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Preface

Density-functional theory (DFT) is one of the biggest fields in todays con-
densed-matter and materials science. It constitutes a precise and practical
way to predict and interpret many material properties. DFT is a computa-
tional method to calculate the groundstate electron density of systems like
molecules and crystals.

DFT is concerned with solving the Kohn-Sham equation. The DFT tool-
box contains many codes, which differ mostly by the choice of the basis set
used to expand the Kohn-Sham wave functions. One of those is the LAPW
(linearized augmented plane-wave) basis set. LAPW codes are regarded to
be the approach with the least approximations. Such they are versatile and
precise but usually slower and more constrained concerning the maximum
system size. The exciting code implements this LAPW method. excit-
ing sets out to provide an accessible and powerful code, optimal for new
developments.

Over the lifetime of the exciting project, many things have changed
that, today, require substantial changes of the programming paradigms.
There were changes in the technical evolution of computers, the evolution
of concepts in software engineering, and user interface design. These three
fields, all get addressed in this work. This thesis presents seven solutions to
problems connected with the exciting code:

1. We show how to implement a basic MPI paralellization in the exciting
code.

2. We analyze different iterative solvers for the generalized eigenvalue
problem.

3. We look into how to improve the mixing to speed up the self-consistency
cycle.

4. We redesign the input file format for exciting by using XML.

5. We introduce XML as an output data format for exciting.
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6. We present exciting@web as an interactive user interface and results
database.

7. We describe the development process of exciting.

After a general introduction into the exciting code (Chapter 1) the
thesis is structured in three parts: Numerical Methods (I), User Interface
(II), and Software Development(III). Each of the parts has two chapters.
One chapter treats background and theory and the other one the results and
the implementation in the exciting code.

This document describes a profound transformation of the scientific soft-
ware project exciting. The goal is to make exciting better suited for
future scientific code development and application.
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Chapter 1

Introduction to DFT and the
exciting Code

This chapter gives an introduction to the exciting code. We start with
explaining the basics of DFT. Then we describe the specifics of the LAPW
basis and how it is implemented in exciting. The last section gives an
overview over the profile of a typical exciting simulation.

1.1 Density-Functional Theory

Density-functional theory is a tremendously successful method in material
physics. It is one approach to solve the quantum-mechanical many-body
problem, yet the most successful one. This is because of its theoretical ele-
gance, and because it allows an enormous reduction in complexity by using
the groundstate density instead of the many-body wave function to formulate
the groundstate solution.

The many-body Schrödinger equation,

HΨ(r1 . . . rn) = EΨ(r1 . . . rn), (1.1)

as such is practically not solvable. It is impossible to store the solution for
even medium sized systems. It was for P. Hohenberg and W. Kohn in 1964
[27] to show that there mus exist a functional that maps the groundstate
density to the total energy of the many-body Schrödinger equation. By this,
an equation for the groundstate density could be derived by Kohn and Sham
[31]. This equation for the density would give the exact density of the system
at the lowest possible energetic state, the groundstate.
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1.2 The Hohenberg-Kohn Theorem

Kohn and Hohenberg [27] showed that the groundstate energy of an inter-
acting many-particle system can be expressed as a functional of the density
ρ.

E(ρ) = T [ρ(r)] +

∫
Veff (r)ρ(r)dr, (1.2)

where T is the kinetic Energy and Veff is an effective potential dependent
on ρ.

The minimum of E(ρ) (1.2) can be found by using the variational prin-
ciple, including the constraint

∫
ρ(r)dr = N by means of a Lagrange multi-

plier. We define

L(ρ) = E(ρ)− λ
∫
ρ(r)dr; (1.3)

at the minimum it holds that

δL

δρ(r)
=

δT

δρ(r)
+ Veff − λ = 0. (1.4)

Therefore ∫ [
δT

δρ(r)
+ Veff − λ

]
ρ(r)dr = 0 (1.5)

which, from its structure, resembles the Schrödinger equation. For finding a
solution it is problematic that the kinetic energy is expressed as a functional
of the density. We do not know an exact functional of the density for the
kinetic energy. Using the local-density approximation for the kinetic energy,
as it was used in Thomas-Fermi DFT, does not give good results, because
this approximation is to crude

1.3 Kohn-Sham Equation

Instead of searching for the groundstate density directly, one could try to set
up a system of non interacting particles that have the groundstate density of
(1.5). That this is possible was shown by Kohn and Sham [31]. We search
the single-particle wave functions ψi that are connected with the groundstate
density by

N∑
i

ψ∗i (r)ψi(r) = ρ(r). (1.6)

14



Then the groundstate functional can be written in therms of the kinetic
energy operator and potentials

E =
∑
i

∫
r

ψ∗i (r)

{
−∇

2

2
+ Vext(r) + VC(ρ(r)) + Vxc(ρ(r))

}
ψi(r)dr (1.7)

where Vext is the potential from the atom cores, VC is the potential from
the charge density ρ(r) retrieved from the Poisson equation, and Vxc is the
exchange correlation potential for which a variety of approximations exist [43,
39, 38, 12]. Written like this the functional resembles a Hamilton operator.
The ψi are called Kohn-Sham orbitals and are identified as the lowest N/2
eigenfunctions of{

−∇
2

2
+ Vext(r) + VC(ρ(r)) + Vxc(ρ(r))

}
ψi = εiψi, (1.8)

the Kohn-Sham equation.

1.4 Discretization

In order to search for the groundstate on a computer one has to find a finite,
discrete representation of the wave function. For numerical treatment we
require a discrete vector space that can be truncated in some systematic way
to a finite discrete vector space. The traditional approach in physics is: Take
eigen-solutions of a related system (φn) and expand the operators and wave
function in this basis functions. This is known as the Ritz variational method.
Therefore, ψ is expressed as linear combination of those basis functions

ψ =
∑
n

cnφn. (1.9)

We want to find the ground state, i.e., the wave functions with the smallest
expectation values:

ε0 = min (〈ψ|H |ψ〉) (1.10)

To find the minimum we set up the Lagrangian with the constraints for
〈ψ |ψ〉 = 1

L = 〈ψ|H |ψ〉 − λ (1− 〈ψ |ψ〉) . (1.11)

By setting the gradient of the Lagrangian to zero, we end up with the eigen-
value equation

∂L
∂ck

=
N∑
j=1

cj(Hkj − λSkj) = 0. (1.12)
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In general, the basis functions need not be orthogonal, therefore we have
Skj = 〈φk |φj〉 which is the overlap matrix. Hkj = 〈φk|H |φj〉 is the Hamil-
tonian matrix. We can identify the lowest N eigenvectors of this algebraic
problem as the contributions to the groundstate density. Alternatively it can
be written as matrix equation:

Hx = λSx (1.13)

with x = (c1, . . . , cn), the vector with the coefficients of the basis functions.
It is important to note that the Hamilton operator depends on the density.
It will have to be linearized and solved iteratively (see Section 2.7).

One example for basis functions are plane waves. Plane waves are so-
lutions for the free particle, they are the most common basis for pseudopo-
tential calculations. Also, atomic wave functions used in the LMTO (linear
muffin-tin orbital) or LCAO (linear combination of atomic orbitals) method
may serve as an example. Gaussian functions are solutions to the harmonic
oscillator and form the basis of well established quantum-chemistry codes.

Plane waves as basis for DFT are very popular and widely used in a
variety of codes. Plane waves have some features that make them very at-
tractive for condensed matter physics. For one, it is an orthonormal basis,
and the basis functions are eigenfunctions of the kinetic energy operator,
which is the quantitatively biggest part in the Hamilton operator. It implic-
itly supports periodic boundary conditions as a result of the discrete Fourier
transformation. And the existence of the fast Fourier transformation makes
the transformation from Fourier space to real space a cheap operation. Still,
there is a disadvantage: The core potentials in condensed matter physics
are singular at the atomic positions. They require an impractical amount
of plane waves to reach a sufficient precision. Thus plane waves are used in
pseudopotential codes that replace the Coulomb potentials with a smoother
approximation. This approximation is in many cases not acceptable.

Some discretization schemes do not use basis functions that are derived
from known quantum-mechanical solutions and embrace the tools from nu-
merical mathematics. Wavelet multi-scale analysis using Daubechy wavelets
for example, has some very striking features for DFT [19]. The wavelet basis
functions are not solutions to a quantum mechanical system, rather they are
suited to approximate the wave function in real and Fourier space and there-
fore allow interesting applications which are very promising but also complex
to implement. Also, there are DFT codes that use real space grids [13] and
finite elements [34].
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1.5 APW Methods

Augmented plane wave (APW) methods merge the benefits of plane waves
and atomic wave functions into a dual basis. Reference [1] provides a com-
prehensive introduction to the APW methods. The advantage of plane waves
for periodic structures is combined with the ability of atomic wave functions
to represent the wave function close to the atomic cores. This is reached
by augmenting the plane waves, by continuing them, with a linear combina-
tion of atomic wave functions, inside a spherical domain around the cores.
This domains are called muffin-tin (MT) spheres in analogy to the pastry
forms. The atomic wave functions are spherical harmonics for the angu-
lar component, and numerical solutions to the Schrödinger equation in the
full self-potential for the radial part (uαl ). The core states having very low
energies, are considered to be localized, and not interacting with the other
atoms. The core states are, however, solved in the self-consistent potential,
and contribute to the charge density ρ of the system. The valence states
are treated in the APW basis, where the radial solutions at valence state
energies are used to construct the basis in the MT. APW basis functions are
not orthogonal thus lead to a generalized eigenvalue problem.

Table 1.1 gives an overview over the APW-like basis functions as they
will be discussed in the sections below.

1.5.1 The APW Basis Functions

In the original APW method the basis functions are written as

φk+G(r) = 1√
Ω
ei(k+G)r, r ∈ I

φk+G(r) =
∑
l,m

Alm(k + G)uαl (E, r)Ylm(r̂), r ∈MT. (1.14)

The Alm are determined by the requirement that the values of the basis
function match at the muffin tin boundaries. The radial solutions are not
defined until energy level or boundary conditions are chosen. In APW the
energy level for the uαl has to be set to the Kohn-Sham energy which makes
the basis functions themselves dependent on the solution. This poses severe
problems for calculating the eigenvalues in this basis.
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Name N
Radial functions
used for matching

Local orbitals

APW [47] 1 Alm(k + G)ul(ε, r) –

LAPW [3] 2 Alm(k + G)ul(El, r) +
Blm(k + G)u̇l(El, r)

–

SLAPW-3 [44] 3 Alm(k + G)ul(El1, r) +
Blm(k + G)u̇l(El1, r) +
Clm(k + G)ul(El2, r)

–

SLAPW-4 [45] 4 Alm(k + G)ul(El1, r) +
Blm(k + G)u̇l(El1, r) +
Clm(k + G)ul(El2, r) +
Dlm(k + G)u̇l(El2, r)

–

LAPW+lo [44] 2 Alm(k + G)ul(El, r) +
Blm(k + G)u̇l(El, r)

Ãlmul(El, r) +
B̃lm(k + G)u̇l(El, r)
+ C̃lmul(Elo, r)

APW+lo [46] 1 Alm(k + G)ul(El, r) Ãlmul(El, r) +
B̃lm(k + G)u̇l(El, r)

Table 1.1: Table of different APW-derived basis schemes. N stands for the
number of matching coefficients.

1.5.2 The LAPW Basis Functions

The LAPW (linearized augmented plane-wave) basis is defined as:

φk+G(r) = 1√
Ω
ei(k+G)r, r ∈ I

φk+G(r) =
∑
l,m

[Alm(k + G)ul(El, r) +Blm(k + G)u̇l(El, r)]Ylm(r), r ∈MT.

(1.15)
Now, instead of fixing the energy of the ul(r) we kind of expand them around
a linearizion energy (El) by adding Blm(k + G)u̇l(El, r), where

u̇ =
∂u

∂E
. (1.16)

Now the Alm and Blm are determined by matching the value and the first
derivative at the MT sphere boundary. In LAPW, the basis functions are
not any more dependent on the Kohn-Sham energy, thus the system of equa-
tion is linearized with respect to the basis functions and can be solved as a
generalized eigenvalue problem.

This linearizion has one drawback. The LAPW basis is suited to describe
only one state per principal quantum number. So materials with low-lying
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valence states (semicore states) are not treated optimally. As an example
may serve the copper 3p semicore and 4p valence states. Further extensions
of the LAPW basis, like SLAPW-3 and SLAPW-4 (Table 1.1), use two lin-
earizion energies in order to be able to treat semicore states. The additional
coefficients are determined by matching the basis function to second or third
order derivatives. It turns out that although they better describe semicore
states, these SLAPW-3 and SLAPW-4 basis functions need a higher number
of plane waves for a converged result. The radial wave functions approximate
the wave function the best when their energy is close to the actual band en-
ergy. The more the radial wave function is constrained by the matching
conditions, the more it deviates from the ideal form, thus one needs more
basis functions to approximate the wave functions in the muffin tin spheres.

1.5.3 Local Orbitals

Local orbitals where introduced by Singh [44] to better deal with semicore
states in LAPW. Local orbitals are only defined in the MT and are zero
anywhere else:

φlolm(r) =
[
Ãlmul(El, r) + B̃lmu̇l(El, r) + C̃lmul(Elo, r)

]
Ylm(r̂)

φlolm(ra = Rα) = 0
d
dr
φlolm(ra = Rα) = 0

(1.17)
The matching coefficients (Alm and Blm) are determined by the boundary
conditions, the Clm are chosen to normalize the basis function. These local
orbitals are used to describe the semicore states without compromising the
LAPW basis.

1.5.4 APW + Local Orbitals

As the local orbitals worked well for describing the semicore states, Sjöstedt
et al. [46] pursued the idea of using local orbitals to solve the linearization
of the basis functions with local orbitals too. This APW+lo basis has two
distinct basis functions, the APWs

φk+G(r) = 1√
Ω
ei(k+G)r, r ∈ I

φk+G(r) =
∑

lmA
α
lmu

α(r, El)Ylm(r̂), r ∈MT
(1.18)

and the local orbitals

φlolm(r) =
[
Ãlmul(El, r) + B̃lmu̇l(El, r)

]
Ylm(r̂), r ∈MT

φlolm(r = RMT ) = 0.
(1.19)
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The APW basis functions use radial wave functions with fixed energy El.
The matching at the MT boundary is only in the value of the wave function.
This basis turned out to need the least number of basis functions among
all APW-derived methods to reach sufficient accuracy, and it can describe
semicore states. Therefore it is the default choice today.

1.6 The exciting Code

The exciting code [2] is a density-functional theory and excited-states pack-
age based on the linearized augmented plane-wave method. It can be applied
to all kinds of materials, irrespective of the atomic species involved, and also
allows for the investigation of the core region. exciting is an open source
code. The code particularly focuses on excited-state properties, within the
framework of time-dependent DFT (TDDFT) as well as within many-body
perturbation theory (MBPT). exciting is written in FORTRAN and is dis-
tributed as source code. Users must compile the code in order to use it on
their platform. The exciting code can be obtained from http://exciting-
code.org and a public source-code repository.

The package consists of the exciting program, the spacegroup tool,
a set of example systems, documentation, and a set of templates for data
processing. exciting is a command-line tool which reads one input file that
contains the information about the structure to be calculated as well as the
properties which are desired. The atomic species used in the calculation are
described by species-files that contain the information necessary to define the
basis functions in the muffin-thin sphere. Also, information like mass and
charge is stored, and it is specified which of the electrons are treaded as core
electrons. It is the place where one configures whether LAPW or APW+lo,
or any other basis set is used. The exciting code comes with species files for
all elements, and provides 3 versions of each. There is APW+lo, the default,
one LAPW and one LAPW+lo species file. If needed, any other scheme as
described in Table 1.1 can be configured manually.

The code was developed in the framework of the EU Research and Train-
ing Network exciting [17], with the aim to provide a highly precise, and at
the same time, developer-friendly, DFT package.

1.7 Profiling

The first step in the optimization of a computer code is to measure com-
putation times. One way is to use the timing capabilities of the operating
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system to put out timing information manually. This is done with calls
like cpu time(timer). In order to discover hot-spots, that are parts of the
code where most time is spent, a more fine-grained information is needed.
The procedure to record timing information during a computation is called
profiling. The tools that are used to collect the data are profilers. There
are various different methods to get such timing information. It is possible
to instrument the code at compile time with instructions that write a log
whenever a subroutine is called. The next possibility is to sample the code
at a certain frequency to look which function is on top on the stack, and
therefore is executed in that moment. These two approaches make different
compromises. Sampling can leave small but very frequently called functions
underrepresented, and the log has a time overhead leading to great deviations
of the timing information. Only recent developments in operating systems
brought forward a new approach which allows very accurate time measure-
ments at almost no overhead, even including timing of library calls. This is
done by a dedicated operating-system service which allows to instrument the
code at runtime and record timing with almost no overhead. Examples are
the trace facility by IBM (tprof) or DTrace by SUN.

The data presented here was gained with gprof on an IBM Power 5
cluster with xlf90 compilers and ESSL numerical libraries. Tables 1.2 and
1.3 assert the state as it was before any changes. The material used for the
benchmarks was polyacetylene (PA).

1.8 Profiling of the exciting Code

The first profile (Table: 1.2) was made without using compiler optimizations.
The table shows the time spent inside various procedures, sorted by the most
consuming procedures at the top. So the top-most procedure is first to be
analyzed. The times spent in the exciting code, and in the mathematical
library functions are listed separately. The table tells that 77.36% of compu-
tation is spent in the exciting binary which is very irritating. The expecta-
tion would rather be that the most expensive computation is to deal with the
large matrices of the eigensystem and that this would mostly happen in the
solver routine from LAPACK. Instead we find the zmatinp.f90 routine to
lead with 70.32%. This routine is used in the matrix setup and is responsible
for rank 2 vector updates to the Hamiltonian and the overlap matrix. This is
very unexpected. Fortunately, it is not so serious, because the measurements
where done without compiler optimizations, such that zmatinp.f90 is quite
inefficient and does not use the advanced processor features. Repeating the
profile with optimization changes the impression quite a bit.
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Program part Ticks % File name

exciting binary 863271 77.36%

.zmatinp 784828 70.32% zmatinp.f90

.hmlalo 10560 0.96% hmlalo.f90

.match 8477 0.76% match.f90

.spline 7088 0.64% spline.f90

Library (essl) 247411 22.16%

.zeumvb 113466 10.16% sl/src/work/zeumvb.f

.zhur2b 73572 6.6% sl/src/work/zhur2b.f

.zuctsb 33531 3% sl/src/work/zuctsb.f

.zacbp4 16885 1.52% sl/src/work/zacbp4.f

Table 1.2: Profile of original exciting 0.9.151.

Program part Ticks % File name

exciting 105543 31.92%

zmatinp 88731 26.84% zmatinp.f90

.match 2009 0.6% match.f90

.gradzfmt 1340 0.4% gradzfmt.f90

.spline 1227 0.36% spline.f90

.zpotcoul 1036 0.32% zpotcoul.f90

Library (essl) 224435 67.88%

.zeumvb 102936 31.12% sl/src/work/zeumvb.f

.zhur2b 66912 20.24% sl/src/work/zhur2b.f

.zuctsb 30467 9.2% sl/src/work/zuctsb.f

.zacbp4 15232 4.6% sl/src/work/zacbp4.f

Table 1.3: Profile of original exciting 0.9.151 compiled with -O3 for the
same example as Table 1.2
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Program part Ticks % File name

exciting binary 92626 19.72%

.hmlalon 9642 2.04% ./../src/hmlalon.f90

.match 8678 1.84% ../../src/match.f90

Hermiteanmatrix indexedupdate 7830 1.68% /src/modfvsystem.f90

.cmf4kb 7611 1.6% cfftnd.f90

.spline 7061 1.52% ../../src/spline.f90

.zpotcoul 6787 1.44% /../src/zpotcoul.f90

.gradzfmt 5949 1.28% /../src/gradzfmt.f90

.hmlistln 5157 1.08% /../src/hmlistln.f90

.cmf3kb 4534 0.96% cfftnd.f90

Library (essl) 369746 78.64%

.zhur2b 185269 39.4% sl/src/work/zhur2b.f

.zeumvb 112991 24.04% sl/src/work/zeumvb.f

.zuctsb 63890 13.6% sl/src/work/zuctsb.f

Table 1.4: Profile of modified exciting 0.9.151. The zhur2b.f is the library
function in ESSL that does the computation for the zher2 call.

Table 1.3 shows the same code with optimization flags turned on. The
fraction of zmatinp.f90 immediately drops to 26%. We note that the matrix
setup is very important but now other features show up. The time spent in
the numerical library is raised to 67%, the dominant part of which now is
the eigen-solver. The functions listed are not familiar names because they
are proprietary implementations of LAPACK functionality by IBM.

The zmatinp.f90 function is almost the same as the LAPACK procedure
ZHER2 for hermitian matrices except the sign of the input vectors. So it is
easily replaced. The result is shown in Table 1.4 and 1.5. Remarkably, the
rank-two update procedure (zhur2b.f) is now dominant in the profile. Not
all of the calls come from the matrix update but it is clear that this kind of
operation is an outstanding hot-spot which must be addressed. The problem
with this operation is that it has to update every entry in the matrix for
every call which uses enormous memory bandwidth. This dominance could
not be explained with floating point operations. On the other side, a parallel
implementation of this update, is straight forward and can be expected to
scale optimally. We leave this for discussion at a later point.

The conclusion from this example is that the eigen-solver needs indeed
most of the computing resources, here about 50%, but the matrix setup is also
a significant part. We learn that any optimization strategy must address the
setup with the same priority as the diagonalization. The matrix setup scales
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exciting 32618 8.88%

.cmf4kb 6738 1.84% cfftnd.f90

.cmf3kb 4028 1.08% cfftnd.f90

iteanmatrix indexedupdate 2532 0.68% /src/modfvsystem.f90

.match 1801 0.48% ../../src/match.f90

.spline 1296 0.36% ../../src/spline.f90

Library (essl) 334242 90.96%

.zhur2b 166785 45.4% sl/src/work/zhur2b.f

.zeumvb 102055 27.76% sl/src/work/zeumvb.f

.zuctsb 58553 15.92% sl/src/work/zuctsb.f

.zmv6b 1139 0.32% ssl/src/work/zmv6b.f

.zuntsb 1109 0.32% sl/src/work/zuntsb.f

Table 1.5: Profile of modified exciting 0.9.151 compiled with -O3.

with the number of basis functions squared times the number of atoms. The
diagonalization takes typically longer than the setup and scales with n3 with
the number of basis functions, but is much more difficult to do in parallel.
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Numerical Methods
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Chapter 2

Algorithms

In the first chapter, we identified two main factors that contribute to the
computation time. One is the setup, and the other one the diagonalization
of the eigenvalue problem. An additional factor is the mixing algorithm that
has a large influence on how many iterations are needed to reach a converged
result. This chapter gives a review of some algorithms that are suited to
improve the performance of the exciting code.

2.1 Scaling of Algorithms

The scaling is the relation between the number of operations and the size of
the problem to solve (n). Analysis of the scaling behavior is sometimes also
called complexity analysis. The computational complexity, or scaling, de-
scribes the behavior of algorithms when the problem size changes. Examples
are logarithmic (log n), linear (n), quasi linear (n log n), quadratical (n2), or
even exponential (an) scaling. Different parts of a code may have different
scaling behaviors when the system size changes. This results in previously
small parts of the computation becoming dominant when they scale worse.

2.2 Eigensolvers

The solution of the Kohn-Sham equation involves the eigenvalue problem to
find the eigenvectors for the n lowest eigenvalues, n being the number of
occupied states in the system. The LAPW or APW+lo basis sets are not
orthogonal, which makes the problem a generalized eigenvector problem. To
solve such a system, there are highly accurate and very efficient algorithms
available (LAPACK[4]), yet they have n3 scaling, and are difficult to perform
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on parallel architectures. There is a library to perform large scale-linear
algebra computations on massively parallel systems, which is ScaLAPACK[8].

Unfortunately, replacing the LAPACK eigen-solver with its ScaLAPACK
equivalent, doesn’t quite solve the problem. The challenge is rather, to ex-
ploit specific features of the LAPW calculation, such as the fact that only
the lowest 10-15% of the eigenvalues are needed, and that the self-consistency
procedure involves the repeated solution of very similar problems.

A closer look at the scaling problem gives a clear scenario. The techno-
logical progress makes memory and computation speed grow roughly with
the same exponential rate (Moores law). The n3 scaling of the direct diag-
onalization algorithm and the n2 scaling in memory consumption, result in
the tendency that systems that fit into the available memory take longer and
longer to run. This is the practical experience in today’s research. If the
scaling cannot be reduced from being of order three, algorithms that may be
inferior in speed today but scale better, will overtake in the near future.

Any modern computer has multiple processing units, and the way to reach
the edge of high-performance computing today, is to connect multiple systems
in a low-latency network to a cluster. Whoever develops high-performance
computing code must think in these terms. It is a requirement to have
better scaling and better parallelization, even if it has a penalty at small and
medium system sizes.

Iterative solvers can get the computational complexity, at least in parts,
down to n2 if only a small number of eigenvectors is required. Strictly this is
only true if the number of required eigenvalues is constant and the number
of iterations needed for the algorithm to converge is also constant because
one iteration has already order n2 operations

Most iterative algorithms find a range of eigenvectors for themselves,
others are designed to refine a set of test-vectors with each iteration. Solving
the Kohn-Sham equation involves repeatedly solving the eigensystem in order
to reach self-consistency. If the algorithm requires a set of test eigenvectors,
and the sequential systems are similar enough, one could use the solutions
of the previous iteration as the new trial vectors and reduce the number of
iterations. Wood and Zunger [55] proposed such a refinement method for the
SCF loop.

2.3 Iterative Solvers

Iterative methods are all methods that search the eigenvectors by iteratively
refining approximate eigenvectors until a convergence goal is met. In con-
trast, direct solvers need a defined number of operations to come up with the
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solution. Iterative solvers converge towards the solution and take as many
steps as necessary. If the convergence can be optimized by choosing the right
algorithm, iterative solvers can be faster than direct solvers, especially on
parallel systems. This is because the required linear algebra operations for
iterative solvers perform better on parallel systems.

The basic principle is best illustrated by the power method. When a ma-
trix is successively multiplied to a vector, and the vector is normalized in each
step, the vector converges to the eigenvector with the largest eigenvalue. This
is because the largest eigenvalue gets dominant rapidly when exponentiated.
This can be easily seen if one writes down the operator multiplication with
the vector, where the vector is written as linear combination of eigenvectors,
v =

∑
i ciei,

A . . . (A(Av) = (λ1)nc1e1 + (λ2)nc2e2 + [. . . ] . (2.1)

With higher n the the highest eigenvalue becomes so dominant that the
iterated vector converges to the corresponding eigenvector. The Lanczos al-
gorithm uses the sequence of iterated vectors and orthogonalizes them to
span the Krylov subspace. In this basis, the matrix A is approximated as
a tridiagonal matrix that can be expected to have eigenvalues that are a
good approximation tho the eigenvalues of A. This way, one can efficiently
find reasonable approximations for a few eigenvalues close to the maximum
eigenvalue. Extensive theory about iterative solvers can be found in Refer-
ence [42].

2.3.1 Shift-Invert Lanczos

The Lanczos algorithm is well suited if few maximal eigenvalues are searched.
In LAPW, we search the groundstate which is on the other end of the spec-
trum. The Lanczos algorithm can find the minimal eigenvalues too but it
converges more slowly.

An elegant solution is to perform the iteration with the shift-inverted
matrix. The shift-invert iteration finds the eigenvalues of the operator

(A− σI)−1. (2.2)

This iteration converges very fast to the eigenvalues around the inversion
center σ, given that the equation

(A− σI)x = b (2.3)

has a solution and can be computed. For hermitian matrices this is of course
the case.
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For the generalized eigenvalue problem there are two options when we
want to use a Lanczos-like algorithm. If the overlap matrix B is positive
definite (which it is in LAPW), we can apply a Cholesky decomposition [21]
of B to transform the generalized system into a standard one, and then apply
the standard algorithm. The other option is doing the shift-invert procedure
with the operator

(A− σB)−1. (2.4)

This second option allows to find also the eigenvalues closest to σ. The shift-
invert operator is implemented by doing a LU-decomposition beforehand,
and applying it by back substitution in each iteration. It sounds inefficient
to solve a linear system in each iteration, but, in fact, it is always the same
system with different right sides. Back-substitution is both fast, and can rely
on parallel implementations. It scales with n2 just as a matrix multiplication
would.

