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Abstract

As technology develops, much of the industrial work has been replaced or simplified by com-

putational devices (e.g. robots), and automation has become of great importance. Computer

programming languages, as human and computer interaction tools, are usually difficult to

understand by non-programmers. Thus, the most difficult part is the communication be-

tween the developers and software users in the software development process. In order to

solve this problem, domain specific languages (DSL) were created. This thesis first describes

the classification of modern DSL and the role of syntax and semantics of a language. The

Backus-Naur form (BNF) is explained as an important formalism to define the syntax of

a computer language. Two programming languages, which are well-known in automation

technology, are described as successful examples of early DSL, G-code for controlling of

manufacturing tools and a modern language for robot control. Finally the development of

a specific DSL for processing finite state machines is presented. The finite state machine

is an important pattern to implement sequential behaviour for industrial machinery. This

is done with two tools, at first with ANTLR (Another tool for language recognition), then

with PYPARSING as parser generators.
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Kurzfassung

Mit der modernen Automatisierungstechnik (z.B. Roboter) wurden viele Tätigkeiten in der

Industrie vereinfacht oder durch Maschinen ersetzt. Programmiersprachen für Computer und

Steuerungen als interaktive Werkzeuge zur Kommunikation zwischen Mensch und Maschine

sind für Nicht-Programmierer nur schwer verständlich. In der Software-Entwicklung wird die

Kommunikation zwischen Entwicklern und Anwendern immer wichtiger. Zur Verbesserung

wurden daher domain-spezifische Sprachen (Domain specific languages, DSL) entwickelt. In

dieser Arbeit wird ein Überblick über die Eigenschaften von DSL und deren Klassifizierung

gegeben, sowie auf Grammatik und Semantik einer Sprache eingegangen. Die Backus-Naur-

Form zur Beschreibung der Syntax einer Programmiersprache wird beschrieben. Zwei bekan-

nte Beispiele von DSL in der Automatisierung, nämlich G-Code zur Steuerung von Ferti-

gungsmaschinen und eine Sprache zur Robotersteuerung, werden präsentiert. Die Entwick-

lung einer DSL wird am Beispiel eines endlichen Zustandsautomaten (Finite state machine,

FSM) demonstriert. Die FSM ist ein wichtiges Werkzeug in der künstlichen Intelligenz und

zur sequentiellen Steuerung von Automaten. Das wird mit Hilfe zweier Tools demonstri-

ert, mit ANTLR (Another tool for language recognition) und mit Python/PYPARSING als

Parser-Generatoren.

Schlaegerwörte:

DSL ; Finite State Machine; BNF; Lexer/Parser; Abstract Syntax Tree; Pyparsing
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Ich erkläre an Eides statt, dass ich diese Arbeit selbständig verfasst, andere als die angegebe-
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Chapter 1

Introduction

1.1 Introduction to DSL

What is DSL (Domain Specific Language)? In simple terms, DSL is a specific language at

a specific problem area. It is just like that you speak your local accent in your hometown,

you do not have to explain the meaning of each term that you said, though to others what

you say might be unable to understand. So this is the important difference of GPL (General

Purpose Language).

Why do we use the DSL? We can find the solution for a specific problem in GPL for sure,

but a lot of complicated code will be generated and a lot of important information will be

hiding in structure of the GPL. That why we use the DSL, which is not complicate and easy

to read.

We want to construct a DSL, usually with Unix Style to do that: at first to define the syntax,

and then through the coding technique to DSL change GPL, or write a compiler about this

DSL. We called this DSL is ” External DSL ”. XML files is another style of the external

DSL.

Developing an external DSL is similar to implementing a new language from scratch with its

own syntax and semantics. The usually tools we used are YACC and LEX, ANTLR, python

and so on.

7
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context-driven string
manipulation

Transforming XML to
consumable resource

DSL workbench

DSL with embedded
foreigen code

DSL design based on
parser combinators

External DSL

Figure 1.1: An informal micro-classification of common patterns and techniques of imple-

menting external DSLs [5]

Context-driven string manipulation: The string is converted to the host language

through a tokenization process, using techniques like regular expression matching and dy-

namic code evaluation. The resultant code snippet is the integration point with the appli-

cation [5].

Transforming XML to a consumable resource: You are working on it usually with

Spring DI framework. One of the ways you can configure the DI containers through an

XML-based specification file.

DSL workbench: It is not a technique, but is a tool to help you to write the External

DSL.

Mixing DSL with Embedded foreign Code: Let Language parse the extension syntax

using EBNF (Extended Backus-Naur Form)
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DSL design based on parser combinators: Another way to define grammar.

An Internal DSL (often called an Embedded DSL) is a Domain Specific Language that is

written in an existing host language, i.e. we don’t need to create a new language, we just

change a GPPL (General - Purpose Programming Language) to DSL, and this DSL with its

own syntax structure. The internal DSL is a specific application of a GPPL. This program,

that with DSL to be written, has a custom language style. It differs from its host language.

One of the most popular internal DSLs used today is Rails, which is implemented on top of

the Ruby programming Language.

Internal DSLs manifest primarily in two forms [5].

1. Generative: transformed to generate code.

2. Embedded: embedded within the type system of the host language.

Internal DSL

Smart API

Syntax tree mainpulation

typed embedding

Reflective
metaprogramming

Compile-time
metaprogramming

Runtime
metaprogramming

Embedded

Generative

Figure 1.2: An informal micro-classification of patterns used in implementing internal DSLs

[5]
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Compile-time metaprogramming Runtime metaprogramming

You define syntax that gets processed before
runtime, during the compilation phase.
No runtime overhead because the language
runtime has to deal only with valid forms.

You define syntax that gets processed
through the MOP of the Language
during runtime.
Some runtime overhead because
meta-objects are processed and code
is generated during runtime.

Table 1.1: Comparison of compile-time and runtime metaprogramming [5]

Smart API: is based on chaining method, also called fluent interface. Groovy or Ruby offer

arguments to help build Smart API.

Syntax tree manipulation: We can generate code be manipulating the AST (Abstract

Syntax Tree).

Typed Embedding: Some Statically typed language (like Haskell, Scala) offer types to

abstract domain semantics and make syntax more concisely, without using technique of

generating codes.

Reflective Metaprogramming: A language (usually like Ruby) discover methods at run-

time, of which the name isn’t known yet. We’ll use the metaprogramming abilities of Ruby to

do a dynamic dispatch on the object, instead of the usual dot notation of invoking methods

statically. This coding technique is reflective metaprogramming.

Metaprogramming: Another form of metaprogramming can generate code dynamically

during runtime. Runtime metaprogramming is another way by which you can achieve small

surface syntax for your DSL [5].

1.2 The Syntax and Semantics of a Computer Lan-

guage

Now that we want to write our own DSL, the syntax and semantic is very important. A

language, whether natural (such as English) or artificial (such as Java), is a set of strings of

characters from some alphabet. The strings of a language are called sentences or statements.

The syntax rules of a language specify which strings of characters from the language’s alpha-

bet are in the language. English, for example, has a large and complex collection of rules for

specifying the syntax of its sentences. By comparison, even the largest and most complex

programming languages are syntactically very simple [18].
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In simple terms, the syntax of the computer language is a set of rules, which define the

combinations of symbols, let’s look at a very simple example (Java statement):

Exp = 5*ID+3;

The lexemes and tokens of this statement are:

lexemes tokens
Exp identifier
= equal sign
5 integer
* mult op

ID identifier
+ plus op
3 integer

Table 1.2: The meaning of this statement

Then we will make a detailed discussion of a method of describing syntax, BNF (Backus-Naur

Form, also known as context-free grammars) in chapter 3.

The definition of semantics is giving a categorical meaning of a syntactically legal program. In

other words, for programming languages, semantics describe the behavior that a computer

follows when executing a program in the language. We might disclose this behavior by

describing the relationship between the input and output of a program or by a step-by-step

explanation of how a program will execute on a real or an abstract machine [3].

The biggest difference between syntax and semantics of the computer is that the former

is a meaning of expressions, statements, and program units, which is a program of those

expressions, statements, and program units. For example: ’the capital of Austria is Vienna’,

the syntax and semantics of this sentence is both correct. ’the capital of Austria is Berlin’,

the syntax of this sentence is correct, but the semantics is incorrect.

Due to the limitations of BNF, the semantics of the programming language consists of static

semantics and dynamic semantics. The static semantics of a language is only indirectly

related to the meaning of programs during execution; rather, it has to do with the legal

forms of programs (syntax rather than semantics) [18]. For instance, all tokens of a program

must be declared before using, the type of tokens and integer in expressions and the type

of operator must compatible, these mandate belong to the static semantics restrictions.

