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Abstract

In the work presented an approach to simulate ingot solidification of highly alloyed 
steels was developed. It includes simplified simulation of initial mould filling with 
the melt, followed by a subsequent simulation of the solidification course within 
the framework of multiphase multicomponent computational fluid dynamics.

The multiphase multicomponent solidification model was developed, based on 
the previous models for binary alloys. In order to allow the multicomponent ca­
pability, the governing multiphase flow equations were reconsidered, that include 
equations describing conservation of mass, momentum, energy as well as alloying 
components (species) and grain density transport. Source terms for the equa­
tions were reformulated to reflect multicomponent kinetic and thermodynamic 
relations.

An approach to couple multicomponent/multiphase thermodynamics and ki­
netics with multiphase/multicomponent flow model was developed. It has a form 
of a nonlinear algebraic equation system, relating temperature and composition 
of the bulk melt with solid and liquid compositions at the interface at the solid­
liquid phase interface, A Xewton-type iterative method was used for solving the 
equation system.

The coupling approach was validated using alloys from Fe-C-Cr, Fe-C-Mn 
and Cu-Sn-P systems. The necessary thermodynamic functions, the liquidus 
temperature and tie-line relations were approximated as piecewise-linear as well 
as interpolated using bivariate splines.

The implementation of the model for ternary alloys was used for carrying 
out simulations of solidification of Fe-C-Cr alloys in two different ingot geome­
tries taking into account two- and three-phase flow. The thermal convection was 
found to be the predominant effect influencing the course of solidification, solutal 
convection did not influence the solidification significantly.

The modelling and simulation methods of multiphase multicomponent alloy 
solidification presented can be used for simulation of a wide range of multicom­
ponent solidification processes.



Abstract

In der vorliegenden Arbeit wurde eine Methode entwickelt, Kokillenerstarrung 
hochlegierter Stähle zu simulieren. Die Arbeit beinhaltet eine vereinfachte Sim­
ulation anfänglicher Formfüllung mit der Schmelze, und weiters eine Simula­
tion des Erstarrungsverlaufs im Rahmen von rechenbetonter Mehrphasen- und 
Mehrkomponenten- Fluiddynamik, Das Mehrphasen-Mehrkomponenten-Ersta- 
rrungsmodell wurde auf Grundlage vorangehender Modelle für binäre Legierun­
gen entwickelt. Um die Mehrkomponentenfähigkeit zu ermöglichen, wurden die 
herrschenden Mehrphasengleichungen, einschließlich der Gleichungen die die Er­
haltung von Masse, Impuls und Energie sowie Legierungsbestandteile (Legier­
ungselemente) und Korndichtentransport beschreiben, erörtert, Quellterme für 
die Gleichungen wurden neu dargelegt, um die mehrkomponentenkinetischen und 
thermodynamischen Verhältnisse widerzuspiegeln. Eine Methode, Mehrkompo­
nenten-/Mehrphasenthermodynamik und -kinetik mit einem Mehrphasen-/Mehr- 
komponentenströmungsmodell zu koppeln, wurde entwickelt. Diese Methode be­
sitzt die Form eines nicht linearen algebraischen Gleichungssystems, und bringt 
Temperatur und Beschaffenheit der Schmelze in Verbindung mit den Zusam­
mensetzungen der jeweiligen Phasen an der Schnittstelle der Feststoff- Flüssigkeit­
Phase, Eine Xewton’sche iterative Methode wurde benutzt, um das Gleichungs­
system zu lösen. Die Kopplungsmethode wurde mittels Legierungen von Fe- 
C-Cr, Fe- C-Mn und Cu-Sn-P Systemen bestätigt. Die erforderlichen thermo­
dynamischen Funktionen, die Liquidustemperatur und die Konodenverhältnisse 
wurden als stiickweise-linear eingeschätzt sowie mittels bivariaten Splines in­
terpoliert, Das Modell wurde für Dreistofflegierungen implementiert und für 
die Ausführung von Erstarrungssimulationen von Fe-C-Cr Legierungen in zwei 
verschiedenen Kokillengeometrien unter Berücksichtigung der Zweiphasen- und 
Dreiphasenströmung eingesetzt. Es stellte sich heraus, dass die Wärmekonvek­
tion den größten Einfluss auf den Erstarrungsverlauf ausübte: solutale Konvek­
tion nahm keinen bedeutenden Einfluss auf die Erstarrung, Die vorgelegten 
Modellierungs- und Simulierungsmethoden für Mehrphasen- Mehrkomponenten­
Legierungserstarrung können zur Simulation einer großen Vielfalt von Mehrkom­
ponentenerstarrungsprozessen angewendet werden.
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Chapter 1

Introduction

All of metallurgical production chains include the intrinsic step of solidifi­
cation. During its course, as temperature decreases, the growth of the den­
drites and equiaxed grains happens, driven by the undercooling. Due to different 
reasons (solute rejection, shrinkage, different flow phenomena) initially uniform 
macroscale distributions of alloying elements become non-uniform, maerosegre­
gation appears. The interplay of different microscale, mesoseale and macroscale 
factors affects these processes. Increasing the knowledge of phenomena taking 
place during solidification is of utter importance for finding ways for improving 
the quality of the end product, which directly depends on the maerosegregation 
and primary mierostrueture at the end of solidification.

The negative effect of uneven distribution of alloying elements were known for 
several centuries, for example in the 1850s ameriean railroad engineers knew that 
"steel too high in earbon or phosphorous might be brittle" |Aldrieh99|. Nowadays 
these negative effects have been studied thoroughly. For instance in |Lesoult05| 
we can find the following:

Several examples are available in the literature of detrimental 
effects of maerosegregation in steel continuous easting (CC) slabs. 
Sheets and plates for pipeline or pressurised vessels are more or less 
sensitive to “hydrogen induced cracking" (HIC). This type of cracking 
is observed in regions segregated in Mn and P |Xakai79|. Weldability, 
impact strength, and toughness of large diameter steel pipe can also
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be affected by local segregations that are inherited from solidification 
|Devillers88|,

(■■■)
The production of large steel ingots with improved structural and 

chemical homogeneity is of great concern for steelmakers. Indeed final 
properties of forgings can be strongly affected by metallurgical struc­
tures, segregations, and defects of as-cast ingots |Blondeau91|. Fig, 4 
(Fig, 1,1 in this work) illustrates the different types of segregation in 
a steel ingot of 65 t the nominal carbon content of which is 0,22 wt.%. 
It shows also the schematic pattern of grain structure: columnar zone 
near the surface, globular equiaxed grains in the centre from the bot­
tom up to 75% of the total height, and dendritic equiaxed grains on 
the top of the ingot. The columnar zone has a homogeneous chemi­
cal composition, which differs little from the nominal analysis. The 
carbon content at the bottom of the ingot is less than the nominal 
one. This region is called the “negative segregation cone". It occupies 
more than 50% of the height in the centre of the ingot, like the glob­
ular equiaxed zone. The top of the ingot corresponds to an intense 
positive segregation. Onto this major segregation are superimposed 
mesosegregations, “A" segregations pointing towards the top of the 
casting are located near the boundary between globular and dendritic 
equiaxed grains, “V" segregations are visible in the central part of the 
globular equiaxed zone.

The intrinsic conditions of a solidification process such as high temperatures and 
pressures as well as the amount of hard material to process (in certain cases up to 
20-50 ton of hard highly alloyed steel in case of ingot casting) after solidification 
to prepare samples for further investigations such as etching or chemical analysis 
makes experimental investigation of the solidification processes very expensive. 
Moreover, certain phenomena such as primary solidification and further solid 
state phase changes cannot be observed in place on the industrial scale, due to 
prohibitive properties of the casting processes mentioned above.

This is why employing the methodology of mathematical modelling is of ut­
most importance, providing a relatively cheap and reliable alternative to expen-
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Figure 1,1: Longitudinal section of a 65 t steel ingot: (a) maerostrueture and 
earbon maerosegregation; (b) sulphur print. Taken from |Lesoult05|,
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sive experimental investigations as well as the possibility to study the solidifica­
tion phenomena using mathematical models in dynamics, as they occur at high 
temperatures, as opposed to a posteriori investigations of casted ingots at room 
temperature. Indeed, the best results in understanding solidification are only pos­
sible to achieve by combining both experimental investigations and simulations.

According to |Lesoult05|,

Most of the empirical knowledge on steel ingots was built early in 
the last century |Hultgren29|, |Gray56|, |Roques60| and |Kohn67|.
The cost in time and money of full-scale trials was then an effective 
driving force for developing the first theoretical models of the forma­
tion of segregations in ingots, by Hultgren |Hultgren73|, Oeters and 
co-workers |Ebneth74|, Chuang and Schwerdtfeger |Chuang75|, den 
Hartog et al, |denHartog75|, Flemings |Flemings76|, and Fredriksson 
and Nilsson |Fredriksson78| for instance. The first numerical models 
of macrosegregation came soon after |Ohnaka86|,

One of the most promising ways to model solidification phenomena is to em­
ploy the multiphase fluid dynamics framework, A good survey on the multi­
phase flow dynamics development is given in |Kolev02|, Numerous research of 
different metallurgical processes involving metallurgical flows and solidification 
employing methods of multiphase fluid dynamics has been done for example in 
continuous casting of steels |Thomas90, Thomas94, Yuji99, Hardin99, ZhangOO, 
ThomasOl, Yu02, JavurekOö, PfeilerOö, YuanOö, Mayer07|, direct-chill casting 
of bronze |Ludwig06a, Gruber-PretzlerOO, Gruber-Pretzler07b| and casting of 
other alloys, for example hvpermonotectic ones |Ludwig06b, Gruber-Pretzler07a|, 
direct-chill casting of aluminium alloys |DuO7, NadellaOS, Reddy97, Rousset95, 
VreemanOOb, Vreeman00a|, and other areas.

In this work, the Eulerian multiphase fluid dynamics framework was chosen to 
model the ingot casting solidification process. The solidifying melt is modelled as 
multiphase multicomponent Newtonian fluid consisting of interpenetrating con­
tinua (representing liquid, columnar and equiaxed phases) which flow mechanics 
described by governing partial differential equations of multiphase flow including 
modelled source terms. The governing system of equations consists of the partial 
differential equations expressing the conservation of mass, momentum, energy,
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solute components and equiaxed number density on the macroscale, A number 
of multiphase models for solidification based on the volume averaging approach, 
that consider different phases (liquid, solid equiaxed and/or columnar phases) as 
spatially coupled and interpenetrating continua |Beckermann88, Beckermann93, 
Beckermann97, Xi91, Ludwig02, LudwigOöa, Wu06, Wu07| have been developed.

In order to connect the description of the multiphase flow phenomena at 
macroscale with solidification and thermodynamic phenomena happening at the 
mesoscale, it is necessary to take into account the closure relations on the liquid­
solid interfacial scale (mesoscale), describing the relations between the far-field 
macroscale mass fractions of solute components and their concentrations at the 
interface between the solidifying dendrite or grain and the melt surrounding it 
(also called the solid-liquid interface). These relations define mass and solute 
transfer between the phases due to solidification. In order to describe these closure 
relations in thermodynamically consistent way, access to the thermodynamic data 
during solidification simulation is required.

Most of the previous work was done for binary systems, A few trials were per­
formed on multicomponent systems using simplified thermodynamics and also on­
line coupling with thermodynamic software, both for Eulerian models |Bennon87, 
Felicelli98, Du07, Han07, Ganguly07| and other models like cellular automata - 
finite difference methods (CAFD) |LeeO4, ThuinetOO, Lee07|, Lagrangian mod­
els |Appolaire08|, Linearised phase diagrams with constant liquidus slope and 
constant partitioning coefficients are usually used |Schneider95c, Schneider95b, 
Ciobanas07a, Ciobanas07b|, For the case of ternary alloys, see for example 
|DuPont06|,

At the same time great progress has been achieved in the field of computa­
tional thermodynamics |Sundman85, Andersson02|, Using the so-called CAL- 
PHAD method |Sundman85, Andersson02| and programming interfaces to ac­
cess the thermodynamic data provided |ChenO5|, it is possible to predict phase 
evolutions and solidification paths taking into account effects of cooling rate, 
back diffusion, and coarsening |Kraft97, Jie05, Larouche07|, Those methods, 
however, are limited to cases of small specimen solidifying under given condi­
tions, Combeau and co-workers proposed a micro—macro segregation model 
|Combeau96, DoreOO, Thuinet04|, in which an 'open specimen’, corresponding to
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the volume element in a larger system, was eonsidered. The overall solute in the 
volume element is allowed to exehange with the neighbouring elements, Henee, 
the aeeess to thermodynamic data is given through the so-called mapping hies.

The work presented deals with modelling and simulation of solidification pro­
cesses taking place in a solidifying ingot of highly alloyed steels, using multiphase 
fluid dynamics and computational fluid dynamics, based on previous research 
|LudwigO2, Ludwig05b|,

This work addresses the following major questions that were not addressed in 
the literature/previous research done in this field:

• derivation of the closure laws connecting macroscopic Eulerian multiphase 
model with multicomponent alloy thermodynamics and kinetics, which re­
sult in an nonlinear system of equations coupling macroscale quantities 
(temperature and bulk melt composition) with mesoseale ones (mass frac­
tions of alloying components in solid and liquid phases at the solid-liquid 
phase interface) and analysis of the resulting nonlinear system of equations

• formulation of thermodynamics and kinetic relations for multicomponent 
alloys based on Gibbs phase rule for primary and periteetie solidification 
and generalising binary solidification growth kinetic relations for columnar 
and equiaxed morphologies

• address the problem of intrinsic discontinuity of solubilities of the solute 
components (for instance, solubility of carbon changes with a jump from 
ferrite to austenite in the Fe-C system) by using spline interpolations of the 
tabulated solubility functions, thus employing thermodynamic data which 
are much closer to the reality than the idea of linearising liquidus surfaces 
and/or linear solubilities used by many authors.

Addressing the major questions mentioned, several auxiliary problems were suc­
cessfully solved:

• analysis of the coupling system of nonlinear equations, numerical imple­
mentation of the Xewton-type solver for solving it

• development of the method of constructing piecewise-linear approximations 
of thermodynamic functions for different steels necessary for simplified cou­
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pling between macroscale and mesoscale quantities and its numerical im­
plementation

• development of a method to represent the intrinsically discontinuous solu­
bilities of solute elements in the solid phases using spline interpolations and 
its numerical implementation

• performing validations of both pieeewise-linear and spline representations 
of phase diagrams by comparing the results produced by these models with 
Thermo-Calc-Scheil model results

The model developed and implemented was used for performing simulations of 
alloyed steel ingot solidification of different sizes and compositions to study differ­
ent effects influencing the course of solidification and final distributions of alloying 
elements as well as the primary macrostructure development.

In spite of the fact that this work is focused on modelling and simulation of 
solidification in ingot casting, the methods developed can be used for simulat­
ing other solidification processes, for example direct-chill casting of a tin bronze 
| Gruber-PretzlerOS, Ishmurzin08|,

A note on the temperature units: all temperatures in the work are given in 
degrees Kelvin if not stated otherwise.
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Chapter 2

Solidification model description

Note on scales

In order to simplify the following discussion, let ns consider three length scales: 
microscale, mesoseale and macroscale. Table 2,1 shows typical objects as well as 
approximate dimension ranges, relevant objects and quantities of these scales.

2.1 Eulerian multiphase solidification model

For the general discussion of different models of multiphase flows see, for example, 
|Kolev02| or |BrennenO5|,

As modelling framework for our studies we have chosen the Eulerian multi­
phase model with exehange terms appropriately modified to model solidification 
kinetics as developed first for globular equiaxed solidification |LudwigO2| and 
then extended to the three phase ease taking eolumnar-to-equiaxed transition 
into account |Ludwig05b|. The model is three-dimensional, incorporating three 
phases: liquid, columnar and equiaxed, as in the aforementioned literature.

Below we introduce the governing equations of this model, as well as the 
necessary closure assumptions and relations.

Further, we will restrict the discussion to a ternary ease for the sake of simplic­
ity, The derivation of governing equations for an arbitrary number of components 
is straightforward.
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scale typical objects dimensions (m) relevant objects 
and quantities

micro atom, group of atoms 10 111... 10 7 m solid-liquid
interface

meso crystallite, group of crystallites 10 6 ... 10--3 m

element 
concentrations 

in/adjacent to a 
crystalline

macro ingots, castings 10 2 ... 10 1 m
bulk mass 
fractions of 

elements

Table 2,1: Different scales, their typical objects, dimensions and corresponding 
quantities and relevant objects,

2.1.1 Governing equations

Continuity equations

Conservation of mass of three phase flow is expressed with the following equations

d
d (fiPi) + V • (fipiui) = -(Mle + Mic), (2.1)

d
d (fepe) + V • (fepeUe) = Mle, (2.2)

d
d (fcPc) + V • (fcPcUc) = Mic. (2.3)

Here fl, fc and fe are volume phase fractions of liquid, columnar and equiaxed 
phases; pl; pc and pe are densities of the liquid, columnar and equiaxed phase 
respectively; ul, uc and ue are velocities of the phases, Mlc and Mle are mass 
transfer rates from the liquid phase to the columnar phase and from the liquid 
phase to the equiaxed phase. Another possible mass transfer rate Mce charac­
terises fragmentation, which happens when a columnar dendrite breaks up and 
thus forms equiaxed crystallites. Fragmentation is considered to be a minor effect 
and it is thus neglected, so Mce = 0, For the mass transfer rates the following
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holds:

Mcl = —Mllc, (2.4)

Mel = —Mie. (2-5)

A mass transfer rate from one phase to another consists of two parts, one rep­
resenting the mass transfer due to phase change and the second due to diffusion:

Mj, = j (2.6)

The mass transfer rate due to diffusion is neglected, that is MY'’ = 0, so

Mj, = 'm . (2.7)

Derivation of the mass transfer rate (2,7) is given later in Section 2,1,3 on page 17,

Momentum conservation equations

The conservation of momentum in liquid and equiaxed phases are governed with 
the following equations:

d
dt (flPlUl) + V • (flplUlUl) — flVP + A(PlflUl) 

+1 V(V • ^lflul) (2-8)
N

+flPl,,„ (1 — ßT(Tl — TreI) — J2 ßC(C — <i„) I g

— (Mle + Mlc)Ul — Kle(Ul — Ue) — Klc(Ul — Uc),
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(2-9)gt (fepeue) + V * (fePe^e^e) = -fe^P +A(^efe«e)

+ 1 V(V • PefeÜe)

+ fepe9
+UlMie + Kie(ui - Ue) - Kec(Ue - Uc),

where p is the pressure, which is shared between the phases, and ße are the 
dynamic viscosities of the liquid and the equiaxed phases. The viscosity of the 
equiaxed phase is calculated using the following expression |WuO3|:

^e

/ / . _2.5f limit \

f 1 - fit) C - (1 - fe)J when fe < feimit

oo else
(2.10)

The Boussinesq approach is used to model both thermal and solutal convec­
tion. Parameters of the Boussinesq source terms include: pl>ref - the reference 
density of the liquid phase; ßT - the thermal expansion co efficient; Tref - the 
reference temperature at which the density of the liquid is equal to pl;ref; ßC, 
i = 1 ,...,N - the solutal expansion coefficients (here N is the number of com­
ponents in the melt) and cTef, i = 1,...,N - reference component mass fractions, 
at which the density of the liquid is equal to pl)ref. Vector g is the gravitational 
acceleration vector. Drag is modelled using the following parameters: Kle - the 
drag coefficient that characterises drag force between the liquid and the equiaxed 
phases, Klc - drag coefficient characterising the drag force between the liquid 
and the columnar phases and Kec - drag coefficient for the drag force between 
the equiaxed and the columnar phases. The drag coefficient Kle is derived in 
|WuO3| and it is a combination of the Kozeny-Carman model for small equiaxed 
volume fractions and Blake-Kozeny for equiaxed volume fractions beyond the 
packing limit of 0,637 |WuO3|. Details of these drag models can be found in 
|LudwigO2, Bird60, Wang03|.
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Energy conservation equations

Energy conservation for the liquid, columnar and equiaxed phases is governed by 
the following three energy conservation equations, formulated for enthalpies:

d
d (flplhl) + V* (flplhlUl) = V* (flklVTl)

+ hl(Mel + Mcl)
+H* ((Te - Tl) + (Tc - Tl))

(2-H)

d
dt (fcpchc) + V • (fcpchcuc) = V • (fckcVTc)

+ hcMlc

+H*((Tl - Tc) + (Te - Tc))

(2.12)

(2.13)
d
dt (fepehe) + V • (fepeheUe) = V • (fekeVTe)

+ heMle

+ H*((Tl - Te) + (Tc - Te))

Here h^ he and hc are the enthalpies of the liquid, equiaxed and columnar phases 
respectively, k^ kc and ke are their thermal conductivities and H* is the volumetric 
heat transfer coefficient between the three phases. The enthalpies are defined as 
follows:

hi = [T cp(l)dT + href, (2.14)

he = cp(s)dT + heef, (2,15)
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■T
hc = (2.16)Cp(s’dT + hceI,

Tref

where hf hrceI and hreeI are the standard state enthalpies for the liquid, columnar 
and equiaxed phases respectively, TreI is the standard state temperature; cp(l’ is 
the heat capacity of the liquid phase, cp(s’ is the heat capacity of the solid phase, 
that is of both columnar and equiaxed phase. Note that although the columnar 
and the equiaxed phase movements are described by different equations, they 
consist of the same matter. Thermodynamically there is no distinction between 
the columnar and the equiaxed phases. On the other hand, from the fluid dy­
namics point of view they are different, because their flow dynamics are different 
(for example the equiaxed phase is allowed to move, whereas the columnar phase 
is always at rest.)

Species transport equations

Species transport in the liquid, columnar and equiaxed phases is governed by the 
following equations:

d
dt flPlc) + V • flPlclUl) = —cdeMle — C}cMlc (2.17)

d
(fcPcCc) + V • fcPcCcUC) = ecMc

d

(2.18)

fePeCe) + V • fPeC^ = <Meiel (2.19)

Here, c, are the bulk liquid mass fractions of i—th component, i = 1,...,N 
where N is the number of alloying components. In the case of N = 1 a binary 
system is considered, in case of N = 2 a ternary system is considered and so 
on. The mesoscale quantities Cc and Ce are mass fractions of the i-th alloying 
element in the columnar and in the equiaxed phase respectively at the solid­
liquid interface. Thermal equilibrium is assumed at the solid-liquid phase, thus 
Cc and Ce are equilibrium solid concentrations and are provided bv phase diagram

13



information.
In order to quantify maerosegregation, an additional quantity called mixture 

mass fraction is used, which is calculated as a weighted mass fraction of a com­
ponent m among all of the phases

mix x cmpf
pifi

(2.20)mc

where K is the number of phases, m is the component index.

Grain density transport and nucleation equation

In order to calculate the mass transfer rate from the liquid phase to the equiaxed 
phase, the transport of the grain density as well as grain nucleation have to be 
predicted. Grain density transport and grain nucleation are governed by the 
following equation incorporating the Oldfield law of nucleation |01dfield66|:

dn
— + V- (Ue n) =

d(AT) 
dt

+ V • (UlAT) nmax 1 /AT - ATW\2\
n AT.

(2.21)

Here n is the grain number density, AT = T - Tl is the constitutional un­
dercooling, T is the temperature at solid-liquid interface, ATN and AT. are the 
mean and the standard deviation of the normal distribution of the nucleation law, 
nmax is the maximum possible equiaxed grain density.

2.1.2 Solidification growth kinetics

In order to compute the correct mass transfer rate it is necessary to know the 
grain or dendrite growth velocity due to solidification. Below, the derivation of 
the growth velocity formulae for columnar (simplified as cylinders) and equiaxed 
(simplified as spheres) morphologies for binary alloys is presented.

Assume a simple binary phase diagram of two elements A and B with a par­
titioning coefficient k = k < 1, pl = const. Consider a solidifying cylinder of 
a radius R and let us consider a thin layer of thickness Ar around this cylinder 
(see the scheme in Fig, 2,1), The mass fraction of the element A in the liquid
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2.1: Solute redistribution around a solidifying cylinder

adjacent to the solidifying cylinder is (at r = a). The corresponding mass 
fraction of the element A in the solid at the cylinder surface is c^(at r = a). The 
far-held mass fraction of the element A in the liquid is and it is considered 
to be reached at r = b. The amount of the alloying component A in this Ar 
layer of liquid will be pitfAAr (here A is the area of the cylinder sides). Be­
cause of the partitioning coefficient being generally smaller than 1, not all of this 
amount of alloying component A will be incorporated into the solid: Some of it 
will be rejected into the liquid. The amount of the incorporated mass of alloying 
component A is equal to pic^AAr. Now the difference between these two masses 
Wej = (c^ — c^piAAr is the mass of the element A that is rejected into the melt. 
Let us assume that the rejected mass of alloying component A is diffused within 
the liquid melt with the diffusion coefficient PZA. The flux of the rejected mass is 
thus:

z~A ~A\qrej = (cl - Cg)pl — , (2-

where is the velocity of the solidification front or growth velocity v = ^, soAt'

Aqrej = (cClA - cCsA)plv (2-
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The diffusive flux into the liquid is equal to

nA dcA
qdiff — —Dl “dT Pl (2.24)

As we said before, the flux of rejected mass of the alloying element A must 
diffuse into the melt, which means that qdiff — qrej. This leads to the equation 
expressing the solute balance:

dCA
(CA — CA)Pl v — —DA dCL Pl (2.25)

and dividing by Pl we get the expression for calculating the growth velocity:

-D
v —

AdcA 

l dr

(CA — CA)
(2.26)

Note that the difference between cylinder and spherical growth is only in the form
of the mass fraction gradient dcAdr

Cylindrical growth

In the case of cylindrical growth, the mass fraction gradient of the alloying com­
ponent A can be estimated by assuming steady state diffusion around the growing 
cylinder and solving the corresponding steady diffusion equation around a cylin­
der:

d A dC
dr \rDl dr — 0, a < r < b (2.27)

with the following boundary conditions:

c(r — a) — CA (2.28)

c(r — b) — cA (2.29)

The solution of this boundary value problem is (as any computer algebra 
system confirms):
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c(r) = CA ln(b/r) + CA ln(r/a)
MV«)

(2.30)

and the mass fraction gradient:

dc = ('A - CA)
dr r ln (b/a)

(2.31)

Substituting this expression for the gradient into the (2.26) and renaming 
a = R, b = Rmax we get the expression for the growth velocity of a cylinder:

2DA (cA - cA )ln_ Rm
c d (cA - caA R 

where R is the current radius of the growing cylinder and Rm 
radius of the cylinder and d = R/2 is the diameter.

(2.32)

is the maximal

Spherical growth

The derivation of the expression for the growth velocity in case of a spherical 
growth is similar to the derivation of the growth velocity of a cylinder (see, for 
example |Ludwig05a|) and so the expression for the equiaxed growth velocity 
becomes:

ve
2DA (CA - cA) 

d (CA - CA)
(2.33)

2.1.3 Mass transfer rate computation

The volume averaged mass transfer rate from liquid phase to columnar, used in 
the conservation equations (1), (2) and (6), (7), can be calculated as:

Mcl = pl • vc • Sc • Aimp,c (2.34)

where pl is the density of the liquid, vc is the columnar growth velocity, Sc is the 
total surface area of all growing columnar dendrites per unit volume.
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Figure 2,2: Hexagonal arrangement of columnar cylinders with a primary dendrite 
arm spacing Ai and a columnar radius R = 0.5dc.

The idea of Avrami factor |Avrami40| accounting for the impingement during 
crystallite growth was adapted for the columnar growth case by introducing the 
impingement factor AimP;c, It is derived in [Mayer07] and can be expressed as:

f 1, dc < Ai
Aimp,c = < " (2.35)

[ fl/fl,crit dc > Ai
where Ai is the primary dendrite arm spacing, and both the columnar diameter dc 
and the critical liquid volume fraction fl;Crit are calculated assuming a hexagonal 
arrangement of cylindrical trunks from the geometrical considerations as follows.

The columnar volume fraction is expressed as the ratio between the volume 
of the columnar phase and the total volume (see Fig, 2,2):

3 nd;
fc = vAi • <2'36’2 Ai

Note that the height of cylinders cancels out in (2,36), From (2,36) the columnar 
diameter can be expressed as:
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dc — 2 Al (2.37)

Now the cylinders are in contact with each other when dc — A1 and start to 
impinge when dc becomes bigger than Ab and according to (2.37) the critical 
liquid fraction corresponding to the condition dc — A1 is:

'.,crit c,crit
ny/3
~6~ (2.38)1 — f 1 -

In order to Und the surface concentration Sc used in (2.34), let us assume the 
hexagonal arrangement of columnar cylinders. Then, let us consider an elemen­
tary hexagonal cell with the primary dendrite spacing A1. In the two-dimensional 
case, the total area of the hexagonal cell is:

Aceii — 323 A2. (2.39)

The available surface area of columnar cylinders is then (note that in two­
dimensional case it is equal to the circumference of three circles with the diameter 
dc\.

s — 3ndc. (2.40)

Surface concentration is then the ratio between the total area Acell and the 
surface s available for mass transfer:

s
Sc —

Acell

2\A3ndc
3A? (2.41)

2.2 Scheil-Gulliver solidification model

A widely used simple solidification model for binary alloys was proposed by Scheil 
|Scheil42| and Gulliver |Gulliverl3, Gulliver22|. Its assumptions are complete
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mixing (infinite diffusion) in liquid and absence of diffusion in solid. The former 
assumption means that the excess solute will be redistributed evenly over the 
entire volume of fluid. In this ease, there will be an interaction with the far end 
of crucible during the whole solidification process. The entire solute distribution 
will essentially be a long terminal transient beginning at the solid concentration 
cok. Here c0 is the initial liquid mass fraction of the alloying element, and k is 
the solute redistribution coefficient, so that cs = kcl. This behaviour is described 
by the Gulliver-Scheil equation (see |Kurz98|):

Cl = 1
co = (1 - fs)1-k

(2.42)

where fs is the solid volume fraction.
Based on this model, a special module (it will be called Thermo-Calc-Scheil 

module throughout this work) has been implemented in Thermo-Calc thermo­
dynamics software package |The06a|, The Thermo-Calc User’s Guide |The06a| 
describes this package and its algorithm as follows:

The module can be applied to any high-order multicomponent system,
A simulation is made step by step along the cooling procedure (for 
instance, with decreasing temperature or extracted heat), and after 
each step the new liquid composition is used as the "local overall" 
composition at the next step.

The general procedure of the traditional Scheil-Gulliver model simula­
tion can be illustrated by Fig, 2,3 (in this work) and briefly described 
as follows:

Start with system that is on the liquidus line at temperature T1 and 
overall composition x1.

The temperature condition is decreased to T2 and the equilibrium is 
calculated. This gives a certain amount of solid phase(s) formed and 
new liquid composition x2, The system with the overall composition 
equal to x2 would be completely liquid at this temperature.

The overall composition is set to x2. This effectively means that the 
program "forgets" the amount of solid phase (s) formed previously, and
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that the solid phase(s) will remain at the composition at which it was 
formed.

The simulation is continued from the Step 2, and repeated until the 
lowest temperature where liquid can exist (either all liquid disappear 
or a certain fraction of liquid remain in the system) is found.

Figure 2,3: The algorithm of the traditional Seheil-Gulliver model for simulation 
of an alloy solidification process (taken from |The06a|)

This Thermo-Calc-Scheil module will be used to validate the approximations 
of different phase diagrams (thermodynamic functions) described later in Section 
3.5.
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Chapter 3

Development of the
multicomponent solidification model

3.1 Simplified zero-dimensional solidification model

In order to describe the idea of coupling between solidification kinetics, thermo­
dynamics and the multiphase mass transfer, let us consider a simplified zero­
dimensional solidification model as it is done in |IshmurzinO8|, By simplifying 
the multiphase solidification model described in |Ludwig05b, Wu06, Ludwig06a| 
we want to neglect flow phenomena (melt flow, solid phase movement, sedi­
mentation, convection, and so on) and concentrate only on the thermodynam­
ically consistent modelling of zero-dimensional solidification. Flow phenomena 
can be adequately incorporated into the model when needed as it is shown in 
|Ludwig05a, Ludwig07|. On the other hand, the thermodynamical part will be 
taken into account without simplifications.

