
Institute for Automation

Department Product Engineering,

Montanuniversität Leoben

Automated System for Panoramic
Depth Imaging and Visualization

MASTER THESIS

Jakob König

Field of Study:

Mechanical Engineering

Supervisor:

PRIV.-DOZ. DR.MONT. MATTHEW HARKER

O.UNIV.-PROF. DIPL.-ING. DR.TECHN. PAUL O’LEARY

Abstract

This thesis presents the development and verification of concepts, methods and possible

implementations of a system for the automatic visual inspection of deep mine shafts. Al-

though the concept is developed for shafts, it can be applied to any large object for which

a contiguous visual surface inspection is required. The concept is based on mosaicking

large numbers of pictures, e.g. 60000, to structured panoramas which can be mapped as

texture on a geometric model. The large number of images together with their resolution

enable a precise metric representation of the observed surfaces. These are stored in a

reduced resolution set format. This data model is consistent with open source mapping

tools so that data fusion from different sources, e.g. depth based geological information,

may be performed. Standard web based visualisation tools can then be used to view the

data.

i

Zusammenfassung

Diese Diplom-Arbeit befasst sich mit der Entwicklung und Verifizierung von Konzepten,

Methoden und möglichen Implementationen eines Systems für die automatische visuelle

Inspektion von vertikalen Minenschächten. Obwohl die Konzepte für Minenschächte en-

twickelt wurden, können sie im Allgemeinen für die visuelle Inspektion von großen Ob-

jekten mit geschlossenen Oberflächen verwendet werden. Durch das Zusammenfügen

einer hohen Zahl, ca. 60000, hochauflösender Bilder werden strukturierte Panoramen

erstellt, die als Textur auf geometrischen Objekten abgebildet werden können. Die Kom-

bination aus Anzahl und Auflösung der Bilder ermöglicht eine präzise metrische Darstel-

lung der betrachteten Oberfläche. Die Panoramen werden als Reduced Resolution Set

gespeichert. Dieses Format macht es möglich die Bilder mit Daten aus anderen Quellen,

zum Beispiel geologischen Tiefeninformationen, zu verknüpfen. Zur Darstellung von

Daten, die in dieser Form gespeichert werden, können öffentlich zugängliche Kartogra-

phie Applikationen wie z.B. Google Maps verwendet werden.

ii

Affidavit

I declare in lieu of oath, that I wrote this thesis and performed the associated research

myself, using only literature cited in this volume.

Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass ich diese Arbeit selbstständig verfasst, andere als die

angegebenen Quellen und Hilfsmittel nicht benutzt und mich auch sonst keiner uner-

laubten Hilfsmittel bedient habe.

Leoben, Tue 14th Mar, 2017 Jakob König

iii

Acknowledgements

To all those who shared their thoughts and time with me so I could grow and learn from

their experience I say with love and respect, thank you.

iv

Contents

1 Introduction 1
1.1 Overview . 3

2 Panoramic imaging system 4
2.1 Processing device and camera . 4

2.2 Prototype A1: Camera investigation . 7

2.3 Prototype A2: Panoramic image characterization 8

3 Automatic variable resolution system 10
3.1 Mechanical . 10

3.1.1 Electric Circuit . 11

3.1.2 Controlling the system . 12

3.1.3 Stepper motor driver . 14

3.1.4 Limit switch . 14

3.2 Software . 17

3.2.1 Image acquisition . 17

3.2.2 Data management . 18

4 Image Processing 21
4.1 Modelling . 22

4.1.1 Normalized device coordinates 22

4.1.2 3D Transformation . 22

4.1.3 Homography . 23

4.1.4 Cylindrical and Spherical Coordinates 23

4.2 Lens . 25

4.3 Registration . 25

5 Image stitching 28
5.1 Panoramic imaging . 28

5.1.1 Comparison AutoStitch and Slit Camera 30

5.2 Panoramic depth imaging . 31

v

CONTENTS vi

5.2.1 Stereoscopy . 31

5.2.2 Circular Projection . 32

5.2.3 Omnistereo . 32

6 Visualization 36
6.1 Anaglyph . 36

6.2 Head Mounted Display . 39

7 Data storage 40
7.1 Reduced Resolution Set . 40

7.2 Geographic information system . 42

8 Conclusion 43
8.1 Future Work . 44

A Code 45

B Drawings 56

List of Figures

1.1 Camera system composed of eight cameras C1 to C8 at a distance r from

the center point M observing a cylindrical surface. Rmin denotes the radius

at which the fields of view α overlap. s denotes the overlap between

images on the surface. 2

2.1 Panoramic capturing system realized with a fixed number of cameras, Fig-

ure 2.1a, and a single rotating camera, Figure 2.1b. M denotes the center

of rotation, C the center of the camera. 5

2.2 Raspberry Pi 3 Model B top down view [14]. 6

2.3 Camera Module v2.0 for the Raspberry Pi 3 Model B [15]. 6

2.4 The first prototype was used to test the Raspberry Pi 3 Model B hardware. 7

2.5 Panoramic image created with the software AutoStitch [16] from eight

images, each with a resolution of 640 by 480 pixels. 7

2.6 Figure 2.6a shows a single layer panoramic image created from eight im-

ages with the software AutoStitch [4]. Figure 2.6b shows a panoramic

image created from three layers of eight images each, with the software

AutoStitch. 9

3.1 Isometric view of the CAD assembly of the automated panoramic imaging

system. 11

3.2 Electric circuit for the main components of the prototype A3. 13

3.3 GPIO Header Pins and their properties for the Raspberry Pi 3 [24]. 13

3.4 EasyDriver [20] stepper motor driver was used to control the stepper motor. 14

3.5 Close up of the rolling lever limit switch that is used to create a reference

point in the rotational plane. 15

3.6 Figure 3.6b shows the assembled device. Figure 3.6a shows the device

mounted on the tripod. 16

3.7 The hierarchical data structure ensures that every image can be associ-

ated with the rotational orientation of acquisition. The increasing level of

abstraction ensures a unique file name. 19

vii

LIST OF FIGURES viii

4.1 Eight images acquired at one vertical position. One panoramic ring is

constructed from these images. The images were acquired with the pro-

totype discussed in Chapter 3. 21

4.2 Cylinder Projection of an image taken with the system and warped using

Equations 4.12 and 4.13. 24

4.3 Figure 4.3a shows the template taken from the panorama in Figure 4.3c

to determine the offset between the panoramas shown in Figure 4.3d and

Figure 4.3c. Figure 4.3b represents the correlation between the template

and the panorama in Figure 4.3d, the peak in height corresponds to the x

and y offset between the images. The outline in Figure 4.3d represents the

location where the template has the highest correlation with the panorama. 27

5.1 Panoramic image created by combining eight images with the software

AutoStitch [4]. 29

5.2 Figure 5.2a and Figure 5.2b are details of the panoramas in Figure 5.2c

created with AutoStitch [16] from eight images and Figure 5.2d created

with the algorithm presented in Section 5.1. The differences in the two

approaches can be observed. 30

5.3 With a known distance b between viewpoints, i.e. baseline, and the angles

ψ and γ the distance of a point from the baseline d can be calculated. . . 31

5.4 A stereo pair cannot give the perception of depth in every direction [29]. . 32

5.5 (a) Central projection, (b) and (c) circular projection according to [2]. . . 33

5.6 Creation of the left eye view panorama and the right eye view panorama

with a single rotating camera according to S.Peleg [2]. 33

5.7 Panoramic image created from 3200 separate images. Left eye view and

right eye view were created with the algorithm presented in Section 5.2.3. 35

6.1 A stereo anaglyph is produced in five steps: 1. Create a stereo pair of

panoramic images using circular projection, 2. Cutting the panoramas

according to the shift between them, 3. Separation of the three color

bands, 4. Combination of the three color bands into one stereo panorama,

5. View the stereo panorama with anaglyph glasses [29]. 37

6.2 Anaglyph created from images taken with prototype A3 and the MATLAB®

function stereoAnaglyph. 38

6.3 The pair of stereo panoramas created in Section 5.2.3 prepared to be

viewed with a head mounted display. 39

6.4 The VR representation created with krPano [5] can be viewed on a smart

phone screen. The phone is then mounted in the HMD Google cardboard.

The lenses in the HMD distort the images in a way that enables the brain

to perceive depth. 39

LIST OF FIGURES ix

7.1 Princinpal behind the reduced resolution according to Badash, O’Leary et

al. [27]. 40

7.2 An example of an Reduced Resolution Set displaying a high resolution

panoramic image created with the system described in Chapter 3 and the

algorithm discussed in Section 5.2.3. 41

7.3 Badash, O’Leary et al. [27] used this technique for non-rigid registration. 41

7.4 Presenting the VR Tour so it can be viewed from any device. 42

List of Tables

2.1 Possible resolutions for image acquisition with the camera module v2.0 [17]

and the Raspberry Pi 3 Model B. 8

3.1 Part list for the single camera panoramic depth imaging system. The num-

ber corresponds to the one in Figure 3.1. 10

x

Chapter 1

Introduction

This thesis presents the development and verification of concepts, methods and possible

implementations of a system for the automatic visual inspection of vertical deep mine

shafts.

The system was developed for the KIC-Raw Materials Project entitled Maintained Mining

Machines. The goal of this project is to create a holistic maintenance support system for

modern mining operations. Mine maintenance plans include a periodic visual inspection

of vertical deep mine shafts. These inspections are important because changes in the shaft

surface, for example crack propagation, and the reason for these changes, for example

geological events in the area surrounding the shaft, can be indicative of serious dangers

to the structural integrity of the shaft.

The process of manually inspecting the shaft surface puts humans in potentially danger-

ous situations. Developing a system for the automatic visual inspection of vertical deep

mine shafts is therefore important to reduce the risk to the mine inspection personnel by

providing means to perform the inspections remotely.

