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Chapter 1

Introduction

Organic electronics is probably one of the most quickly developing fields in mod-
ern solid state physics [1]. The novel physical properties of organic semicon-
ducting materials have provided the main motivation to use these materials as
active layers in a variety of electronic devices. Nowadays a growing research
effort is devoted to the improvement of the semiconducting, conducting, and
light-emitting properties of organic (polymers, oligomers) and hybrid (organic-
inorganic) composites. This performance improvement combined with the ability
to deposit organic semiconductors at room temperatures on large surface areas
such as plastic or paper leads to unique technologies and generates new applica-
tions [2]. As a first example, organic light emitting diodes (OLEDs) [3], devices
that emit light in the visible and UV range upon the passage of current through
an organic semiconductor film, have become now commercially available in small
format flat panel displays and are being intensely developed for solid-state light-
ing. A second example is organic thin film transistors (OFETs) [4], which control
the flow of electricity in circuits. OFETs are being developed for applications in
smart tags and flat panel displays. Further important and promising applications
exist in e.g. photovoltaics [5] and sensing [6].

For the past forty years inorganic semiconductors played an important role in
solid state physics. Large amounts of both experimental and theoretical re-
search has been invested in this field. However, with the emergence of organic
semiconductors—which have rather different properties compared to inorganic
semiconductors—also new techniques of material synthesis and analysis as well
as new theoretical approaches are necessary. It is well known, that the charge
carrier mobilities, which are crucial parameters for the performance of OFETs de-
vices, show very strong dependence on the organic thin film morphology. Thereby,
a deep understanding of organic thin film growth processes is a prerequisite for
the production of electronic devices with required characteristics. Moreover, or-
ganic solids show a strong tendency to form polymorphic phases. The formation
of a specific structure is determined by growth conditions, such as temperature
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2 CHAPTER 1. INTRODUCTION

and deposition rate, as well as the type of substrate. The understanding of the
organic/metal interface is not only important for the growth of molecular lay-
ers on metallic surfaces, but also regarding their electronic structure. In fact,
the interface between metal electrodes and organic active layers is another main
parameter which determines the operation of organic light emitting devices.

Turning to computational materials science, density functional theory (DFT) is
one of the most powerful and popular ab-initio method for describing structural
and electronic properties in a vast class of materials. For dense matter, DFT has
proven its success to account for structure, cohesion and other properties. The
main standard approximations, such as a local-density approximation (LDA)
and generalized gradient approximation (GGA), are able to produce equilibrium
bond lengths within a few percent. However, the van der Waals (vdW) nature
of bonding in soft matter has imposed severe restrictions on the application of
LDA and GGA. Some examples of such systems are graphite, molecular crystals,
polymers, liquids, biostructures as DNA, and weakly interacting systems such as
physisorbed molecules on metal surfaces.

The main problem when incorporating vdW interactions into DFT arises due
to the fact that nonlocal or dispersion interactions (of which vdW is one class)
are quantum-mechanical manybody effects and require extensive mathematical
treatment [7]. An efficient description of vdW interactions is still a challenging
task for ab-initio calculations. Recently, several approaches to remedy the lack of
the vdW interactions in existing approximations to the exchange-correlation po-
tentials have been developed. They range from very simple methods utilizing the
semiempirical vdW correction formula [8], to very complicated ab-initio methods
of obtaining an approximate solution of the exact equation for the exchange-
correlation energy (the so-called adiabatic connection formula) [9–12].

The van der Waals density functional (vdW-DF) developed by Dion et al. [10] is
the most successful current ab-initio approach due to its precision and computa-
tional efficiency [13]. Applications of the vdW-DF to typical vdW systems, such
as noble gases [10], layered systems such as graphite [14], benzene dimers [15, 16],
adsorption of benzene and naphthalene on graphite [17], and many other systems
[13] have shown good agreement with both experimental results and other more
precise, so-called “benchmark”, quantum-chemistry methods.

This thesis aims at providing insight into some of the above described problems by
means of DFT studies. Thereby the cohesive properties of organic semiconductors
and their polymorphism are the major topics. Aiming at an outlook towards
organic thin film growth also organic/metal interfaces are discussed. For all
these issues, an efficient implementation of the vdW-DF is a crucial prerequisite
which represents another cornerstone of the present work.

The thesis is organized as follows. In Chapter 2 organic semiconductors are in-
troduced. Their structure and the main physical properties relevant for organic
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electronics are described. In Chapter 3 an overview of the DFT is given. The
exact expression together with the most popular approximations for the exchange-
correlation energy are described, and the vdW-DF theory is reviewed in detail.
It is shown that the main result of the vdW-DF theory is an expression of the
nonlocal energy in the form of a 6-dimensional integral that describes the inter-
action between electron densities in two different space points. This simple form
for the vdW interaction energy, however, requires a rather efficient numerical
implementation, especially if it is going to be applied to extended systems such
as molecular crystals. One of the main achievements of this thesis is a particu-
larly efficient implementation of the vdW-DF. We use an advanced technique of
Monte-Carlo multidimensional integration, which is described in detail in Chap-
ter 4. Efficiency and accuracy of this integration method is tested and compared
with reported both experimental and theoretical results.

In Chapter 5 we apply the vdW-DF theory to the investigation of equilibrium
properties of organic molecular crystals, oligoacene, oligophenylene, and olig-
othiophene families. Available data on the enthalpy of sublimation allow the
estimation of experimental cohesive energies and a comparison with results ob-
tained using different theoretical methodologies. Besides adopting vdW-DF, we
also calculate the cohesive energies using the standard exchange-correlation ap-
proximations (LDA and GGA), and apply another approach of semiempirically
corrected DFT energies. Accuracies of the different methods are discussed. Next,
all methodologies mentioned above are applied to the investigation of a quantity
that can hardly be experimentally accessed - surface energy. Surface energy
defines the morphology of the crystals at growth conditions close to thermody-
namical equilibrium, and, hence, the equilibrium crystal shape.

The role of the vdW interactions in the physisorption of molecules on metal
surfaces has been a heavily discussed topic. Using our ab-initio tool for treating
dispersion interactions, the adsorption of organic molecules such as an isolated
thiophene ring or PTCDA on the coinage metals Cu, Ag, and Au are examined
in Chapter 6. Our investigations show reasonable agreement with experimental
values for the adsorption energies and equilibrium distances and reveal that the
main contribution to the binding in these cases is due to the nonlocal energy
contribution.

Polymorphism of thin film structures of the organic materials is discussed in
Chapter 8. The method of the combined experimental and theoretical study of
very thin films (100 nm) is applied to find the crystal structure of so-called sub-
strate induced or thin film phases of pentacene and para-cyano-quaterphenylene.
The information gained from specular and grazing-incidence x-ray diffraction on
the positions and intensities of the reflection peaks only allow the determination
of unit cell parameters. Using this data we perform an ab-initio optimization
of the internal crystal structure to determine the atomic positions and molecu-
lar packing inside the unit cell. The reliability of the theoretical optimization
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procedure is estimated by direct comparison of the experimentally observed and
theoretically calculated x-ray diffraction intensities. The revealed crystal struc-
ture of the pentacene thin film phase is found to be rather different from that of
the bulk phase. Comparison between these two phases is analyzed in terms of
the electronic band structure.



Chapter 2

Organic semiconductors

2.1 Historical overview

Organic semiconductors represent a large class of solids, comprising organic molec-
ular crystals and polymers. Both are primarily constructed from carbon and hy-
drogen but often contain also N, O, S, or various metals. Typical representatives
of organic semiconductors are aromatic hydrocarbons and alkenes (olefins), N-,
O- or S-containing heterocyclic compounds such as pyrrole, furane, thiophene,
quinoxaline. In Fig. 2.1 some of the most prominent representatives of polymers
(top) and molecular crystals (bottom) that are already widely used in electronic
devices are displayed. These materials have formed the basis for the rapidly de-
veloping field of organic electronics, which has the aim of replacing their inorganic
counterparts in applications where mechanical flexibility, large area coverage, and
inexpensive mass production are required.

The history of organic semiconductors starts from the beginning of the 20th
century when first studies of the photoconductivity of anthracene crystals (a pro-
totypical organic semiconductor) were performed. Later, in the 1960s, triggered
by the discovery of electroluminescence, molecular crystals were extensively in-
vestigated. As a result, the basic processes involved in optical excitation and
charge carrier transport in such systems were described [18, 19] and the principal
of luminescent diodes based on organic crystals was demonstrated [20]. However,
practical difficulties such as the high operation voltage induced by the thickness of
the films, insufficient current and light output, and problems with device stability
impeded further development in this field.

In the 1970s, the development of new successful techniques for the synthesis and
controlled doping of conjugated polymers led to the success of this second impor-
tant subclass of organic semiconductors [21]. This work was honored with the
Nobel Prize in Chemistry in the year 2000. Conducting polymers have led to the
first application of organic materials in electronic devices as conductive coating
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6 CHAPTER 2. ORGANIC SEMICONDUCTORS

Figure 2.1: Molecular structure of some prototype organic semiconductors: poly(p-
phenylenevinylene), PPV; polyfluorene, PFO; poly(3-alkylthiophene), P3AT; Cu-
phtalocyanine, CuPc; tris(8-hydroxyquinoline)aluminum, Alq3; pentacene.

[22] or photoreceptors in electrography [23]. Since then, organic semiconductors
have attracted increasing efforts of both academic and industrial research groups.
The demonstration of an organic heterojunction of p- and n-conducting materials
in the 1980s [24] showed very promising results for application of undoped organic
semiconductors as photovoltaic cells (OPVCs). Tremendous research effort has
been directed toward improving the efficiency and functionality of OLEDs. This
was initiated by reports of efficient organic light-emitting diodes (OLED) based
on thin films of small molecules (Alq3 and an aromatic diamine) by Tang and Van
Slyke [24] and the first polymer-based light-emitting diode (PLED) introduced
by Burroughes et al. [25].

A sketch of a typical OLED device is depicted in Fig. 2.2 (left). The first com-
mercial products that incorporate OLED displays have already become available.
In addition to OLEDs, remarkable progress has been made in the development
of organic thin film transistors (OTFTs) (Fig. 2.2 (right)) [25–27]. Success in the
growth of organic crystals with high purity has allowed the best organic materials
(one of the most prominent one is pentacene) to achieve charge-carrier mobilities
comparable with those of amorphous silicon TFTs. The latter, commonly used as
the pixel-switching elements in active matrix flat-panel displays [28], could hence
be possibly replaced by organic materials in such applications in the near future.
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Figure 2.2: Organic electronic devices: Organic light-emitting diodes (OLED) (left)
typically have a heterolayer structure consisting of the hole transport layer (p) and the
electron transport layer (n); Organic field-effect transistor (right) [1].

2.2 Organic molecular crystals

2.2.1 Crystal structure

In contrast to polymers, built up by infinite chains, oligomers of different length
are the building blocks of molecular crystals. Three families of oligomers, i.e.
oligoacenes (nA), oligophenylenes (nP), and oligothiophenes (nT), are the sim-
plest and most widely studied representatives of organic semiconductors. nA, nP,
and nT belong to the class of heterocyclic π-conjugated aromatic hydrocarbons.
Their chemical structures are presented in Fig. 2.3. n benzene rings form the
nA and nP oligomers, while nT consists of n thiophene rings which are linked
together as shown in Fig. 2.3. Due to their structure, the oligoacene molecules
are rather rigid and planar, whereas the torsion angle between neighboring rings
in the oligophenylene and oligothiophene molecules has values of about 40◦ and
20◦ respectively. However, in the bulk phase all molecules are almost planar.

At room temperature and ambient pressure nA, nP, and nT crystallize in a so-
called herringbone structure which is very common for planar rod-like molecules.
The main features of the herringbone structure are displayed in Fig. 2.4 for a
4P crystal. The molecular crystal consists of layers with almost upright standing
molecules. Within one layer, the molecules form a herringbone pattern with
typical herringbone angles of about 50◦. They all crystallize in a monoclinic
space group, except tetracene (4A) and pentacene (5A) which exhibit a lower,
triclinic, symmetry.
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Figure 2.3: Generic structure of oligoacenes (nA), oligophenylenes (nP), and oligoth-
iophenes (nT).

Figure 2.4: The herringbone packing shown for the example of the 4P crystal: layered
stacking along c direction (left) and herringbone pattern of two inequivalent molecules
within the ab plane (right).

2.2.2 Electronic structure

The molecules investigated within this thesis belong to the group of conjugated
π electron systems. The term π-conjugated comes from the electronic structure
of such molecules [29]. The carbon s and p orbitals form three sp2 orbitals (sp2

hybridization), i.e. the 2s orbital mixes with two of the three original mutually
orthogonal p-orbitals, the px and py, while the third pz remains unaltered. The
hybrid sp2 orbitals are all coplanar and directed about 120◦ from each other. The
bond formed from these orbitals is called a σ-bond.

Considering the benzene molecule (Fig. 2.5), the sp2 orbitals make the molecule
planar and generate a highly localized and directed electron density in the plane
of the ring. In contrast, the pz orbitals of each carbon atom are perpendicular to
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Figure 2.5: Sketch of the molecular orbitals in the benzene – a prototypical aromatic
molecule. The sp2 hybridized orbitals are all coplanar and directed about 120◦ from
each other. The π bond is formed by the overlapping pz orbitals and marked as a
light-gray ellipse.

the molecular plane. These pz orbitals overlap to create what is called a π bond.
This π bond establishes a delocalized electron density above and below the plane
of the ring with no electron density in a nodal plane that coincides with the plane
of the molecule.

In comparison with σ electrons, the interaction between π orbitals is weak pro-
ducing an energy gap between the highest occupied molecular π orbital (HOMO)
and the lowest unoccupied molecular π∗ orbital (LUMO) in the range of a few
eV, leading to a possibility to light adsorption or emission in the visible and
near visible spectral range. A sketch of the electronic structure typical for the
π-conjugated molecule is depicted in Fig. 2.6. The splitting between HOMO and
LUMO π orbitals is rather large (about 5 eV for benzene). However, this value
is much lower than the splitting between occupied and unoccupied σ orbitals
and has a tendency to reduce when several rings build an oligomer with the in-
verse oligomer length. Thus, for instance, the band gap of pentacene consisting
of five such rings is about 2 eV. The electronic properties of the molecules also
strongly depend on the conformation of the molecules or the presence of donating
or accepting groups. In this manner, organic chemistry offers the opportunity to
tune and select the required optoelectronic properties of organic semiconducting
materials.

The nature of the π orbitals is crucial not only for the understanding of the elec-
tronic properties, but also for their bonding. This characteristic type of bonding
makes organic semiconductors fundamentally different from their inorganic coun-
terparts. The interaction between the molecules are mainly due to weak van der
Waals forces which appear since the π orbitals are readily polarizable and easily
excited. For this reason, the stability of molecular solids is considerably lower
than that of covalently bonded semiconductors. Consequently, mechanical and
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Figure 2.6: Typical energy level ordering in π conjugated molecules. Electronic
structure (left) and HOMO and LUMO orbitals (right) of the benzene molecule are
depicted.

thermodynamical properties such as hardness or melting point are also lower.

The slight overlap between delocalized π orbitals amongst neighboring molecules
also leads to certain implications concerning electronic and optical properties as
well as charge carrier transfer. The optical absorption and luminescence spectra
of molecular crystals may resemble the spectra in the gas phase or in solution
[30], although the packing of the molecules has an important impact on the
formation of electron-hole pairs during the absorption process [31, 32]. In any
case, knowledge of the properties of an isolated molecule provides a good starting
point to understand the properties of the molecular crystal.

In the bulk phase, the weak overlap between molecular electronic orbitals leads to
narrow electronic bands and low mobilities of charge carriers (µ ∼ 1−10 cm2/Vs
at room temperatures). For comparison, a typical bandwidth W ∼ 0.1 − 0.5
eV is an order of magnitude smaller than that in inorganic semiconductors [28].
Furthermore, the anisotropy of the transfer integrals between adjacent molecules
results in a complicated dependency of the electrical conductance on the crystal
orientation.

2.2.3 Charge carrier transport

The performance of electronic devices depend on several parameters. One of
the major quantities is the charge carrier mobility µ of a semiconducting mate-
rial. After several decades of intensive research, basic understanding of charge
transport in small-molecule organic semiconductors still remains limited. The
complexity of transport phenomena in these systems is due to the polaronic na-
ture of charge carriers and the strong interaction of small polarons with defects
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[33]. An especially challenging task is to develop an adequate model of high-
temperature polaronic transport. At room temperature, lattice vibrations might
become sufficiently strong to destroy the translational symmetry of the lattice.
In this regime, the fluctuation amplitude of the transfer integral becomes of the
same order of magnitude as its average value [34], the band description breaks
down, and a crossover from bandlike transport in delocalized states to incoherent
hopping between localized states is predicted at higher temperatures [35]. Thus,
the transport properties of highly ordered organic crystals like pentacene have
the following features. Upon lowering the temperature the characteristics of band
transport can be observed in which the temperature dependence of the mobility
follows a power law behavior µ ∝ T−n with n = 1...3 [36]. At higher temper-
atures (300 K), polaron transport becomes more important; that is, the charge
carriers (and their associated lattice deformation) move by thermally activated
hopping leading to an Arrhenius-type temperature dependence of the mobility
(µ ∝ exp(−Ea/kT )) [37, 38].

On a microscopic level, the electrical current through a material is determined
by the charge carrier density n, the charge carrier mobility µ, and the applied
electric field E according to

~j = ~σ · ~E = en~µ · ~E. (2.1)

The dependence of the charge current is not a linear function of the electric field
since the charge density and mobility also depend on it. Moreover, this quantity
is anisotropic due to the anisotropy of the charge carrier mobility µ.

The charge carrier density is the second crucial parameter for the performance
of organic electronic devices. For semiconductors it is given by

ni = N0 exp

(
− Eg

2kT

)
, (2.2)

where Eg is an energy band gap and N0 is an effective density of states which is
proportional to the density of the molecules in the crystal. Using typical values
of Eg = 2.5 eV and N0 = 1021 cm−3 for organic semiconductors, one can get a
hypothetical carrier density of ni ∼ 1 cm−3 at room temperature, whereas the
corresponding value for Si (Eg = 1.12 eV and N0 = 1019 cm−3) is about ni ∼
109 cm−3, many orders of magnitude higher. Thus, pure organic semiconductors
have extremely low conductivity insufficient for practical applications.

The most efficient way to overcome the limitations posed by the low charge
carrier density is carrier injection from the contacts. The process of carrier injec-
tion essentially drives device operation in organic light-emitting diodes (OLEDs)
(Fig. 2.2). This requires low energetic barriers at metal/organic interfaces for
both contacts to inject equally large quantities of electrons and holes, which are
necessary for a balanced charge carrier flow. Hence, knowledge of the properties



12 CHAPTER 2. ORGANIC SEMICONDUCTORS

at the interfaces between metal electrodes and active organic materials is a pre-
requisite for the design and production of electronic devices such as OLEDs [39]
or OFETs.

Other factors which have a crucial influence on the mobilities are the degree of
order and purity of the organic semiconductors. Because of these factors, e.g.,
in amorphous organic crystals the mobilities can have very low values several
magnitude lower than in the corresponding single-crystal phase. Therefore, the
synthesis of new organic molecules with predicted high mobilities is always cou-
pled to the task of developing the technology for the production of highly ordered
crystals and thin films built of these molecules.