The meaning of a program involves also what a program is doing and to prove, that usually

expressed through program execution [6]. Whether it is static or dynamic semantics, we need
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a method to describe it. Formal semantics describe semantics in - well, a formal way - using

notation which expresses the meaning of things in an unambiguous way. It is the opposite

of informal semantics, which is essentially just describing everything in plain English. This

may be easier to read and understand, but it creates the potential for misinterpretation,

which could lead to bugs because someone may not read a paragraph the way you intended

them to read it. There are many approaches to formal semantics, these belong to three

major classes: Denotational semantics, Operational semantics and Axiomatic semantics.



Chapter 2

Examples of DSL

In the previous chapter we have already talked about definition and classification of DSL.

In this chapter we will continue to discuss it with two examples.

2.1 The Programming Language of Industrial Robot

Typical application of DSL is the robot language. With the development of the robot,

the robot language has been developed and perfected. The robot language has become an

important part of robot technology. The main function of a robot has been achieved with

robot language. In the early stage, the robot is able to control with a simple action or a

single function, which can be controlled by fixed program. With the diversification of the

robot’s action and the complication of the working environment, the fixed program can not

be satisfied. The robot programming language is generated.

13
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1. VAL : Variable Assembly Language (VAL) is a computer-based control system and

language designed by U.S.A Unimation company in 1979, mainly used in PUMA and

Unimation’s robot.

Figure 2.1: Unimate 500 PUMA (1983), control unit and computer terminal at Deutsches

Museum, Munich

VAL language is based on BASIC language. VAL language command is simple, clear

and easy to understand, which describes the action of the robot and communication

of the host computer. The VAL language consists of monitor commands and program

instructions. The monitor commands are used to prepare the system for execution of

user-written programs. Program instructions provide the repertoire necessity to create

VAL programs for controlling robot actions.

The monitor commands consists consists of position and attitude definition instruc-

tions, program editing instructions, list instructions, store instruction, control program
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execution instructions and system status control commands. For example, the BASE

commands belongs to the position and attitude definition instructions, which is used

for setting a reference coordinate system. The form is :

BASE [<dX>],[<dY>],[<dZ>],[<rotation of Z-direction>]

For example:

BASE 300, 0, -50, 30

means that redefined the position of the reference coordinate system, which moves

from the initial position to the x-direction 300 mm, to the Z-direction -50 mm, and

rotate 30 degrees clockwise around Z-direction.

2. AL : Assembly Language. Designed in 1974 at the Stanford Artificial Intelligence Lab-

oratory as a frame-oriented language with openings to artificial intelligence concepts.

Its basic concepts have influenced LM and SRL. The language is used to program a set

of four robots of different types and a two-dimensional vision system [8]. The struc-

ture of the AL is similar to the PASCAL language, also can be compiled into machine

language to run on the real time control. The AL system includes a big mainframe

computer, and it generally was running on PDP 11/45. The PDP 11/45 implements

one terminal, 128 KB RAM memory, and floating point processor. This language

has got the capability to control two Stanford Scheinman and two PUMA 600 arms

simultaneously.
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Figure 2.2: Victor Scheinman’s stanford arm in 1969

3. RAIL : RAIL is a high-level robot programming language developed by Automatix

Inc in 1981 for controlling their Cybervision, Autovision, and Robovision systems.

Cybervision system is designed for performing assembly operation, Autovision (Ma-

chine Vision) system for identification and inspection process, and Robovision system

for Robot arc welding process. RAIL language includes three data types like Paths,

Points, and Reference Frames for robot locations. It has several special-purpose com-

mands for interfacing a robot with other equipments. Apart from these functions, this

robot language also provides many programming features [1].

4. SIGLA : SIGma LAnguage. The language for programming Olivetti SIGMA robots.

Now quite obsolete and under replacement, it has been available since 1975. SIGLA is

a complete software system which includes: a supervisor, which interprets a job control

language, a teaching module which allows teaching-by-guiding features, an execution

module, editing and saving of program and data. SIGLA has been in use for years at

the Olivetti plant in Crema (Italy). Its applications span from assembly to riveting,

drilling, milling. All the system and the application program run in 4K of memory,

and this compactness was necessary at he time SIGMA was delivered because memory

was still expensive [17].
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Figure 2.3: The olivetti ”SIGMA” a cartesiancoordinate robot, is one of the first used in

assembly applications in 1969

2.2 A Simple Program of MOVEMASTER RV-M2 Robot

The industrial micro-robot ”MOVEMASTER RV-M2” was developed by Mitsubishi Electric

Corporation, which can be utilized in a wider range of applications such as educational and

research purposes and the automation of handling works in production lines and inspection

works at laboratories.
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Figure 2.4: The Mitsubishi Electric ”MOVEMASTER RV-M2” industrial micro-robot

The ”MOVEMASTER RV-M2” has excellent position (5 degrees of freedom) repeatability,

combined with a high velocity but reliably constant speed, It has also high lifting capacity

(2kg). In addition to many other potential tasks can be achieved. The typical command:

1. MA: Move Approach: Moves the end of the hand form the current position to a position

away from the specified position in increments as specified for another position.

MA <Position number (a)>, <Position number (b)> [ , <O or C>]

Sample Input:

MA, 2, 3, C
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Explanation:

(a) Moves the end of the hand from the current position to a position away from

position (a) in increments as specfified for position (b). It does not change the

coordinates of positions (a) and (b).

(b) If the open/close state of the hand has been specified (O: open; C: closed), the

robot moves after executing the hand control instruction. If it has not been

specified, the hand state in position (remains) valid.

2. MO: Move: Moves the end of the hand to the specified position.(Articulated interpo-

lation)

MO <Position number> [ , <O or C>]

Sample Input:

MO, 2, C

Explanation:

(a) Moves the end of the hand to the coordinates of the specified position.

(b) O/C(open/close) command is the same definition as the last command MA.

3. GO: Grip Open: opens the hand(to release workpiece)

Sample Input:

GO

4. GC: Grip Close: closes the hand(to hold workpiece)

Sample Input:

GC

5. PD: Position Define: Defines the coordinates(position and angle) of the specified posi-

tion.

PD <Position number>, <X-axis coordinate>, <Y-axis coordinate>, <Z-axis coordinate>,

<Pitch angle>, <Roll angle>, [ , <O or C>]

Sample Input:

PD 20, 200, 350, 300, -60, -30, C

Explanation :
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(a) The least increment of the coordinate values is 0.1 mm or 0.1◦.

(b) Any coordinate value defaults to 0.

6. SP: Speed: Sets the operating velocity

SP <Speed level>

Sample Input:

SP 20

Example 1 : Pick and Place Work

The following program with last commands causes the robot to shift a workpiece from

one place to another.The processing is showed as figure The robot is only taught through

positions 1 and 2 and the aerial distances of travel from the respective positions are to be

predefined by the ”PD” command.

Positions:

1. Position 1: At which the workpiece is grasped.

2. Position 2: Onto which the workpiece is placed.

3. Position 10: Aerial distance of travel from position 1.

4. Position 20: Aerial distance of travel from position 2.

PD 10, 0, 0, 20, 0, 0 / Defines the aerial distance of travel from

position 1 (Z = 20 mm) in direct mode and

identifies the aerial position as position 10

PD 20, 0, 0, 30, 0, 0 / Defines the aerial distance of travel from

position 2 (Z = 30 mm) in direct mode and

identifies the aerial position as position 20

30 SP 17 / Sets the initial speed.

40 MA 1, 10, O / Moves the robot to a location above the

workpiece (20 mm above position 1) with the

hand open.

50 MO 1, O / Moves the robot to the workpiece (to position

1).

60 GC / Closes the hand to grasp the workpiece.

70 MA 1, 10, C / Moves the robot above position 1 (distance 20

mm) with the workpiece grasped.
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80 MA 2, 20, C / Moves the robot to a location 30 mm above

position 2.

90 MO 2, C / Moves the robot to position 2.

100 GO / Opens the hand to release the workpiece.

110 MA 2, 20, O / Moves the robot above position 2 (distance 30

mm) with the workpiece grasped.
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Figure 2.5: Pick-and-place work



2.3. G-CODE AS EXAMPLE FOR DSL 23

2.3 G-Code as Example for DSL

G code, which has many variants, is used in CNC (Computerized Numerical Control) ma-

chine. It had developed at the MIT (Massachusetts Institute of Technology) Servomecha-

nisms Laboratory in the late 1950s. I will talk about the meaning of G-code with several

variants (in Automation Studio):

1. G00: Rapid Interpolation, is programmed using the path information G00 and target

position <coordinate>. The target position is approached in a straight line with the

maximum possible speed and acceleration considering the limit values of the CNC axes.

