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Abstract

The work presented in this thesis addresses image processing algorithms as well as methods
of statistical uncertainty analysis related to metric vision systems.

The term metric vision covers the optical measurement of quantitative information for
geometric objects, such as position, orientation, dimensions and shape. Thereby, three
tasks are of particular interest: (1) estimation of plane-to-plane homographies based on
point correspondences, (2) fitting of geometric models to sets of data points perturbed by
measurement noise, and (3) derivation of measurement results from the model parameters.

In order to specify the uncertainty associated with the measurement results of metric
vision systems, two different methods of uncertainty analysis are investigated: a statis-
tical and an analytical approach. The statistical method is based on evaluating data of
repeated but independent measurements, whereby the analytical estimates are computed
by application of the law of first order error propagation to the particular steps of the
evaluation procedure.

In the present work, the algorithms for fitting lines as well as pairs of parallel lines to
sets of noisy data points are analyzed in detail concerning first order estimation of error
propagation. Furthermore, the direct linear transformation (DLT) algorithm for comput-
ing the parameters of plane-to-plane homographies based on point correspondences is
analyzed. All of the analytically computed uncertainty estimates are numerically verified
with Monte-Carlo simulations.

The methods of statistical uncertainty analysis described in this thesis are of general
validity for metric vision systems. In order to illustrate the applicability of the approaches,
the image processing algorithms of a video-extensometer system are examined. The system
is designed to measure the deformation of polymer materials during tensile testing. The
images acquired during the tests are evaluated offline. At first, points of interest are
extracted using gradient-based techniques followed by center-of-gravity calculation. As a
result, sets of data points are obtained at sub-pixel accuracy. Linear geometric models,
concretely lines as well as pairs of parallel lines, are approximated to the sets of noisy data
points by means of least-squares estimation of the model parameters. The measurement
results, in particular the longitudinal as well as the transversal specimen dimensions, are
derived from the fitted geometric models.
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Kurzfassung

Die hier präsentierte Arbeit befasst sich mit Auswertungsalgorithmen sowie Methoden
der statistischen Unsicherheitsanalyse von metrischen Bildverarbeitungssystemen.

Mit dem Begriff der metrischen Bildverarbeitung wird die Messung quantitativer Informa-
tionen von geometrischen Objekten, wie Position, Orientierung, Dimensionen und Form,
bezeichnet. Dabei sind drei Aufgaben von besonderem Interesse: (1) die Ermittlung der
Parameter von Homographien auf Basis von Punktkorrespondenzen, (2) die Anpassung
von geometrischen Modellen an Sätze verrauschter Datenpunkten, und (3) die Ableitung
von Messergebnissen aus den Modellparametern.

Zur Angabe der zu den Ergebnissen von metrischen Bildverarbeitungssystemen gehörenden
Unsicherheit werden zwei Methoden der Unsicherheitsanalyse untersucht: ein statistischer
und ein analytischer Ansatz. Die statistische Methode basiert auf der Auswertung von un-
abhängigen Wiederholungsmessungen, die analytische Abschätzung erfolgt über die An-
wendung des Gesetzes der Fehlerfortpflanzung erster Ordnung auf die einzelnen Schritte
des Auswertealgorithmus.

In der vorliegenden Arbeit werden die Algorithmen zur Anpassung von Geraden sowie
Paare parelleler Geraden an Sätze von verrauschten Datenpunkten hinsichtlich Fehler-
fortpflanzung erster Ordnung detailliert analysiert. Weiters wird der DLT Algorithmus
zur Bestimmung von Homographieparametern auf Basis von Punktkorrespondenzen un-
tersucht. Alle analytisch berechneten Unsicherheitsabschätzungen werden anhand von
Monte-Carlo Simulationen numerisch verifiziert.

Die in dieser Arbeit beschriebenen Methoden der statischen Unsicherheitsanalyse sind
von allgemeiner Gültigkeit für metrische Bildverarbeitungssysteme. Um die Anwend-
barkeit dieser Ansätze zu veranschaulichen wurden die Bildverarbeitungsalgorithmen eines
Video-Extensometer Systems untersucht. Das System ist für die Messung der Defor-
mation von Kunststoffmaterialien bei Zugversuchen ausgelegt. Die während der Ver-
suche aufgenommenen Bilder werden offline ausgewertet. Zunächst werden Datenpunkte
mittels gradienten-basierten Methoden und anschließender Berechnung von Intensitäts-
schwerpunkten ermittelt. Damit werden Sätze von Datenpunkte mit Subpixel-Genauigkeit
gewonnen. Lineare geometrische Modelle, konkret Geraden sowie Paare von parellelen
Geraden, werden an die Sätze verrauschter Datenpunkte mittels Verfahren der kleinsten
Fehlerquadrate angepasst. Die Messergebnisse, speziell die longitudinale und transver-
sale Prüfkörperdeformation, werden schließlich aus den Parametern der approximierten
geometrischen Modelle abgeleitet.
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Symbols and Notations

Notation of probability density functions:

P (x, µx, σx) general notation of a univariate probability density function
N (x, µx, σx) a univariate Gaussian (normal) probability density function
P (x, µx, Λx) general notation of a multivariate probability density function
N (x, µx, Λx) a multivariate Gaussian (normal) probability density function

Symbols used in uncertainty analysis:

E(f(x)) the expectation value of a function f(x)
V(f(x)) the variance of a function f(x)
µx notation of a sample mean value
σx, σ2

x notation of sample standard deviation value and sample variance
µ a sample mean vector, i.e. a vector of mean values
Λ a covariance matrix

Notations arising for Taylor series expansions:

Tn(f(x)) an n’th order Taylor series expansion for a function f(x)
Rn(f(x)) the remainder term associated with a Taylor series Tn(f(x))
J a Jacobian matrix, i.e. a matrix of first order partial derivatives
H a Hessian matrix, i.e. a matrix of second order partial derivatives

Symbols concerning matrix decompositions:

Ω matrix square root
G triangular matrix representing the result of a Cholesky decomposition
V, D components of an eigen-decomposition
U, S, V components of a singular value decomposition

Matrix symbols for linear transformations of the projective plane:

T matrix representing a translational transformation
R matrix representing a rotational transformation
H matrix representing a general homography
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Chapter 1

Introduction

Metric vision systems are designed to measure quantitative information of geometric ob-
jects based on optical measurement approaches. Thereby, the measurement results are
obtained by application of digital image processing techniques.

In fact, a measurement result is incomplete, if there is no specification of the error as-
sociated with it. The DIN 55350 standard states that measurement accuracy comprises
two criteria: precision and trueness. The term precision specifies the ability of a measure-
ment system to indicate a particular value (not necessarily the true value) upon repeated
but independent measurement of a specific quantity. Thus, the random deviation of a
measurement sample with respect to the sample mean is called the precision error.

By contrast, trueness refers to the accordance of the average sample value indicated by the
measurement system with the true value of the measurand. Any deviation of the average
value indicated by the measurement system from the true value must be considered to be
systematic and is termed bias error.

The discipline uncertainty analysis solely addresses statistical deviations. Systematic in-
fluences on a measurement should be avoided in principle. If this cannot be achieved,
appropriate correction techniques are to be applied [20].

In this work, two methods for estimating measurement uncertainty are examined: a sta-
tistical and an analytical approach. The statistical method is based on evaluating either
data acquired from repeated but independent measurements, i.e. real measurement data,
or synthetically generated data. By contrast, the analytical approach is based on succes-
sive application of the law of first order error propagation to the particular steps of the
evaluation algorithms.

Two problems typically arising in metric vision systems are investigated in detail concern-
ing statistical as well as analytical estimation of error propagation: (1) fitting of lines as
well as parallel lines to sets of noisy data points; and (2) computation of plane-to-plane
homographies based on point correspondences. The analytically computed uncertainty
estimates are numerically verified with Monte-Carlo simulations.
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Chapter 1 - Introduction 3

The motivation for this work has arisen from the need for contactless methods for the mea-
surement of polymer materials during tensile testing. Typically implemented approaches
for measuring the deformation of the samples under test are considered unsuitable:

• measurement of the testing machine’s crosshead motion is error-prone, as the spec-
imen deformation is superimposed by the resilience of the clamping and charging
construction;

• the operation of strain gauges for measuring large series of samples is impractical
due to the laborious specimen instrumentation;

• mechanical extensometer systems are to be applied directly onto the specimen and
therefore influence the characteristics of the material under test.

As a result, contact-free deformation measurement approaches are desirable. In this con-
text, there are two types of measurement systems to be distinguished: (1) systems for
measuring global material characteristics; and (2) systems capable of measuring full-field
deformations.

Global tensile properties can be measured by means of video-extensometer systems or laser
extensometer systems. Video-extensometer systems are commonly offered as an extension
of the equipment of testing machines [4, 5], but scientific considerations on evaluation
algorithms as well as measurement accuracy are barely to find.

The measurement principle of laser extensometers is based on the diverse reflectivity
of the specimen surface and the measurement marks applied to the material [2, 14].
These systems are inflexible compared to video-extensometer systems with respect to the
diversity of evaluation possibilities at measurements on modern testing machines.

Full-field deformation measurement is commonly addressed with digital image correlation
systems or laser speckle interferometers [1, 3, 6]. Digital image correlation systems require
a stochastic colour pattern to be applied to the surface of the material. Deformation of
the material causes variation of the colour pattern. The deformation distribution is deter-
mined by evaluating the images acquired during the test by means of image correlation
techniques.

Laser speckle interferometers exploit the speckle effect caused by coherent laser light
projected onto the optically rough surface of the samples under test. Deformation of the
material leads to phase changes of the laser light reflected by the surface. The deformation
of the specimen is measured by evaluating these phase variations. As a result of the
high sensitivity inherent to the measurement principle, the application of laser speckle
interferometers is restricted to very small specimen deformations.

In this thesis, a video-extensometer system is presented, that is capable of measuring
the full 3-dimensional deformation of the samples under test. The system is flexible with
respect to the application to different types of specimen and material properties. Particular
interest is laid on uncertainty analyses concerning the digital image processing algorithms
for evaluating the images acquired during the tensile tests. Furthermore, the measurement
uncertainty associated with the results obtained by the video-extensometer system is
derived.



Chapter 1 - Introduction 4

1.1 Outline of the Thesis

The thesis is structured in three parts. In the first part, statistical basics as well as geo-
metric primitives together with their associated uncertainties are introduced. The second
part comprises three chapters focussing on typical problems arising in metric vision tasks.
The last part of the thesis addresses the application of the video-extensometer system to
tensile testing of polymer material.

Part I:
At the beginning of Chapter 2, statistical basics essential for understanding the princi-
ples and tools presented in the course of the thesis are recalled. Furthermore, the term
measurement uncertainty is specified and two basic principles for analyzing measurement
uncertainty - a statistical and an analytical approach - are presented.

Points, lines and conics - representing the most basic geometric primitives - are described
in Chapter 3 within the context of planar projective geometry. Subsequently, the covari-
ance matrices of points and lines are discussed, as they provide a means to describe the
uncertainty associated with these geometric objects. Moreover, algorithms required to
visualize confidence envelopes of points and lines are derived.

Part II:
The uncertainty of lines as well as pairs of parallel lines fitted to sets of noisy data points
is addressed in Chapter 4. The fitting algorithms are presented, followed by numerical as
well as analytical uncertainty analyses for the particular steps of the fitting procedures.

In Chapter 5, the direct linear transformation (DLT) algorithm for estimating plane-to-
plane homographies is treated. After a brief derivation of the algorithm, a procedure for
computing the first order estimate of the uncertainty associated with the homography
parameters is presented. The analytical results are numerically verified by Monte-Carlo
simulations.

The error inherent to first order estimates of the uncertainty associated with outcomes
of non-linear functions, such as the computation of the Euclidean distance between two
points, is investigated in Chapter 6. A procedure for analytically computing the approx-
imation error associated with these first order estimates is presented. The approach is
based on the definition of Lagrange remainder terms associated with Taylor series trun-
cated after the first order terms.

Part III:
In Chapter 7, the video-extensometer system is presented. At first, the hardware setup as
well as the acquisition configurations of the measurement system are outlined. Further-
more, the evaluation algorithms are described and a number of uncertainty analyses are
presented. Thereby, the measurement accuracy achievable with the particular acquisition
configurations of the video-extensometer system is derived by analysis of repeated mea-
surements as well as analytic estimations based on the law of first order error propagation.



Chapter 1 - Introduction 5

1.2 Original Work

Aside from the development of the video-extensometer measurement system, the original
contributions of the work presented in this thesis are related with the determination of
measurement uncertainty:

1. The uncertainty analyses undertaken in this thesis are all based on sets of data points
extracted from images acquired with the video-extensometer system. It is shown
by means of Monte-Carlo simulations, that the covariances between the particular
data points are to be incorporated for the uncertainty analyses. As a result, fully
occupied covariance matrices are determined from the sets of data points extracted
in the acquired images. These are then propagated to the uncertainty associated
with the results of the particular evaluation procedures.

2. A procedure for analytically estimating the uncertainty (in terms of covariance ma-
trices) associated with a line as well as a pair of parallel lines fitted to sets of noisy
data points is presented. Therein, any possibly existing covariances between the data
points are taken into account by incorporating fully occupied covariances matrices
associated with the sets of data points.

3. The computation of plane-to-plane homographies based on point correspondences
is investigated concerning first order error propagation. An analytical estimation
of the covariance matrix associated with the homography parameters is derived,
in which any possibly existing covariances between the points incorporated in the
computation are taken into account.

4. Application of the law of first order error propagation to functions non-linear in the
input parameters inevitably leads to approximation errors. A procedure for analyt-
ically computing this approximation error is presented. The procedure is based on
the definition of Lagrange remainder terms associated with Taylor series truncated
after the first order terms.



Chapter 2

Basics of Statistics and
Measurement Uncertainty

At the beginning of this chapter, statistical basics are recalled as they are of essential
significance for understanding the principles and tools presented in the course of this
thesis. Subsequently, a number of fundamental terms of the measurement engineering
discipline, namely the true value of a measurement, measurement accuracy, precision and
trueness, is described.

Furthermore, the term measurement uncertainty is derived and two basic principles for
analyzing measurement uncertainty - a statistical and an analytical approach - are pre-
sented. The statistical approach can be evaluated based on natural (i.e. real measurement)
data or on synthetical (i.e. randomly generated) data. The generation of multivariate ran-
dom numbers following a specific probability distribution can, especially when handling
high-dimensional data, lead to numerical problems. Thus, three different approaches for
generating multivariate random data are presented and compared. Finally, the analytical
approach for analyzing measurement uncertainty, namely first order estimation of error
propagation, is outlined based on the case of explicit functions.

2.1 Definitions of Basic Statistical Terms

2.1.1 Random Variables

In the mathematical discipline of stochastics, a real random variable is defined as a scalar-
valued function relating results of a random experiment to real numbers. The outcomes
of a random experiment are termed realizations of the random variable. In the following,
random variables are denoted by uppercase symbols (e.g. X), whereas the corresponding
lowercase letter (e.g. x) is employed to represent a realization of the random variable.

A random variable is mainly characterized by means of the underlying probability density
function. In fact, a probability density function specifies probabilities for the occurrence
of a realization of the random variable. A probability density function is characterized by
algebraic as well as central moments (see e.g. [40]).

6



Chapter 2 - Basics of Statistics and Measurement Uncertainty 7

Algebraic moments are defined as expectation values E(Xn), with n denoting the order
of the moment. The most important parameter of a probability density function is the
first algebraic moment, which is called the expectation value E(X) at the same time. It
is defined as the arithmetic mean of all theoretically possible realizations of the random
variable X.

Moreover, central moments are defined as expectation values E ((X − E(X))n), where
n again defines the order of the moment. Obviously, the first central moment is of no
relevance, because it is zero by definition. The second central moment:

V(X) = E
(
(X − E(X))2) , (2.1)

is termed the variance and is a measure of the width of the probability density function.
Hence, it specifies the statistical variation of a random variable around the expectation
value. As derived in Appendix A.1, it can also be computed as:

V(X) = E
(
X2
)
− E(X)2. (2.2)

2.1.1.1 Estimation of Expectation Value and Variance

As already mentioned, the definition of the expectation value (as well as the definition
of the variance) require knowledge of all theoretically possible realizations (the basic
population) of a random experiment. In practice, only a finite number of nR realizations
of an experiment is available. In other words, the available data represents a finite subset
of the basic population. This subset is termed a sample with nR specifying the sample
size.

Hence, the expectation value of the random variable can only be estimated. The strong
law of large numbers (see e.g. [49]) gives a justification for estimating parameters of a
random experiment from a sample population. The law is formulated as:

P

(
lim

nR→∞

1

nR

nR∑
i=1

xi = E(X)

)
= 1, (2.3)

and states that if nR independent samples of a random experiment are available, the
arithmetic mean of the samples converges with increasing nR towards the expectation
value E(X) at a probability of 1. According to this law, the expectation value of the
random experiment may be estimated by the arithmetic mean µx of the samples, i.e. the
sample mean,

µx =
1

nR

nR∑
i=1

xi. (2.4)

Furthermore, an unbiased estimate for the variance of a random experiment is computed
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by the sample variance σ2
x as:

σ2
x =

1

nR − 1

nR∑
i=1

(xi − µx)
2 . (2.5)

The sample variance is normalized by the factor 1
nR−1

instead of 1
nR

to take into account
that one degree of freedom for the estimation is required for µx. Thus, Equation (2.1)
defines the best unbiased estimate for the variance of the random variable. Notice that:

σ2
x =

1

nR − 1

 nR∑
i=1

x2
i −

1

nR

(
nR∑
i=1

xi

)2
 , (2.6)

provides a more efficient method for computing the sample variance (see Appendix A.3
for the derivation of the formula), as it avoids the effort of prior computing the sample
mean. The non-negative square root of the sample variance denotes the sample standard
deviation σx.

2.1.1.2 Covariance and Sample Covariance

A measure of the linear interrelation of two random variables X and Y is defined by the
covariance,

Cov(X, Y ) = E ((X − E(X)) (Y − E(Y ))) . (2.7)

As derived in Appendix A.1, the covariance can also be computed as:

Cov(X,Y ) = E (XY )− E(X)E(Y ). (2.8)

In the practical case where there are nR discrete values for xi and yi, the sample covariance
may be computed to estimate the covariance of the two random variables:

σxy =
1

nR − 1

(
nR∑
i=1

(xi − µx) (yi − µy)

)
, (2.9)

which again (see Appendix A.3) may be alternatively computed as:

σxy =
1

nR − 1

(
nR∑
i=1

(xiyi)−
1

nR

nR∑
i=1

xi

nR∑
i=1

yi

)
. (2.10)
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2.1.2 Random Vectors

A random vector is a vector of scalar-valued random variables associated with the same
random experiment. The outcomes of the random experiment are called again realizations
of the random experiment, [25].

In the following, random vectors are denoted by uppercase bold symbols (e.g. X), whereas
the corresponding lowercase bold letters (e.g. x) are employed to term realizations of
the random vector. The dimensionality of the random vector is specified by n, and the
individual random variables Xi, i = 1 . . . n are collected in a column vector.

The expectation vector E(X) of a random vector is obtained by computing and collecting
the individual expectation values of the random variables Xi, i = 1 . . . n:

E(X) =
[

E(X1) E(X2) . . . E(Xn)
]T

. (2.11)

Recalling the definition of the variance of a scalar-valued random variable in Equation
(2.1), we can obtain the analogon for a random vector as:

V(X) = E
(
(X − E(X)) (X − E(X))T

)
, (2.12)

which can be alternatively computed (cf. Appendix A.2) as:

V(X) = E
(
XXT

)
− E(X)E(X)T . (2.13)

As the random vector X as well as its expectation vector E(X) are n-dimensional column
vectors, V(X) is an n× n matrix, which is structured as follows:

V(X) =


V(X1) Cov(X1, X2) . . . Cov(X1, Xn)

Cov(X2, X1) V(X2) . . . Cov(X2, Xn)
...

...
. . .

...
Cov(Xn, X1) Cov(Xn, X2) . . . V(Xn)

 . (2.14)

The variances of the individual random variables Xi, i = 1 . . . n are located along the
main diagonal, whereas the off-diagonal elements contain the covariances specifying the
interdependencies of the random variables. As a result, the matrix is called the covariance
matrix (sometimes also variance-covariance matrix) of the random vector. Reflecting that
Cov(X1, X2) = Cov(X2, X1), it is clear, that covariance matrices are symmetric by nature.

2.1.2.1 Estimation of Expectation Vector and Covariance Matrix

In practice, when a finite number of realizations of the random vector is available, the
expectation vector as well as the covariance matrix of the random experiment can only
be estimated by the sample mean vector respectively the sample covariance matrix.
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Given a population of nR sample vectors xi, i = 1 . . . nR of a random experiment, then
the sample mean vector µx is computed as:

µx =
1

nR

nR∑
i=1

xi. (2.15)

The sample covariance matrix Λx is given as:

Λx =
1

nR − 1

nR∑
i=1

(
(xi − µx) (xi − µx)T

)
, (2.16)

which can be reformulated (see Appendix A.4) as:

Λx =
1

nR − 1

(
nR∑
i=1

(
xixi

T
)
− 1

nR

nR∑
i=1

xi

nR∑
i=1

xi
T

)
(2.17)

=
1

nR − 1

(
nR∑
i=1

(
xixi

T
)
− nRµxµx

T

)
. (2.18)

The sample covariance matrix holds the sample variances along the main diagonal and
the sample covariances in the off-diagonal elements:

Λx =


σ2

x1
σx1x2 . . . σx1xn

σx1x2 σ2
x2

. . . σx2xn

...
...

. . .
...

σx1xn σx2xn . . . σ2
xn

 . (2.19)

2.1.3 Gaussian Distributions

The great importance of Gaussian distributions is essentially a result of the fundamental
Central Limit Theorem. Basically, it states that the sum of mutually independent (and,
under some conditions, arbitrarily distributed) random variables, all of them exhibiting
the same order of magnitude, can be well approximated by the normal density func-
tion. The approximation becomes better with increasing number of incorporated random
variables.

2.1.3.1 The Univariate Gaussian Distribution

The probability density function of a univariate Gaussian distribution is defined as:

N (x, µ, σ) =
1√
2πσ

e−
(x−µ)2

2σ2 . (2.20)

Here, µ denotes the expectation value and σ refers to the standard deviation of the
distribution. Further, x terms a realization of a random variable X that the Gaussian
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distributionN (x, µ, σ) is associated with. The probability density function exhibits a bell-
shaped characteristic and is symmetric around the maximum located at the expectation
value µ. The inflection points of the distribution are located at µ± σ.

Following Sachs [49], the transition of X and its realizations x to another random variable
Z and its realizations z according to Z = X−µ

σ
results in the definition of the probability

density of the standard normal distribution. It is characterized by an expectation value
µ = 0 and a standard deviation σ = 1:

N (z, 0, 1) =
1√
2π

e−
z2

2 . (2.21)

2.1.3.2 Computation of Expectation Values

Recalling the analytical definition of the expectation value of a function f(x) following a
continuous probability density function P(x, µ, σ),

E (f(x)) =

∞∫
x=−∞

f(x) P(x, µ, σ) dx, (2.22)

we can compute the first algebraic moment of a sample x following a univariate Gaussian
distribution [26] as:

E(x) =

∞∫
x=−∞

x
1√
2πσ

e−
(x−µ)2

2σ2 dx = µ. (2.23)

Thus, the first algebraic moment is equal to the expectation value µ of the probability
density function. Furthermore, the second central moment is given by:

E
(
(x− E(x))2) =

∞∫
x=−∞

(x− µ)2 1√
2πσ

e−
(x−µ)2

2σ2 dx = σ2. (2.24)

Thus, the second central moment of the univariate Gaussian distribution is equal to the
variance σ2 of the probability density function. In Appendix B, complete derivations of
the two results above are provided.

2.1.3.3 The Multivariate Gaussian Distribution

Extending the univariate case specified in Equation (2.20), the probability density function
of a multivariate Gaussian distribution [32] is given as:

N (x, µ, Λ) = ((2π)p |Λ|)−
1
2 e−

1
2((x−µ)T Λ−1(x−µ)). (2.25)

with the expectation vector µ and the covariance matrix Λ. Furthermore, |Λ| denotes the
determinant of the covariance matrix and p refers to the dimensionality of the distribution.
Note, that p is equal to the dimensionality of µ as well as the size of Λ.
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Analogous to the univariate formulation, the probability density of the multivariate stan-
dard normal distribution underlying a random vector Z with realizations z is defined as:

N (z, o, Ip) = (2π)−
p
2 e−

1
2
zT z, (2.26)

with o being the zero expectation vector, and Ip denoting the p× p identity matrix.

2.2 Basics of Measurement Accuracy and Uncertainty

As outlined by Figliola [20], the term measurement accuracy refers to the ability of a
measurement system to indicate the true value of the measurand exactly. By definition,
measurement accuracy can only be determined when the true value is known. Hence,
specifying the term measurement accuracy inevitably leads to the definition of the true
value of a measurement.

2.2.1 The True Value of a Measurement

According to Schmidt [51], the true value x̃ of a measurement is defined as the actual
value of the measurand taking into account the conditions prevalent at the time of its
determination. Actually, the true value is an ideal value. It cannot (except for some cali-
bration standards, which are known to be exact) be determined exactly, because there is
no method to measure it without deviations. To overcome the discrepancy with the state-
ment above, the idea of a quasi-true value (also called virtually true value) is introduced.
A virtually true value is an approximation of the true value, which can be determined
by measurement. It is common practice to use virtually true values for calibrating mea-
surement systems. There, the quantity utilized for the calibration is determined with
adequately high effort to approximate the true value of the calibration quantity as good
as possible.

2.2.2 Measurement Accuracy, Precision and Trueness

As Schmidt [51] further outlines, the DIN 55350 standard states that measurement accu-
racy comprises two criteria: precision and trueness. The term precision specifies the ability
of a measurement system to indicate a particular value (not necessarily the true value)
upon repeated but independent measurement of a specific quantity. Hence, the precision
error εi specifies the random deviation of a single sample xi with respect to the sample
mean:

εi = xi − µx. (2.27)

By contrast, trueness refers to the accordance of the average sample value indicated by the
measurement system with the true value of the measurand. Any deviation of the average
value indicated by the measurement system from the true value must be considered to be
systematic and is termed bias error. In other words, the difference of the sample mean µx
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of a (repeatedly but independently measured) population of samples and the true value
x̃ of the measured quantity defines the bias error δx:

δx = µx − x̃. (2.28)

2.2.2.1 Illustration of Bias and Precision Errors

The concept of precision and bias errors is illustrated by means of an image processing
example. A series of images of an approximately vertically oriented, unmoved straight
object edge was acquired with an industrial camera. Then, each pixel row of the particular
series images was evaluated independently to determine the location of a point on the
object edge.

As a result, a population of measurement points was obtained for each single pixel row.
Figure 2.1 illustrates a sample of the image series with the ideal location of the edge
emphasized. Furthermore, a population of measurement points along a particular pixel
row is shown in detail. Note that as a consequence of the evaluation procedure, the location
of the data points is subject to measurement noise along the horizontal direction only.

