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Abstract. 

 
The rising demand for new materials for controlling light signals at a micrometer scale 

is a general trend in development of optics and photonics during last two decades. Among 
such promising new materials are photonic crystals – composite structures where the 
dielectric constant depends periodically on the spatial coordinates. Photonic crystals can 
exhibit frequency regions of total reflection which are known as photonic band gaps. In 
addition, the optical properties of photonic crystals (e.g. spectral positions of the band 
gaps) can be easily varied by a proper choice of their geometry or even dynamically. 

This thesis presents investigations of several aspects of photonic crystal properties and 
applications. 

The influence of the surface roughness of 1D photonic crystals was investigated 
theoretically and experimentally. The calculated transmission spectra showed high 
robustness of the lowest band gap to surface roughness. With increasing frequency the 
effect of surface roughness on transmittance becomes more pronounced: the gaps become 
shallower and narrower; between the gaps the interference fringes smear out and the 
average transmittance decreases. The experimental transmission spectra are found to be in 
a very good agreement with the calculations. We believe that our results provide a fast and 
convenient way to estimate whether imperfections during the fabrication of a submicron 
1D PhC will affect its transmission and reflection properties. 

The effect of disorder on the reflection peak of dilute 3D colloidal photonic crystals 
with bcc lattice was investigated by means of 3D FDTD calculations. In the case of 
disorder in the radii only a high amount (40% and more) has a visible effect on the 
reflection peak. Positional disorder decreases the maximal value of the peak only if the 
spheres are randomly shifted out of the (110) planes. Random removal of 20% of silica 
spheres from the structure results in a clearly visible decrease of the maximum of the 
reflection peak. We did not observe any broadening of the reflection peak as effect of 
disorder – only the maximal value is reduced. 

In the last Chapter of this thesis we explore the effects of extraordinary transmission 
and polarization conversion observed in 2D photonic crystal slabs covered with a metal 
layer. It was shown that these effects occur due to resonant coupling of the incident wave 
to specific doubly-degenerate photonic crystal eigenmodes with dipole symmetry. The 
excited modes are localized within a subwavelength distance below the metal and are 
polarized perpendicularly to the polarization of the incident wave. Beyond the fundamental 
interest the presented effects can be utilized for the improvement of the sensitivity of 
quantum well infrared photodetectors, to coupling of light to planar photonics elements or 
for the fabrication of transparent metal contacts. 
 



  
 

Zusammenfassung. 
 

Im Verlauf der letzten zwei Dekaden wuchs der Bedarf an neuen Technologien zur 
Beeinflussung der Lichtausbreitung auf der Mikrometer-Skala deutlich an. Eine 
vielverspechende Technologie beruht auf den sogenannten Photonischen Kristallen (PhC) 
– Strukturen, in denen die Dielektrizitätskonstante örtlich periodisch ist. PhC  können 
Frequenzbereiche mit Totalreflexion - “Photonische Bandlücken” aufweisen. Außerdem 
können die optischen Eigenschaften der PhC, etwa die Lage der Bandlücken, durch 
Veränderung der Geometrie, aber auch dynamisch, verändert werden. 

Diese Arbeit behandelt wesentliche Aspekte der PhC und deren Relevanz für 
Anwendungen. 

Ein solcher Aspekt ist die Auswirkung von Unordnung in der Kristallstruktur. Diese 
wurde an nominell ein-dimensionalen (1D) Strukturen mit Oberflächenrauheit untersucht. 
Die berechneten Spektren der Transmission zeigen eine hohe Widerstandsfähigkeit der 
untersten Bandlücke gegenüber der Oberflächenrauheit. Bei höheren Frequenzen wird der 
Einfluss der Rauheit deutlicher: die Lücken weren schmäler und die Transmission dort 
größer; in den Bereichen dazwischen werden die Fabry-Perot Muster verschmiert und der 
Mittelwert der Transmission sinkt. Experimentelle Spektren weisen eine gute 
Übereinstimmung mit den Berechnungen auf. Dies bestätigt, dass auf diese Weise auf 
schnelle Weise festgestellt werden kann, inwieweit Unregelmäßigkeiten bei der 
Herstellung Einfluss auf die Transmissions- und Reflexions-eigenschaften eines 1D PhC 
haben. 

Weiters wurde der Effekt der Unordnung an 3D kolloidalen PhC aus Quarz-
Mikrokugeln mit krz Gitter mit FDTD Rechnungen untersucht. Bei den Radien hatten nur 
Variationen von mehr als 40% einen deutlichen Einfluss auf die (110) Bragg-Reflexions-
Maxima. Bei positioneller Unordnung wirkten sich nur Verschiebungen der Kugeln aus 
den (110)-Ebenen heraus. Erst eine Leerstellendichte von 20% bewirkte eine deutliche 
Erniedrigung, aber keine Verbreiterung, der Maxima. 

Schließlich wurden der EOT-Effekt (außerordentliche Transmission) und die 
Umwandlung der Polarisation durch einseitig goldbeschichtete Plättchen mit PhC Struktur 
untersucht. Es wird gezeigt, dass diese Effekte in der resonanten Kopplung zu bestimmten 
Eigenmoden der Struktur mit Dipolsymmetrie begründet sind. Diese Moden sind in einem 
Bereich weniger μm unter der Goldschicht lokalisiert und dort normal zur ursprünglichen 
Richtung polarisiert. Abgesehen vom theoretische Interesse können die behandelten 
Effekte zur Verbesserung der Empflindlichkeit sogenannter  QWIP-Photo-Detektoren, zur 
Kopplung von Strahlung an integrierte Photonik, oder für (wenn auch schmalbandig) 
transparente Metall-Kontakte verwendet werden. 
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Chapter 1. Background 
 

 
 
 
 
 
 
 

1.1. Photonic crystals 
 
In this section we provide the fundamentals of photonic crystals including the basic 
properties and definitions, historical overview, and some most important applications. 
 

1.1.1 Basic properties and definitions 
Photonic crystals (PhCs) are materials where the refractive index is a periodic function of 
the spatial coordinates. Depending on the number of the directions of the periodicity PhCs 
can be classified in one-, two-, or three-dimensional (Fig. 1.1). In other words, a photonic 
crystal is a superlattice with spatially varying refractive index. Under certain conditions an 
electromagnetic wave propagating through such a periodic structure can experience a 
destructive interference. In this case one can say that the propagation of such a wave is 
forbidden, and the frequency region where the propagation is forbidden is called photonic 
band gap. From the theoretical point of view, an electromagnetic (EM) wave with the 
frequency lying in a photonic band gap does not have propagating solutions inside the 
PhC, it can be only exponentially decaying. Thus if a PhC consists of two loss-less 
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dielectric materials, then the photonic band gap regions should reveal themselves by 100 % 
reflectance. The concept of the photonic band gap can be most easily demonstrated on the 
example of 1D PhCs or Bragg reflectors (Fig. 1.1a) whose property to exhibit spectral 
ranges of perfect reflectance is well-known for more than 50 years [1]. 

The presence or absence of a photonic band gap in a PhC depends on three main 
structural parameters. The first is the optical contrast, i.e. the ratio of the dielectric 
constants of the constituents εa/εb. Generally, PhCs with higher contrast have spectrally 
larger photonic band gaps. The second is the symmetry of the superlattice and the shape of 
the "atoms". For instance, a 2D PhC shown in Fig. 1.1b has circular 2D "atoms" with 
radius R arranged in a hexagonal lattice with lattice constant a. And the third parameter is 
the filling fraction fa, namely, the fraction of the volume which is occupied by a material 
with εa. 
 

 
 
Fig. 1.1. Schematic examples of 1D (a), 2D (b), and 3D (c) photonic crystals. The arrows show the directions 
of periodicity 
 

The interaction between an EM wave and a PhC depends also on the parameters of the 
wave. In addition to the frequency, the polarization and propagation direction of a wave are 
also important. In a 3D PhC it is possible to observe an absolute or complete photonic band 
gap which is independent of the propagation direction as well as of the polarization. In 2D 
PhCs an absolute band gap is usually understood to be a polarization-independent band gap 
for the waves propagating in the plane of periodicity. A photonic band gap which exists for 
all propagation directions is also called omnidirectional. If a photonic band gap exists only 
for a specific propagation direction then it is called a pseudogap or an unidirectional band 
gap. In 2D structures the waves propagating in the plane of periodicity can be split into TE 
(the magnetic field is perpendicular to the plane of periodicity) and TM (the electric field is 
perpendicular to the plane of periodicity) polarized. If a photonic band gap exists only for a 
particular polarization then it is called TE or TM photonic band gap. 

Another important property of PhCs is their scalability. The interference of an EM 
wave on a periodic superlattice is defined by the period of the superlattice. Thus, by proper 
choice of the periodicity of a PhC the spectral position of a photonic band gap can be   
 

(a) (b) (c) 
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Fig. 1.2. (a) The scheme of the 2D PhC with triangular lattice. The white circles are the air pores and the grey 
background is the high-index material. The arrows show the Γ-M and Γ-K directions of a wave propagation. 
(b) The first Brillouin zone for triangular lattice. The black triangle is the irreducible part of the Brillouin 
zone. Γ, M, and K are the high-symmetry points. 
 
varied from the UV part of spectrum to the microwave by increasing the structural 
dimensions. 

In order to visualize the basic properties of photonic crystals let us consider a 2D 
periodic structure consisting of a triangular lattice of air holes embedded in a dielectric 
medium with the following parameters: the dielectric constant of the dielectric meduim 
εb=12, the dielectric constant of the pores εa=1, radius of the pores R=0.46a, where a is the 
lattice constant of the triangular lattice. Figs. 1.2a and 1.2b show the scheme of such 
photonic crystal and the first Brillouin zone of the triangular lattice, respectively. 

In Figs. 1.3a and 1.3b the photonic band structures of such 2D PhC are shown for TM 
and TE polarization, respectively. A photonic band structure, by analogy with electronic 
band structure of solid state, shows the eigenfrequencies for different values of the quasi-
wavevector. The values of the quasi-wavevector are usually taken from the edge of the 
irreducible part of the Brillouin zone (see Fig. 1.2b). The hatched areas on both plots depict 
the frequency regions where there are no propagating eigenmodes – the photonic band 
gaps.  

It is necessary to note that in the photonic crystal literature the so-called reduced 
frequencies are commonly used. The reduced frequencies expressed as ωa/(2πc) (ω is the 
angular frequency, c is the speed of light) or a/λ (λ is the wavelength in vacuum) reflect the 
fact that the spectral properties of a PhC scale with the period of the lattice. For instance, 
the spectral position of the band gap shown in Fig. 1.3a is from 0.407 to 0.460 reduced 
frequencies. If the period of the structure is a = 1 μm than the band gap will be located 
between λ=2.17 μm (a/λ=0.46) and λ=2.46 μm (a/λ=0.407). Of course, one should take 
into account, that the properties of the constituent materials (e.g. dielectric constants) can 
be different in different spectral regions. 

(b) 
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(a) (b) 
 
Fig. 1.3. The TM (a) and TE (b) photonic band structure of a 2D triangular lattice photonic crystal. The 8 
lowest dispersion curves are shown. The hatched areas depict the photonic band gaps. 

 
The considered structure exhibits omnidirectional band gaps for TM and TE 

polarization as shown in Fig. 1.3. The spectral region where TE and TM gaps exist 
simultaneously would be an absolute band gap. In current case the absolute band gap 
coincides with the TM band gap being located at reduced frequencies between 0.407 and 
0.460. 

A photonic band structure is defined by the eigenmodes of a perfectly periodic infinite 
system. In reality one always deals with spatially finite samples. Moreover, excitation as 
well as detection is usually performed externally meaning that the source and the detector 
are located outside the sample. Thus, a question arises:  
How are the intrinsic properties of a PhC (such as the band structure) connected with the 
experimentally measurable extrinsic properties (such as transmittance and reflectance)? 

To answer this question let us consider the transmittance of a 2D PhC with the same 
parameters as in the band structure calculations shown in Fig. 1.3. The structure is now 
spatially finite having 7 rows of pores in the direction of the EM wave propagation. The 
calculations are performed by the finite-difference time-domain method (FDTD). Figs. 
1.4a and 1.4c show the transmittance of TM-polarized waves propagating in Γ-M and Γ-K 
directions, respectively. The TE spectra are shown in Figs. 1.4b and 1.4d for Γ-M and Γ-K 
directions, respectively. Above each spectrum the corresponding part of the band structure 
is plotted. The vertical red dashed lines depict the edges of the unidirectional band gaps. 
Since the constituent materials are loss-less (no absorption) the reflectance can be deduced 
by the simple formula R=1-T, where R is the reflectance and T is the transmittance. 

One should mention that the omnidirectional band gaps shown in Fig. 1.3 appear in all 
transmission spectra as regions with virtually zero transmittance. Besides, each spectrum 
exhibit additional low transmittance areas which correspond to the unidirectional gaps. For 
instance, the spectrum for Γ-M direction and TM polarization (Fig. 1.4a) has three low-
transmittance regions. 
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Fig. 1.4. Calculated transmission spectra for a finite 2D PhC with the same parameters as in Fig. 1.3 for (a): 
Γ-M direction and TM polarization; (b) Γ-M direction and TE polarization; (c): Γ-K direction and TM 
polarization; (d): Γ-K direction and TE polarization. On the top of each spectrum the corresponding part of 
the band structure is shown. The vertical red dashed lines show the edges of the unidirectional band gaps. 
The arrow in (c) points onto the eigenmode with odd symmetry which does not couple to external plane 
waves. 
 

However, the presented transmission spectra have more complicated structure due to 
several effects: 

(i) Our 2D photonic crystal is surrounded by air. Therefore, the interference between 
the waves reflected from the PhC-air interfaces results in the appearance of Fabry-Perot 
interference fringes within the transmission bands of the photonic crystal. This effect is 
most clearly seen in the low-frequency part of the spectra below the first band gap. In these 

(a) (b) 

(c) (d) 
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regions the wavelength is much larger than the period and the radius of the holes and the 
PhC can be approximated by a homogeneous slab with some effective refractive index. At 
the higher frequencies (lower wavelengths) the interferences between the pores and within 
a single pore are superimposed with interferences from the PhC-air interfaces resulting in 
complex and "spiky" transmission spectra. 

(ii) A photonic band gap is by definition a property of an infinite periodic structure. 
Since we consider a finite structure with only 7 rows of pores in the propagation direction, 
the transmittance within some unidirectional gaps does not go to zero. Particularly, within 
the first gap in Fig. 1.4a the transmittance is about 1% and for the second gap in Fig. 1.4b 
the transmittance is more than 3%. For all other gaps (both uni- and omnidirectional) the 
transmittance is below 0.01%. 

(iii) The transmission minimum in Fig. 1.4c is much larger than the corresponding 
gap. This is because the eigenmodes lying in the second band (marked by arrow) for Γ-K 
direction in TM band structure cannot be excited from the outside. To be more precise, an 
external plane wave cannot couple to these eigenmodes of the photonic crystal. This 
happens because these eigenmodes are antisymmetric with respect to the propagation axis 
while the incident plane wave is always symmetric. The "symmetry mismatch" between 
the eigenmodes of a PhC is discussed in details in [2]. 
 

1.1.2. Historical overview 
The discovery of photonic crystals is usually attributed to the pioneering works of 
Yablonovich [3] and John [4]. In these works periodic three-dimensional superlattices are 
proposed to be used for controlling the processes of spontaneous emission in 
semiconductors. It was assumed that if a periodic superlattice is designed in such a way 
that the frequency of photons emitted by electrons is lying in a photonic band gap then 
such electronic transitions would become forbidden.  

The first photonic crystals were experimentally fabricated in 1989 by Yablonovich and 
Gmitter [5] and had a fcc lattice with a lattice constant of approximately 12 mm. Although 
several tens of PhCs with different dielectric constants and filling fractions were 
fabricated, a photonic band gap was observed in only one case (Fig. 1.5a). These results 
were in controversy with theoretical calculations of photonic band structure [6, 7] based on 
the scalar-wave approximation (the vector nature of EM waves is not taken into account) 
which predicted that a photonic band gap should be observed for a wide spectrum of PhCs 
configurations. This lack of a proper theoretical model was mentioned in the experimental 
work [5] with the following expression: "This tedious cut-and-carry approach was very 
time consuming, but it tended to ensure that no possibilities were overlooked". 

In 1990 three groups reported on full vector calculations of a photonic band structure 
of 3D PhCs by means of the plane-wave expansion method (PWEM) [8, 9, 10]. In Fig. 
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1.5b a photonic band structure calculated in [10] for the same PhC configuration as in 
experiments of [5] is shown. Despite a good general agreement between experimental (Fig. 
1.5a) and theoretical (Fig.1.5b) band structures in the latter case a photonic band gap does 
not appear. It was shown also in [8, 9] that an absolute photonic band gap does not appear 
in PhCs with fcc lattice due to the degeneracy of the dispersion curves in the U and W 
symmetry points of the Brillouin zone. Later, Eli Yablonovich published a review on his 
first efforts of experimental observation of photonic band gap [11] where he admitted that 
the band structure exhibiting a band gap (Fig. 1.5a) "harbored a serious error". The "error" 
leading to the disappearance of the degeneracy of the dispersion curves in the points U and 
W was attributed to the finite size of the experimentally fabricated structure.  

However, theoretical calculations showed not only proofs of the absence of photonic 
band gaps: in [8] was shown that a diamond lattice of spherical "atoms" exhibits a full 
photonic band gap for a wide spectrum of dielectric constants and filling fractions. 
 

 

(a) (b) 
 
Fig. 1.5. (a) Experimentally measured photonic band structure reported in [5]; (b) Theoretically calculated 
band structure for the same PhC as in the case (a) [10] 

 
This success in the theoretical description of PhCs properties inspired scientists to new 

experimental efforts. In [12] a new type of PhCs was proposed: fcc lattice with non-
spherical "atoms". A 3D lattice was created by drilling cylindrical holes in three different 
directions at an angle of 35.26° to the surface normal (Fig. 1.6a). Due to the nonsphericity 
of the "atoms" the degeneracy of the bands was lifted up and a clear band gap between 13 
and 16 GHz appeared in the measurements. This PhC configuration was called 
"Yablonovite" in honor of Eli Yablonovich. Another configuration of 3D PhC called 
"woodpile" was proposed in [13, 14, 15]. A PhC shown in Fig. 1.6b was made of Al2O3 
rods with a diameter of 0.318 cm and length of 15.24 cm. The structure was formed layer-
by-layer, the rods in each successive layer were rotated at 90 degrees with respect to the 
previous one. The resulting PhC had a face-centered tetragonal lattice with lattice constant 
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of 1.123 cm and an alumina filling factor of 0.26. Experimentally measured photonic band 
gap was located between 11.9 GHz and 14 GHz which was in good agreement with the 
theoretical calculations (11.7 GHz – 13.7 GHz).  

 
 

 
(a) 

  
(b) 

Fig. 1.6. Configurations of three-dimensional PhC with absolute photonic band gap. (a): "Yablonovite" [12]; 
(b): "Woodpile" [15]. 

 
The PWEM was also applied to calculations of 2D photonic crystals [16, 17, 18, 19]. 

Various configurations of 2D PhCs were investigated: triangular and square lattice, high-
index rods in air and pores in high-index material, circular and square "atoms". It was 
found out that, as a rule of thumb, 2D lattices of high-index rods exhibit rather TM band 
gaps while TE band gaps are favored in 2D lattices of pores in a high-index background. 
An absolute band gap was found to appear in a triangular lattice of air pores in a 
background material with ε=13 at high values of air filling factor (>0.7). Experimentally, a 
2D photonic band gap was measured for the first time in [20] at microwave frequencies. 

The end of 1990's and the beginning of 2000's was characterized by a rapid grow of 
interest in photonic crystals. New fabrication methods, new simulations techniques as well 
as a number of possible applications of photonic crystals were proposed in that time. 
Quantitatively, the number of publications concerning various aspects of photonic crystals 
was growing nearly exponentially till the year 2005 that is shown in Fig. 1.7. A detailed 
review of all significant papers concerning photonic crystals is out of scope of this thesis. 
However, the most interesting applications are shortly reviewed in the next subsection. 
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Fig. 1.7. Dynamic of publications concerning various aspects of photonic crystals. Obtained from 

www.scopus.com. 

 

1.1.3. Applications 
In this subsection we provide a short review of some applications of photonic crystals. 
Cavities and waveguides. Photonic crystal cavities are based on the property of the 
defects (e.g. a missing pore in a 2D PhC) in otherwise periodic structures to confine the 
light if the frequency lies in a band gap of the PhC. A waveguide can be realized by a line 
defect (e.g. missing row of pores in a 2D PhC). 

The first experimental observation of a defect state in a PhC was reported in [20]. The 
experiment was performed at microwave frequencies on a 2D PhC consisting of a square 
lattice of alumina rods in air. The defect was presented by a missing rod in an otherwise 
periodic structure. The measured distribution of electromagnetic power around the defect is 
shown in Fig. 1.8 

The defect modes in 3D "Yablonovite" structure were observed in. [21]. A donor 
 

 
Fig. 1.8. The spatial power distribution around a defect in a 2D PhC created by removing a single rod. Taken 
from [20]. 
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Fig. 1.9. Transmission spectra of Yablonovite crystal with (a) no defects, (b) acceptor defect, and (c) donor 
defect. Taken from [21]. 
 
 (acceptor) defect was created by adding (removing) high-index material inside a single 
unit cell. The transmission measurements showed additional peaks attributed to the created 
defect states (Fig. 1.9). 

The possibility of guiding of light by a line defect in a 2D PhC was discussed in [22]. 
The authors proposed to use a photonic band gap to confine light in the plane of periodicity 
and to use total internal reflection to confine light in the third direction. It was supposed 
that such waveguides will have "ideal properties for compact waveguide devices". 

Excellent waveguiding properties of PhC waveguides were confirmed by FDTD 
calculations [23]. The transmittance through a 90° waveguide bend was found to be as high 
as 98%. Almost 100% transmission through a sharp 90 degree bend was confirmed also 
experimentally in the microwave regime [24]. 

A 2D photonic crystal waveguide with the operation wavelength of 1.55 μm was 
designed and fabricated on a silicon-on-insulator substrate in [25]. The SEM image of the 
fabricated structure is shown in Fig. 1.10. The guiding of light through 60° and 90° bends 
was confirmed by direct experimental measurements. 2D PhC where the thickness of the 
structure is less than or of the same order as the wavelength are commonly called 
"photonic crystal slabs". 

It was shown in [26] that light propagating through a line defect in a 2D PhC can 
effectively couple to a point defect created in the vicinity. Experimental measurements 
showed that by a proper design of the point defect it can act as a cavity with a Q-factor as 
high as 100 000 and the mode volume as low as 0.71 (λ0/n)3, where λ0 is free-space  
 

 

 
Fig. 1.10. SEM image of a 2D photonic crystal slab designed for operation at 1.55 μm. Taken from [25]. 
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wavelength and n is the refractive index of the slab.  
To conclude, line defects introduced in 2D photonic crystal opens new possibilities to 

guide and to control light signals on subwavelength scale and in planar geometry. The 
ability of point defects to act as effective optical nanocavities led to development of new 
type of lasers – photonic crystal lasers [27]. 
 
Photonic crystal fibers. The principal difference between 2D PhC waveguides and 
photonic crystal fibers (PCFs) is that in the latter case the light propagates perpendicularly 
to the plane of periodicity, i.e. along the pores or rods. In other words, a 2D PhC structure 
is a cladding surrounding the guiding core. Since the light confinement in such fibers is not 
due to total internal reflection but due to photonic band gap reflection, the core can have 
any refractive index or even be hollow. Hollow-core fibers are free from scattering, 
nonlinear and dispersion effects and can be used for high-power guiding. An example of a 
hollow-core silica-air PCF for operating at wavelengths between 1.4 μm and 1.6 μm is 
shown in Fig. 1.11 [28]. A number of other important applications of PCFs are proposed so 
far: sensors [29, 30, 31], terahertz guiding [32, 33], probes for optical microscopy [34, 35], 
lasers [36, 37]. 

 
 

Fig. 1.11. Scanning electron micrograph of a hollow-core silica-air photonic crystal fiber. Taken from [28]. 
 
Tunable photonic crystals. Since the spectral positions of photonic bands and gaps 
depend on structural parameters of a PhC (such as refractive indices, lattice period) a 
dynamical change of these parameters by some external influence should lead to a 
dynamical change of PhC spectral characteristics. A PhC which allows to tune its optical 
properties by an external influence called tunable photonic crystal. 

A possibility of tuning spectral characteristics of 2D PhCs by external magnetic or 
electric field was investigated theoretically in [38]. By analyzing a photonic band structure 
for different values of the dielectric constant of one of the constituents it was shown that a 
transition between transparency and opacity is in principle possible.  
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By filling a 2D macroporous silicon PhC with a liquid crystal a temperature-dependent 
tuning of the band gap position was shown experimentally and analyzed theoretically in 
[39]. 

Ultrafast tuning of the band edge of a 2D macroporous silicon PhC was demonstrated 
experimentally in [40]. The refractive index of silicon was changed by optically induced 
free carrier injection. The observed band gap edge shift was about 1.5 % (30 nm) on a 
picosecond timescale.  

In [41] a nonlinear two-photon absorption process was utilized to modify the refractive 
index of AlGaAs 2D photonic crystals. The spectral shift of photonic band of 5 nm (~0.6 
%) was achieved with a respond time below 10 ps. 

Strain-tunable PhCs were investigated in [42]. It was shown that by applying a shear 
strain of 3 % the spectral position of the photonic band gap edges in air-silicon 2D PhC can 
be shifted up to 9 % with respect to non-strained structure.  
Thus, tunable photonic crystals have a great potential to be used for fast control of optical 
signals, with an ultimate goal of creation of ultrafast all-optical logical elements. 
 
Microwave antennas. 
By using total reflection from a 3D PhC the gain and the directivity of a planar dipole 
antenna was substantially increased in [43].  

A monopole antenna placed in a photonic crystal cavity was investigated in [44]. The 
existence of a 3D photonic band gap allowed to obtain very sharp directionality of the 
monopole antenna. The calculated (dotted) and measured (solid) radiation patterns of such 
antenna are shown in Fig. 1.12. 
 

 
Fig. 1.12. Calculated (dotted) and measured (solid) H-field radiation patterns of the monopole antenna inside 
a photonic crystal cavity. Taken from [44]. 
 
