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Conventions

• N is defined as the set of all positive integers, and N0 := N ∪ {0}.
• Ze and Zo are the sets of even and odd integers and Ne := Ze ∩ N, No := Zo ∩ N.
• P(M) denotes the power set of a set M .
• For x ∈ R, �x� (floor) denotes the largest integer less than or equal to x, �x� (ceiling)

denotes the smallest integer greater than or equal to x, and {x} := x − �x� (fractional
part). The floor, ceiling, and fractional part of a complex number is obtained by applying
the respective function separately to its real and imaginary parts.

• The modulo function % is defined as a%b := {a/b} b for all a ∈ Z, b ∈ Z \ {0}, and has
precedence over addition and subtraction.

• 0 means the zero vector of suitable type and length.
• The image of a vector under a function which naturally accepts only the vectors entries

as its arguments is obtained by elementwise application of the function.

• The Pochhammer symbol for x ∈ C and j ∈ Z is defined as (x)j :=
∏j−1

i=0 (x− i).
• idM is the identity map on a set M .
• For a subset M of a topological space, int (M) denotes the interior, M the closure, and
∂M the boundary of M.
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Introduction

In the present thesis we will be mostly concerned with Shift Radix Systems in different settings
and with the Schur-Cohn region and its generalizations. For d ∈ N and r = (r1, . . . , rd) ∈ Rd the
mapping

τr : Z
d → Zd

a = (a1, . . . , ad) 
→ (a2, . . . , ad,−�ra�)
where ra =

∑d
i=1 riai is the scalar product of r and a, is called the d-dimensional Shift Radix Sys-

tem (SRS for short) associated with r and r is called the parameter of τr. Shift Radix Systems were
introduced by Akiyama, Borbély, Brunotte, Pethő, and Thuswaldner in [Akiyama et al., 2005]
to generalize two important notions of number systems: β-expansions and Canonical Number Sys-
tems. Since their introduction Shift Radix System found great interest for their own sake and were
subject of many publications (cf. e.g. [Kirschenhofer and Thuswaldner, 2014] for a recent
survey).

In this thesis new algorithms, characterization results, and topological results related to Shift
Radix Systems as well as results on the Lebesgue measure of a generalized Schur-Cohn region are
presented. Furthermore it includes related results on a special type of multiple integral due to
Selberg and Aomoto. The material has appeared or will appear in parts in the following papers:

• Characterization algorithms for shift radix systems with finiteness property
[Weitzer, 2015a] (cf. Chapter 3 and Chapter 4)

• On the characterization of Pethő’s Loudspeaker
[Weitzer, 2015b] (cf. Chapter 5)

• A number theoretic problem on the distribution of polynomials with bounded roots
[Kirschenhofer and Weitzer, 2015] (cf. Chapter 2)

Furthermore, joint work with Attila Pethő and Peter Varga is currently in preparation:

• [Pethő et al., IP] (cf. Chapter 6)

Additional results that have not been published outside of this thesis are marked by (Weitzer) to
clearly emphasize the author’s original contributions.

The thesis comes with a CD which contains annotated versions of the C++ program which
computed the results presented in Chapter 4. The content of the CD can also be found at:

http://institute.unileoben.ac.at/mathstat/personal/weitzer.htm

In the following the six chapters of this thesis will be introduced.

Chapter 1. Selberg and Aomoto integrals

In this chapter certain generalizations of Euler’s beta function known as Selberg and Aomoto
integrals are introduced and generalized. In the most general form considered by Aomoto these
multiple integrals involve an arbitrary number of specific polynomial factors of degree two or less.
The original formulas given by Selberg and Aomoto are presented (cf. Section 1.2) and generalized
to allow polynomial factors of degree up to and including four (cf. Section 1.3, in particular
Theorem 1.3.4). The results are achieved by adaptation of Aomoto’s original method of partial
derivation and integration by one of the variables to find a recurrence relation for the respective
integral, which can then be solved. The formulas, while interesting for their own sake, are needed
in Chapter 2 to compute the volumes of parts of a certain subdivision of the Schur-Cohn region,
which is treated there.

2



INTRODUCTION 3

Chapter 2. The Schur-Cohn region and its generalizations

The d-dimensional, real Schur-Cohn region E(R)d is defined as the set of all d-dimensional,
real coefficient vectors (constant term first), the corresponding polynomial of which is contractive
(i.e. all of its roots lie in the open complex unit disk). Next to many applications in science and
engineering problems (cf. beginning of Section 2.1) the Schur-Cohn region is also intimately related
to an important dynamical property of Shift Radix Systems (cf. Chapter 3). In this chapter a recent
conjecture of Akiyama and Pethő on the volumes of parts of a certain subdivision is considered and

proved for the instance s = 1 (cf. Section 2.6): The parts E(R)d,s of this subdivision contain those

elements of E(R)d the corresponding polynomials of which have exactly s pairs of complex conjugate

roots. Akiyama and Pethő proved the surprising fact that these sets E(R)d,s have a rational Lebesgue

measure v
(s)
d (cf. Table 1 in Section 2.5 and Theorem 2.5.5). Based on numerical evidence (cf.

Table 2 in Section 2.5 and Conjecture 2.5.7) they furthermore formulated the even more surprising

conjecture that the quotient of v
(s)
d and v

(0)
d is always an integer. We prove this conjecture for

the special case of s = 1. The result is achieved by a series of transformations of combinatorial

sums originating from an involved integral formula for v
(1)
d given by Akiyama and Pethő. This

treatment, which also includes techniques of hypergeometric summation leads to the remarkably
simple result

v
(1)
d

v
(0)
d

=
Pd(3)− 2d− 1

4

where Pd(x) are the Legendre polynomials (cf. Theorem 2.6.1). As a byproduct we are able
to analyze the asymptotic behavior of the above quotients for d → ∞ (cf. Corollary 2.6.3).

Furthermore we derive a formula for v
(2)
d (cf. Theorem 2.6.6) by applying the generalization of

Selberg’s and Aomoto’ original integral formulas found in Chapter 1. Unfortunately this formula
could not be simplified as far as to prove the conjecture by Akyiama and Pethő for s = 2.

Chapter 3. Shift Radix Systems and the finiteness property

This chapter summarizes well-known results on Shift Radix Systems needed in the subsequent
chapters. Let Dd consist of all parameters in Rd for which all orbits of the corresponding Shift

Radix System are ultimately periodic, and let D(0)
d consist of all parameters in Rd for which all

orbits of the corresponding Shift Radix System end up in 0.

For the characterization of D(0)
d two important tools are known to be of importance: Cutout

polyhedra (cf. Section 3.5) and sets of witnesses (cf. Section 3.6). Cutout polyhedra allow a

characterization of D(0)
d in terms of Dd by “cutting out” certain regions (which can be shown to

be of polyhedral shape) which consist of all parameters the corresponding Shift Radix System of
which admits a given cycle. While in the interior of Dd a finite number of cutout polyhedra always

suffices to completely characterize D(0)
d (cf. Theorem 3.5.6), on the boundary of Dd this needs

not to be the case. Due to the existence of critical points, D(0)
d has a very complicated structure

even for d = 2. We will identify six infinite families of cycles for d = 2 the corresponding cutout
polygons of which are threaded on a line segment on the boundary of D2 and which tend to either

of the two existing critical points of D(0)
2 (cf. Section 3.5, in particular Theorem 3.5.10). This

generalizes results by Surer, who already found two of these families.

In order to prove that a parameter (or a region of parameters) belongs to D(0)
d so-called sets

of witnesses can be used, which form the basis of what is known as Brunotte’s algorithm. They
are subsets of Zd constructed in such a way that they contain all cycles that might be admitted
by the Shift Radix System of the given parameter (or any of the given paramters). If the set of
witnesses is finite this provides a method to test for the finiteness property in finite time. The sets
of witnesses found by Brunotte’s algorithm for regions need not to be finite, but at least under mild
conditions (positive distance from the boundary of Dd) we show that there exists a finite partition
of the given region where the associated set of witnesses of each part is finite (cf. Theorem 3.6.9).
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Chapter 4. New algorithms and topological results

Two new algorithms which allow the characterization of Shift Radix Systems with finiteness
property in a given region are presented here. Even if a finite set of witnesses for a region of
parameters is found by Brunotte’s algorithm for regions, the computation of all cutout polyhedra
corresponding to the occurring cycles can be very time consuming. The more general “graphs of
witnesses” overcome this problem (cf. Section 4.1). Just as for cycles and their corresponding
cutout polyhedra it is possible to compute the set of all parameters the corresponding Shift Radix
System of which admits a given graph of witnesses. And just as for cutout polyhedra it can
be proven that these sets have a very simple geometric structure: They are the intersection of a
nondegenerate, open, convex polyhedron and an affine subspace of Rd (cf. Lemma 4.1.4). In duality

to cutout polyhedra which characterize D(0)
d by being subtracted from Dd, the sets corresponding

to graphs of witnesses characterize D(0)
d in terms of their disjoint union (cf. Lemma 4.1.5). This

fact forms the basis of our Algorithm 1 which takes as input a convex hull of finitely many points

in Dd which is completely contained in the interior of Dd and outputs the intersection of D(0)
d and

the given convex hull. Algorithm 1 is guaranteed to terminate for all inputs (cf. Theorem 4.2.1)
whereas Brunotte’s algorithm for regions needs not do so. Also Algorithm 1 turned out to be
considerably faster in all applications and there are heuristic reasons to believe that it is faster in
general (cf. Section 4.2).

We furthermore present a second algorithm (Algorithm 2) which again performed much faster
than Algorithm 1 in all applications (cf. Section 4.3 and Section 4.4). By its nature Algorithm 1
computes a decomposition of its input (a convex region of parameters) into finitely many disjoint

polyhedra (from which it selects those which are contained in D(0)
d in the final step). Algorithm 2

computes a refinement of this decomposition which is given by the classes of a certain equivalence
relation (cf. Definition 4.3.1). It can be shown that there is a geometric interpretation of this
equivalence relation which allows a fast computation of a complete list of its classes (cf. Theo-
rem 4.3.3). If the set of equivalence classes is known one can use Brunotte’s algorithm to decide

whether or not a given class belongs to D(0)
d . The definition of the equivalence relation guarantees

that the result will be the same for all parameters in the class. But instead of treating all classes
independently and in random order, decisive optimizations can be made to speed up the process
considerably (cf. Theorem 4.3.5). The output of Algorithm 2 is a minimal set (with respect to

set inclusion but not necessarily cardinality) of cutout polyhedra which characterizes D(0)
d inside

of the given convex hull. Using this new algorithm a region of D(0)
2 which is considerably larger

than those in previous results could be characterized (cf. Theorem 4.5.1). A careful analysis of the

characterized region also settled two previously open questions on the topology of D(0)
2 : It is shown

that it is disconnected and that the largest connected component has a non-trivial fundamental
group (cf. Corollary 4.5.2).

Chapter 5. Gaussian Shift Radix Systems and Pethő’s Loudspeaker

In this chapter a generalization of Shift Radix Systems to Gaussian integers due to Brunotte,
Kirschenhofer, and Thuswaldner is considered. Most concepts of Shift Radix Systems translate to

the complex case (cf. Section 5.1), including the sets Dd and D(0)
d which are denoted by Gd and

G(0)
d respectively. Our main interest again lies in these two sets. A conjecture on G(0)

1 (which, in
honor of Attila Pethő and because of its shape, is called Pethő’s Loudspeaker) is formulated (cf.
Section 5.2, in particular Conjecture 5.2.2) and proved in parts. By identification of certain infinite

families of cutout polygons it is shown that G(0)
1 is contained in the conjectured characterizing set

GC (cf. Section 5.3, in particular Theorem 5.3.1). With respect to the other inclusion partial results
could be achieved using the complex analogues of Algorithm 1 and Algorithm 2 from Chapter 4 (cf.
Section 5.5, in particular Theorem 5.5.1). In addition to these computational results further steps

towards a proof of GC ⊆ G(0)
1 were taken. This led to two stronger conjectures on the behavior of

cycles and a partial result (cf. Theorem 5.5.7).
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The question on critical points and the related weakly critical points is completely settled for

G(0)
1 (cf. Section 5.4). Furthermore the perimeter and the area of GC are computed (cf. Section 5.6).

Finally a kind of “self-similarity” of G(0)
1 that is revealed by the complex analogue of Algorithm 1

introduced in Chapter 4 is explained (cf. Section 5.7).

Chapter 6. Shift Radix Systems over imaginary quadratic Euclidean domains

Very recently Pethő and Varga considered a generalization of Shift Radix Systems for imaginary
quadratic Euclidean domains. The key to this generalization is the definition of a floor function
�r�D on ED := OQ(

√
D) for D ∈ {−1,−2,−3,−7,−11}. If such a floor function is fixed, Shift

Radix Systems can be defined as usual and several notions of real Shift Radix Systems translate

to the new situation as expected (cf. Section 6.2). The sets which correspond to Dd and D(0)
d

are denoted by FD,d and F (0)
D,d respectively. Surprisingly, depending on D, the sets F (0)

D,d seem to

differ in terms of their complexity. While F (0)
D,1 appears to have at least weakly critical points for

D ∈ {−1,−3,−7}, it is shown that F (0)
−2,1 and F (0)

−11,1 have none (cf. Section 6.3, in particular

Theorem 6.3.2). The floor functions which are used to define Shift Radix Systems in the five
Euclidean cases can also be applied to define Shift Radix Systems if the discriminant D is any real
number in a certain interval.



CHAPTER 1

Selberg and Aomoto integrals

1.1. Introduction and definitions

This chapter contains results on special types of integrals known as Selberg and Aomoto inte-
grals which are generalizations of Euler’s beta function. The formulas derived in this chapter will
be needed in order to compute the volumes of a generalization of the so-called Schur-Cohn region
due to Akyiama and Pethő which is the main subject of Chapter 2. The definition and original
formulas on Selberg and Aomoto integrals derived in [Selberg, 1944] and [Aomoto, 1987] as
well as generalizations from [Andrews et al., 1999] will be given in this chapter. Furthermore
we will adapt the methods used in [Andrews et al., 1999] to generalize Aomoto integrals to
contain polynomial factors of degrees higher than two. A survey on Selberg and Aomoto inte-
grals can be found in [Forrester and Warnaar, 2008]. For the whole chapter let Cn := [0, 1]n,
x := (x1, . . . , xn), and dx := dx1 · · · dxn for all n ∈ N.

Definition 1.1.1. [Andrews et al., 1999] For n ∈ N, α, β, γ ∈ C with (α) > 0, (β) > 0,
and (γ) > −min{1/n, (α)/(n− 1),(β)/(n− 1)} we define

ωn(α, β, γ,x) :=

n∏
i=1

(
xα−1
i (1− xi)

β−1
) n∏
i=1

n∏
j=i+1

|xi − xj |2γ

Sn(α, β, γ) :=

∫
Cn

ωn(α, β, γ,x)dx.

Any integral of this form shall be denoted as Selberg integral. Furthermore, for k, l,m ∈ �0, n� with
m ≤ k, l we define the following generalizations known as Aomoto integrals:

An,k(α, β, γ) :=

∫
Cn

k∏
i=1

xiωn(α, β, γ,x)dx

An,k,l(α, β, γ) :=

∫
Cn

k∏
i=1

xi

k+l∏
i=k+1

(1− xi)ωn(α, β, γ,x)dx (k + l ≤ n)

An,k,l,m(α, β, γ) :=

∫
Cn

k∏
i=1

xi

k+l−m∏
i=k+1−m

(1− xi)ωn(α, β, γ,x)dx (k + l −m ≤ n).

It is clear that the different integrals in the previous definition increase in generality. While
the original Selberg integrals only contain n factors of the form

(
xα−1
i (1− xi)

β−1
)
, the Aomoto

integrals gradually introduce additional factors of the form xi, (1−xi), and xi(1−xi) the numbers
of which are given by k −m, l −m, and m respectively.

1.2. Known results

The Selberg integrals were introduced in [Selberg, 1944] along with the following closed
formula.

Theorem 1.2.1. [Selberg, 1944] Let n, α, β, γ be as in Definition 1.1.1. Then

Sn(α, β, γ) =

n∏
i=1

Γ(α+ (i− 1)γ)Γ(β + (i− 1)γ)Γ(iγ + 1)

Γ(α+ β + (n+ i− 2)γ)Γ(γ + 1)
.

6
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The original proof by Selberg was quite complicated but two easier and essentially different
proofs have been found more than 40 years later. The first one is given in [Anderson, 1991] and
the second one is due to Aomoto who actually proved the more general formula:

Theorem 1.2.2. [Aomoto, 1987] Let n, k, α, β, γ be as in Definition 1.1.1. Then

An,k(α, β, γ) =

k∏
i=1

α+ (n− i)γ

α+ β + (2n− i− 1)γ
Sn(α, β, γ).

=
k∏

i=1

α+ (n− i)γ

α+ β + (2n− i− 1)γ

n∏
i=1

Γ(α+ (i− 1)γ)Γ(β + (i− 1)γ)Γ(iγ + 1)

Γ(α+ β + (n+ i− 2)γ)Γ(γ + 1)

The formula found by Aomoto generalizes Selberg’s formula by introducing additional factors
of the form xi. A natural question to ask is whether it can be generalized even further by adding
more types of factors. Indeed it can as the following theorem shows.

Theorem 1.2.3. [Andrews et al., 1999] Let n, k, l,m, α, β, γ be as in Definition 1.1.1. Then

(i) An,k,l(α, β, γ) =

∏k
i=1(α+ (n− i)γ)

∏l
i=1(β + (n− i)γ)∏k+l

i=1(α+ β + (2n− i− 1)γ)
Sn(α, β, γ)

(ii) An,k,l,m(α, β, γ) =
m∏
i=1

α+ β + (n− i− 1)γ

α+ β + (2n− i− 1)γ + 1∏k
i=1(α+ (n− i)γ)

∏l
i=1(β + (n− i)γ)∏k+l

i=1(α+ β + (2n− i− 1)γ)
Sn(α, β, γ)

1.3. Generalizations

In the previous section we presented known generalizations of Aomotos original integral by
introducing additional factors of the form xi and (1−xi) and also allowed these factors to overlap.
Another interpretation of the overlapping would be that we introduced new factors of the forms xi,
(1− xi), and xi(1− xi) but disallowed overlappings. This last interpretation will fit our purposes
better and so we will further generalize Aomoto’s original integral by introducing new factors (i.e.
polynomial factors of higher degree) but don’t allow them to overlap. Furthermore we will only
consider the case where α = β = 1 and γ = 1

2 which simplifies ωn(α, β, γ,x) to

ωn(x) := ωn(1, 1, 1/2,x) =
n∏

i=1

n∏
j=i+1

|xi − xj |

One question we need to answer is of which form our additional factors should be. We will
postpone this question for now and assume general polynomials with one restriction: They have to
be multiples of x(1− x). This limitation will allow us to apply a strategy of partial derivative and
integration by one of the xi to derive recurrence relations for the integral, which is also used in
the proofs of Theorem 1.2.2 and Theorem 1.2.3 as given in [Andrews et al., 1999]. Our general
integrals are given in the following definition.

Definition 1.3.1. For m ∈ N0, P = (P (1)(x), . . . , P (k)(x)) ∈ {x} × {x(1− x)} × (x(1 −
x)R[x])k−2 with m ≤ k ∈ N0 ∪ {∞}, and D = (d0, . . . , dl) ∈ Nl+1

0 with m ≤ l ∈ N0 ∪ {∞} and∑l
i=1 di ≤ d0 let

Im(P,D) :=

∫
Cd0

m∏
i=1

∑i
k=1 dk∏

j=1+
∑i−1

k=1 dk

P (i)(xj)ωd0(x)dx

Note that the number of variables is given by d0 and the multiples of the factors are given by
d1, . . . , dl. The notation allows the vector of polynomials P (size k) and the vector of multiples
D (size l + 1, where the 0th entry is d0) to be of larger size than the number of factors actually
in use (m). The following lemma summarizes the relation between this new type of integrals and
Aomoto integrals from the previous section.
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Lemma 1.3.2. (Weitzer)

(i) Sd0
(1, 1, 1/2) = I0((), (d0))

(ii) Ad0,d1(1, 1, 1/2) = I1((x), (d0, d1))

(iii) Ad0,d1,d2
(1, 1, 1/2) = I2((x, 1− x), (d0, d1, d2))

(iv) Ad0,d1+d2,d2,d2
(1, 1, 1/2) = I2((x, x(1− x)), (d0, d1, d2))

(v) Ad0,d1+d3,d2+d3,d3
(1, 1, 1/2) = I3((x, 1− x, x(1− x)), (d0, d1, d2, d3)).