As the statistical distribution underlying the measurement noise was assumed to be
Gaussian, a normal distribution function with the sample mean µx and the sample stan-
dard deviation σx was computed. The bias error δx of the samples is illustrated as the
difference of the sample mean and the true value, which is indicated as the exact location
on the ideal object edge. Furthermore, the precision error εi of a single measurement sam-
ple is shown in Figure 2.1. Finally, as a measure of the random variation of the measured
samples, the standard deviation σx of the population is emphasized.

2.3 Analysis of Measurement Uncertainty

In general, the true value of a measurand is unknown during a measurement. Thus, the
magnitude of the total error in the measurement (i.e. the sum of bias and precision
errors) cannot be determined exactly, it can only be estimated. As stated for example
by Schmidt [51], an estimate of the error associated with a particular measurement is
referred to as measurement uncertainty.

The discipline uncertainty analysis solely addresses statistical deviations. Systematic in-
fluences on a measurement should be avoided in principle. If this cannot be achieved, it is
common practice to eliminate systematic measurement deviations by means of appropriate
corrections, as is outlined e.g. by Figliola [20].

In the following, two different methods for estimating the precision error associated with
a measurement are recalled - a statistical and an analytical approach [9]. To handle the
general case, the approaches are outlined on the basis of multivariate data.
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Figure 2.1: Illustration of the concept of precision and bias errors by means of an image
processing example.

2.3.1 The Statistical Approach

The statistical approach for estimating the random error associated with a measurement
is to make use of the law of large numbers: Given a population of nR samples yi, the
covariance matrix Λy can be estimated (cf. Equation (2.18)) according to:

Λy =
1

nR − 1

(
nR∑
i=1

(
yiyi

T
)
− nRµyµy

T

)
, (2.29)

with µy denoting the sample mean vector. The samples yi required for the estimation
may be obtained either:

• naturally (i.e. by means of real measurements), or

• synthetically (i.e. by means of a simulation).

Estimating Λy using real measurement samples is really straightforward: The required
samples yi are obtained by means of repeated but independent measurements, and Λy is
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computed according to Equation (2.18). In the following, this approach will be termed
repeated measurements method.

The procedure of estimating the covariance matrix Λy by means of synthetical samples
is referred to as Monte-Carlo experiment. Here, a population of random samples yi is
generated with the help of a random number generator, which is outlined in the following
section. Then, the sample covariance matrix is computed according to Equation (2.18)
again.

2.3.2 Computation of Multivariate Random Data

Since:

1. truly random numbers do not exist, and

2. analysis of well suited natural sources of random processes (e.g. a radioactive source
of radiation) is a laborious task,

stochastic simulations have to rely on so-called pseudo-random number generators. This
term refers to a class of deterministic algorithms generating periodic sequences of numbers,
which approximate the properties of random variables [39, 38].

2.3.2.1 Univariate Gaussian Random Numbers

A univariate Gaussian random number y is typically computed as:

y = µ + σz. (2.30)

Here, z is an outcome of a pseudo-random number generator for the standard normal
distribution. The parameters µ and σ refer to the expectation value respectively the
standard deviation of the Gaussian distribution which the sample y is intended to follow.

In other words, Equation (2.30) describes the transformation of a realization z of the stan-
dard normal distribution Φ (z, 0, 1) to y, a sample of the normal distribution Φ (y, µ, σ).

2.3.2.2 Multivariate Gaussian Random Data

Analogous to Equation (2.30), a multivariate Gaussian random vector y is computed as:

y = µ + Ω z. (2.31)

The computation represents a transformation of an outcome z of a multivariate standard
normal distribution Φ (z,0, I) to y, a realization of the multivariate normal distribution
Φ (y, µ, Λ). Note that similarly to the univariate formulation requiring the non-negative
square root σ of the variance σ2, the multivariate computation incorporates a matrix Ω
representing the matrix square root of the covariance matrix Λ.
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2.3.2.3 Computing the Square Root of a Matrix

As is outlined by Golub and Van Loan [24], the matrix square root of a symmetric,
positive-semidefinite1 matrix Λ is defined as the unique positive-semidefinite matrix Ω,
for which holds:

Λ = Ω2. (2.32)

The matrix square root Ω is computed as the matrix product:

Ω = USUT , (2.33)

with U and S resulting from the singular value decomposition of a specific matrix G, which
corresponds to the Cholesky triangle of the covariance matrix Λ. Thus:

G = USVT . (2.34)

2.3.2.4 Cholesky Decomposition

If Λ is a symmetric positive-definite matrix [48], then there is a unique lower triangular
matrix G with positive diagonal entries, such that:

Λ = GGT . (2.35)

This type of matrix factorization is called Cholesky decomposition [24]. Furthermore, G is
termed the Cholesky triangle or, due to its structure, lower triangular square root matrix
of Λ.

It is common practice to use G instead of Ω in Equation (2.31), as the unique positive-
semidefinite property of Ω is of no relevance for the computation of multivariate random
data.

1This is a natural property for a non-singular covariance matrix, although an infringement of the
positive-semidefinite property can be caused by numerical effects, especially with matrices of large di-
mensions.
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2.3.2.5 LDLT Factorization

Another approach for factorizing a non-singular, symmetric matrix Λ is given by the LDLT

factorization, which represents a special case of the LU-decomposition [24]. Therein, Λ is
decomposed into the matrix product:

Λ = LDLT , (2.36)

with the lower triangular matrix L, which exclusively holds ones along the main diagonal,
as well as the diagonal matrix D. Compared to algorithms for calculating the Cholesky
decomposition, this approach avoids the computation of square roots. Thus, the factor-
ization is alternatively termed square root free Cholesky decomposition. The Cholesky
triangle G can be obtained as:

G = LD
1
2 . (2.37)

As D is diagonal with positive elements, D
1
2 can be efficiently computed.

2.3.2.6 Choice of Algorithm

Concerning the computational costs, it is obvious that computing the unique matrix
square root:

Λ = GGT =
(
USVT

) (
USVT

)T
= US2UT =

(
USUT

) (
USUT

)
= Ω2, (2.38)

is considerably more expensive than the other approaches. Both, the Cholesky decom-
position as well as the LDLT factorization, require an order of magnitude of n3

3
floating

point operations (flops), where n terms the size of the decomposed matrix [24]. To ob-
tain the desired Cholesky triangle, the LDLT factorization is followed by an additional
computation step, which represents a triangular matrix multiplication (the effort for cal-

culating D
1
2 is neglected) requiring another n3

3
flops. Thus, the Cholesky decomposition is

computationally the most efficient of the three algorithms.

As a consequence, synthetical multivariate samples required for Monte-Carlo experiments
are computed based on the Cholesky decomposition approach in the following.

2.3.3 The Analytical Approach

Given an explicit, C1-continuous function,

y = f(x), (2.39)

whose vector of input data x is represented as a random vector with mean µx and co-
variance matrix Λx. In order to estimate the covariance matrix associated with the vector
of output variables, Λy, a Taylor series of the function f is expanded around µx (see e.g.
Clarke[8], Csurka et al.[13], Haralick[27] or Zhao et al.[57]) yielding:

y = f(x) = f(µx) + Jf (µx) (x− µx) +O
(
‖ x− µx ‖2

)
, (2.40)
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with Jf (µx) denoting the Jacobian matrix of f with respect to the input data x, evaluated
at µx. Given the definition of a covariance matrix:

Λy = E
((

y − µy

) (
y − µy

)T)
(2.41)

and substituting the approximation µy ≈ f(µx) (which only is exact for functions linear
in x) gives:

Λy ≈ E
(
(f(x)− f(µx)) (f(x)− f(µx))T

)
. (2.42)

In order to obtain a first order estimation of the error propagation, the Taylor series given
in Equation (2.40) is truncated after the first order term, which in turn is substituted in
Equation (2.42):

Λy ≈ E
(
(Jf (µx) (x− µx)) (Jf (µx) (x− µx))T

)
≈ E

(
Jf (µx) (x− µx) (x− µx)T Jf (µx)T

)
≈ Jf (µx) E

(
(x− µx) (x− µx)T

)
Jf (µx)T

≈ Jf (µx) ΛxJf (µx)T . (2.43)

As can be seen, the explicit knowledge of the functional relationship f between x and y
is not required as the estimated covariance matrix Λy merely depends on the Jacobian
matrix Jf (µx) as well as the covariance matrix associated with the vector of input data,
Λx. Note that Equation (2.43) is exact for functions f linear in the input data x, but
represents an approximation for functions non-linear in x.

2.3.3.1 The Jacobian Matrix for Explicit and Implicit Functions

Given a vector of input data x ∈ Rm and a vector of output data y ∈ Rn. Then, the
explicit vector-valued function y = f(x) maps according to f : Rm 7→ Rn, and the m×n
Jacobian matrix Jf can be directly computed by taking the partial derivatives:

Jf =


∂f1

∂x1
. . . ∂f1

∂xn
...

. . .
...

∂fm

∂x1
. . . ∂fm

∂xn

 . (2.44)

In case of the functional relationship of x and y being given implicitly, i.e.:

Φ (x, f(x)) = Φ (x, y) = 0, (2.45)

the Jacobian matrix Jf exists according to the Implicit Functions Theorem[8, 15], if the

condition: det
(

∂Φ
∂y

)
6= 0 is fulfilled. It is then computed as:

Jf = −
(

∂Φ

∂y

)−1
∂Φ

∂x
. (2.46)



Chapter 2 - Basics of Statistics and Measurement Uncertainty 19

2.3.3.2 The Jacobian Matrix for Solving Linear Least Squares Problems

Fitting of geometric models to data points perturbed by measurement noise is a task typi-
cally arising in machine vision applications. The fitting operation is commonly formulated
as a linear least squares problem:

min
y
‖Dy‖ subject to: ‖y‖ = 1, (2.47)

with D denoting a design matrix specific for the geometric model being fitted, and y
terming the vector of model parameters being sought. The constraint ‖y‖ = yT y = 1 is
to be incorporated for solving the minimization problem using Lagrange multipliers:

yT DT Dy − λ
(
yT y − 1

)
= 0. (2.48)

Taking the partial derivatives with respect to y and equating them to zero results in:

2DT Dy − 2λy = 0,

(A− λI) y = 0, (2.49)

as well as the constraint: yT y− 1 = 0. As can be seen, the minimization problem leads to

an eigenvector problem, (A− λI) y = 0, with A
M
= DT D denoting the scatter matrix, which

contains the vector of input parameters x. The vector of model parameters y is now found
as the eigenvector corresponding to the smallest eigenvalue λmin of A. Equivalently[24], the
solution can be found by computing the singular value decomposition of D and taking the
right singular vector corresponding to the smallest singular value of the design matrix.

Given a set of n measured data points in the plane, whose coordinates are collected in a
vector x = [x1, . . . , xn, y1, . . . , yn]T , together with the covariance matrix Λx representing
the perturbation in the data points. In order to estimate the error propagation to y, the
vector of parameters specifying the geometric model being fitted to the data points, the
law of first order error propagation can be applied:

Λy = JfΛxJT
f . (2.50)

According to Clarke [8], the Jacobian matrix for the fitting operation, Jf , may be approx-
imated by the Jacobian of the implicit function Φ(x, y) = Ay = 0. In other words, it is
postulated that λmin is negligibly small: λmin ≈ 0. This leads to the assumption of A being
singular. As a result, the Jacobian Jf is computed according to Equation (2.46) with the
required matrix inverse: (

∂Φ

∂y

)−1

= A−1. (2.51)

As A is assumed to be singular, its inverse must be approximated by the pseudo-inverse,
A+ = VS+UT . The required matrices, U, S and V, are obtained by applying singular value
decomposition to A, i.e. A = USVT . In Appendix C, the general definition of pseudo-inverse
matrices is outlined. Moreover, the special situation of computing the pseudo-inverse of a
quadratic and symmetric matrix A (such as a scatter matrix) is treated.

Finally, the approximation of the Jacobian Jf is obtained as:

Jf ≈ −A+∂Φ

∂A

∂A

∂x
. (2.52)



Chapter 3

Representation of Uncertain
Geometric Primitives

This chapter introduces points, lines and conics as basic geometric primitives as they are
required for solving typical metric vision problems. The primitives are described within
the context of projective geometry, more precisely planar projective geometry. As there
exists plenty of literature concerning projective geometry (see e.g. [15, 22, 52, 41, 32, 53]),
only the most important concepts, namely the usage of homogeneous coordinates and the
duality principle of the projective plane, are briefly recalled here.

After this, the covariance matrices of points and lines are discussed, as they provide a
means to describe the uncertainty associated with these geometric objects. Finally, the
equations for visualizing the confidence envelopes of points and lines are derived based on
a Mahalanobis distance measure.

3.1 Planar Projective Geometry

As outlined by Faugeras [15], there are at least two fundamental reasons for applying
projective geometry in machine vision tasks:

1. the fact that optical mappings of the 3-dimensional real world to an image plane -
independently of considering the human eye or the lens of a camera system - can be
simply modelled by perspective (i.e. central) projections, and

2. a number of computational advantages compared to Euclidean geometry, such as
the possibility of consistently utilizing tools of linear algebra or the unproblematic
representation of geometric objects near or at infinity.

Thus, the concepts of projective geometry as well as the representation of geometric
objects by means of projective coordinates (also termed homogeneous coordinates) are
applied throughout the entire work.

20
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In the following, homogeneous coordinates utilized to describe geometric primitives are
collected in column vectors. The particular coordinates are termed with indexed, lower-
case letters, e.g. xi, whereas the coordinate vector itself is denoted by the corresponding
lowercase bold symbol, e.g. x. In contrast, inhomogeneous point coordinates are speci-
fied with letters indicating the associated Euclidean coordinate axis. Thus, a point p is
represented by the inhomogeneous coordinates xp and yp.

3.1.1 Representation of Points

A point p of the projective plane is represented by the column three-vector [p1, p2, p3]
T .

The transition from homogeneous to inhomogeneous coordinates (as, for example, they
are required for visualization purposes) is established by normalizing the homogeneous
coordinate vector by the last entry [23]:

xp =
p1

p3

, yp =
p2

p3

, (3.1)

with xp and yp representing the inhomogeneous coordinates of p.

The inverse operation, i.e. the transition from inhomogeneous point coordinates (as, for
example, they may result from an image processing algorithm operating on an affine image
plane) to homogeneous coordinates, is achieved by simply adding a scalar 1 as the third
coordinate, thus p = [xp, yp, 1]T .

3.1.2 Representation of Lines

A line l of the projective plane is defined by the coordinate vector [l1, l2, l3]
T . The coordi-

nates l1 and l2 define the orientation of the line. Hence, they are also called line orientation
parameters. The third parameter, l3, specifies the moment of the line with respect to the
point of origin. Thus, the parameter is also termed the line moment parameter.

The homogeneous line equation for a line of the projective plane is given by:

3∑
i=1

pili = p1l1 + p2l2 + p3l3 = 0, (3.2)

with the homogeneous point coordinates pi, i = 1 . . . 3. The line equation may also be
formulated as a matrix product:

[
p1 p2 p3

]  l1
l2
l3

 = pT l = 0. (3.3)

3.1.2.1 Normalized Lines

A line is geometrically normalized, if it exhibits a unit length orientational vector, i.e.:√
l21 + l22 = 1. (3.4)
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Normalized line vectors are required for all metric computations, such as determination
of the orthogonal distance of a point to a line or the normal distance between two parallel
lines. Thus, given a line l, the homogeneous coordinate vector nl of its geometrically
normalized representation is computed according to:

nl =

 nl1
nl2
nl3

 =
1√

l21 + l22

 l1
l2
l3

 . (3.5)

3.1.2.2 Normal Distance of a Point to a Line

The oriented, i.e. signed normal distance d of a point p with normalized homogeneous
coordinates [xp, yp, 1]T to a line l, represented by the normalized homogeneous coordinate

vector [l1, l2, l3]
T , is obtained as:

d = xpl1 + ypl2 + l3 = pT l. (3.6)

This result may be demonstrated by applying the Grassmannian determinant principle, as
outlined by Klein [36]. Given two points x1 and x2 with homogeneous coordinate vectors
[x1, y1, 1]T and [x2, y2, 1]T defining a segment of a straight line, than any point x on the
same line with coordinate vector [x, y, 1]T is a linear combination of x1 and x2, thus:∣∣∣∣∣∣

x y 1
x1 y1 1
x2 y2 1

∣∣∣∣∣∣ = 0. (3.7)

Expanding the determinant gives:

x (y1 − y2)− y (x1 − x2) + (x1y2 − x2y1) = 0

xl1 + yl2 + l3 = 0, (3.8)

which is another formulation of the homogeneous line equation (cf. Equations (3.2), (3.3)).
The line coordinates are thus:

l1 = y1 − y2,

l2 = x2 − x1,

l3 = x1y2 − x2y1. (3.9)

Similarly, the Grassmannian principle can be applied to define a determinant of two points
x1 and x2 specifying a line segment and a third point p = [xp, yp, 1]T being non-collinear
to x1 and x2:

2A4 =

∣∣∣∣∣∣
xp yp 1
x1 y1 1
x2 y2 1

∣∣∣∣∣∣ , (3.10)
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which defines twice the signed area A4 of the triangle spanned by x1, x2 and p. Obviously,
the same area is obtained as the product of the length of the line segment and d, the normal
distance of p to the line segment:

d

√
(x1 − x2)

2 + (y1 − y2)
2 = xp (y1 − y2)− yp (x1 − x2) + (x1y2 − x2y1)

d
√

l21 + l22 = xpl1 + ypl2 + l3

d =
1√

l21 + l22
pT l, (3.11)

which equals the formulation given in Equation (3.6) with normalized line coordinates.

3.1.3 Interrelations of Special Line Pairs

3.1.3.1 Parameters of Orthogonal Lines

Two lines 1l and 2l with normalized line coordinates [1l1, 1l2, 1l3]
T and [2l1, 2l2, 2l3]

T

respectively, are orthogonal to one another, if their orientational parameters fulfill the
conditions:

2l1 = ±1l2,

2l2 = ∓1l1. (3.12)

3.1.3.2 Parameters of Parallel Lines

Two lines 1l and 2l with normalized line coordinates [1l1, 1l2, 1l3]
T and [2l1, 2l2, 2l3]

T

respectively, are parallel if their orientational parameters are identical. Thus:

2l1 = 1l1,

2l2 = 1l2. (3.13)

The normal distance d between the two parallel lines (each with normalized line coordi-
nates) is:

d = |1l3 − 2l3| . (3.14)

3.1.3.3 Center Line of two Given Parallel Lines

Given two parallel lines 1l and 2l with normalized coordinate vectors [l1, l2, 1l3]
T respec-

tively [l1, l2, 2l3]
T , a third line cl, representing the center line of 1l and 2l, is sought. The

homogeneous line vector cl is obtained as: cl1
cl2
cl3

 =

 l1
l2

1
2
(1l3 + 2l3)

 . (3.15)
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3.1.4 The Duality Principle of the Projective Plane

Considering Equation (3.3), the condition for a point x belonging to a line l is obviously
symmetric for the homogeneous vectors of the point as well as that of the line [15]. Thus:

xT l = lT x = 0. (3.16)

The interchangeability of points and lines in the projective plane is commonly known as
the duality principle. A line in the homogeneous point space (spanned by xi, i = 1 . . . 3)
exhibits a dual point in the homogeneous line space (spanned by li, i = 1 . . . 3) and vice
versa.

Due to the duality principle, the following dual statements are valid for the projective
plane [41]:

1. two distinct points of the projective plane determine a unique interpolating line,
and

2. two distinct lines of the projective plane determine a unique intersection point.

Note, that the second statement provides an advantage of the projective geometry with
respect to Euclidean geometry, where this statement is invalid for parallel lines [23].

3.1.4.1 The Point of Intersection of two Lines

Given two lines 1l and 2l, their intersection point p is obtained as the cross product of
the vectors holding the homogeneous line coordinates:

p = 1l × 2l. (3.17)

Thus, the homogeneous coordinates of the point of intersection are: p1

p2

p3

 =

 1l2 2l3 − 1l3 2l2
1l3 2l1 − 1l1 2l3
1l1 2l2 − 1l2 2l1

 . (3.18)

3.1.4.2 The Interpolating Line of two Points

The line l interpolating two given points p1 and p2 with homogeneous coordinate vec-
tors [1p1, 1p2, 1p3]

T respectively [2p1, 2p2, 2p3]
T , is computed as the cross product of the

vectors holding the point coordinates:

l = 1p × 2p. (3.19)

As a result, the homogeneous coordinates of the interpolating line are (cf. Equation (3.7)): l1
l2
l3

 =

 1p2 2p3 − 1p3 2p2

1p3 2p1 − 1p1 2p3

1p1 2p2 − 1p2 2p1

 . (3.20)



Chapter 3 - Representation of Uncertain Geometric Primitives 25

As can be seen, the line going through two given points and the point of intersection
of two given lines are identically computed. This is another consequence of the duality
principle of the projective plane.

The interchangeability of points and lines in the previous computations is emphasized
in Figure 3.1. The line interpolating two given points in the normalized point space is
represented by its dual in the normalized line parameter space, which is the point of
intersection of the two lines representing the duals of the given points.
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Figure 3.1: Illustration of the duality principle in the projective plane. Points and lines
represent dual geometric objects in the homogeneous point and line space, respectively.

3.1.5 Representation of Conics

As, among many other authors, outlined by Hartley and Zisserman [32], the implicit
equation of a general conic in homogeneous form is defined as:

3∑
i,j=1

cijxixj = c11x
2
1 + 2c12x1x2 + 2c13x1x3 + c22x

2
2 + 2c23x2x3 + c33x

2
3 = 0, (3.21)

i.e. a homogeneous quadratic polynomial in the point coordinates x1, x2 and x3.
The coefficients cij are commonly denoted as conic coefficients. Note, that cij = cji for
i, j = 1 . . . 3. Equation (3.21) may be rewritten as the matrix expression:

xT Cx = 0, (3.22)

where the conic coefficient matrix C (commonly called the conic matrix in short) terms a
symmetric matrix holding the conic coefficients,
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C =

 c11 c12 c13

c12 c22 c23

c13 c23 c33

 . (3.23)

Analog to the homogeneous coordinate vectors of points and lines, the homogeneous conic
matrix is defined only up to a non-zero scaling factor. Thus, the conic matrix C exhibits
five degrees of freedom, which can be reproduced as six entries of the symmetric matrix
C less one utilized for the scaling.

3.1.5.1 Euclidean Classification of Conics

The commonly known Euclidean classification of conics utilizes three parameters invariant
to Euclidean transformations (see e.g. [23, 47, 35]):

I1 = det C, (3.24)

I2 = c11c22 − c2
12, (3.25)

I3 = c11 + c22. (3.26)

If the conic matrix C is singular, i.e. I1 = 0, the specified conic is degenerate. This results
the conic to appear either as a pair of intersecting lines (when C is rank deficient by 1)
or as a pair of collinear lines or a single point (for C being rank deficient by 2). For a
nonsingular conic matrix C, the conic is said to be proper. There are three types of proper
conics to be differentiated, which is achieved by investigation of the invariant I2:

C defines


a hyperbola . . . if I2 < 0,
a parabola . . . if I2 = 0,
an ellipse . . . if I2 > 0.

The elliptic conic has to be further divided into two subcases. If I1I3 > 0, the conic
exhibits an empty set of points, whereas I1I3 < 0 indicates a real ellipse.

3.1.5.2 The Center Point of a Conic

The implicit equation of a general conic with normalized homogeneous point coordinates
[xp, yp, 1]T is given as:

c11x
2
p + 2c12xpyp + 2c13xp + c22y

2
p + 2c23yp + c33 = 0. (3.27)

The center point of a conic may be determined by computing the translational parameters
x0 and y0 required to center the conic at the point of origin. The transformation matrix
for executing the translational operation is given as:

T =

 1 0 −x0

0 1 −y0

0 0 1

 . (3.28)
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As a result, the conic coefficient matrix CT of the translated conic becomes:

CT = T−T CT−1

=

 c11 c12 c11x0 + c12y0 + c13

c22 c12x0 + c22y0 + c23

sym. c11x
2
0 + 2c12x0y0 + 2c13x0 + c22y

2
0 + 2c23y0 + c33

 . (3.29)

A consequence of the conic being centered at the point of origin is that the two conic
coefficients, appearing linear with xp and yp in the equation of the translated conic, have
to become zero. Thus, we take the first two entries of the last column of CT and set them
to zero:

c11x0 + c12y0 + c13 = 0,

c12x0 + c22y0 + c23 = 0. (3.30)

Solving for the translational parameters x0 and y0 delivers the coordinates of the conic
center point:

x0 =
c12c23 − c22c13

c11c22 − c2
12

,

y0 =
c12c13 − c11c23

c11c22 − c2
12

. (3.31)

Note, that the denominator in the definition of xp and yp is identic and equals the Euclid-
ean invariant I2 defined in Equation (3.25). Obviously, the conic center point lies at infin-
ity, if this denominator becomes zero. This corresponds to the point of intersection of the
conic asymptotes lying at infinity. Thus, the conic represents a parabola [46], which con-
forms with the results of the Euclidean classification. Back-substituting the coordinates
of the conic center point gives:

CT =

 c11 c12 0
c12 c22 0
0 0 γ

 , (3.32)

with

γ =
2c12c13c23 + c11c22c33 − c11c

2
23 − c22c

2
13 − c33c

2
12

c11c22 − c2
12

. (3.33)

Notice that Equation (3.32) represents the coefficient matrix of a general conic centered
at the point of origin.

3.1.5.3 The Circle as a Special Case of the General Conic

The general conic is homogeneously defined by six coefficients {c11, c12, c13, c22, c23, c33},
as is seen in the implicit definition given in Equation (3.21). The special case of circles
exhibits two restrictions on the general conic formulation, as is outlined by Zsombor-
Murray [58] for example. On the one hand, the aspect ratio of a circle is equal to 1, which
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is brought in as the condition c11 = c22, and on the other hand, a circle is not transformed
under rotation, which results in c12 = 0. Thus, the conic coefficient matrix Cc for a circle
is obtained as:

Cc =

 C1 0 C2

C1 C3

sym. C4

 . (3.34)

Notice that the circle coefficients are denoted with uppercase letters to avoid confusion
with the coefficients of a general conic. The parameter set {C1, C2, C3, C4} is known as
the set of tetra-circular Grassmannian coordinates [36]. With this, the implicit equation
of the circle results to:

xT Ccx = C1(x
2
1 + x2

2) + 2C2x1x3 + 2C3x2x3 + C4x
2
3 = 0, (3.35)

which is rewritten utilizing normalized homogeneous point coordinates [xp, yp, 1]T to ob-
tain the more familiar formulation:

C1(x
2
p + y2

p) + 2C2xp + 2C3yp + C4 = 0. (3.36)

The affine circle parameters, namely the circle center coordinates x0 respectively y0 and
the circle radius r, can then be computed from the set of tetra-circular Grassmannian
coordinates as:

x0 = −C2

C1

,

y0 = −C3

C1

, (3.37)

r =

√
x2

0 + y2
0 −

C4

C1

=

√
C2

2 + C2
3

C2
1

− C4

C1

.

