 3: 1134,8 [kJ/kg] 1134,540 [kJ/kg] Fir Bilanzpunkt 4 und 5: 1134,8 [kJ/kg] 1134,540 [kJ/kg] VD - Warmeatlas - 9. Autlage, 2002, S. Dba3 p = 65 bar 280,81 [°C] 280,86 [°C] VD - Warmeatlas - 9. Autlage, 2002, S. Dba3 p = 65 bar 280,81 [°C] 280,86 [°C] VD - Warmeatlas - 9. Autlage, 2002, S. Dba3 h = 1175,898 kJ/kg 268,550 [°C] 1241,187 [kJ/kg] VD - Warmeatlas - 9. Autlage, 2002, S. Dba3 T = 281 °C 2778,725 [kJ/kg] 2778,682 [kJ/kg] VD - Warmeatlas - 9. Autlage, 2002, S. Dba3 T = 281 °C 2778,682 [kJ/kg] 3043,858 [kJ/kg] VD - Warmeatlas - 9. Autlage, 2002, S. Dba3 T = 281 °C 2778,725 [kJ/kg] 2778,682 [kJ/kg] VD - Warmeatlas - 9. Autlage, 2002, S. Dba3 T = 281 °C 2778,682 [kJ/kg] 2778,682 [kJ/kg] VD - Warmeatlas - 9. Autlage, 2002, S. Dba3 T = 281 °C 2778,682 [kJ/kg] 2778,682 [kJ/kg] 2778,682 [kJ/kg] </td <td>h [kJ/kg]</td> <td>423,53 51</td> <td>29,05</td> <td>445,549</td> <td>[kJ/kg]</td> <td>444,567 [kJ/kg]</td>	h [kJ/kg]	423,53 51	29,05	445,549	[kJ/kg]	444,567 [kJ/kg]
für Bilanzpunkt 2: T[C] $p = 70$ bar $p = 70$ bar T[C] 100 125 h[kJkg] 424,29 529,75 VD - Warmeatlas - 9. Autlage, 2002, S. Dba7 446,296 [kJlkg] 454,308 [kJlkg] für Bilanzpunkt 3: Enthalpie bei 260°C (siedende Flüssigkeit) 1134,8 [kJlkg] 1134,540 [kJlkg] VD - Warmeatlas - 9. Autlage, 2002, S. Dba3 P = 65 bar 280,81 [°C] 280,86 [°C] VD - Warmeatlas - 9. Autlage, 2002, S. Dba3 h = 1175,898 kJlkg 280,86 [°C] 1241,187 [kJlkg] T[°C] 280 290 h = 1175,898 kJlkg 280,86 [°C] 1241,187 [kJlkg] VD - Warmeatlas - 9. Autlage, 2002, S. Dba3 T = 281 °C 2778,725 [kJlkg] 2778,682 [kJlkg] T[°C] 280 290 T = 281 °C 2778,682 [kJlkg] 3043,858 [kJlkg] VD - Warmeatlas - 9. Autlage, 2002, S. Dba3 T = 281 °C 2778,725 [kJlkg] 3043,858 [kJlkg] VD - Warmeatlas - 9. Autlage, 2002, S. Dba3 T = 281 °C 2778,682 [kJlkg] 3043,858 [kJlkg] VD - Warmeatlas - 9. Autlage, 2002, S. Dba3 T = 281 °C 2778,682 [kJlkg] 3043,858 [kJlkg] VD - Warmeatlas - 9. Autlage, 2002, S. Dba3	VDI - Wärmeatla	s - 9. Auflage, 2002, S. Dl	ba7			
fur Bilanzpunkt 2: $P = 70$ bar $p = 70$ bar P = 70 bar $p = 70$ bar $P = 105 {}^{\circ}{\rm C}$ $446,296$ [kJ/kg] $454,308$ [kJ/kg] $454,308$ [kJ/kg] $1134,540$ [kJ/kg] $280,86$ [*C] $280,81$ [*C] $280,86$ [*C] $280,88$ [*C]	2					
$\begin{array}{c} p = 70 \ bar \\ p = 70 \ bar \\ T \ C \\ 100 \\ 125 \\ VD - Warmeatlas - 9. Autlage, 2002, S. Dba7 \\ \hline \end{tabular} T = 105 \ ^{\circ}C \\ 446,296 \ [kJ/kg] \\ 454,308 \ [kJ/kg] \\ 454,308 \ [kJ/kg] \\ 1134,540 \ [kJ/kg] \\ 1280,550 \ [^{\circ}C] \\ 1280,550 \ [^{\circ}C] \\ 1280,500 \ [^{\circ}C] \\ 1280,500 \ [^{\circ}C] \\ 1280,500 \ [^{\circ}LJ/kg] \\ 1241,187 \ [^{\circ}LJ/kg] \\ 1241,1$	für Bilanzpuni	kt 2:				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		p = 70 bar p = 70	bar			
h [k.ukg] 424.29 529,75 VD - Warmeatlas - 9. Auflage, 2002, S. Dba7 446,296 [kJ/kg] 454,308 [kJ/kg] für Bilanzpunkt 3: 1134,540 [kJ/kg] 1134,540 [kJ/kg] Enthalpie bei 260°C (siedende Flussigkeit) 1134,8 [kJ/kg] 1134,540 [kJ/kg] für Bilanzpunkt 4 und 5: $verdampfungstemperatur p = 65 bar p [ba1] 64,165 74,416 p = 65 bar T[°C] 280 290 VD - Warmeatlas - 9. Auflage, 2002, S. Dba3 h = 1175,898 kJ/kg 1241,187 [kJ/kg] T[°C] 280 290 VD - Warmeatlas - 9. Auflage, 2002, S. Dba3 h = 1175,898 kJ/kg 2778,682 [kJ/kg] T[°C] 280 290 T = 281 °C 2778,682 [kJ/kg] VD - Warmeatlas - 9. Auflage, 2002, S. Dba3 T = 281 °C 2778,682 [kJ/kg] 3043,858 [kJ/kg] für Bilanzpunkt 7: Enthalpie (gesättigter Dampf) 3043,9 [kJ/kg] 3043,858 [kJ/kg] 3043,858 [kJ/kg] VD - Warmeatlas - 9. Auflage, 2002, S. Dba3 P = 60 bar 275,44 [°C] 275,59 [°C] 2784,427 [kJ/kg] VD - Warmeatlas - 9. Auflage, 2002, S. Dba3 T = 275 °C 2784,313 [kJ/kg] 2784,427 [kJ/kg] 2784,427 $	T[°C]	100	125	T = 105 °C		
VD - Warmeatlas - 9. Auflage, 2002, S. Dba7 für Bilanzpunkt 3: Enthalpie bei 260°C (siedende Flussigkeit) $VD - Warmeatlas - 9. Auflage, 2002, S. Dba3$ für Bilanzpunkt 4 und 5: Verdampfungstemperatur $p[ba1]$ 64,165 $T(C)$ 280 $VD - Warmeatlas - 9. Auflage, 2002, S. Dba3$ Enthalpie (siedende Flussigkeit) $T(C)$ 280 $VD - Warmeatlas - 9. Auflage, 2002, S. Dba3$ Enthalpie (siedende Flussigkeit) $T(C)$ 280 $VD - Warmeatlas - 9. Auflage, 2002, S. Dba3$ Enthalpie (gesättigter Dampf) $T(C)$ 280 $VD - Warmeatlas - 9. Auflage, 2002, S. Dba3$ für Bilanzpunkt 7: Enthalpie 6 (gesättigter Dampf) $VD - Warmeatlas - 9. Auflage, 2002, S. Dba3$ für Bilanzpunkt 17: Enthalpie 6 (gesättigter Dampf) $VD - Warmeatlas - 9. Auflage, 2002, S. Dba3$ für Bilanzpunkt 10: Kondensationstemperatur $p[ba1]$ 55,028 $P = 60$ bar $T(C)$ 270 $VD - Warmeatlas - 9. Auflage, 2002, S. Dba3$ fur Bilan	h [kJ/kg]	424,29 51	29,75	446,296	[kJ/kg]	454,308 [kJ/kg]
für Bilanzpunkt 3: Enthalpie bei 260°C (siedende Flüssigkeit) 1134,8 [kJ/kg] VDI - Wärmeatlas - 9. Autlage, 2002, S. Dba3 für Bilanzpunkt 4 und 5: Verdampfungstemperatur p [bar] 64,165 T[C] 280 VOI - Wärmeatlas - 9. Autlage, 2002, S. Dba3 Enthalpie (siedende Flüssigkeit) T[°C] 280 P = 65 bar 280,81 [°C] VOI - Wärmeatlas - 9. Autlage, 2002, S. Dba3 Enthalpie (siedende Flüssigkeit) T[°C] 280 P = 85 bar 280,81 [°C] 1241,187 [kJ/kg] 1285,7 1289,8 VDI - Wärmeatlas - 9. Autlage, 2002, S. Dba3 T[°C] 280 P = 85 bar 2778,882 [kJ/kg] 2178,725 [kJ/kg] 2778,682 [kJ/kg] VDI - Wärmeatlas - 9. Autlage, 2002, S. Dba3 T = 281 °C Für Bilanzpunkt 7: 270 Enthalpie bei 350°C (gesättigter Dampf) 3043,9 [kJ/kg] VDI - Wärmeatlas - 9. Autlage, 2002, S. Dba3 P = 60 bar T[°C] 270 280 VDI - Wärmeatlas - 9. Autlage, 2002, S. Dba3 T = 275	VDI - Wärmeatla	s - 9. Auflage, 2002, S. Dl	ba7			
für Bilanzpunkt 3: Enthalpie bei 260°C (siedende Flüssigkeit) 1134,8 [kJ/kg] 1134,540 [kJ/kg] für Bilanzpunkt 4 und 5: Verdampfungstemperatur $p = 65$ bar 280,81 [°C] 280,86 [°C] für Bilanzpunkt 4 und 5: $p = 65$ bar 280,81 [°C] 280,86 [°C] 280,86 [°C] für Bilanzpunkt 4 und 5: $p = 65$ bar 280,81 [°C] 280,86 [°C] 280,86 [°C] für Bilanzpunkt 7 280 290 $p = 65$ bar 280,86 [°C] 1241,187 [kJ/kg] för Gilanzpunkt 7 280 290 $p = 65$ bar 280,86 [°C] 1241,187 [kJ/kg] för Bilanzpunkt 7 280 290 $p = 60$ bar 2778,682 [kJ/kg] 2778,682 [kJ/kg] för Bilanzpunkt 7 : 280 290 $T = 281 °°C$ 2778,682 [kJ/kg] 2778,682 [kJ/kg] för Bilanzpunkt 7 : Enthalpie bei 350°C (gesättigter Dampf) 3043,9 [kJ/kg] 3043,858 [kJ/kg] 3043,858 [kJ/kg] för Bilanzpunkt 10: Kondensationstemperatur $p = 60$ bar 275,44 [°C] 275,59 [°C] 275,59 [°C] för Bilanzpunkt 10: Kondensationstemperatur $p = 60$ bar 275,44 [°C] 2764,313 [kJ/kg] 2784,313 [kJ/kg] <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
Enthalpie bei 260°C (siedende Flüssigkeit) VD - Warmeatlas - 9. Autlage, 2002, S. Dba3 für Bilanzpunkt 4 und 5: Verdampfungstemperatur p [bar] 64,165 74,416 T [°C] 280 290 VD - Warmeatlas - 9. Autlage, 2002, S. Dba3 Enthalpie (siedende Flüssigkeit) T [°C] 280 290 h [kJkg] 1236,7 1289,8 VD - Warmeatlas - 9. Autlage, 2002, S. Dba3 h = 1175,898 kJ/kg 268,550 [°C] 1241,187 [kJ/kg] T [°C] 280 290 h [kJkg] 1236,7 1289,8 VD - Warmeatlas - 9. Autlage, 2002, S. Dba3 Fir Bilanzpunkt 7: Enthalpie (gesättigter Dampf) VD - Warmeatlas - 9. Autlage, 2002, S. Dba3 für Bilanzpunkt 7: Enthalpie bei 350°C (gesättigter Dampf) VD - Warmeatlas - 9. Autlage, 2002, S. Dba3 für Bilanzpunkt 7: Enthalpie (gesättigter Dampf) VD - Warmeatlas - 9. Autlage, 2002, S. Dba3 für Bilanzpunkt 10: p [bar] 55,028 64,165 T [°C] 270 280 VD - Warmeatlas - 9. Autlage, 2002, S. Dba3 für Bilanzpunkt 10: Enthalpie (gesättigter Dampf) T [°C] 270 280 VD - Warmeatlas - 9. Autlage, 2002, S. Dba3 f = 275,44 [°C] 275,59 [°C] T = 275,59 [°C] f = 2784,313 [kJ/kg] 2784,427 [kJ/kg] v - Warmeatlas - 9. Autlage, 2002, S. Dba3 f = 300 °C 2885,500 [kJ/kg] f = 300 °C 2885,500 [kJ/kg]	für Bilanzpuni	kt 3:				
VDi - Warmeatlas - 9. Auflage, 2002, S. Dba3 für Bilanzpunkt 4 und 5: Verdampfungstemperatur p [bar] 64,165 74,416 T[*C] 280 290 Voi - Warmeatlas - 9. Auflage, 2002, S. Dba3 $p = 65$ bar Enthalpie (siedende Flüssigkeit) $p = 65$ bar T[*C] 280 290 $kulkg]$ 1236,7 1289,8 $VDi - Warmeatlas - 9.$ Auflage, 2002, S. Dba3 $h = 1175,898$ kulkg Centhalpie (gesättigter Dampf) $h = 1175,898$ kulkg 268,550 [*C] T[*C] 280 290 h [kulkg] 2779,8 2766,6 VDi - Warmeatlas - 9. Auflage, 2002, S. Dba3 T = 281 *C T[*C] 280 290 h [kulkg] 2779,8 2766,6 VDi - Warmeatlas - 9. Auflage, 2002, S. Dba3 T = 281 *C für Bilanzpunkt 7: 2778,725 [kulkg] 2778,682 [kulkg] Enthalpie (gesättigter Dampf) 3043,9 [kulkg] 3043,858 [kulkg] VDi - Warmeatlas - 9. Auflage, 2002, S. Dba3 p = 60 bar 275,59 [*C] VDi - Warmeatlas - 9. Auflage, 2002, S. Dba3 T = 275 *C 2784,313 [kulkg] 2	Enthalpie bei 2	60°C (siedende Flüssig	lkeit)	1134,8	[kJ/kg]	1134,540 [kJ/kg]
tir Bilanzpunkt 4 und 5: Verdampfungstemperatur p bai 64,165 74,416 T[°C] 280 290 280,81 [°C] 280,86 [°C] VDI - Wärmeatlas - 9. Auflage, 2002, S. Dba3 h = 1175,898 kJ/kg 280,86 [°C] 1241,187 [kJ/kg] T[°C] 280 290 h = 1175,898 kJ/kg 288,550 [°C] 1241,187 [kJ/kg] T[°C] 280 290 h = 1175,898 kJ/kg 288,550 [°C] 1241,187 [kJ/kg] VDI - Wärmeatlas - 9. Auflage, 2002, S. Dba3 T = 281 °C 2778,682 [kJ/kg] 2778,682 [kJ/kg] Tir Bilanzpunkt 7: Enthalpie (gesättigter Dampf) 3043,9 [kJ/kg] 3043,858 [kJ/kg] 3043,858 [kJ/kg] <i>VDI - Wärmeatlas - 9. Auflage, 2002, S. Dba3</i> F = 60 bar 275,59 [°C] 275,59 [°C] für Bilanzpunkt 10: Kondensationstemperatur p = 60 bar 275,59 [°C] 2784,427 [kJ/kg] VDI - Wärmeatlas - 9. Auflage, 2002, S. Dba3 T = 275 °C 2784,427 [kJ/kg] 2784,427 [kJ/kg] VDI - Wärmeatlas - 9. Auflage, 2002, S. Dba3 T = 275 °C 2784,427 [kJ/kg] 2784,427 [kJ/kg] VDI - Wärmeatlas - 9. Auflage, 2002, S. Dba3 T = 300 °C 2885,500 [kJ/kg] 2784,427 [k	VDI - Wärmeatla	s - 9. Auflage, 2002, S. Dl	ba3			
für Bilanzpunkt 4 und 5: Verdampfungstemperatur p [bar] 64,165 74,416 p = 65 bar 1°C 280 290 280,81 [°C] 280,86 [°C] VDI - Wärmeatlas - 9. Auflage, 2002, S. Dba3 h = 1175,898 kJ/kg 268,550 [°C] 1241,187 [kJ/kg] 1°C 280 290 h = 1175,898 kJ/kg 268,550 [°C] 1241,187 [kJ/kg] 1°C 280 290 h = 1175,898 kJ/kg 268,550 [°C] 1241,187 [kJ/kg] 1°C 280 290 h = 1175,898 kJ/kg 268,550 [°C] 1241,187 [kJ/kg] 1°C 280 290 h = 1175,898 kJ/kg 268,550 [°C] 1241,187 [kJ/kg] 1°C 280 290 T = 281 °C 2778,682 [kJ/kg] 2778,682 [kJ/kg] 1°C 280 290 T = 281 °C 2778,725 [kJ/kg] 2778,682 [kJ/kg] 1°D - Wärmeatlas - 9. Auflage, 2002, S. Dba3 T = 60 bar 2778,725 [kJ/kg] 3043,858 [kJ/kg] 3043,858 [kJ/kg] 1°D - Wärmeatlas - 9. Auflage, 2002, S. Dba3 P = 60 bar 275,59 [°C] 275,59 [°C] 275,59 [°C] 275,59 [°C] 275,59 [°C] 275,44 [°C] 275,59 [°C]		21 22 23				
Verdampfungstemperatur p [bar] $64,165$ $74,416$ 280 290 $VDI - Wärmeatlas - 9. Autlage, 2002, S. Dba3p = 65 bar280,81 [°C]280,86 [°C]Enthalpie (siedende Flüssigkeit)T [°C]280,290h [kJ/kg]h = 1175,898268,550 [°C]1241,187 [kJ/kg]DataEnthalpie (siedende Flüssigkeit)T [°C]280,290h [kJ/kg]1241,187 [kJ/kg]1241,187 [kJ/kg]2778,682 [kJ/kg]277,282270280$	für Bilanzpuni	kt 4 und 5:				
$ \begin{array}{c} p \left[bar \right] & 64,165 & 74,416 \\ T \left[^{\circ}C \right] & 280 & 290 \\ VD' \cdot Warmeatlas - 9. Autlage, 2002, S. Dba3 \\ \end{array} \right] \\ \hline p = 65 bar \\ 280,81 \left[^{\circ}C \right] & 280,86 \left[^{\circ}C \right] \\ 280,81 \left[^{\circ}C \right] & 280,86 \left[^{\circ}C \right] \\ \end{array} \\ \hline p = 65 bar \\ 280,81 \left[^{\circ}C \right] & 280,86 \left[^{\circ}C \right] \\ 280,81 \left[^{\circ}C \right] & 280,86 \left[^{\circ}C \right] \\ \end{array} \\ \hline p = 65 bar \\ 280,81 \left[^{\circ}C \right] & 280,86 \left[^{\circ}C \right] \\ \hline p = 65 bar \\ 280,81 \left[^{\circ}C \right] & 280,86 \left[^{\circ}C \right] \\ \hline p = 65 bar \\ 280,81 \left[^{\circ}C \right] & 280,86 \left[^{\circ}C \right] \\ \hline p = 65 bar \\ 280,81 \left[^{\circ}C \right] & 280,86 \left[^{\circ}C \right] \\ \hline p = 65 bar \\ 280,81 \left[^{\circ}C \right] & 280,86 \left[^{\circ}C \right] \\ \hline p = 61 bar \\ \hline p = 60 bar \\ P = 300 ^{\circ}C \\ 2885,500 \left[kJ/kg \right] \\ \hline \end{array} $		Verdampfungstempe	ratur			
T [°C] 280 290 280,81 [°C] 280,86 [°C] VDI - Wärmeatlas - 9. Auflage, 2002, S. Dba3 h = 1175,898 kJ/kg 268,550 [°C] 1241,187 [kJ/kg] T [°C] 280 290 h = 1175,898 kJ/kg 268,550 [°C] 1241,187 [kJ/kg] VDI - Wärmeatlas - 9. Auflage, 2002, S. Dba3 h = 1175,898 kJ/kg 2778,682 [kJ/kg] 2778,682 [kJ/kg] T [°C] 280 290 T = 281 °C 2778,682 [kJ/kg] 2778,682 [kJ/kg] VDI - Wärmeatlas - 9. Auflage, 2002, S. Dba3 T = 281 °C 2778,682 [kJ/kg] 2778,682 [kJ/kg] für Bilanzpunkt 7: Enthalpie bei 350°C (gesättigter Dampf) 3043,9 [kJ/kg] 3043,858 [kJ/kg] 3043,858 [kJ/kg] VDI - Wärmeatlas - 9. Auflage, 2002, S. Dba3 P = 60 bar 275,44 [°C] 275,59 [°C] VDI - Wärmeatlas - 9. Auflage, 2002, S. Dba3 T = 275 °C 2784,4127 [kJ/kg] 2784,427 [kJ/kg] VDI - Wärmeatlas - 9. Auflage, 2002, S. Dba3 T = 300 °C 2885,500 [kJ/kg] 2784,427 [kJ/kg] VDI - Wärmeatlas - 9. Auflage, 2002, S. Dba3 T = 300 °C 2885,500 [kJ/kg] 2885,500 [kJ/kg]	p [bar]	64,165 7.	4,416	p = 65 bar		
$VDI - Warmeatlas - 9. Autlage, 2002, S. Dba3$ Enthalpie (siedende Flüssigkeit) $T[^{\circ}C]$ 280 290 $h[kJl/kg]$ 1236,7 1289,8 $VDI - Warmeatlas - 9. Autlage, 2002, S. Dba3$ $h = 1175,898 kJ/kg$ 268,550 [°C] Enthalpie (gesättigter Dampf) $T = 281 °C$ 2778,725 [kJ/kg] 2778,682 [kJ/kg] $VDI - Warmeatlas - 9. Autlage, 2002, S. Dba3$ $T = 281 °C$ 2778,725 [kJ/kg] 2778,682 [kJ/kg] $VDI - Warmeatlas - 9. Autlage, 2002, S. Dba3$ $T = 281 °C$ 2778,682 [kJ/kg] 2778,682 [kJ/kg] $VDI - Warmeatlas - 9. Autlage, 2002, S. Dba3$ $T = 281 °C$ 2778,725 [kJ/kg] 2778,682 [kJ/kg] $VDI - Warmeatlas - 9. Autlage, 2002, S. Dba3$ $T = 281 °C$ 2778,725 [kJ/kg] 2778,682 [kJ/kg] $VDI - Warmeatlas - 9. Autlage, 2002, S. Dba3$ $T = 275 °C$ 275,44 [°C] 275,59 [°C] 2764,427 [kJ/kg] $VDI - Warmeatlas - 9. Autlage, 2002, S. Dba3$ $T = 275 °C$ 2784,313 [kJ/kg] 2784,427 [kJ/kg] $VDI - Warmeatlas - 9. Autlage, 2002, S. Dba3$ $T = 300 °C$ 2885,500 [kJ/kg] 2784,427 [kJ/kg] $VDI - Warmeatlas - 9. Autlage, 2002, S. Dba3$ $T = 300 °C$ 2885,500 [kJ/kg] 2784,427 [kJ/kg] 2885,	T[°C]	280	290	280,81	[°C]	280,86 [°C]
Enthalpie (siedende Flüssigkeit) $T[^{\circ}C]$ 280 290 $h[kJ/kg]$ 1236,7 1289,8 $VDi - Warmeatlas - 9. Autlage, 2002, S. Dba3$ $h = 1175,898 kJ/kg$ 268,550 [°C] Enthalpie (gesättigter Dampf) $T = 281 °C$ 2778,682 [kJ/kg] $T[^{\circ}C]$ 280 290 $T = 281 °C$ $h[kJ/kg]$ 2779,8 2766,6 2778,725 [kJ/kg] 2778,682 [kJ/kg] $VDi - Warmeatlas - 9. Autlage, 2002, S. Dba3$ $T = 281 °C$ 2778,682 [kJ/kg] 2778,682 [kJ/kg] $VDi - Warmeatlas - 9. Autlage, 2002, S. Dba3$ $T = 281 °C$ 2778,725 [kJ/kg] 2778,682 [kJ/kg] $VDi - Warmeatlas - 9. Autlage, 2002, S. Dba3$ $3043,9 [kJ/kg]$ 3043,858 [kJ/kg] 3043,858 [kJ/kg] $VDi - Warmeatlas - 9. Autlage, 2002, S. Dba3$ $p = 60 bar$ 275,59 [°C] 275,59 [°C] $VDi - Warmeatlas - 9. Autlage, 2002, S. Dba3$ $T = 275 °C$ 2784,313 [kJ/kg] 2784,427 [kJ/kg] $VDi - Warmeatlas - 9. Autlage, 2002, S. Dba3$ $T = 300 °C$ 2885,500 [kJ/kg] 2784,427 [kJ/kg] $VDi - Warmeatlas - 9. Autlage, 2002, S. Dba3$ $T = 300 °C$ 2885,500 [kJ/kg] 2885,500 [kJ/kg]	VDI - Wärmeatla	s - 9. Auflage, 2002, S. Dl	ba3			
Enthalpie (siedende Flüssigkeit) $T [^{\circ}C]$ 280 290 h [k.l/kg] 1236,7 1289,8 268,550 [^{\circ}C] 1241,187 [k.l/kg] VD - Wärmeatlas - 9. Autlage, 2002, S. Dba3 268,550 [^{\circ}C] 1241,187 [k.l/kg] 2778,682 [k.l/kg] Image: The state of	26 26					
$ \begin{array}{c} T \ [^{\circ}C] & 280 & 290 \\ h \ [kJ/kg] & 1236,7 & 1289,8 \\ \hline VDI - Wärmeatlas - 9. Autlage, 2002, S. Dba3 \\ \hline \\ \hline \\ T \ [^{\circ}C] & 280 & 290 \\ h \ [kJ/kg] & 2779,8 & 2766,6 \\ \hline \hline \\ VDI - Wärmeatlas - 9. Autlage, 2002, S. Dba3 \\ \hline \\ \hline \\ T \ [^{\circ}C] & 280 & 290 \\ h \ [kJ/kg] & 2779,8 & 2766,6 \\ \hline \\ VDI - Wärmeatlas - 9. Autlage, 2002, S. Dba3 \\ \hline \\ \hline \\ \hline \\ T \ Bilanzpunkt 7: \\ Enthalpie bei 350°C (gesättigter Dampf) \\ VDI - Wärmeatlas - 9. Autlage, 2002, S. Dba7 \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ T \ \\ \hline \\ T \ \\ C] & 270 & 280 \\ \hline \\ VDI - Wärmeatlas - 9. Autlage, 2002, S. Dba3 \\ \hline \\ \hline \\ \hline \\ \hline \\ T \ \\ C] & 270 & 280 \\ \hline \\ VDI - Wärmeatlas - 9. Autlage, 2002, S. Dba3 \\ \hline \\ \hline \\ \hline \\ \\ \hline \\ T \ \\ \hline \\ \\ \hline \\ \hline \\ \hline \\ T \ \\ C] & 270 & 280 \\ h \ \\ LM/kg] & 2789,7 & 2779,8 \\ \hline \\ $	Enthalpi	e (siedende Flüssigkeit)			
$\frac{h [kJ/kg]}{VD - Wärmeatlas - 9. Auflage, 2002, S. Dba3} = 268,550 [°C] = 1241,187 [kJ/kg]$ $\frac{Enthalpie (gesättigter Dampf)}{T [°C]} = 280 290 Product 280 Product 280 290 Product 280 Product$	T[°C]	280	290	h = 1175,898	kJ/kg	
VDI - Wärmeatlas - 9. Auflage, 2002, S. Dba3 Enthalpie (gesättigter Dampf) T [°C] 280 290 h [k.l/kg] 2779,8 2766,6 $VDI - Wärmeatlas - 9. Auflage, 2002, S. Dba3$ T = 281 °C für Bilanzpunkt 7: 2778,725 [kJ/kg] 2778,682 [kJ/kg] Enthalpie bei 350°C (gesättigter Dampf) 3043,9 [kJ/kg] 3043,858 [kJ/kg] $VDI - Wärmeatlas - 9. Auflage, 2002, S. Dba7$ 3043,9 [kJ/kg] 3043,858 [kJ/kg] für Bilanzpunkt 10: Kondensationstemperatur p = 60 bar p [bar] 55,028 64,165 T [°C] 270 280 VDI - Wärmeatlas - 9. Auflage, 2002, S. Dba3 P = 60 bar Enthalpie (gesättigter Dampf) T = 275 °C VDI - Wärmeatlas - 9. Auflage, 2002, S. Dba3 T = 275 °C P = 60 bar 2784,313 [kJ/kg] 2784,427 [kJ/kg] VDI - Wärmeatlas - 9. Auflage, 2002, S. Dba3 T = 300 °C n [kJ/kg] 2885,5 3043,9 VDI - Wärmeatlas - 9. Auflage, 2002, S. Dba3 T = 300 °C n [kJ/kg] 2885,5 3043,9 VDI - Wärmeatlas - 9. Auflage, 2002, S. Dba3 T = 300 °C N [kJ/kg	h [kJ/kg]	1236,7 1	289,8	268,550	[°C]	1241,187 [kJ/kg]
Enthalpie (gesättigter Dampf) T * 280 290 h [kJ/kg] 2779,8 2766,6 VDI - Wärmeatlas - 9. Auflage, 2002, S. Dba3 T = 281 °C für Bilanzpunkt 7: 2778,725 [kJ/kg] 2778,682 [kJ/kg] Enthalpie bei 350°C (gesättigter Dampf) 3043,9 [kJ/kg] 3043,858 [kJ/kg] für Bilanzpunkt 10: 3043,9 [kJ/kg] 3043,858 [kJ/kg] für Bilanzpunkt 10: Kondensationstemperatur p = 60 bar p [bar] 55,028 64,165 275,44 [°C] 275,59 [°C] VDI - Wärmeatlas - 9. Auflage, 2002, S. Dba3 T = 275 °C 2784,313 [kJ/kg] 2784,427 [kJ/kg] T [°C] 270 280 T = 300 °C 2885,5 3043,9 VDI - Wärmeatlas - 9. Auflage, 2002, S. Dba3 T = 300 °C 2885,500 [kJ/kg] 2885,500 [kJ/kg]	VDI - Wärmeatla	s - 9. Auflage, 2002, S. Dl	ba3			
Enthalpie (gesättigter Dampf) T [°C]T = 281 °CT = 281 °C2778,725 [kJ/kg]2778,682 [kJ/kg] <i>VDI - Wärmeatlas - 9. Auflage, 2002, S. Dba3</i> T = 281 °C2778,725 [kJ/kg] <i>für Bilanzpunkt 7:</i> Enthalpie bei 350°C (gesättigter Dampf) <i>VDI - Wärmeatlas - 9. Auflage, 2002, S. Dba3</i> 3043,9 [kJ/kg]3043,858 [kJ/kg] <i>für Bilanzpunkt 10:</i> Kondensationstemperatur p [bar] T [°C]55,028 64,165 2770 280p = 60 bar 275,44 [°C]275,59 [°C] <i>für Bilanzpunkt 10:</i> Kondensationstemperatur p [bar]p = 60 bar 275,28 64,165 2770 280p = 60 bar 275,44 [°C]275,59 [°C] <i>f</i> [°C] VDI - Wärmeatlas - 9. Auflage, 2002, S. Dba3T = 275 °C 2784,313 [kJ/kg]2784,427 [kJ/kg] $p = 60 bar$ $p = 60 bar300 350h [kJ/kg]2885,5 3043,9T = 300 °C2885,500 [kJ/kg]p = 60 bar p = 60 bar2885,500 [kJ/kg]T = 300 °C2885,500 [kJ/kg]$	48					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Enthal	pie (gesättigter Dampf)				
$\frac{h [kJ/kg]}{VDI - Warmeatlas - 9. Auflage, 2002, S. Dba3} = 2778,725 [kJ/kg] = 2778,682 [kJ/kg]$ $\frac{f Ur Bilanzpunkt 7:}{Enthalpie bei 350°C (gesättigter Dampf)} = 3043,9 [kJ/kg] = 3043,858 [kJ/kg]$ $\frac{f Ur Bilanzpunkt 10:}{VDI - Warmeatlas - 9. Auflage, 2002, S. Dba7} = 60 bar$ $\frac{f Ur Bilanzpunkt 10:}{I [°C]} = 270 = 280$ $\frac{VDI - Warmeatlas - 9. Auflage, 2002, S. Dba3}{I [°C]} = 60 bar$ $\frac{T [°C]}{270} = 270 = 280$ $\frac{F Ur C}{VDI - Warmeatlas - 9. Auflage, 2002, S. Dba3} = 1275 °C$ $\frac{h [kJ/kg]}{VDI - Warmeatlas - 9. Auflage, 2002, S. Dba3} = 1275 °C$ $\frac{1}{2784,313} [kJ/kg] = 2784,427 [kJ/kg]$ $\frac{VDI - Warmeatlas - 9. Auflage, 2002, S. Dba3}{I [°C]} = 300 °C$ $\frac{1}{2885,500} [kJ/kg]$ $\frac{T = 300 °C}{2885,500} [kJ/kg]$	T[°C]	280	290	T = 281 °C		
$VDI - Warmeatlas - 9. Auflage, 2002, S. Dba3$ für Bilanzpunkt 7: Enthalpie bei 350°C (gesättigter Dampf) $3043,9 \text{ [kJ/kg]}$ $3043,858 \text{ [kJ/kg]}$ $VDI - Warmeatlas - 9. Auflage, 2002, S. Dba7$ $3043,9 \text{ [kJ/kg]}$ $3043,858 \text{ [kJ/kg]}$ für Bilanzpunkt 10: Kondensationstemperatur $p = 60 \text{ bar}$ $p \text{ [bar]}$ $55,028 64,165$ $p = 60 \text{ bar}$ $T[^{\circ}C]$ $270 280$ $275,44 \text{ [°C]}$ $275,59 \text{ [°C]}$ $VDI - Warmeatlas - 9. Auflage, 2002, S. Dba3$ $T = 275 \text{ °C}$ $2784,313 \text{ [kJ/kg]}$ $2784,427 \text{ [kJ/kg]}$ $VDI - Warmeatlas - 9. Auflage, 2002, S. Dba3$ $T = 300 \text{ °C}$ $2885,5 3043,9$ $T = 300 \text{ °C}$ $p = 60 \text{ bar}$ $p = 60 \text{ bar}$ $2885,5 3043,9$ $VDI - Warmeatlas - 9. Auflage, 2002, S. Dba3$	h [kJ/kg]	2779,8 2	766,6	2778,725	[kJ/kg]	2778,682 [kJ/kg]
für Bilanzpunkt 7: Statigter Dampf) $3043,9 \ [kJ/kg]$ $3043,858 \ [kJ/kg]$ vDi - Wärmeatlas - 9. Auflage, 2002, S. Dba7 $3043,9 \ [kJ/kg]$ $3043,858 \ [kJ/kg]$ für Bilanzpunkt 10: Kondensationstemperatur $p \ [bar]$ $55,028 \ 64,165 \ T \ C \ 270 \ 280 \ 275,44 \ [^{\circ}C]$ $275,59 \ [^{\circ}C]$ VDI - Wärmeatlas - 9. Auflage, 2002, S. Dba3 $p = 60 \ bar \ 275,44 \ [^{\circ}C]$ $275,59 \ [^{\circ}C]$ Enthalpie (gesättigter Dampf) $T = 275 \ ^{\circ}C \ 2784,313 \ [kJ/kg]$ $2784,427 \ [kJ/kg]$ VDI - Wärmeatlas - 9. Auflage, 2002, S. Dba3 $T = 275 \ ^{\circ}C \ 2784,313 \ [kJ/kg]$ $2784,427 \ [kJ/kg]$ $VDI - Wärmeatlas - 9. Auflage, 2002, S. Dba3$ $T = 300 \ ^{\circ}C \ 2885,500 \ [kJ/kg]$ $T = 300 \ ^{\circ}C \ 2885,500 \ [kJ/kg]$ $VDI - Wärmeatlas - 9. Auflage, 2002, S. Dba3$ $T = 300 \ ^{\circ}C \ 2885,500 \ [kJ/kg]$ $T = 300 \ ^{\circ}C \ 2885,500 \ [kJ/kg]$	VDI - Wärmeatla	s - 9. Auflage, 2002, S. Dl	ba3			
für Bilanzpunkt 7: Sold Sold Sold Sold Sold Sold Sold Sold						
Enthalpie bei $350^{\circ}C$ (gesättigter Dampf) $3043,9$ [kJ/kg] $3043,858$ [kJ/kg] <i>VDI - Wärmeatlas - 9. Auflage, 2002, S. Dba7</i> für Bilanzpunkt 10: Kondensationstemperatur p [bar] $55,028$ $64,165$ T [°C] 270 280 <i>VDI - Wärmeatlas - 9. Auflage, 2002, S. Dba3</i> $p = 60$ bar Enthalpie (gesättigter Dampf) $T = 275 °C$ T [°C] $2789,7$ $2779,8$ <i>VDI - Wärmeatlas - 9. Auflage, 2002, S. Dba3</i> $T = 275 °C$ h [kJ/kg] $2789,7$ $2779,8$ <i>VDI - Wärmeatlas - 9. Auflage, 2002, S. Dba3</i> $T = 300 °C$ p = 60 bar $p = 60$ bar T [°C] 300 350 h [kJ/kg] $2885,5$ $3043,9$ <i>VDI - Wärmeatlas - 9. Auflage, 2002, S. Dba3</i> $T = 300 °C$ 2885,500 [kJ/kg] $2885,500 [kJ/kg]$	für Bilanzpuni	ct 7:				
VDI - Wärmeatlas - 9. Auflage, 2002, S. Dba7 für Bilanzpunkt 10: Kondensationstemperatur p [bar] 55,028 64,165 T [°C] 270 280 $VDI - Wärmeatlas - 9.$ Auflage, 2002, S. Dba3 p = 60 bar Enthalpie (gesättigter Dampf) T = 275 °C T [°C] 2789,7 2779,8 $VDI - Wärmeatlas - 9.$ Auflage, 2002, S. Dba3 T = 275 °C h [k.J/kg] 2789,7 2779,8 $VDI - Wärmeatlas - 9.$ Auflage, 2002, S. Dba3 T = 300 °C h [k.J/kg] 2885,5 3043,9 $VDI - Wärmeatlas - 9.$ Auflage, 2002, S. Dba3 T = 300 °C NDI - Wärmeatlas - 9. Auflage, 2002, S. Dba3 T = 300 °C	Enthalpie bei 3	50°C (gesättigter Damp	of)	3043,9	[kJ/kg]	3043,858 [kJ/kg]
für Bilanzpunkt 10:Kondensationstemperatur p [bar] $55,028$ $64,165$ 270 $p = 60$ bar 275,44 [°C] $275,59$ [°C]VDI - Wärmeatlas - 9. Auflage, 2002, S. Dba3T = 275 °C 2784,313 [kJ/kg] $T = 275 °C$ 2784,313 [kJ/kg] $2784,427$ [kJ/kg] $VDI - Wärmeatlas - 9. Auflage, 2002, S. Dba3T = 300 °C2885,55T = 300 °C2885,500 [kJ/kg]T = 300 °C2885,500 [kJ/kg]$	VDI - Wärmeatla	s - 9. Auflage, 2002, S. Dl	ba7			
für Bilanzpunkt 10:Kondensationstemperatur p [bar] $55,028$ $64,165$ T [°C] $p = 60$ bar 275,44 [°C] $275,59$ [°C]VDI - Wärmeatlas - 9. Auflage, 2002, S. Dba3T = 275 °C 2784,313 [kJ/kg]T = 275 °C 2784,313 [kJ/kg]T = 2784,427 [kJ/kg] $VDI - Wärmeatlas - 9. Auflage, 2002, S. Dba3T = 300 °C2885,5 3043,9T = 300 °C2885,500 [kJ/kg]T = 300 °C2885,500 [kJ/kg]$						
Kondensationstemperatur p [bar] 55,028 64,165 T [°C] 270 280 VDI - Wärmeatlas - 9. Auflage, 2002, S. Dba3 Dba3 T = 275 °C Enthalpie (gesättigter Dampf) T = 275 °C 2784,313 [kJ/kg] 2784,427 [kJ/kg] VDI - Wärmeatlas - 9. Auflage, 2002, S. Dba3 T = 300 °C T = 300 °C p = 60 bar p = 60 bar p = 3043,9 VDI - Wärmeatlas - 9. Auflage, 2002, S. Dba3 T = 300 °C p = 60 bar p = 60 bar p = 80 bar p = 60 bar p = 60 bar p = 80 bar VDI - Wärmeatlas - 9. Auflage, 2002, S. Dba3 T = 300 °C p [kJ/kg] 2885,5 3043,9 VDI - Wärmeatlas - 9. Auflage, 2002, S. Dba3 Z885,500 [kJ/kg]	für Bilanzpunl	kt 10:				
p [bar] $55,028$ $64,165$ T [°C] $p = 60 \text{ bar}$ $275,44 [°C]275,59 [°C]VDI - Wärmeatlas - 9. Auflage, 2002, S. Dba3T = 275 °C2789,7T = 275 °C2784,313 [kJ/kg]T = 2784,427 [kJ/kg]VDI - Wärmeatlas - 9. Auflage, 2002, S. Dba3T = 300 °C2885,5T = 300 °C2885,500 [kJ/kg]T = 300 °C2885,500 [kJ/kg]$	Kond	Jensationstemperatur				
T [°C] 270 280 275,44 [°C] 275,59 [°C] $VDI - Wärmeatlas - 9. Auflage, 2002, S. Dba3$ T = 275 °C T = 275 °C T = 2789,7 2779,8 $VDI - Wärmeatlas - 9. Auflage, 2002, S. Dba3$ T = 275 °C 2784,427 [kJ/kg] 2784,427 [kJ/kg] $VDI - Wärmeatlas - 9. Auflage, 2002, S. Dba3$ T = 300 °C 1 = 300 °C 2885,5 3043,9 $VDI - Wärmeatlas - 9. Auflage, 2002, S. Dba3$ T = 300 °C 2885,500 [kJ/kg] 2885,500 [kJ/kg]	p [bar]	55,028 6	4,165	p = 60 bar		
VDI - Wärmeatlas - 9. Auflage, 2002, S. Dba3 Enthalpie (gesättigter Dampf) T [°C] 270 280 h [kJ/kg] 2789,7 2779,8 VDI - Wärmeatlas - 9. Auflage, 2002, S. Dba3 2784,313 [kJ/kg] 2784,427 [kJ/kg] p = 60 bar p = 60 bar T = 300 °C h [kJ/kg] 2885,5 3043,9 VDI - Wärmeatlas - 9. Auflage, 2002, S. Dba3 T = 300 °C	TICI	270	280	275.44	[°C]	275.59 [°C]
Enthalpie (gesättigter Dampf) T [°C] 270 280 h [kJ/kg] 2789,7 2779,8 $VDI - Wärmeatlas - 9. Autilage, 2002, S. Dba3$ 2784,313 [kJ/kg] 2784,427 [kJ/kg] p = 60 bar p = 60 bar T = 300 °C h [kJ/kg] 2885,5 3043,9 VDI - Wärmeatlas - 9. Autilage, 2002, S. Dba3 T = 300 °C	VDI - Wärmeatla	s - 9. Auflage, 2002, S. D.	ba3		1	
Enthalpie (gesättigter Dampf)T [°C]270280h [kJ/kg]2789,72779,8 $VDI - Wärmeatlas - 9. Auflage, 2002, S. Dba3$ 2784,313 [kJ/kg]2784,427 [kJ/kg]T [°C]300350h [kJ/kg]2885,53043,92885,500 [kJ/kg] $VDI - Wärmeatlas - 9. Auflage, 2002, S. Dba3$ T = 300 °C						
T [°C] 270 280 h [kJ/kg] 2789,7 2779,8 $VDI - Wärmeatlas - 9. Auflage, 2002, S. Dba3$ 2784,313 [kJ/kg] 2784,427 [kJ/kg] p = 60 bar p = 60 bar T = 300 °C h [kJ/kg] 2885,5 3043,9 $VDI - Wärmeatlas - 9. Auflage, 2002, S. Dba3$ T = 300 °C	Enthal	oie (gesättigter Dampf)				
h [kJ/kg] 2789,7 2779,8 2784,313 [kJ/kg] 2784,427 [kJ/kg] VDI - Wärmeatlas - 9. Auflage, 2002, S. Dba3 p = 60 bar p = 60 bar p = 60 bar T [°C] 300 350 T = 300 °C h [kJ/kg] 2885,5 3043,9 2885,500 [kJ/kg] VDI - Wärmeatlas - 9. Auflage, 2002, S. Dba3 T = 300 °C	TICI	270	280	T = 275 °C		
VDI - Wärmeatlas - 9. Auflage, 2002, S. Dba3 p = 60 bar T [°C] 300 1 [kJ/kg] 2885,5 3043,9 VDI - Wärmeatlas - 9. Auflage, 2002, S. Dba3	h [kJ/ka]	2789.7 2	779.8	2784.313	[kJ/ka]	2784.427 [kJ/ka]
p = 60 bar p = 60 bar T [°C] 300 350 T = 300 °C h [kJ/kg] 2885,5 3043,9 2885,500 [kJ/kg] VDI - Wärmeatlas - 9. Auflage, 2002, S. Dba3	VDI - Wärmeatla	s - 9. Auflage, 2002, S. D.	ba3		2.00031	
p = 60 bar $p = 60 bar$ T [°C]300350H [kJ/kg]2885,53043,9VDI - Wärmeatias - 9. Aufiage, 2002, S. Dba32885,500 [kJ/kg]						
T [°C] 300 350 T = 300 °C h [kJ/kg] 2885,5 3043,9 2885,500 [kJ/kg] VDI - Wärmeatlas - 9. Auflage, 2002, S. Dba3 Dba3		p = 60 bar p = 60	bar			
h [kJ/kg] 2885,5 3043,9 2885,500 [kJ/kg]	lt le ci	300	350	T = 300 °C		
VDI - Wärmeatlas - 9. Auflage, 2002, S. Dba3	h [kJ/ka]	2885.5 3	043.9	2885.500	[kJ/ka]	
	VDI - Wärmeatla	s - 9. Auflage, 2002, S. Di	ba3		0.000	