Negative refraction and superlensing. 
The effect of negative refraction of visible light in 3D photonic crystals was observed in 
[45]. It was shown experimentally that the refracted beam was swung from -90° to +90° 
for a slight change in the incident angle in the range of ±12°. This effect of very strong 
angular dispersion of light in photonic crystals was called a "superprism" effect. 
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A lens with subwavelength resolution was demonstrated in [46] by using a 2D PhC in 
the millimeter wave region. It was shown experimentally that a plane-parallel photonic 
crystal slab acts as a lens and allows to obtain images with the spot size as small as 0.21λ. 
Such lenses are commonly called "superlenses". 

By combining a superprism with a superlens a compact wavelength demultiplexer was 
constructed in [47]. The spectral resolution of the proposed device was as small as 0.4 nm 
at the operating wavelength of 1.55 μm. 
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1.2. The Plane Wave Expansion Method (PWEM) 
 
The PWEM was initially developed for calculation of an electronic band structure of a 
solid state. The method is based on the Bloch theorem stating that in infinite and periodic 
potential the electron wavefunctions are also periodic and can be expanded in a set of plane 
waves. The same statement can be applied to a photonic crystal: in an infinite structure 
with periodic refractive index the distribution of the electromagnetic field should be 
periodic and can be represented as a sum of plane waves. In this section we will show how 
to derive the basic equations of the PWEM for the case of a 2D photonic crystal as well as 
how to solve those equations numerically.  
 

1.2.1. Analytical basis 
Let us start from the very beginning – from the Maxwell's equations. We will follow the 
treatment described, for instance, in [16]. In a medium without current sources and charges 
the Maxwell's equations have a form (in SGS units): 
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If we assume that our electromagnetic field changes in time according to a harmonic law 
(~e-iωt) and that we have an optically linear medium the first two equations from (1.1) can 
be rewritten as following: 
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Please note that dielectric constant is assumed to be coordinate-dependent. By excluding 
the magnetic field we obtain a single second-order differential equation for the electric 
field: 
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By applying a standard formula of vector analysis EEE
rrrrrrr 2)( ∇−⋅∇⋅∇=×∇×∇  and 

splitting the vector equation (1.3) into three scalar component equations we obtain  
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Equations (1.4) are just a representation of Maxwell's equations (1.2) for a time-

harmonic wave in an optically linear medium with coordinate-dependent dielectric 
constant. We want to find a solution for a dielectric structure that consists of a periodic 
array of infinitely long, parallel rods of circular cross-section, characterized by the 
dielectric constant εa, embedded in a medium of dielectric constant εb  (Fig. 1.13). 
 

 
Fig. 1.13. The scheme of a two-dimensional photonic crystal. 

 
The two-dimensional Bravais lattice formed by the intersection of the axes of the rods 

with the x1x2  plane is defined by the two primitive translation vectors 1ar  and 2ar , so that 

the lattice points are given by the vectors  

2211 alalX II
rrr

+= , 
where l1 and l2 are any integers, positive, negative or zero. 
The lattice points of the corresponding reciprocal lattice are given by the vectors 

2211 bhbhG II

rrr
+= , 

where the primitive translation vectors 1b
r

 and 2b
r

 are defined by the equations 

ijji ba πδ2=
rr

, i ,j =1,2. 
while h1 and h2 are integers or zero. 
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The dielectric constant of the system we study here is independent of the x3 
coordinate, and we denote it by )x( II

rε . The vector 2211 xexexII
rrr

+= , where 1er  and 2er  are 

unit vectors along the x1 and x2 axes, respectively, is the projection of the vector xr  onto the 
x1x2 plane. We assume here that the dielectric constant satisfies the following periodicity 
relations: 
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We will search for a solution for the electric field of the form 
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   (1.6) 
 
which represents the symmetry of the considered structure, namely the dependence of the 
electric field on x3 coordinate is simply harmonic. Below we will omit the time-harmonic 
part )exp( tiω− of the fields for simplicity. After substitution (1.6) into (1.4) and assuming 

non-magnetic materials (μ=1) we obtain: 
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where the components of electric field E1, E2, and E3 depend only on the in-plane position 

vector IIxr .To solve these equations we expand the periodic function )(1
IIxr−ε  in a 

Fourier series according to 
 

∑
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rrr
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)(
1 η

ε .     (1.8) 

 

The components of the electric field and ),( ωα IIxE r
 can be rewritten in a form that 

satisfies the Bloch-Flouqet theorem, required by the two-dimensional periodicity of the 
system, 
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where 2211 kxkxk II
rrr

+=  is the projection of the wave-vector of the wave on to the x1x2  
plane. 

If we substitute the expansions (1.8) and (1.9) into equations (1.7), multiply both 

sides of each equation by )]([ IIII Gkiexp
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2
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It is important to note that the set of equations (1.10) represents a general problem for 

non-polarized waves which propagate in an arbitrary direction (k3≠0). If the propagation of 
a wave is restricted to the x1x2 plane then one can put k3=0 and split the equations into two 
sets for TE and TM polarization. However, here we will proceed with the most general 
case since such simplifications can be applied at the final steps. 

Equations (1.10) contain the Fourier coefficients )( IIII GG ′−
rr

η of the reciprocal 
dielectric function which can be calculated by applying a general formula  
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where ac is the area of the elementary cell of a 2D lattice. For cylindrical pores or rods with 
circular cross-section (radius R) the Fourier coefficients are given by [16] 
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where )(1 xJ  is a Bessel function, and f  is the filling fraction, i. e. the fraction of the 
total volume occupied by the cylindrical rods (or pores). For a triangular lattice 
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= , a is the period of the 2D lattice.  

If the pores or rods have a square cross-section then the Fourier coefficients for non-
zero IIG

r
 are given by 
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For the details of the calculations see [2, 16]. 
The model can be easily extended to three-component structures where a third 

component is introduced as a ring-shaped interlayer between the rod and the background 
materials (Fig. 1.14). This third material is characterized by a dielectric constant εi and 
thickness d. Since the symmetry of the lattice does not change with such modification, one 
can still use the equations (1.10) but the Fourier coefficients of the reciprocal dielectric 
function will be given by [48]  
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Fig. 1.14. A scheme of a three-component 2D PhC. The third component is introduced as a ring-shaped 
interlayer between the rod and background materials and is characterized by a dielectric constant εi and 
thickness d. 

 
Such three-component model can be used, for instance, to include an oxide interlayer 

on the walls of the air pores in macroporous silicon 2D PhC [48]. 

 

1.2.2. Numerical scheme 
Let us now consider the problem of numerical solving the system of equations (1.10). 
Generally speaking, the sum should be taken over infinite set of reciprocal lattice vectors. 
Obviously, we have to limit the number of the reciprocal lattice vectors to some finite 
value, lets call it N. This means that the system of 3N equations should be numerically 
solved. Due to the fact that 22 / cωλ ≡ appears only on the right side of the equations 
(1.10) we may represent the system as an eigenvalue problem: 
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where the matrix M is given by 
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In the horizontal direction the dots denote the additional N-1 columns (for i = 2 … N), for 

each different )(' i
IIG
r

, in vertical direction the dots denote N-1 rows corresponding to the rest 
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of the different )( j
IIG

r
. So, if we use the basis of N reciprocal vectors then the 3N x 3N 

matrix needs to be solved. 
Vector A in (1.12), the eigenvector of the matrix M) , has also 3N components and is 

given by 
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where a1, a2, a3 are the Fourier coefficients of the field components E1, E2, E3, 
correspondingly. 

And finally λi, the eigenvalues of the matrix M
)

, have a form 2

2

c
= i

i
ω

λ , i=1,2... 3N. Thus, 

by solving the eigenvalue problem (1.12) we can obtain the values of 2

2

c
ω

 depending on 

the values of k
r

, or, in other words, the photonic band structure. 
We have developed our own code realizing the PWEM using the MatLab 

programming language. The program code for triangular lattice three-component PhCs 
with short description of the variables is listed in Appendix I.  
 

1.2.3. The range of validity and limitations of the PWEM. 
It is important to remember that PWEM solves an intrinsic problem, namely it gives 
eigenfrequencies of eigenmodes of a structure which is infinite in all directions. Thus, such 
characteristics as transmittance and reflectance cannot be directly obtained from PWEM 
calculations. Experiments deal with finite structures, usually involving an external source 
and a far-field detector. 

However, the PWEM appears to be very useful tool for the characterization of PhCs. 
For example, if a PhC has a high refractive index contrast then it is often enough to 
consider a structure with only 5-15 periods in the direction of the wave propagation: such a 
structure will already exhibit the properties (bands and gaps) of an "infinite" PhC. It is 
shown in this thesis (section 2.2) that the experimentally measured positions of the band 
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gaps in a 1D PhC consisting of only 5 periods are in very good coincidence with the results 
of PWEM calculations. In the case of a PhC with a low refractive index contrast (see 
section 2.3) it is required to consider hundreds of periods in order to obtain an effectively 
"infinite" structure. Thus care must be taken when comparing the results of a PWEM 
calculation to real-space characteristics (such as transmittance and reflectance) of a finite 
PhC. 
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1.3. The Finite-Difference Time-Domain method (FDTD) 
 
The FDTD method is a numerical method based on discretization of Maxwell's equations. 
Currently it is the one of the most widely-used simulation method in optics, photonics and 
microwave physics. The popularity of the FDTD is based on several advantages, namely: 

1. FDTD is an explicit and intuitive method; 
2. it allows to solve electromagnetic problems with complicated refractive index 

profiles; 
3. it allows to include dispersive, absorbing and nonlinear materials; 
4. since it is a time-domain method, nonequilibrium electrodynamics processes can be 

studied; 
5. together with transmittance, reflectance and absorbance the amplitudes of electric 

and magnetic fields as well as Poynting vectors can be obtained for each point of 
the computational domain; 

6. FDTD allows to visualize light-matter interaction processes in a natural and 
straightforward way; 

7. FDTD is accurate and robust if the chosen discretization grid is fine enough. 
The main limitation of the FDTD method is the high amount of computational resources 
needed for spatially large problems. However, rapid development of computers capability 
during last few decades makes the FDTD method suitable for broad spectrum of problems 
of electromagnetism.  
 

1.3.1. The Yee algorithm 
The basis of FDTD method was laid out in 1966 when Kane Yee proposed a finite-
difference discretization scheme for the time-dependent Maxwell's equations [49]. The 
basic ideas proposed by Yee can be summarized as follows: 
- the space is discretized into small cells having dimensions of Δx*Δy*Δz 
- the time is discretized into the instants separated by time steps Δt 
- the differential Maxwell's equations are discretized by replacing time and step derivatives 
of electric and magnetic fields by finite differences. The times for the electrical fields are 
interleaved between those of the magnetic fields. 
- the components of both electric and magnetic field are calculated at each time step for all 
space grid points 
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Fig. 1.15. Positions of electric and magnetic field components in a unit cell of Yee spatial grid. Taken from 
[50]. 
 

The positions of electric and magnetic field components in a unit cell of 3D 
discretization grid for a given time instant are shown in Fig. 1.15. Actually, Fig. 1.15 
provides a direct visualization of the Maxwell's equations showing that 3D space is filled 
with arrays of Faraday's Law and Ampere's Law contours.  
The Maxwell's curl equations in rectangular coordinate system can be rewritten in 
component form (SI units) [50]: 
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We denote a space grid point at (iΔx,jΔy,kΔz) by the triple (i,j,k) and any discrete function 

of space and time f(iΔx,jΔy,kΔz,nΔt) as k)j,(i,f n , where n is the number of time steps 

elapsed.  
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In the Yee scheme the space and time derivatives are replaced by centered finite-
differences. For instance, a partial space derivative of the function f in x-direction at a time 
moment t= nΔt is given by 
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The time derivatives are treated in a similar way. The partial time derivative of the function 
f at a space point (i,j,k) can be calculated by 
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By substituting (1.15) and (1.16) into (1.14) one can obtain the unknown values of the 
electric and magnetic field components in a given space point at a time step tn+1/2 from the 
known values at previous time step in the same space point and from the known values at 
previous time step in adjacent space points. The detailed derivation of the discrete finite-
difference equations as well as many other aspects of FDTD method can be found in the 
book of Allen Taflove [50]. 
 

1.3.2. Numerical stability 
The FDTD method allows, in principle, to consider structures with any refractive index 
profile. In practice, however, consideration of spatially large problems encounters some 
difficulties. The limiting factor is the number of spatial grid points which should be 
included in a model which is restricted by the physical memory of a computer. The grid 
should be fine enough to resolve the finest features of a studied structure, besides, the 
variation of the fields' amplitudes between two adjacent grid points must be small. The 
latter fact means that the size of a grid cell should be much smaller than the wavelength. 
Usually it is assumed that the size of grid cell in one dimension must be at least 10 times 
smaller than the wavelength [50]:  

10
,, λ

<ΔΔΔ zyx        (1.17). 

However, even if the condition (1.17) is fulfilled, the results of such simulations will be 
only approximate. A convergence study should be performed for each model in order to 
prove that decreasing the grid cell size does not influence the results of simulation 
significantly. 

Another, more fundamental, constraint called numerical stability condition or Courant 
condition is given by the following expression: 
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where Δt is a time step, c is the velocity of the wave propagation, and Δx, Δy, Δz are the 
spacings of the spatial grid. Condition (1.18) defines the maximal time step for given 
choice of the spatial grid. It is shown in [50] that violation of the condition (1.18) can 
results in unphysical exponential growth of the electric and magnetic field amplitudes 
during the simulation.  

Generally, care must be always taken during interpretation of the FDTD simulation 
results. 
 

1.3.3. Boundary conditions 
The difficulty of considering spatially large problems within the FDTD method can be 
partially overcame by putting appropriate for a given model boundary conditions. For 
instance, when considering a periodic structure (e.g. a photonic crystal) then it is enough to 
include in a model a single unit cell and put periodic boundary conditions in the directions 
of periodicity. Absorbing boundary conditions (ABC) are used when one needs to simulate 
waves escaping to infinity. Transmitted, reflected or scattered EM wave which encounters 
a boundary of the computational domain should be perfectly absorbed (zero reflection) if 
the ABC are applied. One of the most widely-used ABC in the FDTD method is so-called 
perfectly matched layer (PML). The PML acts as a virtual absorbing material surrounding 
the computational domain. This is analogous to simulation of the walls of an anechoic 
chamber.  

The choice of boundary conditions is dictated by the objectives of a given problem. 
Periodic boundary conditions are usually used to decrease the dimensions of computational 
domain in order to save the time and physical memory. However, if one needs to record 
transmitted or reflected EM power than PML ABC should be used. It is also possible to 
combine periodic boundary conditions and PML ABC within one model by applying them 
to different boundaries of the computational domain. Some examples of simple FDTD 
calculations involving different boundary conditions are given in the next subsection. 
 

1.3.4. Overview of the FullWAVE™ computer package 
In this thesis a commercial package RSoft FullWAVE™ realizing the FDTD method is 
used [51]. In this subsection we review the main features of this package on the example of 
simple problems of optics. 

Let us consider a problem of scattering of light by a dielectric sphere in two 
dimensions (Fig. 1.16a). The horizontal orange bar in the bottom is a plane wave source, 
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the red circle is a dielectric sphere (in 2D – a circle). Two horizontal green bars are so-
called "time monitors" – the numerical analogies of detectors – recording the EM power 
flux through themselves. A purple rectangle marks the boundary of the computational 
domain. In the current case the PML ABC are applied to all four edges of the domain. The 
refractive index of the background is 1, the dielectric sphere has a refractive index of 3.5. 
The diameter of the sphere is 5 μm. In Fig. 1.16b the distribution of electric field 
component Ey after time t=0.67 fs (ct=200 μm, where c is the speed of light in vacuum) is 
shown. The wavelength of the continuous plane wave is 1 μm. In Fig. 1.16c the 
transmittance and reflectance recorded by the top and the bottom time monitor, 
respectively, is shown. Both transmittance and reflectance are normalized to the total 
power radiated by the source. It is important to note that although absorption is not 
included in the model the sum of transmittance and reflectance do not give 1 since the 
scattered power impinged on the left and right boundaries and absorbed by the PML is not 
recorded by the monitors.  

 
 
Fig. 1.16. Interaction of light with a dielectric sphere in two dimensions. (a): geometry of the problem, for 
detailed description see text. (b): the distribution of Ey component. (c): transmittance and reflectance 
recorded by the top and bottom time monitor, respectively. The time is multiplied by the vacuum speed of 
light and thus given in units of μm.  
 

Let us now consider a plane-parallel dielectric plate as shown in Fig. 1.17a. Now, due 
to infinitesimal translation invariance of the system in horizontal direction, it is convenient 
to apply periodic boundary conditions to the left and right boundaries of the computational 
domain. The top and the bottom boundaries have PML ABC. Such a model represents an 
infinitely long (in the horizontal direction) plane-parallel plate. The thickness and the 
refractive index of the plate are 1 μm and 3.5, respectively; the background has a refractive 
index of 1. The wavelength of the plane wave source is chosen to be 3.5 μm. That 

(a) 

(b) 

(c) 
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corresponds to the second eigenmode of the plane-parallel plate according to the well-
known formula for interference in thin films (normal incidence case): 

dn=m 2λ ,       (1.19) 
where d is the thickness of the film (d=1 μm), n is the refractive index of the film (n=3.5) 
and m is the number of the eigenmode (m=2). Formula (1.19) is the condition for 
destructive interference between the reflected waves from the two sides of the plate. 

The distribution of Ey field component  and the time-dependent transmittance and 
reflectance are shown in Figs. 1.17b and 1.17c, respectively. Since the wavelength of the 
incident wave exactly fits the destructive interference condition for reflected waves (1.19) 
the plane-parallel plate exhibits almost 100% transmittance. 
 

 
 
Fig. 1.17. A problem of interaction of light with a dielectric plane-parallel plate in two dimensions. (a): 
geometry of the problem, for detailed description see text. (b): the distribution of Ey component. (c): 
transmittance and reflectance recorded by the top and bottom time monitor, respectively. 
 

It is also possible to perform frequency analysis in the frameworks of the FDTD 
scheme. This is realized in FullWAVE™ package by applying a fast Fourier transform 
(FFT) to the time response of a system recorded by a time monitor. In this case the system 
is excited by an impulse containing different frequencies in some, defined by the user, 
range. As an example, transmission and reflection spectra for a dielectric plane-parallel 
plate (the same as in Fig. 1.17a) are shown in Fig. 1.18. The blue and the green curves are 
the transmittance and reflectance, respectively. The red curve shows the frequency 
spectrum of the excitation pulse. The arrow indicates the frequency corresponding to the 
wavelength of 3.5 μm (f/c=0.286 μm-1) which was used for the simulation shown in Fig. 
1.17b. Figure 1.18 demonstrates typical Fabry-Perot oscillations where the spectral 
positions of the transmission maxima can be calculated by the formula (1.19). It is 
important to note, that due to the periodic boundary conditions all electromagnetic power 

(b) 

(c) (a) 
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irradiated in the system is now detected by either upper or lower (Fig. 1.17a) monitor, thus 
the transmittance and reflectance add up to unity.  

 
 
Fig. 1.18. Transmission (blue) and reflection (green) spectra for the same system as in Fig. 1.17a obtained by 
FFT analysis of the time response of the system. The red curve is the spectral width of the source. The arrow 
shows the frequency which was used in the simulation shown in Fig. 1.17b. 
 

The FFT analysis allows to obtain the spectral characteristics of a system in a single 
FDTD simulation. Unfortunately, the use of FFT in three dimensions requires a huge 
amount of physical memory (tens of gigabytes). This limits the applicability of the FDTD 
method for frequency domain calculations. 

Generally speaking, the RSoft FullWAVE™ package requires the following input 
information: 
 - the size of the computational grid cell; 
 - the size of the computational domain; 
 - the boundary conditions for the computational domain.; 
 - the refractive index profile; 
 - the size and the position of the source; 
 - the type of the excitation (constant wave, pulse); 
 - the profile of the excitation (Gaussian, rectangular, etc.); 
 - the sizes and the positions of the monitors. 
The output information which can be obtained by RSoft FullWAVE™ includes: 
 - the time-dependent flux of electromagnetic power through a time monitor normalized to 
the power irradiated by the source; 
 - the strengths of electric and magnetic field components at any point of the computational 
domain at particular time instants; 
 - the amplitudes of electric and magnetic fields at any point of the computational domain; 
 - the frequency-dependent flux of electromagnetic power through a time monitor 
normalized to the power irradiated by the source. 
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Chapter 2. Investigations of surface 
roughness and disorder in photonic crystals 

 
 
 
 
 
 
 
 

2.1. Disorder in photonic crystals (Review) 
 
The purpose of this review is to order and to summarize the information concerning 
influence of disorder on photonic crystals properties. The major part of this review is 
devoted to the influence of disorder on photonic band gap width and position (first three 
subsections). Another part (subsection 2.1.4) deals with disorder in photonic crystal 
cavities and waveguides. A few papers touching negative refraction and superlens effect in 
2D photonic crystals are also reviewed.  
 

2.1.1. One-dimensional photonic crystals 
An experimental investigation of surface roughness in 1D PhCs with a defect layer 

was done in [52]. 1D periodic structures consisting of alternating Si and SiO2 layers with 
thickness dSi=0.27 μm and dSiO2=0.9 μm were fabricated. A total of 10 layers were 
deposited on each sample. A central layer was the defect one with different thickness. 
AFM and STM measurements showed that the typical sizes of the surface roughness 
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features were in the range 5-15 nm. The numerical calculations were performed utilizing 
effective the medium approach and the transfer matrix method (TMM). Figure 2.1 shows 
transmittance measurements (black curves) and calculations (blue dashed curve). The 
dotted curve is the calculated transmittance of the structure without roughness.  

It was proposed to characterize the impact of disorder by means of three parameters: 
change in transmission amplitude of defect peak, change in transmission amplitude of the 
band gap edges and spectral shift of the defect peak position.  

 
Fig. 2.1. Transmission spectra of a Si/SiO2 1D 
PhC with a defect layer. Solid: measured, 
different curves were taken at different spot 
positions; dotted: no roughness, calculated by 
TMM; dashed: roughness included, calculated by 
TMM. Taken from [52]. 

Fig. 2.2. (a) The calculated reflection spectra for the 
regular PhC (thin line) and a PhC with three defect 
layers (thick line). (b) The experimental (thick line) 
and fitting to the experiments (thin line) reflection 
spectra for disordered photonic crystal. Experimental 
transmission spectrum for the same sample is shown 
by the dotted line. Taken from [53]. 

 
 The TMM calculations showed roughness-induced narrowing of the band gap and 

decreasing of both defect peak and band gap edges transmission amplitudes. The 
experiment confirmed the effects well with the exception of the shift of the high-frequency 
band gap edge being larger than predicted by theory. Quantitatively, the drop in 
transmission at the defect peak maximum was about 60 %, the drop in transmission at the 
band gap edges was about 20%, and the spectral narrowing of the band gap constituted 
about 40% with respect to the calculations made for ideal structure. 

The reflectance spectra of a silicon/air one-dimensional photonic crystal with 
disorder in thickness were measured in [53]. A disorder was introduced by changing the 
thicknesses of three of 11 silicon layers. The thickness of regular silicon layers was 1.7 μm 
while the defect layers were 1, 1.1, and 1.4 μm thick. Both numerical calculations and 
experimental measurements of reflectance spectra for normal incidence were carried out. 
According to the TMM calculations, the authors claim that a number of band gaps related 
to the periodic (perfect) structure are joined together and form a new, wider band gap 
ranging from 4.5 to 20.5 μm. (Fig. 2.2a) Experimental measurements, however, show 
lower reflectance in the mentioned range (Fig. 2.2b). It is necessary to point out that both 
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the measurement and the simulation were made only for one structure without averaging of 
the results. Besides, all the reflectance spectra are given in arbitrary units that make it 
impossible to obtain information about the absolute reflectance of the samples. Therefore, 
we believe that the statement about joining several band gaps due to insertion of three 
defect layers requires additional evidence. 

In the theoretical work [54] authors also reported on band gap extension with 
increasing of disorder. Their TMM calculations showed that the transmission bands 
between the band gaps could be turned in a high reflection range (R>95 %). Dielectric 
constants were ε1=10.24 and ε2=1.32 and the structure had 24 periods. The disorder in this 
paper was defined as: 
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where L0, H0 are non-perturbed thicknesses of the low- and high-index layers, respectively; 
H(i), L(i) are the real thicknesses of each layer; m is the number of the layers; nh, nl are the 
refractive indices. For simplicity the thickness of low index strata was kept constant (L(i)= 
L0) while the thicknesses of the high index layers were randomly chosen from a Gaussian 
distribution around H0. For disorder higher than 5 % three separate high-reflection regions 
corresponding to Bragg reflection maxima became coupled to one extended high reflection 
region (Fig. 2.3.). Thus, the main result of [54] is that the high-reflection region can be 
extended by introducing disorder to the thickness of the layers in a 1D photonic crystal. 

 A considerable statistical numerical analysis of disorder in 1D photonic crystals was 
carried out in [55, 56]. It was proposed to describe both disorder in thickness and disorder 
in refractive index in terms of disorder in optical length: 

 
)1()1(2/)( 00 PDPDnnnDD BAi δδ +=+=+= ,    (2.2) 

 
where Di is the optical length of a unit cell; D is the period of the photonic lattice; P is a 
random value in the range (-1/2;1/2); δ is a constant specifying the amplitude of disorder.  
The refractive index of the structures was described by the formula Pngnn BA δ00, +±= , 

while layer thicknesses were given by Pddd BA δ+=, . Characteristic values used in the 

calculations were: n0=2, g=0.025, 0.05, 0.1. The thickness of the structure was L=200D. 
The authors supposed that if disorders in refractive index and in thickness are described by 
the same optical lengths then they also have identical influence on transmission. 

TMM calculations of density of states and transmission spectra showed substantial 
reduction of the band gap: transmission inside the gap increases and the width of the band  
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Fig. 2.3. Reflectance spectra at normal 
incidence for disordered 1D binary photonic 
crystals. D is the disorder parameter 
calculated by (2.1). ω0 corresponds to 
λ0=1.15 μm. Taken from [54].  

