im

MONTAN

UNIVERSITAT
M LEOBEN W

Chair of Metal Forming

Master's Thesis

Implementation of automated,
interconnective Finite Element Analyses
for the development of Cyber Physical
Production Systems

Corinna Waiguny, BSc

September 2022

~.|#|2; MONTANUNIVERSITAT LEOBEN

www.unileoben.ac.at

EIDESSTATTLICHE ERKLARUNG

Ich erklare an Eides statt, dass ich diese Arbeit selbstandig verfasst, andere als die angegebenen
Quellen und Hilfsmittel nicht benutzt, und mich auch sonst keiner unerlaubten Hilfsmittel bedient habe.

Ich erklare, dass ich die Richtlinien des Senats der Montanuniversitat Leoben zu "Gute
wissenschaftliche Praxis" gelesen, verstanden und befolgt habe.

Weiters erklare ich, dass die elektronische und gedruckte Version der eingereichten
wissenschaftlichen Abschlussarbeit formal und inhaltlich identisch sind.

Datum 20.09.2022

@ﬁ(/{ ULl Y / L0 il

A\

(/'Unte%chrift Verfasser/in
Corinna Waiguny

Acknowledgement

Acknowledgement

First and foremost, | would like to express my special thanks to my supervisors, Dipl.-Ing. Marcel
Sorger, who always supported and guided me, and Univ.-Prof. Dipl.-Ing. Dr.techn. Martin Stockinger,
the head of the Chair of Metal Forming. | would also like to show gratitude to Dipl.-Ing. Dr.mont.
Benjamin Ralph for the discussions and his expertise. Further, | would like to thank all the Department
faculty members who were involved in the process. Most importantly, | want to thank my boyfriend,

my family, and my friends for the help and encouragement.

Abstract

Abstract

In recent years, Industry 4.0 - with the aim to combine production processes with state-of-the-art
communication and information technologies - has led to significant changes in the industrial
environment. Due to the appearance of new challenges, companies need to adapt to upcoming
demands, by implementing Industry 4.0 enabling technologies, such as simulations and innovative
modelling approaches. Thereby, Simulation and Modelling refers to the application of models,
representing a product, system, or process, to predict model behavior and further, to extend
knowledge of the model. In the metal forming industry, simulations show great potential in the design
and optimization of forming processes. Through the targeted use, expensive, and time-consuming
experiments can be reduced. Furthermore, the process of decision making is supported and the

efficiency of forming processes can be increased.

During this thesis, models are developed to reproduce the entire upsetting process, starting at the
heating of the cylindrical specimen to the transport and to the upsetting in the hydraulic press.
Subsequently, an automated simulation sequence is implemented by using Python, which enables to
create, run, and evaluate simulations with variable input parameters. For the calibration and validation
of the developed simulations, upsetting tests with cylindrical specimen from aluminum alloy EN AW-
6082 were conducted. Thereby, experiments, differing in process settings, such as temperature,
transfer time, specimen geometry and upset height, were performed. The furnace and the hydraulic
press at the Chair of Metal Forming represent two Cyber Physical Production Systems (CPPSs),
providing sensor data of the conducted experiments. Furter, a concept is introduced, to visualize and

process the sensor data to directly compare experiments and simulation.

Kurzfassung

Kurzfassung

In den vergangenen Jahren hat die Industrie 4.0 — mit dem Ziel Produktionsprozesse mit modernster
Kommunikations- und Informationstechnologie zu verbinden - zu signifikanten Veranderungen im
industriellen Bereich gefiihrt. Durch das Auftreten von neuen Problemstellungen, miissen sich Firmen
an die kiinftigen Anforderungen anpassen und Kerntechnologien der Industrie 4.0, wie beispielsweise
Simulationen und innovative Modellierungsansatze, implementieren. Simulation und Modellierung
steht hierbei fiir die Anwendung von Modellen, welche Produkte, Systeme oder Prozesse
reprasentieren, um Vorhersagen liber das Modellverhalten zu treffen und zuséatzlich das Wissen tber
das Modell zu erweitern. In der Metallumformung zeigen Simulationen ein grofRes Potential im Design
und der Optimierung von Umformprozessen. Durch den gezielten Einsatz kénnen kostenintensive und
zeitaufwandige Experimente reduziert werden. Aullerdem kann der Prozess der Entscheidungsfindung

unterstitzt sowie die Effizienz der Umformprozesse gesteigert werden.

Im Zuge der Arbeit wurden Simulationsmodelle erstellt, um den gesamten Prozessablauf eines
Stauchversuches, beginnend beim Vorwarmen der Zylinderprobe im Ofen, Gber den Transport bis hin
zum Stauchen mit der hydraulischen Presse, nachzubilden. Anschliefend wurde mittels Python eine
automatisierte Simulationsabfolge realisiert, welche es ermoglicht, Simulationen mit variablen
Eingabeparametern, zu erstellen, auszufiihren und auszuwerten. Fir die Kalibrierung und Validierung
wurden Stauchversuche von Zylinderproben aus der Aluminiumlegierung EN AW-6082 durchgefihrt.
Die Experimente unterschieden sich dabei in den Prozesseinstellungen hinsichtlich Temperatur,
Transferzeit, Probengeometrie und Stauchhohe. Der industrielle Ofen und die hydraulische Presse am
Lehrstuhl fiir Umformtechnik stellen zwei Cyber Physical Production Sytems (CPPSs) dar, welche die
Sensordaten der durchgefiihrten Versuche zur Verfiigung stellen. Zudem wird ein Konzept vorgestellt,
um die von den CPPSs gelieferten Sensordaten zu visualisieren und weiteres automatisch zu

verarbeiten, um Experiment und Simulation direkt miteinander zu vergleichen.

Table of Contents

Table of Contents

N [0 1 oo [¥ ot i To T DR TP OO T RSP P R TOPSR PR 1
2. SATE OF TN ArT ettt st e s e et e s be e s be e e sabeeeane 3
3. FUNAAMENTAIS .ttt sttt b e sttt e et e bt e sheesnee e 4
% R oY oY1= Yol oY o] Lo} -V RS 4
3.1.1. FIOW SEMESS c.ntiietie ettt ettt ettt st esb e e s bt e st e s bt e e sabeeebeeesaneesneeesareens 6
3.1.2. Cold forming and hot fOrmMiNgcoovvciiiiiiiie e 7
3.1.3. UPSEEiNE coeieeececeeeeeceeeeeeeeeaaeaeaes 7
3.1.4. FIICTION ettt e s 8
3.1.5. Thermal effects during fOrmMiNg.......c..ooooeiii i 10
3.1.6. PrOCESS PArAMIBLEIS e e e e e e e eas 10

R N[00 Y o T8 0 1= | o 2RSSR 11
3.3, HEAL LFANSTOE ettt et sttt 12
3.3.1 (6e] g Te [¥To1 i o o HSU RO TR TSP P RPN 12
3.3.2. 16701 1Y/=Tot [0 o DU PSP PPPRPROPRPON 12
3.3.3. RATIATION. ...e ittt ettt ettt et e st e s be e e st e e sbe e e are e sabeeeaes 13
3.3.4. Transient heat transfer.........oo e 14

S 1 o [1y 4 Y2 0 U USPRRt 15
3.5. Finite Element Method (FEM)uuiiiiiiee ettt ettt e e arae e et e e e e e e eareeas 17
3.6. Metal forming SiMUIGLIONSveiiiiiiiece e e e e e e aaeeas 18
3.7, Material MOGEIS ... e 19
B o (oY= g1 0 [T 0 = | Y=Y (U o RS RN 21
L R U1 g - o= OO PP P RO PPP PP 21
oy 1V | = 10 | [ol o Y USSR 22
S T o ToT=T o [0 PP PPPRTPRTRPPO 23
4.3.1. (o 1] 10 01T o At P PP PP PPPPPRPRIN 24
4.3.2. EXPEIMENT 2 oo 25

4.4, Sensor data ViSUAlIZatioNeeeueiiiiieee e e e 25
T D - | = I o Yot =11 [o V- 31
5. PrOCESS SIMUIATION...ceiiiiiiiiiet et sttt e b e b e s s s e b e nee 32
LT R o] o Yo T3 o1V o LR SPR 32

L A U | o Vi f YY) = o o NS 32
5.3, SiMUIGtion 1 - HEAtING c....ceeiiiieiei ettt e et e e e e e e e b e e e e e e e e e ernnnnes 33
R [0 a1V Yo o I A ' T 4 1Y o o PSSP 34
5.5 SimMulation 3 = ReSt ON i€ ...ccceiiiiiiiiiieieeieee et e 35

Table of Contents

5.6. SIMUIGLION 4 - UPSETLING ..vveiiiiiiiieciiee ettt re e e e et e e e e e abae e e enbee e s enraeeeenreeas 35
5.7 FE MESN e sttt s b e e s bt e e bt e e ate e s reeesaree s 37
LT T [o101 =Y o o I e UL o o U £ RPN 38
I B Y oY (T o o] I o] o] oT=T o =S RR 38
5.10. Temperature increase associated with plastic deformations.........ccccceeevviveeeiiieee e, 42
5.11. Thermal contact CONAUCEANCEccuviiiiiiiie ettt saree e 42
5.12. CoNVECtion COBTFICIENT...ccuiiiiie et 43
(ST Y o ¥ Yo [E Y o T o) 4 = PP UPPPPPRN 44
6.1. Abaqus SCripting INtEITACE ..cc.uvveieeeee e e e e e e e e e 44
6.2. Recording Python COMMANGS........cuuiiiiiiiie ettt et e e e aree e e et ee e e eabee e e enreeas 45
6.3. Object-oriented Programmingccueiiiciieieiiieeeeree e erree e esree e e sree e e s abee e e snbeeessnbeeeesnreeas 45
6.4. Abaqus Output Database (ODB)........cccieiieeeiieeeieeecee et e eteeesreesreeestreeste e esaaeesaseesraeesaseean 45
B.5. SCIIPE STIUCTUIE ..etiieii ettt e e e s et e e e e e e s s s satbeeeeeeessssnbsneaeeeessnnannrenes 46
7. Concept and IMPlemMENTATIONcoiiiciiiee et e et e e e et e e e e e bt e e e s ebeeeeeeraeeeesanes 49
2 N 01T -1 | I oo 1o Y- USSR 49
7.2. Automation of the Simulation SEQUENCE.......c.uviii i 50

8. Evaluation and RESUILS ..cccueiiiiiiiiieecee ettt ettt s aee e s e e 54
8.1. Interpretation of the SeNSOr data.......cccccuiiiiiiiii e e 54
8.2. Influences on the SIMUIAtIONScoviiiiiiiiie e 61
8.2.1. HEATING oo 61
8.2.2. TEANSPOI e aaaaaeaaaaenns 63
8.2.3. REST ON QI ettt ettt st s st 65
8.2.4. UPS iMoo 66

8.3. Challenges with automated MOdElS..........cooeciiiiiiiiiiee e e e 70
8.4. Comparison between experiment and simulation..........ccccoeeeiieeiiiiiee e, 71

9. ConClUSION aNd OULIOOKiiiiiiiiiiiiite ettt et 74
I o B ST ={ 0 LSRR 76
LISt OF TaBIES ..ttt ettt b e bt s ae e st s bt e e e bt e bt e sbe e s ae e eateeateebeenbeeeheenaneeas 78
AN 01T o [SRRt 83
AppPendixX A: MEASUIEMENTS.PY coovreeeieiieeeiiiieeeeeiteeeeetteeeestreeeestreesssbaeeeessbeeeeessasesssseessssseeesesseees 83

F AN oY o X< oTo [0 - T g = 1T Tl o 1 o1 PR 91
APPENIX C: COMPATE.PY uuvrrrirreeeeieiiiirteereeeeeeeiittreeeeeeasasaatsrereeeessesaastsseeseeesasasssesssseesssssasssssseeessennns 94
Appendix D: SIMUIGLION L DY corieiieecciiiieeee ettt re e e e e e st e e e e e e e seabareeeeeeeeesannraaneeeaaeeanas 104
FaN oo 1T oo N Y g TV] =T Lo o T2 o 1Y o AV USSR 108
Appendix F: SIMUIGTION BP0V ciiiiiiieiciiee ettt e e s e e e et e e e e sbre e e e sbtaeeesbraeeeenes 110
Appendix G: SIMUIGLION_4i.PY .iiiceieeeeciiiee e sre e e e e bte e e e s bte e e e sbteeeesbraaaeeanes 113

Table of Contents

Appendix H: SIMUIGLION_4E.PY ..o.viiieieiiiee ettt et e e e e e bte e e s sbree e e ebaeeeesaneaeeeennes 116
JAN oY o 1= gTe [Pt o Te | o Je =1 - 1 o VAPPSR 119
Appendix J: Material_data.py ..o e e e s rae e e enee 122
Appendix K: abagus_fUNCLIONS.PY ..eeiiiiiiee ettt tre e e s e bae e e s e breeeeeanes 125
Appendix L: Documentation of @XPerimentscecivviiieiiiieee et eeree e e et e e e evae e e s ebreeeeeaees 139

Vi

List of Symbols

List of Symbols

Upper Case

Symbol
A
Ac
Ag
Asp
B

Unit
[N/m?]
[m?]
[m?]
[m?]
[N/m?]
[-]
[-]
[-]
[-]

[°C]
[°C]
[°C]
[°C]
[°C]
[°C]
[°C]
[°C]
[°C]
[°C]
[°C]
[°C]
[°C]

Description

Johnson-Cook parameter: Yield strength
Cross sectional area

Surface area

Portion of the surface area
Johnson-Cook parameter: Strain hardening constant
Biot number

Johnson-Cook parameter: Strain rate sensitivity
Johnson-Cook Damage parameter 1
Johnson-Cook Damage parameter 2
Johnson-Cook Damage parameter 3
Johnson-Cook Damage parameter 4
Johnson-Cook Damage parameter 5
Young's modulus

Force

Maximum force

Normal acting force

Frictional force

Length

Temperature

Ambient temperature

Furnace temperature

Temperature at the time increment i
Temperature at the time increment i+1
Melting temperature

Recrystallization temperature

Surface temperature

Reference temperature

Initial temperature

Temperature at position 1
Temperature at position 2

Temperature at the end of simulation 1

Vi

List of Symbols

T2ena [°C]
T3ena [°C]
T [°C]
ATp [°C]
ATk [°C]
ATy [°C]
%4 [m3]
Vo [m?]
Vi [m?]
Lower Case
Symbol Unit
bo [m]
b, [m]
c [U/kg°C]
Co [m/s]
d [m]
dy [m]
d4 [m]
h [m]
h. [W/m?°C]
h; [m]
hy [m]
hyo [m]
hy [m]
Ah [m]
k [W/m°C]
k. [W/m?°C]
ks [W/m°C]
lo [m]
ly [m]
m -]
mg [-]

Temperature at the end of simulation 2

Temperature at the end of simulation 3

Temperature of the fluid

Temperature difference due to dissipated deformation energy
Temperature difference due to friction

Temperature difference due to cooling of cooler dies

Volume

Initial volume

Volume after forming

Description

Initial width

Width after forming

Specific heat capacity

Speed of sound

Diameter

Initial diameter of the specimen
Diameter of the specimen after forming
Height

Heat transfer coefficient for convection
Initial distance between dies
Pyrometer position

Initial height of the specimen

Height of the specimen after forming
Difference in height

Thermal conductivity

Contact conductance

Thermal conductivity of the fluid

Initial length

Length after forming

Johnson-Cook parameter: Thermal softening coefficient

Friction factor

Vil

List of Symbols

Voo

[-]
[N/m?]
(W]
(W/m?]
(W/m?]
[-]
[m]
[m]
[s]
[s]
[s]
[s]
[s]
[s]
[s]
[s]
[s]
[s]
[m/s]
[m/s]

Greek Symbols

Symbol
£
€n
&

&f pl

Unit
-]
-]
-]
-]
-]

Johnson-Cook parameter: Strain hardening exponent
Pressure

Heat rate

Heat flux

Radiation heat rate

Upset ratio

Die position at the end

Die position at the beginning
Time

Time at the end

Heating time

Rest time

Time at the beginning
Transport time

Time point 1

Time point 2

Time point 3

Time difference

Velocity

Velocity of the fluid

Description

Strain

Strain in direction of height of the specimen
Strain for the i-th forming operation

Plastic strain at failure

Plastic strain

Emissivity of a real surface

Total plastic strain

Reference strain rate
Strain rate

Increment of the plastic strain

List of Symbols

U [-] Friction coefficient
v [-] Poisson ratio
p [kg/m?3] Density
o [N/m?] Stress
of [N/m?] Flow stress
O [W/m?°C4 Stefan Boltzmann constant
o [N/m?] Normal stress
o7 [N/m?] Principal stress, direction 1
oy [N/m?] Principal stress, direction 2
O [N/m?] Principal stress, direction 3
Tf [N/m?] Shear flow stress
TR [N/m?] Frictional shear force
Q [-] True strain
On [-] True strain in direction of height of the specimen
Qi [-] True strain for the i-th forming operation
Ptotal [-] Total true strain
®1 [-] True strain in main direction (1)
®s [-] True strain in main direction (2)
Q3 [-] True strain in main direction (3)
() [s1 Strain rate or deformation rate
P01 [s1 Strain rate or deformation rate (index 1)
o] [s1 Strain rate or deformation rate (index 2)
w [-] Damage parameter

List of Abbreviations

List of Abbreviations

Al
BBM
BDA
CPS
CPPS
DAQ
DM
DS
DT
FE
FEA
FEM
GBM
GUI
HMI
loT
lloT
LDVT
14.0
MF
ML
ODB
PM
RL
SL
uL
WBM

Artificial Intelligence

Black Box Modelling

Big Data and Analytics
Cyber Physical System
Cyber Physical Production System
Data Acquisition

Digital Model

Digital Shadow

Digital Twin

Finite Element

Finite Element Analysis
Finite Element Method
Grey Box Modelling
Graphical User Interface
Human Machine Interface
Internet of Things

Industrial Internet of Things
Linear Variable Differential Transformer
Industry 4.0

Chair of Metal Forming
Machine Learning

Output Database

Predictive Maintenance
Reinforced Learning
Supervised Learning
Unsupervised Learning

White Box Modelling

Xl

Introduction

1. Introduction

As today's globalized economy is characterized by the need for high-quality products, product
customization, increasing process efficiency, process automation and a faster time-time-to market,
this causes new business challenges to arise. Consequently, this leads companies to adapt to upcoming
demands [1, 2]. Due to the fourth industrial revolution, also known as Industry 4.0 (14.0), the industrial
environment has undergone a significant change in recent years. The target of 14.0 is to combine the
latest communication and information technology with traditional production processes leading to an
increase in efficiency regarding energy and resources as well as competitiveness. Technologies like
Artificial Intelligence (Al), Cyber Physical Systems (CPS), Internet of Things (loT), Simulation and

Modelling, and Big Data and Analytics (BDA) can be named as enabling technologies [1, 3, 4].

Likewise, major progress happened in simulation methods. Increasing computational capacity within
the last decades enabled the use of more complex numerical methods for solving practical engineering
problems [5]. Simulations are not exclusively used in an academic field, but rather became a standard
tool applied in the industry with a variety of application purposes. For instance, simulations support
decision making or are used to validate and test systems along the entire life cycle [3, 6]. Moreover,
simulations play a significant role in realization of Industry 4.0. According to [4], simulations are a key
technology of 14.0, contributing to the development and deployment of other enablers as well.
Furthermore, simulations are used for process design and optimization. Additionally, in the logistics
sector material flow simulations can be adapted to support decision making. Learning factories or
training centers use simulations to educate people as increasing their knowledge leads to a better

understanding of systems or processes and therefore reduces human errors [4].

The goal of this thesis is to implement FEA into two CPPSs, which are represented by an industrial
furnace and a hydraulic press, located at the Chair of Metal Forming. Within this work, simulations to
represent the whole process of upsetting of a preheated cylindrical specimen are developed. By using
Python scripts, the simulation models are automatically generated and submitted to the solver.
Furthermore, simulation results are evaluated, and relevant information is saved in a separate file. For
the validation of the FEA, experiments were conducted and compared to the sensor data of the
process. Further, a concept, to process the sensor data of the CPPSs and compare the sensor data to

the extracted simulation result, is introduced and implemented.

Introduction

In chapter two, a summary on state-of-the-art research is given. In the third chapter, the fundamentals
are illustrated to provide basic knowledge. Subsequently, in chapter four the experimental setup is
outlined, and the sensor data, provided by the CPPSs, is analyzed. Chapter five deals with the
development of the simulations and provides an overview on the material properties and other
parameters that are used. Further, chapter six introduces the scripting of the simulations. In Chapter
seven the concept and the implementation are discussed. Finally, the results and evaluations are

presented in chapter eight. A summary of the work is provided in chapter nine, also an outlook is given.

State of the art

2. State of the art

Simulation and modelling can be named as key technology in 14.0. It describes the use of models, to
improve the knowledge of the model or to make predictions of the model behavior. Thereby, a model

can be either a real or imaginary system or process [6].

There are many literature sources, for example [7-9], dealing with the upsetting of a cylindrical
specimen, because of the simple geometry of the model, that is easy to set up. In [10], upsetting
simulation models, using different material constitutive equations and different thermal effects, are
compared with each other and validated by experiments. The upsetting of a steel billet is simulated in
[11] by using the Software Deform. Thereby, plastic deformation dependent on the temperature in the
billet is analyzed. Instead of a constant temperature at the beginning of the upsetting simulation, the
work includes the temperature distribution after previous process steps. It accounts the heat loss
during transport from the furnace to the press and also the heat loss during the contact time to the
bottom die prior to the forging process [11]. In [12] a fully coupled thermomechanical analysis is
conducted to simulate the forging of a spur gear in three process steps by using the Abaqus explicit
solver. Heat transfer due to conduction, radiation and conductance to the tools are included. Velocity
boundary conditions, accounting for the real crank movement of the press, are applied. A time- and
temperature-dependent constitutive material law in combination with ductile failure criterion are
accounted in the simulation to describe material behavior [12]. Predicting the flow stress of a material
depending on temperature, strain, and strain rate, is crucial for the simulation of hot deformation
processes. In [13] a Finite Element (FE) model coupled with a neural network is developed to model
nonlinear material behavior of metals subjected to large plastic deformation at elevated temperature.
Therefore, flow stress during forging operation is predicted by the neural network [13]. Further
literature analyses the impacts of temperature and strain rate on the microstructure evolution during

upsetting by using the thermo-mechanical coupled Finite Element Method (FEM) [14].

Simulations started as a technology, limited to very few application purposes, and developed to a
standard tool, used in engineering. Establishing simulations, that include the whole life cycle of a
product, is the next step in the simulation and modelling approach, which refers to the concept of a

Digital Twin [15].

Fundamentals

3. Fundamentals

In this chapter the fundamentals, which are necessary for this thesis, are evaluated. First, the forming
technology is described, as it is crucial to understand the mechanisms taking place during forming
processes. A further section focuses on the specimen material Aluminum EN AW-6082, which is used
in this work. Furthermore, the phenomena of heat transfer are described. Subsequently, the focus is
set on the change of industrial environment due to the fourth industrial revolution. Finally,
characteristics of the numerical process simulation with the Finite Element Method (FEM) are outlined,

whereas a focus is on simulations in metal forming and applied material models.

3.1. Forming technology

There are six main groups of manufacturing processes named forming, shaping, joining, coating,
shearing, and modifying material properties, as shown in Figure 1. Further classifications consider the
stress state and divide the forming process into tensile/ compressive forming, forming by pressure,
forming by shearing, forming by bending and forming by tensile forces. Regarding the shape of the
part to be transformed, the forming process can be divided into bulk forming and sheet forming. During
sheet forming processes the part is subjected to tensile stresses and there is no significant change of
the thickness of the sheet while in bulk forming processes the part is commonly subjected to

compressive stresses and is three-dimensionally formed [16-18].

Manufacturing processes

Shaping Forming Shearing Coating Modifying material properties
I
I | | | |
Forming by Tensile/ Compressive Forming by Forming by Forming by
pressure forming tensile forces bending shearing

Figure 1: Manufacturing processes [18]

Metal forming in general is characterized as plastic deformation of a solid body under conservation of
mass and material cohesion to create a product. Plastically deformed parts are shaped permanently
while elastic deformations disappear when the applied force is removed. In the following characteristic

parameters are evaluated [18].

Fundamentals

By applying force to a solid body, deformations occur. Thereby, one can distinguished between strain
€ and true strain @. The strain describes the change of dimension related to the initial dimension of a
part. Assuming the height of a rectangular solid is reduced, the strain g is calculated by the height
difference Ah divided by the initial height h, of the solid body, whereby 4h is the difference between
the initial height and the height after forming h;. [18]

"7 hy ho

(3.1)

The true strain ¢y, is defined as the natural logarithm of the height of the rectangular solid after the

forming process h, divided by the initial height h, [18].

Pp = In— 3.2
h / ()
For b0t|l, the elongation and the true strain, d positive value indicates an increase in dimension

whereas a negative value indicates a decrease in dimension. The total true strain @yt does not

depend on the sequence of forming operations unlike the total plastic strain efoltal [18].

n
Ptotal = Z Pi (3.3)
i=0
n
l
sfotal * & (3.4)
i=0

During the forming process, the volume V stays constant. For a rectangular solid with an initial volume

V,, defined by the initial length [, height hy, and width b, volume constancy is defined as
VO - V1 - lO " ho * bO - ll " h1 " b1 = const. (35)

whereas V3, [, hy and by are the volume, length, height, and width after the forming process. As a
result of the volume consistency, the three values for the deformation in the main directions ¢4, @5, @3

to sum up to zero [18].

lllhllbl

o ho by e

Fundamentals

) =)+)+ G2) = -
In <lo Thy by) In (lo +In o +In b~ In(1) =0 (3.7)
P11t @2 +93=0 (3.8)

The strain rate or deformation rate ¢ is defined as the time derivative of the true strain [18]:

. _do
¢ =7 (3.9)

3.1.1. Flow stress

The flow stress curve depicts the relationship between the flow stress ar, also called true stress, and
true strain ¢. The flow stress characterizes the material behavior during plastic deformation and
depends on the forming temperature, strain, strain rate, and material. As the temperature increases,
the flow stress of the material decreases, which can be seen in Figure 2. Consequently, the flow stress
in hot forming operations is lower than in cold forming. Furthermore, this leads to lower forming loads
and higher formability, referring to the plastic deformation a material can withstand without fracture.
The strain rate shows minimal effect on the flow stress in cold forming. In contrast, in hot forming the

flow stress increases if the recrystallization rate increases [18, 19].

or = f(¢) or = f(¢) o = f(T)
A \ 0/ cold A
colc
sl s S
)]
= o 2
Strain ¢ [-] Strain rate ¢ [s™1] Temperature T [°C]

Figure 2: Dependence of the flow stress on the temperature [18]

There are various methods to record flow stress curves. The upsetting of a cylindrical specimen
between two flat dies is a commonly used method to obtain the data for bulk forming processes. The

specimen needs to keep the cylindrical form during the whole forming step, to exactly measure the

true strain [18].

Fundamentals

3.1.2. Cold forming and hot forming

In cold forming a specimen is formed at a forming temperature below the recrystallization temperature
Tg, whereas in hot forming the part is preheated to temperatures above the recrystallization
temperature of the material. Considering both processes, cold forming has the following advantages
compared to hot forming: Manufacturing of the dies is more cost-efficient, additionally there are no
costs for heating the specimen. The strength of the specimen is increased due to work hardening,
additionally, there is a good surface finish and no shrinkage. The deformation rate has less impact on
the flow stress. However, the cold forming process requires higher forces and has limited formability,
which refers to the amount of plastic deformation, that a material can withstand without occurring
fracture. The formability depends on material, forming temperature, deformation rate, and stress
state. Semi hot forming is conducted at higher temperatures than cold forming, thus at lower
temperatures than hot forming and therefore combines the advantages of cold forming, like work
hardening, good surface finish and low tolerance range, with the high formability of a hot forming

process [20].

3.1.3. Upsetting

Upsetting, which is a very important bulk forming process, can be classified as forming by pressure.
The specimen is formed by compression in axial direction between flat dies. As the height of the part
is reduced, consequently the dimensions perpendicular to the acting force increase, like demonstrated

for a cylindrical specimen in Figure 3 [18].

Flat die Specimen Height change

) o B e
| ' -
| o : N

Figure 3: Upsetting of cylindrical part [18]

A At
h
h,

A high upset ratio s,., defined as the initial height h, divided by the initial diameter d, of a cylindrical
specimen, leads to buckling of the material. Therefore, the upset ratio should not exceed a certain limit

of s, = 1,8 — 2,0 for upsetting between flat dies [18].

Fundamentals

Sy =—
d
0

(3.10)

When exceeding the material formability during forming, cracks occur. This can be avoided by either
performing the upsetting process in several steps including intermediate annealing or forming at
higher temperatures which leads to lower flow stresses. Furthermore, forming under hydrostatic
pressure increases the formability. Due to the friction between die and specimen the actual specimen
shape deviates from the ideal cylindrical shape. Radial deformation of the contact face between die
and specimen is restricted by friction leading to a convex shape of the part after the forming process.
To keep the cylindrical form of the specimen, lubricants or upsetting specimen with lubrication pockets
in the contact surface, so called Rastagaev specimen, are used. Thereby, dimensions of the lubricant
pockets need to be specified in a way that the radial force acting on the reduced contact area is at

equilibrium with the frictional force [18].

3.1.4. Friction

Friction has great impact on metal forming processes. Forming loads and stresses in the dies increase
with higher friction. Additionally, friction has an influence on the specimen surface quality. Lubricant
films reduce wear of the dies as friction is reduced or specimen and die are fully or partially separated
[17]. For analytical or numerical calculations of stresses, strains and forces, a mathematical formulation
of the contact between specimen and die is necessary. Friction forces depend on material properties,
temperature, lubrication, relative velocity between the friction interfaces, surface modification and

loads, which should be considered by friction laws [18].

Friction laws commonly applied in metal forming are the Coulomb’s Friction Model and the Tresca
Friction Model. Whereas the Coulomb Friction Model appropriately describes the friction in case of
low contact pressure, the Tresca Friction Model is suitable in case of high contact pressure like in

closed-die forging or extrusion. A third friction model, a combination of both, is not further discussed

Die

Workpiece

(a) (b) (c)

Figure 4: Contact interaction (a) low pressure - contact through asperity peaks (b) moderate pressure - partial
conformity (c) high pressure - full conformity [17]

Fundamentals

[17]. Depending on the level of contact stress, interactions between specimen and die vary, as shown
in Figure 4. At low contact pressure, specimen and die contact each other only through highest
asperity tips, which is why the real contact area is rather small. However, local plastification of asperity
peaks might occur. To appropriately describe the friction in this case, the Coulomb’s Friction Law is
used. According to Coulomb’s Friction Law, the frictional force Fy is proportional to the normal acting
force Fy, respectively the frictional shear force 1y is proportional to the normal stress gy. Thereby,

the friction coefficient u is the proportional factor [17].

FR =,Ll'FN (311)

TR = U Oy (3.12)

At high contact pressure large plastic deformations of the softer contact body occur, which squeezes
the softer material into the roughness valleys of the die. Specimen and die contact each other over the
whole area. Friction stress cannot exceed the shear flow stress Tf. If the shear flow stress is reached,
no sliding in the interface between specimen and die occurs. At high contact pressure the Tresca

Friction Model is used, which is defined as [17]
Tgp = mf “Tf (313)
including the friction factor my, which varies in the range 0 < my < 1 and the shear flow stress 7.

The friction factor is equal to 1 if specimen and die stick together, the factor is equal to 0 for the

frictionless case. Coloumb and Tresca friction models are depicted in Figure 5 [17].

1 T=up T=Wp
(uis high) (u is low)
/ T=my1p (my = 1)

Tresca

Shear stress T

T=mp 7 (Mp < 1)

0
--

Coloumb

v

Contact pressure p

Figure 5: Friction models [17]

Fundamentals

3.1.5. Thermal effects during forming

Heat radiation causes a significant loss of heat of the specimen at temperatures above 1000-1200°C.
At low temperatures the influences due to heat radiation are negligible, for instance for forming
temperatures for aluminum alloys which are below 550°C. Without consideration of heat radiation and
convection to the environment, the temperature of a specimen T is described as follows, whereas T,

is the initial temperature of the specimen [17]:

In this equation AT, expresses the temperature increase of the specimen due to the dissipated
deformation energy. As sliding occurs in the interface between specimen and die, energy dissipates
causing temperature to increase which is described by the term ATg. Considering hot forming the
initial die temperature is much lower than the temperature of the specimen, causing heat to transfer
from the specimen to the die. At the initial state of cold forming applications, die and specimen, are at
room temperature. As the specimen is heated while forming, heat transfers to the die. The decrease

of temperature due to heat conduction to cooler dies is considered as AT} [17].

3.1.6. Process parameters

As the mechanical properties of the product after the forming process depend on the conditions during
the forming process, it is crucial to measure and control the entire process. Important quantities, for
instance shown in Figure 6, are the flow stress o, the strain rate &, the strain g, the temperature T,
the shear stress t and the contact pressure p. To undergo the intended plastic deformation without
fraction, the formability of the material is important. Additionally, the lubrication has an impact on the

process parameters [17].

Prior to
forming: During: After:
!
! ! '
: AN :
! T T
. L L e
|
| i \ l
| | |
] i
F 1 \ _
Formability of Forming machine, Boundary T,o7,¢¢€ Material properties
the material forming velocity interface: p, t of product

Figure 6: Relevant process parameters [17]

10

Fundamentals

3.2. Aluminum alloys

DIN EN 573 and DIN EN 1780 divide aluminum alloys into two main groups [21]: wrought alloys and
casting alloys. Wrought alloys are preformed to bars or tapes in continuous casting processes and
previously manufactured to rolled, pressed, and drawn products. Casting alloys are characterized by
good mold filling properties and insensitivity to hot cracking and therefore are used in casting
processes. Standardized designation of aluminum alloys includes the prefix EN followed by the letter
A - for aluminum. The next letter denotes the manufacturing either as W for wrought alloy or C for
casting alloy. The alloy composition is defined by the following four numbers for wrought alloys or five
letters for casting alloys. For wrought alloys the first number defines the alloy group characterized by
one or more main alloy elements. The last two numbers are characteristic for the specific alloy or
define the degree of purity (e.g., AI99.5 = 1050, Al99.7 = 1070) for group 1XXX (pure aluminum), which
contains a mass percentage of 99.0 % to 99.9 % of aluminum. Examples for the standardized

designation of aluminum wrought alloys are given in Table 1 [21].

Table 1: Standardized designation of aluminum wrought alloys [21]

Group Alloy type Example
IXXX Pure aluminum EN AW-1050A
2XXX AlCu EN AW-2024
3XXX AlMn EN AW-3003
4AXXX AISi EN AW-4046
5XXX AlMg EN AW-5182
6XXX AlMgSi EN AW-6082
7XXX AlZnMg EN AW-7020
8XXX Other EN AW-8011A

The material used for the cylindrical specimen in the practical experiments is the aluminum alloy EN-

AW-6082 with the chemical composition specified in Table 2.

Table 2: Chemical composition EN-AW-6082 [21]

Alloy elements % per weight

Si Fe Cu Mn Mg Cr Ti
0.7-1.3 0.5 0.1 0.4-1 0.6-1.2 0.25 0.1

11

Fundamentals

3.3. Heat transfer

In the following, the mechanisms of heat transfer - conduction, convection, and radiation - are defined.

Furthermore, a 0-dimensional transient heat conduction problem is outlined.

3.3.1. Conduction
A temperature gradient through a solid material causes heat to conduct from the high-temperature
site to the lower temperature site. Fourier’s Conduction Law for a one-dimensional conduction

problem, like in Figure 7, is defined as [22]

dT T, — T

q"=—k—=k ! - 2 (3.15)
n q
q :A_c (3.16)

including the heat flux q"’, the heat rate g, the thermal conductivity k of the solid material, the cross-
sectional area A, the temperatures T;, T, and the conduction length L . To determine the temperature
profile in case of heat conduction the thermal conductivity, density and specific heat of a material

should be given [22].

|T2

\4

— L

Figure 7: 1-D conduction through a wall [22]

3.3.2. Convection

Fluid or gas flow over a solid surface causes convection, for instance, Figure 8 demonstrates the cooling
of a heated surface due to air flow. The heat removal rate from the heated surface is proportional to
the difference between the temperature of the fluid T,, and the surface temperature at the wall T.
Thereby the proportional constant h. is the heat transfer coefficient. Applying Fourier Conduction Law
to the cooling fluid, the same heat rate can be determined. In the following equations, k is the thermal

conductivity of the fluid, As the surface area for convection. The heat transfer coefficient is influenced

12

Fundamentals

by fluid properties, flow conditions, surface configurations and others. It can be differentiated between

natural convection and forced convection [22].

" dr (3.17)
q =hc(TS_Too) - kf@
n_ 4 (3.18)
q = Ag
Velocity or
boundary layer
Voo Too Voo To
—3 /
> —
| 12}
= R
—>

////////////////_)"

Heated surface As T

Figure 8: Convection [22]

3.3.3. Radiation

Solids, liquid surfaces, or gases at temperatures higher than absolute zero cause electromagnetic
waves that transfer heat, as illustrated in Figure 9. Radiation heat rate q"’ is defined by the Stefan-

Boltzmann Law [22].

Q" qq = &0k Ts" (3.19)
" _ i (3.20)
q raa = As

)

T rad

|
77 /'//’/ 7
Any surface at T, &, A;

Figure 9: Radiation from a solid surface [22]

13

Fundamentals

The parameter & is the emissivity of the real surface, g, = 5.67 - 1078 the Stefan Boltzmann constant,
Ts the surface temperature and A, the surface area for radiation. The emissivity of a surface is between
0 and 1, whereas the emissivity for an ideal (black) surface &, = 1. In general, the emissivity depends

on material, temperature, and wavelength [22].

