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Abstract

The mechanical behavior of polymers depends on time, stress, strain and other influences such
as temperature or moisture. Nonlinear behavior can be observed at strains well below 1%, but
nevertheless linear viscoelastic behaviour is frequently assumed in the description of time-dependent
mechanical properties. However, the nonlinear behavior is typically such that increased stress leads
to an increased compliance, unless the deformation is large enough to introduce strong orientation.
Hence, when linear viscoelasticity is assumed for e.g. the design of polymer products, the actual
deformation at a given load situation may be much larger than anticipated by the linear viscoelastic
predicition. In some cases, in addition to the viscoelastic deformation, a load history can cause
irreversible deformation. As this deformation depends not only on the applied stress or strain,
but on the entire load history, it is referred to as viscoplasticity. For comprehensive modeling
of the mechanical behavior of a polymer and the simulation of polymer components, a thorough
understanding of the viscoelasticity and viscoplasticity is required. The aim of this research is thus
the investigation of experimental and theoretical methods for the characterization and modeling of
nonlinear viscoelastic viscoplastic behavior.

Despite its limitations, the theory of linear viscoelasticity is useful for the characterization of time-
dependent behavior at low strains or stresses, e.g. when the effect of temperature on the relaxation
processes is investigated. The common practice in determining the Prony series parameters for e.g.
the uniaxial relaxation modulus is to assume that instantaneous loading to a constant strain was
performed. This greatly simplifies the solution of the constitutive equation of linear viscoelasticity
but at the expense of a substantial amount of experimental data, which must be discarded to avoid
transient effects of the finite loading rate. The relaxation modulus values are determined for each
measured point and subsequently a Prony series is determined by fitting of calculated values. This
is a very inefficient procedure and improved methods were developed for special loading situations
such as constant strain rate loading. The specific assumptions on the loading were introduced in
order to simplify the solving of the constitutive equation, but it is experimentally difficult to perform
such idealized load histories. Therefore, a more general approach was chosen. A new method based
on cubic splines was introduced. It provides an accurate model for the stress or strain and allows
for an analytic solution of the constitutive equation in combination with a Prony series model
for the viscoelastic material function. No data must be discarded due to simplifying assumptions
and it was shown that therefore up to three additional decades of the measurement time can be
used. The Prony series is directly determined by fitting the entire set of data to the solution of
the constitutive equation, thus avoiding a calculation of point values of the viscoelastic material
function. This approach proved especially useful in the determination of the Prony series for the
time-dependent Poisson’s ratio, for which a direct calculation assuming instantaneous loading is
prone to large scatter.
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The conducted tests showed that the applicability of linear viscoelasticity is limited to very low
strains and stresses. Nonlinear viscoelastic effects were observed e.g. already at strains around
0.6% in stress relaxation. This shows the necessity of a nonlinear viscoelastic model but before a
suitable model can be determined, the limits of reversible loading must be known. If the irreversible
deformation is neglected, a nonlinear viscoelastic model that is determined by (partially) irreversible
loadings can be expected to fail in general loading situations, e.g. repeated testing where viscoplastic
strains accumulate. Hence, three experimental techniques were applied to gain insight into the
viscoplastic deformation and the limit of reversible loading.

First, a thermomechanical analysis was performed. An experimental setup for very precise and
accurate temperature measurements during mechanical testing was developed. The description of
heat release or absorption due to elastic behavior follows from the thermodynamic theory. Heat
released due to viscoelastic and viscoplastic effects leads to a deviation from the theoretical elas-
tic behavior. The determination of the deformation heat can thus provide information on these
processes. It was shown that for the interpretation of the experimental data, the temperature-
dependence of the elastic properties must be considered but at the present state of research, an
unambiguous distinction between the viscoelastic, viscoplastic and elastic contributions could not
be achieved.

Second, a quantitative analysis of the stress whitening during uniaxial tensile testing was con-
ducted. The experiment was designed to allow for the simultaneous measurement of true strain and
stress whitening by means of digital image correlation. The stress whitening relates to cavitational
processes in the polymer: Light is scattered by cavities, increasing the opacity of the material.
The increase depends on the number and size of cavities and is manifested as increasing gray level
values in the digital pictures. Hence, the onset of cavitation could be determined by evaluating the
gray levels during tensile testing.

Third, strain recovery from uniaxial testing was measured to determine the viscoplastic strain
component for various load levels. The viscoplastic strain is the irrecoverable strain that is observed
after the completion of the recovery. In contrast to the stress whitening, the strain recovery is also
sensitive to non-cavitational plastic deformation. By the latter two methods it was shown that
irreversible deformation occurs below 4% strain in the uniaxial tensile tests. A more precise limit
could not be given due to the limited strain resolution of the digital image correlation.

The strain recovery data provides a good basis for modeling. The strain-controlled loading at
constant engineering strain rate is a complex load history, when the model is formulated with
stress being the independent variable. The strain range covers strains close to yield point and
thus nonlinear behavior is contained in the data. The stress-controlled recovery phase provides
further information on the time-dependence. The determination of residual strain characterizes
the evolution of plastic strain during constant strain rate loading. These data are used to define a
uniaxial Schapery-type nonlinear viscoelastic viscoplastic model. The constitutive equation of this
model is solved using an iterative scheme and the parameters are determined by fitting the solution
to the data from the conducted strain recovery tests. It was possible to achieve a good prediction
of the time-dependent behavior but it was also shown that the modeling of the viscoplastic strain
component has a strong effect on the viscoelastic parameter identification.
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Kurzfassung

Die mechanischen Eigenschaften von Kunststoffen hängen unter anderem von Zeit, Temperatur,
Spannung und Dehnung ab. In einem kleinen Dehnungs- oder Lastbereich liegt lineares Verhalten
vor und das mechanische Verhalten kann mit der Theorie der linearen Viskoelastizität beschrieben
werden. Experimente zeigen, daß nichtlineares Verhalten bei thermoplastischen Kunststoffen bere-
its bei Dehnungen um 0, 6% auftreten kann. Wenn beispielsweise die Daten von Kriechversuchen
bei verschiedenen Lasten im nichtlinearen Bereich linear viskoelastisch behandelt werden, findet
man, daß die Kriechnachgiebigkeit mit steigender Last zunimmt. Bei der Verwendung linear visko-
elastischer Gesetze in der Modellierung muss also damit gerechnet werden, daß die Deformation
unterschätzt wird. Abhängig von dem Lastverlauf kann es zusätzlich zu nichtlinearem Verhalten
auch zu irreversible Deformation kommen. Ähnlich wie die reversible Deformation hängt auch die
irreversible Deformation (Viskoplastizität) neben verschiedenen Prüfbedingungen vom gesamten
Lastverlauf ab. Eine genaue Modellierung des mechanischen Verhaltens setzt daher das Verständnis
der Viskoelastizität und der Viskoplastizität voraus. Das Ziel dieser Arbeit ist daher die Entwick-
lung experimenteller und theoretischer Methoden zur Charakterisierung und Modellierung nicht-
linear viskoelastisch-viskoplastischen Verhaltens.

Vermutlich aufgrund der Komplexität des nichtlinear viskoelastisch-viskoplastischen Verhaltens
wird trotz der stark eingeschränkten Gültigkeit oft lineare Viskoelastizität zur Beschreibung des
zeitabhängigen Verhaltens angenommen. Eine häufig verwendete Formulierung ist die sogenannte
Prony-Reihe, eine endliche Summe von Exponentialfunktionen, die auch als linear viskoelastisches
Modell in kommerzielle Simulationssoftware integriert ist. Die Parameter der Prony-Reihe wer-
den häufig aus statischen Versuchen unter der Annahme instantaner Belastung bestimmt. Durch
diese Annahme reduziert sich die Integralgleichung der linearen Viskoelastizität zu einer algebrais-
chen Gleichung, wodurch die Auswertung stark vereinfacht wird. Um die Verfälschung des Ergeb-
nisses eines Versuchs mit endlicher Beladungsdauer durch die Vereinfachung instantanen Ladens
zu vermeiden, dürfen nur Daten verwendet werden, die nach dem Verstreichen der zehnfachen Be-
ladungsdauer aufgenommen wurden. Angesichts der heutigen Messtechnik, die genaue Messungen
je nach Versuchsart schon ab wenigen Zehntelsekunden ermöglicht, erscheint diese Praxis sehr in-
effizient. Dies wurde schon vor mehr als drei Jahrzehnten erkannt und einfache Methoden zur
Berücksichtigung spezieller Ladevorgänge wurden entwickelt. Mit besser werdenden Computern
konnten verfeinerte Methoden entwickelt werden, mit denen eine beträchtliche Verbesserung der
Auswertung erreicht werden kann. Diesen Methoden liegt eine spezifische Annahme über die Art
des Versuchs, wie zum Beispiel Beladung mit konstanter Dehnrate auf eine dann konstant gehal-
tene Dehnung, zugrunde, für die die Integralgleichung einfach analytisch gelöst werden kann. In
der Anwendung kann eine idealisierte Beladung je nach Regelkreis der Prüfmaschine nur teilweise
erreicht werden und Abweichungen führen zu Folgefehlern in der Auswertung. Es wurde daher eine
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Methode entwickelt, die auf allgemeine linear viskoelastische Lastverläufe anwendbar ist. Dabei
wird ein allgemeiner Dehnungs- oder Spannungsverlauf durch kubische Splines abgebildet, für die
ebenfalls eine analytische Lösung der Integralgleichung möglich ist. Ein Vorteil der allgemeinen For-
mulierung ist, daß alle zur Verfügung stehenden Datenpunkte verwendet werden können. Da das
Abwarten der zehnfachen Beladungszeit entfällt, können im Vergleich zur einfachsten Methode zwei
bis drei zusätzliche Dekaden der Messzeit ausgewertet werden. Die Parameter der Prony-Reihe wer-
den durch ein least squares-Verfahren bestimmt, bei dem die Gesamtheit der Daten berücksichtigt
wird. Gegenüber der Bestimmung von Parametern an punktweise berechneten Werten, wie sie bei
der Annahme der instantanen Ladung erfolgt, bietet diese Methode eine größere Robustheit gegen
Streuung in den Daten. Diese Eigenschaft erwies sich bei der Bestimmung der zeitabhängigen
Poissonzahl als vorteilhaft.

Die durchgeführten Versuche zeigten, daß linear viskoelastisches Verhalten nur sehr eingeschränkt
angenommen werden kann. Nichtlineares Verhalten wurde bei Polypropylen in Spannungsrelax-
ationsversuchen bereits bei Dehnungen um 0, 6% beobachtet. Es ist daher notwendig, auf ein
nichtlinear viskoelastisches Modell zurückzugreifen. Für ein derartiges Modell ist die Anwendungs-
grenze durch das Auftreten irreversibler Deformation gegeben. Um diese Grenze zu bestimmen,
wurden verschiedene experimentelle Methoden angewendet.

Ein experimenteller Aufbau für thermomechanische Messungen mit einer Thermokamera wurde
entwickelt. Durch eine differentielle Messtechnik wird eine sehr gute Reproduzierbarkeit bei hoher
Genauigkeit erreicht. Die reversible Wärme, die während eines Versuch frei oder absorbiert wird,
wird thermodynamisch durch die Thermoelastizität beschrieben. Abweichungen von der vorherge-
sagten elastischen Wärme entsteht durch viskoelastische und viskoplastische Dissipation. Das Ziel
der thermomechanischen Analyse ist es, die letztgenannten Beiträge zur Wärme zu bestimmen
und daraus Informationen über deren Auftreten während der Deformation zu gewinnen. Es kon-
nte gezeigt werden, daß es hierfür notwendig ist, temperaturabhängiges mechanisches Verhalten
in der Beschreibung der Thermoelastizität zu berücksichtigen. Eine eindeutige Bestimmung der
viskoelastischen und viskoplastischen Beiträge zur Deformationswärme war dennoch nicht möglich.

Weiters wurde das Aufweißverhalten während eines Zugversuchs untersucht. Durch spezielle
Probenvorbereitung konnte die Messung des Aufweißverhaltens gleichzeitig mit der Messung des
Dehnungsfeldes erfolgen. Das Aufweißen des Materials ist durch das Entstehen von Hohlräumen
im Material bedingt, an denen einfallendes Licht gestreut wird. Die Streuung bewirkt, daß das
Material zunehmend weißer wird. Durch Quantifizierung des Aufweißens in digitalen Bildern konnte
die Initiierung von Hohlräumen detektiert werden.

Im dritten Ansatz zur Untersuchung der Viskoplastizität wurde der Anteil plastischer Defor-
mation durch Messung des Dehnungsrückgangs nach Entlastung bestimmt. Der Rückgang der
Dehnung ist vollständig, solange die Deformation reversibel bleibt. Bei viskoplastischer Deforma-
tion erfolgt der Rückgang bis zur vorliegenden plastischen Dehnung. Im Gegensatz zur Messung
des Aufweißens ist diese Methode auf jede Art der plastischen Deformation empfindlich. Mit beiden
Methoden konnte gezeigt werden, daß irreversible Deformation bei uniaxialem Zug bereits unter
4% Dehnung auftritt. Die erreichbare Dehnungsauflösung von ca. 0.02% erlaubte keine genauere
Angabe.

Die Daten dieser Messungen beinhalten neben der Information über die viskoplastische Dehnung
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auch die nichtlinear viskoelastische Zeitabhängigkeit. Es wurde daher die Eignung dieser Versuch-
sart für die Bestimmung eines nichtlinear viskoelastisch viskoplastischen Schapery-Modells unter-
sucht. Die Gleichung, die dieses Modell beschreibt, wurde mit einem iterativen Verfahren gelöst und
die Parameter durch ein least squares-Verfahren bestimmt. Es konnte eine gute Beschreibung des
gemessenen Verhaltens erreicht werden. Der Einfluß der Genauigkeit des viskoplastischen Modells
auf das Ergebnis des least squares-Verfahren wurde diskutiert.
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1 Scope, Content and Background

Polymer composites are widely used in numerous applications, e.g. automotive applications. The
use of various filler materials enables a custom design of composite properties. The interaction be-
tween the filler and the polymer matrix has a strong influence on the deformation of the matrix and
thus of the composite. In order to design a composite for a specific application, an understanding of
these mechanisms is important and is therefore subject of current research (Jerabek, 2009; Móczó
& Pukánszky, 2008; Renner et al., 2005; Pukánszky, 2005). A large variety of filler materials with
different mechanical properties and geometries is used, ranging from glass fibres to rubber inclu-
sions. To reduce the expensive and time-consuming preparation and testing of several composite
materials until the desired properties are met, computer simulations of material properties (Herbst,
2008; Sheng et al., 2004; Zeng et al., 2008; Goddard et al., 2001; Marklund et al., 2006; Nordin &
Varna, 2006a) and polymer parts (Muliana & Haj-Ali, 2004a; Martin & Renault, 2009; Haj-Ali &
Muliana, 2004; Muliana & Haj-Ali, 2006) are a valuable tool. The usefulness of such simulations
depends not only on the proper description of the effect of fillers but also on the accurate modeling
of the matrix material. The mechanical behavior of the polymer matrix depends on several param-
eters, including temperature, load history and strain rate. Simplified modeling can be performed
by leaving some experimental paramters fixed, e.g. by isothermal testing using a specific load his-
tory such as monotonic uniaxial tension. Simulations with thus determined model parameters are
invariably limited to problems that are similar to the test conditions applied in finding the model.
For a correct prediction of polymer components under general loadings, the effect of e.g. strain
rate and stress state must be considered in the model. Different types of models can be used: phe-
nomenological models use mathematical expressions that represent observed mechanical behavior.
Physical models use information on material properties and processes to derive a mathematical de-
scription (Drozdov & Gupta, 2003; Knauss & Emri, 1981). Other examples are mechanical models
with (nonlinear) springs and dashpots, in series or parallel, from which the mechanical behavior is
determined (Tschoegl, 1989; Klompen & Govaert, 1999). A very widely used model of this type is
the linear viscoelastic Prony series model. In the thermodynamic approaches constitutive equations
are inferred from thermodynamic potentials and functional representations of material properties
are chosen phenomenologically. A widely used model of the latter type is the Schapery model
(Schapery, 1969), where e.g. polynomials are chosen to represent the functions accounting for non-
linear viscoelastic behavior. In the literature these models are often built one-dimensionally from
uniaxial data (Nordin & Varna, 2006b, 2005; Lai & Bakker, 1995b) and, for isotropic materials,
extended to three dimensions by assuming a constant Poisson’s ratio (Muliana & Haj-Ali, 2004b;
Lévesque et al., 2008). However, a time-dependent Poisson’s ratio, typically (Tschoegl et al., 2002)
but not necessarily (Lakes & Wineman, 2006) monotonically increasing with time is observed in
experiments. Despite this experimental observation, constant Poisson’s ratio is frequently assumed
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1 Scope, Content and Background

because of the difficulties in accurately measuring the small transverse strains and also to simplify
the three-dimensional model equations. In fact, only few studies presenting data on time-dependent
Poisson’s ratio for polymeric materials have been published (Tschoegl et al., 2002). In view of this
unsatisfactory situation, the applicability of digital image correlation strain measurement to de-
termine time-dependent Poisson’s ratio of polypropylene was investigated for several temperatures
and loading modes. A data reduction technique was developed that allows for a direct identification
of the linear viscoelastic Prony series model parameters from the strain data, without any specific
assumptions on the type of test, e.g. stress relaxation or creep. This technique uses least-squares
fitting and has thus an inherent robustness against data scatter, which is especially useful when
dealing with the determination of time-dependent Poisson’s ratio. Additionally, due to the general
formulation of the method, data from the loading ramp of creep or stress relaxation tests can be
used for the Prony series parameter identification and thus the time range that can be covered
by a single test is extended compared to traditional step-loading assumption evaluation. This was
demonstrated for the uniaxial relaxation modulus and time-dependent Poisson’s ratio for various
load histories.

The uniaxial relaxation modulus and time-dependent Poisson’s ratio are of theoretical and practi-
cal interest, because both material functions can be measured simultaneously on the same specimen.
Theoretically, any of the four linear viscoelastic material functions - Poisson’s ratio, uniaxial relax-
ation modulus, shear modulus and bulk modulus, can be calculated when two others are known. In
commercial simulation software, such as Digimat, the bulk and shear moduli of the material must
be provided, but it is difficult to determine the bulk modulus experimentally (Deng & Knauss,
1997), and thus only few directly measured bulk modulus data are available. Thus, it is desirable
to find the bulk relaxation modulus by interconversion of other material functions. Interconver-
sion of material functions is sensitive to errors caused by specimen-to-specimen or environmental
and experimental variations (Tschoegl et al., 2002), which implies for example that the use of the
shear and the uniaxial relaxation modulus measured in separate tests is not acceptable. Hence,
the uniaxial relaxation modulus and Poisson’s ratio are an obvious choice for the calculation of the
bulk modulus, but in practice, reliable interconversion is difficult because of the high accuracy and
precision that is required, particularly for high values of Poisson’s ratio. It has been estimated by
Lu et al. (1997) that Poisson’s ratio must be determined to an accuracy of up to 10−4 to obtain the
bulk modulus within reasonable error bounds from the uniaxial relaxation modulus and Poisson’s
ratio, when the latter is close to 0.5. The requirements are less strict when Poisson’s ratio is smaller
but it is still experimentally challenging to measure and the lack of reliable data on time-dependent
Poisson’s ratio is an indication thereof. Nonetheless, the error on the time-dependence of the bulk
modulus arising from the constant Poisson’s ratio assumption is severe (Hilton, 2001) and research
in time-dependent Poisson’s ratio is justified.