Proof. Immediate from the definitions. �
Next we will establish recurrence relations for some integrals of the new type.

Lemma 1.3.3. (Weitzer) Assume the notions used in Definition 1.3.1 above and let P (i)(x) =

x(1 − x)
∑i−2

j=0 a
(i)
j xj with degP (i) = i for all i ∈ �3, k�. Furthermore let D′ = (d′1, . . . , d

′
l′) ∈ Zl′

with m ≤ l′ ∈ N ∪ {∞}, l′ ≤ l, di + d′i ≥ 0 for all i ∈ �1, l′�, and
∑l′

i=1(di + d′i) ≤ d0. Then
Jm(D′) := Im(P, (d0, d1 + d′1, . . . , dl + d′l′)) satisfies the recurrence relations (for suitable bounds):

J2( 0,−1)(1(d0 − d1 − d2 + 2))+

J2( 1,−1)(1(−2d0 + d1 + 2d2 − 4)) = 0

J3( 0, 0,−1)(a(3)0 (d0 − d1 − d2 − d3 + 2))+

J3( 0, 1,−1)(a(3)1 (2d0 − d2 − 2d3 + 6))+

J3( 1, 0,−1)(a(3)0 (−2d0 + d1 + 2d2 + 2d3 − 4) + a
(3)
1 (−d1 − 2))+

J3( 2, 0,−1)(a(3)1 (−d0 + d1 + d2 + d3)) = 0

J4(−1, 2, 0,−1)(a(3)1 a
(4)
2 (−d1))+

J4( 0, 0, 0,−1)(a(3)1 a
(4)
0 (d0 − d1 − d2 − d3 − d4 + 2))+

J4( 0, 0, 1,−1)(a(4)2 (2d0 − d3 − 2d4 + 8))+

J4( 0, 1, 0,−1)(a(3)0 a
(4)
2 (−2d0 + 2d3 + 2d4 − 8) + a

(3)
1 a

(4)
1 (2d0 − d2 − 2d3 − 2d4 + 6)+

a
(3)
1 a

(4)
2 (2d1 + 2))+

J4( 0, 2,−1,−1)(((a(3)0 )2a
(4)
2 + (a

(3)
1 )2a

(4)
0 )(−d3) + a

(3)
0 a

(3)
1 a

(4)
1 (d3))+

J4( 1, 0, 0,−1)(a(3)1 a
(4)
0 (−2d0 + d1 + 2d2 + 2d3 + 2d4 − 4) + (a

(3)
1 a

(4)
1 + a

(3)
1 a

(4)
2 )(−d1 − 2))+

J4( 1, 1, 0,−1)(a(3)1 a
(4)
2 (2d0 − 2d1 − 2d2 − 2d3 − 2d4))+

J4( 2, 0, 0,−1)((a(3)1 a
(4)
1 + a

(3)
1 a

(4)
2 )(−d0 + d1 + d2 + d3 + d4)) = 0

J5(−1, 1, 1, 0,−1)(a(3)1 a
(4)
2 a

(5)
3 (−2d1))+

J5(−1, 2, 0, 0,−1)(a(3)0 a
(3)
1 a

(4)
2 a

(5)
3 (2d1) + ((a

(3)
1 )2a

(4)
2 a

(5)
2 + (a

(3)
1 )2a

(4)
2 a

(5)
3 )(−d1))+

J5( 0,−1, 2, 0,−1)(a(4)2 a
(5)
3 (d2))+

J5( 0, 0, 0, 0,−1)((a(3)1 )2a
(4)
2 a

(5)
0 (d0 − d1 − d2 − d3 − d4 − d5 + 2))+

J5( 0, 0, 0, 1,−1)((a(3)1 )2a
(5)
3 (2d0 − d4 − 2d5 + 10))+

J5( 0, 0, 1, 0,−1)(a(3)0 a
(4)
2 a

(5)
3 (d3 − 2d2) + a

(3)
1 a

(4)
1 a

(5)
3 (−2d0 + 2d4 + 2d5 − 10)+

a
(3)
1 a

(4)
2 a

(5)
2 (2d0 − d3 − 2d4 − 2d5 + 8) + a

(3)
1 a

(4)
2 a

(5)
3 (2d1 + 2))+

J5( 0, 0, 2,−1,−1)((a(4)0 a
(4)
2 a

(5)
3 + a

(4)
1 a

(4)
2 a

(5)
2 )(d4) + ((a

(4)
1 )2a

(5)
3 + (a

(4)
2 )2a

(5)
1 )(−d4))+
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J5( 0, 1, 0, 0,−1)((a(3)0 )2a
(4)
2 a

(5)
3 (d2 − 2d3) + a

(3)
0 a

(3)
1 a

(4)
1 a

(5)
3 (2d0 − 2d4 − 2d5 + 10)+

a
(3)
0 a

(3)
1 a

(4)
2 a

(5)
2 (−2d0 + 2d3 + 2d4 + 2d5 − 8)+

a
(3)
0 a

(3)
1 a

(4)
2 a

(5)
3 (−2d1 − 2) + (a

(3)
1 )2a

(4)
0 a

(5)
3 (−2d0 + 2d4 + 2d5 − 10)+

(a
(3)
1 )2a

(4)
2 a

(5)
1 (2d0 − d2 − 2d3 − 2d4 − 2d5 + 6)+

((a
(3)
1 )2a

(4)
2 a

(5)
2 + (a

(3)
1 )2a

(4)
2 a

(5)
3 )(2d1 + 2))+

J5( 0, 1, 1,−1,−1)((a(3)0 a
(4)
0 a

(4)
2 a

(5)
3 + a

(3)
0 a

(4)
1 a

(4)
2 a

(5)
2 + a

(3)
1 a

(4)
0 a

(4)
1 a

(5)
3 +

a
(3)
1 (a

(4)
2 )2a

(5)
0 )(−2d4)+

(a
(3)
0 (a

(4)
1 )2a

(5)
3 + a

(3)
0 (a

(4)
2 )2a

(5)
1 +

a
(3)
1 a

(4)
0 a

(4)
2 a

(5)
2 )(2d4))+

J5( 0, 2,−1, 0,−1)(((a(3)0 )2a
(3)
1 a

(4)
2 a

(5)
2 + (a

(3)
1 )3a

(4)
2 a

(5)
0 )(−d3) + ((a

(3)
0 )3a

(4)
2 a

(5)
3 +

a
(3)
0 (a

(3)
1 )2a

(4)
2 a

(5)
1 )(d3))+

J5( 0, 2, 0,−1,−1)(((a(3)0 )2a
(4)
0 a

(4)
2 a

(5)
3 + (a

(3)
0 )2a

(4)
1 a

(4)
2 a

(5)
2 + (a

(3)
1 )2a

(4)
0 a

(4)
2 a

(5)
1 )(d4)+

((a
(3)
0 )2(a

(4)
1 )2a

(5)
3 + (a

(3)
0 )2(a

(4)
2 )2a

(5)
1 + (a

(3)
1 )2(a

(4)
0 )2a

(5)
3 +

(a
(3)
1 )2a

(4)
1 a

(4)
2 a

(5)
0 )(−d4)+

(a
(3)
0 a

(3)
1 a

(4)
0 a

(4)
1 a

(5)
3 + a

(3)
0 a

(3)
1 (a

(4)
2 )2a

(5)
0 )(2d4)+

a
(3)
0 a

(3)
1 a

(4)
0 a

(4)
2 a

(5)
2 (−2d4))+

J5( 0, 2, 0, 0,−1)((a(3)1 )2a
(4)
2 a

(5)
3 (−d0 + d1 + d2 + d3 + d4 + d5))+

J5( 1, 0, 0, 0,−1)((a(3)1 )2a
(4)
2 a

(5)
0 (−2d0 + d1 + 2d2 + 2d3 + 2d4 + 2d5 − 4)+

((a
(3)
1 )2a

(4)
2 a

(5)
1 + (a

(3)
1 )2a

(4)
2 a

(5)
2 + (a

(3)
1 )2a

(4)
2 a

(5)
3 )(−d1 − 2))+

J5( 1, 0, 1, 0,−1)(a(3)1 a
(4)
2 a

(5)
3 (2d0 − 2d1 − 2d2 − 2d3 − 2d4 − 2d5))+

J5( 1, 1, 0, 0,−1)(a(3)0 a
(3)
1 a

(4)
2 a

(5)
3 (−2d0 + 2d1 + 2d2 + 2d3 + 2d4 + 2d5)+

((a
(3)
1 )2a

(4)
2 a

(5)
2 + (a

(3)
1 )2a

(4)
2 a

(5)
3 )(2d0 − 2d1 − 2d2 − 2d3 − 2d4 − 2d5))+

J5( 2, 0, 0, 0,−1)(((a(3)1 )2a
(4)
2 a

(5)
1 + (a

(3)
1 )2a

(4)
2 a

(5)
2 + (a

(3)
1 )2a

(4)
2 a

(5)
3 )

(−d0 + d1 + d2 + d3 + d4 + d5)) = 0

Proof. At first we will show the claimed recurrence relation for J2 by adapting a method of
partial derivation and integration by one of the xi that was used in the proofs of Theorem 1.2.2
and Theorem 1.2.3 as given in [Andrews et al., 1999]. For that we set

I(a, b) := I2(P, (d0, a, b)) =
∫
Cd0

b∏
i=1

xi(1− xi)
b+a∏

i=b+1

xiωd0
(x)dx

for all a, b ∈ N0 with a+ b ≤ d0 and start with proving the following auxiliary statement:

J :=

∫
Cd0

1

x1 − xj

d2∏
i=1

xi(1− xi)

d2+d1∏
i=d2+1

xiωd0
(x)dx

=

⎧⎪⎨⎪⎩
0 if j ∈ �1, d2�

− 1
2I(d1 + 1, d2 − 1) if j ∈ �d2 + 1, d2 + d1�

−I(d1 + 1, d2 − 1) + 1
2I(d1, d2 − 1) if j ∈ �d2 + d1 + 1, d0�

Note that for symmetry reasons the value of the integral will not change if x1 and xj are
interchanged.
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If j ∈ �1, d2� we have

J =

∫
Cd0

x1(1− x1)xj(1− xj)

x1 − xj

∏
i∈�2,d2�\{j}

xi(1− xi)

d2+d1∏
i=d2+1

xiωd0(x)dx

=

∫
Cd0

xj(1− xj)x1(1− x1)

xj − x1

∏
i∈�2,d2�\{j}

xi(1− xi)

d2+d1∏
i=d2+1

xiωd0
(x)dx

= −J.
If j ∈ �d2 + 1, d2 + d1� we have

J =

∫
Cd0

x1(1− x1)xj

x1 − xj

d2∏
i=2

xi(1− xi)
∏

i∈�d2+1,d2+d1�\{j}
xiωd0

(x)dx

=

∫
Cd0

xj(1− xj)x1

xj − x1

d2∏
i=2

xi(1− xi)
∏

i∈�d2+1,d2+d1�\{j}
xiωd0

(x)dx

=

∫
Cd0

(
−x1(1− x1)xj

x1 − xj
− x1xj

) d2∏
i=2

xi(1− xi)
∏

i∈�d2+1,d2+d1�\{j}
xiωd0(x)dx

= −J − I(d1 + 1, d2 − 1).

If j ∈ �d2 + d1 + 1, d0� we have

J =

∫
Cd0

x1(1− x1)

x1 − xj

d2∏
i=2

xi(1− xi)

d2+d1∏
i=d2+1

xiωd0
(x)dx

=

∫
Cd0

xj(1− xj)

xj − x1

d2∏
i=2

xi(1− xi)

d2+d1∏
i=d2+1

xiωd0
(x)dx

=

∫
Cd0

(
−x1(1− x1)

x1 − xj
− x1 − xj + 1

) d2∏
i=2

xi(1− xi)

d2+d1∏
i=d2+1

xiωd0(x)dx

= −J − 2I(d1 + 1, d2 − 1) + I(d1, d2 − 1).

Differentiation and integration of the integrand of I(d1, d2) by x1 leads to the same function again,
and plugging in the upper and lower bounds 1 and 0 causes the term x1(1 − x1) to be zero in
both cases which makes the whole integral equal to zero. On the other hand the derivative can

be computed by the product rule and by using the fact that d
dx |x|a = a |x|a−1

sgn (x) = a|x|a
x for

x �= 0 and a ∈ R. We get

0 =

∫
Cd0

∂

∂x1

(
x1(1− x1)

d2∏
i=2

xi(1− xi)

d2+d1∏
i=d2+1

xiωd0(x)

)
dx

=

∫
Cd0

(1− x1)

d2∏
i=2

xi(1− xi)

d2+d1∏
i=d2+1

xiωd0(x)dx−
∫
Cd0

x1

d2∏
i=2

xi(1− xi)

d2+d1∏
i=d2+1

xiωd0(x)dx

+

d0∑
j=2

∫
Cd0

1

x1 − xj

d2∏
i=1

xi(1− xi)

d2+d1∏
i=d2+1

xiωd0
(x)dx

= I(d1, d2 − 1)((d0 − d1 − d2)/2 + 1) + I(d1 + 1, d2 − 1)(−d0 + d1/2 + d2 − 2)

which proves the recurrence relation for J2.
The same method can be applied to get the other recurrence relations. This can be done

automatically with Mathematica using the function fR from below. The argument m has the very
meaning of the m of the lemma and should be a natural number. The arguments a and d will
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be used to represent the coefficients of the polynomials and their multiplicities in the output and
should be clear symbols. The last argument p determines of which form the factor should be, that
will be used for derivation and integration and should be an element of �1,m�. Note that if p is
chosen to be 1, i.e. a factor of the form x should be used, an additional factor of the form (1− x)
will be introduced during computation. Otherwise the factor itself is suitable without modification
due to the requirement for all factors of degrees greater than 2 to be multiples of x(1− x).

fR [m , a , d , p ] :=Module [{L1={} ,L2={} ,L={} ,LT={} , i =0, j =0,T=0,c ,R={} ,x} ,
L1=Join [{1 , x [ 1 ] , x [1 ](1−x [ 1 ] ) } ,

Table [ ( x [1 ](1−x [ 1 ] )Sum[ a [ j , k ] x [ 1 ] ˆ k ,{ k , 0 , j −2} ] ) ,{ j , 3 ,m} ] ] ;
L2=Join [{1 , x [ 2 ] , x [2 ](1−x [ 2 ] ) } ,

Table [ ( x [2 ](1−x [ 2 ] )Sum[ a [ j , k ] x [ 2 ] ˆ k ,{ k , 0 , j −2} ] ) ,{ j , 3 ,m} ] ] ;
L=Flatten [Table [ L1 [ [ i ] ] L2 [ [ j ] ] , { i , 1 ,m+1} ,{ j , 1 ,m+1} ] ] ;
LT=Flatten [Table [{L1 [ [ i ]]−>d [ i −1] ,L2 [ [ i ]]−>d [ i −1]} ,{ i ,m+1 ,2 ,−1} ] ,1 ] ;
T=L1 [ [ p+1 ] ] ;

I f [ p==1,T∗=(1−x [ 1 ] ) ] ;

T=D[T, x [ 1 ] ] ;

T=FullSimplify [Expand [ FullSimplify [

(T+(T/ .{ x[1]−>x [ 2 ] , x[2]−>x [ 1 ] } ) ) / 2 ] 2 ] ] ;
T=(Table [ c [ i ] ,{ i , 1 , (m+1)ˆ2} ] / .

Solve [ForAll [{ x [ 1 ] , x [ 2 ] } , L .Table [ c [ i ] ,{ i , 1 , (m+1)ˆ2}]==T] ,

Table [ c [ i ] ,{ i , 1 , (m+ 1 ) ˆ 2 } ] ] [ [ 1 ] ] ) . L ;

For [ j =1, j<=Length [LT] ,{T=(T/ .LT [ [ j ] ] ) , j ++}];
T=Coe f f i c i e n tRu l e s [T,Table [ d [ i ] ,{ i , 1 ,m} ] ] / .Rule−>List ;

T=Map[{#[ [1 ] ] −Table [ I f [ j==p , 1 , 0 ] , { j , 1 ,m} ] ,# [ [ 2 ] ]}& ,T ] ;

AppendTo [R,T ] ;

For [ i =0, i<=m,{
T=L1 [ [ p+1] ]L2 [ [ i +1 ] ] / ( x [1]−x [ 2 ] ) ,

I f [ p==1,T∗=(1−x [ 1 ] ) ] ,

T=FullSimplify [Expand [ FullSimplify [

(T+(T/ .{ x[1]−>x [ 2 ] , x[2]−>x [ 1 ] } ) ) / 2 ] 2 ] ] ,
T=(Table [ c [ i ] ,{ i , 1 , (m+1)ˆ2} ] / .

Solve [ForAll [{ x [ 1 ] , x [ 2 ] } , L .Table [ c [ i ] ,{ i , 1 , (m+1)ˆ2}]==T] ,

Table [ c [ i ] ,{ i , 1 , (m+ 1 ) ˆ 2 } ] ] [ [ 1 ] ] ) . L ,

For [ j =1, j<=Length [LT] ,{T=(T/ .LT [ [ j ] ] ) , j ++}] ,
T=Coe f f i c i e n tRu l e s [T,Table [ d [ i ] ,{ i , 1 ,m} ] ] / .Rule−>List ,

T=Map[{#[ [1 ] ] −Table [ I f [ j==p , 1 , 0 ] , { j , 1 ,m} ] ,# [ [ 2 ] ]}& ,T] ,

T=Map[{#[ [1 ] ] −Table [ I f [ j==i , 1 , 0 ] , { j , 1 ,m} ] , # [ [ 2 ] ]

I f [ i>=1, I f [ i==p , d [ i ]−1 ,d [ i ] ] , d [0]−Sum[ d [ j ] ,{ j , 1 ,m} ] ]}& ,T] ,

AppendTo [R,T] ,

i ++}];
R=Flatten [R , 1 ] ;

T=Union [Map[# [ [ 1 ] ]& ,R ] ] ;

R=Table [{T [ [ i ] ] , FullSimplify [Apply [Plus ,Map[# [ [ 2 ] ]& ,

Select [R,#[ [1 ] ]==T [ [ i ] ] & ] ] ] ] } , { i , 1 ,Length [T ] } ] ;
Return [R ] ;

] ;

The function can be used by the commands below to yield the claimed recurrence relations.
Note that the output will look slightly different as it was post processed manually.



1.3. GENERALIZATIONS 12

Clear [ a , d ] ;

For [m=1,m<=5,{Print [TableForm [ fR [m, a , d ,m] ,TableDepth−>1]] ,Print [ ] ,m++}]
�

Now it is time to make a specific choice for the extra factors. The choice we will make is
motivated by two aspects. The first fact we have to consider is the actual goal we have in mind
which is the computation of the volume of a generalization of the so-called Schur-Cohn region in
Chapter 2. It will turn out that not all types of extra factors are equally usable. The second fact
to consider is that some choices notably simplify the recurrences as some of terms might cancel
out. With these two aspects in mind we find the choice in the following theorem to be adequate.