The assumptions of the zero-dimensional model are:

• there are only two phases involved during solidification, the liquid phase, 
denoted by the lower index l and the solid columnar phase, denoted by the 
lower index c,

• the morphology of the columnar dendrite trunks is assumed to be cylindri­
cal,

• the growth of columnar trunks is controlled by diffusion,
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• local thermal equilibrium is assumed at the liquid-solid interface,

• the equilibrium concentrations of alloying elements in liquid and solid phase 
at the liquid—solid interface are different from the bulk concentrations,

• species transport by back diffusion in the columnar phase is ignored,

• density of the liquid phase pl and of the columnar phase pc are constant.

Taking into account the aforementioned model assumptions, the conservation 
equations were as follows. The mass conservation equations are

77 = - Mic, (3.1)dt pc

77 = - - Mic, (3.2)dt pi

where fl and fc are phase volume fractions fl + fc = 1), pc and pl are the 
densities of the phases, and Mlc is the mass transfer rate from liquid to solid due 
to solidification. The formula (2,34) for computation of the mass transfer rate 
Mlc = — Mcl is derived in Section 2,1,3, The wav to obtain the growth velocity v 
for this formula in multicomponent case is discussed in the Section 3,4, the actual 
formula for v is (3,19) which is a multicomponent analog of the columnar growth 
velocity in the binary case (2,32), The species conservation equations are:

d (/P) = 4 Cte, (3.3)
dt pc

dt (flcl) = - 4 Clc, (3.4)
dt pl

where c), is the mass fraction of the i—th solute component in the solid phase, and 
ci in the liquid ph ase, i = 1,...,N — 1, an d N is the total number of components. 
The species transfer rate due to solidification Cic is defined as follows:

C = CMie, (3.5)
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where Cc is the equilibrium mass fraction of i-th solute component in the solid 
phase at the liquid-solid interface.

Substituting (3,1) and (3,5) into (3,3), and substituting (3,2) and (3,5) into 
(3,4), we get

dcC
dt

Mlc

pcfc
(Cc - cc) (3-6)

dc)
dt

M-cc). (3.7)

Here, the equilibrium mass fraction Czc is the thermodynamic quantity which 
must be determined from thermodynamics according to the local temperature 
(see the definition of these functions Cc for the ternary case (i = 1, 2) (3,16) and 
(3.17)).

The temperature is assumed to decrease linearly with time with constant 
cooling rate «, starting with the initial temperature To:

T = To - kT. (3.8)

Note that when taking flow and energy conservation into account, the temper­
ature T is determined bv means of the energy equation. Thus, Eq, (3,8) serves as 
a kind of a rough simplification of a more general energy conservation equation.

For simplicity let us assume a ternary alloying system Fe-C-Cr (N =2 and 
i = 1,2), In this case, the zero-dimensional solidification model takes the form 
of the system of three ordinary differential equations. The first equation is (3,1), 
and the other two are (3,7) for i = 1, 2 or i = C, Cr:

dcC
dt

Ml

pcfc

lc , „C(cC - <?), (3.9)

dcCr Mllc / „Cr
dt pcfc

(cCr - cCr) (3.10)
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This ordinary differential equation system consisting of equations (3,1), (3,9) 
and (3,10) together with the initial conditions

fc(0) — e, 
c
cC(0) — cC

(3.11)

make up an initial value problem, which can be integrated numerically. This 
initial value problem, apart from the illustration of the coupling idea between 
the flow equations on one side, and thermodynamics and growth kinetics on 
the other, will be used later for evaluating pieeewise-linear approximations of 
thermodynamic functions (3,15), (3,16) and (3,17), see Chapter 5 for details. 
Note that when solving (not simplified) equations describing a multiphase flow 
the problem of their coupling with thermodynamics and kinetics is the same: it 
is necessary to calculate the mass transfer rate in a correct, thermodynamically 
consistent way,

3.2 Multiphase/multicomponent flow models sum­

mary

Three-phase ternary solidification

The equations of the three-phase Eulerian ternary solidifying flow that will be 
used in simulations in Chapter 6 are:

• three mass conservation equations (2,l)-(2,3)

• two momentum conservation equations (2,8)-(2,9)

• three energy conservation equations (2,11)-(2,13)

• six alloying component transport equations (2,17)-(2,19)

• one grain density transport equation (2,21)
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Two-phase ternary solidification

The equations deseribing two-phase Eulerian ternary solidifying flow that will be 
also bee used later in Chapter 6 simulations ean be summarised as follows:

• two mass conservation equations (2,1) and (2,3)

• one momentum conservation equation (2,8)

• two energy conservation equations (2,11)-(2,12)

• four alloying component transport equations (2,17)-(2,18)

Mass transfer rates and ternary thermodynamics

The mass transfer rates for both three- and two-phase flows are calculated incor­
porating ternary phase diagram data in a thermodynamically consistent way as 
described in Section 3,1,

3.3 Incorporating phase diagram data

In this work our goal is to model multicomponent multiphase solidification. We 
do not consider any solid phase transformations. We will call the solidification 
process a one-phase solidifieation, if there only one solid phase forms from the 
liquid phase (for example L 5 in Fe-C diagram, see Fig, 3,1),

Note that peritectic solidification (for example the formation of austenite, 
L + 5 y in Fe-C diagram) in this sense is also a one-phase solidification, since 
there is only one solid phase forming from the liquid.

On the other hand, eutectic solidification is not a one-phase solidification, 
as there are two solid phases forming from the liquid phase (for example L 
y+carbide), Only a very small percentage of liquid turns into the eutectic solid 
at the end of solidification for the steels in question, so the eutectic solidification 
is not considered here.

The main difference between the one-phase and two-phase reactions is the 
number of degrees of freedom f: In the case of one-phase solidification it is equal 
to f = C — 1, where C is the number of components, whereas in the case of
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Figure 3.1: Fe — Fe3C phase diagram [Pollack88]

two-phase reaction (eutectic) one degree of freedom vanishes: f — C — 2, since 
the liquid (on the mesoscale) is in equilibrium with two solid phases in this ease.

The following description will be done for the ternary ease for simplicity. 
Alloying elements will be denoted as A and B respectively. Expanding ternary 
description to the N—component case is straightforward and is given later in the 
Section 8.3.

Between the liquid and a crystallite there is a thin microscopic solid-liquid 
interface, where solidification takes place. Because of its microscopic thickness 
(several atoms), we assume solid and liquid phases to be in equilibrium there. 
This assumption is natural, since cooling rates in ingot solidification are not 
high.

Thermodynamic information for real multicomponent alloying systems is pro­
vided by phase diagrams, which are available from thermodynamic software such
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Figure 3,2: Fe - Cr phase diagram

as Thermo-Cale |The06a|, ChemSage |Eriksson90|, and others. The explanation 
of how this thermodynamical information is included into the model follows.

The following description is valid for two-phase regions (liquid and primary 
solid) of the phase diagram. When two phases liquid l and solid s of a three 
component system consisting of components A, B and C are in thermodynamic 
equilibrium, we can express the equilibrium condition in terms of equalities of 
fluxes of these three components between different phases |Steinberg89|:

9a (CA,ClB,T) = 9a (CA ,CB,T) (3-12)

qB (cA,cB,T ) = 9b (cA,cB,T) (3.13)
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l A BqCs(clA,clB,T) = qCl (clA,clB,T) (3/

where gf, i = A, B, C, j = Z, s is the number of molecules of component i leaving 
phase j per unit surface per unit time and T is the equilibrium temperature. 
The actual form of q? is of no interest for our discussion. The existence of these 
functional relations is important. Let us consider two thermodynamical relations 
known from a ternary phase diagram (and available to us by means of thermo­
dynamical software): liquidus surface and the tie-line relation. The first, the 
liquidus surface, in the case of a ternary system and a two-phase region (liquid 
plus a forming solid phase) of the phase diagram can be written as:

T = T(clA, clB) (3-:

The second relation, the tie-line in the same conditions of two- 
a ternary phase diagram can be written as:

region of

diagram

csA =csA(clA,clB)

csB =csB(clA,clB)

Schematic representation of a tie-line relation in a ternary

(3/

(3-:
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Comparing Eq, (3,12)-(3,14) with (3.15)-(3.17) one can see that the latter 
three equations express the same relations as the former three, but their advantage 
is that they are available from thermodynamic software packages, for example 
|The06a, Eriksson90|,

In the work presented, an extensive use of the Fe-C-Cr phase diagram was 
made. In the following the way of obtaining the numerical values of these three 
thermodynamic functions for this alloying system is presented.

Combined experimental and computational investigations of the Fe-C-Cr 
phase diagram has been quite extensive, see, for example |Westgren28, Kundrat84, 
Lee92, Sopousek94, Kowalski94|,

The three thermodynamic functions, liquidus temperature, solubility of car­
bon and solubility of chromium in the solid phases forming from the liquid avail­
able from the Fe-C-Cr phase diagram information data provided by Thermo-Calc 
|Andersson02, Chen05, Sundman85, The06a| are shown below in Figs, 3,4-3,6, 
They represent the functions defined with (3.15)-(3.17) for the Fe-C-Cr system. 
The functions depicted are spline-interpolants of these functions, computed as 
described in Section 4,3,3 for the use in determination of the mass transfer rate 
terms as described in Section 3,4, They represent the functions defined with 
(3,15)-(3,17) for the Fe-C-Cr system.

liquidus temperature (K)

Figure 3,4: Liquidus temperature TcC,^) in the Fe-rich corner
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For other alloying systems these functions can be acquired analogously.
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3.4 Coupling between solidification thermodynam­

ics, kinetics and Eulerian multiphase flow model

In an alloying system with N components N — 1 expressions for the growth velocity 
(either columnar or equiaxed) can be written: vi, i — 1,...,N — 1, Important is 
that all of these growth velocities are equal to each other:

v l 2V — VN-2 N -1 , (3.18)— V

since they all express the velocity of the same solidification front. Thus, in the 
following, when deriving quantities for the multicomponent case we will often 
omit the upper index, keeping in mind that the growth velocity can be calculated 
using any of N — 1 components:

vc
2D (Ci — ci) l -D RmaP

d (ci — es) V R r
(3.19)

which is a multicomponent analog of the columnar growth velocity (2.32) in the 
binary case, i — 1,...,N — 1 is the number of the alloying component.

Further we will consider only ternary systems with two alloying elements A 
and B, so i — A, B,

The assumption of the thermal equilibrium at the solid-liquid phase interface 
can be expressed as:

T — T(cA,cB) (3.20)

Now together with the equation that expresses the equality of growth velocities 
calculated based on concentration distributions of both components A and B (see 
the Section 2,1,2 on growth kinetics)

cA _ CA A cl cl
Dl eA _ CA cl cs

CB — CB B cl cl
Dl eB _ CB cl cs

(3.21)

all these four equations (3.16), (3.17), (3.20) and (3.21) make up an nonlinear 
equation system with the unknowns JA ,CJB ,CJA ,CJB. This system also includes the 
three process parameters Tl,cA,cB. It is possible to show using the Implicit Func­
tion Theorem known from mathematical analysis (see for example |Rudin76|)
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that this equation system implicitly defines a functional dependence of unknown 
mesoscopic parameters CA, CB, CA, CB on known macroscopic parameters Ti,cB,CB. 
The equation system can be written as

where

and

F (Tl ^cB;^ cA, cB) — 0

( cA(cA,cB) — CA \s \^l lB A ~B>BAB B cs (Cl ,cl ) cs

Tl(cA,cB) — t
cA cA cB cBi f,c_ ci c ci1 cA_ cA cB- cB\ cl cs cl cs

( 0 

0 
0

V

(3.22)

(3.23)

(3.24)

and r — da/db.
In order to apply the Implicit Function Theorem, let us rewrite the Eq, (3,22) 

in the following form
F (x,y) — 0, (3.25)

where x — (Tl,cA,cB) and y — (CA, CB, CA, CB), Let us fix a point (a,b) — 
(T^cA^cB^CA^CB^CAb,CBb), then the part of the Jacobian with derivatives of 
F with respect to the mesoscopic parameters y — (CA, CB, CA, CB) of the system 
(3,22) JF,y at this point is

F

0 —

7
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JF (a, b), y

dcA(a,b)/dcA 
dcB(a, b)/dcA 
9Ti(a, b)/QcA

r (cAa-cAb) 
\ r (cAb-cAb)2

dcA(a,b) /dcB
dcB(a, b)/dcB
9Ti(a, b)/gcB 

(cBb-cBg)(cB cB )2 (cl,b cs,b)
(cAb-cAa)(cAb-cAb)2

0
—1 
0

(cBa-CBb) 
(cBb-cBb)2 /

(3.26)

— 1 
0 
0

r

The function F satisfies the requirements of the Implicit Function Theorem 
where Jacobian of JF(a,b),y can be be inverted. It means that the following con­
tinuously differentiable function G exists everywhere, where the Jacobian JF(a,b)y 
is invertible:

y — G(x) (3.27)

or

A
(tf, & cB) — G(Tl,cA,cB) (3.28)

which means that mesoscopic quantities CA,CB,CA,CB functionally depend on 
macroscopic ones Tl, c^cB, The actual form of the function G is determined by 
thermodynamic relations (3,15), (3,16) and (3,17) and growth kinetics relation
(3.21) combined together by means of the nonlinear algebraic equation system
(3.22) , We arrive at an important conclusion that there exists a dependence of 
the equilibrium concentrations of alloying components A and B in solid and liq­
uid phases at the solid-liquid phase interface on the concentrations of alloying 
components in the bulk melt and its temperature.

The unknowns CA,CB,CA,CB are the only mesoscopic quantities entering the 
formulae for growth velocities (2,32) and (2,33), The mass transfer rate depends 
on the thermodynamics by means of growth velocity and thus on the mesoscopic 
unknown quantities CA,cB, CA, CB which are functions of macroscopic parameters 
Tl,cA,cB. Which means that the mass transfer rate is in the end a function 
of known macroscopic parameters Ti,cA,CB and can be calculated by employing 
three thermodynamic relations expressed with Eqs, (3,15)-(3,17) and an expres­
sion for growth velocity ((2,32) for columnar or (2,33) for equiaxed morphology).
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In the explicit form the function G can be found in the simplified case when 
thermodynamic functions (3,15), (3,16) and (3,17) are linear. In this case there 
are 3 linear functions and 1 nonlinear function in the equation system and it can 
be solved analytically. It was done using the symbolical algebraic software package 
Maple V |Maplesoft05, Char93|, See Appendix 8,3 where a way of obtaining this 
analytical solution is described. However, the solution for this simplified case is 
of a limited practical use, since the thermodynamic functions (3,15), (3,16) and 
(3,17) in general case are nonlinear.

Since the thermodynamic functions (3,15)-(3,17) are available only from ther­
modynamic software packages and since the equation system (3,15)-(3,21) is non­
linear, the solution of this system in general case is possible only numerically 
(described in the Section 4,2), Based on this, a coupling algorithm was devel­
oped, which description follows. The coupling is performed according to the 
following steps:

1, Get the macroscopic parameters in the bulk melt Ti,cA,cBB.
2, Solve numerically (see Section 4,2) the nonlinear equation system consisting 

of equations (3,16), (3,17), (3,20) and (3,21) to get the mesoscopic param­
eters CA, CB, cA, CB (solid-liquid interface equilibrium mass fractions of the 
alloying components A and B),

3, Using the values of CA, CB, CA,CB calculated in the previous step (Step 2) and 
cA,cB, calculate the growth velocity (either columnar or equiaxed) according 
to (2.32) or (2.33).

4, Using the growth velocity calculated at the Step 3, calculate the mass trans­
fer rate using (2,1,3),

Now the mass transfer rate computed can be used for calculating the source 
terms for the equations of the multiphase solidification model (described in the 
Section 2,1), thus solving the problem of calculating the mass transfer rate in a 
thermodynamically consistent way,

A method for solving this equation system was implemented. For details on 
the numerical techniques employed see Chapter 4,
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3.5 Representation of ternary thermodynamic func­

tions

Now let us consider the possibilities of getting the values of the mentioned thermo­
dynamic functions (3.15)-(3.17). The most natural way to evaluate these func­
tions is to use a thermodynamics software package, for example Thermo-Cale 
|The06a|, This way is the most precise, but also the most time consuming, since 
the evaluation of these three thermodynamic functions (3.15)-(3.17) has to be 
performed several times during the iterative process of a Xewton-type method 
(we use the Hybrid Powell’s Method described in Section 4,2) for solving the 
nonlinear equation system (3,16)-(3,21) and this Newtonian iterative process has 
to be performed for each computational cell on each iteration of the flow solver.
On the other hand, the thermodynamic functions describing the tie-line relations 
(3,16)-(3,17) are intrinsically discontinuous: These functions represent solubilities 
of the corresponding components in the solid phase, and they naturally change 
with a jump (for example in the Fe-C system the solubility of earbon in ferrite 
and in austenite changes with a jump as crystal lattice changes immediately when 
temperature changes),

The existence of this natural discontinuity affects the numerical use of the 
functions provided by Thermo-Cale in two ways: firstly, Xewton-type methods 
are not designed to solve equation systems with discontinuous functions so the 
the behaviour of the Xewton-type iterative process is at least unpredictable, and 
secondly, the existence of this discontinuities makes it necessary to threat those 
explicitly. In other words, when during the solidification, a solidification path 
crosses such a discontinuous phase border it has to be treated explicitly: for in­
stance precautions have to be made that the Xewton-type iterations alwaysst&y 
in the continuous definition domain of functions (3,16)-(3,17) and there must be 
some kind of artificial treatment to bridge the solidification path from one contin­
uous domain to the other. These two factors make direct use of thermodynamic 
software packages prohibitive.

In order to overcome the limitations described, two methods to approximate 
the thermodynamic functions provided by thermodynamic software were devel­
oped and implemented, which are described below.
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3.5.1 Piecewise-linear interpolation of thermodynamic func 
tions

The simplest way to approximate a function is to linearise it around a point. Let 
us construct a piecewise-linear approximation of a thermodynamic function /:

f f (CA,CB) , 0 < CA < a, 0 < CB < b (3.

can be any of the functions of interest (3.15)-(3.17)), defined in the domain
D-.

D = {(^, c?) | 0 < < a, 0 < czB < b} (3-30)

around two points Ox G Pi and O2 £ D2 respectively, where Px and D2 are 
nonintersecting subdomains of the domain D = Px UD2, and the curve g defining 
the border between Px and D2 is given with the following equation:

ClB = g ClA , 0 < clA < a,

as shown in the Fig. 3.7

Figure 3.7: A schematic view of a two- 
the two phase domains Px and D2

case with a

Let points Ox and O2 have coordinates Ox (5^,5^) and O2

border between

(cy2,czB2). Now
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we can construct a pieeewise-linear approximation of the function (3,29), The 
approximation will consist of two linear pieces: the first piece is valid in the neigh­
bourhood of the point O1 (subdomain D1), and the second in the neighbourhood 
of point O2 (subdomain D2), while the Eq, (3,31) will define the border between 
them.

The linearization of the function of interest around these two points can be 
done by expanding the function (3,29) using the Taylor Formula and dropping 
the terms of order higher than O (||r — rOi||), i — 1,2:

fo, (cA,CB fo+1 dcA o, CA — + (f o, cl cl,1 (3.32)

and around O2:

fo2 (cA CB) — fO2 + (f (cA — CA2) + ((CB — CB2)\dc-AJ
O2

\dCBJ (3.33)
O2

Now combining these linearizations Eq, (3,32) and (3,33) with the equation 
(3,31) defining the phase border we construct a pieeewise-linear approximation 
for the whole domain of interest D — {(cA, CB) | 0 < CA < a, 0 < CB < &}:

f (CA,CB) — fo, (CA,CB) , CB < gfa-l l

~A ~Bfo2 (CA,CB) , Otherwise
(3.34)

The parameters that need to be estimated using Thermo-Calc are:

fo-,, fo2,
dCA 5

o, dcA 5
o2 dcB 5

o, dcB o2

whereas the coordinates of the points O1 and O2 has to be chosen so that the 
solidification paths calculated using the approximation given by Eqs, (3,32) and 
(3,33) deviates as little as possible from the one calculated using the original 
thermodynamic functions (3.15)-(3.17). For the implementation details (includ­
ing the choice of O1 and O2) see Section 4,3, Analogously one can construct 
similar piecewise approximation of a given function f in the N-phase case (See
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3.8: Regions with different in the N- case

Fig. 3.8). Note that the connectivity of the subdomains Di is only schematic, in 
reality the connectivity have to be consistent with the Gibbs phase rule.

In this case the domain of interest D is divided into N nonintersecting sub­
domains:

D= i=N
i=1 Di

In each subdomain Di we linearise the initial function /, getting N linear 
functions i = 1, ... , N, each defined in its subdomain />,■:

tsA SA \ B SBh qB) = fOi + ( \ (tf- - CZB) (3.
l O i l O i

Now the function defined in the whole domain D (except the boundaries dDi 
for which a special treatment is needed) can be constructed:
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f (cA,cB) =

fi
f2

if x E D

if x E D-2, (3.37)

fN if x E D

b

N •

Note the obvious drawback of the approximation method described: the dis­
continuity at the borders dD = Ui=NdDi if we apply this method for a continuous 
function f. Although, among the functions we want to approximate, only the 
function (3,15) describing the liquidus surface is continuous in the whole domain 
D, whereas other two functions Eq, (3,16) and (3,17) are naturally discontinu­
ous at dD (see the discussion above about the nature of the physical quantities 
they represent). So this discontinuity is nonphysical only for approximation of 
the liquidus surface (3,15) and depending on the phase diagram using a special 
treatment the discontinuity on dD can be successfully handled. In order to solve 
this discontinuity problem in principle we suggest using spline interpolation for 
approximating thermodynamic functions (3,15)-(3,17) as described in the next 
section,

3.5.2 Spline interpolation of thermodynamic functions

The other way to represent the phase diagram information given by functions 
(3,15)-(3,17) considered in this work is the spline interpolation |DeBoor94|, Let 
us consider again a thermodynamic function f defined above in Eq,(3,29), This 
function values in general case are available only pointwise, as the values of it are 
themselves a result of a numerical solution of a minimisation problem |White58; 
Eriksson71; Eriksson90|, So it is natural to assume that the values of the function 
f are given for instance on a uniform grid Qhlh2 in the domain D defined above 
in (3,30) with spatial steps h1 and h2 in directions CA and CB respectively. The 
grid Qhlh2 can be defined as:

^h1h2 { (Cl,i, Cl
;B
'l,j ) |CAi = ih1,Cl

~B1 cl,j == jh2,i = 0, 1, •••,N1, j = 0, 1, •••,N2} 
(3.38)
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Figure 3,9: Subdomains D1 and D2 with the interface r [KounchevOl]

In |Kounchev01| the understanding of a multivariate spline is given as follows:

’’Assume that a domain D C Rn be given and a disjoint family 
of subdomains Dj such th at UDj — D, and the boundaries dDj are 
smooth enough, so that the normal n exists almost everywhere on 
dDj. Then a spline is a funotion u, dehned in D which is assembled 
of functions Uj defined on Dj. These pieces are of similar nature and 
match up to a certain degree d of smoothness on the joint boundaries. 
Imagine for simplicity that D C R2 and D — D1UD2, and D1 FiD2 — r 
which is a curve (see Fig, 3,9),

The joint boundary r where two pieces match is called the inter­
face. or break-.surface.

Then we require that

u1 — u2 on r,
d d-d U1 — -d U2 on i , on 1 on 2

dd dd
anU1 — anU2 on r,
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where d/dn denotes the normal derivative (one of the two direc­
tions) on r. If we also require more smoothness of the functions u1 
and u2 on the joint boundarv T, sav u1 G (Dx) and u2 G (D2), if r 
is also smooth enough, we may differentiate the above equalities in 
the direction t tangential to r and obtain the equalities of the mixed 
derivatives up to order d1, i.e,

3l gk gl gk , ,

where the indexes l and k satisfy l + k < d1 and 0 < k < d. Let 
us fix a point y on T, To write the last equalities in a simpler wav, 
let us introduce a local coordinate system on the surface r by putting 
y — 0 and by choosing the normal vector (one of two directions) to 
coincide with the coordinate axis x2. Then the above equality at the 
point y will read as follows:

ö1 dk d dk

■ dxkU1(0) — dX1 axiU2(0)' ^3,41)

The really big questions arise if we are given a ’’data function” f 
on the set T which has to be interpolated by the spline u, i.e, if we 
would like to have

u1 — u2 — f on r. (3,42)

Then the problem is a real intellectual challenge. In the present 
book we provide a solution only for integers d — 2p — 2 > 0, where 
p > 1 is an integer. The fu notions ux and u2 then satisfy the equations

Apu1 — 0 in Di, ,
Apu2 — 0 in D2,

where Ap is the polvharmonic operator,”

After giving this general idea of a multivariate spline, let us take a closer look at
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the splines that ean help us to interpolate the necessary thermodynamic functions 
(3.15)-(3.17). These functions are functions of two variables. We will need to 
construct a spline function of two variables, that interpolates the from Thermo­
Calc |The06a, The06b| tabulated pointwise tabulated values of these functions.

The following description is taken from |KvasovOO|, from the section "Spline 
functions of two variables on a rectangular grid".

Let on a rectangular domain Q = [a,b] x [c, d] a mesh of lines A = Ax x Ay 
be introduced with:

Ax : a = x0 < x1 < • • • < xN = b,

Ay : c = yo <y1 < ••• <yM = d,

which divides the domain Q into the rectangles

Qij = {(x,y)|x E [xi,xi+1], y E [yj,yj+1]},

i = 0, •••, N - 1; j = 0, •••, M - 1,

Let us associate with Ax a vector with integer components V = (v1, • • •, vN_1) 
and with Ay an analogous vector y = (y1, • • •, yM_1) For integers k > 0 and l > 
0 let us denote by Ck’1 [Q] the set of continuous on Q functions f having continuous 
partial and mixed derivatives Dr,sf (r < k, s < l), By the symbol C_1,_1 [Q] we 
denote the set of piecewise continuous functions whose discontinuities are of first 
order on some closed curves containing possibly the boundaries of the domain,

Definition.The function Sn,m,v,ß is called a spline of two variables of order n
and of multiplicity v (v = max vj, 0 < vj < n) with respect to x, and of order mi
and of multiplicity y (y = max yj, 0 < yi < m) with respect to y with joining 

j
lines of the mesh A if

(a) in any rectangle Qj, the function Sn,m,v,ti is a polynomial of order n with
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respect to x and of order m with respect to y that is

n— 1 m— 1
Sn,m,v,fi aaß(x Xi) (y yi),

a=0 ß=0

i — 0,'.',N— 1; j — 0,'.',M — 1; (3.44)

(b) adjacent polynomials are smoothly tied together

Dr,s (xi — 0,y) — Dr,s Sn,m,v,p. (xi + 0,y)

r — 0,''',n — 1 — v, i — 1,''',N — 1; s — 0,''',m — 1 — p,

Dr,s Sn,m^(x,yi — 0) — Dr,s S,n,m,v,/j, (x,yi + 0L

s — 0,''',m — 1 — pi, j — 1,''',M — 1; r — 0,,,,^ — 1 — v,

that is

S cn— 1—v,m— 1—[q]Sn,m,V,fi G C [QJ '

We call V and p the multiplicity vectors. The i-th component Vi of v controls 
the smoothness of the spline along the mesh line x — x^ and is called the multi­
plicity of the spline along the mesh line x — x^ Analogously the j-th component 
Pj of the vector p is called the multiplicity of the spline on the line y — yi.
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Chapter 4

Numerical implementation

4.1 Computational fluid dynamics of incompress­

ible multiphase flows: phase-coupled SIMPLE 

method

For the implementation of the ternary solidification model described in the 
previous chapters the commercial software FLUENT was used |FLU01|, Nec­
essary source terms like mass transfer rate, species transfer rate, etc, as well as 
function calls to the libraries that provide the Hybrid Powell method and spline 
interpolation functionality were implemented by means of the User Defined Func­
tions interface |FLU06|, The numerical method for solving the equations of Eu­
lerian multiphase model used in FLUENT is Phase-Coupled SIMPLE method 
|VasquezOO|, which is a modification of the SIMPLE method of S, V, Patankar 
|Patankar80| for multiphase flows, A summary of the Phase-Coupled SIMPLE 
method is given in |ErsavinO5|.

The governing equations are discretized by dividing the domain into a finite 
number of control volumes. In the collocated variables finite volume approach, 
eheekboard splitting of pressure is avoided using a special discretization scheme 
following Rhie and Chow |Rhie83|, A similar idea was implemented into FLU­
ENT unstructured by Mathur and Murthy |Marthur97|. The idea has also been 
extended to multiphase flows (Vasquez and Ivanov |VasquezOO|). Similarly, other 
driving forces like gradients of the volume fraction, or body forces, ean be included 
in the Rhie and Chow |Rhie83| scheme. But, such a velocity reconstruction does
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not automatically satisfy mass continuity.
An extended SIMPLE algorithm is used for the pressure-velocity coupling in

multiphase flow. To avoid bias towards a heavy phase, the pressure correction is 
based on the conservation of the total volume. The resulting discretized form of 
the total volume continuity equation for incompressible fluids and the correction 
for the volume fluxes, derived from the coupled momentum equations, are used to 
satisfy local mass continuity and derive pressure corrections. The coefficients of 
the pressure correction equation implicitly contain the whole effect of the coupling 
terms of the momentum equations. The algorithm is named Phase-Coupled- 
SIMPLE and is summarised below:

1, Initialise all variables,

2, Update boundaries and coupling terms,

3, Solve for phase-coupled velocity vectors using a block algebraic multigrid 
method,

4, Reconstruct the volume fluxes. Use a point matrix solver to get volume 
fluxes,

5, Build the pressure-correction equation from total volume continuity and 
solve it,

6, Volume fluxes and velocity corrections preserve the full coupling. Use a 
matrix solver to correct fluxes and velocities. Correct share pressures,

7, Solve for volume fractions enforcing realizability conditions and update 
properties,

8, Solve scalar equations,

9, Repeat from Step 2 until convergence,

10, If time dependent, advance to next time step.

The following description is taken from |FLU01| (notation is adapted, plus ad­
ditional description of terms is given):
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"The velocities are solved coupled by phases, but in a segregated fash­
ion, The block algebraic multigrid scheme used by the density-based 
solver described in |Weiss99| is used to solve a vector equation formed 
by the velocity components of all phases simultaneously. Then, a 
pressure correction equation is built based on total volume continuity 
rather than mass continuity. Pressure and velocities are then cor­
rected so as to satisfy the continuity constraint.

For incompressible multiphase flow, the pressure-correction equation 
takes the form

E - pk+v

1=1 P'k P«
fkpkuk + V ’ fkpkuk

n

(rnik - mki) 
.1=1 r

(4.1)

where prk is the phase reference density for the k-th phase (defined 
as the total volume average density of phase k), u'k is the velocity 
correction for the k-th phase, and u*k is the value of uk at the cur­
rent iteration. The velocity corrections are themselves expressed as 
functions of the pressure corrections. Also here mlk are mass transfer 
rates from phase k to l.

The volume fractions are obtained from the phase continuity equa­
tions"

1
prk

d n~öt(fQpq) + V • (fqpqVq) = (mpq -
P=1

(4.2)

4.2 Numerical solution of the nonlinear equation 

system for coupling

For solving the nonlinear equation system consisting of (3,16),(3,17),(3,20) and 
(3,21) the Hybrid Powell’s algorithm |Powell70a, Powell70b| implemented within
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the GSL Scientific Library | GalassiOl | was used. The following quote from 
[GalassiOl] describes this method (in the following description J is the Jacobian 
of the equation system f (x) — 0 dx is an unknown Newton step):

"This is a modified version of Powell’s Hybrid method as imple­
mented in the hybrj algorithm in minpack, Minpack was written by 
Jorge J, More, Burton S, Garbow and Kenneth E, Hillstrom, The 
Hybrid algorithm retains the fast convergence of Newton’s method 
but will also reduce the residual when Newton’s method is unreliable.