für Bilanzpunkt 1	2:
-------------------	----

für Bilanzpunkt 11 & 12:

Siedetemperatur (in 12) soll 70°C betragen

VDI - Wärmeatlas - 9. Auflage, 2002, S. Dba3

iui Dilanzpui	INL 12.			
Enthal	pie (siedende Flüss	igkeit)		
T [°C]	65	70	T = 68 °C	
h [kJ/kg]	272,08	293,02	284,644 [kJ/kg]	284,642 [kJ/kg]
VDI - Wärmeat	las - 9. Auflage, 2002	, S. Dba3		
für Bilanzpur	nkt 13:			
	p = 60 bar p) = 60 bar		
T [°C]	50	75	T = 68 °C	
h [kJ/kg]	214,49	318,78	289,579 [kJ/kg]	289,548 [kJ/kg]
VDI - Wärmeat	las - 9. Auflage, 2002	, S. Dba7		
	p = 70 bar g	o = 70 bar		
T [°C]	50	75	T = 68 °C	
h [kJ/kg]	215,36	319,59	290,406 [kJ/kg]	290,370 [kJ/kg]
VDI - Wärmeat	las - 9. Auflage, 2002	, S. Dba7		
p [bar]	60	70	p = 65 bar	
h [kJ/kg]	289,579	290,406	289,992 [kJ/kg]	289,959 [kJ/kg]
für Bilanzpur	nkt 14:			
	T = 25 °C	T = 25 °C		
p [bar]	60	70	p = 65 bar	
h [kJ/kg]	110,38	111,30	110,840 [kJ/kg]	110,840 [kJ/kg]
VDI - Wärmeat	ias - 9. Auflage, 2002	, S. Dba7		
	T = 50 °C	T = 50 °C		
p [bar]	60	70	p = 65 bar	
h [kJ/kg]	214,49	215,36	214,925 [kJ/kg]	214,925 [kJ/kg]
VDI - Wärmeat	las - 9. Auflage, 2002	, S. Dba7		
T [°C]	25	50	h = 195,345 kJ/kg	
h [kJ/kg]	110,840	214,925	68,030 [°C]	195,340 [kJ/kg]
für Bilanzpur	nkt 18:			
r	T = 25 °C	T = 25°C		
p [bar]	60	70	p = 65 bar	
h [kJ/kg]	110,38	111,3	110,840 [kJ/kg]	110,840 [kJ/kg]
VDI - Wärmeat.	las - 9. Auflage, 2002	, S. Dba7		

Bilanz - Sauerstoff

Zusammensetzung:

mittlere spezifische Wärmekapazität (Reinkomponenten) T (Eintritt)

O ₂	99,5	0,995		1309,661 [J/m³K]		T (Eintritt)	
N ₂	0,5	0,005		1300,015 [J/m³K]		25,00 °C	
SUMME:	100,0	1,000		100 100		298,15 K	
Volumenstrom (STP)	95.000	[m ³ _{STP} /h]		mittlere spezifisch	e Wärmekapazität (Gemisch)	
Volumenstrom (Betrieb	o) 11.657,15	[m³ _B /h]		cpm (T (Eintritt))	1309,613	[J/m³K]	
Dichte (STP)	1,428	[kg/m ³]		Enthalpie	32740,321	[J/m³]	
Dichte (Betrieb)	11,638	[kg/m ³]			22,926	[kJ/kg] Bilan	zpunkt 19
Massenstrom	135.670	[ka/h]					
	37,686	[kg/s]					
2742774 36 60 36 3600				mittlere spezifisch	e Wärmekapazität (Reinkomponenten)	
Betriebsbedingunger	1 :	1901		T (Eintritt)		T ([]:-1-34)	
Eintrittstemperatur	25	[°C]		1381,853 [J/M*K] 1311,408 [J/m³k]			
Druck (Fintritt)	8	[C] [bar (ɑ)]		1311,400 [0/11/1]		573 15 K	
Druck (Austritt)	6	[bar (g)]					
					- 10/2000 - 1/	Comicola)	
				com (T (Eintritt))	e warmekapazitat (1381 501	Gemisch) [. l/m³k1	
					1001,001	[om rt]	
				Enthalpie	414450,182	[J/m³]	
					290,209	[kJ/kg]	
		(1)(2)(2)(4)(4)					
Dampf - Eintritt in	den Wärmetausc	her		Wärmetauso	her		
Massenstrom	3	,653 [kg/s]		Enthalpiediffe	renz - Dampf	2600,856 [kJ/kg]	
Druck	30	0,00 [*C] 1204 [hor]		out Couerated	fborogon	9501,79 [KJ/S]	
Enthalpie	0,3	500 [k kka]		aui Sauerstoi	i bezogen	292,129 [KJ/Kg]	
спларте	2005	,500 [KUNG]		Enthalpie - O	- Fintritt	22 926 [k l/ka]	
				Enthalpie - O	2 - Linunu Austritt	22,820 [KU/kg]	
Damof - Austritt au	ıs dem \A/ärmetaı	Ischer		Entralpie - O	2 - Austritt	270,000 [KU/KY]	
Massenstrom	3 4011 11441110144	653 [kg/s]	1	Τ	stritt)		
Tomporatur	5 6	8 00 [00]	0	Sauerstoff (7 Sa	71 []/m³k/]	T	(Auctritt)
Devalu	0.20	0,00 [C]	⁰ 2	1370,0		¹ Sauersto	
Druck	0,0	201 [bar] 644 [k l/ka]	IN2	1310,10	so [J/IIPK]	33 13	200,00 °C
Enulaiple	204	,644 [KJ/K <u></u>]					N C0,0CC
Bilan	zpunkt 20			com (T (Austr	-itt))	1378.279 [J/m³K	1
					0.000	393.498,671 [J/m3]	1
				Enthalpie (be	rechnet)	275,538 [kJ/kg]	
				400 90903	243		
Dampf - Eintritt in	den Wärmetausc	her		Wärmetauso	her		
Massenstrom	3	,653 [kg/s]		Enthalpiediffe	renz - Dampf	158,400 [kJ/kg]	
Temperatur		350 [°C]				578,69 [kJ/s]	
Druck		60 [bar]		auf Sauerstof	f bezogen	15,355 [kJ/kg]	
Enthalpie	3043	,900 [kJ/kg]					
				Enthalpie - O	₂ - Eintritt	275,055 [kJ/kg]	
10305 X0145 755% ANTONIA				Enthalpie - O	2 - Austritt	290,410 [kJ/kg]	
Dampf - Austritt au	ıs dem Wärmetaı	ıscher		<u>300</u> . 308	202020		
Massenstrom	3	,653 [kg/s]		T _{Sauerstoff} (Aus	stritt)		
Temperatur	30	0,00 [°C]	02	1381,89	97 [J/m³K]	T _{Sauersto}	_{off} (Austritt)
Druck		60 [bar]	N_2	1311,43	26 [J/m³K]	8	300,20 °C
Enthalpie	2885	,500 [kJ/kg]				1	573,35 K
	11.01						
Bilan:	zpunkt 21			cpm (T (Eintr	ιπ))	1381,544 [J/m ³ K]
				Enthalnia (bo	rechnet)	290 412 [J/II ⁹]	
				Cumple (ne	i oonner)	200,412 [KU/KY]	

