
Chair of Cyber Physical Systems

Master's Thesis

A Framework for Learning Visual and
Tactile Correlation

Benjamin Schödinger, BSc
October 2022

A Framework for Learning Visual and Tactile

Correlation

Master Thesis by Benjamin Schödinger1

1benjamin.schoedinger@stud.unileoben.ac.at, m11770592, Montanuniversität Leoben, Austria

Leoben, Austria, October 25, 2022

1st supervisor: Univ.-Prof. Dipl.-Ing. Dr.techn. Elmar Rueckert

2nd supervisor: Vedant Dave, M.Sc.

Chair of Cyber-Physical-Systems

Montanuniversitąt Leoben, Austria

A Framework for Learning Visual and Tactile Correlation

ACKNOWLEDGEMENTS

I would like to express my gratitude to my primary supervisor Vedant Dave MSc, who guided me, always

gave great advice on how to overcome the problems throughout this project and patiently answered

all the questions I had. I would also like to thank Univ.-Prof. Dr. Elmar Rueckert who made this thesis

possible and greatly advised me on how to present a thesis properly.

Page 3 of 83

A Framework for Learning Visual and Tactile Correlation

ABSTRACT

Tactile data is an important source of information for applications in fields such as object manipulation

or object recognition. However, the process of gathering the tactile data can be inconvenient and time

consuming. For example a robotic manipulator would have to grasp the object to be moved every time

to gather the tactile information and then again to finally pick it up. This thesis proposes a way to

overcome this kind of issue by implementing a method to predict what the tactile feedback sensors

would measure when touching an object at a given position, based on two dimensional visual data.

Therefore, visual-tactile data pairs were gathered to train a Convolutional Neural Network that takes

images of objects with the positions of interest marked as the input and the force vector as the output.

To improve performances, the edges of the input images were extracted using the Canny algorithm, a

new architecture was developed and the training process optimised with the Bayesian Optimisation

algorithm. An evaluation strategy was developed and a test set built, to be able to effectively compare

the different models to each other. The result is a framework that is capable of understanding the spacial

relationship between tactile sensors and surfaces but lacks in accuracy, as a result of noisy data. The

noise is caused by inaccurate sensors and a sub-optimal acquisition strategy.

KURZFASSUNG

Taktile Daten sind eine wichtige Informationsquelle für Anwendungen in Bereichen wie der Objekt

Manipulation oder der Objekt Erkennung, aber die Sammlung der Daten kann Zeitintensiv und prob-

lematisch sein. Zum Beispiel, ein Manipulator müsste jedes Mal das zu bewegende Objekt greifen um

die taktilen Informationen zu sammeln und dann noch einmal um es endgültig aufzuheben. Diese

Masterarbeit schlągt ein System vor, das hilft dieses Problem zu umgehen, indem es die Taktilen Daten,

die Sensoren messen würden, wenn sie ein Objekt an einer gewissen Stelle berühren, basierend auf

zweidimensionalen visuellen Informationen. Dafür wurden visuell-taktile Datenpaare gesammelt, um

ein Convolutional Neural Network zu trainieren, das Bilder von Objekten als Input nimmt und die

Kraftvektoren ausgibt. Um bessere Ergebnisse zu erzielen, wurden die Kanten in den Bildern mit dem

Canny Algorithmus extrahiert, eine neue Architektur entwickelt und der Training Prozess mit dem

Bayesian Optimisation Algorithmus optimiert. Es wurde eine Evaluations Strategie entwickelt und ein

Test Set eingerichtet, um die verschiedenen Modelle effektiv miteinander vergleichen zu können. Das

Resultat ist ein System, das die rąumlichen Beziehungen zwischen taktilen Sensoren und Oberfląchen

versteht, aber an Genauigkeit zu wünschen übrigląsst. als Folge von ungenaue Daten. Die schlechte

Qualitąt der Daten ist auf ungenaue Sensoren und die suboptimale Strategie der Datensammlung

zurückzuführen.

Page 4 of 83

A Framework for Learning Visual and Tactile Correlation

Contents

1 Introduction 7

1.1 Motivation . 7

1.2 Related Work . 7

1.3 Thesis Outlook . 8

2 Fundamentals and Background Methods 9

2.1 Neural Networks . 9

2.1.1 Feedforward Neural Networks . 9

2.1.2 Convolutional Neural Networks . 10

2.1.3 Training of a Neural Network . 11

2.1.4 Dataset Augmentation . 12

2.2 Bayesian Optimization for Hyperparameter Optimization 12

2.3 Edge Detection Algorithm . 13

3 Experimental Setup & Data Processing 15

3.1 Experimental Setup . 15

3.2 The Data . 16

3.2.1 Visual Data . 16

3.2.2 Tactile Data . 19

3.3 The Bounding Box Network . 21

4 Evaluation Strategy 23

4.1 Error Computation . 25

4.2 Inaccuracy Computation . 26

5 Using CNNs for Learning Visual-Tactile Correlation 27

5.1 Choosing the Best Image Variation . 27

5.2 Building the Architecture . 27

5.3 Optimizing the Hyperparameters & Final Results . 29

6 Evaluation Results 30

6.1 Comparison of the Image Variations . 30

6.2 Comparison of the Architectures . 32

6.3 Performance Improvement by Bayesian Optimisation 34

7 Conclusion 36

7.1 Discussion . 36

7.2 Future Work . 37

Bibliography 38

A APPENDIX 40

A.1 Example Model Predictions . 40

A.2 Architectures & Hyperparameters . 42

A.3 Code . 49

A.3.1 Tactile Data Preprocessing . 49

A.3.2 Image Preprocessing . 56

A.3.3 The Network: Architecture, Dataset, Training, Optimization & Evaluation 69

A.3.4 The Bounding Box Network . 81

Page 5 of 83

A Framework for Learning Visual and Tactile Correlation

List of Figures

1 Feedforward Neural Network . 9

2 Convolution Operation . 10

3 Gradient Descent . 11

4 Chain Rule . 12

5 Bayesian Optimization . 13

6 Non-maximum Suppression . 14

7 Hysterisis Thresholding . 14

8 Data Gathering Setup . 15

9 Variations of Input Images . 17

10 Example of Tactile Data . 19

11 Gathering Tactile Data . 19

12 Split Tactile Data . 20

13 Force on Finger . 21

14 Data Augmentation for the Bounding Box . 22

15 Example Error Distribution . 24

16 Evaluation Strategy . 24

17 Architecture Idea . 27

18 Architecture . 28

19 Function to Maximise for the Bayesian Optimization Algorithm 29

20 Model Prediction Examples 1/2 . 40

21 Model Prediction Examples 2/2 . 41

List of Tables

1 Finger Sensor Specifications . 15

2 Computer Specifications . 16

3 The Amount of Data . 16

4 Bounding Box Network Training Parameters . 22

5 Bounding Box Model Performance . 22

6 Performance of the Best architecture (SchoeConv227 - V2) Optimised. 29

7 Performances of the Image Variations - Tested with AlexNet 30

8 Performances of the best Image Variations - Tested with SchoeConv100 - V3(FC160) . . 31

9 Performances of the best Image Variations - Tested with SchoeConv227 - V1 31

10 Architecture Performances 1/2 . 32

11 Architecture Performances 2/2 . 33

12 Performances after Bayesian Optimisation - SchoeConv100 - V3(FC160) 34

13 Performances after Bayesian Optimisation - SchoeConv227 - V2 35

14 Training Parameters for Image Variation and Network Architecture Comparison 42

Page 6 of 83

A Framework for Learning Visual and Tactile Correlation

1 Introduction

For us humans it comes naturally to use our senses to acquire information about the world around

us. When we pick up an object our tactual perception provides us with numerous aspects related to

the objects material such as roughness, compliance or coldness (Bergmann Tiest, 2010). In fact, we

can effortlessly distinguish numerous categories of materials such as textiles, stones, liquids etc. and

even recognise materials within each class solely by looking at them. Additionally we are capable of

predicting how an object would feel when touched and what the physical properties like density or

thermal conductivity would be (Fleming, 2014). This skill, namely knowing how something feels purely

based on vision, can also be very useful in the world of robotics because it can provide tactile information

without the necessity to establish physical contact with the object, which can be inconvenient and time

consuming. This thesis proposes a method to teach computers the perception of touch. Specifically this

project implements a framework which predicts the feedback the tactile sensors would measure when

touching an object at a given position with 2D images as the input.

1.1 Motivation

Tactile data is a valuable source of information for multiple purposes such as object manipulation or

object recognition. In robot grasping it is used to predict the stability (Dang and Allen, 2012) or assess

the quality of a grasp and subsequently adjust the configuration (Chebotar et al., 2016; Hyttinen, Kragic,

and Detry, 2017). Furthermore the manipulation process can be monitored to detect slipping events

and readjust the gripping force using tactile sensors (Dong et al., 2019). For recognizing objects, tactile

data can be used as an additional source of information to improve the accuracy (Liu et al., 2017;

Zhang et al., 2021) or as input for a framework trained with visual data (Falco et al., 2017), which can

be imagined as looking for something in a box without seeing the inside, based on knowledge of the

appearance of the object.

In some applications of tactile information it can be an obstacle and an inconvenience to gather

the data. For example consider the case of an manipulator that takes objects off of a conveyor belt.

Before the robot picks up the object it needs to decide how hard and where to grasp. If physical contact

had to be established every time before something can be manipulated, that could cost a considerable

amount of time. Consequently if the robot had the ability to predict what it would "feel" when it touches

something, just as we humans are capable of, it could accelerate the process.

1.2 Related Work

The most relevant and inspiring paper for this thesis was published by Zapata-Impata et al. (2021).

They proposed a method to predict the response of the tactile sensors by using 3D point clouds. They

use the PointNet (Qi et al., 2017) architecture to extract features from the 3D input, combine them with

the coordinates of the points of interest and then use fully connected layers to map from the features

to the sensor feedback. This work is one of very few which actually aim for generating tactile data

as if produced by a sensor. Later they improved their framework by training a Generative Adversarial

Network (developed by Goodfellow et al. (2020)) to generate fake training data (Zapata-Impata and

Gil, 2020).

It is more common to try to categorize the surfaces of objects by describing its properties. The

approach is still similar but the goal is different. For example Takahashi and Tan (2019) implemented

a method to estimate the tactile properties such as the roughness or hardness of a surface based on

images by using an encoder-decoder network. Therefore they trained the network to predict the tactile

sensor feedback and then use the latent variables to estimate the surface properties. Purri and Dana

(2020) also implemented a method to estimate the tactile properties using a GAN and a viewpoint

selector to find the best subset of images.

Page 7 of 83

A Framework for Learning Visual and Tactile Correlation

Another approach of mapping visual data to a tactile response was done by Shin et al. (2019). They

implemented a method using a combination of CNNs and RNNs to infer contact forces between an

object and a special tool based on videos.

In some cases the goal is more specific than simply producing tactile data. Pinto and Gupta (2016)

trained a framework that suggests grasp configurations based on visual data. Therefore they implemented

a Convolutional Neural Network which takes an image of the object to grasp as the input and gives a 18
dimensional vector where each dimension represents the likelihood of whether the center of the object

is graspable at different configurations (0, 10, ..., 170°). They gathered the data by picking up objects

multiple times at different positions and used the tactile data to decide whether a grasp was successful

or not.

Many works utilize GelSight sensors which provide three dimensional surface data of the touched

object based on the deformation of the grasping surface, captured by an optical sensor and are therefore

somewhat related to visual data. Therefore these sensors are often used for cross-modal data generation.

Lee, Bollegala, and Luo (2019) implemented a method to generate visual images from tactile images,

captured with a GelSight sensor, of cloth textures and vice versa using GANs. Li et al. (2019) also used

the GelSight sensors to implement a cross-modal prediction model, which finds the touched position in

a scene based on the tactile data or predicts the tactile feedback based on visual input.

1.3 Thesis Outlook

In this thesis first the most important background methods are described and explained in Section 2,

so a reader without any knowledge in machine learning can follow the work done. Section 2 covers

the basics of Feedforward Neural Networks to get a grasp of how neural networks operate, explains

Convolutional Neural Networks, the training process, what Data Augmentation is and describes the

Bayesian Optimization and Canny Edge Detection algorithms. Next the equipment used to gather

the needed data is introduced, followed by a detailed description of the acquisition process, the data

structure and possible inaccuracies for both visual and tactile information (Sections 3.1 & 3.2). A

separate algorithm was implemented, called the Bounding Box Network, to generate some of the

visual data variations and is described in Section 3.3. In Section 4 the strategy and the implemented

parameters to evaluate the main algorithm is explained. In Section 5 the choosing process of the best

image variation, the proposed architecture and the optimisation of the training process are described.

The last Section concludes and discusses the thesis and gives an outlook for possible future work.

Page 8 of 83

A Framework for Learning Visual and Tactile Correlation

2 Fundamentals and Background Methods

This section introduces the basics and some additional information about neural networks, the Bayesian

Optimization algorithm and the Canny Edge Detection algorithm.

2.1 Neural Networks

The heart of the framework implemented in this thesis is a Convolutional Neural Network which typically

consists of convolutional, pooling and in the end fully connected layers to classify or regress. It uses

activation functions and has to be trained using, for example, gradient descent with the gradients

computed by back-propagation. This subsection briefly explains all the above and some more, so a

reader without prior knowledge in this field is able to understand the work done in this thesis. All the

information in this subsection is summarized from Goodfellow, Bengio, and Courville (2016).

2.1.1 Feedforward Neural Networks

The goal of Feedforward Neural Networks is to approximate some function f∗. For example a classifier

maps an input x to a category y: y = f∗(x). The neural network defines a mapping y = f(x;θ) and
learns the parameters θ that result in the best function approximation. They are called networks because

they are typically composed of many different functions. For example f(x) could be formed of three

functions f (1), f (2) and f (3) connected in a chain, representing the first, second and third layer, resulting

in f(x) = f (3)(f (2)(f (1)(x))). The overall length of the chain gives the depth of the model. The final

layer of a neural network is called the output layer.

To reach the goal of matching f(x) to f∗(x) the network has to be trained. The training data is

usually a set of examples x accompanied by labels y ≈ f∗(x) which specify what the values of the

output layers should be. The behaviour of the hidden layers (the layers between input and output) is

not defined by the training data. It is the learning algorithms task to decide how to change those layers

to produce the desired output and implement the best possible approximation of f∗. Each hidden layer

is typically vector-valued and their dimensionality determines the width of the network.

For better understanding lets describe a neural network with one hidden layer containing two units

two inputs and one output shown in Figure 1. The hidden layer can be described as h = f (1)(x;θ) =
f (1)(x;W , c) where x is the input, W the weights and c the biases. The hidden layer is then used as

the input for the second layer which computes the output: y = f (2)(h;w, b). Note that the weights here

are a vector and the bias a scalar because there is only one output of the last layer in contrast to the

hidden layer where the weights are a matrix and the biases a vector. Finally the complete model can be

described as f(x;W , c,w, b) = f (2)(f (1)(x).

Figure 1: Illustration of a feedforward neural network with two inputs one hidden layer with two units and one

output. Source: Goodfellow, Bengio, and Courville (2016)

If all layers are linear functions than the whole network would remain a linear function of its input.

To overcome this restriction most neural networks use nonlinear activation functions in their hidden

Page 9 of 83

A Framework for Learning Visual and Tactile Correlation

layers. In most cases the Rectified Linear Unit or ReLU is recommended and is defined by the activation

function g(z) = max{0, z}.

2.1.2 Convolutional Neural Networks

Convolutional Neural Networks are a a specialized kind of neural networks for processing data that

has a known, grid-like topology like image data which can be thought of as 2D grid of pixels. As the

name suggests these kind of networks employ a mathematical operation called convolution (in German:

Faltung), typically denoted with an asterisk(∗). How this operation is applied on data such as images is

best explained with an illustration (Figure 2): The kernel moves along the input, which in many cases is

an image, and computes the feature map. It can be thought of as a detector with the task of finding

small and meaningful features.

Figure 2: The convolution operation applied on two dimensional data.

Source: Goodfellow, Bengio, and Courville (2016)

In traditional neural networks each output interacts with and has separate parameters for every input.

This results in m× n interactions and parameters with m as the number of inputs and n as the number

of outputs. Convolutional Neural Networks however have sparse interactions. This is accomplished by

making the kernel much smaller than the input which means that fewer parameters need to be stored,

the computing requires fewer operations and improves the statistical efficiency. Additionally the kernel

typically uses the same parameters at every position (called parameter sharing) of the input, which

reduces the storage requirements even further. The total amount of computations with k as the number

of kernel parameters is then k × n. Parameter sharing causes the model to have a convenient side effect

called equivariance to translation. Explained with the example of an image it means that convolution

creates a 2D map of where certain features appear in the input and if this feature moves in the input its

representation in the output moves by the same amount.

In a typical convolutional network one layer consists of three stages. In the first stage multiple

convolutions are performed in parallel to produce a set of linear activations. This simply means that

different kernels are used to produce different activations from the same input. Next the outputs of

the convolutional stage are run through nonlinear activation functions. In the third stage a function is

applied which replaces the output of the net at a certain location with a summary statistic of the nearby

outputs, called pooling function. This stage helps to make the representation approximately invariant

Page 10 of 83

A Framework for Learning Visual and Tactile Correlation

to small translations of the input. Invarinace to translation means that if the input is translated by a

small amount the values of the most pooled outputs do not change. This is useful if we need to know if

a feature is present but not exactly where it is. For example if we try to find a face in an image it is not

necessary to know the exact positions of the eyes, it is sufficient to know that there is one on the left

side and on the right side of the face.

2.1.3 Training of a Neural Network

Most deep learning algorithms involve optimisation of some sort, which refers to the task of maximizing

or minimizing some function f(x) by altering x. The function to be minimized has different names

under different circumstances but will be referred to as cost function or loss function in this thesis.

This cost function quantifies the accuracy of the models output by comparing it with the labels of the

training or validation set. There are many cost functions for different kinds of outputs but in this thesis

the neural network is used for regression, so the Mean Squared Error (MSE) loss is used. The MSE is

shown in Equation 1, where ŷ are the predictions of the model and y are the labels.

MSE =
1

m

∑

i

(ŷ − y)2i (1)

Suppose we have a function y = f(x) where both y and x are real numbers. The derivative of this

function is f ′(x) and gives the slope of f(x) at the point x. The slope yields information of how x has to

change to make an improvement in y. If we want to minimize f(x) we can do so by moving x with the

opposite sign of the derivative and hopefully reach a local or even a global minimum of the function.

This method is called gradient descent and is visualized in Figure 3.

Figure 3: Visualization of the gradient descent algorithm. Source: Goodfellow, Bengio, and Courville (2016)

In the case the function has multiple inputs a new point closer to a minimum can be computed with

Equation 2 where ∇xf(x) are the partial derivatives of the function and ϵ the learning rate. Minus the

second term because we want to minimize the function and therefore move with the opposite sign of

the derivative. The learning rate is a positive scalar determining the size of the step and can have a big

influence on the performance of the model.

x′ = x− ϵ∇xf(x) (2)

For optimizing neural networks usually algorithms like stochastic gradient descent are used. This

algorithm splits the training set into equally sized mini batches B = {x(1), ...,x(m′)} and applies gradient

descent after each mini batch. The estimated gradient can be computed as in Equation 3 where θ are

the parameters of the model and L(xi, yi,θ) is per example cost function.

g =
1

m′
∇θ

m′

∑

i=1

L(xi, yi,θ) (3)

Page 11 of 83

A Framework for Learning Visual and Tactile Correlation

The stochastic gradient descent follows the gradient downhill and updates the parameters accordingly

as shown in Equation 4.

θ ← θ − ϵg (4)

In many cases more advanced learning algorithms, which have adaptive learning rates, are used for

optimizing neural networks. The "Adam" algorithm is one of those and is the preferred optimizer in this

thesis.

Before the model can be trained with gradient descent, the gradient has to be computed. This is

typically done by a method called back-propagation, which got its name by the direction the information

flows through the model. When using the model to compute an output the information starts at the

input and then flows forward. During training the result of the forward propagation is usually a cost

which is then used by the back-propagation algorithm to flow backwards through the model to compute

the gradient by applying the chain rule with a specific order of operations, which is highly efficient.

Figure 4 briefly describes the chain rule.

