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Abstract

The demand for materials that withstand harsh conditions in high-performance applications

has increased drastically in recent years. Due to the predicted outstanding properties of high

entropy alloys (HEAs) at elevated temperatures, this class of materials has attracted scientific

attention. Within this thesis, the phase stability of TiAl-based HEAs, namely TiAlNbV-

Mo and TiAlNbV-Mn systems, is investigated by first-principles calculations using Density

Functional Theory (DFT) as implemented in the VASP code. The aim is to find elements

for a HEA that promote the formation of a single-phase solid solution alloy and do not have

the tendency to decompose into intermetallic phases. The information on the phase stability

is provided by the evaluation of mixing energies. First of all, the stability of the HEAs

and their possible decomposition products are evaluated at 0K. Furthermore, the stabilizing

effect of entropy is included by the contribution of the configurational entropy followed by

the vibrational entropy estimated within the harmonic Debye model. Results obtained by

the Exact Muffin-Tin Orbitals (EMTO) method are also presented for comparison. The

predicted phase stabilities are discussed in light of existing experimental literature results

showing the evolution of microstructure before and after heat treatments. Overall, TiAlNbV-

Mo has been identified as a kinetically stabilized HEA, whereas TiAlNbV-Mn decomposes

into body-centered cubic and hexagonal Laves phases.
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Kurzfassung

Der Bedarf an Materialien, die die rauen Bedingungen bei Hochleistungsanwendungen stand-

halten müssen, ist in den letzten Jahren drastisch gestiegen. Aufgrund der vorausgesagten

herausragenden Eigenschaften von Hochentropielegierungen (HEAs) bei hohen Tempera-

turen, hat diese Materialklasse die Aufmerksamkeit der Wissenschaft auf sich gezogen. Im

Rahmen dieser Arbeit wird die Phasenstabilität von TiAl basierten HEAs, nämlich TiAlNbV-

Mo und TiAlNbV-Mn, mittels ab initio Berechnungen unter Verwendung der Dichtefunk-

tionaltheorie, implementiert in VASP, untersucht. Das Ziel ist es Elemente für eine HEA zu

finden, die die Bildung von einphasigen Mischkristallen begünstigen und keine Neigung be-

sitzen sich in der Form von intermetallische Phasen zu entmischen. Die Information für die

Phasenstabilität von HEAs liefert die Auswertung von Mischungsenergien. Als erstes wird

die Stabilität der HEAs und deren möglichen Entmischungsprodukte bei 0K betrachet. In

weiterer Folge wird zusätzlich der stabilisierende Effekt der Entropie miteinbezogen, zuerst

durch den Anteil der strukturmäßigen Entropie, gefolgt von der Schwingungsentropie, die

durch das Debye Modell abgeschätzt wird. Zum Zwecke der Vergleichbarkeit werden auch

Ergebnisse der Exact Muffin-Tin Orbitals (EMTO) Methode dargelegt. Die vorhergesagten

Phasenstabilitäten werden im Licht von bereits in der Literatur existierenden Ergebnissen,

welche die Entwicklung der Mikrostruktur vor und nach Wärmebehandlung zeigen, disku-

tiert. Im Großen und Ganzen konnte TiAlNbV-Mo als kinetisch stabilisierte HEA identi-

fiziert werden, wohingegen sich TiAlNbV-Mn in kubisch raumzentrierte und in hexagonale

Laves Phasen entmischt.
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Chapter 1

Introduction

The phenomenon that High Entropy Alloys (HEAs) attracted huge interest in the last years

is based on their expected ability to withstand high temperatures and exhibit outstanding

properties, such as high hardness, fracture toughness, fatigue-, wear-, oxidation- and corro-

sion resistance [1]. HEAs consist of at least five different, often metallic, elements contained

in the equiatomic composition [2, 3]. Due to the combination of various elements, one would

expect a high probability that intermetallic phases will be formed. However, the dominant

feature of this material group, namely the high entropy or rather the high configurational

entropy contribution, works against the decomposition of the alloy. Scientists aim for these

alloys due to their high potential for high-performance applications, such as in the aviation

or automotive industry, although it still turns out to be a challenging task to discover stable

single-phase HEAs. Nevertheless, the investigation of HEAs (quinaries) and their equiatomic

decomposition products (unaries, binaries, ternaries or quaternaries) will be the focus of this

thesis.

The first stable single-phase HEA, the well-known Cantor alloy CrMnFeCoNi, was discovered

in the early 1980s [4]. Since this time, only a little research has been done on these special

alloys until the last decade. One reason for this long period without any success in this

field was, that the experimental investigation of such a huge amount of possible elemental

combinations is very effortful. This can be overcome by employing modelling techniques

such as Density Functional Theory (DFT) [5]. DFT is, however, extremely demanding on

resources. Recent advances in hardware and available computational power have led to a

renewed surge of interest. DFT, as implemented in the Vienna Ab initio Simulation Package

(VASP) [6, 7], turns out to be the perfect approach to deal with the high variety of HEAs

and to detect candidates for stable alloys.

The ambition to find a lightweight HEA is fulfilled by going in the direction of TiAl-based

alloys. The presence of Al, however, often promotes the formation of intermetallic phases [8],

especially in combination with Ti [9]. Nevertheless, investigations from literature predict that
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1. Introduction

TiAlNbV solidifies in a single-phase body-centred cubic (BCC) microstructure [10], though

the thermodynamic stability has been proven to be insufficient [11]. This stability should

be increased by adding Mo or Mn [12], both known BCC phase stabilizers [13]. In the case

of TiAlNbV-Mo, a stable ordered B2 microstructure has been already detected [14]. Hence,

the phase stability of TiAlNbV-Mo is promising and will be further investigated. Regarding

the TiAlNbV-Mn HEA, it is only known that the intermixing of TiAl and Mn leads to

the precipitation of the hexagonal close-packed (HCP) C14 Laves phase [15]. However, in

literature no further data about the phase stability of TiAlNbV-Mn has been found and

hence will be provided in this thesis.
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Chapter 2

Theoretical Background

2.1 General Definition of High Entropy Alloys

HEAs are named after their most important characteristic, their high entropy. More pre-

cisely expressed, it is the configurational entropy Sconf that makes these alloys special. In

terms of numbers, a HEA is supposed to have a configurational entropy higher than 1.61R,

R is the ideal gas constant (= 8.314 J/(mol ·K) [16]). This value exactly represents the

configurational entropy of an equimolar five-element solid solution. Hence, a HEA is typ-

ically consisting of five or more elements with equiatomic—or at least near-equiatomic—

composition [2, 3]. The consequence of the high configurational entropy is a stabilization

effect of single-phase solid solutions above 0 K and especially at high temperatures. Other

contributions concerning the entropy—vibrational, electronic and magnetic—exist, but it

is assumed that they have negligible impact. Another requirement for a HEA is that its

elements must be fully miscible so that a single-phase solid solution can be obtained [17].

Therefore, a careful selection of elements has to be made.

Over time it turned out that researchers felt limited in their scientific freedom by this strict

definition of HEAs. They classified the alloys with respect to their entropy, namely in

medium entropy alloys (1R < Sconf < 1.5R) and low entropy alloys (Sconf < 1R) [18].

Moreover, the term complex concentrated alloys (CCAs) evolved, which extends the field of

HEAs by also considering multiphase alloys. CCAs are not restricted to equimolar compo-

sitions and may contain less than five elements [19, 20]. This is why the expression HEA

is lately often replaced by CCA. This work aims to investigate and find a five-component

single-phase solid solution alloy which fulfils the definition of a HEA. Hence, for the sake

of simplicity, the term HEA represents five-component (quinary) alloys within the scope of

this thesis. The attention of researchers got attracted, when they noticed that HEAs could

have a unique combination of attractive properties based on their fundamental effects at the

atomic scale.
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2.2 Core Effects and Outstanding Properties

2.2 Core Effects and Outstanding Properties

The demand to develop new materials with outstanding properties for high-performance

applications is steadily increasing. The fact that HEAs have been lately highly recognized

in this field is closely linked to four core effects. These effects should not only lead to high

hardness, fracture toughness, fatigue-, wear-, oxidation- and corrosion resistance at ambient

temperature, but they should be retained in heated environments as well [1, 21].

2.2.1 High Entropy Effect

High entropy plays the most important role in the concept of HEAs. Mathematically, Gibb’s

law demonstrates how Gibb’s free energy, ∆Gmix, influences the stability of a phase consider-

ing the entropy as well as enthalpy, ∆Smix and ∆Hmix, respectively, at a certain temperature

T . To highlight the dominance of the configurational entropy, ∆Sconf , in HEAs, we insert this

characteristic variable directly into Gibb’s law instead of the total mixing entropy. Gibb’s

law then reads as:

∆Gmix = ∆Hmix − T∆Sconf . (2.1)

A decrease of Gibb’s free energy corresponds to a higher stability of a certain single-phase

solid solution. From here, it can be clearly seen that increasing entropy leads to stabilization

and suppresses the precipitation of ordered intermetallic phases. Additionally, the elevation

of temperature T greatly impacts the free energy minimization of a phase [2, 3, 22]. This is

also stated in a work of Luan et al. [23], where they point out the increasing percentage of

single-phase alloys with increasing temperature. However, it should be kept in mind that the

overall possibility of finding single-phase alloys decreases with a higher variety of elements.

Nevertheless, due to their configurational entropy, the chances of forming single-phase solid

solutions are more pronounced in HEAs, especially at higher temperatures. The positive

consequence of preventing the formation of brittle intermetallic phases is that it guarantees

improved mechanical properties at elevated as well as ambient temperatures.

2.2.2 Sluggish Diffusion Effect

Researchers claim in several works that the diffusion of atoms and phase transformation

kinetics are much slower in HEAs than in conventional alloys [24, 25]. This is because of

the variety of chemical bonds, the complex atomic configurations and the high number of

different activation energies for diffusion [2]. Nevertheless, the existence of this effect has

been put under scrutiny recently, and further investigations have been done. Dabrowa et

al. [26] suggested that this effect does not originate from the high disorder in HEAs, but from

specific elemental compositions. For instance, they observed sluggish diffusion only in alloys

with high Mn contents independent of the number of elements [26]. It is only confirmed that
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2.2 Core Effects and Outstanding Properties

the element with the lowest diffusion coefficient is the limiting factor for the velocity of the

net diffusion process [27]. The exact mechanisms behind this effect are therefore still under

debate and have to be investigated further.

2.2.3 Severe Lattice Distortion Effect

In HEAs, several different species of atoms occupy one lattice. The variety of atomic radii

inevitably leads to a lattice distortion, which can be estimated from the atomic size difference

δ of the components that assemble the alloy [28]:

δ =

√√√√ N∑
i=1

ci(1− ri/r̄). (2.2)

Here, N is the number of elements, ci and ri are concentration and radius of the ith ele-

ment, and r̄ denotes the average atomic radius of all components. The higher δ, the more

pronounced the distortion of the lattice, which hinders the dislocation movement and acts

as the main contribution to solid solution strengthening. Consequently, this effect influences

mechanical as well as electrical and thermal properties. High hardness, strength and soften-

ing resistance at high temperatures of HEAs can be partly ascribed to the distortion of the

lattice. The thermal and electrical conductivities decrease stronger the more distinct this

effect is, which is related to a higher degree of electron and phonon scattering in the lattice

[2, 29]. However, the distortion depends not only on the size difference of atoms but also on

the number of elements in the alloy. Other unknown circumstances definitely play a role as

well. Determining the degree to which the lattice distortion affects the properties of HEAs

turns out not to be a simple task because other properties/features in HEAs may have a

similar impact [28].