Theorem 1.3.4. (Weitzer) Let P = (x, x(1−x), x2(1−x), x2(1−x)2, x3(1−x)2, x3(1−x)3, . . .),
D = (di)i∈N0 ∈ NN0

0 , and (x)j :=
∏j−1

i=0 (x− i) for x ∈ C and j ∈ Z. Then

(i)

I3(P,D) = 1

(2d0 + 6)d3
(2d0 − d2 − d3 + 4)d3

d3∑
i=0

(
d3
i

)
(−d0 + d1 + d2 + d3 + i− 1)i(4d0 − d1 − 2d2 − 3d3 + 9)i

(2d0 − d1 − d2 − 2d3 + 3)−d3+i(2d0 − d1 − d2 − 2d3 + 4)−d3+i

Ad0,d1+d2+d3+i,d2+d3,d2+d3
(1, 1, 1/2)

(ii)

I4(P,D) =
∑

A=(a0,...,ad4−1)∈{1,...,5}d4

I3

(
P,
(
d0, d1 + c

(1)
A,d4

+ c
(5)
A,d4

, d2 + c
(1)
A,d4

− c
(2)
A,d4

+ 2c
(4)
A,d4

, d3 + c
(1)
A,d4

+ 2c
(2)
A,d4

+ c
(3)
A,d4

+ c
(5)
A,d4

))
d4−1∏
i=0

1

2d0 − d4 + i+ 9

d4−1∏
i=0

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−2d1 + 2c
(1)
A,i − 2c

(5)
A,i if ai = 1

d2 + c
(1)
A,i − c

(2)
A,i + 2c

(4)
A,i if ai = 2

2d1 + d3 − c
(1)
A,i + 2c

(2)
A,i + c

(3)
A,i + 3c

(5)
A,i + 4 if ai = 3

−d0 + d1 + d2 + d3 + d4 + c
(1)
A,i + c

(2)
A,i + c

(3)
A,i + 2c

(4)
A,i + 2c

(5)
A,i − i if ai = 4

2d0 − 2d1 − 2d2 − 2d3 − 2d4 − 2c
(1)
A,i − 2c

(2)
A,i − 2c

(3)
A,i − 4c

(4)
A,i − 4c

(5)
A,i + 2i if ai = 5

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
=

∑
A=(a0,...,ad4−1)∈{1,...,4}d4

I3

(
P,
(
d0, d1 − c

(1)
A,d4

+ c
(4)
A,d4

, d2 + c
(1)
A,d4

+ 2c
(3)
A,d4

, d3 + c
(1)
A,d4

+ c
(2)
A,d4

+ c
(4)
A,d4

))
d4−1∏
i=0

1

(−2d0 + d3 + 2d4 + c
(1)
A,i + c

(2)
A,i + c

(4)
A,i − 2i− 7)(2d0 − d4 + i+ 9)

d4−1∏
i=0

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(d1 − c
(1)
A,i + c

(4)
A,i)

(4d0 − d2 − 2d3 − 4d4 − 3c
(1)
A,i − 2c

(2)
A,i − 2c

(3)
A,i − 2c

(4)
A,i + 4i+ 14) if ai = 1

(2d1 + d2 + d3 + c
(2)
A,i + 2c

(3)
A,i + 3c

(4)
A,i + 4)

(−2d0 + d2 + d3 + 2d4 + 2c
(1)
A,i + c

(2)
A,i + 2c

(3)
A,i + c

(4)
A,i − 2i− 7) if ai = 2

(−d0 + d1 + d2 + d3 + d4 + c
(1)
A,i + c

(2)
A,i + 2c

(3)
A,i + 2c

(4)
A,i − i)

(−2d0 + d3 + 2d4 + c
(1)
A,i + c

(2)
A,i + c

(4)
A,i − 2i− 7) if ai = 3

(−d0 + d1 + d2 + d3 + d4 + c
(1)
A,i + c

(2)
A,i + 2c

(3)
A,i + 2c

(4)
A,i − i)

(4d0 − 2d2 − 2d3 − 4d4 − 4c
(1)
A,i − 2c

(2)
A,i − 4c

(3)
A,i − 2c

(4)
A,i + 4i+ 14) if ai = 4

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
where c

(n)
A,i := |{j ∈ �0, i− 1� | aj = n}|.
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Proof. Let J be defined as in Lemma 1.3.3. Then for the specific choice of P the recurrence
relations given in the lemma simplify to

J2( 0,−1)(d0 − d1 − d2 + 2)+

J2( 1,−1)(−2d0 + d1 + 2d2 − 4) = 0,

J3( 0, 1,−1)(2d0 − d2 − 2d3 + 6)+

J3( 1, 0,−1)(−d1 − 2)+

J3( 2, 0,−1)(−d0 + d1 + d2 + d3) = 0,

J4(−1, 2, 0,−1)(d1)+
J4( 0, 0, 1,−1)(−2d0 + d3 + 2d4 − 8)+

J4( 0, 1, 0,−1)(2d0 − 2d1 − d2 − 2d3 − 2d4 + 4)+

J4( 1, 1, 0,−1)(−2d0 + 2d1 + 2d2 + 2d3 + 2d4) = 0,

J5(−1, 1, 1, 0,−1)(−2d1)+
J5( 0,−1, 2, 0,−1)(d2)+
J5( 0, 0, 0, 1,−1)(−2d0 + d4 + 2d5 − 10)+

J5( 0, 0, 1, 0,−1)(2d1 + d3 + 4)+

J5( 0, 2, 0, 0,−1)(−d0 + d1 + d2 + d3 + d4 + d5)+

J5( 1, 0, 1, 0,−1)(2d0 − 2d1 − 2d2 − 2d3 − 2d4 − 2d5) = 0.

Assuming suitable bounds the recurrence in J4 for d4 = 1 and d3 → d3 − 1 implies

J3(0, 0, 0) = J3(−1, 2,−1) d1
2d0 − d3 + 7

+

J3(0, 1,−1)2d0 − 2d1 − d2 − 2d3 + 4

2d0 − d3 + 7
+

J3(1, 1,−1)−2d0 + 2d1 + 2d2 + 2d3
2d0 − d3 + 7

.

The recurrence in J3 for d1 → d1 − 1 and d2 → d2 + 1 implies

J3(−1, 2,−1) = J3(0, 1,−1) d1 + 1

2d0 − d2 − 2d3 + 5
+

J3(1, 1,−1) d0 − d1 − d2 − d3
2d0 − d2 − 2d3 + 5

.

Therefore

J3(0, 0, 0) = J3(0, 1,−1)(2d0 − d1 − d2 − 2d3 + 5)(2d0 − d1 − d2 − 2d3 + 4)

(2d0 − d2 − 2d3 + 5)(2d0 − d3 + 7)
+

J3(1, 1,−1)(4d0 − d1 − 2d2 − 4d3 + 10)(−d0 + d1 + d2 + d3)

(2d0 − d2 − 2d3 + 5)(2d0 − d3 + 7)
.

By induction one can verify that the solution of the recurrence above is

J3(0, 0, 0) =
1

(2d0 + 6)d3(2d0 − d2 − d3 + 4)d3

d3∑
i=0

(
d3
i

)
(−d0 + d1 + d2 + d3 + i− 1)i(4d0 − d1 − 2d2 − 3d3 + 9)i

(2d0 − d1 − d2 − 2d3 + 3)−d3+i(2d0 − d1 − d2 − 2d3 + 4)−d3+i

J3(i, d3,−d3)
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which, by Lemma 1.3.2 (vi), is equal to

1

(2d0 + 6)d3(2d0 − d2 − d3 + 4)d3

d3∑
i=0

(
d3
i

)
(−d0 + d1 + d2 + d3 + i− 1)i(4d0 − d1 − 2d2 − 3d3 + 9)i

(2d0 − d1 − d2 − 2d3 + 3)−d3+i(2d0 − d1 − d2 − 2d3 + 4)−d3+i

Ad0,d1+d2+d3+i,d2+d3,d2+d3(1, 1, 1/2)

which proves (i).
The recurrence in J5 for d5 = 1 and d4 → d4 − 1 implies

J4(0, 0, 0, 0) = J4(−1, 1, 1,−1) −2d1
2d0 − d4 + 9

+

J4(0,−1, 2,−1) d2
2d0 − d4 + 9

+

J4(0, 0, 1,−1)2d1 + d3 + 4

2d0 − d4 + 9
+

J4(0, 2, 0,−1)−d0 + d1 + d2 + d3 + d4
2d0 − d4 + 9

+

J4(1, 0, 1,−1)2d0 − 2d1 − 2d2 − 2d3 − 2d4
2d0 − d4 + 9

.

Summing over all possible terms in the above recurrence relation gives the first formula for I4(P,D).
The recurrence in J4 for d2 → d2 − 1 and d3 → d3 + 1 implies

J4(0,−1, 2,−1) = J4(−1, 1, 1,−1) −d1
−2d0 + d3 + 2d4 − 7

+

J4(0, 0, 1,−1)−2d0 + 2d1 + d2 + 2d3 + 2d4 − 3

−2d0 + d3 + 2d4 − 7
+

J4(1, 0, 1,−1)2d0 − 2d1 − 2d2 − 2d3 − 2d4
−2d0 + d3 + 2d4 − 7

.

Therefore

J4(0, 0, 0, 0) = J4(−1, 1, 1,−1) d1(4d0 − d2 − 2d3 − 4d4 + 14)

(−2d0 + d3 + 2d4 − 7)(2d0 − d4 + 9)
+

J4(0, 0, 1,−1)(2d1 + d2 + d3 + 4)(−2d0 + d2 + d3 + 2d4 − 7)

(−2d0 + d3 + 2d4 − 7)(2d0 − d4 + 9)
+

J4(0, 2, 0,−1)(−d0 + d1 + d2 + d3 + d4)(−2d0 + d3 + 2d4 − 7)

(−2d0 + d3 + 2d4 − 7)(2d0 − d4 + 9)
+

J4(1, 0, 1,−1)(−d0 + d1 + d2 + d3 + d4)(4d0 − 2d2 − 2d3 − 4d4 + 14)

(−2d0 + d3 + 2d4 − 7)(2d0 − d4 + 9)
.

Summing over all possible terms in the above recurrence relation gives the second formula for
I4(P,D) which proves (ii). �

The formulas given in (ii) of the previous theorem are of course not in closed form in the strict
sense of the words as they involve sums over certain vectors and counting of occurrences of certain
values within these vectors. Despite best efforts the recurrences for I4(P,D) so far could not be
combined in any way to give a nicer result. However, for I3(P,D) an expression in terms of a
1-balanced hypergeometric 4F3 function could be found.

Definition 1.3.5. [Graham et al., 1994, Chapter 5] For p, q ∈ N0 and a1, . . . , ap, b1, . . . , bq,
z ∈ C let

pFq

[
a1, . . . , ap
b1, . . . , bq

; z

]
:=

∞∑
n=0

(a1 + n− 1)n . . . (ap + n− 1)n
(b1 + n− 1)n . . . (bq + n− 1)n

zn

n!
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denote the generalized hypergeometric function (where (x)j :=
∏j−1

i=0 (x− i) for x ∈ C and j ∈ Z).
If s :=

∑q
i=1 bi−

∑p
i=1 ai then the corresponding hypergeometric function is said to be s-balanced.

Corollary 1.3.6. (Weitzer) Let P = (x, x(1 − x), x2(1 − x), x2(1 − x)2, x3(1 − x)2, x3(1 −
x)3, . . .) and D = (di)i∈N0

∈ NN0
0 . Then

I3(P,D) = (2d0 − d1 − d2 − d3 + 4)d3(2d0 − d1 − d2 − d3 + 3)d3

(d0 + 2)d2+d3(d0 + 1)d2+d3(d0 + 1)d1+d2+d3

(2d0 + 6)d3
(2d0 + 4)d2+2d3

(2d0 + 2)d1+2d2+2d3

1∏d0−1
i=0

(
2i+1

i

)
4F3

[ −d3,−d0 + d1 + d2 + d3 − 1,−d0 + d1 + d2 + d3,−4d0 + d1 + 2d2 + 3d3 − 9
−2d0 + d1 + d2 + d3 − 4,−2d0 + d1 + d2 + d3 − 3,−2d0 + d1 + 2d2 + 2d3 − 2

; 1

]
Proof. It follows from Theorem 1.3.4 (i), Theorem 1.2.3, and Theorem 1.2.1 that:

I3(P,D) = 1

(2d0 + 6)d3
(2d0 − d2 − d3 + 4)d3

d3∑
i=0

(
d3
i

)
(−d0 + d1 + d2 + d3 + i− 1)i(4d0 − d1 − 2d2 − 3d3 + 9)i

(2d0 − d1 − d2 − 2d3 + 3)−d3+i(2d0 − d1 − d2 − 2d3 + 4)−d3+i

Ad0,d1+d2+d3+i,d2+d3,d2+d3
(1, 1, 1/2)

=
1

(2d0 + 6)d3(2d0 − d2 − d3 + 4)d3

d3∑
i=0

(
d3
i

)
(−d0 + d1 + d2 + d3 + i− 1)i(4d0 − d1 − 2d2 − 3d3 + 9)i

(2d0 − d1 − d2 − 2d3 + 3)−d3+i(2d0 − d1 − d2 − 2d3 + 4)−d3+i

d2+d3∏
j=1

d0 − j + 3

2d0 − j + 5

∏d1+d2+d3+i
j=1 (d0 − j + 2)

∏d2+d3

j=1 (d0 − j + 2)∏d1+2d2+2d3+i
j=1 (2d0 − j + 3)

1∏d0−1
j=0

(
2j+1

j

)
=

1

(2d0 + 6)d3
(2d0 − d2 − d3 + 4)d3

d3∑
i=0

(d3)i
i!

(−d0 + d1 + d2 + d3 + i− 1)i(4d0 − d1 − 2d2 − 3d3 + 9)i
(2d0 − d1 − d2 − 2d3 + 3)−d3+i(2d0 − d1 − d2 − 2d3 + 4)−d3+i

(d0 + 2)d2+d3
(d0 + 1)d1+d2+d3+i(d0 + 1)d2+d3

(2d0 + 4)d2+d3(2d0 + 2)d1+2d2+2d3+i

1∏d0−1
j=0

(
2j+1

j

)
= (2d0 − d1 − d2 − d3 + 4)d3

(2d0 − d1 − d2 − d3 + 3)d3

(d0 + 2)d2+d3
(d0 + 1)d2+d3

(d0 + 1)d1+d2+d3

(2d0 + 6)d3(2d0 + 4)d2+2d3(2d0 + 2)d1+2d2+2d3

1∏d0−1
i=0

(
2i+1

i

)
d3∑
i=0

(d3)i(d0 − d1 − d2 − d3 + 1)i(d0 − d1 − d2 − d3)i
(2d0 − d1 − d2 − d3 + 4)i(2d0 − d1 − d2 − d3 + 3)i

(4d0 − d1 − 2d2 − 3d3 + 9)i
(2d0 − d1 − 2d2 − 2d3 + 2)i

(−1)i 1
i!

= (2d0 − d1 − d2 − d3 + 4)d3(2d0 − d1 − d2 − d3 + 3)d3

(d0 + 2)d2+d3
(d0 + 1)d2+d3

(d0 + 1)d1+d2+d3

(2d0 + 6)d3
(2d0 + 4)d2+2d3

(2d0 + 2)d1+2d2+2d3

1∏d0−1
i=0

(
2i+1

i

)
4F3

[ −d3,−d0 + d1 + d2 + d3 − 1,−d0 + d1 + d2 + d3,−4d0 + d1 + 2d2 + 3d3 − 9
−2d0 + d1 + d2 + d3 − 4,−2d0 + d1 + d2 + d3 − 3,−2d0 + d1 + 2d2 + 2d3 − 2

; 1

]
�

Note that the hypergeometric function in the previous corollary is 1-balanced.



CHAPTER 2

The Schur-Cohn region and its generalizations

2.1. Introduction and definitions

The Schur-Cohn region was first introduced in [Schur, 1918]. Its characterization there is
a consequence of a convergence criterion for power series expansions of rational functions given
in [Schur, 1917] which found widespread application in science and engineering problems alike.
These applications include speech analysis and synthesis, inverse scattering, decoding of error-
correcting codes, synthesis of digital filters, modeling of random signals, and Padé approximation
for linear systems (cf. [Kailath, 1986]). The Schur-Cohn region is closely related to contractive
polynomials which play an important role in dynamical systems in general, including Shift Radix
Systems where they characterize a certain dynamical property almost everywhere in a measure-
theoretic sense. We will discuss the relation to Shift Radix Systems in Chapter 3 and will dedicate
the present chapter to the Schur-Cohn region and to a generalization due to Akyiama and Pethő.
The material of this chapter will be published in parts in [Kirschenhofer and Weitzer, 2015].

Definition 2.1.1. [Schur, 1918] A normed polynomial P (x) ∈ C[x] is said to be contractive
iff all of its roots (real and complex) lie in the open complex unit disk.

For d ∈ N let

E(R)d :=
{
(r0, . . . , rd−1) ∈ Rd | xd + xd−1rd−1 + . . .+ r0 contractive

}
be the real, d-dimensional Schur-Cohn region and

E(C)d :=
{
(r0, . . . , rd−1) ∈ Cd | xd + xd−1rd−1 + . . .+ r0 contractive

}
the complex, d-dimensional Schur-Cohn region.

Definition 2.1.2. [Lancaster and Tismenetsky, 1985, Chapter 2] For a normed polyno-
mial P (x) = xd + xd−1rd−1 + . . .+ r0 ∈ C[x] let

C(P ) :=

⎛⎜⎜⎜⎜⎜⎜⎝

0 1 0 · · · 0
...

. . .
. . .

. . .
...

...
. . .

. . . 0
0 · · · · · · 0 1
−r0 · · · · · · · · · −rd−1

⎞⎟⎟⎟⎟⎟⎟⎠ ∈ Cd×d

be the companion matrix of P .
For any matrix M ∈ Cd×d let ρ(M) denote the spectral radius of M . The matrix M is said to

be contractive iff ρ(M) < 1.

Remark 2.1.3. The characteristic polynomial of the companion matrix of a polynomial P is
P again. Therefore a polynomial is contractive iff its companion matrix is contractive.

Several topological results on the Schur-Cohn region have been achieved since its introduc-
tion in 1918. In the remaining parts of this sections we shall give a brief summary. The first
basic observation is that the Schur-Cohn region1 is the interior of its closure. This follows im-
mediately from the fact that the coefficients of a polynomial depend continuously on its roots

1Note that whenever we speak of “the Schur-Cohn region” we mean any of the sets E(R)
d or E(C)

d . We

might choose to specify further by assigning the attributes “real”, “complex”, and “d-dimensional” in any valid
combination.

16



2.2. EXAMPLES 17

[Naulin and Pabst, 1994]. Already in [Schur, 1918] it was proven that the boundary of
the Schur-Cohn region is contained in the union of finitely many algebraic surfaces. This re-
sult was improved in [Fam and Meditch, 1978] where it is shown that the boundary can be
described in terms of exactly two hyperplanes and one hypersurface and also that the Schur-
Cohn region is simply connected. Further results on the boundary have been achieved e.g. in
[Kirschenhofer et al., 2010]. In [Schur, 1918] the following theorem was given which charac-
terizes the Schur-Cohn region by determinants of certain matrices.

Theorem 2.1.4. [Schur, 1918] Let d ∈ N and for all k ∈ �0, d− 1�, (r0, . . . , rd−1) ∈ Cd let

Mk(r0, . . . , rd−1) :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 · · · 0 r0 · · · · · · rk

rd−1
. . .

. . .
... 0

. . .
...

...
. . .

. . . 0
...

. . .
. . .

...
rd−k · · · rd−1 1 0 · · · 0 r0
r0 0 · · · 0 1 rd−1 · · · rd−k

...
. . .

. . .
... 0

. . .
. . .

...
...

. . . 0
...

. . .
. . . rd−1

rk · · · · · · r0 0 · · · 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
∈ C2(k+1)×2(k+1).

Then

(i) E(R)d =
{
(r0, . . . , rd−1) ∈ Rd | ∀ k ∈ �0, d− 1� : det(Mk(r0, . . . , rd−1)) > 0

}
(ii) E(C)d =

{
(r0, . . . , rd−1) ∈ Cd | ∀ k ∈ �0, d− 1� : det(Mk(r0, . . . , rd−1)) > 0

}
.

2.2. Examples

Theorem 2.1.4 from the previous section allows to compute the Schur-Cohn region for a given
dimension explicitly. In the following section we will give some real and complex examples of
low dimensions which are direct consequences of the theorem (cf. [Akiyama et al., 2005] and
[Brunotte et al., 2011]).

• E(R)1 = {x ∈ R | |x| < 1}
• E(R)2 =

{
(x, y) ∈ R2 | |x| < 1 ∧ |y| < x+ 1

}
• E(R)3 =

{
(x, y, z) ∈ R3 | |x| < 1 ∧ |y − xz| < 1− x2 ∧ |x+ z| < y + 1

}
• E(C)1 = {x ∈ C | |x| < 1}
• E(C)2 =

{
(x, y) ∈ C2 | |x| < 1 ∧

(
1− |x|2

)2
+ 2 (xy2) > (1 + |x|2) |y|2}
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(1, 3, 3)

(−1, 3,−3)

(−1,−1, 1)

(1,−1,−1)

Figure 1. E(R)2 , E(C)1 , and E(R)3 .