The CNC limit values for path speed and acceleration may be exceeded.

Example :

G00 X50 Y30 / From the recent position move

to the targeted position(50, 30).

2. G01: Linear Interpolation, is programmed using the path information G01, the target

position entry <coordinate> and the path feed <path feed>.

Example :

G00 X50 Y30 F200 / From the recent position move to the targeted

position(50, 30) with the programmed feed

(F Word; is given in units/min).

3. G100/G101: G100 and G101 represent so called point to point movement. They

are interpolated movements but not in the path. They are analogies to G00 (G01),

respectively - but in the world of joint (PTP) axes, wherein these linear interpolations

are done.

Example :

G101 X10 Y15 Z20 A25 B30 C35 / This is a line in XYZABC-world.

Its beginning is the current

position of axes X, Y, Z, A, B

and C, and its end is the posi-

tion [X, Y, Z, A, B, C] = [10,

20, 30, 40, 50, 60].

G101 Q1= Q2= Q3= Q4= Q5= Q6= / This is another way

to express above movement,
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where the numbers q1, q2,

q3, q4, q5 and q6 are computed

via inverse transformation

from the position

[X, Y, Z, A, B, C] =[10, 15, 20,

25, 30, 35].

4. G90/G91: Absolute/Relative Position Coordinates. A movement to a position in the

coordinate system can be specified using absolute or relative coordinates.

G90: Absolute Position Coordinates The entry of the coordinates is absolute, that

means the given values refer to the current zero point.

G91: Relative Position Coordinates The entry of the coordinates is relative, that means

the given values refer to the current position.

Example :

G90 G01 X40 Y20 / The X axis is moved to the absolute

position 40 and the Y axis is moved

to the absolute position 20.

G91 G01 X40 Y20 / From the current position the X axis

is moved 40 units in the positive

direction and the Y axis is moved 20

units in the positive direction.

5. G02/G03: Circular Interpolation Clockwise/Counter Clockwise. Circular interpola-

tion is programmed using the path information G02 or G03, and the entry of the fol-

lowing parameters: target position <coordinate>, center of the circle <interpolation

parameter> and the path feed <path feed>. The target position is approached with

the programmed speed. The interpolation parameter is defined as follows :

(a) I : Position of the center of the circle in the X direction (absolute or relative to

the start position).

(b) J : Position of the center of the circle in the Y direction (absolute or relative to

the start position).

(c) K : Position of the center of the circle in the Z direction (absolute or relative to

the start position).

(d) H : Rotation angle of the circle.
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(e) R : Radius of the circle.

Example :

G03 I30 H1440 Z300 F1000 / From the recent position move

to the targeted position via

4 full counter clockwise to

the targeted position (x=30,

z=100) with with the programmed

speed.

Let’s look at a simply program about movement of the robot with G code:

N010 G90

N020 F5000

N030 G101 Q1=0 Q2=45 Q3=90 Q4=0 Q5=45 Q6=0

N040 G91

N045 F10000

N050 G01 Y-100

N060 G01 X100

N070 G01 Y100

N080 G01 X-100

N081 F10000

N085 G03 I30 H1440 Z300

N090 G90

N100 G101 Q1=0 Q2=0 Q3=0 Q4=0 Q5=0 Q6=0



Chapter 3

Finite State Machine

3.1 Basic Theory of Finite State Machine

A finite-state machine (FSM), or simply a state machine is a mathematical model of com-

putation, which exists a finite number of states and transfer or action between these states.

A model of computation consists of a set of states, a start state, an input alphabet and a

transition function. Computation begins in the start state with an input string. It changes

to new states depending on the transition function [20].

If output, i.e. entry action depends only on the states, we call this machine a Moore model.

The advantage of the Moore model is a simplification of the behaviour.

Figure 3.1: A Moore model for a generalised non-clocked sequential machine

26
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If output values depends on its current state and the current inputs, we call this FSM a

Mealy model.

Figure 3.2: A mealy model for a generalised non-clocked sequential machine

Comparison between Mealy model and Moore model:

1. The output sequence of Mealy circuits is one clock cycle earlier than Moore circuits’

[9]. Because the input of Mealy machine action immediately in present circuit, the

input of Moore effects the next state, and the output depends on only the state. So by

this point we can find out the reason, which the Mealy machine is ’faster’ than Moore

machine.

2. Moore circuit is more complex than the Mealy circuit because there is more than one

state.

We will discuss the FSM further with a simple Example. Consider a very simple elevator:

There is a up-down elevator, which has only three buttons: UP, DOWN and STOP. If a

person press UP, the elevator will rise until the End-Up switch is activated. And the elevator

will descend until the End-Down switch is activated, if you press DOWN. The elevator will

stop for waiting the user to press another button with someone to press STOP.

Consider the states of elevator:

There are five states: The elevator is at the top position; the elevator is going down; the

elevator is in the bottom position; the elevator is going up and the elevator is waiting.

There are five triggers, i.e.transition condition: UP; DOWN; STOP; End-Up and End-

Down.
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State Comment
S0 The elevator is at the top
S1 The elevator is going down
S2 The elevator is at the bottom
S3 The elevator is going up
S4 The elevator is waiting

Table 3.1: state table of the elevator

We can model the system graphically, using cycle to represent states and arrows to represent

transitions between states, as shown in Figure 3.3 below. And the definition of states is

shown in above Table.
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stop

stop

down

up

End-up down

up End-down

S0

S1

S2

S3 S4

Figure 3.3: A simple state machine model of a elevator
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3.2 State Diagram in UML Notation

The Unified Modeling Language (UML) is a general-purpose modeling language in the field of

software engineering, which is designed to provide a standard way to visualize the design of a

system. It was created and developed by Grady Booch, Ivar Jacobson and James Rumbaugh

at Rational Software during 1994-95, with further development led by them through 1996.

[7]

A state machine diagram of UML models the behaviour, which explain the series of a object

during its lifetime, and respond to event [23].

Consider the previous example of elevator, a state machine diagram of UML is shown in

Figure 3.4 below.

Figure 3.4: UML state diagram
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A state diagram consists of State, Transition, Event, Activity, Action and so on:

1. State is a state of a model during its lifetime. A state is denoted by a round-cornered

rectangle with the name of the state written inside it.

Figure 3.5: a state in state diagram

2. Initial State, which is a pseudo state, is denoted by a filled black circle and may be

labeled with a name.

3. Final State is a endpoint of a state diagram, which is denoted by a circle with a dot

inside and may also be labeled with a name.

Figure 3.6: Initial state and final State in state diagram

4. Transition from one state to the next are denoted by lines with arrowheads. A

transition may have a trigger, a guard and an effect, as shown in Figure 3.7 below.

Figure 3.7: Transition in state diagram
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Trigger is the cause of the transition, which could be a signal, an event, a change in

some condition, or the passage of time. Guard is a condition which must be true in

order for the trigger to cause the transition. Effect is an action which will be invoked

directly on the object that owns the state machine as a result of the transition.

5. Decision flows the results according to different conditions of Guard, which is denoted

by a hollow diamond, as shown in Figure 3.8 blow.

Figure 3.8: Decision in state diagram

6. Synchronization is defined a Fork or Join of a work flow, which is denoted by a short

and thick line.

Figure 3.9: Fork and Join in state diagram
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3.3 Finite State Machine in Matlabr Notation

With Matlab/Simulink to compile a state diagram, we can use Stateflowr charts.

Stateflow is an environment for modeling and simulating combinatorial and sequential de-

cision logic based on state machines and flow charts. Stateflow lets you combine graphical

and tabular representations, including state transition diagrams, flow charts, state transition

tables, and truth tables, to model how your system reacts to events, time-based conditions,

and external input signals.

We create a new model in Simulink and add a Chart object from the Stateflow, as shown in

Figure 3.10 below.

Figure 3.10: Add a Chart object into new model

And then we can define this Chart as wish.(Figure 3.11)

Figure 3.11: Define inputs and outputs
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For definition of a state, Matlab allows more than one entry/exit action, and UML can not

do this.(Figure 3.12)

Figure 3.12: Define a state

Transition is very similar to UML. Condition action is done before condition is checked.