In LAPW, we find the situation that the shift-invert procedure is ad-
vantageous if the fraction of required eigenvalues is small. Then it can be
much faster than the direct solver with the additional advantage of using
operations that can use parallel libraries. This fraction, however, depends
on the material and whether one needs unoccupied states. Above a certain
fraction of required eigenvectors, the efficiency is worse than with the direct
solver, although the advantage of parallel efficiency remains. The ARPACK
library [33] provides production-ready implementation of the Arnoldy itera-
tion [5] which is an extension of the Lanczos process for normal or generalized
eigenvalue problems including the shift-invert procedure.

2.4 Refinement Methods

There are a number of methods that try to refine an approximate eigenvector.
The basic idea is to approximate a Newton update or correction equation (see
[55] or [40])

|δa〉 = −(H− λapS)−1 |r(|aap〉 , λap)〉 . (2.5)

The correction equation uses the residual r to get an update δa for the
approximate eigenvector aap. The residual is given by

|r (|aap〉 , λap)〉 = (H− λapS) |aap〉 . (2.6)

The approximate eigenvalue λap is calculated by

λap =
〈aap|H |aap〉
〈aap|S |aap〉

. (2.7)
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As stated above, an approximation of the correction equation must be found
because solving it as a system of linear equations is computationally too
expensive.

2.4.1 Diagonal Approximation of the Correction Equa-
tion

In planewave-based DFT methods the Hamiltonian matrix is diagonally dom-
inant. This can be explained from the fact that the kinetic energy operator
in a plane wave basis is a diagonal matrix and it is quantitatively the largest
part. The correction equation (2.5) may be approximated by using only the
inverse of the diagonal elements as it was originally proposed by Davidson
[16] for the Block-Davidson algorithm. In planewave codes, this approach
was sufficient and fast, but the more complex APW-like basis sets don’t
allow for this simplification.

2.4.2 Preconditioned Diagonal Approximation

An extension to the idea of the diagonal approximation of the correction
equation is to find a preconditioning matrix to make the Hamiltonian more
diagonal dominant, get a new update in the diagonal approximation, and
transform the results back. The eigenvectors xi of the Hamiltonian would
make H− λapS diagonal:

|δa〉 = −
∑
i

(〈xi|H− λapS |xi〉)−1 〈xi |r〉 |xi〉 (2.8)

= −
∑
i

(
1

λi − λap
) 〈xi |r〉 |xi〉 . (2.9)

In DFT this can actually lead to a useful algorithm [40]. In the SCF loop,
the successive eigensystems can be assumed to be similar enough such that
the eigenvectors from a previous system can serve as a preconditioner for a
couple of SCF iterations. Such updates from the preconditioned correction
equation do not converge well enough for themselves. In order to get a better
convergence one needs convergence enhancing algorithms such as RMS-DIIS.

2.4.3 RMS-DIIS Method

The residual minimization by direct inversion in iterative subspace (RMS-
DIIS) is a method to search for the solution with the minimum error in the
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subspace spanned by successive iterations of approximate eigenvectors. RMS-
DIIS tries to minimize the error by minimizing the residual vector. The RMS-
DIIS method assumes that one can find a linear combination of approximate
solutions which has a smaller error, and thus is a refined solution. Each of
our trial solutions aap can be written as the exact solution plus an error term

aap = a+ e. (2.10)

Now we expect that there is a linear combination of a set of approximate
solutions that has a smaller error than each of them.

aap =
m∑
i=1

cia+
m∑
i=1

ciei (2.11)

We wish the second term to be minimal, with the requirement for the coef-
ficients ci

m∑
i=1

ci = 1. (2.12)

Of course we don’t know the error but we have a related indicator, the
residual vector (2.6) which is required to be zero for any exact eigenvector.
The assumption is that the linear combination of previous residuals with
the smallest norm delivers the coefficients for a better approximation of the
eigenvector. So we search for the minimum of the residual norm

min(〈r |r〉) = min(
m∑
ij

c∗i cj 〈ri |rj〉) (2.13)

The Lagrangian to minimize the residual norm under the constraints (2.12)
is

L = 〈r |r〉 − λ

(
1−

m∑
i=1

ci

)
. (2.14)

∂L
∂ck

= 0. (2.15)

The partial derivations of the Lagrangian set up a linear system for c
P11 P12 P13 . . . P1n −1
P21 P22 P23 . . . P2n −1
P31 P32 P33 . . . P3n −1
. . . . . . . . . . . . . . . −1
Pn1 Pn2 Pn3 . . . Pnn −1
−1 −1 −1 . . . −1 0




c1

c2

c3

. . .
cn
λ

 =


0
0
0
. . .
0
1

 (2.16)
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Figure 2.1: SCF loop (left) and iterative diagonalization (right).

P is defined as

Pij = 〈ri |rj〉 . (2.17)

The new vector is given by

am+1 =
m∑
i=1

ciai. (2.18)

This DIIS variant is also known as Pulay mixing. It performs the minimiza-
tion as an extremal value problem with the constraints 2.12. This is not the
way it is used in DFT like by Wood and Zunger [55] or Rayson [40]. They
would rather solve for the minimal residual by finding the lowest eigenvalue
in the iterative subspace. With P from (2.17) and Qij = 〈ai |aj〉:

P |c〉 = ρ2Q |c〉 . (2.19)
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In this case the constraint for c is

m∑
ij

c∗i cj 〈ai |aj〉 = 1. (2.20)

This is used in some DFT codes today. As an example for DIIS implemented
for a dense matrix eigensystem may serve the solver from the Gaussian code
[40]. Figure 2.1 shows how the RMS-DIIS iteration is a part of the SCF
iteration. The preconditioned Davidson update from (2.9) is used to get new
approximate eigenvectors. The iterative subspace of the vectors yielded by
the Davidson iteration is then used in the RMS-DIIS until the residual norm
meets the convergence criterion.

2.5 How to Make Parallel Code

Today’s developments in computer technology demand high-performance soft-
ware to be parallel in one way or the other. Higher integration density on
the chips no longer leads to much improvement in scalar performance, but
allows the integration of multiple execution units on one chip. This has to
be considered at every stage of developing algorithms. Here follows a review
of the possible levels of concurrency and their challenges.

2.5.1 Task Parallelism

A calculation may be split up into independent parts on a high level, for
example, repeated calls to a subroutine that calculates partial results to be
summed up in the end. This task parallelism is often rather easy to realize
because the coupling of the independent parts is so small. This kind of
parallel execution is well suited to be distributed over nodes in a cluster. Each
node may perform the same algorithm on different data in parallel, instead
of computing one data set at a time. The main aspect that influences the
efficiency of that approach is load balancing. If the processes do not have
the same amount of work, all the processes must wait until the processes
with the highest work load has finished. As each of the processes does the
same job as one process did sequentially before, the amount of used memory
multiplies with the number of processes. If the memory consumption is the
limiting factor, this approach is not applicable.
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2.5.2 Data Parallelism

Data parallelism refers to computation with distributed data structures, like
doing linear algebra on distributed arrays. There are two ways to reach
that: symmetric multi processing (SMP), and implementing array operations
with message passing. The latter is provided by the BLACS, PBLAS, and
ScaLAPACK libraries.

2.5.3 Symmetric Multi Processing

Symmetric Multi Processing (SMP) is about programming with threads.
Threads are the parallel execution paths one multi-threaded process can have.
Threads have a shared memory space but can also allocate their own memory.
The ability for using threads has to be provided by the operating system.
The programmer can use the POSIX thread API (aplication programmer in-
terface) and care for all the locks and synchronization issues manually, or use
OpenMP (open multi-processing) directives. OpenMP directives are useful
for parallelizing loops, but it is difficult to get efficient code, except for very
high level parallelism. There are, however, multi-threaded BLAS and LA-
PACK libraries on many platforms. In these libraries, not every subroutine
exists in a multi-threaded version. This is because the parallel execution
gives no benefit if the memory access pattern is badly suited for parallel ex-
ecution. So the key to benefit from these multi-threaded libraries is to only
those library subroutines that actually are efficient with multiple threads.
The great advantage of using multi-threaded libraries is, that using them
requires no changes in the source code. The limitation of this approach is,
that the system has to fit into the main memory.

2.6 Linear Scaling

The most desirable scaling behavior is linear or almost linear scaling. This,
however, implies that it is possible to store the necessary operators and data
in structures that themselves scale linearly or almost linearly with problem
size. The term “almost linear” scaling here means linear times a logarith-
mic factor. Examples for such structures are sparse matrices that originate
from finite-element discretization. Unfortunately, the LAPW discretization
generates no sparsity at all.

A second approach to linearly scaling storage is the concept of hierarchical
matrices (H-matrixes) [22], which exploits a feature referred to as: “data-
sparsity”. The method is primarily applied in integral equations with a
strongly decaying kernel function. If one assumes a localized basis set, where
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the magnitude of the matrix elements depends primarily on the distance of
the basis functions, then it is possible to cluster (reorder) the basis-functions
based on the geometry information. This is done in such a way, that one
looks for blocks in the matrix that can be approximated with low-rank matrix
products, e.g. , the matrix product of two vectors. Unfortunately, we could
not find any strategy to apply the concept of H-matrices in LAPW codes.

2.7 Fixed-Point Iteration

The computation of the density within the framework of DFT requires an
iterative convergence procedure to reach self consistency. This is necessary,
because the Kohn-Sham equation is a nonlinear equation. The potential
depends on the density via the Poisson equation. The nonlinear equation is
linearized by defining the potential as constant and ignoring the dependence
on the wave function for a while. After the Kohn-Sham equation is solved
for such a trial potential one has a new charge density which gives a new
potential. If the input density was the exact solution, the new density should
be the same as the input density. So, when the subsequent densities differ
less then a certain ε, the iteration has reached self consistency.

The number of steps required for this convergence multiplies the total
computation time. Finding algorithms that optimize this convergence to
be fast and stable is therefore important. The problem is an optimization
with many variables, where the error must be minimized with the fewest
steps possible. In DFT this procedure is called mixing because the simplest
algorithm that reaches a stable convergence is to use a linear combination of
the new and the old density, thus a mix of the two, for the new input density.
Just using the new density as the input for the next iteration is not stable
and may lead to uncontrolled oscillations.

2.8 Newton Methods

Let us define f(ρk) as the function that computes the new density from the
old density.

ρk+1 = f(ρk), (2.21)

The perfectly converged solution satisfies

ρk = f(ρk), (2.22)

therefore we search the vector ρ where the residual (R) becomes zero.

r(ρk) = f(ρk)− ρk = 0 (2.23)
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For such problems the Newton method is known to converge very fast. New-
tons method denotes as

ρk+1 = ρk − [J {r(ρk)}]−1 r(ρk). (2.24)

J is the Jacobian matrix of r(ρ), which leaves us with the problem of cal-
culating the Jacobian and solving the linear system. In the case of the SCF
cycle, we do not have a practical way to calculate the partial derivatives for
the ρ-vector coefficients. So the challenge is to find reasonable approxima-
tions to the mapping of the Jacobian.

2.9 Broyden Methods

The Broyden methods [11] are a class of methods that use the secant equation
to approximate the Jacobian. It is in a way a generalization of the secant
method for finding roots in one dimension where the secant is the line trough
two function values. We want to find a matrix Bn ≈ J{r(ρk)} that satisfies
the secant equation

Bnr(ρn) = r(ρn)− r(ρn−1). (2.25)

From this alone Bn is underdefined and it is subject to the different Broyden
methods to construct this matrix Bn, or rather its inverse, because a new
update for ρ denotes as

ρn+1 = ρn −B−1
n r(ρn−1). (2.26)

In Ref. [11] Broyden gives 3 methods how to construct updates to the matrix
Hn = B−1

n from previous r(ρ).

2.10 Multi-Secant Broyden Method

The multi-secant Broyden (MSEC Broyden) [35] method doesn’t just use
two sequential iterates to approximate the Newton step, but uses more of
the history. In MSEC Broyden, Hn should satisfy all secant equations from
a number of previous iterates k. Marks and Luke [35] developed the algo-
rithm for use in an LAPW code. Particularly, they added regularization and
preconditioning. The MSEC Broyden algorithms according to Marks and
Luke decompose as

ρn+1 = ρn −H0 (rn −Yn−1Anrn)− Sn−1Anrn. (2.27)
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Here, An is a matrix dependent on the method, H0 is an initial estimate for
the Jacobian, Yn−1 is a matrix with the last k residual changes, and Sn−1 is
a matrix with the last k step directions. As there is no better approximation
for the initial inverse Jacobian, one uses H0 = σnI where σn is a dynamic step
length. An is the approximated Jacobian derived from the secant equations.

For LAPW, Marks and Luke found in numerical experiments that conver-
gence can be improved by rescaling the coefficients for the interstitial relative
to those for the muffin tin region. This rescaling is applied by Ωn, a diago-
nal matrix containing the scaling factors. For multi secant Broyden Type 1
(MSB1) An denotes as

An = Ψn

(
ΨnŜ

T
n−1Ŷn−1Ψn + αI

)−1

ΨnŜ
T
n−1Ωn, (2.28)

with Ŷn = ΩnYn and Ŝn = ΩnSn. Ψn is a diagonal matrix that renormalizes
Yn, and α is a parameter for the regularization according to Ref. [26].
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Chapter 3

Performance Optimizations

The profiling of the exciting program in section 1.7 revealed the time con-
suming parts of the code. There are two parts that consume most of the
computation time: The matrix setup and the diagonalization. To improve
the performance we identify 3 strategies. First, implementing k-point paralel-
lization; second, a better paralellizable eigen-solver; and third, an improved
mixing algorithm to reduce the number of necessary iterations.

3.1 Implementation of k-point Parallelism

The Bloch wave functions have to be calculated on a grid in k-space. These
are independent calculations until the partial densities have to be summed to
get the total density. For each SCF cycle, the parallel processes can indepen-
dently compute the wave functions and need only to exchange the density at
the end of each iteration. This can be implemented with the Message Pass-
ing Interface (MPI) standard. MPI allows communication between separate
processes. These processes can be distributed among a set of computers, a
cluster of compute nodes.

In order to illustrate how the program flow in exciting with k-point
parallelization works we want to distinguish 4 different modes of the program
flow:

A Parallel execution on same data. This has no benefit performance-wise
but sometimes it is simpler to have the same thing executed on all
processes than to exchange the data over the network.

B Parallel execution on different data. This is where the actual parallel
calculation takes place.
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C Execution on one node, others waiting. Sometimes there are parts that
cannot be easily parallelized and that are better executed on one node
because multiple nodes could, for example, interfere with each other
during file access.

D Communication. This is when the processes exchange messages via MPI.

The enumeration below enlists the steps that are relevant in the k-point
parallel execution. At the end of each point, we denote the execution mode
as described above.

1. All processes initialize on the same data. (A)

2. The eigensystem is solved for different k-point ranges in parallel. (B)

3. The eigenvalues have to be exchanged in order to compute the occupa-
tion numbers. This is done in mpisyncevalsvspnchr.F90. (D)

4. The occupation numbers are computed on one process and then are
distributed to the others. (C)

5. The partial charge densities are computed parallel on different k-ranges.
(B)

6. The partial densities are summed in procedure mpisumrhoandmag. (D)

7. Potential calculation on all nodes. (A)

8. If not converged restart from 2.

9. After leaving the SCF loop, the program continues in mode (C), mean-
ing that only the master process computes and the others are waiting.

Figure 3.1 shows the diagram of the dependencies of the different parts in
the groundstate calculation.

When the part of the algorithm that can be calculated in parallel, is the
most time consuming one, the MPI parallelization is a big benefit. This is
true for a certain class of materials. The range of materials for which it is a
useful parallelization strategy, starts from materials that have enough atoms,
such that the time spent for diagonalization is dominant over the rest of the
computation, and it ends with the materials that have so many atoms that
one does not require more than one k-point. Figure 3.2 shows the scaling
behavior for polyacetylene, an organic crystal that falls well between the
boundaries mentioned above. The figure illustrates that the speedup is very
good up to 16 processes.
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Figure 3.1: This diagram shows the dependency graph for solving the Kohn-
Sham equation in the SCF loop. The 16 k-points are evenly distributed over
the four processes.
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Figure 3.2: MPI scaling behavior. Green lines are speedup factors and the
red line is speedup per processor. The dashed grey lines are the ideal case.

3.2 New Solvers in the exciting Code

Existing DFT codes as Gaussian [40] or WIEN2k [9] use refinement methods
to converge approximate eigenvectors. We implemented such a method in
exciting too. We implemented a version of a RMS-DIIS solver for excit-
ing. Unfortunately, the implementation did only work for extremely simple
structures and could not be made stable enough to be a good replacement
for the direct solver.

In the exciting code, best results were reached with the shift-invert
algorithm. The implementation of the algorithm in the ARPACK library
outperforms the direct solver whenever the fraction of eigenvectors searched
is particularly small. When used with parallel numerical libraries it is faster
for all systems of significant size.

Figure 3.3 illustrates the parallel efficiency with multi-threaded libraries.
The reference for the speedup is the time of the single-threaded LAPACK
solver. Table 3.1 gives the numbers from Figure 3.3. The benchmarks where
performed on 4-core power 5 nodes. The two materials are a polyacetylene
(PA) crystal and a naphthalene molecule (2A).
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Figure 3.3: Multi threaded efficiency of ARPACK and LAPACK solver.
Speedup to the single-threaded LAPACK solver for PA and 2A.

Base time 1 Thread 2 Thread 4 Thread
speedup speedup speedup

ARPACK 2A 4:50:18 1.21 1.90 2.81
ARPACK PA 0:57:16 1.56 2.75 4.39
LAPACK 2A 4:50:18 0.94 1.53 2.27
LAPACK PA 0:57:16 0.97 1.62 2.55

Table 3.1: Speedup for multi threaded libraries for PA and 2A.
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3.3 SMP Optimization

Profiling the exciting code shows where most of the time is spent. These
hot spots are the solution of the eigensystem, but also the matrix setup.
Maybe surprisingly, the most time-consuming part of the matrix setup is not
calculating the integrals, it is the rank-2 updates of the type:

A⇐ A + αxy∗ + αyx∗. (3.1)

Multi-threaded math libraries have this procedure available in a multi-thread-
ed fashion, but only for matrices stored in the regular column-wise pattern.
exciting used to store the matrices in packed form which allows to save
half the memory for hermitian matrices. There is, unfortunately, a penalty
to that. It complicates dividing the processing to multiple threads. The
packed-form procedure lacks a multi-threaded implementation. In the ESSL
library no LAPACK procedures for packed matrices have a multi-threaded
implementation. This leads to the conclusion that regularly stored matrices
must be seen as a requirement for multi-threaded processing.

By replacing the hand-coded version of the rank-2 update with a multi-
threaded version an almost optimal parallel speedup in the matrix setup
could be achieved.

The direct eigen-solver (zhpgvx) unfortunately doesn’t perform that well.
In order to leverage SMP for the eigen-solver, a different algorithm has to
be selected. It turned out that the inverse iteration fulfills this require-
ment. The LU-decomposition and back-substitution operations needed for
the inverse iteration perform well with multiple threads. In addition, there
is a established library, ARPACK [33], which performs this algorithm. [h!]
Figures 3.4 and 3.5 show the parallel efficiency of the exciting code with the
ARPACK solver. The speedup reaches its maximum at about 9, i.e., when
the parallelized calulation is about 9 times faster than the single-threaded
run. The test system was a two-socket 12-core Opteron system, that is a
total of 24 cores. The calculation used about 42 GB of Memory. The test
material was a naphthalene molecule. The benchmark was run with rgkmax

(A.11.41)= 5 and a unit cell size of 24.55 × 28.34 × 15.11 Bohr, which leads
to a matrix size of 36483.
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Figure 3.4: Speedup for a naphthalene molecule on a 2×12 core Opteron
system. The red line indicates the graph for ideal efficiency.

Figure 3.5: Total time for a naphthalene molecule on a 2×12 core Opteron
system. The red line indicates the graph for ideal efficiency.
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3.4 Abstraction of the Matrix Data Struc-

ture

As mentioned above, the data structure of the matrices used in the linear-
algebra operations matter for the performance. An analysis of the code re-
veals that there are only nine different operations performed on the Hamilton
and overlap matrices. This makes it practical to hide the actual matrix for-
mat behind an eigensystem API. Table 3.2 lists the API for the eigensystem
and hermitian matrices.

As a future step, this API could be generalized to work also for distributed
matrices as they are required in the ScaLAPACK library.

3.5 New Mixing in the exciting Code

We have ported the code written by Marks [35] to exciting. The mixer was
primarily written to work with WIEN2k but the functionality is suitable to
be ported to other DFT codes as well. The current port does not implement
the rescaling preconditioning as described in Section 2.9. Figure 3.6 compares
the MSB1 with the Pulay mixer and the linear mixer. All the tested examples
show a better convergence for the multi-secant Broyden algorithm.
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Figure 3.6: Comparison of the multi-secant Broyden mixing scheme (blue)
with Pulay (red) and adaptive linear mixing (yellow) in the exciting code
for a variety of materials.
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newsystem(self, packed, rank)

deleteystem(self)

Hermiteanmatrix_rank2update(self, n, alpha, x, y)

Hermiteanmatrix_indexedupdate(self, i, j, z)

Hermiteanmatrixvector(self, alpha, vin, beta, vout)

HermiteanmatrixLU(self)

Hermiteanmatrixlinsolve(self, b)

HermiteanMatrixAXPY(alpha, x, y)

HermiteanMatrixcopy(x, y)

HermiteanMatrixTruncate(self, threshold)

HermiteanMatrixdiagonal(self, d)

Table 3.2: API to access and manipulate the eigensystem matrices.
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Part II

User Inteface
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Chapter 4

XML Technologies in Science
Applications

4.1 XML

XML is a powerful data-description language. XML stands for extensible
markup language. Its goal is to be both human and machine readable. The
XML specification was developed by the W3C (world wide web consortium).
It is a language designed to develop domain-specific languages.

XML technologies are already used in scientific computing. The work of
White et al. [54] showed how the use of XML standards in computational
materials science helps in portability, visualization, and analysis. Qbox [24],
a plane wave DFT code, also makes extensive use of XML technologies, even
for high-throughput file access. We followed pretty much their arguments,
but extended the application of XML for the configuration files too, which
opened a few new opportunities concerning the design of a user interface.

The basic unit of XML is the XML document. The XML document
is a text file, usually encoded with UTF-8 unicode. It contains one root
element as the root of the document tree. This hierarchical tree is built up
by populating the root element with other elements, which may themselves
contain elements too. Elements are denoted with the angle-bracket tags as
known from HTML.

<element></element>

These elements can have attributes. Attributes are key-value pairs written
into the opening tag.

<element attribute="value"></element>

Attributes as well as elements may have any name, except, they cannot start
with a number or contain a space or other characters that have a special
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meaning in XML like ">","<" and "&". Apart from attributes, elements can
contain also text content.

1 <?xml version="1.0" encoding="UTF-8" ?>

2 <input>

3 <titel>foobar</titel>

4 <structure>

5 <crystal>

6 <basevect><basevect>

7 </crystal>

8 </structure>

9 </input>

This listing shows a well-formed document. The first line contains the XML
declaration which declares the file to be an XML document, and specifies the
encoding. UTF-8 is a superset to ASCII, which means that ASCII is also
valid UTF-8, but UTF-8 allows to use all the special characters in unicode.
The well-formedness of a document means, that it satisfies the basic rules of
XML syntax. These rules are:

• A document must contain only one root element.

• For every open element tag there must be a closing tag.

• Elements must not interleave.

• Elements can have only one attribute with the same name.

XML itself gives no other limitations than these rules. Elements and at-
tributes of any name can, in pricipal, appear in any order. In order to design
a file format for a specific application, one can compile rules about what
elements can appear where, and in what order, also which attributes they
may or must have. Such definitions are called schema. There are a couple
of such schema languages. The most basic one is the DTD, the Document
Type Definition. When such a schema exists, the validity of any document
can be checked by computer programs. Each of the schema languages has
validation tools, which are, for example, built into XML editors, so they can
check for validity while editing. Another, more powerful, schema language is
“XML Schema”. We have chosen to use XML Schema to define the exciting
input-file format.

4.2 XML Schema

XML Schema is a standard by the W3C [48]. It is a language to express the
grammar or schema of an XML file format. In XML Schema, one specifies
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in what order and where elements may occur, and what attributes they may
have, but also the type of data elements or attributes may contain. The data
can be of a simple type as integer, float or string, or more complicated, as a
selection of defined strings, or as general as a regular expression. The values
may also have a default value, and the syntax allows to put documentation
right next to the definitions. Listing 4.1 shows a simple example of an XML
Schema definition. XML Schema is defined in XML syntax. There are tags
to describe the elements and attributes and their type. Modern XML editors
have special Schema editor functions that simplify building complex schemas
significantly. The most common use for the XML Schema is to validate XML

1 <?xml version="1.0" encoding="UTF-8"?>

2 <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

3 <xs:element name="foo">

4 <xs:complexType>

5 <xs:sequence>

6 <xs:element name="ding" maxOccurs="3" minOccurs="0">

7 <xs:simpleType>

8 <xs:restriction base="xs:token">

9 <xs:enumeration value="a"/>

10 <xs:enumeration value="b"/>

11 </xs:restriction>

12 </xs:simpleType>

13 </xs:element>

14 </xs:sequence>

15 <xs:attribute name="bar" type="xs:integer"/>

16 </xs:complexType>

17 </xs:element>

18 </xs:schema>

Listing 4.1: Example for a simple XML Schema.

1 <?xml version="1.0" encoding="UTF-8"?>

2 <foo xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

3 xsi:noNamespaceSchemaLocation="schemafoobar.xsd">

4 <ding>b</ding>

5 <ding>a</ding>

6 <ding>b</ding>

7 </foo>

Listing 4.2: This XML file is valid according to the schema definition in
Listing 4.1.

files. A file that validates against a schema can be expected to conform with
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the definition and cause no error in programs that expect inputs according
to this schema.

A simple way to validate an XML file against a schema is the command
line tool xmllint. The command line to validate the file from Listing 4.2
against the schema from Listing 4.1 is:

# xmllint --schema schemafoobar.xsd foobar.xml

In case the XML document is not valid according to the schema, the com-
mand returns an error report.

Another important application is to generate parsers from the XML
Schema. The Schema has information about the legal inputs and about
their data type. This is exactly the information that the program reading
the input must have in order to convert the text into primitive data types in
the programming language.

4.3 XML Namespaces

XML tags and attributes can have a namespace prefix. In Listing 4.1 every
element and attribute begins with xs:, this is the namespace prefix. The
namespace is defined by the xmlns:xs tag in the root element. The value of
this tag is the namespace identifier, it is often an URL but the requirement
is only that it is a unique name. In the example in Listing 4.1 the names-
pace definition defines the xs: prefix to be in the XML Schema namespace,
thus the element and attribute names have the meaning according to their
definition in XML Schema.

Applications that can read XML Schema use the namespace definition
to recognize that they should interpret the tags with that prefix as XML
Schema. Tags with an other prefix would be ignored by the application that
reads the XML Schema. Like this, it is possible to embed multiple different
languages within each other, because each application that understands only
one namespace can ignore the others. This feature is in fact, what makes
XML extensible.

4.4 XML Parser

The general definition of a parser is: A parser is a tool that analyzes a text file
and recognizes its structure. A parsers transforms the text file into a format
better suited for further processing.

XML parsers are an interesting species, because there are parsers that
have a standardized model and API. There is the concept of the event-driven
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parser which is called SAX for simple API for XML. It is not formally stan-
dardized but available in so many implementations that it may be regarded
as a standard. The document object model (DOM), however, is standardized
[23]. A DOM parser translates the XML file into a tree like data structure
of nodes that contain the data. The DOM has a defined API to navigate
and manipulate the DOM tree. The DOM representation of the XML doc-
ument allows for much easier manipulation of the content than in the text
representation.

