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Abstract

The aim of the presented PhD thesis is to develop a deterministic and a probabilistic Cel-

lular Automata (CA) model to reflect the grain growth process for the solution annealing

of austenitic stainless steel 304L (18-9 Cr-Ni, balance Fe). This uncontrolled exaggerated

grain growth results in a negative influence on mechanical properties, e.g. strength, of

the material.

In order to define what exactly launches the process of abnormal grain growth and what

factors come into play, un-deformed cylindrical specimens were annealed at different tem-

peratures (900�C-1200�C). At higher temperatures the start of abnormal grains occurred

earlier. The un-deformed homogenized initial grain structures investigated by transmis-

sion electron microscopy proved the occurrence of faceted and rough grain boundaries,

explaining higher mobilities during annealing of some grain boundaries and occurrence of

abnormal grain growth. The solution annealing was carried out at 900�C, 1000�C, 1100�C

and 1200�C for annealing times up to 40 hours. Abnormal grain growth started at 1200�C

after 120 minutes, at 1100�C after 8 hours, at 1000�C after 12 hours and never at 900�C,

due to grain boundary pinning resulting from the carbide precipitations on grain bound-

aries.

Simulated and experimental grain structures are comparable, and simulated results are

very close to the underlying physics. Many physical parameters can be taken into account

in both CA models. The grain growth process is not only demonstrated qualitatively but

also used for a quantitative analysis of grain growth phenomena. Beginning from the

predictions of average normal and abnormal grain sizes, then defining the grain sizes

separating normal and abnormal grains, and an accurate description of grain size distri-

butions are demonstrated. In the analysis of the simulated grain structures, the start of

abnormal grain growth and improved definition of exact fraction of abnormal grains is

evaluated. Especially an improved description of grain size distributions by incorporating

a two parameter approach for the evaluation of grain size separating normal and abnormal

grains, paves the way for an exact description of the grain growth process.
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Kurzfassung

Das Ziel der vorliegenden Arbeit ist die Entwicklung eines deterministischen und eines

probabilistischen Zellulären Automaten Modells. Während des Lösungsglühens von austeni-

tischem Stahl 304L (18-9 Cr-Ni, Matrix Fe) sind die beiden Modelle in der Lage das

normale und das abnormale Kornwachstum zu beschreiben. Dieses unkontrollierte Ko-

rnwachstum resultiert in einer negativen Beeinflussung der mechanischen Eigenschaften

(z.B. Festigkeit) des Materials.

Um den Beginn und die Einflussfaktoren für abnormales Kornwachstum zu bestimmen,

wurden unverformte zylindrische Proben lösungsgeglüht (900�C-1200�C). Mit steigender

Temperatur kam es zu einem früheren Beginn des abnormalen Kornwachstums. Die mit-

tels Transmissionselektronenmikroskopie untersuchte homogenisierte Anfangskornstruk-

tur zeigte facettierte Konrngrenzen, die aufgrund höherer Mobilität während des Lösungs-

glühens das Auftreten des abnormalen Kornwachstums erklären. Das Lösungsglühen, das

bis zu 40 Studen dauerte, wurde bei 900�C, 1000�C, 1100�C und 1200�C durchgeführt. Das

abnormale Kornwachstum trat bei 1200�C nach 120 Minuten, bei 1100�C nach 8 Stunden

und bei 1000�C nach 12 Stunden Glühzeit auf. Aufgrund der Ausscheidungen und der

niedrigen Treibkräfte wurde bei 900�C kein abnormales Konrnwachstum fest gestellt.

Die Simulationen und die Experimente führten zu vergleichbaren Ergebnissen. Eine

Vielfalt der physikalische Ansätze kann in den entwickelten Zellulären Automaten Mod-

ellen wiedergespiegelt werden. Der Kornwachstumsprozess wurde nicht nur in einer ho-

hen Qualität gezeigt, sondern wurde auch dazu benutzt, quantitative Kornwachstum-

sphänomene zu erklären. Die Vorhersage der durchschnittlichen Korngröße des normalen

und abnormalen Kornwachstums, die Definition der Korngröße die das normale und ab-

normale Korngefüge limitiert, beziehungsweise die exakte Beschreibung der Kornstruk-

turverteilung können dabei hervor gehoben werden. Durch die Analyse des simulierten

Korngefüges, kann der Beginn des abnormalen Kornwachstums und die Verbesserung der

metallographischen Definitionen des Anteils der abnormalen Körner am Gesamtgefüge

gezeigt werden. Die verbesserte Beschreibung der Korngrößenverteilungen durch die Im-

plementierung einer zwei Parameter Annäherung für das normale Kornwachstum, macht

es möglich, die Kornentwicklung besser zu verstehen.
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1 Introduction

The aim of this PhD thesis is to develop a simulation set-up which reflects the solution an-

nealing process of austenitic stainless steel 304L (18-9 Cr-Ni, balance Fe) when abnormal

grain growth can occur. The solution annealing process defines the mechanical proper-

ties, e.g. toughness, over large areas and thus determines the possibilities for extensive

field of application for metallic materials. Knowledge of the microstructural changes, e.g.

grain growth, which takes place during the annealing process is of great importance for

the evolution of the final structural condition of the material. The grain growth kinetics

are strongly influenced by the grain structure topology, annealing temperature, precipi-

tations, stored deformation energy and the grain boundary energy.

Depending on the growth behavior of the grains, grain growth can be classified into two

types, shown in figure 1.1: normal or continuous grain growth and abnormal or discontinu-

ous grain growth. The latter has also been termed exaggerated grain growth or secondary

recrystallization and leads to an inhomogeneous distribution of material properties [1].

Figure 1.1: The distinction between continuous (normal) grain growth, where most grains
grow at roughly the same rate, and discontinuous (abnormal) grain growth, where one or more
grains grow at a much higher rate than its neighbors [2].

1



1 Introduction 2

The grain size is directly related to many properties of the final product, and the control

and prediction of the grain size is a major concern in the materials engineering field.

With the development of computer technology it becomes possible to reproduce the grain

growth process. But simulation of microstructural evolution is complex and difficult, be-

cause many factors affect the process and there are strict topological requirements. At

present, only normal grain growth can be modelled quantitatively. Compared to other

modelling methods, Cellular Automata (CA) is believed to have the greatest potential to

model the microstructural evolution qualitatively. This method will be used for predicting

both normal and abnormal grain growth in the following work.

The theoretical background of this work is given in the first chapter (Fundamentals)

describing the properties of austenitic stainless steel and grain structure changing during

solution annealing process. Additionally, the possibilities of modelling grain growth on

local scale, especially by CA methods is described.

In the following chapter (Experimental Part), an exact description of experimental re-

sults containing of the metalographical preparation of the specimens, then the evaluation

of grain sizes and fractions of abnormal grains, and the grain size distributions are pro-

vided. A discussion of the grain growth kinetics of normal and abnormal grain growth

are followed.

The chapter Cellular Automata Modelling presents both deterministic and probabilistic

modelling set-ups, followed by the validation of both models in the presence of precipita-

tions and stored deformation energy. The model characteristics and the simulation results

of normal grain size, abnormal grain size, fraction of abnormal grains, separating grain

size between normal and abnormal grain size, grain size distributions and grain growth

kinetics are discussed and compared to the experimental results.

A summary of the most important results can be found in the final chapter, entitled

Conclusions.



2 Fundamentals

2.1 Austenitic Stainless Steels

Austenitic stainless steels are used wherever high strength and corrosion resistance is

needed. They are widely used in the petrochemical, marine, food and nuclear indus-

tries, but may also be used for heat exchangers, pipework, machinery parts and in the

manufacture of milder chemicals. The microstructure can be ferritic, martensitic, ferritic-

austenitic or austenitic and depends largely on the alloying elements.

By altering their chemical composition, different types of austenitic stainless steels have

been developed.

Figure 2.1: Compositional modifications of 18Cr-8Ni steels [3].

Austenitic grades [4] are those alloys which are commonly in use for stainless applications

and are shown in figure 2.1 and 2.2. The austenitic grades are not magnetic. The most

3



2 Fundamentals 4

common austenitic alloys are iron-chromium-nickel steels and are widely known as the 300

series. The austenitic stainless steels, because of their high chromium and nickel content,

are the most corrosion resistant of the stainless group providing unusually good mechani-

cal properties. They cannot be strengthened by heat treatment, but can be strengthened

significantly by cold-working.

Further, the so called L-grades are used to provide extra corrosion resistance after welding.

The letter L after a stainless steel type indicates low carbon (as in 304L). The carbon is

kept up to 0.03 % to avoid carbide precipitations. Heating at critical range temperatures

leads to the precipitation of carbon [5] with chromium gathering on the grain boundaries.

This deprives the steel of the chromium in solution and promotes corrosion adjacent to

the grain boundaries. By controlling the amount of carbon, this type of corrosion can be

minimized.

Figure 2.2: Austenitic Group [4].

In this study the austenitic stainless steel 304L (X2CrNiMo17-12-2 or 1.4404) is used

exclusively where the chemical composition is given in Table 2.1.



2 Fundamentals 5

Elements: C Si Mn P S Cr Mo Ni

Percent: max.
0,03

max.
1,00

max.
2,00

max.
0,045

max.
0,030

16,50-
18,50

2,00-
2,50

11,00-
14,00

Table 2.1: Chemical composition of the stainless steel 304L in weight percent [6].

The alloy composition [3] is often characterized by use of Cr- and Ni-equivalents. The

first group stabilizes the α-phase and the second one the γ-phase. The ferritic α-phase

has a body centered cubic (bcc) and the austenitic γ-phase has a face centered cubic

crystal (fcc) structure. The low carbon content affects the flow behavior by modifying

the stacking fault energy [7].

Diffusion-Controlled Precipitation

In the absence of stabilizing elements, M23C6 is the predominant carbide formed in

austenitic stainless steel and is mainly composed of chromium carbide [3, 8]. The principal

practical consequences of precipitation are degradation of intergranular corrosion resis-

tance and reduction in tensile properties, especially ductility and toughness. Precipitation

occurs very rapidly on the ferrite-austenite interfaces, followed by precipitation on other

non-coherent boundaries including inclusions, grain and twin boundaries. Other types of

precipitation are MC, M6C, M7C3, i.e. carbonitrides and other intermetallic phases.

The austenitic stainless steel are usually annealed between 1000-1150�C and thereafter

quenched quickly to avoid carbide formation. The austenitic structure is for some steel

types metastable at room temperature and can form martensite by deep cooling and/or

plastic forming operations.

2.2 Development and Properties of Grain Structure

during Solution Annealing

Grain growth is the term used to describe the increase in grain size which occurs during

annealing a polycrystalline aggregate after primary recrystallization is completed. Two

different types of grain growth phenomena, namely normal grain growth and abnormal

grain growth are distinguished [9] and shown schematically in figure 2.3. The main driving
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force is the decrease in free energy which accompanies reduction in total grain boundary

area and hence in total grain boundary energy.

Figure 2.3: Difference between normal (top) and abnormal (bottom) grain growth. N =
probability, dK = grain size diameter and dKR = average initial grain size diameter [10].

2.2.1 Energy of Polycrystalline Materials

Each grain boundary in a polycrystalline material may be regarded as a sink or source for

atoms within the total system. Atoms in the vicinity of a particular grain boundary will

have a driving force to diffuse towards that boundary and will diffuse if the temperature is

sufficiently elevated resulting in an equilibrium condition where creation and absorbtion

of atoms are constant. During this process, the boundary may move from its original loca-

tion, resulting in the growth of certain grains at the expense of neighboring grains [11, 12].

The disorientation (figure 2.4) between grains will determine the manner in which a

particular grain boundaries may act as a sink or source, and migrate. The disorientated

or inclined low-angle grain boundaries can move only by the climb of primary dislocations

in the boundary plane which have a Burgers vector, b, component normal to the plane
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[13]. High angle grain boundaries act as sources and sinks by the climb of secondary

dislocations in the boundary plane [14].

Figure 2.4: Variation of grain boundary energy as a function of misorientation between adjacent
grains [11].

When two grains come in contact, one may grow at the expense of the other to reduce the

total energy of the system. For this to occur, the driving force comes from the difference

of chemical potentials across the boundary, even if all other factors are equal (curvature,

stored energy, elastic strain, temperature, impurity content or second phase particles).

2.2.2 Grain Growth Kinetics

The grain growth belongs to a thermally activated process, thus the final grain size de-

pends on time and temperature. Other factors, such as crystallographic texture and

second phase particles, which can exert a frictional drag on the moving boundary, also

can influence the migration of grain boundary. Burke and Turnbull [15] put forward a

simple parabolic relationship for the grain growth kinetics with the following assumption



2 Fundamentals 8

1. the grain boundary energy is independent of grain size and time and is the same for

all boundaries

2. the radius of curvature Rcurv is proportional to the mean radius of an individual

grain, and

3. the boundary velocity dR/dt is proportional to the driving pressure pboundary, so

that dR/dt = C2pboundary, where C2 is a constant.

Under isothermal annealing conditions they obtained the following equation:

R2
t − R2

0 = kt (2.1)

where Rt is the mean grain radius at time t. R0 is the initial mean grain radius and k is

a constant determined by the boundary mobility, energy and temperature [16, 17].

Sellars and Whiteman [18] analyzed published grain growth data of low carbon-manganese

steels and arrived at the following expression:

D10 − D10
rex = Agrowth · t · exp

(
− Qact

RgasT

)
(2.2)

where Agrowth is a constant which depends on material composition and process condi-

tions, Qact is the activation energy for grain growth, Rgas is the gas constant and Drex is

the grain size after recrystallization.

Yoshie presented an empirical approach to predict grain growth of austenite in an as-

cast C-Mn steel [19]:

D2 − D2
0 = k2t (2.3)

where

k2 =
γV Dgb

δRgasT
(2.4)

and

Dgb = D0
gbexp

(
− Qb

RgasT

)
(2.5)

where Dgb is the diffusion coefficient at a grain boundary, Qb is the activation energy for

grain boundary diffusion and δ is the thickness of the grain boundary.

In general, the grain growth can be described by the grain boundary mobility and the

activation energy for the grain growth. Therefore, the determined grain sizes can be



2 Fundamentals 9

evaluated according to the grain growth law from [5], which is described in the equations

2.6 - 2.9.

D = tnMob (2.6)

D =

[
Mob

1
n t + D

1
n
0

]n

(2.7)

Mob = Aexp

(
−Qact

RgasT

)
(2.8)

D =

⎡⎢⎢⎣
⎛⎝Aexp

(
−Qact

RgasT

)⎞⎠ 1
n

t + D
1
n
0

⎤⎥⎥⎦
n

(2.9)

The symbols used in the equations above stand for

� D = grain diameter after a particular annealing time

� D0= initial grain diameter

� Mob = grain boundary mobility

� A = constant

� Qact = activation energy for grain growth

� Rgas= universal gas constant

� T = temperature

� n = grain growth exponent

Although there is a wealth of experimental evidence accumulated over many years, in

many cases the results are contradictiously and no clear pattern emerges. Experimental

studies of grain coarsening in metals often show that n was generally below 0.5 and it

varied with temperature and composition [20, 21].