Apart from the considerations above, the nonlinear reversible and irreversible deformation is
of high importance in the prediction of mechanical behavior. For the investigated polypropylene
nonlinear effects were already observed in creep at low loads of 3MPa, or in stress relaxation at low
strains of 0.6%. Irreversible deformation is undesirable in applications or may be tolerable only up
to certain levels. Like the reversible mechanical behavior, the irreversible behavior depends on the
load history and is therefore termed viscoplasticity. The viscoplastic deformation and the limit of
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reversible loading in uniaxial tension are studied using three different experimental techniques.
An experimental setup for very precise and accurate temperature measurements during mechan-

ical testing was developed to conduct a thermomechanical analysis. This approach to examine
the deformation from a thermodynamic point of view was intensively used by Oleinik and co-
workers(Oleinik et al., 1993; Shenogin et al., 2002). They have investigated the energy storage and
heat dissipation during the compressive deformation at low strain rates of various polymers using
calorimetric techniques and formulated a deformation theory based on small-scale plastic shear
transformations. In this approach the internal energy stored in the polymer upon deformation
is calculated from the heat of deformation and the deformation work by the first law of thermo-
dynamics. In order to determine the viscoelastic and viscoplastic contributions, the elastic parts
must be accounted for. The elastic deformation work follows from Hooke’s law and the elastic
part of heat is given by the thermoelastic effect. The classic theory of thermoelasticity leads to
a linear relation between heat and stress. However, in tensile experiments on polypropylene and
polyethylene, Volodin & Slutsker (1994) observed a temperature decrease that is not consistent
with the linear theory and explained this finding by considering the temperature-dependence of
the mechanical properties. A thermoelastic theory for temperature-dependent elastic materials has
already been developed by Wong et al. (1987) and Wong et al. (1988). However, in contrary to the
findings on polypropylene and polyethylene, the linear theory was successfully used in in a number
of publications (Shenogin et al., 2002; Tregub et al., 1994; Moreau et al., 2005). The experimen-
tal results obtained with infrared imaging technique confirm the observation on polypropylene by
Volodin and Slutsker. The thermodynamic theory does not make any specific assumptions on the
material other than the temperature-dependent elasticity, hence similar behavior was expected for
amorphous polymers. To rule out a coincidental effect of the semicrystalline structure of polypropy-
lene, tests were also conducted with polycarbonate and polymethylmethacrylate. An experimental
technique to determine one type of irreversible deformation was implemented by the analysis of
the stress whitening of polypropylene during uniaxial tensile testing. Stress whitening describes
the whitening of the material due to cavitational processes in the polymer: Light is scattered by
cavities, increasing the opacity of the material. In the literature, the degree of whitening was ex-
amined dependent on the position on a tensile specimen to characterize localization effects (Dasari
& Misra, 2004) or to analyze the scratch resistance of polymer surfaces (Kody & Martin, 1996).
For the present research, the stress whitening was determined from digital pictures of the specimen
taken during tensile testing for a simultaneous determination of whitening and true strain with
digital image correlation. With this technique the onset of cavitational deformation was quantified
for several test temperatures.

The third technique is the measurement of strain recovery. In strain recovery testing specimens
are subjected to a specific load history and the recovery of strain after unloading is measured. The
recovery may be complete, i.e. to the unstrained state, or residual strain may be present that does
not recover or recovers only after very long times (Quinson et al., 1996). Therefore, this residual
strain can be regarded as plastic deformation and the strain recovery technique provides means to
characterize this plastic deformation under several load histories (Fasce et al., 2009) and to find
yield criteria (Quinson et al., 1997; Marano & Rink, 2001) or study deformation modes (Oleinik
et al., 1993). For this work, the strain recovery from uniaxial tension was measured with high
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1 Scope, Content and Background

accuracy using the digital image correlation strain measurement technique. At room temperature,
the reversible limit was found below a strain of 4%. The limit decreases with increasing temperature
down to 2.2% at 80◦C.

The observation that plastic deformation was already found at 4% strain shows that a nonlinear
viscoelastic model for room temperature must be limited to this strain range. For the description
of higher strains, a nonlinear viscoelastic viscoplastic model is needed. The strain recovery data
provides good input for the definition of such a model, because it contains information on both
viscoplasticity and viscoelasticity. For the modeling of these tests, a Schapery nonlinear viscoelastic
model is combined with a viscoplastic model. This type of model has been successfully used for
several materials, often to model creep behavior, e.g. by Lai & Bakker (1995a); Nordin & Varna
(2006b). Instantaneous loading is assumed in many studies because the determination of the ma-
terial functions is simple. This simplification can induce errors in the parameters (Sorvari et al.,
2006) but methods to solve the Schapery equation have already been developed e.g. for implemen-
tation in finite element method software by Henriksen (1984); Muliana & Haj-Ali (2004b); Lai &
Bakker (1996) and Crochon et al. (2010), that can also be applied in the parameter identification
without assumptions on the load history. In the present paper, the iterative solution for finite ele-
ment implementation derived by Muliana & Haj-Ali (2004b) is used in an optimization algorithm
to determine model parameters by fitting the data from the conducted strain recovery tests. Due
to the current unavailability of multiaxial nonlinear viscoelastic viscoplastic data and due to the
difficulties in three dimensional model definition referred to above, this research is restricted to
isothermal uniaxial modeling.
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2 Major Results

This section gives an overview of the major results of this dissertation. More detailed results are
presented in the collection of papers.

2.1 Papers 1 & 2

In these papers, the application of a new evaluation technique for the determination of linear
viscoelastic material functions of isotropic homogeneous materials from arbitrary strain histories
within the linear viscoelastic domain is presented. The potential of this technique is demonstrated
by the determination of the relaxation modulus of polypropylene from creep tests. The extension
of the time range covered in the tests due to the use of data from the loading ramp allowed for a
construction of a master curve encompassing roughly ten decades in time from four twenty minutes
creep tests at four different temperatures. A traditional evaluation of the creep compliance requires
4 days of testing to cover the same time range. This is illustrated in figure 2.1, in which the creep
modulus (inverse creep compliance) is compared to the relaxation modulus that was determined
using the new method. The results thus obtained agree well with results from the relaxation tests,
see figure 2.2.

An inherent robustness to data scatter is a beneficial property of the method. This is helpful
for the determination of time-dependent Poisson’s ratio, where the evaluation according to the
ten-times rule leads to amplification of the data scatter (figure 2.3).
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Figure 2.1: Relaxation modulus of PP(H) from creep tests. The red markers show the creep mod-
ulus evaluation using the ten-times rule. The master curve is referenced to 23◦C.
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2.2 Paper 3

A study of the thermoelastic effect and the heat evolution during uniaxial compression and tension
of polypropylene, polycarbonate and polymethylmethacrylate has been presented. A carefully
designed experimental setup enables high precision temperature measurements with an infrared
camera. As the theoretical description of the thermoelastic effect assumes adiabatic conditions, the
heat transfer due to convection in the temperature chamber and the heat flow in the specimen cross-
section have been found by solving the heat equation. From this solution the heat generated per
unit volume and unit time can be derived and compared to the thermoelastic heat. For a dissipating
material, the measured heat release must exceed the heat predicted by the thermoelastic theory. To
determine the reversible heat and the dissipated heat, the reversible thermoelastic prediction was
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2.2 Paper 3

subtracted from the measured heat. It was possible to show that the revised thermoelastic theory for
temperature-dependent elastic materials must be used to obtain heat dissipation data (figure 2.4).
However, the calculated thermoelastic effect according to this theory appears to be too pronounced
when compared to the deformation work. It was found that with the present thermoelastic theory,
the dissipated heat exceeds the deformation work (figure 2.5). Further refinement of the theory,
e.g. considering stress-dependent physical properties, may resolve this problem.
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2.3 Paper 4

Recovery tests of polypropylene from engineering strains between 0.5% and 8% at temperatures of
23◦C, 40◦C, 60◦C and 80◦C have been performed. Once a steady strain state was achieved, the
strain was averaged over about one decade of testing time to define the residual plastic strain. In
figure 2.6, the residual strain is depicted over the peak true strain together with the true stress-true
strain curve. Plastic deformation was observed below 4% strain. Repeated recovery tests have been
carried out from 4%, 6% and 8% nominal strain. In these tests a specimen has been subjected to
a second recovery test after having completed the first test. The true stress-true strain curves of
the two loadings indicate a loss of mechanical strength. This decrease is small at 4% peak strain
and more pronounced at 6% and 8% strain. At the nominal strain of 8% the maximum true strain
measured on the inhomogeneously deformed specimen was 9.7% after the first and 11.1% after the
second loading. An increase of 0.8% in plastic strain after the second loading was detected.

A physical aging effect has been observed while testing at 60◦C and 80◦C. After a certain recovery
time shrinkage of the specimen occured. The effect was most distinct during recovery from lower
strains. The shrinkage had set in before a fully steady recovery state was achieved. The residual
strain has therefore been approximated by the strain achieved before the appearance of aging in the
recovery curves. The error in this approximation is small because the major part of the recovery
has already been completed before the aging effect appeared. Polynomials have been fitted to the
data to determine the onset of plastic deformation as the strain at which the plastic strain exceeds
the arbitrarily chosen value of 0.05%. Thus it was found that the limit of reversible loading under
the present experimental conditions is 3.9% at 23◦C and decreases to 2.2% at 80◦C.

The plastic deformation can be classified as cavitational deformation and shear yielding. In this
case, cavitation includes the formation of voids and craze-like structures. Cavitation is indicated
by stress whitening of the semitransparent material: Light scattering on voids creates an opaque
appearence. The degree of opacity depends on the density of voids, hence it increases with tension.
In the measurement of stress whitening the degree of voiding is characterized by the gray level
of digital images of a specimen. This technique provides additional information on the plastic
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Figure 2.7: True stress-true strain curve and the gray level vs. true strain for polypropylene at
room temperature and a strain rate of 8.7 · 10−3. The strain at the onset of cavitation
(circle) and the engineering yield strain (square) are indicated. For clarity of the plots
markers are only shown for a subset of the data of each test.

deformation measured in strain recovery because it can be inferred when cavities of sufficient size
for light scattering are formed.

Tensile tests have been conducted at temperatures ranging from −20◦C to 80◦C and true stress
and true strain were determined. From the pictures taken by the digital image correlation strain
measurement system the gray level in the zone of maximum deformation was determined. Figure
2.7 shows the true stress-true strain curve and the gray level vs. true strain from a test conducted at
room temperature and a strain rate of 8.7 ·10−3 s−1. The gray level starts to increase rather sharply
when a certain strain level is achievend, which is arbitrarily defined as the strain at the largest
curvature of the gray level curve, which is approximately 5% strain for the room temperature
test. In comparison, the yield strain (strain at maximum engineering stress) is 8.7%. In the
tests at higher temperatures it was found that the cavitational strain increases more heavily with
temperature than the engineering yield strain.

2.4 Paper 5

The strain recovery data includes information on the nonlinear plasticity and time-dependence of
polypropylene. In terms of stress the data cannot be described by a simple mathematical expression
because the initial loading has been done at constant engineering strain rate. Hence, the param-
eter identification procedure was implemented for general load histories. The considered uniaxial
model is a Schapery-type nonlinear viscoelastic viscoplastic model for the strain. The parameters
describing the viscoplasticity were determined by fitting the viscoplastic component of the model
strain to the residual strains observed in strain recovery. The viscoelastic part of the model was
then solved with an iterative scheme and nonlinear optimization was used to find the nonlinear
stress-functions and the Prony series compliance parameters. The optimization was performed
over the collection of strain recovery tests. The formulation is general and data from other types of
tests can be included. The result of the parameter identification is shown for representative tests in
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Figure 2.8: Strain recovery data and Schapery model result for recovery tests of polypropylene
conducted with peak true strains of 8.1%, 6.7%, 3.8%, 1.8% and 1.0%.

figure 2.8. Good agreement has been achieved for the initial loading and the initial recovery, how-
ever the agreement at the larger times was limited by the accuracy of the viscoplastic model. By
manipulation of the Prony series to account for the discrepancy between the viscoplastic model and
the measured plastic strains in the intermediate strain range, an improvement of the optimization
result was obtained.
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3 Conclusion and Outlook

In this dissertation the time-dependent reversible and irreversible mechanical behavior of poly-
propylene was investigated. Experimental setups and theoretical methods have been developed to
measure and model the nonlinear viscoelastic viscoplastic behavior.

First, a semi-analytic method for the determination of linear viscoelastic Prony series models for
any linear viscoelastic material function of an isotropic, homogeneous material has been derived. It
was demonstrated that with a careful experimental setup data reduction can be performed on data
down to a few tenths of seconds of testing time. Limitations are given by the initial instabilities
of the testing machine and the achievable stress and strain resolution. Compared to traditional
data reduction it was shown that approximately two additional decades of the testing time can be
covered, by proper treatment of the linear viscoelastic constitutive equation without any kind of ex-
trapolation. The developed method also proved very useful in the determination of time-dependent
Poisson’s ratio because it has improved robustness to data scatter. The parameter identification for
Prony series models can be readily accomplished to define linear viscoelastic models for simulations
with commercial simulation software. Applications apart from of this dissertation included the mod-
eling and simulation of polypropylene composites, forwhich the polypropylene investigated in this
dissertation serves as matrix, and the linear viscoelastic modeling of thermoplastic polyurethanes.

In order to further enhance the knowledge about the mechanical behavior of polypropylene, the
nonlinear viscoelasticity and viscoplasticity has been studied. In one approach, the deformation
heat during uniaxial compression and tension of polypropylene has been measured using infrared
imaging and were then compared to the thermoelastic heat. The latter was calculated from the
thermodynamic theory of temperature-dependent elastic materials. An experimental setup for
high precision temperature measurements has been developed and a heat transfer model has been
introduced to account for the convection in the temperature chamber. It was shown that the
consideration of the temperature-dependence of the mechanical properties is required in order to
obtain meaningful heat dissipation data. However, an inconsistency between the deformation heat
and work has been observed, which indicates that further refinement of the thermoelastic model is
necessary. The origin of this discrepancy is not yet clear. Further research should concentrate on
the effect of the stress-dependence of thermal and physical properties, e.g. coefficient of thermal
expansion, density or thermal conductivity, and on aspects of the definition of the elastic mechanical
parameters. After this problem is solved, the gathered thermal data can be used to distinguish
the elastic from the viscoelastic and viscoplastic deformation heat to provide information on the
deformation mechanisms.

Another approach to characterize the viscoplastic deformation is the measurement of strain
recovery and stress whitening. The stress whitening has been quantified by digital imaging of the
specimen with a digital image correlation system. This allows for a simultaneous measurement of
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3 Conclusion and Outlook

the strain field and the stress whitening. The initiation of cavitation was determined from the gray
level vs. true strain curves. Cavitation has been detected before the engineering yield strain was
reached, except for the test temperature of 80◦C. With increasing temperature the crystalline phase
becomes weaker, which influences the competition between cavitation and plastic shear deformation.
With a rise in temperature shear yielding becomes more dominant. On the other hand, it has been
found that the residual strain for a given maximum load increases with temperature. Hence,
cavitation is reduced by higher temperatures but the load range admissible for reservible behavior
becomes smaller because of increased shear yielding. Strain recovery from various tensile strain
levels also showed that plastic deformation occurs well before the yield point and the onset of
cavitation at all investigated temperatures between 23◦C and 80◦C. The measurement of strain
recovery proved to be a valuable tool for the characterization of the deformation behavior.

Finally, the strain recovery data were used to identify the parameters of a Schapery-type nonlinear
viscoelastic viscoplastic model. The parameters for a simple viscoplastic model were determined
by fitting the model to the residual strains observed in strain recovery. The viscoelastic part of the
model was solved using an iterative scheme and nonlinear optimization was applied to determine the
nonlinearizing functions and the Prony series compliance parameters from the collection of strain
recovery tests. Good agreement has been obtained for the loading ramp and the initial recovery,
but it also became apparent that the accuracy of the viscoplastic component has a strong influence
on the identification of the viscoelastic parameters. Some error has been detected in the application
of the determined model to stress relaxation data and it was found that different models which
offer equally good representations of the strain recovery data can exhibit very different behaviors
in stress relaxation.

It has thus been concluded that future work should include testing at a variety of different
load histories to obtain further data on the viscoplasticity and to gain more data for the parameter
identification of the viscoelastic model. For this purpose a more elaborate viscoplastic model, which
can describe e.g. the effect of stress state, loading rate or creep time, is required. Even when only
uniaxial tests are used a large number of experiments must be conducted. Potential tests include
stress relaxation for a number of testing times at various strains and monotonic loading at different
strain and stress rates as well as creep recovery for different loads and creep times. For future work
a specialized creep test stand set up while writing this thesis has been adapted for carrying out
creep and relaxation recovery tests. Finally, the model must be formulated in three dimensions
for implementation in a finite element method software. In the literature, the three dimensional
model is constructed from the uniaxial model by assuming a constant Poisson’s ratio, which is
clearly a very rough simplification for most thermoplastics. With a constant Poisson’s ratio the
bulk compliance is proportional to the creep compliance. In contrast, the scarce experimental data
on bulk relaxation shows that there is significantly less relaxation than in the shear or uniaxial
relaxation moduli. Hence, future will focus on the identification of parameters of a generally
formulated three dimensional model. The two main tasks will be the numerical implementation of
the model for parameter optimization and finite element method simulations, as well as multiaxial
testing for a proper treatment of the stress state dependence of the nonlinearizing functions, which
account for the stress dependence of the mechanical behavior.
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Pukánszky, B. 2005. Interfaces and interphases in multicomponent materials: Past, present, future.
European Polymer Journal, 41(4), 645–662.

Quinson, R., Perez, J., Rink, M., & Pavan, A. 1996. Components of non-elastic deformation in
amorphous glassy polymers. Journal of Materials Science, 31, 4387–4394.

Quinson, R., Perez, J., Rink, M., & Pavan, A. 1997. Yield criteria for amorphous glassy polymers.
Journal of Materials Science, 31, 1371–1379.

Renner, K., Yang, M.S., Móczó, J., Choi, H.J., & Pukánszky, B. 2005. Analysis of the debonding
process in polypropylene model composites. European Polymer Journal, 41(11), 2520–2529.

Schapery, R.A. 1969. On the Characterization of Nonlinear Viscoelastic Materials. Polymer Engi-
neering and Science, 9(4), 295–310.

Sheng, N., Boyce, M. C., Parks, D. M., Rutledge, G. C., Abes, J. I., & Cohen, R. E. 2004.
Multiscale micromechanical modeling of polymer/clay nanocomposites and the effective clay
particle. Polymer, 45(2), 487 – 506.
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On the Determination of the Relaxation Modulus of PP Compounds from
Arbitrary Strain Histories

Daniel Tscharnuter · Michael Jerabek · Zoltan Major · Reinhold
W. Lang

Abstract Advanced evaluation methods for the determination of linear viscoelastic material functions have been de-

veloped already forty years ago, but it is still common practice to use the so-called ten-times rule. The rule is that a

sufficiently long time needs to pass after a constant load or strain is applied so that the material response is close to the

response of step excitation. A substantial amount of experimental data in the short-term range has to be discarded to

obtain valid results. Renewed attention has been given to improving this situation during the last few years.

In this paper, the application of modern evaluation techniques to the determination of the relaxation modulus of

isotropic homogeneous linear viscoelastic materials is presented. A new method that is applicable to general strain

histories is introduced and applied to different loading types.