2.3. Subdividing the Schur-Cohn region

In [Akiyama and Pethő, 2014] a generalization of the Schur-Cohn region is considered.
The original real Schur-Cohn region is subdivided into disjoint parts each of which corresponds to
polynomials with a given root signature (i.e. specific number of real roots and pairs of complex
roots). In this way the distribution of contractive polynomials with a given root signature among all
contractive polynomials can be studied by comparing the Lebesgue measures of the corresponding
sets. Especially the relation between polynomials with real roots only and polynomials with any
other given signature holds several surprises which will be discussed in the upcoming sections.

Definition 2.3.1. [Akiyama and Pethő, 2014] For d ∈ N and s ∈ N0 let

E(R)d,s :=
{
(r0, . . . , rd−1) ∈ E(R)d | xd + xd−1rd−1 + . . .+ r0 has exactly 2s complex roots

}
.

It is clear that E(R)d is the disjoint union of all E(R)d,s , s ∈ �0, �d/2��. As for the Schur-Cohn
region it can be proven that the boundary of any such set is contained in the union of finitely many
algebraic surfaces [Akiyama and Pethő, 2014].

2.4. Examples

No analogue of Theorem 2.1.4 for E(R)d,s has been found yet, which makes it more difficult to
actually compute the sets. At least for d = 2 and d = 3 it can be given explicitly as for polynomials
of these degrees there is a one-to-one correspondence between the existence of complex roots and
the sign of its discriminant. Indeed, in both cases the polynomial does have complex roots iff its
discriminant is negative.

• E(R)2,0 = E(R)2 ∩ {(x, y) ∈ R2 | y2 − 4x ≥ 0
}

• E(R)2,1 = E(R)2 ∩ {(x, y) ∈ R2 | y2 − 4x < 0
}

• E(R)3,0 = E(R)3 ∩ {(x, y) ∈ R2 | −27x2 + 18xyz − 4xz3 − 4y3 + y2z2 ≥ 0
}

• E(R)2,1 = E(R)3 ∩ {(x, y) ∈ R2 | −27x2 + 18xyz − 4xz3 − 4y3 + y2z2 < 0
}
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Figure 2. E(R)2,0 and E(R)2,1 .

2.5. Volumes and quotients

More than 70 years after its first description in 1918 the volume of the Schur-Cohn region

has been computed in [Fam, 1989]. Another 25 years later the volume of E(R)d,s has been given in

[Akiyama and Pethő, 2014] by a rather complicated integral which could be solved explicitly
at least for two special cases. In the following section we will repeat the results on volumes from

those two papers as well as the proofs of the integral formula for E(R)d,s and its simplification for
special cases. We will then adapt the methods used in these proofs to solve the integral for another
special case. In any case we will make heavy use of the formulas for Selberg and Aomoto integrals
and their generalizations which we derived in Chapter 1. Finally we will discuss quotients of
volumes first considered in [Akiyama and Pethő, 2014] and the surprising discovery that they
are always rational numbers and in some cases even integers. This probably indicates that there
is a combinatorial enumeration problem the integer quotients are the answer to. Unfortunately a
suitable problem setting has not been found, yet.

Definition 2.5.1. [Akiyama and Pethő, 2014] For d ∈ N and s ∈ N0 let

vd := λd

(
E(R)d

)
v
(s)
d := λd

(
E(R)d,s

)
where λd is the d-dimensional Lebesgue-measure.

The following theorems summarize previous results on the above defined volumes.

Theorem 2.5.2. [Fam, 1989] Let d ∈ N. Then

vd =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
22m

2
m∏
i=1

(i− 1)!4

(2i− 1)!2
if d = 2m

22m
2+2m+1

m∏
i=1

i!2(i− 1)!2

(2i− 1)!(2i+ 1)!
if d = 2m+ 1

Lemma 2.5.3. [Akiyama and Pethő, 2014] Let d ∈ N, r, s ∈ N0 such that d = r + 2s,
Ri(x) := x2 − yr+2i−1x + yr+2i for i ∈ �1, s�, Si(x1, . . . , xd) :=

∑
1≤j1<...<ji≤d) xj1 . . . xji for

i ∈ �1, d�, the elementary symmetric functions, and J :=
(

∂Si(x1,...,xd)
∂yj

)
1≤i,j≤d

. Then

det(J) =
r∏

j=1

r∏
k=j+1

(yj − yk)
r∏

j=1

s∏
k=1

Rk(yj)
s∏

j=1

s∏
k=j+1

Resx(Rj(x), Rk(x))

where Resx(P (x), Q(x)) is the resultant of two polynomials P,Q ∈ R[x].
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Theorem 2.5.4. [Akiyama and Pethő, 2014] Let d ∈ N and r, s ∈ N0 such that d = r+2s.
Then

v
(s)
d =

1

r!s!

∫
Dr,s

|Δr|ΔsΔr,sdX

where

Dr,s = [−1, 1]r ×
s∏

i=1

([−2√zi, 2
√
zi]× [0, 1])

dX = dx1 . . . dxrdy1dz1 . . . dysdzs

Δr =
r∏

j=1

r∏
k=j+1

(xj − xk)

Δs =
s∏

j=1

s∏
k=j+1

Resx(Rj(x), Rk(x))

Δr,s =
r∏

j=1

s∏
k=1

Rk(xj)

Rj(x) = x2 − yjx+ zj .

Note that Resx(Rj(x), Rk(x)) = −yjyk(zj + zk) + y2j zk + y2kzj + (zj − zk)
2.

Sketch of the proof. At first we observe that

v
(s)
d = λd(E(R)d,s ) =

∫
E(R)
d,s

dr0 . . . drd−1.

To solve this integral we perform integration by substitution. For a polynomial P (x) = xd +
rd−1x

d−1 + . . . + r0 ∈ R[x] with roots (x1, . . . , xd) ∈ Rr × C2s we use Vieta’s formulas to express
its coefficients in terms of its roots and substitute by them. We have

rj = (−1)d−jSd−j(x1, . . . , xd)

where Si(x1, . . . , xd) is defined as in Lemma 2.5.3 for i ∈ �1, d�. We further substitute x1, . . . , xd by
y1, . . . , yd where yi := xi for i ∈ {1, . . . , r} and yr+2i−1 := xr+2i−1+xr+2i, yr+2i := xr+2i−1xr+2i

for i ∈ {1, . . . , s}. The boundaries of the integral change to unit intervals (for real roots) and unit
disks (for complex roots) and we are left with the computation of the determinant of the Jacobian

matrix J =
(

∂Si(x1,...,xd)
∂yj

)
1≤i,j≤d

. But this determinant is given in Lemma 2.5.3 which completes

the proof. �

d v
(0)
d

v
(1)
d

v
(2)
d

v
(3)
d

v
(4)
d

2 4
3

8
3

3 16
45

224
45

4 64
1575

1664
525

2048
525

5 1024
496125

428032
496125

3334144
496125

6 16384
343814625

1114112
10418625

93519872
22920975

268435456
68762925

7 524288
1032475318875

2124414976
344158439625

379792130048
344158439625

6491843067904
1032475318875

8 16777216
6643978676960625

1114476904448
6643978676960625

313947815149568
2214659558986875

693972225753088
189827962198875

562949953421312
189827962198875

9 4294967296
726818047366107571875

92376156602368
42754002786241621875

12626155878219776
1433566168374965625

708177690171753365504
726818047366107571875

3280392695179091378176
726818047366107571875

Table 1. Values of v
(s)
d as given in [Akiyama and Pethő, 2014].
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d vd/v
(0)
d v

(1)
d /v

(0)
d v

(2)
d /v

(0)
d v

(3)
d /v

(0)
d v

(4)
d /v

(0)
d

2 3 2

3 15 14

4 175 78 96

5 3675 418 3256

6 169785 2244 85620 81920

7 14567553 12156 2173188 12382208

8 2678348673 66428 56138244 1447738880 1174405120

9 930152232009 365636 1490456292 164885467424 763775942656

Table 2. Values of vd/v
(0)
d and v

(s)
d /v

(0)
d as given in [Akiyama and Pethő, 2014].

As can be seen in the previous tables, not only do the volumes v
(s)
d seem to be rational

numbers, the quotients vd/v
(0)
d and v

(s)
d /v

(0)
d appear to be integers even. These observations led to

the following theorems and conjecture.

Theorem 2.5.5. [Akiyama and Pethő, 2014] Let d ∈ N and s ∈ N0. Then vd and v
(s)
d are

rational numbers.

Theorem 2.5.6. [Akiyama and Pethő, 2014] Let d ∈ N. Then the quotient vd/v
(0)
d is an

integer.

Conjecture 2.5.7. [Akiyama and Pethő, 2014] Let d ∈ N and s ∈ N0. Then the quotient

v
(s)
d /v

(0)
d is an integer.

The proofs of the two theorems will not be performed here. Instead we will repeat the proofs

of the following two formulas for v
(0)
d and v

(1)
d (the first of which is essential for the proof of

Theorem 2.5.6) as the proof of the upcoming Theorem 2.6.6 will follow a similar strategy.

Theorem 2.5.8. [Akiyama and Pethő, 2014] Let d ∈ N. Then

(i) v
(0)
d =

2d(d+1)/2

d!
Sd(1, 1, 1/2) =

2d(d+1)/2

d!

1∏d−1
i=0

(
2i+1

i

)
(ii) v

(1)
d = 2(d−1)(d−2)/2−2

d−2∑
j=0

d−2−j∑
k=0

(−1)d−k22d−2−2k−j

j!k!(d− 2− j − k)!
Ad−2,d−2−k,d−2−k−j,d−2−k−j(1, 1, 1/2)

∫ 1

0

∫ 2
√
z

−2
√
z

yj(y + z + 1)kdydz

= 2(d−1)(d−2)/2−2
d−2∑
j=0

d−2−j∑
k=0

(−1)d−k22d−2−2k−j

j!k!(d− 2− j − k)!

d−2−k−j∏
i=1

2 + d−2−i−1
2

3 + 2(d−2)−i−1
2∏d−2−k

i=1 (1 + d−2−i
2 )

∏d−2−k−j
i=1 (1 + d−2−i

2 )∏d−2−k+d−2−k−j
i=1 (2 + 2(d−2)−i−1

2 )

1∏d−2−1
i=0

(
2i+1

i

)
∫ 1

0

∫ 2
√
z

−2
√
z

yj(y + z + 1)kdydz.

Note that in [Akiyama and Pethő, 2014] the formula for v
(1)
d is wrong by a factor of 4.

Proof. For the proof of (i) we set r := d and s := 0. Then by Theorem 2.5.4 we have

v
(0)
d =

1

d!

∫
[−1,1]d

d∏
j=1

d∏
k=j+1

|xj − xk| dx1 . . . dxd
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and if we rearrange x1, . . . , xd such that they are in decreasing order and consider that there are
d! orderings we thus have

v
(0)
d =

∫ 1

−1

∫ 1

x1

. . .

∫ 1

xd−1

d∏
j=1

d∏
k=j+1

(xj − xk)dx1 . . . dxd.

By substituting xi with 2xi − 1 for i ∈ �1, d� we get

v
(0)
d = 2d(d+1)/2

∫ 1

x1

. . .

∫ 1

xd−1

d∏
j=1

d∏
k=j+1

(xj − xk)dx1 . . . dxd

and if we undo the very first manipulation we finally have

v
(0)
d =

2d(d+1)/2

d!

∫
[−1,1]d

d∏
j=1

d∏
k=j+1

|xj − xk| dx1 . . . dxd

=
2d(d+1)/2

d!
Sd(1, 1, 1/2) =

2d(d+1)/2

d!

1∏d−1
i=0

(
2i+1

i

) (Theorem 1.2.1).

For the proof of (ii) we set r := d− 2 and s := 1 and Theorem 2.5.4 gives

v
(1)
d =

1

4(d− 2)!

∫
[−1,1]d−2

∫ 1

0

∫ 2
√
z

−2
√
z

d−2∏
j=1

d−2∏
k=j+1

|xj − xk|
d−2∏
j=1

(x2
j − yxj + z)dydzdx1 . . . dxd.

Substituting xi with 2xi − 1 for i ∈ �1, d� again we get

v
(1)
d =

2(d−1)(d−2)/2−2

(d− 2)!

∫
[0,1]d−2

d−2∏
j=1

d−2∏
k=j+1

|xj − xk|

∫ 1

0

∫ 2
√
z

−2
√
z

d−2∏
j=1

((2xj − 1)2 − y(2xj − 1) + z)dydzdx1 . . . dxd.

Next we will deal with the innermost product and try to separate the variables xj from y and z.
We will do so by performing the multiplications.

d−2∏
j=1

((2xj − 1)2 − y(2xj − 1) + z) =
d−2∏
j=1

(−4xj(1− xj)− 2xjy + (y + z + 1))

=
d−2∑
j=0

(−2)j
d−j−2∑
k=0

(−4)d−j−k−2yj(y + z + 1)k

∑
L ⊆ �1, d − 2�

|L| = j

∑
M ⊆ �1, d − 2� \ L
|M| = d − j − k − 2

∏
l∈L

xl

∏
m∈M

xl(1− xl).

Plugging in gives

v
(1)
d =

2(d−1)(d−2)/2−2

(d− 2)!

d−2∑
j=0

(−2)j
d−j−2∑
k=0

(−4)d−j−k−2

∑
L ⊆ �1, d − 2�

|L| = j

∑
M ⊆ �1, d − 2� \ L
|M| = d − j − k − 2

∫
[0,1]d−2

∏
l∈L

xl

∏
m∈M

xl(1− xl)
d−2∏
j=1

d−2∏
k=j+1

|xj − xk| dx1 . . . dxd

∫ 1

0

∫ 2
√
z

−2
√
z

yj(y + z + 1)kdydz
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and after counting the number of summands of the two innermost constant sums we get

v
(1)
d = 2(d−1)(d−2)/2−2

d−2∑
j=0

d−2−j∑
k=0

(−1)d−k22d−2−2k−j

j!k!(d− 2− j − k)!
Ad−2,d−2−k,d−2−k−j,d−2−k−j(1, 1, 1/2)

∫ 1

0

∫ 2
√
z

−2
√
z

yj(y + z + 1)kdydz

= 2(d−1)(d−2)/2−2
d−2∑
j=0

d−2−j∑
k=0

(−1)d−k22d−2−2k−j

j!k!(d− 2− j − k)!

d−2−k−j∏
i=1

2 + d−2−i−1
2

3 + 2(d−2)−i−1
2∏d−2−k

i=1 (1 + d−2−i
2 )

∏d−2−k−j
i=1 (1 + d−2−i

2 )∏d−2−k+d−2−k−j
i=1 (2 + 2(d−2)−i−1

2 )

1∏d−2−1
i=0

(
2i+1

i

)
∫ 1

0

∫ 2
√
z

−2
√
z

yj(y + z + 1)kdydz (Theorem 1.2.3 (ii)).

�

2.6. Main results on the Schur-Cohn region

In this last section of the chapter we will prove Conjecture 2.5.7 for the special case of s = 1 and
deduce several consequences. Furthermore we will adapt the proof of Theorem 2.5.8 (ii) to find a

formula for v
(2)
d . Most of the results have been published in [Kirschenhofer and Weitzer, 2015].

Theorem 2.6.1. [Kirschenhofer and Weitzer, 2015] The quotient v
(1)
d /v

(0)
d is an integer

for all d ∈ N≥2. Furthermore we have

v
(1)
d

v
(0)
d

=
Pd(3)− 2d− 1

4

where

Pd(x) := 2−d

�d/2	∑
k=0

(−1)k
(
d− k

k

)(
2d− 2k

d− k

)
xd−2k =

d∑
k=0

(
d+ k

2k

)(
2k

k

)(
x− 1

2

)k

are the Legendre polynomials (cf. [Riordan, 1968, p. 66]).

Proof. We will use the formulas given in Theorem 2.5.8. First we solve the double integral

in the formula of v
(1)
d . Let j, k ∈ N0. Then∫ 1

z=0

∫ 2
√
z

y=−2
√
z

yj(y + z + 1)k dy dz =

∫ 2

y=−2

∫ 1

z=y2/4

yj(y + z + 1)k dz dy

=
1

k + 1

(∫ 2

−2

yj(y + 2)k+1 dy −
∫ 2

−2

yj(y/2 + 1)2k+2 dy

)

(y/2→ y) =
1

k + 1

(
2j+k+2

∫ 1

−1

yj(y + 1)k+1 dy − 2j+1

∫ 1

−1

yj(y + 1)2k+2 dy

)

(partial integration) =
2j+2k+4

k + 1

(
j+1∑
r=1

(−2)r−1(j)r−1

(k + r + 1)r
−

j+1∑
r=1

(−2)r−1(j)r−1

(2k + r + 2)r

)
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We plug in the result and get

v
(1)
d

v
(0)
d

=

(
2

(d−1)(d−2)
2 −2

d−2∑
j=0

d−2−j∑
k=0

(−1)d+k22d−2−2k−j

j!k!(d− 2− j − k)!

d−2−k−j∏
i=1

2 + d−2−i−1
2

3 + 2(d−2)−i−1
2∏d−2−k

i=1 (1 + d−2−i
2 )

∏d−2−k−j
i=1 (1 + d−2−i

2 )∏d−2−k+d−2−k−j
i=1 (2 + 2(d−2)−i−1

2 )

1∏d−2−1
i=0

(
2i+1

i

)
2j+2k+4

k + 1

(
j+1∑
r=1

(−2)r−1(j)r−1

(k + r + 1)r
−

j+1∑
r=1

(−2)r−1(j)r−1

(2k + r + 2)r

))
/

(
2d(d+1)/2

d!
∏d−1

i=0

(
2i+1

i

))

=

d−2∑
j=0

d−j−2∑
k=0

(−1)d+k+1 d!

j!(k + 1)!(d− j − k − 2)!

d−j−k−2∏
i=1

d− i+ 1

2d− i+ 1∏d−k−2
i=1 (d− i)

∏d−j−k−2
i=1 (d− i)∏2d−j−2k−4

i=1 (2d− i− 1)

∏d−1
i=0

(
2i+1

i

)∏d−3
i=0

(
2i+1

i

)(
j+1∑
r=1

(−2)r(j)r−1

(k + r + 1)r
−

j+1∑
r=1

(−2)r(j)r−1

(2k + r + 2)r

)

=
d−2∑
j=0

d−j−2∑
k=0

(−1)d+k+1 d!

j!(k + 1)!(d− j − k − 2)!

d!
(j+k+2)!

(2d)!
(d+j+k+2)!

(d−1)!
(k+1)!

(d−1)!
(j+k+1)!

(2d−2)!
(j+2k+2)!

(2d− 3)!

(d− 2)!(d− 1)!

(2d− 1)!

(d− 1)!d!

(
j+1∑
r=1

(−2)r j!
(j−r+1)!

(k+r+1)!
(k+1)!

−
j+1∑
r=1

(−2)r j!
(j−r+1)!

(2k+r+2)!
(2k+2)!

)

=
d−2∑
j=0

d−j−2∑
k=0

(−1)d+k+1 (d+ j + k + 2)!(j + 2k + 2)!

(d− j − k − 2)!j!(j + k + 2)!(j + k + 1)!(k + 1)!2(
j+1∑
r=1

(−2)r−2j!(k + 1)!

(j − r + 1)!(k + r + 1)!
−

j+1∑
r=1

(−2)r−2j!(2k + 2)!

(j − r + 1)!(2k + r + 2)!

)
.

=

d−2∑
j=0

d−j−2∑
k=0

(−1)d+k+1

(
d

j + k + 2

)(
d+ j + k + 2

d

)
j + k + 2

j + 2k + 3(
j+1∑
r=1

(−2)r−2

(
j + 2k + 3

2k + r + 2

)(
2k + r + 2

k + 1

)
−

j+1∑
r=1

(−2)r−2

(
j + 2k + 3

2k + r + 2

)(
2k + 2

k + 1

))
.

=

d∑
a=2

a−1∑
b=0

a−b∑
r=1

(−1)d+b(−2)r−2 a

a+ b

(
d

a

)(
d+ a

d

)(
a+ b

2b+ r

)(
2b+ r

b

)
−

d∑
a=2

a−1∑
b=0

a−b∑
r=1

(−1)d+b(−2)r−2 a

a+ b

(
d

a

)(
d+ a

d

)(
a+ b

2b+ r

)(
2b

b

)
(j + k + 2→ a, k + 1→ b)

=
d∑

a=2

(−1)da
(
d

a

)(
d+ a

d

) a∑
r=1

(−2)r−2

(
a−r∑
b=0

(−1)b 1

a+ b

(
a+ b

2b+ r

)(
2b+ r

b

)
−

a−r∑
b=0

(−1)b 1

a+ b

(
a+ b

2b+ r

)(
2b

b

))
.