Much effort has been expended in trying to explain why the measured grain growth

exponents differs from the theoretical value of 0.5. Since both boundary mobility and

energy are known to be functions of misorientations, solute segregations and tempera-

tures, the grain growth kinetics in real materials are unlikely to conform the equation 2.1.

Furthermore, the boundary mobility varies with boundary velocity, and the velocity is not

linearly proportional to the driving pressure except for very low or very high boundary
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velocity [22].

The application of computer simulations have been put forward to model grain growth

kinetics. The Exxon group using the Monte Carlo method predicts the grain growth ex-

ponent to be 0.41 [23–27]. Fan and Chen using Continuum Field model found a n value

of 0.5 [28, 29]. Liu using the CA method got a n value of 0.45 [30].

Particle dissolution occurring during grain growth affects the grain size evolution. Smith

included an analysis of Zener on the pinning force exerted on the grain boundaries due to

particles, defining a limiting, i.e. impeding, grain radius RZ for grain growth, and stated

the following relationship [31]:

RZ =
4r

3f
(2.10)

where r is the radius of second phase particles and f is the fraction of of the same in the

whole system.

Gladman adopted a more realistic approach by considering that there exists a critical

point where the rate of release of energy per unit displacement of the grain boundary

during grain coarsening is equal to the rate of increase in energy due to the unpinning

process [32, 33]:

RG =
πr

6f

(
3

2
− 2

Z

)
(2.11)

where Z lies between 1.4 and 2 and defines the ratio of the radii of the growing grain and

matrix grains R/R0.

Rios considered an interface bending around the particle and derived an equation to

predict the limiting grain size [34]:

RR =
r

6f
(2.12)

Elst developed a model to accommodate elongated particles, a bimodal particle distribu-

tion and a distribution of grain boundary precipitates based on equation 2.11 [35]:

RE =
4r

3βf

(
3

2
− 2

Z

)
(2.13)

where β is a function of R/r.
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2.2.3 Topological Requirements for Grain Growth

Many studies have been conducted to evaluate the shape of grains, where the grain must

exhibit a shape that is space filling and the interface between grains must conform to the

law of governing the grain boundary energy. In any array of 2D space filling polygons,

where three of more polygons meet, there is a simple relationship between the number

of corners, the number of edges and the number of polygons in the array, which can be

stated as:

P − E + C = 1 (2.14)

where P, E and C are the number of polygons, edges and corners, respectively.

Smith´s [36] experimental observations on soap froth lead to an average number of edges

per face of 5.06 and average number of faces per grain of 12.48. The edges between 2D

grains are influenced by the boundary energies associated with the atomic lattice distor-

tion between grains. Geometric adjustments of the boundary will occur to minimize the

boundary area and hence the total boundary energy, given that there is adequate bound-

ary mobility to affect such short range boundary movement. For a 2D structure, in which

all boundaries have the same surface tension, the equilibrium angles at a vertex are 120�.

It is assumed that grains with more than 6 sides have boundaries convex towards their

centers, those with less than six sides concave toward their centers, and those with exact

six sides have straight boundaries. All grains with less than six sides are unstable and tend

to shrink in size, while those with more than six sides tend to grow in size. The shrink-

age of 5-sided grains leads to 4-sided grains, which than continue to shrink and undergo

a similar transformation to become 3-sided grains, and then the grain vanishes completely.

The study of Gladman considered that the energy of the system is increased by the

expansion of the interfaces but at the same time decreases by the elimination of the grain

interfaces of the grains which are absorbed by the growing grains. The net energy change

(ΔEn) accompanying grain growth is given by [32, 33]:

ΔEn =
ΔDγ

R

(
2

Z
− 3

2

)
(2.15)

where ΔD is the change in grain size. When Z <1.33, there is an increase in the grain

boundary area, and when Z >1.33, there is a decrease in the grain boundary area. This

explains why large grains grow at the expanse of small grains.
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Although, the topological rule for grain growth is very important for understanding the

process, it tells us nothing how quickly topological transformations and overall grain

growth can occur [9]. In contrast, grain growth kinetics by Burke and Turnbull [15, 37]

are not defining the space-filling network thus its influence on the grain boundary migra-

tion, which can be approached by computer modelling.

2.2.4 Normal Grain Growth

One of the structural characteristics during normal grain growth is that the grain-size and

grain-shape distributions are essentially time invariant [38]. During normal grain-growth

the average grain size increases, but the size and shape distributions of the grains remain

essentially the same before and after the growth, differing only by a scale factor [26, 39, 40].

Driven by the grain boundary energy reduction, the local grain boundary movement

during grain growth is governed by grain boundary energy and grain boundary mobility.

The velocity of the grain boundary depends on the net pressure acting on the grain

boundary:

pboundary =
2γ

Rcu

(2.16)

The pressure on the grain boundaries acts in such a way that it forces the grain boundary

to move towards the center of the curvature, where a grain with a convex grain boundary

grows and a grain with a concave grain boundary shrinks.

The grain boundary displacement, ΔX, in a single time increment, Δt, is a function

of the pressure, and the mobility of the grain boundary and is given by:

ΔX = MpboundaryΔt (2.17)

The grain boundary mobility depends on temperature and activation energy:

M = M0exp

(
−Qact

RgasT

)
(2.18)

Despite the importance of grain growth, the details of the process are not well understood.
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The reason is that boundary migration involves atomistic processes under conditions which

are far from equilibrium, especially at high temperatures. It is quite difficult to observe

and measure boundary migration experimentally. It is generally accepted that the driving

force for grain growth lies in the grain boundary energy of the grain boundaries. As the

grains grow in size and their numbers decrease, the grain boundary area diminishes and

the total grain boundary energy is lowered accordingly [34, 41–48].

2.2.5 Abnormal Grain Growth

A second type of grain growth phenomenon which can occur after recrystallization is ab-

normal grain growth [26, 40]. In general, it is defined as a rapid increase in size of a few

grains in the recrystallized microstructure such that the topology is not time invariant

and the maximum grain size increases at a rate much faster than the arithmetic mean.

It is commonly observed, that secondary recrystallization requires normal grain growth

to be strongly impeded, with the exception of a few grains which act as nuclei for sec-

ondary recrystallization. Inhibition of normal grain growth is attributed to a number of

mechanisms:

� Grain boundary grooving in the case of thin films and sheet materials on the surface

� Particle pinning of boundaries

� Texture inhibition in a material with strong preferred orientation

� Impurity inhibition

The driving force is generally assumed to be provided by associated reduction in total grain

boundary energy, as for normal grain growth. However, an additional driving force has

been experimentally demonstrated in thin films and sheet materials, which arises from

orientation dependance of the gas-metal surface energies [49]. The start of secondary

recrystallization has some common characteristics [50]:

� The grains that grow large are not newly nucleated but it is part of the primary

structure.

� The very large grains initially grow slowly, followed by rapid growth to sizes of the

order of centimeters in some cases.

� The grains that coarsen possess many sides.
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2.2.5.1 The Influence of the Starting Microstructure

For 316L stainless steel it is observed that during heat treatment, abnormal grain size

develops depending strongly on the initial grain size after the primary recrystallization

(figure 2.5) [51].

When decreasing the initial grain size, abnormal grain growth begins earlier during the

heat treatment, and if the initial grain size is large only slow grain growth occurs with-

out any distinct abnormal grain growth. The extremely slow grain growth with initially

large average grain size is attributed to the low grain boundary velocity limited by the

boundary step nucleation or growth.

Figure 2.5: Illustrations of the grain growth at different annealing temperatures and different
initial grain sizes in a 316L austenitic steel. Lee produced at 1300◦C different initial grain sizes
and afterwards annealed the structure at (a) 1150◦C and (b) 1100◦C. Different initial grain
sizes were produced by different pre-annealing times. Exemplarily annealing for 70s results in a
lower initial grain size than annealing for 80s [51].

2.2.6 Faceted Grain Boundaries

Abnormal grain growth is often marked with occurrence of faceted grain boundaries.

Grain boundary phase transformations based on the observation of an apparently discon-

tinues change of the energies of grain boundaries generated during the annealing process

at different annealing temperatures (e.g. 0.73Tm for Pb) [52].

The faceting of grain boundaries have been observed in many metals and oxides, and
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impurities and additives as O in Ni or Ag, Bi in Cu, Te in Fe, and CaO or SiO2 in Al2O3

have been observed to induce the grain boundary faceting [53, 54]. It has also been ob-

served that at high temperatures close to the melting point in a carburizing atmosphere,

the grain boundaries of a Nickel based alloy become de-faceted, producing curved shapes

that have an atomically rough structure. In contrast, normal grain growth occurs at low

temperatures. At high annealing temperatures faceted grain boundaries are developed

and abnormal grain growth occurs.

In an experimental study [55] in stainless steel 316L, the first heat treatment at 1100�C

leads to an AGG structure but afterwards heat-treated again at 1300�C results in a NGG

structure. This time the fine matrix grains coarsened but the large grains did not grow ab-

normally, and a normal grain size distribution was reached. It is shown that with changing

the growth mechanism due to producing rough grain boundaries, the abnormally grown

grains did not continue to grow.

The dependence of abnormal grain growth on the annealing temperature in the range

between 600�C and 1050�C has also been observed in pure bulk Cu specimens [56]. The

incubation time for AGG decreases and the number of density of abnormally large grains

increases with decreasing initial grain size and increasing annealing temperature. At

low temperatures, most of the grain boundaries were faceted. With increasing tempera-

tures, the grain boundaries become de-faceted and atomically rough. The observed grain-

growth behavior appears to be qualitatively consistent with the movement of faceted grain

boundaries by two dimensional nucleation of boundary steps. The temperature depen-

dence appears to be consistent with roughening of grain boundaries. Before the onset of

AGG, stagnant growth of the grains occurs at low rates, probably limited by slow two-

dimensional nucleation of boundary steps.

Both general grain boundaries and grain boundaries with well-defined geometrical charac-

teristics such as the coincidence site lattice (CSL) relations were observed to have faceted

grain structures, which are often associated with impurities and additives [53], depicted

in figure 2.6.

These faceted grain boundaries can move by two-dimensional nucleation of steps or on

existing steps produced by dislocations (figure 2.7), as proposed by Gleiter [52, 57]. The

grain-boundary migration rate will then increase progressively with the driving force,

causing rapid growth of only large grains and, hence, AGG [8]. If the grain boundaries
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have an atomically rough structure, the migration rate will increase linearly with the

driving force, thus normal grain growth will occur [56].

If the faceted grain boundaries migrate by growth on the steps produced by disloca-

tions, the migration at low driving force will be substantially higher than that by two-

dimensional nucleation, as shown by dashed curve in figure 2.7. But at high driving

forces, the growth can still occur by two-dimensional nucleation, and, with either type of

non-linear migration behavior with driving force, AGG can occur in the system of many

grains [56].

Figure 2.6: A faceted grain boundary in silver [54].

With growth by two-dimensional nucleation of boundary steps, the growth rate (R̂) de-

pends on the step-edge free energy (σ(T )) and the change of driving force (Δg)

R̂ ∝ exp

(
−πV σ(T )2

hΔgkboltzT

)
(2.19)

where h is the step height. As in most of the grain-growth theories, it may be assumed

that (Δg) is approximately given by

Δg
(
R, Ri

)
= βgeoV γ

(
1

R
− 1

Ri

)
(2.20)

where βgeo is a geometric factor and R is the average size of the grains surrounding it,

which may be assumed to be the average size of all grains. For abnormal grain growing in
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the matrix of fine grains, R will represent the average size of the matrix grains. Writing

Ri = Rαi the following equation is derived

Δgi

(
R, Ri

)
=

βgeoV γ

R

(
αi − 1

αi

)
(2.21)

Therefore, the driving force must be large enough to exceed the critical driving force,

depicted in figure 2.7.

Figure 2.7: Schematic variation of the rate of grain growth by two-dimensional nucleation with
the driving force at high and low temperatures with the dashed curve for the dislocation growth
mechanism at high temperatures [56].

The equation 2.19 for R̂ as a function of (Δg) is plotted schematically in figure 2.7 at

two temperatures. Because this equation describes the growth by mono-nucleation, it

is expected to be valid for relatively low driving forces. As the driving forces increases,

poly-nucleation is expected to occur with slightly different dependence on (Δg), and above

(Δg�), R̂ is expected to increase linearly with (Δg), because the growth will be limited

by the rate of the atom jump across the boundary [56].

If initially none of the grains are large enough to exceed Δg∗, which is required for AGG,

then all the grains will grow at very low rates in the very low-driving-force range shown

in figure 2.7. Such a slow growth limited by nucleation of steps is known as stagnant
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growth. During stagnant growth, large grains can grow relatively faster than the increase

of the average size because of the nonlinear variation of the growth rate with the driving

force, and when the large grains attain the critical sizes required to exceed Δg∗, they will

undergo accelerated growth to produce AGG. If the initial R value is smaller, the time

required for the large grains to exceed Δg∗ will be shorter, thus the incubation time for

AGG will be shorter which is in agreement with experimental results [56].

2.3 Modelling of Grain Growth

At present, many simulation methods have been put forward to reflect grain coarsening

process, which can be classified into statistical methods and direct simulations. Statistical

methods deal with ensemble probabilities for a collection of grains and the computer solves

a series of equations for a collection of grains in order to explain the behavior of grain

growth (e.g. grain size). Direct simulations construct a boundary network and can be

classified into deterministic, defining subsequent configurations exactly, and probabilistic

models [9]. The following chapter focuses on direct simulation methods.

2.3.1 Monte Carlo Method

Since Srolovitz [23–27] applied the Monte Carlo method to model grain coarsening which

allows topological constraints to be taken into account, the Monte Carlo method has

gained much attention and has been applied to many metallurgical phenomena, such as

solidification, recrystallization and grain growth.

In the Monte Carlo method, the grain structure is mapped onto a discrete triangular

or square lattice. Each lattice site is assigned a number between 1 to q corresponding

to the orientation of the grain in which it is embedded. If q is large, grains with same

orientation impinge infrequently. A grain boundary is defined to lie between sites of un-

like orientation and the grain boundary energy is also specified. The Hamiltonian for the

system energy, Esystem, is written as:

Esystem =
1

2

Nsites∑
i=1

nneighbors∑
j=1

Eqiqj
(1 − δqiqj

) (2.22)

where nneighbors is the number of neighbors, Nsites is the total number of sites, qi is the

state of the grain at site i, qj is the nearest state of the grain at site j and Eqiqj
is the
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neighbor interaction energy between neighbors located at site i and j, and δqiqj
is the

Kronecker delta function. Thus the only energy considered in the simulation is the inter-

facial energy and all unlike neighbors contribute one arbitrary unit of energy to the system.