Figure 3.13: Define transition
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Figure 3.14: The previous example of elevator with Matlab/Simulink
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BNF

4.1 Introduction to BNF

When we learn or write a language, we must come across the BNF. So what is BNF? BNF

(Backus Normal Form or Backus-Naur Form) and EBNF (Extended Backus-Naur Form) is

a way of writing grammars to define the syntax of a language. It was invented to describe

the Algol language in the 60s. Since then, BNF grammars have been widely used both for

explanation and to drive Syntax-Directed Translation [10]. BNF is way of a language for

defining syntax, it does not have a itself have a standard syntax. This syntax can be achieved

during multiplicity symbols.

4.2 Several important symbols

At first, we must know the most important concept of BNF: terminal and nonterminal.

Let’s talk about them with a simple example:

symbol ::= expression

where expression is a terminal, that never appears on the left side, consists of one or more

sequences of symbols; on the other hand, symbol that appears on the left side is a nonter-

minal; and ’::=’ means that the symbol on the left must be replaced with the expression on

the right.

We extend the previous the example:

S ::= D |’-’ D*

36
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Symbol meaning example
| indicates choice between elements D |D*
* none or more D*
+ one or more D+
? optional D?
.. range ’0’..’9’

Table 4.1: BNF symbols

D ::= ’0’..’9’

In this example, ”D” is a nonterminal instead of terminal. We can get a positive integer

within ten or a negative integer.

4.3 Where can we use BNF

I have already mentioned in the previous section, the most important application of BNF is

defining syntax (Grammar) for a language. In another way, you’ll need to use BNF whenever

you are working with a parser generator, as these tools use BNF grammars to define how

to parse. It’s also very useful as an informal thinking tool to help visualize the structure of

your DSL, or to communicate the syntactic rules of your language to other human [10].

4.4 LL() Recursive-Descent

LL() recursive-descent parser is a top-down parser. To implement an LL() recursive-descent

parser, we can find the lookahead expression (the first nontermianl sets) for each row. To

make parsing decisions, the parser tests the current lookahead token against the alternatives’

lookahead sets. A lookahead set is the set of tokens that can begin a particular alternative.

The parser should attempt the alternative that can start with the current lookahead token

[15].

Let’s look at a simple example:

state : ’pressUp’ // lookahead set is pressUp

| ’pressGoingDown’ // lookahead set is pressGoingDown

| ’pressDown’ // lookahead set is pressDown

An alternative that begins with a token reference. Its lookahead set is just that token. In this
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case, i define the state with a token reference: pressUp, pressGoingDown and pressDown,

which each alternative begins with a single token reference.

If we begin with a rule reference instead of a token reference, that the lookahead set is

whatever begins with any alternative of the rule. It is just like this:

Identifier : ’pressUp’| ’pressGoingDown’ | ’pressDown’

FSM-keyword : ’FSM’

state : Identifier

END-keyword : ’END’

FSM : FSM-keyword // lookahead set is FSM_keyword

| state+ // lookahead set is {Identifier}

| END-keyword // lookahead set is END_keyword

The second alternative of the lookahead set is a union of the lookahead sets form state. Each

token has two basis properties: type and payload. The type is the kind of token we have, for

example: FSM-keyword or state. The payload is the text that was matched as part of the

lexer: pressUp or pressDown. For keywords, the payload is pretty much irrelevant; all that

matters is the type. For identifiers, the payload does matter, as that’s the data that will be

important later on in the parse. Lexing is separated out for a few reasons. One is that this

makes the parser simpler, because it can now be written in terms of tokens rather than raw

characters.[10] Now let’s consider what happens when the same token predicts more than

one alternative:

expr : ID ’++’ //match "D++"

| ID ’--’ //match "D--"

The two alternatives begin with the same token: ID. The token beyond dictates which

alternative phrase is approaching. in other words, expr is LL(2). An LL(1) parser can’t see

past the left common prefix with only one symbol of lookahead. Without seeing the suffix

operator after the ID, the parser cannot predict which alternative will succeed [15].
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The Syntax Definition with ANTLR4

5.1 Introducing ANTLR

ANTLR is a tool of the computer language which provides a framework to the programmer.

It is a powerful parser generator that you can use to read, process, execute, or translate

structured text or binary files. It’s widely used in academia and industry to build all sorts

of languages, tools and frameworks [16].

Recognizing and processing of the programming language is the primary task of ANTLR. The

compiling of programming language consists of two parts (Front-End and Back-End), the

Front-End includes lexical analysis, syntax analysis, semantic analysis and intermediate code

generation; the Back-End includes code generation, code optimization, etc. The problem of

the Front-End can be solved with ANTLR.

In simple terms,the task of lexical analysis is tokens identification. The process of tokens

identification which is called lexer. The lexer can group related tokens into token classes, or

token types, such as INT (integers), ID (identifiers), FLOAT (floating-point numbers), and

so on [16].

39
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Figure 5.1: Language recognizer

A simple expression is shown in Figure 5.1, we found five tokens: Grade, whitespace char-

acter, equal character, 100 and semicolon character. Each token can be defined by BNF

rules.

Programs which recognize language are called parsers or syntax analysis. Construction of

a grammar generally follows the rules of BNF. A parser checks sentences for membership

in a specific language by checking the sentence’s structure against the rules of a grammar.

The best analogy for parsing is traversing a maze, comparing words of sentence to words

written along the floor to go from entrance to exit. ANTLR generates top-down parsers that

can use all remaining input symbols to make decisions. Top-down parsers are goal-oriented

and start matching at the rule associated with the coarsest construct, such as program or

inputFile [16].

5.2 Syntaxtree Construction

In the following section, an example for a DSL is constructed. A language that implements a

finite state machine efficiently is developed. Later it will be parsed and interpreted to verify

the design process. The following elements are used for the language.

FSM / ENDFSM This keywords delimit a finite state machine and will enable to define more

than one FSM in a single program file. The statement FSM should be followed by a unique

name.

ENABLE Program components for industrial controls usually have an enable input, which

prevents running the code, when not necessary. This is useful for saving computing time

and to enhance reliability of the software.

STATE States are the main parts of a FSM. The keyword is followed by a unique name for

the state.
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INIT The system has to know, which state is active initially. Here this is indicated clearly

with a separate keyword for the initial state.

ERROR An automated system can have several error states. Basically those are states like

the others also. In automation practice a special case is often useful. Resolving an error

condition can have the same procedure for failure in different situations. For example, a

motor can fail moving up or moving down. For this case, a RETURN statement like in a

subroutine is required to move back to the previous state. This is not a typical part of a

FSM, where the system state is memorised in the states only. But for practical work this

pattern is quite useful.

Commands, which consist of setting or resetting digital outputs, are executed in three dif-

ferent situations: During each cycle, when the system is in the actual state. Once, when

the system is entering the actual state. This is indicated by the keyword ENT. Finally, also

once, when a transition is going on to change the state. It was decided not to implement

exit actions, like they are defined in UML.

TRANS Transitions are indicated by this keyword, a condition follows. If true, the transition

gets active and the state changes.

TIMEOUT The operation of many process are monitored by the time they require. A

dedicated timeout transition saves the necessity to program a timer.

At first, let’s define a DSL for programming the FSM:

FSM pressControl

ENABLE enableInput

STATE pressGoingDown

ENT motorDown = TRUE

warnLamp = TRUE

TRANS pressDown ON endDown == TRUE

motorDown = FALSE

TIMEOUT stop 60s

motorDown = FALSE

STATE pressDown

TRANS pressGoingUp ON commandUp == TRUE

STATE pressGoingUp

ENT motorUp = TRUE

LOG message

warnLamp = TRUE

TRANS pressUp ON endUp == TRUE

motorUP = FALSE
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TIMEOUT stop 60s

motorUp = FALSE

INIT pressUP

TRANS pressGoingDown ON commandDown == TRUE

ERROR stop

ENT motorUp = FALSE

ENT motorDn = FALSE

warnLamp = TRUE

RETURN ON commandQuit == TRUE

ENDFSM

There are several keywords in this program, such as : FSM, ENABLE, STATE, INIT,

ERROR and ENDFSM. This program will start with keyword ”FSM”, and end with keyword

”ENDFSM”, in which every status can be defined. The keyword ”ENABLE” represents input

variants. Moreover, the program consists of several states and two special states (INIT and

ERROR).