Fig. 2.4. Transmission spectra for a single PhC structure 
(dotted lines), and averaged over an ensemble of 
structures (thick solid lines). Dashed lines show the 
spectra for an ideal structure, and the thin solid lines 
shows the spectra for a microcavity with a half-
wavelength core based on an ideal structure. Taken from 
[55]. 

 
gap decreases (Fig. 2.4). However, this result is related to an ensemble averaged over 103 
disordered structures while individual transmission spectra demonstrate spiky appearance 
of narrow high- transmission regions within the band gap. Furthermore, the authors have 
shown that the higher the contrast in refractive index the higher is the amount of disorder 
required to close a band gap. 

Further statistical analysis has shown that the dependence of transmission coefficient 
in the center of the band gap on disorder exhibits threshold-like behavior. When the 
disorder is smaller than some critical value δth (which is individual for each configuration) 
the transmission coefficient averaged over a large ensemble (106 structures) grows 
insignificantly with increasing disorder. For the δ>δth the transmission in the center of band 
gap grows fast. For all cases the position of a threshold was well described by the formula: 

3/)/( 0ωωδ Δ≈th , where 0/ωωΔ  is the relative width of the band gap. 

Calculations of band structure, density-of-states, transmission, and defect states in 1D 
photonic crystals utilizing supercell plane-wave expansion method (PWEM) and transfer 
matrix method were carried out in [57]. Disorder in thickness was introduced in highly 
contrast (εa/εb = 13/1) quarter-wave periodical structure. The supercell PWEM showed 
vanishing of the first (lowest), second and third band gaps at disorder 0.55d, 0.18d, and 
0.1d, respectively (d is the lattice constant). Transmission spectra, averaged over an 
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ensemble of 100 random structures, demonstrate a smearing of the band gap edges with 
increasing of disorder. At the same time, transmission outside the band gaps decreases. 

Thus, the reviewed papers could be divided in two groups: in the first one the papers 
are showing band gaps extension with increasing of disorder while in the second one 
authors claim that band gaps are reduced with increasing of disorder. It is necessary to note 
that all papers deal with normal incidence of light and all papers with the exception of [55] 
examined high-contrast structures. An evident distinction between these two groups of 
papers is that calculation and measurements of reflection showed band gap extension while 
transmission measurements show band gap narrowing. But anyway almost perfect 
reflection and average transmission at the same time is impossible. Thus, even for the 
simplest periodic structures – 1D photonic crystal – the problem of disorder influence on 
photonic band gaps is still actual. 
 

2.1.2. Two-dimensional photonic crystals 
A comprehensive theoretical analysis of transmission and reflection spectra for radial 
disorder [58] and positional disorder [59] was carried out for 2D triangular lattice "hole" 
photonic crystals (nair=1, nb=3.6, r=0.4a). In these papers an approach of distinguishing 
"straight" (or ballistic) transmitted light from scattered transmitted light is applied. It was 
shown that both size and positional disorder induce the increase of transmission within the 
band gap. Moreover, the intensity of the scattered light shows a strong dependence on 
disorder beginning from small values of δ~0.02 (relative to the lattice constant a), while 
ballistic transmission behaves in threshhold-like manner being insensitive to small disorder 
and starts to grow for δ>0.1. The resulting spectra were averaged over 10 configurations in 
[58] and over 20 configurations in [59] (Fig. 2.5). It is necessary to note, however, that in 
these papers an incomplete (only for ΓK direction) photonic band gap was examined. 

The thin lines on the spectra show the individual (non-averaged) 
transmission/reflection. It is clearly seen that for high amounts of disorder the band gap 
and transmission bands become indistinguishable parts of a spiky spectrum with moderate 
transmission and reflection.  
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Fig. 2.5. (Left) Calculated transmission spectra for photonic crystal with positional disorder for different 
values of the disorder parameter: δ= 0.01, 0.02, 0.05, 0.1, 0.15, and 0.2. Red lines are the ballistic 
transmission, blue lines are the scattered transmission – the thin lines for an individual configuration of 
disorder, and the heavy lines for the mean averaged over 10 random configurations of disorder. The ballistic 
transmission spectrum of the ideal photonic crystal is also shown (black dotted line) for comparison. (Right) 
Calculated reflection spectra for the same structures. Indigo lines are the ballistic reflection and green lined 
are the scattered reflection. Taken from [59]. 
 

Sigalas et. al. [60] considered three types of disorder: size, radius and dielectric 
constant in a 2D square lattice "rod" photonic crystal. The dielectric constant and filling 
ratio of rods were ε=10 and f=0.29, respectively. The band gap narrowing with increasing 
disorder is clearly manifested on transmission spectra and DOS plots. The high-frequency 
gaps are more sensitive to disorder and vanish first. In addition, the calculation showed that 
the wider the gap of the periodic case, the larger is the amount of disorder needed to close 
it. 

Lidorikis et. al. [61] considered disorder in both "hole" and "rod"-type 2D photonic 
crystals organized in square lattice (εa/εb=1:10). The FDTD method (DOS calculations) 
and the TMM (transmission calculations) were applied. Disorders in position, radii and 
dielectric constant were examined, and overlapping of the rods was allowed in several 
cases. For all types of disorder band gap reduction was clearly observed in spectral 
dependencies of transmission and DOS. However, in the case of "rod" type structure, the 
photonic band gaps for the Ez polarization (z-direction is parallel to the rod axes) survive 
very large amounts of positional disorder while the Hz band gaps vanish quickly. 
Averaging over 20 disorder configurations was used.  

A model of "nearly-free" and "strongly localized" photon states was suggested in 
order to explain the response of optical properties of photonic crystal to disorder in [61]. In 
the "strongly localized" case the gap-forming mechanism is the short-range excitation of 
single-scattering Mie resonances. Thus, a long-range periodicity is not strictly necessary 
for existence of a band gap and positional disorder has no strong effect. This mechanism 
can explain why the Ez photonic band gap in the solid cylinder case, where sharp Mie 
resonances appear, sustains a high amount of positional disorder. In the "nearly-free" 
model the decisive gap-formation mechanism is Bragg-like reflection due to multiple 
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scattering. Spatial periodicity is very important in this case since the incoherence of 
scattered waves will destroy strong interference effects and band gaps will smear out. 

Asatryan et. al. investigated refractive index disorder [62], as well as positional and 
radius disorders [63] in a square lattice 2D photonic crystals consisting of 20 rows of 
cylinders with nc=3.0 and fc=0.283 surrounded by air. Transmission spectra were averaged 
over up to 100 different disorder realizations in each case. Disorder in refractive index was 
introduced by the formula [62]: δ+= nnl , were δ takes random values in the range (-

Q;Q). Transmission spectra for Q={0, 0.2, 0.4, 0.8} are presented on Figs. 2.6 and 2.7 for 
Ez and Hz polarizations, respectively. It is necessary to point out that the relative increase 
of the minimal transmission in the lowest band gap in the Ez polarization case (~1.5 times) 
is smaller than for the Hz polarization (~5 times) with increasing disorder. 

  
Fig. 2.6. Plot of Tln  vs wavelength for Ez 
polarization for Q=0 (solid), Q=0.2 (dashed), Q=0.8 
(short dashed). Taken from [62]. 
 

Fig. 2.7. Similar to Fig. 2.6. but for Hz 
polarization. Here Q=0 (solid), 0.2 (dashed), 0.6 
(dotted), and 0.8 (dot-dashed). Taken from [62]. 

 

Radial disorder in [63] was defined with respect to the lattice constant d. 
Transmission spectra are given for Q=0.01d (~0.033 of radius) and Q=0.08d (~0.26 of 
radius). As in previous case, the lowest gap for Ez polarizations sustains much higher 
disorder than the one for Hz polarization (Figs. 2.8 and 2.9). 

  
Fig. 2.8. Plot of Tln  vs wavelength for Ez 
polarization for Qr=0 (solid), Qr=0.01d (dashed), and 
Qr=0.08d (dotted). Taken from [63]. 
 

Fig. 2.9. Same as Fig. 2.8. but for Hz 
polarization. Taken from [63]. 
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In the case of positional disorder, the band gaps for Ez polarization are affected 
insignificantly even for high amount of disorder Q=0.15d (Fig. 2.10). The main effect is 
the appearance of "resonances" in the long-wavelength part of the lowest (right on the 
picture) band gap. In the case of Hz polarization even a small amount of positional disorder 
significantly increases the transmission within the band gap (Fig. 2.11). 
 

  
Fig. 2.10. Plot of Tln  vs wavelength for Ez 
polarization for Qc=0 (solid), Qc=0.05d (dashed), Qc 
=0.15d (dotted). There are Nc=10 cylinders per unit cell 
and NL=20 layers in the stack. Taken from [63]. 
 

Fig. 2.11. The same as in Fig. 2.10, but for Hz 
polarization. Taken from [63]. 

Thus, for all three types of disorder in 2D photonic crystals consisting of high-index 
rods organized in a square lattice in air, the transmission of Hz polarized EM waves is 
essentially sensitive to any type of disorder, while Ez polarized waves demonstrate high 
stability of photonic band gaps, especially in the case of positional disorder. 

Disorder in radius was examined for both "rod" and "hole" type 2D photonic crystals 
in [64] by the supercell PWEM. The contrast of the dielectric constants was 12:1; r=0.2a 
for the "rod" PhC and the r=0.4a in "hole" PhC. Only DOS calculations were performed 
utilizing 9x9 supercell. The authors reported a moderate reducing of the band gap width 
with increasing disorder up to δ=0.15r in all three investigated cases: TM(Ez) square lattice 
"rod"; TM triangular lattice "rod"; TE triangular lattice "hole". Band gap width reduction 
in all cases was due to the appearance of spike-shaped "localized" areas of non-zero DOS.  

Li et. al. [65] considered radial and positional disorder in square and triangular lattice 
"rod" photonic crystals with dielectric constants contrast 13:1 and r=0.309a. DOS 
calculation by the supercell PWEM showed that only disorder in radius (up to δ=0.33r) has 
considerable effect on the band gap. Positional disorder up to δxy=0.45r does not impact 
band gap significantly. 5x5 and 7x7 supercells were used for positional and size disorder, 
respectively.  

R. Meisels and F. Kuchar [66] gave a detailed analysis of disorder in two types of 
structures: square lattice "rod" photonic crystals with ε=13, r=0.329a and triangular lattice 
"hole" structures with ε=13, r=0.4a. DOS and field distributions were calculated by 
supercell PWEM. The lowest band gap of the "rod" type PhC demonstrated high stability: 
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only the high-frequency edge of the gap was shifted to lower frequencies with increasing 
of disorder up to 0.1a. However, the same amount of disorder introduces numerous 
"localized" states inside the second gap. The triangular lattice is more sensitive to disorder 
as indicated by stronger narrowing of the band gap. The field distribution patterns 
calculated for highly disordered structures showed that the gap states are localized within 
few lattice constants in the supercell. FDTD propagation simulations showed increasing of 
scattering and destroying of beam-like propagation with increasing disorder. This effect is 
stronger for higher frequencies. 

W. R. Frei and H. T. Johnson [67] found that in some cases of positional disorder in 
square lattice "rod" PhC (εc=11.4), the transmission within band gap can decrease with 
increasing of disorder. Actually, this effect was clearly observed only for the lowest Ez 
band gap and positional disorder. Disorder in radius in most cases increased the 
transmission. The effect was explained by a "point defect model" which represents 
disorder as a set of point defects. Each point defect increases the lateral and back-scattering 
of EM waves that may lead to a decrease of the overall transmission. The authors have not 
provided quantitative characterization of "apparent increase of the band gap strength" but it 
appears from the plots that the effect is very small and most likely experimentally 
undetectable. 

Experimental investigations of disordered 2D photonic crystals were carried out by 
Bayindir et. al. [68]. Dielectric photonic crystals were made of cylindrical alumina rods 
with r=1.55 mm and n=3.1 and organized in a square lattice with lattice constant a=1.1 cm. 
Transmission spectra were measured for two cases of positional disorder (δxy=0.11r and 
δxy=0.25r) and each curve was averaged over 5 different random configurations (Fig. 2.12). 
Two main effects were observed with increasing disorder: the band gap became narrower 
and upper band gap edge decreased nearly by 15 dB. In spite of narrowing, the gap is still 
obvious even for δxy=0.25. Metallic photonic crystals were constructed from cylindrical 
copper rods with radius 1.55 mm and lattice constant a=1.1 cm. In addition to photonic 
band gaps, appearing due to a refractive index modulation, metallic photonic crystals also 
have a “metallicity gap” extending from 0 GHz to the plasma frequency (11.67 GHz in 
Fig. 2.13). The photonic band gap in metallic structure is strongly affected by disorder and 
vanishes quickly while the metallicity gap remains almost unchanged.  
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Fig. 2.12. The measured transmission spectra 
for (top) periodic (δr=0), and for disordered 
dielectric photonic crystals with (middle) 
δr=0.11r and (bottom) δr=0.25r. The photonic  
band gap shrank as the amount of disorder was 
increased. Taken from [68]. 

Fig. 2.13. . The measured transmission spectra for (top) 
periodic (r=0), and for disordered metallic photonic 
crystals with (middle) δr=0.11r and (bottom) δr=0.25r. 
As the amount of disorder increased the plasma 
frequency is shifted to lower frequencies and the 
photonic band gap closed quickly. Taken from [68]. 

 
Transmission experiments for a 2D array of Teflon cylinders were carried out by Li 

et. al. [69]. Square and rectangular lattices were examined and the structures had the 
following parameters: R=40±20 μm; a=170±20 μm; ε=2.2. A PhC with such parameters 
exhibits only unidirectional band gaps. By comparison of calculations and measurements 
the two main conclusions were made: (1) transmission dips corresponding to stop bands 
become shallow or can be washed out and (2) the transmittance obviously decreases with 
the frequency. 

We conclude that the main effect of disorder is progressive blurring and as a result 
total vanishing of photonic band gap with increasing of disorder. At the same time, the 
areas of high transmission located between the band gaps, also smear out so a spectrum 
becomes "spiky" and formerly allowed and forbidden bands become undistinguishable. 
This general conclusion is confirmed mostly for square lattices of high-index circular rods 
in air [60-63, 67-69] fewer papers dealt with square-hole ([61, 65]), triangular-hole [58, 
59], and triangular-rod [64, 65] photonic crystals. In [67] a decrease of transmission within 
the gap was detected. However, the authors have not provided a quantitative 
characterization of this "apparent increase of the band gap strength" but it appears from the 
plots that the effect is very small and most likely undetectable experimentally. Also, it is 
necessary to note, that results of [60, 61] and [62, 63] are correlated very well. Particularly, 
the high stability of the band gap with respect to Ez polarization in square-rod photonic 
crystals was confirmed. 
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2.1.3. Three-dimensional photonic crystals. 
The TMM was used to study disordered 3D PhCs with a diamond lattice in [70]. The 
disorder was introduced by moving the lattice points from their ideal positions. The 
simulations showed that increasing disorder results in smearing of the band gap. For the 
case of a diamond lattice of spheres (both air spheres in a matrix and high-index spheres in 
air) the band gap disappeared at disorder amplitudes of 0.1a, where a is the lattice constant. 
However, due to computational restrictions a supercell with the width of only 3 
conventional lattice cells was used and no proper convergence study was done.  

The supercell PWEM was applied to inverse-opal structure to examine the effects of 
positional and size disorder in [71]. The size of the band gap was estimated by calculation 
of the density of states. The dependence of the band gap width on the disorder parameter is 
shown in Fig. 2.14. As can be deduced from the figure the band gap is very sensitive to 
both types of disorder. In the case shown in Fig. 2.14a a positional disorder with an 
amplitude of 0.6r0 destroys the band gap completely. In the case of a structure with higher 
refractive index contrast (Fig. 2.14.b) the band gap sustains slightly higher disorder of 
0.7r0. 

 
Fig. 2.14. Dependence of the band gap width on the disorder amplitude for size disorder (circles), positional 
disorder (squares) and both types of disorder simultaneously (triangles) for inverse opal PhCs. The random 
strength is given in units of the radius of the spheres (r0). Case (a) corresponds to n=3.6 and f=0.78; (b): n=4 
and f=0.78. f is the filling fraction of air spheres and n is the refractive index of the background. Taken from 
[71]. 
 

Both theoretical and experimental investigations of size disorder in opal photonic 
crystals working in visible part of EM spectrum were performed in [72]. The calculated 
transmission spectra for different amplitudes of size disorder as well as experimental 
transmittance are shown in Fig. 2.15. The curves 1-8 correspond to calculated 
transmittance with disorder varying from 0% to 10% with respect to the diameter of the 
spheres. The solid line 9 represents the experimental transmittance of the silica-air opal 
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structure. All curves correspond to fcc [111] propagation direction. The inset shows the 
dependence of attenuation length on disorder amplitude at the midgap frequency. Although 
the results of simulations also show the effect of increased transmittance within the band 
gap with increasing disorder, it is important to note that even for the case of 10% disorder 
(curve 8) the transmittance within the band gap is still as low as 10-5, so the band gap is 
still clearly defined. The experimental transmittance, however, shows a shallower band gap 
with a minimal transmittance of approximately 1%. 
 

 
Fig. 2.15. Calculated transmission spectra of a 3D opal PhC with varying disorder. The standard deviation δ 
of the spheres diameter is 1–0 %, 2–0.5 %, 3–1 %, 4–2 %, 5–3 %, 6–4 %, 7–5 %, 8–10%. Thick solid line 9 
is the experimental spectrum. The inset shows the dependence of the attenuation length on disorder parameter 
for the midgap frequency. Taken from [72]. 
 

The general effect of band gap shallowing and broadening with increasing disorder 
was confirmed in a number of other publications [73, 74, 75, 76, 77, 78]. One should 
mention, however, that it is very difficult to create a controlled disorder in 3D PhCs 
experimentally in order to directly compare a disordered with a non-disordered structure. 
Another difficulty in disorder characterization of 3D structures is the large number of 
possible irregularities. In addition to positional and size variations such effects as stacking 
faults, grain boundaries, differently oriented domains, point defects and dislocations can 
affect transmittance and reflectance of a 3D photonic crystal.  
 

2.1.4. Influence of disorder on waveguiding and negative refraction in 2D 
photonic crystals. 
Many real or potential applications of photonic crystals are connected with the possibility 
of effective light confinement by defects intentionally introduced in otherwise perfect 
superlattices. For instance, a single defect (e.g. a missing hole or rod) in a 2D photonic 
crystal acts as a cavity for modes with frequencies inside the gap of the surrounding lattice. 
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Such a cavity can confine light in the plane of periodicity with very high Q-factor and low 
modal volume. A line defect (missing column or row) is an effective waveguide where the 
guiding mechanism is not a total internal reflection but reflection due to a gap in the 
surrounding lattice. As a result, high transmission through such a waveguide is observed 
even at high bending angles up to 90 degrees. This subsection gives a review of disorder 
influence on defect guiding in photonic crystals as well as on negative refraction and 
superlensing imaging. 

 Gupta and Ye [79] considered the effect of disorder on superlensing in 2D photonic 
crystal. A superlens consisting of a square lattice of dielectric rods with ε=14 in air and 
only Ez polarization is examined. The authors have shown that the positional disorder of 
δ=0.08a does not impact the quality of an image significantly while δ=0.14a sufficiently 
smears out the image and there is no image at all for δ=0.2a. 

 X. Wang and K. Kempa [80] investigated numerically the effect of positional and 
size disorder on subwavelength lensing in 2D photonic crystals. The structures studied 
consisted of a triangular-lattice array of circular air holes with r=0.4a embedded in a 
background material with ε=12.96. By analyzing the band structure it was deduced that 
negative refraction effects will be observed at reduced frequency ω0=0.31. Transmission 
calculations were carried out by FDTD. A perfect photonic crystal slab of thickness 7.8a 
acts as a superlens creating an image of a point source located at the distance 4a from the 
surface. Introduced disorder worsens the quality of the image. It was found that for 
disorder amplitudes d≤0.03a (for positional disorder) and d≤0.05a (for size disorder) the 
intensity of the image is still high. However, for higher disorders the image smears out 
very quickly and for d≥0.07a an image is of bad quality for both types of disorder. This 
result was confirmed statistically by the calculation of 30 randomly generated 
configurations of positional disorder with d=0.07a. 

The effect of disorder on light confinement in a photonic crystal cavity was 
investigated by Rodriguez et. al. [81]. The structure studied was a square lattice "rod" PhC 
with a rod radius 0.2a and a rod dielectric constant ε=12. The cavity was formed by 

 
Fig. 2.16. 2D band gap and cavity mode frequencies versus strength of disorder in dielectric constant 
(maximum percent variation of rod ε). The inset shows the cavity structure. Taken from [81]. 
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removing a single rod. The Q factor of the cavity was derived from FDTD calculations 
being averaged over 15 random configurations. Three types of disorder were examined: 
positional with δxy=0.15a; dielectric constant with δε=0.15; and size disorder was 
introduced by adding/removing 20 cylinders with random radii in the range (0; 0.0625a) on 
the surface of each rod. It was shown that Q factor of the cavity almost does not affected 
by even high amount of any type of disorder. Moreover, in case of positional disorder the 
Q factor is even higher than that one of the ideal structure. Supercell PWEM calculations 
showed that a band gap still exists even for such a high amount of disorder of the dielectric 
constant as 80% (Fig. 2.16). All calculations were carried out only for Ez polarization.  

Kuramochi et. al. [82] considered a four-point defect cavity with smaller and shifted 
holes (radius: 50%, shift: 0.25a) in a silicon-air 2D photonic crystal. In this paper the main 
emphasize was put on the characterization of losses. The authors claim that disorder makes 
a main contribution to the photonic crystal cavity performance leading to decreasing Q-
factor. In order to estimate the modification of Q-factor with increasing disorder the FDTD 
method was used for a silicon photonic crystal with the following parameters: a=420 nm, 
r=0.25a. The calculations showed high sensitivity of the cavity Q-factor to disorder in 
radius (Fig. 2.17). For instance, a radius uncertainty of 3 nm decreases the Q-factor of the 
cavity to a half the value without disorder which is close to the experimentally measured 
Q. Such a behavior of cavity Q-factor is strictly opposite to the behavior reported in [81]. 

Kwan et. al. [83] investigated the influence of disorder on a 90° bend in a W1 
waveguide formed in square lattice "rod" type PhC ("W1" means that one row of holes or 
rods is missing). The dielectric constant and the radius of cylinders were 11.56 and 0.18a, 

 

 
Fig. 2.17. Disorder dependence of the cavity 
Q-factor as a function of the RMS hole 
radius obtained by FDTD calculations. 
Taken from [82]. 

Fig. 2.18. Several particular configurations of disorder 
introduced in 90° bend in a photonic crystal waveguide: 
(a) all cylinders are disordered; (b) only those cylinders 
in the boundary layer are disordered;  (c) all cylinders 
except those in the boundary layer are disordered; (d) no 
disorder. Taken from [83]. 
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respectively. Three different configurations were considered: (a) all cylinders are 
disordered; (b) only the cylinders in the boundary layer surrounding the waveguide are 
disordered; (c) all cylinders except those in the boundary layer surrounding the waveguide 
are disordered (Fig. 2.18). For each configuration two types of disorder were applied: 
positional disorder with amplitudes δxy= 0 - 0.3a and size disorder with random parameter 
δr= 0 - 0.1a. The transmission through the 90° bend was calculated by the multiple 
scattering method. For configurations (a) and (b) both types of disorder induced a 
significant decrease of transmission coefficient. However, it appears that for configuration 
(c) both positional and size disorder have almost no effect on the transmission through the 
waveguide.  

Langtry et. al. [84] considered the transmission through a straight W1 waveguide in a 
square lattice "rod" type photonic crystal. All cylinders had the same radius r = 0.3a but 
the refractive index of each one was randomized with amplitudes of δn = 0.1n0; 0.2n0; and 
0.3n0 around the mean value of n0=3. Little degradation of waveguiding was observed for 
δn=0.1n0; noticeable degradation for δn=0.2n0; and for δn=0.3n0 the EM energy was 
effectively scattered by the structure and consequently transmission through the waveguide 
was almost zero.  

Poulton et. al. [85] considered the effect of sidewall roughness on transmission 
through a strip waveguide as well as through a photonic crystal W1 waveguide.  

In the first case a silicon strip on a glass substrate has the same width and height, 
h=w=0.365 μm; the sidewall root mean square roughness was ranged from σ=5 to σ=50 
nm; and the operating wavelength was λ=1.55 μm. The simulations were done by a 
vectorial wavelet-based time domain collocation method. It was found that the attenuation 
grows significantly (> 0.2 dB/μm) for rms values of more than 20 nm. Furthermore, the 
TE-mode (E field is parallel to substrate plane) attenuates much faster than TM-mode.  

The W1 photonic crystal waveguide was represented by a missing row of holes in a 
periodic structure with a=484 nm and r=186 nm in InP (n=3.1). The rms magnitude of the 
sidewall perturbation was σ=10 nm. Calculations of the transmission over an ensemble of 
194 sidewall-perturbation realizations showed that the structure is tolerant to sidewall 
perturbations of the magnitude given above. About 92 % of calculated structures retain at 
least 90 % of the transmission of the unperturbed waveguide. The sidewall perturbations 
can even improve the transmission – this was observed in 59% of cases. 

Gerache and Andriani [86] investigated theoretically the effect of disorder in radius 
on losses in a W1 waveguide made in triangular lattice "hole" type photonic crystal. Two 
types of structures were considered: silicon-air PhC membranes and SOI (silicon-on-
insulator) waveguides. Disorder was characterized by the root mean square deviation Δr. 
The structures investigated had the following parameters: a=400 nm, r=0.275a, slab 
thickness d= 220 nm. Calculated out-of-plane losses are compared to the experimental 
results obtained by Notomi et al. [87]. It was found out that for disorder parameters of 
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Δr=3.2 nm and Δr=2.2 nm the experimentally measured values of propagation losses were 
very well reproduced for silicon-air and SOI structures, respectively. A new design of low-
loss high-bandwidth photonic crystal waveguides was proposed. For membrane-type 
structures, it was shown that increasing the waveguide channel width to W=1.5W0 should 
allow to achieve a large propagation bandwidth with predicted losses well below 0.1 
dB/mm. 

Thus, in general the effect of disorder could be defined as worsening the cavity or 
guiding characteristics. However, there are some papers apart from this conclusion. In [81] 
simulations show practical independence of Q-factor from disorder. It is necessary to note 
that rods-in-air disordered square-lattice structures are well investigated and most of the 
papers reported band gap reduction even for smaller amount of disorder [60, 61, 62, 63, 
66]. An interesting result is obtained in [82]: line defect guiding requires only the boundary 
layer surrounding the defect to be ordered, disorder in rest of the photonic crystal has very 
weak influence on transmission through the waveguide. In [85] sidewall roughness even 
increased transmission through the waveguide in 59% of the cases studied. 