Chapter 3

Theoretical Background

3.1 Density functional theory

3.1.1 The density as the basic variable

The basic theorem of Hohenberg and Kohn states that the ground state den-
sity n(r) of a system of interacting electrons in some external potential vext(r)
determines this potential uniquely (up to an additive constant) [40]. The proof is
very simple: Let n(r) be the non-degenerate ground-state density of N electrons
in the external potential v1(r) corresponding to the ground state characterized
by the many-electron wave function Ψ1 and its total energy E1. Then we can
write

E1 = 〈Ψ1|Ĥ1|Ψ1〉

=

∫
d3r v1(r)n(r) + 〈Ψ1|T̂ + Û |Ψ1〉, (3.1)

where Ĥ1 is the total Hamiltonian corresponding to the external potential v1(r),
and T̂ and Û are the kinetic and electrostatic interaction energy operators, re-
spectively. Now suppose that there exists a second external potential v2(r), which
differs from v1(r) not only by a constant and leads to the same density n(r). If we
denote its ground state wave function and energy with Ψ2 and E2, respectively,
we obtain

E2 =

∫
d3r v2(r)n(r) + 〈Ψ2|T̂ + Û |Ψ2〉. (3.2)

The Rayleigh-Ritz minimal principle for Ψ1 gives the following inequality

E1 < 〈Ψ2|Ĥ1|Ψ2〉

=

∫
d3r v1(r)n(r) + 〈Ψ2|T̂ + Û |Ψ2〉

= E2 +

∫
[v1(r)− v2(r)]n(r)d3r. (3.3)

13
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The analogous argument for the ground state of Ψ2 leads to the expression

E2 < 〈Ψ1|Ĥ2|Ψ1〉 = E1 +

∫
[v2(r)− v1(r)]n(r)d3r. (3.4)

Adding Eqs. (3.3) and (3.4) makes the contradiction apparent

E1 + E2 < E1 + E2. (3.5)

Thus, our initial assumption of the existence of a second external potential v2(r)
leading to the identical density n(r) must be wrong, and the Hohenberg-Kohn
theorem is proven. We note that the proof presented above is based on the as-
sumption of the non-degeneracy of the ground state. This requirement, however,
can be lifted as shown by Kohn [41]. Moreover, we have assumed that any well-
behaved positive function n(r), which integrates to the number of electrons N , is
a possible ground-state density corresponding to some v(r) (v-representability).
Levy [42] and Lieb have demonstrated that there are indeed examples of well-
behaved densities that are not v-representable, but these cases do not appear
to limit the practical application of DFT. Thus, the important message of this
section is that the total electron density n(r) of a system of interacting elec-
trons determines both the number of electrons N and the external potential v(r).
Moreover, the many-body wave function Ψ is also a functional of the electron
density n(r) [40]. Consequently, the density gives us the full Hamiltonian Ĥ for
the electronic system, and n(r) implicitly contains all properties derivable from
Ĥ through the solution of the Schrödinger equation.

3.1.2 The Hohenberg-Kohn variational principle

The ground state energy E of a system of interacting electrons can be obtained
from the solution of the many-body Schrödinger equation ĤΨ = EΨ. Another
approach is provided by the Rayleigh-Ritz minimal principle

E = min
Ψ̃
〈Ψ̃|Ĥ|Ψ̃〉, (3.6)

where Ψ̃ is a normalized trial function for theN electron system. Equivalently, the
minimal principle can be formulated in terms of trial densities ñ(r), rather than
trial wave functions Ψ̃, as was first shown by Hohenberg and Kohn [40], and
later in the form of the constrained search method by Levy [42]. By integrating
Ψ̃ over all space variables except the first, one obtains the corresponding density
ñ(r). Thus, the minimization of Eq. (3.6) may be achieved in two steps: In the
first step, we choose a trial density ñ(r). Denoting all wave functions that result
in this density by Ψ̃α

ñ, we define an energy functional of the density using

Ev[ñ(r)] = min
α
〈Ψ̃α

ñ|Ĥ|Ψ̃α
ñ〉

=

∫
v(r)ñ(r)d3r + F [ñ(r)], (3.7)
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where the functional F [ñ(r)] is independent of the external potential v(r) and
given by

F [ñ(r)] = min
α
〈Ψ̃α

ñ|T̂ + Û |Ψ̃α
ñ〉. (3.8)

In the second step, we minimize Eq. (3.7) over all densities ñ(r) resulting in the
ground state energy E

E = min
ñ(r)

Ev[ñ(r)]

= min
ñ(r)

{∫
v(r)ñ(r)d3r + F [ñ(r)]

}
. (3.9)

This is the Hohenberg-Kohn minimum principle [40] which states that the total
energy is a functional of the density and that the ground state density n(r)
minimizes this functional resulting in the ground state energy E = E[n(r)].

3.1.3 The Kohn-Sham equations

Formally, the Hohenberg-Kohn principle provides a strict formulation of the
ground-state energy entirely in terms of the density distribution. Practical ap-
plications, however, require the knowledge of the functional F [ñ(r)] defined in
Eq. (3.8). Kohn and Sham [43] suggested to write this functional in the form

F [ñ(r)] = Ts[ñ(r)] +
1

2

∫
ñ(r)ñ(r′)

|r− r′|
d3rd3r′ + Exc[ñ(r)], (3.10)

where Ts[ñ(r)] is the kinetic energy functional for non-interacting electrons, and
the second term is the electrostatic or Hartree energy. The last term, Exc[ñ(r)],
as it is defined by Eq. (3.10), includes all other electron-electron interactions
and is called the exchange-correlation energy functional. Next, we apply the
Hohenberg-Kohn minimum principle in order to obtain the corresponding Euler-
Lagrange equations with the functional F [ñ(r)] defined in (3.10). Variation of
the total energy Ev[ñ(r)] in (3.7) with respect to the density ñ(r), keeping the
total number of electrons unchanged, yield

δEv[ñ(r)] =

∫
δñ(r)

{
veff(r) +

δ

δñ(r)
Ts[ñ(r)]

∣∣∣∣
ñ(r)=n(r)

− ε

}
d3r = 0. (3.11)

Here, we have defined the effective potential (Kohn-Sham potential) veff(r) as the
sum of the external, the Hartree, and the exchange-correlation potential,

veff(r) = vext(r) +

∫
n(r′)

|r− r′|
d3r′ + vxc(r). (3.12)
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The latter is obtained as the functional derivative of the exchange-correlation
energy with respect to the electron density,

vxc(r) =
δ

δñ(r)
Exc[ñ(r)]

∣∣∣∣
ñ(r)=n(r)

. (3.13)

The Lagrange multiplier ε in Eq. (3.11) ensures the conservation of the number
of electrons in the variational procedure.

The structure of (3.11) is the same as for the system of non-interacting particles in
an effective one-particle potential veff(r). Thus, Kohn and Sham concluded [43]
that the minimizing density n(r) can be obtained by solving the single-particle
Schrödinger equations [

−1

2
∇2 + veff(r)− εj

]
ϕj(r) = 0 (3.14)

with the density n(r) constructed from single particle orbitals ϕj(r)

n(r) =
N∑
j=1

|ϕj(r)|2 . (3.15)

Equations (3.14) and (3.15), with the definitions of the effective potential (3.12)
and the local exchange-correlation potential (3.13), are called the Kohn-Sham
equations. These equations have to be solved self-consistently: Starting from an
initial guess for the Kohn-Sham potential veff, the Kohn-Sham equations (3.14)
are diagonalized yielding the Kohn-Sham energies εj and orbitals ϕj, which give
the density n via Eq. (3.15). The density, in turn, determines a new effective
potential by applying relations (3.12) and (3.13). This cycle is repeated until a
converged ground state density is obtained. The ground state energy E may then
be calculated from the ground state density as

E =
N∑
j=1

εj + Exc[n(r)]−
∫
vxc(r)n(r)d3r − 1

2

∫
n(r)n(r′)

|r− r′|
d3rd3r′. (3.16)

Note that with the exact expression for Exc and vxc all many-body effects are,
in principle, included in the calculation of the ground state properties. Clearly,
the usefulness of the Kohn-Sham equations depend entirely on whether approx-
imations for the functional Exc[n(r)] can be found which are both sufficiently
simple and accurate. The next section deals with such approximations for the
exchange-correlation energy functional Exc[n(r)].

3.1.4 Approximations for Exc

Despite the elegance of the Kohn-Sham equations, they would remain useless in
practice without adequate approximations for the exchange-correlation functional
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Exc[n(r)]. These approximations reflect the many-body aspects of interactions
between electrons and come from outside of DFT.

The local density approximation

The simplest approximation for Exc[n(r)] is the so-called local-density approxi-
mation (LDA)

ELDA
xc [n(r)] =

∫
exc (n(r))n(r)d3r, (3.17)

where exc(n(r)) is the exchange-correlation energy per particle of a uniform elec-
tron gas of density n(r) at a point r [43]. Thus, the local contribution to the
xc energy of the non-uniform system is taken to be identical to the xc energy of
the uniform electron gas of the same density. The exchange part ex(n) can be
calculated analytically and is given by

ex(n) = −0.458

rs
, (3.18)

where rs is the radius of a sphere containing one electron and is determined by
setting the sphere volume (4π/3)r3

s equal to the inverse density. The correlation
part was first calculated by Ceperly [44] and Ceperly and Alder [45] using
Quantum Monte Carlo methods. The LDA is obviously exact for a homogeneous
electron gas. Moreover, it was expected that for non-uniform cases it should
only be valid for densities that are slowly varying on the scale of the local Fermi
wavelength λF . However, it turned out that the LDA gives reasonable results
not only for free-electron like metals but also for atoms and molecules where the
condition of slowly varying densities is not satisfied. Indeed, a great number of
calculations have shown that the LDA gives ionization energies of atoms and dis-
sociation energies of molecules with an accuracy of typically 10–20%. Structural
properties such as bond lengths or vibrational frequencies even agree to within
1–5% with experimental values. This remarkable success of the LDA can be at
least partially explained by an exact sum rule that is satisfied by the LDA (see
the next subsection). Moreover, the self-consistent solution of the Kohn-Sham
equations using the LDA for the exchange-correlation energy is a conceptually
very easy task and it is less demanding than the solution of the Hartree-Fock
equations.

Despite the success of LDA, it is often unsatisfactory in condensed-matter sys-
tems. The principal difficulty is connected with the fact that in real systems the
density is clearly not uniform. Even if its predictions are qualitatively acceptable
(which is not always the case), quantitatively the LDA is far from perfect. The
absolute error in the atomization energies of molecules is of the order of 1 eV –
much larger than the desired chemical accuracy of roughly 0.05 eV [46–48]. More-
over, the LDA tends to overestimate the bond strength, resulting in bond lengths
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that are typically too short by several percent and leading to more close-packed
crystal structures [48].

The generalized gradient approximation

Many of the above mentioned failures of the LDA are remedied using the Gener-
alized Gradient Approximation (GGA) for the exchange-correlation energy [48],
which is given by

EGGA
xc [n(r)] =

∫
f (n(r), |∇n(r)|)n(r)dr. (3.19)

The GGA is also dubbed a semilocal approximation of the exchange-correlation
energy. It includes information on deviations from homogeneity by considering
the gradients of the charge density. f(·) in Eq. (3.19) is the thoroughly con-
structed function that reproduces the exact result in certain limits, e.g., the
slowly and rapidly varying density cases, and obeys many important properties
of the exact functional (see Subsection 3.1.5).

Nowadays, many realizations of GGA exist and compete with each other in pre-
cision, universality, and computational efficiency. The most popular of them are
Perdew-Burke-Ernzerhof (PBE) [49] with its latest modification (PBEsol) [50],
different “revised” versions of PBE – revPBE [51] and RPBE [52], meta-GGA
[such as Tao-Perdew-Staroverov-Scuseria (TPSS)], Armiento-Mattsson GGA (AM05)
[53]. The comparison between different sorts of GGA and assessment their per-
formance can be found in very recent works by Csonka et al. [54] and Haas et al.
[55].

The usage of such gradient-corrected functionals [48, 49, 56–60] yield much better
results for atomization energies of molecules and enthalpies of formation derived
from atomization energies than LDA. In particular, they provide a good descrip-
tion of the hydrogen bond, thus opening a method to work with compounds
where the hydrogen bond is crucial (e.g. water), whereas LDA is unusable for
those systems since it predicts hydrogen bonds which are too strong due to the
mentioned above general trends to overbind results.

Unfortunately, GGA also suffers from serious deficiencies that can result in qual-
itatively incorrect computations. One deficiency is that the popular GGAs do
not improve the calculated lattice constants. Both LDA and GGA give errors of
comparable magnitude, although generally of opposite sign. For instance, for a
small set of metals, it has been shown [61] that LDA underestimates the lattice
constants on average by -0.7% and GGA overestimates it by 1.8%. This leads to
one order of magnitude higher error in the bulk modulus: 11.6% for LDA and
-13.7% for GGA. Thereby, the calculation of properties such as phonon frequen-
cies, ferromagnetism, ferroelectricity and others that are critically dependent on
volume can be problematic.
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Another shortcoming of the mentioned above approximations, the long-ranged
dispersion interactions, is one of the topics of this thesis and will be discussed in
detail in Section 3.2.

3.1.5 The adiabatic connection formula

Practical and well-defined in the limit of an almost uniform density, the theory
of Hohenberg, Kohn, and Sham favored the appearance of an explicit formula for
the treatment of the exchange-correlation energy Exc[n], the Adiabatic Connection
Formula (ACF), which was derived independently by Langreth and Perdew [62],
and by Gunnarsson and Lundqvist [63].

The Kohn-Sham equations are the result of an exact mapping between the physi-
cal interacting-electron and fictitious noninteracting-electron systems. This map-
ping can also be viewed as an adiabatic turning-off of the Coulomb interaction
between electrons:

Uλ = λ
e2

2

∑
i,j

1

|ri − rj|
= λU, (3.20)

where λ goes from λ = 1 for the interacting system to λ = 0 for the noninteracting
system. The charge density is forced to remain equal to the charge density of the
interacting system, i.e.,

nλ(r) = n(r). (3.21)

In order to keep the density fixed, the external potential v should also depend on
λ. At λ = 0, the energy functional has the simple form

E0 = Ts[n(r)] +

∫
n(r)vλ=0(r)dr (3.22)

where vλ=0 simply corresponds to vext of Eq. (3.12).

In the next step, the energy functional for the true interacting system is written
as an integral of the derivative with respect to λ as

E = E0 +

∫ 1

0

dEλ
dλ

dλ. (3.23)

Using the Hellmann-Feynman theorem, the derivative can be expressed as

dEλ
dλ

= 〈Ψλ|
∂H

∂λ
|Ψλ〉. (3.24)

Taking into account the dependence of the Hamiltonian on λ, H = vλ + λU , the
expression is rewritten as

dEλ
dλ

= 〈Ψλ|U |Ψλ〉+ 〈Ψλ|
∂vλ
∂λ
|Ψλ〉. (3.25)
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Integrating Eq. (3.23), one can obtain

E = E0 +

∫ 1

0

Ecoul
λ dλ+

∫
drn(r)(vλ=1(r)− vλ=0(r)). (3.26)

After insertion of Eq. (3.22) in the previous expression, one gets

E = Ts +

∫
drn(r)vλ=1(r) +

∫ 1

0

Ecoul
λ dλ. (3.27)

Comparing to the Kohn-Sham expression (3.10) for the total energy, one can
immediately find

Exc =

∫ 1

0

(
Ecoul
λ − EH

)
dλ. (3.28)

This expression can be transformed [63] to

Exc =
1

2

∫
nxc(r, r

′)

|r− r′|
n(r)drdr′, (3.29)

where the quantity nxc(r, r
′) is known as the exchange-correlation hole. By defi-

nition, the exchange-correlation hole is

nxc(r, r
′) = g(r, r′)− n(r′), (3.30)

where g(r, r′), which is the conditional density at r′ given that one electron is at
r. It describes the “hole” dug into the average density n(r′) by the electron at r
[64]. The exchange-correlation hole obeys the sum rule∫

nxc(r, r
′)dr′ = −1, (3.31)

which can be interpreted as the charge missing around a point r due to the
combined exchange effect of the Pauli principle and electron-electron interaction.
Hence, the expression (3.29) allows a physical interpretation of the exchange-
correlation energy as the interaction of the electron with its exchange-correlation
hole.

3.2 Van der Waals interactions

The van der Waals (vdW) forces belong to the special class of interactions that
arise between sufficiently separated (such as electronic orbitals without overlap)
atoms, molecules, and surfaces and are fundamentally different from covalent or
ionic interactions. One usually distinguishes between three types of vdW interac-
tions. The first group consists of electrostatic dipole-dipole (multipole-multipole)
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interactions. The second group includes interactions between dipole (multipole)
of one object and the induced dipole (multipole) on another object due to the po-
larization. The third subclass encloses interactions that arise from the interactive
forces between temporary multipoles in molecules without permanent multipole
moments. These forces are known as dispersion interactions or interactions be-
tween instantaneous dipoles. On the microscopic level, the nature of the latter
is connected with the high polarizability of the valence electrons of atoms that
easily align themselves in a concerted motion, known as plasma oscillations, un-
der the influence of a time-dependent external field. Thus, prediction of the vdW
attraction requires a fully quantum-mechanical treatment.

Whereas the first two groups of the vdW forces are exactly included in the density
functional theory, an efficient description of vdW interactions is still a challenging
task for ab-initio calculations and a hot topic of current investigations. The main
problem of incorporating vdW interactions into DFT is due to the complicated
underlying many-body physics [7] and computational complexity.

Several distinct methods are currently available that can be divided into two
groups. The simplest of them is a method of semiempirical correction of the DFT
energies by considering the dispersion interaction as directly occurring between
the nuclei via empirically determined potentials. Such methods are very simple
and computationally efficient but often suffer from inaccuracy and lack of trans-
ferability. Such a method reported by Grimme [8, 65] is used in this work and will
be described below. Another method is a recently developed density-functional
version of symmetry adapted perturbation theory (SAPT-DFT) [66, 67]. It gives
very accurate results, but its applications are limited to fairly small systems.
Moreover, this method is not devoid of adjustable semiempirical elements. Nowa-
days, the methods based on an approximate solution of the adiabatic connection
formula (3.29) have been increasing in popularity. The random phase approxi-
mation (RPA) method has been applied to many systems, including molecules
[68] and solids [11]. This approach is very promising, although it is computation-
ally quite demanding and still requires further investigation. The most successful
method for treating the van der Waals interactions within DFT is a recently
developed theory of the van der Waals density functional (vdW-DF), which is
becoming more popular due to its accuracy and computational efficiency in com-
parison with other ab-initio methods. Similar to the RPA method, the vdW-DF
is based on special approximations to the solution of the ACF. This method has
been chosen as a main tool in this thesis for investigation of the cohesive prop-
erties of organic crystals and organic/metal interfaces. It describes dispersion
interactions in the most general and seamless fashion, yielding the known cor-
rect asymptotics. Derivation of the exchange-potentials based on vdW-DF has
enabled fully self-consistent DFT calculations that allow the performance of the
highly required structure optimization of many weakly-bound systems and pro-
vide a basis for further developments, such as the evaluation of forces and stress
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tensors [69].

3.2.1 Semiempirical vdW correction formula

A straightforward way to deal with vdW systems, such as molecular crystals,
in the framework of the DFT and standard approximations for the exchange-
correlation potentials is to add an empirical potential of the well-known asymp-
totic form C6 · R−6 to the usual DFT energy, where R are interatomic distances
and C6 are dispersion coefficients. The careful and systematic study of this ap-
proach was performed by S. Grimme [8, 65].

The corrected total energy in this method is given by

Etotal = EDFT + Edisp, (3.32)

where EDFT is the energy as obtained from a self-consistent DFT calculation and
Edisp is an empirical dispersion correction given by

Edisp = −s6

Nat−1∑
i=1

Nat∑
j=i+1

Cij
6

R6
ij

fdamp(Rij). (3.33)

Here, Nat is the number of the atoms in the system, Cij
6 denotes the dispersion

coefficients for atom pair ij, s6 is a global scaling factor that depends on the DF
used, and Rij is an interatomic distance. A damping function fdamp must be used
to avoid near-singularities for small R and is given by

fdamp(Rij) =
1

1 + e−d(Rij/Rr−1)
, (3.34)

where Rr is the sum of atomic vdW radii. The values of the vdW radii for
several atoms are given in Table 3.1 together with the atomic coefficients C6.
The exponential damping factor is chosen to be d = 20. For the composed
coefficients Cij

6 a geometric mean of the form

Cij
6 =

√
Ci

6C
j
6 (3.35)

is employed. The values of van der Waals radii R0 are derived purely theoretically
from the electron density. The C6 parameters were obtained using the London
formula for dispersion and first-principles DFT/PBE0 calculations of atomic po-
tentials Ip and static dipole polarizabilities α. The calculated C6 coefficients are
model-dependent quantities that describe the atomic contribution to the disper-
sion in a molecular environment and, thus, cannot be directly compared with free
atom values. In the next step, a special fitting procedure was used to obtain the
final values of C6, R0, s6, and d. The reference set of the molecules and reactions
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Table 3.1: C6 parameters (in J·nm6/mol) and van der Waals radii R0 (in Å) for
selected elements.

Element C6 R0 Element C6 R0

H 0.14 1.001 F 0.75 1.287
C 1.75 1.452 S 5.57 1.683
N 1.23 1.397 Cl 5.07 1.639
O 0.70 1.342 Ar 4.61 1.595

consisted of 30 atomization energies, 8 atomic ionization potentials, 3 proton
affinities, 15 chemical reactions, and 21 noncovalently bound complexes. In par-
ticular, the s6 scale factor has been determined by least-squares optimization of
interaction energy deviations and found to be 0.75 for the GGA-PBE flavor of
the exchange-correlation functional.