Figure 4: Let w ∈ R be the input to the chain. The same function f : R → R is used at every step of the chain:

x = f(w), y = f(x), z = f(y). To compute ∂z

∂w
the chain rule is needed:

∂z

∂w
=

∂z

∂y

∂y

∂x

∂x

∂w
= f ′(y)f ′(x)f ′(w)

Source: Goodfellow, Bengio, and Courville (2016)

2.1.4 Dataset Augmentation

The most effective way to achieve better generalization is to train the model with more data but in

practice data is limited. One possibility to overcome this problem is by generating fake data and adding

it to the training set. This can be as simple as rotating or translating the image and can greatly improve

generalization. However, one must be careful not to apply a transformation that would change the

correct outcome of the input. For example if the task is to recognize characters in images and the input

would be mirrored then a "d" would be changed to a "b" and consequently falsify the training data.

2.2 Bayesian Optimization for Hyperparameter Optimization

Most machine learning algorithms come with many hyperparameters that influence the behaviour of

the algorithm in many aspects. Some of them affect the time and memory cost of running the algorithm,

others have an important role in the generalization performance of the model recovered by the training

process. There are two main approaches in choosing the hyperparameters: manually or automatically.

The manual approach requires a good understanding of what the hyperparameters do and how they

influence the algorithm. The automated methods reduce the need to understand, but comes with an

increased computational cost. Some well known approaches are Grid- or Random Search.(Goodfellow,

Bengio, and Courville, 2016)

The Bayesian Optimization algorithm is a tool which has become very popular for automating the

search for the optimal hyperparameters in neural networks. It is designed for black-box optimisation,

which means that there is no information on the behaviour of the function other than the input and

the output. The appealing difference to exhaustive approaches like Grid Search is that the Bayesian

Optimization actively tries to find the most promising values for the parameters and therefore is more

Page 12 of 83

A Framework for Learning Visual and Tactile Correlation

efficient and in many cases even outperforms other state of the art global optimization algorithms.

(Snoek, Larochelle, and Adams, 2012)

The Bayesian Optimization consists of two main components: a Bayesian statistical model for modeling

the objective function and an acquisition function for deciding where to sample next. The statistical

model is generally a Gaussian Process and provides a posterior Bayesian probability distribution that

describes potential values for the objective function f(x) at a candidate point x. Every time an observation

of f(x) at a new point was made, the posterior is updated. The acquisition function measures the value

that would be generated by evaluation of the objective function at a new point x, based on the current

posterior distribution over f . An illustration of the here described method is shown in Figure 5. (Frazier,

2018)

Figure 5: Illustration of the Bayesian Optimization maximizing an objective function. The top graph shows the

estimate (solid red line) and the uncertainty (dashed red line) obtained using the Gaussian Process regression

based on three data points (blue dots). The bottom graph shows the acquisition function which is used to

choose the next sample at the point that maximizes the acquisition function. Source: Frazier (2018)

For an in depth explanation of Gaussian Processes, refer to Rasmussen and Williams (2005). Frazier

(2018) also describes commonly used acquisition functions. The Bayesian Optimization algorithm

implemented in this thesis was developed by Nogueira (2014–).

2.3 Edge Detection Algorithm

In this thesis the edge detection algorithm proposed by Canny (1986) and implemented in the open

source library "OpenCV" (Bradski, 2000) is used. The summary in this subsection is from Bradski (2000)

if not stated otherwise with some complementary information from additional sources.

The Canny-Algorithm is a multi-stage algorithm. Due to edge detection being susceptible to noise

in images the first step is to remove the noise with a Gaussian filter. This step, also called smoothing,

computes an average of the surrounding pixels with the pixel [x, y] weighted according to Equation

5 where d =
√

(x− xc)2 + (y − yc)2 is the distance to the center pixel [xc, yc] and σ is the standard

deviation of the noise. (Shapiro, Stockman, et al., 2001)

g(x, y) =
1√
2πσ

e
− d

2

2σ2 (5)

The first derivatives of the smoothened image in the vertical (Gx) and horizontal (Gy) direction

are then computed with a Sobel kernel. The resulting edge gradient G and its direction θ are then

determined using the Equations 6 and 7.

Page 13 of 83

A Framework for Learning Visual and Tactile Correlation

G =
√

G2
x +G2

y (6)

θ = arctan

(

Gy

Gx

)

(7)

The gradient direction is then used to remove any unwanted pixels which may not be part of an edge.

This is achieved by checking every pixel if its response is higher than the two neighbouring ones on

either side of it along the gradient direction and suppressing the ones which are not. This method is

called non-maximum suppression and is visualized in Figure 6. (Shapiro, Stockman, et al., 2001)

Figure 6: Point A is on the edge and the points B and C are in gradient directions, so A is checked if it forms a local

maximum with B and C. Source: Bradski (2000)

In the last stage of the algorithm called hysteresis thresholding it is decided which edges should be

kept or discarded. This is done by choosing two threshold values. Lets call them maxV al and minV al.

If the magnitude of the gradient is greater than maxV al the pixel is always considered to be part of

an edge. If the magnitude is smaller than minV al the pixel is always discarded. Now, if the contour

starts above but falls under maxV al along the way it is still considered an edge as long as the gradient

doesn’t fall under minV al. See Figure 7 for a visualized explanation.

Figure 7: The edge consisting of A and C is considered an edge even though C falls under maxV al because it is one

continuous contour. B is under maxV al, so discarded. Source: Bradski (2000)

Page 14 of 83

A Framework for Learning Visual and Tactile Correlation

3 Experimental Setup & Data Processing

This section describes the equipment used for gathering the data, explains the acquisition process,

how the raw visual and tactile data were prepared for the use in the framework and discusses possible

inaccuracies.

3.1 Experimental Setup

The needed equipment for this thesis are the data gathering setup and a computer preferably with a

GPU to train the neural network. The setup to collect the training data consists of four main components

shown in Figure 8:

1. smartphone camera

2. RH8D manipulator by seed robotics

3. FTS-3 tactile pressure sensor by seed robotics

4. UR3e robot arm by UNIVERSAL ROBOTS

Figure 8: This setup is used to gather the training and evaluation data. The red eye symbolizes the camera and looks

down on the őngers. The coordinate system at position 3 shows the positive direction of the measured forces

where the z direction points out of the plane.

The purpose of the arm is to hold the hand and bring it in the right position. The hand carries the

tactile sensors which are located on the fingertips of the robotic hand. In the course of this thesis only

the index finger and the thumb are used. In Figure 8 in position 3 a tactile sensor and its coordinate

system is shown. This coordinate system is true for the index finger but for the thumb the positive y

points in the opposite direction. In Table 1 some specifications of the tactile sensors are listed.

Table 1: Sensor Speciőcations

Standard Range 0− 10N
Standard Range Resolution 1mN

Non linearity 2.5%
Hysteresis 2%
Sampling Frequency 50Hz

The computer used for training the models has the specifications listed in Table 2. The neural networks

are built and trained using the PyTorch library (Paszke et al., 2019) in Python.

Page 15 of 83

A Framework for Learning Visual and Tactile Correlation

Table 2: Computer Speciőcations

GPU NVIDIA GeForce GTX 1060 6GB

CPU Intel Core i5-8600K

RAM 16GB of DDR4

OS WINDOWS

3.2 The Data

The success of a framework based on a neural network is highly dependent on the used training data.

To be able to evaluate the quality of the gathered data it is necessary to understand the acquisition

process and subsequently how accurate the information actually is. This chapter describes the details of

the acquisition, the possible inaccuracies of the process and the data itself for both visual and tactile

information.

The Table 3 shows how much data was gathered and generated. The number of grasp configurations

is the total number how many different positions were touched. For example if five objects were each

touched in five positions, the number of grasp configurations would be 25. The number of grasps

describes the total amount of tactile data gathered. To capture the noise of the measurement each

grasp configuration is touched multiple times, so if each of the 25 grasp configurations was touched 5

times the total number of grasps would be 125. Each grasp configuration has a corresponding image.

To augment the data set these images were each rotated 20 times which results in 162 ∗ 20 = 3240
visual-tactile data pairs in the case of the training data.

Table 3: The Amount of Data

Grasp Configs. Grasps Visual Data after Augmentation

Training Data 162 950 3240

Test Data 34 218 680

3.2.1 Visual Data

The visual information is the input for the framework which then predicts the tactile feedback. In the

course of this thesis multiple approaches were tried with the idea of focusing more on the important

parts of the image. This means to try to remove as much information from the images that isn’t needed

or highlight the parts essential for the prediction. These approaches are illustrated and described in

Figure 9.

Acquisition Process
The base photographs are taken with a smartphone mounted on a tripod photographing from a top

view. This means the robot hand approaches the object orthogonal to the view direction.

• Figure 9 a): The base photographs are first cropped to be square so future processing steps are

easier and cause less complications and resized to have the dimension 227× 227 because the AlexNet

architecture, which was used initially, is designed for it. Also when building Convolutional Neural

Networks the initial image size dictates how many layers are needed to reduce the feature space to a

small enough size so the first fully connected layer isn’t too wide. The wider a fully connected layer is the

more GPU memory is needed and consequently can quickly exceed the capabilities of the used hardware.

For example if the output of the last convolutional or pooling layer has the dimension [256, 24, 24] the
needed input features for the fully connected layer would be 256 ∗ 24 ∗ 24 = 147456. Lets have 20000
outputs. Each output has its own weight for each input which results in 147456∗20000 ≈ 3∗109 weights
which stored as float32 (4 bytes) take up approximately 12GB of space only for the weights. Starting

Page 16 of 83

A Framework for Learning Visual and Tactile Correlation

Figure 9: a) Base photograph: The original photograph cropped to be square and resized to 227× 227.
b) Data gathering photograph: A screenshot of the tactile gathering process used to edit the őngers into

the base photograph.

c) Base image: The position of the őngers edited into the base photograph.

d) Rotated base image: The base image was rotated multiple times for data augmentation purposes.

e) Cropped image: Focus on both őngers.

f) Index image: Focus only on the index őnger.

g) Thumb image: Focus only on the thumb.

The images with the index 2 represent the edges of the images with the index 1.

Page 17 of 83

A Framework for Learning Visual and Tactile Correlation

with the image dimension 227× 227 allows the reduction of the feature space to a small enough size

without the necessity to make the network too deep. Additionally the needed storage space for the

images themselves is much smaller.

• Figure 9 c1) and d1): Next the positions of the fingers (green: index finger, red: thumb) were

manually edited into the base photograph and rotated multiple times as way of data augmentation.

This image variant is the first to be used as an input for the framework and serves as the base for the

following variants.

• Figure 9 e1): The idea for the cropped image was to remove as much unnecessary information

as possible but still keep the relative positions of the fingers. Therefore the Bounding-Box Network

(Section 3.3) was used to find the fingers in the images and then crop everything beyond them.

• Figure 9 f1) and g1): Assuming that to be able to predict the tactile feedback of the index finger,

the position of the thumb is not needed to be known and vice versa, the decision was made to use images

focusing on one finger as an input. Again the Bounding-Box Network was used to find the fingers and

then crop everything outside the bounding box.

• Figure 9 c2) - g2): Because the main idea of this thesis is to predict the tactile feedback based on

the geometry of the object, it seemed to make sense to only consider information about the edges of the

object. For this purpose the Canny-Algorithm was used to extract the edges of the images and use these

as the input for the network. To further improve this method the optimal threshold values for every

image was determined. This not only improves the performance of the model due to better training

data but also reduces the amount of unusable data due to bad edge extraction.

All images were resized to 227× 227 after cropping. The last step is to filter out the images where

either the bounding box is in the wrong position or the result of the edge extraction is not satisfactory.

Data Structure
To be able to effectively build a Convolutional Neural Network with PyTorch it is crucial to understand

how it handles image data. When loading an image into the program and transforming it to a tensor the

dimensions are usually [channels, height, width]. The channels, in the case of an RGB image, are the

intensities of the color red, green and blue in the range of [0.0, 1.0]. The image height and the width are

the number of the vertical and horizontal pixels respectively. For example the tensor for a 3x3 yellow

square in PyTorch would look like this:

[

1.0 1.0 1.0
]

[

1.0 1.0 1.0
]

[

1.0 1.0 1.0
]

[

1.0 1.0 1.0
]

[

1.0 1.0 1.0
]

[

1.0 1.0 1.0
]

[

0.0 0.0 0.0
]

[

0.0 0.0 0.0
]

[

0.0 0.0 0.0
]

In the case of the edge images c2) - g2) in Figure 9) there are no other colors than black and white,

so when transformed to a tensor the data has only one channel which holds information about the

gray scale. This has to be considered when building the neural network because the number of input

channels have to be defined correctly.

Possible Inaccuracies
Due to the fact that the fingers were edited manually into the base photograph comparing to the data

gathering photograph there will be human error in the visual data. Also, the shape of the edited fingers

differs to robots finger shape.

In the case of the edge images the lighting can cause shadows which look similar to the edges of light

colored objects and therefore difficult for the Canny algorithm to distinguish. This can lead to edges

where there are none.

Page 18 of 83

A Framework for Learning Visual and Tactile Correlation

3.2.2 Tactile Data

The tactile data is the feedback when the object is touched with the robot hand and what the network

should predict. The goal for this thesis is to measure different tactile feedbacks for varying shapes

of surfaces touched. In particular the ratio of the forces in y- and z-direction are of interest because

they are the forces influenced by the shapes visible in the input images. In contrary the forces in the

x-direction are induced by the object shape orthogonal to the image plane which isn’t visible in the

images therefore it is not expedient to try to predict these forces with this setup.

The measured forces were reduced to the unit vector, because the absolute forces induced by the

touch are highly dependent on how hard fingers were pressed against the object but, the interesting

information lies in the direction of the force vector. In theory this means the tactile data is not influenced

by the strength of the grasp but by the shape of the touched surface.

Each grasp, meaning same object and position, was repeated several times to capture the noise of the

measurements. These multiple measurements together make a set which can be visualized as a cone as

shown in Figure 10. These cones are later used as the targets for evaluation purposes for the model

rather than the individual measurements of the set.

Figure 10: The middle and right graph show an example of the cone in which the multiple measurement for the index

őnger and thumb lie for the grasp conőguration shown in the image on the left.

Acquisition Process
The data was gathered by manually pressing the index finger and thumb against the desired positions

on the object as shown in Figure 11. This strategy was chosen because it is faster and easier to touch

the object at the wanted position than to use the motors in the robot hand to grasp the item, because

the fingers tend to not stay straight.

Figure 11: This illustration shows how the tactile data is gathered.

Page 19 of 83

A Framework for Learning Visual and Tactile Correlation

As mentioned each grasp was repeated several times. Because the robotic system continuously saves

the tactile data, all grasps are together in one time series, so the raw data was split up into the individual

grasps. This was done by saving the data in a new array every time the force in z direction of the index

finger would fall under a certain threshold. At this point each grasp is still a small time series. Next, one

time point for each small time series was chosen to represent the grasps. The point chosen is the first

peak bigger than the mean value of the individual grasp time series of the index finger in z direction.

This method seems to generally find a good point that is closer to the value that the forces plateau at

than the mean is. This procedure is visualized in Figure 12.

Figure 12: On the left side the raw time series of the forces in y- and z-direction for the thumb and the index őnger

are shown. The forces go back to roughly zero every time the grasp is released. There the data is split into

the individual grasps. The graphs on the right side show each peak with the mean as the blue line and the

representative point for the grasp as the red point.

At this point the graphs in Figure 12 are used to discard the grasps which are, for whatever reason,

not usable. The good grasps are then reduced to the unit vector, so they don’t yield information about

the force applied but only about direction, using Equation 8 where r is the direction vector of the force

F .

r =

[

ry
rz

]

=

[

Fy

Fz

]

√

F 2
y + F 2

z

=
F

|F | (8)

Data Stucture
The raw data is saved into csv files. From there the required information is extracted processed and

then stored in xlsx files. This data format was chosen because it is easy to manipulate manually and

automatically and easier to read than for example csv files. Each grasp is saved in a new line where the

columns are: image name, ry (index finger), rz (index finger), ry (thumb), rz (thumb). Consequently

all the data is in one file.

Possible Inaccuracies & Data Discussion
It is certain that gathering the tactile data by manually pressing the robot fingers against the surfaces

induces forces into the system which falsify the results to some degree. Additionally during the process

the robot hand itself can deform and cause deviations.

The idea of this thesis was to measure the reaction forces when touching an object with the robot

fingers. The reaction force is always orthogonal to the surface touched. This means in the case pictured

in Figure 13 the y part of the force induced by the surface would be in the negative y direction of the

index finger. In reality the measured force has a positive y part which means that there has to be a

different explanation for the occurring force. The best guess is that during the grasp the finger moves a

Page 20 of 83

A Framework for Learning Visual and Tactile Correlation

little bit, pulls the fingertip and consequently induces a positive force in the y direction. Luckily the

tactile feedback varies with different surface shapes and therefore is usable for this thesis.

Figure 13: In this illustration the index őnger is shown touching an object in a way where a negative force in the

y direction, based on the reaction force of the surface is expected. The two green arrows represent the

coordinate system of the őnger and the red arrow the expected reaction force orthogonal to the surface.

3.3 The Bounding Box Network

For some of the visual data types the bounding boxes of the edited index finger and thumb need to be

found. For this task a Convolutional Neural Network was implemented which takes the images as in

Figure 9 c1) and d1) and gives the positions of the bounding boxes.

The used architecture for the neural network is from Krizhevsky, Sutskever, and Hinton (2012),

which was initially built for classifying images. Because the network is used for predicting bounding

box positions, which is a regression problem, the output layer had to be changed to 8 linear units to fit

the task. This architecture was not built with this kind of task in mind therefore isn’t ideal, but because

the results were sufficient for the use in this thesis and this isn’t the main problem to solve the time

wasn’t invested to optimise the model.

The training data was manually made by positioning the index finger and thumb at random positions

in the base image and writing down the coordinates and sizes of the bounding boxes. This was repeated

20 times for each image. Next the images with the fingers were rotated 3 times by 90 and the bounding

box parameters adapted accordingly for data augmentation purposes. The images were only rotated

by 90° because otherwise the edges of the bounding boxes wouldn’t be strictly horizontal or vertical

anymore and that would complicate the transformation process. The bounding box parameters are the

coordinates of the top left corner x and y, the width w and the height h and are measured in pixels.

The transformation of the parameters, where the subscript old indicates the parameters before and the

subscript new after the rotation, is described as follows:

xnew = yold ynew = 227− (xold + wold)

wnew = hold hnew = wold

This process is visualized in Figure 14. Note that usually both fingers are in the images. The

transformation for the thumb is analog to the index finger. In fact, because the network is trained with

both fingers always in the images, the network will only work when both are present.

In total 39 different base photographs (Figure 9 a)) were used and then the fingers edited into them

at random positions 20 times. These base images were then each rotated 3 times by 90 which results

in 39 × 20 × 4 = 3120 images used for training the neural network. Four images had to be removed,

so actually 3116 were available. The training parameters for the Bounding-Box Network are shown in

Table 4. The epochs aren’t stated exactly because the training process was stopped when the loss of the

last batch of an epoch fell under 1 which was usually at around 150 epochs.

Page 21 of 83

A Framework for Learning Visual and Tactile Correlation

Figure 14: The data for the bounding box network is augmented by rotating the images 3 times by 90 counter-

clockwise. This image shows how the parameters for the index őnger change by the transformation. Note

that usually the index őnger and the thumb are in the image.

Table 4: Bounding Box Network Training Parameters

Network Architecture AlexNet (Krizhevsky, Sutskever, and Hinton, 2012)

Loss Function Mean Square Error

Optimizer Adam

Learning Rate 10−4

Weight Decay 10−5

Batch Size 5

Epochs ∼ 150

For the evaluation of the model the data set for training the tactile prediction network was used,

which at the time of the evaluation, consisted of 197 base images which were then each rotated 10
times, resulting in 1970 images. Because some of the base photographs were also used for training the

bounding box model, the evaluation is split into known and novel photographs. The accuracy of the

predictions are measured by counting the unusable bounding boxes and calculating the percentage of

the usable model outputs. The model gives the bounding boxes for the index finger and the thumb

and in most cases the prediction fails for one but not both. Therefore accuracies for both fingers, index

finger and thumb are computed and presented in Table 5.

Table 5: Bounding Box Model Performance

Novel Known

Both Fingers 95.8% 91%
Index Finger 99.2% 98.2%
Thumb 96.6% 92.8%

To better understand the results from Table 5 some additional information about the behaviour of the

bounding box model should be considered. The performance of the model is very dependent on the

base photograph for the input because it is sensitive towards shapes and colors similar to the fingers.

For example if there are red thin lines in the image, the network is likely to misclassify the thumb and

therefore give wrong results. This means that the model doesn’t necessarily have to be worse at finding

the thumbs but there could simply be more often red lines than green lines in the images, which lead

to wrong results. The same logic can be applied to the performance differences for novel and known

photographs. Nonetheless the overall results are satisfactory for the use in this thesis.