Note that Equation (3.35) describes a proper circle only if the conditions C1 6= 0, as well

as
C2

2+C2
3

C2
1

− C4

C1
> 0 are fulfilled. Otherwise, the conic is degenerate. Concretely:

• C1 = 0: The conic represents a pair of lines, whereas one of them specifies the line
at infinity, x3 = 0.

• C2
2+C2

3

C2
1

− C4

C1
= 0: Equation (3.35) describes a pair of complex conjugate lines. The

only real point of the conic is the point of intersection of the two lines.

• C2
2+C2

3

C2
1
− C4

C1
< 0: The conic exhibits an empty set of points, i.e. it has no real point.
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3.2 Uncertainty associated with Geometric Primitives

3.2.1 The Covariance Matrix of a Point

The covariance matrix Λp of a point p with homogeneous coordinate vector [p1, p2, p3]
T is

given as the 3× 3 matrix [21]:

Λp =

 σ2
p1

σp1p2 σp1p3

σp1p2 σ2
p2

σp2p3

σp1p3 σp2p3 σ2
p3

 . (3.38)

The variances of the homogeneous coordinates σ2
p1

, σ2
p2

and σ2
p3

are arranged along the main
diagonal, whereas the off-diagonal entries σp1p2 , σp1p3 and σp2p3 specify the covariances
between the coordinates. Due to the fact that p is a homogeneous coordinate vector,
the covariance matrix specified by Λp is also homogeneous, i.e. it is defined only up to a
non-zero scaling factor.

3.2.1.1 From Homogeneous to Inhomogeneous Point Coordinates

The computation of inhomogeneous point coordinates xp and yp according to Equation
(3.1) results in a 2× 2 covariance matrix Λpi representing the uncertainty of the inhomo-
geneous point coordinates:

Λpi =

[
σ2

xp
σxpyp

σxpyp σ2
yp

]
. (3.39)

There, σ2
xp

and σ2
yp

denote the variances of xp respectively yp, and σxpyp terms the co-
variance between the inhomogeneous point coordinates. A first order estimation for Λpi

may analytically be computed according to the first order error propagation principle
introduced in Section 2.3.3:

Λpi = JNΛpJT
N , (3.40)

where Λp represents the covariance matrix of the homogeneous point coordinates and JN

terms the Jacobian matrix of the normalizing operation [8]:

JN =
1

p2
3

[
p3 0 −p1

0 p3 −p2

]
. (3.41)

Notice that this operation is non-linear, thus the first-order estimation Λpi merely repre-
sents an approximation for the covariance matrix of the inhomogeneous point vector.
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3.2.1.2 From Inhomogeneous to Homogeneous Point Coordinates

The inverse operation of homogenizing an inhomogeneous point vector by adding a scalar
1 to the inhomogeneous coordinates xp and yp results in the 3× 3 covariance matrix:

Λp =

 σ2
xp

σxpyp 0

σxpyp σ2
yp

0

0 0 0

 , (3.42)

as the additional value is obviously not subject to statistical noise. The result may ana-
lytically be simply verified by applying the error propagation principle utilized above.

3.2.2 The Covariance Matrix of a Line

The covariance matrix Λl of a line l with homogeneous coordinate vector [l1, l2, l3]
T is

given by the 3× 3 matrix:

Λl =

 σ2
l1

σl1l2 σl1l3

σl1l2 σ2
l2

σl2l3

σl1l3 σl2l3 σ2
l3

 . (3.43)

The diagonal components σ2
l1
, σ2

l2
and σ2

l3
denote the variances of the three line parameters,

and σl1l2 , σl1l3 and σl2l3 specify the covariances between the line parameters. As with
points, the covariance matrix of a line is homogeneous too, i.e. it is defined only up to a
non-zero scaling factor.

3.2.2.1 Geometric Normalization of a Line

The first order estimation for the covariance matrix ΛlN of a line lN , specifying the geo-
metrically normalized representation of l (see Equation (3.5)), is obtained as:

ΛlN = JNΛlJ
T
N , (3.44)

with Λl denoting the homogeneous covariance matrix of the line l, and JN specifying the
Jacobian matrix of the normalizing operation:

JN =
1

(l21 + l22)
3
2

 l22 −l1l2 0
−l1l2 l21 0
−l1l3 −l2l3 l21 + l22

 . (3.45)

Notice that the first-order estimation ΛlN solely represents an approximation for the co-
variance matrix of the normalized line lN as the normalizing operation obviously is non-
linear.
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3.3 Visualization of Uncertain Geometric Primitives

Given a Gaussian random vector with expectation vector µ and covariance matrix Λ.
Then the expression:

(x− µ)T Λ+ (x− µ) = k2, (3.46)

defines the locus of points x exhibiting equal probability in the given Gaussian distribu-
tion. Therein, Λ+ terms the pseudo-inverse of the given covariance matrix and k2 denotes
the squared Mahalanobis distance, a parameter following a χ2 distribution with r degrees
of freedom, r being the rank of Λ. Table 3.1 lists a number of values k2

α,r for some typically
utilized probabilities α as well as for r = {2, 3}, i.e. the planar and the spatial situation,
respectively. A more comprehensive list can be found in [49].

r k2
0.70,r k2

0.80,r k2
0.90,r k2

0.95,r k2
0.99,r k2

0.999,r

2 2.41 3.22 4.61 5.99 9.21 13.82

3 3.66 4.64 6.25 7.81 11.34 16.27

Table 3.1: Mahalanobis distance values typically utilized for visualizations in the 2- as
well as the 3-dimensional space.

Ochoa [42] as well as Hartley [32] described a procedure for computing algebraic expres-
sions representing the confidence envelopes of points and lines of the affine plane. The
great advantage of this approach is that the conic matrices describing the uncertainty
envelopes of points and lines (and in the general case, i.e. the n-dimensional space, points
and hyperplanes) can be directly derived from the expectation vector µ and the covariance
matrix Λ associated with the geometric primitive.

3.3.1 Points and Lines of the Affine Plane

Given the expectation vector µ as well as the covariance matrix Λ associated with an
uncertain point of the plane, which is represented by the homogeneous 3-vector x. The
covariance matrix Λ has rank 2, as the homogeneous point vector obviously exhibits only
two degrees of freedom. Starting with the definition of the squared Mahalanobis distance
in Equation (3.46), a change of coordinates is applied to the covariance matrix Λ at first:

Λ′ = UΛUT =

[
Λ̄ 0
0T 0

]
, (3.47)

with the diagonal matrix Λ̄. The required matrix U represents a similarity transformation,
which is computed as: U = sVT . Therein, V denotes an orthogonal matrix determined from
the eigen-decomposition of Λ, i.e.: Λ = VDVT , with the diagonal matrix D = diag{λ1, λ2, 0}
holding the eigenvalues of Λ. Note that D is related with Λ′ according to: Λ′ = s2D.
The real parameter s 6= 0 is chosen such as to obtain a 1 as the last element of the
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transformed (homogeneous) expectation vector, µ′ = Uµ = sVT µ. With the specified
similarity transformation, we obtain:

(x− µ)T Λ+ (x− µ) = k2, (3.48)

(x′ − µ′)
T

Λ
′+

(x′ − µ′) = k2, (3.49)

(x̄− µ̄)T Λ̄−1 (x̄− µ̄) = k2, (3.50)

with x′ =
[

x̄ 1
]T

and µ′ =
[

µ̄ 1
]T

. Expanding Equation (3.50) gives:

x̄T Λ̄−1x̄− x̄T Λ̄−1µ̄− µ̄T Λ̄−1x̄ + µ̄T Λ̄−1µ̄− k2 = 0, (3.51)

which can be reformulated with matrix notation as:[
x̄T 1

] [ Λ̄−1 −Λ̄−1µ̄
−µ̄T Λ̄−1 µ̄T Λ̄−1µ̄− k2

] [
x̄
1

]
= 0. (3.52)

This is - as can be verified by means of a computer algebra system, such as Maple r -
equivalent to: [

x̄T 1
] [ µ̄µ̄T −k2Λ̄µ̄

µ̄T 1

]−1 [
x̄
1

]
= 0, (3.53)

x
′T
[
µ′µ′

T − k2Λ′
]−1

x′ = 0, (3.54)

which represents - as we consider planar entities in homogeneous coordinates - the equation
of a conic with coefficient matrix:

C′ =
[
µ′µ′

T − k2Λ′
]−1

. (3.55)

The conic can now be transformed back (cf. Equation (3.47)) to the original coordinate
system according to: C = UT C′U, resulting in a conic with coefficient matrix:

C =
[
µµT − k2Λ

]−1
. (3.56)

3.3.1.1 The Confidence Envelope of a Point on the Affine Plane

Considering a point p on the affine plane, whose homogeneous coordinate vector follows
a Gaussian distribution with expectation vector µp and covariance matrix Λp. The locus
of points with equal probability in the given distribution satisfy:(

p− µp

)T
Λ+

p

(
p− µp

)
= k2

α,2, (3.57)

and form the homogeneous conic:

Cp =
[
µpµ

T
p − k2

α,2Λp

]−1
. (3.58)

The squared Mahalanobis distance parameter k2
α,2 is chosen according to the desired

probability α (cf. Table 3.1). It can be verified - by analysis of the Euclidean invariants
of the conic - that Cp specifies a proper ellipse.
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3.3.1.2 The Confidence Envelope of a Line on the Affine Plane

According to the duality principle of the projective plane between points and lines and
accordingly of conics and dual conics, the procedure is analogously applied to lines.

Given a line l in the affine plane, whose homogeneous coordinate vector follows a Gaussian
distribution with expectation vector µl and covariance matrix Λl. The set of lines with
equal likelihood in the given distribution fulfill:

(l− µl)
T Λ+

l (l− µl) = k2
α,2, (3.59)

and form the homogeneous line conic C∗l =
[
µlµ

T
l − k2

α,2Λl

]−1
. Thus, the dual point conic

specifying the confidence envelope associated with l is computed as the matrix adjoint1:

Cl = µlµ
T
l − k2

α,2Λl. (3.60)

It can be verified - by analysis of the Euclidean invariants of the conic - that Cl specifies
a hyperbola, whose two branches are symmetric about µl.

3.3.1.3 The Location of a Line with Respect to a Line Confidence Envelope

In order to determine the location of an arbitrary line with respect to a given line confi-
dence hyperbola, one could explicitly compute the points of intersection and verify for real
or imaginary coordinates. Another approach is based on the dual problem, i.e. computing
the location of the dual point with respect to the dual confidence ellipse. Thus, a line with
coordinate vector lk lies within a confidence hyperbola defined by Cl, if:

sgn
(
lk

T C−1
l lk

)
= sgn

(
µl

T C−1
l µl

)
. (3.61)

3.3.2 Points and Hyperplanes in n Dimensions

The results obtained for points and lines on the affine plane can directly be generalized
to n dimensions.

An n-dimensional point with homogeneous coordinate vector x ∈ Rn+1 is given as a ran-
dom vector following a Gaussian distribution with expectation vector µx and covariance
matrix Λx of rank n. The confidence envelope of the point x is specified by the homo-
geneous n-dimensional hyper-ellipsoid (which is commonly termed the hyper-ellipsoid of
uncertainty):

Qx =
[
µxµT

x − k2
α,nΛx

]−1
. (3.62)

Given a hyperplane with homogeneous coordinate vector π ∈ Rn+1 as a random vec-
tor following a Gaussian distribution with expectation vector µπ and covariance matrix
Λπ of rank n. Following the duality principle of the n-dimensional projective space, the
confidence envelope of the hyperplane is specified by the n-dimensional hyperboloid:

Qπ = µπµT
π − k2

α,nΛπ. (3.63)

1Notice the matrix adjoint property C∗l ∼ C−1
l for a non-singular, symmetric matrix Cl.
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3.3.3 Plotting Confidence Envelopes of Planar Points and Lines

As demonstrated in the previous sections, the confidence envelopes of points and lines
on the affine plane are represented by ellipses and hyperbolae, respectively. They can be
visualized by means of a general algorithm for plotting implicitly given functions. In this
thesis, the conic representing the actual confidence envelope is evaluated on points of a
regular grid. Then, the zero contour of the resulting residual surface is extracted and
finally, the curve is plotted by joining adjacent points of the contour with linear segments.

3.3.3.1 Illustration Example

An uncertain point on the affine plane is given with a homogeneous coordinate vector
following a Gaussian distribution with expectation vector µp and covariance matrix Λp:

µp =

 3
5
1

 , Λp =

 0.25 0.05 0
0.05 0.25 0
0 0 0

 . (3.64)

A number of n = 104 random sample points was generated. Figure 3.2 (left) shows (a
portion of) the random sample points together with confidence ellipses corresponding to
confidence levels of 95%, 99% and 99.9% respectively.
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Figure 3.2: A population of random points with associated confidence ellipses (left) and
the population of dual lines with associated dual confidence hyperbolae (right).

In the dual space, i.e. the space of normalized line parameters, the sample points rep-
resent dual lines and the confidence envelopes are given as the confidence hyperbolae
associated with the dual lines. Figure 3.2 (right) visualizes the dual lines together with
their associated confidence hyperbolae in the space of normalized line parameters.
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Chapter 4

Fitting of Linear Geometric Models

This chapter addresses fitting of lines to given sets of uncertain data points together with
an uncertainty analysis for the fitting procedure. A numerically robust and efficient fitting
algorithm is outlined for fitting a straight line to a set of data points of the projective
plane. However, the algorithm is generally applicable for fitting linear geometric models,
i.e. planes and hyperplanes, to sets of data points in spaces of higher dimensions.

In order to analytically compute the covariance matrix associated with the line fitted to the
data points, the law of first order error propagation is applied to the particular steps of the
fitting procedure. Schalk [50] has presented this approach based on synthetically generated
sets of data points. Thereby, isotropic homogeneous perturbation of the particular data
points was assumed.

The work presented here is more general in that sense, that it makes no assumption
on the perturbation model underlying the data points. The situation of anisotropic and
inhomogeneous perturbation is handled, which is reflected by fully occupied covariance

matrices Λpi
associated with the particular data points pi =

[
xi yi

]T
. Thus,

Λpi
=

[
σ2

xi
σxiyi

σxiyi
σ2

yi

]
. (4.1)

At first, the algorithm for fitting a line to a set of uncertain data points is described,
followed by the uncertainty analysis for the particular steps of the procedure. As a conse-
quence of the generalization in the perturbation model, the outcomes of the uncertainty
analysis can not be listed explicitly. Thus, the results are illustrated by means of numerical
examples. Subsequently, an extension of the fitting algorithm for fitting a pair of parallel
lines to two given sets of uncertain data points is presented. Again, the particular steps
of the procedure are analyzed by means of first order error propagation.

All of the numerical examples are executed on measurement data extracted from image
sequences acquired under conditions of repeatability. The results of the fitting algorithms
applied on the measurement data are statistically evaluated and compared with the results
of first order error propagation. These comparisons reveal that the best agreement can
be achieved if the fully occupied covariance matrices associated with the data points are
incorporated in the analyses.

36
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4.1 Fitting a Line to a Set of Uncertain Data Points

4.1.1 The Fitting Algorithm

As outlined in Section 3.1.2, a line in the projective plane is represented by the homoge-
neous 3-vector l = [l1, l2, l3]

T and the line equation is given by:

pT l = xl1 + yl2 + l3 = 0, (4.2)

with p = [x, y, 1]T denoting the normalized homogeneous 3-vector of a point on the line.

Given a set of n data points pi = [xi, yi, 1]T perturbed by measurement noise, the
points will not lie exactly on the line, in general. Thus, there are residual parameters
ri, i = 1 . . . n, associated with the particular data points, which leads to a set of n linear
equations of the type:

xil1 + yil2 + l3 = ri. (4.3)

In order to compute the line that fits the set of data points best in a least squares sense,
we have to solve the following system of linear equations:

Dl =


x1 y1 1
x2 y2 1
...

...
...

xn yn 1


 l1

l2
l3

 =


r1

r2
...
rn

 , (4.4)

with the design matrix D. This can be rewritten as the linear least squares problem:

min
l
‖Dl‖ subject to:

√
l21 + l22 = 1. (4.5)

This problem can now be solved by eigenvector calculation of the scatter matrix A = DT D
and extraction of the eigenvector corresponding to the smallest eigenvalue of A. Thereby,
the constraint

√
l21 + l22 = 1 has to be incorporated by means of Lagrange multipliers[24].

An alternative approach is based on singular value decomposition and is outlined as fol-
lows: The columns of D have differing statistical nature, as the column of 1’s is - in contrast
to the two other columns - statistically invariant. For this reason, Harker et al. [31] stated
that it is advantageous to partition D into two parts:

D =
[

D1 D0

]
=


x1 y1 1
x2 y2 1
...

...
...

xn yn 1

 , (4.6)

and to apply orthogonal residualisation of D1 onto D0 to yield a new design matrix D̂
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with statistically congenerous columns. These represent columns of mean-free point coor-
dinates, i.e.:

D̂ =


x1 − µx y1 − µy

x2 − µx y2 − µy
...

...
xn − µx yn − µy

 , (4.7)

with the mean values µx = 1
n

∑n
i=1 xi and µy = 1

n

∑n
i=1 yi. The linear least squares problem

to be solved now becomes:

min
l̂
‖D̂l̂‖ subject to: ‖l̂‖ = 1, (4.8)

with l̂ =
[

l1 l2
]T

denoting the vector of line orientation parameters. This approach has
been introduced by Harker et al. [31, 29, 30] and has been further discussed by Tratnig [54],
Schalk [50] and Koller [37]. For further details, the reader is referred to the cited literature.

The fitting problem is now solved by computing the singular value decomposition (SVD)
of D̂ and extraction of the right singular vector corresponding to the smallest singular
value of D̂. The constraint ‖l̂‖ = 1 is implicitly fulfilled by the implementation of the
SVD algorithm (see Golub[24]). Compared with the approach based on eigenvector calcu-
lation, this method delivers exactly identical results. However, the SVD-based approach
is preferred for the reason of numerical robustness as well as the implicit consideration of
the normalization constraint.

Finally, the line moment parameter l3 is obtained by back-substituting the coordinates of
the centroid of the data points into Equation (4.2) and results in:

l3 = −(µxl1 + µyl2). (4.9)

Summarizing, the presented fitting algorithm exhibits the following properties:

• The algorithm implicitly introduces the constraint ‖l̂‖ =
√

l21 + l22 = 1, thus the
vector of line coordinates obtained is geometrically normalized (cf. Section 3.1.2).

• The error measure being minimized by this algorithm is given by the sum of the
squared residual parameters ri. As a consequence of the implicitly realized geometric
normalization, the residuals are equal to the orthogonal distances di of the particular
data points to the fitted line. Thus, the approach minimizes the geometric error
measure and yields an unbiased maximum-likelihood solution.

4.1.2 First Order Error Propagation for the Fitting Algorithm

In the following, the propagation of the uncertainty associated with the data points to-
wards the covariance matrix of the homogeneous 3-vector of the line fitted to the data
points is analyzed by means of the law of first order error propagation. Thereby, the
individual steps of the fitting algorithm are considered separately:
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1. computation of the centroid of the data points,

2. calculation of mean-free data points and setup of the design matrix D̂ according to
Equation (4.7),

3. estimation of the line orientation parameters l1 and l2 by singular value decomposi-
tion of D̂, and

4. computation of the line moment parameter l3 according to Equation (4.9).

4.1.2.1 Organisation of the Data Points

Considering a set of n data points, perturbed by measurement noise. The ”measurement“
of the data points, i.e. extraction of their x- and y-coordinates, under conditions of re-
peatability can be regarded as repeatedly taking a sample from a random experiment
(refer to Section 2.1). In the following, the x- and y-coordinates of the data points, xi and
yi, i = 1 . . . n, are to be understood as expectation values of a Gaussian probability density
function underlying the measurement process. They are collected in a common expecta-

tion vector p according to the following order: p =
[

x1 x2 . . . xn y1 y2 . . . yn

]T
.

The Gaussian probability density function underlying the measurement process is char-
acterized by the 2n× 2n covariance matrix Λp, which is structured as:

Λp =

[
Λx Cxy

CT
xy Λy

]
, (4.10)

with the n× n covariance matrices of the x- and y-coordinates:

Λx =


σ2

x1
σx1x2 . . . σx1xn

σx1x2 σ2
x2

. . . σx2xn

...
...

. . .
...

σx1xn σx2xn . . . σ2
xn

 , Λy =


σ2

y1
σy1y2 . . . σy1yn

σy1y2 σ2
y2

. . . σy2yn

...
...

. . .
...

σy1yn σy2yn . . . σ2
yn

 , (4.11)

and the n× n matrix of covariances between the x- and y-coordinates:

Cxy =


σx1y1 σx1y2 . . . σx1yn

σx2y1 σx2y2 . . . σx2yn

...
...

. . .
...

σxny1 σxny2 . . . σxnyn

 . (4.12)

Note, that this data structure enables the incorporation of all possibly existing correlations
between the data points for the subsequent analyses.
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4.1.2.2 Computing the Coordinates of the Centroid

In the following, the coordinates of the centroid of the data points are collected in a
column vector:

µ =

[
µx

µy

]
=


1
n

n∑
i=1

xi

1
n

n∑
i=1

yi

 . (4.13)

This enables the computation of a fully occupied 2 × 2 covariance matrix Λµ associated
with µ. Note that the analysis could also be executed on µx and µy separately of one
another, however the covariance between the centroid coordinates would then be ignored.
According to the law of first order error propagation, the covariance matrix associated
with the vector of centroid coordinates is computed as:

Λµ = JµΛpJµ
T , (4.14)

with the 2× 2n Jacobian matrix:

Jµ =

[
Jµx 0

0 Jµy

]
, Jµx = Jµy =

1

n
1. (4.15)

Therein, 0 and 1 term row vectors of length n, holding 0’s and 1’s respectively. Note that
Equation (4.13) is linear in the input parameters, i.e. the point coordinates, xi and yi.
Thus, the error propagation specified by Equation (4.14) is exact.

4.1.2.3 Calculation of Mean-Free Data Points

The mean-free coordinates of the data points are calculated as:

x̂i = xi − µx,
ŷi = yi − µy,

(4.16)

and are collected in a vector p̂ of length 2n:

p̂ =
[

x̂1 x̂2 . . . x̂n ŷ1 ŷ2 . . . ŷn

]T
. (4.17)

The covariance matrix Λp̂ associated with p̂ is computed according to the law of first
order error propagation as:

Λp̂ = Jp̂ΛpJp̂
T , (4.18)

with the 2n× 2n Jacobian matrix Jp̂ being structured as:

Jp̂ =

[
Jx̂ 0
0 Jŷ

]
, Jx̂ = Jŷ = In −

1

n
1. (4.19)

Therein, 0 and 1 are n×n matrices of 0’s and 1’s, and In terms the n×n identity matrix.
As the computation of mean-free point coordinates represents a linear operation, the error
propagation specified by Equation (4.18) is exact.
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4.1.2.4 Computation of the Line Orientation Parameters

Computation of the 2-vector of line orientation parameters l̂ is formulated as the following
linear least squares problem:

min
l̂
‖D̂l̂‖ subject to: ‖l̂‖ = 1. (4.20)

Therein, the design matrix D̂ holds the mean-free point coordinates as specified in Equa-
tion (4.7). Applying the law of first order error propagation, the covariance matrix asso-
ciated with l̂ is estimated as:

Λl̂ ≈ Jl̂Λp̂Jl̂
T , (4.21)

where Jl̂ denotes the Jacobian matrix of the implicit function Φ
(
p̂, l̂
)

= Al̂ = 0. Referring

to Section 2.3.3.2, Jl̂ is approximated by:

Jl̂ ≈ −A+∂Φ

∂A

∂A

∂p̂
. (4.22)

Therein, A terms the scatter matrix, which is given as:

A = D̂T D̂ =


n∑

i=1

x̂2
i

n∑
i=1

x̂iŷi

n∑
i=1

x̂iŷi

n∑
i=1

ŷ2
i

 . (4.23)

Furthermore, the required matrices ∂Φ
∂A

and ∂A
∂p̂

are computed as:

∂Φ

∂A
=

[
l1 l2 0 0
0 0 l1 l2

]
, and (4.24)

∂A

∂p̂
=


2x̂1 2x̂2 . . . 2x̂n 0 0 . . . 0
ŷ1 ŷ2 . . . ŷn x̂1 x̂2 . . . x̂n

ŷ1 ŷ2 . . . ŷn x̂1 x̂2 . . . x̂n

0 0 . . . 0 2ŷ1 2ŷ2 . . . 2ŷn

 . (4.25)

4.1.2.5 Computation of the Line Moment Parameter

The line moment parameter l3 is computed according to Equation (4.9). Thus, collecting
the 3 homogeneous line parameters results in the line vector:

l =

 l1
l2

−(µxl1 + µyl2)

 . (4.26)

According to the law of first order error propagation, the covariance matrix of the homo-
geneous 3-vector of line parameters is computed as:

Λl = JlΛl̂,µJl
T . (4.27)
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Therein, the 4× 4 covariance matrix Λl̂,µ is structured as:

Λl̂,µ =

[
Λl̂ 0
0 Λµ

]
, (4.28)

with 0 denoting a 2 × 2 matrix of 0’s, which represents the non-existence of covariances
between the centroid coordinates and the line orientation parameters. Taking into account
the order of the input parameters in Λl̂,µ, i.e.: l1, l2, µx and µy, the Jacobian matrix Jl

results in:

Jl =

 1 0 0 0
0 1 0 0
−µx −µy −l1 −l2

 . (4.29)

4.1.3 Error Propagation for Derived Quantities

4.1.3.1 The Geometric Distance of a Point to a Line

As outlined in Section 3.1.2.2, the signed geometric distance of a point p = [xp, yp, wp]
T

to a line with the vector of normalized line parameters, l = [l1, l2, l3]
T , is given as:

d = xpl1 + ypl2 + wpl3. (4.30)

The variance associated with d is calculated by application of the law of first order error
propagation as:

σ2
d = JdΛp,lJ

T
d . (4.31)

Therein, the combined covariance matrix Λp,l is incorporated, which is structured as:

Λp,l =

[
Λp 0
0 Λl

]
. (4.32)

Thus, it is assumed that there are no covariances existing between the homogeneous
coordinates of p and l. The required Jacobian matrix Jd is finally obtained as:

Jd =
[

l1 l2 l3 xp yp wp

]
=
[
lT pT

]
. (4.33)

Note that the computation of the signed geometric distance of a point to a line represents
a function linear in the line parameters. Thus, the error propagation specified by Equation
(4.31) is exact.

