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Abstract

For the damage tolerant design of components, the external load and the component’s
geometry as well as residual stresses and defects such as cracks or non-metallic inclusions are
of importance. The load carrying capacity is given for long-term fatigue endurance by the
crack growth threshold, for finite lifetime by the fatigue crack growth rate; both depend on the
load ratio, but also on the size of the defect.

In this work the fatigue crack growth behaviour of the quenched and tempered steel 25CrMo4
is investigated in detail by means of single edge notched bending (SENB) specimens at
various load ratios. The influence of flaw size is studied by different notch depths. At the
notch root, short fatigue cracks are introduced by cyclic compression. The growth behaviour
of these cracks in the notch stress field is monitored in detail, whereby also information about
the build-up of crack closure and the transition from short to long crack behaviour is gained.
In order to investigate the influence of compressive residual stresses — as introduced by
various mechanical surface treatment processes such as shot peening or deep rolling — straight
beams with convex fillets are subjected to controlled flat rolling, thereby introducing residual
stresses varying along the ligament of the specimen. In these specimens, again fatigue cracks
are introduced and monitored, showing the combined influence of residual stresses and crack
length on the fatigue crack growth behaviour. In all cases, special attention is paid to the
evolution of the fatigue crack growth threshold as a function of crack length, stress ratio and
residual stresses.

Based on the evolution of the fatigue crack growth threshold as a function of crack length
(crack resistance curve), an analytical model for describing the fatigue crack growth rate, as
well as an extended Kitagawa-Takahashi diagram are developed. The model is based on the
NASGRO equation, which is modified to describe the build-up of crack closure with
increasing crack length and thereby the short crack behaviour. With this extended NASGRO
model it is possible, due to a combined view of load stresses and residual stresses, to describe
the crack growth also in the presence of residual stresses.

In summary, the results of this work provide a more accurate way to estimate the lifetime or
service intervals of cyclically loaded components in the presence of flaws and residual stress

fields.



Kurzfassung

Fiir die schadenstolerante Auslegung von Bauteilen sind sowohl die duBere Last und die
Bauteilgeometrie als auch duBlere Defekte wie z.B. Risse, innere Defekte und
Eigenspannungen von Bedeutung. Die lastabhingige Tragfahigkeit fiir einen dauerfest
ausgelegten Bauteil ist durch den Schwellwert fiir Risswachstum, fiir Zeitfestigkeit durch die
Rissfortschrittsrate, gegeben. Beide sind abhingig vom Lastverhéltnis, aber auch von der
Grof3e des Defektes.

In dieser Arbeit wird das Wachstumsverhalten von Ermiidungsrissen im Vergiitungsstahl
25CrMo4 mittels Single Edge Notched Bending (SENB)-Proben fiir verschiedene
Lastverhiltnisse detailliert untersucht. Der Einfluss der FehlergroBe wird anhand
unterschiedlich tief eingebrachter Kerben untersucht. Am Kerbgrund werden durch zyklisches
Anschwingen unter Druck kurze Ermiidungsrisse initiiert. Das Risswachstumsverhalten im
Spannungsfeld dieser Kerben wird genauestens untersucht, wobei man zusitzlich
Informationen iiber das Aufbauen von RissschlieBeffekten sowie iiber den Ubergang von
Kurz- zu Langrissverhalten erhdlt. Um den Einfluss von Druckeigenspannungen — welche
durch diverse oberflichenverfestigende Verfahren wie Festwalzen oder Kugelstrahlen
eingebracht werden konnen — auf das Risswachstumsverhalten zu untersuchen, wurde in
Flachproben durch kontrolliertes Walzen ein Eigenspannungsfeld eingebracht. In diesen
Flachproben wurden anschliefend abermals Kerben eingebracht und Ermiidungsversuche
durchgefiihrt, um den kombinierten Einfluss von Eigenspannungen und Risslidnge auf das
Verhalten von Ermiidungsrissen zu zeigen. In allen Féllen wurde der Entwicklung des
Schwellwertes flir Ermiidungsrisswachstum als einer Funktion von Rissldnge, Lastverhéltnis
und Eigenspannungen besondere Beachtung geschenkt.

Basierend auf dem sich mit der Rissverlingerung aufbauenden Rissschlielen
(Risswiderstandskurve), wird ein analytisches Modell zum Beschreiben der
Rissfortschrittsrate sowie ein erweitertes Kitagawa-Takahashi Diagramm entwickelt. Das
Rissfortschrittsmodell basiert auf der NASGRO-Gleichung, welche um eine detaillierte
Beschreibung des sich aufbauenden RissschlieBens erweitert wird, um damit das
Kurzrissverhalten zu beriicksichtigen. Durch einen kombiniert betrachteten Einfluss von Last-
und Eigenspannungen ist es mit diesem erweiterten NASGRO-Modell auch moglich, das

Risswachstum in Eigenspannungsfeldern zu beschreiben.

VI



Zusammenfassend ermoglichen die Ergebnisse dieser Arbeit eine genauere Abschitzung der
Lebensdauer oder notwendiger Inspektionsintervalle zyklisch beanspruchter, fehler- und

eigenspannungsbehafteter Bauteile.
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1 Introduction

1 Introduction

Surface treatment procedures such as deep rolling, shoot peening, laser shot peening etc. are
one possibility to increase the lifetime of a cyclically loaded component. Such surface
treatment procedures introduce high compressive residual stresses near the surface of the
component and therefore increase the lifetime of this component especially in the presence of
flaws, provided the flaw size is smaller than the influence of the introduced compressive
residual stress field.

For damage tolerant fracture control concepts, especially for drivetrain components it is
crucial to estimate the crack growth behaviour very accurately so that one can derive
inspection intervals or estimate the criticality of an existing flaw also in the presence of
residual stresses. State-of-the-art procedures for surface defects in drivetrain components are
grinding out or re-working by turning within the framework of standard specifications. In the
worst case the whole component must be taken out of operation.

If a crack grows from the root of a flaw, with increasing crack length the build-up of crack
closure and therefore the resistance against crack propagation — the crack resistance curve —
increases until, after a certain crack extension, the resistance against crack propagation
remains constant. So even if there is no compressive residual stress field, it is possible that a
crack after a certain crack extension is arrested and no further crack propagation occurs at an
applied constant load. This effect is even more powerful in the presence of compressive
residual stresses. So an accurate crack growth model, considering in detail the build-up of
crack closure, in combination with a surface treated component can on one hand increase the

safety of a component and on the other hand save enormous maintenance costs.

The goals of this thesis are
- to develop an empirical formula to estimate the depth of compressive residual
stresses introduced by deep rolling, dependent on rolling force and geometry of
the rolling tool,
- to determine a crack growth model which can predict the growth rate for cracks
of arbitrary length in the presence of residual stresses and finally
- to estimate the endurance limit and/or the lifetime of a component containing

flaws and residual stresses.



1 Introduction

By achieving these goals it will therefore be possible, in the context of damage tolerant
design, to predict fatigue lifetime or necessary inspection intervals more accurately even for
small flaws in the presence of residual stresses.

The thesis starts with a short background overview on the mechanical behaviour of fatigue
cracks. The somewhat strange behaviour of short cracks and it’s physical explanation is
elucidated in detail. Afterwards an introduction to deep rolling, a very effective mechanical
surface treatment process, for introducing compressive residual stresses in a component is
given; in this context, also a simple model to predict the stability of such residual stresses
during operation is proposed. Subsequently, the methods used in this thesis for measuring
residual stress fields (X-ray diffraction, Cut-Compliance method) are explained in detail. An
introduction to the three major fracture control concepts complements the background
overview. Section 3 presents a short summary of the main results of the thesis, followed by a

detailed account in the form of published scientific articles.
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2 Background

2.1 Crack growth behaviour under cyclic loading

2.1.1 Griffith energy concept

The energy concept according to Griffith [Gri20] is based on the first law of thermodynamics,
which states that the total energy of an isolated system is constant. That implies that energy
cannot be destroyed or created, the energy can only be transformed from one type to another.
Griffith applied this idea to the formation of a crack. He supposed that the total potential
energy U of a body must decrease at instable crack extension:

d_U_ d(Uel _Uw +U0)
da da

<0 (1

The contributions to the total potential energy U are the elastic energy U,;, the work done by
the external forces U, and the work required to create new surfaces Up. A restated
formulation of the Griffith idea is that energy provided from the elastic stress field and the
work of the external forces must be greater or equal than the energy for creating a fracture
surface. This provided energy is also called energy release rate G, the energy for creating a

fracture surface is called crack resistance R.

_ d(Uel - Uw) > dUO _
da " da

G= R (2)

That implies that the criterion for instable crack growth can now be formulated as G > R. The
energy release rate G depends only on the component geometry, the crack length and the
applied load. G is apart from the young’s modulus £ material-independent, whereas the crack
resistance R depends only on the material and optionally on the environment [Pip11].

In an ideally brittle solid, as supposed in Griffith’s energy concept, a crack can be formed by
breaking atomic bonds. However, when a crack propagates through a metal, also plastic
deformation in the vicinity of the crack tip occurs. If this plastic deformation zone around the
crack tip is small in comparison to the component size and to the crack length, we are talking
about small scale yielding.

If the conditions for small scale yielding are fulfilled, then the conversion of elastic energy
due to crack propagation is approximately the same as the conversion of elastic energy for

ideally brittle fracture. Therefore, the energy release rate for small scale yielding conditions is
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similar to the energy release rate for ideally brittle fracture. However, the crack resistance for
these situations is different. In the ideally brittle case only the fracture surface energy has to
be expended, whereas in the case of small scale yielding the plastic deformation energy must
be expended in addition.

Because the relations for the energy release rate and also the conditions for fracture are the
same (only the resistance against crack propagation differs) as in the ideally brittle case, this

is referred as linear elastic fracture mechanics (LEFM).

2.1.2 Linear elastic fracture mechanics

In fracture mechanics one distinguishes between three different modes of loading (Fig. 2.1):
Mode I (opening): Load is applied normal to the plane of the crack.
Mode II (in-plane shear): Crack faces are sheared in a direction normal to the crack front.

Mode III (out-of-plane shear): Crack faces are sheared parallel to the crack front.

Mode | Mode Il Mode lll

F—
4

/

Fig. 2.1 Three basic modes of loading that can be applied to a crack.

In contrast to Griffith’s energy concept, Irwin [Irw57] quantified the near-tip field for the
linear elastic crack in terms of the stress intensity factor K. So it was possible to formulate the
critical conditions for crack propagation in more precise terms by means of linear elastic

stress analyses [Sur98].
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crack x

Fig. 2.2 Coordinate system and stresses at the crack front.

The different components of the stress tensor oj can be calculated as a function of the

distance 7 (see Fig. 2.2) from the notch tip by

k 0 5 m
j :(ﬁj'ﬁj(é’ﬁzmzﬂmﬂgﬁ( ©), ©)

where k is a constant and fj; is a dimensionless function of & in the leading term. For the
higher-order terms, 4,, is the amplitude and g;™ is a dimensionless function of & for the m™
term [And05]. In the vicinity of the crack tip, the second term in equation (3) can be
neglected. However, this term is very important for deciding the crack path through a
component. The leading term in equation (3) describes for each mode of loading a stress
singularity with 1/ Jr at the crack tip, only the constants k& and f; depend on the loading
mode. It is convenient at this point to replace k& by the stress intensity factor K, where
K=k-2:7. Thus, the stress field ahead of a crack tip in an isotropic linear elastic material,
for Mode I loading, can be written as [And05]:

limoP = K

_21 e
limoy == 1;(6) @

In most cases the stress intensity factor K can be written as
a
K=oc-vJm-a-Y| — 5
v .y 5)

where o is the nominal stress, a is the crack length and Y(%) is a geometric factor depending

on the crack length and the component size. The solution for the geometric factor of various
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geometries can be found in several books [Mur87, Wu91, Tad00, Fet08].

For practical applications the stress intensity factor concept is more often used than the energy
concept. One essential reason for this is that for various geometries and load conditions the K-
concept is easier to handle. Another reason is that the basic idea of a singularity at the crack

tip is transferrable to non-linear material behaviour [Gro07].

2.1.3 Fatigue crack growth

Schijve [Sch09] divides the fatigue life of a component until failure into two periods: the
crack initiation period and the crack growth period. The initiation period is supposed to be
completed when microcrack growth depends no longer on the material surface conditions, or
when crack growth resistance of the material is controlling the crack growth rate, respectively.
The crack growth rate in a cyclically constant loaded component is expressed in terms of
crack length increase per cycle, da/dN. Usually, the crack growth rate da/dN increases with
increasing number of cycles, with some exceptions for short cracks as will be discussed later.
For a constant cyclic load, the stress range Ao as well as the stress ratio R can be calculated

using the minimum o, and maximum o, loads during one cycle:

0 .
R — min
o (6)

AC =0 — Opin »

max
In analogy to equation (6) the stress intensity factor range can be defined as

AK =K .« K., . (7)
Kmax and Ky, are the maximum and minimum stress intensity factors during one load cycle.
Experimentally determined crack growth curves, plotted in a doubly logarithmic diagram,
show a characteristic shape with three different regions (see Fig. 2.3). Region I is called the
threshold region, region II is the Parisregion and region III is the transition region from stable

to unstable crack growth.
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daldN 4

(log) ]

w
b

h)

AKq, (1-R)K, AK (log)

Fig. 2.3 Crack growth curve (long crack behaviour).

