
Chair of Physical Metallurgy and Metallic Materials

Master's Thesis

Data-driven Thermodynamic Modelling
and Uncertainty Quantification of the

Binary Iron-Carbon System

Johannes Ernst Bechter, BSc
September 2022



EIDESSTATTLICHE ERKLÄRUNG

Ich erkläre an Eides statt, dass ich diese Arbeit selbständig verfasst, andere als die angegebenen
Quellen und Hilfsmittel nicht benutzt, und mich auch sonst keiner unerlaubten Hilfsmittel bedient habe.

Ich erkläre, dass ich die Richtlinien des Senats der Montanuniversität Leoben zu "Gute
wissenschaftliche Praxis" gelesen, verstanden und befolgt habe.

Weiters erkläre ich, dass die elektronische und gedruckte Version der eingereichten
wissenschaftlichen Abschlussarbeit formal und inhaltlich identisch sind.

Datum  19.09.2022

Unterschrift Verfasser/in
Johannes Ernst Bechter

II



Acknowledgement

I want to thank my supervisor Univ.-Prof. Dr. Lorenz Romaner for giving me the opportunity
to write my master’s thesis at his chair and for his great support and guidance throughout this
work.
Also a very big thank you to Dipl.-Ing. Tobias Spitaler who supported me with his helpful
advice and expertise and also with his patience in helping me complete my thesis.
My special thanks to my friends, family and everybody who has believed in me and accompanied
me on my way to concluding my studies. I am very grateful for having you by my side.

This thesis was composed under the scope of the COMET program within the K2 Center
“Integrated Computational Material, Process and Product Engineering (IC-MPPE)” (Project
No. 859480). This program is supported by the Austrian Federal Ministries for Transport, Inno-
vation and Technology (BMVIT) and for Digital and Economic Affairs (BMDW), represented
by the Austrian research funding association (FFG), and the federal states of Styria, Upper
Austria and Tyrol.

III



Abstract

The mostly accepted CALPHAD assessment of the binary iron-carbon system is from Gustafson
(Scand. J. Metall. 14.5 (1985): 259-267). As is the case for most CALPHAD assessments, the
proposed parametrization reports the chosen values of parameters without providing details
about the procedure used to identify the optimal values and without information about their
uncertainty or reliability. Therefore, the parametrization is not fully reproducible.
In this thesis, a database was created which contains the original thermodynamic data on phase
boundaries, activities and formation enthalpies from experiments and ab-initio calculations along
with the relevant meta-data specifying e.g. the original reference or experimental details. This
python-based database allows adaption to user-specific requirements and easy reassessment at
a later time, for example when new data is added.
The parameter optimization for the CALPHAD assessment was performed with ESPEI. The
open-source software optimizes the parameters with Markov Chain Monte Carlo in the Bayesian
framework and provides the associated probability distribution. This allows exploring propagation
of parameter uncertainties and investigating the effect of choosing different sets of input data
or model structure.
As a result, a new parametrization for the Fe-C system is presented which is fully reproducible
and explains the thermodynamic data points with a higher probability compared to the parameter
set proposed by Gustafson within the chosen error definition. The optimized phase diagram
is presented along with the relating parameters in form of a TDB-file which considers the
underlying data and estimates the uncertainties of the calculated phase boundaries. It is found
that various data types help select reliable datasets and increase the accuracy of an assessment.
Based on the calculated uncertainties it is pointed out that providing new data points in the
eutectic and the high carbon-region can further improve the reliability of the assessment.
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1 Introduction

Thermodynamics represents the basic foundation for the stability of phases, phase equilibria
and transitions. CALPHAD (Calculation of Phase Diagrams) is a powerful tool within this
fundamental framework which has gained large significance in materials science during the
recent decades due to the increased computing power. The CALPHAD method models the
Gibbs energies of the phases which help to understand and predict the thermodynamic behavior
of the materials.
The foundation of the thermodynamic model is a database of experimental and theoretical
data which contains the resulting models and model parameters of the Gibbs energies. This
database can be used to calculate phase stabilities and material properties derived from the
Gibbs energy models. The creation of a thermodynamic database is called an assessment and
includes collecting experimental information and theoretical results, defining a model of the
Gibbs energies of the different phases in the system and fitting the model to the available data.
Common software for thermodynamic calculations which provide as well commercial databases
are Thermo-Calc [1], FactSage [2] and MatCalc [3]. A recent open-source program is py-
calphad [4]. After performing a thermodynamic assessment common databases only store a
single value of the thermodynamic parameters without any further information about reliability,
uncertainty as well as information on the original data input.
The open-source Python program ESPEI (Extensible Self-optimizing Phase Equilibria Infras-
tructure) [5] aims to perform thermodynamic parameter generation and optimization including
uncertainty quantification. Using Bayesian inference and Markov Chain Monte Carlo (MCMC)
algorithms, the probability distribution of the resulting parameters is calculated, based on the
underlying input data for the assessment. The probability distribution of the parameters are
then propagated to the quantities of interest and uncertainties can be calculated. Thereby,
ESPEI is capable of quantifying the uncertainty which can be a crucial feature in materials
design, so the boundaries in which the calculations can be trusted, are defined.
The goal of this work is to perform a thermodynamic assessment of the binary iron-carbon
system with an uncertainty quantification, which will outline the reliability of the assessment.
The databank contains thermodynamic data from experiments and ab-initio calculations along
with meta-data such as the original article, experimental details or information about the
reliability. The python-based database allows adaption to user-specific requirements and also
easy reassessment at a later time, for example when new data is added.
After creating the thermodynamic database, the parameter optimization is performed with
ESPEI, which also calculates the probability distribution of the parameters. The parameter
uncertainties are then propagated to the quantities of interest, for example to calculate the
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uncertainty of phase boundaries. Based on the resulting optimized phase diagram and calculated
uncertainties, the effect of the underlying data can be investigated. The calculated uncertainties
can guide future experiments to provide new data points in order to improve the accuracy of
the assessment.
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2 Theory

2.1 Basic thermodynamics

The basis of the CALPHAD method lies in the thermodynamics. Applying these fundamental
principles allows the CALPHAD method to be used in a wide field of disciplines and appli-
cations. [6] The following chapters introduce the key concepts of thermodynamics which are
needed to understand the CALPHAD method.

2.1.1 Laws of thermodynamics - enthalpy, heat capacity, entropy,
Gibbs energy

The first law of thermodynamics (Equation 1) is known as the law of conservation of energy. [6]
The change of the internal energy ∆U can consist of heat q and work w. It can be described as
the fact that energy cannot be created or destroyed in a closed system of constant volume, but
the form of energy can be transformed from one to another. The term ’closed system’ describes
that there is no exchange of matter, energy or heat happening with its surroundings.

∆U = q − w (1)

A quantity, as the internal energy U, is called a state function as it is only dependent on the
state of the system, not on its history. For numerical calculations only differences of defined
states are relevant as the internal energy U does not possess an absolute value. [7]
From this basic statement some important thermodynamic equations can be derived, introducing
for example the enthalpy of a reaction. The enthalpy H is defined as qp, the change in heat
of the system with a reaction at constant pressure, and it can be obtained by transforming
Equation 1 to

∆(U + w) = ∆(U + pV) = qp = ∆H. (2)

The heat capacity CV of a system can be described according to Equation 3 as the amount of
heat dq necessary in order to attain a temperature increase of dT at a constant volume V.

C =
dq
dT

(3)

The entropy S is another state function which is a measure that reaches its maximum in the
equilibrium state of the system. The entropy is defined by

S =
dq
T

. (4)
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In a closed system the entropy S can increase or stay constant, but never decrease. This means
that the system cannot change its state from equilibrium as long as it is isolated from its
environment. A change of state which increases the entropy is referred to as irreversible. [6]
The second law of thermodynamics is relevant to decide if a reaction will spontaneously take
place or not. This depends on the sign of the free energy G (also designated as Gibbs energy).
G is the total energy of a system and it is minimal if the system reaches its equilibrium state.
Therefore it can be derived that for a system with a constant composition, under isobaric and
isothermal conditions, in equilibrium G becomes a minimum.
All these thermodynamic quantities are connected via the free energy G which is dependent on
the internal energy U, volume V and pressure p, temperature T and entropy S.

G = U + pV − TS = H − TS (5)

For changes of the system at constant pressure and temperature the free energy is defined as

dG = dq − T · dS (6)

This means that for a spontaneous reaction the change of free energy dG must have a negative
sign. Consequently the equilibrium state of a system, at constant pressure and temperature, is
the state with minimal free energy. [6]

2.1.2 Solution phase thermodynamics

CALPHAD calculations are often used for analyzing alloys consisting of two or more components
which can form a solution under certain circumstances. The components can be represented
by elements, ions and also molecules. The methods to describe the Gibbs energies of the
solution phase is described in detail in Chapter 3.1. In this section the basic concepts of forming
solutions and mixing effects are presented.

Gibbs energy of binary solutions

The simplest case of a solution is a system of two components A and B occupying the sites
in a crystal. Given N crystal sites in total and nA sites occupied by component A, the mole
fraction xA of component A is

xA =
nA

N
. (7)

Proceeding from Equation 5 the total Gibbs energy for such a binary system can be defined
by

G = xAGA + xBGB + Hmix − T∆Smix. (8)
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For an ideal solution there are no attractive or repulsive forces between both components and
the Gibbs energy of the mixing reaction is

Gideal
mix = RT(xA · ln(xA) + xB · ln(xB)). (9)

However, the ideal case does not occur in reality, since attractive or repulsive interactions occur
between the different components. For taking these interactions into account an excess term is
added. This is implemented by introducing the regular solution energy parameter LA,B which
represents repulsive forces with a positive sign, and attractive forces with a negative sign.