Let’s see the details of a state:

STATE pressGoingDown

ENT motorDown = TRUE // command definition with output variants

warnLamp = TRUE // during action definition

TRANS pressDown ON endDown == TRUE // transition action

motorDown = FALSE // command activation after transition action

TIMEOUT stop 60s // definition a warning time

motorDown = FALSE // command activation after warning time

In this small program, commands are able to be activated by manual (with keyword ’ENT’)

or automatically. The action during every state will be continued in the whole process.

5.2.1 Tokenizing

Tokenizing of this program is not complex. There are a few keywords, operators (”=” and

”==”), digits and identifiers. ANTLR allows us to put the keywords as literal text in the

grammar rules, which is generally easier to read. So we only need lexer rules for identifiers

and space.

ID : [a-zA-Z]+ ; // match lower-case identifiers

INT : [0-9]+ ;

WS : [ \t\r\n]+ -> skip ; // skip spaces, tabs, newlines
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All upper case of letters will be shown as keywords, such as: STATE, ENT, TRUE, TRANS

and so on. The upper case and lower case combination will be shown as identifiers, such as:

pressGoingDown, warnLamp, endDown and so on.

In this case, WS(whitespace), including the line endings and newlines, is removed. ANTLR

allows you to do this by sending whitespace tokens on a different channel, with syntax like:

WS : [ \t\r\n]+ -> skip

.

5.2.2 Parsing

Parsing is the process of determining how a string of terminals can be generated by a grammar

[2].

Parsers that handle specific bits of input, such as floating-point numbers, integers, etc., are

combined together to form parsers for larger expressions. A good parser library supports

sequential and alternative cases, repetition, optional terms, etc [21].

Let’s look at the grammar of the above DSL:

grammar FSMTEST;

machine: fsm_keyword enable_keyword state* init_state error_state ’

ENDFSM’;

fsm_keyword : ’FSM’ ID;

enable_keyword : ’ENABLE’ i_var;

i_var : ID;//input_variante:’enableInput’ | ’commandDown’ | ’

commandUp’ | ’commandQuit’ ;

o_var :ID;//output_variante: ’motorDown’ | ’motorUp’ | ’motorDn’| ’

warnLamp’ ;

sna: ID;//state_name

eq: ’=’;

ceq: ’==’;

state: ’STATE’ sna

com*

dac*

lcom*

dac*



44 CHAPTER 5. THE SYNTAX DEFINITION WITH ANTLR4

tr*

com*

wt*

com*;

init_state : ’INIT’ sna

tr*;

error_state : ’ERROR’ sna

com*

dac*

rcom*;

com : ’ENT’? o_var eq le

//command:| output_variante ’=’ logic_element;

dac : o_var eq le;//duringaction

tr : ’TRANS’ sna ’ON’i_var ceq le ;//transition

lcom : ’LOG’ ID ;//logcommand

wt : ’TIMEOUT’ sna INT time_units ;//waringtime

time_units : ’ms’ | ’s’ | ’min’ | ’h’| ’d’;

le : ’TRUE’ | ’FALSE’;//logic_element

rcom : ’RETURN’ ’ON’ i_var ceq le;//returncommand

ID : [a-zA-Z]+ ; // match lower-case identifiers

INT : [0-9]+ ;

WS : [ \t\r\n]+ -> skip ; // skip spaces, tabs, newlines

This grammar, FSMTEST, which defines a domain specific language for finite state machine,

is composed of some rules.

Following the definition:

1. As i said above, this program (machine) consists of three keywords (fsm keyword,

ENDFSM and enable keyword), one or more states, one or more special states (init

state and error state).

2. Each state(special state) consists of several commands (logcommand, returncommand),

several actions(duringaction transitionaction) and a few of special commands(warningtime).

3. A command could be expressed as a optional keyword (ENT) and a value of a logic

output (like: motorDown = TRUE, motorDown is a output variable). Logcommand
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consists of a keyword (LOG) and the message of circulation. Returncommand could

be represented as a value of the input variable.

4. Action in this program consists of duringaction and transitionaction, duringaction is

very similar to command, which a logical value assigned to a output variable.

The parsing result is shown in Figure 5.2:

Figure 5.2: The parsing result

5.2.3 AST

In computer science, an abstract syntax tree (AST), or just syntax tree, is a tree representa-

tion of the abstract syntactic structure of source code written in a programming language.

Each node of the tree denotes a construct occurring in the source code [14].

The parser creates and returns a syntax tree representation of the source text that is ma-

nipulated later by tree-walking tree [10].
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Figure 5.3: Tree construction
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Any parser using Syntax-Directed Translation builds up a syntax tree while it’s doing the

parsing. It builds the tree up on the stack, pruning the branches when it’s done with them.

With Tree Construction, we create parser actions that build up a syntax tree in memory

during the parse. Once the parse is complete, we have a syntax tree for the DSL script.

We can then carry out further manipulations based on that syntax tree. If we are using a

Semantic Model, we run code that walks our syntax tree and populates the Semantic Model

[10].

In the end, i mentioned ’Syntax-Directed Translation’, but what does Syntax-Directed Trans-

lation mean? In simplest terms, ’Syntax Directed Translation’ means driving the entire

compilation (translation) process with the syntax recognizer (the parser).

Conceptually, the process of compiling a program (translating it from source code to machine

code) starts with a parser that produces a parse tree, and then transforms the parse tree

through a sequence of tree or graph transformations, each of which is largely independent,

resulting in a final simplified tree or graph which is traversed to produce machine code.

At first, a ’machine’ can be consisted of a ’fsm keyword’, a ’enable keyword’, several ’state’

(including ’init state’ and ’error state’) and ’ENDFSM’.
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Figure 5.4: The parsing tree of the whole code

And each ’state’ will be defined by commands (logcommand), actions (duringactions), tran-
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sitions and warningtime, and the parsing trees of each state (including ’init state’ and ’er-

ror state’) are shown in Figure 5.5, Figure 5.6, Figure 5.7, Figure 5.8 and Figure 5.9:

Figure 5.5: The parsing tree of state (pressGoingDown)
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Figure 5.6: The parsing tree of state (pressDown)

Figure 5.7: The parsing tree of state (pressGoingUp)

Figure 5.8: The parsing tree of init state (pressUp)



5.2. SYNTAXTREE CONSTRUCTION 51

Figure 5.9: The parsing tree of error state (stop)



Chapter 6

DSL Pyparsing with Python

In the previous chapter, we use ANTLR to compile a DSL example, and generate AST. Now

we are using Python to achieve this simple DSL.

6.1 Introducing Python

Python is an easy to learn, powerful programming language, invented by Guido van Rossum

in 1989, the first public release was released in 1991. It has efficient high-level data structures

and a simple but effective approach to object-oriented programming. Python’s elegant syntax

and dynamic typing, together with its interpreted nature, make it an ideal language for

scripting and rapid application development in many areas on most platforms [19].

Python language and its many extensions posed by the development environment is very

suitable for engineering, researchers dealing with experimental data, charting, and even the

development of scientific computing applications.

Mentioning of scientific computing, MATLAB may be the first mentioned herein. However, in

addition to a number of highly specialized MATLAB toolbox can not be substituted outside,

the most common functions of MATLAB can be found in the corresponding extensions

Python world. Comparing with MATLAB, Python in scientific computing has the following

advantages:

1. MATLAB is a commercial and expensive software. The Python is completely free, can

provide many open sources in scientific computing libraries. Users are free to install

Python and the vast majority of extensions on any computer.

2. Compared with MATLAB, Python is an easier to learn, more rigorous programming

52
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language. It allows users to write more readable, maintainable code.

3. MATLAB primarily focuses on engineering and scientific computing. However, MAT-

LAB is not only used in the field of computing, but also used in encounter file manage-

ment, interface design, network communications and other needs. The Python has a lot

of wealthy extensions, you can easily complete a variety of advanced tasks. Developers

can implement a complete application by using required Python functions .

Now i will use a very simple program ”Hello world” to learn how to write, save, and run

Python programs. First of all, we have to choose a suitable editor, usually the editor which

has syntax highlighting function is our first choice. Here i choose to use IDLE (GUI Python).

Figure 6.1: ”Hello world” with Python (IDLE editor)

Python will immediately give us the output (Hello world) in the next line. We use ’print’ to

print our offers to its value.

6.2 Pyparsing

Pyparsing is a Python class library that helps you to quickly and easily create recursive-

descent parsers. Pyparsing’s class library provides a set of classes for building up a parser
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from individual expression elements, up to complex, variable-syntax expressions. Expressions

are combined using intuitive operators, such as + for sequentially adding one expression

after another, and |and ˆfor defining parsing alternatives (meaning ”match first alternative”

or ”match longest alternative”). Replication of expressions is added using classes such as

OneOrMore, ZeroOrMore, and Optional [13].