Due to the popularity of XML, parsers for XML are available in most
programming languages, which makes XML documents easier to manipulate
and the text manipulation with regular expressions can mostly be avoided.

4.5 FoX: an XML Parser Library

There is a parser for XML written in FORTRAN. It is called FoX [54] [53].
FoX provides libraries to parse and write XML files. The FoX parser will
read a valid XML document and construct a DOM tree in FORTRAN data-
structures. It is a tree of which the nodes are elements, attributes, or content-
nodes. FoX provides an API for navigating this tree and accessing its content.

For writing XML, a DOM can be serialized into an XML file or one can
use the wxml API to write XML files. Additionally, FoX provides an API to
write CML (chemical markup language), a standard for chemical structure
information.

4.6 XSLT

The main goal of XML is to store structured data. One can implement very
general data formats that represent the meaning of the data in all possible
aspects. This is in itself very useful, but one might imagine that it is a very
frequent task to convert the XML data into other formats. This is what
XSLT (extensible style sheet language transformations) is for.

XSLT is a language to create so called templates which transform the
input XML data into some output file or files. Some input data, e.g. an
exciting output file, is transformed by the XSLT processor to an output,
according to a template. The input data must be XML, the output can be
XML or any other text format.

XSLT is also written in XML syntax. The basic building units are tem-
plates. Templates may also be called by name and with parameters and
therefore they implement the concept of a function. From within XSLT, it is
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very easy to address data in the source document by using XPath expressions.
XPath allows to select node sets with a UNIX-directory-like path string.

Node sets are sets of XML nodes (elements, attributes and text) that satisfy
the XPath query. XPath also provides syntax to express conditions, so-called
predicates. XPath also includes a set of functions and operations to evaluate
expressions with nodes, numbers, and text. XSLT has variables, but they
are strictly immutable. XSLT is a very reduced and specialized language,
which makes it very efficient when used within its domain. It is efficient, as
it is fast and easy to develop templates, as well as regarding the speed of the
transformations.

The tool that performs the XSLT transformation is called XSLT proces-
sor. There exist a number of implementations of XSLT processors. The
most important ones are SAXON [30], XALAN [18], and libxslt [50]. Libxslt
is today one of the fastest and most complete implementations available. To
use it, there is the xsltproc commandline tool. This tool is simply called
with the source document and the template, and returns the result of the
transformation.

# xsltproc template.xsl sourcedoc.xml > result

As this tool is usually already installed on all recent UNIX-like operating
systems it allows for implementing portable and powerful XML work flows.

4.7 XForms

XForms [51] is an embedded language to express form logic. The data which
is edited trough this form is represented in XML. XForms are written in XML
themselves, which allows for embedding them into other XML languages such
as XHTML. Unfortunately, today’s browsers do not support XForms directly.
But there are multiple ways to translate XForms markup into HTML and
javascript, one of which is XSLTForms [15]. The resulting web page can be
rendered in all common web browsers and delivers a rich interactive user
interface.

4.8 XML Databases and Data Mining

The subject of databases and data mining in computational science mainly
comes up in two scenarios: High throughput-calculations and general knowledge-
bases. High-throughput calculations are about calculating a property of
thousands or maybe tens of thousands of compounds. The data mining
then consists of searching for particular properties and correlations. For this
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purpose, the data sets are rather well defined and not expected to change
during the research campaign. Searching correlations requires the database
to be very fast.

Knowledge databases have different requirements. For a knowledge data-
base for atomistic calculations, it may not be that easy to know the structure
of the data in advance. The data is rather a collection of documents, inputs
and outputs, maybe with annotations and meta-data. The main purpose
of the database is to make queries for searching particular datasets rather
simple. It may be more important for a knowledge database, that it is easy
to build and develop, than it being able to perform many queries per seconds.

4.8.1 Databases

Databases or DataBase Management Systems (DBMS) usual solve two prob-
lems: store data efficiently on hard-disks and provide a concept to perform
queries on the data.

The classical database is the relational database. It is able to store tables
with many, many entries, and perform queries with SQL (simple query lan-
quage). SQL is the language to select data from a relational database. The
database stores the data on the disk, and automatically creates indexes to
make, search, and sort operations very fast. In order to store the data in ta-
bles, one has to know the structure of the data very well in advance. It is not
impossible to alter the data structure later on, but this can be complicated,
especially when the data is complexly structured.

In the 21st century, a variety of other database paradigms where invented
that are known as NoSQL databases. Most of them address the problems,
that come with high-traffic web applications. They try to trade some of the
features of a relational database for better scaling properties, when the data
gets too big to fit on one computer. Mainly, they are classified as key-value
stores or document-oriented databases. The scenarios in web applications
are so different from the requirements of scientific data-mining that most of
them will probably never be considered for that purpose.

4.8.2 XML Databases

Although one could argue that XML databases are document-oriented No-
SQL databases, the rationale behind them is different from the one of horizont-
ally-scaling NoSQL databases for web applications. XML databases focus on
XML documents to provide a database for special applications, where XML
is the data format of choice. An XML database can store collections of XML
documents in efficient data structures. The smallest unit is the node, e.g. ,
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an XML attribute, element, or text node. The data structure is efficient in
the sense that it can perform queries on the level of any node efficiently. It is
very fast to answer questions like: Give me the values of a specific attribute
in all documents and sort it numerically. That works with any node stored in
the system, without the necessity to design a data model in advance. Build-
ing an XML database, demands less decisions while collecting the data. It
can be used as an ignorant data store, with the security that queries on a
reasonably big dataset will be fast enough in the end. Simple queries will
work just fine and demand less abstraction from the user. The user will only
have to understand the file formats, not much more. If queries have to make
more complex comparisons or search for numeric values, XML databases can
build indexes for the fields in question. In order for indexes to work, the
database must have knowledge of the data type, which has to be provided to
optimize this kind of queries.

The real advantages of XML databases are the advantages of XML it-
self. XML is unique in the way that it has the features and tools to develop
domain-specific data-description languages. A native XML database sup-
ports all these features which, in turn, allows to create interchangeable file
formats and the associated work flows.

4.8.3 XML and Other Data Serialization Languages

Today there are 2 different popular formats to encode structured data in text
files: JSON (Javascript object notation) and XML. Each of them has its spe-
cific use cases where it works best. JSON is widely used in web applications
to exchange structured data between the components of the application. It
is simple, can be parsed by almost any language, and does the job of describ-
ing hierarchical data, but not much more. XML has these features as well
and, moreover, it is extensible, has name-spaces, and has a lot of tools built
around it.

For scientific data, XML is still a very good choice. Only if the encod-
ing in text files is a problem in itself, binary file formats like NetCDF [41]
are sometimes a necessary choice. In practice, text-based formats are so
much easier to work with that binary formats are only used when absolutely
necessary.

4.8.4 Combination of XML Databases and Relational
Databases

Finally, I want to propose the possibility of combining XML databases with
relational databases for data mining. There is no reason that data-mining

56



must be performed on the system that continuously gets updated with new
data. XML databases are well suited to build up a data-store, validate, and
organize the data, and archive it for further use. Relational databases, in
turn, are faster and often can be directly accessed by data-mining software.
Thus, one can combine the benefits of both databases by querying the XML
database for the data that is significant for the data mining, and putting
it in a relational database. This way, the advantages of the XML database
– flexible, easier to build – are combined with the advantage of relational
databases, which is their speed.

4.8.5 eXistdb, an Open Source XML Database

eXistdb [36] is an open-source XML database. eXistdb is a java program,
that can efficiently store and query XML data, but also provides an HTTP
interface. It allows to store programs written in XQuery inside the database.
Such an XQuery script can be accessed via HTTP, thus it is possible to create
entire web-applications that process XML data. XQuery is an XML query
and transformation language much like XSLT, but with a more condensed
syntax, and primarily designed to operate on whole collections of documents.

This environment is perfect for storing XML data, and providing a web
interface at the same time.
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Chapter 5

Optimizing the User Interface

5.1 The Complexity Wall

Scientific codes, like all software projects, get more complex with every new
feature added. The more complex the code gets, the more important it be-
comes that it has a good user interface. If the user interface is not improved,
every new feature makes the code harder to use, and it takes longer to become
productive.

As many scientists who develop code, rarely have experienced a formal
education in software engineering or user-interface design, the knowledge
thereof propagates only slowly among scientists. To conquer the increasing
complexity in software, one needs tools and concepts from software engineer-
ing to find abstractions in the software that decompose it into parts which
are understandable in reasonable time.

In praxis, a young researcher entering the field has two to three years to
learn the code, to setup the systems to be studied, and to publish results.
This timescale is likely to remain the same in the foreseeable future. If the
time for learning the tools and processes ever increases, good results get ever
less likely. So the challenge is to regularly reduce complexity, in order to
allow progress to persist.

Scientific computing often requires a complex tool chain for setting up
calculations and analyzing results. This tool chain must be reviewed and
modernized regularly. All technology is transient and will eventually be re-
placed by something more abstract, simpler, and more powerful. The UK
Computing Research Committee enlisted the grand challenges in computing
research [29]. They list the integration of new tools and languages as nec-
essary to overcome current and foreseeable challenges in computing. There
is, however, another way to accelerate progress, and this concerns the data.
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The open-gene data bases [37] in life sciences were very successful, and revo-
lutionized the way science is done in the field. This suggests, that openness
and data reuse really can change things.

Data may be chemical structures, crystal structures, input parameters
but also result data, as calculated physical properties. The current method
to share and publish data is in journals as print-optimized documents. This
is not optimal for several reasons: It obscures reproducibility, complicates
data comparison, and it complicates building on old results.

If results were available in a variety of machine-readable formats, search-
able on the Internet, and quick to assert for usefulness, it would take a lot
of friction out of the scientific process, and potentially lead to an explosion
of knowledge. Additionally, it could re-introduce reproducibility to com-
putational science on a much more practical level. These are some of the
observations, that did influence the exciting@web project, as described in
the last section of this chapter (5.7).

In the following, we want to examine what should be expected from the
user interface of the exciting code and how it can be implemented. In the
end, we will discuss the concept of a graphical user interface (GUI) as it is
part of exciting@web.

5.2 The exciting User Interface

The interaction with scientific software as exciting is rather complex. Set-
ting up the structure and optimizing the parameters is necessary and cum-
bersome. Usually, the user has to use some kind of scripting to automatize
the tasks.

The interface that allows this kind of automation and can accommodate
any level of complexity is the configuration file. But what makes a good
configuration file format? What problems must a good file format solve? I
will discuss the main observations about file formats, that eventually led to
designing the exciting XML input file format.

Although the main purpose of a configuration file is to be read by a com-
puter program, it is quite important that it helps other humans to understand
what is expressed in the commands and parameters in the file. It is not easy
to say, what an optimal format is, but it is easy to say what helps and what
does not help. In my view, there are 4 important points to consider:

• All parameters should have expressive names. Abbreviations should
only be used when they are very common, and number codes are prob-
lematic in any case. It should be possible to get a basic idea what is
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happening, without the need to constantly look up cryptic names or
features that are encoded by numbers in the documentation.

• Parameters that are logically associated with each other or with a par-
ticular feature should be grouped together in the input. This requires
the file format to provide some sort of hierarchical organization or
grouping features. The advantage is, of course, that any knowledge
of the logic of the program helps to navigate in the input, and a pa-
rameter may reveal more of its meaning, by being clearly associated to
a feature or group of parameters.

• It is important that the user can get meaningful feedback from the
program if the configuration file contains errors. This requires care-
ful processing of the input by the program which, at best, should be
automatized to ensure consistency.

• The file format should have a systematic structure that can be manip-
ulated easily and securely by other tools and scripting languages.

The old exciting file format did fall short in each of these points. It wildly
used number codes to switch on certain features, it had very cryptic abbrevi-
ations, it did not group parameters, and for any list of items, one had to write
the number of items to follow in the first line, or the file could not be read
correctly. Also, the code that was responsible for reading the inputs, was one
of the hardest-to-maintain parts of the program. Particularly the documen-
tation and the actual behavior of the program used to diverge because the
documentation was not updated with the necessary care. Sill, the code could
be handled as long as it only treated ground-state properties. With the
introduction of the excited-state features, however, the difficulties became
even more apparent, because the number of parameters almost doubled at
once. Switching to XML syntax for the input file allowed for systematically
addressing all the above issues and for some additional benefits that come
with the elaborate tool set available for XML.

5.3 The New XML Input for the exciting
Code

XML allows to organize data hierarchically, which makes it a suitable format
for structuring the input parameters into meaningful modules. A hierarchical
structure is necessary to make the number of parameters manageable and to
make complex inputs better readable. Related configuration parameters can
be clearly associated in the textual representation as well.

60



1 <?xml version="1.0" encoding="UTF-8"?>

2 <input xsi:noNamespaceSchemaLocation="http://xml.exciting-code.org/

excitinginput.xsd"

3 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" >

4 <title>Lithium Fluoride</title>

5 <structure speciespath="../../species">

6 <crystal>

7 <basevect>3.80402 3.80402 0.00000</basevect>

8 <basevect>3.80402 0.00000 3.80402</basevect>

9 <basevect>0.00000 3.80402 3.80402</basevect>

10 </crystal>

11 <species speciesfile="Li.xml">

12 <atom coord="0.0000 0.0000 0.0000"/>

13 </species>

14 <species speciesfile="F.xml">

15 <atom coord="0.5000 0.5000 0.5000"/>

16 </species>

17 </structure>

18 <groundstate lmaxvr="8" vkloff="0.05 0.15 0.25"

19 lradstep="2" lmaxapw="10" swidth="0.0001" ngridk="4 4 4">

20 </groundstate>

21 </input>

Listing 5.1: Example for an exciting XML input file

5.3.1 The Input-File Concept

As described before, elements and attributes allow for a hierarchical structure
of the input file. An example input file is provided in Listing 5.1. In the
following, the green attribute names and blue element names are followed
by the section number in the appendix where more detailed information can
be found.

The input (A.2) element is the root element of the exciting input file. It
must contain at least the three elements title (A.3), structure (A.5), and
groundstate (A.11), where each of them must be present only one time. The
structure (A.5) element contains all structural information, such as unit-
cell parameters as well as type and position of each atom. The groundstate

(A.11) element is required for any calculation. Its attributes concern the
methods and parameters used to calculate the groundstate density. These
are the essential inputs. For properties and producing the corresponding
output data, the properties (A.17) element allows for specification of the
requested calculations and outputs. The excited-states features are grouped
in the xs (A.48) element. Two more elements are defined for the structure-
optimization (structureoptimization (A.16)) features and the phonon cal-
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culation (phonons (A.41)). Details can be found in Appendix A.

5.3.2 File Format Definition with XML Schema

As described in Section 4.2, one can use XML Schema to formally describe
an XML file format. Listing 5.2 shows the definition of the atom (A.9) ele-
ment with its attributes. Such a formal description, when available, is very
useful for a number of things. It allows for an automatic generation of the
documentation with the correct data types and default values. And it allows
to generate the code that reads the input automatically. The functionality
to translate the text of the input file into a form that can be referenced by
the program is called parsing.

5.3.3 exciting’s XML Parser

Listing 5.2 shows a section of the exciting input file schema. The schema,
written in XML Schema (Section 4.2), describes the grammar of the input
file. Each parameter can have properties such as:

Type: Each input can have a simple data type such as string, float or integer.

Occurrence: In the case of elements it states how often they may or must
occur. For attributes it says if they are required or not.

Restrictions: Values may be restricted to be chosen out of a selection.

Default: Attributes may have a default value, which is used if they are not
explicitly set.

This is the information needed to evaluate the DOM of the XML input and
to create a data structure that contains the parameters as native FORTRAN
data types, and to assign default values to optional parameters. exciting
uses FoX (Section 4.5) to transform the XML input into a DOM. At this
point, the content is strings of text, stored in the DOM nodes. The pa-
rameters for exciting are used as strings, integers, floating-point numbers,
or arrays thereof. To make the data available to the FORTRAN code, the
strings in the DOM must be converted into FORTRAN native types. We do
this, by generating FORTRAN code from the schema that can do this trans-
lation. XML Schema is written in XML. Therefore, we need a tool suitable
to process XML and produce FORTRAN code.

There exists a special language to transform XML into other formats. It is
called XSLT (Section 4.6). In this thesis, I have developed an XSLT template
to generate the FORTRAN code from the XML Schema. It defines a derived
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1 <xs:element ex:importance="essential" ex:unit="" name="atom" minOccurs="1"

maxOccurs="unbounded">

2 <xs:annotation>

3 <xs:documentation>Defines the position and other attributes of one

atom in the unit cell.</xs:documentation>

4 <xs:appinfo>

5 <oldname>noname</oldname>

6 </xs:appinfo>

7 </xs:annotation>

8 <xs:complexType>

9 <xs:attribute ex:importance="essential" ex:unit="lattice coordinates"

name="coord" type="vect3d" use="required">

10 <xs:annotation>

11 <xs:documentation>Position in lattice coordinates.</

xs:documentation>

12 <xs:appinfo>

13 <oldname>atposl</oldname>

14 </xs:appinfo>

15 </xs:annotation>

16 </xs:attribute>

17 <xs:attribute ex:importance="expert" ex:unit="" name="bfcmt" type="

vect3d" default="0.0d0 0.0d0 0.0d0" use="optional">

18 <xs:annotation>

19 <xs:documentation>Muffin-tin external magnetic field in Cartesian

coordinates.</xs:documentation>

20 </xs:annotation>

21 </xs:attribute>

22 <xs:attribute ex:importance="expert" ex:unit="" name="mommtfix" type="

vect3d" default="0.0d0 0.0d0 0.0d0" use="optional">

23 <xs:annotation>

24 <xs:documentation>The desired muffin-tin moment for a Fixed Spin

Moment (FSM) calculation.</xs:documentation>

25 </xs:annotation>

26 </xs:attribute>

27 </xs:complexType>

28 </xs:element>

Listing 5.2: Excerpt of the schema defining the input file format.
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data type for every element that contains the configuration parameters. Then
it generates a subroutine for each element type. This procedure is called
with the corresponding node in the DOM tree an an argument. It checks
if the required parameters are given, assigns the default values, and checks
if the right number of child elements is there. If the requirements are not
met or an unknown parameter is given, the user is provided with an error
message. The result is a FORTRAN data structure in which all inputs can
be addressed. The code snippet in Listing 5.3 reads the input file and returns
the FORTRAN data structure:

1 program main

2 use inputdom ! module that cares about the FoX Calls

3 use modinput ! module that contains the derived type definitions and

parser functions

4 call loadinputDOM() ! loads xml to DOM and assigns inputnp from inputdom

to document node

5 input=getstructinput(inputnp) ! builds the tree structure populated with

default values and configured values

Listing 5.3: FORTRAN call to parse XML input.

From now on all the data from the input file is available as native FORTRAN
data-type in the input structure. The values can be used in expressions
directly without any further call to a function.

array(1:3)=input%groundstate%ngridk

One example: the expression input%groundstate%ngridk gives the integer
array of the number of k-mesh points in each direction. All the other at-
tributes are accessed in the same way. In case of multiple occurrences of an
element the syntax to access one of the items in the list is the following:

coords(:)=input%structure%speciesarray(is)%species%atomarray(ia)%atom%

coord(:)

The peculiar notation atomarray(index)%atom[...] stems from the fact
that FORTRAN does not allow the construction of an array of pointers.
Rather one can only define an array of derived types that contain a pointer.

There are a few general rules for the logic of the input file, partly because
of the syntax of XML, but there are also conventions in the implementa-
tion that must be followed. Attributes are required if there is no meaningful
default value possible such as in the coord (A.9.2) attribute. If an element
occurs in the input file, it is initialized with all its available attributes. If a
required attribute is missing, the program will abort with an error message.
Optional attributes are initialized with their default values. Some elements
can be repeated inside the parent element. Repeated elements are, for ex-
ample, the atom (A.9) elements inside the species (A.8) element. Optional
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elements act as a switch that activates the associated feature. Parts of the
code, that process one optional element, must not rely on parameters defined
in any other optional element. This is enforced by the fact that optional el-
ements which are not present in the input file, are not initialized, and will
cause a segmentation fault when referenced in the code. Therefore the exis-
tence of an optional element must be checked with the associated() inquiry
function before its data may be referenced.

5.3.4 Input Documentation

XSLT has proven to be a comfortable way to transform the input schema into
other formats. The other important information to come from the schema
is the input file-format documentation. The XML Schema syntax allows
to add documentation about the elements and attributes. We made use of
this by writing the descriptions of the parameters right into the schema.
The advantage of this is, that the documentation is right next to the type
definition and the definition of the default values, which are at the same time
used by the program. The documentation can be generated whenever the
schema changes, such the documentation is synchronous with the code all
the time. The documentation is available in two different formats. One is
a PDF, compiled from Latex, the other one is a wiki syntax which provides
the on-line help on the exciting website. This is done with the templtes:
schemetolatex.xsl and the schematowikidot.xsl.

5.3.5 Species Files

The chemical elements used in the calculation are described in separate files.
The exciting code comes with a set of files for all elements. These files
describe the charge and predefined basis functions. As the proper usage of
APW-derived basis functions is a pretty complex issue, it benefits a lot from
the descriptive and hierarchical properties of XML. These files are generated
by the species tool and don’t need to be touched by the user. If it is
necessary to change something, the descriptive file format lowers the barrier
to do so effectively. Listing 5.4. shows the species definition for aluminum.
The species files are parsed in the same way as the input file. In fact, the
same XSLT template is applied to the species schema as to the input schema.
Detailed documentation about the species file format is provided in Appendix
B.
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1 <?xml version="1.0" encoding="UTF-8"?>

2 <spdb xsi:noNamespaceSchemaLocation="../../xml/species.xsd" xmlns:xsi="

http://www.w3.org/2001/XMLSchema-instance">

3 <sp chemicalSymbol="Al" name="aluminum" z="-13.0000" mass="49184.33493">

4 <muffinTin rmin="0.554700E-06" radius="2.0000" rinf="45.7440"

radialmeshPoints="400"/>

5 <atomicState n="1" l="0" kappa="1" occ="2.00000" core="true"/>

6 <atomicState n="2" l="0" kappa="1" occ="2.00000" core="true"/>

7 <atomicState n="2" l="1" kappa="1" occ="2.00000" core="false"/>

8 <atomicState n="2" l="1" kappa="2" occ="4.00000" core="false"/>

9 <atomicState n="3" l="0" kappa="1" occ="2.00000" core="false"/>

10 <atomicState n="3" l="1" kappa="1" occ="1.00000" core="false"/>

11 <basis order="1">

12 <wf matchingOrder="0" trialEnergy="0.1500" searchE="false"/>

13 <exception l="0">

14 <wf matchingOrder="0" trialEnergy="0.1500" searchE="true"/>

15 </exception>

16 <exception l="1">

17 <wf matchingOrder="0" trialEnergy="0.1500" searchE="true"/>

18 </exception>

19 <exception l="2">

20 <wf matchingOrder="0" trialEnergy="0.1500" searchE="true"/>

21 </exception>

22 </basis>

23 <lorb l="0">

24 <wf matchingOrder="0" trialEnergy="0.1500" searchE="true"/>

25 <wf matchingOrder="1" trialEnergy="0.1500" searchE="true"/>

26 </lorb>

27 <lorb l="1">

28 <wf matchingOrder="0" trialEnergy="0.1500" searchE="true"/>

29 <wf matchingOrder="1" trialEnergy="0.1500" searchE="true"/>

30 </lorb>

31 <lorb l="2">

32 <wf matchingOrder="0" trialEnergy="0.1500" searchE="true"/>

33 <wf matchingOrder="1" trialEnergy="0.1500" searchE="true"/>

34 </lorb>

35 <lorb l="1">

36 <wf matchingOrder="0" trialEnergy="0.1500" searchE="false"/>

37 <wf matchingOrder="1" trialEnergy="0.1500" searchE="false"/>

38 <wf matchingOrder="0" trialEnergy="-2.4974" searchE="true"/>

39 </lorb>

40 </sp>

41 </spdb>

Listing 5.4: Species file of aluminum. The species file defines the properties
of the basis functions that are used to expand the wave function within the
muffin-tin sphere.
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1 <?xml version="1.0" encoding="UTF-8" ?>

2 <symmetries HermannMauguinSymbol="Bmab">

3 <title>LaCuO </title>

4 <lattice a="10.0605232" b="10.0605232" c="24.972729" ab="90"

5 ac="90" bc="90" ncell="1 1 1"/>

6 <WyckoffPositions>

7 <wspecies speciesfile="La.xml">

8 <wpos coord="0.0000 0.0000 0.3608 " />

9 </wspecies>

10 <wspecies speciesfile="Cu.xml">

11 <wpos coord=" 0.0000 0.0000 0.0000" />

12 </wspecies>

13 <wspecies speciesfile="O.xml">

14 <wpos coord="0.2500 0.2500 0.0000" />

15 <wpos coord=" 0.0000 0.0000 0.1820" />

16 </wspecies>

17 </WyckoffPositions>

18 </symmetries>

Listing 5.5: Example input for the spacegroup tool.

5.3.6 Spacegroup Input

The program spacegroup is part of the exciting code. In the spacegroup
input, one defines the space group by providing the Hermann Mauguin sym-
bol and the Wyckoff positions. The Wyckoff position implicitly defines the
positions of a group of equivalent atoms: After specifying the position of one
representative atom, the positions of the other equivalent atoms are derived
from the symmetry operations. This way, spacegroup determines all the
atom positions in the unit cell. If required it can also create a supercell. The
input file of spacegroup has its own file-format documentation (Appendix
C). Listing 5.5 shows an example input file for the spacegroup tool.

5.3.7 Assisting Editors

XML has been in use for a long time and has many applications. Accordingly,
the tools to process and manipulate XML are very mature. Modern XML
editors can understand XML Schema and assist the user at editing files.
After setting the location of the schema in the root element, the editor can
validate the input for conformance with the schema. It can provide the user
with suggestions of possible inputs in the current context (Fig. 5.1 and 5.2).
The XML editor also has access to the documentation in the XML Schema. It
can display the description of the element or attribute (Fig. 5.3). A modern
XML editor can give feedback on the validity of the input while editing and
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Figure 5.1: The XML editor in eclipse can use the XML Schema to propose
possible elements in the current context.

Figure 5.2: The XML editor provides the list of attributes, defined in the
XML Schema, for the current element.
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Figure 5.3: The XML editor shows the documentation from the XML Schema
when the mouse hovers over the attribute.

assist the user to edit complex input files quickly.

5.4 XML Output for the exciting Code

Results of the calculations are a number of different properties and data sets.
These data sets may be used for further analysis or visualization. Tradition-
ally, the file formats were designed to be readable by various visualization
tools. The downside of this is, that it pretty much forbids to have useful
descriptions, meta data, units or labels in the output. Having all this de-
scriptions in the output is desired because it makes interpretation of the data
easier, especially when they stem from an older calculation. XML also sup-
ports the idea of creating data archives, which are potentially very valuable
as the complexity of research moves on.

One of the goals of XML is the separation of data and presentation. XML
is designed to store structured data, not to display it. Once data is structured
and well organized, it is, however, very straight forward to transform it to
multiple display or visualization formats.
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Figure 5.4: This band structure graph was generated by an XSL template
from the bandstructure.xml file. The template generates a file to be visu-
alized in xmgrace.
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plot3d2opendxscalar.xsl Template to transform any 3d plot data into
OpenDX file format.

plot3d2xsf.xsl Template to transform any 3d plot data into
XSF file format. XSF can be read by XCrys-
Den and Vesta.

plot3d2xyz.xsl This templates creates output in the form of
“x y z” data from the plot3d output.

xml2ascii.xsl Extracts all numbers from XML into a plane
text file.

xmlband2agr.xsl Template to generate an xmgrace plot from
bandstructure.xml

xmldos2grace.xsl This xsl style-sheet prepares a file for xmgrace
to plot density-of-state (DOS) graphs.

xmlfermis2bxsf.xsl This generates the input file to visualize the
Fermi surface for XCrysDen.

xmlinput2xsf Xsl Conversion template to generate an XCrysDen
structure file (.xsf file) out of the exciting
input.xml file.