4.1.3.2 The Point of Intersection of Two Lines

Given two lines, 1l = [1l1, 1l2, 1l3]
T and 2l = [2l1, 2l2, 2l3]

T , together with their associated
covariance matrices, Λ1l and Λ2l, respectively. The homogeneous coordinates of the point
of intersection of the two lines, p, are calculated as the cross product of the homogeneous
line vectors:

p =

 xp

yp

wp

 = 1l × 2l =

 1l2 2l3 − 1l3 2l2
1l3 2l1 − 1l1 2l3
ll1 2l2 − 1l2 2l1

 . (4.34)
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The covariance matrix associated with p is computed according to:

Λp = JpΛ1l, 2lJ
T
p , (4.35)

with the combined covariance matrix:

Λ1l, 2l =

[
Λ1l 0
0 Λ2l

]
, (4.36)

and the Jacobian matrix:

Jp =

 0 2l3 −2l2 0 −1l3 1l2
−2l3 0 2l1 1l3 0 −1l1
2l2 −2l1 0 −1l2 1l1 0

 . (4.37)

The computation of the point of intersection of two lines represents a function linear in
the line parameters. Thus, the error propagation specified by Equation (4.35) is exact.

4.1.4 Numerical Verification

A series of m images of a straight object edge was acquired with an industrial camera at
conditions of repeatability1. See Figure 4.1 (left) for a sample of the image series.

Figure 4.1: A sample of the image series acquired with an industrial camera (left) and the
corresponding image of absolute gradient (right).

Each of the n pixel rows of the particular series images was evaluated independently to
determine the location of a data point on the object edge. For that purpose, the following
processing steps were executed on the particular series images:

1. computation of the absolute gradient image, as is depicted in Figure 4.1 (right),

2. extraction of the location of the maximum image gradient along each pixel row, and

3. computation of the 2-dimensional center-of-gravity within a 5 × 5 image window
centered at the location of maximum image gradient.

1These comprise (a) the camera as well as the specimen to remain unmoved during the measurements,
(b) constant parameters of the measurement setup, such as lighting intensity, lens aperture or exposure
time, and (c) ideally constant environmental conditions, such as ambient light or vibrations.
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4.1.4.1 Organisation of the Measurement Data

As a result, m sets of measurement points were obtained, whose x- and y-coordinates are
organized in a common data matrix P of size 2n×m:

P =



x1,1 x1,2 . . . x1,m

x2,1 x2,2 . . . x2,m
...

...
. . .

...
xn,1 xn,2 . . . xn,m

y1,1 y1,2 . . . y1,m

y2,1 y2,2 . . . y2,m
...

...
. . .

...
yn,1 yn,2 . . . yn,m


. (4.38)

In the following, a multivariate Gaussian distribution with mean vector µp and covariance
matrix Λp is assumed as the statistical model underlying the data points.

Given P, the vector of mean values, µp = [µx1 , µx2 , . . . , µxn , µy1 , µy2 , . . . , µyn ]T , was com-
puted by evaluation of the particular rows of P, i.e.:

µxi
= 1

m

m∑
k=1

xi,k,

µyi
= 1

m

m∑
k=1

yi,k.
(4.39)

Moreover, the 2n× 2n covariance matrix Λp was computed according to:

Λp =
1

m− 1

(
P̂ P̂T

)
, (4.40)

with P̂ representing the matrix of mean free point coordinates, which in turn was computed
as: P̂ = P− µp ⊗ 1. Therein, 1 represents an m-dimensional row vector of 1’s, and the
symbol ⊗ indicates the Kronecker matrix product.

Note that as a consequence of the evaluation procedure, the location of the particular data
points is subject to measurement noise along the x- as well as the y-coordinate. Thus, the
covariance matrix Λp is fully occupied.

4.1.4.2 Evaluation of the Measurement Data

The particular sets of data points collected in P were evaluated according to the procedure
outlined in Section 4.1.1. As a result, m vectors of homogeneous line parameters, li,
i = 1 . . . m, were obtained. Then, the vector of mean line parameters, µl, as well as the
3× 3 covariance matrix of the line parameters, Λl, was computed. These act as reference
values for the subsequent examinations:

µl =

 0.98
0.18

−28.97

 , Λl =

 2.28 10−9 −1.24 10−8 6.28 10−7

−1.24 10−8 6.69 10−8 −3.40 10−6

6.28 10−7 −3.40 10−6 5.35 10−4

 . (4.41)
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4.1.4.3 Monte-Carlo Experiments

In order to numerically verify the multivariate Gaussian distribution underlying the ac-
quired measurement data, three Monte-Carlo experiments were executed. Thereby, three
sets of 104 data points were synthetically generated (cf. Section 2.3.2) utilizing the mean
vector µp in combination with three different covariance matrices.

In the first covariance matrix, Λp1
, merely the average coordinate variances σ̄2

x = 1
n

∑n
i=1 σ2

xi

and σ̄2
y = 1

n

∑n
i=1 σ2

yi
are incorporated, the covariances are neglected:

Λp1
=

[
Λx1 0
0 Λy1

]
, Λx1 =


σ̄2

x 0 . . . 0
0 σ̄2

x . . . 0
...

...
. . .

...
0 0 . . . σ̄2

x

, Λy1
=


σ̄2

y 0 . . . 0
0 σ̄2

y . . . 0
...

...
. . .

...
0 0 . . . σ̄2

y

 .

The second covariance matrix incorporates all of the individual variances of the point
coordinates, but neglects the covariances between the coordinates:

Λp2
=

[
Λx2 0
0 Λy2

]
, Λx2 =


σ2

x1
0 . . . 0

0 σ2
x2

. . . 0
...

...
. . .

...
0 0 . . . σ2

xn

 , Λy2
=


σ2

y1
0 . . . 0

0 σ2
y2

. . . 0
...

...
. . .

...
0 0 . . . σ2

yn

 .

Ultimately, the third Monte-Carlo experiment is based on the fully occupied covariance
matrix as defined in Equation (4.40), i.e.: Λp3

= Λp.

After generating the sets of synthetical data points, the particular data sets were evalu-
ated, i.e. a straight line was fitted to each set of data points according to the procedure
outlined in Section 4.1.1. Furthermore, the vectors of average line parameters µlMC,i

,
i = 1 . . . 3, as well as the covariance matrices ΛlMC,i

, i = 1 . . . 3, were determined.

4.1.4.4 Comparison with the Results of Analytic Computation

The covariance matrices Λpi
, i = 1 . . . 3, specified for the Monte-Carlo experiments, were

now taken as a basis for computing first order error propagation as presented in Section
4.1.2. As a result, the covariance matrix associated with the 3-vector of homogeneous line
parameters was computed analytically three times. In Table 4.1, the covariance matrices
obtained from the analytic computations, ΛlA,i

, are opposed to the covariance matrices
determined by the Monte-Carlo experiments.

Obviously, the covariance matrices are poorly conditioned as a result of the variance
associated with the line moment parameter dominating the other elements of the partic-
ular covariance matrices. Thus, it is inappropriate to compare the covariance matrices by
means of matrix norms. Hence, the results are analyzed qualitatively.

Comparing the covariance matrices listed in Table 4.1 with Λl, the covariance matrix
determined by evaluation of the measurement data (see Equation (4.41)), the following
conclusions can be drawn:
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i ΛlMC,i
ΛlA,i

1

 0.99 10−9 −5.36 10−9 3.36 10−7

−5.36 10−9 2.90 10−8 −1.82 10−6

3.36 10−7 −1.82 10−6 1.56 10−4

  0.98 10−9 −5.28 10−9 3.32 10−7

−5.28 10−9 2.86 10−8 −1.80 10−6

3.32 10−7 −1.80 10−6 1.54 10−4



2

 1.02 10−9 −5.54 10−9 3.50 10−7

−5.54 10−9 2.99 10−8 −1.89 10−6

3.50 10−7 −1.89 10−6 1.62 10−4

  1.03 10−9 −5.59 10−9 3.51 10−7

−5.59 10−9 3.03 10−8 −1.90 10−6

3.51 10−7 −1.90 10−6 1.61 10−4



3

 2.26 10−9 −1.22 10−8 6.11 10−7

−1.22 10−8 6.63 10−8 −3.31 10−6

6.11 10−7 −3.31 10−6 5.16 10−4

  2.28 10−9 −1.24 10−8 7.77 10−7

−1.24 10−8 6.69 10−8 −4.20 10−6

7.77 10−7 −4.20 10−6 6.36 10−4



Table 4.1: Covariance matrices associated with a homogeneous 3-vector of line parameters,
determined by Monte-Carlo experiments (left column) and application of first order error
propagation (right column).

1. The elements of corresponding covariance matrices ΛlMC,i
and ΛlA,i

exhibit very small
deviations to one another. Thus, the approach outlined in Section 4.1.2 can be con-
sidered as a suitable method for analytically computing the uncertainty associated
with a line fitted to a set of data points.

2. The deviations of ΛlMC,3
and ΛlA,3

with respect to Λl are significantly smaller than
those of ΛlMC,1

and ΛlA,1
respectively ΛlMC,2

and ΛlA,2
. Thus, the fully occupied

covariance matrix of the data points, Λp3
, is more appropriate to model the stochastic

nature of the data points than the two simplified models, Λp1
and Λp2

.

The three plots listed in Figure 4.2 visualize the 99.9% line confidence envelopes repre-
sented by the covariance matrices ΛlA,1

, ΛlA,2
and ΛlA,3

opposed to the 99.9% line con-
fidence envelope described by Λl. The plots of the confidence envelopes represented by
the covariance matrices ΛlMC,1

, ΛlMC,2
and ΛlMC,3

are omitted, as they are optically not
distinguishable from those of the analytic computations. Moreover, the 99.9% point confi-
dence envelope of a sample data point is plotted to illustrate the underlying perturbation
model described by Λp1

, Λp2
and Λp3

. As can be seen in the rightmost plot, the confidence
envelope described by ΛlA,3

is optically identical to that corresponding to Λl.
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Figure 4.2: Confidence envelopes of the line envelopes described by the covariance matrices
ΛlA,1

(left), ΛlA,2
(central) and ΛlA,3

(right), opposed to that represented by Λl.

4.2 Fitting a Pair of Parallel Lines to two Sets of

Uncertain Data Points

4.2.1 The Fitting Algorithm

The line equations of two parallel lines, represented by the 3-vectors of homogeneous line

parameters l1 =
[

l1 l2 1l3
]T

and l2 =
[

l1 l2 2l3
]T

respectively, are given as:

1p
T l1 = 1xl1 + 1yl2 + 1l3 = 0,

2p
T l2 = 2xl1 + 2yl2 + 2l3 = 0.

(4.42)

Therein, 1p =
[

1x 1y 1
]T

and 2p =
[

2x 2y 1
]T

denote vectors of normalized ho-
mogeneous coordinates of points lying on the respective lines. Given two sets of data

points, 1pi =
[

1xi 1yi 1
]T

, i = 1 . . . n1, and 2pj =
[

2xj 2yj 1
]T

, j = 1 . . . n2, fitting
a pair of parallel lines to the data points is formulated as:

Dl12 =



1x1 1y1 1 0

1x2 1y2 1 0
...

...
...

...

1xn1 1yn1 1 0

2x1 2y1 0 1

2x2 2y2 0 1
...

...
...

...

2xn2 2yn2 0 1




l1
l2
1l3
2l3

 =



1r1

1r2
...

1rn1

2r1

2r2
...

2rn2


, (4.43)

with the design matrix D and the vector l12 holding the line orientation parameters
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common for both lines, l1 and l2, as well as the two line moment parameters 1l3 and 2l3.

This can be rewritten as the linear least squares problem:

min
l12

‖Dl12‖ subject to:
√

l21 + l22 = 1. (4.44)

Obviously, the particular columns of D exhibit differing statistical nature. The columns
of 0’s and 1’s are statistically invariant, whereas the other two columns are not. Thus,
O’Leary et al. [45] suggested to partition the design matrix as follows:

D =

[
1D1 1D0 0

2D1 0 2D0

]
=



1x1 1y1 1 0

1x2 1y2 1 0
...

...
...

...

1xn1 1yn1 1 0

2x1 2y1 0 1

2x2 2y2 0 1
...

...
...

...

2xn2 2yn2 0 1


. (4.45)

After applying orthogonal projection of 1D1 onto 1D0 as well as 2D1 onto 2D0, a new design
matrix D̂ with statistically uniform columns is obtained:

D̂ =



1x1 − 1µx 1y1 − 1µy

1x2 − 1µx 1y2 − 1µy
...

...

1xn1 − 1µx 1yn1 − 1µy

2x1 − 2µx 2y1 − 2µy

2x2 − 2µx 2y2 − 2µy
...

...

2xn2 − 2µx 2yn2 − 2µy


. (4.46)

As can be seen, the columns of D̂ hold the mean-free coordinates of the given data points,
with the mean values being subtracted:

1µx = 1
n1

n1∑
i=1

1xi,

1µy = 1
n1

n1∑
i=1

1yi,
(4.47)

2µx = 1
n2

n2∑
j=1

2xj,

2µy = 1
n2

n2∑
j=1

2yj.
(4.48)

The linear least squares problem to be solved now becomes:

min
l̂
‖D̂l̂‖ subject to: ‖l̂‖ = 1, (4.49)

with l̂ =
[

l1 l2
]T

denoting the vector of line orientation parameters. This again can
be solved by singular value decomposition of the design matrix and extracting the right
singular vector corresponding to the smallest singular value of D̂.
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The line moment parameters, 1l3 and 2l3, are finally obtained by back-substituting the
centroid coordinates of the data points into the respective line equations. They result in:

1l3 = −(1µxl1 + 1µyl2),

2l3 = −(2µxl1 + 2µyl2).
(4.50)

Summarizing, the algorithm for fitting a pair of parallel lines to two sets of uncertain data
points comprises (analogously to fitting a single line) the following steps:

1. computation of the centroid coordinates of the two sets of data points,

2. calculation of mean-free data points and setup of the design matrix D̂ according to
Equation (4.46),

3. estimation of the line orientation parameters l1 and l2 by singular value decomposi-
tion of D̂, and

4. computation of the line moment parameters 1l3 and 2l3 according to Equation (4.50).

4.2.2 First Order Error Propagation for the Fitting Algorithm

4.2.2.1 Organisation of the Data Points

Considering two sets of n1 and n2 data points, perturbed by measurement noise. Along the
lines of Section 4.1.2, the x- and y-coordinates of the data points, 1xi and 1yi, i = 1 . . . n1,
respectively 2xj and 2yj, j = 1 . . . n2, are to be understood as expectation values of the
random measurement process in the following. They are collected in a common expectation
vector p as follows:

p =
[

1x1 . . . 1xn1 2x1 . . . 2xn2 1y1 . . . 1yn1 2y1 . . . 2yn2

]T
. (4.51)

Introducing the sum n = n1 + n2, the 2n × 2n covariance matrix characterizing the
Gaussian probability density function underlying the measurement process is structured
as follows:

Λp =


Λ1x C1x2x C1x1y C1x2y

CT
1x2x Λ2x C2x1y C2x2y

CT
1x1y CT

2x1y Λ1y C1y2y

CT
1x2y CT

2x2y CT
1y2y Λ2y

 . (4.52)

Therein, Λ1x and Λ1y denote the covariance matrices of the x- and y-coordinates of the
first data set and analogously, Λ2x and Λ2y denote the covariance matrices of the x- and
y-coordinates of the second data set. Furthermore, C1x2x, C1x1y, C1x2y, C2x1y, C2x2y and
C1y2y term matrices of covariances possibly existing between the x- and y-coordinates of
the respective sets of data points.
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4.2.2.2 Computing the Centroid Coordinates

The centroid coordinates of the two sets of data points are collected in a common vector
as follows:

µ =
[

µ1x µ2x µ1y µ2y

]T
, (4.53)

whereas the particular mean values are calculated according to Equation (4.48). Note
that this structure enables the computation of a fully occupied 4 × 4 covariance matrix
associated with µ by application of the law of first order error propagation:

Λµ = JµΛpJµ
T , (4.54)

with Jµ denoting the 4× 2n Jacobian matrix:

Jµ =


Jµ1x 0 0 0

0 Jµ2x 0 0

0 0 Jµ1y 0

0 0 0 Jµ2y

 ,
Jµ1x = Jµ1y = 1

n1
1n1 ,

Jµ2x = Jµ2y = 1
n2

1n2 .
(4.55)

Therein, 1n1 and 1n2 term row vectors of 1’s, having length n1 and n2, respectively. Note
that the computation of vector µ represents a function linear in the input parameters, i.e.
the point coordinates. Thus, the error propagation specified by Equation (4.54) is exact.

4.2.2.3 Calculation of Mean-Free Data Points

The mean-free coordinates of the data points are calculated as:

1x̂i = 1xi − 1µx,

1ŷi = 1yi − 1µy,
(4.56) 2x̂i = 2xi − 2µx,

2ŷi = 2yi − 2µy,
(4.57)

and are collected in a common vector,

p̂ =
[

1x̂1 . . . 1x̂n1 2x̂1 . . . 2x̂n2 1ŷ1 . . . 1ŷn1 2ŷ1 . . . 2ŷn2

]T
. (4.58)

The covariance matrix Λp̂ associated with p̂ is computed according to the law of first
order error propagation as:

Λp̂ = Jp̂ΛpJp̂
T , (4.59)

with the 2n× 2n Jacobian matrix Jp̂ being structured as:

Jp̂ =


J1x̂ 0 0 0
0 J2x̂ 0 0
0 0 J1ŷ 0
0 0 0 J2ŷ

 ,
J1x̂ = J1ŷ = In1 − 1

n1
1,

J2x̂ = J2ŷ = In2 − 1
n2

1.
(4.60)

Therein, In1 and In2 term identity matrices of dimensionality n1×n1 and n2×n2, respec-
tively. As the computation of mean-free point coordinates represents a linear operation,
the error propagation specified by Equation (4.59) is exact.
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4.2.2.4 Computation of the Line Orientation Parameters

Computation of the 2-vector of line orientation parameters l̂ is formulated as the following
linear least squares problem:

min
l̂
‖D̂l̂‖ subject to: ‖l̂‖ = 1, (4.61)

with the design matrix D̂, which is composed as in Equation (4.46). Applying the law of
first order error propagation, the covariance matrix associated with l̂ is estimated as:

Λl̂ ≈ Jl̂Λp̂Jl̂
T , (4.62)

where Jl̂ denotes the Jacobian matrix of the implicit function Φ
(
p̂, l̂
)

= Al̂ = 0. Referring

to Section 2.3.3.2, Jl̂ is approximated by:

Jl̂ ≈ −A+∂Φ

∂A

∂A

∂p̂
, (4.63)

with the 2 × 2 scatter matrix A = D̂T D̂. Furthermore, the required matrices ∂Φ
∂A

and ∂A
∂p̂

are computed as:

∂Φ

∂A
=

[
l1 l2 0 0
0 0 l1 l2

]
, and: (4.64)

∂A

∂p̂
=


21x̂1 . . . 21x̂n1 22x̂1 . . . 22x̂n2 0 . . . 0 0 . . . 0

1ŷ1 . . . 1ŷn1 2ŷ1 . . . 2ŷn2 1x̂1 . . . 1x̂n1 2x̂1 . . . 2x̂n2

1ŷ1 . . . 1ŷn1 2ŷ1 . . . 2ŷn2 1x̂1 . . . 1x̂n1 2x̂1 . . . 2x̂n2

0 . . . 0 0 . . . 0 21ŷ1 . . . 21ŷn1 22ŷ1 . . . 22ŷn2

 . (4.65)

4.2.2.5 Computation of the Line Moment Parameters

The line moment parameters 1l3 and 2l3 are computed according to Equation (4.50). The
3×3 covariance matrices associated with the parameters of the two lines can be computed
separately according to the formulae outlined in Section 4.1.2.5. However, the covariance
between the two line moment parameters would then remain unconsidered.

This can be avoided by computing the covariance matrix Λl associated with a vector of
line parameters, which is structured as follows:

l =


l1
l2

1l3
2l3

 =


l1
l2

−(µ1xl1 + µ1yl2)
−(µ2xl1 + µ2yl2)

 . (4.66)

Then, the 4× 4 covariance matrix Λl is computed according to the law of first order error
propagation as:

Λl = JlΛl̂,µJl
T . (4.67)
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Therein, a 6× 6 covariance matrix Λl̂,µ is incorporated, which is organized as:

Λl̂,µ =

[
Λl̂ 0
0 Λµ

]
. (4.68)

Taking into account the order of parameters in Λl̂,µ, i.e.: l1, l2, µ1x, µ2x, µ1y and µ2y, the
4× 6 Jacobian matrix Jl results in:

Jl =


1 0 0 0 0 0
0 1 0 0 0 0

−µ1x −µ1y −l1 0 −l2 0
−µ2x −µ2y 0 −l1 0 −l2

 . (4.69)

The computation of the line moment parameters represents a function linear in the input
parameters, i.e. the line orientation parameters as well as the centroid coordinates. Thus,
the error propagation specified by Equation (4.67) is exact.

4.2.3 Error Propagation for Derived Quantities

4.2.3.1 The Orthogonal Distance between two Parallel Lines

Referring to Section 3.1.3, the signed orthogonal distance d between two parallel lines is
calculated as:

d = 1l3 − 2l3,

= −(µ1xl1 + µ1yl2) + (µ2xl1 + µ2yl2),

= (µ2x − µ1x) l1 + (µ2y − µ1y) l2. (4.70)

The variance associated with d is analytically computed according to the law of first order
error propagation as:

σ2
dA

= JdΛl̂,µJd
T . (4.71)

Therein, the 6 × 6 covariance matrix Λl̂,µ is structured as defined in Equation (4.68).
Furthermore, the 1× 6 Jacobian matrix Jd is determined as:

Jd =
[

µ2x − µ1x µ2y − µ1y −l1 l1 −l2 l2
]
. (4.72)

Note that the computation of the orthogonal distance between two lines represents a
function linear in the input parameters, i.e. the line parameters as well as the centroid
coordinates. Thus, the error propagation specified by Equation (4.71) is exact.

4.2.3.2 The Line Central to two Parallel Lines

As outlined in Section 3.1.3, the homogeneous vector of a line cl being central to two
parallel lines 1l respectively 2l is computed as:

cl =

 cl1
cl2
cl3

 =

 1l1
1l2

1
2
(1l3 + 2l3)

 . (4.73)
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The covariance matrix associated with cl can be determined according to the law of first
order error propagation:

Λcl = JclΛlJcl
T . (4.74)

Therein, Λl terms the 4 × 4 covariance matrix of line parameters as in Equation (4.67).
Furthermore, the required 3× 4 Jacobian matrix Jcl results in:

Jcl =

 1 0 0 0
0 1 0 0
0 0 1

2
1
2

 . (4.75)

The operation given in Equation (4.73) is linear in the input parameters, i.e. the set of
line parameters. Thus the error propagation specified in Equation (4.74) is exact.
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4.2.4 Numerical Verification

A series of m images of an object with two parallel edges was acquired with an industrial
camera at conditions of repeatability2. See Figure 4.3 (left) for a sample of the image
series.

Figure 4.3: An image series was acquired with an industrial camera under conditions of
repeatability. A sample of the image series showing an object with two parallel edges (left)
and the corresponding image of absolute gradient (right).

Each of the n pixel rows of the particular series images was evaluated independently to
determine the location of data points on the two object edges. For that purpose, the
following processing steps were executed on the particular series images:

1. Computation of the absolute gradient image as depicted in Figure 4.3 (right).

2. Extraction of the locations of maximum image gradient along each pixel row, whereas
the first and second half of the pixel rows were handled separately in order to obtain
data points on the left and right object edge, respectively.

3. Computation of the center-of-gravity of the gradient around the extracted locations
of maximum image gradient. Two different methods were investigated:

(a) 1-dimensional center-of-gravity computed within a 1×5 image window centered
at the locations of maximum image gradient, and

(b) 2-dimensional center-of-gravity computed within a 5×5 image window centered
at the locations of maximum image gradient

Note that the two different evaluation procedures result in two types of perturbation
associated with the data points. The 1-dimensional center-of-gravity computation leads
to perturbation along the horizontal image direction only, whereas the 2-dimensional
computation of the center-of-gravity delivers perturbation of the data points along the
horizontal as well as the vertical image direction.

2These comprise (a) the camera as well as the specimen to remain unmoved during the measurements,
(b) constant parameters of the measurement setup, such as lighting intensity, lens aperture or exposure
time, and (c) ideally constant environmental conditions, such as ambient light or vibrations.
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4.2.4.1 Organisation of the Measurement Data

As a result of the two evaluation procedures, 2 sets of measurement points were obtained.
For each set of measurement points, the x- and y-coordinates were organized in a common
data matrix P of size 4n×m:

P =



1x1,1 1x1,2 . . . 1x1,m
...

...
. . .

...

1xn,1 1xn,2 . . . 1xn,m

2x1,1 2x1,2 . . . 2x1,m
...

...
. . .

...

2xn,1 2xn,2 . . . 2xn,m

1y1,1 1y1,2 . . . 1y1,m
...

...
. . .

...

1yn,1 1yn,2 . . . 1yn,m

2y1,1 2y1,2 . . . 2y1,m
...

...
. . .

...

2yn,1 2yn,2 . . . 2yn,m



. (4.76)

A multivariate Gaussian distribution with mean vector µp and covariance matrix Λp was
assumed as the statistical model underlying the data points.
The mean vector, µp = [µ1x1 , . . . , µ1xn , µ2x1 , . . . , µ2xn , µ1y1 , . . . , µ1yn , µ2y1 , . . . , µ2yn ]T , was
determined by evaluation of the particular rows of P, i.e.:

1µxi
= 1

m

m∑
k=1

1xi,k,

1µyi
= 1

m

m∑
k=1

1yi,k,
(4.77)

2µxi
= 1

m

m∑
k=1

2xi,k,

2µyi
= 1

m

m∑
k=1

2yi,k.
(4.78)

Moreover, the 4n× 4n covariance matrix Λp was computed according to:

Λp =
1

m− 1

(
P̂ P̂T

)
, (4.79)

with P̂ representing the matrix of mean free point coordinates, which in turn was computed
as: P̂ = P− µp ⊗ 1. Therein, 1 represents an m-dimensional row vector of 1’s, and the
symbol ⊗ indicates the Kronecker matrix product.

4.2.4.2 Evaluation of the Measurement Data

In order to evaluate the measurement data obtained by the two evaluation procedures,
a pair of parallel lines was fitted to the particular sets of data points according to the
procedure outlined in Section 4.2.1. Furthermore, the orthogonal distance between each
pair of parallel lines was computed resulting in two sets of m orthogonal distances di,
i = 1 . . . m. Finally, the average distance µd as well as the associated variance σ2

d were
determined.
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4.2.4.3 Comparison with the Results of Analytic Computation

Based on the procedure outlined in Section 4.2.2, the uncertainty in the measurement data,
represented by the covariance matrix Λp, was analytically propagated to the uncertainty in
the line parameters by application of the law of first order error propagation. Furthermore,
the variance σ2

dA
, associated with the orthogonal distance between the pair of parallel lines

was analytically computed according to Equation (4.71).