The relation of the crack growth rate da/dN and the stress intensity factor range in the
Parisregion can be described by the Parislaw [Par61, Par63]

da m
E—C-(AK) , (8)

where C and m are material dependent constants. Many researchers have developed equations
that model the whole crack growth curve (da/dN-curve) or at least parts of it [For67, Kles72,
MCcE88]. The most common expression is the so-called NASGRO equation published by
Forman and Mettu [For92]:

%)
AK
ﬂzc.F.AK'".—‘ ©)
dv K jq
- Bomax
KC

In comparison with equation (8) four additional material constants p, g, AKy, and K¢ were
added, whereby AKy, and K¢ describe the location of branches I and III of the crack growth
curve and p and g are a measure for the transition between the different branches. The
multiplying factor F' [For92, New84] considers the phenomenon of crack closure and
therefore the stress ratio dependent crack growth rate in the Parisregion. Elber [EIb70]
showed that for cyclic tension loading the fatigue crack is already closed before the minimum
load is reached. Also with increasing load a fatigue crack stays closed until a certain load is

reached.



2 Background 2.1 Crack growth behaviour under cyclic loading

This implies that not the whole stress intensity factor range, but only the effective stress
intensity range

AKeff = Kmax _Kop s (10)

is responsible for crack propagation. The crack opening stress intensity factor K, corresponds
to the load where the crack starts to open. For high load ratios R the crack opening stress
intensity factor K, approaches the minimum stress intensity factor Kyi,. As a rule of thumb in
particular, for load ratios R > 0.7 K, 1s equal to Knin and AKcsr equals AK, i.e., no crack

closure effects are present even for long cracks.

2.1.4 Short crack behaviour

Using Eq. (9) it is possible to fit the whole da/dN curve in dependence of the load ratio R.
However, several works showed the somewhat strange behaviour of short cracks, which are
able to propagate below the threshold for crack growth AKy, and which are able to grow
significantly faster than long cracks [Fro56, Pea75, Lan82, Tan83, Mil86, Now86, Rit86,
Pip87a, Kit90, New99, Rad07].

Suresh and Ritchie [Sur84a] broadly classified the different kinds of short cracks into
microstructurally short cracks, mechanically short cracks, physically short cracks and
chemically short cracks. Microstructurally short cracks are comparable in size to the scale of
the characteristic microstructural dimension. Mechanically short cracks are comparable to the
near-tip plastic zone, or are engulfed by the plastic strain field of a notch. Physically short
cracks are significantly larger than the characteristic microstructural dimension and the scale
of local plasticity, and typically have lengths smaller than a millimetre or two in metals.
Finally, chemically short cracks exhibit apparent anomalies in their propagation rate due to
environmental corrosion effects.

For long crack behaviour there exists an unambiguous relation between the stress intensity
factor range AK and the crack growth rate da/dN (see Fig. 2.3). Every deviation from this long
crack behaviour may be summarized in terms of short crack behaviour, or in other words, for

short cracks there exists no unique connection between AK and da/dN anymore (see Fig. 2.4).
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short crack
from notch

=
o
~
3
o long crack
i) short cracks (LEFM)
-v\
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\
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\
I
|

crack length, a (or) log AK

Fig. 2.4 Short crack behaviour [Sur98].

The reason for this different crack growth behaviour of short cracks is crack closure. There

exist various different crack closure mechanisms (Fig. 2.5) categorized in the works by Suresh
and Ritchie [Rit80, Sur81, Sur82a, Sur84b].

plastic |
wake latiguee
crack

curTent
plastic
ZONE

transformed zone

oxide film

(&) LN

. I Ei
fracture surface aspenty (g} crack :

fibsers
(€

d_%:__'.:;*?_-jp- i particles

viscous flud crick
() 0l
Fig. 2.5 Fatigue crack closure mechanisms [Sur98]. a plasticity-induced crack closure; b oxide-
induced crack closure; ¢ roughness-induced crack closure; d fluid-induced crack closure; e
transformation-induced crack closure; f crack deflection; g crack-bridging by fibers; h crack-bridging

(trapping) by particles.
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These crack closure mechanisms are responsible for the build-up of crack resistance during
crack propagation. The extent of the resistance against crack propagation depends on the
crack extension length — the length where the crack surfaces can be in contact. For long cracks
the crack closure mechanisms are built-up completely and the resistance against crack
propagation reaches an upper limit, the long crack threshold AK .. In contrast, for short
cracks the crack closure mechanisms are not built-up completely and so also the resistance
against crack propagation is smaller. This implies that short cracks are able to propagate
below the threshold of long cracks and that they can grow significantly faster than long cracks
at the same stress intensity factor range.

In this work only physically short cracks are investigated by means of linear elastic fracture
mechanics. Therefore the plastic zone ahead of the crack tip must be small in comparison to
the crack length. Several fatigue experiments for different notch depths and stress ratios were
done on single edge notched bending (SENB) specimens. To investigate the crack growth
behaviour in the near-threshold regime, the specimens were pre-cracked in compression
[Sur85, Chr86, Hol86, Pip87b, Pip87c, Now87]. To fulfil the conditions of LEFM even for
very small notches the applied loads during compression should be as small as possible. To
this purpose, specimens were prepared initially a few millimetres higher in width, then a long
notch was machined into the specimens and the specimens were compression pre-cracked.
Finally, the specimens were machined to the conventional height so that a short notch remains

with an incipient crack which fulfils the requirements of LEFM (see Fig. 2.6).

)} I

compression
pre-cracking
(R=10)

Fig. 2.6 Specimen preparation for short crack growth experiments.
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2 Background 2.2 Mechanical surface treatment processes

2.2 Mechanical surface treatment processes

There exist various methods for mechanical surface treatment, such as shot peening, laser
peening, high frequency impact treatment, deep rolling, et cetera. The effects of such surface
treatment processes are mechanical hardening due to cold deformation, mechanical pre-
stresses due to residual stresses and reduced or enhanced micro-stress concentrations due to
changing surface roughness. In the frame of this work deep rolling and the effect of

introduced residual stresses on the crack growth lifetime is considered.

2.2.1 Deep rolling

Deep rolling deforms a component near the surface plastically by pressing discs or spherical
tools into the material. The aim of this method is to introduce residual stresses and mechanical
hardening in the rolled surface layers to increase in particular the endurance limit [Woh0O0].
But also the influence on the crack growth rate due to the introduced residual stresses is
significant. So the crack growth rate decreases in the presence of compressive residual
stresses, but increase in the presence of tensile residual stresses. This is because the residual
stresses modify the mean stress during cyclic loading. For compressive residual stresses the
mean stress as well as the load ratio R decreases; and the lower the load ratio, the lower is the
crack growth rate da/dN. It follows that for cyclically loaded components compressive
residual stresses near the surface are desirable, whereas tensile residual stresses should be
avoided.

To obtain a defined surface treated zone, deep rolling process parameters such as rolling
force, number of rolling and feed rate are crucial [Chell]. But also the geometries of the
component and the rolling tool are important.

The expected influence of different rolling forces on the hardness and residual stresses is
shown in Fig. 2.7. The hardness as well as the compressive residual stresses increase with
increasing rolling force (F1-F3), whereby the maximum of both is below the surface. For a
further increase of the rolling force (F4, F5) the maximum compressive residual stresses and
the maximum hardness is shifted to higher surface distances, but the hardness and the residual

stresses on the surface decrease. So if the chosen rolling force is too high, the positive effects

11



2 Background 2.2 Mechanical surface treatment processes

of deep rolling vanish and, even worse, the initial surface hardness as well as the endurance
limit decrease whereas the crack growth rate increases due to tensile residual stresses. It is
therefore crucial to find the optimum process parameter for the rolling process. This problem

is treated in detail in Publication A.
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Fig. 2.7 Typical dependence of rolling force on residual stresses and hardness [Ber82].

2.2.2 Stability of residual stresses during operation

If the superposition of residual stresses and load stresses in a component leads to stresses that
are higher than the flow stress o, then dislocations can be activated, which leads to a
reduction of the residual stresses. Such a reduction of the residual stresses during cyclic
loading occurs during the first few load cycles. After at most 1000 load cycles the remaining
residual stresses reach a steady state. To predict this remaining residual stress field in a
component, a simple analytical model is proposed. This model is based on the assumption that
the sum of the remaining residual stresses o and the load stresses o, must be smaller or equal

than the flow stress Ry

|| +|ow| < R (11)
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2 Background 2.2 Mechanical surface treatment processes

Equation (11) implies that if the sum of the initially introduced residual stresses o and the
applied load stresses oy, is higher than the increased flow stress Ry, then the remaining residual
stresses o after cyclic loading can be calculated by subtracting the applied load stress from

the increased flow stress:
‘Ge,()‘+|6b|>Rf :>|O-e|:Rf_|Gb| (12)
In contrast, if the sum of the initially introduced residual stresses oo and the applied load

stresses oy, 18 lower than the flow stress Ry, then no reduction of the residual stresses takes

place and the remaining residual stresses are equal to the initial residual stresses:

‘Ge,O +loy| <R, =0, =0, (13)

In Fig. 2.8 the model prediction is compared with experimentally determined residual stress
profiles. Using Eq. (11-13) the remaining residual stress profile (blue curve) can be calculated
if the initial residual stress profile (purple curve) and the applied load stress (red curve) are
known. The experimentally determined residual stress profile (green curve) shows good

agreement with the model prediction.

400

E remaining residual stress

=, )00 6. (model)

& G, (experiment)

9 —— load stress o,,
100 100 300 1100 1300 1500 —— [nitiel state o,
200 — mcdel G,
—— experiment

load stress G,

initial residual stress o

depth [jan]

Fig. 2.8 Simple model to predict the reduction of residual stresses during cyclic loading (for details cf.

the main text).
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2 Background 2.3 Measurement of residual stresses

2.3 Measurement of residual stresses

There exist various destructive as well as non-destructive methods to determine residual
stresses [Sch88, Hau97, Sch97]. Non-destructive methods are, for example, diffraction
methods (X-ray, neutron beam); destructive methods are almost all mechanical methods
(hole-drilling, cut compliance, contour, et cetera). In this work the cut-compliance method

and the X-ray diffraction method were used.
2.3.1 X-ray diffraction method

X-ray diffraction (XRD) is a non-destructive method to determine residual stresses with a
high resolution (~0.1 mm) on the surface of a component.

XRD gives the opportunity to determine the lattice parameters of crystalline materials using
the Bragg law. The XRD method is based on the measurement of the lattice plane distances as
a function of the angle y (coordinate system in Fig. 2.9), whereby also lattice planes which
are not parallel to the surface give a contribution to the diffraction. The strain measured in the

coordinate system (i, ¢) is calculated using Eq. (14) as a function of sin?y.

1+v )

. 1%
ijy/:T'O'wSln l//—E'(O'1+O'2) (14)

This means that the stress can be determined from the slope of the &, , vs. sin®y curve [Cul78,

Eig95, Eig96].

Fig. 2.9 Coordinate system for the XRD stresses measurement.

14



2 Background 2.3 Measurement of residual stresses

2.3.2 Cut-Compliance method

The Cut-Compliance (CC) method developed by Cheng and Finnie [Che86, Che94] is a
destructive mechanical method to determine residual stresses of a component. The idea of the
CC method is to release the residual stresses by introducing progressively a cut into the
component. From the change of strain due to this progressive cutting it is possible to calculate
the distribution of the released stresses [Sch98]. To measure the change of strain, strain
gauges have to be placed on the component (see Fig.2.10). Using the CC method it is

possible to determine the residual stress distribution normal to the cutting surface.

Fig. 2.10 Schematic illustration of the CC method to determine the residual stresses in axial

direction (z) of a plate.

In the frame of this work the CC method was verified for a SENB specimen using Finite
Element simulations. To this purpose, a residual stress field was introduced in a specimen by
plane compression. Afterwards the specimen was cut with successive cutting increments of
1 mm, and the released strains Agpus were measured at the edge of the specimen (Fig. 2.10,

Fig. 2.11).
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2 Background 2.3 Measurement of residual stresses

w 400 "
ot initial stresses
s stresses after cut #1
E‘ / N stresses after cut #2
74
o / N
k7] 0 \\ deoth I
© 4 14 19 24 29 34 : 44 49 Qe mm
g / P - ;9\ p [
F) -200 L N AGDMS
8 % L _—
400 , 48,5
/ [ 5= /

-600 I

-800

-215

depth [mm]

Fig. 2.11 Rearrangement of residual stresses for the first two cutting steps.