2.2.4 Cocktail Effect

The addition of an element to an alloy changes its properties. Intuitively we can assume that

by mixing an element with a predominant property to an alloy, exactly this property will

be intensified. For instance, assumptions would be that the addition of refractory elements

improves high-temperature properties or light elements decrease the density. The cocktail

effect describes the fact that unusual combinations of elements, such as those present in

HEAs, can behave in the exact opposite way and lead to unique properties [2]. The reason

for such behaviour traces back to the interactions between the different atoms. Alloying

of Al leads to a significant hardness increase, although Al is relatively soft compared to

other metals. However, it has to be considered that Al builds very strong bonds with

other elements and promotes the formation of hard phases with body-centred cubic (BCC)

structure. Additionally, the solid solution strengthening process is of major relevance [2, 8].
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2.3 Selection of Elements for HEAs and the Role of TiAl

Therefore, the unexpected behaviour due to the cocktail effect is another incidence, which

makes the task to discover and select reasonable elements for HEAs quite complicated.

2.3 Selection of Elements for HEAs and the Role of TiAl

The detection of random combinations of elements that form single-phase solid solutions is

a relatively rare case. A first step to enhance the chances to reach this goal is the imple-

mentation of the so-called Hume-Rothery rules [30] during the elemental selection. These

rules contain prerequisites regarding the atomic configuration of the different elements in an

alloy:

1) Atomic radii of the components should not differ more than 15%.

2) The difference in the electronegativities should be as small as possible.

3) The number of the valence electrons should be similar.

However, this results in just a small reduction of the huge number of possible elemental

combinations for HEAs. After the selection of elements via these rules, further filtering

by, e.g. the calculation and comparison of mixing enthalpies of the alloy itself and its

decomposition products can be done [31, 32]. Such techniques will be applied in the Results

and Discussion (Chap. 4) part of this thesis.

The selection of elements in this work is based on a paper from Stepanov [10], where they

studied the mechanical properties of an equiatomic single-phase solid-solution TiAlNbV alloy.

This study not only predicted a very low density of the alloy but also a high specific yield

strength at elevated temperatures. Unfortunately, the improvement of strength at ≈ 800 °C
is attributed to a decomposition process into intermetallic phases leading to unfavourable

embrittlement at ambient temperatures [11]. As TiAlNbV still is a very promising light-

weight alloy for high-temperature applications, the idea is to stabilize it via implementing the

fifth element. Attempts to reach this goal failed with TiAlNbV-Cr and TiAlNbV-Zr [33, 34].

For an application-relevant success, it is desirable that the HEA crystallizes in a stable single

BCC phase so that the precipitation of intermetallic phases is suppressed. The expectation

is to promote this by adding transition metals, which crystallize in the BCC structure itself.

Following this idea and the Hume-Rothery rules, we decided on Mo and Mn as an additional

element within the scope of this thesis. In Tab. 2.1 it can be seen that the atomic radius

of Mo fits perfectly to the other elements and also the radius of Mn is in the range of

15 % compared to the average radius of all contained elements. Both elements, Mo and

Mn, prefer the BCC structure in their ground state and their valency, indicated with the

electronic configuration, is similar to the other elements. In comparison, the electronegativity
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2.4 Thermodynamic Fundamentals of Decomposition

is relatively high, but still should be in an acceptable range. Hence, the phase stability of

TiAlNbV-Mo, TiAlNbV-Mn, and their possible decomposition products will be analyzed

within this work.

Table 2.1: Important values for the elemental selection according to Hume-Rothery rules
obtained from Merck Periodic Table of Elements [35].

Element Atomic Radius [pm] Crystal Structure Electronegativity Electronic Configuration

Ti 145 hcp 1.54 [Ar] 3d2/4s2
Al 143 fcc 1.61 [Ne] 3s2/3p1
Nb 146 bcc 1.60 [Kr] 4d4/5s1
V 134 bcc 1.63 [Ar] 3d3/4s2
Mo 139 bcc 2.16 [Kr] 4d5/5s1
Mn 127 bcc 1.55 [Ar] 3d5/4s2

2.4 Thermodynamic Fundamentals of Decomposition

A simple mixing reaction of two components A and B consolidating into an alloy AB can

be expressed by the following equation:

A+B ↔ AB. (2.3)

Whether the chemical reaction is more prone to go towards right or left direction is deter-

mined by Gibb’s free energy of mixing ∆Gmix. On the one hand, a negative value of ∆Gmix

predicts a stable mixture AB, a positive one leads to the decomposition into its components

A and B [36]. For the first-principles study of phase stability of HEAs an extension of the

Gibb’s law (see Eq. (2.1)) has been done. In general, the mixing enthalpy ∆Hmix can be

formulated via the total ground state energies of the alloy, E(AB), and of its components,

E(A) and E(B), multiplied by their corresponding mole fractions xA and xB:

∆Hmix = E(AB)− [xAE(A) + xBE(B)]. (2.4)

At 0K ∆Hmix is equal to ∆Gmix and quantifies the stability with respect to isostructural

decomposition of the unaries. It exists also a similar approach, namely the formation energy,

which defines the stability with respect to the unary elements in their equilibrium structure.

Both quantities can provide a first evidence about the stability of alloys, e.g. negative values

indicate a stable alloy and vice versa. At 0K both, ∆Hmix and the formation energy, lead

to exactly the same results with respect to unaries. However, in this thesis we will stick to

the ∆Hmix term.

For the further study of the phase stability and the decomposition behaviour of HEAs, AB

will refer to the HEA itself and the components A and B to its corresponding decomposition
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2.5 Stabilization of HEAs via Volume Mismatch

products. Hence, xA and xB denote the ratio of the phase components or the decomposed

products in the HEA. We note that there may be more than 2 decomposition products; for the

sake of simplicity, we introduce the formalism here using only two components. Moreover,

the entropy term is reduced to the configuration entropy Sconf , which can be calculated

simply by knowing the mole fractions ξi of the components i forming an alloy X, and the

Boltzmann constant kB [23]:

Sconf (X) = −kB
∑
i

ξi ln ξi. (2.5)

Finally, ∆Gmix for a HEA AB and a certain decomposition route into products A and B

can be calculated with the following equation:

∆Gmix =E(AB)− [xAE(A) + xBE(B)]−
− T [Sconf (AB)− [xASconf (A) + xBSconf (B)].

(2.6)

In this formulation, all material quantities are determined by the first-principles calculations;

mole fractions xi and temperature T are external parameters. This turns out very useful,

because the temperature T can take any arbitrary value, although no temperature effects,

such as phonons, have been considered until now. As a consequence, also the phase stability

at elevated temperatures can be predicted in a very practical manner.

Keeping in mind the previous assumptions, the following conclusion can be drawn from

∆Gmix:

∆Gmix

{
< 0 : HEA is stable,

> 0 : HEA decomposes into its decomposition products.

2.5 Stabilization of HEAs via Volume Mismatch

Another important factor during decomposition is the volume mismatch between the HEA

and its potential decomposed phases. Decomposition products often form compounds with

higher or lower specific volumes than the actual HEA [36, 37]. However, when the decom-

position starts, these products still have to fit in the volume of the parent HEA phase as no

relaxation is allowed due to the surrounding matrix (still the parent HEA phase). This effect

emerges through the elastic strain energy. A measure of the strain energy can be stated by

the actual difference of the volume of the HEA and its corresponding decomposition prod-

ucts, ∆V . The HEA volume V (AB) and the average volume of the decomposition products

Vmean(A,B) gives an estimation of the extent of elastic strain energy [38]:

∆V =
V (AB)− Vmean(A,B)

V (AB)
. (2.7)
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2.6 Implementation of Debye Model

The consequence of a high volume difference, |∆V |, is a stabilization effect on the HEA. ∆V

decreases the mixing enthalpy of the system and the activation energy for decomposition

is raised by the additional elastic strain energy [36]. Hence, elements that tend to form

high-volume structures with other components would need more energy to precipitate, i.e.

higher temperatures. This has a positive effect on the phase stability of HEAs and their

single-phase solid-solution phase is more likely to be maintained.

2.6 Implementation of Debye Model

Thermodynamic quantities of a material can be characterized by lattice vibrations, namely

phonons. These quantized quasiparticles describe the thermal excitation of atoms in a peri-

odic crystal [39]. Energetically, phonons are responsible for the main temperature-dependent

contributions to the free energy as well as to the entropy of a system.

For the sake of simplicity, let us consider vibrating crystals as a collection of harmonic

oscillators that oscillate around their equilibrium positions with a frequency ω. Moreover,

in the Debye model the crystal is assumed as an elastic continuum wherein sound waves

propagate with constant velocity. This sound velocity vs acts as a proportionality factor

between the frequency of the vibrations and the wave number k:

ω(k) = vsk. (2.8)

In general, such a dispersion relation ω(k) describes how a wave is behaving in a medium.

The sound waves are elastic waves that penetrate through a material. Therefore, it is possible

to construct a connection from the velocity of sound—and therefore lattice vibrations—to

the material’s elastic properties. As an example, such important correlation between ω,

vs and the elastic constant C11 is demonstrated for a cubic material and an elastic wave

propagating in the ⟨100⟩ direction [40]:

vs =
ω

k
=

√
C11

ρ
. (2.9)

The density ρ acts here as an intensive physical quantity of a certain material. The higher

ρ, the lower will be ω and therefore vs [39]. Based on these ideas it becomes immediate that

the elastic response of a material is closely related to the thermally excited vibrations in its

lattice.

In the Debye model the relation is established through the bulk modulus. This material

quantity can be derived from its corresponding elastic matrix Cij that is obtained, e.g., from

the stress-strain method and first-principles calculations (see Sec. 2.7). The bulk modulus is

assumed as static in this model, which refers to very slow deformations. Moreover, the model
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2.6 Implementation of Debye Model

approximates that the solid acts as a fluid and therefore no shear deformations (C44 = 0)

take place. Therefore, only longitudinal lattice vibrations are considered and denotes the

loading direction of C11. With this assumption an average of the sound velocity can be

obtained:

v̄s ≈

√
C11

ρ
≈

√
Bstatic

ρ
. (2.10)

To retain the accuracy of the method, a function to describe the ratio between transverse and

longitudinal deformation is implemented. This function f(ν) depends solely on the Poisson’s

ratio ν and modifies the Eq. (2.10) to [40]:

v̄s ≈

√
Bstatic

ρ
f(ν). (2.11)

For the calculation of the vibrational free energy within the Debye model a first-principles

study from Chakraborty et al. [41] was chosen as a methodological reference. In that study,

they investigated the martensitic transformation temperature of TiTa following this model.

Firstly, the function of the Poisson’s ratio f(ν) is generally calculated as:

f(ν) =

3

[
2

(
2

3

1 + ν

1− ν

)3/2

+

(
1

3

1 + ν

1− ν

)3/2
]−1


1/3

. (2.12)

The Poisson’s ratio itself can be obtained from the elastic constants, or rather from the

bulk modulus together with the shear modulus obtained by the stress-strain method (see

Eq. (2.21)). As a next step, the Debye temperature θD is calculated for an isotropic solid

considering the approximations mentioned (Eq. (2.10) and Eq. (2.11)):

θD =
ℏ
kB

[6π2V 1/2n]1/3f(ν)

√
Bstatic

M
. (2.13)

θD defines the temperature, where all vibrational states have been occupied. Additionally

to ν and Bstatic, θD is dependent on the volume V , the number of atoms per formula unit,

n, and the molecular mass, M , per formula unit. The two constants kB and ℏ denote the

Boltzmann and the reduced Planck constants. Moreover, a Debye function D(θD/T ) needs

to be defined, which is given by:

D(θD/T ) = 3

(
T

θD

)3 ∫ θD/T

0

x3

ex − 1
dx. (2.14)

Finally, the vibrational free energy, Fvib, is calculated as follows:

Fvib(θD(V ), T ) = nkBT

[
9

8

θD(V )

T
+ 3 ln

(
1− e−θD(V )/T

)
−D(θD(V )/T )

]
. (2.15)
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2.7 Calculation of Bulk Modulus: Stress-Strain Method

To obtain Fvib, this procedure can be used in two ways: The first way defines the purely har-

monic approximation, which has the disadvantage that important thermal quantities, such

as the thermal expansion, cannot be obtained. This is because it depends on the asymmetry

of the vibrational potential, which is genuinely neglected in the harmonic approximation.