Basic Form of a pyparsing Program

The prototypical pyparsing program has the following structure [13]:

1. Import names from pyparsing module

2. Define grammar using pyparsing classes and helper methods

3. Use the grammar to parse the input text

4. Process the results from parsing the input text

6.2.1 Basic ParserElement, Expression

ParserElement:

1. Literal: Construct with a complete matching string; for example: comma = literal(”,”)

2. Word: one or more contiguous characters; construct with a string containing the set

of allowed initial characters, and an optional second string of allowed body characters;

if only one string given, it specifies that the same character set defined for the initial

character is used for the word body; a Word may also be constructed with any of the

following optional parameters [11]:

(a) indicating a minimum length of matching characters

(b) indicating a maximum length of matching characters

(c) indicating an exact length of matching characters

3. Suppress: match, but suppress matching results; useful for punctuation, delimiters

[12].

Expression:

1. And: construct with a list of ParserElements, all of which must match for And to

match; can also be created using the ’+’ operator
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2. Or: construct with a list of ParserElements, all of which must match for Or to match;

can also be created using the ’ˆ’ operator

3. OneOrMore: one or more strings

4. ZeroOrMore: none or more strings

6.2.2 Define Grammar

Based on the previous section, the pyparsing is actually one module of python, and the edited

pyparsing program (.py files) could be stored into the installation directory, after that the

module will be imported by using the key words such as ’import’,’import as’,’form import’

and so on.

In chapter 4, we have discussed the definition of BNF. Let’s put this theory into practice,

and write some basic parsers in Python, using pyparsing.

Pyparsing allows a pretty one-to-one mapping of BNF to Python code: we can define sets

and combinations, then parse any text fragment corresponding to it. This is something very

important to notice: one basic BNF definition can (and should) be reused: if we once wrote

a BNF definition for an integer value, we can easily reuse this definition in, eg, a basic integer

math expression.

Although pyparsing is defined according to the BNF grammar, we don’t need to very strictly

follow it. We distinguish them through a table:

BNF Pyparsing Meaning

| ˆ indicates choice between elements

* ZeroOrMore none or more

+ OneOrMore one or more

::= = is defined as

Table 6.1: The difference of symbol definition between BNF and Pyparsing

Let’s define a simple grammar of the example in chapter 5.1 (Grade=100;). In this simple

sentence, 4 types elements could be found: identifiers (Grade), ”=”, integers (100) and ”;”.

I used the pyparsing Word class to define a typical programming variable name consisting of

a leading alphabetic character with a body of alphanumeric characters or underscores [13]:

identifier = p.Word(p.alphas, p.alphanums+’_’)
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I might also want to parse numeric constants, either integer or floating point. A simplistic

definition uses another Word instance, defining our number as a ”word” composed of numeric

digits, possibly including a decimal point [13], and the punctuation marks will be defined by

”Literal”:

number = p.Word(nums+".")

eq = p.Literal("=")

semi = p.Literal(";")

So this simple sentence will be represented in Python:

assignmentExpr = identifier + eq + number + semi

Now let’s run this program:

Figure 6.2: The program of the example(Grade=100)

And the result is shown in Figure 6.3.

Figure 6.3: The result of this example

6.3 Pyparsing of a DSL Example

In previous section, we discussed the definition and how to define pyparsing grammar. In

this section, we will parse the program of the previous DSL:
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ivar = p.Word (p.alphas, p.alphanums + ’_’).setParseAction(gotInput

)

ovar = p.Word (p.alphas, p.alphanums + ’_’)

num = p.Word (p.nums + ’.’ + ’TRUE’ + ’FALSE’)

eq = p.Literal(’=’)

com = (ovar + eq + num).setParseAction(gotOutput)

entryact = ’ENT’ + com

duract = com

ceq = p.Literal(’==’); cne = p.Literal(’!=’) ; cg = p.Literal(’>’);

cl = p.Literal(’<’); cge = p.Literal(’>=’); cle = p.Literal

(’<=’)

condi = (ivar + (ceq ˆ cne ˆ cl ˆ cg ˆ cge ˆ cle) +num)

log = (’LOG’ + p.restOfLine).setParseAction(gotUserLog)

#condi = ivar + ceq + num

statename = p.Word (p.alphas, p.alphanums + ’_’)

targetname = p.Word (p.alphas, p.alphanums + ’_’)

fsname = p.Word (p.alphas, p.alphanums + ’_’)

enable = ’ENABLE’ + ivar

progname = p.Word (p.alphas, p.alphanums + ’_’)

timechunk = p.Word (p.nums + ’.’) + p.Or ([p.Literal(’s’),

p.Literal(’ms’), p.Literal(’h’), p.Literal(’m’), p.Literal(’d’)])

time = p.OneOrMore(timechunk)

comlog = p.Or([com, log])

trans = ’TRANS’ + targetname + ’ON’ + condi + p.lineEnd + p.

ZeroOrMore(comlog)

timout = (’TIMEOUT’ + targetname + time + p.lineEnd + p.ZeroOrMore(

comlog)).setParseAction(gotTimer)

ret = ’RETURN ON’ + condi

#statecore ::= (entryact* log* duringact*) & log*) trans*

#state ::= ’STATE’ statename statecore

statecore = p.ZeroOrMore(entryact) + p.ZeroOrMore(log) + p.

ZeroOrMore(duract) + p.ZeroOrMore(trans) + p.ZeroOrMore(timout)
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state = ’STATE’ + statename + statecore

initstate = ’INIT’ + statename + statecore

errorstate = ’ERROR’ + statename + p.ZeroOrMore(entryact) + p.

ZeroOrMore(log) + p.ZeroOrMore(duract) + ret

fsm = ’FSM’ + fsname + enable + p.Each([initstate, p.ZeroOrMore(p.

Or([state, errorstate]) ) ]) + ’ENDFSM’

prog = p.OneOrMore(fsm) + p.StringEnd()

comment = ’#’ + p.restOfLine

code = p.ZeroOrMore(p.CharsNotIn(’#\n’))

line = code + p.Optional(comment)

tokentext = prog.parseFile(progfile)

The complete Python code for parsing, interpreting and running this FSM can be found in

Appendix B.

The pyparsing class diagram of this example is shown in Figure 6.4
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Figure 6.4: The pyparsing class diagram
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6.4 DSL’s Structured Analysis with Data-Flow-Diagram

Structured Analysis (SA) is a method of software engineering. Structured analysis and

structured design are able to analyse requirements, convert it to specification files, and

finally produce computer software, hardware configuration and related manuals.

Structured analysis and design techniques are the basis of systems analysis, evolved from

the 1960s to 1970s systems analysis technology [24].

Data-Flow-Diagram (DFD), is a method of SA, which is used to represent the system logic

model of a tool. It describe the flow of data in the system and processing process with

graphical representation. A DFD is often used as a preliminary step to create an overview

of the system [4]. DFDs can also be used for the visualization of data processing (structured

design). With a data flow diagram, users are able to visualize how the system will operate,

what the system will accomplish, and how the system will be implemented.

A few notations of DFD:

Figure 6.5: Notations of the DFD
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Figure 6.6: The data-flow-diagram of our DSL

DSL code is the database of the DFD. By using the Pyparsing compiler, we can send out the

Tokenlist. Then, the Tokenlist combining with other parameters flow into the interpreter,

the output data are able to be generated. Meanwhile, at the right side of the figure (shown

above), through I/O-Processing function, the input data can be distinguished. After that,

the input data, as a parameter, also flow into the interpreter. The output data return into

the I/O-Processing function.

6.5 Example for Parsing, Interpreting and Running a

FSM

In this section, we will parse, interpret and run a FSM through a verified example.

A barrier is to be controlled with a finite state machine. It has outputs to activate the motor

upwards or downwards.

In addition, a warning lamp is to be activated during moving down. Limit switches for upper

and lower position are used to indicate the position and to turn the drive off. Command

inputs for motion up and down must be managed.
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As a protection element, a timeout should stop the motion, if it cannot be accomplished in

time. The advantage of the actual FSM implementation allows to continue after repairing

and quitting the error condition without an additional code element. The barrier should close

automatically after being open for a certain time. The code for the FSM is the following.

