
Topologische Eigenschaften
von Tiles

Dissertation1
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Chapter 1

Introduction

The term “fractal” was introduced by Mandelbrot in 1975 in his book Les Objets fractals: forme,
hasard et dimension [49]. However, the space-filling curves described by Peano and Hilbert
(see [25, 56]) in the late XIX-th century may be considered as the first fractals constructed by
mathematicians. The purpose was to find a curve which fills in the unit square. Since such curves
exist, this indicates that the intuitive notion of dimension (curve = 1, plane = 2 ) is not always
the right one. These curves have an infinite length and are in some sense everywhere irregular,
which is part of the notion of fractal. The word fractal has in fact no exact definition, it has even
no well-defined gender when used as a noun in French, but it usually refers to objects that present
similarities at every level of magnification, like coastlines, snow flakes, clouds, Romanesco broccoli.

A “tessellation” or “tiling” is a collection of patterns that fill the space without overlaps or
gaps. Tessellations inspired many artists and decorate lots of places. The patterns (or “tiles”)
may be all different, but most of the time there is a finite number of shapes, that fit well to-
gether. Maurits Cornelis Escher drew for example a tiling of the plane by horses, putting the
horses alternatively standing and upside down such that the legs imbricate. Escher also figurated
a tessellation of the circle by black bats and white angels (see Figure 1.1). The painting is called
Circle limit IV : the shapes get smaller and smaller when approaching the boundary of the circle.

Figure 1.1: Circle Limit IV, M.C. Escher.

Both notions of fractal and tessellation can be combined by considering tessellations of the
space by fractal patterns. The “miracle” here is that despite their fractal boundary, the tiles still
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fit together to provide a tessellation.

The purpose of this thesis is the investigation of the topology of fractal tiles giving rise to
a tessellation. Although tiles in n-dimensional spaces will be defined, the topological study will
mainly concern plane tiles. By topological study of a tile we then mainly mean: is the tile con-
nected? Is it homeomorphic to a closed disk? If not, what can be said about its fundamental
group? Can we describe the connected components of its interior? The tilings will be generated
by a single shape. We will consider the general class of crystallographic tiles, where the tilings
can involve not only translations but other isometric transformations, like rotations or reflections
of the tiles. The research in this general setting started quite recently, thus we will only deal with
the question of homeomorphy to a closed disk. Afterwards, we will concentrate on lattice tilings,
which allow only translations of the tiles. This more rigid case has already been much more investi-
gated, we will push forward the study of a special class of lattice tilings related to number systems.

Part of the results of this thesis were presented in the Fractal Workshop of Hangzhou in Septem-
ber 2006 and at the Journées de numération in Graz in April 2007. All results are either accepted
for publication in international journals and reviews (cf. [41, 43, 44, 45]) or under submission
(cf. [42]).
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Chapter 2

Basic notions

The fractal sets described in the present PhD thesis are attractors of certain iterated function
systems. Moreover, isometric copies of these sets will tile the plane with no overlap or gap. In
this chapter, we recall the basic facts on iterative constructions of fractal sets and introduce the
particular kind of tilings of the space we are going to consider, the so-called crystallographic tilings.

2.1 Fractal sets

If not mentioned otherwise, the definitions and results below can be found in [17, 18].

2.1.1 Hausdorff metric

Let (X, d) be a metric space and A,B ⊂ X non-empty subsets of X . We define a distance between
A and B by:

d(A,B) = inf{d(x, y);x ∈ A, y ∈ B},
and write d(x,A) instead of d({x}, A) if x ∈ X . d is not a metric on Ω(X) \ {∅} (for example,
from d(A,B) = 0 it does not follow that A = B). To get around the problem, let

e(A,B) = sup{d(x,B);x ∈ A}

be the excess of A over B. This supremum may be infinite for certain choices of A and B. One
can then evaluate how far A and B are from each other by taking the maximum of both excesses
e(A,B) and e(B,A), as stated in a more formal way in the following definition.

Definition 2.1.1 (Hausdorff distance). If A,B are two non-empty subsets of a metric space
(X, d), the Hausdorff distance between A and B is

h(A,B) = max{sup{inf{d(x, y); y ∈ B};x ∈ A}, sup{inf{d(x, y); y ∈ A};x ∈ B}}.

Now, from h(A,B) = 0 follows that A = B.

Notation 2.1.2. We denote by K(X) the set of non-empty compact subsets of X .

Proposition 2.1.3 (Hausdorff metric). (K(X), h) is a metric space, and h is called Hausdorff
metric associated to d. Moreover, (K(X), h) is complete iff (X, d) is.

An equivalent definition for the Hausdorff distance reads as follows.

Definition 2.1.4 (η-distance). Let A ⊂ X be non-empty and δ > 0. The δ-neighborhood of A is
the set

Aδ = {y ∈ X ; ∃x ∈ A, d(x, y) ≤ δ}.
The η-distance between A and B is

η(A,B) = inf{δ > 0; A ⊂ Bδ, B ⊂ Aδ}.
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Proposition 2.1.5. For all A,B ⊂ X non-empty, we have:

η(A,B) = h(A,B).

2.1.2 Iterated function systems

Let (X, d) be a metric space.

Definition 2.1.6 (Isometry, similarity, contraction). A mapping f : X → X is

(i) a similarity on X iff there is a r ≥ 0 such that for all x, y ∈ X , d(f(x), f(y)) = r d(x, y).
The number r is called the similarity ratio of f .

(ii) an isometry on X iff it is a similarity of ratio r = 1.

(iii) a contraction on X iff there is r ∈ [0, 1) such that for all x, y ∈ X , d(f(x), f(y)) ≤ r d(x, y).
The minimal r with this property is called the contraction ratio of f .

As an example, we recall the following result of Beckmann and Quarles (see [9]).

Proposition 2.1.7. Let X = Rn and d be the Euclidean metric. Assume that f : Rn → Rn

satisfies the following property.

∃ c > 0, ∀ x, y ∈ Rn, d(x, y) = c ⇒ d(f(x), f(y)) = c.

Then there is an orthogonal n× n-matrix A and a vector b ∈ Rn, such that f(x) = Ax+ b for all
x ∈ Rn.

Consequently, the similarities on the Euclidean space are the mappings f(x) = rAx+ b where
r ∈ [0, 1), A is an orthogonal matrix and b ∈ Rn.

An easy construction of fractals results from iterated application of contractions to a given
compact set. It uses the Banach fixed point theorem, that appeared in Stefan Banach’s PhD
thesis in 1920. Let us write a version of this theorem with weakened hypotheses.

Proposition 2.1.8 (Weak contraction mapping theorem). Let (X, d) be a complete metric space
and f : X → X be a mapping such that some iterate fp is a contraction on X. Then f has
a unique fixed point in X. For any x0 ∈ X, the sequence of iterates x0, f(x0), f(f(x0)), . . .
converges to the fixed point of f .

Thus for p = 1 the above proposition is the usual Banach fixed point theorem.

Definition 2.1.9 (IFS). A finite collection (fi)1≤i≤m (m ∈ N) of contractions on X is called
iterated function system (IFS) on X .

Proposition 2.1.10. Let n ∈ N and (fi)1≤i≤m an IFS, ri the associated contraction ratios. Then
the map

F : K(X) → K(X)
M �→

⋃m
i=1 fi(M)

is a contraction on K(X), with contraction ratio r = max1≤i≤m{ri} (with respect to h, the Haus-
dorff metric associated to d).

We deduce from Propositions 2.1.8 and 2.1.10 the following fixed point theorem.

Theorem 2.1.11. Suppose (X, d) is complete. Let (fi)1≤i≤m be an IFS on X. Then there exists
a unique non-empty compact set E ⊂ X satisfying

E =
m⋃

i=1

fi(E).

Moreover, let the map F be defined on K(X) by F (M) =
⋃m

i=1 fi(M). Then for all non-empty
compact set A ⊂ X, the sequence of iterates (F k(A))k∈N converges to E in the Hausdorff metric
associated to d.
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Definition 2.1.12 (Attractor of an IFS). With the notations of the above theorem, the set E is
called the attractor of the IFS (fi)1≤i≤m.

Theorem 2.1.11 thus gives an iterative construction of the attractor of an IFS. One can for
example start from a set {x0} containing one point and iterate the IFS. If x0 is chosen in the
attractor E, then the constructed approximations are subsets of the attractor.

Remark 2.1.13. The weak version of the contraction mapping theorem (Proposition 2.1.8) allows
to define the attractor of an “almost IFS”. Indeed, if the (fi)1≤i≤m are mappings from X into
itself, it is sufficient for the existence and unicity of the fixed point that the associated function
F : K(X)→ K(X) with F (M) =

⋃m
i=1 fi(M) has some contracting iterate F p.

Definition 2.1.14 (Self-affine, self-similar set). Let (X, d) be a complete metric space. A non-
empty compact set E ⊂ X is self-affine if it is the attractor of an IFS (fi)1≤i≤m of affine trans-
formations. It is self-similar if it is the attractor of an IFS (fi)1≤i≤m of similarities.

Eventually, we mention the open set condition and its consequence.

Definition 2.1.15 (Open set condition). Let (fi)1≤i≤m be mappings on (X,d). Then (fi)1≤i≤m

satisfy the open set condition (OSC) if there is an open set V such that the sets fi(V ) (1 ≤ i ≤ m)
are pairwise disjoint subsets of V .

Proposition 2.1.16. If an IFS (fi)1≤i≤m on a complete metric space satisfies the open set con-
dition, the subpieces fi(E) (1 ≤ i ≤ m) of its attractor E are pairwise non-overlapping.

2.1.3 Systems of graph directed sets

Graph directed sets generalize the preceding notion of attractor.

Definition 2.1.17 (Graph directed IFS). A geometric graph directed construction of Rn consists
of

(1) finitely many compact subsets J1, . . . , Jq of Rn such that each Ji has nonempty interior;

(2) a directed graph G(V,E) with set of vertices V = {1, . . . , q} and to each edge e ∈ E a
contraction Te having the following properties:

a) Each vertex has outgoing edges.

b) Let Eij be the set of edges leading from i to j. Then
⋃

j{Te(Jj); e ∈ Eij} is a non-
overlapping family and

Ji ⊃
⋃
j

{Te(Jj); e ∈ Eij} (i ∈ {1, . . . , q}). (2.1.1)

A very similar definition can be found in Mauldin and Williams [50] (see also [8] and [18]).
Despite the definition of geometric graph directed construction in [50] is more restrictive in some
regards the following result is still valid with the same proof.

Proposition 2.1.18 ([50, Theorem 1]). Given a geometric graph directed construction of Rn as
in the preceding definition, there exists a unique vector (K1, . . . ,Kq) of compact subsets of Rn such
that for each i ∈ {1, . . . , q}

Ki =
⋃
j

{Te(Kj); e ∈ Eij} (2.1.2)

holds.

Definition 2.1.19 (Self-similar, self-affine systems of graph directed sets). With the notations of
Proposition 2.1.18, (K1, . . .Kq) is called a system of graph directed sets. If the Te are affinities the
system is called self-affine GIFS, if they are similarities, it is called self-similar GIFS.
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2.2 Crystallographic tilings

2.2.1 Tilings

The definitions and facts of this subsection may be found in Grünbaum and Shephard’ book Tilings
and patterns [22]. We adopt the following notation.

Notation 2.2.1. For a set M in a topological space, the interior of M will be denoted by int(M)
(or sometimes shortly by Mo).

Definition 2.2.2 (Tiling, tile). A tiling of Rn is a family {Ti; i ∈ I} such that:

(i) Ti = int(Ti) for all i ∈ I,

(ii) Rn =
⋃

i∈I Ti,

(iii) int(Ti) ∩ int(Tj) = ∅ for i �= j with i, j ∈ I.

A non-empty compact set which coincides with the closure of its interior, as in (i), is called a tile.

Hence, a tile is a regular-closed subset of Rn, and a tiling is a family of tiles covering Rn

without overlaps or gaps. By Item (iii) of the preceding definition, the pieces of a tiling can only
intersect at their boundary.
In this general definition, the tiles may concentrate in small regions of the tiling. To avoid this,
we deal with locally finite tilings.

Definition 2.2.3 (Locally finite tiling). A tiling {Ti; i ∈ I} is locally finite if each bounded set
intersects only a finite number of sets Ti.

Definition 2.2.4 (Prototile). If all the tiles of a tiling are congruent to a single tile T , then T is
called a prototile of the tiling (congruent to T means that it is the image of T by some isometry).

In this thesis, we will be concerned by locally finite tilings using a single prototile T . In this
case, there is a discrete family Γ of isometries such that {γ(T ); γ ∈ Γ} is a tiling of Rn, and we
say that T tiles Rn by Γ.

2.2.2 Crystallographic groups

Definition 2.2.5 (Cocompact subgroup, fundamental domain). A discrete subgroup Γ of the
group of isometries Isom(Rn) on Rn is cocompact if there is a compact set K, such that {γ(K); γ ∈
Γ} is a tiling of Rn. Such a K is then called a fundamental domain of Γ.

Notation 2.2.6. We denote by Isom(Rn) the group of all isometries on Rn with respect to a
metric d, and by id the identity mapping of Rn.

Definition 2.2.7 (Crystallographic group). A crystallographic group in dimension n is a discrete
cocompact subgroup Γ of Isom(Rn).

A crystallographic group is nothing else but the symmetry group of a crystal.

Theorem 2.2.8 (Theorem of Bieberbach [11]). A subgroup Γ of Isom(Rn) is a crystallographic
group in dimension n if and only if there is a normal subgroup Λ ⊂ Γ with finite index, which is
isomorphic to Zn, and which is a maximal abelian subgroup in Γ.

Definition 2.2.9 (Lattice, point group). With the notations of Theorem 2.2.8, the group Λ is
called the lattice of Γ, and the quotient Γ/Λ of the crystallographic group by its lattice is called
the point group of Γ.
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p2-pavement. p2-prototile.

Figure 2.1: The pavement of Leoben’s main train station: a p2-tiling.

In the plane, there are seventeen isomorphy classes of crystallographic groups. For example, a
p2-group is a group generated by two independent translations and one π-rotation (thus its point
group has one non trivial element).

Definition 2.2.10 (p2-group). Let u(x, y) = (x + 1, y), v(x, y) = (x, y + 1), r(x, y) = (−x,−y).
Then a p2-group is a group of isometries of R2 isomorphic to the subgroup of Isom(R2) generated
by the translations u, v and the π-rotation r.

Similarly, a p3-group is a group generated by two independent translations and a 2π/3−rotation:
the point group has two non-trivial elements. A pm-group is generated by two perpendicular trans-
lations and a reflection along one of the translation vectors.

2.2.3 Crystallographic tilings

Definition 2.2.11 (Crystallographic tiling, crystallographic tile, central tile). If Γ is a crys-
tallographic group, T a tile and {γ(T ); γ ∈ Γ} a tiling of Rn, then {γ(T ); γ ∈ Γ} is called a
crystallographic tiling of Rn. A crystallographic tile is any tile belonging to a crystallographic
tiling. T is called the central tile of the tiling. We call the corresponding tilings Γ-tilings, and the
tiles in the tiling are Γ-tiles.

In fact, by a slight abuse of notation, if for example Γ is a p2-group, we will call the tiling a
p2-tiling, and similarly for the tiles. An example of p2-tiling can be seen in Figure 2.1. We also
mention that another term for crystallographic tiling is isohedral tiling (see [22]).

The crystallographic groups offer the minimal requirement for the study of reasonable tiles.
Indeed, the discreteness of the group is a necessary condition for the tiling to be locally finite, and
its cocompactness for the tiles to be compact.

Remark 2.2.12. In the special case where Γ is isomorphic to Zn, or in other words, where Γ has
trivial point group, the collection {γ(T ); γ ∈ Γ} is a said to be a lattice tiling of Rn. One then
often says that T tiles the space by “its translates”: there are n independent translation vectors
t1, . . . , tn ∈ Rn such that the family {T + k1t1 + . . .+ kntn; k1, . . . , kn ∈ Z} is a tiling of Rn.

Definition 2.2.13 (Neighbors). Let T ′ be a tile of a crystallographic tiling {γ(T ), γ ∈ Γ}, where
Γ is a crystallographic group and T the central tile. The set of neighbors of T ′ is defined by

S(T ′) := {γ ∈ Γ \ {id};T ′ ∩ γ(T ′) �= ∅}. (2.2.1)
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Hence, a neighbor of the tile T ′ is in fact an isometry γ ∈ Γ \ {id} such that γ(T ′) intersects
T ′.

Lemma 2.2.14. S(T ′) defined above is a finite set.

Proof. This is because the tiling is locally finite (recall that Γ is discrete and T ′ is compact).

Among the possible neighbors of a tile, we mark out the following ones.

Definition 2.2.15 (Vertex and adjacent neighbors). Let T ′ be a tile of a crystallographic tiling
{γ(T ), γ ∈ Γ}, where Γ is a crystallographic group and T the central tile. An element γ ∈ S(T ′)
is called

• vertex neighbor of T ′ if T ′ ∩ γ(T ′) = {x} for some x ∈ Rn;

• adjacent neighbor of T ′ if T ′ ∩ γ(T ′) contains a point of int(T ′ ∪ γ(T ′)).

The set of adjacent neighbors of T ′ is denoted by A(T ′).

For the composition of mappings, we adopt the following notations.

Notation 2.2.16. If m1,m2 are two mappings, we write m1◦m2 or shortlym1m2 for the mapping
x �→ m1(m2(x)). For iterative compositions

m1m1 · · ·m1︸ ︷︷ ︸
p times

,

we rather write mp
1. If M1 and M2 are sets of mappings, then M1M2 stands for {m1m2;m1 ∈

M1,m2 ∈M2}. Mp
1 means

M1M1 · · ·M1︸ ︷︷ ︸
p times

.

If M1 happens to contain only one mapping m1, we will write m1M2 for {m1}M2. An analogous
notation is used if M2 contains one element. Eventually, if the elements of M1 are invertible, M−1

1

stands for {m−1
1 ;m1 ∈M1}.

Remark 2.2.17. We have the simple relations, writing T ′ = γ′(T ) for some γ′ ∈ Γ:

S(γ′(T )) = γ′S(T ),
A(γ′(T )) = γ′A(T ).

Notation 2.2.18. The above remark invites us to write simply S for the set of neighbors of the
central tile T , and A for the set of its adjacent neighbors.

The configuration of the tiles in the tiling can be visualized with the help of graphs. We recall
some notions and definitions related to non-directed and non-labelled graphs. We refer to [15] for
more precisions.

Definition 2.2.19 (Graph; vertex or state, edge; incident and end vertices; subgraph and induced
subgraph). A graph is a pair G = (V,E) of sets such that E is a set of 2-subsets of V , with V and
E finite or infinite; thus, the elements of E are of the form {x, y} with x, y ∈ V . The elements of
V are called vertices or states of the graph G, the elements of E are called edges. Two vertices are
incident if they constitute an edge. The two vertices incident with an edge are its end vertices or
ends, and an edge joins its ends. An edge {x, y} is usually written as xy (or yx). A subgraph of G
is a graph (V ′, E′) with V ′ ⊂ V and E′ ⊂ E. Eventually, if V ′ ⊂ V , the subgraph of G induced by
V ′ is the graph G′ = (V ′, E′) with vertex set V ′ and edges the elements of V that are 2-subsets
of V ′.

The usual way to draw a graph is by drawing a dot for each vertex and joining two of these
dots by a line if the corresponding two vertices form an edge.

15



Definition 2.2.20 (Planar graph). If one can draw a graph G in the plane in a way that no two
edges meet in a point other than a common end, G is planar.

Notation 2.2.21. Let {γ(T ); γ ∈ Γ} be a crystallographic tiling, where Γ is a crystallographic
group, T the central tile and S the set of neighbors of the central tile. For γ ∈ S, we write

Bγ = T ∩ γ(T ).

Definition 2.2.22 (Neighbor graph, adjacency graph and double neighboring graph). For a finite
symmetric set M ⊂ Γ, we define G(M) as the graph with vertex set Γ and for which a 2-element
set {γ1, γ2} ⊂ Γ is an edge whenever γ−1

1 γ2 ∈ M . For the particular choice M = S, GN := G(S)
is the neighbor graph, and for M = A, GA := G(A) is the adjacency graph of the tiling. If A′ ⊂ A,
we will write GA(A′) := G(A′) the corresponding subgraph of GA.
The double neighboring graph G2 is the one having {γ (Bγ′) ; γ ∈ Γ, γ′ ∈ A} as set of states and
in which two distinct elements γ1

(
Bγ′

1

)
and γ2

(
Bγ′

2

)
are incident whenever they intersect each

other.

Note that the neighbor graph and the adjacency graph are variants of Cayley graphs (see for
example [24]).

Definition 2.2.23 (Regular graph, degree of a graph). A graph G is regular if each vertex is
incident with the same number of edges, called the degree of the graph.

A consequence of Remark 2.2.17 is the following lemma.

Lemma 2.2.24. GN and GA as in Definition 2.2.22 are regular graphs by the group property of
Γ.

The tiling property of Definition 2.2.11 leads to the following remark.

Remark 2.2.25.

1. The neighbor graph GN is always connected; otherwise, choose a component of GN with
vertex set V0, then

⋃
γ∈V0

γ(T ) would be a subset of Rn which is both closed and open,
contradicting the connectivity of Rn.

2. The neighbor set S of T is a symmetric generating set of Γ (i.e., Γ = 〈S〉) and γ ∈ S if and
only if γ−1 ∈ S. If Γ is a lattice, then #S, the cardinality of S, is an even number, at least
2n.
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Chapter 3

Crystallographic tiles

The present chapter is devoted to the study of self-affine tiles providing a crystallographic tiling
of Rn (see Definitions 2.1.14 and 2.2.11). The self-affinity of such a tile occurs in the following
way: there is an affine expansion that blows up the tile onto k of its isometric copies for some
k ∈ N. Hence, it is called crystallographic replicating tile, or crystallographic reptile for short,
even crystile for very short. Gelbrich [19] introduced these tiles in 1994. He proved that for each
k there are only finitely many isomorphy classes of plane crystiles which are homeomorphic to a
closed disk (disk-like). He gave all candidates of disk-like crystiles for k = 3 in the case that the
crystallographic group is p2 but could not decide whether these are really disk-like or not.

We will first give the exact definition of a crystile and present some general properties. Since
it turns out that the topology of a crystile is closely related to the configuration of its neighboring
tiles in the tiling, we will give an algorithm to compute the set of neighbors. Several criteria of
homeomorphy to a closed disk will then be proved. The first one will be stated for crystallographic
tiles in general. The next two criteria will concern crystallographic reptiles. The last criterion will
handle two special classes of crystiles: the lattice and the p2-crystiles. Throughout this chapter, a
norm || · || on Rn and its associated metric d are fixed. We refer to Appendix A for the definitions
and facts of plane topology.

3.1 Crystiles: definitions and example

Crystiles are compact sets mapped onto a finite union of their isometric copies by an expanding
mapping. In this section, we give some definitions and an example of these fractal sets.

Definition 3.1.1 (Expanding affine mapping). A mapping g : Rn → Rn is expanding affine if
g(x) = Ax+ t for all x ∈ Rn, where t ∈ Rn and A is an n× n expanding matrix with real entries,
i.e., its eigenvalues all have modulus greater than 1. Hence, the vector t is the translation part,
the matrix A the linear part of g.

Let Γ be a crystallographic group.

Notation 3.1.2. Let γ be an isometry in Γ. We denote by Aγ its linear part and by tγ its
translation part. Hence for all x ∈ Rn, γ(x) = Aγx+ tγ .

Definition 3.1.3 (Crystallographic reptile, cf. [19]). A crystallographic reptile with respect to Γ
is a set T ⊂ Rn with the following properties.

• The family {γ(T ); γ ∈ Γ} is a tiling of Rn.

• There is an expanding affine mapping g : Rn → Rn that conjugates Γ onto a subgroup, i.e.,
gΓg−1 ≤ Γ, and a finite collection D ⊂ Γ, called set of digits, such that

g(T ) =
⋃
δ∈D

δ(T ). (3.1.1)
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Figure 3.1: p2-crystile with its neighboring tiles.

T is the crystallographic reptile with respect to (Γ,D, g).

We will call a crystallographic reptile also simply a crystile, and the tiles associated to the
digits (δ(T ), δ ∈ D) in the above definition, digit tiles.

From the replicating property (3.1.1), we deduce some compatibility relations between the
expansion g and the digit set D. Since g(T ) is the union of non-overlapping copies of T , its
volume is exactly |D| times the volume of T , hence |D| = |detA|. However, this is not the only
restriction. Indeed, the tiling property and the replicating property iterated once imply that⋃

γ∈Γ

γ(T ) = Rn = g(Rn) =
⋃
γ∈Γ

gγg−1
⋃
δ∈D

δ(T ),

hence Γ = gΓg−1Γ D and D must be a complete set of right coset representatives of Γ/gΓg−1

(see [19]).

Example 3.1.4. We give an example of a plane p2-crystile, which will be studied in Subsec-
tion 3.3.4.

Take the map g defined by

g(x, y) =
(
y,−3x− 1

2

)
and the digit set

D = {id, b, c},

where b(x, y) = (x, y + 1) and c(x, y) = (−x,−y). The set T fulfilling

g(T ) = T ∪ b(T ) ∪ c(T )

is then a crystile. The requirement gΓg−1 ⊂ Γ (see Definition 3.1.3) is fulfilled because

gag−1 = b−3, gbg−1 = a, gcg−1 = b−1c.

T induces a tiling, as can be seen on Figure 3.1.
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Remark 3.1.5.

1. Without loss of generality, one can assume that the digit set D contains id (see [19]).

2. By definition, the expanded shape g(T ) is the union of δ(T ) with δ running through the
set D. Thus for each γ ∈ Γ, there is a uniquely determined collection Dγ ⊂ Γ such that
gγ(T ) is the union of all the tiles δ(T ) with δ running through Dγ ; more precisely, we have
Dγ = gγg−1D.

Equivalent to the replicating property is the subdivision principle

T =
⋃
δ∈D

g−1δ(T ). (3.1.2)

Remark 3.1.6. Iterating the subdivision principle, one gets that, for each m, a crystile T is the
union of its (non-overlapping) subpieces

{
g−1δ1 . . . g

−1δm(T ); δ1, . . . , δm ∈ D
}
.

Definition 3.1.7 (Subpiece of level m). For a crystile T with respect to (Γ,D, g) and an integer
m, a subpiece of level m is any

g−1δ1 . . . g
−1δm(T ),

where δ1, . . . , δm ∈ D.

The functions g−1δ are affine mappings. Nevertheless, crystiles need not be self-affine in the
sense of Definition 2.1.14. The g−1δ contract the volumes, because the eigenvalues of their linear
part are smaller than 1, but they may not contract the distances. However, even if the mapping
F (M) =

⋃
δ∈D g

−1δ(M) is not a contraction, one of its iterates will be. Hence, a crystile is a
self-affine attractor in the sense of Remark 2.1.13.

Proposition 3.1.8. With the notations of Definition 3.1.3, the mapping F (M) =
⋃

δ∈D g
−1δ(M)

becomes contracting after finitely many iterations: there is an m ≥ 1 such that Fm is a contraction
on K(Rn).

Proof. It suffices to show that there is an m for which g−1δ1 . . . g
−1δm is a contraction on Rn for

every family (δi)1≤i≤m of digits. Then Fm will be a contraction on the K(Rn). Thus let p ∈ N

and (δi)1≤i≤p any family of digits. Since gΓg−1 ⊂ Γ, there are some isometries γ1, . . . , γp of Γ
such that

g−1δ1 . . . g
−1δp = g−pγ1 . . . γp.

Since g(x) = Ax+ t, we have for all x, y ∈ Rn that

g−p(x)− g−p(y) = A−p(x− y).

Denoting by ||| · ||| the matrix norm associated to the norm || · ||, and remembering that the γi are
isometries, we have for all x, y ∈ Rn:

||g−1δ1 . . . g
−1δp(x) − g−1δ1 . . . g

−1δp(y)|| ≤ |||A−p||| ||x− y||.
We now just choose p such that |||A−p||| < 1 (which is possible, since A is an expanding matrix)
and set m = p.

Notation 3.1.9. If K is a compact set, we denote by diam(K) the maximal distance between
two points of K.

Remark 3.1.10. It follows from the above computation that for every sequence (δi)i∈N of digits
and every x, y ∈ Rn,

lim
p→∞

||g−1δ1 . . . g
−1δp(x) − g−1δ1 . . . g

−1δp(y)|| = 0. (3.1.3)

We can even say that, if K is a compact set and ε > 0 is given, then there is p ∈ N such that

diam(g−1δ1 . . . g
−1δp(K)) < ε (3.1.4)

for any sequence of digits (δi)1≤i≤p.
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We thus have the following topological property, stated in Hata [23] for self-similar sets.

Proposition 3.1.11 (Hata [23]). Let T be a connected crystile. Then T has property (S) and is
therefore locally connected and arcwise connected.

The above considerations lead to the following representation of a crystile.

Proposition 3.1.12. Let T be a crystile with respect to (Γ,D, g). Let a ∈ Rn. Then

T =
{

lim
m→∞

g−1δ1 . . . g
−1δm(a); (δi)i∈N ∈ DN

}
. (3.1.5)

Proof. Proposition 3.1.8 together with Proposition 2.1.8 indicate that (g,D) gives rise to a unique
compact set T satisfying the subdivision principle (3.1.2) (see also Remark 2.1.13). Let K be the
set on the right side of Equation (3.1.5). Then K is a compact set that also satisfies (3.1.2), hence
K = T by the uniqueness of the attractor.

Definition 3.1.13 (Isomorphic crystiles, cf. [19]). Let T , T ′ be two crystiles with respect to crys-
tallographic groups Γ, Γ′, with expansions g, g′ and digit sets {δ1, . . . , δq}, {δ′1, . . . , δ′q}, respectively.
An affine bijection φ : T → T ′ is said to preserve pieces of level m ∈ N if for each sequence of
indices i1, . . . , im there is a sequence j1, . . . , jm such that φ is a bijection from g−1δi1 . . . g

−1δim(T )
onto g′−1δ′j1 . . . g

′−1δ′jm
(T ). We say that two crystiles T and T ′ are isomorphic iff there is an affine

bijection φ : T → T ′ preserving the pieces of all levels.

3.2 Neighbors of a crystile

The results of this section will be published in the joint article [44] with Jun Luo and Jörg
Thuswaldner. For a crystallographic tiling, we already defined the neighbor graph, the adjacency
graph and the double neighboring graph in Definition 2.2.22. These graphs describe the geometri-
cal configuration of the tiles in the tiling. In addition to these, for a crystile, we introduce graphs
that take the fractal structure into account. They are useful in order to compute algorithmically
the set of neighbors of a crystile.

In the sequel we consider a crystile T with respect to a crystallographic group Γ; g is the
corresponding expanding mapping and D ⊂ Γ the set of digits, which is supposed to contain id,
the identity map of Γ. The set of neighbors of T is denoted by S, the set of its adjacent neighbors
by A, and Bγ stands for T ∩ γ(T ), as in Subsection 2.2.3.

We first introduce the neighborhood graph and the contact graph associated to the crystile
T . We then show how the neighborhood graph can be used to characterize the boundary of the
crystile. We also give properties of the contact graph, and eventually give an algorithm which
allows to compute the neighborhood graph from this graph.

3.2.1 Definition of graphs

As we will show in the next subsection, the set of neighbors S can be computed algorithmically
from the data (Γ, g,D). The construction of the set S will require a set R which is related to the
neighbors of certain approximations of T . It is defined as follows.

Let Q be an n-dimensional polyhedron that is the closure of a fundamental domain of Γ. The
boundary of Q consists of a union of (n− 1)-dimensional faces (parts of hyperplanes of Rn).
We can define R0 as the set of adjacent neighbors of the fundamental domain together with the
identity, i.e.,

R0 := {id} ∪ {γ ∈ Γ; γ(Q) ∩Q is an (n− 1)-dimensional face}
= {id} ∪ {γ ∈ Γ; γ(Q) ∩Q contains an inner point of γ(Q) ∪Q} .
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Starting from this set, we define a sequence (Rp)p≥1 recursively by

Rp := Rp−1 ∪ {γ ∈ Γ; gγg−1 D ∩ D Rp−1 �= ∅}. (3.2.1)

Definition 3.2.1 (Contact set). The contact set of the crystile T is

R =
⋃
p≥0

Rp.

Lemma 3.2.2. The contact set R is finite: Rp eventually stabilizes, i.e., there is a p0 ∈ N such
that Rp = Rp0 for p ≥ p0.

Remark 3.2.3. Lemma 3.2.2 follows from the facts that g is an expanding mapping and that
Γ is a discrete group. An estimate for p0 will be obtained in Remark 3.2.30, at the end of this
section.

Definition 3.2.4 (Neighborhood graph, contact graph). For M ⊆ Γ we define the graph G(M)
as follows. The states of G(M) are the elements of M . Moreover, there is an edge

γ
δ|δ′
−−→ γ′ ∈ G(M)

iff
δ−1 gγg−1 δ′ = γ′ with γ, γ′ ∈M and δ, δ′ ∈ D.

The following special cases are of particular importance:

• The neighborhood graph G(S).

• The contact graph G(R).

3.2.2 Properties of the neighborhood graph

The non-overlapping property yields for the boundary of T that ∂T =
⋃
γ∈S

Bγ . The following

holds for every γ ∈ S.

g(Bγ) = g(T ∩ γ(T )) = g(T ) ∩ gγ(T )
=

⋃
δ∈D δ(T ) ∩

⋃
δ′∈D gγg

−1 δ′(T )
=

⋃
δ,δ′∈D

δ(T ∩ δ−1gγg−1 δ′(T )︸ ︷︷ ︸
Bδ−1 gγg−1 δ′

).

Consequently, we obtain the following set equation for Bγ :

Bγ =
⋃

δ,δ′∈D
g−1δ( Bδ−1 gγg−1 δ′ ) . (3.2.2)

Using the neighborhood graph defined in Definition 3.2.4 and the fact that Bγ′ �= ∅ iff γ′ ∈ S,
the set equation above reduces to

∂T =
⋃
γ∈S

Bγ where Bγ =
⋃

δ∈D,γ′∈S,

∃ δ′∈D, γ
δ|δ′−−→γ′ ∈G(S)

g−1δ(Bγ′) . (3.2.3)

Remark 3.2.5. (Bγ)γ∈S is not always a system of graph directed sets in the strict sense of
Definition 2.1.19, since the mappings g−1δ may not be strict contractions.

Remark 3.2.6. The graph G(S) has the following properties.
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• To given γ, γ′ ∈ S, δ ∈ D, there is at most one δ′ ∈ D with γ
δ|δ′
−−→ γ′ in G(S).

• The graph G(S) is left-resolving, i.e.,

∀ (γ′, δ′) ∈ S × D, ∃! (γ, δ) ∈ S × D : γ
δ|δ′
−−→ γ′ ∈ G(S).

Indeed, if (γ′, δ′) ∈ S × D then there exists exactly one (γ, δ) ∈ Γ × D such that the
equality γ′δ′−1 = δ−1gγg−1 holds. This is true because D is a complete set of right coset
representatives of gΓg−1. Moreover,

T ∩ γ′(T ) �= ∅
⇒ T ∩ δ−1gγg−1δ′(T ) �= ∅
⇒ g−1δ(T )︸ ︷︷ ︸

⊂T

∩ γg−1δ′(T )︸ ︷︷ ︸
⊂γ(T )

�= ∅

⇒ T ∩ γ(T ) �= ∅ .

This implies that γ ∈ S, and by the definition of G(S) we conclude that γ
δ|δ′
−−→ γ′ ∈ G(S).

One can wonder how many tiles of the tiling meet the tile T at a point of the boundary of T .

Definition 3.2.7 (L-vertices). For γ1, . . . , γL ∈ S pairwise different, we call

VL(γ1, . . . , γL) = {x ∈ Rn;x ∈ T ∩ γ1(T ) ∩ . . . ∩ γL(T )}

the set of points (so-called L-vertices) that are common to γ1(T ), . . . , γL(T ) and T , and

VL =
⋃

{γ1,...,γL}⊆S
VL(γ1, . . . , γL)

the set of L-vertices of T .

Note that V1(γ) = Bγ holds.
There are characterizations of these sets using the neighborhood graph. Let us first characterize

a point belonging to two tiles (say w.l.o.g. to the central tile T and one of its neighbors). To this
matter, we recall the following definitions.

Definition 3.2.8 (Walk, length of a walk). A walk in a directed graph G starting from a state γ
of this graph is a sequence of edges

γ
δ|δ′
−−→ γ1

δ1|δ′
1−−−→ γ2

δ2|δ′
2−−−→ . . . .

The number of edges in the walk is called the length of the walk (this can be infinite).

Characterization 3.2.9. Let a ∈ Rn, (δj)j∈N ∈ DN a sequence of digits and γ ∈ S. Then the
following assertions are equivalent.

• x = limm→∞ g−1δ1 . . . g
−1δm(a) ∈ Bγ .

• There is an infinite walk in G(S) of the shape

γ
δ1|δ′

1−−−→ γ1
δ2|δ′

2−−−→ γ2
δ3|δ′

3−−−→ . . . (3.2.4)

for some γj ∈ S and δ′j ∈ D.
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Proof. Suppose that x = limm→∞ g−1δ1 . . . g
−1δm(a) ∈ Bγ , then x has also a representation of

the shape
x = lim

m→∞
γg−1δ′1 . . . g

−1δ′m(a)

for some δ′j ∈ D.
The elements γ1 = δ1

−1gγg−1δ′1, γ2 = δ2
−1gγ1g

−1δ′2, . . . can then successively be shown to belong
to S. Indeed, if γ1 = δ1

−1gγg−1δ′1 then

δ−1
1 g (x) = lim

m→∞
g−1δ2 . . . g

−1δm(a)︸ ︷︷ ︸
∈ T

= lim
m→∞

γ1g
−1δ′2 . . . g

−1δ′m(a)︸ ︷︷ ︸
∈ γ1(T )

,

and similarly for γ2, γ3, . . . The elements γ1, γ2, . . . now yield the required infinite walk in G(S),
by the definition of the edges in this graph.

