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Abstract [1]/id} 
 
In filtration processes it is necessary to consider the interaction of the fluid with the solid parts and 
the effect of particles carried in the fluid and accumulated on the solid. Traditionally, for investigation 
of the driving parameters, such as particle deposition and material influence, destructive tests are 
used. In order to provide accurate repeatable ambient requirements, simulations offer an attractive 
alternative. While other related publications deal with the large particle deposition model [2-5], this 
thesis focussed on the development of a solver to model fibre deformation effects. Pressure and 
traction forces, induced by fluid motion consequently lead to deformations of the solid part. According 
to this multi-physical problem, it is necessary to couple the differential equations of fluid motion, 
namely the Navier-Stokes equations and structural mechanical equations, Hooke’s law, for the solid 
region. For their numerical discretisation only one single computational mesh is used. This grid is 
changing with time and hence is recalculated at each time step to adjust to the deformation in order 
to conserve geometric consistency. The derived algorithm was summarized by one single solver and 
realised with the help of the Open Source, C++ based, computational fluid dynamics tool box 
OpenFOAM®. It was thoroughly validated by plausibility checks and available experimental data. With 
this, a strong tool for studying fluid-structure interaction phenomena on microscopic scale was 
developed. It was successfully applied on realistic, from CT-scans reconstructed fiber materials. 
Further on it was combined with the Lagrangian particle model. This provides the possibility of 
simultaneous simulation of all relevant physical phenomena by one single finite volume solver based 
on OpenFOAM®. Experiments showed a non linear behaviour of pressure drop in dependency of flow 
rates for soft filter materials. With the help of the newly developed filtration solver it was possible to 
prove this observation. Further on the particle deposition behaviour for different filter materials was 
investigated. New insights were gained, which underlined the high influence of the deformation of 
filter material on the overall filtration process. The final aim of the project is to design a filtration tool 
for the development and optimization of new high performance filter materials without need for 
performing time consuming and expensive experimental work.  

 

   



 
 

Kurzfassung 
 
In technischen Filtrationsprozessen sind vor allem zwei Effekte von grundlegender Bedeutung: die 
Wechselwirkung zwischen dem Fluid mit der Faserstruktur des Filters und die Ablagerung der, mit der 
Flüssigkeit transportierten Schmutzpartikel. Traditionell werden zur Untersuchung von 
Filtrationskenngrößen, wie der Filtereffizienz, aufwendige, destruktive Tests angewandt. Um die 
Zerstörung der Faserstruktur jedoch zu vermeiden und exakt reproduzierbare Bedingungen zu 
schaffen, bieten sich Simulationen als eine sehr gute Alternative an. Während sich andere, verwandte 
Publikationen mit der Entwicklung eines Schmutzpartikel-Ablagerungskonzeptes befassen [2-5], 
bezieht sich diese Arbeit auf die Entwicklung eines Simulationsprogrammes zur Modellierung von 
Deformationseffekten. Die Deformation der Filterfasern wird infolge der, auf die Oberfläche der 
Struktur wirkenden strömungsmechanischen Druck- und Scherkräfte ausgelöst. Im Gegenzug erfolgt 
eine Änderung des Strömungsfeldes durch die Bewegung des Festkörpers. Zur Modellierung dieses 
Verhaltens ist es erforderlich die strömungsmechanischen Differentialgleichungen des Fluides, die 
Navier-Stokes Gleichungen und jene der Strukturmechanik des Festkörpers, also das Hook’sche 
Gesetz, zu koppeln. Um die geometrische Konsistenz zu wahren, wird zur räumlichen Disketisierung 
ein zeitabhängiges Berechnungsgitter verwendet, welches in jedem Zeitschritt an die Deformation des 
Festkörpers angepasst wird. Der entwickelte Algorithmus ist in einem einzigen Simulationsprogramm 
auf Basis der Open Source Simulationstoolbox OpenFOAM® realisiert. Anhand von 
Plausibilitätskontrollen und verfügbaren, experimentellen Daten wird die entwickelte Software 
gründlich validiert. Auf diese Weise entsteht ein verlässliches Werkzeug zur Simulation der Fluid-
Struktur Interaktion im mikroskopischen Bereich, welches erfolgreich an realistischen, aus CT-Scans 
rekonstruierten Fasermaterialen angewendet wird. Darüber hinaus wird eine Koppelung mit dem 
separat entwickelten Langrangen Schmutzpartikelmodell verwirklicht. Diese Verknüpfung ermöglicht 
somit die gleichzeitige Simulation aller relevanten physikalischen Phänomene in einem einzigen Finite 
Volumen Simulationsprogramm auf Basis von OpenFOAM®. In Experimenten kann ein nichtlineares 
Verhalten des Druckabfalles über die Dicke des Faserelements in Abhängigkeit der Durchflussraten 
beobachtet werden. Eine weitere, durch die Deformation beeinflusste, charakteristische 
Filtereigenschaft ist die Filtereffizienz, also die Fähigkeit Schmutzpartikel verschiedener Klassierungen 
aus dem Fluid abzuscheiden. Das neuentwickelte Simulationswerkzeug zur Filtrationsanalyse 
ermöglicht eine Untersuchung dieser Beobachtungen. In dieser Arbeit werden viele neuartige 
Erkenntnisse präsentiert, die den hohen Grad des Einflusses der Deformation des Filtermaterials auf 
den gesamten Filtrationsprozess unterstreichen. Die Zielsetzung dieser Arbeit ist das Design eines 
Filtrationswerkzeuges zur Entwicklung und Optimierung von neuen Hochleistungsfiltermaterialien ohne 
die Notwendigkeit von zeitraubenden und kostenintensiven Experimenten.  
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1 Introduction 
 