We suppose that the different results, discussed above, resulted from the high 
sensitivity of guiding and cavity effects to particular system properties such as geometry, 
refractive indices, band gap width, frequency of defect mode, etc. For instance, we can 
surmise that if the frequency of guided mode is located in the center of the lowest band 
gap, which usually sustains the highest amount of disorder, the perturbing effect of 
disorder is minimal.  

 

Conclusions 
Intuitively one can suppose that since the existence of band gaps in a photonic crystal is a 
consequence of refractive index periodicity, the destruction of that periodicity should result 
in disappearance of the band gaps. The major part of the reviewed papers confirms this 
general trend. There are some reports, however, which show an increase of the band gap 
width and/or depth with increasing disorder [53, 54, 67] or very weak dependence of the 
band gap width on disorder [81]. 

It should be mentioned that we have found very few experimental papers where the 
disorder was created intentionally and where the optical properties of the same structure 
with different amounts of disorder were directly compared experimentally. 

Another point which makes a comparison between different papers difficult is the 
large number of photonic crystal parameters which can influence the results. Lattice 
symmetry, shape of the "atoms", refractive index contrast, filling fractions – all these 
parameters can influence the dependence of the photonic crystal properties on disorder. 

Thus, the problem of disorder in photonic crystals is still a topical problem. In section 
2.2 we examine both numerically and experimentally the influence of surface roughness on 
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the properties of 1D PhC. We have developed a 2D FDTD model for calculation of 
transmission, reflection, and EM field distribution in 1D PhC with surface roughness. 
Experimentally, we have fabricated 1D PhCs with controllable roughness and transmission 
spectra of the same structure with and without surface roughness were compared [88]. 

In section 2.3 we present 3D FDTD simulations of specific colloidal 3D PhCs with 
non-close-packed arrangement of silica spheres in aqueous medium [89].The main aim of 
this section is to investigate theoretically the wave propagation and the influence of 
disorder on the optical properties of the 3D PhCs. 
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2.2. Surface roughness in one-dimensional photonic 
crystals: simulations and experiments 
 
In this section we present numerical and experimental investigations of the influence of 
surface roughness on the optical properties of 1D PhC. The problem of surface roughness 
is of particular interest since surface imperfections inevitably appear during fabrication of 
nanometer and micrometer-sized photonic structures. Our aim is to create controlled 
roughness and to compare the optical properties of the same structure with and without 
surface roughness. The main points of interest in our opinion are the mechanism of the 
band gap smearing, estimation of the amount of disorder under which a PhC still exhibits 
band gaps and the determination of the relation between transmission, reflection and 
scattering. Transmission experiments were performed in the microwave region on a mm-
sized structure with a roughness of the order of 10 percent. Due to the scalability of 
Maxwell’s equations the main conclusions are valid for down-sized structures like 
submicron-sized photonic crystals for the near infrared and visible regions.  
 

2.2.1. Description of the model 
It is important to define the surface roughness in a clear and reproducible way consistent 
with the sample used in the experiment. In our 2D model we consider each high-index 
layer of a PhC as being composed of thin bars with the same width (Fig. 2.19). In the case 
of a structurally perfect photonic crystal with zero-roughness all these bars have the same 
length. The surface roughness is created by a random change of the length of each bar.  

Mathematically the roughness is introduced in the following way: the lengths of the 
bars (lbar) are varied randomly around the length in the perfect structure (lh) according to 
 

)1( 1;1−⋅+= Pll hbar δ .       (2.3) 

 

P-1;1 is a uniformly distributed random value in the range [-1;1], and δ is the roughness 
amplitude. As an example, for δ=0.1 the value of lbar varies between 0.9lh and 1.1lh. The 
position of the center of each bar is the same as in the perfect PhC. Thus, the top and the 
bottom sides of each individual layer have the same roughness profile. The roughness 
profiles are different for the different layers. This corresponds to five different realizations 
of roughness within one PhC. Therefore, we suppose that the roughness being the same on 
both sides of a layer does not disturb generality of the model. The scheme of a part of a 
layer with roughness is depicted in Fig. 2.19. 
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Fig. 2.19. The scheme of a part of a layer with roughness used in our model. 

 
The simulations (in accordance with the PhCs used in the experiments) were carried 

out for a five-layer dielectric-air structure with the following parameters: the thickness of 
the dielectric layers is 1.11 mm, the air spacings between the plates are 1.21 mm which 
corresponds to a period of the structure a=2.32 mm. The total number of bars in each layer 
(NR) defines the "roughness resolution". Table 2.1 shows the correspondence between the 
resolution and the width of a single bar. The total width of the layers in the model is 15a or 
approximately 35 mm; in the experiment the lateral dimensions of the plates are 24x39 
mm. The dielectric constant is assumed to be 9.86 since ultra-pure alumina is used as the 
dielectric material in the experiment and this value gave the best fit to the experimental 
spectrum of the structurally perfect PhC. 
 

Table 2.1 

Resolution (number of the 
bars in each layer) 

The width of a 
single bar, mm 

NR=150 0.232 
NR =300 0.116 
NR =600 0.058 

 
The transmission spectra were calculated by means of Rsoft FullWAVE™ [51] 

commercial package. In Fig. 2.20 the general view of the problem is shown. The horizontal 
bar 1 represents the source which emits a plane wave only in the direction of the PhC. The 
horizontal bars 2 are transparent time monitors which record the EM energy flux as a 
function of time. The purple frame shows the edge of the computational domain with 
perfectly matched layers, i.e. totally absorbing boundaries. An additional MatLab program 
was written to introduce random values into the FullWAVE input files. This program is 
listed in Appendix II. 

Two simulation techniques were used: direct finite-difference-time-domain (FDTD) 
calculations (subsection 2.2.5) and FDTD calculations followed by a fast Fourier transform 
(subsections 2.2.3 and 2.2.4). In the latter case a Gaussian-pulse excitation is used. A 
monitor records the energy flux as a function of time and then the fast Fourier transform 
(FFT) is applied to this function. As a result we obtain a transmission spectrum normalized 
to the power emitted by the source. 
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Fig. 2.20. General view of the problem. The horizontal bar 1 is the source. The bars 2 are the monitors. The 

purple frame is the edge of the computational domain with PML absorbing boundary conditions. 
 

The size of the FDTD computational cell is 1/128 with respect to the period of the 
PhC. We have tested the problem also on a 1/256 grid but no difference in the results was 
observed. Using the FFT to calculate transmission spectra can result in some numerical 
artifacts for low frequencies, since a time limit is set for the calculations time. In order to 
check the range of validity, the transmission of the structurally perfect PhC was also 
simulated by the MULTEM2 [90, 91] program utilizing the multiple scattering method. 
The very good coincidence observed for the perfect structure between FullWAVE™ and 
MULTEM2 spectra for frequencies above 5 GHz confirms that we have chosen a 
sufficiently fine grid and a sufficiently long calculation time in our FDTD simulations. 
This is also valid for the simulations of PhCs with roughness where MULTEM2 is not 
applicable. 

The model described above is a two-dimensional model. Nevertheless, we expect that 
deviations from results of a three-dimensional model are small. The reasons are: (a) The 
transmission is averaged over 10 different realizations of the roughness. This can be 
considered as being equivalent to 10 layers on top of each other in the third direction. That 
way the roughness varying in the third dimension is taken into account to some extent. (b) 
However, from the edges of a PhC extended in the third direction some light would be 
scattered which is not detected by the monitors of the two-dimensional calculation. This 
will not affect the general spectral features, it can only cause a lower transmission or 
reflection than calculated in the two-dimensional model.  
 

2.2.2. Experimental: sample characterization and measuring setup. 
Experimentally fabricated 1D PhCs consist of five 1.11 mm thick alumina plates separated 
by air spacings of 1.21 mm. With these dimensions the lowest transmission bands are in 
the microwave range of the electromagnetic spectrum. The photos of a single plate and the 
1D PhC in a holder are shown in Figs. 2.21a and 2.21b, respectively.  
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(a)  (b) 
 

Fig. 2.21. (a) A single alumina plate with a 2 euro coin on a laptop. (b) One-dimensional alumina-air PhC in 
a holder. 

 
The surface roughness was created by gluing alumina powder to both surfaces of each 

plate. For the determination of the roughness we used optical microscopy and profilometry. 
Additionally, atomic force microscopy was used for the surface of the uncovered alumina 
plates whose rms roughness was found to be 0.7 μm. This is considered to be negligible in 
the present context.  

The grains of the alumina powder have irregular shape with the dimensions varying 
from 30 to 140 μm. About 75% of the grains have sizes in the range 60-90 μm. In Fig. 2.22 
a photo of powder grains to be glued to the plates is shown.  

 

 
Fig. 2.22. The photo of the alumina powder grains to be glued to alumina plates. 

 
Optical confocal microscopy was used for the measurements of the surface roughness 

profiles. The measurements taken over the edge between a covered and an uncovered parts 
of a plate (the edge is located approximately at x=150 μm) are shown in Fig. 2.23. The 
thickness of the glued layer is estimated to vary from 70 to 140 μm.  
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Fig. 2.23. The profiles of the alumina plate with glued alumina powder measured by confocal optical 
microscopy. The measurements were taken over the edge between the covered and uncovered parts (the edge 
is located approx. at x=150 μm). Different colors correspond to 7 different profile measurements. 

 
In addition to optical methods we have also performed profilometry measurements. A 

typical roughness profile is shown in Fig. 2.24. The maximum peaks obtained from 
profilometry were around 70 μm (in Fig. 2.24: 68.6 μm) which is consistent with the 
results obtained from confocal microscopy. Thus, although some of the grains have larger 
dimensions, up to 140 μm, the typical height variation of the surface covered with the 
powder is 30-60 μm. We explain this fact by the existence of the layer of glue with the 
thickness 30-40 μm on the surface. The grains are partially submerged in this glue layer, 
so, the resulting roughness profiles have the peak heights which are on average lower than 
the sizes of the grains. Moreover, many powder grains are large in one dimension only, 
thus, if such grains are "standing" on the surface their sharp and thin ends are hardly 
detectable both by the confocal microscopy and by the profilometry. 

 

 
Fig. 2.24. The profilometry measurement of the surface roughness. 

Transmission through the samples with and without roughness was measured in the 
microwave Q-band (33-50 GHz), V-band (50-75 GHz), and W-band (75-110 GHz) using 
backward wave oscillator sources Siemens RWO-50S, RWO-75S, and RWO-110S 
respectively.  
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The scheme of the experimental setup is presented in Fig. 2.25. The thick connecting 
lines depict the waveguides while the thin ones correspond to signal cables. The 
"microwave source" denotes one of the mentioned backward wave oscillators; the 
"isolator" absorbs the reflected irradiation propagating back to the source; the "variable 
attenuator" is needed for better control of the irradiated power. After interaction with the 
sample the microwaves are collected by the receiving horn antenna and guided to the 
"thermistor mount". The absorption of the microwaves by the thermistor results in a 
change of its resistance proportional to the absorbed power. The signal obtained from the 
themistor is transformed by the "power meter" into a voltage signal which is recorded in a 
computer after analog-to-digital conversion ("ADC"). Simultaneously the computer 
obtains the current value of the frequency of the source, thus a dependence of transmission 
signal on the frequency is obtained. In a single measurement run we record the 
transmission for the entire working range of a source. 

Due to the use of the horn antennas the direction of EM wave propagation is 
essentially normal to the surface of the PhC. The sample was surrounded by a sheet of 
absorbing material to block possible in-direct waves (e.g. reflected by the table or optical 
bench). Thus, all the energy absorbed by a detector comes from the microwaves which 
passed through the sample.  

 

 
Fig. 2.25. Schematic description of the experimental setup. More detailed information is in text. 
 

In order to exclude the influence of the metal holder on the measurements we took the 
transmittance through the empty holder as a reference transmittance. Additionally, the 
distance from the sample to horn antennas was much larger than the wavelength, so the 
waves diffracted on the edges of the metal holder should not contribute to the measured 
transmittance. 

Due to the very low signal within the band gap regions the transmission was measured 
there with increased sensitivity of the power meter in order to obtain a better signal-to-
noise ratio. 
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2.2.3 Simulations results. 
The calculated transmission spectra for the cases δ=0.2, NR=300 and δ=0.4, NR =300 are 
presented in Figs. 2.26a and 2.26b, respectively. The solid black curve shows the 
transmission of the zero-roughness structure with the thickness of the high-index layers 
lh=1.11 mm. Each of the thin gray curves (10 in each spectrum) is the transmittance of 
sample with an individual realization of the roughness configuration. The dashed blue 
curve shows the transmission averaged over an ensemble of 10 structures with the same δ 
(thin gray curves). The frequency 100 GHz corresponds to a reduced frequency 
ωa/2πc=0.77. 
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Fig. 2.26. Calculated normal-incidence transmission spectra of the 1D PhC with surface roughness: δ=0.2, 
NR=300  (a); δ=0.4, NR =300 (b). Solid black curve: zero-roughness structure; gray curves: 10 different 
realizations of surface roughness with the same δ; dashed blue curve: the transmission averaged over the 
ensemble of the 10 realizations. 100 GHz corresponds to a reduced frequency ωa/2πc=0.77. 

 



2.2. Surface roughness in 1D photonic crystals: simulations and experiment   
 

53 

It is clearly seen from Fig. 2.26 that the surface roughness practically does not affect 
the lowest band gap even for δ=0.4 (Fig. 2.26b). However, the higher the frequency the 
higher is the effect of the surface roughness. The gaps shrink, the interference structure 
within the transmission bands is smeared out, and the fine structure of the spectra depends 
on the details of the realization of the roughness. This is easily understandable since the 
frequency of the center of the first band gap (34 GHz) corresponds to a wavelength λ/n=2.8 
mm that is more than 10 times larger than the size of the roughness features. The center of 
the third band gap (100 GHz) corresponds to a wavelength of λ/n=0.96 mm that closely 
approaches the order of the dimensions of the roughness features. 
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Fig. 2.27. The same as in Fig. 2.26 but for NR=150, δ=0.2 (a); NR=150, δ=0.4 (b); NR=600, δ=0.2 (c); 
NR=600, δ=0.4 (d). 

 
The results of similar calculations but for NR=150, δ=0.2; NR=150, δ=0.4; NR=600, 

δ=0.2; NR=600, δ=0.4 are shown in Fig. 2.27a, 2.27b, 2.27c, and 2.27d, respectively. The 
effect of surface roughness for these cases is very similar to that shown in Fig. 2.26. The 
low-frequency part of the spectra including the first band gap sustains even disorder with 
δ=0.4. With increasing roughness the transmittance inside the second and third band gap is 
increased while the transmittance between the band gaps decreases; for δ=0.4 above a 
certain frequency the spectra do not exhibit any bands or gaps. However, one should point 
out, that structures with higher roughness resolution (Figs. 2.27c and 2.27d) are less 
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sensitive to roughness than the structures with lower roughness resolution (Figs. 2.27a and 
2.27b). 
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Fig. 2.28. The same as Fig. 2.26 but for the lower refractive index of the plates: n=2.5. 

 
For further comparison we have performed the same calculations as shown in Fig. 

2.26 but for a refractive index of the plates of 2.5 instead of 3.14 (Fig. 2.28). Again, the 
similar effect of roughness is observed. 

We therefore conclude that the main effect of surface roughness – scattering of a 
plane wave on the surface features – becomes significant if δλ ⋅hln ~/ , where n is the 

refractive index of the high-index layers. More precisely we can state that if the condition 
δλ ⋅⋅> hln 10/  is satisfied then the effect of surface roughness is small, while if 

δλ ⋅⋅< hln 4/  then the scattering is too high and the concept of gaps separated by 

transmission bands is no more applicable. 
We have also simulated a 10-layer structure with the same parameters. These 

additional results show that the conclusions are generally valid for a variety of 1D PhC. 
 

Experiment-oriented simulations.  
In the experiment the surface roughness is realized by gluing alumina powder to both sides 
of each plate. Obviously, in order to simulate such a structure we have to take into account 
the fact that the average thickness of each plate is now higher compared to the case without 
the powder. In other words, since we always keep the lattice constant unchanged, the air 
filling fraction in the experimental structure with roughness will be lower compare to the 
zero-roughness case. According to the experimental roughness parameters, we have used 
the following parameters for "experiment-oriented" simulation (Fig. 2.29, gray curves): 
lh=1.19 mm, δ=0.12, NR=600. Please note, that δ=0.12 corresponds to the roughness with 
amplitude 6% on the each side of a plate. From the microscopic inspection we conclude 
that a thin layer of glue on the surface of the plates has also to be taken into account. In the 
simulation its thickness is 35 μm and its dielectric constant 2.25. With these values the 
overall agreement is very good, particularly for the band width and the positions of the 
band edges. 
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Fig. 2.29. The "experiment-oriented" simulation. Solid black curve: perfect structure with lh=1.11 mm; 
dotted red curve: perfect structure with increased thickness lh=1.19 mm; gray curves: 10 different 
realizations of surface roughness with the same δ: lh=1.19 mm, δ=0.12, NR=600. 

 
The increased average thickness of the high-index layers results in a significant  shift 

of the entire spectrum to lower frequencies compare to initial structure with lh=1.11 mm. 
At the same time, δ is small and the effect of the details of the disorder is nearly negligible 
since the 10 different realizations represented by the gray curves give practically the same 
spectra.  

In order to elucidate the shifts of the characteristic features in the transmission curves 
of Fig. 2.29 we plot the dependence of the three lowest gaps on layer thickness for a 
perfect 1D PhC (Fig. 2.30). This gap map was calculated by the plane-wave expansion 
method using BandSOLVE™ [51] commercial package. A cross-section made at the left 
vertical line shows the positions and widths of the gaps that correspond to the solid black 
transmission curve in Fig. 2.29. i.e. a zero-roughness PhC with lh=1.11 mm. The right 
vertical line indicates the situation for the red dotted curve in Fig. 2.29 calculated for a 
zero-roughness structure with increased layers thickness of lh=1.19 mm. By considering 
this gap map one can conclude that the increase of the thickness of the layers from 1.11 
mm to 1.19 mm results in the redshift of the all three band gaps, the two lowest band gaps 
become also slightly narrower, while the third band gap becomes wider. All these effects 
are clearly visible in the transmittance spectra shown in Fig. 2.29. 

Thus, for the experiment-oriented simulation two separate effects contribute: (i) a red-
shift of the photonic band structure due to the increase of the average thickness of the high-
index plates and (ii) the scattering of EM waves at the surface features which are 
introduced by formula (2.3).  
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Fig. 2.30. The gap map of a perfect 1D PhC. The x-axis is the thickness of high-index layers in units of the 
lattice constant. The band gaps are the shaded regions. The left and the right vertical lines correspond to the 
values of lh used for calculations of the black solid and black dotted lines in Fig. 2.29, respectively. The 
lattice constant is a=2.32 mm.  

 
 

2.2.4 Experimental transmission spectra. 
The experimental and simulated transmission spectra in the range 33-115 GHz are joined 
in Fig. 2.31. In the upper plot (Fig. 2.31a) the experimental (blue curve) and theoretical 
(black curve) transmission for zero-roughness PhC are presented. The lower plot (Fig. 
2.31b)  shows two experimental transmission curves (blue and red) for two different 
samples with the same kind of powder and theoretical transmission of PhC with roughness 
(black) taken from Fig. 2.29, viz. for the following simulation parameters: lh=1.19 mm, 
δ=0.12, NR=600. Due to a proper choice of the reference transmission and sensitivity 
regimes of the power meter we were able to measure the transmission spectra in dB units 
including the band gaps regions where the transmittance is up to 4 orders of magnitude 
lower than then within transmission bands. The overall agreement is considered as very 
good, especially taking into account the fact that calculated spectra are normalized to the 
power irradiated by the source while the experimental ones are normalized to the 
reference transmission spectrum (empty metal frame). Of course there are some 
discrepancies which are, in principle, inevitable when comparing an idealized 2D model 
with 3D experimental measurements.  

The redshift of the experimental transmission curves due to the glued powder is 
clearly seen in Fig. 2.31b. The third band gap (around 95 GHz) of PhCs with disorder is 
slightly narrower in the measurements than in the calculations. In addition, the measured 
transmission at the upper edges of the second and third gaps (~73 GHz and ~105 GHz, 
respectively) is lower than calculated. These discrepancies might be due to the fact that the 
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calculations are performed for a 2D model, so scattering in the third dimension is not taken 
into account. 

Thus, our experimental measurements show that main effect of the alumina powder 
glued on the both sides of each alumina plate is the redshift of the transmittance curve. The 
effect of surface roughness itself, which is about 6% of the thickness of the plates, on the 
depths and widths of the band gaps is considered to be hardly detectable. 
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Fig. 2.31. The transmission spectra in the range 33-115 GHz. (a): transmission of a PhC with zero roughness, 
the blue curve is experimental, the black curve is calculated. (b): transmission of a structure with roughness, 
blue and red curves represent two experimental transmission curves for two different samples with the same 
kind of powder; gray curves are simulated transmission of a PhC with roughness taken from Fig. 2.29 
 

2.2.5 Simulation of wave propagation: exploring scattering effects 
In order to get a deeper insight into the processes of the scattering of electromagnetic 
waves in roughened 1D photonic crystals the field distribution patterns obtained by FDTD 
calculations are investigated. Since in this case the PhC is irradiated by a monochromatic 
wave there are two important cases: the frequency lies (i) in a band gap or (ii) in a 
transmission band. 

It is also very interesting to investigate the dependence of transmission spectra on the 
geometry of the problem. Due to the scattering the detected transmission may depend on 
the positions of the monitors and their dimensions with respect to the period of the 
structure and the wavelength. For this purpose an extended model was used (Fig. 2.32). 
Two pairs of monitors are used now, one pair is located near the sample and records "near-
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field" transmission and reflection. The other pair records the "far-field" transmission and 
reflection. 

 
 

Fig. 2.32. The model for comparison of near- and far-field transmission and reflection. 
 
Since the model does not include lossy materials and we use the PML absorbing 

boundary conditions at all edges of the computational domain, the scattered power can be 
treated as that part of the power which is not recorded either by a transmission or reflection 
monitor and can be calculated by a simple formula S=1-T-R, where T and R are the 
transmittance and reflectance, respectively. 

In Fig. 2.33 the EM field distribution patterns are shown for a frequency of the source 
situated in the center of  the second gap (64 GHz) for a perfect structure (a) and for a PhC 
with roughness amplitude δ=0.4 (b). It should be outlined that surface roughness with 
δ=0.4 is too high to simulate any actually observed fabrication imperfections. We explore 
the case here in order to obtain more pronounced scattering effects and to observe their 
influence on the band gaps. In the case of the perfect PhC the near-field transmission and 
reflection are 0.03% and 99.7%, respectively, whereas in far-field the transmission is 
0.01% and the reflection is 98.7%. Ideally, in the absence of absorption and scattering the 
sum of transmission and reflection must be 100%. However, in our calculations we have 
small deviations due to the diffraction effects at the edges of the beam and due to the finite 
lateral size of the PhC. The roughened photonic crystal (Fig. 2.33b) still exhibits low 
transmission. Quantitatively, the near-field transmission and reflection now are 0.6% and  
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Figure 2.33. The field distribution patterns for a perfect PhC (a) and for a PhC with roughness amplitude 
δ=0.4 (b). There are two pairs of monitors on each plot, one pair is located near the sample and records 
"near-field" transmission and reflection, the other pair records "far-field" transmission and refection. In all 
the cases a plane wave is generated by the source located at z=-8 μm and propagates only toward the PhC. 
The frequency of the wave is 64 GHz (vacuum wavelength λ =4.69 mm). It corresponds to the center of the 
second gap.  

 
90%, respectively. The far-field transmission is 0.35% and the reflection is 89%. The 
values of transmittance and reflectance measured at near- and far-fields are summarized in 
Table 2.2. As we see from these values the reflection from the roughened structure is 
almost 10% lower. It can be also seen in Fig. 2.33b that the light "localizes" on the 
roughness features (red and blue spots inside the PhC), in addition, a part of the EM energy 
is scattered at the angles close to 90 degrees. Thus, although the transmittance within the 
second band gap of the PhC with roughness is still low, about 10% of the emitted power is 
lost due to scattering. This is already very significant if a PhC suppose to work as a 
reflecting part of some device. 

 
Table 2.2. Transmission, reflection and scattering recorded at near- and far-field at f=64 GHz for the 1D PhC 
with and without disorder. Subscript "perfect" means the values (T, R, S) calculated for the structure without 
disorder, Fig. 2.33a. Subscript "roughened" is for the structure with roughness, Fig. 2.33b. 
 Tperfect Rperfect Sperfect Troughened Rroughened Sroughened 
near-field 0.03 % 99.7 % 0.027 % 0.6 % 90 % 9.4 % 
far-field 0.01 % 98.7 % 1.29 % 0.35 % 89 % 10.65 % 

 
The field pattern for the same structure but for the frequency between the first two 

band gaps (40 GHz) is shown in Fig. 2.34. In the case of zero roughness the transmission 
and reflection are 98% and 1.5% for near field and 94% and 1.3% for far-field, 
respectively, whereas in the roughened PhC they are 70% and 29% for near-field and 
53.9% and 15.4% for far-field (see Table 2.3). Although the wavelength is larger than in 
the previous case the effect of the surface roughness is much more pronounced. We believe 
that the reason is that in the center of a band gap the wave penetrates only for the first few 
layers and thus encounters less scattering than the transmitted wave. Note, that the 
reflected wave is not a plane wave since the mechanism of reflection now is backscattering 
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Figure 2.34. The same as in Fig.2.33 but for a frequency of 40 GHz (λ=7.5 mm) which is between the first 
two band gaps. 
 
from surface features but not interferential suppression as in the case of a gap. This fact 
explains the striking difference in scattering detected in near- and far-field. In the former 
case the scattering is S =100% - 29% - 70% =1%. In the far-field the scattering is about 
30%. 

Thus, in the presence of scattering, for an appropriate comparison of the experimental 
and theoretical data, the distance from the sample to the monitor has to be taken into 
account since the farther the detector is away from the sample the less scattered waves will 
be detected. These “lost” scattered waves are the reason for transmission and reflection not 
adding up to 100%. 