Gexc
mix = xA · xB · LA,B (10)

Combining both equations results in the formulation of the regular solid solution:

Gmix = RT(xA ln(xA) + xB ln(xB)) + xA xB LA,B (11)

Given a system with a negative interaction parameter LA,B, the resulting Gibbs energy function
is a curve with one minimum. This means that over all compositions a solid solution of the
components A and B is formed. For conditions where the temperature-dependent entropy term
is not dominant, a positive parameter parameter LA,B results in a Gibbs energy curve that is
shaped differently, exhibiting two minima though. The region between those two minima is
characterized by the appearance of two phases in order to minimize the alloy’s Gibbs energy at
this composition and is designated as a miscibility gap. [6, 7]

Activity in binary solutions

The effect of the different mixing behavior correlates with the activity of the components in
the solution which is defined in Equation 12, where ai is the activity of component i in the
solution, pi is the vapor pressure of i above the solution and p0

i is the vapor pressure of the
pure component i. [6] The activity also correlates with the chemical potentials µi and µ0

i of
the (pure) components and the temperature T.

ai =
pi

p0
i
= exp(

µi − µ0
i

RT
) (12)

In an ideal solution without any interactions of the present substances, the activity is the mole
fraction. But for real solutions the interactions need to be taken into account and therefore
the measured activity allows conclusions about the interacting mechanisms. [6] The chemical
potential can also be derived from the Gibbs energy as

µi =
∂G
∂ni

∣∣∣∣
ni+j const.

(13)
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2.1.3 Phase diagrams

A phase diagram allows indicating the different phases which are present at certain conditions
as specified for example by composition and temperature. Thermodynamically, the calculation
of a phase diagram is the result of a global Gibbs energy minimization process. [8]

Figure 1: The stable phases are derived from the Gibbs energy curves at different temperatures. Graphics
from [8].

The equilibrium of a system is characterized by a state where all the stable phases meet their
internal constraints, for example composition or balance of the phase proportions, while also
the external conditions, such as temperature and pressure, are satisfied.
Practically, the equilibrium states are derived from the Gibbs energy curve of each phase at
different temperatures plotted against composition. For the simplest case of two components
with full mutual solubility in the solid and liquid state, the occurring phases represent an
equilibrium of the different phases, meaning that the state with minimal Gibbs energy at the
given temperature is stable. In Figure 1 the Gibbs energies are plotted for different temperatures.
At the highest temperature T1 the liquid phase is stable at all composition as it has the lowest
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Gibbs energy. At T2 both curves meet at xB=1, where both, the liquid and solid phase,
are in equilibrium and so the melting point of the pure component B is reached. For lower
temperatures the stable state in the region between the two curve minima is described by a
common tangent. In this region both the solid and liquid phase are stable and the compositions
of the minima identify the boundaries from the one-phase to the two-phase region. [6]

2.2 Binary iron-carbon system

The binary Fe-C system is a fundamental alloy system for a large number of practical applications.
The phase diagram represents the relation between composition and temperature which is
relevant for the formation of the various phases. In the Fe-C phase diagram two slightly different
systems are combined and superimposed in most presentations: the metastable iron-cementite
(Fe3C) and the stable iron-graphite system. [9]
These two systems differ by the type of the appearing carbon-rich phase. Graphite is formed
if the cooling rates are extremely low, leading to the true equilibrium state which is usually
very difficult to observe. The metastable cementite is technically more relevant, as in practical
use this carbon phase is present at usual conditions. In common depictions only the iron-rich
part up to a carbon-concentration of 25 at.%, which is 6.67 wt.%, is presented with the left
boundary representing pure iron, and the right boundary representing pure cementite (Fe3C) in
the case of the metastable system.
Iron can exist in two different crystal structures at atmospheric pressure: the body-centered cubic
(bcc) and the face-centered cubic (fcc) crystallographic unit cell. Both types are able to dissolve
carbon on interstitial sites depending on the iron’s crystal structure and the temperature.
Bcc-iron exists in two crystallographically identical species: the low-temperature α-phase,
being stable from room temperature up to about 911 ◦C, dissolving 0.022 wt.% carbon at
the maximum, and the high-temperature phase δ-iron, that is stable from 1392 ◦C up to the
melting point and it is able to dissolve up to 0.1 wt.% of carbon. The solid solution of bcc-iron
and carbon is referred to as ferrite. The fcc-iron, designated as γ-iron or austenite, can dissolve
up to 2.06 wt.% of carbon. Fe-C alloys with carbon contents over circa 2 wt.% up to 4 wt.%
are referred to as cast iron. [10, 9]
Concerning the values of maximum solubility and transformation temperatures it is noted that
some of these values are not undisputed, but still represent a commonly accepted and widely
used agreement for use in technology.
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2.3 CALPHAD

2.3.1 Introduction

CALPHAD is a method based on the thermodynamics of the phases which allows gaining
deeper understanding of the studied system and to make more accurate predictions on the
appearance of phases in an alloy system. The goal is to generate a thermodynamic model from
information on phase equilibria and thermochemical properties, to describe the Gibbs energy
functions of the phases in a specific system. Building the Gibbs energy model starts with Gibbs
energy functions of the pure elements, followed by the binary descriptions. With increasing
complexity of the studied system, the Gibbs energy model is described by a rising number of
parameters which are adjusted to fit the model to the covered data.
The CALPHAD method aims to obtain a comprehensive description of the Gibbs energies
involved in the system in order to calculate and predict the phase diagram and other thermo-
chemical properties in regions with little experimental information and to validate experimental
findings.

2.3.2 Model parametrization

The basic steps of the CALPHAD method are shown in Figure 2. The first step is to assign
the models for sublattices and Gibbs energies for the involved phases which are parameterized
functions (Equation 14) of the state variables xi (pressure, temperature, composition, etc.) and
empirical parameters θk. The empirical parameters can have individual forms for the various
phases φ. [11]

Gφ = Gφ(xl, ..., xi, θl, ..., θk) (14)

The Gibbs energy functions of the individual phases need to be defined and evaluated for a
wide range of conditions. Contributions of the composition on the Gibbs energies regarding
mixing and ordering effects are taken into account by using the Compound Energy Formalism
(CEF) [5, 11]. This formalism is explained in more detail in Chapter 3.1.
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Figure 2: The iterative workflow of CALPHAD modelling: Continuous adjusting and re-evaluation of the model
to the input data is performed to produce a thermodynamic database for sequential calculations.
Graphics from [11].

Determining the model parameters is conventionally obtained by taking experimental data
into account. In many use cases the main goal of establishing a thermodynamic model is to
calculate phase diagrams and therefore the largest part of the collected data is phase boundary
data. However it is crucial to also cover additional datatypes since phase equilibrium data alone
is not sufficient to model the Gibbs energies of the different phases. Phase boundary data
only gives information about the relation of the low-energy configuration of the phases for
equal chemical potentials. [12] All available data based on the Gibbs energies of the various
phases is critically evaluated in terms of reliability and a selection of usable datasets is made. In
recent years also data from ab-initio methods gained importance for establishing a database as
sometimes specific experiments cannot be conducted. Therefore also ab-initio thermochemical
data is appropriate to contribute information for a comprehensive thermodynamic database.
These additional datatypes can help to increase the database as well as evaluate which datasets
should be used. Varying reliability of different datasets can be taken into account by assigning
different weights. [13]
With larger numbers of different datatypes or components of the system the fitting algorithm
requires to become more sophisticated and complex to be able to fit the model. Powerful math-
ematical methods, such as the least-squares method of Gauss [14], the Levenberg-Marquardt
method [15] or Bayesian algorithm [16] are applied. Using such algorithms the model is refined

9



and optimized by adjusting the empirical parameters. Comparing and validating the calculated
results with the input data revises the model in a continuous process. The resulting model
should be capable of calculating the phase diagram and other thermochemical characteristics,
not only for the compositions and temperatures given by the experimental data, but also for
extrapolated regions. [13]
The CALPHAD method allows performing predictive calculations what makes this approach very
interesting for multicomponent applications. This is because the thermodynamic descriptions
of low-order subsystems can be extrapolated to more complex systems. It is also observed that
the number of additional parameters for describing a high-order multicomponent system is
reduced in comparison to a low-order system. This means that once the Gibbs energy models
of the binary and ternary systems are determined, extrapolation to the quaternary or higher
order system requires a decreasing number of additional parameters and also less data points.
This characteristic can be made large advantage of for developing new materials which contain
many components. [11, 12, 13]
However if there is no evidence for a stable phase in form of experimental data from low-order
system, the phase stability in high-order system cannot be considered by CALPHAD. Conse-
quently phase stability occurring exclusively in the high-order system cannot be estimated from
the low-order Gibbs energy models. By introducing and using ab-initio calculations possible
stable phases can be calculated and estimated and this drawback can be overcome. [11]
If in multicomponent phases there are contributions from further interactions, the Gibbs energy
functions are extended by excess terms. These excess terms are added if they are necessary for
a comprehensive description.
As this approach strongly bases on the information obtained from the low-order systems,
changes in one of the sub-systems have strong effects on the relating low- and high-order
systems. Practically this means that changing one of the unary descriptions affects the other
unaries as well as the binary descriptions. This aspect leads to difficulties when models and
endmember phase properties of large established databases should be amended. The Scientific
Group Thermodata Europe (SGTE) developed a database of unary descriptions [17] which are
the basis for the derived multicomponent descriptions. This complexity hinders updating the
models with newer results. Hence being able to perform an assessment including the generation
of a parameter set fitting for the available data can be a very attractive feature for recurring
scientific applications. [5, 13]

10



2.3.3 Software and databases

Today there is large number of software for CALPHAD available, some of the most popular
packages being FactSage [2], MatCalc [3], Pandat [18] or Thermo-Calc [19] as commercial
products. During the last years there arose an increasing number of free open-source programs,
for example pycalphad [4] and OpenCalphad [20]. The functions which are implemented in these
software include basic calculations such as low-order phase diagrams but can also include more
specific features for different use cases. In some of them (for example in MatCalc) modelling of
thermodynamics and kinetics is combined to simulate precipitation kinetics, diffusion processes
and phase transformations. [13]
The databases used in CALPHAD are generated by assessments of the corresponding subsystems.
For technological applications where usually a fairly large number of elements are used in alloys,
this approach results in extensive workloads for assessing all low-order subsystems. However,
according to the dependencies explained earlier in Chapter 2.3.2, the number of necessarily
determined subsystems is reduced in practical cases to the binaries and ternaries. In many
cases quaternaries and higher-order subsystems are not essential to obtain a comprehensive
assessment. [13, 17]
Once the model is fitted to the input data to satisfying extent, the resulting thermodynamic
database (TDB) is ready to use in further applications. For example, phase equilibria in composi-
tion regions with little data may be predicted, or properties, such as microstructural, mechanical
and other characteristics can be calculated. The TDB collects all the Gibbs energy functions of
the phases of the system and can be used for thermodynamic calculations of multicomponent
systems. [11, 13]