Keywords viscoelastic behavior, ramp loading, relaxation test, creep test, relaxation modulus

1 Introduction

Within the framework of linear viscoelasticity, the relaxation modulus is theoretically simply determined from the stress

that occurs in response to a step strain. As it is impossible to apply a step strain in experiments, one has to deal with

the finite loading time. One may do so by either using only data that has been measured a suitable time after the end

of the loading ramp and compute the relaxation modulus as if a step strain had been applied, E(t) = σ(t)/ε0. This

approach, the so-called ten-times rule, is simple but it implies the loss of a substantial amount of data. Lee & Knauss

(2000) and Zapas & Craft (1965) developed methods to reduce this loss by explicitly taking into account the loading

procedure. Recently, a new method that allows the calculation of the relaxation modulus at arbitrary times with an error

that is comparable to the Zapas-Craft approach on the time scale that is accessible to both methods has been proposed by

Sorvari & Malinen (2006). Another approach for linear ramp loading tests is due to Knauss & Zhao (2007), who used an

analytic solution of the Boltzmann superposition integral and nonlinear optimization to determine the material function.

In this work, a general optimization approach for arbitrary strain histories is presented. The investigated materials

are a polypropylene homopolymer and glass bead filled polypropylene. The new method to extend the covered time

range is applied to uniaxial compression and tensile relaxation tests as well as to tensile creep tests.

The problems considered in this paper deal with the determination of the uniaxial relaxation modulus. Due to the

symmetry of the linear viscoelastic equations, the same procedures can be applied to the compliance formulation or

to the other viscoelastic material functions with the appropriate substitution of stress, strain and material function

for a specific case. The application of the method to determine time-dependent Poisson’s ratio is presented elsewhere

(Tscharnuter et al. (2010)).
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2 Ramp loading in linear viscoelasticity

The traditional approach to determine the relaxation modulus is to perform a relaxation test, where a constant strain

is maintained for a prolonged period of time. It is assumed that the loading is instantaneous. The strain history is then

ε(t) = ε0Θ(t), where Θ is the step function. In this special case, the superposition integral that relates stress and strain,

σ(t) =
t∫

0−
E(t − τ)

dε(τ)
dτ

dτ (1)

reduces to the simple algebraic equation

E(t) =
σ(t)
ε0

(2)

However, loading is never done infinitely fast. In order for equation (2) to yield valid results, only data from a sufficient

time after the initial loading must be used for further analysis. It was found that ten times the loading time is long

enough, and evaluation using this technique is therefore called the ten-times rule. For a loading time of e.g. 10 seconds,

this simple analysis thus requires discarding data up to 100 seconds. If it is possible to use data from down to the first

tenths of seconds of the test with a more elaborate evaluation technique, two to three decades of time can be gained from

a single test in comparison to the ten-times rule time range. This in turn allows for a large reduction of the experimental

time and number of tests that need to be performed to cover a given time range with a master curve.

Recently the consideration of the ramp loading for improved data analysis has received attentionby the aforemen-

tionend work of Sorvari & Malinen (2006) and Knauss & Zhao (2007). In both works it was assumed that the relaxation

strain level is reached by a constant strain rate loading,

ε(t) =
{

ε̇0t t < t1
ε0 t ≥ t1

(3)

where ε0 = ε̇0t1, with the loading time t1 and the strain rate during the loading ε̇0. More general loading ramps are

expressed as

ε(t) =
{

f (t) t < t1
ε0 t ≥ t1

(4)

where f (t) is e.g. a polynomial and f (t1) = ε0.

In order to assess the error that can arise from neglecting the ramp loading and assuming instantaneous loading (step

strain), a linear viscoelastic material with a relaxation modulus defined by the Prony series

E(t) = E∞ +∑
i

Ei exp(−t/τi) (5)

is considered. Ei denotes the relaxation strength associated with the relaxation time τi. It is assumed that this material is

loaded with a linear ramp strain history as given in equation (3). The stress for times t ≥ t1 is calculated using equations

(5) and (3) in equation (1). The integration is straight forward and yields

σ(t) = ε0E∞ +∑
i

ε̇0Eiτi (exp(t1/τi)−1)exp(−t/τi) (6)

This is the stress that would be measured when a material described by equation (5) is loaded as prescribed by equation

(3). To determine the modulus from this stress assuming step loading, the stress is divided by the constant strain (equation

(2)). In terms of the Prony series model the obtained modulus is
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Estep(t) = E∞ +∑
i

Ei
τi

t1
(exp(t1/τi)−1)︸ ︷︷ ︸

Ẽi

exp(−t/τi) (7)

By comparing this result with the true modulus defined in equation (5), it follows that the relative error in each term

of the Prony series depends on the ratio of the loading time and the relaxation time. Thus, the magnitude of the error

depends on the material’s relaxation spectrum. A series expansion of the exponential term in the relative error yields

Δi :=
Ẽi −Ei

Ei
=

τi

t1
(exp(t1/τi)−1)−1 =

∞

∑
n=1

1

(n+1)!
tn
1

τn
i

(8)

Clearly the error approaches zero as the relaxation time approaches infinity. Hence long-term relaxations do not con-

tribute to the error made by assuming step loading. The error is larger for short-term relaxation, e.g. the error is e−1 or

approximately 72% when the relaxation time equals the loading time. This error is weighted by the decaying exponential

term, exp(−t/τi). After ten times the loading time the weight is only exp(−10) ≈ 5 · 10−5. Hence, the ten-times rule

result is accurate unless the material exhibits strong short-term relaxation.

3 Pointwise evaluation methods

Assuming step loading, the relaxation modulus is calculated from each available data point independently of the re-

maining data points. Therefore, the ten-times rule can be termed a pointwise method. The earliest more sophisticated

pointwise method is due to Zapas & Craft (1965). For a linear ramp loading, it was shown that the relaxation modulus

can be approximately calculated by

E(t) =
σ(t + t1/2)

ε0
for t ≥ t1/2 (9)

Another technique was developed by Lee & Knauss (2000). It is not pointwise in the same sense as the ten-times rule or

the Zapas-Craft method because it is a recursive procedure. The iteration can be formulated to proceed forward in times

as

E(t) = E(t − t1)+
1

2ε̇0

dσ(t)
dt

for t ≥ t1 (10)

or backwards in time as

E(t − t1) = E(t)− 1

2ε̇0

dσ(t)
dt

for t ≥ t1 (11)

Both methods where comprehensively examined by Flory & McKenna (2004). The latest approach is due to Sorvari & Malinen

(2006), who showed that the relaxation modulus can be estimated by

E(t) =
σ(t + t1)

ε0
− σ̇(t + t1)

2ε̇0
(12)

when the stress is the response to a strain history as stated in equation (3). The method is easily extended to general

loading ramps, i.e. polynomials. For the strain history given in equation (4) the superposition integral is

σ(t) =
t∫

0

E(t −ξ ) f ′(ξ )dξ (13)
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By using the mean value theorem this is equal to

f ′(ζ )
t∫

0

E(t −ξ )dξ (14)

for a specific value of ζ ∈ (0, t1). This equation is of the same form as the constant strain rate equation given by Sorvari

and Malinen with f ′(ζ ) in place of ε̇0. The adapted ramp correction formula is

E(t) =
σ(t + t1)
f ′(ζ )t1

− σ̇(t + t1)
2 f ′(ζ )

(15)

To complete the formula, the appropriate value of ζ must be determined. By the ten-times rule equation (7) must coincide

with equation (15) a sufficiently long time after the end of the loading ramp. Therefore, ζ is the value that minimizes

the sum of squared residuals

∑
i

(
σ(ti + t1)

f ′(ζ )t1
− σ̇(ti + t1)

2 f ′(ζ )
− σ(ti)

ε0

)2

(16)

on (0, t1), where the sum extends over all ti � t1.

This evaluation method requires the stress and its time derivative at times t + t1, which generally do not coincide

with the times of the available data points. Additionally, numerical differentiation tends to amplify the data scatter. For

practical use of this method, a smoothing spline is therefore applied to the stress for the evaluation of equation (15).

The polynomial coefficients of the spline are determined by minimizing the sum of squared residuals with an additional

smoothing term,

(1−λ )∑
i
(σx,i −σ (i)

x (ti))2 +λ
∫

w(t)

∣∣∣∣∣∂ 2σ (i)
x (t)

∂ t2

∣∣∣∣∣dt (17)

where σ (i)
x denotes the spline on the interval [ti, ti+1], σx,i is the measured stress at time ti and w(t) is a weight function

for the smoothing term. The integral of the absolute value of the spline’s second derivative serves as a measure of its

roughness. The larger λ is chosen, the more rough solutions are penalized. Hence, the spline representations are very

convenient for addressing data scatter, interpolation, and taking derivatives.

4 Optimization methods

Unlike the fast but approximate pointwise methods, optimization based approaches using exact analytic solutions have

no inherent error but require more computational effort. In a recent work, Knauss & Zhao (2007) showed that a nonlinear

optimization algorithm is capable of fitting equation (6) to experimental data to determine the Prony series parameters

for the relaxation modulus. Their investigations showed that ideally three to four additional decades in time can be

evaluated compared to the ten-times rule. However, a less restrictive strain model that is easier to achieve experimentally

is desirable. A smoothing spline representation is assumed for the strain history, which is written as

εx(t) = ∑
i
(ai(t − ti)3 +bi(t − ti)2 + ci(t − ti)+di)Θ(ti < t < ti+1) (18)

Here ai,bi,ci,di and ti are the spline coefficients and nodes. Hence, no specific assumptions on the strain history are

made.
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To obtain the corresponding model for the stress, equation (1) must be solved. Substituting a Prony series for the

relaxation modulus, the stress is expressed as

σ(t) =
Ni−1

∑
i=1

E∞

(
ε(i)

x (ti+1)− ε(i)
x (ti)

)
+

Ni−1

∑
i=1

∑
j

E j

ti+1∫
ti

exp

(
− t −ξ

τ j

)
∂ε(i)

x (ξ )
∂ξ

dξ

+ E∞

(
ε(Ni)

x (tNi)− ε(Ni)
x (t)

)
+∑

j
E j

t∫
tNi

exp

(
− t −ξ

τ j

)
∂ε(Ni)

x (ξ )
∂ξ

dξ (19)

Ni is the index of the interval for which ti < t ≤ ti+1 and ε(i)
x denotes the spline on the interval [ti, ti+1]. A piecewise con-

stant function is chosen for w(t). Nonuniform weighting is needed when εx changes quickly, specifically the transition

from loading to relaxation or creep, because otherwise the transition is exceedingly altered by the smoothing.

The solution of these integrals, which is given in the appendix, provides a model for the stress arising from an

arbitrary strain history. The Prony series parameters are determined by the set of parameters which gives the minimum

quadratic error (sum of squared residuals; SSR) between the model and the measured stress. The most widely used

optimization routines are deterministic gradient based algorithms, as used by Knauss & Zhao (2007) for the case of

a constant strain rate loading relaxation test. In case of a problem with multiple minima, gradient methods yield a

minimum close to the initial guess for the parameters. In general this is not the global minimum1 or at least a sufficiently

close one. As the number of minima is unknown, trying different initial values until a good fit is found is not a very

efficient approach, especially when dealing with a computationally demanding problem. An algorithm capable of leaving

local minima is thus useful in dealing with this kind of problem.

Two optimization methods based on the idea of the stochastic optimization method Simulated Annealing were

investigated. Only a brief overview of Simulated Annealing (SA) is given; further details are provided elsewhere

(Kirkpatrick et al. (1983)).

In Simulated Annealing, a sequence of points in the parameter space is generated that leads (close) to the global

minimum. At any given point, the following point (trial point) in the vicinity of the current point is suggested at random.

If the trial point provides a smaller quadratic error, it is accepted and the search for the minimum proceeds by suggesting

the next random trial point. If, however, the trial point gives a larger quadratic error, it is decided at random whether

or not the worse suggestion is still accepted. Thus, contrary to gradient methods, the search path through the parameter

space does not only lead ’downhill’. It is possible to make ’uphill’ moves during the search for the minimum, which

allows the method to leave local minima. The probability of accepting a worse value depends on a temperature parameter.

In the initial phase, this artifical temperature is high, implying that most suggestions are accepted. This allows the search

to proceed through the entire parameter space. Hence, the result does not depend on the initial guess. Over the course of

the minimization, the temperature is gradually decreased, so that suggestions that are not close to the global minimum

are less and less likely accepted. Thus, the accessible region of the parameter space becomes smaller and ultimately

shrinks to a small region close to the global minimum.

For the present application the optimization algorithm must also account for the monotonicity of the material func-

tion, which can be ensured by bound constraints on the relaxation strengths. Relaxation times are also subject to bound

constraint to enforce positivity.

In classical SA the trial points are generated using a Gaussian distribution. As the probability density function of

the Gaussian distribution is nonzero on R, there will be trial points that violate the constraints and therefore the method

is unsuitable for constrained problems. Approaches to solve constrained problems with Simulated Annealing methods

exist (Hedar & Fukushima (2006) or Pedamallu & Ozdamar (2008)), but these are fairly complex algorithms that are

not easily implemented. Other approaches transform the constrained problem to an unconstrained problem by adding

penalty terms for constraint violations to the SSR. This allows the search to proceed through infeasible domains in the

parameter space as long as the temperature is sufficiently high, thus ensuring that all feasible domains can be reached

from the initial point. In pracice, these methods have their own pitfalls, e.g. in the choice of magnitude of the penalty,

see Pedamallu & Ozdamar (2008) and the references therein.

The quickest option to incorporate bound constraints is to reset all trial point coordinates that exceed the constraints

to their respective boundary values. This is not a very efficient approach in the early stages of the optimization because

trial points with coordinates on the bounds occur frequently and do not contribute to any progress towards the sought

minimum. Nevertheless, this option has been tested using the Fast Simulated Annealing (FSA; Szu & Hartley (1987))

and it was found capable of achieving the desired fits. However, the large number of required SSR evaluations lead to

an unsatisfactory computational performance. Therefore, the Simplex Simulated Annealing (SSA; Press & Teukolsky

(1991)) algorithm was investigated. A simplex is a polytope of N + 1 points in the N-dimensional parameter space,

1 Or one of the global minima.

5



i.e. a triangle in a 2-dimensional space. The downhill simplex method by Nelder & Mead (1965) finds local minima

by deforming a simplex according to a specific set of rules. Press & Teukolsky (1991) modified this method by adding

random perturbations to the points of the simplex. The C code for the basic SSA is available in Press et al. (1992) or

on the Numerical Recipes website, http://www.nr.com. Cardoso et al. (1996) used the same reset-method as described

above to allow for constraints, but they report that this lead to degenerate simplexes2 in the problems investigated,

causing failure of the algorithm. However, for the present problem it was found that a minor modification of the algorithm

eliminates the problem of degenerate simplexes. Degeneration is a consequence of too many bound violations. Assume

for instance that all coordinates in at least two points of the simplex violate the bound constraints by certain amounts.

Then these two points would be reset to an identical point in the parameter space. Since a large number of randomly

fluctuating points is generated during the optimization, this is likely to occur and one occurence is sufficient for algorithm

failure. Hence, bound violations were not reset to the value of the constraint, but to the constraint value plus or minus

a small random number. Parameters that violate the bound constraints are thus assigned random values close to the

bounds instead of the precise value, making degeneration very unlikely. This modified algorithm was succesfully tested

and good results were obtained with fewer SSR evaluations than needed with FSA. Hence, the SSA modified to obey

bound constraints was chosen as the optimization algorithm for the spline-based method.

5 Experimental

5.1 Materials

The materials investigated are a polypropylene homopolymer (PP(H)), and polypropylene filled with 3.5% percent

volume of glass beads (PP(H)+G3.5). The materials and injection molded specimens according to ISO 3176 type B were

manufactured by Borealis Polyolefine GmbH (Linz, A). Further details as to these materials are described elsewhere

(Jerabek et al. (2010c, 2009)).

5.2 Tensile relaxation tests

Tensile relaxation tests were performed with a screw-driven electro-mechanical universal test system (type Zwick Z250,

Zwick-Roell; Ulm, Germany) equipped with a temperature chamber to maintain the temperature inside the chamber at

23±0.5 ◦C. Over the 22 hours test duration, the standard deviation of the temperature was smaller than 0.1 K in all tests.

To simultaneously ensure an accurate strain control independet of the room temperature variations, a linear variable

differential transducer (LVDT) linked to the control unit of the test system was mounted on the specimen grips inside

the temperature chamber to serve as the displacement sensor. In this manner, the specimen and the LVDT experienced

the same narrow temperature control.

A full-field strain measurement technique was applied using the digital image correlation (DIC) system ARAMIS

(GOM mbH, Germany). Various aspects and details of this technique are described elsewhere (Jerabek et al. (2010b)).

5.3 Compression relaxation tests

The compression relaxation tests were done on an Instron 5500 electro-mechanical universal testing machine. Cylin-

drical specimens were used. The displacement was measured using a LVDT and the strain was calculated from the

displacement. The entire setup is decribed in detail by Jerabek et al. (2010c).

5.4 Tensile creep tests

The Instron 5500 electro-mechanical universal testing machine was also used for the creep tests. To remain within the

limits of linear viscoelasticity, the load was chosen as 2 MPa with a loading rate of 0.2 MPa/s. The tests were carried

out at temperatures of 0 ◦C, 23 ◦C, 40 ◦C and 60 ◦C. Because of resolution issues with the DIC system strain gauges

were used to measure the axial strain. This will be discussed in more detail in a following section.

2 A degenerate simplex has two or more identical points.
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Fig. 1: Axial strain in a compression relaxation test of PP(H) at −19◦C
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Fig. 2: Relaxation modulus data for PP(H) in uniaxial compression at −19◦C comparing the Sorvari-Malinen method

and the Zapas-Craft method.

6 Results

6.1 Polypropylene in uniaxial compression relaxation with linear ramp loading

The cylindrical specimens were tested at various temperatures as described previously. Each test was evaluated using

the Sorvari-Malinen method and the spline method and a master curve was constructed from the results. With the former

method, good results were obtained when a smoothing spline was applied to deal with the uncertainty in the strain data

(figure 1). For comparison, the results obtained with the Zapas-Craft method and the step strain assumption are depicted

in figure 2. In these tests, the Zapas-Craft method does not yield significant improvement compared to the step strain

assumption. With the Sorvari-Malinen method, the relaxation modulus could be determined back to 0.5s, which adds

more than a decade of covered time compared to the step strain result.

As these tests were performed prior to the development of the spline method, not enough data were recorded during

the loading for the nonlinear optimization. Therefore, the spline method was restricted to evaluating data after the initial

loading. On the common time range, both methods yielded quasi identical results. The resulting master curves of the

Sorvari-Malinen and the spline method are given in figure 3.
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Fig. 4: Axial strain of PP(H)+G3.5 at 23◦C in a relaxation test with polynomial ramp loading. The detail figure shows

the non-ideal transition from loading to relaxation.

6.2 Polypropylene in uniaxial tensile relaxation with nonlinear ramp loading

Tensile relaxation tests with a nonlinear loading ramp were performed. The axial strain during loading and relaxation

is shown in figure 4. This loading can be nicely modelled using a polynomial. A fourth degree polynomial was used in

this case with the generalized Sorvari-Malinen method (section 3) to determine the relaxation modulus.

The P-control of the Zwick testing machine initially causes a slight overshoot of the target strain before the desired

value is gradually approached. Altering the P value changes this behavior but also results in unsatisfactory performance

in the earlierst stages of the test. Thus, the overshoot cannot be eliminated and limits the applicability of the generalized

Sorvari-Malinen method, which assumes constant strain for t > t1.