Conversely, if the infinite walk (3.2.4) in G(S) is given, by the definition of the edges of this
graph the equation

g−1δ1 . . . g
−1δmγm(a) = γg−1δ′1 . . . g

−1δ′m(a)

holds for every m and thus for m → ∞. Similarly to the proof of Proposition 3.1.8, and using
that S is a finite set, one can write

∀m ∈ N, ||g−1δ1 . . . g
−1δmγm (a) − g−1δ1 . . . g

−1δm (a)|| ≤ |||A−m||| max
γ∈S
{||a− γ(a)||},

where A is the linear part of g. A being expanding, |||A−m||| → 0 for m→∞, thus

lim
n→∞

γg−1δ′1 . . . g
−1δ′m (a)︸ ︷︷ ︸

∈ γ(T )

= lim
m→∞

g−1δ1 . . . g
−1δmγm (a) = lim

n→∞
g−1δ1 . . . g

−1δm (a)︸ ︷︷ ︸
∈ T

and we are done.

In a similar way we obtain the following generalization.

Characterization 3.2.10. Let a ∈ Rn and γ01, . . . , γ0L ∈ S pairwise different. Furthermore let
be (δj)j∈N ∈ DN a sequence of digits. Then the following assertions are equivalent.

• x = limm→∞ g−1δ1 . . . g
−1δm(a) ∈ VL(γ01, . . . , γ0L).

• There are L infinite walks in G(S) of the shape

γ0i
δ1|δ1i−−−→ γ1i

δ2|δ2i−−−→ γ2i
δ3|δ3i−−−→ . . . (1 ≤ i ≤ L)

for some γ1i, γ2i . . . ∈ S and δ1i, δ2i . . . ∈ D.

Characterization 3.2.11. Let be γ ∈ Γ. Then the following assertions hold.

• γ is a vertex neighbor iff every sequence (δj)j∈N of digits associated to an infinite walk in

the graph G(S), γ
δ1|δ′

1−−−→ γ1
δ2|δ′

2−−−→ . . . with γ1, . . . ∈ S and δ′1, δ
′
2, . . . ∈ D, leads to the same

point x = limm→∞ g−1δ1 . . . g
−1δm(a).

• γ is an adjacent neighbor (i.e., γ ∈ A) iff the set Bγ \V2 is nonempty iff there is a sequence
(δj)j∈N of digits such that for each infinite walk in G(S) of the form

γ1
δ1|δ′

1−−−→ γ2
δ2|δ′

2−−−→ . . .

where γ1, γ2, . . . ∈ S and δ′1, δ′2, . . . ∈ D, we have γ1 = γ.
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3.2.3 Properties of the contact graph

Let Q be the closure of a fundamental domain of Γ. Q is a non-empty compact set of Rn, so an
iterative construction of T reads{

T0 := Q,
Tp :=

⋃
δ∈D g

−1δ(Tp−1).

In the Hausdorff metric, we have Tp → T for p→∞, cf. [27]).
By induction on p, one can readily prove the following result.

Proposition 3.2.12. For every p ≥ 0, {γ(Tp); γ ∈ Γ} is a tiling of Rn.

Notation 3.2.13. For each approximation Tp, we denote by Bγ,p the set Tp ∩ γ(Tp).

Using Proposition 3.2.12 we have

∂Tp =
⋃

γ∈Γ\{id}
Bγ,p . (3.2.5)

This is in fact a finite union because the tiling is locally finite.

Remark 3.2.14. For every p ≥ 0, gp(Tp) is a union of n-dimensional non-overlapping polyhedrons,
i.e.,

gp(Tp) =
⋃

δ0,...,δp−1∈D
gp−1δp−1g

−(p−1)gp−2δp−2g
−(p−2) . . . gδ1g

−1 δ0 (Q)

where each gkδkg
−k is an isometry of Γ. Thus for every γ ∈ Γ, gpγ(Tp) = gpγg−p gp(Tp) is also a

union of n-dimensional non-overlapping polyhedrons and gp(Bγ,p) is the intersection of two unions
of polyhedrons that do not overlap. This also holds for Bγ,p, and, hence, this set is the union of
(n− 1)-dimensional faces.

The following result shows the correspondence between the boundary of Tp and the set Rp

defined in (3.2.1).

Proposition 3.2.15. If Bγ,p contains an (n− 1)-dimensional face then γ ∈ Rp.

Proof. We proceed by induction on p. First note that the result is obviously true for p = 0. We
assume the result is true for a p− 1 ∈ N. The number of faces of Bγ,p is also the number of faces
of g(Bγ,p). We have

g(Bγ,p) =
⋃

δ,δ′∈D δ(Tp−1) ∩ gγg−1δ′(Tp−1)
=

⋃
δ,δ′∈D δ(Bδ−1gγg−1δ′,p−1)

and by (3.2.1) this last union contains an (n− 1)-dimensional face only if γ ∈ Rp.

Consequently, as ∂Tp is the union of its (n− 1)-dimensional faces, from (3.2.5) follows that

∂Tp =
⋃

γ∈Rp\{id}
Bγ,p

with
Bγ,p =

⋃
δ∈D,γ′∈Rp−1\{id}

∃δ′∈D, γ
δ|δ′−−→γ′ ∈G(R)

g−1δ(Bγ′,p−1).

Note that if Bγ,p is not an (n − 1)-dimensional face, then it must be already contained in other
(n−1)-dimensional faces of other sets Bγ′,p with γ′ �= γ. This also holds for the sets g−1δ(Bγ′,p−1)
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in the union above. Thus, remembering that Rp ⊂ R for every p and using Proposition 3.2.15, we
get for the boundary of the approximations

∂Tp =
⋃

γ∈R\{id}
Bγ,p

with
Bγ,p =

⋃
δ∈D,γ′∈R\{id}

∃δ′∈D, γ
δ|δ′−−→γ′ ∈G(R)

g−1δ(Bγ′,p−1). (3.2.6)

There is a relation between the structure of the graph G(R) and the geometry of the sets Bγ,p

as follows.

Proposition 3.2.16. Let γ ∈ R. If all the walks in G(R) starting from γ are at most of length
	, then Bγ,p has no (n− 1)-dimensional face for p > 	.

Proof. Let us take p > 	. Starting from the set equation (3.2.6) above and writing it for the sets
Bγ′,p−1, Bγ′′,p−2, . . . that appear at each iteration, one comes after 	 steps to

Bγ,p =
⋃

γ
δ−→γ′ ∈G(R)

. . .
⋃

γ(�) δ(�)−−→γ(�+1) ∈G(R)

g−1δ . . . g−1δ(�) (Bγ(�+1),p−(�+1)) ,

but by assumption there is no edge γ(�) → γ(�+1) in G(R), so no Bγ(�+1),p−(�+1) and hence Bγ,p

can not have an (n− 1)-dimensional face.

3.2.4 Neighbor finding algorithm

Scheicher and Thuswaldner [59] gave an algorithm starting from G(R) to get the neighborhood
graph G(S) in the case of lattice reptiles. In this section, we write this algorithm in a “crystallo-
graphic way”. Examples of contact and neighborhood graphs obtained by this algorithm will be
computed in Subsection 3.3.4.

Definition 3.2.17 (Reduced graph). If G is a directed graph, we denote by Red(G) the graph
emerging from G if all states of G that are not the starting point of a walk of infinite length are
removed. Such a graph is called a reduced graph.

Definition 3.2.18 (Product graph). For two subgraphs G1 and G′
1 of G(Γ) we define the product

graph G2 = G1 ⊗G′
1 as follows.

• A state r2 belongs to G2 iff r2 = r1r
′
1 or r2 = r′1r1 for some r1 ∈ G1, r

′
1 ∈ G′

1.

• For r2, s2 states of G2, and δ1, δ2 digits of D, then there is an edge r2
δ1|δ2−−−→ s2 ∈ G2

iff there are edges r1
δ1|δ′

1−−−→ s1 ∈ G1 and r′1
δ′
1|δ2−−−→ s′1 ∈ G′

1

with r2 = r1r
′
1, s2 = s1s

′
1 and δ′1 ∈ D

or there are edges r′1
δ1|δ′

1−−−→ s′1 ∈ G′
1 and r1

δ′
1|δ2−−−→ s1 ∈ G1

with r2 = r′1r1, s2 = s′1s1 and δ′1 ∈ D .

The conditions of the second item both lead to the same set of edges if G1 = G′
1.

We write ⊗m
i=1G1 = G1 ⊗ . . .⊗G1︸ ︷︷ ︸

m times

.

Definition 3.2.19 (Property (C)). A subgraph G(M) of G(Γ) is said to have property (C) if for

each pair (γ′, δ) ∈M ×D there exists a unique pair (γ, δ′) ∈M ×D such that γ
δ|δ′
−−→ γ′ ∈ G(M).

25



From the last three definitions and the fact thatD is a complete set of right coset representatives
of gΓg−1, we derive the following proposition.

Proposition 3.2.20. If G1 and G′
1 are subgraphs of G(Γ) having property (C), then for r2, s2

states of G1 ⊗G′
1 and δ1, δ2 ∈ D,

there exists an edge r2
δ1|δ2−−−→ s2 ∈ G1 ⊗G′

1 iff gr2g
−1δ2 = δ1s2.

Furthermore, G1 ⊗G′
1 and hence Red(G1 ⊗G′

1) have property (C).

The proof of this result runs along the same lines as in the case of lattice tilings (cf. [59]) and
we omit it.

This means that the product graph of two subgraphs satisfying property (C) is again a subgraph
of G(Γ) and it has property (C), as well as its reduced graph.

Algorithm 3.2.21. We denote by G(S) the graph obtained from G(R) by the following algorithm.

p := 1
A[1] := Red(G(R))
repeat
p := p+ 1, A[p] := Red(A[p− 1]⊗A[1])
until A[p] = A[p− 1]
G(S) := A[p] \ {id}

Proposition 3.2.22. Algorithm 3.2.21 ends after finitely many steps and yields the neighborhood
graph (i.e., G(S) = G(S)).

In order to show this result we have to adapt the proof of the corresponding result in the case
of lattice tilings of Scheicher and Thuswaldner [59]. First we need the following lemmata to get
bounding sets for S (with respect to the inclusion) from below and above.

Lemma 3.2.23. Each state of G(R′) := Red(G(R)) has infinitely many predecessors and in-
finitely many successors. Thus G(R′) is a union of cycles of G(Γ) and of walks connecting these
cycles. Furthermore, G(R′) has property (C).

This can be proved in the same way as in the lattice tiling case (cf. [59]).

Lemma 3.2.24. The graph G(S∪{id}) is the union of all cycles of G(Γ) and all walks connecting
two of these cycles.

Proof. Let γ be a state contained in a cycle of G(Γ), i.e., there exists

γ
δ1|δ′

1−−−→ γ1
δ2|δ′

2−−−→ . . .
δl−1|δ′

l−1−−−−−−→ γl
δl|δ′

l−−−→ γ

a cycle in G(Γ). Then for all p ∈ N we have

γ
(
g−1δ′1 . . . g

−1δ′l
)p

=
(
g−1δ1 . . . g

−1δl
)p

γ.

If we take a ∈ Rn and set δj+pl := δj , δ
′
j+pl = δ′j for every p ∈ N, j ∈ {1, . . . , l}, then we can write

γ
(

lim
m→∞

g−1δ′1 . . . g
−1δ′m(a)

)
= lim

m→∞
g−1δ1 . . . g

−1δm(γ(a)) = lim
m→∞

g−1δ1 . . . g
−1δm(a)

(the last equality follows from Equation (3.1.3) of Remark 3.1.10). This means that γ ∈ S ∪ {id}.
All walks connecting two cycles of G(Γ) are also contained in G(S∪{id}). This follows inductively,
starting from the last state of the walk, that belongs to S∪{id} as we just saw, and going the walk

backwards: the existence of an edge γ1
δ|δ′
−−→ γ2 in G(Γ) with γ2 ∈ S ∪ {id} implies γ1 ∈ S ∪ {id}

(see Remark 3.2.6).
No other state is contained in G(S ∪ {id}), because S is finite and each state of G(S ∪{id}) must
have infinitely many predecessors and infinitely many successors. These states must be in a cycle
or in a walk connecting two cycles.
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Corollary 3.2.25. Red(G(R)) ⊆G(S ∪ {id}).

This lower bound follows from Lemma 3.2.23 and 3.2.24. For the upper bound, we need one
more lemma.

Lemma 3.2.26. Let G(R′) := Red(G(R)). Then R′ contains a generator set B := {γ1, . . . , γq}
of Γ. By symmetry and because id→ id is a cycle in G(R), R′ even contains the set {id}∪B∪B−1.

Proof. R being a finite set, let 	 := |R|. Then for p > 	, the fact that Bγ,p contains an (n − 1)-
dimensional face implies that γ belongs to R′. Indeed, because of Proposition 3.2.16, there must
be a walk of length p > 	 in G(R) starting from γ. In this walk, a state γ′ ∈ R has to appear at
least twice (because p > |R|). This provides a cycle in the walk which can be repeated to get an
infinite walk starting from γ. Thus γ ∈ R′. This allows the following description of the boundary
of Tp for p > 	:

∂Tp =
⋃

γ∈R′\{id}
Bγ,p.

Now we show that R′ generates Γ. Let α ∈ Γ. Remember (Proposition 3.2.12) that {γ(Tp), γ ∈ Γ}
is a tiling of Rn; let x ∈ Tp and y ∈ α(Tp) (but x, y not vertices of these tiles), one can draw a
line from x to y avoiding the vertices of the tiles. Tp is compact, so this line passes through a
finite number of tiles Tp, α1(Tp), . . . , αq(Tp) in this order. Two consecutive tiles have an (n− 1)-
dimensional face in common, so α1, α

−1
1 α2, . . . , α

−1
q α are elements of R′, thus α is a product of

elements of R′.

Corollary 3.2.27. The inclusion

Red(G(R)p0 ) ⊇G(S ∪ {id})

holds for some positive integer p0. Furthermore, Red(G(R)p0 ) has property (C).

Proof. If B is a generator set of Γ contained in R′ (hence in R too), then the set of states of
G(R)p contains all elements of ({id} ∪ B ∪ B−1)p (see Lemma 3.2.26). As S is finite, there is a
p0 with G(R)p0 ⊃ G(S ∪ {id}), and each state of G(S) ∪ {id} having infinitely many successors,
the required inclusion holds. The second claim follows from Proposition 3.2.20.

The following lemma will be useful in the conclusion of the proof of Proposition 3.2.22. It can
be obtained in a similar way as in the case of lattice tilings, we refer the reader to [59, Section 5]
for more details.

Lemma 3.2.28. If G(R′) denotes Red(G(R)), then the identity

Red(G(R′)p) = Red(. . .Red(Red(Red(G(R′))⊗G(R′))⊗G(R′)) . . .⊗G(R′))︸ ︷︷ ︸
p times

holds for every p ∈ N.

Proof of Proposition 3.2.22. The proof of Proposition 3.2.22 is then similar as in [59]. Firstly, the
algorithm terminates: choosing p0 as in Corollary 3.2.27, we have by Lemma 3.2.28 that A[p0] =
Red(G(R)p0 ), thus A[p0] ⊇G(S∪{id}). This implies in view of Lemma 3.2.24 that A[p0] contains
each reduced finite subgraph of G(Γ) with the property that each of its states has a predecessor.
Thus A[p0 + 1] ⊆ A[p0], and the opposite inclusion being trivial we even have A[p0 + 1] = A[p0].
Hence the algorithm terminates for a p1 ≤ p0 + 1, and we have G(S) = A[p1] \ {id}.
Secondly, G(S) is the neighborhood graph: note that by the definition of p1 and of the algorithm,
A[p1] = A[p1 + 1] = . . . = A[p0 + 1] = A[p0] holds. Moreover, Lemma 3.2.24 indicates that
G(S ∪ {id}) contains all reduced finite subgraphs G(Γ) for which each state has a predecessor,
and Proposition 3.2.20 states that A[p0] has property (C), so that each state of A[p0] has a
predecessor. Hence A[p0] ⊆ G(S ∪ {id}) = A[p1] = A[p0], showing that G(S) = G(S).
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We end up this subsection by giving an upper bound for the number of steps required by
Algorithm 3.2.21 to compute the neighbor graph from the contact graph. We first give a bound
for the number of neighbors, i.e., for the cardinality of S. Let || · || be the Euclidean norm on
Rn, with respect to which the elements of Γ are isometries. We denote also by || · || the induced
matrix norm. Remember that we write g(x) = Ax+ t, where A is the expanding matrix and t the
translation vector associated to g. Similarly, for an isometry γ ∈ Γ: γ(x) = Aγx + tγ , where Aγ

is an isometry matrix (in particular, ||Aγ || = 1), and tγ is the translation vector of γ.

Proposition 3.2.29. We have the upper bound

|S| ≤ |Γ/Λ| ·

⎛
⎝4 ·max

δ∈D
{||t− tδ||} ·

∞∑
j=1

||A−j ||

⎞
⎠n

for the number of neighbors of the crystile T .

Proof. We compute a bound M for the norms of the possible translational parts tγ of the elements
γ ∈ S. Then, the volume of the hypercube of side size 2M will bound the number of these allowed
translation parts. Multipliying this volume by the cardinality of the point group, we get the
desired upper bound.
Let γ ∈ S, then some point belongs to T and γ(T ). Thus there are sequences of digits (δj), (δ′j),
such that

lim
m→∞

g−1δ1 . . . g
−1δm(0) = lim

m→∞
γg−1δ′1 . . . g

−1δ′m(0).

This means for the translation part of γ that

tγ = limm→∞

Aγ

m−1∑
j=0

Aδ′
0
A−1Aδ′

1
A−1 . . . Aδ′

j
A−1(tδ′

j+1
− t) −

m−1∑
j=0

Aδ0A
−1Aδ1A

−1 . . . AδjA
−1(tδj+1 − t),

where by convention Aδ0 = Aδ′
0

= id.
We recall now that, by Definition 3.1.3, gΓg−1 ⊂ Γ, hence if an isometry γ ∈ Γ is given, there
is another isometry γ′ ∈ Γ such that γg−1 = g−1γ′. This property also holds for the linear
parts: given Aγ , there is Aγ′ such that AγA

−1 = A−1Aγ′ . Using this fact, one can rewrite the
products of matrices in the first sum above in the following way: for each j, there are matrices
A

γ
(j)
0
, A

γ
(j)
1
, . . . , A

γ
(j)
j

such that

Aδ′
0
A−1Aδ′

1
A−1 . . . Aδ′

j
A−1 = A−(j+1)A

γ
(j)
0
A

γ
(j)
1
. . . A

γ
(j)
j

,

and similarly for the other sum. Taking the norm and using the triangle inequality and the fact
that isometries have norm 1, we obtain the majoration

||tγ || ≤ 2 ·
∞∑

j=1

||A−j || · max
δ∈D
{||tδ − t||} =: M.

Remark 3.2.30. The bound in Proposition 3.2.29 often applies to the number of elements in the
contact set R. Indeed, in practical applications, looking at a picture of the tiling, it is possible to
guess an appropriate set R0 to start with, corresponding to a good first approximating polyedron
of the central tile. In this case, we eventually obtain R \ {id} ⊂ S. Often, we even have that R
is much smaller than S. A better general upper bound can not be given, the cardinality of the
contact set and the number of neighbors really depend on the geometry of the particular example
(crystiles with arbitrarily large number of neighbors can be produced, see [5]).
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Proposition 3.2.31. Let q := |Γ/Λ| be the cardinality of the point group. Then there is a basis
BL of the lattice Λ such that BL ∪ B−1

L are states of G(R′)q. Consider the translational parts of
the elements of S. If N is the maximal Euclidean norm of these translational parts, then S is
contained in the set of states of G(R′)Nq. Hence Algorithm 3.2.21 terminates after at most Nq
steps.

Proof. First note that by Lemma 3.2.28, the graph Red(G(R′)Nq) will be exactly equal to the
graph obtained when reduction happens after each step, like in Algorithm 3.2.21. This graph is
moreover a subgraph of G(R′)Nq. Since q is the order of the point group and by Lemma 3.2.26
the set R′ contains a generator for Γ, the product R′ q = {r1 . . . rq; ri ∈ R′} contains a basis for
the lattice Λ and is equal to the set of states of G(R′)q. It even contains all the elements of Γ
whose translation vector has norm less than 1. Then, the set of states of G(R′)2q contains all the
elements of Γ whose translation vector has norm less than 1+1 = 2. Consequently, the neighbor(s)
with maximal translation vector will be reached after iterating at most N times this operation, as
well as all the neighbors with smaller translation vector.

3.3 Criteria for disk-likeness

The results and examples of this section appear in the joint articles [43, 44] with Jun Luo and Jörg
Thuswaldner as well as in the joint article [42] with Jun Luo. We will establish several criteria
for the disk-likeness of plane crystallographic tiles and plane crystiles. The first criterion concerns
crystallographic tiles in general. One gets easier conditions when the fractal structure is involved.
This is the purpose of the second criterion. The third criterion can be easily visualized on the
neighbor graph of a given crystile. The last criterion is dedicated to lattice and p2-crystiles and
mainly states that disk-likeness occurs when the neighbor set has the right shape and the right
configuration, and when the digit set has some connectedness property.

We use the sets and graphs defined in Subsection 3.2.1.
We recall the following fundamental facts, easily seen from the definition of the set of neighbors
S and the set of adjacent neighbors A. Let T be a tile of a crystallographic tiling with respect to
the group Γ.

• In A, there is a set of generators for Γ, and A ⊆ S.

• The boundary of T satisfies ∂T = ∪γ∈SBγ = ∪γ∈ABγ , where Bγ = T ∩ γ(T ).

• For each A′ ⊆ S with ∂T = ∪γ∈A′Bγ , we have A′ ⊇ A .

3.3.1 A criterion for a crystallographic tile

The following criterion is stated for general crystallographic tilings of the plane.

Theorem 3.3.1. Suppose that {γ(T ); γ ∈ Γ} is a crystallographic tiling of R2. Then, T is disk-like
if and only if the following three conditions all hold.

(1) The triple intersection V2 (γ1, γ2) = T ∩ γ1(T ) ∩ γ2(T ) is either empty or a single point set
for any distinct γ1, γ2 ∈ S.

(2) For each γ ∈ S, the double edge Bγ is either a single point or a simple arc.

(3) The subgraph of the double neighboring graph G2 (see Definition 2.2.22) with set of vertices
{Bγ ; γ ∈ A} consists of a simple loop.

We first need a lemma, deduced from the results of plane topology presented in Appendix A.

Notation 3.3.2. If C is a simple closed curve in the plane, the complement of C has two com-
ponents. We denote by Interior(C) the bounded one and by Exterior(C) the unbounded one.
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Lemma 3.3.3. Let {γ(T ), γ ∈ Γ} be a crystallographic tiling with disk-like tiles, and γ, γ′ two
elements of Γ. Then (γ(T ) ∪ γ′(T ))c has no bounded component. In other words, no pair of tiles
can surround a third one.

Proof.

(i) For each γ, γ′ ∈ Γ, (γ(T ) ∪ γ′(T ))c has finitely many bounded connected components. In-
deed, because of the tiling property, every component of (γ(T ) ∪ γ′(T ))c being open, it is
intersected by the interior of at least one tile γ′′(T ) with γ′′ �= γ, γ′, thus it contains the
whole tile γ′′(T ), since this tile is disk-like. For this reason, disjoint components contain
distinct tiles, and all of these tiles have the same Lebesgue-measure. But note that there
is a bounded domain containing all the bounded components of (γ(T ) ∪ γ′(T ))c. Hence
(γ(T ) ∪ γ′(T ))c can have only finitely many bounded components.

(ii) For each γ ∈ Γ, there are at most finitely many γ′ ∈ Γ such that (γ(T ) ∪ γ′(T ))c has a
bounded component. Indeed, because the tiles are disk-like, if γ′ /∈ γS, then (γ(T ) ∪ γ′(T ))c

is connected and unbounded.

(iii) If Z is a bounded component of (γ(T ) ∪ γ′(T ))c, we denote by N(γ, γ′, Z) the number of tiles
whose interior intersects Z. Note again that γ′′(T o) ⊂ Z as soon as γ′′(T )∩Z �= ∅, because of
the disk-likeness of the tiles, thus this number is finite. Moreover, we have N(γ′, γ′γ, γ′Z) =
N(id, γ, Z) for every γ, γ′ ∈ Γ, and every component Z ′ of (γ′(T ) ∪ γ′γ(T ))c is obtained in
this way (i.e., Z ′ = γ′Z with Z bounded component of (T ∪ γ(T ))c).

(iv) Let

N :=

⎧⎨
⎩
·max {N(id, γ, Z); γ ∈ Γ, Z bounded component of (T ∪ γ(T ))c}
if (T ∪ γ(T ))c has a bounded component for some γ ∈ Γ,
·0 otherwise.

Suppose that N > 0. Let γ, Z with N = N(id, γ, Z). By Lemma A.0.20, there exist disjoint
points a, b in T ∩ γ(T ) and simple open arcs Cid, Cγ contained in T o, γ(T o) respectively,
such that Z ⊂ Interior(C) with C := Cid ∪ Cγ ∪ {a, b} and such that for γ′ /∈ {id, γ} with
γ′(T ) ∩ Interior(C) �= ∅, we have γ′(T o) ⊂ Z. Let γ′ /∈ {id, γ} with γ′(T ) ∩ Interior(C) �= ∅.
Then γ′(T ) lies entirely in Interior(C) ∪ {a, b}. Moreover, γ′′ := γ′γ and Z ′ := γ′Z satisfy
N(γ′, γ′′, Z ′) = N .

(v) We have γ′′(T )∩Z = ∅. Otherwise γ′′(T ) ⊂ Interior(C)∪{a, b} and the bounded components
of (γ′(T ) ∪ γ′′(T ))c have to lie in Z, but they are all different from Z since they do not contain
γ′(T o) nor γ′′(T o) that are both in Z; in particular for Z ′ we have N = N(γ′, γ′′, Z ′) <
N(id, γ, Z) = N , a contradiction.

(vi) We have γ′′ /∈ {id, γ}. For sure, γ′′ = γ′γ �= γ, and if γ′′ = id we obtain the same
contradiction as in item (v): the bounded components of (γ′(T ) ∪ T )c lie in Z but do not
contain γ′(T o), so N = N(γ′, id, Z ′) < N(id, γ, Z) = N , a contradiction.

(vii) By Items (v) and (vi), γ′′(T ) ⊂ Exterior(C) ∪ {a, b}. Thus γ′(T ) ∩ γ′′(T ) = {a, b}, because
these tiles intersect in at least two points but are contained in Interior(C) ∪ {a, b} and
Exterior(C) ∪ {a, b}, respectively.

(viii) Consider a simple open arc Cγ′′ from a to b within γ′′(T ). We may assume that Cid ⊂
Exterior(Cγ′ ∪ {a, b} ∪ Cγ′′).
We now have that (T ∪ γ′′(T ))c has a bounded component Z ′′ containing Z and γ(T o).
Indeed, each of these sets is in some bounded component of (T ∪ γ′′(T ))c. Moreover, by
Lemma A.0.20, Z∩γ(T ) is a simple arc from a to b that does not intersect T except in a and
b, and that lies in Interior(C)∪{a, b}, so it does not intersect γ′′(T ) except in a and b either.
Thus one can find at least one point c ∈ Z∩γ(T )∩(T ∪ γ′′(T ))c, and this point connects the
open disks Z and γ(T o) within (T ∪ γ′′(T ))c: indeed, Z∪{c}∪γ(T o) is connected and lies in
(T ∪ γ′′(T ))c, thus the sets Z and γ(T o) lie in the same bounded component of (T ∪ γ′′(T ))c.
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(ix) From Item (viii), N(id, γ′′, Z ′′) > N(id, γ, Z) = N , contradicting the maximality of N .
This means that the assumption N > 0 in Item (iv) is false. Hence no union of two tiles has

a complement which contains a bounded component.

Proof of Theorem 3.3.1. We first suppose that the three items hold and prove that T is disk-like.
Items (1) and (3) indicate that the compact sets {Bγ ; γ ∈ A} form a circular chain, and Item

(2) implies that for each γ ∈ A, Bγ and Bc
γ are both connected. This means that {Bγ ; γ ∈ A}

form a circular chain of continua, each of which does not separate the plane. By Corollary A.0.15,
R2 \

(⋃
γ∈ABγ

)
= R2 \ ∂T is then the union of two connected sets; the bounded one is T o and

the unbounded one is R2 \ T , since T = T o and T o = R2 \
(⋃

γ �=id γ(T )
)
. Moreover, because ∂T

is the union of arcs forming a circular chain, it has no cut point and Lemma A.0.19 assures that
T is disk-like.

Conversely, we assume that the tile T is disk-like and prove that the three items hold.
Proof of Item (1).
Let us assume that the triple intersection T ∩ γ1(T ) ∩ γ2(T ) contains at least two distinct

points, say a and b. Then, choosing a point p in T o, one can find two disjoint simple open arcs
A and A′ in T o leading from p to a and b, respectively. C := A ∪ {p} ∪A′ is then a simple open
arc leading from a to b with C ⊂ T o. Similarly for the other tiles, one can find simple open arcs
C1 ⊂ γ1(T o), C2 ⊂ γ2(T o), each of which joins a, b. Then θ := {a, b}∪C∪C1∪C2 is a theta-curve
whose complementary set consists of three regions. Assume with no loss of generality that C1 does
not intersect the unbounded component of R2 \ θ. Then γ1(T o) entirely lies in the interior of the
simple closed curve C′ = {a, b} ∪C ∪ C2, indicating that (T ∪ γ2(T ))c has a bounded component
there, a contradiction to Lemma 3.3.3.

Proof of Item (2).
Suppose that Bγ �= ∅. In view of Lemma A.0.11 and Lemma 3.3.3, Bγ must be connected.

Thus Bγ is a connected subset of the simple closed curve ∂T . If Bγ = ∂T this would imply that T
is surrounded by γ(T ) which is impossible. Thus Bγ is homeomorphic to a (possibly degenerated)
interval and the proof is done.

Item (3) now follows from the disk-likeness of T together with Items (1) and (2).

3.3.2 Disk-likeness of a crystile

The following result gives informations on the topology of a connected attractor.

Proposition 3.3.4 (see [47, Theorem 1.1]). Let f1, . . . , fm be an IFS of injective contractions on
R2 satisfying the open set condition (see Definition 2.1.15) and E its attractor. If E is connected,
then the following statements hold.

(i) The interior Eo of E either is empty or has no hole.

(ii) The boundary ∂E of E is connected.

(iii) Whenever Eo is connected, ∂E is a simple closed curve, thus E is homeomorphic to a closed
disk.

Let T be a crystile with respect to (Γ,D, g). By Remark 3.1.10, even if (g−1δ)δ∈D are not
contractions, the pieces g−1δ1 . . . g

−1δp(T ) can be made arbitrarily small for p large enough,
independently of (δj)1≤j≤p ∈ Dp. Moreover, T satisfies the open set condition with V = T o.
Since these are the main facts needed in the proof of Proposition 3.3.4, one can state the following
theorem.

Theorem 3.3.5. Let T be a crystile as in Definition 3.1.3. Then the following statements hold.

(i) T o either is empty or has no hole.
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(ii) The boundary ∂T of T is connected.

(iii) If T o is connected, then T is disk-like.

Remark 3.3.6. In fact, (i) and (ii) already follow from the tiling property. Indeed, if T o has
a hole, by the tiling property and connectedness of the tiles, this should contain a whole tile
γ(T ) for some γ ∈ Γ. Again, this new tile has a hole and surrounds another tile γ′(T ) for some
γ′ ∈ Γ, γ′ �= γ. Iteratively, one gets infinitely many tiles surrounded by T , a contradiction to the
local finiteness of the tiling. We refer to Lemma B.0.24 of the appendix for the connectedness of
the boundary.

Theorem 3.3.5 will be the main tool in proving the disk-likeness of crystiles in the remaining
criteria of this chapter.

3.3.3 A criterion for a crystile

Using the replicating property, we will now get an “easier ” version of Theorem 3.3.1. Since a
crystallographic reptile T with respect to Γ induces a crystallographic tiling {γ(T ); γ ∈ Γ}, the
disk-like question for crystiles is solved if we can verify the three items of Theorem 3.3.1, or dis-
prove a single one. In general, Items (1) and (3) can be checked by concrete algorithms, while we
still need to deal with Item (2). The self-affine structure of T will provide an algorithm to solve
the disk-like question of crystiles in R2, without verifying Item (2) of Theorem 3.3.1.

We will need the following subgraph of the double neighboring graphG2 (see Definition 2.2.22).
Its definition looks a bit awkward. We explain it in Remark 3.3.8.

Definition 3.3.7 (A subgraph of the double neighboring graph). For each γ ∈ A, denote by Vγ

the set of states

{δ
(
Bδ−1gγg−1δ′

)
; there is δ, δ′ ∈ D with δ−1gγg−1δ′ ∈ A} .

Then Gγ is the subgraph of the double neighboring graph G2 with set of vertices Vγ .

Remark 3.3.8. Equation (3.2.2) gives an explanation to the graph Gγ defined in Definition 3.3.7.
Indeed, the union of its set of vertices is equal to g(Bγ). Thus Gγ contains some information about
the connectivity of g(Bγ) and, hence, of Bγ . Indeed, we will use this graph to show that Bγ is
connected under certain circumstances.

Theorem 3.3.9. Let T ⊂ R2 be a crystile with respect to Γ whose expanding map is g and whose
digit set is D. Then T is disk-like if and only if each of the following three conditions holds.

(1) The triple intersection V2 (γ1, γ2) = T ∩ γ1(T ) ∩ γ2(T ) is either empty or a single point set
for any disjoint pair γ1, γ2 ∈ S.

(2) For each γ ∈ A, the graph Gγ consists of a simple path.

(3) The subgraph of the double neighboring graph G2 with set of vertices {Bγ ; γ ∈ A} consists
of a simple loop.

Indeed, for a crystallographic reptile T with respect to Γ and the corresponding crystallo-
graphic tiling {γ(T ); γ ∈ Γ}, let g be the expanding map, and let the double neighboring graph
G2(Γ), the sets Vγ and the graph Gγ be as in Definition 3.3.7. Then the union of all the elements
of Vγ is exactly the image g (Bγ) of Bγ under the expansion map g. If the complementary set
R2 \ Bγ has some bounded component U then the region will be “enlarged” as g(U), which is a
bounded component of R2 \ g (Bγ). Under simple assumptions on the graph Gγ , we can exclude
the existence of such a region U . This will eventually leads us to connectivity of T o and hence
disk-likeness of T (see Theorem 3.3.5).
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Proof of Theorem 3.3.9. The necessity part is a direct corollary of Theorem 3.3.1, so we just need
to show the sufficiency part. More precisely, we will assume the three conditions and infer that
the interior T o of T is connected. By Corollary A.0.15, we just need to show that Bγ does not
separate the plane for each γ ∈ A and that {Bγ ; γ ∈ A} is a collection of continua which form a
circular chain.

Claim 1: Bc
γ is connected for every γ ∈ A.

If it is not the case, consider the set

U = {U ⊂ R2; ∃γ ∈ A such that U is a bounded connected component of Bc
γ},

and choose U ∈ U with maximal area, associated to Bγ for some γ ∈ A. Recall that

g(Bγ) =
⋃

δ(Bδ−1gγg−1δ′ )∈Vγ

δ(Bδ−1gγg−1δ′),

where the set Vγ has been defined in Definition 3.3.7. Then g(U), a bounded component of g(Bγ)c,
lies in the complement of every δ(Bδ−1gγg−1δ′) ∈ Vγ , thus, by maximality of U , it must entirely lie
in the unbounded component of δ(Bδ−1gγg−1δ′)c for every δ(Bδ−1gγg−1δ′) ∈ Vγ . Let be p ∈ g(U)
and q in the unbounded component of g(Bγ)c. Items (1) and (2) imply that the elements of Vγ form
a chain. Thus we can apply Corollary A.0.14 to the sets of Vγ to obtain that the union of these sets,
which is exactly g(Bγ), does not cut between p and q, a contradiction to the choice of these points.

Claim 2: Bγ is connected for every γ ∈ A.
Indeed, by Items (1) and (3), one can arrange the elements of A as γ1, γ2, . . . , γm such that
the compact sets Bγ1 , . . . , Bγm form a circular chain. Note that their union is the continuum
∂T . Without loss of generality, suppose that Bγ2 is disconnected. We denote by C1 and C3 the
connected components of Bγ2 such that #C1 ∩ Bγ1 = 1 = #C3 ∩ Bγ3 . Then we have for each
other component D of Bγ2 and for every i ∈ {1, 3, . . . ,m} that D ∩Bγi = ∅.
If C1 = C3 =: C, then C �= Bγ2 and by Lemma A.0.8 there exists a clopen subset P of Bγ2 with
C ⊆ P � Bγ2 . Thus the boundary can be written as

∂T = (Bγ2 \ P ) ∪

⎛
⎝P ∪

⋃
i∈{1,3,...,m}

Bγi

⎞
⎠ ,

which is a separation of ∂T into two disjoint closed subsets, a contradiction to the connectedness
of ∂T .
If C1 �= C3, one can write

∂T = C1 ∪ C3 ∪ E ∪
⋃

i∈{1,3,...,m}
Bγi ,

where E is the union of all connected components of Bγ2 different from C1 and C3. If E = ∅,
note that the union C1 ∪ C3 ∪

⋃
i∈{1,3,...,m}Bγi is not a cut of the space (use Claim 1 and apply

Corollary A.0.14 to the chain C3, Bγ3 , Bγ4 , . . . , Bγm , Bγ1 , C1). But this union is exactly ∂T . This
contradicts the fact that T is a tile. If E �= ∅, let C be a component of Bγ2 distinct from C1 and C3.
Then using Lemma A.0.8 one can find clopen subsets P1, P3 of Bγ2 such that C1 ⊆ P1, C3 ⊆ P3

and P1 ∩ C = P3 ∩ C = ∅. Thus P1 ∪ P3 � Bγ2 is a clopen subset of Bγ2 . This leads to the
separation

∂T = (Bγ2 \ (P1 ∪ P3)) ∪

⎛
⎝P1 ∪ P3 ∪

⋃
i∈{1,3,...,m}

Bγi

⎞
⎠

of the boundary of T into two disjoint closed subsets, contradicting the connectedness of ∂T .
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From Claims 1 and 2 and Items (1) and (3) we obtain that the {Bγ ; γ ∈ A} form a circular
chain of continua, each of which does not separate the plane. The disk-likeness of T then follows
as in the first part of the proof of Theorem 3.3.1.