The algorithm uses a generalised trust region to keep each step 
under control. In order to be accepted a proposed new position x' 

must satisfy the condition |D(x' — x)| < J, where D is a diagonal 
scaling matrix and J is the size of the trust region. The components 
of D are computed internally, using the column norms of the Jacobian 
to estimate the sensitivity of the residual to each component of x. This 
improves the behaviour of the algorithm for badly scaled functions.

On each iteration the algorithm first determines the standard New­
ton step by solving the system Jdx — — f, If this step falls inside the 
trust region it is used as a trial step in the next stage. If not, the 
algorithm uses the linear combination of the Newton and gradient di­
rections which is predicted to minimise the norm of the function while 
staying inside the trust region,

dx — — aJ—1f (x) — ßV|f (x)|2 (4,3)

This combination of Newton and gradient directions is referred to 
as a dogleg step.

The proposed step is now tested by evaluating the function at 
the resulting point, x'. If the step reduces the norm of the function 
sufficiently then it is accepted and size of the trust region is increased. 
If the proposed step fails to improve the solution then the size of the 
trust region is decreased and another trial step is computed.

The speed of the algorithm is increased by computing the changes 
to the Jacobian approximately, using a rank-1 update. If two suc-
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cessive attempts fail to reduce the residual then the full Jacobian is 
recomputed. The algorithm also monitors the progress of the solution 
and returns an error if several steps fail to make any improvement (it 
either reports that "the iteration is not making any progress, prevent­
ing the algorithm from continuing" or "re-evaluations of the Jacobian 
indicate that the iteration is not making any progress, preventing the 
algorithm from continuing")."

Further details about the algorithm and its implementation ean 
be found in |Broyden65, More79, More81|.

In this work the GNU Scientific Library multidimensional root-finding functions 
were called from the FLUEXT’s User Defined Functions |FLU01, FLU06| by 
means of the provided C programming language interface to solve the nonlinear 
equation system consisting of four equations (3.16), (3,17), (3,20) and (3,21) to 
determine the interfacial equilibrium concentrations cA, cB, cA, cA which are the 
four unknowns of the equation system aforementioned. Note that when taking 
three phases into account (that is liquid, columnar and equiaxed), then a dis­
tinction has to be made between the interfacial equilibrium concentrations, since 
they will be different for different phases. In the three phase case, the equation 
system (3,16),(3,17),(3,20) and (3,21) has to be solved twice, once to get interfa­
cial concentrations cAc, cBc, cAc, cAc for the columnar phase and cAe, cBe, cAe, cAe 
for the equiaxed phase, which are used later for calculating growth velocities for 
the columnar phase (2,32) and liquid (2,33) phase,

4.3 Numerical representation of the multicompo­

nent phase diagram data

4.3.1 Piecewise-linear approximation of Fe^C^Cr system

Piecewise linear approximation were performed to correctly represent the solid­
ification paths predicted by Thermo-Calc-Scheil module for X30Crl5 alloy. In 
order to do so, the solidification path for the X30Crl5 alloy was calculated using 
Thermo-Calc-Scheil module. This solidification path is shown in the Fig, 4,1,

49



Figure 4,1: The solidification path for the X30Crl5 alloy calculated using the 
Thermo-Calc-Scheil module and linearization points depicted on top of the con­
tour plot of the liquidus temperature (temperature is given in degrees Kelvin) in 
the iron-rich corner of Fe-C-Cr phase diagram

The solidification starts with the formation of the ferrite phase, then the solidi­
fication path proceeds towards the peritectic line, then the peritectic solidification 
starts and austenite starts to form. Then the solidification path proceeds to the 
eutectic grove where eutectic solidification with the formation of the austenite 
and carbide M7C3,

Having these solidification paths, we make the choice of points A and B so that 
the linearizations resulting make a good representation of the thermodynamic 
functions (3,15), (3,16) and (3,17) in that sense, that the solidification paths 
calculated with Thermo-Calc-Scheil module and the solidification path calculated 
with the multiphase solidification model described above differ as little as possible.

The mass fractions of the elements C and Cr are measured in kg of the element 
per kg of the melt, so its unit is ks — 1, and mass fractions c£A and CCr are unitless. 
The coordinates of the points A(cca,ccA) and B(CCB, CCB) are mass fraction of 
elements C and Cr in the liquid phase were chosen as

A — (Cp — 0.003, CC — 0.15) (4.4)

and

B — (Cp — 0.022, Cpr — 0.26) (4.5)
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linearization was done as deseribed in Section 3,5,1, The linearization param­
eters were calculated using Thermo-Calc and are given in Table 4,1,

around the point A numeric value around the point B numeric value

TA 1759.7046 K TB 1605.6378 K
+/+A -9198.5831 K (st/d? SB -4175.2312 K

A -76.214187 K - ■ B -348.79788 K

CCA 4.8618649 • 10 1 CCB 7.0848973 • 10 3
(dc?C 0.15106564 '/dcC)B 0.30575641
(dcS/dcFr)A -5.2915106 • 10 1 '/dc?r)B -1.2038858 • 10 2

cCrCs , A 0.14207627 CCrCs,B 0.16559951
A -2.2273607 -2.0782296

(dc?I/dc?r)A 1.0438801 0.61073492

Table 4,1: linearization parameters for the linearization of the iron-rich corner 
of the Fe-C-Cr phase diagram for solidification simulations of X30Crl5 ahov. 
Note that units of the slopes of the liquidus surface (^/dc^AB and (^/dcf)AB 

are k.,Kkg, that is degree Kelvin per unit of mass fraction. Similarly, slopes of 
(öc?/öcC)A B, (dc?/dcCr)A B, (öcCr/dcC)A B and (öc?r/öcCr)A B 

because they describe the change of solid mass fraction of an element (measured 
in kg) as the liquid mass fraction of this or the other element (also measured in
kg) changes.

The border line Eq, (3,31), between the ferrite and austenite regions were 
approximated with a straight line, which is tangential to the real phase border at 
the point where the solidification path intersects the periteetie line. The equation 
of the the straight line estimated using Thermo-Calc data is:

cCr = 0.04 + 11.50cC. (4.6)

so the thermodynamic functions are approximated by means of the functions of 
the following form
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fA {cC,cCr 

fB (CC,tCr
f tf,Ccr

if CiCr < g (ca 

otherwise
(4.7)

where fi (CC ,Cpr^ , i — A, B are the linearizations around the points A and B 
with the parameters listed in the Table 4,1, and the function g is defined by (4,6),

For the details on the command sequence used for obtaining the linearization 
parameters from Thermo-Calc see Appendix 8,3,

4.3.2 Pieeewise-linear approximation of Fe^C^Mn system

Similar pieeewise-linear approximation was done for thermodynamic functions 
(3,15), (3,16) and 3,17 for the iron-rich corner of the Fe-C-Mn system. Similarly 
to the previous Section 4,3,1, two points, A and B were chosen. Their coordinates 
were:

A — (cMn — 0.014, cp — 0.018) (4.8)

and

B — (cMn — 0.02239847, Cp — 0.0068080346) (4.9)

linearization was done as described in Section 3,5,1, The linearization param­
eters were calculated using Thermo-Calc and are given in Table 4,2,
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around the point A numeric value around the point B numeric value

Ta 1789.902 K Tb 1748.57 K
-503.40987 K (dWn)B -399.14278 K

PM -7954.6705 K ' ' -6717.6148 K
CMnCs,A 1.02349830 • 10 2 ~MnCs,B 1.62194480• 10 2

(9^Mn/dC^A 0.73438282 (9CMn/dcM)B 0.72859525
(d5M/dC?)A -0.14228358 ' ' -0.13937542

Cs,A 3.00995580 • 10 1 C,B 2.19010220 • 10 3
(d^/d^A -1.15022550 • 10 3 (d^/d^B -3.47417690 • 10 3
(^/«?)a 0.16776847 (dCC/9~c?)B 0.35739281

Table 4,2: linearization parameters for the linearization of the iron-rieh eorner 
of the Fe-Mn-C phase diagram for solidification simulations of Fe-0.4wt.%Mn- 
l,8wt,%C alloy. See the note on units of the given values in Table 4,1, Note that 
the values without units indicated are dimensionless.

The border line Eq, (3,31), between the ferrite and austenite regions were 
approximated with a straight line, which is tangential to the real phase border at 
the point where the solidification path intersects the peritectic line. The equation 
of the the straight line estimated using Thermo-Calc data was:

cC = 5.276 • 10-3 - 4.162 • 10-2cMn (4.10)

4.3.3 Spline interpolation

To interpolate the pointwise tabulated Thermo-Calc ternary thermodynamics 
data the SIXTEF Spline Library (SISL) was used |SIX06, SIX05|. The SISL 
Reference Manual describes the SISL library as follows |SIX05|:

"SISL is a geometric toolkit to model with curves and surfaces. It 
is a library of C functions to perform operations such as the defini­
tion, intersection and evaluation of XURBS (Xon-Uniform Rational 
B-spline) geometries, (,,,)"
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These SISL functions were called from FLUEXT’s User Defined Functions and 
from the Hybrid Powell’s method described in Section 4,2 nonlinear equation 
solver functions.

Firstly, the SISL function sl535 is called to create spline interpolations of 
Thermo-Calc |The06a| tabulated data of values of functions (3,15)-(3,17), Then 
the SISL function sl506 is called each time the Hybrid Powell’s Method nonlinear 
equation solver functions need to evaluate either the values of the functions (3,15)- 
(3,17) or the Jacobian of the system of nonlinear equations (3,16)-(3,21) according 
to its algorithm.

The thermodynamic functions (3,15)-(3,17) values, their first and cross deriva­
tives were tabulated for the iron-rich corner of Fe-C-Cr phase diagram in the 
rectangular region on a grid Qhlh2 as defined by Eq, (3,38) with N1 = N2 = 200, 
a = 0.06, b = 0.6, hi = a/Ni, h2 = b/N2, A = C, and B = Cr. Note that a and b 
have units of mass fraction. The tabulations were performed using a self-written 
C-program that calls Thermo-Calc routines using Thermo-Calc API |The06b|, 
Thermo-Calc API provides routines to calculate the values and first derivatives 
of the thermodynamic functions (3,15)-(3,17), Cross derivatives were estimated 
numerically using first derivatives on a grid with spatial steps 0.5h1 and 0.5h2 
in directions of both parameters. Then the arrays containing tabulated values of 
thermodynamic functions, their derivatives and cross derivatives were supplied 
to the SISL function si535 to compute B-forms of interpolating splines of two 
variables of third order, which were used in the numerical procedure of solving 
the nonlinear equation system (3,15)-(3,17) as described above in Section 4,2, 
The graphical representation of these functions as contour plots with isolines are 
shown in Figs, 3,4-3,6,

In order to perform the spline interpolation successfully, one has to make the 
right choice of the parameters of interpolation: spline order and an appropriate 
parametrisation. There are two ways to parametrise a B-spline surface using the 
SISL library: a uniform and arc-length based parametrizations. For our case the 
uniform parametrisation was used, with the natural choice for the parameters of 
(cC,cCr).
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Determination of the spline order for the interpolation

The other parameter to choose is the order of the spline surface with respect 
to the first and the second parameter. In order to find out the optimal order 
of the spline-interpolating surface, interpolating spline surfaces were computed 
with orders 3rd to 15th (same order for both parameters) on a 200x200 grid of 
tabulated data. Then, these interpolating spline-surfaces were used to evaluate 
the values of the thermodynamic functions (3,15), (3,16), (3,17) and their first 
derivatives on a 600x600 grid and compared with the data tabulated on the 
same 600x600 grid. The dependence of the accuracy on the spline degree can 
be illustrated with the Fig, 4,2, where the spline-interpolants of different order 
created using 200x200 tabulated data for the function (3,16) and the tabulated 
600x600 data are compared along a line cC = 0.0158, Consider Fig, 3,5 where 
the function (3,16) is shown : the aforementioned line CC = 0.0158 is a coordinate 
line parallel to the horizontal axis and crosses the phase border between ferrite 
and austenite near the point with coordinates (CC = 0.0158, CCr « 0.22), As 
expected, significant interpolation errors occur near the discontinuity experienced 
by the function (3,16) along the phase border (see Fig, 4,2),

Figure 4,2: Comparison between the spline-interpolants of different order and the 
tabulated data, projected onto the plane CC = 0.0158,

In order to quantify the interpolation error, the relative error vectors with 
the components

| fi,exact fi,interpolated | z , \
erel,i = f

1 fi,exact1
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were calculated. Here i = 1,..., 600 • 600 is the number of a data point on a 
600x600 grid, /i)exact is the value of a tabulated function and /interpolated is the 
value of the spline interpolant at the same point. Function / here represents 
one of the thermodynamic functions (3.15), (3,16), (3.17) or their first derivative. 
Further, to quantify the interpolation error, their maximum norms

ll^relll TO max1<i<360000 |^rel,i 1 (4.12)

and their Euclidean norms

l|frel||2 , ' ' )2 (4.13)

were calculated. The dependence of these two norms on spline surface order for 
functions (3.15), (3,16) is shown in the Figs, 4,3 and 4,4, For other thermody­
namic functions and their derivatives these relations are analogous.

Figure 4,3: Dependence of the norms ||erel||TO (a) and ||erel||2 (b) for the liquidus 
temperature (3.15) on the interpolating spline surface order
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Figure 4,4: Dependence of the norm ||erel||TO (a) and ||erel||2 (b) for the solubility 
of chromium (3.16) on the spline surface order

As it can be seen from the Fig, 4,3 and Fig, 4,4, the smallest error corresponds 
to the third order of interpolating spline surfaces and so the third order was used 
for the interpolation in the simulations,

4.3.4 Error analysis for pieeewise-linear interpolation and 
spline interpolation

Let, us investigate the error introduced by the approximation of the three ther­
modynamic functions of interest T(cC,cCr) cc(cc, cCr) and cCr(cC, cCr), that we 
will denote here as function f (cC, cCr) using pieeewise-linear approximation and 
spline interpolation. Let fexact denote the value of the function calculated using 
Thermo-Calc, the value which we will consider to be exact and fapprox to the 
approximate value of the function f, calculated either using spline tabulation of 
previously tabulated data or using pieeewise-linear approximation.

The relative error of approximation of a thermodynamic function f can be 
calculated using the following formula:

_ |fexact fapprox| /. ,,,
£rel = if i .| /exact|
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Figure 4,5: Piecewise-linear representation of the liquidus temperature T (cc , CCr) 
for the iron-rich corner of the Fe-C-Cr phase diagram, A discontinuity in the 
values of the liquidus temperature can be seen along the border between 5 and 
Y phases. Note that in reality the liquidus temperature is continuous, A solid­
ification path calculated using Thermo-Calc-Scheil module for X30Crl5 alloy is 
shown for reference,

Piecewise-linear approximation

The contour plots of the piecewise-linear approximations of the three thermody­
namic functions of interest, TZ(CC, CCr), CC (CC, CCr) and CCr(CC, CCr) in the iron-rich 
corner are shown in the Figs, 4,5, 4,6 and 4,7 respectively.

The corresponding Thermo-Calc tabulated functions (not interpolated or ap­
proximated) are shown in Figs, 3,4, 3,5 and 3,6 respectively.

The decimal logarithms of the relative error of approximation for piecewise- 
linear approximations log10 erel were calculated for the iron-rich corner of the Fe- 
C-Cr for the three thermodynamic functions of interest Tz(CC,CCr), CC (CC, CCr) 
and CCr(CC, CCr), They are shown in Fig, 4,8, Fig, 4,9 and 4,10 respectively.

As it can be seen in Figs, 4,8, 4,9 and 4,10 showing the distribution of the ap­
proximation error, the smallest error areas are situated around the points where 
linearizations were done. The further are the areas from these points, the higher 
gets the approximation error, rendering these piecewise-linear approximation un­
usable for simulating solidification of alloys with initial concentrations that are 
far away from the linearization points. Nevertheless, in the neighbourhood of 
the Thermo-Calc-Scheil solidification path the relative error of approximation is
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Figure 4,6: Pieeewise-linear representation of the solubility of earbon in primary 
solid phases cC(cC, cCr) in the iron-rich corner of the Fe-C-Cr phase diagram, A 
discontinuity in the values of the solubility can be seen along the border between 
5 and y phases. In reality this function is also discontinuous along the phase 
borders, A solidification path calculated using Thermo-Calc-Scheil module for 
X30Crl5 alloy is shown for reference.

Figure 4,7: Pieeewise-linear representation of the solubility of carbon in primary 
solid phases cCr(cC, cCr) in the iron-rich corner of the Fe-C-Cr phase diagram, A 
discontinuity in the values of the solubility can be seen along the border between 
5 and y phases. In reality this function is also discontinuous along phase borders, 
A solidification path calculated using Thermo-Calc-Scheil module for X30Crl5 
alloy is shown for reference.
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Figure 4,8: Decimal logarithm of the relative error log10 erel, Eq, (4,14), for piece­
wise linear approximation of the liquidus temperature TCCC, cCr) for the iron-rich 
corner of the Fe-C-Cr phase diagram. Note that the points used for linearization 
and their neighbourhood can be clearly identified by the areas with the low­
est error, A solidification path calculated using Thermo-Calc-Scheil module for 
X30Crl5 alloy is shown for reference.

relatively low: up to 10-3 for the liquidus surface (4,5), up to about 10-1 for the 
solubility of carbon in primary solid phases and up to 10-2 for the solubility of 
chromium.

Spline interpolation using 100x100 points for tabulation

The contour plots of the spline interpolations of the three thermodynamic func­
tions of interest Tl(CC, CCr), CC(CC, CCr) and CCr(CC, CCr) in the iron-rich corner 
tabulated on a 100x100 grid are shown in Figs, 4,11, 4,12 and 4,13 respectively.

The decimal logarithms of the relative error of approximation for splines on 
100x100 grid log10 erel were calculated for the iron-rich corner of the Fe-C-Cr 
for the three thermodynamic functions of interest Tl(ClC,ClCr) CC(CC, CCr) and

'(CC, CCr). They are shown in Fig, 4,14, Fig, 4,15 and 4,16 respectively.
From these figures depicting the relative error in approximation we see that 

the liquidus temperature Tl (CC, CCr) (Fig, 4,14) is represented in the whole region 
of interest with the maximal relative error of 10-4 and it is continuous contrary 
to the piecewise-linear approximation. The log10 ||erel||2 (defined by Eq,(4,13)) for
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Figure 4,9: Decimal logarithm of the relative error log10 erel, Eq, (4,14), for 
piecewise linear approximation of the solubility of chromium in the primary solid 
phases cC(cC, cCr) for the iron-rich corner of the Fe-C-Cr phase diagram. Note 
that the points used for linearization and their neighbourhood can be clearly 
identified by the areas with the lowest error, A solidification path calculated 
using Thermo-Calc-Scheil module for X30Crl5 alloy is shown for reference.
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Figure 4,10: Decimal logarithm of the relative error log10 erel, Eq, (4,14), for 
piecewise linear approximation of the solubility of chromium in the primary solid 
phases cCr(cC, cCr) for the iron-rich corner of the Fe-C-Cr phase diagram. Note 
that the points used for linearization and their neighbourhood can be clearly 
identified by the areas with the lowest error, A solidification path calculated 
using Thermo-Calc-Scheil module for X30Crl5 alloy is shown for reference.
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Figure 4,11: Spline interpolation of the liquidus temperature T(cC,cCr) for the 
iron-rieh eorner of the Fe-C-Cr phase diagram using 100x100 points tabulation. 
Note the continuity of the approximation, A solidification path calculated using 
Thermo-Cale-Seheil module for X30Crl5 alloy is shown for referenee,

liquidus temperature is equal to -2.1240 for the whole region considered. Cal­
culating the norm of the relative error for solubilities cC(cC, cCr) and cCr(cC, cCr) 
is meaningless since it is too big. The situation with spline interpolation of tab­
ulated data for the solubilities of carbon cC(cC, cCr) and chromium cCr(cC, cCr) is 
complicated by the discontinuities of these functions at the phase borders. Due 
to this, there are very small areas which have high relative error up to 102, Those 
areas are situated in the vicinity and at the phase borders, where discontinuities 
of the solubilities are now smoothed and since splines used are continuous func­
tions, this causes such a big errors, since they do not represent the discontinuous 
function jumps precisely.

Spline interpolation using 200x200 points for tabulation

The contour plots of the spline interpolations of the three thermodynamic func­
tions of interest Tz(cC,cCr), cC(cC, cCr) and cCr(cC, cCr) in the iron-rich corner 
tabulated on a 200x200 grid are shown in the Figs, 4,17, 4,18 and 4,19 respec­
tively.

The decimal logarithms of the relative error of approximation for splines on
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Figure 4,12: Spline interpolation of the solubility of earbon in primary solid phases 
CC (CC, CCC for the iron-rich corner of the Fe-C-Cr phase diagram using 100x100 
points tabulation. Note that the clear change in the values of the solubility can 
be seen along the phase borders, A solidification path calculated using Thermo- 
Calc-Scheil module for X30Crl5 alloy is shown for reference.
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Figure 4,13: Spline interpolation of the solubility of carbon in primary solid phases 
'(CC, CCr) for the iron-rich corner of the Fe-C-Cr phase diagram using 100x100 

points tabulation. Note that the clear change in the values of the solubility can 
be seen along the phase borders, A solidification path calculated using Thermo-
Calc-Scheil module for X30Crl5 alloy is shown for reference.

0.6

0.5

0.4

0.3

0.2

0.1

0

63



' (;oj) Iog]Q °f relative error 
P^Thermo-Calc-Scheil solidification path

0.2 0.3 (b
mass fraction of chromium

Figure 4.14: Decimal logarithm of the relative error log10 erel for the spline inter­
polation of the 100x100 tabulation of the liquidus temperature Tl (cC, cCr) for the 
iron-rich corner of the Fe-C-Cr phase diagram. It can be seen that the error is 
highest near the phase borders and the error is low away from them. A solidi­
fication path calculated using Thermo-Calc-Scheil module for X30Crl5 alloy is 
shown for reference.

200x200 grid log10 erel were calculated for the iron-rich corner of the Fe-C-Cr 
for the three thermodynamic functions of interest T(cC,cCr), cC(cC, cCr) and 
cCr(cf,cfr). They are shown in Fig. 4.20, Fig. 4.21 and 4.22 respectively.

Everything said for 100x100 spline case holds for this 200x200 case. In com­
parison with the 100x100 case, the 200x200 case provides higher precision in the 
sense that the areas with the maximal error are smaller. On the other hand, 
increasing the number of nodes does not decrease the maximal error in the case 
of solubilities of alloying elements since this error is caused by the discontinuity 
of this functions and not by the approximation. On the other hand, the overall 
error of approximation of the liquidus temperature which is continuous, quanti­
fied bv the log10 ||erei||2, which is equ al to -2.6583 is bigger than in the case of the 
100x100 tabulation. The norm of the relative error is bigger, but these two values 
of the norm are not representative to draw the conclusion that the approximation 
error increases with the number of nodes.
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Figure 4,15: Decimal logarithm of the relative error log10 erel for the spline in­
terpolation of the 100x100 tabulation of the solubility of earbon in the primary 
solid phases CC(CC, CCr) for the iron-rich corner of the Fe-C-Cr phase diagram. 
It ean be seen that the error is highest near the phase borders and the error is 
low away from them, A solidification path calculated using Thermo-Cale-Seheil 
module for X30Crl5 alloy is shown for reference.

Conclusion about approximations

Comparing all three eonsidered ways of approximating the liquidus temperature 
Tl(CC, CCr) and solubilities of carbon Cc(CC, CCr) and chromiurn CCr(CC, CCr) in pri­
mary solid phases, we ean draw several conclusions.

The piecewise-linear approximations are quite precise, and in combination 
with the relative ease of the calculation of their parameters (9 parameters using 
Thermo-Cale) and implementation (2 equations for each thermodynamic func­
tions) they present an acceptable tool for representing the Fe-C-Cr phase dia­
gram not far away from the linearization points.

The approximation of the thermodynamic functions using splines is precise 
in the whole iron-rich corner of the Fe-C-Cr phase diagram for the liquidus 
temperature. For solubilities it is precise in the iron-rich corner apart from the 
phase borders. The approximation using splines introduces an approximation 
error connected with smoothing of these functions discontinuities along the phase 
borders. This is also can be seen in the Fig, 4,2: it is clear that the relatively big 
value of the error should not be considered as a problem, since the smoothing of
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Figure 4,16: Decimal logarithm of the relative error log10 erel for the spline in­
terpolation of the 100x100 tabulation of the solubility of carbon in the primary 
solid phases cCr(cC, cCr) for the iron-rich corner of the Fe-C-Cr phase diagram. 
It can be seen that the error is highest near the phase borders and the error is 
low away from them, A solidification path calculated using Thermo-Calc-Scheil 
module for X30Crl5 alloy is shown for reference.

Figure 4,17: Spline interpolation of the liquidus temperature T(cC,cCr) for the 
iron-rich corner of the Fe-C-Cr phase diagram using 200x200 points tabulation. 
Note the continuity of the approximation, A solidification path calculated using 
Thermo-Calc-Scheil module for X30Crl5 alloy is shown for reference.
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Figure 4,18: Spline interpolation of the solubility of earbon in primary solid phases 
cC(cC, cCr) for the iron-rich corner of the Fe-C-Cr phase diagram using 200x200 
points tabulation. Note that the clear change in the values of the solubility can 
be seen along the phase borders, A solidification path calculated using Thermo- 
Calc-Scheil module for X30Crl5 alloy is shown for reference.

Figure 4,19: Spline interpolation of the solubility of carbon in primary solid phases
CC (CC, CCr) for the iron-rich corner of the Fe-C-Cr phase diagram using 200x200
points tabulation. Note that the clear change in the values of the solubility can
be seen along the phase borders, A solidification path calculated using Thermo-
Calc-Scheil module for X30Crl5 alloy is shown for reference.
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Figure 4.20: Decimal logarithm of the relative error log10 erel for the spline inter­
polation of the 200x200 tabulation of the liquidus temperature Tl (CC, CCr) for the 
iron-rich corner of the Fe-C-Cr phase diagram. It can be seen that the error is 
highest near the phase borders and the error is low away from them. A solidi­
fication path calculated using Thermo-Calc-Scheil module for X30Crl5 alloy is 
shown for reference.

mass fraction of chromium in liquid phase

Figure 4.21: Decimal logarithm of the relative error log10 erel for the spline in­
terpolation of the 200x200 tabulation of the solubility of carbon in the primary 
solid phases Cc(CC, CCr) for the iron-rich corner of the Fe-C-Cr phase diagram. 
It can be seen that the error is highest near the phase borders and the error is 
low away from them. A solidification path calculated using Thermo-Calc-Scheil 
module for X30Crl5 alloy is shown for reference.
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Figure 4,22: Decimal logarithm of the relative error log10 erel for the spline in­
terpolation of the 200x200 tabulation of the solubility of carbon in the primary 
solid phases cCr(cC, cCr) for the iron-rich corner of the Fe-C-Cr phase diagram. 
It can be seen that the error is highest near the phase borders and the error is 
low away from them, A solidification path calculated using Thermo-Calc-Scheil 
module for X30Crl5 alloy is shown for reference.

solubilities discontinuities is a good feature of the approximation of the solubilities 
using splines, which allows using Xewton-type iterations for the solving of the 
nonlinear equation system with these three functions. The approximation using 
spline interpolation provides both precise and continuous way of representing 
the thermodynamic functions. The approximation using splines interpolation 
of the functions tabulated on a 100x100 grid will be used for the solidification 
simulations.
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Chapter 5

Validation of the coupling between 
solidification thermodynamics, 
kinetics and Eulerian multiphase 
flow model

In order to validate the methods of representing the phase diagram infor­
mation in the form of pieeewise-linear approximations and spline interpolations 
proposed above, the initial value problem consisting of three ordinary differen­
tial equations (3,1), (3,9), (3,10) and the initial conditions given by Eq, (3,11) 
was solved numerically using MATLAB |GruppO4, Gramlich00| incorporating 
the mass transfer rate for the growth of columnar dendrites by means of the for­
mula (2,34), Pieeewise-linear approximations and spline interpolation were used 
to calculate values of the thermodynamic functions given by Eqs, (3,15), (3,16) 
and (3,17), The diffusion coefficient in Eq, (2,32) was taken bigger than the real 
one in order to allow the comparison with curves calculated using Thermo-Calc- 
Scheil module (infinite diffusion in liquid is one of the assumptions of the Scheil 
model). These calculations were performed for alloys from Fe-C-Cr, Fe-C-Mn 
and Cu-Sn-P systems. Resulting c) — fc curves are plotted together with c) — fs 
curves computed using the Thermo-Calc-Scheil module described in the Section 
2,2, It is Scheil model on one hand, that does not include any morphological 
information, thus the resulting phase volume fraction is referred here with fs, the 
volume fraction of solid (hence index s is used, not c), and on the other hand,

70



the model deseribed in the previous Chapter 3, The latter model includes the 
morphological information by means of the expression for columnar growth ve­
locity, Eq, (3,19), so the columnar volume fraction fc notation is used to reflect 
this fact. Additionally, the solidification paths (curves of the form c) — cj, where 
i and j are alloying components, i = j) obtained from the solution of the initial 
value problem (also later referred to as the zero-dimensional model) are plotted 
together with the solidification paths C) — Cj obtained from Thermo-Calc-Scheil 
module.

Note that the variables considered in this chapter are dimensionless, since they 
are volume fractions (fc and fs) and mass fractions (cj and Cj), which express the 
amount of volumetric units in volumetric units, for example m3 in m3 and mass 
units in mass units, for example kg in kg,

5.1 0-D solidification using piecewise-linear approx­

imations of thermodynamic functions

Solidification of Fe-0.3wt.%C-15wt%Cr alloy

Here is presented the solution of the initial value value problem (3,1), (3,9),
(3,10) and (3,11), which was performed for the Fe-0.3wt.%C-15wt%Cr alloy. The 
initial conditions in the (3,11) were as follows:

fc(0) = IO-5,
cC(O) = 0.003, (5.1)
cCr (0) = 0.15.

The three thermodynamic functions, Eqs, (3,15), (3,16), (3,17): liquidus 
temperature T = T(CC, CCr), solubilities of manganese CC(CC, CCr) and solubility 
of carbon CCr(CC, CCr) were represented using piecewise-linear approximation de­
scribed in Section 3,5,1 with parameters from the Table 4,1, The Scheil-curves 
calculated using the both Scheil-Gulliver and the zero-dimensional models for car­
bon are shown in the Fig, 5,1, for chromium in the Fig, 5,2, The corresponding 
solidification paths are shown in the Fig, 5,3,
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Figure 5.1: The cC — fs curve obtained from the zero-dimensional model using 
pieeewise-linear approximation described in Section 3.5.1 with parameters given 
in the Table 4.1 (solid red line) plotted together with the corresponding CC — fc 
curve calculated using the Thermo-Calc-Scheil module (dashed black line). In the 
figure (a) the whole graph is shown, the figure (b) shows its enlarged fragment. 
It shows that the difference between the curves is very small, about 1.5%.
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Figure 5,2: The cCr — fs curve obtained from the zero-dimensional model using 
pieeewise-linear approximation described in Section 3,5,1 with parameters given 
in the Table 4,1 (solid red line) plotted together with the corresponding cCr — fc 
curve calculated using the Thermo-Calc-Scheil module (dashed black line). In the 
figure (a) the whole graph is shown, the figure (b) shows its enlarged fragment. 
It shows that the difference between the curves is very small, about 2,5%,

73



1850

1
1800

1750

1700

1650

1600

1550

1500

Figure 5,3: The cc — cCr curve obtained from the zero-dimensional model using 
piecewise-linear approximation described in Section 3,5,1 with parameters given 
in the Table 4,1 (solid red line) plotted together with the corresponding CC — CCr 
curve calculated using the Thermo-Calc-Scheil module (dashed black line).

Solidification of Fe-0.18wt.%C-1.4wt%Mn alloy

Here is presented the solution of the initial value value problem, Eqs, (3,1), (3,9),
(3,10) and (3,11), which was performed for the Fe-0.18wt.%C-1.4wt%Mn alloy. 
The initial conditions (3,11) for this problem were as follows (note that these 
numbers are unitless, since fc is a volume fraction and both cc and cMn are mass 
fractions):

fc(0) = 10-5,
CMn(0) = 0.014, (5.2)
cc(0) = 0.0018.