Filtration processes are important and used in a wide variety of industries. Examples 

therefore include the automotive industry, sewage filter systems, or even facilities 

present in our household, such as the coffee machine. This thesis will deal with oil 

filters, which are in widespread use within the automotive industry, Figure 1.1. Motor 

oil is used to lubricate the components of the engine. Additional functions include 

reducing wear, cooling the engine and protecting it from corrosion. Acting by itself, 

the oil would soon become saturated with dirt particles, such as dust that is ingested 

into the engine, as well as abrasive metal parts. This will consequently lead to wear 

of internal parts, reduced protection from corrosion and in the worst case to engine 

failure. At this point oil filters come into play, as only clean oil and proper flow can 

guarantee continuous excellent engine performance. Oil filters consist of a strong 

steel box, that can withstand high oil pressure (up to 6 bar), an anti-drain back 

valve, that shall create minimum backpressure, a pressure relief valve, that doesn’t 

leak and a strong filter media element. Microscopically seen, this media consists of a 

maze of different fibres, which will capture most types of dirt particles. The surface 

of the filter media is folded to extend its size in order to trap a substantial amount of 

particles and to stabilize the overall filter media. As time goes by, dirt particles will 

clog the filter, restricting oil flow and hence leading to oil starvation. As a 

consequence less supply of oil will damage and in the worst case destroy the engine. 

In order to extend lifetime and reach higher efficiencies of filters, it is sensible to 

improve these in every possible form. Generally these improvements require 

experimental runs, which tend to be time consuming and very costly. In the majority 

of cases those experiments are carried out with destructive tests. In that case filters 

are cut or burned to gain knowledge about the investigated quantities. Yet these 

tests cannot be repeated in order to obtain other characteristics of the filter or to 

prove a different outcome. Another disadvantage of experiments is the difficulty to 

investigate filter material in detail, i.e. to find out, which influence the deposition of 

particles or the deformation of fibres would have had on the overall filter 

characteristics. Therefore CFD simulations can offer an attractive alternative to 

experiments. Apart from the cost saving fact, every quantity of a filter can 
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independently be investigated, displayed and processed for further usage. The virtual 

tests can be repeated as often as necessary with exactly the same initial situation 

and properties. CFD simulations on microscopic scale enable the creation and testing 

of new filter materials without extensive experimental runs. 

 

 

Figure 1.1: Detailed view of an oil filter  

 

In modelling of such a filter material, first it is required to investigate the main 

governing factors of the filtration process. One of those is that the flow of the fluid 

through this filter induces a pressure distribution on the fibres, which leads to a 

deformation of the solid parts. This deformation results in a different assembly of the 

fibres, which will have significant impact on the other factors, as well as on the 

overall material. Another effect results from the fact that the fluid is carrying abrasive 

particles resulting from engine wear. The efficiency is measured on the ability of the 

filter material to absorb different particle sizes. It is essential to understand the 

underlying driving factors for further improvement of filter materials. 

 

Due to the complexity of the issue, a change in fibre morphology (i.e. pore size 

diameter) cannot be linearly linked to i.e. filter efficiency, because it influences the 

whole hydrodynamic situation. This thesis represents an extensive attempt to create 

a tool which can increase the understanding of filter effects and dynamic parameter 

dependencies by means of computational engineering and simulation technology. A 

detailed, deterministic calculation model, which simulates the most important 

filtration effects on a microscopic level, has been created. Figure 1.2 sketches out the 

basic concept behind this novel scheme. [2] 
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Figure 2.2: Difference between cellulose and synthetic filter media  

 

Another way of enhancing filter material performance is to use the thinnest possible 

fibres. As a matter of fact, the thinner the fibres, made from a predefined amount of 

material are, the longer these will be and hence possessing a larger effective surface 

area. They can trap a larger amount of particles and additionally show much less 

restriction to the oil flow. This can also be realised by using synthetic fibres. The 

advantage of those is the possibility of specific manufacturing of the fibres regarding 

shape and thickness.  

 

A special type of filter is the so-called “depth” filter. It has a passage size gradient, 

which means that it traps different size of particles at different spots in the media. The 

deeper the element, the smaller the passages will be and the smaller the particles 

which are trapped. Its main advantage is that it will hold more particles before  

blocking and needing to be replaced. 

 

High end oil filters use fibre glass or extremely fine metal mesh. This will enhance the 

stability of the media. 
 

2.2 Digital Fibre Reconstruction [2] 

The ability to realistically model micro scale filtration processes in filter fibre materials 

is in large part based upon the realistic reconstruction of micro scale filter fibre 

geometries. Within the context of the development effort behind this work, a 

sophisticated method to digitally recreate real geometries was applied. In a first step, 

computer tomography (CT) scans are conducted on the fibre material to be 
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investigated. The data yielded by the CT scans are stacks of 2D grey scale images 

seen in Figure 2.3 (left).  