Table 5.1: Visualization templates available for exciting.

exciting2sgroup.xsl This template converts exciting input into
the file format of the sgroup tool.

exciting2wienstruct.xsl Template to create a WIEN2k .struct file
from exciting input.xml.

xmltinputoblock.xsl Converts input.xml to the block format used
by Elk.

xmlinput2xsf.xsl Conversion template to generate an XCrys-
Den structure file (.xsf file) from exciting
input.xml file.

Table 5.2: Inputfile conversion templates available for exciting.
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One way to transform the data into a visualization for XML is using Tem-
plates. Our approach is the following: exciting packs all the information
available about a physical property into an XML file, regardless what the
analysis tools can understand. Then a template is applied to this data which
transforms it into various file formats readable by the tools. The templating
language used is XSLT (Section 4.6). exciting comes with a wide selection
of these templates. We have templates for 1d, 2d, 3d plots and more specific
ones that create fully annotated graphs with title, axes labels, and legend
(Tables 5.1 and 5.2). As an example Figure 5.4 shows the procedure for
creating a band structure plot.

5.5 Work-Flow Concepts in exciting

If one develops a concept for a user interface it makes sense to distinguish the
common work flows that need fundamentally different approaches in terms
of configuration and program execution. The calculations with exciting
follow one of three patterns: single-SCF properties, optimization procedures
and parameter sweeps. Any problem amounts to one of them.

Many properties are derived from the groundstate density or Kohn-Sham-
orbitals (Fig. 5.5 top left). Examples are: Band structure, total energy,
Fermi energy, density of states, Fermi surface. Because these properties are
derived from one fixed input geometry we shall refer to them as single-SCF
properties.

Other questions in DFT come as optimization task. To find the optimal
parameters one needs to do a full groundstate calculation for each step. The
new step is calculated from the previous results after some algorithm that
uses the history (Fig. 5.5 top right). The most important example oft that
pattern is structure optimization. This kind of work flow we call optimization
procedure.

The third pattern involves independent groundstate calculations for a set
of points in some parameter space. The generation of such a parameter set
is often referred to as DEO (design of experiments). This yields a function
over this parameters from which properties can be derived. The points are
independent from each other and can thus be calculated in any order or in
parallel (Fig. 5.5 bottom). Examples are volume optimization or convergence
tests. This type of calculation is called parameter sweep.

The preferred way to tackle this third type of calculations is through input
templates (Table 5.3). Templates are used to produce a set of input files from
a prototype by varying one or few parameters (Fig. 5.6). exciting comes
with tools to generate parameter files. We provide also input templates to
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Figure 5.5: The three work-flow types are single-SCF properties (top left),
recursive optimization (top right), and parameter sweeps (bottom).
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Figure 5.6: Input templates can be used to generate a set of input files from
a list of parameters (experiment plan).

generate the input files for all the calculations on the exciting website [2].
For the use on HPC clusters, there are example templates to generate the
scripts to submit the jobs to the cluster. XSLT templates can also be used
to extract data from the output files and collect them in one file.

5.6 The exciting Code and ASE

As another new option to work with the exciting code we have implemented
an interface to the exciting code for the atomic simulation environment
(ASE). ASE [6] is a framework to manipulate, visualize, and optimize struc-
tures. ASE is an object-oriented framework written in python which provides
an Atoms class to hold atomic structure information. An Atoms object can
be created by importing structure information from a variety of file formats
or by using ASE functions to create unit cells for bulk systems, slabs, and
so on. An Atoms object can be connected with a calculator object, which
can interface to a list of DFT codes. These codes give back total energies
or forces, which then are used by ASE functions to perform optimization or
analyzes.

The ASE-exciting interface written in this work, allows to call the ex-

74



expandset.xsl Expands all parameter permutations. It is
used to create a parameter list.

loadl.xsl The template generates a loadleveler job script
from the parameter list.

expandsetup.xsl Create parameter series for use with
expandset.xsl.

set2shellcommand.xsl Creates shell-script to execute all calculations
in parameter list.

setaddpath.xsl Adds a path attribute to parameter sets in
parameter list.

example_input.xsl Example template for creating input files from
parameter list.

Table 5.3: Input file templates available for exciting.

citing code from within ASE, and read from and write to the exciting
XML input file format. The calculator object has methods to return total
energy and forces in the units used by ASE.

5.6.1 ASE Interface to the exciting Code

An exciting calculator object is defined by the Exciting class within ASE.
Calling the Exciting constructor returns a calculator object. The interface
to create an exciting calculator object is as follows:

class ase.calculators.exciting.Exciting(dir=’.’, template=None,

speciespath=None, bin=’excitingser’, kpts=(1, 1, 1), **kwargs)

It can be used in two different ways. One is by giving parameters of the
groundstate as keyword arguments in the constructor interface:

class exciting.Exciting(bin=’excitingser’, kpts=(4, 4, 4), xctype=’

GGArevPBE’)

The other way is to use an XSLT template:

class exciting.Exciting(template=’template.xsl’, bin=’excitingser’)

An example template is given by Listing 5.6. The use of the template has
the advantage that it allows access to all possible configuration options of the
exciting code, not only to those which are attributes to the groundstate

(A.11) element.
The calculator object must be associated with the structure for which it

should perform the calculations. This is done by calling the set calculator()

method of the Atoms class. For example:

75



1 <?xml version="1.0" encoding="UTF-8" ?>

2 <xsl:stylesheet version="1.0"

3 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

4 <xsl:output method="xml" />

5 <xsl:template match="/">

6 <xsl:comment>

7 created from template

8 </xsl:comment>

9 <!-- ############# -->

10 <input>

11 <title></title>

12 <structure speciespath="./">

13 <xsl:copy-of select="/input/structure/crystal" />

14 <xsl:copy-of select="/input/structure/species" />

15 </structure>

16 <groundstate ngridk="4 4 4" vkloff="0.5 0.5 0.5" tforce="true" />

17 </input>

18 <!-- ############# -->

19 </xsl:template>

20 </xsl:stylesheet>

Listing 5.6: Example for an ASE calculator template. One can change
anything manually in the template except the part that is handled by ASE
e.g. the unit cell and the atom positions.
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structure = fcc111(’Cu’, size=(4,4,2), vacuum=10.0)

structure.set_calculator(Exciting(bin=’excitingser’, kpts=(4, 4, 4) )

5.6.2 ASE exciting Input/Output

ASE can read the geometry data from an exciting input file and create
an Atoms object from it, and can write the structure stored in an Atoms

object into an exciting input file. This means that the read and write

functions of ASE have the option to read and write exciting files. This is
best explained by an example:

atoms=read(’input.xml’, format=’exi’)

write("outfile.xml", atoms, format="exi")

This example code snippet reads the structure from the input.xml file and
stores the atomic positions, the unit cell, and the species in the atoms object.
The format keyword specifies the format "exi" which is short for exciting
input. The next line writes the structure from the atoms object as exciting
input file into the file with the name outfile.xml.

Current limitations

The calculator supports only total energy and forces; stress and strain is not
yet implemented in exciting. However, its implementation is in progress.

The keyword arguments in the Exciting constructor are converted into
attributes of the groundstate (A.11) element. No check for validity is done
there, and not all exciting options are accessible in that way.

5.7 exciting@web

The new input and output file formats in the exciting code allowed to
rethink the concept for a graphical user interface and storage of results.
Powerful XML technologies as the XML database eXist-db (Section 4.8.5)
and Xforms (Section 4.7), enabled us to develop a very powerful system in
very short time.

exciting@web is a user interface to exciting, realized as a web service.
It consists of an interactive input file editor, an execution environment, and
a results database.
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Figure 5.7: exciting@web integrates a GUI with the storage and presenta-
tion of the data. Calculations can be started and monitored, but the actual
number crunching is performed on a separate system which is connected via
a web service.

5.7.1 Interactive Input File Editor

An interactive graphical user interface can lower the entrance barrier for
new users. A GUI should lay out a clear path to relevant options, eliminate
typos as error source, and help to setup the calculation quickly. Therefore
we developed an interactive input file editor for the exciting input file.

As described in Section 5.3.2, the grammar of the exciting input file is
defined by an XML Schema, which also contains the documentation of the in-
put parameters. This structure is used for generating the GUI automatically.
The immediate advantage is, that the GUI can be kept in sync with the code
development and the documentation with little effort. This is realized by
a web application that displays an interactive form which reflects the input
file structure along with the documentation. Figure 5.9 shows a screen shot
of the interactive input file editor. The technology behind involves XSLT
and XForms (Section 4.7). Figure 5.8 depicts the diagram for the genera-
tion of the user interface. We have created a XSLT template that translates
the exciting-input schema to XForms code. This XForms code defines the
UI (user interface) elements to add attributes and elements, display docu-
mentation, check the input for validity, and enforce required attributes and
elements. The result is an XHTML page with embedded XForms code, which
is then translated to HTML and Javascript by the XSLTForms (Section 4.7)
template.
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Figure 5.8: The user interface is generated from the XML Schema of the
exciting input file. The schema is used to generate XForms markup with
a custom XSLT style sheet. This XForms is transformed to HTML by the
XSLTForms (Section 4.7) style sheet.
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Figure 5.9: Interactive input file editor.
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5.7.2 Calculation Services

The exciting@web server can be connected with a calculation service in
order to perform exciting calculations on a cluster or remote workstation.
This calculation service is a simple HTTP server that takes requests for cal-
culations, initiates them on the HPC system, reports the status, and delivers
the results back to the exciting@web database.

Remote calculations are started through HTTP requests. The excit-
ing@web server opens an HTTP connection to the calculation service if
requested by the user. An HTTP POST request with the input file as post
data, starts the calculation. The started calculation now has a unique url
under which it can deliver information about the convergence and the status
of the calculation. The whole API is summarized in Table 5.4.

command HTTP request

start calculation POST input.xml content to
http://$host:$port/$sha1hash(input.xml)/
returns: POST OK

get info.xml GET http://$host:$port/$sha1hash(input.xml)/
returns: content of info.xml

get status GET http://$host:$port/$sha1hash(input.xml)/status
returns: XML with job status

get sdtout stderr GET http://$host:$port/$sha1hash(input.xml)/stdout
returns: XML files list with stdout and sdterr

get results GET http://$host:$port/$sha1hash(input.xml)/import
returns: XML files list with all xml data

delete GET http://$host:$port/$sha1hash(input.xml)/delete
returns: error code

Table 5.4: HTTP API for an exciting calculation service.

5.7.3 Data Archiving and Presentation

Using XML as data format for results, opens new possibilities for archiving
and presenting data. XML is designed to structure any kind of data, and
store it in a text file. As it is structured data, it can also be stored in an
XML database to allow performing complex queries over large datasets. The
XML database can also apply XSLT style sheets on XML documents, which
enables us to reuse the output templates (Table 5.1). The data can also
be displayed directly in the browser. That way any calculated result has a
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Figure 5.10: Browsing the exciting database by keywords.

web page that can be linked. These pages have links for downloading all file
formats for which an XSLT transformation is available.

Apart from being of use for training and data management, our database
provides a possibility of publishing DFT data on the web, making it search-
able with search machines. The latter is a big potential for this kind of
computational science, complex calculations and their results can be refer-
enced by a link. Anyone following the link can quickly asses if the results are
useful, and can reproduce the result, as all the necessary data is right there.

The database can be used to organize the data in many possible ways.
One is the keyword browser (Fig. 5.10). The keyword browser allows to
select only the entries that match a set of keywords. The keywords are
partly generated from the input file and custom keywords.

When one entry is selected, the input file with a 3d model of the structure
is displayed (Fig. 5.11). The 3d model is interactive and can be zoomed and
rotated by the user. This hopefully helps to decide quickly if the structure in
question is useful and interesting enough for exploring it further. A couple of
properties and graphs do already have a defined view to visualize the data:
the density of states (Fig. 5.12) and the band structure (Fig. 5.13). The view
for the equation of state (EOS) is a special case. The EOS is obtained from
the energy-vs.-volume curve and can be used to determine the groundstate
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Figure 5.11: Display screen for the input file with 3d visualization of the
structure.
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Figure 5.12: DOS-visualization screen.

84



PreferencesLoginLogged in as: guest

input info bandstructure dos symetries More

show sourceDownload as: Grace  Get 

About | exciting-code.org

@web

MgO

Band Structure of MgO

select part of the graph to zoom in

E
 [

H
a

]

W L GAMMA X W K
-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

Browse
Elements
Edit/Submit
Jobs
Query

Figure 5.13: Interactive band-structure visualization. The graph can be
interactively zoomed in to show details.
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Figure 5.14: Screen shot for equation-of-state data.

volume. To get this curve, a whole set of calculations for different volumes
is required. We have defined a data format for EOS data, that can be stored
with the results of the groundstate volume. This data format also has its
own visualization (Fig. 5.14).

If there are templates available to convert the stored files into other file
formats, the user can select the desired format and download it do the client
computer for visualization or further processing.
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Part III

Software Development
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Chapter 6

Scientific Software
Development

Developing complex software systems is a difficult problem. Today it is an en-
gineering discipline on its own with many abstract concepts and tools. When
the first programmable computers where available, scientists and technicians
did not have these concepts. The software was also relatively simple and
maybe written by one person only. With time these simple programs where
extended and were worked on in teams until one very critical observation
was made by Fred Brooks [10]: “adding manpower to a late software project
makes it later”. Software development did not scale to teams and sometimes
productivity deteriorated with the group size. This is described famously in
the book: “The Mythical Man-Month” by Fred Brooks [10].

The software crisis was a situation in the 1960’s where many software
projects stagnated or failed due to organizational difficulties. Since then,
concepts to prevent this crisis are the driving force in software engineering.

Science got more and more dependent on computational methods, largely
without adopting the necessary structures and procedures to maintain and
preserve the knowledge that is encoded in program source code. The main
challenge is the transition from a one-developer project to a collaborative
one. It is the only way to ensure that there is always a minimum number of
active developers with the knowledge to change and maintain the code. If
this is realized, it is much less likely that the work of collaborators is lost.
The transition to a collaborative project is, however, very difficult, because
it requires many extra efforts, which initially can slow down the project.

There are a couple of formal requirements to enable a collaborative soft-
ware development. It requires good documentation, formalized processes,
and an adequate tool chain. It also requires modularity and useful abstrac-
tions in the code. There is a lot of research and books on this matter. Mostly,
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it is not easily transfered to the needs of academic scientific programming
which often is forced to use legacy codes and tools. The main source for the
concepts presented here is from the book “The Pragmatic Programmer”[28].
This chapter goes on about presenting concepts from that book.

6.1 Source-Code Management

Version control or source-code management (SCM) has to solve two problems:
to recorde changes and manage collaboration. SCM is the programmers
equivalent to the lab book. It allows to recover the last working version
after a failed experiment, it records the history of the ideas, and forces the
programmer to annotate the changes. SCM software also provides a way how
to simultaneously work on the same source tree by providing means to merge
forked development branches.

Another important part of using SCM, is to verify which version of the
code produced what results. This is important for reproducibility of nu-
merical experiments. A unique version number allows to identify the exact
version in a central database. In a distributed SCM cryptographic hashes
are used to uniquely identify a version. In collaborative environments, SCM
doesn’t replace quality assurance or code reviews, but it is a necessary step
to start these processes.

6.2 Git, a Fast Distributed Source Code Man-

agement Tool

git [25, 14] is a software for distributed SCM using SHA1 [49] hashes as
version identifiers. git is distributed, in the sense that each local instance of
the repository has the whole history of all changes stored in an highly efficient
compressed data structure, and it does not require a central authoritative
repository. git organizes the source code in terms of commits, branches, and
tags.

git manages a directory of files, and subdirectories, a tree of source files.
Commits are specific stages of a source tree. They are snapshots of the
source code with a comment and one or multiple ancestors (parents). As each
commit has ancestors, they build a chain constituting the commit history of
the code. A commit is identified by a hash, a large binary number, which is
a cryptographic checksum over the commit message, the tree, and the parent
hashes. Like this, the hash is not only an identifier but also a signature,
allowing to verify the integrity of the history and the source code. The hash
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is such a large number that it is virtually impossible that two different files
have the same hash. This is necessary for distributed architecture to work,
because there is no central authority which could ensure the uniqueness of
the identifiers.

Commits can be associated with special names known as tags. Tags are
useful to identify special versions such as release versions. One git repository
can have multiple branches of commits. Branches are forks from the main
chain of commits in order to work out a change without compromising the
main (master) branch. Branching and merging is so fast and comfortable
that it is actually good practice to make feature branches to work on new
features.

git supports several protocols to exchange code. Source code can be
shared over an ssh server, over web servers, email, and the local file system.
An existing repository is cloned to create a local copy. As the term clone
suggests, the local repository has all the same information and authority like
the original one. git provides means to fetch, pull, and push changes among
repositories over various protocols.

As git gained popularity quickly, there emerged great services to simplify
sharing source code. One of them is github [20], a service which very much
simplifies exchanging and merging source code.

6.3 Reproducibility

Reproducibility is one of the main principles of science. In software develop-
ment it usually is fulfilled as one expects the same results if the same program
is run with the same inputs. This appears to be trivial. Unfortunately, it
gets fairly complex as a program almost never is static. To reproduce pub-
lished results, one requires the same version of the code that was applied,
and complete information about the features and parameters used. Using
open source code ensures transparency and access to the means to reproduce
the results. The commit hashes of git can be used to identify a specific
version of the source code which cannot be faked. The hash effectively is a
cryptographic signature that allows to verify the integrity of the source code.
If someone claims that a specific result was obtained with a specific version
of the code identified by its hash, anyone else can verify it reliably.
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6.4 Testing

Every program has to be tested in order to verify that it does what it is
intended to do. This is obvious, and every scientist working with software
does testing in one or the other way. Verification of the algorithm during
development is only one aspect of testing. Testing should enable to discover
regressions and to simplify refactoring. These aspects get more important,
the more mature the project becomes.

Whenever a new feature is implemented one would repeatedly run the
program until the output satisfies the expectations. But how are this ex-
pectations defined in scientific programming? It is clear that what we really
want are specifications that can easily be decided to be passed or failed.
Finding these specifications for the results, can be difficult because often the
only way to produce the results is the algorithm itself. In physics, we have
experimental data we want to model and can use this as reference to decide
if the output is reasonable. This does, however, not really assure that the
program does exactly what it is intended to do, namely implementing the
theoretical model of a physical process.

One solution is, of course, using a reference model of which the solution
is known explicitly. But what if this is not available? Any complex algo-
rithm can be broken down to smaller parts which can be verified more easily.
This testing of all the units has become an established method called unit
testing. The goal of unit testing is writing simple tests against specifications
on function or procedure level. The idea is: When a certain code coverage is
reached, one has good reasoning that it does what it is intended to do, and
bugs are found fast. None of this is proving the correctness but it is much
better than just hoping that the code is correct.

The next point is that tests are an integral part of the software. They have
their place directly in the source tree of the project. It is a waste to throw
away a test environment, once the feature was verified to work correctly. If
tests get compiled to a test suite that can be executed automatically and
report if the tests passed or failed, one gets a lot of extra value out of testing.
It is almost as important to know if a feature still works as if it worked once.

An automatic test suite improves the development at many points. It can
provide a clear and transparent criterion to accept patches from collaborators.
It simplifies code refactoring because it allows to verify each stage more
easily, which ultimately leads to better code and more code reuse. And,
most important, it allows to check faster if changes break some feature.

The next evolutionary step in that reasoning is test-driven development.
Test-driven development means that one would write the test before writing
any code that actually implements the feature. In other words: write a test,
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bring it to fail, write code to make the test pass.
The benefits of this development style get naturally evident when working

on a more complex subsystem which requires a lot of work until one reaches
the first working version.

6.5 Modularity

There is a danger of growing complexity in program code: It becomes spa-
ghetti code. Spaghetti code means that it is not predictable how changes in
one part of the code affect any other part of the program. This side effects
increase debugging time and learning time until, in the worst case, stagnation
is reached. The answer from software engineering is: modularity. There has
been written a fair amount of books on this topic. Most books however,
directly address object-oriented programming. As FORTRAN 90 doesn’t
have objects or classes, the terminology is hard to apply. The core concepts,
however, apply to any language. A good reference with a more abstract view
in this field is [28]. Therefore a short review of what modularity may mean
for scientific software written in FORTRAN will be given below. What are
modules? Modules are distinct parts of the program that are orthogonal and
coupled minimally to each other by an API.

6.5.1 Orthogonality

Modules should be orthogonal in the sense of orthogonal vectors, as move-
ment along one vector is not observable in the projection on the other. In
terms of programming this means that changes in one module should not
require changes anywhere else.

This is the reason why having too many global variables leads to very
difficult situations. Every single global variable used by more than one mod-
ule is a coupling factor that destroys orthogonality. The concept to battle
this condition is called information hiding. Information hiding uses language
features to limit the scope of variables, to enforce better programming style,
and to ensure orthogonality. It is, however, necessary that modules exchange
information. For this purpose, modules have an API to realize the coupling
between them.

Technically one has to ensure that other modules will only access the
API and cannot access other functions or data. Best is to use language
features to ensure that. Then the compiler will complain at compile time
when data or procedures other than those specified in the API are accessed
by a different module. This is, basically, what object-oriented languages do.
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Those languages have a lot of features to control the scope of attributes and
methods such that the author of a module can force other programmers to
stick with the methods defined as public API.

6.5.2 Application Programming Interface

The API of a module or a library is a collection of functions and data types
which are used to exchange information and call functionality from that
module. This is what other programmers need to learn when they need the
functionality of the module. Therefore it should be designed to be easy to
learn and use. An API is designed for other humans, not for the computer.
Also, the API should not change much once the module is released. A good
API has the following desirable features:

1. The API should include only the absolutely necessary features. Firstly,
it is less to learn, and secondly, it is always easier to add things than
to remove something, some other code already relies on.

2. The names of functions should be expressive and really describe what
they do. Names should be chosen with utmost care.

3. If possible, follow a scheme for the names and keep the order of param-
eters consistent.

4. Ideally, there should not be more than three parameters per function
call.

Long argument lists are a big error source, and they make code difficult
to read. For sure, there are not many functions, that can take only three
values as arguments, that are interesting for any kind of advanced API. But
arguments don’t need to be simple types. FORTRAN allows to define derived
types with any desired complexity. With the help of derived types, interfaces
can be simplified a lot. Long lists of parameters can be encapsulated in a
derive type. The argument is much shorter and the compiler can check the
correctness of the derived types at compile time. With these tricks, code can
be as readable as sentences in natural language.

Derived types are the objects in FORTRAN. They cannot contain meth-
ods in FORTRAN 90, but they do encapsulate data. Using derived types,
the interface of API subroutines may be composed of a configuration object,
a data object and a short list of parameters. The configuration object would
contain parameters that remain the same for a series of API calls and the
data object contains the data that is manipulated by the subroutine.
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The API could include a function to create a configuration object and set
the values to reasonable defaults. The programmer must only set the values
that differ from the defaults. Then the configuration object can be used in
a couple of function calls before it is destroyed by a deallocation call.

6.5.3 How to Write Modular Code in FORTRAN

Modularity is not about throwing away FORTRAN code and replacing it with
C++. It is about conquering complexity with abstraction. In FORTRAN
90, the only language features to create abstraction are subroutines, modules,
and derived data types.

Subroutines are blocks of code that can be reused with different input
data. They represent the basic concept to avoid code duplication and parti-
tion the code into functional units.

Modules can realize name spaces that can be made available through the
use statement. They may contain a collection of subroutines, constants, and
data-type definitions. It is, however, not a good idea to define variables in
the module because they would create the same problems as global variables.

Derived data types are rarely used by beginners but have the largest po-
tential for abstraction. They allow to encapsulate logically connected data
in a data structure. A data structure can have multiple instances, which is
an important contrast to modules. Together with pointers, data structures
can be structured hierarchically, building a tree that represents the abstract
structure of the data. In their function of encapsulating connected data,
data structures help to make interfaces cleaner. The interface of a procedure
consists of the arguments and the return values of the subroutines. By using
derived types the argument lists get much shorter and easier to use.

Derived types are the closest thing to objects FORTRAN 90 can offer. A
derived type in FORTRAN 90 cannot contain methods and is not extensible
by inheritance which are the two most important features of object-oriented
languages. Without these features, it is still possible to mimic some of the
properties of objects in FORTRAN 90. It is, for example, a common practice
to have a set of subroutines that all have a particular derived type as their
first argument. These subroutines may be seen as methods of the object as
it is represented by this derived type. The API of the FoX (See Section
4.5) library may serve as a great example for this. FORTRAN 2003 adds
language features to actually use types as objects (See section 6.6).

It is very important to avoid spaghetti code, the situation where any
change in the code may affect any other part. The barrier where no single
person understands the whole code anymore is reached quickly. And when it
is reached, new developments will take longer and longer and the quality will
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degrade until a simplification and modularization can be realized. Spaghetti
code can be avoided in any language but it requires to make smart use of
the available abstractions. In FORTRAN, this means that data has to be
moved from modules into data structures, and procedures must have clean
interfaces and not manipulate global data randomly.

6.6 Newer FORTRAN Standards

FORTRAN 90 was a large step from FORTRAN 77, and is probably the
FORTRAN version the most commonly used. There are, however, newer
standards: FORTRAN 2003 and FORTRAN 2008.

It is hardly known that, to date, most current compilers support big parts
of FORTRAN 2003. gfortran from the gnu compiler collection and ifort

from Intel, for example, both support procedure pointers bound by name to
a type. This is the basis for object-oriented programming as it effectively
implements objects and methods. FORTRAN 2003 even allows to extend
derived types and realizes inheritance and polymorphism. These features are
relatively new, but definitely in a state where one should begin to use them.

FORTRAN 2008 is a rather small addition to FORTRAN 2003. It mainly
adds functionality for parallel programming. The compiler support is cur-
rently not as advanced as for FORTRAN 2003. This means it cannot be used
for real software projects yet.

6.7 Refactoring

Refactoring is the process of reorganizing software without changing the func-
tionality. The goal of refactoring is obtaining better readable and extensible
code by regrouping program parts to modules, changing interfaces and data-
types, or mere renaming of specifiers. A good overview about this is found
in Ref. [32].

Getting the software architecture right from the start, such that it never
must be changed, does not work in practice. Refactoring is a necessary part
of any software project. Sometimes, the refactoring has to amount to a major
software refurbishment. A condition for successful refactoring is some kind
of test system (Section 6.4) in order to ensure that the functionality does not
change during refactoring.

The most relevant types of refactoring are:

Renaming: Source code is read by many people, so having expressive names
for identifiers is the easiest and most effective way do reach better
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readability.

Removing code in comments: There is no need to keep old code in the
source. That is the job of the version-control software.

Redesigning data structures: Data structures are the most important
tool to make code better readable.

Redesigning interfaces: Subroutine interfaces with many parameters are
hard to use.

Splitting Subprograms: Too long subroutines which operate on too many
different data types should be split up into subprograms with a clear
scope and task.

It is important to note that these processes can be automated to a signifi-
cant degree. There is some refactoring support included in IDEs (Integrated
Development Environments). As refactoring mostly is search and replace
in text files, any advanced text manipulation tool is of great help and can
remove some of the error sources and risks.
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Chapter 7

The Development Process in
exciting

We took a great effort to streamline the collaboration in the exciting
project. Collaboration requires a group with common motivation and trust.
But there are a few technical prerequisites and processes that are best praxis
and address systematic obstacles.

The central body of the collaboration is the source code. Collaboration
means, that multiple people edit the code at the same time. All of them
expect the code to be in a defined state when they compile and test it. So
everyone has a copy of the code from which he or she progresses with a chain
of changes, until his, her goal is reached. This chain of changes is called
a branch. To organize and merge the branches some kind of source code
management is absolutely necessary.

exciting is an open-source code. The expected advantage of open source
is, that openness and transparency help to create higher quality code, facili-
tate collaboration, and to prevent knowledge from getting lost or locked in. In
order to benefit from these theoretical advantages, it is not enough to merely
attach the GPL license to the code, and put it on a website. Rather, one
needs to develop a whole community process, that can govern an open-source
project.