Page 22 of 83

A Framework for Learning Visual and Tactile Correlation

4 Evaluation Strategy

The framework is evaluated with a test set consisting exclusively of base images not used in the training

set. The test set is a mix of mostly novel and some known objects but in all cases the specific grasp

location was not seen before. In the cases where the tactile data for both the index finger and the

thumb are predicted, usually only the output for the index finger is evaluated. This is done to reduce

the amount of evaluation information, so it is easier to interpret the results. The index finger is a better

choice here because the amount of tactile measurements with positive y parts is close to the amount of

negative y parts, compared to the thumb where most of them are positive. However, if the results for

the thumb are interesting they will be mentioned.

To be able to effectively evaluate the performance of the model, several parameters are used:

•% of predictions in the correct y-direction: The output of the model for each finger is a vector with

two entries and represents the y and z part of the force reduced to the unit length. The z-value of the

force direction is in all cases negative because when touching an object the surface always pushes into the

fingertip. In contrary the y-value is highly dependent on the shape of the surface or on the direction the

finger approaches the surface from (at least for the index finger) and lies in the most cases in the range

[−0.25, 0.25]. Consequently a parameter was implemented which counts the predictions that are in the

correct y-direction because it is a first indicator that the model "understands" the relationship between

surface shape and finger orientation. Note that in some cases the label data has both positive and

negative points and therefore the prediction is regarded as correct for positive and negative predictions.

• % of predictions in the cone: The cone represents the label data and is an indicator for how

accurate it is. Since it is counter intuitive to expect the model to be more precise than the data itself, the

decision was made to consider the predictions which lie in the label cone as the best possible outcome.

This parameter gives the percentage of the predictions that lie in the cone.

• mean/median of the errors for predictions not in the cone and overall: As the name suggests

these parameters give the mean and median of the errors as described in Section 4.1 for the test set. To

get more information these parameters are computed for all predictions and for predictions only outside

the cone. Initially only the mean was used but due to some prediction errors being extremely high the

results could be misleading. Lets consider a random example model where the mean error is 555.2% and

the median error 61.0%, both only for predictions outside of the label cone. This discrepancy is mostly

caused by a small number of tests which have an extremely high error. The highest error in this case

is 35960% and is solely responsible for an increase of the mean of 89%. Those extreme values usually

occur when the model predicts a y very close to zero because the error basically describes how far off

the prediction is from the label in multiples of the prediction. In Figure 15 the distribution of the errors

for this case is visualized and shows that most of them are in the range [10%, 100%]. Consequently the

median is considered as more meaningful than the mean in the evaluation, since the mean gives a wrong

idea of how well a model actually performs. In the final results the mean errors won’t be considered at

all to prevent a false impression of the results but will be used in the performance comparison tables in

the appendix as an additional parameter.

• mean/median of the inaccuracies for the predictions to the cone edge and the cone mean:

These parameters are called inaccuracies, so they are more easily distinguishable from the errors but

basically are errors themselves. As mentioned before the errors give high values if the y part of the

predictions are very small and therefore increase the mean unproportionally. The inaccuracies are an

additional parameter to overcome that problem and have more information about a models performance

and are computed as in Section 4.2. The inaccuracies basically describe how far off the prediction is

from the cone edge or the mean of the cone in multiples of the width of the cone.

Page 23 of 83

A Framework for Learning Visual and Tactile Correlation

Figure 15: Example error distribution for the predictions outside the cone.

Figure 16: This image shows an example output of the model (blue arrow), the label data represented as the red cone

and the mean of the label data as the red line. The dashed blue lines show the possible cases for the error

calculation where the most right is the case mmodel < mlabelmax the most left is mmodel > mlabelmin and

the line in the cone has zero error.

Page 24 of 83

A Framework for Learning Visual and Tactile Correlation

4.1 Error Computation

To be able to quantify the error of the model output and compare different models, a method to calculate

the error was implemented. The idea of this method is to consider a prediction that is inside the cone of

the label data as good and therefore as zero error and calculate how far off the predictions are from the

cone. The strategy for this method is to bring the z-part of the model output and the label data on the

same level and then compare the y-parts. The new y of the model is then called ymodel∗ and is visualized

in Figure 16. With the slopes calculated as in the Equations 9

mlabelmin =
ylabelmin

zlabel
mlabelmax =

ylabelmax

zlabel
mmodel =

ymodel

zmodel

(9)

ymodel∗ is then calculated as in Equation 10.

ymodel∗ = mmodelzlabel (10)

The error in the case of ymodel∗ being smaller than ylabelmin can be calculated as in Equation 11. The

calculation when ymodel∗ is bigger than ylabelmax is analogous.

error(ymodel∗ < ylabelmin) =
|ylabelmin − ymodel∗ |

|ymodel∗ |
=

∣

∣

∣
(ylabelmin − ymodel∗)

1
zlabel

∣

∣

∣

∣

∣

∣
ymodel∗

1
zlabel

∣

∣

∣

=
|mlabelmin −mmodel|

|mmodel|

(11)

The error could have been defined by using the slopes right away but this approach was taken to

make it more clear how to interpret it. The error is basically how far the prediction is from the cone

measured in multiples of the prediction. Equation 12 summarizes all of the above.

error =

|mlabelmin−mmodel|
|mmodel|

if mmodel > mlabelmin,
|mlabelmax−mmodel|

|mmodel|
if mmodel < mlabelmax,

0 otherwise

(12)

Note that ymodel∗ < ylabelmin=̂mmodel > mlabelmin and ymodel∗ > ylabelmax=̂mmodel < mlabelmax.

Page 25 of 83

A Framework for Learning Visual and Tactile Correlation

4.2 Inaccuracy Computation

For the computations of the inaccuracies Equations 9 and 10 are needed again. Two types are introduced:

The first type measures the distance to the cone edge and is counted as zero if the prediction falls into

the cone and the second type measures the distance to the mean of the cone. Note that the mean is not

necessarily the middle of the cone since the cone only describes the the outer edges of the label data.

Inaccuracy to the Cone Edge
Again, lets consider the case of ymodel∗ being smaller than ylabelmin. In this case the inaccuracy to the

cone edge can be computed as in Equation 13.

inaccuracyedge(ymodel∗ < ylabelmin) =
|ylabelmin − ymodel∗ |
|ylabelmax − ylabelmin|

=

∣

∣

∣
(ylabelmin − ymodel∗)

1
zlabel

∣

∣

∣

∣

∣

∣
(ylabelmax − ylabelmin)

1
zlabel

∣

∣

∣

=
|mlabelmin −mmodel|
|mlabelmax −mlabelmin|

(13)

The computation for all the cases is summarized in Equation 14. Again, note that ymodel∗ <

ylabelmin=̂mmodel > mlabelmin and ymodel∗ > ylabelmax=̂mmodel < mlabelmax.

inaccuracyedge =

|mlabelmin−mmodel|
|mlabelmax−mlabelmin|

if mmodel > mlabelmin,
|mlabelmax−mmodel|

|mlabelmax−mlabelmin|
if mmodel < mlabelmax,

0 otherwise

(14)

Inaccuracy to the Cone Mean
The computation of the inaccuracy to the mean of the cone is basically analogous to the inaccuracy to

the cone edge but one new variable is needed which is described in Equation 15.

mlabelmean =
ylabelmean

zlabel
(15)

Since it always measure the distance to the mean of the cone there is only one case. Consequently the

inaccuracy is computed as in Equation 16.

inaccuracymean =
|mlabelmean −mmodel|
|mlabelmax −mlabelmin|

(16)

Page 26 of 83

A Framework for Learning Visual and Tactile Correlation

5 Using CNNs for Learning Visual-Tactile Correlation

The main algorithm in this thesis is responsible for predicting the tactile feedback of the sensors based

on 2D images. It is a Convolutional Neural Network because the task is a part of computer vision

and they have been proven effective for these kinds of problems numerous times before (Yoo, 2015).

Throughout this thesis many variations of input images were tried to get the best possible results with

the idea to focus more and more on the important information. After the input format was chosen a

new architecture for the neural network was built and the hyperparameters optimized. This section

describes this process in detail and quantifies the most important performances of the different models

and approaches. For more information on the results and detailed descriptions of all the architectures

refer to the Section 6.

5.1 Choosing the Best Image Variation

The different image variations described in Section 3.2.1 were initially tested with the AlexNet archi-

tecture and then compared to find the best performing one. For detailed results refer to Table 7. The

Color-Cropped, the Edge-Cropped and the Edge-Index images had overall the best results but were

relatively close to each other. Since this information wasn’t enough to choose the best option, more tests

were done with the SchoeConv100 - V3(FC160) and the SchoeConv227 - V1 architectures to determine

which has the best potential (Table 8 & 9). The conclusion was that the Edge-Index images performed

the best overall and therefore are the used image variation for this thesis.

5.2 Building the Architecture

The basic idea for the implemented architecture was that the kernels of each consecutive convolutional

layer cover a bigger area than the one before. This is implemented by pooling layers which reduce the

size of the feature maps by half but the kernels stay the same size for every layer. For explanation lets

consider the example shown in Figure 18. The first layer recognizes small features like straight lines or

segments of a ring. In the next layer the kernels cover a bigger area and start to combine the previous

features to a ring and a longer line. The kernels of the third layer now cover an even bigger area and

combine the ring and the straight line to a finger. In the end the fully connected layers consider all the

features and the relative positions to each other to give a prediction about the tactile response. This

explanation only serves as food for thought but does not actually describe how the neural network

comes to a result. The architectures based on this idea are named SchoeConv.

Figure 17: Left image: Example input image. Middle image: The colored squares represent where the different kernels

have the best results. Each kernel produces its own feature map. Right image: The feature maps are now

smaller but the kernel size stays the same, consequently the kernels cover a bigger area.

After the basic idea for the neural network was developed the specifics of the architecture had to

be determined. This was done by experimenting with different kernel sizes, number of feature maps,

Page 27 of 83

A Framework for Learning Visual and Tactile Correlation

number of layers, etc. Additionally some more or less random architectures were also tested to make sure

that the implemented idea performs as intended. The training process for every network was the same

to ensure comparability. The configuration is shown in Table 14. During training after each epoch the

model was evaluated on the test set, so after the process was finished the best performing epoch could

be chosen. The results of the experiments are shown in Table 10 & 11. The architectures SchoeConv100

all use image inputs of the size 100× 100. They were used to determine a good configuration of the

kernel size and number of feature maps without being too computationally expensive, compared to

the SchoeConv227 which use inputs of the size 227× 227. The best performing ratio of input size to

kernel size was then taken and transferred to an input size of 227. Later the SchoeConv100s were also

used to find a good strategy for the Bayesian Optimization before committing to the bigger models. The

experiments led to the following conclusions:

• zero-padding seems to improve the performance

• more feature maps increase the overall results

• input image size of 227 is better than 100

• wider fully connected layers don’t necessarily improve the performance

• a bigger kernel can be disadvantageous

The best performing architecture was the SchoeConv227 - V2 and is visualized in Figure 18.

Figure 18: In this illustration SchoeConv227 - V2 is visualized. The dimensions for the convolutional layers a) to j)

are [channels× height× width] and for the fully connected layers FC1) to FC3) [input× output].
a) to b): Convolution with 50 kernels of the size 13× 13, stride of 1 and padding of 6.
b) to c): Max-Pooling with a kernel of the size 3× 3 and stride of 2.
c) to d): Convolution with 100 kernels of the size 13× 13, stride of 1 and padding of 6.
d) to e): Max-Pooling with a kernel of the size 3× 3 and stride of 2.
e) to f): Convolution with 200 kernels of the size 13× 13, stride of 1 and padding of 6.
f) to g): Max-Pooling with a kernel of the size 3× 3 and stride of 2.
g) to h): Convolution with 400 kernels of the size 13× 13, stride of 1 and padding of 6.
h) to i): Max-Pooling with a kernel of the size 3× 3 and stride of 2.
i) to j): Convolution with 400 kernels of the size 13× 13, stride of 1 and padding of 6.
j) to FC1): Reshaping of the features to őt as an input for the őrst fully connected layer.

FC1) & FC2): Fully connected layers of width 160.
FC3): Output layer of size 2.

Page 28 of 83

A Framework for Learning Visual and Tactile Correlation

5.3 Optimizing the Hyperparameters & Final Results

Until this point the hyperparameters for the training process were always the same (Table 14). The

parameters of interest here are the batch size, the learning rate and the weight decay. The Bayesian

Optimization algorithm is designed to maximise the output of a black-box function by tweaking the

given input variables. In this case the function to be optimised is the training process. For this to work it

is necessary for the training process to return a number, ideally a value that represents how well the

generated model performs on the test set. This is visualized in Figure 19.

Figure 19: This illustration visualizes the black-box function the Bayesian Optimization algorithm is supposed to

maximise. The training process generates a model with the suggested hyperparameters. This model is

then evaluated on the tests set and one of the performance parameters is then the output of the black-box

function. This means the Bayesian Optimization algorithm tries to maximise the performance parameter

by adjusting the input.

As stated in Section 5.2, the best performing architecture is the SchoeConv227 - V2 but it is relatively

big, consequently computationally expensive to train. To find a good parameter to use as the output for

the black-box function in a reasonable amount of time, the SchoeConv100 - V3(FC160) architecture

was used as a surrogate doing optimisation test runs. In those test runs the number of epochs was

always set to 5 to save some time and the models from previous training processes usually didn’t really

improve after five epochs. The number of iterations for the Bayesian Optimisation algorithm was set to

50 with 10 random initialisation iterations. The median overall Error, the median error for predictions

not in the cone and the % of predictions in the cone were tried as black-box function outputs. After

the algorithm was finished, the best performing hyperparamter configuration was used to then train

the architecture properly. The detailed results are shown in Table 12. Generally it can be said, that the

performances of the models didn’t improve by much but the median overall error as the output for the

black-box function generated the best results by a small margin. Based on this information the Bayesian

Optimisation algorithm was applied to the SchoeConv227 - V2 architecture with the median overall

error as the target. The performance improved for most of the evaluation parameters. The results for

the comparison to the performances before the optimization are shown in Table 13.

The Bayesian Optimization was the last step of the main algorithm implementation. The final

performance of the framework is in Table 6.

Table 6: Performance of the Best architecture (SchoeConv227 - V2) Optimised.

% in Correct y 93.5
Median Error

Not in Cone [%]
39

Mean Inaccuracy

to Cone-Edge [%]
45.2

% in Cone 44.1
Median Inaccuracy

to Cone-Edge [%]
9.5

Mean Inaccuracy

to Cone-Mean [%]
82.5

Median Error

Overall [%]
6.7

Median Inaccuracy

to Cone-Mean [%]
57.1 Mean MSE 2.1e-3

Page 29 of 83

A Framework for Learning Visual and Tactile Correlation

6 Evaluation Results

To find the best possible configuration of input image variation and network architecture, numerous

tests have been done. This section presents all evaluation results in detail and shows the performance

improvement with each step. The best and therefore most important results are highlighted in green.

The training parameters for the tests described in the Sections 6.1 and 6.2 are listed in Table 14.

6.1 Comparison of the Image Variations

As mentioned in Section 5.1, all the different image variations were first tried with the AlexNet (Table 7)

architecture. At this point the Colored Cropped Image yields the best results and the Edge Cropped and

Edge Index Image are a close second and third rank. Interestingly the change of performance from the

colored to the edged images stays relatively equal in the case of the Rotated Base Image but increases

drastically in for the Index Image.

Table 7: Performances of the Image Variations - Tested with AlexNet

C
o
lo
r
-

R
o
ta
te
d
B
a
se

C
o
lo
r
-

C
ro
p
p
e
d

C
o
lo
r
-

In
d
e
x

E
d
g
e
-

R
o
ta
te
d
B
a
se

E
d
g
e
-

C
ro
p
p
e
d

E
d
g
e
-

In
d
e
x

Image Variation

Best Epoch 11 11 6 10 19 4

% in Correct y 70 83.8 52.9 72.5 83.9 86.3

% in Cone 24.6 34.6 5.9 23.2 35.3 35.4

Median Error

Overall [%]
71.3 18.5 263 88.8 22.3 25.6

Median Error

Not in Cone [%]
120.2 68.2 268 130 61.5 73.5

Mean Error

Overall [%]
858 150 304 255 216 168

Mean Error

Not in Cone [%]
1137 229 323 332 334 260

Median Inaccuracy

to Cone-Edge [%]
66.8 26.2 121 70.2 33.9 34

Median Inaccuracy

to Cone-Mean [%]
115 72.2 167 118 79.6 78.3

Mean Inaccuracy

to Cone-Edge [%]
115 75.9 136 109 66.2 61.1

Mean Inaccuracy

to Cone-Mean [%]
157 115 183 150 105 99.8

Mean MSE 4.4e-3 2.6e-3 4.9e-3 4.2e-3 2.8e-3 2.4e-9

Page 30 of 83

A Framework for Learning Visual and Tactile Correlation

Since the Colored Cropped, the Edge Cropped and the Edge Index Images performed similarly in

the test with the AlexNet architecture, more tests were done with the, for this thesis implemented,

architecture idea. Table 8 shows the results of an architecture with input size of 100× 100 and Table

9 with input size 227× 227. The Edge Index Image performs the best in both cases. Surprisingly, the

Colored Cropped Image achieved bad results with for a bigger input size.

Table 8: Performances of the best Image Variations

- Tested with SchoeConv100 - V3(FC160)

C
o
lo
r
-

C
ro
p
p
e
d

E
d
g
e
-

C
ro
p
p
e
d

E
d
g
e
-

In
d
e
x

Image Variation

Best Epoch 17 8 8

% in Correct y 86.6 82 91.6

% in Cone 37.6 32.6 41.7

Median Error

Overall [%]
13.1 25.4 9.27

Median Error

Not in Cone [%]
54.7 64 60.5

Mean Error

Overall [%]
179 143 157

Mean Error

Not in Cone [%]
287 212 270

Median Inaccuracy

to Cone-Edge [%]
19.2 36.9 14

Median Inaccuracy

to Cone-Mean [%]
68.1 80.8 60.1

Mean Inaccuracy

to Cone-Edge [%]
65.5 68.4 53.3

Mean Inaccuracy

to Cone-Mean [%]
103 108 89.9

Mean MSE 2.6e-3 2.7e-3 2.2e-3

Table 9: Performances of the best Image Variations

- Tested with SchoeConv227 - V1

C
o
lo
r
-

C
ro
p
p
e
d

E
d
g
e
-

C
ro
p
p
e
d

E
d
g
e
-

In
d
e
x

Image Variation

Best Epoch 2 7 18

% in Correct y 52.1 84.3 94

% in Cone 8.7 34.4 41.7

Median Error

Overall [%]
389 21.2 7.34

Median Error

Not in Cone [%]
464 58.3 43.2

Mean Error

Overall [%]
509 150 104

Mean Error

Not in Cone [%]
558 228 179

Median Inaccuracy

to Cone-Edge [%]
106 29.8 11.2

Median Inaccuracy

to Cone-Mean [%]
160 75.5 58.4

Mean Inaccuracy

to Cone-Edge [%]
132 65.5 46.3

Mean Inaccuracy

to Cone-Mean [%]
178 104.3 82.4

Mean MSE 5.2e-3 2.7e-3 1.9e-3

Page 31 of 83

A Framework for Learning Visual and Tactile Correlation

6.2 Comparison of the Architectures

To find the best configuration for the architecture idea explained in Section 5.2 numerous experiments

were done. Table 10 and Table 11 show the performances of all the architectures tried in the course of

this thesis. Overall the SchoeConv227 - V2 showed the best results.