Concluding this section, some technical remarks about the calculation of the
semiempirically corrected energies used in this work are given. The PBE-GGA
total energy is obtained from a self-consistent calculation for optimized molecular
and crystal structures. For calculation of the vdW dispersion correction term
Edisp of the crystals, a cluster was created by translating the unit cell in each
direction by a factor of 10. This value has been checked and is found to be
sufficient to give converged results.

3.2.2 The vdW density functional

The theory of the van der Waals density functional divides the correlation energy
into two parts [70],

Ec[n] = E0
c [n] + Enl

c [n]. (3.36)

Enl
c [n] is defined to include the long-ranged or most nonlocal terms including the

van der Waals interactions; it approaches zero in the limit of a slowly varying
system. The first term, E0

c [n], is also semilocal, however, considering the long-
range term in Eq. (3.36) separately, it seems to be a reasonable approximation
to treat E0

c in LDA, which is precise in the limit of slowly varying densities:

E0
c [n] ≈ ELDA

c [n]. (3.37)

The evaluation of the second term, Enl
c , can be considerably simplified by noting

that the long-range interactions are less sensitive to the details of the system’s
dielectric response than the short-range terms. Thus, a rather simple approx-
imation for the dielectric function in the long-range terms may be made. As



24 CHAPTER 3. THEORETICAL BACKGROUND

discussed in Ref. [70], the second term of Eq. (3.36) is obtained from the adia-
batic connection formula by treating the so-called full potential approximation,
which is exact at long distances between separated fragments:

Enl
c =

∫ ∞
0

du

2π
tr [ln(1− V χ̃)− lnε] . (3.38)

Here, χ̃ is the density response to a fully self-consistent potential, V = 1/|r1 −
r2| is the electron-electron Coulomb interaction, ε is an approximated dielectric
function, and u is the imaginary frequency. There is no double counting, because
(1− V χ̃) = ε for a uniform system and the term Enl

c vanishes as it should.

The expression for a truly nonlocal correlation functional based on (3.38) was
developed by Rydberg et al. for layered structures [14]. The generalization for
the case of general geometries was then derived by Dion and coworkers [10]. In
their scheme, the nonlocal correlation energy (3.38) is expanded to second order
in terms of the quantity S = 1− ε−1, leading to the expression

Enl
c =

∫ ∞
0

du

4π
tr

[
S2 −

(
∇S · ∇V

4πe2

)2
]
. (3.39)

In order to evaluate Eq. (3.39), a simple approximation for S, as a functional of
the density, was made. This choice is constrained by a number of exact relation-
ships. In a plane-wave representation, Sq,q′ has several requirements. First, the
f -sum rule imposes

Sq,q′ → −4πe2

mω3
nq−q′ (3.40)

at large frequencies, where nk is the Fourier transform of the density. Second,∫ ∞
−∞

duSq,q′(iu)→ 8π2Ne2

q2
(3.41)

for large q, where N is the number of electrons, in order to reproduce the exactly
known self-correlation. Third, Sq,q′ = S−q,−q′ due to time reversal invariance. Fi-
nally, a finite Sq,q′(ω) for vanishing q or q′ at all nonzero values of ω is required to
give an exchange-correlation hole with the correct volume (charge conservation).

An approximate S in vdW-DF theory is based on the plasmon-pole model for
the dielectric function [70],

ε = 1 +
ω2
p

ω2
q − ω2

p − ω2
, (3.42)

where

ω2
q = ω2

p +
k2
F q

2

3
+
q4

4
, (3.43)
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with ω2
p = 4πn and kF = (3π2n)1/3. In this way, a model for S, incorporating

the above mentioned constraints, is constructed in Fourier space as a nonuniform
generalization of Eq. (3.42):

Sq,q′ =
1

2

(
S̃q,q′ + S̃−q,−q′

)
, (3.44)

where

S̃q,q′ =

∫
d3re−i(q−q′)·r 4πn(r)e2/m

[ω + ωq(r)][−ω + ωq′(r)]
. (3.45)

To simplify the numerical calculations, Eq. (3.43) is replaced by a different dis-
persion formula [10]:

ωq(r) =
q2

2m

1

h(q/q0(r))
, (3.46)

with the switching function

h(y) = 1− exp
(
−γy2

)
, (3.47)

where γ = 4π/9 is an adjustable parameter and the quantity q0 is defined below.

The remainder of the exchange correlation energy, E0
xc = Exc − Enl

c , can also be
expressed in terms of S, resulting in the following approximation [10]:

E0
xc =

∫
d3r n(r)ε0xc(r), (3.48)

with

ε0xc(r) =
πe2

m

∫
d3q

(2π)3

[
1

ωq(r)
− 2m

q2

]
. (3.49)

Here, the second term in brackets is the self-energy substraction written explicitly.
Upon substitution from (3.46), one finds that

ε0xc(r) =
e2q0(r)

π

∫ ∞
0

dy[h(y)− 1] = −3e2

4π
q0(r). (3.50)

Thus,

q0(r) = −4π

3
ε0xc(r) = kF (r)F 0

xc(n(r), s(r)), (3.51)

where F 0
xc is an enhancement factor, dependent on the electron density n and the

reduced density gradient s = |∇n|/(2kFn) [71]. Specifically,

F 0
xc = 1 + λs2 − 4π

3kF
εLDAc (3.52)

with λ = 0.09434 has been proposed [10].
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Writing Eq. (3.39) in a plane-wave representation gives

Enl
xc =

∫ ∞
0

du

4π

∑
q,q′

[1− (q · q′)2]Sq,q′Sq′,q. (3.53)

After some tedious algebra [10], this expression can be transformed to

Enl
c =

1

2

∫
d3rd3r′n(r)φ(r, r′)n(r′). (3.54)

This is the main result of the vdW-DF theory, which expresses the nonlocal
correlation energy as an integral of a function describing interaction between
the electron density at point r and r′. Details of this interaction are hidden
in the kernel function φ, which is, by construction, a generalized function of
space coordinates, the electron densities and their gradients, i.e., φ = φ(|r −
r′|, n(r), n(r′),∇n(r),∇n(r′)). The kernel φ is given by

φ(r, r′) =
2me4

π2

∫ ∞
0

a2 da

∫ ∞
0

b2 db W (a, b) · T (ν(a), ν(b), ν ′(a), ν ′(b)), (3.55)

where

T (w, x, y, z) =
1

2

[
1

w + x
+

1

y + z

] [
1

(w + y)(x+ z)
+

1

(w + z)(y + x)

]
, (3.56)

and

W (a, b) = 2[(3− a2)b cos b sin a+ (3− b2)a cos a sin b+

(a2 + b2 − 3) sin a sin b− 3ab cos a cos b]/(a3b3). (3.57)

The quantities ν and ν ′ are expressed by

ν(y) = y2/2h(y/d), ν ′(y) = y2/2h(y/d′), (3.58)

where

d = |r− r′|q0(r), d′ = |r− r′|q0(r′), (3.59)

and q0 is given by Eq. (3.51). The kernel φ thus depends on r and r′ only through
d and d′, so that φ can be tabulated in advance in terms of these two variables,
or better, in terms of the sum and difference variables D and δ defined by

D =
1

2
(d+ d′), 0 ≤ D ≤ ∞, (3.60)

δ =
d− d′

d+ d′
, 0 ≤ |δ| ≤ 1. (3.61)
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When both d and d′ are large, the asymptotic form of φ(d, d′) is

φ→ − C

d2d′2(d2 + d′2)
, (3.62)

with C = 12(4π/9)3me4. Thus, the interaction energy has the correct r−6 depen-
dence for large separation r. Another important feature of the kernel function is
that Enl

c is strictly zero for systems with a uniform (constant) distributed electron
density, as was initially imposed by the approximation Eq. (3.36). In Fig. 3.1, a
plot of 4πD2φ vs D for several values of δ is shown.

Figure 3.1: The nonlocal correlation kernel φ (multiplied by 4πD2) as a function of
D. The variables D and δ are defined by d = D(1 + δ) and d′ = D(1− δ).

Approximation for the exchange

The theory of the van der Waals density functional discussed above is an approx-
imation for the correlation energy only. To perform practical calculations, one
needs to approximate the exchange energy as well. The standard scheme is to
use a GGA for exchange augmented with vdW-DF correlation [10, 70]. However,
it is important to choose a GGA flavor whose exchange part does not produce
a binding alone, that is not present when the exchange is treated exactly. As
discussed in detail in Ref. [70], the exchange part of the Zhang-Yang revPBE [51]
is used for numerical calculations. This choice is mainly motivated by the work
of Wu et al. [72], who have pointed out that PW91 and PBE predict binding in
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rare gas dimers from exchange alone, a feature absent for the exact Hartree-Fock
exchange. It was found [70] that revPBE does not have this property.

Summarizing, the total exchange-correlation energy in vdW-DF theory is defined
as

Exc = ErevPBE
x + ELDA

c + Enl
c . (3.63)

Calculational procedure

The vdW-DF calculational procedure is conducted as follows. In the first step,
crystal or molecular structures optimized using PBE-GGA are used for producing
a self-consistent electron density. In the second step, the nonlocal correlation
energy Enl

c is evaluated using this density as the input for the program. In the
final step, the vdW-DF total energy is calculated as

EvdW−DF [n] = EPBE[n]− EPBE
xc + (ErevPBE

x [n] + ELDA
c [n] + Enl

c ). (3.64)

Although the vdW-DF is evaluated in a postprocessing manner in the procedure
described above, it has been shown [69] that self-consistency has little effect on
the atomic interaction energy and structure at equilibrium distances. On the
other hand, this procedure allows a rather quick evaluation of the vdW-DF total
energy.



Chapter 4

Implementation of vdW-DF

The main achievement of vdW-DF theory is to express the long-range part of the
correlation energy as an integral over interactions between a pair of the electron
densities Eq. (3.54). All details of these interactions are enclosed in the kernel
function φ(n(r), n(r′)) (3.55). The rather simple expression for the nonlocal cor-
relation energy in the shape of a 6-dimensional integral over a real space, however,
requires a very efficient numerical implementation. In this chapter we consider
in detail our implementation of vdW-DF which allows us to treat such extended
systems as molecular crystals and molecule/metal interfaces successfully.

4.1 Numerical integration

A short introduction to the numerical integration methods is given in this section.
Special attention is paid to the efficiency and accuracy of the these methods
regarding their application to multidimensional integration.

4.1.1 Numerical quadrature rules

Numerical quadrature rules can be broadly divided in two categories: Formulas,
which evaluate the integrand at equally spaced abscissas (Newton-Cotes formu-
las), and formulas which evaluate the integrand at carefully selected, but non-
equally spaced abscissas (Gaussian quadrature rules).

Newton-Cotes type formulas

Formulas which approximate an integral over a finite interval by weighted values
of the integrand at equally spaced abscissas are called formulas of the Newton-

29
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Cotes type. The simplest is the trapezoidal rule:∫ x0+∆x

x0

dxf(x) =
∆x

2
[f(x0) + f(x0 + ∆x)]− (∆x)3

12
f ′′(ξ), (4.1)

where x0 ≤ ξ ≤ x0 + ∆x. To approximate an integral over a finite interval
[x0, xn] with the help of this formula, one needs to divide the interval into n sub-
intervals of length ∆x and apply the trapezoidal rule to each sub-interval. With
the notation xj = x0 + j ·∆x, one obtains∫ xn

x0

dxf(x) =
xn − x0

n

n∑
j=0

wjf(xj)−
1

12

(xn − x0)3

n2
f̃ ′′ (4.2)

with w0 = wn = 1/2 and wj = 1 for 1 ≤ j ≤ n− 1. The values

f̃ ′′ =
1

n

n∑
j−1

f ′′(ξj), (4.3)

where ξj is a point inside of the corresponding interval [xj−1, xj]. So the last
term in Eq. (4.2) introduces an error in the numerical integration. Note that to
perform the integration one has to evaluate the function f(x) n times and the
error is proportional to 1/n2.

An improvement is given by Simpson’s rule, which evaluates the function at three
points: ∫ x2

x0

dxf(x) =
∆x

3
[f(x0) + 4f(x1) + f(x2)]− (∆x)5

90
f (4)(ξ). (4.4)

This yields ∫ xn

x0

dxf(x) =
xn − x0

n

n∑
j=0

wjf(xj)−
1

180

(xn − x0)5

n4
˜f (4), (4.5)

where n is an even number, w0 = wn = 1/3, and for 1 ≤ j ≤ n, wj = 4/3 if j is
odd and wj = 2/3 if j is even.

In such a way the Newton-Cotes formulas can be derived with further improve-
ment in accuracy. But there are several reasons that prevent this evaluation.
Firstly, the more refined a rule is, the more certain we must be that it is applied
to a function which is sufficiently smooth. In the formulas above, it is implied
that, if the error term is proportional to f (2n)(ξ), the function f(x) is at least
(2n)-times differentiable and that f (2n)(x) is continuous. Applying the rule to a
function which does not satisfy the criteria can lead to a completely wrong error
estimation. Secondly, it can be shown if the number of points becomes large, the
coefficients of the Newton-Cotes formulas become large and of mixed sign. This
may lead to significant numerical cancellation between different terms.
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Gaussian quadratures

The Newton-Cotes type rules approximate an integral of a function by the sum of
its functional values at a set of equally spaced points, multiplied by appropriately
chosen weights. Choosing the weights, one can achieve integration formulas of
higher and higher order. Gaussian integration formulas extend this idea and
allow to choose weights appropriately together with the possibility to locate the
abscissas at which the function is to be evaluated. As mentioned above, a Newton-
Cotes type formula, which is based on the evaluation at n points, is exact for
polynomials up to degree n (if n is odd) or degree (n−1) (if n is even). Gaussian
formulas yield integration rules of degree (2n−1). Furthermore, these rules can be
generalized such that they do not give exact results for a polynomial up to degree
(2n− 1), but for an integrand of the form “special function” times “polynomial
up to degree (2n− 1)”.

The main formula of Gaussian quadrature states that if w(x) is a weight function
on [a, b], then there are weights wj and abscissas xj for 1 ≤ j ≤ n such that∫ b

a

dx w(x)f(x) =
n∑
j=1

wjf(xj) +
f (2n)(ξ)

(2n)!

∫ b

a

dx w(x)[Π(x)]2, (4.6)

with

Π(x) = (x− x1)(x− x2)...(x− xn), (4.7)

a ≤ x1 ≤ x2 ≤ ... ≤ xn ≤ b, a < ξ < b. (4.8)

The abscissas are given by zeros of the orthogonal polynomial of degree n as-
sociated to the weight function w(x). In order to find them numerically, it is
useful to know that they all lie in the interval [a, b]. The weights are given by the
(weighted) integral over the Lagrange polynomials:

wj =

∫ b

a

dx w(x)lnj (x). (4.9)

Multi-dimensional integration

The generalization to the multi-dimensional case of quadrature rules described
above is straightforward by considering the d-dimensional integral to be an itera-
tion of one-dimensional integrals and applying a one-dimensional integration rule
in each iteration. As an example, we consider an integral over the d-dimensional
hypercube [0, 1]d evaluated with the help of the trapezoidal rule:∫

ddu f(u1, ..., ud) =
1

nd

n∑
j1=0

...

n∑
jd=0

wj1 ...wjdf

(
j1

n
, ...,

jd
n

)
+O

(
1

n2

)
. (4.10)
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In total we have to evaluate the function N = (n + 1)d ≈ nd times. Since
the necessary computing time is proportional to N we observe that the error
scales as N2/d. With increasing dimension d the usefulness of the error bound
O(N2/d) declines drastically. Changing, for example, from the trapezoidal rule to
Simpsons rule does not change the situation significantly: The error bound would
scale in this case as N4/d. We will later see that Monte-Carlo integration yields an
error which decreases with 1/

√
N , independent of the number of dimensions what

makes the Monte-Carlo technique the method of choice for numerical integration
in high dimensions.

As a summary, numerical quadrature rules are the best method for low-dimensional
integrals. If the integrand is sufficiently smooth and if one knows an absolute
bound for a certain derivative of the integrand, they yield an exact error estimate.
The efficiency of numerical quadrature rules decreases rapidly with the number of
dimensions. Furthermore, for complicated integration boundaries which have to
be embedded, for example, into a hypercube, the integrand is no longer a smooth
function and the estimate for the error can no longer be used.

More details on numerical quadrature rules can be found in books by Davis et
al. [73] and by Press et al. [74].

4.1.2 Monte-Carlo integration

Consider an integral of a function f(u1, ..., ud) of d variables u1, ..., ud over the
unitcube [0, 1]d and assume that f is square-integrable. As a short-hand notation
we will denote a point in the unit hypercube by x = (u1, ..., ud) and the function
evaluated at this point by f(x) = f(u1, ..., ud). The Monte-Carlo estimate for the
integral

I =

∫
dxf(x) =

∫
dduf(u1, ..., ud) (4.11)

is given by

E =
1

N

N∑
n=1

f(xn). (4.12)

The law of large numbers ensures that the Monte-Carlo estimate converges to
the true value of the integral:

lim
N→∞

1

N

N∑
n=1

f(xn) = I. (4.13)

In order to evaluate the accuracy of the Monte-Carlo estimate, the variance σ2(f)
of the function f(x) is introduced:

σ2(f) =

∫
dx(f(x)− I)2. (4.14)
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It can be shown that∫
dx1...

∫
dxN

(
1

N

N∑
n=1

f(xn)− I

)2

=
σ2(f)

N
, (4.15)

where σ(f) is the standard deviation. This equation determines the error of the
Monte-Carlo estimate to be σ2(f)/N on average. The central limit theorem says
that the probability the Monte-Carlo estimate lies in the range

E ∈ [I − aσ(f)/
√
N, I + bσ(f)/

√
N ]

is determined by

lim
N→∞

Prob

(
−aσ(f)√

N
≤ 1

N

N∑
n=1

f(xn)− I ≤ b
σ(f)√
N

)
=

1√
2π

∫ b

a

dt exp

(
−t

2

2

)
.

(4.16)
Thus, the error in a Monte-Carlo integration scheme scales like 1/

√
N indepen-

dent of the dimension d. In practice, to estimate the value of variance σ2(f) one
uses the following formula:

S2 =
1

N − 1

N∑
n−1

(f(xn)− E)2 =
1

N

N∑
n=1

(f(xn))2 − E2. (4.17)

An important point is that Monte-Carlo integration gives only a probabilistic
error bound, e.g., it can give a probability that the Monte-Carlo estimate lies
within a certain range of the true value.

Summarizing, the error estimate of a Monte-Carlo integration scales like 1/
√
N .

The main advantage of Monte-Carlo method is that the error estimate is indepen-
dent on the dimension d. However, the price we pay for this is that the integral
converges relatively slowly to the true value. Several techniques exist to improve
the situation.

Stratified sampling

Stratified sampling consists of dividing the full integration space into subregions,
performing a Monte-Carlo integration in each subregion, and adding up the par-
tial results in the end. Consider a total of n points sampled in a region r = ra+rb
and n/2 points sampled in both ra and n/2 in rb. In the latter case, the variance
is

1

4

(
σ2
af

n/2
+
σ2
bf

n/2

)
=
σ2
af + σ2

bf

2n
, (4.18)

whereas, in the former case, the variance can be written as

σ2f

n
=
σ2
af + σ2

bf

2n
+

(Iaf − Ibf)2

4n
. (4.19)
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As one can easily see this variance is, at best, equal to the former one, and only
if the integral values are identical. The optimal reduction of the variance can
be shown to occur for na/nb = σaf/σbf [74]. In other words, the total variance
is minimized when the number of points for Monte-Carlo sampling nj in each
sub-volume is proportional to the variance of the corresponding σjf .

Importance sampling

Importance sampling introduces a weight function into integral:∫
dxf(x) =

∫
dxw(x)

f(x)

w(x)
, (4.20)

with

w(x) > 0,

∫
dxw(x) = 1. (4.21)

The function w(x) has two important requirements: a) one must be able to sample
from the distribution w(x), and b) f(x)/w(x) should be “smooth” in the sense
that σw(f(x)/w(x)) < σf(x), i.e. w(x) and f(x) should have the same peak
structure. Of course, the ideal choice is known to be w(x) = |f(x)|/

∫
dxf(x) for

which σw(f/w) = 0, but for this choice a priori knowledge of the integral value
is required.

Adaptive methods

The variance-reducing techniques described above require some advance knowl-
edge of the behavior of the function to be integrated. In many cases this informa-
tion is not available, and one prefers adaptive techniques in which an algorithm
learns the function as it proceeds.