The kinetics of the boundary motion is simulated by selection of a lattice site at ran-

dom and a new trial orientation is chosen at random from one of the other q − 1 possible

orientations. The change in energy is calculated by the equation 2.22. The transition

probability for the change in the energy caused by change in orientation of ΔE < 0 is 1

and for ΔE > 0, the transition probability is defined as exp
(−ΔE/kboltzT

)
. Successful

transition at the grain boundaries to orientations of nearest neighbor grains correspond

to boundary migration. The unit of time defined is as 1 Monte Carlo step (MCS) per site,

which corresponds to Nsites re-orientation attempts.

Saito [58, 59] adopted the Monte Carlo Method and developed a conversion of MCS

to real time on the basis of diffusion controlled mechanism by

MCS =
d2

cell

6Dgbq
(2.23)

where dcell is the distance of the MC lattice system and q the number of states.

2.3.2 Continuum Field Model

The special features of the Continuum Field method is that it describes the grain boundary

with some thickness [28, 29]. A continuum grain boundary structure is mapped onto a

discrete, square lattice using a set of order parameters, which is allowed to evolve with

time at each lattice to simulate the grain structure evolution. The driving force for the

grain structure evolution is the reduction of total free energy of the system. Kinetics for

grain structure evolution is introduced by the time-dependent equation:

dη(r, t)

dt
= −Li

δF (r, t)

δηi

(2.24)

where F(r,t) is the free energy for the system, Li is the kinetics rate coefficient related to

the interface mobility and diffusivity. The starting grain structure for this study initialized

by assigning small random numbers for each order parameters at each site at time t = 0.

Once the grain structure is initialized, grain growth is simulated by solving the equation

2.24 by using numerical methods.
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2.3.3 Front Tracking Method

For the curvature driven Front Tracking method, the velocity of each grain boundary

segment is proportional to the local curvature and the grain boundary mobility. At grain

boundary triple junctions, a local force balance is enforced, so that grain boundaries meet

at 120�. In the simulation, time is measured in dimensional units as τ = tM/A0, where

A0 is the initial average grain area as presented in [60]. The same author also modeled

abnormal grain coarsening due to the free surface energy variation in thin films.

Humphreys developed a model in which the grain structure consisting of a two-dimensional

network of grains and subgrains is constructed, where the subgrains are represented by

the node points Nj and each grain and subgrain is given a number gj, representing its

crystallographic orientation. As the orientations of adjacent boundaries are known, the

boundary misorientation angle is also known, thus the boundary energy can be calcu-

lated. Incorporating the Read-Shockley equation for low angle grain boundaries, the

grain boundary energy for high angle grain boundaries is taken to have a constant value.

Each node is subjected to forces arising from the three boundaries which intersect it.

The boundaries are assumed to bow to configurations determined by the positions of the

adjacent nodes and the boundary energies. The line tension forces at a node are summed

to give the driving force on the node. The velocity of the node is then determined by

the mobility of the boundaries moving in the direction of the driving force, and this is

obtained from an average of the mobilities of the moving boundaries, weighted by the

boundary lengths resolved perpendicular to the direction of motion. The node is then

moved a small distance proportional to its velocity and the cycle is repeated [61].

2.3.4 Cellular Automaton Method

A Cellular Automaton is an algorithm that describes the discrete spatial or temporal

evolution of the complex system by applying local deterministic or probabilistic transfor-

mation rules to the cells of a lattice. The lattice is typically regular and its dimensions

can be arbitrary. In general CA modelling utilizes a regular 2D or 3D lattice that is

divided into cells of equal size, usually square in 2 dimensions or cube in 3 dimensions.

Each cell is characterized by different states (e.g. temperature, orientation,..). By taking

into account the states of cells of its neighborhood, the state of the cell can be made to

change by time stepping according to transition rules [62–64].
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The CA evolution takes place through the application of certain transition rules. These

rules determine the state of a cell as a function of its previous state and the state of

neighboring cells. The transition rule can be designed as deterministic or probabilistic.

The flexibility of CA method allows the use of mathematical expressions as variables and

can incorporate any kind of element and rule that are assumed to be relevant [65].

The CA evolves in discrete time steps, after each time interval, the values of the state

variable are simultaneously updated for all cells. The CA is a dynamical system in which

space and time are discrete, which is similar to the Monte Carlo method, but with the

difference that CA looks only on those sites with the potential to take part in the transfor-

mation. CA performs a simultaneous state update whereas the MC method carries out a

sequential state variable update. Within the MC method, the state transition is achieved

by the energy difference before and after reorientation, whereas in the CA model, the new

states comes from its neighbors cells according to the set of transition rules. In addition,

MC simulation is computationally more intensive compared to the CA model. The CA

method can involve a huge variety of possible transition rules, enabling for subsequent

refinements to the model. The standard form of the MC method does not result in a

linear relationship between migration rate and stored energy. [30, 65, 66].

Hasselbarth tried to use CA method to simulate the recrystallization process [67]. Sim-

ulation of solidification has produced satisfactory results in the CA method by Gandin

[68–70]. The cellular automata are also used for simulation of austenite-ferrite phase

transformation [71].

Relatively little work has been done to simulate grain growth. Liu applied the CA method

to simulate normal grain coarsening by using Von Neumann‘s definition of neighboring

cells with deterministic transformation rules, where the following assumptions based on

grain growth theory are made [30]:

1. If three cells among the four surrounding cells have the same state as the central

cell, the state of the central cell will definitely keep its original state at the next

time step.

2. A cell must overcome an energy barrier to reach its new state.

3. Each state of a cell represents the orientation of its grain in a simulated microstruc-

ture.
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4. Boundary energy is homogenously distributed.

The process explained in assumption 1 is equivalent to the grain boundary migration

due to curvature effect. The assumption 2 is directly connected with temperature, and

according to statistical mechanics, the probability of atoms which can overcome an energy

barrier is written as:

pboundary = exp

(
− Ebarr

kboltzT

)
(2.25)

where Ebarr is the energy barrier.

The author assumed [30] that the temperature is high enough and all the cells are success-

ful in their state transition, that is P= 1. The simulation is proceeded using a matrix of

200x200 cells, and a time step is defined when all cells have proceeded an attempt of state

transition. Periodic boundary is introduced in order to represent infinite grain structure

and the simulations performed until 20000 steps. The simulation gives an average growth

exponent of 0.45 and the distribution of grain sides a high reorientation frequency at 6

grain sides.

In the probabilistic model of Yu [72–76], at each step, every cell is scanned, and its state

will change according to the following integrated rules (figure 2.8) considering Moore‘s

neighborhood of 9 cells:

G1 G3G2

G4 G5 G6

G7 G8 G9

Figure 2.8: Moores neighborhood [30].

1. If all 8 cells around the G5 have the same state as G5, then G5 will keep its state

at the next time step.
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2. (a) If any three of the states G2, G4, G6, G8 are the same integer (grain identification

number), for example equal to A, then G5 is A. Similarly, if this does not hold, then

(b) if any of the three states G1, G3, G7, G9 are the same integer, for example equal

to an integer B, then G5 is B.

3. The distribution of grain boundary energy is homogenous. A cell must overcome

an energy barrier to change its state: if any of the eight surrounding cells have

different state from G5, then G5 has the possibility to change its state. In this case,

the probability is the same for all grains and is set to be Pboundary.

If the state of a cell can meet any of these conditions, then the following condition will be

ignored. For example, the condition (1) is actually to judge if this cell is in the interior

or on the boundary. If it is in the interior, it must maintain its state and the following

conditions do not need considerations any more and the next cell will be checked subse-

quently. If not, the cell must be on the grain boundary and then the computer will check

if its state can meet condition (2a) and so on.

On the integrated rules given above, the second rule simulates the grain curvature effect,

where the grain boundary would tend to form a straight line due to the grain boundary

tension requirement. The reason to use the Moore configuration considering both the

nearest and next-nearest neighbors is to make a grain boundary move in any direction.

The third rule simulates the effect of grain boundary energy, which is vital to keep the

boundaries move and make small grains vanish. It reflects the effect of mobility on the

grain growth, which includes the temperature dependance.The deterministic CA mod-

els work with exact calculation of grain boundary displacement by evaluating the grain

boundary curvature and temperature dependence of grain growth, defined by the mobility

of grain boundary [77, 78].

A two-dimensional cellular automaton algorithm developed by Lan [79, 80] defines the

velocity of grain growth as

M = M0exp

(
− Qa

RgasT

)
=

b2Db

kboltzT
exp

(
− Qa

RgasT

)
(2.26)

In his study Lan reduced the mobility at the triple points from 8.929 · 10−11, of normal

cells, to 1.488 · 10−11 for the cells in a triple point.

In the CA model of Yazdipour, a comprehensive range of thermo-mechanical conditions
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were considered and compared with experimental data for the type 304 austenitic stain-

less steel [81]. Each cell in the model was categorized by three variables: an orientation

which is the same for all cells located in the same grain, the´dislocation density which

represents the stored energy due to the deformation and grain boundary energy which is

zero for the cells located away from the grain boundaries and calculated for the cells next

to the grain boundaries (e.g. for high angle grain boundaries γ = 8.35 · 10−7 mJ/m2).

For the austenitic stainless steel 304 the mobility of the grain boundaries is defined as

follows:

M =
δgbDbb

kboltzT
exp

(
−Qb

RgasT

)
(2.27)

where δgbDb = 1.1 · 10−13 m3/s, b = 2.5 · 10−10 m and Qb = 174 kJ/mol.

Simulation experiments of Janssens [82] illustrate that the random grid base of an automa-

ton eliminates the dependence of the model on grid symmetry as observed in conventional

cellular automata, made for recrystallization and grain growth. For irregular automata

the number of cells per unit area varies from position to position in the grid. The local

variation of the resolution of the automata influences the simulation in two ways. The

precision of the computations varies locally, which means that local conclusions about the

results of a simulation involve some form of statistical analysis. Further, the local density

of the random grid must be observed when making statements about accuracy. It is a well

known fact that the shape of the neighborhood, which is closely related to the grid, has a

major influence on e.g. the way grain boundaries move in the simulation of grain growth.

This implies that the automaton directly influences the outcome of the calculation. This

problem is solved when using a random grid but the cost for this advantage is that for

each cell the neighborhood must be computed and stored.
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3.1 Annealing and Quenching

For the annealing tests cylindric specimens of 304L with a diameter of 10 mm and a

height of 5 mm were used. The geometry of the specimen was finished at Böhler Edel-

stahl, Kapfenberg, Austria.

Furnace

The specimens were heated in a laboratory furnace RHF 14/35 from Carbo Light shown

in figure 3.1. In order to achieve the aimed annealing temperature, a charge time of 4.5

minutes (for 900�C and 1000�C) and 3 minutes (for 1100�C and 1200�C) were defined from

temperature measurements on the specimens. That means for example, if the annealing

time is 20 minutes at 1200�C the specimen would be in the furnace for 23 minutes, where

the 20 minutes are an absolute time value for the annealing without charging and cooling.

Figure 3.1: Left: Carbo Light furnace RHF 14/35. Right: Magnification of the heating
chamber.

The temperature in the center of the furnace chamber (figure 3.1) was used to control the

annealing temperature. The specimen needs a fireclay base to get near to the center area

of the chamber.

25
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The specimens were charged only once to a specific temperature inside the furnace, then

quenched. The charging temperatures used were: 900�C, 1000�C, 1100�C and 1200�C.

The REF specimens are the reference material without any annealing. These were used

to classify the initial grain sizes. The x in table 3.1 shows the annealing temperatures

and times for the specimens.

Time [s] REF 900�C 1000�C 1100�C 1200�C

0 xx
1200 x
2400 x
3600 x
4800 x
7200 x
10800 x
14400 x x x
18000 x
28800 x x x
36000 x
43200 x x x
57600 x x x
72000 x x
86400 x x x
115200 x x
144000 x x

Table 3.1: Annealing specimen table.

Quenching

After annealing, the grain structure of the specimen had to be fixed so that subsequent

evaluations could be carried out. The small scale of the specimen meant that on removal

from the furnace it could be immediately quenched in cold (≈10�C) water.

3.2 Metallography

Once the annealing procedure was completed, the specimens were embedded, descaled,

polished and etched electrolytically to resolve the grain structures [38, 83, 84].
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3.2.1 Embedding

The specimen was placed in a hot mounting press, resin was added, and processed under

heat and high pressure.

Hot Mounting Press and Resins

For hot mounting a Struers Cito Press 10 [84] was used with two different resins. For

the polishing side a Struers MultiFast Black (phenolic resin with wood flour filler) and on

the top side Struers ConduFast (acrylic conductive resin with iron powder filler) was used.

Process Parameters:

Diameter: 40 mm

Quantity MultiFast: 15 ml

Quantity ConduFast: 30 ml

Pressure: 250 bar

Temperature: 180�C

Heating Time: 4.5 min

Cooling Time: 3.0 min

Cooling Rate: High (Full Flow)

3.2.2 Grinding and Polishing

The purpose of the grinding is to planarise the specimen and to remove material ap-

proaching the area of interest. Soft ferrous metals like 304L are relatively easy to grind

where a 180 grit SiC abrasives provide a good initial start with subsequent use of 320,

600, 800, 1200 and 2500 grit SiC.

Polishing is the most important step in preparing a specimen for microstructural analy-

sis. For the 304L only a 3μm step with Struers monocrystalin diamond suspension on a

MD-NAP was necessary. The fine polishing was done with OPS (0.05μm) and a Struers

MD-Chem towel.

For grinding and polishing a single wheel ATM- Saphir 550 was used. Working wheel:

Ø300 mm; Single pressure: 5 - 100 N; Motor: 1.2 kW; Speed: 50 - 600 rpm.
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In total, during grinding and polishing at least 150 μm of the material was removed.

3.2.3 Electrolytic Etching

The Struers LectroPol 5 uses a two-electrode design (anode and cathode) with acids or

bases for the electrolyte and it is an apparatus [84] for automatic, micro-processor con-

trolled electrolytical polishing and etching of metallographic specimens. With a scanning

function for easy determinations of parameters, built-in safety features, and a database

with methods for various materials, short polishing times and maximum reproducibility

are achieved.

Setup:

Acid Temperature: 22 �C

Flow Rate: 10

Voltage: 1.0 V

Time: 30 - 400 sec (depends on the annealing time)

Electrolyte:

60 % nitric acid

3.3 Grain Size Evaluation

The etched specimens were recorded with an Olympus light microscope in different mag-

nifications. The microstructure pictures were printed on A3 or A4 for editing. The traced

grain boundaries were digitized and evaluated with a Software Package from Digital Imag-

ing Solution.