Table 10: Architecture Performances 1/2

A
le
x
N
e
t

A
le
x
N
e
t

-
1
×

1

R
a
n
d
o
m
C
o
n
v

S
m
a
ll
C
o
n
v

S
ch

o
e
C
o
n
v
1
0
0

-
V
1

S
ch

o
e
C
o
n
v
1
0
0

-
V
2

S
ch

o
e
C
o
n
v
1
0
0

-
V
3
(F
C
1
6
0
)

S
ch

o
e
C
o
n
v
1
0
0
-

V
3
(F
C
1
6
0
)
-
4
×
4

S
ch

o
e
C
o
n
v
1
0
0

-
V
3
(F
C
4
8
0
)

Model

Input Size 227 227 227 227 100 100 100 100 100

Best Epoch 4 6 10 13 19 10 8 7 18

% in Correct y 86.3 86.6 79.2 76.5 83.2 87.2 91.6 92.6 89.8

% in Cone 35.4 37.6 28.8 26.4 35.4 36.9 41.7 40.4 41.4

Median Error

Overall [%]
25.6 18.5 41.4 52.3 23.3 13.3 9.27 12 11.8

Median Error

Not in Cone [%]
73.5 65.8 87.2 107 82.2 54.3 60.5 51.4 64.9

Mean Error

Overall [%]
169 156 527 1282 164 170 157 175 210

Mean Error

Not in Cone [%]
261 251 740 1742 254 270 270 294 358

Median Inaccuracy

to Cone-Edge [%]
34 26.6 42 47.9 33.4 22.9 14 17.6 17.3

Median Inaccuracy

to Cone-Mean [%]
78.3 73.5 89.6 96.4 79.2 73 60.1 65.9 64.6

Mean Inaccuracy

to Cone-Edge [%]
61.1 61.6 84.7 145 68.9 60.3 53.3 53.3 54.1

Mean Inaccuracy

to Cone-Mean [%]
99.8 99.3 125.2 104 109 98.5 89.9 90.9 90.9

Mean MSE 2.4e-3 2.6e-3 3.2e-3 4e-3 2.5e-3 2.3e-3 2.2e-3 2.3e-3 2.1e-3

Page 32 of 83

A Framework for Learning Visual and Tactile Correlation

Table 11: Architecture Performances 2/2

S
ch

o
e
C
o
n
v
1
0
0

-
V
4

S
ch

o
e
C
o
n
v
1
0
0

-
V
5

S
ch

o
e
C
o
n
v
2
2
7

-
V
1

S
ch

o
e
C
o
n
v
2
2
7

-
V
2

Model

Input Size 100 100 227 227

Best Epoch 3 7 18 11

% in Correct y 91 92.4 94 94.1

% in Cone 39.6 42 41.7 41.2

Median Error

Overall [%]
10.9 7.96 7.34 7.26

Median Error

Not in Cone [%]
51.5 53.1 43.2 41.7

Mean Error

Overall [%]
120 135 104 293

Mean Error

Not in Cone [%]
198 233 179 497

Median Inaccuracy

to Cone-Edge [%]
15 12.5 11.2 9.8

Median Inaccuracy

to Cone-Mean [%]
60.4 60.8 58.4 58.4

Mean Inaccuracy

to Cone-Edge [%]
50.6 47.1 46.3 44.9

Mean Inaccuracy

to Cone-Mean [%]
87.2 83.7 82.4 81.2

mean MSE 2.3e-3 1.9e-3 1.9e-3 2.0e-3

Page 33 of 83

A Framework for Learning Visual and Tactile Correlation

6.3 Performance Improvement by Bayesian Optimisation

To find the best performance parameter as an output for the Black-Box function, the smaller Schoe-

Conv100 - V3(FC160) architecture was used as a surrogate, due to a smaller computational cost. The

results of the tried parameters are shown in Table 12. The Median Overall Error achieved the best

performance by a small margin.

Table 12: Performances after Bayesian Optimisation - SchoeConv100 - V3(FC160)

Comparison of Performance Parameters
B
e
fo
re

O
p
ti
m
.

fo
r
C
o
m
p
a
ri
so

n

M
e
d
ia
n
E
rr
o
r

O
v
e
ra
ll

M
e
d
ia
n
E
rr
o
r

N
o
t
in

C
o
n
e

%
in

C
o
n
e

Black-Box Output

Batch Size 5 3 5 3

Learning Rate 1e-4 1.02e-4 1.7e-4 8.5e-5

Weight Decay 1e-5 2.79e-6 2.15e-6 1.5e-6

Input Size 100 100 100 100

Best Epoch 8 3 3 12

% in Correct y 91.6 93.1 91.9 91.6

% in Cone 41.7 40.9 40.3 43.2

Median Error

Overall [%]
9.27 9.74 9.3 9.98

Median Error

Not in Cone [%]
60.5 42.1 49.5 64.5

Mean Error

Overall [%]
157 133 118 127.2

Mean Error

Not in Cone [%]
270 225 198 224

Median Inaccuracy

to Cone-Edge [%]
14 14.6 16.7 14.8

Median Inaccuracy

to Cone-Mean [%]
60.1 60.4 62.6 60.4

Mean Inaccuracy

to Cone-Edge [%]
53.3 49 51.5 52.4

Mean Inaccuracy

to Cone-Mean [%]
89.9 86.3 89.7 89.5

mean MSE 2.2e-3 2.2e-3 2.3e-3 2.1e-3

Page 34 of 83

A Framework for Learning Visual and Tactile Correlation

After the performance parameter was chosen, the last step of the thesis was to apply the Bayesian

Optimisation algorithm to the SchoeConv227 - V2 architecture. The comparison of the performances

before and after the optimisation are shown in Table 13. The values highlighted in green are also the

final results of this thesis.

Table 13: Performances after Bayesian Optimisation - SchoeConv227 - V2

Performance Parameter was the Overall Median Error

B
e
fo
re

O
p
ti
m
.

fo
r
C
o
m
p
a
ri
so

n

O
p
ti
m
is
e
d

SchoeConv227 - V2

Batch Size 5 4

Learning Rate 1e-4 4.6e-5

Weight Decay 1e-5 8.2e-6

Input Size 227 227

Best Epoch 11 5

% in Correct y 94.1 93.5

% in Cone 41.2 44.1

Median Error

Overall [%]
7.26 6.7

Median Error

Not in Cone [%]
41.7 39

Mean Error

Overall [%]
293 95.5

Mean Error

Not in Cone [%]
497 171

Median Inaccuracy

to Cone-Edge [%]
9.8 9.5

Median Inaccuracy

to Cone-Mean [%]
58.4 57.1

Mean Inaccuracy

to Cone-Edge [%]
44.9 45.2

Mean Inaccuracy

to Cone-Mean [%]
81.2 82.5

mean MSE 2.0e-3 2.1e-3

Page 35 of 83

A Framework for Learning Visual and Tactile Correlation

7 Conclusion

This thesis implemented a framework that predicts how the response tactile sensors would feel when

grasping an object based on 2D visual data. For this purpose a new dataset was built, which consisted,

after augmentation, of about 3200 training and 680 test visual-tactile data pairs. Numerous variations

for the visual data were tried to find the best fit and the force vectors of the tactile data were reduced

to unit length to only consider the direction of the forces. A separate neural network was trained to

find the bounding boxes of the fingers in the input images for generating some of the image variations.

An evaluation strategy with several performance parameters was developed, to be able to confidently

evaluate and compare the different approaches and architectures. The main algorithm is a Convolutional

Neural Network and its architecture was developed for the purpose of this project. Finally the best

performing architecture was optimised with the Bayesian Optimization algorithm.

The following two research questions were addressed in this thesis.

Does the framework successfully predict the sensor feedback?

The framework undeniably understands the relationship between relative positioning of the sensors to

the object and the resulting tactile feedback. This can be said because the model predicted the y part of

the force in 93.5% of the times in the correct direction and this is highly dependent on how the object

was grasped. The accuracy on the other hand is not ideal. Only 44.1% of the predictions are actually in

the label data cone, which is, considering how wide these cones can be, not bad but not a satisfactory

result either. The possible causes for the inaccuracy are discussed in Section 7.1.

Was the equipment used suitable for this task?

The main problem was the robot hand. When grasping the objects the hand would, if not careful, deform

and therefore induce forces into the tactile sensors and consequently falsify the measurements. Also the

shape of the tactile sensors was a limiting factor in many cases, because if the object was touched to

far off the center of the sensors, the tactile feedback would be close to zero. In combination with the

small range of motion of the robot fingers, the possible sizes of objects to choose from was very limited.

Additionally the sensors themselves are not very accurate.

7.1 Discussion

In this subsection the decisions made in this thesis are revisited and possible improvements are suggested.

Also the performance of the model is discussed in more detail and the likely causes for the unsatisfactory

results determined.

The Tactile Data

As mentioned, the quality of the tactile data is partly dependent on the used hardware but also on the

acquisition process itself. The tactile data was gathered by manually squeezing the fingers against the

object. Naturally this is not ideal, because our hand will always induce some force into the system,

so this is likely to be another source of inaccuracy in the data. Unfortunately, using the robot hands

internal motors to establish the contact is not only tedious and time consuming but also makes it very

difficult to grasp the object at the needed positions. In summary it can be said that the data is not very

accurate.

The Visual Data

The position of the fingers was defined by manually editing them into the images. This method is inac-

curate and likely in part responsible for the unsatisfactory performance of the framework. Additionally,

it is very time consuming to build a data set in this way.

The data set was augmented by rotating the images. This was done, so the predictions would be

Page 36 of 83

A Framework for Learning Visual and Tactile Correlation

independent of the orientation of the fingers, meaning from which direction they approach the object.

In practice, the predictions are close to each other but vary enough to have a significant impact on the

performance. A possible solution would be to turn the images, so the fingers always have the same

orientation.

The Amount of Data

The best way of improving the generalization of a model is to use more data. The amount of data used

for training the models in this thesis is likely not enough, consequently the performance would probably

be better if more data was gathered. Nonetheless, the model preforms well on novel as well as on known

objects. This can be due to the fact that the shapes of the objects are similar in many cases but seem to

be, at least partly, due to generalization of the model.

Limitations

For this framework to function properly, the input data needs to be quite specific:

• The background in the base images should be similar to the training data, otherwise the performance

could worsen.

• The angle and distance from which the objects are photographed relative to the fingers always

need to be the same, because the view angle wasn’t considered in this framework.

• The framework only predicts two dimensional forces.

• The grasped surface needs to be rigid, because the framework hasn’t been trained with soft objects.

7.2 Future Work

The first step to improve this framework should be to gather more data. To make the acquisition more

efficient, a system could be implemented that automates the process of finding the object, grasping it

in multiple positions and finally describing the configuration. Pinto and Gupta (2016) uses a similar

system to teach a robot how to grasp. To be able to effectively predict three dimensional forces, the

features of multiple views could be considered by, for example, naively concatenating the feature spaces

or use a more developed approach as proposed by Zhang et al. (2020). Soft objects are not considered

in the current state of the framework. To be less restricted with the choice of possible objects to touch,

the framework could be extended with a system that provides information about stiffness.

The suggestions so far aim on improving the current framework. Other possibilities for future work

could be to use the framework as a support for other tasks such as object manipulation or object

recognition.

Page 37 of 83

A Framework for Learning Visual and Tactile Correlation

Bibliography

Bergmann Tiest, Wouter M. (2010). “Tactual perception of material properties”. In: Vision Research

50.24. Perception and Action: Part I, pp. 2775–2782. issn: 0042-6989. doi: https://doi.org/10.

1016/j.visres.2010.10.005. url: https://www.sciencedirect.com/science/article/pii/

S0042698910004967.

Bradski, G. (2000). “The OpenCV Library”. In: Dr. Dobb’s Journal of Software Tools.

Canny, John (1986). “A Computational Approach to Edge Detection”. In: IEEE Transactions on Pattern

Analysis and Machine Intelligence PAMI-8.6, pp. 679–698. doi: 10.1109/TPAMI.1986.4767851.

Chebotar, Yevgen et al. (2016). “Self-supervised regrasping using spatio-temporal tactile features and

reinforcement learning”. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS), pp. 1960–1966. doi: 10.1109/IROS.2016.7759309.

Dang, Hao and Peter K. Allen (2012). “Learning grasp stability”. In: 2012 IEEE International Conference

on Robotics and Automation, pp. 2392–2397. doi: 10.1109/ICRA.2012.6224754.

Dong, Siyuan et al. (2019). “Maintaining Grasps within Slipping Bounds by Monitoring Incipient

Slip”. In: 2019 International Conference on Robotics and Automation (ICRA), pp. 3818–3824. doi:

10.1109/ICRA.2019.8793538.

Falco, Pietro et al. (2017). “Cross-modal visuo-tactile object recognition using robotic active exploration”.

In: 2017 IEEE International Conference on Robotics and Automation (ICRA), pp. 5273–5280. doi:

10.1109/ICRA.2017.7989619.

Fleming, Roland W. (2014). “Visual perception of materials and their properties”. In: Vision Research

94, pp. 62–75. issn: 0042-6989. doi: https://doi.org/10.1016/j.visres.2013.11.004. url:

https://www.sciencedirect.com/science/article/pii/S0042698913002782.

Frazier, Peter I (2018). “A tutorial on Bayesian optimization”. In: arXiv preprint arXiv:1807.02811.

Goodfellow, Ian et al. (2020). “Generative adversarial networks”. In: Communications of the ACM 63.11,

pp. 139–144.

Goodfellow, Ian J., Yoshua Bengio, and Aaron Courville (2016). Deep Learning. http : / / www .

deeplearningbook.org. Cambridge, MA, USA: MIT Press.

Hyttinen, Emil, Danica Kragic, and Renaud Detry (2017). “Estimating tactile data for adaptive grasping

of novel objects”. In: 2017 IEEE-RAS 17th International Conference on Humanoid Robotics (Humanoids),

pp. 643–648. doi: 10.1109/HUMANOIDS.2017.8246940.

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E Hinton (2012). “Imagenet classification with deep

convolutional neural networks”. In: Advances in neural information processing systems 25.

Lee, Jet-Tsyn, Danushka Bollegala, and Shan Luo (2019). ““Touching to see” and “seeing to feel”: Robotic

cross-modal sensory data generation for visual-tactile perception”. In: 2019 International Conference

on Robotics and Automation (ICRA). IEEE, pp. 4276–4282.

Li, Yunzhu et al. (2019). “Connecting Touch and Vision via Cross-Modal Prediction”. In: Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

Liu, Huaping et al. (2017). “Visual–Tactile Fusion for Object Recognition”. In: IEEE Transactions on

Automation Science and Engineering 14.2, pp. 996–1008. doi: 10.1109/TASE.2016.2549552.

Nogueira, Fernando (2014–). Bayesian Optimization: Open source constrained global optimization tool

for Python. url: https://github.com/fmfn/BayesianOptimization.

Paszke, Adam et al. (2019). “PyTorch: An Imperative Style, High-Performance Deep Learning Library”.

In: Advances in Neural Information Processing Systems 32. Ed. by H. Wallach et al. Curran Associates,

Inc., pp. 8024–8035. url: http://papers.neurips.cc/paper/9015-pytorch-an-imperative-

style-high-performance-deep-learning-library.pdf.

Pinto, Lerrel and Abhinav Gupta (2016). “Supersizing self-supervision: Learning to grasp from 50K tries

and 700 robot hours”. In: 2016 IEEE International Conference on Robotics and Automation (ICRA),

pp. 3406–3413. doi: 10.1109/ICRA.2016.7487517.

Page 38 of 83

A Framework for Learning Visual and Tactile Correlation

Purri, Matthew and Kristin Dana (2020). “Teaching cameras to feel: Estimating tactile physical properties

of surfaces from images”. In: European Conference on Computer Vision. Springer, pp. 1–20.

Qi, Charles R. et al. (2017). “PointNet: Deep Learning on Point Sets for 3D Classification and Segmenta-

tion”. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

Rasmussen, Carl Edward and Christopher K. I. Williams (2005). Gaussian Processes for Machine Learning

(Adaptive Computation and Machine Learning). The MIT Press. isbn: 026218253X.

Shapiro, Linda G, George C Stockman, et al. (2001). Computer vision. Vol. 3. Prentice Hall New Jersey.

Shin, Hochul et al. (2019). “Sequential Image-Based Attention Network for Inferring Force Estimation

Without Haptic Sensor”. In: IEEE Access 7, pp. 150237–150246. doi: 10.1109/ACCESS.2019.2947090.

Snoek, Jasper, Hugo Larochelle, and Ryan P Adams (2012). “Practical bayesian optimization of machine

learning algorithms”. In: Advances in neural information processing systems 25.

Takahashi, Kuniyuki and Jethro Tan (2019). “Deep visuo-tactile learning: Estimation of tactile properties

from images”. In: 2019 International Conference on Robotics and Automation (ICRA). IEEE, pp. 8951–

8957.

Yoo, Hyeon-Joong (2015). “Deep convolution neural networks in computer vision: a review”. In: IEIE

Transactions on Smart Processing and Computing 4.1, pp. 35–43.

Zapata-Impata, Brayan S and Pablo Gil (2020). “Prediction of tactile perception from vision on deformable

objects”. In.

Zapata-Impata, Brayan S. et al. (2021). “Generation of Tactile Data From 3D Vision and Target Robotic

Grasps”. In: IEEE Transactions on Haptics 14.1, pp. 57–67. doi: 10.1109/TOH.2020.3011899.

Zhang, Jinxin et al. (2020). “Collaborative weighted multi-view feature extraction”. In: Engineering

Applications of Artiőcial Intelligence 90, p. 103527.

Zhang, Tao et al. (2021). “Visual-Tactile Fused Graph Learning for Object Clustering”. In: IEEE Transac-

tions on Cybernetics, pp. 1–15. doi: 10.1109/TCYB.2021.3080321.

Page 39 of 83

A Framework for Learning Visual and Tactile Correlation

A APPENDIX

A.1 Example Model Predictions

This subsection shows examples of the final model predictions and their errors and inaccuracies. The

purpose of this is to get a better feeling of how to interpret these performance parameters. In the graphs

the red cone represents the label data, the green dashed line the mean of the label data and the blue

line the prediction.

Figure 20: Some examples of model predictions with their errors and inaccuracies.

The second and third example are the same grasp but the image is rotated, still the model gives different

outputs. This example shows why the data augmentation didn’t work as intended in some cases.

The fourth example has a very big error, even though the absolute distance between prediction and cone

isn’t. This example shows why the mean error parameter can be misleading at times.

Page 40 of 83

A Framework for Learning Visual and Tactile Correlation

Figure 21: More prediction examples.

Page 41 of 83

A Framework for Learning Visual and Tactile Correlation

A.2 Architectures & Hyperparameters

In this section the architectures used in the course of this thesis are described. These exact configurations

are used for the Edge Index Finger Images, so the number of input channels is one and the output

features is two. These two variables can change depending on the used image variation.

As mentioned before, the training parameters were for the comparison of the image variations and

the different architectures always the same:

Table 14: Training Parameters for Image Variation and Network Architecture Comparison

Loss Function Mean Square Error

Optimizer Adam

Learning Rate 10−4

Weight Decay 10−5

Batch Size 5

Epochs 20

AlexNet

Remark The original AlexNet (Krizhevsky, Sutskever, and Hinton, 2012) architecture.

Input Image Size 227× 227

F
e
a
tu
re

E
x
tr
a
ct
io
n

kernel size stride channels in channels out padding

ReLU(conv) 11 4 1 96 0

maxpool 3 2

ReLU(conv) 5 1 96 256 2

maxpool 3 2

ReLU(conv) 3 1 256 384 1

ReLU(conv) 3 1 384 384 1

ReLU(conv) 3 1 384 256 1

maxpool 3 2

R
e
g
re
ss
io
n features in features out

ReLU(FC) 9216 4096

ReLU(FC) 4096 4096

FC 4096 2

Page 42 of 83

A Framework for Learning Visual and Tactile Correlation

AlexNet - 1× 1

Remark The AlexNet architecure but the size of the feature map is reduced to 1× 1.

Input Image Size 227× 227

F
e
a
tu
re

E
x
tr
a
ct
io
n

kernel size stride channels in channels out padding

ReLU(conv) 11 4 1 96 0

maxpool 3 2

ReLU(conv) 5 1 96 256 2

maxpool 3 2

ReLU(conv) 3 1 256 384 1

ReLU(conv) 3 1 384 384 1

ReLU(conv) 3 1 384 256 1

maxpool 3 2

ReLU(conv) 6 1 256 256 0

R
e
g
re
ss
io
n features in features out

ReLU(FC) 256 160

ReLU(FC) 160 160

FC 160 2

RandomConv

Remark Quite random architecture.

Input Image Size 227× 227

F
e
a
tu
re

E
x
tr
a
ct
io
n kernel size stride channels in channels out padding

ReLU(conv) 5 2 1 20 0

maxpool 4 2

ReLU(conv) 3 2 20 40 0

maxpool 3 2

ReLU(conv) 3 2 40 80 0

maxpool 3 2

R
e
g
re
ss
io
n features in features out

ReLU(FC) 320 160

ReLU(FC) 160 160

FC 160 2

SmallConv

Remark Small architecture.

Input Image Size 227× 227

F
e
a
t.
E
x
tr
a
c. kernel size stride channels in channels out padding

ReLU(conv) 5 3 1 20 0

maxpool 3 3

ReLU(conv) 4 3 20 40 0

maxpool 2 3

R
e
g
re
ss
io
n features in features out

ReLU(FC) 360 160

ReLU(FC) 160 160

FC 160 2

Page 43 of 83

A Framework for Learning Visual and Tactile Correlation

SchoeConv100 - V1

Remark Idea explained in Sec. 5.2. No padding. Kernel size of 5.