3.3.4. Transient heat transfer

A transient heat transfer problem is characterized by the change in temperature of a solid material
with location as well as with time. Assuming the temperature of an object changes uniformly and
depends only on the time, some real time applications can be modeled as zero dimensional (0-D)
problems. Applying the lumped capacitance method can solve this special case of a 0-D transient heat
transfer problem. From the energy balance on a solid material with density p, volume V' and specific

heat capacity c follows [22]:
dT
pVe—= 45" Ay — he (T = T)As — &50 (T4 - Too4) A, (3.21)

This equation considers a heat flux g;"’ applied on a portion of the surface area A4, convection and
radiation. To obtain an approximate solution of this first-order, nonhomogeneous, ordinary differential
equation the finite-difference method can be applied. The lumped capatictance method is valid if the
entire material is assumed to uniformly change with temperature. As an approximation, the Biot (Bi)

number can be calculated as [22, 23]

(3.22)

whereby L. is the characteristic length of the material, h. defines the convection heat transfer
coefficient, and k is defined as the thermal conductivity of the material. Values less than 0.1 indicate
the validity of this method. The approximation of the lumped capacitance method is better the smaller
the Biot number is, which indicates a small geometry of a material with high conductivity and low
convective cooling or heating. The characteristic length is defined by the volume of a solid body

diveded by the surface area. [22, 23]

(3.23)

14

Fundamentals

3.4. Industry 4.0

In 2011 the term 14.0 was introduced for the first time in Germany and since then, received attention
in academic and industrial field. Industry 4.0, refers to the ongoing revolution in manufacturing
environment to enhance products and production processes by using automation and digitalization
technologies [3, 24]. Additionally, connections between virtual and real world are established [2],
enabled for instance by the Internet of Things (loT). Each object connected via loT technologies
interacts with others, which allows interactions between machines, products, tools etc. leading to
intelligent processes and an increase in efficiency [25]. Key technologies of Industry 4.0 include Cyber-
Physical Systems (CPS), Internet of Things (loT), Big Data and Analytics (BDA), Cloud computing,
Artificial Intelligence (Al), Augmented Reality, Simulation and Modelling, Visualization Technology,

Cybersecurity and Automation and Industrial robots. [1, 6]

Sensors and the respective data acquisition (DAQ) systems acquire data of manufacturing processes.
Human-machine interfaces (HMls), such as touch panels, keyboards, or switches, enable access to
processed sensor signals and allow humans to interact and input commands [26]. CPSs are a key
element in 14.0 as they enable the connection between the virtual and the physical world. The term
Cyber Physical Production Systems (CPPSs) refers to CPSs applied in the production environment.
CPPSs can be described as systems of systems capable of complex interactions due to the connections
among autonomous and cooperative elements. CPPSs are able to adapt to varying conditions during
the whole production lifecycle, improve real-time decision-making or autonomously fulfill cognitive

tasks [27].

A Digital Twin (DT) refers to a virtual representation of a real physical product. Considering the
exchange of data, it can be further distinguished between Digital Twin (DT), Digital Shadow (DS) and
Digital Model (DM). A DT is characterized by bilateral automatic data exchange between virtual and
real entity, whereas a DS enables unidirectional, and a DM has no automatic data transfer. There are
two general approaches to generate data that is necessary for modelling a DT, DS or DM. While the
White Box Modelling (WBM) approach uses real-physical laws, the Black Box Modelling approach uses
stochastic methods based on process and sensor data. The combination of both approaches (WBM
and BBM), called Grey Box Modelling (GBM), gains popularity and additionally provides great potential

for future applications of DS and DT in the metal forming industry [24].

Data is essential for all 14.0 technologies. Big Data concepts use huge amount of data to raise economic
value [25]. Generated data of production processes needs to fulfill three criteria: volume, variety, and

velocity. Volume describes the amount of data generated in a digitalized factory. As there are different

15

Fundamentals

sources of the data, a huge variety of data occurs leading to complex data structures. Velocity refers
to the speed the required data is provided at [24]. The three criteria can be further extended to five

characteristics, so called 5Vs, including also veracity and value [28].

Another 14.0 concept is the smart factory, also called digital or intelligent factory, that represents a
future manufacturing system which is fully connected via the lloT and thus capable of mainly operating
without human force [29]. Predictive Maintenance (PM) is a key technology of a smart factory, aiming
to predict machine failure based on machine data. Machine data acquired by sensors, is stored in a
database to make the data available at any time. The results of the data analysis are used to plan

maintenance [25].

Machine Learning (ML) is a subdomain of Al. In general, ML describes systems that are capable of
cognitive abilities like humans. More specifically, ML is based on complex algorithms and uses data for
training a model, which can further predict results. Data for ML is divided into data for training and
testing. Whereas the trainings data is necessary to develop a model and the test data verifies the
desired output. There are three different methods to train the model: supervised learning (SL),
unsupervised learning (UL), and reinforced learning (RL). Provided input and output data for training
purposes is necessary for the model to understand correlations used in further predictions, which is
called SL. Input data is provided to a model which autonomously finds hidden patterns and adapt the
algorithm through UL. RL uses the feedback of previous actions to improve the model. ML provides

benefits for complex analysis, e.g., to control machines to enhance efficiency [25].

16

Fundamentals

3.5. Finite Element Method (FEM)

The FEM is a numerical technique, that divides a model into a finite number of elements, to find
approximate solutions of differential equations in engineering problems and physics. Shape functions
are used to approximate state variables within an element. Equations of each finite element are
assembled and consequently solved [30, 20].

A Finite Element Analysis (FEA) includes three steps. The first step is the preprocessing including
geometry definition, meshing, definition of material properties and boundary conditions. The next step
is the calculation with the solver, subsequently followed by the postprocessing which refers to the

visualization and evaluation of the results [20].

There are implicit and explicit procedures. In general, the whole process is divided into time increments
At. Implicit solvers calculate unknown variables for each time step under consideration of the values
at the time t as well as at the time t + At. At the end of each time increment the system is in
equilibrium state, therefore many iterations are necessary. Explicit procedures calculate unknown
parameters at the time t + At using only values available at the time t. No equilibrium state is
calculated and therefore no iterations are necessary leading to a reduction in computational effort.
However, the time increment needs to be very small to minimize inaccuracies in calculation. The time
increment At needs to be smaller than the time an elastic wave needs to pass the distance equal to
the shortest element length and therefore depends on the speed of sound. For solid bodies the speed

of sound ¢, depends on the Young's modulus E and the density p [20].

o= |~ (3.24)

Alinear FEA is characterized by a linear relation between applied loads and the response of the system,
which is valid if the nonlinear behavior of a real physical systems is negligible. In general, the sources
of nonlinearities are classified as material, gecometry, initial or boundary conditions. Whether a linear
or nonlinear analysis is carried out, depends on the desired outcome of the simulation and the
tolerated errors. For instance, a nonlinear analysis is essential to represent the real material behavior,
improve knowledge of specific phenomena, evaluate reasons of system failure, design high-
performance parts (e.g., in aerospace industry) or determine functionality under damage and failure
exhibition [5]. Nonlinear problems are solved iteratively, e.g., by using the Newton-Raphson-Method

[18].

17

Fundamentals

Heat transfer analysis procedures can be classified in uncoupled heat transfer, sequentially coupled or
fully coupled thermal-stress analysis. Uncoupled heat transfer analysis is used, if the temperature field
does not depend on the stress and deformation state. To conduct a sequentially coupled thermal-
stress analysis, first the temperature field is calculated as a pure heat transfer problem and afterwards
the temperature distribution is used as initial state in the stress analysis. Fully coupled thermal-stress
analysis is required, if thermal and mechanical solution strongly influence each other, thereby

stress/displacement and temperature fields are solved simultaneously [31].

Computation time is an important aspect, which depends on whether an implicit or explicit method is
used. Element type and order of the shape function have an influence as well. The finer a mesh is, the
higher is the computation time. However, computation time can be reduced through symmetry

boundaries, or if rigid elements are used to model forming tools [32].

3.6. Metal forming simulations

Due to cheaper and more efficient computers, FEA became a standard industry tool used for the
simulation of metal forming processes as it provides productivity and user-friendliness. Nonlinear FEM
offers great potential in process design and optimization. Additionally, expensive and time-consuming
experiments can be replaced [18]. Whereas general purpose FEM codes, such as ANSYS and ABAQUS,
are highly flexible and can be used for various applications, special purpose FEM codes like FORGE, Q-
FORM, DEFORM, and SIMUFACT FORMING, tailored for the application in bulk-metal forming, are
especially user-friendly. However, general purpose FEM code often require great knowledge and are
time consuming [17, 20].

Simulations for bulk-forming processes are used to determine material flow, material hardening,
microstructure, formability and the mechanical, thermal and tribological loads acting on the tools [20].
Especially in metal forming, large plastic deformations, contact between specimen and tool,
temperature and incompressibility have to be considered [33]. Therefore, to simulate forming
processes, nonlinearities need to be considered, which leads to complex models that require high
computation time. Especially in hot bulk forming processes large distortions of the finite elements
occur, leading to distorted meshes. Therefore, commercial FEM software provides remeshing, to
transform the state variables from the distorted mesh to the new one, which is also called rezoning.
Furthermore, friction and temperature effects, like heat transfer to the environment or dies, have high
importance to describe the forming process accurately [18]. To describe the material behavior of a
forming process the FEM model requires flow stress data. The flow stress depends on the temperature
and on the strain rate. Either a graph, providing the stress-strain data, or a mathematical function in

the form of a material model are used to implement this information to the simulation model [17].

18

Fundamentals

3.7. Material models

The material models used in metal forming simulations can be divided into two main groups, as shown
in Figure 10. On the one hand, there are material models that do not consider elastic behavior and
assume the material to be rigid until plastic flow occurs. The utilization of rigid-plastic material models
takes less computational time and is valid for many forming applications as plastic deformations are
larger than elastic deformations. On the other hand, there are material models that consider elastic
and plastic behavior. This elastic-plastic material models are especially important, for instance if
springback, or residual stresses need to be evaluated. Additionally, viscous models describe rate

dependent behavior, which is, for example, important in hot or semi-hot forming of steels. [20]

Material models suitable for large deformations
I
I |
Material models without elastic Material models with elastic
behavior behavior
I [
I I I |
rigid- viscos- elastic- elastic-
plastic plastic plastic viscoplastic
O A O A O A o O A .
. @, P1, P2 $2
D1, P2 i @1
/ / $1
1 # ¢ P1 < @2 1 F @ 1 < Pz
4 2 2

Figure 10: Material models suitable for large deformations [20]

To describe plastic material behavior, the material model needs to consider yield criteria, flow rule and
hardening. The yield criterion describes the onset of plastic material flow as soon as the equivalent
stress reaches the flow stress. Therefore, a multiaxial stress condition is transferred to an equivalent
uniaxial stress condition. The extend and direction of the plastic deformation are defined by the flow
rule. The change in mechanical material properties during plastic deformation is considered by
modifications in the yield criterion through hardening laws. Isotropic and kinematic hardening are
depicted in Figure 11. For isotropic hardening the yield surface increases, without a change in the
position. By contrast, for kinematic hardening the yield surface stays constant, whereas the position

shifts in load direction. Consequently, preceding tensile loads lead to lower flow stress for compressive
19

Fundamentals

loads, also described as Bauschinger-Effect. kinematic and isotropic hardening represent an ideal
material behavior, whereas real materials show a combination of both hardening models. Thermal

softening of the material can occur due to recovery and / or recrystallization [18].

Isotropic Kinematic
hardening hardening
Or1 A iy
op
o =0

Figure 11: Isotropic and kinematic hardening [18]

20

Experimental setup

4. Experimental setup

In the following, the hydraulic press and the furnace at the Chair of Metal Forming (MF) are described,
as well as the sensors they are equipped with. Furthermore, an overview on the setup of the practical
experiments is given, and the experimental plan is outlined. Additionally, focus is set on the automatic

evaluation and visualization of the measured sensor data with Python.

4.1. Furnace

The furnace at the chair of metal forming, shown in Figure 12, can be heated up to maximum
temperature of 1200 °C via resistance heating. The dimensions of the heating chamber of the furnace
are 300 mm in width, 240 mm in height and 450 mm in depth, whereas the furnace lining is made of
refractory material. The furnace is equipped with thermocouples, which measure the air temperature

inside the heating chamber.

Figure 12: Furnace at the Chair of Metal Forming

Two thermocouples (1) are located in the upper left and the upper right corner of the back wall of the
heating chamber and are used by the control system of the furnace. The measured temperature of
those thermocouples is shown on the display (2) of the control system on the front side of the furnace.
By applying the retrofitting method, the furnace was equipped with an additional thermocouple Type
K (3), placed at the center of the back wall. The measured temperature of this thermocouple can be

displayed via the implemented HMI [34].

21

Experimental setup

Table 3: Sensor of the furnace [34]

Measured quantity Sensor Range

Temperature [°C] Thermocouple Type K 0-1200°C

4.2. Hydraulic Press

Metal forming aggregates are categorized by different working principles, related to ram displacement,
applied force and provided kinetic energy [19]. Hydraulic presses are controlled by force, which can be
regulated via hydraulic pressure. The nominal force of the forming unit is available during the whole
stroke. Additionally, ram kinematics can be individually adjusted to the forming process. Compared to

metal forming aggregates controlled by displacement, the ram velocity and therefore the ratio

between production output and input is lower. [16, 18]

Figure 13: Hydraulic press at the MF

The hydraulic press at the MF, depicted in Figure 13, is located directly next to the furnace, enabling
shorter transportation time, and therefore reducing temperature loss of the specimen. A load cell (1),
appropriable for the maximum load of 1 MN, measures the force applied during the bulk forming

22

Experimental setup

process. The position of the top die (2) during the forming process is traced with a Linear Variable
Differential Transformer (LVDT) with the range of 0-600 mm, whereas the bottom die (3) remains at a
fixed position. Additionally, the hydraulic press was equipped with a pyrometer (4) to measure the
temperature of the specimen (5) in the range of 0-1200°C. The pyrometer is attached to a mobile,

height-adjustable mounting (6), enabling the modification of the pyrometer position. [35]

Table 4: Sensors of the hydraulic press [34]

Measured quantity Sensor range

Die force [N] Load cell 0-1 MN
Die position [mm] LVvDT 0-600 mm
Temperature of the specimen [°C] Pyrometer 0-1200°C

4.3. Procedure

Cylindrical specimens were tested, whereby two different dimensions, listed in Table 5, were used in
the experiments. For identification purpose, specimens were labelled as “A” or “B” referring to the

respective specimen dimensions.

Table 5: Specimen dimensions

Specimen label Initial diameter dy [mm)] Initial height hy [mm)]
A 10 15
B 20 30

The furnace is preheated to a defined operating temperature T before the specimen are put into the
heating chamber for preheating. At the time the specimen is taken out of the furnace with a manual
gripper, the measurement is started via the HMI. The data of the measured quantities, listed in Table

3 and Table 4, is automatically recorded. Additionally, the elapsed time is measured and displayed on

hO i hl

!
i
hy
|
@

Figure 14: Schematic setup of the pyrometer position

23

Experimental setup

the HMI. The specimen is transferred from the furnace to the hydraulic press within the specified
transportation time t;. As the specimen is placed on the bottom die, the pyrometer measures the

temperature of the specimen at a defined position.

Thereby, the measuring position of the pyrometer h,, is defined in such a way that the top die does
not interfere with the measuring position during upsetting process, as shown in Figure 14. After
positioning the specimen remains on the bottom die for a specified rest time t,. before the hydraulic
press is activated. the initial distance between top and bottom die h; of the hydraulic press is the same
for each upsetting process. After the upsetting process, the specimen is removed from the hydraulic
press and the measurements is manually stopped by using the HMI, as the top die reaches its original
position. Measured data is stored in a csv-file. The output file contains the timestamp (formatted, e.g.,
T#10s300ms), the load of the hydraulic press, the absolute and relative gap between the dies, the
specimen temperature measured by the pyrometer, and the temperatures measured by the

thermocouples. The sequence starts again for the next specimen.

Overall, two experiments, each with different test settings, were carried out. For a specified test
setting, different process parameters were defined, which are the dimension of the specimen, the
furnace temperature, the transfer time and the height difference of the upsetting process. The
measuring position of the pyrometer, the relative distance between top and bottom die and the rest

time of the specimen on the bottom die are constant for each test setting, see Table 6.

Table 6: General settings for all experiments

Measuring position h,, [mm] Initial distance h; [mm] Rest time t,. [s]

6 50 3

4.3.1. Experiment1

A total amount of 24 specimen per geometry were available for testing. For identification purpose,
each specimen was assigned a number in combination with the label A or B specifying the dimensions
as given in Table 5. Overall, eight different test settings, outlined in Table 7, were defined, whereas six
specimens were tested for each setting. Furnace temperature varies on two different levels, 300°C or
500°C respectively. All specimens referring to the same operating temperature of the furnace were
placed in the furnace and heated for half an hour to ensure homogeneous heating of the whole

specimen. The transfer time varies between four and seven seconds.

24

Experimental setup

Table 7: Experimental plan — experiment 1

Setting Specimen number Temperature Transfer time Height difference
number Tr[°C] t; [s] Ah [mm)]

1 1A, 2A, 3A, 4A, 5A, 6A 300 4 5

2 7A, 8A, 9A, 10A, 11A, 12A 300 4 8

3 1B, 2B, 3B, 4B, 5B, 6B 300 4 15

4 7B, 8B, 9B, 108, 11B, 12B 300 7 20

5 13A, 14A, 15A, 16A, 17A, 18A 500 7 5

6 19A, 20A, 21A, 22A, 23A, 24A 500 4 8

7 13B, 14B, 15B, 16B, 178B, 18B 500 7 15

8 198, 208, 21B, 22B, 23B, 24B 500 4 20

4.3.2. Experiment 2

A second experiment series, similar to the first one, is carried out. Throughout the tests, special
attention is paid on the measuring position of the specimen. The pyrometer is placed at the back side
in the hydraulic press. The specimen is inserted into the hydraulic press, whereas it is positioned in a
way that the pyrometer does not measure the temperature at the area where the gripper contacted
the specimen. The experimental plan is given in Table 8. For this experiment 24 specimen of geometry
A were tested in six different settings, each containing four specimens. Temperature is tested on three
different levels, while the transfer time varies from four to seven seconds and the height difference is

constant at five millimeters for each setting.

Table 8: Experimental plan — experiment 2

Setting Specimen number Temperature Transfer time Height difference
number Tr [°C] t; [s] Ah [mm]

1 1A, 2A, 3A, 4A, 300 4 5

2 5A, 6A, 7A, 8A 300 7 5

3 9A, 10A, 11A, 12A 400 4 5

4 13A, 14A, 15A, 16A 400 7 5

5 17A, 18A, 19A, 20A 500 4 5

6 21A, 22A, 23A, 24A 500 7 5

4.4. Sensor data visualization

A Python script was used to visualize the sensor data for each measurement file saved in a specified
directory. Measurements belonging to the same test setting are printed in the same diagram. A test
setting is defined by the setting name, the diameter and height of the specimen, the preheating
furnace temperature, the upset height, the transport time, and rest time. The setting name serves the
identification purpose, all further information of the setting is displayed within the plot. To assign a
measurement file to a test setting, the Python script needs information about the file names that

belongs to an experiment setting. Therefore, the name of the measurement file needs to be specified

25

Experimental setup

manually. An example for the assignment of all measurement files to the corresponding test setting of

an experiment is given in Figure 15.

#1.) Setting definition:

[setting name, diameter, height, preheating temperature, upset height, transport time, rest time]
s_1=['s1', 10, 15, 300, 5, 4, 3]

s_2=['s2',10, 15, 300, 5, 7, 3]

s_3=['s3', 10, 15, 400, 5, 4, 3]

s_4 =['s4', 10, 15, 400, 5, 7, 3]

s_5=['s5', 10, 15, 500, 5, 4, 3]

s_6=['s6', 10,15, 500, 5, 7, 3]

settings=[s_1,s_2,s_3,s_4,s_5,s_6] #all tested settings

#2.) Assignment of measurement files to corresponding test setting
sp_1=['TestNr_12.", 'TestNr_13.", 'TestNr_14.", 'TestNr_15."]
sp_2=['TestNr_16.", 'TestNr_17.", 'TestNr_18.", 'TestNr_19."]

sp_3 =['TestNr_20.', 'TestNr_21.", 'TestNr_22.", 'TestNr_23."]

sp_4 =['TestNr_24.", 'TestNr_25.", 'TestNr_26.", 'TestNr_27."]
sp_5=['TestNr_28.', 'TestNr_29.", 'TestNr_30.", 'TestNr_31."]

sp_6 =['TestNr_32.", 'TestNr_33.", "TestNr_34.", "TestNr_35."]

specimen = [sp_1, sp_2, sp_3, sp_4, sp_5, sp_6] # all measurement files

Figure 15: Example code

Additionally, within the developed Python script average values, such as the velocity of the hydraulic
press or the furnace temperature, are calculated for each test setting. The Python script creates plots
from the measured sensor data and saves them in a specified directory. In the following the
measurement data of the sensors is outlined. For this purpose, measurements from experiment 2 are

shown for each sensor.

The load cell converts the applied force of the hydraulic press into an electrical signal, which can be
measured. Thereby, the electrical signal changes proportionally to the applied force [36]. Figure 16
shows the load-time curve for a test setting. At the beginning of the upsetting process a steep rise in
the force of the hydraulic press can be seen. The curve levels off an then further increases nonlinearly
until it reaches a maximum. As the top die moves up, force drops down to zero. Within the Python

script, the average maximum force is determined for each test setting.

26

Experimental setup

Load cell
—— 2022-07-15_TestNr_12
30 7 ——— 2022-07-15_TestNr_13
—— 2022-07-15_TestNr_14
25 —— 2022-07-15_TestNr_15
—. 20 A
=
=
S 15 -
o
[
10
5 -
0
T T T T T T T
12.0 12.5 13.0 13.5 14.0 14.5 15.0 15.5
Time [s]

Figure 16: Sensor data - load cell

The LVDT converts linear movements into an electrical signal. Thereby, the position of the top die
moving with constant velocity during the upsetting process, is determined, which is illustrated in Figure
17. The highest value indicates the top die being at the initial position, while the lowest value indicates
the end of the upsetting process. Measurements show a slight deceleration of the top die at the time
the die contacts the specimen. Upsetting velocity is calculated from measurement data of the LVDT,

using the linear relation between the position of the top die and the time.

VDT
180 1 —— 2022-07-15_TestNr 20
175 - —— 2022-07-15_TestNr 21
—— 2022-07-15_TestNr_22
170 - —— 2022-07-15_TestNr_23
€
£ 165 -
o
©
S 160 -
()
5
3 155
1%
o
<C
150
145
140
T T T T T T T
7.5 10.0 12.5 15.0 17.5 20.0 22.5
Time [s]

Figure 17: Sensor data - LVDT

27

Experimental setup

As s —S
p=—= start end (4.25)

At tena — tstart

The distance 4s is calculated as the difference between the die position at the start of the die
movement Sg¢q,+ and the position at the end s,,, 4 of the upsetting process. The time At is calculated
as the difference between the point of time the top die reaches the lowest position t.,,4 and the point
of time at the beginning of the movement tg;,,+- An average velocity for the measurements of the

same setting is calculated for further use in the simulations.

A pyrometer is used for contactless temperature measurements. Radiation emitted by objects with
temperatures greater than absolute zero temperature is detected from the pyrometer and
transformed to an electrical signal [37]. In the experiment, the pyrometer measures the temperature

of the specimen, shown in Figure 18.

Pyrometer
250 —— 2022-07-15_TestNr_20
— 2022-07-15_TestNr 21
—— 2022-07-15_TestNr_22
—— 2022-07-15_TestNr_23
200 A = =
o
v
3 150 A
o
()
Q.
£
i< 100 -
50

T T T T T

0 5 10 15 20 25 30
Time [s]

Figure 18: Sensor data - pyrometer

At the start of the measurement there is no specimen inserted into the hydraulic press, therefore the
pyrometer indicates temperatures below 50 °C. At low temperature levels higher deviations between
the measured temperature and the actual temperature occur. During positioning of the specimen on
the bottom die, the temperature curve of the pyrometer shows high fluctuations as the specimen is
manually moved by the gripper. Additionally, the pyrometer could measure the gripper temperature
if it comes across the measuring position. In this case, the temperature curve shows significantly lower

temperatures. As soon as the specimen is placed on the bottom die, the pyrometer shows a steady
28

Experimental setup

decrease in temperature. The temperature curve shows a steep drop during the upsetting process, as
the specimen contacts both dies. A slight temperature rise due to deformation energy during upsetting
can be seen in Figure 19. Thereby, temperature rise depends on the amount of the deformation. After
the upsetting process, the specimen proceeds to cool down. Temperature decrease is higher, as the
contact area between specimen and die has increased. As the specimen is removed, temperature

immediately drops. In some cases, measurement stops before the specimen is removed.

Pyrometer

temperature increase

280 -
1
1
__ 260 A i
U 1
o 1
W |
S 240 4 !
® :
g |
& 550] — 2022-06-21 TestNr_45 :
@ 2022-06-21_TestNr_46 ! !
—— 2022-06-21 TestNr 47 ! :
200 4 —— 2022-06-21_TestNr 48 | .
I . 1
——— 2022-06-21_TestNr_49 e upsetting !
— = - 1 1
180 4 2022-06-21 TestNr 50 | :
T T T T T T
8 10 12 14 16 18

Time [s]

Figure 19: Sensor data - pyrometer (detail)

Thermocouples are simple and robust sensors to measure temperatures consisting of two different
metals, that are joined together at one end. Due to heating or cooling of the junction, a voltage that
correlates with the temperature is created [38]. The air temperature in the furnace is detected by the
thermocouple installed via the retrofitting method. The temperature curve in Figure 20 indicates that
the air temperature is not constant over the whole time. As the furnace is opened, hot air exchanges
with the environment leading to a temperature loss inside the furnace. The average furnace
temperature is calculated to assume the furnace temperature in the simulation. However, experiments
showed that there are discrepancies between the measured temperature of the preinstalled
thermocouples and the one that has been added with the retrofitting method, leading to uncertainties
about the actual furnace temperature. Thereby, the retrofitted thermocouple, that indicates lower

temperature values, is taken as reference.

29

Experimental setup

Thermocouple (furnace)

381 A
= 2022-07-15_TestNr_20
380 A ——— 2022-07-15_TestNr_21
— 2022-07-15_TestNr_22
379 4 —— 2022-07-15_TestNr_23
U
2. 378 A
g
=]
© 377
]
o 1
uﬁ i
_ S o L A
375 L T
374 4 k '
T T T T T T T
0 5 10 15 20 25 30
Time [s]

Figure 20: Sensor data - thermocouple furnace

Another thermocouple measures the temperature of the environment, see Figure 21, which is almost
constant over the time. Also, an average temperature is calculated to estimate the environment

temperature for the simulations.

Thermocouple

Temperature [°C]

2022-07-15_TestNr_20
2022-07-15_TestNr_21
2022-07-15_TestNr_22
2022-07-15_TestNr_23

T T T T

0 5 10 15 20 25 30
Time [s]
Figure 21: Sensor data - thermocouple

N N N N

w A h oS

e} o [N ~
] L 1 1

23.6

30

Experimental setup

4.5. Data processing

To compare measurements and simulation, the sensor data is automatically processed using Python.
Time-temperature curves and displacement-force curves were extracted from the sensor data. The
temperature curve is determined for the timespan the specimen rests on the bottom die to the start
of the upsetting process. Another temperature curve is determined for the time of the upsetting.
Additionally, the force-displacement curve is calculated from the force of the load sensor and the top
die position measured by the LVDT. Therefore, characteristic time points, illustrated in Figure 22, in
the sensor data were identified. The time the specimen is placed on the bottom die t; is defined by
the transfer time of the individual test setting, as it is very difficult to determine from the sensor data
due to the fluctuations around this time point. The start of the upsetting process t, is defined by the
force exceeding a defined threshold, whereas the end of the upsetting process t; is determined by
the time the top die reaches the lowest position. Two temperature plots and the force displacement
curve are created for each test setting. These plots serve as a basis to compare experiments and

simulation.

Temperature [°C]

Contact to bottom die _; and bottom die

LIA
VI‘ »
1

A

\ A

—— 2022-07-15_TestNr_14

[
»

Ti
Start Stop ime [s]

t t t
measurement 1 2 3 measurement

Figure 22: Relevant time points from the pyrometer measurement

31

Process Simulation

5. Process simulation

This chapter deals with the simulation of the upsetting process cycle of the specimen. First, an
overview is given on the process itself and how it is divided into individual simulations. Further, a focus
is set on the development of each FE simulation to describe the whole process. The structure of the FE
model, the analysis type, the mesh as well as the simulation outputs are briefly explained. Additionally,
an alternative approach to calculate the temperature during the transport with Python is presented.
Literature research on material properties and further relevant parameters is summarized and

parameters for the Johnson-Cook material model used in the upsetting simulation are outlined.

5.1. Process cycle

Overall, the whole process is divided into four simulations, whereas three of them are transient heat
transfer simulations describing the heating and cooling of the specimen and one is a fully coupled
thermal-stress analysis to model the compression of the specimen during upsetting. The specimen is
placed inside the preheated furnace for a defined heating time. Due to convection, conduction, and
radiation the specimen temperature rises. This process step is obtained by Simulation 1. Subsequently,
Simulation 2 represents the manual transport of the specimen from the furnace to the hydraulic press
after the preheating. During the transport the specimen cools down due to radiation and convection
to the environment. Additionally, heat conducts from the specimen to the gripper. Simulation 3 starts
at the time the specimen is placed on the bottom die of the hydraulic press and ends at the time the
top die has moved from the initial position to the top surface of the specimen. Meanwhile heat
conducts from the specimen to the cooler die, additionally convection and radiation are present to a
small extend. Finally, Simulation 4 includes the compression of the cylindrical specimen. During this
process step, heat conducts from the specimen to both dies. Inside the specimen heat is generated, as

energy that is expended to plastically deform materials is to a great extend converted into heat.

5.2. Unit system

The FE simulations are carried out with Abaqus 2019. As there are no implemented units, all
parameters are defined by using the SI-mm unit system, outlined in Table 9. Temperatures are defined
in degree Celsius. Physical model parameters are defined for each FE model. The temperature at
absolute zero is set at -273.15 °C and the Stefan Boltzmann constant

oy, is defined as 5.67E-11 mW/mm?°C* for consistency in units.

32

Process Simulation

Table 9: Unit systems

Quantity Sl SI-mm
Length m mm
Force N N
Mass kg t (103 kg)
Time S S
Stress Pa (N/m?) MPa (N/mm?)
Energy J mJ (103)
Density kg/m3 t/mm3

5.3. Simulation 1 - Heating

To simulate the process step of the preheating, furnace and specimen are modelled as three-
dimensional parts. A schematic representation of the model, including material properties,

interactions, initial and boundary conditions, is given in Figure 23.

Furnace: Tg, p, k, ¢ Boundary condition: T(t) = Tg

*_ ~ | Canvection: k.| ™\
Radiation: €

/

7
Specimen: Ty, p, k, ¢ \ /
Radiation: & \ Conductionlﬁ: k.,

Figure 23: Simulation 1 - Heating

33

Process Simulation

Material properties for specific heat, conductivity and density are defined for the specimen as well as
for the furnace. It is assumed, that the furnace is already preheated. Therefore, the initial temperature
of the furnace is set to this defined temperature, whereas the initial temperature of the specimen is
defined equal to the ambient temperature. A surface-to-surface contact between the specimen and
the furnace is defined. Furthermore, the thermal conductance in the contact area is specified to model
the conductive heat transfer between furnace and specimen. Additionally, convection and radiation
boundaries are applied. A transient ‘heat transfer’ step is applied, in which a boundary condition with
constant temperature is defined on the inside walls of the furnace. The time period is defined by the

heating time.

5.4. Simulation 2 - Transport

For the transport simulation an alternative approach is used instead of a FE simulation. A transient
heat transfer equation was defined for the problem, which was solved using Python. Assuming that
the temperature changes uniformly in the whole specimen, a differential equation for a 0-dimensional
heat transfer problem is defined from equation (3.21). This energy balance equation considers
temperature changes due to radiation and convection to the environment and a surface heat flux

caused by the heat conduction from the specimen to the gripper.

daT 1 . 4
E = oVc [CIS As,h — he (T - T)As — g50% (T4 —-T,) As] (5.26)
T'+1 -T; " 4
l At - = oVc [qs Agp — he (T; — T A — &50% (Ti4 T,) As] (5.27)
T =T + ﬂ[q "Agn —he (T — Ty)As — € ak(T-4—T 4) A] (5.28)
i P oyelts s c Uy al)fs s i a s

The equation is discretized in time by applying the explicit Euler-method. Moreover, the equation is
solved with Python with a defined number of iterations. As the initial condition, the temperature is
taken from the previous simulation. The time delta At is specified as 0.1 seconds since deviations to
the calculated time with a delta of 0.01 are low. The number of iterations is calculated as the time of
transport divided by the time difference. The term for the surface heat flux and the related surface
area is unknown, therefore a correction term is used, and the temperature curve was fitted to the

measurements.

34

Process Simulation

5.5. Simulation 3 — Rest on die

The simulation model is illustrated in Figure 24. Bottom die and specimen are modelled as three-
dimensional parts. Material properties for specific heat, conductivity and density are defined. The
initial temperature of the bottom die is assumed to be at room temperature, whereas the initial
temperature of the specimen is defined by the temperature at the end of the transport simulation. A
surface-to-surface contact definition between specimen and die is created, whereas the contact
conductance between the two parts is specified. Furthermore, convection to the environment is
specified, whereas a heat transfer coefficient for free convection is considered. Although, radiation
effects are rather small at lower temperatures and could be neglected, radiation to the environment

is defined as the computation time is not high for this simulation.

Convection: k.
Radiation: &

Specimen: T1,,4,p, k, C

Bottom die: Ty, p, k, ¢

Conduction: k.

Figure 24: Simulation 3 — Rest on die

5.6. Simulation 4 - Upsetting

For the upsetting simulation two different approaches, an explicit and an implicit, are elaborated. A
schematic overview on the model, including material properties, initial condition, boundary conditions
and interactions is given in Figure 25.Top and bottom die, as well as the specimen are modelled as
three-dimensional parts. An initial gap of 0.1 mm between top die and specimen is defined to avoid
problems with the contact definition. The initial temperature of the top die is defined equal to the
ambient temperature, whereas the initial temperature of the specimen and the bottom die is defined
by the temperature distribution at the end of the previous simulation. Contact between the parts is

specified using a general contact formulation. Contact in normal direction is defined as ‘Hard’ contact,

35

Process Simulation

the tangential behavior is defined by the penalty friction formulation with a constant friction
coefficient of u = 0.3. Heat conduction in the contact area to the dies is considered by defining the
thermal contact conductance as a function of clearance. All degrees of freedom of the bottom die are
constrained. A reference point is created and coupled to the contact surface of the top die. Thereby,
all translational and rotational degrees of freedom are constrained. A displacement boundary is
specified on the reference point by a time-displacement amplitude to define the movement of the top
die. Heat loss due to convection and radiation is neglected, as the process time is rather short.
Additionally, heat loss due to radiation is negligible for lower specimen temperatures. A ‘Coupled
temp-displacement’ step is applied in the implicit simulation, for the explicit simulation the step is
defined as ‘Dynamic, temp-disp., Explicit’. Material properties for the dies and the specimen include
specific heat, conductivity, density, and elasticity. Additionally, plastic material behavior is defined for
the specimen material by using the Johnson-Cook constitutive equation. The explicit simulation
includes damage for ductile materials. Heat generation due to plastic deformations are considered

with the definition of the inelastic heat fraction.

Reference point with

— applied displacement
L boundary and

5 = kinematic coupling to
i S o i Y 13- L] top die surface

Top die: Ty, p, k,c, E

Conduction: k.
Friction: u

i
i

Bl
2
:

Specimen: T3,,4,0, k, C, E

Inelastic heat fraction, b
Johnson-Cook model parameters i
s Bottom die: T3,,,4, 0, k, C, E
|
it

No translational or rotational
degrees of freedom

Figure 25: Simulation 4 - Upsetting

36

Process Simulation

5.7. FE mesh

The specimen is partitioned by using datum planes, also mesh controls are applied to create a radial
arrangement of the elements, illustrated in Figure 26. The element size is defined by applying global
seeds. A hex-dominated mesh using sweep technique and the advancing front algorithm is created.
Furnace and dies are meshed using hexagonal elements with the structured meshing technique.

Additionally, partitions are created for the furnace.

Figure 26: Partitions and mesh of the specimen

Depending on the type of simulation either elements for ‘Heat transfer’ or elements for ‘Coupled
Temperature-Displacement’ are selected. The respective element library is used for implicit and
explicit simulations. Element size is defined by global seeds for each part. Assigned element types are
listed in Table 10 for each part in the Abaqus model. Thereby, element type DC3D8 is an 8-node linear
heat transfer brick, DC3D6 is a 6-node linear heat transfer triangular prism. C3D8RT describes an 8-
node thermally coupled brick with trilinear displacement and temperature, that uses reduced
integration and hourglass control. C3D6T is a 6-node thermally coupled triangular prism with linear

displacement and temperature [31].

Table 10: Element type for each part

Part Heat transfer Coupled Temperature-Displacement
Specimen DC3D8 + DC3D6 C3D8RT + C3D6T
Dies DC3D8 C3D8RT
Furnace DC3D8 C3D8RT

37

Process Simulation

5.8. Simulation outputs

Field output and history output are requested in the simulation. The frequency of the field output is
either defined as units of time depending on the step time or as numbers of intervals. Field output
variables, such as nodal temperature, heat flux, stress, strain and so on are specified. Additionally, two
different history outputs are defined. A node set, depicted in Figure 27, containing nodes on the shell

surface of the cylindrical specimen at fixed x- and y- coordinate and variable z-coordinate is defined.

Node coordinates: (%, 0, ho)

Node coordinates: (%, 0, 0)

Figure 27: Node set

History output, with nodal temperature ‘NT’ and nodal coordinate ‘COORD’ as output variables, is
requested for this node set to evaluate the temperature of the specimen. Thereby, nodal coordinates
are necessary to identify the nodes at the pyrometer position, which is further compared to the
measured temperature. Another history output is created for the reference node in the upsetting
simulation. The output variables are specified as U3, for the displacement along the z-axis, and RF3,
which is the reaction force acting on the reference point, also along z-direction. The results of the
history output are further accessed by a Python script to extract the results from the Abaqus output

database.