The same data were also evaluated using the spline method, which explicitly considers the measured strain, including

any non-ideal behavior, when matching the predicted stress to the measured stress (figure 5). Thus, this method is not

limited by the testing machine’s precision in the transition. The limits of applicability are defined by the achievable

temporal resolution as a sufficient number of data points is required, by the strain and stress resolution because data

must be taken at low stress and strain, and by the initial instability of the testing machine up to the first tenths of

seconds.
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Fig. 5: Stress of PP(H) in a relaxation test and the spline model fit based on the modulus shown in figure 6.
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Fig. 6: Relaxation modulus of PP(H) and PP(H)+G3.5 from relaxation tests. The dotted part of the results of the Sorvari-

Malinen method is unreliable due to the non-ideal transition.

The results achieved with both methods for PP(H) and PP(H)+G3.5 are presented in figure 6. It was found that the

deviation from the constant strain assumption leads to oscillations in the results for the generalized Sorvari-Malinen

method. The spline method yielded smoother curves on a larger time range. The minor waviness of the curves is an

artifact of the Prony series modelling.

6.3 Determination of the relaxation modulus by creep tests

Since no assumptions on the shape of the strain history are made, any kind of test can be evaluated to determine the

relaxation modulus, including the performed creep tests. The strain in these tests was measured using strain gauges.

The main reason for not using the DIC system was the low strain encountered in such tests. All tests were supposed

to be performed within the range of linear viscoelasticity, in this case simply defined by a stress-independent creep

compliance or relaxation modulus. For PP(H) in creep, this limit was found to be between 2 and 3 MPa. On the other

hand, in relaxation, the limit was above 0.6%, where the peak stress is about 13 MPa. However, strain gauges locally

increase the stiffness of the specimens to a certain degree that depends on the mechanical properties of the specimens

and the strain gauge materials (typically copper and polyimide). Therefore, the relaxation modulus may have been

shifted to higher values. An altered relaxation behavior due to the polyimide support is possible. Nevertheless, the strain

gauge data are worthwhile to examine because of the good strain resolution and the high sampling rate, which allows
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Fig. 7: Axial stress and strain of PP(H)+G3.5 in creep at room temperature.

for the investigation of the testing machine’s performance at short times and the number of data points needed for the

optimization. For all fits, a logarithmically spaced subset of the recorded data was used and several optimizations were

done. 100 data points per decade worked fine in all examined tests, but a lower number of e.g. 20 points per decade

proved sufficient as well. To a certain degree, the necessary number of data points depends on the shape of the strain

curve. Care must be taken in the transition from loading to creep. When there are too few data points, the spline may

start to oszillate and then no longer accurately models the strain. As mentioned before, proper weighting is also needed

for the spline in transition regions.

The strain and stress history up to 100 s of a creep test are shown in figure 7. The double logarithmic plot reveals that

there is some initial instability. Due to this uncertainty in the data a lower time limit was introduced in the fitting. All

(logarithmically sampled for weighting) short time strain data was used in the spline calculation, but for the optimization

only stress data from times above the time limit was used. The lower time limit varied between 0.2 s and 1 s. This depends

on the characteristics of the initial instability and varies from test to test. A linear fit to the stress could possibly eliminate

scatter in the stress data and reduce the time limit, but as an influence of the amount of smoothing in the scattered strain

is still to be expected, this was not examined. With these time limits, master curves spanning 3 to 3.5 decades in time can

be determined from a 1000 s test. The master curves for PP(H) and PP(H)+G3.5 are printed in figure 8. These master

curves span roughly ten decades in time and are constructed from four 20 minutes creep tests at different temperatures.

The relaxation modulus curves as determined from creep and relaxation tests are compared in figure 8. The standard

relaxation test showed the higher modulus and delayed relaxation of the glass bead filled material compared to the neat

material. The same behavior was found in the strain gauge tests and the agreement between the creep and relaxation

results is good. This indicates that the strain gauges exerted only a minor influence in these tests. Note that the agreement

between the results from different strain histories may vary because of effects that are not captured by the viscoelastic

model, e.g. the strain-rate or stress-state dependence (Jerabek et al. (2010a)) of the material.

7 Conclusion

The aim of this work was to improve the time range that can be used for viscoelastic model parameter determination

from uniaxial tests. The method presented by Sorvari & Malinen (2006) was successfully used to calculate the relaxation

modulus of neat and glass bead filled polypropylene in compressive and tensile relaxation tests. With the introduction

of the spline model for the axial strain and a stochastic nonlinear optimization routine a framework for a general linear

viscoelastic parameter determination for isotropic materials was developed. This spline method was used to determine

the relaxation modulus from the aforementioned tests, and good results were obtained with both the spline method and

the Sorvari-Malinen method.

Due to its generality, the spline method furthermore allowed the determination of the relaxation modulus from creep

tests. The thus obtained result showed good agreement with the other results. The extension of the time range covered in

a single tests allowed for a construction of a relaxation modulus master curve spanning roughly ten decades in time from

four 20-minutes creep tests at four different temperatures. A traditional ten-times rule evaluation of the creep compliance

requires 4 days of testing to cover the same time range.
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Fig. 8: Comparison of the relaxation modulus results from tensile relaxation and creep tests for PP(H) and PP(H)+G3.5

for a reference temperature of 23◦C.

The experimental care and accuracy of the measured stress and strain determine the amount of data that can be

gained in comparison to a simple step strain assumption evaluation. For typical tests with a loading time of a few

seconds we found that data from a few tenths of a second onward could be used. Thus, between two and three decades

of additional information could be gained. The advantage with regard to either shorter experimental time or increased

overlap in master curves is obvious.

A Appendix

Using the spline model, the stress is described by the following equation (equation (19))

σ(t) =
Ni−1

∑
i=1

E∞

(
ε(i)

x (ti+1)− ε(i)
x (ti)

)
+

Ni−1

∑
i=1

∑
j

E j

ti+1∫
ti

exp

(
− t −ξ

τ j

)
∂ε(i)

x (ξ )
∂ξ

dξ

︸ ︷︷ ︸
A

+ E∞

(
ε(Ni)

x (tNi )− ε(Ni)
x (t)

)
+∑

j
E j

t∫
tNi

exp

(
− t −ξ

τ j

)
∂ε(Ni)

x (ξ )
∂ξ

dξ (20)

For a complete solution, the integral A needs to be solved. With the notation that has been introduced for the spline the strain term is

∂ε(i)
x (ξ )
∂ξ

= 3ai(ξ − ti)2 +2bi(ξ − ti)+ ci (21)

This integral can be solved by partial integration. The solution is

A = −τ j exp

(
− t

τ j

)(
(6τ2

j ai −2τ j bi + ci)exp

(
ti
τ j

)
+

(−3ai t2
i +2bi ti − ci +2τ j bi −6τ j ti ai −6τ2

j ai (22)

−2bi ti+1 +6ai ti+1 ti +6τ j ai ti+1 −3ai t2
i+1

)
exp

(
ti+1

τ j

))
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Time-Dependent Poisson’s Ratio of Polypropylene Compounds for
Various Strain Histories

Daniel Tscharnuter · Michael Jerabek · Zoltan Major ·
Reinhold W. Lang

Abstract Due to the viscoelastic behavior of polymers mechanical properties are strongly affected by the loading

history. To obtain the time-dependent Poisson’s ratio without further data manipulation, stress relaxation tests

have to be carried out. Only few results for viscoelastic materials have been published to date, but the theory

of Poisson’s ratio in the framework of linear viscoelasticity has received some attention with respect to loading

histories other than relaxation, i.e. creep and constant rate of strain tests.

The main objective of this work is to compare the potential of different testing methods to determine Poisson’s

ratio. Transverse and axial strain have been measured in relaxation tests, creep experiments and displacement

rate controlled tensile tests. Relaxation tests are evaluated accounting for the finite loading time and the results

are compared with those of tensile creep and displacement rate controlled tensile tests. An optimization based

method to determine linear viscoelastic material functions developed previously is applied to calculate Poisson’s

ratio.

Keywords Poisson’s ratio · linear viscoelasticity · lateral contraction · time dependence

1 Introduction

As one of the four basic material functions - Poisson’s ratio, uniaxial relaxation modulus, shear modulus and bulk

modulus - Poisson’s ratio is important for the description of stress and strain states of linear viscoelastic materials.

Similar to the case of an isotropic elastic material, any two material functions can be used to calculate the

remaining two material functions of an isotropic linear viscoelastic material. This is referred to as interconversion

of material functions. Hence, two material functions are sufficient for a complete description of the mechanical

behavior. In theory, the choice of two material functions is arbitrary, but in practice there are limitations that must

be considered. First, it is difficult to determine the bulk modulus experimentally (Deng & Knauss (1997)), and

thus only few directly measured bulk modulus data are available. Second, the measurement of a pair of viscoelastic

material functions must be performed simultaneously on the same specimen to avoid excessive errors caused by

specimen-to-specimen or environmental variations which are magnified in the subsequent interconversion analysis

(Tschoegl et al. (2002)). This excludes for example the use of the shear and the uniaxial relaxation modulus

measured in separate tests. The simultaneous measurement of two material functions is possible in a confined

compression setup (Qvale & Ravi-Chandar (2004), Jerabek et al. (2010b)) or a uniaxial tensile or compression

setup when the axial and lateral strain are measured (Jerabek et al. (2010c)). The former yields the bulk and the
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shear relaxation moduli, the latter provides the uniaxial relaxation modulus and Poisson’s ratio. Contrary to the

elaborate confined compression test, uniaxial stress relaxation is a standard method to characterize viscoelastic

materials that can be assumed to be widely used. Theoretically, the bulk behavior could also be inferred from

the uniaxial relaxation modulus and Poisson’s ratio, but in practice, accurate interconversion is difficult because

of the high precision that is required, particularly for high values of Poisson’s ratio. It has been estimated by

Lu et al. (1997) that Poisson’s ratio must be determined to a precision of up to 10−4 to obtain the bulk modulus

within reasonable error bounds from the uniaxial relaxation modulus and Poisson’s ratio, when the latter is close

to 0.5. The accuracy requirement is less strict when Poisson’s ratio is smaller, nonetheless it is experimentally

challenging to measure and the lack of reliable data on time-dependent Poisson’s ratio is an indication thereof. On

the other hand, time-dependent Poisson’s ratio is clearly needed for a complete characterization of the viscoelastic

deformation behavior. Under simple uniaxial load, Poisson’s ratio governs the evolution of the lateral strain. In

multiaxial stress or strain states, Poisson’s ratio affects the stress and strain field. For example, even when the

macroscopic load is uniaxial, in particle filled materials or in multicomponent parts, multiaxial stresses occur

on a local scale in the vicinity of the particles or in interface near regions when the Poisson’s ratios of the

material constituents do not match. Thus, for advanced finite element calculations time-dependent Poisson’s

ratio functions are essential for accurate simulation results which cannot be achieved by assuming a constant

bulk modulus (Knauss & Emri (1981)) or a constant Poisson’s ratio (Hilton (2001)).

There are various definitions of Poisson’s ratio for viscoelastic materials, which are comprehensively discussed

by Hilton (2001). The present paper is restricted to the definition that uses the axial and transverse strain in

the time domain. By substituting the time-dependent strains into the equation for the elastic Poisson’s ratio, the

time-dependent ratio is defined es

ν(t) = − εy(t)

εx(t)
(1)

It has been shown that this definition is only a valid viscoelastic analogue of Poisson’s ratio in accordance with

the correspondence principle in the special case of a constant axial strain, εx(t) = ε0Θ(t) where Θ is the step

function (van der Varst & Kortsmit (1992)). This is the only proper definition of the viscoelastic Poisson’s ratio.

It corresponds to strains measured in an ideal stress relaxation test. For other time-dependent strain histories,

the time-dependent ratio in equation (1) is referred to as contraction ratio to distinguish it from the constant

axial strain case.

The relaxation definition can be immediately generalized to arbitrary strain histories by expressing any strain

history as a superposition of infinitesimal steps (Tschoegl et al. (2002)). Thus, a constitutive relation similar to

the Boltzmann superposition integral for the relaxation modulus or creep compliance can be formulated for

Poisson’s ratio:

− εy(t) =

t∫
0−

ν(t − τ )
∂ε(τ )

∂τ
dτ (2)

This equation is the basis for advanced evaluation techniques that consider more complex strain histories than

step strains. The standard approach is to assume step strain loading in a relaxation test as this provides the

simplest determination of viscoelastic material functions, however at the cost of data from times below ten times

the loading time. This ”ten-times rule” ensures that inaccuracies related to transient effects are avoided. It applies

to all step loading assumptions, whether it is a tensile test to determine the relaxation modulus or a creep test to

determine the creep compliance. Considering the superposition integral definition, it equally applies to Poisson’s

ratio. More sophisticated techniques are needed to take the finite loading period into account. Apart from scientific

aspects related to the increased precision of the method of data reduction, making the ten-times rule obsolete,

a proper procedure for utilizing data from the short-term transient regime to determine Poisson’s ratio values

in this time range is also desirable to reduce the required number of experiments to generate a reliable master

curve. This is particularly true for experiments to be conducted at low temperatures (i.e. significantly below 0◦C)

which correspond to the short-term regime of master curves at ambient and above reference temperatures.

The scarcity of experimental data on time-dependent Poisson’s ratio is largely due to difficulties in achieving

the necessary strain resolution. In their review published in 2002, Tschoegl et al. concluded that the only more
or less acceptable determination of Poisson’s ratio was the one by Lu et al. (1997). In a more recent work,

O’Brien et al. (2007) determined ν(t) of epoxy resins from creep tests with very good accuracy using Moiré

interferometry.
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In this work we explore the applicability of Digital Image Correlation (DIC) to simultaneously measure the

axial and transverse strain of polypropylene specimens for various strain histories is explored. For this purpose,

an analytical procedure described in a previous paper (Tscharnuter et al. (2010)) for determining the relaxation

modulus is applied here for the time-dependent Poisson’s ratio. In applying this method, it will be shown that the

effective time for data reduction covered by a relaxation test can be extended by more than a decade compared

to the conventional ten-times rule. Furthermore, the method allows for the determination of Poisson’s ratio from

strain histories that are not accessible when using the ten-times rule. Finally, results on Poisson’s ratio from

confined compression tests are presented, where an interconversion technique was used to derive Poisson values

from bulk and shear relaxation moduli.

2 Experimental

2.1 Materials

The materials investigated include a polypropylene homopolymer (PP(H)), a glass bead filled polypropylene

(PP(H)+G3.5), and talc filled polypropylene (PP(H)+T3.5). The numbers in the material designation indicate

the filler content in terms of percent volume. The materials and injection molded specimens according to ISO

3176 type B were manufactured by Borealis Polyolefine GmbH (Linz, A). Further details as to these materials

are described elsewhere (Jerabek et al. (2010d,a)).

2.2 Tensile relaxation tests

Using the materials PP(H) and PP(H)+G3.5, tensile relaxation tests were performed with a screw-driven electro-

mechanical universal test system (type Zwick Z250; Zwick-Roell, Ulm, Germany) equipped with a temperature

chamber to maintain the temperature inside the chamber at 23±0.5◦C. A precise and narrow temperature control

over the entire test time of up to 22 hours is of extraordinary importance for high precision measurements of

Poisson’s ratio. Over the 22 hours test duration, the standard deviation of the temperature was smaller than 0.1K

in all tests. To simultaneously ensure an accurate strain control independet of the room temperature variations,

a linear variable differential transducer (LVDT) linked to the control unit of the test system was mounted on the

specimen grips inside the temperature chamber to serve as the displacement sensor. In this manner, the specimen

tested and the LVDT experienced the same narrow temperature control.

The rather stringent requirement of a stable test temperature is exemplified by the following consideration.

The coefficient of linear thermal expansion of PP(H)+G3.5 is of the order of 10−4K−1. Hence, a temperature

change of 0.5K causes a thermal strain of 5 ·10−5, which is only one order of magnitude smaller than the expected

transverse strain, thus causing an additional measurement error amounting to about 10%.

2.3 Tensile creep tests

Creep tests in tension were carried out with neat PP(H) at 23◦C with a self-constructed dead-weight test system

(Steinberger et al. (2006)). The predefined creep load was applied in a moderate manner via a hand-driven crank

shaft table (loading time ca. 5 to 10 s). As this test system was not equipped with a load cell, the precise loading

history during the loading phase is not known. Hence, in this particular case, strain was also not measured in

the initial loading phase, so that the methodology for data reduction in this stage of ramp loading could not be

applied. Creep tests at 40◦C and 50◦C were done using the setup described above for relaxation testing with the

testing machine operating in force controlled mode.

2.4 Displacement controlled monotonic tensile tests

Displacement controlled tensile tests up to ultimate failure were performed with an electro-mechanical universal

testing machine (type Instron 5500, Instron, High Wycombe, UK). The tests were conducted with PP(H) at

temperatures of −30◦C, −10◦C, 23◦C, 50◦C and 80◦C and at various displacement rates ranging from 0.0001

to 1 mm/s. The data reduction scheme to deduce Poisson’s ratio values was confined to the small strain linear

viscoelastic region of the tensile curves.
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2.5 Full-field strain measurement

In all of the above tests, a full-field strain measurement technique was applied using the digital image correlation

(DIC) system ARAMIS (GOM mbH, Germany). While various aspects and details of this technique are described

elsewhere (Jerabek et al. (2010c)), those relevant for an accurate determination of Poisson’s ratio values are briefly

summarized here. First, as the two cameras of the DIC system required for 3D displacement measurements

cannot be positioned inside the temperature chamber, a special frame attached to the test system frame was

used to mount the two cameras in a fixed and well-defined position relative to the specimen in front of the glass

window chamber door but outside the temperature chamber. For the specific camera positions, the calibration

algorithm assumes straight light paths. However, due to the refraction of the glass window, this assumption is

inaccurate, leading to slightly erroneous strain calculations and a significant increase in data scatter. Moreover,

below ambient temperatures, the resolution of the DIC system is further decreased by nitrogen fog inside the

temperature chamber. Finally, a further source of enhanced data scatter are vibrations caused by the fan inside

the temperature chamber that are transmitted to the two cameras via the rigid mounting frame.

For the creep tests on the dead-weight test system a CCIR camera with a resolution of 768x572 pixels that

is installed in the test system was used for the full-field strain measurement. Due to the lower specifications in

comparison to the cameras used with the ARAMIS system, a lower strain sensitivity is to be expected.

3 Results

3.1 Poisson’s ratio from relaxation experiments

As pointed out above, stress relaxation measurements allow for a direct determination of time-dependent Poisson’s

ratio values, ν(t) being defined as

ν(t) =
−εy(t)

ε0
(3)

Because of the simplicity of this equation, such ideal step loading assumptions are commonly used in the

determination of viscoelastic material functions. However, the finite loading time of practical relaxation exper-

iments instead of the ideal instantaneous loading (step strain assumption) does not allow for the direct use of

the initial experimental data in combination with the above equation (ten-times rule for applicability of equation

(3)). To properly account also for the data generated during ramp loading and within the ten-times period, more

advanced data reduction techniques are needed. Such techniques have been proposed by Sorvari & Malinen (2006)

and Knauss & Zhao (2007) for the determination of the relaxation modulus, and were also applied recently for

relaxation modulus determination by the authors (Tscharnuter et al. (2010)).