 

MatLab® [6] based reconstruction algorithms have been programmed in order to 

process the CT data. The picture stacks can be uploaded and the individual slices are 

then analyzed. Local picture areas of higher grey scale intensities are recognized as 

fibre regions, which can be clearly distinguished against the low-intensity 

background. Identified fibre slices are then quantified, their pixel area is calculated 

and their local centres and radii are determined. By applying a skeleton algorithm [7] 

the centres of consecutive pictures are interconnected to constitute the basic, local 

fibre framework. By applying the calculated radius information attached to each 

centre point, the actual fibre structure is recreated as a 3D digital data matrix. This 

can be visualized as seen in Figure 2.3 (right). 
 

 

Figure 2.3: Fibre reconstruction and digitalization by MatLab® utilities. Stacks of grey 
scale images (left) out of CT scans are transferred to fully digitalized data matrices 
(right). 

 

In a next step the digital data is automatically discretised into a structured, 

hexahedral grid mesh with a user definable cell-spacing-to-pixel ratio. This means 

that, if the CT scan resolution can be kept constant, a uniform spatial discretisation 

rate for any filter fibre simulation can be guaranteed. Thereby one of two modes of 

spatial resolution can be chosen: Either the finer mode, which features a spatial 

resolution of 1.6µm/Pixel or the coarser mode, which features a resolution of 

3.2µm/Pixel. The reconstruction utility yields perfectly interfaced grids, of both the 
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standard solvers, utilities and libraries, whereas libraries are repositories of function 

related software tools that can be accessed by solvers and utilities. All can be 

specifically selected according to the governing physics of the problem. The 

underlying programming language is the object oriented language C++ [11,12]. The 

syntax is similar to the notation of the differential equations being solved.  

 

For example, the Navier-Stokes equations for incompressible flow read: 
 

 
( ) ( ) ( )

2

2

j

i

ij

jii

x
u

x
p

x
uu
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u

∂
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+
∂
∂

−=
∂

∂
+

∂
∂ ηρρ

             2.1 

Where ui and uj are the velocities along the coordinate directions xi and xj, ρ is the 

density, p is the pressure and η is the dynamic viscosity. [13]  
 

This is implemented into the source code as following:  
 
 

solve 
( 

    fvm::ddt(rho, U) 
  + fvm::div(phi, U) 
  - fvm::laplacian(eta, U) 
    == 
  - fvc::grad(p) 

); 

where φ  = U⋅ρ (written as “phi” in the code) 
 

The source code of the program has been made Open Source and thus is publicly 

available to anyone under the constraints of the GPL [14]. Therefore every aspect of 

the underlying source code can be altered as required by the user, which even 

permits the creation of whole new solvers, if necessary. It allows easy and direct 

implementation of new software modules at any point in the program. It is easy to 

automatise with the help of scripts and it extensively uses generic features 

(Templates). These several advantages make OpenFOAM® highly efficient and a very 

flexible tool, which in addition is free of license costs. The only disadvantage of 

OpenFOAM® is that it is not provided with a Graphical User Interface. This means 

that all inputs have to be provided by means of text files, which requires a higher 

effort for familiarising oneself with the software and a significant amount of prior 

knowledge of physics and programming techniques. Nevertheless OpenFOAM® is an 
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appropriate environment to create new solvers and hence model multiphysics 

problems such as the fluid-structure interaction found in oil filter applications.  

 

Pre-and Postprocessing: 

In this thesis the meshing was conducted via the commercial FLUENT® mesh 

generator GAMBIT® [15] or via self written meshing utilities. All results were post 

processed and visualized with the Open Source visualization tool ParaView [16] by 

Kitware®. 
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3 FluidStructure Interaction (FSI) 

3.1 Introduction 

In modelling of filter media a very important physical effect has to be considered 

concerning the interaction between the fluid and the fibre material. The fluid flow 

induces forces on the solid regions, which lead to deformation of the fibres and 

hence to changes of the overall material structure under working conditions. This 

induces severe modifications of the permeability of filters. The main challenge now is 

to simulate this situation with all the underlying physical phenomena considered.  

 

Traditionally, for modelling fluid flow, CFD (computational fluid dynamics) codes are 

widely used, whereas for mechanical stresses CASA (computer aided stress analysis) 

codes are commonly employed. In the majority of cases, CFD codes are based on the 

so-called Finite Volume (FV) Method, where on the other hand CASA codes are 

mostly based on Finite Element (FE) principles. This procedure requires that two 

independent computer codes be used to calculate both, fluid flow and solid-stress 

simulation for the same system. Furthermore a third code is required for coupling 

and data management. This implies that all codes must be available and the user 

must have knowledge of all three of them. Another problem is that the CFD code 

must be converted into an appropriate format readable by a CASA program and vice 

versa. For both circumstances this conversion will cause a certain degree of loss in 

accuracy, especially as the two-way information exchange has to be undertaken 

iteratively, until convergence is achieved. 