The challenge in creating a remote inspection system lies in creating a representation of a

surface that is too large to be captured with one image. For a vertical mine shaft which is

roughly cylindrical creating one image of the entire surface is the equivalent of creating

an image with a field of view of 360◦ and the same height as the shaft. The problem of

creating images with a field of view of 360◦ has been thoroughly studied by many re-

searchers [1]. One approach, discussed by S.Peleg et al. [2], uses a camera that rotates

around a vertical center axis and captures images at increasing angles of rotation; whereby

each angle is chosen in a way that creates horizontally overlapping images. Such hori-

zontally overlapping images can also be created by a fixed number of cameras positioned

at evenly spaced angles over 360◦, see Figure 1.1. These overlapping images can then

be used to produce a panoramic image covering a field of view of 360◦, as discussed by

Szeliski [3]. To cover the height of the mine shaft the vertical position of the center of the

camera system is adjusted in increments that ensure a vertical overlap between each set

of horizontal images. Every horizontal set of images is used to produce a panoramic im-

1

CHAPTER 1. INTRODUCTION 2

C1
C2

C3

C4
C5

C6

C7

C8r

Rmin

M

s

Figure 1.1: Camera system composed of eight cameras C1 to C8 at a distance r from the

center point M observing a cylindrical surface. Rmin denotes the radius at which the fields

of view α overlap. s denotes the overlap between images on the surface.

age.These vertically overlapping panoramic images can then be used to create one large

image of the entire shaft surface by applying similar techniques used for the horizontal

panoramas as shown by Brown and Lowe [4].

Another challenge that comes with a remote inspection system is the need for a repre-

sentation of the shaft surface that can be used to perform measurements on objects in

the surface. The representation must therefore provide data in three dimensional space,

length, width and depth. Measurements in two dimensional space, i.e. length and width,

in an image through rectification has been addressed by Szeliski [3]. Peleg et al. have

created an approach to regain the depth information from panoramic images created with

a single rotating camera [2].

In order to perform the visual inspections of the deep mine shaft remotely the panoramic

images created by the system must be presented in a way that can be used by the mine

personnel to perform each aspect of an inspection of the entire shaft surface. By using

techniques described by Peleg et al. [2] to create the panoramic images, the software kr-

pano [5] provides the possibility of creating several types of virtual reality tours. Virtual

Reality refers to computer technologies that use software to replicate a real environment

to be viewed with a Head Mounted Display. Viewing these tours with a Head Mounted

Display, the inspection personnel can perform the inspection of the shaft in a virtual recre-

ation of the shaft from a remote location.

Using virtual representations for the remote inspection also gives the ability to add infor-

mation from other sources, such as geological depth maps, to correlate geological events

CHAPTER 1. INTRODUCTION 3

and changes in the shaft surface. This technique has been used by researchers in many

fields to find connections between geological events, based on their geographic location,

and their ramifications [6] and is called Geographic Information System GIS [7].

This thesis is a contribution to the Maintained Mining Machine Project by KIC-Raw

Materials in the form of a feasibility study of an automatic panoramic depth imaging

system and the visualization of the acquired data for the visual inspection of vertical

deep mine shafts. Known methods are tested and applied to create a system capable of

generating panoramic images of large contiguous surfaces and visualize them in a way

that allows the mine personnel to perform inspections remotely.

1.1 Overview

Chapter 2 shows the development of a single rotating camera system for panoramic imag-

ing. Chapter 4 gives a short introduction to the most important concepts of image pro-

cessing. In Chapter 5 these concepts are applied to the geometric registration process of

panoramic imaging in general, and for this specific project. In Chapter 6 the visualiza-

tion of the panoramic images is discussed. The data handling of the system is shown in

Chapter 7. Chapter 8 gives a conclusion and outlook for future work.

Chapter 2

Panoramic imaging system

This chapter describes the design stages and the decision making process for the labora-

tory set up of the automated panoramic imaging system.

To create a panoramic image as described in the introduction, the system needs to be able

to capture images at different angles of rotation. The system is controlled with the em-

bedded system Raspberry Pi 3 Model B [8]. The rotational angle between the images can

be achieved by either having a fixed number of cameras pointing in different directions

with the same rotational axis, Figure 2.1a, or using one camera that can rotate around a

center axis 2.1b.

The difficulty that arises with a system that uses multiple cameras controlled by a Rasp-

berry Pi 3 Model B is its inability to activate the cameras at the same time. This drawback

combined with the advantage of a system with a rotating camera of being able to control

the number of images per rotation made a prototype with a rotating camera controlled

by a Raspberry Pi 3 Model B the clear choice for the investigation into the feasibility of

an automated panoramic depth imaging system for the Maintained Mining Maintenance

Project.

Section 2.1 shows the capabilities of the Raspberry Pi 3 Model B in conjunction with its

camera module. During the first stage, described in section 2.2, it was important to test

the capabilities of the Raspberry Pi 3 Model B and its camera module and determine their

limiting factors.Section 2.3 describes the first manually operated version of the rotating

camera system. The results from prototype A2 made it possible to build a fully automated

prototype, which is described in Chapter 3.

2.1 Processing device and camera

The Raspberry Pi 3 Model B [8] is a cheap and small embedded processing device. Some

of its features [9] are listed here:

1. BroadcomBCM2387 chipset

4

CHAPTER 2. PANORAMIC IMAGING SYSTEM 5

C

M

(a) Fixed number of cameras

C

M

(b) Rotating camera

Figure 2.1: Panoramic capturing system realized with a fixed number of cameras, Fig-

ure 2.1a, and a single rotating camera, Figure 2.1b. M denotes the center of rotation, C
the center of the camera.

2. 1.2GHZ Quad-Core ARM Cortex A53

3. 802.11 bgn Wireless LAN and Bluetooth 4.1

4. 1 GB RAM

5. 4 USB ports

6. 10/100 BaseT Ethernet socket

7. CSI Camera port

8. Micro SD port

9. Micro USB power source

In Figure 2.2 the Raspberry Pi 3 Model B is shown in a top down perspective. The

most important features for this study include the wifi capability, the csi port with the

corresponding camera module and the general purpose IN/OUT (GPIO) pins.

The wifi module makes it possible to control the system remotely with a program called

VNC viewer [10]. This program can take control of a device which is running a so called

VNC server and is connected to the same local network. Editing the start up options of

the Raspberry Pi 3 Model B enables an automatic start of such a server. This means that

once the Raspberry Pi 3 Model B starts, it can be controlled by another device in the same

network with the VNC viewer.

Together with the release of the Raspberry Pi 3 Model B, a new camera version, called

CHAPTER 2. PANORAMIC IMAGING SYSTEM 6

Figure 2.2: Raspberry Pi 3 Model B top down view [14].

Figure 2.3: Camera Module v2.0 for the Raspberry Pi 3 Model B [15].

camera module v 2.0 [11] was released which uses a Sony IMX 219 PQ sensor [12]. At

frame rates below 30 fps this sensor allows for resolutions up to 3280 by 2464 pixels

per frame [13], see Table 2.1, with a horizontal field of view α of 62.2◦. This angle

is important since it is closely related to number of images needed to create panoramic

images, see Chapter 4.

The GPIO pins on the Raspberry Pi 3 Model B, see Figure 3.3, can be controlled through

different programming techniques and provide a logic signal of either zero or 3.3V to

external electrical devices and components.

CHAPTER 2. PANORAMIC IMAGING SYSTEM 7

2.2 Prototype A1: Camera investigation

The first prototype was used to determine the capabilities of the Raspberry Pi 3 Model B

and the camera module v 2.0. To test different settings of the camera it was mounted on a

3D printed holder and placed on the markings, seen in Figure 2.4. The angles between the

markings represent eight camera positions evenly spaced to cover 360◦. Capturing images

at each marking produces eight horizontally overlapping images. From these overlapping

images a panoramic image with a field of view of 360◦ can be produced. A number of

Figure 2.4: The first prototype was used to test the Raspberry Pi 3 Model B hardware.

conclusions can be drawn from the experiments with this prototype:

1. The camera requires approximately 1s to adapt to lighting conditions prior to ac-

quiring an image

2. The camera can produce images in a number of different formats, see Table 2.1.

3. A rotating camera head, with a high rotational positioning accuracy, is required to

investigate the limits of this image acquisition technique.

Figure 2.5: Panoramic image created with the software AutoStitch [16] from eight images,

each with a resolution of 640 by 480 pixels.

CHAPTER 2. PANORAMIC IMAGING SYSTEM 8

Table 2.1: Possible resolutions for image acquisition with the camera module v2.0 [17]

and the Raspberry Pi 3 Model B.

Resolution Aspect Ratio Framerates Video Image FoV Binning

1 1920x1080 16:9 0.1-30fps x Partial None

2 3280x2464 4:3 0.1-15fps x x Full None

3 3280x2464 4:3 0.1-15fps x x Full None

4 1640x1232 4:3 0.1-40fps x Full 2x2

5 1640x922 16:9 0.1-40fps x Full 2x2

6 1280x720 16:9 40-90fps x Partial 2x2

7 640x480 4:3 40-90fps x Partial 2x2

2.3 Prototype A2: Panoramic image characterization

The goal of the second prototype, is to manually investigate different degrees of hori-

zontal overlapping between the sequences of images. The camera module v 2.0 and the

Raspberry Pi 3 Model B were mounted on a Manfrotto 410 tripod [18], which has spirit

levels built in. Using the spirit levels to level the system it was possible to take images

without vertical tilt, the importance of this feature is discussed in Chapter 4.

An increasing number of images per rotation with varying resolutions between sets where

captured with the system. Each set of images was used to create a panoramic image with

the software AutotStitch [16]. The following conclusions can be drawn from working

with this prototype:

1. A slit-camera approach provides the simplest means of generating distortion free

panoramas. It trades off the time required to acquire a higher number of images

against post processing computations effort.