5.9. Material properties

Material properties that need to be specified in a transient heat transfer analysis are the material
density, specific heat, and conductivity. The thermal material properties of aluminum alloys, listed in
Table 11, are assigned to the specimen. Thereby, the defined values for the specific heat capacity are
for aluminum alloys in general and the conductivity values are for aluminum alloys in 6xxx series. The
density of aluminum EN-AW 6082 is specified as p = 2700 kg/m3. This material parameters are used

for the specimen in each simulation.
38

Process Simulation

Table 11: Thermal material properties of aluminum alloys [39]

Temperature T [°C] Conductivity k [W/m°C] Specific heat capacity c [J/kg°C]
20 191 911
100 197 944
200 204 985
300 211 1026
400 218 1067
500 225 1108

The furnace lining is made of refractory, therefore material properties of silica, a common refractory
material, were selected. The thermal properties of silica, listed in Table 12, are assigned to the furnace

in Simulation 1. The density of silica is defined as p = 1820 kg/m? [40].

Table 12: Thermal material properties of silica [40]

Temperature T [°C] Conductivity k [W/m°C] Specific heat capacity c [J/kg°C]
400 1.2 915
600 1.36 944
800 1.51 961
1000 1.64 969
1200 1.76 979

The dies of the hydraulic press are probably made from hot-working steel, e.g., W300. However, as the
exact material specification is unknown, material properties of carbon steel are assumed, as
temperature dependent properties were found in the literature. The density is specified as p =

7850 kg/m3, thermal material properties for steel used in the simulation are shown in Table 13.

Table 13: Thermal material properties of carbon steel [41]

Temperature T [°C] Conductivity k [W/m°C] Specific heat capacity c [J/kg°C]
20 53 440
100 51 488
200 47 530
300 44 565
400 41 606
500 37 667

39

Process Simulation

Elastic behavior is described by a linear isotropic elasticity model, characterized by the Young’s

Modulus and the Poisson’s ratio. The temperature dependent Young’s modulus for aluminum is shown

in Table 14, the Poisson ratio of aluminum is assumed to be 0.33 [21].

Table 14: Young's modulus for aluminum alloys [39]

Temperature T [°C]

Young’s modulus E [MPa]

20
50
100
150
200
250
300
350
400

70000
69300
67900
65100
60200
54600
47600
37800
28000

The type of simulation requires elastic behavior to be specified for all parts in the simulation. The

Young’s modulus and the Poisson ratio for steel are listed in Table 15.

Table 15: Young's modulus and Poisson ratio of steel [42]

Temperature T [°C]

Young’s modulus E [MPa]

Poisson ratio v [-]

50
100
150
200
250
295

206400
201600
198300
193300
190600
186400

0.271
0.271
0.273
0.275
0.278
0.282

Viscoplastic material behavior is defined with the Johnson-Cook constitutive material model, that

describes the behavior of metals considering work hardening in the first term, strain rate hardening in

the second term and thermal softening of the material in the third term [43].

T_Tt)m
Tm_Tt

a=(A+Bspn)[1+(31n(‘Z—:)H1—(

(5.29)

40

Process Simulation

In this equation o is the stress, A the yield strength of the quasi-static condition, B the strain hardening
constant, &, the plastic strain, n the strain hardening exponent, C the strain rate sensitivity, &, the
strain rate, £, the reference strain rate, T environment temperature, T; the reference temperature,
T,, the melting temperature [43]. The Johnson-Cook plasticity model can be described as particular
type of isotropic material hardening. The Johnson-Cook material model can be used together with the
Johnson-Cook dynamic failure model enabling to evaluate material failure. Damage of the material

occurs if the damage parameter w, which is defined as [31]

_ Aep 5.30
©= Z<5fpl> ()

exceeds 1, whereby A¢e,; is an increment of the equivalent plastic strain and & ,,; describes the strain

at failure. The failure model describes the strain at failure dependent on a nondimensional plastic

strain rate z—p, the ratio of the pressure stress to the Mises stress % and the nondimensional
0
T—T;
temperature — ;, which is also defined in the Johnson-Cook plasticity model. In this equation D; —
m~— 1t

Ds are the failure parameters [31].

& pu = [D1 + Dy exp (Ds g)] [1 +D,In C—Z)] [1 + D (Ti__Tth)] (5.31)

Various parameters for the Johnson-Cook material model for aluminum EN AW-6082 can be found in
the literature: [43-50]. Some of the parameters for the Johnson-Cook model, obtained from literature,

are shown in Table 16. Additionally, damage parameters are listed in Table 17.

Table 16: Johnson Cook Model parameters

A B c n m &o T T, Literature
[MPa] [MPa] [-] [-] [-] [s7] [°C] [°Cl]
201.55 250.87 0.00977 0.206 1.31 0.001 582 20 [44]
297.8 111.1 0.0238 0.048 1.19 1 555 25 [45]
285 94 0.002 0.41 1.34 1 588 25 [47]
250 243 0.00747 0.17 1.31 1 582 25 [49]

41

Process Simulation

Table 17: Johnson Cook damage parameters [44]

5.10. Temperature increase associated with plastic deformations

In metal forming energy is expended to plastically deform materials, whereby this energy is to a large
extend converted into heat, leading to an increase in the component temperature [51]. In the work of
[50], experiments are conducted to measure the temperature increase of an aluminum alloy EN AW-
6082 via infrared thermography, which is a commonly used technique. The medium value for the
fraction of plastic deformation that is converted into heat was calculated as 0.9 within this work. This
value is also a very commonly used value for metals in general [46, 50]. In further literature [44], the
fraction of plastic work, that is converted into heat is defined as 0.9 for aluminum 6082, although,

literature shows, that this value depends on the strain rate.

Abaqus provides the possibility to include the heat generation by defining an inelastic heat fraction, to
specify the fraction of inelastic dissipation applied as heat flux per volume. The inelastic heat fraction
can be defined in conjunction with the Johnson-Cook plasticity model, the density and the specific heat
[31]. Bulk metal forming processes, for example, involve large amounts of inelastic strain. Considering
the heat generation allows for a more realistic process simulation, as material properties depend on

temperature. For the present work, the inelastic heat fraction was defined as 0.9.

5.11. Thermal contact conductance

The heat transfer from a component to the tools has various impacts on the process, for example
during forging. The thermal contact conductance depends on several parameters, but most
importantly on the geometry of the contact surfaces, the contacting materials, the pressure, the

temperature and the lubrication type [51].

Heat is transferred by conduction through contact asperities. Pressure and surface roughness define
the asperity shape. High contact pressure leads to deformation of the asperities, which increases the
contact area and the heat transfer coefficient as well. Furthermore, decreasing surface roughness
leads to higher conductance in the contact area [52]. Contact conductance can be measured from
experiments. Another method is to vary the parameter in numerical solutions to adapt the results to

a measured temperature distribution. The contact conductance gives the best match between

42

Process Simulation

experiment and simulation [51]. Literature provides reference values for the thermal contact

conductance, see Table 18.

Table 18: Reference values - contact conductance

Application Contact conductance [W/mK]
Hot pressing of aluminum [51] 15000 ... 30000
Approximate value for hot forming [51] 50000
Aluminum during hot forming [53] 3300
Aluminum — aluminum [54] 2200 - 12000
Stainless steel — stainless steel [54] 2000 - 3700
Ti-6Al-V4 workpiece - H13 steel die [55] 4000 - 6000

In Abaqus the contact conductance is defined as a function of clearance and / or a function of pressure.
In the simulations the contact conductance is defined dependent on the gap between the contact
surfaces. For the upsetting simulation, a higher heat transfer coefficient is used than in the heat
transfer simulation to the die. Thereby, the contact conductance is defined based on reference values

and further parameter variation in order to fit the simulation to the measurements.

5.12. Convection coefficient

Literature, given in Table 19, provides reverence values for the heat transfer coefficient used in
calculations with forced or natural convection. Thereby, higher values indicate higher heat loss or heat

input.

Table 19: Reverence values - convective heat transfer coefficient

Application Heat transfer coefficient h, [W/m%K]
Free convection [56] 3..20
Forced convection [56] 10 ... 100
Forced convection [22] 25 ... 250

43

Abaqus Scripting

6. Abaqus Scripting

As multiple simulations with varying geometry and input parameters are required, the generation of
the Abaqus models as well as the evaluation of the simulation results is automized by using Abaqus-
specific Python commands. This chapter gives an overview on the Abaqus Scripting Interface and
object-oriented programming. The hierarchy of the Abaqus output database is illustrated to
demonstrate how to access data of an Abaqus output database. Additionally, the structure of the

developed Python code is outlined.

6.1. Abaqus Scripting Interface

The Abaqus Scripting Interface is an application programming interface (API) that extends the object-
oriented programming language Python. From a script, containing Abaqus Scripting Interface

commands, Abaqus/CAE functionalities can be accessed. For instance, the Abaqus Scripting Interface

B Abaqus/CAE ------- -

Command

Line .
GUI Script
Interface crp

(CLI

commands

Python
interpreter

A

Abaqus/CAE
\ kernel /

——
N e o ————

— e e e e e e e

Abaqus/Standard
Abaqus/Explicit
Abaqus/CFD
Abaqus/Design

v

‘ Output database]

Figure 28: Interaction of Abaqus Scripting Interface commands with the Abaqus/CAE kernel [31]

44

Abaqus Scripting

allows the user to create and modify an Abaqus model, submit jobs, read from an output database, or
view analysis results. Figure 28 depicts the interaction of Abaqus Scripting Interface commands with
the Abaqus/CAE kernel. The Abaqus/CAE graphical user interface (GUI) allows the user to interact with
the kernel. It generates Python commands based on the selected options and settings from dialog
boxes, which are then interpreted by the Abaqus/CAE kernel. All commands are stored in the replay
(.rpy) file. Instead of the Abaqus GUI, a script that contains Abaqus Scripting Interface commands, can
be used to directly communicate with the kernel. Additionally, a script allows the automation of

repetitive tasks [31].

6.2. Recording Python commands

A detailed introduction on recording Python commands from Abaqus/CAE to create a script is given in
[57], which mentions the following options to record the commands: (1) Each click in the Abaqus GUI,
even scrolling or zooming in the Abaqus Viewer, is recorded and the Python commands are
automatically saved into the replay (.rpy) file in the active directory. (2) As the Abaqus model is saved,
additionally, a journal (.jnl) file is saved. This includes only commands necessary for the model
generation. (3) Also, the Macro Manager can be used to record and write commands to the
abaqusMacros.py file until the recording is stopped. Recorded commands can be used to develop the
Python script [57]. Further information can also be found in the Abaqus Scripting reference [31].

In this work, the recorded Python commands from the replay file were used to build functions. To

create adaptable simulations, parameters were used when necessary.

6.3. Object-oriented programming

Python is an object-oriented programming language, which means it is based around objects. Objects
include data, referred to as the member of an object. So called methods are used to manipulate the
data of an object. An example for a Python object could be the model of a real-world object, like a tire,
or even an array of nodes. In case of the tire, the encapsulated data could be its width, diameter, or
the price. Methods, for instance, calculate deformation or wear of the tire during use. Different types
of objects can share the same members and methods. Furthermore, class definitions include members

and methods operating on the members [31].

6.4. Abaqus Output Database (ODB)

Abaqus saves results data and model data in an output database. Field outputs as well as history
outputs defined in the Abaqus model are stored in the results data and can be accessed by Abaqus

Scripting. An ODB-object is created if an output database is opened. Each step is defined as a member

45

Abaqus Scripting

of the ODB-object. Further, the step-object contains field outputs and history outputs. To access field
or history outputs, Python commands are used to step through the hierarchy, shown in Figure 29 [31].
For instance, to access the reaction force acting on a reference point, the following structure can be
used:

odb.steps[‘stepname’].historyRegions|[‘regionname’].historyOutputs[‘variable’].data

Thereby, odb is the created output database object, ‘stepname’ is the name defined for the step for
which the data should be evaluated, ‘regionname’ is the name of the history region, which is defined

by Abaqus, and ‘variable’ is the desired output variable —in this case ‘RF’.

— Lo Model Data -~

rootAssembly

sections

materials

— Y Y

)
s |
)
)

historyRegions

\
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

D = singular object)
historyOutput]
7

. \
D = container N ’
~ 7’

N e e e e e e e e e = e = e e e -

Figure 29: Abaqus Output Database [31]

6.5. Script structure

For editing the Python scripts, the PyCharm Community Edition 2021.2.3 was used. In the following,
an overview on the functionalities and the file structure, illustrated in Figure 30, is given. For reasons
of clarity and simplicity the Abaqus Scripting Interface commands are separated into a main script and
modules. Thereby, each module contains a set of functions to access Abaqus/CAE functionalities.
Further, modules are divided into layer 1 and layer 2 modules. Layer 1 modules are directly called from

the main script, whereas layer 2 modules are called in layer 1 modules. Therefore, all layer 1 modules

46

Abaqus Scripting

can use the same functions, defined in layer 2 modules. Changes in a layer 2 module, such as material

properties, are adapted for all layer 1 modules that access this type of information.

The main script includes the necessary Abaqus specific import statements and import statements that
include the modules. In the first section, the file paths - one for the Abaqus results and one for the .csv
files - are specified. Subsequently, the specimen geometry as well as process parameters, such as
furnace temperature, transport time or the velocity of the hydraulic press, are defined. Additionally,
simulation parameters, like simulation name, friction coefficient, emissivity, or element size need to
be specified. Defined file names serve for identification purpose, as they are also used in other scripts.
The main script starts the simulations, evaluates the output database and writes the simulation results

to a .csv file in the specified directory.

material_data]

.--- mainscript ----- -

/’ \\

/ \
! [import] \
| :
! [file paths] |
1 1
1 1
] parameter !
: { definition J ' - layer 1 __ . - layer2 .
I L modules s 7 modules “\
: .
1 1
! [run simulation } =% Simulation_1 abaqus_functions]
: 1
1
1
1
1
1
1

[
:[odb_data
) H

- e e e e e

-
~

Figure 30: Python script structure

The main script offers the possibility to choose, which simulation to run. Although, if, for example, only
the last simulation is executed, an .odb file of the previous simulation needs to be present in the
specified directory. The main script is executed via the command window, either by starting the
Abaqus GUI or without GUI:

abaqus cae script=main_script.py

abaqus cae noGUI=main_script.py

Also, the script can be started using the GUI -> File -> Run Script. Before executing the script, the

working directory needs to be specified, which needs to be the directory of the main script. Otherwise

47

Abaqus Scripting

Abaqus has no access to the modules. If changes are made in one of the modules, Abaqus needs to

reload the module again, therefore Abaqus needs to restart.

Layer 1 modules are all modules that either create and run a simulation or evaluate the results of a
simulation. All ‘Simulation’ modules contain one function, that generates and runs the simulation.
Thereby, all modules, except the one used for the Python heat transfer simulation, use the functions
defined in the ‘abaqus_function’ module to build the Abaqus model step by step and run the
simulation. Changes in the structure of the simulation models can be achieved by editing the respective
‘Simulation” module. General input parameters for these modules are, for instance, the specimen

diameter and height, process time, mesh size and so forth.

In the simulations, the nodal temperatures for a defined node set and the reaction force and
displacement of the reference node are defined as history output and therefore, the corresponding
values are saved in the output database. To make the simulation results available for the comparison
between experiment and simulation, results are extracted from the Abaqus .odb file and saved as a
.csv file by using the ‘odb_data’ module. Therefore, some general functions are defined, which are
used in three different evaluation functions. The first evaluation function saves the nodal temperatures
for each node defined in the node set to a .csv file. The first column contains the z-coordinate of the
node, the second the time and the third one the nodal temperature. The second evaluation function
calculates an average temperature, using the temperatures of the nodes at the end of a step. The third
evaluation function extracts the force and displacement of the reference node. All output variables are
saved into a .csv file. Thereby, in the first column the time is specified, in the second one the

displacement and in the third one the reaction force.

There are only two modules, named ‘material_data’ and ‘abaqus_functions’, that belong to layer 2.
The first one mentioned includes the material properties of aluminum EN AW-6082, steel, and silica,
providing the benefit that the same material properties are used in each simulation. If material
properties change, it only needs to be adapted in this module. Literature sources for the material
properties are mentioned in chapter 5.9. The second one mentioned is the basis for the scripting of
the FE models with Abaqus. This module contains general functions, that require input parameters to
execute desired commands in Abaqus/CAE. For example, this module includes a function that creates
a part in Abaqus with defined dimensions, a function to generate the mesh of a part and many more
to build the FE model step by step. For further details, short descriptions of the functions are provided

in each script in the appendix.

48

Concept and Implementation

7. Concept and Implementation

In this chapter, an overview is given on the whole process, including the visualization of the sensor
data, the automized simulation and the comparison between experiment and simulation.
Furthermore, the automation of the simulation process is outlined in detail. lllustrations are presented

to describe the workflow.

7.1. Overall process

The overall process, illustrated in Figure 31, is realized by using Python. First, an experimental plan is
necessary to define the process parameters for each test setting. After the experiments are conducted,
sensor data is available. To use the ‘measurements.py’ script (Appendix A), information about the test
setting needs to be defined manually in the Python script. To visualize the measured sensor data, the
script accesses all measurement files in a specified folder. As an output, the measured quantities are

represented over the time in a diagram. All measurements belonging to the same test setting are

- ~
/ N\ V4 AY

Experimental plan

Setting 1 (Tr, t,dy, ho)
Setting 2 (T, t,dg, ho)

Practical
experiments

_-____l____~
L

-/
)

-y
e
N

! 7 —V ~. \I
q . 1 1 1
Visualize and r.-»{ measurements.py }4—{— .Csv 5 o0
evaluate 1 : e g !
I I i O T
sensor data I —> 2B
1 \ |
\) : " S .
4
I U U ————
N b e
1
I . . | !
re main_script.py N !
1! S PR _——— 1
1 - ~
Create, run, : i f " — Vo
1
aqd eva!uate i | Ly .odb 5 ., L
simulations Iy | Simulation ! T5!!
[& S 0
I process : Eo!!
I || parameter > .Csv I
:\\ \\~__ — ___/I Il
;/ I \\ __________________________ ____/,
I s === \\
Compare : !

sensor data &

->[compare.py l:

simulation
results

-1

Figure 31: Overall process

49

Concept and Implementation

illustrated in the same diagram. As a result, the visualized sensor data can be checked for plausibility.
The ‘main_script.py’ (Appendix B) script is responsible for creating, running, and evaluating the
simulations. Manual input is needed to define process and simulation parameter. The simulation part
can also be executed before the experiments. If measurements already exist, some parameters, such
as the furnace temperature, can be estimated from the ‘measurements.py’ script. In ‘main_script.py’,
file paths for the .odb files and the .csv files need to be specified. This script will be further explained
in the next section. Finally, the ‘compare.py’ script combines the measurements and the simulation
results. Therefore, the sensor data needs to be processed to make it comparable to the simulation
results. As in the ‘measurements.py’ script, information about the test settings needs to be specified

at the beginning of the script. Further, the folder paths need to be specified.

7.2. Automation of the simulation sequence

By using the ‘main_script.py’ the simulation process is executed, as depicted in Figure 32. Required
input parameters are file paths for the results, process parameters and simulation parameters. The
name of the simulated setting needs to be specified, as defined in the experimental plan, to assign the
simulation to the corresponding measurement later. The names for the simulations are already
defined as they are used as keywords in the ‘comparison.py’ script. In this main script, the

corresponding modules are called in the right order.

The first module is the ‘Simulation_1.py’ (Appendix D), which represents the heating of the specimen.
Results of the FE simulation are saved in a specified folder. The module ‘odb_data.py’ (Appendix 1)
evaluates the Abaqus output database saved in the specified directory and determines the average
temperature at the end of the heating simulation. This temperature serves as initial temperature for
the transport simulation implemented with Python, named ‘Simulation_2p.py’ (Appendix E). The
resulting temperature is then again used as initial temperature for the next module ‘Simulation_3p.py’
(Appendix F), which represents the heat transfer to the bottom die before the compression of the
specimen. The FE simulation provides an output database, which is evaluated by using the
‘odb_data.py’ module. Relevant data from the output database is saved in a .csv file. The temperature
field at the end of this simulation is further used to define the initial temperature in the upsetting
simulation, represented as ‘Simulation_4i.py’ (Appendix G) for the implicit simulation, or
‘Simulation_4e.py’ (Appendix H) for the explicit simulation. The ‘main_script.py’ offers the possibility
to choose between the implicit and explicit simulation. As a result, again an output database is
generated, which is accessed by the ‘odb_data.py’ module to create .csv files for further comparison
between simulation and experiment. Thereby, all ‘Simulation_XX.py’ modules access the material

properties defined in the ‘material_data.py’ (Appendix J) module. Additionally, all FE simulations

50

Concept and Implementation

access the ‘abaqus_functions.py’ (Appendix K) module, which defines functions to generate and run
an Abaqus simulation. Additionally, if intermediate results need to be examined, there is the option to
run only simulation 1, or simulation 1-3. If results of the previous simulations are already stored in the

directory, it is possible to execute only simulation 4.

-

\

Process parameter:
dOl hO’ TF’ Ta’ th’ tt; t‘r‘ﬁ v, hp

Simulation parameter:
&, h., k. pu, meshsize

File paths

Setting name
_ | /

[
e N ! [main_script.py]
1
Heating of the :
specimen in
the furnace

L

.odb

\ 4

- [] J
4 A4 N
Transport
from furnace

to hydraulic
press

o 3
%}
3
c
o
o
S
5
<

-/

Simulation_2p.py

2
A 4

/ v \ i J Tzend

y

Specimen
rests on the
bottom die

\ 4

Simulation_3p.py

3&

- J
N
Compression
of the
specimen in
the hydraulic
press

T3ena = T(x,,2)

1
'y :
1
| Simulation_4i.py/1] - odb
Simulation_4e.py J)
— | /

I—b-——Vodb_data.py .csv
N\

——————————————— -

=)=

‘ m = material_data.py ’

[a = abaqus_functions.py ’

Figure 32: Automation of the simulation process

Concept and Implementation

Table 20: Input and output parameter of each simulation

Input Simulation 1

Output Simulation 1

Initial diameter d, and initial height h, of the specimen, ambient
temperature T,, furnace temperature Tp, time-temperature
amplitude for the temperature in the furnace, heating time tj,
emissivity of furnace and specimen material &, heat transfer
coefficient for convection h., thermal contact conductance k.,
global seed size for specimen and furnace, file path for the output

database, name of the simulation/job

.odb file
Field output: NT, HFL
History output for defined

node set: NT, COORD

Input Simulation 2

Output Simulation 2

Initial diameter d, and initial height h, of the specimen, ambient
temperature T,, temperature of the specimen at the end of the
previous heating simulation T'1,,4, transport time t;, emissivity of

specimen material g, heat transfer coefficient for convection h,

Temperature at the end of the

transport T2 .4

Input Simulation 3

Output Simulation 3

Initial diameter d, and initial height hy of the specimen, process
time, emissivity of the specimen material &, heat transfer
coefficient for convection h,., ambient temperature T,
temperature of the specimen at the end of the previous transport
simulation T2,,,, thermal contact conductance k., global seed
size for specimen and bottom die, file path for the output

database, name of the simulation/job

.odb file
Field output: NT, HFL
History output for defined

node set: NT, COORD

Input Simulation 4

Output Simulation 4

Initial diameter d, and initial height hy of the specimen, time for
the upsetting process, friction coefficient p, thermal contact
conductance k., file path to output database of previous
simulation, time-displacement amplitude, global seed size for
specimen and dies, file path for the output database, name of the

simulation/job

.odb file

Field output: S, U, PE, PEEQ,
CSTRESS, CFORCE, NT, HFL
(+ DAMAGEC, DMCRT, for
explicit simulation)
History output for defined
node set: NT, COORD

History output for reference

point: U3, RF3

52

Concept and Implementation

All simulation and process parameter are specified at the beginning of the ‘main_script.py’ and are
passed on to the respective function to run the simulation. An overview on the input and output
parameters for each simulation is given in Table 20. Additionally, each module provides comments
with information on the necessary input variables. Specified field or history output variables are

defined in the Abaqus Documentation [31].

53

Evaluation and Results

8. Evaluation and Results

In this chapter, sensor data provided by the CPPSs during the experiments is discussed. Thereby, the
focus is not only on the measurements within a test setting, but rather on the comparison of the data
between different settings. Additionally, the condition of the specimens after forming is discussed.
Further, input values and influencing factors on the simulations are outlined and simulations are
evaluated. Prior to presenting the differences between experiment and simulation, challenges,
occurred with automated simulation models are mentioned. Finally, an overview is given on the

comparison between the experiments and the results generated with the automated simulations.

8.1. Interpretation of the sensor data

An example for the visualization of the measured quantities is given in Figure 33. By using the
‘measurement.py’ script, this plot is created for each test setting including the corresponding
measurements. The visualization serves identify significant divergences to further exclude outliers.
Additionally, it can be used for plausibility checks regarding the sensor data. In the following
measurements belonging to different test settings are compared with each other, to analyze
influencing factors on the process cycle. Thereby, influence of temperature, transport time, upset

height and preheating temperature is assessed.

54

Evaluation and Results

MEASUREMENTS

s1: specimen geometry: d0 = 10 [mm] h0= 15 [mm], T= 300 [°C], Ah = 5 [mm], transfer time = 4 [s], rest time = 3[s]

Load cell LvDT
180
m P
175 4
25 o
170 4
20 1 E 165 -
=z ‘a
= 160
= 15 4 b
3 E
[=]
2 1551
10 ®
150 4
54
145 4
0 L T T T T T T 140 1 T T T T T T T T
125 13.0 135 14.0 145 15.0 75 10.0 125 15.0 175 200 25 250
time [s] time [s]
Pyrometer Thermocouple furnace
225
289
200 A
175 1 %81
o' 150 O 287 A
<4 =
2 125 2
2 £ 286 -
o o
E 100 4 S-E-’
- 285
50 284
25 4
T T T T T T T T 283 L T T T T T T T T
0 5 10 15 2 25 30 35 0 5 10 15 20 25 30 35
time [s] time [s]
Thermocouple
25.0
24.8
O 2461 — 2022-07-15_TestNr_12
E —— 2022-07-15_TestNr_13
g 24 4 — 2022-07-15_TestNr_14
2 —— 2022-07-15_TestNr 15
k]
242
24.0 4
23.8 4

=g
wl

15

2
time [s]

25 30 35

Figure 33: Visualization of sensor data

55

Evaluation and Results

To demonstrate the strong dependence of the upsetting force on the specimen temperature, test
settings with the same geometry, transport time, and upset height were compared. Temperature
curves are shown in Figure 34, and corresponding upsetting forces are illustrated in Figure 35. Thereby,
the predefined furnace temperatures are 300 °C (blue), 400 °C (orange) or 500 °C (red). Lower

specimen temperatures correlate with higher upsetting forces.

Pyrometer temperatures

300 ~ 2022-07-15_TestNr_12
——— 2022-07-15_TestNr_13
250 4 —— 2022-07-15_TestNr_14
—— 2022-07-15_TestNr_15
") 200 - 2022-07-15_TestNr_20
E‘ = 2022-07-15_TestNr_21
5 —— 2022-07-15_TestNr 22
S 150 - —— 2022-07-15_TestNr_23
2 2022-07-15_TestNr_28
il 100 4 ‘ \ . = 2022-07-15_TestNr_29
- A —— 2022-07-15_TestNr_30
S —— 2022-07-15_TestNr 31

B

0 5 10 15 20 25 30 35
Time [s]

Figure 34: Temperatures (experiment 2, geometry A, t; =4 s, Ah =5 mm)

Temperature influence on upsetting force

30 - 2022-07-15_TestNr_12
——— 2022-07-15 TestNr 13
55 —— 2022-07-15_TestNr_14
—— 2022-07-15_TestNr_15
2022-07-15_TestNr_20
= 201 —— 2022-07-15_TestNr 21
X —— 2022-07-15_TestNr_22
8 15 - —— 2022-07-15 TestNr 23
2 2022-07-15_TestNr_28
10 4 —— 2022-07-15_TestNr_29
—— 2022-07-15_TestNr_30
5 2022-07-15_TestNr 31

0

12.0 12.5 13.0 13.5 14.0 14.5 15.0
Time [s]

Figure 35: Upsetting force (experiment 2, geometry A, t; =4 s, Ah =5 mm)

56

Evaluation and Results

Measured specimen temperatures between 160 °C and 180 °C at the time before the upsetting process
starts result in an average force of 30 kN. Force is reduced by the factor two as the pyrometer detects
specimen temperatures between 235 °C and 270 °C, which shows a high dependence of the force on

the specimen temperature.

Figure 36 illustrates the force-time curve for test setting s5 with an upset height of 5 mm, shown in

green and test setting s6 with an upset height of 8 mm, shown in blue. Furnace temperature is set at

500 °C for both settings, whereas transport time varies. Force goes up as the upset height increases.

Influence of upset height

25 1 2022-06-21 TestNr 33
——— 2022-06-21 TestNr 34
—— 2022-06-21_TestNr_35
201 —— 2022-06-21_TestNr_36
—— 2022-06-21_TestNr_37
= 15 4 —— 2022-06-21_TestNr_38
= 2022-06-21_TestNr_43
Y —— 2022-06-21_TestNr 44
£ 10 - —— 2022-06-21_TestNr_39
r[—— 2022-06-21_TestNr_40
2022-06-21_TestNr 41
51 —— 2022-06-21 _TestNr 42

0 T T 1 1 T

12 14 16 18 20

Time [s]

Figure 36: Upsetting force (experiment 1, geometry A, Tr =500 °C, t; =4s /7 s, Ah=5mm /8 mm)

Further, both settings show a linear temperature curve, see Figure 37, during the contact to the bottom
die prior to the compression of the specimen. Temperatures at the point of time the upsetting starts
are not significantly lower for a transport time of seven seconds. Therefore, the influence of the
transport time on the upsetting force is low. After the upsetting, an increase in the specimen

temperature is visible for the specimen compressed to more than half of the initial height.

Within the entire process, time restrictions regarding transport time and rest time were met very well.
The LVDT measurements show time differences of less than a second between measurements of the
same test setting before the die moves downwards. Equally, this can be observed in the measurements

of the load sensor.

57

Evaluation and Results

Pyrometer temperatures
300

2022-06-21_TestNr_33
2022-06-21_TestNr_34
2022-06-21_TestNr_35
2022-06-21_TestNr_36
2022-06-21_TestNr_37
2022-06-21_TestNr_38
2022-06-21_TestNr 43
2022-06-21_TestNr_44
2022-06-21_TestNr_39
2022-06-21_TestNr 40
2022-06-21_TestNr_41
2022-06-21_TestNr_42

Ll

0 5 10 15 20 25 30
Time [s]

250 A

200

150 A

Temperature [°C]

100 A

50

Figure 37: Pyrometer temperature (experiment 1, geometry A, T, =500 °C, t, =4s/7s,Ah=5mm /8 mm)

Subsequently, experiment 1 and 2 are compared to each other, on the example of test setting s1, which
was the same in both experiments. As expected, upsetting force, depicted in Figure 38, is

approximately the same for setting s1 in experiment 1, illustrated in blue and experiment 2, shown in

orange.
Comparison between experiments: Load cell
30 4 2022-06-21_TestNr_4
—— 2022-06-21_TestNr_8
55 —— 2022-06-21_TestNr_9
l —— 2022-06-21_TestNr_10
—— 2022-06-21_TestNr_11
= 207 —— 2022-06-21_TestNr_12
= 2022-07-15_TestNr_12
g 15 1 ——— 2022-07-15_TestNr_13
s —— 2022-07-15_TestNr_14
10 - —— 2022-07-15_TestNr_15
5 -
. |
1 1 1 1 1
12 13 14 15 16

Time [s]

Figure 38: Comparison between experiments with the same test setting (s1): Load cell

58

Evaluation and Results

A difference between the two experiments was the positioning of the pyrometer. In the first
experiment, the pyrometer position was on the left side of the hydraulic press. Temperature
measurements from the pyrometer are illustrated in Figure 39. Fluctuations in the first view seconds
of the measurement occur, due to movement of the gripper, which occasionally crosses the measuring
position in experiment 1. During the second experiment, the pyrometer position was on the back side
of the hydraulic press. Changes in the position of the pyrometer lead to lower fluctuations around the
time the specimen is placed on the bottom die. However, this does not influence the temperature

measurement during upsetting.

Comparison between experiments: Pyrometer

225 1 2022-06-21_TestNr_4
200 4 ' —— 2022-06-21_TestNr_8
—— 2022-06-21_TestNr_9
175 - —— 2022-06-21_TestNr_10
o —— 2022-06-21_TestNr_11
= 1507 —— 2022-06-21_TestNr_12
5 155 | 2022-07-15_TestNr_12
S 2022-07-15_TestNr_13
£ 100 —— 2022-07-15_TestNr_14
@ —— 2022-07-15_TestNr_15
75 -
50 -
25 -
T T T T T T T T
0 5 10 15 20 25 30 35
Time [s]

Figure 39: Comparison between experiments with the same test setting (s1): Pyrometer

Even though, the predefined furnace temperature is the same for both settings, pyrometer
measurements show a wider temperature range for the test setting sl in the first experiment. This
could be due to the furnace temperatures, which show a wider temperature range than in the second
experiment, see Figure 40. Furthermore, discrepancies between the temperature measurements of
the preinstalled thermocouples and the retrofitted thermocouple occurred. As the preinstalled
thermocouple, which is connected to the internal control system of the furnace, measured the
predefined temperature, the furnace stops heating up. However, the retrofitted thermocouple, which
is connected to the HMI, measured lower temperatures. Reference temperatures were taken from the
retrofitted thermocouple, as no other data is available. According to this sensor, the predefined
temperature was not reached during the experiments. These observations were made for all furnace

temperature measurements.

59

Evaluation and Results

Comparison between experiments: Thermocouple (furnace)

290.0 A
287.5
285.0
C 2022-06-21_TestNr 4
L. 282.5 7 2022-06-21_T
> — -06-21_TestNr_8
2 2800 - ——— 2022-06-21_TestNr_9
< —— 2022-06-21_TestNr_10
£ 2775 - —— 2022-06-21_TestNr_11
@ —— 2022-06-21_TestNr_12
275.0 ——— 2022-07-15_TestNr_12
—— 2022-07-15_TestNr_13
272.5 A e 2022-07-15_TestNr_14
—— 2022-07-15_TestNr_15
2700 A Ll 1 l 1 I L 1 1
0 5 10 15 20 25 30 35
Time [s]

Figure 40: Comparison between experiments with the same test setting (s1): Thermocouple (furnace)

In metal forming it is important, whether the desired end geometry of the specimen can be
accomplished without failure of the material. Figure 41 shows four of the specimens tested in
experiment 1. The specimens show dissimilar surface texture, depending on the specimen geometry.
The surface of the smaller specimens A, illustrated on the left side, is rough, and cracks occurred 45°
to upsetting direction. In contrary, the bigger specimens B, shown on the right side, have an even
surface and cracks 0° to upsetting direction are detected. Further information on the specimen
geometry before and after forming and whether visible cracks occurred, is given in Appendix L for both

experiments.

RN s s

Figure 41: Specimen after forming

60

Evaluation and Results

8.2. Influences on the simulations

In the following influencing parameters on the four simulations are evaluated and discussed.

Furthermore, the calibration of input parameters is outlined, and simulation results are presented.

8.2.1. Heating

During the heating of the specimen, measurements show temperature drops as the furnace is opened
and heat exchanges with the environment. For reasons of simplicity, the heating simulation considers
a constant temperature during the entire heating time. This temperature is defined by the average
furnace temperature calculated from the thermocouple measurements for each test setting, listed in

Table 21.

Table 21: Furnace temperatures

Setting name Predefined Average temperature during
temperature [°C] a test setting [°C]

sl 300 276
s2 300 279
s3 300 281

i

S s4 300 279

£

5 s5 500 473

3

e s6 500 476
s7 500 479
s8 500 480
sl 300 286
s2 300 285

(o]

S s3 400 376

£

5 s4 400 377

3

w s5 500 475
s6 500 476

Figure 42 depicts the heating curve of a node on the outer surface of the specimen predicted by the
heating simulation. For longer heating periods, the specimen temperature gets closer to the
predefined furnace temperature. The specimen temperature after 30 minutes of heating correlates
well with the average temperature measured in the furnace during a test setting. The curve depends

on the specified values for emissivity, heat transfer coefficient for convection and thermal contact

61

Evaluation and Results

conductance, which were estimated. The emissivity of the refractory material is defined as 0.8, the
emissivity for the specimen is defined as 0.3. Heat transfer coefficient for convection is estimated from
the reverence values for free convection in Table 19. Thermal contact conductance is defined as in
simulation 3. By using lower values for these three parameters, it takes the specimen longer to heat

up.

Heating curve

250

200 +

150 A

Temperature [°C]

50

—— specimen temperature

T T T T T T T
0 250 500 750 1000 1250 1500 1750
Time [s]

Figure 42: Heating curve - simulation 1

Measurements were made to approximately determine the specimen temperature after a defined
heating time. Therefore, the pyrometer was positioned in front of the furnace and a specimen was
removed from the furnace after a defined heating time. Overall, eight specimens were used, whereas
each specimen remained in the heating chamber of the furnace for four more minutes than the
previous one. Average furnace temperature was at 280 °C during the test. To reduce heat loss, the
specimens were directly placed on a steel plate in front of the furnace. After four minutes the
pyrometer measured a peak temperature of around 200 °C. A maximum temperature is detected after
a heating time of around 25 minutes. The temperature curves in Figure 43 show, that the peak
temperature measured for each specimen does not increase from specimen to specimen with
increasing time. This might imply, that the positioning of the specimen in the furnace has an impact.
On the other hand, this temperature differences can be related to differences in timing due to rapid
cooling when taking the specimen out of the furnace. Further experiments, to adapt the heating curve
to the experiment were not made. To predict the heating time more precisely, further experiments

with varying heating time are necessary, to determine temperature distribution during heating.