Secondly, also a quasiharmonic approach exists to overcome this problem, which considers

harmonic approximations at several volumes in addition to the equilibrium 0 K volume [40].

For the sake of simplicity, this thesis is restricted to the simple harmonic approximation

applied to the equilibrium volumes and bulk moduli at T = 0 K directly obtained from

the first-principles calculations. Nevertheless, it should serve as a first attempt to include

thermal effects beyond configurational entropy. Including this energy term in Eq. (2.6), the

Gibb’s free energy of mixing reads:

∆Gmix =E(AB)− [xAE(A) + xBE(B)]−
− T [Sconf (AB)− [xASconf (A) + xBSconf (B)]+

+ Fvib(AB)− [xAFvib(A) + xBFvib(B)]︸ ︷︷ ︸
−T∆Svib

.
(2.16)

The energy of the lattice vibrations in principle contains the contribution to the vibrational

entropy of the system, which is enclosed in the T∆Svib term. The goal is to find out, if

the vibrational entropy influences the free energy of HEAs in such an extent that further

stabilization effects can be expected.

2.7 Calculation of Bulk Modulus: Stress-Strain Method

After obtaining the ground state parameters from first-principles calculations, the stress-

strain method [42] is utilized to get the elastic tensor of the fully relaxed structures. An

advantage of running first-principles calculations using the VASP code (see Sec. 3.4.1) is that

stress tensors are easily obtained as output of the investigated structures. Consequently, if

a set of linearly independent strains εi will be applied manually, Hooke’s law can be solved

in the following way:

σ ε−1 = C. (2.17)

Here, C = (Cij) represents the matrix of elastic stiffness constants and σ = (σi) the set

of stress tensor in the Voigt’s notation [42, 43]. It is important that the strains do not

exceed the elastic regime, therefore test calculations with different magnitudes of ε = |ε|
have been executed (Appendix A). Based on these we concluded that strains up to ≈ 0.03

are acceptable for nearly all systems. For this study a value of ε = 0.021 is used to guarantee

correct results.
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2.7 Calculation of Bulk Modulus: Stress-Strain Method

After the Cij matrix is directly calculated from the Hooke’s law (Eq. (2.17)), it has to be

symmetrized and projected to the corresponding crystal structure. The projection of Cij

works by averaging some components and setting other ones to zero. In the case of a cubic

system, three elastic constants, C11, C12, C44 remain and they are calculated as [44]:

C11 =
1

3
(C11 + C22 + C33) (2.18)

C12 =
1

3
(C12 + C13 + C23) (2.19)

C44 =
1

3
(C44 + C55 + C66) (2.20)

The Voigt-Reuss-Hill approximation for polycrystalline materials is utilized to calculate the

Young’s modulus, E, shear modulus, G, and bulk modulus, B, from the gathered elastic

constants [45–47]. Moreover, G and B can be used to obtain the Poisson’s ratio ν [41]:

ν =
3B − 2G

2(3B +G)
. (2.21)

The stress-strain method is a highly efficient method to calculate elastic properties of different

materials in combination with first-principles calculations.
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Chapter 3

Methodology

This chapter gives an overview of developments starting from the formulation of the Schrödinger

equation and leading to Density Functional Theory (DFT). The approximations of Hartree

and Fock as well as the unrivalled approach of DFT represent the basis for an accurate

solution of the Schrödinger equation and, therefore enable computational materials science

at the electronic structure level.

3.1 Schrödinger Equation

It dates back to 1924, when de Broglie published a paper about the discovery of the wave-

particle duality of electrons [48]. After this striking success, scientists tried to express the

electron’s wave nature in terms of energy through a mathematical form. Only two years

later, the Austrian physicist, Erwin Schrödinger, established the famous wave equation

ĤΨ(ri, rl) = EΨ(ri, rl), (3.1)

which represents a partial differential equation leading to an eigenvalue problem. The equa-

tion in general depends on the positions of the electrons, ri, and nuclei, rl [49]. The Hamilto-

nian operator, Ĥ, contains all the corresponding energies of the particles, namely the kinetic

energies as well as the potential Coulomb energies between all electron-nucleus, nucleus-

nucleus and electron-electron pairs. Ĥ operates on the wave function Ψ, which gives back

the total energy of the system E as output, the eigenvalue of the equation. Here, the

time-independent Schrödinger equation is demonstrated, although there also exists a time-

dependent version, which is much more complicated. In order to describe the quantum

mechanical phenomena in a material, e.g. as it is done by first-principles calculations, the

Schrödinger equation has to be solved. However, approximations have to be done to obtain

proper solutions, which will be discussed in the upcoming sections. First-principles or rather

ab initio means that a problem is solved straight from physical fundamentals. Therefore, the
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3.2 Hartree-Fock Method

equation can be seen as the foundation of computational materials science as all ground-state

properties can be, in principle, determined without any experimental fitting [50, 51].

3.1.1 General Simplifications

The first-principles calculations focus on the ground state energies of electrons while the

external potential of the system can be assumed as constant in time. Hence, the time-

dependence of the wave function vanishes, which simplifies the equation to a time-independent

problem. Moreover, gravity can be excluded due to the very small mass of electrons. Another

well-known behaviour of electrons is their spin, which is in most cases disregarded but can be

included if necessary [50]. These assumptions simplify the problem, but the consideration of

all interactions between the particles still leads to highly complex conditions. One advanced

approach to handle this problem is the Hartree-Fock method.

3.2 Hartree-Fock Method

The aim of the Hartree-Fock (HF) method [52] is to describe the Coulomb interactions

between the electrons via quantum mechanical approaches. It is the first reasonably accurate

approach to solve the Schrödinger equation. The first step is to separate the motion of nuclei

and electrons. The justification for such treatment is known as the Born-Oppenheimer

approximation [53]. Due to the much higher mass of the nuclei, it is claimed that the

electrons can follow their motion immediately. Consequently, it is valid to write the total

wave function as a product of two independent wave functions:

Ψ(ri, rl) = Ψelectronic(ri)×Ψnuclear(rl). (3.2)

This assumption leads to separating out behaviour of only electrons, and hence formulating

the Schrödinger equation only for the electronic system:

ĤelectronicΨelectronic(ri) = EΨelectronic(ri). (3.3)

In contrast to the full Hamiltonian Ĥ, the electronic Hamiltonian, Ĥelectronic, does not in-

clude kinetic energies of the nuclei, T̂n, and the nucleus-nucleus Coulomb interactions, Ûn−n.

This emerges from the assumption that the nuclei behave as they were static and thus the

interaction between them is constant. In the below, we focus only on the electronic sys-

tem and hence will omit the electronic subscript for the sake of simplicity. The electronic

Hamiltonian operator reads

Ĥ = − ℏ2

2mel

N∑
i

∇2
i︸ ︷︷ ︸

T̂e

− 1

4πϵ0

N∑
i

M∑
l

Zle

|ri − rl|︸ ︷︷ ︸
Ûn−e

+
1

8πϵ0

N∑
i ̸=j

e2

|ri − rj|︸ ︷︷ ︸
Ûe−e

, (3.4)
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3.2 Hartree-Fock Method

where the kinetic energy, T̂e involves the electron’s mass, mel, as well as the Laplace operator

∇2
i applied to the ith electron. The attractive Coulomb potential between N electrons and

M nuclei is described by the Ûn−e term. There, ϵ0 denotes the vacuum permittivity, Zl

the charge of the nucleus l and e the elemental charge. Lastly, Ûe−e is the mathematical

representation of the repulsive Coulomb potential between electrons.

Although this seems like a promising approximation, the solution of this equation for more

than two electrons is still not manageable. This is related to the fact that the partial

differential equation depends on 3N coordinates of N interacting electrons, which is defined

as the many-electron problem:

ĤΨ(r1, r2, . . . , rN) = EΨ(r1, r2, . . . , rN). (3.5)

Hartree tried to overcome this by treating every electron individually. Hence, the many-

electron wave function is split up via a product ansatz:

Ψ(r1, r2, . . . , rN) = ϕ1(r1)ϕ2(r2) . . . ϕN(rN). (3.6)

The interaction between the individual electrons is averaged and expressed by the so-called

Hartree potential. Through the implementation of a self-consistent field, the single-electron

wave functions can be calculated. Relatively early Hartree recognized that this method

does not follow Pauli’s exclusion principle because the resulting wave functions are not anti-

symmetric. Therefore, Fock expanded it to the HF method by arranging the one-electron

wave functions in the form of a Slater determinant:

Ψ(r1, r2, . . . , rN) =
1√
n!

∣∣∣∣∣∣∣∣∣∣
Ψ1(r1) Ψ2(r1) · · · ΨN(r1)

Ψ1(r2) Ψ2(r2) · · · ΨN(r2)
...

...
. . .

...

Ψ1(rN) Ψ2(rN) · · · ΨN(rN)

∣∣∣∣∣∣∣∣∣∣
. (3.7)

This approach conveniently uses the fact that a determinant is zero in the case when two

identical rows or columns are present in the matrix. Thus, if electrons take up wave functions

with the same spin, the wave function is identically equal to zero, and hence Pauli’s exclusion

principle is fulfilled [50]. In conclusion, the HF method is applicable to a small number of

atoms but it is still impractical for bigger crystal structures. Moreover, it suffers some

inaccuracies. The reason for that is the missing description of the repulsion of electrons due

to the same charge. The most popular theory in computational materials science till today,

Density Functional Theory (DFT), can handle this issue with a slightly different approach.
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3.3 Density Functional Theory

3.3 Density Functional Theory

In this section, the probably most powerful theory in computational materials science,

namely Density Functional Theory (DFT), will be explained. As the topic is very com-

plex, only the most important parts will be included. For further information and for deeper

understanding, two selections from literature can be highly recommended [50, 54], which are

also the basis for this section.

In general, DFT can be defined as a fully quantum-mechanical model for the solution of

many-body problems by replacing the wave function formalism with the electron density. As

claimed in the previous section, the many-body problem is solved by separating the motion

of nuclei and electrons by the Born-Oppenheimer approximation. The advantage of the

electron density approach subsequently lies in the fact that electron density does not depend

on the number of electrons. Therefore the many-electron problem is solved automatically.

The problem changes from a 3N -dimensional equation to a N separate 3-dimensional one

defining the electron density n(r), which depends only on the location r.

3.3.1 Hohenberg and Kohn Theorems

The term DFT appeared for the first time in the 1960s, when Hohenberg and Kohn [55]

conveyed their most important ideas with two theorems. These theorems try to link the

electron density with the Hamiltonian operator, the wave function as well as with the external

potential and, therefore, the system’s properties. The most important finding is expressed

via the first theorem:

1st Theorem of Hohenberg and Kohn:

The electron density n(r) can uniquely characterize the ground-state of a many-body system

contained in an external potential Uext(r).

The proof of this statement can be done by observing two electron systems with the same

ground-state electron density. If these systems are related to different potentials, the poten-

tial difference between them will always be constant. Hence, n(r) can be easily derived from

wave functions Ψ or more precisely, from the probability of finding an electron at a certain

position, Ψ∗Ψ in a system of N electrons. It needs to be integrated over all coordinates but

ri:

n(r) =
N∑
i=1

∫
Ψ∗(r, . . . , rN)×Ψ(r, . . . , rN)dr1 . . . di−1�

�Z
Zdri dri+1 . . . drN . (3.8)

Based on this outcome, an energy functional, the Hohenberg-Kohn functional, can be spec-

ified for the kinetic energy T̂e and the Coulombic interactions between the electrons Ûe−e:
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3.3 Density Functional Theory

F̂ [n(r)] = T̂e[n(r)] + Ûe−e[n(r)]. (3.9)

This functional depends solely on n(r). It is closely related to the corresponding energy

terms in Eq. (3.4) of the HF method, but now exact results can be obtained for all elec-

tronic problems. Using the Hohenberg-Kohn functional, the second theorem of DFT can be

formulated:

2nd Theorem of Hohenberg and Kohn:

The functional F [n(r)] is universal, and hence it is the same functional for all electronic

systems. The ground state energy obtains its minimal value at the ground state density for

any external potential Uext(r) and number of electrons N .