2. The slit-camera enables stereoscopic panoramas to be generated, see Section

3. All currently available APIs to generate panoramic images assume a single view-

point. This prerequisite can not be fulfilled in the application being addressed.

Consequently the development of a device to inspect mine shafts will require the

programming of a dedicated stitching algorithm.

4. A motorized rotating camera system would enable a flexible variable resolution

generation of panoramic images.

CHAPTER 2. PANORAMIC IMAGING SYSTEM 9

(a) Single Layer

Panorama

(b) Multi Layer

Panorama

Figure 2.6: Figure 2.6a shows a single layer panoramic image created from eight images

with the software AutoStitch [4]. Figure 2.6b shows a panoramic image created from

three layers of eight images each, with the software AutoStitch.

Chapter 3

Automatic variable resolution system

3.1 Mechanical

This chapter describes the development of the automatic panoramic imaging system with

variable resolution. The system will be referred to as prototype A3. A camera rotated

by a stepper motor controlled by a Raspberry Pi 3 Model B are the core parts of the

automatic panoramic imaging system. Figure 3.1 shows the CAD assembly for the main

components of the system. Table 3.1 contains the corresponding part list. Controlling the

system is a Raspberry Pi 3 Model B [8]. A number of brackets and holders to enable the

assembly of the system were designed and produced using a FDM 3D-Printer. A Nema

17 stepper motor [19] combined with an Easydriver [20] stepper motor controller are used

to rotationally position the camera. The power for the components comes from an Anker

powerbank [21].The power for the stepper motor is adjusted with a boost converter [22].

The camera [11] is mounted 10 cm from the center of rotation looking outward. A limit

switch in combination with the 3D printed base plate of the system is used to create a

reference point. The base plate is connected to a quick release plate for the Manfrotto

tripod [18]. The 3D printed part on which the components are mounted and which in

turn is mounted on the Manfrotto tripod [18] were designed using CAD software. The

plans can be found in Appendix B.

Table 3.1: Part list for the single camera panoramic depth imaging system. The number

corresponds to the one in Figure 3.1.

Part

number
Part

Part

number
Part

1 Raspberry Pi Camera Module v 2.0 6 Raspberry Pi 3 Model B

2 Anker Powerbank 7 Boost Converter

3 Rolling Limit Swtich 8 Nema 17 Stepper Motor

4 Easy Driver Stepper Driver 9 3D printed base plate

5 3D printed mounting plate 10 Manfrotto Quick Release Plate

10

CHAPTER 3. AUTOMATIC VARIABLE RESOLUTION SYSTEM 11

Figure 3.1: Isometric view of the CAD assembly of the automated panoramic imaging

system.

3.1.1 Electric Circuit

The system was designed in a manner that made it possible to test it in different envi-

ronments. This made a portable power source necessary. As power source the Anker

powerbank with a capacity of 20100 mAh was chosen because it has two USB power

ports that can provide power simultaneously. One port powers the Raspberry Pi 3 Model

B with a standard USB to MicroUSB cable. The second port provides the power for the

stepper motor, to this end the power out of the powerbank is connected to the boost con-

verter. The boost converter uses DC power input. A standard USB to microUSB cable

was adapted so it could be used to connect the two components.

The powerbank can provide a voltage of UB =5V at a current of IB =4.8A. A Raspberry

Pi 3 Model B under maximum load has an approximate power consumption of PPi =2.6W

with a voltage of UPi =5V.

P =UI (3.1)

From Equation 3.1 follows that the Raspberry Pi 3 Model B needs a current of approx-

imately IPi =520 mA under maximum load. After adding another 15 percent for reserve

the design current needed for the Raspberry Pi 3 Model B is about ID =600mA. This

means that the powerbank can provide a current up to 4.2 A to the stepper motor. The

power for the stepper motor driver is provided by the Raspberry Pi 3 Model B through

GPIO, see Section 3.1.2.

A stepper motor is a synchronous electrical motor, i.e. the rotors halting positions are in

synchronization with the stator flux. When the motor is in the so called full step mode, the

stator flux is rotated by 90 degrees every step, these are called two phase on positions. To

CHAPTER 3. AUTOMATIC VARIABLE RESOLUTION SYSTEM 12

achieve this only two current modes are needed, Ion and Io f f . With a stepper motor driver

that is able to create current levels between Ion and Io f f it is possible to halt the stator flux

at any degree [23], this is called micro stepping. The holding torque is the torque which

can be held by the motor while preventing rotation. In the manner in which its being

used here is akin to applying a break. The holding torque of a stepper motor describes

the torque that can be applied to the shaft of the motor without rotating it. The torque M

of a rotating system is related to its moment of inertia J and its angular acceleration ᾱ
according to equation 3.2. Through testing it was determined that the optimal supplied

voltage to the stepper motor driver from the boost converter were 12V.

M = Jᾱ (3.2)

The boost converter was used to convert the output voltage of the powerbank to the input

voltage of the motor. The output voltage of a boost converter can be approximated using

the law of conservation of energy, see Equation 3.3.

P1 = P2

U1I1 =U2I2 (3.3)

Using Equation 3.3 where I1 = 4.2A is the amperage coming from the powerbank,

V1 = 5V is the voltage from the powerbank and V2 = 12V is the desired voltage, we can

see that I2 = 1.75A are available for the stepper motor.Figure 3.2 shows the electrical

circuit for the main components of prototype A3.

3.1.2 Controlling the system

The way the Raspberry Pi 3 Model B communicates with the electrical components are

so called General Purpose In/Out Pins (GPIO). A GPIO pin can be set to output a signal

within a python program with the python library RPi.GPIO for the Raspberry Pi 3 Model

B. The GPIO pins on the Raspberry Pi 3 Model B can provide an electrical signal of up

to 3.3V. In this system the GPIO pins are used to control the stepper motor driver, which

in turn controls the stepper motor. The rolling limit switch , when activated, provides a

reference point in the rotational plane for the automatic panoramic imaging system. The

rolling limit switch is activated by a cam on the base plate which is passed by the limit

switch once per rotation.

Figure 3.3 shows a list of the capabilities the GPIO pins on the Raspberry Pi 3 provide.

The Pins 9, 12, 13, 16 and 18 are used to control the stepper motor, Pins 3 and 6 are used

to observe the limit switch.

CHAPTER 3. AUTOMATIC VARIABLE RESOLUTION SYSTEM 13

Power Bank

USB 5V 2A

USB 5V 2A

Mini
USB Raspberry Pi 3

Model B

FFC

+ -

+ -

Boost
Converter

9
3
6

Easy Driver

1816

G
PI

O
 S

TP

G
PI

O
 D

IR

G
N

D

U
SB

-P
ow

er
C

ab
le

12V

+
-

CAM

Limit
Switch

Mini
USB

Stepper
Motor

A B A B
2,8V (1,68A)

Figure 3.2: Electric circuit for the main components of the prototype A3.

Figure 3.3: GPIO Header Pins and their properties for the Raspberry Pi 3 [24].

CHAPTER 3. AUTOMATIC VARIABLE RESOLUTION SYSTEM 14

3.1.3 Stepper motor driver

The power for the motor, coming from the boost converter, is put on Power In as seen

on Figure 3.4. The pins Motor Coil A and B on the stepper driver are connected to the

corresponding wires from the stepper motor. In the bottom left corner of the driver as

shown in Figure 3.4 is a connector which switches the operation Voltage from 5V to 3V.

Without doing this the driver could not be controlled with the Raspberry Pi 3 Model B

since the signal provided by the GPIO’s has a voltage of 3.3V. Finally the GND connector

is connected with the GPIO 9 on the Raspberry Pi because it acts as ground, see Figure 3.3.

Step Input is connected with GPIO 16 and Direction Input with GPIO 18. With the two

states of the GPIO’s, True and False, the motor can now be given a direction impulse and

a step impulse with, for example, a python program.

Figure 3.4: EasyDriver [20] stepper motor driver was used to control the stepper motor.

3.1.4 Limit switch

To create a reference or zero point for the rotation of the system a limit switch is used.

The limit switch can open or close an electric circuit with a button press, depending on the

wiring. For this system the circuit is open on default and closed when the limit switch is

activated. This type of limit switch uses a lever with a roll at the end to perform the button

press. When the lever is pushed the button is pressed and the electric circuit closed.The

logical signal from this circuit is used as parameter in the python code to determine if

CHAPTER 3. AUTOMATIC VARIABLE RESOLUTION SYSTEM 15

(a) Close up of the open rolling lever limit switch. (b) Close up of the closed rolling lever limit

switch.

Figure 3.5: Close up of the rolling lever limit switch that is used to create a reference

point in the rotational plane.

the switch was pressed. To make sure that the signal from the limit switch is correctly

interpreted by the Raspberry Pi 3 Model B it is connected through a pull down resistor

circuit.A pull down resistor is a electric circuit that holds the logic signal of the device,

e.g. the limit switch, near zero volts, i.e. False, while it is not activated, i.e. the circuit is

open. The GPIO pin 3 has a built in function to act as a pull down resistor, no separate

electrical circuit is needed. When the rolling lever of the limit switch passes the elevation

of the base plate the electric circuit is closed and the logic level increased to 3.3V, i.e.

True. This change can be observed by a running python program to determine the move

through the reference point.

Figure 3.6 shows the assembled device.

CHAPTER 3. AUTOMATIC VARIABLE RESOLUTION SYSTEM 16

(a) Automated prototype mounted on tripod. (b) Close up of the automated prototype.

Figure 3.6: Figure 3.6b shows the assembled device. Figure 3.6a shows the device

mounted on the tripod.