62

Evaluation and Results

Temperature after heating time

225 +
200 A
175 ~ l
150 ~
125 4

100

Temperature [°C]

75

50

T T T T T T T T
0 250 500 750 1000 1250 1500 1750 2000
Time [s]

Figure 43: Specimen temperature after removing from the furnace

8.2.2. Transport

There is no temperature measurement available until the specimen is placed on the bottom die of the
hydraulic press. For this reason, only assumptions can be made to determine temperature distribution
during transport. Temperature curve is estimated through reference points obtained from the
measurements. Temperature at the beginning of the transport simulation is assumed to be equal to
the average furnace temperature of measurements from the same test setting. Temperature at the
end of the transport simulation is assumed to be equal to the temperature measured from the
pyrometer after four or seven seconds of transport, depending on the experimental plan. However,
fluctuations occur in the measurements during this time if, for example, the gripper crosses the
measuring position. Using this temperature values after the transport time as a reference could lead
to uncertainties. Therefore, temperatures at the time the specimen first contacts the bottom die are
calculated by using a linear fit.

Referring to Figure 22, measurements show a linear heat loss during the contact time to the bottom
die between timepoint t; and t,. Measurement values starting after half of the contact time until the
start of the upsetting are used as input values for a linear polynomial fit, illustrated in Figure 44.
Temperature measurements in the first half were excluded as this would lead to deviations in the
gradient of the curve. Using the linear fit, the temperature at the beginning of process step 3 is
determined for further use as a reference value in the transport simulation. Thereby, this temperature
value refers to the specimen temperature after four or seven seconds of transport, depending on the

experimental plan.

63

Evaluation and Results

Temperature during contact

500
400 -
¢
300 + 4 4 s " , 4
i L L1 m T T - T N
E _:_L PUN— :I ' ;I T J'_r L e ¥ +| +
i
b}
=8
£ 200
@
Reference temperatures
100 - for the temperature for
the transport simulation
O T T T T T T T T
0 1 2 3 4 5 6 7
Time [5]

Figure 44: Linear polynomial fit

Reference points obtained from the experiments are used to fit the temperature curve determined in
simulation 2, which is illustrated in Figure 45. Thereby, a steep drop between the specimen
temperature at the end of the heating process until the specimen is placed on the bottom die after
four seconds of transport occurs. On the contrary, the decrease in temperature between four or seven
seconds of transport is quite low. The discretized energy balance equation (5.28) is used to determine

the temperature curve, considering heat flux, convection, and radiation.

Temperature during transport

— Assumptions for temperature distribution
450 - + reference points from experiments Tr = 500 °C
reference points from experiments T = 400 °C
400 + reference points from experiments Tr = 300 °C
o
‘0 350 -
=
o
g 300 -
E
@
250 -
200 -

o
[\
=N
)]

[e]

10
Time [s]

Figure 45: Reference values for the transport obtained from experiment 2

64

Evaluation and Results

For simplicity, a correction term, depending on the initial temperature and the specimen geometry, is
introduced for the heat flux term in the first two seconds of the transport to fit the curve to the
measurements. The rest of the time, only convection and radiation are considered. As heat loss due to
radiation is rather small, the heat transfer coefficient for convection can be used to adapt the slope of
the curve. The assumption was made, that heat loss is significant during the first seconds as the
specimen is removed from the furnace. Additionally, temperature loss decreases as the difference
between specimen and ambient temperature drops. Within this approach are some errors from a
physical point of view. The minimum transport time in practical is approximately three seconds to

move the specimen to the press, therefore the previous temperature curve is not very important.

8.2.3. Rest on die

During the contact to the bottom die, heat transfers to a large amount to the die, while heat loss due
to convection and radiation is negligible. Therefore, different values for the thermal contact
conductance were tested to adjust the temperature curve to the slope shown in the measurements.
Reference values, mentioned in Table 18, are too high, as the contact pressure during this process step
is low. To compare the impact of different values, the temperature profile is evaluated for the node
on the shell surface six millimeters above the bottom die surface, which is equal to the measuring
position of the pyrometer, see Figure 46. After constantly decreasing the values, good correlations are

found with a thermal contact conductance of 0.3 mW/mm?2°C, which is used in further simulations.

Influence of contact conductance

200 -
190 ~
© 180 -
p
=
& 170 -
Q
o
S
@ 160 -
—— k. = 0.03 mW/mm?2°C
150 ~
k. = 0.30 mW/mm?°C
— k. = 3.00 mW/mm?2°C
140
T T T T 1
0 2 4 6 8
Time [s]

Figure 46: Influence of contact conductance

65

Evaluation and Results

FE simulations reveal that the temperature distribution in the specimen is quite uniformly during the
entire process time. Figure 47 depicts the temperature distribution in the cut surface of a specimen of
geometry A and an initial temperature of 200 °C after a contact time of 8.5 seconds to the bottom die.
Temperature differences less than 4 °C are present, while temperatures at the surface area are slightly
higher than within the center of the specimen. Comparable results were found for specimen of
geometry B. This shows that convection and radiation to the environment have a negligible impact.
However, computation time is about less than a minute, and no significant rise occurs if conduction

and radiation are considered.

Summarizing, temperature drop during this simulation can be easily adapted to the measured
pyrometer temperatures by varying the thermal contact conductance between specimen and die.
Anyway, the temperature determined at the end of the transport simulation affects the temperature

distribution as it shifts the curve to higher or lower values.

MT11

+1.830e+02
+1.823e+02
+1.817e+02
+1.810e+02
+1.803e+02
+1.797e+02
+1.790e+02
+1.783e+02
+1.777e+02
+1.770e+02
+1.763e+02
+1.757e+02
+1.750e+02
+2.425e+01

Figure 47: Temperature distribution after a contact time of 8.5 s

8.2.4. Upsetting

Different influencing factors on the upsetting simulation have been investigated and the force-
displacement curve during upsetting was evaluated. The following simulations were carried out for a
specimen geometry A, a constant initial specimen temperature of 175 °C, an initial temperature of 24
°C for the dies and Johnson-Cook parameters from [45], listed in Table 16.

First, implicit and explicit simulation are compared with each other. Figure 48 shows a good agreement
between implicit simulation with a maximum force of 38.55 kN and explicit simulation, predicting a

maximum force of 38.76 kN. Due to the small stable time increment computation time for the explicit

66

Evaluation and Results

simulation is higher than for the implicit simulation. To reduce computation time, mass scaling can be

applied to the explicit simulation. For further evaluations in this work, the implicit simulation was used.

Force [kN]

40

35

30

25

20

15

10

Influence of

Implicit vs. Explicit

— explicit
i implicit

0 1 2 3 4 5
Stroke [mm]

Figure 48: Implicit vs. Explicit

mesh size was evaluated considering three different combinations of element sizes,

defined by global seed size. Accuracy increases with decreasing mesh size, simultaneously,

computation time rises. However, too small elements result in high computation time, without

relevant improvement in accuracy. As illustrated in Figure 49, for the tested geometry, a mesh size of

Force [kN]

Influence of mesh size

40 A

35 4

30

25

20 -

15 4

10

— specimen: 0.3 mm, die: 1 mm
specimen: 0.5 mm, die: 3 mm
- specimen: 1.0 mm, die: 5 mm

T T T

0 1 2 3 4 5
Stroke [mm]

Figure 49: Influence of mesh size

67

Evaluation and Results

0.5 mm for the specimen is sufficient. As the model is automated to run simulations for different

specimen geometries, the influence of mesh size needs to be evaluated for further geometries.

Furthermore, different parameters for the Johnson-Cook material model were studied as the
parameters found in the literature vary. The force-displacement curve highly depends on the Johnson-
Cook parameters. Figure 50 depicts the impact of parameters 1-5 obtained from literature, listed in
Table 16. Thereby, the maximum force deviates from 43 kN to 34 kN for an initial temperature of 175

°C. The decrease in force for a starting temperature of 250 °C is not significant.

Influence of Johnson-Cook parameters

40 -
30 -
z

= —— JC[45] T =175 °C
S 20 1 —— JC[45]T =250 °C
£ JC[44] T =175 °C
JC[44] T = 250 °C
10 - — JC[47] T =175°C
—— JC[47]T =250 °C
—— JC[49] T =175 °C
0- —— JC[49]T =250 °C

T T T T T T

0 1 2 3 4 5
Stroke [mm]

Figure 50: Influence of different Johnson-Cook parameters

For the automated simulations, Johnson-Cook parameters were used from [47] as other model
parameter tend to predict higher forces, thereby the thermal softening coefficient was adapted to
m = 0.9. Figure 51 illustrates, stresses, strains, and temperatures for the upsetting simulation of

setting s3 after a compression of 15 mm.

In the contact area between specimen and die, low deformation occurs due to the friction to the dies,
high plastic deformations occur in the middle of the specimen. Friction coefficient is assumed as u =
0.3. Temperature of the specimen is lower on the contact surfaces to the dies. Temperatures
differences between the center and the outer surface of the specimen are low, as the specimen
dimensions are small, and the material has a high conductivity. Reference values for the thermal
contact conductance, listed in Table 18, were used and further adapted, to fit the temperature at the

measuring position to the measurements. A value of 20 mW/mm?K was used, this value can be further

68

Evaluation and Results

adapted, to fit the temperatures to the pyrometer measurements. Thereby, higher values for the
thermal contact conductance lead to higher heat transfer to the die, leading to lower specimen

temperatures.

Mises stress Equivalent plastic strain Temperature

S, Mizes PEEQ NT11

{Avg: 75%) (Avg: 75%) +1.950e+02
+2.710e+02 +1.600e+00 +1.811e+02
+2.484e+02 +1.467e+00 +1.672e+02
+2.258e+02 +1.333e+00 +1.533e+02
+2.032e+02 +1.200e+00 +1.393e+02
+1.807e+02 +1.067e+00 +1.254e+02
+1.581e+02 +9.333e-01 +1.115e+02
+1.355e+02 +82.000e-01 +9.758e+01
+1.129e+02 +65.667e-01 +8.367e+01
+9.033e+01 +5.333e-01 +6.975e+01
+6.775e+01 +4.000e-01 4+5.583e+01
+4.517e+01 +2.667e-01 44192401
+2.258e+01 +1.333e-01 +2.800e+01
+0.000e+00 +0.000e+00 4+0.000e400

Figure 51: Upsetting simulation for setting s3

69

Evaluation and Results

8.3. Challenges with automated models

At the beginning it is crucial to specify the purpose and the application of the models under the
consideration of potential changes, which might be arising during the development. Otherwise, this
could lead to problems during adapting or expanding the script. To implement changes occurring
during the development process, a modular script structure is beneficial and provides the possibility
to replace or modify modules without significant effort. Furthermore, variable parameters need to be
restricted to necessary process parameter, as a vast number of input parameter is quite confusing. For
instance, the naming of the parts, instances, boundary or initial conditions is hard coded, as it is not
relevant, whereas heat transfer coefficient or thermal contact conductance are unclear process
parameter, which need to be adaptable. Also, using flexible functions can be beneficial if the functions
fit the purpose and are not too complex. An example is a function that was created to select a specific

surface, which is identified by the coordinates of a point on this surface.

Sanity checks are important to verify the entered parameter, to eliminate errors caused by users. So
far, the main script does not include sanity check, thus it would be beneficial to add them, as by using
automated simulations, errors might not be quite obvious and easy to discover, because error
messages do not necessarily describe the source of the error. For instance, if the user accidentally
enters a value higher than the initial height of the specimen for the height after forming in the main
script, an error occurs. The script calculates the height difference and uses the entered velocity and
the height difference to calculate the step time, which is negative in this case. To create a step, the
step time needs to be greater than zero. An error message occurs as the step generation failed, but no

further information is given. However, the origin of the error might be difficult to discover.

Moreover, too large mesh size leads to inaccurate results, or specific process parameter need to be
within a certain limit. To avoid errors, a documentation including reference parameters is beneficial.
The flexibility of an automated simulation is a benefit on the one hand but can be a major drawback
on the other hand if used in a wrong way. In fact, the specification of limits is necessary to guarantee
the right use. As an example, the transport simulation assumes, that the temperature change of the
specimen is homogeneously in the whole volume. If the specimen is too large and the material has a
low conductivity, this approximation is not valid anymore, which is why limits are needed to avoid
wrong results. A complete documentation of the scripted models is necessary for traceability.

Within this work a basic structure was developed to automate simulations. However, further validation

on material model and simulation parameter and assessment of influencing factors are indispensable.

70

Evaluation and Results

8.4. Comparison between experiment and simulation

By using the Python ‘compare.py’ script, the following evaluation, depicted in Figure 52, is created for
each test setting. This serves as a basis to automatically compare simulation and experiment. The
Figure shows, that for the test setting s1 the temperature curves as well as the force-displacement
curves fit well. Due to the thermal expansion the displacement during the stroke is higher than in the
simulation, which does not account thermal expansion. Therefore, also the process time during

upsetting is higher in the experiment.

sl: specimen geometry: d0 = 10 [mm] hO= 15 [mm], T= 300 [°C], Ah = 5 [mm], transfer time = 4 [s], rest time = 3 [s]

Temperature during contact to bottom die Temperature during upsetting

300 300

250 - 250 -
o 2007 ml\% v
g N g
2 2
® 150 - ® 150 - —_\K
[[
o o
g g
F 100 | F 100 |

50 50

01— . . . ‘ 01— . ‘ . . ‘
0 2 4 6 8 0.0 0.2 0.4 0.6 0.8 10
Time [s] Time [s]

Force during upsetting

—— 2022-07-15_TestNr_12

2022-07-15_TestNr_13

—— 2022-07-15_TestNr_14

—— 2022-07-15_TestNr_15
* simulation_sl

Force [kN]

0 1 2 3 4 5 6
Upsetting height [mm]

Figure 52: Comparison between experiment and simulation

71

Evaluation and Results

In Table 22 and Table 23 the results of the automated simulation sequence are summarized. Therefore,
the average maximum force during tests is compared to the maximum force predicted in the
simulation. Further, it is assessed, how the temperature curve detected in the simulation fits the
pyrometer measurements from the experiments. Overall, temperature distribution from simulation 3
and simulation 4 show good agreement with measured temperatures. However, large differences in
upsetting force occur, especially for higher specimen temperatures. The high dependence of the
specimen material, demonstrated on the measurements, is not predicted in the simulations.
Experiments show a force reduction of approximately the half at higher temperatures, whereas in the

simulation with the force does not drop significantly.

Table 22: Comparison between experiment 1 and simulation

Setting name Fax [kN] Fpax [kN] Deviation T(t) during T(t) during
Experiments Simulation [%] Simulation 3 Simulation 4

sl 29.42 29.19 -1 * *

s2 39.88 45.29 +13 * *

s3 133.98 151.25 +12 * *

s4 218.86 287.29 +31 * ok

s5 13.97 26.17 + 87 * *

s6 24.77 41.27 + 66 * *

s7 62.02 137.28 +121 * *k

s8 127.85 262.42 + 105 * *

* Good agreement, within temperature measurements

** Lower temperatures (max. 20 °C)

It is assumed, that the Johnson-Cook material model has a significant influence on the force-
displacement curve. Also, parameters in the literature differ, depending on the test method and the
test temperature range. For further improvement of the model, the Johnson-Cook parameters need
to be determined from experiments, considering the same material, similar specimen geometry,

compressional loads, and the same temperature range.

Additionally, the core temperature of the specimen could be significantly higher than the temperatures
measured on the surface area of the specimen. Consequently, higher core temperatures of the
specimen lead to lower forces during the upsetting process, as the flow stress decreases with higher

temperatures. This means that the simulation models for the transport (simulation 2) and the rest time

72

Evaluation and Results

(simulation 3) do not accurately describe the temperature distribution inside the specimen and need

to be adapted.

Further, the specimen material could deviate from specified material properties. Therefore, test with
specimen of the same geometry but another batch of material can be used to compare the results. For
some of the specimen, cracks occurred during the forming process. Material failure could also decrease
the upsetting force, thus is not accounted in the simulation. Additionally, tests can be conducted to
examine the used specimen if cracks occurred inside the material.

Also, the pyrometer can be checked to ensure validity of the data.

Table 23: Comparison between experiment 2 and simulation

Setting name Fax [kN] Fpax [kN] Deviation T(t) during T(t) during
Experiments Simulation [%] Simulation 3 Simulation 4

sl 30 29.59 -1 * *

s2 28.72 - - - -

s3 19.1 27.97 +46 * *

s4 18.8 - - - -

s5 15.32 26.56 +73 * *

s6 15.55 - - - -

- no simulation conducted as due to the process settings and previous observations similar results
are expected for: s1 and s2; s3 and s4; s5 and s6

* Good agreement, within temperature measurements

As the reason for deviations between experiment and simulation is detected, adaptions need to be
made. Once the model provides good results and is validated the automated simulations can be used,
for instance, to generate data for machine learning algorithms. Thereby, a huge amount of data can
be generated with low effort. The automated simulation can be started within some minutes, as only
some input variables and process parameter need to be defined. Further, practical experiments can

be reduced to a great extent.

73

Conclusion and Outlook

9. Conclusion and outlook

Four simulations, each representing a process step during the upsetting of preheated aluminum
specimen, were developed. FE simulations were generated by using Abaqus and further, Abaqus
Scripting Interface commands were used to set up Python scripts to automatically generate, run, and
evaluate the simulations. A modular script structure was chosen, including one module for each
simulation. Two additional modules were used to define necessary functions used by the simulation
modules. Thereby, all four simulations are controlled by a main script, in which all process and
simulation parameters are defined. By using a modular script structure, adaptions in the further
development process will be easy to adapt, as each module, representing a simulation, can be modified

and is exchangeable.

Sensor data, provided by the CPPSs during the experiments, was visualized and analyzed. Discrepancies
between the preinstalled and the retrofitted thermocouple occurred, which need to be assessed.
Varying furnace temperatures during heating lead to wider ranges in specimen temperature measured
by the thermocouple. Changing the transport time from four to seven seconds results in a low
temperature loss which has negligible impact on the upsetting force. However, temperature loss
during the first seconds of transport seems to be significant. Measurements showed a strong
temperature dependence of the specimen material. As expected, increasing the upset height also leads

to higher forces.

Furthermore, literature research was conducted, to find reference values for material properties and
other parameters used in the simulation. For the validation of the simulations a foundation was
created, which allows to directly compare upsetting force and specimen temperature between
simulation and experiments. Previous simulations were adapted and describe the temperature
distribution of the specimen well. At lower specimen temperatures, the force predicted within the
simulation is acceptable. However, the strong decrease in upsetting force caused by higher
temperatures cannot be described with the model. It is assumed, that the Johnson-Cook parameter
obtained from the literature do not accurately describe material behavior as parameters found in the
literature show major differences, depending on the use of the model and the test setup. Therefore,
experiments to determine Johnson-Cook parameter need to be conducted. Additionally, the specimen
core temperature could be significantly higher, than predicted in the simulations, as the required
upsetting force declines with higher temperatures. In this case, a more precise prediction of the

temperature distribution inside the specimen in the simulations prior to the upsetting is necessary.

74

Conclusion and Outlook

Furthermore, with reliable damage parameters the evaluation of the simulation can be extended to
predict damage of the specimen. Therefore, damage parameters need to be calibrated with additional

experiments.

The general approach was to create a rather detailed model, which can be further simplified once
material and process parameters are adapted, and experiment and simulation show good correlation.
A foundation was created to improve the process of comparing experiment and simulation. Further
optimizations to reduce computation time are possible and can include, for instance, adaptions in the

contact definition, mesh and mesh size, or the use of symmetry boundaries.

As an outlook, the automated simulation sequence can be further used to gather data for machine

learning algorithms to make predictions about the model and to improve the process.

75

List of Figures

List of Figures

Figure 1: Manufacturing ProCesses [18]uuiucuuiiiiiiiiieiiiieeeeriteessite e e e sree e s saree e e saree e e ssabeeeessbeeessnnrenas 4
Figure 2: Dependence of the flow stress on the temperature [18]cccceeeviiiiieeciiee e, 6
Figure 3: Upsetting of cylindrical part [18]ccvuiiiiiiiiiieiiee ettt e e s bee e s aree s 7
Figure 4: Contact interaction (a) low pressure - contact through asperity peaks (b) moderate pressure
- partial conformity (c) high pressure - full conformity [17]ccovviieiiiiiiice e, 8
Figure 5: Friction MOEIS [17] ..uuuuiiiiieiiiiciiiieie ettt e ettt e e e e e e e tra e e e e e e e e s abssaeeeeeeeesansraaaeaeaesnns 9
Figure 6: Relevant process parameters [17] ..o ieeeiiiiee ettt eette e e etee e e e e e e s e sabae e e eareeas 10
Figure 7: 1-D conduction through @ Wall [22]ccoiiiiiiiee e e 12
T (VT - H @Y \VZ<Totu o o T 1720 [USSR 13
Figure 9: Radiation from a solid sUrface [22]ccocuieiiiiiiie e 13
Figure 10: Material models suitable for large deformations [20]......c..cccceeiiiiiieiiiiien e, 19
Figure 11: Isotropic and kinematic hardening [18]ccceviiiiiiiiiciiee et 20
Figure 12: Furnace at the Chair of Metal FOrMINgcccciiiiiiiie et 21
Figure 13: Hydraulic press at the IMIFci ittt sree e e e e e s ereeas 22
Figure 14: Schematic setup of the pyrometer POSItioNcccceeeeeiiieiiciiee e e 23
FigUre 15: EXAmMPIE COUR ..uuiiiiiiie ittt et e e e bte e e e et e e e e eata e e e s abae e e e nbaeeeesnbeeeeenranas 26
Figure 16: Sensor data - 10ad CeIl.......oii i e e e e 27
Figure 17: Sensor data - LVDTcci ittt e eette e e e etee e e e ettee e e e eabae e s etbae e e esabaeeeeenbaeeeesnntneeennrenas 27
Figure 18: SENSOr data - PYrOMELET ...cciiciiie ettt et e e e ree e s rtee e s s ebee e e s sabee e e esabeeesssnseeeeennrenas 28
Figure 19: Sensor data - pyrometer (detail).......ccceevuieecieeiiee e 29
Figure 20: Sensor data - thermocouple fUrNACEcoociiii i e 30
Figure 21: Sensor data - thermMoOCOUPIE........cociiii i e sbee e e 30
Figure 22: Relevant time points from the pyrometer measurementcccccceeeeecieeeeeciieeeceveee e, 31
Figure 23: Simulation 1 - HEATINGoei ittt eetee e e e tee e e e earee e e eeabee e e e nreeas 33
Figure 24: Simulation 3 — ReSt ON di€...ccuuiiiiiiiieccciee e e ree e s e sbee e e e areeas 35
Figure 25: SIMuUlation 4 - UPSETEING......ccuiiiiiiiie ettt e et e et e e e et e e e e e e s e nseee s e aneeas 36
Figure 26: Partitions and mesh of the SPeCIMENcoocoiiiiiciii e 37
FIUIE@ 27: NOTE SELE ..uiiiiiiiiii ittt et e et e e e et e e e s e bee e e s eabaee e esabaeeeeaabaeeeeabaeessnnseaeeensenas 38
Figure 28: Interaction of Abaqus Scripting Interface commands with the Abaqus/CAE kernel [31].... 44
Figure 29: Abaqus Output Database [31].....cccciiiiiiiiee e rree e e e sbre e s s sabae e e e ereeas 46
Figure 30: PYthon SCrPt STFUCTUI......cciiiiie ettt etee e e e tee e e e ebee e e e atee e e eeabeeeeeenneeas 47
FIiUIE 31 OVErall PrOCESS . .iiiicuiiiei ittt e ettt ettt et e e et e e e st e e s st e e e e s sabeee s e s baeeeesabaeeeessbeeesesnseaesassenas 49
Figure 32: Automation of the simulation ProCess.......cccccuiiiiciiii i 51
Figure 33: Visualization of SENSOr datacoccuiiiiiiiiii et e e e e bee e et 55
Figure 34: Temperatures (experiment 2, geometry A, tt =45, Ah=5mMmM) .c...ccoerveireiiienieeecieeene, 56
Figure 35: Upsetting force (experiment 2, geometry A, tt =45, Ah=5mMmM) ccccccocvieiiiiiiieeeciieeeeen. 56
Figure 36: Upsetting force (experiment 1, geometry A, TF =500 °C, tt =4s/7s,Ah=5mm /8 mm)

... 57
Figure 37: Pyrometer temperature (experiment 1, geometry A, TF =500 °C, tt =4s/7s, Ah=5mm

R 12111 PR 58
Figure 38: Comparison between experiments with the same test setting (s1): Load cell.................... 58
Figure 39: Comparison between experiments with the same test setting (s1): Pyrometer................. 59
Figure 40: Comparison between experiments with the same test setting (s1): Thermocouple (furnace)
... 60
Figure 41: Specimen after fOrmMINGccvei i et e et e e 60
Figure 42: Heating curve - SIMUIAtioN 1coooiiiiiiiiiec et e et e s e sbre e e ereeas 62

file:///D:/UNI/MASTERSTUDIUM%20Maschinenbau/Master%20Thesis/01_dokumentation/00_writing/Master_thesis_Waiguny_Corinna_ohne_Titelblatt.docx%23_Toc115415295
file:///D:/UNI/MASTERSTUDIUM%20Maschinenbau/Master%20Thesis/01_dokumentation/00_writing/Master_thesis_Waiguny_Corinna_ohne_Titelblatt.docx%23_Toc115415296
file:///D:/UNI/MASTERSTUDIUM%20Maschinenbau/Master%20Thesis/01_dokumentation/00_writing/Master_thesis_Waiguny_Corinna_ohne_Titelblatt.docx%23_Toc115415297
file:///D:/UNI/MASTERSTUDIUM%20Maschinenbau/Master%20Thesis/01_dokumentation/00_writing/Master_thesis_Waiguny_Corinna_ohne_Titelblatt.docx%23_Toc115415298
file:///D:/UNI/MASTERSTUDIUM%20Maschinenbau/Master%20Thesis/01_dokumentation/00_writing/Master_thesis_Waiguny_Corinna_ohne_Titelblatt.docx%23_Toc115415298
file:///D:/UNI/MASTERSTUDIUM%20Maschinenbau/Master%20Thesis/01_dokumentation/00_writing/Master_thesis_Waiguny_Corinna_ohne_Titelblatt.docx%23_Toc115415299
file:///D:/UNI/MASTERSTUDIUM%20Maschinenbau/Master%20Thesis/01_dokumentation/00_writing/Master_thesis_Waiguny_Corinna_ohne_Titelblatt.docx%23_Toc115415300
file:///D:/UNI/MASTERSTUDIUM%20Maschinenbau/Master%20Thesis/01_dokumentation/00_writing/Master_thesis_Waiguny_Corinna_ohne_Titelblatt.docx%23_Toc115415301
file:///D:/UNI/MASTERSTUDIUM%20Maschinenbau/Master%20Thesis/01_dokumentation/00_writing/Master_thesis_Waiguny_Corinna_ohne_Titelblatt.docx%23_Toc115415302
file:///D:/UNI/MASTERSTUDIUM%20Maschinenbau/Master%20Thesis/01_dokumentation/00_writing/Master_thesis_Waiguny_Corinna_ohne_Titelblatt.docx%23_Toc115415303
file:///D:/UNI/MASTERSTUDIUM%20Maschinenbau/Master%20Thesis/01_dokumentation/00_writing/Master_thesis_Waiguny_Corinna_ohne_Titelblatt.docx%23_Toc115415304
file:///D:/UNI/MASTERSTUDIUM%20Maschinenbau/Master%20Thesis/01_dokumentation/00_writing/Master_thesis_Waiguny_Corinna_ohne_Titelblatt.docx%23_Toc115415305
file:///D:/UNI/MASTERSTUDIUM%20Maschinenbau/Master%20Thesis/01_dokumentation/00_writing/Master_thesis_Waiguny_Corinna_ohne_Titelblatt.docx%23_Toc115415306
file:///D:/UNI/MASTERSTUDIUM%20Maschinenbau/Master%20Thesis/01_dokumentation/00_writing/Master_thesis_Waiguny_Corinna_ohne_Titelblatt.docx%23_Toc115415307
file:///D:/UNI/MASTERSTUDIUM%20Maschinenbau/Master%20Thesis/01_dokumentation/00_writing/Master_thesis_Waiguny_Corinna_ohne_Titelblatt.docx%23_Toc115415308
file:///D:/UNI/MASTERSTUDIUM%20Maschinenbau/Master%20Thesis/01_dokumentation/00_writing/Master_thesis_Waiguny_Corinna_ohne_Titelblatt.docx%23_Toc115415309
file:///D:/UNI/MASTERSTUDIUM%20Maschinenbau/Master%20Thesis/01_dokumentation/00_writing/Master_thesis_Waiguny_Corinna_ohne_Titelblatt.docx%23_Toc115415310
file:///D:/UNI/MASTERSTUDIUM%20Maschinenbau/Master%20Thesis/01_dokumentation/00_writing/Master_thesis_Waiguny_Corinna_ohne_Titelblatt.docx%23_Toc115415311
file:///D:/UNI/MASTERSTUDIUM%20Maschinenbau/Master%20Thesis/01_dokumentation/00_writing/Master_thesis_Waiguny_Corinna_ohne_Titelblatt.docx%23_Toc115415312
file:///D:/UNI/MASTERSTUDIUM%20Maschinenbau/Master%20Thesis/01_dokumentation/00_writing/Master_thesis_Waiguny_Corinna_ohne_Titelblatt.docx%23_Toc115415313
file:///D:/UNI/MASTERSTUDIUM%20Maschinenbau/Master%20Thesis/01_dokumentation/00_writing/Master_thesis_Waiguny_Corinna_ohne_Titelblatt.docx%23_Toc115415314
file:///D:/UNI/MASTERSTUDIUM%20Maschinenbau/Master%20Thesis/01_dokumentation/00_writing/Master_thesis_Waiguny_Corinna_ohne_Titelblatt.docx%23_Toc115415315
file:///D:/UNI/MASTERSTUDIUM%20Maschinenbau/Master%20Thesis/01_dokumentation/00_writing/Master_thesis_Waiguny_Corinna_ohne_Titelblatt.docx%23_Toc115415316
file:///D:/UNI/MASTERSTUDIUM%20Maschinenbau/Master%20Thesis/01_dokumentation/00_writing/Master_thesis_Waiguny_Corinna_ohne_Titelblatt.docx%23_Toc115415317
file:///D:/UNI/MASTERSTUDIUM%20Maschinenbau/Master%20Thesis/01_dokumentation/00_writing/Master_thesis_Waiguny_Corinna_ohne_Titelblatt.docx%23_Toc115415318
file:///D:/UNI/MASTERSTUDIUM%20Maschinenbau/Master%20Thesis/01_dokumentation/00_writing/Master_thesis_Waiguny_Corinna_ohne_Titelblatt.docx%23_Toc115415319
file:///D:/UNI/MASTERSTUDIUM%20Maschinenbau/Master%20Thesis/01_dokumentation/00_writing/Master_thesis_Waiguny_Corinna_ohne_Titelblatt.docx%23_Toc115415320
file:///D:/UNI/MASTERSTUDIUM%20Maschinenbau/Master%20Thesis/01_dokumentation/00_writing/Master_thesis_Waiguny_Corinna_ohne_Titelblatt.docx%23_Toc115415321
file:///D:/UNI/MASTERSTUDIUM%20Maschinenbau/Master%20Thesis/01_dokumentation/00_writing/Master_thesis_Waiguny_Corinna_ohne_Titelblatt.docx%23_Toc115415322
file:///D:/UNI/MASTERSTUDIUM%20Maschinenbau/Master%20Thesis/01_dokumentation/00_writing/Master_thesis_Waiguny_Corinna_ohne_Titelblatt.docx%23_Toc115415323
file:///D:/UNI/MASTERSTUDIUM%20Maschinenbau/Master%20Thesis/01_dokumentation/00_writing/Master_thesis_Waiguny_Corinna_ohne_Titelblatt.docx%23_Toc115415324
file:///D:/UNI/MASTERSTUDIUM%20Maschinenbau/Master%20Thesis/01_dokumentation/00_writing/Master_thesis_Waiguny_Corinna_ohne_Titelblatt.docx%23_Toc115415325
file:///D:/UNI/MASTERSTUDIUM%20Maschinenbau/Master%20Thesis/01_dokumentation/00_writing/Master_thesis_Waiguny_Corinna_ohne_Titelblatt.docx%23_Toc115415326
file:///D:/UNI/MASTERSTUDIUM%20Maschinenbau/Master%20Thesis/01_dokumentation/00_writing/Master_thesis_Waiguny_Corinna_ohne_Titelblatt.docx%23_Toc115415327
file:///D:/UNI/MASTERSTUDIUM%20Maschinenbau/Master%20Thesis/01_dokumentation/00_writing/Master_thesis_Waiguny_Corinna_ohne_Titelblatt.docx%23_Toc115415328
file:///D:/UNI/MASTERSTUDIUM%20Maschinenbau/Master%20Thesis/01_dokumentation/00_writing/Master_thesis_Waiguny_Corinna_ohne_Titelblatt.docx%23_Toc115415329
file:///D:/UNI/MASTERSTUDIUM%20Maschinenbau/Master%20Thesis/01_dokumentation/00_writing/Master_thesis_Waiguny_Corinna_ohne_Titelblatt.docx%23_Toc115415330
file:///D:/UNI/MASTERSTUDIUM%20Maschinenbau/Master%20Thesis/01_dokumentation/00_writing/Master_thesis_Waiguny_Corinna_ohne_Titelblatt.docx%23_Toc115415330
file:///D:/UNI/MASTERSTUDIUM%20Maschinenbau/Master%20Thesis/01_dokumentation/00_writing/Master_thesis_Waiguny_Corinna_ohne_Titelblatt.docx%23_Toc115415331
file:///D:/UNI/MASTERSTUDIUM%20Maschinenbau/Master%20Thesis/01_dokumentation/00_writing/Master_thesis_Waiguny_Corinna_ohne_Titelblatt.docx%23_Toc115415331
file:///D:/UNI/MASTERSTUDIUM%20Maschinenbau/Master%20Thesis/01_dokumentation/00_writing/Master_thesis_Waiguny_Corinna_ohne_Titelblatt.docx%23_Toc115415332
file:///D:/UNI/MASTERSTUDIUM%20Maschinenbau/Master%20Thesis/01_dokumentation/00_writing/Master_thesis_Waiguny_Corinna_ohne_Titelblatt.docx%23_Toc115415333
file:///D:/UNI/MASTERSTUDIUM%20Maschinenbau/Master%20Thesis/01_dokumentation/00_writing/Master_thesis_Waiguny_Corinna_ohne_Titelblatt.docx%23_Toc115415334
file:///D:/UNI/MASTERSTUDIUM%20Maschinenbau/Master%20Thesis/01_dokumentation/00_writing/Master_thesis_Waiguny_Corinna_ohne_Titelblatt.docx%23_Toc115415334
file:///D:/UNI/MASTERSTUDIUM%20Maschinenbau/Master%20Thesis/01_dokumentation/00_writing/Master_thesis_Waiguny_Corinna_ohne_Titelblatt.docx%23_Toc115415335
file:///D:/UNI/MASTERSTUDIUM%20Maschinenbau/Master%20Thesis/01_dokumentation/00_writing/Master_thesis_Waiguny_Corinna_ohne_Titelblatt.docx%23_Toc115415336

List of Figures

Figure 43: Specimen temperature after removing from the furnace..........ccccoceeeiviei e, 63
Figure 44: Linear polynomial fitcueei i e 64
Figure 45: Reference values for the transport obtained from experiment 2ccccceeevieeeiiiiee e, 64
Figure 46: Influence of contact CONAUCLANCE........cciiiiiiiiiii e e 65
Figure 47: Temperature distribution after a contact time of 8.5 5cccovceiiiiciei i, 66
Figure 48: IMpPlicit VS. EXPICITueeiieiiee et eetre e e e bae e e e aree e e e s abaee e e nneeas 67
Figure 49: Influence Of MESh SIz@ ... e s 67
Figure 50: Influence of different Johnson-Cook parameters.........ccoceeiiecieiiicciee e, 68
Figure 51: Upsetting simulation for SEttING S3.....ccciiii i e e 69
Figure 52: Comparison between experiment and Simulationccccovceiiiiiiee e, 71

77

file:///D:/UNI/MASTERSTUDIUM%20Maschinenbau/Master%20Thesis/01_dokumentation/00_writing/Master_thesis_Waiguny_Corinna_ohne_Titelblatt.docx%23_Toc115415337
file:///D:/UNI/MASTERSTUDIUM%20Maschinenbau/Master%20Thesis/01_dokumentation/00_writing/Master_thesis_Waiguny_Corinna_ohne_Titelblatt.docx%23_Toc115415338
file:///D:/UNI/MASTERSTUDIUM%20Maschinenbau/Master%20Thesis/01_dokumentation/00_writing/Master_thesis_Waiguny_Corinna_ohne_Titelblatt.docx%23_Toc115415339
file:///D:/UNI/MASTERSTUDIUM%20Maschinenbau/Master%20Thesis/01_dokumentation/00_writing/Master_thesis_Waiguny_Corinna_ohne_Titelblatt.docx%23_Toc115415340
file:///D:/UNI/MASTERSTUDIUM%20Maschinenbau/Master%20Thesis/01_dokumentation/00_writing/Master_thesis_Waiguny_Corinna_ohne_Titelblatt.docx%23_Toc115415341
file:///D:/UNI/MASTERSTUDIUM%20Maschinenbau/Master%20Thesis/01_dokumentation/00_writing/Master_thesis_Waiguny_Corinna_ohne_Titelblatt.docx%23_Toc115415342
file:///D:/UNI/MASTERSTUDIUM%20Maschinenbau/Master%20Thesis/01_dokumentation/00_writing/Master_thesis_Waiguny_Corinna_ohne_Titelblatt.docx%23_Toc115415343
file:///D:/UNI/MASTERSTUDIUM%20Maschinenbau/Master%20Thesis/01_dokumentation/00_writing/Master_thesis_Waiguny_Corinna_ohne_Titelblatt.docx%23_Toc115415344
file:///D:/UNI/MASTERSTUDIUM%20Maschinenbau/Master%20Thesis/01_dokumentation/00_writing/Master_thesis_Waiguny_Corinna_ohne_Titelblatt.docx%23_Toc115415345
file:///D:/UNI/MASTERSTUDIUM%20Maschinenbau/Master%20Thesis/01_dokumentation/00_writing/Master_thesis_Waiguny_Corinna_ohne_Titelblatt.docx%23_Toc115415346

List of Tables

List of Tables

Table 1: Standardized designation of aluminum wrought alloys [21]ceeveeeiiiciiiiieeeeiieecrreeeee e 11
Table 2: Chemical composition EN-AW-6082 [21].....cccccuiieeiiiiieeiiieeeecieeeeeireeeeeiree e e evee e e eeavree e e eveeas 11
Table 3: Sensor of the fUrNACE [B4] i e e e e e e e e e e e e e e e e e s eaarraaeeeeaeeenas 22
Table 4: Sensors of the hydraulic Press [34] ... e ee e s ree e s s reeas 23
L]] R o 1=Tol o a1 o W 1T 1T 0 1Y [T o S 23
Table 6: General settings for all EXPeriMENTScocciiiiiiiie e 24
Table 7: Experimental plan — eXperiment L.......oooiiiioiiiieeciee e ree e e ree e e arae e e e 25
Table 8: Experimental plan — eXPerimeENnt 2oocuiiiieiiiie e see e e e e s ree e e arae e e e areeas 25
LI] < (0 T T AV =T L PSSP 33
Table 10: Element type for @aCh Part........cooc it e e ree e e aaae e e e areeas 37
Table 11: Thermal material properties of aluminum alloys [39]coooviiiiiiiiiiie e, 39
Table 12: Thermal material properties of silica [40]......c.veviveiiiiiiiiiiiecee e 39
Table 13: Thermal material properties of carbon steel [41].......coccieiieiiiieeciiee e 39
Table 14: Young's modulus for aluminum alloys [39]ccoeiiiieiie et 40
Table 15: Young's modulus and Poisson ratio of steel [42]cececcieieeciiieeeceee e e 40
Table 16: Johnson Cook MOdEl PAramMELErsSccccuiieieiiieee e e ree e e e e e e aree e e eabee e e enreeas 41
Table 17: Johnson Cook damage parameters [44] ... ieeeeiieeeecieee et see e vee e e bee e e 42
Table 18: Reference values - contact CONAUCLANCEeevviiiiiiieiiir e s 43
Table 19: Reverence values - convective heat transfer coefficientcccoecveeeiiiiiiinicicn e, 43
Table 20: Input and output parameter of each simulationcccccoeeeiiiiieiiiiiiicci e 52
Table 21: FUrNACE LEMPEIATUIES......eeiieciieeeecieee e ettt e e et e e et e e e e e e e e e ebte e e e e abaeeeenstaeesessaeeeenreneeennsenas 61
Table 22: Comparison between experiment 1 and simulation.........ccccccveviriiiee e, 72
Table 23: Comparison between experiment 2 and simulation.........ccccccceeeeeciiie e, 73

78

References

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

(12]

(13]

(14]

[15]

(16]

T. Zheng, M. Ardolino, A. Bacchetti, and M. Perona, “The applications of Industry 4.0
technologies in manufacturing context: a systematic literature review,” International Journal of
Production Research, vol. 59, no. 6, pp. 1922-1954, 2021, doi:
10.1080/00207543.2020.1824085.