3.3.4 Application to p2-crystiles

In this subsection, four examples of crystiles will be presented and we will answer the question of
their disk-likeness using Theorem 3.3.9.

Let Γ be the following crystallographic group p2:

Γ = {apbqcr; p, q ∈ Z , r ∈ {0, 1}}

where the isometries a, b, c are defined by:

a(x, y) = (x+ 1, y), b(x, y) = (x, y + 1), c(x, y) = (−x,−y).

The following examples are cases of 3-reptiles (i.e., |D| = 3) and correspond to disk-like candidates
listed in Gelbrich [19].
For each example, we will proceed as follows.

(1) We compute the contact graph G(R), defined in Definition 3.2.4. Note that there are five
types of fundamental domains of p2 given by Grünbaum and Shephard in [22, pp.288-290].
For each example, we have the possibility to choose one of these types for Q (hence for R0)
to get the contact graph G(R).

(2) The neighborhood graph G(S) (Definition 3.2.4) is obtained by Algorithm 3.2.21.

(3) We use the neighborhood graph to give some informations concerning the crystile, about its
sets of L-vertices (see Proposition 3.2.10), its vertex neighbors and its adjacent neighbors
(set A) (see Characterization 3.2.11).

The last part of the subsection is then devoted to the proof of the disk-likeness or non disk-likeness
of the tiles presented in these examples by applying Theorem 3.3.9.

Example 3.3.10. This example corresponds to Gelbrich’s picture [19, p.252, Fig.6 (i)]. It was
presented as introductive example in Example 3.1.4. It is depicted again in Figure 3.2 together
with the other digit tiles (images of the tile by the two other digits). This crystile will be shown
to be disk-like.

The map g was defined by

g(x, y) =
(
y,−3x− 1

2

)
, D = {id, b, c},

and the tile fulfills
g(T ) = T ∪ b(T ) ∪ c(T ).

(1) We choose R0 = {id, b, b−1, c, a−1c} (see the corresponding fundamental domain in Fig-
ure 3.6). This yields R1 = R0 ∪ {a−1b−1c}, R2 = R1 ∪ {b−1c} = R3, so finally

R = {id, b, b−1, c, a−1c, a−1b−1c, b−1c}.

(2) The application of Algorithm 3.2.21 leads to S = R \ {id}, so the contact graph and the
neighborhood graph are equal (up to the identity). They are depicted in Figure 3.7, and the
edges are listed in Table 3.1.
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Figure 3.2: p2-crystile with its digit tiles (Example 3.3.10).

(3) Sets of L-vertices. Using Proposition 3.2.10, we read on the graph the sets of L-vertices and
obtain the following results:

– #V2(b, c) = #V2(b, a−1c) = #V2(b−1, b−1c) = #V2(b−1, a−1b−1c)
= #V2(c, b−1c) = #V2(a−1b−1c, a−1c) = 1. (The other sets of 2-vertices are empty.)

– VL = ∅ for L ≥ 3.

Vertex and adjacent neighbors. One can use the neighborhood graph together with Charac-
terization 3.2.11 to get that there is no vertex neighbor and that the set of adjacent neighbors
is the whole set S. Another way to show this will be given in the last part of this section
(Proposition 3.3.15).

Example 3.3.11. This example corresponds to Gelbrich’s picture [19, p.252, Fig.6 (b)]. This
crystile will be shown to be disk-like. It is depicted in Figure 3.3 together with its other digit tiles.
We take

g(x, y) = (−y, 3x+ 1), D = {id, b, c},
and the tile is defined by

g(T ) = T ∪ b(T ) ∪ c(T ).

We have gΓg−1 ⊂ Γ because

gag−1 = b3, gbg−1 = a−1, gcg−1 = b2c.

(1) We choose R0 = {id, b, b−1, c, bc, a−1c} (see Figure 3.6). This yields R1 = R0, so

R = {id, b, b−1, c, bc, a−1c}.

(2) The application of Algorithm 3.2.21 leads to S = R \ {id} ∪ {a−1bc, a−1b−1c}. The graphs
are depicted in Figure 3.7; the edges are listed in Tables 3.1 and 3.2.

(3) Sets of L-vertices. Using Proposition 3.2.10, we read off from the neighborhood graph the
sets of L-vertices and obtain the following results:
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Figure 3.3: p2-crystile with its digit tiles (Example 3.3.11).

– #V2(b, a−1c) = #V2(b, a−1bc) = #V2(b−1, a−1b−1c) = #V2(b−1, a−1c)
= #V2(a−1c, a−1bc) = #V2(a−1c, a−1b−1c)
= #V2(b, bc) = #V2(b−1, c) = #V2(c, bc) = 1. (The sets of 2-vertices that are not
listed are empty.)

– #V3(b, a−1c, a−1bc) = #V3(b−1, a−1b−1c, a−1c) = 1. (The sets of of 3-vertices that are
not listed are empty.)

– VL = ∅ for L ≥ 4.

Remark. For each of the first six sets V (s, s′) in the first item, using the neighborhood
graph in Figure 3.7 one gets only one possible sequence of labels for a walk starting from
s and s′, but for the other sets, one finds exactly two possible walks. Let us just con-
sider V2(b, bc). Then the infinite walks starting from b and bc are (id, id, c, id, c, id, c, . . .)
and (b, c, id, c, id, c, id, . . .). However, they represent the same point on the boundary of T ,
because:

lim
m→∞

g−1(g−1g−1c)m(0, 0) =
(
−1

6
,
1
2

)
= lim

m→∞
g−1bg−1c(g−g−1c)m(0, 0).

Vertex and adjacent neighbors. Looking at the graph in Figure 3.7, we see that there is
exactly one infinite walk starting from the neighbors

{a−1bc, a−1b−1c}.

This implies that these are vertex neighbors because of Characterization 3.2.11. One can
also use Characterization 3.2.11 to obtain that the set of adjacent neighbors is

A = {id, b, b−1, c, bc, a−1c},

but another way will be given in Proposition 3.3.15.

Example 3.3.12. This example corresponds to Gelbrich’s picture [19, p.253, Fig.8 (c)]. This
crystile will be shown to be non disk-like. It is depicted in Figure 3.4 with the other digit tiles.
We take

g(x, y) = (−y,−3x− y), D = {id, b, a−1c},
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Figure 3.4: p2-crystile with its digit tiles (Example 3.3.12).

and the tile is defined by
g(T ) = T ∪ b(T ) ∪ a−1c(T ).

The property gΓg−1 ⊂ Γ holds because

ga−1cg−1 = b3c, gbg−1 = a−1b−1, gcg−1 = c.

(1) We choose R0 = {id, b, b−1, a−1c, c, bc} (see Figure 3.6). This yields R1 = R0 ∪ {a−1bc},
R2 = R1, so finally

R = {id, b, b−1, a−1c, c, bc, a−1bc}.

(2) The application of Algorithm 3.2.21 leads to

S = R \ {id} ∪ {a, a−1, a−1b, ab−1, a−1b2c, b2c, a−2b2c}.

The graphs are depicted in Figure 3.8, the edges listed in Tables 3.1 and 3.2.

Example 3.3.13. This example corresponds to Gelbrich’s picture [19, p.254, Fig.7 (a)], one of
the two “not as convincing” pictures listed by Gelbrich. We represented it in Figure 3.5. We take

g(x, y) = (x− y, 3x+ 1), D = {id, b, a−1c},

and the tile is defined by
g(T ) = T ∪ b(T ) ∪ a−1c(T ).

The property gΓg−1 ⊂ Γ holds because

ga−1cg−1 = a−1b−1c, gbg−1 = a−1, gcg−1 = b2c.

(1) We choose R0 = {id, b, b−1, c, a−1c, bc, a−1bc} (see Figure 3.6). This yields R1 = R0, so

R = {id, b, b−1, a−1c, c, bc, a−1bc, a−1bc}.

(2) The application of Algorithm 3.2.21 leads to S = R\{id}. It is again a tile with six neighbors.
The graphs are depicted in Figure 3.9.
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Figure 3.5: p2-crystile with its digit tiles (Example 3.3.13).

(3) Sets of L-vertices. Using Proposition 3.2.10, we read on the graph the sets of L-vertices and
obtain following results:

– #V2(b, bc) = #V2(b, a−1bc) = #V2(b−1, c) = #V2(b−1, a−1c)
= #V2(bc, c) = #V2(a−1bc, a−1c) = 1. (The sets of 2-vertices that are not listed are
empty.)

– VL = ∅ for L ≥ 3.

Vertex and adjacent neighbors. One can use the neighborhood graph together with Charac-
terization 3.2.11 to get that there is no vertex neighbor and that the set of adjacent neighbors
is exactly the whole set S. Indeed, the infinite walks

(a−1c, b, b, . . .) , (id, b, b, . . .) , (b, b, b, . . .), (a−1c, a−1c, id, a−1c, id, . . .) ,
(id, a−1c, id, a−1c, . . .) , (a−1c, id, a−1c, id, . . .)

are in G1(S) iff their starting points are respectively b , b−1 , c , a−1c , bc , a−1bc . However,
this result will also be obtained by Proposition 3.3.15.

c

b

b−1

a−1c

b−1

c

b bc

a−1c

b−1

c

bc

b

a−1bc

a−1c

Example 3.3.10. Examples 3.3.11 and 3.3.12. Example 3.3.13.

Figure 3.6: Fundamental domain Q.
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edges labels

id→ id
id
b
c

id
b
c

id→ b id b
id→ b−1 b id

id→ c
id
c

c
id

id→ b−1c
b
c

c
b

b→ a−1b−1c c b
b→ a−1c c id
b−1 → a−1b−1c b c
b−1 → a−1c id c
c→ b−1c id id
c→ b c id
c→ b−1 id c
a−1c→ c b b
a−1c→ b b c
a−1c→ b−1 c b
a−1b−1c→ a−1c b b
b−1c→ a−1b−1c id id

Example 3.3.10

edges labels

id→ id
id
b
c

id
b
c

id→ b id b
id→ b−1 b id

id→ c
id
c

c
id

b→ a−1c id c
b−1 → a−1c c id
c→ c b b
c→ b b c
c→ b−1 c b

c→ bc
id
b

b
id

bc→ a−1c b b
a−1c→ bc c c
a−1c→ b c id
a−1c→ b−1 id c

Example 3.3.11

edges labels

id→ id
id
b

a−1c

id
b
a−1c

id→ b id b
id→ b−1 b id

id→ a−1c
id

a−1c
a−1c
id

b→ bc a−1c id
b→ c a−1c b
b−1 → bc id a−1c
b−1 → c b a−1c
c→ c id id
bc→ b a−1c id
bc→ b−1 id a−1c
bc→ a−1bc a−1c a−1c

a−1bc→ a−1bc
id
b

b
id

a−1bc→ b b a−1c
a−1bc→ b−1 a−1c b
a−1bc→ a−1c b b
a−1c→ bc b b

Example 3.3.12

Table 3.1: Tables of edges for three examples of contact graphs.

edges labels
b→ a−1b−1c b c
b−1 → a−1b−1c c b
a−1bc→ a−1b−1c id id
a−1b−1c→ a−1bc c c

bc→ a−1bc
id
b

b
id

Example 3.3.11

edges labels
c→ a−1b a−1c b
c→ ab−1 b a−1c
c→ a id a−1c
c→ a−1 a−1c id
b→ a−1 id b
b−1 → a b id
a−1bc→ a−1b2c id id
a−1b2c→ a a−1c b
a−1b2c→ a−1 b a−1c
a−1b2c→ a−1b id a−1c
a−1b2c→ ab−1 a−1c id
a−1b→ a−1b b id
a−1b→ a−2b2c id a−1c
ab−1 → ab−1 id b
ab−1 → a−2b2c a−1c id
a→ a−1b2c a−1c b
a−1 → a−1b2c b a−1c
a−2b2c→ a−2b2c b b

a−1c→ b2c
id
b

b
id

b2c→ b2c a−1c a−1c
Example 3.3.12

Table 3.2: Additionnal edges for the neighborhood graphs.
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c

id

e

b−1 b−1c b

a−1b−1c

a−1c

id, c

b, c

id c

b id

b c

id

c

cb

id

b

b

id

id

b−1 c b

a−1c

bc

a−1bc

a−1b−1c

b
id, c

id

c

id, b

b

b

c

id
id

c

c b

b
c

id, b

c id

Example 3.3.10. Example 3.3.11.

Figure 3.7: Examples 3.3.10 and 3.3.11: contact graphs G(R) (dark part) and neighborhood
graphs G(S) (dark and dimmed parts).
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a−1b2c

a−1 a−1b a−2b2c ab−1 a

c

b−1 bc b

b2c a−1c

a−1bc

id

id

id

a−1c

a−1c

b

b

a−1c

a−1c

id
a−1c

id a−1c

b

a−1c

b b id

id b

b a−1c

id

a−1c id

a−1c

b

id, b

b
a−1c b

id, b

b id

a−1c

id, a−1c

id

Figure 3.8: Example 3.3.12: contact graph G(R) (dark part) and neighborhood graph G(S) (dark
and dimmed parts).
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id

a−1c

a−1bc

b−1 bc b

c

id, a−1c

b

a−1c

id a−1c

a−1cid, b

b
a−1c

b

id a−1cid, b

b id

Figure 3.9: Example 3.3.13: contact graph G(R) and neighborhood graphs G(S).

We now answer the question of Gelbrich in these examples.

Proposition 3.3.14. The following assertions hold.

• The tiles defined in Example 3.3.10, Example 3.3.11 and Example 3.3.13 are disk-like.

• The tile defined in Example 3.3.12 is not disk-like.

To prove this, we will apply the criterion contained in Theorem 3.3.9 to the examples. To this
matter, we want to identify the adjacent neighbors of the central tile T in another way than in
Characterization 3.2.11.

Proposition 3.3.15. Let T be a connected p2-tile. Let a, b be the translations of R2 defined by
a(x, y) = (x+ 1, y) and b(x, y) = (x, y + 1), c the π-rotation of the plane c(x, y) = (−x,−y).

(i) If T has six neighbors

S = {b±1, c, a−1c, bc, a−1bc}
(or S = {b±1, c, a−1c, bc, a−1b−1c} )

then each element of S is an adjacent neighbor of id.

(ii) If T has seven neighbors S = {b±1, c, bc, a−1c, a−1bc, a−1b−1c}, then {b±1, c, bc, a−1c} are
adjacent neighbors of id.

(iii) If T has eight neighbors S = {b±1, c, a−1c, bc, b−1c, a−1bc, a−1b−1c}
( or S = {c, bc, ac, ab−1c, b±1, (a−1b)±1}),
then {b±1, c, a−1c} (resp. {c, bc, ac, ab−1c}) are adjacent neighbors of id.
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(iv) If T has twelve neighbors {c, a−1c, bc, abc, a−1bc, a−1b−1c, a±1, b±1, (ab)±1},
then {c, a−1c, bc} are adjacent neighbors of id.

Proof. Let us consider the case of six neighbors. We will show that the rotation c is an adjacent
neighbor. Let

T ′ := T ∪ a−1b−1c(T ) .

Then T ′ is a connected compact set that tiles R2 by Z2, i.e., T ′ provides a lattice tiling of R2. We
set

S1 =
⋃

q∈Z,r∈{0,1}(ab)
qcr(T ) =

⋃
q∈Z

(ab)q(T ′),

Ω1 =
(⋃

q<q′,r∈{0,1} a
qbq

′
cr(T )

)
=

(⋃
q<q′ aqbq

′
(T ′)

)
,

Ω2 =
(⋃

q>q′,r∈{0,1} a
qbq

′
cr(T )

)
=

(⋃
q>q′ aqbq

′
(T ′)

)
.

The identity R2 = S1 ∪ Ω1 ∪ Ω2 holds, and because of the assumption on the set S, we have
Ω1 ∩Ω2 = ∅.
The tile T ′ being a connected compact set, Lemma B.0.24 assures that its boundary ∂T ′ is con-
nected. Let us suppose that ∂T ′ ⊆ Ω1 ∪ Ω2, then we obtain

∂T ′ = (∂T ′ ∩ Ω1) ∪ (∂T ′ ∩ Ω2),

which is a partition of ∂T ′ into two relative closed sets that have empty intersection, a contradiction
to the connectedness of ∂T ′.
Consequently, ∂T ′ ∩ (S1 \ (Ω1 ∪ Ω2)) �= ∅, thus there is an s ∈ {ab, a−1b−1} such that

(T ′ ∩ s(T ′)) \
⋃

(q,q′)/∈{(0,0),±(1,1)}
aqbq

′
(T ′) �= ∅, (3.3.1)

since ab(T ′) and a−1b−1(T ′) are the only lattice tiles in S1 that are in contact with T ′ (this follows
from the assumption on S).
By the assumption on S, we have

T ′ ∩ ab(T ′) = T ∩ c(T ) and T ′ ∩ a−1b−1(T ′) = a−1b−1c(T ) ∩ a−1b−1(T ), (3.3.2)

hence, also by this assumption, (T ′ ∩ ab(T ′)) ∩
(
T ′ ∩ a−1b−1(T ′)

)
= ∅.

Thus, if s = ab, we get from (3.3.1) and (3.3.2) that

(T ∩ c(T )) \
⋃

γ∈Γ\{id,c}
γ(T ) �= ∅.

This indicates that c is an adjacent neighbor.
If s = a−1b−1, we obtain similarly that a−1b−1(T ) and a−1b−1c(T ) are adjacent neighbors, hence
after translation by ab we get again that c is an adjacent neighbor.
The other neighbors of the six-neighbor cases as well as the cases of seven, eight and twelve
neighbors can be treated similarly. (Note that the case of translations, say b for instance, does
not require the introduction of a substitution tile T ′: we can choose S1 =

⋃
q∈Z

bq(T ) and use
Lemma B.0.21 to obtain that ∂T intersects S1.)

We are now able to examine the disk-likeness of the tiles presented in Examples 3.3.10 to 3.3.13
by checking the three items of Theorem 3.3.9.
For each example, we will have to compute the graph Gγ for every γ ∈ A. The set of states of Gγ

is
{δ (Bγ′) ; there is an edge γ

δ|δ′
−−→ γ′ in G(A)}.

There is an edge in Gγ between two states δ (Bγ′) and δ′ (Bγ′′) iff

T ∩ γ′′(T ) ∩ δ′−1δ(T ) ∩ δ′−1δγ′(T ) �= ∅.
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This can easily be checked by looking at the sets V2 and V3.
We will also need the subgraph of G2 induced by the states {Bγ ; γ ∈ A}. Again, there is an edge
between Bγ and Bγ′ in this graph iff

T ∩ γ(T ) ∩ γ′(T ) �= ∅,

which can be seen using the sets V2.

Proof of Proposition 3.3.14.

• Example 3.3.10
The first item of Theorem 3.3.9 is fulfilled as we checked in Example 3.3.10.
From Proposition 3.3.15, we get

A = {b, b−1, c, a−1c, a−1b−1c, b−1c}.

We obtain the graphs Gγ for γ ∈ A in Figure 3.10. Each of them consists of a simple path.
So the second item is fulfilled.
The subgraph of G2 induced by the states {Bγ ; γ ∈ A} is represented on Figure 3.11: it is
a simple loop.
Thus the crystile of Example 3.3.10 is disk-like.

• Example 3.3.11
The first item of Theorem 3.3.9 is fulfilled (see page 35).
From Proposition 3.3.15, we get:

A = {b, b−1, c, a−1c, a−1b−1c, b−1c}.

We obtain the graphs Gγ in Figure 3.10. Each of them consists of a simple path. So the
second item is fulfilled.
The subgraph of G2 induced by the states {Bγ ; γ ∈ A} is represented on Figure 3.11: it is
a simple loop.
Thus the crystile of Example 3.3.11 is disk-like.

• Example 3.3.12
We show that the first item of the criterion of Theorem 3.3.9 is not fulfilled, in particular
we have

#V2(a−1bc, b−1) ≥ 2 .

Indeed, the infinite walks

a−1bc
id−→ a−1bc

b−→ a−1bc
b−→ a−1bc

b−→ . . .

b−1 id−→ a−1 b−→ a−1b2c
b−→ a−1 b−→ . . .

labelled by (id, b, b, b, . . .) and

a−1bc
b−→ a−1c

id−→ b2c
a−1c−−−→ b2c

a−1c−−−→ b2c
a−1c−−−→ . . .

b−1 b−→ c
id−→ a

a−1c−−−→ a−1b2c
a−1c−−−→ a

a−1c−−−→ . . .

labelled by (b, id, a−1c, a−1c, a−1c, . . .) are in G(S) (look at Figure 3.8). This means by
Proposition 3.2.10 that the points

x = lim
m→∞

g−1(g−1b)m(0, 0) =
(
−2

3
, 1
)
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and

y = lim
m→∞

g−1bg−1(g−1a−1c)m(0, 0) =
(
−4

9
,
1
3

)
are two distinct points of V2(a−1bc, b−1).
Thus the crystile of Example 3.3.12 is non disk-like.

• Example 3.3.13
The first item of the criterion of Theorem 3.3.9 is fulfilled (see page 37).
From Proposition 3.3.15 (replace b by b−1) we have

A = {b, b−1, c, a−1c, a−1bc, bc}.

We obtain the graphs Gγ in Figure 3.10. Each of them consists of a simple path. So the
second item is fulfilled.
The subgraph of G2 induced by the states {Bγ ; γ ∈ A} is represented in Figure 3.11: it is a
simple loop.
Thus the crystile of Example 3.3.13 is disk-like.

γ Gγ

b c(Ba−1b−1c) − c(Ba−1c)
b−1 b(Ba−1b−1c) − Ba−1c

c Bb−1 − Bb−1c − c(Bb)
a−1c c(Bb−1) − b(Bc) − b(Bb)

a−1b−1c b(Ba−1c)
b−1c Ba−1b−1c

Example 3.3.10.

γ Gγ

b Ba−1c

b−1 c(Ba−1c)
c b(Bb) − b(Bbc) − b(Bc) − Bbc − c(Bb−1)
bc b(Ba−1c)
a−1c Bb−1 − c(Bbc) − c(Bb)

Example 3.3.11.

γ Gγ

b a−1c(Bc)
b−1 Bc

c b(Bbc) − b(Bc) − Bbc

a−1c Bb−1 − a−1c(Ba−1bc) − a−1c(Bb)
a−1bc a−1c(Bbc)
bc a−1c(Bb−1) − Ba−1bc − b(Ba−1c) − b(Ba−1bc) − b(Bb)

Example 3.3.13.

Figure 3.10: Subgraph Gγ of the double neighboring graph G2.
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Example 3.3.10. Example 3.3.11.
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Example 3.3.13.

Figure 3.11: Restriction of G2 to the set of states {Bγ ; γ ∈ A}.

3.3.5 A criterion for a crystile using the neighbor graph

We saw in Section 3.2 how to obtain the neighbors of a given crystile T , i.e., from the expan-
sion map and the digit set defining the crystile. One thus easily gets the associated neighbor
graph, whose vertices are the isometries γ and where two vertices γ, γ′ are connected via an edge
if γ(T ) ∩ γ′(T ) �= ∅ (see Definition 2.2.22). In this subsection, we give a criterion for the disk-
likeness of a crystile checkable on this neighbor graph. Remember Example 3.3.11, depicted again
in Figure 3.12 with all of its neighbors. It produced a disk-like crystile T with seven neighbors,
five of them being adjacent to T . This leads to the adjacency and neighbor graphs seen on the
same figure. We see that for this disk-like example, the whole neighbor graph is an extension
of the adjacency graph obtained by adding the edges that join the vertices of the non-triangular
faces of the adjacency graph. The theorem of the present subsection establishes the validity of
this observation for crystiles in general and gives a reciprocal statement.

We will restrict the class of crystiles where the theorem applies, hence we give some definitions
(cf. [15]) before stating and proving the criterion.

Definition 3.3.16 (Drawing of a graph; faces of a graph). Let G = (V,E) be a planar graph with
set of vertices V and set of edges E. Then a drawing of G is a mapping π : (V,E)→ R2 such that
π(V ) is a discrete set of the plane, π(xy) is a simple arc joining π(x) and π(y), and

π(xy) ∩ π(uv) = {π(x), π(y)} ∩ {π(u), π(v)} (xy, uv ∈ E disjoint).

We also say that π(G) is a drawing of G. For every planar graph G with a drawing π, the set
R2 \ π(G) is an open set; its components are the faces of π(G).

Definition 3.3.17 (Derived graph, drawing extension and picture). Given a planar graph G =
(V,E) and a drawing π of G, the derived graph of G is the graph G1 = (V,E1) emerging from G
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•a−1b−1c •

• • b−1

•a−1c • c

• • id

•a−1bc • bc

• • b

• •

• •

Figure 3.12: The adjacency graph (solid edges) and the neighbor graph (solid and dashed edges)
for the p2-crystile of Example 3.3.11.

with the same set of vertices and where two vertices x, y are incident if their images π(x), π(y)
belong to the closure of the same face of G. E1 contains E, and we extend π to a mapping π1 on
E1 by joining the images of vertices corresponding to a new edge by a simple open arc inside one
of their common faces. π1 is called an extension of π. This extension gives rise to a picture of the
graph G1.

Remark 3.3.18. Such an extension π1 is not unique. Also note that its picture does not to be a
drawing in the above sense because the derived graph of a planar graph is not necessarily planar.

We need special drawings of the adjacency graph GA. In the following definition as well as in
the subsection we denote as follows a closed disk with radius r centered at x.

Notation 3.3.19. Br(x) = {y ∈ R2; ||y − x|| ≤ r}.

Definition 3.3.20 (Admissible drawing). Let GA = (Γ, E) be the adjacency graph of a crys-
tallographic tiling (see Definition 2.2.22), and let G′

A = (Γ, E′) be a subgraph of GA (possibily
G′

A = GA). Assume that G′
A is planar. We say that a drawing π of G′

A is admissible if there is a
p ∈ R2 with γ1(p) �= γ2(p) for all γ1, γ2 ∈ Γ, γ1 �= γ2 such that:

• π(γ) = γ(p) (γ ∈ Γ).

• There is a constant c ∈ R such that for all e ∈ E joining the vertices x and y, we have

π(e) ⊂ Bc(π(x)) ∩Bc(π(y)). (3.3.3)

Definition 3.3.21 (Admissible extension drawing). Let π1 be an extension of π as defined above.
We call π1 admissible if it satisfies (3.3.3) for all e ∈ E1 and the same constant c.

Theorem 3.3.22. Assume that T ⊂ R2 is a planar crystallographic reptile with respect to a
crystallographic group Γ. Then T is disk-like, if and only if the following three conditions all hold.

(i) The adjacency graph GA is a connected planar graph.

(ii) The digit set D induces a connected subgraph in GA.

(iii) GA has an admissible drawing π : GA → R2 such that the derived graph of GA is exactly the
neighbor graph GN .
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Remark 3.3.23. Condition (iii) says that two tiles γ1(T ), γ2(T ) are neighbors if and only if the
vertices π(γ1), π(γ2) lie on the boundary of a single face of the drawing π(GA).

Proof of Theorem 3.3.22. Assume that T ⊂ R2 is a planar crystallographic reptile with respect
to a crystallographic group Γ, an expanding affine map g and a digit set D. We split the proof of
the theorem in two parts.

Sufficiency 1. Assume that Conditions (i), (ii) and (iii) of Theorem 3.3.22 hold. In view of
Proposition 3.3.5, it suffices to show that the interior of T is connected. We fix an admissible
drawing π for GA, which gives an associated constant c and a point p defined in Definition 3.3.20
(w.l.o.g., p ∈ T ). GN is by assumption the derived graph of GA and we call π1 an admissible
extension of the drawing π.

For each k ∈ N, we define the set Dk of elements in Γ such that

gk(T ) =
⋃

γ∈Dk

γ(T ).

Thus we have D1 = D, and using Condition (ii), it can be shown recursively that the subgraph
Gk

A of GA induced by Dk is connected for every k ∈ N.

Our aim is to prove the result by contradiction. Indeed, assuming that int(T ) is disconnected,
we will find a curve in π(Gk

A) intersecting a curve in π1(GN \ Gk
A) and derive a contradiction

(GN \Gk
A is the subgraph of GN induced by the set of vertices Γ \ Dk).

We denote by D the diameter of the tiles γ(T ) (i.e., the maximal distance between two points
of a tile γ(T ), which does not depend on the isometry γ) and by L the minimal distance between
two disjoint tiles. We set M := max{D,L, c}.

Suppose that int(T ) is disconnected, and let z1 and z2 be two points in different components
of int(T ). Let k ∈ N be large enough such that B6M (gk(zi)) ⊂ gk(int(T )) (i ∈ {1, 2}). For
i = 1, 2, we denote by γ(i) an element of Dk such that the tile γ(i)(T ) contains gk(zi) and by Ωi

the component of gk(int(T )) containing gk(zi). In the following, Ap (1 ≤ p ≤ 6) will stand for the
unbounded connected region R2 \

(
BpM (gk(z1)) ∪BpM (gk(z2))

)
.

Then the boundary ∂Ω1 of the component Ω1 is contained in A6 and separates between B1 :=
B2M (gk(z1)) and B2 := B2M (gk(z2)). Consider the the finite collection

U := {γ ∈ Γ \ Dk; γ(T ) ∩ ∂Ω1 �= ∅}.

This definition implies that
⋃

γ∈U γ(T ) is contained in A5 and separates between B1 and B2. By
Lemma A.0.18, there is a simple closed curve C in

⋃
γ∈U γ(T ) which separates between B1 and

B2 too. We suppose that B1 lies in the bounded component of R2 \ C.

We denote by (C(t), t ∈ [0, 1]) a parametrization of C with C(0) = C(1).

As C is uniformly continuous, we may find a constant δ > 0 such that d(C(t), C(t′)) < L as
soon as |t− t′| < δ. Let m ≥ 2 and (tj)0≤j≤m be a subdivision of [0, 1] with 0 = t0 < t1 < . . . <
tm−1 < tm = 1 and tj+1 − tj < δ. Then, setting Cj := C(tj), we have d(Cj , Cj+1) < L for all
0 ≤ j ≤ m − 1. Choose now for each j ∈ {0, . . . ,m} an element αj ∈ U with α0 = αm and such
that Cj ∈ αj(T ). Then for all 0 ≤ j ≤ m− 1, d(αj(T ), αj+1(T )) < L. Thus, by the definition of
L, two consecutive tiles are neighbors, i.e., α−1

j αj+1 ∈ S ∪ {id}.

1Some parts of this proof are inspired by the proof of a theorem of Bandt and Wang in [7].
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We now construct a closed curve that is homotopic to C in A2 and is made by pieces π(e) for
some edges e ∈ GN \Gk

A. By Lemma A.0.17, this closed curve will also separate between B1 and B2.

Let j ∈ {0, . . . ,m − 1}. Consider the union Rj of the intersecting balls B2M (αj(p)) and
B2M (αj+1(p)). Then Rj ⊂ A2. Moreover, the line segments αj(p)Cj and Cj+1αj+1(p), the arc

Ej := π1(αj(p)αj+1(p))

as well as the piece
Cj := {C(t); t ∈ [tj , tj+1]}

of the curve C are all contained in the simply connected set Rj . Thus the arc Ej can be obtained
from the union of αj(p)Cj , Cj and Cj+1αj+1(p) by a deformation in Rj .

Consequently, the union
E :=

⋃
0≤j≤m−1

Ej

of the arcs is obtained from the union

F :=
⋃

0≤j≤m−1

(
αj(p)Cj ∪ Cj ∪Cj+1αj+1(p)

)

by a deformation in
⋃

0≤j≤m−1 Rj ⊂ A2.

Note that F separates between B1 and B2. By Lemma A.0.17, so does E . Thus every curve
from γ(1)(p) ∈ B1 to γ(2)(p) ∈ B2 intersects E . Since the subgraph Gk

A of GA induced by Dk

is connected and γ(1), γ(2) ∈ Dk, there is a connected path γ1 := γ(1), γ2, . . . , γq−1, γq := γ(2)

in GA with γi ∈ Dk, i = 1, . . . , q. The image by π of this path is a curve in π(Gk
A) joining

γ(1)(p) and γ(2)(p). It is intersected by E , which is a closed curve in π1(GN \ Gk
A). Thus, an

arc π1(αj(p)αj+1(p)) (possibly degenerated in the sense that αi = αj+1) must intersect an arc
π(γi(p)γi+1(p)). But by the assumption on the drawing, either π1(αj(p)αj+1(p)) is in π(GA) or

π1(αj(p)αj+1(p)) \ {αj(p), αj+1(p)}

is contained in a face of the drawing. In both cases, these arcs must share a common end point
to intersect, contradicting the disjointness of {α0, . . . , αm} and {γ1, . . . , γq}.

Necessity. Assume that T is disk-like. We have to check Conditions (i), (ii) and (iii) of The-
orem 3.3.22. Condition (ii) can be directly inferred from the disk-likeness of T . Thus we have to
show that Conditions (i) and (iii) are also satisfied.

As γ(T ) ∩ γ′(T ) is either empty or a connected set for all distinct elements γ, γ′ ∈ Γ, the
boundary ∂T consists of arcs P1, . . . , Pk, where 3 ≤ k ≤ 6 and Pj = T ∩ γj(T ) (cf. [19]). Here
γ1, . . . , γk are the adjacent neighbors of id. The arcs P1, . . . , Pk can be arranged to a circular
chain (see Definition A.0.13 in the appendix) in the sense that for all distinct i, j ∈ {1, 2, . . . , k}
the intersection Pi ∩ Pj is a singleton if j ≡ i+ 1(mod k), and is an empty set otherwise.

Choose an interior point x1 of P1 (in subspace topology), and let Orb(x1) = {γ(x1); γ ∈ Γ} be
the Orbit of x1 under the crystallographic group Γ. Clearly, the number of points in Orb(x1)∩∂T
is between 1 and k. If it is not k, we can choose a least integer i1 such that Orb(x1) ∩ Pi1 = ∅.
Let x2 be an interior point of Pi1 , then Orb(x1) ∩ Orb(x2) = ∅ and the number of points in
(Orb(x1) ∪Orb(x2)) ∩ ∂T is between 2 and k. Going on with this procedure for at most k − 1
steps, we will find k′ points x1, . . . , xk′ on ∂T , where k′ ≤ k, such that the number of points in⎛

⎝ k′⋃
i=1

Orb(xi)

⎞
⎠ ∩ ∂T
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•a−1b−1c •

• • b−1

•a−1c • c

• • id

•a−1bc • bc

• • b

• •

• •

The graph GA (solid)
and its derived graph (solid and dashed).

Figure 3.13: p2-crystile with seven neighbors, digit set {id, b, c}.

is exactly k. Rename the k points of the above intersection as y1, . . . , yk with yl ∈ Pl.

By the Schönflies Theorem [51], choose a homeomorphism h : T → {reit; 0 ≤ t < 2π, 0 ≤ r ≤ 1}
such that h(yl) = e

2πl
k i. Let Rl = {re 2πl

k i; 0 ≤ r ≤ 1} be the radius joining the origin 0 and the
point h(yl), for 1 ≤ l ≤ k. Then W = h−1

(⋃k
l=1 Rl

)
is a union of arcs in T which are disjoint

except at their common endpoint h−1(0) ∈ int(T ).

Now we can see that
⋃

γ∈Γ γ(W ) is an admissible drawing of GA and that Condition (i) is
satisfied. Clearly, each triple point of the tiling {γ(T ); γ ∈ Γ} must be enclosed in a face of the
above drawing. Since an arc γ ◦h−1 (Rl) is contained in the boundary of a face containing a triple
point x if and only if x ∈ γ(Pl), and since two tiles γ(T ), γ′(T ) are neighbors if and only if their
intersection γ(T ) ∩ γ′(T ) contains a triple point x, we see that Condition (iii) is satisfied.

3.3.6 Applications

The examples of Subsection 3.3.4 could be treated with the third criterion (Theorem 3.3.22). We
give here two new concrete examples, one of a p2-crystile with seven neighbors, and one of a p3-
crystile, both with three digits. They correspond to disk-like candidates of Gelbrich’s paper [19].

Example 3.3.24. (see [19, p. 252, (c)]) Let

a(x, y) = (x+ 1, y),
b(x, y) = (x, y + 1),
c(x, y) = (−x,−y).

Then the p2 group Γ can be written as

Γ = {aibjck; i, j ∈ Z, k ∈ {0, 1}}.

The expanding mapping g is chosen as g(x, y) = (y, 3x+ 1), the digit set as D = {id, b, c}, thus
the tile T is defined by the set equation

g(T ) = T ∪ b(T ) ∪ c(T ).
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It is depicted in Figure 3.13.
It can be shown with the tools developed in Section 3.2 that T has exactly the seven neighbors

S = {b, b−1, c, b−1c, a−1c, a−1bc, a−1b−1c},

and that its adjacent neighbors are

A = {b, b−1, c, b−1c, a−1c}.