CHAPTER 3. AUTOMATIC VARIABLE RESOLUTION SYSTEM 17

3.2 Software

The goal of this work is to investigate the feasibility of a high resolution panoramic imag-

ing system as a whole. As a prototype it was decided to implement the investigatory soft-

ware as a number of independent components, which can be concatinated to demonstrate

the full functionality. In this manner the components can be programmed independently

and mixed with commercially available elements to implement the prototype. The main

components are:

1. image acquisition

2. image processing to account for projective effects

3. mosaicking the individual images to a panorama

4. computation of stereoscopic disparity to determine depth (still to be done)

5. generation of panoramic stereoscopic pairs

6. three dimensional visualization for viewing and total immersion in virtual reality

3.2.1 Image acquisition

The image acquisition is performed by the embedded system, in this case a Raspberry

Pi 3 Model B. Python has been selected to programme the image acquisition and local

storage; python was chosen because of the high level ob abstraction provided while being

platform independent The python code written to capture a variable amount of images

follows the pseudo code.

Data: Desired number of images

Result: Images

Move camera to zero position;

while Rolling switch not activated do
while Steps performed is smaller than the desired steps between each image do

Step;

Steps performed + 1;

end
Capture image;

Store image;

Steps performed 0;

end

The number of steps n the stepper motor makes between each image depends on the

number of images desired k and the number of steps the system performs to perform a

full rotation. The stepper motor used in this system performs 400 steps per full rotation,

CHAPTER 3. AUTOMATIC VARIABLE RESOLUTION SYSTEM 18

this equates to an angle φ =0.9◦ per step. The microstepping mode of the stepper driver

module reduces the rotation angle per step to 1
8 of the regular angle. Therefore the system

rotates 0.1125◦ per step, performing 3200 steps for a full rotation. With Equation 3.4 the

number of steps between each image is calculated every time the program is started.

n =
3200

k
(3.4)

It is necessary to know the rotational position at which each image was acquired to

enable vertical geometric registration of multiple panoramas. The knowledge simplifies

the vertical geometric registration by defining a starting solution close to the final solu-

tion for the optimization. The limit switch in combination with the specifically designed

ground plate deliver a parameter that can be used in the machine code to determine the

rotational position of the camera when the image was acquired. From there the number

of steps provided to the motor i and the step resolution φ make it possible to calculate the

rotational angle θ of the camera.

θ = iφ (3.5)

3.2.2 Data management

The current implementation supports the acquisition of n=3200 images per 360◦ rotation,

whereby each image can have a resolution shown in Table 2.1. In the first step the images

are stored locally on an SD-memory card. Whenever an image is captured it is given an

automatically generated file name and stored on the Raspberry Pi 3 Model B.

The file name is generated on the basis of the structure shown in Figure 3.7.

<projectName>_<DateTime>_<Set#>_<Layer#>_<Image#>

Here projectName would be the name or location of the mine shaft, DateTime is the

date and the time at which the image was captured, Set# includes every image captured

of one shaft, Layer# refers to the vertical position of the camera system and Image# is

the number of the image of one rotation starting with zero at the reference point of the

capturing system. This naming convention permits the unique identification of each image

with the corresponding orientation of acquisition. In Listing 3.1 the python code for the

file name creation is shown. This structure ensures that every image is assigned to a clear

position in the representation of the shaft. Once the data acquisition is over, the data can

be moved to the main storage/processing unit via FTP.

CHAPTER 3. AUTOMATIC VARIABLE RESOLUTION SYSTEM 19

Project

Date / Time
Set 1

Layer 1
Image 1
Image 2

Image n
Layer 2

Image 1
Image 2

Image n
Layer n

Image 1
Image 2

Image n
Set 2

...

Set n
...

Date / Time
...

Date / Time
...

Figure 3.7: The hierarchical data structure ensures that every image can be associated

with the rotational orientation of acquisition. The increasing level of abstraction ensures

a unique file name.

1 def dataManagement(layerNum,newSet):

2 ''' This function is designed to check if directories exist and

if not create

3 them. It returns the directory in which the pictures of the

current session are

4 to be saved as string.'''

5 # layerNum is the number of the current layer

6 # newSet is a boolean that indicates if the layer needs to be

7 # created in a new set folder (i.e. in the previous run the

last layer of a

8 # set was created)

9

10 # Get current date

11 now = datetime.datetime.now()

12 # Only use Day Month and Year

13 today = now.strftime("%d%m%Y")

14

15 # Get list of directories that exist in the current working

directory

CHAPTER 3. AUTOMATIC VARIABLE RESOLUTION SYSTEM 20

16 directories = next(os.walk(os.getcwd(),topdown=True))[1]

17 # create pathname for the current date

18 pathToday = os.path.join(os.getcwd(),today)

19

20 # Check if folder with current date exists

21 if today in directories:

22 print("Todays directory already exists")

23 # if newSet is True a new folder SETN will be created

24 if newSet:

25 # create new Set folder and layer n folder

26 curSetPath = setManagement(pathToday,newSet)

27 curLayPath = layerManagement(layerNum,curSetPath)

28 return curLayPath

29 # if newSet is False no new SET folder will be created

insted a

30 # new layer folder will be created in the current SET

folder

31 else:

32 # create layer folder

33 curSetPath = setManagement(pathToday,newSet)

34 curLayPath = layerManagement(layerNum,curSetPath)

35 #print("This should happen if newSet False")

36 return curLayPath

37 else:

38 # if current date does not exist as folder, create folder

39 os.makedirs(pathToday)

40 print("New directory {} created".format(pathToday))

41 curSetPath = setManagement(pathToday,newSet)

42 curLayPath = layerManagement(layerNum,curSetPath)

43 return curLayPath

Listing 3.1: Python code used to manage the file naming.

Chapter 4

Image Processing

This chapter gives a brief introduction to some of the concepts used in image processing

to create panoramic images. The concepts are then applied to the images produced by

the automatic panoramic imaging system described in Chapter 3. The device described in

Chapter 3 delivers images in the form seen in Figure 4.1.

Figure 4.1: Eight images acquired at one vertical position. One panoramic ring is con-

structed from these images. The images were acquired with the prototype discussed in

Chapter 3.

Within one layer the images from one closed 360◦ view overlap on the right and left

ends. The overlap between consecutive images can be set through the number of steps

between each image. This is done so that the panorama stitching algorithm, which is

discussed in Section 5, delivers the best possible results. Additionally the images overlap

from layer to layer to ensure good registration of the individual panoramic rings to each

other. The spirit level integrated in the Manfrotto tripod [18] also guarantees that there is

21

CHAPTER 4. IMAGE PROCESSING 22

no tilt in the images.

4.1 Modelling

The aim of this section is to provide the mathematical framework to link projective ge-

ometry and individual images to a panoramic view.

4.1.1 Normalized device coordinates

To be able to work with any image at any resolution normalized device coordinates are

used [3]. Mapping the pixel coordinates x̄ = (x̄, ȳ) to normalized device coordinates

x= (x,y) is done with:

x =
2x̄−W

S
(4.1)

and

y =
2ȳ−H

S
(4.2)

where S = max(W,H). W is the Width and H is the height of the image [3].

4.1.2 3D Transformation

Mapping a point from 3D coordinates p = (X ,Y,Z) to 2D coordinates x = (x,y,1) onto

an image plane at a distance f , called focal length, along the z-axis through a pinhole in

the camera center is called central projection,

x = f
X
Z
,

y = f
Y
Z
. (4.3)

The field of view θ and the focal length f have the following relationship:

f−1 = tan
θ
2

(4.4)

A perspective projection can then be written as

x̃ ∼
[

K 0

0T 1

]
p= Pp (4.5)

where the homogeneous point vector p = (X ,Y,Z,1)T is mapped to a homogeneous

screen vector x̃ = (x,y,1,d). The matrix K = diag(f , f ,1) is called intrinsic camera cal-

CHAPTER 4. IMAGE PROCESSING 23

ibration matrix and P is the projection matrix. By using this notation, the inverse screen

depth information d is kept and can be used to map points between images of a 3D

scene [25].

4.1.3 Homography

A point p in 3 dimensional space is mapped to an image coordinate x̃0, where 0 denotes

the camera, through a combination of rotation and translation E0,

x0 =

[
R0 t0

0T 1

]
p= E0p (4.6)

and a perspective projection P0,

x̃0 ∼ P0E0p. (4.7)

If the value for d0 is known, it is possible to back project the image point x̃0 to a 3D

point p,

p∼ E0
−1P0

−1x̃0 (4.8)

and project it into another image

x̃1 = P1E1p= P1E1E
−1
0 P−1

0 x̃0 =M10x̃0. (4.9)

For a planar scene with d0 = 0, the mapping is reduced to

x̃1 = H10x̃0 (4.10)

where H10 is a 3x3 homography matrix and x̃0, x̃1 are 2D homogeneous coordi-

nates [25].

4.1.4 Cylindrical and Spherical Coordinates

Instead of calculating the homography, it is also possible to warp the images into cylin-

drical coordinates and align them by translation. For a camera in the starting position,

where R= I, I being the identity matrix, an (x,y) pixel corresponds to the (x,y, f) 3D ray.

A point on a cylindrical surface can be parametrized by the angle θ and the height h.

(sinθ ,h,cosθ) ∝ (x,y, f) (4.11)

The mapped or warped coordinates can then be calculated with

CHAPTER 4. IMAGE PROCESSING 24

x′ = sθ = s tan−1 x
f
, (4.12)

y′ = sh = s
y√

x2 + f 2
(4.13)

If the camera is level and rotating around its vertical axis the warped images are related

by pure horizontal translation.

Figure 4.2: Cylinder Projection of an image taken with the system and warped using

Equations 4.12 and 4.13.