11.5.2 Erzeugung der maximal möglichen Dampfmenge

Bilanz - Topgas

Gaszusamm	ensetzung:			mittlere spezifische	e Wärmekapazität (Reinkon	nponenten)
				T (Eintritt)		(1962) 22 ²
CO	38,5	+/-5	0,385	1330,655 [J/m³K]	T (Eintritt)	
CO2	31,5	+/-5	0,315	1944,503 [J/m³K]	400	,00 °C
H ₂	15,5	+/-5	0,155	1297,784 [J/m³K]	673	,15 K
H ₂ O	11	+/-5	0,11	1661,151 [J/m³K]		
CH ₄	1,5	+/-1	0,015	2018,609 [J/m ³ K]		
N ₂	2	+/-1	0,02	1321,409 [J/m³K]		
H_2S (ppm)	70	~100	0,00007	1639,492 [J/m³K]		
SUMME:	100,007		1,00007			
				mittlere spezifische	• Wärmekapazität (Gemisc	h)
Volumenstrom	(STP)	300.000 [m	1³ _{STP} /h]	cpm (T (Eintritt))	1565,526 [J/m³K]	(1000)
Volumenstrom	(Betrieb)	173.678 [m	า ³ _B /h]			
Dichte (STP)		1,2422 [k	g/m³]	Enthalpie	626.210,331 [J/m³]	
Dichte (Betrieb)	2,1458 [k	g/m³]		504,097 [kJ/kg]	Bilanzpunkt 22
Massenstrom (Gas)	372.673 [k 103,520 [k	g/h] g/s]			
Betriebsbedin	gungen:					
Druck		3,3 [b	ar (g)]			
Temperatur		400 [°	C]			
			mittle	ere spezifische Wärmekap	azität (Reinkomponenten)	
		1	T (Ein	tritt)		
		C	0 13	30,655 [J/m³K]	T (Eintritt)	
		C	O ₂ 19	944,503 [J/m³K]	400,00 °C	

		T (Eintritt)	onapazitat (nonnonipononion)	
	со	1330,655 [J/m³K]	T (Eintritt)	
	CO ₂	1944,503 [J/m³K]	400,00 °C	
	H ₂	1297,784 [J/m³K]	673,15 K	
	H ₂ O	1661,151 [J/m³K]		
	CH4	2018,609 [J/m³K]		
	N ₂	1321,409 [J/m³K]		
	H ₂ S	1639,492 [J/m ³ K]		
		mittlere spezifische Wärme cpm (T (Eintritt))	ekapazität (Gemisch) 1565,526 [J/m³K]	
		Enthalpie		
		benötigt (für Dampferzeugung)	265,175 [kJ/kg]	
kg/s]			2095,621 [kJ/s]	
		benötigt (bezogen auf Topgas)	20,244 [kJ/kg]	
		Temperatur	383,94 [°C] 599.012,984 [J/m³]	
		Enthalpie (Austritt)	482,203 [kJ/ka]	Bilanzpunkt 23

		mittlere spezifische Wärm	ekapazität (Reinkomponenten)	
		T (Eintritt)		
	CO	1328 65981 [/m³k]	T (Fintritt)	
	00	1020,00001 [J/m3]/1	292.04.90	
	002	1932,00974 [J/III-K]	505,94 C	
	H ₂	1297,07731 [J/m ^a K]	657,09 K	
	H ₂ O	1657,23571 [J/m³K]		
	CH ₄	1997,82623 [J/m³K]		
	N ₂	1319,64888 [J/m³K]		
	His	1632 75083 [.]/m³K1		
		mittlere spezifische Wärm	ekapazität (Gemisch)	
		cpm (T (Eintritt))	1560,187 [J/m ³ K]	
		104326-2004-2010-04-2014-2012-2012-2012-201		
		Enthalpie		
Massenstrom (Dampf/Wasser)		benötigt (für Dampferzeugung)	1602,827 [kJ/kg]	
8,105 [kg/s]			12991,572 [kJ/s]	
		benötigt (bezogen auf Topgas)	125,498 [kJ/kg]	
		Temperatur	284.01 [°C]	
			433.527.069 [J/m³]	
		Enthalpie (Austritt)	348,988 [kJ/ka]	Bilanzpunkt 24
		mittlere spezifische Wärm	ekapazität (Reinkomponenten)	
		T (Eintritt)		
	CO	1317.613 [J/m³K]	T (Eintritt)	
	CO ₂	1855 865 [J/m³K]	284 01 °C	
	ц Ц	1203 716 [J/m³k]	557 16 K	
	112	1233,710 [J/m K]	557,10 K	
	H2U	1633,521 [J/IIPK]		
	CH₄	1868,437 [J/m ^s K]		
	N ₂	1310,064 [J/m ³ K]		
	H₂S	1595,614 [J/m³K]		
		mittlere spezifische Wärm	ekapazität (Gemisch)	
		com (T (Eintritt))	1526 431 [.]/m³K]	
		opin (i (Einandy)	1020,101 [0/1111]	
		Enthalnie		
Macconstrom (Wasser)		benötigt (für Demoforzougung)	686 851 [k l/ka]	
7 003 [ka/a]		Converge (run Dampierzeugung)	5428 033 [k l/s]	
7,803 [KQ/S]		bonötigt (bozogon guf Topgos)	52 425 [kJ/5]	
		Temperatur	02,400 [KJ/KG]	
		remperatur	241,34 ["U] 265,076,064,[10-3]	
			305.076,204 [J/M°]	Dilanamuski 05
			703 885 UZ 1/201	BUILDING TO LIDICT '75

SIEMENS V A I

Bilanz - Wasser/Dampf

Austritt aus dem Ab	hitzekessel:	Bilanzpunk	dt 1		Bilanzpunkt 6	
Massenstrom	28.450 [kg/h]		Druck	60 bar	Druck	65 bar
	7,903 [kg/s]		Temperatur	105,6 °C	Temperatur	280,81 °C
Druck	65 [bar]		Massenstrom	7,903 kg/s	Massenstrom	7,903 kg/s
Temperatur	280,83 [°C]		Enthalpie	447,202 kJ/kg	Enthalpie	2.778,725 kJ/kg
Negedemof (Dilograp)	uplet 4 \	Bilananunk	4 0		Dilananunkt 7	
Anteil Nassdampf (Bilanzpi	flüssigen Masser	Bilanzpunk	Druck	70 bar	Bilanzpunkt 7	60 bar
Anten Nassuampi am	2.5 %		Temperatur	105.6 °C	Temperatur	350 °C
Massenstrom	0,203 [kg/s]		Massenstrom	7,903 kg/s	Massenstrom	7,903 kg/s
			Enthalpie	447,949 kJ/kg	Enthalpie	3.043,900 kJ/kg
Exportdampf		10 8.10.600 Ja	1020-2020		0.000 20121.00	
abgeführt	43 [% der Gesamtdampfr	menge] Bilanzpunk	at 3		Bilanzpunkt 8	
Massenstrom	9.950 [kg/h]		Druck	65 bar	Druck	60 bar
			Macconstrom	260 °C	Massonstrom	500 °C
			Enthalnie	1 134 800 k.l/ka	Enthalpie	3 043 900 k.l/ka
			Linitalpro	1. To 1,000 Horng	Entroppo	0.010,000 Noring
		Bilanzpunk	at 4	6F har	Bilanzpunkt 9	60 h m
			Druck	05 DBF 268 55 °C	Druck	60 bar 350 °C
			Massenstrom	8 105 kg/s	Massenstrom	3.664 ka/s
			Enthalpie	1.175.898 kJ/ka	Enthalpie	3.043.900 kJ/ka
		Bilanzpunk	Druck	65 bor		
			Temperatur	280.81 °C		
			Massenstrom	8 105 ka/s		
			Enthalpie	2.778,725 kJ/kg		
		Bilanzpunk	tt 10		Bilanzpunkt 15	
			D	00 h	Druck	60 bar
			Druck	ou bar	DIUCK	oo bai
			Druck Temperatur	300,00 °C	Temperatur	350 °C
			Druck Temperatur Massenstrom	60 bar 300,00 °C 3,664 kg/s	Temperatur Massenstrom	350 °C 1,475 kg/s
			Druck Temperatur Massenstrom Enthalpie	300,00 °C 3,664 kg/s 2.784,313 kJ/kg	Temperatur Massenstrom Enthalpie	350 °C 1,475 kg/s 3.043,900 kJ/kg
			Druck Temperatur Massenstrom Enthalpie	300,00 °C 3,664 kg/s 2.784,313 kJ/kg	Temperatur Massenstrom Enthalpie	350 ℃ 1,475 kg/s 3.043,900 kJ/kg
		Bilanzpunk	Druck Temperatur Massenstrom Enthalpie	50 bar 300,00 °C 3,664 kg/s 2.784,313 kJ/kg	Temperatur Massenstrom Enthalpie Bilanzpunkt 16	350 °C 1,475 kg/s 3.043,900 kJ/kg
		Bilanzpunk	Druck Temperatur Massenstrom Enthalpie tt 11 Druck	00 bar 300,00 °C 3,664 kg/s 2.784,313 kJ/kg 0,31201 bar	Bilanzpunkt 16 Druck	00 bar 350 °C 1,475 kg/s 3.043,900 kJ/kg 60 bar
		Bilanzpunk	Druck Temperatur Massenstrom Enthalpie tt 11 Druck Temperatur	00 bar 300,00 °C 3,664 kg/s 2.784,313 kJ/kg 0,31201 bar 300,00 °C	Temperatur Massenstrom Enthalpie Bilanzpunkt 16 Druck Temperatur	000 °C 1,475 kg/s 3,043,900 kJ/kg 60 bar 350 °C
		Bilanzpunk	Druck Temperatur Massenstrom Enthalpie tt 11 Druck Temperatur Massenstrom	00 bar 300,00 °C 3,664 kg/s 2.784,313 kJ/kg 0,31201 bar 300,00 °C 3,664 kg/s	Temperatur Massenstrom Enthalpie Bilanzpunkt 16 Druck Temperatur Massenstrom	60 bar 350 ℃ 1,475 kg/s 3.043,900 kJ/kg 60 bar 350 ℃ 1,475 kg/s
		Bilanzpunk	Druck Temperatur Massenstrom Enthalpie tt 11 Druck Temperatur Massenstrom Enthalpie	00 bar 300,00 ℃ 3,664 kg/s 2.784,313 kJ/kg 0,31201 bar 300,00 ℃ 3,664 kg/s 2784,313 kJ/kg	Temperatur Temperatur Massenstrom Enthalpie Bilanzpunkt 16 Druck Temperatur Massenstrom Enthalpie	60 bar 3.043,900 kJ/kg 60 bar 350 ℃ 1,475 kg/s 3.043,900 kJ/kg
		Bilanzpunk	Druck Temperatur Massenstrom Enthalpie tt 11 Druck Temperatur Massenstrom Enthalpie	00 bar 300,00 ℃ 3,664 kg/s 2,784,313 kJ/kg 0,31201 bar 300,00 ℃ 3,664 kg/s 2784,313 kJ/kg	Temperatur Massenstrom Enthalpie Bilanzpunkt 16 Druck Temperatur Massenstrom Enthalpie	350 ℃ 1,475 kg/s 3.043,900 kJ/kg 60 bar 350 ℃ 1,475 kg/s 3.043,900 kJ/kg
		Bilanzpunk Bilanzpunk	Druck Temperatur Massenstrom Enthalpie tt 11 Druck Temperatur Massenstrom Enthalpie	00 bar 300,00 ℃ 3,664 kg/s 2,784,313 kJ/kg 0,31201 bar 300,00 ℃ 3,664 kg/s 2784,313 kJ/kg	Bilanzpunkt 16 Druck Bilanzpunkt 16 Druck Temperatur Massenstrom Enthalpie Bilanzpunkt 17	350 ℃ 1,475 kg/s 3,043,900 kJ/kg 60 bar 350 ℃ 1,475 kg/s 3,043,900 kJ/kg
		Bilanzpunk Bilanzpunk	Druck Temperatur Massenstrom Enthalpie tt 11 Druck Temperatur Massenstrom Enthalpie tt 12 Druck	00 bar 300,00 °C 3,664 kg/s 2,784,313 kJ/kg 0,31201 bar 300,00 °C 3,664 kg/s 2784,313 kJ/kg 0,31201 bar	Temperatur Massenstrom Enthalpie Bilanzpunkt 16 Druck Temperatur Massenstrom Enthalpie Bilanzpunkt 17 Druck	60 bar 3.043,900 kJ/kg 60 bar 350 ℃ 1,475 kg/s 3.043,900 kJ/kg 60 bar 60 bar
		Bilanzpunk Bilanzpunk	Druck Temperatur Massenstrom Enthalpie tt 11 Druck Temperatur Massenstrom Enthalpie tt 12 Druck Temperatur	00 bar 300,00 °C 3,664 kg/s 2,784,313 kJ/kg 0,31201 bar 300,00 °C 3,664 kg/s 2784,313 kJ/kg 0,31201 bar 68,00 °C	Temperatur Massenstrom Enthalpie Bilanzpunkt 16 Druck Temperatur Massenstrom Enthalpie Bilanzpunkt 17 Druck Temperatur	60 bar 1,475 kg/s 3,043,900 kJ/kg 60 bar 350 °C 1,475 kg/s 3,043,900 kJ/kg 60 bar 350 °C 2,274 l∞(s
		Bilanzpunk Bilanzpunk	Druck Temperatur Massenstrom Enthalpie t 11 Druck Temperatur Massenstrom Enthalpie t 12 Druck Temperatur Massenstrom Enthalpie	00 bar 300,00 °C 3,664 kg/s 2,784,313 kJ/kg 0,31201 bar 300,00 °C 3,664 kg/s 2784,313 kJ/kg 0,31201 bar 68,00 °C 3,664 kg/s 298.644 kg/s	Bilanzpunkt 16 Druck Enthalpie Bilanzpunkt 17 Bilanzpunkt 17 Druck Temperatur Massenstrom Enthalpie	60 bar 350 °C 1,475 kg/s 3.043,900 kJ/kg 60 bar 350 °C 1,475 kg/s 3.043,900 kJ/kg 60 bar 350 °C 2,764 kg/s 3.043 00 kJ/kg
		Bilanzpunk Bilanzpunk	Druck Temperatur Massenstrom Enthalpie t 11 Druck Temperatur Massenstrom Enthalpie t 12 Druck Temperatur Massenstrom Enthalpie	00 bar 300,00 °C 3,664 kg/s 2,784,313 kJ/kg 0,31201 bar 300,00 °C 3,664 kg/s 2784,313 kJ/kg 0,31201 bar 68,00 °C 3,664 kg/s 284,644 kJ/kg	Temperatur Massenstrom Enthalpie Bilanzpunkt 16 Druck Temperatur Massenstrom Enthalpie Bilanzpunkt 17 Druck Temperatur Massenstrom Enthalpie	600 bar 1,475 kg/s 3,043,900 kJ/kg 60 bar 350 °C 1,475 kg/s 3,043,900 kJ/kg 60 bar 350 °C 2,764 kg/s 3,043,900 kJ/kg
		Bilanzpunk Bilanzpunk	Druck Temperatur Massenstrom Enthalpie tt 11 Druck Temperatur Massenstrom Enthalpie tt 12 Druck Temperatur Massenstrom Enthalpie	00 bar 300,00 °C 3,664 kg/s 2,784,313 kJ/kg 0,31201 bar 300,00 °C 3,664 kg/s 2784,313 kJ/kg 0,31201 bar 68,00 °C 3,664 kg/s 284,644 kJ/kg	Temperatur Massenstrom Enthalpie Bilanzpunkt 16 Druck Temperatur Massenstrom Enthalpie Bilanzpunkt 17 Druck Temperatur Massenstrom Enthalpie	000 bar 1,475 kg/s 3.043,900 kJ/kg 60 bar 350 °C 1,475 kg/s 3.043,900 kJ/kg 60 bar 350 °C 2,764 kg/s 3.043,900 kJ/kg
		Bilanzpunk Bilanzpunk Bilanzpunk	Druck Temperatur Massenstrom Enthalpie tt 11 Druck Temperatur Massenstrom Enthalpie tt 12 Druck Temperatur Massenstrom Enthalpie	00 bar 300,00 °C 3,664 kg/s 2,784,313 kJ/kg 0,31201 bar 300,00 °C 3,664 kg/s 2784,313 kJ/kg 0,31201 bar 68,00 °C 3,664 kg/s 284,644 kJ/kg	Temperatur Massenstrom Enthalpie Bilanzpunkt 16 Druck Temperatur Massenstrom Enthalpie Bilanzpunkt 17 Druck Temperatur Massenstrom Enthalpie Bilanzpunkt 18 Bilanzpunkt 18	000 bar 1,475 kg/s 3.043,900 kJ/kg 60 bar 350 °C 1,475 kg/s 3.043,900 kJ/kg 60 bar 350 °C 2,764 kg/s 3.043,900 kJ/kg
		Bilanzpunk Bilanzpunk Bilanzpunk	Druck Temperatur Massenstrom Enthalpie t 11 Druck Temperatur Massenstrom Enthalpie t 12 Druck Temperatur Massenstrom Enthalpie t 13 Druck	00 bar 300,00 °C 3,664 kg/s 2,784,313 kJ/kg 0,31201 bar 300,00 °C 3,664 kg/s 2784,313 kJ/kg 0,31201 bar 68,00 °C 3,664 kg/s 284,644 kJ/kg	Temperatur Massenstrom Enthalpie Bilanzpunkt 16 Druck Temperatur Massenstrom Enthalpie Bilanzpunkt 17 Druck Temperatur Massenstrom Enthalpie Bilanzpunkt 18 Druck Temperatur	350 ℃ 1,475 kg/s 3.043,900 kJ/kg 60 bar 350 ℃ 1,475 kg/s 3.043,900 kJ/kg 60 bar 350 ℃ 2,764 kg/s 3,043,900 kJ/kg 65 bar 25 ℃
		Bilanzpunk Bilanzpunk Bilanzpunk	Druck Temperatur Massenstrom Enthalpie t 11 Druck Temperatur Massenstrom Enthalpie t 12 Druck Temperatur Massenstrom Enthalpie t 13 Druck Temperatur Massenstrom	00 bar 300,00 °C 3,664 kg/s 2,784,313 kJ/kg 0,31201 bar 300,00 °C 3,664 kg/s 2784,313 kJ/kg 0,31201 bar 68,00 °C 3,664 kg/s 284,644 kJ/kg 65 bar 68,00 °C 3,664 kg/s	Temperatur Massenstrom Enthalpie Bilanzpunkt 16 Druck Temperatur Massenstrom Enthalpie Bilanzpunkt 17 Druck Temperatur Massenstrom Enthalpie Bilanzpunkt 18 Druck Temperatur Massenstrom	60 bar 350 °C 1,475 kg/s 3.043,900 kJ/kg 60 bar 350 °C 1,475 kg/s 3.043,900 kJ/kg 60 bar 350 °C 2,764 kg/s 3.043,900 kJ/kg 65 bar 25 °C 2 764 kg/s
		Bilanzpunk Bilanzpunk Bilanzpunk	Druck Temperatur Massenstrom Enthalpie tt 11 Druck Temperatur Massenstrom Enthalpie tt 12 Druck Temperatur Massenstrom Enthalpie tt 13 Druck Temperatur Massenstrom Enthalpie	00 bar 300,00 °C 3,664 kg/s 2,784,313 kJ/kg 0,31201 bar 300,00 °C 3,664 kg/s 2784,313 kJ/kg 0,31201 bar 68,00 °C 3,664 kg/s 284,644 kJ/kg 65 bar 68,00 °C 3,664 kg/s 289,92 kJ/kg	Temperatur Massenstrom Enthalpie Bilanzpunkt 16 Druck Temperatur Massenstrom Enthalpie Bilanzpunkt 17 Druck Temperatur Massenstrom Enthalpie Bilanzpunkt 18 Druck Temperatur Massenstrom Enthalpie	600 bar 350 °C 1,475 kg/s 3.043,900 kJ/kg 60 bar 350 °C 1,475 kg/s 3.043,900 kJ/kg 60 bar 350 °C 2,764 kg/s 3.043,900 kJ/kg 65 bar 25 °C 2,764 kg/s 110 840 kJ/kg
		Bilanzpunk Bilanzpunk Bilanzpunk	Druck Temperatur Massenstrom Enthalpie tt 11 Druck Temperatur Massenstrom Enthalpie tt 12 Druck Temperatur Massenstrom Enthalpie tt 13 Druck Temperatur Massenstrom Enthalpie	00 bar 300,00 °C 3,664 kg/s 2,784,313 kJ/kg 0,31201 bar 300,00 °C 3,664 kg/s 2784,313 kJ/kg 0,31201 bar 68,00 °C 3,664 kg/s 284,644 kJ/kg 65 bar 68,00 °C 3,664 kg/s 289,992 kJ/kg	Bilanzpunkt 16 Druck Enthalpie Bilanzpunkt 17 Bilanzpunkt 17 Druck Temperatur Massenstrom Enthalpie Bilanzpunkt 18 Druck Temperatur Massenstrom Enthalpie	350 °C 1,475 kg/s 3,043,900 kJ/kg 60 bar 350 °C 1,475 kg/s 3,043,900 kJ/kg 60 bar 350 °C 2,764 kg/s 3,043,900 kJ/kg 65 bar 25 °C 2,764 kg/s 110,840 kJ/kg
		Bilanzpunk Bilanzpunk Bilanzpunk	Druck Temperatur Massenstrom Enthalpie t 11 Druck Temperatur Massenstrom Enthalpie t 12 Druck Temperatur Massenstrom Enthalpie t 13 Druck Temperatur Massenstrom Enthalpie	00 bar 300,00 °C 3,664 kg/s 2,784,313 kJ/kg 0,31201 bar 300,00 °C 3,664 kg/s 2784,313 kJ/kg 0,31201 bar 68,00 °C 3,664 kg/s 284,644 kJ/kg 65 bar 68,00 °C 3,664 kg/s 289,992 kJ/kg	Bilanzpunkt 16 Druck Enthalpie Bilanzpunkt 17 Bilanzpunkt 17 Druck Temperatur Massenstrom Enthalpie Bilanzpunkt 18 Druck Temperatur Massenstrom Enthalpie	350 °C 1,475 kg/s 3.043,900 kJ/kg 60 bar 350 °C 1,475 kg/s 3.043,900 kJ/kg 60 bar 350 °C 2,764 kg/s 3.043,900 kJ/kg 65 bar 25 °C 2,764 kg/s 110,840 kJ/kg
		Bilanzpunk Bilanzpunk Bilanzpunk Bilanzpunk	Druck Temperatur Massenstrom Enthalpie tt 11 Druck Temperatur Massenstrom Enthalpie tt 12 Druck Temperatur Massenstrom Enthalpie tt 13 Druck Temperatur Massenstrom Enthalpie	00 bar 300,00 °C 3,664 kg/s 2,784,313 kJ/kg 0,31201 bar 300,00 °C 3,664 kg/s 2784,313 kJ/kg 0,31201 bar 68,00 °C 3,664 kg/s 284,644 kJ/kg 65 bar 68,00 °C 3,664 kg/s 289,992 kJ/kg	Bilanzpunkt 16 Druck Enthalpie Bilanzpunkt 17 Bilanzpunkt 17 Druck Temperatur Massenstrom Enthalpie Bilanzpunkt 18 Druck Temperatur Massenstrom Enthalpie	350 °C 1,475 kg/s 3.043,900 kJ/kg 60 bar 350 °C 1,475 kg/s 3.043,900 kJ/kg 60 bar 350 °C 2,764 kg/s 3.043,900 kJ/kg 65 bar 25 °C 2,764 kg/s 110,840 kJ/kg
		Bilanzpunk Bilanzpunk Bilanzpunk	Druck Temperatur Massenstrom Enthalpie tt 11 Druck Temperatur Massenstrom Enthalpie tt 12 Druck Temperatur Massenstrom Enthalpie tt 13 Druck Temperatur Massenstrom Enthalpie	00 bar 300,00 °C 3,664 kg/s 2,784,313 kJ/kg 0,31201 bar 300,00 °C 3,664 kg/s 2784,313 kJ/kg 0,31201 bar 68,00 °C 3,664 kg/s 284,644 kJ/kg 65 bar 68,00 °C 3,664 kg/s 289,992 kJ/kg	Bilanzpunkt 16 Bilanzpunkt 16 Druck Temperatur Massenstrom Enthalpie Bilanzpunkt 17 Druck Temperatur Massenstrom Enthalpie Bilanzpunkt 18 Druck Temperatur Massenstrom Enthalpie	350 °C 1,475 kg/s 3.043,900 kJ/kg 60 bar 350 °C 1,475 kg/s 3.043,900 kJ/kg 60 bar 350 °C 2,764 kg/s 3.043,900 kJ/kg 65 bar 25 °C 2,764 kg/s 110,840 kJ/kg
		Bilanzpunk Bilanzpunk Bilanzpunk	Druck Temperatur Massenstrom Enthalpie tt 11 Druck Temperatur Massenstrom Enthalpie tt 12 Druck Temperatur Massenstrom Enthalpie tt 13 Druck Temperatur Massenstrom Enthalpie tt 14 Druck Temperatur Massenstrom	00 bar 300,00 °C 3,664 kg/s 2,784,313 kJ/kg 0,31201 bar 300,00 °C 3,664 kg/s 2784,313 kJ/kg 0,31201 bar 68,00 °C 3,664 kg/s 284,644 kJ/kg 65 bar 68,00 °C 3,664 kg/s 289,992 kJ/kg	Temperatur Massenstrom Enthalpie Bilanzpunkt 16 Druck Temperatur Massenstrom Enthalpie Bilanzpunkt 17 Druck Temperatur Massenstrom Enthalpie Bilanzpunkt 18 Druck Temperatur Massenstrom Enthalpie	350 °C 1,475 kg/s 3.043,900 kJ/kg 60 bar 350 °C 1,475 kg/s 3.043,900 kJ/kg 60 bar 350 °C 2,764 kg/s 3.043,900 kJ/kg 65 bar 25 °C 2,764 kg/s 110,840 kJ/kg
		Bilanzpunk Bilanzpunk Bilanzpunk	Druck Temperatur Massenstrom Enthalpie tt 11 Druck Temperatur Massenstrom Enthalpie tt 12 Druck Temperatur Massenstrom Enthalpie tt 13 Druck Temperatur Massenstrom Enthalpie tt 14 Druck Temperatur Massenstrom Enthalpie	00 bar 300,00 °C 3,664 kg/s 2,784,313 kJ/kg 0,31201 bar 300,00 °C 3,664 kg/s 2784,313 kJ/kg 0,31201 bar 68,00 °C 3,664 kg/s 284,644 kJ/kg 65 bar 68,00 °C 3,664 kg/s 289,992 kJ/kg 65 bar 49,53 °C 6,428 kg/s 212,957 kJ/kg	Temperatur Massenstrom Enthalpie Bilanzpunkt 16 Druck Temperatur Massenstrom Enthalpie Bilanzpunkt 17 Druck Temperatur Massenstrom Enthalpie Bilanzpunkt 18 Druck Temperatur Massenstrom Enthalpie	350 ℃ 1,475 kg/s 3.043,900 kJ/kg 60 bar 350 ℃ 1,475 kg/s 3.043,900 kJ/kg 60 bar 350 ℃ 2,764 kg/s 3.043,900 kJ/kg 65 bar 25 ℃ 2,764 kg/s 110,840 kJ/kg
		Bilanzpunk Bilanzpunk Bilanzpunk	Druck Temperatur Massenstrom Enthalpie t 11 Druck Temperatur Massenstrom Enthalpie t 12 Druck Temperatur Massenstrom Enthalpie t 13 Druck Temperatur Massenstrom Enthalpie t 14 Druck Temperatur Massenstrom Enthalpie	00 bar 300,00 °C 3,664 kg/s 2,784,313 kJ/kg 0,31201 bar 300,00 °C 3,664 kg/s 2784,313 kJ/kg 0,31201 bar 68,00 °C 3,664 kg/s 284,644 kJ/kg 65 bar 68,00 °C 3,664 kg/s 289,992 kJ/kg 65 bar 49,53 °C 6,428 kg/s 212,957 kJ/kg	Temperatur Massenstrom Enthalpie Bilanzpunkt 16 Druck Temperatur Massenstrom Enthalpie Bilanzpunkt 17 Druck Temperatur Massenstrom Enthalpie Bilanzpunkt 18 Druck Temperatur Massenstrom Enthalpie	350 °C 1,475 kg/s 3.043,900 kJ/kg 60 bar 350 °C 1,475 kg/s 3.043,900 kJ/kg 60 bar 350 °C 2,764 kg/s 3.043,900 kJ/kg 65 bar 25 °C 2,764 kg/s 110,840 kJ/kg