Thus the adjacency graph has a drawing as in Figure 3.13 (solid edges). Its neighbor graph GN is
exactly the derived graph of the drawing of GA (see Figure 3.13 also, solid and dashed edges). In
this case, T satisfies all the conditions in Theorem 3.3.22 because the digit set D is A-connected.
Hence it is disk-like.

Example 3.3.25. This example is devoted to a p3-crystile with ten neighbors which is called
“terdragon”. It also occurs in Gelbrich’s paper (see [19, p. 255]). It is the only disk-like p3-reptile
candidate with three digits found by Gelbrich. We show here that it is indeed disk-like.

• • • • • • •

• • • •

•c2

•
ab−1c

•ac2

•
a2b−1c

• • •

•
a−1

•id • a •

• •c • bc2

• ac •abc2

• •

• • • •

• • • • • • •

The graph GA and part of its derived graph.

Figure 3.14: The “terdragon”, a p3-crystile with ten neighbors, digit set {id, ac2, bc2}.

Let

a(x, y) = (x + 1, y),

b(x, y) = (x + 1/2, y+
√

3/2),

c(x, y) =
(
(−x−

√
3y)/2, (

√
3x− y)/2

)
.

A p3-crystallographic group is then generated by a, b and c, i.e.,

Γ = {aibjck; i, j ∈ Z, k ∈ {0, 1, 2}}.

The expanding mapping g is chosen to be g(x, y) =
√

3(y,−x), the digit set is D = {id, ac2, bc2},
thus the tile T is defined by the set equation

g(T ) = T ∪ ac2(T ) ∪ bc2(T ).
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Figure 3.15: The two neighbor configurations of disk-like lattice tiles.

It is depicted in Figure 3.14. Using the tools developed in Section 3.2 it can be shown that T has
exactly the ten neighbors

S = {a, a−1, c, c2, ac, ac2, bc2, ab−1c, abc2, a2b−1c}

four of which are adjacent. These are given by

A = {ac, ac2, bc2, ab−1c}.

Thus the adjacency graph has a drawing as in Figure 3.14. The neighbor graph GN is exactly
its derived graph (see Figure 3.14 where the additional edges connected to id are dashed). In
this case, T satisfies all the conditions in Theorem 3.3.22 because the digit set D is A-connected.
Hence it is disk-like.

3.3.7 A criterion for lattice and p2-crystiles

The last criterion will fully characterize the disk-like lattice and p2-reptiles. The preceding criterion
is in a way inconvenient, because all the adjacent neighbors have to be determined, whereas
simple techniques, as used in Proposition 3.3.15, only allow to identify some of them. In this
subsection, we are interested in more specialized criteria, but easier to apply. In fact, Grünbaum
and Shephard [22] listed all possible configurations of the neighbors of a disk-like crystallographic
tile. There are two possibilities in the lattice case, corresponding to six and eight neighbors (see
Figure 3.15), and six possibilities in the p2-case, corresponding to six, seven, eight and twelve
neighbors. Hence we just need to concentrate on theses cases and get for them the sufficient
conditions; this is what the general form of the preceding criterion will lead to.

The criterion of this subsection was already found in 2002 by Bandt and Wang in the lattice
case (see [7]). In this case, as already told, disk-likeness happens only if T has six or eight neigh-
bors; the criterion states that it eventually depends on the shape of the digit set D. A new proof
of this result is given here, as well as its extension to the p2-case. The technique of the proof
makes use of the neighbor and adjacency neighbor graphs associated to the tilings. Moreover, on
the way to the proof, we will see that lattice and p2-tiles (not necessarily with a replication prop-
erty) always have at least six neighbors, whose configuration is fixed if the number of neighbors is
exactly six.

The proof seems to give general ideas for other crystallographic groups but the details closely
depend on the shape of the neighbor set of the crystile, that is why only the lattice and p2-cases
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are treated here.

The condition on the digit set will use the following notion of set-connectedness.

Definition 3.3.26 (Set-connectedness). If D and F are two sets of isometries in R2, we say that
D is F-connected iff for every disjoint pair (d, d′) of elements in D, there exist an n ≥ 1 and
elements d =: d0, d1, . . . , dn−1, dn := d′ of D such that d−1

i di+1 ∈ F for i = 0, . . . , n− 1.

Remark 3.3.27. This notion of set-connectedness is related to the connectedness of tiles : it can
be shown as in [23, 34] that a necessary and sufficient condition for a crystile as in Definition 3.1.3
to be connected is that the digit set is S-connected, where S is the neighbor set of the crystile.

We will always assume that the groups Γ involved in the tilings below are the exact symmetry
groups of the tilings (see [22]).

The main result in Bandt and Wang [7] was the following criterion of disk-likeness for plane
crystiles defined as in Definition 3.1.3 in the case that Γ is a plane lattice.

Proposition 3.3.28 (see [7, Theorems 2.1 and 2.2]). Let T be a self-affine lattice plane tile with
digit set D.

(1) Suppose that the neighbor set S of T has not more than six elements. Then T is disk-like
iff D is S-connected.

(2) Suppose that the neighbor set S of T has eight elements {a±1, b±1, (ab)±1, (ab−1)±1}, where a
and b denote two independent translations. Then T is disk-like iff D is {a±1, b±1}-connected.

We will give a new proof of this result and extend it to p2-groups as follows.

Theorem 3.3.29. Let T be a crystile that tiles the plane by a p2-group. Let D be the corresponding
digit set.

(1) Suppose that the neighbor set S of T has six elements. Then T is disk-like iff D is S-
connected.

(2) Suppose that the neighbor set S of T has seven elements

{b±1, c, bc, a−1c, a−1bc, a−1b−1c},

where a, b are translations and c is a π-rotation.
Then T is disk-like iff D is {b±1, c, bc, a−1c}-connected.

(3) Suppose that the neighbor set S of T has eight elements

{b±1, c, a−1c, bc, b−1c, a−1bc, a−1b−1c}
(or {c, bc, ac, ab−1c, b±1, (a−1b)±1} ),

where a, b are translations and c is a π-rotation.
Then T is disk-like iff D is {b±1, c, a−1c}- (resp. {c, bc, ac, ab−1c}-) connected.

(4) Suppose that the neighbor set S of T has twelve elements

{c, a−1c, bc, abc, a−1bc, a−1b−1c, a±1, b±1, (ab)±1},

where a, b are translations and c is a π-rotation.
Then T is disk-like iff D is {c, a−1c, bc}-connected.

Remark 3.3.30 (To Proposition 3.3.28 and Theorem 3.3.29).

1. According to Grünbaum and Shephard’s classification of isohedral tilings (see [22, 6.2, p.285
ff]), the mentioned cases are the only ones for disk-like lattice and p2-tiles in the plane.
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2. In each item of these statements, the set with respect to which the digit set is connected
reveals to be exactly the set of adjacent neighbors of the central tile. Indeed, it corresponds
to the set of adjacent neighbors of the involved disk-like tile in Grünbaum and Shephard’s
classification (see [22]).

3. Propositions 3.3.35 and 3.3.37 will give the exact shape of the neighbor set that appears in
Proposition 3.3.28 (1) and Theorem 3.3.29 (1), i.e., in the 6-neighbor cases.

An easy way to visualize these results is by considering the neighbor and adjacency graphs,
whose definitions were given in the basics. They are depicted in Figures 3.16 to 3.19 (see Propo-
sitions 3.3.35 and 3.3.37 for the choice of the vertices in the six neighbor-cases). Disk-likeness
happens iff D is connected along the solid edges; the remaining edges are dashed.

• • • (ab)−1

• b
−1

• • a
−1

• id • a

• • b • ab •

• • • •

• • (ab)−1

• b−1

• ab−1

•

• • a−1

• id • a •

• • a−1b • b • ab •

• • • • •

(1) 6 neighbor case (see also Proposition 3.3.35). (2) 8 neighbor case.

Figure 3.16: Proposition 3.3.28.

c•

bc•

b−1c•

id
•

b•

b−1

•

a−1c•

a−1bc•

a−1b−1c•

•

•

•

c•

bc•

b−1c•

id
•

b•

b−1

•

a−1c•

a−1bc•

a−1b−1c•

•

•

•

Shape 1. Shape 2.

Figure 3.17: Theorem 3.3.29 (1): 6 neighbor case (see also Proposition 3.3.37).

This remaining part of this subsection is organized as follows. We will first prove that 6 is the
least number of neighbors for lattice and p2-tiles (with or without replication property). Then,
we will see that for a lattice tile with six neighbors, the shape of its neighbor set is fixed. This
will also hold for a p2-tile if it is supposed to be connected. Eventually, we use the neighbor
and adjacency graphs to give a new proof of Bandt and Wang’s result as well as the proof of its
extension to p2-crystiles.
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c•

bc•

b−1c•

id•

b•
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•

•

•

• • b−1

• ab−1c • ab−1

•

• • c • id • ac •

• • a−1b • bc • b •

• • • • •

Shape 1. Shape 2.

Figure 3.18: Theorem 3.3.29 (3): 8 neighbor case.

•a−1b−1c •

• • b−1

•a−1c • c

• • id

•a−1bc • bc

• • b

• •

• •

a•

abc•

c
•

b−1

•

ab•

id•

bc
•

a−1b−1c•

b•

a−1c•

a−1b−1•

a−1

•

a−1bc•

(2) 7 neighbor case. (4) 12 neighbor case.

Figure 3.19: Theorem 3.3.29 (2) and (4).

Least neighbor number

We are interested in the least number of neighbors a tile has in a lattice or a p2-tiling. We will show
that for tilings using a single compact tile this number is six. The proof only uses the existence
of triple points, defined as follows (compare with Definition 3.2.7).

Definition 3.3.31 (Double point, triple point). Let {γ(T ); γ ∈ Γ} be a tiling of Rn which uses
a single prototile T . A point x ∈ T is a double point if there is γ ∈ Γ \ {id} such that x ∈ γ(T );
and x ∈ T is called a triple point if there exist two distinct elements γ1, γ2 ∈ Γ \ {id} such that
x ∈ γ1(T ) ∩ γ2(T ).

In Definition 3.2.7, we called VL the set of (L+ 1)-folded points; V1 is the boundary of the tile
T . Note that sets of vertices have been recently studied, for example in [14] where the Hausdorff
dimension of VL was computed.

It is clear that a tiling of R by compact pieces has double points. Lebesgue’s covering theorem
[16, 26, p.78, Theorem 1.8.15] says that if C is a finite closed cover of the n-cube [0, 1]n no member
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of which meets two opposite faces of [0, 1]n then C contains n + 1 elements with a non-empty
intersection. See also [1] for a recent sharpening of this result. As a corollary of this, we can infer
the following proposition.

Proposition 3.3.32. For each tiling {γ(T ); γ ∈ Γ} of Rn which uses a single compact prototile
T , the set of (n+ 1)-vertices is nonempty.

Proposition 3.3.33. Let T be a compact tile providing a tiling of the plane by a lattice Γ. Then
its set of neighbors S has at least six elements.

Proof. Suppose S has less than six elements. Then S = {a, a−1, b, b−1} for two independent
translations a, b ∈ Γ by Remark 3.1.5.3.By the existence of triple points, two intersections T∩ai(T )
and T ∩ bj(T ) (or T ∩ ak(T )) must intersect for some i, j ∈ {−1, 1} (or distinct i, k ∈ {−1, 1});
but this leads to the existence of a new neighbor aib−j(T ) (or ai−k(T )).

We now consider the case of p2-tiles.

Proposition 3.3.34. Let T be a compact tile providing a tiling of the plane by a p2-group Γ.
Then the set of neighbors S has at least six elements.

Proof. Assume that Γ is generated by the two translations u, v and the rotation r of Defini-
tion 2.2.10. Then one can easily check the commutation rules uivj = vjui and uivjr = ru−iv−j

for all i, j ∈ Z. Moreover, if both γ and γ′ are π-rotations, γ−1γ′ is a translation, and if exactly
one of them is a translation, then γ−1γ′ is a π-rotation. We will also often use the fact that
γ(T ) ∩ γ′(T ) �= ∅ implies γ−1γ′ ∈ S.

By Remark 3.1.5.3. the neighbor set S of T generates Γ; thus S contains an element ui0vj0r =
ηr, where η = ui0vj0 is a translation. Let T ′ = T ∪ ηr(T ), then {uivj(T ′); i, j ∈ Z} is a lattice
tiling of the plane.

Obviously, if T ′ has ten neighbors or more, then T has at least six neighbors.

If T ′ has eight neighbors, say {uikvjk(T ′); 1 ≤ k ≤ 8} = {γ±1
k (T ′); 1 ≤ k ≤ 4}, then

[T ∪ ηr(T )] ∩ [γk(T ) ∪ γkηr(T )] �= ∅
⇒ ∀k ∈ {1, . . . , 4}, {γ±1

k } ⊂ S or γ−1
k ηr ∈ S or γkηr ∈ S.

If γk ∈ S for some k ∈ {1, 2, 3, 4}, then S has at least six elements. If γk /∈ S for each k ∈ {1, 2, 3, 4},
we have γik

k ηr ∈ S for i1, i2, i3, i4 ∈ {1,−1}. Then S has a sixth element. Otherwise, #S = 5, and
by the existence of triple points, T ∩γij

j ηr(T ) must intersect T∩γik

k ηr(T ) for some j, k ∈ {1, 2, 3, 4}
and ij ∈ {−1, 0, 1}, ik ∈ {−1, 1}. This indicates that S has a sixth element γij

j γ
−ik

k .

If T ′ has exactly six neighbors, there exist α, β ∈ Γ = 〈u, v〉 such that α±1(T ′), β±1(T ′),
δ±1(T ′) = (αβ)±1 (T ′) are the six neighbors of T ′ (see Proposition 3.3.35). Let F1 = {α±1, β±1, δ±1}.
Then, T has at least four neighbors:

ηr(T ), αi1 (ηr)k1 (T ), βi2(ηr)k2 (T ), δi3(ηr)k3 (T )

for some k1, k2, k3 ∈ {0, 1} and i1, i2, i3 ∈ {−1, 1}.

We claim that S contains at least one translation γ. Otherwise, the existence of triple points
indicates that T ∩ tr(T ) intersects T ∩ t′r(T ) for some tc �= t′c ∈ S, where t, t′ are translations.
Then, tr(T ) ∩ t′r(T ) �= ∅ and t−1t′(T ) ∩ T �= ∅, thus t−1t′ ∈ S.

By this claim, if kj �= 0 for each j ∈ {1, 2, 3}, S contains a translation γ and thus

{ηr, γ±1, αi1 (ηr)k1 , βi2(ηr)k2 , δi3(ηr)k3} ⊂ S.
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If two of k1, k2, k3 are 0, say k1 = k2 = 0, then S contains at least the six elements

ηr, α±1, β±1, δi3(ηr)k3 .

If now exactly one of k1, k2, k3 is 0, say k1 = 0, then S contains at least the five elements

ηr, α±1, βi2(ηr), δi3 (ηr),

where δ = αβ. If S has a sixth element, we are done. We suppose on the contrary that

S = {ηr, α±1, βi2(ηr), δi3 (ηr)}.

Consider T ′′ = T ∪ βi2ηr(T ), which tiles R2 under the action of the lattice < α, β >. Then
βi2ηr(T ) has exactly five neighbors

βi2(T ), α±1βi2ηr(T ), T, βi2δ−i3(T ),

hence, T ′′ has exactly six neighbors

β±1(T ′′), α±1(T ′′),
(
δi3β−i2

)±1
(T ′′).

We can infer from Proposition 3.3.35 that δi3β−i2 ∈ {(αβ)±1,
(
αβ−1

)±1}. This is impossible,
since i2, i3 ∈ {−1, 1}.

Neighbor set

We now show that the shape of the neighbor set of a compact lattice tile or a compact connected
p2-tile is already determined by the fact that it contains the least possible number of elements
(i.e., six elements).

Proposition 3.3.35. Let T be a tile providing a tiling of the plane by a lattice. If the set S of
neighbors of T has exactly six elements, then

S = {a, a−1, b, b−1, ab, (ab)±1}

for some a, b ∈ Γ with Γ = 〈a, b〉.

Proof. By Remark 3.1.5.3. and Proposition 3.3.33 of the preceding subsection, we already know
that there exist two elements a, b ∈ S ⊂ Γ such that Γ = 〈a, b〉 and S = {a±1, b±1} ∪ {δ±1} for
some δ ∈ Γ, we just need to assure that δ has the form (ab)±1 or

(
ab−1

)±1. This can be shown in
the following four steps.

(i) T ∩ a(T ) does not intersect T ∩ a−1(T ). Otherwise, δ = a2, and the union Q of all those
compact sets ak(T ∩ b(T )) with k ∈ Z is a closed set such that R2 \ Q has two unbounded
components.
Let

Q− =
⋃
k≤0

ak(T ∩ b(T )), Q+ =
⋃
k>0

ak(T ∩ b(T )).

Then, one can see that both R2 \Q− and R2 \Q+ have exactly one unbounded component.
That is two say, there are two points in the sphere separated by Q = Q ∪ {∞} = Q− ∪Q+

which can not be separated by Q− = Q0 ∪ {∞} or Q+ = Q+ ∪ {∞} alone. As the sphere
is a Janizewski space (see [36, §61]), this implies that Q− =

⋃
k≤0 a

k(T ∩ b(T )) and Q+ =⋃
k>0 a

k(T ∩ b(T )) must intersect each other.
Therefore, aib(T ) ∩ aj(T ) �= ∅ for some i ≤ 0 and j > 0, and thus aj−ib ∈ S with j − i ≥ 1,
which would increase the number of neighbor.

(ii) Similar to item (i), T ∩ b(T ) does not intersect T ∩ b−1(T ).
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(iii) If T ∩ ai(T ) and T ∩ bj(T ) intersect for i, j ∈ {−1, 1}, then ab ∈ S or ab−1 ∈ S, thus δ or
δ−1 is equal to ab or ab−1.

(iv) Suppose
(
T ∩ ai(T )

)
∩
(
T ∩ bj(T )

)
= ∅ for every i, j ∈ {−1, 1}, then by items (i) and

(ii) and the existence of triple points, T ∩ ai(T ) or T ∩ bj(T ) must intersect [T ∩ δ(T )] ∪[
T ∩ δ−1(T )

]
. We may assume without loss of generality that T ∩ a(T ) intersects T ∩ δ(T ).

Then, a(T ) ∩ δ(T ) �= ∅ and a−1δ ∈ S, while δ /∈ {a±1, b±1}. Thus we have a−1δ ∈ {b, b−1},
that is to say, δ = ab or δ = ab−1 again.

In the case of p2-tiles, we require the tiles to be connected. Indeed, we will use Lemma B.0.24
of the appendix that tells that the boundary of connected tiles is connected.

Let us consider a tiling of the plane by a single tile T and a group of isometries Γ. Recall that
Bγ = T ∩ γ(T ) for γ ∈ S.

Lemma 3.3.36. Suppose that the neighbor set of T contains m ≥ 2 elements γ1, . . . , γm and that
∂T is connected. Then each Bγi , i = 1, . . . ,m intersects at least one Bγj , j �= i.

Proof. Writing for the boundary ∂T =
⋃m

i=1 Bγi , this follows from the connectivity of ∂T .

Now Γ is supposed to be a p2-group.

Proposition 3.3.37. If T is a compact connected set which is the central tile of a p2-tiling and
if the neighbor set S of T contains exactly six elements, then S has one of the following shapes
(where a, b are independent translations and c is a π-rotation):

S = {b±1, c, a−1c, bc, a−1bc} or S = {b±1, c, a−1c, bc, a−1b−1c}.

Remark 3.3.38. Since the inverse of tr is itself for t a translation and r a π-rotation, we have
the symmetry property: S = S−1.

Proof. We will freely make use of the following facts: if γ, γ′ ∈ Γ, then from Bγ∩Bγ′ �= ∅ it follows
that γ−1γ′ ∈ S. Moreover, if both γ and γ′ are π-rotations, γ−1γ′ is a translation, and if exactly
one of them is a translation, then γ−1γ′ is a π-rotation.

At least one translation b �= 1 and a π-rotation c must belong to the neighbor set. Indeed, if
S contains only translations, it can not generate a p2-group, which contradicts Remark 2.2.25.2.
If it contains only rotations, then by the existence of triple points, two neighbors γ(T ), γ′(T ) of T
must intersect, thus the translation γ−1γ′ should also be a neighbor.
Since if γ(T ) intersects T , then γ−1(T ) also intersects T , and we obtain that {b, b−1, c} ⊂ S.

We now show that no other translation can be in S. To this matter, we suppose on the contrary
that

S = {b, b−1, a, a−1, c, c′}
with a �= id, b, b−1 a translation and c′ a π-rotation. Two cases may occur.
If a and b are dependent, then the neighbor set contains four translations that are linearly de-
pendent and two rotations. Using Lemma 3.3.36, one rotation can be written in terms of the
translation b and of the other rotation. This contradicts the fact that S is a generating set for Γ.
If a and b are independent, then the set Bb can not intersect the sets Bb−1 , Ba, Ba−1 . Thus it
intersects Bc or Bc′ , thus c′ = b−1c or c = b−1c′. Doing the same with the set Ba, we obtain that
also c′ = a−1c or c = a−1c′. This is a contradiction, since a �= b, b−1.

Consequently, we can write for the neighbor set:

S = {b, b−1, c, c1, c2, c3},
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where c1, c2, c3 are the remaining π-rotations. If the set Bc intersects Bb or Bb−1 , then one of the
remaining rotations must be b±1c; if it intersects one of the sets Bγ associated to the remaining
rotations, say γ = c1, then cc1 = b±1, so c1 = b±1c. Since by Lemma 3.3.36 one of these
possibilities occurs, we can suppose w.l.o.g. (by exchanging b and b−1) that bc belongs to the
neighbor set, thus

S = {b, b−1, c, bc, c2, c3}.

To obtain a π-rotation that can be written in terms of a translation a independent of b, let
us consider the tile T ′ = T ∪ c(T ). This tile provides a lattice tiling of the plane: there are
independent translations a′, b′ �= id such that

R2 =
⋃

(i,j)∈Z2

a′ib′j(T ′).

By Remark 2.2.25.3. for a lattice tiling there must be a neighbor of the central tile that is not a
translation by some powers of b, i.e, there is an a �= id independent of b such that a(T ′) ∩ T ′ �= ∅.
This leads, as a /∈ S, to ac ∈ S or a−1c ∈ S. W.l.o.g. (exchange a and a−1), we suppose that
a−1c ∈ S, such that

S = {b, b−1, c, bc, a−1c, c3}.

The rotation c3 can be written with the help of a, b and c. Indeed, the set Ba−1c can not
intersect the sets Bc and Bbc (this would introduce new translations in the set of neighbors),
thus it must have nonempty intersection with Bb, Bb−1 or Bc3 . In all these cases we obtain that
c3 = a−1b±1c, thus S has one of the two shapes of our proposition.

Proof of Bandt & Wang-like statements

This part is devoted to the proof of Proposition 3.3.28 and Theorem 3.3.29. We first recall a
result of [7], which is a lattice tile analogue of Proposition 3.3.15 of Section 3.3.4, where adjacent
neighbors of p2-tiles having a neighbor set of known shape could be identified. Then, we give a
formulation of Theorem 3.3.22 with weaker assumptions. The proofs eventually follow.

If the shape of the neighbor set of the central tile is given, it is possible to identify all or some
of the adjacent neighbors of this tile. This was already done for p2-tiles in Proposition 3.3.15, and
the following is true for lattice tiles.

Proposition 3.3.39 (see [7, Lemma 3.3]). Let T be a connected tile providing a lattice tiling. Let
a, b be two independent translations.

(i) If T has six neighbors
S = {a±1, b±1, (ab−1)±1},

then S consists of adjacent neighbors of id.

(ii) If T has eight neighbors

S = {a±1, b±1, (ab−1)±1, (a−1b)±1},

then {a±1, b±1} are adjacent neighbors of id.

Proof. This proposition was proved in [7] by an ε-argument, we give here a shorter proof using
directly the connectedness of the boundary of ∂T as in Proposition 3.3.15]. The connectedness of
∂T is indeed assured by Lemma B.0.24 and the connectedness of T .
To Item (i) : consider the subsets of the plane:

Q+ : =
⋃

m,n∈Z,n>0 a
mbn(T ),

Q− : =
⋃

m,n∈Z,n<0 a
mbn(T ).
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Then Q+ ∩Q− is easily seen to be empty (a nonempty intersection would contradict the shape of
S). Assume that a is not an adjacent neighbor, hence a−1 is also not an adjacent neighbor, and
the following equation for the boundary of T holds:

∂T =
⋃

γ ∈ {b±1, (ab−1)±1}
T ∩ γ(T ),

hence, ∂T = (∂T ∩ Q+) ∪ (∂T ∩Q−) induces a separation of ∂T .
The cases of b and a, b as well as Item (ii) are shown likewise.

The criterion of disk-likeness as it is stated in Theorem 3.3.22 involves the knowledge of all
adjacent neighbors of the central tile. Since Propositions 3.3.39 and 3.3.15 only identify some of
them, we can not apply this criterion directly. We thus give the following criterion, derived from
Theorem 3.3.22. We use the notations of Definition 2.2.22.

Proposition 3.3.40. Assume that T is a plane crystallographic reptile with respect to a crystal-
lographic group Γ, an expanding affine mapping g and a digit set D. We write Dk for the set of
isometries such that

gk(T ) =
⋃

δ∈Dk

δ(T ).

Let A denote the set of adjacent neighbors of the central tile. Then T is disk-like, if and only if
there is a subset A′ of A with A′−1 = A′ such that the following three conditions all hold:

(i) The subgraph GA(A′) of the adjacent graph is a connected planar graph.

(ii) For every k ∈ N, the set Dk induces a connected subgraph in GA(A′).

(iii) GA(A′) has an admissible draw π : GA(A′) → R2 such that the derived graph of GA(A′) is
exactly the neighbor graph GN .

Remark 3.3.41. Condition (iii) says that two tiles γ1(T ), γ2(T ) are neighbors if and only if the
vertices π(γ1), π(γ2) lie on the boundary of a single face of the drawing π(GA(A′)).

The proof is omitted since it runs along the same lines as for Theorem 3.3.22 (note that the
necessity part is simply proved by taking A′ = A and applying the quoted theorem).

We apply Proposition 3.3.40 in order to reprove Proposition 3.3.28 and to prove its extension
to p2-crystiles, which is the content of Theorem 3.3.29. As we noticed in Remark 3.3.30, if T
is disk-like, the sets A are given in Grünbaum and Shephard’s classification. The main diffi-
culty lies in the proof of Item (ii) of Proposition 3.3.40, i.e., the A′-connectivity of the iterates
Dk when D is assumed to be A′-connected. This part is the purpose of the two following lemmata.

We use the notations of Proposition 3.3.40.

Lemma 3.3.42. Suppose that the collections D∪Dγ are A′-connected for every γ ∈ A′. Then so
also is Dk for all k ∈ N (see Remark 3.1.5 for the definition of Dγ).

Proof. We prove that D2 is A′-connected if D = D1 is, the result then follows by induction on k.

First note that if a set M ⊂ Γ is A′-connected, then so is γM for all γ ∈ Γ. Let d1, d2 ∈ Γ with
d−1
1 d2 ∈ A′. Taking M = D ∪Dd−1

1 d2
and γ = gd1g

−1, we see that Dd1 ∪ Dd2 is A′-connected.
Write

D2 =
⋃

γ∈D1

Dγ ,

and choose γ ∈ D1 with γ �= id. By the A′-connectedness of D1, there is a chain of elements
γ1, . . . , γn in D1 from γ1 = id to γn = γ such that γ−1

i γi+1 ∈ A′. Thus Dγ1 ∪ . . . ∪ Dγn ⊂ D2 is
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A′-connected. Doing this for each γ ∈ D1 \ {id}, we obtain that D2 is A′-connected.

Writing Dk+1 =
⋃

γ∈Dk Dγ and assuming that Dk is A′-connected, one can show similarly that
so is Dk+1 too.

Lemma 3.3.43. Suppose the crystile T has the neighbor set S and that its set of digits D is
A′-connected, where the pairs (S,A′) are read off from the items Proposition 3.3.28 (2) and The-
orem 3.3.29 (2)(3)(4). Then the collections D ∪ Dγ are A′-connected for every γ ∈ A′.

Proof. We first state some properties valid for all the considered pairs (S,A′), and then give sep-
arate proofs.

Note that since D is a complete set of coset representatives of Γ/gΓg−1, we have

• Dγ ∩ D′
γ = ∅ for γ �= γ′, and

• ∀γ ∈ Γ, ∃!γ′ ∈ Γ such that γ ∈ Dγ′ .

For each constellation (S,A′), we consider a drawing π associated to GA(A′). In the sense of
Definition 3.3.17, and by assumption on the neighbor set S, a picture of the neighbor graph GN

is obtained by adding all the diagonal line segments in each of the non-gasket-like simple loops in
Figures 3.20, 3.22, 3.23, 3.24 (in the figures, we write γ for π(γ)). This picture then corresponds
to an extension π1 of π and was already represented in Figures 3.16 to 3.19. Clearly, the degree
of GN is then s := #S. Moreover, for each connected subgraph of GN with vertex set D′, finite
or infinite, the collection of vertices

⋃
d∈D′ Dd induces a connected subgraph in GN . We will use

this fact at the end of the proof. Remember that “induces” means that we connect the vertices of
D via all the available edges in GN (so even if D is A′-connected, crossing diagonals may appear
in the picture of the subgraph of GN induced by D).

One can easily see that this picture has the following properties.

(i) Two lines π1(x1x2) and π1(y1y2) intersect if and only if they have a common vertex or they
are the two diagonal line segments in the same face of π(GA).

(ii) GN is s-connected, in the sense that for any U ⊂ Γ which has less than s elements, the
subgraph induced by Γ \ U is connected.

(iii) Suppose L = (V1, E1) is an arbitrary connected subgraph of GA(A′) with finite vertex set
V1. If each edge xy ∈ E1 satisfies x−1y ∈ A′ and if R2 \ π(L) has a bounded component
intersecting π(GA(A′)) containing a point π(γ) for some γ ∈ Γ, then Γ \ V1 induces a
disconnected subgraph in GN , which has a component of finite vertex set containing γ. We
can see that the image π(L) of L must contain a loop, so we will in the sequel refer to this
as Loop Property.

We now distinguish the constellations.

Lattice-8 neighbor-case. Let us consider first the pair (S,A′) of Proposition 3.3.28 (2)
and suppose that D ∪ Da is not {a±1, b±1}-connected. Since g(T ) =

⋃
d∈D d(T ) and ga(T ) =⋃

d′∈Da
d′(T ) intersect each other, we can choose some δ ∈ D and δ′ ∈ Da with δ(T ) ∩ δ′(T ) �= ∅.

Then, we must have δ−1δ′ ∈ {(ab)±1,
(
ab−1

)±1} = S \ A′. We may assume that δ = id, δ′ = ab.
See Figure 3.20 for relative positions of id and ab. Let α, β ∈ Γ be the uniquely determined
elements with a ∈ Dα, b ∈ Dβ . Because D ∪ Da is not {a±1, b±1}-connected, α and β are both
distinct from id and a.

Then, we can find a vertex c ∈ Γ \ {id, a, α, β} such that c(T ) ∩ T �= ∅ and c(T ) ∩ a(T ) �= ∅.
We can see on Figure 3.20 that c must belong to {b, ab, b−1, ab−1}.
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• • (ab)−1

• b−1

• ab−1

•

• • a−1

• id • a •

• • a−1b • b • ab •

• • • • •

Figure 3.20: The graph GA(A′) in the lattice-8 neighbor-case.

Now, we can choose
d ∈ D, d1, d2 ∈ Dc, d3 ∈ Da

such that
d(T ) ∩ d1(T ) �= ∅, d2(T ) ∩ d3(T ) �= ∅.

Then, {d−1d1, d
−1
2 d3} ⊂ {a±1, b±1, (ab)±1,

(
ab−1

)±1}. By {a±1, b±1}-connectivity of Dγ for every
γ ∈ Γ, consider the three connected pieces Hid, Ha, Hc in the picture of GN joining all the vertices
D,Da,Dc respectively and whose lines π(xy) are defined for vertices x, y ∈ D (or Da, or Dc)
whenever xy−1 ∈ {a±1, b±1}. We can find three disjoint simple paths P ⊂ Hid, Pa ⊂ Ha, and
Pc ⊂ Hc such that

• the two end points of P are π(d) and π(id),

• the two end points of Pc are π(d1) and π(d2),

• the two end points of Pa are π(d3) and π(ab).

Note that π(a) and π(b) do not lie on these paths.

Therefore, the union J of P ∪Pa∪Pc with the three line segments π1(dd1), π1(d2d3), π1(id(ab))
is a simple closed curve. Since the diagonal line segments π1(ab) and π1(id(ab)) intersect each
other at a single point, the two points π(a), π(b) are separated by J .

Since π(a) and π(b) (or equivalently, π(Dα) and π(Dβ) ) are separated by the loop J , we may
assume that π(a) is in the interior of J , thus the picture of the subgraph induced by Dα is enclosed
in the interior of J , according to the picture of GN .

Note that π1(dd1), π1(d2d3) could be either diagonal, vertical or horizontal line segments (see
Figure 3.21).

We discuss the possible three cases separately as follows.

Case 1 Suppose that π1(dd1), π1(d2d3) are both vertical or horizontal, i.e., D ∪Dc and Dc ∪Da are
A′-connected. Then the union J1 of P ∪Pa∪Pc with the vertical or horizontal line segments
π1(dd1), π1(d2d3), π1(b(id)), π1(b(ab)) satisfies the condition in the “Loop Property”. Then
we can claim that Γ\(D ∪ Da ∪Dc ∪ Dβ) induces a disconnected subgraph in GN . Otherwise,
there would be a simple path P disjoint from all the π1-images of the vertices of V =
D∪Da ∪Dc ∪Dβ which connects the vertex π1(a) to a vertex π1(η) in the exterior of J . We
may assume without loss of generality that all the vertices π1(u) on the path P other than
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P
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Case 1. Case 2. Case 3.

Figure 3.21: Lemma 3.3.43. Lattice-8 neighbor-case.

π1(η) belong to the interior of J . Then γ(T )∩ η(T ) �= ∅ for some π1(γ) �= π1(η) on the path
P , where π1(γ) lies in the interior of J . This is a contradiction to the “Loop Property”.

Case 2 Suppose that one of π1(dd1), π1(d2d3) is diagonal and the other is vertical or horizontal, say

dd−1
1 ∈

{
(ab)±1,

(
ab−1

)±1
}
.

This means D ∪ Dc is not A′-connected but Dc ∪ Da is. We can choose π1(c0) on J or in
the exterior of J such that d−1c0, c

−1
0 d1 ∈ {a±1, b±1}. Then, the union J2 of P ∪ Pa ∪ Pc

with the vertical or horizontal line segments π1(dc0), π1(c0d1),π1(d2d3), π1(b(id)),π1(b(ab))
satisfies the condition in the “Loop Property”. By the same argument used in Case 1, we
can infer that

Γ \ (D ∪ Dγ ∪Da ∪ Dc ∪ Dβ)

induces a disconnected subgraph in GN , where γ ∈ Γ is the unique element with c0 ∈ Dγ .

Case 3 Suppose that π1(dd1), π1(d2d3) are both diagonal line segments, i.e., D ∪ Dc and Dc ∪ Da

are not A′-connected. Then we can find π1(c1), π1(c2) in the exterior of J according to the
drawing of GN such that

{d−1c1, c
−1
1 d1} ⊂ {a±1, b±1}, {d−1

2 c2, c
−1
2 d3} ⊂ {a±1, b±1}.

Then, the union J3 of P ∪ Pa ∪ Pc with the vertical or horizontal line segments

π1(dc1), π1(c1d1), π1(d2c2), π1(c2d3), π1(b(id)), π1(b(ab))

satisfies the condition in the “Loop Property”. Let γ1, γ2 be the two uniquely determined
elements of Γ with

c1 ∈ Dγ1 , c2 ∈ Dγ2 .

Put
V := D ∪Da ∪ Dc ∪ Dβ ∪ Dγ1 ∪ Dγ2 .

Then Γ \ V induces a disconnected subgraph in GN . By the same argument as the one used
in Case 1, we can infer that Γ\ (D ∪ Da ∪ Dc ∪Dβ) induces a disconnected subgraph in GN .
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In each of the above three cases, we have some V , union of sets Dγ with γ running through a
collection of at most six elements of Γ, such that the infinite collection Γ\V induces a disconnected
subgraph in GN . This contradicts the 8-connectivity of GN , as mentioned at the beginning of the
proof.

Hence D ∪ Da is {a±1, b±1}-connected. The cases of D ∪ Da−1 ,D ∪ Db,D ∪ Db−1 are treated
similarly.

p2-7 neighbor-case. Secondly we deal with the constellation (S,A′) of Theorem 3.3.29 (2).

We want to show that D ∪ Dγ induces a connected subgraph in GA(A′) for each γ ∈ A′ =
{b, b−1, c, bc, a−1c} (see Figure 3.22).

•a−1b−1c •

• • b−1

•a−1c • c

• • id

•a−1bc • bc

• • b

• •

• •

Figure 3.22: The graph GA(A′) in the p2-7 neighbor-case.

If γ = b±1 or γ = a−1c, this can be obtained in a similar way as for the preceding lattice
8-neighbor case; this is due to the fact that id and γ have “enough” common neighbors for these
values of γ, namely three. Let γ = c, which has only two common neighbors with id (the same kind
of argument holds for γ = bc), and suppose that D ∪Dc is not A′-connected. Since T ∩ c(T ) �= ∅,
we have g(T ) ∩ gc(T ) �= ∅, thus there exist d ∈ D and d′ ∈ Dc such that d(T ) ∩ d′(T ) �= ∅. In our
assumption, d−1d′ ∈ S \ A′. W.l.o.g., either {d, d1} = {id, a−1bc} or {d, d1} = {id, a−1b−1c}.