1 [W,H] = size(image(:,:,1));

2

3 ydim = W;

4 xdim = H;

5

6 xc = xdim/2;

7 yc = ydim/2;

8

9 f = 1000000;

10 % Because the focus is near infinity for the camera sensor we get

the

11 % normal image for very big f's

12

13 for y=1:ydim

14 for x=1:xdim

15 theta = (x - xc)/f;

16 h = (y - yc)/f;

17 xcap = sin(theta);

18 ycap = h;

19 zcap = cos(theta);

20 xn = xcap / zcap;

CHAPTER 4. IMAGE PROCESSING 25

21 yn = ycap / zcap;

22 r = xnˆ2 + ynˆ2;

23

24 xd = xn;% * (1 + k1 * r + k2 * rˆ2);

25 yd = yn;% * (1 + k1 * r + k2 * rˆ2);

26

27 ximg = floor(f * xd + xc);

28 yimg = floor(f * yd + yc);

29

30 if (ximg > 0 && ximg <= xdim && yimg > 0 && yimg <= ydim)

31 out(y, x, :) = [image(yimg, ximg, 1) image(yimg, ximg,

2) image(yimg, ximg, 3)];

32 end

33

34 end

35 end

Listing 4.1: MATLAB code snippet used to perform the cylindrical projection in

Figure 4.2 based on the mathematical framework presented in Chapter 4.

4.2 Lens

The camera sensor used in this project is the Raspberry Pi camera module v2.0, which

uses a Sony IMX 219 PQ [12] sensor. This sensor has a focal length of f = 3.04mm

and a viewing angle α = 62.2◦. The maximum resolution per frame is 3280by2464

pixels, this equates to a pixel size of 1.12by1.12μm. Focus near infinity. To model the

radial distortions, barrel (away from the image center) and pincushion (towards the image

center) a low order polynomial can be used, e.g.:

x′ = x(1+κ1r2 +κ2r4),

y′ = y(1+κ1r2 +κ2r4). (4.14)

It is believed that the firmware of the Raspberry Pi accounts for these effects and

applies the corrections on the raw image before viewing it [26].

4.3 Registration

The alignment of images through feature registration has many possible solutions [4][27],

one approach is normalized cross correlation. Using a subregion of an image as template,

the cross correlation between this template and a region in the second image is computed.

CHAPTER 4. IMAGE PROCESSING 26

In this system the rotation of the camera is known and the search space can be confined to

a region where the template must lie. To make the cross correlation insensitive to changes

in image lightning between images, it is normalized:

Ci j =
p

∑
i=1

p

∑
j=1

(ai j − ā)(bi j − b̄)
p2σ(a)σ(b)

(4.15)

where Ci j is the correlation coefficient , p is equal to the size of the template, ā and

b̄ are equal to the mean of the region and σ denoting the standard deviation. Using this

measure of similarity between feature points in each image the template from Image I1,

can be aligned within the selected subregion of Image I2. Once the template is aligned the

rest of the image is added.

Figure 4.3 shows the process of normalized cross correlation applied to two panoramic

images from different vertical positions. Each panoramic image was created from eight

images acquired with the system described in Chapter 3.

The MATLAB® function normxcorr2 was used to perform the computations.

CHAPTER 4. IMAGE PROCESSING 27

(a) (b)

(c)

(d)

Figure 4.3: Figure 4.3a shows the template taken from the panorama in Figure 4.3c to

determine the offset between the panoramas shown in Figure 4.3d and Figure 4.3c. Fig-

ure 4.3b represents the correlation between the template and the panorama in Figure 4.3d,

the peak in height corresponds to the x and y offset between the images. The outline in

Figure 4.3d represents the location where the template has the highest correlation with the

panorama.

Chapter 5

Image stitching

This chapter is about the process of creating panoramic images for an automated panoramic

imaging system for the visual inspection of vertical deep mine shafts.

Panoramic imaging is important for the creation of an automatic system for the visual

inspection of vertical deep mine shafts because it makes it possible to create images with

horizontal fields of view up to 360◦ and infinite height.This is achieved by combining

multiple images from different view points of the same scene to a single image by align-

ing them along features of the scene that are visible in multiple images. Because of the

different camera parameters, i.e. position, from where the images where captured the

same feature of a scene can occur at different image coordinates in different images.

The challenge is therefore to recognize corresponding features in different images and de-

termine the shift between images needed to align them.Automatic recognition of features

in images is a complex field of study in computer vision that has produced many differ-

ent approaches [27][4][1] for different requirements.A short introduction to an automated

approach to registration, namely normalized cross correlation, is given in Section 4.3.

Section 4.3 also provides an example for registration through normalized cross correla-

tion in the context of an automated system for panoramic imaging for the visual inspection

of deep vertical mine shafts as described in Chapter 2.

5.1 Panoramic imaging

One way to create panoramic images is to use overlapping aligned images and performing

different tasks, such as gain compensation and multiband blending to create a panoramic

image. AutoStitch by Brown and Lowe [16] is a software that produces panoramic im-

ages as shown in Figure 5.1 from overlapping images. Another way is to produce the

panoramic image by combining stripes of a small numbers of pixel columns from each

image. The shift between images can be calculated with the algorithm presented in Sec-

tion 4.3. With the shift between consecutive images the number of pixel rows that con-

28

CHAPTER 5. IMAGE STITCHING 29

Figure 5.1: Panoramic image created by combining eight images with the software Au-

toStitch [4].

tribute to the entire panorama can be determined. This can be referred to as slit-camera.

This approach has the advantage of reducing distortions in the image produced by the

camera lens. Using only the center column of pixels per image from 3200 images cap-

tured with the system described in Chapter 3 produces a panoramic image as shown in

Figure 5.2d. Listing 5.1 shows the code snippet that was written to produce Figure 5.2d

from the individual images.

1

2 % To determine the number of pixels calculate the shift between two

images, shift between the other images is the same

3 n = 1;

4 center = 320;

5 m = 480;

6

7 centerColumn = zeros(m,n,3);

8

9 for k=3199:-1:0

10

11 fileName = sprintf('stereoTest640/picture%d.jpg',k);

12

13 image = imread(fileName);

14

15 centerColumn(:,1,:) = image(:,center,:);

16

17 pan = [pan,centerColumn];

18

19 end

20

21 pan = uint8(pan);

Listing 5.1: Matlab code used to produce Figure 5.2d

CHAPTER 5. IMAGE STITCHING 30

5.1.1 Comparison AutoStitch and Slit Camera

The aim of this section is to showcase the differences in the panoramic images created

with the software AutoStitch [16], see Figure 5.2c, and the algorithm presented in Sec-

tion 5.1, see Figure 5.2d. Figure 5.2a shows a detail of the panorama in Figure 5.2c. The

chair seen in the detail lies at the intersection of two overlapping images. The stitching

algorithm does not properly align the borders. Figure 5.2b provides the same region seen

in Figure 5.2a from the panorama created with the slit camera approach, Figure 5.2d. NBy

combining the pixel columns from the center of each image, the algorithm can provide a

coninuous representation of the scene with a field of view of 360◦.

(a) Detail AutoStitch (b) Detail Slit Camera

(c) Panorama AutoStitch

(d) Panorama Slit Camera

Figure 5.2: Figure 5.2a and Figure 5.2b are details of the panoramas in Figure 5.2c cre-

ated with AutoStitch [16] from eight images and Figure 5.2d created with the algorithm

presented in Section 5.1. The differences in the two approaches can be observed.

CHAPTER 5. IMAGE STITCHING 31

5.2 Panoramic depth imaging

To create the perception of depth when viewing the representation of the shaft surface

by the inspection personnel, panoramic stereo imaging (omnistereo) is used. Calculating

the actual depth values lies outside the scope of this thesis, it can however be achieved

using the approaches presented by Peer and Solina [28]. Two panoramas, one represent-

ing the left eye the other representing the right eye view are used to create an omnistereo

panorama. Section 5.1 explains how the panoramic images are mosaicked. To set up the

left and right eye view a special projection called the circular projection is used.

d
b

Figure 5.3: With a known distance b between viewpoints, i.e. baseline, and the angles ψ
and γ the distance of a point from the baseline d can be calculated.

5.2.1 Stereoscopy

In many cases panoramic images are created with one camera from one viewpoint. A

stereo pair is created by two images with viewpoints corresponding to the position of the

eyes. The brain interprets the angular difference between each point as depth. From this

set-up the sensation of depth can only be created in the direction perpendicular to the

baseline1 see Figure 5.4.

1The baseline is a line connecting the viewpoints of the camera.

CHAPTER 5. IMAGE STITCHING 32

NO STEREO IN
THIS DIRECTION

ST
ER

EO
 P

O
SS

IB
LE

IN
 T

H
IS

 D
IR

EC
TI

O
N

VIEWPOINT 1 VIEWPOINT 2

P

Figure 5.4: A stereo pair cannot give the perception of depth in every direction [29].

5.2.2 Circular Projection

Normal images are usually created with a central projection, Figure 5.5. A central pro-

jection is a special case of perspective projection where all projecting lines pass through

one single point, the viewpoint. To create the left and right eye panorama a special pro-

jection called circular projection is used. In a circular projection the projecting lines pass

through multiple view points. These view points lie on a with the path of the rotating

camera concentric circle, the viewing circle, Figure 5.5(b-c). The stereo perception is

created by the resulting view points for the left, Figure 5.5 (b) and right eye panorama,

Figure 5.5(c) on the viewing circle. Since the left eye panorama uses tangent lines on the

clockwise direction of the viewing circle and the right eye panorama uses tangent lines on

the counterclockwise direction, every point on the viewing circle represents a view point

and a viewing direction. This means that stereo perception is possible in every direction.

5.2.3 Omnistereo

Figure 5.6 shows the process of creating stereo panoramas from a single rotating camera.