If, from an actual experiment, only the Agpys are known, the initial stress distribution is
calculated via the procedure described in what follows. This method was used for the
experiments in Publication C.

From the strain change depms with the increase of cutting depth da, the stress intensity factor

K depending from the residual stresses can be calculated from

_E dey
K]rs (Cl) - Z(Cl) da > (15)

where E is Young’s modulus and Z(a) a geometry-dependent influence function.

Subsequently the initial residual stress distribution can be calculated using

K, (a;))=0, -Th(x,al-)-dxleZ_l:Uj . fh(x,ai)-dx+6i . Th(x,al-)-dx (16)
0 J=1 a;, a;

where, again, A(x, a;) is a geometry-dependent influence function [Sch97]. Due to the layer

removal a homogeneous residual stress distribution over the specimen thickness is required. If

the residual stress changes over the thickness, then the CC method provides an averaged

residual stress. That implies that this method does not consider potentially occurring stress

gradients over the thickness.
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2.4 Fracture control concepts

The three major fracture control concepts are (i) the safe-life concept, (ii) the fail-safe

concept, and (iii) the damage tolerance concept [Sur98, San08].

(@)

(ii)

(iii)

The safe-life concept implies that a component must be designed in a way that it will
not fail during service life. To verify whether a component is safe for a certain amount
of load cycles, stress-life (S/N) curves are used in most cases.

In contrast the fail-safe concept allows local cracks if final fracture can be excluded.
With a Kitagawa-Takahashi (KT) diagram it is possible, for any given crack length
and stress range, to assess whether a component under these conditions leads to finite
life or if the component is still rated for endurance (infinite lifetime). The KT diagram
is a broadly used tool which combines the endurance limit with the fatigue crack
propagation threshold in one diagram. Thereby it defines areas of finite as well as of
infinite life.

Finally, in the damage tolerance concept fatigue crack extension is basically accepted.
The aim is to prevent the crack to grow to its critical size during total lifetime or
during an inspection interval. To this purpose it is essential to describe the crack

growth rate as accurate as possible.

For all three fracture control concepts the lifetime of a component can be increased

significantly by introducing compressive residual stresses by means of surface treatment

methods. The endurance limit will be higher than in untreated components (safe-life), also

crack arrest occurs over a larger crack extension length due to the increased threshold for

crack propagation (fail-safe), and finally the crack growth rate also decreases in the presence

of residual stresses due to the reduced mean stress (damage tolerance).
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3 Summary

3 Summary

In order to increase the fatigue lifetime or to reduce the number of inspection intervals, deep
rolling provides a simple way to prevent crack growth emanating whether from the smooth
surface of a component or from defects. To know up to which depth the compressive residual
stresses persist, semi-empirical formulas were derived in the course of this thesis using finite
element simulations of several deep rolling tools with different geometries as well as
experimentally determined stress distributions from deep rolled specimens and drivetrain
components (Publication A). The results of these investigations show that the depth of the
residual stresses depends only on the geometry of the Hertzian contact ellipse. For cyclically
loaded components the question about the stability of the introduced compressive residual
stresses during operation arises. Therefore the initial residual stress distributions of surface
treated specimens were compared with the stress distributions after a certain amount of load
cycles. The investigations show that for high loads of 500 MPa the compressive residual
stresses are reduced within the first few load cycles. It turned out that deep rolling is a simple
and effective process to prevent (or at least to significantly slow down) crack growth and
thereby to increase the lifetime or reduce the number of inspection intervals in cyclically
loaded components.

Furthermore also an accurate model to describe the crack growth behaviour of cracks of
arbitrary length is essential for the damage tolerance assessment of a cyclically loaded
component. In this thesis, the fatigue crack growth behaviour of short and long cracks in the
quenched and tempered steel 25CrMo4 was investigated experimentally. To this purpose,
Single Edge Notched Bending (SENB) specimens with different notch depths were machined.
The specimens were compression pre-cracked to obtain a fatigue pre-crack, and subsequently
subjected to cyclic loading under eight-point bending. The experiments were conducted under
step-wise increasing constant loads and the crack growth rate was monitored in detail. For
short crack extension the crack grows initially below the threshold for long cracks, but due to
the build-up of crack closure crack arrest occurs eventually (Publication B). Based on the
experimental results, an analytical fatigue crack growth model for the build-up of crack
closure effects during crack extension was developed. This analytical model for the build-up
of crack closure was integrated into the conventional NASGRO equation (Publication B).

This modified NASGRO equation is now able to describe the crack growth rate for cracks of
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3 Summary

arbitrary length. In Fig. 3.1 the prediction of the modified NASGRO equation is compared to

experimental results, showing good agreement.
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Fig. 3.1 Growth of a short crack near the threshold region — comparison of experiment and prediction.

With this model it is possible to predict fatigue lifetime or necessary inspection intervals more
accurately in the context of damage tolerant design and fitness-for-purpose assessments.

The combined influence of the build-up of crack closure during crack propagation and
compressive residual stresses on the crack growth rate is investigated in Publication C. To
investigate the crack growth in the presence of residual stresses, specimens with a special
geometry were developed. In those specimens extended areas of tensile as well as
compressive residual stresses were introduced by means of rolling. During rolling, the
specimen is deformed plastically below the areas of contact, thus a residual stress field is
generated that varies from high compressive residual stresses at the edges to lower tensile
residual stresses in the middle of the specimen. Afterwards again fatigue experiments were
done using the eight-point-bending method and step-wise increasing constant load tests. The
results of the experiments show a significant decrease of the crack propagation rate; also
crack arrest occurs in the rolled specimen at stress intensities which are higher than the long
crack threshold in residual stress free specimens. The determined long crack threshold was

approximately 4.5 times higher than in a residual stress free specimen (Publication C). To
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3 Summary

consider a residual stress field in the modified NASGRO equation, the minimum and
maximum local stresses during one load cycle were calculated by superposition of cyclic load
stresses and residual stresses. With the minimum and maximum local stresses the minimum
and maximum crack tip loading can be estimated using an influence function. Finally, the
stress ratio and the stress intensity factor range can be calculated and used in the modified
NASGRO equation to predict the crack growth rate in the presence of residual stresses.

To estimate the endurance limit of components with an already existing flaw, the Kitagawa-
Takahashi diagram allows to predict, for cracks of given length, the allowable stress range for
infinite life. But, as shown in Publication D, caution is advised if a crack emanates not
directly from the plane surface but from a sharp, crack-like notch instead. In this thesis, the
influence of the initial flaw size was studied by different notch depths. Experiments showed
that, the deeper the initial notch compared to the total crack length, the lower is the resistance
against crack propagation. It was shown that it depends on both portions of a crack, namely
the notch depth and the crack extension, whether a cracked component exhibits finite or
infinite fatigue lifetime at a given stress amplitude. Based on the splitting of the total crack
length into the notch depth and the real crack extension length, and the build-up of crack
closure during crack extension, an enhanced Kitagawa-Takahashi (KT) diagram was proposed
(Publication D). In this enhanced KT diagram the threshold stress range is plotted against the
crack extension and the initial notch depth, respectively. The modified KT diagram shows

good agreement with experimental data, see Fig. 3.2.
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Fig. 3.2 Comparison of the predicted crack extension with experimental results for samples with

different notch depths.
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3 Summary

With the results of this thesis, it will therefore be possible, in the context of damage tolerant
design, to predict fatigue lifetime or necessary inspection intervals for components containing

residual stresses and small flaws more accurately.
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Prozessmodell zum Einbringen von Eigenspannungen durch Festwalzen

J. Maierhofer’, H.-P. Génser', R. Pippan®

" Jiirgen Maierhofer, Materials Center Leoben Forschung GmbH, RoseggerstraBe 12, A-8700 Leoben;
juergen.maierhofer@mcl.at; Fax +43 384245922-5
! Hans-Peter Génser, Materials Center Leoben Forschung GmbH, RoseggerstraBe 12, A-8700 Leoben
2 Reinhard Pippan, Erich Schmid Institute of Materials Science, Jahnstrale 12,A-8700 Leoben

Kurzfassung

Defekte an Wellen fiihren zu einer deutlichen Reduktion der Lebensdauer. Festwalzen bietet
eine einfache Moglichkeit, Risswachstum an Defekten zu verlangsamen oder {iberhaupt zu
verhindern, vorausgesetzt die FehlergroBBe Ttberschreitet nicht die Einflusszone der
eingebrachten Druckeigenspannungen. Im Rahmen dieser Arbeit wird ein einfaches
Prozessmodell vorgestellt mit welchem es moglich ist, die Eindringtiefe von

Druckeigenspannungen abzuschétzen.
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Einleitung

Ein kiirzlich erschienener Uberblick [1] iiber Betriebsfestigkeit und Schadenstoleranz von
Radsatzwellen weist unter anderem auf die Bildung von Ermiidungsrissen an
Korrosionsgriibchen, Steinschligen (welche auf Hochgeschwindigkeitsstrecken erhoht
auftreten) und an nichtmetallischen Einschliissen hin. An GegenmalBnahmen wird neben
Beschichtungen zur Vermeidung von Korrosion und Steinschlag auf eine Erhdhung der
metallurgischen Reinheit wie Elektroschlacke-Umschmelzen sowie auf Warmebehandlungen
und Festwalzen zum Einbringen von Druckeigenspannungen verwiesen.

Im vorliegenden Beitrag wird ndher auf das Festwalzen und seine Auswirkungen auf die
Schadenstoleranz eingegangen. Insbesondere werden einige einfache Faustformeln abgeleitet,
um in Abhingigkeit der Geometrie von Werkstick und Werkzeug die notwendigen
Festwalzkrifte und die daraus resultierenden Eigenspannungsfelder abzuschétzen. Dariiber
hinaus werden Aussagen iiber die Stabilitdt der Eigenspannungen getroffen. Dies gestattet in
weiterer Folge, den Einfluss dieser Eigenspannungen auf die Wachstumsfdhigkeit
moglicherweise vorhandener Ermiidungsrisse abzuschitzen. Somit kann bereits in frithen
Phasen der Auslegung mit geringem Aufwand Dbeurteilt werden, ob eine

Oberflichenbehandlung durch Festwalzen notwendig und zielfiihrend erscheint.

Problemstellung, Ziel und Ablauf der Untersuchungen

Es existieren eine Reihe unterschiedlicher Werkzeuge zum Festwalzen von Radsatzwellen.
Diese Werkzeuge werden mit deutlich unterschiedlichen Anpresskréiften beaufschlagt, um die
gewiinschte Wirkung zu erzielen; die Ermittlung der optimalen Anpresskrifte erfolgt
iiblicherweise in aufwéndigen Versuchsreihen. Mit dem Ziel der Bestimmung des Einflusses
des Festwalzwerkzeuges auf die resultierenden Eigenspannungen wurden Radsatzwellen mit
zwel verschiedenen Werkzeugen A und B nach dem Vorschubverfahren festgewalzt und
anschlieend die Eigenspannungsverldufe bestimmt. Ergénzt wurde diese Versuchsreihe
durch Literaturdaten aus dem Projekt MARAXIL [2] (d; = 85 mm, r; =2,5 mm). Zusétzlich
wurden Laborproben kleiner Abmessungen festgewalzt, um den Eigenspannungsabbau unter

Betriebsbeanspruchung zu quantifizieren. Im Vergleich zum Projekt MARAXIL weisen die
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Festwalzrollen A und B deutlich groBere Durchmesser ) und Rundungsradien 73 auf, sodass

insgesamt ein breiter Bereich moglicher Werkzeuggestaltungen abgedeckt wird.

@ d,

@ d,

Abb. A.l1: Festwalzen von Wellen nach dem Vorschubverfahren; d; Durchmesser der

Festwalzrolle, r; Radius der Festwalzrolle, d, Wellendurchmesser,

Wellenradius, 73 axialer Kriimmungsradius der Festwalzrolle,

Kriimmungsradius der Welle (— bei zylindrischen Wellen).

r

axialer

Fiir die experimentellen Versuche wurde der Vergiitungsstahl 25CrMo4 gewihlt, welcher

typischerweise als Material fiir Eisenbahnwellen verwendet wird. Dieser Stahl hat eine

bainitische Mikrostruktur und ein Hérte von ~ 245 HV. Die im Zugversuch ermittelte

FlieBgrenze liegt bei 512 MPa, die Zugfestigkeit betrdgt 674 MPa bei einer Bruchdehnung

von 18.9%.