SIEMENS V A I
Quelle: http://www.higgins.ucdavis.edu/webMathematica/MSP/Examples/SteamTable Quelle: http://www.higgins.ucdavis.edu/webMathematica/MSP/Examples/Satprop für Bilanzpunkt 1: p = 60 bar p = 60 bar T[°C] T = 105 °C 125 100 h [kJ/kg] 423.53 529.05 447,202 [kJ/kg] 444,567 [kJ/kg] VDI - Wärmeatlas - 9. Auflage, 2002, S. Dba7 für Bilanzpunkt 2: p = 70 bar p = 70 barT[°C] 100 125 T = 105 °C 424,29 529,75 447,949 [kJ/kg] 454,308 [kJ/kg] h [kJ/kg] VDI - Wärmeatlas - 9. Auflage, 2002, S. Dba7 für Bilanzpunkt 3: Enthalpie bei 260°C (siedende Flüssigkeit) 1134,8 [kJ/kg] 1134,5402 [kJ/kg] VDI - Wärmeatlas - 9. Auflage, 2002, S. Dba3 für Bilanzpunkt 4 und 5: Verdampfungstemperatur 64,165 74,416 p [bar] p = 65 bar280 290 T[°C] 280,81 [°C] 280,86 [°C] VDI - Wärmeatlas - 9. Auflage, 2002, S. Dba3 Enthalpie (siedende Flüssigkeit) T [°C] 280 290 h = 1775,898 kJ/kg h [kJ/kg] 1236,7 1289,8 268,550 [°C] 1177,382 [kJ/kg] VDI - Wärmeatlas - 9. Auflage, 2002, S. Dba3 Enthalpie (gesättigter Dampf) T[°C] T = 281 °C 290 280 h [kJ/kg] 2779,8 2766,6 2778,725 [kJ/kg] 2778,682 [kJ/kg] VDI - Wärmeatlas - 9. Auflage, 2002, S. Dba3 für Bilanzpunkt 7: Enthalpie bei 350°C (gesättigter Dampf) 3043,9 [kJ/kg] 3043,858 [kJ/kg] VDI - Wärmeatlas - 9. Auflage, 2002, S. Dba7 für Bilanzpunkt 10: Kondensationstemperatur p [bar] 55,028 64,165 p = 60 barT [°C] 270 280 275,44 [°C] 275,59 [°C] VDI - Wärmeatlas - 9. Auflage, 2002, S. Dba3 Enthalpie (gesättigter Dampf) T[°C] 270 280 T = 275 °C h [kJ/kg] 2789,7 2779,8 2784,313 [kJ/kg] 2784,427 [kJ/kg] VDI - Wärmeatlas - 9. Auflage, 2002, S. Dba3 p = 60 bar p = 60 bar T [°C] 300 350 T = 290 °C h [kJ/kg] 2885,5 3043,9 2885,500 [kJ/kg] VDI - Wärmeatlas - 9. Auflage, 2002, S. Dba3

VDI - Wärmeatlas - 9. Auflage, 2002, S. Dba7

für Bilanzpunkt	11 & 12:			
Siedetemperatu	r (in 12) soll 70°C	betragen	0,31201 [bar]	0,31201 [bar]
VDI - Wärmeatlas	: - 9. Auflage, 2002,	S. Dba3		
für Bilanzpunkt	12:			
Enthalpie	e (siedende Flüss	igkeit)		
T [°C]	65	70	T = 68 °C	
h [kJ/kg]	272,08	293,02	284,644 [kJ/kg]	284,642 [kJ/kg]
VDI - Wärmeatlas	: - 9. Auflage, 2002,	S. Dba3		
für Bilanzpunkt	t 13:			
	p = 60 bar p) = 60 bar		
T [°C]	50	75	T = 68 °C	
h [kJ/kg]	214,49	318,78	289,579 [kJ/kg]	289,548 [kJ/kg]
VDI - Wärmeatlas	: - 9. Auflage, 2002,	S. Dba7		
6		Č.		

	p = 70 bar	p = 70 bar		
T[°C]	50	75	T = 68 °C	
h [kJ/kg]	215,36	319,59	290,406 [kJ/kg]	290,370 [kJ/kg]
VDI - Wärmeat	las - 9. Auflage, 200	02, S. Dba7		
p [bar]	60	70	p = 65 bar	
h [kJ/kg]	289,579	290,406	289,992 [kJ/kg]	289,959 [kJ/kg]
für Bilanzpul	nkt 14:			
C	T = 25 °C	T = 25 °C		
p [bar]	60	70	p = 65 bar	
h [kJ/kg]	110,38	111,30	110,840 [kJ/kg]	110,840 [kJ/kg]
VDI - Wärmeat	las - 9. Auflage, 200)2, S. Dba7		
	T = 50 °C	T = 50 °C		
p [bar]	60	70	p = 65 bar	
h [kJ/kg]	214,49	215,36	214,925 [kJ/kg]	214,925 [kJ/kg]
VDI - Wärmeat	las - 9. Auflage, 200)2, S. Dba7		
T [°C]	25	50	h = 195,345 kJ/kg	
h [kJ/kg]	110,840	214,925	49,527 [°C]	195,340 [kJ/kg]
für Bilanzpur	nkt 18:			
	T = 25 °C	T = 25°C		
p [bar]	60	70	p = 65 bar	
h [kJ/kg]	110,38	111,3	110,84 [kJ/kg]	110,84 [kJ/kg]

Bilanz - Sauerstoff

Zusammensetzung:

mittlere spezifische Wärmekapazität (Reinkomponenten) T (Eintritt)

0 ₂	99,5	0,995		1309,661 [J/m³ł	<]	T (Eintritt)	
N ₂	0,5	0,005		1300,015 [J/m³k	<]	25,0	0°C
SUMME:	100,0	1,000				298,1	15 K
Volumenstrom	(STP)	95 000 [m³/h]		mittlere spezifisc	he Wärmekanazität	(Gemisch)	
Volumenstrom	(Betrieb)	11.657,15 [m³ _B /h]		cpm (T (Eintritt))	1309,613	3 [J/m³K]	
Dichte (STP) Dichte (Betriet))	1,428 [kg/m³] 11,638 [kg/m³]		Enthalpie	32740,321 22,926	1 [J/m³] δ [kJ/kg]	Bilanzpunkt 19
Massenstrom		135.670 [kg/h] 37,686 [kg/s]					
D stuisk skie slive				mittlere spezifisc	he Wärmekapazität	(Reinkompon	ienten)
Eintrittstempera	i gungen: atur	25 [°C]		1381.853 [J/m ³]	<1	T (Eintritt)	
Vorwärmtempe	eratur	300 [°C]		1311,408 [J/m³k	<]	300,0	0° °C
Druck (Eintritt) Druck (Austritt)	8 [bar (g)] 6 [bar (g)]		62 - 53		573,1	15 K
				mittlere spezifisc cpm (T (Eintritt))	he Wärmekapazität 1381,501	(Gemisch) I [J/m³K]	
				Enthalpie	414450,182	2 [J/m³]	
					290,209	9 [kJ/kg]	
Dampf Fini	tritt in den Wi	ärmetauscher		\A/ärmetaus	scher		
Massenstrom	nin ni den vva 1	3,664 [kg/s]		Enthalpiedif	ferenz - Dampf	2499,669	[kJ/kg]
Temperatur		300,00 [°C]				9158,37	[kJ/s]
Druck Enthalpie		0,31201 [bar] 2784 313 [k //ka]		auf Sauerste	off bezogen	243,016	[kJ/kg]
Linnable		2704,313 [KU/KY]		Enthalpie - (0 ₂ - Eintritt	22 926	[kJ/ka]
				Enthalpie - 0	0 ₂ - Austritt	265,942	[kJ/kg]
Dampf - Aus	stritt aus dem	Wärmetauscher			-		
Massenstrom	I	3,664 [kg/s]		T _{Sauerstoff} (At	ustritt)		
Temperatur		68,00 [°C]	O_2	1376,	449 [J/m³K]		T _{Sauerstoff} (Austritt)
Druck		0,31201 [bar]	N_2	1309,4	422 [J/m³K]		276,00 °C
Enthalpie		284,644 [kJ/kg]					549,150 K
	Bilanzpunkt	20		cpm (T (Aus	stritt))	1376,114	[J/m³K]
						379.807,475	[J/m³]
				Enthalpie (b	erechnet)	265,951	[kJ/kg]
Dampf - Eint	tritt in den Wa	ärmetauscher		Wärmetaus	scher		
Massenstrom	1	3,664 [kg/s]		Enthalpiedif	ferenz - Dampf	259,587	[kJ/kg]
Temperatur		350 [°C]				951,08	[kJ/s]
Druck		60 [bar]		auf Sauerste	off bezogen	25,237	[kJ/kg]
Crutalpre		2043,900 [KJ/KY]		Enthalpie - (∩ _e - Fintritt	265 942	[k.]/ka]
				Enthalpie - (0 ₂ - Austritt	291 179	[k.l/ka]
Dampf - Aus	tritt aus dem	Wärmetauscher		Entroppio	02 (1000 M	201,110	[10113]
Massenstrom	1	3,664 [kg/s]	8	T _{Sauerstoff} (At	ustritt)		
Temperatur		300,00 [°C]	02	1382,	072 [J/m³K]		T _{Sauerstoff} (Austritt)
Druck		60 [bar]	N ₂	1311,	495 [J/m³K]		301,00 °C
Enthalpie		2784,313 [kJ/kg]					574,150 K
	Bilanzpunkt	21		cpm (T (Ein	tritt))	1381,719	[J/m³K]
				Enthalpic /b	erechnet)	415.897,487	[J/m³] [k.//ka]
				Linnaible (b		201,222	[norn9]

Druck Dichte	ratur		c _p spezifis β isobare h spezifis	che isobare V r Volumenau: che Enthalpie	Värmekapaz sdehnungsk e	tität oeffizient	s sı ' si " g	pezifische edende Flu esättigter I	Entropie üssigkeit Dampf		
ϑ ℃	<i>p</i> bar	ρ' }	ρ'' $g m^{-3}$	h' kJ k	.g ⁻¹ h"	s' kJ kg	$^{-1} K^{-1}$	c'p kJ kg	$c_{p}^{c_{p}^{\prime\prime}}$	$\beta'_{10^{-3}}$	β" K ⁻¹
0,01	0,006117	999,79	0,004854	0,00061	2 2500,9	0,000000	9,1555	4,220	1,888	-0,06789	3,681
5,00	0,008726	999,92	0,006802	21,019	2510,1	0,076252	9,0249	4,205	1,892	0,01599	3,618
10,00	0,012282	999,65	0,009407	42,021	2519,2	0,15109	8,8998	4,196	1,896	0,08789	3,55
15,00	0,017057	999,05	0,01284	62,984	2528,4	0,22447	8,7804	4,189	1,900	0,1507	3,50
20,00	0,023392	998,16	0,01731	83,920	2537,5	0,29650	8,6661	4,185	1,906	0,2065	3,44
25,00	0,031697	997,00	0,02307	104,84	2546,5	0,36726	8,5568	4,182	1,912	0,2568	3,39
30,00	0,042467	995,61	0,03041	125,75	2555,6	0,43679	8,4521	4,180	1,918	0,3028	3,34
35,00	0,056286	994,00	0,03967	146,64	2564,6	0,50517	8,3518	4,179	1,925	0,3453	3,29
40,00	0,073844	992,18	0,05124	167,54	2573,5	0,57243	8,2557	4,179	1,932	0,3849	3,25
45,00	0,095944	990,18	0,06556	188,44	2582,5	0,63862	8,1634	4,179	1,940	0,4222	3,21
50,00	0,12351	988,01	0,08314	209,34	2591,3	0,70379	8,0749	4,180	1,948	0,4574	3,17
55,00	0,15761	985,67	0,10455	230,24	2600,1	0,76798	7,9899	4,181	1,957	0,4910	3,13
60,00	0,19946	983,18	0,13042	251,15	2608,8	0,83122	7,9082	4,183	1,966	0,5232	3,09
65,00	0,25041	980,53	0,16145	272,08	2617,5	0,89354	7,8296	4,185	1,976	0,5542	3,06
70,00	0,31201	977,75	0,19842	293,02	2626,1	0,95499	7,7540	4,188	1,987	0,5841	3,03
75,00	0,38595	974,83	0,24219	313,97	2634,6	1,0156	7,6812	4,192	1,999	0,6133	3,00
80,00	0,47415	971,78	0,29366	334,95	2643,0	1,0754	7,6110	4,196	2,012	0,6417	2,97
85,00	0,57868	968,60	0,35387	355,95	2651,3	1,1344	7,5434	4,200	2,026	0,6696	2,95
90,00	0,70182	965,30	0,42388	376,97	2659,5	1,1927	7,4781	4,205	2,042	0,6970	2,93
95,00	0,84609	961,89	0,50489	398,02	2667,6	1,2502	7,4150	4,211	2,059	0,7241	2,91
100,00	1,0142	958,35	0,59814	419,10	2675,6	1,3070	7,3541	4,217	2,077	0,7510	2,90
110,00	1,4338	950,95	0,82686	461,36	2691,1	1,4187	7,2380	4,230	2,121	0,8044	2,88
20,00	1,9867	943,11	1,1220	503,78	2705,9	1,5278	7,1291	4,246	2,174	0,8580	2,87
130,00	2,7026	934,83	1,4968	546,39	2720,1	1,6346	7,0264	4,265	2,237	0,9124	2,87
140,00	3,6150	926,13	1,9665	589,20	2733,4	1,7393	6,9293	4,286	2,311	0,9683	2,89
150,00	4,7610	917,01	2,5478	632,25	2745,9	1,8420	6,8370	4,310	2,396	1,026	2,92
160,00	6,1814	907,45	3,2593	675,57	2757,4	1,9428	6,7491	4,338	2,492	1,087	2,97
170,00	7,9205	897,45	4,1217	719,21	2767,9	2,0419	6,6649	4,369	2,599	1,152	3,03
180,00	10,026	887,01	5,1583	763,19	2777,2	2,1395	6,5841	4,406	2,716	1,222	3,11
190,00	12,550	876,08	6,3948	807,57	2785,3	2,2358	6,5060	4,447	2,846	1,297	3,214
200,00	15,547	864,67	7,8603	852,39	2792,1	2,3308	6,4303	4,494	2,990	1,379	3,33
210,00	19,074	852,73	9,5875	897,73	2797,4	2,4248	6,3565	4,548	3,150	1,469	3,47
220,00	23,193	840,23	11,614	943,64	2801,1	2,5178	6,2842	4,611	3,328	1,570	3,64
230,00	27,968	827,12	13,984	990,21	2803,0	2,6102	6,2131	4,683	3,528	1,683	3,84
240,00	33,467	813,36	16,748	1037,5	2803,1	2,7019	6,1425	4,767	3,755	1,811	4,08
250,00	39,759	798,89	19,965	1085,7	2801,0	2,7934	6,0722	4,865	4,012	1,958	4,37
260,00	46,921	783,62	23,710	1134,8	2796,6	2,8847	6,0017	4,981	4,308	2,130	4,71
270,00	55,028	767,46	28,072	1185,1	2789,7	2,9762	5,9304	5,119	4,655	2,334	5,13
280,00	64,165	750,27	33,163	1236,7	2779,8	3,0681	5,8578	5,286	5,070	2,580	5,65
290,00	74,416	731,91	39,128	1289,8	2766,6	3,1608	5,7832	5,492	5,581	2,886	6,31
300,00	85,877	712,14	46,162	1344,8	2749,6	3,2547	5,7058	5,752	6,223	3,274	7,16
310,00	98,647	690,67	54,529	1402,0	2727,9	3,3506	5,6243	6,088	7,051	3,785	8,29
320,00	112,84	667,08	64,616	1462,1	2700,7	3,4491	5,5373	6,541	8,157	4,483	9,85
330,00	128,58	640,78	77,018	1525.7	2666,2	3,5516	5,4425	7,189	9,738	5,504	12,16
340,00	146.00	610,68	92,731	1594,4	2622,1	3,6599	5,3359	8,217	12,24	7,186	15,89
350,00	165.29	574.69	113,62	1670.9	2563.6	3,7783	5,2109	10,10	16,64	10,36	22,66
360,00	186,66	527.84	143,99	1761.5	2481.0	3,9164	5,0527	14,87	27,57	18,81	39,74
370,00	210.43	450,03	202,18	1892,6	2333.5	4,1142	4,7996	47,10	93,40	79,65	148,0
272 046	220.64	322.00	322.00	2087 5	2087 5	4 4120	4 4120	-	-	-	_

Dba 3

Stoffwerte von Wasser

Tabelle 2. Stoffwerte von Wasser im Sättigungs Tripelpunkt bis zum kritischen Punkt

zustan	d von)