Henning Kroll, Djerdj Horvat, Angela Jager, “Effects of Automatisation and Digitalisation on
Manufacturing Companies' Production Efficiency and Innovation Performance,” Fraunhofer IS/
Discussion Papers - Innovation Systems and Policy Analysis, vol. 58. [Online]. Available: http://
hdl.handle.net/10419/176701

D. T. Matt, V. Modrak, and H. Zsifkovits, Industry 4.0 for SMEs: Challenges, Opportunities and
Requirements. Cham: Springer International Publishing, 2020.

Springer, Ed., Simulation for Industry 4.0: Past, Present and Future. Cham: Springer International
Publishing, 2019.

J. N. Reddy, An introduction to nonlinear finite element analysis: with applications to heat
transfer, fluid mechanics, and solid mechanics. Oxford: Oxford University Press, 2015.

B. Rodi¢, “Industry 4.0 and the New Simulation Modelling Paradigm,” Organizacija, vol. 50, no.
3, pp. 193-207, 2017, doi: 10.1515/0orga-2017-0017.

S.Y. Lin, “Upsetting of a cylindrical specimen between elastic tools,” Journal of Materials
Processing Technology, vol. 86, no. 1, pp. 73-80, 1999, doi: 10.1016/50924-0136(98)00236-2.
P. Tugcu, “Thermomechanical analysis of upsetting of a cylindrical billet,” Computers &
Structures, vol. 58, no. 1, pp. 1-12, 1996, doi: 10.1016/0045-7949(95)00122-W.

M. V. Murashov and A. V. Vlasov, “Three-dimensional Finite Element Modelling of the
Cylindrical Specimen Upsetting,” MATEC Web of Conferences, vol. 220, p. 4008, 2018, doi:
10.1051/matecconf/201822004008.

Chun-Ho Liu, A-Cheng Wang, Yi-Sian Chen, and Chien-Ming Wang, “The coupled thermo-
mechanical analysis in the upsetting process by the dynamic FEM,” Journal of Materials
Processing Technology, vol. 201, no. 1, pp. 37-42, 2008, doi: 10.1016/j.jmatprotec.2007.11.174.
Z.). Zhang, G.Z. Dai, S.N. Wu, L.X. Dong, and L.L. Liu, “Simulation of 42CrMo steel billet upsetting
and its defects analyses during forming process based on the software DEFORM-3D,” Materials
Science and Engineering: A, vol. 499, no. 1, pp. 49-52, 2009, doi: 10.1016/j.msea.2007.11.135.
M. Nytra, P. Kubik, J. Petru$ka, and F. Sebek, “A Fully Coupled Thermomechanical Damage
Analysis of Hot Closed Die Forging Using Finite Element Modeling,” Journal of Materials
Engineering and Performance, vol. 29, no. 12, pp. 8236—8246, 2020, doi: 10.1007/s11665-020-
05252-4.

Siamak Serajzadeh, “Prediction of thermo-mechanical behavior during hot upsetting using
neural networks,” Materials Science and Engineering: A, vol. 472, no. 1, pp. 140-147, 2008, doi:
10.1016/j.msea.2007.03.037.

Yong-Cheng Lin and Ming-Song Chen, “Numerical simulation and experimental verification of
microstructure evolution in a three-dimensional hot upsetting process,” Journal of Materials
Processing Technology, vol. 209, no. 9, pp. 4578-4583, 2009, doi:
10.1016/j.jmatprotec.2008.10.036.

Roland Rosen, Georg von Wichert, George Lo, and Kurt D. Bettenhausen, “About The
Importance of Autonomy and Digital Twins for the Future of Manufacturing,” IFAC-
PapersOnline, vol. 48, no. 3, pp. 567-572, 2015, doi: 10.1016/j.ifacol.2015.06.141.

H. Tschaetsch, Metal forming practise: Processes - machines - tools. Berlin, New York: Springer-

Verlag, 2006.

79

References

[17] H. S. Valberg, Applied Metal Forming: Including FEM Analysis: including FEM analysis. New York:
Cambridge University Press, 2010.

[18] E. Doege and B.-A. Behrens, Handbuch Umformtechnik: Grundlagen, Technologien, Maschinen,
3rd ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016.

[19] Dictionary of Production Engineering | / Wérterbuch der Fertigungstechnik | / Dizionario di
Ingegneria della Produzione I: Metal Forming / Umformtechnik / Formatura dei Metalli. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2019.

[20] F. Klocke, Fertigungsverfahren 4. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017.

[21] F. Ostermann, Anwendungstechnologie Aluminium, 3rd ed. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2014. [Online]. Available: http://nbn-resolving.org/urn:nbn:de:bsz:31-epflicht-
1568831

[22] J.-C. Han, Analytical heat transfer. Boca Raton, FL: CRC Press, 2012. [Online]. Available: https://
www.taylorfrancis.com/books/9780429109652

[23] T. L. Bergman and A. S. Lavine, Fundamentals of heat and mass transfer. Hoboken, NJ: John
Wiley & Sons, 2017. [Online]. Available: https://ebookcentral.proquest.com/lib/kxp/
detail.action?docID=6488272

[24] Ralph Benjamin James and Martin Stockinger, “Digitalization and digital transformation in metal
forming: key technologies challenges and current developments of industry 4.0 applications,” in
XXXIX. Verformungskundliches Kolloquium, 2020, pp. 13-23.

[25] J. Pistorius, Industrie 4. 0 - Schliisseltechnologien Fiir Die Produktion: Grundlagen * Potenziale *
Anwendungen. Berlin, Heidelberg: Springer Berlin / Heidelberg, 2020. [Online]. Available:
https://ebookcentral.proquest.com/lib/kxp/detail.action?doclD=6245733

[26] H. K. Tonshoff and I. Inasaki, Eds., Sensors in manufacturing. Weinheim, Cambridge: Wiley-VCH,
2001. [Online]. Available: https://onlinelibrary.wiley.com/doi/book/10.1002/3527600027

[27] X. Wu, V. Goepp, and A. Siadat, “Concept and engineering development of cyber physical
production systems: a systematic literature review,” The International Journal of Advanced
Manufacturing Technology, vol. 111, no. 1, pp. 243-261, 2020, doi: 10.1007/s00170-020-06110-
2.

[28] M. Sorger, B. J. Ralph, K. Hartl, M. Woschank, and M. Stockinger, “Big Data in the Metal
Processing Value Chain: A Systematic Digitalization Approach under Special Consideration of
Standardization and SMEs,” Applied Sciences, vol. 11, no. 19, pp. 1-22, 2021, doi:
10.3390/app11199021.

[29] P. Osterrieder, L. Budde, and T. Friedli, “The smart factory as a key construct of industry 4.0: A
systematic literature review,” International Journal of Production Economics, vol. 221, p.
107476, 2020, doi: 10.1016/].ijpe.2019.08.011.

[30] D. W. Pepper and J. C. Heinrich, The finite element method: Basic concepts and applications, 2nd
ed. New York: Taylor & Francis, 2006. [Online]. Available: http://www.loc.gov/catdir/
enhancements/fy0653/2005002971-d.html

[31] Dassault Systems, Abaqus Documentation.

[32] A. Begovic, “FE-Parameterstudie eines thermomechanisch gekoppelten Stauchversuches in
Abaqus,” Lehrstuhl fiir Umformtechnik, Montanuniversitat, Leoben, 2021.

[33] G.Li,J.Jinn, W. Wu, and S. Oh, “Recent development and application of three-dimensional
finite element modelling in bulk forming process,” Journal of Materials Processing Technology,
vol. 113, pp. 4045, 2001.

[34] B.J. Ralph et al., “MUL 4.0: Systematic Digitalization of a Value Chain from Raw Material to
Recycling,” Procedia Manufacturing, vol. 55, pp. 335-342, 2021, doi:
10.1016/j.promfg.2021.10.047.

80

References

[35] M. Woschank et al., “MUL 4.0 — Digitalisierung der Wertschépfungskette vom Rohmaterial bis
hin zum Recycling,” Berg Huettenmaenn Monatsh, vol. 166, no. 6, pp. 309-313, 2021, doi:
10.1007/s00501-021-01119-w.

[36] Wikipedia, Load cell. [Online]. Available: https://en.wikipedia.org/w/index.php?title=Load_cell&
0ldid=1085892888 (accessed: Aug. 8 2022).

[37]1 Grundlagen der Infrarot-Temperaturmessung. [Online]. Available: https://www.keller.de/de/its/
pyrometer/applikationen/grundlagen/grundlagen-der-infrarot-temperaturmessung.htm
(accessed: Aug. 8 2022).

[38] Thermocouple probes. [Online]. Available: https://www.omega.com/en-us/resources/
thermocouple-hub (accessed: Aug. 8 2022).

[39] EN 1999-1-2: Eurocode 9: Design of aluminium structures - Part 1-2: Structural fire design, 1999-
1-2, 2007.

[40] A. Eschner, Thermophysikalische Stoffwerte von feuerfesten Materialien - PDF Kostenfreier
Download. [Online]. Available: https://docplayer.org/134801229-Thermophysikalische-
stoffwerte-von-feuerfesten-materialien.html (accessed: Feb. 12 2022).

[41] “Annex A: Thermal Data for Carbon Steel and Stainless Steel Sections,” [Online]. Available:
https://onlinelibrary.wiley.com/doi/pdf/10.1002/9783433601570.app1

[42] C.-H. Yeh, N. Jeyaprakash, and C.-H. Yang, “Non-destructive characterization of elastic
properties on steel plate using laser ultrasound technique under high-temperature
atmosphere,” The International Journal of Advanced Manufacturing Technology, vol. 108, 1-2,
pp. 129-141, 2020, doi: 10.1007/s00170-020-05383-x.

[43] B.J. Ralph, K. Hartl, M. Sorger, A. Schwarz-Gsaxner, and M. Stockinger, “Machine Learning
Driven Prediction of Residual Stresses for the Shot Peening Process Using a Finite Element Based
Grey-Box Model Approach,” JMMP, vol. 5, no. 2, p. 39, 2021, doi: 10.3390/jmmp5020039.

[44] A.Rusinek, A. Arias, M. Rodriguez Millan, and D. Garcia Gonzalez, “Influence of Stress State on
the Mechanical Impact and Deformation Behaviors of Aluminum Alloys,” Metals, vol. 8, 2018,
doi: 10.3390/met8070520.

[45] Y. Akif, “Investigation of Cold Welding At Steel-Aluminum Combinations Via Extrusion Process
Using Thermo-Mechanically Coupled Finite Element Analysis,” Master Thesis, Graduate School
of Science and Engineering of Hacettepe University, 2019.

[46] X. Chen, Y. Peng, S. Peng, S. Yao, C. Chen, and P. Xu, “Flow and fracture behavior of aluminum
alloy 6082-T6 at different tensile strain rates and triaxialities,” PLOS ONE, vol. 12, no. 7,
e0181983, 2017, doi: 10.1371/journal.pone.0181983.

[47] Bowen Liang, Ronghua Li, Xiujuan Zhang, and Yanjun Chen, “Finite Element Analysis of Friction
Stir Welded 6082-T6 Aluminum Alloy’s Residual Stress,” Journal of Physics: Conference Series,
vol. 1605, 2020, doi: 10.1088/1742-6596/1605/1/012121.

[48] Peng Yibo, Wang Gang, Zhu Tianxing, Pan Shangfeng, and Rong Yiming, “Dynamic Mechanical
Behaviors of 6082-T6 Aluminum Alloy,” Advances in Mechanical Engineering, vol. 5, pp. 1-8,
2013, doi: 10.1155/2013/878016.

[49] J. Ning and S. Y. Liang, “Inverse identification of Johnson-Cook material constants based on
modified chip formation model and iterative gradient search using temperature and force
measurements,” The International Journal of Advanced Manufacturing Technology, vol. 102, 9-
12, 2019, doi: 10.1007/s00170-019-03286-0.

[50] J.-L. Pérez-Castellanos and A. Rusinek, “Temperature increase associated with plastic
deformation under dynamic compression: application to aluminum alloy Al 6082,” Journal of
theoretical and applied mechanics, vol. 50, pp. 377-398, 2012.

81

References

[51] M Rosochowska, R Balendra, and K Chodnikiewicz, “Measurements of thermal contact
conductance,” Journal of Materials Processing Technology, vol. 135, no. 2, pp. 204-210, 2003,
doi: 10.1016/50924-0136(02)00897-X.

[52] Y. Chang, X. Tang, K. Zhao, P. Hu, and Y. Wu, Investigation of the factors influencing the
interfacial heat transfer coefficient in hot stamping, 2014.

[53] L.Ying, T. Gao, M. Dai, and P. Hu, “Investigation of interfacial heat transfer mechanism for 7075-
T6 aluminum alloy in HFQ hot forming process,” Applied Thermal Engineering, vol. 118, pp. 266—
282, 2017, doi: 10.1016/j.applthermaleng.2017.02.107.

[54] J.E. Akin, “FEA Concepts: SW Simulation Overview,” [Online]. Available: https://
www.clear.rice.edu/mech403/HelpFiles/FEA_thermal_concepts.pdf

[55] Q. Bai, J. Lin, L. Zhan, T. A. Dean, D. S. Balint, and Z. Zhang, “An efficient closed-form method for
determining interfacial heat transfer coefficient in metal forming,” International Journal of
Machine Tools and Manufacture, vol. 56, pp. 102—-110, 2012, doi:
10.1016/j.ijmachtools.2011.12.005.

[56] R. Marek and K. Nitsche, Eds., Praxis der Wérmetibertragung. Miinchen: Carl Hanser Verlag
GmbH & Co. KG, 2015.

[57] Martin Pletz, “Efficient Finite Element Modelling: Automated model generation & evaluation
using Simulia Abaqus,” Chair of Desinging Plastics and Composite Materials, Montanuniversitat
Leoben, Austria, 2021.

82

Appendix

Appendix

Appendix A: measurements.py

T T —_—
g T S T N IRt O RN - R, R LTI SR

B
[

23
24
5
26
v
28
25
30
31
3z
33

35
36
37
38
39
a0
a1
a2
43

as
a6
a7
a8
49
50
51
52
53
54
55
56
57

script name; measurements 21062022

function: evaoluate and visumlizes the sensor dota

seript includes the experiment information {section FILEPATH / EXPERIMENTS) for experiment 1

IMPORT

import matplotlib.pyplot as plt
import numpy as np

import o5

from datetime import timedelta

FILE PATHS

MAIN_DMR = r'L:\090_Datenaustausch\cwalguny\MA\project_21062022"
MEASUREMENT_FOLDER = os path.join[MAIN_DIR, r'experimentsensor’)
QOUTPUT_FOLDER = os.path.joiniMAIN_DIR, r'results')

SAVE =True # If true, the figures are saved

EXPERIMENTS

1.) define parameter for each test setting: setting name/number, tested geometry (A, 'B'), furnaoce

temperature [°CJ,

upsetting height fmm], transport time [s], rest time on bottom die [s]
s 1=["s1",10, 15, 300, 5, 4, 3]

s 2=['s2', 10, 15, 300, &, 4, 3]

s_3=['s3", 20, 30, 300, 15, 4, 3]

5 4 =["s4', 20, 30, 300, 20, 7, 3]

s_S5=['s5, 10, 15, 500, 5, 7, 3]

s 6=["s_6', 10, 15, 500, 8, 4, 3]

s_7=['s7", 20, 30, 500, 15, 7, 3]

s B=["s8', 20, 30, 500, 20, 4, 3]

settings=1[5_1,5 2,5 3,5 4,58 5,5 6,5 7,5 8] #oll test sellings

2 | enter the test number of the measurement that correspand Lo the test setting
sp_1=["TestNr_4.', TestNr_8.", '"TestNr_9.', TestNr_10.", 'TestNr_11.", TestNr_12."]
sp_2 =["TestNr_13.", "TestNr_14.", "TestNr_15.", TestNr_16.", 'TestNr_17.']

sp_3 = ['TestNr_19.', 'TestNr_20.", 'TestNr_21.", 'TestNr_22.°, 'TestNr_23.', TestNr_24."]
sp_d = ['TestNr_31.", 'TestNr_26.", 'TestNr_27.', TestNr_32.", 'TestNr_29.', TestNr_30."]
sp 5= ['TestMr_33.", "TestNr_34.", "TestNr_35.', 'TestNr_36.", 'TestNr_37.', TestNr_38."]
sp_B = ['TestNr_39.', "TestNr_40.", 'TestNr_41.', TestNr_42.", 'TestNr_43.', TestNr_a4."]
sp_ 7 =["TestMNr_45.", 'TestNr_46.", "TestNr_47.', TestNr_48.", 'TestNr_49.', TestNr_50."]
sp_8 = ['TestNr_51.', 'TestNr_52.", 'TestNr_53.', TestNr_54.°, 'TestNr_55.", TestNr_56."]

specimen = [sp_1, sp_2, sp_3, sp_4, 5p_5, sp_b, sp_7, sp_8] # corresponding measurement numbers

FUNCTIONS
def get_seconds(time_string);
t = time_string.split]"#")[1]
if ‘ms"int;
t = t.strip{'ms')
if 'm'intand's'int:
t = t.split('m')
t1 = t[1].split('s')
time_ = timedelta(minutes=int(t[0]}, seconds=int(t1[0]}, milliseconds=int{t1[1]}]
time_ = time_.total_seconds()
elif 'm"int:
t = t.split('m')

83

Appendix

58
59
&0
Bl
B2
B3

65
il
&7
68
&9
Y
71
72
73
74
75
76
Erl
78
i)
g0
&1
82
83

BS
26
a7
a8
89
%0
a1
92
93

35

96

97

98

%9
100
1
102
103
104
105
106
o7
108
109
110
111
112
113
114
115

time_ = timedelta|minutes=int(t[0]), milliseconds=int(t[1]})
time_ = time_.total_seconds()

elif 's" int:
t = t.split]'s')
time = timadeltalsecands=int{t[0]), milliseconds=int{t[1]))
time_ = time_.total_seconds()

else:
time_ = timedelta|milliseconds=int(t])
time_ = time_.total_secondsi)

else:

if 'm"intand’s' int:
t = tstripl's’)
t = t.split['m')
time_ = timedelta|minutes=int(t]0]}, seconds=int{t[1]}]
time_ = time_.total_seconds()

elif 'm'in t:
t = t.strip|'m’)
time_ = timedelta|minutes=int(t))
time = time .total secondsi)

elif 's':
time_ = int{L.strip('s")}

return time_

def read_measurement|filename_):

this function depends on structure af the measurement file

time_=|]

lead_ =[]

abs_gap_ =[]

rel_gap_={]

t_pyro_=]

t_thermao_ =]

Lleft =]

with openifilename_, 'r') as f:

header_ = f.readline()
for line in f;

d = line.stripp.split(';')
time_append(get_seconds(d[0]]]
load_.append|float{d|1]))
abs_gap_.append(floatid[2]))
rel_gap_.append(float(d[3]))
t_pyro_.append(float{d[4]])
t_thermo_.append|float{d[5])}
t_left_.append(floatid[6]))

return header_, time_, load_, abs_gap_, rel_gap_, t_pyro_, t_thermo_, t_left_

def plot_layout(settings_, m);
fig = pit.figure(figsize=(15, 10))
subl_ = fig.add_subplot(231)
subl_.set_title'Load cell’)
subl_.set_ylabel{'load [kn]')
subl_.set_xlabel('time [s]')

sub2_ = fig.add_subplot(23Z)
sub2_set_title('LVDT sensor’)
sub?_set_ylabel'absolute gap [mm]’)
sub2_.set_xlabel]'time [s]')

84

Appendix

116
117
118
118
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
145
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173

sub3d_ = fig.add_subplot(234)
sub3_set_title('Pyrometer’)
sub3_set_ylabel|'temperature [°C]')
sib3 set xlabeli'time [s]')

subd_ = fig.add_subplot(235)
subd_set_title('Thermocouple')
subd_set_ylabel{'temperature [°C]')
subd_ set_xlabel('time [s]')

subS = fig.add subplot(236)
subS_.set_title('Thermocouple')
subS .set_ylabel{'temperature [*C]")
sub5_ set_xlabel|'time [s]')

title = 'MEASUREMENTS \n' 4 settings_[m][0] + ': specimen geometry: d0 ="+
str(settings_[m][1]] + ' [mm] hO= '+ strisettings_[m](2]) + ' [mm], T="+
strisettings [m][3]) + ' [°C], delta h = " + str{settings_[m][4]) +
" [mm], transfer time = ' + str{settings_[m][5]) + ° [s), rest time ="+
strisettings_[m][6]) + '[£]')

plt.suptitle(title)

return subl_, sub2_, sub3_, subd_, subS_

def calculate_wvelocity{abs_gap |, time_, h):
start =0
for ind, gap in enumerate(abs_gap_):
if gap < h:
start = ind
break
minimum = min{abs_gap_)
end = abs_gap_.index{minimum)
5 = abs_gap_[start] - abs_gap_lend)]
v_=5/ [time_[end] - time_[start])
return v_

CALCULATIONS
plt.close{'all")

files = os.listdir{ MEASUREMENT_FOLDER) # list all measurement
nr = len(settings)
for i in range(nr):

v=l]

Ls=]]

t f=]]

F_max =[]

subl, sub2, sub3, subd, sub5 = plot_layout|settings, i)

for j in range(len(specimen(i])): # evoluole and plol measurements
for file in files:
if specimen(i][]] in file: # search for the fest setling
filepath = os.path.join{MEASUREMENT_FOLDER, file)
header, time, load, abs_gap, rel_gap, t_pyro, t_thermo, t_left = read_measurementifilepath)

for number, elem in enumeratelload):

85

Appendix

174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
162
193
154
195
196
197
198
159
200
201
202
203
204
205
206
207
208
209
210
211
212

correction foctor of force data {changes with sensor signal)
load[number] = elem * 1.27

F_max.append{np.maxiload)} # maximum force

averoge velocity
abs_pos = abs_gap[0] # absolute pasitian of the top die ot the start
v.append(calculate_velocitylabs_gap, time, abs_pos - 1))

t_f.append(np.meanit_left)) # overage furnoce temperature
t_s.append(np.mean(t_thermo)) # average temperature of the thermocouple

filename = flle.strip(".csv')

subl.plat{time, load, label=filename)
sub2.plot{time, abs_gap, label=filename)
sub3.plat{time, t_pyro, label=flename)
subd,plot{time, t_left, label=filename)
subbS.plot{time, t_thermeo, label=filename)

sub.legend|loc="upper right’, bbox_to_anchor=(1.8, 1.02))
if SAVE:

name = 'sensor_data_' + settings[i][0]

name = os.path. jein(OUTPUT_FOLDER, name]

plt savefiginame, dpi=&00)

print{settings{il[0])

velocity = np.mean(v)

print{'average velocity of hydraulic press:', "{:.1f}" farmat(velocity), * mm/s')
temp_surrounding = np.meanit_s)

print{'average temperature thermocouple: ', "{:.0f}" format(temp_surrounding), ' *C')
t_furnace = np.mean(t_f

print|'average temperature thermocouple in furnace: ', "(..0f}" format(t_furnace), ' °C'}
average_max_force = np.meani(F_max)

print{'average maximum force: °, "{.2f}". format(average_max_force), ' kN')

plt.show()

#

86

Appendix

[=R Y- - - RN - L I T R S FE I N

23
24
25
26
rrl
28
25
30
31
32
33

35
36
37
38
19
an
a1
42
43

a5
a6
a7
a8
49
50
51
52
53

55
36
57

T T YT T —

script name; measurements 15072022
ry

function: evoluote and visuolizes the sensor doto
seripl includes the experiment information (section FILEPATH f EXPERIMENTS) for experiment 2

IMPORT

import matplotlib.pyplot as plt
import numpy as np

import os

from datetime import timedelta

FILE PATHS

MAIN_DIR = r'L:\090_Datenaustausch\cwalguny\MA\project_15072022"
MEASUREMENT_FOLDER = os.path.join(MAIN_DIR, r'experimentsensor’)
QUTPUT_FOLDER = os.path.joiniMAIN_DIR, r'results')

SAVE = True # If true, the figures are saved

EXPERIMENTS

1.) define parameter for each test setting; setting namefnumber, tested geometry (A, '8°), furnoce
temperature [°CJ,

upsetting height [mm], transport time [s], rest time on bottom die 5]

s 1=["s1", 10, 15, 300, 5, 4, 3]

5 2=["s2',10, 15,300, 5, 7, 3]

s_3=['s3", 10, 15, 400, 5, 4, 3]

s 4 =["s4', 10, 15, 400, 5, 7, 3]

s 5=['s5', 10, 15, 500, 5, 4, 3]

s_b6=["s6', 10, 15, 500, 5, 7, 3]

settings = [5_1,5 2,5 3,5 4,5 5,5 6] #oll test settings

2.) enter the test number of the measurement that correspond to the test setting
sp_1=['TestNr_12.', TestNr_13.", 'TestNr_14.", TestNr_15.]

sp_2 = ['TestNr_16.", "TestNr_17.", "TestMr_18.", "TestNr_19."]

sp_3 = [TestNr_20.', 'TestNr_21.", ‘TestNr_22.", ‘TestNr_23.7]

sp_4 = ['TestNr_24.", "TestNr_25.", "TestNr_26.", "TestNr_27."]

sp_5 = ['TestNr_28.', 'TestNr_29., 'TestNr_30.", TestNr_31."]

sp_6=['TestNr_32.', TestNr_33.", "TestNr_34.", TestNr_35.]

specimen = [sp_1,sp_2,sp_3,5p_4,5p_5, sp_6]

FUNCTIONS

def get_seconds{time_string):
= time_string.spliti"#')[1)
if “‘ms" int:
t = t.5trip(‘'ms’)
if ‘m" intand 's' in t:

t = t.split('m’)
t1 = t[1).split('s')
time_ = timadelta(minutes=int(t[0]), seconds=int(t1[0]), milliseconds=int{t1[1]))
time_ = time_.total_seconds()

elif 'm"int:
t = t.split('m’)
time_ = timedalta(minutes=int(t[0]), millseconds=int(t[1]))
time_ = time_.total_seconds()

elif 's"in t:

87

Appendix

58
59
&0
&l
B2
B3

B5
GE
&7
B8
69
o
71
¥
73
74
75
76
Erd
78
b
8o
&1
82
#3

B
26
a7
28
89
50
a1
92
93

35

96

97

98

99
100
10
102
103
104
105
106
107
108
109
110
111
112
113
114
115

t = t.split('s')
time_ = timedeltalseconds=int{t[0]), milliseconds=int(t[1]})
time_ = time_.total_seconds()
else:
time = timedalta(milliseconds=int{t))
time_ = time_.total_seconds()
else:
if 'm"intand's'int:
t = Lstrip|'s")
t = t.split['m'}
time_ = timedeltalminutes=int(t|0]), seconds=int(t[1]})
time_=time _total seconds()
elif 'm'int:
t = Lstrip{'m')
time_ = timedeltalminutes=int(t))
time_ = time_.total_seconds()
elif 's":
time_ =int{t.stripl's"))
return time

def read_measurement(filename_):

this function depends on structure af the measurement file

time_ =]

load_ =]

abs_gap_ =[]

rel_gap_=||

L_pyro_=[]

t_thermo_ =]

t_left_={]

with openifilename_, 'r') as f:

header_ = f.readline{)
for line in F:

d = line.strip().split{";')
time_.append|(get_seconds{d[0])}
load_append|float{d[1]))
abs_pgap_.append(floatid[2]))
rel_gap_.append(float{d[3]])
t_pyro_.append(floatid[4]])
t_thermo_.append|float{d[&])}
t_left_append(float{d|7]))

return header_, time_, load_, abs_gap , rel_gap , t_pyro_, t_thermo_, t_left_

def plot_layout(settings_, m):
fig = pit.figure(figsize=(30, 20
subl_ = fig.add subplot(231)
subl_.set_title('Load cell’)
subl_.set_ylabel{'load [kN]')
subl_set_xlabel{'time [s]')

sub?_ = fig.add_subplot(232)
subZ_set_title('LVDT')

sub2 .set ylabell'absolute gap [mm]")
sub2_.set_xlabel{'time [s]')

sub3_ = fig.add_subplot(234)
sub3_.set_title]'Pyrometer')

88

Appendix

116
117
118
115
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
145
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
17
172
173

sub3_set_ylabel{'temperature [*C]')
sub3_.set_xlabel('time [s]')

subd_ = fig.add_subplot{235)

siibdset title('Thermocouple furnace')
subd_set_ylabel|'temperature ["C]")
subd_.set_xlabel('time [s]')

subs_ = fig.add_subplot{236)
subb5_set_titlel' Thermocouple')
subS_.set_ylabel|'temperature [°C]")
sub5 set xlabel('time [s]')

title = ['MEASUREMENTS \n' + settings_[m][0] + ": specimen geometry: di =" +
strisettings_[m][1]) + ' [mm] hD=" + str{settings_[m][2]} + ' [mm], T="+
str(settings_[m][3]) + ' [*C], delta h = " + str{settings_[m][4]) +
" [mm)], transfer time = ' + str{settings_[m][5]) + * [s], rest time ="+
strsettings_[m][&6]) + '[s]')

plt.suptitleltitle)

return subl_, sub2_, sub3_, subd_, subS_

def calculate_velocity(abs_gap_, time_, h):
start =0
for ind, gap in enumerate(abs_gap_):
if pap < h:

start =ind

break
minimum = min{abs_gap_)
end = abs_gap_.index{minimum)
s=abs_gap_[start] - abs_gap_[end]
v_=s/ [time_[end] - time_[start])
return v_

CALCULATIONS
pit.closel'all')

files = os.listdir{ MEASUREMENT_FOLDER]) # fist all measurement
nr = len{settings)
for i in range(nr):

v=]]

ts=(]

t_F =]

F_max =[]

subl, sub2, sub3, subd, subb = plot_layout(settings, 1)
pit.style.use(seaborn-ticks')

for jin range(len{specimen(i]l): # evaluote and plot measurements
for file in files:
if specimen(i]lj] in file: # search for the fest sefting
filepath = os.path.join|MEASUREMENT _FOLDER, file)
header, time, load, abs_gap, rel_gap, t_pyra, t_thermao, t_left = read_measurementifilepath)

F_max.append(np.max{load)) # maximum force

averoge velocity

89

Appendix

174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
154
195
196
197
198
199
200
201
202
203
204
205
206

abs_pos = abs_gap[0] # absolute position of the top die af the stort
v.append(calculate_velocity(abs_gap, time, abs_pos - 1))

t_f.append(np.meantt_left)] # average furnoce temperature
t_s.append{np.meanit_thermo)) # average temperature of the thermocouple

filename = file.strip{'.csv’)

subl.plot{time, load, label=filename)
sub2 plot{time, abs_gap, label=filename)
sub3 plot{time, t_pyro, label=filename)
subd. plot{time, t_left, label=filename)
subS.plot{time, t_thermo, label=filename)

sub2 legend|loc="upper right’, bbox_to_anchor=(1.8, 1.02))
if SAVE:
name = 'sensor_data_' + settings(i][0]
name = os,path,joinfOUTPUT_FOLDER, name)
plt.savefiginame, dpi=&00)

print{settings[i][0])

velocity = np.mean(v)

print{'average velocity of hydraulic press:’, *{:.1f}" .format({velocity], * mm/s’)
temp_surrounding = np.mean(t_s)

print{'average temperature thermocouple: ', *(:.0f}" format(temp_surrounding), ' C')
t_furnace = np.mean(t_f)

print{'average temperature thermocouple in furnace: ', "{:.0f}" . farmat(t_furnace), ' °C’)
average_max_Tarce = np.mean(F_max)

print{'average maximum force: ', "{:.2f}" format{average_max_force), ' kN')

plt.show()

iy

90

Appendix

Appendix B: main_script.py

[=TRN =T - RN = I W, R O FE I N

5
56

B e ECRIPT INFORAA TN o m e e
¥

name: main_ script

function: generate, run ond evaluate simulations

info: change abogus working directory to the path of this script before running this script

unit system: 51-mm and temperatures in degree Celcius

l

from abagus import *

from abaqusConstants import *
from caeModules import *

import os

fram modules import simulation_1
from modules import simulation_Zp
from modules import simulation_3p
from modules import simulation_di
from modules import simulation_de
fram modules import odb_data

FILE PATHS

SCRIPT_PATH = os.getowd()

MAIM_DIR = r'L:\090_Datenaustausch\cwaiguny\MA\project_21062022'
RESULT_PATH = r'L:\090_Datenaustauschicwaiguny\MA\project_21062022\sim'\res’
C5V_PATH = r'L:\090_Datenaustauschicwaiguny\MA\project_21062022\simcsv’

SPECIMIEN

setting = "s1_2" & test setting name fidentificotion number
d0 = 10 # initial diometer of specimen

hQ = 15 # initial height af the specimen

hl=10 # height af the specimen after forming

] PROCESS PARAMETER

ambient_temperature = 28 # ambient temperature
furna:e_temperature =276 # temperoture insige the .l'u.'r.'?r;lr'r-' {prefeating !F'nﬂpﬁ'rr:.'..'.'r—',l

heating_time = 1200 # process time af the specimen in the furnace
transport_time = 4 # transport time from furnace to the hydrawlic press
rest_time = 3 # rest time of specimen on bottom die befare the upsetting process starts

v=63 # velocity of hydroulic press
hi =50 # initiol distonce between top and bottom die

moving_time = (hi - h) /v # time to move the top die onlo the top surface of the specimen
contact_time = moving_time + rest_time # totol contact time for heat transfer to bottom die
delta_h =h0-hl # upsetting height

upsetting_time =delta_h /v # time for the upsetting process

temperature_amplitude = {(0.0, furnace_temperature), (heating_time, furnace_temperature),) #
temperature in the furnoce

amplitude_displacement_data = ({0.0, 0.0}, (upsetting_time, delta_h)) # time - displocement amplitude
of the top die

B memmm e SIRAULATION PARAMETER —=me e mmmem oo

91

Appendix

37
58
3

B1
62
63

G5
BE
67

B9
0
71
72
73
4
75
&
Erd
78

81
g2
a3

a5
26
&7
88

41
92
93

95
BB
97
S8

100

101
102
103
104
105
106
107
108
109
110

111
112

emissivity = 0.3 i emissivity of the specimen
emissivity_f=08 & emissivity of the furnoce lining

heat transfer coefficient for convectional heat transfer
canvection_coeff_1=0.025 # free convection in the furnoce
convection_coeff_2 =0.15 # forced convection during transport
convection_coeff 3 =0.025 # free convection during rest on die

contoct conductance as o function of clearance

cantact_conductance_1 =((0.3, 0.0), (0.0, 0.01)) # between furnoce and specimen
contact_conductance_3 =((2, 0.0), (0.0, 0.01)) # between bottom die and specimen
contact_conductance_d4 =((20, 0.0), (0.0, 0.01}) # between dies ond specimen during upsetting

friction = 0.3 # friction coefficlent In contect area between specimen and bottom die
seed_size =0.2 # globol seed size for the specimen

seed_size_furnace = 10 # global seed size for the furnace

seed_size_die=1 # globol seed size for the dies

FILE NARES

naming of FE simulations

name_1="siml_' + str{setting)
name_3 ="sim3_" + str{setting)
name_di = 'simdi_" + str(setting)
name_de = "simde_' + str{setting)

file paths to odb-files of previous simuwlation
adb_abs_path_2 = os.path.join{RESULT_PATH, name_1 + ".odh')
odb_abs_path_4 = os.path.join(RESULT_PATH, name_3 + "odh')

i

set variable to True® to define which simulations to execute
note: simulation results from previous simulation are needed
runsiml = True

runsSim2p_3p = True

runsimdi = True

runSimde = False

if runsim1;
simulation_1.heating{h0, d0, ambient_temperature, furnace_temperature, heating_time, emissivity
. emissivity_Ff,

convection_coeff_1, temperature_amplitude, contact_conductance_1, seed_size,
seed_size furnace, RESULT_PATH, name_1)
T1_end = cdb_data.evaluate_end_temperature{name_1})
b SIMULATION 2 + SIMULATION 3
if runSim2p_3p:

T2=T1 end
T2_end = simulation_2p.transport{d0, h0, ambient_temperature, T2, transport_time, emissivity,
convection_coeff_2)

T3=T2_end

92

Appendix

113

114
115
116
117
118
118
120
121
122

123

124
125
126
127
128
129
130

131

132
133
134
135
136

simulation_3p.rest(hd, dd, contact_time, emissivity, ambient_temperature, T3,
contact_conductance_3,
convection_coeff_3, seed_size, seed_size_die, RESULT_PATH, name_3)

odb_data.evaluate temperatureiname_ 3, CSV_PATH)

SIMIUILATION 4 - IMPLICTT

if runSimai:
simulation_a&i.upsetting(h0, d0, ambient_temperature, upsetting_time, friction,
contact_conductance 4,
odb_abs_path_4, amplitude_displacement_data, seed_size, seed_size_die,
RESULT PATH, name_4i)

odb_data.evaluate_upsettinginame_di, C5W_PATH)
& SIMULATION 4 - EXPLICIT
if runSimde:

simulation_de.upsetting(h0, d0, ambient_temperature, upsetting_time, friction,
contact_conductance_d,

odb_abs_path_4, amplitude_displacement_data, seed_size, seed_size_die,
RESULT_PATH, name_de)
odb_data.evaluate _upsettinginame_de, C5V_PATH)
¥

93

Appendix

Appendix C: compare.py

I R R R T T
R =TI - R R R R I R~ T T A - - B - I T IR T

3z
33

35
36
a7
38
39
an
a1
az
43

a5
a6
a7
a8
49
50
51
52
53

55
36
57

e e e BCRIPT INFORRIATION - m e e e e
B

nome: compare 21062022

function: compare experiment and simulation

seript includes the experiment information (section FILEPATH / EXPERIMENTS) for experiment 1

IMPORT

import matplotlib.pyplot as plt
import numpy as np

import o5

from datetime import timedelta

from Imfit. models import LinearModel

MAIN_DIR = r'L:\090_Datenaustausch\cwaiguny\WMA\project_21062022'
MEASUREMENT_FOLDER = os.path.join[MAIN_DIR, r'experimentsensor’)
SIMULATION_RESULTS_FOLDER = as.path_join[MAIMN_DIR, r'simicsv')
QUTPUT_FOLDER = os.path.joiniMAIN_DIR, r'results')

SAVE =True # if true, the figures are saved
showFit = False # include limear fit in the plot

@ PARAMETER

hp = 6.0 # pyrometer pasition [mm]

tal = 0.5 # tolerance for pyrometer position [mm]
o EXPERIMENTS

1.) define parameter for each test setting: setting nameSnumber, initiol diometer d0 fmm], initial
height hQ [mm],

furnace temperature [*Cl, upsetting height [mm)], transpart time [s], rest time on bottom die [5]

5 1=['s1',10, 15, 300, 5, 4, 3]

s_2=['s2', 10, 15, 300, 8, 4, 3]

5 3=["s3", 20, 30, 300, 15, 4, 3]

s_4=['sd', 20, 30, 300, 20, 7, 3]

5_5=['s5', 10, 15, 500, 5, 7, 3]

s &=['s6', 10, 15, 500, 8, 4, 3]

s 7=['s7', 20, 30, 500, 15, 7, 3]

s 8=['s8', 20, 30, 500, 20, 4, 3]

settings =[5 1,5 2,5 3,5 4,5 5,5 6,5 7,5_8] #all test settings

2.) enter the test number of the measurerment that correspond to the test setting
sp_1=['"TestNr_4.', Testhr_8.", 'TestNr_9.', TestNr_10.", 'TestNr_11.", TestNr_12."]

sp_2 = [TestMr_13., "TestNr_14.", "TestNr_15.", TestNr_16.", 'TestNr_17."]

sp_3 =['TestMr_19.', "TestNr_20.", 'TestNr_21.", TestNr_22.", 'TestNr_23.', TestNr_24."]

sp 4 = ["TestMr_31.", 'TestNr_26.", "TestNr_27.', 'TestNr_32.', 'TestNr_29.', TestNr_30."]