In Table 4.2, the results obtained by evaluation of the measurement data as well as those
from the analytic computations are presented for both of the two evaluation procedures
described above.

center-of-gravity µd, [pix] σ2
d, [pix

2] σ2
dA

, [pix2]
σ2

d−σ2
dA

σ2
d

, [%]

1-dim. 137.02 4.11 10−3 4.06 10−3 1.21

2-dim. 137.17 1.77 10−3 1.71 10−3 3.64

Table 4.2: Comparison of the results of an uncertainty analysis concerning the orthogonal
distance between a pair of parallel lines. The average orthogonal distance µd as well as
the associated variance σ2

d were obtained by evaluation of the measurement data, whereas
the variance σ2

dA
was analytically estimated.

As can be seen, the results of the measurement data evaluations and the analytic com-
putations are in good agreement with one another. The small relative deviations can be
explained by the approximation introduced for computing the first order error propagation
of the line orientation parameters (cf. Section 2.3.3.1).

Moreover, the variance associated with the orthogonal distance between the two parallel
lines is about 2 times smaller when extracting the locations of the data points by means
of 2-dimensional center-of-gravity computation compared to the 1-dimensional center-of-
gravity computation. This is a result of the additional averaging effect introduced by the
2-dimensional center-of-gravity computation, which can also be observed in the average
variance σ̄2

x of a data point along the horizontal image direction. For the data points of the
left object edge, σ̄2

x = 5.3 10−3 in the case of 2-dimensional center-of-gravity computation
compared to σ̄2

x = 8.4 10−2 in the case of 1-dimensional center-of-gravity computation.



Chapter 5

Geometric Transformations of the
Projective Plane

In this chapter, the well-known “direct linear transformation” (DLT) algorithm for esti-
mating plane-to-plane homographies is treated. Homographies represent the most general
type of linear geometric transformations (see e.g. [32, 16]) and are frequently required for
solving computer vision problems.

The DLT algorithm is probably the best-known approach for estimating homographies
based on point correspondences. In the present work, a brief derivation of the DLT algo-
rithm is given at first. As will be outlined, the procedure is based on computing a least
squares solution of a set of linear equations.

Furthermore, an analytic approach for estimating the covariance matrix associated with a
vector of homography parameters is presented. The procedure is based on the covariance
matrices of the sets of corresponding points required for the homography computation and
is accomplished by application of the law of first order error propagation. The Jacobian
matrix required therein is to be derived from the implicitly defined least squares problem,
which will be described in detail.

Finally, the results of the analytic computation are verified by means of numerical ex-
amples. These are realized on real measurement data extracted from images acquired at
conditions of repeatability as well as on synthetically generated data points and Monte-
Carlo simulations.

57
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5.1 Estimation of Plane-to-Plane Homographies

Considering the 2-dimensional situation, precisely the projective plane, points are rep-
resented by homogeneous 3-vectors and are transformed under a homography according
to:

p′ =

 x′

y′

w′

 =

 h11 h12 h13

h21 h22 h23

h31 h32 h33

 x
y
w

 = Hp. (5.1)

The 3 × 3 homography matrix H is homogeneous and regular, i.e. it has 8 degrees of
freedom. As a result, a number of n ≥ 4 point correspondences (each contributing with two
equations) is required to determine H. The “direct linear transformation” (DLT) algorithm
is probably the best-known procedure for the direct (i.e. non-iterative) estimation of a
homography, see e.g. [32, 11, 12].

5.1.1 The Direct Linear Transformation Algorithm

Given n ≥ 4 pairs of corresponding points, pi and p′i, i = {1 . . . n}. Expanding Equation
(5.1) yields two equations for each pair of corresponding points:

x′i
w′

i

=
h11xi + h12yi + h13wi

h31xi + h32yi + h33wi

, (5.2)

y′i
w′

i

=
h21xi + h22yi + h23wi

h31xi + h32yi + h33wi

, (5.3)

which are rearranged to:

(−h11xi − h12yi − h13wi) w′
i + (h31xi + h32yi + h33wi) x′i = 0, (5.4)

(−h21xi − h22yi − h23wi) w′
i + (h31xi + h32yi + h33wi) y′i = 0. (5.5)

Collecting the equations of the n pairs of corresponding points leads to the matrix equa-
tion:

Dh = 0, (5.6)

with the vector of homography parameters:

h =
[

h11 h12 h13 h21 h22 h23 h31 h32 h33

]T
, (5.7)

and the design matrix:

D =


−x1w

′
1 −y1w

′
1 −w1w

′
1 0 0 0 x1x

′
1 y1x

′
1 w1x

′
1

0 0 0 −x1w
′
1 −y1w

′
1 −w1w

′
1 x1y

′
1 y1y

′
1 w1y

′
1

...
...

...
...

...
...

...
...

...
−xnw

′
n −ynw

′
n −wnw

′
n 0 0 0 xnx

′
n ynx

′
n wnx

′
n

0 0 0 −xnw
′
n −ynw

′
n −wnw

′
n xny

′
n yny

′
n wny

′
n

. (5.8)
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In order to find a non-trivial solution for this system of linear equations, singular value
decomposition (SVD) is applied on the design matrix D and the vector of homography
parameters h is found as the right singular vector corresponding to the smallest singular
value of D.

Summarizing, estimation of a homography according to the DLT algorithm is realized by
solving the linear least squares problem:

min
h
‖Dh‖ subject to: ‖h‖ = 1. (5.9)

The disadvantage of the DLT algorithm is that it does not take into account the varying
statistical nature of the particular columns of D. Assuming the points involved in the
homography computation being “measured” quantities, the homogeneous coordinates wi

and w′
i are equal to 1. Thus, they are statistically invariant as are the zero entries of D.

On the other hand, there are elements showing the perturbation of an individual point
coordinate as well as elements exhibiting the perturbation of the product of two point
coordinates. As a result of the statistical inhomogeneities inherent to D, the solution
obtained with the DLT algorithm is subject to systematic errors.

A different approach for the direct estimation of homographies has been presented by
Harker and O’Leary [28]. The approach utilized therein is based on partitioned orthogo-
nalization of the sparse design matrix D in order to overcome the stated drawback of the
DLT algorithm. In this thesis however, homographies are estimated by means of the DLT
algorithm for simplicity reasons. In the following sections, a derivation for the first order
error propagation associated with the DLT algorithm is presented.

5.1.2 First Order Error Propagation for the DLT Algorithm

5.1.2.1 Organisation of the Data Points

The points involved in the homography computation are assumed to be “measured”, i.e.
the homogeneous coordinates wi and w′

i are equal to 1. The remaining coordinates of
the pairs of corresponding points are collected in a common vector q according to the
following order:

q = [x1, . . . , xn, y1, . . . , yn, x
′
1, . . . , x

′
n, y

′
1, . . . , y

′
n]

T
. (5.10)

In the following, the point coordinates are to be understood as expectation values of a
Gaussian probability density function. The covariance matrix Λq associated with the data
points is structured as follows:

Λq =

[
Λp 0
0 Λp′

]
, with: Λp =

[
Λx Cxy

CT
xy Λy

]
, Λp′ =

[
Λx′ Cxy′

CT
xy′ Λy′

]
. (5.11)

Therein, Λx and Λy as well as Λx′ and Λy′ denote the covariance matrices associated with
the x- and y-coordinates of the two sets of data points. Furthermore, Cxy and Cxy′ specify
matrices of covariances between the respective x- and y-coordinates. Finally, it is assumed
that there are no covariances existing between the two sets of points.
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5.1.2.2 Estimation of the Homography

As described in Section 5.1.1, a homography is estimated according to the DLT algorithm
by solving the system of linear equations:

Φ (q, h) = Dh = 0. (5.12)

Applying the law of first order error propagation, the 9× 9 covariance matrix associated
with the vector of homography parameters h is estimated as:

Λh ≈ JhΛqJh
T . (5.13)

Therein, Λq, represents the covariance matrix associated with the data points involved in
the homography computation as defined in Equation (5.11). Referring to Section 2.3.3.2,
the Jacobian matrix Jh is approximated as:

Jh ≈ −A+∂Φ

∂A

∂A

∂q
. (5.14)

Therein, the 9× 9 matrix A is calculated as:

A = DT D, (5.15)

and thus, the 9× 81 matrix ∂Φ
∂A

results to:

∂Φ

∂A
=


hT 0 . . . 0
0 hT . . . 0
...

...
. . .

...
0 0 . . . hT

 . (5.16)

In order to compute the 81× 4n matrix ∂A
∂q

, we take a closer look at matrix A at first:

A = DT D =

 A1 0 −A2

0 A1 −A3

−A2 −A3 A4

 . (5.17)

Therein, the four symmetric 3× 3 sub-matrices A1 to A4 appear as follows:

A1 =



n∑
i=1

x2
i

n∑
i=1

xiyi

n∑
i=1

xi

n∑
i=1

xiyi

n∑
i=1

y2
i

n∑
i=1

yi

n∑
i=1

xi

n∑
i=1

yi n


, A2 =



n∑
i=1

x2
i x
′
i

n∑
i=1

xiyix
′
i

n∑
i=1

xix
′
i

n∑
i=1

xiyix
′
i

n∑
i=1

y2
i x
′
i

n∑
i=1

yix
′
i

n∑
i=1

xix
′
i

n∑
i=1

yix
′
i

n∑
i=1

x′i


, (5.18)
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A3 =



n∑
i=1

x2
i y
′
i

n∑
i=1

xiyiy
′
i

n∑
i=1

xiy
′
i

n∑
i=1

xiyiy
′
i

n∑
i=1

y2
i y
′
i

n∑
i=1

yiy
′
i

n∑
i=1

xiy
′
i

n∑
i=1

yiy
′
i

n∑
i=1

y′i


, A4 =



n∑
i=1

x2
i s
′
i

n∑
i=1

xiyis
′
i

n∑
i=1

xis
′
i

n∑
i=1

xiyis
′
i

n∑
i=1

y2
i s
′
i

n∑
i=1

yis
′
i

n∑
i=1

xis
′
i

n∑
i=1

yis
′
i

n∑
i=1

s′i


, (5.19)

with the substitution: s′i = x′2i + y′2i , i = 1 . . . n.

The elements of ∂A
∂q

are obtained by taking the partial derivatives of the elements in
the four sub-matrices A1 to A4 with respect to the particular elements of q. Due to the
sparse, symmetric nature of the matrix A, the number of distinct elements, whose partial
derivatives are to be computed, reduces to 24 (six for each of the sub-matrices A1 to A4).

The particular results are listed in Table 5.1 to Table 5.4.

a1ij

∂a1ij

∂xi

∂a1ij

∂yi

∂a1ij

∂x′i

∂a1ij

∂y′i

n∑
i=1

x2
i 2xi 0 0 0

n∑
i=1

xiyi yi xi 0 0

n∑
i=1

y2
i 0 2yi 0 0

n∑
i=1

xi 1 0 0 0

n∑
i=1

yi 0 1 0 0

n 0 0 0 0

Table 5.1: Partial derivatives of the dis-
tinct elements a1ij

of sub-matrix A1.

a2ij

∂a2ij

∂xi

∂a2ij

∂yi

∂a2ij

∂x′i

∂a2ij

∂y′i

n∑
i=1

x2
i x
′
i 2xix

′
i 0 x2

i 0

n∑
i=1

xiyix
′
i yix

′
i xix

′
i xiyi 0

n∑
i=1

y2
i x
′
i 0 2yix

′
i y2

i 0

n∑
i=1

xix
′
i x′i 0 xi 0

n∑
i=1

yix
′
i 0 x′i yi 0

n∑
i=1

x′i 0 0 1 0

Table 5.2: Partial derivatives of the dis-
tinct elements a2ij

of sub-matrix A2.
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a3ij

∂a3ij

∂xi

∂a3ij

∂yi

∂a3ij

∂x′i

∂a3ij

∂y′i

n∑
i=1

x2
i y
′
i 2xiy

′
i 0 0 x2

i

n∑
i=1

xiyiy
′
i yiy

′
i xiy

′
i 0 xiyi

n∑
i=1

y2
i y
′
i 0 2yiy

′
i 0 y2

i

n∑
i=1

xiy
′
i y′i 0 0 xi

n∑
i=1

yiy
′
i 0 y′i 0 yi

n∑
i=1

y′i 0 0 0 1

Table 5.3: Partial derivatives of the dis-
tinct elements a3ij

of sub-matrix A3.

a4ij

∂a4ij

∂xi

∂a4ij

∂yi

∂a4ij

∂x′i

∂a4ij

∂y′i

n∑
i=1

x2
i s
′
i 2xis

′
i 0 2x2

i x
′
i 2x2

i y
′
i

n∑
i=1

xiyis
′
i yis

′
i xis

′
i 2xiyix

′
i 2xiyiy

′
i

n∑
i=1

y2
i s
′
i 0 2yis

′
i 2y2

i x
′
i 2y2

i y
′
i

n∑
i=1

xis
′
i s′i 0 2xix

′
i 2xiy

′
i

n∑
i=1

yis
′
i 0 s′i 2yix

′
i 2yiy

′
i

n∑
i=1

s′i 0 0 2x′i 2y′i

Table 5.4: Partial derivatives of the dis-
tinct elements a4ij

of sub-matrix A4.

After properly collecting the partial derivatives for all of the n data points into the 81×4n
matrix ∂A

∂q
, the Jacobian matrix Jh can be calculated according to Equation (5.14).

Finally, the 9 × 9 covariance matrix Λh associated with the vector of homography para-
meters is estimated according to Equation (5.13).

5.1.3 First Order Error Propagation for a Point Transformation

Given a point p = [x, y, w]T together with its associated covariance matrix Λp, as well as
a homography matrix H together with the 9× 9 covariance matrix Λh associated with the
vector of homography parameters h. In order to estimate the covariance matrix associated
with the point transformed under the given homography, p′ = Hp (cf. Equation (5.1)),
the law of first order error propagation is applied:

Λp′ = Jp′Λh,pJT
p′ . (5.20)

Therein, a combined 12× 12 covariance matrix Λh,p is incorporated, which is structured
as follows:

Λh,p =

[
Λh 0
0 Λp

]
. (5.21)

It is assumed that there are no covariances existing between the homography parameters
and the point to be transformed. Moreover, the required 3×12 Jacobian matrix Jp′ results
to:

Jp′ =
[

P H
]
, with: P =

 pT 0 0
0 pT 0
0 0 pT

 . (5.22)
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5.1.4 Numerical Verification

A series of m images of a calibration target utilized for a video-extensometer system, which
will be presented in Chapter 7, was acquired with an industrial camera at conditions of
repeatability1. See Figure 5.1 for a sample of the image series.

Figure 5.1: A sample image of a calibration target acquired with an industrial camera.
The target exhibits a rectangular grid of reference bores with diameters of 1.5mm. The
distance between center points of adjacent reference bores is 4mm in each direction.

The calibration target is equipped with a rectangular grid of reference bores (bright cir-
cular image objects) as well as a simple bar-coding scheme utilized to properly identify
the particular reference bores in the acquired images.

5.1.4.1 The Image Coordinates of the Center Points

Each of the particular series images was evaluated independently to determine the center
point coordinates of the reference bores. For that purpose, a contour extraction algorithm
was applied to the particular series images. In order to separate “invalid” contour objects
from those representing the circumference of the reference bores, the following processing
steps were executed:

1. Verifying the horizontal, the vertical as well as the average dimension, contour ob-
jects showing an inappropriate size were eliminated.

2. Contour objects with a shape significantly deviating from a circular shape were
rejected by checking the aspect ratio of the contour objects.

1These comprise (a) the camera as well as the specimen to remain unmoved during the measurements,
(b) constant parameters of the measurement setup, such as lighting intensity, lens aperture or exposure
time, and (c) ideally constant environmental conditions, such as ambient light or vibrations.
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3. A circular model was approximated to each of the remaining contour objects and by
verifying the fitting residual, the contour objects representing the imaged reference
bores can finally be separated.

The algorithm utilized for approximating circular models to the sets of contour points
comprises two steps. At first, a simple algebraic fit is applied according to the algorithm
outlined by O’Leary [44] to the points of the particular contour objects. Subsequently, the
circle parameters obtained are taken as initial values for an iterative optimization method
presented by Joseph [34].

Finally, the center point coordinates of the “valid” circular contour objects were sorted
according to their location with respect to the image coordinate frame, starting from the
upper left corner going row-wise down the grid to the lower right corner.

5.1.4.2 Organisation of the Image Point Coordinates

As a result, m sets of the n = 20 center points were obtained with respect to the image
coordinate frame. The x- and y-coordinates of the points were organized in a common
2n×m data matrix P:

P =



x1,1 x1,2 . . . x1,m

x2,1 x2,2 . . . x2,m
...

...
. . .

...
xn,1 xn,2 . . . xn,m

y1,1 y1,2 . . . y1,m

y2,1 y2,2 . . . y2,m
...

...
. . .

...
yn,1 yn,2 . . . yn,m


. (5.23)

In the following, a multivariate Gaussian distribution with mean vector µp and covariance
matrix Λp is assumed as the statistical model underlying the data points. Given P, the
vector of mean values is computed as specified by Equation (4.39). Moreover, the 2n× 2n
covariance matrix Λp is determined according to Equation (4.40).

Note that as a consequence of the evaluation procedure, the location of the particular
center points is subject to measurement noise along the x- as well as the y-coordinate.
Thus, the covariance matrix Λp is fully occupied.

5.1.4.3 The Metric Coordinates of the Center Points

The reference bore’s center point coordinates were determined with respect to a metric
coordinate frame (see Chapter 7 for details) prior to the analysis and stored in a file on
the hard-disk. In order to find the set of metric center point coordinates corresponding
to the set of center points extracted in the images, the bar-coding scheme (cf. Figure 5.1)
was evaluated:

• the bar-code itself holds the information about the row indices (with respect to the
rectangular grid) of the imaged reference bores, and
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• the horizontal position of the stripe of paper holding the bar-code specifies the
column indices of the imaged reference bores.

Given the row and column indices of the imaged reference bores, the metric center point
coordinates, [x′i, y

′
i], i = 1 . . . n, corresponding to the points extracted in the images were

identified. As a result, a proper assignment of the center points in the image and the
metric coordinate frame was achieved.

5.1.4.4 Organisation of the Metric Point Coordinates

The uncertainty associated with the metric center point coordinates is directly related to
the positioning accuracy of the device utilized for measuring the surface of the calibration
target (cf. Chapter 7). In the present situation, the uncertainty of the metric center
point coordinates, [x′i, y

′
i], i = 1 . . . n, is given in terms of the standard deviation values

σx′ = σy′ ≈ 0.2µm. The covariance between the center point coordinates is assumed to be
negligible small, i.e. σxy′ ≈ 0. As a result, the covariance matrix Λp′ associated with the
vector of metric center point coordinates,

µp′ =
[

x′1, x
′
2, . . . , x

′
n, y

′
1, y

′
2, . . . , y

′
n

]T
, (5.24)

is a diagonal matrix of the form:

Λp′ =

[
Λx′ 0
0 Λy′

]
, Λx′ =


σ2

x′ 0 . . . 0
0 σ2

x′ . . . 0
...

...
. . .

...
0 0 . . . σ2

x′

, Λy′ =


σ2

y′ 0 . . . 0
0 σ2

y′ . . . 0
...

...
. . .

...
0 0 . . . σ2

y′

. (5.25)

5.1.4.5 Monte-Carlo Simulation

Given the coordinate vectors of the sets of n = 20 corresponding pairs of center points,
µp and µp′ , together with their associated covariance matrices, Λp and Λp′ . A Monte-
Carlo simulation was now started by generating a number of m = 105 synthetical sets
of corresponding pairs of points (cf. Section 2.3.2). Subsequently, the DLT algorithm was
executed on the particular sets of corresponding points and a number of m vectors of
homography parameters hi, i = 1 . . . m, was obtained. Moreover, the vector of mean
homography parameters µhMC

is computed,

µhMC
=

1

m

m∑
i=1

hi, (5.26)

as well as the 9× 9 covariance matrix ΛhMC
associated with the homography parameters:

ΛhMC
=

1

m− 1

m∑
i=1

(
(hi − µh) (hi − µh)T

)
. (5.27)
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5.1.4.6 Comparison with the Results of Analytic Computation

Starting again with the vectors µp and µp′ as well as the associated covariance matrices
Λp and Λp′ , the error propagation through the DLT algorithm was estimated according
to the procedure presented in Section 5.1.2. As a result of this computation, the first
order estimate of ΛhA

of the covariance matrix associated with the vector of homography
parameters was obtained. The results of the Monte-Carlo simulation were compared with
the results of the analytic computation by means of the relative Frobenius norm error:

‖ ΛhA
− ΛhMC

‖
‖ ΛhA

‖
≈ 0.79%. (5.28)

The small deviations are explained by the approximations inherent to the first order order
estimate of error propagation of the DLT algorithm.

5.1.4.7 The Influence of the Pairs of Points Utilized for the DLT Algorithm

In the preceding analysis, the center points of the reference bores were chosen as the
sets of corresponding pairs of points required for the DLT algorithm. The procedure was
repeated with a second set of corresponding pairs of points. At first, two sets of parallel
and orthogonal lines were fitted to the center points according to their location with
respect to the grid of reference bores (see Figure 5.2). The algorithm utilized for this
fitting operation represents an extension of the procedure of fitting a pair of parallel lines,
as described in Section 4.2.1.
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Figure 5.2: The center points of the reference bores together with the approximated sets
of parallel and orthogonal lines as well as the resulting intersection points.

Subsequently, the intersection points of the particular lines were calculated. This proce-
dure was realized for the image points as well as for the metric points. As a result, a
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number of n = 20 pairs of corresponding intersection points were obtained. See Figure
5.2 for an illustration of the lines fitted to the center points as well as the location of the
intersection points with respect to the image coordinate frame.

As a result of the averaging effect introduced by the fitting operation, the uncertainty as-
sociated with the intersection points is significantly lower than the uncertainty associated
with the given center points. This is illustrated in Figure 5.3, where the 99% confidence
ellipses of the center points as well as those of the intersection points are depicted.
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Figure 5.3: Comparison of the uncertainty associated with the given center points and the
calculated intersection points. Note that the confidence ellipses were plotted incorporating
a scaling factor of f = 1000.

Based on the sets of corresponding intersection points, a first order estimate of the covari-
ance matrix associated with the homography parameters, ΛhA2

, was computed. In order

to compare ΛhA2
with ΛhA

, the quotient of Frobenius matrix norms
‖ΛhA2

‖
‖ΛhA

‖ ≈ 1.93 was

computed. Thus, computing the homography based on the sets of corresponding pairs
of intersection points yields a significant reduction of the norm of the covariance matrix
associated with the vector of homography parameters.



Chapter 6

First Order Error Propagation for
Non-Linear Functions

This chapter deals with the application of the law of first order error propagation to non-
linear functions. Considering an explicit, vector valued function y = f(x), with x and y
denoting vectors of uncertain input and output data, respectively. According to the law
of first order error propagation (cf. Section 2.3.3):

Λy = JfΛxJf
T , (6.1)

the uncertainty associated with the output variables, represented by the covariance matrix
Λy, is computed by means of the covariance matrix Λx and the Jacobian matrix Jf , which
specifies the sensitivity of the elements in y with respect to the particular parameters in x.
For f representing a function linear in the parameters x, Equation (6.1) is exact. However,
when applied to functions non-linear in x, the results of first order error propagation
merely represent estimates of the covariance matrix Λy.

In order to determine the approximation error associated with the estimate of Λy, Monte-
Carlo experiments can be performed. This method requires a large number of real measure-
ment data, or - based on a suitable statistical model of the input variables - synthetically
generated data. Moreover, Monte-Carlo experiments are computationally expensive.

In the following, a procedure for analytically computing the approximation error asso-
ciated with first order estimates of error propagation for non-linear functions f(x) is
presented. Due to the stochastic nature of the input data x, the approximation error has
to be understood as a confidence interval rather than a strict upper error bound.

The procedure is based on the definition of Lagrange remainder terms associated with
Taylor series truncated after the first order terms. At first, the procedure is described
in general. Subsequently, its applicability is demonstrated with a number of non-linear
functions typically arising in metric vision tasks.

68
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6.1 The Approximation Error in Results of

First Order Error Propagation

When applied to non-linear, vector-valued functions y = f(x), first order error propaga-
tion delivers an estimate of the covariance matrix Λy rather than the covariance matrix
itself. A confidence interval associated with such an estimate can be analytically computed
by the following procedure:

1. a Taylor series of the function is expanded around the means of the uncertain input
data vector x up to the first order terms,

2. the Lagrange remainder term belonging to the Taylor series is computed,

3. the variance associated with the Lagrange remainder term is determined by appli-
cation of the analytical definition of expectation values, and

4. the confidence interval is calculated as the maximum value of this variance.

To simplify matters, details of the procedure are outlined in the following on the basis of
multivariate, scalar-valued functions.

6.1.1 Nature and Statistical Model of the Uncertain Input Data

In the following, the vector of uncertain input data x = [x1, x2, . . . , xp]
T is to be under-

stood as a p-dimensional random vector, i.e. a vector of random variables xi. Given a
number of n realizations of the random vector - either obtained from repeated measure-
ments or synthetically produced by means of a random number generator - the data can
be organized in a p× n data matrix X as follows:

X =


x1,1 x1,2 . . . x1,n

x2,1 x2,2 . . . x2,n
...

...
. . .

...
xp,1 xp,2 . . . xp,n

 . (6.2)

The random vector of uncertain input data x is assumed to have a multivariate Gaussian
probability density function with expectation vector µx and covariance matrix Λx, thus:

x ∼ N (x, µx, Λx) = ((2π)p |Λx|)−
1
2 e−

1
2
(x−µx)T Λ−1

x (x−µx). (6.3)

The elements of the expectation vector µx =
[
µx1 , µx2 , . . . , µxp

]T
are calculated as:

µxi
=

1

n

n∑
k=1

xi,k. (6.4)

Moreover, the covariance matrix Λx is computed as:

Λx =
1

n− 1

(
X̂ X̂T

)
, (6.5)
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with X̂ terming the matrix of mean free data, which is obtained as: X̂ = X − µx ⊗ 1.
Therein, 1 represents an n-dimensional row vector of 1’s, and the symbol ⊗ indicates the
Kronecker matrix product.

In order to simplify the probability density function presented in Equation (6.3) for sub-
sequent computations, the vector of uncertain input data x is made mean-free. With this,

a vector of mean-free perturbation values ex =
[
ex1 , ex2 , . . . , exp

]T
is introduced:

ex = x− µx. (6.6)

Assuming that the mean values µxi
have been computed from a sufficiently large number

of samples, their uncertainty can be neglected. Thus, merely the values exi
are subject

to perturbation and the Gaussian probability density function underlying the uncertain
input data simplifies to:

x ∼ N (x, µx, Λx) = ((2π)p |Λx|)−
1
2 e−

1
2
eT

xΛ−1
x ex . (6.7)

6.1.2 Taylor Series Expansion

Given a multivariate, scalar-valued function f(x) operating on a vector of stochastic input
data x = [x1, x2, . . .]

T . Expanding an n’th order Taylor series for f(x) around the mean
vector µx = [µx1 , µx2 , . . .]