From this theorem, it can be realized that the ground state energy Ê[n(r)] of a system only

depends on n(r) and Uext(r) as:

Ê[n(r)] = F̂ [n(r)] +

∫
Uext(r)n(r)dr. (3.10)

The solution to this equation can be obtained with the variational principle, which means

that a big set of different n(r) gets inserted to find the minimum energy. However, no

matter how big is the number of different tested n(r), it cannot be taken for granted that

ground state energy has been reached. To get full certainty, an additional approach has been

established by Kohn and Sham.

3.3.2 Kohn-Sham Approach

In the Kohn-Sham approach [5], the Schrödinger equation is applied to a system of fictious

non-interacting particles having the same density as the physical system. Consequently,

the problem transforms into a one-electron eigenvalue problem and a set of single particle

equations:

ĤKSϕi(r) = ϵiϕi(r). (3.11)

The resulting so-called Kohn-Sham orbitals, ϕi(r), describe the orbitals of the individual

particles and define the electron density as:

n(r) =
N∑
i=1

|ϕi(r)|2. (3.12)

The eigenvalues ϵi are the corresponding energies. The Kohn-Sham Hamiltonian, ĤKS,

consists of the kinetic energy, T̂0, the classical electrostatic and the quantum-mechanical

interactions between the electrons. With the previous assumptions, everything is described
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3.4 Implementation of DFT

without any approximations besides the quantum-mechanical effects. The system is de-

scribed by non-interacting particles, therefore the effects between the mutually interacting

electrons, namely exchange and correlation, are not explicitly present here. This remaining

unknown piece of energy, the exchange-correlation potential, denotes the only approximation

that has to be made in DFT.

3.3.3 Exchange-Correlation Potentials

The quantum mechanical effects involve two unknown energies that occur between electrons.

The exchange of electrons denotes the repulsion between themselves originating from Pauli’s

principle. Correlation describes the electron-electron repulsion due to their same charge.

These two effects are expressed by the exchange-correlation potential, UXC , which is a critical

contribution in a DFT run and hence needs to be as accurate as possible. The description of

the corresponding energy is done via functionals, the most popular ones are the local density

approximation (LDA) and the generalized gradient approximation (GGA). The simpler one

is the LDA, which assumes that the exchange-correlation potential depends only on the

electron density at a certain location of the electron system. This model fits only for systems

with homogeneous electron gas. In other cases, inaccurate results are expected. It can be

represented mathematically with the following integral:

ÊLDA
XC [n(r)] =

∫
n(r)UXC(n(r))dr. (3.13)

A more accurate approach is GGA which also considers the gradient of the electron density.

It takes inhomogeneities of the true charge density into account and therefore it is a better

fit for real systems. It is defined as:

ÊGGA
XC [n(r)] =

∫
n(r)UXC(n(r),∇n(r))dr. (3.14)

Different flavours of GGA, depending on their parametrization, exist. This means that

exchange-correlation functionals get parametrized against big sets of experimental data to

fit various properties. In solid states materials science, parametrization by Perdew, Burke

and Ernzerhof (PBE or GGA-PBE) usually performs reliably and is often the first choice [5,

50, 56].

3.4 Implementation of DFT

3.4.1 VASP

The Vienna Ab initio Simulation Package (VASP) [6, 7] is a software toolkit for materials

modelling at the atomic scale. It is capable of computing quantum mechanical ground-

state properties within the framework of DFT from the first-principles. The program uses
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projector-augmented wave (PAW) method [57] enabled pseudopotentials (PPs). These PAW-

PPs specify the electron-nucleus interactions by splitting the overall wave function into a

contribution of core electrons and one of valence electrons, which increases computational

efficiency as well as accuracy. The valence electrons are additionally described by a plane

wave basis set [58]. Matrix diagonalization schemes are used to get the electronic ground

state at every molecular dynamics step with the free energy as the variational quantity.

Four different input files, which fully determine the type and content of the VASP run, are

required to set up a calculation. They always need to be named in the same way for every

calculation:

• INCAR: Determines the objectives of a calculation and how it should reach them.

It controls the run with a large number of parameters that can be set by means of

tags. One important tag describes the cut-off energy (ENCUT), which defines the set

size of functions (plane waves) that will be combined to describe the wave functions.

A balance between accuracy and used computational power needs to be established,

which can be estimated by convergence tests for each material. To guarantee a total

energy accuracy of 1meV/at., this value is used as the convergence criterion.

• KPOINTS: Samples the reciprocal k-space of a lattice, namely the first Brillouin zone.

The electronic structure and other properties are only evaluated on these selected

points. Speaking of accuracy, the chosen number of k-points complements the cut-off

energy and also needs to be determined with the help of convergence tests. Several

methods can be used to generate the grids, e.g. a Monkhorst-Pack [59], which generates

the k-points evenly spaced throughout the first Brillouin zone.

• POSCAR: Contains the information about the lattice geometry and the type of species

occupying the lattice sites. More precisely, this means that it contains the lattice

vectors, the atomic positions and the allocation of elements to the positions. The

number of atoms can be varied. For instance, supercells based on a unit cell can be

generated with the special quasi-random structure (SQS) approach [60]. The scheme

of SQS provides the best approximation of the real disordered state with a periodic

supercell [61].

• POTCAR: Defines the PPs of each element that is included in the calculation. PPs

describe the wave functions of the active valence electrons in an imitative way, whereas

the core electrons are freezed together with the nucleus. This reduces the number of

electrons and increases the efficiency of the calculations. For alloys, the POTCAR files

of each element need to be combined in the right order according to the POSCAR file.

The projector augmented wave potentials together with the parametrized exchange-

correlation potentials are included in this file.
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The package is most efficient when compiled on high-performance computing (HPC) clusters.

For example, the Vienna Scientific Cluster (VSC) and a less powerful one, which is available

at Montanuniversität Leoben, can be used. For further information, the following literature

is recommended [7, 50, 62].

3.4.2 EMTO

Another code which implements the DFT, is the Exact Muffin-Tin Orbital (EMTO) code.

EMTO is an all-electron method based on so-called muffin-tin orbitals to solve the Kohn-

Sham equations. Combined with the Coherent Potential Approximation (CPA), it provides

a computationally very efficient tool to treat disordered systems such as HEAs. Muffin

tin orbitals describe the spherical potentials at the lattice sites of a structure as well as

the constant potentials in their interstitial regions. The EMTO formalism is an improve-

ment of the original muffin-tin orbital method because it calculates the exact single electron

potentials. It is based on Green’s function, which contains all the information about the

electronic system and therefore replaces the Hamiltonian for solving the Schrödinger equa-

tion. Additionally, the CPA demonstrates a single-site approximation, where the potential

of a disordered alloy is substituted by an ordered effective medium. Each alloy compo-

nent receives a single-site Green’s function, and their average leads to a coherent potential,

which possesses the symmetry of the corresponding crystal lattice. Hence, a monoatomic

setup is sufficient for the calculation of ground state energies of complex disordered alloy

systems, which makes this method computationally very efficient. Within EMTO-CPA, all

the structural parameters are fixed, and no relaxation processes occur, which is often stated

as a disadvantage. The method is described more in detail in Levente Vitos’ book, who

implemented this approach [63].
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Chapter 4

Results and Discussion

In general, two HEAs, TiAlNbV-Mo and TiAlNbV-Mn, are tested on their phase stability.

This is done on the one hand directly from the DFT calculations at 0K and on the other

hand also by introducing temperature effects. These effects are implicitly included by the

configurational entropy and subsequently also by the vibrational entropy estimated via the

Debye model. To get information about phase stability, mixing enthalpies of all the possible

decomposition products are calculated and compared. The results of the VASP calculations

are also partly checked against the results calculated with the EMTO method. Experimental

results for comparison have been provided by colleagues [12].

4.1 Approach and Computational Details

Due to the huge amount of elemental combinations, an experimental investigation of HEAs

is hardly feasible. Therefore, atomistic modelling, together with first-principles calculations,

is often used to tackle such problems. Within this thesis, the two studied HEAs are studied

against decompositions using all possible decomposition routes containing unaries, binaries,

ternaries and quaternaries. These products and the five-component HEA (quinary) are

fully relaxed regarding the atomic positions, cell shape, and volume (INCAR-tag: ISIF

= 3) of the structures to obtain the ground-state total energies. within this thesis, all

first-principles calculations are done with VASP [6, 7] unless indicated differently. The

electron-ion interactions are described with projector augmented wave pseudopotentials. The

exchange and correlation effects are treated at a generalized gradient approximation level as

parametrized by Perdew, Burke and Ernzerhof (GGA-PBE [5, 56]). To ensure the accuracy

of 1meV/at. or better, plane-wave cut-off energy (ENCUT) of 400 eV was used for all the

calculations. A k-point mesh was automatically generated to sample the irreducible wedge

of the Brillouin zone by using the Monkhorst-Pack scheme and a length input parameter of

60.
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To model all the considered systems, one-atomic primitive BCC unit cells (a = b = c,

α = β = γ = 109.47◦) of the pure metals are used for the generation of SQS supercells

containing up to 125 atoms. The supercells have been generated from the relaxed unit

cells via a tool developed by Dominik Gehringer, the sqsgenerator [64]. The requirement

of equiatomic compositions leads to the supercell sizes summarized in Tab. 4.1. The FCC

and HCP-C14 structures are generated in a similar way by using the sqsgenerator, whereas

the number of atoms and cell size of the HCP-C14 supercells can differ due to a two-atomic

basis of the unit cell.

Table 4.1: Supercell sizes of the investigated systems.

System Supercell Size Number of Atoms

Unary 1× 1× 1 1
Binary 4× 4× 4 64
Ternary 5× 4× 3 60

Quaternary 4× 4× 4 64
Quinary (HEA) 5× 5× 5 125

Figure 4.1: The TiAlNbV-Mo HEA in a 5 × 5 × 5 primitive BCC SQS supercell with 125
atoms.

Out of all possible decomposition routes, we consider only those consisting of decomposi-

tion products with equiatomic compositions, as demonstrated in Fig. 4.2. By using the

example of TiAlNbV-Mo, it is shown that the HEA can decompose in unary+quaternary,

binary+ternary and binary+binary+unary systems. The elements order randomly within

the products. This leads to certain limitations in order to allow for reasonable evaluations.

Firstly, each element is contained only in one decomposition product and secondly, each

product has to remain in equiatomic composition. In general, the HEAs are studied ex-

tensively in the BCC phase because literature predicts it as the dominant phase for this
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elemental composition [10]. In the first place, it is assumed that the possible products also

precipitate as BCC phases. In the following studies, the hexagonal close-packed (HCP) C14

phase is also included as a potential decomposition product of the TiAlNbV-Mn alloy it has

been experimentally reported that this phase is very likely to form if Mn is combined with

TiAl. To complete the possible decomposition scenarios, the systems are also studied as a

simple FCC phase.

Figure 4.2: Considered decomposition routes with TiAlNbV-Mo HEA as an example.