7.1 Simplify Merging

Merging should be fast and easy. When merging is not a problem, it can
be done more often and earlier. Collaborators can be confident that their
changes will enter the official version and stay usable. This is realized by a
couple of elements we newly introduced with the current version. They con-
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1 <?xml version="1.0" encoding="UTF-8"?>

2 <?xml-stylesheet href="./report.xsl" type="text/xsl"?>

3 <report>

4 <test>

5 <name>EQATOMS.OUT</name>

6 <description>EQATOMS.OUT EQATOMS.diff </description>

7 <directory>test01</directory>

8 <status>passed</status>

9 </test>

10 ...

11 </report>

Listing 7.1: Example for a test report. The test report file is encoded in
XML.

sist of (1) modern distributed source code management, (2) dynamic build
system, (3) automated tests, (4) formal input-file description. This improve-
ments do play together to allow a transparent and save development process.
The distributed source code management solves the technical problem of
merging two versions of the code in a safe and convenient way (see Section
6.1).

The dynamic build system eliminates the manual editing of make files and
encourages the use of modular programing. The dependency graph of the
modules is computed automatically within seconds to create a make file with
all the dependencies set correctly. The program that does this is a Perl script
called mkmf [52, 7], which is GPL licensed software. By eliminating the need
of updating the makefiles completely, merge conflicts in the make files have
disappeared in exciting.

7.2 Test System in exciting

The test subsystem is located in the test directory in the source tree. In the
test directory, there are multiple directories for different tests. The list of
tests is controlled by a makefile. By typing “make test” the test binaries are
compiled, the test runs are executed, and the report scripts that evaluate the
results are called. For test reports we use XML files. The reason for this is
that there are tools which are simple, powerful, and everywhere available, to
process these files. The file formats can be extended with new fields without
breaking any of the scripts.

A test report looks like Listing 7.1.
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7.2.1 How to Write a Unit Test

Unit tests are test procedures written in the same framework as the code
itself. The test routine has access to all the runtime data structures and
functions. Like this, small units are accessible for testing. Tests should be as
independent as possible even if this is sometimes difficult to archive. A test
is passed if the output of a program unit, e.g., a subroutine, matches with
the predefined reference data.

exciting includes a simple test-reporting module. To report a test result,
one uses the testreport() procedure. It takes a logical value for the test
status as argument, .true. for passed and .false. for failed. The procedure
writes a report to the report file by using the following variables from the
module modreport:

1 testunitname="LINENGY.OUT"

2 inputf="LINENGY.OUT"

3 outputf="LINENGY.diff"

4 call testreport(passed)

7.2.2 How to Write a Black-Box Test

A black box test uses the exciting program. Such a test consists of a set
of inputs and reference data. The assertion routine can only access outputs
written to disk by the exciting program.

In order to facilitate the creation of such tests, there is a reporting frame-
work written in Perl available. There are also functions for comparing nu-
merical values in files, to check against the reference data. An example is
given in Listing 7.2. This Perl code uses the Test module that is included
with the exciting test system to create a test report about the ARPACK
solver.

7.2.3 Generating the Test Summary

After all the tests are executed, a number of test reports are written into the
test directories. These reports are summarized by an XSLT template that
creates an HTML report including statistics. The statistics tell how many
tests were executed, and how many of them passed or failed. The numbers
are visualized in a graph like in Figure 7.1.
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1 #!Perl (-)

2 use lib "../perl/";

3 use lib "../perl/lib/";

4 use XML::Simple;

5 use XML::Writer;

6 use IO::File;

7 use Test;

8 $writer= Test::initreport("report.xml");

9 open INFO, "runarp/INFO.OUT";

10 $status=failed;

11 while(<INFO>)

12 {

13 if (m/\| EXCITING .+stopped/){

14 $status="passed";

15 }

16 }

17 Test::writetestreport({

18 directory=>"test02/runarp",

19 name=>"arpack run",

20 description=>"The test run using arpack finished without

errors",

21 status=>$status

22 }, $writer);

23

24 Test::closereport($writer);

Listing 7.2: Perl test report interface.
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Statistics

Test run Nr: Time: 26.4 14:21 githash: 0e869c4a82b4b47aa847

passed 22 unspecified 0 failed 0

Test run Nr:01. Time: 25.4 22:42 githash: 8bd304d570cd599d4eb9

passed 22 unspecified 0 failed 0

Test run Nr:02. Time: 22.4 22:41 githash: 8bd304d570cd599d4eb9

passed 22 unspecified 0 failed 0

Test run Nr:03. Time: 21.4 22:42 githash: 8bd304d570cd599d4eb9

passed 22 unspecified 0 failed 0

Test run Nr:04. Time: 20.4 22:42 githash: 8bd304d570cd599d4eb9

passed 22 unspecified 0 failed 0

Test run Nr:05. Time: 19.4 22:42 githash: 8bd304d570cd599d4eb9

passed 22 unspecified 0 failed 0

Test run Nr:06. Time: 18.4 22:42 githash: 8bd304d570cd599d4eb9

Figure 7.1: Visualization of the Test summary.

7.3 Examples of Modularity in the exciting
Code

The new input-file data structure may serve as an example for the modularity
of exciting (Section 5.3). Also the eigensystem interface, that hides the data
in abstract structures, may serve as an example (Section 3.4).

This kind of refactorings will constantly be necessary. It should be good
practice to identify hot spots in the code, data that is touched by any new
developments and used by many procedures, and find a way to organize the
data, simplify interfaces, and get rid of modules with a long list of variable
definitions.

7.4 Refactoring of the exciting Code

The exciting code was subject to one significant refactoring: The new input
system. The missing separation of the input parameters from the variables
was problematic. There were parts where input parameters were overwritten
which lead to an uncertainty what the values actually were. Refactoring the
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input system, by formalizing the input definition and using a hierarchical
data structure made the distinction very clear. The automatically generated
parser code introduces a new level of abstraction. The programmer does not
need to know how the parsing works in detail. In order to add or change
input definitions the programmer has to configure them in the XML Schema,
which provides a general model on what inputs may be and how they should
be grouped. This step from handwritten read statements to a configurable
parser leads to having better and more consistent code.

7.5 Issue Tracking

One more thing that needs organization when the development is shared by
multiple people, is tracking and organizing of bugs and feature requests, or
more generally tasks or issues. Issue tracking should provide accountability
to where and when problems where solved and who has the responsibility for
open issues. There is a lot of software available to manage such issues, tasks,
tickets, or bugs. For the exciting project, the implementation was not so
much a technical as a cultural challenge. Issue tracking is a complex problem
and so is most issue tracking software. The barrier to use it on a regular basis
is higher than for SCM where, for example, the immediate benefit is much
more apparent. Especially, end users find it repelling to fill out the mask of a
complex issue-tracking system. However, it is the end-users feedback which
must be tracked and held accountable for. The practical solution involves to
use a web-forum software which has a low barrier for users. It allows to track
the problem and possible answers and fixes. The project may eventually
outgrow this situation but for the time being the forum is an acceptable
solution.

7.6 Outlook for the exciting Development Pro-

cess

As a result of all of these efforts described above we now have a considerable
team of developers which work simultaneously on the code. The issues of
fighting with merging the code and keeping the reference documentation up
to date mainly vanished. So far, we hardly have contributers outside the local
research group. There is quite some way to go to improve transparency and
lower the barriers of entry, while ensuring a reliable level of quality control.

For a larger software project to persist over time, one has to accept the
necessity to restructure the code regularly. The exciting code has many
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areas that need better structure in order to reach a higher modularity, and
lower the barriers of entry. These areas should be addressed one by one,
prioritized by their relevance for ongoing projects.
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Chapter 8

Conclusions

During the work on this thesis, the exciting code went trough a significant
transformation. This transformation may be characterized by going from a
small, single-scientist project to a collaborative software project.

One important aspect of the work is the evaluation of the status quo at
the beginning. The performance measurements suggested bottle-necks that
where subsequently addressed. A basic parallelization scheme was imple-
mented, and more suitable algorithms for the core eigen-solver where evalu-
ated and implemented.

The other aspect addressed in this work was the over-all architecture of
the exciting program. Some of the structures were not suitable for further
development. So the whole input-output paradigm was rethought, and the
program refactored to accommodate new ideas. The new methods try to
appreciate best practices for coding as they evolved in the computer sciences.

The exciting@web platform marks an innovative approach to a user
interface for the exciting program. The advantages of XML technology
where exploited to realize not only an interactive input file editor with a job-
submission back end, but also a result database with many visualizations
and data transformations. These results database opens new opportunities
for data presentation, archiving, and data-mining. It is a step in the direction
to make the scientific practice ready for the “internet age”.

It is important to acknowledge that theoretical physicists are not the
only ones to write software. It is mandatory to look sideways to adopt best
practices for working with code and computers. If the insights of modern
software engineering are turned down, the risk of wasting resources and loos-
ing knowledge gets too high.

This work goes through many aspects of computational methods that
came up through a mayor restructuring of the exciting code. The project
became more suitable for future challenges in physics and scientific software
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development.
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Appendix A

exciting input reference

exciting developers team
(C. Ambrosch-Draxl, Zohreh Basirat, Thomas Dengg,
Rostam Golesorkhtabar, Christian Meisenbichler, Dmitrii Nabok,
Weine Olovsson, Pasquale Pavone, Stephan Sagmeister, Jürgen Spitaler)

About this Document

In order to perform an exciting calculation an XML input file called input.xml must be
provided.

This web page lists all elements and attributes that can be used in the input file of an
exciting calculation:

• elements are defined according to the general XML conventions (http://en.wikipedia.
org/wiki/XML#Key_terminology). Example: The element groundstate (A.11) is
used to set up a self-consistent calculation of the ground-state energy.

• attributes are defined according to the general XML conventions (http://en.
wikipedia.org/wiki/XML#Key_terminology). An attribute is always connected
to an element. In exciting an attribute generally specifies a parameter or a
set of parameters which are connected to the corresponding element. Example:
The attribute xctype (A.11.49) of the element groundstate (A.11) defines which
exchange-correlation potential is used in the self-consistent calculation.

The input file of an exciting calculation is named input.xml. A simple example for
an input file can be found here (http://exciting-code.org/input-file-format-overview).
The input file input.xml must be a valid XML file and it must contain the root element
input (A.2).

Unless explicitly stated otherwise, exciting uses atomic units ( h̄ = me = e = 1 ):

• Energies are given in Hartree:

1 Ha = 2 Ry = 27.21138386(68) eV = 4.35926 · 10−18 J

• Lengths are given in Bohr:

1 aBohr = 0.52917720859(36)
◦
A = 0.52917720859(36) · 10−10 m
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• Magnetic fields are given in units of

1 a.u. =
e

a2Bohr

= 1717.2445320376 Tesla.

Note: The electron charge is positive, so that the atomic numbers Z are negative.

A.1 Input Elements

A.2 Element: input

The XML element input (A.2) is the root element of the exciting input file. It must
contain at least the elements title (A.3), structure (A.5), and groundstate (A.11),
each of them must be present only one time.

Contains: title (A.3) (1 times)
structure (A.5) (1 times)
groundstate (A.11) (1 times)
structureoptimization (A.16) (optional)
properties (A.17) (optional)
phonons (A.41) (optional)
xs (A.48) (optional)
keywords (A.4) (optional)

XPath: /input

This element allows for specification of the following attributes:

scratchpath (A.2.1)

A.2.1 Attribute: scratchpath

The path to the scratch space where the eigenvector related files, EVECFV.OUT, EVECSV.OUT,
and OCCSV.OUT will be written. If the local directory is accessed via a network then
scratchpath (A.2.1) can be set to a directory on a local disk. The default value is the
working directory, i.e., the directory where the program is started.

Type: anyURI
Default: ”./”
Use: optional
XPath: /input/@scratchpath

A.3 Element: title

The title of the input file, e.g., ”Ground-State Calculation for Aluminum”.

Type: string
XPath: /input/title
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A.4 Element: keywords

The keywords tag can contain a space separated list of keywords classifying the calculation
for archiving purposes. It is not used by the exciting program.

Type: string
XPath: /input/keywords

A.5 Element: structure

This element contains all structural information, such as unit-cell parameters as well as
type and position of each atom. The presence of the subelement species (A.8) is necessary
unless one wants to perform an empty-lattice calculation. The attribute speciespath

(C.4.11) must be specified.

Contains: crystal (A.6) (1 times)
species (A.8) (zero or more)

XPath: /input/structure

This element allows for specification of the following attributes:

speciespath (A.5.6) (required), autormt (A.5.1), epslat (A.5.2), molecule
(A.5.3), primcell (A.5.4), rmtapm (A.5.5), tshift (A.5.7), vacuum (A.5.8)

A.5.1 Attribute: autormt

If "true", the muffin-tin radius of each species is automatically set according to the
variables specified by the attribute rmtapm (A.5.5).

Type: boolean
Default: ”false”
Use: optional
XPath: /input/structure/@autormt

A.5.2 Attribute: epslat

This attribute defines the accuracy up to which two vectors can be considered numerically
identical. Vectors with lengths less than this are considered zero.

Type: fortrandouble (A.76.1)
Default: ”1.0d-6”
Use: optional
Unit: Bohr
XPath: /input/structure/@epslat
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A.5.3 Attribute: molecule

If "true", a calculation for an isolated molecule is performed. In this case, the atomic
positions specified by the atom (A.9) subelement of the species (A.8) element must be
given in cartesian coordinates. The lattice vectors are set up automatically as

A(i) = Ai ê
(i) i = 1, 2, 3 (A.1)

with

Ai = max
α,β

∣∣∣a(α)i − a(β)i

∣∣∣+ dvac (A.2)

where a
(α)
i is the catesian component of the atom labeled by α in the i-th direction specified

by the unit vector ê(i). Furthermore, dvac represents the size of the vacuum around the
molecule as defined by the attribute vacuum (A.5.8).

Type: boolean
Default: ”false”
Use: optional
XPath: /input/structure/@molecule

A.5.4 Attribute: primcell

If "true", the primitive unit cell is determined automatically from the conventional cell
defined by the basis vectors given by the basevect (A.7) elements. The primitive unit cell
is determined by searching for lattice vectors among all vectors connecting atomic sites
and choosing the three shortest ones which produce a unit cell with non-zero volume.

Type: boolean
Default: ”false”
Use: optional
XPath: /input/structure/@primcell

A.5.5 Attribute: rmtapm

This attribute assigns the two parameters governing the automatic generation of the
muffin-tin radii. When the attribute autormt (A.5.1) is set to "true", the muffin-tin
radii are determined according to the following expression

Ri ∝ 1 + ζ|Zi|1/3, (A.3)

where Zi is the atomic number of the i th species, ζ is stored in rmtapm (A.5.5)(1). The
distance between the muffin-tin speheres is determined by the value of rmtapm (A.5.5)(2):
When rmtapm (A.5.5)(2)=1, the closest muffin-tin spheres will touch each other.

Type: vect2d (A.76.5)
Default: ”0.25d0 0.95d0”
Use: optional
XPath: /input/structure/@rmtapm
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A.5.6 Attribute: speciespath

The path to the directory containing the species files. Alternatively, it can be defined as
an HTTP URL, in this case the wget (http://exciting-code.org/wget) utility must be
installed.

Type: anyURI
Use: required
XPath: /input/structure/@speciespath

A.5.7 Attribute: tshift

If "true", the crystal is shifted such that the atom closest to the origin is exactly at the
origin.

Type: boolean
Default: ”true”
Use: optional
XPath: /input/structure/@tshift

A.5.8 Attribute: vacuum

Determines the size of the vacuum around the molecule, see the molecule (A.5.3) at-
tribute.

Type: fortrandouble (A.76.1)
Default: ”10.0d0”
Use: optional
Unit: Bohr
XPath: /input/structure/@vacuum

A.6 Element: crystal

Defines the unit cell of the crystal via the 3 basis vectors.

Contains: basevect (A.7) (3 times)
XPath: /input/structure/crystal

This element allows for specification of the following attributes:

scale (A.6.1), stretch (A.6.2)

A.6.1 Attribute: scale

Scales all the lattice vectors by the same factor. This is useful for varying the volume.

Type: fortrandouble (A.76.1)
Default: ”1.0d0”
Use: optional
Unit: 1
XPath: /input/structure/crystal/@scale
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A.6.2 Attribute: stretch

Allows for an individual scaling of each lattice vector separately. "1 1 1" means no
scaling.

Type: vect3d (A.76.4)
Default: ”1.0d0 1.0d0 1.0d0 ”
Use: optional
XPath: /input/structure/crystal/@stretch

A.7 Element: basevect

Defines one basis vector in Cartesian coordinates.

Type: vect3d (A.76.4)
Unit: Bohr
XPath: /input/structure/crystal/basevect

A.8 Element: species

Defines the atomic species, i.e., the chemical element. Aatomic coordinates and, option-
ally, quantities relevant for magnetic calculations are defined in the subelement(s) atom.

Contains: atom (A.9) (1 times or more)
LDAplusU (A.10) (optional)

XPath: /input/structure/species

This element allows for specification of the following attributes:

speciesfile (A.8.2) (required), rmt (A.8.1)

A.8.1 Attribute: rmt

Defines the muffin-tin radius. This optional parameter allows to override the value either
specified in the species file or generated by automatic determination. The muffin-tin radius
defines the region around the atomic nucleus where the wave function is expanded in terms
of atomic-like functions. In contrast, the interstitial region, i.e., the region not belonging
to any muffin-tin sphere, is described by planewaves.

Type: fortrandouble (A.76.1)
Default: ”-1.0d0”
Use: optional
Unit: Bohr
XPath: /input/structure/species/@rmt
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A.8.2 Attribute: speciesfile

Defines the file that contains the species definition. It is looked up in the species directory
specified by speciespath (C.4.11). By default, the name of the file is element.xml, e.g.,
Ag.xml.

Type: anyURI
Use: required
XPath: /input/structure/species/@speciesfile

A.9 Element: atom

Defines the position and other attributes of one atom in the unit cell.

Type: no content
XPath: /input/structure/species/atom

This element allows for specification of the following attributes:

coord (A.9.2) (required), bfcmt (A.9.1), mommtfix (A.9.3)

A.9.1 Attribute: bfcmt

Muffin-tin external magnetic field in Cartesian coordinates.

Type: vect3d (A.76.4)
Default: ”0.0d0 0.0d0 0.0d0”
Use: optional
XPath: /input/structure/species/atom/@bfcmt

A.9.2 Attribute: coord

Atom position in lattice coordinates.

Type: vect3d (A.76.4)
Use: required
Unit: lattice coordinates
XPath: /input/structure/species/atom/@coord

A.9.3 Attribute: mommtfix

The desired muffin-tin moment for a Fixed Spin Moment (FSM) calculation.

Type: vect3d (A.76.4)
Default: ”0.0d0 0.0d0 0.0d0”
Use: optional
XPath: /input/structure/species/atom/@mommtfix

122



A.10 Element: LDAplusU

The LADplusU element is used to specify the J, U, and l parameters of an atomic species.
To switch on the LDAplusU feature one needs to set the ldapu (A.11.22) attribute of the
groundstate element.

Type: no content
XPath: /input/structure/species/LDAplusU

This element allows for specification of the following attributes:

J (A.10.1), U (A.10.2), l (A.10.3)

A.10.1 Attribute: J
Type: fortrandouble (A.76.1)
Default: ”0.0d0”
Use: optional
XPath: /input/structure/species/LDAplusU/@J

A.10.2 Attribute: U
Type: fortrandouble (A.76.1)
Default: ”0.0d0”
Use: optional
XPath: /input/structure/species/LDAplusU/@U

A.10.3 Attribute: l
Type: integer
Default: ”-1”
Use: optional
XPath: /input/structure/species/LDAplusU/@l

A.11 Element: groundstate

The groundstate (A.11) element is required for any calculation. Its attributes are the
parameters and methods used to calculate the ground-state density.

Contains: spin (A.12) (optional)
solver (A.13) (optional)
output (A.14) (optional)
libxc (A.15) (optional)

XPath: /input/groundstate

This element allows for specification of the following attributes:
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ngridk (A.11.31) (required), autokpt (A.11.1), beta0 (A.11.2), betadec
(A.11.3), betainc (A.11.4), cfdamp (A.11.5), chgexs (A.11.6), deband

(A.11.7), dlinengyfermi (A.11.8), do (A.11.9), epsband (A.11.10), epschg
(A.11.11), epsengy (A.11.12), epsforce (A.11.13), epsocc (A.11.14),
epspot (A.11.15), fermilinengy (A.11.16), findlinentype (A.11.17),
fracinr (A.11.18), frozencore (A.11.19), gmaxvr (A.11.20), isgkmax

(A.11.21), ldapu (A.11.22), lmaxapw (A.11.23), lmaxinr (A.11.24), lmaxmat
(A.11.25), lmaxvr (A.11.26), lradstep (A.11.27), maxscl (A.11.28), mixer
(A.11.29), nempty (A.11.30), nktot (A.11.32), nosource (A.11.33), nosym
(A.11.34), nprad (A.11.35), npsden (A.11.36), nwrite (A.11.37), ptnucl
(A.11.38), radkpt (A.11.39), reducek (A.11.40), rgkmax (A.11.41), stype
(A.11.42), swidth (A.11.43), symmorph (A.11.44), tevecsv (A.11.45),
tfibs (A.11.46), tforce (A.11.47), vkloff (A.11.48), xctype (A.11.49)

A.11.1 Attribute: autokpt

If "true", the set of k-points is determined automatically according to the total number
of required k-points given by nktot (A.11.32).

Type: boolean
Default: ”false”
Use: optional
XPath: /input/groundstate/@autokpt

A.11.2 Attribute: beta0

Initial value for mixing parameter. Used in linear mixing as choosen with mixer (A.11.29).

Type: fortrandouble (A.76.1)
Default: ”0.4d0”
Use: optional
XPath: /input/groundstate/@beta0

A.11.3 Attribute: betadec

Mixing parameter decrease. Used in linear mixing.

Type: fortrandouble (A.76.1)
Default: ”0.6d0”
Use: optional
XPath: /input/groundstate/@betadec

A.11.4 Attribute: betainc

Mixing parameter increase. Used in linear mixing.

Type: fortrandouble (A.76.1)
Default: ”1.1d0”
Use: optional
XPath: /input/groundstate/@betainc
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A.11.5 Attribute: cfdamp

Damping coefficient for characteristic function.

Type: fortrandouble (A.76.1)
Default: ”0.0d0”
Use: optional
XPath: /input/groundstate/@cfdamp

A.11.6 Attribute: chgexs

This controls the amount of charge in the unit cell beyond that required to maintain
neutrality. It can be set positive or negative depending on whether electron or hole doping
is required.

Type: fortrandouble (A.76.1)
Default: ”0.0d0”
Use: optional
XPath: /input/groundstate/@chgexs

A.11.7 Attribute: deband

Initial band energy step size The initial step length used when searching for the band
energy, which is used as the APW linearisation energy. This is done by first searching
upwards in energy until the radial wave-function at the muffin-tin radius is zero. This is
the energy at the top of the band, denoted Et. A downward search is now performed from
Et until the slope of the radial wave-function at the muffin-tin radius is zero. This energy,
Eb, is at the bottom of the band. The band energy is taken as (Et + Eb)/2. If either Et

or Eb cannot be found then the band energy is set to the default value.

Type: fortrandouble (A.76.1)
Default: ”0.0025d0”
Use: optional
Unit: Hartree
XPath: /input/groundstate/@deband

A.11.8 Attribute: dlinengyfermi

Energy difference between linearisation and Fermi energy.

Type: fortrandouble (A.76.1)
Default: ”-0.1d0”
Use: optional
Unit: Hartree
XPath: /input/groundstate/@dlinengyfermi
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A.11.9 Attribute: do

Decides if the ground state is calculated starting from scratch, using the densities from
file or if it is skipped and only its associated input parameters are read in. Also applies fo
structural optimization run.

Type: choose from:
fromscratch

fromfile

skip

Default: ”fromscratch”
Use: optional
XPath: /input/groundstate/@do

A.11.10 Attribute: epsband

Energy tolerance for search of linearisation energies.

Type: fortrandouble (A.76.1)
Default: ”1.0d-6”
Use: optional
Unit: Hartree
XPath: /input/groundstate/@epsband

A.11.11 Attribute: epschg

Maximum allowed error in the calculated total charge beyond which a warning message
will be issued.

Type: fortrandouble (A.76.1)
Default: ”1.0d-3”
Use: optional
XPath: /input/groundstate/@epschg

A.11.12 Attribute: epsengy

Energy convergence tolerance.

Type: fortrandouble (A.76.1)
Default: ”1.0d-4”
Use: optional
Unit: Hartree
XPath: /input/groundstate/@epsengy

A.11.13 Attribute: epsforce

Convergence tolerance for the forces during the SCF run.

Type: fortrandouble (A.76.1)
Default: ”5.0d-5”
Use: optional
XPath: /input/groundstate/@epsforce
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A.11.14 Attribute: epsocc

smallest occupancy for which a state will contribute to the density.

Type: fortrandouble (A.76.1)
Default: ”1.0d-8”
Use: optional
XPath: /input/groundstate/@epsocc

A.11.15 Attribute: epspot

If the RMS change in the effective potential and magnetic field is smaller than epspot

(A.11.15), then the self-consistent loop is considered converged and exited. For structural
optimization runs this results in the forces being calculated, the atomic positions updated
and the loop restarted. See also maxscl (A.11.28).

Type: fortrandouble (A.76.1)
Default: ”1.0d-6”
Use: optional
XPath: /input/groundstate/@epspot

A.11.16 Attribute: fermilinengy

If "true" the linearization energies marked as non-varying are set to the Fermi level plus
dlinengyfermi (A.11.8).

Type: boolean
Default: ”false”
Use: optional
XPath: /input/groundstate/@fermilinengy

A.11.17 Attribute: findlinentype

Select method to determine the linearisation energies.

Type: choose from:
simple

advanced

Default: ”advanced”
Use: optional
XPath: /input/groundstate/@findlinentype

A.11.18 Attribute: fracinr

Fraction of the muffin-tin radius up to which lmaxinr is used as the angular momentum
cut-off.

Type: fortrandouble (A.76.1)
Default: ”0.25d0”
Use: optional
XPath: /input/groundstate/@fracinr
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A.11.19 Attribute: frozencore

When set to "true" the frozen core approximation is applied, i.e., the core states are fixed
to the atomic states.

Type: boolean
Default: ”false”
Use: optional
XPath: /input/groundstate/@frozencore

A.11.20 Attribute: gmaxvr

Maximum length of —G— for expanding the interstitial density and potential.

Type: fortrandouble (A.76.1)
Default: ”12.0d0”
Use: optional
XPath: /input/groundstate/@gmaxvr

A.11.21 Attribute: isgkmax

Species for which the muffin-tin radius will be used for calculating gkmax.

Type: integer
Default: ”-1”
Use: optional
XPath: /input/groundstate/@isgkmax

A.11.22 Attribute: ldapu

Type of LDA+U method to be used.

Type: choose from:
none

FullyLocalisedLimit

AroundMeanField

FFL-AMF-interpolation

Default: ”none”
Use: optional
XPath: /input/groundstate/@ldapu

A.11.23 Attribute: lmaxapw

Angular momentum cut-off for the APW functions.

Type: integer
Default: ”10”
Use: optional
XPath: /input/groundstate/@lmaxapw
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A.11.24 Attribute: lmaxinr

Close to the nucleus, the density and potential is almost spherical and therefore the spher-
ical harmonic expansion can be truncated a low angular momentum. See also fracinr

(A.11.18).

Type: integer
Default: ”2”
Use: optional
XPath: /input/groundstate/@lmaxinr

A.11.25 Attribute: lmaxmat

Angular momentum cut-off for the outer-most loop in the hamiltonian and overlap matrix
setup.