Input Image Size 100× 100

F
e
a
tu
re

E
x
tr
a
ct
io
n

kernel size stride channels in channels out padding

ReLU(conv) 5 1 1 30 0

maxpool 2 2

ReLU(conv) 5 1 30 60 0

maxpool 2 2

ReLU(conv) 5 5 60 120 0

maxpool 2 2

ReLU(conv) 5 1 120 240 0

ReLU(conv) 5 1 240 240 0

R
e
g
re
ss
io
n features in features out

ReLU(FC) 240 160

ReLU(FC) 160 160

FC 160 2

SchoeConv100 - V2

Remark Idea explained in Sec. 5.2. With padding. Kernel size of 5.

Input Image Size 100× 100

F
e
a
tu
re

E
x
tr
a
ct
io
n

kernel size stride channels in channels out padding

ReLU(conv) 5 1 1 30 2

maxpool 2 2

ReLU(conv) 5 1 30 60 2

maxpool 2 2

ReLU(conv) 5 1 60 120 2

maxpool 3 2

ReLU(conv) 5 1 120 240 2

maxpool 2 2

ReLU(conv) 6 1 240 240 0

R
e
g
re
ss
io
n features in features out

ReLU(FC) 240 160

ReLU(FC) 160 160

FC 160 2

Page 44 of 83

A Framework for Learning Visual and Tactile Correlation

SchoeConv100 - V3(FC160)

Remark Idea explained in Sec. 5.2. With padding. Kernel size of 7.

Input Image Size 100× 100

F
e
a
tu
re

E
x
tr
a
ct
io
n

kernel size stride channels in channels out padding

ReLU(conv) 7 1 1 30 3

maxpool 2 2

ReLU(conv) 7 1 30 60 3

maxpool 2 2

ReLU(conv) 7 1 60 120 3

maxpool 3 2

ReLU(conv) 7 1 120 240 3

maxpool 2 2

ReLU(conv) 6 1 240 240 0

R
e
g
re
ss
io
n features in features out

ReLU(FC) 240 160

ReLU(FC) 160 160

FC 160 2

SchoeConv100 - V3(FC160) - 4× 4

Remark Same as SchoeConv100 - V3(FC160) but reduces feature map to 4× 4.

Input Image Size 100× 100

F
e
a
tu
re

E
x
tr
a
ct
io
n

kernel size stride channels in channels out padding

ReLU(conv) 7 1 1 30 3

maxpool 2 2

ReLU(conv) 7 1 30 60 3

maxpool 2 2

ReLU(conv) 7 1 60 120 3

maxpool 3 2

ReLU(conv) 7 1 120 240 3

maxpool 3 3

R
e
g
re
ss
io
n features in features out

ReLU(FC) 3840 160

ReLU(FC) 160 160

FC 160 2

Page 45 of 83

A Framework for Learning Visual and Tactile Correlation

SchoeConv100 - V3(FC480)

Remark Idea explained in Sec. 5.2. With padding. Kernel size of 7.

Input Image Size 100× 100

F
e
a
tu
re

E
x
tr
a
ct
io
n

kernel size stride channels in channels out padding

ReLU(conv) 7 1 1 30 3

maxpool 2 2

ReLU(conv) 7 1 30 60 3

maxpool 2 2

ReLU(conv) 7 1 60 120 3

maxpool 3 2

ReLU(conv) 7 1 120 240 3

maxpool 2 2

ReLU(conv) 6 1 240 240 0

R
e
g
re
ss
io
n features in features out

ReLU(FC) 240 480

ReLU(FC) 480 480

FC 480 2

SchoeConv100 - V4

Remark Idea explained in Sec. 5.2. With padding. Kernel size of 9.

Input Image Size 100× 100

F
e
a
tu
re

E
x
tr
a
ct
io
n

kernel size stride channels in channels out padding

ReLU(conv) 9 1 1 30 4

maxpool 2 2

ReLU(conv) 9 1 30 60 4

maxpool 2 2

ReLU(conv) 9 1 60 120 4

maxpool 3 2

ReLU(conv) 9 1 120 240 4

maxpool 2 2

ReLU(conv) 6 1 240 240 0

R
e
g
re
ss
io
n features in features out

ReLU(FC) 240 160

ReLU(FC) 160 160

FC 160 2

Page 46 of 83

A Framework for Learning Visual and Tactile Correlation

SchoeConv100 - V5

Remark Idea explained in Sec. 5.2. With padding. Kernel size of 7. More feature maps.

Input Image Size 100× 100

F
e
a
tu
re

E
x
tr
a
ct
io
n

kernel size stride channels in channels out padding

ReLU(conv) 7 1 1 50 3

maxpool 2 2

ReLU(conv) 7 1 50 100 3

maxpool 2 2

ReLU(conv) 7 1 100 200 3

maxpool 3 2

ReLU(conv) 7 1 200 400 3

maxpool 2 2

ReLU(conv) 6 1 400 400 0

R
e
g
re
ss
io
n features in features out

ReLU(FC) 400 160

ReLU(FC) 160 160

FC 160 2

SchoeConv227 - V1

Remark Idea explained in Sec. 5.2. Like SchoeConv100 - V3 just for bigger input.

Input Image Size 227× 227

F
e
a
tu
re

E
x
tr
a
ct
io
n

kernel size stride channels in channels out padding

ReLU(conv) 13 1 1 30 6

maxpool 3 2

ReLU(conv) 13 1 30 60 6

maxpool 3 2

ReLU(conv) 13 1 60 120 6

maxpool 3 2

ReLU(conv) 13 1 120 240 6

maxpool 3 2

ReLU(conv) 13 1 240 240 0

R
e
g
re
ss
io
n features in features out

ReLU(FC) 240 160

ReLU(FC) 160 160

FC 160 2

Page 47 of 83

A Framework for Learning Visual and Tactile Correlation

SchoeConv227 - V2

Remark Idea explained in Sec. 5.2. Like SchoeConv100 - V5 just for bigger input.

Input Image Size 227× 227

F
e
a
tu
re

E
x
tr
a
ct
io
n

kernel size stride channels in channels out padding

ReLU(conv) 13 1 1 50 6

maxpool 3 2

ReLU(conv) 13 1 50 100 6

maxpool 3 2

ReLU(conv) 13 5 100 200 6

maxpool 3 2

ReLU(conv) 13 1 200 400 6

maxpool 3 2

ReLU(conv) 13 1 400 400 0

R
e
g
re
ss
io
n features in features out

ReLU(FC) 400 160

ReLU(FC) 160 160

FC 160 2

Page 48 of 83

A Framework for Learning Visual and Tactile Correlation

A.3 Code

This appendix consists of the code used to implement this thesis’ framework.

A.3.1 Tactile Data Preprocessing

The code used for the preprocessing of the tactile data.

Needed Packages for the Tactile Data Preprocessing Code

1 import os
2 import ma tp lo t l i b . pyp lo t as p l t
3 import csv
4 import numpy as np
5 import math
6 import openpyxl

Function for Extracting Data From Raw CSV File

1 def ex t r a c t _da ta (raw_data_path , normalized) :
2 " " "
3 This func t ion e x t r a c t s the raw , measured data from the f i l e s and re tu rns
4 the f o r c e s from the index f i n g e r and thumb sepe r a t e l y .
5 The fo r ce can be normalized . This means tha t a t EACH time s tep the f o r c e s
6 in y and z d i r e c t i o n are d iv ided by the r e s u l t a n t f o r ce of tha t time s tep .
7 " " "
8

9 index = [[] , []]
10 thumb = [[] , []]
11

12 with open(raw_data_path , ’ r ’) as f i l e :
13 csv_reader = csv . reader (f i l e)
14 next (csv_reader) # sk ip the header
15

16 f o r row in csv_reader :
17 y_index , z_index = in t (row[18]) , i n t (row[19])
18 y_thumb , z_thumb = in t (row[15]) , i n t (row[16])
19

20 i f normalized :
21 index_raw = (y_index , z_index)
22 thumb_raw = (y_thumb , z_thumb)
23 y_index , z_index , y_thumb , z_thumb = \
24 normal ize_ force (index_raw , thumb_raw)
25

26 index [0] . append(y_index)
27 index [1] . append(z_index)
28 thumb [0] . append(y_thumb)
29 thumb [1] . append(z_thumb)
30

31 re turn index , thumb

Page 49 of 83

A Framework for Learning Visual and Tactile Correlation

Function for Reducing Force Vectors to Unit Length

1 def normal ize_ force (index_raw , thumb_raw) :
2 " " "
3 Reduces f o r c e s to un i t vec tor s , so they don ’ t y i e l d in format ion about the
4 magnitude of the fo r ce .
5 Inputs should be a tup le : (fy , f z)
6 " " "
7 index_res = math . s q r t (index_raw [0]∗∗2 + index_raw [1]∗∗2)
8 i f index_res == 0: index_res = 1 # prevent d i v i son by 0
9 y_index = index_raw [0]/ index_res

10 z_index = index_raw [1]/ index_res
11

12 thumb_res = math . s q r t (thumb_raw[0]∗∗2 + thumb_raw[1]∗∗2)
13 i f thumb_res == 0: thumb_res = 1 # prevent d i v i son by 0
14 y_thumb = thumb_raw[0]/ thumb_res
15 z_thumb = thumb_raw[1]/ thumb_res
16

17 re turn y_index , z_index , y_thumb , z_thumb

Page 50 of 83

A Framework for Learning Visual and Tactile Correlation

Function for Splitting the Raw Data Into Smaller Time Series

1 def s p l i t _ d a t a (f i l e pa t h , threshold , normalized) :
2 " " "
3 Returns a l i s t of tup l e s of measurements from one f i l e
4 [([y1] , [z1]) , ([y2] , [z2]) , . . .]
5 The measuremens where z_index i s below thresho ld w i l l be ignored .
6 Everytime the z_index f a l l s below the thresho ld a new s p l i t begins .
7 " " "
8 index , thumb = ex t ra c t _da ta (f i l e pa t h , normalized=Fa l se)
9

10 y_ index_ l i s t , z _ i n d e x _ l i s t = [] , []
11 y_thumb_l is t , z_ thumb_l i s t = [] , []
12 a l l _ s p l i t s = []
13

14 f o r y_index , z_index , y_thumb , z_thumb in \
15 z ip (index [0] , index [1] , thumb[0] , thumb[1]) :
16

17 z_ index_re f = z_index
18

19 i f normalized :
20 f_ index = (y_index , z_index)
21 f_thumb = (y_thumb , z_thumb)
22 y_index , z_index , y_thumb , z_thumb = \
23 normal ize_ force (f_index , f_thumb)
24

25 # As long as z_index i s above thresho ld va lues w i l l be appended ,
26 # because i t ’ s s t i l l the same s p l i t
27 i f abs (z_ index_re f) > thresho ld :
28 y _ i nd e x _ l i s t . append(y_index)
29 z _ i nd e x _ l i s t . append(z_index)
30 y_thumb_l i s t . append(y_thumb)
31 z_thumb_l i s t . append(z_thumb)
32 e l s e :
33 # Once below the s p l i t i t w i l l be added to the l i s t of s p l i t s .
34 one_ sp l i t = \
35 (y_ i ndex_ l i s t , z _ i ndex_ l i s t , y_thumb_l is t , z_ thumb_l i s t)
36

37 y_ index_ l i s t , z _ i n d e x _ l i s t = [] , []
38 y_thumb_l is t , z_ thumb_l i s t = [] , []
39

40 # This prevents appending empty s p l i t s .
41 i f len (one_ sp l i t [0]) != 0:
42 a l l _ s p l i t s . append(one_ sp l i t)
43

44 re turn a l l _ s p l i t s

Page 51 of 83

A Framework for Learning Visual and Tactile Correlation

Function for Choosing Points to Represent Each Split

1 def choose_points (f i l e _pa th , threshold , normalized=Fa l se) :
2 " " "
3 Chooses a po int of each s p l i t .
4 The chosen point i s the f i r s t peak of z_index a f t e r i t s mean .
5 " " "
6 # s p l i t s to use to choose the r i g h t po in t s
7 a l l _ s p l i t s _ r e f = sp l i t _ d a t a (f i l e _pa th , threshold , normalized=Fa l se)
8 # s p l i t s to use to re turn the chosen po in t s
9 a l l _ s p l i t s = s p l i t _ d a t a (f i l e _pa th , threshold , normalized=normalized)

10

11 z_means = [] # mean fo r choosing po in t s
12 f o r s p l i t in a l l _ s p l i t s _ r e f :
13 z_means . append(np .mean(s p l i t [1]))
14

15 means = [] # means fo r re tu rn ing
16 f o r s p l i t in a l l _ s p l i t s :
17 mean = (np .mean(s p l i t [0]) , np .mean(s p l i t [1]) , \
18 np .mean(s p l i t [2]) , np .mean(s p l i t [3]))
19 means . append(mean)
20

21 # choose the f i r s t peak tha t i s b igger than the mean in z d i r e c t i o n of the
22 # index f i n g e r
23 po in t s = []
24 f o r s p l i t _ r e f , s p l i t , z_mean in z ip (a l l _ s p l i t s _ r e f , a l l _ s p l i t s , z_means) :
25

26 z_index = s p l i t _ r e f [1]
27

28 f o r i in range (1 , len (z_index) − 1) :
29 # i f p o s i t i v e peak
30 i f z_index [i − 1] < z_index [i] > z_index [i + 1] \
31 and z_index [i] > z_mean > 0:
32 # with index in the end fo r v i s u a l i z a t i o n purposes
33 po in t s . append ((s p l i t [0][i] , s p l i t [1][i] , s p l i t [2][i] , \
34 s p l i t [3][i] , i))
35 break
36

37 # i f negat ive peak
38 i f z_index [i − 1] > z_index [i] < z_index [i + 1] \
39 and z_index [i] < z_mean < 0:
40 po in t s . append ((s p l i t [0][i] , s p l i t [1][i] , s p l i t [2][i] , \
41 s p l i t [3][i] , i))
42 break
43

44 re turn points , means

Page 52 of 83

A Framework for Learning Visual and Tactile Correlation

Function for Choosing Points to Represent Each Split

1 def choose_points (f i l e _pa th , threshold , normalized=Fa l se) :
2 " " "
3 Chooses a po int of each s p l i t .
4 The chosen point i s the f i r s t peak of z_index a f t e r i t s mean .
5 " " "
6 # s p l i t s to use to choose the r i g h t po in t s
7 a l l _ s p l i t s _ r e f = sp l i t _ d a t a (f i l e _pa th , threshold , normalized=Fa l se)
8 # s p l i t s to use to re turn the chosen po in t s
9 a l l _ s p l i t s = s p l i t _ d a t a (f i l e _pa th , threshold , normalized=normalized)

10

11 z_means = [] # mean fo r choosing po in t s
12 f o r s p l i t in a l l _ s p l i t s _ r e f :
13 z_means . append(np .mean(s p l i t [1]))
14

15 means = [] # means fo r re tu rn ing
16 f o r s p l i t in a l l _ s p l i t s :
17 mean = (np .mean(s p l i t [0]) , np .mean(s p l i t [1]) , \
18 np .mean(s p l i t [2]) , np .mean(s p l i t [3]))
19 means . append(mean)
20

21 # choose the f i r s t peak tha t i s b igger than the mean in z d i r e c t i o n of the
22 # index f i n g e r
23 po in t s = []
24 f o r s p l i t _ r e f , s p l i t , z_mean in z ip (a l l _ s p l i t s _ r e f , a l l _ s p l i t s , z_means) :
25

26 z_index = s p l i t _ r e f [1]
27

28 f o r i in range (1 , len (z_index) − 1) :
29 # i f p o s i t i v e peak
30 i f z_index [i − 1] < z_index [i] > z_index [i + 1] \
31 and z_index [i] > z_mean > 0:
32 # with index in the end fo r v i s u a l i z a t i o n purposes
33 po in t s . append ((s p l i t [0][i] , s p l i t [1][i] , s p l i t [2][i] , \
34 s p l i t [3][i] , i))
35 break
36

37 # i f negat ive peak
38 i f z_index [i − 1] > z_index [i] < z_index [i + 1] \
39 and z_index [i] < z_mean < 0:
40 po in t s . append ((s p l i t [0][i] , s p l i t [1][i] , s p l i t [2][i] , \
41 s p l i t [3][i] , i))
42 break
43

44 re turn points , means

Page 53 of 83

A Framework for Learning Visual and Tactile Correlation

Function for Writing the Chosen Points Into the xlsx File

1 def save_chosen_data_points (raw_data_path , good_sp l i t s , th re sho ld) :
2 " " "
3 Saves the chosen data po in t s in to the l abe l s _ba se . x l s x f i l e .
4 One chosen data po int i s the f i r s t peak a f t e r the mean of a s p l i t .
5 The data w i l l be s p l i t where the z_index value f a l l s below thresho ld .
6 good_ sp l i t s i s a l i s t of the i nd i c e s of the s p l i t s to choose a data po int
7 from .
8 The f o r c e s w i l l be saved in reduced form !
9 " " "

10

11 # get the po in t s to save
12 points , means = choose_points (raw_data_path , threshold , normalized=True)
13

14 # open workbook , c r ea t e workbook ob j e c t
15 f i l e _ p a t h = os . path . j o i n (os . getcwd () , " t a c t i l e _ d a t a " , " l abe l s _ba se . x l s x ")
16 wb = openpyxl . load_workbook (f i l e _ p a t h)
17 # crea te sheet ob j e c t
18 sheet = wb. a c t i v e
19

20 image_name = raw_data_path . s p l i t (os . sep) [−1]. s p l i t (" . ") [0]
21

22 f o r idx in good_ sp l i t s :
23 # normalize the data
24 f_ index = (po in t s [idx][0] , po in t s [idx][1])
25 f_thumb = (po in t s [idx][2] , po in t s [idx][3])
26 f_norm = normal ize_ force (f_index , f_thumb)
27

28 f_norm = [s t r (x) f o r x in f_norm]
29 data_ to_wr i te = [image_name]
30 data_ to_wr i te . extend (f_norm)
31

32 sheet . append(data_ to_wr i te)
33

34 wb. save (f i l e _ p a t h)

Page 54 of 83

A Framework for Learning Visual and Tactile Correlation

Function for Creating a Labels File - Connect Visual and Tactile Data

1 def make_ labe l s_ fo r_ ro ta t ed_p i c s (t e s t) :
2 " " "
3 This func t ion c r ea t e s a l a b e l s f i l e f o r a l l the ro ta ted p i c t u r e s .
4 The ro ta ted p i c t u r e s are s imply the base images ro ta ted and then saved
5 as new p i c t u r e s to make the da ta se t b igger . Therefor a new l a b e l s f i l e i s
6 needed .
7 " " "
8

9 i f t e s t :
10 image_folder_path = \
11 os . path . j o i n (os . getcwd () , " t a c t i l e _ d a t a " , " p i c t u r e s _ t e s t ")
12 l abe l s _pa th = \
13 os . path . j o i n (os . getcwd () , " t a c t i l e _ d a t a " , " l a b e l s _ t e s t . x l s x ")
14 e l s e :
15 image_folder_path = \
16 os . path . j o i n (os . getcwd () , " t a c t i l e _ d a t a " , " p i c t u r e s _ t r a i n i n g ")
17 l abe l s _pa th = \
18 os . path . j o i n (os . getcwd () , " t a c t i l e _ d a t a " , " l a b e l s _ t r a i n i n g . x l s x ")
19

20 # get a l i s t of content of the f o l d e r
21 image s _ l i s t = os . l i s t d i r (image_folder_path)
22 # th i s s tep f i l t e r s out the f o l d e r s in the d i r e c t o r y −> only f i l e s
23 image s _ l i s t = [x fo r x in image s _ l i s t \
24 i f os . path . i s f i l e (os . path . j o i n (image_folder_path , x))]
25

26 l abe l s_base_pa th = \
27 os . path . j o i n (os . getcwd () , " t a c t i l e _ d a t a " , " l abe l s _ba se . x l s x ")
28 # open workbook
29 wb = openpyxl . load_workbook (labe l s_base_pa th)
30 # crea te sheet ob j e c t
31 sheet = wb. a c t i v e
32 # new workbook in which the new data w i l l be saved
33 wb_new = openpyxl . Workbook ()
34 sheet_new = wb_new . a c t i v e
35 sheet_new . append ([" image " , " y_index " , " z_index " , " y_thumb " , " z_thumb "])
36

37 f o r image in image s _ l i s t :
38 # remove " _ ro tby_xx_ i . png "
39 image_short = image . s p l i t (" _rotby_ ") [0]
40

41 f o r row in sheet . i t e r_ rows (va lues_on ly=True) :
42 i f row[0] == image_short :
43 data_ to_wr i te = [image . s p l i t (" . ") [0]]
44 data_ to_wr i te . extend (row [1 :])
45 sheet_new . append(data_ to_wr i te)
46

47 wb_new . save (l abe l s _pa th)

Page 55 of 83

A Framework for Learning Visual and Tactile Correlation

A.3.2 Image Preprocessing

The code used for the preprocessing of the visual data.