Based on equation (2) and using the approach described for linear ramp loading (constant strain rate)

by Sorvari & Malinen (2006) modified for more arbitrary ramp loading that is modelled by a function f(t)
(Tscharnuter et al. (2010)), Poisson’s ratio can be defined in a good approximation by

ν(t) ≈ − εy(t + t1)

f ′(ζ)t1
+

ε̇y(t + t1)

2f ′(ζ)
(4)

with t1 being the loading time and ζ ∈ (0, t1). For the special case of linear ramp loading, equation (4) may be

rewritten in a more simplified form as

ν(t) ≈ − εy(t + t1)

ε0
+

ε̇y(t + t1)

2ε̇0
(5)

In terms of conducting relaxation experiments, polynomial loading is easier to achieve than linear loading, so

that equation (4) is to be applied for data reduction. On the one hand, the interpolation of measured transverse

strain data is required for the shifted times t + t1, on the other, a rather precise determination of the time

derivative of the transverse strain is needed. For this purpose smoothing splines (piecewise polynomials) were

used, because they allow for a custom degree of smoothing and provide interpolation by evaluating the splines
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Fig. 1 Measured axial strain and a cubic spline interpolation of the strain for PP(H)+G3.5. The detail shows the transition
from loading to relaxation

10
0

10
1

10
2

10
3

10
4

10
5

−10
−2

−10
−3

Time [s]

T
ra

ns
ve

rs
e 

st
ra

in
 [1

]

Experimental data
Model fit

Fig. 2 Measured transverse strain and the least-squares fit for PP(H)+G3.5

at any desired point in time. This procedure of smoothing via splines also alleviates the problem of small strain

oscillations during the initial loading phase until the predefined stable axial strain value ε0 is reached.

A further problem, illustrated in figure (1) for PP(H)+G3.5, is related to the strain overshoot that still takes

roughly 20 s to disappear, even for optimized strain control conditions. The strain history in this regime violates

the assumption of the evaluation method considerably and thus may lead to erroneous results when applying the

Sorvari-Malinen approach, particularly as the time approaches the ramp loading time t1. To resolve the problem

of strain overshooting (figure 1) associated with the test machine strain control system, a methodology described

previously by us elsewhere was applied (Tscharnuter et al. (2010)). When utilizing this methodology, which is

based on a least-squares optimization, compared to a point-by-point method, the least-squares optimization offers

the advantage of simultaneously considering all available data, some exhibiting positive and others negative errors.

This results in an inherent robustness against local errors and simultaneously provides results closer to the real

values.

The basic idea of the optimization method is to solve the integral equation (2) using model functions for

the axial strain and Poisson’s ratio. The solution of the integral is then fit to the measured transverse strain to

determine the model parameters. For Poisson’s ratio a standard Prony series model was used, with the choice

of an appropriate axial strain model defining the type of test that can be examined. For example, for relaxation

modulus analysis, Knauss & Zhao (2007) used a linear loading followed by a constant strain in the form
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Fig. 3 Poisson’s ratio of PP(H)+G3.5 as determined using step strain assumption, the modified Sorvari-Malinen method
and the spline method

ε(t) =

{
ε̇0t t < t1
ε0 ≡ ε̇0 t1 t ≥ t1

(6)

Such a model imposes very strict conditions on the loading history, so that care must be taken in the design of

the experiment to achieve a strain that matches the model. These requirements may be relaxed by a more general

strain model, referred to as spline method, in which the axial strain is modelled by a smoothing cubic spline as

(Tscharnuter et al. (2010))

εx(t) =
∑

i

(ai(t − ti)
3

+ bi(t − ti)
2

+ ci(t − ti) + di)Θ(ti < t < ti+1) (7)

As the spline allows for a description of a slow transition from loading to both relaxation or creep, this method

may be applied not only to relaxation tests but also to creep tests. And yet, this general formulation is no

substitute for properly conducting the experiment, and accurate loading ramps and stress-strain measurements

are still essential for a precise material function determination.

The smoothing spline that was used to model the axial strain is also shown in figure (1), illustrating that

the spline precisely follows the transition from loading to stress relaxation at constant strain. This knowledge of

the precise analytical history of the axial strain allows for a much improved interpretation of the accompanying

transverse strain, which itself was modelled by the procedure described above (Prony series along with the

cubic spline), see figure 2. Figure 3 depicts Poisson’s ratio as a function of time comparing three methodologies

for Poisson’s ratio determination, the conventional point-by-point analysis along with the ten-times rule for step

strain assumption, the modified Sorvari-Malinen method, and the spline method. While the spline method results

are in excellent agreement with the results of the other two methods, it leads to a much reduced data scatter and

simultaneously extends the range of valid Poisson’s ratio data by up to two decades towards shorter times. In

other words, the spline method indeed allows for a sufficiently accurate determination of Poisson’s ratio values

also in the loading period.

Analagous relaxation tests as described above for glass bead filled PP were performed with neat PP(H) and

the results for both materials are compared in figure 4. In this case, the raw data were directly used to determine

the contraction ratio as defined in equation (1), also including data from the loading period. As can be seen

the data scatter is rather substantial and becomes excessive at short times during the loading phase including

the transition regime. The spline method again offers a more precise description of the Poisson’s ratio of these

materials, extending into the short time range. As one would expect considering a simple rule of mixture, the

glass bead filled PP exhibits lower values for Poisson’s ratio at shorter times. At around 200 s a crossover of the

curves occurs, with ν values of the glass bead material surpassing those of neat PP(H). While this change in

ranking versus relaxation time is somewhat unexpected, the inhomogeneous strain distribution on a local scale

in the polymer matrix of PP(H)+G3.5 along with strain magnification and perhaps even partial debonding may
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Fig. 5 Poisson’s ratio master curve of PP(H) from creep experiments at 23◦C, 40◦C and 50◦C. The master curve is
referenced to 23◦C

play a role in explaining this phenomenon. However, further investigations are needed to validate and explain

this type of time-dependent behavior when comparing the two materials.

3.2 Poisson’s ratio from creep experiments

As described above, applying the spline model to the axial strain also allows for a proper determination of

Poisson’s ratio from creep tests. Since no strain data were recorded during the dead-weight creep load application,

the strain during the load application was approximated by interpolating the cubic spline between the first strain

measurement point and a strain of zero at time zero.

A master curve of Poisson’s ratio was constructed from the creep tests at 23◦C, 40◦C and 50◦C (figure 5).

The shift factors applied were obtained from previous studies on relaxation modulus master curves generated

from tensile creep tests (Tscharnuter et al. (2010)), confined compression shear relaxation tests (Jerabek et al.
(2010b)), and uniaxial compression relaxation tests (Jerabek et al. (2010d)), for which good agreement was

observed in terms of the shift parameters (as to the determination and selection of the shift factors see also the

discussion in the next section).

From the tests performed on the dead-weight test system, rather low values of Poisson’s ratio were obtained.

The applied creep load of 2MPa is small compared to the 12MPa peak stress of the relaxation test, therefore at

23◦C the lateral strain does not exceed −0.2%. The low creep stress level was however necessary to remain within
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Fig. 6 Tensile stress and contraction ratio of PP(H) as a function of axial strain for PP(H)

the linear viscoelastic regime. Due to the fact that the corresponding creep strains are significantly smaller than

in the relaxation experiments, small strain errors could account for the difference to the relaxation test result. To

investigate this situation, creep experiments were also performed using the tensile testing machine under force

control with a loading rate of 0.2 MPa/s up to the creep stress level of 2 MPa. The tests were conducted at

temperatures of 40◦C and 50◦C to achieve somewhat higher strains. It is evident from the master curve shown

figure 5 that the results from 40◦C and 50◦ agree reasonably well with the room temperature data.

Further creep experiments were performed with biaxial strain gauges applied to the specimens. For reasons de-

scribed by Arzouminidis & Liechti (2003), these could not provide the necessary strain accuracy in the transverse

direction due to reinforcing effects associated with the stiffness of the copper wires and had to be discarded.

3.3 Poisson’s ratio from displacement controlled monotonic tensile experiments

In addition to the problems in the strain measurement arising from the use of the temperature chamber, in

displacement controlled monotonic tensile tests another problem exists related to the short duration over which

the specimen is being deformed within the limits of linear viscoelasticity. In figure 6, tensile stress and contraction

ratio (ratio of lateral and axial strain) are shown for a tensile test at room temperature for a loading rate of

0.01 mm/s. While there is some data scatter initially, the contraction ratio then increases from a level of about

0.35 to about 0.42 as the stress level approaches the yield stress and the contraction ratio reaches a plateau. In

agreement with Jerabek et al. (2010a), the difference in the experimentally determined Poisson’s ratio and the

value of 0.5 for constant volume deformation is believed to be related to mechanisms of volume dilatation such

as micro-crazing and possibly micro-cracking in the yield and post-yield regime.

In any case, the data in the nonlinear viscoelastic regime are not amendable to linear viscoelasticity theory

and thus are of no further relevance here. However, considering that the initial data scatter may cover a strain

regime from about 0.2% to 0.5%, or even 1% at the highest and lowest temperatures, it becomes apparent that

the window of valid measurements before reaching the limit of linear viscoelasticity at about 1% to 2% can be

very narrow. Consequently, Poisson’s ratio measurements from tensile tests at various temperatures are only of

rather limited use for the deduction of time temperature shift factors and the construction of master curves.

It should be mentioned, however, that these restrictions do not apply in the same manner to the relaxation

modulus determination from tensile tests, as forces can be measured to a higher accuracy compared to transverse

strains. Hence, the shift factors for Poisson’s ratio were deduced from the same tensile tests via the determination

of relaxation modulus values. Using these shift factors, the Poisson’s ratio master curve shown in figure 7 was

constructed. The different curvature of individual data sets within the master curve reflects the inaccuracies with

regard to temperature chamber effects and the limited window of valid data in the linear viscoelastic regime

alluded to above. Also, regarding the shifting procedure, it is recognized that shift factors obtained from various

viscoelastic functions may not necessarily be identical. For example, experiments performed by Deng & Knauss

(1997) and Sane & Knauss (2001) indicate differences in the time-temperature shift for bulk and shear modulus

data of PVAc. Conversely, O’Brien et al. (2007) found for epoxy resins that shift factors determined from creep

compliance data lead to a smooth Poisson’s ratio master curve. Similarly, Ma & Ravi-Chandar (2000) applied

the same shift factors for shear and bulk moduli and obtained smooth master curves for PMMA and PC.
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3.4 Poisson’s ratio from confined compression relaxation experiments

Confined compression relaxation experiments were performed for PP(H) and PP(H) glass and talc compounds at

nine temperatures ranging from −30◦C to 65◦C. Based on the bulk and shear relaxation modulus data, master

curves were constructed. Applying Prony series to the bulk and shear moduli master curves, master curves for

Poisson’s ratio were determined for the various materials and are depicted in figure 8 for a reference temperature

of −30◦C. Details as to the measurement and interconversion procedure are provided elsewhere (Jerabek et al.
(2010b)).

As expected, by adding hard filler particles of a smaller Poisson’s ratio than the one of PP(H), Poisson’s ratio

values of the particle compounds are lower than those of neat PP(H). At the short-term end of the time scale

corresponding to low temperature measurements, experimental difficulties associated with the formation of ice

were encountered, leading perhaps to some inaccuracy of the data, which, however, cannot be quantified.

4 Comparison of various Poisson’s ratio master curves

An overview and a comparison of the Poisson’s ratio master curves determined in this investigation for various

loading situations is depicted in figure 9. Apart from effects related to measurement inaccuracies, some differences

in the curves may be expected based on effects related to differences in the hydrostatic stress contribution for the
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various loading modes. As the hydrostatic stress contribution is clearly the highest for the confined compression

tests, this may explain why the Poisson’s ratio master curve for this loading mode is somewhat below the other

curves. Moreover, as indicated above, the short-term section of the tensile creep master curve may be due to

some measurement inaccuracy of the strain measurement device used in these tests. The discrepancy between

the relaxation and creep test result can be explained by an error in the transverse strain of 0.01%. Nevertheless,

considering such effects, there is a reasonable agreement between the master curve data obtained from various

tests.

5 Conclusion

The application of Digital Image Correlation (DIC) as full-field strain measurement technique for the determi-

nation of Poisson’s ratio from various strain histories was investigated. Tensile relaxation tests were performed

with neat and glass bead filled polypropylene, and Poisson’s ratio was determined including the loading ramp in

the data analysis by applying a recently developed optimization method. Compared to the tradition ten-times

rule evaluation, Poisson’s ratio can be determined accurately over an extended time range using this procedure.

Furthermore, Poisson’s ratio values were determined for neat polypropylene from creep tests. As the limits of

linear viscoelasticity, where the ratio of strain and stress are independent of the stress level, were found to be lower

in creep loading compared to relaxation loading, creep experiments must be performed at smaller strain levels.

For these conditions, it turned out that the DIC setup was not precise enough to reliably determine Poisson’s

ratio.

In addition, displacement controlled tensile tests at various temperatures and loading rates were performed to

determine Poisson’s ratio for neat PP. The time range for recording valid data for Poisson’s ratio determination

was found to be rather limited as it was restricted by high data scatter at very small strain levels and by entering

the regime of nonlinear viscoelasticity at higher strains. Thus, although the Poisson’s ratio master curve from

monotonic tensile tests closely resembles the master curves obtained from other tests, it does exhibit a higher

data scatter. Lower loading rates were found to be advantageous as there is more time for the testing machine

to stabilize and as there is a larger time range before nonlinear effects occur.

Poisson’s ratio master curves for various materials (neat PP, glass bead and talc filled PP) were also deter-

mined by interconversion of bulk and shear modulus master curves obtained from confined compression relaxation

tests. The interconversion yielded reasonable results for all materials considered, also revealing the influence of

hard particle fillers in terms of a reduction in Poisson’s ratio.
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Abstract

An experimental technique using an infrared camera for surface temperature mea-
surements during mechanical testing was developed. A differential measurement between
the tested specimen and a dummy specimen in a well-controlled temperature chamber
provided excellent reproducability and temperature resolution. It was thus possible to
conduct an investigation of the deformation heat during tensile and compressive test-
ing of polypropylene, polycarbonate and poly(methyl-methacrylate). The materials were
tested at a constant engineering strain rate of 8.7 · 10−3 s−1 at 23◦C. A heat conduction
model was used to determine the deformation heat under consideration of convection on
the specimen surface. Mechanical and physical parameters were measured to determine
the reversible thermoelastic contribution to the deformation heat. It was shown that the
effect of the temperature-dependence of the mechanical properties on the thermoelastic
response must be considered to obtain consistent heat dissipation data.

Keywords: thermoelastic effect, polymer, temperature-dependent

1. Introduction

The deformation mechanisms of amorphous and semicrystalline polymers have been
investigated in numerous studies using combinations of several techniques, such as de-
formation calorimetry [1, 2], syncrotron radiation X-ray scattering[3, 4] and electron
microscopy [5, 6]. Other approaches with more readily available equipment are based
on the evaluation of volume strain [7] or strain recovery [8–10]. These works provide
a better understanding of the deformation mechanisms and structure-property-relations
of polymers, which can lead to the development of improved tailor-made materials. For
engineering materials, knowledge of the stages of deformation is also important for the
definition of design limits for components, for neat polymers as well as for composites.

In several comprehensive studies, Oleinik and co-workers [1, 11] have investigated the
energy storage and heat dissipation during the compressive deformation at low strain

∗Corresponding author
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rates of various polymers using calorimetric techniques and formulated a deformation
theory based on small-scale plastic shear transformations. While this work is far too
exhaustive for a brief summary, the basic idea of the calorimetric measurements is that
the internal energy ΔU stored in the polymer upon deformation can be calculated, when
the heat Q and the work of deformation W are known, according to the first law of
thermodynamics

ΔU = W + Q (1)

In order to determine the viscoelastic and viscoplastic contributions to ΔU , the elastic
parts must be subtracted. The elastic part of W is calculated using Hooke’s law and
the elastic part of Q is given by the thermoelastic effect or Thomson heat1. The classic
equation for the thermoelastic effect is derived by thermodynamical considerations [12]
and reads in terms of temperature

ΔT = −Tα

ρcp
σ (2)

Here, ρ is the density, cp the specific heat at constant stress, σ the axial stress, and
α the coefficient of linear thermal expansion (CLTE). According to this equation, the
thermoelastic effect leads to a temperature decrease in tension (positive stress) and an
increase in compression (negative stress) proportional to the applied stress, provided
α is positive, which is generally the case for the discussed polymeric materials. How-
ever, in tensile experiments on polypropylene and polyethylene conducted under adiabitic
conditions in a vacuum chamber, Volodin and Slutsker [12] observed a temperature de-
crease larger than the decrease predicted according to equation (2) and explained this
by considering the temperature-dependence of the mechanical properties. This effect of
temperature-dependent mechanical properties has also been recognized in studies dealing
with thermoelastic stress analysis [13], and Wong et al. [14, 15] derived a general ther-
modynamic expression for temperature-dependent materials. In contrast to the findings
of Volodin and Slutsker, the classical equation (2) was successfully used in calorimetric
studies to calculate the thermoelastic effect [1, 16, 17]. However, it was found insufficient
to explain the thermal behavior observed in the tests conducted in this study. Hence, the
aim of this work is to present the results of temperature measurements on amorphous and
semi-crystalline polymers in uniaxial tension and compression and to show the impor-
tance of the effect of temperature-dependent mechanical properties on the thermoelastic
behavior.

2. The thermoelastic effect

In thermoelastic stress analysis (TSA), specimes are subjected to a cyclic load under
adiabatic conditions. Due to the thermoelastic effect, the temperature varies with stress,

1After William Thomson, 1st Baron Kelvin (Lord Kelvin), who first derived the equation for the
effect.
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Table 1: Notation
T Temperature εij Strain tensor
T0 Reference (initial) temperature σij Stress tensor
ΔT T − T0 ρ Density
cv Specific heat at constant volume q Heat per unit mass
cp Specific heat at constant pressure λ Thermal conductivity
a Thermal diffusivity E Young’s Modulus
h Heat transfer coefficient Nu Nusselt number
v Air velocity in the temperature chamber Pr Prandtl number
ν Kinematic viscosity of air Re Reynolds number
α Coefficient of linear thermal expansion (CLTE) μ Poisson’s ratio

which is used to determine the stress field by measuring the temperature field. An
influence of the mean stress on the thermal response and the existence of the second
harmonic of the applied frequency were recognized in TSA experiments [18], which lead
to the development of an improved thermodynamic theory [14, 15]. A detailed review of
this theory is given in reference [13], only the essentials are provided here.

From the first and second laws of thermodynamics, it follows that

dT =
T

ρcv

∂σij

∂T
dεij +

δq

cv
(3)

For an isotropic homogeneous material with temperature dependent mechanical proper-
ties, this leads to

cvρ
dT

T
− ρ

δq

T
= −

[
α +

(
μ

E2

∂E

∂T
− 1

E

∂μ

∂T

)
σkk

]
dσkk +

(
1 + μ

E2

∂E

∂T
− 1

E

∂μ

∂T

)
σiidσii

(4)

For uniaxial stress under adiabatic conditions (δq = 0), integration of equation (4) yields

cvρ (lnT − lnT0) = −ασ +
1
2

∂E

∂T

σ2

E2
(5)

or for small temperature changes

cvρΔT = −αT0σ +
T0

2
∂E

∂T

σ2

E2
(6)

The left-hand side of this equation gives the heat released or absorbed per unit volume.
By considering temperature-dependent mechanical properties, an additional quadratic
contribution of the stress to the thermoelastic temperature is obtained.
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3. Experimental

3.1. Materials
The materials investigated are a model polypropylene homopolymer (PP(H); Bore-

alis Polyolefine GmbH), polycarbonate (PC; Makrolon 2405, Bayer) and poly(methyl-
methacrylate) (PMMA; Plexiglas 7N, degussa). The PP(H) injection molded specimens
according to ISO 3167 type B were manufactured by Borealis Polyolefine GmbH (Linz,
A). The injection molded specimens according to ISO 3176 type A of PC and PMMA
were produced at the Institute of Plastics Processing, University of Leoben, Austria.

Due to a shortness of PP(H) specimens during the development of the testing and
evaluation procedure, spare poly(butylene-terephthalate) (PBT; Ultradur 4500, BASF)
specimens were used for initial testing and verification.