VDI-Wärmeatlas 9. Auflage 2002

l-Warm uflage	eatlas 2002			St	offwerte	von Was	ser			Db
Tabelle	6. Spezifis	che Enthal	lpie <i>h</i> von V	Vasser in k.	√ kg ⁻¹ in Ab	hängigkeit	von Druck	und Tempe	ratur	
Druck p	[Tempera	atur∂in °C				
bar	0	25	50	75	100	125	150	200	250	300
1	0,05966	104,93	209,41	314,02	2675.8	2726.7	2776.6	2875.5	2974.5	3074.5
5	0,46700	105,30	209,76	314,35	419,40	525,25	632,27	2855,9	2961.1	3064.6
10	0,97582	105,76	210,19	314,75	419,77	525,59	632,57	2828,3	2943,2	3051,7
20	1,9923	106,69	211,05	315,56	420,53	526,28	633,19	852,57	2903,2	3024,3
30	3,0072	107,61	211,91	316,36	421,28	526,97	633,81	852,98	2856,5	2994,3
40	4,0206	108,53	212,77	317,17	422,03	527,67	634,43	853,39	1085,7	2961,7
50	5,0325	109,46	213,63	317,98	422,78	528,36	635,06	853,80	1085,7	2925,6
60	6,0429	110,38	214,49	318,78	423,53	529,05	635,68	854,22	1085,7	2885,5
70	7,0517	111,30	215,36	319,59	424,29	529,75	636,30	854,64	1085,6	2839,8
80	8,0591	112,22	216,22	320,40	425,04	530,44	636,93	855,06	1085,7	2786,4
90	9,0649	113,14	217,07	321,20	425,79	531,14	637,56	855,49	1085,7	1344,3
100	15,069	114,00	217,93	322,01	426,55	531,83	638,18	855,92	1085,7	1343,1
200	20.034	122 21	222,23	320,04	430,32	535,32	641,34	858,12	1086,0	1338,1
250	20,054	123,21	220,51	330,07	434,10	538,82	644,52	860,39	1086,6	1334,1
300	29,860	127,70	235,05	334,10	437,88	542,34	647,73	862,73	1087,3	1331,1
350	34 724	136.81	239,05	342 16	441,07	540,07	654.22	805,14	1088,5	1328,7
400	39 556	141 30	243 56	346.18	443,47	552.07	657.40	870,12	1089,4	1320,8
450	44 357	141,50	243,50	350.20	449,27	556 53	660.79	870,12	1090,0	1325,4
500	49.129	150.25	252.03	354 22	456.87	560.11	664 10	875 31	1092,0	1324,4
600	58,586	159.14	260.47	362.25	464 49	567.28	670 77	880.67	1095,4	1323,7
700	67.935	167.96	268.88	370.28	472 12	574 49	677 50	886 19	1100.4	1323,5
800	77,180	176.73	277.26	378.28	479.75	581 72	684 29	891.85	1104.3	1323,7
900	86,329	185,44	285,60	386,28	487.39	588,98	691.13	897.63	1108.6	1326.6
1000	95,386	194,10	293,92	394,26	495,04	596,27	698,01	903,51	1113,0	1328,9
							and the state of the			
Druck p			1 150		Tempera	tur 8 in °C				
bar	350	400	450	500	550	600	650	700	750	800
bar	350	400	450	500	550	600	650	700	750	800
bar 1	350 3175,8 3168 1	400 3278,5	3382,8 3377.7	500 3488,7 2484.4	550 3596,3	600 3705,6	650 3816,6	700 3929,4	750 4043,9	800 4160,2
bar 1 5	350 3175,8 3168,1 3158,2	400 3278,5 3272,3 3264,4	450 3382,8 3377,7 3371.2	500 3488,7 3484,4 3479,0	550 3596,3 3592,6 3588 1	600 3705,6 3702,5 2608 6	650 3816,6 3813,9 2810,5	700 3929,4 3927,0	750 4043,9 4041,9 4020,2	800 4160,2 4158,4
bar 1 5 10 20	350 3175,8 3168,1 3158,2 3137,6	400 3278,5 3272,3 3264,4 3248 2	450 3382,8 3377,7 3371,2 3358 1	500 3488,7 3484,4 3479,0 3468 1	550 3596,3 3592,6 3588,1 3578.9	600 3705,6 3702,5 3698,6 3690,7	650 3816,6 3813,9 3810,5 3803.8	700 3929,4 3927,0 3924,1 3918 2	750 4043,9 4041,9 4039,3 4034,2	800 4160,2 4158,4 4156,1 4151,6
bar 1 5 10 20 30	3175,8 3168,1 3158,2 3137,6 3116,1	400 3278,5 3272,3 3264,4 3248,2 3231.6	450 3382,8 3377,7 3371,2 3358,1 3344,7	500 3488,7 3484,4 3479,0 3468,1 3457,0	550 3596,3 3592,6 3588,1 3578,9 3569,6	600 3705,6 3702,5 3698,6 3690,7 3682,8	650 3816,6 3813,9 3810,5 3803,8 3797.0	700 3929,4 3927,0 3924,1 3918,2 3912,3	750 4043,9 4041,9 4039,3 4034,2 4029,0	800 4160,2 4158,4 4156,1 4151,6 4147,0
bar 1 5 10 20 30 40	3175,8 3168,1 3158,2 3137,6 3116,1 3093,3	400 3278,5 3272,3 3264,4 3248,2 3231,6 3214,4	450 3382,8 3377,7 3371,2 3358,1 3344,7 3331.0	500 3488,7 3484,4 3479,0 3468,1 3457,0 3445,8	550 3596,3 3592,6 3588,1 3578,9 3569,6 3560,2	600 3705,6 3702,5 3698,6 3690,7 3682,8 3674.8	650 3816,6 3813,9 3810,5 3803,8 3797,0 3790.2	700 3929,4 3927,0 3924,1 3918,2 3912,3 3906.4	750 4043,9 4041,9 4039,3 4034,2 4029,0 4023,8	800 4160,2 4158,4 4156,1 4151,6 4147,0 4142,5
bar 1 5 10 20 30 40 50	3175,8 3168,1 3158,2 3137,6 3116,1 3093,3 3069,3	400 3278,5 3272,3 3264,4 3248,2 3231,6 3214,4 3196,6	450 3382,8 3377,7 3371,2 3358,1 3344,7 3331,0 3317,0	500 3488,7 3484,4 3479,0 3468,1 3457,0 3445,8 3434,5	550 3596,3 3592,6 3588,1 3578,9 3569,6 3560,2 3550,8	600 3705,6 3702,5 3698,6 3690,7 3682,8 3674,8 3666,8	650 3816,6 3813,9 3810,5 3803,8 3797,0 3790,2 3783,3	700 3929,4 3927,0 3924,1 3918,2 3912,3 3906,4 3900,5	750 4043,9 4041,9 4039,3 4034,2 4029,0 4023,8 4018.6	800 4160,2 4158,4 4156,1 4151,6 4147,0 4142,5 4137.9
bar 1 5 10 20 30 40 50 60	350 3175,8 3168,1 3158,2 3137,6 3116,1 3093,3 3069,3 3043,9	400 3278,5 3272,3 3264,4 3248,2 3231,6 3214,4 3196,6 3178,2	450 3382,8 3377,7 3371,2 3358,1 3344,7 3331,0 3317,0 3302,8	500 3488,7 3484,4 3479,0 3468,1 3457,0 3445,8 3434,5 3422,9	550 3596,3 3592,6 3588,1 3578,9 3569,6 3560,2 3550,8 3541,2	600 3705,6 3702,5 3698,6 3690,7 3682,8 3674,8 3666,8 3658,8	650 3816,6 3813,9 3810,5 3803,8 3797,0 3790,2 3783,3 3776,4	700 3929,4 3927,0 3924,1 3918,2 3912,3 3906,4 3900,5 3894,5	750 4043,9 4041,9 4039,3 4034,2 4029,0 4023,8 4018,6 4013,4	800 4160,2 4158,4 4156,1 4151,6 4147,0 4142,5 4137,9 4133,3
bar 1 5 10 20 30 40 50 60 70	350 3175,8 3168,1 3158,2 3137,6 3116,1 3093,3 3069,3 3069,3 3043,9 3016,8	400 3278,5 3272,3 3264,4 3248,2 3231,6 3214,4 3196,6 3178,2 3159,1	450 3382,8 3377,7 3371,2 3358,1 3344,7 3331,0 3317,0 3302,8 3288,2	500 3488,7 3484,4 3479,0 3468,1 3457,0 3445,8 3434,5 3434,5 3422,9 3411,3	550 3596,3 3592,6 3588,1 3578,9 3569,6 3560,2 3550,8 3541,2 3531,5	600 3705,6 3702,5 3698,6 3690,7 3682,8 3674,8 3666,8 3658,8 3658,8 3650,6	650 3816,6 3813,9 3810,5 3803,8 3797,0 3790,2 3783,3 3776,4 3769,4	700 3929,4 3927,0 3924,1 3918,2 3912,3 3906,4 3900,5 3894,5 3888,5	750 4043,9 4041,9 4039,3 4034,2 4029,0 4023,8 4018,6 4013,4 4008,1	800 4160,2 4158,4 4156,1 4151,6 4147,0 4142,5 4137,9 4133,3 4128,7
bar 1 5 10 20 30 40 50 60 70 80	350 3175,8 3168,1 3158,2 3137,6 3116,1 3093,3 3069,3 3043,9 3016,8 2988,1	400 3278,5 3272,3 3264,4 3248,2 3231,6 3214,4 3196,6 3178,2 3159,1 3139,3	450 3382,8 3377,7 3371,2 3358,1 3344,7 3331,0 3317,0 3302,8 3288,2 3273,2	500 3488,7 3484,4 3479,0 3468,1 3457,0 3445,8 3434,5 3432,9 3411,3 3399,4	550 3596,3 3592,6 3588,1 3578,9 3569,6 3560,2 3550,8 3541,2 3531,5 3521,8	600 3705,6 3702,5 3698,6 3690,7 3682,8 3674,8 3666,8 3658,8 3658,8 3650,6 3642,4	650 3816,6 3813,9 3810,5 3803,8 3797,0 3790,2 3783,3 3776,4 3769,4 3769,4	700 3929,4 3927,0 3924,1 3918,2 3912,3 3906,4 3900,5 3894,5 3888,5 3888,5 3888,5	750 4043,9 4041,9 4039,3 4034,2 4029,0 4023,8 4018,6 4013,4 4008,1 4002,9	800 4160,2 4158,4 4156,1 4151,6 4147,0 4142,5 4137,9 4133,3 4128,7 4124,0
bar 1 5 10 20 30 40 50 60 70 80 90	350 3175,8 3168,1 3158,2 3137,6 3116,1 3093,3 3069,3 3043,9 3016,8 2988,1 2957,2	400 3278,5 3272,3 3264,4 3248,2 3231,6 3214,4 3196,6 3178,2 3159,1 3139,3 3118,8	450 3382,8 3377,7 3371,2 3358,1 3344,7 3331,0 3317,0 3302,8 3288,2 3273,2 3257,9	500 3488.7 3484,4 3479,0 3468,1 3457,0 3445,8 3434,5 3422,9 3411,3 3399,4 3387,3	550 3596,3 3592,6 3588,1 3578,9 3569,6 3560,2 3550,8 3541,2 3531,5 3521,8 3511,9	600 3705,6 3702,5 3698,6 3690,7 3682,8 3674,8 3666,8 3658,8 3658,8 3650,6 3642,4 3634,2	650 3816,6 3813,9 3810,5 3803,8 3797,0 3790,2 3783,3 3776,4 3769,4 3769,4 3762,4 3755,4	700 3929,4 3927,0 3924,1 3918,2 3912,3 3906,4 3900,5 3894,5 3884,5 3888,5 3882,4 3876,4	750 4043,9 4041,9 4039,3 4034,2 4029,0 4023,8 4018,6 4013,4 4008,1 4002,9 3997,6	800 4160,2 4158,4 4156,1 4151,6 4147,0 4142,5 4137,9 4133,3 4128,7 4124,0 4119,4
bar 1 5 10 20 30 40 50 60 70 80 90 100	350 3175,8 3168,1 3158,2 3137,6 3116,1 3093,3 3069,3 3043,9 3016,8 2988,1 2957,2 2924,0	400 3278,5 3272,3 3264,4 3248,2 3231,6 3214,4 3196,6 3178,2 3159,1 3139,3 3118,8 3097,4	450 3382,8 3377,7 3371,2 3358,1 3344,7 3331,0 3317,0 3302,8 3288,2 3273,2 3257,9 3242,3	500 3488.7 3484.4 3479,0 3468,1 3457,0 3445.8 3434,5 3422,9 3411,3 3399,4 3387,3 3375,1	550 3596,3 3592,6 3588,1 3578,9 3569,6 3560,2 3550,8 3541,2 3531,5 3521,8 3511,9 3501,9	600 3705,6 3702,5 3698,6 3690,7 3682,8 3674,8 3666,8 3658,8 3650,6 3642,4 3634,2 3625,8	650 3816,6 3813,9 3810,5 3803,8 3797,0 3790,2 3783,3 3776,4 3769,4 3769,4 3765,4 3755,4 3748,3	700 3929,4 3927,0 3924,1 3918,2 3912,3 3906,4 3900,5 3894,5 3884,5 3888,5 3882,4 3876,4 3870,3	750 4043,9 4041,9 4039,3 4034,2 4029,0 4023,8 4018,6 4013,4 4008,1 4002,9 3997,6 3992,3	800 4160,2 4158,4 4156,1 4151,6 4147,0 4142,5 4137,9 4133,3 4128,7 4128,7 4124,0 4119,4 4114,7
bar 1 5 10 20 30 40 50 60 70 80 90 100 150	350 3175,8 3168,1 3158,2 3137,6 3116,1 3093,3 3043,9 3043,9 3016,8 2988,1 2957,2 2924,0 2693,0	400 3278,5 3272,3 3264,4 3248,2 3231,6 3214,4 3196,6 3178,2 3159,1 3139,3 3118,8 3097,4 2975,5	450 3382,8 3377,7 3371,2 3358,1 3344,7 3331,0 3317,0 3302,8 3288,2 3273,2 3257,9 3242,3 3157,8	500 3488,7 3484,4 3479,0 3468,1 3457,0 3445,8 3434,5 3422,9 3411,3 3399,4 3387,3 3375,1 3310,8	550 3596,3 3592,6 3588,1 3578,9 3569,6 3560,2 3550,8 3541,2 3531,5 3521,8 3511,9 3501,9 3501,9 3450,5	600 3705,6 3702,5 3698,6 3690,7 3682,8 3674,8 3666,8 3658,8 3650,6 3642,4 3634,2 3625,8 3583,3	650 3816,6 3813,9 3810,5 3803,8 3797,0 3790,2 3783,3 3776,4 3769,4 3762,4 3762,4 3755,4 3748,3 3712,4	700 3929,4 3927,0 3924,1 3918,2 3912,3 3906,4 3900,5 3894,5 3888,5 3888,5 3888,5 3882,4 3876,4 3870,3 3839,5	750 4043,9 4041,9 4039,3 4034,2 4029,0 4023,8 4018,6 4013,4 4008,1 4002,9 3997,6 3992,3 3965,6	800 4160,2 4158,4 4156,1 4151,6 4147,0 4142,5 4137,9 4133,3 4128,7 4128,7 4124,0 4119,4 4114,7 4091,3
bar 1 5 10 20 30 40 50 60 70 80 90 100 150 200 200 200 200 200 200 200 2	350 3175,8 3168,1 3158,2 3137,6 3116,1 3093,3 3043,9 3043,9 3043,9 3043,9 3016,8 2988,1 2957,2 2924,0 2693,0 1646,0	400 3278,5 3272,3 3264,4 3248,2 3231,6 3214,4 3196,6 3178,2 3159,1 3139,3 3118,8 3097,4 2975,5 2816,8	450 3382,8 3377,7 3371,2 3358,1 3344,7 3331,0 3317,0 3302,8 3288,2 3273,2 3257,9 3242,3 3157,8 3061,5	500 3488,7 3484,4 3479,0 3468,1 3457,0 3445,8 3434,5 3422,9 3411,3 3399,4 3387,3 3375,1 3310,8 3241,2	550 3596,3 3592,6 3588,1 3578,9 3569,6 3560,2 3550,8 3541,2 3531,5 3521,8 3541,2 3531,5 3521,8 3511,9 3501,9 3450,5 3396,2	600 3705,6 3702,5 3698,6 3690,7 3682,8 3674,8 3666,8 3658,8 3658,8 3658,8 3650,6 3642,4 3634,2 3625,8 3583,3 3539,2	650 3816,6 3813,9 3810,5 3803,8 3797,0 3790,2 3783,3 3776,4 3769,4 3769,4 3762,4 3762,4 3755,4 3748,3 3712,4 3675,6	700 3929,4 3927,0 3924,1 3918,2 3912,3 3906,4 3900,5 3894,5 3888,5 3888,5 3888,5 3888,4 3876,4 3870,3 3839,5 3808,2	750 4043,9 4041,9 4039,3 4034,2 4029,0 4023,8 4018,6 4013,4 4008,1 4008,1 4008,1 4002,9 3997,6 3992,3 3965,6 3938,5	800 4160,2 4158,4 4156,1 4151,6 4147,0 4142,5 4137,9 4133,3 4128,7 4124,0 4119,4 4114,7 4091,3 4067,7
bar 1 5 10 20 30 40 50 60 70 80 90 100 150 200 250 250 250	350 3175,8 3168,1 3158,2 3137,6 3116,1 3093,3 3043,9 3016,8 2988,1 2957,2 2924,0 2693,0 1646,0 1623,9	400 3278,5 3272,3 3264,4 3248,2 3231,6 3214,4 3196,6 3178,2 3159,1 3139,3 3118,8 3097,4 2975,5 2816,8 2578,6	450 3382,8 3377,7 3371,2 3358,1 3344,7 3331,0 3317,0 3302,8 3288,2 3273,2 3257,9 3242,3 3157,8 3061,5 2950,4	500 3488.7 3484.4 3479.0 3468.1 3457.0 3445.8 3434.5 3434.5 3432.9 3411.3 3399.4 3387.3 3375.1 3310.8 3241.2 3165.9	550 3596,3 3592,6 3588,1 3578,9 3569,6 3560,2 3550,8 3541,2 3551,8 3541,2 3531,5 3521,8 3511,9 3501,9 3501,9 3450,5 3396,2 3339,3	600 3705,6 3702,5 3698,6 3690,7 3682,8 3674,8 3666,8 3658,8 3658,8 3658,8 3650,6 3642,4 3634,2 3625,8 3583,3 3539,2 3493,7	650 3816,6 3813,9 3810,5 3803,8 3797,0 3790,2 3783,3 3776,4 3769,4 3769,4 3762,4 3762,4 3748,3 3712,4 3675,6 3638,0	700 3929,4 3927,0 3924,1 3918,2 3912,3 3906,4 3900,5 3894,5 3888,5 3882,4 3876,4 3876,4 3870,3 3839,5 3808,2 3776,4	750 4043,9 4041,9 4039,3 4034,2 4029,0 4023,8 4018,6 4013,4 4008,1 4002,9 3997,6 3997,6 3992,3 3965,6 3938,5 3911,2	800 4160,2 4158,4 4156,1 4151,6 4147,0 4142,5 4137,9 4133,3 4128,7 4124,0 4119,4 4119,4 4114,7 4091,3 4067,7 4044,0
bar 1 5 10 20 30 40 50 60 70 80 90 100 150 200 250 300 250 300	350 3175,8 3168,1 3158,2 3137,6 3116,1 3093,3 3069,3 3069,3 3043,9 3016,8 2988,1 2957,2 29224,0 2693,0 1646,0 1623,9 1608,8	400 3278,5 3272,3 3264,4 3248,2 3231,6 3214,4 3196,6 3178,2 3159,1 3139,3 3118,8 3097,4 2975,5 2816,8 2578,6 2152,4	450 3382,8 3377,7 3371,2 3358,1 3344,7 3331,0 3317,0 3302,8 3288,2 3273,2 3257,9 3242,3 3157,8 3061,5 2950,4 2820,9	500 3488.7 3484.4 3479.0 3468.1 3457.0 3445.8 3434.5 3432.9 3411.3 3399.4 3387.3 3375.1 3310.8 3241.2 3165.9 3084.8	550 3596,3 3592,6 3588,1 3578,9 3569,6 3560,2 3550,8 3541,2 3551,8 3511,9 3501,9 3450,5 3396,2 3339,3 3279,8	600 3705,6 3702,5 3698,6 3690,7 3682,8 3674,8 3666,8 3658,8 3650,6 3642,4 3634,2 3625,8 3583,3 3539,2 3493,7 3446,9	650 3816,6 3813,9 3810,5 3803,8 3797,0 3790,2 3783,3 3776,4 3769,4 3769,4 3762,4 3762,4 3765,4 3748,3 3712,4 3675,6 3638,0 3599,7	700 3929,4 3927,0 3924,1 3918,2 3912,3 3906,4 3900,5 3894,5 3888,5 3888,5 3882,4 3876,4 3876,4 3870,3 3839,5 3808,2 3776,4 3744,2	750 4043,9 4041,9 4039,3 4034,2 4029,0 4023,8 4018,6 4013,4 4008,1 4002,9 3997,6 3992,3 3965,6 3938,5 3911,2 3883,8	800 4160,2 4158,4 4156,1 4151,6 4147,0 4142,5 4133,3 4128,7 4124,0 4119,4 4114,7 4091,3 4067,7 4044,0 4020,2
bar 1 5 10 20 30 40 50 60 70 80 90 100 150 200 250 300 350 400	350 3175,8 3168,1 3158,2 3137,6 3116,1 3093,3 3069,3 3043,9 3016,8 2988,1 2957,2 2924,0 2693,0 1646,0 1623,9 1608,8 1597,5	400 3278,5 3272,3 3264,4 3248,2 3231,6 3214,4 3196,6 3178,2 3159,1 3139,3 3118,8 3097,4 2975,5 2816,8 2578,6 2152,4 1988,4 1924,4	450 3382,8 3377,7 3371,2 3358,1 3344,7 3331,0 3317,0 3302,8 3288,2 3273,2 3257,9 3242,3 3157,8 3061,5 2950,4 2820,9 2671,0	500 3488.7 3484.4 3479.0 3468.1 3457.0 3445.8 3434.5 3422.9 3411.3 3399.4 3387.3 3375.1 3310.8 3241.2 3165.9 3084.8 2998.0	550 3596,3 3592,6 3588,1 3578,9 3569,6 3560,2 3550,8 3541,2 3531,5 3521,8 3511,9 3501,9 3450,5 3396,2 3339,3 3279,8 3218,1	600 3705,6 3702,5 3698,6 3690,7 3682,8 3674,8 3658,8 3658,8 3658,8 3658,8 3658,8 3654,2 3642,4 3634,2 3625,8 3583,3 3539,2 3493,7 3446,9 3399,0	650 3816,6 3813,9 3810,5 3803,8 3797,0 3790,2 3783,3 3776,4 3769,4 3762,4 3762,4 3762,4 3755,4 3748,3 3712,4 3675,6 3638,0 3599,7 3560,9	700 3929,4 3927,0 3924,1 3918,2 3912,3 3906,4 3900,5 3894,5 3888,5 3888,5 3882,4 3876,4 3870,3 3839,5 3808,2 3776,4 3774,2 3711,9	750 4043,9 4041,9 4039,3 4034,2 4029,0 4023,8 4018,6 4013,4 4008,1 4002,9 3997,6 3992,3 3965,6 3938,5 3911,2 3883,8 3856,3	800 4160,2 4158,4 4156,1 4151,6 4147,0 4142,5 4137,9 4133,3 4128,7 4124,0 4119,4 4114,7 4091,3 4067,7 4044,0 4020,2 3996,5
bar 1 5 10 20 30 40 50 60 70 80 90 100 150 200 250 300 350 400 50 60 70 80 90 10 10 10 10 10 10 20 30 40 50 60 70 80 90 10 10 10 10 10 10 10 10 10 1	350 3175,8 3168,1 3158,2 3137,6 3116,1 3093,3 3069,3 30069,3 30043,9 3016,8 2988,1 2957,2 2924,0 2693,0 1646,0 1623,9 1608,8 1597,5 1588,7	400 3278,5 3272,3 3264,4 3248,2 3231,6 3214,4 3196,6 3178,2 3159,1 3139,3 3118,8 3097,4 2975,5 2816,8 2578,6 2152,4 1988,4 1931,1	430 3382,8 3377,7 3371,2 3358,1 3344,7 3331,0 3317,0 3302,8 3288,2 3273,2 3257,9 3242,3 3157,8 3061,5 2950,4 2820,9 2671,0 2511,8	500 3488,7 3484,4 3479,0 3468,1 3457,0 3445,8 3434,5 3434,5 3434,5 3434,5 3434,5 3434,5 3432,9 3411,3 3399,4 3387,3 3375,1 3310,8 3241,2 3165,9 3084,8 2998,0 2996,7 2906,7	550 3596,3 3592,6 3588,1 3578,9 3569,6 3560,2 3550,8 3541,2 3531,5 3521,8 3511,9 3501,9 3450,5 3396,2 3339,3 3279,8 3218,1 3154,6	600 3705,6 3702,5 3698,6 3690,7 3682,8 3674,8 3654,8 3650,6 3642,4 3634,2 3634,2 3634,2 3634,2 3634,2 3539,2 3493,7 3446,9 3399,0 3350,4	650 3816,6 3813,9 3810,5 3803,8 3797,0 3790,2 3783,3 3776,4 3769,4 3769,4 3769,4 3769,4 3762,4 3765,4 3712,4 3675,6 3638,0 3599,7 3560,9 3521,8	700 3929,4 3927,0 3924,1 3918,2 3912,3 3906,4 3900,5 3894,5 3888,5 3888,5 3882,4 3876,4 3870,3 3839,5 3808,2 3776,4 3744,2 3711,9 3679,4	750 4043,9 4041,9 4039,3 4034,2 4029,0 4023,8 4013,4 4003,1 4002,9 3997,6 3992,3 3965,6 3938,5 3911,2 3883,8 3856,3 3828,8	800 4160,2 4158,4 4156,1 4151,6 4147,0 4142,5 4137,9 4133,3 4128,7 4124,0 4119,4 4114,7 4091,3 4067,7 4044,0 4020,2 3996,5 3972,8
bar 1 5 10 20 30 40 50 60 70 80 90 100 150 200 250 300 350 400 450 50 60 70 80 90 100 250 250 250 200 200 200 200 2	350 3175,8 3168,1 3158,2 3137,6 3116,1 3093,3 3069,3 30043,9 3016,8 2988,1 2957,2 2924,0 2693,0 1646,0 16623,9 1608,8 1597,5 1588,7 1581,7 1581,7	400 3278,5 3272,3 3264,4 3248,2 3231,6 3214,4 3196,6 3178,2 3159,1 3139,3 3118,8 3097,4 2975,5 2816,8 2578,6 2152,4 1988,4 1931,1 1897,6	430 3382,8 3377,7 3371,2 3358,1 3344,7 3331,0 3317,0 3302,8 3288,2 3273,2 3257,9 3242,3 3157,8 3061,5 2950,4 2820,9 2671,0 2511,8 2377,3 2951,6	500 3488,7 3484,4 3479,0 3468,1 3457,0 3445,8 3434,5 3434,5 3434,5 3434,5 3434,5 3434,5 3422,9 3411,3 3399,4 3387,3 3375,1 3310,8 3241,2 3165,9 3084,8 2998,0 2906,7 2813,4 2925,5	550 3596,3 3592,6 3588,1 3578,9 3569,6 3560,2 3550,8 3541,2 3531,5 3521,8 3511,9 3501,9 3450,5 3396,2 3339,3 3279,8 3218,1 3154,6 3090,2	600 3705,6 3702,5 3698,6 3690,7 3682,8 3674,8 3666,8 3674,8 3658,8 3650,6 3642,4 3634,2 3625,8 3583,3 3539,2 3493,7 3446,9 3399,0 3350,4 3301,5	650 3816,6 3813,9 3810,5 3803,8 3797,0 3790,2 3783,3 3776,4 3769,4 3769,4 3762,4 3765,4 3748,3 3712,4 3675,6 3638,0 3599,7 3560,9 3521,8 3482,5	700 3929,4 3927,0 3924,1 3918,2 3912,3 3906,4 3900,5 3894,5 3888,5 3888,5 3882,4 3876,4 3870,3 3839,5 3808,2 3776,4 3744,2 3711,9 3679,4 3647,0	750 4043,9 4041,9 4039,3 4034,2 4029,0 4023,8 4018,6 4013,4 4008,1 4002,9 3997,6 3992,3 3965,6 3938,5 3911,2 3883,8 3856,3 3828,8 3801,3	800 4160,2 4158,4 4156,1 4151,6 4147,0 4142,5 4137,9 4133,3 4128,7 4124,0 4119,4 4114,7 4091,3 4067,7 4044,0 4020,2 3996,5 3972,8 3949,3
bar 1 5 10 20 30 40 50 60 70 80 90 100 150 200 250 300 350 400 450 500 600 70 80 90 100 250 80 90 100 250 80 90 100 250 80 90 100 250 80 90 100 250 80 90 100 250 80 90 100 250 80 90 100 250 80 90 100 250 80 90 100 250 80 90 100 250 250 80 90 100 250 250 250 250 250 250 250 2	350 3175,8 3168,1 3158,2 3137,6 3116,1 3093,3 3069,3 30043,9 3016,8 2988,1 2957,2 2924,0 2693,0 1646,0 1623,9 1608,8 1597,5 1588,7 1581,7 1576,0 1567,4	400 3278,5 3272,3 3264,4 3248,2 3231,6 3214,4 3196,6 3178,2 3159,1 3139,3 3118,8 3097,4 2975,5 2816,8 2578,6 2152,4 1988,4 1931,1 1897,6 1874,3 1842,1	430 3382,8 3377,7 3371,2 3358,1 3344,7 3331,0 3317,0 3302,8 3288,2 3273,2 3257,9 3242,3 3157,8 3061,5 2950,4 2820,9 2671,0 2511,8 2377,3 2284,4 2170,6	500 3488,7 3484,4 3479,0 3468,1 3457,0 3445,8 3434,5 3422,9 3411,3 3399,4 3387,3 3375,1 3310,8 3241,2 3165,9 3084,8 2998,0 2906,7 2813,4 2722,5 2725,5	550 3596,3 3592,6 3588,1 3578,9 3569,6 3560,2 3550,8 3541,2 3531,5 3521,8 3511,9 3501,9 3450,5 3396,2 3339,3 3279,8 3218,1 3154,6 3090,2 3025,7	600 3705,6 3702,5 3698,6 3690,7 3682,8 3674,8 3666,8 3674,8 3658,8 3650,6 3642,4 3634,2 3625,8 3583,3 3539,2 3493,7 3446,9 3399,0 3350,4 3301,5 3252,6	650 3816,6 3813,9 3810,5 3803,8 3797,0 3790,2 3783,3 3776,4 3769,4 3762,4 3762,4 3765,4 3762,4 3755,4 3748,3 3712,4 3675,6 3638,0 3599,7 3560,9 3521,8 3482,5 3443,5	700 3929,4 3927,0 3924,1 3918,2 3912,3 3906,4 3900,5 3894,5 3888,5 3888,5 3888,5 3882,4 3876,4 3870,3 3839,5 3808,2 3776,4 3744,2 3711,9 3679,4 3647,0 3614,8	750 4043,9 4041,9 4039,3 4034,2 4029,0 4023,8 4018,6 4013,4 4008,1 4002,9 3997,6 3992,3 3965,6 3938,5 3911,2 3883,8 3856,3 3828,8 3801,3 3774,1	800 4160,2 4158,4 4156,1 4151,6 4147,0 4142,5 4137,9 4133,3 4128,7 4124,0 4119,4 4114,7 4091,3 4067,7 4044,0 4020,2 3996,5 3972,8 3949,3 3926,0
bar 1 5 10 20 30 40 50 60 70 80 90 100 150 200 350 400 450 500 600 700 80 90 100 150 200 300 400 50 60 70 80 90 100 200 300 400 50 60 70 80 90 100 200 300 400 50 60 70 80 90 100 200 300 400 50 60 70 80 90 100 200 300 400 50 60 70 80 90 100 200 300 400 50 60 70 80 90 100 150 200 200 200 200 200 200 200 2	350 3175,8 3168,1 3158,2 3137,6 3116,1 3093,3 3069,3 3043,9 3043,9 3043,9 3043,9 3043,9 3043,9 2093,0 2693,0 2693,0 2693,0 1646,0 1623,9 1608,8 1597,5 1588,7 1581,7 1576,0 1567,4 1561,6	400 3278,5 3272,3 3264,4 3248,2 3231,6 3214,4 3196,6 3178,2 3159,1 3139,3 3118,8 3097,4 2975,5 2816,8 2578,6 2152,4 1988,4 1931,1 1897,6 1874,3 1843,1 1897,6	450 3382,8 3377,7 3371,2 3358,1 3344,7 3317,0 3302,8 3288,2 3273,2 3257,9 3242,3 3157,8 3061,5 2950,4 2820,9 2671,0 2511,8 2377,3 2284,4 2179,8	500 3488,7 3484,4 3479,0 3468,1 3457,0 3445,8 3445,8 3445,8 3445,5 3422,9 3411,3 3399,4 3387,3 3375,1 3310,8 3241,2 3165,9 3084,8 2998,0 2906,7 2813,4 2722,5 2570,4 2265,2	550 3596,3 3592,6 3588,1 3578,9 3569,6 3560,2 3550,8 3541,2 3531,5 3521,8 3511,9 3501,9 3450,5 3396,2 3339,3 3279,8 3218,1 3154,6 3090,2 3025,7 2902,1 2025,7	600 3705,6 3702,5 3698,6 3690,7 3682,8 3674,8 3666,8 3658,8 3650,6 3642,4 3634,2 3625,8 3539,2 3493,7 3446,9 3359,0 3350,4 3301,5 3252,6 3157,0	650 3816,6 3813,9 3810,5 3803,8 3797,0 3790,2 3783,3 3776,4 3769,4 3762,4 3762,4 3762,4 3762,4 3762,4 3755,4 3748,3 3712,4 3675,6 3638,0 3599,7 3560,9 3521,8 3482,5 3443,5 3366,8	700 3929,4 3927,0 3924,1 3918,2 3912,3 3906,4 3900,5 3894,5 3888,5 3888,5 3888,5 3888,5 3882,4 3876,4 3876,4 3870,3 3839,5 3808,2 3776,4 3711,9 3679,4 3647,0 3614,8 3551,4	750 4043,9 4041,9 4039,3 4034,2 4029,0 4023,8 4018,6 4013,4 4002,9 3997,6 3992,3 3965,6 3938,5 3911,2 3883,8 3856,3 3828,8 3801,3 3774,1 3720,6	800 4160,2 4158,4 4156,1 4151,6 4147,0 4142,5 4137,9 4133,3 4128,7 4124,0 4119,4 4114,7 4091,3 4067,7 4044,0 4020,2 3996,5 3972,8 3949,3 3926,0 3880,2
bar 1 5 10 20 30 40 50 60 70 80 90 100 150 200 250 300 350 400 450 500 600 700 800 90 100 100 200 300 400 50 60 70 80 90 100 200 300 400 50 60 70 80 90 100 200 50 60 70 80 90 100 200 50 60 70 80 90 100 200 50 60 70 80 90 100 150 200 50 60 70 80 90 100 150 200 200 250 60 70 80 90 100 150 200 250 600 700 80 90 100 150 200 250 300 400 150 200 250 300 400 500 500 500 500 500 500 5	350 3175,8 3168,1 3158,2 3137,6 3116,1 3093,3 3043,9 3043,9 3043,9 3043,9 3043,9 3043,9 3043,9 3043,9 2928,1 2957,2 2924,0 2693,0 1646,0 1623,9 1608,8 1597,5 1588,7 1576,0 1567,4 1557,7	400 3278,5 3272,3 3264,4 3248,2 3231,6 3214,4 3196,6 3178,2 3159,1 3139,3 3118,8 3097,4 2975,5 2816,8 2578,6 2152,4 1988,4 1931,1 1897,6 1874,3 1843,1 1822,9 1809, 9	450 3382,8 3377,7 3371,2 3358,1 3344,7 3331,0 3317,0 3302,8 3288,2 3273,2 3257,9 3242,3 3157,8 3061,5 2950,4 2820,9 2671,0 2511,8 2377,3 2284,4 2179,8 2179,8 2179,8 2179,8	500 3488.7 3484.4 3479,0 3468,1 3457,0 3445,8 3445,8 3445,5 3422,9 3411,3 3399,4 3387,3 3375,1 3310,8 3241,2 3165,9 3084,8 2998,0 2906,7 2813,4 2722,5 2570,4 2466,2 2307,6	550 3596,3 3592,6 3588,1 3578,9 3569,6 3560,2 3550,8 3541,2 3531,5 3521,8 3541,2 3531,5 3521,8 3511,9 3501,9 3450,5 3396,2 3339,3 3279,8 3218,1 3154,6 3090,2 3025,7 2902,1 2795,0 2700,0	600 3705,6 3702,5 3698,6 3690,7 3682,8 3674,8 3666,8 3658,8 3650,6 3642,4 3634,2 3625,8 3539,2 3493,7 3446,9 3399,0 3350,4 3301,5 3252,6 3157,0 3067,5 2088,1 2	650 3816,6 3813,9 3810,5 3803,8 3797,0 3790,2 3783,3 3776,4 3769,4 3769,4 3762,4 3765,4 3748,3 3712,4 3675,6 3638,0 3599,7 3560,9 3521,8 3482,5 3443,5 3366,8 3293,6 2295,7	700 3929,4 3927,0 3924,1 3918,2 3912,3 3906,4 3900,5 3894,5 3888,5 3882,4 3876,4 3876,4 3870,3 3839,5 3808,2 3776,4 3774,2 3711,9 3679,4 3647,0 3614,8 3551,4 3490,5 2422,2	750 4043,9 4041,9 4039,3 4034,2 4029,0 4023,8 4018,6 4013,4 4008,1 4002,9 3997,6 3992,3 3995,6 3938,5 3911,2 3883,8 3856,3 3856,3 3856,3 3856,3 3856,3 3856,3 3856,3 3874,1 3720,6 3669,0 2610,2 2610,	800 4160,2 4158,4 4156,1 4151,6 4147,0 4142,5 4137,9 4133,3 4128,7 4124,0 4119,4 4119,4 4119,4 4119,4 4119,4 4091,3 4067,7 4044,0 4020,2 3996,5 3972,8 3926,0 3880,2 3835,8 2025,5
bar 1 5 10 20 30 40 50 60 70 80 90 100 150 200 250 300 350 400 450 500 600 700 80 90 90 90 90 90 90 90 90 90 9	350 3175,8 3168,1 3158,2 3137,6 3116,1 3093,3 3069,3 3069,3 3043,9 3016,8 2988,1 2957,2 2924,0 2693,0 1646,0 1623,9 1608,8 1597,5 1588,7 1581,7 1576,0 1567,4 1561,6 1557,7 1555,2 200 200 200 200 200 200 200 2	400 3278,5 3272,3 3264,4 3248,2 3231,6 3196,6 3178,2 3159,1 3139,3 3118,8 3097,4 2975,5 2816,8 2578,6 2152,4 1988,4 1931,1 1897,6 1874,3 1843,1 1822,9 1808,8 1708,6	450 3382,8 3377,7 3371,2 3358,1 3344,7 3331,0 3317,0 3302,8 3288,2 3273,2 3257,9 3242,3 3157,8 3061,5 2950,4 2820,9 2671,0 2511,8 2377,3 2284,4 2179,8 2123,4 2179,8 2123,4 2087,6 2062,7	500 3488.7 3484.4 3479.0 3468.1 3457.0 3445.8 3434.5 3432.9 3411.3 3399.4 3387.3 3375.1 3310.8 3241.2 3165.9 3084.8 2998.0 2906.7 2813.4 2722.5 2570.4 2466.2 2397.6 2350.2	550 3596,3 3592,6 3588,1 3578,9 3569,6 3560,2 3550,8 3541,2 3550,8 3541,2 3531,5 3521,8 3511,9 3501,9 3450,5 3396,2 3339,3 3279,8 3218,1 3154,6 3090,2 3025,7 2902,1 2795,0 2709,9 2645,2	600 3705,6 3702,5 3698,6 3690,7 3682,8 3674,8 3666,8 3658,8 3658,8 3650,6 3642,4 3634,2 3625,8 3539,2 3493,7 3446,9 3359,0 3350,4 3301,5 3252,6 3157,0 3067,5 2988,1 2920,8	650 3816,6 3813,9 3810,5 3803,8 3797,0 3790,2 3783,3 3776,4 3769,4 3769,4 3762,4 3755,4 3748,3 3712,4 3675,6 3638,0 3599,7 3560,9 3521,8 3482,5 3443,5 3366,8 3293,6 3225,7 3164,4	700 3929,4 3927,0 3924,1 3918,2 3912,3 3906,4 3900,5 3894,5 3888,5 3882,4 3876,4 3870,3 3839,5 3808,2 3776,4 3744,2 3711,9 3679,4 3647,0 3614,8 3551,4 3490,5 3432,9 2370 5	750 4043,9 4041,9 4039,3 4034,2 4029,0 4023,8 4018,6 4013,4 4008,1 4002,9 3997,6 3997,6 3997,6 3997,6 3992,3 3965,6 3938,5 3911,2 3883,8 3856,3 3828,8 3856,3 3828,8 3801,3 3774,1 3720,6 3669,0 3619,7 2572,5	800 4160,2 4158,4 4156,1 4151,6 4147,0 4142,5 4137,9 4133,3 4128,7 4124,0 4119,4 4114,7 4091,3 4067,7 4044,0 4020,2 3996,5 3972,8 3949,3 3926,0 3880,2 3835,8 3793,3 2752,0