2.3.4 Applications

The range of applications of CALPHAD modelling was strongly driven by the increasing com-
puting power in the recent decades. One of the most important fields since the beginning has
been materials design. Therefore thermodynamic models are used to investigate possible alloys
in terms of occurring phases or specific material properties. Thermodynamic databases are
created or updated with new data and can be adapted to the individual use case. Then the
resulting model may be used to estimate various material properties and predict promising alloy
compositions. This comes along with drastically reduced experimental expenses in contrast
to conventional alloy development where a lot of work goes into evaluating possible alloy
compositions. However, the prediction of phases in high-order systems and also of certain
intermetallic phases in multicomponent systems can still represent severe difficulties. This can
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be encountered by taking ab-initio calculations into account. [13]
Besides the calculation of phase diagrams CALPHAD can also serve for modelling of other
properties (for example diffusional behavior, molar volumes, elastic properties) where thermo-
dynamic information from subsystems is extrapolated.
Many CALPHAD calculations are also aiming to gaining understanding of specific effects
occurring in a material. Here the CALPHAD method can be a useful tool to comprehend certain
mechanisms, concerning for example forming of precipitations or diffusion kinetics. [5, 13]
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3 Computational methods

3.1 Compound energy formalism

3.1.1 Introduction

Selecting the expression used for describing the Gibbs energies in CALPHAD is a key decision
for the whole approach. The model can serve predicting applications as well as gaining
deeper understanding of the physical and chemical mechanisms underlying the resulting
properties. Therefore the approach for selecting the appropriate model can vary from choosing
a mathematical expression which leads to sufficient consensus to a model based on the causal
physical mechanisms. Practical experiences showed that a model relating to physical principles
is more capable of both, meeting the experimental observations and making specific predictions.
[11]
The Compound Energy Formalism (CEF) represents a framework where the Gibbs energy
models of the individual phases are described by the most appropriate expression respectively.
Within the CEF the phases are characterized by different sublattices in which the constituents
are placed. The constituents can be represented by atoms, molecules, ions and vacancies, which
sit in defined sublattices and can mix according to the classical mixing theory. By introducing
sublattices, the different interactions of the constituents on the different sublattice sites and
interactions of the different species with each other can be taken into account. In the case of
one sublattice and no allowed interactions of the different species, this formalism corresponds
to ideal solution. For a sublattice being occupied by only one species, a stoichiometric phase is
described. The Gibbs energies of the individual phases are determined by interaction parameters
of the sublattices and the mole fractions of the constituents relative to the available sublattice
sites. [11, 13]

Gφ = re f Gφ + idGφ + exGφ + physGφ (15)

The Gibbs energy term of the phase φ (Equation 15) can be written as the sum of the reference
term re f Gφ, the ideal mixing term idGφ, the excess term exGφ and in some cases a physical
term physGφ, for example for magnetic, electronic, etc. contributions. The mixing and the
excess term only appear for the case of two or more elements being mixed in the studied
material. [11]
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3.1.2 Ordering and mixing effects

If two or more species are present, different forms of ordering and mixing behavior can occur.
There are some cases of mixing mechanisms to distinguish: One of the most simple cases is the
substitutional random solution where all the constituents sit in one sublattice at random sites.
This can be observed for example in liquids and solid solutions. The Gibbs energy consists of all
terms given in Equation 15 being dependent on temperature and mole fraction. Dependencies
on other variables, such as pressure, are mostly not considered in metallic alloys as ambient
pressures are very low and usually this low pressures have negligible impact on the Gibbs energy.
In stoichiometric phases there are multiple sublattices present with every species placed in one
sublattice. As there is no compositional disorder within one sublattice, there is no mixing term
to consider.
The third case is the ordered solution being an intermetallic compound within a finite composition
range. For a binary system such a compound consists of two elements being placed in one
sublattice each, but substitutional atoms of the other element are possible. Given two or
more sublattices and multiple species being placed in the sublattices, the term of the Gibbs
energy is dependent on the site fraction y(s)i , which is the mole fractions of each component i

(atom, ion, molecule, vacancy) in the sublattice s. For each sublattice, the summation over the
site fractions of this sublattice equals to 1, according to Equation 16. The site fractions are
related to the overall composition according to Equation 17 with n(s) being the stoichiometric
coefficients in the sublattices and yVA being site fractions occupied by vacancies. [11, 21]

∑
i

y(s)i = 1 (16)

∑
s

n(s)y(s)i

∑
s

n(s)(1 − yVA)
= xi (17)

3.1.3 Composition and temperature dependence

The regular solution energy parameter LA,B that was introduced in Chapter 2.1.2 consists
only of a single constant parameter. Parameters that are independent of temperature and
composition are called strictly-regular. For a Gibbs energy model that should meet the real
behavior, a strictly-regular model is not sufficient since changes in temperature and composition
affect the observed interaction. Redlich and Kister defined an extension for the regular solution
model which is known as the Redlich-Kister power series. [22] This extension is the most
common as it is symmetrical and can be extrapolated to ternary and higher-order systems.
Equation 18 describes the excess Gibbs energy of the phase φ including non-ideal mixing
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behavior and interactions between the constituents.

exGφ = xA · xB

k

∑
ν=0

(xA − xB)
ν · νLφ

A,B (18)

The parameter νLφ
A,B can also be temperature-dependent in a linear or other form. If heat

capacity data is available, the parameter νLA,B has contributions from the excess entropy νsA,B

and the excess enthalpy νhA,B. [7]

νLA,B = νsA,B + νhA,B · T (19)

3.1.4 Phase descriptions

For this work the framework of Gibbs energy descriptions as well as the excess parameters
(one for the bcc phase, one for the fcc phase, five for the liquid phase) were adopted from
Gustafson’s assessment [23]. They serve as starting parameters for the optimization in order to
fit to the literature data. The initial Redlich-Kister parameters of the different phases are listed
in Table 1.

Table 1: List of the initial parameters for the optimization process, adopted from Gustafson [23]. The Gibbs energy
descriptions of cementite and graphite were not changed.

Phase excess model no. of sublattices site ratios constituents excess parameters
Bcc Redlich-Kister 2 1:3 Fe:C,Va 0Lbcc

Fe:Va,C = -190 T
Fcc Redlich-Kister 2 1:1 Fe:C,Va 0Lfcc

Fe:Va,C = -34671
Liquid Redlich-Kister 1 - Fe,C 0Lliq

Fe,C = -124320+28.5T
1Lliq

Fe,C = +19300
2Lliq

Fe,C = +49260-19T

Ferrite and austenite phases

The Gibbs energy models of the different phases are based on Gustafson’s descriptions [23]
which follow the Compound Energy Formalism. The ferrite and austenite phases are described
by two sublattices with Fe on one sublattice and interstitial C and vacancies placed on the other
one. Regarding the denotation it is mentioned that components sitting in different sublattices
are separated by a colon, while elements occupying the same sublattice are separated by a
comma.
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This sublattice model is also capable of considering magnetic contributions to the Gibbs energy.
Therefore magnetic ordering effects are taken into account by the term Gmo

m . Since for the
austenite magnetic effects are negligible, this contribution is only taken into account for ferrite.
The Gibbs energy of one formula unit of the solid solution Fea(Va,C)c is
for the bcc phase:

Gbcc
m = y2

Va
0Gh

Fe:Va + y2
C

0Gh
Fe:C + RT [y2

C ln(y2
C)

+ y2
Va ln(y2

Va)] + y2
Va y2

C · Lbcc
Fe:Va,C + Gmo

m

(20)

for the fcc phase:

G f cc
m = y2

Va
0Gh

Fe:Va + y2
C

0Gh
Fe:C + RT [y2

C ln(y2
C)

+ y2
Va ln(y2

Va)] + y2
Va y2

C · L f cc
Fe:Va,C

(21)

ys
A is the site fraction of component A on sublattice s and LA:B is the Redlich-Kister excess

parameter describing the interaction between two components placed in two separate sublattices.
The 0G values relate to the enthalpy of selected reference of each element at 298.15 K. The
interaction parameter can be assumed to be composition dependent following a Redlich-Kister
polynomial. 0Gh

Fe:Va represents the hypothetical Gibbs energy term of pure Fe without any
magnetic contributions, 0Gh

Fe:C is a hypothetical term for the non-magnetic case of all interstitial
sites being occupied with C, and Gmo

m adds the magnetic ordering effects.
For this work the magnetic contributions were not modified or optimized, so these terms were
assumed from Gustafson who applied the model previously presented by Inden [24] and Hillert
and Jarl [25]. This description of the magnetic contributions also allows to model the Curie
temperature as a function of the contained C.
The Redlich-Kister parameters that were used as the starting point for the optimization are
given in Table 1.

Liquid phase

The liquid phase was described by the ordinary regular solution model whereas the excess model
follows a Redlich-Kister polynomial. The Gibbs energy function follows:

Gliq
m = yFe

0GFe + yC
0GC + RT[yFeln(yFe) + yCln(yC)]+

yFe · yC [0Lliq
Fe,C + 1Lliq

Fe,C (1 − 2yFe) +
2Lliq

Fe,C (1 − 2yFe)
2]

(22)

The Redlich-Kister excess-parameters for the liquid phase Lliq
Fe,C also were accepted from

Gustafson [23] as the initial parameter values and the parameters are given in Table 1.
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Carbides

The assessment of the C-phases included cementite as stoichiometric compound of Fe3C and
solid carbon as graphite and diamond. For these phases the Gibbs energy descriptions were also
accepted from Gustafson who adopted the model from Guillermet [26] and the optimization
was not applied, hence these phase descriptions were not changed.