One of the most famous adaptive algorithms is VEGAS [74]. VEGAS combines
the basic ideas of importance and stratified sampling into an iterative algorithm
which automatically concentrates evaluation of the integrand in those regions
where the integrand is largest in magnitude.

Another simple but efficient iterative adaptive scheme is globally adaptive subdi-
vision. This scheme is based on the possibility of error estimation of the integral.
First, the integral and its error estimate is evaluated in the entire region. This
error is compared with the required accuracy. If the error is higher than the
accuracy, the integration region is subdivided, and each subregion is integrated
separately. The new value of the integral and error estimate is evaluated and
compared with the accuracy. If the error is not satisfactory, the region with the
largest error is subdivided. This loop is continued until the required accuracy is
achieved.
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Quasi-Monte-Carlo methods

As mentioned previously, a major drawback of the Monte-Carlo method with
pseudo-random numbers is given by the fact that the error term scales only as
1/
√
N . This is an inherent problem of methods based on random numbers. How-

ever, in Monte-Carlo integration the true randomness of the generated numbers
is not so relevant. It is more important is to sample the integration region as uni-
form as possible. This leads to the idea of choosing the points deterministically
in such a way as to minimize the integration error. And indeed, a Monte-Carlo
algorithm based on these quasi-random sequences typically achieves convergence
rates of O(logd−1 n/n) rather than the usual 1/

√
N for pseudo-random numbers.

More detail about quasi-random numbers and their implementation can be found
in [75, 76].

4.1.3 Implementation details

Here we proceed with a description of the implementation details of the program
written to evaluate the 6-dimensional integral (3.54).

To calculate nonlocal correlation energy, as one can see from formula (3.54),
we only need information about the electron density distribution. Thereby it is
straightforward to write a subroutine that performs an integration and uses it
with existing ab-initio DFT codes.

The three-dimensional total electron density distribution is read by the subroutine
from an input file in a format convenient for visualization with the XcrySDen
program [77]. This input file can be generated by many codes (QUANTUM-
ESPRESSO, ABINIT, VASP etc.) by specifying a corresponding flag for an
output 3-d density format.

The density gradients required by Eq. (3.51) are computed numerically based on
the input density. For this, the simple three-point estimation method is used.
The kernel φ(D, δ) (Fig. 3.1) has been calculated numerically and tabulated on
the fine grid (400×21) in the range D ∈ [0.01, 19.96] and δ ∈ [0, 1]. The starting
value for D = 0.01 is connected with the divergence of the kernel function φ at
small D. For the values D < 0.01, φ = φ(D = 0.01) is assumed. It has been
checked that this approximation has no influence on the final value of the integral.
For the values D > 19.96, the asymptotic form of Eq. (3.62) is used. Specifics
of the Monte-Carlo integration requires calculations of the integrand at random
points. Therefore, we use trilinear interpolation [78] for the values of the kernel
function and densities.

The vdW-DF program is written in Fortran as an external routine. The quasi-
random Korobov [79] sequences are used to achieve higher convergence rates of
the Monte-Carlo algorithm. The main parameter required for a Monte-Carlo
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integration which should, consequently, be specified is a requested accuracy of
final result. The requested accuracy, which serves as the stopping criterion of the
integration, can be either relative or absolute, i.e. the integrator tries to find an
estimate Î for the integral I which fulfills |Î − I| ≤ max(εabs, εrelI).

Cuba library

The heart of the subroutine is a CUBA library for multidimensional integra-
tion [80]1. The CUBA library provides new implementation of four general-
purpose multidimensional integration algorithms: VEGAS, SUAVE, DIVONNE,
and CUHRE. This library is written in C and has interfaces for Fortran, C/C++,
and Mathematica. We have chosen the routine DIVONNE, which showed the best
results in accuracy, stability and evaluation timing.

DIVONNE is a significantly extended version of CERNlibs’s Algorithm D151 [81].
It is essentially a Monte-Carlo algorithm but has additional cubature rules built
in for comparison. Variance reduction is conducted by stratified sampling, which
is aided by methods from numerical optimization. DIVONNE has a three-phase
algorithm: In the first phase, the integration region is split into subregions of
(approximately) equal spread s, defined as

s(r) =
vol(r)

2

(
max
x∈r

f(x)−min
x∈r

f(x)
)
. (4.22)

The minimum and maximum of each subregion are sought using methods from
numerical optimization (a quasi-Newton search). Then “dividers” are moved
around to find an optimal splitting. This latter procedure is translated into a
solution of a linear system and is, hence, quite fast [81]. In the second phase, the
subregions determined in the previous step are independently sampled with the
same number of points each. The latter is extrapolated from the results of the
previous phase. In the last phase, regions whose results from the first and second
phase do not agree within their errors are subdivided or sampled again.

In addition, DIVONNE has the possibility to specify the location of possible
peaks, if such are known from analytical considerations. The idea here is to
help the integrator find the extrema of the integrand, since narrow peaks are a
particular challenge for the algorithm. Even if only the approximate location
is known, this feature of suggesting the integrator can easily cut an order of
magnitude out of the number of samples needed to reach required accuracy for
complicated integrands. There is also the possibility to specify the method to
obtain the integrand estimate: a Korobov [79] or Sobol [76] quasi-random sample
of given size, a Mersenne-Twister [82] pseudorandom sampling of given size, and
the cubature rules of Genz and Malik [83].

1http://www.feynarts.de/cuba/
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4.2 Test systems

The implemented program has been applied to several “benchmark” vdW systems
such as the Ar dimer, the benzene dimer, and graphite. We test both reliability
and computational efficiency of the code comparing the results for the interaction
energies with those reported in literature. All these tests have been carried out
using the QUANTUM-ESPRESSO code [84] utilizing ultrasoft pseudo-potentials.
The self-consistently calculated with PBE electron density is used to obtain Enl

c ,
as well as the other energy contributions, namely, revPBEx + LDAc in a post-
processing manner.

At the end of this section, numerical tests are presented regarding the calculation
of the nonlocal vdW energies of organic crystals and organic/metal interfaces.

4.2.1 Argon dimer

One of the most prominent systems, where standard exchange-correlation func-
tionals fail, is the Ar dimer. Since the Ar atom has a fully occupied 3p shell, the
binding in the dimer is purely due to dispersion forces. Self-consistent calcula-
tions were performed putting two Ar atoms in a supercell with the cell size of 30
au. A plane-wave cutoff of 60 Ry and was chosen.

We first consider the convergence of Enl
c by choosing different values for the pa-

rameter ε which governs the accuracy of the Monte-Carlo integration (see Section
4.1.3). The results are presented in Fig. 4.1 and Table 4.2.1. Therein, also the
information is included about time which is required for the calculation of Enl

c

on a desktop machine with an Opteron processor. In addition, the number of
the integrand evaluations is presented for comparison with the total number of
evaluations which would be required when using a quadrature rule:

N tot
eval = ncell (Nx ·Ny ·Nz)

2, (4.23)

where ncell denotes the number of unit cells representing a crystal (ncell = 1 for
the case of isolated molecules). Nx, Nx, and Nz are the numbers of points in a
corresponding direction as determined by the real space grid, where the electron
density is defined. In the case of the Ar dimer example, we use the grid of 150
points in each direction, so the maximal number of calculations is of the order
1013. Hence, directly applying the quadrature rule for this grid, the evaluation
of the integral would take several orders of magnitudes of computing time longer
than the MC method.

Fig. 4.1 shows the nonlocal interaction energy for the Ar dimer as a function
of the interatomic distance for different parameters ε governing the accuracy
of the Monte-Carlo integration. It turns out that a value of ε = 10−5 Ha is
sufficient to obtain converged results. The behavior of the curve for ε = 10−4
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Figure 4.1: Nonlocal interaction energy for the Ar dimer as a function of the inter-
atomic distance for different parameters governing the accuracy of the Monte-Carlo
integration.

ε [Ha] Time Enl
c [Ha] Neval

10−4 1min 48s 0.18098870 0.8·108

10−5 8min 41s 0.18097679 0.4·109

10−6 84min 55s 0.18097998 0.2·1010

Table 4.1: Convergence of the nonlocal correlation energy Enlc of the Ar dimer as
a function of the parameter ε governing the accuracy in the integration. The total
integration time and actual number of integrand evaluations are included (Neval).

Figure 4.2: Interaction energy of Ar dimer as a function of separation for different
types of exchange-correlation potentials.
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is rather interesting. One can see that for small separation distances the results
are almost the same as for ε = 10−5, with the difference being about 5 meV at
the minimum energy. The biggest deviations, and even oscillations, are present
at bigger separations, where the values of the integrand become smaller than the
requested accuracy. Therefore, they are not considered by the MC algorithm
described in Section 4.1.3. On the other hand, the time required for this level
of accuracy is roughly four times less than for ε = 10−5, and hence it can be
used for getting a quick estimation of the binding energy. In particular, the
region around the energy minimum is sampled quite reliably already, since the
oscillatory behavior usually only appears far from it. Cross-checking our results
for the argon dimer shows perfect agreement with the corresponding curves from
published works, e.g., Fig. 2 of Ref. [10] and Fig. 2 of Ref. [69].

Now we can proceed to the discussion of the role of the exchange-correlation po-
tentials (Fig. 4.2.1) for the binding properties of such a van der Waals system.
LDA heavily overestimates the binding, giving an as much as three times too
large binding energy, and consequently a too small equilibrium distance. In con-
trast to LDA, PBE gives a too small interaction energy and a bigger equilibrium
distance than experimentally determined, whereas revPBE produces even worse
results. The vdW-DF results are also far from perfect. One can see only slight
improvement of the equilibrium distance in comparison with PBE, whereas the
predicted interaction energy is twice as large as the experimental value. This
behavior of the vdW-DF has been discussed in literature [10, 69, 70] and at-
tributed to the form of the exchange part. Regardless of remaining discrepancies,
the most important point is that the addition of the nonlocal contribution Enl

c

dramatically improves the description of this vdW system.

4.2.2 Benzene dimer

The next test system is a benzene dimer in a top-parallel configuration. Following
the same procedure as described above, we calculate the vdW-DF interaction
energy and compare it with that obtained using different exchange-correlation
potentials (Fig. 4.2.2). An energy cutoff of 35 Ry and a cubic supercell box
of 15 Å length is used for the self-consistent calculations. For the Monte-Carlo
integration, the accuracy parameter of ε = 10−4 Ha is found to be sufficient to
produce convergent values of Enl

c . The average calculation time corresponding
per run to achieve the required accuracy is about 15 min on an Opteron processor.

Detailed discussion of the application of vdW-DF to different benzene dimers
and a comparison with other methods was provided in Ref. [15]. Here it can be
stressed that the actual results are completely consistent with those of Ref. [15].
The comparison with other xc potentials shows again the superiority of the vdW-
DF that predicts the binding energies and equilibrium distances close to those
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Figure 4.3: The interaction energy of two benzene molecules in atop-parallel config-
uration as function of separation for different types of exchange-correlation potentials.
MP2 and CCSD(T) values estimated from Ref. [85].

given by wave-function based methods such as Møller-Plesset theory (MP2) and
coupled-cluster theory [CCSD(T)] [15].

4.2.3 Graphite

Another typical vdW system is graphite, where graphene sheets are weakly bound
along the c-direction. Graphite is a particular example, being a simple vdW-
bound extended system. It is especially interesting for this work since we will
apply vdW-DF theory to the description of carbon-based bulk crystals and their
surfaces.

Figure 4.4: The sketch demonstrates how a supercell is constructed to calculate the
nonlocal energy for a periodic crystal. nx ny nz label the number of translational
images along the three lattice vectors.
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For the self-consistent calculations, an energy cutoff of 35 Ry and a 4 × 4 × 4
k mesh is chosen. The experimental lattice parameter of a = 2.4612 is used,
while the interplane distance is varied. The task now is to evaluate Enl

c consider-
ing contributions not only from inside one unit cell, but from all pairs of points
where one is located in the original unit cell and the other one somewhere in the
crystal. To this extent, a supercell is created as shown in Fig. 4.4. In practice,
one has to check the convergence of the nonlocal energy with respect to an in-
teraction distance which obviously goes far beyond one unit cell size. Thereby
the convergence of Enl

c with respect to the number of translational images has
to be monitored. The results are presented in Table 4.2.3. In the table nx, ny, nz
denote the number of translational images along the three lattice vectors that
corresponds to ncell = (2nx + 1)(2ny + 1)(2nz + 1).

For the calculation of Enl
c we used an accuracy parameter ε = 10−4 Ha, which

gives the integral within an accuracy of about 1 meV. One can see that there
is almost no dependence of the calculation time on the number of translational
images higher than the 110 set. This demonstrates the efficiency of the chosen
integration scheme for dealing with periodic systems. The results for the binding
energy in graphite, which we define as the energy required to split a graphite
crystal into separated graphene sheets, are given in Fig. 4.2.3.

The results for graphite are consistent with those previously reported (e.g., Fig. 2
of Ref. [17]). The only distinction is that here the interaction energy is calculated
not just between two graphene layers but for the graphite crystal, i.e. corresponds
to the cohesive energy of “graphene in graphite”. As a consequence, the curve pre-
sented here has a deeper minimum than that in Ref. [17] but the same equilibrium
distance. The behavior of the binding energy for different exchange-correlation
potentials is, in general, the same as in the previous model vdW systems: LDA
predicts reasonable equilibrium distance but underestimates the binding energy
as much as by a factor of two; all GGA flavors fail, giving almost no binding and
leading to distances as much as two times larger than in experiment. In contrast
to standard xc potentials, the vdW-DF produces results in reasonable agreement

nx ny nz Enl
c [Ha] CPU time

000 0.19687 1min 31s
110 0.12717 2min 48s
220 0.12332 2min 56s
330 0.12284 3min 07s
440 0.12268 2min 53s
550 0.12261 3min 28s

Table 4.2: Convergence of the nonlocal correlation energy Enlc of graphite with respect
to the number of translational images.
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Figure 4.5: Binding energy of graphene sheets in the graphite crystal as a function
of inter-layer separation. For comparison, the results for different exchange-correlation
potentials and experimental data Exp. 1 [86] and Exp. 2 [87] are also included.

with experiment for both the binding energy and the equilibrium layer separa-
tion. All these findings together with the computational efficiency of vdW-DF
open the possibility to handle more challenging systems such as molecular solids.

4.2.4 Other tests

To give the reader an idea about the computational complexity of the vdW-DF
calculations applied to molecular crystals and organic molecule/metal interfaces
to be discussed in the next chapters, an overview is provided below, regarding
the convergence of the results and the corresponding computing times.

First, the nonlocal energy and the corresponding contribution the molecular co-
hesive energy of naphthalene are examined. The results for different levels of
accuracy in the integration, determined by the parameter ε, are summarized in
Table 4.2.4. One can see that an accuracy level achieved by ε = 10−3 Ha is
sufficient to obtain convergent values of the cohesive energy to within 5 meV,
which takes only around 5 min on an Opteron desktop machine. The compu-
tational time increases exponentially with the integration accuracy. Thus, very
small values of ε can lead to a waste of computer power2.

The next test dedicated to the convergence with the number of periodical images
(Table 4.2.4). The results of this test show rather fast convergence of the nonlocal
energy with the integration volume. The integration carried out in Eq. (3.54) over
the crystal volume by considering the nonlocal interactions up to the next nearest
neighboring unit cell in all three dimensions (nx ny nz = 222, corresponding to

2Moreover, one could expect numerical instabilities in this case.
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Isolated molecule Crystal (nx ny nz = 1 1 1)
ε [Ha] Enl

c [Ha] CPU time Enl
c [Ha] CPU time Enl

coh [eV]
10−1 0.23495 0 min 4 sec 0.42441 0 min 9 sec 6.4541
10−2 0.44949 0 min 49 sec 0.77901 1 min 4 sec 1.6316
10−3 0.46030 1 min 47 sec 0.80778 4 min 58 sec 1.5344
10−4 0.46214 13 min 58 sec 0.81107 26 min 3 sec 1.5397
10−5 0.46227 54 min 30 sec 0.81140 264 min 26 sec 1.5389

Table 4.3: The nonlocal correlation energy Enlc and the corresponding contribution
to the cohesive energy, Enlcoh, of 2A for different levels of accuracy of the integration,
which is determined by the parameter ε. The corresponding data for the isolated 2A
molecule are also included. The CPU times refer to a desktop machine using a single
Opteron processor. nx, ny, nz denote the numbers of the periodical images taken into
account in the evaluations of Enlc .

ε = 10−3 Ha ε = 10−4 Ha
nx ny nz Enl

c [Ha] Time Enl
coh [eV] Enl

c [Ha] Time Enl
coh [eV]

0 0 0 1.04563 3 min 22 sec -1.7005 1.04696 20 min 3 sec -1.6685
1 1 1 0.80778 4 min 58 sec 1.5344 0.81107 26 min 3 sec 1.5397
2 2 2 0.80783 4 min 46 sec 1.5336 0.80982 24 min 26 sec 1.5568
3 3 3 0.80592 5 min 5 sec 1.5596 0.80958 26 min 11 sec 1.5599
4 4 4 0.80763 4 min 41 sec 1.5364 0.80972 25 min 0 sec 1.5580
5 5 5 0.80648 4 min 38 sec 1.5520 0.80966 24 min 12 sec 1.5588

Table 4.4: The nonlocal correlation energy Enlc and the corresponding contribution to
the cohesive energy Enlcoh of the 2A crystal with respect to the number of translational
images. The CPU times refer to a desktop machine using a single Opteron processor.

a doubling of the unit cell in each direction) is sufficient to produce the cohesive
energy within 2 meV. As in the case of graphite, there is almost no dependence of
the computing time on the volume size due to the very efficient algorithm used in
the DIVONNE subroutine to divide the integration area into subregions and treat
only the ones that contribute the most to the integral within a required integration
accuracy. It is also interesting to note that the characteristic fluctuations of the
values (see, e.g., the third column of Table 4.2.4) are of the order of the requested
integration accuracy. This has already been shown for the Ar dimer and is typical
for the MC integration scheme.

In general, our implementation has been found to be very efficient for the treat-
ment of molecular crystals. The situation is more complicated for another test
system consisting of a 1T molecule on top of the Cu(110) surface. We consider
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ε [Ha] Enl
c [Ha] CPU time Enl

ads [eV]
10−1 2.73533 0 min 45 sec 7.8361
10−2 3.54851 4 min 30 sec 0.6359
10−3 3.59613 21 min 54 sec -0.1178
10−4 3.60104 174 min 9 sec -0.0668
10−5 3.60120 1340 min 27 sec -0.0622

Table 4.5: The nonlocal correlation energy Enlc and the corresponding contribution
to the adsorption energy Enlads of the 1T molecule on the Cu(110) surface with respect
to the integration accuracy parameter ε. The CPU times refer to a desktop machine
using a single Opteron processor. The integration volume is confined to one unit cell
only (nx ny nz = 000 in our denotation).

a configuration (Fig. 6.1), where the molecule - metal distance is 4.9 Å. An ac-
curacy parameter of 10−4 is required to obtain convergent values of the nonlocal
energy and hence the nonlocal contribution to the adsorption energy Enl

ads (see
Table 4.2.4). The interaction is also more long-ranged, requiring more trans-
lational images to achieve convergence with respect to the integration volume
(Table 4.2.4). A reliable combination is found to be nx ny nz = 440.

nx ny nz Enl [Ha] CPU time Enl
ads [eV]

0 0 0 3.59613 21 min 54 sec -0.1178
1 1 0 3.17768 28 min 59 sec 0.0869
2 2 0 3.17640 26 min 2 sec -0.1229
3 3 0 3.17430 26 min 44 sec -0.1165
4 4 0 3.17511 26 min 58 sec -0.0990
5 5 0 3.17576 31 min 26 sec -0.0979

Table 4.6: The nonlocal correlation energy Enlc and the corresponding contribution to
the adsorption energy Enlcoh of 1T on Cu(110) with respect to the number of translational
images. The CPU times refer to a desktop machine using a single Opteron processor.
The integration accuracy ε = 10−3 Ha has been used.



Chapter 5

Cohesive and surface energies of
organic crystals

5.1 Introduction

The charge transport characteristics of electronic devices based on organic semi-
conductors strongly depend on the thin film morphologies. A high level of purity
and order is required to achieve the highest values of electron and hole mobilities.
Therefore, considerable experimental effort has been put into the investigation of
the conditions of controlled organic thin film growth [88–90].