 

The solution is to combine the overall calculations in one single computer code. To 

enable the coupling, similarities between the fluid flow equations and solid stress 

equations have to be found. This will give the possibility to devise an algorithm, 

which will solve the solid-stress equations in one part of the field and the fluid-flow 

ones in another, yet realise both in one single computer code. The question now is 

which basic principle shall be used, the Finite Element (FE) method or the Finite 

Volume (FV) method. 
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The FE method provides an accurate and stable result for transient simulations of 

structural deformation. It is based on the variational principle [17] and uses pre-

defined shape functions dependent on the topology of the element. It easily extends 

to higher order discretisation, produces large block matrices with usually high 

condition numbers and as a consequence relies on a direct solver. The discetisation 

is non conservative and hence does not guarantee to satisfy the conservation 

equations of the fluid flow. In case of non linear equations or discontinuous 

coefficients the FE method may show instabilities. Details can be found in [18,19] 

 

The FV method can be considered to be a particular case of the FE method. For the 

FV method, the shape functions are regarded as piecewise linear and hence allows a 

conservative discretisation. Therefore it can handle complicated, coupled and non-

linear differential equations, widely used in fluid flows [20]. The non-linearity is 

treated in an iterative way and creates diagonally dominant matrices well suited for 

iterative solvers. From this follows that the FV method also allows discontinuous 

solutions, such as they appear in local mesh refinement with discontinuous mesh line 

intersections. Additionally it has minor demands on the quality of the computational 

mesh. 

 

The decisive factor was the available environment for the development of a new 

solver. Most of the conventional simulation programs do not allow access to the 

underlying computer code. OpenFOAM® being an Open Source program permits a 

direct access to every part and equation implemented in the program and 

additionally allows for modification. Due to these advantages, OpenFOAM® is the 

best suited environment for development of a new solver for fluid-structure 

interaction. It is based on the FV method, which additionally shows the best 

behaviour for simulation of filtration processes. 
 

3.2 Constraints and Specifications 

For simulation of oil filters not all factors, which govern fluid flow and solid 

deformation, have to be considered. A few simplifications can be made in order to 

reduce the time and effort required for CFD simulations. 
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3.3 Governing Equations  

3.3.1 Governing Equations for Fluid Flow 

The basis for deriving equations for fluid flow is mass and momentum conservation. 

Newton’s second law states that the rate of change of momentum of a fluid particle 

is equal to the sum of all forces acting on the particle. All of the following equations 

are presented in Einstein’s notation. 

 

The rate of change of momentum in a unit cell is given by: 
 

 
j

i
j

ii

x
uu

t
u

dt
du

∂
∂

+
∂
∂

= ρρρ        3.1 

where ui and uj are the fluid flow in coordinate directions xi and ρ the density. 
dt
dui  is 

called substantial derivative, 
t
ui
∂
∂

is the partial derivative and 
j

i
j x
u

u
∂
∂

is the convective 

term [13,21-23]. 
 

There are two types of forces acting on a differential fluid unit cell: 

• Surface forces: [21] 

 Pressure forces (the negative sign means it is pointing outwards of the 

cell volume):  

ix
p

∂
∂

−              3.2 

 Viscous forces evolve due to stresses applied to the control fluid 
volume: 
 

j

ij

x∂
∂τ

             3.3 

• Body forces: 

 Source term: 

igρ                3.4 

where p represents the pressure on the fluid cell, gi the gravity vector and ijτ the 

normal and shear stresses.  
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Adding up these contributions, we derive the following:  
 2005 10 /id} 
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      3.5 

For Newtonian fluids it is valid that there is a linear relationship between stress and 

strain rate. The proportionality factor is constant at moderate temperatures and is 

called the dynamic viscosity η of the fluid. For one dimensional flow one obtains: 
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Stokes extended Newton’s idea from a simple 1D flow to a multidimensional flow 

leading to the Stokes’ relations: 
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where δij is called the Kronecker symbol and is defined as 
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By inserting Eqn. 3.7 into 3.5 we derive 
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After rearranging the second term on the right hand side by using Schwarz’ theorem 

regarding the permutability of derivatives [24] and applying Eqn. 3.1 we derive the 

fundamental Navier-Stokes equations for conservation of momentum: 
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   3.10 

 

In oil filtration processes the flow is regarded as incompressible, which means that 

δuk/δxk = 0. Further on, due to simulation on microscopic scale, the influence of the 

gravity is negligible. 
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Hence, the Navier-Stokes equations for incompressible flow read as follows: 

 2
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3.3.2 Governing Equations for Solid Deformation 

The mathematical model describing small deformation of solids is based on the three 

dimensional stress distributions. From Newton’s balance equation of momentum 

follows that  

 ( ) biij
j

i X
xt

u
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∂
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=
∂
∂ σρ 2

2

      3.12 

where for i = j σij represent the normal stresses, for i ≠ j σij = τij represent the shear 

stresses, ui the displacement vector and Xbi are body forces. 

 

This is based on the Cauchy theory, which says that the state of stress at a certain 

point in a body is completely defined by the nine components (six independent) σij of 

a symmetric second order Cartesian tensor called the Cauchy stress tensor.  
 

 

 

Figure 3.2: Three dimensional stresses on a solid element (left) with the Cauchy 
stress tensor (right) 
 

For elastic deformation the relation between stress and strain in case of an isotropic 

homogenous structure is linear. 
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λ and μ are called the Lamé constants and have the following relationship 
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      3.17 

 

where E is the Young’s modulus and ν is called the Poisson number. Additionally μ = 

G is called the shear modulus. 