3.3.1 Microscopy

The grain boundaries were recorded in different magnifications from 5x (50 fold exten-

sion), 10x, 20x, 50x and 100x. From each sample a 5x and a 10x picture was taken and if

the magnification was too small for evaluation, pictures with better resolution were taken.
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For example, figures 3.2 shows a picture taken in 10x magnification of the annealed speci-

men: firstly homogenized at 1200�C for 20 minutes and then solution annealed at 1000�C

for 12h.

Figure 3.2: Micrographs annealed at 1200�C and 20min: high magnification.

3.3.2 Data Edit

Evaluation of the grain size is difficult because of etching artefacts, twin boundaries and

other irregularities. It would have taken longer to check and correct the detected grain

boundaries than to trace them to a transparency film, so all pictures of the annealed

specimen were printed to paper format A4 and traced onto transparency films. For a

correct evaluation of the grain size of each sample a minimum of 300 grains had to be

detected. If there were fewer grains on a micrograph, a second picture or more had to be

taken and traced. For correct transmission of small grains some of the micrographs were

printed on A3 paper format. In figure 3.3 the traced micrograph of figure 3.2 is shown.
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Figure 3.3: Illustration of a traced micrograph.

3.3.3 Grain Size Evaluation

Preparatory work

The traced and scanned digital micrographs were converted into a gray scale picture.

During this converting process a lot of detailed information was lost, but to restore the

information an intensity adjustment was made. The adjustment gave greater accuracy to

the various gray lines and thus provided a more detailed outline of the grain boundaries.

An additional problem was to detect the intersection points of the grain boundaries. This

problem was minimized through using the software tool NxN-filter. The filter produced a

relatively blurred image, but one which enabled more precise detection of the intersection

points.

Evaluation of Grain Sizes

After the preparatory work the real evaluation starts. The first step is to produce a

decollator picture. The decollator is a contour detection software tool to find all traced

grain boundaries. This tool detects the different grey scales and defines the boundaries.
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Once this process was complete the boundaries which had been discovered were edited

again to correct any mistakes and the picture geometry was trimmed and calibrated. The

result is shown in figure 3.4. For every single grain, the software’s grain module calculates

the surface area, diameter, elongation and any other user-defined parameters. For this

work the quantity, diameter and the surface of all grains were detected. The grains in the

border area were excluded from the evaluation.

Figure 3.4: Decollated micrographs annealed at 1200�C and 20min.

3.3.4 Evaluation of the Grain Size Separating Normal and Ab-

normal Grains

The grain size separating normal and abnormal grain growth was defined according to

an optical method. The smallest abnormal grains were measured and the average grain

size was defined as the grain size separating normal and abnormal grains. With the aim

of increasing the accuracy to define such a value, a second definition was employed: the

sizes of all single grains belonging to a particular specimen were sorted and graded from

the smallest to the largest. To find a step between consecutive grains the actual value

over the preceding value was calculated. The factor usually has a value between 1.00 and

1.02. In the area of the optical defined regions with normal grown grains the value may

rise to 1.20 or more. For the last grains on the list, in the area of abnormal grain growth,
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values of up to 1.50 are possible.

With the grain size separating normal abnormal grains the area fractions of the nor-

mal and abnormal grains can be evaluated and also the average grain size diameter of the

normal and abnormal grains.

Small abnormalities may induce large errors in the calculated values for the fraction

of abnormal grains. If the area fraction of abnormal grains was less than 10 %, it was

assumed that no abnormal grown grain was observed and the value to separate the grains

was not taken into account.

3.4 Definition of Grain Size Distributions

In the presented work, the size of each grain at a given time was directly calculated

from the grain structure and the average grain size was obtained. But for an accurate

description of grain growth process the grain size histograms were used. Due to the

analysis of all grain structures evaluated, the definition of upper and lower grain sizes

which are separating the grain size classes are illustrated in the table 3.2.

Class Lower class grain size [μm] Upper class grain size [μm]

1 0 15
2 15 25
3 25 35
4 35 45
5 45 55
6 55 65
7 65 75
8 75 85
9 85 95
10 95 1000

Table 3.2: Definition of classes of grain sizes by upper and lower grain size limit used for all
annealing time steps.
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3.5 Experimental Results

In this section the measured average grain sizes and grain size distributions for the an-

nealing process are given. All grain structures analyzed were evaluated at leats for 300

grains. The grain sizes distinguishing normal and abnormal grains and the area fractions

of abnormal grains are then evaluated [85].

In the following section, all diagrams are sequenced as follows:

� Firstly, the results of normal grain growth for all temperatures are shown (figure

3.5).

� Secondly, the results of abnormal grain growth are shown (figure 3.6).

� Thirdly, the fixed grain sizes separating normal and abnormal grain growth (section

3.3.4) are illustrated in figure 3.7.

� Fourthly, figure 3.8 shows the part of surface of abnormal grains versus the annealing

time.

� Fifthly, according to the definitions in table 3.2, the grain size distribution for all

temperatures and times are given in figures 3.9, 3.10, 3.11 and 3.12.

Figure 3.5 displays the normal grain sizes versus the annealing time for the annealing

process. The diagram clearly illustrates the high influence of annealing temperature on

the development of grain size.

For the annealing temperature of 900�C, the grain size doubles at 14400 seconds and

then remains constant for 36 annealing hours. It is assumed that this is caused by im-

peding of grain growth by precipitations. The small variation of 4 μm is not significant,

because there was only one specimen at each annealing time evaluated. The annealing

temperatures of 1000�C and 1100�C lead to a higher grain growth rate. The 1200�C sam-

ples show a huge increase in grain size during the short annealing period.

The huge increase in grain size at high temperatures and short annealing times stim-

ulate the development of abnormal grain growth. Figure 3.6 shows the abnormal grain

sizes at different annealing temperatures. For the 900�C the forces for abnormal grain

growth are to weak due to low temperature and precipitations, thus no abnormal grain
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growth occurs. At higher annealing temperatures the forces for secondary recrystalliza-

tion are high enough for exaggerated grain growth to develop. With higher temperatures

abnormal grain growth starts earlier. For 900�C there is no abnormal grain growth even

after 40 hours of annealing time, but for 1200�C abnormal grain growth is evident after

just 7200 seconds. At 1100�C abnormal grain growth needs 28800 seconds (three times

that of 1200�C and the 1000�C specimen needs 43200 seconds, which is almost double

that at 1100�C and six times that at 1200�C.

The area fraction values in figure 3.8 for the 1000�C annealing specimen decline after

115200 seconds. A possible reason for this phenomenon is associated with the evaluation

of the separating grain size between the distribution of abnormal and normal grains. At

long annealing times over 24 hours and high temperatures the distribution of the grains

overlap and the separating grain size reduces and so the fraction rises. At 1000�C and

115200 seconds annealing time the separating grain size was fixed at 200 μm and the result

of the fraction of abnormal grains was 41 %. At 144000 seconds the separating grain size

was 250 μm and the fraction 45 %. The fraction of abnormal grains rises to 55 and 69 %

when the separating grain sizes are reduced to 100 and 120 μm. When the distribution

overlaps and develops more than one peak the separating grain sizes are difficult to define

after this scheme (see chapter 3.3.4).
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Figure 3.5: Grain size as a function of time for normal grain growth during the solution
annealing process at different annealing temperatures.



3 Experimental Work 35

Abnormal Grain Size 900°C, 1000°C, 1100°C, 1200°C
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Figure 3.6: Abnormal grain size vs. annealing time for the solution annealing process at
different temperatures and times.
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Figure 3.7: Evaluation of the defined grain size separating normal and abnormal grain growth
vs. annealing time for annealing process at different temperatures and times.
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Area fraction AGG 900°C, 1000°C, 1100°C, 1200°C
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Figure 3.8: Illustration of area fraction for abnormal grain growth vs. annealing time for the
annealing process at different temperatures.

The histograms for solution annealed specimens at the temperatures of 900�C, 1000�C,

1100�C and 1200�C are shown in the figures 3.9, 3.10, 3.11 and 3.12. The definition of

upper and lower limits of grain classes are explained in chapter 3.4.

At the beginning of annealing process the upper histogram classes were not filled. Due to

the limiting grain growth at 900�C there are no grains above the histogram class 8, even

at long annealing time steps.

For 1000�C at least above the annealing time steps of 12h, all histogram classes are filled.

For higher temperatures, despite the reference specimens, all histogram classes were filled

for all annealing time steps. In order to validate the modelling setups and for a better

understanding of abnormal grain growth, the grain size distributions were also predicted

by application of cellular automaton simulations. Especially, the prediction of grain size

separating normal and abnormal grains helped to eliminate erroneous results evaluated

from optical metallography.
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One step annealing series 900°C
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Figure 3.9: Histograms of the fraction of grain classes for the solution annealing at 900�C for
different time steps.
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Figure 3.10: Histograms of the fraction of grain classes for the solution annealing at 1000�C
for different time steps.
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One step annealing series 1100°C
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Figure 3.11: Histograms of the fraction of grain classes for the solution annealing at 1100�C
for different time steps.

One step annealing series 1200°C
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Figure 3.12: Histograms of the fraction of grain classes for the solution annealing at 1200�C
for different time steps.



3 Experimental Work 39

3.6 Evaluation of the Grain Growth Kinetics

In the following section the results of the evaluation of normal and abnormal grain sizes

are analyzed. The well known equation D = [(Aexp(− Qact

RgasT
))

1
n t + D

1
n
0 ]n was used and

regressed (Software Statistica and TableCurve) in order to calculate the grain growth

constants n, A and Qact. For a useful regression at least three measurement points at

the same annealing temperature are required. The received n-values, illustrated in table

3.3, for the regression of the annealed specimens are below 0.5, which corresponds to the

literature value given in [86] and [87]. The activation energy QNGG is constant for normal

grain growth at 62314.6 J/Kmol.

Temperature n [-] A [-] QNGG [J/Kmol]

1000�C 0.31 0.00376 62314.6
1100�C 0.37 0.00494 62314.6
1200�C 0.43 0.00569 62314.6

Table 3.3: n, A and Qact values for normal grain growth: regression results.

For the abnormal grain growth, the calculated results for the grain growth exponent n

are higher than the values evaluated for normal grain growth due to a higher growth rate

(table 3.4). The activation energies for normal and abnormal grain growth are assumed

to be constant, but the value of QAGG is lower and equals 33682.7 J/Kmol.

Temperature n [-] A [-] QAGG [J/Kmol]

1000�C 0.75 0.00217 33682.7
1100�C 0.80 0.00242 33682.7
1200�C 0.89 0.00297 33682.7

Table 3.4: n, A and Qact values for abnormal grain growth: regression results.

Figure 3.13 summarizes the complete regression values of the annealing process. In order

to compare the regression data, results of grain coarsening treatments for a type 304L

steel of [5] are regressed in the same way. The evolution of the grain sizes of the literature

are shown in table 3.5 and the n, A and Qact values in table 3.6.
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Time [s] 1000�C 1050�C 1100�C

0 7 μm 7 μm 7 μm
60 9 μm 14 μm 28 μm
120 13 μm 19 μm 31 μm
240 17 μm 30 μm 40 μm
600 25 μm 40 μm 49 μm
1200 31 μm 48 μm 62 μm

Table 3.5: EU Commission paper [5]: grain sizes of normal grain growth.

Temperature n [-] A [-] QNGG [J/Kmol]

1000�C 0.36 0.0105 58329,6
1050�C 0.39 0.0152 58329,6
1100�C 0.42 0.0203 58329,6

Table 3.6: n, A and Qact values for normal grain growth: regression results.

Regression value comparison for normal and abnormal grain

growth for the one step annealing specimens
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Figure 3.13: Comparison of all regression values for the annealing process.
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3.7 Discussion of Experimental Assessments

Abnormal grain growth is observed earlier at higher annealing temperatures. The re-

vealed grain structures showed abnormal grains for 1200�C at 7200 seconds, for 1100�C

at 28800 seconds, for 1000�C at 43200 seconds and for 900�C never. The grain growth

rate increases with annealing temperatures and abnormal grain growth occurs earlier. It

is also stated that the activation energy for grain growth was much lower for abnormal

grains than for normal grains.

Using TEM (Transmission Electron Microscopy) investigations with a very high reso-

lution of grain structure, the reference specimen showed some faceted grain boundaries,

where the biggest part composed of rough grain boundaries (figure 3.14). Faceted grain

boundaries are often associated with abnormal grain growth, but it is not clear if faceted

grain boundaries move faster than rough grain boundaries or vice versa. According to the

literature survey, opposite explanation can be evaluated [52, 57].

(a) (b)

Figure 3.14: Faceted Grain boundaries: results from Transmission Electron Microscopy. (a)
and (b) represent different grain boundaries.

Gleiter [52, 57] explains that faceted grain boundaries start to grow earlier and became

the candidate grains for abnormal grain growth. An exponential growth rate is stated in

the beginning of solution annealing process for the grains with faceted grain boundaries,
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where after a critical driving force is reached all grain boundaries (faceted and rough)

move linearly with the same velocity, depicted in figure 2.7. Therefore, if some candidate

grains are larger in size compared to the rest of the matrix grains, abnormal grain growth

can be observed. It is noticeable, that until the candidate grains become relatively large,

they can not be differentiated from normal matrix grains by optical metallography. So, it

is assumed that faceted grain boundaries move with a higher mobility than grains with a

rough grain boundary structure. It is assumed that the roughening of grain boundaries

with annealing time could be the reason for the linear increase of grain boundary velocity.

Additionally, a preheating of reference specimens was performed, in order to test the

influence of initial, i.e. starting, grain size on the development of abnormal grain growth.

At 1000�C abnormal grain growth started after 43200 seconds of annealing time. A pre-

heating time of reference specimens, with a significant change of initial grain size from

15 μm to 30 μm, led to a prolonging onset time for the start of abnormal grain growth

where the first abnormal grains occurred at 86400 seconds of annealing time at the same

annealing temperature of 1000�C. A higher starting grain size leads to growth rates, which

were lower compared to the non preheated specimens, for both faceted and rough grain

boundaries. Assumed that the growth rates of faceted and rough grain boundaries are

still different but this time with a lower driving force, i.e. higher initial grain size, a

much longer onset time for abnormal grain growth can be expected. Metallographically,

much longer annealing times have to be performed for an accurate differentiation of grain

structures. An other explanation could be the dissolution of faceted grain boundaries.

The grain growth enhanced by two dimensional nucleation of grain boundaries may also

be changed by lowering step-edge free energies or step heights. This can also result in a

lower driving force of faceted grain boundaries.



4 Cellular Automata Modelling

This chapter focuses on the description of development and application of cellular automa-

ton models for the prediction of normal and abnormal grain growth. Based on a literature

survey, the cellular automaton method was chosen as an appropriate tool to incorporate

topological features into a computer simulation and to give an improved space-time de-

scription of grain size distribution during grain growth. The provided measured initial

grain size distributions purpose a modelling of discretized space, time and state of the

physical system by using a rule set of incremental time steps where the state of dependent

variables is determined at each of these discrete spatial locations.