Type: integer
Default: ”5”
Use: optional
XPath: /input/groundstate/@lmaxmat

A.11.26 Attribute: lmaxvr

Angular momentum cut-off for the muffin-tin density and potential.

Type: integer
Default: ”6”
Use: optional
XPath: /input/groundstate/@lmaxvr

A.11.27 Attribute: lradstep

Some muffin-tin functions (such as the density) are calculated on a coarse radial mesh and
then interpolated onto a fine mesh. This is done for the sake of efficiency. lradstp defines
the step size in going from the fine to the coarse radial mesh. If it is too large, loss of
precision may occur.

Type: integer
Default: ”4”
Use: optional
XPath: /input/groundstate/@lradstep

A.11.28 Attribute: maxscl

Upper limit for te self-consistency loop.

Type: integer
Default: ”200”
Use: optional
XPath: /input/groundstate/@maxscl
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A.11.29 Attribute: mixer

Select the mixing (relaxation) scheme for the SCF loop. One has the folloeing options:

Linear mixer ("lin")

Given the input µi and output νi vectors of the ith iteration, the next input vector to
the (i+ 1)th iteration is generated using an adaptive mixing scheme. The jth component
of the output vector is mixed with a fraction of the same component of the input vector:

µi+1
j = βijν

i
j + (1− βij)µij , (A.4)

where βij is set to β0 at initialisation and increased by scaling with βinc (> 1) if f ij ≡ νij−µij
does not change sign between loops. If f ij does change sign, then βij is scaled by βdec (> 1).
Note that the array nu serves for both input and output, and the arrays mu, beta and f

are used internally and should not be changed between calls. The routine is initialised at
the first iteration and is thread-safe so long as each thread has its own independent work
array. Complex arrays may be passed as real arrays with n doubled.

Type: choose from:
lin

msec

pulay

Default: ”msec”
Use: optional
XPath: /input/groundstate/@mixer

A.11.30 Attribute: nempty

Defines the number of eigenstates beyond that required for charge neutrality. When run-
ning metals it is not known a priori how many states will be below the Fermi energy for
each k-point. Setting nempty (A.50.2) greater than zero allows the additional states to
act as a buffer in such cases. Furthermore, magnetic calculations use the first-variational
eigenstates as a basis for setting up the second-variational Hamiltonian, and thus nempty
(A.50.2) will determine the size of this basis set. Convergence with respect to this quantity
should be checked.

Type: integer
Default: ”5”
Use: optional
XPath: /input/groundstate/@nempty

A.11.31 Attribute: ngridk

Number of k grid points along the basis vector directions.

Type: integertriple (A.76.6)
Use: required
XPath: /input/groundstate/@ngridk
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A.11.32 Attribute: nktot

Used for the automatic determination of the k-point mesh from the total number of k-
points. If nktot (A.11.32) is set, then the mesh will be determined in such a way that
the number of k-points is proportional to the length of the reciprocal lattice vector in each
direction and that the total number of k-points is less than or equal to nktot (A.11.32).

Type: integer
Default: ”0”
Use: optional
XPath: /input/groundstate/@nktot

A.11.33 Attribute: nosource

When set to "true", source fields are projected out of the exchange-correlation magnetic
field. experimental feature.

Type: boolean
Default: ”false”
Use: optional
XPath: /input/groundstate/@nosource

A.11.34 Attribute: nosym

When set to "true" no symmetries, apart from the identity, are used anywhere in the
code.

Type: boolean
Default: ”false”
Use: optional
XPath: /input/groundstate/@nosym

A.11.35 Attribute: nprad

Smallest occupancy for which a state will contribute to the density.

Type: integer
Default: ”4”
Use: optional
XPath: /input/groundstate/@nprad

A.11.36 Attribute: npsden

oOrder of polynomial for pseudo-charge density.

Type: integer
Default: ”9”
Use: optional
XPath: /input/groundstate/@npsden
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A.11.37 Attribute: nwrite

Normally, the density and potentials are written to the file STATE.OUT only after com-
pletion of the self-consistent loop. By setting nwrite to a positive integer the file will be
written during the loop every nwrite iterations.

Type: integer
Default: ”0”
Use: optional
XPath: /input/groundstate/@nwrite

A.11.38 Attribute: ptnucl

The attrubute ptnucl is "true" if the nuclei are to be treated as point charges, if "false"
the nuclei have a finite spherical distribution.

Type: boolean
Default: ”true”
Use: optional
XPath: /input/groundstate/@ptnucl

A.11.39 Attribute: radkpt

Used for the automatic determination of the k-point mesh. If autokpt (A.11.1) is set to
"true" then the mesh sizes will be determined by ni = λ/|Ai|+ 1.

Type: fortrandouble (A.76.1)
Default: ”40.0d0”
Use: optional
XPath: /input/groundstate/@radkpt

A.11.40 Attribute: reducek

If the attribute reducek (A.51.11) is "true" the k-point set is reduced with the crystal
symmetries.

Type: boolean
Default: ”true”
Use: optional
XPath: /input/groundstate/@reducek

A.11.41 Attribute: rgkmax

The parameter rgkmax (A.51.12) implicitly determines the number of basis functions and
is one of the crucial parameters for the accuracy of the calculation. It represents the
product of two quantities: RMT,Min, the smallest of all muffin-tin radii, and |G + k|max,
the maximum length for the G + k vectors. Because each G + k vector represents one
basis function, rgkmax (A.51.12) gives the number of basis functions used for solving the
Kohn-Sham equations. Typical values of rgkmax (A.51.12) are between 6 and 9. However,
for systems with very short bond-lengths, significantly smaller values may be sufficient.
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This may especially be the case for materials containing carbon, where rgkmax (A.51.12)
may be 4.5-5, or hydrogen, where even values between 3 and 4 may be sufficient. In any
case, a convergence check is indispensible for a proper choice of this parameter for your
system!

Type: fortrandouble (A.76.1)
Default: ”7.0d0”
Use: optional
XPath: /input/groundstate/@rgkmax

A.11.42 Attribute: stype

A smooth approximation to the Dirac delta function is needed to compute the occupancies
of the Kohn-Sham states. The attribute swidth (A.48.23) determines the width of the
approximate delta function.

Type: choose from:
Gaussian

Methfessel-Paxton 1

Methfessel-Paxton 2

Fermi Dirac

Square-wave impulse

Default: ”Gaussian”
Use: optional
XPath: /input/groundstate/@stype

A.11.43 Attribute: swidth

Width of the smooth approximation to the Dirac delta function (must be greater than
zero).

Type: fortrandouble (A.76.1)
Default: ”0.001d0”
Use: optional
Unit: Hartree
XPath: /input/groundstate/@swidth

A.11.44 Attribute: symmorph

When set to "true" only symmorphic space-group operations are to be considered, i.e.
only symmetries without non-primitive translations are used anywhere in the code.

Type: boolean
Default: ”false”
Use: optional
XPath: /input/groundstate/@symmorph
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A.11.45 Attribute: tevecsv

The attribute tevecsv is "true" if second-variational eigenvectors are calculated.

Type: boolean
Default: ”false”
Use: optional
XPath: /input/groundstate/@tevecsv

A.11.46 Attribute: tfibs

Because calculation of the incomplete basis set (IBS) correction to the force is fairly time-
consuming, it can be switched off by setting tfibs to "false" This correction can then be
included only when necessary, i.e. when the atoms are close to equilibrium in a structural
relaxation run.

Type: boolean
Default: ”true”
Use: optional
XPath: /input/groundstate/@tfibs

A.11.47 Attribute: tforce

Decides if the force should be calculated at the end of the self-consistent cycle.

Type: boolean
Default: ”false”
Use: optional
XPath: /input/groundstate/@tforce

A.11.48 Attribute: vkloff

The k-point offset vector in lattice coordinates.

Type: vect3d (A.76.4)
Default: ”0.0d0 0.0d0 0.0d0”
Use: optional
XPath: /input/groundstate/@vkloff

A.11.49 Attribute: xctype

Type of exchange-correlation functional to be used

• No exchange-correlation funtional ( Exc ≡ 0 )

• LDA, Perdew-Zunger/Ceperley-Alder, Phys. Rev. B 23, 5048 (1981)

• LSDA, Perdew-Wang/Ceperley-Alder, Phys. Rev. B 45, 13244 (1992)

• LDA, X-alpha approximation, J. C. Slater, Phys. Rev. 81, 385 (1951)

• LSDA, von Barth-Hedin, J. Phys. C 5, 1629 (1972)
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• GGA, Perdew-Burke-Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

• GGA, Revised PBE, Zhang-Yang, Phys. Rev. Lett. 80, 890 (1998)

• GGA, PBEsol, arXiv:0707.2088v1 (2007)

• GGA, Wu-Cohen exchange (WC06) with PBE correlation, Phys. Rev. B 73, 235116
(2006)

• GGA, Armiento-Mattsson (AM05) spin-unpolarised functional, Phys. Rev. B 72,
085108 (2005)

Type: choose from:
LDAPerdew-Zunger

LSDAPerdew-Wang

LDA-X-alpha

LSDA-Barth-Hedin

GGAPerdew-Burke-Ernzerhof

GGArevPBE

GGAPBEsol

GGA-Wu-Cohen

GGAArmiento-Mattsson

EXX

none

Default: ”LSDAPerdew-Wang”
Use: optional
XPath: /input/groundstate/@xctype

A.12 Element: spin

If the spin (A.12) element is present calculation is done with spin polarization.

Type: no content
XPath: /input/groundstate/spin

This element allows for specification of the following attributes:

bfieldc (A.12.1), fixspin (A.12.2), momfix (A.12.3), reducebf (A.12.4),
spinorb (A.12.5), spinsprl (A.12.6), taufsm (A.12.7), vqlss (A.12.8)

A.12.1 Attribute: bfieldc

Allows to apply a constant B field This is a constant magnetic field applied throughout
the entire unit cell and enters the second-variational Hamiltonian as

geα

4
~σ ·Bext, (A.5)

where ge is the electron g-factor (2.0023193043718). This field is normally used to break
spin symmetry for spin-polarised calculations and considered to be infinitesimal with no
direct contribution to the total energy. In cases where the magnetic field is finite (for exam-
ple when computing magnetic response) the external B-field energy reported in INFO.OUT
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should be added to the total by hand. This field is applied throughout the entire unit
cell. To apply magnetic fields in particular muffin-tins use the bfcmt (A.9.1) vectors in
the atom (A.9) elements. Collinear calculations are more efficient if the field is applied in
the z-direction.

Type: vect3d (A.76.4)
Default: ”0.0d0 0.0d0 0.0d0 ”
Use: optional
XPath: /input/groundstate/spin/@bfieldc

A.12.2 Attribute: fixspin

Type: choose from:
none

total FSM

localmt FSM

both

Default: ”none”
Use: optional
XPath: /input/groundstate/spin/@fixspin

A.12.3 Attribute: momfix

The desired total moment for a FSM calculation.

Type: vect3d (A.76.4)
Default: ”0.0d0 0.0d0 0.0d0”
Use: optional
XPath: /input/groundstate/spin/@momfix

A.12.4 Attribute: reducebf

After each iteration the external magnetic fields are multiplied with reducebf. This al-
lows for a large external magnetic field at the start of the self-consistent loop to break spin
symmetry, while at the end of the loop the field will be effectively zero, i.e. infinitesimal.
See bfieldc (A.12.1) and atom element.

Type: fortrandouble (A.76.1)
Default: ”1.0d0”
Use: optional
XPath: /input/groundstate/spin/@reducebf

A.12.5 Attribute: spinorb

If spinorb (A.12.5) is "true", then a σ · L term is added to the second-variational
Hamiltonian.

Type: boolean
Use: optional
XPath: /input/groundstate/spin/@spinorb
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A.12.6 Attribute: spinsprl

Set to "true" if a spin-spiral calculation is required. Experimental feature for the calcu-
lation of spin-spiral states. See vqlss (A.12.8) for details.

Type: boolean
Default: ”false”
Use: optional
XPath: /input/groundstate/spin/@spinsprl

A.12.7 Attribute: taufsm
Type: fortrandouble (A.76.1)
Default: ”0.01d0”
Use: optional
XPath: /input/groundstate/spin/@taufsm

A.12.8 Attribute: vqlss

Is the q-vector of the spin-spiral state in lattice coordinates. Spin-spirals arise from spinor
states assumed to be of the form

Ψq
k(r) =

(
Uq↑
k (r)ei(k+q/2)·r

Uq↓
k (r)ei(k−q/2)·r

)
. (A.6)

These are determined using a second-variational approach, and give rise to a magnetization
density of the form

mq(r) = (mx(r) cos(q · r),my(r) sin(q · r),mz(r)), (A.7)

where mx, my and mz are lattice periodic. See also spinsprl (A.12.6).

Type: vect3d (A.76.4)
Default: ”0.0d0 0.0d0 0.0d0”
Use: optional
XPath: /input/groundstate/spin/@vqlss

A.13 Element: solver

Optional configuration options for eigenvector solver.

Type: no content
XPath: /input/groundstate/solver

This element allows for specification of the following attributes:

epsarpack (A.13.1), evaltol (A.13.2), packedmatrixstorage (A.13.3),
type (A.13.4)
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A.13.1 Attribute: epsarpack

Tolerance parameter for the ARPACK shift invert solver

Type: fortrandouble (A.76.1)
Default: ”1.0d-8”
Use: optional
XPath: /input/groundstate/solver/@epsarpack

A.13.2 Attribute: evaltol

Error tolerance for the first-variational eigenvalues using the LAPACK Solver

Type: fortrandouble (A.76.1)
Default: ”1.0d-8”
Use: optional
Unit: Hartree
XPath: /input/groundstate/solver/@evaltol

A.13.3 Attribute: packedmatrixstorage

In the default calculation the matrix is sored in packed form. When using multi-threaded
BLAS setting this parameter to "false" increases efficiency.

Type: boolean
Default: ”true”
Use: optional
XPath: /input/groundstate/solver/@packedmatrixstorage

A.13.4 Attribute: type

Selects the eigenvalue solver for the first variational equation

Type: choose from:
Lapack

Arpack

DIIS

Default: ”Lapack”
Use: optional
XPath: /input/groundstate/solver/@type

A.14 Element: output

Specifications on the file formats for output files.

Type: no content
XPath: /input/groundstate/output

This element allows for specification of the following attributes:

state (A.14.1)
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A.14.1 Attribute: state

Selects the file format of the STATE file.

Type: choose from:
binary

XML

Default: ”binary”
Use: optional
XPath: /input/groundstate/output/@state

A.15 Element: libxc

Type: no content
XPath: /input/groundstate/libxc

This element allows for specification of the following attributes:

correlation (A.15.1), exchange (A.15.2), xc (A.15.3)
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A.15.1 Attribute: correlation

Type: choose from:
XC LDA C WIGNER

XC LDA C RPA

XC LDA C HL

XC LDA C GL

XC LDA C XALPHA

XC LDA C VWN

XC LDA C VWN RPA

XC LDA C PZ

XC LDA C PZ MOD

XC LDA C OB PZ

XC LDA C PW

XC LDA C PW MOD

XC LDA C OB PW

XC LDA C 2D AMGB

XC LDA C 2D PRM

XC LDA C vBH

XC LDA C 1D CSC

XC GGA C PBE

XC GGA C LYP

XC GGA C P86

XC GGA C PBE SOL

XC GGA C PW91

XC GGA C AM05

XC GGA C XPBE

XC GGA C LM

XC GGA C PBE JRGX

Default: ”XC GGA C PBE”
Use: optional
XPath: /input/groundstate/libxc/@correlation
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A.15.2 Attribute: exchange

Type: choose from:
XC LDA X

XC LDA X 2D

XC GGA X PBE

XC GGA X PBE R

XC GGA X B86

XC GGA X B86 R

XC GGA X B86 MGC

XC GGA X B88

XC GGA X G96

XC GGA X PW86

XC GGA X PW91

XC GGA X OPTX

XC GGA X DK87 R1

XC GGA X DK87 R2

XC GGA X LG93

XC GGA X FT97 A

XC GGA X FT97 B

XC GGA X PBE SOL

XC GGA X RPBE

XC GGA X WC

XC GGA X mPW91

XC GGA X AM05

XC GGA X PBEA

XC GGA X MPBE

XC GGA X XPBE

XC GGA X 2D B86 MGC

XC GGA X BAYESIAN

XC GGA X PBE JSJR

Default: ”XC GGA X PBE”
Use: optional
XPath: /input/groundstate/libxc/@exchange

A.15.3 Attribute: xc

Combined functionals. If set it overrides the exchange and the correlation attributes. The
hybrid functionals can be configured but are not supported. They may give nonsense
results.
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Type: choose from:
none

XC GGA XC LB

XC GGA XC HCTH 93

XC GGA XC HCTH 120

XC GGA XC HCTH 147

XC GGA XC HCTH 407

XC GGA XC EDF1

XC GGA XC XLYP

XC GGA XC B97

XC GGA XC B97 1

XC GGA XC B97 2

XC GGA XC B97 D

XC GGA XC B97 K

XC GGA XC B97 3

XC GGA XC PBE1W

XC GGA XC MPWLYP1W

XC GGA XC PBELYP1W

XC GGA XC SB98 1a

XC GGA XC SB98 1b

XC GGA XC SB98 1c

XC GGA XC SB98 2a

XC GGA XC SB98 2b

XC GGA XC SB98 2c

XC HYB GGA XC B3PW91

XC HYB GGA XC B3LYP

XC HYB GGA XC B3P86

XC HYB GGA XC O3LYP

XC HYB GGA XC mPW1K

XC HYB GGA XC PBEH

XC HYB GGA XC B97

XC HYB GGA XC B97 1

XC HYB GGA XC B97 2

XC HYB GGA XC X3LYP

XC HYB GGA XC B1WC

XC HYB GGA XC B97 K

XC HYB GGA XC B97 3

XC HYB GGA XC mPW3PW

XC HYB GGA XC B1LYP

XC HYB GGA XC B1PW91

XC HYB GGA XC mPW1PW

XC HYB GGA XC mPW3LYP

XC HYB GGA XC SB98 1a

XC HYB GGA XC SB98 1b

XC HYB GGA XC SB98 1c

XC HYB GGA XC SB98 2a

XC HYB GGA XC SB98 2b

XC HYB GGA XC SB98 2c

Default: ”none”
Use: optional
XPath: /input/groundstate/libxc/@xc
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A.16 Element: structureoptimization

The element structureoptimization (A.16) activates the optimization of atomic pos-
tions.

Type: no content
XPath: /input/structureoptimization

This element allows for specification of the following attributes:

epsforce (A.16.1), resume (A.16.2), tau0atm (A.16.3)

A.16.1 Attribute: epsforce

Convergence tolerance for the forces during a structural optimization run.

Type: fortrandouble (A.76.1)
Default: ”5.0d-5”
Use: optional
XPath: /input/structureoptimization/@epsforce

A.16.2 Attribute: resume

Resumption of a structural optimization run using the density in STATE.OUT, but with
positions from input.xml.

Type: boolean
Default: ”false”
Use: optional
XPath: /input/structureoptimization/@resume

A.16.3 Attribute: tau0atm

Parameter determining the step size for structural optimization.

In each step m of a structural optimization run, atom α is displaced according to

rm+1
α = rmα + τmα

(
Fmα + Fm−1α

)
, (A.8)

i.e., the magnitude of the displacement in step m is proportional to τmα . For the initial
step, τ0α is set to tau0atm (A.16.3). If the forces of two subsequent steps have the same
sign, τmα is increased by τ0α. Otherwise, τmα is reset to τ0α.

Type: fortrandouble (A.76.1)
Default: ”0.2d0”
Use: optional
XPath: /input/structureoptimization/@tau0atm
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A.17 Element: properties

Properties listed in this element can be calculated from the groundstate. It works also
from a saved state from a previous run.

Contains: bandstructure (A.18) (optional)
STM (A.19) (optional)
wfplot (A.20) (optional)
dos (A.21) (optional)
LSJ (A.22) (optional)
masstensor (A.23) (optional)
chargedensityplot (A.24) (optional)
exccplot (A.25) (optional)
elfplot (A.26) (optional)
mvecfield (A.27) (optional)
xcmvecfield (A.28) (optional)
electricfield (A.29) (optional)
gradmvecfield (A.30) (optional)
fermisurfaceplot (A.31) (optional)
EFG (A.32) (optional)
mossbauer (A.33) (optional)
momentummatrix (A.34) (optional)
dielectric (A.35) (optional)
moke (A.37) (optional)
expiqr (A.38) (optional)
elnes (A.39) (optional)
eliashberg (A.40) (optional)

XPath: /input/properties

A.18 Element: bandstructure

If present a banstructure is calculated.

Contains: plot1d (A.66)
XPath: /input/properties/bandstructure

This element allows for specification of the following attributes:

character (A.18.1), scissor (A.18.2)

A.18.1 Attribute: character

Band structure plot which includes angular momentum characters for every atom.

Type: boolean
Default: ”false”
Use: optional
XPath: /input/properties/bandstructure/@character
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A.18.2 Attribute: scissor

Value to shift bandgap.

Type: fortrandouble (A.76.1)
Default: ”0.0d0”
Use: optional
Unit: Hartree
XPath: /input/properties/bandstructure/@scissor

A.19 Element: STM
Contains: plot2d (A.68) (optional)
XPath: /input/properties/STM

A.20 Element: wfplot

Wavefunction plot.

Contains: kstlist (A.72) (1 times)
plot1d (A.66) (optional)
plot2d (A.68) (optional)
plot3d (A.70) (optional)

XPath: /input/properties/wfplot

A.21 Element: dos

If present a DOS calculation is started.
DOS and optics plots require integrals of the kind

g(ωi) =
Ω

(2π)3

∫
BZ

f(k)δ(ωi − e(k))dk. (A.9)

These are calculated by first interpolating the functions e(k) and f(k) with the trilinear
method on a much finer mesh whose size is determined by ngrdos (A.42.1). Then the
ω-dependent histogram of the integrand is accumulated over the fine mesh. If the output
function is noisy then either ngrdos (A.42.1) should be increased or nwdos (A.42.4)
decreased. Alternatively, the output function can be artificially smoothed up to a level
given by nsmdos (A.42.2). This is the number of successive 3-point averages to be applied
to the function g.

Type: no content
XPath: /input/properties/dos

This element allows for specification of the following attributes:

lmirep (A.21.1), ngrdos (A.21.2), nsmdos (A.21.3), nwdos (A.21.4),
scissor (A.21.5), sqados (A.21.6), winddos (A.21.7)
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A.21.1 Attribute: lmirep

When lmirep is set to "true", the spherical harmonic basis is transformed into one in which
the site symmetries are block diagonal. Band characters determined from the density
matrix expressed in this basis correspond to irreducible representations, and allow the
partial DOS to be resolved into physically relevant contributions, for example eg and t2g.

Type: boolean
Default: ”false”
Use: optional
XPath: /input/properties/dos/@lmirep

A.21.2 Attribute: ngrdos

Type: integer
Default: ”100”
Use: optional
XPath: /input/properties/dos/@ngrdos

A.21.3 Attribute: nsmdos
Type: integer
Default: ”0”
Use: optional
XPath: /input/properties/dos/@nsmdos

A.21.4 Attribute: nwdos
Type: integer
Default: ”500”
Use: optional
XPath: /input/properties/dos/@nwdos

A.21.5 Attribute: scissor
Type: fortrandouble (A.76.1)
Default: ”0.0d0”
Use: optional
Unit: Hartree
XPath: /input/properties/dos/@scissor

A.21.6 Attribute: sqados

Spin-quantization axis in Cartesian coordinates used when plotting the spin-resolved DOS
(z-axis by default).

Type: vect3d (A.76.4)
Default: ”0.0d0 0.0d0 1.0d0”
Use: optional
XPath: /input/properties/dos/@sqados
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A.21.7 Attribute: winddos

Frequency/energy window for the DOS or optics plot.

Type: vect2d (A.76.5)
Default: ”-0.5d0 0.5d0”
Use: optional
Unit: Hartree
XPath: /input/properties/dos/@winddos

A.22 Element: LSJ

Output L, S and J expectation values.

Contains: kstlist (A.72) (optional)
XPath: /input/properties/LSJ

A.23 Element: masstensor

Compute the effective mass tensor at the k-point given by vklem.

Type: no content
XPath: /input/properties/masstensor

This element allows for specification of the following attributes:

deltaem (A.23.1), ndspem (A.23.2), vklem (A.23.3)

A.23.1 Attribute: deltaem

The size of the k-vector displacement used when calculating numerical derivatives for the
effective mass tensor.

Type: fortrandouble (A.76.1)
Default: ”0.025d0”
Use: optional
XPath: /input/properties/masstensor/@deltaem

A.23.2 Attribute: ndspem

The number of k-vector displacements in each direction around vklem when computing
the numerical derivatives for the effective mass tensor.

Type: integer
Default: ”1”
Use: optional
XPath: /input/properties/masstensor/@ndspem
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A.23.3 Attribute: vklem

The k-point in lattice coordinates at which to compute the effective mass tensors.

Type: vect3d (A.76.4)
Default: ”0.0d0 0.0d0 0.0d0”
Use: optional
XPath: /input/properties/masstensor/@vklem

A.24 Element: chargedensityplot

Plot the charge density

Contains: plot1d (A.66) (optional)
plot2d (A.68) (optional)
plot3d (A.70) (optional)

XPath: /input/properties/chargedensityplot

This element allows for specification of the following attributes:

plotgradient (A.24.1)

A.24.1 Attribute: plotgradient

Calculate and plot the module of the density gradient

Type: boolean
Default: ”false”
Use: optional
XPath: /input/properties/chargedensityplot/@plotgradient

A.25 Element: exccplot

Exchange-correlation and Coulomb potential plots.

Contains: plot1d (A.66) (optional)
plot2d (A.68) (optional)
plot3d (A.70) (optional)

XPath: /input/properties/exccplot

A.26 Element: elfplot

Electron localization function (ELF).

Contains: plot1d (A.66) (optional)
plot2d (A.68) (optional)
plot3d (A.70) (optional)

XPath: /input/properties/elfplot
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A.27 Element: mvecfield

Plot of magnetization vector field.

Contains: plot2d (A.68) (optional)
plot3d (A.70) (optional)

XPath: /input/properties/mvecfield

A.28 Element: xcmvecfield

Plot of exchange-correlation magnetic vector field.

Contains: plot2d (A.68) (optional)
plot3d (A.70) (optional)

XPath: /input/properties/xcmvecfield

A.29 Element: electricfield

Writes the electric field to file.

Contains: plot2d (A.68) (optional)
plot3d (A.70) (optional)

XPath: /input/properties/electricfield

A.30 Element: gradmvecfield

Plot of he gradient of the magnetic vector field.

Contains: plot1d (A.66) (optional)
plot2d (A.68) (optional)
plot3d (A.70) (optional)

XPath: /input/properties/gradmvecfield

A.31 Element: fermisurfaceplot

Writes Fermi surface data to file.

Type: no content
XPath: /input/properties/fermisurfaceplot

This element allows for specification of the following attributes:

nstfsp (A.31.1), separate (A.31.2)
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A.31.1 Attribute: nstfsp

Number of states to be included in the Fermi surface plot file.

Type: integer
Default: ”6”
Use: optional
XPath: /input/properties/fermisurfaceplot/@nstfsp

A.31.2 Attribute: separate

Type: boolean
Default: ”false”
Use: optional
XPath: /input/properties/fermisurfaceplot/@separate

A.32 Element: EFG

Calculation of electric field gradient (EFG), contact charge.

Type: no content
XPath: /input/properties/EFG

A.33 Element: mossbauer
Type: no content
XPath: /input/properties/mossbauer

A.34 Element: momentummatrix

Matrix elements of the momentum operator (legacy version, required by dielectric-element).

Type: no content
XPath: /input/properties/momentummatrix

This element allows for specification of the following attributes:

fastpmat (A.34.1)

A.34.1 Attribute: fastpmat

apply generalised DFT correction of L. Fritsche and Y. M. Gu, Phys. Rev. B 48, 4250
(1993)

Type: boolean
Default: ”true”
Use: optional
XPath: /input/properties/momentummatrix/@fastpmat
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A.35 Element: dielectric

Linear optical response (without local field effects, legacy version).