 

After combining the equations (3.13 - 3.17), we derive Lamé-Navier’s equation for 

solid displacement:  
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3.4 A Single Algorithm 

The interfacing between two different codes is rendered unnecessary, when it is 

possible to develop a single computer code, which can then solve the solid-stress 

equations and displacements in one part of the field and other one for fluid-flow, i.e. 

fluid velocity in another. If a closer look is taken at the governing equations for solid-

stress and fluid flow, derived in chapter 3.3, similarities are detected. Therefore it is 

possible to couple the two equation systems (Eqn. 3.11 and Eqn. 3.18) and develop 

one single computer code, as shown below.  

 

The main difference is the pressure gradient term of the Navier-Stokes equations, 

Eqn. 3.11, which is absent in the displacement equations for solids. This term can be 

seen as a body force from external sources represented by the term Xb in the solid 

displacement equations. 
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The procedure is separated into two parts: spatial discretisation of the computational 

domain and equation discretisation.21] 
 

3.5.1 Spatial Discretisation of the Computational Domain 

This part comprises discretisation of time and space. For space discretisation the 

overall spatial domain is subdivided into a number of discrete polyhedral control 

volumes (CV), which fill the overall volume and do not overlap. Each CV is bounded 

by a set of flat faces and each face has only one neighbouring CV. The cell faces of 

the mesh are divided into internal faces, which delimit one CV from the neighbouring 

one and boundary faces, which constitute the boundary field of the overall domain.  

 

In contrast to the Finite Element Method, in finite volume techniques the topology of 

the volume elements is not important as there are no topology dependent shape 

functions necessary. Hence different cells of general polyhedral shapes with a 

variable number of neighbours can be used, as displayed in Figure 3.7.  
 

 

Figure 3.7: Typical 3D finite volume elements 

 

This creates an arbitrarily unstructured mesh on which the governing equations are 

subsequently solved. 

 

For time discretisation the time interval is split into a finite number of time-steps. 

This means that the time derivative d/dt of the conservation equations is discretised 

with the help of those discrete time steps. For more detailed information on those 

topics see  [26-28]  
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3.5.2 Equation Discretisation 

The equation discretisation produces a numerical description of the computational 

domain. In FV methods the basis for discretisation is the integral form of the 

equations, i.e. the Navier-Stokes’ equations for momentum conservation (Eqn. 3.11): 
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where Sφ  represents an arbitrary source term. 

 

Gauss divergence theorem claims that changes inside a certain volume are equal to 

the fluxes over the boundary surfaces: 
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From this, the change of a quantity can be calculated by considering the fluxes over 

the boundary surface of the CV.  

 

Applying Eqn. 3.25 we obtain the integral form of the transport equation:   
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⋅=⋅⋅+
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CVA
i

j

i

CV A
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x
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From this point on the equations are solved in a segregated manner. That means 

that each component is treated separately.  

 

After discretisation of the equations a system of linear algebraic equations is 

obtained. It describes the change of a system over time. This set of equations has to 

be solved in an iterative manner. After each iteration step, the linear equation 

system is calculated again on the basis of the previous iteration. This will be done 

until a convergence criterion is reached. A very important constraint is that the 

algebraic equations are solved in a way that the overall integral balances, i.e. the 

mass and momentum conservation, are fulfilled. This is called “conservative” 

discretisation. For more detailed information on discretisation of equations see 

[26,27]. 
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The mesh motion consists of four steps: 

• The moving interface is detected as declared by the user. 

• Points and faces are detected on the moving interface.  

• Displacement of solid is mapped to the fluid region 

• the fluid mesh is moved 

 

The distortion of the mesh results in topology changes of each single cell volume. For 

simulation accuracy a good quality mesh is vital. Hence to keep the topology as 

consistent as possible over time, a propagation of the deformation values of single 

cells to the overall cell-collective is carried out. This will ensure that not only a single 

cell has to take all the deformation. It is dispersed in the overall collective. The 

movement of the boundary is predetermined by the boundary conditions calculated 

from fluid flow. The movement inside the fluid mesh and hence the coordinates of its 

grid points is controlled by a diffusion mechanism. It is based on the Laplace 

equation: 
 

 

 ( ) 0=∇⋅⋅∇ uD f       3.27 

where u represents the grid propagation velocity and Df the diffusion coefficient.  

 

Therefore the propagation of the deformation is ruled by the diffusion coefficient Df. 

The simplest way of improving mesh quality is by introducing variable diffusivity. 

There is a variety of coefficients available in OpenFOAM® [10,29,30] 

 
Distance-based methods: A number of boundary patches are selected by the user. 

The diffusion field Df  is a function of cell centre distance L  to the nearest selected 

boundary.  

- Linear inverse Distance: Df = 1/L 

- Quadratic inverseDistance: Df= 1/L² 

- Exponential: Df = 1/e(L) 

Quality-based methods: Here the diffusion field Df  is a function of a cell quality 

measure: 

- Mean cell non-orthogonality  

- Mean cell skewness 
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2. “constant”: This directory comprises information about material properties, 

the computational mesh and moving mesh parameters. 

For the fluid region (region1): 

1.) polyMesh: This folder contains a full description of the fluid mesh, like 

point coordinates, cells and boundaries. The text files are not supposed 

to be changed, as it would lead to severe inconsistencies and failures 

during simulation; 

2.) transportProperties: This dictionary is used for adjusting fluid properties 

like the fluid density and the kinematic viscosity.  