T gives:

f(x) = Tn(f(x)) + Rn(f(x))

=
n∑

k=0

D(k)f(µx)

k!
(x− µx)k + Rn(f(x)). (6.8)

Therein, D(k)f(µx) denotes the k’th order partial derivatives of the function f(x) with
respect to the elements of x, evaluated at µx. Furthermore, Rn(f(x)) terms the remainder
term associated with Tn(f(x)).

6.1.2.1 The Approximation Error Associated with a Taylor Series

According to Lagrange (see e.g. Bronstein [7]), the remainder term associated with an
n’th order Taylor series can be formulated as:

Rn(f(x)) =
D(n+1)f(ξ)

(n + 1)!
(x− µx)n+1, (6.9)

with D(n+1)f(ξ) terming the partial derivatives of order n + 1 of the function f(x) with
respect to the elements of x, evaluated at ξ = [ξ1, ξ2, . . .]

T . Therein, the ξi are numbers
within the following open intervals: ξi ∈ (µxi

, xi).

In order to determine the maximum approximation error associated with the n’th order
Taylor series Tn(f(x)), the ξi are to be found such that Rn(f(x)) becomes a maximum.
Due to the stochastic nature of the input data x, the approximation error has to be
understood as a confidence interval rather than a strict upper error bound.
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Criminisi et al. [11, 10] proposed to introduce a statistical model for the particular ξi,
namely ξi = µxi

± ασxi
, to take the stochastic nature of the input data xi into account.

Therein, µxi
and σxi

term the expectation values respectively the standard deviation values
of the particular xi. Moreover, the factor α is chosen such that it reflects the desired level
of significance p associated with the confidence interval. For Gaussian distributed data,
the significance levels p for α = {1, 2, 3} are:

α 1 2 3

p 68.3% 95.4% 99.7%

Table 6.1: Significance levels p associated with confidence intervals, assuming Gaussian
distributed data.

6.1.3 The Confidence Interval Associated with First Order Es-
timates of Error Propagation

The task now is to compute a confidence interval associated with the result of first order
error propagation applied to a non-linear function f(x) (cf. Equation (6.1)). Assuming
the random vector of uncertain input data x to exhibit Gaussian characteristics, this task
is perfectly equivalent to computing the confidence interval associated with the variance
of the first order Taylor series T1(f(x)). Thus, we expand a first order Taylor series:

f(x) = T1(f(x)) + R1(f(x)), (6.10)

with R1(f(x)) representing the Lagrange remainder term associated with the first or-
der Taylor series T1(f(x)). Referring to Equation (6.9), the Lagrange remainder term
associated with the first order Taylor series T1(f(x)) results to:

R1(f(x)) =
1

2
eT

xD(2)f(ξ)ex. (6.11)

Therein, the term D(2)f(ξ) denotes the Hessian matrix, i.e. the matrix of second order
partial derivatives of f(x) with respect to the elements of x, evaluated at ξ = [ξ1, ξ2, . . .]

T .
For a function of dimensionality p, the Hessian matrix is structured as follows:

D(2)f(ξ) =


∂2f1

∂x2
1

∂2f1

∂x1∂x2
. . . ∂2f1

∂x1∂xp

∂2f2

∂x1∂x2

∂2f2

∂x2
2

. . . ∂2f2

∂x2∂xp

...
...

. . .
...

∂2fp

∂x1∂xp

∂2fp

∂x2∂xp
. . . ∂2fp

∂x2
p


[ξ1,...,ξp]T

. (6.12)

According to the principle described in the previous section, the confidence interval as-
sociated with the variance V(T1(f(x))) can be determined by means of the variance
V(R1(f(x))) of the Lagrange remainder term. Referring to Section 2.1.1, this variance is
defined as:

V(R1(f(x))) = E
(
R1(f(x))2

)
− E(R1(f(x)))2. (6.13)
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The two required expectation values can be computed by application of the analytical
definition of expectation values (cf. Equation (2.22)) from the following integrals:

E(R1(f(x))) =
1

2

∞∫
−∞

eT
xD(2)f(ξ)ex

√
|Λ−1

x |
(2π)

p
2

e−
1
2
eT

xΛ−1
x ex dex, (6.14)

E(R1(f(x))2) =
1

4

∞∫
−∞

(
eT

xD(2)f(ξ)ex

)2 √|Λ−1
x |

(2π)
p
2

e−
1
2
eT

xΛ−1
x ex dex. (6.15)

As a consequence of the chosen model, all of the functions to be integrated contain prod-
ucts of perturbation values exi

raised to the power of exponents ki = {1, 2, 3, . . .}. Thus,
these functions are of the form f(ek1

x1
, ek2

x2
, . . .). In Table 6.2, a list of functions of this type

is presented together with the corresponding expectation values.

4∑
i=1

ki f(ek1
x1

, ek2
x2

, ek3
x3

, ek4
x4

) E(f(ek1
x1

, ek2
x2

, ek3
x3

, ek4
x4

))

1 ex1 0

e2
x1

σ2
x1

2
ex1ex2 σx1x2

e3
x1

0

3 e2
x1

ex2 0

ex1ex2ex3 0

e4
x1

3σ4
x1

e3
x1

ex2 3σ2
x1

σx1x2

4 e2
x1

e2
x2

σ2
x1

σ2
x2

+ 2σ2
x1x2

e2
x1

ex2ex3 σ2
x1

σx2x3 + 2σx1x2σx1x3

ex1ex2ex3ex4 σx1x2σx3x4 + σx1x3σx2x4 + σx1x4σx2x3

Table 6.2: A list of functions f(ek1
x1

, ek2
x2

, ek3
x3

, ek4
x4

) with corresponding expectation values.
The expectation values were computed by means of the analytical definition of expectation
values and integrating out the parameters exi

.

All of the terms listed in Table 6.2 appear in the examples presented in Section 6.2. Note
that the expectation values of those functions f(ek1

x1
, ek2

x2
, ek3

x3
, ek4

x4
) that show uneven sums

of exponents,
4P

i=1
ki, are zero. This is a result of the fact that these functions exhibit uneven

characteristics. Thus, integration over the range −∞ to ∞ (cf. Equation (2.22)) results
in positive and negative contributions, which entirely nullify.
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6.2 Analysis of Non-Linear Functions

The applicability of the concept described in the previous section is demonstrated with
two non-linear functions typically arising in metric vision tasks, namely:

• calculation of the Euclidean distance between two uncertain points as well as the
variance associated with it, and

• computation of the inhomogeneous coordinates of an uncertain point on the pro-
jective plane, given the set of homogeneous point coordinates. The elements of the
resulting 2 × 2 covariance matrix, i.e. the variances of the inhomogeneous point
coordinates as well as the covariance between them, are analyzed separately.

All of the results presented have been analytically derived with the symbolic math process-
ing tool Maple r and were numerically verified by means of Monte-Carlo experiments.

6.2.1 The Euclidean Distance between two Uncertain Points

Given two uncertain points on the projective plane with inhomogeneous coordinate vectors
p1 = [x1, y1]

T and p2 = [x2, y2]
T respectively. The Euclidean distance d between the two

points is given as:

d =
(
∆x2 + ∆y2

) 1
2 , (6.16)

with:
∆x = x1 − x2,
∆y = y1 − y2.

(6.17)

Applying the principle of first order error propagation to this non-linear function gives
an estimate of the variance σ2

d rather than the “true” variance itself. Thus, we need to
determine a confidence interval associated with this first order estimate.

6.2.1.1 Statistical Model of the Point Coordinates

Each of the particular point coordinates is modelled as the sum of a perturbation-free
mean value (i.e. it is assumed, that the mean value can be computed from a sufficiently
large number of samples such that the uncertainty in the mean value can be neglected)
and an uncertain perturbation parameter [33]:

x1 = µx1 + ex1 ,
y1 = µy1 + ey1 ,

(6.18)
x2 = µx2 + ex2 ,
y2 = µy2 + ey2 ,

(6.19)

with µx1 , µy1 , µx2 and µy2 terming the mean values and ex1 , ey1 , ex2 and ey2 denoting
the perturbation parameters. To simplify matters, the vectors of the coordinate means
µp = [µx1 , µy1 , µx2 , µy2 ]

T and perturbation parameters ep = [ex1 , ey1 , ex2 , ey2 ]
T are intro-

duced. It is assumed that the perturbation parameters follow a common Gaussian prob-
ability density function, i.e.:

ep ∼ N (ep, o, Λp) =
(
(2π)2 |Λp|

)− 1
2 e−

1
2
eT

p Λ−1
p ep , (6.20)
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with the covariance matrix:

Λp =


σ2

x1
σx1y1 σx1x2 σx1y2

σx1y1 σ2
y1

σy1x2 σy1y2

σx1x2 σy1x2 σ2
x2

σx2y2

σx1y2 σy1y2 σx2y2 σ2
y2

 . (6.21)

6.2.1.2 First Order Estimation of Error Propagation

Applying the law of first order error propagation, the variance σ2
d is estimated as:

σ2
d ≈ JdΛpJd

T , (6.22)

with Jd denoting the vector of first order partial derivatives of d with respect to the
elements of p = [x1, y1, x2, y2]

T , evaluated at the coordinate means:

Jd =
(
∆µ2

x + ∆µ2
y

)− 1
2
[

∆µx ∆µy −∆µx −∆µy

]
. (6.23)

Therein, ∆µx and ∆µy denote the differences of coordinate means:

∆µx = µx1 − µx2 ,
∆µy = µy1 − µy2 .

(6.24)

Thus, we can estimate the variance associated with the distance d as:

σ2
d ≈

(
∆µ2

x + ∆µ2
y

)−1 (
∆µ2

xΦx + ∆µ2
yΦy + 2∆µx∆µyΦxy

)
, (6.25)

with:

Φx = σ2
x1
− 2σx1x2 + σ2

x2
,

Φy = σ2
y1
− 2σy1y2 + σ2

y2
, (6.26)

Φxy = σx1y1 + σx2y2 − σx1y2 − σy1x2 .

6.2.1.3 The Approximation Error Associated with the First Order Estimate

Expanding a first order Taylor series for d around the coordinate means µp gives:

d = T1(d) + R1(d), (6.27)

with the first order Taylor approximation T1(d) and the associated Lagrange remainder
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term R1(d) being:

T1(d) =
(
∆x2 + ∆y2

) 1
2

∣∣∣
x1=µx1
y1=µy1
x2=µx2
y2=µy2

+ Jd|
x1=µx1
y1=µy1
x2=µx2
y2=µy2


x1 − µx1

y1 − µy1

x2 − µx2

y2 − µy2

 , (6.28)

R1(d) =
1

2


x1 − µx1

y1 − µy1

x2 − µx2

y2 − µy2


T

Hd|
x1=ξx1
y1=ξy1
x2=ξx2
y2=ξy2


x1 − µx1

y1 − µy1

x2 − µx2

y2 − µy2

 . (6.29)

Therein, the Jacobian matrix Jd and the Hessian matrix Hd are:

Jd =
(
∆x2 + ∆y2

)− 1
2
[

∆x ∆y −∆x −∆y
]
, (6.30)

Hd =
(
∆x2 + ∆y2

)− 3
2


∆y2 −∆x∆y −∆y2 ∆x∆y

−∆x∆y ∆x2 ∆x∆y −∆x2

−∆y2 ∆x∆y ∆y2 −∆x∆y
∆x∆y −∆x2 −∆x∆y ∆x2

 . (6.31)

Thus, we obtain:

T1(d) =
(
∆µ2

x + ∆µ2
y

) 1
2 +

(
∆µ2

x + ∆µ2
y

)− 1
2 (∆µx∆ex + ∆µy∆ey) ,

R1(d) =
1

2

(
∆ξ2

x + ∆ξ2
y

)− 3
2
(
∆ξ2

x∆e2
y + ∆ξ2

y∆e2
x − 2∆ξx∆ξy∆ex∆ey

)
(6.32)

=
1

2

(
∆ξ2

x + ∆ξ2
y

)− 3
2 (∆ξx∆ey −∆ξy∆ex)

2 , (6.33)

with:

∆ex = ex1 − ex2 ,
∆ey = ey1 − ey2 ,

(6.34)
∆ξx = ξx1 − ξx2 ,
∆ξy = ξy1 − ξy2 .

(6.35)

The variance of the first order Taylor approximation T1(d) is computed as:

V(T1(d)) = E(T1(d)2)− E(T1(d))2, (6.36)

whereas the required expectation values are calculated as:

E(T1(d)) = E
((

∆µ2
x + ∆µ2

y

) 1
2 +

(
∆µ2

x + ∆µ2
y

)− 1
2 (∆µx∆ex + ∆µy∆ey)

)
=

(
∆µ2

x + ∆µ2
y

) 1
2 , (6.37)

E(T1(d))2 = ∆µ2
x + ∆µ2

y, (6.38)

E(T1(d)2) = E
(
∆µ2

x + ∆µ2
y + 2 (∆µx∆ex + ∆µy∆ey)

+
(
∆µ2

x + ∆µ2
y

)−1 (
∆µ2

x∆e2
x + ∆µ2

y∆e2
y + 2∆µx∆µy∆ex∆ey

))
= ∆µ2

x + ∆µ2
y +

(
∆µ2

x + ∆µ2
y

)−1 (
∆µ2

xΦx + ∆µ2
yΦy + 2∆µx∆µyΦxy

)
.(6.39)
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Note that these results are obtained utilizing the following terms (cf. Table 6.2):

E (∆ex) = E (ex1 − ex2) = 0,
E (∆ey) = E (ey1 − ey2) = 0,
E (∆e2

x) = E
(
e2

x1
− 2ex1ex2 + e2

x2

)
= σ2

x1
− 2σx1x2 + σ2

x2
= Φx,

E
(
∆e2

y

)
= E

(
e2

y1
− 2ey1ey2 + e2

y2

)
= σ2

y1
− 2σy1y2 + σ2

y2
= Φy,

E (∆ex∆ey) = E (ex1ey1 + ex2ey2 − ex1ey2 − ey1ex2)
= σx1y1 + σx2y2 − σx1y2 − σy1x2 = Φxy.

Finally, the variance of the first order Taylor approximation T1(d) results to:

V(T1(d)) =
(
∆µ2

x + ∆µ2
y

)−1 (
∆µ2

xΦx + ∆µ2
yΦy + 2∆µx∆µyΦxy

)
. (6.40)

As expected, this is perfectly equivalent to Equation (6.25), the result of first order error
propagation.

In order to determine the approximation error associated with V(T1(d)), we compute the
variance of the Lagrange remainder term R1(d):

V (R1(d)) = E
(
R1(d)2

)
− E (R1(d))2 . (6.41)

The required expectation values are calculated as:

E (R1(d)) =
1

2

(
∆ξ2

x + ∆ξ2
y

)− 3
2
(
∆ξ2

xΦy + ∆ξ2
yΦx − 2∆ξx∆ξyΦxy

)
, (6.42)

E (R1(d))2 =
1

4

(
∆ξ2

x + ∆ξ2
y

)−3 (
∆ξ4

xΦ
2
y + ∆ξ4

yΦ
2
x + 2∆ξ2

x∆ξ2
yΦxΦy

+ 4∆ξ2
x∆ξ2

yΦ
2
xy − 4∆ξ3

x∆ξyΦyΦxy − 4∆ξx∆ξ3
yΦxΦxy

)
, (6.43)

E
(
R1(d)2

)
= E

(
1

4

(
∆ξ2

x + ∆ξ2
y

)−3 (
∆ξ4

x∆e4
y + ∆ξ4

y∆e4
x + 6∆ξ2

x∆ξ2
y∆e2

x∆e2
y

− 4∆ξ3
x∆ξy∆ex∆e3

y − 4∆ξx∆ξ3
y∆e3

x∆ey

))
=

1

4

(
∆ξ2

x + ∆ξ2
y

)−3 (
3∆ξ4

xΦ
2
y + 3∆ξ4

yΦ
2
x + 6∆ξ2

x∆ξ2
yΦxΦy

+ 12∆ξ2
x∆ξ2

yΦ
2
xy − 12∆ξ3

x∆ξyΦyΦxy − 12∆ξx∆ξ3
yΦxΦxy

)
. (6.44)
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Note that these results are obtained applying the following terms (cf. Table 6.2):

E (∆e4
x) = E

(
e4

x1
− 4e3

x1
ex2 + 6e2

x1
e2

x2
− 4ex1e

3
x2

+ e4
x2

)
= 3

(
σ2

x1
− 2σx1x2 + σ2

x2

)2
= 3Φ2

x,

E
(
∆e4

y

)
= E

(
e4

y1
− 4e3

y1
ey2 + 6e2

y1
e2

y2
− 4ey1e

3
y2

+ e4
y2

)
= 3

(
σ2

y1
− 2σy1y2 + σ2

y2

)2
= 3Φ2

y,

E (∆e3
x∆ey) = E

(
e3

x1
ey1 − e3

x1
ey2 + ey1e

3
x2
− e3

x2
ey2

− 3e2
x1

ey1ex2 + 3e2
x1

ex2ey2 + 3ex1ey1e
2
x2
− 3ex1e

2
x2

ey2

)
= 3

(
σ2

x1
− 2σx1x2 + σ2

x2

)
(σx1y1 + σx2y2 − σx1y2 − σy1x2) = 3ΦxΦxy,

E
(
∆ex∆e3

y

)
= E

(
ex1e

3
y1
− e3

y1
ex2 + ex1e

3
y2
− ex2e

3
y2

− 3ex1e
2
y1

ey2 + 3e2
y1

ex2ey2 + 3ex1ey1e
2
y2
− 3ey1ex2e

2
y2

)
= 3

(
σ2

y1
− 2σy1y2 + σ2

y2

)
(σx1y1 + σx2y2 − σx1y2 − σy1x2) = 3ΦyΦxy,

E
(
∆e2

x∆e2
y

)
= E

(
e2

x1
e2

y1
+ e2

x1
e2

y2
+ e2

y1
e2

x2
+ e2

x2
e2

y2

− 2
(
e2

x1
ey1ey2 + ex1e

2
y1

ex2 + ex1ex2e
2
y2

+ ey1e
2
x2

ey2

)
+ 4ex1ey1ex2ey2)

=
(
σ2

x1
− 2σx1x2 + σ2

x2

) (
σ2

y1
− 2σy1y2 + σ2

y2

)
+ 2 (σx1y1 + σx2y2 − σx1y2 − σy1x2)

2 = ΦxΦy+2Φ2
xy.

Finally, the variance of the Lagrange remainder term R1(d) is obtained as:

V (R1(d)) =
(
∆ξ2

x + ∆ξ2
y

)−3
(

1

2

(
∆ξ4

xΦ
2
y + ∆ξ4

yΦ
2
x

)
+ ∆ξ2

x∆ξ2
y

(
ΦxΦy + 2Φ2

xy

)
− 2

(
∆ξ3

x∆ξyΦyΦxy + ∆ξx∆ξ3
yΦxΦxy

))
. (6.45)

In order to determine a confidence interval associated with the variance V(T1(d)), the
maximum value of V (R1(d)) concerning ξx1 ∈ (x1, µx1), ξy1 ∈ (y1, µy1), ξx2 ∈ (x2, µx2) and
ξy2 ∈ (y2, µy2) is computed. Both, ∆ξx as well as ∆ξy are dominant in the denominator of
Equation (6.45). Thus, assuming µx1 > µx2 and µy1 > µy2 , we choose the models:

ξx1 = µx1 − ασx1 ,
ξx2 = µx2 + ασx2 ,

(6.46)
ξy1 = µy1 − ασy1 ,
ξy2 = µy2 + ασy2 ,

(6.47)

and obtain:
∆ξx = µx1 − µx2 − α (σx1 + σx2) ,
∆ξy = µy1 − µy2 − α (σy1 + σy2) .

(6.48)

Therein, the factor α = {1, 2, 3} specifies the level of significance associated with the
confidence interval. Substituting ∆ξx and ∆ξy into Equation (6.45) gives an absolute
confidence interval bV(T1(d)) associated with the first order estimate of the variance σ2

d.
In addition to this, a relative confidence interval bV(T1(d)),r can be obtained by relating
bV(T1(d)) to the first order estimate V(T1(d)).

Both, bV(T1(d)) as well as bV(T1(d)),r are lengthy expressions and thus, they are not listed
here explicitly.
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6.2.2 Numerical Verification

Two sets of data points, each consisting of 106 samples, are randomly generated (cf.
Section 2.3.2) based on a Gaussian probability density function with coordinate mean
vector:

µp =


µx1

µy1

µx2

µy2

 =


20
20
10
10

 , (6.49)

and covariance matrix:

Λp =


0.5 0.1 0.05 0.05
0.1 0.3 0.05 0.05
0.05 0.05 0.5 0.1
0.05 0.05 0.1 0.3

 . (6.50)

Note that in this example, units were omitted as they are not significant for the interpre-
tation of the results.

At first, the Euclidean distance between all pairs of sample points as well as their variance
is calculated. This value is considered to be the “true” variance σ2

d associated with the
average Euclidean distance d between the points.

Subsequently, the first order Taylor approximation T1(d) of the Euclidean distance (cf.
Equation (6.25)) is determined together with the variance V(T1(d)) associated with it
(cf. Equation (6.40)). Finally, the absolute and relative confidence intervals, bV(T1(d)) and
bV(T1(d)),r respectively, are computed utilizing a significance level specified by α = 3.

Table 6.3 gives a summary of the results obtained. As can be seen, the absolute value of
the difference between the “true” variance σ2

d and the variance of the first order estimate
of the Euclidean distance, V(T1(d)), lies within the absolute confidence interval bV(T1(d)).

d σ2
d V(T1(d)) |σ2

d − V(T1(d))| bV(T1(d)) bV(T1(d)),r

14.16389 0.79896 0.80041 0.00145 0.00254 0.31777%

Table 6.3: Results of a Monte-Carlo experiment concerning the confidence interval associ-
ated with the variance V(T1(d)) of the first order Taylor approximation of the Euclidean
distance d between two points.

Examining Equations (6.45) and (6.48), one can see that the absolute and relative con-
fidence intervals are related with the coordinates of the data points and thus, they are
depending on the Euclidean distance between the points. In order to illustrate these
characteristics, the vector of mean point coordinates µp1

= [µx1 , µy1 ]
T was scaled up to

iteratively increase the distance d. Then, the procedure described above was repeated for
each iteration.
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Figure 6.1 visualizes the relative confidence interval bV(T1(d)),r as a function of the distance
d. As is clearly seen, the relative confidence interval decreases significantly with increasing
distance d.
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Figure 6.1: Relative confidence interval associated with the variance of the first order
estimate T1(d) as a function of d.

6.2.3 Computation of Inhomogeneous Point Coordinates

Given a point p on the projective plane with homogeneous coordinate vector [u, v, w]T .
The homogeneous coordinate vector can be a result of a preceding matrix operation, e.g.
the application of a homography. It is assumed, that the coordinates are all subject to
perturbation, thus there is a non-degenerate 3×3 covariance matrix Λuvw associated with
them. The covariance matrix is structured as follows:

Λuvw =

 σ2
u σuv σuw

σuv σ2
v σvw

σuw σvw σ2
w

 . (6.51)

Computing the vector of inhomogeneous point coordinates,[
x
y

]
=

1

w

[
u
v

]
, (6.52)

obviously is a non-linear operation. Thus, applying the principle of first order error prop-
agation merely gives an estimate of the 2 × 2 covariance matrix Λxy rather than the
covariance matrix itself. Therefore, we need to determine confidence intervals for the par-
ticular components of the first order estimate of Λxy, which is composed as:

Λxy =

[
σ2

x σxy

σxy σ2
y

]
. (6.53)
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6.2.3.1 Statistical Model of the Point Coordinates

Each of the homogeneous coordinates is modelled as the sum of an perturbation-free mean
value, i.e. it is assumed that the mean value computed from a sufficiently large number
of data sets such that its perturbation can be neglected, and an uncertain, mean-free
perturbation parameter: u

v
w

 = p = µuvw + euvw =

 µu

µv

µw

+

 eu

ev

ew

 . (6.54)

Therein, µuvw terms the vector of coordinate means µu, µv and µw and euvw denotes
the vector of perturbation parameters eu, ev and ew. Furthermore, it is assumed that the
perturbation parameters follow a tri-variate Gaussian probability density function:

euvw ∼ N (euvw, o, Λuvw) =
(
(2π)3 |Λuvw|

)− 1
2 e−

1
2
eT

uvwΛ−1
uvweuvw . (6.55)

6.2.3.2 First Order Error Propagation

Applying the law of first order error propagation, the covariance matrix Λxy is estimated
as:

Λxy ≈ JNΛuvwJN
T , (6.56)

with JN denoting the Jacobian matrix of the inhomogeneous coordinate vector with re-
spect to the homogeneous point coordinates, evaluated at the coordinate means:

JN =
1

µ2
w

[
µw 0 −µu

0 µw −µv

]
. (6.57)

Thus, we obtain the first order estimate of the covariance matrix Λxy as:

Λxy ≈
[

V(T1(x)) Cov(T1(x)T1(y))
Cov(T1(x)T1(y)) V(T1(y))

]
(6.58)

with:

V(T1(x)) =
1

µ4
w

(
µ2

wσ2
u − 2µuµwσuw + µ2

uσ
2
w

)
,

Cov(T1(x)T1(y)) =
1

µ4
w

(
µ2

wσuv − µw (µuσvw + µvσuw) + µuµvσ
2
w

)
, (6.59)

V(T1(y)) =
1

µ4
w

(
µ2

wσ2
v − 2µvµwσvw + µ2

vσ
2
w

)
.

In the following sections, confidence intervals associated with the variance V(T1(x)) and
the covariance Cov(T1(x)T1(y)) are computed according to the scheme proposed in Sec-
tion 6.1. The confidence interval associated with the variance V(T1(y)) can finally be
obtained analogously to that of V(T1(x)).
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6.2.4 The Variance of an Inhomogeneous Point Coordinate

Expanding a first order Taylor series for x around the coordinate means µu and µw gives:

x = T1(x) + R1(x), (6.60)

with the first order Taylor approximation T1(x) and the associated Lagrange remainder
term R1(x) being:

T1(x) =
u

w

∣∣∣
u=µu
w=µw

+
[

1
w

− u
w2

]∣∣
u=µu
w=µw

[
u− µu

w − µw

]
=

µu

µw

+
eu

µw

− µuew

µ2
w

, (6.61)

R1(x) =
1

2

[
u− µu w − µw

] [ 0 − 1
w2

− 1
w2 2 u

w3

]∣∣∣∣
u=ξu
w=ξw

[
u− µu

w − µw

]

= −euew

ξ2
w

+
ξue

2
w

ξ3
w

. (6.62)

The variance of the first order Taylor approximation T1(x) is computed as:

V(T1(x)) = E(T1(x)2)− E(T1(x))2, (6.63)

Thus, we calculate:

E(T1(x)) =
µu

µw

, (6.64)

E(T1(x))2 =
µ2

u

µ2
w

, (6.65)

E(T1(x)2) =
µ2

u

µ2
w

+
σ2

u

µ2
w

− 2
µuσuw

µ3
w

+
µ2

uσ
2
w

µ4
w

, (6.66)

and finally obtain:

V(T1(x)) =
σ2

u

µ2
w

− 2
µuσuw

µ3
w

+
µ2

uσ
2
w

µ4
w

=
1

µ4
w

(
µ2

wσ2
u − 2µuµwσuw + µ2

uσ
2
w

)
. (6.67)

As expected, this is perfectly equivalent to the result of first order error propagation given
in Equation (6.59).