Die waagerechten Linien innerhalb der Tabellen entsprechen dem Übergang von der gasförmigen Phase in die flüssige Phase.

XXVII

Alle Rechte vorbehalten © Springer-Verlag Berlin Heidelberg 2002

11.6 Elektrofilter

11.6.1 Elektrofilter (direkt nach dem Zyklon)

11.6.1.1 Sprühdrahtdurchmesser r₀ = 1,5 mm

Gasvolumenstrom (V _{STP})	300.000 [m³ _{sтР} /h]
Betriebstemperatur (T)	400 °C
Betriebsdruck (p)	3,3 bar(g)
Gasdichte (p _{STP})	1,2422 [kg/m³]
Gasvolumenstrom (V _B)	173677,629 [m³ _B /h]
Gasdichte (ρ _θ)	2,1458 [kg/m³]
Gasviskosität (ŋ _G)	2,7662E-05 [Pas]
Staubdichte (p _{staub})	1923,2921 [kg/m³]
Staubgehalt (c _{ROH})	5,4571 [g/m³ _{STP}]

Geometrieverhältnisse - Elektrofilter							
Plattenfilter							
	gewählt						
Sprühdrahtdurchmesser r _o	1,5	[mm]					
Abstand SE - NE (100 \rightarrow 300 mm)	0,1	[m]					
Ionenbeweglichkeit K	20	[√m³/√kg]					
U _{max} =(600 → 800)*b	800	[kV/m]					
U=(0,95 → 0,98)*U _{max}	0,98	[kV]					
v _{Gas} =0,5 → 2,5 m/s	1	[m/s]					

V _{B.desamt} 173677,6289 [m ³ _B /h]		
V _{B,gesamt} 48,2438 [m³ _B /s]		
relative Luftdichte δ:	1,8529	
Koronaeinsatzfeldstärke E ₀ :	8721,7378 [kV/m]	1 kV = 1,05*10⁻² [√(kg*m)/s]
	91,5782 [√kg/√m*s]	
Koronaeinsatzspannung U ₀ :	49,0352 [kV]	
	0,5149 [√(kg*m)/s]	
maximale Spannung U _{max} :	80 [kV]	
tatsächliche Spannung U:	78,4 [kV]	
	0,8232 [√(kg*m)/s]	
spezifischer Koronastrom I:	114,2995 [√(kg*m)/s²]	1 A = 9,49*10 ⁴ [√(kg*m³)/s²]
	0,0012 [A/m]	
Abscheidefeldstärke E _P :	3,3808 [√kg/√m*s]	
	321,9830 [kV]	
Aufladefeldstärke E _A :	8,232 [√kg/√m*s]	
694	784 [kV]	
Partikelwanderungsgeschwindigkeit w(x):	80062,1848 [m/s]	
Abmessungen des Elektrofilters:		
Querschnittsfläche (CSA):	48,2438 [m²]	
Filterbreite = Filterhöhe → x:	6,9458 [m]	
Filterbreite x:	6,5458 [m]	
Filterhöhe h:	7,3702 [m]	
Filterlänge L:	12,4065 [m]	
spezifische Abscheidefläche A':	124,0655 [s/m]	

Staubgehalt (с _{кон})	5,4571	[g/m³ _{STP}]
Volumenstrom (V _{STP})	300.000	[m³ _{STP} /h]
Massenstrom Staub (m _{Staub})	1637,1228	[kg/h]
Abscheidung: ΣΔQ ₃ (x) _{AB}	99,9106	[%]
Reingas: Σ∆Q3(x) _{RG}	0,0894	[%]
abgeschiedener Staub (m _{AB})	1635,6594	[kg/h]
Staub im Reingas (m _{RG})	1,4633	[kg/h]
Staubgehalt - Reingas (c _{REINGAS})	4,8778	[mg/m ³ STP]

d _u - d _o	x	ΔQ ₃ (x)	T(x)	ΔQ ₃ (x) _{AB}	∆Q ₃ (x) _{RG}
		Aufgabe-E-Filter			
[µm]	[µm]	[%]	[%]	[%]	[%]
0 - 1	0,5	12,8268	99,3032	12,7374	0,0894
1 - 1,5	1,25	2,9244	99,9996	2,9243	0,0000
1,5 - 2	1,75	3,9865	100,0000	3,9865	0,0000
2 - 3	2,5	16,3728	100,0000	16,3728	0,0000
3 - 4	3,5	16,0604	100,0000	16,0604	0,0000
4 - 6	5	28,7674	100,0000	28,7674	0,0000
6-8	7	10,8101	100,0000	10,8101	0,0000
8 - 12	10	6,9922	100,0000	6,9922	0,0000
12 - 16	14	0,7920	100,0000	0,7920	0,0000
16 - 24	20	0,4240	100,0000	0,4240	0,0000
24 - 32	28	0,0240	100,0000	0,0240	0,0000
32 - 48	40	0,0183	100,0000	0,0183	0,0000
48 - 64	56	0,0009	100,0000	0,0009	0,0000
64 - 96	80	0,0002	100,0000	0,0002	0,0000
96 - 128	112	0,0000	100,0000	0,0000	0,0000
128 - 180	154	0,0000	100,0000	0,0000	<u>0,0</u> 000
Summe:		100,0000		99,9106	0,0894

11.6.1.2 Sprühdrahtdurchmesser $r_0 = 2 \text{ mm}$

Gasvolumenstrom (V _{STP})	300.000 [m³ _{sтР} /h]
Betriebstemperatur (T)	400 [°C]
Betriebsdruck (p)	3,3 [bar(g)]
Gasdichte (p _{ste})	1,2422 [kg/m³]
Gasvolumenstrom (V _B)	173677,629 [m³ _B /h]
Gasdichte (ρ _в)	2,1458 [kg/m³]
Gasviskosität (η _e)	2,7662E-05 [Pas]
Staubdichte (p _{Staub})	1923,2921 [kg/m³]
Staubgehalt (c _{ROH})	5,4571 [g/m³ _{STP}]

Geometrieverhältnisse - Elektrofilter				
Plattenfilter				
	gewählt			
Sprühdrahtdurchmesser r _o	2	[mm]		
Abstand SE - NE (100 \rightarrow 300 mm)	0,1	[m]		
Ionenbeweglichkeit K	20	[√m³/√kg]		
U _{max} =(600 → 800)*b	800	[kV/m]		
U=(0,95 → 0,98)*U _{max}	0,98	[kV]		
v _{Gas} =0,5 → 2,5 m/s	1	[m/s]		

V _{B.gesamt} 173677,6289 [m ³ _B /h]		
V _{B,gesamt} 48,2438 [m ³ _B /s]		
relative Luffdichte δ:	1 8529	
Koronaeinsatzfeldstärke E _n :	8297 9570 [kV/m]	1 kV = 1,05*10 ⁻² [√(ka*m)/s]
	87.1285 [stka/stm*c]	
Koronaeinsatzsnannung II	57.4292 [k]/]	
	0 0000 t (U + + + +) (-]	
	0,6030 [v(kg*m)/s]	
maximale Spannung U _{max} .	80 [KV]	
tatsächliche Spannung U:	78,4 [kV]	
	0,8232 [√(kg*m)/s]	
spezifischer Koronastrom I:	87,2804 [√(kg*m)/s²]	1 A = 9,49*10 ⁴ [√(kg*m³)/s²]
	0,0009 [A/m]	
Abscheidefeldstärke E _P :	2,9543 [√kg/√m*s]	
	281,3644 [kV]	
Aufladefeldstärke E _A :	8,232 [√kg/√m*s]	
222	784 [kV]	
Partikelwanderungsgeschwindigkeit w(x):	69962,2376 [m/s]	
Abmessungen des Elektrofilters:		
Querschnittsfläche (CSA):	48,2438 [m²]	
Filterbreite = Filterhöhe → x:	6,9458 [m]	
Filterbreite x:	6,5458 [m]	
Filterhöhe h:	7,3702 [m]	
Filterlänge L:	14,1915 [m]	
spezifische Abscheidefläche A´:	141,9155 [s/m]	

Staubgehalt (с _{кон})	5,4571	[g/m ³ STP]
Volumenstrom (V _{STP})	300.000	[m³ _{STP} /h]
Massenstrom Staub (m _{Staub})	1637,1228	[kg/h]
Abscheidung: ΣΔQ₃(x) _{AB}	99,9104	[%]
Reingas: ΣΔQ3(x) _{RG}	0,0896	[%]
abgeschiedener Staub (m _{AB})	1635,6564	[kg/h]
Staub im Reingas (m _{RG})	1,4664	[kg/h]
Staubgehalt - Reingas (c _{REINGAS})	4,8881	[mg/m ³ _{STP}]

d _u - d _o	x	∆Q ₃ (X) Aufgabe-E-Filter	T(x)	∆Q ₃ (x) _{AB}	∆Q ₃ (x) _{RG}
[µm]	[µm]	[%]	[%]	[%]	[%]
0 - 1	0,5	12,8268	99,3018	12,7372	0,0896
1 - 1,5	1,25	2,9244	99,9996	2,9243	0,0000
1,5 - 2	1,75	3,9865	100,0000	3,9865	0,0000
2-3	2,5	16,3728	100,0000	16,3728	0,0000
3 - 4	3,5	16,0604	100,0000	16,0604	0,0000
4 - 6	5	28,7674	100,0000	28,7674	0,0000
6-8	7	10,8101	100,0000	10,8101	0,0000
8 - 12	10	6,9922	100,0000	6,9922	0,0000
12 - 16	14	0,7920	100,0000	0,7920	0,0000
16 - 24	20	0,4240	100,0000	0,4240	0,0000
24 - 32	28	0,0240	100,0000	0,0240	0,0000
32 - 48	40	0,0183	100,0000	0,0183	0,0000
48 - 64	56	0,0009	100,0000	0,0009	0,0000
64 - 96	80	0,0002	100,0000	0,0002	0,0000
96 - 128	112	0,0000	100,0000	0,0000	0,0000
128 - 180	154	0,0000	100,0000	0,0000	0,0000
Summe:		100,0000		99,9104	0,0896

11.6.2 Elektrofilter (nach Wärmeauskopplung – max. Dampferzeugung)

11.6.2.1 Gasgeschwindigkeit v = 0,8 m/s

Gasvolumensstrom (V _{STP})	300.000 [m³ _{STP} /h]
Betriebstemperatur (T)	241,34 [°C]
Betriebsdruck (p)	3,3 [bar(g)]
Gasdichte (p _{STP})	1,2422 [kg/m³]
Gasvolumensstrom (V _B)	132742,491 [m³ _B /n]
Gasdichte (ρ _θ)	2,8075 [kg/m³]
Gasviskosität (ŋ _e)	2,2539E-05 [Pas]
Staubdichte (op. 1)	1923-2921 [ka/m³]
	5 4574 [n(m3]
Staupgenalt (C _{ROH})	5,45/1 [g/m° _{STP}]

Geometrieverhältnisse - Elektrofilter				
Plattenfilter				
	gewählt			
Sprühdrahtdurchmesser r _o	1,5 [mm]			
Abstand SE - NE (100 \rightarrow 300 mm)	0,1 [m]			
Ionenbeweglichkeit K	20 [√m³/√kg]			
U _{max} =(600 → 800)*b	800 [kV/m]			
U=(0,95 → 0,98)*U _{max}	0,98 [kV]			
v _{Gas} =0,5 → 2,5 m/s	0,8 [m/s]			

V _{B.desamt} 132742,4909 [m ^s _B /h]			
V _{B,gesamt} 36,8729 [m ^s _B /s]			
relative Luftdichte δ:	2,4243		
Koronaeinsatzfeldstärke E ₀ :	10890,8981	[kV/m]	1 kV = 1,05*10 ⁻² [√(kg*m)/s]
	114,3544	[√kg/√m*s]	
Koronaeinsatzspannung U₀:	61,2306	[kV]	
	0,6429	[√(kg*m)/s]	
maximale Spannung U _{max} :	80	[kV]	
tatsächliche Spannung U:	78,4	[KV]	
	0.8232	[√(ka*m)/s]	
spezifischer Koronastrom I:	66.8301	[√(ka*m)/s²]	1 A = 9.49*10 ⁴ [√(ka*m³)/s²]
22	0 0007	[A/m]	
Abscheidefeldstärke E _₽ :	2,5852	[√kg/√m*s]	
	246 2049	[kV]	
Aufladefeldstärke E₄:	8,232	[√ka/√m*s]	
	784	[kV]	
Partikelwanderungsgeschwindigkeit w(x):	75135,8653	[m/s]	
Abmessungen des Elektrofilters:			
Querschnittsfläche (CSA):	46,0911	[m²]	
Filterbreite = Filterhöhe → x:	6,7890	[m]	
Filterbreite x:	6,3890	[m]	
Filterhöhe h:	7,2141	[m]	
Filterlänge L:	10,5781	[m]	
spezifische Abscheidefläche A':	132,2261	[s/m]	

Volumenstrom (Vstp)	300.000 [m ³ sтр/h]	
Massenstrom Staub (m _{Staub})	1637,1228 [kg/h]	
Abscheidung: ΣΔQ ₃ (x) _{AB}	99,9107 [%]	
Reingas: ΣΔQ3(x) _{RG}	0,0893 [%]	
abgeschiedener Staub (m _{AB})	1635,6609 [kg/h]	
Staub im Reingas (m _{RG})	1,4619 [kg/h]	
Staubgehalt - Reingas (c _{REINGAS})	4,8730 [mg/m ³ _{STP}]	

d _u - d _o	X	$\Delta Q_3(X)$ Aufgabe-E-Filter	T(x)	∆Q ₃ (x) _{AB}	∆Q ₃ (x) _{RG}
[µm]	[µm]	[%]	[%]	[%]	[%]
0 - 1	0,5	12,8268	99,3039	12,7375	0,0893
1 - 1,5	1,25	2,9244	99,9996	2,9243	0,0000
1,5 - 2	1,75	3,9865	100,0000	3,9865	0,0000
2 - 3	2,5	16,3728	100,0000	16,3728	0,0000
3 - 4	3,5	16,0604	100,0000	16,0604	0,0000
4 - 6	5	28,7674	100,0000	28,7674	0,0000
6-8	7	10,8101	100,0000	10,8101	0,0000
8 - 12	10	6,9922	100,0000	6,9922	0,0000
12 - 16	14	0,7920	100,0000	0,7920	0,0000
16 - 24	20	0,4240	100,0000	0,4240	0,0000
24 - 32	28	0,0240	100,0000	0,0240	0,0000
32 - 48	40	0,0183	100,0000	0,0183	0,0000
48 - 64	56	0,0009	100,0000	0,0009	0,0000
64 - 96	80	0,0002	100,0000	0,0002	0,0000
96 - 128	112	0,0000	100,0000	0,0000	0,0000
128 - 180	154	0,0000	100,0000	0,0000	0,0000
Summe:		100,0000		99,9107	0,0893

11.6.2.2 Gasgeschwindigkeit v = 1 m/s

Gasvolumensstrom (V _{STP})	300.000	[m³ _{STP} /h]
Betriebstemperatur (T)	241,34	[°C]
Betriebsdruck (p)	3,3	[bar(g)]
Gasdichte (p _{stP})	1,2422	[kg/m³]
Gasvolumensstrom (V _B)	132742,491	[m³ _B /h]
Gasdichte (ρ ₈)	2,8075	[kg/m³]
Gasviskosität (η _G)	2,2539E-05	[Pas]
Staubdichte (ρ _{staub})	1923,2921	[kg/m³]
Staubgehalt (с _{кон})	5,4571	[g/m³ _{STP}]

Geometrieverhältnisse - Elektrofilter					
Plattenfilter					
	gewählt				
Sprühdrahtdurchmesser r _o	1,5	[mm]			
Abstand SE - NE (100 \rightarrow 300 mm)	0,1	[m]			
Ionenbeweglichkeit K	20	[√m³/√kg]			
U _{max} =(600 → 800)*b	800	[kV/m]			
U=(0,95 → 0,98)*U _{max}	0,98	[kV]			
v _{Gas} =0,5 → 2,5 m/s	1	[m/s]			

V _{B,gesamt} 132742,4909 [m ³ _B /h]		
V _{B,gesamt} 36,8729 [m ³ _B /s]		
relative Luftdichte δ:	2,4243	
Koronaeinsatzfeldstärke E _o :	10890,8981 [kV/m]	1 kV = 1,05*10 ⁻² [√(kg*m)/s]
.02	114,3544 [√ka/√m*s]	
Koronaeinsatzspannung U _n :	61,2306 [kV]	
n a nanana na na nanana na nanana na na	0.6429 [√(ka*m)/s]	
maximale Spannung U _{max} :	80 [kV]	
tatsächliche Spannung U	78.4 [kV]	
	0.8232 [√(ka*m)/s]	
spezifischer Koronastrom I:	66 8301 [\/(ka*m)/s²]	$1 \text{ A} = 9 49^{*}10^{4} [\sqrt{(ka^{*}m^{3})/s^{2}}]$
	0.0007 [A/m]	17, 0,10 10 [Xiig iii 30]
Abscheidefeldstärke E _n	2 5852 [√ka/√m*s]	
	2,0002 [119, 111 0]	
Aufladofoldstärko E.	240,2049 [KV] 8 232 [s/ka/s/m*c]	
	0,202 [Vkg/ vin 3]	
	784 [KV]	
Partikelwanderungsgeschwindigkeit w(x):	/5135,8653 [m/s]	
Abmessungen des Elektrofilters:		
Querschnittsfläche (CSA):	36,8729 [m²]	
Filterbreite = Filterhöhe → x:	6,0723 [m]	
Filterbreite x:	5,6723 [m]	
Filterhöhe h:	6,5005 [m]	
Filterlänge L:	13,2196 [m]	
spezifische Abscheidefläche A':	132,1961 [s/m]	

Staubgehalt (с _{кон})	5,4571 [g	I/m³ _{STP}]
Volumenstrom (V _{STP})	300.000 [n	n³ _{STP} /h]
Massenstrom Staub (m _{staub})	1637,1228 [k	ːɡ/h]
Abscheidung: ΣΔQ₃(x) _{AB}	99,9106 [9	6]
Reingas: ΣΔQ3(x) _{RG}	0,0894 [9	6]
abgeschiedener Staub (m _{AB}) Staub im Reingas (m _{RG})	1635,6592 [k 1,4635 [k	rg/h] rg/h]
Staubgehalt - Reingas (c _{REINGAS})	4,8785 [r	ng/m³ _{STP}]

d _u - d _o	x	∆Q ₃ (X) Aufgabe-E-Filter	T(x)	∆Q ₃ (x) _{AB}	∆Q ₃ (x) _{RG}
[µm]	[µm]	[%]	[%]	[%]	[%]
0 - 1	0,5	12,8268	99,3031	12,7374	0,0894
1 - 1,5	1,25	2,9244	99,9996	2,9243	0,0000
1,5 - 2	1,75	3,9865	100,0000	3,9865	0,0000
2-3	2,5	16,3728	100,0000	16,3728	0,0000
3 - 4	3,5	16,0604	100,0000	16,0604	0,0000
4 - 6	5	28,7674	100,0000	28,7674	0,0000
6-8	7	10,8101	100,0000	10,8101	0,0000
8 - 12	10	6,9922	100,0000	6,9922	0,0000
12 - 16	14	0,7920	100,0000	0,7920	0,0000
16 - 24	20	0,4240	100,0000	0,4240	0,0000
24 - 32	28	0,0240	100,0000	0,0240	0,0000
32 - 48	40	0,0183	100,0000	0,0183	0,0000
48 - 64	56	0,0009	100,0000	0,0009	0,0000
64 - 96	80	0,0002	100,0000	0,0002	0,0000
96 - 128	112	0,0000	100,0000	0,0000	0,0000
128 - 180	154	0,0000	100,0000	0,0000	0,0000
Summe:		100,0000		99,9106	0,0894

11.7 Wärmeaustauschflächen

11.7.1 Stickstoff als Wärmeträger

Die Wärmemengen und Temperaturen wurden dem Anhang 11.4 entnommen.

	le Stickstona	ufwärmung
(Bilanzpunkt 6 =	> Bilanzpunkt	† 7)
Alermana a (Aufuermuna)	4040 206	
Warmemenge (Autwarmung)	4949,200	
wannemenge G	4949200,070	[vv]
T (Stickstoff, Ein)	52,14	[°C]
T (Stickstoff, Aus)	200,00	[°C]
T (Topgas, Ein)	360,73	[°C]
T (Topgas, Aus)	322,47	[°C]
∆T _{Ein}	160,73	[K]
ΔT _{Aus}	270,33	[K]
ΔT _{LM}	210,80	[K]
k-Wert	25	[W/m²K]
Austauschfläche A:	939,12	[m²]
Wärmetauscher für die	Sauerstoffa	ufwärmung
		-
	40070.000	0.161
Wärmemenge (Aufwärmung)	10072,899	[kJ/s]
Wärmemenge (Aufwärmung) Wärmemenge Q	10072,899 10072899,11	[kJ/s] [W]
Wärmemenge (Aufwärmung) Wärmemenge Q T (Stickstoff, Ein)	10072,899 10072899,11 350,00	[kJ/s] [W] [°C]
Wärmemenge (Aufwärmung) Wärmemenge Q T (Stickstoff, Ein) T (Stickstoff, Aus)	10072,899 10072899,11 350,00 52,14	[kJ/s] [W] [°C] [°C]
Wärmemenge (Aufwärmung) Wärmemenge Q T (Stickstoff, Ein) T (Stickstoff, Aus) T (Sauerstoff, Ein)	10072,899 10072899,11 350,00 52,14 25,00	[kJ/s] [W] [°C] [°C] [°C]
Wärmemenge (Aufwärmung) Wärmemenge Q T (Stickstoff, Ein) T (Stickstoff, Aus) T (Sauerstoff, Ein) T (Sauerstoff, Aus)	10072,899 10072899,11 350,00 52,14 25,00 300,00	[kJ/s] [W] [°C] [°C] [°C] [°C]
Wärmemenge (Aufwärmung) Wärmemenge Q T (Stickstoff, Ein) T (Stickstoff, Aus) T (Sauerstoff, Ein) T (Sauerstoff, Aus) ΔT _{Ein}	10072,899 10072899,11 350,00 52,14 25,00 300,00 50,00	[kJ/s] [W] [°C] [°C] [°C] [K]
Wärmemenge (Aufwärmung) Wärmemenge Q T (Stickstoff, Ein) T (Stickstoff, Aus) T (Sauerstoff, Ein) T (Sauerstoff, Aus) ΔT _{En} ΔT _{Aus}	10072,899 10072899,11 350,00 52,14 25,00 300,00 50,00 27,14	[kJ/s] [W] [°C] [°C] [°C] [K] [K]
Wärmernenge (Aufwärmung) Wärmernenge Q T (Stickstoff, Ein) T (Stickstoff, Aus) T (Sauerstoff, Aus) T (Sauerstoff, Aus) ΔT _{Ein} ΔT _{Aus} ΔT _{LM}	10072,899 10072899,11 350,00 52,14 25,00 300,00 50,00 27,14 37,41	[KJ/s] [W] [°C] [°C] [°C] [K] [K]
Wärmemenge (Aufwärmung) Wärmemenge Q T (Stickstoff, Ein) T (Stickstoff, Aus) T (Sauerstoff, Aus) T (Sauerstoff, Aus) ΔT _{Ein} ΔT _{Aus} ΔT _{LM} k-Wert	10072,899 10072899,11 350,00 52,14 25,00 300,00 50,00 27,14 37,41 25	[KJ/s] [W] [°C] [°C] [°C] [°C] [K] [K] [K] [W/m²K]

2. Wärmetauscher für di	e Stickstoffa	ufwärmung
(Bilanzpunkt 7 =	> Bilanzpunk	t 8)
Wärmemenge (Aufwärmung)	5123,693	[kJ/s]
Wärmemenge Q	5123693,23	[W]
T (Stickstoff, Ein)	200,00	[°C]
T (Stickstoff, Aus)	350,00	[°C]
T (Topgas, Ein)	400,00	[°C]
T (Topgas, Aus)	360,73	[°C]
ΔT _{Ein} ΔT _{Aus} ΔT _{LM}	50,00 160,73 94,83	[K] [K]
k-Wert	25	[W/m²K]
Austauschfläche A:	2161,31	[m²]
1 Wärmetauscher für die	e Stickstoffa	ufwärmung
(Bilanzpunkt 6 =	> Bilanzpunk	t 8)
1 Wärmetauscher für die	e Stickstoffa	u fwärmung
(Bilanzpunkt 6 =	> Bilanzpunk	<i>t 8)</i>
Wärmemenge (Aufwärmung)	10072,899	[KJ/s]
Wärmemenge Q	10072899,11	[W]
1 Wärmetauscher für die	e Stickstoffa	ufwärmung
(Bilanzpunkt 6 =	> Bilanzpunk	t 8)
Wärmemenge (Aufwärmung)	10072,899	[kJ/s]
Wärmemenge Q	10072899,11	[W]
T (Stickstoff, Ein)	52,14	[°C]
T (Stickstoff, Aus)	350,00	[°C]
T (Topgas, Ein)	400,00	[°C]
T (Topgas, Aus)	322,79	[°C]
1 Wärmetauscher für die (Bilanzpunkt 6 = (Bilanzpunkt 6 = Wärmemenge (Aufwärmung) Wärmemenge Q T (Stickstoff, Ein) T (Stickstoff, Aus) T (Topgas, Ein) T (Topgas, Aus) ΔT _{Ein} ΔT _{LM}	e Stickstoffa > Bilanzpunk 10072,899 10072899,11 52,14 350,00 400,00 322,79 50,00 270,65 130,66	ufwärmung t 8) [kJ/s] [W] [°C] [°C] [°C] [°C] [K] [K] [K]
1 Wärmetauscher für die (Bilanzpunkt 6 = Wärmemenge (Aufwärmung) Wärmemenge Q T (Stickstoff, Ein) T (Stickstoff, Aus) T (Topgas, Ein) T (Topgas, Aus) ΔT _{Ein} ΔT _{LM} k-Wert	e Stickstoffa > Bilanzpunk 10072,899 10072899,11 52,14 350,00 400,00 322,79 50,00 270,65 130,66 25	Ufwärmung t 8) [kJ/s] [W] [°C] [°C] [°C] [°C] [K] [K] [K] [W/m²K]

11.7.2 Dampf als Wärmeträger

11.7.2.1 minimale Dampferzeugung

Die Wärmemengen und Temperaturen können dem Anhang 11.5.1 entnommen werden.