From every image three stripes are kept and combined with those from the following

picture. The center stripe represents a normal panorama as described in Section 5.1. Two

stripes, where each has an offset of v pixels from the center stripe, create the left and

right eye view panorama respectively. The stripe on the right side of the center is used to

mosaic the left eye panorama. The stripe on the left side of the center is used to create the

right eye panorama. The Listing 5.2 shows the MATLAB® code written to create the left

eye view and right eye view panorama from 3200 images caputred in one rotation with

the system described in Chapter 3, Figure 5.7 shows the results.

CHAPTER 5. IMAGE STITCHING 33

Figure 5.5: (a) Central projection, (b) and (c) circular projection according to [2].

Figure 5.6: Creation of the left eye view panorama and the right eye view panorama with

a single rotating camera according to S.Peleg [2].

CHAPTER 5. IMAGE STITCHING 34

1 n = 1;

2 d = 10;

3 center = 320;

4 m = 480;

5

6 centerColumn = zeros(m,n,3);

7 rightView = zeros(m,n,3);

8 leftView = zeros(m,n,3);

9

10 for k=3199:-1:0

11 fileName = sprintf('stereoTest640/picture%d.jpg',k);

12 image = imread(fileName);

13

14 rightView(:,1,:) = image(:,center-d,:);

15

16 centerColumn(:,1,:) = image(:,center,:);

17

18 leftView(:,1:n,:) = image(:,center+d,:);

19

20

21 pan = [pan,centerColumn];

22

23 leftPan = [leftPan, leftView];

24 rightPan = [rightPan, rightView];

25 end

Listing 5.2: MATLAB code snippet that was written to create a normal panorama the

left eye view panorama and the right eye view panorama from a single rotation of the

prototype described in Chapter 3

CHAPTER 5. IMAGE STITCHING 35

Figure 5.7: Panoramic image created from 3200 separate images. Left eye view and right

eye view were created with the algorithm presented in Section 5.2.3.

Chapter 6

Visualization

This chapter discusses different possibilities to present the stereo pair of panoramic im-

ages, Section 5.2.3, created from images acquired with the system discussed in Chapter 3

in a way that creates a depth perception in the viewers brain.

The depth perception is necessary for the inspection personnel to observe changes in the

surface of the shaft. There are several ways to display a stereo panoramic pair to create

the perception of depth in the viewers brain:

1. Anaglyph Glasses with suitably prepared images

2. Head Mounted Display

Other options not covered in this thesis include: LCD Shutter Glasses [29] and Free-

View [29].

6.1 Anaglyph

By applying specific color filters to the right and left eye view panorama, the perception

of depth is created in the viewers brain when viewing the image with special, to the filter

corresponding, anaglyph glasses.

The left and right side view from Figure 5.7 can be used to produce an anaglyph with

the MATLAB® function StereoAnaglyph, Figure 6.2 shows the result. In an anaglyph the

three main color layers are separated to the left and right eye view. In this case the left

view represents the red layer, and the right view blue and green, i.e. cyan. These views

are then stacked over each other to create the anaglyphic material [30]. When this image

is viewed through color coded anaglyph glasses, the brain fuses them into a perception of

a three dimensional scene [31]. Figure 6.1 shows the process to create a stereo anaglyph

for a pair of stereo panoramas.

36

CHAPTER 6. VISUALIZATION 37

Figure 6.1: A stereo anaglyph is produced in five steps: 1. Create a stereo pair of

panoramic images using circular projection, 2. Cutting the panoramas according to

the shift between them, 3. Separation of the three color bands, 4. Combination of the

three color bands into one stereo panorama, 5. View the stereo panorama with anaglyph

glasses [29].

CHAPTER 6. VISUALIZATION 38

Figure 6.2: Anaglyph created from images taken with prototype A3 and the MATLAB®

function stereoAnaglyph.

CHAPTER 6. VISUALIZATION 39

Figure 6.3: The pair of stereo panoramas created in Section 5.2.3 prepared to be viewed

with a head mounted display.

6.2 Head Mounted Display

The stereo panorama created in Section 5.2.3 are compatible to be viewed with a Head

Mounted Display, HMD. A Head Mounted Display uses two lenses that are placed in front

of a stereo pair of separate images to produce a single three dimensional image.By using

a smart-phone to display these images it is possible to view a pair of stereo panoramas as

one three dimensional panorama. The panorama can be explored by intuitively moving the

head while holding the display. The acceleration sensors and the gyroscope of the phone

provide with the necessary data to calculate the viewing direction. One commercially

available software to produce a virtual reality tour is krpano [5]. Figure 6.3 shows the

pair of stereo panoramas created by the process explained in Section 5.2.3 prepared for

the HMD shown in Figure 6.4b.

(a) VR Tour (b) Google Cardboard

Figure 6.4: The VR representation created with krPano [5] can be viewed on a smart

phone screen. The phone is then mounted in the HMD Google cardboard. The lenses in

the HMD distort the images in a way that enables the brain to perceive depth.

Chapter 7

Data storage

7.1 Reduced Resolution Set

The panoramic images created in the previous section are stored in a reduced resolution

format [27]. MATLAB® offers the function rsetwrite. This function splits the image into

equally sized images. Each of these sub-images is then resampled at different resolution

levels depending on the layer number, see Figure 7.1. When viewing this file the reso-

lution of the displayed image increases with the zoom level [32]. This format makes it

possible to view images, that would otherwise be to big to fit into memory.

Figure 7.1: Princinpal behind the reduced resolution according to Badash, O’Leary et

al. [27].

40

CHAPTER 7. DATA STORAGE 41

Figure 7.2: An example of an Reduced Resolution Set displaying a high resolution

panoramic image created with the system described in Chapter 3 and the algorithm dis-

cussed in Section 5.2.3.

Figure 7.3: Badash, O’Leary et al. [27] used this technique for non-rigid registration.

CHAPTER 7. DATA STORAGE 42

7.2 Geographic information system

A Geographic Information System makes it possible to connect data with a geographic

position [7]. Researchers have used the possibility of overlaying different data set to

determine influences and correlations between events and geographic location [6]. For

this study the VR reality tours created in section 6.2 as well as other potentially available

data, such as geographic depth data, should be viewable by selecting a location on the

map, i.e. the location of the mine. One commercial Solution that lets users create custom

maps is ArcGIS [33], this program has ample features that surpass the scope of this thesis,

hence we will focus on linking a location with the VR Tour. After creating a custom map,

a location can be added by searching for street names or coordinates. This location can

then be linked to a website URL. For testing purposes a local server provided by krpano is

used to host the VR Tour. After starting the server and linking the location to its ip address

in the local network it is possible to access the VR Tour from any device connected to the

local network. Using a VPN client to connect to this network is a simple solution to make

it possible to connect from any other network and view the data.

Local Server Browser Map

Phone
HMD

Figure 7.4: Presenting the VR Tour so it can be viewed from any device.

Chapter 8

Conclusion

This thesis investigates concepts and possible implementations for the automatic panoramic

depth imaging for the automatic visual inspection of vertical deep mine shafts. This work

is akin to a feasibility study; whereby each element in the complete chain, from images

to virtual reality, are verified with respect to being feasible.

The complete work flow composed of:

1. Image capturing,

2. Image processing,

3. Panoramic image mosaicking,

4. Stereographic panoramic image computation and

5. Three dimensional visualisation

has been implemented and tested. This method provides the partners of the KIC-Raw

Materials Project titled Maintained Mining Machine with the means to develop a system

to perform visual inspections of vertical deep mine shafts remotely.

All steps necessary for the development of a suitable capturing device as well as the

mathematical background for the computation of omnistereo panoramic images have been

verified with respect to being feasible.

It has been shown that all required image data for a three dimensional representation

of a large contiguous surface can be provided by a capturing system with a single rotating

camera or with eight stationary cameras.

43

CHAPTER 8. CONCLUSION 44

8.1 Future Work

This work has verified the feasability of a high resolution panoramic imaging system

for visual inspection of vertical deep mine shafts. It provides the starting point for the

development of a deployable device. The future development will need to focus on the

following issues:

1. Using vertical displacement to compute the stereoscopic depth information, rather

than the panoramic imaging. This will require the identification of the base line

length; however, it eliminates the difficulties associated with outward looking stereo.

2. An interesting future area of research is to add metric iformation to the VR percep-

tion, i.e., to enable making the measurements in the VR environment.

3. Use affine invariant features to support reliable and precise computations of depth

maps from images.

4. The affine invariant features can also be used to support new approaches for non-

rigid stitching of the images.

5. More performant VR environments, tools and devices should be investigated.

Appendix A

Code

Listing A.1: Image acquisition and storage.

1 # coding=utf-8

2 #

3 # (c) Jakob Koenig 2016

4 #

5

6

7 # Imports

8 import os

9 import datetime

10 import sys

11 import logging

12 import RPi.GPIO as GPIO

13 import time

14 from picamera import PiCamera

15 import logging

16

17 # Set up logging

18 logging.basicConfig(filename='example.log', level=logging.DEBUG)

19

20 # Disable warnings

21 GPIO.setwarnings(False)

22

23 # Definitions

24 def dataManagement(layerNum,newSet):

25 ''' This function is designed to check if

26 directories exist and if not create

27 them. It returns the directory in which

28 the pictures of the current session are

29 to be saved as string.'''