3.2. Tensile tests
Monotonic tensile tests were performed on a screw-driven electro-mechanical universal

test system (type Zwick Z250; Zwick-Roell, Ulm, Germany) with a constant engineering
strain rate of 8.7 · 10−3 s−1. The system is equipped with a temperature chamber to
maintain the desired test temperature of 23◦C. A precise temperature control over the
entire test time is important, hence a careful tuning of the temperature controller is
necessary.

Full-field strain was measured using the digital image correlation (DIC) system ARAMIS
from GOM mbH, Germany. To measure the strain with optimal accuracy and precision,
the specimen must be well illuminated to achieve a good image quality. We found that
the cold lights used still affect the surface temperature of the specimen. Therefore, it
was decided to measure the strain and temperature fields in separate tests. A series of
tensile tests showed that the stress-strain curves of the various tests agree very well up
to high strains. Small differences between tests arise only sometimes after yielding due
to the individual nature of the necking.

To determine the rate of change of Young’s modulus with temperature, dE/dT, for
the thermoelastic model, several tensile tests at low strains (ISO 527 strain range) were
performed at various temperatures. Three measurements were conducted at each tem-
perature. To account for the strain-rate dependence of the mechanical properties, the
modulus measurements were performed at the same strain rate used in the tensile tests
describe above. dE/dT was calculated from a third degree polynomial fit.

True longitudinal strain εt,l and transverse strain εt,t are calculated from the engi-
neering strains by

εt,l = ln(εn,l + 1) (7)

and

εt,t = ln(εn,t + 1) (8)

The one-point values of Poisson’s ratio were determined by the longitudinal and trans-
verse strains in the longitudinal strain range of 0.05% to 0.25%. The true stress is defined
as
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σt =
F

A0

1
(1 + εn,t)2

(9)

where F is the force and A0 the cross-sectional area of the unstrained specimens.

3.3. Compression tests
Monotonic uniaxial compression tests with a constant engineering strain rate of

8.7 · 10−3 s−1 were performed on an Instron 5500 electro-mechanical universal testing
machine. The displacement was measured using a LVDT and the strain was calculated
from the displacement. The entire setup is decribed in detail elsewhere[19]. The 8x4x10
mm3 specimens were machined from the injection molded tensile specimens. This speci-
mens have two distinct advantages. First, the material is identical to the material used
in the tensile tests. Second, on rectangular cross-sections the angle-dependence of the
emissivity does not need to be considered.

Young’s modulus is larger in compression than in tension, e.g. by around 10% for
PP(H) [19], so dE/dT in compression likely differs from the tensile result by a similar
amount. Because of the difficulties involed in compression modulus testing [19, 20], E(T)
and dE/dT from the tensile tests are also used for the analysis of the compression tests,
bearing in mind that as a consequence the quadratic term of equation (6) may be off by
about 10%.

As the transverse strain is not measured during the compression tests, the true stress
is approximated assuming a constant Poisson’s ratio in equation (9).

3.4. Material parameters
The thermoelastic analysis requires several parameters to predict the thermoelastic

temperature change. The density, specific heat and thermal conductivity were determined
by hydrostatic weighing, DSC (DSC 831; Mettler-Toledo, Switzerland) and the transient
plane source method (HotDisk TPS 2500; HotDisk AB, Sweden), respectively. Note that
cv and cp are related by [13]

cp − cv =
3α2ET0

ρ(1 − 2μ)
(10)

The CLTE was measured using an interferometry set-up (ESPI; GoM mbH, Germany)
similar to the set-up described in reference [21].

3.5. Temperature field measurement
The specimen temperature was monitored using a JADE III MWIR camera by Cedip

Infrared Systems (now FLIR). The camera is equipped with a 320x240 pixel InSb detec-
tor with a noise equivalent temperature difference of 20 mK at room temperature. As
the glass windows of the temperature chamber are not transparent at the infrared wave-
lengths, the window of the chamber was replaced by a properly sized block of extruded
polystyrene foam. A hole matching the dimensions of the lens was cut into the foam to
accomodate the camera, effectively placing the lens inside the chamber. All specimens
were coated with graphite spray to achieve a defined and uniform emissivity. The emis-
sivity was determined by simultaneously measuring the temperature with the infrared
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Figure 1: Specimen, reference specimen and venting/heating corrected temperature of PP(H) at 0◦C.

camera and a resistance thermometer. The emissivity was 0.85. As spray coating by
hand does not provide a reproducable coating thickness, the influence of graphite layer
thickness on the emissivity was investigated by comparing different thicknesses obtained
by various spraying times. No influence of the coating thickness was found. Additionally,
the emissivity of a specimen was measured before and after stretching beyond the yield
point. It was found that the emissivity does not depend on the strain in this deformation
region. At larger strains, the spray coating is thinned and the temperature value becomes
increasingly unreliable.

As the temperature changes due to the thermoelastic effect up to yield are in the
range of 1 K, care must be taken to ensure the stability of the ambient temperature. The
temperature chamber controls the temperature by a combination of heating via heating
coils and cooling by venting with cold nitrogen gas. Hence, the specimen is subject to
periodic cooling and heating. The surface temperature drops during the venting phase
and subsequently increases until the next venting occurs. The choice of proper control
parameters ensures that neither heating nor venting is performed excessively and keeps
the temperature difference before and after nitrogen venting small. Nevertheless, these
periodic environmental changes have to be accounted for to obtain correct temperature
measurements. This is achieved by simultaneous monitoring of a reference specimen
that is mounted on the unmoving specimen grip next to the tested specimen and not
subjected to any loading. The surface temperature of the reference specimen allows for
the correction of the effects of heating and venting on the specimen temperature by taking
the difference to the reference temperature. This is a reasonable procedure because the
bulk temperature is not affected by the short-term fluctations due to smearing of the
irregularities by heat conduction. The periodic nitrogen venting effect, occuring 3 s and
7 s after the start of a tensile test at 0◦C is shown in figure 1 along with the measured
surface temperature and the corrected surface temperature.

The thermal data is available in the image coordinate system or pixel coordinates.
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As the specimen is stretched during a tensile test, the point on the specimen that is
registered in a certain pixel changes during the test. Thus, a statistical evaluation on
any subset of the pixels does not correspond to the statistic of a specific region on the
specimen. Depending on the test temperature and material, a specimen may or may not
form a necking zone at high strains. A necking zone is generally hotter than other regions
of the specimen. As these regions are the primary zones of deformation, temperature
data is gathered from these zones. If the displacement is not accounted for, the necking
region moves through the pixel subset that is selected for temperature evaluation. In
this case, the slope of the temperature curve is altered because colder pixels enter the
evaluation region. To address this problem, a motion tracking algorithm was used to
account for the displacement of the specimen. An aluminum coated adhesive tape was
placed on the moving specimen grip. This reflective surface is clearly visible in the IR
image and was used to determine the displacement in terms of pixels. This avoids the
need to calculate the pixel displacement from the actual displacement and the optical
parameters of the camera setup. As motion tracking works best when the tracked object
has distinct features, the tape was applied in a crumpled manner. The tracking was done
using the Lucas-Kanade algorithm [22]. A brief description of the general approach is
given. The first image of the thermal measurement, which corresponds to the unstrained
state of the specimen, is denoted by I1(x), where x = (x, y) is the pixel position in the
coordinate system of this image. In this image, a rectangular subset of pixels containing
the adhesive tape was selected. This subset is denoted as the template T (x). In the
subsequent image, I2(x), the template position differs from the previous image because
of the displacement of the grip. This motion is expressed by the mapping W(x,p), where
p are the parameters of the transformation. Since the grips are rigid and do not rotate,
it is sufficient to consider the translations

W(x,p) = (x + px, y + py) (11)

The translation vector p is found by minimizung the quadratic error between the trans-
lated image and the template,

∑
x

[I2(W(p,x)) − T (x)]2 (12)

where the sum extends over all pixels of the template. Once the pixel displacement
has been determined for each frame of the measurement, the images are scaled using
linear interpolation. The camera was rotated to align the load axis with the 320 pixel
x-axis. Then px is the measure of the axial displacement and py indicates the precision
of the alignment of the camera and the testing machine axis. The scaling is performed
to maintain an equal distance between the grips and thus equal length of the specimen
throughout the test. The scaled images as depicted in figure 2 are then used for a
statistical temperature evaluation. The temperature is determined by the mean value of
an approximately 3 mm wide rectangular area centered on the area of interest on the
specimen. The averaging reduces the overall noise and allows for a better temperature
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Figure 2: Displacement correction in thermal images. Top: Unstrained specimen. Middle: Strained
specimen showing a hot necking zone (white). Bottom: Strained specimen image corrected for the
displacement. The reflective tape is highlighted by the ellipse in the top image.

resolution than the 20 mK noise in each pixel suggests. By all the measures described,
an excellent reproducability and temperature resolution is achieved. An example for
polypropylene is shown in figure 3.

4. The heat transfer problem

The spatial and temporal evolution of the temperature field u(x, y, t) in the 10x4 mm2

cross-section of the specimen is governed by the heat equation

∂u(x, y, t)
∂t

= a

(
∂2u(x, y, t)

∂x2
+

∂2u(x, y, t)
∂y2

)
+

1
cp

q̇(t) (13)

Here it is assumed that the heat sources q are homogeneously distributed in the cross-
section. This is an approximation especially in the case of semicrystalline polymers,
where the morphology depends on the processing conditions and varies in the specimen
cross-section [23]. Heat conduction along the length of the specimen, which is present
in inhomogeneous temperature fields e.g. by necking, is neglected because of the low
thermal conductivity of the polymers.

At the employed strain rate of 8.7 · 10−3 s−1, a typical test duration is about 10 s
or longer, depending on the material and test temperature. Heat is transferred between
the specimen and the environment mainly via the circulating air inside the temperature
chamber. The heat transfer occurs at the specimen surface and the heat propagates
through the specimen at a diffusion velocity that is determined by the material’s ther-
mal properties. Therefore, the specimen temperature is not homogeneous and the mea-
sured surface temperature is not equal to the temperature defined by the material’s heat

8
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Figure 3: Temperature curves measured in three tests of PP(H) at 23◦C. Note that for better visibility
markers are only plotted for one out of ten data points. Thermal images were recorded at a rate of 50
frames per second.

sources, including the thermoelastic heat. Hence, the heat sources must be determined
by solving equation (13).

The boundary B of the cross-section is subject to the boundary conditions describing
the convective heat transfer,

− λ

h

∂u(x, y, t)
∂n

∣∣∣∣
x,y∈B

= u0 − u(x, y, t)
∣∣∣∣
x,y∈B

(14)

where n denotes the derivate in the direction normal to the boundary line. The heat
transfer coefficient is estimated by

h = Nu
λAir

l
(15)

where l is half the circumference of the specimen, which equals 14 mm. The Nusselt
number is calculated using the Reynolds number and the Prandtl number by [24]

Nu = 0.3 +

√√√√0.440896RePr2/3 + 0.001369Re1.6Pr2
(

1 +
2.4443 (Pr2/3 − 1)

Re0.1

)−2

(16)

where Reynolds number is lv/ν. The average velocity of 1.05 m/s in the temperature
chamber was measured using a propeller anemometer. Values for the remaining air
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properties were taken from the literature [24]. These properties depend on temperature,
thus making h temperature dependent, but as the temperature changes are small, it
is assumed that the heat transfer coefficient and the specimens’ physical properties are
constant.

The ambient air temperature u0 is also the initial temperature of the specimen, which
gives the initial condition

u(x, y, 0) = u0 (17)

The system of differential equations (13),(14) and (17) is solved using the Crank-Nicolson
finite differencing scheme [25, 26]. In finite differencing, the temperature field is solved
on a spatial grid in discrete time steps, the derivatives being replaced by differences to
adjacent grid points or consecutive time steps. Suppose the grid points are indexed by i
and j in the x and y direction respectively, then the temperature at time step tn+1 at grid
point (i, j), is determined using the value at the previous time step u(xi, yj , tn) ≡ un

i,j by

un+1
i,j = un

i,j +
aδt

2δx

(
un+1

i+1,j − 2un+1
i,j + un+1

i−1,j + un
i+1,j − 2un

i,j + un
i−1,j

)
+

aδt

2δy

(
un+1

i,j+1 − 2un+1
i,j + un+1

i,j−1 + un
i,j+1 − 2un

i,j + un
i,j−1

)
(18)

+ δtq
n

δx and δy is the grid spacing in x and y directions, and δt is the time step. Equation (18)
is valid for inner points. Points on the boundary are subject to a discrete expression of
equation (14), which is

un+1
1,j − un+1

2,j =
hδx

λ

(
un+1

1,j − u0

)
(19)

for the boundary at x = 0 or equivalently i = 1. Analogous equations hold for the other
boundaries. Equations (18) and (19) constitute a system of linear equations for the grid
values at each time step. The solution of this system provides the temperature field as
function of the source term q(t). Thus, the inverse problem of determining the source
when a part of the solution, namely the temperature field on the surface, is known must
be solved. This is done by minimizing the quadratic error between the measured surface
temperature and the computed surface temperature on the grid as a function of the
source term. When the source term is modelled by a m-term polynomial, the optimal
polynomial coefficients a = (a0, a1, . . . , am−1) are defined by

a = min
x∈Rm

N∑
n=1

(
Tsurface(tn) − un

1,−(x)
)2 (20)

Here it was assumed that the boundary i = 1 corresponds to the 10 mm side of the
specimen, on which the temperature Tsurface has been measured in the experiments. The
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Figure 4: Temperature change of PBT at strain rates of 8.7 · 10−3 s−1 and 8.7 · 10−4 s−1 and adiabatic
temperature.

dash in place of the j index indicates that averaging of the computed surface temperature
over the inner third of the specimen is performed to match the procedure applied to the
measured surface temperature. Under adiabatic conditions, the thus determined heat
sources fully describe the heat released or absorbed during a mechanical tests. As the
heat exchanged with the surroundings is small in the conducted tests, the data is treated
as adiabatic and the thermodynamic equation (6) is used to account for the reversible
contribution to the heat.

According to the results of Volodin and Slutsker [12], the temperature change in the
thermoelastic regime (low stresses) does not depend on strain rate for the strain rates
investigated. This observation thus provides an opportunity to test the solutions of equa-
tion (20). From the heat sources determined by equation (20), the surface temperature
during a hypothetical adiabatic test can be calculated. Then, assuming no substantial
change in the dominating deformation mechanisms, the temperatures calculated for two
different strain rates should coincide at low stresses. Using PBT specimens, tests were
conducted using strain rates of 8.7 ·10−3 s−1 and 8.7 ·10−4 s−1 and the heat sources were
determined from each test. The measured surface temperatures, the calculated adiabatic
temperatures and the model surface temperature for both strain rates are shown in figure
4. Contrary to the measured surface temperatures, which differ due to the heat transfer,
the adiabatic curves agree up to a stress of 20 MPa. It was attempted to infer the heat
transfer coefficient by minimizing the difference between the adiabatic curves from both
strain rates. With the optimized heat transfer coefficient, the curves match closely up to
50 MPa, but the calculation gave an unrealistically high air velocity of 2.4 m/s, which
is more than twice the measured average value. Additionally, trial computations also
showed that the obtained value depends on the stress range that is used for fitting. To
avoid the resulting ambiguity, the heat transfer coefficient as calculated from equations
(15) and (16) was used.
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Figure 5: True stress-true strain curves from tensile tests of PP(H), PC and PMMA at 23◦C and a strain
rate of 8.7 · 10−3 s−1.

5. Results and discussion

Table 2: Material parameters.

E dE/dT ρ cp α λ μ
[MPa] [MPa K−1] [kg m−3] [J kg−1 K−1] [K−1] [W m−1K−1] [1]

PP(H) 1820 −45 902 1570 81 · 10−6 0.14 0.41
PC 2510 −5 1190 1170 65 · 10−6 0.24 0.36
PMMA 3750 −30 1190 1360 62 · 10−6 0.21 0.34

A collection of the true stress-strain curves of the three materials for tension and
compression is shown in figures 5 and 6, respectively. The pneumatic grips used in the
tensile tests have a maximum load of 2.5 kN, which imposes a limit on the accessible
strain range in the case of PC and PMMA.

From the tensile tests at several temperatures (figure 7), the change of the modulus
with temperature, dE/dT, was calculated. The remaining material properties needed for
evaluating equation (6) were measured as described above. All results are summarized
in table 2. With the data given in table 2, the thermoelastic temperature change can be
calculated according to equation (6). In uniaxial tension, the stress is positive. Hence, for
a hypothetical elastic material with a positive CLTE, both terms on the right-hand side
of equation (6) are negative, implying that the temperature decreases in tension. Figure
8 gives an example of this behavior for PMMA. The difference between the measured
surface temperature and adiabatic temperature as derived from the solution of (20) shows
that the error made by neglecting convection is small in this case, but may be larger in
other cases (cf. figure 9). It is seen that the linear thermoelastic curve (2) matches the
experimental data well up to 30 MPa and predicts higher temperatures at larger stress
values. The area between the thermoelastic curve and the adiabatic temperature curve
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Figure 6: True stress-true strain curves from compression tests of PP(H), PC and PMMA at 23◦C and
a strain rate of 8.7 · 10−3 s−1.
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Figure 8: Experimental temperature data from a uniaxial tensile test, calculated adiabatic temperature
and thermoelastic curves for PMMA.

relates to the dissipated heat. In terms of heat, this implies that no heat is dissipated
up to 30 MPa, and that heat is absorbed at stresses above this level. This finding shows
the importance of considering the material’s temperature dependence. The quadratic
thermoelastic curve (equation (6)) predicts smaller temperatures, consistent with the
release of heat by viscoelastic and viscoplastic mechanisms during loading. Similar results
were obtained in the tensile testing of PP(H) and PC (figure 9) and in the compression
testing of PP(H), PMMA and PC (figures 10-12). In compression loading, the negative
stress leads to a non-monotonic thermoelastic curve, giving positive temperature at the
lowest stresses before the negative quadratic term dominates. Due to the proximity to
the glass transition temperature, dE/dT of PP(H) is very large and the quadratic term
is very pronounced. Similar to PMMA, it is strong enough to give rise to a temperature
decrease significantly stronger than the classical linear equation.

By the first law of thermodynamics (equation (1)), the internal energy stored can
be calculated when the heat and deformation work are known. To determine the vis-
coelastic and viscoplastic contribution, the elastic parts are substracted [1]. The elastic
deformation work per unit volume is

wel =
σ2

2E
(21)

and the total deformation work per unit volume is given by

w =
∫

σdε (22)
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Figure 11: Experimental temperature data from a uniaxial compression, calculated adiabatic tempera-
ture and thermoelastic curves for PMMA.
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The heat per unit volume is calculated from the heat source (equation (13)) by

qv = ρ

t∫
0

q̇(t′)dt′ (23)

The elastic contribution to the heat is determined by equation (6). Due to the strong
effect of the quadratic term, there is already a distinct difference between the overall heat
and the thermoelastic heat at low stresses in all conducted tests. However, the stress-
strain curve does not notably deviate from its elastic component, which implies that the
non-elastic work done at this stage is very small. An example of this observation on PC
in tension is shown in figure 13. The non-elastic heat exceeds the non-elastic deformation
work, whereas it is expected to be equal or smaller for conservation of energy. A part of
this apparent inconsistency could arise from the viscoelastic contribution to the Young’s
modulus determined at a strain rate of 8.7 · 10−3 s−1. The modulus testing requires a
strain-rate dependent amount of time. During this time, viscoelastic relaxation processes
occur in the material, which reduce the observed modulus value. Hence, Young’s modulus
increases with strain rate. The higher modulus values obtained at high strain rates or
frequencies reduce the magnitude of the quadratic thermoelastic term and could thus
account at least in part for the discrepancy between the calculated non-elastic heat
and deformation work. Additionally, the physical properties used in the thermoelastic
model, such as density or CLTE, depend on the microstructure, which changes during
deformation. The CLTE depends on the orientation of the polymer chains, which leads
to e.g. a higher CLTE in the transverse direction than in the longitudinal direction of
an injection-molded specimen. During tensile testing, further orientation is introduced,
which may in turn reduce the CLTE and thus effectively change the elastic response of
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Figure 13: Dissipated heat and total, elastic and anelastic deformation work of PC in uniaxial tension.
One heat curve (square markers) was calculated assuming an arbitrarily stress-dependent CLTE.
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the material. A sample calculation was performed assuming a stress-dependent CLTE,
which varies linearly with stress from the zero-stress value to a decrease of 20% at the
maximum stress. This is completely arbitrary, but the result (figure 13, square markers)
shows that changes in the percent range have a large impact on the result of the heat
calculation.