The three thermodynamic functions, Eqs, (3,15), (3,16), (3,17): T = T(C^CC), 
CMn(CMn, CC) and CC(CMn, cc) were represented using piecewise-linear approxima­
tion described in Section 3,5,1 with parameters from the Table 4,2, The Scheil- 
curves calculated using the both Scheil-Gulliver and the zero-dimensional models
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for carbon are shown in the Fig, 5,4, for manganese in the Fig, 5,5, The corre­
sponding solidification paths are shown in the Fig, 5,6,

Figure 5,4: The cC — fs curve obtained from the using pieeewise-linear approxi­
mation described in Section 3,5,1 with parameters given in the Table 4,2 (solid 
red line) plotted together with the corresponding CC — fc curve calculated using 
the Thermo-Cale-Seheil module (dashed black line). In the figure (a) the whole 
graph is shown, the figure (b) shows its enlarged fragment, marked in the figure 
(a) with a black rectangle. It shows that the curves differ, although the difference 
is very small, about 0,3%,
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Figure 5.5: The cC — fs curve obtained from the using pieeewise-linear approxi­
mation described in Section 3.5.1 with parameters given in the Table 4.2 (solid 
red line) plotted together with the corresponding CC — fc curve calculated using 
the Thermo-Calc-Scheil module (dashed black line). In the figure (a) the whole 
graph is shown, the figure (b) shows its enlarged fragment, marked in the figure 
(a) by a black rectangle. It shows that the curves differ, although the difference 
is very small, about 0.1%.
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Figure 5.6: The cC — 'M" curve obtained from the zero-dimensional model using 
piecewise-linear approximation described in Section 3.5.1 with parameters given 
in the Table 4.2 (solid red line) plotted together with the corresponding CC — C'M" 
curve calculated using the Thermo-Calc-Scheil module (dashed black line). In 
the figure (a) the whole graph is shown. Note that the solidification path starts 
at the point corresponding to the initial melt composition. The figure (b) shows 
the enlarged fragment of the curves in the figure (a) that is marked by the black 
rectangle. It shows that there is a difference between these curves, although 
it is very small. The solidification path calculated using the zero-dimensional 
model does not reach the point of end solidification of Thermo-Calc-Scheil curves 
because it was calculated only until fc = 0.95.
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As these curve comparisons show, the curves calculated using Thermo-Calc- 
Scheil module for the Fe-0.18wt.%C-1.4wt%Mn alloy can be represented using 
pieeewise-linear approximations of thermodynamic functions with a good preci­
sion.

Unfortunately due to the absence of the licence for the Thermo-Calc software 
for the tabulation of the database containing the thermodynamic data for the Fe- 
C-Mn phase diagram, it was impossible to provide a liquidus surface in this figure. 
The licence only allowed the calculation of the thermodynamic functions and their 
derivatives, which allowed constructing the pieeewise-linear approximation,

5.2 0-D solidification using spline interpolation of

thermodynamic functions

Solidification of Fe-0.3wt.%C-15wt%Cr alloy

Here is presented the solution of the initial value value problem, Eqs, (3,1), (3,9),
(3,10) and (3,11), which was performed for the Fe-0.3wt.%C-15wt%Cr alloy. The 
initial conditions (3,11) for the problem were as follows:

fc(0) = IO-5,
cC(0) = 0.003, (5.3)
cCr (0) = 0.15.

The three thermodynamic functions, Eqs, (3,15), (3,16), (3,17): T = T(cC,cCr), 
cC(cC,cCr) and cCr(cC,cCr) were represented by interpolating splines, as it is de­
scribed in Section 4,3,3,

The Scheil-curves calculated using the both Scheil-Gulliver and the zero­
dimensional models for carbon are shown in the Fig, 5,7, for chromium in the 
Fig, 5,8, The corresponding solidification paths are shown in the Fig, 5,9,

Solidification of Cu-6wt.%Sn-0.5wt%P alloy

Here is presented the solution of the initial value value problem, Eqs, (3,1), (3,9),
(3,10) for the Cu-6wt.%Sn-0.5wt%P alloy (for the details on the Cu-P-Sn system 
see |Rogl07|), The initial conditions (3,11) for the problem were as follows:
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Figure 5,7: The cC — fs curve obtained from the zero-dimensional model using 
spline interpolated thermodynamic functions as described in Section 4,3,3 (solid 
red line) plotted together with the corresponding CC — fc curve calculated using 
the Thermo-Calc-Scheil module (dashed black line). In the figure (a) the whole 
graph is shown, the figure (b) shows its enlarged fragment, which shows the 
difference between the curves, which is in this region is about 1,6%,
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Figure 5,8: The cCr — fs curve obtained from the zero-dimensional model using 
spline interpolated thermodynamic functions as described in Section 4,3,3 (solid 
red line) plotted together with the corresponding CCr — fc curve calculated using 
the Thermo-Calc-Scheil module (dashed black line). In the figure (a) the whole 
graph is shown, the figure (b) shows its enlarged fragment. It shows that the 
difference between curves in this interval is at most 0,3%,
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Figure 5,9: The cCr — cC curve obtained from the zero-dimensional model using 
spline interpolated thermodynamic functions as described in Section 4,3,3 (solid 
red line) plotted together with the corresponding cCr — cC curve calculated using 
the Thermo-Calc-Scheil module (dashed black line).

0.275 0.276 0.277 0.278 0.279 0.28 0.281 0.282 0.283 0.284
mass fraction of chromium in liquid phase

Figure 5,10: enlarged parts of the curves depicted in the Fig, 5,9, The black 
dash-dot line shows the phase border between the 7 and M7C3, which is at the 
same time the eutectic groove in the phase diagram. The zigzag-like end of the 
solidification path is caused by the fact that the model is not designed to describe 
two-phase solidification (for details, see Section 3,3),
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fc(0) = 10-5,
cSn(0) = 0.06, 
cP(0) = 0.005.

(5-4)

The three thermodynamic functions, Eqs. (3.15), (3.16), (3.17): T = T(cfn,cf), 
c^, cp) and cp(cfn, cp) were represented by interpolating splines, as described 
in Section 4.3.3. The Scheil-curves calculated using the both Scheil-Gulliver and 
the zero-dimensional models for tin are shown in the Fig. 5.11, for phosphorus in 
the Fig. 5.12. The corresponding solidification paths are shown in the Fig. 5.13.

5.3 Intermediate conclusions

As it was said before, the zero-dimensional model developed in Section 3.1 is a 
simplification of the ternary two-phase Eulerian solidification model summarised 
in Section 3.2, in the sense that it neglects the spatial flow effects, but does not 
simplify the thermodynamics. The figures presented here plus the error analysis in 
4.3.4 prove that the thermodynamics of the Fe-C-Cr and Fe-C-Mn is represented 
by the piecewise-linear approximations acceptably for the alloys considered in the 
absence of flow. Combined with the ease of construction of such piecewise-linear 
approximations it presents an acceptable way of representing the ternary phase 
diagram data.

The results obtained using the spline approach in Section 5.2 show that the 
approximation of thermodynamic functions using spline interpolation of tabu­
lated data works well for diffusion-driven simulations of ternary solidification 
in the absence of flow in two-phase regions. For the X30Crl5 alloy, the differ­
ence between the curves calculated using Thermo-Calc-Scheil module and the 
curves calculated using the zero-dimensional model from the Section 3.1 with the 
approximation of thermodynamic functions using splines is comparable for the 
Scheil-curves for carbon (compare Fig. 5.7 for spline approach with ~ 1.5% er­
ror and Fig. 5.1 for piecewise-linear with ~ 1.6% error) and is much smaller for 
splines approach in case of chromium (splines in Fig. 5.8 with ~ 0.3% error and 
Fig. 5.2 piecewise-linear with ~ 2.5% error). The example using an alloy from the
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Figure 5,11: The — fs curve obtained from the zero-dimensional model using 
spline interpolated thermodynamic functions as described in Section 4,3,3 (solid 
red line) plotted together with the corresponding cp — fc curve calculated using 
the Thermo-Calc-Scheil module (dashed black line). In the figure (a) the whole 
graph is shown, the figure (b) shows its enlarged fragment. It shows that the 
difference between these curves is about 0,4%,
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Figure 5,12: The cp — fs curve obtained from the zero-dimensional model using 
spline interpolated thermodynamic functions as described in Section 4,3,3 (solid 
red line) plotted together with the corresponding cp — fc curve calculated using 
the Thermo-Calc-Scheil module (dashed black line). In the figure (a) the whole 
graph is shown, the figure (b) shows its enlarged fragment. It shows that the 
difference between the curves is about 0,5%,
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Figure 5,13: The cp — A" curve obtained from the zero-dimensional model using 
spline interpolated thermodynamic functions as described in Section 4,3,3 (solid 
red line) plotted together with the corresponding cp — A" curve calculated using 
the Thermo-Calc-Scheil module (dashed black line). At the end solidification, 
the situation in the region marked by a white rectangle is the similar to the end 
of solidification in the Fe-C-Cr alloy. See the Fig, 5,10 for explanations.

Cu-Sn-P system shows that the spline approach is capable of also representing 
phase diagrams more complicated (more peritectic reactions, more complicated 
solidification path trajectory) than Fe-C-Cr in the Fe-rich corner. This fact, com­
bined with the accuracy of the splines and their continuity which is important 
for solving equation systems numerically, where these functions appear, make 
the spline approach a precise tool for representing ternary thermodynamics for 
solidification simulations.
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Chapter 6

Simulation of solidification of ingot 
castings

In order to be able to predict the solidification process correctly, it is necessary 
to have realistic initial and boundary conditions for the problem. The ther­
mal boundary conditions ean be obtained by studying the measured temperature 
curves collected from thermocouples situated in the mould walls. To acquire the 
initial conditions for a solidification simulation, a simulation of the process of 
filling of the ingot with the melt is necessary. After performing such a simula­
tion, it is possible to use the resulting distributions of mass fractions of alloying 
elements, temperature, velocities profiles and so on as the initial conditions for 
the multiphase solidification simulation. Such a dissection of the process into 
two parts, the filling and the subsequent solidification is justified by the com­
plexity of the calculations necessary to simulate the filling stage. The following 
is true for the filling simulation: the flow is turbulent and it is necessary to solve 
a free-surfaee problem, using an interface tracking algorithm such as Volume-of- 
Fraetion (first deseribed in |Hirt81|, also see its application for solidification in 
|Voller87b, Voller87a, Voller91, Gu99| or level-set. Thus, a simulation of both 
stages of the process, filling and solidification within one framework is practically 
impossible. In the work presented, simplified simulations of form filling were per­
formed to determine initial and boundary conditions for subsequent solidification 
simulations.

We eonsidered two eases of filling: downhill and uphill. The first ingot in 
question was a benchmark ingot of X30Crl5 alloy, and the only technical pos-
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sibility to cast it was by using the downhill filling method. The second filling 
simulation is of an industrial size ingot of X38Crl6 alloy and the filling is done 
uphill.

Filling of both of these ingots were performed using the MAGMASOFT 
|MAG05| software package. Also solidification simulations were performed us­
ing this software package, in order to compare the simulated solidification times 
in experiment and in simulations.

After performing the filling simulations, the necessary time-dependent heat 
transfer coefficients between the mould and the melt/ingot were found as well 
as the initial temperatures which are used later in more sophisticated Eulerian 
multiphase solidification simulations using the models developed in this work 
(summarised in Section 3,2), The simulations include:

• two-phase ternary 32 kg benchmark ingot solidification simulation with an 
artificial heat transfer coefficient between the mould and the melt/ingot in 
order to study the effect of thermosolutal convection

• two-phase ternary 32 kg benchmark ingot solidification simulation with a 
realistic mould-melt/ingot heat transfer coefficient

• three-phase 2 ton industrial size ingot solidification simulation with the 
realistic heat transfer coefficient between the mould and the melt/ingot

6.1 Simulation of the downhill ingot filling

6.1.1 Geometry, mesh, initial and boundary conditions

The geometry and meshing of the ingot and mould were created using the CAD 
capabilities of the MAGMASOFT software package preprocessor. These geome­
try and mesh are depicted in the Fig, 6,1,
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Figure 6,1: Geometry and mesh of the benehmark ingot easting system

The choice of heat transfer coefficients between different parts of the geometry 
is summarised in Table 6,1,

Material pairs Heat transfer coefficient, W • m 2-K 1
alloy-mould temperature-dependent

alloy-bottom plate temperature-dependent
alloy-cover 104
ingate-air 7 • 103

ingate-cover 104
bottom plate-mould 104

mould-air 3.5 • 103
mould-cover 104

cover-air 7 • 103

Table 6,1: Heat transfer coefficients between different parts of the mould, the 
alloy ingot and the bottom plate

At the beginning of solidification, the heat transfer between the metal and the 
mould is good due to a good contact, then an gas gap forms between the mould 
and metal due to shrinkage. The presence of the gas gap hinders the heat transfer,
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making heat transfer coefficient between mould and metal dependent on the width 
of the gap (see, for example |Xishida86, El-Mahallawv88, Assar92, TrovantOO, 
Campbell03|), Since the gap width depends on the temperature, it is possible to 
represent the mould-metal heat transfer coefficient as temperature-dependent. 
The temperature-dependent heat trasfer coefficients between the alloy and the 
mould and the alloy and the bottom plate used in the simulation were as follows:

H (T) = <

500 W • m 2 • k-1,

(500 + 2.778 (T - 1375)) W • m-2 
3500 W • m-2 • K-1,

-1
T < 1375 °C,

1375 °C < T < 1483 °C, 

T > 1483 °C.
(6-1)

• K

These heat transfer coefficients are chosen this way in order to account for 
the formation of an air gap between the mould and the alloy, that usually occur 
at temperatures below liquidus. The heat transfer coefficients were obtained by 
running trial simulations using MAGMASOFT until the measured temperature 
curves were in a good agreement with the experimental ones. The comparison 
between the experimental and simulated curves is shown below in Fig, 6,12,

6.1.2 Material parameters

Material data for X30Crl5

The Table 6,2 shows the general material parameters used in the simulation of 
filling of 32 kg ingot of X30Crl5 alloy.

Parameter Value
Solidus temperature 1375 °C

Liquidus temperature 1483 °C
Initial temperature 1600 °C

Latent heat 269.793 kJ • kg-1

Table 6,2: General material parameters used in the MAGMASOFT simulation 
of filling of 32 kg ingot of X30Crl5 alloy
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Thermal conductivity (shown in Fig, 6,2), density (Fig, 6,3), viscosity (Fig, 
6,4), evolution of solid fraction (Fig, 6,5) and heat capacity (Fig, 6,6) were 
taken temperature-dependent from the material database of the MAGMASOFT 
software package for the closest material available there, namely the X20Crl3 
alloy.

Other parameters were taken from the MAGMASOFT materials database as 
well: thermal conductivity of the mould (Fig, 6,7), heat capacity of the mould 
(Fig, 6,8), thermal conductivity of the insulation material (Fig, 6,9) and heat 
capacity of the insulation material (Fig, 6,10), The MAGMASOFT materials 
database summarises a wide range of physical properties research of liquid and 
solid steels |Riehter83, Riehter91, Jer77, Sahm84, Iida93, Lan60, Sehneider95a, 
Davis94, forMetals93|,

Figure 6,2: Temperature-dependent thermal conductivity of X30Crl5
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Figure 6,3: Temperature-dependent density of X30Crl5

Figure 6,4: Temperature-dependent viscosity of X30Crl5, Note that here the 
value of 7.5160 • 10-5m2s-1 is 100 times higher than the actual liquid viscosity of 
the material, in order to model turbulence occurring during filling. It is necessary, 
since MAGMASOFT does not allow taking turbulence into account.

91



Figure 6,5: Temperature-dependent solid fraction of X30Crl5

Figure 6,6: Temperature-dependent heat capacity of X30Crl5
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Material data for the mould material GJL-350

Figure 6,7: Temperature-dependent thermal conductivity of the mould material 
GJL-350

Figure 6,8: Heat capacity of the mould material GJL-350
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Material data for the insulation material

Figure 6,9: Temperature-dependent thermal conductivity of the insulation mate­
rial

Figure 6,10: Temperature-dependent heat capacity of the insulation material
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6.1.3 Results and comparison with the experiment

Figure 6.11: Thermocouples placement in the 32 kg mould and ingot. Red crosses 
indicate the thermocouples placed in the mould wall closer to the inner mould 
surface (used for the comparison with the simulation in the Fig. 6.12), orange 
crosses indicate the thermocouples placed on the outer surface of the mould and 
the blue cross shows the position of the thermocouple placed in the melt region.

In the Fig. 6.12 the comparison of the temperature curves from the experi­
ment and from the solidification simulation using MAGMASOFT [MAG05]. As 
described in the publication [Tanzer08], several thermocouples were placed in the 
mould. In the comparison presented the data collected from four thermocouples 
is used, 3 of them are placed within 5 mm from the inner surface of the mould, 
at different heights of 60 mm, 180 mm and 300 mm. The fourth thermocouple 
were placed in the inner space of the mould, 55 mm from its axis and 60 mm 
from the bottom plate. The last thermocouple was protected with the tube of the
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Figure 6,12: Comparison of the temperatures reeorded using thermocouples 
placed in the walls of the mould (circles) with the corresponding curves obtained 
from the MAGMASOFT simulation (solid lines)

refractory material. At the same positions the temperature curves were recorded 
during the MAGMASOFT simulation. The position of the thermocouples in the 
mould is shown in the Fig, 6,11,

As can be seen in the Fig, 6,12, the experimental and simulated curves that 
correspond to the thermocouples placed within the ingot zone (identifier ’Melt’) 
and the one placed 60 mm from the bottom (identifier ’60’) differ significantly, 
whereas the other two curves with identifiers ’180’ and ’300’ agree quite well.

The difference between the temperature curve collected by the ’Melt’ thermo­
couple and the curve simulated using MAGMASOFT is approximately constant 
and is about 200 — 300 °C, whereas the thermocouple must have showed the tem­
perature of the melt, which was 1555 °C at the beginning of the casting. Contrary 
to that, the ’Melt’ thermocouple indicated the temperature below 1300 °C in the 
beginning of the process, which is erroneous. On the other hand, the tempera­
tures obtained numerically and experimentally for the point ’Melt’ do not become 
close with time, as they should if we assume the delay effect caused by the refrac­
tory insulation around this thermocouple. Because of these two facts the data
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collected from the ’Melt’ thermocouple should be considered to be unreliable and 
will be excluded from the further analysis.

Let us consider the simulated curves for the points marked as ’60’ and ’180’ 
(green and red lines in Fig, 6,12, respectively). These two curves as expected 
reach almost the same value with time (starting from about 350 s). This is 
feasible, since the mould wall temperature at different heights becomes equal with 
time. The same behaviour is expected from the experimental curves for these two 
points (green ’60’ and red T80’) in the mould wall. However, this is not the case. 
As can be seen in Fig, 6,12, the experimental values do not reach the same values 
as they should and have a constant discrepancy of about 200 — 300 °C starting 
from the time of about 300 s. On the other hand, it is expected that these two 
temperature curves differ in the beginning (because they are exposed to heat of 
the melt at different times) and then start to coincide as the temperature of the 
mould becomes more and more uniform. The observed behaviour based on the 
experimental data is however opposite: first the two thermocouples show similar 
temperatures (around 0 s, the very first experimental points), and then start to 
show a discrepancy which increases with time and then becomes constant. As it 
was mentioned before, the simulated and experimental curves for the point ’180’ 
agree, but the curves for the point ’60’ do not. Most probable reason for this 
is that the thermocouple ’60’ has lost contact with the mould wall. The results 
produced by this thermocouple should be excluded from the further analysis.

The remaining two experimental temperature curves (blue ’300’ and red ’180’) 
are in a good agreement with the simulated ones. On the other hand, these two 
simulated and experimental temperature curves result in the comparable time of 
about 550 s. Because of these two facts it can be concluded that the temperature- 
dependent heat transfer coefficient shown above correctly models the heat transfer 
between the casting and the mould and can be used in the further solidification 
simulations using the Eulerian solidification model.

For obtaining the initial temperature for the solidification simulation using the 
model developed (summarised in 3,2) the distribution of the temperature after 
filling obtained from the MAGMASOFT simulation was used. It is shown in the 
Fig, 6,13,

As it can be seen in the Fig, 6,13, the temperature after filling is constant 
in the most of the ingot. Taking into account that the temperature of the ingot
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Figure 6,13: Distribution of the temperature of the melt after filling in MAGMA­
SOFT simulation

is nevertheless slightly lower near walls and upper eorners, the temperature of 
1530 °C was used as initial temperature for multiphase solidification simulations 
later in Section 6,4,

The MAGMASOFT software package also performs solidification simulations. 
Such a simulation was performed for the 32 kg ingot and the solidification time 
was 557,1 s. The temperature distributions at at t = 543.9 s and at the end of 
MAGMASOFT solidification simulation, t = 557.1 s are shown in Fig, 6,14,

6.2 Simulation of the uphill ingot filling

Filling simulations of the uphill filling of the 2 ton ingot of Fe-0.38wt.%C-16wt%Cr 
used in simulations above was performed using the MAGMASOFT |MAG05| 
software package.
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Figure 6,14: Temperature distributions in the 32 kg benchmark ingot at t = 
543.9 s (a) and at the end of simulation, t = 557.1 s (b). The maximal tempera­
tures at these points in time are 1483 °C and 1384 °C respectively.

6.2.1 Material parameters

Material parameters for the alloy X38Crl6 does not differ from the parameters 
of X30Crl5 so the parameters of the latter were used. They are shown in Section 
6,1,2, The only difference for this simulation was that the casting temperature 
was 1590 °C, The parameters of mould material and insulation were also the 
same as in the case of the uphill casting MAGMASOFT simulation. They are 
given in Section 6,1,2 as well,

6.2.2 Geometry, mesh, initial and boundary conditions

The geometry and meshing were prepared using the MAGMASOFT preprocessor. 
They are shown in Fig, 6,15,

The heat transfer coefficients between the parts of the casting system is shown 
in Table 6,3,

Just like in the case of downhill simulations, the heat transfer coefficient be­
tween the mould and the melt/ingot in the case of uphill casting is temperature- 
dependent,:
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Figure 6,15: Geometry and mesh of the 2 ton ingot easting system

Material pairs Heat transfer coefficient, W • m 2-K 1
alloy-mould temperature-dependent

alloy-insulation 104
inlet-insulation 104

ingate-insulation 104
mould-insulation 104

Table 6,3: Heat transfer coefficients between different parts of the mould, the 
alloy ingot and the bottom plate for the uphill filling simulation of the 2 ton 
ingot of X38Crl6 alloy.
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(
1000 W • m-2 • K-1, T < 1375 °C,

(1000 + 35.0878 (T - 1375)) W • m-2 • K-1, 1375 °C < T < 1483 °C, 

5000 W • m-2 • K-1, T > 1483 °C.
(6.2)

Again, this heat transfer coefficient was obtained by running a number of trail 
simulations with different heat transfer coefficient (6.2) so that the temperature 
curves obtained from the thermocouples in the casting experiment agree with the 
corresponding simulated curves. The thermocouple placement is shown in the 
Fig. 6.16.

Figure 6.16: Thermocouples placement in the 2 ton mould. At each level (A-A, 
B-B, C-C, D-D and E-E) there were three thermocouples placed: one on the 
surface of the mould, one at the half width within the mould wall and one 10 
mm away from the inner wall of the mould. The temperatures recorded using the 
latter two thermocouples were used for the comparison with the MAGMASOFT 
simulations (see Figs. 6.17-6.20).
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6.2.3 Results and comparison with the experiment

The comparison between simulated and experimental temperature curves for 
euts1B-B, C-C, D-D and E-E are shown in the Fig, 6,17, Fig, 6,18, Fig, 6,19 and 
Fig, 6,20 respectively. In these figures, the first experimental temperature value 
is not equal to the initial temperature in the MAGMASOFT simulation. This 
is because for this comparison the experimental temperature values were used 
starting from the first value which was not equal to the initial temperature,These 
figures show that the experimental curves agree with the simulated ones for the 
cuts B-B, C-C and D-D and have quite a large discrepancy for the cut E-E, The 
reason for it is that the filling flow rate during the easting becomes smaller at a 
certain time near the end of filling, so that the hot melt reaches the upper part of 
the ingot (where the E-E cut is situated) later. The obvious time shift between 
the curves for the E-E cut in Fig, 6,20 is another argument supporting this point.

Figure 6,17: Comparison of the temperatures recorded using thermocouples 
placed in the walls of the mould (circles) with the corresponding curves obtained 
from the MAGMASOFT simulation (solid lines) for the cut B-B (see Fig, 6,16),

1The casting experiment was performed by the industry partner internally and the authors 
were provided by the experimental data. For an unknown reason the curves for the A-A cut 
were not among the data provided.
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Figure 6,18: Comparison of the temperatures reeorded using thermocouples 
placed in the walls of the mould (circles) with the corresponding curves obtained 
from the MAGMASOFT simulation (solid lines) for the cut C-C (see Fig, 6,16),

Figure 6,19: Comparison of the temperatures recorded using thermocouples 
placed in the walls of the mould (circles) with the corresponding curves obtained 
from the MAGMASOFT simulation (solid lines) for the cut D-D (see Fig, 6,16),
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Figure 6,20: Comparison of the temperatures reeorded using thermocouples 
placed in the walls of the mould (circles) with the corresponding curves obtained 
from the MAGMASOFT simulation (solid lines) for the cut E-E (see Fig, 6,16),
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Figure 6,21: Distribution of the temperature of the melt after filling in MAGMA­
SOFT simulation
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Figure 6.22: Temperature distributions in the 2 ton industrial ingot at t = 1938 s 
(a) and at the end of simulation, t = 3243 s (b). The maximal temperatures at 
these points in time are 1483 °C and 1384 °C respectively.

b

The MAGMASOFT software package does not allow variable filling flow rate 
and thus the possibility to fit the experimental curves with the simulated ones is 
limited. Thus, the agreement between the experimental and simulated tempera­
ture curves has to be considered satisfactory and the temperature-dependent heat 
transfer coefficient, Eq. (6.2), will be used for the ternary three-phase Eulerian 
solidification simulation using the model developed in this work (summarised in 
Section 3.2) and implemented in FLUENT flow solver.

The initial temperature for this simulation can be derived from the tempera­
ture at the end of filling shown in the Fig. 6.21. The figure shows that in most 
of the melt the temperature is 1540 °C. and taking into account the small area 
regions with lower temperatures, the initial temperature for the ternary three- 
phase Eulerian solidification simulation should be taken a little smaller, namely 
1530 °C.

Similarly to the case of 32 kg benchmark ingot, a solidification using MAGMA­
SOFT was performed for the 2 ton industrial ingot. The temperature distribu­
tions at at t = 1938 s and at the end of MAGMASOFT solidification simulation, 
t = 3243 s are shown in Fig. 6.22.

105



Property Value
Diffusion coefficient of carbon in the liquid phase DC 2 • IO-8 m2 • s 1

Diffusion coefficient of chromium in the liquid phase DCr 1.5 • 10-9 m2 • s-1
Latent heat L 269793 J • kg-1

Volumetric heat transfer coefficient H* 107 W • m-3 • K-1
Primary dendrite arm spacing A1 10-3 m
minimal columnar diameter dc,min 10-6 m

Table 6,4: General material properties of X30Crl5 for the two-phase Eulerian 
solidification simulation of 32 kg benchmark ingot,

6.3 Two-phase 32 kg benchmark ingot simulation 

with simplified mould-ingot heat transfer co­

efficient for studying the thermosolutal con­

vection effects

The first case to simulate using the ternary Eulerian multiphase solidification 
model developed in this work (see Section 3,2) was solidification of a small bench­
mark ingot X30Crl5 (0,3 wt.% C and 15,0 wt.% Cr) steel of approximately 32 
kg in weight. Two phases, liquid and columnar were taken into account. The 
governing equations of the two-phase Eulerian ternary solidification model are 
summarised in Section 3,2,

6.3.1 Materials data

Physical parameters of the phases for this simulation were chosen based on the 
data from the MAGMASOFT database which was used for filling simulations 
(described in Sections 6,1 and 6,2) and is given in Section 6,1,2, Tables 6,4-6,6 
show general properties as well as properties of the solid and the liquid phases. 
Diffusion coefficients for carbon and chromium in iron were estimated using the 
literature data from |Kurz98| for carbon and |Saito59, Kubicek75, Kubicek76| 
for chromium.
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Property name Value
Density pl 7001 kg • m-3

Heat capacity cp,l 804 J • kg-1 • K-1
Thermal conductivity kl 29 W • m-1 • K-1

Viscosity ^l 7.516 • 10-7 kg • m-1 • s-1

Table 6.5: Material parameters of the

Property name Value
Density pc 7001 kg • m-3

Heat capacity cp,c 804 J • kg-1 • K-1
Thermal conductivity kc 29 W • m-1 • K-1

Table 6.6: Material parameters of the columnar

6.3.2 Geometry, mesh, initial and boundary conditions

hadThe casting system for the casting of the 32 kg X30Crl5 benchmark in 
the geometry shown in Fig. 6.16.

After solidification the ingot itself was assumed to have the following geom­
etry (Note that in reality there are cavities in the ingot which are neglected in
simulations):

148

CO
CM

134

6.23: A sketch of the resulting 32 kg

In order to perform CFD computations in FLUENT, a two-dimensional fi­
nite volume mesh with 690 cells was produced. Such a small number here is
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taken because the geometry is small, and the second factor affecting the grid 
size is the computational effort of numerical solution of the partial differential 
equation system describing two-dimensional two-phase flow taking into account 
species transport for two species. Taking into account that in the present section 
in order to study the effect of thermosolutal segregation 5 different simulations 
had to be carried out, it was decided to use such a coarse grid. Nevertheless, 
this amount of cells should be enough to study the influence of thermosolutal 
expansion coefficients on ternary solidification. The computation time can be 
decreased by using parallel computing and by optimising spline interpolants (for 
the details see Section 8.3). Simulation is stopped when fc reaches the value of 
0.95 everywhere in the ingot. This limit for the fc is set in order to avoid simu­
lation of eutectic reaction which the thermodynamic model is not capable of (see 
further explanations in Sections 3.3 and 5.2 as well as Fig. 5.10).

top

bottom

6.24: The mesh for the 32 kg 
solidification

used for the simulation of the X30Crl5

In the following simulations two phases were considered: liquid, denoted 
lower index I and columnar, denoted by c.

Initial conditions for the equations described in the Section 2.1 were:

• initial volume fraction of columnar was fc = 10“5,
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• initial temperature of the both phases was Tl,0 = Tco = 1804 K (or 1530 °C 
as it was estimated in the MAGMASOFT Filing simulation in Section 6,1),

• initial velocity was ul;0 = us,0 = 0 m • s-1 everywhere,

• initial mass fractions of of the liquid species were cC0 = 3 • 10-3 and cC = 
0.15, and of columnar cC0 = 4.86 • 10-4 and cC0 = 0.147.

The boundary conditions for the equation system consisting of equations de­
scribed in Section 2,1 were set as follows (see also Fig, 6,24 with mesh and 
boundary names).

Conditions for the boundary ’’wall” and ’’bottom”

• velocity of both phases was set to zero (”no-slip” condition): ul = 0 m • s-1 
and uc = 0 m • s-1,

• for the energy equation the convective heat transfer boundary condition was 
used, so that the heat flux to the wall is computed as q = hext(Text — Tf), 
where the external transfer coefficient was set to hext= 700 W • m-1 • K-1 
and the external temperature was set to Text =300 K, as the parameters 
were estimated from experimental data in |TanzerO8| for this geometry and 
conditions,

• zero diffusive flux through the boundary was assumed for species both in 
liquid and columnar phase: 9c?,c'r/dn = 0, where n is the normal to the 
boundary.