30 # layerNum is the number of the current layer

45

APPENDIX A. CODE 46

31 # newSet is a boolean that indicates if the layer needs to be

32 # created in a new set folder (i.e. in the previous

33 # run the last layer of a set was created)

34

35 # Get current date

36 now = datetime.datetime.now()

37 # Only use Day Month and Year

38 today = now.strftime("%d%m%Y")

39

40 # Get list of directories that exist in the current working

directory

41 directories = next(os.walk(os.getcwd(),topdown=True))[1]

42 # create pathname for the current date

43 pathToday = os.path.join(os.getcwd(),today)

44

45 # Check if folder with current date exists

46 if today in directories:

47 print("Todays directory already exists")

48 # if newSet is True a new folder SETN will be created

49 if newSet:

50 # create new Set folder and layer n folder

51 curSetPath = setManagement(pathToday,newSet)

52 curLayPath = layerManagement(layerNum,curSetPath)

53 return curLayPath

54 # if newSet is False no new SET folder will be created

insted a

55 # new layer folder will be created in the current SET

folder

56 else:

57 # create layer folder

58 curSetPath = setManagement(pathToday,newSet)

59 curLayPath = layerManagement(layerNum,curSetPath)

60 #print("This should happen if newSet False")

61 return curLayPath

62 else:

63 # if current date does not exist as folder, create folder

64 os.makedirs(pathToday)

65 print("New directory {} created".format(pathToday))

66 curSetPath = setManagement(pathToday,newSet)

67 curLayPath = layerManagement(layerNum,curSetPath)

68 return curLayPath

69

70 def setManagement(pathToday,newSet):

71 # create a list with folders in todays directory

72 folders = next(os.walk(pathToday,topdown=True))[1]

73 # Sort folders descending

74 folders.sort(reverse=True)

APPENDIX A. CODE 47

75 print("The following SET's were created today {}".format(

folders))

76

77

78 # Wenn directories leer dann SET 1

79 # This happens even if newSet is False to ensure that

80 # there is always a folder

81 if not folders:

82 print("No previous SET detected, creating SET1")

83 setPath = os.path.join(pathToday,'SET1')

84 #if newSet:

85 os.makedirs(setPath)

86 return setPath

87 #else:

88 # return setPath

89 # Sonst SETN+1

90 elif newSet:

91 # Find last set Number

92 lastSet = folders[0]

93 setNum = lastSet[3]

94 # Create new SetNumber

95 newSetNum = int(setNum) + 1

96 newSet = 'SET' + str(newSetNum)

97 # Create folder for current Set

98 setPath = os.path.join(pathToday,newSet)

99 os.makedirs(setPath)

100 print("New SET folder created")

101 print("Current Session will be saved in {}".format(newSet))

102 return setPath

103 else:

104 # Find last set Number

105 lastSet = folders[0]

106 setNum = lastSet[3]

107 # Create folder for current Set

108 setPath = os.path.join(pathToday,lastSet)

109 #os.makedirs(setPath)

110 print("Current Session will be saved in {}".format(lastSet)

)

111 return setPath

112

113 def layerManagement(layerNumber,curSetPath):

114 # Create the new folder name and path

115 newLayer = 'LAYER' + str(layerNumber)

116 layerPath = os.path.join(curSetPath,newLayer)

117 #print("LayerPath {}".format(layerPath))

118

119 # get list of existing folders

APPENDIX A. CODE 48

120 folders = next(os.walk(curSetPath,topdown=True))[1]

121 #print("Folders {}".format(folders))

122

123 # this is to ensure that the program exits safely even if the

layer

124 # already exists

125 if newLayer in folders:

126 print("Layer already exists.")

127 sys.exit()

128 else:

129 # create the layer folder

130 os.makedirs(layerPath)

131 print("Created Layer {}".format(layerPath))

132 return layerPath

133

134 #def logSession():

135

136 def startUp():

137

138 #cameraSetUp()

139 gpioSetUp()

140 moveToZero()

141

142 return True

143 # Does not quite work yet!

144 ## if not GPIO.event_detected(2):

145 ## moveToZero()

146 ## return True

147 ## else:

148 ## return True

149

150 def cameraSetUp():

151 camera = PiCamera()

152 camera.vflip = True

153 camera.resolution = (2592,1944)

154

155 def gpioSetUp():

156 # Set up GPIO

157 # Mode

158 GPIO.setmode(GPIO.BCM)

159

160 # Inputs

161 # BCM 2 as pull down switch always open power in

162 # is BCM 2 Ground to GND Pin

163 GPIO.setup(2, GPIO.IN, pull_up_down=GPIO.PUD_DOWN)

164

165 # Outputs

APPENDIX A. CODE 49

166 # Direction BCM 23

167 GPIO.setup(23, GPIO.OUT)

168 # Step BCM 24

169 GPIO.setup(24, GPIO.OUT)

170 # Enable Driver BCM 18

171 GPIO.setup(18, GPIO.OUT)

172

173

174 # Set Direction

175 GPIO.output(24, True)

176

177 # GPIO events

178 GPIO.add_event_detect(2, GPIO.FALLING, callback=callbackOrigin,

bouncetime=300)

179

180

181

182 def callbackOrigin(channel):

183 global origin

184 # define what happens when origin is passed

185 if not origin:

186 origin = True

187 print("Falling edge on 2; Camera has reached origin \n")

188

189

190 def moveToZero():

191 n = 0

192 waitTime = 0.01

193 # GPIO.input(2) returns True unless it is pressed

194 try:

195 #GPIO.event_detected is True when button is pressed

196 while not GPIO.event_detected(2):

197 GPIO.output(23, True)

198 GPIO.output(23, False)

199 time.sleep(waitTime)

200 n += 1

201

202

203 # Implement rising and falling edge for stepper timing

here

204 print("Stepnumber {}".format(n))

205 time.sleep(2)

206 except KeyboardInterrupt:

207 GPIO.cleanup()

208 #GPIO.cleanup()

209 return True

210

APPENDIX A. CODE 50

211

212 def dataAquisition(nSection,curLayPath):

213 print("Starting Dataaquistion: N Pictures")

214 camera = PiCamera()

215 camera.vflip = True

216 camera.hflip = True

217 camera.resolution = (2592,1944)

218 n = 0

219 i = 1

220 waitTime = 0.01

221 try:

222 # Runs until button press is detected (rolling Switch)

223 while not GPIO.event_detected(2):

224 while n<nSection:

225 GPIO.output(23, True)

226 GPIO.output(23, False)

227 time.sleep(waitTime)

228 n += 1

229 # Implement rising and falling edge for stepper

timing here

230 print("Stepnumber for this Section: {}".format(n))

231 n = 0

232 # Take picture and save here

233 camera.start_preview()

234 time.sleep(2)

235 # Optimize namegiving for pictures

236 picPath = str(curLayPath) + '/PICTURE' + str(i) + '.jpg

'

237 camera.capture(picPath)

238 camera.stop_preview()

239 i += 1

240 # make a log entry after every pic

241 logging.debug('%s', str(picPath))

242 except KeyboardInterrupt:

243 GPIO.cleanup()

244 #GPIO.cleanup()

245

246 def logFileManagement():

247 # This module reads the last line in log file and returns the

values for

248 # this session

249 fileHandle = open('example.log',"r")

250 lineList = fileHandle.readlines()

251 fileHandle.close()

252

253 lastLine = lineList[-1]

254 print(lastLine)

APPENDIX A. CODE 51

255 lastSession = strManagement(lastLine)

256

257 return lastSession

258

259

260 def strManagement(string):

261 strList = string.split('/')

262 curPic = strList[len(strList)-1]

263 curPic = curPic[0:8] # CHANGE THIS DEPENDING ON PIC NAME FORMAT

264 curLay = strList[len(strList)-2]

265 curSet = strList[len(strList)-3]

266 curDat = strList[len(strList)-4]

267

268 curStrList = [curDat, curSet, curLay, curPic]

269

270 return curStrList

271

272 def sessionManagement(lastSession,newSet):

273 # CHANGE THIS CONDITION IF MORE THAN 8PICS ARE TAKEN

274 if 'PICTURE8' in lastSession and not newSet:

275 layerNum = int(lastSession[2][5]) +1

276 return layerNum

277 elif newSet:

278 layerNum = 1

279 return layerNum

280 else:

281 print("previous Session not completed. Investigate!")

282 sys.exit()

283

284

285 # Program

286 #layerNum = 2 #sys.argv[1]

287 newSet = True#sys.argv[2]

288 nSection = 50 # This needs to be adjusted if stepsize

289 # changes or more cameras are wanted

290

291

292 # Global variable origin

293 origin = False

294

295 # Get data from last session

296 lastSession = logFileManagement()

297 print(lastSession)

298 layerNum = sessionManagement(lastSession,newSet)

299

300 # if newSet True layerNum must be 1!

301 curLayPath = dataManagement(layerNum,newSet)

APPENDIX A. CODE 52

302 print("Return dataManagement: {}".format(curLayPath))

303 startUp()

304 print("Camera has passed through origin:{}".format(origin))

305 dataAquisition(nSection,curLayPath)

306

307 # TODo

308 # create LogFile for propper startup

309 # see if button press is true at startup

APPENDIX A. CODE 53

Listing A.2: Code to create stereo pair of panoramic images from one 360◦ rotation of the

camera.