6. Conclusion

An analysis of the contribution of the thermoelastic effect to the heat evolution during
uniaxial tension and compression of PP, PC and PMMA was presented. It was shown
that a carefully designed experimental setup with a differential measurement between a
loaded and a non-loaded specimen allows for high precision temperature measurements.
The heat conduction in the specimen cross-section and convection on the surface were
considered and it followed that some error is introduced when the adiabatic assumption
is made at the investigated strain rate of 8.7 · 10−3 s−1.

The results showed that the quadratic contribution to the thermoelastic effect, which
arises from the temperature-dependence of the materials’ mechanical properties, must
be considered to obtain meaningful heat dissipation data. However, the calculated ther-
moelastic effect appears to be too pronounced when compared to the deformation work.
It was found that with the present thermoelastic theory, the dissipated heat exceeds the
deformation work. The cause of this observation is not yet clear, but an influence of
viscoelasticity in the determination of elastic constants and the effect of microstructural
changes during deformation may play a role.
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Abstract

In the modeling of the mechanical response of a polymer over a large strain range, the nonlinear viscoelastic and

viscoplastic behavior must be considered. For many polymers, nonlinear behavior is observed at low loads, e.g. by a

stress-dependence of the creep compliance for stresses above 2 MPa in case of the polypropylene used in this study.

Additionally, plastic deformation has been observed at strains below the yield point for several polymers. In this study,

the irreversible deformation by cavitation and shear yielding of polypropylene are characterized in the pre-yield regime

in uniaxial tensile tests using digital image correlation. The recovery of strain after unloading at a prescribed strain level

is measured and used to identify the evolution of the plastic strain during uniaxial tension. An experimental technique

for simultaneous determination of the true stress-true strain curve and the degree of stress whitening, which relates to

the amount of cavitation, is introduced and the initiation of cavitation is compared to the plastic deformation detected

in strain recovery at various temperatures.

Keywords: strain recovery, viscoplasticity, stress whitening, polypropylene

1. Introduction

The deformation mechanisms of polypropylene were in-

vestigated in several studies [1–5]. A sequence of deforma-

tion events leads to different forms of plastic deformation,

which are not only of scientific interest, but also of engi-

neering relevance. The initial stages of tensile deformation

are governed by the straining of molecular chains of the in-

terlamellar amorphous phase, interlamellar shear, rotation

of lamellae stacks and lamellae separation [2]. The plas-

tic deformation at later stages is a competition between

plastic deformation of the interlamellar amorphous phase

and the crystalline phase. This competition is influenced

by experimental conditions such as strain rate [6] or tem-

perature [7]. Above Tg, the initial deformation is located

in the amorphous regions because of their low modulus.

The tensile deformation of a spherulite is inhomogeneous

because the amorphous regions and the radially oriented

lamellae have different angles to the direction of the tensile

force, depending on their location in either polar, diagonal

or equatorial regions of the spherulite. The main mode of

plastic deformation of the amorphous components is be-

lieved to be interlamellar sliding, or lamellae separation

in the equatorial regions, where the lamellae are orien-

tied perpendicularly to the drawing direction. The amor-

phous phase between lamellae is linked to the lamellae by

tie molecules and chain entanglements. The mobility of

∗Corresponding author
Email address: tscharnuter@pccl.at (D. Tscharnuter)

these amorphous chains may vary locally and is different

from the mobility of the amorphous bulk material, which

is manifested e.g. by physical aging above Tg [8]. The con-

straints imposed by the lamellae imply that only a limited

amount of deformation can be accomodated by the inter-

lamellar amorphous phase [9]. When this limit is reached,

further deformation can proceed either by cavitation of the

amorphous phase or by plastic deformation of crystals. In

the latter case, stretched tie chains can pull crystalline

material from the lamellae [7] or cause crystal slips. Cav-

itation is apparent by stress whitening: Sufficiently large

voids act as scattering sites for incident light, which makes

the initially transparent material opaque. The degree of

opacity is linked to the density of voids, hence it increases

with tension. Which of the two mechanisms occurs is influ-

enced by temperature [10]. Polypropylene shows a tran-

sition in the temperature region around 80◦C, which is

associated with mobility in the crystalline phase. When

drawing is performed at elevated temperatures approach-

ing this transition region, a change of the dominating de-

formation from cavitation towards shear yielding can be

expected.

These irreversible deformations begin at strains below

the yield strain. Knowledge of the irreversible deformation

modes and load limits for reservible behavior is therefore

essential for proper modeling of mechanical behavior and

for optimizing polymer component designs. In this paper,

two methods are applied to study the irreversible deforma-

tion of polypropylene in the pre-yield regime. The recovery



Figure 1: Semi-sprayed tensile specimen in unstrained (top) and
strained (bottom) state. Pictures were taken at true strains of 0 and
0.305 during a test performed at 23◦C.

of the reversible elastic and viscoelastic strain components

after loading is measured to find the amount of plastic de-

formation. The strain measurements are performed using

a digital image correlation system, which allows for a quite

precise determination of the plastic strain. To analyze the

deformation mode, specimens were prepared for a simul-

taneous measurement of the stress whitening and the 2D

strain field, also using the digital image correlation sys-

tem. Due to the viscoelastic nature of the polymer, the

deformation depends not only on the applied stress, but

on the entire stress history [11, 12] and the loading mode

[12]. Therefore, strain recovery tests and stress whitening

measurements were performed under the same experimen-

tal conditions to enable a comparison of the results.

2. Experimental

2.1. Material
The investigated material is a development grade poly-

propylene homopolymer from Borealis Polyolefine GmbH.

Injection molded specimens according to ISO 3176 type B

were manufactured by Borealis Polyolefine GmbH (Linz,

A). This material was previously investigated in mono-

tonic tension [13], long-term compressive [14] and tensile

relaxation [15, 16].

2.2. Tensile strain recovery tests
The strain recovery tests were performed on a screw-

driven electro-mechanical universal test system (type Zwick

Z250; Zwick-Roell, Ulm, Germany) in uniaxial tension

with a constant engineering strain rate of 8.7 · 10−3 s−1.

The system is equipped with a temperature chamber to

maintain the desired test temperature within ±0.2◦C. A

waiting period of 30 minutes after insertion of the speci-

men into the specimen grips was chosen for the tempera-

ture chamber to stabilize after the disturbance of opening

the door and for the specimen to achieve a uniform tem-

perature.

Full-field strain was measured using a digital image cor-

relation (DIC) system (ARAMIS; GOM mbH, Germany).

This system is discussed elsewhere [17]. For this study, the

strain measurement was performed in 2D mode and the

inherent scatter in the strain with this set-up was about

0.02% as determined by the standard deviation of a series

of images taken of an unstrained specimen.

To measure the strain recovery from various strain lev-

els, specimens were held at zero force for 100s before load-

ing to a prescribed engineering strain, which is subse-

quently maintained in a stress relaxation mode for one

or two seconds, which is the time it takes for the opera-

tor to unload the specimen by releasing a pneumatic grip.

Thereby only the moving grip is released to ensure that

the specimen remains in its initial position also during the

strain recovery, which can then be measured with DIC to

benefit from the high strain resolution also during the re-

covery phase. Note that for homogeneous deformations,

averaging of the engineering strain of all subsets of the

DIC is performed to improve accuracy. The recovery of the

elastic and viscoelastic strain component after unloading

is measured and the plastic strain component is identified

as the strain in the steady state.

True longitudinal strain εt,l and transverse strain εt,t

are calculated from the engineering strains by

εt,l = ln(εn,l + 1) (1)

and

εt,t = ln(εn,t + 1) (2)

The true stress is defined as

σt =
F

A0

1

(1 + εn,t)2
(3)

where F is the force and A0 the cross-sectional area of the

unstrained specimens.
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The strain recovery is measured for up to 24 hours

at a controlled test temperature. For amorphous poly-

mers, it was found that the recovery can by accelerated

by raising the temperature [18]. To avoid an alteration

of the recovery from loading at room temperature due

to possible changes of the crystalline structure [19], an

accelerated recovery at higher temperatures was not at-

tempted in this work. The tests performed at 40◦C, 60◦C
and 80◦C showed that the recovery is faster than at room

temperature, but physical aging was observed. The origin

of this aging was not investigated, but the temperature

range where it occured suggests that it relates to changes

in the lamellar structure.
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Figure 2: Measured transverse and axial strain and calculated trans-
verse strain during closing and opening of the upper pneumatic grip.
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Figure 3: Strain recovery of polypropylene at room temperature from
nominal strains between 0.5% and 8%.

2.3. Quantitative determination of stress whitening
Using the same tensile test setup described above, the

stress whitening was measured during stretching of the

specimen. A board sprayed with graphite spray was placed

behind the specimen to serve as a non-specular dark back-

ground. Only one half of each specimen was coated with

the random pattern for DIC to enable a simultaneous mon-

itoring of the strain field and the degree of whitening. Ex-

emplary pictures of an unstrained and strained specimen

are shown in figure 1. Due to limitations on the illumi-

nation angle imposed by the rather narrow window of the

temperature chamber, it was not possible to achieve a uni-

form level of illumination over the entire specimen. The

specimens were placed in the grips with the less oriented

end at the bottom grip to ensure that the necking zone is

always in the same position. The lights were then adjusted

to provide a uniform illumination of this zone of maximum

deformation, which is used for the calculation of the true

strain and the degree of whitening. Care must be taken to

ensure sufficient illumination for the DIC while avoiding

specular reflections on the uncoated part of the specimen.

The whitening is quantified by the digital data of the

DIC images as an integer number for the gray level ranging

from 0 to 255. The gray level value is taken as the average

value of a typically 30x30 pixels section in the zone of max-

imum deformation, which is indicated by the crosshairs in

figure 1. The crosshairs are placed in the images by the

DIC software and are subsequently tracked by a motion

tracking algorithm [20] for automated gray level evalua-

tion of each image. For further evaluation, gray levels are

referenced to the value at zero strain.

SAXS measurements were performed using a Bruker

NanoStar (Bruker AXS, Karlsruhe, Germany). This sys-

tem was equipped with a two-dimensional X-ray detector.

The distance between the sample and the detector was

64 cm. A wavelength of 0.154 nm (Cu Kα) was used. The

samples were measured in transmission and under vacuum

with angles between 0.2◦ and 5◦.

3. Results

3.1. Strain recovery
In 2D mode, the strain measurement is very sensitive to

out-of-plane motion, hence a precise alignment of the spec-

imen grips is needed. The alignment of the grips and the

influence of the compressive stress applied upon closing

were investigated by measuring the transverse and axial

strain during a sequence of three times closing and opening

of the upper grip. The transverse strain was also calcu-

lated from the axial strain using a Poisson’s ratio value of

0.40, which is the value found in stress relaxation at short

times [16]. Given the small strains, the agreement between

the measured and calculated transverse strain (figure 2)

is good enough to conclude that opening or closing the

grip does not introduce an error in the 2D strain mea-

surement. The lateral contraction itself is an out-of-plane

3
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Figure 4: Strain recovery of polypropylene at 23◦C, 40◦C, 60◦C and
80◦C from nominal strains of 2% and 6%.

displacement that leads to a systematic error [21], but the

displacement along the 4mm thickness is very small com-

pared to the roughly 500mm distance between specimen

and camera.

Recovery tests were carried out from nominal strains

between 0.5% and 8% at 23◦C, 40◦C, 60◦C and 80◦C. Due

to the excessive need of liquid nitrogen for cooling, no

tests were conducted below room temperature. The strain

recovery at room temperature is shown in figure 3 and

a comparison of the results at all temperatures for two

selected strains is given in figure 4. It is seen that the

major part of the strain recovery at room temperature is

completed in the first three decades of recovery time. Only

minor to no recovery occurs in the fourth decade, after

roughly 3 hours. The strain measured during this decade

is averaged to define the residual plastic strain. In figure

5, this residual strain is depicted over the peak true strain

together with the true stress-true strain curve. Residual

strain is already detected below 4% strain, which is less

than half the yield strain (engineering strain at maximum

engineering stress).

Repeated recovery tests were performed from 4%, 6%

and 8% nominal strain to illustrate the effect of the ir-

reversible deformation. In these tests, a specimen was

subjected to a second recovery test after completing the

first test. Each specimen had acquired a residual strain

during the first test (figure 6). If no further change of

the strain distribution on the specimen occurs during the

second loading, the repeated deformation as prescribed by

the crosshead displacement leads to a final strain that is

equal to the sum of the final strain from the first loading

and the thereby acquired residual strain. For the testing

with 8% nominal strain, the maximum strain measured on

the inhomogeneously deformed specimen was 9.7% and the

residual strain was 1%, but the observed maximum strain
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Figure 5: Residual strain and true stress-true strain curve for tests
at 23◦C.

during the second loading was 11.1%. The difference of

0.4% shows that the localization of the deformation in-

creased. The increase in residual strain was approximately

0.8%. A comparison of the stress-strain curves of first and

second loading (figure 7) shows softening of the material

in all cases. Note that in figure 7, the residual strain from

the first test was subtracted from the strain measured dur-

ing the second loading. The decrease in stress at a given

strain in the test at 4% peak nominal strain is small but

nevertheless indicates irreversible deformation during the

first loading. At the higher strains of 6% and 8%, a more

pronounced weakening of the material is observed.

The effect of temperature on the viscoplasticity and

strain recovery has been studied by testing at tempera-

tures above room temperature. The drawing and recovery
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Figure 6: Strain recovery for repeated recovery tests at 4%, 6% and
8% nominal strain.
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at 4%, 6% and 8% nominal strain. The small subfigure shows a
magnified portion of the data for visibility of the 4% curve. The
residual strain after the first loading has been subtracted from the
strain measured during the second loading for this plot.

were performed and measured at the same temperature.

A physical aging effect was observed while testing at 60◦C
and 80◦C. After a certain recovery time, shrinkage of the

specimen occured. The effect is most distinct during re-

covery from lower strains, see figure 4. During recovery

from higher strains, a slight change of curvature in the re-

covery curve is observed, which likely indicates the same

shrinkage that is clearly visible in the lower strains. The

shrinkage sets in before a fully steady recovery state is

achieved. A detailed investigation of the aging effects in

this context is beyond the scope of this paper, so for the

present work, the residual strain is approximated by the

strain achieved before the appearance of aging in the re-

covery curves. This approximation implies only a small

error because the major part of the recovery occurs prior

to the shrinking and only little recovery takes place in the

time range where the aging effect is observed. The thus

defined residual strains are shown in figure 8. Polynomials

were fitted to the data to determine the onset of plastic

deformation as the strain at which the plastic strain ex-

ceeds the arbitrarily chosen value of 0.05%. Based on this

criterion, the limit of reversible loading under the present

experimental conditions is 3.9% at 23◦C and decreases to

2.2% at 80◦C.

3.2. Stress whitening
Several tests were conducted at temperatures ranging

from −20◦C to 80◦C as previously described and true

stress and true strain were determined according to equa-

tions (3) and (1). The true stress and true strain curves

are shown in figure 9. Tests were conducted until fracture

(−20◦C) or beyond the maximum engineering stress.
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Figure 8: Residual strain for test temperatures of 23◦C, 40◦C, 60◦C
and 80◦C.

The gray level in the zone of maximum deformation

was determined for each test. Figure 10 shows the true

stress-true strain curve and the gray level vs. true strain

from a test conducted at room temperature and at a strain

rate of 8.7 · 10−3 s−1. The gray level is nearly constant for

true strains up to 5%. At higher strains, the gray level

strongly increases. As is evident from the cross-section

pictures taken from specimens pulled to various strain

levels (figure 11), the whitening zone starts at the core

of the specimen and expands towards the skin layer with

progressing strain. This localization of the stress whiten-

ing is due to the inhomogeneous morphology of the injec-

tion molded specimens [22], in which a spherulitic crystall

structure prone to cavitation is present in the core. With

progressing deformation, the inner zone becomes whiter

with strain, which suggests an increase in void density.

Both effects contribute to the gray level increase at in-

termediate strains. Note that the pictures presented in

figure 11 were taken from unloaded specimens and hence

only show a lower bound for the size of the cavitation zone

because smaller voids may close due to the surface tension

when the stress is removed. The decrease in slope of the

gray level curve at the highest strains may be due to in-

creased fibrillation of the material between the voids and

growth of existing voids, with only little additional voids

being created.

The definition of the onset from the gray level curve is

somewhat arbitrary. Possible definitions include the inter-

section point of linear fits to distinct regions or the crossing

of threshold levels. Yamaguchi and Nitta [23] conducted

an analysis based on the light transmittance and used the

point of maximum change of transmitted intensity as char-

acteristic whitening point. This definition does not di-

rectly relate to the onset of whitening. In the present case,

the onset of cavitation is assigned to the strain at which

the gray level curve departs from its initial straight line.
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Figure 9: True stress and true strain curves for temperatures above
and below Tg. For clarity of the plots markers are only shown for a
subset of the data of each test.

For the room temperature test, the corresponding strain is

around 5% and is indicated by the circular marker in figure

10. The yield strain is 8.7% (square marker). Thus, cav-

itation occurs well before the yield point. The achievable

sensitivity of this technique is believed to depend on the

transparency of the unstrained material and could possibly

be improved by ways of illumination other than the frontal

illumination used for the simultaneous DIC measurement.

Furthermore, it must be considered that the strain at cav-

itation may be somewhat lower than indicated by the de-

gree of stress whitening, because cavities must reach a

proper size to cause the intense light scattering. SAXS

measurements are sensitive to nano-size cavities and were

therefore performed on specimens tested at 23◦C and 60◦C
and selected strains ex-situ after three months of recovery

at room temperature (figure 12). The SAXS results of

specimens drawn to 3% at 23◦C were quasi identical to the

results on an untested specimen, showing no cavities. For

a detailed discussion of SAXS patterns at various strains

the reader is referred to reference [2]. The cross-section of

the specimen elongated to 4% strain (figure 11) reveals a

small zone that already shows weak whitening. This stress

whitening is below the sensitivity of the gray level analy-

sis, which detected whitening at 5% strain. An initial slow

increase of transparency was observed at 60◦C and 80◦C.

At 60◦C, the transparency started to increase at a strain

of 7%. The SAXS pattern showed spherical cavities after

drawing to 8% at 60◦C, but none after drawing to 6%.

Hence, bearing in mind an overestimation of the onset of

cavitation by roughly 1%, presumably depending on the

initial transparency, the stress whitening measurement is

a useful technique that can be easily applied in-situ using

standard digital cameras. In a recent work [24], it was

reported that no cavitation was observed above 70◦C in

the drawing of 1mm thick polypropylene films. The differ-
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strain at room temperature and a strain rate of 8.7 · 10−3. The
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shows the pre-yield regime with the sharp increase of gray level.