Ideally, one is looking for defect-free layer-by-layer growth with a desired ori-
entation of the molecules on a substrate. Key parameters for understanding
growth mechanisms are diffusion barriers and surface energies, which are, how-
ever, experimentally difficult to access. Hence, support from the theoretical side
is needed to give an insight into the energetics governing intermolecular and
molecule/substrate interactions. However, a reliable treatment on an ab-initio
level has remained problematic. The computational complexity of first-principles
methods connected with the large number of atoms for these molecular crystals
is one of the main obstacles for efficient simulations. Moreover, the binding in
molecular crystals is mainly due to weak van der Waals interactions that could
not be treated by any standard approaches for the exchange-correlation energy.
While LDA and GGA pose no severe restriction when exploring the electronic
and optical properties of organic semiconductors at their experimental lattice
constants [31, 91, 92], an ab-initio treatment of intermolecular binding has been
completely absent so far.

It has only recently become possible to incorporate nonlocal dispersion forces into
a DFT framework [10] as described in Chapter 3. This van der Waals density
functional has proven to yield reliable binding energies for a variety of systems

45
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(for a review see, e.g., Ref. [13]). In view of these results, the investigation of the
organic crystals’ energetics has come into reach.

5.2 Theoretical approaches

Computational details

All ab-initio calculations are performed with the plane-wave package QUANTUM-
ESPRESSO [84] utilizing ultrasoft pseudo-potentials [93]. A plane-wave energy
cutoff of 40 Ry has been proven sufficient to produce converged results for co-
hesive energies within 1 meV and total forces within 0.5 mRy/au. For Brillouin
zone integrations, the Monkhorst-Pack scheme [94] with a 3×3×2 mesh is em-
ployed. Different types of the exchange-correlation potential are used, which are
the LDA [95] and two types of the generalized gradient approximation, i.e. PBE
[49] and revPBE [51]. In addition, two methods that treat the vdW interactions
are explored. One is the nonlocal van der Waals density functional [10] and the
other is the semiempirical vdW correction by Grimme [8, 65]. The methodology
and implementation of both methods are described in details in Chapter 3 and
Chapter 4.

Cohesive energy

The cohesive energy is an important quantity for the characterization of the bulk
phase. In molecular crystals, the cohesive energy, Ecoh, is defined as the energy
gain upon formation of a crystal from isolated molecules. This quantity can be
easily measured experimentally and evaluated theoretically.

The molecular cohesive energy is defined by the expression

Ecoh = Emol − Ebulk/n, (5.1)

where Emol and Ebulk denote the total energies of the isolated molecule and the
molecular crystal, respectively. Thereby, the bulk energy is computed by adopting
the experimentally known space groups and lattice constants. The divisor n takes
into account the number of molecules in the unit cell. By this definition the
cohesive energy is positive for any stable crystal. To calculate the total energy of
the isolated molecule, Emol, the supercell approach is used (Fig. 5.1, left). The
molecule is put in a box of sufficient size to avoid interaction between translational
images.

Experimentally, Ecoh can be extracted from phase transformation properties, such
as the melting temperature, enthalpy of sublimation or evaporation, and thermal
desorption measurements. In this work, the available experimental cohesive ener-
gies are estimated using a compendium of sublimation enthalpies ∆Hs of organic
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Figure 5.1: Supercell (left) and slab geometry (right) for treating an isolated molecule
and a surface in 3D periodical conditions.

compounds reported in Ref. [96]. The enthalpy of sublimation, or heat of subli-
mation, is defined as the energy required to sublime one mole of the substance at
a given combination of temperature and pressure. The cohesive energy is equal
to the enthalpy of sublimation at 0 K. To estimate this quantity we make use of
the following relation [97]:

Ecoh ≈ ∆Hs + 2RT, (5.2)

where the term 2RT accounts for the difference between the gas phase enthalpy
of an ideal gas, pV + 3RT , and the estimated vibrational contribution to the
crystal enthalpy (6RT ). One should note that this estimation is valid only for
molecules which are sufficiently rigid.

Surface energy

By definition, the surface energy is the work required to cleave a bulk crystal in
a given direction per unit area of the newly created surface. Surface energies are
calculated with the repeated slab approach (Fig. 5.1, right). In this approach,
surfaces are simulated by slabs that preserve two dimensional crystalline period-
icity in the plane given by the Miller index (hkl) and are separated by vacuum
perpendicular to it. Again, the vacuum distance is chosen large enough to remove
all interactions between the periodically repeated layers.

Thus, the surface energy is determined as

γ =
1

2A
(Eslab − Ebulk). (5.3)
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Figure 5.2: The naphthalene (2A) (001) surface energy as a function of vacuum
separation for different slab thicknesses calculated within the LDA. NML stands for
the number of molecular layers and defines the thickness of the slab. The inset shows
the same data with an expanded energy axis.

Here, the factor 1/2 takes into account the fact that the slab contains two surfaces.
Eslab denotes the total energy of the slab configuration and A is the surface area.

Besides the vacuum separation, another important parameter is the thickness of
the slab which mimics the semiinfinite crystal. In the case of molecular crystals
this parameter cannot be chosen in terms of atomic layers used for inorganic
materials but as an integer number of molecular layers. The (001) surface is
special as it represents a standing orientation of the molecules within a layer.
The corresponding surface energy of naphtalene as a function of the vacuum
separation is plotted in Fig. 5.2 for different slab thicknesses. Since the behavior
does not depend on the underlying xc functional, the LDA results are displayed.
Later it will be shown that the (001) surface energy is minimal for all series
of rod-like molecules under investigations. The respectively weak interaction
between the slabs in this direction leads to a rather sharp convergence of the
surface energies as a function of thickness and vacuum distance. Similar tests
performed for other low-index planes have revealed that only one molecular layer
and the vacuum size of 8 Å are adequate for surface energy convergence to within
1 mJ/m2.

Equilibrium shape of crystals

When considering the equilibrium of a small crystal with the ambient phase
(vapor, solution or melt) there exists a shape which is most favorable from a
thermodynamic point of view in the sense that the work of formation is minimal
for a given crystal volume. The work of formation of a crystal consists of two
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parts: The first one is a volume contribution (Pc − Pv)Vc = n(µv − µc), which is
gained when transferring n atoms or molecules from the ambient (vapor) phase
with chemical potential µv to the crystal phase with lower bulk chemical potential
µc when the crystalline phase is the stable one (µc < µv). The second part γS
is due to the formation of a new phase-dividing surface, where γ is the work
spent to create a unit area of a new surface or, in other words, the surface
free energy. The volume part depends only on the volume of the crystal or on
the number of atoms transferred. At constant volume, the surface part only
depends on the crystal shape. Thus, the condition for the minimum Gibbs free
energy change connected with the crystal formation at a constant volume, which
determines the equilibrium shape, is reduced to the minimum of the surface
energy. The equilibrium shape of a liquid droplet is evidently a sphere. The
case of a crystal is more complicated since it is confined by the crystal faces with
different crystallographic orientations with their specific surface energies.

Consider first the case of a crystal in a three-dimensional homogeneous medium
(vapour, solution or melt). The general condition for the equilibrium of a single
crystal is the minimum of the Helmholz free energy at constant temperature and
volume [98]:

dF = 0, dV = 0. (5.4)

Assume that the crystal is a polyhedron confined by a limited number of dif-
ferent crystal faces with areas Sn and corresponding surface energies γn. The
equilibrium condition (5.4) is then

dF = −PvdVv − PcdVc +
∑
n

γndSn = 0, (5.5)

where Pc is the inner pressure of the crystal, Pv is the pressure of the vapor phase,
and Vv and Vc are the volumes of the vapor phase and the crystal, respectively.
Taking into account V = Vv + Vc = const, i.e. dVv = −dVc, the above equation
is reduced to

dF = −(Pc − Pv)dVc +
∑
n

γndSn = 0. (5.6)

The crystal volume can be considered as a sum of the volumes of pyramids con-
structed on the crystal faces with a common apex at an arbitrary point within
the crystal. Then

Vc =
1

3

∑
n

hnSn,

and

dVc =
1

3

∑
n

(Sndhn + hndSn),

where hn are the heights of the pyramids. Thus, the change of the volume with
accuracy to infinitesimals of second order is equal to the shift of the surfaces Sn
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by a distance dhn, so that

dVc =
∑
n

Sndhn.

Combining the last two equations gives

dVc =
1

2

∑
n

hndSn. (5.7)

Substituting (5.7) in (5.6) results in

∑
n

[
γn −

1

2
(Pc − Pv)hn

]
dSn = 0.

As the changes dSn are independent from each other, every term in the brackets
is equal to zero and

Pc − Pv = 2
γn
hn
.

The difference Pc−Pv does not depend on the crystallographic orientation, and,
for the equilibrium shape, one obtains

γn
hn

= const. (5.8)

The relationship (5.8) expresses the geometrical interpretation known as Wulff’s
construction or Gibbs-Curie-Wulff’s theorem. It states that in equilibrium the
distances of the crystal faces from a point within a crystal (called a Wulff’s point)
are proportional to the corresponding surface energies of these faces. According to
this rule the equilibrium shape of the crystal can be constructed by the following
procedure. First, vectors normal to all possible crystallographic faces from an
arbitrary point are drawn. Then, the distances proportional to the corresponding
surface energies are measured on these vectors, where the corresponding normal
plane is constructed. The resulting closed polyhedron is the equilibrium crystal
shape. Only crystal faces with the lowest surface energies contribute to it.

5.3 Results

5.3.1 Cohesive energies

The cohesive properties of the molecular crystals available in literature were per-
formed mainly within the framework of empirical force-fields methods. The ab-
initio study for anthracene and pentacene [99] using LDA resulted in reasonable
agreement with experiment, i.e. reproducing the right order of magnitude.
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Figure 5.3: Calculated cohesive energies of the oligoacenes nA (top), the
oligophenylenes nP (middle), and the oligothiophenes nT (bottom) as function of the
oligomer length for different types of the exchange-correlation potential: LDA, differ-
ent flavors of GGA (PBE, revPBE, and PW91), vdW-DF and a semiempirical vdW
correction are compared with available experimental data [96]. The lines are guides to
the eye. For the nP oligomers, the open circles represent the values obtained when the
isolated molecules are held to be planar.
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Here, the cohesive energies for three oligomer series are calculated using different
types of exchange-correlation potentials and methods for treating the vdW inter-
actions. In Fig. 5.3 the results are presented together with available experimental
values estimated from the enthalpy of sublimation using Eq. (5.2).

Let us first consider the results given by the standard, i.e local or semilocal,
exchange-correlation density functionals. One can see that the LDA generally
underestimates cohesive energies by as much as 25%. This discrepancy is not
surprising, since LDA relies on the wrong physical picture. Only through its
general overbinding effect does it mimic a compensation for the missing disper-
sion interactions. It is noteworthy that GGA completely fails in describing the
cohesive properties of these compounds. The observed values are almost zero for
PBE and PW91 and even negative when the revised version of PBE (revPBE)
is used. Thus, although LDA and GGA reveal reliable results for intermolecu-
lar conformations for fixed lattice parameters [100, 101] (we will also see this in
Chapter 8), these local and semilocal functionals break down when it comes to
intermolecular bonding.

In contrast to the standard exchange-correlation potentials, the usage of the new
vdW-DF functional gives cohesive energies in excellent agreement with exper-
iment. The cohesive energies for all series are almost linear functions of the
oligomer length, which appears to be reasonable owing to the same type of crys-
talline packing. Since there is no experimental data available for the oligothio-
phenes, the theoretical values can be viewed as an accurate theoretical predic-
tion. Relating the cohesive energy to the number of carbon atoms per molecule,
one finds very similar values for acenes (85, 79, 79, and 76 meV/C atom) and
phenylenes (82, 80, 79, 79 meV/C atom). For the oligothiophenes they are higher
by roughly 10% due to the presence of the sulfur atoms.

The case of the oligophenylene series (middle panel) deserves special attention.
Here, we have to consider the non-planar geometry of the isolated nP molecules,
which exhibit twisted interring bonds in the gas phase. The total energies of
isolated 2P and 3P molecules for different values of the twist angle (dihedral
angle between two consecutive benzene rings) are plotted in Fig. 5.4. There is
a pronounced difference in terms of equilibrium torsional angles as well as ac-
tivation energy barriers between PBE and vdW-DF. While the torsional angle
of about 40◦ obtained from vdW-DF is close to the experimental value of 44◦,
PBE underestimates this angle by almost 10◦. Allowing for such a conformation
of the isolated molecules (Fig. 5.3, full symbols, full line) leads to smaller co-
hesive energies compared to the assumption of planar molecules (Fig. 5.3, open
symbols, dashed line). For instance, this effect is found to result in a cohesive
energy change of 0.1 eV for biphenyl and 0.13 eV for terphenyl. Despite the
very good overall agreement with experiment by considering the non-planarity
of the molecules, the cohesive energies for nP are still slightly larger than the
reported experimental values. One of the possible reasons for this is the way
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Figure 5.4: The total energy of the isolated 2P and 3P molecules as a function of the
torsional angle Ψ. A definition of Ψ is shown on top. The experimental value for 2P
Ψ = 44◦ is depicted by the dashed vertical line.

in which the experimental cohesive energy have been determined. As already
mentioned, the rough estimation of the vibrational contribution is only valid for
rigid molecules. While this assumption is fully legitimate for the oligoacenes,
the more flexible inter-ring bonds in the oligophenylenes may well lead to a de-
viation from the simple relation given by Eq. (5.2). In particular, the flexibility
of the oligophenylenes explains the systematic increase of the difference between
experimental and calculated data with larger oligomer size. Therefore, we can
attribute the remaing small discrepancy of the vdW-DF results from experiment
to an incomplete treatment of the vibrational contribution to the enthalpy.

Now we turn to the comparison between the results obtained using the vdW-DF
and the semiempirical correction proposed by Grimme (Eq. (3.33)) [8]. There is
an overall good agreement between the cohesive energies by both methods. How-
ever, only very small improvement over LDA is observed for the oligophenylene
and oligothiophene series in case of GGA+vdWse. The main reason is that the
semiempirical correction Edisp as defined in Eq. (3.33) is not universal. The em-
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Figure 5.5: Investigated surface planes shown for the example of quaterphenyl.

pirical parameters which describe the vdW interaction are obtained by a fitting
procedure for a number of benchmark systems and, hence, can only be reliably
applied for the description of a special group of materials. The inclusion of new
benchmark compounds and the improvement of the fitting procedure had already
led to the new set of parameters in Ref. [65] as compared to Ref. [8]. In any
case, the semiempirical correction Edisp relies on a summation over C6 interaction
terms between atomic pairs. However, in general the dispersion forces are not
pairwise additive. The dispersion energy expressed by Eq. (3.33) is valid for the
case of asymptotically separated regimes, e.g., for gases, and can not be regarded
as fully reliable in case of crystals. On the contrary, Enl

c from the vdW-DF the-
ory does not contain any adjustable parameter. It depends on the details of the
electron density distribution in a system and, hence, generally reflects any kind
of binding situation. Such details can matter for the structural properties like
torsion angles and the conformation of molecules in the crystalline environment,
where small differences can lead to pronounced changes of the electronic struc-
ture. Therefore, one can conclude that the vdW-DF should be the basis for the
investigation of the cohesive properties of organic crystals.

5.3.2 Surface energies

Experimentally, surface energies for the molecular crystals under consideration
are difficult to access. In fact, no data can be found in literature. The excellent
agreement between experimental and predicted cohesive energies using vdW-DF,
however, allow for a prediction of the former. The (100), (010), (001), and (110)
surface energies for the nA, nP, and nT series have been calculated and are
presented in Table 5.1. It has been shown [99, 102] that they give the main con-
tribution to the equilibrium crystal shape in the case of pentacene. These surfaces



5.3. RESULTS 55

Table 5.1: Surface energies of the (100), (010), (001), and (110) planes of the nA,
nP, and nT oligomers given in mJ/m2. Results from empirical force field calculations
values are displayed in parenthesis, ab-initio DFT data on the LDA level are given in
square brackets.

(100) (010) (001) (110)
2A 102 107 90 120
3A 100 115 81 108

(88a)[66c] (118a)[91c] (76a)[53c] (90a)
4A 109 124 84 106
5A 107 130 82 113

[77c] (140b)[103c] (76b)[50c] (150b)[75c]
2P 122 129 97 118
3P 124 136 99 123
4P 124 140 96 124
6P 142 142 107 135
2T 147 123 110 121
4T 134 133 102 125
6T 176 128 115 146

a Ref. [103], b Ref. [102], c Ref. [99]

are indicated schematically in Fig. 5.5 for the example of 4P. For monoclinic crys-
tals the planes (110) and (1-10) are equivalent. This is not the case for 4A and
5A, which have triclinic group symmetry. Therefore, the corresponding surface
energies are, in principle, different. We calculated the values for both surfaces
and found negligible small differences between them (less than 1%). This finding
is due to the small deviation of their crystal structures from the monoclinic ones.
For this reason the (1-10) results are not displayed.

A common feature for all compounds is that the (001) plane exhibits the lowest
surface energy. This strong anisotropy (almost by a factor of two) is typical for
the crystals formed by rod-like molecules. The nature of this anisotropy can be
understood in terms of the crystalline packing in the (001) direction, which is
governed by the weak H–H interlayer interactions. Hence, on substrates with
comparably small substrate/molecule interactions, thin films are expected to wet
the substrate and to be preferentially (001) oriented, since the total surface free
energy is minimized in this case. The comparison of the surface energies obtained
using different theoretical methods shows, in general, the same trends as the
cohesive energies. From Table 5.1, one can see an almost constant difference of
about 30 mJ/m2 between the LDA [99] and vdW-DF values (see lines 3A and 5A
in Table 5.1). This constant shift leads to almost the same equilibrium crystal
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shapes obtained using both approaches. Good agreement is found between the
vdW-DF and semiempirical force-field [102, 103] surface energies. However, there
is big difference in the methodology of the vdW-DF and force-field techniques.
The latter is based on the force-field parameters obtained by fitting calculated
properties with experimental ones. So the reliability of the force-field method is
mainly due to the quality of the empirical parameters. In contrast, the vdW-
DF requires no a priori knowledge about the system giving a pure theoretical
prediction of the physical properties for materials such as molecular crystals.
However, the agreement between the values obtained using both methods serves
as an additional argument of the reliability of the vdW-DF method.

Figure 5.6: Total energy of a biphenyl crystal as a function of the vacuum layer
thickness along the (001) and the (100) plane for different xc potentials. The zero
energy corresponds to the crystal with “infinite” (10 Å) vacuum separation, i.e. to the
energy of an isolated crystal slab.

Let us consider the results obtained by different theoretical methods in more
detail. Fig. 5.6 displays the total energy as a function of the inserted vacuum
thickness for the (100) and (001) planes of biphenyl, taking the energy of a
10 Å vacuum slab as the reference point (Eslab in Eq. (5.3)). As in the case of
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the cohesive energies, one can see the superiority and reliability of the vdW-DF
in comparison with other exchange-correlation potentials. First, the vdW-DF
energy curve has its minimum close to zero vacuum, as it should be, since this
geometry simply corresponds to the bulk structure at the experimental lattice
parameter. Clearly, this is the case neither for LDA nor for PBE. The former
gives rise to a compression along the direction normal to the respective crystal
plane corresponding to a negative vacuum separation. In case of the (100) of
(001) planes, it obviously leads to reduced equilibrium lattice parameters a and
c by nearly 0.4 Å. GGA, on the other hand, predicts the equilibrium distances
to be increased by as much as +1 Å. Second, also the surface energies strongly
depend on the choice of the exchange-correlation potential Exc. In Fig. 5.6 the
surface energy corresponds to the value of the curve taken at x = 0 and divided
by the doubled surface unit cell area 2Ahkl (Eq. (5.3)). Interestingly, irrespective
of the index plane under consideration, the values of vdW-DF and LDA differ by
an almost factor of two. In contrast, they are almost zero for PBE which would
predict unstable structures.

We now proceed with a discussion of the semiempirical approach that corrects the
PBE energies by adding the missing vdW interactions. One can see in Fig. 5.6
that – as in the case of the cohesive energies – this method gives results very
similar to LDA. It improves the equilibrium lattice spacings, while the surface
energies differ from the vdW-DF ones by around 15%. Since the PBE produces
almost no binding, the dispersion energy term (3.33) is solely responsible for the
actual values of the cohesive and surface energies. Thus, using thoroughly chosen
material-dependent parameters, the dispersion energy Edisp alone is already a
practical tool to quickly estimate the cohesive properties of a molecular crystal,
especially if it consists of a large number of atoms.