Therefore, a deterministic CA model, where the equations for the grain boundary ve-

locity due to grain boundary curvature, boundary energy and temperature are solved to

calculate the net displacement of the boundary, and a probabilistic CA model, where the

movement of a boundary is based on the stochastic majority rules, were developed.

The rule sets that govern the transition of the state of the cell are critical in determining

the final microstructure and the degree to which these rules correspond to physical reality.

4.1 Deterministic Model

The calculation domain is divided into regular, square cells, where each cell represents a

definite space in the material (i.e. grain identification) with periodic boundary conditions.

In the first possible state of a cell, the entire cell represents a portion of a grain and is

associated with the uniform property of the same. The other possible state is that of a

grain boundary, where the cell can have fractions of two or even three grains, i.e. triple

points, with the respective properties of the grains it belongs to [88, 89]. The schematic

of the CA model domain comprising cells with grains and grain boundaries is shown in

figure 4.1 based on models published earlier [77, 78].

43
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Figure 4.1: Grains with different crystallographic orientations (colors) in a CA model.

4.1.1 Modelling Setup

In order to simulate the grain boundary movement, the cells belonging to grain bound-

aries are identified at first and the displacement of the grain boundary is calculated. In

contrast to earlier models [77, 78], the calculation of boundary displacement is performed

for each boundary cell. The velocity of the grain boundary depends on the net pressure

pboundary acting on the grain boundary:

pboundary =
2γ

Rcu

f
(
Δρ
)

(4.1)

where γ is the grain boundary energy and Rcu is the local radius of the curvature of the

grain boundary, calculated by using the height function technique, which is explained in

chapter 4.1.1.1. The pressure on the grain boundaries acts in such a way that it forces

the grain boundary to move towards the center of the curvature, hence the grain with

a convex grain boundary grows and the grain with a concave grain boundary shrinks.

It was assumed that the influence of deformation energy f(Δρ), described by variable

deformation values evaluated by Electron Backscatter Diffraction, explained extensively

in the chapter 4.1.1.2, decreases exponentially with annealing time.

The grain boundary displacement, ΔX, in a single time increment, Δt, is a function

of the grain boundary pressure, and the mobility of the grain boundary:

ΔX = MpboundaryΔt (4.2)
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The grain boundary mobility, M, is dependent on temperature (T) and activation energy

for the grain coarsening Qact:

M = M0exp

(
−Qact

RgasT

)
(4.3)

where M0 is a constant.

For the precipitations kinetics, firstly the limiting grain size of each grain Dlim is cal-

culated according to the following equation, defined by Zener [90]:

Dlim =
2dp (t)

3f (t)
(4.4)

where dp is the diameter of the particles (underlying Ostwald ripening) evaluated by the

MatCalc� calculations [91] and updated during the whole simulation procedure by

dp(t) = 2

⎧⎨⎩[kt
1
3

]3
+

[
d0

p

2

]3
⎫⎬⎭

1
3

(4.5)

where k is a constant and d0
p is the diameter of the particles at the beginning of the

simulation (see also chapter 4.1.3). During annealing the fraction of precipitates, f (t), is

assumed to decrease with time following

f (t) = f0 − k1t (4.6)

where k1 is a constant and f0 is the fraction at beginning of the simulation process.

4.1.1.1 Calculation of the Grain Boundary Curvature [77]

The grain boundary can either move forward or backward, depending on the sign of ΔX in

equation 4.2. The fraction of a grain in a cell increases or decreases, and once the fraction

in a cell becomes 1.0 or 0.0, the neighboring cells of different orientations (identification

number) are captured to form a new grain boundary cell. The area swept by the boundary

in a given cell is obtained from ΔX and the angle of normal, which is the line connecting

the cell of interest with the center of mass of a grain in a circular area (7x7 cell diameter),

shown in figure 4.2.
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Figure 4.2: A schematic illustration of the calculation of the angle of the grain boundary
normal [77].

In order to calculate the grain curvature the height technique is used, which was originally

proposed by [92]. Thus, a region of 7x3 cells is constructed around the cell of interest,

i.e. grain boundary cell, and depending on the angle of normal, n, a vertical region is

considered if the angle of normal is less than 45� and a horizontal region if the angle of

normal is greater than 45�, depicted in figure 4.3.

Figure 4.3: A schematic illustration of the cells to be considered if (a) the angle of normal is
less than 45� and if (b) the angle of normal is more than 45� [77].

The sum of fraction of the grain of interest in each row or column is calculated to evaluate

the height function, depicted in figure 4.4.
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Figure 4.4: A schematic illustration of the calculation of the height function; The numbers in
the boxes indicate the fraction occupied by grain-1 [77].

The curvature of every cell is calculated following

κ = − Yxx[
1 +
(
Yx

)2] 3
2

(4.7)

where the first, Yx, and second, Yxx, derivatives of the height function are used.

4.1.1.2 About the Consideration of Deformation Energy

Electron Back Scatter Diffraction (EBSD) is widely used for characterizing the grain struc-

ture of engineering materials by determining the crystallographic orientation. Therefore

three different methods for the description of the induced plastic strain, namely the CD,

MCD and Maver values were used. All values were developed by Kamaya [93], and also

calculated by himself for our purposes in this thesis.

Crystal Deformation (CD) and Modified Crystal Deformation (MCD)

Using EBSD in conjunction with scanning electron microscopy, a parameter, which quanti-
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fies the spread of the crystal orientation within individual grains arising due to dislocation

accumulation during plastic deformation, is correlated with imposed plastic strain. The

parameter is called crystal deformation (CD) and is determined from the spread in mis-

orientation from the mean grain orientation [93].

Further in [94], Kamaya explains that the accuracy of the measurements of misorientation

was improved by the technique called the Domain Averaging Method (DAM). It is shown

that DAM reduces the error in misorientation and enables us to obtain a clear distribu-

tion of misorientations. The distribution followed a log-normal distribution and its mean

value correlated linearly with the macroscopic plastic strain induced in the specimens.

By using the correlation between misorientation and the plastic strain, the distribution of

local plastic can be estimated defining the so-called Modified Crystal Orientation (MCD),

which was another value used in this work.

Firstly, the misorientation distribution was represented by the log-normal distribution

for both strained and un-strained material. Then, the mean of the log-normal distribu-

tion was defined as the modified crystal deformation (MCD):

MCD, CD = exp

∑ng

k=1

(
ln
{

β(mk,i)
})

∑ng

k=1 nk (4.8)

where β (mk, i) denotes the misorientation between the central orientation, m, of the

k-th grain and the point i that belongs to the k-th grain, and nk is the number of points

included in the grain.

The parameters explained above and used in this work have good correlation to the

degree of the plastic strain and they are independent of the measurement conditions such

as the EBSD system used for the measurements, number of data and step size in the

crystal orientation map, electron beam condition, grain size and material.

Averaged Misorientation (Maver)

A spatial distribution of the local change in the crystal orientation corresponds to the

averaged misorientation angle β between neighboring points p and is named the local
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misorientation. The calculation of local misorientation in the grain interior (figure 4.5 a)

is performed as

ML =
1

4
{β(p0, p1) + β(p0, p2) + β(p0, p3) + β(p0, p4))} (4.9)

and on the grain boundary (figure 4.5 b) as

ML(p0) =
1

2
{β(p0, p2) + β(p0, p3))} (4.10)

(a) (b)

Figure 4.5: Illustration of the consideration of local orientation for the calculation of local
misorientation in a grain (a) and at a grain boundary (b).

Exemplarily in the figure 4.6, it is shown that the degree of the local misorientations tends

to be large near the grain boundaries. From earlier publications it is known that local

misorientations correlate well with the degree of local dislocation density [93–102].

As a reference, the evaluated average value of all local misorientations, Mref , of an un-

deformed homogenized specimen is used and compared to the values of Maver for deformed

specimens, described as:

f(Δρ) =
Maver

Mref

(4.11)
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The same procedure can be performed by using the CD or MCD value.

(a) (b)

Figure 4.6: Illustration of (a) an orientation map and (b) a local misorientation map of a
deformed specimen.

4.1.2 Effect of Lattice Cell Number on Simulation Time

For the evaluation of simulation time depending on the grain structure resolution, the

simulation was repeated for different number of cells. In this study the influence of

precipitates or and deformation energy was not considered. A higher resolution of the

grain structure led to increasing simulation times, as visible in the table 4.1.

dimensions number of cells Δtsimulation [s]

200x200 40000 1

283x283 80000 2.5

400x400 160000 5.3

Table 4.1: The influence of the resolution on simulation time for the deterministic model. For
the comparison of simulation times, the lowest resolution of the grain structure was defined
arbitrary to have a simulation time of 1.

The simulation time of the deterministic model depends strongly on the number of grain

boundaries in the simulated grain structure. As grains grow, the number of grain bound-

aries decreases with simulation time, thus the time for one reorientation loop of all cells
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decreases with simulation time. For the evaluation of the results in the table 4.1, the

same initial grain structures were used.

4.1.3 Modelling Results for Normal Grain Growth in the Pres-

ence of Second Phase Particles

When the pressure on a grain boundary due to the particle pinning is equal to the driving

pressure for grain growth, the growth is impeded and the limiting grain size for grain

growth is reached. M23C6 is the predominant carbide formed in the austenitic stainless

steel 304L which dissolutes very quickly at the austenitic grain boundaries during the

solution annealing process, explained extensively in chapter 2.1. In order to validate the

influence of precipitates for the deterministic CA model, starting at 900�C for 5h, a heat-

ing up with 10�C/h and a final solution annealing at 1000�C for 5h was experimentally

conducted and compared to the simulation results. The precipitations kinetics were evalu-

ated by MatCalc� calculations and compared to the results of the deterministic CA model

incorporating Ostwald ripening (equation 4.5) and the fraction of precipitates (equation

4.6) which is decreasing during the solution annealing process (figure 4.7).
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Figure 4.7: Comparison of precipitations kinetics during solution annealing evaluated by
MatCalc�, fitted empirical model, and used in the deterministic CA model.

Different approaches of limiting grain sizes described in chapter 2.2.2 were tested and

compared with experiments, depicted in figure 4.8.

The slow increasing of limiting grain size defined by Gladman (DG) at different Z-values,
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namely 1.43, 1.70 and 2.0, led to strong and inaccurate impeding of grain boundary

movement and was therefore not adapted in the deterministic model for the description

of precipitation kinetics.

In contrast to the results of Gladman, the application of limiting grain size defined by

Elst (DE) predicted a much higher grain size. Similar results were obtained by DR and

DS, defined by Rios and Smith.

(a) (b)

Figure 4.8: Comparison of the experimental results for average grain size and evaluation of
limiting grain size by (a) Gladman (DG) and Elst (DE) for different Z-values and (b) by Rios
(DR), Smith (DS) and Zener (DZ).

For the comparison of the modelling predictions and the experimental results, the defini-

tion of limiting grain size by Zener was evaluated as an appropriate solution. Therefore

the deterministic model defines the limiting grain size as

Dlim =
2dp (t)

3f (t)
(4.12)

where the starting conditions (particles diameter, fraction of particles) are defined by

MatCalc� calculations.

The dissolving of particles started after an annealing time of 6h resulting in a grow-

ing of the limiting grain size and therefore increasing of average grain sizes. The obtained

simulation results corresponded well to the evaluated experimental results, depicted in

figure 4.9.
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Figure 4.9: Prediction of grain growth in the presence of second phase particles (deterministic
model). The solution annealing began at 900�C for 5h, afterwards heated up with 10�C/10h and
a final solution annealed at 1000�C for 5h. Precipitations diameter and fractions were evaluated
by MatCalc�, and limiting grain size is according to the definition by Zener [90].

4.1.4 Modelling Results for Normal Grain Growth

Experiments and simulations of homogenized, un-deformed, specimens were performed

between 900�C and 1200�C for up to 144000 seconds (40h) of annealing time, explained in

chapter 3.5. The values of grid size and time step were chosen accurately for the desired

resolution of the microstructure after a testing of grid size and time step sensitivity. Due

to long processing times of the deterministic model, the resolution of 40000 (200x200),

thus a calculation domain of 225x225 μm with the grid size of 1.13 μm was defined.

Exemplarily, the developing grain structure from the deterministic CA model for the

normal grain growth are shown in figure 4.10. Many features of normal grain coarsening

can be seen in the simulated grain structures, beginning from microstructure evolution

driven by the excess free energies associated with the grain boundaries resulting in an in-

crease of the overall grain size, the growth of larger grains at the cost of smaller ones and

the evolution of grains towards stable six-sided configurations and preferred configurations

of triple points at 120�.
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(a) t=1h (b) t=3h (c) t=5h (d) t=10h

Figure 4.10: Results of the simulated grain structures as a function of time for the annealing
process at 1200�C (deterministic model).

The area of each grain at a given time step is directly calculated from the microstructure

by counting the number of cells within a grain. The grain size D is obtained from the

area by assuming a circular shape for all grains, therefore A = D2π/4. The average grain

diameter at a given time step is then obtained by averaging over all the grains in the

system. The results are shown in the figure 4.11.

In the chapter 3.5 ”Experimental Results” the grain growth kinetics of the austenitic

stainless steel 304L for all four simulated solution annealing temperatures (900�C, 1000�C,

1100�C, 1200�C) were described in detail. Evaluated MatCalc� results for precipitation

kinetics proved a strong impeding of grain growth for the annealing cycle at 900�C, which

can be seen in the figure 4.11a. The simulation parameters incorporating precipitation

kinetics, defined in the deterministic CA model, predicted a good correspondence of av-

erage grain sizes between simulation and experiments for 900�C. In the beginning of the

simulation the grains with D < Dlim are growing until the limiting grain size (Dlim) is

reached. All other grains D > Dlim are not growing until the limiting grain size changes,

due to the defined precipitation kinetics. The end of solution annealing cycle defined the

limiting grain size as 22.9 μm, dp of 110 μm and f of 0.32 %, which results in strong

impeding of normal grain growth, depicted in figure 4.11a.

According to the MatCalc� results, for annealing temperatures 1000�C, 1100�C and

1200�C all precipitations dissolved very quickly. Therefore, without any impeding of

grain boundaries, the grain growth depends solely on the temperature dependent mobil-

ity M defined in CA model. An appropriate definition of mobilities resulted in a good

correspondence of normal grain growth, depicted in figures 4.11 b-d.
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(a) 900◦C (b) 1000◦C

(c) 1100◦C (d) 1200◦C

Figure 4.11: Comparison of experimental and simulated results for solution annealing process
at different annealing temperatures (deterministic model).