30



Publication A

Einbringen von Eigenspannungen durch Festwalzen — Versuch

und Modellbildung

Beim Festwalzen werden FEigenspannungen durch die plastische Verformung der
oberflichennahen Werkstoffschicht hervorgerufen: das plastische Eindriicken in radialer
Richtung bewirkt bleibende plastische Dehnungen in Ladngs- und Umfangsrichtung; diese
Dehnungen werden durch elastische Stauchung in Lings- und Umfangsrichtung kompensiert,

wodurch Druckspannungen an der Oberflidche entstehen.

(d) (e)

Abb. A.2: Finite-Elemente-Simulationen des Werkzeugkontakts — Radsatzwelle mit

Werkzeug A; (a) Finite-Elemente Modell, (b) Kontaktbereich, (c) plastische
Zone, (d) Axialspannungen wihrend des Anpressens des Werkzeuges, (e)

Axialspannungen nach Entfernen des Werkzeuges.
Abb. A.2 zeigt die Verformungs- und Spannungsfelder, welche durch das radiale Anpressen

des Werkzeuges an das Werkstiick entstehen, vorerst ohne Werkzeugbewegung in Umfangs-

und Langsrichtung. Das Finite-Elemente-Modell fiir das Anpressen des Werkzeuges A an
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eine Radsatzwelle aus 25CrMo4 mit 190 mm Durchmesser ist in Abb. A.2a dargestellt. Es
stellt sich ein ellipsenformiger Kontaktbereich mit fast konstanter Flachenpressung ein
(Abb. A.2b). Darunter bildet sich eine plastische Zone aus, welche bis in eine Tiefe ¢, reicht
(Abb. A.2c). Wihrend des Anpressens entstehen Spannungen in Langsrichtung der Welle
(Abb. A.2d), welche sich in der Ndhe der Oberfliche beim Entfernen des Werkzeugs noch
etwas umlagern und so schlieBlich die Eigenspannungen ergeben (Abb. A.2¢).

Die numerische Simulation des Anpressens ergibt direkt an der Oberfliche
Zugeigenspannungen in Liangsrichtung, welche erst etwas unterhalb der Oberfliche in
Druckspannungen mit einer Reichweite von ¢ in die Tiefe umschlagen. Durch die Rotation
des Werkstiicks beim Festwalzen stellt sich dieser Verlauf gleichermaBlen entlang des

gesamten Werkstiickumfangs ein.

0
8 9 10
-100 Tiefe [mm]
-200
g
s -300
o
5 -400
c
g 500
) G
= -
S -600 {BF°
w 00 Y --0--Radsatzwelle Werkzeug A (Welle1) —o Radsatzwelle Werkzeug A (Welle 2)
L 7 ;
.g —e Radsatzwelle Werkzeug A (Welle 3) —e—Radsatzwelle Werkzeug A (Welle 4)
©
-800 —&-Radsatzwelle Werkzeug B (Welle 5) ——Literaturdaten Maraxil [4]
-900
-1000

Abb. A.3: Experimentell bestimmte Eigenspannungen in festgewalzten Radsatzwellen.

In Abb. A.3 sind die an Radsatzwellen ermittelten Eigenspannungsverldufe, welche mit
unterschiedlichen Werkzeugen eingebracht wurden, dargestellt. Im Gegensatz zur Simulation
werden im Experiment direkt an der Oberfldache bereits Druckeigenspannungen beobachtet;
der Grund dafiir ist in einer weiteren Spannungsumlagerung aufgrund der zyklischen
Plastizierung beim mehrfachen Uberrollen zu sehen. Die Hohe der Druckeigenspannungen an
der Oberfliche liegt bei allen untersuchten Werkzeuggeometrien im Bereich der Fliegrenze.

Wihrend eine detaillierte numerische Simulation des Festwalzvorganges mit mehrfachem
Uberrollen und genauer Beriicksichtigung des zyklischen Verfestigungsverhaltens inzwischen

— wenngleich unter hohem Rechenaufwand — moglich ist und z.B. im Forschungsprojekt
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MARAXIL durchgefiihrt wurde, soll an dieser Stelle ein einfacherer Zugang gewahlt werden,
der sich fiir erste {berschligige Abschidtzungen und den Vergleich verschiedener
Festwalzwerkzeuge besser eignet.

Dazu fassen wir die soeben beschriebenen Beobachtungen in einem vereinfachten

Prozessmodell nach dem Schema in Abb. A.4 wie folgt zusammen:

- Zwischen Werkzeug und Werkstiick bildet sich eine anndhernd elliptische Kontaktflache;
in dieser Kontaktfliche herrscht eine weitestgehend konstante Flachenpressung vom
ungefahr Dreifachen der Streckgrenze (Abb. 2b).

- Die hohen Kontaktspannungen fiihren zu einer plastischen Verformung bis in eine Tiefe #,
(,,Eindringtiefe der plastischen Verformung®).

- Die plastische Verformung fiihrt zu Druckeigenspannungen, welche an der Oberflidche in
Langsrichtung die GroBenordnung der FlieBgrenze erreichen (Abb. 3).

- Diese Eigenspannungen gehen in grober Nidherung mit zunehmendem Oberflichenabstand
in die Tiefe linear zuriick (Abb. A.3) und erreichen den Wert Null bei einer Tiefe ¢

(,,Eindringtiefe der Druckeigenspannungen®, schematisch in Abb. A.4).

Eigenspannung o,

T

&

Tiefe x

Abb. A.4: Prozessmodell fiir das Einbringen von Eigenspannungen (schematisch).

Zur vollstandigen quantitativen Festlegung des Modells sind nun noch die Eindringtiefen ¢,
und #; zu bestimmen. Aufgrund von Ahnlichkeitsiiberlegungen kann erwartet werden, dass
diese Eindringtiefen proportional zueinander und zum kleinen Halbmesser der Kontaktellipse
(Kontakthalbbreite) 5 sind. Zur groben Abschitzung der Kontakthalbbreite unter
Berticksichtigung der Anpresskraft und der Kriimmungen der Kontaktkorper eignet sich die
Hertzsche Theorie. Aufgrund der Annahme rein elastischen und damit im Vergleich zum

tatsdchlichen elastoplastischen Kontakt zu steifen Verhaltens wird allerdings im Hertzschen
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Kontakt bei gleicher Anpresskraft die mittlere Flachenpressung deutlich iiber- und die
Kontakthalbbreite deutlich unterschétzt (vgl. Werte von FE-Simulation und Hertzscher
Losung in Tab. A.1).

el—
M

il

foll—

; i A
YOIy evyy *pﬁaﬂi

Abb. A.5: Eindriicken eines Flachstempels in einen starr-idealplastischen Halbraum.

Grofle FEM Hertz Prandtl Messung
Anpresskraft ' 1 1 1 1
mittlere Flaichenpressung p, 1 2,13+£0,37 0,98+0,08 -
Kontakthalbbreite b 1 0,67+0,09 0,97+0,08 -
Eindringtiefe der plastischen Zone ¢, 1 - 0,67+0,08 -
Eindringtiefe der Eigenspannungen ¢ 1 - - 1,02+0,29

Tab. A.1: Normierte Grofen des Prozessmodells (Mittelwert + Standardabweichung); auf die
Ergebnisse der Finite-Elemente-Simulationen (FEM) bezogene Werte; statistische

Auswertung tiber verschiedene Festwalzpaarungen.

Hingegen zeigt die Prandtlsche Losung [3, 4, 5] fiir das Eindringen eines Flachstempels der
Breite 2bpangy in einen starr-idealplastischen Halbraum (Abb. A.5) eine bemerkenswert gute
Ubereinstimmung mit der Flichenpressung aus den FE-Simulationen. Aufgrund der im
Vergleich zur Hertzschen Theorie nun kleineren Flachenpressung bei der Prandtlschen
Losung muss, unter der Annahme von geometrisch &hnlichen Kontaktellipsen, die
Kontakthalbbreite b grofer sein als bei der Hertzschen Losung.

Die Kontakthalbbreite fiir die Prandtlsche Losung ist aufgrund des nichtkonformen Kontakts

nicht von vornherein bestimmt; sie kann aber unter der Annahme, dass die Halbachsen der
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Kontaktellipse das selbe Verhiltnis haben wie bei der Hertzschen Losung, aus der mittleren
Pressung (1) bei gegebener Festwalzkraft abgeschétzt werden. Diese aus der Prandtlschen
Losung abgeschitzte Kontakthalbbreite zeigt ebenso wie die Flachenpressung eine gute
Ubereinstimmung mit den FE-Simulationen (siche Tab. A.1). In Tab. A.l1 sind die
malgeblichen GroBlen des Kontaktproblems bezogen auf die Ergebnisse der FE-Simulation
zusammengefasst. Zur Erstellung von Tab. A.1 wurden alle Festwalzpaarungen bewertet,
sodass zu jeder Grofe sowohl der Mittelwert als auch die empirische Standardabweichung
iiber alle Geometrien angegeben werden kann.

Das Prandtlsche Gleitlinienfeld gestattet nun die Tiefe der plastischen Zone #, analytisch

abzuschitzen. Die entsprechenden Beziehungen lauten

Pprandt = 2.97 0%, (1)
tp pranda = 1,414+ bprandil » 2)
wobei fiir die FlieBspannung or die 0,2%-Dehngrenze R0, verwendet werden kann.

Die Kontakthalbbreite der Hertzschen Losung l4sst sich an Hand von Tab. A.1 mit
bitertz = (0,69 £ 0,11) - bppy gy ©)

aus der Prandtlschen Losung abschédtzen.
Die FEindringtiefe der Druckeigenspannungen f# wird schlielich als proportional zu ¢,
angenommen. Der Proportionalititsfaktor ergibt sich aus der Auswertung der FE-

Simulationen zu

t
M 1,3840,10 @)
fp FEM

Durch den Vergleich von Messung und Simulation ergibt sich schlieBlich die tatsdchliche

Eindringtiefe:
tS
=1,02+0,29 (5)
Is FEM

Vereinfachtes Prozessmodell zur Abschéitzung der durch das
Festwalzen eingebrachten Eigenspannungen

Zusammenfassend kann also der Verlauf der Eigenspannungen in Axialrichtung o iiber dem

Abstand von der Oberflache x gemél Abb. A.4 als linear angenommen werden mit
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e = Ryo -(i - 1} ©6)

fiir 0 <x <t

Die Eindringtiefe der Eigenspannungen #; wird iiber die Proportionalitit zur Tiefe der
plastischen Zone t, berechnet; ¢, wird dabei iiber eine Kombination von Hertzschem und
Prandtlschem Modell ermittelt. Mit den mittleren Werten aus Tab. A.1 errechnet sich die
fiktive mittlere Flichenpressung fiir das Hertzsche Modell zu

PrmHertz = % P Prandtl = % -2.97- 0 = (6,46 £1,24) - 0 ~ (6,46 £1,24)- Ry, (7)
Damit ist aus den iiblichen Beziehungen fiir den Hertzschen Kontakt die Kontakthalbbreite
(die kleine Halbachse der Kontaktellipse) byer, abzuschitzen. Aus byen, wird iiber die
Prandtlsche Losung und die entsprechende Korrektur zur FEM-Losung die Eindringtiefe der
plastischen Zone abgeschitzt:

_t fo Prandtl = _t L414 - bpyngn = (2,11£0,25) - bp gy =
0,67+0,08 * 0,67+0,08 ' (8)
~(3.05%£0,61) - byyer,

Ly FEM =

Die tatsdchliche Eindringtiefe der Eigenspannungen ergibt sich schlieBlich aus (3, 4, 5, 8) zu
ts=(1,02+0,29) £, ppy =(1,02£0,29)- (1,38 £ 0,10) - ty FEM = (2,97£0,94) - bpypgn ®

~(4,43£1,58) by, - ©

Beanspruchung und Stabilitit der Eigenspannungen

Die Gesamtspannung im Bauteil — also die Summe aus Eigen- und Lastspannungen — darf an
keiner Stelle und zu keiner Zeit die FlieBspannung iiberschreiten; andernfalls kommt es zu
plastischem FlieBen und zu sofortigem Abbau der Spannungen bis auf die FlieBspannung. Bei
festgewalzten Bauteilen unter (umlaufender) Biegebeanspruchung ist direkt an der
Bauteiloberfliche die Vergleichsspannung nach Tresca gleich der Summe aus Eigen- und
Lastspannungen in Axialrichtung. Es liegt also nahe anzunehmen, dass die verbleibenden
Eigenspannungen genau der FlieBspannung abziiglich der hochsten im Betrieb auftretenden

Lastamplitude entsprechen.
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Diese Hypothese wird durch Versuchsergebnissen an festgewalzten Laborproben bestitigt;
Abb. A.6 zeigt den Eigenspannungsverlauf nach dem Festwalzen, nach 10 und nach 1000
Lastwechseln unter Umlaufbiegebeanspruchung mit einer Lastamplitude von 500 MPa.
Bereits nach nur 10 Zyklen haben sich die Eigenspannungen weitgehend abgebaut; nach 1000
Zyklen liegen sie bei etwa 50 bis 100 MPa. Bei kleinerer Lastamplitude von 360 MPa bauen
sich die Eigenspannungen nicht so stark ab und sind mit dem Eigenspannungsverlauf nach 10
Zyklen und 500 MPa Lastamplitude vergleichbar. Diese Eigenspannungsverteilungen ergeben
sich gemdl} obiger Hypothese durch Subtraktion der Lastamplitude von der FlieBspannung
(im Gegensatz zur FlieBgrenze ist hier besser der Mittelwert aus FlieBgrenze und
Zugfestigkeit zu verwenden, fiir 25CrMo4 ca. 600 MPa).