Needed Packages for the Image Preprocessing Code

1 import os
2 from to r chv i s i on import t rans forms
3 import torch
4 from alexne t import AlexNet
5 from PIL import Image
6 from PIL import ImageFi le
7 ImageFi le . LOAD_TRUNCATED_IMAGES = True
8 import openpyxl
9 import cv2 as cv

Function that Yields the Rotated Image Tensors and Bounding Boxes

1 def get_pictures_and_bounding_box (device , p i c s_ fo lde r_pa th , pad=None ,
2 box_model_path=None) :
3 " " "
4 Y i e l d s the image tensors , the corresponding bounding boxes and image path .
5 Rotates every image 20 t imes .
6 I f box_model_path == None no bounding boxes w i l l be y ie lded .
7 " " "
8

9 i f box_model_path != None :
10 # load the model which w i l l be used to compute the bounding boxes
11 model = AlexNet (outputs=8) . to (dev ice)
12 model . l o ad_ s t a t e _d i c t (torch . load (box_model_path ,
13 map_location=torch . dev ice (dev ice)))
14

15 # get a l i s t of content of the f o l d e r
16 p i c s _ f o l d e r _ f i l e s = os . l i s t d i r (p i c s _ f o lde r _pa th)
17 # th i s s tep f i l t e r s out the f o l d e r s in the d i r e c t o r y −> only f i l e s
18 pic_names = [x fo r x in p i c s _ f o l d e r _ f i l e s \
19 i f os . path . i s f i l e (os . path . j o i n (p i c s_ fo lde r_pa th , x))]
20

21 # Color f i l l value . Color of the area out s ide of the image v i s i b l e
22 # when ro ta ted .
23 # Quite important because performance of the bounding model v a r i e s a l o t
24 # with t h i s .
25 f i l l = 0.81
26

27 f o r pic_name in pic_names :
28 pic_path = os . path . j o i n (p i c s_ fo lde r_pa th , pic_name)
29 image = Image . open(p ic_path)
30

31 # conver t Image ob j e c t to tensor
32 t o_ tensor = trans forms . ToTensor ()
33 image_tensor = to_ tenso r (image)
34

35 # RGB−D image . D informat ion l o s t when p i c t u r e edited ,
36 # so i t ’ s removed here .
37 image_tensor = image_tensor [0 :3]
38

39 # re s i z e to make sure a l l p i c t u r e s are the same s i z e

Page 56 of 83

A Framework for Learning Visual and Tactile Correlation

40 r e s i z e = trans forms . Res ize ([227 ,227])
41 image_tensor = r e s i z e (image_tensor)
42

43 f o r angle in range (0 ,360 , 18) :
44 # ro t a t e the image by angle ; f i l l mkaes the out s ide white
45 # the r e s u l t s of the bounding box are much be t t e r when out s ide
46 # i s grey in s t ead of b lack !
47 image_tensor_rot = trans forms . f unc t i ona l . r o t a t e (image_tensor ,
48 angle , f i l l=f i l l)
49

50 pic_name_rot = pic_name . s p l i t (" . ") [0] + " _rotby_ " + s t r (angle) + \
51 " . png "
52

53 i f box_model_path != None :
54 # add a dimension which i s supposed to be the batch s i z e .
55 # th i s i s necessary , so the model works
56 image_tensor_rot = image_tensor_rot [None , : , : , :]
57

58 # compute the bounding box
59 bbox = model (image_tensor_rot . to (dev ice)) [0]
60 bbox = bbox . cpu () . detach () . numpy()
61

62 # remove dimension fo r f u r t he r use
63 image_tensor_rot = image_tensor_rot [0]
64

65 # add a pad to the bounding box fo r more in format ion
66 x_index = round (bbox [0]) − pad
67 y_index = round (bbox [1]) − pad
68 w_index = round (bbox [2]) + 2 ∗ pad
69 h_index = round (bbox [3]) + 2 ∗ pad
70 x_thumb = round (bbox [4]) − pad
71 y_thumb = round (bbox [5]) − pad
72 w_thumb = round (bbox [6]) + 2 ∗ pad
73 h_thumb = round (bbox [7]) + 2 ∗ pad
74

75 # make sure the bounding box i sn ’ t ou t s ide the image
76 # index
77 i f x_index < 0: x_index = 0
78 i f y_index < 0: y_index = 0
79 i f w_index + x_index > 227: w_index = 227 − x_index
80 i f h_index + y_index > 227: h_index = 227 − y_index
81 # thumb
82 i f x_thumb < 0: x_thumb = 0
83 i f y_thumb < 0: y_thumb = 0
84 i f w_thumb + x_thumb > 227: w_thumb = 227 − x_thumb
85 i f h_thumb + y_thumb > 227: h_thumb = 227 − y_thumb
86

87 bbox = (x_index , y_index , w_index , h_index ,
88 x_thumb , y_thumb , w_thumb , h_thumb)
89

90 y i e l d image_tensor_rot , pic_name_rot , bbox
91

92 e l s e :
93 y i e l d image_tensor_rot , pic_name_rot

Page 57 of 83

A Framework for Learning Visual and Tactile Correlation

Function for Saving the Base Images Simply Rotated

1 def co l o r_ s imp l y_ ro t a t e (device , p i c s_ fo lde r_pa th , t e s t) :
2 " " "
3 Saves the o rg ina l images ro ta ted 20 t imes .
4 I f t e s t i s True the p i c t u r e s w i l l be saved in the p i c t u r e s _ t e s t f o l d e r .
5 " " "
6 f o r image_tensor_rot , pic_name_rot in \
7 get_pictures_and_bounding_box (device , p i c s _ f o lde r _pa th) :
8

9 # transform tensor to image and save the p i c t u r e
10 t o _ p i l = trans forms . ToPILImage ()
11 image = t o _p i l (image_tensor_rot)
12

13 i f t e s t : folder_name = " p i c t u r e s _ t e s t "
14 e l s e : folder_name = " p i c t u r e s _ t r a i n i n g "
15

16 image_path_to_save = os . path . j o i n (os . getcwd () , " t a c t i l e _ d a t a " ,
17 folder_name , pic_name_rot)
18

19 image . save (image_path_to_save)

Page 58 of 83

A Framework for Learning Visual and Tactile Correlation

Function for Calculating the Padding Needed to Make the Images Square

1 def get_pad (img_shape) :
2 " " "
3 Gives the needed padding to make the image square .
4 " " "
5 # i f he ight g rea t e r than width
6 i f img_shape [1] > img_shape [2] :
7 # [l e f t , top , r i gh t , bottom]
8

9 d i f f = 227 − img_shape [2]
10

11 i f d i f f % 2 == 0:
12 pad_ l e f t = i n t (d i f f /2)
13 pad_r ight = i n t (d i f f /2)
14 e l s e :
15 pad_ l e f t = i n t (d i f f /2) + 1
16 pad_r ight = i n t (d i f f /2)
17

18 pad_img = [pad_ le f t , 0 , pad_r ight , 0]
19

20 # i f he ight smal le r than width
21 e l i f img_shape [1] < img_shape [2] :
22 # [l e f t , top , r i gh t , bottom]
23

24 d i f f = 227 − img_shape [1]
25

26 i f d i f f % 2 == 0:
27 pad_top = in t (d i f f /2)
28 pad_bottom = in t (d i f f /2)
29 e l s e :
30 pad_top = in t (d i f f /2) + 1
31 pad_bottom = in t (d i f f /2)
32

33 pad_img = [0 , pad_top , 0 , pad_bottom]
34

35 e l s e :
36 pad_img = [0 ,0 ,0 ,0]
37

38 re turn pad_img

Page 59 of 83

A Framework for Learning Visual and Tactile Correlation

Function for Saving Colored Images which are Cropped Beyond the Fingers

1 def co lor_crop_beyond_f ingers (device , box_model_path , p i c s_ fo lde r_pa th , pad ,
2 t e s t) :
3 " " "
4 Creates p i c t u r e s in which every th ing beyond the bounding boxes i s cropped
5 and the space between the f i n g e r s i s gray .
6 The p i c t u r e s w i l l then be used to t r a i n the v i s u a l to t a c t i l e network .
7 Out of one p i c t u r e 10 w i l l be generated by r o t a t i n g i t .
8 The purpose i s to make the t r a i n i n g s e t l a r g e r .
9

10 pad : The number of p i x e l s added around the bounding box fo r more p i c t u r e
11 in format ion .
12 " " "
13 f i l l = 0.81
14

15 f o r image_tensor_rot , pic_name_rot , bbox in \
16 get_pictures_and_bounding_box (device , p i c s_ fo lde r_pa th , pad=pad ,
17 box_model_path=box_model_path) :
18

19 x_index , y_index , w_index , h_index , \
20 x_thumb , y_thumb , w_thumb , h_thumb = bbox
21

22 # make every th ing ouside the bounding boxes grey :
23 # the co lo r was taken from the input images
24 # and i s supposed to be as s im i l a r to the background as po s s i b l e
25 f o r channel in image_tensor_rot :
26 f o r y in range (227) :
27 f o r x in range (227) :
28 i f not (((y_index <= y <= y_index + h_index) and
29 (x_index <= x <= x_index + w_index)) or
30 ((y_thumb <= y <= y_thumb + h_thumb) and
31 (x_thumb <= x <= x_thumb + w_thumb))) :
32 channel [y][x] = f i l l
33

34 # crop the image , so the bounding box are the outer edges
35 # f i r s t f i nd the outer edges
36 # i f the index f i n g e r i s more to the l e f t than the thumb
37 i f x_index < x_thumb : c r o p _ l e f t = x_index
38 e l s e : c r o p _ l e f t = x_thumb
39

40 # i f the index i s h igher up than thumb
41 i f y_index < y_thumb : crop_top = y_index
42 e l s e : crop_top = y_thumb
43

44 # i f the r i g h t border of the index i s more r i g h t than the border
45 # of the thumb
46 i f x_index + w_index > x_thumb + w_thumb :
47 crop_width = x_index + w_index − c r o p _ l e f t
48 e l s e :
49 crop_width = x_thumb + w_thumb − c r o p _ l e f t
50

51 # i f the bottom border of the index i s lower than the thumbs
52 i f y_index + h_index > y_thumb + h_thumb :
53 crop_he ight = y_index + h_index − crop_top
54 e l s e :
55 crop_he ight = y_thumb + h_thumb − crop_top

Page 60 of 83

A Framework for Learning Visual and Tactile Correlation

56

57 # crop
58 image_tensor_rot = trans forms . f unc t i ona l . crop (image_tensor_rot ,
59 top=crop_top , l e f t=c rop_ l e f t , he ight=crop_height , width=crop_width)
60

61 # re s i z e
62 # s i z e must be smal le r than max_size but i t ’ s important tha t
63 # max_size i s 227. So t h i s i s a l i t t l e " hack " .
64 # th i s makes sure tha t the b igger s ide i sn ’ t b igger than 227
65 # This i s needed fo r the Pad s tep because there i t i s assumed
66 # tha t the longer s ide i s 227.
67 # Only when the p i c t u r e i s a l ready square the image w i l l be 226x226 but
68 # tha t i s not a problem because the dataload r e s i z e s i t 227x227 anyway
69 r e s i z e = trans forms . Res ize (s i z e=226, max_size=227)
70 image_tensor_rot = r e s i z e (image_tensor_rot)
71

72 # pad , so i t ’ s square
73 img_shape = image_tensor_rot . shape
74 pad_img = get_pad (img_shape)
75

76 padding = trans forms . Pad(padding=pad_img , f i l l=f i l l ,
77 padding_mode=" cons tant ")
78 image_tensor_rot = padding (image_tensor_rot)
79

80 # transform tensor to image and save the p i c t u r e
81 t o _ p i l = trans forms . ToPILImage ()
82 image = t o _p i l (image_tensor_rot)
83

84 i f t e s t : folder_name = " p i c t u r e s _ t e s t "
85 e l s e : folder_name = " p i c t u r e s _ t r a i n i n g "
86

87 image_path_to_save = os . path . j o i n (os . getcwd () , " t a c t i l e _ d a t a " ,
88 folder_name , pic_name_rot)
89 image . save (image_path_to_save)

Page 61 of 83

A Framework for Learning Visual and Tactile Correlation

Function for Saving Colored Images of One Finger

1 def co lo r_one_ f inge r (device , thumb , box_model_path , p i c s_ fo lde r_pa th , pad ,
2 t e s t) :
3 " " "
4 Creates co lo r images of the index f i n g e r only .
5 " " "
6 # approximately the co lo r of the t ab l e the ob j e c t s l i e on
7 f i l l = 0.81
8

9 f o r image_tensor_rot , pic_name_rot , bbox in \
10 get_pictures_and_bounding_box (device , p i c s_ fo lde r_pa th , pad=pad ,
11 box_model_path=box_model_path) :
12

13 x_index , y_index , w_index , h_index , x_thumb , y_thumb , w_thumb , h_thumb =
bbox

14

15 i f thumb :
16 image_tensor_rot = trans forms . f unc t i ona l . crop (image_tensor_rot ,
17 top=y_thumb , l e f t=x_thumb , he ight=h_thumb , width=w_thumb)
18 e l s e :
19 image_tensor_rot = trans forms . f unc t i ona l . crop (image_tensor_rot ,
20 top=y_index , l e f t=x_index , he ight=h_index , width=w_index)
21

22 # re s i z e
23 # s i z e must be smal le r than max_size but i t ’ s important tha t
24 # max_size i s 227.
25 r e s i z e = trans forms . Res ize (s i z e=226, max_size=227)
26 image_tensor_rot = r e s i z e (image_tensor_rot)
27

28 # pad , so i t ’ s square
29 img_shape = image_tensor_rot . shape
30 pad_img = get_pad (img_shape)
31

32 padding = trans forms . Pad(padding=pad_img , f i l l=f i l l ,
33 padding_mode=" cons tant ")
34 image_tensor_rot = padding (image_tensor_rot)
35

36 # transform tensor to image and save the p i c t u r e
37 t o _ p i l = trans forms . ToPILImage ()
38 image = t o _p i l (image_tensor_rot)
39

40 i f t e s t : folder_name = " p i c t u r e s _ t e s t "
41 e l s e : folder_name = " p i c t u r e s _ t r a i n i n g "
42

43 image_path_to_save = os . path . j o i n (os . getcwd () , " t a c t i l e _ d a t a " ,
44 folder_name , pic_name_rot)
45 image . save (image_path_to_save)

Page 62 of 83

A Framework for Learning Visual and Tactile Correlation

Function that Returns the Edge Image of the Corresponding Color Image

1 def get_edge_image (pic_name_rot , p i c s _ f o lde r _pa th) :
2 " " "
3 This func t ion re tu rns the edge image of the corresponding co lo r image .
4 " " "
5 f i l l = 0
6

7 # ex t r a c t the base p i c name and the ro t a t i on angle
8 pic_name = pic_name_rot . s p l i t (" . ") [0] . s p l i t (" _rotby ") [0]
9 ro t_ang le = i n t (pic_name_rot . s p l i t (" . ") [0] . s p l i t (" _ ") [−1])

10

11 # open f i l e with thresho ld va lues
12 t h r e s f i l e _ p a t h = os . path . j o i n (os . getcwd () , " t a c t i l e _ d a t a " , \
13 " Canny_threshold . x l s x ")
14 wb = openpyxl . load_workbook (t h r e s f i l e _ p a t h)
15 sheet = wb. a c t i v e
16 # f ind the thresho ld value
17 f o r row in sheet . i t e r_ rows (va lues_only=True) :
18 i f row[0] == pic_name :
19 low_thres = i n t (row[1])
20 h igh_ thres = i n t (row[2])
21

22 # open the image with opencv and get the edges
23 pic_path = os . path . j o i n (p i c s_ fo lde r_pa th , pic_name + " . png ")
24 img_edges = cv . imread (p ic_path)
25 img_edges = cv . Canny(img_edges , low_thres , h igh_ thres)
26

27 # transform to tensor
28 t o_ tensor = trans forms . ToTensor ()
29 image_tensor_edges = to_ tensor (img_edges)
30

31 # re s i z e to make sure a l l p i c t u r e s are the same s i z e
32 r e s i z e = trans forms . Res ize ([227 ,227])
33 image_tensor_edges = r e s i z e (image_tensor_edges)
34

35 # ro t a t e edge image
36 image_tensor_edges_rot = trans forms . f unc t i ona l . r o t a t e (image_tensor_edges ,
37 rot_angle , f i l l=f i l l)
38

39 re turn image_tensor_edges_rot

Page 63 of 83

A Framework for Learning Visual and Tactile Correlation

Function for Saving the Base Edges Images Simply Rotated

1 def edges_s imply_ro ta te (device , p i c s_ fo lde r_pa th , t e s t) :
2 " " "
3 Saves the base edge images ro ta ted 20 t imes .
4 I f t e s t i s True the p i c t u r e s w i l l be saved in the p i c t u r e s _ t e s t f o l d e r .
5 " " "
6 f o r image_tensor_rot , pic_name_rot in \
7 get_pictures_and_bounding_box (device , p i c s _ f o lde r _pa th) :
8

9 # get the edge image of image_tenso_rot as tensor
10 image_tensor_edges_rot = get_edge_image (pic_name_rot=pic_name_rot ,
11 p i c s _ f o lde r _pa th=p i c s _ f o lde r _pa th)
12

13 # transform tensor to image and save the p i c t u r e
14 t o _ p i l = trans forms . ToPILImage ()
15 image = t o _p i l (image_tensor_edges_rot)
16

17 i f t e s t : folder_name = " p i c t u r e s _ t e s t "
18 e l s e : folder_name = " p i c t u r e s _ t r a i n i n g "
19

20 image_path_to_save = os . path . j o i n (os . getcwd () , " t a c t i l e _ d a t a " ,
21 folder_name , pic_name_rot)
22

23 image . save (image_path_to_save)

Page 64 of 83

A Framework for Learning Visual and Tactile Correlation

Function for Saving Edge Images which are Cropped Beyond the Fingers

1 def co lor_crop_beyond_f ingers (device , box_model_path , p i c s_ fo lde r_pa th , pad ,
2 t e s t) :
3 " " "
4 Creates p i c t u r e s in which every th ing beyond the bounding boxes i s cropped
5 and the space between the f i n g e r s i s gray .
6 The p i c t u r e s w i l l then be used to t r a i n the v i s u a l to t a c t i l e network .
7 Out of one p i c t u r e 10 w i l l be generated by r o t a t i n g i t .
8 The purpose i s to make the t r a i n i n g s e t l a r g e r .
9

10 pad : The number of p i x e l s added around the bounding box fo r more p i c t u r e
11 in format ion .
12 " " "
13 f i l l = 0.81
14

15 f o r image_tensor_rot , pic_name_rot , bbox in \
16 get_pictures_and_bounding_box (device , p i c s_ fo lde r_pa th , pad=pad ,
17 box_model_path=box_model_path) :
18

19 x_index , y_index , w_index , h_index , \
20 x_thumb , y_thumb , w_thumb , h_thumb = bbox
21

22 # make every th ing ouside the bounding boxes grey :
23 # the co lo r was taken from the input images
24 # and i s supposed to be as s im i l a r to the background as po s s i b l e
25 f o r channel in image_tensor_rot :
26 f o r y in range (227) :
27 f o r x in range (227) :
28 i f not (((y_index <= y <= y_index + h_index) and
29 (x_index <= x <= x_index + w_index)) or
30 ((y_thumb <= y <= y_thumb + h_thumb) and
31 (x_thumb <= x <= x_thumb + w_thumb))) :
32 channel [y][x] = f i l l
33

34 # crop the image , so the bounding box are the outer edges
35 # f i r s t f i nd the outer edges
36 # i f the index f i n g e r i s more to the l e f t than the thumb
37 i f x_index < x_thumb : c r o p _ l e f t = x_index
38 e l s e : c r o p _ l e f t = x_thumb
39

40 # i f the index i s h igher up than thumb
41 i f y_index < y_thumb : crop_top = y_index
42 e l s e : crop_top = y_thumb
43

44 # i f the r i g h t border of the index i s more r i g h t than the border
45 # of the thumb
46 i f x_index + w_index > x_thumb + w_thumb :
47 crop_width = x_index + w_index − c r o p _ l e f t
48 e l s e :
49 crop_width = x_thumb + w_thumb − c r o p _ l e f t
50