The grain size distributions are presented in figures 4.12, 4.13 and 4.14 for the solution

annealing temperatures 1000�C, 1100�C and 1200�C at different annealing time steps. Due

to the strong impeding of grain growth at 900�C, the grain size distributions of different

time steps were not changing significantly and therefore not presented. Although the

average grain size corresponded well with simulation results, the grain size distribution

showed some offset comparing to the experimental results. Therefore, the topological

rearrangements play an important role in the evolution of grain structures where the rate

of change of grain size of an individual grain rather depends on the topological class then

just on the curvature.
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(a) reference specimen (b) t = 4 h (c) t = 8 h

(d) t = 12 h (e) t = 24 h (f) t = 40 h

Figure 4.12: Grain size distributions (deterministic model) for normal grain growth at 1000�C
and annealing times of (a) 0, (b) 4, (c) 8, (d) 12, (e) 24 and (f) 40 hours.

(a) reference specimen (b) t = 4 h (c) t = 8 h

(d) t = 16 h (e) t = 20 h (f) t = 24 h

Figure 4.13: Grain size distributions (deterministic model) for normal grain growth at 1100�C
and annealing times of (a) 0, (b) 4, (c) 8, (d) 16, (e) 20 and (f) 24 hours.
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(a) reference specimen (b) t = 20 min (c) t = 40 min

(d) t = 60 min (e) t = 300 min (f) t = 600 min

Figure 4.14: Grain size distributions (deterministic model) for normal grain growth at 1200�C
and annealing times of (a) 0, (b) 20, (c) 40, (d) 60, (e) 300 and (f) 600 minutes.

According to the simulation results of Raghavan [77, 78] and Lan [80] explained in chap-

ter 2 entitled ”Fundamentals”, the mobility of grain boundaries is temperature dependent

and is often found to obey the Arrhenius type relationship, discussed in the chapter 3.6

entitled ”Evaluation of the Grain Growth Kinetics”. The regressed experimental results

defined an activation energy for normal grain growth of 62.3 kJ/mol.

For the regression of the grain growth mobility in the deterministic model, a constant

grain boundary energy, γ, of 0.5 [J/m2] was defined as in [61]. Depending on the used

grain structure resolution, the mobility is related to the atom-scale thermally activated

process which controls the boundary migration [88] and was fitted as

M = M0exp

[
− Qact

RgasT

]
= 0.000136exp

[
− 83338

RgasT

]
(4.13)

presented in figure 4.15.

The dependance of grain growth mobility on annealing temperature (figure 4.15) led

to the evaluation of activation energy for normal grain growth (Qact=83.3 kJ/mol).
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Figure 4.15: Simulation results and corresponding values of equation 4.13 for normal grain
growth in the deterministic model.

The calculation of the grain boundary curvature bases on the number of cells describing

the topology of grains. So, a grain described by high number of cells possess a low grain

boundary curvature, thus a lower grain boundary velocity or mobility. Therefore, the

description of grain growth kinetics, e.g. activation energy, depends on the defined grain

structure resolution and the space-time relation of modelling parameters.

Defining the Burgers vector of b = 2.5 · 10−10 m [103] and using the evaluated value

for the activation energy of normal grain growth (Qact = 83.3 kJ/mol), the boundary

diffusion term δgbDb can be derived as

δgbDb =
M0kboltzT

b
(4.14)

The defined δgbDb-values for each temperature of 8.8·10−15 m3/s, 9.6·10−15 m3/s, 1.0·10−14

m3/s and 1.1 · 10−14 m3/s for 900�C, 1000�C, 1100�C and 1200�C corresponded to the

values presented in other publications [81], explained in chapter 2.3.4 entitled ”Cellular

Automaton Method”.
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4.1.5 Modelling Results for Abnormal Grain Growth

The procedure employed in the simulation of abnormal grain coarsening was nearly iden-

tical to those developed in modelling of normal grain growth, presented in chapter 4.1.4.

The main difference was that a larger domain area of 182399 μm2, a grid size of 1.42 μm

and 90300 (350x258) cells were used, which was necessary for an accurate description of

evaluated experimental results. Therefore a fraction of candidate grains with a higher

mobility was defined for incorporating of an advanced grain boundary velocity describing

abnormal grain growth.

Especially for high grain structure resolutions, the deterministic model requires long cal-

culation times. Therefore, the calculations of abnormal grain growth were just performed

until the first occurrence of abnormal grains in the grain structure. The simulations aimed

for corresponding average grain sizes of normal grains, abnormal grains and fraction of ab-

normal grains for the last annealing time step. The last simulation time step was defined

as the first annealing time step where abnormal grain growth occurred. The simulations

were performed at 1000�C, 1100�C and 1200�C for 43200 seconds, 28800 seconds and 7200

seconds.

For the grain structures developed, similar features were observed as for simulation of

normal grain growth in the deterministic model, explained in chapter 4.1.4. The can-

didate grains are growing at the cost of smaller grains but posses more than six sided

topologies and preferred configuration of 120�. In the figure 4.16 the initial, i.e. starting,

grain structure and the grain structure at the first occurrence of abnormal grains are

demonstrated.

(a) reference specimen (b) t = 120 min

Figure 4.16: Simulation of abnormal grain growth: grain structures for 1200�C at (a) 0 and
(b) 120 minutes (deterministic model).
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Due to different space-time relation, the used simulation parameters were different from

that simulation parameters evaluated in the simulation of normal grain growth (chapter

4.1.4). The mobility of grain boundaries is temperature dependent and is different for

normal and abnormal grain growth, presented in equations 4.15 and 4.16, where a constant

grain boundary energy (γ) of 0.5 [J/m2] was defined [103]. The results proved the different

values of activation energies for grain growth between normal and abnormal grain growth

process. The mobility is related to the atom-scale thermally activated process which

controls the boundary migration [88] and is described for normal grain growth as

M = M0exp

[
− Qact

RgasT

]
= 0.0048exp

[
− 75400

RgasT

]
(4.15)

and for abnormal grain growth as

M = M0exp

[
− Qact

RgasT

]
= 0.0048exp

[
− 33700

RgasT

]
(4.16)

1000 1050 1100 1150 1200
0

20

40

60

80

100

1500

2000

2500

3000

3500

4000

m
ob

ili
ty

 [m
/(

M
P

a*
s)

*1
0-7

]

���������� 	�
����	��� ����

� ����� ����������
� ����� ��
��	���

� ����� ����������
� ����� ��
��	���

Figure 4.17: Illustration of the results of mobility vs. annealing temperature for the deter-
ministic model: normal and abnormal grain growth.

The simulated grain structure helped for the definition of the fractions and mobilities of

both normal and abnormal grain growth phenomena. The fraction of abnormal grains
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was defined to be 0.1 % and equal for all annealing temperatures simulated. Therefore,

only a very low fraction of grain boundaries grows with an approximately 35-times higher

mobility, resulting in abnormal grain growth, which is depicted in figure 4.17.

4.1.6 Modelling Results for Normal Grain Growth in the Pres-

ence of Deformation Energy

In order to validate the stored deformation energy of the deterministic model, one-hit up-

setting tests were carried out on the computer-controlled dynamic system Gleeble TM 3800

[104–106]. Samples employed were cylindrical of 10 mm diameter and 12 mm length. Be-

fore compression, all specimen were homogenized for 20 minutes at 1200�C and air cooled

afterwards, resulting in an initial grain size of 21.3 μm. The specimens were heated up to

the testing temperature, held at this temperature until stabilization and then compressed.

Hot deformation was performed at Tdef = 750, a strain rate of 1.0s−1 and ϕglobal of 0.8,

resulting in a deformed un-recrystallized grain structure. After deformation, the samples

were solution annealed at 1000�C for 1h. The short annealing times were chosen due to

the strong recovery of deformation energy at 1000�C.

Afterwards, EBSD measurements were carried out and CD value, MCD value, Maver

value were evaluated. In the chapter 4.1.1.2 entitled ”About the Consideration of De-

formation Energy” all three methods are described. All evaluated deformation values

showed an approximately five times higher stored energy term in the deformed specimen

compared to the homogenized un-deformed specimen, which is presented in the table 4.2.

specimen CD value MCD value Maver value

un-deformed 1.22 0.87 0.37

deformed 6.55 5.30 1.74
ratio (deformed/undeformed) 5.36 6.09 4.7

Table 4.2: CD, MCD and Maver values obtained from EBSD data of undeformed and deformed
304L steel.

Based on a literature survey [56, 107–110], deformation can lead to an accelerated grain

growth. In comparison to homogenized un-deformed samples, the evaluated misorien-

tation values described in average an approximately five times higher grain boundary

pressure of deformed samples. Therefore, it is assumed that in average all cells of the sim-
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ulation area posses the same reinforcements of grain boundary pressure when deformed.

Due to the irregularity of EBSD scanning (e.g. measurement errors due to high local

deformations), the local evaluation of deformation energy could not be performed, thus

a global application of the EBSD methods (table 4.2) was used for the simulation proce-

dure. For the recovery of deformation energy during the solution annealing process, it is

assumed that the influence of deformation energy declines exponentially until the end of

annealing time.

By using the same simulation parameters (mobility, resolution) of normal grain growth

(chapter 4.1.4), the simulation without considering the deformation energy results in

a lower average grain size. Therefore, considering the Maver-value of 1.74 of deformed

specimens, which is 4.7-times higher than the Maver-value of un-deformed specimens and

incorporating an exponential declination of f(Δρ) from initially 4.7 to 1 at 60 minutes, de-

fined in equation 4.1, was performed. The simulation results corresponded well to results

obtained by experiments, depicted in figure 4.18.

Figure 4.18: Prediction of normal grain growth for deformed and un-deformed specimens
during the annealing process at 1000�C and for 60 minutes (deterministic model).

The results also show that starting with an elongated initial grain size of 13 μm, the

average grain size of deformed specimen led to almost circle shaped grains of 25 μm after
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the annealing process. The evolution of the topology of simulated grain structures is

depicted in figure 4.19.

(a) reference specimen (b) t = 20 min (c) t = 60 min

Figure 4.19: Grain structure development under consideration of deformation energy at 1000◦C
and annealing times of (a) 0, (b) 20 and (c) 60 minutes.

4.2 Probabilistic Model

While deterministic cellular automata directly perform continuous change of a cell and

corresponding cell neighbors in accordance with the underlying rate equations, probabilis-

tic cellular automata calculate the switching (transition) probability of each lattice point.

Switches are in cellular automata algorithm performed as a function of the previous state

and the state of neighboring lattice points.

4.2.1 Modelling Setup

In general, the space is divided into a regular network of cells with periodic boundary

conditions. Every lattice cell represents one part of a grain and is marked with a grain

identification number. Lattice cells which are adjacent to neighboring cells with different

grain identifications are regarded as being part of the grain boundary, while the cells

surrounded by cells with the same grain identification are in the grain interior. In or-

der to make the boundary move in any direction, Moore´s neighborhood configuration

is considered where both the nearest and next-nearest neighbors are used. One cellular

automaton step (CAS) corresponds to one loop of re-identification attempt at defined

transition probability where the cell state of each step is updated simultaneously [88, 89].
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The calculation of the transition probability Ptransition is performed as

Ptransition = Pa

{
PtempPΔρ

}
(4.17)

where Pa is the probability influenced by the dissolution of the precipitates and Ptemp

is the probability influenced solely by the temperature dependence of grain growth at a

defined grain resolution of the CA model.

The stored deformation energy is an additional term which accelerates the grain boundary

movement. In the probabilistic model its influence is described as

PΔρ = f
{
Δρ
}

(≥ 1) (4.18)

where f(Δρ) is a function describing stored energy as a ratio of CD, MCD or Maver values

between deformed and un-deformed specimens. f(Δρ) is defined to be equal or greater

than 1.

The impact of the temperature on grain growth is described by:

Ptemp = Atempexp

(
−Qtemp

RgasT

)
(4.19)

where Qtemp is the activation energy for bulk diffusion at a given grain structure resolution

and Atemp is a constant [72].

The dissolving of the precipitations during the grain growth is assumed to follow

Pa = 1 − exp
(−Cat

)
(4.20)

corresponding to the influence that precipitations have on the grain growth mechanism

where Pa has a value between 0 and 1, depicted schematically in figure 4.20. Ca is a

temperature dependent constant. MatCalc� calculations were used for the definition of

precipitation kinetics, i.e. simulation steps at which the dissolution of precipitations starts

and ends.
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Figure 4.20: A schematic showing the definition of Pa for the probabilistic model.

4.2.2 Shrinkage of a Circular Grain in a Matrix

For the validation of the model, a simple case of circular grain embedded in a matrix

(100x71 cells) was used to validate the presented probabilistic cellular automaton model.

The simulation results are depicted in the figure 4.21.

(a) t=5 (b) t=1000 (c) t=2000 (d) t=2500

Figure 4.21: Illustration of the simulation of a circular grain versus simulation time for the
probabilistic model.

The evolution of a circular grain with a reorientation probability of 50 % showed that the

circle maintained in a circle shape with some fluctuations, shrinking towards the center

under its own curvature. While shrinking, the total energy of the system is decreasing
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which proves that the grain boundary migration couples both curvature and energy. The

reason for the fluctuation of a grain boundary is due to statistical perturbations.

4.2.3 Effect of Triple Junctions

The effect of a triple junction is an important part of grain growth. Two inclined grain

boundaries and a connecting segment parallel to the free surfaces were chosen as starting

configurations depicted in the figure 4.22. They will be called open-H and slant-H after

distorted letters H [64].

(a) (b)

Figure 4.22: Initial structure to analyze the evolution of triple junctions a.) open-H and b.)
slant-H configurations. The grid size contains 100x78 cells.

This method provided the opportunity to study details of grain shape changes accord-

ing to neighborhood rules in the probabilistic cellular automata model. The reorienta-

tion occurred with the probability of 50 % in order to prevent non-physical anisotropic

growth reflecting the symmetry of the grid. The grid size is 100x78 cells and no periodic

boundaries were used. In every time step the entire grid of automata cells was updated

simultaneously.

Simulation results of morphological changes are illustrated in figure 4.23 and 4.24 for the

chosen open-H and slant-H starting configurations, respectively. The migration began

at free surfaces where the straight boundary segments started to curve. Simultaneously,

the triple junctions start to move to equilibrate the dihedral angles between the bound-

ary planes. When curved segments are established they move towards their centers of

curvature.
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(a) t=2000 (b) t=5500 (c) t=10000 (d) t=13000

Figure 4.23: Development of microstructure for open-H configurations vs. simulation time.

(a) t=2000 (b) t=5500 (c) t=10000 (d) t=13000

Figure 4.24: Development of microstructure for slant-H configurations vs. simulation time.

This is an elementary topological event happening during the grain growth in polycrys-

talline materials, which comes out naturally in the used method.

4.2.4 Effect of Lattice Cell Number on Grain Growth

The CA approach has limitations, especially with regard to the length and time scale.