1 %

2 % (c) Jakob Koenig 2017

3 %

4 clear;

5 close all;

6

7 % pan = zeros(480,1,3);

8 % leftPan = zeros(480,1,3);

9 % rightPan = zeros(480,1,3);

10 pan = [];

11 leftPan = [];

12 rightPan =[];

13

14 n = 1;

15 d = 10;

16 center = 320;

17 m = 480;

18

19 centerColumn = zeros(m,n,3);

20 rightView = zeros(m,n,3);

21 leftView = zeros(m,n,3);

22

23 for k=3199:-1:0

24 fileName = sprintf('stereoTest640/picture%d.jpg',k);

25 image = imread(fileName);

26

27 rightView(:,1,:) = image(:,center-d,:);

28 %rV = image(:,center-d:center-d+n-1,:);

29 centerColumn(:,1,:) = image(:,center,:);

30 %cV = image(:,center-n+1:center,:);

31 leftView(:,1:n,:) = image(:,center+d,:);%560:560+n-1);

32 %lV = image(:,center+d:center+d+n-1,:);%560:560+n-1);

33

34 pan = [pan,centerColumn];

35 %pC = cat

36 leftPan = [leftPan, leftView];

37 rightPan = [rightPan, rightView];

38 end

39 % figure, imshow(image)

40 %

41 % figure

42 % subplot(1,3,1), imagesc(leftView);

43 % subplot(1,3,2), imagesc(centerColumn);

44 % subplot(1,3,3), imagesc(rightView);

APPENDIX A. CODE 54

45

46 pan = uint8(pan);

47 leftPan = uint8(leftPan);

48 rightPan = uint8(rightPan);

49

50 save('singleCamStereoPan.mat');

51

52 %%

53 clear;

54 close all;

55

56 load('singleCamStereoPan.mat');

57

58 figure

59 subplot(3,1,1), imagesc(pan);

60 title('Panoramic Image');

61 subplot(3,1,2), imagesc(leftPan);

62 title('Left Eye View Panorama');

63 subplot(3,1,3), imagesc(rightPan);

64 title('Right Eye View Panorama');

65 %colormap('gray');

66

67 figure

68 imshow(pan);

69

70 print('panTiff', '-dtiff');

71 print('panJPG', '-djpeg');

72

73

74 %%

75 clear;

76 close all;

77

78 load('singleCamStereoPan.mat');

79

80 anaglyph = stereoAnaglyph(leftPan,rightPan);

81

82 figure

83 imshow(anaglyph);

84

85

86 %% RRS

87

88 clear;

89 close all;

90

91 load('singleCamStereoPan.mat');

APPENDIX A. CODE 55

92

93 myFile = 'panTiff.tif';

94

95 rset_file = rsetwrite(myFile);

96 imtool(rset_file);

Appendix B

Drawings

56

AD

BC AD

33

22

44

11

This drawing is our property; it can't be reproduced or communicated without our written agreement.

SCALE

 1:2

WEIGHT (kg)

XXX

DRAWING NUMBER

XXX

SHEET

1/1

SIZE

A4 Chair of Automation

CHECKED BY:

Jakob König
DATE:

11.03.2017

DESIGNED BY:

Jakob König
DATE:

11.03.2017

Mounting Plate

A _

B _

C _

D _

E _

F _

G _

H _

I _

120

R

4

20

6
6

6
1

4

4
5

7
5

1
4
7

1 3

33

8

65

2
5

1
37

25

225

93

1
1

AD

BC AD

33

22

44

11

This drawing is our property; it can't be reproduced or communicated without our written agreement.

SCALE

 1:2

WEIGHT (kg) DRAWING NUMBER

MountingPlate

SHEET

1/1

SIZE

A4 Chair of Automation

CHECKED BY:

Jakob König
DATE:

13.03.2017

DESIGNED BY:

Jakob König
DATE:

13.03.2017

Base Plate

A _

B _

C _

D _

E _

F _

G _

H _

I _

1
8

11

20
46

16

17

5 6
7

20

8
0

4
0

1
72 6

51120

8
1
4

210 1
0

1
0

5

Bibliography

[1] Duke Gledhill et al. “Panoramic imaging—a review”. In: Computers & Graphics

27.3 (2003), pp. 435–445. ISSN: 00978493. DOI: 10.1016/S0097-8493(03)

00038-4.

[2] S. Peleg, Y. Pritch, and M. Ben-Ezra. “Cameras for stereo panoramic imaging”.

In: IEEE conference on computer vision and pattern recognition. IEEE Comput.

Soc, 2000, pp. 208–214. ISBN: 0-7695-0662-3. DOI: 10.1109/CVPR.2000.

855821.

[3] Richard Szeliski. “Image Alignment and Stitching: A Tutorial”. In: Foundations

and Trends� in Computer Graphics and Vision 2.1 (2006), pp. 1–104. ISSN: 1572-

2740. DOI: 10.1561/0600000009.

[4] Matthew Brown and David G. Lowe. “Automatic Panoramic Image Stitching us-

ing Invariant Features”. In: International Journal of Computer Vision 74.1 (2007),

pp. 59–73. ISSN: 0920-5691. DOI: 10.1007/s11263-006-0002-3.

[5] krpano.com. URL: https://krpano.com/.

[6] Kelly E. Arbuckle and John A. Downing. “Freshwater mussel abundance and species

richness: GIS relationships with watershed land use and geology”. In: Canadian

Journal of Fisheries and Aquatic Sciences 59.2 (2002), pp. 310–316. ISSN: 0706-

652X. DOI: 10.1139/f02-006.

[7] National Geographic Society. GIS (geographic information system). 26.02.2017.

URL: http : / / www . nationalgeographic . org / encyclopedia /

geographic-information-system-gis/.

[8] Raspberry Pi - Teach, Learn, and Make with Raspberry Pi. URL: https://www.

raspberrypi.org/.

[9] Rajes Ramli. Latest Features About Raspberry Pi 3 That You Have To Know -

Linux Info. 10.03.2017. URL: https://linuxinfoid.blogspot.co.at/

2016/03/the-latest-features-about-raspberry-pi.html.

[10] Remote Access Software for Desktop and Mobile — RealVNC. URL: https://

www.realvnc.com/.

59

BIBLIOGRAPHY 60

[11] 8-megapixel Raspberry Pi Camera Module v2. URL: http://www.raspberrypi-

spy.co.uk/2016/04/8- megapixel- raspberry- pi- camera-

module-v2/.

[12] IMX219PQ — Sony Semiconductor Solutions. URL: http : / / www . sony -

semicon.co.jp/products_en/new_pro/april_2014/imx219_

e.html.

[13] 7. Camera Hardware — Picamera 1.10 documentation. 9.11.2015. URL: http:

//picamera.readthedocs.io/en/release-1.10/fov.html.

[14] Raspberry Pi 3 Model B - Raspberry Pi. 14.03.2017. URL: https://www.

raspberrypi.org/products/raspberry-pi-3-model-b/.

[15] Camera Module - Raspberry Pi. 14.03.2017. URL: https://www.raspberrypi.

org/products/camera-module-v2/.

[16] AutoStitch. 31.07.2015. URL: http://matthewalunbrown.com/autostitch/

autostitch.html#FAQ.

[17] 6. Camera Hardware — Picamera 1.12 documentation. 30.01.2017. URL: http:

//picamera.readthedocs.io/en/release-1.12/fov.html.

[18] manfrotto. URL: https://www.manfrotto.us/junior-geared-head.

[19] — RS Pro Hybrid Schrittmotor 0.9°, 44Ncm, 4-adriger Anschluss, 1,68 A 2,8 V

—. URL: http://at.rs-online.com/web/p/schrittmotoren/

5350401/.

[20] Brian Schmalz. Easy Driver stepper motor driver. 8.04.2016. URL: http://

www.schmalzhaus.com/EasyDriver/.

[21] PowerCore 20100. URL: https://www.anker.com/products/A1271012.

[22] DROK® LTC187 DC Boost-Wandler 3.5-30V 100W Stromversorgung Span-

nungsregler 5V/12V Step Up Volt-Modul mit Spannungsmesser Eingang Ausgabe

abwechselnd LED-Anzeige für Auto-Motor Motorrad, etc: Amazon.de: Beleuch-

tung. URL: https://www.amazon.de/Boost-Wandler-Stromversorgung-

Spannungsregler-Spannungsmesser-abwechselnd/dp/B00HY3QBUE/

ref=sr_1_3?ie=UTF8&qid=1489047774&sr=8-3&keywords=

DEOK+DC+12V+Boost.

[23] Microstepping, Full Step & Half Step. 2014. URL: http://www.nmbtc.com/

step-motors/engineering/full-half-and-microstepping/.

[24] Greg. Raspberry Pi 3 GPIO Pin Layout. URL: http://blog.mcmelectronics.

com/post/Raspberry-Pi-3-GPIO-Pin-Layout#.WMWhoDs1-bg.

[25] Richard Hartley and Andrew Zisserman. Multiple view geometry in computer vi-

sion. 2nd ed. Cambridge: Cambridge University Press, 2003. ISBN: 0521540518.

BIBLIOGRAPHY 61

[26] Raspberry Pi. 10.03.2016. URL: http://www.truetex.com/raspberrypi.

[27] Amir Badshah et al. “Non-rigid registration for qualitiy control of printed materi-

als”. In: ed. by Jean-Charles Pinoli et al. SPIE Proceedings. SPIE, 2011, 80000J.

DOI: 10.1117/12.890901.

[28] Peter Peer and Franc Solina. “Panoramic Depth Imaging: Single Standard Camera

Approach”. In: International Journal of Computer Vision 47.1 (2002), pp. 149–

160. ISSN: 1573-1405. DOI: 10.1023/A:1014541807682.

[29] Christian Sallinger. Panoramic optical servoing - a new dimension in the inspection

and repair of refractories using a telerobot: Zugl.: Leoben,Univ., Diss., 2004. 1.

Aufl. Göttingen: Cuvillier, 2005. ISBN: 3865373194.

[30] Anders Johansson. Stereoscopy: Fooling the Brain into Believing There is Depth in

a Flat Image. 2009. URL: http://www.diva-portal.org/smash/get/

diva2:232456/FULLTEXT01.

[31] Leonidas M. Quintana. “Anaglyph 3D in vascular neurosurgery: excellent exercise

for the neurosurgeon’s brain”. In: World neurosurgery 82.3-4 (2014), e417–8. ISSN:

1878-8750. DOI: 10.1016/j.wneu.2013.03.002.

[32] Create reduced resolution data set from image file - MATLAB rsetwrite - Math-

Works Deutschland. URL: https://de.mathworks.com/help/images/

ref/rsetwrite.html.

[33] ArcGIS Online. 21.12.2016. URL: https://www.arcgis.com/home/

index.html.