6.2.4.1 The Error in the First Order Estimate

In order to determine the error in estimating the variance σ2
x with V(T1(x)), we compute

the variance of the Lagrange remainder term R1(x):

V (R1(x)) = E
(
R1(x)2

)
− E (R1(x))2 . (6.68)
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The required expectation values are computed as:

E (R1(x)) = −σuw

ξ2
w

+
ξuσ

2
w

ξ3
w

,

E (R1(x))2 =
σ2

uw

ξ4
w

− 2
ξuσ

2
wσuw

ξ5
w

+
ξ2
uσ

4
w

ξ6
w

, (6.69)

E
(
R1(x)2

)
=

σ2
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2
w
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w

+ 2
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uw

ξ4
w

− 6
ξuσ

2
wσuw

ξ5
w

+ 3
ξ2
uσ

4
w

ξ6
w

.

These results are obtained by application of the analytical definition of expectation values
given in Equation (2.22). Thus, the variance of the Lagrange remainder term results to:

V (R1(x)) =
σ2

uσ
2
w

ξ4
w

+
σ2

uw

ξ4
w

− 4
ξuσ

2
wσuw

ξ5
w

+ 2
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uσ

4
w

ξ6
w

=
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w

(
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w

(
σ2

uσ
2
w + σ2

uw

)
− 4ξuξwσ2

wσuw + 2ξ2
uσ

4
w

)
. (6.70)

The confidence interval associated with V(T1(x)) is obtained as the maximum value of
V (R1(x)) concerning ξu ∈ (u, µu), and ξw ∈ (w, µw). As ξu solely appears in the numer-
ator, the model ξu = µu + ασu seems to be an appropriate choice. The other parame-
ter, ξw, is dominant in the denominator of Equation (6.70). Thus, we choose the model
ξw = µw − ασw in order to obtain a maximum value of V (R1(x)).

Substituting these models, we obtain the confidence level associated with the variance of
the first order Taylor approximation T1(x) as:

bV(T1(x)) =
(µw − ασw)2 (σ2

uσ
2
w + σ2

uw)− 4(µu + ασu)(µw − ασw)σ2
wσuw + 2(µu + ασu)

2σ4
w

(µw − ασw)6
.

(6.71)

Therein, the factor α = {1, 2, 3} specifies the level of significance associated with the
confidence interval.

In order to define a relative confidence interval, we relate bV(T1(x)) to the variance V(T1(x))
and obtain:

bV(T1(x)),r =

µ4
w ((µw − ασw)2 (σ2

uσ
2
w + σ2

uw)− 4(µu + ασu)(µw − ασw)σ2
wσuw + 2(µu + ασu)

2σ4
w)

(µw − ασw)6 (µ2
wσ2

u − 2µuµwσuw + µ2
uσ

2
w)

.

(6.72)

6.2.5 The Covariance of two Inhomogeneous Point Coordinates

The first order estimations for the inhomogeneous point coordinates x and y are (cf. Equa-
tion (6.61)) given as:

T1(x) =
µu

µw

+
eu

µw

− µuew

µ2
w

, (6.73)

T1(y) =
µv

µw

+
ev

µw

− µvew

µ2
w

. (6.74)
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The related expectation values are:

E(T1(x)) =
µu

µw

, (6.75)

E(T1(y)) =
µv

µw

. (6.76)

In order to derive an algebraic expression for the covariance between the two first order
estimates, we compute the following expressions utilizing the terms listed in Table 6.2:

E(T1(x))E(T1(y)) =
µuµv

µ2
w

, (6.77)

E(T1(x)T1(y)) =
µuµv

µ2
w

+
σuv

µ2
w

− µuσvw

µ3
w

− µvσuw

µ3
w

+
µuµvσ

2
w

µ4
w

. (6.78)

Thus, the first order estimation for the covariance σxy results to:

Cov(T1(x), T1(y)) = E (T1(x)T1(y))− E(T1(x))E(T1(y))

=
σuv

µ2
w

− µuσvw

µ3
w

− µvσuw

µ3
w

+
µuµvσ

2
w

µ4
w

=
1

µ4
w

(
µ2

wσuv − µw(µuσvw + µvσuw) + µuµvσ
2
w

)
. (6.79)

As expected, this expression is perfectly equivalent to the result of first order error prop-
agation given in Equation (6.59).

6.2.5.1 The Error in the First Order Estimate

In order to determine the error in estimating the covariance σxy with Cov(T1(x), T1(y)),
we need to compute:

Cov(R1(x), R1(y)) = E (R1(x)R1(y))− E (R1(x)) E (R1(y)) , (6.80)

with the Lagrange remainder terms (cf. Equation (6.62)) being:

R1(x) = −euew
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+
ξue

2
w
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w

, (6.81)

R1(y) = −evew

ξ2
w

+
ξve

2
w

ξ3
w

. (6.82)

The required expectation values are computed utilizing the terms listed in Table 6.2:

E (R1(x)) = −σuw

ξ2
w

+
ξuσ

2
w

ξ3
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, (6.83)

E (R1(y)) = −σvw
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, (6.84)

E (R1(x))E (R1(y)) =
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, (6.85)

E (R1(x)R1(y)) =
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. (6.86)
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Thus, the covariance of the two Lagrange remainder terms results to:

Cov(R1(x), R1(y)) =

=
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4
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. (6.87)

The confidence interval associated with Cov(T1(x)T1(y)) is obtained as the maximum
value of Cov(R1(x), R1(y)) concerning ξu ∈ (u, µu), ξv ∈ (v, µv), and ξw ∈ (w, µw). As ξu

and ξv solely appear in the numerator of Cov(R1(x), R1(y)), the values ξu = µu + ασu,
ξv = µv + ασv are chosen. The third parameter, ξw, is dominant in the denominator of
Equation (6.87), thus we choose the model ξw = µw − ασw.

After substitution of ξu, ξv and ξw into Equation (6.87), we obtain the absolute confidence
level associated with the covariance between the two first order Taylor approximations
T1(x) and T1(y) as:

bCov(T1(x)T1(y)) =
1

(µw − ασw)6

(
(µw − ασw)2 (σ2

wσuv + σuwσvw

)
− 2 (µw − ασw)

(
(µu − ασu) σ2

wσvw + (µv − ασv) σ2
wσuw

)
+ 2 (µu − ασu) (µv − ασv) σ4

w

)
. (6.88)

Therein, the factor α = {1, 2, 3} specifies the level of significance associated with the ab-
solute confidence interval. In order to define a relative confidence interval, we can compute:

bCov(T1(x)T1(y)),r =
bCov(T1(x)T1(y))

Cov(T1(x)T1(y))
. (6.89)

As the resulting term bCov(T1(x)T1(y)),r is a lengthy expression, it is not listed here explicitly.
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6.2.6 Numerical Verification

A set of data points consisting of 106 samples with homogeneous coordinate vectors was
randomly generated (cf. Section 2.3.2) based on a Gaussian probability density function
with coordinate mean vector:

µuvw =

 µu

µv

µw

 =

 10
12
8

 , (6.90)

and covariance matrix:

Λuvw =

 0.5 0.05 0.05
0.05 0.5 0.05
0.05 0.05 0.5

 . (6.91)

Note that in this example, units were omitted as they are not significant for the interpre-
tation of the results.

At first, the inhomogeneous point coordinates x and y were calculated for all of the
samples. Furthermore, the mean coordinate vector µxy as well as the covariance matrix
Λxy of the inhomogeneous point coordinates were determined.

Subsequently, the first order estimations of the inhomogeneous point coordinates T1(x)
and T1(y) were calculated together with the variances V(T1(x)) and V(T1(y)) (cf. Equa-
tion (6.67)) as well as the covariance Cov(T1(x)T1(y)) (cf. Equation (6.79)). Finally, the
absolute confidence intervals bV(T1(x)), bV(T1(y)) and bCov(T1(x)T1(y)) as well as the relative
confidence intervals bV(T1(x)),r, bV(T1(y)),r and bCov(T1(x)T1(y)),r were computed with a signif-
icance level specified by α = 3.

Table 6.4 gives a summary of the results obtained. Therein, ΛT1(x)T1(y) terms the covari-
ance matrix of the first order estimates T1(x) and T1(y), i.e.:

ΛT1(x)T1(y) =

[
V(T1(x)) Cov(T1(x)T1(y))

Cov(T1(x)T1(y)) V(T1(y))

]
, (6.92)

BT1(x)T1(y) denotes the matrix of absolute confidence intervals:

BT1(x)T1(y) =

[
bV(T1(x)) bCov(T1(x)T1(y))

bCov(T1(x)T1(y)) bV(T1(y))

]
, (6.93)

and BT1(x)T1(y),r holds the relative confidence intervals:

BT1(x)T1(y),r =

[
bV(T1(x)),r bCov(T1(x)T1(y)),r

bCov(T1(x)T1(y)),r bV(T1(y)),r

]
. (6.94)
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µxy Λxy ΛT1(x)T1(y)[
1.2540
1.5049

] [
0.0082 0.0061
0.0061 0.0106

] [
0.0080 0.0059
0.0059 0.0103

]
|Λxy − ΛT1(x)T1(y)| BT1(x)T1(y) BT1(x)T1(y),r[

0.19 10−3 0.18 10−3

0.18 10−3 0.26 10−3

] [
0.21 10−3 0.21 10−3

0.21 10−3 0.28 10−3

] [
2.55% 3.55%
3.55% 2.70%

]

Table 6.4: Results of a Monte-Carlo experiment concerning the absolute and relative
confidence intervals associated with the covariance matrix of first order estimates of in-
homogeneous point coordinates T1(x) and T1(y).

As can be seen, the elements of the matrix |Λxy − ΛT1(x)T1(y)|, which specify the absolute
differences of the ”true“ covariance matrix and its first order estimate, are all within the
absolute confidence intervals specified in BT1(x)T1(y).

6.3 Summary

In this chapter, a procedure for determination of a confidence interval associated with the
results of first order error propagation applied to non-linear functions f(x) was presented.
The approach is based on first order Taylor series expansions of the examined functions
f(x) around the mean values of the uncertain input data vector x. The confidence interval
being sought is computed as the variance of the Lagrange remainder term associated with
the first order Taylor series.

The applicability of the procedure was outlined by means of two tasks typically arising in
metric vision applications, namely:

• calculation of the Euclidean distance between two uncertain data points, and

• computation of the inhomogeneous coordinates of an uncertain data point, given
the set of homogeneous point coordinates.

The results of these computations were numerically verified with Monte-Carlo experi-
ments.
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Chapter 7

A Video-Extensometer System for
Tensile Testing of Polymer Materials

This chapter deals with a digital image processing system to measure polymer materials
during tensile testing. In the following, this measurement system will be referred to as
video-extensometer system. Tensile properties are determined by applying a longitudinal
force to the sample under test and measuring the resulting deformation of the specimen.
This deformation is truly 3-dimensional, a longitudinal elongation and a shortening of the
material in both dimensions orthogonal to the longitudinal axis.

The motivation for this work has arisen from the need for contactless methods for the mea-
surement of polymer materials during tensile testing. Mechanical extensometer systems
influence the characteristics of polymer materials or require extensive specimen instru-
mentation (e.g. strain gauges). Furthermore, they are incapable of measuring the true
3-dimensional specimen deformation. As a consequence, contact-free measurement ap-
proaches are desirable. In this connection, video-extensometer systems as well as laser
extensometer systems are commonly applied to measure global tensile properties. In con-
trast to these two types, digital image correlation systems [3, 1] as well as laser speckle
extensometers [6, 3, 1] are utilized to measure full-field deformations.

The measurement principle of laser extensometer systems, see e.g. [2, 14], is based on
the diverse reflectivity of the specimen surface and the measurement marks applied to
the material. These systems are inflexible compared to video-extensometer systems with
respect to the diversity of evaluation possibilities at measurements on modern testing
machines. The aim here was to develop a digital image processing system to measure the
full 3-dimensional deformation of the samples under test. A flexible system with respect
to the application on different types of specimen and material properties (e.g. reflectivity,
colour, transparency) was established.

At first, the hardware setup is described together with three different acquisition con-
figurations that can be realized with the hardware components. Subsequently, the image
processing algorithm utilized to evaluate the images acquired during the tensile tests
are discussed. Finally, statistical uncertainty analyses are presented, which address the
extraction of the data points as well as the particular steps of the evaluation algorithms.
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7.1 Image Acquisition Setup and Configurations

A schematic diagram for the hardware setup of the presented video-extensometer system
is shown in Figure 7.1. The sample under test is uniaxially loaded in a universal testing
machine. During the tests, image sequences are acquired with the industrial cameras
mounted in front of the specimen. The system is designed to support simultaneous image
acquisition of up to three monochrome cameras operating at up to 30Hz. Depending on
the specific measurement task, the cameras can be arranged in a number of different
configurations.

framegrabber card

evaluation and
visualisation PC

analog video signal

analog load cell signal

camera
specimen

clamps

load cell

I/O card

F

measurement
mark

Figure 7.1: Scheme of the hardware setup realized with the video-extensometer system.
The shape of the specimens typically used for tensile tests follows the ISO 527−2 standard
and exhibits an initial rectangular cross-section of 10× 4mm2.

The images are captured by means of a framegrabber card located in a standard mea-
surement PC, which additionally holds an I/O card to record the analogue output signal
of the testing machine’s load cell. The acquired images are evaluated offline, whereas the
resulting deformation data is subsequently synchronized with the acquired load cell signal.

In the presented video-extensometer system, images are captured with Sony XC-HR 701

analogue monochrome cameras and a Matrox Meteor 2 Multichannel2 analogue framegrab-
ber card. The cameras are equipped with Rodenstock MeVis3 precision lenses with focal
length of 25mm or 50mm, depending on the specific measurement task. The signal from
the load cell is acquired by means of a National Instruments NI PCI-6036E 4 I/O card.

The particular components of the measurement hardware are properties of the Polymer

1www.sonybiz.net
2www.matrox.com/imaging
3www.rodenstock.com
4www.ni.com
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Competence Center Leoben GmbH 5 (PCCL). The system is installed at a universal testing
machine of type Instron 4505, which belongs to the Institute of Materials Science and
Testing of Plastics6 at the University of Leoben7. The development work for the video-
extensometer system has been accomplished at the PCCL within the strategic project
S7. For further information about this project, the interested reader is referred to the
corresponding work package report [19].

7.1.1 Acquisition Configurations

The video-extensometer system supports simultaneous image acquisition from up to three
camera systems. These can be arranged in a number of ways in order to meet the require-
ments of the specific measurement task. In Figure 7.2, three different acquisition con-
figurations are schematically visualized. There, the fields of view of the utilized camera
systems are depicted with respect to a specimen, whose shape follows the ISO 527 − 2
standard. These standardized specimens are typically used for tensile tests and exhibit an
initial rectangular cross-section of 10× 4mm2. The initial measurement length is realized
by means of measurement marks, which are applied to the samples by coloring the front
face approximately orthogonal to the longitudinal axis, and commonly amounts to 40mm
or 50mm, respectively.

Figure 7.2(a) shows the standard configuration with one camera focussing on the front face
of the specimen. A high-resolution configuration is depicted in Figure 7.2(b), where two
cameras observe local regions around the measurement marks applied to the specimen. As
a consequence of the smaller field of view, the optical resolution is increased in comparison
to the standard configuration.

However, a calibration procedure is required to determine the relative location of the
camera systems. Both, the standard and the high-resolution configurations, enable the
determination of the axial as well as the primary transversal deformation of the specimen.
Figure 7.2(c) finally extends the high-resolution configuration by a third camera system
which focusses on the second transversal dimension using an optical mirror mounted
laterally to the specimen.

The 3-dimensional acquisition configuration depicted in Figure 7.2(c) enables the determi-
nation of the volumetric specimen deformation. However, the algorithm for computing the
two transversal deformations are identical, the only difference is that they apply on differ-
ent sets of data points. Thus, the subsequent considerations solely relate to the standard
and the high-resolution configuration. For further information about the 3-dimensional
setup, the interested reader is referred to a corresponding publication of the author [18].

5http://www.pccl.at
6http://www.iwpk.at
7http://www.unileoben.ac.at
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Camera 1

Specimen

(a)

Camera 1

Camera 2
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(b)

Specimen

Camera 1
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Mirror
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Figure 7.2: Fields of view of the cameras with respect to the specimen for (a) the standard,
(b) the high-resolution, and (c) the 3-dimensional acquisition configuration. Note that
in the configurations (b) and (c), two cameras are focussing on local regions around
the measurement marks. As the testing machine’s lower crosshead is moved downwards
during the tensile testing, these fields of view are centered at points below the respective
measurement marks.

7.2 Evaluation Algorithm

The sequence images acquired during the tensile testing are evaluated offline and inde-
pendently of one another, whereby the evaluation algorithm for a particular image is
subdivided into the following tasks:

1. determine the location of the sets of data points in the images,

2. (optional) rectification of the data points from an image coordinate system to a
metric coordinate frame,

3. fitting of geometric models to the sets of data points, and

4. computation of the actual specimen dimensions.

Given the measured specimen dimensions, the longitudinal and transversal strain char-
acteristics can be derived. Strain values are dimensionless by definition. Thus, they can
be computed from specimen dimensions specified by arbitrary units of measurement, i.e.
pixel units as well as metric measures.
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Assuming the camera’s optical axis being oriented perfectly orthogonal to the front face
of the specimen. This is the situation, where any measure determined within the image
coordinate system (in pixel units) can be transformed by simple multiplication with a
constant factor (the pixel resolution) to a metric measure with respect to a coordinate
frame on the specimen’s front face.

In the standard setup, the camera is mounted such as to realize this design. As a result,
the longitudinal and transversal strain characteristics can be directly calculated out of
the measured specimen dimensions. Thus, rectification of the data points is an optional
task for measurements in the standard configuration.

7.2.1 Extracting the Sets of Data Points

Referring to Figure 7.3 and 7.4, six sets of data points, which are termed as S1, . . . , S6, are
extracted at the specimen edges and the margins of the measurement marks, respectively.

S2

S1

S3

S4

S5

S6

Figure 7.3: Sample image captured under the standard acquisition configuration. The
location of the sets of data points is emphasized in magnified local image regions.
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S1a S2a

S3

S4

S5

S6

S1b S2b

Figure 7.4: Sample images captured under the high-resolution acquisition configuration.
The location of the sets of data points is emphasized in magnified local image regions.
The fields of view of the two cameras are non-overlapping, thus a calibration procedure
is required to determine their relative location.
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For each of the particular images I(x, y) acquired during the tensile testing, the location
of the data points is determined according to the following procedure:

1. Computation of the image of absolute gradient G(x, y):

G(x, y) =

√(
δI(x, y)

δx

)2

+

(
δI(x, y)

δy

)2

(7.1)

2. Extraction of the location (gx, gy) of maximum absolute gradient along each pixel
row (for the data points at the specimen edges) and each pixel column (for the data
points at the margins of the measurement marks), respectively.

3. Computation of the 2-dimensional center-of-gravity (cx, cy) of the gradient within a
(2sx + 1)× (2sy + 1) image window centered at (gx, gy),

cx =

gx+sx∑
x=gx−sx

gy+sy∑
y=gy−sy

xG(x, y)p

gx+sx∑
x=gx−sx

gy+sy∑
y=gy−sy

G(x, y)p

, cy =

gx+sx∑
x=gx−sx

gy+sy∑
y=gy−sy

yG(x, y)p

gx+sx∑
x=gx−sx

gy+sy∑
y=gy−sy

G(x, y)p

. (7.2)

Therein, the exponent p is utilized to incorporate stronger weighting of pixels with high
absolute image gradient, [43]. This procedure enables the computation of the point posi-
tions with sub-pixel accuracy. Moreover, the procedure is applicable for arbitrary speci-
men colour, whereas the colour of the measurement marks as well as that of the image
background should be chosen to realize high image contrast.

7.2.2 Rectification of the Data Points

The homogeneous coordinate vector of a data point pI , given with respect to an image
coordinate frame, is projectively transformed to a coordinate vector pM of a planar metric
coordinate system according to:

pM = HpI . (7.3)

Therein, the 3 × 3 homography matrix H describes the projective transformation of the
camera’s image plane to a planar, metric coordinate frame. The parameters of the ho-
mography matrix are determined in a preceding calibration process, which makes use of
the DLT algorithm as described in Section 5.1.1.

A calibration target, which is depicted in Figure 7.5(a), is utilized for the calibration
procedure. The target is equipped with a rectangular grid of reference bores, each of
1.5mm in diameter. The center point distances between adjacent reference bores are 4mm
in each direction.
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(a) (b)

Figure 7.5: The calibration target (a) utilized to determine the homography matrix, which
maps points of the camera’s image plane to the front face of the target. The height
distribution of the front face was measured by means of a confocal microscope (b). This
data provides the starting point to determine the metric coordinates of the reference bore’s
center points.

Prior to the calibration process, the center point coordinates of the reference bores were
determined with respect to a planar, metric coordinate frame, which is located on the
front face of the target. The center point coordinates were found by means of the following
procedure:

• At first, the height distribution of the calibration target’s front surface was measured
with a confocal microscope8 at a raster of 3500 × 2300 points (see Figure 7.5(b)).
The distance between adjacent points of the raster was 20µm in each direction.

• By application of a contour extraction algorithm, data points at the circumference
of the bores were determined.

• Finally, circular models were approximated to the data points of the particular
contour objects, which directly lead to the center point coordinates of the bores.

During the calibration process, the metric center point coordinates are assigned to the
image coordinates of center points extracted in the calibration images. Subsequently, the
DLT algorithm is executed on the resulting pairs of corresponding points.

8A device of the Fries Research & Technology GmbH (http://www.frt-gmbh.com) was used.
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7.2.3 Computation of the Specimen Dimensions

Given the sets of data points, three pairs of parallel lines are determined:

1. The lines lL and lR corresponding to the left and right edges of the specimen,
respectively.

2. Two lines representing the upper and lower margins of the upper measurement mark.

3. Two lines representing the upper and lower margins of the lower measurement mark.

Subsequently, the parameters of three lines lC , lT , and lB are calculated: lC denotes a line
central to the pair of parallel lines lL and lR; lT and lB denote lines central to the pairs
of parallel lines at the margins of the upper and lower measurement mark, respectively.

Finally, the coordinate vectors of two intersection points, pT and pB, are computed by in-
tersecting lC with lT , and lC with lB, respectively. Figure 7.6 illustrates all of the named
geometric primitives with respect to magnified image regions around the measurement
marks. The longitudinal specimen dimension is calculated as the Euclidean distance be-
tween the two points of intersection, pT and pB, the transversal dimension is computed
as the orthogonal distance between the two parallel lines lL and lR.

l
L

l
R

l
C

l
T

l
B

p
T

p
B

Figure 7.6: Location of the geometric primitives utilized for the evaluation procedure:
Three pairs of parallel lines fitted to the sets of data points together with their corre-
sponding central lines, lC , lT and lB, and the two points of intersection pT and pB.

As a result of evaluating the particular images acquired during a tensile test, the longitu-
dinal and transversal specimen dimensions, li and wi, i = 1 . . . nI , are obtained. Therein,
nI denotes the number of images being evaluated.
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7.2.4 Derivation of the Strain Characteristics

In order to compute the longitudinal strain values, εli , as well as the transversal strain
values, εwi

, i = 1 . . . nI , the measured longitudinal and transversal specimen dimensions
are related to the initial specimen dimensions:

εli =
li − l0

l0
, εwi

= −wi − w0

w0

. (7.4)

Therein, l0 and w0 denote the initial longitudinal and transversal specimen dimensions,
which are determined from images acquired prior to the start of the tensile tests.

7.2.5 Exemplary Measurement Results

A typical result obtained with the video-extensometer system is shown in Figure 7.7.
Therein, the plots of the longitudinal and transversal strain characteristics as well as the
tensile force applied to the sample under test are presented with respect to the mea-
surement time. Note that the force values are scaled to fit the data range of the strain
characteristics. The plots show real measurement data, i.e. no filtering has been per-
formed. The measured data can be seen as the starting point for further investigations, as
for instance the computation of Poisson’s ratio, the derivation of the stress-strain diagram
or the calculation of the yield point. However, the interpretation of the data with respect
to tensile properties of the tested polymer material is beyond the scope of this work.
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Figure 7.7: Typical results of a tensile test measured with the video-extensometer system.
The data is published with permission of the Polymer Competence Center Leoben GmbH,
Leoben, Austria, (http://www.pccl.at).
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7.3 Derivation of the Measurement Accuracy

A series of m = 500 images of a specimen was acquired with an industrial camera at
conditions of repeatability9. In Figure 7.8, a sample of the acquired image sequence is
depicted.

Figure 7.8: A sample image acquired in the standard acquisition configuration.

Each of the images was evaluated independently and as a result, a population of m
measurements of the six sets of data points, S1, . . . , S6, was obtained (cf. Figure 7.3).
Moreover, the vectors of average point coordinates, µS1

, . . . ,µS6
, as well as the associated

covariance matrices, ΛS1 , . . . , ΛS6 , were computed.

At this point, the 2n-vector of average point coordinates, µS1
, as well as the 2n × 2n

covariance matrix ΛS1 are shown exemplarily. Therein, n denotes the number of points
inherent to the set S1.

µS1
=
[

x1 x2 . . . xn y1 y2 . . . yn

]T
, ΛS1 =

[
Λx Cxy

CT
xy Λy

]
, (7.5)

with the n× n covariance matrices of the x- and y-coordinates:

Λx =


σ2

x1
σx1x2 . . . σx1xn

σx1x2 σ2
x2

. . . σx2xn

...
...

. . .
...

σx1xn σx2xn . . . σ2
xn

 , Λy =


σ2

y1
σy1y2 . . . σy1yn

σy1y2 σ2
y2

. . . σy2yn

...
...

. . .
...

σy1yn σy2yn . . . σ2
yn

 , (7.6)

9These comprise (a) the camera as well as the specimen to remain unmoved during the measurements,
(b) constant parameters of the measurement setup, such as lighting intensity, lens aperture or exposure
time, and (c) ideally constant environmental conditions, such as ambient light or vibrations.
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and the n× n matrix of covariances between the x- and y-coordinates:

Cxy =


σx1y1 σx1y2 . . . σx1yn

σx2y1 σx2y2 . . . σx2yn

...
...

. . .
...

σxny1 σxny2 . . . σxnyn

 . (7.7)

Subsequently, all of the extracted sets of data points were evaluated according to the
algorithm presented in Section 7.2, resulting in a number of m measurements li of the
specimen length as well as wi, the specimen width, i = 1 . . . m.

Finally, the average longitudinal and transversal specimen dimensions, µl and µw, were
computed together with the associated variances, σ2

l and σ2
w, and standard deviation

values, σl and σw, respectively. The results obtained are listed in Table 7.1.