5.3.3 Crystal shapes

Using the surface energies as summarized in Table 5.1, one can obtain equilibrium
crystal shapes (ECS) based on Wulff’s construction as described in Section 5.2.
The results are visualized in Fig. 5.7. The finding that the (001) surface energy
is minimal for all oligomer series is illustrated by the fact that the (001) crystal
faces have the largest area. Compared to experiment, excellent agreement is found
with an investigation of the growth of anthracene on graphite [104]. In particular,
the (001) orientation of the crystal parallel to the substrate, the appearance of
approximately hexagonally-shaped facets of the (100) and (110) planes, and the
small (010) facet is consistent with our calculated ECS. Within the acene and
phenylene series, the crystal shapes vary only slightly, while the situation is more
complicated for the thiophenes. In this series, the anisotropy in surface energies
is strongest, as is their variation as a function of oligomer length due to the
pronounced changes in crystalline packing with molecular size.
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Figure 5.7: Predicted equilibrium crystal shapes of the oligoacene, oligophenylene,
and oligothiophene series based on the calculated surface energies of the most important
low index surfaces tabulated in Table 5.1.
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5.4 Conclusions

An ab-initio study of bonding properties in molecular crystals has been performed
consistently taking into account nonlocal van der Waals interactions. The usage of
the vdW-DF provides a new level of precision in computing and predicting struc-
tural properties of molecular crystals. The calculated cohesive energies agree to
within 5% with the experimental ones, while the difference between experimen-
tal and theoretical equilibrium lattice parameters is within 0.2 Å. This accuracy
of ab-initio calculations is especially important for describing morphologies of
organic molecular crystals and films, where subtle energy differences play an im-
portant role. Besides capturing the correct intermolecular bonding, vdW-DF
opens the possibility to optimize crystal structures, i.e. by finding the optimal
lattice parameters. The investigations performed serve as the starting point for
future investigations regarding kinetic aspects in organic thin film growth.

An alternative method to treat vdW interactions within DFT, by adding a
semiempirical correction [8], also shows rather good agreement with experimental
data. Since the main contribution to the intermolecular binding comes from the
dispersion forces, this approach is equivalent to any empirical force-field method.
Therefore – relying on the fact that there is no covalent bonding – just com-
puting this term can already give a good estimate for the cohesive properties of
molecular solids. This is especially helpful considering the fact that it is compu-
tationally very cheap and, hence, can be used for systems with a large number
of atoms. On the other hand, one should not forget about drawbacks that are
inherent to any emprical method. For instance, the empirical parameters are
rather system-dependent and can lead to good results in one system and bad
ones in another.
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Chapter 6

Organic molecules on metal
substrates

The performance of organic light emitting diodes (OLEDs) or organic field effect
transistors (OFETs) crucially depends on the interface formed between the metal
electrodes and the organic semiconductor. This is because the charge carrier in-
jection from the electrode into organic material is determined by the alignment
of the electronic levels. Moreover, the strong dependence of charge carrier mo-
bility on the molecular ordering on the substrate and the purity of the material
is very important for the performance of the electronic devices based on the or-
ganic semiconductors. The interaction between the organic molecules and the
metal surface determines the molecular order at the interface and, therefore, the
resulting thin film morphology. Thus, investigation of the interfaces opens the
possibility to deeply understand electronic and bonding properties of such sys-
tems, which, in turn, is a prerequisite for improving and creating new devices
with desired properties.

Molecule/metal interfaces represent a hot research field. However, while much
effort has been invested in description of the energy level alignment [39, 105],
less attention has been paid to the adsorption energy, which is crucial for a
proper description of film growth. DFT studies of the adsorption of benzene and
thiophene molecules on the highly reactive nickel surface [106, 107] have revealed a
reasonable agreement between experimental and theoretical predicted equilibrium
geometries and adsorption energies. More recently, the adsorption of the large π-
conjugated molecule PTCDA on the Ag(111) surface has also been investigated
[108–110]. However, the reported adsorption energies not only contrast each
other, but moreover, show rather bad agreement with experimental data.

The approximation for the exchange-correlation energy is the main reason for
such discrepancies. The strong interaction between molecules and highly reactive
surfaces is expressed by the covalent nature of bonding between these systems.
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This type of bonding is well described in the framework of approximations such as
GGA or LDA. In contrast, in the case of weakly bound systems, vdW interactions
play the main role in the binding. Hence, the case of the molecules weakly
interacting with surfaces is also a challenge for DFT.

Different theoretical approaches have been applied to remedy for the lack of long-
range interactions in standard xc approximations. Semiempirical vdW corrections
have been applied for investigating the adsorption of adenine on graphite [111]
as well as pyridine, benzene, and pyrazine molecules on Ag(110) and Cu(110)
metal surfaces, where the significant contribution of the vdW forces in binding
has been stressed [112, 113]. Among ab-initio schemes, a combination of exact
exchange and a solution of the adiabatic connection formula in the random-
phase approximation (RPA) for the correlation term has been explored for the
investigation of the binding energy of xenon and PTCDA on the Ag(111) surface
[114], where the resulting equilibrium distances have been shown to be in close
agreement with experiment. The vdW-DF [10] has been successfully applied to
calculate the adsorption energy of benzene and naphthalene on a graphene layer
[17]. Also for phenol on graphite(0001) and α-Al2O3(0001) [115] it was shown
that the dispersion forces give a crucial or, at least substantial, contribution to
the total adsorption energy.

In this chapter we apply the vdW-DF theory to determine and understand the role
of the dispersion interactions in the adsorption mechanism of organic molecules
on metals. First, we examine the adsorption of a thiophene ring on the Cu(110)
and the reconstructed Cu(110)-(2x1)O surface. Then, a PTCDA monolayer ph-
ysisorbed on the noble metal surfaces Au(111), Ag(111), and Cu(111) is consid-
ered.

It should be noted that the investigation of the adsorption geometry of these
organic molecules on surfaces is not part of this thesis. The corresponding cal-
culations have been carried out by Priya Sony in case of 1T on Cu(110) and
Cu(110)-(2x1)O [116, 117], and by Lorenz Romaner regarding PTCDA on the
noble metals [118]. However, some of the results are presented here for differ-
ent reasons. First, they have been computed with the vdW-DF code developed
within the thesis. Second, the performance of different xc functionals shall be
discussed in the following, as was done for the cohesive properties of the organic
crystals. And last but not least, the description of molecule/metal junction has
an important impact on the understanding of organic film growth. An outlook
on this issue based on the results for both the surface energies of the organic
materials as well as the molecular adsorption will be provided in Chapter 7. In
the following parts of Refs. [116, 118] are reproduced after having been slightly
adapted to the structure of this thesis.
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6.1 Thiophene on Cu(110) and Cu(110)-(2x1)O

The adsorption of the thiophene molecule on metal surfaces can be considered as
a prototypical system for the investigation of the basic properties of an organic
molecule/metal interface. Since the vdW-DF is applied as a post-scf treatment,
only the search for the adsorption site and orientation relies on the evaluation of
total energies and cannot make use of the calculation of atomic forces. Hence,
it is a time-consuming and challenging task for such large systems as molecules
physisorbed on substrates. The evaluation has been performed in two steps.
First, the adsorption sites and geometries have been explored using PBE. In a
second step, various sites and orientations have been recalculated by the vdW-DF.
The latter calculations have revealed only small changes compared to PBE [117]1.
Therefore, here, the PBE geometry of the molecule on top of the respective surface
is adopted as a starting point for the evaluation of vdW-DF for the adsorption
process.

Figure 6.1: The side and top view of the most favorable adsorption geometries of
a thiophene ring (1T) on a Cu(110) (left) and a oxygen corrugated Cu(110)-(2x1)O
surface.

Side and top views of the adsorption geometries on Cu(110) and Cu(110)-(2x1)O
surfaces are depicted in Fig. 6.1. On Cu(110), 1T is rotated by 45◦ with respect
to the [001] direction, such that the sulfur and one of the carbons are located
above the copper atoms of the first layer. The shortest distance between the
molecule and the surface for the case of Cu(110) surface was found to be 2.41 Å
with the molecule tilted by an angle of around 11◦. Comparing the calculated
bond lengths of the isolated and the adsorbed thiophene molecule, the strongest

1These findings are not expected to apply in general.
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effect is found for the S–C bonds which are increased in length by 1.3% (0.3%)
for the bond parallel (perpendicular) to the [11̄0] direction. All other changes in
the intramolecular bond lengths are below 0.2% indicating the comparably weak
molecule/substrate interaction.

A different adsorption geometry is found for the 1T molecule on the Cu(110)-
(2x1)O surface. Here, the molecule avoids the vicinity of the oxygen atoms, but
prefers to be closer to copper. The shortest Cu-S, O-S, and molecule-metal dis-
tances are obtained as 2.98 Å, 3.48 Å, and 2.71 Å, respectively, with the molecule
lying flat on the surface. Thus, due to a compromise between repulsion from oxy-
gen atoms and attraction to copper atoms, 1T prefers a position surrounded by
four equally spaced oxygen atoms (see Fig. 6.1 (right))[117]. This is in contrast
to the situation of the clean Cu(110) surface, where the molecule rotates and
adopts the adsorption site in which sulfur lies above the copper atom.

The adsorption energy Ea is calculated according to the definition

Ea(d) = E(d)− [E1T + Esurface], (6.1)

where E(d) is the total energy of the combined system and d denotes the adsorp-
tion distance which is defined as the z-projection of the shortest molecule–metal
distance. E1T and Esurface are the total energies of the thiophene molecule and
the underlying surface, respectively, which are calculated by adopting the unit
cell size and convergence parameters as for the interacting system.

The adsorption energies, Ea(d), obtained by PBE, revPBE, and vdW-DF for both
1T on Cu(110) (left) and Cu(110)-(2x1)O (right) as a function of the molecule-
metal distance, d, are displayed in Fig. 6.2. One can see that PBE leads to an
adsorption energy of −0.26 eV at an equilibrium distance of 2.4 Å for 1T on
Cu(110) and −0.08 eV at 2.7 Å for 1T on Cu(110)-(2x1)O. In contrast, revPBE
does not give rise to any binding for both systems. The discrepancy between the
results obtained by the different flavors of GGA is due to the parameterization
of their exchange parts, as discussed in Section 3.2.2. Similiar to PBE, PW91
binds the van der Waals systems due to the wrong reason.

On applying vdW-DF, the adsorption energy of −0.50 eV at a molecule–surface
distance of around 2.8 Å is obtained for 1T on Cu(110). A slightly smaller value of
−0.42 eV is found for 1T on Cu(110)-(2x1)O with a bond length of 2.9 Å. Upon
addition of the nonlocal correlations, we find the equilibrium metal/molecule
separation to be increased by 0.4 Å for Cu(110) and 0.2 Å for Cu(110)-(2x1)O
with respect to the PBE results, while the adsorption energy is almost twice the
PBE value for Cu(110) and almost five times as large in the Cu(110)-(2x1)O case.
These striking differences clearly demonstrate that nonlocal dispersion forces are
the main physical origin for the adsorption in these systems. Moreoever, they
reflect the poor performance of PBE. One can conclude that standard GGA
functionals do not only underestimate the adsorption energies but also provide
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Figure 6.2: Calculated adsorption energy of a thiophene ring on the Cu(110) (top)
and Cu(110)-(2x1)O (bottom) surfaces as a function of the shortest Cu-S distance for
various exchange-correlation potentials.
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an incoherent physical picture of the binding mechanism. Hence, the possible
success of PBE in such weakly bound systems remains a mere coincidence. These
findings are of relevance not only for weakly adsorbed molecules but also for more
strongly bound molecule/metal junctions. In general, a correct treatment of
nonlocal correlations should increase the reliability of predictions for adsorption
energies and molecule/metal distances.

Fig. 6.2 (top) also shows that there is almost no dependence of the nonlocal corre-
lation energy on the type of GGA used for obtaining the self-consistent density. In
particular, PBE and revPBE lead to almost identical charge densities. Therefore,
the electronic properties are not sensitive to the choice of the functional. For the
sake of completeness, we also mention the equilibrium bond distance and binding
energy obtained within the LDA, which are −1.16 eV and 2.26 Å, respectively.
The LDA considerably overestimates the binding energy while it underestimates
the metal/molecule distance compared to vdW-DF and experiment.

Experiments have been performed for 1T on Cu(100) and Cu(111), but no data
is available for Cu(110). However, calculations by Mittendorfer et al. [106] for
benzene on low-index Ni surfaces have demonstrated that the difference in the ad-
sorption energies corresponding to the (100) and (110) surfaces is around 10–15%,
while the bond distance is hardly affected. Expecting a similar behavior for Cu,
one can compare the theoretical results with the available experimental data re-
porting a flat adsorption geometry and Cu–S distances between 2.50±0.02 Å [119]
and 2.60± 0.05 Å [120] on Cu(111), while a slightly lower value of 2.43± 0.03 Å
has been found for the adsorption of 1T on the Cu(100) facet [121]. Thermal
desorption spectroscopy applied to a thiophene monolayer on Cu(100)[122] re-
vealed an adsorption energy of −0.63 eV. Considering all measured data, the
vdW-DF results for the adsorption energy and distance for 1T at Cu(110) are in
good agreement with available experiments, although no direct comparison can
be made. Also the the passivation of the Cu(110) surface by oxygen leading to a
smaller adsorption energy for the oxygen-reconstructed substrate is in agreement
with experimental observations [123].

Regardless of the success of vdW-DF to properly describe weak interactions of
molecules with metal substrates as demonstrated above, one has to note that
the theoretically obtained equilibrium distances are found to be somewhat larger
than experimental values, the deviation being of the order of 0.2 – 0.4 Å. A
systematic overestimation of equilibrium bond lengths has already been observed
in literature [13] and confirmed for our test systems discussed in Section 4.2. We
shall return to this issue at the end of this chapter.
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6.2 PTCDA on Ag(111), Au(111), and Cu(111)

3,4,9,10-perylene-tetracarboxyl acid diahydride (PTCDA) is one of the best char-
acterized molecules of large size [124]. In particular, recent photoemission and
x-ray standing wave (XSW) experiments carried out for PTCDA adsorbed onto
Ag(111), Au(111), and Cu(111) have shown characteristic trends for work-function
change, alignment of molecular levels, and vertical binding distances.

Previous investigations based on DFT for PTCDA on Ag(111) have revealed a
number of different results showing that a proper description of the present sys-
tems is demanding. Studies employing the generalized gradient approximation
(GGA) [108, 109, 125] reported adsorption distances much larger than the ones
observed in experiment, together with unrealistically small adsorption energies.
In Ref. [110], the authors found better agreement with experiment, however, in
connection with a strong arching of the molecule. Studies based on the local den-
sity approximation (LDA) [126, 127] show very high binding energies of about
2.5 eV per molecule and adsorption distances in quite good agreement with ex-
periment. Furthermore, an approach employing exact exchange and the random
phase approximation (RPA) yielded a reasonable binding energy together with a
somewhat overestimated bond distance on Ag(111) [114].

A top view of a PTCDA monolayer adsorbed on Ag (left) and Cu (right) is shown
in Fig. 6.3. PTCDA on the Ag(111) surface forms a monolayer commensurate

with the substrate [128, 129] and has the

(
6 1
−3 5

)
surface unit cell contain-

ing two inequivalent PTCDA molecules and 33 atoms per metallic layer. The
adsorption site is chosen in agreement with previous investigations [126].

Investigations of PTCDA on Au(111) have revealed that molecules do not form
monolayers commensurate with the substrate but exhibit a point-on-line growth
on the (22 ×

√
3) reconstructed surface [130–133]. To take into account these

effects in the calculations would require an excessive computational effort since
one would have to choose a huge supercell size. Therefore, we adopt the same
unit cell as used in the Ag case. This approach can be regarded as reasonable
since the lattice constants of Au and Ag are almost the same (2.95 Å for Au vs
2.94 Å for Ag).

On the Cu(111) surface the PTCDA monolayer has also been found to form a

herringbone structure [134] with a larger

(
6 3
−4 6

)
surface unit cell (Figure 6.3,

right panel) induced by the significantly smaller lattice parameter of Cu of 2.57
Å compared to Ag.

The adsorption energy, Eads(d), is calculated in the following way:

Eads(d) =
1

2
[Emet+mono(d)− (Emet + Emono)], (6.2)
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Figure 6.3: Top: Top view of PTCDA adsorbed on metal surfaces. On the left,
PTCDA on Ag(111) is illustrated, and on the right PTCDA on Cu(111) is depicted.
The large blue arrows indicate the surface unit cell vectors. The metal surface atoms are
represented by white circles while the carbon atoms are colored green, the hydrogen
atoms black, and the oxygen atoms red. Bottom: Representation of the chemical
structure of PTCDA.

where Emet+mono(d) is the energy per unit cell of the metal-monolayer system
when the monolayer is placed at a specific distance d to the surface. Emet is
the energy of the isolated metallic slab, and Emono is the energy of the isolated
monolayer.

As shown in Fig. 6.4, the adsorption energy produced by PBE is found to be
largely repulsive for all three metals, where a very small binding contribution can
be observed at large distances to the surface (about 4 Å). For the Ag substrate
this has already been described in Refs. [114, 125, 135]. The Eads curves strongly
contrast with the XSW results which show that the monolayer should be adsorbed
much closer to the surface for all three metals. Experimentally, the desorption
energy of PTCDA is not accessible as the molecule dissociates prior to desorption
(see, e.g., [129]). However, for NTCDA, which has a naphthalene instead of
perylene building block in the molecular center, thermal desorption spectroscopy
at submonolayer coverage has reported desorption energies of 1.2 eV [136]. As
NTCDA is about half the size of PTCDA one can expect that the adsorption
energies should be as large or even larger.
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Figure 6.4: Adsorption energy calculated using different types of exchange corre-
lation potentials: PBE, PW91, revPBE, the exchange part of revPBE together with
the LDA correlation, from dispersion forces (Enlc ) solely, and with the vdW-DF. All
quantities have been calculated from the PBE self-consistent charge density. The ex-
perimentally measured equilibrium distances for the Ag, Cu, and Au surfaces are given
for comparison (vertical lines).
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The PW91 functional gives results very similar to those of PBE, producing very
weak binding energies at rather large equilibrium distances. This is not the case
for the LDA. In agreement with earlier works [126, 127], a structural optimization
of the monolayer on top of Ag, where no constraints are imposed on the molecule,
gives binding distances in reasonable agreement with XSW experiments and re-
alistic negative values for the adsorption potential (-3.04 eV, -3.20 eV, and -1.80
eV for the Ag, Cu, and Au surface, respectively). The reasons for this behavior
are rooted in the unconstrained structural optimization which leads to arching
[118], as is the case also here.

Proceeding now to vdW-DF, we observe that the dispersion forces yield a very
strong binding contribution of about 5–6 eV per molecule at the experimental
distances. The dashed lines in Fig. 6.4 present the adsorption energy calculated
from Enl

c alone. These curves are purely attractive for the three different sub-
strates and rather similar for all three surfaces, i.e. Au gives a slightly stronger
attraction than Cu and Ag.

Finally, the vdW-DF adsorption energies are presented as blue triangles. For
all substrates, the corresponding curve exhibits a pronounced minimum of about
-2 eV at around 3.5 Å. In the Ag case, the result can be compared to Ref. [114]
where Enl

c calculated within the RPA is combined with an exact exchange ap-
proach. In this way, a similar adsorption potential was obtained giving a some-
what smaller binding distance of 3.2 Å and a comparable adsorption energy of
2.5 eV. Furthermore, a study based on an embedded atom model reported an
adsorption energy of about 3.5 eV for PTCDA on Ag(111) [137].

Compared to the experimental situation the bonding distances are systematically
overestimated with the biggest deviations obtained for the Cu surface. Hence
the vdW-DF corrects the failure of the GGA functionals insofar as it results in
reasonable binding energies, but it still shows a tendency to bind the monolayers
at too large distances.

6.3 Conclusions

In this Chapter, the adsorption of organic molecules on metal substrates has
been investigated. To this intent two different prototypical systems have been
studied. The first one consists of thiophene physisorbed on the Cu(110) and
oxygen reconstructed Cu(110)-(2x1)O surfaces. For both cases, the binding has
been found to be purely due to vdW interactions. The standard GGA functionals
underestimate the adsorption energy and, hence, provide a wrong physical picture
for the binding. The vdW-DF results are supported by experimental data for 1T
on Cu(100) and Cu(111). Based on these findings one can conclude that nonlocal
correlations are crucially important for thin film growth, other surface reactions,
and catalytic processes.
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Similar results have been obtained for the adsorption of the PTCDA molecule
on the (111) surfaces of the three coinage metals Ag, Cu, and Au. In these
structures, the calculated adsorption distances and binding energies have also
revealed a strong sensitivity to the xc-functional. Again, as in the case on 1T on
Cu(110) and Cu(110)-(2x1)O surfaces, GGA, which is not capable of describing
dispersion forces, leads to clearly wrong adsorption energies, while LDA, which
suffers from the same short-coming, gives results rather close to the XSW data,
however, due to a fortuitous cancellation of errors. The attraction arising from
dispersion forces amounts to several eV for all three substrates. Including this
nonlocal effect, the GGA results can be improved and give adsorption energies
of about 2 eV per molecule together with adsorption distances of about 3.5 Å for
all substrates. The latter are, however, not fully consistent with XSW results.