Figure 6.7: A parking barrier control system

FSM barrierControl

ENABLE enableInput

STATE goingDown

ENT motorDown = TRUE

LOG Going Down

warnLamp = TRUE

motorUp = FALSE

TRANS down ON endDown == TRUE

motorDown = FALSE

TRANS goingUp ON commandUp == TRUE

TIMEOUT stop 10s

LOG Timout from downwards

INIT goingUp

ENT motorUp = TRUE

LOG Going Up

warnLamp = FALSE

motorDown = FALSE

TRANS goingDown ON commandDown == TRUE

TRANS up ON endUp == TRUE
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TIMEOUT stop 10s

LOG Timout from upwards

STATE down

ENT motorDown = FALSE

LOG Is down!

warnLamp = FALSE

TRANS goingUp ON commandUp == TRUE

STATE up

ENT motorUp = FALSE

ENT warnLamp = FALSE

LOG Is up!

TRANS goingDown ON commandDown == TRUE

TIMEOUT goingDown 20s

warnLamp = TRUE

LOG Going down after open time

ERROR stop

ENT motorUp = FALSE

ENT motorDown = FALSE

LOG Error stop

warnLamp = TRUE

RETURN ON commandQuit == TRUE

ENDFSM

The complete Python code for parsing, interpreting and running this FSM can be found in

Appendix B.

The proper operation is verified in a simulation, where the inputs are controlled by changing

the input file in parallel to running the FSM. The documentation in the following displays

first the inputs to the FSM, then the LOG message to show the reaction and then the outputs

of the FSM.

In the INIT state, this means, after powering up the controller, the barrier is going up, even

without an active command input.

enableInput 1

endDown 0

commandDown 0

commandUp 0

endUp 0

commandQuit 0
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----> Log: Going Up

motorDown 0

warnLamp 0

motorUp 1

If, after a timeout of ten seconds, the upper limit switch does not respond, obviously an

error occured.

The motor could be tripped, or the limit switch might be bad. The system goes to an error

state.

enableInput 1

endDown 0

commandDown 0

commandUp 1

endUp 0

commandQuit 0

----> Log: Timout from upwards

----> Log: Error stop

motorDown 0

warnLamp 1

motorUp 0

After repair and quitting the alarm, the controller resumes to go up again (still in the initial

state without an active command).

enableInput 1

endDown 0

commandDown 0

commandUp 0

endUp 0

commandQuit 1

----> Log: Going Up

motorDown 0

warnLamp 0
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motorUp 1

If we grant now the upper limit switch, the barrier finally is open and the motor stops.

enableInput 1

endDown 0

commandDown 0

commandUp 0

endUp 1

commandQuit 0

----> Log: Is up!

motorDown 0

warnLamp 0

motorUp 0

If the command input ’commandDown’ is activated, the barrier goes to down-state again.

enableInput 1

endDown 0

commandDown 1

commandUp 0

endUp 0

commandQuit 0

----> Log: Going Down

motorDown 1

warnLamp 1

motorUp 0

When the lower limit switch is active, the barrier stops in down position.

enableInput 1

endDown 1

commandDown 1

commandUp 0

endUp 0

commandQuit 0
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----> Log: Is down!

motorDown 0

warnLamp 0

motorUp 0

Now the input command ’commandUp’ lets go up the barrier again.

enableInput 1

endDown 0

commandDown 0

commandUp 1

endUp 0

commandQuit 0

----> Log: Going Up

motorDown 0

warnLamp 0

motorUp 1

In normal operation, the upper limit switch is activated, and the barrier is open now.

enableInput 1

endDown 0

commandDown 0

commandUp 1

endUp 1

commandQuit 0

----> Log: Is up!

motorDown 0

warnLamp 0

motorUp 0

A timeout condition lets close the barrier automatically. In this case, the timeout is not an

error condition!

enableInput 1

endDown 0
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commandDown 0

commandUp 0

endUp 0

commandQuit 0

----> Log: Going down after open time

----> Log: Going Down

motorDown 1

warnLamp 1

motorUp 0

Now the barrier goes down until the closed position is reached.

enableInput 1

endDown 1

commandDown 0

commandUp 0

endUp 0

commandQuit 0

----> Log: Is down!

motorDown 0

warnLamp 0

motorUp 0



Chapter 7

Summary and Outlook

As our civilization develops, much of the industrial work had been replaced or simplified

by computational devices, and automation had become of great import. Programming lan-

guages have been widely applied to many fields of interest as the basis of automation. How-

ever, programming languages have an inherent limitation, as people of non-programming

professions have great difficulty in understanding them. In order to solve this problem, and

to let management and experts to utilize the programming tools at their disposal, DSL has

been designed. Through DSL the application of programming logic had for the first time

approach a resemblance of natural languages; the maintenance of the systems had also been

greatly simplified. It has not only helped the personnel to develop clear business protocols,

and also give these protocols a more descriptive nature. Business personnel can become

qualified DSL programmers after even simple training [22]. This essay has discussed several

robotic languages, the basic application of BNF, the construction of a DSL program for FS-

M in an example, and the compilation of the said DSL using ANTLR4 and Pyparsing. We

can surmise that DSL has the following advantages in comparison to traditional computer

languages:

1. DSL is easier to understand and read.

2. It is highly expressive in special circumstances.

3. It improves development efficiency.

4. When encountering different problems in the same field, it is easier for modular cor-

rection.

5. Different traditional languages could be translated through a DSL translator.
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Appendix A

Grammar of DSL Compiling with

ANTLR4

grammar FSMTEST;

machine: fsm_keyword enable_keyword state* init_state error_state ’

ENDFSM’;

fsm_keyword : ’FSM’ ID;

enable_keyword : ’ENABLE’ i_var;

i_var : ID;//input_variante:’enableInput’ | ’commandDown’ | ’

commandUp’ | ’commandQuit’ ;

o_var :ID;//output_variante: ’motorDown’ | ’motorUp’ | ’motorDn’| ’

warnLamp’ ;

sna: ID;//state_name

eq: ’=’;

ceq: ’==’;

state: ’STATE’ sna

com*

dac*

lcom*

dac*

tr*

com*
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wt*

com*;

init_state : ’INIT’ sna

tr*;

error_state : ’ERROR’ sna

com*

dac*

rcom*;

com : ’ENT’? o_var eq le

//command:| output_variante ’=’ logic_element;

dac : o_var eq le;//duringaction

tr : ’TRANS’ sna ’ON’i_var ceq le ;//transition

lcom : ’LOG’ ID ;//logcommand

wt : ’TIMEOUT’ sna INT time_units ;//waringtime

time_units : ’ms’ | ’s’ | ’min’ | ’h’| ’d’;

le : ’TRUE’ | ’FALSE’;//logic_element

rcom : ’RETURN’ ’ON’ i_var ceq le;//returncommand

ID : [a-zA-Z]+ ; // match lower-case identifiers

INT : [0-9]+ ;

WS : [ \t\r\n]+ -> skip ; // skip spaces, tabs, newlines



Appendix B

DSL Compiling with Pyparsing

import pyparsing as p

import sys

import os

import time as tt

#============== check cmd line arguments

=============================

if sys.argv.__len__() != 2:

print (’Needs one argument: prog name!’)

sys.exit ()

file = p.Word(p.alphas, p.alphanums + ’_’)

progfile = file.parseString(sys.argv[1])[0]+’.prg’

parfile = file.parseString(sys.argv[1])[0]+’.par’

infile = file.parseString(sys.argv[1])[0]+’.in’

outfile = file.parseString(sys.argv[1])[0]+’.out’

print (progfile, parfile)

#=============== check files ======================================

if os.path.isfile(progfile) == False:
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#filePrg = open (progfile, ’r’)

print (’Prog file not found’)

sys.exit()

try:

filePar = open (parfile, ’r’)

except:

print (’Paramter file not found’)

sys.exit()

try:

fileIn = open(infile, ’r’)

except:

print (’Input file not found’)

#sys.exit

try:

fileOut = open(outfile, ’r’)

except:

print (’Output file not found’)

#sys.exit

#=================== check inputs and outputs

========================

innames = p.OneOrMore(p.Word (p.alphas, p.alphanums + ’_’) + p.

Suppress((p.Literal(’1’) ˆ p.Literal(’0’))))

varvalues = p.OneOrMore(p.Suppress (p.Word(p.alphas, p.alphanums +

’_’)) + (p.Literal(’1’)ˆ p.Literal(’0’)))

inputs = fileIn.read()

fileIn.close()

ins = innames.parseString(inputs)

inv = varvalues.parseString(inputs)

print (ins)

print ()

inset = set(ins)

if inset.__len__() != ins.__len__():

print (’Multiple inputs defined!’)

sys.exit()

outnames = p.OneOrMore(p.Word (p.alphas, p.alphanums + ’_’) + p.