Contains: optcomp (A.36)
XPath: /input/properties/dielectric

This element allows for specification of the following attributes:

intraband (A.35.1), scissor (A.35.2), usegdft (A.35.3)

A.35.1 Attribute: intraband

The intraband attribute is "true" if the intraband term is to be added to the optical
matrix (q=0)

Type: boolean
Default: ”false”
Use: optional
XPath: /input/properties/dielectric/@intraband

A.35.2 Attribute: scissor
Type: fortrandouble (A.76.1)
Default: ”0.0d0”
Use: optional
Unit: Hartree
XPath: /input/properties/dielectric/@scissor

A.35.3 Attribute: usegdft

apply generalised DFT correction of L. Fritsche and Y. M. Gu, Phys. Rev. B 48, 4250
(1993)

Type: boolean
Default: ”false”
Use: optional
XPath: /input/properties/dielectric/@usegdft

A.36 Element: optcomp

The components of the first- or second-order optical tensor to be calculated.

Type: integertriple (A.76.6)
Default: ”1 1 1”
XPath: /input/properties/dielectric/optcomp
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A.37 Element: moke
Type: no content
XPath: /input/properties/moke

A.38 Element: expiqr

Contains: kstlist (A.72) (optional)
XPath: /input/properties/expiqr

A.39 Element: elnes
Type: no content
XPath: /input/properties/elnes

This element allows for specification of the following attributes:

vecql (A.39.1)

A.39.1 Attribute: vecql

Gives the q-vector in lattice coordinates for calculating ELNES.

Type: vect3d (A.76.4)
Default: ”0.0d0 0.0d0 0.0d0”
Use: optional
XPath: /input/properties/elnes/@vecql

A.40 Element: eliashberg

Type: no content
XPath: /input/properties/eliashberg

This element allows for specification of the following attributes:

mustar (A.40.1)

A.40.1 Attribute: mustar

Coulomb pseudopotential, µ∗, used in the McMillan-Allen-Dynes equation.

Type: fortrandouble (A.76.1)
Default: ”0.15d0”
Use: optional
XPath: /input/properties/eliashberg/@mustar
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A.41 Element: phonons

Phonon frequencies and eigen vectors for an arbitrary q-point.

Contains: qpointset (A.74) (optional)
phonondos (A.42) (optional)
phonondispplot (A.43) (optional)
reformatdynmat (A.44) (optional)
interpolate (A.45) (optional)
parts (A.46) (optional)

XPath: /input/phonons

This element allows for specification of the following attributes:

ngridq (A.41.3) (required), deltaph (A.41.1), do (A.41.2), phonontype
(A.41.4), reduceq (A.41.5)

A.41.1 Attribute: deltaph

Phonon calculations are performed by constructing a supercell corresponding to a partic-
ular q-vector and making a small periodic displacement of the atoms. The magnitude of
this displacement is given by deltaph. This should not be made too large, as anharmonic
terms could then become significant, neither should it be too small as this can introduce
numerical error.

Type: fortrandouble (A.76.1)
Default: ”0.03d0”
Use: optional
XPath: /input/phonons/@deltaph

A.41.2 Attribute: do

Decides if the phonon calculation is skipped or recalculated or continued from file.

Type: choose from:
fromscratch

skip

Default: ”fromscratch”
Use: optional
XPath: /input/phonons/@do

A.41.3 Attribute: ngridq

Number of q grid points along the basis vector directions.

Type: integertriple (A.76.6)
Use: required
XPath: /input/phonons/@ngridq
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A.41.4 Attribute: phonontype

Decides which method (supercell or linear response) is used to perform the phonon calcu-
lation.

Type: choose from:
supercell

linearresponse

Default: ”supercell”
Use: optional
XPath: /input/phonons/@phonontype

A.41.5 Attribute: reduceq

The attribute reduceq is set to "true" if the q-point set is to be reduced with the crystal
symmetries.

Type: boolean
Default: ”true”
Use: optional
XPath: /input/phonons/@reduceq

A.42 Element: phonondos

Phonon density of states.

Type: no content
XPath: /input/phonons/phonondos

This element allows for specification of the following attributes:

ngrdos (A.42.1), nsmdos (A.42.2), ntemp (A.42.3), nwdos (A.42.4)

A.42.1 Attribute: ngrdos

Type: integer
Default: ”100”
Use: optional
XPath: /input/phonons/phonondos/@ngrdos

A.42.2 Attribute: nsmdos
Type: integer
Default: ”0”
Use: optional
XPath: /input/phonons/phonondos/@nsmdos
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A.42.3 Attribute: ntemp

Number of temperatures points for the calculation of the thermodynamical properties from
the phonon density of states.

Type: integer
Default: ”10”
Use: optional
XPath: /input/phonons/phonondos/@ntemp

A.42.4 Attribute: nwdos
Type: integer
Default: ”500”
Use: optional
XPath: /input/phonons/phonondos/@nwdos

A.43 Element: phonondispplot

Phonon dispersion plot.

Contains: plot1d (A.66)
XPath: /input/phonons/phonondispplot

A.44 Element: reformatdynmat

Reads in the dynamical matrix rows from the corresponding files and outputs them in the
DYNMAT*.OUT files, taking into account symmetrization and the accoustic sumrule.

Type: no content
XPath: /input/phonons/reformatdynmat

A.45 Element: interpolate

Interpolates the phonon frequencies on a given q-point set.

Type: no content
XPath: /input/phonons/interpolate

This element allows for specification of the following attributes:

ngridq (A.45.1) (required), vqloff (A.45.2), writeeigenvectors (A.45.3)

A.45.1 Attribute: ngridq

q-point grid for interpolation.

Type: integertriple (A.76.6)
Use: required
XPath: /input/phonons/interpolate/@ngridq
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A.45.2 Attribute: vqloff

The q-point offset vector in lattice coordinates.

Type: vect3d (A.76.4)
Default: ”0.0d0 0.0d0 0.0d0”
Use: optional
XPath: /input/phonons/interpolate/@vqloff

A.45.3 Attribute: writeeigenvectors

Set to true if the phonon eigenvectors are to be interpolated and output in addition to
the phonon frequencies.

Type: boolean
Default: ”false”
Use: optional
XPath: /input/phonons/interpolate/@writeeigenvectors

A.46 Element: parts

Contains: dopart (A.47) (zero or more)
XPath: /input/phonons/parts

A.47 Element: dopart

Type: no content
XPath: /input/phonons/parts/dopart

This element allows for specification of the following attributes:

id (A.47.1) (required)

A.47.1 Attribute: id

This attribute is used to trigger lower-level tasks and is mainly used for testing, debugging,
and the testing of new features. Do not use it unless you know what you are doing.

Type: string
Use: required
XPath: /input/phonons/parts/dopart/@id

A.48 Element: xs

If this element is present with valid configuration, the macroscopic dielectric function and
related spectroscopic quantities in the linear regime are calculated through either time-
dependent DFT (TDDFT) or the Bethe-Salpeter equation (BSE).
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Contains: tddft (A.49) (optional)
screening (A.50) (optional)
BSE (A.51) (optional)
transitions (A.52) (optional)
qpointset (A.74) (1 times)
tetra (A.59) (optional)
energywindow (A.62) (1 times)
plan (A.60) (optional)

XPath: /input/xs

This element allows for specification of the following attributes:

xstype (A.48.27) (required), broad (A.48.1), dbglev (A.48.2), dfoffdiag
(A.48.3), emattype (A.48.4), emaxdf (A.48.5), epsdfde (A.48.6), fastemat
(A.48.7), fastpmat (A.48.8), gqmax (A.48.9), gqmaxtype (A.48.10), lmaxapw
(A.48.11), lmaxapwwf (A.48.12), lmaxemat (A.48.13), lmaxmat (A.48.14),
nempty (A.48.15), ngridk (A.48.16), ngridq (A.48.17), nosym (A.48.18),
reducek (A.48.19), reduceq (A.48.20), rgkmax (A.48.21), scissor (A.48.22),
swidth (A.48.23), tappinfo (A.48.24), tevout (A.48.25), vkloff (A.48.26)

A.48.1 Attribute: broad

Lorentzian broadening for all spectra

Type: fortrandouble (A.76.1)
Default: ”0.01d0”
Use: optional
Unit: Hartree
XPath: /input/xs/@broad

A.48.2 Attribute: dbglev

Debugging level. Any value > 0 will produce additional debug output. The large the
value, the more information is output.

Type: integer
Default: ”0”
Use: optional
XPath: /input/xs/@dbglev

A.48.3 Attribute: dfoffdiag

"true" if also off-diagonal tensor elements for the interacting response function are to be
calculated.

Type: boolean
Default: ”false”
Use: optional
XPath: /input/xs/@dfoffdiag
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A.48.4 Attribute: emattype

Type of matrix element generation (band-combinations). Should only be referenced for
experimental features.

Type: integer
Default: ”1”
Use: optional
XPath: /input/xs/@emattype

A.48.5 Attribute: emaxdf

Energy cutoff for the unoccupied states in the Kohn-Sham response function and screening.
This parameter ensures a cutoff at the specified energy and is defined in addition to the
nempty (A.50.2) parameter.

Type: fortrandouble (A.76.1)
Default: ”1.0d10”
Use: optional
XPath: /input/xs/@emaxdf

A.48.6 Attribute: epsdfde

The smallest energy difference for which the square of its inverse will be considered in the
Kohn-Sham response function.

Type: fortrandouble (A.76.1)
Default: ”1.0d-8”
Use: optional
Unit: Hartree
XPath: /input/xs/@epsdfde

A.48.7 Attribute: fastemat

If set to "true", a fast method to calculate APW-lo, lo-APW and lo-lo parts of the
q-dependent matrix elements in the muffin-tin is used.

Type: boolean
Default: ”true”
Use: optional
XPath: /input/xs/@fastemat

A.48.8 Attribute: fastpmat

If set to "true", a fast method to calculate APW-lo, lo-APW and lo-lo parts of the
momentum matrix elements in the muffin-tin is used.

Type: boolean
Default: ”true”
Use: optional
XPath: /input/xs/@fastpmat
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A.48.9 Attribute: gqmax

|G + q| cutoff for Kohn-Sham response function, screening and for expansion of Coulomb
potential

Type: fortrandouble (A.76.1)
Default: ”0.0d0”
Use: optional
XPath: /input/xs/@gqmax

A.48.10 Attribute: gqmaxtype

Defines the way the gqmax cutoff is applied for the selection of the G-vectors. For ”|G+q|”
G vectors are selected such that G + q lies within the gqmax (A.48.9) cutoff. For ”|G|”
G vectors are selected such that G lies within the gqmax cutoff.

Type: choose from:
|G+q|

|G|

Default: ”|G+q|”
Use: optional
XPath: /input/xs/@gqmaxtype

A.48.11 Attribute: lmaxapw

Angular momentum cut-off for the APW functions.

Type: integer
Default: ”10”
Use: optional
XPath: /input/xs/@lmaxapw

A.48.12 Attribute: lmaxapwwf

Maximum angular momentum for APW functions for q-dependent matrix elements.

Type: integer
Default: ”-1”
Use: optional
XPath: /input/xs/@lmaxapwwf

A.48.13 Attribute: lmaxemat

Maximum angular momentum for Rayleigh expansion of q-dependent plane wave factor.

Type: integer
Default: ”3”
Use: optional
XPath: /input/xs/@lmaxemat
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A.48.14 Attribute: lmaxmat

Angular momentum cut-off for the outer-most loop in the hamiltonian and overlap matrix
setup.

Type: integer
Default: ”5”
Use: optional
XPath: /input/xs/@lmaxmat

A.48.15 Attribute: nempty

Number of empty states. This parameter determines the energy cutoff for the excitation
spectra. For determining the number of states related to an energy cutoff, perform one
iteration of a SCF calculation, setting nempty (A.50.2) to a higher value and check the
EIGVAL.OUT.

Type: integer
Default: ”5”
Use: optional
XPath: /input/xs/@nempty

A.48.16 Attribute: ngridk

k-point grid sizes.

Type: integertriple (A.76.6)
Default: ”1 1 1”
Use: optional
XPath: /input/xs/@ngridk

A.48.17 Attribute: ngridq

q-point grid sizes.

Type: integertriple (A.76.6)
Default: ”1 1 1”
Use: optional
XPath: /input/xs/@ngridq

A.48.18 Attribute: nosym

nosym (A.51.8) is "true" if no symmetry information should be used

Type: boolean
Default: ”false”
Use: optional
XPath: /input/xs/@nosym
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A.48.19 Attribute: reducek

reducek (A.51.11) is "true" if k-points are to be reduced (with crystal symmetries).

Type: boolean
Default: ”false”
Use: optional
XPath: /input/xs/@reducek

A.48.20 Attribute: reduceq

reducek (A.51.11) is "true" if q-points are to be reduced (with crystal symmetries).

Type: boolean
Default: ”true”
Use: optional
XPath: /input/xs/@reduceq

A.48.21 Attribute: rgkmax

Smallest muffin-tin radius times gkmax.

Type: fortrandouble (A.76.1)
Default: ”7.0d0”
Use: optional
XPath: /input/xs/@rgkmax

A.48.22 Attribute: scissor

Scissors correction to correct the conduction band energies.

Type: fortrandouble (A.76.1)
Default: ”0.0d0”
Use: optional
Unit: Hartree
XPath: /input/xs/@scissor

A.48.23 Attribute: swidth

Width of the smooth approximation to the Dirac delta function (must be ¿ 0).

Type: fortrandouble (A.76.1)
Default: ”0.001d0”
Use: optional
Unit: Hartree
XPath: /input/xs/@swidth
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A.48.24 Attribute: tappinfo

"true" to append info to output file.

Type: boolean
Default: ”false”
Use: optional
XPath: /input/xs/@tappinfo

A.48.25 Attribute: tevout

"true" if energy outputs are in eV.

Type: boolean
Default: ”false”
Use: optional
XPath: /input/xs/@tevout

A.48.26 Attribute: vkloff

The k-point set offset. All k-points of a regular k-mesh (a mesh containing the Gamma
point) are shifted by a constant vector given by (vkloff1/N1, vkloff2/N2, vkloff3/N3), where
(N1, N2, N3) is the division of the k-point mesh. It should be selected such that all sym-
metries among the k-points from the regular (non-shifted) mesh are broken. An exception
is the case of optical spectra without local field effects where symmetries among k-points
are explicitly taken into account.

Type: vect3d (A.76.4)
Default: ”0.0d0 0.0d0 0.0d0 ”
Use: optional
XPath: /input/xs/@vkloff

A.48.27 Attribute: xstype

Should TDDFT be used or BSE.

Type: choose from:
TDDFT

BSE

Use: required
XPath: /input/xs/@xstype

A.49 Element: tddft
Type: no content
XPath: /input/xs/tddft

This element allows for specification of the following attributes:
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acont (A.49.1), alphalrc (A.49.2), alphalrcdyn (A.49.3), aresdf

(A.49.4), aresfxc (A.49.5), betalrcdyn (A.49.6), do (A.49.7), fxcbsesplit
(A.49.8), fxctype (A.49.9), intraband (A.49.10), kerndiag (A.49.11),
lindhard (A.49.12), lmaxalda (A.49.13), mdfqtype (A.49.14), nwacont
(A.49.15), torddf (A.49.16), tordfxc (A.49.17)

A.49.1 Attribute: acont

Set to "true" if analytic continuation from the imaginary axis to the real axis is to be
performed.

Type: boolean
Default: ”false”
Use: optional
XPath: /input/xs/tddft/@acont

A.49.2 Attribute: alphalrc

α-parameter for the static long range contribution (LRC) model xc kernel.

Type: fortrandouble (A.76.1)
Default: ”0.0d0”
Use: optional
XPath: /input/xs/tddft/@alphalrc

A.49.3 Attribute: alphalrcdyn

α-parameter for the dynamical long range contribution (LRC) model xc kernel.

Type: fortrandouble (A.76.1)
Default: ”0.0d0”
Use: optional
XPath: /input/xs/tddft/@alphalrcdyn

A.49.4 Attribute: aresdf

Set to "true" if to consider the anti-resonant part for the dielectric function.

Type: boolean
Default: ”true”
Use: optional
XPath: /input/xs/tddft/@aresdf

A.49.5 Attribute: aresfxc

Set to "true" if to consider the anti-resonant part for the MBPT derived xc-kernels.

Type: boolean
Default: ”true”
Use: optional
XPath: /input/xs/tddft/@aresfxc
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A.49.6 Attribute: betalrcdyn

β-parameter for the dynamical long range contribution (LRC) model xc kernel.

Type: fortrandouble (A.76.1)
Use: optional
XPath: /input/xs/tddft/@betalrcdyn

A.49.7 Attribute: do

Decides if the TDDFT calculation is to be resumed starting from a new xc kernel or is to
be skipped.

Type: choose from:
fromscratch

fromkernel

Default: ”fromscratch”
Use: optional
XPath: /input/xs/tddft/@do

A.49.8 Attribute: fxcbsesplit

Split parameter for degeneracy in energy differences of MBPT derived xc kernels. See A.
Marini, Phys. Rev. Lett., 91, (2003) 256402.

Type: fortrandouble (A.76.1)
Default: ”1.0d-5”
Use: optional
Unit: Hartree
XPath: /input/xs/tddft/@fxcbsesplit

A.49.9 Attribute: fxctype

Defines which xc kernel is to be used.

Type: choose from:
RPA

LRCstatic NLF

LRCstatic

LRCdyn NLF

LRCdyn

ALDA

MB1 NLF

MB1

Default: ”RPA”
Use: optional
XPath: /input/xs/tddft/@fxctype
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A.49.10 Attribute: intraband

The intraband attribute is "true" if the intraband term is to be added to the optical
matrix (q=0).

Type: boolean
Default: ”false”
Use: optional
XPath: /input/xs/tddft/@intraband

A.49.11 Attribute: kerndiag

Set to "true" if only diagonal part of xc-kernel is to be used.

Type: boolean
Default: ”false”
Use: optional
XPath: /input/xs/tddft/@kerndiag

A.49.12 Attribute: lindhard

Set to "true" if Lindhard-like function is to be calculated.

Type: boolean
Default: ”false”
Use: optional
XPath: /input/xs/tddft/@lindhard

A.49.13 Attribute: lmaxalda

Angular momentum cutoff for Rayleigh expansion of exponential factor for ALDA-kernel.

Type: integer
Default: ”3”
Use: optional
XPath: /input/xs/tddft/@lmaxalda

A.49.14 Attribute: mdfqtype

Treatment of macroscopic dielectric function for Q-point outside of Brillouin zone. A value
of 0 uses the full Q and the (0,0) component of the microscopic dielectric matrix is used.
A value of 1 invokes a decomposition Q = q + Gq and the (Qq,Qq) component of the
microscopic dielectric matrix is used.

Type: integer
Default: ”0”
Use: optional
XPath: /input/xs/tddft/@mdfqtype
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A.49.15 Attribute: nwacont

Number of energy intervals (on imaginary axis) for analytic continuation.

Type: integer
Default: ”0”
Use: optional
XPath: /input/xs/tddft/@nwacont

A.49.16 Attribute: torddf

Set to "true" if to consider the time-ordered version of the dielectric function.

Type: boolean
Default: ”false”
Use: optional
XPath: /input/xs/tddft/@torddf

A.49.17 Attribute: tordfxc

Set to "true" if to consider the time-ordered version of xc kernel (MBPT derived kernels
only).

Type: boolean
Default: ”false”
Use: optional
XPath: /input/xs/tddft/@tordfxc

A.50 Element: screening

Type: no content
XPath: /input/xs/screening

This element allows for specification of the following attributes:

do (A.50.1), nempty (A.50.2), ngridk (A.50.3), nosym (A.50.4), reducek
(A.50.5), rgkmax (A.50.6), screentype (A.50.7), vkloff (A.50.8)

A.50.1 Attribute: do

Decides if the calculation of the screening is done from scratch or is to be skipped.

Type: choose from:
fromscratch

skip

Default: ”fromscratch”
Use: optional
XPath: /input/xs/screening/@do
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A.50.2 Attribute: nempty

Number of empty states.

Type: integer
Default: ”0”
Use: optional
XPath: /input/xs/screening/@nempty

A.50.3 Attribute: ngridk

k-point grid sizes for screening.

Type: integertriple (A.76.6)
Default: ”0 0 0”
Use: optional
XPath: /input/xs/screening/@ngridk

A.50.4 Attribute: nosym

nosym (A.51.8) is "true" if no symmetry information should be used for screening.

Type: boolean
Default: ”false”
Use: optional
XPath: /input/xs/screening/@nosym

A.50.5 Attribute: reducek

reducek (A.51.11) is "true" if k-points are to be reduced with crystal symmetries for
screening.

Type: boolean
Default: ”false”
Use: optional
XPath: /input/xs/screening/@reducek

A.50.6 Attribute: rgkmax

The smallest muffin-tin radius times gkmax for screening.

Type: fortrandouble (A.76.1)
Default: ”0.0d0”
Use: optional
XPath: /input/xs/screening/@rgkmax
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A.50.7 Attribute: screentype

Defines which type of screening is to be used.

Type: choose from:
full

diag

noinvdiag

longrange

Default: ”full”
Use: optional
XPath: /input/xs/screening/@screentype

A.50.8 Attribute: vkloff

k-point offset for screening.

Type: vect3d (A.76.4)
Default: ”-1.0d0 -1.0d0 -1.0d0”
Use: optional
XPath: /input/xs/screening/@vkloff

A.51 Element: BSE
Type: no content
XPath: /input/xs/BSE

This element allows for specification of the following attributes:

aresbse (A.51.1), bsedirsing (A.51.2), bsetype (A.51.3), fbzq (A.51.4),
lmaxdielt (A.51.5), nexcitmax (A.51.6), nleblaik (A.51.7), nosym (A.51.8),
nstlbse (A.51.9), nstlbsemat (A.51.10), reducek (A.51.11), rgkmax (A.51.12),
sciavbd (A.51.13), sciavqbd (A.51.14), sciavqhd (A.51.15), sciavqwg
(A.51.16), sciavtype (A.51.17), scrherm (A.51.18), vkloff (A.51.19)

A.51.1 Attribute: aresbse

Is set to "true" if to consider the anti-resonant part for the BSE spectrum.

Type: boolean
Default: ”true”
Use: optional
XPath: /input/xs/BSE/@aresbse

A.51.2 Attribute: bsedirsing

"true" if effective singular part of direct term of BSE Hamiltonian is to be used.

Type: boolean
Default: ”false”
Use: optional
XPath: /input/xs/BSE/@bsedirsing
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A.51.3 Attribute: bsetype

Defines which parts of the BSE Hamiltonian are to be considered.

Type: choose from:
IP

RPA

singlet

triplet

Default: ”singlet”
Use: optional
XPath: /input/xs/BSE/@bsetype

A.51.4 Attribute: fbzq

Set to "true" if q-point set is to be taken from the first Brillouin zone.

Type: boolean
Default: ”false”
Use: optional
XPath: /input/xs/BSE/@fbzq

A.51.5 Attribute: lmaxdielt

Angular momentum cutoff of the spherical harmonics expansion of the dielectric matrix.

Type: integer
Default: ”14”
Use: optional
XPath: /input/xs/BSE/@lmaxdielt

A.51.6 Attribute: nexcitmax

Maximum number of excitons to be considered in a BSE calculation.

Type: integer
Default: ”100”
Use: optional
XPath: /input/xs/BSE/@nexcitmax

A.51.7 Attribute: nleblaik

Number of points used for the Lebedev-Laikov grids must be selected according to V.I.
Lebedev, and D.N. Laikov, Doklady Mathematics, 59 (1999) 477.

Type: integer
Default: ”5810”
Use: optional
XPath: /input/xs/BSE/@nleblaik
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A.51.8 Attribute: nosym

Set to "true" if no symmetry information should be used for BSE.

Type: boolean
Default: ”false”
Use: optional
XPath: /input/xs/BSE/@nosym

A.51.9 Attribute: nstlbse

Range of bands included for the BSE calculation. The first pair of numbers corresponds to
the band index for local orbitals and valence states (counted from the lowest eigenenergy),
the second pair corresponds to the band index of the conduction states (counted from the
Fermi level).

Type: integerquadrupel (A.76.7)
Default: ”0 0 0 0”
Use: optional
XPath: /input/xs/BSE/@nstlbse

A.51.10 Attribute: nstlbsemat

Range of bands for calculating the screening and matrix elements needed for solving the
BSE. The first pair of numbers corresponds to the band index for local orbitals and valence
states (counted from the lowest eigenenergy), the second pair corresponds to the band
index of the conduction states (counted from the Fermi level).

Type: integerquadrupel (A.76.7)
Default: ”0 0 0 0”
Use: optional
XPath: /input/xs/BSE/@nstlbsemat

A.51.11 Attribute: reducek

reducek (A.51.11) is "true" if k-points are to be reduced with crystal symmetries for
BSE.

Type: boolean
Default: ”false”
Use: optional
XPath: /input/xs/BSE/@reducek

A.51.12 Attribute: rgkmax

Smallest muffin-tin radius times gkmax.

Type: fortrandouble (A.76.1)
Default: ”0.0d0”
Use: optional
XPath: /input/xs/BSE/@rgkmax
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A.51.13 Attribute: sciavbd

"true" if the body of the screened Coulomb interaction is to be averaged (q=0).

Type: boolean
Default: ”false”
Use: optional
XPath: /input/xs/BSE/@sciavbd

A.51.14 Attribute: sciavqbd

"true" if the body of the screened Coulomb interaction is to be averaged (q!=0).

Type: boolean
Default: ”false”
Use: optional
XPath: /input/xs/BSE/@sciavqbd

A.51.15 Attribute: sciavqhd

"true" if the head of the screened Coulomb interaction is to be averaged (q!=0).

Type: boolean
Default: ”false”
Use: optional
XPath: /input/xs/BSE/@sciavqhd

A.51.16 Attribute: sciavqwg

"true" if the wings of the screened Coulomb interaction are to be averaged (q!=0).

Type: boolean
Default: ”false”
Use: optional
XPath: /input/xs/BSE/@sciavqwg

A.51.17 Attribute: sciavtype

Defines how the screened Coulomb interaction matrix is to be averaged (important for the
singular terms).

Type: choose from:
spherical

screendiag

invscreendiag

Default: ”spherical”
Use: optional
XPath: /input/xs/BSE/@sciavtype
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A.51.18 Attribute: scrherm

Method of how an almost Hermitian matrix is inverted. A value of 0: invert full matrix
(matrix is allowed to be not strictly Hermitian); a value of 1: take the Hermitian average
for inversion; a value of 2: assume Hermitian and use the upper triangle; a value of 3:
assume Hermitian and use the lower triangle.

Type: integer
Default: ”0”
Use: optional
XPath: /input/xs/BSE/@scrherm

A.51.19 Attribute: vkloff

k-point offset for BSE.

Type: vect3d (A.76.4)
Default: ”-1.0d0 -1.0d0 -1.0d0”
Use: optional
XPath: /input/xs/BSE/@vkloff

A.52 Element: transitions

Describe transitions between Kohn-Sham states for the calculation of the Kohn-Sham
response function (and screening) here. Individual transitions as well as a range (or a list)
of initial and final states can be defined.

Contains: individual (A.53) (optional)
ranges (A.55) (optional)
lists (A.57) (optional)

XPath: /input/xs/transitions

A.53 Element: individual

A list of individual transitions consisting of an initial state a final state and a k-point is
given here. If the list is empty, no transitions are considered.

Contains: trans (A.54) (zero or more)
XPath: /input/xs/transitions/individual

A.54 Element: trans

An individual transition consisting of an initial state a final state and a k-point is given
here. Values of zero correspond to the inclusion of all initial and final states and all k-
points and can be used as ”wildcards” (default). Therefore, an empty element amounts
to include all transitions.

Type: no content
XPath: /input/xs/transitions/individual/trans
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This element allows for specification of the following attributes:

action (A.54.1), final (A.54.2), initial (A.54.3), kpointnumber

(A.54.4)

A.54.1 Attribute: action

Select to include or exclude states. If a state is included as well as excluded several times
the last definition (in the sequence of individual transitions) counts.