51 # i f the bottom border of the index i s lower than the thumbs
52 i f y_index + h_index > y_thumb + h_thumb :
53 crop_he ight = y_index + h_index − crop_top
54 e l s e :
55 crop_he ight = y_thumb + h_thumb − crop_top

Page 65 of 83

A Framework for Learning Visual and Tactile Correlation

56

57 # crop
58 image_tensor_rot = trans forms . f unc t i ona l . crop (image_tensor_rot ,
59 top=crop_top , l e f t=c rop_ l e f t , he ight=crop_height , width=crop_width)
60

61 # re s i z e
62 # s i z e must be smal le r than max_size but i t ’ s important tha t
63 # max_size i s 227. So t h i s i s a l i t t l e " hack " .
64 # th i s makes sure tha t the b igger s ide i sn ’ t b igger than 227
65 # This i s needed fo r the Pad s tep because there i t i s assumed
66 # tha t the longer s ide i s 227.
67 # Only when the p i c t u r e i s a l ready square the image w i l l be 226x226 but
68 # tha t i s not a problem because the dataload r e s i z e s i t 227x227 anyway
69 r e s i z e = trans forms . Res ize (s i z e=226, max_size=227)
70 image_tensor_rot = r e s i z e (image_tensor_rot)
71

72 # pad , so i t ’ s square
73 img_shape = image_tensor_rot . shape
74 pad_img = get_pad (img_shape)
75

76 padding = trans forms . Pad(padding=pad_img , f i l l=f i l l ,
77 padding_mode=" cons tant ")
78 image_tensor_rot = padding (image_tensor_rot)
79

80 # transform tensor to image and save the p i c t u r e
81 t o _ p i l = trans forms . ToPILImage ()
82 image = t o _p i l (image_tensor_rot)
83

84 i f t e s t : folder_name = " p i c t u r e s _ t e s t "
85 e l s e : folder_name = " p i c t u r e s _ t r a i n i n g "
86

87 image_path_to_save = os . path . j o i n (os . getcwd () , " t a c t i l e _ d a t a " ,
88 folder_name , pic_name_rot)
89 image . save (image_path_to_save)

Page 66 of 83

A Framework for Learning Visual and Tactile Correlation

Function for Saving Edge Images of One Finger

1 def edges_crop_beyond_f ingers (device , box_model_path , p i c s_ fo lde r_pa th ,
2 pad , make_small , t e s t) :
3 " " "
4 S imi l a r to p i c s_c rop_beyond_f inger s () but with edge images and the space
5 between i s b lack .
6 " " "
7 f i l l = 0
8

9 f o r image_tensor_rot , pic_name_rot , bbox in \
10 get_pictures_and_bounding_box (device , p i c s_ fo lde r_pa th , pad=pad ,
11 box_model_path=box_model_path) :
12

13 # get the edge image of image_tenso_rot as tensor
14 image_tensor_edges_rot = get_edge_image (pic_name_rot=pic_name_rot ,
15 p i c s _ f o lde r _pa th=p i c s _ f o lde r _pa th)
16

17 # crop
18 x_index , y_index , w_index , h_index , \
19 x_thumb , y_thumb , w_thumb , h_thumb = bbox
20

21 # make every th ing ouside the bounding boxes b lack
22 f o r channel in image_tensor_edges_rot :
23 f o r y in range (227) :
24 f o r x in range (227) :
25 i f not (((y_index <= y <= y_index + h_index)
26 and (x_index <= x <= x_index + w_index))
27 or ((y_thumb <= y <= y_thumb + h_thumb)
28 and (x_thumb <= x <= x_thumb + w_thumb))) :
29 channel [y][x] = f i l l
30

31 # crop the image , so the bounding boxes are the outer edges
32 # f i r s t f i nd the outer edges
33 # i f the index f i n g e r i s more to the l e f t than the thumb
34 i f x_index < x_thumb : c r o p _ l e f t = x_index
35 e l s e : c r o p _ l e f t = x_thumb
36

37 # i f the index i s h igher up than thumb
38 i f y_index < y_thumb : crop_top = y_index
39 e l s e : crop_top = y_thumb
40

41 # i f the r i g h t border of the index i s more r i g h t than
42 # the border of the thumb
43 i f x_index + w_index > x_thumb + w_thumb :
44 crop_width = x_index + w_index − c r o p _ l e f t
45 e l s e :
46 crop_width = x_thumb + w_thumb − c r o p _ l e f t
47

48 # i f the bottom border of the index i s lower than the thumbs
49 i f y_index + h_index > y_thumb + h_thumb :
50 crop_he ight = y_index + h_index − crop_top
51 e l s e :
52 crop_he ight = y_thumb + h_thumb − crop_top
53

54 # crop
55 image_tensor_edges_rot = trans forms . f unc t i ona l . crop (

Page 67 of 83

A Framework for Learning Visual and Tactile Correlation

56 image_tensor_edges_rot , top=crop_top , l e f t=c rop_ l e f t ,
57 height=crop_height , width=crop_width)
58

59 r e s i z e = trans forms . Res ize (s i z e=226, max_size=227)
60 image_tensor_edges_rot = r e s i z e (image_tensor_edges_rot)
61

62 # pad , so i t ’ s square
63 img_shape = image_tensor_edges_rot . shape
64 pad_img = get_pad (img_shape)
65

66 padding = trans forms . Pad(padding=pad_img , f i l l=f i l l ,
67 padding_mode=" cons tant ")
68 image_tensor_edges_rot = padding (image_tensor_edges_rot)
69

70 # transform tensor to image and save the p i c t u r e
71 t o _ p i l = trans forms . ToPILImage ()
72 image = t o _p i l (image_tensor_edges_rot)
73

74 i f t e s t : folder_name = " p i c t u r e s _ t e s t "
75 e l s e : folder_name = " p i c t u r e s _ t r a i n i n g "
76

77 image_path_to_save = os . path . j o i n (os . getcwd () ,
78 " t a c t i l e _ d a t a " , folder_name , pic_name_rot)
79 image . save (image_path_to_save)

Page 68 of 83

A Framework for Learning Visual and Tactile Correlation

A.3.3 The Network: Architecture, Dataset, Training, Optimization & Evaluation

The code used to build the neural network, feed it with data, train and evaluate it. In this
appendix only the code for the AlexNet architecture will be shown, since the principal is for all
models the same and only the parameters change.

Code for Buliding the AlexNet Architecture

1 import torch . nn as nn
2 import torch . nn . f unc t i ona l as F
3

4 c l a s s AlexNet (nn . Module) :
5 def _ _ i n i t _ _ (s e l f , l i near_wid th=4096, outputs=4, in_channels=3) :
6 super () . _ _ i n i t _ _ ()
7 " ou tpu t_ s i ze = (p i c − kerne l + 2∗pad) / s t r i d e + 1 "
8 s e l f . conv1 = nn . Conv2d(in_channels=in_channels , out_channels=96,
9 ke rne l _ s i z e=11, s t r i d e=4, padding=0)

10

11 s e l f . maxpool = nn . MaxPool2d(ke rne l _ s i z e=3, s t r i d e=2)
12

13 s e l f . conv2 = nn . Conv2d(in_channels=96, out_channels=256,
14 ke rne l _ s i z e=5, s t r i d e=1, padding=2)
15

16 s e l f . conv3 = nn . Conv2d(in_channels=256, out_channels=384,
17 ke rne l _ s i z e=3, s t r i d e=1, padding=1)
18

19 s e l f . conv4 = nn . Conv2d(in_channels=384, out_channels=384,
20 ke rne l _ s i z e=3, s t r i d e=1, padding=1)
21

22 s e l f . conv5 = nn . Conv2d(in_channels=384, out_channels=256,
23 ke rne l _ s i z e=3, s t r i d e=1, padding=1)
24

25 s e l f . f c1 = nn . L inear (i n _ f e a tu r e s=9216, ou t_ f ea tu re s=l inear_wid th)
26 s e l f . f c2 = nn . L inear (i n _ f e a tu r e s=l inear_width , ou t_ f ea tu re s=l inear_wid th

)
27 s e l f . f c3 = nn . L inear (i n _ f e a tu r e s=l inear_width , ou t_ f ea tu re s=outputs)
28

29 def forward (s e l f , x) :
30 x = F . re lu (s e l f . conv1 (x))
31 x = s e l f . maxpool (x)
32 x = F . re lu (s e l f . conv2 (x))
33 x = s e l f . maxpool (x)
34 x = F . re lu (s e l f . conv3 (x))
35 x = F . re lu (s e l f . conv4 (x))
36 x = F . re lu (s e l f . conv5 (x))
37 x = s e l f . maxpool (x)
38 x = x . reshape (x . shape [0] , −1)
39 x = F . re lu (s e l f . f c1 (x))
40 x = F . re lu (s e l f . f c2 (x))
41 x = s e l f . f c3 (x)
42 re turn x

Page 69 of 83

A Framework for Learning Visual and Tactile Correlation

Code of the Dataset Class

1 from torch . u t i l s . data import Dataset
2 import os
3 # i n s t a l l e d P i l low ins tead of PIL due to error , works f i n e too
4 from PIL import Image
5 from PIL import ImageFi le
6 ImageFi le . LOAD_TRUNCATED_IMAGES = True
7 from to r chv i s i on import t rans forms
8 import numpy as np
9 import openpyxl

10

11

12 c l a s s Dataset (Dataset) :
13

14 def _ _ i n i t _ _ (s e l f , s i ze , t e s t) :
15

16 s e l f . s i z e = s i z e
17 s e l f . t e s t = t e s t
18

19 i f t e s t :
20 s e l f . image_folder_name = " p i c t u r e s _ t e s t "
21 l abe l s _pa th = os . path . j o i n (os . getcwd () , " t a c t i l e _ d a t a " ,
22 " l a b e l s _ t e s t . x l s x ")
23 e l s e :
24 s e l f . image_folder_name = " p i c t u r e s _ t r a i n i n g "
25 l abe l s _pa th = os . path . j o i n (os . getcwd () , " t a c t i l e _ d a t a " ,
26 " l a b e l s _ t r a i n i n g . x l s x ")
27

28 # open l a b e l s f i l e
29 wb = openpyxl . load_workbook (l abe l s _pa th)
30 sheet = wb. a c t i v e
31

32 s e l f . data = []
33 f o r row in sheet . i t e r_ rows (min_row=2, va lues_only=True) : # sk ip header
34 s e l f . data . append(row)
35

36

37 def __len__ (s e l f) :
38 re turn len (s e l f . data)
39

40

41 def __get i tem__ (s e l f , idx) :
42

43 pic_name = s e l f . data [idx][0]
44 image_path = os . path . j o i n (os . getcwd () , " t a c t i l e _ d a t a " ,
45 s e l f . image_folder_name , pic_name + " . png ")
46 image = Image . open(image_path)
47

48 # do t rans fo rmat ions
49 t o_ tensor = trans forms . ToTensor ()
50 image_tensor = to_ tenso r (image)
51

52 # j u s t to be sure a l l the p i c t u r e s are the same s i z e
53 r e s i z e = r e s i z e = trans forms . Res ize (s e l f . s i z e)
54 image_tensor = r e s i z e (image_tensor)
55

Page 70 of 83

A Framework for Learning Visual and Tactile Correlation

56 # labe l has to be returned as numpy array otherwise the data loader
57 # give s a l i s t of t en so r s and not a tensor of l i s t s
58 l a b e l = [f l o a t (x) f o r x in s e l f . data [idx] [1 :]]
59 l a b e l = np . asar ray (l a b e l)
60

61 re turn image_tensor , l abe l , pic_name

The Needed Packages for the Remaining Functions

1 from d a t a s e t _ t a c t i l e import Dataset
2 import simple_conv
3 from torch . u t i l s . data import DataLoader
4 from torch . u t i l s . data . sampler import RandomSampler , Sequent ia lSampler
5 import torch . nn as nn
6 import torch . optim as optim
7 import torch
8 import ma tp lo t l i b . pyp lo t as p l t
9 import numpy as np

10 import os
11 import openpyxl
12 import random
13 from PIL import Image
14 from PIL import ImageFi le
15 from bayes_opt import Bayes ianOpt imizat ion
16 from bayes_opt . logger import JSONLogger
17 from bayes_opt . event import Events
18 from bayes_opt . u t i l import load_ logs
19 ImageFi le . LOAD_TRUNCATED_IMAGES = True

Page 71 of 83

A Framework for Learning Visual and Tactile Correlation

Function for Training a Model

1 def tra in_model (device , batch_s ize , model , f i nge r_ c f g , p i c _ s i z e , epochs , \
2 l r =0.0001 , l2=0.00001) :
3 " " "
4 Train a given model . The model i s an input of the func t ion .
5 Not the model name , the ac tua l model ob j e c t .
6 " " "
7

8 da ta se t = Dataset (s i z e=p i c_ s i z e , t e s t=Fa l se)
9 loader = DataLoader (dataset , ba t ch_s i ze=batch_s ize ,

10 sampler=RandomSampler (da ta se t) ,
11 num_workers=6) # num_workers in 1060=6, on 3090=20
12

13 c r i t e r i o n = nn . MSELoss ()
14 opt imizer = optim .Adam(model . parameters () , l r=l r , weight_decay=l2)
15

16 l o s s e s = []
17 f o r epoch in range (1 , epochs+1) :
18 f o r i_batch , sample_batch in enumerate (loader) :
19 img_batch , labe l_batch , pic_name_batch = sample_batch
20 img_batch = img_batch . to (dev ice)
21 l abe l _ba t ch = labe l _ba t ch . to (dev ice)
22

23 # get the l a b e l s f o r the needed f i n g e r con f i gu ra t i on
24 i f f i n g e r _ c f g == " index " :
25 l abe l _ba t ch = labe l _ba t ch [: , 0 : 2]
26 e l i f f i n g e r _ c f g == " thumb " :
27 l abe l _ba t ch = labe l _ba t ch [: , 2 : 4]
28

29 # compute model output
30 opt imizer . zero_grad ()
31 output = model (img_batch)
32

33 # both output and l a b e l have to be the same data type
34 # fo r the backward func t ion to work −> . f l o a t ()
35 l o s s = c r i t e r i o n (output . f l o a t () , l abe l _ba t ch . f l o a t ())
36 l o s s . backward ()
37 opt imizer . s tep ()
38

39 l o s s e s . append(l o s s . cpu () . detach () . numpy())
40 p r i n t (l o s s . cpu () . detach () . numpy())
41

42 save_model_as = "model_ " + f i n g e r _ c f g + " _ " + s t r (ba t ch_s i ze) + \
43 " _ " + s t r (epoch) + " . pth "
44

45

46 i f epoch % 1 == 0:
47 to rch . save (model . s t a t e _ d i c t () , save_model_as)
48 test_model (dev ice=device , model=model ,
49 f i n g e r _ c f g=f inge r_c f g ,
50 p i c _ s i z e=p i c_ s i z e , save_ in fo=True)

Page 72 of 83

A Framework for Learning Visual and Tactile Correlation

Function for Evaluating a Model

1 def test_model (device , model , f i nge r_ c f g , p i c _ s i z e , save_ in fo=False , \
2 make_histo=False , p r i n t _ i n f o=True) :
3 " " "
4 Tes t s a given model on the t e s t s e t .
5 Counts the number of p r ed i c t i on s in the co r r e c t y d i r e c t i o n and the
6 number of p r ed i c t i on s in hte cone .
7 Computes the mean and the median fo r the e r r o r s and the i na c cu r a c i e s .
8 Returns the percentages .
9 " " "

10

11 data = Dataset (s i z e=p i c_ s i z e , t e s t=True)
12 loader = DataLoader (data , ba t ch_s i ze=1,
13 sampler=Sequent ia lSampler (data) ,
14 num_workers=4)
15

16 l o s s e s = [] # MSE l o s s e s over a l l epochs
17 num_tests = 0
18 num_right_y_dir = 0
19 num_y_neg_dir = 0
20 num_in_cone = 0
21 r e l _ e r r o r s = []
22 range_errors_to_mean = []
23 range_errors_to_coneedge = []
24 pic_name_last = " "
25

26 f o r i , sample in enumerate (loader) :
27 img , lab , pic_name = sample
28 img , lab = img . to (dev ice) , lab . to (dev ice)
29

30 # i f the l a s t image i s the same one as t h i s time skip , because tha t
31 # would change the r e s u l t s
32 i f p ic_name_last == pic_name :
33 pic_name_last = pic_name
34 e l s e :
35 pic_name_last = pic_name
36

37 num_tests += 1
38

39 # compute output
40 output = model (img)
41

42 # get the l a b e l s f o r the needed f i n g e r con f i gu ra t i on
43 i f f i n g e r _ c f g == " index " :
44 lab = lab [: , 0 : 2]
45 # the cone data in y
46 label_cone , label_mean = make_data_cone (pic_name [0]) [0:2]
47 e l i f f i n g e r _ c f g == " thumb " :
48 lab = lab [: , 2 : 4]
49 label_cone , label_mean = make_data_cone (pic_name [0]) [2:4]
50 e l s e :
51 # i f both f i n g e r s are in the image s t i l l only use the index
52 # f i nge r f o r the eva lua t ion s ince i t i s more meaningful than
53 # the thumb
54 lab = lab [: , 0 : 2]
55 label_cone , label_mean = make_data_cone (pic_name [0]) [0:2]

Page 73 of 83

A Framework for Learning Visual and Tactile Correlation

56 output = output [: , 0:2]
57

58 # MSE l o s s e s
59 c r i t e r i o n = nn . MSELoss ()
60 l o s s = c r i t e r i o n (output . f l o a t () , lab . f l o a t ())
61 l o s s e s . append(l o s s . cpu () . detach () . numpy())
62

63 # check how many go in the r i g h t y d i r e c t i o n
64 # i f the l a b e l has both negat ive and po s i t i v e va lues then the
65 # the p red i c t i on i s c o r r e c t in any way
66 # i f the product of l a b e l and output i s b igger than 0 then
67 # they have the same s ign
68 i f ((min(labe l_cone [0]) ∗ output [0][0]) > 0) \
69 or ((max(labe l_cone [0]) ∗ output [0][0]) > 0) :
70 num_right_y_dir += 1
71

72 # check how many go in negat ive y
73 i f min(labe l_cone [0]) < 0:
74 num_y_neg_dir += 1
75

76 # get data cone
77 # !=0 because the make_data_cone func t ion puts a 0 between every
78 # every entry , so a cone w i l l be p lo t t ed . They need , to be removed .
79 y = [y fo r y in labe l_cone [0] i f y != 0]
80 z = −1
81

82 # compute the outer edges of the cone and the s lope of the model
83 # pred i c t i on
84 # compute the y range of the cone ; so how inaccura te the data i s
85 ou t _ r a t i o = output [0][0]/ output [0][1]
86 max_ratio = max(y) / z
87 min_rat io = min(y) / z
88 y_range = abs (max(y) − min(y))
89

90 # the e r ro r of the p r ed i c t i on to the mean of the t e s t data
91 # r e l a t i v e to the width of the cone
92 range_error_to_mean = abs (ou t _ r a t i o ∗(−1) − label_mean) / y_range
93 range_error_to_mean = range_error_to_mean . cpu () . detach () . numpy()
94 range_errors_to_mean . append(range_error_to_mean)
95

96 # check i f output i s in cone
97 # i f not compute the e r r o r s
98 i f max_ratio < ou t_ r a t i o < min_rat io :
99 num_in_cone += 1

100 r e l _ e r r o r = 0
101 range_error_to_coneedge = 0
102 e l s e :
103

104 i f ou t _ r a t i o < max_ratio :
105 # er ro r in mu l t i p l e s of the p r ed i c t i on
106 r e l _ e r r o r = (out_ ra t io−max_ratio) / ou t _ r a t i o
107 r e l _ e r r o r = r e l _ e r r o r . cpu () . detach () . numpy()
108

109 # er ro r in mu l t i p l e s of the data cone range
110 range_error_to_coneedge = \
111 abs (ou t _ r a t i o ∗(−1) − max_ratio∗(−1)) / y_range
112 range_error_to_coneedge = \

Page 74 of 83

A Framework for Learning Visual and Tactile Correlation

113 range_error_to_coneedge . cpu () . detach () . numpy()
114

115 i f ou t _ r a t i o > min_rat io :
116 # er ro r in mu l t i p l e s of the p r ed i c t i on
117 r e l _ e r r o r = (min_rat io−ou t _ r a t i o) / ou t _ r a t i o
118 r e l _ e r r o r = r e l _ e r r o r . cpu () . detach () . numpy()
119

120 # er ro r in mu l t i p l e s of the data cone range
121 range_error_to_coneedge = \
122 abs (ou t _ r a t i o ∗(−1) − min_rat io ∗(−1)) / y_range
123 range_error_to_coneedge = \
124 range_error_to_coneedge . cpu () . detach () . numpy()
125