Umgelegt auf biegebeanspruchte Bauteile bedeutet dies, dass sich durch den Betrieb die
Eigenspannung an der Oberfliche um den Betrag der hochsten auftretenden Lastamplitude
verringern wird. Bei Hochstlasten in der GroBenordnung von 150 MPa fiir 25CrMo4
verbleiben damit immer noch oberflichennahe Eigenspannungen von etwa 250 bis 350 MPa

stabil liber die Einsatzdauer.
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Abb. A.6: Abbau von Figenspannungen — mittels Rontgendiffraktometrie ermittelte
Eigenspannungsverldufe an festgewalzten Laborproben; nach dem Festwalzen,
nach 10 und nach 1000 Lastwechseln mit einer Amplitude von 500 MPa bzw.
nach 10" Lastwechseln mit einer Amplitude von 360 MPa (Umlaufbiegung).
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Eigenspannungen und Schadenstoleranz

Da sich die Eigenspannungen den Lastspannungen als statische Mittelspannungen iiberlagern,
kann der Sicherheitsnachweis einerseits mit herkdmmlichen Methoden der Betriebsfestigkeit
erfolgen. Andererseits kann auch ein Nachweis der Gebrauchseignung unter Annahme eines
bestehenden Ermiidungsrisses gefiihrt werden. Die Grofle des anzunehmenden Risses richtet
sich dabei nach der Detektionsgrenze des in der Instandhaltung angewandten
zerstorungsfreien Priifverfahrens, wodurch eine Abschitzung von Inspektionsintervallen

mithilfe von Methoden der Schadenstoleranz mdglich wird [6].

Zusammenfassung

Festwalzen stellt ein einfaches und kostengiinstiges Verfahren zur Erhohung der
Schadenstoleranz von Bauteilen durch Einbringen von Druckeigenspannungen dar. Die in
diesem Beitrag vorgestellten, durch Versuchsergebnisse abgesicherten Faustformeln erlauben
einen Vergleich von Festwalzwerkzeugen hinsichtlich der erreichbaren Eindringtiefen der
Druckeigenspannungen und der dazu notwendigen Festwalzkrifte sowie eine Abschdtzung
des Eigenspannungsabbaus aufgrund betrieblicher Lasten. Damit kann bereits in den ersten
Stadien der Auslegung eine Entscheidung getroffen werden, ob der Einsatz des
Festwalzverfahrens nach technisch-wirtschaftlichen Gesichtspunkten notwendig und sinnvoll

erscheint.
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Abstract

A typical fatigue crack growth curve consists of the threshold region, the Paris region (linear
in a logarithmically scaled diagram) and the transition region from the Paris region to unstable
crack growth. For cracks exceeding a certain material-dependent length, this curve depends
only on the load ratio R and is well described by commonly accepted crack growth models
such as the Forman/Mettu (NASGRO) equation. However, cracks below this length typically
grow significantly faster due to the absence of crack-closure effects, leading to an additional
dependence of the crack growth curve on the crack extension Aa. In this paper, a simple
analytical model for describing the crack growth behavior for any crack length and load ratio
R is presented. For the QT steel 25CrMo4, the model is applied to describe the crack growth

behavior for different crack length and load ratios between -3 and 0.5.
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Introduction

To estimate life-time or inspection intervals of components it is crucial to obtain a reliable
estimate for the growth of fatigue cracks which may potentially pre-exist or have been
initiated during operation. The analytical description of crack growth under cyclic loading,
with the maximum stress omax, the minimum stress o, and the stress range Ao = Omax — Omin
as well as the respective stress intensity factors Kpa.x, Kmin, AK for any load ratio

R = Omin / Omax = Kmin / Kmax and crack extension Agq, is based on the crack growth equations
according to Erdogan/Ratwani [1] and Forman/Mettu [2] including Newman’s model for
plasticity-induced crack closure [3]. A summary and short discussion of these equations can
be found in [4]. It is known that short cracks are able to grow below the threshold for long
crack growth, and that they can grow significantly faster than long cracks at the same cyclic
stress intensity factor range [5, 6, 7]. Commonly used crack growth models cannot describe
short crack growth with sufficient accuracy or do not consider this behavior at all, which may
lead to non-conservative lifetime predictions (cf. Fig. B.1) with potentially disastrous

consequences.
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Fig. B.1: Crack propagation behavior in a bending sample with a 1 mm deep notch. The data
illustrates that conventional models are not able to describe the behavior of short
cracks. The final crack extension Aa at the stress range of 131 MPa is about

185 um. In deep sharp notched specimens, the typical crack extension for crack

arrest is between 1 mm and 3 mm at a load ratio of R = -1.
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Aa
o

aoH

a

Ao, A1, 4>,

AKipefr

Nomenclature

constraint factor, . = 1 for plane
stress and oo = 3 for plane strain
crack extension length

notch depth

fictitious intrinsic length scale
following El1 Haddad

total crack length

polynomial coefficients of
Newman'’s crack opening function
thickness of specimen

crack growth constant

curve control coefficient

fatigue crack growth rate

crack opening function

crack velocity factor

crack velocity factor according to
long cracks

applied load amplitude

initiation fracture toughness

stress intensity factor range

stress intensity factor range for long
crack growth at R =0

threshold of stress intensity factor
range for crack propagation
intrinsic (effective) threshold stress

intensity factor range

AKip e

p.q

Ao

OF

amax

Omin

w

long crack growth threshold stress

intensity factor range
stress intensity factor

fracture toughness

maximum stress intensity factor

minimum stress intensity factor

opening stress intensity factor

fictitious length scales

length of specimen

Paris exponent

empirical constants describing the
curvatures that occur near the
threshold and near the instability
region of the crack growth curve,
respectively

load ratio

span

stress range

flow stress (average between uniaxial
yield stress and uniaxial tensile
strength)

maximum applied stress

minimum applied stress

weighting factors

width of specimen
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There are different types of short cracks which are broadly classified in microstructurally
short cracks, mechanically short cracks, physically short cracks and chemically short cracks
[5]. Microstructurally short cracks are comparable in size to the scale of the characteristic
microstructural dimension. Mechanically short cracks are comparable to the near-tip plastic
zone, or are engulfed by the plastic strain field of a notch. Physically short cracks are
significantly larger than the characteristic microstructural dimension and the scale of local
plasticity, and typically have lengths smaller than a millimeter or two. Chemically short
cracks exhibit apparent anomalies in their propagation rate below a certain crack size [5]. The
purpose of the present contribution is to create a crack growth model which is able to describe
the growth rate of cracks of arbitrary length under the condition of small scale yielding, i.e.,
for physically short cracks. At first, the approach describing the crack growth behavior by
considering the build-up of crack closure will be described (Section 2), followed by

experimental verification of the modified NASGRO equation (Section 3).

Analytical description of the crack growth behavior

The following considerations on crack growth behavior are based on a mechanical model as
shown in Figure B.2a. Starting from a sharp notch with depth ao, a crack of length Aa is
growing. The sharp notch can be regarded as a crack of length ay which is not subject to any
crack closure. Therefore the stress intensity factor range is calculated via AK ~ Ao(na)"?
using the total crack length a = ap+ Aa, whereas the build-up of crack closure does only

occur on the crack extension Aa.

In what follows, the NASGRO equation according to Forman/Mettu [2],

[l_AKm ]
_ V4
da_coppgm A K op gy o (BKZAK,)" "
w Ko | (K.~ KV
S

C

will be discussed and then modified to take account of the short crack behavior (i.e., the
deviation from the long crack propagation behavior for small Aa).

Eq. (1) represents all three branches of the crack growth curve (Fig. B.2b): the fatigue crack
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growth threshold AKy, gives the position of branch I; the parameters C and m and the crack
velocity factor F discussed below describe the Paris region (branch II); the fracture toughness
K. determines the transition to unstable crack growth (branch III). In addition, the curvatures
of the transitions between the different branches can be adjusted by means of the parameters p

and g.

(@) (b) deian §
(log} m

@

AKy, (1-R)K.  AK (log)

Fig. B.2: (a) Schematic illustration of the used mechanical model; (b) typical shape of fatigue

crack growth curve for long cracks for a constant load ratio R.

However, the exact position of each of the three branches is influenced by the load ratio R:
although not denoted explicitly in Eq. (2), the threshold AKy, (describing branch I) and the
crack velocity factor F' (describing the location of branch II) depend on R. Likewise, the
location of branch III in the da/dN vs. AK curve also depends on R, because Kp.x = AK / (1-
R). Therefore, for Ky, = K. one obtains AK = (1-R) K.. All influences from load ratio and
crack opening behavior will be discussed in more detail below.

Setting p = m and ¢ = 1 independent of R for simplicity, one obtains

%:C.F.M:C.F.(M_Mth)m'
dv K. . 1 AK @)
] ——m 1—— />
K. I-R K,

To adjust the simplified NASGRO equation (2) to the behavior of short cracks, one has to
take into account

- that short cracks are able to grow below the threshold for long crack growth and
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- that short cracks grow significantly faster than long cracks at the same stress intensity
factor range, most notably in the low and medium near threshold regime, the Paris region.

The former effect can be modeled by introducing a dependence on the crack extension Aa into

the expression for the crack growth threshold AKy, the latter effect by modifying the crack

velocity factor /' according to the influence of Aa.

Analytical description in the threshold region

In the original formulation of the NASGRO equation [2, 4], the dependence of the threshold

for crack growth propagation on the load ratio R is approximated by

p - f ~(1+CyR)
ARy =AKq Va+ag, {(1—/10)(1—13)} ’ €)

where AK| is the threshold for long crack growth at R =0, and Cy, and A4, are additional

adjustment parameters.

The crack opening function f= K.,/ Kmax, 1.6., the ratio of crack opening stress versus
maximum applied stress, is used to model the influence of various crack closure mechanisms.
Newman [3] achieved, based on finite element simulations of plasticity-induced crack closure

for long cracks, the following analytical approximation for the crack opening function:

max(R; 4, + AR+ A,R* + A,R*) for R>0,

f=14,+A4R for-2<R<0, 4)
A, —24, forR<-2
with
e
4, =(0.825- 0,340 + 0,050 {cos(”"mﬂ :
207%

O-max

A4, =(0,415- 0,071a)a—, (3)
F

A, =1—A)— 4 — A4,
A =24, + A4 1.
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In what follows, the values on./or =0.3 and o =3 are assigned, as it applies for
approximate plane strain condition and largely elastic crack behavior; for a more detailed
discussion of these parameters see [3, 4].

In Eq. (3), aon is a fictitious intrinsic length scale based on the concept of El Haddad [8] for
the approximate consideration of short crack effects. As a consequence of this approximation
a crack of total length a = 0 shows a threshold value of 0. Such an increase of AKy, with crack
extension might be interpreted by the build-up of crack closure until a = ao . At least in the
presence of an initial notch ay, see Fig. B.2a, this concept proves to be unsustainable because
only the crack extension Aa and not the total crack length a is relevant to the build-up of crack
closure effects. Furthermore, also in the absence of crack closure the threshold value is not 0
but equal to the effective threshold for crack propagation AKy . For these reasons, the

application of the El Haddad correction is not considered (i.e., ap g = 0), and one obtains

—(1+C,R)
1-—
/ } (6)

AK :AKO{
’ (1-4,)1-R)

In what follows, Eq. (6) is exclusively used to describe the R dependence of the long crack
threshold.

For the description of the threshold build-up starting from the intrinsic value of AKy s at a
crack extension of Aa =0 to the long crack growth threshold AKy, . at large Aa, the empirical

approach

i=1

n Aa
AK = AK yoq + (AK ) —AK ) - |:1 - ZVI' : exp(— I_J:| (7)

with the constraint
D v =1 8)

is proposed. The /; can be interpreted as fictitious length scales for the formation of crack

closure effects (see Fig. B.3), similar to ao i, and may be determined in conjunction with the v;
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by fitting of the experimentally obtained crack growth resistance curve (AKy, plotted against
Aa), as shown later. The basic physical idea behind this approach is that each closure
mechanism requires a certain crack extension length to build up completely. A similar
approach has been proposed by McEvily [9], using a single fictitious length related to the

crack opening stress intensity factor.