Conditions for the boundary ’’top”

• velocity of both phases was set to zero (”no-slip” condition): ul = 0 m • s-1 
and uc = 0 m • s-1. The choice of the no-slip condition is justified, because 
the slag on top of the ingot prevents the melt from moving,

• for the energy equation the convective heat transfer boundary condition was 
used, so that the heat flux to the wall is computed as q = hext(Text — Tf), 
where the external transfer coefficient was set to hext= 100 W • m-1 • K-1 
and the external temperature was set to Text =300 K, as the parameters
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Case Convection type Parameter values
A no convection ßT = 0 K 1, ßc = ßCr = 0
B thermal convection only ßT = 2 • 10-4 K-1, ßc = ßcr = 0
C reduced thermal convection only ßT = 5 • 10-5 K-1, ßc = ßcr = 0
D solutal convection only ßT = 0 K-1, ßc = 1.1, ßcr = 0
E thermal and solutal convection ßT = 2 • 10-4 K-1, ßc = 1.1 ßcr = 0

Table 6,7: Different convection effects taken into account during simulations

were estimated from experimental data in |TanzerO8| for this geometry and 
conditions,

• zero diffusive flux through the boundary was assumed for species both in 
liquid and columnar phase: dcCT/dn = 0, where n is the normal to the 
boundary.

Conditions for the boundary ’’axis” Axis boundary condition is set on this 
boundary,

6.3.3 Simulation parameters

Values of thermal and solutal expansion coefficients

In order to validate and study the simulation possibilities the model suggested 
offers, five different simulations were carried out for this geometry. In order to 
study the effect of different types of convection on the resulting distribution of 
quantities of interest such as mixture mass fractions c'i||.x and cC^ix defined by Eq, 
(2,20) for K = 2 (i = l,c, m = C, Cr), different convection types were taken into 
account, with parameters shown in Table 6,7,

The value of 1,1 for the solutal expansion coefficient ßc in Eq, (2,8) was taken 
as in [SanyalOö], The value ßcr = 0 is taken because the densities of chromium 
and iron densities are close (pCr = 7150 kg • m-3 and pFe = 7870 kg • m-3) and 
atomic radii of these elements are also close (rCr = 124 • 10-12 m and rFe = 
125 • 10-12 m), so the diffusion of chromium in iron is considered to be negligible. 
The thermal expansion coefficient ßT = 2 • 10-4 K-1 used is the same as in the 
|SanyalOö| or |QiuO4| and does not differ much from the one used for example in

1.7 • 10-4 K-1) or in |FengO3| (1.0 • 10-4 K-1).
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Characterisation of the simulation cases

Case A no convection. Due to the absence of convection, there is no macroseg­
regation expected. The final distributions of mixture mass fractions c'i||.x and c|rx 
must be uniform and equal to the initial mass fractions of cC and cCr respectively.

Case B thermal convection only. Thermal convection causes relative motion 
of the phases during solidification, thus providing a mechanism for macrosegre­
gation formation. In this case, macrosegregation distributions are expected to be 
non-uniform, with negatively segregated melt (c|’ixr < cC ’ r) next to the walls 
and positively segregated melt (c|’iCr > cC ’ Cr) in the middle of the ingot. During 
solidification, the solute is rejected into the liquid due to inability of solid phases 
to incorporate as much of alloying element as liquid phase contains. Since solid­
ification in ingots starts near the walls, the melt there is enriched due to solute 
rejection and sinks by virtue of the thermal convection. This melt is replaced 
with a less enriched fresh melt. This way the total amount of alloying elements 
near the walls of the ingot becomes smaller. This process continues until the end 
of the solidification, when a highly enriched rest melt solidifies in the middle of 
the ingot (so-called hot-spot) causing positive macrosegregation (cm’ixr > cC’ r).

Case C reduced thermal convection only. In this case the same behaviour 
as in Case B is expected, but to a lesser extent. The macrosegregation patterns 
are expected to be similar, but not as pronounced as in the Case B.

Case D solutal convection only. When only solutal convection is included 
only a slight deviations from the uniform distribution (as in Case A) in the 
final macrosegregation pattern are expected. The reason for solutal convection is 
the dependence of the density of the melt on its composition. A change in the 
composition causes a relative motion of the melt. Changes in composition do not 
cause a strong change in mass of the melt, so the solutal convection is a much 
weaker effect than the thermal one.

Case E Thermal and solutal convection. Effect of solutal convection on 
the relative motion of the melt caused by the thermal convection is weak. The 
small size of the ingot does not allow the development of strong motion due to
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the solutal convection. Thus in this case maerosegregation patterns are expected 
to be similar to those of Case B.

Time step, iterations, and computation time

The simulation was performed with the following settings. The time step was 
At = 10-1 s, 4000 time steps were carried out with 100 iterations per time step. 
The number of iterations per time step was fixed to 100 which was enough to 
achieve acceptable values of residuals.

The simulation is stopped when fc reaches the value of 0.95 everywhere in the 
ingot. This limit for the fc is set in order to avoid simulation of eutectic reaction 
which the thermodynamic model is not capable of (see further explanations in 
Sections 3.3 and 5.2 as well as Fig. 5.10).

Thermodynamics representation

Here interpolating spline surfaces of the third order were used to calculate the 
values of the thermodynamic functions defined by Eqs. (3.15), (3.16) and (3.17). 
These interpolations were produced by SISL library |SIX06, SIX05| from the 
values of these functions tabulated from the thermodynamics software package 
Thermo-Calc |The06a, The06b| as described in Section 4.3.3.

6.3.4 Simulation results

The following figures show change of distributions of different quantities for the 
case E (see Table 6.7): temperature T = T = Tc, columnar volume fraction fc, 
velocity of the liquid phase w), mass fraction of carbon in the liquid phase cC, 
mass fraction of the chromium in the liquid phase czCr, mass fraction of carbon in 
the columnar phase cC, mass fraction of chromium cC1, mixture mass fraction of 
carbon c|ix and mixture mass fraction of chromium c|rx. Figure 6.25 shows the 
distribution of these quantities at t = 4 s and t = 10 s and Fig. 6.26 at t = 200 s 
and t = 400 s.

In the following the description of the results is given. There are four sections 
which describe each of the moments in time: t =4 s, 10 s, 200 s and 400 s. The 
following descriptions of each moment in time refer to the corresponding figures, 
where the distributions of process quantities are shown.
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Figure 6.25: Changes in the distribution of process quantities for case E at (a) t = 4 s and (b) t = 10 s.
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Figure 6.26: Changes in the distribution of different process quantities for case E at (a) t = 200 s and (b) t = 400 s. Note 
that the distributions of and c^'T are not the same as and c^rix, since fc = 0.05 at the end of the simulation and 
c^,Cr = cSx only when fc = 0.



Simulation results at t = 4 s

The boundary conditions make the melt near the wall of the ingot cool down and 
due to the thermal convection it flows downwards. This ean be seen from the 
temperature distribution and velocity vectors. At the same time first columnar 
volume fraction forms in the eooldest part of the ingot, in the bottom corner, 
which can be seen from the distribution of fc. Also the mass fractions of both 
of the alloying elements increase near the wall in both liquid and solid phases. 
This can be seen again in the same figure, where distributions of cC ,cCr,cC and 
cCr are shown. Note that the increase in the liquid mass fractions are very small 
and cannot be seen in this figure yet due to the colour scale chosen, which ranges 
from the minimum to maximum value of the liquid mass fractions throughout the 
whole simulation. The mixture mass fractions of the alloying elements cAx and 
cmrx reveal an increase in the bottom area of the ingot. This happens because the 
enriched melt which flows downwards from the area near the wall increases the 
maerosegregation in the bottom part of the ingot.

Simulation results at t = 10 s

The processes that are described for t = 4 s continue, which results in the fol­
lowing: temperature T decreases, the columnar volume fraction fc near the walls 
increases and the mass fraction of the alloying elements in both liquid and colum­
nar phases cC,cCr,cC and cCr increases as well. Also the velocity decreases to zero 
values very close to the walls, where there is no movement since this part of the 
ingot has started to solidify. The maerosegregation characterised by the cAx and 
cCmix distributions increased in the bottom corner. This happens due to the melt 
enrichment mechanism described in the previous section for t = 4 s and relatively 
fast solidification in the corner which is accompanied with relatively stronger 
solute rejection which enriches the liquid phase with the alloying elements there.

Simulation results at t = 200 s

At this moment in time, the temperature decreased further, and the solidified shell 
increased accordingly. There is still a small region of liquid left in the middle of the 
ingot as it can be seen from the distribution of the columnar volume fraction fc. 
The liquid velocity ui is non-zero only in this region. The volume with increased
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mass fractions of alloying elements in the liquid and columnar phases cC ,cCr,cC 
and cCr continue to grow. These fronts of increased mass fractions fronts coincide 
with the front of the columnar volume fraction fc. The macrosegregation in the 
corners increases due to the processes described in the previous section. The 
somewhat uneven distribution of liquid velocities ut and columnar mass fractions 
of alloying elements cC and cCr (and thus mixture mass fractions c^x and cCtx 
which depend on cC and cCr by means of (2,20)) are most probably caused by 
the relatively coarse grid.

Simulation results at t = 400 s

The results at the time t = 400 s show the final result, when the whole volume 
of the ingot has solidified. Figure 6,26 shows the final distribution of the process 
quantities in the ingot. The temperature T decreased further, the columnar 
fraction fc is uniform everywhere and is equal to 0,95, the liquid velocity ut 
distribution shows no movement, mass fractions of the alloying elements in the 
liquid and columnar phases cC ,cCr,cC and cCr and thus also their mixture mass 
fractions cC and cCr have reached their final distributions.

Macrosegregation of carbon and chromium in cases with different con­
vection parameters

The following Figs, 6,27 and 6,28 show the distribution of the alloying com­
ponents carbon and chromium respectively when different convection effects are 
taken into account. The differences in convection effects are described in Table 
6.7.

In case of no convection (all of the expansion coefficients are zero) no macroseg­
regation was predicted in the simulation, mixture mass fractions of carbon and 
chromium were distributed uniformly and equal to the initial liquid mass frac­
tions of these elements in every point of the ingot, and there is no need to show 
this distribution here.

Figures 6.27B and 6.28B show the final distribution of the mixture mass frac­
tions of carbon and chromium when only when the thermal convection is taken 
into account. One can see that taking into account the thermal convection re­
sults in the positive macrosegregations near the bottom corners and very slightly 
negative near the top corners of the ingot.
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The effect of the reduced thermal convection onto the final distribution of the 
mixture mass fractions of carbon and chromium was so low, that Figs, 6.27C 
and 6.28C almost cannot reveal it. The same is true for the final distribution of 
carbon and chromium for the simulation where only solutal convection is taken 
into account: the distribution of mixture concentrations of carbon and chromium 
are almost do not differ from the uniform as it ean be seen in Figs, 6.27D and 
6.28D.

The highest final maerosegregation is achieved in the simulation where both 
thermal and solutal convection effects are taken into account. The final distri­
butions of the mixture mass fractions of carbon and chromium for this ease are 
shown in Figs, 6.27E and 6.28E, One ean see rather strong positive maerosegre­
gation of both carbon and chromium near the bottom corners of the ingot and 
slightly negative maerosegregation near the top corners.
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Figure 6,28: The final distributions of c^ for the cases described in Table 6,7,

6.4 Two-phase 32 kg benchmark ingot simulation 

with realistic mould-ingot heat transfer coef­

ficient

6.4.1 Geometry, mesh, initial and boundary conditions

Since the solidification process discussed here was the same as the one simulated 
in Section 6,3, the only difference to the previous simulation is the use of the 
realistic heat transfer coefficient between the mould and the ingot, obtained in 
MAGMASOFT uphill simulation in Section 6,1, given by the formula (6,1) and 
a finer grid consisting of 2760 cells. The grid is shown in Fig, 6,29,
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low center

top corner

bottom corner

Figure 6,29: Mesh for the solidifieation simulation of 32 kg ingot of X30Crl5 
alloy. Also the points where data were eolleeted for later analysis are shown.

In the following simulations two phases were eonsidered: liquid, denoted by 
lower index l and columnar, denoted bv the lower index c.

The differential equation of the differential equations of the Eulerian two- 
phase solidifieation model are summarised in Section 3,2, Initial conditions were 
as follows:

• initial volume fraction of columnar was fc = 10-5,

• initial temperatures of the all three phases was Tlfi = Tc,0 = 1804 K (as it 
was estimated in the MAGMASOFT filling simulation, see Section 6,1),

• initial velocities were ui,0 = 0 m • s-1 everywhere,
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• initial mass fractions of of the alloying components in the liquid phase were 
cC0 = 3 • 10-3 and cC = 0.15, and in columnar phase cC0 = 4.86 • 10-4 and 
cC0 = 0.147.

The boundary conditions for the equation system consisting of equations sum­
marised in Section 3.2 were set as follows (see also Fig. 6.29 with mesh and 
boundary names).

Conditions for the boundary ’’wall” and ’’bottom”

• velocity of the liquid phase was set to zero (”no-slip” condition): ut = 
0 m • s-1.

• for temperature the convective heat transfer boundary condition was used, 
so that the heat flux to the wall is computed as q = hext(Text — Tf). The 
external transfer coefficient was based on the temperature-dependent heat 
transfer coefficient H(T) obtained from experimental data and MAGMA­
SOFT filling simulations (see Eq. (6.1) in Section 6.1). In order to take 
into account the heat transfer through the mould wall it was calculated 
according to the formula:

hext(T) =
1 l 1

H(T) + k + houter
-1

(6.3)

where l = 23• 10-3 m is the thickness of the mould wall, k = 55 W • m-1 • K-1 
its the heat conductivity of the mould (mean value of the heat conductiv­
ity of the GJL-350 mould material is taken according to Fig. 6.7) , and 
houter = 200 W • m-2 • K-1 is the heat exchange coefficient between the 
mould wall and the surrounding air. The external temperature was set to 
Text =300 K. This is a simplified description of the heat transfer through 
the mould wall as it does not take into account the heat capacity of the 
mould.

• zero diffusive flux through the boundary was assumed for species in liquid 
and columnar phases: 9c?,c'r/dn = 0, where n is the normal to the boundary.
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Conditions for the boundary ’’top”

• velocity of the liquid phase was set to zero (”no-slip” condition): u = 
0 m • s-1, This boundary condition was chosen because of the existence of 
the slag on top of the ingot which prevents the liquid from moving, i.e. it 
acts as a lid,

• for temperature the convective heat transfer boundary condition was used, 
so that the heat flux to the wall is computed as q = hext(Text — Tf), where 
the external transfer coefficient was set to hext= 100 W • m-1 • K-1 and 
the external temperature was set to Text =300 K, as the parameters were 
estimated from experimental data in |TanzerO8| for this geometry and 
conditions,

• zero diffusive flux through the boundary was assumed for species in liquid
and columnar phases: /dn = 0, where n is the normal to the boundary.

Conditions for the boundary ’’axis” Axis boundary condition is set on this 
boundary,

6.4.2 Material data

The materials description necessary for the three-phase Eulerian ternary solidifi­
cation simulation were the same as in the simulation with simplified ingot/mould 
heat transfer coefficient (see Section 6,3,1),

6.4.3 Simulation parameters

Thermosolutal convection parameters

The following additional parameters were used: the thermal expansion coefficient 
was taken as ßT = 2T0-4 K-1 and the solutal expansion coefiicients were ßC = 1.1 
for carbon, and ßCr = 0 for chromium. The choice of these parameters is explained 
above in Section 6,3,3,
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Thermodynamics representation

Thermodynamics representation used for this simulation was the same as in the 
previous simulation described in Section 6,3, Interpolating spline surfaces of the 
third order were used to calculate the values of the thermodynamic functions 
defined by Eqs, (3,15), (3,16) and (3,17), These interpolations were produced 
by the SISL library |SIX06, SIX05| from the values of these functions tabulated 
from the thermodynamics software package Thermo-Cale |The06a, The06b| as 
described in Section 4,3,3,

Time step, iterations, and computation time

The simulation was performed with the following settings. The time step was 
At = 10-1 s, there was 6150 time steps were carried out with 100 iterations per 
time step, without convergence check, that is the 100 iterations were done inde­
pendently of the value of residuals. The achieved residual values were acceptable.

The simulation is stopped when fc reaches the value of 0.95 everywhere in the 
ingot. This limit for the fc is set in order to avoid simulation of eutectic reaction 
which the thermodynamic model is not capable of (see further explanations in 
Sections 3,3 and 5,2 as well as Fig, 5,10),

6.4.4 Simulation results

The results of the simulation are shown in Figs, 6,30 and 6,31 which show the 
distributions of the most important process quantities at times t = 10 s, t = 100 s, 
t = 300 s and t = 615 s. These quantities include: temperature T; columnar 
volume fraction fc; velocity of the liquid phase mass fractions of the alloying 
elements in the liquid phase cC and cpr; mass fractions of the alloying elements 
in the columnar phase cC and cCr and mixture mass fra ctions c'i||.x and cl^.

In the following a description of results at each of the times t = 10 s, t = 100 s, 
t = 300 s and t = 615 s is given. The descriptions are based on Figs, 6,30 and 
6.31.
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Figure 6.30: Changes in the distribution of different process quantities at (a) t = 10 s and (b) t = 100 s.
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Simulation results at t = 10 s

At the early stage of the solidification at t = 10 s the temperature T distribution 
is somewhat uneven as it ean be seen from Fig, 6,30a, This is caused by a 
relatively strong flow near the mould caused by the thermal convection, which is 
caused by strong cooling of the liquid near the wall.

The changes in mass fractions of the alloying elements in the liquid phase cp 
and cpr can hardly can be seen at this stage. The mass fractions of these elements 
in the columnar phase cC mid cCr increase in the bottom corner of the ingot which 
can be seen only for the mass fraction of chromium cpr, since the change in cC is 
still very small.

No significant change happened in the mixture mass fractions c|ix and c|rx of 
the alloying elements yet.

Simulation results at t = 100 s

After 100 s, the ingot continues to cool down, the temperature T distribution 
gets more uniform since the flow is not as strong as at t = 10 s as the distribution 
of liquid velocity vectors Ul reveals.

The mass fractions of the alloying elements in both liquid and columnar phases 
cp, cpr, cC mid cCr increase near the top and the wall of the ingot.

The small changes in the mixture mass fractions c|ix and cl^appear: closer 
to the wall the maerosegregation is negative, then right after that there comes 
a slightly positively segregated layer. Further to the middle the mixture mass 
fractions remain equal to the initial liquid mass fractions.

Simulation results at t = 300 s

After 300 s, the temperature T continues to decrease. It decreases faster near the 
top and the wall of the ingot.

The columnar solidification front proceeds further to the centre of the ingot, 
thus increasing the solidified volume of the ingot and decreasing the volume where 
liquid is still left, where fc « 0,

The flow velocity Ul gets smaller in the liquid volume, and zero in the solid 
volume with fc > 0.7,
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The volume with increased mass fractions of carbon and chromium in the 
liquid and solid phases cp, cpr, cC and cCr grow, their fronts coincide with the 
columnar volume fraction fc front.

The distributions of mixture mass fractions c|ix and c|'ix do not change sig­
nificantly in comparison with t = 100 s.

Simulation results at t = 615 s

The temperature T is now even more decreased. The columnar volume fraction is 
uniform everywhere in the ingot and reached its final value of 0,95, The velocity 
in the liquid phase Ul is everywhere equals to zero. The distributions of mass 
fractions of alloying elements in both liquid and columnar phases cp, cpr, cC and 
cCr are more or less uniform, with only minor exceptions: the mass fractions of 
carbon and chromium in the liquid phase are slightly smaller near the wall and 
their mass fractions in the columnar phase are slightly higher near the wall and 
the lower central part of the ingot.

Curves cC,Cr — fc for different points of the ingot

Also the temporal evolution of the following quantities in three points of the ingot 
( Fig, 6,29 shows their locations) was recorded: mass fractions of the alloying 
elements cp and cpr as well as the columnar volume fraction fc, From these data 
it was possible to plot cp — fc and cpr — fc which are shown in Figs, 6,32 (point 
’low centre’), 6,33 (point ’top corner’) and 6,34 (point ’bottom corner’).

Low centre

The cp — fc and cpr — fc curves for this point lie above the corresponding curve 
obtained using the Thermo-Calc-Scheil module.

Top corner

In this point the behaviour of the curves cp — fc and cpr — fc is similar to those in 
the previous point, although in the region of high columnar mass fraction values 
fc these two curves practically coincide.
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Bottom corner

The curves cp — fc and cpr — fc in this point lie slightly below the corresponding 
Thermo-Cale-Seheil curves. The absolute distance between curves for this point 
is higher than for other two points,

6.4.5 Comparison with the experiment

In order to validate the model summarised in Section 3,2, an experimental casting 
was performed. The experimental procedure is described in |TanzerO8| and in 
Appendix 8,3,

The composition of the casted steel was cp = 3 • 10-3 and cpr = 0.1482, 
The accuracy of the determination of mass fraction of carbon and chromium 
were 10 1 (3.3% of cp) and 5 • 10 1 (0.34% of cpr) |TanzerO8|. The resulting 
distribution of alloying elements mass fractions are shown in Figs, 6,35a and 
6,36a respectively. Because of the small size of the ingot, in its upper part forms 
a significant shrinkage cavity. The experimental mass fractions obtained from 
the cavity region are not reliable and have to be discarded from the analysis 
|TanzerO8|, The discarded points are marked with crosses in Figs, 6,35a and 
6,36a,

6.5 Three-phase solidification simulation of a 2 

ton ingot of Fe-0.38wt.%C-16wt.%Cr alloy

6.5.1 Geometry, mesh, initial and boundary conditions

The ingot for the casting of the 2 ton X38Crl6 ingot had the following geometry, 
shown in the Fig, 6,37,
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Figure 6,32: Curves cC — fc(&) and cCr — fc (b) for the point ’low centre’ shown
in Fig, 6,29, The red lines represent the curves obtained from the simulation
and the black dashed lines represent the corresponding curves obtained using
Thermo-Calc-Scheil module.
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Figure 6,33: Curves cC — f (a) and cCr — fc (b) for the point ’top corner’ shown
in Fig, 6,29, The red lines represent the curves obtained from the simulation
and the black dashed lines represent the corresponding curves obtained using
Thermo-Calc-Scheil module.
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Figure 6.34: Curves cC — fc (a) and cCr — fc (b) for the point ’bottom corner’ shown
in Fig. 6.29. The red lines represent the curves obtained from the simulation and
the black dashed lines represent the corresponding curves obtained using Thermo-
Calc-Scheil module.
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Figure 6.35: Comparison between the mass fraction of carbon in the experiment 
(a) and the simulation (b). The discarded experimental points are marked with 
crosses.
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b

Figure 6.36: Comparison between the mass fraction of chromium in the experi­
ment (a) and the simulation (b). The discarded experimental points are marked 
with crosses.
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6.37: The sketch of the mould with an insulation chain

In order to perform CFD computations in FLUENT, a two-dimensional finite 
volume grid with 4040 cells was created using the GAMBIT preprocessor. Such 
a small number of cells is taken because the computational effort of numerical 
solution of the partial differential equation system describing two-dimensional 
three-phase flow taking into account species transport for three species. The 
computational grid is shown in the Fig. 6.38. Simulation is stopped when fs = 
fc + fe reaches the value of 0.95 everywhere in the ingot. This limit for the fs 
is set in order to avoid simulation of eutectic reaction which the thermodynamic 
model is not capable of (see further explanations in Sections 3.3 and 5.2 as well
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as Fig, 5,10),

Figure 6,38: Mesh for the 2 t ingot for the X38Crl6 steel solidification simulation.

In the following simulations three phases were considered: liquid, denoted by 
lower index /, columnar, denoted by the lower index c and equiaxed, denoted by 
the lower index e.

Initial conditions for the summarised in Section 3,2 differential equations de­
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scribing Eulerian three-phase ternary solidification model were:

• initial volume fraction of columnar was fc = fe = 10-5,

• Initial temperatures of the all three phases was Tlfi = Tc,0 = Te,0 = 1804 K 
(as it was estimated in the MAGMASOFT filling simulation, see Section 
6.2),

• Initial velocities were ui,0 = ue,0 = 0 m • s-1 everywhere,

• initial mass fractions of of the alloying components in the liquid phase were
cC0 = 3.8 • 10-3 and cC = 0.16, and in both columnar and equiaxed phases 
cCo = cC0 = 4.86 • 10-4 cC0 = cC0 = 0.147.

The boundary conditions for the equation system consisting of equations sum­
marised in Section 3.2 were set as follows (see also Fig. 6.38 with mesh and 
boundary names).

Conditions for the boundary ’’wall 1” and ’’bottom”

velocity of both liquid and equiaxed phases was set to zero ("no-slip" con­
dition): ul = ue = 0 m • s-1.

• for temperature the convective heat transfer boundary condition was used, 
so that the heat flux to the wall is computed as q = hext(Text — Tf). The 
external transfer coefficient was based on the temperature-dependent heat 
transfer coefficient H(T) obtained from experimental data and MAGMA­
SOFT filling simulations (see Eq. (6.2) in Section 6.2). In order to take 
into account the heat transfer through the mould wall it was calculated 
according to the formula:

hext(T) =
1 i 1 y1 

H(t) + k+huej ' (M

where l = 117 mm is the thickness of the mould wall, k = 55 W • m-1 • K-1 
its heat conductivity (mean value of the heat conductivity of the GJL-350 
mould material is taken according to Fig. 6.7) , and houter = 200 W • m-2 • K-1 
is the heat exchange coefficient between the mould wall and the surrounding
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air. The external temperature was set to Text =300 K, This is a simplified 
description of the heat transfer through the mould wall as it does not take 
into account the heat capacity of the mould,

• zero diffusive flux through the boundary was assumed for species in liquid, 
columnar and equiaxed phases: dc<i<Ce/dH = 0, where n is the normal to the 
boundary.

Conditions for the boundary ’’wall 2”

• velocity of both phases which are able to move was set to zero ("no-slip" 
condition): Ui = ue = 0 m • s-1,

• for temperature the convective heat transfer boundary condition was used, 
so that the heat flux to the wall is computed as q = hext(Text — Tf), Similarly 
with the case of the "wall 1” boundary, the following formula was used to 
calculate the hext

linsul
kinsul outer

11 l 
H (T) + k +

-1
hext(T) = (6.5)+ h

where H(T) is the temperature-dependent heat transfer coefficient between 
the mould and the ingot estimated by means of MAGMASOFT filling sim­
ulations in Section 6,2 given by the formula (6,2); l = 117 mm is the 
thickness of the mould wall, k = 55 W • m-1 • K-1 is the heat conductiv­
ity of the mould wall, linsul = 22 mm is the thickness of the insulation, 
kinsul = 0.11 W • m-1 • K-1 is the heat conductivity of the insulation, and 
finally houter = 200 W • m-2 • K-1 was the heat transfer coefficient between 
the mould wall and surrounding air. The external temperature was set to
Text =

• zero diffusive flux through the boundary was assumed for species in liquid, 
columnar and equiaxed phases: dc'-'''.'' d, = 0, where n is the normal to the 
boundary.

Conditions for the boundary ’’top”
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• velocity of both phases which are able to move was set to zero ("no-slip" 
condition): ut = 0 m • s-1 and ue = 0 m • s-1, The choice of the no-slip 
condition is justified, because the solidified steel at the top of the mould 
acts as a lid,

• for temperature the convective heat transfer boundary condition was used, 
so that the heat flux to the wall is computed as q = hext(Text — Tf), where 
the external transfer coefficient was set to hext= 100 W • m-1 • K-1 and 
the external temperature was set to Text =300 K, as the parameters were 
estimated from experimental data in |TanzerO8| for this geometry and 
conditions,

• zero diffusive flux through the boundary was assumed for species in liquid, 
columnar and equiaxed phases: dc<i,Ce/dn = 0, where n is the normal to the 
boundary.

Conditions for the boundary ’’bottom”

• velocity of both liquid and equiaxed phases was set to zero ("no-slip" con­
dition): u = Ue = 0 m • s-1,

• for temperature the convective heat transfer boundary condition was used, 
so that the heat flux to the wall is computed as q = hext(Text — Tf), For 
this boundary hext was taken as 100 W • m-2 • K-1 as it was estimated 
in |TanzerO8| for similar conditions. The external temperature was set to
Text =

• zero diffusive flux through the boundary was assumed for species in liquid, 
columnar and equiaxed phases: 9cC’cCe/dn = 0, where n is the normal to the 
boundary.

Conditions for the boundary ’’axis” Axis boundary condition is set on this 
boundary,

6.5.2 Material data

The materials description necessary for the three-phase Eulerian ternary solidifi­
cation simulation were the same as in the case of 32 kg ingot (see Section 6,3,1),
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Property name Value
Density pe 7001 kg • m-3

Heat capacity cp,e 804 J • kg-1 • K-1
Thermal conductivity ke 29 W • m-1 • K-1

Viscosity p, defined by Eq, (2,10)

Table 6,8: Material parameters of the equiaxed phase

Property name Value
mean of the nucleation law ATN 2 K

standard deviation of the nucleation law ATN 5 K
maximum equiaxed grain density nmax 5 • 109

Table 6,9: Nucleation parameters

plus additional data for the equiaxed phase, which is given in Table 6,8,

6.5.3 Simulation parameters

Nucleation parameters

Nucleation parameters enter the equiaxed grain density transport equation (2,21), 
They are given in Table 6,9, Note that these parameters are not known exactly 
and has to be determined by means of experiment and parameter study,

Thermosolutal convection parameters

The following additional parameters were used: the thermal expansion coefficient 
was taken as ßT = 2T0-4 K-1 and the solutal expansion coefficients were ßC = 1.1 
for carbon, and ßCr = 0 for chromium (same as Case E ’’thermal and solutal 
convection”, described in Table 6,7), The choice of these parameters is explained 
above in Section 6,3,3,

Thermodynamics representation

Here the pieeewise-linear interpolation for the X30Crl5 alloy was used, as de­
scribed in Section 3,5,1 and with parameters estimated in Section 4,3,1 which are 
listed in Table 4,1,
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Time step, iterations, and computation time

The simulation was performed with the following settings. The time step was 
At = 10-1 s, there were 40000 lime steps carried out with 100 iterations per time 
step, without convergence cheek, that is, the 100 iterations were carried out,

6.5.4 Simulation results

The following figures show change of distributions of different quantities: temper­
ature T , volume fractions of the liquid fl, column ar fc , and equiaxed fe phases; 
velocity of the liquid u and equiaxed Ue phases; mass fractions of carbon and 
chromium in the liquid phase cC and cCr; mass fractions of carbon and chromium 
in the columnar phase cC and cCr; mass fractions of carbon and chromium in the 
equiaxed phase cC and cCr and finally mixture mass fraction of carbon c(i|Nx and 
chromium cmix.

Distributions of the quantities listed above are shown in Figs, 6,39-6,44 for 
t = 10 s, t = 100 s, t = 200 s, t = 1000 s, t = 2000 s and t = 3925 s respectively. 
The time of 3925 s is considered to be the end solidification, since the majority of 
the ingot has solidified. The description of the solidification of the upper part is 
not precise due to the fact that in reality a shrinkage cavity forms. This cannot 
be described by the model, so the top part of the ingot is excluded from the 
analysis at the end of solidification.

In the following we describe the results shown in Figs, 6,39-6,44,

Simulation results at t = 10 s

At this point in time the temperature T is still uniform almost everywhere, apart 
from the small region near the bottom, where a strong flow takes place, as can 
be seen from the distribution of the liquid phase velocity Ui. The solidification 
has just started, which can be seen from the distribution of the liquid volume 
fraction fl, which is lower in a small area adjacent to the bottom of the ingot. 
The distribution of the equiaxed phase velocity Ue is the same as that of Ul; since 
the liquid is dragged by sinking equiaxed crystals, A change in the liquid mass 
fraction of carbon and chromium (cC and clCr) cannot vet be seen. The mass 
fractions of carbon and chromium in the columnar phase (cC and cC) start to 
increase in the area adjacent to the bottom of the ingot. The change in the mass
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fraction of chromium in the equiaxed phase cC cannot vet be seen, whereas the 
mass fraction of chromium in the equiaxed phase is increased near the bottom of 
the ingot and it is possible to see how it is transported by the strong flow. There 
are almost no changes in the mixture mass fractions of alloying elements cAx and 
cSx yet.