Economiser		
Wärmemenge (Aufwärmung)	2897,453	[kJ/s]
Wärmemenge Q	2897452,598	[W]
T (Wasser, Ein)	105,22	[°C]
T (Wasser, Aus)	260,00	[°C]
T (Topgas, Ein)	338,32	[°C]
T (Topgas, Aus)	315,81	[°C]
ΔT _{Ein}	78,32	[K]
ΔT _{Aus}	210,60	[K]
ΔT_{LM}	133,73	[K]
k-Wert	50	[W/m²K]
Austauschfläche A:	433,33	[m²]

Überhitzer		
Wärmemenge (Aufwärmung)	1115,946	[kJ/s]
Wärmemenge Q	1115945,685	[W]
T (Wasser/Dampf, Ein)	280,81	[°C]
T (Dampf, Aus)	350,00	[°C]
T (Topgas, Ein)	400,00	[°C]
T (Topgas, Aus)	391,45	[°C]
ΔT _{Ein}	50,00	[K]
ΔT _{Aus}	110,63	[K]
ΔT_{LM}	76,34	[K]
k-Wert	25	[W/m²K]
Austauschfläche A:	584,69	[m²]
Dampfkühler		
Wärmemenge (Aufwärmung)	578,688	[kJ/s]
Wärmemenge Q	578688	[W]
T (Sauerstoff, Ein)	285,50	[°C]
T (Sauerstoff, Aus)	300,20	[°C]
T (Dampf, Ein)	350,00	[°C]
T (Dampf, Aus)	300,00	[°C]
ΔT _{Ein}	49,80	[K]
∆T _{Aus}	14,50	[K]
ΔT_{LM}	28,61	[K]
k-Wert	8	[W/m²K]
Austauschfläche A:	2528,41	[m²]

Verdampfer			
Wärmemenge (Aufwärmung)	6918,183	[kJ/s]	
Wärmemenge Q	6918183,482	[\VV]	
T (Wasser, Ein)	268,55	[°C]	
T (Wasser/Dampf, Aus)	280,81	[°C]	
T (Topgas, Ein)	391,45	[°C]	
T (Topgas, Aus)	338,32	[°C]	
ΔT _{Ein}	110,63	[K]	
∆T _{Aus}	69,77	[K]	
∆T _{LM}	88,64	[K]	
k-Wert	600	[W/m²K]	
Austauschfläche A:	130,08	[m²]	

Austauschfläche A:	241,61	[m²]
k-Wert	1500	[W/m²K]
ΔT _{lm}	26,22	[K]
ΔT _{Aus}	43,00	[K]
∆T _{Ein}	14,50	[K]
T (Dampf, Aus)	68,00	[°C]
T (Dampf, Ein)	300,00	[°C]
T (Sauerstoff, Aus)	285,50	[°C]
T (Sauerstoff, Ein)	25,00	[°C]
Wärmemenge Q	9501793,92	[W]
Wärmemenge (Aufwärmung)	9501,794	[kJ/s]
Dampfkondensator		

11.7.2.2 maximale Dampferzeugung

Die Wärmemengen und Temperaturen können dem Anhang 11.5.2 entnommen werden.

Economiser		
Wärmemenge (Aufwärmung)	5428,033	[kJ/s]
Wärmemenge Q	5428033,106	[W]
T (Wasser, Ein)	105,61	[°C]
T (Wasser, Aus)	260,00	[°C]
T (Topgas, Ein)	284,01	[°C]
T (Topgas, Aus)	241,34	[°C]
∆T _{Ein}	24,01	[K]
ΔT _{Aus}	135,73	[K]
ΔT _{LM}	64,50	[K]
k-Wert	50	[W/m²K]
Austauschfläche A:	1683,10	[m²]

Uberhitzer		
Wärmemenge (Aufwärmung)	2095,621	[kJ/s]
Wärmemenge Q	2095620,774	[\VV]
T (Wasser/Dampf, Ein)	280,81	[°C]
T (Dampf, Aus)	350,00	[°C]
T (Topgas, Ein)	400,00	[°C]
T (Topgas, Aus)	383,94	[°C]
ΔT _{Ein}	50,00	[K]
ΔT _{Aus}	103,12	[K]
ΔT _{LM}	73,38	[K]
k-Wert	25	[W/m²K]
Austauschfläche A:	1142,27	[m²]

Verdampfer				
Wärmemenge (Aufwärmung)	12991,572	[kJ/s]		
Wärmemenge Q	12991572,28	[W]		
T (Wasser, Ein)	268,55	[°C]		
T (Wasser/Dampf, Aus)	280,81	[°C]		
T (Topgas, Ein)	383,94	[°C]		
T (Topgas, Aus)	284,01	[°C]		
∆T _{Ein}	103,12	[K]		
ΔT _{Aus}	15,46	[K]		
∆T _{LM}	46,20	[K]		
k-Wert	600	[W/m²K]		
Austauschfläche A:	468,68	[m²]		

Dampfkondensator		
Wärmemenge (Aufwärmung)	9158,370	[kJ/s]
Wärmemenge Q	9158369,89	[W]
T (Sauerstoff, Ein)	25,00	[°C]
T (Sauerstoff, Aus)	276,00	[°C]
T (Dampf, Ein)	300,00	[°C]
T (Dampf, Aus)	68,00	[°C]
∆T _{Ein}	24,00	[K]
∆T _{Aus}	43,00	[K]
ΔT _{LM}	32,58	[K]
k-Wert	1500	[W/m²K]
Austauschfläche A:	187,39	[m²]

Dampfkühle

951,084	[kJ/s]
951084,2177	[W]
276,00	[°C]
300,20	[°C]
350,00	[°C]
300,00	[°C]
49,80	[K]
24,00	[K]
35,34	[K]
8	[W/m²K]
3363,64	[m²]
	951,084 951084,2177 276,00 300,20 350,00 300,00 49,80 24,00 35,34 8 3363,64

11.8 Wirkungsgrad

WIRKUNGSGRAD

Gesamtsystemwirkungsgrad			
Enthalpie - Sauerstoff (Ein)	22,926 [kJ/kg]		
Enthalpie - Sauerstoff (Aus)	290,209 [kJ/kg]		
Enthalpiedifferenz (Sauerstoff)	267,283 [kJ/kg]		
Enthalpie - Topgas (heiß)	504,097 [kJ/kg]		
Nsystem	0,53 [-]		

Wärmeträgerwirkungsgrad: Stickstoff			
Enthalpie - Sauerstoff (Ein)	22,926 [kJ/kg]		
Enthalpie - Sauerstoff (Aus)	290,209 [kJ/kg]		
Enthalpiedifferenz (Sauerstoff)	267,283 [kJ/kg]		
Enthalpie - Stickstoff (heiß)	652,200 [kJ/kg]		
η _{System}	0,41 [-]		

Wärmeträgerwirkungsgrad: Dampf			
Enthalpie - Sauerstoff (Ein)	22,926 [kJ/kg]		
Enthalpie - Sauerstoff (Aus)	290,209 [kJ/kg]		
Enthalpiedifferenz (Sauerstoff)	267,283 [kJ/kg]		
Enthalpie - Dampf (heiß)	3043,900 [kJ/kg]		
η _{System}	0,09 [-]		

11.9 Spezifischer Energieeinsatz

ENERGIEEINSATZ

Wärmeträger: Stickstoff			
∆H _{Topgas}	4,14E+10	[J/h]	
	11499163,9	[J/s] = [W]	
	11499,16	[kW]	
Produktionskapazität	180	[t _{Roheisen} /h]	
Energieeinsatz	63,884	[kWh/t _{Roheisen}]	

Wärmeträger: Dampf - minimale Menge			
ΔH _{Topgas}	4.49E+10 [J/h]		
Topguo	12464101,5 [J/s] = [VV] 12464,10 [KVV]		
Produktionskapazität	180 [t _{Roheisen} /h]		
Energieeinsatz	69,245 [kWh/t _{Roheise}	n]	

Wärmeträger: Dan	npf - maximale Menge
∆H _{Topgas}	8,30E+10 [J/h] 23052639,3 [J/s] = [W] 23052,64 [KW]
Produktionskapazität	180 [t _{Roheisen} /h]
Energieeinsatz	128,070 [kWh/t _{Roheiser}