3.) fluidStructCouplingDict: This newly developed dictionary handles 

additional parameters like the ones for the collision concept. It gives 

the opportunity to define the fraction of the distance between fibres at 

which the collision concept shall start to work and to adjust the minimal 

distance for freezing of fibres. These topics will be discussed in detail in 

chapter 3.8. Further on it contains a switch to either turn the structure 

deformation on or off in case only a fluid flow solution is wanted by the 

user. This is also valid for the collision concept.  

4.) dynamicMeshDict: This dictionary is responsible for all parameters 

concerning the mesh movement. It gives the user the opportunity to 

choose the diffusion mechanism, the necessary library and solver used 

for mesh movement. The necessary library for mesh movement without 

topology changes is called “libDynamicFvMesh.so” and is used for all 

simulations done in this work. 
 

  For the solid region (region2): 

1.) polyMesh: This folder contains a full description of the solid mesh. 

Again, the text files for points, cells and boundaries shall not be 

altered. 

2.) mechanicalProperties: In this text file it is possible to adjust the 

properties of the solid, like the Young’s modulus, the Poisson ratio and 

the density of the material and if necessary neglect or consider plane 

stress.  
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3.) couplingParameters: The user can define which boundary patch will be 

the coupling interface between the solid and the fluid region. It must 

have the same name defined in each region in the boundary file of the 

polyMesh folder, which is predefined in the pre-processing of the 

mesh. With the parameter meshMotionTime the start time for mesh 

motion can be defined. Before this time point, only the fluid flow is 

calculated for stabilization of the fluid solution. The parameter 

motionRelaxation-iTime is used for relaxation of the solid displacement 

to support the convergence of the solution. 
 

 

3. “system”: In this folder all the parameters for the solution procedure are 

handled. 

1.)  controlDict: Here all control parameters are set, for example time step 

size, start/end time of the overall simulation and the write accuracy. 

2.) fvSchemes and fvSolution: Those dictionaries are used to set discretisation 

schemes, equation solvers, tolerances and all other algorithm controls for 

the run separately for each domain, region1 and region2.  

3.) decomposeParDict: In this dictionary, the method for domain 

decomposition and its necessary coefficients for running the simulation in 

parallel are defined. More details on this topic will be discussed in chapter 

4.1.1. 

 

The initial boundary field dictionaries for p and U are shown in chapter 3.7. A 

detailed description and further specifications of the system folder, with all available 

settings for discretisation schemes and solution controls are listed in the OpenFOAM® 

user’s and programmer’s guide [29,30]. The following figures show a selection of 

input dictionaries important for FSI simulation. 
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3.7.1 Boundary conditions 

There are two base types of boundaries used: 
 

1. patch: this is the basic type, which contains no geometric or topology 

information about the mesh and hence is a generic patch. Here it is used for 

inlet and outlet. 
 

2. wall: this is a type of patch including all the information about geometry and 

topology of the defined patch. It is used for the surface of the fibres and the 

outer boundaries of the fluid region, besides inlet and outlet. 
 

The conditions applied on the patches are [30]: 
 

1.) fixedValue: a Dirichlet boundary condition, where a certain value φ  is 

specified; 
 

2.) fixedGradient: a Neumann boundary condition, where the normal gradient of 

the value φ  is specified; 
 

3.) zeroGradient: a special type of the fixedGradient condition; the normal 

gradient of the valueφ  is set to zero; 
 

4.) slip: for simulation of frictionless flow parallel to the patch; if the valueφ  is a 

scalar, it is set to zeroGradient, if the value φ is a vector the normal 

component and the normal gradient of the tangential component are set to 

zero. 

 

For this case the boundary conditions from the “0” dictionary reads as follows: 
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 )(
)1()(
pT

TpS =         4.1 

where S(p) is the speed-up for a p processor run, T(1) the time used for a single 

processor run and T(p) the time used for a p processors run. The value of the speed-

up is normally in between 1 and p. In exceptional cases it can be more than p, which 

is called super linear speed-up. It comes from the fact that multiprocessors can use 

their resources in a more efficient way, such as reduction of RAM access time. When 

executed sequentially, the working set of a problem may exceed the cache size of a 

single processor, whereas parallel processors with shared memory computer 

architectures can provide more memory/cache. [36] 
 

On this basis, the efficiency can be derived: 
 

 ( ) ( )
( )

( )
p
pS

pTp
TpE =
⋅

=
1

        4.2 

where E(p) is the efficiency for a p processor run and S(p) the speed-up for a p 

processors run. The value for the efficiency is in the range of 0 and 1. 
 

In reality the speed-up is lower than the ideal one. The reasons are: 

- It is not possible to fully parallelise an algorithm. Sometimes processors are 

out of work and have to wait for the others to complete their task 

- Additional time is needed for communication between parallel working 

processors 
 

Therefore the factor speed-up defines the performance of the parallelisation 

compared to the loss of time in communication and synchronisation. 
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collision concept, which checks the distance between the fibres at each time step and 

hence over processor boundaries. However, the parallelisation is still regarded as a 

big improvement. It permits the simulation of realistic fibre geometries within 

reasonable simulation time. 

 

4.1.2 Restart 

Due to the long wall clock time, necessary for one simulation run, it is necessary to 

implement the possibility of restarting the simulation at any wanted time step.  

 

There are several incidents requiring a restart option: 

- Save simulation in case of machine failure: there is always the possibility for 

the system to fail, either due to power loss or simple hardware failure of 

individual nodes or processors. In order to avoid starting again from the 

beginning it is practicable to continue the simulation from the latest saved 

time step on and hence economize run time. 