Simulation results at t = 100 s

The temperature T decreases in the bottom part of the ingot, and remains rela­
tively high in the middle and the upper part. The reason for this is the formation 
of a gap between the mould and solidified melt, which is modelled by means 
of the temperature-dependent heat coefficient given by Eq, (6,2), At the same 
time more columnar and equiaxed phase is formed in this part of the ingot, and 
the columnar fc and equiaxed fe mass fractions are increased there, whereas the 
amount of the liquid mass fraction f is decreased. The flow becomes weaker 
overall, especially near the bottom of the ingot, where solidification is occurring. 
There is still downward movement of the melt along the wall of the ingot caused 
by the thermal convection (the cold melt sinks), A thin layer of the columnar 
phase fc forms at the wall near the bottom, which acts as a step for the downward 
stream and causes the change in the flow direction and causes the mass transport 
towards the upper part of the ingot. The height of the ingot is significantly bigger 
than its width, which prohibits the formation of a stable thermal convection roll. 
The roll breaks up into a complex system of smaller recirculation zones. This 
interplay between the complicated liquid and equiaxed phase movements as well 
as mass conservation cause a downward movement in the centre of the ingot. The 
distribution of the liquid phase velocity u and of the equiaxed phase velocity ue 
are practically the same. Now the increase in the liquid mass fractions cC and 
cCr can be seen near the bottom of the ingot. Mass fractions of alloying elements 
in columnar phase cC and cCr also continue to increase there. The mass fraction 
of carbon in the equiaxed phase cC increases next to the bottom of the ingot and 
the mass fraction of chromium in the equiaxed phase cC increases there and in 
the lower half of the ingot. The mixture mass fractions c^ and cC^ increase 
very slightly in the middle part of the ingot and near the outer ingot wall in its 
lower part.
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Simulation results at t = 200 s

The equiaxed phase continues to sediment, and near the bottom, where the tem­
perature is low enough, it starts to grow. The details of this process are given 
below in Section 7,4, The velocities U/ and ue retain the same pattern, although 
their magnitudes decrease. The liquid mass fractions of the alloying elements cC 
and cCrincrease near the bottom, because there the equiaxed phase grows. The 
mixture mass fractions of the alloying elements cAx and c^ are increased near 
the bottom of the ingot because of the sedimented equiaxed grains.

Simulation results at t = 1000 s

The temperature T continues to fall, especially near the bottom and the wall. 
The equiaxed phase fe continues to form, filling almost half of the ingot. The 
columnar phase fc has grown near the wall and the bottom of the ingot and 
apparently does not grow further. The liquid and equiaxed velocities ui and ue 
are almost zero in the solidified part of the ingot (lower half with low fc values), 
and in the other part of the ingot they are quite low. The mass fractions of the 
alloying elements in the liquid phase cC and cCr continue to increase and their 
fronts of increased mass fractions coincide with those of the columnar volume 
fraction fe. The mass fractions in the colum nar phase, cC and cCr are increased 
only in the area that is adjacent to the bottom and the wall of the ingot, which 
coincides with the area that has increased columnar mass fraction fc. The same 
is true for the distribution of the mass fraction of carbon in the equiaxed phase 
cC, For the mass fraction of chromium in the equiaxed phase cCr it is also true, 
and additionally it is increased in the middle of the ingot. The mixture mass 
fractions 'jmx and cC^ are higher in the upper, liquid part of the ingot and near 
its wall.

Simulation results at t = 2000 s

As the temperature of the ingot continues to decrease, the processes mentioned 
for the simulation results at t = 1000 s continue. The amount of fe increases 
further. Almost all of the volume of the ingot is filled with the equiaxed grains. 
The columnar phase fc more or less stops forming. Its mass fraction only increases 
in the layer near the wall that it formed before. The melt is liquid only in the
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upper part of the ingot. Due to solidification of the sedimented equiaxed grains 
and solute rejection caused by it, the remaining melt is enriched with the alloying 
elements. This can be seen in the distributions of the mixture mass fractions of 
the alloying elements c%x and cC^.

Simulation results t = 3925 s

At this point the temperature T has sunk further, near the bottom it is ap­
proaching room temperature. The liquid fraction fl is almost zero everywhere, 
the columnar volume fraction fc is high near the wall, and the equiaxed phase fe 
occupies the middle part of the ingot. This is the final distribution of the phases 
in the ingot. The velocities of the liquid and equiaxed phases Ul and ue are zero 
everywhere. The mass fractions of the alloying elements in the columnar phase 
cC and cCr are high only in the areas where the columnar phase is present, that 
is, where the columnar mass fraction fc is high. The equiaxed mass fractions of 
the alloying elements cC and cCr are higher near the wall and the bottom on the 
ingot, and lower in its bottom central part. There is also an increase of these 
mass fractions towards the top of the ingot. The final distribution of the mixture 
mass fractions c%x and cC^shows that they are negative (lower than the initial 
liquid mass fractions cC0 and cC0 ) in the central low part of the ingot and posi­
tive (higher than the initial liquid mass fractions cC0 and cC0 ) near the bottom, 
the wall and the top of the ingot. The maerosegregation of carbon is very high: 
±60% of the initial cC0 = 0.003 and the final maerosegregation of chromium is 
smaller: ±17% of the initial cC0 = 0.15,
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Chapter 7

Discussion of the results

7.1 Spline interpolants versus piecewise-linear ap­

proximations

The results of validation of thermodynamic representation of phase diagram in­
formation using spline interpolation and piecewise-linear approximations are pre­
sented in the Section 5,

The comparisons between Thermo-Calc-Scheil curves cC — fs and cCr — fs 
(used as reference) and the curves calculated using the two aforementioned ther­
modynamics representations are shown for alloys from ternary systems Fe-C-Cr, 
Fe-C-Mn and Cu-Sn-P. The figures that show the results of the validations are 
summarised in Table 7,1,

From the figures listed in Table 7,1 we can see that both spline interpolants 
and piecewise-linear approximations of the ternary solidification thermodynam­
ics data produce results that are very close to those obtained by the reference

Alloy initial composition Representation Figures
Fe-0,3wt, % C-15 wt, % Cr linear 5.1, 5.2 and 5.3

Fe-0,18 wt, % C-1,4wt, % Mn linear 5.4, 5.5 and 5.6
Fe-0,3wt, % C-15 wt, % Cr splines 5.7, 5.8, 5.9 and 5.10
Cu-6wt.%Sn-0.5wt.%P splines 5.11, 5.12 and 5.13

Table 7,1: Figures of the results of validation of different thermodynamics repre­
sentation methods
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computations with the Thermo-Calc-Scheil module.
These figures also show that for certain ternary phase diagrams/initial al­

loy compositions, the Scheil-curves and solidification paths obtained using the 
pieeewise-linear approximations of the thermodynamic functions do not differ 
much from those obtained when using spline interpolants.

Note that the results presented in Section 5, which contains the validation of 
thermodynamics data representation are obtained assuming absence of convec­
tion, Taking thermosolutal convection and flow into account makes the process 
of resolving thermodynamics (calculation of solidification paths) challenging. In 
the presence of flow, transport of solute components influences the mass fraction 
fields and so the solidification paths can have a complex shape.

When using pieeewise-linear approximations of ternary phase diagram data, 
the border between the phases has to be defined, as it is done for example for the 
Fe-C-Cr phase diagram by Eq, (4,6), This unfortunately makes the solubility 
functions of the alloying elements carbon cC(cC, cCr), chromium cCr(cC, cCr) and 
the liquid temperature Ti(cC,cCr) discontinuous, which can be seen in Figs, 4,6, 
4,7 and 4,5,

From the thermodynamics point of view the discontinuity of the solubilities 
cC(cC,ciCr) and cCr(cC, cCr) is not a problem, since these functions are discon­
tinuous in reality. On the contrary, the real liquidus temperature Ti(cC,cCr) is 
continuous.

In spite of this discontinuity in Ti(cC, cCr), for certain ternary phase dia- 
grams/initial alloy compositions it was possible to use pieeewise-linear approxima­
tions (alloys Fe-0.3wt.%C-15wt.%Cr and Fe-0.18wt.%C-1.4wt.%Mn considered in 
this work, see Section 5),

However, for more complicated phase diagrams such as Cu-Sn-P, creating 
a secure solving procedure to handle the discontinuities at the phase borders 
is quite complicated due to their complexity in the main element-rich corner. 
Thus, for this phase diagram pieeewise-linear approximations cannot be used. 
Instead, spline interpolants have to be used. Because of the way in which these 
are constructed (see Sections 3,5,2, 4,3,3) they are continuous everywhere in the 
region of interest and do not suffer from the discontinuity problem of pieeewise- 
linear interpolations.

Along with the very useful feature of continuity, spline interpolants also pos­
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sess the other useful feature of universality: onee constructed, they can be used to 
simulate solidification of alloys with initial compositions from all of the element- 
rich corner they were constructed for, Piecewise-linear approximations, in con­
trast, are not universal: they can be used only for the alloys/initial compositions 
that they were constructed for (as described in Sections 3,5,1, 4,3,1 and 4,3,2), 
or in their vicinity. In order to allow simulation of an alloy with a different 
initial composition, a piecewise-linear interpolation has to be constructed again 
by choosing different linearisation points and calculating different linearisation 
coefficients.

The drawbacks of using spline interpolation include: 1) a relatively long time 
of tabulation of thermodynamic data using Thermo-Calc API |The06b|, De­
pending on the resolution of the tabulation, it takes between several hours to 
several days (for example, tabulation of size 100x100 takes 18 hours, 200x200 
points takes 1,5 days) and 2) relatively slow operation due to more complicated 
computations behind it in comparison with those behind the piecewise-linear ap­
proximations, The former issue is not prohibitive since it has to be done only 
once per alloying system, whereas the latter issue can be addressed by reducing 
the number of points used for interpolation (in these areas where it is sufficient 
to use less points without sacrificing the accuracy, for instance these areas where 
thermodynamical functions are close to linear, or of small curvature),

7.2 Simulation of mould filling and determination 

of boundary and initial conditions for solidifi­

cation simulations

The results of mould filling simulations and their comparison with casting exper­
iments is given in Sections 6,1 and 6,2, They show that both the downhill as 
well as uphill mould filling can be performed using the MAGMASOFT software 
package quite successfully.

The comparisons of the experimental and simulated temperature curves recorded 
by means of thermocouples placed in the mould wall are shown in Figs, 6,12 for 
downhill filling of 32 kg benchmark casting and 6,17, 6,18, 6,19 and 6,20 for uphill 
filling of the 2 ton industrial ingot.
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These simulated curves show good agreement with the experimental ones, 
although there are discrepancies in Figs, 6,12 (downhill casting), and 6,20 (curves 
for E-E cut of the 2 ton ingot). The position of the thermocouples in the 2 ton 
ingot are shown in Fig, 6,16, The discrepancies in the curves for the 32 kg 
benchmark ingot filling are caused by the apparent problems with two of the 
thermocouples, namely the one labelled as "Melt" and the other labelled as "60", 
see Fig, 6,12, The reasons for this is questionable behaviour of the experimental 
curves for these points. For detailed explanations of this questionable behaviour 
see Section 6,1,3,

The experimental and the simulated temperature curves agree well. This 
means that the temperature-dependent heat transfer coefficients, Eq, 6,1 and 
Eq, 6,2 and the final temperature distributions after filling can be used for the 
solidification simulations. These heat transfer coefficients and initial tempera­
ture distributions were used in simulations described in Sections 6,4 (two-phase 
solidification of Fe-0.3wt.%C-15wt.%Cr alloy) and 6,5 (three-phase solidification 
of Fe-0.38wt.%C-16wt.%Cr alloy).

Another possibility to simulate the mould filling would be to employ a more 
sophisticated model including a front tracking algorithm like the VOF method 
(first described in |Hirt81|, See also its application for solidification in |Voller87b, 
Voller87a, Voller91, Gu99|) for solving free surface flow combined with the pre­
sented Eulerian multiphase model for solidification. Preliminary work is already 
being carried out in this direction |Fjeld08b, Fjeld08a|, However, because of the 
complexity of models of this kind and the lack of the ready made simulation tool, 
the development and application of this method is considered to be beyond the 
scope of this work,

7.3 Development of maerosegregation in ingot cast­

ings

The most important question that the simulations were designed to answer con­
cerns the distributions of the alloying elements (carbon and chromium) in the 
ingot volume. These distributions are the most decisive factor affecting the qual­
ity of the final products that will be produced from this steel.

In this section the formation of macrosegregations in the relevant ingots, that
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is, the 32 kg benchmark ingot and the 2 ton industrial ingot as predicted by the 
simulations performed within the scope of this work (deseribed in Sections 6,4 
and 6,5) is discussed.

32 kg benchmark ingot of X30Crl5 alloy

Analysis of the experimentally obtained mass fraction distributions of 
the alloying elements carbon and chromium and a comparison of the 
simulation with the experimental data

The final simulated maerosegregation pattern for this ingot is displayed in Fig, 
6,31b, which shows the final distributions of the mixture mass fractions of carbon 
cmix and chromium c^^. For the purposes of discussion, we show these distri­
butions once again enlarged in Fig, 7,1, The colour bar shows the minimum 
of the mixture mass fractions in blue, the maximum in red and thus the green 
colour shows the absence of maerosegregation. The amount of maerosegregation 
in maerosegregation patterns like these is characterised by the the areas with 
positive (red) and negative (blue) macrosegregations.

As can be seen from Fig, 7,1, most of the volume of the ingot is green 
(apart from insignificantly small areas in the bottom corner), both for the mixture 
mass fractions of carbon c%x and chromium cC^. This means that there are no 
significant maerosegregation predicted in the ingot and thus the distribution of 
alloying elements is predicted to be more or less uniform. If we neglect the 
insignificantly small areas near the bottom corner of the ingot where mixture 
mass fractions c%x and c^ differ from the neutral values, we can see that the 
maximum values of c%x and cC^ ;tiv equal to 3.2 • 10-3 (increase by 6,7% with 
respect to the initial mass fraction) and 1.504 • 10-1 (increase by 0,3%), and the 
minimum values are equal to 2.82• 10-3 (decrease by 6%) and 1.496-10-1 (decrease 
by 0.3%).

Minimum and maximum experimental values of mass fractions of carbon and 
chromium can be seen in Figs, 6,35 and 6,36 where the results of the chemical 
analysis of the 32 kg benchmark ingot casting experiment are shown. Because 
of the small size of the ingot (30 cm in height), several upper centimetres of the 
casted ingot is shrinkage cavity, and the distribution of the alloying elements 
there cannot be reliably predicted by the model used, hence the first upper row
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Figure 7.1: Mixture mass fraction distributions (maerosegregation patterns) of 
carbon and chromium c^x in 32 kg benchmark ingot of X30Crl5, obtained 
from the two-phase solidification simulation described in Section 6.4. The colour 
bars show relative change in percent of initial mass fractions Cq = 3 • 10-3 and 
Cq1' = 15 • 10_1. Note that the measurement errors relative to the initial mass 
fractions of carbon and chromium were 3.3% (0.1 • 10-3) for carbon and 0.34% 
(0.005T0-1) for chromium. Figures also show that c%x changes in an approximate 
interval ±5% and c%x in an approximate interval ±0.5%.
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element exp, min. sim, min. exp, max. sim, max.
carbon 3.0 • 10 3

(0.0%)
2.82 • 10 3
(-6.0%)

3.1 • 10 3
(+3.3%)

3.2 • 10 3
(+6.7%)

chromium 1.45 • 10 1
(-2.2%)

1.496 • 10 1
(-0.3%)

1.50 • 10 1
(+1.5%)

1.504 • 10 1
(+0.3%)

Table 7,2: Minimum and maximum values of the mass fractions of alloying el­
ement after solidification in simulation and in experiment for 32 kg benchmark 
ingot casting of X30Crl5, The relative change in mass fraction with respect to 
initial mass fractions is given in brackets,

of the points where probes were taken should be excluded from consideration 
|TanzerO8|, Moreover, the first probe for carbon in the third row from the top 
in Fig, 6,35 shows a much higher mass fraction of carbon than the neighbouring 
ones and thus has to be seen as erroneous and also has to be excluded from further 
consideration.

Taking this into account, the maximum mixture fractions for c'i||.x and cC^ix are 
3.1 • 10-3 and 1.5 • 10-1 , minimum mixture fractions are 3.0 • 10-3 and 1.45 • 10-1 
respectively.

The minimum and maximum of the mixture mass fractions of alloying ele­
ments in simulation and final distribution of the alloying elements in the ingot 
can now be summarised in Table 7,2,

The measurement error of determination of carbon mass fraction was 10-4 
(3,3% of c0C) [Tanzer08], We conclude that the distribution of carbon has to be 
considered uniform, since the difference between the minimum and the maximum 
values of carbon mass fractions are close to the measurement error. The mea­
surement error for the determination of carbon mass fraction was 5 • 10-4 (0,34% 
of Cor) [Tanzer08], and spatial distribution of chromium is significant. On the 
other hand, the experimental macrosegregation of chromium is very small. The 
simulated macrosegregation of chromium is also very small, which qualitatively 
agrees with the experimental data.

Note that only one experiment was performed. Thus, reproducibility or sta­
tistical significance of the experimental results cannot be investigated.
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Peritectic solidification

The proposed model is able to describe the peritectic solidifieation. Let us con­
sider, for example, the curves shown in Fig, 6,32, which show the cC,Cr — fc curves 
obtained during the simulation of solidification. The start of the formation of the 
phase y can be seen in these curves: around the value of volume fraction of 
columnar fc = 0.82 they exhibit a slight change in slope. The slope of the curve 
in the case of carbon increases, and it decreases for chromium. This is in agree­
ment with the solidification path for X30Crl5 obtained from the 0-D solidification 
model (described in Section 3,1) and the Thermo-Calc-Scheil module. The so­
lidification path is shown in Figs, 5,3 (piecewise-linear thermodynamics) and 5,9 
(spline thermodynamics). As can be seen from these figures, the solidification 
path changes its direction as it crosses the phase border between the a phase and 
the y phase; this is when the peritectic solidification starts. It corresponds to 
the point on the curve with the mass fraction of carbon cC = 0.012 and with the 
mass fraction of chromium cCr = 0.179, which coincide with the mass fractions 
of carbon and chromium that correspond to the value fc = 0.82 on curves shown 
in Figs, 6,32-6,34,

2 ton industrial ingot of X38Crl6 alloy

For the purpose of the discussion, the final maerosegregation patterns of the 
alloying elements carbon and chromium characterised by the distribution of c^jx, 
c^nL, fe are shown in Fig, 7,2,

The process of formation of maerosegregation patterns (distributions of cmjx 
and cmy as well as the final distributions of fc and fe shown in Fig, 7,2 is 
described in Section 6,5,4,

We can see that most of the ingot volume is occupied by the equiaxed phase, 
and only the areas adjacent to the wall and the bottom of the ingot reveal the 
presence of the columnar phase. The amount of the columnar phase is relatively 
small. This disproportion in the phase distributions is evidently caused by the 
choice of nucleation parameters nmax, ATN and A'b„ that describe nucleation in 
Eq, (2,21), This has to be determined experimentally in conjunction with a 
parameter study, which is beyond the scope of this work. Preliminary work in 
this direction has already been performed |KönözsyO7, Könözsy08|,
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Figure 7.2: Distributions of the columnar fc and equiaxed fe phases after solidification in 2 ton industrial ingot of 
X38Crl6, obtained from the three-phase solidification simulation described in Section 6.5.



Formation of the uneven pattern near the wall of the 2 ton 
industrial ingot

The uneven pattern in distributions of the volume fraction of the columnar fc 
and the equiaxed fe phases near the outer wall of the ingot can be observed 
in Figs, 6,42(t=1000 s)-6,44(t =3925 s), Although this uneven distribution of 
phases cannot be seen on the figures corresponding to earlier points in time, the 
formation of this pattern takes place earlier, at around t = 100 s, Figure 7,3 
shows the formation in detail.

The formation of the pattern happens as follows. Due to the intensive cooling 
of the wall and the subsequent forced convection, a downward flow develops. 
Also because of the cooling of the wall the first columnar fraction starts growing 
at the wall, as can be seen in Fig, 7,3, t =100 s. The columnar layer acts 
as a step, causing a vortex to appear. By means of the vortex the equiaxed 
phase is transported towards the wall, as can be seen from the velocity vectors 
pointing towards the wall in Fig, 7,3, t=115 s, t=120 s, s and t=130 s. The
increasing amount of the equiaxed phase can be seen from the contour plots in 
Fig, 7,3, After that the equiaxed phase trapped in the gap near the wall continues 
to grow (Fig, 7,3, t=200 s) and forms the observed pattern.

Formation of the positive-negative segregation near the wall

Examining distributions of the mixture mass fractions of carbon c|ix and chromium 
c|rxin Figs, 6,42 (in the lower part of the ingot), 6,43 and 6,44 near the wall re­
veals several layers of differently segregated melt. Adjacent to the wall there is a 
layer of negatively segregated solid phase, then a positively segregated layer then 
in the centre the alloy is negatively segregated. The pattern forms as follows.

First of all in the very beginning of the solidification, the columnar phase starts 
growing at the walls of the ingot. These first crystals are negatively segregated, 
due to the inability of the solid phase to incorporate all of the alloying elements. 
This is analogous to the case of binary solidification, where the mass fraction of 
the alloying element A in the very first solid phase formed is cA = kcA0, Here the 
partitioning coefficient k < 1 and cA0 is the initial mass fraction of the alloying 
element A in the melt.

Next, a vortex forms in the bottom part of the ingot, due to the strong forced
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Figure 7.3: Formation of the uneven pattern near the wall of the ingot. An enlarged part of the area near the wall is 
shown at different points in time. The colour shows the volume fraction of the columnar phase, the contour lines show 
the volume fraction of the equiaxed phase and the arrows depict the vector field of the velocity of the equiaxed phase.
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Figure 7.4: Formation of the vortex in the bottom part of the ingot. The colour 
hue shows the liquid radial velocity in the ingot. The white contour line cor­
responds to zero liquid radial velocity. The white arrows represent the velocity 
vector held.

convection of the melt, which hows downwards along the wall. The vortex is 
shown in Fig. 7.4. Then the vortex moves upwards, as can be seen in Fig. 7.5, 
and after reaching the top of the ingot it breaks up into a system of smaller 
vortices.

As the vortex moves up, it transports positively segregated melt from the 
middle of the ingot towards the wall, which solidihes there, forming a positively 
segregated layer as shown in Fig. 7.6.

7.4 Solidification of sedimented equiaxed grains

In Figs. 6.42 and 6.43, in the distributions of the volume fraction of the equiaxed 
phase fe, an interesting pattern can be seen: almost 100% solidified equiaxed 
phase region in the bottom of the ingot borders with the region with fe « 0.637, 
which is the packing limit. Let us examine this pattern in greater detail by means 
of Fig. 7.7. In this figure one can see that in the beginning of the solidification 
the equiaxed phase just sediments at the bottom of the ingot (approximately 
t <400 s). The volume fraction of the equiaxed phase is equal to the packing
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Figure 7.5: The upwards movement of the vortex. The colour hue again shows the liquid radial velocity in the ingot. 
The white contour line corresponds to zero liquid radial velocity.
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Figure 7.6: Formation of the positively segregated layer by means of the vortex. 
In figure (a) the colour shows carbon transfer rate CC = cCMlc, which represents 
the mass of carbon incorporated into the columnar phase per unit volume and per 
unit time. In figure (b) the colour represents the amount of maerosegregation of 
carbon cmix and the contour lines represent the axial velocity. The white arrows 
on both of figures (a) and (b) represent the liquid velocity vector field.

limit, 0.637. It remains approximately 0.637 until the temperature in the ingot, 
reaches the liquidus temperature. Once the liquidus temperature is reached, the 
previously sedimented equiaxed phase starts to grow, forming the aforementioned 
pattern. This can be seen in Fig. 7.7: the two regions of the equiaxed phase (one 
with fe « 0.637 and the other with fe « 0.95) are separated by the contour line 
T=1760 K, which approximately corresponds to the liquidus temperature of the 
alloy at the beginning of the solidification. This is true for the time t < 1400 
s, then the sedimented equiaxed solidification front and the contour line start to 
deviate. This is because the real liquidus temperature is a function of the mass 
fractions of the alloying components in the liquid phase, so it changes accordingly.

This effect also explains the increase in the mixture mass fractions of the 
alloying elements in the top part of the ingot, near the end of the solidification. 
The highly segregated melt. that, was between the sedimented equiaxed grains is 
forced to the upper part, of the ingot, during the course of the solidification, thus 
causing the increase in cmix and cC^ observed in Figs. 6.42 and 6.43.

Another result, of this solidification behaviour of the sedimented equiaxed 
phase is the negative mixture mass fractions of the alloying elements cCix and

161



' which can be seen in Figs, 6,42, 6,43 and 6,44, The first equiaxed crystals 
that form cause strong negative segregation for the same reason that the first 
columnar crystals cause it at the walls. This way the major part of the sedimented 
equiaxed phase is negatively segregated (fe «0,637 for the negatively segregated 
sedimented equiaxed phase). Only the remaining fraction of the equiaxed phase 
fe «0,363 solidifies after the liquidus temperature is reached, which does not have 
a noticeable effect on the maerosegregation pattern.
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Figure 7.7: Solidification of the sedimented equiaxed phase. The colour represents the volume fraction of the equiaxed 
phase. The white contour line corresponds to the temperature 1760 K, which approximately corresponds to the liquidus 
temperature at the beginning of the solidification.



Chapter 8

Conclusions, summary and outlook

8.1 Conclusions

In the presented work a methodology of multicomponent multiphase solidification 
of ingot steel eastings is developed. The work is based on the previous research 
performed for binary alloys. The extension of the binary model was carried out 
for the ternary ease, including generalisation of the idea of coupling between 
mesoscale quantities, liquid and solid mass fractions at the phase border on one 
side and the macroscopic bulk mass fractions and temperature on the other. 
For this, a mathematical model in the form of a nonlinear equation system was 
developed, a numerical method for solving this system was implemented and 
validated using a proposed simplified zero-dimensional solidification model,

A method to overcome the problem of intrinsic discontinuities of solubili­
ties of alloying components in solid phases when using a numerical method was 
suggested. For this, the spline interpolants were used to interpolate pointwise 
tabulated thermodynamic data. Spline interpolants smoothen the discontinuities 
along the phase borders, allowing successful usage of Xewton-type methods for 
solving the nonlinear equation system for coupling.

The developed and implemented model was used to simulate the solidifieation 
process in a 32 kg benchmark ingot of X30Crl5 steel and 2 ton ingot of the same 
X38Crl6 alloy, assuming two and three phase flow. Based on one of the simula­
tions, the effect of thermal and solutal convection was investigated. The effect 
of the thermal convection was the strongest, affecting the course of solidification, 
whereas the effect of solutal convection was relatively weak.
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The models and methods deseribed in the work were successfully implemented 
and can be used to simulate ingot casting solidification of ternary steels. The use 
of the coupling method developed in this work is not limited by the applications to 
the ingot steel casting solidification. It can and has been used for simulating other 
solidification processes, for instance, direct-chill casting of bronzes |IshmurzinO8|, 
continuous casting of steels, and so on. Further parameter study is necessary to 
increase the reliability of the simulations,

8.2 Summary

A methodology was developed to simulate solidification of multicomponent alloy 
ingot castings, which was validated and then applied for the simulation of solidi­
fication of Fe-C-Cr steel in a 32 kg benchmark ingot and a 2 ton industrial ingot. 
The results obtained show good qualitative agreement with experimental data.

In order to achieve this, several new developments were made:

• Spherical and cylindrical growth formulations for binary alloys were refor­
mulated for the multicomponent alloys

• A way to take multicomponent phase diagram data into account was devel­
oped and implemented, validated and applied for solidification simulations 
of ternary alloys

• The nonlinear equations system describing the coupling between the phase 
diagram data, solidification growth kinetics and multiphase flow was investi­
gated, the numerical method for solving it was implemented and successfully 
applied

• The dependence of mesoscopic quantities (mass fractions of alloying compo­
nents at the solid-liquid interface) on macroscopic quantities (temperature 
and mass fractions of alloying components in liquid) was demonstrated

• A simplified zero-dimensional solidification model was introduced, imple­
mented and used to simulate solidification of alloys from Fe-C-Cr, Fe- 
C-Mn and Cu-Sn-P systems, in order to validate the implementation of 
algorithms
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• Two ways of representing phase diagram information (liquidus temperature 
and solubilities) were developed, implemented and used for simulations: 
pieeewise-linear approximations and spline interpolations

• The problem of intrinsic discontinuities of the solubility functions was ad­
dressed by using spline interpolations, which smoothen the discontinuities 
mentioned

• Parameters of piecewise-linear approximations of phase diagrams were cal­
culated for Fe-C-Cr and Fe-C-Mn systems and successfully used in simu­
lations

• An investigation of the accuracy of spline-interpolation of thermodynamic 
data on the order of the splines used was investigated and the optimal order 
was found and used for simulations

• A simulation of mould filling and solidification using the MAGMASOFT 
software package was performed; a comparison with experimental cooling 
was carried out and satisfactory qualitative agreement was found

• Simulations of solidification of ternary Fe-C-Cr alloys were performed, sat­
isfactory qualitative agreement with experimental data was found

• The influence of different convection effects (thermal and solutal) on the 
final distribution of alloying components was investigated

8.3 Outlook

The coupling strategy presented in this work is valid in the two phase regions of 
the phase diagram, that is for primary and peritectic solidification. This is suffi­
cient for describing the course of solidification of many alloys. However, there are 
alloys, for example different tool steels, for which the formation of eutectic phase 
is of high importance. The next step in this direction should be the implementa­
tion of the model describing the formation of eutectics. For the Fe-C-Cr alloying 
system, the details on the eutectic reaction are given in |VandenBoomgaard72|,
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and the formation of periteeties ean be modelled relatively easily due to the re­
duction of the degree of freedom by 1 for the eutectic reaction in comparison with 
primary and periteetie ones.

When using spline interpolants for representing the thermodynamic data, the 
main issue is the computation time. It can be reduced by decreasing the number 
of interpolation points in the parts where this is possible. The thermodynamic 
data represented by splines are two-dimensional surfaces, such as, for example, 
liquidus temperature T = T(cA,£B). It is obvious that in the parts of the sur­
face where its curvature is low it can be approximated using less tabulated data 
points. Thus, the number of interpolation points necessary for interpolating a 
surface with sufficient accuracy depends on its curvature. Using less interpo­
lation points for representing the thermodynamic functions should to result in 
a reduced computational time. One possible way to achieve this is to use an 
adaptive tabulation procedure, where the density of the data points of the grid 
is proportional to the curvature of a given thermodynamic function (liquidus 
temperature or solubilities of alloying elements in solid phases).

Another way of improving the computation time for the simulations discussed 
in this work is to use parallel processing. This can be performed at the CFD solver 
level. In this case the computational grid is partitioned, and every grid partition 
is assigned to a dedicated computing node, which speeds up the computation. 
By employing modern parallel computers, one can expect a significant increase 
in computational speed, especially when using fine tuning of the CFD solver.

This model can also be extended to take into account quaternary or more 
component alloys. The nonlinear equation system consisting of equations for the 
ternary case (3,16), (3,17), (3,20) and (3,21) can be extended for the n-component 
case as follows:

F (c1,...,c,N-1 cl , cl , ~N-1 ~1
cl

~N-1 ) = 0, (8.1)

where
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with n = Dj/Di+1, i =1 ...N-2 are diffusion coefficient ratios. This system 
consists of 2(N - 1) unknowns: cj,..., cA-1,cj,..., cN-1, (N - 1) equations for 
solubilities, 1 liquidus hypersurface equation and (N - 2) equations expressing 
growth velocities equality, that is 2(N - 1) equations. The proof of the existence 
of the solution for this equation system is analogous to the one for the ternary 
case. The implementation of the numerical method can be carried out using the 
same solver that was used for the ternary case and should be straightforward. 
The representation of the thermodynamic functions using spline interpolation in 
this case has to be performed incorporating a multivariate spline interpolation.

Another way to improve the model is to take into account the effect of the 
back-diffusion, which is proven to be an important factor affecting macrosegrega­
tion patterns |Hillert99, TurkeliOb, Larouche07|. In this case the solute balance 
equation has to be rewritten to include the diffusive flux into the solid, as follows 
(compare this to the solute balance without back-diffusion given in Eq, (2,25)):

d cA . dcl 

dr
^dcA

dr(cA - cA)v = -da + DAd^. (8.3)

The growth velocity formula has to be rewritten accordingly and the source 
terms for the solute transport have to be changed to include the diffusive fluxes 
from the liquid phase towards the solid one.