In the following we will simplify the two innermost sums. We start with the first sum. If r = a
the sum trivially equals 1

a . Let us assume 1 ≤ r ≤ a− 1 now. From

(−1)k
(
k − n− 1

k

)
=

(
n

k

)
(n ∈ Z, k ≥ 0)
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and from Vandermonde’s identity

n∑
k=0

(
n

k

)(
s

k + t

)
=

n∑
k=0

(
n

k

)(
s

n+ t− k

)
=

(
n+ s

n+ t

)
(s ∈ Z, n, t ≥ 0)

it follows that

a−r∑
b=0

(−1)b 1

a+ b

(
a+ b

2b+ r

)(
2b+ r

b

)
=

1

a− r

a−r∑
b=0

(−1)b
(
a− r

b

)(
a+ b− 1

b+ r

)

=
(−1)r
a− r

a−r∑
b=0

(
a− r

b

)(
r − a

b+ r

)
=

(−1)r
a− r

(
0

a

)
= 0.

Altogether we have established

a−r∑
b=0

(−1)b 1

a+ b

(
a+ b

2b+ r

)(
2b+ r

b

)
=

1

a
δr,a (1 ≤ r ≤ a)

where δr,a denotes the Kronecker symbol.
Next we try to simplify the second sum which is very similar to a sum that has been treated

in [Graham et al., 1994, Section 5.2, Problem 7]. Therefore we first try to adopt the strategy
followed there and use [Graham et al., 1994, Section 5.1, Identity 5.26](

l + q + 1

m+ n+ 1

)
=

∑
0≤k≤l

(
l − k

m

)(
q + k

n

)
(l,m ≥ 0, n ≥ q ≥ 0)

with l = a+ b− 1, q = 0,m = 2b, n = r − 1 and k = s to get

a−r∑
b=0

(−1)b 1

a+ b

(
a+ b

2b+ r

)(
2b

b

)
=

a−r∑
b=0

a+b−1∑
s=0

(−1)b
a+ b

(
a+ b− s− 1

2b

)(
s

r − 1

)(
2b

b

)

=
2a−r−1∑
s=r−1

(
s

r − 1

) a−s−1∑
b=0

(−1)b
a+ b

(
a+ b− s− 1

2b

)(
2b

b

)

=
a−1∑

s=r−1

(
s

r − 1

) a−s−1∑
b=0

(−1)b
a+ b

(
a+ b− s− 1

2b

)(
2b

b

)
.

Now we apply sum Sm from [Graham et al., 1994, Section 5.2, Problem 8]

Sm =
n∑

k=0

(−1)k 1

k +m+ 1

(
n+ k

2k

)(
2k

k

)
= (−1)n m!n!

(m+ n+ 1)!

(
m

n

)
(m,n ≥ 0)

with m = a− 1, n = a− s− 1 and k = b which gives

a−1∑
s=r−1

(
s

r − 1

)
(−1)a+s+1(a− 1)!(a− s− 1)!

(2a− s− 1)!

(
a− 1

a− s− 1

)

=
(−1)a+1(a− 1)!(a− 1)!

(2a− 1)!

(
2a− 1

r − 1

) a−1∑
s=r−1

(−1)s
(

2a− r

s− r + 1

)

=
(−1)a+r(a− 1)!(a− 1)!

(2a− 1)!

(
2a− 1

r − 1

) a−r∑
s=0

(−1)s
(
2a− r

s

)
(s− r + 1→ s).

Using the basic identity

k∑
j=0

(−1)j
(
n

j

)
= (−1)k

(
n− 1

k

)
(n, k ≥ 0)
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we finally get

a−r∑
b=0

(−1)b 1

a+ b

(
a+ b

2b+ r

)(
2b

b

)
=

(a− 1)!(a− 1)!

(2a− 1)!

(
2a− 1

r − 1

)(
2a− r − 1

a− r

)
=

1

2a− r

(
a− 1

a− r

)
.

We plug in the results for the two sums and find

v
(1)
d

v
(0)
d

=
d∑

a=2

(−1)da
(
d

a

)(
d+ a

d

)(
(−2)a−2

a
−

a∑
r=1

(−2)r−2 1

2a− r

(
a− 1

a− r

))

=

d∑
a=2

(−1)d+1a

(
d

a

)(
d+ a

d

)( a−1∑
r=0

(−2)r−1 1

2a− r − 1

(
a− 1

r

)
− (−2)a−2 1

a

)
.

In order to get rid of the inner sum we use an identity that may be proved as an application
of the classical reflection law

1

(1− z)a
F

(
a, b
c

∣∣∣∣ −z1− z

)
= F

(
a, c− b

c

∣∣∣∣ z)
for hypergeometric functions [Pfaff, 1797], namely

m∑
k=0

(−2)k 2m+ 1

2m− k + 1

(
m

k

)
=

(−1)m22m(
2m
m

) (m ≥ 0),

compare [Graham et al., 1994, Identity (5.104)]. In this way we find

v
(1)
d

v
(0)
d

=

d∑
a=2

(−1)d+a+1a

(
d

a

)(
d+ a

d

)(
22a−3 1

2a− 1

1(
2a−2
a−1

) − 2a−2 1

a

)

=
d∑

a=2

(−1)d+a

(
d

a

)(
d+ a

d

)(
2a−2 − 22a−2 1(

2a
a

))

=
d∑

a=2

(−1)d+a2a−2

(
d+ a

2a

)((
2a

a

)
− 2a

)
which proves that the quotient v

(1)
d /v

(0)
d is an integer.

To prove the formula for the quotient let

ρd(x) :=
d∑

k=0

(
d+ k

d− k

)
xk

denote the associated Legendre polynomials (cf. [Riordan, 1968, p. 66]). Then

v
(1)
d

v
(0)
d

= (−1)dPd(−3)− ρd(−4)
4

.

Since Pd(−x) = (−1)dPd(x) (cf. [Rainville, 1960, p. 158]) and ρd satisfies the recursive formula

ρd(x) = (x+ 2)ρd−1(x)− ρd−2(x)

ρ0(x) = 0, ρ1(x) = x+ 1

(cf. [Riordan, 1968, p. 66]) we get

(−1)dρd(−4) = 2d+ 1

and therefore

v
(1)
d

v
(0)
d

=
Pd(3)− 2d− 1

4
.
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�

Corollary 2.6.2. [Kirschenhofer and Weitzer, 2015] v
(1)
d /v

(0)
d satisfies the second order

linear recurrence relation

d
v
(1)
d

v
(0)
d

− 3(2d− 1)
v
(1)
d−1

v
(0)
d−1

+ (d− 1)
v
(1)
d−2

v
(0)
d−2

= 2d(d− 1) for d ≥ 2,
v
(1)
0

v
(0)
0

=
v
(1)
1

v
(0)
1

= 0.

Proof. The recurrence relation is a direct consequence of the following recurrence relation
for Legendre polynomials (cf. [Rainville, 1960, p. 160]):

dPd(x)− (2d− 1)xPd−1(x) + (d− 1)Pd−2(x) = 0 (d ≥ 2)

P0(x) = 1, P1(x) = x.

�

In the next part of this section we study the asymptotic behavior of the quotients for d→∞.

Corollary 2.6.3. [Kirschenhofer and Weitzer, 2015] The generating function of the ra-

tios v
(1)
d /v

(0)
d is given by

V1(z) :=
∑
d≥0

v
(1)
d

v
(0)
d

zd =
1

4

(
1√

z2 − 6z + 1
− z + 1

(z − 1)2

)
.

Proof. This follows directly from the generating function of the Legendre polynomials which
is given by (cf. [Riordan, 1968, p. 78])∑

d≥0

Pd(x)z
d =

1√
z2 − 2xz + 1

.

�

Theorem 2.6.4. [Kirschenhofer and Weitzer, 2015] For d→∞
v
(1)
d

v
(0)
d

=
1

8 4
√
2
√
πd

(3 + 2
√
2)d+

1
2

(
1 +O

(
1

d

))
.

Proof. We adopt the usual technique of singularity analysis of generating functions, compare
e.g. [Flajolet and Sedgewick, 2009, Chapter IV] or [Szpankowski, 2001, Chapter 8]. The

dominating singularity of the generating function V1(z) is given by the zero 3− 2
√
2 of z2− 6z+1

closest to the origin, whereas the other zero of z2 − 6z + 1 as well as the term 1+z
(1−z)2 will give

a contribution that is exponentially smaller than the contribution of the main term. The local
expansion of V1(z) about the dominating singularity is given by

V1(z) =
1

4

(
1√

z2 − 6z + 1
− z + 1

(z − 1)2

)
=

1

4

(
1√

3− 2
√
2− z

1√
3 + 2

√
2− z

− z + 1

(z − 1)2

)

=
1

4

⎛⎝(3− 2
√
2− z

3− 2
√
2

)−1/2
1√

3− 2
√
2

1

2 4
√
2

(
1− z − (3− 2

√
2)

4
√
2

)−1/2

− z + 1

(z − 1)2

⎞⎠
=

1

8 4
√
2
√
3− 2

√
2

(
1− z

3− 2
√
2

)−1/2 (
1 +O

(
z −

(
3− 2

√
2
)))

− 1

4

(
2 +

√
2

2
+O

(
z −

(
3− 2

√
2
)))

=
1

8 4
√
2
√
3− 2

√
2

(
1− z

3− 2
√
2

)−1/2(
1 +O

(
1− z

3− 2
√
2

))
− 2 +

√
2

8

for z → 3− 2
√
2



2.6. MAIN RESULTS ON THE SCHUR-COHN REGION 28

from which the asymptotics is immediate by the theorem

[zn](1− z)−α =
nα−1

Γ(α)

(
1 +O

(
1

n

))
from [Flajolet and Odlyzko, 1990], where α ∈ R\ (−N0), n ∈ N0, and [zn]f(z) is the coefficient
of zn in the Taylor expansion of f(z). �

In [Akiyama and Pethő, 2014] the probability p
(s)
d := v

(s)
d /vd for a contractive normed

polynomial of degree d in R[x] to have exactly s pairs of complex conjugate roots is discussed. In
particular they derived

log p
(0)
d = − log 2

2
d2 +

1

8
log d+O(1), for d→∞

for the probability of totally real polynomials and conjectured that

log p
(1)
d ≤ − log 2

2
d2 + d log q

for some constant q. Now, obviously, p
(1)
d =

v
(1)
d

v
(0)
d

p
(0)
d , so that from Theorem 2.6.4 we gain

Corollary 2.6.5. [Kirschenhofer and Weitzer, 2015] The probability p
(1)
d for a contrac-

tive normed polynomial of degree d in R[x] to have exactly one pair of complex conjugate roots
satisfies

log p
(1)
d = − log 2

2
d2 + d log(3 + 2

√
2) +O(log d) for d→∞.

We close the chapter by computing a formula for v
(2)
d .

Theorem 2.6.6. (Weitzer) Let d ∈ N≥2, P = (x, x(1 − x), x2(1 − x), x2(1 − x)2, x3(1 −
x)2, x3(1− x)3, . . .), and F := [−2√z1, 2

√
z1]× [0, 1]× [−2√z2, 2

√
z2]× [0, 1]. Then

v
(2)
d =

24d+(d−3)(d−4)/2−17

(d− 4)!

d−4∑
j1=0

d−j1−4∑
k1=0

d−4∑
j2=0

d−j2−4∑
k2=0

(−1)k1+k2

2j1+j2+2k1+2k2∑min(d−j1−k1−4,d−j2−k2−4)
m22=max(0,d−j1−k1−j2−k2−4)∑min(j1,j2,−d+j1+j2+k1+k2+m22+4)
l22=max(0,−d+j1+j2+m22+4)∑min(d−j1−k1−m22−4,k2,d−j1−j2−m22+l22−4)
m11=max(0,d−j1−j2−k1−m22+l22−4)∑min(d−j2−k2−m22−4,d−m22−l22−m11−4,d−j1−j2−m22+l22−m11−4)
m21=max(0,d−j1−j2−k2−m22+l22−4∑l22
l14=0(−1)l22−l14⎛⎜⎜⎜⎜⎜⎜⎝

d− 4
m22,m11,m21, l14, l22 − l14,

d− j1 − k1 −m22 −m11 − 4, d− j2 − k2 −m22 −m21 − 4,
−d+ j1 + j2 + k1 +m22 − l22 +m11 + 4,
−d+ j1 + j2 + k2 +m22 − l22 +m21 + 4,
d− j1 − j2 −m22 + l22 −m11 −m21 − 4

⎞⎟⎟⎟⎟⎟⎟⎠
I4(P, (−2d+ 2j1 + 2j2 + k1 + k2 − 2l22 + 2m22 +m11 +m21 + l14 + 8,

m11 +m21 + l22 − l14,

2d− j1 − j2 − k1 − k2 − 2m22 −m11 −m21 − 8,

m22))∫
F

(
y22z1 + (z1 − z2)

2 + y21z2 − y1y2(z1 + z2)
)

yj11 (y1 + z1 + 1)k1yj22 (y2 + z2 + 1)k2dy1dz1dy2dz2,

where I4(P,D) is given by Theorem 1.3.4 and the large brackets denote a multinomial coefficient.
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Proof. We adopt the proof of Theorem 2.5.8 (ii). Let

Dd := [−1, 1]d−4 × [−2√z1, 2
√
z1]× [0, 1]× [−2√z2, 2

√
z2]× [0, 1]

Ed := [0, 1]d−4 × [−2√z1, 2
√
z1]× [0, 1]× [−2√z2, 2

√
z2]× [0, 1].

Then

v
(2)
d =

1

2(d− 4)!

∫
Dd

d−4∏
i=1

d−4∏
j=i+1

|xi − xj |
2∏

i=1

2∏
j=i+1

(−yiyj(zi + zj) + y2i zj + y2j zi + (zi − zj)
2
)

d−4∏
i=1

2∏
j=1

(
x2
i − yjxi + zj

)
dx1 . . . dxd−4dy1dz1dy2dz2 =

1

2(d− 4)!

∫
Dd

(
y22z1 + (z1 − z2)

2 + y21z2 − y1y2(z1 + z2)
)

d−4∏
i=1

(
x2
i − xiy1 + z1

) d−4∏
i=1

(
x2
i − xiy2 + z2

)
dx1 . . . dxd−4dy1dz1dy2dz2 =

2(d−3)(d−4)/2

2(d− 4)!

∫
Ed

(
y22z1 + (z1 − z2)

2 + y21z2 − y1y2(z1 + z2)
)

(
d−4∑
j=0

(−2)j
d−j−4∑
k=0

(−4)d−j−k−4yj1(y1 + z1 + 1)k

∑
L ⊆ {1, . . . , d − 4}

|L| = j

∑
M ⊆ {1, . . . , d − 4} \ L
|M| = d − j − k − 4

∏
l∈L

xl

∏
m∈M

xm(1− xm)

)
(

d−4∑
j=0

(−2)j
d−j−4∑
k=0

(−4)d−j−k−4yj2(y2 + z2 + 1)k

∑
L ⊆ {1, . . . , d − 4}

|L| = j

∑
M ⊆ {1, . . . , d − 4} \ L
|M| = d − j − k − 4

∏
l∈L

xl

∏
m∈M

xm(1− xm)

)

d−4∏
i=1

d−4∏
j=i+1

|xi − xj | dx1 . . . dxd−4dy1dz1dy2dz2 =

2(d−3)(d−4)/2

2(d− 4)!

∫
Ed

(
y22z1 + (z1 − z2)

2 + y21z2 − y1y2(z1 + z2)
)

d−4∑
j1=0

d−j1−4∑
k1=0

d−4∑
j2=0

d−j2−4∑
k2=0

(−2)j1+j2(−4)2d−j1−k1−j2−k2−8yj11 (y1 + z1 + 1)k1yj22 (y2 + z2 + 1)k2

∑
L1 ⊆ {1, . . . , d − 4}

|L1| = j1

∑
M1 ⊆ {1, . . . , d − 4} \ L1
|M1| = d − j1 − k1 − 4

∑
L2 ⊆ {1, . . . , d − 4}

|L2| = j2

∑
M2 ⊆ {1, . . . , d − 4} \ L2
|M2| = d − j2 − k2 − 4∏

l∈L1

xl

∏
l∈M1

xl(1− xl)
∏
l∈L2

xl

∏
l∈M2

xl(1− xl)

d−4∏
i=1

d−4∏
j=i+1

|xi − xj | dx1 . . . dxd−4dy1dz1dy2dz2 =
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2(d−3)(d−4)/2

2(d− 4)!

∫
Ed

(
y22z1 + (z1 − z2)

2 + y21z2 − y1y2(z1 + z2)
)

d−4∑
j1=0

d−j1−4∑
k1=0

d−4∑
j2=0

d−j2−4∑
k2=0

(−2)j1+j2(−4)2d−j1−k1−j2−k2−8yj11 (y1 + z1 + 1)k1yj22 (y2 + z2 + 1)k2

∑
L1 ⊆ {1, . . . , d − 4}

|L1| = j1

∑
M1 ⊆ {1, . . . , d − 4} \ L1
|M1| = d − j1 − k1 − 4

∑
L2 ⊆ {1, . . . , d − 4}

|L2| = j2

∑
M2 ⊆ {1, . . . , d − 4} \ L2
|M2| = d − j2 − k2 − 4∏

l∈(L1\(L2∪M2))∪(L2\(L1∪M1))

xl

∏
l∈(M1\(L2∪M2))∪(M2\(L1∪M1))

xl(1− xl)

∏
l∈(L1∩M2)∪(L2∩M1)

x2
l (1− xl)

∏
l∈M1∩M2

x2
l (1− xl)

2
∏

l∈L1∩L2

x2
l

d−4∏
i=1

d−4∏
j=i+1

|xi − xj | dx1 . . . dxd−4dy1dz1dy2dz2 =

2(d−3)(d−4)/2

2(d− 4)!

∫
Ed

(
y22z1 + (z1 − z2)

2 + y21z2 − y1y2(z1 + z2)
)

d−4∑
j1=0

d−j1−4∑
k1=0

d−4∑
j2=0

d−j2−4∑
k2=0

(−2)j1+j2(−4)2d−j1−k1−j2−k2−8yj11 (y1 + z1 + 1)k1yj22 (y2 + z2 + 1)k2

∑
L1 ⊆ {1, . . . , d − 4}

|L1| = j1

∑
M1 ⊆ {1, . . . , d − 4} \ L1
|M1| = d − j1 − k1 − 4

∑
L2 ⊆ {1, . . . , d − 4}

|L2| = j2

∑
M2 ⊆ {1, . . . , d − 4} \ L2
|M2| = d − j2 − k2 − 4∏

l∈(L1\(L2∪M2))∪(L2\(L1∪M1))

xl

∏
l∈(M1\(L2∪M2))∪(M2\(L1∪M1))

xl(1− xl)

∏
l∈(L1∩M2)∪(L2∩M1)

x2
l (1− xl)

∏
l∈M1∩M2

x2
l (1− xl)

2

∑
S⊆L1∩L2

(∏
l∈S

xl

∏
l∈(L1∩L2)\S

(−xl(1− xl))

)
d−4∏
i=1

d−4∏
j=i+1

|xi − xj | dx1 . . . dxd−4dy1dz1dy2dz2 =

2(d−3)(d−4)/2

2(d− 4)!

∫
Ed

(
y22z1 + (z1 − z2)

2 + y21z2 − y1y2(z1 + z2)
)

d−4∑
j1=0

d−j1−4∑
k1=0

d−4∑
j2=0

d−j2−4∑
k2=0

(−2)j1+j2(−4)2d−j1−k1−j2−k2−8yj11 (y1 + z1 + 1)k1yj22 (y2 + z2 + 1)k2

∑
L1 ⊆ {1, . . . , d − 4}

|L1| = j1

∑
M1 ⊆ {1, . . . , d − 4} \ L1
|M1| = d − j1 − k1 − 4

∑
L2 ⊆ {1, . . . , d − 4}

|L2| = j2

∑
M2 ⊆ {1, . . . , d − 4} \ L2
|M2| = d − j2 − k2 − 4

∑
S⊆L1∩L2

(−1)|(L1∩L2)\S|∏
l∈(L1\(L2∪M2))∪(L2\(L1∪M1))∪S

xl

∏
l∈(M1\(L2∪M2))∪(M2\(L1∪M1))∪((L1∩L2)\S)

xl(1− xl)

∏
l∈(L1∩M2)∪(L2∩M1)

x2
l (1− xl)

∏
l∈M1∩M2

x2
l (1− xl)

2

d−4∏
i=1

d−4∏
j=i+1

|xi − xj | dx1 . . . dxd−4dy1dz1dy2dz2 =
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2(d−3)(d−4)/2

2(d− 4)!