5p_5 = ['TestNr_33.', "TestNr_34.", 'TestNr_35.', 'TestNr_36.", 'TestNr_37.', TestNr_38."]

sp_6 = ['TestMr_39.', 'TestNr_40.", 'TestNr_41.', 'TestNr_42.", 'TestNr_43.', TestNr_a4."]

sp_7 = ['TestNr_45.", 'TestNr_46.", 'TestNr_47.', 'TestNr_48.", 'TestNr_49.', TestNr_50."]

sp_B =['TestNr_51.", ‘TestMNr_52.", 'TestNr_53.', TestNr_54.", 'TestNr_55.", TestNr_56."]

specimen = [sp_1, sp_2, sp_3, sp_4, sp_5, sp_6, sp_7, sp_8] # correspanding measurement numbers

FUNCTIONS

94

Appendix

58
59
&0
Bl
B2
B3
4
65
il
&7
68
&9
Y
f1l
72
73
74
75
76
Erl
78
i)
g0
21
82
83

BS
26
a7
a8
89
%0
a1
92
93

35

96

97

98

%9
100
1
102
103
104
105
106
o7
108
109
110
111
112
113
114
115

def get_seconds(time_string):

t = time_string.split]"#')[1]
if "mis" int:
t = t.5trip{'ms')
if 'm"intand 's" int:
t = t.split['m'}
t1 = t[1].split]"s'}
time_ = timadeltalminutes=int(t[0]}, seconds=int(t1[0]}, milliseconds=intit1[1]})
time_ = time_.total_seconds()
elif 'm"int:
t = t.split['m')
time_ = timedelta[minutes=int(t[0]), milliseconds=int{t[1]})
time_ = time_.total_seconds()
elif 's"int:
t = t.split(‘s')
time_ = timedeltalsecands=int(t[0]), milliseconds=int(t[1]})
time = time .total secondsi)
else:
time_ = timedelta[milliseconds=int{t))
time_ = time_.total_seconds()
else:
if'm'intand's' int:
t = t.strip|'s’)
t = tsplit("'m')
time_ = timedeltalminutes=int(t|0]), seconds=int(t[1]})
time_ = time_.total_seconds()
elif 'm"int:
t = t.strip|'m')
time_ = timedelta(minutes=int(t))
time_ = time_.total_seconds()
elif 's":
time_ = int{t.strip{'s’))
return time_

def read_measurement{filename_):

this function depends on structure of the measurement file
time_ =[]
load_ =]
abs_gap_ =[]
t_pyro_=]
t_thermo_ =]
t_leﬂ._ =]
with openifilename_, r') as f:
header_ = freadline{)
for line in f;
d = line.stripl.spliti';"}
time__append(get_seconds(d[0]))
load_append(float{d[1]])
abs_gap_.append(float{d[2]])
t_pyro_.append|float(d[4]])
t_thermo_.appendifloat{d[5])}
t_left_append|floatid]&]})
return header_, time_, load_, abs_gap_, t_pyro_, t_thermo_, t_left_

95

Appendix

116
117
118
115
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135

136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172

def plot_layout(settings_, m):
fig = plt.figure(figsize=(10, 10))
subl_ = fig.add_subplot(221)
subl_.set_titlel'Temperature during contact’)
subl_.set ylabel['Temperature "C")
subl_.set_xlabell'Time [s]')
subl_.set_ylim(0, settings_[m][3])

sub2_ = fig.add_subplot(222)
sub2_set_titlel'Temperature during upsetting')
sub2_.set_ylabel|'Temperature "C')

sub? .set xlabell'Time [s]')

sub2_.set_ylim(0, settings_[m][3])

sub3_ = fig.add_subplot{224)
sub3_.set_title'Force during upsetting')
sub3_.set_ylabel{'Force [kN]')
sub3_.set_xlabell'Upsetting height [mm]')

title = (settings_[m][0] + ': specimen geometry: d0 = + str{settings_[m][1]}+ " [mm] hD=" + str|
settings_[m][2])
+ ' [mm], T= " + str(settings_[m][3]) + ' [*C], &h = ' + str{settings_[m][4]) +
' [mm], transfer time = ' + strlsettings_[m][5]) + * [s], rest time = " + str{settings_[m][&]) + ' [s]")
plt.suptitle(title)
return subl_, sub2_, sub3_

def start_contact(time _, t_):
at a specified point of time
for ind in range{len{time_}):
if time_[ind] = t_:
return ind, time_[ind]

def start_upsetting{time_, load_):
determine the start of the upsetling process in the measurements
the start of the upsetting process is defined by the force exceeding o threshold volue
threshold = 0.1
for ind in rangel0, leniload_});
if load [ind] > threshold:
return ind, time_[ind]

def end_upsettingitime_, abs_gap_):
-!.llé'!F'l'l'i".'l'.‘F' the F"I!.ll -'.lf I'lliF' |'.'r".l'|F'I'I"."|'|' Process 1in the measurements
the end of the upsetting process is reached with minimum relative gap between the dies
minimum = min{abs_gap)
ind = abs_gap_.index(minimum)
return ind, time_[ind]

def end_upsetting_max_forcetime_, load_): # todo cptional method
peak = max{load_)
ind = load_.index(peak)
return ind, time_[ind]

def evaluate_temperature(path, pyrometer_paosition, tolerance):

96

Appendix

173
174
175
176
177
178
175
180
181
182
183
184
185
186
187
188
188
150
151
152
153
194
155
196
157
198
199
200
20
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230

evaluate the temperature at o specified pyrometer position from .csv fite from simulotion
1_coord, time_, temperature = np.loadtxt{path, delimiter=";", unpack=True)

mask = [z_coord < pyrometer_paosition + tolerance) & (z_coord > pyrometer_position - tolerance)
return time_[mask], temperature[mask]

def evaluate_force(path):
evaluate force from .csv file from simulation
time_, u3, rf3 = nploadtxt{path, delimiter=";', unpack=True)
return -u3, -rf3 * 0,001 # unif of force [N] --= [kN]

def linear_fit{xfit, yfit):
llnear fit to determine temperature al the end of the transport
madel = LinearModeli)
par_guess = model. guess(yfit, kfit)
fitted = model fitiyfit, par_guess, x=xfit)
%_new = nplinspace(0, xfit|-1], 10)
y_new = model.eval(params=fitted.params, x=x_new}
return x_new, y_new
CALCLILATIONS
files = os.listdir| MEASUREMENT_FOLDER)

sim_files = s_files = os.listdir(SIMULATION RESULTS FOLDER)

plt.close('all’)
print| temperature after transport for each measurement’)

nr = len|settings)
for i in range(nr):
subl, sub2, sub3 = plot_layout{settings, i)
for j in range(len(specimen(il)): # plot measurements
for file in files:
if specimen(il(j] in file: # search for the test setting
filepath = os.path.join|{MEASUREMENT _FOLDER, file)
header, time, load, abs_gap, t_pyro, t_thermo, t_left = read_measurement(filepath)

for number, elem in enumerate|load):
load[number] = elem * 1.27

filename = file.strip{".csv’)

find start of contact to botiom die
t1_i, t1 = start_contact(time, settings|i][5])

find start of the upsetting process
t2_i, t2 = start_upsettingtime, load)

find end of the upsetting process

t3 i, 13 = end_upsetting(time, abs_gap)

shift time to stort at t=0 in subplot 1

time_new = time

for n, tin enumerate(time):
time_new[n] = time[n] - t1

97

Appendix

231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287

subl plot{time_new[t1_in2 i), t_pyro[tl_i:t2_i], label=filename)

fit to determine temperature at the end of the transport
t_fit_i = int{(k2_| + t1_§) / 2} # define index between £2_1and t1_1 for fit
o,y o= limear fit(Hme new(t Be B2 0t pyralt Tie it i)
if showFit:
subl.plotix, v, "k+', label=(filename + * linear fit"))
print{settings(i][0] + *: ' + filename + ', t=' + str{settings(i](S]) + 's, T='+
str(int{y[0])) + "C")

shift in time again to start of t=0 in subplat 2
time_new = time
for n, tin enumerate(time):

time_new|n] = tima[n] - (12 - 11)

subZ plotitime_new[t2_ix3_1], t_pyro(t2_Et3_0), label=filename)

calculate gop

gap=1|

tar n, elem in enumeratelabs_gap):
gap.append(-(elem - abs_gap(t2_i]))

subd.plotigap|t2_it3_i), lead[t2_it3_i), label=filename)

for sim_file In sim_files: # plot simufation results
i settimgs[)0] tn sim_file:
s_filepath = os.path, join(SIMULATION_RESULTS_FOLDER, sim_file}
name = 'simulation_" + settings[(][0]
todo: check keywords
I 'sim3_" In shm_file:
1, T=evaluate_temperature(s_filepath, hp, tol)
subl.plotit, T, ', label=name)
elif ‘simdi_" in sim_file:
if ‘force’ in sim_file:
t, rf = evaluate_forcels_filepath)
subd platit, ff, ', label=pame)
print{str{settings|I][0]), *: simdi, maximum force =, *{:. 2} format(np.maxi(rf)), * kN')
else:
t, T=evaluate_temperature(s_filepath, hp, tal)
sub2.plot(t, T, ', label=name)
elif 'simde_" in sim_file:
if ‘force’ In sim_file:
t, rf = evaluate_force(s_filepath)
sub2 plotit, ef, ., label=name)
print{str{settings[1][0]], *: simde, maximum force =, (1.2} format|np.rmax|rf)), " kN')
else:
t, T=evaluate_temperature(s_filepath, hp, tal)
sub2 plotit, T, ', label=name)

subl legend|loc="upper center’, bbox_to_anchor={0.5, -0.5))
if SAVE:
name = ‘comparison_" + settings[i][0]
name = o5, path,joinfOUTPUT_FOLDER, nam)
plt.savefig(name, dpi=600)

plt.show()

98

Appendix

G LS R R BRI Rt B R R Bd R R B B B R R RS R R
=D W DD W DL B LD R R D W00 W DU SR R D WD 00w O U fa Al R e

32
33

35
36
37
38
39
40
a1
42
43

a5
46
47
48
49
50
51
52
53

55
36
57

e e ECRIPT INFORMMATION = m e e
»

nome:; compare_ 1502022

function: compare experiment and simulation

seripl includes the experiment information {section FILEPATH / EXPERIMENTS) for experiment 2

IMPORT

import matplotlib.pyplot as plt
impaort numpy as np

import os

from datetime import timedelta

from Imfit.models import Lineariodel

MAIN_DIR = r'L:\090_Datenaustausch\cwaiguny\MA\project_15072022'
MEASUREMENT_FOLDER = os.path.join[MAIN_DIR, r'experimentsensor’)
SIMULATION_RESULTS_FOLDER = os.path.jain{MAIN_DIR, r'sim\csv')
OUTPUT_FOLDER = as.path.joiniMAIN_DIR, r'results')

SAVE =True #if true, the figures are saved
showFit = False # include linear fit in the plot

PARAMETER

hp = 6.0 # pyrometer pasition [mm]
tol = 0.5 # tolerance far pyrometer position fmm]

EXPERIMENTS

1.) define parameter for each test setting: setting namefnumber, initiol diameter d0 [mm], initiol
height hQ [mm],

furnace temperature [°Cl, upsetting height [mm], transport time [5], rest time on botlom die 5]

5 1=["s1", 10, 15, 300, 5, 4, 3]
s_2=['s2', 10, 15, 300, 5, 7, 3]
s 3=["s3", 10, 15, 400, 5, 4, 3]
s 4=['s4’, 10, 15, 400, 5, 7, 3]
s _5=['s5", 10, 15, 500, 5, 4, 3]
s &=["s6", 10, 15, 500, 5, 7, 3]
settings=(s_1,5_2,5 3,5 4,5 5,5 6] #oll fest settings

2.) enter the test number of the measurement that correspond to the test setting
sp_1=["TestNr_12.", TestNr_13.", 'TestNr_14.", TestNr_15."]

sp_2 =['TestNr_16.', TestNr_17.", 'TestNr_18.", 'TestNr_19."]

sp_3 =['TestNr_20.', 'TestNr_21.", 'TestNr_22.', TestMr_23."]

sp_d = [TestNr_24.', TestNr_25.", 'TestNr_26.", TestNr_27."]
sp_5=['TestNr_28.', 'TestNr_29.', 'TestNr_30.', TestMr_31."]
sp_B=['TestNr_32.', TestNr_33.", 'TestNr_34.', TestNr_35."]

specimen = [sp_1,sp_2, sp_3, sp_4, sp_5, sp_6]

def gat_seconds(time_string);
t = time_string.split"#")[1]

99

Appendix

38
59
&0
Bl
(2
B3

25
BE
&7
&8
69
o
71
¥
73
74
75
76
Erd
78
3
8o
&1
82
#3

B
2
a7
a8
89
50
&1
92
93

35

96

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115

if ‘'ms"int;
t = tstrip{'ms’)
if'm'intand's'int:
t = t.split('m’)
11 =t[1].split('s')

time_ = timedeltalminutes=int(t|0]), seconds=int(t1|0]), milliseconds=intit1[1]))

time_ = time_.total_seconds()

elif 'm"int:
t = t.split("m'}
time_ = timedalta|minutes=int(t[0]), milliseconds=int{t[1]})
time_ = time_.total_seconds()

elif 's"in t:
t = t.split(’s')
time_ = timedelta(secands=int(t[0]), milliseconds=int(t]1]})
time_ = time_.total_seconds()

else:
time_ = timedelta[milliseconds=int{t))
time_ = time_.total_seconds()

else:

if 'm"intand 's'in t:
t = Lstrip('s’)
t = t.split('m’)
time_ = timedelta{minutes=int(t[0]}, seconds=int(t[1]})
time_ = time_.total_seconds()

elif 'm'int:
t = t.strip|'m’)
time_ = timedelta(minutes=int(t))
time_ = time_.total_seconds()

elif 's":
time_ = int{t.stripl's"))

return time_

def read_measurement{filename_):
this function depends on structure af the measurement file
time_ =]
load_ =]
abs_gap_ =[]
t_pyro_=(]
t_therma =[]
t_left_=[]
with openifilename_, 'r') as f:
header_ = f.readline()
for line in f:
d = line.strip().split{";')
time_.append(get_secends(d[0]))
load__append(float{d[1]])
abs_gap_.append(float(d[2]))
t_pyro_.append|float|d[4]]}
t_thermo_append{float{d[&]]}
t_left_.append(float{d]|7]))

return header_, time_, load_, abs_gap_, t_pyro_, t_thermo_, t_left_

def plot_layout{settings_, m):
fig = plt.figure(figsize=(10, 10))
subl_ = fig.add_subplot(221)
subl_.set_title('Temperature during contact to bottom die’)

100

Appendix

116
117
118
115
120
121
122
123
129
125
126
127
128
129
130
131

132
133
134
138
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
1584
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172

subl_.set_ylabel|' Temperature °C')
subl_.set_xlabel'Time [s]')}
subl_set_ylim{0, settings_[m][3])

sub?_ = fig.add subplot(222)
sub2_set_title('Temperature during upsetting’)
sub2_.set_ylabel|'Temperature °C')
sub?_set_xlabel'Time [5]')}

sub2_set_ylim{0, settings_[m][3])

sub3_ = fig.add_subplot(224)
sub3_set_title('Force during upsetting')
sub3_.set_ylabel|'Force [kN]')
sub3_.set_xlabel('Upsetting height [mm]'}

title = (settings_[m][0] + ": specimen geometry: d0 = ' + str{settings_[m][1]) + ' [mm] ko= ' + str|
settings_[m][2])
+ ' [mm], T= " + str(settings_|m][3]) + ' ["C], &h = ' + strisettings_[m][4]) +

" [mm], transfer time = ' + str{settings_[m][5]} + ° [s], rest time =" + str{settings_[m][&]) + " [s]')

plt.suptitle(title)
return subl |, sub2 | sub3

def start_contactitime_, t_}:

at a specified point of time
for ind in rangallen|time)):
if time_[ind] =t_:
return ind, time_[ind]

def start_upsetting{time_, load _):
determine the start of the upsetting process in the measurements
the start of the upsetting process is defined by the force exceeding o threshold value

threshold = 0.1
for ind In rangeld, len{load_}):
if load_[ind] = threshold:
return ind, time_[ind]

def end_upsetting{time_, abs_gap)
determine the end of the vpsetting process in the measurements

the end af the upsetting process is reached with minimum relative gop between the dies

minimum = min{abs_gap_)
ind = abs_gap_.index(minimum)
return ind, time_[ind]

def end_upsetting_max_force(time_, load_): # todo optiono! method

peak = max{load_)
ind = load_index|peak)
return ind, time_[ind]

def evaluate _temperature(path, pyrometer_paosition, tolerance):

evaluate the temperature at o specified pyrometer position from .csv file from simolotion
z_coord, time_, temperature = np loadixt|path, delimiter=";", unpack=True)

mask = (z_cooard < pyrometer_position + tolerance) & (z_coord = pyrometer_position - tolerance)

return time_[mask), temperature[mask|

101

Appendix

173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
150
191
192
193
194
185
196
197
198
199
200
20
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
429
230

def evaluate_force{path):
evaluate force from .csv file from simulation
time , u3, 13 = nploadtxt{path, delimiter=";', unpack=Trua)
return =u3, -rf3 * 0.001 & unit of force [N --> [kN]

def linear_fit{ufit, yfit):
linear fit to determine temperature at the end of the transport
maodel = Linearbdodel()
par_pguess = model guess{yfit, xfit)
fitted = model.fit(yfit, par_guess, x=xfit)
x_new = nplinspace(d, xfit-1], 10}
y_new = model eval(params=fitted. params, s=x_mnew)
Feturm X_new, y_new

CALCULATICING

files = s listdin{ MEASUREMENT _FOLDER)
sim_files = 5_files = o5 listdir(SIMULATION _RESULTS _FOLDER)

plt.close{'all'}
print{'temperature after transport for each measurement’)

nr = |en|settings)
for | in range(nr):
subl, sub2, sub3 = plot_layout(settings, i)
for j In range(len{specimen(i]]): # plot measurements
for file in files:
If specimen(i](j] in file: & search for the test setting
filepath = as.path.join{ MEASUREMENT FOLDER, file)
header, time, load, abs_gap, t_pyro, t_thermo, t_left = read_measurement|filepath)

filename = file.strip{".csv’)

find start of contact to bottom die
t1_i, t1 = start_contact{time, settings[i][5])

find start of the upsetting process
t2_1, t2 = start_upsetting(time, load)

find end of the upsetting process

t3_i, t3 = end_upsettingitime, abs_gap)

shift time to stort ot (=0 in subplot 1

time_new = time

for n, tin enumerate(time):
time_new|n] = time[n] - t1

sublplot{itime new[tl it2 Q] t pyraltl iit2 i), label=filename)

fil to determine temperature at the end af the transport
t_fit_i = int{(x2_i + t1_i) f 2} # define index between £2_1 and £1_i for fit
o,y = limear_fit(time_new(t_fit_ie2 0], t_pyrolt_fit_ix2_i])
if showFit:
subl.plotix, v, "k+', label=(filename + ' linear fit"])

102

Appendix

231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280

print{settings[ijl0] + : ' + filename + ', t= "' + str{settings[i][5]) + 's, T= "+
striint{y[0]}) + C")

shift in time again to start ot =0 in subpiot 2
time_pew = Lime
for n, tin enumerateltime):

time_new|n] = time[n] - (t2 - t1)

sub2 plot{time_new[t2_iad_i], t_pyro[t2_i:t3_i), label=filenamea)

calculate gop

gap =]

for n, elem in enumerate(abs_gap):
gap.append(-lelem - abs_gap[t2_i]))

subZ.plotigap(t2_iit3_i), load[t2_i:t3_i], label=filename)

for sim_file in sim_files; # plot simufation results
W settings[i]]0] in sim_file:
5_filepath = o5, path, join(SIMULATION_RESULTS_FOLDER, sim_file)
name = 'simulation_" + settings[i][10]
todo: check keywords
If 'sim3_" I sim_file:
t, T=evaluate_temperature(s_filepath, hp, tol)
subl.platit, T, ', label=name)
elif ‘simdi_" insim_file:
if ‘force’ in sim_file:
t, rf = evaluate_forcels_filepath)
sub3.plotit, ff, ', label=name]
print{ste{settings[i)]0]), : simai, maximum force =, "{.. 2f)' format{np.maxirf)), " kN')
else:
t, T=evaluate_temperature(s_filepath, hp, tal)
sub2.plot(t, T, ", label=name)
elif 'simde_"in sim_file;
if "farce’ In sim_file:
t, if = evaluate_force(s_filepath)
sub3.plot(t, if, ", label=name)
print{ste{settings[1][0]), *: simde, maximum force =, {121} formatinp.maxirf)), * kN')
else:
t, T=oevaluate_temperature(s_filepath, hp, tal)
sub2 plotit, T, ', label=name)

subl.legend|loc="upper center', bbox_to_anchors=(0.5, -0.5))
if SAVE:

name = 'comparison_" + settings[i][0]

name = a5, path,joinlOUTPUT_FOLDER, nam)

plt. savefig(name, dpi=&00)

plt.show()

103

Appendix

Appendix D: simulation_1.py

B R B R BRI B3 R R S R S R S
B WM P D W00 w0 W Sk D WM s W g R e

5
26
27
28
29
30
EX
32
33

35
36
EXd
38
39
a0

a1
a2
a3

a5
a6
a7
48
49
30
51

52
53
34
55

e SERIPT INFORAIA TION e memem e e
¥

name: simulation 1
function: heating af the specimen in the furnace
¥

IMPORT

from modules import abagus_functions
from modules Import material_data

& INPUT PARAMETER
unit spstem: 5l-mm

h & initial! helght of the specimen (2-dimension)

#d0 # initiol diameter of specimen

#aombient temperature # ambient temperature

furnace_temperature # initiol temperoture of the preheated furnoce

heating_time ¥ process time far heoting

#omplitude _temperoture_data # time-temperature amplitude of the furnace

therma! conductance # thermal conductance for contact area between specimen and
furnoce

emissivily # emissivily of the specimen

emissivity_f & emissivity of the furnace fining

heat_transfer_coeff # heat transfer coefficient for convective heat transfer

seed_size # globol seed size applied to the specimen

seed size furnoce # globol seed size applied to the furnace

result_path # absolute file path of the folder in which the resulls are saved
nome # name of the Abogus model, step and job

& SIMULATION 1

def heatinglhD, d0, ambient_temperature, furnace _temperature, heating_time, emissivity, emissivity_f,
heat_transfer_coeff, amplitude_temperature_data, thermal_conductance, seed_size,
seed_size_furmace,
result_path, name):

madel_namea = name
maodel = abaqus_functions.model_settings(model_name)

¢ create parts
specimen = ahagqus_functions.create_cylindar{model, 'specimen’, d0, h0)
w_dim_inside, y_dim_inside, z_dim_inside, thickness_walls, thickness_bottom_wall =%
abagus_functions.get_dimensions_furnace()
furnace = abaqus_functions.create_furnace(model, ‘furnace’, x_dim_inside, yv_dim_inside,
z_dim_inside,
thickness_walls, thickness_bottom_wall)

create sets
set_specimen = abagus_functions.create_set_all{specimen, "set_specimen’)

104

Appendix

56
57

59

Bl
B2
B3

G5
B6
B7
]
)

71
T2
73
ra
75
76
Erd
8
e

21

g2
a3

a5
86
By
a8
89

91
92

93

95
96

97
98
99
100
101

102
103

104
105
106
107
108

set_furnace = abaqus_functions.create_set_all{furnace, ‘set_furnace')

B PROPERTY BMIDDUILE e e el
material definition for the specimen

aluminum = abagus_functions.create_material(model, "aluminum’)

data_1 = material_data.material_aluminumi)

abagus_functions.define_densitylaluminum, data_1[0], data_1[1]}
abaqus_functions.define_conductivity(aluminum, data_1[2], data_1[3])
abagqus_functions.define_specific_heat{aluminum, data_1[4], data_1]5])

material definition for furnoce

refractory = abaqus_functions_create_material{model, 'refractory’)
data_2 = material_data.material_refractory()
abagqus_functions.define_density(refractory, data_2[0], data_2[1])
abaqus_functions.define_conductivity{refractory, data_2[2], data_2[3])
abagqus_functions.define_specific_heatirefractory, data_2[4], data_2[5])

create and assign sections

abaqus_functions.create section{maodel, "section_aluminum', "aluminum')
abagus_functions.assign_section|specimen, set_specimen, 'section_aluminum')
abagus_functions.create_section(madel, "section_refractory’, 'refractory’)
abagqus_functions.assign_section(furnace, set_furnace, 'section_refractory’)

e e ASSEMIBLY MODULE e
create assembily
inst_specimen, inst_furnace = abagus_functions.create_assembly _furnace{model, specimen,
furnace,
thickness_bottom_wall)

& STEP MODULE
create st e
abaqus_functions.create_heat_transfer_stepimodel, name, ‘Initial’, heating_timea)

create field output

abaqus_functions.delete_f_outputl{madel] # deleie outomatic output

f_output_all = 'NT', 'HFL® # field output variables for whole model

time_interval =60 # time interval for the field output

abagus_functions.create_field_outputimede, 'f_output_whole_model', name, f_output_all,
time_interval}

r— e e e [."J'.".l-',-'?l.-'l('_l_,'r_“_,-n'l.l |\,.-,‘|‘_"_,l|'_)|'__|_| e

creote amplitude with temperature dota

abagus_functions.create_amplitude{model, ‘amplitude_temperature’,
amplitude_temperature_data)

creote surfoces
surfaces_specimen = abaqus_functions.create_surfaces(model, inst_specimen, 'surfaces_specimen’,
(d0 /2,0, h0/2), 00,0, h0))
bottam_surf_specimen = abaqus_functions.create_surfaces(madel, inst_specimen, '
bottom_surface_specimen’,
(0, 0,00
bottom_surf_furnace = abagus_functions.create_surfaces{madel, inst_furnace, '
bottom_surf_furnace’, (0, 0, 0))
inside_surfaces = abaqus_functions.create_surfaces{model, inst_furnace, ‘inside_surfaces’, (0, 0, 0),
{x_dim_inside / 2, 0, z_dim_inside J 2],
[-%_dim_inside f 2, 0, z_dim_inside / 2),
(0, v_dim_inside / 2, z_dim_inside [2],
(0, -y_dim_inside / 2, z_dim_inside / 2), (0, 0, z_dim_inside]}

105

Appendix

109
110
111

112
113
114
115
116
117
118
119
120
121

122
123
124
125
126
127

128
129
130
131
132
133

134
135
136
137
138
139
140
141

142
143
144
145
146
147
148
145
150
151
152
153
154
155
156
157
158
155
160
161

radiation
abaqus_functions.create_radiation_to_var_ambient{maodel, ‘radiation_specimen’,
surfaces_specimen,
name, 'amplitude_temperature’, emissivity)
abagus_functions.create_radiation_to_var_ambient{madel, ‘radiation_furnace’, inside_surfaces,
name, ‘amplitude_temperature’, emissivity_f)

canvection
abagus_functions.create_convection_var(maodel, "‘convection_specimen’, surfaces_specimen, name,
‘amplitude_temperature’, heat_transfer_coeff)

contact
abagus_functions.create_contact_property_thermal(model, "contact_property’,
thermal_conductance)
abaqus_functions.create_contact_interaction{model, ‘contact_interaction’, bottom_surf_furnace,
bottom_surf_specimen, 'contact_property’)

o LOAD MODULE
define the initial temperatures
abaqus_functions.create_predefined_field(maodel, "init_temp_specimen’, inst_specimen, '
set_specimen’,
ambient_temperature)
abaqus_functions.create_predefined_field[model, "init_temp_furnace’, inst_furnace, "set_furnace’,
furnace_temperature)

create sets
set_5 walls_furnace = abaqus_functions.create_set_faces{model, 'set_5_walls_furnace’,
inst_furnace,
(%_dim_inside / 2, 0, 2_dim_inside / 2),
(-x_dim_inside / 2,0, z_dim_inside [2],
(0, y_dim_inside / 2, z_dim_inside / 2),
(0, v _dim_inside / 2, z_dim_inside [2),
(0, 0, z_dim_inside})

create boundary conditions
abagus_functions.create_boundary_temperature{model, ‘temperature_boundary’,
set 5 walls_furnace,
name, '‘amplitude_temperature')

MESH MODULE

creale mesh
abagus_functions.create_partitions(specimen, hQ)
abaqus_functions.mesh_control_cylinder{specimen)
abagus_functions.create_mesh_1ispecimen, seed_size)

abagus_functions.create_partitions_furnacelfurnace, x_dim_inside, v_dim_inside, z2_dim_inside,
thickness_bottom_wall)
abaqus_functions.create_mesh_1{furnace, seed_size_furnace)

creote node set ond owtput for node set

abagus_functions.create_node_set{specimen, 'set_nodes', seed_size, (d0 /2, 0,0), (d0 [2, 0, hO))

h_output = 'COORD', 'NT'

time_interval = 60 # iime Interval for the history output

abaqus_functions.create_history_output{model, inst_specimen, "h_output', 'set_nodes’, name,
h_output, time_interval)

JO8 MODULE

106

Appendix

162
163
164
165
166
167
168
163

creole .'-I'in'."l-'.l' run simulation
abagus_functions.create_job_heat_transfer(model_name, name, &)
abogus functions.write_input(name, resulft path)

abaqus_functions.submit_jobiname, result_path)
abagus_Tunctions.wait_Tor job{nama)

107

Appendix

Appendix E: simulation_2p.py

29 def transport(dd, hd, Ta, T_init, t, epsilon, h):
a0 dt =0.1 # time delta

32 # PROPERTIES

34 sigma=5.67E-11 # Boltzmonn constant

35 k = material_data.conductivity function(T_Init) ¥ conductivity for initial temperature
36 c=material_data.specific_heat_function{T_init) # specific heat for initial temperature
37 data_1 = material_data.material_aluminum)

38 rho=data_1[0]

39

40 i CALCULATIONS

41

42 W=dd** 2 *np.pif4*hD # specimen valume

43 As=dD*np.pi* hD+ 2 *d0** 2 * np.pif 4 # specimen surface

4 Lo=V/ As # characteristic length

45

46 Bi=h*Lc/k # Biat number

47 if Bi » 0.1: # lumped mass approximation valid for 8i < 0.1
a8 print('Biot number is greater than 0.1 - approximation not valid')
49

0 # solve energy bolance equation
51 nr_iterations =intit / dt)

52 T=np.zeros(nr_iterations)

53 time = np.zeros(nr_iterations)
54 T[O] = T_init

56 A_cont=20+({d0/10-1)*5 # fit for contoct orea
57 g=2.5* T_init * (T_init/Ta) + (d0 /10 - 1) * ((T_init**3)/890) # it for heat flux

1 e ECRIPT INFORRIATION m e e
2
3 # nome; simylation Z2p
4 # function: tronsport of the specimen from the furnoce to the hydroulic press
5 ¥ solving the differential equation for o O-dimensional heat transfer problem
&
7 IMPORT
8
% import numpy as np
10 from modules import material_data
11
1 A e e P LT P A RA N E TE R mememnm e e e e et
13 # unit system; Si-mm
14
15 #h0 # initiol height of the specimen (z-dimension)
16 #d0 # initiol diometer of specimen
17
1B # transport_time # time time for the transport
19
20 #Ta # ambient temperature
21 2T init # initiol temperature of the specimen
22
23 # epsilon # emissivity of the specimen
24 #h # heat transfer coefficient for canvective heat transfer
25
26 ¥ SIMULATION 2 P
27
28

108

Appendix

50
G0
&1
G2
B3

G5
BE
67
]
]
a0
71
72
73
74
75
76
?T
78
79
a0
81

for i in rangel0, nr_iterations - 1, 1):

if i*dt < 2:
Tli+1)=T[i] +dt* {1/ (rho*V*c)}* |
h*As*(Ta-T[i]}+
epsilon * sigma * As * (Ta ** 4 - T[i] ** 4) -
q*A_cont)
q=0q%0.95
B |'.|:"'."l'.il!" ng radiation '.|'i'.=l canvection
elif i*dt == 2;
T+ 1) =Tli] +dt* (1/ (rho * v *c)) * |
h*As*(Ta-T[i]}+
epsilon * sigma * As = (Ta ** 4 - T[i] ** 4))

timei + 1] = time[i] + dt
T end =T[-1]

return T_end

consider ng radiation, comvection and o carrection terry _l'l:" Ly

e heat conduction to the gripper

109

Appendix

Appendix F: simulation_3p.py

naome; simulation Ip

function: heat transfer while specimen rests on the bottom die
IMPORT

from modules import abagus_functions
from modules import material_data

[T - T R ST
T

e SCRIPT INFORMATION = memmmmm e

die

1

11 # INPUT PARAMETER

12 & unit spstem: Si-mm

13

14 & ho # initial helght of the specimen (z-dimension)