AK A

AKth,h: B e it T

1
roughness-induged crack closure
1

1

1

1 1

L plasticity-inducéd crack closure
i i

] 1

1
1
1
1
1

AK‘[h,eff

intrinsic (effecti:ve) threshold

R
>

Aa

I, 1,

Fig. B.3: Illustration of the build-up of crack closure due to plasticity induced crack closure

and roughness induced crack closure mechanisms with fictitious length scales /;.

Analytical description in the Paris region

In the original formulation of the NASGRO equation [2, 4], the crack velocity factor

_(1=1Y
F_(I—Rj ©)

describes the position of region II depending on the load ratio R for long cracks (large crack
extensions Aa).

For cracks with arbitrary crack extension Aa, an empirical approach for the crack velocity
factor F' is developed similar to the adjustment in the threshold region. Because the crack
growth rate is influenced by the same crack closure mechanisms as the crack growth

threshold, in analogy to Eq. (7) the approximation
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F=1—(1—Flc)-{1—2vi -exp(—%ﬂ (10)

i=1

with

(o
I1-R

and unchanged values for the /; and v; is chosen in place of Eq. (9).

(11)

Finally it should be noted that in reality the relative contributions of crack closure — i.e. the
values of v; and v, — depend on AK and R. In addition the characteristic lengths to build up the
different crack closure mechanisms are functions of AK and R. Therefore the v; and /; are
affected by AK and R. The assumption that the v; and /; are independent of AK should be well
fulfilled near the threshold and lower Paris regime. In this case the different contributions of
crack closure are similar to those at the threshold. However in the mid and upper Paris regime
this is different. The plasticity induced crack closure becomes more dominant compared to
roughness and oxide induced crack closure, i.e., the relative contributions of plasticity
induced crack closure v; increases and the relative contribution of roughness and oxide
induced crack closure v, and v; decrease. Furthermore, the characteristic length /; to build up
plasticity induced crack closure increases, because the plastic zone size increases. If /; <<
and v; =v, (see next section), the increase of /; is partly compensated by the change of the
ratio v;/v,. Hence the simplification that ' does not depend on AK should give a satisfactory
approximation of the real increase of crack closure in the near threshold as well as in the Paris
region.

Figure B.4b shows the dependence of the crack velocity factor F' on the load ratio R and the
crack extension Aa in graphical form. At all load ratios R below 0.5, a clear difference
between short and long crack behavior is recognized.

The crack velocity factor F' is based on Newman’s crack opening function f, Figure B.4a, and
adjusted according to the crack extension, cf. Eqns (10) and (11). Basically, F =1 is assigned
to the unreduced growth rate of a crack where no crack shielding occurs, i.e., where the
maximum stress intensity factor in a load cycle Knax acts to its full extent as a driving force
for crack opening K, or where /=K, / Kmax = 1. Wherever crack closure mechanisms are

present, one obtains f< 1 and F'< 1.
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Fig. B.4: (a) Crack opening function f from Eq. (4) and (b) crack velocity factor /' from
Eq. (10) for different crack extensions Aa depending on the load ratio R.

Experimental verification

For model calibration, experiments on typical standard fracture mechanic samples — i.e. deep
notched specimens — were tested. For the verification of the proposed equation to describe the
fatigue crack propagation, in addition different fatigue experiments on short notches were

performed.

Material and experimental procedure

As material for the experimental investigations, the QT steel 25CrMo4 widely used for
drivetrain components was chosen. The material has a bainitic microstructure and a hardness
of ~245 HV10. In the tensile test, a 0.2% offset yield stress of 512 MPa, a tensile strength of
674 MPa, and an elongation at fracture of 18.9% are obtained.

For determining the fatigue crack propagation behavior, SENB (Single Edge Notched
Bending) specimens measuring L = 100 mm, B = 6 mm, W = 20 mm (cf. Fig. B.5a)with
different notch depths a¢ (0.35mm, 1 mm, 5.3 mm) were machined. The latter one
corresponds to a sample for a standard fatigue crack growth experiment. The notches were
sharpened by means of razor blade polishing with diamond paste (1 um). The samples were

then compression pre-cracked at a load ratio of R =10 to obtain a fatigue pre-crack (cf.
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Fig. B.5b). Due to tensile residual stresses from compression pre-cracking, the pre-crack is
fully open so that crack closure effects can be excluded at the beginning of the crack growth
experiment, see also [10, 11]. The applied stress intensity to generate the pre-crack was taken
as small as possible — AK of about 20 MPa m'"? — in order to reduce the residual stress
affected region in front of the pre-crack , and more than 10* cycles were used. The pre-crack
measured from the notch root has typically a length between 20 — 80 pm. The notch root
radius was usually smaller than 10 pm hence standard fracture mechanics equations to

determine AK could be applied.

Fig. B.5: (a) SENB specimen with thickness B = 6 mm, length L = 100 mm and width
W =20 mm. (b) notch details: I machined notch, II razor blade polishing, III

compression pre-crack.

The experiments are performed at room temperature under laboratory conditions for three
different load ratios R of 0.5, —1 and —3. The samples are subjected to cyclic loading under
eight-point bending (cf. Fig. B.6) in a resonance test rig at a testing frequency of 108 Hz. The
crack growth is measured using the direct current potential drop (DCPD) method. Any

temperature influence on the measured electric potential drop due to the Seebeck effect at
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bimaterial junctions is excluded by periodic switching of the direction of the electric current

and subsequent averaging. Crack arrest was defined as the (averaged) crack growth rate

falling below a value of at most 6-10°* mm/cycle.

Fig. B.6: Loading setup for eight-point bending test.
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Fig. B.7: Schematic illustration of the loading procedure of a test to determine the R-curve for

the fatigue crack propagation threshold and the fatigue crack growth curve at a

constant load ratio [12].
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The experiments are conducted under step-wise increasing constant loads as proposed by
Tabernig [12]. The procedure is schematically illustrated in Fig. B.7. For load amplitudes
which correspond to AK values smaller than the effective threshold AKu e, no crack
propagation is observed. For load amplitudes which correspond to AK values larger than
AK e, the crack starts to propagate. The crack grows initially, but after a certain crack
extension Aa crack arrest occurs due to the build-up of crack closure. Subsequently, the load
is increased so that the crack can grow further. In this way, the resistance curve for the
threshold of stress intensity factor range is obtained point by point (Fig. B.7, Fig. B.8). As

soon as the crack starts to grow through, one gets the crack growth curve. At that crack

extension, crack closure has already built up completely.

1E-5

1E-6

da/dN [mm/LW]

2
m
-
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1 ' 10
l AK [MPa m'?]
[]
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Fig. B.8: Experimental results for a constant load test at R = -1 with an initial notch depth of

5.12 mm; crack growth rate and derived points of the cyclic crack resistance curve.

The crack growth rates during these tests depend on the increased stress intensity range due to

crack extension on the one hand, and on the increased crack growth threshold due to the
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build-up of crack closure effects on the other hand. At very small crack extensions, the change
in stress intensity range is negligible and crack closure effects build up rapidly, which leads to
an immediate decrease of the crack growth rate and to crack arrest. For larger crack
extensions, the build-up of crack closure becomes much slower (the resistance curve becomes
very flat); under these conditions, the increase in stress intensity range due to crack extension
may initially be more pronounced than the increase of the threshold value, which leads to an
initial increase in crack growth rate until sufficient crack closure has developed, as in the case

F,=1379 N in Fig. B.8.

Experimental results

Since all experiments started with closure free pre-cracks the results show the expected
behavior as illustrated in Fig. B.7. For short crack extension the crack grows initially at stress
intensity factor ranges below the threshold for the stress intensity factor range for long cracks.
Due to the build-up of crack closure crack arrest occurs eventually. Fig. B.8 shows
exemplarily the results for a specimen with an initial notch depth of 5.12 mm tested at a load
ratio of R = -1. In this experiment, crack arrest occurs at four load amplitudes. The crack
extensions Aa where the crack stops to propagate and the corresponding AK provide in this
case four points of the resistance curve for the threshold of stress intensity factor range. The
asymptotic value (for large Aa) of the resistance curve for AKy, is obtained from the threshold
branch of the fatigue crack growth curve. The effective threshold — the starting point of the
resistance curve for AK;, (Aa = 0) — has not been determined at all load ratios and crack

172

lengths, as it is known to be typically about 2.5 MPa m " for ferritic steels.

Parameter determination

At first, the parameters for the load ratio dependent threshold of long cracks AKy . in Eq. (6)
are determined. To this purpose, the long crack thresholds AKy, . (R) are first extracted from
the resistance curves recorded at different load ratios R (Fig. B.9) and then plotted against the
load ratio R (Fig. B.10). Least-squares fitting of Eq. (6) to the data points in Fig. B.10 allows

to determine the adjustment parameter Cy,.
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Fig. B.9: Crack resistance curves: crack growth threshold AKy, vs. crack extension Aa for

different load ratios R — experimental data points and analytically predicted curves

from Eq. (7).
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Fig. B.10: Load ratio dependent long crack growth threshold — experimental data points and

analytically predicted curve from Eq. (6).

As it is assumed that the build-up of crack closure is similar at different load ratios, the
fictitious length scales describing the build-up of crack closure can be estimated for a single
resistance curve; in the present case, the resistance curve at R = —1 is chosen. AKy, s and
AKi e can be read directly from the resistance curve, cf. Fig. B.9. The length scales /; and /,
together with the weighting factors v, 1, are obtained by least-squares fitting of Eq. (7).

Now, the only remaining parameters are the crack growth constant C, the Paris exponent m,

and the fracture toughness K. K. is calculated using J; from an experimentally determined
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static crack resistance curve [4]; C and m are obtained by least-squares fitting of Eq. (2)'. The
crack velocity factor F'is calculated according to Eq. (10) with Fi. from Eq. (11), and AKy, is
calculated according to Eq. (7) with AKy ). from Eq. (6). Newman’s crack opening function f,
Eq. (4), is used without any modification. The model parameters determined from the

experiment are summarized in Table B.1.

Parameter Value Unit
C 760 nm / (MPa m1/2)
K. 131,56 MPa m1/2

m 1,42 -

a 3 -
Omux! OF 0,3 -
AKth,eff 2,5 MPa m1/2

AK) 8,5 MPa m1/2
Cy, 0,115 -

l 0,08 mm

L 1,55 mm

\ % 0,45 -

\ % 0,55 -

Table B.1: Parameters of the fatigue crack growth model for 25CrMo4.

10°

T T T T 1
1 5 10 50 500 1000
AK [MPa m 7]

Fig. B.11: Calculated fatigue crack growth curves at a crack extension Aa of 0 and 10 mm

and different load ratios R — analytical model.

' The relatively low value of 1.42 for m stems from the influence of the crack growth regions I and IIL. If only
the data points from region II are used to fit the Paris equation da/dN = C*AK", values between 2.7 and 2.8 are
obtained for the Paris exponent # at all load ratios R.

55



Publication B

Comparison of experimental results and model predictions

In Fig. B.11 the predictions of the proposed analytical crack growth model are shown for a
crack starting from a very sharp notch (Aa =0 mm) and for a crack after substantial growth
(Aa =10 mm), which can be seen as the limiting cases of a very short crack (no closure
effects) and a crack where closure effects are fully present. This implies for constant
amplitude loading and small scale yielding condition that no crack can grow faster than a very
short crack (dashed line), and that no crack can grow slower than a long crack (full line) at a
given load ratio R. It should be noted that the crack growth rate of a very short crack is in the
threshold region (branch I) and in the Paris region (branch II) independent from the load ratio

R; this can also easily be seen if the crack velocity factor F is evaluated for Aa =0 (cf. Eq.

(10) and Fig. B.4b).
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Fig. B.12: Comparison of experimentally determined long crack growth curves with curves

calculated using the analytical model.
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Fig. B.13: Growth of a short crack near the threshold region — comparison of experiment and
prediction; initial crack length ay = 0.81 mm; start parameters for the three curves:
curve (1): AK=5.04 MPa m’”, @ =0.853 mm; curve (2): AK=8.19 MPa m’”,
a=0.94 mm; curve (3): AK =9.27 MPam”’, a = | mm.

The proposed equation permits to describe quite well the R dependence of long cracks and the
fatigue crack growth behavior in deep sharp notches (the crack stopping behavior), as shown
in Figs A.11 and A.12. However, more essential is the description of the propagation behavior
from small flaws, as depicted in Fig. B.1. The growth of a short crack starting from a notch of
depth ap = 0.812 mm (R =-1) is calculated and compared with the measured data. Good
agreement between measurement and calculation is observed, cf. Figure B.13. The left
limiting curve corresponds to a crack extension Aa =0 (short crack behavior), the right to a
very large Aa (long crack behavior). In the first two load steps the crack slows down and stops
(curves 1, 2) due to the build-up of crack closure. Only after a further increase of the load
amplitude the crack grows, after an initial slight deceleration, finally through, in the course of

which it approaches the behavior of long cracks (curve 3).
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Fig. B.14: Growth of a short crack in the Paris region — comparison of experiment and
prediction; curve (1): initial crack length ao=3.97 mm, AK =17 MPa m"’,
a =3.97 mm; curve (2): initial crack length ap =3.975 mm, AK =20 MPa mo's,

a=3.975 mm.