3.2 ESPEI

ESPEI (Extensible Self-optimizing Phase Equilibria Infrastructure) is an open-source, Python-
based software tool using the CALPHAD framework including two steps of model parameter
evaluation: The first step being parameter generation from a database of single-phase thermo-
chemical data and as a second step parameter optimization by a Markov Chain Monte Carlo
(MCMC) algorithm using the probability distributions to quantify uncertainties.
Additionally, the software-environment is capable of creating extensible databases of collected
literature datasets which are used for the thermodynamic calculations.
ESPEI provides a software tool to use an existing thermodynamic description as well as create
a new model of the Gibbs energies which can then be updated and optimized according to an
underlying literature database. What is very attractive for practical applications is the ability
to estimate the reliability of the obtained phase diagrams. This is achieved with Bayesian
inference where the parameter estimation is performed autonomously to a great extent once
the simulation is set up. This procedure aims to reduce the operator’s influence on the fitting
process and thus make the thermodynamic assessment more reproducible. Applying MCMC
and Bayesian inference provides the probability distributions after the optimization which are
used to calculate the model uncertainties. The concepts of MCMC and Bayesian statistics are
described more closely in Chapter 3.3.
The process of parameter generation is not explained in this work as this step was not used for
this thesis. The initial parameters were taken from a previous assessment and only parameter
optimization was performed.
For the optimization of the model parameters the Gibbs energies are fitted to all data provided
from covered literature data simoultaneously with an iterative MCMC algorithm. The Gibbs
energies are described by a temperature-dependent expression within the CEF using Redlich-
Kister excess mixing parameters, see Equation 15. [11, 5, 17]
The parameter optimization is performed using the Bayesian inference approach evaluating the
probability distributions of the obtained model parameters in order to minimize the residual sum
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of squares between the determined parameters and the collected data. Besides the parameter
set obtained in ESPEI, also parameters which stem from other assessments can be optimized
to fit the created database. [12] As a result of the optimization within this work, a new, fully
reproducible and comprehensible TDB of the binary Fe-C system based on a literature database
was performed.

3.3 Bayesian inference and Markov Chain Monte Carlo

For finding a set of model parameters describing the input data best, Bayesian inference is
applied. Bayes’ statistics represent a framework for parameter consideration based on probability
distributions. Bayes’ theorem (Equation 23) defines the posterior probability distribution for
a parameter vector θ, conditioned on the data D. The prior p(θ) is an estimate from the
modeler of the probability distribution for the parameter vector, and p(D|θ) is the probability
of observing the data conditioned on a set of parameters which is the likelihood. p(D) is the
probability of all possible data called evidence. This approach takes the likelihood of observing
a set of data into account for updating the priors. [12]

p(θ|D) =
p(D|θ)p(θ)

p(D)
(23)

Recently the Bayesian statistics approach has become widely accessible as computing power
rapidly increased and software implementing Markov Chain Monte Carlo (MCMC) algorithms
arose. MCMC is used for numerical evaluations of the posterior distributions which form a
Markov chain. This means a distinct number of parameters are sampled and are used to
determine the parameters which lead to maximum likelihood. This method for parameter
optimization can be used for any type of system and also the number of degrees of freedom
can lie in a wide range - restricted only by the computing power which accounts for reasonable
computing times. Also systems with highly correlated parameters can exhibit bad convergence.
In CALPHAD models the parameters correlate with each other as a changing parameter can
be corrected by another parameter and the resulting Gibbs energy function stays the same.
Hence ESPEI uses an ensemble sampler which introducing an ensemble of Markov chains to
sample multiple parameters simultaneously. This sampler algorithm is implemented by using the
emcee package [27] which generates multiple chains of Gaussian distributions. Based on these
chains ESPEI determines the probability functions and likelihoods. The proposed parameters are
evaluated by the Metropolis algorithm, given in Equation 24, which states that the proposed
parameter set is accepted if the probability is increased and the parameter set is added to the
Markov chain. But parameters which decrease the probability can be accepted with a probability
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proportional to the decrease in posterior probability. [5]

paccept = min (
pproposed

pcurrent
, 1) (24)

3.4 Priors, data weights and likelihood function

Via the prior distribution the operator is able to define a range of possible parameter values
for the parameter optimization. ESPEI allows to specify the distribution functions and hy-
perparameters which give the centrality and the boundaries of the distribution function. The
hyperparameters can be helpful if the operator wants to specify a range of parameter values or
the probability is zero for certain values below and above the limit. The three basic distributions
implemented in ESPEI are: uniform, triangular and normal distribution.

Figure 3: Dataset weights affect the probability distribution of the residuals (left). The log-probabilities (right)
decrease with higher residuals. Figure from [12]

The uniform priors set a constant probability in a chosen range and are useful if the initial
database parameter is not likely to be fitting. They can also be used if the user wants to ensure
that for example the value of the enthalpy stays negative. A triangular distribution gives a
sharp lower and upper boundary outside of which the probability is zero and the parameter
must lie between these limits. Also the triangular function has a maximum in the probability
density function describing a tendency to values lying at the center.
For this work the normal prior described by a Gaussian distribution was used for all optimized
parameters. The prior was defined by a local relative of 1.0 and a scale relative of 0.4. This
type of prior does not set any sharp limits on the parameter boundaries and the function was
chosen to be centered on the initial parameter.
For evaluating the likelihood ESPEI relates to the standard deviations of the error of each
data types. The likelihoods are normalized by the standard deviation of the residual which
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is assumed as normal distributed and dependent on the specific datatype. This is done to
maintain constant weighting of error from the various data.
For single-phase thermochemical data the following default values for standard deviations are
assigned in ESPEI: 500 J mol−1 for enthalpies, 0.2 J K−1 for entropies and 0.2 J K−1 mol−1 for
heat capacities. For activity data the error is evaluated by calculating the chemical potentials
(the reasons for that are explained in Chapter 3.5.3) and comparing the measured with the
calculated values. The standard deviation of the chemical potential is 500 J mol−1. [5]
The weight of each data type or dataset can also be changed and specifically chosen by the
operator according to the reliability of the dataset. This is a crucial decision as the assigned
weight of the datasets is directly linked to the calculated probability and determined uncertainty.
Hence it is useful to define the individual dataset’s weight following the reliability of the
experimental data, representing for example measuring errors. As depicted in Figure 3 the
higher weights affect the probability distribution to be narrower than for lower weights. For a
narrower probability distribution, the likelihood of a certain residual is lower than for a broader
curve.
In this work a weight factor of 20 was chosen for all datasets uniformly. All these parameters
which are selected by the software user, such as dataset weights, type of distribution and the
hyperparameters of the priors, are specified within a machine-readable input file. This basic
information is necessary for ESPEI to set up the optimization calculations and is stored in
JSON-files following a prescribed format scheme. [5]

3.5 Error definition in ESPEI

3.5.1 Phase boundary data

In most cases the main criterion of a thermodynamic assessment is to compare the resulting
phase diagram with measured data. Accordingly phase equilibria data is important to consider
if a new assessment is judged. Determining the residual for phase boundary data is possible in
multiple ways. The direct approach compares the calculated phase diagram to the measured
points by determining the differences in composition of the phase boundary or temperature.
Within ESPEI, a different definition is applied which always gives a value for the residual from
the model to the measured composition, even for the case when the relating phase boundary
cannot be calculated. The approach for the error definition of phase boundaries is characterized
by the concept of driving forces, where the measure for fitting the phase boundary data is the
driving force necessary for a given phase to be stable at the measured composition.
For determining the driving forces of a measured phase equilibrium the target equilibrium
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hyperplane serves as the reference. After conducting equilibrium calculations with all present
phases are conducted at the measured temperatures and compositions, the target hyperplane is
calculated as the mean of the chemical potentials as represented in Figure 4a. With each Gibbs
energy function of the phases that are expected to be stable at this composition, equilibria
are calculated at the projections of their compositions onto the Gibbs energy curves and the
driving forces can then be determined as the residual between the target hyperplane and the
calculated vertex Gibbs energy. [5, 12]
In order to obtain the probabilities of meeting the phase boundaries, the errors are assumed to
follow a normal distribution around zero with a standard deviation of 1 kJ. [12]

Figure 4: Example for determining the driving forces for phase boundary data: The blue and yellow points
represent measured phase equilibrium compositions. The target hyperplane is constructed as the
arithmetic mean of the calculated chemical potentials. The energy difference between the target
hyperplane and the vertex energy is the driving force (b). Figure from [12].

3.5.2 Thermochemical data

The types of thermochemical data used in ESPEI includes two types: Thermochemical data with
fixed internal degrees of freedom and equilibrium thermochemical data. For the thermochemical
data with fixed internal degrees of freedom the thermochemical property can be obtained
directly from the Gibbs energy model. Equilibrium data are typically measured for given values as
temperature, pressure, composition. For these data, the thermochemical property is determined
by an equilibrium calculation where various phases can occur. In this case the error is determined
by calculating the thermochemical property according to the observed composition and phase
fraction. Therefore the error for thermochemical data is defined as the difference from the
predicted values to the experimental values. Also the standard deviations of the thermochemical
data are assumed and implemented in ESPEI with 500 J mol−1 for enthalpies, 0.2 J mol−1 K−1

for entropies, 0.2 J mol−1 K−1 for heat capacities. [12]
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3.5.3 Activity data

Due to the direct correlation with the chemical potential, activity data is very important to gain
information on the Gibbs energies. Hence residuals of activity data are treated in a different
way concerning error definition. As activity values range from 0 to 1, the variability of the
observed values is usually rather small, causing small residuals. However, these small residuals
can have a large effect on the calculated chemical potentials. But for determining the likelihood
in terms of residuals, the chemical potentials should be preferred instead of activity data.
Hence ESPEI uses the original activity data for deriving the Gibbs energy functions, but the
calculated chemical potentials for likelihood estimation. Therefore the data provided by the user
includes the observed activities along with the reference state in order for ESPEI to calculate
the chemical potential according to Equation 25. µobs

A and µ0
A being the observed chemical

potential respectively the chemical potential of the reference state and aobs
A the observed

activity. [12]
µobs

A = µ0
A + RT ln(aobs

A ) (25)
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4 Results and discussion