 
Table 2.3. The same as Table 2.2. but for f = 40 GHz, Fig. 2.34. 
 Tperfect Rperfect Sperfect Troughened Rroughened Sroughened 
near-field 98 % 1.5 % 0.5 % 70 % 29 % 1 % 
far-field 94 % 1.3 % 4.7 % 53.9 % 15.4 % 30.7 % 
 

2.2.6 Conclusions 
We have investigated the effect of surface roughness on transmission and reflection in 1D 
PhC in simulations and experiment. The calculated transmission spectra showed high 
robustness of the lowest band gap to surface roughness. Even for the roughness with the 
amplitude as high as 40% of the thickness of high-index layers, the increase of the 
transmittance within the lowest band gap is negligible in comparison to zero-roughness 
case.  

With increasing frequency (decreasing wavelength) the effect of surface roughness 
on transmittance becomes more pronounced: the gaps become shallower and narrower; 
between the gaps the interference fringes smear out and the average transmittance 
decreases. For the disorder amplitude δ=0.4 the band gaps disappear totally for the 
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frequencies higher than 120 GHz. Empirically, we can formulate two approximate 
conditions defining the effect of surface roughness: 
if δλ ⋅⋅> hln 10/  then the effect of surface roughness on transmission is small, 

if δλ ⋅⋅< hln 4/  then the scattering of the waves on the surface features becomes very 

significant and the "reflected" and "transmitted" waves should be rather treated as back-
scattered and forward-scattered, respectively. 

We have examined the scattering processes in more details by considering an 
extended model where the transmission and reflection were detected in near-field 
(subwavelength distance from the PhC) and in far-field. These additional simulations 
showed that when detection is performed in the near-field the major part of scattered power 
appears either in transmittance or in reflectance and the sum of the transmittance and 
reflectance is almost 100%. In the far-field a part of the scattered waves passes by the 
detectors so that transmittance and reflectance do not add up to 100%. In addition, we have 
shown that although the transmittance of a PhC with disorder within the second band gap 
is still very low (0.6%) the reflectance is also sufficiently lower (90% instead of 99.7% for 
zero-roughness) due to the scattering. In other words, for a rigorous characterization of the 
effect of surface roughness the reflection and the scattering should be considered in 
addition to the transmission.  

1D PhCs were designed and fabricated for the microwave range. They consisted of 
five 1.11 mm thick alumina plates separated by air spacings of 1.21 mm. The roughness 
was created by gluing alumina powder to the both surfaces of each plate. The typical size 
of a roughness feature was around 6% with respect to the thickness of alumina plates. Such 
roughness corresponds to typical size of imperfections during the fabrication of 1D PhCs 
operating at wavelengths in the visible spectral range. Special experiment-oriented 
simulations were performed in order to account for the decrease of air filling factor after 
gluing powder. The experimental transmission spectra are found to be in a very good 
agreement with the calculations. We have shown that the main effect of the glued powder 
is the redshift of the band gaps due to the decrease of the air filling fraction of the PhC. We 
did not observe any significant smearing of the first three band gaps due to the roughness. 

Due to the scalability of Maxwell’s equations one can extend our results to 
submicron-sized 1D photonic crystals. We believe that the results presented, in particular 
the empirical formulas discussed above, provide a fast and convenient way to estimate 
whether imperfections during the fabrication of a submicron 1D PhC will affect its 
transmission and reflection properties. 
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2.3. Wave propagation and disorder in 3D colloidal PhC 
with low refractive index contrast. 
 

2.3.1. Introduction. 
Currently, one of the most wide-spread methods for the fabrication of 3D photonic crystals 
(PhC) for near-infrared and visible light is the self-organization of spherical colloidal 
microparticles [92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105]. Due to the 
process of sedimentation of submicron-sized spheres from a colloidal solution on a flat 
surface it is possible to fabricate ordered arrays of these spheres with 3D periodicity. 
Normally, this self-organized sedimentation process leads to the formation of close-packed 
layers of spheres on top of each other that corresponds to the growth of a fcc structure in 
[111] direction [92-98]. Such arrangements are commonly called artificial opals. However, 
there is another, a bit lesser-known, possibility to create 3D periodical colloidal structures. 
If the colloidal particles are statically charged then due to the long-range repulsive 
interaction between each other they can form a dilute (i.e. not close-packed) structure with 
a bcc or fcc lattice, depending on the concentration of the particles [99-103]. Such PhCs 
exhibit optical properties which are similar to close-packed structures. Iridescence 
observed in a 3D colloidal PhC with bcc lattice consisting of silica spheres dispersed in 
ethylene glycol-water mixture is shown in Fig. 2.35. An advantage of PhCs based on 
charged colloids is, for example, a possibility to change their structure (and consequently 
their optical properties) by an external influence [103].  

 
Fig. 2.35. Iridescence from a 3D colloidal PhC with bcc lattice consisting of silica spheres dispersed in 
ethylene glycol-water mixture under white light illumination. The color spots correspond to single-crystalline 
domains. Taken from [102] 
 

The main aim of section 2.3 is to investigate theoretically the wave propagation and the 
influence of disorder on the optical properties of non-close-packed colloidal PhCs with bcc 
lattice.  

In subsection 2.3.2 the models and the calculation methods are described. 
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In subsection 2.3.3 we illuminate the basic optical properties of non-close-packed 
colloidal PhCs by examining the band structure and reflection spectra for a bcc lattice of 
silica spheres in an aqueous medium. Finite size effects and correspondence between the 
Bragg model, band structure and reflection spectra are discussed. The calculations of the 
reflectance presented in this chapter are made using the multiple-scattering method since 
this method allows examining spatially large structures under low consumption of 
computational resources. The band structure calculations are performed by the PWEM.  

In subsection 2.3.4 we present FDTD calculations of reflection spectra of PhCs with 
disorder. Three types of disorder are examined: disorder in radii, positional disorder and 
missing-sphere disorder.  

By comparison of simulations with the experimental reflection spectra [100,101] we 
show in section 2.3.5 that the experimental results can be well reproduced by the 
simulations under the assumption that the fabricated PhCs do not have a perfect bcc lattice 
but are slightly compressed in [110] direction. This compression is most probably due to 
the effect of gravity during growth. 
 

2.3.2. Description of the model and calculation methods. 
There are two numerical methods which were applied for the calculations of the reflection 
of a dilute 3D PhC with bcc lattice: the multiple-scattering method (MSM) and the finite-
difference time-domain method (FDTD). A big advantage of the MSM is that it allows to 
calculate transmittance and reflectance for large structures consuming low amount of 
computational resources. However, MSM is only applicable for perfectly periodic 
structures. The FDTD method, in contrast, allows consideration of disordered structures 
being, however, very computationally expensive. 

Here we will explore some peculiarities of the application of these methods in the 
particular case of 3D colloidal PhCs. 
 
a) Input parameters for the MULTEM2 program (MSM) 
Our aim is to calculate transmission and reflection for a 3D photonic crystal with bcc 
lattice for [110] propagation direction. 

Fig. 2.36 shows the problem in terms of MULTEM2 [90, 91] parameters. The x and z 
axes are defined according to the MULTEM2 program geometry. Larger black circles are 
the spheres lying in the plane of the sketch, smaller black circles denote the spheres lying 

in the plane located at a distance 2/a  behind the plane of the sketch, where a is the 
lattice constant of the bcc lattice. 

The plane wave that propagates in [110] direction (the red arrow in Fig. 2.36) in bcc 
lattice encounters two "types" of planes of spheres which have the same primitive vectors 
of their 2D lattice but are shifted with respect to each other. These two planes should be 
included into the unit slice and the bcc structure is then formed by repeating the unit slice. 



Chapter 2. Surface roughness and disorder in photonic crystals 
 

64 

The unit cell of 2D lattice of spheres in our case is a rhomb made by two body-centered 
"atoms" (acute angle vertices of a rhomb) and two atoms from the vertices of a cubic cell 
of bcc lattice. From simple geometrical calculations we obtain the lengths of primitive 

vectors of 2D lattices to be equal to 2/32,1 ⋅=′ aa  and the angle between them is 

70.5288°, where a is the lattice constant of the bcc lattice. 
 

 
Fig. 2.36. Schematic description of the geometry of the problem in the MULTEM2 program. The direction of 
the wave propagation which is [110] direction in the bcc lattice is shown by the red arrow. The large black 
circles depict the spheres lying in the plane of the sketch, the smaller circles denote the spheres lying further 
behind. The two thicker dashed lines show the unit slice consisting of two layers. The bcc structure is made 
by repeating the unit slice in the direction of propagation. 
 

Our unit slice consists of two layers of spherical particles as shown in Fig. 2.36. 
According to the description of MULTEM2 program, the choice of vectors dl and dr which 
define the relative position of the spheres are "to some degree arbitrary" [90]. We have 
chosen them to have the following coordinates: 
d1l=(0, 0, 6
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It is important to remember, that all distances in program are given in units of the 
primitive vectors of 2D lattice of spheres but not in units of the bcc lattice constant, i.e. in 
units of a′ but not a. 
 
The input file "fort.10" which was used in the calculations is given in the APPENDIX III. 
 
b) Using FDTD method for 3D colloidal photonic crystals. 
The FDTD method solves the Maxwell's equations directly in real space by replacing 
spatial and time derivatives of the field by finite differences, in other words dx, dy, dz, and 
dt are replaced by Δx, Δy, Δz, and Δt, respectively. Thus, the spatial computational area is 
divided into small cells of size Δx*Δy*Δz. The main requirement to this cell is that it 
should be at least 10 times smaller than the characteristic features size (in our case the 
spheres) and the wavelength. This requirement is the main limitation of the FDTD since 
spatially large problems (especially in 3D) consume a very large amount of computational 
resources. Due to this limitation in the calculations presented below the PhC structures 
consist of 70 (110) planes. 

(a) (b) 
 
Fig. 2.37. General view of the problem (without disorder) in (a) 2D, xz cross-section and (b) 3D. The 
structure consists of 70 (110) planes in z direction. 
 
In Fig. 2.37 the general view of the problem (without disorder) is depicted for xz cross-
section (a) and full 3D view (b). The horizontal green bars in Fig. 2.37a are the monitors 
which record the flux of electromagnetic (EM) energy through them. The monitor at the 
top records the transmitted power, the one at the bottom the reflected power. The 
horizontal orange bar is the source radiating only towards the PhC. The electric field in 
incident wave is polarized along the y-direction ([001] crystallographic direction). The 
effect of different polarization (x-direction, [-100]) on the results presented below is 
insignificant. The propagation direction (z) corresponds to the [110] direction in the bcc 
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lattice. The purple frame shows the edge of the computational domain with perfectly 
matched layer (PML) absorbing boundary conditions (ABC). There are two main points 
which force us to choose PML ABC instead of periodic boundary conditions: (i) since we 
will introduce random disorder below, the translational symmetry of the structure is broken 
that can result in some non-physical effects on the edges of the computational domain if 
using the periodic boundary conditions; (ii) PML ABC allow to account for scattering 
processes since the scattered (in x- and y- directions) electromagnetic energy will be 
absorbed by the PML and thus will not appear either in transmission or in reflection.  
 

2.3.3. Basic properties of diluted colloidal photonic crystals with bcc 
lattice 
Let us consider a 3D photonic crystal with the following parameters: nb=1.33, nsph=1.46, 
r=0.18a, lattice type is bcc, where r is the radius of the spheres, a is the lattice constant of 
the bcc lattice, nb and nsph are the refractive indices of the background (aqueous medium) 
and of the spheres, respectively. 

In Fig. 2.38 the photonic band structure calculated by the plane-wave expansion 
method (PWEM) for the 8 lowest bands is shown. Due to the very low refractive index 
contrast the structure does not exhibit a full photonic band gap. However, there is a narrow 
gap at the N point ([110] direction), shown enlarged in the inset. This unidirectional gap 
corresponds to the first-order Bragg reflection from the system of (110) planes. 
Actually, in the case of [110] incidence, the 3D structure considered can be treated as an 
array of parallel partially reflecting planes or, in photonic crystal terms, as a 1D structure. 
Let us check the correspondence between full 3D consideration and simplified Bragg 
reflection model. The wavelength of the first-order Bragg reflection peak is given by  

θλ cos2 ⋅⋅= effB nd       (2.4) 

where 2/ad =  is the distance between two adjacent planes, neff  is an effective refractive 
index and θ is the angle of incidence. The effective refractive index can be calculated by 
using the well-known Maxwell-Garnett approximation: 
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where ƒ is the volume filling fraction of the spheres. By substituting ƒ=0.0488, that 
corresponds to r=0.18a (see subsection 2.3.5 for details of calculation), we obtain the value 
of neff=1.336. The frequency of the first-order Bragg reflection peak calculated by Eq. (2.4) 
for normal incidence (θ=0) is then a/λB=0.5293. The center frequency of the band gap 
calculated by the PWEM and shown in the inset of Fig. 2.38 is a/λB=0.5291. Thus, the 
agreement with the center frequency of the reflection peak is very good.  
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Fig. 2.38. Band structure of a 3D photonic crystal with the following parameters: bcc lattice, εb=1.33, 
εsph=1.46, r=0.18a. Inset shows the pseudogap at the N-point 
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Fig. 2.39. Reflection peak calculated by MSM for [110] propagation direction in bcc lattice for a PhC with 
nb=1.33, nsph=1.46, r=0.18a. N is the number of (110) planes. Vertical dotted lines show the edges of the 
band gap calculated by the PWEM. The side oscillations are Fabry-Perot interference fringes. 
 

The reflection calculated by using the MULTEM2 program [90, 91] is presented in 
Fig. 2.39. Different line colors correspond to different thicknesses of the PhC in [110] 
direction. N is the number of the (110) planes; vertical dotted lines show the edges of the 
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pseudogap calculated by PWEM (Fig. 2.38). One can see a pronounced effect of the finite 
size of the PhC: if the number of (110) planes is small the reflection peak is broad and the 
value of the peak maximum is small; with the increase of the thickness of the structure the 
peak maximum increases and reaches unity. This is easily understandable: since the 
contrast in refractive index between spheres and background is very weak, a large number 
of layers are required to suppress the incident wave, thus the wave penetrates deeply into 
the PhC before all of it is reflected. Fig. 2.39 also shows that the reflection peak coincides 
with the gap at the N-point of the photonic band structure is the number of (110) planes is 
large enough. Since the band structure calculations made by PWEM assume a PhC that is 
infinite in all directions we can state that for the current parameters in the MSM calculation 
500 layers of spheres represent the reflectance of an infinite structure. Of course, PhCs 
with higher optical contrast and close-packed structure require fewer layers to fully 
develop the reflected wave [13, 14]. An interesting point is that the simplest Eq. (2.4) gives 
already a sufficiently exact value of the center of the reflection peak; band structure 
calculations allow to derive also the width of the reflection peak of an infinite structure; 
however, the shape of the reflection peak and the actual value of its maximum can be 
obtained only by real-space calculations (e.g. MSM, FDTD). 

It is necessary to note that experimentally fabricated bulk colloidal PhC usually have 
multi-domain structure [96-103]. This means that they contain monocrystalline domains 
which are differently oriented with respect to each other. According to our estimations of 
the finite-size effects we can state that these domains should be large enough (several 
hundreds of (110) planes) in order to exhibit strong reflection peaks. 

We consider now the behavior of the reflection peak when the parameters of the 
calculations are varying slightly from that used in Fig. 2.39. The positions of the 
reflectance peak for different refractive indices of the background are shown in Fig. 2.40. 
The black curve is for the same parameters as the black curve in Fig. 2.39. Typical PhC 
effects are observed in Fig. 2.40.: the reflection peak shifts to higher frequencies as the 
effective refractive index decreases; at the same time, the width of the peak depends on the 
refractive index contrast being lower for lower contrast (see, for example, the green curve). 
The spectral positions of the central frequencies of the peaks are in very good coincidence 
with the Bragg peaks calculated by the formula (2.4). 
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Fig. 2.40. Normal-incidence reflectance spectra for different refractive indices of the background material: 
nb=1.4 (green), nb=1.33 (black), nb=1.3 (black), nb=1.4 (red). The fixed parameters of the PhC are nsph=1.46, 
r=0.18a. 
 

Let us now consider the dependence of the reflectance spectra on the radii of the 
spheres. The fixed parameters are the refractive indices of the background nb=1.33 and of 
the spheres nsph=1.46. In Fig. 2.41 the spectra for r=0.14a (green), r=0.16a (red), r=0.18a 
(black), r=0.22a (blue) are shown. We observe an increase of the reflection peak width as 
well as small redshift of the spectral position of the peak with increasing radius. The 
spectral positions of the peaks are again very well described by the Bragg model (2.4).  
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Fig. 2.41. Normal-incidence reflectance spectra for different refractive indices of the background material: 
nb=1.4 (green), nb=1.33 (black), nb=1.3 (black), nb=1.4 (red). The fixed parameters of the PhC are nsph=1.46, 
r=0.18a. 
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Fig. 2.42. Reflectance spectra for various angles of incidence. The fixed parameters are nb=1.33, nsph=1.46, 
r=0.18a and the angles of incidence are θ=0° (black), θ=5 ° (red), θ=10° (blue), θ=15° (green), and θ=25° 
(purple). 
 

The spectra for different angles of incidence θ are shown in Fig. 2.42. The fixed 
parameters now are nb=1.33, nsph=1.46, r=0.18a (the same as in Fig. 2.39) and the 
incidence angle is varied from zero to 25 degrees according to the figure caption. The 
dependence of the peak position on the incident angle is responsible for the well-known 
iridescence (see Fig. 2.36) effect which is observed in colloidal PhC as well as in some 
natural materials like the wings of some insects or minerals. It is worth to note that the 
positions of the centers of the peaks are again described very well by the Bragg condition 
(2.4). The width of the reflection peaks are practically the same for all curves. 
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Fig. 2.43. FDTD simulation of the EM wave propagation in [110] direction of a 3D PhC with bcc lattice. (a) 
The distribution of Ey field component inside a 3D photonic crystal with the same parameters as in Fig. 2.39 
(spheres are not shown). The color scale is normalized to the field amplitudes of the wave generated by the 
source. The white and the black colors correspond to the field amplitudes which are above 1 and below -1, 
respectively. The scales of z- and x-axes are given in units of bcc lattice constant. b) The time-dependent 
transmittance and reflectance. The time is given in units of a/c. 
 

As it is said above, the reflected wave develops over a large number of periods in 
propagation direction. This is illustrated in Fig. 2.43a showing the xz cross-section of the 
computational domain with the distribution of the Ey component of the electric field for the 
wavelength corresponding to the maximum of the reflection peak. The plane wave source 
is located at z/a=0.5. The PhC is located between z/a=1 and z/a=50.5. As a result of 
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interference between the reflected waves with the waves propagating forward, the 
amplitudes of the field in the bottom part (between z/a=0.5 and z/a~30) are higher than in 
the generated wave.  

In Fig. 2.43b the time-dependent transmission and reflection calculated at the 
wavelength of the reflection maximum are shown. As one can see, the system reaches a 
steady state after ct=250a.  

Since there are no absorptive materials and we are using PML ABC in our calculations 
we can estimate the scattering by the simple formula S=1-T-R, where T is the transmittance 
and R is the reflectance and S is scattered power. The latter is therefore defined as the 
power impinging the absorptive side walls (in x- and y-directions) of the computational 
domain. For the case of the photonic crystal without disorder (Fig. 2.43b) S is 0.0007 
relative to the incident power.  
 

2.3.4. Simulation of the influence of disorder 
Three types of disorder are considered: disorder in radii, positional disorder and missing-
spheres disorder. Disorder in radii is introduced by a random change of the radius of each 
sphere. In Fig. 2.44a the solid black curve corresponds to the reflection of the perfect 
structure (without disorder), blue and red dotted curves are for disorder with maximum 
change in radii of 20% and 40% with respect to initial radii, respectively. We can state that 
for the given parameters of the PhC the disorder in radii has no effect on the reflection 
peak for 20% disorder and causes a peak reduction of only about 10% for 40% disorder.  

Positional disorder is simulated by introducing random variations in the x, y and z 
coordinates of the center of each sphere. In Fig. 2.44b the black solid curve is for the case 
without disorder, blue dotted line for disorder with amplitude 0.2a but only in x and y 
directions, and red dotted line is for disorder with amplitude 0.2a in all three directions. As 
one can see, the amplitude and FWHM of the peak are practically not affected if the 
spheres are displaced in the xy plane only. This is easy to understand considering that in 
this case all the spheres still stay within (110) planes. The situation changes when the 
spheres are displaced out of (110) planes (red dotted line). Then, the peak maximum value 
is more than two times lower now. 

In order to simulate possible vacancies (missing spheres) we have randomly removed 
20% of the spheres. In Fig. 2.44c the dotted curve shows the reflection peak for this type of 
disorder. A clearly visible decrease of the reflection peak maximum is observed in this 
case. It is necessary to note, that the model for the missing-spheres disorder is idealized. In 
a real structure, the spheres adjacent to a vacancy would be shifted due to missing 
repulsive force. 

The scattering (S, as defined above) is considerable only for red dotted curves in Figs. 
2.44a and 2.44b: 0.063 and 0.061, respectively. In all other cases with disorder it was less 
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than 0.01. However, one should take into account that the transmittance and reflectance are 
calculated in near-field. In far-field the amount of scattered energy should be higher. 

Interestingly, in all the cases we did not observe any broadening of the reflection peak 
due to the disorder but only the maximal value was affected.  
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Fig. 2.44. Reflectance curves calculated by 3D FDTD method for disorder in radii (a), positional disorder (b), 
and missing-spheres disorder (c). More detailed description is in text. 
 
 

2.3.5 Comparison with experimental data 
In the experimental works [100, 101] PhCs with the following nominal parameters were 
fabricated: nb=1.35, nsph=1.42,  f=0.035, r=55 nm, where f is the fraction of the volume 
occupied by the spheres and r is the radius of the spheres. Taking into account that there 
are two atoms per unit cell in the bcc lattice we can extract the lattice constant as 
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For f=0.035 we obtain a=341.5 nm (the distance between two (110) planes is d=241.5 nm), 
so r=0.161a. The reflectance spectra for these new parameters are shown in Fig. 2.45. We 
should note that in comparison to Fig. 2.39 the reflection peak is sufficiently narrower 
now. Additionally the number of (110) planes of N=512 is not sufficient to reach an 
"infinitely large structure" limit. In order to achieve 100% reflection on the maximum of 
the peak at least 1000 (110) planes should be considered. 

By inserting the values of dielectric constants and spheres filling fraction into Eq. (2.5) 
we obtain the effective refractive index of neff=1.352. Thus, from the Eq. (2.4) the 
wavelength of the reflection peak is λB=652.9 nm. The wavelength of the reflectance peak 
shown in Fig. 2.45 is 653.0 nm which is again in very good agreement with the Bragg 
model, Eq. (2.4). However, this value does not coincide with that one obtained 
experimentally. In the experiments [100, 101] the reflection peak was detected at the 
wavelength λB=616 nm. We assume that the reason of this discrepancy is that the lattice in 
the charged colloidal PhC is not perfectly bcc, but slightly compressed in z-direction, so 
the distance between (110) planes is smaller than should be in a perfect bcc. It is easy to 
calculate that the reflection peak at λ=616 nm corresponds to a plane-to-plane distance of 
227.7 nm (instead of the nominal value of 241.5 nm). This reduction of the plane-to-plane 
distance can be attributed to the effect of gravity during the growth. 
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Fig. 2.45. Reflectance peak calculated by MSM for [110] propagation direction in bcc lattice for a PhC with 
nb=1.35, nsph=1.42, r=0.16a. N is the number of (110) planes. Vertical dotted lines show the edges of the 
band gap calculated by the PWEM. 
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2.3.6. Conclusions 
In section 2.3 we have investigated the wave propagation as well as the effects of disorder 
in 3D colloidal PhC with a bcc lattice. The PhCs considered here have low refractive index 
contrast (silica spheres in aqueous medium) and low filling factors of the spheres (f~4%).  

We have shown that the simple Bragg formula (2.4) can be used to define the spectral 
position of the lowest reflection peak. However, the shape of the peak as well as the 
maximum value depend on the thickness of the structure in the propagation direction. From 
the experimental point of view our results show that fabricated structures should contain 
sufficiently large monocrystalline domains in order to exhibit strong reflection peaks.  

The effect of disorder on the reflection peak was investigated theoretically for normal 
incidence (propagation direction is [110]). In the case of disorder in radii only a high 
amount (40% and more) has a visible effect on the reflection peak. Positional disorder 
decreases the maximal value of the peak only if the spheres are randomly shifted out of the 
(110) planes. Random removal of 20% of silica spheres from the structure results in a 
clearly visible decrease of the maximum of the reflection peak. We did not observe any 
broadening of the reflection peak as effect of disorder but only the maximal value is 
reduced. The experimentally obtained spectral position of the reflection peak deviates from 
the calculated one by 6%. We interpret this discrepancy by a deviation from a perfect bcc 
lattice, viz. that a compression in [110] direction occurs during the growth of the colloidal 
PhC.
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Chapter 3. Extraordinary optical transmission 
and resonant polarization conversion in 
photonic crystal slabs covered with metal 

 
 
 
 
 
 
 
 

3.1. Background 
 

3.1.1. Introduction to EOT 
The past two decades gave birth to several new branches of optics expanding the 
understanding of light-matter interaction processes. Photonic crystals, materials with 
negative refraction, cavities with extremely high Q-factors and subwavelength mode 
volume – these are only few cases of experimentally realized novel optical systems. 
Another example which demanded new theories to explain an experimentally observed 
effect is the so-called extraordinary optical transmission [106-122]. In the pioneer work of 
Ebessen et. al. [106] an unexpectedly high transmittance through holes in a metal plate was 
observed at wavelengths about 10 times larger than the diameter of the holes. A typical 
transmission spectrum reported in [106] is shown in Fig. 3.1. The transmittance through 
sub-wavelength holes in an opaque film can be characterized by the so-called transmission 
efficiency which is defined as 

pf
T

=η ,       (3.1) 
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where T is the transmittance and fp is the fraction of the surface which is covered by pores. 
It is implied here that the rest of the surface is covered by an opaque material. The absolute 
transmittance at the peak located at λ=1370 nm (Fig. 3.1) is approximately 4.4 %. The 
fraction of the surface which is covered by the pores is fp =100%*πd2/4a0

2 =2.2 %. That 
means that the transmission efficiency of the peak is η=2. In other words, twice as much 
light is transmitted as is incident directly on the area covered by the holes. Phenomena 
which result in transmission efficiencies higher than 1 are called extraordinary optical 
transmission (EOT). 
 