15 #a0 # initiol diometer of specimen

16

17 & time ¥ process time

18

19 # ambient_temperature # ambient temperoture

20 #init_temperaoture # temperature of the specimen after heating
21

22 # thermal conductance # thermal conductance for contact area between specimen and

23 # emissivity # emissivity

24 # heat_transfer_coeff # heat transfer coefficient for convective heat transfer
25

26 # seed size # globol seed size applied to the specimen

27 #seed size die # global seed size opplied ta the die

28

20 #result_path # absolute file poth of the folder in which the results are saved
30

31 # nome # name of the Aboqus model, step and job

32

B B e e e e ————————————————
34

35

36 def rest{h0, d0, time, emissivity, ambient_temperature, init_temperature, thermal_conductance,
heat_transfer_coeff,

ar seed_size, seed_size_die, result_path, name}:

38

3% model_names = name

40 model = abaqus_functions.model_settingsimodel_name)

41

42 4 PART MODULE

43 # create parts

44 specimen = abaqus_functions.create_cylinder{maodel, 'specimen’, d0, hi)

45 bottom_die = abaqus_functions.create_die(model, "bottom_die’, d0, d0)

4k

47 #creote sets

48 set_specimen = abagus_functions.create_set_all{specimen, ‘set_specimen’]

4% set_bottom_die = abaqus_functions.create_set_all{bottom_die, 'set_bottom_die’)

50

51 # PROPERTY MODULE

52 # material definition for the specimen

53 aluminum = abagqus_functions.create_materialimodel, "aluminum’)

54 data_1 = material_data.material_aluminumi)

55 abagus_functions.define_densitylaluminum, data_1[0], data_1[1])

56 abagus_functions.define_conductivitylaluminum, data_1]2), data_1[3]]

110

Appendix

57
58
2

B1
B2
63

G5
BE
&7
B8
B9
70
7l
72
73
74

75
76
Exd
78
e

Bl
82
B3

85

86
By
a8
89

91
¥

93

95
SE
97

S8

99
100
101
102
103
104
105
106
107
108

abagus_functions.define_specific_heatialuminum, data_1[4], data_1[5])

material definition for the die

steel = abagus_functions.create_material{model, 'steel’)

data_2 = material_data.material_steel()
abagus_functions.define_density(steel, data_2[0], data_2[1])
abaqus_functions.define_conductivity(steel, data_2[2], data_2[3])
abagus_functions.define_specific_heatisteel, data_2[4], data_2[5])

create and assign sections

abagus_functions.create_section(model, "section_aluminum', "aluminum')
abaqus_functions.assign_section(specimen, set_specimen, 'section_aluminum’)
abagus_functions,create_section(model, "section_steel’, 'steel’)
abagus_functions.assign_section{bottom_die, set_bottom_die, 'section_steel")

" ASSEMBLY MODLUILE

inst_specimen, inst_bottom_die = abagus_functions.create_assembly_2parts{madel, specimen,
bottem_die,
‘instance_specimen’,
‘instance_bottom_die’, 20)

STEF MODULE
create step
abaqus_functions.create_heat_transfer_step{model, name, 'Initial’, time)

create field output

f_output_all = "NT', '"HFL', '"COORD" # field output variables for whole mode!

time_inter'u'al =1 & time interval for the field output

abaqus_functions.create_field_output{model, "f_owtput_whole_model’, name, f_output_all,
time_interval)

INTERACTION MODULE

create surfoces
surfaces_specimen = abagus_functions.create_surfaces(model, inst_specimen, 'surfaces_specimen’,
(d0 /2,0, h0 [/ 2), 10,0, h0))

contact_surf_specimen = abaqus_functions.create_surfacesimadel, inst_specimen, '

contact_surface_specimen’,
(0, @,)

contact_surf_die = abaqus_functions.create_surfaces(maodel, inst_bottom_die, 'contact_surface_die

" (0,0, 0))

cantact
abagus_functions.create_contact_property_thermal{model, "'contact_property’,
thermal_conductance)
abaqus_functions.create_contact_interaction{model, ‘contact_interaction®, contact_surf_die,
contact_surf_specimen,
‘contact_property’)

radiation
abagus_functions.create_radiation_to_ambient{madel, ‘radiation_specimen’, surfaces_specimen,
name, amhient_temperature, emissivity)

convection
abagus_functions.create_convection(model, "convection_specmen’, surfaces_specimen, name,
haat_transfer_coeff, ambient_temperatura)

111

Appendix

109
110
111

112
113

114
115
116
117
118
118
120
121
122
123
124
125
126
127
128

129
130
131
132
133
134
135
136
137
138
139

LOAD MODULE
initial temperatures
abagus_functions.create_predefined_field(model, ‘init_temp_bottom_die’, inst_bottom_die, '
set_bottom_die',
ambient_termperatura)
abaqus_functions,create_predefined_field(model, ‘init_temp_specimen’, inst_specimen, '
set_specimen’,
init_temperature)

MESH MODULE
mesh
abagqus_functions.create_partitions{specimen, hi)
abagqus_functions.mesh_control_cylinder{specimen)

abagus_functions.create_mesh_1(specimen, seed_size)
abagus_functions.create_mesh_1(bottom_die, seed_size_die]

node set and history output
h_output_nodes = 'COOR3', 'NT'
time_interval = 0.5 # time interval for the histary output
abagus_functions.create_node_setispecimen, 'set_nodes', sped_size, (d0 /2, 0,0), (d0/ 2, 0, hO))
abaqus_functions.create_history_outputimodel, inst_specimen, "h_output_nodes’, 'set_nodes’,
name, h_output_nodes,
time_interval)

Jo8 MODULE

create job and write input file
abagqus_functions.create_job_heat_transferimodel_name, name, 2)
aboagqus _functions. write_input{name, resull_path)
abagus_functions.submit_job{name, result_path)
abagus_functions.wait_for_job(nama)

112

Appendix

Appendix G: simulation_4i.py

(== - RN = I TS R S FE I NS

23
24
5
26
&7
28
29
30
31
E ¥
33

35
36
ET)
38

39
40
41
42
a3

45
a6
a7
48
45
30
51
52
53

35
56

T TN LY T —

nome; simulation 4i

function: upsetting of the specimen (implicit solver)
B

IMPORT

from modules import abagus_functions
from modules import material_data

& INPUT PARAMETER
unit spstem: 5l-mm

ho # initlal height of the specimen (z-dimensian)

#a0 # initiol diameter of specimen

ambient temperature # ambient temperature

time # process time

friction_coefficlent # friction coefficlent between specimen and die

thermal _conductance # thermal conductance for contact area between specimen and
die

#odb_obs_path f file poth of odb from previous simulation

amplitude displacement_data # time-displacement datae for the movement of the top die
seed _size # global seed size applied to the specimen

seed size die # global seed sive opplied to the dies

result_path # obsolute file path for the results

odb_obs_path # absolute file path of the odb

name # name af the Abaqus model, step and job

def upsetting{h0, d, ambient_temperature, time, friction_coefficient, thermal_conductance,
odb_abs_path,
amplitude_displacement_data, seed_size, seed_size_die, result_path, name);

maodel_name = name
model = abagus_functions.model_settingsimodel_name)

PART MODULE

create parts

specimen = abagus_functions.create_cylinder{model, 'specimen’, d0, h)
top_die = abagus_functions.create_die{model, 'top_die", d0, d0)
bottom_die = abaqus_functions.create_die(model, "bottom_die’, d0, d0)

creale sets

set_specimen = abagus_functions.create_set_all(specimen, 'set_specimen’)
set_top_die = abagus_functions.create_set_all(top_die, 'set_top_die")
set_bottom_die = abaqus_functions.create_set_all{bottom_die, 'set_bottom_die')

Y 1] 111 L <
material definition for the specimen

113

Appendix

57
58
2

B1
B2
63

G5
BE
&7
B8
B9
70
7l
72
73
74
Fi
7B
Erl
78
79

81
g2
a3

85
2k
a7

REEE

92
33

95
o
97

9
100

101
102
103
104

105
106
107
108

105

aluminum = abaqus_functions.create_material(model, ‘aluminum’)

data_1 = material_data.material_aluminumi})
abagus_functions.define_density(aluminum, data_1[0], data_1[1])
abaqus_functions.define_conductivity(aluminum, data_1]2), data_1[3])
abagus_functions.define_specific_heat{aluminum, data_1[4], data_1[5])
abagus_functions.define_elasticity(aluminum, data_1[6], data_1[7], data_1[&])
abaqus_functions.define_plasticitylaluminum, data_1[9], data_1]10])
abagus_functions.define_inelastic_heat_fractionialuminum, data_1[12])

material definition for the dies

steel = abaqus_functions.create_materialimodel, 'steal’)

data_2 = material_data.material_steel()
abagus_functions,define_density(steel, data_2[0], data_2[1])
abagus_functions.define_conductivityisteel, data_2[2], data_2[3])
abaqus_functions.define_specific_heat{steel, data_2[4], data_2[5])
abaqus_functions.define_elasticity(steel, data_2[6], data_2[7], data_2[8])

create and assign sections

abagus_functions.create section{model, "section_aluminum', "aluminum')
abaqus_functions.assign_section|specimen, set_specimen, 'section_aluminum'}
abagus_functions.create section(model, "section_steel’, 'steal’)
abagus_functions.assign_section(top_die, set_top_die, ‘section_steel')
abaqus_functions.assign_section{bottom_die, set_bottom_die, 'section_steel’)

4 ASSEMBLY MODULE
creale -!].'H!'."TIDIII.-'
inst_specimen, inst_bottom_die, inst_top_die = abagus_functions.create_assembly_pressimodel,
specimen, bottom_die,
top_die, h)
create reference paint
set_rp = abaqus_functions.create_ref_paint{maodel, 'set_rp', h0)

STEFP MODULE
creote step
abagus_functions.coupled_tep_displ_step{model, name, time)

creote field ond history output

abagus_functions.delete_automatic_output{maodel)

output variables

f_autput_all ='S', 'U’, 'NT', "PE', 'PEEQY', 'COORD', "CSTRESS', "CFORCE', "HFL'

h_output = 'U3*, 'RF3' # history output for the reference node

num_Interval = 10 # number of intervals for the field output

abagus_functions.create_field_output_2(model, f_output_whole_model’, name, f_output_all,
num_interval}

num_interval_rp = 100 # number of infervals for the history autput of the reference point

abagus_functions.create_history_output_rpimadel, 'h_output’, 'set_rp', name, h_output,
num_interval_rp)

i INTERACTION MODULE

create general contact befween specimen and dies

abagus_functions.create_contact_propertyimodel, 'contact_property’, friction_coefficient,
thermal_conductance)

abagus_functions.create_general_contact(model, 'general_contact’, 'contact_property’)

create kinematic coupling between reference point and top die

top_die_surface = abagus_functions.create_surfaces{madel, inst_top_die, top_die_surface', (0, 0,
ho +0.1))

abagqus_functions.create_kin_couplingimaodel, 'kinematic_coupling’, set_rp, top_die_surface)

114

Appendix

110
111
112
113
114
115

116
1i¥
118
115

120
121
122

123

124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139

140
141
142
143
144
145
146
147
148
149
150

o Loral MODULE

define the initial temperatures

abaqus_functions.create_predefined_field[model, "init_temp_top_die', inst_top_die, 'set_top_die’,
ambient temperature)

abagus_functions.create_predefined_field_from_output(maodel, ‘init_temp_specimen_bottom_die’
. Inst_specimen,

'set_specimen’, odb_abs_path)

create amplitude with displacement data
abagus_functions.create_amplitude(madel, ‘amplitude_displacement’,

amplitude_displacement_data)

create boundaries: fix bottem dle and opply displacement to top die
abagqus_functions.create_boundary_fixed(medel, 'boundary_fixed', inst_bottom_die,

set_bottom_die')

abaqus_functions.create_boundary_displacement(model, ‘boundary_displacement’,

amplitude_displacement’, set_rp,

narme)

o MESH MODULE

create mesh
abagus_functions.create_partitions(specimen, hi)
abagus_functions.mesh_control_cylinder{specimen)
abaqus_functions.create_mesh_2({specimen, seed_size)

abagus_functions.create_mesh_2(top_die, seed_size_die)
abagus_functions.create_mesh_2(bottom_die, seed_size_die)

create node set ond output for node set

abagus_functions.create_node_set(specimen, 'set_nodes', seed_size, (d0 /2,0, 0), (d0 /2, 0, hO))
h_output_nodes = 'COORZ’, 'NT'

time_Interval = 0.05 # time interval for the histary output
abagus_functions.create_history_outputimodel, inst_specimen, "h_output_nodes’, 'set_nodes’,

name, h_output_nodes,

time_interval

i 108 MODULE

creote job run simulation
abagus_functions.create_job_upsetting(model_name, name, &)
abagus_functions.write_inputiname, result_path)
abagqus_functions.submit_jobiname, result_path)
abagus_functions.wait_for_job{name)

115

Appendix

Appendix H: simulation_4e.py

T 2 -7 YT L T T
2
3 # nome; simulation de
4 # function: upsetting of the specimen (explicit salver)
5 &
B & IMPORT
7
g from modules import abagus_functions
% from modules import material_data
10
11 # INPUT PARAMETER
12 & unit spstem: Si-mm
13
14 # kO # initial helght of the specimen (2-dimensian)
15 #d0 7! diameter of specimen
16
17 #ambient temperature # ambient temperature
18
19 # time & pracess lime
20
21 # friction_coefficient # friction coefficient bebween specimen and die
22 #thermal conductance # thermal conductance for contact area between specimen and
die
23
24 #odb_obs_path # file poth of adb from previous simulation
25 #omplitude displacement data # time-displacement doto for the movement of the top die
26
27 #seed size # globol seed size applied to the specimen
28 # seed size die # global seed size applied to the dies
28
30 #result path # absolute file path for the results
31 #odb_obs path # absalute file path of the odb
32
33 #name # name af the Aboqus model, step and job
EL
Eli
a7
38 def upsettinglhl, d0, ambient_temperature, time, friction_coefficient, thermal_conductance,
odb_abs_path,
39 amplitude_displacement_data, seed_size, seed_size_die, result_path, name);
40 model_name = name
41 model = abagus_functions,model_settings{model_name)
42
83 e PART MIODULE e
44 #creote parts
45 specimen = abagqus_functions.create_cylinder{model, 'specimen’, d0, h0)
46 top_die = abagus_functions.create_die{model, 'top_die’, d0, d0)
47 bottom_die = abagus_functions.create_die(model, "bottorm_die', d0, d0j
48
49 #creote sets
50 set_specimen = abaqus_functions.create_set_all[specimen, "set_specimen’)
51 set_top_die = abaqus_functions.create_set_all(top_die, 'set_top_die’)
52 set_bottom_die = abaqus_functions.create_set_all{bottom_die, 'set_bottom_die')
53
54 & PROPERTY MODULE
55 & material definition for the specimen
56 aluminum = abagqus_functions.create_material{model, "aluminum’)

116

Appendix

57 data_1 = material_data.material_aluminumi)

58 abagqus_functions.define_densitylaluminum, data_1[0], data_1[1]}

59 abagus_functions.define_conductivity(aluminum, data_1[2], data_1[3])

&0 abaqus_functions.define_specific_heat{aluminum, data_1[4], data_1|5])

61 abagus_functions.define_elasticity(aluminum, data_1[6], data_1[7], data_1[&])
B2 abagus_functions.define_plasticitylaluminum, data_1[9], data_1]10])

63 abagqus_functions.define_damage{aluminum, data_1[11])

B4 abagus_functions.define_inelastic_heat_fraction{aluminum, data_1[12])

65

BB # material definition for the dies

67 steel = abagus_functions.create_materialimadel, 'steel’)

BE data_2 = material_data.material_steel()

69 abagus_functions.define_densityisteel, data_2(0), data_2[1])

70 abagus_functions.define _conductivityisteel, data_2[2], data_2[3])

71 abaqus_functions.define_specific_heat{steel, data_2[4], data_2[5])

72 abaqus_functions.define_elasticity(steel, data_2[6], data_2[7], data_2[8])

73

74 # create and assign sections

75 abaqus_functions.create section{model, "section_aluminum', "aluminum')

76 abaqus_functions.assign_section|specimen, set_specimen, 'section_aluminum'}
T7 abagus_functions.create section(model, "section_steel’, 'steal’)

78 abagus_functions.assign_section(top_die, set_top_die, 'section_steel’)

79 abaqus_functions.assign_section{bottom_die, set_bottom_die, 'section_steel’)

21 # ASSEMBLY MODULE

82 # create assembly

#3 inst_specimen, inst_bottom_die, inst_top_die = abaqus_functions.create_assembly_pressimodel,
specimen, bottom_die,

g4 top_die, ho)

BS #creote reference point

86 set_rp = abagus_functions.create_ref_paint{model, 'set_rp', hO)

a7

28 # STEFP MODULE

89 #creole step

%0 abagus_functions.create_temp_disp_expl_stepimodel, name, time}
@1

92 # creote field ond history output
93 abaqus_functions.delete_automatic_output{maodel)
o4 # output variables
85 f_output_all ='s', ', '"NT', 'PE', "PEEQ’, 'COORD', "DAMAGEC’, 'DMICRT', "CSTRESS', "CFORCE", "HFL'
95 h_output ='U3", 'RF3', 'V3' # history output for the reference node
97 num_Interval = 20 # number of intervals for the field output
%8 abagus_functions.create_field_ouwtput_2(model, f_output_whole_maodel’, name, f_output_all,
num_interval}
99 num_interval_rp = 100 # number of infervals for the history output of the reference point
100 abagus_functions.create_history_output_rp_s(model, 'h_output’, "set_rp', name, h_output,
num_interval_rp)
101
102 i INTERACTION MODULE
103 # create contact between specimen and dies
104 abagus_functions.create_contact_propertyimodel, 'contact_property’, friction_coefficient,
thermal_conductance)
105 abagus_functions.create_general_contact_explicitimodel, ‘general_contact’, 'contact_property’)
106
107 # create kinematic coupling between reference point and top die
108 top_die_surface = abagus_functions.create_surfaces{madel, inst_top_die, top_die_surface', (0, 0,
ho +0.1))
109 abagqus_functions.create_kin_couplingimaodel, 'kinematic_coupling’, set_rp, top_die_surface)

117

Appendix

110
111
112
113
114
115

116
117
118
115

120
121
122

123

124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
138

140
141
142
143
144
145
146
147
148
149
150

& LoAD MODULE
define the initial temperatures
abagus_functions.create_predefined_field(model, ‘init_temp_top_die’, inst_top_die, 'set_top_die’,
ambient_temperature)
abagus_functions.create_predefined_field_from_output(maodel, ‘init_temp_specimen_bottom_die’
. Inst_specimen,
'set_specimen’, odb_abs_path)

create amplitude with displocement data
abagus_functions.create_amplitude(madal, ‘amplitude_displacement’,
amplitude_displacement_data)

create boundaries: fix bottom die and opply displacement to top die
abaqus_functions.create_boundary_fixed{medel, 'boundary_fixed', inst_bottom_die, '
set_bottom_die')

abagus_functions.create_boundary_displacement(model, ‘boundary_displacement’, *
amplitude_displacement’, set_rp,
narmea)
MESH MODULE

create mesh
abagus_functions.create_partitions(specimen, hi)
abagus_functions.mesh_centrol_cylinder{specimen)
abagqus_functions.create_mesh_3{specimen, seed_size)

abagus_functions.create_mesh_3(top_die, sead_size_die)
abagus_functions.create_mesh_3(bottom_die, seed_size_die)

create node set ond output for node set
abagus_functions.create_node_set(specimen, 'set_nodes', seed_size, (d0 /2, 0,0), (d0/ 2, 0, hD))
h_output_nodes = 'COORZ", 'NT'
time_Interval = 0.05 # time interval for the histary output
abagus_functions.create_history_output_e{maodel, inst_specimen, 'h_output_nodes’, ‘set_nodes’,
name, h_output_nodes,
time_interval)

i 108 MODULE

create job and run simulation
abagus_functions.create_job_upsetting_explicitimadel_name, name, &)
abaqus_functions.write_input{name, result_path)
abagus_functions.submit_jobiname, result_path)
abagus_functions.wait_for_job(name)

118

Appendix

Appendix I: odb_data.py

faodu p =

W\ono o LA

10
11
12
13
14
15
16
17
18
1%
20
21
22
23
24
5
26
a7
28
29
30
i
3z
33

34
5
36
37
38
39
an
41
4z
43

45
a6
a7
48
45
30
51
52
53

35
56

name; odb doto

function: this script includes general functions to access the Aboqus output databose ond functions to

evaluale the
simulotions

from abagus import *
impaort numpy as np
import os

GENERAL FUNCTIONS

def open_odb(job_name):
function: open the output dotabase and return the odb-object
job_name = name of the job
odb_path = os.getowd()
odb = session,openCdblos.path.join(odb_path, job_name + .odb'))
spssion.viewports["Viewport: 1'] setValues(displayedObject=odb)
return odb

def close_odh(odb):
o .lrn.'."li [ion. r.'.'r;.xr' the oulpul dotaobase
odb = output dotobase object
odb.close()

def get_history_output{odb, step_name, region, variable_name):

function: access the history output

odb = oulput datobase object

history_output = np.array(odb. steps|step_name).historyRegions[region]. historyOutputs|
variable _namea].data)

return history_output

def get_column(data, i):
function: returns the column | of the history output dota
data = history output data
| = column number

return [line[:][i] for line in data]

def save_csv(file, mode, data):
function: save the specified data in a .csv file
file = absolute filepath
mode = 'w’ for write, ‘o’ for oppend
datg = dota thot is saved in the file
with openifile, mode) as f:
np.savetxt(f, data, delimiter="")

R, EVALLATE SIALULA THOIN o mmmm et e e

def get_nodal_temperatureljob_name, res_path, odhb):
jobname = nome of the job

119

Appendix

57
58
2

B1
B2
63

G5
BE
&7

B9
70
7l
72
73
74
Fi
7B
Erl
78

81
g2
a3

a5
26
&y
88

51
92
93

95
BE
97
S8

100
101
102
103
104
105
106
107
108
105
110
111
112
113
114

res_path = ahsolute path for the result
odb = output dotobase abject
function; save the nodal temperature for o defined set to a .csv file
.csv file contains a column for: z-coordinote - time - nodal temperature
file = os.path.join(res_path, jab_name + ".csv')
with openifile, "w'): & create new empty file
pass
all_regions = odb.steps(job_name].historyRegions. keysl) # ol histary region nomes
for i, region In enumerate(all_regions):
if '"Node INSTANCE_SPECIMEN' in region: # history region name of node set contains this keyword
history_output = get_histary_output{odb, job_name, region, 'COOR3")
1 _coord = get_column(history _output, 1)
history_output = get_histary_output(odb, job_name, region, 'NT11')
time = get_columnihistory_output, G}
temperature = get_column(history_output, 1)
node_info = zip{z_coord, time, temperature)
save_csvifile, 'a', node_infa) # append data to file
return

def get_nodal_end_temperature(job_name, odb):
jobname = name of the job
odb = output dotobase abject
function; save the nodal temperature at the end of a step for o defined node set
calculote average temperature of nodes at the end aof the step
all_regions = odb.steps[job_name].historyRegions. keys() & oll history region nemes
t=[)
T=1]
for i, region in enumerate(all_regions):
i 'Node INSTANCE_SPECIMEN' In region: # history region nome of node set contains this keyword
history_output = get_histary_output(adb, job_name, region, 'NT11')
time = get_columnihistory_output, 0)
t.append(time[-1])
temperature = get_column(history_output, 1)
T.append(temperature[-1])
T_end = np.mean(T)
return T_end

def get_force_displacement{job_name, res_path, odb):
jobname = name af the job
res_path = obsolute poth for the resuit
odb = output dotabase object
function: save the force displacement data for a reference point
.csv file containg a calumn for: time - displacement in z-direction - reaction force in z-direction
region = 'Node ASSEMBLY.1'
histary_output = get_history_output{odb, job_name, region, "RF3')
t_out = get_columnihistory_output, O} # time
rf3_out = get_column(history_autput, 1) # recction force
history_output = get_history_output{odb, job_name, region, "'U3’)
u3_out = get_columnihistory_output, 1) # displocement
data_ = zip(t_out, ud_out, rf3_out)
file = os.path.join(res_path, job_name +'_force.csv')
save_csv(file, 'w', data)

def evaluate_temperature(job_name, res_path):
job_name = name of the job

120

Appendix

115
116
117
118
115
120
121
1
123
124

125
126
127
128
129
130
131
132
133
134
135
136
137
138
139

res_path = absolute poth for the resuit

function: evaluate temperature of o node set ond save data (o .csv
odb = open_odbijob_name)

get_nodal_temperatureljob_name, res_path, odb)

close odbodb)

def evaluate_end_temperatureljob_name):

job_name = name af the job

function: evaluate temperoture of a node set of the end of o step and colculate overage

.r(’ﬁ"f.‘t’fl'-'-!l.-'-'[:
odb = open_odbljob_name)
T_end = get_nodal_end_temperatureljob_name, odb)
close odb(odb)
return T_end

def evaluate_upsettingljob_name, res_path):
job_name = name af the job
res_path = obsolute path for the result
functlon: evaluate force-displocement af o reference point and sove data 1o .esv
odb = open_odb(job_name)
get_nodal_temperatureljob_name, res_path, odhb)
pet_force_displacement(job_name, res_path, adb)
close_odbjodb)

121

Appendix

Appendix J: material_data.py

T

WD = LA

10

11
12
13
14
15
16
17
18
1%

20

21
2

23
24
25
26
27
28
28
3o
31
3z
33

35
36
37
38
39
a0
a1
42
a3

45
a6
a7
48
as
50
51
a3
53

= T T LY T Y —

nome: material data.py
temperature dependent materiol praperties, which ore used in the simwlotions, ore defined in this

smlril
Maune

Units: 3i-mm
temperature (s defined in degree Celsius

notes:

far the density only one volue is used {otherwise changes in the function ‘define_density’ in the aboqus
functions

module needs to be made

the reference temperature for a property s defined in the temp variables

Jahnson Cook parameters are entered in the following order:
jc_parameters = [A, B, n, m, Tm, Tt]

jc_rate_dependent = [C, epsilon_dot_zero]

je damoge = [dl, d2, d3, d4, d5, Tm, Tt epsilon_dol zera]

the order of the material properties needs to be the some for each maoterial: density, density_temp,
conductivity,

conductivity_temp specific_heat, specific_heat_temp, e_modulus, poisson, e_modulus_temp,

& parameters,

jc_rate_dependent, jc_damage, inelastic_heat_froction

not all properties are defined for silico ond steel as they are not needed in the simulations in this
application

litergture is listed in the documentation
B e e SPECTATEN WIATERIAL o emem e e e e e e e e e e

def material_aluminumi):
mat_lst =[]

density = 2.7e-09

density_temp = 20

conductivity = [191, 197, 204, 211, 218, 225]

conductivity_temp = [20, 100, 200, 300, 400, 500]

specific_heat = [311200000, 844000000, 985000000, 1026000000, 1067000000, 1108000000]
specific_heat_temp = [20, 100, 200, 300, 400, 500]

e modulus = [70000, 69300, 67500, 65100, 60200, 54600, 47600, 37800, 28000]
poisson = [0.33, 0.33, 0.33, 0.33, 0.33, 0.33,0.33, 0.33, 0.33]

&_modulus_temp = [20, 50, 100, 150, 200, 250, 300, 350, 400]

je_parameters = [285, 94, 0.41, 0.9, 588, 25]

je_rate_dependent = [0.002, 1]

jc_damage = [0.0164, 2.245, -2.798, 0.007, 3.65, 582, 25, 1.0]
inelastic_heat_fraction =0.9

mat_lst.append(dansity)
mat_lst.append(density_temp)
mat_lst.append(conductivity)
mat_|st.append{conductivity_temp)
mat_lst.append({specific_heat)
mat_|st.append(specific_heat_temp)
mat_lst.append{e_modulus)
mat_Ist.append(poissan)
mat_|st.append{e_modulus_temp)

122

Appendix

55
36
57
58
59

&1
i
B3

65
&6
&7
&8
)
70
Lt
72
73
74
75
G
I7
78
9
a0
Bl
&2

a3

B
26
Ly
a8
89

51
92
93

95
SE
97
98
99
100
10
102
103
104
105
106
107
108
109
110

mat_|st.append|(jc_parametars)
mat_lst.append{jc_rate_dependent)
mat_lst.append(jc_damage)
mat_|st.append|{inelastic_heat_fraction)
return mat |t

Material properties af the specimen for the python simulation

functions to describe the conductivity and the specific heot

def conductivity_function|{temperature):
k =0.07 * temperature + 150
return k

def specific_heat_function(temperature):
c=(0.41* temperature + 903) * [10 ** B)
return c

MATERIAL OF DIES AND GRIPPER

def material_steel|):
mat_lst =[]
density = 7.85e-09
density _termp = 20.0
conductivity = [53, 51, 47, 44, 41, 37]
conductivity_temp = [20, 100, 200, 300, 400, 500]
specific_heat = [439801760, 487620000, 529760000, 564740000, 605880000, 666500000,
750920000]
specific_heat_temp = [20, 100, 200, 300, 400, 500, 589]
&_modulus = [206400, 201600, 198300, 193300, 190600, 1B6400]
poisson = [0.271, 0.271, 0.273, 0.275, 0.278, 0.282)
e_modulus_temp = [50, 100, 150, 200, 250, 295)

mat_lst.append|density)
mat_lst.append|density_temp)
mat_|st.append{conductivity)
mat_|st.append|{conductivity_temp)
mat_lst.append(specific_heat)
mat_lst. append|specific_heat_temp)
mat_lst.append{e_modulus)
mat_Ist.append|poisson)
mat_|st.append{e_modulus_temp)

return mat_|st

B FLIRNACE LINING == e memem e e e

def material_refractory():
mat_lst =[]

density = 1.82E-09

density_temp = 20

conductivity = [1.2, 1.36, 1.51, 1.64, 1.76]

conductivity_temp = [400, 600, 800, 1000, 1200]

specific_heat = [915000000, 244000000, 961000000, 969000000, 973000000]

123

Appendix

111
112
113
114
115
116
117
118
118
120
121
122

specific_heat_temp = [400, 600, 800, 1000, 1200]

mat_|st.append{density)
mat_|st.append{density_temp)
mal_lst.append|{conductivity)
mat_Ist.append|{conductivity_temp)
mat_lst.append{specific_heat)
mat_|st.append(specific_heat_temp)
return mat_|st

124

Appendix

Appendix K: abaqus_functions.py

[l e ey
T T N - - - WY IS TT I

19
20
21
22
23
24
25
26
27
28
29
30
31
32
i3

5
6
7
38
39
a0
41
a
43

45
a6

a7
48
45
30
51
52
53

35
56

T TN T T —

name; abaqus _functions

function: this file caontains general functions used to build o FE mode! in aboagus and run the simuwlotion

info: the script s divided into sections {one for each Abagus madule)

IMPORT
import mesh

from abagqus import *

from abagusConstants import *

from odbAccess import openCdb

import os

MODEL

def model_settings{madel_nama):

FUNCTION: creates a standord/explicit abagus model, nomed ‘model_nome’, defines mode!
parameters for the absolute

zero and the Boltzmonn constant and returns the abagus mode!

INPUT: mode!_nome > pame of the obogus model

OUTPUT: --= ghoqus model

mdb.Model{name=model_name, modelType=STANDARD _EXPLICIT)

madel = mdb.models[madel_name]

model.setValues|absoluteZero=-273.15, stefanBoltzmann=5.67e-11)

return maodel

Ry . 1. 1. & o ¥ 1 < —

def create_cylinder{model, part_name, diameater, height):

FUNCTION: > this function creates and returns a part with cylindrical geometry
INPUT: model > gbagqus model

part_name -—= name af the part (string)

diameter = diagmeter of the cylindrical part

height —-» dimension in z-direction of the part

OUTPUT: p > gbagus part

s = model.Constrainedsketch(names"__profile__", sheetsize=200.0)

s, CircleByCenterPerimeter(center=(0.0, 0.0], point1={diameter / 2, 0.0])

p = model Part(namea=part_name, dimensionality=THREE_D, type=DEFORMABLE_BODY)
p.BasesolidExtrudalsketch=s, depth=height)

del model sketches['__profile_ "]

return p

def create_die(model, part_name, width, length):

FUNCTION: > creates and returns o part for the die, the die geometry depends on
warkpiece

o dimensions in x,y-directions, the dimension In z-direction is a fixed value,

the dimensions in x,p-direction are three times the workpiece dimension

#INPUT: mode! > pbogus mode!

part_name -—-= name af the part (string)

width > dimensian af the workpiece in x-direction

i length —-= dimension af the workplece in y-direction

QUTPUT: p -—» abagus part

width = width * 3
length = length * 3
height = 20

1 the

125

Appendix

57
58
29

B1
B2
63
G
65
GE
&7

]
0
7l
72
73
4
75
76
rr
78

81
g2
83

85
86
a7
88

51
92
93

95
56
a7
98

100
101
102
103
104

105
106
107
108
100
110
111
112

5 = model.ConstrainedSketch(name="__profile__', sheetSize=200.0)
s.rectanglelpointl=(-width / 2, -length / 2], point2={width / 2, length / 2))

p = model,Part(name=part_name, dimensionality=THREE_D, type=DEFORMABLE_BODY)
p.BaseSolidExtrude(sketch=s, depth=height)

return p

def get_dimensions_furnace():
FUNCTION: > returns the dimensions af the furnace
QUTPUT: dimensions furnace - dimensions af the furnace in millimeters
x_dim_inside = 300 # x-dimension inside the furnace 1 [mm|
y_dim_inside = 450 # y-dimension inside the furnoce 1 |
z_dim_inside = 240 # z-dimension inside the furnace 1 [mm/
thickness_walls = 50 # thickness of the furnace walls [mm]
thickness_bottom_wall = 60 # thickness of the bottom_wall fmm]
return x_dim_inside, y_dim_inside, z_dim_inside, thickness_walls, thickness_bottom_wall

mm]

def create furnace(model, part_name, width, length, height, thickness, bottom_thickness):

FUNCTION: > creates and returns a part for the furnace
#INPUT: maodel > ghogus mode!

i part_name ---» name of the part (string)

o width > inner dimensian in x-direction af the furnoce
i length ---= inner dimension in y-direction of the furnoce
height > inner dimension in z-direction of the furnace
o thickness = thickness of the furnace walls

. bottom_thickness -—> thickness of the bottom_wall

gouTPUT: p > abagqus port
create biock with outer dimensions of the furnoce
s = model. ConstrainedSketch(name="__profile__", sheetSize=200.0)
s.rectanglelpaintl=(-(width [2 + thickness), -(length [2 + thickness)), point2=(width / 2 + thickness,
length / 2 + thickness))
p = model. Part(name=part_name, dimensionalitysTHREE_D, type=DEFORMABLE_BODY)
p.BaseSolidExtrude(sketch=s, depth=height + thickness + bottom_thickness)
create datum plane
plane = p.DatumPlaneByPrincipalPlane(principal Plane=XYPLANE, offset=bottom_thickness)
cut out block with inner dimensions of furnace (width, length, height)
e, d1 = p.edges, p.datums
t = p.MakesketchTransform(sketchPlane=d1[plane.id], sketchUpEdge=e.fimdat|
coordinates=(width / 2 + thickness, {length + 2 * thickness) / 4, 0.0)), sketchPlaneSide=5IDE1,
sketchOrientation=RIGHT, origin=(0.0, 0.0, bottom_thickness))
51 = model.ConstrainedSketch(name="__profile__", sheetSize=307.21, gridSpacing=7.58, transform=t

p.projectReferencesOntoSketch|sketch=s1, filter=COPLANAR_EDGES)
slrectangle|pointl=(-(width / 2], -(length / 2)], point2={{width / 2], (length / 2]])
el, d2 = p.edges, p.datums

p.CutExtrude(sketchPlane=d2[plane.id], sketchUpEdge=el. find Atlcoordinates={width / 2 + thickness,

(length + 2 * thickness) / 4, 0.0},
sketchPlaneside=5IDE], sketchOrientation=RIGHT, sketch=s1, depth=height,
flipExtrudeDirection=0MN)
return p

def create_set_all{part, set_name):

FLUINCTION. - cregtes a set from o whole part
#INPUT: part > ghagus part

set name -—--2> name of the set (string)

OUTPUT: set > 5el

126

Appendix

113
114
115
116
117
118
11%
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
145
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
163
170

¢ = part.cells|:]
set_all = part.Set{cells=¢, name=set_name)

return set_all

PROPERTY MODULE

def create_materialimodel, material_name):
FUNCTION: = cregtes g new materiol
#INPUT: model > gbaqus model
material name > mame of the maoterial (string)
OUTPUT: moterial > material

material = model.Material{namesmaterial_name)
return material

def define_density(material, density, reference_temperature):
material Density(table=({density, reference_temperature],), temperatureDependency=0N)

def define_elasticity(material, e_modulus, poisson, temperature):
values = list{ziple_modulus, poisson, temperatura))
table_values = []
for i in range(lenje_modulus)):
table_values.append(values|i])
material Elastic{table=table_values, temperatureDependency=0N)

def define_conductivityimaterial, conductivity, temperature):
values = list{zip{conductivity, temperature))
table_values = (]
for i in range(len(conductivity}):
table_values.append(values|i])
material. Conductivity(table=table_values, temperatureDependency=0N}

def define_specific_heat{material, specific_heat, temperatura):
values = list{zip(specific_heat, temperature])
table_values =[]
for i in range(len(specific_heat)):
table values.append{values|i])
material SpecificHeat(table=table_values, temperatureDependency=0MN, law=CONSTANTPRESSURE)

def define_expansion{material, expansion, temperature):
values = list{ziplexpansion, temperature))
table_values = (]
for i in range(lenlexpansion)):
table_values.append(values|i])
material.Expansion(table=table_values, temperatureDependency=0N)

def define_plasticity(material, jo_params, jc_rate_dep):
material Plastic(hardening=I0OHNSON_COOK, table=(jc_params,))
material.plastic.RateDependent|type=10HNSON_COOK, table=(jc_rate_dep,)}

def define_damage({material, jc_damage_params);
material JehnsonCookDamagel nitiationitable=(jc_damage_params,))