The cellular automaton model strictly depends on the resolution of the microstructure,

especially with models based on probabilistic transition rules (figure 4.25).

A high resolution of the grain structure led to very long simulation times (table 4.3)

but a low resolution of grain structure led to inaccurate simulation results. Especially for

high transformation probabilities, i.e. high annealing temperatures, a low grain structure

resolution led to different grain structure statistics for the same simulation parameters.
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(a)

Figure 4.25: The impact of the resolution of grain structure on grain growth (probabilistic
model). Average grain size vs. CAS.

dimensions number of cells Δtsimulation[−]

350x258 90300 1

500x369 184500 4

600x442 265200 9

700x500 350000 20

750x550 412500 31

834x615 512910 48

Table 4.3: Resolution of grain structure vs. simulation time (probabilistic model). Δtsimulation

is the normalized simulation time. For the comparison of the simulation times, the lowest
calculated grain structure was defined arbitrary to have a simulation time of 1.

Due to the convergence of simulation results with higher grain structure resolutions and

for an accurate simulation results of developing grain structures, the dimension 834x615

(= 512910 cells) was chosen to resolve the grain structure of further simulation procedures

of normal grain growth.
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4.2.5 Simulation Results for Normal Grain Growth in the Pres-

ence of Second Phase Particles

In order to validate the influence of precipitates for the probabilistic CA model, starting

at 900�C for 5h, a heating up with 10�C/h and a final solution annealing at 1000�C for

5h was experimentally conducted and compared to the simulation results. Calculation of

precipitations kinetics by MatCalc� was used for the evaluation of simulation parameters

in the probabilistic CA model. The probabilistic model needs a definition of time step

where dissolution of second phase particles is started and ends, which is illustrated in the

equation 4.21. For the comparison of probabilistic and deterministic model, the figure

4.26 also depicts the developing limiting grain size defined by Zener, which was used for

the description of precipitation kinetics in the deterministic model.

Figure 4.26: Grain growth in the presence of second phase particles: Comparison of proba-
bilistic and deterministic model (limiting grain size) with experimental results.

The transition probability Pa describing the influence of precipitates in the probabilistic

model (equation 4.21) was derived to be

Pa = 1 − exp
(
−2.4 · 10−6t

)
(4.21)

The evaluated Pa development with simulation time influences strongly the total tran-

sition probability Ptransition of the grain growth process. Especially in the beginning of
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the dissolution of precipitates, large differences between simulation and experimentally

predicted average grain sizes were observed (figure 4.26). Therefore, it is stated that

the influence of precipitates is better described by limiting grain size of the deterministic

model.

4.2.6 Modelling Results for Normal Grain Growth

Considering the effect of lattice cell number on cell switching, discussed in chapter 4.2.4,

the simulation of normal grain growth was performed at a grain structure resolution of

512910 (834x615) cells which represents an area of 650000 μm2 and a grid size of 0.433

μm. The annealing experiments which should be simulated were already explained in

chapter 3.5. Simulations of un-deformed specimens were performed at 900�C, 1000�C,

1100�C and 1200�C for up to 144000 seconds (40h) of annealing time. For the analysis of

the simulation results only normal grains were considered.

The grains in the starting grain structure were relatively uniform in size with an av-

erage value of about 10.6 μm, but there were clusters of fine grains in some regions, as

depicted in figure 4.27.

(a) initial micrograph (b) implemented grain structure

Figure 4.27: Micrograph of the initial grain structure (a) and (b) implemented initial grain
structure for the modelling of normal grain growth in the probabilistic model.

The characteristic of grain growth strongly depends on the annealing temperature. The

developing grain structures from the probabilistic CA model for normal grain coarsening

are exemplarily shown in figure 4.28 for 1200�C. The increase of the grain size, the growth
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of larger grains at the cost of smaller ones and the evolution of grains towards stable six

sided configurations were the main topological results of the probabilistic CA model.

It can be observed from the simulated grain structures that curved boundaries tend to

form a straight line with increasing computational time, which reflects the curvature as

a driving force for migration. The results showed a tendency to form 120� dihedral angle

between grain boundaries and the characteristics of topological requirement of the grain

side distribution, e.g. six side neighborhood [31, 36, 111].

(a) t = 1 h (b) t = 3 h

(c) t = 5 h (d) t = 10 h

Figure 4.28: Simulated grain structures of normal grain growth for the annealing process at
1200�C for annealing time steps of (a) 1, (b) 3, (c) 5 and (d) 10 hours (probabilistic model).

The mean grain diameter at a given time step was then obtained by averaging over all

grains in the system, assuming that each grain had a circular shape. The evolution of the

grain size is depicted in the figure 4.29.
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Comparing the results at 900�C, the simulation results of the deterministic model for

normal grain growth (chapter 4.1.4) showed a strong impeding of grain growth by precip-

itations. The probabilistic model is based on the dissolution of precipitations. At 900�C,

the description of grain growth impeding, as explained in the deterministic model, is not

possible for the probabilistic model, yet. In contrast to that, a good correspondence of

average grain size could be predicted for long annealing times at 900�C.

For higher annealing temperatures, an appropriate definition of transition probabilities

resulted in a good correspondence between simulated and measured average grain size,

presented in figure 4.29. The grain size distributions are discussed in the chapters 4.2.8

and 4.2.9.
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(c) 1100◦C
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Figure 4.29: Normal grain growth as a function of annealing times at (a) 900�C, (b) 1000�C,
(c) 1100�C and 1200�C: comparison of experimental and simulation results. Both probabilistic
and deterministic simulations are plotted.
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Temperature is the most important parameter affecting the behavior of the grain coars-

ening process. The basic process during the migration of a grain boundary is the transfer

of atoms to and from the grains which are adjacent to the grain boundary. The mecha-

nism of grain boundary migration depends on several parameters including the boundary

structure, temperature and point defects such as solutes and vacancies. The boundary

structure and point defects are linked to the material’s internal conditions while the tem-

perature is related to the external condition. In general, the higher the temperature, the

higher the frequency that the boundary energy barrier must be overcome, and thus the

higher the boundary velocity.

The temperature dependence for normal grain growth was regressed as

Ptemp = 17490.8 ∗ e
− 125570

RgasT (4.22)

and depicted in figure 4.30.
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Figure 4.30: Ptemp vs. annealing temperature for normal grain growth.
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4.2.7 Simulation Results for Normal Grain Growth in the Pres-

ence of Deformation Energy

For considering the deformation energy, as already applied for the validation of the deter-

ministic model (chapter 4.1.6), the same one-hit upsetting tests were carried out, followed

by solution annealing at 1000�C for 1h.

The deformation energy was evaluated by EBSD measurements followed by the calcula-

tion of corresponding CD, MCD, and Maver values, presented already in chapter 4.2 for

the deterministic model. By using the Maver values, an approximately 4.7 times higher

stored energy term of the deformed specimen compared to the homogenized un-deformed

specimen could be defined. Therefore, the input of deformation energy (PΔρ) comprised

a 4.7 times higher transition probability at least in the beginning of the simulation. Due

to the decrease of the stored deformation energy during the solution annealing process, it

was assumed that the influence of deformation energy declined exponentially.

Starting from an elongated initial grain size of 13 μm (figure 4.31a), the average grain size

of deformed specimen led to a more exquiaxed average grain size of 25 μm after anneal-

ing at 1000�C for 1h. Here, the same simulation parameters (grain structure resolution,

description of Ptemp) evaluated for normal grain growth (chapter 4.2.6) were used. The

developing grain structures of the simulation are depicted in figure 4.31.

(a) 0 min (b) 60 min

Figure 4.31: Simulation of normal grain growth in the presence of deformation energy: grain
structure development for (a) 0 and (b) 60 minutes.
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Simulation without considering deformation energy resulted in a lower average grain size

then evaluated in experiments (figure 4.32). Incorporating an exponential declination of

f(Δρ) from 4.7 at 0 minutes to 1 at 60 minutes, which is defined in equation 4.17, led to

the simulation results depicted in figure 4.32.

Figure 4.32: Prediction of normal grain growth for deformed and un-deformed specimens
during the annealing process at 1000�C and 60 minutes in the probabilistic model.

4.2.8 Modelling Results for Abnormal Grain Growth

The procedure employed in the simulation of abnormal grain growth was nearly identi-

cal to that of normal grain growth, described in the chapter 4.2.6. The main difference

was that a lower number of cells, and due to the experimental results evaluated, a larger

domain area was needed. Additionally, three different simulation parameters defining ab-

normal and normal grain growth and low simulation times were required.

The grain structure mapped on a two-dimensional lattice contained 71100 cells (300x237),

a grid size of 3.9 μm and a calculation domain of 1171x925 μm2. It was assumed that the

grain boundary energy was distributed heterogeneously, where a grain boundary between

normal and abnormal grain had different grain boundary energy or grain boundary mo-

bility.

In order to reflect abnormal grain coarsening, from the beginning on of the simulation, a

selected fraction of abnormal grains got a higher transition probability reflecting higher

grain boundary mobility compared to the fraction of normal grains with lower grain



4 Cellular Automata Modelling 76

boundary mobility. The prediction of grain structure aimed for an experimentally eval-

uated average grain size of normal and abnormal grains, and a corresponding fraction

of abnormal grains. The modelling procedure allows a mixed grain structure evolution

where all matrix grains are consumed by the abnormal grains, shown exemplarily in the

figure 4.33 for the annealing process at 1200�C.

(a) t = 1 h (b) t = 3 h

(c) t = 5 h (d) t = 10 h

Figure 4.33: Simulated microstructure of normal and abnormal grain growth for the annealing
process at 1200�C (probabilistic model).

The results of annealing experiments and simulation for temperatures between 1000�C

and 1200�C showed a good correspondence of average grain sizes for normal and abnormal

grains (figure 4.34).
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(a) Normal grain growth at different temperatures (b) Abnormal grain growth at 1000◦C

(c) Abnormal grain growth at 1100◦C (d) Abnormal grain growth at 1200◦C

Figure 4.34: Comparison between simulation and experiments for the normal and abnormal
grain growth (average grain sizes) at different annealing temperatures. (a) Normal grain growth
for different annealing temperatures and abnormal grain sizes at (b) 1000�C, (c) 1100�C and (d)
1200�C (probabilistic model).

Simulation results of the grain size distributions obtained at 1000�C, 1100�C and 1200�C,

depicted in figures 4.35, 4.36 and 4.37, illustrate a deviation when compared to the ex-

perimental results, at least for long annealing times. The probabilistic cellular automata

set-up depends strongly on the neighborhood configuration. At the beginning of the sim-

ulation the neighborhood switching frequency is higher than at the end of the simulation,

due to the number of different orientations, i.e. grains, present. Thus, the small grains are

vanishing very quickly in the beginning of the simulation resulting in an overestimation

of the transition probability.
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(a) reference specimen (b) t = 4 h (c) t = 8 h

(d) t = 12 h (e) t = 24 h (f) t = 40 h

Figure 4.35: Grain size distribution for the annealing process at 1000◦C and annealing times
of (a) 0, (b) 4, (c) 8, (d) 12, (e) 24 and (f) 40 hours: simulation vs. experiments.

(a) reference specimen (b) t = 4 h (c) t = 8 h

(d) t = 16 h (e) t = 20 h (f) t = 24 h

Figure 4.36: Grain size distribution for the annealing process at 1100◦C and annealing times
of (a) 0, (b) 4, (c) 8, (d) 16, (e) 20 and (f) 24 hours: simulation vs. experiments.
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(a) reference specimen (b) t = 20 min (c) t = 40 min

(d) t = 60 min (e) t = 300 min (f) t = 600 min

Figure 4.37: Grain size distribution for the annealing process at 1200◦C and annealing times of
(a) 0, (b) 20, (c) 40, (d) 60, (e) 300 and (f) 600 minutes: simulation vs. experiments (probabilistic
model).

Grain sizes separating normal and abnormal grains, and the fractions of abnormal grains

for different solution annealing temperatures, namely at 1000�C, 1100�C and 1200�C, and

times are depicted in the figure 4.38.

In contrast to the simulation results of normal and abnormal grain sizes (figure 4.34),

the fraction of abnormal grains did not correspond to the evaluated experimental results.

This can be explained by the fact that the simulation procedure aimed for an appropriate

average normal grain size, average abnormal grain size and fraction of abnormal grains

only for the last time step of experimental results at congruent annealing temperature.

The simulation results for grain size separating normal and abnormal grains corresponded

to the experimental results only in the beginning of the simulation, which can be explained

by the deviation of grain size distributions and the fraction of abnormal grains.
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(a) Grain size separating normal and abnormal
grains at 1000◦C

(b) Grain size separating normal and abnormal
grains at 1100◦C

(c) Grain size separating normal and abnormal
grains at 1200◦C

(d) Fraction of abnormal grains at 1000◦C

(e) Fraction of abnormal grains at 1100◦C (f) Fraction of abnormal grains at 1200◦C

Figure 4.38: Comparison of simulation and experiments for grain sizes separating normal and
abnormal grains and fraction of abnormal grains at different annealing temperatures. (a) Grain
size separating normal and abnormal grains at 1000◦C, (b) grain size separating normal and
abnormal grains at 1100◦C, (c) grain size separating normal and abnormal grains at 1200◦C,
(d) fraction of abnormal grains at 1000◦C, (e) fraction of abnormal grains at 1100◦C and (f)
fraction of abnormal grains at 1200◦C .
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The grain structure evolution with different transition probabilities for normal (PNGG
temp )

and abnormal (PAGG
temp) grain growth (table 4.4) depends strongly on the difference between

PNGG
temp and PAGG

temp . If the transition probabilities are equal, grain structure solely reflects

normal grain growth and no abnormal grain growth can be observed. If the transition

probabilities are not equal, then abnormal grain growth can be observed. The larger the

difference between PNGG
temp and PAGG

temp , the sooner the developing abnormal grains consume

the primary normal grains. The boundaries between the abnormal grains and primary

normal grains are not in balance, where cells of normal grains have a higher chance to

become part of abnormal grains than vice versa.

temperature [�C] PNGG
temp [%] PAGG

temp [%] fraction of PAGG
temp [%]

1000 04.20 06.20 00.07

1100 17.50 21.50 00.09

1200 81.00 91.00 00.05

Table 4.4: The definition of the simulation parameters used for the simulation of abnormal
grain growth at different annealing temperatures. PNGG

temp and PAGG
temp stands for the different

transition probabilities. Fraction defines the percentage of grains with the transition probability
PAGG

temp .

The fraction of abnormal grains was approximately 0.1 % and almost equal for all an-

nealing temperatures simulated. Therefore, only a very low fraction (0.1 %) of grain

boundaries had a higher mobility for grain growth, resulting in abnormal grain growth.