 
Fig. 3.1. Zero-order experimental transmission spectrum through Ag plate with square lattice of holes on a 
SiO2 substrate. The period of the lattice a0=900 nm, the diameter of the pores d=150 nm, the thickness of the 
plate t=200 nm. Taken from [106]. 
 

The EOT effect was confirmed by a large number of theoretical and experimental 
papers for the metal hole arrays with various periods, shapes and sizes of the holes, 
metallic materials as well as for different spectral regions ranging from microwaves to 
near-IR [107-122].  

Initially the EOT was attributed to the excitation of the surface plasmons (SP) [106, 
107, 108]. It was supposed that an incident wave couples to surface plasmons on the top 
surface, tunnels through the hole, couples to the SPs on the other interface and then 
couples to an outgoing radiative mode [108]. 

However, it was shown later that the EOT effect appears also in systems which cannot 
support SPs. In particular, in [109] similar transmission spectra were obtained using the 
perfect conductor approximation (conductivity is infinitely large). In [110] the EOT was 
observed in non-metallic structures that is in direct contradiction with the SP-based model. 
It is worth to note that the EOT was also observed experimentally for non-periodic hole 
arrays in the microwave region where the metals are almost perfect conductors [111, 112, 
113 ] and cannot support SPs.  

Currently (end of 2010) the physical explanation of the EOT effect is still under 
discussion. Part of the scientific community keeps arguing for the SP nature of the EOT 
[114, 115, 116, 117, 118]. In contrast, a number of different theories were presented to 
explain the effect without SPs, including "dynamic diffraction" [119], "composite 
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diffracted evanescent wave" [110], "surface charge resonance" [111], and "impedance 
matching" [112] models. Recent reviews on extraordinary transmission through metallic 
holes and slits arrays can be found in [120, 121, 122]. 

All papers mentioned above consider a metal plate with holes which is located 
between two homogeneous media. In [123, 124] a metal layer was deposited on top of a 
GaAs/AlGaAs quantum well infrared photodetector (QWIP) structure. Then a triangular 
lattice of air holes was etched through the metal and the quantum well stack. The structure 
was illuminated from above at different angles of incidence. It was shown that 
photocurrent peaks appear at the wavelengths corresponding to the eigenmodes of the 
photonic crystal formed by the air holes and the GaAs/AlGaAs layers. It is necessary to 
note that in QWIPs the electrons can be excited only if the electric field is polarized 
perpendicularly to the interfaces of the quantum wells. Thus, the authors of [123, 124] 
were able to map a TM band structure (electric field is polarized parallel to the axes of the 
pores) of the 2D PhC formed by the quantum well stack and air holes assuming that a 
photocurrent peaks appear when the lateral component of the wavevector and the 
frequency of the wave match the wavevector and the frequency of a photonic band. 
However, the transmittance/reflectance properties of such structures as well as physical 
mechanisms of coupling of light to PhC remained unexplored. In addition, there was no 
explanation given why the amplitudes of some photocurrent peaks are orders of magnitude 
larger than the amplitude of others. 

In this Chapter we investigate structures which could be roughly described as a 2D 
PhC slab covered with a metal layer with corresponding holes. By means of three-
dimensional FDTD simulations we were able to record, in addition to transmittance and 
reflectance, full information about the EM field including: instantaneous 3D distributions 
of the electric field components, 2D distributions of the electric field amplitudes, vector 
distributions of electric field and Poynting vectors, as well as average density of the 
electric field. We will show that PhCs covered with metal exhibit a couple of unusual 
optical properties, particularly, extraordinary transmission, polarization conversion and 
localization of light.  
 

3.1.2. Eigenmodes of a 2D PhC with triangular lattice. 
As was already mentioned in Chapter 1 the intrinsic properties of a 2D PhC are 
characterized by the photonic band structure. The photonic band structure shows the 
eigenfrequencies of the PhC eigenmodes for different values of the quasi-wavevector. The  
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Fig. 3.2. The TM photonic band structure of a 2D PhC consisting of triangular lattice of air pores with r=0.3a 
in a background material with nb =3.2. The red numbers on the right side enumerate the modes an the Γ-
point: single values are non-degenerate modes, double values – doubly degenerate. 
 
 
 
 
 
 

 
 
Fig. 3.3. The distribution of the electric field for the eigenmodes at the Γ-point of the band structure shown in 
Fig. 3.2. The reduced frequency (a/λ), the number (m) and the irreducible representations (A1, B1, B2, E1, E2) 
of each mode are shown. The parameters of the 2D PhC: r=0.3a, nb=3.2. 



Chapter 3. Extraordinary optical transmission and resonant polarization 
conversion in photonic crystals slabs covered with metal 
 

80 

TM band structure (Ey, Hx and Hz are non-zero) of a 2D PhC consisting of a triangular 
lattice of air pores with r=0.3a in a background with nb=3.2 is shown in Fig. 3.2. The red 
numbers on the right side enumerate the eigenmodes at the Γ-point; the single values 
correspond to non-degenerate modes while the values separated by a comma depict doubly 
degenerate modes. Each eigenmode is characterized by its frequency (which is not unique  
for degenerate modes) and by the distribution of an EM field (which is unique for each 
mode). To illustrate this the distributions of Ey component are shown in Fig. 3.3 for the 
modes from the 1st to the 11th.  

The symmetry of the eigenmodes could be estimated from the group theory 
considerations. The triangular lattice is invariant with respect to the following symmetry 
operations [2]: 

- rotations by the angles of 60 (C6) , 120 (C3) , 180 (C2), 240 (C3
-1), 300 (C6

-1), and 
360 degrees 

- mirror reflections around x-axis (σx, σx', σx'') 
- mirror reflections around y-axis (σy, σy', σy''), 

which are shown in Fig. 3.4. Altogether these twelve symmetry operations constitute the 
so-called C6v point group: 
 C6v={E, C6, C6

-1, C3
-1, C3, C2, σx, σx', σx'', σy, σy', σy''}.  

 
Fig. 3.4. Symmetry operations of the C6v point group. Taken from [2]. 

 
According to the group theory, the C6v point group has six irreducible representations 

which are usually denoted by means of Mulliken symbols: A1, A2, B1, B2, E1, E2. Each 
irreducible representation has its own spatial symmetry. Symbols A and B denote non-
degenerate irreducible representations which are symmetric or antisymmetric with respect 
to rotation by 60 degrees, respectively. Subscripts "1" and "2" are usually attached to A's 
and B's which are symmetric or antisymmetric with respect to the horizontal plane of 
symmetry (in Fig. 3.3: z=0). E corresponds to doubly degenerate representations; the 
subscripts 1 and 2 of E can be regarded as arbitrary [125]. 
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It can be deduced from the group theory consideration [2] that each eigenmode of a 
2D PhC correspond to one of the irreducible representation of the corresponding point 
group. The irreducible representations for the first three Γ-points (in terms of extended 
Brillouin zones) are shown in Table 3.1. In extended zone scheme there are six identical 
Γ(2) points and six identical Γ(3) which appear as higher-order modes in the reduced zone 
scheme [2]. As we see from the table, the lowest mode in the Γ-point of the first Brillouin 
zone (which corresponds to the Γ(1)) is associated with the A1 irreducible representation. 
The next six modes are attributed to two non-degenerate representations (A1 and B2) and 
two doubly degenerate ones (E1 and E2).  

With the help of group theory we can now designate the modes shown in Fig. 3.3 by 
corresponding irreducible representations. So, the first mode (m=1) is apparently a B2 
representation since it is non-degenerate and antisymmetric with respect to a 60 degree 
rotation. In the same way we can conclude that m=6 mode corresponds to A1 irreducible 
representation. The pairs m=2,3 and m=7,8 we attribute to the E2 representation while 
m=4,5 and m=10,11 to E1 representation [2]. In this way we have designated the modes 
from 1 to 11 by corresponding irreducible representations (Fig. 3.3). Of particular interest 
are the modes corresponding to the E1 irreducible representation. These modes have a 
dipole-like spatial symmetry and we will see in section 3.2 that an incident wave couples 
strongly to these modes if a PhC is covered with a metal layer. 
 
Table 3.1 Irreducible representations for the electromagnetic waves for the Γ-point of the first Brillouin zone 
of the hexagonal lattice. (After [2])  
 

Symmetry Point Irreducible 
Representations 

C6v Γ(1) 
Γ(2) 
Γ(3) 

A1 
A1+B2+E1+E2 
A1+B1+E1+E2 

 
 

3.1.3. Description of the model. 
The tool which is used for the simulations is a commercial software package realizing a 
full 3D FDTD method (RSoft FullWAVE). By means of this tool it is possible to design 
directly a structure with actual parameters taken from the experiment.  

The simulated structure consists of (from the top to the bottom): a gold layer, a layer 
of GaAs, a "spacer" layer of Al0.18Ga0.82As, an "active region" layer, one more layer of 
Al0.18Ga0.82As, and GaAs substrate. In Table 3.2 the compositions, thicknesses and optical 
constants of the layers are presented. Such a structure simulates the experimentally 
fabricated quantum well infrared photodetectors investigated in [123, 124]. In these papers 
the active region of the QWIPs were consisted of 50 periods of GaAs/AlGaAs quantum 
wells. In our simulations we treat the active layer as a homogeneous one and we do not 
take into account the absorption of the photons by electronic transitions in the active layer, 
thus, the imaginary part of the refractive index of the active layer is assumed to be zero. 
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The 2D photonic crystal is created by "drilling" pores through the entire structure in 
the direction perpendicular to the interfaces between the layers. Fig. 3.5a shows the scheme 
of the investigated structure. A cross-section of the 3D FDTD model taken from 
FullWAVE CAD window is shown in Fig. 3.5b. A xz cross-section of the refractive index 
profile in the middle of the "active layer" (y=0) is shown in Fig. 3.5c. A xy cross-section of 
the refractive index profile at z=0 is shown in Fig. 3.5d. The 2D photonic lattice has 
hexagonal (triangular) symmetry in all calculations presented below. The perfectly 
matched layer (PML) absorbing boundary conditions are used for upper and lower facets 
(parallel to the xz plane) of the computational domain. The other four facets (parallel to xy 
and to yz planes) have the periodic boundary conditions. This is a natural choice of 
boundary conditions for such structure because it allows to simulate both large periodic 
structure in xz plane and transmitted and reflected waves escaping to infinity in y-direction. 

As one can see from the Fig. 3.5b the transmission and reflection are detected in the 
near-field. Unfortunately, it is difficult to perform far-field simulations using the FDTD 
method since the consumption of the computation resources increases rapidly with an 
increase of the dimensions of the computational domain.  

The plane wave is incident onto the top gold layer normally to the surface, e.g. parallel 
to the pores axes. For the given geometry this means that the component of the electric Ey 
is absent in the incident wave. 

The described model allows to obtain the following output information: (i) the 
absolute (normalized to the source) transmitted and reflected power recorded in the near 
field; (ii) two-dimensional cross-section of the amplitudes of the electromagnetic field 
components (Ex, Ey, Ez, Hx, Hy, Hz); (iii) the instantaneous 3D distribution ("snapshots") of 
the strength of electromagnetic field components; (iv)  the average energy density of the 
field components within the active region (also excluding the area occupied by the pores); 
(v) in the present model the absorbance (A) can be calculated as A=1-T-R. This is possible 
because the energy dissipated on the computational domain facets with PML (the top and 
the bottom one) is recorded by either transmission or reflection monitor. The other four 
facets of the computational domain have periodic boundary conditions, thus the only 
remaining dissipation source is the absorption by the constituents of the simulated 
structure. 
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 (a) 
 
 

(b) 
 

(c) 
 

(d) 
Fig. 3.5. (a): schematic description of the investigated structure. (b): a cross-section of the 3D FDTD model 
taken from FullWave CAD window. (c): a xz cut of the refractive index profile in the middle of the "active 
layer" (y=0). d): a xy cross-section of the refractive index profile at z=0. 
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Table 3.2. Vertical composition of the model structures. 
Layer  Thickness Re(n) Im(n) 
gold 100 nm n'=3.11 n''=45.3 
GaAs 108 nm n'=3.19 n''=0.0022 
Al0.18Ga0.82As 216 nm n'=3.27 n''=0 
"active region" 3000 nm n'=3.2 n''=0 
Al0.18Ga0.82As 216 nm n'=3.27 n''=0 
GaAs  1000 nm n'=3.19 n''=0.0022 
 
The estimation of the approximations, limitations and possible inaccuracies: 

- The basic limitation which is common for all FDTD simulations is the finite size of 
a discretization grid cell. Ideally, the size of the discretization grid cell should be 
infinitely small. This is not achievable in real calculations since this will lead to 
infinitely large computation time. The main consequence of this limitation is the 
abrupt change of the refractive index on the interface between two materials is 
replaced by some transition layer that leads to some change of the geometrical 
parameters (e.g. radius of the pores) in simulated structure with respect to 
nominally defined ones. A general way to estimate the inaccuracy caused by an 
insufficiently fine discretization grid is to test the results for convergence by 
showing that the results do not change sufficiently if the grid size is decreased. 

- The reflectance and transmittance are detected only near the top and bottom of the 
computational domain, where PML boundary conditions are applied. As a 
consequence of the periodic boundary conditions, which are applied for four facets 
parallel to the pores, a wave cannot "escape" through these facets but will reappear 
in transmittance or reflectance or will be absorbed. So it is difficult to say how a 
wave "travels" through the structure. 

- The source, the transmittance and reflectance monitors are situated at 
subwavelength distances from the structure. One should remember that in 
experiment this is usually not the case. 

- Since periodic boundary conditions are used in the plane of periodicity of the 2D 
photonic crystal, the simulation results are strictly true only for structures which are 
large in xz directions. 

- The refractive indices of the materials are chosen to have fixed values in the entire 
examined spectral range. This can lead to some discrepancies in comparison to 
experiment. 

It is necessary to note that typical processor times of a single calculation (for one value 
of the wavelength of the source) in the 3D model described are 20-90 hours depending on 
the simulation parameters. Thus, the processor time required to calculate one 
transmission/reflection spectrum amounts to thousands of hours.  
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3.2. Simulation results I: photonic crystal slab covered 
with metal 

 
Let us start with the structure having a layer composition as described in Table 3.2 and 
with the following PhC parameters: a=3 μm, r=0.3a=0.9 μm and h=4 μm, where a is the 
period of the PhC, r is the radius of the pores and h is the depth of the pores. The near-field 
transmittance and reflectance of such a structure for an Ez-polarized plane wave source (i.e. 
the incident wave has Ez and Hx non-zero components) are shown in Fig. 3.6. We observe 
at least three pronounced dips in reflectance (and corresponding peaks in transmittance) 
which will be mentioned below as reflection dips 1, 2 and 3 corresponding to the notations 
in Fig. 3.6.  

It is important to note, that for the given parameters 67% of the surface is covered by a 
reflecting gold layer and only 33% is occupied by pores. However, the reflectance at 
λ=6.845 μm (dip 3) is only 0.01 and corresponding transmittance is 0.6 which means that 
the transmission efficiency, defined as the transmitted power per unit area of the free 
surface (not covered by gold) is 180%. At the same time, the free-space wavelength is 
almost 4 times larger than the diameter of the pores and more than two times larger than 
the period of the hexagonal lattice of air holes. 

The information about transmittance, reflectance and absorbance of the three dips is 
summarized in Table 3.3. It can be seen that in addition to the unexpectedly low 
reflectance the dips 1 and 3 are characterized by a relatively high absorbance being more 
than 10 times larger than for the dip 2. 
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Fig. 3.6 Reflectance (black) and transmittance (red) spectra of a QWIP-like structure with the parameters 
shown in Table 3.2. The parameters of the 2D PhC are: a= 3 μm, r=0.9 μm, and h=4 μm. The source is Ez-
polarized. 
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Table 3.3. Spectral position, transmittance, reflectance, and absorbance of the dips shown in Fig. 3.6. 
 Dip 1 Dip 2 Dip 3 
spectral position, μm 4.39 5.01 6.845 
R 0.13 0.33 0.01 
T 0.56 0.65 0.60 
A=1-R-T 0.31 0.02 0.39 

In order to understand the nature of the observed spectral features let us consider the 
distribution of the EM field inside the structure. The xy cross-sections of the distributions 
of the amplitudes of Ex, Ey and Ez components in steady state are shown in Table 3.4. We 
choose four different wavelengths to show: 4.39 μm (dip 1), 5.01 μm (dip 2), 6.84 μm (dip 
3), and, for comparison, 6.2 μm. The color scale is normalized to the amplitude of the Ez 
component in the incident plane wave in all the cases, i.e. the amplitude of the Ez field in 
the generated by the source wave is 1. The white color corresponds to the amplitudes that 
exceed the maximal value of the scale. The gold layer is located at y=2 μm, the pores 
extend in vertical direction from y=2 μm to y=-2 μm. The source is located at y=3.2 μm. 

First of all, let us consider the Ez field for at λ=6.2 μm (Table 3.4, diagram "l"). This 
case corresponds to high reflection of approximately 93%, thus the Ez field is concentrated 
above the gold layer. Between the source and the gold layer the values of the Ez field 
amplitudes are higher than unity due to the interference between the incident and the 
reflected waves. The amplitudes of Ey (diagram "h") and Ex (diagram "j") components are 
very small (but non-zero) within the entire computational domain. It is necessary to note 
that although the incident wave has no Ey and Ex components they always appear due after 
diffraction on the edges of the holes in the gold layer. 

Let us now turn our attention to the dip 2, λ=5.01 μm. This case corresponds to a 
transmittance of 65 %, thus the incident wave penetrates through the gold layer that is most 
clearly seen in the Ez field distribution picture (diagram "f"). The electric field is 
concentrated mainly within the pores and has amplitudes more than 3 times higher than the 
incident wave. The amplitudes of the Ey (diagram "e") and Ex (diagram "d") are again non-
zero but small within the entire domain. 

The most interesting effects are observed for the dip 1, λ=4.385 μm and dip 3, λ=6.84 
μm. In both cases the major part of the EM energy is carried by the Ey component which is 
absent in the incident wave! Furthermore, the normalized amplitude of the Ey component is 
more than 10 for the dip 1 (diagram "b") and more than 5 for the dip 3 (diagram "h"). It 
should be also noted that the amplitude of the Ey component is maximal just below the 
gold layer and decreases in the substrate direction.  

Thus, the interaction of a linearly polarized incident wave (having only Ez and Hx non-
zero field components) with the periodic array of holes in the gold results in the 
appearance of Ey-polarized mode directly under the gold layer. We will call this effect 
from now as polarization conversion. 
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3.2.1. The dependence on the polarization of the source. 
The reflectance and transmittance shown in Fig. 3.6 was calculated for an Ez polarized 
source (Ez≠0, Hx≠0). The same calculation was also performed with an Ex-polarized source 
(Ex≠0, Hz≠0). The reflectance spectra for the two different source polarizations are 
combined in Fig. 3.7. One can see that both spectra are practically identical, i.e. the 
observed spectral features are independent of the polarization of the source. This fact is 
actually surprising since the triangular lattice is not invariant with respect to a 90 degree 
rotation. 
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Fig. 3.7. The reflectance spectra of the same structure as in Fig. 3.6 for two polarizations of the incident 
wave: the black dots are for Ez-polarization; the red curve is for Ex-polarization. 
 
 

3.4.2. Comparison between 3D FDTD and 2D PWEM. 
During a FDTD simulation the information about the field components is saved for each 
point of the computational domain at each time step. Thus, a 3D distribution of the fields 
can be easily recorded at each time step. In Fig. 3.8 we show the 3D distribution (top view) 
of the Ey field recorded within the active region of the structure at the end of simulations. 
Figs. 3.8a and 3.8b are obtained from dip 1 (λ=4.39 μm) for Ez- and Ex- polarized source, 
respectively. Figs. 3.8b and 3.8c are for dip 3 (λ=6.84 μm) and for the two polarization of 
the source. It is necessary to note, that the top surface of the shown field distribution is not 
directly under the gold layer but approximately 320 nm below it. In this way, we can be 
sure that a possible effect of the discontinuity of the imaginary part of the refractive index 
(abrupt change from almost zero in GaAs to 45.3 in Au) on the field distribution is 
negligible. The horizontal dashed lines in Figs. 3.8a and 3.8c mark the position of the xy 
cross-sections shown in Table 3.4.  
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Fig. 3.8. 3D instantaneous distributions of the strength of the Ey component of the electric field. (a) and (b) 
are taken at the wavelength of λ=4.39 μm (dip 1) for Ez- and Ex-polarized sources, respectively. (c) and (d) 
are for the dip 3 (λ= 6.84 μm) and two source polarizations. The horizontal dashed lines in (a) and (c) show 
the positions of the cross sections which are shown in the diagrams "b" and "h" of Table 3.4, respectively. 
The locations of the pores are shown schematically in (d). 
 

 
Fig. 3.9. The distributions of the amplitude of the Ey component calculated by the 2D PWEM for doubly 
degenerated E1 eigenmodes at the Γ-point of the TM-band structure. The same as in Fig. 3.3. 
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It is apparent at first sight that the distributions of the Ey field are nothing else as the 
eigenmodes of a 2D PhC which are shown in Fig. 3.3. In particular, the two patterns at dip 
1 correspond to the 10th and 11th modes while the dip 3 patterns are virtually identical to 
the 4th and 5th modes. These four eigenmodes are shown enlarged in Fig. 3.9 for easier 
comparison. 

It is worth to note that the eigenmodes shown in Fig. 3.9 correspond to the E1 
irreducible representation and have a dipole-like symmetry. The dipole character of the 
eigenmodes means that on the opposite sides of a pore the Ey field has opposite signs. In 
one case the dipoles are oriented along the x-axis, in the other case – along the z-axis. 
Thus, each of the degenerate modes is excited by a wave with the correspondingly 
polarized source in 3D FDTD simulations. This fact explains why the dips 1 and 3 do not 
depend on the polarization of the source. 

Table 3.5 shows the spectral positions of the reflection dips obtained from FDTD 
calculations, the spectral position of the corresponding PhC modes calculated by 2D 
PWEM, and the relative mismatch between them. About 1% mismatch for the dip 1 and 
3% for the dip 3 is considered as very good agreement. We want highlight here that 2D 
PWEM and 3D FDTD simulations are not just different methods applied to the same 
model. In the former case the structure is infinite (also in y-direction!), there are no 
sources, metallic parts, or PhC-air interfaces, besides, the wavevector of the waves is 
supposed to lie exceptionally within the xz plane (the plane of periodicity). The FDTD 
simulations deal with the structure of subwavelength thickness with the gold layer on top 
and the wavevector of the incident wave has zero projection on the xz plane. 
 
Table 3.5 The spectral positions of the dips 1 and 3 calculated by FDTD, PWEM and relative mismatch 
between them. 
 

 Dip1 
PWEM 

Dip1 
FDTD 

relative Dip3 
PWEM 

Dip3 
FDTD 

relative 

spectral 
position 

4.33 μm 4.39 μm 0.99 6.62 μm 6.84 μm 0.97 

 
Thus, we conclude that polarization conversion and enhanced transmission of light 

through the subwavelength holes in the gold layer appears due to the coupling of the 
incident wave to the doubly degenerate dipole eigenmodes at the Γ-point of the TM band 
structure. 

Now we turn our attention to the dip 2. As follows from the Table 3.4 (diagram "f"), 
the transmitted light retains the polarization of the incident wave. In addition, the electric 
field has its highest amplitude within the pores and not in the high-index material. In 
principle, we can think about two phenomena which can result in the observed situation: (i) 
a pore can be considered as an isolated cylindrical cavity and the incident wave couples to 
a mode of this cavity and (ii) the wave couples to one of the PhC eigenmodes. 
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First, we check whether the assumption (i) is correct. For a cylindrical cavity with 
radius r and height h the lowest eigenmode (when h>2r) has the frequency [126] 
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For our parameters (r=0.9 μm and h=4 μm) the wavelength corresponding to this 

frequency will be λ=2.87 μm which is out of the examined spectral range. Although 
formula (3.2) is derived for a cavity with perfectly reflecting walls we conclude that dip 2 
is most probably not due to the coupling to a mode of a cylindrical cavity. 

Regarding the assumption (ii) a TE band structure (electric field polarized in the plane 
of periodicity) of the PhC should be considered. Repeating the procedure which was 
performed for the dips 1 and 3 we plot first the 3D distributions of Ez and Ex fields within 
the structure for the two corresponding polarizations of the source (Figs. 3.10a and 3.10b).  

By examining the eigenmodes of the TE band structure at the Γ-point it is easy to find 
those two which correspond to the field distributions obtained in FDTD simulations. These 
eigenmodes are shown in Figs. 3.11a and 3.11b. Thus, we see that the dip 2 appears due to 
coupling of the incident wave to the eigenmodes of the TE band structure at the Γ-point. 
 
Table 3.6. The spectral positions of the dip 2 calculated by FDTD and PWEM and a relative mismatch. 
 

 Dip2 
PWEM 

Dip2 
FDTD 

relative 

spectral 
position 

5.23 μm 5.01 μm 0.96 

 
The spectral positions of the dip 2 calculated by 2D PWEM and 3D FDTD are 

compared in Table 3.6. The mismatch between two values is slightly above 4% which is 
higher than for the dips 1 and 3 but still can be regarded as satisfactory. We will show later 
that the dip 2 is very sensitive to the depth of the pores and the mismatch increases with 
decreasing depth of the pores.  
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Fig. 3.10. 3D instantaneous distributions of the strength of the Ez (a) and Ex (b) components of the electric 
field, both are for λ=5.01 μm (dip 2). The polarization of the source is Ez for (a) and Ex for (b).  

 
Fig. 3.11. The distributions of the amplitude of the Ez (a) and Ex (b) components calculated by the 2D PWEM 
for 5th and 6th eigenmodes at the Γ-point of the TE-band structure. 
 

Although the correspondence between the 3D FDTD field distribution and the 
eigenmodes of the PhC is apparent we have performed simulations for a single hole in 
otherwise the same structure. This is a direct way to distinguish between the collective 
effects which are due to periodic structure from that which appear also for a single 
cylindrical hole. 

The transmittance and reflectance for a single hole are shown in Fig. 3.12a. No 
reflections dips are observed in this case. This calculation was performed with the PML 
absorbing boundary conditions applied for all facets of the computational domain. This 
explains why the reflectance is not close to 100%. Cross-section of the Ey component 
amplitude is shown in Fig. 3.12b for the wavelength of λ=5 μm which corresponds to the 
dip 2.  