∫
F

(
y22z1 + (z1 − z2)

2 + y21z2 − y1y2(z1 + z2)
)
dy1dz1dy2dz2

d−4∑
j1=0

d−j1−4∑
k1=0

d−4∑
j2=0

d−j2−4∑
k2=0

(−2)j1+j2(−4)2d−j1−k1−j2−k2−8yj11 (y1 + z1 + 1)k1yj22 (y2 + z2 + 1)k2

∑
L1 ⊆ {1, . . . , d − 4}

|L1| = j1

∑
M1 ⊆ {1, . . . , d − 4} \ L1
|M1| = d − j1 − k1 − 4

∑
L2 ⊆ {1, . . . , d − 4}

|L2| = j2

∑
M2 ⊆ {1, . . . , d − 4} \ L2
|M2| = d − j2 − k2 − 4

∑
S⊆L1∩L2

(−1)|(L1∩L2)\S|

I4(P, (|(L1 \ (L2 ∪M2)) ∪ (L2 \ (L1 ∪M1)) ∪ S| ,
|(M1 \ (L2 ∪M2)) ∪ (M2 \ (L1 ∪M1)) ∪ ((L1 ∩ L2) \ S)| ,
|(L1 ∩M2) ∪ (L2 ∩M1)| ,
|M1 ∩M2|)) =

2(d−3)(d−4)/2

2(d− 4)!

d−4∑
j1=0

d−j1−4∑
k1=0

d−4∑
j2=0

d−j2−4∑
k2=0

(−2)j1+j2(−4)2d−j1−k1−j2−k2−8

∑
L1 ⊆ {1, . . . , d − 4}

|L1| = j1

∑
M1 ⊆ {1, . . . , d − 4} \ L1
|M1| = d − j1 − k1 − 4

∑
L2 ⊆ {1, . . . , d − 4}

|L2| = j2

∑
M2 ⊆ {1, . . . , d − 4} \ L2
|M2| = d − j2 − k2 − 4

∑
S⊆L1∩L2

(−1)|(L1∩L2)\S|

I4(P, (|(L1 \ (L2 ∪M2)) ∪ (L2 \ (L1 ∪M1)) ∪ S| ,
|(M1 \ (L2 ∪M2)) ∪ (M2 \ (L1 ∪M1)) ∪ ((L1 ∩ L2) \ S)| ,
|(L1 ∩M2) ∪ (L2 ∩M1)| ,
|M1 ∩M2|))∫

F

(
y22z1 + (z1 − z2)

2 + y21z2 − y1y2(z1 + z2)
)

yj11 (y1 + z1 + 1)k1yj22 (y2 + z2 + 1)k2dy1dz1dy2dz2 =

24d+(d−3)(d−4)/2−17

(d− 4)!

d−4∑
j1=0

d−j1−4∑
k1=0

d−4∑
j2=0

d−j2−4∑
k2=0

(−1)k1+k2

2j1+j2+2k1+2k2∑min(j1,j2)
l22=max(0,−d+j1+j2+4)∑min(d−j1−k1−4,d−j2−k2−4,d−j1−j2+l22−4)
m22=max(0,d−j1−k1−j2−k2+l22−4)∑min(j1−l22,k2,−d+j1+j2+k1+k2−l22+m22+4)
l11=max(0,−d+j1+j2+k2−l22+m22+4)∑min(j2−l22,d−l22−m22−l11−4,−d+j1+j2+k1+k2−l22+m22−l11+4)
l21=max(0,−d+j1+j2+k1−l22+m22+4)∑l22
l14=0(−1)l22−l14⎛⎜⎜⎜⎜⎝

d− 4
m22, l11, l21, l14, l22 − l14, j1 − l11 − l22, j2 − l21 − l22,

d− j1 − j2 − k2 + l11 + l22 −m22 − 4,
d− j1 − j2 − k1 + l21 + l22 −m22 − 4,

−d+ j1 + j2 + k1 + k2 − l11 − l21 − l22 +m22 + 4

⎞⎟⎟⎟⎟⎠
I4(P, (l11 + l21 + l14,

2d− 2j1 − 2j2 − k1 − k2 + 3l22 − 2m22 + l11 + l21 − l14 − 8,

j1 + j2 − 2l22 − l11 − l21,

m22))∫
F

(
y22z1 + (z1 − z2)

2 + y21z2 − y1y2(z1 + z2)
)

yj11 (y1 + z1 + 1)k1yj22 (y2 + z2 + 1)k2dy1dz1dy2dz2 =
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24d+(d−3)(d−4)/2−17

(d− 4)!

d−4∑
j1=0

d−j1−4∑
k1=0

d−4∑
j2=0

d−j2−4∑
k2=0

(−1)k1+k2

2j1+j2+2k1+2k2∑min(d−j1−k1−4,d−j2−k2−4)
m22=max(0,d−j1−k1−j2−k2−4)∑min(j1,j2,−d+j1+j2+k1+k2+m22+4)
l22=max(0,−d+j1+j2+m22+4)∑min(d−j1−k1−m22−4,k2,d−j1−j2−m22+l22−4)
m11=max(0,d−j1−j2−k1−m22+l22−4)∑min(d−j2−k2−m22−4,d−m22−l22−m11−4,d−j1−j2−m22+l22−m11−4)
m21=max(0,d−j1−j2−k2−m22+l22−4∑l22
l14=0(−1)l22−l14⎛⎜⎜⎜⎜⎜⎜⎝

d− 4
m22,m11,m21, l14, l22 − l14,

d− j1 − k1 −m22 −m11 − 4, d− j2 − k2 −m22 −m21 − 4,
−d+ j1 + j2 + k1 +m22 − l22 +m11 + 4,
−d+ j1 + j2 + k2 +m22 − l22 +m21 + 4,
d− j1 − j2 −m22 + l22 −m11 −m21 − 4

⎞⎟⎟⎟⎟⎟⎟⎠
I4(P, (−2d+ 2j1 + 2j2 + k1 + k2 − 2l22 + 2m22 +m11 +m21 + l14 + 8,

m11 +m21 + l22 − l14,

2d− j1 − j2 − k1 − k2 − 2m22 −m11 −m21 − 8,

m22))∫
F

(
y22z1 + (z1 − z2)

2 + y21z2 − y1y2(z1 + z2)
)

yj11 (y1 + z1 + 1)k1yj22 (y2 + z2 + 1)k2dy1dz1dy2dz2.

�



CHAPTER 3

Shift Radix Systems and the finiteness property

3.1. Introduction and definitions

In the following chapter we will define and discuss Shift Radix Systems, which were first in-
troduced by Akiyama, Borbély, Brunotte, Pethő, and Thuswaldner in [Akiyama et al., 2005]
(compare also [Akiyama et al., 2006b, Akiyama et al., 2008b, Akiyama et al., 2008c,
Akiyama et al., 2006a, Kirschenhofer and Thuswaldner, 2014]). Shift Radix Systems are
dynamical systems which are closely related to two important number systems known as β-
expansions and Canonical Number Systems. It is these relations which led to their introduction in
the first place. Indeed, they form a generalization of both and we will discuss the relations among
them in detail in the upcoming sections. Furthermore, Shift Radix Systems are almost linear map-
pings and for one well-studied dynamical property it suffices to consider the linear part only and
to ignore the error term, which, in the case of Shift Radix Systems, is introduced by application
of the floor function at one point. It will turn out that the behavior of the linear part is closely
related to the Schur-Cohn region introduced in Chapter 2. Another important dynamical property
- the so called finiteness property - is highly dependent on the error term though and its study gave
rise to the introduction of so-called critical points at which the Shift Radix Systems behave highly
chaotic. In order to get a grip on this dynamical property even in the vicinity of critical points,
so-called cut-out polyhedra and sets of witnesses were invented. The detailed discussion of these
two notions will close the chapter at which point we will - at least in theory - have enough tools to
characterize the set of those Shift Radix Systems which have the finiteness property as precisely as
we wish. In practice however, the tools reviewed in this chapter will face intrinsic obstacles quite
soon. The discussion of techniques and algorithms which will allow to push back these obstacles
to a point where topologically surprising things do happen will be the subject of Chapter 4.

In this chapter only “real” Shift Radix Systems will be treated, that is Shift Radix Systems with
a real vector as its parameter operating on integer vectors. Generalizations to complex numbers
and Gaussian integers as well as to irrational quadratic fields and Euclidean integer rings will be
considered in Chapter 5 and Chapter 6.

Definition 3.1.1. [Akiyama et al., 2005] For d ∈ N and r = (r1, . . . , rd) ∈ Rd the mapping

τr : Z
d → Zd

a = (a1, . . . , ad) 
→ (a2, . . . , ad,−�ra�)
where ra =

∑d
i=1 riai is the scalar product of r and a, is called the d-dimensional Shift Radix

System (SRS for short) associated with r and r is called the parameter of τr. Furthermore we
define

Dd :=
{
r ∈ Rd | ∀ a ∈ Zd : ∃ i, j ∈ N : τ ir(a) = τ i+j

r (a)
}

D(0)
d :=

{
r ∈ Rd | ∀ a ∈ Zd : ∃ i ∈ N : τ ir(a) = 0

}
where τ ir(a) means i-fold application of τr to a. Elements of D(0)

d are said to have the finiteness
property.

It is a trivial but important observation that D(0)
d ⊂ Dd for all d ∈ N. Whereas it is easily seen

that D1 = [−1, 1] and D(0)
1 = [0, 1), it is well-known that D(0)

d has a very complicated structure
even for d = 2 (cf. e.g. [Surer, 2007]).
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3.2. A relation to β-expansions

Shift Radix Systems form a generalization [Akiyama et al., 2005] of so-called β-expansions
(cf. e.g. [Rényi, 1957, Parry, 1960, Frougny and Solomyak, 1992]) which in turn are a
natural generalization of positional notation systems. In positional notation systems an arbitrary
integer b greater than 1 is used as a basis to represent any real number x in the form

x = sgn (x) (ambm + am−1b
m−1 + . . .)

where m is some integer and ai is an element of the set of digits �0, b− 1� for i ∈ Z≤m. This
representation is “almost” unique. Indeed, if one either forbids the infinite period 0 or the infinite
period b − 1 in the digit expansion, it is unique. Forbidding the period b − 1 is equivalent to the
following restriction: Whenever there are multiple digit representations of a given number (in the
case of positional notation systems there can be at most 2) take the one that is largest with respect
to lexicographical order. So out of the two base 10 representations “0.999 . . .” and “1.000 . . .” of
the natural number 1, the latter one is preferred.

The way in which β-expansions generalize positional notation systems is that instead of taking
an integer b as a basis one simply takes any real number β greater than 1. It is clear that in many
regards number systems defined in such a way behave quite differently than positional notation
systems. One thing that both systems have in common though is that you can force the repre-
sentations to be unique if you demand them to be largest possible with respect to lexicographical
order. Doing so will lead to the so-called greedy expansion with respect to β.

Definition 3.2.1. [Rényi, 1957] Let β > 1 be a non-integral real number and γ ∈ [0,∞).
The set Aβ := �0, �β�� is called the set of digits (for β) and the representation

γ = amβm + am−1β
m−1 + . . .

with m ∈ Z and ai ∈ Aβ for all i ∈ Z≤m, satisfying

0 ≤ γ −
m∑
i=k

aiβ
i < βk

for all m ≥ k ∈ Z is called the greedy expansion of γ with respect to β.

As stated above, the greedy expansion of a number is always unique. Indeed, for γ ∈ [0, 1) it
can be computed using the so-called β transformation:

Definition 3.2.2. [Rényi, 1957] For a non-integral real number β > 1 the mapping

Tβ : [0, 1)→ [0, 1)

γ 
→ βγ − �βγ� = {βγ}
is called β-transformation.

Lemma 3.2.3. [Rényi, 1957] For a non-integral real number β > 1 and a γ ∈ [0, 1) the greedy
expansion of γ with respect to β is given by

γ =

∞∑
i=1

⌊
βT i−1

β (γ)
⌋
β−i

The uniqueness is something β-expansions have in common with usual positional notation
systems. One aspect in which they differ is that with positional notation systems it doesn’t really
matter which number one takes as a basis - all of them are equally suitable but with β-expansions
there is a certain quality of the basis which not all choices do fulfill. This quality is related to the
question on how large the set of those numbers is which do have a finite greedy expansion with
respect to the given β. It turns out that for some but not all choices of β this set is largest possible.

Definition 3.2.4. [Frougny and Solomyak, 1992] For a non-integral real number β > 1
let Fin(β) denote the set of all γ ∈ [0,∞) which have finite greedy expansion with respect to β. β
is said to have property (F) iff Fin(β) = Z[ 1β ] ∩ [0,∞).
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It is clear that the inclusion Fin(β) ⊆ Z[ 1β ] ∩ [0,∞) always holds, so β having property (F)

is also equivalent to Z[ 1β ] ∩ [0,∞) ⊆ Fin(β). Characterizing all β which have property (F) turns

out to be a very difficult problem. A lemma from [Frougny and Solomyak, 1992] provides a
first hint on where to look for such numbers. But before we can state the Lemma we need to give
another

Definition 3.2.5. A real algebraic integer greater than 1 is called Pisot number [Thue, 1912,
Hardy, 1919, Pisot, 1919] iff all of its Galois conjugates are less than 1 in absolute value.

A real algebraic integer greater than 1 is called Salem number [Salem, 1963] iff all of its Galois
conjugates are less than or equal to 1 in absolute value and at least one of its Galois conjugates
has an absolute value of exactly 1.

Lemma 3.2.6. [Frougny and Solomyak, 1992] Let β > 1 be a non-integral real number.
Then

(i) N ⊆ Fin(β)⇒ β is a Pisot or Salem number

(ii) β has property (F)⇒ β is a Pisot number.

From the previous lemma it follows in particular that every β which has property (F) is an
algebraic integer. From this one can derive the main relation between property (F) of β-expansion
on the one hand and the finiteness property of Shift Radix Systems on the other hand. The
following theorem was first proven in [Hollander, 1996] and was adapted to fit the notion of
Shift Radix Systems.

Theorem 3.2.7. [Akiyama et al., 2005] Let β > 1 be a non-integral algebraic integer and
(x− β)(xd−1 + rd−2x

d−2 + . . .+ r0) its minimal polynomial. Then

β has property (F)⇔ (r0, . . . , rd−2) ∈ D(0)
d−1.

3.3. A relation to Canonical Number Systems

Canonical Number Systems were already studied in [Knuth, 1960] (cf. also [Knuth, 1998])
and [Penney, 1965]. Just like β-expansions, Canonical Number Systems (or CNS for short)
generalize usual positional notation systems but in a different way. The initial observation which
led to their discovery was that every non-zero Gaussian integer γ can be represented uniquely in
the form

γ = c0 + c1b+ . . .+ cmbm

where m ∈ N, ci ∈ {0, 1} for i ∈ �0,m− 1�, cm = 1, and b is a very specific Gaussian integer
itself, that is −1 + i. Since then the original notion of Canonical Number Systems has been
generalized first to arbitrary quadratic number fields [Gilbert, 1981, Kátai and Kovács, 1980,
Kátai and Szabó, 1975, Kátai and Kovács, 1981] and later also to arbitrary number fields
[Kovács, 1981, Kovács and Pethő, 1991]. Finally an even more general concept of Canonical
Number Systems was established in [Pethő, 1991] which is the one we shall use here.

Definition 3.3.1. [Pethő, 1991] For d ∈ N and P (X) := Xd + pd−1X
d−1 + . . .+ p0 ∈ Z[X]

let AP := �0, |p0| − 1� denote the set of digits (for P). Furthermore let RP := Z[X]/P (X)Z[X]
and x := X + P (X)Z[X] - the image of X under the canonical epimorphism from Z[X] to RP .
Then P is said to be a CNS-polynomial iff every non-zero A ∈ RP has a unique representation
(which shall be called the CNS-representation of A) in the form

A = a0 + a1x+ . . .+ amxm

where m ∈ N0, ai ∈ AP for all i ∈ �0,m�, and am �= 0.

Since P in the previous definition is normed it is clear that any given coset A ∈ RP has a
unique element of degree at most d− 1. If this element is given by

A = A0 +A1x+ . . .+Ad−1x
d−1
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where Ai ∈ Z for i ∈ �0, d− 1�, then the CNS-representation of A can, just as β-expansions, be
computed by a rather simple dynamical system defined by backward division.

Definition 3.3.2. [Akiyama et al., 2005] For d ∈ N, P (X) := Xd+pd−1X
d−1+ . . .+p0 ∈

Z[X], and Ad := 0 let

TP : {A ∈ Z[X] | degA < d} → {A ∈ Z[X] | degA < d}

A = A0 +A1X + . . .+Ad−1X
d−1 
→

d−1∑
i=0

(Ai+1 − �A0/p0� pi+1)X
i

It follows directly from the definition that for every A ∈ {A ∈ Z[X] | degA < d} we get

A = (A0 − �A0/p0� p0) +XTP (A)

where (A0 − �A0/p0� p0) ∈ AP . If the orbit of A under TP ends up in 0, iterative application of
the transformation above will give the CNS-representation of A. Indeed, A does admit a CNS-
representation iff there is a k ∈ N such that T k

P (A) = 0 which proves the following lemma.

Lemma 3.3.3. [Akiyama et al., 2005] Let d ∈ N and P (X) := Xd+pd−1X
d−1+ . . .+p0 ∈

Z[X]. Then P is a CNS-polynomial iff all orbits of TP end up in 0.

Due to the following lemma it is convenient to consider the conjugate mapping T̃P instead
of TP . Independently in [Brunotte, 2001] and [Scheicher and Thuswaldner, 2004] it was
observed that the basis transformation{

1, X, . . . , Xd−1
}→ {ω1, . . . , ωd}

where

ωj =

d∑
i=d−j+1

piX
−d+j+i−1, for j ∈ �0, d� and pd := 1

allows for a very nice and easy to apply representation of the T̃P :

Lemma 3.3.4. [Brunotte, 2001] Let d ∈ N, P (X) := Xd + pd−1X
d−1 + . . . + p0 ∈ Z[X],

pd := 1, and A =
∑d

j=1 ajωj ∈ RP where ai ∈ Z for i ∈ �1, d�. Then

T̃P (A) = −
⌊
p1ad + . . .+ pda1

p0

⌋
ωd +

d−1∑
j=1

aj+1ωj

This observation gave rise to the definition of the following function which is known as
Brunotte’s mapping.

Definition 3.3.5. [Brunotte, 2001] For d ∈ N, P (X) := Xd+pd−1X
d−1+ . . .+p0 ∈ Z[X],

and pd := 1 let

τP : Zd → Zd

(a1, . . . , ad) 
→
(
a2, . . . , ad,−

⌊
p1ad + . . .+ pda1

p0

⌋)
It is clear that P is a CNS-polynomial iff all orbits of τP end up in 0. But for r :=(

1
p0
, pd−1

p0
, . . . , p1

p0

)
we get that τP (a) = τr(a) for all a ∈ Zd which finally reveals the relation

between Canonical Number Systems and Shift Radix Systems as it proves the following theorem.

Theorem 3.3.6. [Akiyama et al., 2005] Let d ∈ N and P (X) := Xd+pd−1X
d−1+. . .+p0 ∈

Z[X]. Then

P is a CNS-polynomial⇔
(

1

p0
,
pd−1

p0
, . . . ,

p1
p0

)
∈ D(0)

d .
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3.4. The Schur-Cohn region and ultimately periodic orbits

In this section we will discuss the relation between Shift Radix Systems and the Schur-Cohn
region treated in Chapter 2. As pointed out in the introduction of the present chapter we are
mostly interested in two dynamical properties of Shift Radix Systems which, for a given parameter
r ∈ Rd, boil down to the following two questions:

• Are all orbits of τr eventually periodic? (Is r ∈ Dd?)

• Do all orbits of τr end up in 0? (Is r ∈ D(0)
d ?)