Figure 11: Cross-section pictures of specimens drawn to various nom-
inal strains. Top-left: 0%, bottom-left: 4%, top-right: 6%, bottom-
right: 8%.

ing observations could result from the different specimen

geometry and strain rate used, or differences in molecular

parameters, such as entanglement density or number of

tie molecules, and morphological differences, which have

an effect on the deformation [7].

At all investigated temperatures, the strain recovery

data showed that irreversible deformation occurs close to

or prior to cavitation by a varying amount of strain, which

increases with temperature. The strain at cavitation is

temperature dependent, as is the yield strain. Figure 13

shows the strain at yield, onset of cavitation and begin-

ning of irreversible deformation for various temperatures.

For the test at −20◦C, the fracture strain was used for

reference because fracture occured before a yield point

appeared. It was found that the cavitational strain in-

creases stronger with temperature than the classical yield

strain. Below the glass transition temperature, crazes ap-

pear and grow with little regard to the local crystalline

structure [4]. Above Tg, craze-like features can form on

spherulite boundaries [2] and cavitation can occur in the

6



Figure 12: SAXS patterns of specimens drawn to strain up to 8%
nominal strain at 23◦C and 60◦C. The reference specimen for 60◦C
was subjected to the same thermal history as the tested specimens
to account for effects of physical aging. The drawing direction is
vertical in the pictures.

interlamellar amorphous phase. As already described, the

latter depends on a competition between the deforma-

tion of the interlamellar amorphous phase and the crystal

lamellae. As the test temperature is increased, the cavita-

tional deformation is reduced and stress whitening occurs

weaker and at higher strains, e.g. close to the yield strain

at 80◦C. In contrast, the limit of reversible deformation

decreases with temperature. It has been observed that

the amount of recoverable strain saturates above a certain

strain level due to substantial stretching and orientation of

the amorphous chains, leading to major deformation of the

crystalline phase. This strain level is of the order of 25%

for HDPE [25] and of similar magnitude for PP [2]. In the

pre-yield regime, the amount of recoverable strain is much

larger than the plastic strain and increases with the ap-

plied strain, implying that most of the deformation occurs

in the amorphous zones. Thus, the observed initiation of

plasticity between 2% and 4%, depending on temperature,

may indicate that at these strain levels, a notable fraction

of the tie molecules becomes taut and transfers stress on

the lamellae. Deformation may then proceed either by

cavitation at sufficiently low temperatures, or by slip pro-

cesses in the lamellae at higher temperatures, which allows

further stretching of the remaining interlamellar chains.

Due to the length distribution of tie molecules, this is a

gradual process leading to a gradually increasing amount

of plastic deformation.

4. Conclusion

A tensile test setup with strain field measurement by

2D digital image correlation was used to characterize plas-

tic deformation of polypropylene in uniaxial tension. Two

methods, strain recovery and stress whitening analysis,
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Figure 13: Yield strain and strain at the onset of cavitation and
irreversible deformation at various temperatures. For comparabil-
ity with the engineering yield strain, the latter strains have been
converted to engineering strains for this figure.

were used to determine reversibility limits and to detect

cavitation.

Strain recovery after loading to various strain levels

showed that plastic deformation occurs well before the

yield point at all investigated temperatures between 23◦C
and 80◦C. The reversible limit was found at about 4%

strain at room temperature, which is less then half the

yield strain. The strain limit decreases with increasing

temperature, becoming only 2.2% at 80◦C.

The degree of stress whitening was quantified by the

gray levels taken from the images recorded by the digital

image correlation system. This allows for a simultaneous

measurement of the strain field and the stress whitening.

The stress whitening is due to cavitation of the amorphous

phase of the polymer. The initiation of cavitation was de-

termined from the gray level vs. true strain curves. Cavi-

tation was detected at all investigated temperatures before

the yield strain was reached. With increasing temperature,

the strain for cavitation increases due to the softening of

the crystalline phase. On the other hand, it was found that

the residual strain after drawing to a certain strain level

increases with temperature. It was thus concluded that

the plastic deformation of the crystal lamellae contributes

to the deformation at the elevated temperatures.
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Uniaxial nonlinear viscoelastic viscoplastic modeling of polypropylene

Daniel Tscharnuter · Michael Jerabek · Zoltan Major ·
Gerald Pinter

Abstract This paper presents the application of a Schapery-type nonlinear viscoelastic viscoplastic model to

strain recovery data of polypropylene. In a previous study, the recovery of strain after monotonic uniaxial tensile

loading was measured to gather information on the viscoelasticity and viscoplasticity. The viscoplastic part of

the tensile deformation is used to determine parameters of a viscoplastic model. The nonlinear viscoelastic part is

determined using an iterative procedure to solve the one-dimensional Schapery model equation without assuming

a specific load history. The model parameters are identified from the strain recovery data and also applied to

stress relaxation data.

Keywords nonlinear viscoelasticity, viscoplasticity, Schapery model

1 Introduction

The mechanical behavior of polymers depends on time, stress state and other influences such as temperature

or moisture. In mechanical testing, nonlinear behavior can be observed at strains below 1%, which limits the

applicability of the theory of linear viscoelasticity. In addition to the nonlinear viscoelastic deformation, load

histories can activate irreversible deformation mechanisms. As these deformations depend not only on the applied

stress or strain levels, but on the entire load history, they are referred to as viscoplasticity.

Several approaches to the modeling of nonlinear viscoelasticity for a variety of problems exist in the literature.

A popular type of model is the Schapery nonlinear viscoelastic model (Schapery, 1969). This model can be built to

ensure that it exhibits linear viscoelastic behavior at low stresses and its integral formulation is similar in structure

to the Boltzmann integral of linear viscoelasticity. It has been applied to several materials, often to model creep

behavior, e.g. by Lai & Bakker (1995a); Nordin & Varna (2006). The assumption of instantaneous loading is

frequently used because it allows for a rather uncomplicated determination of the material functions. However,

significant error can be introduced by this simplification (Sorvari et al., 2006). With the computational power

that is available to present day scientists, it is no longer necessary to use the step loading assumption. Methods

to solve the Schapery equation were developed e.g. for FE implementation by Henriksen (1984); Lai & Bakker

(1996); Muliana & Haj-Ali (2004) and Crochon et al. (2010). These methods are not restricted to a specific load

history.
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In a previous work by the authors, the strain recovery of polypropylene from uniaxial monotonic tensile

loading was investigated and the viscoplastic strains were determined. The aim of this paper is to discuss the

aspects of using these data to define a Schapery nonlinear viscoelastic viscoplastic model. The iterative scheme

introduced by Muliana & Haj-Ali (2004) is used to calculate the strain response of the strain recovery load history

and optimization is used to find the model parameters.

2 Experimental

The investigated material is a development grade polypropylene homopolymer. Injection molded specimens ac-

cording to ISO 3176 type B were manufactured by Borealis Polyolefine GmbH (Linz, A). This material was

previously investigated in monotonic compression (Jerabek et al., 2010b) and tension (Jerabek et al., 2010a),

long-term compressive (Jerabek et al., 2010c) and tensile relaxation (Tscharnuter et al., 2010b,c). The strain

recovery data used for the modeling in this work is presented in detail elsewhere (Tscharnuter et al., 2010a).

The tests were performed on a screw-driven electro-mechanical universal test system (type Zwick Z250; Zwick-

Roell, Ulm, Germany) in uniaxial tension with a constant engineering strain rate of 8.7 · 10−3 s−1. The system

is equipped with a temperature chamber to maintain the desired test temperature of 23◦C within ±0.2◦C.

A waiting period of 30 minutes after insertion of the specimen into the specimen grips was chosen for the

temperature chamber to stabilize after the disturbance of opening the door and for the specimen to achieve a

uniform temperature.

Full-field strain was measured using the digital image correlation (DIC) system ARAMIS (GoM mbH, Braun-

schweig, Germany). This system is discussed by Jerabek et al. (2010d). For this study, the strain measurement

was performed in 2D mode and the inherent scatter in the strain with this set-up was about 0.02% as determined

by the standard deviation of a series of images taken of an unstrained specimen.

In the strain recovery tests, specimens are stretched to a certain engineering strain and then unloaded by

releasing a specimen grip. The subsequent recovery of the elastic and viscoelastic strain component is measured

and the plastic strain component is calculated. Prior to starting the test, the specimen was held at zero force

for 100s before loading to the desired engineering strain, which is subsequently maintained in a stress relaxation

mode for one or two seconds, which is the time it takes for the operator to unload the specimen by releasing a

pneumatic grip.

True longitudinal strain εt,l and transverse strain εt,t are calculated from the engineering strains by

εt,l = ln(εn,l + 1) (1)

and

εt,t = ln(εn,t + 1) (2)

The true stress is defined as

σt =
F

A0

1

(1 + εn,t)2
(3)

where F is the force and A0 the cross-sectional area of the unstrained specimens. The strain recovery was

measured over approximately 24 hours.

3 Determination of model parameters

The strain recovery data provides a good basis for modeling for several reasons. First, for a stress-based model,

the loading at constant strain rate is a complex load history which includes nonlinear behavior. Second, the

stress-controlled recovery phase provides data on the time-dependence. Third, the determination of residual

strain yields information on the evolution of plastic strain during the constant strain rate loading. To describe

these observations, a uniaxial stress-based Schapery-type nonlinear viscoelastic viscoplastic model is used. The

model equation for the axial strain is

2



ε(t) = D0g0σ(t) + g1

t∫
0

ΔD(ψ(t) − ψ(τ ))
∂

∂τ
(g2σ(τ )) dτ + εvp(t) (4)

In this equation, D0 is the initial and ΔS the transient creep compliance and gi are the nonlinearizing functions

of the stress implemented as polynomials. The shifted time ψ is defined by

ψ(t) =

t∫
0

1

aσ(σ(τ ))
dτ (5)

with the time-shift function aσ. The functional form(Pasricha et al., 1996; Zapas & Crissman, 1984)

εvp = C

⎛
⎝ t∫

0

σ(τ )
Mdτ

⎞
⎠m

(6)

is assumed for the viscoplastic strain εvp. This form was e.g. used by Nordin & Varna (2006) to model the

viscoplastic strain formed during creep. Here it is used to account for the plastic strain created during the

constant strain rate loading prior to the recovery. Due to the viscoelastic nature of the polymer, the plastic strain

depends not only on the applied stress, but on the entire stress history (Marano & Rink, 2001; Fasce et al., 2009)

and the loading mode (Fasce et al., 2009). Therefore, a simple viscoplastic law as given in equation (6) is limited

to a certain type of loading and a more complex law, e.g. as proposed by Lai & Bakker (1995b), is needed for a

general description. Specifically for the tests of this study, the parameters are determined from the plastic strain

that is created during monotonic uniaxial tension. At any given strain, the predicted plastic strain is related to

the area under the time-stress curve (equation (6)). Before the recovery phase is started by releasing a specimen

grip, the specimen is held at constant strain for one or two seconds. Marano & Rink (2001) studied the residual

strain of styrene-acrylonitrile after stress relaxation for different relaxation periods and strain levels. They showed

that the residual strain increases with the duration of the stress relaxation, but generation of residual strain was

not observed until after 50 minutes of stress relaxation at 7%. For PC, Marano & Rink (2006) reported even

larger times. A similar investigation of the influence of the relaxation duration could not be conducted in this

work and it is therefore assumed that a few seconds of stress relaxation have no effect on the residual strain.

In contrast, the plastic strain predicted during the short relaxation phase according to the above equation is of

the order of the loading ramp contribution after only a few seconds. Hence, the applicability of this viscoplastic

model is limited to the loading ramp and is thus only evaluated up to the maximum stress for each test. To

determine the viscoplastic parameters C, M and m, equation (6) is solved by numerical integration up to each

strain level and fit to the corresponding residual strains.

With the viscoplastic model determined, the remaining nonlinear viscoelastic parameters can be obtained.

The nonlinearizing functions g0, g1, g2 and 1/aσ are chosen as polynomial functions of the stress and a Prony

series is assumed for the compliance. The choice of the Prony series allows for an iterative solution of equa-

tion (4) (Henriksen, 1984). Different approaches in defining the iterative procedure are found in the literature

(Crochon et al., 2010). In this study, the equation is solved by the scheme derived by Muliana & Haj-Ali (2004).

For the brief description of the method, the compact notation used by Muliana & Haj-Ali (2004) with inde-

pendent variables written as superscripts is useful. The Prony series is expressed with inverse retardation times

λj = 1/τj as

ΔDψt

=

N∑
j=1

Dn(1 − exp(−λjψ
t
)) (7)

and the Schapery equation is

εtn+1 = g
tn+1
0 D0σ

tn+1 + g
tn+1
1 g

tn+1
2

N∑
j=1

Dj − g
tn+1
1

N∑
j=1

Djq
tn+1
j (8)

3



where

q
tn+1
j =

tn+1∫
0

exp(−λj(ψ
tn+1 − ψτ

))
∂gτ

2στ

∂τ
dτ (9)

The above integral is decomposed into the integral up to time step tn and in the integral from tn to tn+1 to

derive the iterative formula

q
tn+1
j = qtn

j exp(−λjΔψn+1
) + (g

tn+1
2 σtn+1 − gtn

2 σtn)
1 − exp(−λjΔψn+1)

λjΔψn+1
(10)

Thereby, the incremental reduced time is

Δψn+1 ≡ ψtn+1 − ψtn =
Δtn

an+1
σ

(11)

4 Results and Discussion

4.1 Determination of viscoplastic parameters

Figures 1 and 2 show the strain recovery data and the residual strain along with the stress-strain curve, respec-

tively. The parameters for the viscoplastic model were obtained as described previously and are compared to

the strain recovery data in figure 3. The agreement is good at higher strains, but poor at intermediate strains,

although the absolute error is tolerable. At the lowest strains, the accuracy of the strain measurement is reached

and it is not practical to consider the prediction of plastic strain.

4.2 Determination of viscoelastic parameters

For each of the recovery tests, the Schapery-model strain was computed using the iterative scheme. The model

parameters were determined by least-squares fitting to the strain data of all tests. The measured strain ε at

time tj in test i is expressed as εij . Analogously, the model strain is written as ε̂ij . The parameters are thus

determined as the set of parameters that minimizes
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Fig. 1 Strain recovery of polypropylene at room tem-
perature from nominal strains between 0.5% and 8%
(true strains between 0.5% and 9.7%.
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E =
∑
i,j

(
wij

εij − ε̂ij

εij

)2

(12)

wij are weights that are individual to each test. These weights were introduced to address an experimental issue

specific to the present tests. Recording of images for the strain measurements is performed at constant frame

rates. The frame rates are changed in steps over the testing time, but nevertheless the recording at constant rate

implies an uneven spacing of data on the logarithmic time scale. Hence, there are comparatively few data points

in the loading phase compared to later decades of testing time. To counter this effect, higher weight is assigned

to the data up to unloading.

In this optimization problem, constraints are imposed due to physical requirements (Lévesque et al., 2008).

First, all polynomial coefficients of the nonlinearizing functions are positive to enforce monotonic behavior,

ensuring that the material becomes more compliant with increasing stress. The constant term of the polynomials

is equal to 1 as required by the limit of linear viscoelastic behavior. Second, the Prony series coefficients and

retardation times are positive. Some trial calculations showed that with the optimization algorithm used by the

authors (lsqnonlin, MATLAB) it is advantageous to use a fixed set of logarithmically spaced retardation times.

In view of computational speed in e.g. FE simulations, it is desirable to use an optimized set of retardation times

with the smallest possible number of terms, but no investigations in this regard were carried out for this study.

The result of the fitting process is shown for representative tests in figure 4. The parameters are given in tables

1-3. Good agreement was achieved in the loading ramp and in the initial recovery, but it is also apparent that

the agreement during the recovery at larger times is limited by the accuracy of the viscoplastic term, see figure

3. When the viscoplastic strain in the model is too small (strain below 4%), a very large term in the Prony series

is obtained in the least-squares optimization to account for the difference between the viscoplastic prediction

and the measured residual strain (table 2, n= 9). As this term is thus an artifact of the fitting procedure, it is
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Fig. 4 Strain recovery data and Schapery model result
for recovery tests conducted with peak true strains of
8.1%, 6.7%, 3.8%, 1.8% and 1.0%.

omitted in the calculations. The emergence of this large term however shows that an accurate modeling of the

viscoplastic strain is important for the determination of the viscoelastic parameters.

There is some deviation between model and data in the short relaxation portion before the unloading. Appli-

cation of the model to stress relaxation data1 (figure 5) at 2% showed a reasonable overall agreement, but also

waviness, resulting in the deviation in the short relaxation periods. Lévesque et al. (2008) demonstrated that a

model determined from one type of load history does not necessarily give good results on a different one and

concluded that verification against various load histories is needed. Trial computations with different choices of

the nonlinearizing function parameters where conducted and it was found that parameter sets yielding similarly

good descriptions of the strain recovery can show significant differences when applied to stress relaxation. Hence,

these results suggest that a variety of load histories must be used in the identification of proper model parameters,

in the present case also including viscoplasticity. Furthermore, the optimization algorithm that was used for the

parameter identification is gradient based. Such algorithms find a solution in the vicinity of the initial guess that

is made for the parameters. The initial guess may or may not lead to a useful solution, and often some trial and

error is needed to find a suitable initial guess. The application of stochastic optimization methods, for which the

result does not depend on the initial guess, should be explored in future work. For the linear viscoelastic model,

stochastic optimization has been successfully applied by the authors (Tscharnuter et al., 2010b).

The experimental effort to find sufficient data to determine the viscoplastic and viscoelastic behavior for

several load histories is considerable even when only limited to uniaxial loadings. It is well known that the

mechanical behavior of polymers depends on the hydrostatic stress. Further experimental work for parameter
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Fig. 5 Stress relaxation data and Schapery model re-
sult for stress relaxation at 2%.

1Viscoplasticity during stress relaxation was not considered.
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Table 1 Polynomial coefficients

degree 4 3 2 1 0
g0 2.60e−6 2.82e−4 6.15e−3 1
g1 2.37e−6 2.61e−5 2.63e−3 1
g2 9.28e−7 2.54e−6 2.68e−4 2.82e−4 1
1/aσ 3.50e−4 5.19e−4 1

Table 2 Prony series parameters

n τ [s] D [MPa−1]
1 10−2 6.60e−5
2 10−1 6.54e−5
3 1 6.31e−5
4 101 7.88e−5
5 102 2.15e−4
6 103 6.65e−4
7 104 1.95e−4
8 105 9.47e−4
9 106 1.73e−1

Table 3 Viscoplastic parameters

C M m
1.76e−5 4.3e−14 4.16e+0

identification should therefore also include multiaxial and compression testing to clarify the proper dependence

of the nonlinearizing functions on the stress state.

5 Conclusion

Strain recovery data from a previous paper of the authors were used to identify the parameters of a Schapery-type

nonlinear viscoelastic viscoplastic model. The parameters describing the viscoplasticity were determined by fitting

the viscoplastic model to the residual strains observed in strain recovery. The viscoelastic part of the model was

solved using an iterative scheme and nonlinear optimization was used to determine the nonlinearizing functions

and the Prony series compliance parameters from the collection of strain recovery tests. Good agreement was

obtained for the loading ramp and the initial recovery, but it was also shown that the accuracy of the viscoplastic

component has a strong influence on the identification of the viscoelastic parameters. Some error was found in

the application of the determined model to stress relaxation data and it was found that different models that give

equally good representations of the strain recovery data can show very different behaviors in stress relaxation. It

was thus concluded that a variety of different load histories needs to be used in the parameter identification.
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