We assume that d = id, d1 = a−1bc (the treatment of d1 = a−1b−1c runs likewise). Let η ∈ Γ
be the uniquely determined element with b ∈ Dη. Then η /∈ {id, c}, otherwise D ∪ Dc would
be A′-connected in GA. Since b ∈ Dη, both intersections gη(T ) ∩ g(T ) and gη(T ) ∩ gc(T ) are
nonempty, thus taking their images by g−1, we see that η must be a common neighbor of id and
c, i.e., η ∈ {bc, b−1}. Similarly, let η′ with a−1c ∈ Dη, then η′ ∈ {bc, b−1}.

We claim that η = η′. Indeed, if η �= η′, by assumption on S the intersection η(T )∩η′(T ) must
be empty, thus so has to be its blow-up by g. But this is not the case, because b ∈ Dη, a−1c ∈ Dη′ ,
and b(T ) ∩ a−1c(T ) �= ∅. Consequently, η = η′.

Dη being A′-connected, there is a simple path P in GA(A′) from π(b) to π(a−1c) such that all
vertices in P belong to π(Dη). Since id, a−1bc /∈ Dη, either P ′, the union of P with the broken
line from π(b) to π(a−1c) via π(id), encloses π(a−1bc), or P ′′, the union of P with the broken
line from π(b) to π(a−1c) via π(a−1bc), encloses π(id). Thus, by the “Loop Property”, either
Γ \ (Dη ∪ D) or Γ \ (Dη ∪ Dc) is disconnected in GN . This contradicts the 7-connectivity of GN .
Hence D ∪Dc is also A′-connected for every γ ∈ A′.
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p2-8 neighbor-case. The constellation of Theorem 3.3.29 (3) is treated as in the lattice case
(see Figure 3.23).

c•

bc•

b−1c•

id•

b•

b−1•

a−1c•

a−1bc•

a−1b−1c•

•

•

•

• •b
−1

•ab−1c •ab−1

•

• •c • id •ac •

• • a−1b •bc • b •

• • • • •

Shape 1. Shape 2.

Figure 3.23: The graph GA(A′) in the p2-8 neighbor-case.

p2-12 neighbor-case. We eventually deal with the constellation (S,A′) of Theorem 3.3.29
(4).

Assume that D ∪Dα is not A′-connected for some α ∈ A′. As D is S-connected, D∪Dα must
be S-connected. Thus, there exist some d1 ∈ D and a2 ∈ Dα with d−1

1 a2 ∈ (S \ A′). That is to
say, in the drawing π of GA(A′), π(d1) and π(a2) lie on the boundary of the same face F1, but
not on a single side of F1. See Figure 3.25 for the three possible relative positions of d1 and a2.
Moreover, if d′ ∈ D and a′ ∈ Dα are neighbors, we must have d′−1a′ ∈ (S \ A′), thus π(d′) and
π(a′) lie on boundary of the same face of π (GA(A′)) and not on a single side.

Clearly, ∂F1 \ {π(d1), π(a2)} is the union of two open polygonal arcs, each of which contains
at least one element of π(G).

Since # (∂F1 ∩ π(G)) = 6, while α and the identity id have exactly 8 common neighbors, we
can choose a common neighbor β of α and id with Dβ ∩ π−1 (F1) = ∅.

Now, we can choose d2 ∈ D, b1, b2 ∈ Dβ , and a1 ∈ Dα with {b−1
1 d2, a

−1
1 b2} ⊂ S. Moreover let

F2, F3 be the faces of π (GA(A′)) containing {π(b1), π(d2)} and {π(b2), π(a1)}, respectively. As
Dβ ∩ π−1 (F1) = ∅, F1 /∈ {F2, F3}.

By A′-connectedness of D, we can find three simple paths P, Pα, Pβ in drawings of the sub-
graphs of GA(A′) respectively generated by D,Dα,Dβ such that

• π(d1), π(d2) are the two ends of P ,

• π(a1), π(a2) are the two ends of Pα, and

• π(b1), π(b2) are the two ends of Pβ .

Note that the above three paths could be degenerate ones, like the case d1 = d2 thus P = {π(d1)}.

Claim 1. F2 �= F3. Otherwise, we would have a−1
1 d2 ∈ S \ A′, and ∂F2 \ {a1, d2} consists

of two open polygonal arcs each of which contains at least one element of π(G) ∩ ∂F2. (Similar
to the case of F1.) Then the union J0 of P ∪ Pα with the two line segments π1(a2d1) ⊂ F1 and
π1(d2a1) ⊂ F2 is a polygonal simple closed curve in the plane, whose interior Interior(J0) contains

65



a•

abc•

c
•

b−1

•

ab•

id•

bc
•

a−1b−1c•

b•

a−1c•

a−1b−1•

a−1

•

a−1bc•

Figure 3.24: The graph GA(A′) in the p2-12 neighbor-case.
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d1
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Figure 3.25: Lemma 3.3.43. p2-12 neighbor-case. Relative positions of d1 and a2 on F1.

at least two elements, π(γ1) ∈ π(G) ∩ F1 and π(γ2) ∈ π(G) ∩ F2.

As
(
Fi \ Interior(J0)

)
∩ π(G) has at most three elements for i = 1, 2, we may denote by

e1, e2, . . . , ek (k ≤ 6) the elements of G with π(ei) ∈ (F1 ∪ F2) \ Interior(J0), and choose εi

(1 ≤ i ≤ k) of G with ei ∈ Dεi .

For i = 1, 2, let Pi ⊂ ∂Fi be the open subarc which is contained in J0’s exterior Exterior(J0) =
R2 \ Interior(J0). Now

P ∪ Pα ∪ P1 ∪ P2

satisfies the conditions of the “Loop Property”. This means that

G \ ({id, α} ∪ {ε1, ε2, . . . , εk})

induces a disconnected subgraph in GN , a contradiction to the 12-connectivity of GN . This proves
Claim 1.

Let J be the union of P ∪ Pα ∪ Pβ with the line segments π1(a2d1), π1(d2b1) and π1(b2a1).
Then, J is a polygonal simple closed curve in the plane with π(γ1) ∈ Interior(J).

Claim 2.
{
b−1
1 d2, a

−1
1 b2

}
⊂ S \ A′. Otherwise, say, b−1

1 d2 ∈ A′. Similar as for Claim 1, there
are k ≤ 6 elements e1, e2, . . . , ek ∈ G with π(ei) lying in (F1 ∪ F3) \ Interior(J). We can see that

G \ ({id, α, β} ∪ {ε1, ε2, . . . , εk})
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induces a disconnected subgraph in GN , which has a component with finite vertex set containing
γ1. This again contradicts the 12-connectivity of GN .

Claim 2 immediately indicates that Interior(J) ∩ Fi ∩ π(G) contains at least one element for
each 1 ≤ i ≤ 3. Actually, we may further show that Interior(J) ∩ Fi ∩ π(G) contains exactly one
element for each 1 ≤ i ≤ 3. Otherwise, there would be k ≤ 8 elements e1, e2, . . . , ek with π (ei)
lying in (F1 ∪ F2 ∪ F3) \ Interior(J). If εi (1 ≤ i ≤ k) are elements of G with ei ∈ Dεi , where
εi = εj is possible, the subgraph of GN induced by

G \ ({id, α, β} ∪ {ε1, ε2, . . . , εk})

has a component with finite vertex set containing γ1. This is impossible by the 12-connectivity of
GN .

Recall that {π(γ1)} = Interior(J) ∩ F1 ∩ π(G), we denote by γi (i = 2, 3) the unique element
of G with π (γi) lying in Interior(J) ∩ Fi ∩ π(G). Here, γi = γj is possible.

Let e1, e2, . . . , e9 be the nine elements of G with π (ei) belonging to (F1 ∪ F2 ∪ F3)\Interior(J),
and ε1, ε2, . . . , ε9 the corresponding elements of G with ei ∈ Dεi . Also, εi = εj is possible here.
W.l.o.g., we may assume that

{π (e1) , π (e2) , π (e3)} ⊂ F1, {π (e4) , π (e5) , π (e6)} ⊂ F2, {π (e7) , π (e8) , π (e9)} ⊂ F3.

See Figure 3.26 for a graphical explanation of the relative positions of F1, F2, F3.

F2

b1

γ2

d2

e4

e5

e6
Pβ

F3

e8

e9

a1

γ3

b2 e7

Pα

F1

a2

e1

e2

e3

d1

γ1P

Figure 3.26: Lemma 3.3.43. p2-12 neighbor-case.

Claim 3. {γ1, γ2, γ3} ⊂ Dδ for a single δ ∈ Γ. Otherwise, we may assume that γ2 ∈ Dδ′ for
some δ′ �= δ. Thus

G \ ({id, α, β, δ′} ∪ {ε1, ε2, ε3, ε7, ε8, ε9})
would induce a disconnected subgraph in GN , contradicting its 12-connectivity.

Claim 4. εi �= εj for i �= j. Otherwise, assume for instance ε1 = ε2. ThenG\{id, α, β, ε2, ε3, . . . , ε9}
would induce a disconnected subgraph GN , which is again impossible by 12-connectivity of GN .
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Claim 5. {δ, α−1δ, β−1δ} = A′. Otherwise, say, α−1δ /∈ A′ ; then, α and δ would not belong
to a single edge of GA(A′), thus α and δ would have exactly four common neighbors, see the
Figure 3.26. This contradicts Claim 3 and Claim 4, which imply that α and δ have eight distinct
common neighbors id, β, ε1, ε2, ε3, ε7, ε8, ε9.

Conclusion. Claim 5 is impossible. Indeed, α ∈ A′ by the beginning assumption, and δ ∈ A′

by Claim 5. But A′ = {c, a−1c, bc}, hence α and δ are π-rotations. Thus α−1δ is a translation
and can not belong to A′, a contradiction to Claim 5. This ends our proof.

We are now ready to prove Proposition 3.3.28 and Theorem 3.3.29, using Proposition 3.3.40.

The lattice case.

Proof of Proposition 3.3.28.

(1) 6 neighbor-case. Assume that T has exactly six neighbors. By Propositions 3.3.35 and
3.3.39, the neighbor set is S = {b, b−1, a, a−1, a−1b, ab−1} for independent translations a, b and
only consists of adjacent neighbors, i.e., S = A. The graph GA has a drawing like in Figure 3.27.
The equivalence now follows from Proposition 3.3.40 by taking A′ = A (in this case, Condition
(ii) of Proposition 3.3.40 reduces to (ii′): D is S-connected).

• • • (ab)−1

• b
−1

• • a
−1

• id • a

• • b • ab •

• • • •

Figure 3.27: The graph GA in the lattice-6 neighbor-case.

(2) 8 neighbor-case. Assume that T has exactly the neighbor set

S = {a±1, b±1, (ab)±1, (b−1a)±1}.

By Proposition 3.3.39, S contains A′ := {a±1, b±1} as adjacent neighbors. The corresponding
graph GA(A′) has the drawing depicted in Figure 3.20.
If T is disk-like, we have A′ = A and the result follows from Condition (ii) of Proposition 3.3.40
(D1 = D). On the other side, suppose that D is A′-connected. Then the drawing of GA(A′) in
Figure 3.20 satisfies Conditions (i) and (iii) of Proposition 3.3.40. The verification of Condition
(ii) is the content of Lemmata 3.3.42 and 3.3.43. By Proposition 3.3.40, T is disk-like.

The p2-case.

Proof of Theorem 3.3.29.

We note that if T is disk-like or if D is F -connected (for some F ⊂ S, and hence for F = S),
then T is itself connected (see Remark 3.3.27). Thus we can assume in this proof that the tile T
is connected.
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(1) 6 neighbor-case. Assume that T has exactly six neighbors. By Propositions 3.3.37
and 3.3.15, the neighbor set S only consists of adjacent neighbors, i.e., S = A. The graph GA

has a drawing like in Figure 3.28. The equivalence now follows from Proposition 3.3.40 by taking
A′ = A (in this case, Condition (ii) of Proposition 3.3.40 again reduces to (ii′): D is S-connected).

c•

bc•

b−1c•

id
•

b•

b−1

•

a−1c•

a−1bc•

a−1b−1c•

•

•

•

c•

bc•

b−1c•

id
•

b•

b−1

•

a−1c•

a−1bc•

a−1b−1c•

•

•

•

Shape 1. Shape 2.

Figure 3.28: The graph GA in the p2-6 neighbor-case.

(2) 7 neighbor-case. Assume that T has exactly the neighbor set

S = {b±1, c, bc, a−1c, a−1bc, a−1b−1c}.

By Proposition 3.3.15, S contains A′ := {b±1, c, bc, a−1c} as adjacent neighbors. The correspond-
ing graph GA(A′) has the drawing depicted in Figure 3.22. If T is disk-like, we have A′ = A and
the result follows from Condition (ii) of Proposition 3.3.40 (D1 = D). On the other side, suppose
that D is A′-connected. Then the drawing of GA(A′) in Figure 3.22 satisfies Conditions (i) and
(iii) of Proposition 3.3.40. Condition (ii) is the direct corollary of Lemmata 3.3.42 and 3.3.43. By
Proposition 3.3.40, T is disk-like.

(3) 8 neighbor-case. Assume that T has a neighbor set of the shape

S = {b±1, c, a−1c, bc, b−1c, a−1bc, a−1b−1c} ( resp. S = {c, bc, ac, a−1bc, b±1, (a−1b)±1} ).

By Proposition 3.3.15, the set A′ := {b±1, c, a−1c} (resp. A′ := {c, bc, ac, a−1bc}) is a subset
of the adjacent neighbor set A. The corresponding graph GA(A′) has the drawing depicted in
Figure 3.23. If T is disk-like, we have A′ = A and the result follows from Condition (ii) of Propo-
sition 3.3.40 (D1 = D). On the other side, suppose that D is A′-connected. Then the drawing
of GA(A′) in Figure 3.23 satisfies Conditions (i) and (iii) of Proposition 3.3.40. Condition (ii) is
contained in Lemmata 3.3.42 and 3.3.43. By Proposition 3.3.40, T is disk-like.

(4) 12 neighbor-case. Assume that T has twelve neighbors of the shape

S = {c, a−1c, bc, abc, a−1bc, a−1b−1c, a±1, b±1, (ab)±1}.

Then A′ := {c, a−1c, bc} is a subset of the adjacent neighbor set A (Proposition 3.3.15). The
corresponding graph GA(A′) has the drawing depicted in Figure 3.24. If T is disk-like, we have
A′ = A and the result follows from Condition (ii) of Proposition 3.3.40 (D1 = D). On the other
side, suppose that D is A′-connected. Then the drawing of GA(A′) in Figure 3.24 satisfies Condi-
tions (i) and (iii) of Proposition 3.3.40. Condition (ii) follows from Lemmata 3.3.42 and 3.3.43.
By Proposition 3.3.40, T is disk-like.

69



3.3.8 Examples and counterexamples

The assumptions of Proposition 3.3.28 were shown in [7] to be minimal. This is also the case for
our Theorem 3.3.29. As noticed in Remark 3.3.30.1, we listed all possible disk-like cases of p2-
tiles. We illustrate the counterpart by considering examples of disk-like and non disk-like crystiles
having from six to twelve neighbors.

In this section, the maps u, v, r are defined by u(x, y) = (x + 1, y), v(x, y) = (x, y + 1) and
r(x, y) = (−x,−y), as in Definition 2.2.10.

Examples of disk-like p2-crystiles

We are first interested in examples of disk-like p2-crystiles.

6 neighbor case. We consider the p2-crystile defined by the expanding mapping

g(x, y) = (x− 2y, x+ 2y − 1)

and the digit set D = {id, r, ur, vr}. The crystile T is solution of the set equation

g(T ) = T ∪ r(T ) ∪ ur(T ) ∪ vr(T ).

With the methods developped in Section 3.2, we compute that the set of neighbors is

S = {u±1, r, ur, vr, uvr}.

It has the first shape given in Proposition 3.3.37 (take a = v−1, b = u, c = r). The tile T together
with its neighbors is depicted in Figure 3.29. The digit set is S-connected, as can be checked on
the graph of the same figure. Thus by Theorem 3.3.29 (1), T is disk-like.

r
•

ur
•

u−1 • u•

vr• uvr•

id

•

Figure 3.29: Disk-like p2-crystile with six neighbors (shape 1).

Taking now the expansion

g(x, y) = (x− y, 2x+ 2y − 1
2
),

and the same digit set D, we obtain another crystile T whose neighbor set is

S = {v±1, r, ur, vr, uv−1r}.
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r
•

vr•

v−1
•

id•

v•

uv−1r
•

ur•

Figure 3.30: Disk-like p2-crystile with six neighbors (shape 2).

It has the second shape given in Proposition 3.3.37 (take a = u, b = v−1, c = ur). The tile T
together with its neighbors is depicted in Figure 3.30 and is disk-like by Theorem 3.3.29 (1).

7 neighbor case. We consider an example that Gelbrich [19] listed as “not convincing”, since
he could not decide from the figure if it is disk-like or not. The expansion g reads

g(x, y) =
(
−x+ y − 1

2
,−2x− y

)
,

the digit set is D = {id, v, r}, hence the crystile T is solution of the set equation

g(T ) = T ∪ v(T ) ∪ r(T ).

With the methods developped in Section 3.2 we compute that the set of neighbors is

S = {v, v−1, r, vr, u−1r, u−1vr, u−1v−1r}.

The tile T and its neighbors are depicted in Figure 3.31. By Theorem 3.3.29 (2) (identify u, v, r
with a, b, c respectively), T is disk-like.

8 neighbor case. A disk-like p2-crystile with eight neighbors of the first shape is ob-
tained by considering the union of gray squares given in Figure 3.32. The expansion map reads
g(x, y) = (4x, 4y) and the sixteen digits are easily read off from the picture. Indeed, let T denote
the union of gray squares of side length 1/4 as in this picture. Then g−1(T ) = 1/4 T is a smaller
copy of T entirely contained in the lower left square of side length 1/4. One then recovers the
whole tile T by rotating and translating this smaller copy in an obvious way; each of these trans-
formations corresponds to a digit. Exactly 8× 2 = 16 digits are needed.

Consider now the expansion g(x, y) = (2x + 1/2,−x − 2y − 1
2 ), and the digit set D =

{id, r, ur, vr}. The corresponding crystile T has the neighbor set

S = {r, ur, vr, uvr, u±1, v±1}.

It has the second shape given in Theorem 3.3.29 (3) (take a = uv, b = v, c = r). The tile T
together with its neighbors are depicted in Figure 3.33 and is disk-like by Theorem 3.3.29 (3).
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•u−1v−1r

• v−1

•u−1r • r

• id

•u−1vr • vr

• v

Figure 3.31: Disk-like p2-crystile with seven neighbors.

0

1

1

r•

vr•

v−1r•

id
•

v•

v−1

•

u−1r•

u−1vr•

u−1v−1r•

Figure 3.32: Disk-like p2-crystile (gray) with eight neighbors (shape 1).

12 neighbor case. Like a right angled isoceles triangle, the “stair case” crystile on Figure 3.34
gives rise to a p2-tiling where each tile has twelve neighbors.

Here, the expansion map is g(x, y) = (3x, 2y) and the digit set D = {id, a1, a
2
1, b1, a1b1c1, a

2
1b

2
1},

with a1(x, y) = (x − 2, y), b1(x, y) = (x, y + 1) and c1(x, y) = (−x,−y). This crystile is disk-like
by Theorem 3.3.29 (4) (take a = b−1

1 , b = a−1
1 b1, c = a1c1).

Examples of non disk-like p2-crystiles.

We are now moving to the non disk-like examples, varying the number of neighbors. Since we are
interested in connected tiles, the case of six neighbors can be excluded (see the later comments in
Section 3.4). Thus we start with a seven neighbor example.

7 neighbor case. Each tile T is the union of nine squares of side length 1/3 (gray on Fig-
ure 3.35). Using the expansion g(x, y) = (6x, 6y), one sees that g(T ) is the union of 36 isometric
copies of T . It is Grünbaum’s 36-p2-reptile. The tile has the seven neighbors indicated in Theo-
rem 3.3.29 (2), but the digit set is not connected in the drawing of its adjacency graph.
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u−1•
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Figure 3.33: Disk-like p2-crystile with eight neighbors (shape 2).
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Figure 3.34: Disk-like p2-crystiles with twelve neighbors.

8 neighbor case. This example is depicted in Figure 3.36. It is a p2-crystile with 16 digits.
It is obtained after an obvious modification of the digit set of the disk-like example of Figure 3.32;
it has the same neighbor set.

9 neighbor case. Again, this tile is constructed from squares (see Figure 3.37). It has nine
neighbors, among which seven are adjacent.

10 neighbor case. Let g(x, y) = (−2x − 1/2,−x + 2y) be the expansion and the digit set
D = {id, u, v, r}. The crystile T defined by

g(T ) = T ∪ u(T ) ∪ v(T ) ∪ r(T )

has the neighbor set
S = {u±1, v±1, (uv)±1, r, vr, u−1r, u−1v−1r}

(see Figure 3.38).
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0

1

1

Figure 3.35: Non disk-like 36-p2-reptile (gray) with seven neighbors.

Figure 3.36: Non disk-like p2-16-reptile with eight neighbors.

Figure 3.37: Non disk-like p2-36-reptile (gray) with nine neighbors.

11 neighbor case. The crystile of Figure 3.39 is trivially non disk-like and is again a 36-reptile
constructed from squares. It has eleven neighbors, seven of them are adjacent.

12 neighbor case. Our last example is a perturbation of the stair case disk-like example.
It still has twelve neighbors in the induced tiling and is depicted on Figure 3.40. It is obtained

by taking the expansion g(x, y) = (3x, 3y) and the digit set D = {id, a, a2, b, b2, c, ac, bc, abc},
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Figure 3.38: Non disk-like p2-crystile with ten neighbors.

Figure 3.39: Non disk-like p2-36-reptile (gray) with eleven neighbors.

Figure 3.40: Non disk-like p2-crystile with twelve neighbors.

where a(x, y) = (x− 2, y), b(x, y) = (x, y + 1), c(x, y) = (−x,−y).
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3.4 Comments and questions

We were mainly interested in the neighbor relations in a tiling by crystallographic tiles and reptiles.
For Γ being a lattice or a p2 group, the minimal neighbor number of a Γ-tile was shown to
be 6. In both cases, all neighbors turned out to be adjacent. Since a crystile with neighbor
set S is connected if and only if the digit set is S-connected (see Remark 3.3.27), we conclude
from Proposition 3.3.28 and Theorem 3.3.29 that a lattice or p2-crystile with minimal number
of neighbors is connected if and only if it is disk-like. We conjecture that this remains true for
the other crystallographic groups for which the least neighbor number is 6. Note that not all
crystallographic groups have this number as minimal neighbor number, since it is 8 for the pm-
group (generated by two perpendicular translations and a reflection along one of the translation
vectors).

After dealing with the minimal neighbor number, we may now wonder how many neighbors
and adjacent neighbors a crystile can have. Indeed, we found in the last section p2-crystiles with
six to twelve neighbors, is then every number greater than 6 admissible? If not, which numbers are
forbidden? How are they related to the crystallographic group? Even the lattice case is still open:
is every even number greater than 6 admissible? Some partial results are known, for lower number
of neighbors and it is also known that lattice reptiles can be constructed with 6 + 4k neighbors
for every k ∈ N: these are tiles associated to canonical number systems (see the next chapter).
Concerning the adjacent neighbors, Grünbaum and Shephard’s results on normal tilings (see [22])
indicate that 4 and 6 are the only possible numbers of adjacent neighbors for disk-like lattice tiles,
and 3, 4, 5 and 6 for disk-like p2-tiles, hence these restrictions remain valid for disk-like lattice and
p2-crystiles. What about non disk-like crystiles? We already gave in this study two examples of
p2-crystiles with seven adjacent neighbors. Can there be more? Or is this number limited by some
rigidity of the crystallographic group?
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Chapter 4

Lattice tiles: the class associated
to canonical number systems

Lattice tiles are a particular case of the crystallographic tiles described in the previous chapter
when the crystallographic group has a trivial point group (see Definition 2.2.7 and Remark 2.2.12).
Lattice reptiles were studied long before the crystallographic reptiles. More is known about their
topology (see for instance [21, 37, 38, 39, 48]), and many classes arise from the consideration of
number representations (see e.g. [4, 20, 30, 31, 32, 58]). We concentrate on one of these classes,
the class of self-affine tiles associated to canonical number systems.

Dealing only with translations, we will use vector sums instead of mapping compositions.
Indeed, let w.l.o.g. g(x) = Ax be expanding on the Euclidean space Rn, Γ isomorphic to Zn a
lattice group, and D a complete set of right coset representatives of Γ/gΓg−1. In this case, this is
equivalent to D being a complete set of coset representatives of Zn/AZn. Writing δ(x) = x + d
for the digits, we have for a ∈ Rn and m ∈ N that

g−1δ1g
−1δ2 . . . g

−1δm(a) = A−ma+
m∑

i=1

A−idi.

Redefining D as the set of translational parts d of the digits δ, the crystile T with respect to
(Γ, g,D) has the form

T =

{ ∞∑
i=1

A−idi; (di)i∈N ∈ DN

}
(4.0.1)

(compare with (3.1.5)). We write fd(x) = A−1(x + d) for d ∈ D, and we rather use the notation
{T + u, u ∈ Zn} for the tiling induced by T .

Unlike crystiles in general, lattice crystiles are self-affine in the strict sense of Definition 2.1.14.
More precisely, a norm can be defined on Rn that makes all the functions fd be contractions. The
following definition uses the same notations as above.

Definition 4.0.1 (Lind Norm, cf. [40]). Let λj , j = 1, . . . , n be the eigenvalues of A and r any
number satisfying 1 < r < min1≤j≤n |λi|. If || · || denotes the Euclidean norm, the formula

||x||′ =
∞∑

k=0

rk||A−kx||

defines a norm on Rn, the so-called Lind Norm.

Proposition 4.0.2 (see [38]). All the maps fd(x) = A−1(x + d) are contractions with respect to
the Lind Norm.
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In this chapter, we are interested in a generalization of a class of self-affine plane lattice tiles
connected to real complex number representations in a given basis. The tiles are presented in
the first section, most of the facts can be found in the extensive study of Shigeki Akiyama and
Jörg Thuswaldner [5] and their survey [4]. The characterization of disk-like tiles was fully treated
there, hence we concentrate on the topological properties of non-disk like tiles. The second section
is dedicated to the fundamental goup of these tiles. It turns out that, as soon as such a tile is
not disk-like, then its fundamental group is uncountable. In the third section, the closure of a
connected component of the interior of a tile is computed. We prove that the adresses of its points,
i.e., the sequences (di) of digits such the point

∑∞
i=1 A−idi belongs to that component closure,

can be read off from a finite graph.

4.1 Canonical number systems : basic and known facts

We will deal with a class of self-affine tiles associated to canonical number systems (cf. [57]).

Definition 4.1.1 (Canonical number system (CNS)). For n ≥ 1, let

P = xn + bn−1x
n−1 + ...+ b0 ∈ Z[x],

N = {0, 1, ...|b0| − 1} andQ = Z[x] / P Z[x]. Let us denote the projection of x into Q by [x]. Then
the pair (P,N ) is called a canonical number system (or CNS ) with digit set N if each element γ
of Q can be written in the form

γ = a0 + a1[x] + . . . + al(γ)[x]l(γ)

with ai ∈ N and l(γ) ∈ N.

Note that, in this definition, if P is irreducible and α is a root of P then Q is isomorphic to
Z[α], thus [x] can be replaced by α in the above expansion. Characterizations of CNS have been
studied for example by Scheicher and Thuswaldner [60], Akiyama and Rao [3] and Brunotte [10].
Also, Knuth ([35]) pointed out in 1981 important applications in computer science of the fact that
for each integer b ≥ 1, −b forms a CNS. For larger values of n, the quadratic case (n = 2) is the
only one where a characterization of all CNS is known. For the other cases there are only partial
characterizations, involving conditions on the coefficients of the polynomial.

Notation 4.1.2. In the case of quadratic CNS, we write P = x2 + Ax+B ∈ Z[x].

Then it was established (cf. [10, 20, 31, 32]) that

(P,N ) is a CNS iff B ≥ 2 and − 1 ≤ A ≤ B. (4.1.1)

To each quadratic CNS, a tile T is attached in the following way (see the work of Lagarias and
Wang [38] for more details, as well as [28, 30]).

Definition 4.1.3 (Quadratic CNS-tile). Let (P,N ) be a quadratic CNS. Let

A =
(

0 −B
1 −A

)
and D =

{(
0
0

)
, . . . ,

(
B − 1

0

)}
,

then the set T defined by
AT =

⋃
d∈D

(T + d)

is a self-similar plane tile of R2 satisfying

T =

⎧⎨
⎩∑

i≥1

A−idi; di ∈ D

⎫⎬
⎭

(see the introduction of this chapter). T tiles the plane by Z2. It is called the quadratic CNS-tile
with expansion matrix A and digit set D or also often the fundamental domain of the canonical
number system (P,N ).
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Figure 4.1: Disk-like CNS-tiles (on the left, the Knuth dragon).

The tiles are defined in the same way for n > 2 (see [5]). An example of (disk-like) quadratic
CNS-tile is depicted on the left hand side of Figure 4.1. It is called the Knuth twin dragon
(see [35]) and is associated to the polynomial P = x2 + 2x+ 2 (so A = 2 and B = 2). A root of P
is α = −1 +

√
−1 and, sloppily spoken, T represents the complex numbers whose representation

in the basis α has integer part zero. For the picture, we used the similar matrix

A =
(
−1 1
−1 −1

)
.

The example on the right hand side of Figure 4.1 is also disk-like and is associated to the the root
α = −1 +

√
−2 of P = x2 + 2x+ 3.

The following quantity is of great importance for the topology of the tiles. It is related to the
number of neighbors the tile has in the induced tiling.

Notation 4.1.4. We define

J = max
{

1,
⌊

B − 1
B −A+ 1

⌋}
.

Note that
J > 1 iff 2A ≥ B + 3.

In Section 3.2 of the preceding chapter, we defined the neighborhood graph of a crystile T
and showed how this rather abstract graph can be used to identify boundary points of T . This
graph will also be an important tool in the next two sections. We will make use of the additive
notation, thus we will redefine it for CNS-tiles and list some of its properties partially given in
Subsection 3.2.2. It will be even more interesting to introduce the transposed graph of the neigh-
borhood graph of Definition 3.2.4, since it reveals to be an adding machine.

Definition 4.1.5. If G is a graph, the transposed graph GT is the graph with the same vertices

as G obtained by changing the direction of every edge of G: s
d|d′
−−→ s′ ∈ GT iff s′

d|d′
−−→ s ∈ G.

In the remaining part of this subsection, T is a quadratic CNS-tile with expansion matrix A
and digit set D. Let S be the neighbor set of T in the induced lattice tiling, i.e.,

S =
{
s ∈ Z2; s �= 0, T ∩ (T + s) �= ∅

}
.
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As will be seen soon, the neighborhood graph G(S) will be replaced by its transposed GT (S),
which we will call graph of neighbors and denote by G1(S) to avoid confusion.

Definition 4.1.6 (Adding graph of a CNS; input and output; string). We define in Z2 the directed
labelled graph G1(Z2) as follows:

• each s ∈ Z2 is a state of G1(Z2).

• for s, s′ ∈ G1(Z2) and d, d′ ∈ D, there exists an edge s
d|d′
−−→ s′ from s to s′ labelled by d|d′ if

and only if s+d = As′+d′. It is the adding graph of the quadratic CNS-tile with expansion
matrix A and digit set D. As D is a complete set of coset representatives of Z2/AZ2, s′

and the output digit d′ are uniquely determined by s and the input digit d, and this addition
is well-defined for all s ∈ Z2 and all d ∈ D. Thus G1(Z2) is a so-called adding machine or
adding graph.
If d0, . . . , dn are digits, then w = (d0, . . . , dn) is called a string. If n is the maximal i for
which di is non zero, the length of the string, written |w|, is said to be equal to n+ 1.
For s ∈ G1(Z2), one can associate an output string c = (d′0, . . . , d

′
n) to an input string by

“feeding” the graph with the input string from left to right as input digits, starting at the
sate s and collecting the corresponding output digits (see also [48]).

Definition 4.1.7 (Graph of neighbors). The graph of neighbors G1(S) is the restriction of G1(Z2)
to the subset S of Z2.

It is shown that the graph G1(S ∪ {0}) is stable by addition of any digit to any state.

Remark 4.1.8. This graph is called G1(S) in [5] and GT (S) in [48].

The graph of neighbors for quadratic CNS has been found in [5]: defining the points

Pn =
(
n− (n− 1)A
−(n− 1)

)
, Qn =

(
−n+ nA

n

)
, R =

(
−A
−1

)
, n ≥ 1,

then the set of neighbors consists of the 2 + 4J elements

±P1, . . . ,±PJ ,±Q1, . . . ,±QJ ,±R.

Definition 4.1.9 (State level). The states ±P1,±Q1,±R defined above are said to be of first
level, the states ±Pn,±Qn of level n for 2 ≤ n ≤ J .

The edges are given in [5, p.1471] and are reproduced in Table 4.1.
We obtain the graph of Figure 4.2, explicitely depicted there until J = 2, and where we also

wrote the point (0, 0) as an empty state and the corresponding edges. Moreover, if τ stands for
the label d|d′, then −τ stands for d′|d. For the special case J = 1 we have the graph of Figure
4.3, which is a subgraph of the general graph.

Since we are working with the transposed graph, we complete Definition 3.2.8 with the following
one.

Definition 4.1.10 (Walk). A walk in a graph G ending in a state s0 of this graph is a sequence
of edges (finite or infinite)

s0
d0|d′

0←−−− s1
d1|d′

1←−−− s2
d2|d′

2←−−− . . . .

Considering the graph in Figure 4.2, we get the following result (see [5]).

Proposition 4.1.11. Let W be an infinite walk ending in a state s0 of the graph of neighbors
G1(S), then one of the following possibilities occurs.
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edge labels name

0→ 0

0
...

B − 1

0
...
B − 1

P1 → 0

0
...

B − 2

1
...
B − 1

β

P1 → R B − 1 0 γ

R→ Q1

0
...

A− 1

B −A
...
B − 1

δ

R→ −P1

A
...

B − 1

0
...
B −A− 1

ε

Pn+1 → Qn

(1 ≤ n < J)

0
...

A− 3− (n− 1)(B −A+ 1)

1 + n(B −A+ 1)
...
B − 1

κn

Pn+1 → −Pn

(1 ≤ n < J)

A− 2− (n− 1)(B −A+ 1)
...

B − 1

0
...
n(B −A+ 1)

λn

Qn → Pn

(1 ≤ n ≤ J)

0
...

n(B −A+ 1)− 1

A− 1− (n− 1)(B −A+ 1)
...
B − 1

μn

Qn → −Qn

(1 ≤ n ≤ J)

n(B −A+ 1)
...

B − 1

0
...
A− 2− (n− 1)(B −A+ 1)

νn

Table 4.1: Edges of the general graph of neighbors G1(S).
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...
. . .

. . .

. . .

−P2 −Q2

P1 Q1 Q2

R −Q1

−R −P1 P2

−κ1

−κ2

κ2

κ1

λ2

−μ2

−ν2

ν2

−λ1

β

μ1

ν1

−ν1

μ2

γ

δ

ε

−ε

−δ −μ1

−γ

−β

λ1

−λ2

μ2

Figure 4.2: General graph of neighbors G1(S).

P1 Q1

R −Q1

−R −P1

0 1
: :

B − 2 B − 1

B − 1 0

0 A− 1
: :

B −A B − 1 B −A+ 1 0
: :

B − 1 A− 2

0 B −A+ 1
: :

A− 2 B − 1

A− 1 0
: :

B − 1 B −A

0 B −A
: :

A− 1 B − 1

A 0
: :

B − 1 B −A− 1

B −A 0
: :

B − 1 A− 1

0 A
: :

B −A− 1 B − 1

0 B − 1 1 0
: :

B − 1 B − 2

Figure 4.3: First level graph of neighbors.
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1. All states of W belong to level 1.

2. Going the walk W backwards from s0, one comes to one of the cycles ±Qn ← ∓Qn ← ±Qn,
for some n with 2 ≤ n ≤ J .

We recall that the L-vertices of a tile are the points shared by the tile and other L distinct
neighbors (see Definition 3.2.7). Characterization 3.2.10 of the last chapter indicated how to get
the L-vertices of the crystile T using the neighborhood graph G(S). It is also possible to define
L-folded powers of this graph and to read at once the L-vertices of the tile. We rather define the
L-folded power of G1(S).

Definition 4.1.12 (L-folded power of the graph of neighbors). The L-folded power of the graph
of neighbors, denoted by GL(S), is constructed as follows.

• The states of GL(S) are the L−subsets of S.

• There exists an edge
{s11, . . . , s1L} d−→ {s21, . . . , s2L}

in GL(S) if, after possible rearrangement of s21, . . . , s2L, there exist the edges

s1l
d|dl−−→ s2l (1 ≤ l ≤ L)

in G1(S) for some d1, . . . , dL ∈ D.

• The states that are not the endpoints of infinite walks are removed, together with the edges
leading to them.

This leads to the following characterization of the L-vertices.

Characterization 4.1.13. The following assertions are equivalent.

1. The point x =
∑

j≥1 A−jdj belongs to VL(s01, . . . , s0L)

2. In GL(S), there is an infinite walk

{s01, . . . , s0L}
d1←− {s11, . . . , s1L}

d2←− {s21, . . . , s2L}
d3←− . . .