4.2 Mixing Enthalpies of BCC HEAs and their BCC De-

composition Products

Total ground-state energies are obtained from DFT calculations for the HEAs as well as for

their decomposition products. The mixing enthalpies are calculated from the total ground-

state energies for every alloy using Eq. (2.4). In general, DFT operates at T = 0K, which

means that ∆Hmix is equal to the Gibbs free energy ∆Gmix (see Eq. (2.1)). Therefore,

similar requirements (values lower than zero lead to stable structures and higher than zero to

decomposition) can be applied for ∆Hmix at zero temperature. All values are calculated with

respect to unary reference states (see e.g. Tab. 2.1). Fig. 4.3 shows the ∆Hmix of TiAlNbV-

Mo and TiAlNbV-Mn together with their considered decomposition products. The ∆Hmix

of both HEAs are put in one graph as they are only differing by the products, which contain

Mn or Mo. Most of the alloys seem to be stable with respect to their unary elements, as

their ∆Hmix results in a negative value. This means, that there exist several combinations

of elements, which can definitely form a phase or rather would be able to precipitate from

the HEA. Just a few alloys, such as NbV, TiV, MnNb and TiNbV, are not expected to

form after the decomposition from the BCC phase HEA, as they do not form stable solid

solutions themselves (positive mixing enthalpies). Interestingly, TiAl exhibits the lowest

mixing enthalpy of all binaries, which is in accordance with the knowledge that a mixture

of these two elements can lead to several different intermetallic phases [9]. In general, all

alloys containing Al exhibit a much lower ∆Hmix than those without Al. This agrees with
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4.2 Mixing Enthalpies of BCC HEAs and their BCC Decomposition Products

the postulation in Sec. 2.2.4 that Al builds very strong bonds with other elements and thus

promotes the formation of BCC phases. The slightly negative ∆Hmix of the HEAs, TiAlNbV-

Mo and TiAlNbV-Mn, imply that they are also stable with respect to their unary states at

zero temperature. However, from these results, it can be estimated that the single-phase

BCC HEAs may not persist at high temperatures as there already exist many candidates

for decomposition products.
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Figure 4.3: Comparison of the mixing enthalpies ∆Hmix of the BCC HEAs, TiAlNbV-Mo
and TiAlNbV-Mn, as well as their corresponding BCC decomposition products.

By considering the quaternaries, it can be assumed that TiAlMoNb+V and TiAlMnV+Nb

are possible decomposition routes as TiAlMoNb and TiAlMnV exhibit very low ∆Hmix

compared to the others. Within the ternary systems, TiAlNb, TiAlMo and TiAlMn have the

most negative values. However, the probability that the HEAs decompose into TiAlMo+NbV

or TiAlMn+NbV is relatively low due to the positive ∆Hmix of NbV and therefore the HEA

will be most likely the more stable system in both cases. On the other hand, already from

here it can be seen that TiAlNb+MoV represents a decomposition route with high driving

force for decomposition, which will be also confirmed in the next sections. Lastly, as TiAl

exhibits the lowest ∆Hmix, it is very likely to decompose together with MnNbV or MoNbV.

The high configurational entropy of HEAs is the force working against decomposition, which

we will be introduced in the next part of the thesis.
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4.3 Phase Stability of BCC HEAs including Configurational

Entropy

We now discuss the influence of the configurational entropy on the phase stability of the

HEAs. This information is provided by ∆Gmix at a temperature unequal 0K. The con-

sequence of finite temperature is that the entropy term is now included as well, as stated

in Eq. (2.1). The configurational contribution constitutes the biggest contribution to the

total entropy when treating HEAs (at least at moderate temperature ranges) and, there-

fore, should be a good starting point for discussing temperature effects. Consequently, this

chapter considers solely the configurational contribution, which is calculated with Eq. (2.5).

Subsequently, ∆Gmix is obtained via Eq. (2.6), with which the driving forces for decom-

position of the HEAs at different temperatures can be estimated easily. A minor role in

stability plays the volume change ∆V during decomposition, which, nevertheless, will also

be discussed shortly. Its contribution is expressed by Eq. (2.7).

4.3.1 Phase Stability of TiAlNbV-Mo for BCC+BCC Decomposition

We start by focusing on the TiAlNbV-Mo HEA, which is assumed to consist of a BCC struc-

ture. The corresponding decomposition products are also regarded as BCC phases. Table 4.2

presents the five decomposition routes with the highest driving force for decomposition at

500K, 1000K and 1200K. The magnitude of the driving force is ranked for the values of

∆Gmix. The red numbers indicate positive ∆Gmix and therefore, the HEA being unstable

w.r.t. that particular decomposition route. Green numbers indicate a stabilization of the

HEA due to the increased temperature. The decomposition route with the highest ∆Gmix

exhibits the highest probability for decomposition. In addition, the ∆V is indicated, which

contributes to the elastic stabilization.

At 500K the HEA is predicted to be unstable because of the positive ∆Gmix of the two de-

composition routes, namely to TiAlNb+MoV and TiAlMoNb+V. Therefore, it is assumed

that the TiAlNbV-Mo alloy will not stay in a single-phase BCC alloy at this temperature,

provided that it has enough time to reach its equilibrium. By heating up the alloy, the effect

of the configurational entropy is more and more pronounced. Hence, the HEA becomes more

stable at increased temperatures, which can be clearly seen through the negative ∆Gmix of

the decomposition routes with the highest driving force at 1000K and 1200K. As a conse-

quence, the TiAlNb+MoV route does not exhibit the tendency to facilitate the dissociation

in BCC products anymore; instead, it is more likely that the HEA maintains its single-phase

BCC structure. Moreover, the ∆Gmix at 1200K is much more negative than at 1000K, which

again clearly shows the impact of the entropy, especially of the configurational contribution.

The last column of the table shows the volume difference, ∆V , between the HEA and
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4.3 Phase Stability of BCC HEAs including Configurational Entropy

Table 4.2: Predicted routes with highest driving force for BCC → BCC + BCC decompo-
sition at different temperatures. Red numbers indicate positive ∆Gmix and green numbers
negative values, which refers to higher stability of the HEA.

Temperature (K) Decomposition Route ∆Gmix(eV/at.) ∆V (-)

500 TiAlNb + MoV 0.0219 0.0059
TiAlMoNb + V 0.0055 0.0035

TiAl + MoV + Nb -0.0016 0.0022
TiAl + MoNbV -0.0019 0.0020
TiAlV + MoNb -0.0043 -0.0002

1000 TiAlNb + MoV -0.0071 0.0059
TiAlMoNb + V -0.0160 0.0035
TiAlMoV + Nb -0.0293 0.0022
TiAl + MoNbV -0.0309 0.0020
TiAlV + MoNb -0.0333 -0.0002

1200 TiAlNb + MoV -0.0187 0.0059
TiAlMoNb + V -0.0246 0.0035
TiAlMoV + Nb -0.0379 0.0022
TiAl + MoNbV -0.0425 0.0020
TiAlV + MoNb -0.0449 -0.0002

its corresponding decomposition products. ∆V is based on the relaxed structures at 0K,

and hence this stabilization mechanism does not exhibit temperature dependence (in our

simplified treatment). A volume increase is predicted after the decomposition of the HEA

in majority of cases, which leads to a stability gain of the HEA. However, these changes in

volume turn out to be very small (mostly ∆V < 1%). The reason for the low ∆V is based

on the presumption that the products only decompose into BCC phases. So, no high-volume

phases like a wurtzite structure, that would exceed the volume of a cubic phase by ≈ 20%

[36], has been taken in account. Moreover, from results of Kretschmer et al. [36] it can be

estimated that the stabilization by ∆V takes effect from values higher than ≈ 6%, which are

not reached within our systems. In reality the most stable structures of the decomposition

products can deviate from BCC and therefore the formation of high-volume phases would

be possible. Nevertheless, within this study the impact of ∆V on the stability is estimated

as marginal due to the sole consideration of BCC decomposition products and will not be

treated any further.

In conclusion, the results in Tab. 4.2 reveal that the TiAlNbV-Mo HEA has the potential to

form a single-phase BCC alloy due to the stabilization through entropy at high temperatures.

However, a risk exists that the HEA decomposes into brittle BCC phases by cooling it down

as ∆Gmix already turns positive at 500K. The reader is reminded that some approximations

still needed to be done in the calculations; nevertheless, the results provide the first hint
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of whether it is even possible to form a stable HEA with certain elements or not. The

results in the table manifest the assumption that TiAlNbV-Mo possesses a high potential to

accomplish the requirements for a single-phase BCC HEA.

4.3.2 Phase Stability of TiAlNbV-Mn for BCC+BCC Decomposition

In this section, we perform an analogous analysis to the previous section, this time for the

TiAlNbV-Mn HEA. To start with, the HEA, as well as the decomposition products, are

considered to consist of BCC phases. Table 4.3 summarizes the decomposition routes with

the highest driving force for decomposition together with their ∆Gmix and ∆V values.

Table 4.3: Predicted routes with highest driving force of the TiAlNbV-Mn system for the
BCC → BCC + BCC decomposition at different temperatures. Red numbers indicate posi-
tive ∆Gmix and green numbers negative values, which refers to higher stability of the HEA.

Temperature (K) Decomposition Route ∆Gmix(eV/at.) ∆V (-)

500 TiAlNb + MnV 0.0435 0.0058
TiAl + MnV + Nb 0.0200 0.0018
TiAlMnV + Nb -0.0016 0.0098
TiMnV + AlNb -0.0019 0.0009
TiAl + MnNbV -0.0043 -0.0186

1000 TiAlNb + MnV 0.0145 0.0058
TiAlMnV + Nb -0.0118 -0.0084

TiAl + MnV + Nb -0.0254 0.0018
TiMnV + AlNb -0.0281 0.0009
TiAl + MnNbV -0.0476 0.0036

1200 TiAlNb + MnV 0.0029 0.0058
TiAlMnV + Nb -0.0204 -0.0084
TiMnV + AlNb -0.0397 0.0009

TiAl + MnV + Nb -0.0436 0.0018
TiAlMnNb + V -0.05644 -0.0006

The decomposition route, namely the TiAlNb+MnV route, exhibiting the highest driving

force for decomposition remains positive up to 1200K. Consequently, not even the configura-

tional entropy at high temperatures can compensate for the instability of the TiAlNbV-Mn

BCC HEA. The value of ∆Gmix for TiAlNb+MnV is reduced close to zero at 1200K; nev-

ertheless, an even higher temperature is necessary to obtain a single phase BCC HEA.

However, this would lead to temperatures close to the melting point, which is not reasonable

anymore. Interestingly, the TiAl+MnV+Nb route, which has the second highest driving

force at 500K, rapidly decreases Gmix with increasing temperature. It even “queues up”

behind TiAlMnV+Nb and TiMnV+AlNb at 1200K and therefore experiences much faster

stabilization. The reason for this incidence is the higher overall configurational entropy of
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the three component decomposition route compared to the routes containing only two prod-

ucts. Thereby, the impact of temperature is bigger for decomposition routes with a higher

number of products. A more detailed analysis of this faster stabilization as well as the con-

figurational entropy can be found in Appendix B. Finally, the conclusion can be drawn that

the TiAlNbV-Mn HEA is not expected to form a stable single-phase BCC alloy and will

most likely dissociate in TiAlNb+MnV due to its instability up to 1200K.

4.3.3 Phase Stability of TiAlNbV-Mn for BCC+C14 Decomposition

From experimental observations 4.5 as well as former studies on TiAl [15], we know that

the combination of TiAl and Mn shows the tendency to precipitate an HCP phase, namely

the C14 Laves phase. Therefore, the ground state energies, as well as mixing energies

were calculated also for this phase for all decomposition products (containing Mn) and

evaluated together with the BCC structures. Hence, for the BCC TiAlNbV-Mn HEA not

only BCC+BCC, but also BCC+C14 decomposition routes are considered. The results for

this scenario are summarized in Tab. 4.4, including also the information on the corresponding

phases.

Table 4.4: Predicted routes with highest driving force of the TiAlNbV-Mn system for BCC→
BCC + C14(HCP) decomposition at different temperatures. Red numbers indicate positive
∆Gmix and green numbers negative values, which refers to higher stability of the HEA.