4.1 Database

4.1.1 Motivation for a new database

One of the goals of this work was to establish a literature database of the Fe-C binary phase
diagram and to create a new thermodynamic database on this data collection within the ESPEI
method. The motivation to collect these data and to create a new TDB-file was to enhance
the information content of such databases and to reproduce the widely used thermodynamic
assessment of Gustafson from the year 1985 [23]. Currently there are several established
thermodynamic databases, which for the most part only report the optimized parameters
without any further information about the acquisition of these data, such as origin of the
data, experimental details or measurement errors. The connection to the original data is often
unclear or missing what makes the process of parameter generation not fully reproducible. This
lack of information can lead to difficulties and inexactness when, for example results from
these databases should be interpreted and processed in subsequent steps. Also, there is only
little information about the reliability of the thermodynamic models available from common
databases which means that the uncertainty cannot be estimated from the underlying database.
ESPEI provides a tool to create a new database from specifically selected literature data and to
perform a full TDB-generation process from this database. This allows the operator to adapt
literature database to his individual requirements and to generate a TDB which is used for the
following CALPHAD simulations.
In the present work, this feature of customizing the database was used to also augment the
content of information in the database, such as implementing a register of all used scientific
articles, extended information about the measured data points and details about the applied
experimental methods. The open-source Python-code of the ESPEI software allows adaption
and re-evaluation of the database at a later point, when for example new datasets are available
or certain characteristics are looked for in the data.
All these features provide new options to adapt the created TDB to the user’s individual
requirements and thus extending the possibilities of the CALPHAD method.
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4.1.2 Covered data

To obtain a comprehensive experimental data collection of the binary Fe-C system, over 190
different data points from 13 scientific publications were collected and recorded.
The literature database only includes datasets which are completely based on their own
measurements. This ensures to being able to capture as much information on the experiments
itself and to exclude measurement errors from previous experiments.
As several types of measured data can serve as input data for ESPEI, the collected datasets
include experimentally obtained values on phase equilibria, thermodynamic activities and ab-
initio data on formation enthalpies from density functional theory (DFT) calculations.
The newly created literature database was implemented implemented in a machine-readable
JSON-format. This enables the data to be directly used for the following steps within the
ESPEI method. For providing the data to the database, the scientific articles were studied in
terms of suitable data which then were digitized via JSON-files containing the experimental
data and further metadata in a pre-specified format. The various JSON-files serve then as the
input data for ESPEI.

Phase equilibrium data

The largest number of data points in the database stems from phase equilibrium studies
where the boundaries between two phase regions were investigated and determined. The phase
boundaries covered by experimental data in the created literature database are marked in the
Fe-C phase diagram in Figure 5.
The descriptions of these states consist of the measured carbon concentration, the temperature
at this point and the phases which are present at both sides of the boundary. Since for the
CALPHAD calculations the atmospheric pressure is also relevant, this information is also con-
tained in the datasets. For those cases which had no information about the present atmospheric
pressure available, normal pressure of 101 325 Pa was assumed.
Figure 5 exhibits all phase boundary datasets plotted in the Fe-C phase diagram. The red lines
represent the phase boundaries proposed by Gustafson’s assessment.
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The created database on zero-phase-fraction (ZPF) data contains 153 data points from ten
different scientific publications. An overview of the covered publications and the contained
data is presented in Table 2.

Table 2: List of experimental data on phase boundaries covered in the literature database

Author Year Measured phase boundary
No. of Literature

data points reference
Benz 1961 Austenite solidus (E-I) 8 [28]

Buckley 1960 Austenite solidus (E-I) & liquidus (B-C), stable eutectic (C’) 9 [29, 30]
Chicco 1982 Metastable eutectic (C), austenite liquidus (B-C) & solidus (E-I) 31 [31]
Chicco 1983 Austenite liquidus (A-B-C) 10 [32]

Chipman 1973 Austenite solidus (E-I) & liquidus (B-C) 14 [33]
Hasebe 1985 Metastable & stable α-solvus (P-Q, P’-Q’, G-P, G-S) 21 [34]
Konno - Metastable austenite solvus (G-S, S-E) 10 [35]

Lindstrand 1955 Metastable α-solvus (P-Q) 8 [36]
Ruer 1920 Stable liquidus (C’-D’) 26 [37]
Scheil 1961 Metastable & stable austenite solvus (S-E, S’-E’) 16 [38]

The publication dates of the articles on ZPF-data range from 1920 [37] to 1985 [34]. It is
noted that all experimental data that is registered in the literature database, was published
with exact values in form of tables. No data was estimated from graphs or diagrams in order
to prevent inaccuracies arising from graphic inspections.
The publications of Benz [28], Buckley [29, 30] and Chipman [33] were not accessible in the
original form. But their experimental results were cited by Chicco 1982 [31] and Chicco 1983 [32]
with the exact values in tabular form. Hence these data was also used for the literature collection.
As the Fe-C binary phase diagram as it is commonly known, in fact consists of the stable and
metastable phase diagram superposed in one diagram, the goal of the present work was to
create a thermodynamic description which is capable of describing both systems with one TDB.
The datasets which are available, include specific measurements from the stable as well as
from the metastable system, whereas some datasets can also be used for both systems.
To give an example, there are two different phase boundaries in Figure 6 marked in blue
and orange respectively. The blue line represents the G-S phase boundary, which divides the
bcc+fcc-phase region from the pure fcc-phase region, meaning that there is no carbide phase
adjacent to either side of the phase boundary. In contrast, the orange line marks the S-E phase
boundary, where the fcc-phase is in equilibrium with the fcc+Fe3C-phase region. As Fe3C
occurs exclusively in the metastable phase diagram, the available measurements reporting data
on this specific phase boundary were used only to describe the metastable system. Whereas
available data on the G-S phase boundary (marked in blue) were used for both, the stable and
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metastable system, as no system-specific information was contained. For terms of distinction,
all data on the stable system is marked with a prime symbol in Table 2.
On the following pages the covered phase equilibrium datasets are attached.

Figure 6: Data on the blue phase boundary are usable for the metastable and stable system, as there is no
information on carbide phases contained. Whereas at the orange phase boundary the Fe3C phase is
adjacent, which is a phase occuring exclusively in the metastable system, data on this type of phase
boundary are usable only for the metastable system where the data is stemming from.
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Chicco 1982 - Table 1

C C' E-I B-C

[K] [K] [K] [K]

0,0649 1541,15 1706,15

0,0777 1481,15 1682,15

0,0855 1440,65 1663,15

0,0983 1640,65

0,1006 1631,65

0,1123 1606,15

0,1231 1588,15

0,1336 1559,15

0,1436 1531,15

0,1534 1501,15

0,1612 1472,65

0,1669 1458,65

0,1728 1419,15 1424,15 1439,15

Chicco 1982 - Table 2 Chicco 1982 - Table 2

(citing Buckley 1960) (citing Benz 1961)

Exp. methods: not available Exp. method: not available

Temp.

C' E-I B-C E-I

[K] [K] [K] [K]

0,0628 1535,35 1708,65 0,0594 1558,35

0,1010 1645,55 0,0628 1555,95

0,1253 1583,45 0,0748 1504,05

0,1417 1540,55 0,0752 1501,55

0,1526 1493,55 0,0765 1493,15

0,1555 1504,75 0,0765 1492,15

0,1616 1474,35 0,0810 1471,65

0,1662 1426,75 0,0875 1442,95

Chicco 1982 - Table 3

Chicco 1982 - Table 3

(citing Chipman 1973)

Exp. method: not available

Temp. Temp.

[K] E-I B-C [K] E-I B-C

1420,15 0,0891 0,1770 1421,15 0,0911 0,1728

1423,65 0,0883 0,1759 1427,15 0,0899 0,1714

1428,15 0,0879 0,1752 1473,15 0,0806 0,1598

1473,15 0,0794 0,1626 1523,15 0,0699 0,1443

1523,15 0,0690 0,1461 1573,15 0,0577 0,1265

1573,15 0,1280 1623,15 0,0453 0,1053

1623,15 0,1061 1673,15 0,0322 0,0818

1673,15 0,0818

x_C

Temperature

x_C x_C

x_C

Exp. methods: Samples drawn from 

melt, DTA, spectroscopy, direct 

combustion

x_C

Exp. methods: Samples drawn from melt, measured by 

DTA, spectroscopy, direct combustion

Temperature

28



Chicco 1983 - Table 1 Chicco 1983 - Table 2

Temp.

x_C E-I A I E-I C C'

[K] [K] [K] [K] [K] [K]

0,0214841 1718,65 0,0894844 1420,15

0,0326192 1677,15 0,08868 1423,2

0,0405147 1645,65 0,0789412 1473,2

0,0500294 1604,65 0,0686251 1523,2

0,0593984 1568,15 0,0577056 1573,15

0,0740116 1495,15 0,0461548 1623,15

0,0878745 1427,15 0,0335015 1673,15

0,0205846 1723,15

0,0083145 1767,15

0 1800,15

Chicco 1983 - Table 2

(citing Chipman 1973)

Exp. methods: not available

A I E-I C C' B-C

[K] [K] [K] [K] [K] [K]

0 1800,15

0,0078554 1768,15

0,019233 1723,15

0,0321776 1673,15

0,0452904 1623,15

0,0577056 1573,15

0,0698724 1523,15

0,0805754 1473,15

0,0817982 1673,15

0,0898862 1427,15

0,0910899 1421,15

Hasebe 1985 - Table 1 Hasebe 1985 - Table 2

Temp. Temp.