This follows as in Characterization 3.2.10 from the fact that a point x belonging to T ∩ (T +s)
admits the two representations x =

∑
j≥1 A−jdj = s +

∑
j≥1 A−jd′j if and only if there is an

infinite walk
s

d1|d′
1←−−− s1

d2|d′
2←−−− s2

d3|d′
3←−−− . . .

in the graph G1(S).

Remark 4.1.14.

• For L = 2 we come to the subgraph of level 1 depicted in Figure 4.4. Note that the edge
from {Q1,−Q1} to itself only exists for 2A ≥ B + 3.

• For L = 3, it is mentioned in [5, p.1478] that the subgraph of level 1 is empty. So there
are no three infinite walks in level 1 of the graph G1(S) with the same input digits that end
in three different states of level 1. This can be checked here directly using the graphs of
Figures 4.3 and 4.4.

This provides the tools for the next section.
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−P1, Q1 P1,−R −P1, R P1,−Q1

−Q1, R P1, Q1 Q1,−Q1 −P1,−Q1 Q1,−R

0

B − 1A− 1 A− C

B − 1

0

B-A+1
:

A-2

B − 1 0
:

B-A

A-1
:

B-1

0

Figure 4.4: Graph G2(S) (restriction to the states of level 1).

4.2 Fundamental group of CNS-tiles

The main result of this section will appear in [41]. Topological properties of quadratic CNS-
tiles have been studied by Akiyama and Thuswaldner in [5]: depending on J , the tile is either
homeomorphic to a disk (J = 1) or it has a disconnected interior (J > 1). This means that the
fundamental group π1(T ) of a quadratic CNS-tile T is trivial in the former case. A result by
Luo and Thuswaldner [48] states that the fundamental group of such a tile is either trivial or
uncountable. An overview of these results can be found in [4]. We will use the criterion given in
[48] to prove the uncountability of π1(T ) in the latter case (J > 1).

We recall the criterion for uncountability of the fundamental group of a tile given by Luo and
Thuswaldner in [48].

Proposition 4.2.1. Let T be a connected Z2-tile in R2. Furthermore, suppose that there exist
s1, s2 ∈ S such that the following assertions hold.

(1) #V2(s1, s2) ≥ 2 and V2(s1, s2) \ V3 �= ∅.

(2) For each i ∈ {0, 1, 2}, there exists a string wi such that
using wi as input string in G1(S ∪ {0}) starting at 0, s1, s2 yields the output strings ci0, c

i
1, c

i
2

satisfying
max

{
|cii|, |cii+1|

}
< |cii+2| (indices are written modulo 3).

Then the fundamental group of T is uncountable.

A short explanation to this criterion reads as follows. Under the assumptions (1) and (2), the
complement of the tile T in R2 is shown to be disconnected: two subpieces of T can be found
whose union has a bounded complementary component that also intersects the complement of
T . Thus the complement of this tile is disconnected, it even has infinitely many components.
Therefore the tile T cannot be locally simply connected, which is equivalent to the uncountability
of its fundamental group by a result of Conner and Lamoreaux [12].

We can now state and prove the following theorem on the fundamental group of quadratic
CNS-tiles.

Theorem 4.2.2. Let T be the quadratic CNS-tile corresponding to the polynomial x2 + Ax+B.
Then the fundamental group of T is:

• trivial for 2A < B + 3,

• uncountable for 2A ≥ B + 3.

84



Proof. The first part has been proved in [5], we prove the second part by showing that both items
of the above criterion are true. Let s1 = P1, s2 = −Q1.

1. Claim. The point
x =

∑
j≥1

A−jdj

with

d1+3k =
(
B − A

0

)
, d2+3k =

(
0
0

)
, d3+3k =

(
B − 1

0

)
belongs to V2(P1,−Q1) \ V3.
Indeed, looking at the first level subgraph of G2(S) (Figure 4.4), the infinite cycle

{P1,−Q1} B−A←−−− {Q1,−R} 0←− {−P1, R} B−1←−−− {P1,−Q1} B−A←−−− ...

provides a point of V2(P1,−Q1) because of Characterization 4.1.13.
Then, as seen in the second item of Remark 4.1.14, an infinite walk in G1(S) with the same
input digits as the cycle above and ending in P /∈ {P1,−Q1} could not have all states in
level 1. Note that the levels would grow up going this infinite walk in G1(S). Thus, one
should come to a cycle in level n ≥ 2 (see Proposition 4.1.11): ±Qn ← ∓Qn ← ±Qn;
this would imply the existence of the edge −Qn

B−A←−−− Qn in the walk, which is not true
(according to Table 4.1 page 81). This proves the claim.
The point

y = A−1

(
B −A

0

)
+ A−3

(
A− 1

0

)
+
∑
j≥4

A−j

(
A− 2

0

)

is distinct from x and also belongs to V2(P1,−Q1) (this set is even easily seen to contain
infinitely many elements, using Characterization 4.1.13 and the graph of Figure 4.4).
Thus the first item of the criterion is proved.

2. The second part is obtained by looking at the graph in Figure 4.3.
With the input strings

w0 = (0, 0, 0, 0),
w1 = (B − 1, 0, B − 1, A− 1, 1, 0),
w2 = (B − 1, B − 1, 0, 0, 0, 0),

one gets
max

{
|c00|, |c01|

}
= 1 < |c02| = 3,

max
{
|c11|, |c12|

}
= 3 < |c10| = 5,

max
{
|c22|, |c20|

}
= 2 < |c21| = 5.

Thus the second item of the criterion is fulfilled and Theorem 4.2.2 is proved.

An example of a CNS-tile with uncountable fundamental group can be seen in Figure 4.2. This
tile T is associated to the quadratic polynomial x2 + 4x + 5. It is a limit case in the sense of
Theorem 4.2.2, since the quantity 2A−B is here exactly 3, the threshold value where the CNS-tiles
“begin” to have uncountable fundamental group. The interior of T cannot be connected, because
a self-affine plane tile with connected interior is already disk-like (see Proposition 3.3.4 and [47]).
Ngai and Tang proved that the closure of the interior components of T are disks (see [54]). The
purpose of the next section is mainly the computation of one of them.
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Figure 4.5: A CNS-tile with uncountable fundamental group (limit case, with A = 4, B = 5).

4.3 Interior component of a CNS-tile

Tis section is contained in the joint paper [45] written with Jörg Thuswaldner. T denotes here
the tile of Figure 4.6, i.e., the non disk-like tile already depicted at the end of the last section.
The closure C0 of the interior component containing the origin can be seen in the same figure. We
want to describe it as a graph directed self-similar set. Indeed, the sequences (di)i ∈ N of digits
such that the point

∑∞
i=1 A−idi belongs to C0 will be given. Because of the self-similar structure,

common subsequences of digits appear in these sequences, such that the set of sequences charac-
terizing C0 can be read off from a finite graph. A byproduct is the computation of the Hausdorff
dimension of the boundary of C0 using the technique of Appendix B. Amazingly, it is be strictly
less than the Hausdorff dimension of the whole boundary of T .

The polynomial P = x2 + 4x+ 5 is irreducible. By Definition 4.1.1, the root α = −2 +
√
−1

of the polynomial x2 + 4x+ 5 together with N := {0, 1, 2, 3, 4} forms a canonical number system
(α,N ), i.e., each element x ∈ Z[α] has a unique representation

x =
�(x)∑
i=0

aiα
i

for some non-negative integer 	(x) and ai ∈ N with a�(x) �= 0 for x �= 0. It is a special case of CNS
in imaginary quadratic fields (see [20, 33]). We use a matrix A associated to the polynomial that
is similar to the matrix introduced in Definition 4.1.3. Indeed, let us define the natural embedding

Φ : C → R2

x �→ (�(x),�(x)).

Then the multiplication by α can be represented by the 2× 2 matrix

A :=
(
−2 −1
1 −2

)
,

i.e., for every x ∈ C,
Φ(αx) = AΦ(x).
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Figure 4.6: Tile associated to the base −2 +
√
−1 with interior component containing 0.

T , the set of points of integer part zero in the base α embedded into the plane is therefore

T =

{ ∞∑
i=1

Φ(α−iai); (ai)i∈N ∈ NN

}
=

{ ∞∑
i=1

A−iΦ(ai); (ai)i∈N ∈ NN

}
. (4.3.1)

It is depicted in Figure 4.6. Thus each point of this set can be represented by an infinite string
w = (a1, a2, a3, . . .) with ai ∈ N . The set T satisfies the set equation

T =
4⋃

i=0

ψi(T ), (4.3.2)

where ψi (0 ≤ i ≤ 4) are contractions defined via the matrix A and the embedding Φ by

ψi(x) = A−1 (x+ Φ(i)) , x ∈ R2 (0 ≤ i ≤ 4). (4.3.3)

Since T is a CNS-tile, it is a self-similar continuum with non-empty interior which induces a tiling
of the plane by its translates (see Definition 4.1.3 and also [30]): the family of sets

{T + Φ(ω);ω ∈ Z[α]} (4.3.4)

is a tiling of the plane.

Some research on the structure of the components of the interior of self-similar and self-affine
tiles has already been done. Bailey et al. [6] investigate the interior of the Lévy dragon, which
is a self-affine continuum with disconnected interior providing a tiling of the plane. They stated
many conjectures concerning the geometrical shape of the connected components of its interior.
Ngai and Nguyen [53] study the components of the Heighway dragon. Moreover, as mentionned
in the introduction of this section, Ngai and Tang [54, 55] gave general results on components of
the interior of self-affine tiles. As an example they consider our tile T in [54] and prove that it has
no cut point, and that the closure of each component of its interior is homeomorphic to a closed
disk.
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In order to describe the closure C0 of the connected component containing Φ(0) (or 0, for
short), we need some notations.

Notation 4.3.1. For a finite string w = (a1, . . . , an) we define the map ψw by

ψw(x) := ψa1 · · ·ψan(x) = A−nx+
n∑

i=1

A−iΦ(ai), x ∈ R2. (4.3.5)

Following Definition 3.1.7, the set ψw(T ) is called an n-th level subpiece of T . So by definition
it contains all the points represented by an infinite string of the shape (a1, . . . , an, d1, d2, . . .) with
di ∈ N .

Note that iterating (4.3.2) we have for every n ≥ 1 the subdivision principle

T =
⋃

w,|w|=n

ψw(T ). (4.3.6)

The description of C0 will be in terms of n-th level subpieces with n ≥ 0. Indeed, it will
be shown that C0 can be obtained as the closure of the union of such subpieces; the strings w
involved in this union will be read off from a graph G presented in details in the next subsection and
depicted on Figure 4.7. Consequently, the set C0 will be viewed as the attractor of a graph-directed
construction (see Definition 2.1.17). For the so-called accepting state ◦, there is by convention an
edge ◦ a−→ ◦ for every a ∈ N .

4.3.1 Component graph G
Let us introduce the graph G and explain how the set C0 can be derived from it. We need some
notations. The graph G is right resolving, i.e., each walk of G is uniquely defined by its starting
state together with its labeling.

Notation 4.3.2. We will write w = (A; a1, . . . , an) for a walk w starting in A with labeling the
string (a1, . . . , an).

Notation 4.3.3. For subsets of the walks in G we adopt the following notations.

p set of all walks in G,
pn set of all walks in G having length n,

p(A1) set of walks in p starting at node A1,
pn(A1) set of walks in pn starting at node A1,

p(A1, A2) set of walks in p(A1) ending at node A2,
pn(A1, A2) set of walks in pn(A1) ending at node A2.

Notation 4.3.4. If w is a walk in G with labeling (a1, . . . , an), then we denote the walk which
corresponds to w in the transposed graph GT by wT (backwards walk). Its labeling is obviously
(an, . . . , a1). The terminal state of a walk w in G shall be denoted by t(w). If w1 and w2

are two walks in G and w2 starts at the terminal state of w1 then we write w1&w2 for the
concatenation of these two walks. If we emphasize on the labeling (a1, . . . , an) of a walk w we will
write w = (a1, . . . , an).

So, for instance, by the above notation, if we concatenate w1 = (A1; a1, . . . , an) and w2 =
(A2; b1, . . . , bm) we will often write (A1, a1, . . . an)&(b1, . . . , bm) because the starting state of w2 is
defined via w1.

Notation 4.3.5. For a walk w of length n and k ≤ n we denote by w|k the walk consisting of the
first k edges of w, i.e., (a1, . . . , an)|k = (a1, . . . , ak). If v = w|k we write v ≺ w.
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F

H ′ G G′ H

K L′ L K ′

J I I ′ J ′

M ′ N N ′ M

2

2

2, 3

1, 2

1 3

4 0

0, 1, 2 0 2, 3, 44

1, 2, 3, 4 4 0 0, 1, 2, 3

0 4

0

0

1

4

4

3

4 2

1

0 2

3

3

1

1

3

0 4

1 3

0 1

1 3

2, 3, 4 0, 1, 2

1, 22, 3

04 0 4

22

3 1

Figure 4.7: The graph G describing the closure of the interior component of T containing 0.
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Notation 4.3.6. If A is a state of G, we call A′ its dual. By convention we set F ′ = F , ◦ = ◦′
and A′′ = A for all the other states of G.

Note that in G every edge A1
a−→ A2 has a dual edge A′

1
4−a−−→ A′

2.

By attaching the contraction ψa defined in (4.3.3) to each edge labelled by a in G, the graph
G leads to a system of graph directed sets. For each state A of G let

M(A) :=

⎧⎨
⎩x =

∑
i≥1

A−iΦ(ai);w = (a1, a2, . . .) infinite walk of p(A)

⎫⎬
⎭ . (4.3.7)

Then we have the following result.

Proposition 4.3.7. The vector {M(A);A ∈ G} together with the graph G defines a system of
graph directed sets. It is even a system of self-similar graph directed sets.

Proof. We have to verify the conditions in Definition 2.1.17 and Proposition 2.1.18. M(A) is
obviously bounded. The fact that it is closed follows by a Cantor diagonal argument very similar
to the one used in Kátai [29].

The family
⋃

B{ψe(M(B)); e ∈ EAB} is non-overlapping because M(B) ⊂ T and G is right
resolving (note that (α,N ) admits unique representations). Furthermore, it is easy to see that
{M(A) |A ∈ G} fulfills (2.1.2).

In particular,
M := M(F )

is a compact set and M ⊂ T . The aim is to show that M = C0. We state the main results of
this section and postpone their proofs to the subsequent subsections, since they will require the
several lemmata and propositions.

Theorem 4.3.8. Let (α = −2 +
√
−1, N = {0, 1, 2, 3, 4}) be the quadratic canonical number

system related to the polynomial x2 + 4x + 5. Let T be the fundamental domain associated to
(α,N ). Then int(M) is the component of int(T ) containing 0. Moreover, M is the closure of its
interior, hence M = C0, the closure of the component of int(T ) containing 0.

Remark 4.3.9. Note that the above mentioned result of Ngai and Tang [54] implies that C0 is
homeomorphic to a closed disk.

For the proof of this theorem we will consider approximations of the set M in terms of finite
walks of the graph G.

Notation 4.3.10. For some n ∈ N and some state A of G let W ⊂ pn(A) be a set of walks. Then
we set

M(W ) :=
⋃

w∈W

ψw(T ).

Here, according to (4.3.5), ψw(T ) is the subpiece associated to the labeling of w. The approx-
imating sets are obtained by taking for W the sets

Gn := pn(F, ◦) (n ≥ 3). (4.3.8)

It is easy to see that for every n > 3,M(Gn−1) ⊂M(Gn) ⊂M. Note that there exists no walk in
pn(F, ◦) if n < 3. This means that there are no subpieces ψw(T ) with |w| < 3 entirely contained
in M.
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We will show that M = C0 in the following way. First we show that the interior of M is
connected and contained in the interior of T , hence int(M) ⊂ int(C0). In a second step we show
that its boundary lies on the boundary of T , which implies that C0 ⊂M. By proving that M is
the closure of its interior, i.e., int(M) = M, this will finally yield M = C0.

The connectivity of int(M) will be obtained by considering the approximations M (Gn) for
n ≥ 3, since we will show that

int(M) ⊂
⋃
n≥3

M (Gn) .

Using this fact, we will be able to connect a point from int(M) to 0 by a path going from subpiece
to subpiece with increasing size (i.e., over subpieces ψw(T ) with decreasing |w|) within int(T ).

The second main result concerns the Hausdorff dimension of the boundary of the interior com-
ponent containing zero. It reads as follows.

Theorem 4.3.11. Let (α = −2 +
√
−1, N = {0, 1, 2, 3, 4}) be the quadratic canonical number

system related to the polynomial x2 + 4x + 5. Let T be the fundamental domain associated to
(α,N ) and denote by C0 the component of int(T ) containing 0. Then

dimH ∂C0 =
2 log 3
log 5

= 1.36521 . . . .

Remark 4.3.12. Since the Hausdorff dimension of ∂T is given by

dimH ∂T =
2 log β
log 5

= 1.60858 . . .

where β is the dominant root of the polynomial x3 − 3x2 − x+ 5 we have that

dimH ∂C0 < dimH ∂T.

The computations of Theorem 4.3.11 and Remark 4.3.12 are essentially done by standard tech-
niques from fractal geometry, see Proposition B.0.27 of the appendix.

The remaining part of this section is organized as follows. In Subsection 4.3.2 we present
an automaton B0 which is helpful to determine whenever subpieces intersect each other. It is a
subgraph of the graph of neighbors defined in Definition 4.1.7. This leads to the definition of an
action of B0 on G in a way that is stated in this subsection too. Subsections 4.3.3 and 4.3.4 will be
helpful for the proof of the connectivity of int(M). Subsection 4.3.5 shows that the boundary of
M is contained in the boundary of T . Subsection 4.3.6 is devoted to the construction of connected
paths within the interior of T together with some of its neighbors, that will be also used to show
the connectivity of int(M) inside int(T ). Subsection 4.3.7 contains the proof of Theorem 4.3.8
and in Subsection 4.3.8 we prove Theorem 4.3.11.

4.3.2 Counting automaton B0 and its action on the graph G
We define a counting automaton and an action of this automaton on the preceding graph G.

Counting automaton B0.

We call counting automaton the first level graph of neighbors of Figure 4.3. It was given in [58]
for bases of quadratic canonical number systems in general and it is reproduced in Figure 4.8 for
α = −2 +

√
−1. We denote the automaton on Figure 4.8 by B0. Note that it is only a subgraph

of the graph of neighbors, since only six particular neighbors are considered among the ten (cf.
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Figure 4.8: The counting automaton B0.

Definitions 4.1.6 and 4.1.7).

Its states are defined by

±P := ±Φ(1), ±Q := ±Φ(3 + α), ±R := ±Φ(−4− α),

and ◦ denotes the accepting state 0 (compare with page 80).

The edges of B0 are defined as follows. There exists an edge from a state S to a state S′ in B0

labelled by a|a′ with a, a′ ∈ N if and only if

S + Φ(a) = AS′ + Φ(a′).

In particular, since ◦ denotes 0, there is an edge ◦ a|a−−→ ◦ for each a ∈ N (these edges are not
represented in Figure 4.8).

Remark 4.3.13. Note that B0 is right resolving: to any state S and any input digit a ∈ N ,
there is exactly one state S′ and one output digit a′ such that the addition in the graph can be

performed, i.e., such that S
a|a′
−−→ S′ ∈ B0.

Thus the automaton B0 can also perform the addition of S+
∑n−1

i=0 AiΦ(an−i) for S ∈ B0 and
ai ∈ N , simply by feeding B0 with the input digit string (an, . . . , a1) from left to right starting
from S and collecting the output digit string (a′n, . . . , a′1) and the landing state S′. In particular,
to

S
an|a′

n−−−−→ S1

an−1|a′
n−1−−−−−−−→ · · · a1|a′

1−−−→ S′ (4.3.9)

corresponds the addition

S +
n−1∑
i=0

AiΦ(an−i) =
n−1∑
i=0

AiΦ(a′n−i) + AnS′. (4.3.10)
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Note that for S′ = 0, i.e., for a walk leading from S to 0 in B0, the term AnS′ vanishes. In this case
the automaton produces from the string (an, . . . , a1) corresponding to the “A-adic” expansion of
z =

∑n−1
i=0 AiΦ(an−i) the string (a′n, . . . , a

′
1) which is the string of the “A-adic” expansion of z+S.

Remark 4.3.14. By Remark 4.3.13, the final state S′ and the outputs (a′n, . . . , a′1) are uniquely
defined by the starting state S and the inputs (an, . . . , a1).

The automaton emerging from B0 by leaving away the accepting state is called B. It is helpful
in order to characterize the boundary of T , as the following results show.

Proposition 4.3.15 (Scheicher and Thuswaldner [58]). The following equation holds for the
boundary ∂T of T :

∂T =
⋃

S∈B
(T ∩ (T + S)). (4.3.11)

Thus, even if T has more neighbors than the six presented here (see [5]), these neighbors are
sufficient to describe the whole boundary.

Proposition 4.3.16 (Müller et al. [52]). For S ∈ {±P,±Q,±R} let BS := T ∩ (T + S). Then
BS �= ∅. Furthermore, if there exists an infinite walk

S
a1|a′

1←−−− S1
a2|a′

2←−−− . . .

in B such that x =
∑

i≥1 A−iΦ(ai) then x ∈ BS.

As a consequence of these propositions and of the definition of B0, we have the following way
to characterize that two n-th level subpieces of T have common points.

Characterization 4.3.17. Let n ∈ N and w = (a1, . . . , an), w′ = (a′1, . . . , a′n) be two strings of
length n. If there is a walk

Sn
an|a′

n−−−−→ Sn−1

an−1|a′
n−1−−−−−−−→ . . .

a1|a′
1−−−→ ◦

in B0, then
ψw(T ) ∩ ψw′(T ) �= ∅.

Graph action of B0 on G.

The structure of M will be understood with the help of the following graph action of B0 on the
graph G.

Definition 4.3.18 (Graph action of the counting automaton). Let S be a state in B0, A a
state of G and let w = (A; a1, . . . , an) ∈ pn(A). Take (an, . . . , a1) as the input string for the
automaton B0 with starting state S and denote the output string by (a′n, . . . , a′1). Then we define
ΨS(w) := (A; a′1, . . . a

′
n). ΨS is called the addition of S. If the automaton B0 rests in ◦ after

reading (an, . . . , a1) and if ΨS(w) ∈ pn(A) then we say that the addition of S is admissible for w.
Note that for a walk w = (A) of length zero only Ψ◦(w) = w is admissible.

Remark 4.3.19. By Characterization 4.3.17, the admissible addition of S to a string w produces
a string w′ := ΨS(w) such that ψw(T ) ∩ ψw′(T ) �= ∅.

Definition 4.3.20 (Equivalence of walks). Fix n ∈ N, a state A ∈ G and let w1, w2 ∈ W ⊂ pn(A).
Let ψw1(T ) and ψw2(T ) be the corresponding subsets of T . We say that w1 and w2 are W -
equivalent to each other, if there exist finitely many states S1, . . . , Sm of B such that the following
conditions hold with admissible additions ΨSj .

ΨSm ◦ · · · ◦ΨS1(w1) = w2 and
ΨSj ◦ · · · ◦ΨS1(w1) ∈ W (1 ≤ j ≤ m).
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We denote this by w1 ∼ w2 (W ) or simply by w1 ∼ w2 if the underlying set W is clear from the
context. In this case we also call the corresponding sets ψw1(T ) and ψw2(T ) W -equivalent and
use the same notation ψw1(T ) ∼ ψw2(T ).

If w1 = ΨS(w2) we also write in a slight abuse of notation w1 ∼S w2 or w2 S ∼ w1.

It is easy to check that ∼ is an equivalence relation.

Remark 4.3.21. We want to give some comments on these definitions.

1. Let w = (A; a1, . . . , an) ∈ pn(A) be a walk and assume that ΨSn with Sn ∈ B0 is an
admissible addition for w. Then from Definition 4.3.18 it follows that there exists a walk

Sn
an|a′

n−−−−→ Sn−1

an−1|a′
n−1−−−−−−−→ . . .

a2|a′
2−−−→ S1

a1|a′
1−−−→ ◦

in B0 such that w′ = (A; a′1, . . . , a′n) ∈ pn(A). Furthermore, we can perform this addition
“digit wise”, i.e.,

ΨSn(A; a1, . . . , an) = ΨSj(A; a1, . . . , aj)&(a′j+1, . . . , a
′
n) = (A; a′1, . . . , a

′
n).

Note that from this we easily see that

ψΨSn (w)(T ) = ψw(T + Sn).

We even have, if S(1)
n , . . . , S

(m)
n arem states of B0 such that the additions Ψ

S
(j)
n
◦· · ·◦Ψ

S
(1)
n

(w)
are admissible for 1 ≤ j ≤ m, that

ψΨ
S

(m)
n
◦ · · · ◦Ψ

S
(1)
n

(w)(T ) = ψw(T + S(m)
n + . . .+ S(1)

n ).

2. Let w1, w2 be W -equivalent for some W ⊂ pn(A). Then there exist v1, . . . , vm with v1 := w1

and vm := w2 such that

ψvj (T ) ∩ ψvj+1(T ) �= ∅ (1 ≤ j ≤ m− 1).

This follows immediately from Remark 4.3.19 together with Definition 4.3.20.

3. Let W ⊂ pn(A) and let k < n be integers. Let w1, w2 ∈ W such that w1|k = w2|k =: σ.
Then there exist

τ1, τ2 ∈ Wσ := {τ ;σ&τ ∈ W}
such that wi = σ&τi (i = 1, 2). If τ1 and τ2 are equivalent in Wσ then w1 and w2 are
equivalent in W . This follows from the following fact together with Definition 4.3.20. Let
τ, τ ′ ∈Wσ and S ∈ B0. Then

ΨS(τ) = τ ′ =⇒ ΨS(σ&τ) = Ψ◦(σ)&τ ′ = σ&τ ′.

This implies that
τ ∼ τ ′(Wσ) =⇒ σ&τ ∼ σ&τ ′(W ),

and this means that in order to examine equivalences of walks it often suffices to examine
equivalences of their tails.

Definition 4.3.22 (Transitivity of a set of strings). Fix n ∈ N and let W ⊂ pn(A) be a set of
strings. Then W and the set

M(W ) := {ψw(T );w ∈ W}
are called transitive if we have w1 ∼ w2(W ) for each two w1, w2 ∈W .
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Remark 4.3.23. Since the subpiece ψw(T ) is arcwise connected for every string w (remember
that T is arcwise connected), by definition of the equivalence relation in W , a transitive set
W ⊂ pn(F, ◦) yields an arcwise connected subset M(W ) of M.

We end this subsection with a last definition.

Definition 4.3.24 (Admissible graph action). Let A be a node of G and S a state of B0. If ΨS

is admissible for all walks in p(F,A) then we call ΨS an admissible graph action for A on G, or an
A-action, for short.

If ΨS is an A-action then we call

F (ΨS , A) := {t(w′);w′ = ΨS(w) for a walk w ∈ p(F,A)}

the ending set of (ΨS , A).

Remark 4.3.25. Consider the assertion

ΨS is an A-action with ending set F (ΨS , A),

then we define the dual assertion

Ψ−S is an A′-action with ending set {Z ′;Z ∈ F (ΨS , A)}.

4.3.3 Admissibility of all the additions for a class of walks in G
This subsection is devoted to the proof of the following result.

Proposition 4.3.26. Let w be a finite walk in p(F, ◦). Then for each state S of B the addition
ΨS(w) is admissible for w.

Remark 4.3.27. By Remarks 4.3.19 and 4.3.21.1 , this implies that for w ∈ pn(F, ◦), all the sets
ψw(T + S) with S ∈ B0 are subpieces of T that have non-empty intersection with ψw(T ).

Suppose that w is a finite walk in p(F, ◦). Then w is of the shape

F
a1−→ A1

a2−→ · · · ak−→ Ak
ak+1−−−→ ◦ ak+2−−−→ · · · an−−→ ◦ (Ak �= ◦) (4.3.12)

for some 2 ≤ k < n. Let Sn := S. Note that Sn together with the labels (a1, . . . , an) defines
uniquely the walk

Sn
an|a′

n−−−−→ Sn−1

an−1|a′
n−1−−−−−−−→ · · ·

ak+2|a′
k+2−−−−−−→ Sk+1

ak+1|a′
k+1−−−−−−→ Sk

ak|a′
k−−−→ · · · a1|a′

1−−−→ S0 (4.3.13)

in B0 (recall that B0 is right resolving by Remark 4.3.13). By the definition of ΨS this walk yields
the identities

ΨS(w) = ΨSj (a1, . . . , aj)&(a′j+1, . . . , a
′
n) = ΨSk

(a1, . . . , ak)&(a′k+1, . . . , a
′
n). (4.3.14)

We want to show that ΨS(w) is a walk in p(F ) and that S0 = ◦ for all states S of B. We first
need the following lemma.

Lemma 4.3.28. ΨS is an A-action in the following cases:

(L,-Q): Ψ−Q is an L-action with F (Ψ−Q, L) ⊂ {◦, L′,K ′}.

(L,R): ΨR is an L-action with F (ΨR, L) ⊂ {◦, I ′, J ′, L′,M ′}.

(L,P): ΨP is an L-action with F (ΨP , L) ⊂ {L,M, I,N ′}.
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(L,-P): Ψ−P is an L-action with F (Ψ−P , L) ⊂ {L,H, J}.

(M,-Q): Ψ−Q is an M -action with F (Ψ−Q,M) ⊂ {◦, J ′}.

(M,R): ΨR is an M -action with F (ΨR,M) ⊂ {◦, L′}.

(M,P): ΨP is an M -action with F (ΨP ,M) ⊂ {◦}.

(M,-P): Ψ−P is an M -action with F (Ψ−P ,M) ⊂ {L}.

(H,-Q): Ψ−Q is an H-action with F (Ψ−Q, H) ⊂ {I ′,K}.

(H,P): ΨP is an H-action with F (ΨP , H) ⊂ {I, L}.

(H,-P): Ψ−P is an H-action with F (Ψ−P , H) ⊂ {G}.

(I,-Q): Ψ−Q is an I-action with F (Ψ−Q, I) ⊂ {H ′, J}.

(I,R): ΨR is an I-action with F (ΨR, I) ⊂ {◦, L′,K, I ′}.

(I,-P): Ψ−P is an I-action with F (Ψ−P , I) ⊂ {H,L}.

(J,Q): ΨQ is an J-action with F (ΨQ, J) ⊂ {I,K ′}.

(J,-Q): Ψ−Q is an J-action with F (Ψ−Q, J) ⊂ {◦, J ′,M ′}.

(J,R): ΨR is an J-action with F (ΨR, J) ⊂ {◦, L′}.

(J,P): ΨP is an J-action with F (ΨP , J) ⊂ {L}.

(J,-P): Ψ−P is an J-action with F (Ψ−P , J) ⊂ {◦,K}.

(K,Q): ΨQ is an K-action with F (ΨQ, J) ⊂ {H, J ′}.

(K,-Q): Ψ−Q is an K-action with F (Ψ−Q,K) ⊂ {◦, L′}.

(K,-R): Ψ−R is an K-action with F (Ψ−R,K) ⊂ {◦, I}.

(K,P): ΨP is an K-action with F (ΨP ,K) ⊂ {◦, J}.

Moreover, the duals of these assertions are also true, that is to say: if for some pair S ∈ B
and A ∈ G

(A,S): ΨS is an A-action with F (ΨS , A) ⊂ {A1, . . . , Ak}
holds then also the dual statement

(A’,-S): Ψ−S is an A′-action with F (Ψ−S , A
′) ⊂ {A′

1, . . . , A
′
k}

holds.

Remark 4.3.29. Note that Ψ◦ is an A-action (with set of ending states {A}) for every A ∈ G.

Proof. The statement will be proved by induction on the length of the walks w ∈ p(F ). The
assertion (A,S)n stands for: (A,S) holds for all walks up to length n. If there is no walk in
pk(F,A) for k ≤ n, then (A,S)n is true.
For n ≤ 1 the statements (A,S)n for the pairs (A,S) in the proposition are all true.
Suppose now that (A,S)n−1 is true for all pairs (A,S) of the proposition and their duals. We
show that all (A,S)n’s and their duals are also true. We will show how to proceed for the case of
(L,−Q)n and sum up the results for all the cases in a table.
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(A,S)n an An−1 (An−2) a′n (a′n−1) Sn−1 (Sn−2) end of ΨSn−i(w|n−i) end of ΨS(w)
(L,−Q)n 0, 1, 2 H ′ 4 Q I,K ′ ◦

K ′ 2 ◦, L ◦, L′

I ′ 4 H, J ′ K ′

L′ 4 ◦, L,K ◦, L′

M ′ 4 ◦, J ◦
3, 4 H ′ 0 −P I ′, L′ ◦

L′ 0 I ′, L′,M ′, N ◦, L′

M ′ 0, 1 ◦ ◦
N ′ (I ′) 1 (2) −P (◦) I ′ L′

(L,R)n 0, 1, 2, 3 H ′ 3, 4 Q I,K ′ ◦, J ′

K ′ 1 ◦, L ◦, L′

L′ 3, 4 ◦, L,K ◦, J ′,M ′, L′

I ′ 3 H, J ′ ◦, J ′

M ′ 3, 4 ◦, J ◦
4 M ′ 0 −P ◦ ◦

N ′ 0 (2) −P (◦) I ′ I ′

(L,P )n 0, 1, 2, 3 H ′ 3, 4 ◦ H ′ I, L
K ′ 1 K ′ M
L′ 3, 4 L′ L, I
I ′ 3 I ′ N ′

M ′ 3, 4 M ′ L
4 M ′ (K) 0 (4) R (Q) H, J ′ L

N ′ (I ′) 0 (4) J ′, H L
(L,−P )n 1, 2, 3, 4 H ′ 1, 2 ◦ H ′ J, L

L′ 1, 2 L′ J, L
I ′ 1 I ′ J
M ′ 1, 2, 3 M ′ J, L
N ′ 3 N ′ H

0 K ′ (J ′) 4 (3) −R (−Q) I ′,K L
(M,−Q)n 1 K ′ 3 Q ◦, L ◦, J ′

(M,R)n 1 K ′ 2 Q ◦, L ◦, L′

(M,P )n 1 K ′ 2 ◦ K ′ ◦
(M,−P )n 1 K ′ 0 ◦ K ′ L
(H,−Q)n 3 N ′ (I ′) 0 (2) −P (◦) I ′ I ′

G′ (F ;G,N) 0 (0; 1) −P (◦) F,G,N I ′,K
(H,P )n 3 N ′, G′ 4 ◦ N ′, G′ L, I

(H,−P )n 3 N ′, G′ 2 ◦ N ′, G′ G
(I,−Q)n 4 H ′ 1 −P I ′, L′ J

L′ I ′,M ′, L′, N J,H ′

G′ (F ;G,N) 1 (0; 1) −P (◦) F,G,N H ′, J
(I,R)n 4 H ′ 0 −P I ′, L′ ◦, L′

L′ I ′,M ′, L′, N ◦, L′

G′ (F ;G,N) 0 (0; 1) −P (◦) F,G,N I ′,K
(I,−P )n 4 G′, L′, H ′ 3 ◦ G′, L′, H ′ H,L
(J,Q)n 1 H ′ 4 P G′ I

M ′ L′ I
I ′ H ′, L′ I
L′ H ′, L′, J ′ I,K ′

(J,−Q)n 1 H ′ 3 Q K ′, I ◦, J ′

M ′ ◦, J ◦
I ′ H, J ′ ◦, J ′

L′ ◦, L,K ◦, J ′,M ′

Table 4.2: Proof of Lemma 4.3.28.
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(A,S)n an An−1 (An−2) a′n (a′n−1) Sn−1 (Sn−2) end of ΨSn−i(w|n−i) end of ΨS(w)
(J,R)n 1 H ′ 2 Q K ′, I ◦, L′

M ′ ◦, J ◦
I ′ H, J ′ ◦, L′

L′ ◦, L,K ◦, L′

(J, P )n 1 H ′,M ′, I ′, L′ 2 ◦ H ′,M ′, I ′, L′ L
(J,−P )n 1 H ′,M ′, I ′, L′ 0 ◦ H ′,M ′, I ′, L′ ◦,K
(K,Q)n 0 H ′ 3 P G′ H

J L J ′

(K,−Q)n 0 H ′, J 2 Q K ′, I ◦, L′

(K,−R)n 0 H ′ 4 P G′ I
J L ◦

(K,P )n 0 H ′, J 1 ◦ H ′, J ◦, J

Table 4.3: Proof of Lemma 4.3.28: end of the preceding table.

We have to show that Ψ−Q is an L-action for all walks w of length at most n with ending set
F (Ψ−Q, L) ⊂ {◦, L′,K ′}. Let w = (a1, . . . , an) such that there is a walk

A
a1−→ A1

a2−→ . . .
an−2−−−→ An−2

an−1−−−→ An−1
an−−→ L

in G. Then by Remark 4.3.13 the input digits (an, . . . , a1) define a unique walk in B0 starting
from −Q:

−Q an|a′
n−−−−→ Sn−1

an−1|a′
n−1−−−−−−−→ Sn−2

an−2|a′
n−2−−−−−−−→ . . .

a1|a′
1−−−→ S0.

First suppose that an ∈ {0, 1, 2}, i.e., by B0, Sn−1 = Q. Then

Ψ−Q(w) = ΨQ(w|n−1)&(a′n).

According to G, since w ends up in L and an ∈ {0, 1, 2}, w|n−1 can end up in H ′,K ′, I ′, L′ or M ′,
i.e., An−1 ∈ {H ′,K ′, I ′, L′,M ′}. If An−1 = H ′, then an = 2, because the edge leading from H ′

to L in G has only the labels {2, 3}, and we assumed an ∈ {0, 1, 2}. Thus a′n = 4, as indicated by

the edge −Q 2|4−−→ Q of B0. Moreover, by (H ′, Q)n−1, which is the dual of (H,−Q)n−1, we have

Q
w|Tn−1−−−−→ ◦ in B0 and ΨQ(w|n−1) ends up in {I,K ′}. Thus −Q wT

−−→ ◦, i.e., S0 = ◦, and Ψ−Q(w)
ends up in {◦}, because of the edges I 4−→ ◦ and K ′ 4−→ ◦ in G. We can argue along the same lines
if An−1 ∈ {K ′, I ′, L′,M ′}. All these cases lead to walks Ψ−Q(w) ending in ◦, K ′ or L′.