127

Appendix

171
172
173
174
175
176
1
178
178
180
181
182

183
184
185
186
187
188
189
150
191
192
183
154
185
196
197
198
199

201
202
203

205
206
207
208

210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227

def define_inelastic_heat_fraction|material, fraction):
material.InelasticHeatFraction(fraction)

def create_section(maodel, section_name, material):
maodel. HomogeneousSolidsection[name=section_name, material=material, thickness=None|

def assign_section{part, set_all, section_name);
part.SectionAssignment(region=set_all, sectionNamessection_name, offset=0.0, offsetTypes
MIDDLE_SURFACE,
offsetFleld=", thicknessAssignment=FROM_SECTION)

ASSEMBLY MODULE
def create_assembly_press{imodel, partl, part2, part3, height_workpiece):
FUNCTION: > creates an assembly for the press and positions the part
distonce between dies = height_workpiece + 0.1
#INPUT: mode! > gbogus model
[part > parts of the assembly (part l=workpiece, partZ=top die, part 3=hottomn die)
height_workpiece > p-dimension of the workpiece
OUTPUT: instonce > instances of the assembly (instancel=warkpiece, instance2=top die,
instance3=hottom die)

a = model.rootAssembly

a.DatumCsysByDefault(CARTESIAN)

instancel = a.lnstance|dependent=0M, name="instance_specimen’, part=part1)
instance? = a.lnstance{dependent=0N, name="instance_bottom_die', part=part2)
instanced = a.Instance|dependent=0M, name="instance_top_die', part=part3)
a.translatelinstanceList=("instance_bottom_die",), vector=(0.0, 0.0, -20})

-20 15 equal to the height of the bottom die
a.translate{instanceList={"instance_top_die',), vector={0.0, 0.0, helght_weorkpiece + 0.1))
return instancel, instance?, instance3

def create_assembly_2parts(model, partl, part2, partl_name, part2_name, translation):

#EUNCTION: > creates an gssembly with two parts, positions the second part
#INPUT: model > gbaqus model

o Bt s parts af the assembly [partl=sworkplece)

transiotion = pasitions the second part in this direction along the z-axis

OUTPUT. instance > instances of the assembly {instance l=warkpiece)

a = model.rootAssembly

a.DatumCsysByDefault(CARTESIAN)

instancel = alnstance{dependent=0N, namespartl_name, part=part1)
instance? = a.Instance|dependent=0M, name=part2_nama, part=part2)
atranslatelinstancelist=(part2_name,), vector=(0.0, 0.0, -translation])
return instancel, instance?

def create_assembly_furnace(model, partl, part2, translation):

#FUNCTION: > creates an ossembly with the furnoce and the specimen
#INPUT: maodel > ghagqus model

L part 1 > specimen

part 2 » furnace

o transiation > transiation of the furnace

a = model.rootAssembly
a.DatumCsysByDefault(CARTESIAN)

128

Appendix

228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
24y
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
270
277
278
279
280
281
282
283

284

instancel = a.Instance{dependent=0N, name="instance_specimen’, part=part1)
instance? = a.Instanceldependent=0N, name="instance_furnace’, part=part2)
a.translate|instanceList="instance_furnace'], vector=(0.0, 0.0, -translation))
return instancel, instance?

def create_refl_point(model, set_name, height_workplece):

FUNCTION! = creates a reference point ab the z-position: height_ warkpiece + 0.1
" (= position of contact surface of top die)

HINPUT: model = ghagus model

et name » pame of the set [string)

o height_workpiece = p-dimension of the workpilece

#OUTPUT: set » sef including the reference paint

a = model.rootAssembly

rp = a.ReferencePoint{point=(0.0, 0.0, height_warkpiece + 0.1))
return a.Set(name=set_name, referencePoints=(areferencePaints|rp.id),)

def create_surfaces{model, instance, surface_name, *coordinates):

FUNCTION! » creates surfaces, each surface is selected by x,.p, 7 coordinates af
" a paint in the middle of the surface

#INPUT: maodel = ghaqus model

instance > gbaqus instance

i surface _name > name of the surfaces (string)

#OUTPUT: created surface » ghaqus surfaces

a = model. rootAssembly
f = instance faces
surface = ()
for coordinate in coordinates:
K, ¥, t = coordinate
face = Lhindati(x, v, 2),)
surface = surface + (f[face index:face.index + 1],)
created surface = aSurface(sidelFaces=surface, names=surface_name)
return created _surface

def create_set_faces(model, set_name, instance, *coordinates):

FUNCTION: > creates a set with foces, each face (s selected by x,y.2 coardinates of
) o paint in the middle of the face

#INPUT: model = ghagus model

et name = pame of the set (string)

instance > gbaqus instonce

#OUTPUT: set > phagus set including the selected faces

a = model. rootAssembly
f = Instance. faces
selected_faces =)
for coordinate in coordinates:
¥, ¥, # = coordinate
face = f.findat((x, v, 2),)
selected_faces = selected_faces + (f[face.index:face.index + 1],)
return a,Set(faces=selected_faces, names=set_name)

STEP MODULE
def create_temp_disp_expl_stepimodel, step_name, time_period):

creates o dynamic temp-displ explicit step named 'step_name’, whereas time_period (s the step
ime

madel, TempDisplacementDynamicsStepinames=step_name, previous='Initial’, timePeriod=

129

Appendix

284
285
286
287
288

289

291
292
293
294
295

296
297
298
299

301
an2
303

305
306
o7
308

310
311
312
313
314

315
16
EN)
318
319
320
321
322

323
324
325
326

327
28
329
330
331
332

333

time_period, improvedDthsthod=0ON)

def coupled_tep_displ_step(model, step_name, time_period);
creales o coupled temperalure displacement step named 'step name', whereas time period Is the
step time
model.CoupledTempDisplacementStep(names=step_name, previous="Initial’, timePeriod=
time_period, maxMumines500,
initialing=0.008%, minlnc=1e-08, maxing=0,05, deltmx=100, nigeom=0N)

def create_heat_transfer_stepimodel, step_name, previous_step_name, step_time):
creates o heat transfer step named 'step_name’ whereas step_time is the time of the step
model HeatTransferstep(deltmx=10,0, end=1e-07, initlalinc=0,001, maxinc=2.0, maxNum|nc=10000,
minincs1e-07,
names=step_name, previous=previous_step_name, timePeriod=step_time)

def delete_automatic_output{madel):
deletes the automatic field and history output that is defined in a new model dotabase
del madel fieldOutput Requests|'F-Output-1']
del model historyOutput Requests|'H-Output-1°]

def delete_{_outputl{madel):

¥ deletes the oulamatic |'Ir'|'g.f rllJr.]_qu that Is defined in a new model databose
del model fieldOutputReguests| F-Output-1']

def create_field_output{model, {_output_name, name_of_step, output_variables, time_interval):
ereates a field output for the whale mode! with the name T autput name’ for the step ‘step_pname’
output_variables defines all the variobles for the output e.g. 's', 'R¥
time interval S fies the autput iInterwl
model FieldOutput Reqguest(createStepMames=name_of_step, names={_output_name, timeintervals
time_interval,
timeMarks=0OFF, variablessautput_variables)

def create_field_output_2{maodel, I_output_name, name_of_step, output_variables, num_interval);
N oreales o f.'r"l':.l' output ,fl?r the whole mode! with the ngme '," rl,'1|'||l|ar name’ |"¢Il [he slep "\.f|'|ll name’
autput variables defines all the varlables for the output e.q. 'S, 'AF
time interval specifies the outpul interval
model FleldOutputRequest{createStepMame=name_of step, names=l_output_name, numintervalss
num_interval,
timebdarks=0FF, variablessoutput_variables)

def create_field_output_set(model, instance, f_output_name, set_name, step_name, output_variables
L um_interval):

creates o fleld output with the name | output_name’ for the set of an abaqus instance

the field output s created for the step named 'step name’

output_variables defines all the varlobles for the output e.g. 'S, 'RF°

time interval specifies the output interval

regionDefl = instance.sets[set_nama)

model FieldOutputRequest{names={_output_name, createStepMamesstep_name, variabless
autput_varlables,

numintervals=num_interval, regian=reglonDal, sectionPoints=DEFAULT, rebars

EXCLUDE)

130

Appendix

334
3as
336

337

338
39

341
342

343

a5
346
347

349
350
351
as2
353
354

355

356
as7
358

358
360
361
362
363
£l

365

ElEH
£l)
368
£l

avo
ar
an
EYE!
ETR)
375
76

anr

def create_history_output_rpimodel, h_output_name, set_name, step_name, output_variables,
num_interval):
creates o history output with the name b oulput name' for a set of the assembly named '
ser_name’
the histary output s ereated for the step named 'step_name’
output_variables defines all the variables for the output e.q. 'S’ 'RF
time interval specifies the output interval
regionDef = model rootAssembly sets[set_nama)
model HistoryOutputRequestinamesh_output_name, createStepMamesstep_name, variabless
output_variables,
numintervals=num_interval, reglon=regionDef, sectionPoints=DEFAULT, timeMarks=
QFF,
rebar=sENCLUDE]

def create_history_output_rp_e(medel, h_output_name, set_name, step_name, output_variables,
num_interval):

creates o history output with the name 'h_output_nome' for a set of the assembly named '
sel pame’

for the explicit simulation

the histary output s created for the step nomed 'step_name'

output_variables defines all the variobles for the output e.g. ‘5, 'AF°

time interval specifies the output intenval

regionDefl = model rootAssembly sets[set_namea)

model HistoryOutputRequest{name=h_output_name, createStepNames=step_name, variabless
autput_variables,

numintervals=num_interval, region=regionDef, sectionPaints=DEFAULT, rebars

EXCLUDE)

def create_history_outputimodel, instance, h_output_name, set_name, step_name, outpul_variables
, time_interval):

creales o history output with the name "h_owtpul_nome' for a set of an instance named Sel_name'

the history output is created for the step named step_name'
output_voriables defines all the variobles for the output e.q. 's', 'RF
time interval specifies the output interval
regionDef = instance sets|set_name|
model HistoryOutputRequestiname=h_output_name, createStepMame=step_name, variables=
autput_variables,
timelnterval=time_interval, region=regionDef, sectionPoints=DEFALULT, timatarkss
OFF,
rebar=EXCLUDE)

def create_history_output_e(maodel, instance, h_output_name, set_name, step_name,
output_variables, time_interval):

creates o history oulput with the name "h_owlput_name’ for a set of an instance named Sel_name'

for the explicit simulation

the histary autput Is ereated for the step named step name'

output_variables defines all the variobles for the output e.g. 'S, 'RF°

time interval specifies the output interval

regionDel = instance,sets[set_nama]

maodel HistoryOut putRequestinamesh_output_name, createStepMamesstep_name, variabless
autput_variables,

timelnterval=time_interval, region=regionDef, sectionPoints=DEFAULT, rebar=

EXCLUDE)

131

Appendix

378
re
380
381
382

383
384

385

386
387
388

385
390
351
392

383

394
395
3596
gy
398
399

400
401
402
403
404
405
406
407
408

409
410
411
412
413
414
415
416
417

418
419
420
421
422
423
424
425
426

i INTERACTION MODULE
def create_kin_couplinglmodel, coupling_name, set_ref_polint, slave surface):

creates o kinemalic coupling named 'coupling name’ between o reference point and a slave
surface

all degrees of freedom are constrained

maodel. Coupling(name=coupling_name, controlPoint=set_ref_point, surfaces=slave_surface,
influenceRadius=WHOLE_SURFACE,

couplingType=KINEMATIC, localCsys=None, ul=0MN, u2=0N, u3=0N, url=0N, ur2=0N, urd=

OM)

def create_contact_property(model, interaction_property_name, friction_coefficient,
thermal_conductance):
¥ creates o contoc! II'."l'll‘_r..'l'rf[.-' ingluaing _f.'.'l’ tan and thermal contoct conductaonce
maodel. ContactProperty(interaction_property_name)
ip = model.interactionProperties|interaction_property_name|
ip. MormalBehavior(pressureOverclosuresHARD, allowSeparation=0N,
constraintEnforcementMethod=DEFAULT)
ip. TangentialBehavior formulation=PENALTY, directionality=ISOTROPIC, slipRateDependency=O0FF,
pressurelependency=0FF,
temperatureDependency=0FF, dependencies=0, table=({friction_coefficient,),),
shearStressLimit=None,
maximumeElasticSlip=FRACTION, fraction=0.005, elasticSlipStiffness=None)
ip. ThermalConductance{definition=TABULAR, clearanceDependency=0N, pressureDependency=0FF,
temperatureDependencyC=0FF,
massFlowRateDependencyC=0FF, dependenciesC=0, clearanceDepTables
thermal_conductance)

def create_contact_property_thermal(model, interaction_property_name, thermal_conductance):
creates o conloct! EFCREET I'|.-' g .'..'r.'.'rrr,' thermaol contact conductance
model.ContactProperty|interaction_property_name)
ip = model.interactionProperties[interaction_property_name)
ip. ThermalConductance|definition=TABLLAR, clearanceDependency=0N, pressureDependency=0FF,
temperatureDependencyC=0FF,
massFlowRateDependencyC=0FF, dependenciesC=0, clearanceDepTables
thermal_conductance)

def create_general_contact_explicit{model, name, property_nama);

#creole a r,lr'."r'rr.'n'rrl.'I[.'J-’r intergction for an r'Jr,'J.'n':'lr simulation

name = name of the interaction

property name = nome of the interaction property

model.ContactExplname=name, createStepMNames"Initial’)

madelinteractions[namal.includedPairs satValuesinStep(stepNames'Initial’, useallstar=0N)

modelinteractions[name] contact PropertyAssignments, appendinsteplstepMame="initial’,
assignments=((GLOBAL, SELF,

property_name),})

def create_general_comtact(model, name, property_namea):
#creole a |'|lr'|'.'|"|'|'r|'|'|'.l.'ll'|:1-: [interaction
o ngme = name of the interaction
praperty _name = name of the inleraction property
model. ContactStdiname=name, createStepNames"Initial’)
modelinteractions[name].includedPairs, setValuesinStep(stepMames='Initial’, useAllstar=0N)

132

Appendix

427

428
429
430
431
432
433
434
435
436

437
438

439
440
441

442
443
A4
445
446

447
448
444
450
451
452

453
454
455

456
457
458
455
460
461
462
463

464
AB5
466
467
468
465
470
47

472
473
474
475

model.interactions[name]. contactPropertyAssignments, appendinstep(stepMames="Initial’,
assignments=|[GLOBAL, SELF,
property_name),))

def create_contact_interaction(maodel, int_name, master_surface, slave_surface, int_property_name):
#inl_name = inteéraction name
#int property nome = name of the interaction property that should be used
regionl = master_surface
region? = slave_surface
model.SurfaceToSurfaceContactStd(name=int_name, createStepNames="Initial’, master=regionl,
slavesregion2,
sliding=FINITE, thickness=0N, interactionProperty=int_property_name,
adjustMethod=NONE, initialClearance=0OMIT, datumAxis=None, clearanceRegions
None)

def create_contact_interaction_esplimodel, int_name, master_surface, slave_surface,
int_property_name);
#int nome = interaction name
#int_property _name = name af the interaction property that should be used
regionl = master_surface
region2 = slave_surface
model SurfaceToSurfaceContactExpl{names=int_name, createStepName="Initial', master=region1,
slave=region2,
mechanicalConstraint=PEMALTY, sliding=FINITE,
interactionProperty=int_property_name, initialClearance=0MIT,
datumasis=MNone, clearanceRegion=None)

def create_radiation_to_ambient{model, name, surface, step_name, ambient_temperature, emissivity
)i
create radiation to amblent with caonstani |'|"Ii_|'.'|'II glure
region = surface
model RadiationTeAmbient{names=name, createStepNamesstep_name, surfacesregion,
radiationType=AMBIENT,
distributionType=UNIFORM, field=", emissivity=emissivity,
ambientTemperature=ambient_temperature, ambientTemperatureAmp=")

def create_radiation_to_var_ambient|model, name, surface, step_name, amplitude_name, emissivity):

create ragiation to amblent with variable temperature amplitude
region = surface
model. RadiationTeAmbientiname=name, createStepMame=step_name, surface=sregion,
radiationType=AMBIENT,
distributionType=LMNIFORM, field=", emissivity=emissivity, ambientTemperature=1.0,
ambientTemperatureaAmp=amplitude_nama)

def create_convection_var(model, name, surface, step_name, amplitude_name, film_coefficient):
creote convection interaction to ambient with variable temperature amplitude
region = surface
model. FilmCendition{name=name, createStepName=step_name, surface=region, definition=
EMBEDDED COEFF,
filmCoeff=film_coefficient, filmCosffAmplitude=", sinkTemperature=1.0,
sinkamplitude=amplitude_name, sinkDistributionType=sUNIFORM, sinkFigldMame="")

133

Appendix

476
477
478
475

480

481
482
483
484
485
486
A87

488
489
450
451

492
433
454

405
A96
457
458
499

00

501
502
503
504
505
06
507
S08

509

510
511
512
513
514
515
516

317
518
519

520
341
522

def create_convection(model, name, surface, step_name, film_coefficient, ambient_temperature);
create convection interaction to ambient with constant temperature
region = surface
maodel. FilmCondition{name=name, createStepName=step_name, surface=region, definition=
EMBEDDED _COEFF,
filmCoeff=film_coefficient, filmCoaffamplitude=", sinkTemperature=
ambient_temperature,
sinkamplitude=", sinkDistributionType=UNIFORM, sinkFieldName=")

LOAD MODULE
def create_amplitude{model, amplitude_name, amplitude_data):

creates o tabular amplitude nomed ‘amplitude_name’ using tobuwlar data; amplitude_data

madel. TabularAmplitude{name=amplitude_name, timeSpan=5TEP, smooth=S0LVER_DEFAULT, data
=amplitude_data)

def create_predefined_field[madel, field_name, instance, set_name, temperature):

defines an initial predefined temperature fleld named 'fleld nome' with a constant temperature to
the set af on

instance nomed set_nome'

region = instance.sets[set_name]

model. Temperature{name=field_name, createStepName="Initial’', region=region, distributionType=
UMIFORM,

crossSectionDistribution=CONSTANT _THROUGH_THICKNESS, magnitudes={temperature,))

def create_predefined _field fram_output{maodel, field_name, instance, set_name, abs_file_path):
defines an initial predefined temperature field nomed 'field name’ to the set named set_name’ of
an (nstance
the tempergture field is defined by o previous simulation; this function reads the temperature field
of the last
increment of the Jast step of an odb file specified by ‘abs_file_path’
region = instance.sets[set_name|
odb = openDdblabs file_path)
last_step = odb.steps.values()[-1]
ni_last_step = last_step.number
nr_ing = last_step. frames[-1].incrementNumber
odb.close()
madel. Temperature| names=field_name, createStepMames"Initial', distributionType=FROM_FILE,
fileMame=abs_file_path,
beginStep=nr_last_step, beginincrement=nr_ing, endstep=None, endincremeant=None,
interpolate=0FF,
absoluteExteriorTolerance=0.0, exteriorTolerance=0.05)
model predefinedfields[field_name].setValues{region=region) # todo: s o region definition needed !
INFO: interpalate = ON for incompatibie meshes interpolate = OFF far compatible meshes

def create_boundary_fixed{model, boundary name, instance, set_name):

creates o boundary named 'houndary name’in the initial step that constrains all degrees of
freedom for the

defined set nomed ‘set_name’ of an instance

region = instance.sets[set_name)

maodel EncastreBC{names=boundary_name, createStepNames"Initial’, region=region, localCsys=None

)

def create_boundary_displacement{model, boundary_name, amplitude_name, set_ref_paoint,

134

Appendix

522
523

524

525

5326
527

528

520
530
531
532
533

534
535

536
537
538
539

541
542
543

545
546

548
549
550
551
552
553
554
555
556
557

558
559
560
561
562
563
564
565
566
567
568
569
570
571

step_name);
creotes o displocement boundory condition named ‘boundary_name' in the step nomed '
step _name’, the region is
defined by the set set_ref_point thot contoins o reference point; translationol displocement is
applied in z-
direction af the mode! via a tabular omplitude named ‘'omplitude_name' that specifies the time
I'J.'ﬁ,Ei"Un'_-!.'n'."l-!.'l'.'.r
values
model.DisplacementBC{name=boundary_name, createStepiName=step_name, region=set_ref_point
, ul=0.0, u2=0.0, u3=-1.0,
url=000, ur2=0.0, ur3=0.0, amplitude=amplitude_name, fixed=0FF, distributionType=
UNIFORM,
fieldMame=", localCsys=None)

def create_boundary_temperature{model, boundary_name, set_faces, step_name, amplitude_nama):

opplies o temperagture boundary condition nomed ‘boundary _name’ to o set containing foces '
set_faces'in the step

i "1I'-!'r".l ."I'.i'."II:"_,' o fa r;h-'ur I'J."II_I'."II'!n'.'I'J:" I|'.i|."|i_|'."|"!.'..'n'.i'!' I'il'.‘n'.’h!'I l.l:.'l":’."."H"n the tirme f!'.’.’ll.’.le'."n'.i'r.'..'.’i' golo

model. TemperatureBC(name=boundary_name, createStepMame=step_name, region=set_faces,
fixed=0FF,

distributionType=UNIFORM, fieldName=", magnitude=1.0, amplitude=amplitude_nama)

MESH MODULE

def creale mash_1(part, seads):
seed specifies the element size of the mesh thot is created;
elements for heat transfer
part. seedPart|size=seeds, deviationFactor=0,1, minSizeFactor=0.1)
elemTypel = mesh.Elem Type{elemCode=0C308, elemLibrary=5TANDARD)
elemType? = mash.ElemType(elemCode=DC306, elemLibrary=5TANDARD)
elemType3 = mesh.ElemType(elemCode=DC304, elemLibrary=5TANDARD)
cells = part.cells[:]
pickedRegions = (calls,]
part.setElementTypelregions=plckedRegions, elemTypes={elemTypel, elemTypel, elem Type3})
part.generateMesh()

def create_mesh_2(part, seeds):

seed specifies the element size of the mesh thaot is created;

elements coupled temperature displacement (implicit)

part.seedPart|size=seeds, deviationFactor=0.1, minSizeFactor=0.1}

elemTypel = mesh. ElemType(elemCode=C3I0ART, elemLibrary=STANDARD, secondOrderAccuracy=
OFF,

distartionControl=DEFALULT)

elemType2 = mesh.ElemType(elemCode=C306T, elemLibrary=STANDARD)

elemType3d = mash.Elem Type(elemCode=C304T, elemLibrary=STANDARD)

cells = part.cells(:]

pickedRegions = (cells,)

part.setElementType(regions=pickedRegions, elemTypes=|elemTypel, elemType?, elemType3)})

part.generatefdesh()

def create_mesh_3(part, seads):
seed specifies the element size of the mesh thot is created;
elements for coupled temperature displacement {explicit)
part.seadPart{size=seeds, deviationFactor=0.1, minSizeFactar=0.1}
elemTypel = mesh.ElemType(elemCode=C308RT, elemLibrary=EXPLICIT, secondOrderAccuracy=0FF,

135

Appendix

572
573
574
575
576
577
578
379
580
38l
582
583
584

585
586
587
588
539
590
5581
592
593
294
595
596
597
598
290
GO0
&01
a02

e03
G04
B05
G06
BO7

BO8
G605
610
g1l
Bl2
613
614
B15
Ble
617
B1l8
1%
B20
B21
622
623
24
625
B26

distortionControl=DEFALULT)
elemTypel = mesh.ElemTypelelemCode=C306T, elemLlibrary=EXPLICIT)
elemType3d = meash.ElemType(elemCode=C304T, elemLibrary=EXPLICIT)
cells = part.cells[:]
pickedRegions = (calls)
part.setElementType(regions=pickedRegions, elemTypes={elemTypel, elemType2, elemType3))
part.generatebdesh()

def create_partitions(part, height):
INPUT: part --> abagus port (specimen)
i height --> inital height of the specimen
partitions are defined using datum planes; partitions are created along the yz-plane, the xz-plone
ond at an
offset of height/2 to the xy plane; ‘height’ is the height of the workpiece
p = part
c = p.calls;]
yi_plane = p.DatumPlaneByPrincipalPlaneprincipalPlane=YZPLAME, offset=0.0)
xz_plane = p.DatumPlaneByPrincipalPlane|principalPlane=XZPLANE, offset=0.0)
wy_plane = p.DatumPlaneByPrincipal Plane|principalPlane=XYPLANE, offset=height / 2)
p.PartitionCellByDatumPlaneldatumPlane=p.datums[yz_plane.id], cells=c)
¢ = p.calls[;]
p.PartitionCellByDatumPlaneldatumPlane=p.datums[xz_plane.id], cells=c)
c = p.cells:]
p.PartitionCellByDatumPlane(datumPlane=p.datums[xy_plane.id)], cells=c)

def mesh_control_cylinder{part):
applies mesh controls to the defined part;

: ult settings are elemShope: HEX, technique: STRUCTURED

¢ = part.cells[:]

part.setMeshControls{regions=c, elemShape=HEX_DOMINATED, technique=5WEEP, algorithm=
ADVANCING _FROMT)

def create_partitions_furnace(part, =, v, 2, th:
creotes portitions of the port furnoce”
x, ¥, 2 are the inner dimensions of the furnace in the respective directions, t is the thickness of the
bottom

wall of the furnace

c = part.cells[:]

v = part.vertices

part.PartitionCellByFlaneThreePoints(point 1=v.findAt{coordinates=(-x / 2, -y [2, t]],
point2=v.findAt{coordinates=(x / 2, -y / 2, t}),
point3=v.findAt(coardinates=(x / 2, -y [2, z + 1)), cells=c)

= part.cells|:]

part.PartitionCellByPlanaThreePoints|pointl=v.findAtjcoordinates={-x / 2, y / 2, 1)),
point2=v.findAt{coordinates=(x / 2, y / 2, t]),
point3=v.findAt{coordinates=(x / 2, v / 2, z + t]], cells=c)

c = part.cells[:]

part.PartitionCellByPlaneThreePoints|pointl=v.find Atlcoordinates=({x / 2, -y / 2, 1)),
point2=v findAt{coordinates=(x [2,y [2, t}),
point3=v.findAt(coordinates=(x / 2, y / 2, z + t]], cells=c)

¢ = part.cells[:]

part.PartitionCellByFlaneThreePoints|pointl=v.find At{coordinates={-x / 2, -y / 2, t)],
point2=v findAt(coordinates=(-x / 2, v / 2, 1],
point3=v findAt(coordinates=(-x / 2, v / 2, 7 + t]), cells=c)

¢ = part.cells|:]

136

Appendix

627
G28
629
630
631
632
633
634
635
636
637
638
639

&40

B4l
B4
643

645
B46
47
BAg
B45
650
651
652
B53
G54

655
656

657
B58

653

BE0
BE1
662
B63
oed
BBS
BEE
i)
(5]

(E15)
B70
671
G672

673
674

part.PartitionCellByPFlaneThreePoints(point1=v.findAt{coordinates=(-x / 2, -y / 2, t]],
point2=v.findAt(coordinates=(x / 2, -« / 2, t]),
point3=v.findAt(coordinates=(x / 2, v / 2,), cells=c)

c = part.cells[:]

part.PartitionCelByPlaneThreePaints(point 1=v. ind At{coordinatess{-x / 2, -y / 2, 2 + 1)),
point2=v.findAt(coordinates=(x / 2, -y / 2, 2 + t]),
point3=v.findAt(coordinates=(x / 2,y [2, 2 +)], cells=c)

def create_node_set(part, set_name, seed_size, pointl, point2);

#INPUT: pointl --> coordinates fx,y.2) of starting point

point? > coardinates (x,y,z) of end point

FUNCTION: select nodes along a line (in positive x, v, or 2- direction) and saves them in a set named
‘tet name’

the line is defined x.y.z coordinates of a starting point ‘pointl’"and a end point ‘point2’; seed size’
refers ta

the element size I'Z‘." the mesh, which is wsed as g folerance value _Irl'.l." the .".l(.l!.lfi!'fl"l:'_J box

tol = seed_size /2

x1, v1, z1 = pointl

x2,y2, 22 = point2

n = part.nodes

nodes = n.getByBoundingBox(x1 - tol, y1 - tol, 21 - tol, x2 + tal, y2 + tol, 22 + tol)

part.5etinodes=nodes, name=set_name)

108 MODULE
def create_job_upsetting_explicit{model_name, job_name, nr_cpu):
nr_cpu = number of CPUs
explicit upsetting
creotes o job named job_nome' for the upsetting madel named ‘model_name’; poralielization is
used, full precision
mdb.models[model_name]. rootAssembly.regenerate()
mdb. Job{namesjob_name, model=model_name, description=", type=ANALYSIS, atTime=None,
waitPinutes=0, waitHours=0,
queue=Mone, memory=20, memoryUnits=PERCENTAGE, explicitPrecision=00UBLE_PLUS PACEK,
nodalQutputPrecision=FULL, echoPrint=0FF, modelPrint=0FF, contactPrint=0FF, historyPrint=
OFF,
usersubroutine=", scratch=", resultsFormat=00D8, parallelizationfMethodExplicit=DOMAIN,
numDomains=nr_cpu,
activateLoadBalancing=False, multiprocessingMode=DEFAULT, numCpus=nr_cpu)

def create_job_upsetting(model_name, job_name, nr_cpu):
nr_cpu = number of CPLUs
implicit upsetting
creates o job named job_nome' for the upsetting madel named ‘model_name’;
mdb.models[model_name].rootAssembly. regenarate()
mdb.Jobinames=job_name, medel=model_name, description=", type=ANALYSIS, atTime=None,
waithMinutes=0, waltHours=0,
queue=None, memaory=20, memoryUnits=PERCENTAGE, getMemoryFromAnalysis=True,
explicitPrecision=5INGLE,
nodalOutputPrecision=3INGLE, echoPrint=0FF, modelPrint=0FF, contactPrint=0FF, historyPrint=
OFF,
usersubroutine=", scratch=", resultsFormat=00D8, multiprocessingMode=DEFAULT, numCpus=
nr_cpu,
numbDomains=nr_cpu, numaPUs=0)

137

Appendix

B75
B7G
677
678

679

BE0

BE1

GE2
B83
(1.5
B85
GEG

GE7
GEE
()
S0
691
@92
693

694
695
(5]
Ba7
58
699

o0
ol
o2
703
104
705

def create_job_heat_transferimodel_name, job_name, nr_cpu);
creates o job named Job_nome' for o heat tronsfer model named 'model_name’
#nr cpu = number of CPLs
mdb.Jobiname=job_name, model=model_name, description=", type=AMNALYSIS, atTime=None,
waitMinutes=0, waitHours=0,
queue=None, memaory=20, memoryUnits=PERCENTAGE, gethMemaryFromanalysis=True,
explicitPrecision=5INGLE,
nodalQutputPrecision=5INGLE, echoPrint=0FF, modelPrint=0FF, contactPrint=0FF, historyPrint=
OFF,
userSubroutine=", scratch=", resultsFormat=0DB, multiprocessingMaode=DEFALLT, numCpus=
nr_cpu,
numbDomains=nr_cpu, numGPUs=0)

def submit_job{job_name, result_path):

submits the job named Jjob_nome' and woits for the completion of the job, the working directory is
changed to

‘result_path'and all the files are saved in this directary

os.chdirjresult_path)

mdb.jobs(job_name].submit{consistencyChecking=0FF)

def wait_for_jobljob_name):

submits the job named job_name' and waits for the completion of the job; the working directory is
changed to

‘result_path'and all the files are saved in this directary

mdb.jobs(job_name] waitForCompletion()

def write_input{job_name, result_path):

writes the input file for the job named 'job_name': the working directory is changed to ‘result_path
"the input

file is saved in this directory

os.chdir{result_path)

mdb.jobs[job_name].writelnput()

138

Appendix

Appendix L: Documentation of experiments

Experiment 1

Setting: s1,dy = 10 mm, hy = 15mm, Tr = 300°C, t, =4 s, Ah = 5mm

Measurement | hy[mm] | hy[mm] | Cracks Measurement | hy[mm] | hy[mm] | Cracks
TestNr_4 14.81 10.00 TestNr_10 15.03 10.00
TestNr_8 15.13 10.16 TestNr_11 15.11 10.16
TestNr_9 14.78 9.79 TestNr_12 15.02 9.79
Setting: s2,dy = 10 mm, hy = 15mm, Tr = 300°C, t; = 4 s, Ah =8 mm
Measurement | hy[mm] | hy[mm] | Cracks | Measurement | hy[mm] | hy[mm] | Cracks
TestNr_13 14.80 7.17 X TestNr_16 15.04 7.54 X
TestNr_14 15.14 7.42 X TestNr_17 14.99 7.52 X
TestNr_15 14.98 7.55 X TestNr_18 * 14.85 7.55 X
Setting: s3, dy = 20 mm, hy = 30 mm, Tr = 300°C, t; =45, Ah =15mm
Measurement | hy[mm] | hy[mm] | Cracks | Measurement | hy[mm] | hy[mm] | Cracks
TestNr_19 30.80 15.34 TestNr_22 30.09 15.35
TestNr_20 30.09 15.40 X TestNr_23 30.08 15.42
TestNr_21 30.07 15.40 TestNr_24 30.13 15.34 X
Setting: s4, dy = 20 mm, hy = 30 mm, Tr = 300°C, t; =75, Ah = 20 mm
Measurement | hy[mm] | hy[mm] | Cracks | Measurement | hy[mm] | hy[mm] | Cracks
TestNr_31 30.11 10.56 TestNr_32 30.40 10.71
TestNr_26 30.12 10.82 X TestNr_29 30.08 10.63
TestNr_27 30.03 10.70 TestNr_30 30.15 10.67 X
Setting: s5,dy = 10 mm, hy = 15mm, Tr = 500°C, t; =7 s, Ah = 5mm
Measurement | hy[mm] | hy[mm] | Cracks | Measurement | hy[mm] | hy[mm] | Cracks
TestNr_33 15.18 9.81 TestNr_36 15.18 9.77
TestNr_34 14.88 9.57 TestNr_37 15.18 9.58
TestNr_35 15.12 9.70 TestNr_38 15.16 9.67
Setting: s6, dy = 10 mm, hy = 15mm, Tr = 500°C, t; =4 s, Ah = 8 mm
Measurement | hy[mm] | hy[mm] | Cracks | Measurement | hy[mm] | hy[mm] | Cracks
TestNr_39 15.19 6.99 TestNr_42 15.06 6.97
TestNr_40 15.01 6.92 TestNr_43 15.18 6.83
TestNr_41 15.03 7.00 TestNr_44 15.16 6.86
Setting: s7,dy = 20 mm, hy = 30 mm, T = 500°C, t, =7 s,4h = 15mm
Measurement | hg[mm] | hy[mm] | Cracks | Measurement | ho[mm] | hy[mm] | Cracks
TestNr_45 30.10 14.84 TestNr_48 30.04 14.95 X
TestNr_46 30.06 14.83 X TestNr_49 30.00 14.79 X
TestNr_47 30.42 15.02 X TestNr_50 30.01 14.71 X
Setting: 8, dy = 20 mm, hy = 30 mm, Tr = 500°C, t; =4 s, 4h = 20 mm
Measurement | hg[mm] | hy[mm] | Cracks | Measurement | ho[mm] | hy[mm] | Cracks
TestNr_51 30.00 10.20 TestNr_54 30.14 10.24
TestNr_52 29.20 10.04 TestNr_55 30.00 10.18
TestNr_53 30.04 10.23 X TestNr_56 30.20 10.15 X

* Not valid; excluded
Visible cracks, that occurred during the test, are marked with X.

139

Appendix

Experiment 2

Setting: s1, dy = 10 mm, hy = 15 mm, T = 300 °C,

t; =4s,Ah=5mm

Measurement | hy[mm] | hy[mm] | Cracks Measurement | hy[mm] | hy[mm] | Cracks
TestNr_12 14.87 9.61 TestNr_14 15.02 9.48
TestNr_13 14.98 9.47 TestNr_15 14.95 9.46
Setting: s2,dy = 10 mm, hy = 15mm, Tr = 300°C, t, =7 s, Ah = 5mm
Measurement | hy[mm] | hy[mm] | Cracks | Measurement | hy[mm] | hy[mm] | Cracks
TestNr_16 14.75 9.40 TestNr_18 15.05 9.39
TestNr_17 14.93 9.58 TestNr_19 14.81 9.48
Setting: s3,dy = 10 mm, hy = 15mm, Tr = 400°C, t, = 4 s, Ah = 5mm
Measurement | hy[mm] | hy[mm] | Cracks | Measurement | hy[mm] | hy[mm] | Cracks
TestNr_20 15.13 9.27 TestNr_22 14.98 9.28
TestNr_21 15.13 9.52 TestNr_23 14.95 9.47
Setting: s4,dy = 10 mm, hy = 15mm, Tr = 400°C, t, = 7 s, Ah = 5mm
Measurement | ho[mm] | hy[mm] | Cracks | Measurement | hy[mm] | hy[mm] | Cracks
TestNr_24 15.09 9.46 TestNr_26 15.05 9.38
TestNr_25 14.95 9.43 TestNr_27 15.02 9.44
Setting: s5,dy = 10 mm, hy = 15mm, Tr = 500°C, t; =4 s, Ah = 5mm
Measurement | hy[mm] | hy[mm] | Cracks | Measurement | hy[mm] | hy[mm] | Cracks
TestNr_28 14.96 9.46 TestNr_30 15.04 9.29
TestNr_29 14.95 9.37 TestNr_31 15.16 9.25
Setting: s6, dy = 10 mm, hy = 15mm, Tr = 500°C, t, = 7 s, Ah = 5mm
Measurement | hy[mm] | hy[mm] | Cracks | Measurement | hy[mm] | hy[mm] | Cracks
TestNr_32 14.88 9.28 TestNr_34 15.01 9.40
TestNr_33 15.08 9.41 TestNr_35 14.96 9.28

Visible cracks, that occurred during the test, are marked with X.

140

	Titelblatt_MA
	Eidesstattliche_Erklaerung_Waiguny
	Master_thesis_Waiguny_Corinna_ohne_Titelblatt_neu_korrigiert_final