The growth of a crack starting from a sharp notch of depth ap ~ 4 mm (R =-1) in the Paris
region is also calculated and compared with the measured data (Fig. B.14). The calculation
inclines to about two times higher crack growth rates. It is supposed that this behavior is due
to the much higher constant load in this test, leading to a larger plastic zone and increased
plasticity-induced crack closure compared to the tests at stepwise increasing constant load

used for model calibration.

Conclusions

It has been shown that, by mean of an analytical model for the build-up of crack closure
effects with increasing crack extension Aa, a modified NASGRO crack growth equation can

predict the crack growth rate for arbitrary crack lengths. With this model it is possible to

predict fatigue lifetime or necessary inspection intervals more accurately in the context of
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damage tolerant design and fitness-for-purpose assessments. It will be interesting to show
whether the fictitious length scales, which have here been determined by curve fitting, can be
related to flow stress and microstructural parameters; these investigations and experiments for
load ratios R <-1 and R > 0.5 are currently performed. Still, even without this direct relation
to physical length scales, the model has already proven useful for predicting the behavior of
short cracks; in this sense, it will be interesting to explore potential conceptual links to the

theory of critical distances as introduced by Taylor [13].
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Abstract

Fatigue cracks in cyclically loaded components usually initiate in areas of high stress
concentration. Such stress concentrations do not only occur due to the geometrical design of a
component, but also near material inhomogeneities or Foreign Object Damage (FOD). In the
context of a fitness-for-purpose (FFP) assessment, it is important to estimate the fatigue crack
growth rate as accurately as possible, e.g., for estimating inspection intervals for public
transportation. However, the crack growth rate depends not only on the applied load and crack
length, but also on residual stress fields introduced intentionally (surface treatment) or
unintentionally (FOD or inappropriate handling).

In this work, an analytical model for describing the fatigue crack growth rate of short cracks

(provided the conditions of LEFM are fulfilled) as well as of long cracks is developed. Also
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the influence of residual stresses on the crack growth behavior is investigated. This permits to
assess the combined influence of load stresses and residual stresses together with the build-up
of crack closure, and leads to a simple but effective modification of the NASGRO equation
for fatigue crack growth. The approach is validated experimentally, and its application to the

fitness-for-purpose assessment of surface-treated components is discussed.

Introduction

A very common approach to describe the crack growth behavior of long cracks is the
NASGRO equation, which is based on the crack growth equation according to Forman and
Mettu [2] considering plasticity-induced crack closure using the crack opening function f
introduced by Newman [3]. The NASGRO equation is a powerful tool for estimating the
growth rate of cracks which have already built up crack closure completely; however, it is not
able to describe the behavior of short cracks [4]. Section 2 summarizes briefly how the build-
up of crack closure can be modeled and implemented into the NASGRO equation so that the
crack growth rate of short and long cracks can be estimated equally well. To investigate the
crack arrest and crack growth behavior in the presence of residual stresses, experiments were
performed on rolled flat bars. Section 3 describes how a residual stress field was introduced in
the flat bars, how the corresponding crack growth threshold was determined, and gives a
simple estimate for the threshold of a crack in the presence of residual stresses along with its
experimental validation. Finally, section 4 shows how to compute the propagation of cracks of

arbitrary length in arbitrary residual stress fields.
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Omax> Omin

Gaa cTl‘

Nomenclature
Aa crack extension
ag notch depth
a total crack length
C crack growth constant
da/dN fatigue crack growth rate
f crack opening function
F crack velocity factor
AK stress intensity factor range
AK, stress intensity factor range for long crack growth at R=0
AKy, threshold of stress intensity factor range for crack propagation
AKi efr intrinsic (effective) threshold stress intensity factor range
AKip e long crack growth threshold stress intensity factor range
Kc fracture toughness
Kinax maximum stress intensity factor
; fictitious length scales
m Paris exponent
D, q empirical constants describing the curvatures that occur near the threshold and near
the instability region of the crack growth curve, respectively
R load ratio

maximum, minimum stress

applied stress, residual stress (o, is equal to the mean stress for a load ratio of R = -1)

Modified NASGRO equation

Short cracks are able to grow below the threshold for long cracks, and they grow faster than

long cracks at the same stress intensity factor range. The common NASGRO equation

]

d_azc.F.AKm.iq

dv 1_Kmax
KC

and its simplified form with p =m, g =1 and Knax = AK/ (1 — R)

(1a)
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da (AK —AK )"
E‘C'F'I_W (1b)

are able to describe the three branches of the crack growth curve (see Fig. C.1b) in
dependence of the load ratio R = Guin/ Omax- T0 consider the behavior of short cracks, the
crack velocity factor F' (for short crack behavior in branch II, i.e., the Paris region) and the
threshold for crack propagation AKy, (for short crack behavior below the threshold for long
crack growth AKy ) have to be modified. Fig. C.1a shows a simple mechanical model on
which the following considerations are based. The total crack length a consists of the notch
depth ay and the crack extension Aa. To calculate the stress intensity factor range AK the total
crack length a = ap + Aa is used, whereas for the build-up of crack closure — and hence for
modeling of the transition from short to long crack behavior — only the crack extension Aa is
responsible. An illustration of the build-up of crack closure for different crack closure

mechanisms with fictitious length scales /; is shown in Fig. C.1c.

short cracks | long cracks

H
roughness-induced crack closure

e '
plasucuty-mducg(i crack closure

1
intrinsic (r:ffccti\:a'o] threshold
i

Iz

Fig. C.1: (a) illustration of mechanical model; (b) typical fatigue crack growth curve; (c)

illustration of the build-up of crack closure.

To consider now the build-up of crack closure in the modified model, the material specific
length scales /; have to be determined. To this purpose, fatigue experiments to determine the
crack resistance curve (R-curve, where AKy, is plotted against Aa) following the approach of
Tabernig et al. [5], were performed. The length scales /; were then fitted using the
experimentally determined data. For the description of the build-up of crack resistance
starting from AKi, efr at a crack extension of Aa = 0 to the long crack threshold AKi, . at large

Aa (Aa >> max(l;)), the empirical approaches
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Aa

n
AKy, = AKth,eff + (AKth,lc - AKth,eff ) l:l - Zvi ) eXP(_ Z_J:l )
i=1 i

for short crack behavior below the threshold for long crack growth and

F=1- [1 - (%] ] . {1 v exp(— %]:l with the constraint ) v; =1 (3)
- i=1 '

i i=1

for short crack behavior in the Paris and near-threshold regime are proposed. More detailed

information about the modified NASGRO equation for short cracks can be found in [4].

Influence of residual stresses

To investigate the crack growth in the presence of residual stresses, a specimen with a special
geometry was developed (see Fig. C.2b). Extended areas of tensile as well as of compressive
residual stresses were introduced by means of rolling (see Fig. C.2a). The rolling process
deforms the specimen plastically below the areas of contact, in that case near the edges of the
specimen. In that way, a residual stress field is generated that varies from high compressive
residual stresses at the edges to lower tensile residual stresses in the middle of the specimen
(see Fig. C.3). Subsequently, the specimen was tested under stepwise increasing constant load
[5]. The crack growth rate was monitored and compared to the crack growth rate of a residual
stress free specimen (both with an initial notch depth of 2 mm). As expected, the threshold for
long crack growth of the specimen with residual stresses was several times higher than that of
the residual stress free specimen (compare Fig. C.4, curves 1 and 5). This happens due to the
high compressive residual stresses near the edges of the specimen. These compressive stresses
cause the crack to be closed for a much higher portion of a load cycle compared to a residual
stress free specimen at the same load ratio R. In Fig. C.4 the crack growth rates for a residual
stress free specimen (curve 1) and for a specimen with residual stresses are plotted (curves 2-
5). For the curves 2, 3 and 4, the crack initially grows slightly, but after a certain crack
extension crack arrest occurs due to the combined influence of compressive residual stresses
and build-up of crack closure. Finally, the applied load is high enough to overcome the
threshold so that the crack grows continuously, i.e., the threshold for long crack growth is

reached (curve 5).
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6 250

Fig. C.2: (a) rolling mill; (b) specimen geometry for fatigue crack growth experiments with

residual stress zones (dimensions in mm).

Residual compressive stresse;{ ]
£

Residual tensile stresses

Residual compressive stresses

Fig. C.3: Illustration of the residual stress areas across the specimen width.

To estimate the long crack threshold of the specimen with residual stresses, the combined
influence of applied stress amplitude G, and residual stress o, has to be considered. A simple
approximation for the dependence of the long crack threshold on the load ratio R was given
by Génser et al. [6] as

AKth,lc=AK0-(l—R), R=Cmin _Or "0 ’ W

O hax O, +0,

see Fig. C.5b. The residual stress o,(x) was determined experimentally using the cut-
compliance method [1]. A comparison of the measured residual stress field with the results

from a simplified finite-element simulation of the rolling process is shown in Fig. C.5a.
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1E-3 g
o specimen with residual stresses :
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Fig. C.4: Comparison between the crack growth rate in a residual stress free specimen and in

Axial stresses o, [MPa]

L=]

a specimen with residual stresses, both with an notch depth of 2 mm, tested at a

0.5

3

load ratio R = -1; start parameters of the curves: curve (1): AK=11 MPam
a=3.50mm; curve (2);: AK=20MPa mO'S, a=2.19mm; curve (3):
AK =30 MPa mO'S, a =2.28 mm; curve (4): AK =40 MPa mO'S, a =2.39 mm; curve
(5): AK =50 MPa m*”, @ = 2.65 mm.

Residual stresses

—Simulation —CC-Method
16

"o
g
l':),p,w

AKy, [MPa m'3]
-]

G,= 175 MPa

Threshold Stress Intensity Range

S A K Limit
o

-1 0.5 0 0.5 1
Stress Ratio R [«]

X [mm]

Fig. C.5: (a) due to rolling introduced residual stresses in axial direction; (b) dependence of

crack growth threshold on the stress ratio.

For the approximation of the long crack threshold the area of interest is in a depth of x = 2

mm depth (notch depth). Here the measured compressive residual stresses are about 175 MPa.

The applied load o, after the final load increase is also known with 257 MPa. Inserting these
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data into Eq. (4) leads to a threshold of 50.2 MPavm, which is in good agreement with the

experiment (curve 5 in Fig. C.4).

Extension to general residual stress field

After having computed the influence of residual stresses on the crack arrest behavior under a
constant residual stress which is equivalent to a mean stress (section 4, Eq. (4)), we seek now
to extend our reasoning to the arrest and growth behavior of cracks of arbitrary length in
arbitrary stress fields. To this purpose, we refer again to the influence of the residual stresses
o, on the load ratio R as in the previous section; however, in the general case the local
variation of o, has to be taken into account. The minimum and maximum local stresses during
one load cycle are calculated at each position x by superposition of cyclic load stresses and

residual stresses,
O min (.X') = Grnin,a (X) + O (.X'), O max ()C) = Gmax,a (x) + O (x) . (5)

Knowing the minimum and maximum local stresses, the minimum and maximum crack tip

loading during one load cycle can be estimated using an influence function according to Tada

[7]:

2-Y ¢ Opin (%) 2:Y ¢ Opax (%)

T

Finally, the stress intensity factor range and the load ratio at the crack tip for a crack of length

Kmin (a) = dx

dx, Kmax (a)

(6)

a are obtained as AK(a) = Knax(a) — Kmin(@) and R(a) = Knin(a) / Kmnax(a), respectively are
obtained. If AK(a) is below the threshold AKy, for the given crack length a and load ratio R(a),
crack arrest occurs. If the threshold is exceeded, the crack growth rate for any given crack

length @ in any given residual stress field o(a) can be calculated via Eqns (1) — (3).
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Abstract

The Kitagawa-Takahashi diagram in its commonly used form allows to predict, for cracks of
given length and stress range, the allowable stress range for infinite life. However, caution is
advised if a crack emanates not directly from the plane surface but from a sharp, crack-like
notch instead. In this contribution, it is shown that taking the crack length equal to the total
flaw depth (sum of notch depth and crack length) gives non-conservative results. Based on a
simple mechanical model, a 3-dimensional Kitagawa-Takahashi diagram considering the
build-up of crack growth resistance as well as the influence of the notch depth is developed.