The reason why we are interested in answering these questions was pointed out in Section 3.2 and
Section 3.3. The present section will deal with the first of the two questions. Indeed, with the
help of the Schur-Cohn region the set Dd can be characterized almost everywhere (with respect to
the Lebesgue-measure) or, more precisely, everywhere but on its boundary. The following theorem
can be found in [Akiyama et al., 2005] and is the SRS analogue of a theorem on CNS given in
[Gilbert, 1981]. We repeat the proof as certain parts (especially the norm ‖·‖ρ) are needed later.

Definition 3.4.1. For d ∈ N and r = (r1, . . . , rd) ∈ Rd let

R(r) :=

⎛⎜⎜⎜⎜⎜⎜⎝

0 1 0 · · · 0
...

. . .
. . .

. . .
...

...
. . .

. . . 0
0 · · · · · · 0 1
−r1 · · · · · · · · · −rd

⎞⎟⎟⎟⎟⎟⎟⎠ ∈ Rd×d.

Theorem 3.4.2. [Akiyama et al., 2005] Let d ∈ N. Then

E(R)d ⊆ Dd ⊆ E(R)d .

Proof. Let r = (r0, . . . , rd−1) ∈ Rd and P (x) := = xd + xd−1rd−1 + . . .+ r0 ∈ R[x]. Then it
is clear (cf. Section 2.1) that R(r) = C(P ) and

E(R)d =
{
r ∈ Rd | ρ(R(r) < 1

}
E(R)d =

{
r ∈ Rd | ρ(R(r) = 1

}
(the second statement follows from the fact that the coefficients of a polynomial depend continu-
ously on its roots [Naulin and Pabst, 1994]). On the other hand we have

τr(a) = R(r)a+ (0, . . . , 0, {ra})
for all a ∈ Zd. Assume that 0 < ρ(R(r)) < 1 and let ρ ∈ (ρ(R(r)), 1). Then there exists a norm
‖·‖ρ on Rd such that

‖R(r)a‖ρ ≤ ρ ‖a‖ρ
for all a ∈ Rd (cf. [Lagarias and Wang, 1996, Formula (3.2)]). Thus we get for all a ∈ Zd with

‖a‖ρ >
‖(0,...,0,1)‖ρ

1−ρ ⇔ ρ ‖a‖ρ < ‖a‖ρ − ‖(0, . . . , 0, 1)‖ρ that

‖τr(a)‖ρ ≤ ‖R(r)a‖ρ + ‖(0, . . . , 0, {ra}‖ρ < ρ ‖a‖ρ + ‖(0, . . . , 0, 1)‖ρ < ‖a‖ρ .
So whenever ρ(R(r)) < 1 the associated Shift Radix System is contractive outside the ball{
a ∈ Zd | ‖a‖ρ ≤

‖(0,...,0,1)‖ρ

1−ρ

}
which means that all orbits of τr eventually end up inside the ball

and must therefore get periodic. In conclusion we have

E(R)d =
{
r ∈ Rd | ρ(R(r)) < 1

} ⊆ Dd.

For the proof of the other inclusion assume to the contrary that there is a r ∈ Dd with
ρ(R(r)) > 1. First we conclude by induction that

τnr (a) = R(r)n(a) +

n∑
i=1

R(r)n−i
(
0, . . . , 0,

{
rτ i−1

r (a)
})ᵀ
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for all n ∈ N0 and a ∈ Zd. Let λ be an eigenvalue of R(r) with |λ| > 1, v a corresponding left
eigenvector, c ∈ R such that ∣∣v (0, . . . , 0,{rτ i−1

r (a)
})∣∣ ≤ c

for all i ∈ N (c exists since
∣∣(0, . . . , 0,{rτ i−1

r (a)
})∣∣ < 1 for all i ∈ N) and let a ∈ Zd such that

|va| > c+ 1

|λ| − 1
.

Then∣∣∣∣∣
n∑

i=1

λn−iv
(
0, . . . , 0,

{
rτ i−1

r (a)
})∣∣∣∣∣ ≤

n∑
i=1

|λ|n−i ∣∣v (0, . . . , 0,{rτ i−1
r (a)

)}∣∣
≤ c

n∑
i=1

|λ|n−i
= c

n−1∑
i=0

|λ|i = c
|λ|n − 1

|λ| − 1
≤ c |λ|n + |λ|n

|λ| − 1

< |λ|n |va|
and therefore

|vτnr (a)| =
∣∣∣∣∣λnva+

n∑
i=1

λn−iv
(
0, . . . , 0,

{
rτ i−1

r (a)
})∣∣∣∣∣

≥
∣∣∣∣∣|λ|n |va| −

∣∣∣∣∣
n∑

i=1

λn−iv
(
0, . . . , 0,

{
rτ i−1

r (a)
})∣∣∣∣∣
∣∣∣∣∣

= |λ|n |va| −
∣∣∣∣∣

n∑
i=1

λn−iv
(
0, . . . , 0,

{
rτ i−1

r (a)
})∣∣∣∣∣

≥ |λ|n |va| −
n∑

i=1

|λ|n−i ∣∣v (0, . . . , 0,{rτ i−1
r (a)

})∣∣
> |λ|n c+ 1

|λ| − 1
− c

n∑
i=1

|λ|n−i
= |λ|n c+ 1

|λ| − 1
− c
|λ|n − 1

|λ| − 1
=
|λ|n + c

|λ| − 1
> |λ|n−1

for all n ∈ N0. Thus the orbit of a under τr is not eventually periodic which contradicts r ∈ Dd. �
Corollary 3.4.3. [Akiyama et al., 2005] Let d ∈ N. Then

(i) Dd ⊆
{
r ∈ Rd | ρ(R(r)) ≤ 1

}
(ii) Dd ⊇

{
r ∈ Rd | ρ(R(r)) < 1

}
(iii) ∂Dd =

{
r ∈ Rd | ρ(R(r)) = 1

}
.

The previous theorem characterizes Dd everywhere but on its boundary. It turns out that on
the boundary it is much harder to decide whether or not a point belongs to Dd. Even for the case
d = 2 only partial results could be achieved by now. To close this section we shall repeat previous
results and a very important open conjecture on the boundary of D2.

Theorem 3.4.4. [Akiyama et al., 2006b]

(i) {(x, x+ 1) | x ∈ [−1, 1)} ∪ {(x,−x− 1) | x ∈ [−1, 0] ∪ {(1,−1), (1, 0), (1, 1)}} ⊆ D2

(ii) ({(x,−x− 1) | x ∈ (0, 1]} ∪ {(1, 2)}) ∩ D2 = ∅.
The next theorem has a very complicated proof and can be found in [Akiyama et al., 2008a]

(cf. also [Pethő, 2009, Kirschenhofer et al., 2008]).

Theorem 3.4.5.
{(

1, ±1±√
5

2

)
,
(
1,±√2

)
,
(
1,±√3

)} ⊆ D2.

The previous theorem settles special cases of a conjecture which has been formulated in several
different contexts and many publications such as [Akiyama et al., 2006b, Bruin et al., 2003,
Lowenstein et al., 1997, Vivaldi, 1994].
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Conjecture 3.4.6. {(1, y) | y ∈ (−2, 2)} ⊆ D2.

Figure 1. Overview of settled parts on the boundary of D2.

3.5. Cycles and polyhedra

Referring to the two questions asked at the beginning of the previous section where we presented
several results on the first, we now turn the second, which will be partially answered in the upcoming

Theorem 3.5.10. Our first trivial, yet decisive observation at the task of characterizing D(0)
d is that

it is a subset of Dd which is identical to E(R)d up to its boundary. We recall the difference between

Dd and D(0)
d : While the orbits of Shift Radix Systems associated with parameters from Dd end up

in any period, in case of D(0)
d they end up in a special period, that is the trivial (0). The following

lemma is therefore a direct consequence of the definitions.

Definition 3.5.1. [Akiyama et al., 2005] For d ∈ N let C(Z)d :=
⋃

n∈N0
(Zd)n denote the set

of (d-dimensional, real) cycles.

For a cycle π = (a1, . . . ,ak) ∈ C(Z)d let PR (π) :=
{
r ∈ Rd | ∀ i ∈ �1, k� : τr(ai) = ai%k+1

}
, i.e.

the set of those parameters r for which π is a cycle of the associated Shift Radix System. PR (π)
shall be referred to as the cutout polyhedron of π.

Lemma 3.5.2. [Akiyama et al., 2005] Let d ∈ N. Then

D(0)
d = Dd \

⋃
π∈C(Z)

d \{(0)}
PR (π).

The lemma above explains the first half of the notion “cutout polyhedron”. Lemma 3.5.4 will
explain the second.

Definition 3.5.3. A set P ⊆ Rd (d ∈ N) is called (real, convex, d-dimensional) polyhedron
iff it is the intersection of finitely many half-spaces or Rd itself. A polyhedron is considered non-
degenerate iff it has positive and finite Lebesgue measure and degenerate otherwise. The set of all

real d-dimensional polyhedra shall be denoted by P(R)
d .
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Lemma 3.5.4. [Akiyama et al., 2005] Let d ∈ N and a = (a1, . . . , ad),b = (b1, . . . , bd) ∈ Zd.
Then {

r ∈ Rd | τr(a) = b
}
= {r = (r1, . . . , rd) ∈ Rd |∀ i ∈ �1, d− 1� : bi = ai+1

0 ≤ r1a1 + . . .+ rdad + bd < 1}.
In particular: If π ∈ C(Z)d then PR (π) is a (possibly degenerate) convex polyhedron.

Proof. Let r = (r1, . . . , rd) ∈ Rd. Then

τr(a) = b⇔ (b1, . . . , bd) = (a2, . . . , ad,−�r1a1 + . . .+ rdad�)
⇔ ∀ i ∈ �1, d− 1� : bi = ai+1 ∧ bd = −�r1a1 + . . .+ rdad�
⇔ ∀ i ∈ �1, d− 1� : bi = ai+1 ∧ �r1a1 + . . .+ rdad + bd� = 0

⇔ ∀ i ∈ �1, d− 1� : bi = ai+1 ∧ 0 ≤ r1a1 + . . .+ rdad + bd < 1.

The proof of the “In particular” part obviously follows by induction. �
We now know how to compute the cutout polyhedron of a given cycle. But how do we even

find a cycle which corresponds to a non-empty cutout polyhedron? A first hint is given by the
following lemma.

Lemma 3.5.5. [Akiyama et al., 2005] Let d ∈ N, r ∈ int (Dd), ρ ∈ (ρ(R(r)), 1), ‖·‖ρ norm

on Rd with ‖R(r)a‖ρ ≤ ρ ‖a‖ρ for all a ∈ Rd (cf. proof of Theorem 3.4.2), and a ∈ Zd such that

τkr (a) = a for some k ∈ N. Then

‖a‖ρ ≤
‖(0, . . . , 0, 1)‖ρ

1− ρ
.

In particular:
{
π ∈ C(Z)d | r ∈ PR (π)

}
is a finite set.

Proof. From the proof of Theorem 3.4.2 we have that

‖a‖ρ >
‖(0, . . . , 0, 1)‖ρ

1− ρ
⇒ ‖τr(a)‖ρ < ‖a‖ρ

which already proves the lemma. �
The following theorem is essentially the same as Theorem 3.2 in [Weitzer, 2015a] (cf. also

Lemma 7.2 in [Akiyama et al., 2005]) and improves the “In particular” part of the previous
lemma.

Theorem 3.5.6. [Weitzer, 2015a] Let d ∈ N and r ∈ int (Dd). Then there is an open
neighborhood B of r for which {

π ∈ C(Z)d | B ∩ PR (π) �= ∅
}

is a finite set.

In particular: If M ⊆ int (Dd) with dist (M,∂Dd) > 0 then
{
π ∈ C(Z)d |M ∩ PR (π) �= ∅

}
is a finite

set.

Proof. Let ρ ∈ (ρ(R(r)), 1) and ‖·‖ρ norm on Rd with ‖R(r)a‖ρ ≤ ρ ‖a‖ρ for all a ∈ Rd (cf.

proof of Theorem 3.4.2). As the function which maps s ∈ Rd to max
{‖R(s)a‖ρ

‖a‖ρ
| a ∈ Rd ∧ ‖a‖ρ = 1

}
is continuous, there is an open neighborhood B of r such that ‖R(s)a‖ρ ≤ ρ ‖a‖ρ for every s ∈ B

and a ∈ Rd. As in the proof of Theorem 3.4.2 we deduce that

‖a‖ρ >
‖(0, . . . , 0, 1)‖ρ

1− ρ
⇒ ‖τs(a)‖ρ < ‖a‖ρ

for all s ∈ B. Therefore the set of all cycles of d-dimensional Shift Radix Systems associated

with parameters in B is contained in the ball
{
a ∈ Zd | ‖a‖ρ ≤

‖(0,...,0,1)‖ρ

1−ρ

}
and is thus finite as

claimed.
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For the in “In particular” part let C be a compact set with M ⊆ C ⊆ int (Dd) (note that Dd is
bounded according to Theorem 3.4.2) and for every r ∈ int (Dd) let Br be an open neighborhood of

r for which
{
π ∈ C(Z)d | Br ∩ PR (π) �= ∅

}
is a finite set. Then {Br | r ∈ C} is an open cover of C and

therefore there exists a finite subcover {Br1 , . . . , Brk}, k ∈ N. The set
{
π ∈ C(Z)d |M ∩ PR (π) �= ∅

}
is then a subset of the finite union of finite sets

⋃k
i=1

{
π ∈ C(Z)d | Bri ∩ PR (π) �= ∅

}
and therefore

finite itself. �
According to Lemma 3.5.2 and Lemma 3.5.4, D(0)

d is the set difference of Dd and countably
many convex polyhedra. Furthermore Theorem 3.5.6 implies that any subset of the interior of Dd

which has a positive distance from the boundary of Dd intersects with only finitely many cutout

polyhedra. Altogether we get that the boundary of D(0)
d cannot have any curved parts in the

interior of Dd but is characterized by finitely many hyperplanes in any subset of Dd that has a
positive distance from the boundary of Dd. At this point one might hope that Dd itself intersects
with only finitely many cutout polyhedra or at least that only finitely many are non-redundant.
For d = 1 this is in fact true but even for d = 2 infinitely many cutout polyhedra are necessary

to gain D(0)
2 from D2 which gives rise to the definition of so-called critical points which we will

introduce in Section 3.7.
As mentioned before, even in the case of d = 2 infinitely many cutout polyhedra and thus

infinitely many cycles are needed to describe D(0)
d . One way to deal with infinitely many cycles is to

combine them to infinite parameterized families. To compute the corresponding cutout polyhedra
of such a family one can use the following lemma from [Weitzer, 2015a]. But before we need a
few definitions (an adapted version of [Grünbaum and Shephard, 1967, Chapter 3] is used to
cover degenerate polyhedra).

Definition 3.5.7. A face of a polyhedron P ∈ P(R)
d (d ∈ N) is any intersection of P with

a closed half-space such that the interior of P (with respect to the smallest affine subspace of Rd

containing P ) and the boundary of the half-space are disjoint. In addition ∅ and Rd shall be
considered faces if P = Rd. The set of faces of P shall be denoted by F(P ).

The face lattice of P is the set of faces F(P ) of P together with the partial order given by set
inclusion.

For a face F of P let F ◦ denote the set difference of F and the union of all faces of P that are
less than F (in the face lattice of P ). Any F ◦ where F ∈ F(P ) shall be referred to as open face of
P and consequently F◦(P ) := {F ◦ | F ∈ F(P )} as the set of open faces of P .

Lemma 3.5.8. [Weitzer, 2015a] Let H denote a finite set of half-spaces in Rd and P ∈ P(R)
d

be bounded. Furthermore let Ho := {H ∈ H | H open}, Hc := {H ∈ H | H closed}, Fo(P ) :=
F◦(P ) \ P(P ), Fc(P ) := F◦(P )∩P(P ) and AM the smallest affine subspace of Rd containing M
for all M ⊆ Rd. Then P =

⋂H iff the following holds:

(i) ∀ F ∈ F◦(P ) : F singleton⇒ ∀H ∈ H : F ⊆ H
(ii) AP = Rd ∨ ∃ H′ ⊆ H : AP =

⋂H′

(iii) ∀ F ∈ Fo(P ) : ∃H ∈ Ho : F ⊆ ∂H
(iv) ∀ F ∈ Fc(P ) : F �= P ⇒ ∃H ∈ Hc : F ⊆ ∂H ∧ P �⊆ ∂H
(v) ∀ F ∈ Fc(P ) : �H ∈ Ho : F ⊆ ∂H.

Proof. It is obvious that P =
⋂H ⇒ (i)∧ . . .∧(v). For the other direction let Q :=

⋂H.

Then Q ∈ P(R)
d and (i) implies that all vertices of P are contained in Q and thus P ⊆ Q since P

is bounded. Furthermore (v) guarantees that no face belonging to P is being cut off and therefore
P ⊆ Q. We are left to show the other inclusion. By (ii) we get Q ⊆ AP and thus AP = AQ.
Therefore we can assume w.l.o.g. that P is nondegenerate (i.e. AP = Rd). But then (iii) and (iv)
(and P ⊆ Q) imply that every face of P is not only a face of Q but also the types of the faces
(contained or not contained in P resp. Q) coincide and thus P = Q. Note that by our assumption
AP = Rd statement (iv) simplifies to ∀ F ∈ Fc(P ) : F �= P ⇒ ∃H ∈ Hc : F ⊆ ∂H. The P �⊆ ∂H
part is only needed to guarantee a cut also in the degenerate case. �
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Definition 3.5.9. For two finite tuples S and T let S � T denote the tuple obtained by con-
catenation of S and T .

For a tuple (T1, . . . , Tn) of n ∈ N finite tuples let shuffle(T1, . . . , Tn) denote the tuple ob-
tained by successively stringing together the first entries of the tuples (in the given order) fol-
lowed by the second entries and so forth, with tuples having too little entries being skipped (e.g.
shuffle((1, 2), (3), (4, 5, 6)) = (1, 3, 4, 2, 5, 6)).

Using the notions of the previous definition we define the six infinite families of cycles given
in the following theorem. Note that the families C2 and C6 were already found in [Surer, 2007]
and are added for completeness.