Temperature (K) Decomposition Route Phase ∆Gmix(eV/at.) ∆V (-)

500 TiAl + MnNbV BCC + C14 0.0759 0.0102
TiAlNb + MnV BCC + C14 0.0190 0.0165

TiAl + MnV + Nb BCC + C14 + BCC -0.0045 0.0126
TiMnNb + AlV C14 + BCC -0.0117 0.0013

TiAlNb + Mn + V BCC + C14 + BCC -0.0490 0.0130

1000 TiAl + MnNbV BCC + C14 0.0470 0.0102
TiAlNb + MnV BCC + C14 -0.0100 0.0165
TiMnNb + AlV C14 + BCC -0.0407 0.0013

TiAl + MnV + Nb BCC + C14 + BCC -0.0499 0.0126
TiAlNbV + Mn BCC + C14 -0.0791 0.0146

1200 TiAl + MnNbV BCC + C14 0.0354 0.0102
TiAlNb + MnV BCC + C14 -0.0216 0.0165
TiMnNb + AlV C14 + BCC -0.0523 0.0013

TiAl + MnV + Nb BCC + C14 + BCC -0.0681 0.0126
TiAlNbV + Mn BCC + C14 -0.0878 0.0146

The outcome of this investigation is similar to the BCC+BCC decomposition routes. At

1200K the HEA is still expected to be unstable because of the positive ∆Gmix of TiAlNb+MnV

and therefore, it is again likely that the TiAlNbV-Mn HEA decomposes. The phases of these
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products are BCC TiAl and HCP-C14 MnNbV. This further underlines the previous result

that no stable BCC HEA for TiAlNbV-Mn will form.

However, for the BCC+C14 decomposition routes, the effect of ∆V is more pronounced.

In comparison to the previous results of ∆V , a factor 2-3 high values are calculated, and

therefore the decomposition driving force for this HEA correspondingly decreases. These

values are obtained due to the higher volume of the HCP phase relative to the BCC phase.

Nevertheless, the influence is estimated as marginal, because the change is still only around

1.5%.

It is expected that Mn increases the driving force for precipitation of the HCP-C14 phase.

Hence, we investigate the BCC and the HCP TiAlNbV-Mn systems with a varied amount

of Mn, compensated by the content of Ti. Fig. 4.4 presents the resulting mixing enthalpies

∆Hmix for increasing Mn content with respect to unaries. Alloys only can form a solid

solution if ∆Hmix is negative. The figure shows that the mixing enthalpy of the BCC phase

is almost independent of the increased Mn and the simultaneous decrease of Ti content. On

the contrary, the HCP-C14 phase shows a clear trend to lower values of enthalpy and even

to negative values with increasing Mn fraction.
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Figure 4.4: Mixing Enthalpy ∆Hmix for the HCP-C14 phase and the BCC phase as a function
of Ti and Mn content in Ti0.4-xAl0.2Nb0.2V0.2Mnx.

The C14 phase has a higher probability of forming with the addition of Mn; nevertheless,

BCC single-phase solid solution remains the more stable phase. The results presented in this

section thus lead to a conclusion that Mn does not turn out to be the proper element for a
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stable TiAl-based HEA, because the formation of the HCP-C14 phase can probably not be

suppressed. This is also confirmed by experimental observations, in which our experimental

colleagues found that a TiAlNbV-Mn HEA with decreased Mn content and increased Ti

content has much more potential for a single-phase BCC HEA (see Sec. 4.5).

4.3.4 Comparison with EMTO-CPA for BCC+BCC Decomposition

The following results were also obtained with DFT, but this time implemented in the EMTO

code. EMTO combined with coherent potential approximation (CPA) constitutes a tool

which is very useful for complex disordered systems such as HEAs (see Sec. 3.4.2). In

turn, HEAs are a proper showcase to test this method against the results of phase stability

predicted using VASP-SQS. The initial structures for the EMTO calculations are generated

with the ground state lattice parameters of the VASP-SQS calculations.
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Figure 4.5: Comparison of the mixing enthalpies obtained by first-principles calculations
(T = 0K) with VASP and EMTO. The results for TiAlNbV-Mo and TiAlNbV-Mn as well
as for their corresponding decomposition products are plotted.

For the case of TiAl-HEAs, the obtained energies from EMTO are very satisfying as the

values of ∆Hmix of most decomposition products are close to the VASP results (Fig. 4.5).

There are only a few exceptions, for which the difference is somewhat larger or VASP predicts

negative ∆Hmix and while EMTO positive values. The systems exhibit a gap of ≈ 0.1 eV/at.

between the ∆Hmix obtained by two methods in average. By observing the binary, ternary

and quaternary systems individually, the mean differences are slightly increasing with a

higher number of elements. The deviations can be assigned to the relaxation processes

happening in the VASP runs but not accounted for in the EMTO calculations. In this sense,

the fact that the VASP results yield lower (more negative) ∆Hmix can be fully ascribed to

this phenomenon.
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Based on this satisfactory agreement between the results obtained by the EMTO-CPA and

VASP-SQS methods, the EMTO ground state energies are further analysed with respect

to the phase stability of the TiAlNbV-Mo and TiAlNbV-Mn HEAs. We apply the same

methodology as in Sec. 4.3 just by using the EMTO energies this time, which leads to the

results in Tab. 4.5. Here, the ∆Gmix is again calculated by Eq. 2.6 and the decomposition

routes are ranked according to the highest driving forces for the decomposition.

Table 4.5: Predicted routes with highest driving force for BCC → BCC + BCC decomposi-
tion at different temperatures calculated with EMTO-CPA method. Red numbers indicate
positive ∆Gmix and green numbers a change to negative values.

Temperature (K) Decomposition Route ∆Gmix(eV/at.) ∆V (-)

TiAlNbV-Mo 500 TiAl + MoNb + V 0.0286 0.0026
TiAlV + MoNb 0.0193 -0.0028

TiAl + MoV + Nb 0.0179 0.0072
TiAlNb + MoV 0.0007 0.0144
TiAl + MoNbV -0.0023 0.0064

1200 TiAlV + MoNb -0.0213 -0.0028
TiAl + MoNb + V -0.0350 0.0026
TiAlMoV + Nb -0.0357 -0.0029
TiAlNb + MoV -0.0399 0.0144
TiAlMoNb + V -0.0409 0.0019

TiAlNbV-Mn 500 TiAl + MnV + Nb 0.1452 0.0080
TiAlNb + MnV 0.1280 0.0158
TiAlMnV + Nb 0.0903 -0.0151
TiAlMnV + Nb 0.0717 0.0248

AlMnV + Nb + Ti 0.0707 -0.0038

1200 AlNbTi + MnV 0.0875 0.0158
AlTi + MnV + Nb 0.0816 0.0080
AlMnTiV + Nb 0.0602 -0.0151
AlMnV + NbTi 0.0192 -0.0105

AlMnV + Nb + Ti 0.0135 -0.0038

For TiAlNbV-Mo at 500K, four different products exhibit a driving force for the decompo-

sition of the HEA. However, all ∆Gmix values become negative and the HEA is stabilized

when the temperature increases to 1200K. The same behaviour has been observed for BCC

TiAlNbV-Mo in the VASP-SQS results. Moreover, also the decomposition routes are the

same or very similar, just the order in the table has slightly changed.

In contrast, the results of the TiAlNbV-Mn HEA immediately imply that this HEA will not

form as a single phase BCC alloy due to the positive ∆Gmix values. This is in accordance with

the VASP results, which also predicted the TiAlNbV-Mn to be unstable. The larger values
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of ∆Gmix can be again ascribed to the missing relaxation processes in EMTO. However,

the core statement of the results about the phase stability yields the same conclusion and

therefore strengthens the results obtained by VASP.

4.4 Stabilization Effect of Vibrational Entropy - Debye Model

Until now, only the configurational entropy, which is presumed to have the biggest contribu-

tion to the total entropy of HEAs, has been included in the evaluations of the phase stability.

This section aims to estimate the impact of another entropic contribution, the vibrational

entropy, on the stability of the HEAs.

Vibrational effects are evaluated with the harmonic Debye model and expressed by the

vibrational free energy as described in Sec. 2.6. We consider the decomposition products

with the highest driving force for decomposition taken from the results, where only the

configurational entropy was considered (Sec. 4.3). The Debye model (Sec.2.6) is then applied

to the involved systems, the decomposition products as well as HEAs. The focus is laid on

whether the vibrational entropy contribution has such an impact that it can potentially

stabilize the TiAlNbV-Mo and TiAlNbV-Mn HEAs. The considered decomposition routes

are namely TiAlNb+MoV, TiAlMoNb+V, TiAl+MoV+Nb, TiAlNb+MnV, TiAlMnV+Nb

and TiAl+MnV+Nb, in which all the products are considered as BCC phases.

4.4.1 Elastic Properties of BCC HEAs and Decomposition Products

As the vibrational characteristics of a material are closely related to the elastic properties,

the elastic constants and moduli of the systems need to be calculated. This has been done

by the stress-strain method (Sec. 2.7). Table 4.6 lists all the gained Cij values for the cubic

systems as well as the corresponding Young’s moduli E, shear moduli G and bulk moduli B

for the investigated decomposition products.

The results for Cij suggest that all systems are mechanically stable as they fulfil the criteria

of Born and Huang [65]:

C11 + 2C12 > 0, C11 − |C12| > 0, C44 > 0. (4.1)

Especially MoV and MnV form very stiff BCC phases as they exhibit very high C11, E

and also B compared to the other alloys. A scan through Young’s moduli shows that solid

solution strengthening takes effectively place as the pure elements have the lowest E. The

HEAs exhibit lower moduli than most of the other systems, and hence no effect due to solid

solution strengthening can be observed.

The important quantity for the following evaluations is the bulk modulus. To prove the

correctness of the obtained results from the stress-strain method, the moduli of the pure
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Table 4.6: Calculated elastic constants and moduli for the HEAs and their decomposition
products with the highest driving force for decomposition.

Material System C11 (GPa) C12 (GPa) C44 (GPa) E (GPa) G (GPa) B (GPa)

Nb 246 136 16 77 27 169
V 274 144 23 100 35 185

TiAl 199 98 73 163 63 132
MoV 374 152 57 201 74 225
MnV 422 150 85 270 103 241

TiAlNb 170 129 68 115 142 139
TiAlMoNb 208 142 70 140 52 163
TiAlMnV 235 136 84 180 68 169

TiAlMoNbV 219 144 61 138 50 169
TiAlMnNbV 206 136 61 134 49 159

metals are compared to values found in the Materials Project database [66]. It reports bulk

modulus of 167 GPa obtained for Nb BCC [67] (here: 169 GPa) and 179 GPa for V BCC [68]

(here: 185 GPa), which clearly shows that our results are reasonable and accurate enough

to apply them to the Debye model.

4.4.2 Interpretation of Vibrational Free Energy

With the knowledge of the bulk modulus, the vibrational free energy Fvib can be determined

by following the scheme from Sec. 2.6 beginning with Eq. 2.12. Fig. 4.6 demonstrates the

trends for the vibrational free energies with increasing temperature. All energies turn more

negative by raising the temperature. The lowest values are obtained by the pure metals,

especially by Nb, which is about 0.1 eV/at. lower than the HEAs and shows a much steeper

slope. This can be associated with the high molar mass of Nb as the vibrations are energet-

ically much more pronounced due to this effect. MnV constitutes the alloy with the highest

(least negative) Fvib that probably originates from its very high stiffness indicated by the

high E and B. TiAlMnV and TiAl also exhibit high values of energy, although they only

have moderate or even low bulk moduli; the reason for the high Fvib could come from their

relatively low averaged molar mass. The two HEAs exhibit average values of Fvib and lie in

the middle of the evaluated systems.

4.4.3 Transition Temperature for the Stabilization of HEAs

Using the vibrational free energies, Gibb’s free energy ∆Gmix can be reevaluated by using

Eq. 2.16. This is done for steps of 100K ranging from 500 to 1200K, as it is presented

for the decomposition routes of TiAlNbV-Mo in Fig. 4.7. The obtained data points are

fitted with a linear function so that the transition temperature from a stable to an un-

33



4.4 Stabilization Effect of Vibrational Entropy - Debye Model

500 600 700 800 900 1000 1100 1200
Temperature [K]

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0.0

F V
ib

 [e
V/

at
.]

V
Nb
TiAl
MoV
MnV
TiAlNb
TiAlMoNb
TiAlMnV
TiAlNbV-Mo
TiAlNbV-Mn

Figure 4.6: Vibrational free energies of the BCC HEAs and decomposition products with
the highest driving force for decomposition as calculated by the harmonic Debye model.

stable HEA can be estimated. This is indicated by the crossover with the zero-line. The

inclusion of the vibrational effects leads to a reduction of the ∆Gmix for the TiAlNb+MoV

and TiAl+MoV+Nb decomposition routes. Consequently, this partly stabilizes (acts along

with the configurational entropy) the HEA and pushes the transition temperature Ttrans,

at which the HEA gets stable, down. For instance, the TiAlNb+MoV route reduces its

transition temperature by ≈100K and therefore is predicted to be stable already at 776K.