With the method of solidification simulation developed in the work presented 
it is also possible to predict the final solidification microstructure. This is per­
formed by using the alloying element distributions from simulations and subse-
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quent deduction of the amount of resulting phases at room temperature |GrasserO8|,
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Appendix A
Experimental Setup and Procedure 
for the Benchmark Casting

In order to validate the three-phase Eulerian multicomponent model presented 
in this work, a easting experiment was carried out by the industrial partner 
|TanzerO8| and we follow the publication here,

A benehmark ingot with an approximate weight of 32 kg was produced in a 
laboratory induction furnace. The sketch of the mould is shown in the Fig, 6,16, 
The melt was built up with pure iron, carbon and ferroehromium in an induction 
furnace. The chemical composition of the melt was 0.3 wt.% carbon, 14.82 wt.% 
chromium and iron in balance.

The presence of trace elements such as sulphur or phosphorus are neglected in 
the analysis. The last temperature measurement before casting revealed a tem­
perature of 1555 °C which was taken as the casting temperature. The laboratory 
furnace only allowed downhill casting although speaking of industrial processes 
uphill casting is the common method because of its better surface quality and 
better yield of material. In this experiment a big end up grey cast mould was 
used. The mould was placed on a heavy grey cast bottom plate and was instru­
mented with thermocouples of TypeX in different heights and different depths 
of the mould wall. Additionally one thermocouple of TypeS was located in the 
casting room to measure the melt temperature and the cooling behaviour of the 
ingot.

The experimental data obtained during the experiment were the cooling curves 
measured by the thermocouples (used in this work are shown in the Fig, 6,12),

Also the solidified ingot was cut as shown in Fig, 8,1a and probes were taken
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from the holes drilled as shown in Fig, 8,1b, These probes were used to determine 
the earbon and chromium mass fractions distributions (shown compared with the 
simulation results in the Fig, 6,36 and 6,35),

a b

Figure 8,1: The 32 kg benchmark ingot casting. Half of the ingot after cutting 
(a) and pieces of ingot where probes were taken (b).
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Appendix B
Analytical Solution of the Partly 
Linearised Nonlinear Equation 
System for Coupling

As it is shown in the main text, in order to compute the growth velocity and then 
the necessary mass transfer rates, in the ease of a ternary alloy, it is necessary to 
solve a nonlinear algebraic equation system consisting of four equations (3,16), 
(3,17), (3,20) and (3,21), If we linearise the first three equations (3,16), (3,17), 
(3,20) of this equation system, it can be written as

cA = CAO + mAA(cA - cA) + mAB(cB - cB), (8.4)

cs = cs0 + mBA(cl - C,o)+ mBB(cl - qA (8.5)

T = To + mAT(cA - CAO) + mBT(cB - CBj), (8-6)

cA _ cA cB _ cBcl cl = cl cl
cA _ cA cB _ cB ,cl cs cl cs

(«■7)

where cA0, cB0, T0, mAA^ mAB, mAA^ mBA, mBB, mAT, mBT are constants,
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and r is the diffusion coefficients ratio r = DA/DB, which is also a constant.
For this simplified equations system with only one nonlinear equation can be

solved analytically, and a way it can be done is shown below.
The first three equations can be written in the matrix form

Mc = b, (8-8)

where

f mAA mAB — 1 0
M = mBA mBB 0 — 1

\ mAT mBT 0 0 7
(8-9)

Z
b =

mAAco,1 + mAB c0,2 — c0,3 
mBAtyl + TObbco,2 — co,4 (8.10)

T — To + mAT co,i + mBT co,2

fcA\
B

c = cl
~A (8-11)

s
\cB J

The equation system (8,8) now can be solved, setting for instance cB to be 
the parameter, that is cB = t E R and other three unknowns are functions of the 
parameter, so that cA = cA(cB = t), cB = t, cA = cA(cB = t) and cB = cB(cB = t). 
The solution of (8,8) for the three unknowns mentioned is:

mAT cAo — mBT t + T — To + mBT cB \Bo
1 tc =

mAT (mATmAB — mAAmBT )t — mAT (mAB cBo + cAo) + mAA(T — To + mBT cBo) 
\ (mATmBB — mBAmBT )t — mAT (mBBCBo + cBo) + mBA(T — To + mBT cBo)

(8.12)

173



Now it is possible to substitute the expressions cA = cA(cB = t) cB = t, 
cA = cA(cB = t) and cB = cB(cB = t) into the (8,7) and solve it for the cB = t.

The resulting equation for the cB = t has two roots. The analytical expressions 
were found using Maple V symbolical algebraic software package |Maplesoft05, 
Char93|, One of the roots is negative, thus has to be discarded as not satisfying 
the physical conditions. The analytical expressions of the solutions are not shown 
here due to their excessive length (several pages of text). The Maple V hie with 
the analytical solution can be found on the accompanying CD-ROM,
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Appendix C
An Example of Using Thermo-Calc 
for Obtaining the linearization 
Parameters

Below is an example of using the Thermo-Cale software package for calculating 
the necessary pieeewise-linear approximation parameters is shown.

As an example we will show how to calculate the linearization parameters for 
the pieeewise-linear approximation of the iron-rich corner of the Fe-C-Cr phase 
diagram in the neighbourhood of the point with the coordinates cC = 0.003k. and 
cCr = 0.15& described in Section 4,3,1, The linearization parameters acquired 
from the Thermo-Calc as described below are listed in the Table 4,1,

The process of acquiring of the necessary linearization parameters can be di­
vided into three parts: 1) initialisation (loading the necessary databases, starting 
the POLY module); 2) setting up the parameters of the minimisation problem, 
and finally 3) the minimisation process and the collection of resulting param­
eters, Firstly, the command sequence and the meaning of the commands will 
be explained and secondly, a listing of the user input of these commands and 
Thermo-Calc output will be presented.

Initialisation

After starting Thermo-Calc, we issue the following command in order to select 
the appropriate database (PTERX) of ternary alloys:
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go data

followed by

switch ptern

in order to switch to the PTERX database which contains the necessary infor­
mation for making equilibrium calculations with the ternary system Fe-C-Cr,

Now we select the elements iron, chromium and carbon of the ternary alloy 
with the following command

define-system fe c cr

Since the solidification process modelled are not an equilibrium one, the graphite 
phase has to be rejected with the command

TDB_PTERN:reject-phases 
PHASES:graphite

Now in order to load the necessary data from the database, the following com­
mand is issued

get

After Thermo-Calc has loaded the data, it is necessary to start the POLY module, 
using which the equilibrium point will be calculated. This is done by issuing the 
command

go poly_3

Now Thermo-Calc is ready for setting up the parameters of the minimisation 
problem for finding the equilibrium point.
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Conditions setup for the equilibrium calculation

The next step is to set up the conditions for the calculation of the equilibrium 
point. With the following commands the composition of the alloy is entered

P0LY_3:set-condition w(cr)-0.15 
P0LY_3:set-condition w(c)=0.003

The liquid phase has to be fixed, meaning that the equilibrium calculation process 
has to go on as long as the liquid phase is present in the system. This is achieved 
by issuing

P0LY_3:change-status
For phases, species or components? /PHASES/:
Phase name(s):liquid 
Status: /ENTERED/: fixed 
Number of moles /0/: 1

The pressure is atmospheric and is entered to the POLY_3 module with

P0LY_3:set-condition p-101325

The total number of material is taken as 1 mole

P0LY_3:set-condition n-1

Now it is possible to list all of the entered conditions. Note that the degree of 
freedom that Thermo-Calc indicates (among other parameters) as a response to 
this command must zero, since is a necessary condition for the solver to start the 
equilibrium calculation (see the Thermo-Calc output below):

P0LY_3:list-conditions

Equilibrium point computation and data collection

Now when all of the necessary conditions are entered, it is possible to calculate 
the equilibrium point with the command
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P0LY_3:calculate-equilibrium

The computation usually takes not longer that 1 s and the necessary lineariza­
tion data ean be acquired with the commands listed below. Note that all of 
the linearization parameters are calculated at the linearization point with the 
coordinates tf = 0.003g and cCr = 0.15kg.

Temperature of the equilibrium point ean be shown with

P0LY_3:show-value t

The concentration of carbon and chromium in the solid phase is shown with

P0LY_3:show-value w(bcc_a2,c)
POLY_3:s-value w(bcc_a2, cr)

In order to get the derivative of the temperature at the linearization point with 
respect to the liquid mass fractions of carbon and chromium the following com­
mands can be used:

P0LY_3:s-t» t.w(c) 
P0LY_3:s-t» t.w(cr)

The derivatives of the mass fractions of carbon and chromium in the solid phase 
at the linearization point with respect to the liquid mass fractions of the carbon 
and chromium the following commands are used

P0LY_3
P0LY_3
P0LY_3
P0LY_3

show-value
show-value
show-value
show-value

w(bcc_a2, c) .w(c) 
w(bcc_a2, c) .w(cr) 
w(bcc_a2, cr). w(c) 
w(bcc_a2, cr). w(cr)

The resulting Thermo-Calc output listing, together with the user input (shown in 
italics) is shown below. Note that here shortcut of the Thermo-Calc commands 
are used, which make using the its command-line interface easier.

Thermo-Calc version R on WinNT Copyright (1993,2006)
Foundation for Computational Thermodynamics,Stockholm, Sweden 

Double precision version linked at Thu Sep 14 09:22:37
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SYS:go data
THERMODYNAMIC DATABASE module running on PC/WINDOWS NT
Current database: SGTE Unary (Pure Elements) TDB v4
VA /- DEFINED
TDB_PURE4: sui ptern
Current database: TCS Public Ternary Alloys TDB vl
VA /- DEFINED
TDB_PTERN:def-sys fe c cr
FE C CR
DEFINED
TDB_PTERN:reject-phases
PHASES:graphite
GRAPHITE REJECTED
TDB_PTERN:get
REINITIATING GES5 .........
ELEMENTS .........
SPECIES ...........
PHASES .............
PARAMETERS ...
FUNCTIONS ....
List of references for assessed data
The list of references can be obtained in the Gibbs Energy System also
by the command LIST_DATA and option R
-0K-

TDB_PTERN:po p_3 
POLY version 3.32, Aug 2001

P0LY_3:s-c w(cr)=0.15
P0LY_3:s-c w(c)=0.003
P0LY_3:c-s
For phases, species or components? /PHASES/:
Phase name(s):liquid
Status: /ENTERED/: fixed
Number of moles /0/: 1
P0LY_3:s-c p=101325
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P0LY_3:s-c n=l 
P0LY_3:l-c
W(CR)=0.15, W(C)=3E-3, P=1.01325E5, N=1
FIXED PHASES
LIQUID=1
DEGREES OF FREEDOM 0 

P0LY_3:c-e
Normal POLY minimization, not global 

Testing POLY result by global minimization procedure 
Calculated 67904 grid points in Os
70 ITS, CPU TIME USED 0 SECONDS
P0LY_3:s-t» t 
T=1759.7046
P0LY_3:s-t» w(bcc_a2,c)
W(BCC_A2,C)=4.8618639E-4 

P0LY_3:s-t» u)(bcc_ a2, cr)
W(BCC_A2,CR)=0.14207627 
P0LY_3:s-t» t.w(c)
T.W(C)=-9198.5831 
P0LY_3:s-t» t.w(cr)
T.W(CR)=-76.214187 
P0LY_3:s-t» w(bcc_a2, c) ,w(c)
W(BCC_A2,C).W(C)=O.15106564 
P0LY_3:s-t» w(bcc_a2, c) .w(cr)
W(BCC_A2,C).W(CR)=-5.2915106E-4 
P0LY_3:s-t» w(bcc_a2, cr) ,w(c)
W(BCC_A2,CR).W(C)=-2.2273607 

P0LY_3:s-t» w(bcc_a2, cr) .w(cr)
W(BCC_A2,CR).W(CR)=1.0438801 
P0LY_3:

alternatively one ean use the list-equilibriumc.omma.nd for printing most of these 
values, but the precision of the displayed numbers is lower in this ease.
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Appendix D
Construction and use of
spline-interpolants of
thermodynamic functions of in the 
ternary Fe-C-Cr phase diagram 
using Thermo-Calc

In order to perform a spline interpolation of the three thermodynamic func­
tions (liquidus temperature, solubility of carbon in the solid phase, solubility of 
chromium in the solid phase) necessary for the solidification simulations a prior 
tabulation of these functions is required. In the work presented, the thermody­
namics software package Thermo-Cale was used. This section explains how it was 
used to perform these tabulations and describes the necessary preparation steps 
for using spline interpolated thermodynamic functions mentioned in simulations 
at the example of Fe-C-Cr system.

The process of getting the spline interpolations for the thermodynamic func­
tions mentioned can be divided into the following steps: 1) tabulation of the 
values of the thermodynamic functions into a text file; 2) initialisation of the 
spline interpolations for the thermodynamic functions and 3) evaluation of the 
spline interpolations constructed in the Step 2, These necessary steps are de­
scribed below.
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Tabulation of the phase diagram data using the 

Thermo-Calc software package

The tabulation of the mentioned three thermodynamic functions into a text hie 
is done using a program written using the C programming language and Thermo­
Calc C API for calling the necessary Thermo-Calc functions. The calling sequence 
of the program code in principle repeats the sequence presented in Appendix 8,3, 
with one exception: the parameters which we called "linearization parameters" 
are calculated in N • M points in the domain of interest D and not just in one 
point, as it is described in Appendix 8,3

D = {(cA CB) I 0 < CA < a 0 < CB < b} . (8.13)

Numbers N and M are the numbers of tabulation points along the CA and CB 

directions respectively. In order to start the tabulation, the user has to edit the 
source code to specify these 4 parameters, namely the grid numbers N and M as 
well as a and b. Below the parts of the source code (tabulation.c) are shown, 
the parts needing editing are shown in italics.

int mainO 4
int N = 175; /* number of nodes along the 
int M = 175; /* number of nodes along the 

double L_c_l_a = 0-4 ; /* tabulation range 
double L_c_l_b = 0.03; /*tabulation range 
/* the code continues here */

Cr direction */ 
C direction */ 
for Cr */ 
for C */

The following function is called from within main() and initialises the Thermo­
Calc kernel by means of its C API:

static int prepare_tc() 4
/* Initialise the system */ 
tc_init_root0; check_tc_error0;

/* Open database */
tc_open_database("PTERN"); check_tc_error0;

/* Select the elements */
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tc_element_select("FE"); check_tc_error() ;
tc_element_select("CR"); check_tc_error() ;
tc_element_select("C"); check_tc_error();
/* reject Graphite here */
tc_phase_reject("GRAPHITE");

/* Get the data from the database */
tc_get_data(); check_tc_error () ;
/* corresponds to the command: s-c n=l - A.I. */ 
tc_set_condition("N", 1.0); check_tc_error();
/* corresponds to the command: s-c p=101325 - A.I. */ 
tc_set_condition("P", 101325.0); check_tc_error() ;

/* Calculate the liquidus by setting the liquid to be 
with a certain amount */
/* corresponds to the command: c-s liquid fixed 1 - A 
tc_set_phase_status("LIQUID", "FIXED", 1.0); check_tc. 
return 0;

fixed

I. */ 
error();

Note that this command sequence is the same as the one described in Appendix 
8.3, the only difference is that these commands are executed by means of the 
Thermo-Calc C API.

After compilation the program is ready to run. in the case of N = 175, 
M =175 for the example shown the tabulation time was approximately 21 hour 
on a computer with using a Intel Pentium 4 3.2 GHz CPU with 1 CB RAM.

The result of tabulation is saved in a text hie using the following line

fprintf(fp, "%40.30e %40.30e %40.30e %40.30e %40.30e %40.30e 
%40.30e %40.30e %40.30e %40.30e %40.30e %40.30e\n", 
state.liquidus_temperature,
state.c_s_carbon,
state.c_s_chromium,
state.liquidus_temperature_d_c_l_carbon,
state.liquidus_temperature_d_c_l_chromium,
state.c_s_carbon_d_c_l_carbon,
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state.c_s_carbon_d_c_l_chromium, 
state.c_s_chromium_d_c_l_carbon, 
state.c_s_chromium_d_c_l_chromium, 

d2t, d2a, d2b);

Cr•l ;The resulting file thus contains of 12 columns: 
sC

Tt, cC, CCS dTl/acC, dTl/acl
acC/acC, acC/acC*, acC^/acC, dcC^/acC1, a2Tl/ (acCacC^, d^cC/ (acCacC^ and 
d2CCr/ (öCCöCC^), Each line corresponds to one of the N • M tabulation points.

Initialisation of the spline interpolants when using 

FLUENT

The text file produced by the tabulation code has to be placed to the same 
directory with the FLUENT case file to be used for the simulation. The spline 
structures are allocated in memory dynamically. There are three of them used in 
the UDF-code, Below their declarations in the source file sisl_aux_console.c 
are shown

static SISLSurf* surf_temperature = NULL; 
static SISLSurf* surf_c_s_a = NULL; 
static SISLSurf* surf_c_s_b = NULL;

The first pointer corresponds to the liquidus temperature, and the other two to the 
solubilities of the first and second alloying element in the solid phase respectively. 
If at the moment of calling to the spline-interpolant evaluation function a pointer 
to one of the three spline objects is null, it is initialised using the data from the 
text file produced by the tabulation program. Firstly, the data from the text 
file is read into 12 one-dimensional arrays of double precision float numbers that 
correspond to the 12 columns of data in the file. These arrays are then used by the 
SISL function s1535 for initialising the spline interpolants. For the programming 
purposes the call to the s1535 function is wrapped with a function called initialise 
which is shown below,

void initialize(double *points, double *da, 
double *db, double *dadb, SISLSurf **f,
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int *jstat)

int i;
double pari[nodes_num],
par2[nodes_num];

for (i=0; i < nodes_num; i++)

parl[i] = (double) (l_c_l_a / (nodes_num-l) * i); 
par2[i] = (double) (l_c_l_b / (nodes_num-l) * i);

sl535(points, /* pointer to the array of points to interpolate */
db, da, dadb, /* 1st and cross derivatives of the function */ 
nodes_num, /* number of interpolating points

along the ’u’ parameter */ 
nodes_num, /* number of interpolating points

along the ’v’ parameter */
3, /* dimension of the Euclidean space */
pari, par2, /* parametrisation along both directions */

0, /* no additional condition along edge 1 */
0, /* no additional condition along edge 2 */
0, /* no additional condition along edge 3 */
0, /* no additional condition along edge 4 */
4, /* the order of the generated surface

in the ’u’ parameter */

4, /* the order of the generated surface
in the ’v’ parameter */

1, /* open surface in the u direction */
1, /* open surface in the v direction */ 
f, /* the generated surface */ 
jstat); /* status variable */

For the details on the parameters of the function s1525 see the SISL library doc­
umentation |SIX06, SIX05|, The solution of the system of nonlinear equations 
that couples together solidification thermodynamics, kinetics and Eulerian mul-
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tiphase flow model that is described above in Section 3,4 and given by Eq, (3,22) 
is done by a Xewton-type method as described in (4,2), During its iterations, the 
Xewton-type method needs evaluating the right-hand side of the equation system 
(3,22), which includes the evaluation of spline-interpolated functions (3.15)-(3.17) 
and their derivatives. This is done in the code by calling the s1527 function of the 
SISL library. Below a function for evaluating the right hand side of the nonlinear 
equation system is shown

int my_f (const gsl_vector * x, void *params, gsl_vector * f) { 
real c_l_a = ((struct my_f_params *) params)->c_l_a; 
real c_l_b = ((struct my_f_params *) params)->c_l_b; 
real temperature = ((struct my_f_params *) params)->temperature;
const real xO = gsl_vector_get (x, 0); /*C_1_,a_star*/
const real xl = gsl_vector_get (x, i); /*c_l_,b_star*/

const real x2 = gsl_vector_get (x, 2); /*c_s_,a_star*/

const real x3 = gsl_vector_get (x, 3); /*c_s_,b_star*/
const real r=get_diff_ratio();
real yO;
real yi;
real y2;
real y3;
real retv[9] := {0.0, 0.0, 0.0, 0.0, 0. 0, 0.0, 0.0, 0.
calculate_stars(xO,xl,retv);
yO - retvEO] - x2;
yl - retv[l] - x3;
y2 = retv[2] - temperature;

y3 - r*(xO-c_l_a)/(x0-x2)-(xl-c_l_b)/(xl-x3);
gsl_vector..set (f, 0, yO)
gsl_vector..set (f, 1, yl)
gsl_vector..set (f, 2, y2)
gsl_vector..set (f, 3, y3)
return GSL_SUCCESS; }

The spline interpolants for the thermodynamic functions are evaluated in the 
function calculate_stars. As input parameters this function gets numbers x0
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and x0 which are the mass fractions of the first and the second alloying elements 
respectively. The resulting 9 numbers consisting of the values of the three ther­
modynamic functions and its derivatives are stored in the array retv. These 
values are then used for calculating the the variables y0, yl, y2, y3 which are the 
components of the right-hand side of the nonlinear equation system. Note that 
the values of the variables x0, xl, x2, and x3 are determined by the Newton-tvpe 
method and change from Newton iteration to Newton iteration.

As one can see, the process of evaluating the right-hand side of the nonlinear 
equation system using the spline-interpolant evaluation for the three thermody­
namic functions is done as follows:

yo = cA(xo,xi) - X2, 
yi = cB(x0,xi) - x3, 
y2 = T(xo,Xi) - Tl,

A Bxo — cA x_ — cBy3 = f — I - I—.
3 Xo — X2 x_ — X3

Note that here x0 = CA, x1 = CA, x2 = CA and x3 = CB are unknowns; 
T^ cA and CBare known parameters of the bulk melt, available from FLUENT; 
CA(x0,x1) CB(x0,x1) and T(x0,x1) are thermodynamic functions (solubilities in 
solid and liquidus temperature) evaluated using spline interpolation of tabulated 
values of these functions; r is the ratio between the diffusion coefficients of alloying 
elements in liquid, r = DB-.

The source code of the tabulation software is provided on the accompanying 
CD-ROM.
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Nomenclature

ßT thermal expansion coefficient of the liquid phase

AT constitutional undercooling

A'A standard deviation of the normal distribution of the nucleation law

ATn mean of the normal distribution of the nucleation law

erel vector of relative errors

k constant cooling rate

A1 primary dendrite arm spacing

pe viscosity of the equiaxed phase

viscosity of the liquid phase

pc density of the columnar phase

pe density of the equiaxed phase

pl>ref reference density of the liquid phase

pl density of the liquid phase

CA columnar equilibrium mass fraction of the element A at the solid-liquid
interface

CC columnar equilibrium mass fraction of the i-th element at the solid-liquid
phase interface

CA equiaxed equilibrium mass fraction of the element A at the solid-liquid
interface
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ce equiaxed equilibrium mass fraction of the i-th element at the solid-liquid
phase interface

cA liquid equilibrium mass fraction of the element A at the solid-liquid inter­
face

cl liquid equilibrium mass fract ion of the i-th element at the solid-liquid
interface

T equilibrium temperature at the solid-liquid interface

g gravitational acceleration vector

uc velocity of the columnar phase

ue velocity of the equiaxed phase

ul velocity of the liquid phase

A area

Acell area of a hexagonal cell

AimP;C impingement factor for columnar growth

C number of components

co initial mass fraction of the alloying element in the binary case

<ix mixture mass fraction of the m-th component

crkef reference mass fraction of the k-th element in the liquid phase

cC0 initial concentration of chromium

cC initial concentration of carbon

Clc i-th species transfer rate from the liquid phase to the columnar phase

cl bulk liquid mass fraction of the i-th component

czfc mass fraction of the k-th element in the liquid phase

cp(l) isochoric heat capacity of the liquid phase
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Cp(s) isochoric heat capacity of a solid phase (columnar or equiaxed) 

dc diameter of a columnar dendrite

DA diffusion coefficient of the element A in the liquid phase

f number of degrees of freedom

fc volume fraction of the columnar phase

fi volume fraction of the liquid phase

fe volume fraction of the equiaxed phase

fi;exact exact value of a funotion f in the i-th coordinate node

^.interpolated interpolated value of a function f in the i-th coordinate node 

fl,crit critical volume fraction of the liquid phase 

fs volume fraction of the solid phase

H* volumetric transfer coefficient

hc enthalpy of the columnar phase

hrcef standard state enthalpy for the columnar phase

he enthalpy of the equiaxed phase

hef standard state enthalpy for the equiaxed phase

hl enthalpy of the liquid phase

href standard state enthalpy for the liquid phase

J jacobian

JF,y Jacobian with derivatives of F with respect to the independent variables
subset y

k binary solute redistribution coefficient
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kc thermal conductivity of the columnar phase

Kec drag coefficient characterizing the drag force between the equiaxed and the
columnar phase

ke thermal conductivity of the equiaxed phase

Klc drag coefficient characterizing the drag force between the liquid and the
columnar phase

Kle drag coefficient characterizing the drag force between the liquid and the
equiaxed phase

kl thermal conductivity of the liquid phase

mrej mass of the component rejected into the liquid phase

Mce mass transfer rate from columnar phase to the equiaxed phase

Mlc mass transfer rate from liquid phase to the columnar phase

Mle mass transfer rate from liquid phase to the equiaxed phase

N total number of components

n equiaxed grain density

nmax maximal equiaxed grain density

p dynamic pressure

qdiff diffusive flux of a solute component in the liquid phase

qrej flux of the component rejected into the liquid phase

qj number of molecules of the component i leaving the phase j per unit surface
per unit time

R columnar radius

r radial axis
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r ratio between diffusion coefficients of alloying components in the liquid 
phase in a ternary system

Rmax maximal columnar radius

Sc surface concentration (total surface area of all growing columnar dendrites
per unit volume)

T temperature

T0 initial temperature

Tref reference temperature of the liquid phase

Tl temperature of the liquid phase

v solidification growth velocity

v* growth velocity calculated using concent rations of the i-th alloying com­
ponent

vc columnar solidification growth velocity

ve equiaxed solidification growth velocity

192



Bibliography

|Aldrieh99| Aldrich, M.: "The Peril of the Broken Rail": The Car­
riers, the Steel Companies, and Rail Technology, 1900­
1945, Technology and Culture (1999) vol, 40 (2), pp, 263­
291.

|Andersson02| Andersson, J, O,, Helander, T,, Höglund, L,, Shi, 
P,, Sundman, B,: Thermo-Cale & DICTRA, Computa­
tional Tools for Materials Science, Calphad (2002) vol, 26, 
pp. 273-312.

|Appolaire08| Appolaire, B,, Combeau, H,, Lesoult, G,: Modeling of 
equiaxed growth in multicomponent alloys accounting for 
convection and for the globular/dendritic morphological 
transition. Materials Science, and Engineering A (2008) 
vol. 487 (1-2), pp. 33-45.

|Assar92| Assar, A.-w, M.: On the interfacial heat transfer coef­
ficient for cylindrical ingot easting. Journal of Materials 
Science. Letters (1992) vol, 11, pp, 601-606,

|Avrami40| Avrami, M,: J. Che.m. Phys. (1940) vol, 8, p, 212,

|Beekermann88| Beckermann, C,, Viskanta, R,: Natural Convection 
Solid/Liquid Phase Change in Porous Media, Interna­
tional Journal of Heat, and Mass Transfer (1988) vol, 31, 
pp, 35-46,

|Beekermann93| Beckermann, C,, Viskanta, R,: Mathematical Mod-

193



|Beckermann97|

|Bennon87|

|Bird60]

|Blondeau91|

|BrennenO5|

|Brovden65|

|CampbellO3|

|Char93|

|ChenO5|

oiling of Transport Phenomena During Alloy Solidifica­
tion. Applied Mechanics Reviews (1993) vol. 46, pp. 1-27.

Beckermann, C.: Modeling Segregation and Grain 
Structure Development in Equiaxed Solidification with 
Convection. JOM (1997) vol. 49 (3), pp. 13-17.

Bennon, W. D., Incopera, F. P.: Continuum model for 
momentum, heat and species transport in binary solid­
liquid phase change systems - I. Model. International 
Journal of Heat and Mass Transfer (1987) vol. 30, pp. 
2161-2170.

Bird, R. B., Stewart, W. E., Lightfoot, E. X.: Trans­
port Phenomena, John Wiley & Sons (1960).

Blondeau, R.: Problems related to use of low alloy steels 
in H2S environment: industrial solutions. Ironmaking and 
Steelmaking (1991) vol. 18 (3), pp. 201-210.

Brennen, C. E.: Fundamentals of Multiphase Flow, 
Cambridge University Press (2005).

Broyden, C.: A Class of Methods for Solving Nonlin­
ear Simultaneous Equations. Mathematics of Computa­
tion (1965) vol. 19, pp. 577-593.

Campbell, J.: Solidification Structure - Heat Transfer, 
Butterworth-Heinemann, chap. 5.1 (2003) pp. 117-129.

Char, B. W., Geddes, K. O., Gönnet, G. H., Leong, 
B. L., Monagan, M. B., Watt, S. M.: Maple V Language 
Reference Manual, Springer, 3rd edn. (1993).

Chen, Q., Engström, A., Höglund, L., Strandlund, 
H., Sundman, B.: Thermo-calc program interfaces and 
their applications - Direct insertion of thermodynamic 
and kinetic data into modeling of materials processing,

194



structure, and property. Materials Science. Forum (2005) 
vol. 475-479, pp. 3145-3148.

|Chuang75| Chuang, Y.-K,, Schwerdtfeger, K.: Equations for 
the Calculation of Gravity Segregation in Killed Steel. 
IAXSAETZE ZUR BERECHNUNG DER SCHWERE­
SEIGERUNG VOX BERUHIGTEM STAHL. |. Arch, 
Eisenhuettenwes. (1975) vol. 46 (5), pp. 303-310.

|Ciobanas07a| Ciobanas, A, L, Fautrelle, Ensemble averaged mul­
tiphase Eulerian model for columnar/equiaxed solidifica­
tion of a binary alloy: I, The mathematical model. Jour­
nal of Physics D: Applied Physics (2007) vol. 40, pp. 
3733-3762.

|Ciobanas07b| Ciobanas, A, L, Fautrelle, Ensemble averaged mul­
tiphase Eulerian model for columnar/equiaxed solidifica­
tion of a binary alloy: II, Simulation of the columnar-to- 
equiaxed transition (GET), Journal of Physics D: Applied 
Physics (2007) vol. 40, pp. 4310-4336.

|Combeau96| Combeau, H,, Drezet, J. M., Mo, A,, Rappaz, M.:
Modelling of microsegregation in maerosegregation com­
putations, Metallurgical and Materials Transactions A 
(1996) vol. 27 A, pp. 2314-2327.

|Davis94| Davis, J. R. (ed.): ASM Specialty Handbook: Stainless 
Steels, ASM International (1994),

|DeBoor94| DeBoor, C.: A Practical Guide to Splines, Springer Ver­
lag (1994).

|denHartog75| den Hartog, H, W., Rabenberg, J, M,, Pesch, R,:
Models for Maerosegregation in Rimmed and Semikilled 
Steel Ingots, Mathematical Process Models in Iron and 
Steelmaking, Met. Soe. Book (1975) vol. 158, pp. 200­
212.

195



|Devillers88| Devillers, L., Kaplan, D., Jansen, J, P,: H, 
A, Z, Toughness: Metallurgical and Mechanical
Points of View. |ASPECTS METALLURGIQUES ET 
MECAXIQUES DE LA TEXACITE DES ZOXES AF- 
FECTEES PAR LA CHALEUR.|. Revue de Metallurgie. 
Cahiers D Informations Techniques (1988) vol. 85 (3), 
pp. 267-282.

|DoreOO| Dore, X., Combeau, H., Rappaz, M.: Modelling of mi­
crosegregation in ternary alloys: Application to the solid­
ification of Al-Mg-Si. Acta Materialia (2000) vol. 48 (15), 
pp. 3951-3962.

|DuO7| Du, Q., Eskin, D. G., Katgerman, L.: Modeling 
Maerosegregation during direct-chill casting of multicom­
ponent aluminium alloys. Metallurgical and Materials 
Transactions A: Physical Metallurgy and Materials Sci­
ence (2007) vol. 38 (1), pp. 180-189.

|DuPont06| DuPont, J. X.: Mathematical Modeling of Solidification 
Paths in Ternary alloys: Limiting Cases of Solute Re­
distribution. Metallurgical and Materials Transactions A 
(2006) vol. 37 A, pp. 1937-1947.

|Ebneth74| Ebneth, G., Haumann, W., Ruettiger, K., Oeters, 
F.: Investigations of Solidification in the Core
of Killed Steel Ingots. |UXTERSUCHUXGEX UE- 
BER DIE ERSTARRUXG IM KERX BERUHIGTER 
STAHLBLOECKE.|. Arch. Eisenhuettenwes. (1974) 
vol. 45 (6), pp. 353-359.

|E1-Mahallawy88| El-Mahallawy, X. A., Assar, A.-w. M.: Metal-Mould 
heat transfer coefficient using end-chill experiments. 
Journal of Materials Science Letters (1988) vol. 7, pp. 
205-208.