The total transition probability was fitted for the normal grain growth and defined as

PNGG
temp = 873374exp

(
−171032

RgasT

)
(4.23)

and for the abnormal grain growth as

PAGG
temp = 1036253exp

(
−171032

RgasT

)
(4.24)

resulting in a a 20 % higher grain boundary mobility of grain boundaries belonging to

abnormal grains (figure 4.39).
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Figure 4.39: Definition of PNGG
temp (black rectangle) and PAGG

temp (red circles) at corresponding
annealing temperatures describing normal and abnormal grain growth.

4.2.9 Modelling Results for Grain Sizes Separating Normal and

Abnormal Grains

If the normal grain growth is solely influenced by mobility of grain boundary and cur-

vature, then the probabilistic model initially defines one transition probability for the

whole annealing process simulation and aims for an equivalent average grain size at corre-

sponding annealing time, which is then compared to the results evaluated by experiments.

Due to the nonconformity of experiments and simulations for the prediction of separat-

ing grain size between normal and abnormal grains (figure 4.38), a so called 2-parameter

approach was applied. The 2-parameters approach defines two different transition proba-

bilities in the beginning of the simulation and aimed for the adjustment of normal grain

size distributions at corresponding annealing time steps, depicted in table 4.5.
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temperature [�C] P1[%] P2[%] fraction of P2 [%]

1000 100 5.0 90

1100 100 17.0 90

1200 90 2.5 65

Table 4.5: The definition of the simulation parameters used for the 2-parameter approach at
different annealing temperatures. P1 and P2 stands for two different transition probabilities.
Fraction defines the percentage of grains using the transition probability P2.

In contrast to low annealing temperatures, the 2-parameters approach could describe nor-

mal grain growth very accurately at 1200�C due to the high mobility of grain boundaries.

For the slow grain boundary migration at low annealing temperatures, a multi-parameters

approach would be needed which was not performed in this work. The simulation results

of grain size distributions and developing grain structures at 1200�C and different time

steps are shown in the figures 4.40 and 4.41.

(a) reference specimen (b) t = 20 min (c) t = 40 min

(d) t = 60 min (e) t = 80 min (f) t = 120 min

Figure 4.40: Illustration of the simulation results of grain size distributions of the annealing
process at 1200�C evaluated by a probabilistic 2-parameters approach: simulation vs. experi-
ments for the annealing times of (a) 0, (b) 20, (c) 40, (d) 60, (e) 80, (f) 120 minutes.
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(a) t = 1 h (b) t = 3 h

(c) t = 5 h (d) t = 10 h

Figure 4.41: Results of the 2-parameters approach for the simulation of normal grain growth
for the annealing process at 1200�C at (a) 1h, (b) 3h, (c) 5 and (d) 10h of solution annealing
time.

Two parameters (i.e. transition probabilities) were defined and the grain size distributions

in the beginning of the annealing procedure were adjusted to the experimental results.

Exemplarily, for the simulation at 1200�C the first abnormal grains occurred after 120

minutes of annealing time (see chapter 3.5). It was assumed that the simulated results

of grain size distributions after 20 minutes, 40 minutes, 60 minutes and 80 minutes only

describe normal grain growth (figure 4.40). Therefore, the simulation parameters used for

low solution annealing times describing normal grain growth, might also be the right sim-

ulation parameters for description of normal grain growth at long annealing times where

abnormal grains occurred.

The adjustment of grain size distributions for normal grain growth led to the evalua-
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tion of the largest grain size in the grain structure and thus the grain size separating

normal and abnormal grains. The evaluated modified separating grain sizes and corre-

sponding results for upgraded average normal grain sizes, average abnormal grain sizes

and the fractions of abnormal grains are shown in the figure 4.42.

A lower grain size separating normal and abnormal grains resulted in a lower average

normal and abnormal grain size whereas the fraction of abnormal grains was increasing

steeper compared to the results obtained by experiments.
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Figure 4.42: Results for the evaluation of separating grain size for solution annealing at
1200�C by 2-parameter approach: simulation vs. experiments. (a) Grain size separating normal
and abnormal grains, (b) normal grain growth, (c) abnormal grain growth and (d) fraction of
abnormal grains.
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The prediction of separating grain size at 1000�C and 1100�C could not be performed

by using the 2-parameters approach, where the results of the adjustment of grain size

distributions are depicted in figure 4.43 and figure 4.44. In contrast to the grain structure

results of 1200�C explained above, the first abnormal grains occurred after 8 hours of

annealing, which led to very long simulation times. Comparing the results of grain size

distribution at 1100�C and 4h, a huge deviation between simulation and experimental re-

sults can be stated. A 2-parameters approach is therefore not sufficient to describe grain

size distributions at 1100�C or 1000�C.

(a) reference specimen (b) t = 4 h (c) t = 8 h

Figure 4.43: 2-parameters approach for the description of the grain size distribution of the
annealing process at 1100�C: simulation vs. experiments for the annealing times of (a) 0, (b) 4
and (c) 8 hours.

(a) reference specimen (b) t = 4 h (c) t = 12 h

Figure 4.44: 2-parameters approach for the description of the grain size distribution of the
annealing process at 1000�C: simulation vs. experiments for the annealing times of (a) 0, (b) 4
and (c) 12 hours.
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4.3 Discussion of Modelling Results

A deterministic cellular automata model for grain growth with a precise estimation of

curvature has been developed. The model is able to simulate experimentally observed

topological arrangements during grain growth. Therefore, several expected features such

as growth of larger grains at the expense of smaller ones, evolution of grain structure

towards stable six-sided grains, curvature driven switching of neighboring grains and

shrinkage of three and four-sided grains are the main topological characteristics of the

model. The results proved the stability of six-sided grains, although the 120� rule in the

case of triple junctions is not implemented.

The grain growth kinetics predicted by the deterministic CA model corresponded well to

the evaluated experimental results, even for a deformed and thus elongated grain struc-

ture. Incorporating deformation energy in grain growth simulation, the elongated grain

structure resulted in an exquiaxed grain structure. A close observation exhibited that the

aspect ratio decreases with annealing time. It is also evident that the definition of limit-

ing grain size during simulation enabled the prediction of grain growth in the presence of

second phase particles.

Due to the complex evaluation of the grain boundary curvature, the deterministic model

requires long simulation times. In order to reduce the simulation time, a lower cell resolu-

tion was defined, thus a low calculation domain. Therefore, simulation of abnormal grain

growth was difficult to be processed. Even though, the simulation results showed that

a low fraction of grain boundaries (0.1 %) move with an approximately 35-times higher

mobility, resulting in abnormal grain growth. Nevertheless, the present deterministic CA

model provides a robust and comprehensive method to describe the grain growth behavior

in polycrystalline materials.

In the presented probabilistic CA model, every cell on the boundary has a probability

to change its state according to the underlying transition rules. For a higher probability

there is a higher frequency for cells on the grain boundary to change its state. The grain

structure itself influences the grain growth kinetics by definition of Moore´s neighborhood,

where the grain boundary movement is possible in any direction. Therefore, small grains

grow faster than large grains, and the growth of grains is accommodated by shrinkage

and disappearance of other grains. The reduction in grain boundary energy that accom-

panies the shrinkage in grain boundary area proves that this model has coupled the grain
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boundary migration driven by both curvature and energy.

The major difficulty of the presented probabilistic CA model is the length-time scale

combination. The total transition probability in the system can not be above the value

one. Therefore, for certain lattice cell resolutions, the transition probability was chosen

in that way that the highest probability represented the development of the largest av-

erage grain size. In the present work, considering transition probabilities a relationship

based on experimental work and simulation results was established. The grain size in real

materials is in μm, therefore the cells are representing only grains. For the definition of

lower length scale factors, such as second phase particles, only rate equations were used.

Exemplarily, in order to represent the influence of second phase particles on grain growth,

an impeding factor that describes the transition probability considering the dissolution

of second phase particles Pa was introduced and experimentally validated. Additionally,

introducing two different switching probabilities, the average grain sizes and fractions of

abnormal grown grains (approximately 0.1 %) could be predicted.

The probabilistic CA model does not end in the exact same results when repeated, but

it indeed outputs close results at the same conditions. Over a statistically significant

number of trials, it was obtained that the standard deviation of the average grain size

was lower than 2 %. This proves that the model is reliable and accurate.

Incorporating EBSD measurements into both CA models allows to consider the influ-

ence of stored deformation energy on grain growth. Assuming that on average all cells of

simulation area posses the same increase of grain boundary pressure when deformed, the

incorporation of deformation parameters which represent the whole grain structure, and

not a local cell, was used to predict the impact of stored deformation energy on normal

grain growth. Modelling results of both CA models proved that an initially elongated

grain structure of a deformed specimen resulted in an almost equiaxed or circle shaped

grain structure after the annealing process. For a large area domain which was exemplar-

ily used for modelling of abnormal grain growth, a high lattice cell number was needed

which is difficult to be measured by EBSD. Due to the irregularity of EBSD scanning,

the local evaluation of the deformation energy for every lattice cell in the grain structure

was not possible, thus a global application of EBSD methods was used in the presented

simulation procedure.

The indifference of grain growth kinetics between modelling and experimental results
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comes from topological factors, which determine the grain growth. The grain boundary

migration reduces boundary surface area, where grains with more than six sides grow

because their boundaries are concave, and grains with less than six sides shrink. In the

modelling, the factor that affects the movement of grain boundaries is determined from

local area and not from the whole boundary. This is the major difference between CA

model and topological constraints for grain growth.

The mathematical description of the grain boundary movement requires three parameters

in the 2D case of the deterministic model, namely the energy, curvature and mobility of

the grain boundary, which are classic basic impacts on the grain growth. In this work,

the grain boundary energy was defined as a constant and the initial grain structure was

implemented from micrographs defining the curvature of the matrix. Therefore, the de-

terministic model sensitively reacts on the definition of the grain boundary mobility in the

system. Additionally, the probabilistic model defines only one parameter, the transition

or switching probability, which is used to derive all other grain movement constants. The

transition probability is very sensitive on the grain structure resolution, where faster grain

growth kinetics are achieved with lower grain structure resolutions.

In contrast to the 2D modelling presented in this thesis, in a 3D case triple junction

mobilities or quadruple points, which are dragging the grain boundary migration, play an

important role. Thus the grain boundary movement becomes even more complex resulting

in even more sensitive grain growth parameters. Exemplarily, a 3D model with imple-

mented orientation data could be used to consider the faceting of the grain boundaries

thus describe the anisotropy of the grain boundary energy. Faceting grain boundaries

have been observed in the experimental part of this work and could be used to explain

the occurrence of abnormal grains. Another important irregularity of the modelling and

experimental part is that all grains were considered to have a circle shape, which would

not be the case in a 3 dimensional CA model.

Both models do not depend on the material but both strongly depend on the grain struc-

ture resolution, especially the transition probabilities of the probabilistic model. Different

materials lead to different grain growth kinetics where in the case of relatively fast grain

growth kinetics, e.g. Nickel-based alloys, a high resolution of the grain structure must be

used resulting in long simulation times. A simulation conducting on a large grid system

needs a more powerful computer to process the large volume of data produced in the

symulation
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Due to the similarity of cell lattices there is a potential ability to couple the CA model

and FEM, which enables a prediction of microstructural evolution after or during defor-

mation. Incorporating temperature distributions or stored energy, the CA model may

define additional arbitrary transition rules to be applied to the state variables, where re-

crystallization and phase transformation can be modelled. Moreover, a three dimensional

CA model would highlight the effect of local grain boundary properties and incorporate

local crystallographic impacts on the microstructural changes of heterogenous materials.



5 Conclusions

Based on an extensive literature survey, a deterministic and a probabilistic Cellular Au-

tomata (CA) Model have been developed to reflect the grain growth process for solution

annealing of austenitic stainless steel 304L (18-9 Cr-Ni, balance Fe).

Developed CA models are capable of accounting for spatial and temporal descriptions

of grain growth on a fine scale and at a high computational efficiency. Both the determin-

istic and probabilistic model couple the impact of the grain boundary curvature, annealing

temperature, deformation energy, precipitates and grain boundary mobility on the grain

growth process. The presence of precipitates is described either by using the limiting

grain size defined by Zener in the deterministic model or by the dissolution of precipi-

tates, influencing transition probabilities in the probabilistic model. Different methods

for the description of stored energy, namely CD, MCD and Maver values, incorporating

crystal orientations are applied to predict normal grain growth in the presence of stored

deformation energy. Depending on the grain structure resolution, the simulated and ex-

perimental micrographs are comparable from the topological viewpoint with evolution of

grains towards stable six sided configurations and preferred tendency to form 120� dihe-

dral angles between grain boundaries.

The un-deformed homogenized initial grain structures investigated by transmission elec-

tron microscopy proved the occurrence of faceted grain boundaries during annealing,

explaining higher mobilities of a small part of grain boundaries assuming to result in

abnormal grain growth. The annealing cycles were carried out at 900�C, 1000�C, 1100�C

and 1200�C for annealing times of up to 40 hours where the average grain sizes, fraction

of abnormal grains and grain size distributions were analyzed. Abnormal grain growth

started at 1200�C after 120 minutes, at 1100�C after 8 hours, at 1000�C after 12 hours

and at 900�C never due to the grain boundary pinning resulting from precipitations at

grain boundaries.

Regression analysis of normal grain sizes showed that the grain growth exponents n de-

pends strongly on the annealing temperature and rises from 0.31 at 1000�C to 0.43 at

1200�C defining an activation energy of 62.3 kJ/Kmol. For abnormal grain growth, n

rises from 0.75 at 1000�C to 0.89 at 1200�C and defines a much lower activation energy of

33.7 kJ/Kmol. This decline of Qact allows abnormal grains to grow faster.
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The simulated results were very close to the underlying physical system. The quanti-

tative analysis of grain growth phenomena started with the predictions of average normal

and abnormal grain sizes. In accordance with experimental results, the simulated grain

growth kinetics increase with temperature, which was described either by higher mobil-

ities or higher transition probabilities. Assuming an heterogenous distribution of grain

boundary mobilities or grain boundary energies in the evaluated physical system, the

prediction of abnormal grain growth was possible. A very low fraction (0.1 %) of grain

boundaries posses a higher mobility or transition probability resulting in abnormal grain

growth. The CA simulations define a lower activation energy for abnormal grain growth,

which was in accordance to the experimental results.

Due to the nonconformity of experiments and simulations for the prediction of sepa-

rating grain size between normal and abnormal grain growth, a two-parameters approach

was applied to predict normal grain size distributions. In the analysis of the simulated

grain structures an improved definition of the fraction of abnormal grains was evaluated.

Further research should be done on the development of CA models on the grain structure

evolution under complex deformation conditions, e.g. recovery and recrystallization. In

order to do this, the CA model must couple the deformation parameters with Finite Ele-

ments Methods. A progressive 3D modelling set-up would decisively increase the accuracy

of the modelling results.
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