Type: choose from:
include

exclude

Default: ”include”
Use: optional
XPath: /input/xs/transitions/individual/trans/@action

A.54.2 Attribute: final

Final state of individual transition. A value of zero (default) means to include all states.

Type: integer
Default: ”0”
Use: optional
XPath: /input/xs/transitions/individual/trans/@final

A.54.3 Attribute: initial

Initial state of individual transition. A value of zero (default) means to include all states.

Type: integer
Default: ”0”
Use: optional
XPath: /input/xs/transitions/individual/trans/@initial

A.54.4 Attribute: kpointnumber

Number of k-points to be considered. A value of zero (default) means to include all
k-points.

Type: integer
Default: ”0”
Use: optional
XPath: /input/xs/transitions/individual/trans/@kpointnumber

A.55 Element: ranges

A list of ranges of transitions (initial state as well as final state ranges) and a k-point are
given here. An empty list amounts to no transitions at all.

Contains: range (A.56) (zero or more)
XPath: /input/xs/transitions/ranges
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A.56 Element: range

A range of transitions (for initial as well as final states) is given here. A range consists of
a ”start” and a ”stop” values as well as a k-point. Values of zero correspond to starting
at the first state and stopping at the last state and considering all k-points. They can
be used as ”wildcards” (default). Therefore, an empty element corresponds to the full
initial/final state range for all k-points.

Type: no content
XPath: /input/xs/transitions/ranges/range

This element allows for specification of the following attributes:

statestype (A.56.4) (required), action (A.56.1), kpointnumber (A.56.2),
start (A.56.3), stop (A.56.5)

A.56.1 Attribute: action

Select to include or exclude states. If a state is included as well as excluded several times
the last definition (in the sequence of individual transitions) counts.

Type: choose from:
include

exclude

Default: ”include”
Use: optional
XPath: /input/xs/transitions/ranges/range/@action

A.56.2 Attribute: kpointnumber

Number of k-point to be considered. A value of zero (default) means to include all k-point.

Type: integer
Default: ”0”
Use: optional
XPath: /input/xs/transitions/ranges/range/@kpointnumber

A.56.3 Attribute: start

Start value (first state) for range. A value of zero (default) means to start from the first
state.

Type: integer
Default: ”0”
Use: optional
XPath: /input/xs/transitions/ranges/range/@start
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A.56.4 Attribute: statestype

Select for initial or final state range.

Type: choose from:
initialstates

finalstates

Use: required
XPath: /input/xs/transitions/ranges/range/@statestype

A.56.5 Attribute: stop

Stop value (last state) for range. A value of zero (default) means to stop at the last state
(no upper limit).

Type: integer
Default: ”0”
Use: optional
XPath: /input/xs/transitions/ranges/range/@stop

A.57 Element: lists

A list of initial and final state entries to be considered for transitions. An empty list
amounts to no transitions at all.

Contains: istate (A.58) (zero or more)
XPath: /input/xs/transitions/lists

A.58 Element: istate

An initial or final state and corresponding k-point is given here. Values of zero correspond
to considering all initial/final states for all k-points. They can be used as ”wildcards”
(default). Therefore, an empty element corresponds to the full initial/final state set for
all k-points.

Type: no content
XPath: /input/xs/transitions/lists/istate

This element allows for specification of the following attributes:

statestype (A.58.4) (required), action (A.58.1), kpointnumber (A.58.2),
state (A.58.3)
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A.58.1 Attribute: action

Select to include or exclude states. If a state is included as well as excluded several times
the last definition (in the sequence of individual transitions) counts.

Type: choose from:
include

exclude

Default: ”include”
Use: optional
XPath: /input/xs/transitions/lists/istate/@action

A.58.2 Attribute: kpointnumber

Number of k-point to be consider. A value of zero (default) means to include all k-point.

Type: integer
Default: ”0”
Use: optional
XPath: /input/xs/transitions/lists/istate/@kpointnumber

A.58.3 Attribute: state

The state to be considered. A value of zero (default) means to include all states.

Type: integer
Default: ”0”
Use: optional
XPath: /input/xs/transitions/lists/istate/@state

A.58.4 Attribute: statestype

Select for initial or final state list.

Type: choose from:
initialstates

finalstates

Use: required
XPath: /input/xs/transitions/lists/istate/@statestype

A.59 Element: tetra
Type: no content
XPath: /input/xs/tetra

This element allows for specification of the following attributes:

cw1k (A.59.1), kordexc (A.59.2), qweights (A.59.3), tetradf (A.59.4),
tetraocc (A.59.5)
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A.59.1 Attribute: cw1k

Type: boolean
Default: ”false”
Use: optional
XPath: /input/xs/tetra/@cw1k

A.59.2 Attribute: kordexc

Type: boolean
Default: ”false”
Use: optional
XPath: /input/xs/tetra/@kordexc

A.59.3 Attribute: qweights

Choice of weights and nodes for the tetrahedron method and non-zero Q-point.

Type: integer
Default: ”1”
Use: optional
XPath: /input/xs/tetra/@qweights

A.59.4 Attribute: tetradf

"true" if tetrahedron method is used for the k-space integration in the Kohn-Sham re-
sponse function.

Type: boolean
Default: ”false”
Use: optional
XPath: /input/xs/tetra/@tetradf

A.59.5 Attribute: tetraocc

Type: boolean
Default: ”false”
Use: optional
XPath: /input/xs/tetra/@tetraocc

A.60 Element: plan

Contains: doonly (A.61) (zero or more)
XPath: /input/xs/plan
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A.61 Element: doonly

Type: no content
XPath: /input/xs/plan/doonly

This element allows for specification of the following attributes:

task (A.61.1) (required)

A.61.1 Attribute: task
Type: choose from:

xsgeneigvec

tetcalccw

writepmatxs

writeemat

df

df2

idf

scrgeneigvec

scrtetcalccw

scrwritepmat

screen

scrcoulint

exccoulint

bse

kernxc bse

writebandgapgrid

writepmat

dielectric

writepmatasc

pmatxs2orig

writeematasc

writepwmat

emattest

x0toasc

x0tobin

fxc alda check

kernxc bse3

testxs

xsestimate

xstiming

testmain

portstate(1)

portstate(2)

portstate(-1)

portstate(-2)

Use: required
XPath: /input/xs/plan/doonly/@task
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A.62 Element: energywindow

Type: no content
XPath: /input/xs/energywindow

This element allows for specification of the following attributes:

intv (A.62.1), points (A.62.2)

A.62.1 Attribute: intv

energy interval lower and upper limits.

Type: vect2d (A.76.5)
Default: ”-0.5d0 0.5d0”
Use: optional
XPath: /input/xs/energywindow/@intv

A.62.2 Attribute: points

number of points to be sampled linearly inside the energy interval including the lower
limit.

Type: integer
Default: ”500”
Use: optional
XPath: /input/xs/energywindow/@points

A.63 Reused Elements

The following elements can occur more than once in the input file. There for they are
listed separately.

A.64 Element: origin

Type: no content
XPath: /origin

Parent: /plot2d/parallelogram

/plot3d/box

This element allows for specification of the following attributes:

coord (A.64.1)

A.64.1 Attribute: coord
Type: vect3d (A.76.4)
Use: optional
XPath: /origin/@coord
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A.65 Element: point

Type: no content
XPath: /point

Parent: /plot1d/path

/plot2d/parallelogram

/plot3d/box

This element allows for specification of the following attributes:

coord (A.65.1) (required), label (A.65.2)

A.65.1 Attribute: coord
Type: vect3d (A.76.4)
Use: required
XPath: /point/@coord

A.65.2 Attribute: label
Type: string
Default: ””
Use: optional
XPath: /point/@label

A.66 Element: plot1d

The element plot1d specifies sample points along a path. The coordinate space (lattice or
cartesian)is chosen in the context of the parent.

Contains: path (A.67) (1 times)
XPath: /plot1d

Parent: /input/phonons/phonondispplot

/input/properties/bandstructure

/input/properties/wfplot

/input/properties/chargedensityplot

/input/properties/exccplot

/input/properties/elfplot

/input/properties/gradmvecfield

A.67 Element: path

Contains: point (A.65) (2 times or more)
XPath: /plot1d/path

This element allows for specification of the following attributes:

steps (A.67.2) (required), outfileprefix (A.67.1)

180



A.67.1 Attribute: outfileprefix

Type: string
Use: optional
XPath: /plot1d/path/@outfileprefix

A.67.2 Attribute: steps

Type: integer
Use: required
XPath: /plot1d/path/@steps

A.68 Element: plot2d

Defines a 2d plot domain.

Contains: parallelogram (A.69) (1 times)
XPath: /plot2d

Parent: /input/properties/STM

/input/properties/wfplot

/input/properties/chargedensityplot

/input/properties/exccplot

/input/properties/elfplot

/input/properties/mvecfield

/input/properties/xcmvecfield

/input/properties/electricfield

/input/properties/gradmvecfield

A.69 Element: parallelogram

Contains: origin (A.64) (1 times)
point (A.65) (2 times)

XPath: /plot2d/parallelogram

This element allows for specification of the following attributes:

grid (A.69.1) (required), outfileprefix (A.69.2)

A.69.1 Attribute: grid

Type: integerpair (A.76.8)
Use: required
XPath: /plot2d/parallelogram/@grid

A.69.2 Attribute: outfileprefix

Type: string
Use: optional
XPath: /plot2d/parallelogram/@outfileprefix
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A.70 Element: plot3d

Defines a 3d plot domain.

Contains: box (A.71) (1 times)
XPath: /plot3d

Parent: /input/properties/wfplot

/input/properties/chargedensityplot

/input/properties/exccplot

/input/properties/elfplot

/input/properties/mvecfield

/input/properties/xcmvecfield

/input/properties/electricfield

/input/properties/gradmvecfield

A.71 Element: box
Contains: origin (A.64) (1 times)

point (A.65) (3 times)
XPath: /plot3d/box

This element allows for specification of the following attributes:

grid (A.71.1) (required), outfileprefix (A.71.2)

A.71.1 Attribute: grid

Type: integertriple (A.76.6)
Use: required
XPath: /plot3d/box/@grid

A.71.2 Attribute: outfileprefix

Type: string
Use: optional
XPath: /plot3d/box/@outfileprefix

A.72 Element: kstlist

The kstlist element is used in the LSJ and wavefunction plot element This is a user-defined
list of k-point and state index pairs which are those used for plotting wavefunctions and
writing L, S and J expectation values.

Contains: pointstatepair (A.73) (1 times or more)
XPath: /kstlist

Parent: /input/properties/wfplot

/input/properties/LSJ

/input/properties/expiqr

182



A.73 Element: pointstatepair

The element pointstatepair defines a k-point and state index pair.

Type: integerpair (A.76.8)
XPath: /kstlist/pointstatepair

A.74 Element: qpointset

Contains: qpoint (A.75) (1 times or more)
XPath: /qpointset

Parent: /input/phonons

/input/xs

A.75 Element: qpoint

a q-point is given in reciprocal space coordinates

Type: vect3d (A.76.4)
XPath: /qpointset/qpoint

A.76 Data Types

The Input definition uses derived data types. These are described here.

A.76.1 Type fortrandouble

The type fortrandouble allows to use the letters "eEdDqQ" for exponent operators. This
alters in what precision the number is parsed.

A.76.2 Type vector

A vector is a space separated list of floating point numbers.
Example: "1.3 2.3e4 3 90"

A.76.3 Type integerlist

List of space separated integers.

A.76.4 Type vect3d

Three dimensional vector as three space separated floating point numbers.

A.76.5 Type vect2d

Three dimensional vector as three space separated floating point numbers.
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A.76.6 Type integertriple

Space separated list of three integers.
Example: "1 2 3"

A.76.7 Type integerquadrupel

Space separated list of three integers.
Example: "1 2 3 4"

A.76.8 Type integerpair

Space separated list of two integers
Example: "1 2"
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Appendix B

Species file format reference

exciting developers team
(C. Ambrosch-Draxl, Zohreh Basirat, Thomas Dengg,
Rostam Golesorkhtabar, Christian Meisenbichler, Dmitrii Nabok,
Weine Olovsson, Pasquale Pavone, Stephan Sagmeister, Jürgen Spitaler)

About this Document

This document describes the file format for the species definitions.

B.1 Input Elements

B.2 Element: spdb

Species-database element contains the species element sp (B.3)

Contains: sp (B.3)
XPath: /spdb

B.3 Element: sp

A species is an atom type definition containing all information to construct the basis
functions.

Contains: muffinTin (B.4) (1 times)
atomicState (B.5) (1 times or more)
basis (B.6) (1 times)
lorb (B.8) (zero or more)

XPath: /spdb/sp

This element allows for specification of the following attributes:

chemicalSymbol (B.3.1) (required), mass (B.3.2) (required), z (B.3.4) (re-
quired), name (B.3.3)
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B.3.1 Attribute: chemicalSymbol

Chemical Symbol.

Type: ID
Use: required
XPath: /spdb/sp/@chemicalSymbol

B.3.2 Attribute: mass

Mass in me.

Type: fortrandouble (B.11.1)
Use: required
XPath: /spdb/sp/@mass

B.3.3 Attribute: name

Optional element name.

Type: string
Use: optional
XPath: /spdb/sp/@name

B.3.4 Attribute: z

Atomic number.

Type: fortrandouble (B.11.1)
Use: required
XPath: /spdb/sp/@z

B.4 Element: muffinTin

This element gives the size of the muffin tin radius and the resolution of the radial func-
tions.

Type: no content
XPath: /spdb/sp/muffinTin

This element allows for specification of the following attributes:

radialmeshPoints (B.4.1) (required), radius (B.4.2) (required), rinf
(B.4.3) (required), rmin (B.4.4) (required)

B.4.1 Attribute: radialmeshPoints

Number of data points for radial atomic functions.

Type: integer
Use: required
XPath: /spdb/sp/muffinTin/@radialmeshPoints
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B.4.2 Attribute: radius

The radius of the muffin tin sphere.

Type: fortrandouble (B.11.1)
Use: required
XPath: /spdb/sp/muffinTin/@radius

B.4.3 Attribute: rinf

Radius from which the influence on the potential is regarded to be negligible.

Type: fortrandouble (B.11.1)
Use: required
XPath: /spdb/sp/muffinTin/@rinf

B.4.4 Attribute: rmin

The radius where radial mesh begins.

Type: fortrandouble (B.11.1)
Use: required
XPath: /spdb/sp/muffinTin/@rmin

B.5 Element: atomicState

The atomicState (B.5) element lists the atomic states that schould be used to approxi-
mate the wavefunction in the sphere. They can be marked as core or none core electrons by
the core (B.5.1) attribute. Core electrons are threated separately by numeric itegration.

Type: no content
XPath: /spdb/sp/atomicState

This element allows for specification of the following attributes:

core (B.5.1) (required), kappa (B.5.2) (required), l (B.5.3) (required),
n (B.5.4) (required), occ (B.5.5) (required)

B.5.1 Attribute: core

If true, state is threated as core state in the calculation.

Type: boolean
Use: required
XPath: /spdb/sp/atomicState/@core
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B.5.2 Attribute: kappa

Relativistic quantum number.

Type: integer
Use: required
XPath: /spdb/sp/atomicState/@kappa

B.5.3 Attribute: l

Azimuthal quantum number.

Type: integer
Use: required
XPath: /spdb/sp/atomicState/@l

B.5.4 Attribute: n

Principal quantum number.

Type: integer
Use: required
XPath: /spdb/sp/atomicState/@n

B.5.5 Attribute: occ

Ocuppation number.

Type: fortrandouble (B.11.1)
Use: required
XPath: /spdb/sp/atomicState/@occ

B.6 Element: basis

Defines APW basis.

Contains: wf (B.10) (1 times or more)
exception (B.7) (zero or more)

XPath: /spdb/sp/basis

This element allows for specification of the following attributes:

order (B.6.1) (required)

B.6.1 Attribute: order
Type: integer
Use: required
XPath: /spdb/sp/basis/@order
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B.7 Element: exception

This element allows for defining exceptions to the APW basis functions.

Contains: wf (B.10) (1 times or more)
XPath: /spdb/sp/basis/exception

This element allows for specification of the following attributes:

l (B.7.1)

B.7.1 Attribute: l

Spezifies the azimuthal quantum number for which the exception applies.

Type: integer
Use: optional
XPath: /spdb/sp/basis/exception/@l

B.8 Element: lorb

Local orbital (APW+lo or LAPW+lo).

Contains: wf (B.10) (1 times or more)
XPath: /spdb/sp/lorb

This element allows for specification of the following attributes:

l (B.8.1) (required)

B.8.1 Attribute: l

Azimuthal quantum number for which the local orbital is defined.

Type: integer
Use: required
XPath: /spdb/sp/lorb/@l

B.9 Reused Elements

The following elements can occur more than once in the input file. There for they are
listed separately.
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B.10 Element: wf

Defines the radial part of an atomic wavefunction. This functions used to construct a
lapw orbital. The actual basis functions for the calculation inside the MT are linear
combinations of these and Ylm.

Type: no content
XPath: /wf

Parent: /spdb/sp/basis

/spdb/sp/basis/exception

/spdb/sp/lorb

This element allows for specification of the following attributes:

matchingOrder (B.10.1) (required), searchE (B.10.2) (required), trialEnergy
(B.10.3) (required)

B.10.1 Attribute: matchingOrder

Gives the order of the derivative that must be matched to the plain wave.

Type: integer
Use: required
XPath: /wf/@matchingOrder

B.10.2 Attribute: searchE

If true the energy of the radial wave function, E0 is optimized to match the boundary
condition

ψ(RMT ) = 0. (B.1)

Type: boolean
Use: required
XPath: /wf/@searchE

B.10.3 Attribute: trialEnergy

Energy level of the radial wave function (initial condition for numerical radial Schrodinger
equation)

Type: fortrandouble (B.11.1)
Use: required
XPath: /wf/@trialEnergy

B.11 Data Types

The Input definition uses derived data types. These are described here.

B.11.1 Type fortrandouble

The type fortrandouble allows to use the letters "eEdDqQ" for exponent operators. This
alters in what precision the number is parsed.
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Appendix C

spacegroup input reference

exciting developers team
(C. Ambrosch-Draxl, Zohreh Basirat, Thomas Dengg,
Rostam Golesorkhtabar, Christian Meisenbichler, Dmitrii Nabok,
Weine Olovsson, Pasquale Pavone, Stephan Sagmeister, Jürgen Spitaler)

About this Document

This document describes the input file format for the spacegroup tool.

C.1 Input Elements

C.2 Element: symmetries

The symmetries file format used by the spacegroup tool to generate structures and super-
cells as defined by lattice (C.4) from the knowledge of Wyckoff positions and the space
group. The space group is specified by the attribute HermannMauguinSymbol (C.2.1).
The root element is symmetries (C.2).

Contains: title (C.3) (1 times)
lattice (C.4) (1 times)
WyckoffPositions (C.5) (optional)

XPath: /symmetries

This element allows for specification of the following attributes:

HermannMauguinSymbol (C.2.1) (required)

C.2.1 Attribute: HermannMauguinSymbol

Herman Mauguin symbol giving the spacegroup
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Type: string
Use: required
XPath: /symmetries/@HermannMauguinSymbol

C.3 Element: title
Type: string
XPath: /symmetries/title

C.4 Element: lattice

The lattice element defines lattice from a,b,c, and angles.

Type: no content
XPath: /symmetries/lattice

This element allows for specification of the following attributes:

a (C.4.1) (required), ab (C.4.2) (required), ac (C.4.3) (required), b

(C.4.4) (required), bc (C.4.5) (required), c (C.4.6) (required), epslat

(C.4.7), ncell (C.4.8), primcell (C.4.9), scale (C.4.10), speciespath
(C.4.11), stretch (C.4.12)

C.4.1 Attribute: a
Type: fortrandouble (C.9.1)
Use: required
Unit: Bohr
XPath: /symmetries/lattice/@a

C.4.2 Attribute: ab

Angle between lattice vector a and b in degrees.

Type: fortrandouble (C.9.1)
Use: required
Unit: Degree
XPath: /symmetries/lattice/@ab

C.4.3 Attribute: ac

Angle between lattice vector a and c in degrees.

Type: fortrandouble (C.9.1)
Use: required
Unit: Degree
XPath: /symmetries/lattice/@ac
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C.4.4 Attribute: b

Type: fortrandouble (C.9.1)
Use: required
Unit: Bohr
XPath: /symmetries/lattice/@b

C.4.5 Attribute: bc

Angle between lattice vector b and c in degrees.

Type: fortrandouble (C.9.1)
Use: required
Unit: Degree
XPath: /symmetries/lattice/@bc

C.4.6 Attribute: c

Type: fortrandouble (C.9.1)
Use: required
Unit: Bohr
XPath: /symmetries/lattice/@c

C.4.7 Attribute: epslat

Type: fortrandouble (C.9.1)
Default: ”1.0d-6”
Use: optional
XPath: /symmetries/lattice/@epslat

C.4.8 Attribute: ncell

Number of repeated cells in each direction.

Type: integertriple (C.9.6)
Default: ”1 1 1”
Use: optional
XPath: /symmetries/lattice/@ncell

C.4.9 Attribute: primcell

Type: boolean
Default: ”false”
Use: optional
XPath: /symmetries/lattice/@primcell

193



C.4.10 Attribute: scale

Scales all the lattice vectors by the same factor. This is useful for varying the volume.

Type: fortrandouble (C.9.1)
Default: ”1”
Use: optional
XPath: /symmetries/lattice/@scale

C.4.11 Attribute: speciespath

Type: string
Default: ”http://xml.exciting-code.org/species/”
Use: optional
XPath: /symmetries/lattice/@speciespath

C.4.12 Attribute: stretch

Allows for an individual scaling of each lattice vector separately. "1 1 1" means no
scaling.

Type: vect3d (C.9.4)
Default: ”1.0d0 1.0d0 1.0d0 ”
Use: optional
XPath: /symmetries/lattice/@stretch

C.5 Element: WyckoffPositions

Contains: wspecies (C.6) (zero or more)
XPath: /symmetries/WyckoffPositions

C.6 Element: wspecies

Contains: wpos (C.7) (zero or more)
XPath: /symmetries/WyckoffPositions/wspecies

This element allows for specification of the following attributes:

speciesfile (C.6.1)

C.6.1 Attribute: speciesfile

Type: string
Use: optional
XPath: /symmetries/WyckoffPositions/wspecies/@speciesfile
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C.7 Element: wpos

Type: no content
XPath: /symmetries/WyckoffPositions/wspecies/wpos

This element allows for specification of the following attributes:

coord (C.7.1)

C.7.1 Attribute: coord
Type: vect3d (C.9.4)
Use: optional
XPath: /symmetries/WyckoffPositions/wspecies/wpos/@coord

C.8 Reused Elements

The following elements can occur more than once in the input file. There for they are
listed separately.

C.9 Data Types

The Input definition uses derived data types. These are described here.

C.9.1 Type fortrandouble

The type fortrandouble allows to use the letters "eEdDqQ" for exponent operators. This
alters in what precision the number is parsed.

C.9.2 Type vector

A vector is a space separated list of floating point numbers.
Example: "1.3 2.3e4 3 90"

C.9.3 Type integerlist

List of space separated integers.

C.9.4 Type vect3d

Three dimensional vector as three space separated floating point numbers.

C.9.5 Type vect2d

Three dimensional vector as three space separated floating point numbers.
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C.9.6 Type integertriple

Space separated list of three integers.
Example: "1 2 3"

C.9.7 Type integerquadrupel

Space separated list of three integers.
Example: "1 2 3 4"

C.9.8 Type integerpair

Space separated list of two integers
Example: "1 2"

196


	Preface
	Introduction to DFT and the exciting Code
	Density-Functional Theory
	The Hohenberg-Kohn Theorem
	Kohn-Sham Equation
	Discretization
	APW Methods
	The exciting Code 
	Profiling
	Profiling of the exciting Code

	I Numerical Methods
	Algorithms
	Scaling of Algorithms
	Eigensolvers
	Iterative Solvers
	Refinement Methods
	How to Make Parallel Code
	Linear Scaling
	Fixed-Point Iteration
	Newton Methods
	Broyden Methods
	Multi-Secant Broyden Method

	Performance Optimizations
	Implementation of k-point Parallelism
	New Solvers in the exciting Code
	SMP Optimization
	 Abstraction of the Matrix Data Structure
	New Mixing in the exciting Code


	II User Inteface
	XML Technologies in Science Applications
	 XML
	XML Schema
	XML Namespaces
	XML Parser
	FoX: an XML Parser Library
	XSLT
	XForms
	XML Databases and Data Mining

	Optimizing the User Interface
	The Complexity Wall
	The exciting User Interface
	The New XML Input for the exciting Code
	XML Output for the exciting Code
	Work-Flow Concepts in exciting 
	The exciting Code and ASE
	exciting@web


	III Software Development
	Scientific Software Development
	Source-Code Management 
	Git, a Fast Distributed Source Code Management Tool
	Reproducibility
	Testing
	Modularity
	Newer FORTRAN Standards
	Refactoring

	The Development Process in exciting
	Simplify Merging
	Test System in exciting
	Examples of Modularity in the exciting Code
	Refactoring of the exciting Code
	Issue Tracking
	Outlook for the exciting Development Process

	Conclusions
	List of Figures
	List of Tables
	List of Code Listings
	Bibliography

	IV Appendix
	 exciting input reference 
	Input Elements
	 Element: blueinput
	 Element: bluetitle
	 Element: bluekeywords
	 Element: bluestructure
	 Element: bluecrystal
	 Element: bluebasevect
	 Element: bluespecies
	 Element: blueatom
	 Element: blueLDAplusU
	 Element: bluegroundstate
	 Element: bluespin
	 Element: bluesolver
	 Element: blueoutput
	 Element: bluelibxc
	 Element: bluestructureoptimization
	 Element: blueproperties
	 Element: bluebandstructure
	 Element: blueSTM
	 Element: bluewfplot
	 Element: bluedos
	 Element: blueLSJ
	 Element: bluemasstensor
	 Element: bluechargedensityplot
	 Element: blueexccplot
	 Element: blueelfplot
	 Element: bluemvecfield
	 Element: bluexcmvecfield
	 Element: blueelectricfield
	 Element: bluegradmvecfield
	 Element: bluefermisurfaceplot
	 Element: blueEFG
	 Element: bluemossbauer
	 Element: bluemomentummatrix
	 Element: bluedielectric
	 Element: blueoptcomp
	 Element: bluemoke
	 Element: blueexpiqr
	 Element: blueelnes
	 Element: blueeliashberg
	 Element: bluephonons
	 Element: bluephonondos
	 Element: bluephonondispplot
	 Element: bluereformatdynmat
	 Element: blueinterpolate
	 Element: blueparts
	 Element: bluedopart
	 Element: bluexs
	 Element: bluetddft
	 Element: bluescreening
	 Element: blueBSE
	 Element: bluetransitions
	 Element: blueindividual
	 Element: bluetrans
	 Element: blueranges
	 Element: bluerange
	 Element: bluelists
	 Element: blueistate
	 Element: bluetetra
	 Element: blueplan
	 Element: bluedoonly
	 Element: blueenergywindow
	Reused Elements
	 Element: blueorigin
	 Element: bluepoint
	 Element: blueplot1d
	 Element: bluepath
	 Element: blueplot2d
	 Element: blueparallelogram
	 Element: blueplot3d
	 Element: bluebox
	 Element: bluekstlist
	 Element: bluepointstatepair
	 Element: blueqpointset
	 Element: blueqpoint
	Data Types

	Species file format reference
	Input Elements
	 Element: bluespdb
	 Element: bluesp
	 Element: bluemuffinTin
	 Element: blueatomicState
	 Element: bluebasis
	 Element: blueexception
	 Element: bluelorb
	Reused Elements
	 Element: bluewf
	Data Types

	spacegroup input reference 
	Input Elements
	 Element: bluesymmetries
	 Element: bluetitle
	 Element: bluelattice
	 Element: blueWyckoffPositions
	 Element: bluewspecies
	 Element: bluewpos
	Reused Elements
	Data Types