Similarly, TiAl+MoV+Nb reaches its stability at 500K, but with the consideration of Fvib,

∆Gmix is reduced even further and is stable down to 360K. Nevertheless, the impact is not

huge enough to obtain a stable single-phase BCC HEA at room temperature. An oppo-

site behaviour is observed for the TiAlMoNb+V route. Here, the HEA gets destabilized by

including the vibrational entropy contribution. This unexpected destabilization can occur

because the Fvib is strongly negative for the decomposition products. Consequently, the

decomposition becomes energetically even more favoured after the inclusion of the lattice

vibrations. This particular example nicely demonstrates that contrary to the configurational

entropy, the addition of the vibrational entropy does not always lead to a stabilization of

the HEA, but can also destabilize it for certain decomposition routes. Hence, the transition

temperature from unstable to stable TiAlNbV-Mo HEA has not decreased significantly. This

comes from destabilization of the TiAlMoNb+V route, which implies a temperature differ-

ence of more than +200K compared to the situation without vibrational effects and leads to
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a transition temperature of 833K. Finally, the consideration of the vibrational entropy leads
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Figure 4.7: Estimated stabilization impact of the vibrational free energy on the HEAs demon-
strated by the change of Gibb’s free energy of the decomposition routes with the highest
driving force for decomposition of TiAlNbV-Mo. The red crosses and temperatures indicate
the transition temperatures from unstable to stable after including the vibrational free en-
ergy (orange values). If there is no cross as indicator, the transition temperature decreased
to a value, which is out of the x-range.

to the awareness that no thermodynamically stable single phase BCC HEA can be obtained

at temperatures below ≈ 800K, although the total stability threshold shifts to slightly lower

temperatures.

Similarly, ∆Gmix is also recalculated for the decomposition routes with the highest driving

force for decomposition of the TiAlNbV-Mn HEA. These results are plotted in Fig. 4.8. In

contrast to the TiAlNbV-Mo HEA system, the effect of vibrational entropy is much more pro-

nounced for most of the decomposition routes. This is particularly true for the TiAlNb+MnV

as well as for TiAlMnV+Nb routes. The TiAlNb+MnV route exhibits positive ∆Gmix at

1200K by considering solely the configurational entropy. With the addition of the vibra-

tional entropy, it crosses to negative values already at around 860K. TiAlMnV+Nb is even

more affected as the HEA is already predicted as stable at 500K and even down to 360K

by including Fvib. Interestingly, the second decomposition route, TiAl+MnV+Nb is more

or less not affected by the additional temperature effects and shows only minor changes.

However, the conclusion of the results again is that still no fully stable BCC HEA can be

obtained, although the stable region (at least with respect to BCC → BCC + BCC decom-

positions) shifts to significantly lower temperatures (from above 1200K to below 900K). To

have a better overview, how Fvib changed the stability of the HEAs in terms of transition

temperatures, these temperatures are summarized in Tab. 4.7 again.
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Figure 4.8: Estimated stabilization impact of the vibrational free energy on the HEAs demon-
strated by the change of Gibb’s free energy of the decomposition routes with the highest
driving force for decomposition of TiAlNbV-Mn. The red crosses and temperatures indicate
the transition temperatures from unstable to stable after including the vibrational free en-
ergy (orange values). If there is no cross as indicator, the transition temperature decreased
to a value, which is out of the x-range.

Table 4.7: The transition temperatures ∆Ttrans from a stable BCC HEA to an unstable one
are summarized for the observed BCC+BCC decomposition routes. The change of Ttrans due
to the inclusion of Fvib is shown. The red numbers indicate the routes with highest driving
force for decomposition before and after including Fvib.

Decomposition Route ∆Ttrans

TiAlNbV-Mo TiAlNb+MoV 877K→ 776K
TiAlMoNb+V 628K→ 833K
TiAl+MoV+Nb 483K→ 380K

TiAlNbV-Mn TiAlNb+MnV 1250K→ 861K
TiAl+MnV+Nb 720K→ 698K
TiAlMnV+Nb 728K→ 359K

4.5 Experimental Observations

Colleagues from the Chair of Physical Metallurgy and Metallic Materials have performed

experiments on the TiAlNbV-Mo and TiAlNbV-Mn HEAs [12]. In this section, we com-

pare our theoretical predictions with their results. For this purpose, they provided scanning

electron microscope back-scattered electron (SEM-BSE) images and data from X-ray diffrac-

tion (XRD) measurements. To gain information about the phase stability, heat treatments

were applied to the HEA samples. The experimental results are presented with the kind

permission of Stefan Zeisl; they were previously presented within his thesis [12].
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4.5 Experimental Observations

4.5.1 Phase Stability of BCC TiAlNbV-Mo

The experimental results for TiAlNbV-Mo consisting of a BCC phase are summarised in

Fig. 4.9. The SEM-BSE image (panel a)) shows the as-cast state of the HEA. In this state,

the alloy consists of a single-phase solid solution with an inhomogeneous structure. The

black dots indicate TiN impurities incorporated during the manufacturing process and will

be neglected.

Figure 4.9: TiAlNbV-Mo HEA: a) As-cast state: Single phase solid solution with an inhomo-
geneous structure and TiN impurities; b) After heat treatment (1200 ◦C, 24 h): Single-phase
solid solution with an homogeneous microstructure; c) XRD measurement after heat treat-
ment: Single BCC phase.

After the observation of the initial state, a heat treatment at 1473K for the duration of

24 h is executed. The resulting image is demonstrated in Fig. 4.9 b), which suggests that

the microstructure has gained much more homogeneity. Hence, the assumption is that the

HEA stayed in its single-phase solid solution. Additional XRD measurements (Fig. 4.9 c))

prove this assumption by detecting peaks solely for the single BCC phase, and no signs

of phase transition or decomposition effects could be observed after heat treatment. From

these results, it can be presumed that TiAlNbV-Mo forms a single phase BCC alloy at high

temperatures and keeps it during cooling down to room temperature.

As a reminder, from the theoretical studies, we predicted that the lowest temperature below

which the HEA decomposes into TiAlNb+MoV (see Fig. 4.7) is at ≈ 775K. Although

the practical and theoretical approaches are rather different, the outcome has only minor

differences. The reason that the predicted phase stability differs at low temperatures could

come from sources of errors on both sides, e.g. HEA samples used in the experiment could

deviate slightly from equi- or near-equiatomic composition and also impurities can influence

the evolution of the microstructure. On the other hand, in the theoretical approach, several

approximations are made, e.g. only some contributions to entropy are considered or no

actual kinetics of the decomposition process was taken into account. By searching for other

reasons for the apparent discrepancy at low temperatures, we also consider the binary phase
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4.5 Experimental Observations

diagram of MoV (Fig. 4.10). According to this phase diagram, MoV can not exist below

≈ 1100K due to a miscibility gap. Hence, the MoV as a decomposition product is probably

not predicted correctly in the theoretical model because of some approximations. This would

affect the TiAlNb+MoV decomposition route, which exhibits the highest driving force for

decomposition at 500K (see 4.2). In conclusion, the investigated TiAlNbV-Mo HEA is likely

a kinetically stabilized alloy, which also exhibits proper preconditions to form a single-phase

BCC solid solution at lower temperatures.

Figure 4.10: Binary phase diagram of MoV [69].

4.5.2 Phase Stability of BCC TiAlNbV-Mn

The TiAlNbV-Mn HEA was tested in the same experimental setup as the samples in the

previous section. In the SEM-BSE image of the as-cast (Fig. 4.11 a)) a two-phase microstruc-

ture is observed. The exposure of the HEA to a heat treatment at ≈ 1170K for 24 h leads to

a two-phase microstructure with a significantly reduced dark phase (Fig. 4.11 b)). Zeisl [12]

concluded that the dark phase corresponds to the BCC phase and the bright one the HCP

phase. The XRD analysis of TiAlNbV-Mn (see Fig. 4.11 c)) confirms the assumption of a

BCC(B2)+HCP(C14) microstructure. Heat treatments with different values for tempera-

ture, time or cooling rates did not yield a single-phase solid solution up to now. This is

well in accordance with the computational conclusion that the TiAlNbV-Mn HEA has no

tendencies to form a stable single-phase HEA, not even at high temperatures.
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4.6 Phase Stability of FCC HEAs

Figure 4.11: a) As Cast state: Two-phase microstructure with impurities; b) After heat
treatment (900 °C, 24 h): Two-phase microstructure, where dark phase (BCC) is significantly
reduced; c) XRD measurement after heat treatment: BCC(B2) + HCP(C14).

The composition of the two different phases has been measured with energy dispersive X-

ray spectroscopy (EDX) after heat treatment. Based on this analysis, the HCP-C14 phase

contains a much higher amount of Mn (xMn ≈ 28.6%, xT i ≈ 12.5%), the BCC phase

a higher amount of Ti (xMn ≈ 11.2%, xT i ≈ 25.1% ) and the other elements stay at

≈ 20% portion. This observation gives rise to the idea that the Mn content is the critical

factor for the precipitation of the HCP-C14 phase. Therefore, two other alloys have been

investigated [12], in which the Mn content is increased from 20 to 30 % on the expense of

Ti: Ti10Al20Nb20V20-Mn30 and vice versa to Ti30Al20Nb20V20-Mn10. It turns out that the

microstructure of the alloy with the higher Mn ratio consists of a huge amount of HCP

phase in the as-cast state. The alloy with lower Mn content solidifies in a single BCC phase

structure in the as-cast state and only a little amount of HCP phase is observed after the heat

treatment. Hence, the Ti30Al20Nb20V20-Mn10 alloy tends to be a more promising candidate

for a stable single-phase BCC solid solution. This also correlates with the conclusion of

Fig.4.4, that an increasing amount of Mn stabilizes the HCP-C14 phase. Finally, it proves

again that Mn is the driving force for the precipitation of the HCP-C14 phase. Probably not

only the Mn content leads to decomposition, but the combination of Mn with TiAl. From

a former study [15], we know that the decomposition of a TiAlMn alloy into a Laves phase

(C14) has been observed as well. Therefore it can be concluded that no stable single-phase

BCC HEA can be obtained by mixing Mn with a TiAl alloy due to the precipitation of the

HCP-C14 phase.

4.6 Phase Stability of FCC HEAs

Literature suggests that TiAlNbV most likely solidifies in the BCC structure [10]. Moreover,

the addition of Mo and Mn should stabilize the BCC phase even more because they also

solidify in a BCC structure as individual elements and can be stated as BCC stabilizers [13].
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4.6 Phase Stability of FCC HEAs

On the other hand, binary TiAl is stable in a tetragonally-distorted FCC structure. Since

no information about the existence or non-existence of FCC TiAlNbV-Mo or TiAlNbV-Mn

is available, their phase stability has been studied as well. Ground state properties of the

HEAs and also their decomposition products have been calculated with the inclusion of full

structural relaxation.
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Figure 4.12: The development of the total energies during the spontaneous transformation
of TiAlNbV-Mo and TiAlNbV-Mn FCC into BCC structure. ∆E denotes the difference in
energy of the FCC and BCC phase.

The total energies during the relaxation are shown in Fig. 4.12 for TiAlNbV-Mo and TiAlNbV-

Mn as examples. The continuous decrease of the energies implies that the structure probably

transforms into a more stable one. Moreover, in the case of the HEAs, the energy difference

∆E between the initial FCC and the relaxed structure is relatively large, which often goes

hand in hand with structural changes. A detailed atomic structure analysis with Ovito [70]

reveals that the final structures of most systems are not FCC anymore but exhibit BCC

characteristics. Screenshots of FCC TiAlNbV-Mo in its unrelaxed (Fig. 4.13) and relaxed

state (Fig. 4.14) are shown as an example. The structural analysis reveals that most systems

transformed from FCC to BCC structure during relaxation. The obtained structures for all

FCC systems after relaxation, analyzed by Ovito, are presented in Tab. 4.8.

Moreover, the final total ground state energies of most initial FCC models are similar to

the obtained energies from the calculations in Sec. 4.2, in which the initial structures are

already BCC. There only exist a few exceptions that stay in FCC structure during relaxation,
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4.6 Phase Stability of FCC HEAs

Figure 4.13: The FCC structure of the TiAlNbV-Mo HEA without and with structural
analysis before any relaxation processes have been applied. The green colour denotes the
identification of FCC structure.

Figure 4.14: The structure of the FCC TiAlNbV-Mo HEA after relaxation without and with
structural analysis. The blue colour denotes the identification of a BCC structure. A green
atom, which stands for FCC structure, is still identified in the back.

namely AlNb, TiAl, AlV, TiAlNb and TiAlV. To prove the preference for the BCC structure

in terms of energies, the systems, which are assumed to transform to BCC, and the systems

staying in FCC are compared to the pure BCC structures from previous sections. This

is done by calculating the differences of the relaxed energies between the FCC and BCC

systems. The spontaneously transforming structures (Fig. 4.15 (a)) exhibit relatively low

differences of total energies as demonstrated in Fig. 4.15. Mostly, the differences for these

systems stay below 20meV, which is a randomly chosen threshold for orientation purposes.

The systems, which stay in FCC structure (Fig. 4.15 (b)), mostly show differences that

clearly exceed 20meV. Although exceptions on both sides are present, the convergence in

the direction of the BCC ground state energies is demonstrated by the FCC → BCC results

as the deviations are relatively low. The obtained higher differences of the FCC → FCC

energies confirm the assumption that they stay in FCC structure. Overall, this is another

proof for the spontaneous transformation from FCC into the direction of BCC and the strong
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4.6 Phase Stability of FCC HEAs

BCC preference of the HEAs, TiAlNbV-Mo and TiAlNbV-Mn. Moreover, it can be stated

that the same is observed for most of the corresponding decomposition products (low-to-

medium entropy alloys based on TiAl) with the initial FCC structure.
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Figure 4.15: In (a), the differences of the total energies of the FCC structures (identified as
BCC after relaxation) to the BCC systems are shown. In (b) the same energy difference is
shown for the structures, which stayed in FCC during relaxation.

Interestingly, the stoichiometric TiAl seems to be a stabilizer of the FCC phase. This is in

accordance with a study by Abdoshani et al. [71], in which they predicted that the TiAl

system spontaneously transforms from the β-BCC to the γ-FCC phase and therefore, FCC

phase is preferred. On the other hand, they claim that the addition of Mo into TiAl leads

to an energetic preference for the BCC phase. This is probably the reason why all alloys

containing Mo transform to BCC and only systems without Mo keep the FCC structure. It

seems that also Mn features the same effect because also the TiAlMn ternary transformed

from FCC to BCC structure, although no Mo is contained. This confirms that Mn acts

as a BCC stabilizer. In conclusion, these results strengthen the assumption that a strong

BCC preference for TiAlNbV-Mo and TiAlNbV-Mn as well as most decomposition products

exists. Only alloys based on TiAl, but without the addition of Mo could form a stable FCC

phase. Therefore, it is not foreseen as useful to do further research and evaluations on the

phase stability of FCC TiAlNbV-Mo and TiAlNbV-Mn systems.
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4.6 Phase Stability of FCC HEAs

Table 4.8: Structures of the initial FCC systems after the relaxation process.

System Relaxed Structure System Relaxed Structure

AlMo 66.6%FCC+33.3%BCC TiMoNb 100%BCC
AlNb 100%FCC TiMoV 100%BCC
TiAl 100%FCC TiNbV 100%BCC
AlV 100%FCC AlMnNb 40%FCC+5%BCC+55%others
MoNb 100%BCC TiAlMn 37%FCC+7%BCC+56%others
MoV 100%BCC AlMnV 100%BCC
NbV 100%BCC MnNbV 100%BCC
TiMo 100%BCC TiMnNb 47%BCC+53%others
TiNb 100%BCC TiMnV 100%BCC
TiV 100%BCC AlMoNbV 100%BCC
AlMn 84%FCC+16%others TiAlMoNb 100%BCC
MnNb 100%BCC TiAlMoV 100%BCC
TiMn 100%BCC TiAlNbV 95%BCC+5%HCP
MnV 100%BCC TiMoNbV 100%BCC

AlMoNb 100%BCC AlMnNbV 100%BCC
AlMoV 100%BCC TiAlMnNb 5%FCC+16%BCC+79%others
AlNbV 35%FCC+55%BCC+10%others TiAlMnV 100%BCC
TiAlMo 100%BCC TiMnNbV 100%BCC
TiAlNb 100%FCC TiAlNbV-Mo 100%BCC
TiAlV 100%FCC TiAlNbV-Mn 100%BCC
MoNbV 100%BCC
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Chapter 5

Summary

This thesis pursued the objective of theoretically investigating the phase stability of TiAl-

based HEAs, namely TiAlNbV-Mo and TiAlNbV-Mn. The goal was to find a single-phase

solid solution alloy. This was done by calculating the ground-state total energies of the

quinary HEAs and all their possible unary, binary, ternary and quaternary decomposition

products in the BCC phase by DFT and subsequently evaluating the corresponding mixing

energies. As a starting point, the mixing enthalpies of the systems were evaluated and

compared with each other, which demonstrates the stability of the alloys at 0K. Several

elemental combinations yielding stable solid solutions have been identified.

Next, the entropy term has been included in the form of its configurational entropy con-

tribution. This provided the opportunity to calculate the Gibbs free energy of mixing by

additionally introducing temperature implicitly. Hence, an insight into the phase stability

could be gained at different temperatures and the stabilization effect of the configurational

entropy was estimated. It turned out, that the BCC TiAlNbV-Mo HEA was not fully sta-

ble.The TiAlNbV-Mn HEA exhibited a driving force for decomposition up to more than

1200K. For this system, also the HCP-C14 phase has been considered as a decomposition

product, which led to the same conclusion. The results for phase stability have been partly

confirmed by comparing them with analysis by the EMTO-CPA method.

As a next step, the vibrational entropy has been involved in order to get an even more

accurate description of Gibbs free energy and to estimate its additional impact on the phase

stability. This has been done by implementing the elastic properties of the BCC alloys,

calculated by the stress-strain method, into the harmonic Debye model. The results revealed

that the HEAs mostly experience a stabilization effect by introducing the vibrational entropy

term. It shifts the transition temperature, which denotes the crossover from positive to

negative Gibbs free energy of mixing, to lower values. Nonetheless, the effect is not significant

enough, and neither TiAlNbV-Mo nor TiAlNbV-Mn represented stable BCC HEAs down

to low temperatures even with this further stabilization. Moreover, it has been shown that
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5. Summary

the consideration of vibrational entropy could also lead to a destabilization of the HEAs for

certain decomposition routes.

The comparison with experimental methods gave insight into the microstructural evolution

of the BCC HEAs. The TiAlNbV-Mo HEA has been observed to be stable down to room

temperature after heat treatment. Hence, no decomposition effects are discovered, which

does not fully agree with the theoretical conclusion. Therefore, TiAlNbV-Mo is proposed

to be most likely a kinetically stabilized HEA and has good prerequisites for further alloy

development. The outcome for BCC TiAlNbV-Mn is in accordance with the theoretical

results as a two-phase BCC+HCP microstructure has been detected also in experiments.

Finally, also the phase stability of FCC TiAlNbV-Mo and TiAlNbV-Mn was investigated.

However, a spontaneous transformation of the FCC HEAs to BCC occurred during the

relaxation processes proving the genuine instability of the FCC structures. Hence, any

additional study of phase stability would have been misleading. Nevertheless, this has been

the confirmation that a strong preference for the BCC phase exists for the studied HEAs.

46



Bibliography

[1] F. Liu, P. K. Liaw, and Y. Zhang, Metals 12, 501 (2022).

[2] M.-H. Tsai and J.-W. Yeh, Materials Research Letters 2, 107 (2014).
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Appendix A

Estimation of Maximum Strain for

Stress-Strain Method

For the application of the stress-strain method (see Sec. 2.7), it is important to stay in the

elastic regime. To obtain the information on the maximum strain that can be applied, the

method is performed for several magnitudes of maximum strain εmax on the example of

Mo BCC. From Fig. A.1 it can be seen that the trend lines are in an acceptable range of

deviation until εmax ≈ 0.3. Especially in the graphs of C11 and C12, a distinct increase or

decrease of the values is observed, which leads to the conclusion that the elastic regime is

left.
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Figure A.1: The three cubic elastic constants for Mo BCC at different maximum strains
εmax obtained by the stress-strain method. The grey line indicates εmax = 0.021, which is
used for the elasticity calculations in this thesis.

The bulk modulus is represented separately in Fig. A.2 at different εmax. Also from here

an εmax = 0.03 can be determined as a threshold value for the elastic regime. To have full

certainty for accurate results, the optimum value for εmax is determined as εmax = 0.021.
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This value is chosen for the calculation of elastic constants with the stress-strain method for

all alloy systems.
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Figure A.2: The bulk modulus for Mo BCC at different maximum strains εmax obtained
by the stress-strain method. The grey line indicates εmax = 0.021, which is used elasticity
calculations in this thesis.
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Appendix B

Further Analysis on Configurational

Entropy

The configurational entropies Sconf for products of three different decomposition routes,

TiAlMnV+Nb, TiMnV+AlNb and TiAl+MnV+Nb, as well as for the corresponding HEA

are calculated and shown in Table B.1. The unary elements exhibit a Sconf of zero, and

hence Nb is not mentioned in the table.

Table B.1: Configurational entropies Sconf of selected systems calculated by Eq. 2.5.

System Sconf [meV/K]

AlNb 0.0200
TiAl 0.0200
MnV 0.0259
TiMnV 0.0411

TiAlMnV 0.0507
TiAlNbV-Mn 0.0575

The entropies increase, as expected, with increasing number of elements in the alloy. The

different impact of temperature T on the Gibbs free energy of mixing ∆Gmix for decompo-

sition routes with a different number of products is demonstrated by the equations below

(Eq. B.1, Eq. B.2, Eq. B.3). The statement is, that decomposition routes with a higher

number of products affect ∆Gmix to a larger extent due to its higher ∆Sconf with respect to

the HEA. This is confirmed with the following equations, which demonstrates the T∆Sconf

term extracted from Eq. 2.6.
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TiAlMnV+Nb:

T × {Sconf(TiAlNbVMn)− [x(TiAlMnV)Sconf(TiAlMnV) + x(Nb)Sconf(Nb)]} =

= T × 0.0575
meV

K
− [0.8× 0.0507

meV

K
+ 0.2× 0

meV

K
]} =

= T × 0.0169
meV

K

(B.1)

TiMnV+AlNb:

T × {Sconf(TiAlNbVMn)− [x(TiMnV)Sconf(TiMnV) + x(AlNb)Sconf(AlNb)]} =

= T × {0.0575 meV

K
− [0.6× 0.0411

meV

K
+ 0.4× 0.0200

meV

K
]} =

= T × 0.0248
meV

K

(B.2)

TiAl+MnV+Nb:

T × {Sconf(TiAlNbVMn)−
− [x(TiAl)Sconf(TiAl) + x(MnV)Sconf(MnV) + x(Nb)Sconf(Nb)]} =

= T × {0.0575 meV

K
−

− [0.4× 0.0411
meV

K
+ 0.4× 0.0200

meV

K
+ 0.2× 0

meV

K
]} =

= T × 0.0391
meV

K

(B.3)

These equations clearly confirm the statement above as the TiAl+MnV+Nb route (with

highest number of decomposition products) exhibits the highest value of ∆Sconf with respect

to the HEA. Hence, temperature has a more pronounced effect on ∆Gmix.
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