196



|Eriksson711

|Eriksson90|

|ErsavinO5|

|Felicelli98|

|FengO3|

|Fjeld08a|

|Fjeld08b|

|Flemings76|

Eriksson, G,: Thermodynamic Studies of High Temper­
ature Equilibria, Acta Chem. Scand. (1971) vol, 25, pp, 
2651-2658.

Eriksson, G,, Hack, K,: ChemSage - a Computer Pro­
gram for the Calculation of Complex Chemical Equilibria, 
Metallurgical Trans. B (1990) vol, 21B, pp, 1013-1023,

Ersayin, S,: A Purpose Oriented Magnetic Separator: 
Skimmer, Tech, Rep, DE-FG26-03XT41933, University of 
Minnesota Duluth, Natural Resources Research Institute, 
Coleraine Minerals Research Laboratory, PO Box 188, 
One Gaylev Avenue, Coleraine, Minnesota 55722, USA 
(2005).

Felicelli, S, D,, Heinrich, J, C,, Poirier, D, R,: Fi­
nite element analysis of directional solidification of mul­
ticomponent alloys. International Journal for Numerical 
Methods in Fluids (1998) vol, 27 (1-4), pp, 207-227,

Feng, Y, H,, Zhang, X, X,, Xu, Z, B,, Wang, X, H,: 
Mathematical model for turbulent flow, heat transfer, 
and solidification. Heat Transfer - Asian Research (2003) 
vol. 32 (7), pp. 582-592.

Fjeld, A,, Ludwig, A,: Flow Patterns and Re-melting 
During the Filling of a Large Composite Casting, Inter­
national Journal of Cast Metals Research (2008) , pp, 
111-114.

Fjeld, A,, Ludwig, A,: Modeling and Simulation of a 
Large Composite Casting, in EPD Congress 2008 Pro­
ceedings, The Minerals, Metals, and Materials Society, 
pp. 281-292.

Flemings, M. C.: PRINCIPLES OF CONTROL 
OF SOUNDNESS AND HOMOGENEITY OF LARGE

197



IFLU01I

|FLUO6|

|forMetals93|

|Fredriksson78|

|GalassiOl|

|GangulvO7|

|GramliehOO|

|GrasserO8|

INGOTS, Scandinavian Journal of Metallurgy (1976) 
vol, 5 (1), pp, 1-15,

FLUENT 6.0 User’s Guide, FLUENT Ine. (2001).

FLUENT 6.3 UDF Manual, FLUENT Ine. (2006).

for Metals, A, S,: ASM Metals Reference Book, ASM 
International (1993),

Fredriksson, H,, Nilsson, S, O,: ON THE FORMA­
TION OF MACROSEGREGATIONS IN INGOTS. Met­
allurgical and Materials Transactions B (1978) vol, 9 
B (1), pp. 111-120.

Galassi, M,, Davies, J,, Theiler, J,, Gough, B,, Jung- 
man, G,, Booth, M,, Rossi, F,: GNU Scientific Li­
brary Reference Manual, Network Theory Ltd, (2001), 
also available from http://www.gnu.org/software/gsl,

Ganguly, S,, Chakraborty, S,: A generalized enthalpy- 
based macro model for ternary alloy solidifieation simu­
lations, Numerical Heat Transfer, Part B: Fundamentals 
(2007) vol. 51 (3), pp. 293-313.

Grämlich, G,, Werner, W.: Numerische Mathematik 
mit MATLAB, dpunkt.verlag GmbH (2000),

Grasser, M,, Mayer, F,, Ishmurzin, A,, Könözsy, L,, 
Ludwig, A,: Numerical modeling of the effect of global 
transport phenomena on the mierostrueture formation, 
Berg- und Hüttenmännische. Monatshefte (2008) vol, 153 
(7), pp, 253-256, submitted.

|Grav56| Gray, B,: J. Iron Steel Inst. (1956) vol, 182, pp, 366-374,

|Gruber-PretzlerO6| Gruber-Pretzler, M,, Mayer, F,, Wu, M,, Ludwig, 
A,, Kuhn, A,, Riedle, J,: Modelling of Maerosegre- 
gations in DC Casting of Bronze, in 11th Modeling of

198

http://www.gnu.org/software/gsl


|Gruber-Pretzler07a|

| Gruber-Pretzler07b|

| Gruber-Pretzler08|

|GruppO4|

|Gu99|

| Gulliver 131

|Gulliver22|

|HanO7|

Casting, Welding and Advanced Solidification Processes 
(McWASP XI), Opio, France, pp, 799-806,

Gruber-Pretzler, M., Könözsy, L,, Wu, M., Ludwig, 
A,, Mathiesen, R, H,, Schaffer, P,, Arnberg, L,: Xu­
merical Study of the Impact of Gravity and Maragoni 
Force on the Droplet Distribution of Hvpermonotectic 
AIBi Alloys, in Proceedings of the 5th Decennial Inter­
national Conference on Solidification Processing (SP07), 
July 23-25, 2007, Sheffield, UK,, ed, H, Jones, Tj inter­
national Ltd, pp, 249-253,

Gruber-Pretzler, M., Mayer, F,, Wu, M., Ludwig, 
A,, Riedle, J,, U., H,: Macrosegregation in Continuous 
Casting of Phosphorus Bronze Impact on Properties and 
Modeling of Formation, in Proceedings of COM/Cu2007, 
Toronto, Canada, vol, 1, pp, 265-279,

Gruber-Pretzler, M,: A Study on Macrosegregation in 
Continuous Casting of Bronze, Ph.D, thesis, University 
of Leoben (2008),

Grupp, F,, Grupp, F,: Matlab 7 für Ingenieure, Olden- 
bourg Verlag (2004),

Gu, J, P,, Beckermann, C,: Simulation of Convection 
and Macrosegregation in a Large Steel Ingot, Metallurgi­
cal and Materials Transactions (1999) vol, 30A, pp, 1357­
1366.

Gulliver, G, H,: The Quantitative Effect of Rapid Cool­
ing upon the Constitution of Binary Alloys, Journal of 
the Institute of Metals (1913) vol, 9, pp, 120-157, 

Gulliver, G, H,: Metallic Alloys, Griffin, London (1922),

Han, Z, Q,, Lewis, R, W., Liu, B, C,: Modelling of the 
thermosolutal convection and macrosegregation in the so­
lidification of an Fe-C binary alloy. International Journal

199



of Numerical Methods for Heat and Fluid Flow (2007) 
vol. 17 (3), pp. 313-321.

|Hardin99| Hardin, R. A., Beckermann, C.: Heat transfer and so­
lidification modeling in the continuous casting of multi­
component steels. American Society of Mechanical En­
gineers, Heat Transfer Division, (Publication) HTD 3f7 
(1999) , pp. 9-25.

|Hillert99| Hillert, M., Höglund, L., Schalin, M.: Role of back­
diffusion studied by computer simulation. Metallurgical 
and Material Transactions A: Physical Metallurgy and 
Materials Science (1999) vol. 30 (6), pp. 1635-1641.

|Hirt81| Hirt, C. W., Nichols, B. D.: Volume Of Fluid (VOF) 
Method for the Dynamics of Free Boundaries. J. Comput. 
Phys. (1981) vol. 39 (1), pp. 201-225.

|Hultgren29| Hultgren, A.: Journal of the Iron and Steel Institute 
(1929) vol. 120, pp. 69-125.

|Hultgren73| Hultgren, A.: A AND V SEGREGATION IN KILLED 
STEEL INGOTS. Scandinavian Journal of Metallurgy 
(1973) vol. 2 (5), pp. 217-227.

|Iida93| Iida, T., Guthrie, R. I. L.: The Physical Properties of 
Liquid Metals, Clarendon Press, Oxford, United King­
dom (1993).

|IshmurzinO8| Ishmurzin, A., Gruber-Pretzler, M., Mayer, F., Wu, 
M., Ludwig, A.: Multiphase/Multicomponent Modeling 
of Solidification Processes: Coupling Solidification Kinet­
ics with Thermodynamics. International Journal of Ma­
terials Research (2008) vol. 6, pp. 618-625.

|Javurek05| Javurek, M., Gittler, P., Rössler, R., Kaufmann, B., 
Preßlinger, H.: Simulation of Nonmetallic Inlusions in

200



a Continuous Casting Strand, -steel research int. (2005) 
vol. 76 (1), pp. 64-70.

|Jer77| A Guide to Solidifieation of Steels, Jernkontoret (1977),

|Jie05| Jie, W. Q,, Zhang, R,, He, Z.: Thermodynamic De­
scription of Multi-Component Multi-Phase Alloys and its 
Application to the Solidification Process. Materials Sci­
ence. and Engineering A (2005) vol, 413-414, pp, 497-503,

|KönözsyO7| Könözsy, L,, Mayer, F,, Ishmurzin, A,, Kharicha, 
A,, Wu, M,, Ludwig, A,, Tänzer, R,, Schützenhöfer,
W.: Parameter study on the formation of macrosegraga- 
tion in a large steel ingot, in 2nd International Conference 
on Simulation and Modeling of Metallurgical Processes in 
Steelmaking STEELSIM 2007, Graz, Austria, ed. A, Lud­
wig, Knittelfeld: Gutenberghaus GmbH, pp, 126-132,

|KönözsyO8| Könözsy, L,: Results of a parameter study (Columnar- 
to-Equiaxed Transition) 21 april 2008 Chair for Simula­
tion and Modeling of Metallurgical Processes, University 
of Leoben (2008), unpublished work,

|Kohn67| Kohn, A,: The Solidification of Metals, 110, The Iron 
and Steel Institure (1967),

|Kolev02| Kolev, X,: Multiphase Flow Dynamics 1,2,, Springer 
Berlin (2002).

|Kounchev01| Kounchev, O,: Multivariate Polysplines: Applications 
to Numerical and Wavelet Analysis, Academic Press 
(2001).

|Kowalski94| Kowalski, M,, Spencer, P, J,, Granat, K,, 
Drziniek, H,, Lugscheider, E,: Phase Relations 
in the C-Cr-Fe System in the Vicinity of the 
/Liquid—bee—M23C6—M7C3/ Invariant Equilibrium- 
Experimental Determinations and Thermodynamic Mod­
elling, Z. Metallkd. (1994) vol, 85, pp, 359-364,

201



|Kraft97| Kraft, T,, Rettenmayr, M., Exner, H, E,: Modeling of 
Dendritic Solidification for Optimizing Casting and Mi­
erostrueture Parameters, Progress in Materials Science 
(1997) vol. 42 (1-4), pp. 277-286.

|Kubieek75| Kubicek, P.: HETERODIFFUSIOX OF CHROMIUM 
AND COBALT IX LIQUID IROX. Czechoslovak Journal 
of Physics (1975) vol. 25 (5), pp. 535-541,

|Kubieek76| Kubicek, P.: HETERODIFFUSIOX OF Cr IX 
MOLTEX Fe IX TEMPERATURE RAXGE 1800 
TO 1970 K, Czeehoslovak Journal of Physics (1976) 
vol. 26 (3), pp. 300-305.

|Kundrat84| Kundrat, D, M,, Chochol, M,, Eliott, J. F,: Phase 
relationships in the Fe-Cr-C system at solidification tem­
peratures, Metallurgical Transactions B (1984) vol. 15 B, 
pp. 663-676.

|Kurz98| Kurz, W., Fisher, D, J,: Fundamentals of Solidification, 
Trans Tech Publications Ltd (1998).

|Kvasov00| Kvasov, B, L: Methods of Shape-Preserving Spline Ap­
proximation, World Scientific Publishing Co. Pte, Ltd, 
(2000).

|Lan60| Landolt-Börnstein Xumerieal Data in Science and Tech­
nology, Group IV: Physical Chemistry, Springer, 6th edn, 
(1960).

|Larouche07| Larouche, D,: Computation of solidification paths in 
multiphase alloys with back-diffusion, Calphad (2007) 
vol. 31 (4), pp. 490-504.

|Lee92| Lee, B,: On The Stability of Cr Carbides, Calphad: 
Comput. Coupling Phase Diagrams Thermoehem. (1992) 
vol. 16, pp. 121-149.

202



|LeeO4| Lee, P, D,, Chirazi, A,, Atwood, R. C., Wang, W.: 
Multiscale Modelling of Solidification Microstructures, 
Including Microsegregation and Microporosity, in an Al- 
Si-Cu Alloy, Materials Science, and Engineering A (2004) 
vol. 365, pp. 57-65.

|LeeO7| Lee, P, D,, Wang, J, S.: Simulating tortuous 3D mor­
phology of microporosity formed during solidification of 
Al-Si-Cu alloys. International Journal of Cast Metals Re­
search (2007) vol. 20 (3), pp. 151-158.

|Lesoult05| Lesoult, G.: Macrosegregation in steel strands and in­
gots: Characterisation, formation and consequences. Ma­
terials Science, and Engineering A (2005) vol. 413-414, 
pp. 19-29.

|LudwigO2| Ludwig, A,, Wu, M,: Modeling of Globular Equiaxed 
Solidification with a Two-Phase Approach, Metallurgical 
and Materials Transactions A (2002) vol. 33A, pp, 3673­
3683.

|Ludwig05a| Ludwig, A,, Gruber-Pretzler, M,, Mayer, F,, Ish- 
murzin, A,, Wu, M,: A Way of Coupling Ternary Phase 
Diagram Information with Multiphase Solidification Sim­
ulations, Mat. Sei. Eng. A (2005) vol. 413-414, pp, 485­
489.

|Ludwig05b| Ludwig, A,, Wu, M,: Modeling the columnar-to- 
equiaxed transition with a three phase Eulerian approach. 
Material Science, and Engineering A (2005) vol. 413-314, 
pp. 109-114.

|Ludwig06a| Ludwig, A,, Gruber-Pretzler, M,, Wu, M,, Kuhn, A,, 
Riedle, J.: About the Formation of Macrosegregations in 
Continuous Casting of Sn-Bronze, Fluid Dynamics and 
Materials Processing (2006) vol. 1 (4), pp, 285-300.

203



|Ludwig06b| Ludwig, A,, Wu, M., Abondano, L,, Ratke, L,:
Gravity-Induced Convection during Directional Solidifi­
cation of Hypermonotectic Alloys, Material Science Fo­
rum (2006) vol. 508-509, pp. 193-198.

|LudwigO7| Ludwig, A,, Ishmurzin, A,, Gruber-Pretzler, M., 
Mayer, F,, Wu, M., Tänzer, IL, Schützenhöfer, W.:
How To Combine Ternary Phase Diagram Information 
with Multiphase Solidification Simulations, in Proceed­
ings of the 5th Decenial International Conference on So­
lidification Processing, Sheffield, UK, pp, 493-496.

|MAG05| MAGMA Giessereitechnologie GmbH, Kackertstrasse 11 
D-52072 Aachen Germany: MAGMASOFT 4.2 Manual 
Parts 1 and 2 (2005).

|Maplesoft05| Maplesoft: Maple User Manual, Maplesoft (2005).

|Marthur97| Marthur, S. IL, Murthy, J, A pressure-based 
method for unstructured meshes. Numerical Heat Trans­
fer, Part B: Fundamentals (1997) vol. 31 (2), pp. 195-215.

|MayerO7| Mayer, F,, Gruber-Pretzler, M,, Könözsy, L,, Wu, 
M,, Ludwig, A,: Numerical Study of the Shrinkage Flow 
Induced Maerosegregation in Continuous Casting of Steel, 
in 2nd International Conference on Simulation and Mod­
eling of Metallurgical Processes in Steelmaking STEEL­
SIM 2007, Graz, Austria, ed. A, Ludwig, Knittelfeld: 
Gutenberghaus GmbH, pp, 126-132,

|More79| More, J., Cosnard, M,: Numerical Solution of Nonlin­
ear Equations, ACM Transactions on Mathematical Soft­
ware (1979) vol. 5 (1), pp. 64-85.

|More81| More, J., Garbow, B,, Hillstrom, K,: Testing Uncon­
strained Optimization Software, ACM Transactions on 
Mathematical Software (1981) vol. 7 (1), pp. 17-41,

204



|XadellaO8|

|Xakai79|

|Xi91|

|Xishida86|

|Ohnaka86|

|01dfield66|

|Patankar80|

|PfeilerO5|

Nadella, R,, Eskin, D, G,, Du, Q,, Katgerman, L.: 
Maerosegregation in direct-chill easting of aluminium al­
loys, Progress in Materials Seie.nee. (2008) vol, 53 (3), pp, 
421-480.

Nakai, ¥,, Kurahashi, H,, Emi, T,, Haida, O,: DE-
VELOPMEXT OF STEELS RESISTAXT TO HYDRO- 
GEX IXDUCED CRACKIXG IX WET HYDROGEX 
SULFIDE EXVIROXMEXT. Transactions of the Iron 
and Steel Institute, of Japan (1979) vol, 19 (7), pp, 401­
410.

Ni, J,, Beckermann, C,: A Volume-Averaged Two- 
Phase Model for Transport Phenomena During Solidifica­
tion. Metallurgical and Materials Transaetions B (1991) 
vol. 22 (3), pp. 349-361.

Nishida, Ad, Droste, W., Engler, S,: The Air-Gap For­
mation Process at the Casting-Mold Interface and the 
Heat Transfer Mechanism through the Gap, Metallurgi­
eal Transaetions B (1986) vol, 17B, pp, 833-844,

Ohnaka, L: State of the Art of Computer Simulation 
of Casting and Solidification Processes, Les Editions de 
Physique, Adis, France (1986) pp, 211-223,

Oldfield, W.: A Quantitative Approach to Casting So­
lidification: Freezing of Cast Iron, Transaction of ASM 
(1966) vol. 59, pp. 945-961.

Patankar, S, Ad: Xumerieal Heat Transfer and Fluid 
Flow, Hemisphere Publishing Corporation (1980),

Pfeiler, C,, Wu, M,, Ludwig, A,: Influence of argon 
gas bubbles and non-metallie inclusions on the flow be­
havior in steel continuous easting. Materials Seie.nee. & 
Engineering A (2005) vol, 413-414, pp, 115-120,

205



|Pollack88| Pollack: Materials Science and Metallurgy, Prentice- 
Hall, 4th edn, (1988),

|Powell70a| Powell, M, J, D,: A Fortran Subroutine for Solving 
Systems of Nonlinear Algebraic Equations, Gordon and 
Breach, London, UK, chap, 7 (1970) pp, 115-161,

|Powell70b| Powell, M, J, D,: Numerical Methods for Nonlinear 
Equations, Gordon and Breach, London, UK, chap, A 
hybrid method for nonlinear equations, (1970) ,

|QiuO4| Qiu, S,, Liu, H,, Peng, S,, Gan, ¥,: Numerical analy­
sis of thermal-driven buoyancy flow in the steady macro­
solidification process of a continuous slab caster, ISIJ In­
ternational (2004) vol, 44 (8), pp, 1376-1383,

|Reddy97| Reddy, A, V., Beckermann, C,: Modeling of 
macrosegregation due to thermosolutal convection and 
contraction-driven flow in direct chill continuous cast­
ing of an Ai-Cu round ingot. Metallurgical and Materials 
Transactions B: Process Metallurgy and Materials Pro­
cessing Science. (1997) vol, 28 (3), pp, 479-489,

|Rhie83| Rhie, C, M,, Chow, W. L,: Numerical Study of the 
Turbulent Flow Past an Airfoil with Trailing-Edge Sepa­
ration, AIAA Journal (1983) vol, 21 (11), pp. 1525-1532,

|Richter83| Richter, F,: Physikalischen Eigenschaften von Stählen 
und ihre Temperaturabhängigkeit, Stahleisen Sonder­
berichte (1983) vol, Heft 10,

|Richter91| Richter, F,: Die Physikalischen Eigenschaften von Met­
allischen Werkstoffen", METALL (1991) vol, 45 (6), p, 
582.

|Rogl07| Rogl, P,: Non-Ferrous Metal Systems, Part 3, Springer 
Berlin Heidelberg, vol, 11C3 of Landolt-Börnstein­
Group IV Physical Chemistry, chap, Cu-P-Sn (Copper- 
Phosphorus-Tin) Non-Ferrous Metal Ternary Systems,

206



Selected Soldering and Brazing Systems: Phase diagrams, 
Crystallographic and Thermodyname Data (2007) pp, 
355-367.

|Roques60| Roques, C,, Martin, P., Dubois, C,, Bastien, P.: Rev. 
Metall. (1960) vol. 57, pp. 1091-1103.

|Rousset95| Rousset, P,, Rappaz, M., Hannart, B.: Modeling of 
inverse segregation and porosity formation in direction­
ally solidified aluminum alloys. Metallurgical and Mate­
rials Transactions A: Physical Metallurgy and Materials 
Science (1995) vol. 26 A (9), pp. 2349-2358.

|Rudin76| Rudin, W.: Principles of mathematical analysis, Interna­
tional series in pure and applied mathematics, McGraw- 
Hill, Ine., 3rd edn. (1976),

|Sahm84| Sahm, P. R., Hansen, P. X.: Numerical Sumulation 
and Modelling of Casting and Solidifieation Processes for 
Foundry and Cast-House, CIATF (1984).

|Saito59| Saito, T., Kawai, ¥., Maruya, K., Maki, M.: Dif­
fusion of Some Alloying Elements in Liquid Iron, Tech. 
Rep. 112, The Researeh Institute of Mineral Dressing and 
Metallurgy (1959),

|Samoilovieh83| Samoilovich, Y. A., Yasnitzkii, Kabakov, Z. K.:
Mathematical simulation of thermogravitational convec­
tion in solidifieation of liquid steel. Journal of Engineering 
Physics and Thermophysics (1983) vol, 44 (3), pp, 326­
333, translated from Inzhenerno-Fizieheskii Zhurnal, Vol. 
44, Xo. 3, pp. 465-473, March, 1983.

|Sanyal05| Sanyal, D., Ramachandra Rao, P,, Gupta, O, P,:
Modelling of free boundary problems for phase change 
with diffuse interfaces. Mathematical Problems in Engi­
neering (2005) vol. 2005 (3), pp. 309-324.

207



|Scheil42| Scheil, E.: Bemerkungen zur Schichtkrstallbildung. 
Zeitschrift für Metallkunde (1942) vol, 34, pp, 70-72,

|Schneider95a|

|Schneider95b|

| Schneider 9 5c |

|SIX05|

|SIX06|

|Sopousek94|

|Steinberg89|

|Sundman85|

Schneider, M. C,: Modeling the Solidification of Mul­
ticomponent Alloys with Convection, Ph.D, thesis, The 
University of Iowa (1995),

Schneider, M, C,, Beckermann, C,: Formation 
of Maerosegregation by Multicomponent Thermosolutal 
Convection During the Solidification of Steel, Metallurgi­
eal and Materials Transaetions A (1995) vol, 26 A, pp, 
2373-2388.

Schneider, M, C,, Beckermann, C,: A Xumeri­
eal Study of the Combined Effects of Microsegrega­
tion, Mushy Zone Permeability and Flow, Caused by 
Volume Contraction and Thermosolutal Convection, on 
Maerosegregation and Eutectic Formation in Binary Al­
loy Solidification, International Journal of Heat and Mass 
Transfer (1995) vol, 38, pp, 3455-3473,

SIXTEF ICT, Applied Mathematics: SISL The SIX- 
TEF Spline Library Version 4,4 Reference Manual (2005), 
available from http://www.sintef.no/sisl,

SIXTEF ICT, Applied Mathematics: SISL The SIXTEF 
Spline Library Version 4,4 User’s Guide (2006), available 
from http://www.sintef.no/sisl,

Sopousek, J,, Vrestal, J,: Phase Equilibria in the Fe- 
Cr-Xi and Fe-Cr-C Systems, Z. Metallkd. (1994) vol, 85, 
pp, 111-115,

Steinberg, A, S,: A report from the alloys world, Xauka, 
Moscow (1989), in Russian, "Reportazh iz mira splavov",

Sundman, B,, Jansson, B,, Andersson, J, O,: The
Thermo-Calc Databank System, Calphad (1985) vol, 9, 
pp. 153-190.

208

http://www.sintef.no/sisl
http://www.sintef.no/sisl


|TanzcrO8| Tänzer, R,, Schützenhöfer, W., Reiter, G,, Fauland, 
H.-P., Könözsy, L,, Ishmurzin, A,, Wu, M., Ludwig, 
A,: Validation of a Multiphase Model for the Macroseg­
regations and Primary Structure of High Grade Steel In­
gots, Metallurgical and Materials Transactions B (2008) 
vol. 40 (3), pp. 305-311.

|The06a| Thermo-Cale Software AB, Stockholm Technology Park, 
Björnnäsvägen 21 SE-113 47 Stockholm, Sweden: TCC 
Thermo-Calc Software User’s Guide Version R (2006), 
copyright (c) 1995-2006 Foundation of Computational 
Thermodynamics, Stockholm, Sweden,

|The06b| Thermo-Calc Software AB, Stockholm Technology Park, 
Björnnäsvägen 21 SE-113 47 Stockholm, Sweden: Ther­
modynamic Calculation Interface TC-API Version 4,0 
Programmer’s Guide and Examples (2006), copyright (c) 
1995-2006 Foundation of Computational Thermodynam­
ics, Stockholm, Sweden,

|Thomas90| Thomas, B, G,, Mika, L,, Najjar, F,: Simulation of 
Fluid Flow inside a Continuous Slab-Casting Machine, 
Metallurgical and Materials Transactions B (1990) vol, 
21B, pp. 387-400.

|Thomas94| Thomas, B, G,, Huang, X,, Sussman, R, C,: Sim­
ulation of argon gas flow effects in a continuous slab 
caster. Metallurgical and Materials Transactions B: Pro­
cess Metallurgy and Materials Processing Science. (1994) 
vol. 25B (4), pp. 527-547.

|Thomas01| Thomas, B, G,, Zhang, L,: Mathematical modeling of 
fluid flow in continuous casting, ISIJ International (2001) 
vol. 41, No. 10, pp. 1181-1193.

|ThuinetO4| Thuinet, L,, Combeau, H,: Prediction of macroseg­
regation during the solidification involving a peritectic

209



transformation for multicomponent steels. Journal of Ma­
terials Science (2004) vol, 39, pp, 7213-7219,

|ThuinetO6| Thuinet, L,, Lee, P, D,: CAFD model for solidification 
of multicomponent and multiphase alloys, in Modeling of 
Casting, Welding and Advanced Solidification Processes 
- XI 1, pp, 457-464,

|Trovant00| Trovant, M., Argyropoulos: Finding Boundary Con­
ditions: A Coupling Strategy for the Modeling of Metal 
Casting Process: Part I, Experimental Study and Corre­
lation Development, Metallurgieal and Materials Trans­
aetions B (2000) vol, 31B, pp, 75-86,

|TurkeliO6| Turkeli, A,, Kirkwood, D, H,: Back diffusion of man­
ganese during solidification of carbon steels. Materials 
Science Forum 508 (2006) , pp, 443-448,

|VandenBoomgaard72| Van den Boomgaard, J,, Wolff, L, R,: Growth and 
Properties of the Monovariant (Fe,Cr)-(Cr,Fe)7C3 Eutec­
tic System, Journal of Crystal Growth (1972) vol, 15, pp, 
11-19.

|Vasquez00| Vasquez, S, A,, Ivanov, V. A,: A Phase Coupled 
Method for Solving Multiphase Problems on Unstruc­
tured Meshes, in ASME FEDSM’00: ASME 2000 Fluids 
Engineering Division Summer Meeting,

|Voller87a| Voller, V. R,, Brent, A, D,, Reid, K, J,: Computational 
modeling framework for analysis of metallurgical solidific­
tion processes and pheonomena, Tech, rep,, Conference 
for Solidification Processing, Ranmoor House, Sheffield, 
UK (1987).

|Voller87b| Voller, V. R,, Prakash, C,: A fixed grid numerical mod­
elling methodology for convection-diffusion mushy region 
phase-change problems, Int. J. Heat and Mass Transfer 
(1987) vol. 30 (8), pp. 1709-1719.

210



|Voller91|

|VreemanOOa|

|VreemanOOb|

|WangO3|

|Weiss99|

|Westgren28|

|Whitc58|

|WuO3|

Voller, V, R,, Swaminathan, C, R,: General source- 
based method for solidification phase change. Numerical 
Heat Transfer, Part B (1991) vol. 19, pp. 175-189.

Vreeman, C. J., Incrop era, F, P,: The effect of free­
floating dendrites and convection on macrosegregation in 
direct chill cast aluminum alloys Part II: Predictions for 
Al-Cu and Al-Mg alloys. International Journal of Heat 
and Mass Transfer (2000) vol. 43 (5), pp. 687-704,

Vreeman, C. J., Krane, M. J. M., Incropera, F, P,:
The effect of free-floating dendrites and convection on 
macrosegragation in direct chill cast aluminum alloys 
Part I: Model development. International Journal of Heat 
and Mass Transfer (2000) vol, 43 (5), pp, 677-686,

Wang, ¥,, Sridhar, S,: Ironmaking and Steelmaking 
(2003) vol. 30, p. 223.

Weiss, J, M., Maruszewski, J, P,, Smith, W. A,: 
Implicit Solution of Preconditioned Xavier-Stokes Equa­
tions Using Algebraic Multigrid, AIAA Journal (1999) 
vol. 37 (1), pp. 29-36.

Westgren, A,, Phragmen, G,, Negresco, T,: On the 
Structure of the Iron-Chromium-Carbon System, J. Iron 
Steel Inst. (1928) vol, 117, pp, 383-406,

White, W. B,, Johnson, S, M,, Dantzig, G, B,: Chem­
ical Equilibrium in Complex Mixtures, J. Chem. Phys. 
(1958) vol. 28, pp. 751-755.

Wu, M,, Ludwig, A,, Bührig-Polaczek, A,, Fehlbier, 
M,, Sahm, P, R,: Influence of Convection and Grain 
Movement on Globular Equiaxed Solidification, Interna­
tional Journal of Heat and Mass Transfer (2003) vol, 46, 
pp. 2819-2832.

211



|WuO6| Wu, M., Ludwig, A,: A Three-Phase Model for mixed 
Columnar-Equiaxed Solidification. Metallurgical and Ma­
terials Transaetions A: Physical Metallurgy and Materials 
Science (2006) vol. 37 (5), pp. 1613-1631.

|WuO7| Wu, M., Ludwig, A.: Using a Three-Phase Determinis­
tic Model for the Columnar-to-Equiaxed Transition. Met­
allurgieal and Materials Transaetions A: Physical Met­
allurgy and Materials Science. (2007) vol. 38 A (7), pp. 
1465-1475.

|YuO2| Yu, K.-O. (ed.): Modeling for Casting and Solidification 
Processing, Marcel Dekker, Inc. (2002).

|Yuan05| Yuan, Q., Thomas, B. G.: Transport and Entrapment 
of Particles in Continuous Casting of Steel, in 3rd Int. 
Cong. Sei. and Tech. Steelmaking Conf. Proceedings, 
AISTeeh, Warrendale, PA, pp. 745-762.

| Yuji99| Yuji, M., Thomas, B. G.: Modeling of inclusion removal 
in a tundish. Metallurgieal and Materials Transaetions 
(1999) vol. 30B, pp. 639-654.

|Zhang00| Zhang, L., Taniguchi, S., Cai, K.: Fluid flow and inclu­
sion removal in continous casting tundish. Metallurgieal 
and Materials Transaetions (2000) vol. 31B, pp. 253-266.

212