This observation indicates shortcomings regarding the construction of the vdW
density functional. To summarize, a systematic overestimation of bond lengths
has been found for both systems under investigation, i.e. 1T on clean and oxygen-
modified Cu surfaces as well as PTCDA on the three coinage metals. As already
mentioned above, this behavior of vdW-DF is known in literature [13] and is
currently a hot topic of research [71]. One of the main reasons for this lies in the
approximation for the exchange energy used in the vdW-DF. The argument as
to why the revPBE exchange part is used in the vdW-DF expression (3.63) is the
similarity of the latter with the exact (or Hartree-Fock) exchange. This result has,
however, been obtained for a limited number of systems and, therefore, this points
needs further investigations. And finally, the “local” correlations, i.e. that part
of the correlation effects which is not covered by the long-range contribution Enl,
is not necessarily local, hence, requiring the derivation of gradient corrections.
Furthermore, the plasmon pole model used to describe the polarizability might
be too approximative to capture the attraction from dispersion forces correctly.
However, the good agreement with Ref. [114] suggests that the error induced in
this manner is most likely not significant for these systems. Furthermore, the
role of a self-consistent treatment of the vdW-DF [69] should be explored even if
the effect can be expected to be small. As a matter of fact, vdW-DF is a very
good starting point but further developments from the theoretical side are still
required.
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Chapter 7

Outlook on organic thin film
growth

An understanding of organic thin film growth is the ultimate goal of the cur-
rent investigations. In spite of the enormous effort aiming at the improvement
of the quality of materials and the functioning of organic devices, the underlying
growth mechanisms are not well understood yet. One the one hand, the weak
intermolecular bonding goes hand in hand with shallow energy potentials lead-
ing to polymorphism, since different molecular conformations exhibit only small
energy differences. Moreover, the pronounced anisotropy and complex nature
of the molecules as the building blocks make organic film growth fundamentally
different from the inorganic counterpart. As a matter of fact, molecule-molecule
as well as molecule-substrate interactions strongly depend on the relative orien-
tations of the interacting objects. The deposition of a molecular layer on top of
a substrate is determined by a delicate balance between the weak interactions
among the molecules as well as between molecule and substrate. It is this inter-
play which governs thin film morphology. For example, depending on the nature
of the substrate, the orientation of deposited pentacene molecules can vary from
islands of standing molecules on inert and flat substrates, to flat lying molecules
on metal surfaces [138]. Moreover, the morphology of 6P on a single substrate can
be different as a function of the growth conditions [139]. A more recent report by
Hlawacek et. al [140] has revealed a multilayer growth of 6P on mica in the form
of terraced mounds, where a combined experimental and theoretical analysis has
exposed a sizable Ehrlich-Schwoebel barrier.

Investigation of the energetics of organic molecular crystals as well as their in-
teraction with metal substrates allows some conclusions to be drawn in terms of
thin film growth close to equilibrium where the surface energies of the respective
constituents as well as the interface energy between the film and the substrate
play important roles [98, 141]. First, a short overview of thin film growth from
a thermodynamic point of view will be provided. Based on this, the results ob-
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tained within this thesis are evaluated to draw some first conclusions about film
growth of organic molecules on metal substrates.

7.1 Theory of thin film growth close to equilib-

rium

Thin film deposition is a special case of epitaxial growth. The term epitaxy is used
for the growth of a crystalline layer on (epi) a crystalline substrate, where the
crystalline orientation of the substrate imposes an order (taxis) on the orientation
of the deposited layer.

The orientation of the deposited layer is determined by the constraint to minimize
the contribution to the interface energy which arises from a possible mismatch
between the substrate and the crystal structure of the deposited material. In the
case when the two materials are different, the term heteroepitaxy is used. When
the growth of a crystalline layer on a chemically identical, crystalline substrate
is considered, the term homoepitaxy is commonly employed.

There is a classification of epitaxial growth based on thermodynamic considera-
tions, which therefore applies to growth near thermodynamic equilibrium [141].
Different growth modes may be distinguished according to the balance between
the surface free energy γD of the deposited material, the surface free energy γS of
the substrate, and the interface free energy γint. The interface energy is defined
by the Dupré-relation

γint = γS + γD − βSD, (7.1)

where βSD is the work required to separate substrate and deposited crystals in
their actual orientations and with actual atomic distances [142].

Let us consider the case
γS < γD + γint. (7.2)

The energy balance requires minimization of the area covered by the deposited
material, which will grow in the form of three-dimensional islands on the sub-
strate. This mode is called Volmer-Weber growth (Fig. 7.1a). The opposite
condition

γS > γD + γint (7.3)

leads to maximization of the area covered by the deposited material and the
film will initially grow smoothly, i.e. layer by layer. In case of heteroepitaxy,
after deposition of a certain number of layers, the condition (7.3) must break
down because the original influence of the substrate is screened by the deposited
material. At some moment the two surface energies γS and γD will be nearly
equal. However, the elastic influence of the substrate, for example, will give rise to
a positive, nonzero interface energy γint between two successive layers. Thus, we
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Figure 7.1: The three epitaxial growth mechanisms close to thermodynamic equilib-
rium: (a) Volmer-Weber, (b) Frank-van-der-Merwe, and (c) Stranski-Krastanov growth
mode.

return back to the case (7.2), where three-dimensional islands will form starting at
some film thickness. This scenario defines the Stranski-Krastanov growth mode,
where 3D islands are formed on a wetting layer (typically a monolayer).

Finally, the limiting condition

γS = γD + γint (7.4)

can only be fulfilled for homoepitaxial growth systems, where γint = 0 by defini-
tion. The corresponding Frank-van-der-Merwe growth mode is characterized by
layer-by-layer growth of unlimited duration.

Introducing the quantity

∆γ = γD − γS + γint = 2γD − βSD, (7.5)

where for the last expression the Dupré relation (7.1) has been used, the growth
mode conditions (7.2), (7.3), and (7.4) can be reformulated. The sign of ∆γ
determines the corresponding growth mechanism: positive values corresponds to
the Volmer-Weber growth mode, negative corresponds to the Stranski-Krastanov
mode, and the case of equality to zero results in the Frank-van-der-Merwe mode.

One should stress that the classification scheme stated above describes near-
equilibrium growth modes. In many cases, experimentally observed film mor-
phologies can be easily associated with the Volmer-Weber, Stranski-Krastanov
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or Frank-van-der-Merwe scenarios. However, the real nature of the morphol-
ogy can have a predominantly kinetic origin due to growth conditions far from
equilibrium (e.g., deposition and diffusion rates) or be caused by heteroepitaxy
energetic effects such as the lattice mismatch or differences in surface energies.

7.2 First conclusions on organic thin film growth

Figure 7.2: Surface energies of fcc metals taken from Ref. [143] (left panel) in compar-
ison with surface energies of pentacene (5A), sexiphenyl (6P), and sexithiophene (6T)
crystals (right panel) for selected orientations.

Using the theory of near-equilibrium crystal epitaxial growth described in Sec. 7.1,
we are able to give several conclusions about the growth of organic crystals on
metal substrates, for which the respective surface energies are some of the most
important quantities. In Fig. 7.2, the surface energies of fcc metals [143], γS, and
some of the more technologically important organic solids, γD, are depicted for
comparison. As one can see, the surface energies of metals are as much as one
order of magnitude larger than the surface energies of molecular crystals.

Another crucial parameter is the interface energy, γint (7.1), which we can roughly
estimate by using the results of Chapters 5 and 6. From Table 5.1 one can see a
rather weak dependence of the surface energies on the oligomer size and surface
orientation. We suppose, therefore, that the 1T crystal has similar values of
surface energies to 2T and hence adopt its average value 0.12 J/m2. Moreover,
the adsorption energy of 1T on Cu(110) has been found to be 0.5 eV. Estimating
approximately the effective contact area between 1T and the substrate (assuming
a circular shape of the lying molecule) one obtains about 0.5 J/m2 for the specific
adhesion energy.

Using the results obtained above and Eq. (7.1) one can now estimate the interface
energy:

γint = 1.6408 + 0.12− 0.5 = 1.2608 J/m2.
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It is found to be of the same order as the substrate surface energy and as much as
one order of magnitude larger than the characteristic surface energies of molecular
crystals.

Using the condition determining the growth mode, Equation (7.5), one obtains,

∆γ = 2 · 0.12− 0.5 = −0.26 < 0.

The negative value of ∆γ predicts a Stranski-Krastanov growth mode (see Fig. 7.1c).
However, taking into account the simplicity of the estimation and the rather small
value of ∆γ, we conclude that the growth mode could be close to the “ideal”
layer-by-layer Frank-van-der-Merwe type. In fact, in such a case a strong influ-
ence of the growth kinetics (temperature and growth conditions) on the resulting
thin film morphologies can be expected. As demonstrated recently, peculiarities
which are not known from inorganic epitaxy are observed as a consequence of the
complexity and anisotropy of the building blocks [140].
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Chapter 8

Structure solution of organic thin
films

8.1 Introduction

A detailed knowledge of thin film formation is of major importance since the
optoelectronic properties are strongly influenced by the structure and morphology
of the deposited material. In particular, a strong dependency of the optical and
charge transport properties is observed on the preparation conditions [144, 145].
This finding is related to the strongly pronounced anisotropy of the optical spectra
in these low-dimensional systems as shown for a variety of molecular crystals by
ab-initio calculations [100, 146, 147].

The interaction of the deposited material with a substrate can lead to the for-
mation of structures which differ from the well-studied single crystal ones. These
surface-induced polymorphs are limited to the first layers of the grown films and,
therefore, impose limitations on standard experimental techniques for crystal
structure determination such as an x-ray diffraction.

In this chapter, a combined experimental-theoretical method is described aim-
ing at the structural solution of organic materials. From the experimental side,
a combination of specular x-ray diffraction with grazing incidence diffraction is
used to observe characteristic diffraction peaks in reciprocal space. The dimen-
sions of the crystallographic unit cell are determined by indexation of reciprocal
space maps. These experimental parameters are used as an input for ab-initio
calculations within the framework of DFT to determine the molecular packing
inside the crystallographic unit cell. This method has been successfully applied
to the investigation of the thin film structures formed by pentacene [148] and
para-cyano-quaterphenylene [149] molecules.

The task for the theoretical side was to reveal an unknown packing of molecules
inside an experimentally determined unit cell. The x-ray diffraction experiments

79
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followed by the indexation procedure have been performed by Oliver Werzer for
the pentacene [148] and Armin Moser for the para-cyano-quaterphenylene [149]
thin films in the group of Roland Resel at the Institute of Solid State Physics
at the Graz University of Technology. For sake of completeness, an overview of
the experimental details and results used in this chapter are given below. More
information concerning the experimental part can be found in the corresponding
references or in Refs. [150, 151].

8.2 Methods

8.2.1 Experimental approach

Two-dimensional powder

The morphology of the organic thin films prepared by physical vapor deposition
onto isotropic surfaces is often characterized as a two-dimensional powder. This
is an intermediate case between a single crystal and a crystalline powder. The
specifics of such morphology is that the crystallites have a preferred orientation of
one of the growth planes (typically (001)) parallel to the substrate surface, at the
same time showing no in-plane alignment (for more details see Ref. [150]). In this
case, the powder of crystallites is said to have a texture. A texture where only
one degree of freedom (here the rotation around the surface normal) is present
is called fiber-texture. This preferred orientation is the fiber axis [152]. Such
specifics of textured thin films leads to the fact that the reciprocal lattice consists
of a set of rings where the radii are determined by the in-plane component of the
scattering vector, qp =

√
q2
x + q2

y. The latitude of the rings correspond directly to
qz. Therefore the procedure of the reciprocal space mapping is to perform radial
scans along qp for different detector elevations.

Grazing incidence diffraction

X-ray diffraction is a very efficient tool to investigate the structures of bulk crys-
talline materials. X-rays weakly interact with matter and, therefore, have a num-
ber of advantages such as significant penetration into the material (typically of
0.1-10 mm, depending on the substance and the x-ray energy) allowing the mea-
surement of microscopic structural information averaged over a large ensemble of
atoms and molecules. However, this advantage of x-rays for bulk studies turns
into a disadvantage when the structure of surfaces and interfaces is concerned.
In spite of this, the x-ray diffraction technique can be modified to overcome this
limitation. Grazing-incidence diffraction (GID) has been shown to be a powerful
tool for dealing with monolayers and thin films [153]. The GID geometry makes
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x-ray scattering surface sensitive, i.e. largely avoids scattering from the sub-
strate. Moreover, radiation damage is essentially reduced, as the power density
of the beam is spread over a large scattering area. GID is based on the fact that
the reflective index for most materials is slightly less than 1.0 at x-ray energies.
Therefore, if the incident angle is small enough (typically 0.05-1.5◦, depending
on the substrate electron density and the x-ray energy), one can observe total
external reflection from a surface. With this geometry, the penetration depth
is extremely sensitive to the incidence angle. Therefore, very low penetration
depths can be achieved which enables scattering mainly from the top layers, i.e.
the organic film. The penetration depth is below 1 nm for angles smaller than the
critical angle of total external reflection. More details about the GID technique
can be found in textbooks [152, 154].

Experimental details

Details concerning sample preparation, x-ray specular diffraction and GID of
the pentacene and the para-cyano-quaterphenylene thin films are described in
Ref. [148] and Ref. [149], respectively.

The results of the GID experiments are typically presented as reciprocal space
maps, i.e. diffraction patterns as a function of the qz and the in-plane-component,
qxy of the scattering vector [151]. Indexation of these maps is performed by a
visual comparison of calculated Bragg peak positions with the experimentally ob-
served ones. The reliability of the structure solution is checked by comparing the
calculated structure factors with the measured intensities. The structure factors
used in this work are computed by the software package PowderCell [155] and cor-
rected by Lorentzian L and polarization PH factors taking the used experimental
setup into account [149, 156].

8.2.2 Theoretical approach

Internal geometry optimization

The fact that bonding in molecular crystals is characterized by strong intramolec-
ular and comparably weak intermolecular forces allows a division of the procedure
of geometry relaxation into two steps. First, the internal geometry of the isolated
molecule is relaxed. Then, following a procedure described below, the orienta-
tions of the molecules are optimized within the unit cell considering the molecules
as rigid. The lattice parameters serve as the only input for this procedure and
are provided by the indexation of the GID reciprocal space mapping.

Considering the molecules as rigid, the Euler angles are the natural choice for
describing the molecular orientation within a cell. However, due to the layered



82 CHAPTER 8. STRUCTURE SOLUTION OF ORGANIC THIN FILMS

Figure 8.1: Crystal structure of pentacene. The herringbone arrangement of the
molecules in the (ab) plane and the orientation angles are shown. ω describes a rotation
of the molecule around a long molecular axis, χ is a tilting angle, and φ is a in-plane
polar angle. θ stands for the herringbone angle and and δ is the angle between the long
molecular axes of the two molecules inside the unit cell.

stacking of the molecules inside the molecular crystals, it is more convenient
to use a definition of the angles as depicted in Figure 8.1. There, two angles
define the orientation of the long molecular axis in a reference frame where the
(xy) plane coincides with the herringbone plane (labeled ab plane in the figure),
and the third axis is perpendicular to it (labeled c*). These angles are the
in-plane polar angle φ and the out-of-plane tilt angle χ. The third angle ω
describes the rotation around the long molecular axis. The angle θ denotes the
so-called herringbone angle, i.e. the angle between the normal vectors of the
molecular planes of two inequivalent molecules, and δ is the angle between the
long molecular axes of the two molecules inside the unit cell. This way the number
of degrees of freedom required to describe the internal geometry of the molecular
crystal is 3N , where N is the number of inequivalent molecules. Making use
of symmetry (the molecular crystals considered mostly have monoclinic space
groups) and assumptions concerning possible molecular orientations inside the
cell allows a reduction of this number. Hence, the procedure of the internal
geometry optimization consists of the search for the minimum total energy as a
function of these orientation angles.
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Computational details

The computational procedure starts from the relaxation of the atomic positions
inside the isolated molecule until the remaining atomic forces become less than
1 mRy/au. As mentioned in Chapter 5, isolated molecules are treated in the
supercell approach. As a next step, a series of crystal structures (with the lat-
tice parameters fixed according to experiment) is generated which differ by the
orientation of the two inequivalent molecules inside. Now a number of numerical
methods can be used to search for the minima of the energy surface. However,
the knowledge of well-defined bulk crystal structures can serve as a very good
starting point in the search for thin film polymorphs. Exploring the subspace of
the orientation angles close to those of the known structures provides a rather
fast and reliable way to find the structural solution. Such a relaxation procedure
has been proven successful for structure optimization of anthracene under pres-
sure [157] and is outlined in the following: First, the total energy of the crystal
is minimized by rotating the inequivalent molecules around their respective long
axes and keeping the values of the polar angles constant. Subsequently, one fixes
the value of ω corresponding to the minimum energy and successively change
the angles χ and φ. As a final step for the internal geometry minimization,
the atomic positions of the molecules are allowed to relax again such that the
remaining forces are below 1 mRy/au.

All calculations are performed using QUANTUM-ESPRESSO [84]. Ultrasoft
pseudopotentials [93] with a plane-wave energy cutoff of 40 Ry are employed.
Exchange and correlation effects are treated by PBE [49]. Brillouin zone inte-
grations are carried out by the Monkhorst-Pack scheme [94] with a 4 × 4 × 3
mesh.

8.3 Crystal and electronic structure of pentacene

thin films

8.3.1 Motivation

Pentacene is one of the most prominent materials used in organic electronics
(Chapter 2). The high reproducibility of thin films by vacuum deposition of
the molecules combined with advantageous electronic properties like high mobil-
ities make them perfect candidates for exploration in the construction of organic
devices [158].

The growth of pentacene films shows a variety of crystalline phases, where three
different polymorphic structures have been reported [159, 160]. Only for two
structures, namely the Campbell or “bulk” phase [161], and the so-called “single
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crystal” phase [162, 163] have complete structural solution been known. Although
the thin film phase is crucial for the charge transport within thin film transistors,
the geometry of this structure is still subject of ongoing research [164, 165].
The reason is that it is only formed on isotropic surfaces and the subsequent
appearance of a pentacene bulk phase [166, 167] does not allow for the growth of
single crystals of a size sufficient for a full structure solution. Moreover, isotropic
surfaces like silicon oxide or polymer surfaces lead to the formation of domains
in the thin film phase with a preferred orientation of the crystallites with the
crystallographic (001) plane oriented parallel to the substrate surface [168, 169].

Therefore, the combined experimental / theoretical approach for determining
thin film phases provides a good tool for resolving the details of the pentacene
thin film phase, and, in fact, led to a successful determination of the crystalline
parameters as will be seen below.

8.3.2 Experimental facts

The specular x-ray diffraction scans reveal the typical diffraction features of a
pentacene thin film grown on silicon oxide [170, 171]. Two series of diffraction
peaks are observed. The dominating ones arise from an interplanar distance
d001 = 1.544 ± 0.003 nm which can be identified as the 00L peaks of the thin
film structure. This observed value is in excellent agreement with literature data
[138]. The second peak series is of much lower intensity and comes from an
interplanar distance of 1.443 ± 0.003 nm. This value does not fit to the “single
crystal” structure obtained by Holmes [162, 163], but is close to d001 = 1.450
nm of the “bulk” structure of Campbell [161]. The presence of the Campbell’s
structure besides the thin film structure has already been proven experimentally
[172].

The grazing incidence diffraction studies reveal randomly distributed crystallites
(two-dimensional powder). A typical diffraction pattern is depicted in Fig. 8.2.
The diffraction peaks marked by crosses are calculated positions arising from
the Campbell structure taking into account the preferred orientation of the crys-
tallites. All expected peaks with sufficiently high intensity are observed, which
reveals that the Campbell structure is definitely present in the film.