Secondly, suppose that an ∈ {3, 4}, i.e., by B0, Sn−1 = −P . Then

Ψ−Q(w) = Ψ−P (w|n−1)&(a′n).

According to G, since w ends up in L and an ∈ {3, 4}, w|n−1 can only end up in H ′, L′,M ′ or N ′,
i.e., An−1 ∈ {H ′, L′,M ′, N ′}. The first three cases can be treated as above and lead to Ψ−Q(w)
ending in ◦ or L′, so let us assume that An−1 = N ′. Then, the only edge in G leading from N ′ to
L being N ′ 4−→ L, we have an = 4, and since there is only one edge landing in N ′ (I ′ 3−→ N ′), we

even have An−2 = I ′ and an−1 = 3. Thus, by the edges −Q 4|1−−→ −P 3|2−−→ ◦ of B0, we read a′n = 1,

a′n−1 = 2 and Sn−2 = ◦. Consequently, we have ◦
w|Tn−2−−−−→ ◦, and Ψ◦(w|n−2) = w|n−2 ends up in

{I ′}. Thus again S0 = ◦ and

Ψ−Q(w) = Ψ◦(w|n−2)&(a′n−1, a
′
n) = w|n−2&(2, 1)

ends up in {L′}, as it can be checked on G by considering the edges I ′ 2−→ L
1−→ L′.
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Thus in all cases Ψ−Q(w) is a walk in p(F ) ending up in {◦, L′,K ′}. Thus (L,−Q)n is true
and we are done.

All the other assertions can be treated likewise. The occurring cases are summed up in Ta-
bles 4.2 and 4.3 from which the complete proof can be read off easily. In these tables, An−2, a

′
n−1

and Sn−2 are given if they are needed, and in this case we use i = 2 in the 6-th column, otherwise
i = 1.

Proposition 4.3.26 will be proved inductively: let w be a finite walk in p(F, ◦) and j ≥ k + 1,
where k is defined by (4.3.12). We will show that for every j ≥ k + 1, the addition ΨS(w|j) is
admissible for each state S of B: taking for j the length n of w will yield the result. Lemma 4.3.30
will contain the induction start, Lemma 4.3.31 the induction step.

Lemma 4.3.30. Suppose that w is a walk of the shape (4.3.12). Then the following assertions
hold.

(i) ΨP (w|k+1) ends in {◦,M ′,K ′, J}.

(ii) ΨQ(w|k+1) ends in {◦, J,K, L}.

(iii) ΨR(w|k+1) ends in {◦, L′, J ′, I ′,K}.

(iv) w|k+1 ends in {◦}.

Their associated duals also hold (“ ΨS(w|k+1) ends in the set of states A” has the dual “ Ψ−S(w|k+1)
ends in A′ ”).

In particular, ΨS(w|k+1) is a walk in p(F ) for all S ∈ B0. Moreover, S
w|Tk+1−−−−→ ◦ for all S ∈ B0.

That is to say, ΨS(w|k+1) is admissible for all S ∈ B0.

Proof. Let S ∈ B0. Note that the following edges exist:

Ak
ak+1−−−→ ◦ in G by definition of k and

S
ak+1|a′

k+1−−−−−−→ S′ in B for some S′ ∈ B0

(4.3.15)

(the second edge is uniquely defined by S and ak+1). We recall the identity:

ΨS(w|k+1) = ΨS′(w|k)&(a′k+1). (4.3.16)

To (i): S = P . Depending on ak+1, the edge P
ak+1|a′

k+1−−−−−−→ S′ of (4.3.15) in B0 implies that S′ = ◦
or R, which fix the range of a′k+1 (a′k+1 = 0 if S′ = R and a′k+1 ∈ {1, . . . , 4} if S′ = ◦). The

possible states Ak are also determined by ak+1 via the existence of the edge Ak
ak+1−−−→ ◦ in G

(see (4.3.15)). Using the corresponding assertion (Ak, S
′) of Lemma 4.3.28 it is then easy to get

the possible endings of ΨS′(w|k). Now if Y ∈ G is such an ending, then, by (4.3.16), with the

range of a′k+1 one obtains the possible endings Z of ΨS(w|k+1) by looking for all edges Y
a′

k+1−−−→ Z

in G. Let us consider an example: if ak+1 = 4, we are considering the edge P
4|0−−→ R in B0, thus

S′ = R and a′k+1 = 0. Moreover, Ak ∈ {K ′, L, J, I,M} because these states are the only starting
states of edges in G labelled by 4 and leading to ◦. For Ak = K ′, using (K ′, R) of Lemma 4.3.28
we get that ΨR(w|k) ends up in ◦ or I ′. Consequently, since a′k+1 = 0, ΨP (w|k+1) ends up in ◦:

indeed, we have ◦ 0−→ ◦ and I ′
0−→ ◦ in G. Note that (K ′, R) also implies R

w|Tk−−→ ◦ in B0, thus

P
w|Tk+1−−−−→ ◦.

The results for the other values of ak+1 are given in Table 4.4.

The proof is the same for the other cases (S = Q,S = R) and their duals, it is summed up in
Table 4.4 for S = Q and S = R. Item (iv) is clear.
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S ak+1 S′ Ak end of ΨS′(w|k) a′k+1 end of ΨS(w|k+1)
P 0, 1, 2, 3 ◦ L′ L′ 1 J

J J 2, 3, 4 ◦
J ′ J ′ 1, 2, 3, 4 ◦,K ′

K K 1, 2, 3 ◦,M ′

K ′ K ′ 3, 4 ◦
M ′ M ′ 3, 4 ◦

4 R J ◦, L′

I ◦, I ′,K, L′

L ◦, J ′, L′,M ′, I ′ 0 ◦
K ′ ◦, I ′
M ◦, L′

Q 0, 1 P K ◦, J 3, 4 ◦
L′ H ′, J ′, L′ 3 ◦, L
J L 4 ◦
M ′ L′ 3 L
I ′ ◦,K ′ 3, 4 L
J ′ ◦,K ′ 3, 4 ◦

2, 3, 4 −Q K ′ H ′, J 0, 1, 2 ◦,K, J, L
L ◦, L′,K ′ 2 ◦, L
K ◦, L′ 0 ◦
J ′ K, I ′ 0, 1 ◦
I H ′, J 2 ◦, L
J ◦,M ′, J ′ 0, 1, 2 ◦, J, L
M ◦, J ′ 2 ◦

R 0, 1, 2, 3 Q K H, J ′ 1, 2, 3 ◦, L′

K ′ ◦, L 3, 4 ◦, J ′

L′ ◦, L,K 1 ◦, L′

J I,K ′ 2, 3, 4 ◦, L′, J ′

J ′ ◦,M, J 1, 2, 3, 4 ◦, J ′, L′

I ′ H, J ′ 1 ◦, L′

M ′ ◦, J 1 ◦

4 −P K ′ ◦, J ′ ◦, L′

L H, J, L I ′,K
J ◦,K 0 ◦
I H,L I ′

M L I ′

Table 4.4: Proof of Lemma 4.3.30.
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Again, let w be a finite walk in p(F, ◦) and j ≥ k + 1, where k is defined by (4.3.12). We call
(Bj) the assertion: for all S ∈ B0,ΨS(w|j) is a walk in p(F ) with possible ending states given in

Table 4.5. Moreover, S
w|Tj−−→ S0 = ◦ in B0. In particular, (Bj) states that ΨS(w|j) is admissible

for all S ∈ B0.
By Lemma 4.3.30, (Bk+1) already holds. The induction step is contained in the following lemma.

walk possible ending states
Ψ◦(w|j) {◦}
ΨP (w|j) {◦,M ′,K ′, J}
Ψ−P (w|j) {◦,M,K, J ′}
ΨQ(w|j) {◦, J,K, L,M}
Ψ−Q(w|j) {◦, J ′,K ′, L′,M ′}
ΨR(w|j) {◦, L′, J ′, I ′,M ′,K}
Ψ−R(w|j) {◦, L, J, I,M,K ′}

Table 4.5: Table of statement (Bj).

Lemma 4.3.31. If (Bj) holds for some j ≥ k + 1, then (Bj+1) holds too.

Proof. First we deal with the case of S = P . Then there is an edge P
aj+1|a′

j+1−−−−−−→ S′ in B0, thus
S′ ∈ {◦, R}. Remember that ΨP (w|j+1) = ΨS′(w|j)&(a′j+1).

By assumption (Bj), S′ w|Tj−−→ ◦, thus P
aj+1|a′

j+1−−−−−−→ S′ w|jT

−−−→ ◦, i.e., P
w|j+1T

−−−−−→ ◦ in B0.

Moreover, if S′ = ◦, then ΨP (w|j+1) = w|j&(a′j+1) is a walk in p(F ) that ends at ◦: indeed,
w|j is in p(F ) and j ≥ k + 1, so by (4.3.12) w|j already ends at ◦; its concatenation with (a′j+1)

remains in p(F ), because ◦
a′

j+1−−−→ ◦.

If S′ = R, then the edge P
aj+1|a′

j+1−−−−−−→ R in B0 indicates that a′j+1 = 0. Hence ΨP (wj+1) =
ΨR(w|j)&(a′j+1), with ΨR(w|j) walk in p(F ) ending at Y ∈ {◦, L′, J ′, I ′,M ′,K} by assumption
(Bj) (see Table 4.5 for the endings). Now we can check on G that there is an edge starting from
each Y ∈ {◦, L′, J ′, I ′,M ′,K} and labelled by 0. They all lead to ◦.

The other cases (S = Q,S = R) as well as their duals are treated in a similar way (see Table 4.6
for S = Q,S = R).

Proof of Proposition 4.3.26. Let w be a walk in pn(F, ◦) of the shape (4.3.12) and the resulting
walk in B0 given by (4.3.13). If n = k + 1, then w|k+1 = w and Lemma 4.3.30 gives the result

Sj+1 Sj a′j+1 end of ΨSj (w|j) end of ΨSj+1(w|j+1)
P ◦ 1, 2, 3, 4 ◦ ◦

R 0 ◦, J ′, L′, I ′,M ′,K ◦
Q P 3, 4 ◦, J,K ′,M ′ ◦, L

−Q 0, 1, 2 ◦, L′,K ′, J ′,M ′ ◦, J, L,M
R Q 1, 2, 3, 4 ◦, L,K, J,M ◦, L′, J ′,M ′

−P 0 ◦, J ′,K,M ◦, L′

Table 4.6: Proof of Lemma 4.3.31.

101



immediately. Otherwise, starting from the same lemma and going on with Lemma 4.3.31 from
j = k + 1 to j = n, we also obtain the statement of Proposition 4.3.26.

4.3.4 Equivalences of paths

The main result of this subsection, Proposition 4.3.33, will be used in Subsection 4.3.7 to construct
arcs inside int(M) from arbitrary points contained in a subpiece ψw(T ), where w ∈ p(F, ◦), to the
point 0 (contained in ψ(0,0,0)(T )).
In the following, the equivalences of walks from the set Gk defined as in (4.3.8) for some k ∈ N

will take place in Gk. First we note the following fact about the walks of length 3.

Remark 4.3.32. We have G3 = {(F ; 0, 0, 0), (F ; 1, 4, 4)} and these walks are equivalent in G3.
Namely, (F ; 1, 4, 4) = Ψ−P ((F ; 0, 0, 0)). In other words, G3 is transitive.

Proposition 4.3.33. Let n ≥ 4 and w ∈ Gn. Then there is a walk w′ ∈ Gn+1 such that
w′|n−1 ∈ Gn−1 and w&d ∼ w′ for some d ∈ {0, . . . , 4}.

In view of Remark 4.3.21.2 this proposition says the following. Let w be a walk in Gn and
let ψw(T ) be the associated subset of T . Then ψw(T ) contains a subpiece ψw&d(T ) with the
following property. There exist walks w&d = v1, v2, . . . , vk = w′ in Gn+1 such that the associated
subpieces satisfy

ψvj (T ) ∩ ψvj+1(T ) �= ∅ (1 ≤ j ≤ k − 1).

Since w′′ := w′|n−1 ∈ Gn−1, this means that one can draw an arc from each piece ψw(T ) ofM(Gn)
to a piece ψw′′(T ) of M(Gn−1). By induction on n this will lead to a proof of the connectivity of
M because it allows to draw arcs from each point of M to the connected set ψ(F ;0,0,0)(T ) ⊂M.

Remark 4.3.34. 1. If w&d ∼ w′ for w ∈ Gn and d ∈ {0, . . . , 4}, then by using Ψ±P we even
have w&d ∼ w′ for every d ∈ {0, . . . , 4}.

2. If two walks w and w′ of Gn are equivalent, then there exist d, d′ ∈ {0, . . . , 4} with w&d ∼
w′&d′. This means that two intersecting pieces ψw(T ) and ψw′(T ) (i.e., such that ψw(T )∩
ψw′(T ) �= ∅) contain intersecting subpieces ψw&d(T ) and ψw′&d′(T ). In particular it is
sufficient to find a walk w′ ∈ Gn with w′|n−1 ∈ Gn−1 and w ∼ w′. In this case w will
automatically fulfil Proposition 4.3.33.

3. For p ∈ N, we introduce the notation w Sp ∼ w′: this means that w′ is obtained after
applying ΨS to w for p times.

Proposition 4.3.33 will be shown via the following lemmata. By Remark 4.3.21.3, we just have
to concentrate on the tails of the walks. Moreover, the lemmata correspond to the following classes
of walks:

En(A) := {w ∈ Gn, w contains the edge A→ ◦ } (a ∈ G \ {◦}).
Sloppily spoken the walks contained in En(A) are those walks of Gn which reach the accepting
state via the state A. Note that

Gn =
⋃

A∈G
En(A). (4.3.17)

Lemma 4.3.35. Let n ≥ 4 and w ∈ En(K) ∪En(K ′). Then there is a walk w′ ∈ Gn+1 such that
w′|n−1 ∈ Gn−1 and w&d ∼ w′ for some d ∈ {0, . . . , 4}.
Proof. Let us consider w ∈ En(K). If w|n−1 ∈ En−1(K), we are ready. We suppose it is not the
case. We have the following cases for the tails τ of w = σ&τ (σ is fixed by w and τ).

(1) τ = (J ; 0, a) with a ∈ {0, 1, 2}. Then

(J ; 0, 2) −P ∼ (J ; 0, 1) −P ∼ (J ; 0, 0) Q ∼ (J ; 1, 3) ≺ (J ; 1),

which ends at ◦. Thus w ∼ σ&(J ; 1, 3) with σ&(J ; 1) ∈ Gn−1, and we are ready by Re-
mark 4.3.34.2.
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(2) τ = (A; d, 1, 0, a) with (A, d) ∈ C := {(F, 0), (G′, 2), (N ′, 2), (I, 1)} and a ∈ {0, 1, 2}. Then
for all constellations (A, d) ∈ C, we have

(A; d, 1, 0, 0) P ∼ (A; d, 1, 0, 1) P ∼ (A; d, 1, 0, 2) Q ∼ (A; d+ 1, 4, 2, 0) Q ∼ (A; d+ 1, 4, 3, 3)
(−P )3 ∼ (A; d+ 1, 4, 3, 0) Q ∼ (A; d+ 1, 4, 4, 3) ≺ (A; d+ 1, 4, 4),

which ends at ◦. Thus w ∼ σ&(A; d + 1, 4, 4, 3) with σ&(A; d + 1, 4, 4) ∈ Gn−1, and we are
ready by Remark 4.3.34.2.

One can proceed identically for w ∈ En(K ′) by considering the dual walks of the previous ones.
Thus Lemma 4.3.35 is proved.

Lemma 4.3.36. Let n ≥ 4 and w ∈ En(J) ∪ En(J ′). Then there is a walk w′ ∈ Gn+1 such that
w′|n−1 ∈ Gn−1 and w&d ∼ w′ for some d ∈ {0, . . . , 4}.

Proof. Let us consider w ∈ En(J). If w|n−1 ∈ En−1(J), we are ready. We suppose it is not the
case. Then the tail τ of w = σ&τ has the form τ = (A; 1, a) with A ∈ A := {L′,M ′, I ′, H ′} and
a ∈ {1, 2, 3, 4}. We have the following equivalences for A ∈ A:

(A; 1, 1) P ∼ (A; 1, 2) P ∼ (A; 1, 3) P ∼ (A; 1, 4) −Q ∼ (A; 0, 1).

For A ∈ {L′,M ′, I ′}, ∼ (A; 0, 1) ≺ (A; 0), which ends at ◦. Thus w ∼ σ&(A; 0, 1) with σ&(A; 0) ∈
Gn−1, and we are ready by Remark 4.3.34.2.

For A = H ′, we have w = σ&(H ′; 0, 1) which is now a walk belonging to En(K), thus we
obtain the required result by using Lemma 4.3.35.

One can proceed identically for w ∈ En(J ′), thus Lemma 4.3.36 is proved.

Lemma 4.3.37. Let n ≥ 4 and w ∈ En(L) ∪ En(L′). Then there is a walk w′ ∈ Gn+1 such that
w′|n−1 ∈ Gn−1 and w&d ∼ w′ for some d ∈ {0, . . . , 4}.

Proof. Let us consider w ∈ En(L′). If w|n−1 ∈ En−1(L′), we are ready. We suppose it is not the
case. Then w belongs to one of the following classes of tails τ of w = σ&τ (σ is fixed by w and τ).

(1.i) τ = (L; 2, 0). Then (L; 2, 0) Q ∼ (L; 3, 3) which leads to a walk σ&(L; 3, 3) equivalent to w
which belongs to En(J ′), treated in Lemma 4.3.36.

(1.ii) τ = (L; 1, 0). We subdivide this class into the following smaller classes:
A. (A; d, 1, 0) with (A, d) ∈ CA := {(K ′, 0), (H ′, a), (L′, a), a ∈ {2, 3}}.
B. (K; 3, d, 1, 0) with d ∈ {2, 3, 4}.
C. (I ′; 3, 4, 1, 0).
D. (A; d, 0, (3, 4, 0)p, 2, 1, 0) for some p ∈ N and

(A, d) ∈ CD := {(F, 0), (K ′, 0), (I ′, 2), (M ′, 4),
(G′, a), (N ′, a), (H ′a), (L′, a), (M ′, a), a ∈ {2, 3}}.

Here (3, 4, 0)p inside the walk means that the sequence of digits (3, 4, 0) has to be read p
times before going on to the digit 2. This corresponds to the cycle I ′ → N ′ → L → I ′ in
the graph of Figure 4.7.

A. We have for (A, d) ∈ CA: (A; d, 1, 0) −Q ∼ (A; d+ 1, 4, 2) ≺ (A; d+ 1, 4), which ends at ◦.

B. We have for d = 3, 4 that (K; 3, d, 1, 0) −P ∼ (K; 2, d− 3, 0, 4) ≺ (K; 2), which ends at ◦,
and (K; 3, 2, 1, 0) −Q ∼ (K; 3, 3, 4, 2) ≺ (K; 3, 3, 4), which ends at ◦.
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C. We have (I ′; 3, 4, 1, 0) −P ∼ (I ′; 2, 1, 0, 4) ≺ (I ′; 2, 1, 0), which ends at ◦ too.

D. The following chain holds for every (A, d) ∈ CD \ {(M ′, 4)} and p ≥ 0:

(A; d, 0, (3, 4, 0)p, 2, 1, 0) −P ∼ (A; d+ 1, (3, 4, 0)p, 3, 4, 0, 4)
� (A; d+ 1, (3, 4, 0)p, 3, 4, 0, 4, 4)

Q ∼ (A; d+ 1, (3, 4, 0)p, 3, 4, 0, 3, 1)
P 2 ∼ (A; d+ 1, (3, 4, 0)p, 3, 4, 0, 3, 3)
−Q ∼ (A; d+ 1, (3, 4, 0)p, 3, 4, 0, 2, 0)

(−Q)3 ∼ (A; d, 0, (3, 4, 0)p, 2, 2, 0, 2)
≺ (A; d, 0, (3, 4, 0)p, 2, 2, 0),

which is of type (L; 2, 0) treated in Item (1.i).

If (A, d) happens to be (M ′, 4), we go into smaller classes by considering the tails

(A′; 1, 0, 3, 4, 0, (3, 4, 0)p, 2, 1, 0)

with A′ ∈ A := {G,N,H ′,M ′, L′, I ′} and for A′ ∈ A we get the chain

(A′; 1, 0, 3, 4, 0, (3, 4, 0)p, 2, 1, 0) −P ∼ (A′; 2, 3, 4, 0, (3, 4, 0)p, 3, 4, 0, 4)
� (A′; 2, 3, 4, 0, (3, 4, 0)p, 3, 4, 0, 4, 4)

Q ∼ (A′; 2, 3, 4, 0, (3, 4, 0)p, 3, 4, 0, 3, 1)
P 2 ∼ (A′; 2, 3, 4, 0, (3, 4, 0)p, 3, 4, 0, 3, 3)
−Q ∼ (A′; 2, 3, 4, 0, (3, 4, 0)p, 3, 4, 0, 2, 0)

(−Q ∼ (A′; 1, 0, 3, 4, 0, (3, 4, 0)p, 2, 2, 0, 2)
≺ (A′; 1, 0, 3, 4, 0, (3, 4, 0)p, 2, 2, 0),

which is again of type (L; 2, 0) treated in Item (1.i).

(2) τ ∈ {(I, 2), (M, 0), (M,a), (H, a), a ∈ {1, 2}}. Then

(A; 2, 0) Q ∼ (S; 3, 3) ∈ En(J ′)

for A ∈ {I,M,H}, and for the other cases one can consider the smaller classes:

• for A ∈ {G′, N ′},
(A; 3, 1, 0) Q ∼ (A; 4, 4, 2) ≺ (A; 4, 4),

which ends at ◦.
• for d ∈ {0, 1},

(K ′; 1, d, 0) −Q ∼ (K ′; 2, d+ 3, 2) ≺ (K ′; 2),

which ends at ◦.

(3) τ = (N ; 0, 0). Then w must end in the form (I; 1, 0, 0), and the following chain holds.

(I; 1, 0, 0) � (I; 1, 0, 0, 0) Q ∼ (I; 1, 0, 1, 3) P ∼ (I; 1, 0, 1, 4)
Q ∼ (I; 2, 3, 3, 2) (−P )2 ∼ (I; 2, 3, 3, 0)
Q ∼ (I; 2, 3, 4, 3) ≺ (I; 2, 3, 4),

which is of type (L′; 3, 4). Since this is the dual of the tail (L; 1, 0), it can be treated as in
Item (1.ii).
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(4) τ = (K; 4, 0). Then the walk w ends in the following way: (A; d, 1, 0, (4, 1, 0)p, 4, 0) for some
p ∈ N and

(A, d) ∈ C := {(F, 0), (G′, 2), (N ′, 2), (I, 1),
(G, 1), (N, 1), (K, 3), (G, 0), (L, 0), (H, 0),
(I, 2), (N, 0), (M, 0), (M,a), (L, a), (H, a), a ∈ {1, 2}}.

For (A, d) ∈ C, the following chain holds:

(A; d, 1, 0, (4, 1, 0)p, 4, 0) � (A; d, 1, 0, (4, 1, 0)p, 4, 0, 0) Q ∼ (A; d, 1, 0, (4, 1, 0)p, 4, 1, 3)
P ∼ (A; d, 1, 0, (4, 1, 0)p, 4, 1, 4) Q ∼ (A; d+ 1, (4, 1, 0)p, 4, 2, 2, 3, 2)

(−P )2 ∼ (A; d + 1, (4, 1, 0)p, 4, 2, 2, 3, 0)
Q ∼ (A; d + 1, (4, 1, 0)p, 4, 2, 2, 4, 3).

If now p = 0 and (A, d) ∈ {(G′, 2), (N ′, 2), (I, 2), (M, 2), (L, 2), (H, 2)}, then we have

(A; d+ 1, (4, 1, 0)p, 4, 2, 2, 4, 3) ≺ (A; d+ 1, 4, 2),

which ends at ◦; otherwise

(A; d + 1, (4, 1, 0)p, 4, 2, 2, 4, 3) ≺ (A; d+ 1, (4, 1, 0)p, 4, 2, 2, 4),

which is of type (L′; 3, 4), i.e., of the dual of the tail (L; 1, 0), that can be treated similarly
as in Item (1.ii).

Proceeding identically for w ∈ En(L), we obtain Lemma 4.3.37.

Lemma 4.3.38. Let n ≥ 4 and w ∈ En(M)∪En(M ′). Then there is a walk w′ ∈ Gn+1 such that
w′|n−1 ∈ Gn−1 and w&d ∼ w′ for some d ∈ {0, . . . , 4}.

Proof. Let us consider w ∈ En(M ′). If w|n−1 ∈ En−1(M ′), we are ready. We suppose it is not
the case. Then w belongs to the following classes of tails τ of w = σ&τ : (A; d, 1, 0, (4, 1, 0)p), 3, 0)
for some p ∈ N and

(A, d) ∈ C := {(F, 0), (G′, 2), (N ′, 2), (I, 1),
(G, 1), (N, 1), (K, 3), (G, 0), (L, 0), (H, 0),
(I, 2), (N, 0), (M, 0), (M,a), (L, a), (H, a), a ∈ {1, 2}}.

For (A, d) ∈ C, we have the equivalence

(A; d, 1, 0, (4, 1, 0)p), 3, 0) −P ∼ (A; d+ 1, (4, 1, 0)p, 4, 2, 2, 4).

If now p = 0 and (A, d) ∈ {(G′, 2), (N ′, 2), (I, 2), (M, 2), (L, 2), (H, 2)}, then we have

(A; d+ 1, (4, 1, 0)p, 4, 2, 2, 4) ≺ (A; d+ 1, 4, 2)

which ends at ◦, otherwise the tail of the equivalent walk is of type (L; 4) which was treated in
Lemma 4.3.37.

We can proceed similarly for the dual case, and Lemma 4.3.38 is proved.

Lemma 4.3.39. Let n ≥ 4 and w ∈ En(I) ∪ En(I ′). Then there is a walk w′ ∈ Gn+1 such that
w′|n−1 ∈ Gn−1 and w&d ∼ w′ for some d ∈ {0, . . . , 4}.

Proof. Let us consider w ∈ En(I). If w|n−1 ∈ En−1(I), we are ready. We suppose it is not the
case. Then w belongs to the following classes of tails τ of w = σ&τ : (A; d, 4, (1, 0, 4)p), 4) for some
p ∈ N and

(A, d) ∈ C := {(G, 1), (N, 1), (F, 1), (G, 2), (N, 2)
(I, 2), (K, 4), (M, 0), (M,a), (L, a), (H, a), a ∈ {1, 2}}.
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For (A, d) ∈ C \ {(M, 0)}, we have the equivalence

(A; d, 4, (1, 0, 4)p), 4) P ∼ (A; d− 1, (1, 0, 4)p, 0, 0).

We consider the following cases:

• for p = 0 and (A, d) = (F, 1), then w = (F ; 1, 4, 4) ∈ G3 has length n = 3;

• for p = 0 and (A, d) ∈ {(G, 2), (N, 2)}, (A; d − 1, 0, 0) is the tail of a walk belonging to
En(K), treated in Lemma 4.3.35;

• for p = 0 and (A, d) = (I, 2), (I; 1, 0, 0) is the tail of a walk in En(L′), treated in Lemma 4.3.37;

• otherwise (A; d− 1, (1, 0, 4)p, 0, 0) ≺ (A; d− 1, (1, 0, 4)p, 0), which ends at ◦.

For (A, d) = (M, 0), we go into the smaller classes (A′; 3, 4, 1, 0, 4, (1, 0, 4)p, 4) with p ≥ 0 and
A′ ∈ {G′, X ′, I,M,L,H}. In these cases,

(A′; 3, 4, 1, 0, 4, (1, 0, 4)p, 4) P ∼ (A′; 2, 1, 0, 4, (1, 0, 4)p, 0, 0) ≺ (A′; 2, 1, 0, 4, (1, 0, 4)p, 0),

which ends at ◦.

Dealing with the walks of En(I ′) in the same way, we obtain Lemma 4.3.39.

Proposition 4.3.33 now follows from Lemmata 4.3.35 to 4.3.39 together with the equation (4.3.17).

4.3.5 Boundary of the graph directed set M

As will be seen later, the last two subsections assure the connectivity of the subset of M consisting
of the union of the subpieces ψw(T ) where w is a walk of G starting at F and ending at the accepting
state ◦. By definition, this subset is dense in M. The present subsection now uses the walks of
p(F ) that do not end at ◦ to prove that the boundary ∂M of M lies in the boundary of T .

Proposition 4.3.40. Let w0 := (a1, . . . , an) be a walk in p(F ) which does not end at ◦. Then

ψw0(T ) ∩ ∂T �= ∅.

For w0 as in the proposition, we will show that w := (0, 4)&w0 satisfies ψw(T )∩BQ �= ∅. Note
that then ψw(T ) = ψ0 ◦ ψ4 ◦ ψw0(T ); we will see that this piece stays in contact with ∂T after
application of the inverse of ψ0 ◦ ψ4. We need the following lemma.

For A a state of G, S a subset of B and n ≥ 3, let (Bn) be the following assertion.
If w0 is a walk of length n − 2 in p(F ) ending at A �= ◦, then wT := ((0, 4)&w0)

T is the
labelling of a walk in B starting at S and ending at Q for every S ∈ S, where (A,S) are given in
the Table 4.7 (the duals have to be added, they associate A′ to −S).

Lemma 4.3.41. The assertion (Bn) holds for every n ≥ 3.

Proof. For n = 3 we have w = (0, 4, 0) and A = G, or w = (0, 4, 1) and A = G′. It is easily seen

on B0 that S wT

−−→ Q for all S in the corresponding S.

Let us suppose (Bn) to be true for an n ≥ 3. We show that (Bn+1) also holds. Let
w = (0, 4, a3, . . . , an+1) with (F ; a3, . . . , an+1) =: w0 ∈ p(F ).

If w0 ends up in A = G, then u := (a3, . . . , an) ends up in G′ or N ′ and an+1 = 2, because
G′ 2−→ G and N ′ 2−→ G are the only edges of G leading to G (the case F

an+1−−−→ G is not possible, since
there would be no edge labelled by an leading to F ). If u ends up in G′, then by assumption we
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have S
w|Tn−−→ Q for all S ∈ {Q,−Q,R,−R}. Since R 2−→ S = Q, −Q 2−→ S = Q and −R 2−→ S = −Q,

Q
2−→ S = −Q all exist in B, we obtain for every S′ ∈ {±Q,±R}: S′ 2−→ S

w|Tn−−→ Q, i.e., S′ wT

−−→ Q.

If u ends up in N ′, then by assumption we have S
w|Tn−−→ Q for all S ∈ {Q,−Q, }. Thus one can

use the preceding walks in B: R 2−→ S = Q, −Q 2−→ S = Q and −R 2−→ S = −Q, Q 2−→ S = −Q all

exist in B, hence for every S′ ∈ {±Q,±R}, S′ 2−→ S
w|Tn−−→ Q, i.e., S′ wT

−−→ Q.

The results for the other possible endings A of w0 are summed up in Table 4.8 (the duals can
be treated likewise).

Proof of Proposition 4.3.40. Let w := (0, 4)&w0 with w0 a walk in p(F ) that does not end at ◦.
Then

ψw(T ) ∩BQ �= ∅.

Indeed, by Proposition 4.3.16, it suffices to show that there exists a walk Q w←− S in B. This is what
Lemma 4.3.41 does. Now recall that ψw(T ) = ψ0 ◦ψ4 ◦ψw0(T ). Thus again by Proposition 4.3.16
there exists an infinite walk Q

0←− S
4←− S′ w0←−− . . . in B. This implies that S′ ∈ {P,Q,−R}, as

can be checked on B0. Thus there is an infinite walk S′ w0←−− . . . in B with S′ ∈ B, and therefore
ψw0(T ) ∩ ∂T �= ∅, as assured by Proposition 4.3.16.

In what follows we will use the following notations.

Notation 4.3.42. We fix a metric dist(·, ·) on R2.

Proposition 4.3.43. The boundary of M is contained in the boundary of T .

Proof. Let x ∈ ∂M. We will show that for every ε > 0, we have dist(x, ∂T ) < ε. This will imply
that x ∈ ∂T , since ∂T is a closed set. We consider two cases.

Case 1. For every n ≥ 3, x /∈M(Gn) (see Definition 4.3.10). The element x belonging to M,
we can write x =

∑∞
i=1 A−iΦ(ai) with wn := (a1, . . . , an) ∈ pn(F ). In our assumption, for every

n ≥ 3, we have wn /∈ pn(F, ◦). Let ε > 0 and n0 such that for n ≥ n0, diam(ψw(T )) < ε for every
w of length |w| = n. Then

x ∈ ψwn0
(T ) with

{
wn0 ∈ pn0(F ) (by definition),
wn0 /∈ pn0(F, ◦) (by assumption).

By Proposition 4.3.40, ψwn0
(T ) ∩ ∂T �= ∅, thus dist(x, ∂T ) < ε since diam(ψwn0

(T )) < ε.

Case 2. There is an n0 ≥ 3 with x ∈ M(Gn0). Because of Equation (4.3.2), we even have
x ∈M(Gn) for all n ≥ n0.

A S
G {Q,−Q,R,−R}
H {Q,R,−R}
I {P,Q}
J {−R}
K {−P}
L {Q,−R}
M {Q}
N {Q,−Q}

Table 4.7: Table for assertion (Bn).
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A end of w|n an+1 S′ an+1−−−→ S

G G′, N ′ 2
R,−Q −→ Q
−R,Q −→ −Q

H G′, N ′ 3
R −→ Q

−R,Q −→ −Q

I H ′, G′, L′ 4 P −→ R
Q −→ −Q

J H ′,M ′, I ′ 1 −R −→ −Q
K H ′, J 0 −P −→ −R

L H ′, L′ 2, 3 Q −→ −Q
−R −→ −Q

M ′ 2, 3, 4
Q −→ −Q
−R −→ −Q

N ′ 4
Q −→ −Q
−R −→ −Q

K ′ 0
Q −→ P
−R −→ P

M K ′ 1 Q −→ P

N I 1 Q −→ P
−Q −→ Q

Table 4.8: Proof of Lemma 4.3.41.

We denote by Br(0) the open ball {y ∈ R2, dist(0, y) < r}. By compactness of T , it is possible to
find r1 > 0 such that

T ⊂ Br1(0). (4.3.18)

Since {P,Q} is a basis of the lattice Φ(Z[α]) by (4.3.4), there exist positive integers m1,m2 such
that

Br1(0) ⊂
⋃

n1 ∈ {−m1, . . . ,m1}
n2 ∈ {−m2, . . . ,m2}

(T + n1P + n2Q) ⊂ Br2(0). (4.3.19)

The second inclusion follows again from the compactness of T , r2 > 0 is simply chosen large
enough.
Let now ε > 0, n ≥ n0 such that diam(ψw(Br2(0))) < ε for every w of length |w| = n, and let
w ∈ pn(F, ◦) = Gn such that x ∈ ψw(T ). Then using (4.3.18) and (4.3.19), the following inclusions
hold:

x ∈ ψw(T ) ⊂ ψw(Br1(0)) ⊂ ψw

⎛
⎜⎜⎜⎜⎜⎝

⋃
n1 ∈ {−m1, . . . ,m1}
n2 ∈ {−m2, . . . ,m2}

(T + n1P + n2Q)

⎞
⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
=

⋃
n1 ∈ {−m1, . . . ,m1}
n2 ∈ {−m2, . . . ,m2}

ψw(T + n1P + n2Q)

⊂ ψw(Br2(0)).

Our aim is to find a y ∈ ∂T in the union above. Since x and y will then both belong to ψw(Br2(0)),
which has diameter less than ε, we will be done. Note that ψw(Br1(0)) is a neighborhood of x, a
point of ∂M, hence this neighborhood has nonempty intersection with the complement of M in R2.
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Remember that w is a walk of pn(F, ◦). Now we make the following assumption.

• Each of the following additions is admissible,

• Each of the following additions yields a walk that is contained in p(F, ◦).

W1 := {Φn1P ◦ Φn2Q(w) | 0 ≤ n1 ≤ m1; 0 ≤ n2 ≤ m2},
W2 := {Φn1(−P ) ◦ Φn2Q(w) | 0 ≤ n1 ≤ m1; 0 ≤ n2 ≤ m2},
W3 := {Φn1P ◦ Φn2(−Q)(w) | 0 ≤ n1 ≤ m1; 0 ≤ n2 ≤ m2},
W4 := {Φn1(−P ) ◦ Φn2(−Q)(w) | 0 ≤ n1 ≤ m1; 0 ≤ n2 ≤ m2}.

Set W := W1 ∪W2 ∪W3 ∪W4. With a slight abuse of notation we may write

W := {Φn1P ◦ Φn2Q(w) | −m1 ≤ n1 ≤ m1; −m2 ≤ n2 ≤ m2}.

By assumption all walks of W are contained in Gn = pn(F, ◦). Thus

ψw(Br1(0)) ⊂
⋃

n1,n2

ψw(T + n1P + n2Q)

=
⋃

n1,n2

ψΦn1P ◦Φn2Q(w)(T ) (by Remark 4.3.21.1)

⊂ M(Gn)
⊂ M,

which contradicts the fact that ψw(Br1(0)) contains points of the complement R2 \M. So our
assumption is wrong.

Therefore one of the following alternatives must hold.