[K] P'-Q' P-Q [K] G-P G-S

773,15 6,51E-05 1013,15 1,02E-03 0,031205

823,15 4,65E-05 1,07E-04 1023,15 9,43E-04 0,0277442

873,15 1,16E-04 2,14E-04 1048,15 7,85E-04 0,0199543

923,15 2,84E-04 4,09E-04 1073,15 6,37E-04 0,0146612

948,15 5,76E-04 1123,15 3,76E-04 0,0070282

973,15 6,27E-04 8,08E-04

993,15 1,00E-03

Temperature

x_C

x_C x_C

Exp. method: Diffusion couple 

method

Exp. methods: Samples 

drawn from melt, DTA, 

spectroscopy, direct 

combustion

Temperature

Exp. methods: Samples 

drawn from melt, DTA, 

spectroscopy, direct 

combustion

x_C

Exp. method: Diffusion couple 

method
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Konno - Table 2 Lindstrand 1955 - Table 2 Ruer 1920 - Table 1

Temp. Temp.

x_C G-O-S-E x_C P-Q Temp. x_C

[K] [K] [K] C'-D'

0,0016252 1176,15 9,15E-04 986,15 1463,15 0,17420

0,0036625 1161,15 6,04E-04 933,15 1488,15 0,17662

0,0088649 1111,15 4,28E-04 879,15 1538,15 0,18006

0,0165211 1073,15 3,16E-04 841,15 1578,15 0,18449

0,025962 1035,15 2,32E-04 807,15 1658,15 0,19159

0,0352622 1005,15 1,67E-04 772,15 1693,15 0,19527

0,0457228 1088,15 1,26E-04 741,15 1753,15 0,19793

0,048310 1148,15 9,30E-05 717,15 1803,15 0,20387

0,0517435 1188,15 1853,15 0,20714

0,0615077 1288,15 1888,15 0,20811

1943,15 0,21330

1983,15 0,22002

Ruer 1920 - Table 2 Scheil 1961 - Table 3 Scheil 1961 - Table 5

Temp. x_C Temp. x_C Temp. x_C

[K] C'-D' [K] S-E [K] S'-E'

1738,15 0,19892 1014,15 0,0363 1076,15 0,0405

1843,15 0,20779 1015,15 0,0365 1165,15 0,0535

1953,15 0,21715 1044,15 0,0395 1268,65 0,0674

2073,15 0,23073 1070,15 0,0427 1344,15 0,0773

2173,15 0,23939 1097,15 0,0461

2273,15 0,25181 1126,15 0,0500

2373,15 0,26801 1164,65 0,0538

2473,15 0,28117 1220,15 0,0612

2573,15 0,29619 1266,15 0,0669

2673,15 0,31235 1301,65 0,0716

2773,15 0,32850 1344,15 0,0772

2823,15 0,35222 1377,65 0,0816

2873,15 0,36848

2923,15 0,37501

Exp. method: Gas-

equilibration, 

combustion analysis

Exp. method: C-solubility via   

elastic relaxation

Exp. methods: Quenching of 

graphite-saturated liquid Fe. 

Combustion gravimetry

Exp. method: not 

available

Exp. methods: Quenching of 

graphite-saturated liquid Fe. 

Combustion gravimetry

Exp. method: Gas-

equilibration, 

combustion analysis
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Thermodynamic activities

Experimental data on thermodynamic activities are included in the database for the stable
system from Lobo [39] who made 37 measurements of the activity of graphite in α-ferrite
and from Smith [40] who measured 42 activities of graphite in austenite. The experimental
technique that was used in both articles was equilibration of the steel samples with CH4/H2

and CO/CO2 gas mixtures, followed by measuring the weight gains of the samples in order
to determine the absorbed carbon. The produced samples contained carbon contents ranging
from 0.006 at.% to 0.076 at.% at temperatures from 682 ◦C to 848 ◦C in Lobo’s measurements
and 1.8 at.% to 6.6 at.% measured at 800 ◦C and 1000 ◦C in Smith’s measurements. The
experimental activity datasets are given in Table 3 and 4.

Table 3: Data on activities of graphite in bcc-Fe from Lobo [39] covered in the literature database.

Temp. C-content xC C-activity aC

[K]
1121.15 0.00022778 0.084
1121.15 0.00033468 0.127
1086.15 0.00016736 0.088
1086.15 0.00024638 0.131
1086.15 0.00033468 0.175
1086.15 0.00044155 0.219
1086.15 0.00046013 0.244
1086.15 0.00046478 0.263
1070.15 0.00015341 0.1
1070.15 0.00032538 0.2
1070.15 0.00047872 0.3
1056.15 0.00013017 0.087
1056.15 0.00025102 0.174
1056.15 0.00036720 0.261
1056.15 0.00051124 0.348
1056.15 0.00063666 0.434

Temp. C-content xC C-activity aC

[K]
1026.15 0.00019990 0.172
1026.15 0.00024173 0.259
1026.15 0.00047872 0.431
1026.15 0.00051124 0.517
1026.15 0.00062737 0.603
1026.15 0.00072491 0.689
1026.15 0.00076206 0.732
1000.15 0.00017666 0.268
1000.15 0.00041832 0.58
1000.15 0.00041367 0.625
1000.15 0.000455487 0.714
1000.15 0.00060879 0.892
975.15 0.00019525 0.4
975.15 0.00028820 0.6
975.15 0.00038114 0.8
975.15 0.00046943 1
955.15 0.00006044 0.158
955.15 0.00017666 0.473
955.15 0.00021849 0.63
955.15 0.00028356 0.788
955.15 0.00034397 1
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Table 4: Data on activities of graphite in fcc-Fe from Smith [40] covered in the literature database.

Temp. C-content xC C-activity aC

[K]
1073.15 0.013797 0.290 0.280
1073.15 0.018330 0.397 0.385
1073.15 0.022831 0.509 0.496
1073.15 0.027230 0.630 0.614
1073.15 0.031736 0.753 0.742
1073.15 0.036141 0.888 0.882
1073.15 0.039642 1.000 1.000

Temp. C-content xC C-activity aC

[K]
1273.15 0.004633 0.050 0.041
1273.15 0.009232 0.097 0.081
1273.15 0.013797 0.144 0.127
1273.15 0.018330 0.195 0.173
1273.15 0.022831 0.247 0.225
1273.15 0.027230 0.301 0.282
1273.15 0.031736 0.362 0.341
1273.15 0.036140 0.424 0.406
1273.15 0.040515 0.491 0.447
1273.15 0.044858 0.563 0.547
1273.15 0.049170 0.639 0.626
1273.15 0.053453 0.720 0.709
1273.15 0.057706 0.806 0.800
1273.15 0.061929 0.899 0.896
1273.15 0.066123 1.000 1.000

Formation enthalpies

The literature database also contains formation enthalpies from DFT-calculations from three
different publications [41, 42, 43] which calculated solution enthalpies of C in α- and γ-Fe with
DFT. Table 5 gives the calculated enthalpies, considered phases and reference states of the
calculations.
A comment regarding the dataset of Ponomareva [43]: The reference state of Fe for this
DFT-calculation was reported as fcc-Fe. As ESPEI automatically assigns reference states for the
calculations and uses bcc-Fe as the default, the reported formation enthalpy from the literature
had to be corrected for usage in ESPEI. The corrected formation enthalpy was determined to
be 8077 J mol−1 instead of 177.01 J mol−1.
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Table 5: Solution enthalpies of C in Fe from DFT-calculations covered in the database. The formation enthalpy
of Ponomareva had to be corrected in terms of the considered Fe-phase and is marked with * for this
reason.

Author Literature Phase Reference state xC Hform

reference of C [J/mol]
Hristova [41] bcc-Fe Diamond 0.018182 1262.93

Jiang [42] bcc-Fe Graphite 0.007752 553.41
Ponomareva [43] fcc-Fe hcp-C 0.009174 177.01 *

(corrected to 8077)

4.2 Results of ESPEI-optimization

4.2.1 Probabilities, parameter evolutions, correlations

Figure 7: A detailed view on the probabilities of the various Markov chains, which represent the different
parameter sets. Since a decrease of the negative logarithm corresponds with a growing probability,
the likelihood significantly increases with growing number of iterations.

The literature database for the following results includes three data types: thermodynamic ac-
tivities, phase boundary data and formation enthalpies from DFT-calculations. After performing
an MCMC optimization within ESPEI, the convergence of the posterior probability distribution
is evaluated and the final parameter set is reached when the MCMC process has converged.
In Figure 7 the convergence of the negative logarithm of the probability function -ln(prob) is
depicted. It is noted that in statistical methods often the logarithm of the probability is used
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and that the falling values of -ln(prob) correspond to an increasing probability.
ESPEI allows to analyze the likelihoods resulting from the parameter sets: According to Figure 7
the probability of the resulting model increases significantly within the first 100 iteration
steps of the optimization process. The log-probability of the initial parameter set proposed by
Gustafson [23] was -30225 and after 3000 iterations, the parameters converged to an optimized
parameter set with a log-probability increased to -23987. This verifies a significant improvement
of the thermodynamical description as the experimental data are described more accurately.
As the MCMC algorithm samples a set of starting parameters normally distributed around the
initial parameters in order to overcome potential local minima, the -ln(prob) plotted in Figure 7
depicts drastically higher values for first iterations. These probabilities relate to the sampled
starting parameters.

Figure 8: Evolution of the bcc- (left) and fcc-parameter chains (right image). After a so called burn-in phase,
the MCMC algorithm proceeds with mostly small changes in the parameters.

The resulting Redlich-Kister parameters show two different trends during the optimization: The
bcc- and fcc-parameters (Figure 8) both are relatively stable and do not differ greatly from the
initial values after the first phase of roughly 100 iterations, where the different Markov chains
consistently approach the optimal value.
In contrast, the parameters of the liquid phase (Figure 9) deviate significantly over a large
part of the optimization. One liquid parameter even changes from a positive to a negative sign
and they also vary in a much wider range from their initial values than the parameters of the
bcc- and fcc-phase. Convergence was reached when the likelihood and the excess parameters
attained a stable level for at least 500 iterations. The final set of parameters was obtained after
3000 iterations and the exact values are presented in Table 6.
The behavior of the liquid parameters, exhibiting pronounced spreading of the values during
the optimization process, indicates strong correlations between the different parameters. The
covariance is analyzed in a corner plot, shown in Figure 10, which presents the parameter
distributions along the diagonal and the correlations between each parameter pair. The three
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pairs marked in red stand out, showing elongated shapes of the graphs. This clearly implies
correlations between the liquid parameters 1 with 2, 1 with 3 and 2 with 3.
This means that the increase of one liquid-parameter is corrected by the decrease of another
one. Regarding the relatively large number of parameters and given the strong correlations,
this is an indication that a reduced number of parameters could also be sufficient to describe
the liquid phase.