Comparison of model predictions and experimental results shows good agreement.
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Introduction

The Kitagawa-Takahashi (KT) diagram [1] is a widespread tool for fracture mechanics based
design of components and fracture control concepts such as the safe-life or fail-safe concepts.
It combines the fatigue crack growth threshold and the fatigue endurance limit into a single
plot, thereby defining the area of non-propagating cracks (leading to infinite fatigue life).
Using the fictitious intrinsic crack length aop introduced by El Haddad [2], a smooth
transition from the threshold of long cracks to the endurance limit is given (Fig. D.1). This

intrinsic length is computed as

_l[AKth,lc Jz (1)

and the endurance limit stress range dependent on the crack size a — i.e., the threshold stress

range for crack propagation — is calculated by

A]<th,lc (2)
Y-\/ﬂ-(a+a0,H) ’

Aoy, (aO,H) =

where AKi . denotes the fatigue crack growth threshold for long cracks, Ac. the endurance
limit stress range of polished specimens without flaws, and Y is the geometry factor of the
crack.

However, for cracks which have not built up crack closure completely (short cracks) the
threshold of stress intensity range can be significantly smaller [3-7] and as a consequence the
approximation according to El Haddad is non-conservative. So the build-up of crack closure
has to be considered in the KT diagram. One method to describe the build-up of crack closure
was proposed by McEvily [8], using an exponential function. Chapetti [9] used this
exponential function to calculate the threshold stress for physically short cracks and showed
that the threshold stress prediction obtained using the El Haddad correction is partially
significantly higher, and therefore non-conservative. Similar behaviour has been shown by
Tabernig [10]. In other words, the endurance limit stress for physically short cracks is smaller
than that one predicted using the intrinsic length scale agy according to El Haddad (see Fig.

D.1).
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Nomenclature

fictitious length scales

crack extension length

Aa

load ratio

R

notch depth

o

stress range

Ac

fictitious intrinsic length scale

aoH

following El Haddad

endurance limit stress range of

(4

Ac,

total crack length

polished specimens without flaws

Acy, threshold stress range for crack

tensity factor range

stress 1n

propagation

Aoy . threshold stress range for crack

threshold of intensity factor range

AKth

propagation calculated using AKy, ;.

for crack propagation

weighting factors

Vi

intrinsic (effective) threshold stress

A efr

intensity factor range

long crack growth threshold stress

AKp e

intensity factor range
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Fig. D.1

according to El Haddad and Chapetti, respectively.
However, whereas Chapetti’s approach to the KT diagram accounts for short crack effects, it

ly

flaw (which may be convenient

-existing

still neglects the influence of the depth of a pre
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regarded as a sharp notch). In order to avoid non-conservative predictions, especially in the
context of fracture control concepts, it is indispensable to account for effects due to the initial
flaw. Tanaka and Akiniwa [7] investigated experimentally the influence of notch depth on the
KT diagram and showed that the region of non-propagating cracks becomes smaller with
increasing initial notch depth. In this paper, a modified KT diagram is developed that
accounts for all of the aforementioned effects and is therefore readily applicable in the context

of fracture control concepts in mechanical design.

Build-up of crack closure

The model for the build-up of crack closure at the threshold as proposed by the authors in [11]

is based on a simple mechanical model as shown in Fig. D.2.

Fig. D.2: Schematic illustration of the proposed mechanical model: emanating from a deep
sharp notch ao, a crack of extension Aa grows. Only on this crack extension Aa the

build-up of crack closure is possible.

To calculate the stress intensity factor

AK =Y -Ac-Vr-a 3)
the total crack length
“4)

a=ay+Aa

is used, which is a combination of notch depth a and crack extension Aa.

In contrast, for the build-up of crack closure not the total crack length a should be used,

except the crack starts immediately at the surface of a component (ap = 0). If a crack starts
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from a notch (e.g., real design notches, casting defects or notches caused due to a forging lap,
inappropriate handling, foreign object damage, et cetera) Aa must be used, because the crack
flanks can be in contact only over this length. In other words, the notch depth ay is not subject
to any crack closure even under compression loading; only by the crack extension Aa the

build-up of crack closure is possible.

For the description of the threshold build-up starting from the intrinsic value of AKy, fr at a
crack extension of Aa = 0 to the long crack growth threshold AKy, . at large Aa, the empirical

approach

< Aa
AK gy =AK g er + (AK je = AK e ) - {1 - Z"i : exp(— l_j:l (5)
i=1 /

1

with the constraint

Dvi=1 ©)
i=1

is used [11]. The /; can be interpreted as fictitious length scales for the formation of crack
closure effects (see Fig. D.3), similar to El Haddad’s a n, and determined in conjunction with
the v; by fitting experimentally determined crack resistance curves (where AKy, is plotted
against Aa). Such crack resistance curves may be obtained, e.g., from SENB specimens with
different notch depth, using the constant load increasing technique following the approach of
Tabernig et al. [10]. The description of the increase of AKy, with crack length is in principle
similar to the idea of McEvily [8]. However, the different /; in this approach take into account

that different crack closure mechanisms need different lengths to build up completely.

Considered example material

As material for the experimental investigations, the QT steel 25CrMo4 was chosen. The
material has a bainitic microstructure and a hardness of ~245 HV10. In the tensile test, a 0.2%
offset yield stress of 512 MPa, a tensile strength of 674 MPa, and an elongation at fracture of

18.9% are obtained. In Fig. D.4 the crack resistance curve of the material is shown.
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Fig. D.3: Illustration of the crack resistance curve caused by two different closure
mechanisms; each closure mechanism is built up completely over a specific crack

extension (described by the fictitious length scales /).
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Fig. D.4: Crack resistance curve: experimental data points and analytically estimation curve

from Eq. (5).

Considering various notch depths in the KT diagram

The threshold stress range for crack propagation considering the model for build-up of crack

closure introduced in Section 2 can now be calculated using Eqns (3-5):
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c Aa
AK i efr +(AK 1 =AK ey ) - {1 Vi exp(— lﬂ
i=1 i

:A e
Y-z -(ay +Aa) el Q)

Aoy =mi

where for very small total crack lengths the threshold stress range is limited by the fatigue

endurance limit of polished specimens without flaws Ac.

Fig. D.S: Threshold stress range Acy, plotted over crack extension Aa and notch depth ay

(three-dimensional Kitagawa-Takahashi diagram).

Using Eq. (7), the threshold stress range for any notch depth @y and crack extension Aa can
now be determined. In Fig. D.5a, a three-dimensional extension of the KT diagram is shown,
varying both the notch depth ay and the crack extension Aa. In Fig. D.5b, in addition the
conventional threshold stress range

AK 1
Y-\/ﬂ-(ao +Aa+agy) ®)

AO-th,lc =

calculated using El Haddad’s approach, Eq. (2), is plotted (grey surface). It is assumed that ay
and Aa are small compared to the component size, and that the stress gradients are small. A
comparison between these surfaces shows that they are congruent for long crack extensions
Aa (i.e. for cracks which have built up their crack closure completely). However, for short
crack extensions a lifetime estimation based on El Haddad’s approach can lead to non-

conservative results, because crack propagation is possible also at stress ranges far below the
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limit given by Eq. (8) (and actually most likely, as Fig. D.5b implies). To emphasize the
difference between the conventional KT diagram and the new approach, cuts have been made
through this 3-dimensional illustration of the KT-diagram along the ay and Aa directions.
Fig. D.6 shows one at a constant notch depth (ayp = 1 mm, green curve) and another at a
constant crack extension (Aa = 1 mm, red curve). The black lines represent the respective
intersections with the non-conservative threshold stress range according to Eq. (8). Here, the
cuts were also done at constant notch depth or constant crack extension, respectively, of

1 mm.

Fig. D.6: Cuts in the 3-dimensional KT diagram at constant notch depth ap = 1 mm and at

constant crack extension Aa = 1 mm, respectively

A comparison of these curves shows clearly why it is useful to account separately for notch
depth ay and crack extension Aa, and therefore to introduce an additional axis in the KT
diagram. In Fig. D.7a the cuts from Fig. D.6 are compared. The total crack length a = ay + Aa
of all curves is identical for each point on their respective abscissae. However, the green curve
deals with a constant notch depth ay and increasing crack extension Aa, whereas the red curve
deals with constant crack extension and increasing notch depth. The black curve is, due to the
symmetry of Eq. (8), identical for increasing @ and increasing Aa.

The region of non-propagating cracks predicted from Eq. (7) for a constant notch depth (under
the green curve) is now completely different to the region predicted from a constant crack
extension (under the red curve), although the total crack length a is the same for each point of
the abscissa. As the fatigue crack builds up crack closure only with increasing crack extension

Aa, the green curve starts at a low limit of stress ranges where no crack propagation occurs
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corresponding to the intrinsic crack growth threshold and increases gradually due to the build-
up of closure until it reaches the long crack prediction given by the inclined branch of the
black curve. The red curve for constant crack extension Aa = 1 mm lies somewhat below the
conventional El Haddad prediction (Eq. (8), black curve) as crack closure is not yet fully
developed at Aa = 1 mm. In contrast, Fig. D.7b shows the analogous curves for ¢y = 5 mm
and Aa = 5 mm. Here, crack closure is fully developed for the red curve, and so this curve is
identical to the conventional El Haddad prediction. The green curve shows again the gradual

build-up of crack closure until it approaches the long crack prediction.

a 500+ b 5004
= e @y = 1 mm (const.) = — @y = 5 mm (const.)
%‘ — Ad =1 mm (const.) %‘ Aa =5 mm (const.)
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10°¢ : 10-2 10°! 10 ]
-m . -
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Fig. D.7: Comparison of two cracks with the same total crack length a - the green line for a

102 10°!

constant notch depth varying the crack extension and the red line with a constant
crack extension varying the notch depth. The conventional prediction following El

Haddad, Eq. (8), is shown in black.

If one plots the intrinsic threshold for crack propagation AKy, s and the long crack threshold
for crack propagation AKy . in a double logarithmic diagram against the total crack length a =
ap + Aa, it is rather easy to estimate the limiting curves for non-propagating cracks. The
threshold stress range Aoy, of non-propagating cracks of total length a = ay, extension Aa =0,

and therefore non-existent closure, is given by:

AK th eff

Y-Jra, ©)

Aoy (a=ay) =
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Now it depends on the length of the notch how steep the limiting curve is in the beginning.
The deeper a notch, the steeper is the initial increase of the limiting curve. After a certain
increase the limiting curve becomes shallower and finally approaches the asymptotic line
given by the long crack threshold AKy, ¢, see also Fig. D.8. Here for different notch depths the
associated limiting curve for non-propagating cracks are plotted over the total crack length a.

The curves are limited by an upper bound due to the endurance limit.
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Fig. D.8: Limiting curves for non-propagating cracks in dependence of notch depth ay and

total crack length a = ay + Aa.
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Fig. D.9: Threshold stress range against crack extension emanating from different notch

depths.

In Fig. D.9, the threshold stress range for various notch depths ay is plotted against the crack
extension Aa only. One can see that, for shallow notches, crack closure is not built up
sufficiently fast to generate cracks which stop after a certain crack extension. That means that
the region of non-propagating cracks (the area below the threshold stress range) is much
larger for cracks emanating from a shallow notch or from a smooth surface than for cracks

emanating from deep notches.

Moreover, from this figure one can easily extract the allowable crack extension for a given
applied stress range. Supposed we have an applied stress range of 100 MPa and a notch of
I mm depth. For these conditions the crack is able to grow until a crack extension of
approximately 0.1 mm is reached. Then the crack will arrest, whereas for a notch of 5 mm
depth an applied stress range of 100 MPa would lead to finite life (the corresponding curve

for non-propagating cracks does not reach the value of 100 MPa).

To verify the model predictions, experiments with three different notch depths (0.813 mm,

2.19 mm and 5.39 mm) were performed. In Fig. D.10 the theoretically possible crack
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extensions due to the predicted threshold stress curves are drawn as red dashed lines. The
crack can grow until the crack extension Aa intersects the predicted threshold curve, where
crack arrest occurs. Subsequently, the load may be increased until either crack arrest occurs
again or the crack propagates to finite life. The experimentally determined crack extensions
until crack arrest occurs are drawn as green points in the diagrams. As can be seen from

Fig. D.10, good agreement between model predictions and experiment is observed.

2001 200 4 200+
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Fig. D.10: Comparison of the crack extension predicted from the threshold stress range with

experimental results for samples with different notch depths ay = 0.81, 2.19, 5.39.

Conclusions

Based on a simple mechanical model, a 3-dimensional KT diagram was proposed considering
the fact that a crack consists of two different contributions, namely the notch depth where
fracture surface contact does not take place and a real crack extension. It was shown that it
depends on both contributions — rather than only on their sum — whether a crack is in the area
of non-propagating cracks or in the finite life area. Finally, the modified KT diagram was
verified using experimental data. Special attention has to be paid to the fact that the deeper the
initial notch is compared to the total crack length, the lower is the resistance against crack
propagation. If one does not consider this marked influence of the initial notch depth, the
endurance limit of a component may be severely over-estimated. In this respect, the modified
KT diagram is expected to become a useful tool for the damage tolerance assessment of

notched components.
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