7.3.1 Monte-Carlo Simulations

Similar to the analysis performed in Section 4.1.4, the multivariate Gaussian distribution
underlying the measurement data was numerically verified by means of Monte-Carlo sim-
ulations. For that purpose, m = 104 sets of data points S1,i, . . . , S6,i, i = 1 . . . m, were
synthetically generated.

At first, the sets of data points were produced incorporating covariance matrices merely
holding average coordinate variances along the main diagonal. In order to give an example,
the 2n×2n covariance matrix (n being the number of data points inherent to S1) utilized
to generate the synthetical sets of data points S1,i, was specified as:

ΛS1 =

[
Λx1 0
0 Λy1

]
, Λx1 =


σ̄2

x1
0 . . . 0

0 σ̄2
x1

. . . 0
...

...
. . .

...
0 0 . . . σ̄2

x1

, Λy1
=


σ̄2

y1
0 . . . 0

0 σ̄2
y1

. . . 0
...

...
. . .

...
0 0 . . . σ̄2

y1

. (7.8)

The average coordinate variances, σ̄2
x1

=
∑n

i=1 σ2
x1i

and σ̄2
y1

=
∑n

i=1 σ2
y1i

, were determined

from the coordinate variances σ2
x1i

and σ2
y1i

, i = 1 . . . n, which in turn were calculated
from the data points extracted in the acquired image sequence. The covariance matrices
incorporated to generate the remaining sets of data points, S2,i, . . . , S6,i, were determined
analogously.

Subsequently, the particular sets of data points were evaluated according to the procedure
described in Section 7.2, yielding m results lMC1,i and wMC1,i, i = 1 . . . m. Furthermore, the
average values, µlMC1

and µwMC1
, were computed together with the associated variances,

σ2
lMC1

and σ2
wMC1

, and standard deviation values, σlMC1
and σwMC1

, respectively. The results
obtained are listed in Table 7.1.

The analysis was repeated with a second Monte-Carlo simulation. There, the fully occu-
pied covariance matrices, ΛS1 , . . . , ΛS6 (cf. Equation (7.5)), were utilized to generate the
synthetical sets of data points.



Chapter 7 - A Video-Extensometer System for Tensile Testing 100

The particular sets of data points were evaluated, yielding a second set of results lMC2,i

and wMC2,i, i = 1 . . . m. Again, the average values, µlMC2
and µwMC2

, were computed
together with the associated variances, σ2

lMC2
and σ2

wMC2
, and standard deviation values,

σlMC2
and σwMC2

, respectively. The results obtained are listed in Table 7.1.

µl, [pixel] σl, [pixel] µw, [pixel] σw, [pixel]

evaluation of
measurement data

560.51 0.00699 137.18 0.01807

Monte-Carlo
simulation 1

560.58 0.00185 137.24 0.00291

Monte-Carlo
simulation 2

560.51 0.00704 137.18 0.01759

Table 7.1: Results obtained by evaluation of the measurement data and the synthetical
data of the Monte-Carlo simulations. The results are compared in terms of average val-
ues, µl and µw, as well as standard deviation values, σl and σw, of the longitudinal and
transversal specimen dimensions, l and w, respectively.

Considering the listed results, the following conclusions were drawn:

• The average values of the longitudinal as well as the transversal specimen dimen-
sions, µl and µw, are in good agreement for all of the three evaluation methods.

• Consistent for all of the three evaluation methods, the longitudinal specimen di-
mension is subject to lower uncertainty with respect to the transversal specimen
dimension. This is a result of the stronger averaging effect caused by the signifi-
cantly higher number of data points involved in the computation of the longitudinal
specimen dimension.

• The standard deviation values resulting from the first Monte-Carlo simulation are
significantly smaller than the standard deviation values associated with the results
obtained by evaluation of the measurement data. This is a result of the simplified
covariance matrices (cf. Equation (7.8)) incorporated in the generation of the data
sets for the first Monte-Carlo simulation.

• Comparing the results of evaluating the measurement data and the synthetical data
of the second Monte-Carlo simulation, the standard deviation values of the lon-
gitudinal as well as the transversal specimen dimension, σl and σw, are in good
agreement. Thus, the fully occupied covariances matrices incorporated in generat-
ing the synthetical sets of data points for the second Monte-Carlo simulation, are
considered to reflect the statistical nature of the measurement data.

As a result of these investigations, the subsequently presented analytic estimation of the
error propagation through the particular steps of the evaluation algorithm is performed
on the basis of fully occupied covariance matrices.
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7.3.2 First Order Estimation of Error Propagation

In Chapter 4 and Chapter 6, the steps of the evaluation algorithm described in Section
7.2 were analyzed concerning first order estimation of error propagation:

• fitting a pair of parallel lines to two sets of data points (Section 4.2.2);

• calculating the orthogonal distance of two parallel lines (Section 4.2.3.1);

• computing the parameters of a line central to a pair of parallel lines (Section 4.2.3.2);

• calculating the point of intersection of two lines (Section 4.1.3.2); and

• computation of the Euclidean distance between two points (Section 6.2.1).

In order to propagate the uncertainty associated with the sets of data points, represented
by the fully occupied covariance matrices, ΛS1 , . . . , ΛS6 , to the variances associated with
the longitudinal and transversal specimen dimension, σ2

lA
and σ2

wA
, the procedures listed

above were successively executed. Finally, the standard deviation values, σlA and σwA
,

were calculated: σlA = 0.00698 pixel and σwA
= 0.01807 pixel.

Comparison of σlA and σwA
with σl and σw (the results obtained by evaluating the acquired

image sequence) as well as with σlMC2
and σwMC2

(the results of evaluating the synthetical
data generated for the second Monte-Carlo simulation, cf. Table 7.1), reveal negligibly
small deviations. These result from approximations inherent to the first order estimations
of (a) the algorithm for fitting a pair of parallel line to two sets of data points, as well
as (b) the non-linear operation of computing the Euclidean distance between two points.
For information about further uncertainty analyses, the interested reader is referred to a
corresponding publication of the author[17].

7.3.3 The High-Resolution Configuration

Referring to Section 7.1.1, the cameras of the video-extensometer system can be arranged
to acquire images in the high-resolution configuration (cf. Figure 7.2(b) and Figure 7.4).
In order to demonstrate the benefit (in terms of higher measurement accuracy) of this
setup with respect to the standard configuration, the uncertainty associated with the
longitudinal and transversal specimen dimension is determined and compared between
the two setups.

In the high-resolution configuration, the standard deviation values, σl = 0.23µm and
σw = 0.47µm, were calculated by evaluating a series of m = 500 images acquired under
conditions of repeatability (with both of the two cameras involved). In order to compare
these metric values with the results obtained in the standard configuration, the standard
deviation values listed in Table 7.1 are multiplied with a scaling factor f representing the
pixel resolution for this setup: f ≈ 72.9 µm

pixel
. Thus, the standard deviation values obtained

for the standard configuration are: σl = 0.51µm and σw = 1.31µm.

As can be seen, the achievable measurement accuracy in the high-resolution configuration
is significantly higher than in the standard setup.
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7.3.4 Computation of Strain Values

The longitudinal strain εl is computed by relating the actual specimen length l to the
initial specimen length l0 (cf. Equation (7.4)):

εl =
l − l0

l0
=

l

l0
− 1. (7.9)

In order to estimate the uncertainty (in terms of the variance σ2
εl
) associated with εl, the

law of first order error propagation is applied:

σ2
εl
≈ Jεl

Λl,l0J
T
εl
. (7.10)

Therein, a combined covariance matrix Λl,l0 is incorporated, which holds the variances of
the initial and actual specimen length, respectively:

Λl,l0 =

[
σ2

l 0
0 σ2

l0

]
. (7.11)

Thus, it is assumed that l and l0 are uncorrelated. The Jacobian matrix Jεl
becomes:

Jεl
=
[

1
l0

− l
l20

]
, (7.12)

and the uncertainty associated with εl is estimated as:

σ2
εl
≈ 1

l20

(
σ2

l + σ2
l0

(
l

l0

)2
)

. (7.13)

Considering Equation (7.13), the initial specimen length l0 as well as σ2
l , the variance

associated with the actual specimen length, are to be considered as being fixed. The
variance σ2

εl
increases quadratically with l, and it increases linearly with σ2

l0
, the variance

associated with the determination of the initial specimen length.

As a result, the uncertainty associated with εl can be downsized by reducing σ2
l0
. This can

easily be achieved by averaging l0 over a number of repeated measurements performed
prior to the start of a tensile test. Considering a number of n measurements of the initial
specimen length, l0,i, i = 1 . . . n, the uncertainty associated with the average value,

l̄0 =
1

n

n∑
i=1

l0,i, (7.14)

results to:

σ2
l̄0

=
1

n2

n∑
i=1

σ2
l0,i

, (7.15)

with σ2
l0,i

denoting the variances associated with the particular values l0,i. Assuming these

variances to be approximately equal, i.e. σ2
l0,1
≈ σ2

l0,2
≈ . . . ≈ σ2

l0,n
≈ σ2

l0
, we obtain:

σ2
l̄0
≈ 1

n
σ2

l0
. (7.16)

These considerations are analogously applicable to transversal strain values.



Chapter 7 - A Video-Extensometer System for Tensile Testing 103

7.4 Conclusions

The following conclusions, regarding the uncertainty analyses described in this chapter,
can be drawn:

• As numerically verified by means of Monte-Carlo simulations, the statistical nature
of the sets of data points can be suitably represented by multivariate Gaussian
distributions incorporating fully occupied covariance matrices.

• The uncertainty associated with the longitudinal and transversal specimen dimen-
sions was analytically estimated by successive application of the law of first order
error propagation to the particular steps of the evaluation algorithm. Comparison
with results of evaluating measurement data as well as synthetical data generated
for the Monte-Carlo simulations show negligibly small deviations.

• The measurement accuracy achievable with the standard and the high-resolution
acquisition configuration were determined by analyzing series of images acquired at
conditions of repeatability. Comparison of the results revealed that measurements
performed in the high-resolution setup can be evaluated at significantly higher ac-
curacy than in the standard configuration.

• As analytically verified by application of the law of first order propagation, a signif-
icant reduction of the uncertainty associated with strain values can be achieved by
averaging the initial specimen dimensions over a number of repeated measurements.



Chapter 8

Summary, Conclusions and Future
Work

8.1 Summary

A video-extensometer system has been developed, which features the following character-
istics:

• The video-extensometer system enables measurement of the true specimen defor-
mation. Due to the contactless approach, the material under test is not influenced
by the measurement system.

• The system supports simultaneous image acquisition of up to three monochrome
camera systems, which can be arranged in a number of different configurations.
Thus, the system can be applied to different measurement tasks, e.g. measuring of
longitudinal strain of a few % up to several 100%.

• In contrast to mechanical extensometer systems, the presented video-extensometer
system supports measurement of the full 3-dimensional specimen deformation. For
this purpose, an optical mirror can be mounted laterally to the specimen to provide
a view onto the side face of the samples under test.

• The evaluation software of the presented system is flexible concerning both, the
shape and the dimension of the specimen as well as the type of material testing
applied to the specimen, e.g. tensile tests or compression tests.

• The evaluation algorithm is designed to meet the requirements of measuring material
with diverse optical characteristics, e.g. colour, reflectivity, or transparency.

• The measurement accuracy achievable with the video-extensometer system is de-
termined by (1) evaluation of repeated measurements, (2) Monte-Carlo simulation,
and (3) analytic estimation through application of the law of first order error prop-
agation. The results obtained with these three techniques are in good agreement.

104
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8.2 Conclusions

The following main conclusions can be drawn from the statistical uncertainty analyses
presented in this thesis:

• Three techniques for statistical uncertainty analyses have been investigated:

1. evaluation of repeated but independent measurements,

2. Monte-Carlo simulations based on synthetically generated data, and

3. first order estimation of error propagation.

The good agreement of the results obtained with these three methods reveal that
the analytical approach is a suitable alternative to Monte-Carlo simulations, which
may be computationally expensive. This is verified for tasks typically arising in
metric vision systems as well as for the image processing algorithm specific for the
video-extensometer system.

• The statistical nature of the sets of data points can be suitably modelled by multi-
variate Gaussian distributions incorporating fully occupied covariance matrices. This
is numerically verified through Monte-Carlo simulations, where synthetical data is
generated by means of this statistical model. Moreover, the first order estimates of
error propagation were computed taking the fully occupied covariance matrices into
account.

• The algorithms for fitting a line as well as a pair of parallel lines to sets of noisy data
points are investigated in detail concerning first order error propagation. Thereby,
the uncertainty associated with the parameters of the fitted lines is determined nu-
merically, i.e. by evaluation of repeated but independent measurements, as well as
analytically through successive application of the law of first order error propaga-
tion to the particular steps of the evaluation algorithms. The results of the analyt-
ically computed uncertainty estimates show negligibly small deviations, which are
explained by the approximations inherent to the analytical approach.

• The direct linear transformation (DLT) algorithm for estimating the parameters of
plane-to-plane homographies based on point correspondences is analyzed concern-
ing first order error propagation. The uncertainty associated with the homography
parameters is determined numerically as well as analytically. A calibration target
with a rectangular raster of reference bores is presented. The target is utilized for
the calibration procedure of the video-extensometer system. It is shown that the
uncertainty associated with the homography parameters may be significantly re-
duced, if the homography is computed based on a set of points of intersection of the
rectangular raster instead of the reference bores center points.

8.3 Future Work

In the author’s opinion, there are a number of open issues directly related with the work
presented in this thesis:
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1. Monte-Carlo simulations are based on synthetical data, produced by means of
random number generators. Thereby the matrix square root or alternatively, the
Cholesky decomposition of the covariance matrix, which describes the statistical
model underlying the data to be generated, is required. Especially for covariance
matrices of high dimensions, i.e. n & 500 with n being the dimensionality of the
covariance matrix, these matrix factorizations become instable due to numerical
reasons. As a result, alternative approaches such as the modified Cholesky decompo-
sition as well as algorithms for estimating Cholesky triangles, would be desirable in
these situations [55, 56].

2. All of the uncertainty analyses presented in this thesis are based on the assumption
of Gaussian distributed data. Actually, the underlying normal probability density
functions were verified with statistical tests, such as the χ2-test and the Kolmogorov-
Smirnov test. However, a more general approach would be to avoid the need for
knowledge about the underlying statistical model. This could be achieved by analyz-
ing the spectral characteristics of the acquired measurement data. This information
would then act as the starting point for statistical uncertainty analyses.

3. First order error propagation is a popular means for estimating the uncertainty as-
sociated with the outcomes of explicit as well as implicit functions, as it enables
the application of efficient linear algebra methods. However, when applied to func-
tions non-linear in the input parameters, the law of first order error propagation
is analytically not exact. In these situations, alternative approaches such as error
propagation of second or higher order, which would lead to the incorporation of
tensor algebra techniques, would be desirable.

4. The presented video-extensometer system can be flexibly applied to different types of
material testing, among others: tensile tests and compression tests. The specimens
utilized for compression tests are initially of cylindrical shape. Depending on the
material, the charging construction as well as the friction between the specimen
and the charging construction, the contour lines of the samples under test deform
into convex, straight or concave shapes. As a result, the images acquired during the
compression test could be evaluated by approximation of symmetric spline curves.
The development of the image processing algorithms as well as the determination
of the uncertainty associated with the results is considered as an open issue.



Appendix A

Derivation of Statistical Quantities

A.1 Variance and Covariance

The variance V (X) of a random variable X can be reformulated as:

V(X) = E
(
(X − E(X))2)

= E ((X − E(X)) (X − E(X)))

= E
(
X2 − 2XE(X) + E(X)2

)
= E

(
X2
)
− 2E(X)2 + E(X)2

= E
(
X2
)
− E(X)2. (A.1)

The covariance Cov(X, Y ) of two random variables X and Y is similarly derived:

Cov(X, Y ) = E ((X − E(X)) (Y − E(Y )))

= E (XY − E(X)Y − E(Y )X + E(X)E(Y ))

= E (XY )− 2E(X)E(Y ) + E(X)E(Y )

= E (XY )− E(X)E(Y ). (A.2)

A.2 Covariance Matrix

The covariance matrix V (X) of a random vector X is reformulated as:

V(X) = E
(
(X − E(X)) (X − E(X))T

)
= E

(
XXT −XE(X)T − E(X)XT + E(X)E(X)T

)
= E

(
XXT

)
− E(X)E(X)T − E(X)E(X)T + E(X)E(X)T

= E
(
XXT

)
− E(X)E(X)T . (A.3)
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A.3 Sample Variance and Sample Covariance

The sample variance σ2
x of a population of samples xi can be reformulated as:

σ2
x =

1

nR − 1

(
nR∑
i=1

(xi − µx)
2

)

=
1

nR − 1

(
nR∑
i=1

(
x2

i − 2µxxi + µ2
x

))

=
1

nR − 1

(
nR∑
i=1

(
x2

i

)
− 2µx

(
nR∑
i=1

xi

)
+ nRµ2

x

)

=
1

nR − 1

(
nR∑
i=1

(
x2

i

)
− 2nRµ2

x + nRµ2
x

)

=
1

nR − 1

(
nR∑
i=1

(
x2

i

)
− nRµ2

x

)
(A.4)

=
1

nR − 1

 nR∑
i=1

(
x2

i

)
− 1

nR

(
nR∑
i=1

xi

)2
 . (A.5)

The sample covariance σxy of two sample populations xi and yi is derived analogously:

σxy =
1

nR − 1

(
nR∑
i=1

(xi − µx) (yi − µy)

)

=
1

nR − 1

(
nR∑
i=1

(xiyi − xiµy − yiµx + µxµy)

)

=
1

nR − 1

(
nR∑
i=1

(xiyi)− µy

(
nR∑
i=1

xi

)
− µx

(
nR∑
i=1

yi

)
+ nRµxµy

)

=
1

nR − 1

(
nR∑
i=1

(xiyi)− nRµxµy − nRµxµy + nRµxµy

)

=
1

nR − 1

(
nR∑
i=1

(xiyi)− nRµxµy

)
(A.6)

=
1

nR − 1

(
nR∑
i=1

(xiyi)−
1

nR

nR∑
i=1

xi

nR∑
i=1

yi

)
. (A.7)



Chapter A - Derivation of Statistical Quantities 109

A.4 Sample Covariance Matrix

The sample covariance matrix Λx of a population of sample vectors xi is reformulated as:

Λx =
1

nR − 1

(
nR∑
i=1

(xi − µx) (xi − µx)T

)

=
1

nR − 1

(
nR∑
i=1

(
xixi

T − xiµx
T − µxxT

i + µxµx
T
))

=
1

nR − 1

(
nR∑
i=1

(
xixi

T
)
−

(
nR∑
i=1

xi

)
µx

T − µx

(
nR∑
i=1

xT
i

)
+ nRµxµx

T

)

=
1

nR − 1

(
nR∑
i=1

(
xixi

T
)
− nRµxµx

T − nRµxµx
T + nRµxµx

T

)

=
1

nR − 1

(
nR∑
i=1

(
xixi

T
)
− nRµxµx

T

)
(A.8)

=
1

nR − 1

(
nR∑
i=1

(
xixi

T
)
− 1

nR

nR∑
i=1

xi

nR∑
i=1

xi
T

)
. (A.9)



Appendix B

Algebraic and Central Moments of
Univariate Gaussian Distributions

In the following sections, algebraic as well as central moments of the univariate Gaussian
probability density function are derived. The univariate Gaussian distribution is charac-
terized by:

N (x, µ, σ) =
1

σ
√

2π
e−

(x−µ)2

2σ2 . (B.1)

B.1 The First Algebraic Moment

The first algebraic moment of a univariate Gaussian probability density function is defined
as:

M1(x) = E(x)

=

∞∫
x=−∞

x
1

σ
√

2π
e−

(x−µ)2

2σ2 dx. (B.2)

With the substitution, z = x−µ
σ

, and thus x = σz + µ as well as dx = σ dz, we obtain:

M1(x) =
1

σ
√

2π

∞∫
z=−∞

(σz + µ) e−
z2

2 σ dz

=
σ√
2π

∞∫
z=−∞

ze−
z2

2 dz

︸ ︷︷ ︸
0

+
µ√
2π

∞∫
z=−∞

e−
z2

2 dz

︸ ︷︷ ︸
√

2π

= µ. (B.3)
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Notice that the results of the two integrals above are obtained considering the uneven

characteristic of the function ze−
z2

2 as well as the following definitions (see Bronstein [7]):

∞∫
z=0

zne−az2

=


√

π
k−1Q

j=0
(2j+1)

2k+1a
k+1
2

. . . n = 2k,

k!
2ak+1 . . . n = 2k + 1,

(B.4)

∞∫
z=0

e−a2z2

=

√
π

2a
, (B.5)

which hold for any k, n ∈ N and a > 0. Here, N is defined as the set of the natural numbers
including 0.

B.2 The Second Central Moment

The second central moment of a univariate Gaussian probability density function is de-
termined as follows:

M2(x) = E
(
(x− µ)2

)
=

∞∫
x=−∞

(x− µ)2 1

σ
√

2π
e−

(x−µ)2

2σ2 dx

=
1

σ
√

2π

∞∫
z=−∞

σ2z2e−
z2

2 σ dz

=
σ2

√
2π

∞∫
z=−∞

z2e−
z2

2 dz

︸ ︷︷ ︸
√

2π

= σ2. (B.6)

The results are obtained utilizing again the substitution z = x−µ
σ

, and thus x = σz + µ as
well as dx = σ dz. Moreover, the integrals listed in Equation (B.4) are incorporated.

B.3 The Third Central Moment

The third central moment is defined as:

M3(x) = E
(
(x− µ)3

)
=

∞∫
x=−∞

(x− µ)3 1

σ
√

2π
e−

(x−µ)2

2σ2 dx. (B.7)
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Incorporating once again the substitution z = x−µ
σ

, and thus x = σz + µ as well as
dx = σ dz, we obtain:

M3(x) =
1

σ
√

2π

∞∫
z=−∞

σ3z3e−
z2

2 σ dz

=
σ3

√
2π

∞∫
z=−∞

z3e−
z2

2 dz

︸ ︷︷ ︸
0

= 0. (B.8)

The final result is obtained considering the uneven characteristic of the function z3e−
z2

2 .

B.4 The Fourth Central Moment

The fourth central moment is determined as:

M4(x) = E
(
(x− µ)4

)
=

∞∫
x=−∞

(x− µ)4 1

σ
√

2π
e−

(x−µ)2

2σ2 dx

=
1

σ
√

2π

∞∫
z=−∞

σ4z4e−
z2

2 σ dz

=
σ4

√
2π

∞∫
z=−∞

z4e−
z2

2 dz. (B.9)

Once again the substitution z = x−µ
σ

, and thus x = σz+µ as well as dx = σ dz, is utilized
for this derivation. Now applying integration by parts with:

u = z3,

v′ = ze−
z2

2 ,
and further:

u′ = 3z2,

v = −e−
z2

2 ,

we obtain (incorporating the integral definition specified in Equation (B.4)):

M4(x) =
3σ4

√
2π

∞∫
z=−∞

z2e−
z2

2 dz

︸ ︷︷ ︸
√

2π

= 3σ4. (B.10)



Appendix C

The Pseudo-Inverse Matrix

According to Gallier[22], the general definition of the pseudo-inverse A+ of a rectangular
m× n matrix A,

A =

 a11 . . . a1n
...

. . .
...

am1 . . . amn

 , (C.1)

is given as:
A+ = VS+UT . (C.2)

Note that the pseudo-inverse A+ is of dimensionality n×m. The required matrices, V, S
and U, are obtained from the singular value decomposition of A, i.e.: A = USVT . Therein,
the n×m diagonal matrix S+ is structured as:

S+ =


λ1 0 . . . 0 0 . . . 0
0 λ2 . . . 0 0 . . . 0
...

...
. . .

...
...

. . .
...

0 0 . . . λn 0 . . . 0

 for m > n, or:

S+ =



λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...
0 0 . . . λm

0 0 . . . 0
...

...
. . .

...
0 0 . . . 0


for m ≤ n.

(C.3)

Therein, the diagonal elements λi, i = 1 . . . p, and p = min(m, n), are:

λi =

{
1
σi

. . . i = 1 . . . r,

0 . . . i = r + 1 . . . p,
(C.4)

where the σi denote the singular values of A and r specifies the rank of A. Moreover, U
identifies an n × n matrix, whose columns are the eigenvectors of AAT . Analogously, V
denotes an m×m matrix, whose columns represent the eigenvectors of AT A.
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Given the special case of A being a quadratic, symmetric matrix of dimensionality m.
Then, there exists an orthogonal m × m matrix U, i.e. UUT = UT U = Im, as well as a
diagonal matrix S being structured as:

S =



λ1 0 . . . 0 0 . . . 0
0 λ2 . . . 0 0 . . . 0
...

...
. . .

...
...

. . .
...

0 0 . . . λp 0 . . . 0
0 0 . . . 0 0 . . . 0
...

...
. . .

...
...

. . .
...

0 0 . . . 0 0 . . . 0


, (C.5)

such that:
A = USUT . (C.6)

In this situation, the pseudo-inverse A+ is computed as:

A+ = US+UT , (C.7)

with:

S+ =



1
λ1

0 . . . 0 0 . . . 0

0 1
λ2

. . . 0 0 . . . 0
...

...
. . .

...
...

. . .
...

0 0 . . . 1
λp

0 . . . 0

0 0 . . . 0 0 . . . 0
...

...
. . .

...
...

. . .
...

0 0 . . . 0 0 . . . 0


. (C.8)

Proof: Following Gallier[22], the pseudo-inverse A+ of an arbitrary matrix A is charac-
terized by the following four equations, which are commonly known as the Moore-Penrose
conditions:

AA+A = A, (C.9)

A+AA+ = A+, (C.10)(
AA+

)T
= AA+, (C.11)(

A+A
)T

= A+A. (C.12)

Thus, we need to verify these conditions for the quadratic, symmetric matrix A:

Condition 1 (Equation (C.9)):

AA+A =
(
USUT

) (
US+UT

) (
USUT

)
= U S S+ S︸ ︷︷ ︸

S

UT

= USUT

= A.

(C.13)
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Condition 2 (Equation (C.10)):

A+AA+ =
(
US+UT

) (
USUT

) (
US+UT

)
= U S+ S S+︸ ︷︷ ︸

S+

UT

= US+UT

= A+.

(C.14)

Condition 3 (Equation (C.11)):

(AA+)
T

=
((

USUT
) (

US+UT
))T

=
(
USS+UT

)T
= U S+ S︸︷︷︸

SS+

UT

= USS+UT

= USIS+UT

= USUT US+UT

= AA+.

(C.15)

Condition 4 (Equation (C.12)):

(A+A)
T

=
((

US+UT
) (

USUT
))T

=
(
US+SUT

)T
= U S S+︸︷︷︸

S+S

UT

= US+SUT

= US+ISUT

= US+UT USUT

= A+A.

(C.16)

As all of the Moore-Penrose conditions are properly fulfilled, we have verified that the
pseudo-inverse matrix A+ of A can actually be computed according to: A+ = US+UT .
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