The residual peaks can be used for an indexation of the pentacene thin film
phase. Since the sample shows a strong (001) preferred orientation, the observed
qxy values of the diffraction peaks can be used to determine the Miller indexes hk
according to literature data [173]. Also considering the qz part of the diffraction
peaks the complete indexation of hkl were obtained by determining the unit cell
parameters of the reciprocal lattice. The fact that the length of the reciprocal unit
cell vector c∗ is known accurately from the specular scan simplified the indexation
procedure considerably [174]. The obtained lattice constants are a = 0.592 nm,
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Figure 8.2: Grazing incidence diffraction pattern of a 180 nm thick pentacene thin
film, where the intensities of the diffraction spots are square-root scaled. Diffraction
spots arising from the Campbell phase are marked by crosses. The indexes of the
diffraction peaks are given only for the thin film phase. This picture is taken from Ref.
[148].

b = 0.754 nm, c = 1.563 nm, α = 81.5◦, β = 87.2◦, and γ = 89.9◦ and are
compared with those of the Campbell phase in Table 8.1. The values are quite
close to data obtained from electron diffraction on microcrystals [175] and are
in excellent agreement with results of other recent x-ray diffraction experiments
[164, 165].

8.3.3 Geometry relaxation

Since the pentacene crystal has triclinic symmetry, the procedure of internal
geometry optimization requires a search for the total energy minimum in a 6-
dimensional space. However, using assumptions regarding possible orientations
of the molecules inside the crystal as described below, this number of degrees of
freedom can be reduced to only three, i.e. the angles θ, φ, and χ, depicted in
Fig. 8.1.

From the existing experimental structure data of the pentacene polymorphs it
is known that the angle between the long molecular axes (in our notation δ)
does not exceed 1.5◦ [160]. Due to this fact we only consider those geometries
as a starting point for the optimization, where the long molecular axes of both
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Table 8.1: Triclinic lattice parameters a, b, c, α, β, γ, and the unit cell volume V
of the thin film pentacene polymorph as determined from x-ray measurements. For
comparison the lattice constants of Ref. [164] and Ref. [165] as well as the bulk phase
(Ref. [161]) are given. A different choice of the unit cell vectors for the bulk phase with
respect to Ref. [161] is used.

Phase a(nm) b(nm) c(nm) α(deg) β(deg) γ(deg) V (nm3)
Thin film:
This work [148] 0.592 0.754 1.563 81.5 87.2 89.9 0.689
Yoshida et al. [164] 0.593 0.756 1.565 98.6 93.3 89.8 0.693
Schiefer et al. [165] 0.5958 0.7596 1.561 81.25 86.56 89.80 0.697
Bulk [161] 0.606 0.790 1.501 81.6 77.2 85.8 0.692

inequivalent molecules are parallel. Moreover, the herringbone style of packing
suggests a rotation of both pentacene molecules around their long molecular axes
in a consistent way, i.e. the first molecule is rotated by the angle θ/2 and the
second one by the angle −θ/2. One should note that during the final relaxation of
the atomic positions, the molecule as a whole is allowed to rotate by some small
angle. Therefore, after this last relaxation step the two inequivalent molecules
do not necessarily have the same orientation with respect the long axes anymore
leading to δ slightly deviating from 0◦.

To estimate the accuracy of our two-step procedure for the geometry optimiza-
tion as described above, the approach has been tested for the pentacene bulk
structure, for which the internal geometry is well known [161]. For this purpose
two pentacene molecules have been placed in a unit cell with experimental lattice
parameters determined by Campbell. Results of this procedure are plotted in
Fig. 8.3, and the optimal values of the orientation angles are compiled in Ta-
ble 8.2. The comparison of the experimental and optimized internal geometry in
shows good agreement and allows us to reliably apply this optimization proce-
dure to the search for the internal geometry of the thin film phase. The biggest
deviation of about 2◦ is observed for θ and δ which might be explained by the fact
that we have omitted the degrees of freedom connected with the inequivalence
of the two pentacene molecules in the optimization procedure. This deviation,
hence, can be regarded as an error bar of the optimization procedure.

Starting from the lattice parameters as measured by x-ray diffraction (Table 8.1),
the optimization of the molecular orientations of the unknown thin film phase is
performed using an analogous search algorithm as described above. The results
are given in Table 8.2. The comparison with the bulk phase data shows the
following characteristic features (see Fig. 8.4). First of all, there is a pronounced
difference in the tilt angle χ, which is ≈ 20◦ for the bulk and only ≈ 3◦ for the
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Table 8.2: Calculated orientation angles of the molecules in bulk and thin film pen-
tacene in comparison with experimental data for the bulk phase. The total energies for
both structures are shown in the last row.

Bulk (exp)a Bulk (opt) Thin film (opt)
θ (deg) 52.5 50.9 54.1
χ1 (deg) 22.4 21.9 3.1
χ2 (deg) 20.5 20.9 2.9
δ (deg) 2.2 1.0 0.3
Etotal (Ry) -533.8978 -533.8976 -533.8973
a Ref. [161]

Figure 8.3: Total energies of the thin film phase (blue line) and the bulk phase (red
line) as a function of the herringbone angle θ (left) and the tilt χ angle (right). The
origin of the energy scale is taken at the absolute energy minimum of the respective
curve.
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Figure 8.4: Crystal structure of the bulk (left) and the thin film phase of pentacene
(right).

thin film phase. The main reason for this behavior can be found in the smaller
interlayer separation of the bulk phase (1.45 nm) as compared to the thin film
phase (1.543 nm). On the other hand, the herringbone angle θ = 54◦ for the thin
film phase is close to the corresponding quantity for the oligoacene series (≈ 52◦),
where the a and b lattice parameters are almost constant.

Another interesting feature is the dependence of the total energy on the tilt angle.
The presence of two local minima at about 3◦ and 18◦ for the thin film phase
is clearly observed. This behavior is seen for the bulk phase as well, where the
minima are located at ≈ 5◦ and ≈ 21◦. In contrast to the thin film phase, the
deepest minimum is the second local minimum at a tilt angle of 22◦. Moreover,
different energy barriers between the minima are revealed. For the thin film phase
this barrier is about 0.4 eV, whereas for the bulk phase it is an order of magnitude
larger (about 5 eV). Comparing the total energies of the two structures one can
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observe that the energy difference is only 6.5 meV, which shows that both phases
are likely to coexist in the real material.

The revealed thin film structure of pentacene is in good agreement with other
studies performed concurrently by Yoshida at al. [164] and Schiefer et al. [165].
Using x-ray diffraction, the former group has determined lattice parameters very
close to the ones reported by us. Their theoretical investigations of the internal
molecular geometry by means of an empirical force field method revealed a her-
ringbone angle of 50◦ and tilting angles of 5.7◦ and 6.8◦, respectively. The latter
group independently performed GIXD measurements on a pentacene thin film
deposited on different substrates. Their results for 5A on SiO2 revealed similar
cell parameters. To determine the molecular arrangement, a fit of calculated x-
ray intensities to the measured ones was performed in Ref. [165]. In this way, a
herringbone angle of 54.3◦ and tilting angles of 5.6◦ and 6.0◦ were found.

8.3.4 Comparison between theory and experiment

Based on the theoretically determined molecular packing, a diffraction pattern is
computed and compared with line scans at constant qxy from the experimental
diffraction pattern in Fig. 8.5. The intensities are calculated with the assumption
of randomly distributed crystallites. In Fig. 8.5 the theoretical powder spectra
for two different molecular orientations characterized by χ = 3◦ (black bars) and
χ = 18◦ (gray bars) are compared with the experimental data (lines). An over-
all good agreement with experiment is found only for the theoretical intensities
corresponding to the χ = 3◦ case. In particular, the most pronounced diffraction
peaks, namely (1-10), (110), (021), and (020), strongly favor this solution, which
is also the optimal structure from the DFT total energy point of view. At χ ≈ 18◦,
on the other hand, the (1-10), (110) and (021) reflections are considerably under-
estimated while the (020) is predicted to be highest in intensity. Also the relative
intensities of (1-10) vs. (110) and (021) vs. (020) are in excellent agreement only
for the 3◦ structure. There remain some small deviations between calculated and
experimental intensities, e.g. the ratio between the (-121) and (121) peak heights
(Fig. 8.5c). This can be explained by the fact that the peak height of (121) is de-
creased due to peak broadening, but the overall intensities are comparable with
the relative intensities given by the bars. From theoretical considerations, the
differences in the diffraction intensities can be caused by neglecting additional
degrees of freedom in the structure optimization procedure as outlined in the
previous section.

Finally, one should note that the calculations above have been carried out by
standard xc potentials, i.e. the PBE. As mentioned earlier, this is justified when
only internal degrees of freedom are concerned. However, it would be desirable
for future work to carry out such investigations with more advanced techniques as
the vdW-DF in order to evaluate nonlocal correlation effects on the conformation
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Figure 8.5: Integrated diffraction intensities of Fig. 8.2 taken in the qxy range (1.33,
1.38) (a), (1.63, 1.70) (b) and (1.93, 2.01)(c) and normalized to a single line scan. Cal-
culated peak positions and relative intensities are given by bars for the two structural
solutions χ ≈ 3◦ and χ ≈ 18◦.
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of molecules inside the unit cell. Even if the changes are expected to be not
significant, they could clarify the remaining small discrepancies with respect to
experimental results.

8.3.5 Electronic band structure

Starting from the structure solution found for the thin film phase as described
in the previous sections and the structural data of the Campbell phase, we cal-
culated and compared the electronic structures of both polymorphs. The band
structure calculations were carried out for a path in the Brillouin zone connect-
ing the high-symmetry points X, Γ, Y, C, and Z with the internal coordinates of
these points being (0.5,0,0), (0,0,0), (0,0.5,0), (0.5,0.5,0), and (0,0,0.5) in units
(2π/a,2π/b,2π/c). Note that the ΓZ direction is normal to the ab-plane, i. e.
perpendicular to the pentacene layers. Since all triclinic angles are close to 90◦,
the ΓX and ΓY directions are almost parallel to the crystal ab plane, hence,
reflect the in-plane dispersion. For the calculation of the density of states (DOS)
the k space integration was performed by the improved tetrahedron method [176]
with a 6× 6× 4 mesh.

The results are shown in Fig. 8.6. The subbands corresponding to the upper-
most valence band (VB) and the lowest conduction band (CB) pairs, as well as
their corresponding density of states (DOS), are displayed in green. One should
mention that in the original determination of the Campbell structure, a differ-
ent setup of the unit cell was used. Here another set of basis vectors is chosen
allowing for a direct comparison with the thin film phase (see Table 8.1). The
most distinct features of the two band structures are summarized in Table 8.3.
The band structure of the thin film phase exhibits a more dispersive character.
A denser packing of the molecules in the (ab) plane leads to stronger intermolec-
ular interaction. This is responsible for the fact that the bandwidths of both
the conduction and the valence bands are significantly enhanced. This finding
should have significant impact on the charge carrier mobilities. In particular, we
observe a valence bandwidth twice as large as compared to the corresponding
bulk polymorph. The largest splittings of the VB and CB of the thin film phase
is observed at the Γ point, while in bulk pentacene this is at the C point. The
top of the valence band of the thin film polymorph is situated at (0.7, 0.0, 0.0).
It is noteworthy that the Kohn-Sham band gap of the thin film phase (0.70 eV)
is only slightly smaller than that of the bulk phase (0.74 eV), for which similar
values have been reported previously [91, 177]. In both cases, the gap is a direct
one.
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Figure 8.6: Calculated band structures for the bulk (left) and thin film (right)
pentacene polymorphs. The high-symmetry points in units (2π/a,2π/b,2π/c) are
Γ=(0,0,0), X=(0.5,0,0), Y=(0,0.5,0), C=(0.5,0.5,0), and Z=(0,0,0.5). The Fermi level
is indicated by a red dashed line. The subbands of the VB and CB as well as their
DOS are given in green. On top the corresponding Brillouin zones are presented.

Figure 8.7: Highest occupied molecular orbital (HOMO) of the bulk phase (left) and
the thin film structure (right) of pentacene.
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Thin film Bulk
Kohn-Sham band gap 0.70 eV 0.74 eV

Band width
VB 0.64 eV 0.34 eV
CB 0.62 eV 0.53 eV

Band gap at point
Γ 0.77 eV 0.93 eV
C 0.90 eV 0.89 eV

Table 8.3: Calculated Kohn-Sham energy gap and band widths of the highest occupied
and the lowest unoccupied pairs of bands for both crystal 5A structures. Additionally,
the band gaps calculated at the k points Γ and C are given.

8.4 Crystal structure of CNHP4 thin film

8.4.1 Motivation

Thin films formed by oligophenylenes molecules are highly reproducible and
chemically stable at ambient conditions. They show optical fluorescence in the
blue-visible regime, which is relevant for organic light emitting applications [178,
179]. In particular, para-quaterphenylenes are of interest because appropriately
functionalized they show enhanced second harmonic generation [180]. In addi-
tion, if they are grown epitaxially on muscovite mica or TiO2, oriented crystalline
nanofibers are formed, making them suitable for integration in nanoscaled pho-
tonic devices [181, 182].

Within this section the combined experimental and theoretical approach de-
scribed above is now applied to solve the unknown crystal structure of para-
cyano-quaterphenylene thin films.

8.4.2 Experimental facts

The para-cyano-quaterphenylene (CNHP4) molecule is shown in Fig. 8.8. It
consists of four phenyl rings and is terminated on one end by a cyano group. The
molecule does not have inversion symmetry which gives rise to the phenomenon
of second-harmonic generation. The presence of nitrogen atom leads to a rather
inhomogeneous charge distribution in comparison with the quaterphenylene case
with charge accumulation at the cyano group. Because of this, one can expect
antiparallel orientation of the inequivalent molecules in the bulk phase.
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Figure 8.8: The para-cyano-quaterphenylene (CNHP4) molecule, where carbon, hy-
drogen, and nitrogen atoms are marked by the yellow, light blue spheres, and dark blue
color, respectively.

Specular scans of CNHP4 thin films prepared under different conditions [149]
have revealed interplanar distances which are close to the van der Waals length
of the CNHP4 molecule (22.4 Å). This result suggests that the molecules have
an upright standing orientation relative to the substrate surface or are slightly
tilted and shifted against each other. Moreover, the observation of slightly differ-
ent interplanar distances (values between 20.7 Å and 23.2 Å) demonstrates the
tendency of the molecule to form polymorph phases.

GID experiments performed by Armin Moser Ref. [149] revealed unit cell param-
eters of a = 5.56 Å, b = 7.67 Å, c = 20.85 Å, and β = 97.4◦ which explained all
experimentally observed diffraction spots and the Debye-Scherrer rings. A very
detailed description of this indexation procedure can be found in Refs. [149, 151].
From mass density considerations, the presence of two molecules within the unit
cell has been deduced. The magnitude of the unit cell parameters a and b together
with the fact that the three strongest peaks are indexed with 110, 020 and 120 led
to the conclusion that the molecules pack in a herringbone pattern. The presence
of those peaks close to the in-plane direction suggest upright standing molecules,
as already concluded from the specular measurement. Comparing crystal struc-
tures of similar molecules [183, 184] shows that oligophenylene-based molecules
with cyano endgroups always arrange in a herringbone pattern with neighboring
molecules oriented antiparallel to each other. The space group P21 was assumed,
since it represents the only possibility to generate such a herringbone packing.

8.4.3 Geometry relaxation

The crystal symmetry, P21, suggested by experiment provide a big advantage for
the simulations. It allows the consideration of the three orientation angles as the
only degrees of freedom.

Following the algorithm described in detail in Sec. 8.2.2, three possible candidates
for the CNHP4 thin film structure have been found. The energy profiles obtained
from the ab-initio calculations in the region around to global minimum are shown
in Fig. 8.9. In both plots an energy scale relative to the global minimum is used.
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Figure 8.9: Energy dependence of the packing of the para-cyano-quaterphenylen
molecules: the herringbone angle between two neighboring molecules (a) and tilt of the
molecules within the herringbone layer (b).

The left panel shows the dependence of total energy on the angle ω at fixed φ
and χ. Only one minimum at ω ≈ 30◦ is observed. This is not the case for
the energy as a function of the tilting angle χ at fixed values of the other angles
(right panel). Here, the total energy has three minima that are located at χ ≈ 0◦

and χ ≈ ±16◦. The global energy minimum corresponds to χ ≈ 0◦ which means
that the long molecular axis is perpendicular to the herringbone layers, i.e. to
the (001) plane, and is in agreement with the experimental observation. Since
the theoretical considerations reveal three possibilities of molecular arrangement
with very similar energy minima (the difference is only about 10 meV), one has
to compare the calculated structure factors with the experimental intensities in
order to find the final solution.

8.4.4 Comparison between theory and experiment

A comparison of the experimental intensities with the calculated structure factors
is shown in Fig. 8.10 for two solutions (χ ≈ 0◦ and χ ≈ ±16◦). The one with
χ = 16◦ is nearly identical to that for χ = 16◦ and is, therefore, not displayed.
The case of χ = 0◦ fits considerably better than the solution for χ = 16◦. This is
clearly visible for the 11L rod in the in-plane direction (qz ≈ 0) (Fig. 8.10). The
agreement between the measured and calculated intensities for χ = 0◦ is good
but not perfect. A few calculated structure factors are slightly overestimated.
E.g., the peak at qp ≈ 4 Å−1 and qz ≈ 0 seems to be too large. Probably, the
assumption of a planar molecule and the separated herringbone layers without
interpenetration of the molecules is not strictly fulfilled. A sketch of the molec-
ular packing corresponding to both solutions, χ = 16◦ and χ = 0◦, is shown in
Fig. 8.11.
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Figure 8.10: Comparison of structure factors based on the calculated molecular pack-
ing with the experimental results taken from Ref. [149]. The solution for χ = 0◦ (a
and a1) is compared with that for χ = 16◦ (b and b1). The radius of the ring around
each calculated peak position is proportional to the magnitude of the structure factor.
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Figure 8.11: Theoretically obtained CNHP4 molecular crystal structures correspond-
ing to χ = 16◦ and χ = 0◦ values of the tilting angle. Solution χ = 0◦ corresponds
closely to experiment regarding the comparison of diffraction intensities.

8.5 Conclusions

A combined experimental and theoretical approach has been successfully applied
to find the crystal structures of surface-mediated thin films formed by pentacene
and para-cyano-quaterphenylene molecules. This approach allows resolution of
the structure solution of such surface-mediated phases that are limited to the
first layers of thin films where standard structure solution methods cannot be ap-
plied. Lattice parameters taken from GID measurements together with auxiliary
experimentally provided data about number of inequivalent molecules and space
group symmetry has served as the input for a theoretical procedure to reveal the
molecular packings within the crystal cell.

The procedure has been tested by a comparison with the well-known pentacene
bulk crystal structure as determined by Campbell [161], and reasonable agree-
ment for theoretically predicted and experimentally observed molecular orienta-
tions has been achieved. The solution found for the pentacene thin film phase
is characterized by the same herringbone packing of two inequivalent molecules
with the corresponding herringbone angle close to that of the bulk crystal phase.
The most pronounced difference is in the value of the tilt angle between the long
molecular axis and the normal to the ab plane. While this angle is approximately
3◦ for the thin film phase, it is about 22◦ for the bulk polymorph. These findings
are in good agreement with other recent studies [164, 165]. Almost upright pen-
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tacene orientation within a layer in the thin film phase leads to more enhanced
intermolecular π − π overlap and more dispersive valence and conducting bands
and hence lower values of the effective hole and electron masses. For instance,
the band width of the topmost valence band is twice as large in the thin film
phase as compared to the Campbell single crystal structure. These findings are
important for understanding the electro-optical properties of devices based on
pentacene thin films. Since the active channel in these organic field effect tran-
sistors most likely is composed of pentacene molecules in the thin film phase,
the structural solution, and the corresponding electronic properties of this phase
provided herein, will be highly relevant. Therefore, attempts to understand the
charge transport in pentacene should start from the correct underlying structure.

In the case of the CNHP4 thin film, the theoretical structure optimization has
revealed two polymorphs that have almost the same total energy but differ in the
value of the tilting angle χ. The first solution, as in the case of the pentacene
thin film phase, shows almost upright χ ≈ 0◦ standing molecular packing, while
the second one demonstrates a configuration of the molecules tilted by the angle
χ ≈ 16◦. Finally, from comparison of calculated structure factors with the exper-
imentally obtained intensities the χ ≈ 0◦ case has been selected as the optimal
solution.

The approach presented here is of great value since it is likely the only mean
to find crystal structures of thin molecular films. Therefore this method will be
further explored and developed. One of possible improvements can be to use an
efficient algorithm for the numerical search of energy minima in a multidimen-
sional space in which not only orientation angles but any number of additional
degrees of freedom (e.g. torsion angles, positions of molecules within a cell etc.)
can be easily included.
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