Thus, we have proved that the spectral features observed, i.e. the dips 1, 2 and 3, are 
the result of the interaction of the plane wave with the periodic array of pores. However, 
there are some important questions which are still not answered. So far we have explained 
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what happens: a plane wave couples to distinct PhC modes. In the subsequent sections we 
will try to answer the further two questions: how and why the coupling appears. 
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Fig. 3.12. (a) Reflectance and transmittance spectra of a single hole. PML boundary conditions are applied to 
all facets of the computational domain. (b) The amplitude of the Ez component at λ=5 μm. 
 
 

3.2.3. Examining the vector fields. 
So far we have ascertained that all three reflection dips appear due to the coupling of an 
incident wave to the eigenmodes of the 2D PhC. In the case of dip 2 the situation is 
intuitively understandable: a plane wave with a certain polarization excites a TE 
eigenmode having the same polarization of the electric field. However, it is not apparent 
what forces a plane wave to change its polarization and couple to TM eigenmodes (dips 1 
and 3). In order to explain this, a deeper insight into the structure of electromagnetic field 
within the system is required. 

In Fig. 3.13a the xy cross section (z=-3 μm) of the instantaneous distribution of the 
electric field vectors at the wavelength of λ=4.39 μm (dip 1) is shown for the Ex-polarized 
source. Figure 3.13b shows the corresponding distribution of the Ey amplitudes averaged 
over one period. The both pictures are taken at the end of a calculation when the 
transmittance and reflectance have reached their steady state values. The size of the arrows 
is proportional to the strength of the field. We want to draw attention to two important 
points:  
(i) the incident wave penetrates for some distance through the pores, as a consequence, the 
electric field within the pores retains the Ex-polarization of the incident wave (area "1" in 
the figure);  
(ii) It follows from Maxwell's equations that the tangential component of the electric field 
must be continuous over the interface between two media [1]. Inside the gold both the 
tangential and normal components of the electric field tend to zero due to the free carriers. 
Thus, the tangential component of the electric field in the dielectric near the gold-dielectric 
interface must be also zero (area "2" in the figure).  
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(a) (b) 
 
Fig. 3.13. (a) The xy cross-section (z=-3 μm) of the electric field vectors at λ=4.39 μm (dip 1) for Ex-
polarized source. The size of the arrows is proportional to the field strength. Within the area depicted by "1" 
the field is polarized in x-direction; within the area "2" the field is polarized in y-direction. (b) The 
amplitudes of the Ey field for the same cross-section as in case (a). In the middle of the pores the Ey 
amplitudes are zero that corresponds to the area "1". 
 

Under these conditions the only possible configuration where the electric field is 
continuous within the air regions is "dipole-like" i.e. the electric field below the gold layer 
has opposite direction on the opposite sides of a pore. We illustrate it by means of a sketch 
shown in Fig. 3.14. The left picture shows the case which is observed in the simulations: 
opposite signs of the field on the opposite sides of the pore are consistent with the field 
within a pore resulting in continuous electric field lines shown by the dashed curves. The 
right picture shows another possible configuration of the electric field lines: the electric 
field within a pore is aligned in vertical direction. This situation is not preferable in our 
model since the incident wave is polarized horizontally. Thus, we call the latter situation as 
"not preferable". The "not preferable" situation, however, could be achieved if an Ey-
polarized plane wave will incident from a side. 

The fact that a plane wave incident normally on the metal hole array generates a 
dipole-like pattern in the vicinity of the surface is actually well-known in the literature and 
was observed by numerical calculations [116] and experimentally [111]. In both cases a 
metal plate with holes was located in air and the dipole-like pattern was generated on the 
both sides of the plate. 

As we have seen in the previous subsection (see Figs. 3.8 and 3.9) the eigenmodes 
which are excited at dips 1 and 3 also have dipole-like pattern. Thus, when the frequency 
of the incident wave approaches the frequency of a PhC dipole mode the electromagnetic 
energy starts to accumulate in the PhC region resulting in both enhanced transmission and 
polarization conversion. In other words, the energy from a dipole-like pattern generated by 
the metal hole array effectively couples to the dipole eigenmodes of the PhC. 
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Fig. 3. 14. Sketch of two possible configurations of the electric field lines. The situation in the left picture is 
consistent with the requirement of vanishing tangential component on the gold interface as well as with Ex-
polarized wave within the pore. The situation in the right picture is consistent with the requirement of 
vanishing tangential component on the gold interface but not consistent with horizontally polarized electric 
field of the incoming wave. 

 
An enlarged picture of electric fields in the vicinity of the gold layer is shown in Fig. 

3.15. It is seen that the field vectors really represent the "preferable" situation sketched in 
Fig. 3.14. Under the gold parts the field is directed strongly along the y-axis, i.e. Ex~0. 
Within the pores both Ex  and Ey are non-zero. However, near the left and the right edges of 
the gold part shown, the Ey is small since it is a tangential component for the gold-air 
interface there. It is also interesting that the field in the middle of the gold interconnect (at 
x=0) are zero. This is because at x=0 the phase of the Ey field changes by π/2. It is seen in 
Fig. 3.13b that exactly in the middle of the pores (e.g. at x=1.5 μm) the amplitude of Ey  
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Fig. 3. 15. The xy cross-section (at z=-3 μm) of the instantaneous electric field vectors in the vicinity of the 
gold at the same time instant and wavelenth as in Fig. 3.13a. 
 

 
Fig. 3.16. The xy cross-section (at z=-3 μm) of the instantaneous Poynting vectors in the vicinity of the gold 
at the same time instant and wavelength as in Fig. 3.13a. 
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field is also zero. This is also a point where the phase of the Ey component changes by π/2. 
However, the Ex component is non-zero in this case.  

A similar picture can be also obtained for an Ez polarized source, but the zy cross-
section should be considered in this case. 

Now let us consider the flux of the electromagnetic energy or Poynting vectors for the 
same simulation. The instantaneous distribution of the Poynting vectors is plotted in Fig. 
3.16 for the same time step and the same spatial region as shown in Fig.3.15. In free-space 
the Poynting vector of a plane wave has the same direction as its wave vector. Thus, 
initially the x-component of the Poynting vectors was zero. In our case, when the light 
couples to a TM PhC mode, the energy flux is directed from the air holes towards the high-
index material regions, as it clearly seen in Fig. 3.16. Within the high-index material 
regions the energy flux has a complicated character that reflects the fact that excited PhC 
eigenmodes are at Γ-point of the Brilloun zone, in other words, they correspond to standing 
waves. 

As it was concluded previously the dip 2 is due to coupling to TE eigenmodes, e.g. the 
electric field retains the polarization of the incident wave. In Fig. 3.17 the xy cross-section 
(at z=0 μm) of the electric fields at λ=5.01 μm, e.g. at the minimum of the dip 2. Ex-
polarized source was used for this calculation. The picture is now completely different in 
comparison with that for the dip 1. Although above the gold layer the distribution is still 
dipole-like below the gold the field is polarized almost exclusively in the x-direction, in 
other words, almost no y-component of the electric field appears within the photonic 
crystal region. One can also see that the amplitudes of the electric field are much larger 
within the pores than in the material. 
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Fig. 3.17. The xy cross-section (z=0 μm) of the instantaneous electric field vectors at λ=5.01 μm (dip 2) for 
Ex-polarized source. The size of the arrows is proportional to the field strength. The polarization of the EM 
below the gold is the same as that of the incident wave which corresponds to the excitation of a TE mode of 
the PhC. 
 

In order complete our analysis of the vector fields we also consider the case of the dip 
3. The cross-section of the electric fields at z=0 μm for the Ex-polarized source is shown in 
Fig. 3.18. The picture is very similar to that obtained for the dip 1: the Ey component 
dominates below the gold and on the opposite sides of a pore it is directed in opposite 
directions. However, in the case of dip 3 the field coupled to the PhC mode is more 
localized below the gold in comparison to the dip 1. The fields are very small at the 
distance of 2 μm below the gold (y=0 μm) and are almost zero at the distance of 3 μm 
below the gold (y=-1 μm). The Poynting vector picture (Fig. 3.19) also shows that the 
energy flux is directed from the air regions into the high-index material. Moreover, the Ex-
component of Poynting vectors (which is absent in the incident wave) dominates over the 
whole region below the pores. It can be also deduced from Fig. 3.19 that the energy 
accumulated in the excited mode is higher than the energy which passes through the 
system from the top to the bottom.  
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Fig. 3.18. The xy cross-section (at z=0 μm) of the instantaneous electric field vectors at λ=6.84 μm (dip 3) for 
Ex-polarized source. The EM field below the gold has a dipole-like character and is mostly polarized along 
the y-axis. 
 

 
Fig. 3.19. The xy cross-section (at z=0 μm) of the instantaneous Poynting vectors at λ=6.84 μm (dip 3) for 
Ex-polarized source. The Poynting vectors below the gold have strong x-component which is absent in the 
incident wave.  
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It is necessary to note that all distributions of the electric fields and Poynting vectors 
presented in this subsection are consistent with the previously examined distributions of 
the field amplitudes. As an example, the conclusion that the mode excited at the dip 3 is 
more localized below the gold than the mode at the dip 1 can be also made by examining 
the field amplitudes shown in Table 3.4, in particular by comparison the diagrams "b" and 
"h". 

It is important to remember, however, that the vector distributions are the snapshots, 
e.g. the instantaneous distributions. Thus, they correspond to certain phases of the 
electromagnetic field. These phases are actually arbitrary since the pictures are taken at a 
certain timestep of the calculation (in this subsection ct=1600 μm). In principle, the 
situation is possible when the fields are "caught" at a time instant when they have zero or 
close to zero values. Since we do not show the magnetic fields at the same time instant 
additional calculations were performed where the phase of the source was shifted by π/4. 
These calculations confirmed that the shown distributions do represent some average state 
when the fields are neither at the maxima nor at the minima.  
 

3.2.4. The role of the gold layer 
We can consider the investigated structure as being composed of two important 
constituents: a gold layer with holes and a 2D PhC. According to our conclusions from the 
previous subsections, the existence of the gold layer plays a crucial role at least for the dips 
1 and 3. The Maxwell's boundary conditions "force" the electric field to be perpendicular 
to the gold interfaces that makes the observed polarization conversion effect possible. At 
the same time, a PhC structure provides a set of the eigenmodes so that the waves 
diffracted on the holes can couple to some of them if the frequency of a wave and the 
symmetry of the diffraction pattern fit that of an eigenmode. 

A great advantage of the 3D FDTD simulations is the possibility to easily exclude the 
ingredients of the system from the simulations. Thus, we can define which role each 
constituent of the system plays in extraordinary transmission and polarization conversion 
effects. 

In Fig. 3.20 the three reflection curves are plotted: the solid is the same as in Fig. 3.6 
(PhC with gold), the dashed is for the same structure but without the gold layer, and the 
dotted is for the single gold layer with holes in air. One can see that the dips 1 and 3 appear 
only if both PhC and gold are present.  

A PhC without gold (dashed) exhibits generally much lower reflectance with two 
broad and shallow reflection dips within the examined spectral region. The right dip 
(λ=5.08 μm) we attribute to the excitation of the same TE PhC eigenmode as in a structure 
with gold (dip 2). The nature of the left dip (λ= 4.6 μm) is so far unclear, probably it is due 
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to the excitation of another TE mode. The reflection from a single gold layer increases 
monotonically with increasing wavelength and does not have any features within the 
examined spectral range. 
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Fig. 3.20. Comparison of the reflectance of the same structure as in Fig. 3.6 (solid), the same structure but 
without the gold layer (dashed), and single gold plate with holes (dotted). 
 
 

3.2.5. The influence of the radii of the pores 
It is worth to note that the entire previous analysis was done for the same parameters of the 
2D hole array. Of course if we have made correct conclusions about the nature of the 
spectral features they should also appear for a variety of structures with different 
parameters. 

There is a well-known photonic crystal "rule of thumb": if the average refractive index 
of a photonic crystal decreases then the dispersion branches of the band structure shift to 
higher frequencies. This gives a very straightforward way to check whether some effect 
appears due to a PhC or not. In Fig. 3.21 three reflection curves are plotted for three 
structures with different radii of the pores. All other parameters are the same and shown in 
the figure caption.  

First of all, it is seen that the decrease of the radius of the pores results in the blue shift 
of the reflection dips. This effect appears most clearly for dip 3. In addition the depth and 
the width of the dips is different for different radii. For instance, when the pores are large 
(r=0.365a) the dip 2 has a minimal reflectance of less than 0.5%. The minimum of the dip 
2 is significantly higher for r=0.3a being approximately 33%. For the radius r=0.25a the 
dip 2 is very weak and it practically disappears for r=0.2a (not shown). We explain this 
phenomenon by the correspondence between the diameter of the pores and the wavelength 
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of the dip 2. In the case (a) the diameter of the pores is 2.19 μm and the dip 2 wavelength 
is 4.44 μm, e.g. the diameter of the pores is slightly less than the half-wavelength. In other 
words the light passes through the holes easily and excites the modes in the PhC. In the 
case (b) the diameter of the pores is 1.8 μm and the dip 2 minimum is at λ=5.01 μm. So, 
the wavelength is now above the cut-off condition λ~4r and the incident light has to tunnel 
through the hole [118]. Nevertheless a considerable amount of EM energy reaches the PhC 
region and the TE eigenmode is excited. In the case (c) the ratio diameter/wavelength is 
even smaller so only small amount of light passes through the holes, as a consequence, the 
incident wave couples to the eigenmode very weakly. 

It is also clearly seen from Fig. 3.21 that the dips 1 and 3 are still very pronounced also 
for the radii r=0.25a. We explain this by the fact that the coupling to TM eigenmodes (dips 
1 and 3) happens in the vicinity of the gold layer while the coupling to the TE mode (dip 2) 
takes place in the volume of the PhC. Thus, even if the incident wave decays quickly with 
the distance from the gold, it still couples to the TM modes. We will see in the next 
subsection that the depth of the pores influence the coupling to TE modes very strongly 
while the coupling to the TM modes depends on the pores depth weakly. 
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Fig. 3.21. Reflectance spectra of the structures with the same period a=3 μm and refractive index 
compositions (Table 3.2) but with different radii of the pores: r=0.365a (a), r=0.3a (b), and r=0.25a (c). 
 

We assumed that the redshift of the spectral features with decreasing radii of the pores 
is due to the redshift of the corresponding PhC eigenmodes. In order to check this we plot 
the dependence of the spectral positions of the dips 1 and 3 on the size of the pores as well 
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as the positions of the corresponding eigenmodes calculated by the PWEM (Fig. 3.22). We 
found very good correspondence between the FDTD and PWEM calculations. Moreover, 
the mismatch between the FDTD and PWEM results is almost constant: the wavelengths 
calculated by the PWEM are ~1.5% and 3-4% lower than obtained from 3D FDTD model 
for dips 1 and 3, respectively. We will discuss the possible sources of this mismatch later. 
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Fig. 3.22. The spectral positions of the dips 1 and 3 vs. diameter of the pores. The black lines are obtained 
from the FDTD calculations, the red ones– from the PWEM. 
 
 

3.2.6. The influence of the depth of the pores 
In the previous subsections we have used the PWEM for the calculations of the 
eigenmodes and eigenfrequencies of a 2D PhC. In the PWEM calculations it is implicitly 
assumed that a 2D PhC is infinitely large in the out-of-plane (parallel to the pores axes) 
directions. Of course in our 3D model this is not the case. Moreover, the depth of the pores 
is even lower than the free-space wavelengths of the incident wave. Thus, we have made a 
set of additional calculations in order to define the influence of the depth of the pores on 
the obtained results. 

We have considered three different values of the pores depths (h=4 μm, h=2.5 μm, and 
h=1.5 μm) for two different values of the pores radii (r=0.365a and r=0.3a) keeping the 
lattice constant unchangeable (a=3 μm). The results are presented in Fig. 3.23. 

We want to draw attention to the strong dependence of dip 2 on the pores depth. The 
decrease of the depth of the pores from 4 μm to 2.5 μm results in the blueshift and 
broadening of dip 2. Further decrease of the depth to 1.5 μm eliminates dip 2 totally.  

In contrast, dips 1 and 3 are very pronounced even for h=1.5 μm. In the case of r=0.3a 
(Fig. 3.23a) the change of the depth from 4 μm to 2.5 μm affects the dips 1 and 3 
insignificantly: a slight broadening is observed while the positions and the values of the 
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minima remain the same. For h=1.5 μm the dips 1 and 3 are much broader and shallower, 
the minimal reflectance now are 43% and 39%, respectively. 

The situation is again different for r=0.365a (Fig. 3.23b). Although the broadening of 
the dips is observed in this case as well, the dips 1 and 3 are deeper for h=2.5 μm and 
h=1.5 μm than for h=4 μm. 
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Fig. 3.23. Reflectance spectra for two structures: a=3 μm, r=0.3a (a) and a=3 μm, r=0.365a (b) for different 
depths of the pores: h=4 μm (solid), h=2.5 μm (dashed), and h=1.5 μm (dotted). 
 

Thus, we conclude that, in addition to the different polarization of the excited 
eigenmodes, the coupling process itself is different for TE (dip 2) and TM (dips 1 and 3) 
eigenmodes: in the former case the coupling occurs in the volume of a 2D PhC, so the 
depth of the pores is crucial, while in the latter case the coupling takes place in the vicinity 
of the gold layer that results in weaker influence of the pores depth.  

Insufficient depth of the pores is most probably the reason for higher mismatch in 
spectral position between the PWEM and FDTD calculations for the dip 2. We suppose 
that for the pores depths h>λ0 (λ0 is the wavelength in vacuum) the mismatch will be below 
3 %. 
 

3.2.7. The influence of the refractive index of the slab 
In this subsection we examine the behavior of the reflectance spectra when the refractive 
index of the high-index material is changed. Now all geometrical parameters of the 
structures are fixed: a=3 μm, r=0.3a, h=4 μm. In Fig. 3.24 three reflectance spectra are 
shown for different values of the refractive index. The curve (b) is the same as in Fig. 3.6 
and corresponds to the multilayer vertical composition of the PhC with refractive index of 
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the "active region" n=3.2. In the cases (a) and (c) the gold layer is lying on top of 
homogeneous materials with refractive indices n=3.5 and n=2.5, respectively. It is clearly 
seen from the figure that the decrease of the refractive index of the PhC leads to a blueshift 
of the spectral features. In addition, since the low-wavelength part of the spectrum in Fig. 
3.24c is already below the cut-off the reflectance is generally low there and some 
additional dips appear. 
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Fig. 3.24. Reflectance spectra of the structures with the same period a=3 μm and radius of the pores r=0.3a 
but with different refractive indices of the background material. Case (b) corresponds to the multilayer 
structure (Table 3.2). In the cases (a) and (c) the high-index material of the PhC is homogeneous with 
refractive index n=3.5 and n=2.5, respectively. 
 

The dependence of the spectral positions of the dips 1 and 3 as well as the positions of 
the corresponding PhC modes on the refractive index is shown in Fig. 3.25. Similarly to 
Fig. 3.22 the spectral positions calculated by FDTD are higher than obtained by the 
PWEM. The mismatch becomes lower as the refractive index decreases. 
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Fig. 3.25. The spectral positions of the dips 1 and 3 vs. refractive index. The black lines are obtained from the 
FDTD calculations, the red ones are obtained by the PWEM. 
 

3.2.8. Time evolution and finite-size effects 
In our 3D FDTD model the four facets of the computational domain which are parallel to 
the axes of the pores have the periodic boundary conditions (PBC). The model with PBC 
simulates a structure which is infinitely large within the plane of periodicity of the 2D PhC. 
Therefore, there are only three ways for EM energy to escape from the system: it can be 
absorbed by a material with non-zero imaginary part of the refractive index, it can reach 
the bottom facet of the computational domain with PML and contribute in transmittance, or 
it can reach the top PML facet and contribute to reflectance. Since all real structures are 
finite, it is very important to investigate how the coupling effects depend on the size of the 
structure within the plane of periodicity.  

We see several ways to estimate the finite size effects:  
1. In the direction of the wave propagation (from top to bottom) our model is 6.1 μm long. 
That means that after a time of ct=6.1 μm a plane wave would reach the bottom facet if the 
computational domain contains only air. Since the speed of light in a material with a 
refractive index n is v=c/n we estimate the longest time for a wave to reach the bottom 
edge of the computational domain to be approximately ct=15 μm. In any FDTD simulation 
measured magnitudes (e.g. transmittance and reflectance) need some time to reach a steady 
state, let us call this time as "steady-state time" tss. Here we assume that a system has 
reached steady-state if the change in transmittance and reflectance during a period of 
cΔt=200 μm is less than 2%. We believe that by considering tss it is possible to estimate 
(roughly) how the light travels through the system. 
2. Our model contains a material with a high imaginary part of the refractive index – the 
gold layer. This gold layer is the major source of the energy dissipation. We suppose that 
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higher absorption rates would correspond to a situation where the waves "stay" longer in 
the vicinity of the gold.  
3. The previous two approaches are of course indirect. The direct way would be to put 
PML ABC on the all facets of the computational domain and perform a set of simulations 
with different lateral sizes of the structure. This approach, however, requires time 
expensive calculations. 

First of all we consider the time-dependent transmittance and reflectance for dip 1, dip 
2, λ=5.3 μm ("control point"), and dip 3 shown in Figs. 3.26a – 3.26d, respectively. The 
arrows show the steady-state times. 

The shortest steady state time is observed for the "control point" (Fig. 3.26c): ctss~300 
μm. Interestingly, the steady state time for the transmittance is lower than for the 
reflectance despite the fact that the distance to transmission monitor is larger.  

In the case of dip 2 (Fig. 3.26b) the steady-state time ctss is approximately 500 μm. We 
suppose that this time is higher than that for the control point because the incident wave 
couples resonantly to a PhC mode. In the case of dip 1 (Fig. 3.26a) and dip 3 (Fig. 3.26d) 
the steady state times are ctss~2000 μm and ctss~1000 μm, respectively. We believe that 
higher steady state times in these cases are due to the polarization conversion and 
localization of the excited TM PhC eigenmodes below the gold layer. Since the excited 
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Fig. 3.26. The time dependent transmittance and reflectance for dip 1 (a), dip 2 (b), λ=5.3 μm (c), and dip 3 
(d). The arrows show the steady-state time values. 
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modes are polarized preferably in y-direction the propagation in y-direction is not allowed 
(an EM wave would be longitudinal in this case). For the same reason the waves cannot 
couple back to the free space. Thus, the excited TM eigenmode is "localized" below the 
gold layer. Of course, a part of the incident EM wave still propagates through the structure 
since we detect transmittance below the PhC. But we will see in the next subsection that 
the "localized" energy is an order of magnitude higher than the propagating one. 

Another fact which indicates a localization of the excited TM dipole modes is the 
amount of absorbance shown in Table 3.3. The absorbance for dips 1 and 3 is much higher 
than for dip 2: 31%, 39% and 2 %, respectively. As already said above, the high 
absorbance can be attributed to the high "dwell time" of the photons in the vicinity of the 
gold layer, in other words, the wave "stays" in the vicinity of the gold for a long time.  

The finite-size effects were also estimated directly. In Fig. 3.27 the reflectance of the 
model with periodic boundary condition is compared with models which are finite in the 
plane of periodicity. The red curve is the reflectance with periodic boundary conditions 
(the same as in Fig. 3.6). The black curve is for a simulation with PML absorbing 
boundary conditions applied to all six facets of the computational domain. The lateral 
dimensions of the structure are 12x15.6 μm2 which is approximately 3x5 periods of the 
PhC. The blue curves show the reflectance spectrum for a finite structure with lateral size 
of 18x20.7 μm2. It is necessary to note that in the calculations with PML ABC in the lateral 
directions the plane wave irradiated by the source has a Gaussian spatial profile, i.e. the 
amplitude of the wave is maximal in the center and minimal on the edges of the source. In 
all cases an Ez-polarized source was used. 

It can be seen from Fig. 3.27 that already the black curve exhibits clear dips 2 and 3. 
The dip 1, however, is very weak in this case. For a larger structure (blue curves) all three 
dips are more pronounced: the minima of dips 2 and 3 are closer to values of an infinitely 
large structure, the dip 1 is now clearly seen but still weak. A slight redshift (~1-2%) of all 
reflection dips with respect to infinite structure is also observed. Currently we are not able 
to explain this redshift. 

The examination of finite size effects brings us to a very important from the 
experimental point of view conclusion: the coupling to the lowest TM dipole eigenmode 
(dip 3) appears already for laterally small structures. We suppose that for a structure with 
lateral dimension of 10ax10a (a is the period of a PhC) the minimum of dip 3 approaches 
closely the value for infinite structure. At the same time, the dip 1 appears to be very 
sensitive to the size of the structure. Thus, it might be much more difficult to detect it 
experimentally. 



3.2. Simulation results I. photonic crystal slab covered with metal  
 

109 

4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

 PBC
 PML, 12x15.6 μm2

 PML, 18x20.7 μm2

R
ef

le
ct

an
ce

Wavelength, μm
 

Fig. 3.27. Estimation of finite-size effects. The red curve is for the model with periodic boundary conditions 
(PBC), e.g. for the structure which is infinite in the lateral directions. The black and the blue curves are for 
perfectly matched layer absorbing boundary conditions (PML ABC) applied to all facets of the 
computational domain. The lateral size of the structure is 12x15.6 μm2 and 18x20.7 μm2 for the black and the 
blue curve, respectively. The vertical composition of the structures are shown in Table 3.2; the parameters of 
the 2D PhC are a=3 μm, r=0.3a. 
 

3.2.9. Quantitative characterization of the polarization conversion 
In this subsection we have used an additional C++ program for the calculations of the 
average energy density of the electric field components below the gold layer at the 
wavelengths corresponding to dips 1 and 3. The program code is listed in Appendix IV. 

The average energy density of the field components is calculated according to the 
formula: 

∑
=

=
VN

i

i

V

E
N

E
1

2)(2 ||1|| αα ,      (3.3)  

where α denotes one the component (x, y, or z) of the electric field E, NV is the number of 

the computational grid points within the integration volume, and )(iEα  is the amplitude of 

an electric field component in a grid point i within the volume. The information about the 
fields in separate points of the computational grid is deduced from the 3D field distribution 
files. Since the 3D distributions of the EM are instantaneous distributions we have 
performed a pair of calculations – one with zero phase shift and another with the phase 

shift of π/2. By adding two values of 2|| αE  with the phase difference of π/2 a total 

intensity of the corresponding field component is obtained. 
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All values of electric field amplitudes are normalized to the amplitude of the electric 
field in the generated wave.  