• at least one of the additions in W is not admissible or

• at least one element w0 ∈W does not belong to Gn.

In view of Proposition 4.3.26 we conclude that at least one w0 ∈ W does not belong to Gn =
pn(F, ◦). Proposition 4.3.26 also shows that all additions are admissible for each element of Gn,
i.e., starting from a word in Gn, each addition Ψ±P ,Ψ±Q leads to a word in pn(F ). Thus,
starting at w, by a sequence of admissible additions we can reach a word w0 ∈ W which belongs
to pn(F ) \ pn(F, ◦). Let us write

w0 = Φn1P ◦ Φn2Q(w) ∈ pn(F ) \ pn(F, ◦)

for some n1 ∈ {−m1, . . . ,m1}, n2 ∈ {−m2, . . . ,m2}. (Note that by Remark 4.3.21.1

ψw(T + n1P + n2Q) = ψw0(T )

because we have a sequence of admissible additions from w to w0.) For this choice of w0 we have

• ψw0(T ) ⊂ ψw(Br2(0)) by assumption,

• ψw0(T ) ∩ ∂T �= ∅ by Proposition 4.3.40.

This implies that ψw(Br2(0)) contains x as well as some point of ∂T , hence dist(x, ∂T ) < ε.

Consequently, in both cases for every ε > 0, dist(x, ∂T ) < ε, thus x ∈ ∂T , and this holds for
every x ∈ ∂M, hence, ∂M ⊂ ∂T .

109



4.3.6 Generalized fundamental inequality and consequences

This subsection is devoted to a generalization of the fundamental inequality found in [5]. This will
lead to the construction of an arcwise connected skeleton inside the interior of the tile T together
with some of its neighbors. We denote by S the set of elements of Q[α] with integer part zero with
respect to the basis α and the digits N = {0, 1, 2, 3, 4}:

S :=

{
l∑

i=1

Φ(α−iai); l ∈ N, (ai)1≤i≤l ∈ N l

}
.

Consequently we have Φ(S) = T .

Remark 4.3.44. We recall that the tile T is symmetric with respect to the point

Φ(c) := Φ
(

4
2(α− 1)

)

(see [5, Lemma 3.2]).

Proposition 4.3.45 (Generalized fundamental inequality). There is an ε > 0 such that for any
x ∈ S + 2α we have

�(x) > �(c) + ε.

Proof. This follows from the minoration

�(
l∑

i=1

aiα
−i) ≥ −

∣∣∣∣∣
l∑

i=1

aiα
−i

∣∣∣∣∣ ≥ − 4
|α− 1| ,

so that for x ∈ S + 2α we have �(x) > 0 > I(c) = −1
5
.

Corollary 4.3.46. Let γ ∈ Z[α] and put γ = u+ vα with u, v in Z. Then there exists a constant
ε > 0 such that for any x ∈ S,{

�(x) + �(γ) > �(c) + ε if v ≥ 2,
�(x) + �(γ) < �(c)− ε if v ≤ −2.

Proof. This is proved in the same way as in [5, Lemma 4.3].

We will now construct a generalized version of the skeleton constructed in [5] where the tiles
were disk-like. To this matter set the backbone

L := {Φ(c) + wΦ(1);w ∈ [0, 4]} .

Furthermore, let
V0 :=

⋃
S∈B0

(T + S).

Then the following lemma holds.

Lemma 4.3.47. We have L ⊂ int(AV0).
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Proof. Note that

int(A(V0)) = R2 \
⋃

x∈Z2\B0

(A(T + x))

= R2 \
( ⋃

u∈Z, |v|≥2

(T + Φ(u+ vα)) ∪

⋃
v=1, u≤−1 or u≥10

(T + Φ(u+ vα)) ∪

⋃
v=0, u≤−6 or u≥10

(T + Φ(u+ vα)) ∪

⋃
v=−1, u≤−6 or u≥5

(T + Φ(u+ vα))

)
.

Thus we have to show that (T + Φ(u + vα)) ∩ L = ∅ for all constellations (u, v) occurring in
the above unions.
Let first γ = u + vα with u ∈ Z and |v| ≥ 2. Then Corollary 4.3.46 and the fact that Φ(S) = T
imply that (T + Φ(γ)) ∩ L = ∅.
For the pairs of the shape (u, 0), u ≤ −6 or u ≥ 10 we see that (T + Φ(γ)) ∩L = ∅ in exactly the
same way as in [5, Lemma 4.4].
If now v = −1, suppose first that u ≤ −6. If x ∈ α−1(S− α2) + u, then αx ∈ S + 5 + (u+ 4)α.
From u+ 4 ≤ −2 and by Corollary 4.3.46, we can write �(αx) < �(c)− ε, and consequently:

∀j ∈ {0, . . . , 4}, �(αx) = �(αx + j) = �(α(x+ α−1j)) < �(c)− ε,

thus
∀j ∈ {0, . . . , 4}, ∀x ∈ α−1(S− α2 + j) + u, �(αx) < �(c)− ε.

From Φ(S) = T , we conclude that this inequality also holds if we replace S by T , and from the
set equation of T we obtain, taking the union over j ∈ {0, . . . , 4},

∀Φ(x) ∈ T + Φ(u − α), �(αx) ≤ �(c)− ε.

On the other hand, for an element of L, i.e., Φ(x) = Φ(c) + wΦ(1), w ∈ [0, 4], we have

�(αx) = w + �(αc) ≥ �(αc) = −1/5 = �(c),

which implies that (T + Φ(u − α)) ∩ L = ∅ for all u ≤ −6.
Suppose secondly that u ≥ 5. If again x ∈ α−1(S− α2) + u, then αx ∈ S + 5 + (u+ 4)α. From
u ≥ 5 and by Corollary 4.3.46, we have �(αx) > �(c) + ε+ 4�(α), and consequently, by a similar
reasoning as above, we obtain

∀Φ(x) ∈ T + Φ(u− α), �(αx) ≥ �(c) + ε+ 4.

On the other hand, for Φ(x) ∈ L, we have �(αx) ≤ �(c) + 4, thus again (T + Φ(u − α)) ∩ L = ∅
for all u ≥ 5.

The remaining case v = 1 is treated likewise, thus the proof is complete.

Composing small pieces of backbones, let us define the n-skeleton by

Kn =
n⋃

m=1

⎛
⎝ ⋃

(a1,a2,...am)

m∑
i=1

A−iΦ(ai) + A−m−1(L)

⎞
⎠ .
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Lemma 4.3.48. Kn is arcwise connected and Kn ⊂ int(V0).

Proof. The arcwise connectivity can be shown as in [5, Lemma 4.6].
For the second part, note that for every (a1, . . . , am), by Lemma 4.3.47 we have for the small
pieces

m∑
i=1

A−iΦ(ai) + A−1−mL ⊂
m∑

i=1

A−iΦ(ai) + int
(
A−mV0

)
.

Now remember that using the automaton B0 one can compute for S ∈ B0 that

∑m
i=1 A−iΦ(ai) + A−mS = A−m

(
S +

∑m−1
i=0 A−iΦ(am−i)

)
= A−m

(
AmS′ +

∑m−1
i=0 A−iΦ(a′m−i)

)
(by (4.3.10))

=
∑m

i=1 A−iΦ(a′i) + S′

with S′ ∈ B0 and a′i ∈ N . From this we can conclude that

m∑
i=1

A−iΦ(ai) +A−mV0 ⊂ V0,

hence the union of the backbones remains in int(V0).

Remark 4.3.49. Note that the middle points
∑m

i=1 A−iΦ(ai) of the union of all backbones are
dense in T .

4.3.7 The component of int(T ) containing 0

We are now almost ready to prove Theorem 4.3.8 concerning the description of C0. We will first
construct an arc from an arbitrary point in int(M) to zero entirely contained in int(M).

Lemma 4.3.50. If x ∈ int(M), then there is an n ≥ 3 such that x ∈ M(Gn).

Proof. Let x =
∑

j≥1 Φ(α−jaj) ∈ int(M). In particular, w = (aj)j≥1 is an infinite walk in p(F ).
Suppose x /∈ M(Gn) for any n ≥ 3, i.e., wn := (F ; a1, a2, . . . , an) ∈ pn(F ) does not end at ◦ for
any n ≥ 3. We show that x ∈ ∂T , which is a contradiction, since M ⊂ T , hence int(M) ⊂ int(T ).
We have by definition that x ∈ ψwn(T ) for every n ≥ 3. Fix ε > 0, then for n large enough we
also have that {

diam(ψwn(T )) < ε,
ψwn(T ) ∩ ∂T �= ∅ (by Lemma 4.3.40).

Thus for every ε > 0, dist(x, ∂T ) < ε, hence x ∈ ∂T , since ∂T is a closed set.

Lemma 4.3.51. Let n ≥ 3, S ∈ B and v1, v2 ∈ Gn such that v2 = ΨS(v1). Then ψv1(T )∩ψv2 (T )
contains points of int(T ).

Proof. Since both subpieces ψv1(T ) and ψv2(T ) are subsets of T , points of their intersection that
are not in int(T ) must be in ∂T . We show that there are at most countably many such points,
whereas ψv1(T ) ∩ ψv2(T ) is uncountable.

The uncountability of ψv1(T )∩ψv2 (T ) follows from the fact that v2 = ΨS(v1), hence ψv2(T ) =
ψv1(T + S), with S ∈ B (see Remark 4.3.21.1). Since T ∩ (T + S) has uncountably many points
for S ∈ B (see [5, Section 9]), this remains true after applying the homeomorphism ψv1 .

On the other side, a point x of ψv1(T ) ∩ ψv2(T ) which lies on ∂T also belongs to a translate
T + S′ of T with S′ ∈ B, by the boundary equation (4.3.11). This translate is the union of the

112



subpieces ψw(T ) + S′ with |w| = |v1| =: n. Let us write v1 =: (a1, . . . , an) and w =: (b1, . . . , bn).
Then the point Anx belongs to the triple intersection(

T +
n−1∑
i=0

AiΦ(an−i)

)
∩
(
T + S +

n−1∑
i=0

AiΦ(an−i)

)
∩
(
T + AnS′ +

n−1∑
i=0

AiΦ(bn−i)

)
,

or, equivalently, the point Anx−
∑n−1

i=0 Aian−i belongs to the triple intersection

T ∩ (S + T ) ∩ (S′′ + T ) =: V (S, S′′)

with S′′ := AnS′ +
∑n−1

i=0 AiΦ(bn−i) −
∑n−1

i=0 AiΦ(an−i). Note that S′′ /∈ {◦, S}. Indeed, us-
ing (4.3.9), (4.3.10) and Remark 4.3.14, S′′ = ◦ as well as S′′ = S would imply S′ = ◦.
Thus to each point x of ψv1(T ) ∩ ψv2(T ) ∩ ∂T corresponds exactly one point of V3, the set of
all triple points of T (i.e., where T meets with two other translates). Since V3 is at most count-
able (see [5, Theorem 10.1]), there are at most countably many points in ψv1(T ) ∩ ψv2(T ) ∩ ∂T .
Together with the first part of this proof this means that ψv1(T )∩ψv2 (T )∩int(T ) is not empty.

Proposition 4.3.52. Let x ∈ int(M) and an n ≥ 3 given by Lemma 4.3.50, i.e., such that
x ∈M(Gn). Then there is an arc p from x to an element y of int(M(Gn−1)) with p ⊂ int(T ).

Proof. In this proof we will often use the fact that T is the closure of its interior. This has been
shown in a more general context in Wang [62]. Let w ∈ Gn such that x ∈ ψw(T ). By Proposi-
tion 4.3.33 there exists a finite chain of walks v1, . . . , vm ∈ Gn+1 with the following properties:

v1 = w&d for some d ∈ {0, . . . , 4},
ΨSi(vi) = vi+1 for some Sj ∈ B (1 ≤ i ≤ m− 1),
vm |n−1 ∈ Gn−1.

Now choose xi ∈ int(ψvi(T )) arbitrary and set y := xm. Note that ψvm(T ) ⊂ ψvm|n−1(T ) ⊂
M(Gn−1), thus y has the required property. First we shall construct an arc p1 ⊂ int(T ) from x
to x1. Without loss of generality, one can suppose that x ∈ ψv1(T ) (see Remark 4.3.34.1).

Since x ∈ int(M) there exists an ε > 0 such that Bε(x) ⊂ int(M). Thus there is a z1 ∈
Bε(x) ∩ int(ψv1(T )). Connect x with z1 by a straight line segment 	1. Obviously, 	1 ⊂ int(M).

Now x1, z1 ∈ int(ψv1(T )). Thus there exists ε2 > 0 such that

Bε2(z1) ⊂ int(ψv1(T )),
Bε2(x1) ⊂ int(ψv1(T )).

By Remark 4.3.49 at the end of the previous section there exists a j ∈ N such that ψv1(Kj)
contains points z2, z3 with

z2 ∈ Bε2(z1),
z3 ∈ Bε2(x1).

Now connect z1 with z2 by the line segment 	2 and connect z3 with x1 by the line segment 	3.
Both of these line segments are obviously contained in int(T ). Since Kj is arcwise connected by
Lemma 4.3.48 there exists an arc q1 ∈ ψv1(Kj) connecting z2 with z3. We have to show that
q1 ⊂ int(T ).

What we know from Lemma 4.3.48 is that

q1 ⊂ int(ψv1(V0)) = int

( ⋃
S∈B0

ψv1(T + S)

)
= int

( ⋃
S∈B0

ψΨS(v1)(T )

)
.
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We used here Remark 4.3.21.1. Indeed, since v1 ∈ Gn+1, all the additions ΨS(v1) with S ∈ B are
admissible by Proposition 4.3.26. So for all S ∈ B0, ψv1(T + S) is contained in T , because it is a
subpiece of level n+1 of T . This implies that int(ψv1(V0)) ⊂ int(T ). Thus q1 ⊂ int(T ). Summing
up we have constructed an arc p1 := 	1	2q1	3 from x to x1 which is contained in int(T ).

In the next step we construct an arc pi+1 from xi to xi+1, still inside int(T ). Because ΨSi(vi) =
vi+1 for some Si ∈ B, Lemma 4.3.51 implies the existence of a z1 ∈ ψvi(T ) ∩ ψvi+1(T ) which is
contained in int(T ). Thus there exists an ε1 > 0 with Bε1(z1) ⊂ int(T ). Furthermore,

z1 ∈ ψvi(T ) =⇒ ∃z2 ∈ Bε1(z1) ∩ int(ψvi(T )),
z1 ∈ ψvi+1(T ) =⇒ ∃z3 ∈ Bε1(z1) ∩ int(ψvi+1(T )).

Now connect z2 with z1 by the line segment 	1 and connect z1 with z3 by the line segment 	2.
Both of these line segments are obviously contained in int(T ).

As above we can now construct using the n-skeletons an arc q1 ⊂ int(T ) connecting xi with z2
and an arc q2 ⊂ int(T ) connecting z3 with xi+1. The arc pi+1 := q1	1	2q2 ⊂ int(T ) now connects
xi with xi+1.

Setting p := p1 . . . pm we have a path connecting x with y lying entirely in the interior of T .

Proposition 4.3.53. Let x be a point of int(M). Then there is an arc connecting x to 0.

Proof. By Lemma 4.3.50 there is an n ≥ 3 such that x ∈ M(Gn). By applying Proposition 4.3.52
n−3 times we can construct an arc inside int(T ) from x to some y ∈ int(M(G3)). SinceM(G3) =
ψ(0,0,0)(T ) = ψ(1,4,4)(T ) with (F ; 1, 4, 4) = Ψ−P ((F ; 0, 0, 0)) (see Remark 4.3.32), an arc q′′ from
y to 0 ∈ ψ(0,0,0)(T ) inside int(T ) can be constructed in the same way as the arcs pi in the proof
of Proposition 4.3.52, using the n-skeletons. Now q = q′q′′ does the job.

We obtain directly from the above proposition the following result.

Corollary 4.3.54. The set int(M) is a subset of the interior component of T containing 0.

The reverse inclusion is the purpose of the next proposition.

Proposition 4.3.55. The component of int(T ) containing 0 is a subset of int(M).

Proof. Let y be a point in int(T ) such that there is an arc p : [0, 1]→ int(T ) connecting 0 and y.
Suppose that y does not belong to int(M). Since ∂M ⊂ ∂T (see Proposition 4.3.43), y does not
belong to M. Let

t0 := inf{t ∈ [0, 1]; p(t) �∈M}.
Then t0 ∈ (0, 1) and p(t0) ∈ ∂M, because every neighborhood of this point encounters M as well
as its complement. Since again ∂M ⊂ ∂T , we obtain that p(t0) ∈ ∂T , a contradiction to the
definition of p.

Lemma 4.3.56. The set M is the closure of its interior, i.e., int(M) = M.

Proof. Let x ∈M and ε > 0 be arbitrary. Let n ≥ 3 be large enough such that diam(ψw(T )) < ε
for each w ∈ pn(F ). There exists a walk v ∈ pn(F ) such that x ∈ ψv(T ). It can easily be read
off from the graph G that each v ∈ pn(F ) can be extended to a walk v′ = v&(b1, b2) ∈ Gn+2 =
pn+2(F, ◦). Thus

ψv′(T ) ⊂M =⇒ int(ψv′(T )) ⊂ int(M)

and
ψv′(T ) ⊂ ψv(T ).

Select y ∈ int(ψv′(T )). Then the above inclusions imply that y ∈ int(M) and dist(x, y) < ε.

Since ε can be arbitrarily small we have that x ∈ int(M).
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Proof of Theorem 4.3.8. The first part of this theorem follows from Corollary 4.3.54 and Propo-
sition 4.3.55. The second part is given by Lemma 4.3.56.

4.3.8 Dimension calculation

The present subsection is devoted to the proof of Theorem 4.3.11. Let G′ be the graph that
emerges from G by removing the states ◦ and all edges leading to them. Then G′ defines system
of graph directed sets (δM(A))A where A runs through the states of G′. Let δM := δM(F ) be
the set corresponding to the state F . The following lemma shows that δM is very close to ∂C0.

Lemma 4.3.57. The symmetric difference

δM  ∂C0

is countable.

Proof. First note that Lemma 4.3.50 implies that δM ⊂ ∂C0.
Suppose now that x ∈ ∂C0 \ δM. Then the address of x corresponds to the labelling of a

walk which is contained in G but not in G′, i.e., there exists a walk w ∈ Gn for some n such that
x ∈ ψw(T ) and, a fortiori, x ∈ ∂ψw(T ). Since ∂C0 ⊂ ∂T holds by Proposition 4.3.43, x ∈ ∂T .
Thus, x has to lie in another tile of the tiling induced by T . However, in view of Proposition 4.3.26
and the remark after it,

x ∈ ψw(T + S)

where S is a neighbor of T not contained in B. It is well known (see for instance [5, Chapters 9 to
11]) that there exist only countably many points in ∂ψw(T ) with this property. Since, moreover,
there are only countably many paths contained in⋃

n≥3

Gn

we conclude that there exist only countably many points x in the set ∂C0 \ δM.

Now from basic fractal geometry we get the following corollary.

Corollary 4.3.58.
dimH ∂C0 = dimH δM.

Thus calculating the Hausdorff dimension of ∂C0 is reduced to calculating the Hausdorff di-
mension of the GIFS attractor δM. However, calculating the Hausdorff dimension of a self similar
GIFS satisfying the open set condition can be performed by standard methods from fractal geom-
etry (cf. Appendix B or for instance [18, 50]). With that Theorem 4.3.11 is proved.

4.4 Comments and questions

We have shown in the last section how to obtain the closure M of the interior component of T
that contains the origin Φ(0). This component was depicted in Figure 4.6. It is of natural interest
to wonder how the closure of the interior component of T containing a given point x could be
computed. For the other “big” components (see Figure 4.10), i.e., the ones containing Φ(1),Φ(2)
and Φ(3), the description is similar: it suffices to replace the edges at the top of the graph G
describing M in a way that can be seen in Figure 4.9.

Thus the closure of each of these components is simply the image of M by translations (see
Figure 4.10).

For other “smaller components”, we conjecture that there closure is similar to M, the similitude
may be given by a pre-graph that would be connected to G via the state F . One can also wonder
if the computation of the graph G is also possible for other quadratic number systems. Eventually,
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F

G G′

d d+ 1

Figure 4.9: Top edges in G for the closure of the component containing Φ(d), d = 0, 1, 2, 3.

Figure 4.10: Tile associated to the base −2 +
√
−1 with “big” interior components.

other topological properties of lattice tiles associated to quadratic canonical number systems may
be studied, like the existence of cut points in the case that the fundamental group is uncountable.
The particular example of the last section was already proved to have no cut point (see [54]).
What about the general case ?
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Chapter 5

Conclusion

In this PhD thesis, topological properties of fractal tiles giving rise to tessellations of the plane
were studied. The fractal structure induces some regularity that allows to establish algorithmic
criteria to answer topological questions about the tiles. Even the description of a connected inner
component ended up in a finite graph. Concerning the criteria of homeomorphy to a closed disk,
they mainly relie on the Jordan curve theorem: showing that the boundary of a tile is a simple
closed curve, one obtains its disk-likeness of the tiles. This is the reason why we were so much in-
terested in the neighbor relations of the tiles. In higher dimensional spaces, statements analogous
to Jordan curve theorem are not valid. The topology of 3 dimensional tiles for example would
be much more complicated. But could we state simple criteria of homeomorphy to a closed ball?
Rather than the first homotopy group, what could be said about the homology groups of the tiles?
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Appendix A

Plane topology

The tiles are compact sets, and we restrict our topological study to plane connected tiles. The
plane can be considered after one-point compactification as the Riemann sphere. This leads to
many interesting results in the study of the topology of plane compact sets. We will be interested
in the characterizations of homeomorphy to a closed disk.

Most of the definitions and facts given here can be found in Kuratowski’s book Topology II [36].

Definition A.0.1 (Connectedness, local connectedness, arcwise connectedness, cut). Given a set
M in a topological space X , we say that M is

(i) connected iff it can not be partitioned into two non-empty disjoint relatively open subsets.
Otherwise M is disconnected.

(ii) locally connected at x iff every neighborhood of x contains a connected relatively open neigh-
borhood. M is locally connected if it is locally connected at each of its points.

(iii) arcwise connected if any two points of M are the end points of a homeomorphic image of
[0, 1] contained in M .

(iv) a cut of X or a separation of X if its complement X \M = M c is disconnected.

If n points x1, . . . , xn, n ≥ 2, belong to pairwise distinct connected components of X \M , we say
that x1, . . . , xn are separated by M ; if n = 2, we also say that M is a cut between x1 and x2, or
that M cuts between x1 and x2 in X .

Definition A.0.2 (Continuum). A continuum is a connected compact Hausdorff space.

Notation A.0.3. The diameter of a compact set M in a metric space is the maximal distance
between two points of M and is denoted by diam(M).

Close to the local connectedness is the following property (S).

Definition A.0.4. A set M in a metric space has property (S) provided that for every ε > 0, M
is the union of finitely many connected sets of diameter less than ε.

Proposition A.0.5 (cf. [63, §XV]). A set having property (S) is locally connected.

Proposition A.0.6 (cf. [63, §XX]). Every locally connected continuum is arcwise connected.

Definition A.0.7 (Connected component, quasi component). In a topological space X , the con-
nected components ofM are the maximal (with respect to the inclusion relation) connected subsets.
Equivalently, the connected component at the point p ∈ X is the intersection of all connected
subsets of X containing p. The quasi-component at the point p ∈ X is the intersection of all
closed-open (or clopen) sets of X containing p.
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Lemma A.0.8 (cf. [36, §47, II, p.169, Theorem 2]). In compact spaces, the quasi-components are
connected and coincide therefore with the components.

Definition A.0.9 (Janiszewski space). A locally connected continuum X is a Janiszewski space
([36, §61, I, p.505]) provided that the union M ∪ N of two continua M,N ⊂ X is a cut of X
whenever their intersection M ∩N is not connected.

Lemma A.0.10 (cf. [36, §61, I, Theorem 7]). Let B,C be two closed or two open sets of a
Janiszewski space X. If none of these sets is a cut between p and q and if B ∩ C is connected,
then B ∪ C is not a cut between p and q either.

Since the 2-dimensional sphere S2 is a Janiszewski space [36, §61, I, Theorem 2], we can infer
two separation theorems for the plane R2 as follows.

Lemma A.0.11. If the common part of two continua M,N in the plane is disconnected, then
there exist two points p0, p1 separated by M ∪N but not by either M or N .

Lemma A.0.12. Let M,N be compact sets in the plane and suppose that there exist n(≥ 2) points
separated by M ∪ N but not by either M or N . Then the common part M ∩ N has at least n
components.

Definition A.0.13 (Chain, circular chain). Suppose that M1,M2, . . . ,Mn, n ≥ 3, are compact
sets in the plane. If # (Mi ∩Mi+1) = 1 for 1 ≤ i ≤ n − 1 and Mi ∩Mj = ∅ for |i− j| ≥ 2, we
say that M1,M2, . . . ,Mn form a chain. If # (Mi ∩Mi+1) = 1 for 1 ≤ i ≤ n− 1, # (Mn ∩M1) = 1
and Mi ∩Mj = ∅ for 2 ≤ |i− j| ≤ n− 2, we say that M1,M2, . . . ,Mn form a circular chain.

By Lemmata A.0.10 to A.0.12, we have the following two corollaries which will be used in the
proof of Theorems 3.3.1 and 3.3.9.

Corollary A.0.14. If M1, . . . ,Mn(n ≥ 3) are compact sets in the plane which form a chain, then
every two points separated by

⋃
j Mj are separated by a single Mj.

Corollary A.0.15. If the continua M1, . . . ,Mn(n ≥ 3) in the plane form a circular chain and
each of them does not separate the plane, then R2 \

(⋃
j Mj

)
is the union of two regions.

Definition A.0.16 (Deformation, see [36, §54, IV]). Let X ⊂ Y and f : X → Y be a continuous
function. If there exists a continuous function h : X × [0, 1] → Y such that h(x, 0) = x and
h(x, 1) = f(x), the set f(X) is said to be obtained from X by a deformation in Y .

Lemma A.0.17 (cf. [36, § 59, IV, Theorem 2]). If a compact set F ⊂ R2 separates between two
points p and q, then every set obtained from F by a deformation in R2 \ {p, q} separates between
p and q.

Lemma A.0.18 (cf. [36, § 61, II, Theorem 5]). Every locally connected continuum which separates
the plane between two continua A and B contains a simple closed curve which separates the plane
between A and B.

We also recall a theorem of Torhorst.

Lemma A.0.19 (cf. [36, §61, II, Theorem 4]). Let M ⊂ S2 be a locally connected continuum
having no cutpoint and R a component of M c. Then R is homeomorphic to a disk.

Dealing with disk-like tiles in crystallographic tilings, we also need the following considerations.
For a closed disk D, distinct points of the boundary are accessible (see [36, §47, III]) from any
given point of the interior of D by disjoint simple open arcs within Do. More precisely, for distinct
a1, . . . , an ∈ ∂D, n ∈ N and p ∈ Do, there are pairwise disjoint simple open arcs A1, . . . , An ⊂ Do

leading from p to a1, . . . , an, respectively. This fact is needed in order to prove the following
lemma.
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Lemma A.0.20. Let D1, D2 be two closed disks with disjoint interiors such that there exists a
bounded connected component Z of (D1 ∪D2)

c. Then Z ∩ D1 ∩ D2 consists of two points a, b.
Furthermore, Z ∩ Di, i = 1, 2, are simple arcs meeting in their end points a and b, and there
are C1 ⊂ Do

1, C2 ⊂ Do
2 simple open arcs from a to b such that Z = Interior (C1 ∪C2 ∪ {a, b}) ∩

(D1 ∪D2)
c.

(Here the interior Interior(C) of the simple closed curve C is defined as the bounded component
of the complement of C.)

Proof. Note that D1 ∪D2, union of disks with disjoint interiors, is a locally connected continuum
with no cut points because its complement has a bounded component, so by Lemma A.0.19 Z is
disk-like, thus its boundary ∂Z = Z ∩ (D1 ∪D2) is a simple closed curve and Z = Interior(∂Z).
The intersection Z∩D1∩D2 has at least two points because ∂Z is connected and has no cut point.
Let us suppose that it contains three distinct points a, b, c. Then, choosing pi ∈ Do

i , i = 1, 2, and
disjoint simple open arcs Ci

α from pi to α within Do
i for i = 1, 2 and α = a, b, c, we obtain three

disjoint simple open arcs from p1 to p2, namely Cα := {α} ∪ C1
α ∪

(
−C2

α

)
for α = a, b, c, (−C2

α

stands for the arc C2
α travelled in the reverse way) with the property that Cα ⊂ Do

1 ∪Do
2 ∪ {α}.

Thus θ := {p1, p2} ∪
⋃

α Cα is a theta-curve. Since Z ⊂ θc is connected, it must be entirely
included in one open disk-like region B of θc. This implies that a, b, c are all on B, contradicting
the fact that these points lie on the distinct arcs of θ.
Thus Z ∩D1 ∩D2 consists of exactly two points a, b, and the remaining assertions follow: Ai :=
Z ∩Di for i = 1, 2 is a continuum and each point of Ai different from a, b is a cut point of Ai, so
Ai is a simple arc on ∂Z (see [36, §49, IV, Theorem 4]). Every two simple open arcs C1, C2 from
a to b within Do

1, D
o
2 are homotopic to A1, A2 within D1, D2 and have the required property.
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Appendix B

Boundary of tiles and fractal
dimension

By definition, the tiles have positive Lebesgue measure. Nevertheless, if they fulfill a replicating
property, their boundary happens to contain the irregular structure, hence the fractality. We give
here the important results about the connectedness of the boundary of tiles and about the fractal
dimension of the boundary of reptiles.

We recall some results on the boundary connectedness and arcwise connectedness of attractors
and tiles.

Lemma B.0.21 (see [2, Theorem 1.1]). Let f1, . . . , fk be injective contractions on Rn (n ≥ 2)
satisfying the open set condition, and let E be the attractor. Then the boundary ∂E of E is
connected whenever E is.

Tai-Man Tang proved also the following.

Proposition B.0.22 (cf. [61]). Let f1, . . . , fk are injective contractions on Rn, n ≥ 2 satisfying
the open set condition, and let E be the attractor. Suppose that E is connected. Then ∂E is
arcwise connected.

Remember that a compact set in Rn which coincides with the closure of its interior is a tile,
and it is said to tile Rn by Zn if the translates of this set by the vectors of Zn form a tiling of Rn

(Remark 2.2.12).

Lemma B.0.23 (see [2, Theorem 3.1]). Let T be an arcwise connected compact set that tiles Rn

by Zn, then its boundary ∂T is connected.

Luo Jun [46] noticed that a quick proof exists for the following stronger result.

Lemma B.0.24. Let (Ti)i∈I be a family of connected compact sets that provide a tiling of Rn.
Then the boundary of Ti is connected for each i ∈ I.

Proof. This follows from the unicoherence of Euclidean spaces (see Definition B.0.25 and [63]).
Indeed, writing Rn = Ti ∪

⋃
j �=i, j∈I Tj , we obtain that ∂Ti = Ti ∩

⋃
j �=i, j∈I Tj is connected.

Definition B.0.25 (Unicoherent space). A connected space is unicoherent if, representing it as
any union of two closed connected sets, the intersection of these sets is connected.

Equation (3.2.3) on page 21 shows that the boundary of a crystile may be related to some
graph directed construction. If the maps g−1δ in this equation are similarity contractions, it is
then possible to compute the Hausdorff dimension of the boundary of the crystile. We shortly
recall the definition of the Hausdorff dimension and state a result on its value for self-similar
systems of graph directed sets (see Definition 2.1.19 in Chapter 2).

121



Definition B.0.26 (Hausdorff dimension). If F is a subset of the Euclidean space Rn and s ≥ 0,
one defines for δ > 0

Hs
δ(F ) = inf{

∞∑
i=0

diam(Ui)s},

where the infimum is taken over all at most countable covers (Ui)i of F for which 0 ≤ diam(Ui) ≤ δ
holds for every i. The number

Hs(F ) = lim
δ→0
Hs

δ(F )

is well defined for all s > 0, and there is a unique value of s for which Hs(F ) jumps from ∞ to 0.
This value is called the Hausdorff dimension (or Hausdorff-Besicovitch dimension sometimes) of
F and denote it by dimH F .

We refer to [17] for more details on this subject.

Proposition B.0.27 ([18, 50]). Let (K1, . . .Kq) be a system of graph directed sets with respect to
the contractions Te (e ∈ E). Let re be the contraction ratio of Te for each e ∈ E and let Ei,j be
the set of edges from the vertex i to the vertex j for all i, j = 1, . . . , q. For s ≥ 0, denote by A(s)

the matrix whose (i, j)-th entry is
A

(s)
i,j =

∑
e∈Ei,j

rs
e.

If ρ(A(s)) stands for the spectral radius of the matrix A(s), then there is exactly one value s0 of s
for which

ρ(A(s0)) = 1.

Moreover, 0 < Hs0(Ki) <∞, thus s0 is the Hausdorff dimension of Ki for all i = 1, . . . , q.

We note that for self-affine systems of graph directed sets, only the box-counting dimension
can be computed exactly (see [13]). The Hausdorff dimension is known in particular cases, for
example the boundary of tiles associated to canonical number systems (see [58]).
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Index

n-skeleton, 111
p2-group, 14
p2-tiling, 14
p3-group, 14

accessible point, 119
adding graph, 80
adding machine, 80
admissible drawing, 47
admissible graph action, 95
attractor, 12

backbone, 110
backwards walk, 88

canonical number system (CNS), 78
central tile, 14
chain, 119

circular, 119
CNS-tile, 78
cocompact, 13
connected, 118

arcwise, 118
component, 118
locally, 118

contact set, 21
continuum, 118
contraction, 11

ratio, 11
counting automaton, 91
crystallographic

reptile, 17
crystallographic group, 13
crystile, 17, 18
crystiles

isomorphic, 20
cut, 118

deformation, 119
degree, 16
δ-neighborhood, 10
derived graph, 46
diameter, 118
digit

tile, 34
digit set, 78

digit tile, 18
digits, 17
disk-like, 17
distance

η, 10
Hausdorff, 10
sets, 10

double point, 55
drawing, 46

extension, 47
dual

edge, 90
state, 90

edge, 15
equivalent walks, 93
excess, 10
expanding affine mapping, 17
expanding matrix, 17
extension drawing

admissible, 47

face, 46
fixed point, 11

theorem (weak), 11
fractal, 7
fundamental domain, 13, 78

graph, 15
adjacency, 16
Cayley, 16
contact, 20, 21
double neighboring, 16
neighbor, 16
neighborhood, 20, 21
product, 25
reduced, 25
regular, 16

graph directed IFS (GIFS), 12
graph of neighbors, 80

Haudorff dimension, 122
Hausdorff

distance, 10
metric, 10
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induced subgraph, 15
input

digit, 80
string, 80

isometry, 11
iterated function system (IFS), 11

Janiszewski space, 119

L-vertices, 22, 55
lattice, 13
left-resolving, 22
length

string, 80
walk, 22

Lind Norm, 77
linear part, 17

neighbor, 14, 15
adjacent, 15
vertex, 15

open set condition (OSC), 12
output

digit, 80
string, 80

picture, 47
point group, 13
property (C), 25
prototile, 13

quasi-component, 118

regular set, 13
replicating property, 18
right resolving, 88

self-affine, 12
self-similar, 12
set connectedness, 53
similarity, 11

ratio, 11
state, 15

level, 80
string, 80
subdivision principle, 19
subgraph, 15
subpiece of level m, 19
system of graph directed sets, 12

self-affine, 12
self-similar, 12

terminal state, 88
tessellation, 7

tile, 13
crystallographic, 14
lattice, 77
replicating, 17

tiling, 7, 13
crystallographic, 14, 17
isohedral, 14
lattice, 14
locally finite, 13

transitive, 94
translational part, 17
transposed graph, 79
triple point, 55

unicoherent, 121

vertex, 15
end, 15
incident, 15

walk, 22, 80
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Notations

K(X) set of non-empty compact subsets of X p.10
int(M), M◦ set of inner points of M p.13
Isom(Rn) group of all isometries of Rn p.13
id identity mapping p.13
m1 ◦m2, m1m2 mapping composition x �→ m1(m2(x)) p.15
S set of neighbors of the central tile p.15
A set of adjacent neighbors of the central tile p.15
Bγ intersection set T ∩ γ(T ) (T central tile) p.16
Aγ , tγ linear and translation part of an isometry γ p.17
diam(K) maximal distance between two points of a compact set K p.19
VL(γ1, . . . , γL) set of points belonging to T ,γ1(T ),. . . and γL(T ) p.22
VL set of L-vertices p.22
Interior(C) bounded component of the complement of a simple closed curve C p.29
Exterior(C) unbounded component of the complement of a simple closed curve C p.29
Br(x) closed ball of radius r around x p.47
J for a quadratic polynomial x2 +Ax+B, J = max

{
1,
⌊

B−1
B−A+1

⌋}
pp.78-79

◦ the state (0, 0) p.80
Ψw for a sequence of digits w = (a1, . . . , an), Ψw = Ψa1 ◦ . . . ◦Ψan p.88
dimHF Hausdorff dimension of the set F p.122
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[22] Branko Grünbaum and Geoffrey C. Shephard. Tilings and patterns. Freeman, New York,
1987.

[23] Masayoshi Hata. On the structure of self-similar sets. Japan J. Appl. Math., 2:381–414, 1985.

[24] Allen Hatcher. Algebraic topology. Cambridge University Press, 2002.
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[43] Benôıt Loridant, Jun Luo, and Jörg Thuswaldner. A new criterion for disk-like crystallo-
graphic reptiles. In Topology Proc., to appear.

[44] Benôıt Loridant, Jun Luo, and Jörg Thuswaldner. Topology of crystallographic tiles. Geom.
Dedicata, to appear.
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