Suppress((p.Literal(’1’) ˆ p.Literal(’0’))))

outputs = fileOut.read()
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fileOut.close()

outs = outnames.parseString(outputs)

outv = varvalues.parseString(outputs)

print (outs)

print ()

outset = set(outs)

if outset.__len__() != outs.__len__():

print (’Multiple outputs defined!’)

sys.exit()

#===============================================================

def gotInput (t):

print (’einput: ’, t[0])

if t[0] not in inset:

print (’Undefined Input!’)

sys.exit()

gotInput.inputs.append(t[0])

def gotOutput (t):

print (’ausput: ’, t[0])

if t[0] not in outset:

print (’Undefined Output!’)

sys.exit()

gotOutput.outputs.append(t[0])

def gotUserLog (t):

pass

#print (’Logentry ’, t[1])

def gotTimer(t):

print (’Timer ’, t)

gotInput.inputs = []

gotOutput.outputs = []

#===================== Parse the program ==========================

ivar = p.Word (p.alphas, p.alphanums + ’_’).setParseAction(gotInput

)

ovar = p.Word (p.alphas, p.alphanums + ’_’)

num = p.Word (p.nums + ’.’ + ’TRUE’ + ’FALSE’)

eq = p.Literal(’=’)
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com = (ovar + eq + num).setParseAction(gotOutput)

entryact = ’ENT’ + com

duract = com

ceq = p.Literal(’==’); cne = p.Literal(’!=’) ; cg = p.Literal(’>’);

cl = p.Literal(’<’); cge = p.Literal(’>=’); cle = p.Literal

(’<=’)

condi = (ivar + (ceq ˆ cne ˆ cl ˆ cg ˆ cge ˆ cle) +num)

log = (’LOG’ + p.restOfLine).setParseAction(gotUserLog)

#condi = ivar + ceq + num

statename = p.Word (p.alphas, p.alphanums + ’_’)

targetname = p.Word (p.alphas, p.alphanums + ’_’)

fsname = p.Word (p.alphas, p.alphanums + ’_’)

enable = ’ENABLE’ + ivar

progname = p.Word (p.alphas, p.alphanums + ’_’)

timechunk = p.Word (p.nums + ’.’) + p.Or ([p.Literal(’s’),

p.Literal(’ms’), p.Literal(’h’), p.Literal(’m’), p.Literal(’d’)])

time = p.OneOrMore(timechunk)

comlog = p.Or([com, log])

trans = ’TRANS’ + targetname + ’ON’ + condi + p.lineEnd + p.

ZeroOrMore(comlog)

timout = (’TIMEOUT’ + targetname + time + p.lineEnd + p.ZeroOrMore(

comlog)).setParseAction(gotTimer)

ret = ’RETURN ON’ + condi

#statecore ::= (entryact* log* duringact*) & log*) trans*

#state ::= ’STATE’ statename statecore

statecore = p.ZeroOrMore(entryact) + p.ZeroOrMore(log) + p.

ZeroOrMore(duract) + p.ZeroOrMore(trans) + p.ZeroOrMore(timout)

state = ’STATE’ + statename + statecore

initstate = ’INIT’ + statename + statecore

errorstate = ’ERROR’ + statename + p.ZeroOrMore(entryact) + p.

ZeroOrMore(log) + p.ZeroOrMore(duract) + ret
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fsm = ’FSM’ + fsname + enable + p.Each([initstate, p.ZeroOrMore(p.

Or([state, errorstate]) ) ]) + ’ENDFSM’

prog = p.OneOrMore(fsm) + p.StringEnd()

comment = ’#’ + p.restOfLine

code = p.ZeroOrMore(p.CharsNotIn(’#\n’))

line = code + p.Optional(comment)

tokentext = prog.parseFile(progfile)

def endOfState (n):

if (n == ’STATE’)|(n == ’INIT’)|(n == ’ERROR’)|(n == ’ENDFSM’):

return True

else:

return False

def doCommand(n):

if tokentext[n + 2] == ’TRUE’:

outv[outs[:].index(tokentext[n])] = 1

else:

outv[outs[:].index(tokentext[n])] = 0

def checkCondition(n):

inp = inv[ins[:].index(tokentext[n])]

if inp == ’1’:

return True

else:

return False

def doLog (n):

print (’----> Log: ’, tokentext[i+1])

def findState(fsm, n):

for l in range(len(tokentext[fsm:])):
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if ((tokentext[l] == ’STATE’)|(tokentext[l] == ’INIT’)|(

tokentext[l] == ’ERROR’))&( tokentext[l+1]==n) :

return l+1

#find all FSMs:

fsmIndices = [i for i,x in enumerate(tokentext) if x==’FSM’]

#-------------- init variables for FSMs

fsmvars={}

iActualState = 0; iEndOfState = 1; iFirstEntry = 2; iSkipEntry = 3;

iEntryTime = 4; iRecentState = 5;

#iterate over FSMs, find INIT states

for fsm in fsmIndices:

firststate = tokentext[fsm:].index(’INIT’)

fsmvars[fsm.__str__()] = [firststate+fsm+1,0,0,0,0,0]

#---------------- endless real-time loop:

while True:

fileIn = open(infile, ’r’);

inputs = fileIn.read()

fileIn.close()

ins = innames.parseString(inputs)

inv = varvalues.parseString(inputs)

for i in range(len(ins)):

pass #print (ins[i], inv[i])

#---------------- iterate over FSMs:

for fsm in fsmIndices:

tt.sleep (1)

actualState = fsmvars[fsm.__str__()][iActualState]

i = actualState +1

i_enable = tokentext[fsm:].index(’ENABLE’)+fsm+1

if inv[ins[:].index(tokentext[i_enable])]==’1’:

#first run in state:

if fsmvars[fsm.__str__()][iFirstEntry] == 0:

fsmvars[fsm.__str__()][iFirstEntry] = 1

fsmvars[fsm.__str__()][iEntryTime] = tt.time()
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i = 0

for n in tokentext[actualState:]: #firststate+fsm+1:]:

i += 1

if endOfState(n) == True:

break

fsmvars[fsm.__str__()][iEndOfState]=actualState+i

#process entry commands and logs:

i = actualState +1

while tokentext[i] == ’ENT’:

doCommand(i+1); i += 4

while tokentext[i] == ’LOG’:

doLog(i); i += 2

fsmvars[fsm.__str__()][iSkipEntry] = i

else: #not first run, remember offset to cyclic commands

i = fsmvars[fsm.__str__()][iSkipEntry]

#------------------ do cyclic commands:

while not ((tokentext[i] == ’TRANS’) | (tokentext[i] == ’TIMEOUT

’) | (tokentext[i] == ’RETURN ON’)):

doCommand(i); i += 3

#------------------ do transitions:

leave = False

oldState = fsmvars[fsm.__str__()][iActualState]

while (endOfState(tokentext[i]) == False): #and not (tokentext[i

] == ’\n’):

if tokentext[i] == ’TRANS’:

if leave == True:

break

if checkCondition (i+3) == True:

fsmvars[fsm.__str__()][iActualState] = findState(fsm,

tokentext[i+1])

fsmvars[fsm.__str__()][iFirstEntry] = 0

leave = True

i += 7

if tokentext[i] == ’TIMEOUT’:

if leave == True:

break

if fsmvars[fsm.__str__()][iEntryTime] < (tt.time() - float(

tokentext[i+2])):
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fsmvars[fsm.__str__()][iActualState] = findState(fsm,

tokentext[i+1])

fsmvars[fsm.__str__()][iFirstEntry] = 0

leave = True

i += 5

if tokentext[i] == ’RETURN ON’:

if leave == True:

break

if checkCondition (i+1) == True:

fsmvars[fsm.__str__()][iActualState] = fsmvars[fsm.__str__

()][iRecentState]

fsmvars[fsm.__str__()][iFirstEntry] = 0

leave = True

i += 4

if (tokentext[i] == ’LOG’):

if leave == True:

doLog(i)

i += 2

if (tokentext[i] in outset):

if leave == True:

doCommand(i)

i += 3

if leave == True:

fsmvars[fsm.__str__()][iRecentState] = oldState

tt.sleep(1)

#end fsm loop

fileOut = open(outfile, ’w’)

for i in range(len(outs)):

#print (outs[i], outv[i])

fileOut.write(outs[i]+ ’ ’ + str(outv[i]) + ’\n’)

fileOut.close()