126 r e l _ e r r o r s . append(abs (r e l _ e r r o r))
127 range_errors_to_coneedge . append(range_error_to_coneedge)
128

129 r e l _ e r r o r s . s o r t ()
130 range_errors_to_coneedge . s o r t ()
131 range_errors_to_mean . s o r t ()
132

133 perc_num_y_neg_dir = num_y_neg_dir / num_tests
134 pe r c _ r i gh t _y_d i r = num_right_y_dir / num_tests
135 perc_num_in_cone = num_in_cone/num_tests
136 # median
137 med ian_ re l _e r ro r_a l l = r e l _ e r r o r s [i n t (num_tests /2)]
138 median_re l_error = r e l _ e r r o r s [i n t ((num_tests−num_in_cone)/2+num_in_cone)]
139 # mean e r ro r
140 mean_re l_e r ro r_a l l = sum(r e l _ e r r o r s) / num_tests
141 mean_rel_error = sum(r e l _ e r r o r s) /(num_tests−num_in_cone)
142 # range e r r o r s
143 mean_range_error_coneedge = sum(range_errors_to_coneedge) /num_tests
144 mean_range_error_to_mean = sum(range_errors_to_mean) /num_tests
145 median_range_error_coneedge = range_errors_to_coneedge [i n t (num_tests /2)]
146 median_range_error_to_mean = range_errors_to_mean [i n t (num_tests /2)]
147

148 # avg MSE l o s s
149 avg_MSE_loss = sum(l o s s e s) / len (l o s s e s)
150

151 i f p r i n t _ i n f o :
152 p r i n t (s t r (num_tests) + " t e s t s in t o t a l . ")
153 p r i n t (s t r (round (perc_num_y_neg_dir ∗100 , 1)) + \
154 "%" + " in negat ive y d i r e c t i o n . ")
155 p r i n t (s t r (round (pe r c _ r i gh t _y_d i r ∗100 , 1)) + \
156 "%" + " pred i c ted in the r i g h t y d i r e c t i o n . ")
157 p r i n t (s t r (round (perc_num_in_cone ∗100 ,1)) + \
158 " % of the p r ed i c t i on s are in the cone . ")
159 p r i n t (" The median of the e r r o r s of the p r ed i c t i on s not in the cone i s "

\
160 + s t r (round (median_re l_error ∗100 ,1)) + "%. ")
161 p r i n t (" The median of the e r r o r s i s " + \
162 s t r (round (med ian_ re l _e r ro r_a l l ∗100 ,1)) + "%. ")
163 p r i n t (" P r ed i c t i on s not in cone are , in average , o f f by " \
164 + s t r (round (mean_rel_error ∗100 , 1)) + "%")
165 p r i n t (" Overa l l e r ro r : " + s t r (round (mean_re l_e r ro r_a l l ∗100 , 1)) + \
166 "% (p r ed i c t i on s in cone count as 0% er ro r) . ")
167 p r i n t (" The e r ro r to the MEAN of the cone measured in mu l t i p l e s of the "
168 + " width of the cone i s in average " +

Page 75 of 83

A Framework for Learning Visual and Tactile Correlation

169 s t r (round (mean_range_error_to_mean ∗100 , 1)) + "%. ")
170 p r i n t (" The median i s " + s t r (round (median_range_error_to_mean ∗100 , 1))
171 + "%. ")
172 p r i n t (" The e r ro r to the EDGE of the cone measured in mu l t i p l e s of the "
173 + " width of the cone i s in average " + \
174 s t r (round (mean_range_error_coneedge ∗100 , 1)) + "%. ")
175 p r i n t (" The median i s " + s t r (round (median_range_error_coneedge ∗100 , 3))
176 + "%. ")
177 p r i n t (" Average MSE l o s s : " + s t r (round (avg_MSE_loss , 4)))
178

179 i f s ave_ in fo :
180

181 f i l e _ p a t h = os . path . j o i n (os . getcwd () , " t e s t _ i n f o _ " \
182 + f inge r _ c f g + " . t x t ")
183

184 with open(f i l e _pa th , " a ") as f :
185 f . wr i te (s t r (perc_num_y_neg_dir))
186 f . wr i te (" ; ")
187 f . wr i te (s t r (pe r c _ r i gh t _y_d i r))
188 f . wr i te (" ; ")
189 f . wr i te (s t r (perc_num_in_cone))
190 f . wr i te (" ; ")
191 f . wr i te (s t r (med ian_ re l _e r ro r_a l l))
192 f . wr i te (" ; ")
193 f . wr i te (s t r (median_re l_error))
194 f . wr i te (" ; ")
195 f . wr i te (s t r (mean_re l_e r ro r_a l l))
196 f . wr i te (" ; ")
197 f . wr i te (s t r (mean_rel_error))
198 f . wr i te (" ; ")
199 f . wr i te (s t r (mean_range_error_coneedge))
200 f . wr i te (" ; ")
201 f . wr i te (s t r (mean_range_error_to_mean))
202 f . wr i te (" ; ")
203 f . wr i te (s t r (avg_MSE_loss))
204 f . wr i te (" \n ")
205

206 i f make_histo :
207 r e l _ e r r o r s = [x∗100 fo r x in r e l _ e r r o r s]
208 p l t . y l abe l (" Frequency [−] ")
209 p l t . x l abe l (" Er ror [%] ")
210 p l t . x s ca l e (" log ")
211 p l t . h i s t (r e l _ e r r o r s , [0.1 ,1 ,10 ,100 ,1000 ,10000 ,100000] , co lo r=" b lack ")
212 p l t . show()
213

214 # th i s re turn i s f o r the bayes ian opt imiza t ion purposes
215 # (−med ian_ re l _e r ro r_a l l) w i l l be the value to be maximized
216 re turn med ian_ re l _e r ro r_a l l

Page 76 of 83

A Framework for Learning Visual and Tactile Correlation

Function that Makes the Label Cone and Computes the Label Mean

1 def make_data_cone (pic_name) :
2 " " "
3 Makes a cone in which the measurements of the y− and z−d i r e c t i o n l i e .
4 And g ive s the mean of the measurements .
5 " " "
6 l abe l s _pa th = os . path . j o i n (os . getcwd () , " t a c t i l e _ d a t a " , " l abe l s _ba se . x l s x ")
7

8 # pic name i s with " rotby_xx " . Not needed here .
9 pic_name = pic_name . s p l i t (" _rotby ") [0]

10

11 # read from f i l e
12 wb = openpyxl . load_workbook (l abe l s _pa th)
13 sheet = wb. a c t i v e
14 a l l _ t a c = []
15 f o r row in sheet . i t e r_ rows (min_row=1, va lues_only=True) :
16 i f row[0] == pic_name :
17 one_tac = row [1 :]
18 one_tac = [f l o a t (x) f o r x in one_tac]
19 a l l _ t a c . append(one_tac)
20

21 # f ind the edge r a t i o s : r a t i o = F_y/F_z
22 max_rat io_index = min_rat io_ index = a l l _ t a c [0][0]/ a l l _ t a c [0][1]
23 max_ratio_thumb = min_ratio_thumb = a l l _ t a c [0][2]/ a l l _ t a c [0][3]
24 # and compute the mean of the measurements
25 y_ labe l s_ index = []
26 y_labels_thumb = []
27 f o r one_tac in a l l _ t a c :
28 # index
29 r a t i o_ index = one_tac [0]/ one_tac [1]
30 y_ labe l s_ index . append(ra t i o_ index ∗(−1)) # ∗(−1) to compute y at z=−1
31 i f r a t i o_ index < min_rat io_ index :
32 min_rat io_ index = ra t i o_ index
33 i f r a t i o_ index > max_rat io_index :
34 max_rat io_index = ra t i o_ index
35 # thumb
36 rat io_thumb = one_tac [2]/ one_tac [3]
37 y_labels_thumb . append(ratio_thumb∗(−1)) # ∗(−1) to compute y at z=−1
38 i f rat io_thumb < min_ratio_thumb :
39 min_ratio_thumb = ratio_thumb
40 i f rat io_thumb > max_ratio_thumb :
41 max_ratio_thumb = ratio_thumb
42

43 # now compute the means
44 y_index_mean = sum(y_ labe l s_ index) / len (y_ labe l s_ index)
45 y_thumb_mean = sum(y_labels_thumb) / len (y_labels_thumb)
46

47 # make a bunch of po in t s in the cone at z=−1 with vary ing ys , so the p lo t
48 # looks l i k e a su r f a ce
49 n = 100
50

51 # index
52 z_index = [−1]∗n
53 # put 0 between every entry , so a cone w i l l be p lo t t ed
54 z_index = \
55 [item fo r i tems in z ip (z_index , [0] ∗ len (z_index)) f o r item in items]

Page 77 of 83

A Framework for Learning Visual and Tactile Correlation

56 ra t io_range_ index = np . l i n space (min_rat io_index , max_ratio_index , n)
57 y_index = [y∗(−1) fo r y in ra t io_range_ index]
58 y_index = \
59 [item fo r i tems in z ip (y_index , [0] ∗ len (y_index)) f o r item in items]
60

61 #thumb
62 z_thumb = [−1]∗n
63 # put 0 between every entry , so a cone w i l l be p lo t t ed
64 z_thumb = \
65 [item fo r i tems in z ip (z_thumb , [0] ∗ len (z_thumb)) fo r item in items]
66 rat io_range_thumb = np . l i n spa ce (min_ratio_thumb , max_ratio_thumb , n)
67 y_thumb = [y∗(−1) fo r y in ratio_range_thumb]
68 # put 0 between every entry , so a cone w i l l be p lo t t ed
69 y_thumb = \
70 [item fo r i tems in z ip (y_thumb , [0] ∗ len (y_thumb)) fo r item in items]
71

72 re turn (y_index , z_index) , y_index_mean , (y_thumb , z_thumb) , y_thumb_mean

Page 78 of 83

A Framework for Learning Visual and Tactile Correlation

Function of the Training Process used for the Bayesian Optimization

1 def t ra in_model_ for_opt (l r , l2 , ba t ch_s i ze_op t) :
2 " " "
3 Funct ion used fo r opt imiz ing the t r a i n i n g process with the Bayesian
4 Optimizat ion algor i thm .
5 " " "
6 dev ice = " cuda :0 "
7 model = simple_conv . Simple_conv_4_6 (in_channels=1, ou t_ f ea tu re s=2) . to (dev ice

)
8 f i n g e r _ c f g = " index "
9 p i c _ s i z e = 100

10 epochs = in t (round (epochs_opt))
11 ba t ch_s i ze = in t (round (ba tch_s i ze_op t))
12

13

14 da ta se t = Dataset (s i z e=p i c_ s i z e , t e s t=Fa l se)
15 loader = DataLoader (dataset , ba t ch_s i ze=batch_s ize ,
16 sampler=RandomSampler (da ta se t) ,
17 num_workers=6) # num_workers in 1060=6, on 3090=20
18

19 c r i t e r i o n = nn . MSELoss ()
20 opt imizer = optim .Adam(model . parameters () , l r=l r , weight_decay=l2)
21

22 f o r epoch in range (1 , epochs+1) :
23 l o s s e s = []
24 f o r i_batch , sample_batch in enumerate (loader) :
25 img_batch , labe l_batch , pic_name_batch = sample_batch
26 img_batch = img_batch . to (dev ice)
27 l abe l _ba t ch = labe l _ba t ch . to (dev ice)
28

29 # get the l a b e l s f o r the needed f i n g e r con f i gu ra t i on
30 i f f i n g e r _ c f g == " index " :
31 l abe l _ba t ch = labe l _ba t ch [: , 0 : 2]
32 e l i f f i n g e r _ c f g == " thumb " :
33 l abe l _ba t ch = labe l _ba t ch [: , 2 : 4]
34

35 # compute model output
36 opt imizer . zero_grad ()
37 output = model (img_batch)
38

39 # both output and l a b e l have to be the same data type
40 # fo r the backward func t ion to work −> . f l o a t ()
41 l o s s = c r i t e r i o n (output . f l o a t () , l abe l _ba t ch . f l o a t ())
42 l o s s . backward ()
43 opt imizer . s tep ()
44

45 l o s s e s . append(l o s s . cpu () . detach () . numpy())
46 #pr i n t (np .mean(l o s s e s))
47

48 eva l_par = test_model (dev ice=device , model=model ,
49 f i n g e r _ c f g=f inge r_c f g ,
50 p i c _ s i z e=p i c_ s i z e , save_ in fo=False ,
51 p r i n t _ i n f o=Fa l se)
52

53 re turn −eva l_par

Page 79 of 83

A Framework for Learning Visual and Tactile Correlation

Function of the Training Process used for the Bayesian Optimization

1 def tune_hyperparameters () :
2 " " "
3 Tunes the l ea rn ing rate , weight decay and the batch s i z e .
4 " " "
5 pbounds = {
6 " l r " : (1e−5, 1e−3) ,
7 " l2 " : (1e−7, 1e−5) ,
8 " ba t ch_s i ze_op t " : (2 ,6) ,
9 }

10

11 opt imizer = Bayes ianOpt imizat ion (
12 f = tra in_model_for_opt ,
13 pbounds = pbounds ,
14 verbose = 2)
15

16 logger = JSONLogger (path=" . / bayes_opt_new . j son ")
17 opt imizer . subs c r i be (Events . OPTIMIZATION_STEP , logger)
18

19 opt imizer . maximize (i n i t _ p o i n t s =10, n _ i t e r=40)

Page 80 of 83

A Framework for Learning Visual and Tactile Correlation

A.3.4 The Bounding Box Network

The code used for the Bounding Box Network excluding the training function because it is very
similar to the training function of the main algorithm.

The Code of the Dataset Class

1 from torch . u t i l s . data import Dataset
2 import os
3 # i n s t a l l e d P i l low ins tead of PIL due to error , works f i n e too
4 from PIL import Image
5 from PIL import ImageFi le
6 ImageFi le . LOAD_TRUNCATED_IMAGES = True
7 from to r chv i s i on import t rans forms
8 import numpy as np
9 import ma tp lo t l i b . pyp lo t as p l t

10 import openpyxl
11

12

13

14 c l a s s Dataset (Dataset) :
15 def _ _ i n i t _ _ (s e l f) :
16

17 l abe l s _pa th = os . path . j o i n (os . getcwd () , " bounding_box_data " ,
18 " l a b e l s _ r o t a t ed . x l s x ")
19

20 # open l a b e l s f i l e
21 wb = openpyxl . load_workbook (l abe l s _pa th)
22 sheet = wb. a c t i v e
23

24 s e l f . l abe l _da ta = []
25 f o r row in sheet . i t e r_ rows (min_row=1, va lues_only=True) :
26 s e l f . l abe l _da ta . append(row)
27

28 def __len__ (s e l f) :
29 re turn len (s e l f . l abe l _da ta)
30

31 def __get i tem__ (s e l f , idx) :
32

33 pic_path = os . path . j o i n (os . getcwd () , " bounding_box_data " ,
34 " p i c t u r e s _ r o t a t ed " , s e l f . l abe l _da ta [idx][0] + " . png ")
35 image = Image . open(p ic_path)
36

37 # do t rans fo rmat ions
38 t o_ tensor = trans forms . ToTensor ()
39 image_tensor = to_ tenso r (image)
40 # RGB−D image . D informat ion l o s t when p i c t u r e edited ,
41 # so i t ’ s removed here .
42 image_tensor = image_tensor [0 :3]
43 # p i c t u r e s should be tha t s i z e anyway , j u s t to be sure
44 r e s i z e = trans forms . Res ize (227)
45 image_tensor = r e s i z e (image_tensor)
46

47 x_index , y_index , width_index , he ight_ index = \
48 i n t (s e l f . l abe l _da ta [idx][1]) ,\
49 i n t (s e l f . l abe l _da ta [idx][2]) ,\
50 i n t (s e l f . l abe l _da ta [idx][3]) ,\

Page 81 of 83

A Framework for Learning Visual and Tactile Correlation

51 i n t (s e l f . l abe l _da ta [idx][4])
52

53 x_thumb , y_thumb , width_thumb , height_thumb =\
54 i n t (s e l f . l abe l _da ta [idx][5]) ,\
55 i n t (s e l f . l abe l _da ta [idx][6]) ,\
56 i n t (s e l f . l abe l _da ta [idx][7]) ,\
57 i n t (s e l f . l abe l _da ta [idx][8])
58

59 # labe l has to be returned as numpy array otherwise the data loader
60 # give s a l i s t of t en so r s and not a tensor of l i s t s
61 l a b e l = np . asar ray ((x_index , y_index , width_index , height_index ,
62 x_thumb , y_thumb , width_thumb , height_thumb))
63

64 pic_name = pic_path . s p l i t (" / ") [−1]. s p l i t (" . ") [0]
65

66 re turn image_tensor , l abe l , pic_name

The Code for the Data Augmentation

1 import openpyxl
2 import os
3 from PIL import Image
4

5

6 def r o t a t e (bounding_box_path) :
7 " " "
8 This func t ion r o t a t e s a l l the p i c t u r e s 3 t imes and c a l c u l a t e s the new
9 bounding boxes for each new p i c tu r e . This means out of 1 p i c t u r e 3 more

10 wi l l be generated .
11 The informat ion w i l l be au tomat i ca l l y wr i t t en in to a d i f f e r e n t x l s x f i l e .
12 " " "
13

14 # open workbook , c r ea t e workbook ob j e c t
15 wb = openpyxl . load_workbook (os . path . j o i n (bounding_box_path ,
16 " l abe l s _ba se . x l s x "))
17 # crea te sheet ob j e c t
18 sheet = wb. a c t i v e
19 # new workbook in which the new data w i l l be saved
20 wb_new = openpyxl . Workbook ()
21 sheet_new = wb_new . a c t i v e
22

23 # Note c e l l s s t a r t from 1 , not 0!
24 # get number of rows
25 max_row = sheet . max_row
26

27 f o r i in range (2 , max_row+1) : # s t a r t from 2 to sk ip header
28 a_ i = "A" + s t r (i)
29 i _ i = " I " + s t r (i)
30 # th i s i s a tup le of shape [n_ ce l l _ ob j e c t s ,] ; f i l l e d with c e l l o b j e c t s
31 row_data = sheet [a_ i : i _ i][0]
32 old_row_data = (row_data [0] . value , row_data [1] . value ,
33 row_data [2] . value , row_data [3] . value ,
34 row_data [4] . value , row_data [5] . value ,
35 row_data [6] . value , row_data [7] . value ,
36 row_data [8] . value)
37

38 # open image

Page 82 of 83

39 root_img_path = os . path . j o i n (bounding_box_path , " p i c tu re s_ba se " ,
40 row_data [0] . value + " . png ")
41 root_img = Image . open(root_img_path)
42

43 # do the ro t a t i on 3 t imes .
44 # The root image i s always the l a s t s t a t e of r o t a t i on .
45 # root −> rotated1 −> rotated2 . . .
46 f o r j in range (4) :
47 # ro t a t e image
48 rotated_img = root_img . r o t a t e (90)
49 new_img_name = row_data [0] . value + " _ro ta ted_ " + s t r (j)
50 # save new image
51 rotated_img . save (os . path . j o i n (bounding_box_path ,
52 " p i c t u r e s _ r o t a t ed " , new_img_name + " . png "))
53

54 # ca l c u l a t e the new coord ina te s of the bounding boxes
55 # index
56 x_new_index = old_row_data [2] # = y_old
57 # y_new = 227 − (x_old + w_old)
58 y_new_index = 227 − (old_row_data [1] + old_row_data [3])
59 w_new_index = old_row_data [4] # = h_old
60 h_new_index = old_row_data [3] # = w_old
61 # thumb
62 x_new_thumb = old_row_data [6] # = y_old
63 # y_new = 227 − (x_old + w_old)
64 y_new_thumb = 227 − (old_row_data [5] + old_row_data [7])
65 w_new_thumb = old_row_data [8] # = h_old
66 h_new_thumb = old_row_data [7] # = w_old
67

68 new_row_data = (new_img_name , x_new_index , y_new_index ,
69 w_new_index , h_new_index ,
70 x_new_thumb , y_new_thumb ,
71 w_new_thumb , h_new_thumb)
72

73 # wri te ro ta ted data in to f i l e
74 sheet_new . append(new_row_data)
75

76 # make new to old fo r next i t e r a t i o n
77 root_img = rotated_img
78 old_row_data = new_row_data
79

80 wb_new . save (os . path . j o i n (bounding_box_path , " l a b e l s _ r o t a t ed . x l s x "))

Template by Chair of Cyber-Physical-Systems, Montanuniversitąt Leoben, Austria Page 83 of 83