WARNEI	RÄGER: STI	CKSTOF				
Gaszusamm	nensetzuna:					
Gastasanni	iensetzeng.					
CO	38,5	+/-5	0,385	Volumenstrom (Gas)	300.000 [m ^a _{STP} /h]	
CO ₂	31,5	+/-5	0,315	Druck	3,3 [bar (g)]	
H-0	15,5	+/-5	0,155			
CH	1.5	+/-1	0.015			
N ₂	2	+/-1	0,02			
H ₂ S (ppm)	70	~100	0,00007			
SUMME:	100,007		1,00007			
Eintrittstemp	eratur:	400,00 [°C	2]	Austritts	temperatur: 32	2,47 [°C] 5.62 [K]
Mittlere spezi	fische Wärmekap	azitat - bei E	intrittstemperatu	r: Mittiere s	pezifische Wärmekapazitä	t - bei Austrittstemperatur:
CO	1330,655 [J/m	i®K]		CO	1321,585 [J/mªK]	
CO2	1949,538 [J/m 4007,704 [J/m	PKJ		002	1886,029 [J/m ^a K]	
H-0	1661 151 [.J/m	PK1		H-0	1294,775 [J/mFK] 1642,479 [.l/mFK]	
CH	2018,609 [J/m	r³K]		CH	1918,134 [J/m ³ K]	
N ₂	1321,409 [J/m	ľK]		N ₂	1313,433 [J/m ³ K]	
H ₂ S	1639,492 [J/m	i*K]		H ₂ S	1610,972 [J/m ^a K]	
com (Gascami	isch) =	1567 112 F V	m ³ k/1	com (Gas	nemisch) = 1530	426 [I/m%]
opin (Gasgeni	(501) -	1007.112 [0/	iii Kj	cpin (Gas	gemisch) – 1558	420 [0011-14]
Enthalpiediffe	renz des Topoas	es				
∆H _{Topges}		4,14E+10 [J/	h]			
WÄRMET	RÄGER: DA	MPF - MIN	IMALE MEN	IGE		
Gaszusamm	nensetzuna:					
		10 June 1				
CO	38,5	+/-5	0,385	Volumenstrom (Gas)	300.000 [m ^a stp/h]	
CO2	31,5	+/-5	0,315	Druck	3,3 [bar (g)]	
H ₂ O	13,5	+/-5	0.11			
CH	1,5	+/-1	0,015			
N ₂	2	+/-1	0,02			
H ₂ S (ppm)	70	~100	0,00007			
SUMME:	100,007		1,00007			
_						
Eintrittstemp	eratur:	400,00 [°C 673,15 [K]	1	Austritts	temperatur: 31 58	5,81 [°C] 8,96 [K]
Mittlere spezi	fische Wärmekar	azität - bei E	intrittstemperatu	r: Mittlere s	pezifische Wärmekapazitä	it - bei Austrittstemperatur:
						- berrauen neben per atar
CO	1330,655 [J/m	1ºK]		co	1320,873 [J/m [#] K]	
002		CD I		002	1000,022 [JUIIFN]	
Ha	1297 784 [. l/m	ak1		Ha	1294 567 [. l/m³k]	
H ₂ H ₂ O	1297,784 [J/n 1661,151 [J/n	1²K] 1²K]		H ₂ H ₂ O	1294,567 [J/m ³ K] 1640,880 [J/m ³ K]	
H2 H2O CH4	1297,784 [J/m 1661,151 [J/m 2018,609 [J/m	1 ⁹ K] 1 ⁹ K] 1 ⁹ K]		H2 H2O CH4	1294,567 [J/m³K] 1640,880 [J/m³K] 1909,514 [J/m³K]	
H ₂ H ₂ O CH ₄ N ₂	1297,784 [J/m 1661,151 [J/m 2018,609 [J/m 1321,409 [J/m	1°K] 1°K] 1°K]		H ₂ H ₂ O CH ₄ N ₂	1294,567 [J/m³K] 1640,880 [J/m³K] 1909,514 [J/m³K] 1312,818 [J/m³K]	
H ₂ H ₂ O CH ₄ N ₂ H ₂ S	1297,784 [J/m 1661,151 [J/m 2018,609 [J/m 1321,409 [J/m 1639,492 [J/m	1 ⁹ K] 1 ⁹ K] 1 ⁹ K] 1 ⁹ K]		H ₂ H ₂ O CH4 N ₂ H ₂ S	1294,567 [J/m³K] 1640,880 [J/m³K] 1909,514 [J/m³K] 1312,818 [J/m³K] 1608,240 [J/m³K]	
H ₂ H ₂ O CH ₄ N ₂ H ₂ S cpm (Gasgemi	1297,784 [J/m 1661,151 [J/m 2018,609 [J/m 1321,409 [J/m 1639,492 [J/m isch) =	가지] 가지] 가지] 가지] 1567,112 [J/	m ^a K]	H ₂ H ₂ O CH ₄ N ₂ H ₂ S cpm (Ges	1294,567 [J/m ³ K] 1640,880 [J/m ³ K] 1909,514 [J/m ³ K] 1312,818 [J/m ³ K] 1608,240 [J/m ³ K] gemisch) = 1537	.161 [J/m³K]
H ₂ H ₂ O CH4 N2 H <u>2</u> S cpm (Gasgemi	1297,784 [J/m 1861,151 [J/m 2018,609 [J/m 1321,409 [J/m 1639,492 [J/m	가지] 가지] 가지] 가지] 가지] 1567,112 [J/	m*K]	H ₂ H ₂ O CH ₄ N ₂ H ₂ S cpm (Ges	1294,567 [J/m ² K] 1640,880 [J/m ² K] 1909,514 [J/m ² K] 1312,818 [J/m ² K] 1608,240 [J/m ² K] gemisch) = 1537	.161 [J/m ⁹ K]
H ₂ H ₂ O CH ₄ N ₂ H ₂ S cpm (Gasgemi	1297,784 [J/m 1297,784 [J/m 1881,151 [J/m 2018,609 [J/m 1321,409 [J/m 1639,492 [J/m isch) =	ምK] ምK] ምK] ምK] ተK] 1567.112 [J/	m*K]	H ₂ H ₂ O CH ₄ N ₂ H ₂ S cpm (Gas	1294,567 [J/m ² K] 1640,880 [J/m ² K] 1909,514 [J/m ² K] 1312,818 [J/m ² K] 1608,240 [J/m ² K] gemisch) = 1537	.161 [J/m ⁹ K]
H ₂ H ₂ O CH ₄ N ₂ H ₂ S cpm (Gasgemi Enthalpiediffe ΔH _{Toppas}	1297,784 [J/m 1297,784 [J/m 1661,151 [J/m 2018,609 [J/m 1321,409 [J/m 1639,492 [J/m 1639,492 [J/m	가지] 가지] 가지] 가지] 가지] 가지] 가지] 가지] 가지] 가지]	m*K] h]	H ₂ H ₂ O CH ₄ N ₂ H ₂ S cpm (Gas	1294,567 [J/m ³ K] 1640,880 [J/m ³ K] 1909,514 [J/m ³ K] 1312,818 [J/m ³ K] 1608,240 [J/m ³ K] gemisch) = 1537	.161 [J/m²K]
H ₂ H ₂ O CH ₄ N ₂ H ₂ S cpm (Gasgemi Enthalpiediffe ΔHroogas	1297,724 [J/m 1297,724 [J/m 1861,151 [J/m 2018,609 [J/m 1321,409 [J/m 1639,492 [J/m 1639,492 [J/m renz des Topgas RÅGER: DA	ትኛ] ምና] ምና] 1567.112 [J/ •\$ 4.49E+10 [J/ MPF - MA	m [#] K] h] XIMALE ME I	H ₂ H ₂ O CH ₄ N ₂ H ₂ S cpm (Gas	1294,567 [J/J/m ³ K] 1640,880 [J/m ³ K] 1909,514 [J/m ³ K] 1312,818 [J/J ³ K] 1608,240 [J/m ³ K] gemisch) = 1537	,161 [J/m²K]
H ₂ H ₂ O CH4 N ₂ H ₂ S cpm (Gasgemi Artropped WÄRMET Gaszusamm	1297,724 (J/m 1297,724 (J/m 1861,151 (J/m 2018,609 (J/m 1321,409 (J/m 1321,409 (J/m 1839,492 (J/m 1839,492 (J/m 1839,492 (J/m) 1839,492 (J/m)	PK] PK] PK] PK] PK] 1567,112 [J/ es 4,49E+10 [J/ MPF - MA	m ^a K] h] XIMALE MEI	H2 H2O CH4 N2 H2S cpm (Gas	1294,567 [J/J/m ³ K] 1640,880 [J/J ^{m3} K] 1909,514 [J/J ^{m3} K] 1312,818 [J/J ^{m3} K] 1608,240 [J/J ^{m3} K] gemisch] = 1537	,161 [J/m²K]
H ₂ H ₂ O CH ₄ N ₂ H ₂ S cpm (Gasgemi ΔHτ _{ropas} WÄRMET Gaszusamm	1297,724 (J/m 1297,724 (J/m 1861,151 (J/m 2018,609 (J/m 1321,409 (J/m 1321,409 (J/m 1839,492 (J/m 1839,492 (J/m 1839,492 (J/m) 1839,492 (J/m)	γk] rk rk rk 1567,112 [JJ es 4,49E+10 [JJ MPF - MA	m [#] K] h] XIMALE MEI	H2 H2O CH4 N3 H2S cpm (Gas	1294,567 [J/m*k] 1640,880 [J/m*k] 1909,514 [J/m*k] 1312,818 [J/m*k] 1608,240 [J/m*k] gemisch) = 1537	,161 [J/mªK]
H ₂ H ₂ O CH ₄ N ₂ H ₂ S cpm (Gasgemi Enthalpiediff ΔHτ _{roppes} WÄRMET Gaszusamm CO	1297,724 [J/m 1297,724 [J/m 1861,151 [J/m 2018,609 [J/m 1321,409 [J/m 1321,409 [J/m 1639,492 [J/m] 1639,492 [J/m 1639,492 [J/m] 1639,492	PK] PK] PK] PK] PK] PK] S67,112 [J/ S67,112 [J/ S74] S67,112 [J/ MPF - MA +/-5 +/-5	m [#] K] h] XIMALE MEI 0,385 0.315	H2 H2O CH4 N2 H2S cpm (Gas) Druck	1294,567 [J/m*k] 1640,880 [J/m*k] 1909,514 [J/m*k] 1312,818 [J/m*k] 1608,240 [J/m*k] gemisch) = 1537 300.000 [m*sm/h] 3.3 [her (n)]	.161 [J/m²K]
H₂ H₂O CH₄ N₂ H₂S cpm (Gasgemi Altroopes WÄRMET Gaszusamm CO CO₂ H₅	1297,724 [J/m 1297,724 [J/m 1861,151 [J/m 2018,609 [J/m 1321,409 [J/m 1321,409 [J/m 1839,492 [J/m 1639,492 [J/m isch) =	(PK) (PK)	m [#] K] h] XIMALE MEI 0,385 0,315 0,155	H ₂ H ₂ O CH ₄ N ₂ H ₂ S cpm (Gas NGE Volumenstrom (Gas) Druck	1294,567 [J/m*k] 1640,880 [J/m*k] 1909,514 [J/m*k] 1312,818 [J/m*k] 1608,240 [J/m*k] gemisch) = 1537 300.000 [m*sm/h] 3,3 [bar (g)]	.161 [J/m ⁹ K]
H ₂ H ₂ O CH ₄ N ₂ H ₂ S cpm (Gasgemi ΔH _{7copos} Enthalpiediffe ΔH _{7copos} WÄRMET Gaszusamm CO CO ₂ H ₂ H ₂ O	1297,724 [J/m 1297,724 [J/m 1861,151 [J/m 1321,409 [J/m 1321,409 [J/m 1639,492 [J/m isch] = RÅGER: DA nensetzung: 38,5 31,5 15,5 11	PK] PK] PK] PK] PK] PK] • • • • • • • • • • • • •	m [#] K] XIMALE ME 0,385 0,315 0,155 0,11	H ₂ H ₂ O CH ₄ N ₂ H ₂ S cpm (Gas NGE Volumenstrom (Gas) Druck	1294,567 [J/m*k] 1640,880 [J/m*k] 1909,514 [J/m*k] 1312,818 [J/m*k] 1608,240 [J/m*k] gemisch) = 1537 300.000 [m* ₅₁₀ /n] 3,3 [bar (g)]	.161 [J/mªK]
H ₂ H ₂ O CH ₄ N ₂ H ₂ S cpm (Gasgemi Enthalpiediffe ΔH _{7copos} WÄRMET Gaszusamm CO CO ₂ H ₂ H ₂ O CH ₄	1297,784 (J/m 1297,784 (J/m 1861,151 (J/m 2018,609 (J/m 1321,409 (J/m 1321,409 (J/m 1639,492 (J/m 1639,492 (J/m 1639,492 (J/m 1639,492 (J/m 1639,492 (J/m 123,5) 38,5 31,5 15,5 15,5 11 1,5	PK] PK] PK] PK] PK] PK] PK] PK]	m [#] K] XIMALE MEI 0,385 0,315 0,155 0,111 0,015	H ₂ H ₂ O CH ₄ N ₃ H ₂ S cpm (Ges NGE Volumenstrom (Ges) Druck	1294,567 [J/m*k] 1640,880 [J/m*k] 1909,514 [J/m*k] 1312,818 [J/m*k] 1608,240 [J/m*k] gemisch) = 1537 300.000 [m* _{5m} /h] 3,3 [bar (g)]	,161 [Jim ^a K]
H ₂ H ₂ O CH ₄ N ₂ H ₂ S cpm (Gasgemi Enthalpiediffe AHroopas WÄRMET Gaszusamm CO CO ₂ H ₂ H ₂ O CH ₄ N ₂	1297,724 [J/m 1297,724 [J/m 1861,151 [J/m 2018,609 [J/m 1321,409 [J/m 1839,492 [J/m 1639,492 [J/m] 1639,492 [J/m 1639,492 [J/m] 1639,492 [J/m 1639,492 [J/m] 1639,492 [J/m	PK] PK] PK] PK] PK] PK] PK] PK]	m [#] K] XIMALE MEI 0,385 0,315 0,155 0,11 0,015 0,02	H ₂ H ₂ O CH ₄ N ₅ H ₂ S cpm (Ges NGE Volumenstrom (Ges) Druck	1294,567 [J/m ³ K] 1640,880 [J/m ³ K] 1909,514 [J/m ³ K] 1312,818 [J/m ³ K] 1608,240 [J/m ³ K] gemisch) = 1537 3,300.000 [m ³ sm ² h] 3,3 [bar (g)]	.161 [J/mªK]
H ₂ H ₂ O CH ₄ N ₂ H ₂ S cpm (Gasgemi Enthalpiediffe AHroopas WÄRMET Gaszusamm CO CO ₂ H ₂ H ₂ O CH ₄ N ₂ H ₂ S S(ppm) S(amouther S(ppm))	1297,724 [J/m 1297,724 [J/m 1861,151 [J/m 2018,609 [J/m 1321,409 [J/m 1321,409 [J/m 1639,492 [J/m] 1639,492 [J/m 1639,492 [J/m] 1639,492 [J/m 1639,492 [J/m] 1639,492 [J/m]	PK] PK] PK] PK] PK] PK] PK] PK]	m*K] XIMALE MEI 0.385 0.315 0.155 0.11 0.015 0.02 0.00007 1.00007	H ₂ H ₂ O CH ₄ N ₅ H ₂ S cpm (Ges NGE Volumenstrom (Ges) Druck	1294,567 [J/m ³ K] 1640,880 [J/m ³ K] 1909,514 [J/m ³ K] 1312,818 [J/m ³ K] 1608,240 [J/m ³ K] gemisch) = 1537 3,300.000 [m ³ sm ² h] 3,3 [bar (g)]	,161 [J/m ^a K]
H ₂ H ₂ O CH ₄ N ₂ H ₂ S cpm (Gasgemi Enthalpiediffe ΔH _{frogos} WÄRMET Gaszusamm CO CO ₂ H ₂ H ₂ O CH ₄ N ₂ H ₂ O CH ₄ N ₂ H ₂ O SUMME:	1297,784 (J/m 1297,784 (J/m 1861,151 (J/m 2018,609 (J/m 1321,409 (J/m 1321,409 (J/m 1639,492 (J/m))))))))))))))))))))))))))))))))))))	PK] PK] PK] PK] PK] PK] PK] PK]	m [#] K] XIMALE ME 0,385 0,315 0,155 0,155 0,015 0,002 <u>0,00007</u> 1,00007	H ₂ H ₂ O CH ₄ N ₃ H ₂ S cpm (Ges NGE Volumenstrom (Ges) Druck	1294,567 [J/m*k] 1640,880 [J/m*k] 1909,514 [J/m*k] 1312,818 [J/m*k] 1608,240 [J/m*k] gemisch) = 1537 300.000 [m*sm/h] 3,3 [bar (g)]	,161 [J/mªK]
H ₂ H ₂ O CH ₄ N ₂ H ₂ S cpm (Gasgemi Enthalpiediffe ΔH _{frogos} WÄRMET Gaszusamm CO CO ₂ H ₂ H ₂ O CH ₄ N ₂ H ₂ O CH ₄ N ₂ SUIMME: Eintrittstemp	1297,784 (J/m 1297,784 (J/m 1861,151 (J/m 2018,609 (J/m 1321,409 (J/m 1321,409 (J/m 1639,492 (J/m))))))))))))))))))))))))))))))))))))	γK] γK] γK] γK] γK] γK] 1567,112 [JJ] γJ * - * - * - * - */-5 +/-5 */-5 +/-5 */-5 +/-1 */-100 -	m [#] K] 0,385 0,315 0,155 0,11 0,015 0,02 0,00007 1,00007	H ₂ H ₂ O CH4 N ₃ H ₂ S cpm (Ges NGE Volumenstrom (Ges) Druck	1294,567 [J/m*k] 1640,880 [J/m*k] 1909,514 [J/m*k] 1312,818 [J/m*k] 1608,240 [J/m*k] gemisch) = 1537 3,00 000 [m ^a sm/h] 3,3 [bar (g)] kemperatur: 24	,161 [J/mªK]
H ₂ H ₂ O CH ₄ N ₂ H ₂ S cpm (Gasgemi Enthalpiediffe ΔH _{7copos} WÄRMET Gaszusamm CO CO ₂ H ₂ H ₂ O CH ₄ N ₂ H ₂ S (ppm) SUMME: Eintrittstempt	1297,784 [J/m 1297,784 [J/m 1861,151 [J/m 2018,609 [J/m 1321,409 [J/m 1839,492 [J/m 1639,492 [J/m] 1639,492 [J/m 1639,492 [J/m] 1639,492 [J/m 1639,492 [J/m] 1639,492 [J/m] 1639,49	PK] PK] PK] PK] PK] PK] PK] PK]	m [#] K] XIMALE ME 0,385 0,315 0,15 0,11 0,015 0,02 0,00007 1,00007	H ₂ H ₂ O CH4 N ₂ H ₂ S cpm (Gas NGE Volumenstrom (Gas) Druck Austritter	1294,567 [J/m*k] 1640,880 [J/m*k] 1909,514 [J/m*k] 1312,818 [J/m*k] 1608,240 [J/m*k] gemisch) = 1537 3.00.000 [m*sm/h] 3,3 [bar (g)] temperatur: 24 51	.161 [J/m ^a K] 1,34 [°C] 4,49 [K]
H ₂ H ₂ O CH ₄ N ₂ H ₂ S cpm (Gasgemi Enthalpiediffe ΔH ₁ coges WÄRMET Gaszusamm CO CO ₂ H ₂ H ₂ O CH ₄ N ₂ H ₂ O CH ₄ N ₂ H ₂ O CH ₄ N ₂ Eintrittstemp Mittlere spezi	1297,724 [J/m 1297,724 [J/m 1297,724 [J/m 12018,609 [J/m 1321,409 [J/m 1321,409 [J/m 1321,409 [J/m 1639,492 [J/m] [J/m 1639,492 [J/m] [J	PR(PR(PR() P	m*K] 0,385 0,315 0,155 0,11 0,015 0,02 0,00007 1,00007 1,00007	H2 H2O CH4 N2 H2S cpm (Gas) Druck Austritts r: Mittlere s	1294,567 [J/m*k] 1640,880 [J/m*k] 1909,514 [J/m*k] 1608,240 [J/m*k] gemisch) = 1537 300.000 [m*sm/h] 3,3 [bar (g)] temperatur: 24 51 pezifische Wärmekapazitä	.161 [J/m ^a K] 1,34 [°C] 4,49 [K] it - bei Austrittstemperatur:
H ₂ H ₂ O CH ₄ N ₂ H ₂ S cpm (Gasgemi Enthalpiediffe ΔH ₁ _{coges} WÄRMET Gaszusamm CO CO ₂ H ₂ H ₂ O CO ₂ H ₂ H ₂ O CO ₂ CO ₂ CO ₂ Entrittstemp Mittlere spezi CO	1297,784 (J/m 1297,784 (J/m 1861,151 (J/m 2018,609 (J/m 1321,409 (J/m 1321,409 (J/m 1639,492 (J/m 1639,492 (J/m 1639,492 (J/m 1639,492 (J/m 1639,492 (J/m 1639,492 (J/m 100,007 eratur: 1330,655 (J/m	PK] PK] PK] PK] PK] PK] PK] PK]	m*K] 0,385 0,315 0,11 0,015 0,02 0,00007 1,00007 2] intrittstemperatu	H2 H2O CH4 N2 H2S cpm (Gas) Druck r: Mittlere s CO	1294,567 [J/m*k] 1640,880 [J/m*k] 1909,514 [J/m*k] 1608,240 [J/m*k] gemisch) = 1537 3.00.000 [m*sm/h] 3,3 [bar (g)] temperatur: 24 51 pezifische Wärmekapazitä 1313,612 [J/m*k]	.161 [J/m ^a K] 1,34 [°C] 4,49 [K] t - bei Austrittstemperatur :
H ₂ H ₂ O CH ₄ N ₂ H ₂ S cpm (Gasgemi Enthalpiediffe ΔH ₁ cogas WÄRMET Gaszusamm CO CO ₂ H ₂ H ₂ O CH ₄ N ₂ H ₂ O CH ₄ N ₂ SUMME: Eintrittstempt Mittlere spezi CO CO ₂	1297,724 (J/m 1297,724 (J/m 1861,151 (J/m 2018,609 (J/m 1321,409 (J/m 1321,409 (J/m 1321,409 (J/m 1639,492 (J/m 1639,492 (J/m 1639,492 (J/m 1639,492 (J/m 15,5 15,5 15,5 15,5 15,5 15,5 11,5 15,5 11,5 15,5 11,5 15,5 11,5 11,5 2 70 100,007 eratur: ifache Wärmekag 1330,655 (J/m 1949,538 (J/m	PK] PK] PK] PK] PK] PK] PK] PK]	m*K] 0,385 0,315 0,155 0,11 0,015 0,02 0,00007 1,00007	H ₂ H ₂ O CH ₄ N ₃ H ₂ S cpm (Ges Druck r: Mittlere s CO CO ₂	1294,567 [J/m*k] 1640,880 [J/m*k] 1909,514 [J/m*k] 1608,240 [J/m*k] gemisch) = 1537 300.000 [m*sm/h] 3,3 [bar (g)] temperatur: 24 51 pezifische Wärmekapazitä 1313,612 [J/m*k] 1823,512 [J/m*k]	,161 [J/m²K] 1,34 [°C] 4,49 [K] it - bei Austrittstemperatur:
H2 H2O CH4 N2 H2S cpm (Gasgemi Enthalpiediffe ΔH700000 WÄRMET Gaszusamm CO CO2 H2 H2O CO CO2 H2 H2O CH4 SUMME: Eintrittstemp Mittlere spezi CO CO2 H2	1297,784 (J/m 1297,784 (J/m 1861,151 (J/m 2018,609 (J/m 1321,409 (J/m 1321,409 (J/m 13321,409 (J/m 1639,492 (J/m 1639,492 (J/m 1639,492 (J/m 1639,492 (J/m 100,007 eratur: 1330,655 (J/m 1297,784 (J/m 1297,784 (J/m	PK] PK] PK] PK] PK] PK] PK] PK]	m [#] K] XIMALE MEI 0,385 0,315 0,155 0,11 0,015 0,02 0,00007 1,00007 2] intrittstemperatu	H2 H2O CH4 N3 H2S cpm (Gas) Druck r: Mittlere s CO CO2 H2	1294,567 [J/m*k] 1640,880 [J/m*k] 1909,514 [J/m*k] 1312,818 [J/m*k] 1608,240 [J/m*k] gemisch) = 1537 3,00 000 [m*sm/h] 3,3 [bar (g)] temperatur: 24 51 pezifische Wärmekapazitä 1313,612 [J/m*k] 1823,512 [J/m*k] 1292,977 [J/m*k]	,161 [J/m ^a K] 1,34 [°C] 4,49 [K] it - bei Austrittatemperatur:
H ₂ H ₂ O CH ₄ N ₂ H ₂ S cpm (Gasgemi Enthalpiediffe ΔHτ _{roopas} WÄRMET Gaszusamm CO CO ₂ H ₂ H ₂ O CH ₄ N ₂ S H ₂ O CH ₄ N ₂ S H ₂ O CH ₄ N ₂ S H ₂ O CH ₄ SUMME: Eintrittstempt Mittlere spezi CO CO ₂ H ₂ H ₂ O SUMME:	1297,724 (J/m 1297,724 (J/m 1861,151 (J/m 2018,609 (J/m 1321,409 (J/m 1321,409 (J/m 1334,492 (J/m 1639,492 (J/m 1639,492 (J/m 153,53 15,5 11,5 15,5 11,5 15,5 11,5 15,5 11,5 15,5 11,5 15,5 11,5 15,5 11,5 15,5 11,5 15,5 11,5 15,5 11,5 100,007 eratur: 1330,655 (J/m 1949,538 (J/m 1949,538 (J/m 1949,538 (J/m 1947,538 (J/m) 1947,538 (J/m 1947,538 (J/m) 1947,538 (J/m	PK(PK(PK(PK() P	m*K] XIMALE MEI 0,385 0,315 0,155 0,11 0,015 0,02 0,00007 1,00007	H ₂ H ₂ O CH ₄ N ₃ H ₂ S cpm (Gas) Druck r: Mittlere s CO CO ₂ H ₂ H ₂ O	1294,567 [J/m*k] 1640,880 [J/m*k] 1909,514 [J/m*k] 1808,240 [J/m*k] 1608,240 [J/m*k] gemisch) = 1537 3,3 [bar (g)] 3,3 [bar (g)] temperatur: 24 51 1313,612 [J/m*k] 1823,512 [J/m*k] 1823,512 [J/m*k] 1624,387 [J/m*k] 1624,387 [J/m*k]	1,34 [°C] 1,34 [°C] 1,49 [K] i - bei Austrittstemperatur:
H₂ H₂O CH₄ N₂ H₂S cpm (Gasgemi Enthalpiediffe ΔHroopes WÄRMET Gaszusamm CO CO₂ H₂ H₂O CH₄ N₂ H₂O CO₂ H₂S SUMME: Eintrittstempet Mittlere spezi CO CO₂ H₂ H₂O SUMME: N₂ H₂O CO₂ H₂ H₂O CO₂ H₂ N₂ H₂O CO₂ H₂ N₂ H₂O CO₂ H₂ N₂ H₂O CO₂ H₂ SUMME: Eintrittstempet N₂ H₂O CO₂ H₂ SUMME: Eintrittstempet N₂ H₂O CO₂ H₂ SUMME: Eintrittstempet N₂ H₂O CO₂ H₂ SUMME: Eintrittstempet N₂ H₂O CO₂ H₂ SUMME: Eintrittstempet N₂ H₂O CO₂ H₂ SUMME: Eintrittstempet N₂ H₂O CO₂ H₂ N₂ H₂O CO₂ H₂ SUMME: Eintrittstempet N₂ H₂O CO₂ H₂ N₂ H₂O CO₂ H₂ N₂ H₂O CO₂ H₂ SUMME: Eintrittstempet N₂ H₂O CO₂ H₂ N₂ H₂O CO₂ H₂ N₂ H₂O CO₂ H₂ N₂ H₂O CO₂ H₂ N₂ H₂O CO₂ H₂ N₂ H₂O CO₂ H₂ N₂ H₂O CO₂ H₂ N₂ H₂O CO₂ H₂ N₂ H₂O CO₂ H₂ N₂ H₂O CO₂ H₂ N₂ H₂O CO₂ H₂ N₂ H₂O CO₂ H₂ H₂O N₂ H₂O N₂ H₂O N₂ H₂O N₂ H₂O N₂ H₂O N₂ H₂O N₂ H₂O N₂ H₂O N₂ H₂O N₂ H₂O N₂ H₂O N₂ H₂O N₂ H₂O N₂ H₂O N₂ H₂O N₂ H₂O CO₂ H₂O H₂O CO₂ H₂O H₂O N₂ H₂O CO₂ H₂O N∑ N☐	1297,724 (J/m 1297,724 (J/m 1861,151 (J/m 2018,609 (J/m 1321,409 (J/m 1321,409 (J/m 1334,492 (J/m 1639,492 (J/m 1639,492 (J/m 1639,492 (J/m 15,5 11,5 15,5 11,5 15,5 11,5 15,5 11,5 15,5 11,5 2,70 100,007 eratur: 1330,655 (J/m 1949,538 (J/m))))))))))))))))))))))))))))))))))))	*/- */- */- */- */-5 */-5 */-5 */-5 */-5 */-5 */-5 */-5 */-1 */-1 */-1 */-1 */-1 */-1 */-1 */-1 */-1 */-1 */-1 */-1 */-1 */-1 */-1 */-1 */-5 */-1	m*K] XIMALE MEI 0,385 0,315 0,115 0,015 0,0007 1,00007 1,00007	H ₂ H ₂ O CH ₄ N ₂ H ₂ S cpm (Gas) Druck r: Mittlere s CO CO ₂ H ₃ H ₂ O CH ₄	1294,567 [J/m*k] 1640,880 [J/m*k] 1909,514 [J/m*k] 1608,240 [J/m*k] 1608,240 [J/m*k] gemisch) = 1537 3.00 000 [m*sm/h] 3,3 [bar (g)] temperatur: 24 51 pezifische Wärmekapazitä 1313,612 [J/m*k] 1823,512 [J/m*k] 1292,977 [J/m*k] 1292,977 [J/m*k] 1813,858 [J/m*k] 1813,858 [J/m*k]	
H₂ H₂O CH₄ N₂ H₂S cpm (Gasgemi Enthalpiediffe ΔHroopes WÄRMET Gaszusamm CO CO₂ H₂ H₂O CH₄ N₂ H₂O CH₄ Mittlere spezi CO CO₂ H₂ SUMME: Eintrittstempu Mittlere spezi CO CO₂ H₂ SUMME: Eintrittstempu Mittlere spezi	1297,724 [J/m 1297,724 [J/m 1297,724 [J/m 1861,151 [J/m 2018,609 [J/m 1321,409 [J/m 1321,409 [J/m 1633,492 [J/m 1633,492 [J/m 100,007 eratur: 1330,855 [J/m 1949,538 [J/m 1949,538 [J/m 1949,538 [J/m 1297,724 [J/m 1633,492 [J/m 1633,492 [J/m 1633,492 [J/m 1633,492 [J/m	유지 유지 유지 유지 유지 유지 유지 유지 유지 유지	m*K] XIMALE MEI 0,385 0,315 0,115 0,015 0,0007 1,00007 1,00007	H2 H2O CH4 N2 H2S cpm (Gas) Druck r: Mittlere s CO CO2 H2 H2O CH4 N2 H2O CH4 N2 H3O CH4 N2 H3O CH4 N2 H3O CH4	1294,567 [J/m*k] 1640,880 [J/m*k] 1909,514 [J/m*k] 1608,240 [J/m*k] gemisch) = 1537 300 000 [m*gm/h] 3,3 [bar (g)] 4.000,000 [m*gm/h] 3,3 [bar (g)] 1313,612 [J/m*k] 1313,612 [J/m*k] 1282,512 [J/m*k] 1282,977 [J/m*k] 1624,387 [J/m*k] 1624,387 [J/m*k] 1624,387 [J/m*k] 1616,24,387 [J/m*k] 1624,387 [J/m*k] 159,76 [J/m*k] 159,76 [J/m*k]	1.34 [°C] 4.49 [K] it - bel Austrittstemperatur:
H₂ H₂O CH₄ N₂ H₂S cpm (Gasgemi Enthalpiediffe ΔH _{Troppes} WÄRMET Gaszusamm CO CO ₂ H₂ H₂O CH₄ N₂ H₂O SUMME: Eintrittstempe Mittlere spezi CO CO ₂ H₂ H₂O CH₄ N₂ H₂O CH₄ N₂ H₂O CO CO ₂ H₂ SUMME: Eintrittstempe Mittlere spezi	1297,724 (J/m 1297,724 (J/m 1861,151 (J/m 2018,609 (J/m 1321,409 (J/m 1332,409 (J/m 1334,492 (J/m 1639,492 (J/m 1635,492 (J/m 100,007 eratur: 1330,655 (J/m 149,538 (J/m 149,538 (J/m 149,538 (J/m 1297,724 (J/m 1661,151 (J/m 1297,724 (J/m 1661,151 (J/m 1297,724 (J/m 1661,151 (J/m 1297,724 (J/m 1661,151 (J/m 1297,724 (J/m 1663,492 (J/m)	PR(PR(PR() PR() PR() PR() PR() PR() 4.449E+10 [J/ WPF - MA +/-5 +/-5 +/-5 +/-5 +/-5 +/-1 +/-1 ~100 400,00 [% PR()	m*K] XIMALE MEI 0,385 0,315 0,155 0,11 0,015 0,020 0,00007 1,00007 1,00007	H2 H2O CH4 N2 H2S cpm (Gas) Druck r: Mittlere s CO CO2 H3 H2O CH4 N2 H2S	1294,567 [J/m*k] 1640,880 [J/m*k] 1909,514 [J/m*k] 1608,240 [J/m*k] gemisch) = 1537 3.00 000 [m*sm/h] 3.3 [bar (g)] temperatur: 24 51 pezifische Wärnekazitä 1313,612 [J/m*k] 1282,512 [J/m*k] 1282,977 [J/m*k] 1306,916 [J/m*k] 1579,776 [J/m*k]	1,34 [°C] 4,49 [K] i - bei Austrittstemperatur:
H₂ H₂O CH₄ N₂ H₂S cpm (Gasgemi Enthalpiediffe ΔHroopasi WÄRMET Gaszusamm CO CO₂ H₂ H₂O CH₄ N₂ H₂O SUMME: Eintrittstempe Mittlere spezi CO CO₂ H₂ H₂O CH₄ N₂ H₂O CH₄ N₂ H₂O CO CO₂ H₂ SUMME: Eintrittstempe Mittlere spezi CO CO₂ H₂ H₂O CO CO₂ H₂ SUMME: Eintrittstempe Mittlere spezi CO CO₂ H₂ H₂O CO CO₂ H₂ SUMME: Eintrittstempe Mittlere spezi CO CO₂ H₂ H₂O CO CO₂ H₂ SUMME: CO CO₂ H₂ SUMME: Eintrittstempe Mittlere spezi CO CO₂ H₂ H₂O CO CO₂ H₂ SUMME: CO CO₂ H₂ SUMME: Eintrittstempe H₂O CO CO₂ H₂ SUMME: CO CO₂ H₂ H₂O CO CO₂ H₂ SUMME: CO CO₂ H₂ SUMME: CO CO₂ H₂ CO CO₂ H₂ SUMME: CO CO₂ H₂ CO CO₂ H₂ CO CO CO CO CO CO CO CO CO CO	1297,724 (J/m 1297,724 (J/m 1861,151 (J/m 2018,609 (J/m 1321,409 (J/m 1321,409 (J/m 1339,492 (J/m 1639,492 (J/m 1639,492 (J/m 155,5 11 1,5 2 70 100,007 eratur: 1330,655 (J/m 1949,538 (J/m 1297,724 (J/m) 1297,724 (J	РК] РК] РК] РК] РК] РК] РК] РК]	m*K] NIMALE MEI 0.385 0.315 0.155 0.11 0.015 0.02 0.0007 1.00007 1.00007	H ₂ H ₂ O CH ₄ N ₂ H ₂ S cpm (Gas) Druck r: Mittlere s CO CO ₂ H ₃ H ₂ O CH ₄ N ₂ H ₂ S cpm (Gas) CO ₂ H ₃ H ₂ O CH ₄ N ₂ H ₂ S CO CO ₂ H ₃ H ₂ O CH ₄ N ₂ H ₂ S CO CO ₂ H ₃ H ₂ O CH ₄ CO CO ₂ H ₃ H ₂ O CH ₄ CO CO ₂ CO CO ₂ CH ₄ CO CO ₂ CO CO ₂ CO CO CO ₂ CH ₄ CO CO CO CO CO CO CO CO CO CO CO CO CO	1294,567 [J/m*k] 1640,880 [J/m*k] 1909,514 [J/m*k] 1608,240 [J/m*k] gemisch) = 1537 3.00 000 [m*sm/h] 3.3 [bar (g)] temperatur: 24 51 1313,612 [J/m*k] 1323,512 [J/m*k] 1292,977 [J/m*k] 1624,387 [J/m*k] 1813,858 [J/m*k] 1579,776 [J/m*k] 1579,776 [J/m*k]	.161 [J/m ^p K] 1,34 [°C] 4,49 [K] i - bei Austrittstemperatur: ,698 [J/m ^p K]
H ₂ H ₂ O CH ₄ N ₂ H ₂ S cpm (Gasgemi Enthalpiediffe ΔHr _{roopas} WÄRMET Gaszusamm CO CO ₂ H ₂ H ₂ O CH ₄ N ₂ H ₂ O CH ₄ N ₂ H ₂ S SUMME: Eintrittstemp Mittlere spezi CO CO ₂ H ₂ H ₂ O CH ₄ N ₂ H ₂ S cpm (Gasgemi	1297,784 (J/m 1297,784 (J/m 1861,151 (J/m 2018,609 (J/m 1321,409 (J/m 1321,409 (J/m 1321,409 (J/m 1334,492 (J/m 1639,492 (J/m 100,007 eratur: 1330,655 (J/m 1949,538 (J/m 1297,784 (J/m 1661,151 (J/m 1297,784 (J/m 1663,492 (J/m 1639,492 (J/m 1639,492 (J/m 1639,492 (J/m 1639,492 (J/m 1639,492 (J/m) 1639,492 (J/m)	РК] РК] РК] РК] РК] РК] РК] РК]	m*K] NIMALE MEI 0,385 0,315 0,155 0,115 0,02 0,00007 1,00007 1,00007 1,00007 m*K]	H ₂ H ₂ O CH ₄ N ₂ H ₂ S cpm (Gas) Druck r: Mittlere s CO CO ₂ H ₃ H ₂ O CH ₄ N ₂ H ₂ S cpm (Gas) CO ₂ H ₃ H ₂ O CH ₄ N ₂ H ₂ S CO CO ₂ H ₃ H ₂ O CH ₄ N ₂ CO CO ₂ H ₃ H ₂ O CH ₄ CO CO ₂ CO CO ₂ H ₃ H ₂ O CH ₄ CO CO ₂ CO CO ₂ CH ₄ CO CO ₂ CO CO ₂ CO CO CO ₂ CH ₄ CO CO CO CO CO CO CO CO CO CO CO CO CO	1294,567 [J/m*k] 1640,880 [J/m*k] 1909,514 [J/m*k] 1608,240 [J/m*k] gemisch) = 1537 3,3 [bar (g)] 3,3 [bar (g)] temperatur: 24 1313,612 [J/m*k] 1313,612 [J/m*k] 1292,977 [J/m*k] 1624,387 [J/m*k] 1624,387 [J/m*k] 1624,387 [J/m*k] 1624,387 [J/m*k] 1579,776 [J/m*k] 1579,776 [J/m*k]	.161 [J/m ^p K] 1,34 [°C] 4,49 [K] t - bei Austrittstemperatur: .698 [J/m ^p K]
H ₂ H ₂ O CH ₄ N ₂ H ₂ S cpm (Gasgemi Enthalpiediffe ΔH ₇₀₀₉₀₅ WÄRMET Gaszusamm CO CO ₂ H ₂ H ₂ O CH ₄ N ₂ H ₂ O CH ₄ N ₂ H ₂ S (ppm) SUMME: Eintrittstempi Mittlere spezi CO CO ₂ H ₂ H ₂ O CH ₄ N ₂ H ₂ S cpm (Gasgemi Enthalpiediffe	1297,784 (J/m 1297,784 (J/m 1861,151 (J/m 2018,609 (J/m 1321,409 (J/m 1321,409 (J/m 1639,492 (J/m 1639,492 (J/m 1639,695 (J/m 1297,784 (J/m 1661,151 (J/m 1297,784 (J/m 1681,155 (J/m 1297,784 (J/m 1681,151 (J/m 1297,784 (J/m 1681,151 (J/m 1321,409 (J/m 1639,492 (J/m 1639,492 (J/m 1639,492 (J/m) 1639,492 (J/m) 16	РК] РК] РК] РК] РК] РК] РК] РК]	m*K] NIMALE MEI 0,385 0,315 0,155 0,155 0,11 0,015 0,02 0,00007 1,00007 1,00007 m*K] hl	H ₂ H ₂ O CH ₄ N ₂ H ₂ S cpm (Gas) Druck r: Mittlere s CO CO ₂ H ₃ H ₂ O CH ₄ N ₂ H ₂ S cpm (Gas) CO ₂ H ₃ H ₂ O CH ₄ N ₂ H ₂ S CO CO ₂ H ₃ H ₂ O CH ₄ N ₂ CO CO ₂ H ₃ H ₂ O CH ₄ CO CO ₂ CO CO ₂ H ₃ H ₂ O CH ₄ CO CO ₂ CO CO ₂ CO CO ₂ CH ₄ CO CO CO CO CO CO CO CO CO CO CO CO CO	1294,567 [J/m*k] 1640,880 [J/m*k] 1909,514 [J/m*k] 1608,240 [J/m*k] gemisch) = 1537 3,3 [bar (g)] temperatur: 24 1313,612 [J/m*k] 1313,612 [J/m*k] 1292,977 [J/m*k] 1624,387 [J/m*k] 1624,387 [J/m*k] 1624,387 [J/m*k] 1624,387 [J/m*k] 1624,387 [J/m*k] 1626,387 [J/m*k] 1579,776 [J/m*k]	.161 [J/m ^p K] 1,34 [°C] 4,49 [K] i - bei Austrittstemperatur:

