




i

Dedication

First of all, I want to thank Prof. Paul O’Leary and Dipl.-Ing. Anika Terbuch from the Chair
of Automation for their tremendous support during the elaboration of this thesis and their advice
beyond the scope of this work, be it in scientific or personal matters. In a lot of friendly discussions,
they introduced me to the exciting field of machine learning and were always willing to help me
during the challenging times of the COVID-19 crisis.

Special thanks go to my fellow students and friends in Leoben, with whom I had a great time and
who always kept me motivated.

Last but not least, I would like to thank my family and friends, especially my parents, who have
always encouraged me to follow my passion and supported me where they could.



ii

Kurzfassung

Die vorliegende Arbeit widmet sich der Optimierung von Autoencodern, welche zur Klassifizie-
rung von multivariaten Echtzeit-Messdaten aus Produktionsprozessen eingesetzt werden sollen.
Ziel ist die Erkennung von Zeitreihen mit Anomalien, die auf mögliche Prozessfehler hindeu-
ten könnten. Die Güte der Klassifizierung wird von unterschiedlichen Einflussfaktoren bestimmt,
von denen die wichtigsten in separaten Testreihen analysiert wurden. Mittels eines existierenden
Frameworks wurden Autoencoder mit uni- oder bidirektionalen Schichten des Typs Long Short-
Term Memory (LSTM) erzeugt, um Langzeit-Abhängigkeiten in den Daten zu berücksichtigen.
Die Abweichung des vom Autoencoder rekonstruierten Signals vom entsprechenden Eingangssi-
gnal wurde als Maß für den Grad der Abnormalität einer Zeitreihe verwendet. Mittels eines Feh-
lerschwellwertes wurden die Proben als normal oder abnormal klassifiziert. Bei der Schwellwert-
bestimmung wurde die Schiefe der Verteilung der Rekonstruktionsfehler verschiedener Zeitrei-
hen berücksichtigt. In einer Testreihe wurden Autoencoder mit unterschiedlichen Architekturen
hinsichtlich ihrer Eignung zur Anomalieerkennung verglichen. In weiteren Experimenten wur-
den Techniken zur Initialisierung der Gewichtsparameter von neuronalen Netzwerken behandelt.
Darüber hinaus wurden unterschiedliche Methoden zur Optimierung der maßgebenden Hyper-
parameter von Autoencodern untersucht. Unter Berücksichtigung der erlangten Erkenntnisse aus
den zuvor genannten Versuchsreihen wurden separate Autoencoder für die zwei Hauptphasen des
überwachten Prozesses optimiert und getestet. Diese wurden mit einem statistischen Tool zur An-
omalieerkennung basierend auf Leistungskennzahlen kombiniert, um hybride Lernmodelle zu er-
zeugen. Der verwendete Datensatz wurde von Sensoren an Baumaschinen aufgezeichnet, welche
zur Baugrundverbesserung mittels Rütteldruckverdichtung eingesetzt werden. Ziel dieser Arbeit
war die Unterstützung laufender Forschung am Lehrstuhl für Automation, welche sich mit Me-
thoden des maschinellen Lernens in der kombinierten Anwendung mit klassischen Methoden zur
Maschinendatenanalyse befasste.



iii

Abstract

This thesis investigates the optimization of autoencoders for the classification of multivariate real-
time measurement data emanating from production machinery. The objective is to detect anoma-
lous time-series samples that may indicate process failures. The classification performance de-
pends on a variety of factors, the most important of which were analyzed in separate series of
experiments. The autoencoders were set up using an existing framework that allows the inclu-
sion of uni- or bidirectional Long Short-Term Memory (LSTM) layers in order to track long-term
dependencies in the data. The error between the original signal and the corresponding reconstruc-
tion obtained by the autoencoder was used as a measure of the degree a sample is believed to be
anomalous. Via an error threshold, the data samples were classified as either anomalous or non-
anomalous. Since the distribution over the reconstruction errors of different samples was right-
skewed, a skewness-adjusted threshold setting was performed. In a series of tests, autoencoders
with different architectures were compared with regard to their suitability for anomaly detection.
Further experiments involved the use of several techniques for initializing the weight parameters.
In addition, various methods for optimizing the most impactful hyperparameters were evaluated.
Considering the results of the experiments mentioned above, separate autoencoders for the two
main phases of the monitored process were optimized and tested. These models were combined
with a statistical outlier detection tool based on key performance indicators in order to form hy-
brid learning models. The data set analyzed in the experiments was gathered from instrumented
machinery used in a ground improvement process for building foundations. The aim of this thesis
was to support ongoing research at the Chair of Automation involving the use of machine learning
techniques in combination with classical methods for machine data analysis.



iv



v

List of Acronyms

Adam Adaptive moment estimation
AE Undercomplete autoencoder
ANN Artificial neural network
AR model Autoregressive model
ARIMA model Autoregressive integrated moving-average model
ARMA model Autoregressive moving-average model
AUC Area under the ROC Curve
biLSTM Bi-directional long short-term memory
BPTT Backpropagation through time
CNN Convolutional neural network
ELBO Evidence lower bound
GA Genetic algorithm
HPO Hyperparameter optimization
IQR Interquartile range
KL divergence Kullback-Leibler divergence
k-NN k-nearest neighbors
KPI Key performance indicator
LSTM Long short-term memory
MA model Moving-average model
MAE Mean absolute error
MAPE Mean absolute percentage error
MB Mini-batch
MC Medcouple
MCC Matthew’s correlation coefficient
MSE Mean squared error
MVTS Multivariate time-series
PCA Principal component analysis
ReLU Rectified linear unit
RMSE Root mean squared error
RNN Recurrent neural network
ROC Receiver operating characteristic
seq2seq Sequence-to-sequence
SGD Stochastic gradient descent
SMAPE Symmetric mean absolute percentage error
SSE Sum-of-squares error
SVM Support vector machine
VAE Variational autoencoder



Contents

1 Introduction 1

2 Basics of Machine Learning 3
2.1 Machine Learning Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Gaining Experience . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2.1 Supervised Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2.2 Unsupervised Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Performance Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3.1 Metrics for Regression Tasks . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3.2 Metrics for Classification Tasks . . . . . . . . . . . . . . . . . . . . . . . 8

3 Artificial Neural Networks (ANN) 12
3.1 Model of a Neuron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2 Network Architectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2.1 Feedforward Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2.2 Recurrent Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.3 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3.1 Gradient Descent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.3.2 Backpropagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3.3 Weight Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.4 Hyperparameter Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.4.1 Grid Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.4.2 Random Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.4.3 Bayesian Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.4.4 Genetic Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4 Basics of Probability and Information Theory 33
4.1 Probability Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.1.1 Probability Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.1.2 Marginal Probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

vi



Contents vii

4.1.3 Conditional Probability and Chain Rule . . . . . . . . . . . . . . . . . . . 37
4.1.4 Bayes’ Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2 Information Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5 Autoencoders 40
5.1 Types of Autoencoders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.1.1 Undercomplete Autoencoders . . . . . . . . . . . . . . . . . . . . . . . . 40
5.1.2 Sparse Autoencoders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.1.3 Denoising Autoencoders . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.1.4 Variational Autoencoders . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.2 Encoder-Decoder Sequence-To-Sequence Architectures . . . . . . . . . . . . . . . 47

6 Anomaly Detection in Time-Series Data 48
6.1 Time-Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
6.2 Anomalies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
6.3 Methods for Anomaly Detection in Time-Series . . . . . . . . . . . . . . . . . . . 49

7 Hybrid Learning Tool for Anomaly Detection 53
7.1 Structure of the Hybrid Learning Tool . . . . . . . . . . . . . . . . . . . . . . . . 53
7.2 Analyzed Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
7.3 Machine Learning Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

7.3.1 Autoencoder Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
7.3.2 Reconstruction Error and Threshold Setting . . . . . . . . . . . . . . . . . 60

7.4 Statistical Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

8 Test Results 65
8.1 Evaluation of Different Architectures . . . . . . . . . . . . . . . . . . . . . . . . . 65

8.1.1 Architectures With One Hidden Layer . . . . . . . . . . . . . . . . . . . . 66
8.1.2 Architectures With Two Hidden Layers . . . . . . . . . . . . . . . . . . . 69

8.2 Evaluation of Hyperparameter Optimization Methods . . . . . . . . . . . . . . . . 73
8.3 Evaluation of Weight Initializing Methods . . . . . . . . . . . . . . . . . . . . . . 77
8.4 Optimizing Models for Phase-Wise Anomaly Detection . . . . . . . . . . . . . . . 81

8.4.1 Parallel Hybrid Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
8.4.2 Parallel Serial Hybrid Model . . . . . . . . . . . . . . . . . . . . . . . . . 83

9 Conclusion and Future Work 87

List of Figures 89

List of Tables 92

Bibliography 93



Chapter 1

Introduction

Modern sensor technology laid the foundation for monitoring and analyzing processes in real-time,
inspiring developments in the fields of quality control [1], predictive maintenance [2], optimiza-
tion of process efficiency [3] or reduction of energy consumption and sustainability issues [4].
Time-series data can be collected by instrumenting a production facility or machinery with sensors
that measure a physical value in certain predefined time intervals [5]. This allows gathering use-
ful information about the underlying process, including the presence of extreme values or unusual
behavior. The corresponding procedure of detecting abnormal patterns in the data is referred to as
anomaly detection [6]. It can help to identify products that may not meet the requirements, e.g. in
terms of quality, or detect a failure of the machinery [4]. Manual anomaly detection is error-prone
and cost-intensive and may not be feasible in an acceptable amount of time, depending on the
amount of data to be analyzed [6], [7]. This inspired research on methods that perform this task
automatically [6]. In the case of time-series data, these methods have to take the context in which
a data point appears into account, e.g., long- or short-term trends [8].
A multivariate time-series includes data of multiple variables stored in different channels. The data
points of different channels typically originate from the same process and therefore are correlated
in some form. An anomaly detection tool for multivariate time-series data should be able to ac-
count for this correlation [9].
In this thesis, an approach for anomaly detection using a type of neural network called autoen-
coder [10] is presented. An autoencoder learns how to compute a hidden representation of the in-
put data, on which it can be well reconstructed [11]. If this hidden encoding has a lower dimension
than the input signal, the autoencoder is forced to capture the most salient features of the data [11].
By adding LSTM [12] and biLSTM [13] layers, the model is able to track long-term dependencies
in the time-series. The performance of autoencoders in anomaly detection tasks highly depends on
their architecture and the training hyperparameters [14], [15]. In this thesis, several series of ex-
periments to optimize the machine learning models are presented. Section 8.1 shows the results of
experiments aimed at finding the most suitable autoencoder architecture. Different hyperparameter
optimization methods were tested and compared with each other, as shown in Section 8.2. In a test
series presented in Section 8.3, the impact of weight initialization was investigated, and different

1



1 Introduction 2

common methods were applied.
The data set of multivariate time-series samples used for the presented experiments was collected
during a vibro ground improvement process for building foundations. The purpose of this process
is the stabilization of cohesionless soils by creating subsurface columns of compacted gravel or
sand [16]. Since columns with deficiencies are a potential safety hazard, the process is monitored,
and abnormal behavior has to be detected [17]. Considering the results of the test series performed
in Section 8.1-8.3, separate autoencoders for the two main phases of the analyzed process were
optimized. These models were combined with a statistical tool for anomaly detection based on key
performance indicators (KPI) [18] to form a hybrid learning model. Two different approaches, a
parallel hybrid model and a parallel serial hybrid model, were tested.
This thesis was intended to support ongoing research [17] at the Chair of Automation investigating
how machine learning techniques and classical methods for machine data analysis can be combined
to benefit from the strengths of both.



Chapter 2

Basics of Machine Learning

Machine Learning has gained significant popularity in recent decades and nowadays is one of the
core areas of information technology. The fields of application range from speech recognition,
web page ranking in search engines, and autonomous driving to classification tasks in automated
industrial processes [19], [20]. A possible definition of what machine learning is about can be
found in a work of Tom Mitchell from 1997:

A computer program is said to learn from experience E with respect to some class of tasks T and
performance measure P, if its performance at tasks in T , as measured by P, improves with experience
E. [21, p.2]

Take, for example, the task T of classifying images of handwritten digits: A possible measure P
for the performance of the program is simply the ratio of images that were classified correctly.
Experience E can be gained by feeding the program with sets of images and corresponding known
class labels. With an increasing amount of labeled images that are available to the program, it tends
to improve its ability to correctly classify a random unlabeled image of a handwritten digit, i.e.,
the program learns [21].
Over the past decades, a variety of machine learning methods have been developed and become
established in many areas of application in industry and personal life [20], [21]. This chapter is
intended to give a brief overview of the most important methods and techniques one should know
when dealing with this matter.

2.1 Machine Learning Tasks

For the decision of whether to prefer machine learning to directly coding a program, two main
aspects of the problem at hand must be considered: the complexity and the required adaptability.
Tasks that are performed by humans or animals routinely, e.g., driving or interpreting images, are
often too complex to directly write a program that covers all aspects of the problem. Other tasks
require the program to adapt to varying input data of the same underlying problem, such as e.g.
recognition of handwritings of different persons. These are typical fields where it is beneficial to

3



2.2 Gaining Experience 4

let a program learn how to fulfill a task by itself [20].
The following listing shows some typical areas in which machine learning has become established:

• Classification: Produce a function f : Rn →{c1, ...,ck} that assigns the input x ∈ Rn to one
class of a given set of k possible classes C = {c1, ...,ck} or returns a probability distribution
over all of them. Possible task: image recognition [22].

• Regression: Determine a function f : Rn → R that predicts a numerical value based on
provided input data x ∈ Rn. Possible task: predicting the future prices of securities [22].

• Machine translation: Convert a given sequence of words of some language into a grammat-
ically correct sequence of words in another language [22].

• Anomaly detection: Identify patterns in provided input data that indicate abnormal behav-
ior [22]. Possible tasks: outlier detection in records of credit card usage [22] or industrial
data [17].

• Synthesis and sampling: Generate data that is similar to the input samples. Possible task: au-
tomated texture generation for landscapes in video games [22].

• Imputation: Predict the values of missing entries in a given data set [22].
• Denoising: Remove the noise of corrupted input data [22].

2.2 Gaining Experience

According to the way they gain experience E in training, machine learning methods can be roughly
divided into two groups: supervised and unsupervised learning methods. Some algorithms can not
be categorized into either of these groups, e.g., reinforcement learning algorithms [22].
Reinforcement learning involves an agent that learns to perform an optimal sequence of ac-
tions to reach a specific goal. The agent receives feedback for his actions from a trainer in the
form of rewards, which indicate the desirability of the currently achieved change in the environ-
ment [22], [21]. Since this type of learning is not addressed in this thesis, it will not be discussed
in detail.

2.2.1 Supervised Learning

Algorithms that learn in a supervised training process receive a set Y = {y1,y2, ...,yn} of n target
vectors, values, or labels, that are associated with the feature vectors of the input data set X =

{x1,x2, ...,xn}. Thus, the user (supervisor) provides the desired output yi for each training sample
xi, where i= {1, . . . ,n}. With this data, the algorithm produces a function that maps an unseen data
vector xi to a predicted class, vector, or value ŷi, aiming for the prediction to be equal to or near
the target yi [22].



2.2 Gaining Experience 5

Some common supervised machine learning methods are:

• Support Vector Machines: SVMs are used to compute a linear decision boundary in high
dimensional feature spaces while maximizing the minimum distance between the data points
of the separated classes and the boundary hyperplane, the so-called margin. The support
vectors are the data points closest to the decision boundary, which therefore define the hy-
perplane, i.e., support it [19], [20].

• k-Nearest Neighbors: k-NN is a technique for assigning a label to a given input based on
the labels of the k nearest (e.g. in terms of Euclidean distance) training samples in the feature
space. It can be used for classification and regression [20].

• Naive Bayes: The Naive Bayes classifier receives an input vector of attribute values x =

[x1,x2, ...,xm]
T, and assigns the most probable label ŷ that is part of a set Y = {y1,y2, ...,yk}

of k labels. Thus, the conditional probability P(yi|x1,x2, ...,xm) of a label yi ∈ Y given the
attribute values in x has to be maximized. Using Bayes’ Theorem, the following classifier
can be obtained [20], [21]:

ŷ = argmax
yi∈Y

P(yi|x1,x2, ...,xm) = argmax
yi∈Y

P(x1,x2, ...,xm|yi)P(yi)

P(x1,x2, ...,xm)

= argmax
yi∈Y

P(x1,x2, ...,xm|yi)P(yi). (2.1)

The evidence P(x1,x2, ...,xm) is a constant scaling factor and therefore can be left out. Provid-
ing a set of training data that covers all possible combinations of attribute values and labels
to estimate the corresponding conditional probabilities P(x1,x2, ...,xm|yi) is only feasible in
the rarest cases. Therefore, Naive Bayes assumes the attribute values in x to be conditionally
independent given a label yi. Using the chain rule (see Section 4.1.3), the classifier in Equa-
tion (2.1) can be rewritten, as shown in Equation (2.2). The simplification mentioned above
yields the Naive Bayes classifier defined in Equation (2.3) [21]:

ŷ = argmax
yi∈Y

P(yi)P(x1|yi)
m

∏
j=2

P(x j|yi,x1, ...,x j−1) (2.2)

= argmax
yi∈Y

P(yi)
m

∏
j=1

P(x j|yi). (2.3)

For more information on conditional probabilities and Bayes’ Theorem, refer to Chapter 4.
• Neural Networks: These machine learning models are inspired by neuroscience and consist

of multiple units (neurons) that form a network via connections among each other. This
enables the algorithm, analogous to the brain, to solve highly complex problems [22]. A
detailed description of neural networks is given in Chapter 3.



2.2 Gaining Experience 6

• Linear Regression: The program predicts an output value ŷ based on an input vector x =

[x1,x2, ...,xm]
T, where ŷ = wTx is a linear function of the input. The vector of learnable

parameters is denoted as w [22].

2.2.2 Unsupervised Learning

Unsupervised learning models are trained on an unlabeled data set X = {x1,x2, ...,xn}, i.e., they
do not receive any targets vectors or labels yi associated with the samples xi. Rather than predict-
ing a target ŷi, the algorithm aims to gather useful information about the structure of the given
data [20], [22]. This information can be used, for example, to divide a set of data points into clus-
ters according to their similarity [23]. Some common unsupervised machine learning techniques
are:

• k-Means Clustering: This algorithm decomposes a given input data set X = {x1,x2, ...,xn}
into a set of k disjoint clusters C= {c1,c2, ...,ck}, with 1≤ k≤ n. The objective is to minimize
the sum-of-squares error (SSE) between the objects and the mean vectors, or centroids, M=

{µ1,µ2, ...,µk} of the clusters in C they are assigned to [23]:

SSE(C) =
k

∑
j=1

∑
xi∈c j

||xi −µ j||2 with µ j =
∑xi∈c j xi

|c j|
. (2.4)

Equation 2.4 shows how for each cluster c j ∈ C, the distances between the centroid µ j of
this cluster, and the elements xi ∈ X it consists of, are summed up. Note that || · || is the
notation for the norm, which is typically the Euclidean norm. The number of elements in
each cluster c j is denoted as |c j|. The performance of this method is highly dependent on the
initial choice of cluster centroids [23].

• Fuzzy Clustering: This method is an extension of the standard k-means clustering algo-
rithm. The objects are not assigned to one cluster exclusively but belong to different clusters
to a certain degree expressed by probabilistic weights. Such a weight is denoted as Vi j ∈ [0,1]
and indicates an increasing degree of membership of data vector xi in cluster c j the higher
its value is. Given a set X = {x1,x2, ...,xn} of n input vectors and a set C = {c1,c2, ...,ck}
of k clusters, the weights are organized in an n× k weight matrix V. The objective of fuzzy
clustering is to minimize the sum of weighted squared errors between the data points in X
and the centroids M= {µ1,µ2, ...,µk}, which can be formulated as [23]:

F(C,V) =
n

∑
i=1

k

∑
j=1

V p
i j ||xi −µ j||2 with µ j =

∑
n
i=1V p

i jxi

∑
n
i=1V p

i j
, (2.5)

where the exponent p defines the degree of fuzziness of the object memberships [23].



2.3 Performance Metrics 7

• Autoencoders: An autoencoder is a type of neural network that maps a given input x to a
hidden representation z and computes a reconstruction x̂ of the original input from z, such
that the error between x̂ and x is minimized [24]. A detailed description of autoencoders is
given in Chapter 5.

2.3 Performance Metrics

Machine learning models require a measure to evaluate their performance in the training process
in order to adjust the learnable parameters. These measures are selected depending on the task to
be accomplished [21]. Some of the most common metrics for regression and classification tasks
are presented in the following.

2.3.1 Metrics for Regression Tasks

Regression tasks require performance metrics that quantify the error between the outputs ŷi com-
puted by the machine learning model and the corresponding targets yi. If a set of n outputs
Ŷ = {ŷ1, ŷ2, ..., ŷn} is obtained, a set of n targets Y = {y1,y2, ...,yn} has to be provided [22].
Metrics for regression tasks can be divided into scale-dependent metrics and percentage metrics.
Scale-dependent metrics provide values that are on the same scale and have the same units as ŷi

and yi [25]. The most common metrics of this type are presented in the following:

• Mean Squared Error (MSE) [26]:

MSE =
1
n

n

∑
i=1

(ŷi − yi)
2. (2.6)

• Root Mean Squared Error (RMSE) [26]:

RMSE =

√︄
1
n

n

∑
i=1

(ŷi − yi)2. (2.7)

• Mean Absolute Error (MAE) [26]:

MAE =
1
n

n

∑
i=1

|ŷi − yi|. (2.8)

Note that even though the mean squared error is not expressed in the same units as the data, it still
is assigned to the group of scale-dependent metrics [25].
In contrast to scale-dependent metrics, percentage metrics are unit-free. Thus, they allow to com-



2.3 Performance Metrics 8

pare the errors of data sets with different units and are easier to interpret, especially if the user is
not familiar with the units of the data samples [26]. Examples of this type of metrics are:

• Mean Absolute Percentage Error (MAPE) [25]:

MAPE =
100%

n

n

∑
i=1

⃓⃓⃓⃓
ŷi − yi

yi

⃓⃓⃓⃓
. (2.9)

• Symmetric Mean Absolute Percentage Error (SMAPE) [25]:

MAPE =
100%

n

n

∑
i=1

⃓⃓⃓⃓
ŷi − yi

(|ŷi|+ |yi|)/2

⃓⃓⃓⃓
. (2.10)

2.3.2 Metrics for Classification Tasks

Classification involves the categorization of given input samples into classes according to the prob-
ability of membership [22]. In the following, some commonly applied metrics for binary classifica-
tion tasks are presented since this type of classification is addressed in this work. For an overview
of performance metrics for multi-class classifiers, refer to [27].
In binary classification, the objective is to allocate the n samples in data set X = {x1,x2, ...,xn}
to one of two given classes c1 and c2, which in the following will be referred to as class positive
and class negative, respectively. By comparing the classifier’s predictions with the corresponding
known true classes of a data set, the following categorization can be made [28]:

• True positive: A data set of class positive is correctly assigned to the class positive.
• True negative: A data set of class negative is correctly assigned to the class negative.
• False positive: A data set of class negative is erroneously assigned to the class positive.
• False negative: A data set of class positive is erroneously assigned to the class negative.

In the context of this work, the class negative represents the class of non-anomalous data samples,
and the class positive is the class of data samples that contain anomalies. The variables T P, T N,
FP and FN denote the number of true positive, true negative, false positive, and false negative
classifications, respectively. Combining these values in the form of a table yields a commonly used
tool for interpreting the classifier’s performance, the confusion matrix [28] (see Figure 2.1). Some
typically used performance metrics for binary classification tasks are listed in the following:

• Accuracy: This is the most common metric for quantifying a classifier’s performance. It
represents the correctly classified portion of all given data samples [28]:

acc =
T P+T N

T P+T N +FP+FN
. (2.11)



2.3 Performance Metrics 9

Fig. 2.1: Confusion matrix for binary classification tasks. Adapted from [28].

• Precision: The precision is a measure for the portion of all samples labeled as positive by
the classifier that also belong to the class positive [28]:

precision =
T P

T P+FP
. (2.12)

• Recall: The recall, also referred to as sensitivity or true positive rate t, represents the portion
of data samples that belong to the class positive, which also got labeled as positive by the
classifier [28], [29]:

recall =
T P

T P+FN
. (2.13)

• Specificity: Analogous to the recall, the specificity denotes the correctly classified portion of
all samples of the class negative [28]:

speci f icity =
T N

T N +FP
. (2.14)

• False positive rate: The false positive rate represents the ratio of negative data samples that
were erroneously assigned to the class positive [29]:

f =
FP

T N +FP
= 1− speci f icity. (2.15)

• Fβ -measure: The Fβ -measure combines the recall (see Equation 2.13) and precision (see
Equation 2.12) to form the following metric [28]:

Fβ =
(β 2 +1) · precision · recall

β 2 · precision+ recall
, (2.16)



2.3 Performance Metrics 10

where β is a weighting factor to favor precision (β > 1) or recall (β < 1). The weighting of
both metrics is balanced for β = 1, which yields the commonly used F1-measure [28].

• Area under the ROC curve (AUC): The receiver operating characteristic (ROC) curve
visualizes the trade-off between the sensitivity, or true positive rate, t (see Equation 2.13)
and the false positive rate f (see Equation 2.15) [29]. Exemplary ROC curves are shown
in Figure 2.2. Consider the task of labeling each sample of a data set as either anomalous

Fig. 2.2: Exemplary receiver operating characteristic (ROC) curves that depict the relationship
between the true positive rate and the false positive rate. The aim is to produce curves that get
close to the left upper corner [29]. Adapted from [30].

(positive class) or non-anomalous (negative class). The objective would be to assign as many
anomalous data sets as possible to the class positive, i.e., achieve a high true positive rate. On
the other hand, it is aspired that the number of non-anomalous data sets erroneously flagged
as outliers is low, which is equal to a low false positive rate. The ROC can be a helpful tool
to decide where to place the threshold in order to achieve a good compromise. Figure 2.2
indicates that the ROC curve should be close to the upper left corner, i.e., the area below the
curve should be maximized. This would enable a high true positive rate and an acceptable
false positive rate [29].
Thus, the area under the ROC curve (AUC) can also be used as a metric to determine a



2.3 Performance Metrics 11

classifier’s performance [31]:

AUC =
∫︂ 1

0
t d f . (2.17)

• Matthew’s Correlation Coefficient (MCC): The MMC was proven to be a more reliable
performance metric for binary classification tasks than the popularly used accuracy and F1-
measure. This is because it only delivers a high score, indicating a good prediction, if the
classifier performs well in all four categories of the confusion matrix (T P, T N, FP, FN) [32].
Suppose a classifier is tested with a set X = {x1,x2, ...,xn} of n data samples xi. Based on
the corresponding predicted classes ŷi and true classes yi, two vectors a = [a1,a2, ...,an]

T

and b= [b1,b2, ...,bn]
T are defined as follows [33]:

ai =

⎧⎨⎩1 if xi belongs to class yi = positive

0 if xi belongs to class yi = negative ,
(2.18)

bi =

⎧⎨⎩1 if xi has been assigned to class ŷi = positive

0 if xi has been assigned to class ŷi = negative .
(2.19)

The MCC represents Pearson’s correlation coefficient of these two given binary vectors [33].
It can be obtained as follows [32]:

MMC =
T P×T N −FP×FN√︁

(T P+FP)× (T P+FN)× (T N +FP)× (T N +FN)
. (2.20)

A higher correlation between the target vector a and the prediction vector b indicates a better
classification performance [33]. The MCC delivers values between −1 (perfect misclassifi-
cation) and +1 (perfect classification) [32].



Chapter 3

Artificial Neural Networks (ANN)

As described in Section 2.2.1, a neural network is a machine learning model that is inspired by the
structure of the brain [20]. It contains a variety of simple processing units, referred to as neurons,
that form a net structure through massive interconnections similar to the synopses in the brain of
humans or animals. By the use of learnable weighting factors, the importance of each connection
can be modified and optimized in the training process. This type of structure enables the network
to efficiently store gathered information and solve highly complex tasks [34]. This chapter gives a
brief introduction to the basics of artificial neural networks.

3.1 Model of a Neuron

Neurons process a set of weighted inputs by passing them through a nonlinear function, the so-
called activation function. This designation stems from the fact that the generated output of the acti-
vation function is also referred to as activation of the respective neuron [20], [34]. Figure 3.1 shows
a schematic diagram of a neuron k that receives an m-dimensional input vector x= [x1,x2, ...,xm]

T,
whose elements are weighted via weighting factors wk j, with j = {1, ...,m} [34].

Fig. 3.1: Schematic diagram of a neuron that sums up the weighted inputs wk jx j and adds a bias bk,
then squashes this sum vk through an activation function ϕ to compute ŷk [34]. Adapted from [34].

12



3.2 Network Architectures 13

The weighted inputs are summed up, and a bias bk is added. The result of this summation vk

is handed over to an activation function ϕ to compute the output ŷk. These operations can be
formulated as follows [34]:

vk =
m

∑
j=1

wk jx j +bk, (3.1)

ŷk = ϕ(vk). (3.2)

In modern neural networks, a variety of different activation functions are applied, which are se-
lected depending on the task to be accomplished. Some of the most common ones are presented in
the following listing and Figure 3.2:

• Sigmoid: The differentiable S-shaped sigmoid function σ outputs values in the range [0,1]
and is characterized by a smooth transition between linear and nonlinear behavior [22], [34].
When referring to the sigmoid function in the context of neural networks, usually a special
case, the logistic sigmoid function, is meant [21], [34]. Given the sum of weighted inputs vk

and the slope parameter a, it is defined as follows [34]:

σ(vk) =
1

1+ e−avk
. (3.3)

• Hyperbolic tangent: In cases where a function with a good balance between linearity and
nonlinearity similar to the sigmoid function, but with an output range of [-1,1], is required,
the hyperbolic tangent is a popular option. It is defined by [34]:

tanh(vk) =
evk − e−vk

evk + e−vk
. (3.4)

• Rectified linear unit (ReLU): The ReLU function outputs all input values vk with the prop-
erty vk > 0 and returns a zero for inputs vk ≤ 0. It can be formulated as follows [22]:

ϕ(vk) = max(0,vk). (3.5)

The ReLU function exhibits a constant first derivative of ϕ ′(vk) = 1 for all values that ac-
tivate the neuron and a second derivative of ϕ ′′(vk) = 0 everywhere it can be defined. In
modifications like the leaky ReLU, nonzero values for the slope in the domain with negative
input values are defined or even optimized in the training process [22].

3.2 Network Architectures

A neural network consists of multiple processing units that are organized in the form of layers.
Over the past decades, various different network architectures emerged that differ, e.g., in the
way how neurons communicate with each other or how the learnable parameters are optimized



3.2 Network Architectures 14

Fig. 3.2: Common activation function types used in neural networks. Adapted from [35].

in the training process. Feedforward neural networks, recurrent neural networks (RNN), and con-
volutional neural networks (CNN) constitute the most significant part of architectures in use to-
day [20], [34]. The two first-mentioned architectures are of interest in the context of this thesis and
therefore will be presented in more detail in the following sections.

3.2.1 Feedforward Neural Networks

A feedforward network contains, at minimum, an input layer that receives and forwards the input
x ∈ Rm, and an output layer consisting of neurons that outputs the processed data in the required
dimension. This simplest form of a feedforward network is referred to as single-layer feedforward
network. In many applications, adding additional layers between the input and output layer may
be beneficial. Since the outputs of these layers are not directly accessible, these layers are called
hidden layers [34].
A feedforward network is characterized by a directed acyclic graph. The term acyclic refers to the
fact that feedforward networks do not exhibit connections that feed back outputs into the model,
as it is practiced in recurrent networks [20]. Typically, each neuron of a hidden layer or the out-
put layer only receives data from the previous network layer. If each neuron is connected to all
neurons in the adjacent layers, the network is called fully connected. In contrast, networks with
missing connections are referred to as partially connected networks [34].
A possible architecture of a fully connected feedforward network is shown in Figure 3.3. As de-
scribed in Section 3.1, a neuron’s inputs are weighted via the use of weighting factors. For a
network with multiple layers, the concept presented in Section 3.1 needs to be extended. Each of
the l layers in a network, apart from the input layer, is identified by an index i, with i = {1, ..., l}.
ai

k represents the activation of the k-th neuron in layer i, where k = {1, ...,ni} for a layer with ni

hidden units. The activations of a layer i are combined to form an activation vector ai [36]:

ai =
[
ai

1, ai
2, . . . , ai

ni

]T
. (3.6)



3.2 Network Architectures 15

Fig. 3.3: Exemplary graph of a fully connected feedforward network with one hidden layer. The
network processes an input vector x of dimension m = 10 and outputs a vector y of dimension
nl = 2. The blue circles represent the neurons with the corresponding activations ai

k written inside.
Adapted from [34].

Furthermore, wi
k, j represents the weighting factor of the k-th neuron in layer i, which scales the

input ai−1
j received from the j-th neuron in the previous layer i− 1. These weighting factors are

organized in a weight matrix Wi, which is defined for each layer i separately as follows [36]:

Wi =

⎡⎢⎢⎣
wi

1,1 . . . wi
1,ni−1

... . . . ...
wi

ni,1 . . . wi
ni,ni−1

⎤⎥⎥⎦ , (3.7)

where ni−1 represents the number of neurons in layer i−1. Note that n0 is equal to the dimension
of the input vector x,

x=
[︂
x1, x2, . . . , xm

]︂T
, (3.8)

i.e., n0 = m. The vector containing the biases bi
k of all neurons k in a layer i is defined by [36]:

bi =
[︂
bi

1, bi
2, . . . , bi

ni

]︂T
. (3.9)



3.2 Network Architectures 16

By adding this bias vector to the weighted sum of inputs, the vector vi is obtained [36]:

vi =Wiai−1 +bi. (3.10)

The entries vi
k of vi are squashed through an activation function ϕ i to determine the activation of

the corresponding neurons k. This operation can be formulated as follows [36]:

ai = ϕ
i(vi). (3.11)

For computing the activation vector a1 of the first hidden layer, it has to be considered that a0 =x,
where x represents the input vector. The activation vector of the last layer represents the output of
the network ŷ [36]:

ŷ =
[︂
ŷ1, ŷ2, . . . , ŷnl

]︂T
=
[︂
al

1, al
2, . . . , al

nl

]︂T
. (3.12)

3.2.2 Recurrent Neural Networks

A recurrent neural network processes sequential or time-series data and is able to preserve infor-
mation from previous computations. It receives a sequence X = {x(1), . . . ,x(τ)} of input vectors
x(t), each associated with a time instant or indexing variable t = {1, ...,τ} [22],

x(t) =
[︂
x1(t), x2(t), . . . , xm(t)

]︂T
, (3.13)

and produces a corresponding sequence Ŷ = {ŷ(1), . . . , ŷ(τ)} of output vectors ŷ(t) [22],

ŷ(t) =
[︂
ŷ 1(t), ŷ 2(t), . . . , ŷ nl(t)

]︂T
. (3.14)

The current output is influenced by past elements of the time-series or sequence by feeding back
information via directed cycles referred to as recurrent connections. The majority of recurrent neu-
ral networks are capable of processing time-series or sequences with varying lengths [21], [22].
If a recurrent network contains multiple hidden layers that exhibit feedback connections, it is re-
ferred to as deep recurrent neural network [37]. Each neuron k of a recurrent network layer i is
associated with a time-dependent hidden state hi

k(t), which represents the memory of the hidden
unit. The hidden states of all neurons in a layer i are concatenated to form a vector hi(t) [22], [37],

hi(t) =
[︂
hi

1(t), hi
2(t), . . . , hi

ni
(t)
]︂T

, (3.15)

which is updated at each time instant t. This hidden state vector is a function of the current input
xi(t) of layer i and the hidden state vector of the previous time step hi(t −1) [22], [37]:

hi(t) = ϕ
i
h
(︁
Wi

hx
i(t)+Ri

hh
i(t −1)+bi

h
)︁

. (3.16)



3.2 Network Architectures 17

In addition to a bias vector bi
h and a weight matrix Wi

h for the layer input xi(t), a recurrent weight
matrix Ri

h for the hidden state hi(t −1) is introduced. The subscript h indicates that these matrices
or vectors contain the parameters for the computation of the hidden state vector. An activation
function ϕ i

h, e.g., a hyperbolic tangent, is applied to the weighted sum. The output vector ŷi(t) at
time instant t is a function of the hidden state vector hi(t) and can be determined by [22], [37]:

ŷi(t) = ϕ
i
y
(︁
Ri

yh
i(t)+bi

y
)︁

, (3.17)

where Ri
y represents the recurrent weight matrix, bi

y the bias vector, and ϕ i
y the activation function

for the computation of the layer output vector ŷi(t). Figure 3.4 shows a graphical representation of
the previously presented concept. On the left side, a network containing one recurrent layer i can
be seen, represented by a dashed blue square. It receives a sequence of input vectors xi and com-
putes a corresponding sequence of output vectors ŷi. This figure also visualizes how the hidden
state is fed back to the same layer to preserve information from previous time steps. An alternative
representation of this recurrent network is shown on the right side of Figure 3.4. Here, a recurrent
network layer is represented by separate layers for each time instant t = {1, ...,τ}. Each of these
layers applies the same weight matrices, bias vectors, and activation functions for the computation,
i.e., the parameters are shared across the layers [22], [37]. In Figure 3.5, a deep RNN with two re-

Fig. 3.4: Schematic diagram of an RNN with one recurrent network layer. The left side of the figure
visualizes the cycle that feeds information of previous time steps back to the recurrent layer. The
right side shows the same network unfolded across time, i.e., represented by separate layers for
each time instant t [22]. Adapted from [38].

current network layers is shown. Equation (3.16) and (3.17) also hold for multilayer networks,
where it has to be considered that the input vector of layer i at time instant t is equal to the output
vector of the previous layer, i.e., xi(t) = ŷi−1(t). Note that the first recurrent layer receives the
input data vector x(t), i.e., x1(t) = x(t) [37].
For training of recurrent neural networks, a variant of the backpropagation algorithm, the so-called
backpropagation through time (BPTT) algorithm, can be used (see Section 3.3.2) [22]. Major weak-



3.2 Network Architectures 18

Fig. 3.5: Schematic diagram of an RNN with two recurrent layers. On the left side of the figure,
the cycles that feed information of previous time steps back to the network layers are shown. The
right side visualizes the same network unfolded across time, i.e., both layers are represented by
separate layers for each time instant t [22]. Adapted from [37].

nesses of RNNs when using BPTT are vanishing or exploding gradients, i.e., gradients that shrink
or grow with each time step. In the case of vanishing gradients, the training takes an unacceptable
amount of time or even does not work at all, whereas exploding gradients lead to an oscillation of
the weights. These phenomena make simple RNNs unable to capture long-term dependencies in
the input data [12].
A significant improvement regarding the problem of vanishing gradients can be achieved by using
special types of RNN architectures, which will be explained in the following [39].

3.2.2.1 Long Short-Term Memory (LSTM)

LSTMs were first introduced by Sepp Hochreiter and Juergen Schmidhuber [12] in 1997 as a
new type of recurrent network architecture that is able to keep track of long-term dependencies in
time-series and sequential data. The authors addressed the problem of vanishing gradients state-
of-the-art recurrent networks suffered from and introduced a so-called cell state. The cell state acts
as a memory that stores information about past time steps and is updated via gate units that decide
which information is important to keep. In 1999, Gers et al. [40] presented an improved version of
the LSTM by adding a forget gate to the existing input and output gate, which allows the removal
of information from the cell state that is out of date.
The LSTM architectures used nowadays usually consist of a cell and four gate units: a forget gate,
an input gate, a cell candidate gate, and an output gate (see Figure 3.6). An LSTM network may
consist of multiple network layers. Thus, the notation for recurrent networks presented in Sec-



3.2 Network Architectures 19

tion 3.2.2 is applied and extended. For each gate, an input weight matrix Wi, a recurrent weight
matrix Ri, a bias vector bi, and an activation function ϕ i are defined. The subscript indicates the
corresponding gate these parameters belong to, with: e (input gate), f (forget gate), g (cell candi-
date gate), and o (output gate). As in Section 3.2.2, the superscript i represents the layer index [41].

Fig. 3.6: Schematic diagram of an LSTM architecture. The vector of cell states ci(t) acts as the
long-term memory of an LSTM layer with index i and is modified at each time step via gate units.
The output of an LSTM layer i at time instant t is the hidden state hi(t) [22]. Adapted from [42].

Forget gate:

The forget gate defines which information is dispensable at the current time instance and therefore
has to be discarded from the cell. This prevents the cell state from unbounded growing, which
would lead to the loss of the memorizing capability of the LSTM [40]. Applying the sigmoid
function on the weighted inputs yields the forget vector [41]:

f i(t) = σ

(︂
Wi

fx
i(t)+Ri

fh
i(t −1)+bi

f

)︂
. (3.18)

The sigmoid function forces the entries in f i(t) to be between zero and one [34], [41].



3.2 Network Architectures 20

Input gate and cell candidate gate:

These two gates define which information is relevant to memorize and control the information flow
to the cell. Analogous to the forget gate, a vector ei(t) is computed by squeezing a weighted sum
of the input xi(t) and the hidden state hi(t −1) through a sigmoid layer [41]:

ei(t) = σ
(︁
Wi

ex
i(t)+Ri

eh
i(t −1)+bi

e
)︁

. (3.19)

Additionally, a vector gi(t) containing possible candidates for updating the cell state is determined
as follows [41]:

gi(t) = ϕ
i
g
(︁
Wi

gx
i(t)+Ri

gh
i(t −1)+bi

g
)︁

. (3.20)

In modern LSTM architectures, the activation function ϕ i
g of the candidate gate is a hyperbolic

tangent [41], as shown in Figure 3.6, rather than a sigmoid function, as proposed in the original
work of Hochreiter and Schmidhuber [12].

The vectors f i(t), ei(t), and gi(t) are used to update the cell state. Element-wise multiplication
(Hadamard product with operator ◦) of the cell state ci(t −1) at the previous time instant t − 1
with the forget vector f i(t) removes outdated memory from the cell. New information is then
added from the vector of cell candidates gi(t), where a multiplication of gi(t) with the vector ei(t)
of the input gate ensures only relevant information flows to the cell [41]:

ci(t) = f i(t)◦ci(t −1)+ei(t)◦gi(t). (3.21)

Due to the use of a sigmoid function at the input gate, the values in ei(t) lie in the range between
zero and one, where a higher value denotes a higher importance of the corresponding value in the
cell candidate vector gi(t) [34], [41].

Output gate:

The output gate decides which information of the memory cell is used as output at the current time
step [41]. Again, a sigmoid function is applied to a weighted sum of the input xi(t) and the hidden
state hi(t −1) at the previous time step in order to create a vector oi(t) of values between zero and
one [34], [41]. This vector regulates the information flow from the cell and is determined by [41]:

oi(t) = σ
(︁
Wi

ox
i(t)+Ri

oh
i(t −1)+bi

o
)︁

. (3.22)

The hidden state vector hi(t), which is also the output vector ŷi(t) of the LSTM layer i at time
instant t, is computed as follows [22], [41]:

hi(t) = oi(t)◦ tanh
(︁
ci(t)

)︁
. (3.23)



3.3 Training 21

In most cases, the cell state vector ci(t) is squashed through a hyperbolic tangent function prior
to the element-wise multiplication with the output vector oi(t), as shown in Figure 3.6 and Equa-
tion (3.23). Alternatively, a ReLU function could be used. The computed hidden state hi(t) and
cell state ci(t) get passed on to the computation at the next time instant t +1 [22], [41].

3.2.2.2 Bi-directional Long Short-Term Memory (biLSTM)

An approach for a further improvement of recurrent neural networks was made by Mike Schuster
and Kuldip K. Paliwal [43] in 1997, who introduced bidirectional recurrent neural networks. These
networks consist of two hidden layers connected to the same input and output nodes. One of them,
the forward layer, receives the time-series in the forward (positive) direction t = {0, ...,τ}. The
other layer, referred to as backward layer, is fed with the data presented in backward (negative)
direction t = {τ, ...,0}. While this offers the potential of improving the prediction process by con-
sideration of future context, this architecture cannot be used in online settings, as data of future
time steps would have to be available [41]. For training, the BPTT algorithm can be used [43]. In
2005, Alex Graves and Juergen Schmidhuber [13] applied the concept of bidirectional RNNs to
Long-Short Term memory architectures nowadays called biLSTM.
As shown in Figure 3.7, hidden state vectors hi

F(t) and hi
B(t) are computed separately in the

forward and the backward layer of a biLSTM layer with index i, respectively. These vectors are
determined using the equations for the standard LSTM architecture, as presented in Section 3.2.2.1
in Equation (3.18) - (3.23). Note that separate weight matrices and bias vectors are used for the for-
ward and the backward layer. The hidden state vectors hi

F(t) and hi
B(t) are combined to compute

the output vector ŷi(t), using a function ψ i [44]:

ŷi(t) = ψ
i(hi

F(t), h
i
B(t)). (3.24)

This function can be a concatenating function, an averaging function, a multiplication function, or
a summation function [44].

3.3 Training

As described in Chapter 2, the learnable parameters of machine learning models are modified in the
training process in order to improve performance, measured by a given metric [21]. This section
provides a brief introduction to the methods that are commonly used to optimize the parameters of
neural networks.



3.3 Training 22

Fig. 3.7: Schematic diagram of a biLSTM architecture unfolded across time. At each time instant,
the hidden state vectors hi

F and hi
B are computed in the forward layer and the backward layer,

respectively. Applying a function ψ i on these vectors yields the output ŷi of layer i at the corre-
sponding time step [44]. Adapted from [44].

3.3.1 Gradient Descent

Gradient descent is an optimization procedure that iteratively updates the learnable parameters
by taking a step in the direction of the negative gradient of some differentiable loss function
L : Rnl → R. The loss function maps the difference of the nl-dimensional vector containing the
obtained outputs of the network ŷ = [ŷ1, ŷ2, ..., ŷnl

]T and the vector with the corresponding targets
y = [y1,y2, ...,ynl ]

T to a numerical value. The aim of training a network is to find the global min-
imum of this loss function, which is selected based on the task at hand [20], [21]. A commonly
used metric is the mean squared error [21], [26]:

MSE =
1
nl

nl

∑
i=1

(ŷi − yi)
2. (3.25)

See Section 2.3 for some further examples of performance metrics. To update the parameters, a
step along the negative direction of the gradient ∇L of the cost function L w.r.t. the corresponding
parameter is taken [36]:

w i
k, j(t +1) = w i

k, j(t)−η
∂L

∂w i
k, j(t)

, (3.26)

b i
k(t +1) = b i

k(t)−η
∂L

∂b i
k(t)

, (3.27)



3.3 Training 23

where the factor η represents the learning rate. For a given gradient, the learning rate defines the
step size for updating the parameters. If it is set too low, the updates are too small. A learning
rate that is too high, on the other hand, can lead to an oscillation of the loss around an optimum
and therefore to the algorithm becoming unstable. Both scenarios can cause an unsuccessful or
unacceptably long training process. Thus, the learning rate is often set to a higher initial value to
approach the optimum quickly. After a defined number of epochs, it is decreased in order to pre-
vent oscillation and allow convergence to the optimal value [36].
For the training of neural networks, a finite set of observations is used. The batch gradient descent
algorithm computes and averages the gradient ∇L of the cost function w.r.t. to all data samples.
For large data sets, this method can be computationally very expensive, as it requires the allocation
of significant computer resources to store the data [45].
Therefore, a variant of the standard gradient descent method, the so-called stochastic gradient
descent (SGD) algorithm, was introduced. The SGD algorithm determines an approximation ∇̃L
by just computing the gradient of the loss function w.r.t. one random sample of the given data
set, whereby E(∇̃L) = ∇L [20]. Another method, referred to as mini-batch gradient descent, in-
volves the computation of the gradients w.r.t. only a subset of the training data set, the mini-batch
(MB) [45]. A variety of variants to further improve the optimization performance were developed.
One of the most popular methods is the Adam (adaptive moment estimation) optimizer [46]. This
algorithm determines individual learning rates for the optimizable parameters using estimates of
the first and second moments of the gradient [46].
Choosing an appropriate optimization method is crucial for the performance in the training process
and can help to reduce the duration of training significantly [47].

3.3.2 Backpropagation

3.3.2.1 Backpropagation in Feedforward Networks

In the prior section, it was explained how gradient descent is applied to update the network param-
eters using partial derivatives of the loss function. The computation of these gradients is carried
out by the so-called backpropagation algorithm. As shown in Equation (3.10), the vector contain-
ing the sum of weighted inputs to the activation functions of the nodes k = {1, ...,ni} in layer i is
denoted by vi. Each entry vi

k of this vector is the sum of a bias bi
k and a linear combination of the

activations ai−1
j in the previous layer, where the coefficients are the weighting parameters wi

k, j [36]:

vi
k = wi

k,1ai−1
1 +wi

k,2ai−1
2 + · · ·+wi

k,ni−1
ai−1

ni−1
+bi

k. (3.28)

The sensitivity of the loss function L w.r.t. to the input of the activation function vi
k in layer i and

neuron k is denoted as δ i
k. It describes how much a change in the sum of weighted inputs v i

k (and



3.3 Training 24

thus a change in the weight matrix Wi or the bias vector bi) affects the value of the loss function
L, and is computed by [36], [48]:

δ
i
k =

∂L
∂v i

k
. (3.29)

The vector of activations ai of layer i is computed by applying an activation function ϕ i on vi [36],
as shown in Equation (3.11). Thus, the sensitivity δ l

k for neuron k in the output layer l using the
chain rule is computed by [36], [48]:

δ
l
k =

∂L
∂a l

k

∂a l
k

∂v l
k
=

∂L
∂a l

k

∂ϕ l(v l
k)

∂v l
k

. (3.30)

In matrix-based notation, the vector δ l containing the sensitivity values δ l
k for all nodes of the last

layer l can be determined by [36], [48]:

δ l = Φ̇
l
(vl)∇alL, (3.31)

where Φ̇
l
(vl) indicates how fast the activation function ϕ l is changing at the input values vl

k of the
neurons in the last layer. For any layer i, this matrix is defined as follows [36], [48]:

Φ̇
i
(vi) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂ϕ i(v i
1)

∂v i
1

0 . . . 0

0
∂ϕ i(v i

2)

∂v i
2

. . . 0

...
... . . . ...

0 0 . . .
∂ϕ i(v i

ni
)

∂v i
ni

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (3.32)

The gradient ∇alL of the loss function L w.r.t. the vector of activations al in the last layer is
defined by [36], [48]:

∇alL=

[︃
∂L
∂a l

1
,

∂L
∂a l

2
, . . . ,

∂L
∂a l

nl

]︃T

. (3.33)

The sensitivity vector δ i of the cost function w.r.t. a hidden layer i depends on the sensitivity vector
δ i+1 of the next layer in the network. To derive this relationship, consider how the input to node k
in layer i+1 is affected by changes in the input to a neuron j in layer i [36]:

∂vi+1
k

∂vi
j

=
∂

(︂
∑

ni
p=1 wi+1

k,p ai
p +bi+1

k

)︂
∂vi

j
= wi+1

k, j

∂ai
j

∂vi
j

= wi+1
k, j

∂ϕ i(vi
j)

∂vi
j

, (3.34)



3.3 Training 25

where ai
p represents the activation of a neuron p in layer i and wi+1

k,p the corresponding weighting
factor of neuron k in layer i+1. From Equation (3.34), it can be derived that the Jacobian matrix
∂vi+1

∂vi is defined by [36]:
∂vi+1

∂vi =Wi+1
Φ̇

i
(vi). (3.35)

Now the computation of the sensitivity vector δ i of layer i from the sensitivity vector δ i+1 of layer
i+1 using the chain rule can be formulated as [36]:

δ i =
∂L
∂vi =

(︃
∂vi+1

∂vi

)︃T
∂L

∂vi+1 = Φ̇
i
(vi)(Wi+1)T ∂L

∂vi+1

= Φ̇
i
(vi)(Wi+1)Tδi+1. (3.36)

This operation can be thought of as a backpropagation of the sensitivity δ i+1 of layer i+1 to the
i-th layer. Consequently, the sensitivities are backpropagated from the last layer of the network
to the first one, hence the name backpropagation algorithm. The computation of the sensitivity
vectors for all layers in the network, as shown in Equation (3.31) and (3.36), allows determining
the partial derivatives of the loss function w.r.t. the weights and biases simply by [36], [48]:

∂L
∂b i

k
=

∂L
∂ai

k

∂ai
k

∂vi
k⏞ ⏟⏟ ⏞

δ i
k

∂vi
k

∂b i
k⏞⏟⏟⏞

see (3.28)

= δ
i
k, (3.37)

∂L
∂w i

k, j
=

∂L
∂ai

k

∂ai
k

∂vi
k⏞ ⏟⏟ ⏞

δ i
k

∂vi
k

∂w i
k, j⏞ ⏟⏟ ⏞

see (3.28)

= δ
i
k a i−1

j , (3.38)

where j represents the index of a neuron in layer i − 1. For a more detailed derivation of the
presented equations, the reader is referred to [48] and [36].

3.3.2.2 Backpropagation in Recurrent Networks

Training of recurrent neural networks requires a variant of the standard backpropagation algorithm
to compute the gradients, the backpropagation through time algorithm [49]. Suppose the RNN
is unfolded across time, as shown in Figure 3.4. At each time instant t, the network computes
an output vector ŷ(t). With the corresponding target vector y(t), a loss ℓ(t) at time instant t is
determined. The overall loss function L is obtained by adding up the losses ℓ(t) at each time
instant t [50]:

L=
τ

∑
t=1

ℓ(t), (3.39)



3.3 Training 26

with t = {1, . . . ,τ}. A complete derivation of the algorithm is presented in the original paper of
Paul J. Werbos [49]. In the following, it is discussed how the problem of vanishing or exploding
gradients arises when training an RNN with BPTT. For simplicity, a network with one hidden layer
is assumed. Therefore, the superscript i denoting the layer is omitted in the notation of the following
equations. Updating the recurrent weight matrix Rh (see Section 3.2.2) involves computing the
gradient of the loss function ℓ(t) at each time instant t w.r.t. this matrix [50]:

∂ℓ(t)
∂Rh

=
∂ℓ(t)
∂ ŷ(t)

∂ ŷ(t)
∂h(t)

∂h(t)
∂Rh

. (3.40)

The hidden state vector h(t) is a function of the hidden state vector h(t −1) at the previous time
instant t − 1, as shown in Equation (3.16). The vector h(t − 1), in turn, is a function of the re-
current weight matrix Rh and therefore cannot be treated as a constant when computing ∂h(t)

∂Rh
in

Equation (3.40). As each hidden state vector depends on the corresponding vector at the previous
time instant, h(t) is a function of all hidden state vectors h(p) up to time instant t − 1, where
p = {1, ..., t −1}. For each t > 1, applying the chain rule yields [50], [51]:

h(t)
∂Rh

=
t−1

∑
p=1

∂h(t)
∂h(p)

∂h(p)
∂Rh

, (3.41)

whereby [50], [51],

∂h(t)
∂h(p)

=
t

∏
d=p+1

∂h(d)
∂h(d −1)

=
t

∏
d=p+1

(Rh)
T diag ϕ

′
h [h(d −1)] . (3.42)

The recurrent weight matrix Rh appears in the product in Equation (3.42) t − p times. When deal-
ing with long-term dependencies, i.e., p << t, this can cause the gradients to explode or vanish
depending on the value of the largest eigenvalue λ1 of Rh [51]. A detailed explanation of under
which circumstances the gradients explode or shrink is given in [51].
A solution for the exploding gradient problem is the truncated backpropagation through time algo-
rithm, which clips the gradients if they grow above a certain threshold. An improvement regarding
the vanishing gradient problem can be achieved with LSTM (see Section 3.2.2.1) [50].

3.3.3 Weight Initialization

In Section 3.3, it was illustrated how the weights of a network are updated based on the gradi-
ent of the loss function. The initial values for these parameters are set according to some method
specified by the user. While they were set to zero or one in the early days of neural networks,
some more elaborate weight initializing methods were developed over the course of the years [52].
These initializers usually sample the initial weight values from a defined distribution, whose pa-



3.3 Training 27

rameters may depend on the network architecture, e.g., the input dimension ni−1 and the output
dimension ni of a layer i in a fully connected network [53], [54]. In the following listing, some of
the most popular weight initializers for neural networks are shown. Unless specified otherwise, the
presented methods are defined according to their implementation in MATLAB [55]:

• Narrow-normal initializer: This initializer samples the initial parameter values from a nor-
mal distribution N with zero mean and a fixed standard deviation, which is set to σ = 0.01
in MATLAB [55],

w i
k, j ∼N (0, σ

2). (3.43)

In Keras [56], a deep learning library written in PYTHON, a similar method called random
normal is implemented.

• Random uniform: This initializing method included in Keras [56] draws the values from a
uniform distribution U with limits a and b, e.g., a =−0.05 and b = 0.05,

w i
k, j ∼ U(a, b). (3.44)

Currently, no comparable method is available in MATLAB [55].
• Glorot initializer: The Glorot (also called Xavier) initializer [53] draws the parameter values

from a uniform distribution with limits that depend on the input and the output dimension of
the layer,

w i
k, j ∼ U

(︄
−

√︄
6

ni−1 +ni
,

√︄
6

ni−1 +ni

)︄
. (3.45)

In Keras [56], this method is referred to as Glorot uniform. Based on the theoretical consid-
erations formulated in [53], a so-called Glorot normal initializer is defined in Keras. This
initializer samples the initial values from a truncated normal distribution that is centered
around zero, with a standard deviation that depends on the input and output dimension [56],

w i
k, j ∼N

(︃
0,

2
ni−1 +ni

)︃
. (3.46)

• He initializer: The He initializer [54] samples the parameter values from a truncated normal
distribution with a mean of zero and a standard deviation that depends on the input dimen-
sion,

w i
k, j ∼N

(︃
0,

2
ni−1

)︃
. (3.47)

Analogous to the Glorot initializer, Keras [56] distinguishes between the He normal initial-
izer, as defined in Equation (3.47), and the He uniform initializer. This derived variant draws
the initial parameter values from a uniform distribution,

w i
k, j ∼ U

(︄
−

√︄
6

ni−1
,

√︄
6

ni−1

)︄
. (3.48)



3.4 Hyperparameter Optimization 28

• Orthogonal: This technique presented in [57] initializes the weights with an orthogonal
matrix Q computed by a QR-decomposition of a random matrix Z = QR. The matrix Z is
sampled from a unit normal distribution [55].

3.4 Hyperparameter Optimization

Machine learning enables the user to solve highly complex tasks without the need to have full in-
sight into the actual mechanisms involved in the computation process. However, it requires some
knowledge and experience to choose a suitable machine learning model and its parameters that
are not optimized in the learning process. These parameters can either configure a model and de-
fine its architecture or specify the optimizer that updates the weights and biases. An appropriate
setting of these so-called hyperparameters is crucial for the performance of the machine learning
model. Traditionally, suitable hyperparameter values were determined manually in a trial-and-error
process. This method is ineffective for complex models with long computation times and hyper-
parameters that exhibit nonlinear interdependencies. This inspired the application of optimization
techniques that tune the hyperparameters in an automated fashion. These methods aim to minimize
(or maximize) a mostly non-convex and non-differentiable objective function f (x) [58], [59]:

x⋆ = argmin
x∈X

f (x), (3.49)

whereby x⋆ denotes the hyperparameter configuration that delivers the best value of the objective
function, and X represents the search space of the hyperparameters x. Usually, constraints are
imposed on a hyperparameter domain, and it must be defined if the domain is discrete, continuous,
binary, or categorical [58].
A hyperparameter configuration can be evaluated via k-fold cross-validation. In this case, a given
set of training samples is divided into k subsets. A machine learning model is set up using the
hyperparameters to be tested. In a cyclic manner, this model is then trained k times using k− 1
subsets, and tested on the remaining one. This is to mitigate or prevent overfitting of the model,
i.e., it should also perform well on unseen data rather than just on the training samples [34], [59].
This chapter will focus on the optimization of hyperparameters of neural networks, as described
in [14] and [15]. Possible hyperparameters are:

• Number of epochs (discrete): The (maximum) number of epochs in the training process,
i.e., how many times each sample in the training data set passes the network [34].

• Learning rate (continuous): The factor defining the step size for the weight updates when
using gradient descent (see Section 3.3.1) or its variants [20], [21].

• Mini-batch size (discrete): The number of data samples that pass the network before an
update of the learnable parameters is performed [19].



3.4 Hyperparameter Optimization 29

• Number of layers (discrete): The number of layers of a certain type in the network [34].
• Number of neurons (discrete): The number of hidden units in a specific layer [34].
• Activation function (categorical): The activation function of the neurons in a specific

layer [34].

Simple methods like random search or grid search attempt to exploit the whole search space
without considering previous results. Other techniques, such as Bayesian optimization or genetic
algorithms, focus the further search on regions in the search space that already were found to
deliver suitable hyperparameters. Therefore, these methods usually enable a faster convergence to
an optimum of the objective function. However, this increases the risk of getting stuck in a local
optimum. Thus, selecting an appropriate hyperparameter optimization method and its parameters,
as well as suitable constraints on the search space of the hyperparameters, are crucial tasks [58].
In the following, the most common hyperparameter optimization (HPO) methods are explained.

3.4.1 Grid Search

Grid search is a relatively simple brute-force optimization method used to exploit predefined re-
gions in the search space. For each hyperparameter, the user defines a finite set of reasonable
values or categories. Grid search evaluates the Cartesian product of these sets, i.e., all possible
combinations of the distinct hyperparameter values or categories are tested. This method does not
explore promising regions in the search space automatically. Thus, further runs with user-defined
hyperparameter sets based on the results of previous runs may have to be performed until a good
hyperparameter configuration is found. Grid search is only suitable for low-dimensional search
spaces, as the number of evaluations to be performed increases exponentially with the number of
hyperparameter sets [58].

3.4.2 Random Search

Instead of selecting the hyperparameters from given user-defined sets, the random search method
draws them from predefined distributions. The user has to set the number of evaluations to perform
and the parameters of the distributions the hyperparameters are sampled from. Random search is
able to exploit a bigger search space than grid search for the same number of evaluations. Sup-
pose one hyperparameter has negligible influence on the objective. Grid search tests a particular
configuration of the remaining hyperparameters with each value or category from the set of the
non-influential hyperparameter, with marginal changes in the objective. In random search, on the
other hand, the parameters are drawn at random in each new test run [58], [60]. However, this
method also does not narrow the search space based on the results of previous runs. Some more



3.4 Hyperparameter Optimization 30

advanced methods, which consider values of the objective function in already explored regions of
the search space to determine future evaluation points, are presented in the following [58].

3.4.3 Bayesian Optimization

Bayesian optimization is a machine-learning-based optimization technique that attempts to find
the global minimum or maximum of a continuous objective function f (x) that is computationally
expensive to evaluate [61]. Therefore, it was found to be a suitable tool for the optimization of hy-
perparameters, as described in [62]. The function input x ∈Rm usually has a dimension of m ≤ 20
and can be corrupted by noise. The main components of the Bayesian optimization method are a
Bayesian statistical model called surrogate, which approximates the objective function, and an ac-
quisition function. The acquisition function defines a point in the search space where the objective
function should be evaluated next. In the first step, values of the objective function are computed at
a defined number of points in the search space according to some experimental design. The surro-
gate model then determines a Bayesian posterior probability distribution on the objective function
f (x). That is, estimates for the values of f (x) at unobserved points in the search space with corre-
sponding Bayesian credible intervals are computed. This posterior distribution gets updated after
each new evaluation of the objective function. If the surrogate model is a Gaussian process, the
prior distribution is assumed to be multivariate normal. The mean vector µ0(x1:k) and the co-
variance matrix Σ0(x1:k,x1:k) that describe the distribution are computed via a mean function and
a kernel function, respectively. The mean function is evaluated at each observed point xi of the
sequence x1:k = x1,x2, ...,xk, while the kernel function is evaluated at each pair xi and x j of this
sequence, whereby i = {1, ...,k} and j = {1, ...,k}. The observations of the objective function are
assumed to be drawn at random from the following distribution [61]:

f (x1:k)∼N (µ0(x1:k), Σ0(x1:k,x1:k)). (3.50)

The objective function is evaluated in the next run at the point in the search space that delivers
an optimum of the acquisition function, which depends on the posterior distribution currently pro-
vided by the surrogate model [61]. Figure 3.8 shows two observations of the objective function
and the obtained posterior distribution for an exemplary Bayesian optimization process.
The attempt is to find a good balance between exploration and exploitation. Exploration describes
the process of evaluating the objective function in mostly unobserved regions of the search space
and therefore prevents the optimizer from getting stuck in a local optimum. Exploitation involves
the observation of points that are near the current optimum estimated by the surrogate model.
Bayesian optimization takes the track record of previous observations into consideration when se-
lecting a new hyperparameter configuration to test the network with. Hence, it usually approaches
the optimum of the objective function a lot faster than the previously presented methods [58], [63].



3.4 Hyperparameter Optimization 31

Fig. 3.8: Exemplary plots related to Bayesian optimization with a one-dimensional function input
using a Gaussian process. The location where the objective function is evaluated first is chosen at
random, as shown in the left plot. The point that delivers an optimum (in this case, a minimum) of
the acquisition function (blue) is where the objective is observed next. After each observation, the
posterior distribution is updated [61], [64]. Adapted from [64].

Bayesian optimization in the context of this work (see Section 8.2) was performed with the MAT-
LAB function bayesopt [55] using the default settings. This function starts by testing four con-
figurations of hyperparameters that are randomly drawn from uniform distributions defined by
the corresponding domain boundaries. It then fits a Gaussian process regression model to the ob-
servations and determines a Bayesian posterior distribution. The acquisition function being used is
referred to as expected improvement. It determines the point in the search space where the improve-
ment in the observed function value, compared to the current best observation, is maximal [61].
Additionally, this function includes a procedure that prevents the algorithm from getting stuck at a
local minimum of the objective function. That is, the kernel function of the acquisition function is
modified if a particular criterion is met, which can be adapted by the user [55].

3.4.4 Genetic Algorithm

A genetic algorithm (GA) is a special type of metaheuristic capable of solving optimization prob-
lems with non-convex and non-continuous objective functions [58]. Same as most other meta-
heuristics, it mimics a biological process. More specifically, genetic algorithms are inspired by the
theory of evolution and the concept of survival of the fittest [65], [66].
In the beginning, an initial population of possible candidate solutions, called individuals, is cre-
ated [66]. Each individual consists of one or more chromosomes that, in turn, are characterized
by a set of genes. These genes can be represented, e.g., by binary digits [67]. Evolutionary theory
states that individuals, which have higher survival capabilities and better adapt to their environ-
ment than others, are more likely to pass their genes to the next generation. Therefore, the genetic
algorithm requires a metric to evaluate the capabilities of each individual and identify promising
candidates, the so-called fitness function. The fitness function is chosen based on the problem at



3.4 Hyperparameter Optimization 32

hand. For inheritance, a portion of the population is selected based on the fitness of the individuals,
whereby candidates with a better fitness value have a higher probability of getting chosen. This
operation, referred to as selection, leads to further optimization of well-performing individuals in
the following generations, while candidates with low fitness gradually disappear [68].
The creation of new candidate solutions is performed by genetic operations called crossover and
mutation. Via crossover, the individuals of the following generation inherit their characteristics
from random individuals of the selected pool of promising candidates, representing their parents.
Traditional crossover methods involve the exchange of a random portion of genes between two
associated parents. The creation of child solutions by exchanging the bit sequences of the two
parental individuals after a randomly selected element is referred to as single-point crossover. In
two-point crossover, the portions of the parent’s chromosomes between two random points in the
sequence are exchanged to form the offspring. Mutation is performed by randomly altering one or
more genes of an individual. In the case of a binary representation of the genes, this can be done
by flipping bits, i.e., changing a 1 to a 0 and vice versa. The bits in the parent chromosome to
be flipped are selected according to the bit sequence of a randomly generated mutation chromo-
some of the same length. If a bit in the mutation chromosome is a 1, it triggers a flipping of the
bit at the corresponding position of the parent chromosome. Another mutation method exchanges
two randomly selected bits in a chromosome. The crossover and mutation operations allow the
algorithm to approach a possible optimum of the fitness function. Yet, they ensure a sufficient de-
gree of diversity is maintained in the population in order to explore further regions of the search
space [65], [66]. The algorithm is executed until the maximum number of generations is reached,
or another termination criterion is met [66].
The genetic algorithm used for the test series presented in this thesis was written at the Chair of
Automation [15]. The fitness function is based on the error between the original signal and the
corresponding reconstruction obtained by an autoencoder (see Chapter 5). More precisely, it is
determined by summing up the absolute errors between the reconstructed and the original signal
at each time step in all channels of all samples of an MVTS data set. The three individuals with
the best fitness are passed to the next generation without being modified via crossover operations.
The mating pool consists of individuals with better fitness than the median fitness in the current
population. Unfit candidates are added by a specified small probability. Crossover is performed on
two randomly chosen parental individuals from the mating pool via one of two possible operations
selected at random. In the first variant, each chromosome of the child is inherited from a randomly
chosen parent. Alternatively, the child’s chromosomes are determined by computing the mean of
the corresponding parental chromosomes. The value is then rounded to the next integer. Note that
the learning rate is defined in units of 10-5. Eventually, the individuals are mutated by a predefined
probability. That is, the value of the chromosome to be mutated is replaced by a random value from
the corresponding hyperparameter domain.



Chapter 4

Basics of Probability and Information Theory

Probability and information theory are fundamental tools for machine learning and computer sci-
ence in general. Although a machine learning program is often considered a black box that does
not require the user to have a deeper knowledge of the processes and algorithms involved, a basic
understanding of the theory is beneficial for interpreting results and optimizing the model [22].
The purpose of this chapter is to provide a brief overview of some essential basics of probability
and information theory, which help to understand the theoretical background associated with the
machine learning methods addressed in this work.

4.1 Probability Theory

Probability theory provides a mathematical framework for expressing the uncertainty or plausi-
bility of statements or events [22], [69], where an event represents the result of a random experi-
ment [69]. In artificial intelligence, it is an important tool for deriving the mathematical foundations
of various machine learning algorithms or evaluating and analyzing their behavior [22]. The focus
of this section will be on the fundamentals of probability theory that are applied in neural networks,
particularly in autoencoders.

4.1.1 Probability Distributions

In statistics, the result or assumed outcome of a random experiment is described by a random vari-
able X . This random variable is associated with a probability distribution that indicates how likely
X is to take on each of its possible values. Generally, two types of probability distributions are
distinguished: discrete and continuous distributions. If X is sampled from a discrete distribution, it
only can take on certain distinct values xi ∈ R, with i ∈ {1, ...,m} [69].
In this case, the distribution is described by a so-called probability mass function. This function
maps the value or state of the random variable to the probability of it being the outcome of a ran-

33



4.1 Probability Theory 34

dom experiment, i.e., the probability P(X = xi) of X taking on the value or state xi. A probability
mass function has to fulfill certain criteria [22]:

• The domain of the probability mass function has to be the set of all possible values or states
{x1, ...,xm} the random variable X can take on [22].

• ∀xi ∈ X : 0 ≤ P(xi)≤ 1, i.e., the probability of the random variable X taking on the value or
state xi has to lie in the interval [0,1], where P(xi) = 0 represents an impossible outcome and
P(xi) = 1 a certain outcome [22].

• ∑xi∈X P(xi) = 1. The probabilities of all possible events must add up to one. Therefore, a
mass function is referred to as being normalized [22].

In the following, some of the most common discrete distributions are presented:

Discrete Uniform Distribution

A random variable X that can take on m different states xi with i = {1, ...,m}, which are equally
likely, is said to have a discrete uniform distribution. The corresponding probability mass function
can be defined by [22]:

P(X = xi) =
1
m

. (4.1)

Bernoulli Distribution

The Bernoulli distribution is a distribution over a random variable X that can take on two possible
states xi ∈ {0,1}, where the probability of X = 1 is denoted as P(X = 1) = φ . Consequently, the
state X = 0 has a probability of P(X = 0) = 1−φ . The probability mass function can be formulated
as follows [22]:

P(X = xi) = φ
xi(1−φ)1−xi . (4.2)

Binomial Distribution

The binomial distribution describes the probability of k successes in n independent random experi-
ments. The probability of success is denoted as φ , and the probability of failure, therefore, is equal
to 1−φ . The corresponding probability mass function is defined by [69]:

P(k;n,φ) =
(︃

n
k

)︃
φ

k(1−φ)n−k with k ∈ {0,1, ...,n}. (4.3)

The term φ k(1−φ)n−k can be viewed as the probability of the first k experiments being successes
and the following n− k experiments being failures. However, the sequential order in which the
successes and failures occur is not restricted. That is, altogether

(︁n
k

)︁
combinations of outcomes of

the probability φ k(1−φ)n−k are possible, given the number of successes is equal to k [69].



4.1 Probability Theory 35

If X is a continuous random variable, it can take on infinitely many values x ∈ R, typically in the
range −∞≤ x≤∞ [69]. The probability distribution associated with X is described by a probability
density function p(x). Analogous to the mass function, it has to obey some rules [22]:

• The domain of the probability density function has to be the set of all possible values or
states the random variable X can take on [22].

• ∀x ∈ X : 0 ≤ p(x), i.e., the probability of the random variable X taking on the value or state
x has to be non-negative [22].

•
∫︁

p(x)dx = 1, i.e., the probability density function is normalized [22].

Some continuous distributions that are relevant for the field of machine learning are shown in the
following:

Continuous Uniform Distribution

The continuous uniform distribution is fully described by two parameters, a and b, representing
the boundary values for the interval in which the density function is p(x) > 0. The term uniform
refers to the fact that the density function is constant in the interval [a,b]. The continuous uniform
distribution is defined by [69]:

p(x;a,b) =

⎧⎨⎩ 1
b−a for a ≤ x ≤ b

0 otherwise .
(4.4)

Gaussian Distribution

The Gaussian or normal distribution is the most commonly used distribution to describe real num-
bers. It is characterized by a symmetric graph, often referred to as bell curve, which is centered
around the mean µ . In science, normal distributions are the most popular default choice for inde-
pendent real numbers if there is a lack of prior knowledge about their real distribution [22].
One reason for that is the central limit theorem, which states that the sum of n independent vari-
ables with arbitrary distributions moves asymptotically towards a normal distribution for n → ∞,
given some very general conditions. This theorem is particularly important for cases where the
random variable X takes on values from a measurement, that is influenced by various causes in the
instrument and the atmosphere. X can then be assumed to originate from a variety of independent
random variables with different distributions. The parameters that fully describe the normal distri-
bution, the mean µ and the variance σ2, can be easily approximated from the measurement data.
This is another reason for the frequent use of the Gaussian distribution [69].
In the one-dimensional case, the density function of the normal distribution is defined by [22]:

p(x; µ,σ2) =

√︃
1

2πσ2 exp
(︃
− 1

2σ2 (x−µ)2
)︃

. (4.5)



4.1 Probability Theory 36

The generalized version of the Gaussian distribution for higher dimensional data x∈Rn is referred
to as multivariate normal distribution. With a mean vector µ and a covariance matrix Σ, it is
defined as follows [22]:

p(x;µ,Σ) =

√︄
1

(2π)n det(Σ)
exp
(︃
−1

2
(x−µ)TΣ−1(x−µ)

)︃
. (4.6)

Exponential and Laplace Distributions

In certain tasks in machine learning, it is required to use a density function that exhibits a sharp
point at the origin [22]. The exponential distribution is a possible choice for this type of prob-
lems [69]:

p(x;γ) =

⎧⎨⎩1
γ

exp(− x
γ
) for x ≥ 0

0 otherwise .
(4.7)

The Laplace distribution is closely related to the exponential distribution. It is described by the
parameter µ that defines the location of the peak, and a parameter γ [22]:

p(x; µ,γ) =
1
2γ

exp
(︃
−|x−µ|

γ

)︃
. (4.8)

4.1.2 Marginal Probability

A joint probability distribution P(X (1),X (2), ...,X (n)) is a probability distribution that is defined
over a set D= {X (1),X (2), ...,X (n)} of n random variables. Sometimes it is required to compute the
probability distribution over a subset of these variables, which is referred to as marginal probability
distribution. The ki possible values a random variable X (i) ∈ D can take on are denoted as xi,mi ,
where mi = {1, . . . ,ki}. In order to obtain the marginal distribution over one discrete variable X (i),
a summation must be performed over all possible values of each random variable in D except
X (i) [22], [70]:

∀xi,mi ∈ X (i) : P(X (i) = xi,mi) =
k1

∑
m1=1

. . .
ki−1

∑
mi−1=1

ki+1

∑
mi+1=1

. . .
kn

∑
mn=1

P(x1,m1 , . . . ,xi,mi , . . . ,xn,mn). (4.9)

For a set C = {X (1),X (2), ...,X (n)} of continuous random variables with the corresponding joint
probability distribution p(x1,x2, ...,xn), the marginal distribution p(xi) over a variable X (i) ∈ C can
be determined as follows [22], [70]:

p(xi) =
∫︂

∞

−∞

. . .
∫︂

∞

−∞

∫︂
∞

−∞

. . .
∫︂

∞

−∞

p(x1, ...,xi, ...,xn) dx1 . . .dxi−1dxi+1 . . .dxn. (4.10)



4.1 Probability Theory 37

4.1.3 Conditional Probability and Chain Rule

The conditional probability P(A|B) expresses the probability of an event A, given another event B
has happened. Take, e.g., the conditional probability P(Y = yi|X = xi) of the random variable Y
taking on the value yi, given the random variable X is equal to some value xi. The corresponding
formula to compute this conditional probability is [22]:

P(Y = yi|X = xi) =
P(Y = yi,X = xi)

P(X = xi)
. (4.11)

The background of Equation (4.11) will be further discussed in Section 4.1.4. An important rule
that follows directly from this equation is the so-called chain rule. For that, Equation (4.11) is
rearranged and extended in order to be used for n random variables X = {X (1), ...,X (n)}. The joint
probability distribution P(X (1), ...,X (n)) over these random variables can then be expressed as a
product of conditional probability distributions, e.g., as shown in the following equation [22]:

P(X (1), ...,X (n)) = P(X (1))
n

∏
i=2

P(X (i)|X (1), ...,X (i−1)). (4.12)

4.1.4 Bayes’ Theorem

Bayes’ Theorem is a famous equation of statistics that describes the probability of an event A given
an event B [22]:

P(A|B) = P(B|A)P(A)
P(B)

. (4.13)

This theorem can be used for testing hypotheses. Suppose a null hypothesis H0 and an alternative
hypothesis H1 are given [69]. The probability of the null hypothesis, given some observed data D,
can then be determined by [71]:

P(H0|D) =
P(H0)P(D|H0)

P(D)
, (4.14)

with following probabilities [71]:

• P(H0|D): Conditional probability, also called the posterior probability. It indicates how con-
fidently the null hypothesis H0 can be stated to be true, given some data D that was ob-
served [71].

• P(H0): Prior probability. It is an estimate of the probability of the null hypothesis H0 prior
to observing data D [71].

• P(D|H0): Likelihood, i.e., the probability of observing data D assuming the null hypothesis
H0 is true [71].



4.2 Information Theory 38

• P(D): Evidence of the data, also referred to as marginal likelihood. It is the probability of
observing data D, irrespective of the hypothesis H0 being true or not. The evidence can be
obtained as follows [71]:

P(D) = P(H0)P(D|H0)+P(H1)P(D|H1). (4.15)

The posterior P(H1|D) of the alternative hypothesis H1 given data D can be determined analo-
gously [71].
A related task that can be dealt with using Bayes’ Theorem is the estimation of model parame-
ters. By replacing the hypothesis in Equation (4.14) with a parameter vector θ , the corresponding
posterior probability P(θ |D) can be obtained as follows [72]:

P(θ |D) =
P(θ)P(D|θ)

P(D)
. (4.16)

The aim is to find the parameter vector θ of the parameter space Θ with the highest posterior
probability P(θ |D). P(θ) represents the prior probability of the parameter vector θ , irrespective
of the observed data D, and P(D|θ) the probability of the data D being generated by the param-
eters θ . Since P(D) only acts as a normalizing constant, it is sufficient to consider the following
relation [72]:

P(θ |D) ∝ P(θ)P(D|θ). (4.17)

4.2 Information Theory

Information theory is a subarea of applied mathematics that deals with the quantification of the
information content in signals. In its early years, the primary purpose was to provide design guide-
lines for the encoding schemes of messages. The encoding and the length of a message were in-
tended to depend on the probability of the corresponding event it informed about, i.e., the amount
of information that was gained by receiving that message. The basic intuition behind this is that
a message about an event that is likely to happen provides less information than a message about
the occurrence of a more improbable event. Suppose a discrete random variable X can take on the
values xi of a set M = {x1,x2, ...,xn} by a certain probability P(xi). For the quantification of the
information content, a metric called self-information I(xi) of an event xi is defined [22]:

I(xi) =− logP(xi). (4.18)

If the natural logarithm is used, I(xi) is given in units of nats. One nat represents the information
gain when being informed about an event of probability P(xi) = e−1. In computer science and ma-
chine learning, this concept plays an important role, even though the interpretation of information
in the context of messages or signals does not always apply [22]. The average information H(X),



4.2 Information Theory 39

associated with the set M of possible values xi the random variable X can take on, is referred to as
Shannon entropy. It is defined by [73]:

H(X) =
n

∑
i=1

P(xi)I(xi) =−
n

∑
i=1

P(xi) logP(xi). (4.19)

In classical information theory, the Shannon entropy represents the lower bound for the average
number of bits that are needed to encode messages informing about possible events. In this case,
the logarithm with base 2 has to be used in Equation (4.19). For continuous random variables X
with a probability density function p(x), the Shannon entropy has the following form [22]:

H(X) = EX∼p[I(x)] =−EX∼p[log p(x)], (4.20)

whereby H(X) is also referred to as differential entropy. H(X) expresses the expected information
gain when sampling x from the distribution p(x) [22]. Another important metric of information
theory is the Kullback-Leibler (KL) divergence KL[p(x)||q(x)] [74], which quantifies the similar-
ity of two probability distributions p(x) and q(x) [22], [75]. The KL divergence is non-negative,
whereby KL[p(x)||q(x)] = 0 if p(x) = q(x). The value of the KL divergence increases as the two
distributions diverge. The Kullback-Leibler divergence does not fulfill all criteria that are required
to be a distance measure, as it does not satisfy the triangular inequality and is not symmetric, i.e.,
KL[p(x)||q(x)] ̸= KL[q(x)||p(x)] [76]. It can be computed as follows [22]:

KL[p(x)||q(x)] = EX∼p

[︃
log

p(x)
q(x)

]︃
=
∫︂

p(x) log
p(x)
q(x)

dx. (4.21)

With the definition of a closely related quantity referred to as cross-entropy [22],

H[p(x),q(x)] =−EX∼p logq(x), (4.22)

the Kullback-Leibler divergence can be written as follows [22]:

KL[p(x)||q(x)] = H[p(x),q(x)]−H[p(x)]. (4.23)

The KL divergence can also be formulated with probability mass functions P(xi) and Q(xi) asso-
ciated with distinct values xi of a set D [76]:

KL(P||Q) = ∑
xi∈D

P(xi) log
P(xi)

Q(xi)
. (4.24)



Chapter 5

Autoencoders

Autoencoders were first described by Rumelhart et al. [10] in 1986, although the term autoencoder
was not introduced in this work. The authors used a simple neural network to compute a log2 N-bit
pattern from an N-bit input pattern, on which the original input should be well reconstructible.
In a more generalized manner, the term autoencoder today refers to a neural network with a spe-
cific type-dependent architecture consisting of two main parts: the encoder and the decoder. The
encoder E : x → z learns a mapping of the input x to a hidden representation z. The decoder
D : z → x̂ computes a reconstruction x̂ of the input from this hidden encoding. Autoencoders are
trained in an unsupervised manner attempting to minimize a loss function L(x, x̂) that is based on
the error between the original and reconstructed input, x and x̂, respectively. In order to prevent
autoencoders from learning just to copy the input, certain restrictions depending on the specific
variant are made. This forces the autoencoders to extract the relevant information from the input
data, which is why they are often used for nonlinear dimensionality reduction or feature extrac-
tion [22]. A variant called variational autoencoder [77] can also be used as a generative model, as
described in Section 5.1.4. In the following, some common autoencoder variants will be presented.

5.1 Types of Autoencoders

5.1.1 Undercomplete Autoencoders

A simple way to prevent the autoencoder from just learning to copy the input is forcing a dimen-
sionality reduction. That is, the encoder maps the input x ∈Rm to a hidden representation z ∈Rp,
where p < m (see Figure 5.1). Thus, an undercomplete autoencoder (AE) learns to compute a rep-
resentation of the input data with a lower dimension while preserving the relevant information [22].
The simplest form of an undercomplete autoencoder contains only an input layer, a hidden layer
that outputs a compressed version of the input, and an output layer. The hidden encoding is then
defined by [24]:

z = ϕ
1(W1x+b1). (5.1)

40



5.1 Types of Autoencoders 41

Fig. 5.1: Schematic diagram of an undercomplete autoencoder that compresses an input vector
x to a hidden representation z and computes a reconstruction x̂ of the signal from this hidden
encoding [22]. Adapted from [78].

Via the decoder, a reconstruction x̂ of the original signal from the hidden representation z is
computed as follows [24]:

x̂= ϕ
2(W2z+b2). (5.2)

W1, b1, W2, and b2 represent the weight matrices and bias vectors of the encoder and the decoder,
respectively. The activation functions of layer 1 and 2 are respectively denoted as ϕ1 and ϕ2 [24].
When using the sum-of-squares error as the loss function, this primitive form of an autoencoder
projects the input data to the p-dimensional subspace that is spanned by the first p principal com-
ponents [79], [80]. This also holds if a nonlinear activation function is used in the neurons of the
hidden layer [80], [81]. The principal components are a set of basis vectors defined sequentially
so that each new basis vector is orthogonal to the existing ones while minimizing the squared dis-
tance to the data points [81]. The corresponding method to determine these vectors is referred to as
principal component analysis (PCA) [82]. Even though the simple autoencoder projects the data
to the same subspace as a PCA, the weight vectors that span this subspace, i.e., the row vectors of
the weight matrix, are generally neither orthogonal nor normalized [81]. However, adding hidden
layers with nonlinear activation functions to the encoder and the decoder enables the network to
perform a nonlinear dimensionality reduction. This allows autoencoders to compute a more pow-
erful compression of the input data than a standard linear PCA [83].

5.1.2 Sparse Autoencoders

Another way of preventing the autoencoder from learning the identity function, even if the dimen-
sion of the hidden representation is higher than the dimension of the input vector, is to impose
a sparsity constraint on the neurons in the hidden layers [84]. The first approaches to applying
sparsity penalties in neural networks were presented in [85] and [86]. In sparse autoencoders, the
hidden neurons are forced to be inactive (low activation) most of the time, and only a small frac-



5.1 Types of Autoencoders 42

tion is activated in each run [84]. This allows the network to find interesting structures in the input
data [84] and revive neurons with low average activation [86]. In the following, the activation func-
tions of the neurons in the hidden layers are assumed to be sigmoid functions, but other function
types could also be used. As described in Section 3.2.1, ai

k(x
(m)) ∈ [0,1] denotes the activation of

node k in the hidden network layer i, if the network is fed with the input vector x(m). Furthermore,
i = {1, . . . ,h} is defined for a network with h hidden layers. The average activation ρ̂

i
k of node k in

layer i over the whole training set X = {x(1), . . . ,x(p)} is defined by [84]:

ρ̂
i
k =

1
p

p

∑
m=1

[ai
k(x

(m))]. (5.3)

The aim is to force the value of the average activation ρ̂
i
k of each neuron k to be as near as possible

to a given target value ρ , the sparsity parameter. This constraint value ρ is usually chosen to be
close to zero in order to keep the neurons inactivated most of the time. A Bernoulli random variable
X with a mass function P (see Section 4.1.1) is introduced. P(X = 1) = ρ and P(X = 0) = 1−ρ

respectively denote the predefined target probabilities of a neuron getting activated or not. For each
neuron k in a hidden layer i, a Bernoulli random variable Y i

k is defined. The mass function Qi
k with

the associated probabilities Qi
k(Y

i
k = 1) = ρ̂

i
k and Qi

k(Y
i
k = 0) = 1− ρ̂

i
k expresses the actual prob-

abilities of neuron k in layer i being activated or not, respectively [84]. For the task of forcing the
probabilities ρ̂

i
k to be as near as possible to the sparsity parameter ρ , the cross entropies [86] or KL

divergences [84] of the probability distributions defined by P and Qi
k are added to the cost function.

Using the KL divergence to enforce sparsity, the cost function has the following form [84]:

L(x, x̂)+β

h

∑
i=1

ni

∑
k=1

KL(P||Qi
k), (5.4)

where ni is the number of neurons in the hidden layer i and β a weighting factor. The KL divergence
for Bernoulli distributions is formulated as follows [84]:

KL(P||Qi
k) = ρ log

ρ

ρ̂
i
k
+(1−ρ) log

1−ρ

1− ρ̂
i
k
. (5.5)

It is non-negative and KL(P||Qi
k) = 0 if ρ̂

i
k = ρ . It increases the more ρ̂

i
k is diverging from ρ [76].

Thus, minimizing the loss function and hence the Kullback-Leibler divergences enforces the av-
erage activations ρ̂

i
k to converge to ρ [84]. A more detailed explanation of the KL divergence is

given in Section 4.2.



5.1 Types of Autoencoders 43

5.1.3 Denoising Autoencoders

A denoising autoencoder is trained to reconstruct the original input data x from a corrupted version
x̃ of it. Thus, the network is prevented from learning just to copy the input and is trained to find
the underlying relevant information in noisy data [87]. Most commonly, corruption is carried out
by one of the following methods [24]:

• Binary noise: Set randomly chosen elements of the input data to zero.
• Gaussian noise: Add a number of random Gaussian values to the input data.

The encoder receives the corrupted vector x̃ and computes a hidden encoding z = E(x̃). From
this hidden representation, the decoder aims to reconstruct the original signal x rather than the
distorted version x̃. Thus, the autoencoder is trained to minimize a cost function L(x, x̂). This
function measures the error between the original data x and the reconstruction x̂ obtained from
the hidden representation of the corrupted input x̃ [22]:

L(x, x̂) = L [x,D(E(x̃))] . (5.6)

5.1.4 Variational Autoencoders

Although it is classified as a type of autoencoder, the mathematical basis of a variational au-
toencoder (VAE) is fundamentally different from other autoencoder types, like the ones presented
before [88]. Instead of just mapping the input vector to data points in the latent space, the VAE
maps the input to parameters of a latent distribution. Via a regularization term in the cost function,
this distribution is forced to be as close as possible to a predefined target distribution [77]. The
aim is to enforce a continuous and complete latent space [89]. This enables the variational autoen-
coder to generate new data that is similar to the data of the training set. A variational autoencoder
consists of two main parts: the inference model qΦ(z|x), which is the stochastic encoder, and the
generative model pθ (x|z), the stochastic decoder [77]. Figure 5.2 shows a schematic diagram of a
VAE. In the following, the mathematical foundations of the variational autoencoder are presented.

5.1.4.1 Variational Inference

Any vector of observed variables x that is fed into the network is a random sample drawn from
an unknown true probability distribution p∗(x). In order to approximate this distribution, a model
pθ (x) with parameters θ is used [77]:

x∼ pθ (x). (5.7)



5.1 Types of Autoencoders 44

Fig. 5.2: Schematic diagram of a variational autoencoder. The encoder maps an input signal x to
a vector of means µ and a vector of standard deviations σ of a latent distribution. The decoder
computes a reconstruction x̂ from the latent variable z, which is sampled from this latent distribu-
tion [77]. Adapted from [78].

The aim of learning is to determine the parameters θ such that the model pθ (x) is a good approx-
imation for the real distribution p∗(x) for any sampled variable x [77]:

pθ (x)≈ p∗(x). (5.8)

Variational autoencoders are a type of Deep Latent Variable Models (DLVM) [77]. These models
explain the received input data x using a hidden representation z of it [90]. The unobserved vector
z is referred to as latent variable, which is not part of the data but part of the model. The condi-
tional distribution p∗(z|x) represents the distribution over the latent variable z, conditioned on the
observations x. This distribution again can be approximated by a model pθ (z|x) with parameters
θ . Using Bayes’ Theorem, pθ (z|x) can be defined by [77]:

pθ (z|x) =
pθ (x,z)

pθ (x)
=

pθ (x|z)pθ (z)

pθ (x)
. (5.9)

The marginal probability of data under the model, i.e., the evidence, can be computed by [77]:

pθ (x) =
∫︂

pθ (x|z)pθ (z)dz. (5.10)

This integral can be high-dimensional and computationally too expensive to evaluate [90]. Since
the probabilities pθ (x) and pθ (z|x) are related via Bayes’ Theorem in Equation (5.9), pθ (z|x) is
also intractable. In order to solve this problem, an inference model qΦ(z|x) with the variational
parameters Φ is introduced. If a neural network is used, these parameters are its weights and
biases. The aim is now to optimize the parameters Φ such that qΦ(z|x) is a good approximation
for the posterior pθ (z|x) [77]:

qΦ(z|x)≈ pθ (z|x). (5.11)



5.1 Types of Autoencoders 45

Hence, instead of computing integrals to determine the evidence, an optimization problem is
solved [91]. As the joint probability distribution pθ (x,z) is tractable, the evidence pθ (x) is now
also computable via Bayes’ Theorem using the approximation for the posterior, see Equation (5.9).
This concept of approximating an intractable posterior is referred to as variational inference [77].

5.1.4.2 ELBO Loss

The loss function of the VAE is referred to as Evidence Lower Bound (ELBO), sometimes called
Variational Lower Bound. It contains a regularization term in addition to the reconstruction er-
ror, the Kullback-Leibler divergence KL[qΦ(z|x)||pθ (z|x)]. The KL divergence quantifies how
accurately the inference model qΦ(z|x) approximates the posterior pθ (z|x) [77]. As explained
in Section 4.2, KL = 0 if the compared distributions are equivalent, and it increases with the dis-
tributions diverging from each other [76]. Since qΦ(z|x) should be a good approximation of the
posterior pθ (z|x), the objective is to minimize the KL divergence, which is defined by [77]:

KL[qΦ(z|x)||pθ (z|x)] = EqΦ (z|x)

[︃
log

qΦ(z|x)
pθ (z|x)

]︃
. (5.12)

Rewriting Equation (5.12) yields [77], [91]:

EqΦ (z|x)

[︃
log

qΦ(z|x)
pθ (z|x)

]︃
= EqΦ (z|x)

[︃
log

qΦ(z|x)pθ (x)

pθ (x,z)

]︃
= EqΦ (z|x)

[︃
log

qΦ(z|x)
pθ (x,z)

]︃
+EqΦ (z|x) [log pθ (x)]

= EqΦ (z|x)

[︃
log

qΦ(z|x)
pθ (x,z)

]︃
+ log pθ (x). (5.13)

By rearranging this equation, the log-likelihood of data log pθ (x) is given as the sum of the ELBO
loss Lθ ,Φ(x) and the KL divergence KL[qΦ(z|x)||pθ (z|x)] [77]:

log pθ (x) = EqΦ (z|x)

[︃
log

pθ (x,z)

qΦ(z|x)

]︃
+EqΦ (z|x)

[︃
log

qΦ(z|x)
pθ (z|x)

]︃
= Lθ ,Φ(x)+KL[qΦ(z|x)||pθ (z|x)]. (5.14)

The goal is to maximize the marginal likelihood pθ (x) in order to improve the generative
model [77]. Equation (5.14) indicates that this can be achieved by maximizing the ELBO loss,
which in turn minimizes the KL divergence KL[qΦ(z|x)||pθ (z|x)] and therefore also enforces a
better approximation qΦ(z|x) of the posterior pθ (z|x) [91]. As the KL divergence is non-negative,
i.e., KL[qΦ(z|x)||pθ (z|x)]≥ 0, it can be stated that the ELBO loss is the lower bound for the log-
likelihood of the data [77], see Equation (5.15). That is where the name Evidence Lower Bound
stems from [91]:

log pθ (x)≥ Lθ ,Φ(x). (5.15)



5.1 Types of Autoencoders 46

To get a deeper insight into the ELBO loss, Equation (5.14) is rewritten as follows [91]:

Lθ ,Φ(x) = log pθ (x)−KL[qΦ(z|x)||pθ (z|x)]

= EqΦ (z|x)

[︃
log

pθ (x,z)

pθ (z|x)

]︃
−EqΦ (z|x)

[︃
log

qΦ(z|x)
pθ (z|x)

]︃
= EqΦ (z|x)

[︃
log

pθ (x|z)pθ (z)

pθ (z|x)

]︃
−EqΦ (z|x)

[︃
log

qΦ(z|x)
pθ (z|x)

]︃
= EqΦ (z|x) [log pθ (x|z)]−EqΦ (z|x)

[︃
log

qΦ(z|x)
pθ (z)

]︃
= EqΦ (z|x) [log pθ (x|z)]−KL[qΦ(z|x)||pθ (z)]. (5.16)

The first term on the right-hand side (RHS) represents the expected log-likelihood of the data. The
second term on the RHS forces qΦ(z|x) to be as close as possible to a prior p(z) [91]. The prior
distribution p(z) can be chosen freely. Usually, a simple distribution is used for this task, e.g., a
multivariate Gaussian distribution with a diagonal covariance structure [88].
The two terms of the loss function have contrasting effects. Minimizing the reconstruction error
for different samples tends to increase the distance between the corresponding representations in
the latent space to make their embeddings distinguishable. The regularization term of the ELBO
loss, on the other hand, aims to create a continuous latent space to facilitate the generation process.
This may lead to an overlapping of the latent variables and hence a noisy encoding. Thus, an
important subject of current research is finding the right balance between these terms via the use
of a weighting factor λ [92], [93], [94]:

Lθ ,Φ(x) = EqΦ (z|x) [log pθ (x|z)]−λKL[qΦ(z|x)||pθ (z)]. (5.17)

5.1.4.3 Computation

Variational autoencoders can be trained via mini-batch stochastic gradient descent or extensions of
it, e.g., the Adam or Adamax optimization algorithm. Gradients of the individual-datapoint ELBO
w.r.t. the parameters θ of the generative model ∇θLθ ,Φ(x) are easy to obtain. The computation of
gradients w.r.t. the variational parameters ∇ΦLθ ,Φ(x), however, is not feasible without the use of
a so-called reparameterization trick. In this case, z is expressed as a differentiable transformation
of a random variable ϵ [77],

z = g(ϵ,Φ ,x), (5.18)

where x denotes the input variable and Φ the parameters of the inference model. The dimension of
ϵ is equal to the latent dimension p, and the associated distribution is independent of x and Φ [77].
A widely used approach is a Gaussian encoder [88]:

qΦ(z|x) =N (z;µ,Σ), (5.19)



5.2 Encoder-Decoder Sequence-To-Sequence Architectures 47

where µ ∈ Rp and Σ ∈ Rp×p respectively represent the vector of means µi and the covariance
matrix. Typically, only the diagonal elements of the covariance matrix, i.e., the variances, are
computed. The non-diagonal entries are set to zero. Hence, the covariance matrix has the following
form [77]:

Σ=

⎡⎢⎢⎢⎣
σ2

1 0 . . . 0
0 σ2

2 . . . 0
...

... . . . ...
0 0 . . . σ2

p

⎤⎥⎥⎥⎦ . (5.20)

The parameters in µ and Σ are obtained using a neural network that represents the encoder E [77]:

[µ, log(diag Σ)] = E(x). (5.21)

The process of sampling z using the reparameterization trick can be formulated as follows [77]:

z = µ+σ ◦ϵ with ϵ∼N (0, I). (5.22)

The vector σ ∈ Rp of standard deviations σi is defined by [77]:

σ =
[︂
σ1, σ2, . . . , σp

]︂T
. (5.23)

Reparameterization allows applying the backpropagation algorithm (see Section 3.3.2) to train the
VAE [77]. For a detailed description of the training process of VAEs, refer to [77].

5.2 Encoder-Decoder Sequence-To-Sequence Architectures

Sequence-to-sequence (seq2seq) models, as introduced in [95] and [96] in 2014, generate an output
sequence Y from an input sequence X without the restriction of both having the same length.
A possible task that requires this type of capability is machine translation. A sequence of words
in one language may have a different length than the corresponding sequence in the language it
should be translated into. Sequence-to-sequence architectures typically consist of two recurrent
neural networks representing the encoder (reader) and the decoder (writer). The encoder receives
an input sequence X = {x(1),x(2), ...,x(m)} and outputs a typically fixed-size context vector C.
The decoder receives the vector C and generates an output sequence Y = {y(1),y(2), ...,y(n)}.
The learnable parameters of the encoder and the decoder are jointly optimized in an unsupervised
training process to maximize the mean of logP(y(1),y(2), ...,y(n)|x(1),x(2), ...,x(m)) for all x-y
pairs in the training data set [22].
The architectures of the encoder and the decoder can be defined independently [22]. The authors
of [96] suggest the use of LSTM layers to handle long-term dependencies in the input sequences.



Chapter 6

Anomaly Detection in Time-Series Data

6.1 Time-Series

A time-series represents a discrete sequence of data points organized in chronological order. If
it only contains the time-dependent values of one single variable, the time-series is referred to
as being univariate. A univariate time-series is denoted as a set X = {x(1), . . . ,x(τ)} of distinct
values x(t), each associated with a time instant t = {1, . . . ,τ}. A multivariate time-series, as used
in the context of this thesis, is obtained by sampling two or more variables simultaneously. Since
the collected data points related to these variables typically originate from the same process, they
often exhibit some kind of correlation. In order to clarify that the multivariate time-series does
not consist of independent univariate time-series, this type is sometimes referred to as continuous
multivariate time-series. It is defined by a set X = {x(1), . . . ,x(τ)} of time-dependent vectors
x(t) containing the data points xi(t) of all m variables sampled at the respective time instant t [9]:

x(t) =
[︂
x1(t), . . . , xm(t)

]︂T
, (6.1)

where i = {1, . . . ,m}.

6.2 Anomalies

A typical engineering task involving univariate or multivariate time-series is the collection of sen-
sor data from a process, e.g., for monitoring purposes [5]. A possible objective of process moni-
toring is the detection of outliers or anomalies [6], which can be formally defined as follows:

An outlier is an observation which deviates so much from the other observations as to arouse suspi-
cions that it was generated by a different mechanism. [97, p.1]

Thus, an outlier noticeably differs from other collected data points and hence may indicate an
unwanted behavior of the analyzed process [6]. According to their characteristics, anomalies can

48



6.3 Methods for Anomaly Detection in Time-Series 49

be divided into three different types (see Figure 6.1) [8]:

• Point Anomalies: Data points that significantly deviate from the rest of the data [8].
• Contextual Anomalies: Data points that are not anomalous w.r.t. the data set as a whole, but

in a certain context. In time-series analysis, contextual anomalies represent data points that
considerably differ from adjacent points in the time sequence [8].

• Collective Anomalies: Data points that are anomalous due to being part of a collective with
suspicious characteristics compared to the rest of the data. The respective data points might
not be outliers individually but as a part of an anomalous collection [8].

(a) No anomaly (b) Point anomaly

(c) Contextual anomaly (d) Collective anomaly

Fig. 6.1: Time-series plots of an exemplary periodical process without anomalous behavior (a)
and with different types of anomalies plotted in red color (b)-(d). An anomalous data point may
represent a global anomaly (b), deviate significantly from adjacent points in the sequence (c), or
belong to a collective with suspicious characteristics [8]. Adapted from [98].

6.3 Methods for Anomaly Detection in Time-Series

Since manual anomaly detection, especially in large data sets, is slow and error-prone, various au-
tomatic anomaly detection methods have emerged. Time-series data is usually temporally continu-
ous, i.e., abrupt changes in the trend of a signal are not expected and may indicate an unusual event



6.3 Methods for Anomaly Detection in Time-Series 50

in the underlying process. This characteristic has to be considered when selecting the anomaly
detection method to be used [6].
A simple regression-based model for detecting point anomalies and contextual anomalies in time-
series data is an autoregressive model (AR). An AR(p) model for univariate time-series assumes
the value x(t) to be linearly dependent on the p previous observations [6]:

x(t) =
p

∑
j=1

a j x(t − j)+ c⏞ ⏟⏟ ⏞
expected value

+ε(t), (6.2)

where a1, ...,ap and c denote the learnable regression parameters. The term ε(t) represents the
error between the expected value and the real value of x(t) and thus can be used to quantify the
degree of abnormality. A data point x(t) is considered an outlier if the corresponding error ε(t) is
above a predefined threshold. The model parameters are determined via least-squares regression.
A vector y contains the real values the model aims to predict [6]:

y =
[︂
x(p+1), x(p+2), . . . , x(τ)

]︂T
. (6.3)

The first p values in the time-series can not be predicted, since there are not enough previous data
points available. With the definition of a matrix D and a parameter vector a [6],

D=

⎡⎢⎢⎢⎢⎣
x(1) x(2) . . . x(p) 1
x(2) x(3) . . . x(p+1) 1

...
... . . . ...

...
x(τ − p) x(τ − p+1) . . . x(τ −1) 1

⎤⎥⎥⎥⎥⎦ , (6.4)

a=
[︂
ap, ap−1, . . . , a1, c

]︂T
, (6.5)

the over-determined system of equations can be defined by [6]:

y ≈ Da. (6.6)

The solution for the model parameters in a least-squares sense can be obtained as follows [6]:

a= (DTD)-1DTy = D+y, (6.7)

where D+ denotes the Moore-Penrose pseudo-inverse [99]. To increase robustness, the AR model
can be combined with a moving-average model (MA). The MA(q) model assumes the value x(t) to
be linearly dependent on the deviations ε(t −q), ...,ε(t −1) at the previous q time steps [6]:

x(t) =
q

∑
j=1

b j ε(t − j)+µ + ε(t), (6.8)



6.3 Methods for Anomaly Detection in Time-Series 51

where µ represents the mean of the time-series and b1, ...,bq denote the model parameters to be
optimized. Combining an AR(p) model with an MA(q) model yields an autoregressive moving-
average model ARMA(p,q), defined by [6]:

x(t) =
p

∑
j=1

a j x(t − j)+
q

∑
j=1

b j ε(t − j)+ c+ ε(t). (6.9)

An extension of the ARMA model is the so-called autoregressive integrated moving-average model
(ARIMA). It can be used on time-series data that exhibits a persistent trend. By differencing the
time-series prior to applying the ARMA model, the ARIMA model eliminates the trend and en-
forces a stationary (time-invariant) mean [6]. First-order differencing of the data is performed as
follows [100]:

u(t) = x(t)− x(t −1), (6.10)

where u(t) denotes the value at time instant t of the differenced time-series to which the ARMA
model is applied. Further differencing operations can be carried out in an analogous manner [100]:

w(t) = u(t)−u(t −1), (6.11)

where w(t) represents the component of the time-series at time instant t after second-order differ-
encing. The ARIMA(p,d,q) model has a parameter d denoting the differencing order, in addition
to the parameters p and q of the ARMA(p,q) model [6], [100].
The autoregression methods presented above can be extended to be applicable to multivariate time-
series data. Theoretically, each channel could be analyzed separately and treated as a univariate
time-series. However, it is recommended to use a more elaborate approach to also account for the
correlation between the different channels. The AR(p) model for multivariate time-series assumes
the value in channel i to be linearly dependent on the p previous observations in each of the m
channels [6]:

xi(t) =

[︄
m

∑
k=1

p

∑
j=1

ai jk xk(t − j)

]︄
+ ci + εi(t), (6.12)

where ai jk expresses the predictive power of a data point in channel k at time instant t − j on the
value in channel i at time instant t. The parameter ci is a constant, and εi(t) denotes the error
between the predicted value and the real value of channel i at time step t. The ARMA model and
the ARIMA model can be extended analogously in order to be used on multivariate time-series
data [6]. Applications of these models for anomaly detection can be found in [101], [102] or [103].
Recurrent neural networks with LSTM layers (see Section 3.2.2.1) are frequently used for anomaly
detection and time-series prediction due to their ability to keep track of long-term trends in the
data [12]. In [104], an approach for detecting outliers based on the prediction error is presented.
An LSTM network is trained on non-anomalous data and tested with unseen data sets. It aims
to predict the time-series data at future time instances in a prediction window of length l, i.e.,



6.3 Methods for Anomaly Detection in Time-Series 52

x̂(t + 1), ..., x̂(t + l). Hence, data vectors x(t) at time instances t > l are predicted l times at the
time instances t − l, ..., t − 1. An error vector ϵi(t) containing the errors εi, j(t) between the real
value xi(t) of channel i at time instant t and the corresponding prediction made at time instant t − j
is defined by [104]:

ϵi(t) =
[︂
εi,l, εi,l−1, . . . , εi,1

]︂T
. (6.13)

Based on the error vectors ϵi(t) of each channel i = {1, ...,m}, the time-series data at time instant
t is either labeled as normal or anomalous [104]. A simplified version of the method presented
in [104] is described in [105]. An LSTM network forecasts the values of each channel i only at the
next time step t +1. With the obtained prediction vector x̂(t) and the corresponding vector x(t) of
true values, a criterion for a data vector to be an anomaly can be formulated as follows [105]:

||x(t)− x̂(t)||> Π , (6.14)

where Π denotes the threshold value. Similar prediction-based anomaly detection approaches were
made with convolutional neural networks (CNN), e.g., in [106].
Another group of anomaly detection methods based on neural networks involves different types
of autoencoders. As explained in Section 5, autoencoders learn to compute a hidden feature rep-
resentation of the input data, on which the original signal can be well reconstructed. In contrast
to the aforementioned prediction-based techniques, outlier detection is based on the error between
the original and the reconstructed input signal [11]. The autoencoder is usually trained on non-
anomalous data, and the network learns how to reconstruct data sets similar to the training sam-
ples [107], [108]. If the network receives a test sample that contains anomalies, it fails to reason-
ably reconstruct the signal from the hidden encoding, which results in a high reconstruction error.
Given an input vector x(t) at time instant t and the corresponding reconstructed vector x̂(t), the
reconstruction error ε(t) can, e.g., be determined by [11]:

ε(t) = ||x(t)− x̂(t)||2. (6.15)

Various autoencoder types with different architectures have been studied for their anomaly detec-
tion capabilities, such as undercomplete autoencoders with LSTM layers [107], [108], variational
autoencoders with LSTM layers [109] or convolutional variational autoencoders [110].
This section only contains an excerpt of the anomaly detection tools for time-series in use. Var-
ious other approaches have been made in research. These include clustering techniques like the
DBSCAN (density-based spatial clustering of applications with noise) [111] algorithm, applied
in [112], a modified k-means clustering algorithm, as shown in [113], or one-class support vec-
tor machines [114], used in [115]. The authors of [116] or [117] propose the use of the isolation
forest [118] algorithm for outlier detection. Other research papers, such as [119], address the ap-
plication of local outlier factor (LOF) [120] algorithms for this task.



Chapter 7

Hybrid Learning Tool for Anomaly Detection

In this section, a hybrid learning tool developed for the detection of anomalies in multivariate
time-series data is explained in detail. It consists of a machine learning model, described in Sec-
tion 7.3, and a statistical model, based on key performance indicators, presented in Section 7.4.
Via the statistical model, systematic changes in the data across a set of samples can be analyzed.
The autoencoder enables to take nonlinear interdependencies between the different channels of the
MVTS into account [17]. These capabilities of the hybrid learning model should make it a reliable
tool for detecting anomalies that are difficult to spot using analytical methods alone or that were
previously not even known to indicate abnormal behavior. Two approaches for the combination
of the machine learning model and the statistical model, and therefore the structure of the hybrid
learning tool, are described in Section 7.1.
The hybrid learning tool generally is applicable to all sorts of multivariate time-series data. How-
ever, it has been further adapted to analyze data collected from a ground improvement process for
building foundations. Therefore, this process and the recorded sensor data sets are explained in
Section 7.2.

7.1 Structure of the Hybrid Learning Tool

An important issue that has already been addressed in previous work, e.g., in [121] or [122], is how
to combine the machine learning model and the statistical model to achieve the best possible per-
formance in anomaly detection. In this thesis, two hybrid model structures are presented. The first
one, referred to as parallel hybrid, treats the statistical model and the machine learning model as
independent, i.e., they are fed with the same data, and the results are compared [122]. Usually, an
autoencoder should be trained only on non-anomalous data in order to learn how to best possibly
compress and reconstruct it [11]. In the absence of pre-labeled samples, it can not be guaranteed
that the training set does not contain anomalous samples. However, they are assumed to be signif-
icantly less prevalent in a data set than non-anomalous data samples. Hence, they should not have
a significant impact on the learning process. Furthermore, anomalous samples are expected to be

53



7.2 Analyzed Process 54

less similar to each other than non-anomalous data samples. This should force the optimizer to
modify the learnable parameters in favor of the non-anomalous data samples in the training pro-
cess in order to minimize the overall loss. The second option, a parallel serial hybrid model, uses
the statistical model to pre-label the data samples. The machine learning model then only receives
samples that were considered non-anomalous by the statistical model for training. Therefore, the
portion of samples in the training set that are in fact non-anomalous should be higher than in paral-
lel hybrid models. This may improve the anomaly detection performance of the machine learning
model. However, the models are not fully independent anymore [121], [122]. An application of
these hybrid learning models is presented in Section 8.4.

7.2 Analyzed Process

The data used for the experiments presented in this thesis is related to a vibro ground improvement
process for stabilizing cohesionless granular soils, which do not fulfill the requirements for the
construction of building foundations. This process involves the creation of subsurface columns of
compacted gravel or sand via a cylindrical depth vibrator suspended from a crane or mounted on
a custom-built rig. These columns are arranged in a predefined pattern on the building site that
depends on the local soil conditions. The benefits of ground improvement are a reduction in foun-
dation settlement and an increase in the bearing capacity and stiffness of the ground. It also makes
a shallow footing construction possible. The process can be divided into different phases, as shown
in Figure 7.1 [16], [123]. In this work, the first phase is referred to as initial phase. Here, a wheel
loader fills stones into a skip that transports them to a chamber, from where they are unloaded into
the inside of the cylindrical vibrator and flow to its tip. The subsequent phase is called penetra-
tion phase. A horizontal oscillation of the cylindrical vibrator is induced by a rotating eccentric
weight. The vibrator is then lowered into the ground and displaces the soil until the required depth
is reached. In the compaction phase, the vibrator is pulled up slightly, which causes stones at the
tip of the vibrator to flow into the originated cavity. The vibrator is then pulled down again in order
to compact the filled-in stones and press them into the surrounding soil. These steps of unloading
and compacting the stones are performed alternatingly until the ground level is reached, eventually
completing a subsurface column [16], [123].
Since columns with deficiencies are a potential safety hazard and can be difficult and costly to rec-
tify, the machinery is equipped with sensors to monitor the process permanently. For each column,
a time-series with nS = 16 channels and a sampling interval of tS = 1s is created [17].
Figure 7.2 shows a plot with data of nine channels segmented into the three different phases of
the process. The signals in the first and the second channel describe the current depth at which
the drilling rig is located and the corresponding gradient w.r.t. time, respectively. A measurement
of the force applied when drilling or compacting gravel yields the data in the third channel. The



7.2 Analyzed Process 55

Fig. 7.1: Phases of the vibro ground improvement process. Adapted from [16].

fourth, the fifth, and the sixth channel are related to the power supply and motor of the vibrator.
The seventh channel provides information about the weight of the loaded gravel. The last two
channels indicate how much the vibrator is tilted w.r.t. two directions, X and Y . As can be seen
in Figure 7.3a, this time-series data may contain segments with dead time, i.e., phases where the
feed rate remains zero for a noticeable amount of time. This is the case, for example, when the
gravel is filled into the skip in the initial phase or refilled during the compaction phase. These long
segments with dead time in a time-series could impede the reconstruction of the signal so that the
corresponding sample would be considered anomalous. Longer pauses could indeed indicate an
anomaly, e.g., a shutdown of the vibrator due to overheating. They could also be caused by the op-
erator taking a break or an exceptionally long gravel refilling process. These long idle times might
indicate problems in the site logistics but typically do not have an impact on the quality of the
created column. However, detecting this type of anomalous behavior can help to improve process
efficiency. In the context of this work, the identification of faulty columns is of higher interest.
Therefore, dead time segments are removed from the signal before feeding it into the autoencoder
(see Figure 7.3b), whereby dead time is characterized by the gradient of the depth channel falling
below a defined threshold [17].
Since a building site can contain up to thousands of columns, manual identification of anomalous
samples is error-prone and cost-intensive. This inspired the development of a hybrid learning tool
that is able to detect abnormal behavior automatically, reducing the risk of overseeing anomalous
data samples [17].



7.2 Analyzed Process 56

Fig. 7.2: Data of m= 9 channels collected from a ground improvement process. The process can be
segmented into an initial phase (green), a penetration phase (blue), and a compaction phase (red).



7.3 Machine Learning Model 57

(a) Signal with dead time segments

(b) Signal without dead time segments

Fig. 7.3: Data of the depth channel collected from a vibro ground improvement process. The signal
in (a) contains dead time segments (red), where the gradient falls below a defined threshold. These
segments are removed to produce the signal shown in (b).

7.3 Machine Learning Model

The machine learning models used in the context of this thesis are autoencoders, see Chapter 5.
This work focuses on the optimization and performance evaluation of these models in different
series of experiments presented in Chapter 8. Autoencoders of different types with varying archi-
tectures were set up via a framework [124] built at the Chair of Automation. This framework is
explained in Section 7.3.1. Anomaly detection via autoencoders is based on the error between the
input signal and the output signal of the autoencoder, which is reconstructed from a hidden repre-
sentation of the original data [11], as described in Section 6.3. The determination of a threshold on
the reconstruction error in order to detect anomalous samples is explained in Section 7.3.2.

7.3.1 Autoencoder Framework

The networks presented in this thesis were set up using a framework for object-oriented imple-
mentation of deep autoencoders in MATLAB, using the provided functions and tools of the Deep
Learning Toolbox™. The code has been made public and can be accessed on the Central File Ex-
change of MATLAB [124]. The framework was designed to process multivariate time-series of
varying lengths.



7.3 Machine Learning Model 58

7.3.1.1 Network Architecture

The current version of the framework (accessed on 15.05.2022) allows choosing between two basic
autoencoder types: undercomplete autoencoder (see Section 5.1.1) and variational autoencoder
(see Section 5.1.4). An overcomplete autoencoder [125], whose latent dimension is at least as high
as the input dimension, could also be created. However, this variant is not of interest in the context
of this thesis. An encoder network and a decoder network are set up separately. Both at least contain
an input layer for feeding sequential data into the network and a fully connected layer defining the
dimension of the network output. Optionally, the decoder can additionally include an output layer
that applies a nonlinear function on the output values of the previous fully connected layer, forcing
them to lie within a certain interval. The currently available function types for this operation are
sigmoid, which has been used for the work presented in this chapter, and hyperbolic tangent (see
Section 3.1). Parts of the results presented in this thesis were obtained with older versions of the
framework, where this layer was not included. This is pointed out in the relevant sections. The user
can specify the number and types of the hidden layers as well as the corresponding numbers of
neurons. The selectable layer types are LSTM (see Section 3.2.2.1), biLSTM (see Section 3.2.2.2)
and fully connected (see Section 3.2.1) layers.

7.3.1.2 Data Preprocessing

The data is rescaled in each channel separately before being fed into the network. This is of
high importance as the measurement data of different channels may be associated with differ-
ent units and scales. Rescaling prevents data with large ranges from dominating over data with
lower ranges when optimizing the network parameters, and increases the training speed. The data
in each channel is rescaled to lie in the interval [0,1] using min-max normalization. Consider a data
set M = {X1, . . . ,Xn} of n multivariate time-series samples X j, with j = {1, ...,n}. Each sample
X j = {x j(1), . . . ,x j(τ j)} consists of τ j data vectors x j(t), which contain the data of m variables
x j,i(t) collected at time instant t = {1, . . . ,τ j} [126]:

x j(t) =
[︂
x j,1(t), x j,2(t), . . . , x j,m(t)

]︂T
, (7.1)

where i= {1, . . . ,m}. Furthermore, x max
j,i and x min

j,i respectively denote the maximum and minimum
values of channel i over all time instances t of a sample X j [126]:

x max
j,i = max

(︁
{x j,i(1), . . . ,x j,i(τ j)}

)︁
, (7.2)

x min
j,i = min

(︁
{x j,i(1), . . . ,x j,i(τ j)}

)︁
. (7.3)



7.3 Machine Learning Model 59

The rescaled value x resc
j,i (t) of sample j in channel i at time instant t is then computed by [126]:

x resc
j,i (t) =

x j,i(t)− x min
j,i

x max
j,i − x min

j,i
. (7.4)

From now on, the superscript resc will be omitted, and all variables x j,i(t) will be assumed to
be rescaled. Due to the rescaling process, information about the absolute channel values gets lost
since each channel of each sample is mapped independently to the defined interval. The use of
constant scaling parameters x max

i and x min
i to apply to the data of all samples is not recommended

when analyzing the vibro ground improvement process. This is because particular attributes, like
an appropriate maximum depth, depend on the local soil conditions, which can vary substantially
within a site and inter-site. The task of detecting anomalies in unscaled data is covered by the use
of key performance indicators.
For training, the set of data samples, i.e., files containing time-series data, is divided into mini-
batches of a user-defined size b. Before splitting, the samples are sorted according to their length,
i.e., the number of time steps at which data was collected during the measurement. Thus, each
mini-batch consists of data samples of similar lengths. This ensures only little information from
the data gets lost since the time-series files are downsampled to the length of the shortest in the
respective mini-batch.

7.3.1.3 Training

The networks are trained using the Adam optimizer [46] (see Section 3.3.1) for a user-defined
number of epochs. Unless specified otherwise, the weight parameters are initialized using the He
initializer [54] (see Section 3.3.3). Which loss function is used in the learning process depends on
the selected type of autoencoder. For an undercomplete autoencoder, the loss of a sample X j only
consists of the sum-of-squares error of all channels i and time steps t:

LAE(X j) =
m

∑
i=1

τ j

∑
t=1

[︁
x̂ j,i(t)− x j,i(t)

]︁2 , (7.5)

where x̂ j,i(t) denotes the reconstructed value of channel i in sample X j at time instant t. The loss
function of the variational autoencoder additionally contains a regularization term [77]:

LVAE(X j) =−ELBO =
m

∑
i=1

τ j

∑
t=1

[︁
x̂ j,i(t)− x j,i(t)

]︁2
+λKL [N (µ,Σ)||N (0, I)] , (7.6)

whereby the covariance matrix Σ has a diagonal structure. The parameter λ represents a weighting
factor that enables to balance the two terms of the loss function according to the requirements [94].
See Section 5.1.4.2 for a detailed description of the ELBO loss, the loss function of the VAE.



7.3 Machine Learning Model 60

Fig. 7.4: Exemplary schematic diagram of an autoencoder based on the framework of the Chair of
Automation [124]. The number of neurons in each layer, as well as the number and types of the
hidden layers, can be set by the user and thus may differ from this graphic.

7.3.2 Reconstruction Error and Threshold Setting

The machine-learning-based anomaly detection model labels a data sample Xj as either nor-
mal or anomalous based on the associated reconstruction error per time step. The data set
M = {X1, . . . ,Xn} of multivariate time-series samples is split into a training set A with k sam-
ples and a test set B containing n− k samples. In case a parallel hybrid approach is used, the
members of the training set are selected at random from M [122]. In parallel serial hybrid models,
the training set consists of k randomly selected samples that were pre-labeled as non-anomalous
by the statistical model [122]. The learnable parameters of the autoencoder are optimized using
the training set A by minimizing the loss function of the undercomplete or variational autoencoder
shown in Equation (7.5) and (7.6), respectively. After training, the autoencoder is fed with the
data samples of the test set B and outputs a reconstructed signal X̂ j = {x̂ j(1), . . . , x̂ j(τ j)} of each
sample Xj, with:

x̂ j(t) =
[
x̂ j,1(t), x̂ j,2(t), . . . , x̂ j,m(t)

]T
. (7.7)

The normalized sum-of-squares reconstruction error E j of sample Xj is obtained by summing up
the squared errors of all channel values at each time step, and normalizing it by the duration τ j:

E j =
1
τ j

m

∑
i=1

τ j

∑
t=1

[
x j,i(t)− x̂ j,i(t)

]2 . (7.8)



7.3 Machine Learning Model 61

A data sample X j is flagged as an outlier if the reconstruction error E j exceeds a certain threshold
Π [15], i.e.:

E j > Π . (7.9)

This threshold Π is determined via a skewness-adjusted boxplot [127]. This is a modified version
of the standard boxplot that accounts for the skewness of the distribution associated with the data
it is applied to. More specifically, the lengths of the whiskers are adjusted based on a measure
for the skewness that is more robust against outliers than conventional measures, the medcouple
(MC) [128]. Suppose the reconstruction errors E j of each sample X j in a test data set B are members
of an error set E . The median error or second quartile of this set is denoted as Q2. Considering all
pairs of errors below or equal Q2, El ≤ Q2, and errors above or equal Q2, Eu ≥ Q2, the medcouple
is determined by [128]:

MC = med
El≤Q2≤Eu

h(El,Eu). (7.10)

The kernel function h(El,Eu) for all El ̸= Eu is defined as follows [128], [129]:

h(El,Eu) =
(Eu −Q2)− (Q2 −El)

Eu −El
. (7.11)

The special case of El = Q2 = Eu is treated by [128]:

h(El,Eu) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
+1 if l > u

0 if l = u

−1 if l < u .

(7.12)

The medcouple represents the median kernel function value of all pairs of errors El and Eu. It lies
in the interval [−1,1], where MC > 0 indicates a right-skewed distribution, MC < 0 a left-skewed
distribution and MC = 0 a symmetric distribution [129]. The lengths of the whiskers define the lo-
cation of the boundaries that separate normal data points from outliers. In standard boxplots [130],
these lengths are fixed to 1.5 IQR, where IQR represents the interquartile range [128],

IQR = Q3 −Q1, (7.13)

and Q1 and Q3 denote the first and third quartile, respectively. The corresponding interval that
contains the data points assumed to be normal is defined by [128]:

[Q1 −1.5 IQR, Q3 +1.5 IQR] . (7.14)

For asymmetric distributions, too many data points lie outside this interval, i.e., they are flagged as
outliers. The analogous interval of the skewness-adjusted boxplot for right-skewed or symmetric
distributions, i.e., MC ≥ 0, is defined as shown in Equation (7.15) [129],



7.3 Machine Learning Model 62[
Q1 −1.5e−4MC IQR, Q3 +1.5e3MC IQR

]
. (7.15)

For left-skewed distributions (MC < 0) it is defined by [129]:[
Q1 −1.5e−3MC IQR, Q3 +1.5e4MC IQR

]
. (7.16)

The distribution over the reconstruction errors E j of all data samples in the test was found to be
right-skewed (see Figure 7.5). Hence, the skewness-adjusted boxplot was supposed to be more
suitable for setting the threshold than the standard version. This method for outlier detection has
already been applied in previous work at the Chair of Automation [15]. Note that only samples
with reconstruction errors above the upper interval boundary are considered as outliers since a
reconstruction error below the lower interval limit does not indicate anomalous behavior. An ex-

Fig. 7.5: Right-skewed distribution over the reconstruction errors of all samples of a test data set
related to the vibro ground improvement process. The thresholds were determined using a standard
boxplot [130] (red) and a skewness-adjusted boxplot [128] (green).

emplary plot of the sum-of-squares reconstruction error E j of all samples in the test data set, and
the threshold Π separating non-anomalous samples from outliers, is shown in Figure 7.6.
A core goal of this thesis is to determine which autoencoder architectures are the most suitable for
anomaly detection, see Section 8.1. Usually, this would be done by comparing the obtained classi-
fications with the known true labels of a test data set [22]. In the absence of labeled data sets, some
intuitive measures to assess the suitability of a model for anomaly detection were defined [15]:

• Median reconstruction error of non-anomalous samples Ẽnormal: This measure describes
the capability of a model to reconstruct non-anomalous signals. Since these signals should
be well reconstructed, a low value of Ẽnormal is aspired.



7.3 Machine Learning Model 63

• Median reconstruction error of anomalous samples Ẽoutlier: The reconstruction error of
an anomalous data sample is aimed to be significantly higher than the error of a normal
sample since the reconstruction error is a measure of the degree of abnormality.

• Distance of medians dmed = Ẽoutlier − Ẽnormal: The distance of the median errors of anoma-
lous and non-anomalous data samples should be high in order to enhance discrimination of
these two classes.

• Standard deviation of reconstruction error of non-anomalous samples σnormal: A low
value of this measure is aspired, as it allows to distinguish between non-anomalous data and
outliers more accurately.

See Figure 7.6 for a graphical representation of these measures. While they provide an indication
of the anomaly detection capabilities of a tested network, these measures are not fully reliable.
This is because it can not be ensured that the data labels obtained by the model are correct.

Fig. 7.6: Exemplary plot of the reconstruction errors associated with the data samples of a test
set. It shows the threshold for separating non-anomalous data from outliers and some statistical
measures.



7.4 Statistical Model 64

7.4 Statistical Model

Statistical outlier detection was performed via the use of key performance indicators at the Chair
of Automation, as presented in [18]. Statistical measures were defined for the process as a whole,
particular phases of the process, or specific data channels. Figure 7.7 shows a heat map with dif-
ferent KPIs evaluated for a set of test samples collected at the same site.
A data sample X j is considered to be anomalous in terms of the quantity measured by a particular
KPI if the value of the respective KPI significantly deviates from the values obtained for the other
samples in test set B [17]. The boundaries for separating non-anomalous data points from outliers
are defined according to the criterion used to determine outliers in standard boxplots [128], [130].
That is, a data point is flagged as an outlier if it is below Q1−1.5 IQR or above Q3+1.5 IQR [17].
Hence, the interval of data points assumed to be non-anomalous is defined as shown in Equa-
tion 7.14.
The number of KPIs of a data sample that lie outside this interval can be used to quantify the
degree to which the sample is believed to be anomalous by the statistical model. In this work, this
measure is referred to as outlierness [17]. For ease of interpretation, the outlierness is normalized,
i.e., the outlierness of each sample is divided by the highest obtained outlierness in the test set.
Hence, the values of the outlierness lie in the interval [0,1]. As with the machine learning model, a
threshold could be defined to distinguish anomalous and non-anomalous samples. This, however,
is not in the scope of this work.

Fig. 7.7: Heat map of different KPIs evaluated for a set of samples (points), which are sorted
chronologically. It allows detecting systematic patterns within a site and relationships between dif-
ferent KPIs. All samples were collected at the same construction site [17], [18]. Adapted from [18].



Chapter 8

Test Results

This chapter contains the results of practical work that was performed in the context of this thesis.
The aim was to optimize a machine learning model that should be used for anomaly detection
in time-series data in combination with a statistical tool based on key performance indicators.
In separate series of experiments, different network architectures, weight initializing techniques,
and hyperparameter optimization methods were investigated. The test data was acquired from a
ground improvement process described in detail in Section 7.2. For the tests related to this thesis,
only data from one construction site was used. Since the conditions vary across different sites, a
trained model should only be applied to data from the same site as the training samples. Results of
tests with data from other sites can be found, e.g., in [15]. The scope of the test series related to this
thesis was limited due to the time-intensive optimization and training processes. Still, the results
should give a good indication of how to set up and optimize an autoencoder to achieve a satisfying
performance in anomaly detection. In the absence of labeled data sets, the idea was to analyze the
data samples that were considered anomalous by the autoencoder but not by the statistical model.
This should help to gain a deeper understanding of the process and optimize the hybrid learning
tool. A detailed description of the applied hybrid learning tool is given in Chapter 7.
Setting the model parameters appropriately is crucial for the performance of the autoencoder and
requires knowledge and experience. Also, the optimal choice of the parameters is dependent on
the data the network receives, i.e., the parameters have to be adapted to the problem at hand [58].
For the test series related to this thesis, some of these parameters were optimized via a genetic
algorithm written at the Chair of Automation [15]; see Section 3.4.4 for a rough description. In
one series of tests, alternative HPO methods have been applied, as shown in Section 8.2.

8.1 Evaluation of Different Architectures

The aim of the following experiments was to determine a model parameter setting that enables
the best performance in anomaly detection when using data from the vibro ground improvement
process. For this purpose, the performances of undercomplete autoencoders and variational autoen-

65



8.1 Evaluation of Different Architectures 66

coders with LSTM or biLSTM layers were compared. One of the objectives was to evaluate the
benefit of using bidirectional LSTM layers instead of simple LSTM layers and if it would justify
the more time-consuming training process.
Related work addressed the performance of simple neural networks with LSTM or biLSTM layers
in time-series prediction, as presented in [131], [132], or [133], for example. In all these papers,
networks with biLSTM layers were found to outperform their counterparts with univariate LSTM
layers. While in [131], the prediction RMSE could be reduced by 57.43% when using biLSTM
instead of LSTM layers, the reduction of the average RMSE was only approx. 5% at most in the
experiments presented in [133]. In [132], the networks were tested with eleven different time-series
data sets. The reduction in RMSE when using biLSTM-networks instead of LSTM-networks was
between 12.93% and 77.60%, depending on the data set being analyzed. These results indicate
that the achievable improvement in tracking temporal dependencies in the data when using biL-
STM layers over LSTM layers highly depends on the data the network receives.
The experiments shown in this section were also intended to provide an indication of which au-
toencoder type is better suited for anomaly detection in the given MVTS data sets. As the selection
of the training and network hyperparameters is a crucial task for the performance of a neural net-
work, a hyperparameter optimization was performed using a genetic algorithm written at the Chair
of Automation [15]. This should allow a reliable comparison of different network architectures
independent of external influences, like the user’s experience or preferences. Since the genetic
algorithm involves stochastic operations, the results of different runs with the same parameter set-
tings may vary. Due to limited resources, only one HPO run was performed with each architecture.
As input data, m = 6 channels of the collected time-series data were chosen according to their
importance for the analyzed ground improvement process: depth, pulldown force, vibrator am-
perage, vibrator frequency, vibrator temperature, and weight (see Section 7.2). The training set
consisted of 80 MVTS data samples with varying time-series lengths, which were pre-labeled as
non-anomalous by the statistical model. The trained networks were tested with 192 unseen data
samples. The dimension of the latent space was chosen to be p = 3 based on previous work [15],
where a compression rate of 50% was found to be well-suited. In the first series of experiments,
autoencoders with a single hidden layer in the encoder and the decoder were tested. In the second
series, the possible benefit of adding an additional layer to the networks was investigated. It has to
be mentioned that in the experiments presented in this section, the decoder did not contain a sep-
arate sigmoid layer, as shown in Figure 7.4. Also, the initial weight parameters were determined
using the Xavier initializer. This is because an older version of the framework was used.

8.1.1 Architectures With One Hidden Layer

In this section, the results of a series of experiments with autoencoders containing one hidden layer
in the encoder and the decoder are presented. These hidden layers were of the same type, i.e., both



8.1 Evaluation of Different Architectures 67

were either LSTM or biLSTM layers. First, suitable hyperparameters were determined via a ge-
netic algorithm for each architecture separately. Table 8.1 contains the hyperparameters that were
optimized in this process and the corresponding predefined bounds. As can be seen, the interval

Table 8.1: Hyperparameters to optimize and corresponding bounded domains for architectures with
one hidden layer

Hyperparameter Domain Lower Bound Upper Bound
Nr. of epochs discrete 1 100
Nr. of neurons in encoder discrete 1 100
Nr. of neurons in decoder discrete 1 100
Learning rate continuous 3×10−3 1×10−1

Mini-batch size discrete 2 53

boundaries for the values a hyperparameter could take have been set generously. The idea was to
allow the optimizer to explore a large search space at the beginning of the HPO process in order to
identify promising regions on which to focus the further search.
The performance of each network associated with a set of hyperparameters was tested via k-fold
cross-validation, where k = 3. When using this method, the training set is divided into k subsets or
folds. The network is then trained k times in a cyclic manner using k− 1 subsets in each run and
tested on the remaining one [34]. A mini-batch can not consist of more elements than the training
set, which contains the samples of 2 out of 3 folds. These are at minimum 53 samples, which there-
fore is set as the upper limit for the mini-batch size in Table 8.1. In addition to the hyperparameter
domains, some parameters of the genetic algorithm had to be defined, as shown in Table 8.2. The

Table 8.2: Parameters of the genetic algorithm for architectures with one hidden layer

Parameter Selected value
Population size 20
Maximum number of generations 7
Probability of mutation 0.05 %
Probability of unfit individual in mating pool 0.05 %

population size represents the number of individuals, i.e., hyperparameter configurations, of each
generation [65]. The genetic algorithm proposed in [15] is executed until at least one out of three
termination criteria is met. In order to prevent unnecessary computations, execution is stopped if
all hyperparameter configurations in a generation are equal. Also, the process is terminated if the
average fitness in the current generation is worse than in all of the four previous generations. If
none of the aforementioned events occurs, the computation is stopped after the specified maxi-
mum number of generations is reached. The probability of mutation expresses the probability of
an individual’s genes being altered according to a defined mutation method [65]. The probability



8.1 Evaluation of Different Architectures 68

of an unfit individual being added to the mating pool describes how likely it is that an individual,
which would not be considered for mating based on its fitness value, is selected to act as a parent.
The use of unfit individuals for mating is not included in conventional genetic algorithms but the
algorithm applied in this work [15]. For more information on genetic operations, see Section 3.4.4.
The hyperparameter configurations with the best fitness values obtained by the genetic algorithm
are shown in Table 8.3. As can be seen, the optimum number of epochs was found to be near the

Table 8.3: HPO results of autoencoder architectures with one hidden layer in encoder and decoder

Autoencoder Number Neurons Neurons Learning MB
Type Epochs Encoder Decoder Rate Size
LSTM-AE 93 59 19 3.691×10−2 12
LSTM-VAE 77 55 30 5.133×10−2 4
biLSTM-AE 96 70 32 1.877×10−2 3
biLSTM-VAE 96 57 47 2.571×10−2 6

upper predefined limit of possible values. This indicates that a better performance might be ex-
pected if the training process would span over more epochs than obtained in the HPO. The upper
limit was set to ensure an acceptable training time. It appears beneficial to have a significantly
higher number of neurons in the encoder than in the decoder. Also, a small mini-batch size seems
to improve the network performance.
After optimizing the hyperparameters, networks were set up using the framework described in
Section 7.3.1. In order to compensate for the stochastic nature of weight initialization, each au-
toencoder was trained and tested nruns = 25 times. The four statistical measures described in Sec-
tion 7.3.2 were computed separately for each architecture and test run. The corresponding results
are shown in Figure 8.1. As can be seen in Figure 8.1a, the autoencoders with hidden biLSTM lay-
ers outperformed the ones with LSTM layers in terms of the reconstruction error of data labeled
as non-anomalous. Yet, they also allowed a better reconstruction of signals considered as outliers,
see Figure 8.1b. However, a significantly lower standard deviation of the reconstruction errors of
data labeled as normal could be achieved when using a biLSTM-AE or a biLSTM-VAE, compared
to the LSTM variants, as shown in Figure 8.1d. This suggests that they allow easier separation
of outliers from non-anomalous data. Thus, despite the lower reconstruction error of data sam-
ples flagged as outliers, networks with hidden biLSTM layers were found to potentially perform
better in anomaly detection tasks than their LSTM counterparts. Also, the distribution over the
statistical measures in Figure 8.1 seems nearer to a Gaussian distribution when using variational
autoencoders rather than undercomplete autoencoders. This could be advantageous but needs to be
verified by further experiments.



8.1 Evaluation of Different Architectures 69

(a) Median error of samples labeled as non-
anomalous by the machine learning model

(b) Median error of samples labeled as anoma-
lous by the machine learning model

(c) Distance of median errors of non-anomalous
samples (a) and anomalous samples (b) as la-
beled by the machine learning model

(d) Standard deviation of errors of samples la-
beled as non-anomalous by the machine learn-
ing model

Fig. 8.1: Statistical measures of sum-of-squares sample errors obtained with different autoencoder
architectures containing one hidden layer in encoder and decoder for nruns = 25 test runs.

8.1.2 Architectures With Two Hidden Layers

In a second series of experiments, performance tests with autoencoders containing two hidden
layers in the encoder and decoder were executed. These layers were either LSTM layers or biL-
STM layers. The bounded domains for the optimizable hyperparameters were defined as shown in
Table 8.4. Based on the results obtained in the HPO process in Section 8.1.1, the bounds for the
number of epochs were modified such that higher values were possible. The upper limits for the
number of neurons in the inner hidden layers were set to lower values than the corresponding limits



8.1 Evaluation of Different Architectures 70

of the outer hidden layers. This was done to encourage an hourglass structure of the autoencoder,
which was expected to improve the performance. Again, the hyperparameters were optimized with

Table 8.4: Hyperparameters to optimize and corresponding bounded domains for architectures with
two hidden layers

Hyperparameter Domain Lower Bound Upper Bound
Nr. of epochs discrete 50 200
Nr. of neurons in 1st layer of encoder discrete 10 80
Nr. of neurons in 2nd layer of encoder discrete 10 60
Nr. of neurons in 1st layer of decoder discrete 10 60
Nr. of neurons in 2nd layer of decoder discrete 10 80
Learning rate continuous 3×10−3 1×10−1

Mini-batch size discrete 2 53

a genetic algorithm via 3-fold cross-validation, as described in Section 8.1.1. For consistency, the
parameters of the genetic algorithm were set to the same values as presented in Table 8.2. The
hyperparameter configurations for each tested architecture that achieved the best fitness values
are shown in Table 8.5. Autoencoders were set up, trained, and tested nruns = 25 times with the

Table 8.5: HPO results of autoencoder architectures with two hidden layers in encoder and decoder

Autoencoder Nr. of Neurons Encoder Neurons Decoder Learning MB

Type Epochs Layer 1 Layer 2 Layer 1 Layer 2 Rate Size
LSTM-AE 148 40 47 45 63 1.248×10−2 6
LSTM-VAE 153 68 31 46 43 1.310×10−2 10
biLSTM-AE 169 37 52 48 37 1.608×10−2 5
biLSTM-VAE 155 47 37 46 35 1.748×10−2 12

optimized hyperparameters. Again, four statistical measures were computed separately for each
architecture and test run. The results are visualized in the form of boxplots in Figure 8.2. As can be
seen in Table 8.5, the aspired hourglass structure did not turn out to enable the best performance.
It is quite noticeable that the optimized number of neurons in the layer that receives the data from
the latent space as input, i.e., the first layer of the decoder, is similar for all architectures. The same
applies to the learning rate and the number of epochs. Figure 8.2a indicates that autoencoders with
hidden biLSTM layers, especially the biLSTM-AE, could better reconstruct data samples labeled
as non-anomalous than LSTM autoencoders. However, they did not necessarily allow easier sep-
aration of non-anomalous data from outliers. This can be derived from Figure 8.2c and 8.2d. The
distance of medians dmed and the standard deviation σnormal of the reconstruction errors of normal
data varied widely across different test runs for networks with biLSTM layers. That is, they ex-
hibited poor reproducibility, and multiple training runs might be necessary to ensure the network
performs well. Therefore, it is not possible to draw a definitive conclusion as to which of these



8.1 Evaluation of Different Architectures 71

(a) Median error of samples labeled as non-
anomalous by the machine learning model

(b) Median error of samples labeled as anoma-
lous by the machine learning model

(c) Distance of median errors of non-anomalous
samples (a) and anomalous samples (b) as la-
beled by the machine learning model

(d) Standard deviation of errors of samples la-
beled as non-anomalous by the machine learn-
ing model

Fig. 8.2: Statistical measures of sum-of-squares sample errors obtained with different autoencoder
architectures containing two hidden layers in encoder and decoder for nruns = 25 test runs.

network architectures is the most suitable for anomaly detection. In Figure 8.3 the results of this
section are compared to the ones presented in Section 8.1.1. Except for the LSTM-AE, the per-
formance of the autoencoders could not be improved by adding an additional hidden layer to the
networks. Encoders and decoders with two hidden layers do not seem to enable a lower recon-
struction error of data labeled as non-anomalous than their counterparts with one hidden layer (see
Figure 8.3a). In terms of σnormal , they even got outperformed. Due to their lower complexity and
training effort at a comparable performance, architectures with one hidden layer were found to be
preferable to those with two hidden layers.



8.1 Evaluation of Different Architectures 72

(a) Median error of samples labeled as non-anomalous by the machine learning model

(b) Median error of samples labeled as anomalous by the machine learning model

(c) Standard deviation of errors of samples labeled as non-anomalous by the machine learning model

Fig. 8.3: Statistical measures of sum-of-squares sample errors obtained with different autoencoder
architectures for n = 25 test runs. The boxplots in blue are associated with autoencoders, whose
encoder and decoder contain one hidden layer. The boxplots in orange correspond to autoencoders,
whose encoder and decoder have two hidden layers.



8.2 Evaluation of Hyperparameter Optimization Methods 73

8.2 Evaluation of Hyperparameter Optimization Methods

Choosing a network model’s architectural and training hyperparameters is a crucial task and may
require a lot of experience and trials [58]. Several methods exist that search for a suitable hyperpa-
rameter configuration automatically (see Section 3.4). One of these techniques, a genetic algorithm,
has already been used for the tests shown in Section 8.1. In the following, the results of a series
of experiments, which also included the use of other hyperparameter optimization methods, are
presented. The aim was to test if Bayesian optimization (see Section 3.4.3) or random search (see
Section 3.4.2) can outperform the genetic algorithm. Each method was run nHPO = 3 times with an
AE and a VAE, whose encoder and decoder contained one hidden biLSTM layer. As in previous
experiments described in Section 8.1, 80 training samples pre-labeled as non-anomalous by the
statistical model and 192 test samples of the same site were used. The latent dimension was set to
p = 3, and data of the following m = 6 channels was fed into the networks: depth, pulldown force,
vibrator amperage, vibrator frequency, vibrator temperature, and weight. The bounds on the hyper-
parameters were defined as shown in Table 8.1. Each hyperparameter configuration was evaluated
in a 3-fold cross-validation process. The sum of the reconstruction errors of all validation samples
was used as the objective function to be minimized in the optimization process [15]. In each HPO
run, a total of 140 networks were tested in this manner. Figure 8.6 shows exemplary plots of the
optimization process for a biLSTM-biLSTM AE performed with the formerly mentioned methods.
It can be seen that the evaluations of the objective function tend to yield lower values as the op-
timization process progresses when using the GA or Bayesian optimization. With random search,
no systematic improvement in the evaluated function values can be observed.

(a) Genetic algorithm (b) Bayesian optimization (c) Random search

Fig. 8.6: Plots of the hyperparameter optimization progress with different methods. The plot related
to the genetic algorithm (a) visualizes the average fitness in each generation of 20 individuals and
the fitness of the best individual. The plot associated with Bayesian optimization (b) shows the
estimated values of the objective function at the points with the greatest expected improvement as
well as the current best observations of the objective. In (c), the current observations and the lowest
observed values so far obtained with random search are depicted.



8.2 Evaluation of Hyperparameter Optimization Methods 74

It has to be noted that the same subsets were used for each hyperparameter evaluation in Bayesian
optimization and random search. This allows a more reliable comparison of different hyperpa-
rameter configurations. However, the HPO results may vary when using different splittings of the
data. The genetic algorithm used in this work [15] redefines the data splitting after each genera-
tion in order to achieve a better generalization. However, even with the same subsets, the results
of multiple runs may differ due to the stochastic nature of weight initialization, which leads to
noisy observations of the objective function. To account for this phenomenon, the MATLAB func-
tion bayesopt [55] estimates a noise level during optimization. In genetic algorithms, the effects
of weight initialization are also partially compensated without the need for further modifications.
This is because characteristics are inherited from previous generations; thus, similar hyperparame-
ter configurations are tested throughout the performed iterations [15]. In order to take the problem
of weight initialization also into account in random search, a complete cross-validation process
was performed five times with each hyperparameter setting. The median validation error of these
five runs was then used as an evaluation basis for the goodness of a hyperparameter configuration.
In Table 8.6, the hyperparameters optimized with the aforementioned methods are shown. Note

Table 8.6: Hyperparameter configurations of autoencoders optimized with different HPO methods:
Bayesian optimization (BO), genetic algorithm (GA) and random search (RS)

Autoencoder HPO Run Number Neurons Neurons Learning MB
Type Method Nr. Epochs Encoder Decoder Rate Size
biLSTM-AE BO 1 82 20 52 5.867×10−2 2
biLSTM-AE BO 2 97 83 100 2.027×10−2 6
biLSTM-AE BO 3 88 47 51 3.403×10−2 5

biLSTM-AE GA 1 96 70 32 1.877×10−2 3
biLSTM-AE GA 2 83 45 29 3.672×10−2 2
biLSTM-AE GA 3 93 39 51 3.334×10−2 6

biLSTM-AE RS 1 53 63 58 1.271×10−2 7
biLSTM-AE RS 2 96 30 32 2.982×10−2 12
biLSTM-AE RS 3 93 81 62 0.432×10−2 9

biLSTM-VAE BO 1 61 59 55 3.116×10−2 6
biLSTM-VAE BO 2 100 15 30 5.329×10−2 5
biLSTM-VAE BO 3 99 64 62 3.009×10−2 6

biLSTM-VAE GA 1 96 57 47 2.571×10−2 6
biLSTM-VAE GA 2 86 12 27 5.187×10−2 12
biLSTM-VAE GA 3 75 43 63 2.695×10−2 3

biLSTM-VAE RS 1 90 69 12 1.587×10−2 4
biLSTM-VAE RS 2 87 75 54 2.491×10−2 16
biLSTM-VAE RS 3 98 36 100 1.540×10−2 22

that, equal to Section 8.1, an older version of the framework was used, which did not include a



8.2 Evaluation of Hyperparameter Optimization Methods 75

separate sigmoid or hyperbolic tangent layer in the decoder. Furthermore, the initial weights were
determined using the Xavier initializer. With each hyperparameter setting shown in Table 8.6, net-
works were trained nruns = 25 times to compensate for the stochastic nature of weight initialization.
The training and validation errors per sample at the end of training were computed and are visual-
ized in the form of boxplots in Figure 8.7 for biLSTM-AEs and Figure 8.8 for biLSTM-VAEs. The

(a) Training error per sample

(b) Validation error per sample

Fig. 8.7: Sum-of-squares errors per sample of training samples (a) and validation samples (b) after
the last epoch with biLSTM-AEs. The hyperparameters were optimized nHPO = 3 times with each
of the tested HPO methods, and nruns = 25 test runs were performed with each hyperparameter
configuration.

results for undercomplete autoencoders with hidden biLSTM layers shown in Figure 8.7 indicate
that the genetic algorithm outperformed the other two HPO methods. It obtained hyperparame-
ter configurations that led to low training and validation errors and a relatively small interquartile
range over the performed test runs compared to the other two variants. The hyperparameters de-
termined by Bayesian optimization resulted in lower median training and validation errors than
the ones found with random search. However, the boxplots associated with the first Bayesian op-



8.2 Evaluation of Hyperparameter Optimization Methods 76

(a) Training error per sample

(b) Validation error per sample

Fig. 8.8: Sum-of-squares errors per sample of training samples (a) and validation samples (b) after
the last epoch with biLSTM-VAEs. The hyperparameters were optimized nHPO = 3 times with each
of the tested HPO methods, and nruns = 25 test runs were performed with each hyperparameter
configuration.

timization run include some outliers that significantly deviate from the median. That is, there is a
high risk for performance fluctuations.
From the results of biLSTM-VAEs shown in Figure 8.8, no definitive conclusion can be drawn
as to which HPO method performed best. When taking all nHPO = 3 runs into consideration, the
genetic algorithm and Bayesian optimization outperformed the random search method. However,
it can be seen that in the first run of random search, a well-suited hyperparameter configuration
was obtained. It led to lower training and validation errors than some of the hyperparameter set-
tings provided by the genetic algorithm or Bayesian optimization. Thus, it is also possible to find
suitable hyperparameters with random search, although a higher number of optimization runs than
with the other two methods is necessary on average [58].



8.3 Evaluation of Weight Initializing Methods 77

8.3 Evaluation of Weight Initializing Methods

The initial values of the weight parameters can have a significant impact on the training per-
formance and duration [52]. This inspired the development of various weight initializing meth-
ods [52], as described in more detail in Section 3.3.3. In order to determine the most suitable
initializer for the networks used in the context of this work, some methods implemented in MAT-
LAB were tested on autoencoders with different architectures. These were the narrow-normal ini-
tializer [55], the He initializer [54], the Xavier initializer [53], and a method MATLAB refers to
as orthogonal initializer [57]. The networks were set up and trained using the optimized hyper-
parameters presented in Section 8.1.1. An up-to-date version of the framework, as described in
Section 7.3.1, was used. In order to account for the stochastic nature of weight initialization, each
network was trained nruns = 10 times. A set of 80 random data samples considered non-anomalous
by the statistical model was divided into a training set of 72 samples and a validation set of 8
samples. Again, the input signal of dimension m = 6 was mapped to a latent space with dimension
p = 3, using the following data channels: depth, pulldown force, vibrator amperage, vibrator fre-
quency, vibrator temperature, and weight. The training errors per sample in the learning process
for each initializing method and network after nep = 1 and nep = 45 epochs, as well as after the
training was finished, are shown in Figure 8.9. The corresponding validation errors per sample can
be seen in Figure 8.10.
Across all autoencoder types and architectures, the He initializer delivered the most suitable ini-
tial weight parameters. In terms of training and validation error per sample after nep = 1 epoch,
it significantly outperformed all other initializing methods. After nep = 45 epochs and after the
last epoch, the median training and validation errors per sample of the LSTM-AE were as low or
slightly lower when using the Xavier initializer instead of the He initializer. However, the varia-
tion in the results across different runs was noticeably higher, and the network seemed more prone
to poor learning performances with slow convergence. The technique that initializes the weight
parameters with an orthogonal matrix also achieved good results after the last epoch across all
architectures. Networks whose parameters were initialized with the narrow-normal method per-
formed worst, especially if they contained LSTM layers.
Figure 8.11 shows plots of the sum-of-squares validation error per sample at each epoch for the
tested initializers and autoencoder architectures. In each case, the run with the fifth lowest valida-
tion error after training out of nruns = 10 runs is shown. These plots confirm the formerly made
deductions that the He initializer usually enables the fastest convergence in the training process,
while networks typically perform worst when using the narrow-normal initializer. It can also be
seen that initialization with the method of Xavier can lead to instabilities in the training process.
These peaks may slow down the convergence during learning and result in poor network parame-
ters if they appear at the end of the training process.



8.3 Evaluation of Weight Initializing Methods 78

(a) Training error per sample after nep = 1 epoch

(b) Training error per sample after nep = 45 epochs

(c) Training error per sample after the last epoch

Fig. 8.9: Boxplots of the sum-of-squares training error per sample of different autoencoders after
a particular number of epochs using four different weight initializing methods. With each combi-
nation of initializing methods and autoencoder architectures, nruns = 10 runs were performed.



8.3 Evaluation of Weight Initializing Methods 79

(a) Validation error per sample after nep = 1 epoch

(b) Validation error per sample after nep = 45 epochs

(c) Validation error per sample after the last epoch

Fig. 8.10: Boxplots of the sum-of-squares validation error per sample of different autoencoders af-
ter a particular number of epochs using four different weight initializing methods. With each com-
bination of initializing methods and autoencoder architectures, nruns = 10 runs were performed.



8.3 Evaluation of Weight Initializing Methods 80

(a) Validation error per sample of LSTM-AE (b) Validation error per sample of LSTM-VAE

(c) Validation error per sample of biLSTM-AE (d) Validation error per sample of biLSTM-VAE

Fig. 8.11: Plots of the sum-of-squares validation error per sample with different autoencoders using
four initializing methods. Out of nruns = 10 runs, the one with the 5th lowest validation error per
sample at the end of training is shown.

In summary, regardless of the type or architecture of the autoencoder, the He initializer seems to
provide the most suitable initial weights that result in low errors, especially in the first epochs
of the training process. The Xavier initializer might enable a lower median error for LSTM-AE
networks after training. However, the variation in the results of different runs is noticeably higher
compared to networks initialized with the method of He.



8.4 Optimizing Models for Phase-Wise Anomaly Detection 81

8.4 Optimizing Models for Phase-Wise Anomaly Detection

In consideration of the results presented in Section 8.1 - 8.3, separate autoencoders were set up
for the process phases that are of interest. These are the penetration and the compaction phase, as
shown in Figure 7.1 and 7.2. The autoencoder architectures that achieved the best performance in
the experiments shown in Section 8.1 were undercomplete and variational autoencoders with one
hidden biLSTM layer. As the variational autoencoder had already been used in previous work at the
Chair of Automation [15], it was also chosen for the tests presented in this section. Furthermore, the
weights were initialized with the He initializer, which was found to allow the fastest convergence in
training, as shown in Section 8.3. The hyperparameters were optimized with a genetic algorithm.
This method, together with Bayesian optimization, provided the most suitable hyperparameter
configurations (see Section 8.2) and had already been successfully applied to the same data in
other work [15]. Based on the results of hyperparameter optimization performed in the previous test
series, the hyperparameter domains were adapted, as shown in Table 8.7. The limits for the number
of epochs were raised, and the upper limit for the mini-batch size was lowered. Additionally, the
lower limits for the number of neurons were increased. The parameters of the genetic algorithm

Table 8.7: Hyperparameters to optimize and corresponding bounded domains for phase-wise
anomaly detection models

Hyperparameter Domain Lower Bound Upper Bound
Nr. of epochs discrete 50 200
Nr. of neurons in encoder discrete 10 100
Nr. of neurons in decoder discrete 10 100
Learning rate continuous 3×10−3 1×10−1

Mini-batch size discrete 2 20

were set as shown in Table 8.2, except for the maximum number of generations. This value was
set to ngen = 10 in order to allow an extended search for optimal hyperparameters. The results
of the HPO performed with 80 data samples considered non-anomalous by the statistical model
are shown in Table 8.8. Equal to the test series in Section 8.1 - 8.3, the latent dimension was set

Table 8.8: HPO results of autoencoders for phase-wise anomaly detection

Autoencoder Process Number Neurons Neurons Learning MB
Type Phase Epochs Encoder Decoder Rate Size
biLSTM-VAE Penetration 151 69 55 2.340×10−2 13
biLSTM-VAE Compaction 192 52 53 1.727×10−2 7

to p = 3, and data of the following m = 6 channels was fed into the networks: depth, pulldown
force, vibrator amperage, vibrator frequency, vibrator temperature, and weight. The data set that



8.4 Optimizing Models for Phase-Wise Anomaly Detection 82

was analyzed consisted of 272 samples, each collected during the creation of a subsurface column
at the same site. The latest version of the framework (see Section 7.3.1) was used to set up and
train the networks. Two hybrid learning models, as described in Section 7.1, were applied to the
data samples. For the statistical model, 42 key performance indicators for the separate phases or
the process as a whole were defined at the Chair of Automation [18]. The criterion for a sample
being an outlier w.r.t. the quantity measured by a particular KPI is described in Section 7.4.

8.4.1 Parallel Hybrid Model

In a parallel hybrid model, the autoencoder receives a random portion of the data set for training,
which is not pre-labeled by a statistical model [122]. Via a procedure similar to 4-fold cross-
validation, each of the 272 samples in the data set was used for training and testing. First, the
data set was randomly divided into four subsets. In a cyclic manner, training was then carried out
with one subset and testing with the remaining subsets. This differs from classical k-fold cross-
validation, where only one subset would be used for testing and the remaining ones for training
in each iteration [34]. One reason for this type of approach is to have a size of the training set
similar to the one used for hyperparameter optimization. Furthermore, each sample is tested three
times, and the error is averaged, which should lead to more reliable results. The averaged errors
in the penetration and the compaction phase were summed up for each sample. After the first
completed run, i.e., after each sample had been used for training once and for testing three times,
the samples that had been labeled as outliers were eliminated from the data set, and a second run
was performed. The results of statistical outlier detection performed on the same data set at the
Chair of Automation [18] were provided for this work. Figure 8.12 shows bivariate histograms of
the outlierness obtained with KPIs and the reconstruction error after the first and the second run for
all test samples. As can be seen, the majority of data samples was considered non-anomalous by
both methods, i.e., the reconstruction error and outlierness were low. The fact that these samples
were analyzed with two independent models strengthens the assumption that these are indeed non-
anomalous. A lot of samples, however, exhibited a high statistical outlierness but a rather low
reconstruction error. A possible explanation is that the statistical model was applied to data that
still contained dead time segments. Thus, it also considered an unusual process duration or long
pauses as anomalous behavior. Anomalies of this type might be related to efficiency problems but
usually do not indicate faulty columns. The opposite case of samples with a high reconstruction
error but low statistical outlierness is of higher interest. The anomalies in these samples can e.g. be
contextual deviations, i.e., data points with atypical values compared to adjacent points in the time-
series. These data points may not be anomalous w.r.t. the time-series as a whole, but in a certain
context. The machine learning model does not provide information on why it fails to reconstruct the
signal of particular data samples. Hence, the help of an expert with knowledge about the analyzed
process is necessary to determine the cause and if it is related to a failure in the process.



8.4 Optimizing Models for Phase-Wise Anomaly Detection 83

(a) Histogram of first run (b) Histogram of second run

Fig. 8.12: Bivariate histograms of the reconstruction error and the outlierness obtained with
KPIs [18]. The training was performed with unlabeled data via 4-fold cross-validation, and the
average test error was computed for each sample. For the second run, the anomalous samples
found in the first run were eliminated from the data set.

8.4.2 Parallel Serial Hybrid Model

In a parallel serial hybrid learning model, the autoencoder receives a training set consisting of
samples that were pre-labeled as non-anomalous by the statistical model [122]. The networks for
both process phases were trained on a random subset of 80 data samples without anomalous KPI
values, and tests were performed with the whole data set. The reconstruction errors of both phases
are plotted for all test samples in Figure 8.13. Additionally, the right-skewed error distributions and
the thresholds for separating non-anomalous data from outliers are shown. It can be seen that the
majority of outliers was only considered anomalous w.r.t. to one of the process phases. Therefore,
detecting anomalies in only one phase could result in many abnormal samples going undetected.
Again, the summed reconstruction error of both phases is compared to the outlierness obtained by
the statistical model, as shown in Figure 8.14a. It can be seen that a substantially higher number
of data samples had a reconstruction error and an outlierness in the interval with the lowest values
than it was the case with the parallel hybrid model (see Figure 8.12). This is not surprising, as
the training samples had also been left in the test set. Furthermore, some data samples exhibited
a high statistical outlierness but a low reconstruction error. As explained in Section 8.4.1, a rea-
son might be the elimination of dead time segments before the data was fed into the autoencoder,
while the KPIs were computed with data that still contained them. Samples with a low statisti-
cal outlierness but a high reconstruction error have to be inspected by an expert. The knowledge
gained in this process might be helpful to optimize the hybrid learning tool further. The histogram
in Figure 8.14b compares the reconstruction errors computed by an autoencoder in a parallel serial



8.4 Optimizing Models for Phase-Wise Anomaly Detection 84

Fig. 8.13: Phase-wise error plot of the test data samples with the corresponding histograms of the
error distributions and threshold values for separating normal from anomalous data samples.

(a) Outlierness and reconstruction error with
parallel serial hybrid model

(b) Reconstruction error with parallel hybrid
model or parallel serial hybrid model

Fig. 8.14: Subfigure (a) shows a bivariate histogram of the summed reconstruction error when
training with a labeled data set as well as the outlierness determined via KPIs [18] for all test sam-
ples. Subfigure (b) is a bivariate histogram of the reconstruction errors obtained with autoencoders
that were trained with labeled (parallel serial hybrid) or unlabeled (parallel hybrid) data sets.



8.4 Optimizing Models for Phase-Wise Anomaly Detection 85

hybrid model with the errors obtained by an autoencoder in a parallel hybrid model. It can be seen
that although the majority of samples has a low reconstruction error with both approaches, the
errors differ significantly between the two hybrid learning approaches for some other time-series
files. This suggests that the pre-labeling of data sets with statistical methods has a noticeable influ-
ence on the machine learning model.
Which hybrid model structure works best remains to be investigated. At the current stage of re-
search, the aim is to investigate why the autoencoder fails at reconstructing the signal of particular
samples and thus considers them anomalous. Figure 8.15, for example, shows the signal of a sam-
ple collected during compaction, which was labeled as non-anomalous by the machine learning
model. The reconstruction error is low, and the data does not show any abnormalities from a lay-
man’s point of view. The signal plot in Figure 8.16, however, exhibits a suspicious pattern in the
depth channel after approx. 235 s until the end of the process. At first glance, it seems like the
compaction was not carried out properly in the end phase, which might result in loose gravel in
the near-surface zone of the column. However, by taking a look at the raw signal, it gets clear

Fig. 8.15: Original and reconstructed data of the compaction phase of an exemplary MVTS test
sample. The low reconstruction error indicates that no process failure occurred during compaction.



8.4 Optimizing Models for Phase-Wise Anomaly Detection 86

that the process was actually continued after the last time instant shown in the plot, and just some
error in preprocessing of the input data occurred. Still, it shows that the autoencoder is able to
detect unusual patterns in the data that may be difficult to spot with statistical methods. Another
interesting anomaly can be found in the temperature channel after approx. 5 s. The discontinuity
was introduced by removing dead time segments from the data in preprocessing. The temperature
continued to rise even though the process was in idle mode. In the raw data plots, it can be seen
that the vibrator was still running during a part of the pause. Presumably, this does not affect the
quality of the column but results in unnecessary energy consumption and lower process efficiency.
A discontinuity could also occur if the temperature decreases during the standstill, which might
result in the machine learning model considering the corresponding sample anomalous too. Thus,
the final interpretation of the results is up to experts with knowledge about the process.

Fig. 8.16: Original and reconstructed data of the compaction phase of an exemplary MVTS test
sample. The high reconstruction error indicates anomalous behavior during compaction.



Chapter 9

Conclusion and Future Work

The results of the test series presented in Section 8.1 - 8.3 provide valuable information for the
optimization of autoencoders used for anomaly detection in MVTS data. It was found that archi-
tectures with one hidden biLSTM layer in the encoder and the decoder seem to enable a better
reconstruction of non-anomalous data samples than their counterparts with hidden unidirectional
LSTM layers. Furthermore, they allow to easier distinguish them from samples that exhibit anoma-
lies. The use of additional hidden layers did not result in an improvement of the model.
The optimization of hyperparameters was found to enhance the reconstruction performance of an
autoencoder considerably. Methods that focus on promising regions in the search space based on
the results of previous runs [58], i.e., Bayesian optimization and genetic algorithms, outperformed
the less elaborate random search technique.
Weight initialization was found to have a significant impact on convergence in the learning pro-
cess. The best results were achieved with the He initializer throughout all tested autoencoder types
and architectures. For particular networks, the Xavier and the orthogonal initializer seemed to be
good alternatives.
The optimized machine learning model detected unusual patterns in data samples that were not
considered anomalous by the statistical model. It remains to be investigated what caused the au-
toencoder to fail at reconstructing these samples and if it is related to a process failure. The machine
learning model is not intended to replace the statistical tool for outlier detection but to extend its
capabilities. To some degree, it takes the correlation between different data channels into account
and detects anomalies that are difficult to spot with other techniques [17]. This should make the
hybrid learning model a more reliable tool for anomaly detection than the statistical model alone.
Future work to further improve the existing machine learning model might include a modification
of the rescaling process. As mentioned in Section 7.3.1.2, fixed scaling parameters are not recom-
mended due to the varying soil conditions within the site and inter-site, which affect the analyzed
process. Combining the data samples with the GPS coordinates makes it possible to derive scaling
parameters from the process data collected at nearby columns. For example, the maximum reached
depth at different GPS coordinates, as shown in Figure 9.1, can be used to infer a model on which
the definition of scaling parameters can be based [134]. For setting the scaling parameters of other

87



9 Conclusion and Future Work 88

Fig. 9.1: Maximum reached depth during vibro ground improvement at different GPS coordinates
of a site and inferred model. Reprinted from [134].

variables, such as the vibrator temperature, the limits of the machinery can be used.
A further approach for improving the model is the derivation of additional variables from the mea-
sured data. This could, for example, be the work performed during penetration or compaction,
which is currently a topic of research at the Chair of Automation.
A possibility to improve a VAE-based model is to determine an appropriate weighting factor for
the KL divergence in the loss function. This allows balancing the error-based term and the regular-
ization term according to the requirements [92], [93], [94].



List of Figures

2.1 Confusion matrix for binary classification tasks. Adapted from [28]. . . . . . . . . 9
2.2 Exemplary receiver operating characteristic (ROC) curves. Adapted from [30]. . . . 10

3.1 Schematic diagram of a neuron. Adapted from [34]. . . . . . . . . . . . . . . . . . 12
3.2 Common activation function types used in neural networks. Adapted from [35]. . . 14
3.3 Exemplary graph of a fully connected feedforward network with one hidden layer.

Adapted from [34]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.4 Schematic diagram of an RNN with one recurrent layer. Adapted from [38]. . . . . 17
3.5 Schematic diagram of an RNN with two recurrent layers. Adapted from [37]. . . . 18
3.6 Schematic diagram of an LSTM architecture. Adapted from [42]. . . . . . . . . . . 19
3.7 Schematic diagram of a biLSTM architecture unfolded across time. Adapted from

[44]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.8 Exemplary plots related to Bayesian optimization using a Gaussian process. Adapted

from [64]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.1 Schematic diagram of an undercomplete autoencoder. Adapted from [78]. . . . . . 41
5.2 Schematic diagram of a variational autoencoder. Adapted from [78]. . . . . . . . . 44

6.1 Time-series plots of a process without anomalous behavior and with different types
of anomalies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

7.1 Phases of the vibro ground improvement process. Adapted from [16]. . . . . . . . . 55
7.2 Data of m = 9 channels collected from a ground improvement process, segmented

into the main phases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
7.3 Comparison of depth channel data with and without dead time. . . . . . . . . . . . 57
7.4 Exemplary schematic diagram of an autoencoder based on the framework of the

Chair of Automation [124]. The number of neurons in each layer, as well as the
number and types of the hidden layers, can be set by the user and thus may differ
from this graphic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

89



List of Figures 90

7.5 Right-skewed distribution over the reconstruction errors of test samples with
thresholds for outlier detection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

7.6 Exemplary plot of reconstruction errors of test data samples and associated statis-
tical measures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

7.7 Heat map of different KPIs evaluated for a set of samples (points) collected at the
same site. Adapted from [18] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

8.1 Statistical measures of sum-of-squares sample errors obtained with different au-
toencoder architectures containing one hidden layer in encoder and decoder for
nruns = 25 test runs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

8.2 Statistical measures of sum-of-squares sample errors obtained with different au-
toencoder architectures containing two hidden layers in encoder and decoder for
nruns = 25 test runs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

8.3 Statistical measures of sum-of-squares sample errors obtained with autoencoders
with different architectures and number of hidden layers for n = 25 test runs. . . . . 72

8.6 Plots of the hyperparameter optimization progress with different methods. . . . . . 73
8.7 Sum-of-squares training and validation error per sample for biLSTM-AEs, whose

hyperparameters were optimized with three different HPO methods in nHPO = 3
runs each. For each hyperparameter configuration nruns = 25 test runs were per-
formed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

8.8 Sum-of-squares training and validation error per sample for biLSTM-VAEs, whose
hyperparameters were optimized with three different HPO methods in nHPO = 3
runs each. For each hyperparameter configuration nruns = 25 test runs were per-
formed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

8.9 Boxplots of training error per sample of different autoencoders after a particular
number of epochs using four different weight initializing methods. . . . . . . . . . 78

8.10 Boxplots of validation error per sample of different autoencoders after a particular
number of epochs using four different weight initializing methods. . . . . . . . . . 79

8.11 Plots of the validation error per sample of different autoencoders using four differ-
ent initializing methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

8.12 Bivariate histograms of the reconstruction error and the outlierness obtained with
KPIs when training without a labeled data set. . . . . . . . . . . . . . . . . . . . . 83

8.13 Phase-wise error plot of the test data samples with the corresponding histograms of
the error distributions and threshold values for separating normal from anomalous
data samples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

8.14 Bivariate histogram of the reconstruction error and the outlierness obtained using
KPIs when training with a labeled data set, and bivariate histogram comparing the
errors of networks trained with labeled and unlabeled data sets. . . . . . . . . . . . 84



List of Figures 91

8.15 Original and well reconstructed data of the compaction phase of an exemplary
MVTS test sample. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

8.16 Original and bad reconstructed data of the compaction phase of an exemplary
MVTS test sample. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

9.1 Maximum reached depth during vibro ground improvement at different GPS coor-
dinates of a site and inferred model. Reprinted from [134]. . . . . . . . . . . . . . 88



List of Tables

8.1 Hyperparameters to optimize and corresponding bounded domains for architec-
tures with one hidden layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

8.2 Parameters of the genetic algorithm for architectures with one hidden layer . . . . . 67
8.3 HPO results of autoencoder architectures with one hidden layer in encoder and

decoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
8.4 Hyperparameters to optimize and corresponding bounded domains for architec-

tures with two hidden layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
8.5 HPO results of autoencoder architectures with two hidden layers in encoder and

decoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
8.6 Hyperparameter configurations of autoencoders optimized with different HPO

methods: Bayesian optimization (BO), genetic algorithm (GA) and random search
(RS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

8.7 Hyperparameters to optimize and corresponding bounded domains for phase-wise
anomaly detection models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

8.8 HPO results of autoencoders for phase-wise anomaly detection . . . . . . . . . . . 81

92



REFERENCES 93

References

[1] R. Hamzeh, L. Thomas, J. Polzer, X. W. Xu, and H. Heinzel, “A Sensor Based Monitor-
ing System for Real-Time Quality Control: Semi-Automatic Arc Welding Case Study,”
Procedia Manufacturing, vol. 51, pp. 201–206, 2020.

[2] P. Kamat and R. Sugandhi, “Anomaly Detection for Predictive Maintenance in Industry
4.0 - A survey,” E3S Web of Conferences, vol. 170, 2020. DOI: 10.1051/e3sconf/
202017002007.

[3] G. Chryssolouris, N. Papakostas, and D. Mavrikios, “A perspective on manufacturing strat-
egy: Produce more with less,” CIRP Journal of Manufacturing Science and Technology,
vol. 1, no. 1, pp. 45–52, 2008.

[4] P. Stavropoulos, D. Chantzis, C. Doukas, A. Papacharalampopoulos, and G. Chryssolouris,
“Monitoring and Control of Manufacturing Processes: A Review,” Procedia CIRP, vol. 8,
pp. 421–425, 2013.

[5] S. Jeschke, C. Brecher, H. Song, and D. B. Rawat, Industrial Internet of Things: Cyber-
manufacturing Systems (Springer Series in Wireless Technology). Cham, CH: Springer
International Publishing, 2017.

[6] C. C. Aggarwal, Outlier Analysis (Springer eBook Collection Computer Science), 2nd ed.
Basel, CH: Springer International Publishing, 2017.

[7] N. Vandeput, Data science for supply chain forecasting, 2nd ed. Berlin, GE: De Gruyter,
2021.

[8] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly Detection: A Survey,” ACM Comput.
Surv., vol. 41, no. 3, pp. 1–58, 2009. DOI: 10.1145/1541880.1541882.

[9] M. Hoarau, Time Series Analysis on AWS: Learn how to build forecasting models and
detect anomalies in your time series data. Birmingham, UK: Packt Publishing, 2022.

[10] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning Internal Representations by
Error Propagation,” in Parallel Distributed Processing: Explorations in the Microstructure
of Cognition, Vol. 1: Foundations, Cambridge, MA, USA: MIT Press, 1986, pp. 318–362.

[11] G. Pang, C. Shen, L. Cao, and A. Hengel, “Deep Learning for Anomaly Detection: A
Review,” ACM Computing Surveys, vol. 54, pp. 1–38, 2021.

[12] S. Hochreiter and J. Schmidhuber, “Long Short-term Memory,” Neural computation,
vol. 9, pp. 1735–1780, 1997.

[13] A. Graves and J. Schmidhuber, “Framewise Phoneme Classification With Bidirectional
LSTM and Other Neural Network Architectures,” Neural Networks, vol. 18, no. 5, pp. 602–
610, 2005.

[14] J. Kalliola, J. Kapočiūtė-Dzikienė, and R. Damaševičius, “Neural Network Hyperparame-
ter Optimization For Prediction Of Real Estate Prices In Helsinki,” PeerJ. Computer sci-
ence, vol. 7, e444, 2021.

https://doi.org/10.1051/e3sconf/202017002007
https://doi.org/10.1051/e3sconf/202017002007
https://doi.org/10.1145/1541880.1541882


REFERENCES 94

[15] A. Terbuch, “LSTM Hyperparameter Optimization: Impact of the Selection of Hyperpa-
rameters on Machine Learning Performance when applied to Time Series in Physical Sys-
tems,” M.S. Thesis, Chair of Automation, Montanuniversitaet Leoben, Leoben, AT, 2021.

[16] Keller UK Ltd, Vibro: Where ground improvement begins. [Online]. Available: https:
//www.keller.co.uk/sites/keller-uk/files/2019-03/vibro-

techniques-brochure-keller-uk.pdf (visited on 04/23/2022).
[17] A. Terbuch, P. O’Leary, and P. Auer, “Hybrid Machine Learning for Anomaly Detection

in Industrial Time-Series Measurement Data,” in 2022 IEEE International Instrumentation
and Measurement Technology Conference (I2MTC 2022), Ottawa, CA, 2022.

[18] N. Khalili-Motlagh-Kasmaei, D. Ninevski, P. O’Leary, C. J. Rothschedl, V. Winter, and A.
Zöhrer, “A Digital Twin for Deep Vibro Ground Improvement,” in International Confer-
ence on Deep Foundations and Ground Improvement: Smart Construction for the Future
(DFI-EFFC 2022), Berlin, GE, 2022.

[19] A. Smola and S. Vishwanathan, Introduction to Machine Learning. Cambridge, UK: Cam-
bridge University Press, 2008.

[20] S. Shalev-Shwartz and S. Ben-David, Understanding Machine Learning: From Theory to
Algorithms. Cambridge, UK: Cambridge University Press, 2014.

[21] T. M. Mitchell, Machine Learning. New York, NY, USA: McGraw-Hill Science/Engineer-
ing/Math, 1997.

[22] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. Cambridge, MA, USA: MIT
Press, 2016, [Online]. Available: http://www.deeplearningbook.org. (visited
on 05/02/2022).

[23] D. Greene, P. Cunningham, and R. Mayer, “Unsupervised Learning and Clustering,” in
Machine Learning Techniques for Multimedia: Case Studies on Organization and Re-
trieval, ser. SpringerLink Bücher, M. Cord and P. Cunningham, Eds., Berlin, GE: Springer,
2008, pp. 51–90.

[24] G. Dong, G. Liao, H. Liu, and G. Kuang, “A Review of the Autoencoder and Its Variants:
A Comparative Perspective from Target Recognition in Synthetic-Aperture Radar Images,”
IEEE Geoscience and Remote Sensing Magazine, vol. 6, pp. 44–68, 2018.

[25] R. Hyndman, “Another Look at Forecast Accuracy Metrics for Intermittent Demand,”
Foresight: The International Journal of Applied Forecasting, vol. 4, pp. 43–46, 2006.

[26] A. Jierula, S. Wang, T.-M. OH, and P. Wang, “Study on Accuracy Metrics for Evaluat-
ing the Predictions of Damage Locations in Deep Piles Using Artificial Neural Networks
with Acoustic Emission Data,” Applied Sciences, vol. 11, no. 5, 2021. DOI: 10.3390/
app11052314.

[27] C. Ferri, J. Hernández-Orallo, and R. Modroiu, “An experimental comparison of perfor-
mance measures for classification,” Pattern Recognition Letters, vol. 30, no. 1, pp. 27–38,
2009.

https://www.keller.co.uk/sites/keller-uk/files/2019-03/vibro-techniques-brochure-keller-uk.pdf
https://www.keller.co.uk/sites/keller-uk/files/2019-03/vibro-techniques-brochure-keller-uk.pdf
https://www.keller.co.uk/sites/keller-uk/files/2019-03/vibro-techniques-brochure-keller-uk.pdf
http://www.deeplearningbook.org
https://doi.org/10.3390/app11052314
https://doi.org/10.3390/app11052314


REFERENCES 95

[28] M. Sokolova, N. Japkowicz, and S. Szpakowicz, “Beyond Accuracy, F-Score and ROC:
A Family of Discriminant Measures for Performance Evaluation,” in AI 2006: Advances
in Artificial Intelligence, A. Sattar and B.-h. Kang, Eds., Berlin, GE: Springer, 2006,
pp. 1015–1021.

[29] S. Yang and G. Berdine, “The receiver operating characteristic (ROC) curve,” The South-
west Respiratory and Critical Care Chronicles, vol. 5, pp. 34–36, 2017.

[30] V. A. Ferraris, “Commentary: Should we rely on receiver operating characteristic curves?
From submarines to medical tests, the answer is a definite maybe!” The Journal of thoracic
and cardiovascular surgery, vol. 157, no. 6, pp. 2354–2355, 2019.

[31] Y. Liu, Y. Zhou, S. Wen, and C. Tang, “A Strategy on Selecting Performance Metrics
for Classifier Evaluation,” International Journal of Mobile Computing and Multimedia
Communications, vol. 6, pp. 20–35, 2014.

[32] D. Chicco and G. Jurman, “The advantages of the Matthews correlation coefficient (MCC)
over F1 score and accuracy in binary classification evaluation,” BMC Genomics, vol. 21,
no. 1, pp. 1–13, 2020.

[33] R. Delgado and X.-A. Tibau Alberdi, “Why Cohen’s Kappa should be avoided as perfor-
mance measure in classification,” PLoS ONE, vol. 14, pp. 1–26, 2019.

[34] S. S. Haykin, Neural networks and learning machines, 3. ed. New York, NY, USA: Pearson
Education, 2009.

[35] J. Feng, X. He, Q. Teng, C. Ren, H. Chen, and Y. Li, “Reconstruction of porous media
from extremely limited information using conditional generative adversarial networks,”
Physical Review E, vol. 100, no. 3, 2019. DOI: 10.1103/PhysRevE.100.033308.

[36] M. T. Hagan, H. B. Demuth, M. H. Beale, and O. de Jesus, Neural network design, 2nd
ed. Stillwater, OK, USA: Martin Hagan, 2014. [Online]. Available: https://hagan.
okstate.edu/NNDesign.pdf (visited on 06/03/2022).

[37] A. Murad and J.-Y. Pyun, “Deep Recurrent Neural Networks for Human Activity Recog-
nition,” Sensors, vol. 17, no. 11, 2017. DOI: 10.3390/s17112556.

[38] P. Venugopal and V. T., “State-of-Health Estimation of Li-ion Batteries in Electric Vehicle
Using IndRNN under Variable Load Condition,” Energies, vol. 12, 2019. DOI: 10.3390/
en12224338.

[39] P. Le and W. Zuidema, “Quantifying the Vanishing Gradient and Long Distance Depen-
dency Problem in Recursive Neural Networks and Recursive LSTMs,” in Proceedings of
the 1st Workshop on Representation Learning for NLP, Berlin, GE, 2016, pp. 87–93.

[40] F. A. Gers, J. Schmidhuber, and F. Cummins, “Learning to forget: continual prediction with
LSTM,” in 1999 Ninth International Conference on Artificial Neural Networks ICANN 99.
(Conf. Publ. No. 470), vol. 2, Edinburgh, UK, 1999, pp. 850–855.

https://doi.org/10.1103/PhysRevE.100.033308
https://hagan.okstate.edu/NNDesign.pdf
https://hagan.okstate.edu/NNDesign.pdf
https://doi.org/10.3390/s17112556
https://doi.org/10.3390/en12224338
https://doi.org/10.3390/en12224338


REFERENCES 96

[41] Z. C. Lipton, J. Berkowitz, and C. Elkan, A Critical Review of Recurrent Neural Networks
for Sequence Learning, 2015. [Online]. Available: arXiv:1506.00019v4 (visited on
05/02/2022).

[42] K. Zarzycki and M. Ławryńczuk, “LSTM and GRU Neural Networks as Models of Dy-
namical Processes Used in Predictive Control: A Comparison of Models Developed for
Two Chemical Reactors,” Sensors, vol. 21, no. 16, 2021. DOI: 10.3390/s21165625.

[43] M. Schuster and K. K. Paliwal, “Bidirectional recurrent neural networks,” IEEE Transac-
tions on Signal Processing, vol. 45, no. 11, pp. 2673–2681, 1997.

[44] Z. Cui, R. Ke, Z. Pu, and Y. Wang, “Stacked bidirectional and unidirectional LSTM recur-
rent neural network for forecasting network-wide traffic state with missing values,” Trans-
portation Research Part C: Emerging Technologies, vol. 118, 2020. DOI: 10.1016/j.
trc.2020.102674.

[45] L. Bottou, “On-line learning and stochastic approximations,” in In On-line Learning in
Neural Networks, D. Saad, Ed., Cambridge, UK: Cambridge University Press, 1998, pp. 9–
42.

[46] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,” in 3rd Interna-
tional Conference on Learning Representations (ICLR 2015), Y. Bengio and Y. LeCun,
Eds., San Diego, CA, USA, 2015.

[47] R. Zaheer and H. Shaziya, “A Study of the Optimization Algorithms in Deep Learning,”
in 2019 Third International Conference on Inventive Systems and Control (ICISC), Coim-
batore, IN, 2019, pp. 536–539. DOI: 10.1109/ICISC44355.2019.9036442.

[48] M. A. Nielsen, Neural Networks and Deep Learning: How the backpropagation algorithm
works, 2015. [Online]. Available: http://neuralnetworksanddeeplearning.
com/chap2.html (visited on 05/02/2022).

[49] P. J. Werbos, “Backpropagation through time: what it does and how to do it,” Proceedings
of the IEEE, vol. 78, no. 10, pp. 1550–1560, 1990.

[50] S. Raschka and V. Mirjalili, Python machine learning: Machine learning and deep learn-
ing with Python, scikit-learn, and TensorFlow (Expert insight), 2nd ed. Birmingham, UK:
Packt Publishing, 2017.

[51] R. Pascanu, T. Mikolov, and Y. Bengio, “On the difficulty of training recurrent neural
networks,” in Proceedings of the 30th International Conference on Machine Learning,
S. Dasgupta and D. McAllester, Eds., ser. Proceedings of Machine Learning Research,
vol. 28, Atlanta, GA, USA, 2013, pp. 1310–1318.

[52] H. Li, M. Krček, and G. Perin, “A Comparison of Weight Initializers in Deep Learning-
Based Side-Channel Analysis,” in Applied Cryptography and Network Security Workshops
ACNS 2020, J. Zhou, M. Conti, C. M. Ahmed, et al., Eds., Cham, CH: Springer Interna-
tional Publishing, 2020, pp. 126–143.

arXiv:1506.00019v4
https://doi.org/10.3390/s21165625
https://doi.org/10.1016/j.trc.2020.102674
https://doi.org/10.1016/j.trc.2020.102674
https://doi.org/10.1109/ICISC44355.2019.9036442
http://neuralnetworksanddeeplearning.com/chap2.html
http://neuralnetworksanddeeplearning.com/chap2.html


REFERENCES 97

[53] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feedforward neural
networks,” in Proceedings of the Thirteenth International Conference on Artificial Intelli-
gence and Statistics, vol. 9, Sardinia, IT, 2010, pp. 249–256.

[54] K. He, X. Zhang, S. Ren, and J. Sun, “Delving Deep into Rectifiers: Surpassing Human-
Level Performance on ImageNet Classification,” in 2015 IEEE International Conference
on Computer Vision (ICCV), Santiago, CL, 2015, pp. 1026–1034.

[55] The MathWorks, Inc., MATLAB Documentation version 9.11.0.1769968 (R2021b), 2021.
[56] Keras documentation: Layer weight initializers. [Online]. Available: https://keras.

io/api/layers/initializers/ (visited on 04/04/2022).
[57] A. M. Saxe, J. L. McClelland, and S. Ganguli, Exact solutions to the nonlinear dynamics

of learning in deep linear neural networks, 2013. [Online]. Available: arXiv:1312.
6120v3 (visited on 05/02/2022).

[58] L. Yang and A. Shami, “On hyperparameter optimization of machine learning algorithms:
Theory and practice,” Neurocomputing, vol. 415, pp. 295–316, 2020.

[59] E. Elgeldawi, A. Sayed, A. R. Galal, and A. M. Zaki, “Hyperparameter Tuning for Ma-
chine Learning Algorithms Used for Arabic Sentiment Analysis,” Informatics, vol. 8, no. 4,
2021. DOI: 10.3390/informatics8040079.

[60] J. Bergstra and Y. Bengio, “Random Search for Hyper-Parameter Optimization,” Journal
of Machine Learning Research, vol. 13, no. 10, pp. 281–305, 2012.

[61] P. I. Frazier, A Tutorial on Bayesian Optimization, 2018. [Online]. Available: arXiv:
1807.02811v1 (visited on 05/02/2022).

[62] J. Snoek, H. Larochelle, and R. P. Adams, “Practical Bayesian Optimization of Machine
Learning Algorithms,” in Proceedings of the 25th International Conference on Neural
Information Processing Systems - Volume 2, ser. NIPS’12, Red Hook, NY, USA: Curran
Associates Inc, 2012, pp. 2951–2959.

[63] E. Hazan, A. Klivans, and Y. Yuan, “Hyperparameter optimization: a spectral approach,”
in International Conference on Learning Representations (ICLR), Vancouver, CA, 2018.
[Online]. Available: https://openreview.net/forum?id=H1zriGeCZ (vis-
ited on 06/02/2022).

[64] R. Garnett, M. A. Osborne, and S. J. Roberts, “Bayesian optimization for sensor set se-
lection,” in Proceedings of the 9th ACM/IEEE International Conference on Information
Processing in Sensor Networks (IPSN), Stockholm, SE, 2010, pp. 209–219. DOI: 10.
1145/1791212.1791238.

[65] S. N. Sivanandam and S. N. Deepa, Introduction to Genetic Algorithms. Berlin, GE:
Springer, 2008.

[66] C. Reeves, “Genetic Algorithms,” in Handbook of Metaheuristics, ser. International Series
in Operations Research & Management Science, vol. 146, 2010, pp. 109–139.

https://keras.io/api/layers/initializers/
https://keras.io/api/layers/initializers/
arXiv:1312.6120v3
arXiv:1312.6120v3
https://doi.org/10.3390/informatics8040079
arXiv:1807.02811v1
arXiv:1807.02811v1
https://openreview.net/forum?id=H1zriGeCZ
https://doi.org/10.1145/1791212.1791238
https://doi.org/10.1145/1791212.1791238


REFERENCES 98

[67] S. Lessmann, R. Stahlbock, and S. Crone, “Optimizing Hyperparameters of Support Vector
Machines by Genetic Algorithms,” in Proceedings of the 2005 International Conference
on Artificial Intelligence (ICAI), H. R. Arabnia and R. Joshua, Eds., Las Vegas, NV, USA,
2005, pp. 74–82.

[68] F. Itano, M. A. de Abreu Sousa, and E. Del-Moral-Hernandez, “Extending MLP ANN
hyper-parameters Optimization by using Genetic Algorithm,” in 2018 International Joint
Conference on Neural Networks (IJCNN), Rio de Janeiro, BR, 2018, pp. 1–8.

[69] K.-R. Koch, Introduction to Bayesian Statistics, 2nd ed. Berlin, GE: Springer, 2007.
[70] A. Gut, Probability: A Graduate Course (Springer Texts in Statistics (STS)). New York,

NY, USA: Springer, 2005.
[71] B. J. Brewer, Introduction to Bayesian Statistics: STATS 331. [Online]. Available: https:

//www.stat.auckland.ac.nz/%C2%A0brewer/stats331.pdf (visited on
05/02/2022).

[72] S. V. Vaseghi, Advanced Digital Signal Processing and Noise Reduction, 2nd ed. Chich-
ester, UK: John Wiley & Sons, Inc, 2000.

[73] J. Stone, Information Theory: A Tutorial Introduction. Sebtel Press, 2015.
[74] S. Kullback and R. A. Leibler, “On Information and Sufficiency,” The Annals of Mathe-

matical Statistics, vol. 22, no. 1, pp. 79–86, 1951.
[75] A. Bulinski and D. Dimitrov, “Statistical Estimation of the Kullback–Leibler Divergence,”

Mathematics, vol. 9, no. 5, 2021. DOI: 10.3390/math9050544.
[76] T. M. Cover and J. A. Thomas, Elements of information theory, 2nd ed. Hoboken, NJ,

USA: Wiley-Interscience, 2006.
[77] D. P. Kingma and M. Welling, “An Introduction to Variational Autoencoders,” Foundations

and Trends® in Machine Learning, vol. 12, no. 4, pp. 307–392, 2019.
[78] L. Weng, From Autoencoder to Beta-VAE, 2018. [Online]. Available: https://lilianweng.

github.io/posts/2018-08-12-vae/ (visited on 04/15/2022).
[79] P. Baldi and K. Hornik, “Neural networks and principal component analysis: Learning

from examples without local minima,” Neural Networks, vol. 2, no. 1, pp. 53–58, 1989.
[80] H. Bourlard and Y. Kamp, “Auto-Association by Multilayer Perceptrons and Singular

Value Decomposition,” Biological cybernetics, vol. 59, pp. 291–294, 1988.
[81] C. M. Bishop, Pattern Recognition and Machine Learning (Information Science and Statis-

tics), 1st ed. New York, NY, USA: Springer, 2016.
[82] K. Pearson, “LIII. On lines and planes of closest fit to systems of points in space,” Philo-

sophical Magazine Series 1, vol. 2, pp. 559–572, 1901.
[83] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of data with neural

networks,” Science (New York, N.Y.), vol. 313, no. 5786, pp. 504–507, 2006.
[84] A. Ng, CS294A Lecture notes, 2011. [Online]. Available: https://web.stanford.

edu/class/cs294a/sparseAutoencoder_2011new.pdf (visited on 05/02/2022).

https://www.stat.auckland.ac.nz/%C2%A0brewer/stats331.pdf
https://www.stat.auckland.ac.nz/%C2%A0brewer/stats331.pdf
https://doi.org/10.3390/math9050544
https://lilianweng.github.io/posts/2018-08-12-vae/
https://lilianweng.github.io/posts/2018-08-12-vae/
https://web.stanford.edu/class/cs294a/sparseAutoencoder_2011new.pdf
https://web.stanford.edu/class/cs294a/sparseAutoencoder_2011new.pdf


REFERENCES 99

[85] H. Lee, C. Ekanadham, and A. Ng, “Sparse deep belief net model for visual area V2,” in
Advances in Neural Information Processing Systems, J. Platt, D. Koller, Y. Singer, and S.
Roweis, Eds., ser. NIPS’07, vol. 20, Vancouver, CA, 2007, pp. 873–880.

[86] V. Nair and G. E. Hinton, “3D Object Recognition with Deep Belief Nets,” in Advances in
Neural Information Processing Systems 22: 23rd Annual Conference on Neural Informa-
tion Processing Systems, vol. 22, Vancouver, CA, 2009, pp. 1339–1347.

[87] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol, “Extracting and composing ro-
bust features with denoising autoencoders,” in ICML ’08: Proceedings of the 25th Interna-
tional Conference on Machine Learning, New York, NY, USA: Association for Computing
Machinery, 2008, pp. 1096–1103.

[88] D. P. Kingma and M. Welling, Auto-Encoding Variational Bayes, 2014. [Online]. Avail-
able: arXiv:1312.6114v10 (visited on 02/06/2022).

[89] P. Mehta, S. Kumar, R. Kumar, and C. S. Babu, “Demystifying Tax Evasion Using Varia-
tional Graph Autoencoders,” in Electronic Government and the Information Systems Per-
spective, A. Kö, E. Francesconi, G. Kotsis, A. M. Tjoa, and I. Khalil, Eds., Cham, CH:
Springer International Publishing, 2021, pp. 155–166.

[90] P.-A. Mattei and J. Frellsen, “Leveraging the Exact Likelihood of Deep Latent Variable
Models,” in Proceedings of the 32nd International Conference on Neural Information
Processing Systems, ser. NIPS’18, Red Hook, NY, USA: Curran Associates Inc, 2018,
pp. 3859–3870.

[91] D. M. Blei, A. Kucukelbir, and J. D. McAuliffe, “Variational Inference: A Review for
Statisticians,” Journal of the American Statistical Association, vol. 112, no. 518, pp. 859–
877, 2017.

[92] A. Asperti and M. Trentin, “Balancing Reconstruction Error and Kullback-Leibler Diver-
gence in Variational Autoencoders,” IEEE Access, vol. 8, pp. 199 440–199 448, 2020. DOI:
10.1109/ACCESS.2020.3034828.

[93] A. Alemi, B. Poole, I. Fischer, J. Dillon, R. A. Saurous, and K. Murphy, “Fixing a Broken
ELBO,” in Proceedings of the 35th International Conference on Machine Learning, J. Dy
and A. Krause, Eds., ser. Proceedings of Machine Learning Research, vol. 80, Stockholm,
SE, 2018, pp. 159–168.

[94] S. Lin, S. J. Roberts, N. Trigoni, and R. Clark, Balancing Reconstruction Quality and Reg-
ularisation in Evidence Lower Bound for Variational Autoencoders. [Online]. Available:
arXiv:1909.03765v1 (visited on 05/03/2022).

[95] K. Cho, B. van Merriënboer, C. Gulcehre, et al., “Learning Phrase Representations using
RNN Encoder–Decoder for Statistical Machine Translation,” in Proceedings of the 2014
Conference on Empirical Methods in Natural Language Processing (EMNLP), A. Mos-
chitti, B. Pang, and W. Daelemans, Eds., Doha, Qatar, 2014, pp. 1724–1734.

arXiv:1312.6114v10
https://doi.org/10.1109/ACCESS.2020.3034828
arXiv:1909.03765v1


REFERENCES 100

[96] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to Sequence Learning with Neural
Networks,” in Proceedings of the 27th International Conference on Neural Information
Processing Systems - Volume 2, ser. NIPS’14, Cambridge, MA, USA: MIT Press, 2014,
pp. 3104–3112.

[97] D. Hawkins, Identification of Outliers (Monographs on Statistics and Applied Probability
Ser). Dordrecht, NL: Springer, 1980.

[98] B. Lindemann, B. Maschler, N. Sahlab, and M. Weyrich, “A Survey on Anomaly Detection
for Technical Systems using LSTM Networks,” Computers in Industry, vol. 131, 2021.
DOI: 10.1016/j.compind.2021.103498.

[99] G. Strang, Introduction to linear algebra, 5th ed. Wellesley, MA, USA: Wellesley-Cambridge
Press, 2016.

[100] J. D. Salas, J. W. Delleur, V. Yevjevich, and W. L. Lane, Applied Modelling of Hydrologic
Time Series. Littleton, CO, US: Water Resources Publications, 1980.

[101] V. Kozitsin, I. Katser, and D. Lakontsev, “Online Forecasting and Anomaly Detection
Based on the ARIMA Model,” Applied Sciences, vol. 11, no. 7, 2021. DOI: 10.3390/
app11073194.

[102] Q. Yu, L. Jibin, and L. Jiang, “An Improved ARIMA-Based Traffic Anomaly Detection
Algorithm for Wireless Sensor Networks,” International Journal of Distributed Sensor
Networks, vol. 2016, pp. 1–9, 2016.

[103] E. H. M. Pena, M. V. O. de Assis, and M. L. Proença, “Anomaly Detection Using Forecast-
ing Methods ARIMA and HWDS,” in 2013 32nd International Conference of the Chilean
Computer Science Society (SCCC), Temuco, CL, 2013, pp. 63–66.

[104] P. Malhotra, L. Vig, G. Shroff, and P. Agarwal, “Long Short Term Memory Networks
for Anomaly Detection in Time Series,” in 23rd European Symposium on Artificial Neural
Networks, Computational Intelligence and Machine Learning (ESANN 2015), Bruges, BE,
2015, pp. 89–94.

[105] K. P. Tran, H. Du Nguyen, and S. Thomassey, “Anomaly detection using Long Short
Term Memory Networks and its applications in Supply Chain Management,” IFAC-
PapersOnLine, vol. 52, no. 13, pp. 2408–2412, 2019.

[106] M. Munir, S. Siddiqui, A. Dengel, and S. Ahmed, “DeepAnT: A Deep Learning Approach
for Unsupervised Anomaly Detection in Time Series,” IEEE Access, vol. 7, pp. 1991–
2005, 2019. DOI: 10.1109/ACCESS.2018.2886457.

[107] M. Said Elsayed, N.-A. Le-Khac, S. Dev, and A. D. Jurcut, “Network Anomaly Detection
Using LSTM Based Autoencoder,” in Proceedings of the 16th ACM Symposium on QoS
and Security for Wireless and Mobile Networks, ser. Q2SWinet ’20, New York, NY, USA:
Association for Computing Machinery, 2020, pp. 37–45.

[108] T. Sabata and M. Holena, “Active Learning for LSTM-autoencoder-based Anomaly Detec-
tion in Electrocardiogram Readings,” in Proceedings of the Workshop on Interactive Adap-

https://doi.org/10.1016/j.compind.2021.103498
https://doi.org/10.3390/app11073194
https://doi.org/10.3390/app11073194
https://doi.org/10.1109/ACCESS.2018.2886457


REFERENCES 101

tive Learning co-located with European Conference on Machine Learning and Principles
and Practice of Knowledge Discovery in Databases (ECML PKDD 2020), ser. CEUR
Workshop Proceedings, vol. 2660, CEUR-WS.org, 2020, pp. 72–77.

[109] D. Park, Y. Hoshi, and C. C. Kemp, “A Multimodal Anomaly Detector for Robot-Assisted
Feeding Using an LSTM-Based Variational Autoencoder,” IEEE Robotics and Automation
Letters, vol. 3, pp. 1544–1551, 2018.

[110] D. Kim, H. Yang, M. Chung, and S. Cho, “Squeezed Convolutional Variational AutoEn-
coder for unsupervised anomaly detection in edge device industrial Internet of Things,”
2018 International Conference on Information and Computer Technologies (ICICT),
pp. 67–71, 2018.

[111] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A Density-Based Algorithm for Discov-
ering Clusters in Large Spatial Databases with Noise,” in KDD’96: Proceedings of the
Second International Conference on Knowledge Discovery and Data Mining, Portland,
OR, USA, 1996, pp. 226–231.

[112] M. Celik, F. Dadaser-Celik, and A. Dokuz, “Anomaly Detection in Temperature Data Us-
ing DBSCAN Algorithm,” in 2011 International Symposium on Innovations in Intelligent
Systems and Applications (NISTA 2011), Istanbul, TR, 2011, pp. 91–95. DOI: 10.1109/
INISTA.2011.5946052.

[113] U. Rebbapragada, P. Protopapas, C. E. Brodley, and C. Alcock, “Finding anomalous peri-
odic time series,” Machine Learning, vol. 74, no. 3, pp. 281–313, 2009.

[114] B. Schölkopf, R. Williamson, A. Smola, J. Shawe-Taylor, and J. Platt, “Support Vector
Method for Novelty Detection,” in Advances in Neural Information Processing Systems,
vol. 12, MIT Press, 2000, pp. 582–588.

[115] J. Ma and S. Perkins, “Time-series novelty detection using one-class support vector ma-
chines,” in Proceedings of the International Joint Conference on Neural Networks, vol. 3,
Portland, OR, USA, 2003, pp. 1741–1745.

[116] R. N. Calheiros, K. Ramamohanarao, R. Buyya, C. Leckie, and S. Versteeg, “On the ef-
fectiveness of isolation-based anomaly detection in cloud data centers,” Concurrency and
Computation: Practice and Experience, vol. 29, no. 18, e4169, 2017.

[117] M. U. Togbe, M. Barry, A. Boly, et al., “Anomaly Detection for Data Streams Based on
Isolation Forest Using Scikit-Multiflow,” in Computational Science and Its Applications –
ICCSA 2020, ser. Lectures in Computer Science, O. Gervasi, B. Murgante, S. Misra, et al.,
Eds., vol. 12252, Cham, CH: Springer International Publishing, 2020, pp. 15–30.

[118] F. T. Liu, K. M. Ting, and Z.-H. Zhou, “Isolation Forest,” in 2008 Eighth IEEE Interna-
tional Conference on Data Mining, Pisa, IT, 2008, pp. 413–422.

[119] O. Alghushairy, R. Alsini, T. Soule, and X. Ma, “A Review of Local Outlier Factor Al-
gorithms for Outlier Detection in Big Data Streams,” Big Data and Cognitive Computing,
vol. 5, no. 1, 2020. DOI: 10.3390/bdcc5010001.

https://doi.org/10.1109/INISTA.2011.5946052
https://doi.org/10.1109/INISTA.2011.5946052
https://doi.org/10.3390/bdcc5010001


REFERENCES 102

[120] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander, “LOF: Identifying Density-Based
Local Outliers,” in Proceedings of the 2000 ACM SIGMOD International Conference on
Management of Data, ser. SIGMOD ’00, New York, NY, USA: Association for Computing
Machinery, 2000, pp. 93–104.

[121] E. J. Hagendorfer, “Knowledge Incorporation for Machine Learning in Condition Moni-
toring: A Survey,” in 2021 International Symposium on Electrical, Electronics and Infor-
mation Engineering, ser. ISEEIE 2021, New York, NY, USA: Association for Computing
Machinery, 2021, pp. 230–240.

[122] M. Haider, “Machine Learning and KPI Analysis applied to Time-Series Data in Physical
Systems: Comparison and Combination,” M.S. Thesis, Chair of Automation, Montanuni-
versitaet Leoben, Leoben, AT, 2021.

[123] Keller UK Ltd, Vibro compaction. [Online]. Available: https://www.keller.co.
uk/expertise/techniques/vibro-compaction (visited on 04/23/2022).

[124] A. Terbuch, Generic Deep Autoencoder for Time-Series: Version 1.0.1, MATLAB Cen-
tral File Exchange, 2022. [Online]. Available: https://ch.mathworks.com/
matlabcentral/fileexchange/111110-generic-deep-autoencoder-

for-time-series?s_tid=ta_fx_results (visited on 06/02/2022).
[125] D. Charte, F. Charte, S. Garcı́a, M. J. Del Jesus, and F. Herrera, “A practical tutorial on

autoencoders for nonlinear feature fusion: Taxonomy, models, software and guidelines,”
Information Fusion, vol. 44, pp. 78–96, 2018. DOI: 10.1016/j.inffus.2017.12.
007.

[126] J. Han and M. Kamber, Data Mining: Concepts and Techniques (The Morgan Kaufmann
Series in Data Management Systems Ser), 2nd ed. Amsterdam, NL: Elsevier, 2006.

[127] E. Vandervieren and M. Hubert, “An adjusted boxplot for skewed distributions,” in COMP-
STAT 2004 - Proceedings in Computational Statistics: 16th symposium, J. Antoch, Ed.,
Heidelberg, GE: Physica, 2004, pp. 1933–1940.

[128] G. Brys, M. Hubert, and A. Struyf, “A Comparison of Some New Measures of Skewness,”
in Developments in Robust Statistics: International Conference on Robust Statistics 2001,
R. Dutter, P. Filzmoser, U. Gather, and P. Rousseeuw, Eds., Berlin, GE: Springer, 2003,
pp. 98–113.

[129] M. Hubert and E. Vandervieren, “An Adjusted Boxplot for Skewed Distributions,” Com-
putational Statistics & Data Analysis, vol. 52, pp. 5186–5201, 2008.

[130] J. W. Tukey, Exploratory Data Analysis. Reading, MA, USA: Addison-Wesley Publishing,
1977.

[131] M. Yang and J. Wang, “Adaptability of Financial Time Series Prediction Based on BiL-
STM,” Procedia Computer Science, vol. 199, pp. 18–25, 2022. DOI: 10.1016/j.
procs.2022.01.003.

https://www.keller.co.uk/expertise/techniques/vibro-compaction
https://www.keller.co.uk/expertise/techniques/vibro-compaction
https://ch.mathworks.com/matlabcentral/fileexchange/111110-generic-deep-autoencoder-for-time-series?s_tid=ta_fx_results
https://ch.mathworks.com/matlabcentral/fileexchange/111110-generic-deep-autoencoder-for-time-series?s_tid=ta_fx_results
https://ch.mathworks.com/matlabcentral/fileexchange/111110-generic-deep-autoencoder-for-time-series?s_tid=ta_fx_results
https://doi.org/10.1016/j.inffus.2017.12.007
https://doi.org/10.1016/j.inffus.2017.12.007
https://doi.org/10.1016/j.procs.2022.01.003
https://doi.org/10.1016/j.procs.2022.01.003


REFERENCES 103

[132] S. Siami-Namini, N. Tavakoli, and A. S. Namin, “The Performance of LSTM and BiLSTM
in Forecasting Time Series,” in 2019 IEEE International Conference on Big Data, Los
Angeles, CA, USA, 2019, pp. 3285–3292.

[133] F. Masri, D. Saepudin, and D. Adytia, “Forecasting of Sea Level Time Series using Deep
Learning RNN, LSTM, and BiLSTM: Case Study in Jakarta Bay, Indonesia,” e-Proceeding
of Engineering, vol. 7, no. 2, pp. 8544–8551, 2020.

[134] A. Terbuch, A. Zöhrer, V. Winter, P. O‘Leary, N. Khalili-MotlaghKasmaei, and G. Steiner,
“Quality monitoring in vibro ground improvement – A hybrid machine learning approach,”
Geomechanics and Tunnelling, 2022. DOI: 10.1002/geot.202200028.

https://doi.org/10.1002/geot.202200028

	Introduction
	Basics of Machine Learning
	Machine Learning Tasks
	Gaining Experience
	Supervised Learning
	Unsupervised Learning

	Performance Metrics
	Metrics for Regression Tasks
	Metrics for Classification Tasks


	Artificial Neural Networks (ANN)
	Model of a Neuron
	Network Architectures
	Feedforward Neural Networks
	Recurrent Neural Networks

	Training
	Gradient Descent
	Backpropagation
	Weight Initialization

	Hyperparameter Optimization
	Grid Search
	Random Search
	Bayesian Optimization
	Genetic Algorithm


	Basics of Probability and Information Theory
	Probability Theory
	Probability Distributions
	Marginal Probability
	Conditional Probability and Chain Rule
	Bayes' Theorem

	Information Theory

	Autoencoders
	Types of Autoencoders
	Undercomplete Autoencoders
	Sparse Autoencoders
	Denoising Autoencoders
	Variational Autoencoders

	Encoder-Decoder Sequence-To-Sequence Architectures

	Anomaly Detection in Time-Series Data
	Time-Series
	Anomalies
	Methods for Anomaly Detection in Time-Series

	Hybrid Learning Tool for Anomaly Detection
	Structure of the Hybrid Learning Tool
	Analyzed Process
	Machine Learning Model
	Autoencoder Framework
	Reconstruction Error and Threshold Setting

	Statistical Model

	Test Results
	Evaluation of Different Architectures
	Architectures With One Hidden Layer
	Architectures With Two Hidden Layers

	Evaluation of Hyperparameter Optimization Methods
	Evaluation of Weight Initializing Methods
	Optimizing Models for Phase-Wise Anomaly Detection
	Parallel Hybrid Model
	Parallel Serial Hybrid Model


	Conclusion and Future Work
	List of Figures
	List of Tables
	Bibliography