Figure 9: Evolution of the five liquid phase parameters over 1500 iterations. The excess parameters strongly
deviate from their initial values in the beginning of the optimization process and oscillate in a wider
range than the bcc- and fcc-parameters.
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Table 6: Initial [23] and optimal Redlich-Kister-parameters after 3000 iterations. The bcc- and fcc-parameters
exhibit relatively small changes, whereas the liquid parameters varied in a wider range.

BCC FCC Liquid
Initial -190 -3.47e+04 -1.24e+05 28.5 1.93e+04 4.93e+04 19

Optimized -188.91 -3.45e+04 -1.45e+05 34.93 -1.79e+04 7.88e+03 11.11
Std. dev. 1.25e-02 4.12 2.38e+03 0.74 3.77e+03 2.45e+03 1.21

Figure 10: The corner plot represents the parameter distributions and the covariances. The three plots marked
in red are standing out as their shapes are clearly elongated. This applies to strong correlations of
the liquid parameters 1 with 2, 1 with 3 and 2 with 3.

4.2.2 Resulting phase diagram

One of the main goals of this thesis was to use ESPEI to generate a Gibbs energy model for
the binary Fe-C system from the newly established literature database and to compare these
results to Gustafson’s assessment from 1985 [23]. For the model optimization with ESPEI the
suggested model parameters from Gustafson were used as the initial parameters followed by an
optimization of parameters via the MCMC algorithm.
The underlying experimental data includes phase boundary data for the stable and metastable
system, thermodynamic activities of the stable system and solution enthalpies from DFT-
calculations.
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One aspect of the ESPEI method is that driving forces are defined in order to quantify the
deviations of the calculated phase boundaries from the experimental phase equilibria. For each
experimental data point the driving force is calculated and serves as a measure for the error
between the obtained model and the literature data. The following plots (Figures 11 and 12)
present the resulting optimized phase diagrams after 3000 iterations including the underlying
experimental data points. Each considered data point is represented by a dot in the diagram
with the color of the dot defining the determined driving force: Light yellow stands for low
driving forces, meaning experimental and modelled phase boundaries are corresponding; dark
red dots represent high driving forces and larger deviations.
As it is shown in Figures 11 and 12 the resulting phase diagrams are in good agreement with
the experimental data: The stable Fe-C system (Figure 11) was calculated correctly, as the
cementite phase does not appear. It is mentioned that for the calculations cementite was not
excluded from the possible phases, but the thermodynamic model correctly predicted only
graphite as an appearing carbide-phase in the stable phase diagram. The largest number of
literature data points show low driving force. A region of higher driving forces is the eutectic
point where a large number of data points is available. Small deviations can have a relatively
strong effect on the calculated driving forces. The data points describing the liquidus line at
high C-contents also exhibit large driving forces.
For the metastable phase diagram (Figure 12) only bcc-Fe, fcc-Fe, cementite and liquid were
considered, as graphite is thermodynamically not a possible phase in the metastable system. The
resulting phase diagram also agrees with the literature data, calculating slightly different phase
boundaries than for the stable system. The driving forces in the region of the eutectic point
are slightly higher than in other regions. For most experimental data points the driving forces
are relatively equally distributed. Some scattered data points exhibit pronounced deviations.
The bcc-phase region is characterized by a very low solubility limit. According to Figures 13
and 14 the computed phase boundaries fit the experimental data without any significant
differences considering the very small amounts of dissolved C.
In Figures 15 and 16 the phase diagrams of Gustafson compared to the results of this work and
the underlying phase boundary data are depicted. In both, the stable and the metastable system,
the differences between the ESPEI-optimized and Gustafson’s version are not substantial.
In the stable phase diagram the experimental data points of the liquidus line at high C-contents
clearly differ from Gustafson’s version. The ESPEI-optimization leads to a differently curved
liquidus line which fits the experimental data more accurate. It is noted that since the literature
database used for this work is based on the literature sources used by Gustafson, the differ-
ences obviously are not large, but in some regions of the phase diagram there are noticeable
improvements resulting from the MCMC-based optimization.
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Figure 13: Zoom into the bcc-region of the stable phase diagram: The optimized bcc-solvus line corresponds
with the experimental data points of Hasebe [34], resulting in small driving forces.

Figure 14: Zoom into the bcc-region of the metastable phase diagram: The datasets of Hasebe [34] and
Lindstrand [36] both report similar maximum C-solubilities. The optimized solvus-line fits with the
experimental data without causing large driving forces.
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Figure 15: The optimized stable Fe-C phase diagram compared to Gustafson’s version and the underlying phase
boundary data. The largest deviations occur at the liquidus line at higher C-contents.

Figure 16: The optimized metastable Fe-C phase diagram compared to Gustafson’s version and the underlying
phase boundary data. The differences between the two models are relatively small.
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4.2.3 Modelled activities

As another feature of the resulting Gibbs energy model, the thermodynamical activities were
investigated as well. Therefore the thermodynamic activities of the various phases in the system
are calculated from the Gibbs descriptions. The experimental measurements covered in the
literature database agree with the activities of graphite in bcc- and fcc-Fe as well, as it is
depicted in Figures 17 and 18.

Figure 17: The thermodynamic model optimized with the MCMC algorithm also calculates the thermodynamic
activities. After fitting and optimizing the model to all collected datatypes, the experimental points
of graphite in bcc-Fe are corresponding with the computed activity model, represented by the lines.

Figure 18: The model of the activities of graphite in fcc-Fe also exhibits agreement with the experimental data.
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4.2.4 Modelled formation enthalpies

The resulting thermodynamic database was also used to compare the formation enthalpies.
The literature data which served as input data and the values obtained from the optimized
model are presented in Table 7. The comparison shows that the model gives values higher than
the literature data but still of a reasonable order of magnitude.
As mentioned in Chapter 4.1.2, for the calculations in ESPEI the bcc-phase is considered as
the reference phase of Fe. As Ponomareva referred to fcc-Fe, the value was corrected to the
bcc-Fe, which leads to a corrected formation enthalpy of 8077 J mol−1.

Table 7: Comparison of the formation enthalpies from literature with the modelled values. As ESPEI considers
the bcc-phase as the default reference phase of Fe, the enthalpy of Ponomareva had to be corrected.

Author Literature Phase Reference phase xC Hform Hform
model

reference of C [J/mol] [J/mol]
Hristova [41] bcc-Fe Diamond 0.018182 1262.93 1917.6

Jiang [42] bcc-Fe Graphite 0.007752 553.41 832.2
Ponomareva [43] fcc-Fe hcp-C 0.009174 8077 * 8294.6

(corrected)

4.2.5 Conflicting datasets

An important aspect of creating a literature database is evaluating and selecting reliable
and consistent data. During the process of gathering different data, there were also datasets
available which reported contradictory data. This can be datasets which do not agree about
the same trend in a property, for example on the bcc-solvus line. The bcc-phase region is
characterized by very low carbon solubility which reaches its maximum at a temperature of
about 1000 K. The literature search led to several publications with measurements on this
phase boundary. The available literature sources on the bcc-solvus line in the stable system
consisted of Hasebe [34] and Chipman [44].
Whereas Hasebe measured a maximum C-solubility of 0.06 at.%, Chipman reported 0.02 at.%
and Gustafson’s thermodynamic model gives a maximum C-solubility of about 0.09 at.%. Even
though those differences are small in absolute numbers, the relative difference in this case
is significant, as Hasebe reports a solubility limit almost three times as high as Chipman’s.
Considering the very low solubility limit of C in bcc-Fe, conducting measurements with high
accuracy is difficult and the measurement errors are presumably relatively large in this region
of the phase diagram.
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Figure 19: The model based on stable datasets and Chipman’s data [44] with a lower C-solubility limit in bcc-Fe
than Hasebe’s [34] leads to significant deviations between the model and experimental activity data.

Including only one of the measurements for an MCMC-simulation, the algorithm is capable of
fitting the phase boundaries to both datasets equally. Including both datasets for an optimiza-
tion, the algorithm within ESPEI will always fit the phase boundary with lower C-contents due
to the error-definition of the method. This is because the algorithm aims to minimize the driving
forces, and therefore the phase boundary is calculated to lie at the lower C-concentration as this
leads to minimal driving forces. Therefore, it is critical to select one of the two contradictory
datasets.

Figure 20: The obtained model of the stable system including Hasebe’s dataset [34] is in good agreement with
the measured activities.
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While in the phase diagram it was not possible to differentiate the two datasets, the activity
models preferred the dataset with the higher C-solubility limit: The modelled activities in
Figure 19 were generated with a database including only stable datasets and only Chipman’s
data for the bcc-solvus line. The result exhibits significant deviations between the activity
model and the measured data points, whereas the assessment of the stable system including
only on Hasebe’s bcc-solubility data (Figure 20) agrees with the experimental data. Based on
these conclusions Chipman’s data on the bcc-solubility limit was not included in the literature
database, but Hasebe’s dataset only.

4.2.6 Uncertainty quantification

After completing an MCMC simulation and obtaining a converged parameter set, the resulting
probability distributions are propagated to the phase boundaries to give the uncertainties of
the model and to evaluate the effects of the various datasets.
Figure 21 presents the calculated uncertainties of the stable phase diagram. In order to depict
the uncertainties, the various phase boundaries relating to the different parameter chains are
superimposed. The blurred lines represent the phase boundaries with larger uncertainties as
the parameter chains propose several slightly different phase boundaries. The gaps occurring
between some of the lines are due to numerical reasons and have no meaning.
For the stable phase diagram, most of the phase boundaries are characterized by small uncertain-
ties. The region around the eutectic and the liquidus line at higher C-contents (Figure 22) are
associated with the largest uncertainties. This correlates with the smaller number of available
data for this part of the phase diagram. It can also be assumed that for high temperatures
and high C-contents the measurement errors increase, resulting in lower reliability of the data
points.
For the metastable system there is a relatively large number of data points available which
causes high reliability of the modelled phase boundaries. As for the stable system, the region
of higher C-contents show larger uncertainties as there is no experimental data available for
C-contents higher than the eutectic point at 17.3 at.% which corresponds to 4.3 wt.%.
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Figure 21: By superimposing the phase boundaries determined by the various parameter chains, the reliability
of the modelled phase boundaries can be estimated. In regions with lower density of measured data
the uncertainties are larger than in regions with more data points available.