- Change parameters of simulation: during a long simulation run it can be 

necessary to change parameters, without starting the overall run from time 

point 0. 

 

The main challenge in making the solver restartable is the issue of moving the 

computational mesh. The points at initial state and all the special parameters for the 

collision concept are not saved over time. Hence a new dictionary called “restart” is 

introduced. When starting a simulation, it creates itself automatically inside the case 

using mechanics provided by OpenFOAM®. It saves the state of the simulation and 

allows the run to be restarted. It was tested on a simple geometry, shown in Figure 

3.21. The simulation was interrupted at a certain time point. Then it was restarted at 

an earlier time point in order to reach an interval of overlapping of the solutions. The 

accuracy of the solution for the magnitude of the maximum appearing velocity before 

and after the restart can be observed in Figure 4.8. 
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It can be observed that the lattice of thin fibres at the back of the fibre material is 

displaced in a high manner, whereas the composite of connected interwoven fibre 

material in the middle section is more rigid. This is shown on the left hand side of 

Figure 4.16. On the right hand side, the geometry is displayed from a different view, 

where the front fibre deformation is presented. As there are thinner fibres present, 

higher values of displacement are monitored.  

 

The filter material Ahlstrom A55 is of another type. The CT scan and reconstruction 

was already shown in Figure 4.1 and  

Figure 4.2. The main difference to Fulda A43 is that it consists of a higher amount of 

similar, cylindrically shaped fibres, mainly loose, at some points interconnected with 

small short bridges. The deformation of a representative section of the reconstructed 

geometry is demonstrated in the following figure. 
 

 

Figure 4.17: Representative section of Ahlstrom A55 (170x170x300) 

 

There are more stand-alone, thinner fibres, which are displaced at a higher amount 

and further on result in a higher compaction of the overall filter material. As this 

short geometry is not very representative for the overall filter material a longer 

section was investigated. 
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Apparently injected particles would block the fluid stream sooner than in the 

undeformed geometry, where a lot more space is present in between the fibres. 

Additionally a higher amount of particles are entangled in the fibre structure. It 

would lead to miscalculations and maybe wrong predictions of the pressure drop 

over the filter material, if structure deformation was not taken into account.  

 

The observation of geometry changes already proves the high influence of fluid-

structure interaction on the overall permeability and particle deposition behaviour. It 

is obvious that softer material would lead to higher compression and increase the 

effect. Therefore objective and realistic filter efficiency can only be predicted when 

considering deformation of the fibres. 
 

5.1 Experimental Setup 
 

The influence of fluid-structure deformation on permeability and consequently on the 

pressure drop was also observed in experiments. At ICE Strömungsforschung GmbH 

an oil-fibre test facility to verify simulation results was designed. The facility has been 

planned and constructed according to proposals within ISO 4548-12 [37] concerning 

the set-up of fluid filter fibre multi-pass tests. Figure 5.4 shows a comparison of the 

underlying test-rig process plan, proposed by ISO 4548 and the derived, simplified 

version which corresponds to the oil-fibre test facility. The overall planning, 

measuring and evaluation was done by Boiger [2] and Reiss [38]. 
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Inlet velocity: uf  = 0.0067 m/s - 0.0204 m/s 

Dynamic viscosity:  ηf  = 1.93 x 10-3 Pas 

Fluid density:  ρf = 800 kg/m³. 

Inlet area:  Ainlet = 4,84 x 10-4 m² 
 

Two cases were set up, which only differ in the underlying Young’s modulus. Each 

case was run with several different inlet velocities. There are no particles injected in 

order to investigate the pure influence of structure deformation on the pressure 

drop. The results of inlet flow rate versus pressure drop are plotted in the following 

figure (Figure 5.8). 

 

Figure 5.8: Simulation results of pressure drop in dependency of flow rate for 
different filter material 

 

Apparently also in simulations this nonlinear behaviour can be observed. The blue 

line in Figure 5.8 represents the theoretical linear relationship due to Darcy’s law. It 

is evident that the softer the material is the higher the nonlinearity becomes. This 

can be explained by its ability for higher compression at higher flow rates. The 

harder the material, the more this effect can be neglected and hence the pressure 

drop / flow rate relationship tends to be linear.  

 

It can be seen that the pressure drop measured in experiments is much higher than 

the one resulting from the simulation. There are several reasons explaining it. First of 

all, the geometry used for simulation is artificially designed. It only consists of ten 
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6 The Graphical User Interface [2] 

Figure 6.1 gives an overview of the entire workflow behind the overall simulation 

project. The whole procedure comprises three main phases: 
 

Meshing and Pre-processing: CT-scan data is gathered from real-life fibre samples. A 

Digital Fibre Reconstruction utility digitalizes the CT-scan data, reconstructs a 3D 

image of the fibre structure and yields a structured grid mesh, suitable for 

OpenFOAM®. Then the user defines the physical inital and boundary conditions 

within the OpenFOAM® dictionaries. 

 

Processing: The flow field is calculated either in combination with the fibre-

deformation phenomena (based on the FSI solver) and/or in combination with 

depositing dirt particles (based on the presented particle solver above). At the end of 

each time step the results are streamed out as text files. 