We characterize the polarization conversion by the following parameter: 
 

2

2

||

||

source

y

E

E
=β ,       (3.4) 

where Esource means the electric field component which is non-zero in the incident wave (Ex 
or Ez). 

In principle, both average energy density (3.3) and polarization conversion parameter 
(3.4) depend on the choice of the integration volume. We have chosen two volumes: the 
volume of the "active region" according to Table 3.2 and the volume of the layer with a 
thickness of 1.5 μm directly below the gold layer.  

The results are summarized in Table 3.7. The second column defines the parameters of 
the structure and refers to the corresponding reflectance spectrum. The third column shows 
the volume of integration. The next six columns contain the values of average energy 
density of the electric field components calculated by (3.6) and the polarization conversion 
parameter β for dips 1 and 3. 

First of all, in all cases shown, the 2|| yE  is higher than 2|| sourceE . This result is not 

surprising since we have already seen that the electric field below the gold is polarized 
mostly in y-direction. The value of β is in average about 10 having the minimal value of 
4.25 and the maximal one of 19.2. However, the value of β=4.25 was obtained for dip 1 at 
the wavelength of λ=3.43 μm (see Fig. 3.24c) which is below the cut-off wavelength for 
the holes (λ<4r) [118]. So, an incident wave is not evanescent within the holes. This leads 
to higher amount of directly transmitted power (i.e. with the same polarization as in the 
incident wave). 

Rows 4 and 6 contain the data calculated for the same structure but for different 
integration volumes then for rows 3 and 5, respectively. It is seen that the density of the 
electric fields averaged over the near-surface volume (0 – 1.5 μm below the gold) are 
significantly higher then averaged over the volume of the "active region". This confirms 
our conclusion that excited TM modes are localized below the gold. 
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Table 3.7. The values of integrated average density of the electric field components at dip 1 and dip 3 for 
different parameters of the structures. More detailed description: see text. 

Dip 1 Dip 3  Parameters 
of the 
structure 

Volume of 
integration 2|| sourceE  2|| yE  β 2|| sourceE  2|| yE  β 

1 r=0.3a 
multilayer 
Fig. 3.21b 

"active 
region" 

0.39 4.22 10.8 0.32 5.12 12.5 

2 r=0.25a 
multilayer 
Fig. 3.21c 

"active 
region" 

0.19 2.97 15.6 0.29 5.56 19.2 

3 r=0.3a 
n=3.5 
Fig. 3.24a 

"active 
region" 

0.35 3.05 8.7 0.36 4.85 13.5 

4 r=0.3a 
n=3.5 
Fig. 3.24a 

0 – 1.5 μm 
below the 
gold layer 

0.49 6.77 13.8 0.9 11.58 12.8 

5 r=0.3a 
n=2.5 
Fig.3.24c 

"active 
region" 

0.7 2.98 4.25 0.52 5.0 9.62 

6 r=0.3a 
n=2.5 
Fig.3.24c 

0 – 1.5 μm 
below the 
gold layer 

0.88 6.43 7.3 1.18 12.32 10.44 
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3.3. Simulation results II: single gold plate with holes. 
 
Our investigations would not be complete without an analysis of the optical properties of a 
single metal plate with holes. Despite the fact that metal hole arrays (MHAs) are already 
well investigated as was stated in the introduction to this Chapter, we have not found in the 
literature a comprehensive 3D numerical analysis which is analogous to what we have 
done in section 3.2 for a PhC covered with metal. In addition, we can use the same but 
simplified model that gives a nice opportunity to directly compare the results with and 
without PhC structure. 

We have already seen in subsection 3.2.4 that a gold layer in air does not exhibit any 
reflection dips in the spectral region from 4 μm to 7.5 μm. However, it was shown in the 
original research [106] as well as in subsequent papers [107-122] that metal hole arrays in 
air should exhibit a reflection dip (and corresponding transmission peak) at wavelengths 
which are close to the period of the 2D lattice. It is important to note, that major part of the 
investigations of the extraordinary optical transmission involves square-lattice MHAs. For 
instance, in the recent review [122] triangular-lattice MHAs were not mentioned at all. 
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Fig. 3.28. Reflectance (a) and transmittance (b) of a single gold plate with triangular lattice of holes in air. 
Different colors of the curves correspond to different radii of the holes: r=0.3a (black), r=0.2a (red), and 
r=0.15a (blue). Period of triangular lattice a=3 μm 
 

The reflection and transmission spectra of a 100 nm-thick gold layer with triangular 
lattice of circular holes in air are shown in Figs. 3.28a and 3.28b, respectively. Different 
colors of the curves correspond to different radii of the holes: r=0.3a (black), r=0.2a (red), 
and r=0.15a (blue). The period of the triangular lattice is 3 μm. The transmission peaks 
around the wavelength of 3 μm are the "classical" extraordinary transmission effect. The 
transmission efficiency observed for r=0.15a (Fig. 3.28b, blue curve) is almost 10. 

We observe a slight shift of the transmission peak to higher wavelengths with 
increasing the radius of the pores. Additionally, the EOT peak becomes higher and broader 
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as the radius increases. For r=0.3a (Fig. 3.28b, black curve) the maximal transmittance 
reaches unity. These conclusions coincide with that made for hole arrays with square 
lattice [127, 128].  

Let us now consider the distribution of EM field for two wavelengths: (i) resonant 
wavelength λ=3.06 μm and (ii) non-resonant wavelength λ=7.5 μm, both for r=0.3a. These 
two points are marked by the arrows in Fig. 3.28b. 

The information about the steady-state electromagnetic field within the structure for 
resonant and non-resonant wavelengths is summarized in Figs. 3.29 and 3.30, respectively. 
An Ex-polarized source was used for the calculations. All color scales are normalized to the 
amplitude of the electric field in the wave generated by the source. The 3D field 
distributions as well as the vector plots show instantaneous pictures, i.e. snapshots. Figs. 
3.29a and 3.29b as well as Figs 3.30a and 3.30b show the amplitudes. 

As follows from Fig. 3.28b, at the resonance the transmittance reaches unity. This is 
clearly seen in Fig. 3.29a: the blue areas (the amplitude of the Ex component ~ 1) located 
above and below the gold layer indicate the incident and transmitted waves. Inside and in 
the vicinity of the holes the amplitude of the Ex-component is enhanced reaching a value of 
4 directly on the edges of the holes. At the same time, the Ex-component just above and 
below gold parts is close to zero since it is a tangential component there. Thus, from the 
point of view of the Ex-field the processes appearing at the resonance can be described as 
follows: a plane wave with an amplitude of 1 impinges the metal hole array; in the vicinity 
of the hole array Ex-field is redistributed so that the amplitudes have maximal values (up to 
4) within the holes and minimal values (down to 0) just above and below the gold parts, 
further below (>2 μm) the MHA the field is again redistributed so that a plane wave is 
going out of the system. The later fact is most clearly seen on the 3D distribution of the Ex-
field (Fig. 3.29c). 

The Ey-component (Fig. 3.29b) is absent in the incident wave. Nevertheless the 
amplitude of the Ey-field reaches a value of 4 above and below the gold parts. It is clearly 
seen in Fig. 3.29d that the distribution of the Ey-field has a dipole-like character which we 
have already observed in section 3.2. The amplitude of the Ey-component decays quickly 
with the distance from the gold and is practically zero at y=0 μm (i.e. 2 μm below the 
gold). From the point of view of the Ey component the interaction of an EM wave with the 
MHA at the resonance can be described as follows:  
- the incoming Ex-polarized wave diffracts at the edges of the holes. Directly above and 
under the metal parts the Ex component of the diffracted waves tends to zero (due to the 
boundary conditions for EM field) that results in growth of Ey component there;  
 - due to the interference between the incident and the diffracted waves the distribution of 
the Ey field has a dipole-like character (see Fig. 3.14 and corresponding text); 
 - the same (but antisymmetric with respect to reflection over the surface of the MHA) 
dipole-like structure is generated on the bottom surface of the metal;  
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Fig. 3.29. Steady-state electromagnetic field for a single MHA in air at resonant wavelength λ=3.07 μm (left 
arrow in Fig. 3.28). The period of the lattice is 3 μm, the radius of the holes is 0.3a=0.9 μm. The Ex-polarized 
source was used. (a) and (b) show the 2D cross-sections of amplitudes of the Ex and Ey components, 
respectively. (c) and (d) are the instantaneous 3D distributions of the Ex and Ey components, respectively. (e) 
and (f) show the instantaneous electric field and Poynting vectors, respectively. 
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Fig. 3.30. Steady-state electromagnetic field for a single MHA in air at non-resonant wavelength λ=7.5 μm 
(right arrow in Fig. 3.28). The period of the lattice is 3 μm, the radius of the holes is 0.3a=0.9 μm. The Ex-
polarized source was used. (a) and (b) show the 2D cross-sections of amplitudes of the Ex and Ey 
components, respectively. (c) and (d) are the instantaneous 3D distributions of the Ex and Ey components, 
respectively. (e) and (f) show the instantaneous electric field and Poynting vectors, respectively. 
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The distributions of electric field and Poynting vectors are shown in Figs. 3.29e and 
3.29f, respectively. The both confirm that the outgoing wave is a plane wave. In Fig. 3.29e, 
for instance, approximately at y=0 μm as well as at y=-1.5 μm one can see that the vectors 
are polarized horizontally (Ey~0) and have the same phase. Moreover, at y=0 the electric 
field vectors are aligned from right to left while at y=-1.5 μm they are aligned from left to 
right. The distance of 1.5 μm corresponds to approximately half of the wavelength or, in 
other words, to a phase difference of π/2. In the Poynting vectors distribution it is seen that 
the energy flux below the MHA is directed from a hole under the gold part. 

For the wavelength of λ=7.5 μm (out of resonance) the reflectance is high and the 
transmittance is low (Fig. 3.28b, right arrow). This fact is clearly observed in the pictures 
showing the distribution of Ex-component (Fig. 3.30a and Fig. 3.30c). Interestingly, 
although the amplitude of Ey is also much lower in this case, the dipole-like pattern which 
is shown in Fig. 3.30d has the same shape as for λ=3.06 μm. Thus, we can make a very 
important conclusion: the pattern of the Ey-field appearing after interaction of a plane 
wave with a MHA in the vicinity of the holes does not depend on the wavelength of the 
wave. We suppose that this pattern is defined only by the parameters of the metal plate – 
the period of the hole lattice and the radius of the holes. 

The transmittance spectra of gold MHAs on a substrate are shown in Fig. 3.31. 
Different colors of the curves correspond to different radii of the holes: r=0.3a (black), 
r=0.2a (red). The dashed curves correspond to the substrate index of n=1.5, the solid 
curves are for n=2.2. An increase of the substrate refractive index leads to a redshift of the 
EOT peaks. Additionally, the maximal transmittance does not reach unity as in the case of 
an MHA in air.  
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Fig. 3.31. Transmittance through a gold plate with a triangular lattice of holes on a substrate. Different colors 
of the curves correspond to different radii of the holes: r=0.3a (black), r=0.2a (red). The dashed curves 
correspond to the substrate index of n=1.5, the solid curves are for n=2.2. 



3.3. Simulation results II: single gold plate with holes  
 

117 

The role of surface plasmons. 
As we already mentioned in subsection 3.1.1, it is believed that the EOT peaks appear due 
to excitation of surface plasmons (SP). As an example of a typical explanation of the 
processes that take place at the resonance we cite the following passage [118]: "… the 
process can be divided into three steps: the coupling of light to the SPs on the incident 
surface, transmission through the holes to the second surface and then re-emission from the 
second surface. At the peak transmissions, standing SP wave are formed on the surface." 
We do observe a mode which is bound to the surface and has a standing wave character – 
this is our dipole-like pattern. In our opinion the main requirement for generation of this 
mode is the existence of a large imaginary part of the refractive index of a material. Due to 
the boundary conditions for the EM field, the tangential component of the diffracted on the 
holes wave tends to zero near the metal-dielectric interface. At the same time, the normal 
component, which is in our case the Ey component (above and below the metal parts), is 
allowed. This leads to the most "convenient" field distribution with continuous electric 
field lines – the dipole-like pattern. Thus, it does not matter whether the material of a hole 
array is a real metal, perfect electric conductor or doped semiconductor – the only 
requirement is substantial imaginary part of the refractive index. Actually, we observed the 
dipole-like pattern also for lossless dielectrics but the amplitude of the Ey-field was very 
small in that case. 

Nevertheless the SP model of the EOT effect is the most widely accepted model now. 
Let us check the correspondence of this model to our results obtained for triangular-lattice 
MHAs. 

A surface plasmon or, more generally, a surface electromagnetic mode can exist on a 
flat interface between two media if one of the media has a negative real part of the 
dielectric constant [129]. This condition is satisfied for most of the metals for frequencies 
below the plasma frequency. Generally, metals are characterized by a complex dielectric 
constant εm=εrm +iεim and the dispersion equation of a surface mode depends on both real 
and imaginary parts of εm [129]. However, if the condition 
 

drmimrmrm εεεεε >>>< ,,0      (3.5) 

is satisfied then the real part of the wavevector of the surface mode (on a flat surface 
without holes) is given by [129] 

rmd

drm
r c

k
εε
εεω
+

= ,      (3.6) 

where εd is the dielectric constant of the non-metallic medium. In our simulations the 
refractive index of the gold is given by nAu=3.11+i45.3. The corresponding dielectric 
constant is then εAu=-2042+i282. Thus the conditions (3.5) are satisfied in our model. 
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The formula for calculations of the wavelength of first-order transmission peak due to 
excitation of surface plasmons in triangular-lattice MHAs is then given by [118] 
 

drm

drma
εε
εελ
+

=
2

3
max ,     (3.7) 

where a is the lattice constant. We want to draw attention to the fact that the dependence of 
the peak position on the radius of the holes is not included in the expression (3.7). This is 
because (3.7) is obtained by combining the expression for a SP wavevector on a surface 
without holes (3.6) and grating momentum-matching condition [118]. Thus, (3.7) is more 
exact for smaller radii of the holes, in other words, when the flat metal surface is less 
disturbed by a 2D grating of holes.  

The comparison between the positions of peaks maxima calculated by (3.7) and the 
ones obtained from 3D FDTD is shown in Table 3.8 for different refractive indices of the 
substrate. The 3D FDTD values are obtained with a hole radius r=0.2a =0.6 μm. We 
conclude that the values obtained by 3D FDTD method are red-shifted with respected to 
the ones predicted by (3.7). This redshift was observed in many theoretical and 
experimental papers [122]. Our calculations show that the spectral positions of the EOT 
peaks tend to the values given by Eq. (3.7) as the radius of the pores decreases (see, for 
example, Fig. 3.28b, blue curve).  

Detailed investigation of the EOT effect in MHAs without underlying PhC is actually 
out of the scope of this thesis. An extensive review to this topic can be found, for example 
in [122]. 
 
Table 3.8. The comparison of the wavelengths of the EOT peak calculated by Eq. (3.7) and obtained by the 
FDTD method. 
 

Refractive index 
of the substrate 

λmax calculated by 
(3.7) 

λmax observed in 3D 
FDTD simulations 

1 2.6 μm 2.85 μm 
1.5 3.9 μm 4.05 μm 
2.2 5.72 μm 5.9 μm 
3.5 9.1 μm 9.5 μm 
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3.4. Discussion and conclusions 
There are two different physical effects which can lead to the observation of the EOT. In 
the case of a MHA between two homogeneous media (Section 3.3) an incident plane wave 
finally couples to an outgoing plane wave. In the case of the MHA lying on top of a PhC 
an incident wave couples to one of the PhC eigenmodes. Moreover, if this eigenmode is a 
TM eigenmode a polarization conversion is observed and the excited mode is localized 
within a subwavelength distance below the metal. In both cases a dipole-like standing 
wave mode plays a role of a "mediator" helping to transfer the EM energy through the 
subwavelength holes. We have seen in the section 3.3 that this dipole-like pattern appears 
for all wavelengths (at least within the examined spectral range) and its structure is defined 
by the geometry of the hole array. To be more precise, the size of each dipole is defined by 
the diameter of the holes the while dipole-to-dipole distance is defined by the period of the 
lattice. 

In the case of MHA-PhC structures the strong coupling to TM modes is possible only 
due to the existence of this dipole-like standing wave pattern. In contrast to single MHAs 
the coupling condition is defined not by the period of the lattice, but by the frequency of 
corresponding PhC eigenmode. As a result, the spectral positions of the reflection dips 
(dips 1 and 3 in section 3.2) can be shifted within a large range by changing the parameters 
of the PhC, e.g. the radius of the pores or the refractive index of the background material. 
The excited TM modes are localized within a subwavelength distance below the MHA 
having the maximal field amplitudes just below the gold. This localization is due to the fact 
that the amplitude of the Ey-component is high only in the vicinity of the gold and tends to 
zero as distance from the gold increases. In addition, the EM energy from the excited TM 
mode cannot decouple to propagating waves because the electric field is polarized parallel 
to the propagating direction. Since the coupling to TM modes takes place only in the 
vicinity of the gold (where the Ey field is high), the depth of the pores does not influence 
the coupling efficiency significantly. We have shown that for a pore depth of 2.5 μm the 
coupling is still very efficient. The reflection dips are still pronounced even for a pore 
depth of 1.5 μm which is more than 4 times smaller than the wavelength corresponding to 
the dip 3 minimum. 

It is interesting to discuss the differences between the coupling to the lowest (dip 3) 
and higher (dip 1) dipole modes. Apparently, the dip 3 is always broader and always 
deeper than dip 1. We can explain this by considering the Ey field patterns of the 
corresponding PhC modes. For the lowest mode (see for example Figs. 3.8c and 3.8d) each 
pore is "surrounded" by only one dipole which is oriented along the polarization direction 
of the incident wave. This picture corresponds to the wavelength-independent dipole-like 
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pattern appearing in the vicinity of a stand-alone MHA (see Fig. 3.29d). Therefore, no 
redistribution of the field is required for the coupling to lowest dipole TM mode of a PhC. 
In the case of a higher dipole mode (see Figs. 3.8a and 3.8b) the field pattern is more 
complicated: there are several dipoles "surrounding" each hole, and there is no direct 
correspondence to the dipole-like pattern of the stand-alone MHA. That is the reason why 
the coupling efficiency to the higher mode is lower and the dip 1 is never as deep as dip 3. 
For the same reason the steady-state times (subsection 3.2.8) are highest for dip 1. In 
addition, the dip 1 disappears (subsection 3.2.8) if the structure is not large enough in the 
lateral directions. 

In the subsections 3.2.5 and 3.2.7 we have seen that the spectral positions of the 
minima of the dips 1 and 3 are always slightly (~2-4%) redshifted with respect to the 
positions of the corresponding eigenmodes calculated by the 2D PWEM. To explain this 
shift we want to remind that in FDTD model the refractive index is defined only at discrete 
points of the computational grid. An abrupt change of the refractive index (e.g. on a wall of 
a pore) from 3.2 to 1 is simulated in the FullWAVE with the help of some transition 
interlayer having a refractive index between the two values. This makes the radii of the 
pores a bit smaller than the value given. As it was shown in the subsection 3.2.5, a 
decrease of the pores radius results in a redshift of the PhC eigenmodes. Thus, the small 
mismatch between the FDTD and PWEM calculation might appear because the radii of the 
pores are slightly smaller than predefined. Another possible reason for the mismatch 
between PWEM and FDTD results is the finiteness of the structure in y-direction. PWEM 
calculations are two dimensional implying that the structure is infinitely large in y-
direction, i.e. that the pores are infinitely deep. In the FDTD model the pores have the 
depth of 4 μm and less. 

Calculated transmission efficiencies of the MHA-PhC structures are lying between 
180% and 230% depending on the particular parameters of a structure. It is necessary to 
note that at the wavelength where the TM PhC modes are excited (dips 1 and 3) a high 
absorption (up to 40%) is observed. This is because the EM energy coupled to TM modes 
is localized below the gold. Therefore, the photons "stay" longer in the vicinity of the gold. 
We believe that dissipation of the EM energy by the gold is the main factor limiting the 
transmission efficiency in MHA-PhC structures. 

We have estimated the polarization conversion quantitatively by calculating average 
density of the electric field components below the gold (subsection 3.2.9) at the 
wavelengths corresponding to the dips 1 and 3. The main conclusion: the energy density 
carried by the Ey component is an order of magnitude higher than the energy carried by the 
electric field having the same polarization as in the incident wave. 

In MHA-PhC structures a TE mode of the PhC can be also excited by the wave 
incident normally onto the MHA (dip 2 in section 3.2). In this case, the electric field in the 
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excited mode retains the polarization of the source. Since the electric field is perpendicular 
to the propagation direction, the EM energy can decouple from the excited mode into 
propagating outgoing wave. In addition, TE modes are excited in the bulk of the PhC and 
have the maximal field strength in the middle of the pores (Table 3.4, diagram "f"). This 
makes the reflection dip 2 very sensitive to the depth of the pores. The decrease of the 
depth of the pores from 4 μm to 2.5 μm results in the blueshift and broadening of the dip 2. 
Further decrease of the depth to 1.5 μm eliminates the dip 2 totally. Actually, the excitation 
of a PhC TE mode does not require the metal layer. Coupling to TE modes is observed 
also for a PhC without metal on top (Fig. 3.20). The gold makes the reflection dip more 
pronounced by increasing the reflection of non-resonant wavelengths. 

We have explained the coupling processes which appear in MHA-PhC structures 
without involving surface plasmons. The appearance of the standing dipole-like mode in 
the vicinity of the gold was attributed to the interference between the incident wave and 
diffracted at the holes waves. We have shown (see Fig. 3.14) that the dipole-like pattern is 
the only configuration of EM field which satisfies two requirements: (i) in the vicinity of 
the gold the electric field is polarized normally to the gold-dielectric interface and (ii) 
within the holes the electric field is polarized mostly in the same direction as in the 
incident wave. Within this model it does not matter whether the metal is a real metal or a 
perfect conductor – the dipole-like surface mode would be excited in both cases.  

The coupling of light to PhC TM modes has several potential applications. First of all, 
resonant polarization conversion which leads to appearance of the strong electric field 
polarized parallel to the pores axis can be used to improve the efficiency of quantum well 
infrared photodetectors (QWIPs). In such PhC QWIPs the dark current should be lower 
then in conventional QWIPs due to lower volume of the active region, at the same time, the 
electromagnetic wave is highly polarized normal to the quantum wells, the energy is 
concentrated mostly within the active region, and the "dwell time" of the photons is 
increased due to the resonant nature of the effect.  

The reflectance from the MHA-PhC structures at dip 3 minima could be as small as 
1%. This could be utilized for narrow-band anti-reflection coatings or transparent electrical 
contacts.  

The MHA-PhC structures have a great potential to be utilized in integrated photonics 
devices. At reflection dips 1 and 3 a plane wave coming from "infinity" couples to a planar 
PhC modes. We have shown that the density of EM energy trapped within a 
subwavelength distance below the metal could be an order of magnitude higher than the 
energy density of the incident wave. 

From a fundamental point of view, the examined structures represent an interesting 
type of optical resonator. The "Encyclopedia of Laser Physics and Technology" [130] 
gives the following definition of an optical resonator: "An optical resonator (or resonant 
optical cavity) is an arrangement of optical components which allows a beam of light to 
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circulate in a closed path. Such resonators can be made in very different forms." Usually, 
the confinement of light in optical resonators is achieved by formation of standing waves 
due to multiple reflections as, for instance, in Fabry-Perot or whispering-gallery resonators. 
Vertical confinement of light in MHA-PhC structures is achieved without multiple 
reflections. The light is confined within the vicinity of the metal because the surface 
dipole-like mode exists only there. 
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3.5. Open questions and future work 
The results presented in this Chapter raised a couple of interesting questions for future 

work.  
It is important to perform an experimental research confirming the EOT and 

polarization conversion in MHA-PhC structures. All simulations consider to some degree 
idealized structures. Some idealizations have more effect, some less: only careful 
experiment can make us sure that the model chosen describes an effect well. 

At the time of the publication of this thesis, an experiment was in a preparatory stage. 
It is planned to perform transmission and reflection measurements in mm-wave region on 
structures similar to those investigated in section 3.2, but scaled-up by a factor of 1000. We 
have chosen a machinable ceramic material called Macor (n=2.5) as a dielectric material. 
The hexagonal hole arrays with period a=3 mm and with two different radii, r=0.9 mm and 
r=0.6 mm were drilled in the Macor plates with dimensions: 78x78x7 mm3. A photo of a 
Macor plate with holes is shown in Fig. 3.32. The plates will be then covered with a thin 
metal foil and holes in the metal foil will be superimposed with the holes in a Macor plate. 
We expect to observe a dip in reflection which should correspond to the dip 3 in our 
calculations. For the plate with the holes radius of 0.9 mm the dip 3 is supposed to appear 
at the wavelength of 5.4 mm. 
 

 
 
Fig. 3.32. A plate of machinable ceramic material Macor with hexagonal array of holes. After covering of the 
plate with a thin metal foil and superimposing the holes in metal with the holes in the plate transmission and 
reflection will be measured. 
 

Of particular interest in our opinion is the influence of the angle of incidence on the 
coupling processes. This is very important for some application of the MHA-PhC systems, 
for instance in QWIPs. 
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It might be interesting to perform a similar analysis as was done in this Chapter for the 
structures with a square lattice of holes. Dipole modes are also eigenmodes of the square-
lattice PhCs so similar effects are expected to appear. 

Another interesting question is whether it is possible to achieve a conversion of the 
wavevector direction? If the EM energy coupled to a TM mode (which is trapped below 
the gold) could be forced to propagate in the plane of periodicity then such system would 
be a perfect coupler for planar silicon photonics. 

One of the possible directions of further investigations could be an "upgrade" of the 
model. For instance a second gold layer (with or without holes) put at some distance below 
the first gold layer could improve the cavity characteristics of the structure. First 
simulations in this direction showed that the energy trapped in the excited TM mode can be 
increased at least by a factor of 2 if a homogeneous gold layer without holes is placed 
below the PhC. 

In all simulations presented here a plane wave excitation was used. It might be 
interesting to investigate the coupling between an optical fiber and MHA-PhC structure.  
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