Figure 22: Zoom into the region of higher C-contents: less data points are available, which increases the uncer-
tainty of the liquidus line. Also higher temperatures and high C-contents evoke larger measurement
errors which lead to larger deviations as well.
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Figure 23: The large number of data points describing the metastable system lowers the uncertainties. Slightly
larger uncertainties are observed for the liquidus line at higher C-contents.

Calculating the phase boundary uncertainties points out that providing additional data points in
specific regions of the phase diagram can help to improve the accuracy of the thermodynamic
description. While the available data for C-contents up to the eutectic point result in small
uncertainties, new experiments at higher C-contents will have the largest benefit for the resulting
thermodynamic model. This applies for both, the stable and the metastable system.
The calculated uncertainties of the modelled activities and formation enthalpies are very small.
For the case of the activity, the deviations arising from uncertainty are smaller than the line
thickness in Figure 17 and are therefore not relevant.
In the case of the formation enthalpies the determined uncertainties are negligible as well. These
results correlate with the very small variances of the optimized bcc- and fcc-Redlich-Kister
parameters (see Table 6 and Figure 10).
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5 Summary

The goal of this work was to perform a thermodynamic assessment of the binary Fe-C system
and to compare to the Gibbs energy model of Gustafson from 1985 [23] which is still the most
accepted Fe-C-CALPHAD assessment. For this work the first step was a comprehensive litera-
ture search to collect thermodynamical data which served as the foundation of the assessment.
The literature database contained phase boundary data and thermodynamic activities from
experiments and formation enthalpies from ab-initio calculations. The Python-based database
allows adaption to user-specific requirements and easy reassessment at a later time, for example
when new data is added.
The parameter optimization for the CALPHAD assessment was performed with ESPEI with
MCMC in the Bayesian framework also provides the probability distributions of the parameters.
This allows the propagation of the parameter uncertainties and the effect of different input
data on the quantities of interest that can be observed.
As a result, a new parametrization for the Fe-C binary system was obtained which is fully
reproducible and has a higher probability to explain the thermodynamic data points compared
to the parameter set proposed by Gustafson within the chosen error definition. The optimized
phase diagram was presented along with the relating parameters in form of a TDB-file which
considers the underlying data and estimates the uncertainties of the calculated phase bound-
aries.
It was found that the parameters of the liquid phase can be strongly altered and that a
substantially different value should be chosen for the third parameter. Investigations revealed
that including various data types help select reliable datasets and increase the accuracy of
an assessment. Based on the calculated uncertainties it was pointed out that providing new
phase boundary data points in the eutectic and the high carbon-region can further improve the
reliability of the assessment. The calculated uncertainties of the activities were found to be
very small. The formation enthalpies exhibited negligible uncertainties as well. This correlates
with small variances of the optimized bcc- and fcc-Redlich-Kister parameters.
The ability to provide the resulting reliability of an assessment offers great potential for future
investigations of multicomponent systems, as regions of the phase diagram with lower reliability
can be estimated based on the uncertainty quantification and new experiments can be guided.
This can greatly improve the accuracy of a thermodynamic assessment.
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Appendix

Software versions

ESPEI 0.8.9
pycalphad 0.10.0

Resulting TDB-file

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

$ Date: 2022-09-05 17:13

$ Components: C, FE, VA

$ Phases: BCC_A2, CEMENTITE, DIAMOND_A4, FCC_A1, GRAPHITE, LIQUID

$ Generated by johannes (pycalphad 0.10.0)

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

ELEMENT C GRAPHITE 12.011 1054.0 5.7423 !

ELEMENT FE BCC_A2 55.847 4489.0 27.2797 !

ELEMENT VA VACUUM 0.0 0.0 0.0 !

FUNCTION GFECEM 273.0 -10195.860754-0.0007*T**2-118.47637*T*LOG(T) +

590527.0*T**(-1) + 690.949887637*T; 6000.0 N !

FUNCTION GFEFCC 273.0 -1462.4 + GHSERFE + 0.00064*T**2-1.15*T*LOG(T) +

8.282*T; 1811.0 Y -27098.266 + 2.78854E+31*T**(-9)-46.0*T*LOG(T) +

300.25256*T; 6000.0 N !

FUNCTION GHSERCC 273.0 -988.25091-0.01706952*T**2 +

1.76583*T*LOG(T)-7.39898691*T; 350.0 Y -17368.441 +

12000000000.0*T**(-3)-264300000.0*T**(-2)-0.0004723*T**2-24.3*T*LOG(T) +

2562600.0*T**(-1) + 170.73*T; 6000.0 N !

FUNCTION GHSERFE 273.0 1225.7-0.00439752*T**2-23.5143*T*LOG(T) +

77358.5*T**(-1)-5.89269E-08*T**3 + 124.134*T; 1811.0 Y -25383.581 +

2.2960305E+31*T**(-9)-46.0*T*LOG(T) + 299.31255*T; 6000.0 N !

FUNCTION VV000 1 -188.90701058552; 10000 N !

FUNCTION VV001 1 -144736.11149947; 10000 N !

FUNCTION VV002 1 34.9326403568954; 10000 N !
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FUNCTION VV003 1 -17876.1687892625; 10000 N !

FUNCTION VV004 1 7879.15796135308; 10000 N !

FUNCTION VV005 1 11.1107039382744; 10000 N !

FUNCTION VV006 1 -34523.792800157; 10000 N !

TYPE_DEFINITION % SEQ * !

DEFINE_SYSTEM_DEFAULT ELEMENT 2 !

DEFAULT_COMMAND DEFINE_SYSTEM_ELEMENT VA !

TYPE_DEFINITION ^ GES AMEND_PHASE_DESCRIPTION BCC_A2 MAGNETIC -1.0 0.4 !

TYPE_DEFINITION & GES AMEND_PHASE_DESCRIPTION CEMENTITE MAGNETIC -3.0 0.28 !

TYPE_DEFINITION * GES AMEND_PHASE_DESCRIPTION FCC_A1 MAGNETIC -3.0 0.28 !

PHASE BCC_A2 %^ 2 1.0 3.0 !

CONSTITUENT BCC_A2 :FE:C, VA: !

PHASE CEMENTITE %& 2 3.0 1.0 !

CONSTITUENT CEMENTITE :FE:C: !

PHASE DIAMOND_A4 % 1 1.0 !

CONSTITUENT DIAMOND_A4 :C: !

PHASE FCC_A1 %* 2 1.0 1.0 !

CONSTITUENT FCC_A1 :FE:C, VA: !

PHASE GRAPHITE % 1 1.0 !

CONSTITUENT GRAPHITE :C: !

PHASE LIQUID % 1 1.0 !

CONSTITUENT LIQUID :C, FE: !

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

$ C $

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

PARAMETER G(DIAMOND_A4,C;0) 273.0 -16359.441 +

11100000000.0*T**(-3)-261000000.0*T**(-2)-0.0004723*T**2-24.31*T*LOG(T) +

2698000.0*T**(-1) + 175.61*T; 6000.0 N !

PARAMETER G(GRAPHITE,C;0) 273.0 GHSERCC; 6000.0 N !
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PARAMETER G(LIQUID,C;0) 273.0 117369.0 + GHSERCC-24.63*T; 6000.0 N !

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

$ FE $

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

PARAMETER BMAGN(BCC_A2,FE:VA;0) 273.0 2.22; 6000.0 N !

PARAMETER G(BCC_A2,FE:VA;0) 273.0 GHSERFE; 6000.0 N !

PARAMETER TC(BCC_A2,FE:VA;0) 273.0 1043.0; 6000.0 N !

PARAMETER BMAGN(FCC_A1,FE:VA;0) 273.0 -2.1; 6000.0 N !

PARAMETER G(FCC_A1,FE:VA;0) 273.0 -1462.4 + GHSERFE +

0.00064*T**2-1.15*T*LOG(T) + 8.282*T; 1811.0 Y -1713.815 + GHSERFE +

4.925095E+30*T**(-9) + 0.94001*T; 6000.0 N !

PARAMETER TC(FCC_A1,FE:VA;0) 273.0 -201.0; 6000.0 N !

PARAMETER G(LIQUID,FE;0) 273.0 12040.17 +

GHSERFE-3.6751551E-21*T**7-6.55843*T; 1811.0 Y -10839.7-46.0*T*LOG(T) +

291.302*T; 6000.0 N !

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

$ C-FE $

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

PARAMETER BMAGN(BCC_A2,FE:C;0) 273.0 2.22; 6000.0 N !

PARAMETER G(BCC_A2,FE:C;0) 273.0 322050.0 + 3.0*GHSERCC + GHSERFE + 75.667*T;

6000.0 N !

PARAMETER L(BCC_A2,FE:C,VA;0) 273.0 T*VV000; 6000.0 N !

PARAMETER TC(BCC_A2,FE:C;0) 273.0 1043.0; 6000.0 N !

PARAMETER BMAGN(CEMENTITE,FE:C;0) 273.0 1.008; 6000.0 N !

PARAMETER G(CEMENTITE,FE:C;0) 273.0 GFECEM; 6000.0 N !

PARAMETER TC(CEMENTITE,FE:C;0) 273.0 485.0; 6000.0 N !

PARAMETER BMAGN(FCC_A1,FE:C;0) 273.0 -2.1; 6000.0 N !

PARAMETER G(FCC_A1,FE:C;0) 273.0 77207.0 + GHSERCC + GFEFCC-15.877*T; 6000.0

N !

PARAMETER L(FCC_A1,FE:C,VA;0) 273.0 VV006; 6000.0 N !

PARAMETER TC(FCC_A1,FE:C;0) 273.0 -201.0; 6000.0 N !

PARAMETER L(LIQUID,C,FE;0) 273.0 T*VV002 + VV001; 6000.0 N !

PARAMETER L(LIQUID,C,FE;1) 273.0 VV003; 6000.0 N !

PARAMETER L(LIQUID,C,FE;2) 273.0 -1.0*T*VV005 + VV004; 6000.0 N !
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