 

Post-processing: If necessary, the text file based data is processed by self-

programmed Python® utilities [39] in order to extract information, such as filter fibre 

efficiency, particle penetration depth or kinetic particle energy. Compact, numerical 

results can thus be obtained. A conversion to the VTK file format [40] enables the 

full, 3D visualization of the simulation run using ParaView [16]. A Python® based 

visual filter has been programmed to enable the non-standard visualization of non-

spherical particles. 
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7 Conclusions and Outlook 

The main task of this thesis was the creation of a fluid-structure interaction solver to 

investigate the change in the characteristics of an oil filter, with the deformation of 

the fibres due to the oil flow. The fluid conditions, for which the applied physics are 

valid, are highly viscous, relatively slow, incompressible and isothermal fluid flow. 

This flow leads to small deformation effects of the filter fibres, for which the 

algorithm was developed. In both regions, fluid and solid, different governing 

equations apply and hence have to be coupled. This coupling is handled by the 

pressure and shear force interaction terms of the Navier-Stokes equations for the 

fluid phase and Hooke’s law for the solid phase. The underlying computational mesh 

is adjusted to the deformation of the solid region during each single time increment. 

The main advantage of this algorithm is that all of the steps listed above are realised 

by one single solver. Since the C++ based Open Source CFD platform OpenFOAM® 

features a strictly modular programming structure, the stand-alone development of a 

fluid-structure interaction solver was rendered possible and further on accomplished. 

At first, artificial, simple filter models were investigated. It turned out that new 

boundary conditions and a concept to model collision of fibres had to be developed. 

These features were programmed and also integrated into the new solver. In order 

to simulate realistic, from CT scans reconstructed fibre material, it was necessary to 

improve the computational side. Therefore the programming code was parallelised 

and a restart option was enabled. With that, the simulation of real fibres could be 

conducted within a reasonable time. Further on, the solver was thoroughly validated 

by plausibility checks and available experimental data. All in all this means that with 

this new FSI tool, considering the limitations cited above, simulation of filtration 

processes using any kind of hydraulic oil and filter fibre material are feasible.  

 

Within the overall project, a Lagrangian, large particle model was developed [2-5] 

and combined with the FSI Solver. It enabled the possibility of simultaneous 

simulation of all relevant physical phenomena in one single finite volume solver. 
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A very important task was the verification of the significance of deformation of filter 

media to the overall filter characteristics. In experiments, a nonlinear behaviour of 

pressure drop in dependency of different inlet flow rates was observed. This effect 

was found to increase with decreasing Young’s modulus. It was successfully verified 

in simulations with the newly developed FSI tool. Finally the particle deposition 

behaviour for filter materials with changing porosity was investigated. It was carried 

out with the help of the combined filtration tool, which comprises the FSI module 

and the Lagrangian particle model. With that it was successfully proven that the 

compression of the material highly influences the deposition efficiency. The overall 

solver will serve as a tool to simulate the filtration processes in every possible filter 

application. It can be utilized in the biotech industry, where metal meshes are used 

to grow bacteria. Another exemplary filtration application is the process of water 

purification, where dirt particles of different sizes are filtered out. In this case the 

solver will have to be extended with an additional force, which is the particle impact 

force acting onto the fibres. The new tool, developed in this thesis, serves well to 

investigate both phenomena. 

 

Furthermore, as every other FSI solver suitable for small deformations and 

incompressible media, it can be used to simulate various other fluid-structure 

interaction phenomena. An important application arises in medical science, where the 

simulation of blood transport through an aorta would give deep insights into the 

behaviour of its vessel walls. Substantial development work would be required to 

extend the FSI solver capabilities towards simulating large material deformations or 

the handling of compressible fluids such as air. However, the benefit would be that 

for example the motion of parachutes could be studied in detail. 

 

The final aim of the project was to supply a virtual design circle for development and 

optimization of new high performance filter materials without a need for performing 

time consuming expensive experimental work. 

  



99 
 

8 Nomenclature 

a arbitrary quantity 

A area [m²] 

Af cross section [m²] 

d particle diameter [m] 

D displacement of solid [m] 

Df diffusion coefficient  

E Young’s modulus [N/m²] 

E(p) efficiency for multiple processor run 

EiP particle deposition efficiency [] 

Fp pressure force [N/m²] 

Fs spring force [N] 

Fτ  traction force [N/m²] 

g gravity [m/s²] 

G shear modulus [N/m²] 

k spring constant [N/m] 

kf permeability [m²] 

L length [m] 

n number of particles [] 

n normal vector [] 

p pressure [N/m²] 

∆p pressure drop [N/m²] 

S(p) speed-up for multiple processor run 

Sφ  source term 

t time [s] 

T(1) time for single processor run 

T(p) time for multiple processor run 

u velocity [m/s] 

V volume [m³] 

fV&  flow rate [m³/s] 

∆x  sliding length distance [m] 



100 
 

∆x f filter sample thickness [m] 

xi coordinate directions [m] 

Xb  body force [N/m³] 

 

ε strain [m/m] 

Γ diffusion coefficient 

η dynamic viscosity [Pas] 

λ Lamè coefficient [N/m²] 

μ Lamè coefficient [N/m²] 

ν Poisson number [] 

Φ transport property 

ρ density [kg/m³] 

ρf fluid density [kg/m³] 

ρP particle density [kg/m³] 

σ normal stress [N/m²] 

τ shear stress [N/m²] 
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