Theorem 3.5.10. [Weitzer, 2015a] Let

C0(1) := ((−3, 3), (3,−2), (−2, 1), (1, 1), (1,−2), (−2, 3), (3,−3))
C0(2) := ((−5, 1), (1, 5), (5,−3), (−3,−3), (−3, 5), (5, 1), (1,−5), (−5, 2), (2, 4),

(4,−4), (−4,−1), (−1, 5), (5,−1), (−1,−4), (−4, 4), (4, 2), (2,−5))

C
(1)
1 (n) := ((−2n, 2k))nk=1 � ((−2n+ 2k, 2n))n−1

k=1 � ((2k − 1, 2n− 2k))n−1
k=1�

((2n− 1,−2k + 1))nk=1 � ((2n− 2k − 1,−2n+ 1))n−1
k=1�

((−2k,−2n+ 2k + 1))n−1
k=1

C
(2)
1 (n) := ((2k, 2n− 2k))n−1

k=1 � ((2n,−2k + 1))nk=1 � ((2n− 2k,−2n+ 1))n−1
k=1�

((−2k + 1,−2n+ 2k + 1))n−1
k=1 � ((−2n+ 1, 2k))nk=1�

((−2n+ 2k + 1, 2n))n−1
k=1

C
(3)
1 (n) := ((2n− 2k,−2n))n−1

k=1 � ((−2k + 1,−2n+ 2k))n−1
k=1�

((−2n+ 1, 2k − 1))nk=1 � ((−2n+ 2k + 1, 2n− 1))n−1
k=1�

((2k, 2n− 2k − 1))n−1
k=1 � ((2n,−2k))nk=1

C1(n) := shuffle(C
(1)
1 (n), C

(2)
1 (n), C

(3)
1 (n)), n ≥ 2

C
(1)
2 (n) := ((−2n, 2k − 1))n+1

k=1 � ((−2n+ 2k, 2n+ 1))n−1
k=1

C
(2)
2 (n) := ((2k − 1, 2n− 2k + 1))nk=1 � ((2n+ 1,−2k))nk=1

C
(3)
2 (n) := ((2n− 2k + 1,−2n))nk=1 � ((−2k,−2n+ 2k))n−1

k=1

C2(n) := shuffle(C
(1)
2 (n), C

(2)
2 (n), C

(3)
2 (n)), n ≥ 1

C
(1)
3 (n) := ((−2n− 1, 1)) � ((−2n+ 2k − 2,−2k))nk=1 � ((2k − 1,−2n− 1))nk=1

C
(2)
3 (n) := ((1, 2n+ 1)) � ((−2k, 2n+ 2))n−1

k=1 � ((−2n, 2n+ 1))�
((−2n− 1, 2n− 2k + 1))n−1

k=1

C
(3)
3 (n) := ((2n+ 1,−2n)) � ((2n+ 2,−2n+ 2k))n−1

k=1 � ((2n− 2k + 3, 2k − 1))nk=1

C3(n) := shuffle(C
(1)
3 (n), C

(2)
3 (n), C

(3)
3 (n)), n ≥ 2

C
(1)
4 (n) := ((−2n− 1, 2)) � ((−2n+ 2k − 2,−2k + 1))nk=1 � ((2k − 1,−2n))n−1

k=1�
((2n− 1,−2n+ 1)) � ((2n,−2n+ 2k + 1))n−1

k=1 � ((2n− 2k + 1, 2k))nk=1�
((−2k, 2n+ 1))n−1

k=1 � ((−2n, 2n)) � ((−2n− 1, 2n− 2k))n−2
k=1

C
(2)
4 (n) := ((2, 2n)) � ((−2k + 1, 2n+ 1))n−1

k=1 � ((−2n+ 1, 2n))�
((−2n, 2n− 2k))n−1

k=1 � ((−2n+ 2k − 1,−2k + 1))nk=1 � ((2k,−2n))n−1
k=1�

((2n,−2n+ 1)) � ((2n+ 1,−2n+ 2k + 1))n−1
k=1 � ((2n− 2k + 2, 2k))n−1

k=1

C
(3)
4 (n) := ((2n,−2n)) � ((2n+ 1,−2n+ 2k))n−1

k=1 � ((2n− 2k + 2, 2k − 1))nk=1�
((−2k + 1, 2n))n−1

k=1 � ((−2n+ 1, 2n− 1)) � ((−2n, 2n− 2k − 1))n−1
k=1�

((−2n+ 2k − 1,−2k))nk=1 � ((2k,−2n− 1))n−1
k=1

C4(n) := shuffle(C
(1)
4 (n), C

(2)
4 (n), C

(3)
4 (n)), n ≥ 2
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C
(1)
5 (n) := ((−n− 1, 1)) � ((−n+ k − 1, k + 2))n−1

k=1

C
(2)
5 (n) := ((1, n+ 1)) � ((k + 2, n− k + 1))n−2

k=1 � ((n+ 1, 1))

C
(3)
5 (n) := ((n− k + 2,−k − 1))n−1

k=1 � ((1,−n− 1))

C
(4)
5 (n) := ((−k − 1,−n+ k − 1))n−1

k=1

C5(n) := shuffle(C
(1)
5 (n), C

(2)
5 (n), C

(3)
5 (n), C

(4)
5 (n)), n ≥ 2

C
(1)
6 (n) := ((−n+ k − 1,−k))nk=1 � ((1,−n))

C
(2)
6 (n) := ((−k, n− k + 1))nk=1 � ((n− k + 1, k + 1))nk=1

C
(3)
6 (n) := ((k + 1,−n+ k))n−1

k=1 � ((n+ 1, 1))

C6(n) := shuffle(C
(1)
6 (n), C

(2)
6 (n), C

(3)
6 (n)), n ≥ 1

Then we have the following corresponding infinite families of cutout polygons, where every polygon
is given by a list of its vertices in counterclockwise order, a vertex is overlined iff it belongs to
the respective polygon, and belonging of an edge is indicated by a solid (contained) or dotted (not
contained) line between the endpoints:

C0(n), n = 1:
(

3
4 ,

3
2

) (
1, 5

3

) (
7
6 ,

11
6

) (
1, 2
)

n = 2:
(

25
26 ,

15
26

) (
1, 1

2

) (
28
27 ,

16
27

) (
1, 3

5

)
C1(n), n ≥ 2:

(
1− 1

4n2−4n+2 , 1 +
2n−1

4n2−4n+2

) (
1, 1 + 1

2n−1

)(
1 + 1

4n2−2 , 1 +
2n+2
4n2−2

) (
1, 1 + 1

2n−2

)
C2(n), n = 1:

(
2
3 ,

4
3

) (
1, 3

2

) (
6
5 ,

9
5

) (
3
4 ,

3
2

)
n ≥ 2:

(
1− 1

4n2−2n+1 , 1 +
2n−1

4n2−2n+1

) (
1, 1 + 1

2n

)(
1 + 1

4n2+2n−1 , 1 +
2n+2

4n2+2n−1

) (
1, 1 + 1

2n−1

)
C3(n), n ≥ 2:

(
1− 1

4n2+6n−1 , 1− 2n+4
4n2+6n−1

) (
1, 1− 1

2n−1

)
(
1 + 1

4n2+6n−2 , 1− 2n+3
4n2+6n−2

) (
1, 1− 1

2n

)
C4(n), n = 2:

(
19
20 ,

3
5

) (
21
22 ,

13
22

) (
1, 3

5

) (
22
21 ,

13
21

) (
20
19 ,

12
19

) (
1, 2

3

)
n ≥ 3:

(
1− 1

4n2+4n−4 , 1− 2n+4
4n2+4n−4

) (
1, 1− 1

2n−2

)(
1 + 1

4n2+4n−5 , 1− 2n+3
4n2+4n−5

) (
1, 1− 1

2n−1

)
C5(n), n = 2:

(
10
11 ,

4
11

) (
1, 1

3

) (
11
10 ,

2
5

) (
1, 1

2

)
n = 3:

(
14
15 ,

4
15

) (
1, 1

4

) (
19
18 ,

5
18

) (
1, 1

3

)
n = 4:

(
22
23 ,

5
23

) (
23
24 ,

5
24

) (
1, 1

5

) (
24
23 ,

5
23

) (
1, 1

4

)
n ≥ 5:

(
1− 1

n2+n+3 ,
n+1

n2+n+3

) (
1− 1

n2+2n ,
n+1

n2+2n

) (
1, 1

n+1

)
(
1 + 1

n2+2n−1 ,
n+1

n2+2n−1

) (
1 + 1

n2+n+3 ,
n+1

n2+n+3

) (
1, 1

n

)
C6(n), n = 1

(
2
3 ,− 1

3

) (
1,−1

) (
4
3 ,− 2

3

)
n ≥ 2:

(
1− 1

n2+2 ,− n
n2+2

) (
1,− 1

n

) (
1 + 1

n2+n+1 ,− n+1
n2+n+1

)(
1 + 1

n2+2n ,− n+1
n2+2n

) (
1− 1

n2+n+1 ,− n
n2+n+1

)
Proof. Using Lemma 3.5.4 one can compute the systems of linear inequalities that correspond

to the given cycles. Computer-aided computations then show that these systems of inequalities
together with the claimed shapes of the cutout polygons meet the conditions of Lemma 3.5.8 which
proves the theorem. �
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Figure 2 shows a compilation of all families. The polygons are threaded on the line segment
between (1,−1) and (1, 2) and they tend to either of the two points (1, 0) and (1, 1). These two
points will turn out to be so-called critical points which we will define in Section 3.7.

C0(1)

C0(2)

C1(2)

C2(1)

C3(2) C4(2)

C5(2)

C6(1)

(−1, 0)

(1,−2)

(1,−1)

(1, 0)

(1, 1)

(1, 2)

Figure 2. Six families of cutout polygons for d = 2.

3.6. Brunotte’s algorithm: Sets of witnesses

In the previous section we provided a tool which allows to prove that a certain parameter

r ∈ Rd does not belong to D(0)
d . In the present section we will recall another basic tool which will

allow to decide whether or not a given parameter r ∈ int (Dd) belongs to D(0)
d . It is the so-called

sets of witnesses which form the basis of what is known as Brunotte’s algorithm [Brunotte, 2001].
Furthermore the concept of sets of witnesses can be generalized such that they not only settle the
finiteness property for single parameters but for whole convex regions of parameters contained in
the interior of Dd.

Definition 3.6.1. Cf. [Brunotte, 2001] A set V ⊆ Zd is called a set of witnesses for r ∈ Rd

(d ∈ N) iff it is stable under τr and τ�r := −τr ◦ (− idZd) and contains a generating set of the group
(Zd,+) which is closed under taking inverses.

All sets of witnesses have the following decisive property:

Lemma 3.6.2. [Akiyama et al., 2005] Let d ∈ N, r ∈ Rd, and V ⊆ Zd a set of witnesses for
r. Then

r ∈ D(0)
d ⇔ ∀ a ∈ V : ∃ n ∈ N : τnr (a) = 0.

If one could find a finite set of witnesses for a given parameter r this would of course provide a

method to decide whether or not the parameter belongs to D(0)
d . This is exactly what Brunotte’s

algorithm does for any r in the interior of Dd - it computes a finite set of witnesses.
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Definition 3.6.3. [Akiyama et al., 2005] For d ∈ N and r ∈ Rd let

Vr,0 := {(±1, 0, . . . , 0), . . . , (0, . . . , 0,±1)}
∀ n ∈ N : Vr,n := Vr,n−1 ∪ τr(Vr,n−1) ∪ τ�r (Vr,n−1)

Vr :=
⋃

n∈N0

Vr,n

Vr shall be referred to as the set of witnesses associated with r.

Theorem 3.6.4. [Akiyama et al., 2005] Let d ∈ N and r ∈ int (Dd). Then Vr is a finite set
of witnesses for r.

As indicated in the beginning of the section the concept of sets of witnesses can be adapted to
work for whole regions of parameters.

Definition 3.6.5. For d ∈ N and M ⊆ Rd let

τM : P(Zd)→ P(Zd).

V 
→ {τr(a) | r ∈M ∧ a ∈ V }
With this notation one can define sets of witnesses for regions of parameters in complete analogy

to Definition 3.6.1. The concepts and theorems for single parameters translate as expected.

Definition 3.6.6. Cf. [Akiyama et al., 2005] A set V ⊆ Zd is called a set of witnesses for
M ⊆ Rd (d ∈ N) iff it is stable under τM and τ�M := −τM ◦ (− idZd) and contains a generating
set of the group (Zd,+) which is closed under taking inverses.

Lemma 3.6.7. [Akiyama et al., 2005] Let d ∈ N, M ⊆ Rd, and V ⊆ Zd a set of witnesses
for M . Then

M ∩ D(0)
d = M \

⋃
π = (a1, . . . , ak) ∈ C(Z)

d{a1, . . . , ak} ⊆ V

PR (π)

Definition 3.6.8. Cf. [Akiyama et al., 2005] For d ∈ N and M ⊆ Rd let

VM,0 := {(±1, 0, . . . , 0), . . . , (0, . . . , 0,±1)}
∀ n ∈ N : VM,n := VM,n−1 ∪ τM (VM,n−1) ∪ τ�M (VM,n−1)

VM :=
⋃

n∈N0

VM,n

VM shall be referred to as the set of witnesses associated with M .

Theorem 3.6.9. [Weitzer, 2015a] Let d ∈ N and M ⊆ int (Dd) with dist (M,∂Dd) > 0.

Then there is a k ∈ N and there are B1, . . . , Bk ⊆ Rd such that M =
⋃k

i=1 Bi and VBi is a finite
set of witnesses for Bi for all i ∈ �1, k�.

Proof. The proof of Theorem 3.5.6 can easily be adapted. �
We now have almost everything we need to define an algorithm which computes the intersection

ofD(0)
d and any given subsetM of the interior ofDd which has a positive distance from the boundary

of Dd.
The first step is to subdivide M into finitely many, sufficiently small sets for which the iteration

in Definition 3.6.8 becomes stationary. Theorem 3.6.9 implies that such a subdivision always exists
even though it does not provide a constructive method on how to compute it. It turns out that this
is only of theoretical relevance as it is perfectly practicable to just try a certain subdivision and
refine it if the iteration does not seem to hold. This can be decided heuristically by introducing a
sufficient upper bound for the size (e.g. its diameter) of the set of witnesses. What makes a sufficient
upper bound can be estimated by the actual upper bound (as given in the proof of Theorem 3.4.2)
for the size of the set of witnesses of that parameter r ∈M the associated matrix R(r) of which has
the largest spectral radius. Though not of practical importance we shall nevertheless overcome this
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heuristic guessing in Section 4.2 where we will introduce a “real” algorithm which is guaranteed
to terminate for all inputs M .

The only question which remains open at this point is how to compute τB and τ�B that are
needed to actually compute the finite set of witnesses of an element B of the subdivision. In
[Akiyama et al., 2005] a method is provided which we will not repeat here as we will introduce
a more efficient method in Section 4.3 (cf. Remark 4.3.4).

When finite sets of witnesses for all elements of the subdivision are found we are left with
the very time-consuming task of subtracting from M all the cutout polyhedra coming from cycles
in the sets of witnesses. We shall provide a much more efficient alternative to this approach in
Section 4.4.

3.7. Critical points

At this point we have enough tools at hand to characterize D(0)
d in an arbitrarily large region

in finite time. We know that D(0)
d is contained in Dd, which is a bounded set. In the interior of Dd

we can always characterize D(0)
d as long as we keep a positive distance from the boundary of Dd.

The only points we cannot handle in general yet are those on the boundary itself. Furthermore we

have a full characterization of D(0)
1 which is known to be equal to [0, 1). In this particular case two

cutout polyhedra are sufficient to describe D(0)
d in terms of Dd. Unfortunately already for d = 2

this is not the case anymore. We cannot hope to represent D(0)
2 as the set difference of D2 and

finitely many cutout polyhedra and the reason for that is the existence of so-called critical points.

Definition 3.7.1. Cf. [Akiyama et al., 2005] Let d ∈ N and r ∈ Rd.

• r is called a regular point (for D(0)
d ) iff there exists an open neighborhood of r which

intersects with only finitely many cutout polyhedra.

• r is called a weakly critical point (for D(0)
d ) iff any open neighborhood of r intersects with

infinitely many cutout polyhedra.

• r is called a critical point (for D(0)
d ) iff for every open neighborhood B of r the set B\D(0)

d

cannot be covered by finitely many cutout polyhedra.

• r is called a strongly critical point (for D(0)
d ) iff for every open neighborhood B of r the

set B \ D(0)
d cannot be covered by finitely many polyhedra.

In [Akiyama et al., 2005] only the first three types of points are considered and it is argued

that the difference between those two notions is that in the neighborhood of a critical point, D(0)
d

cannot be characterized by finitely many polyhedra. This is not completely correct as it cannot
be ruled out that the infinitely many cutout polyhedra in the neighborhood of a true critical point
(i.e. that is not a weakly critical point) can be covered by finitely many polyhedra that might not
be cutout polyhedra though. The existence of critical points alone therefore does not necessarily

imply that D(0)
d has a complicated structure in the sense that it cannot be given as the union of

finitely many polyhedra. Only the existence of strongly critical points could, but up to now there
is no point for d ∈ N that is proven to be strongly critical. However, all previous observations do
suggest that every critical point is in fact strongly critical.

The following theorem is proven in [Akiyama et al., 2005]. We will not repeat the proof at
this point but we shall show the existence of a critical point in the complex setting in Section 5.4
applying similar methods.

Theorem 3.7.2. [Akiyama et al., 2005] Let d ∈ N≥2. Then (0, . . . , 0, 1, 0) ∈ Rd is a critical

point for D(0)
d .

We close the chapter with an image of D(0)
2 which gives a first idea of its true shape. It can

be seen that there are most likely two critical points which are (1, 0) (which is already proven to
be critical) and (1, 1). In Chapter 4 we will take a closer look on the surroundings of these critical

points and settle two topological questions: Is D(0)
2 connected and do its connected components

have trivial fundamental group? In both cases the answer will be: No.
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Figure 3. D2 and D(0)
2 .



CHAPTER 4

New algorithms and topological results

In this chapter we will present two algorithms which allow the characterization of the intersec-

tion of D(0)
d and any closed convex hull of finitely many interior points of Dd which is completely

contained in the interior of Dd. These algorithms form an alternative to Brunotte’s algorithm for
regions introduced in Section 3.6. Both have individual advantages which will be discussed in the
respective sections. The algorithms have been applied to settle two previously open questions on

the topology of D(0)
2 : Is D(0)

2 connected, and do its connected components have trivial fundamental
group? The answers to both questions (which is “no” in both cases) will be discussed in detail in
the last section. Most of the material in this chapter has been published in [Weitzer, 2015a].

4.1. Graphs of witnesses

In Section 3.5 we defined cutout polyhedra, which consist of exactly those parameters, the
corresponding Shift Radix Systems of which admit a given common cycle. In Section 3.6 we
introduced the concept of sets of witnesses and, by analogy, we shall now define the set of those
parameters which share a given common set of witnesses. To be more specific, we don’t only
demand the sets of witnesses to be identical but also the way in which τ and τ� act on them. For
that purpose we first have to extend our definition to “graphs of witnesses” the vertex set of which
is the set of witnesses and whose edges are given by the actions of τ and τ�.

Definition 4.1.1. [Weitzer, 2015a] For d ∈ N and r ∈ Rd, Πr - the graph of witnesses
associated with r - denotes the edge-colored multidigraph with vertex set Vr and an edge of color 1
from a vertex a to a vertex b iff τr(a) = b and an edge of color 2 from a to b iff τ�r (a) = b.

If E1 is the set of all edges (ordered pairs) of color 1 and E2 the set of all edges of color 2, then
the graph Πr is completely characterized by the pair (E1, E2) ∈ P((Zd)2)2 (as there are no isolated
vertices) and thus the graph and the pair can be identified. For any such graph Π = (E1, E2) ∈
P((Zd)2)2 let PR (Π) :=

{
r ∈ Rd | ∀ (a,b) ∈ E1 : τr(a) = b ∧ ∀ (a,b) ∈ E2 : τ�r (a) = b

}
.

Figure 1. E1 (left) and E2 of Πr for r =
(
3
4 ,

1
2

)
.

Definition 4.1.2. A strip S ⊆ Rd is the intersection of two parallel oppositely oriented half-
spaces, or Rd itself. The empty set and the whole space Rd are considered degenerate and all
others nondegenerate strips. For nondegenerate strips the attributes open, half-open, and closed
shall indicate belonging of the hyperplanes bounding the strip. The width of a strip is the normal
distance of these hyperplanes if it is nondegenerate or −∞ or ∞ if the strip is the empty set or
the whole space respectively.

48
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Every strip having positive width can be represented in one of the four ways{
r ∈ Rd | 0

{
<
≤
}
ar+ b

{
<
≤
}
1

}
(a ∈ Rd, b ∈ R),

where a is normal to the strip’s bounding hyperplanes and 1
‖a‖ is the strip’s width.

Lemma 4.1.3. [Weitzer, 2015a] Let a = (a1, . . . , ad),b = (b1, . . . , bd) ∈ Zd, and r ∈ Rd.
Then

(i)
{
r ∈ Rd | τr (a) = b

}
=
{
r ∈ Rd | ∀ i ∈ �1, d− 1� : bi = ai+1 ∧ 0 ≤ ra+ bd < 1

}
(ii)

{
r ∈ Rd | τ�r (a) = b

}
=
{
r ∈ Rd | ∀ i ∈ �1, d− 1� : bi = ai+1 ∧ 0 ≤ −ra− bd < 1

}
(iii)

{
s ∈ Rd | τs(a) = τr(a) ∧ τ�s (a) = τ�r (a)

}
=

{{
s ∈ Rd | sa− ra = 0

}
if ra ∈ Z{

s ∈ Rd | 0 < sa− �ra� < 1
}

if ra �∈ Z

Proof. (i) and (ii) can be proven in the same way as Lemma 3.5.4 (indeed, (i) is even identical
to Lemma 3.5.4 but is repeated here for convenience).

For the proof of (iii) let M :=
{
s ∈ Rd | τs(a) = τr(a) ∧ τ�s (a) = τ�r (a)

}
. Then (i) and (ii)

imply that M =
{
s ∈ Rd | 0 ≤ sa− �ra� < 1 ∧ 0 ≤ −sa− �−ra� < 1

}
. If ra ∈ Z then −�−ra� =

ra and therefore M =
{
s ∈ Rd | sa− ra = 0

}
. If ra �∈ Z then −�−ra� = �ra� + 1 and therefore

M =
{
s ∈ Rd | 0 < sa− �ra� < 1

}
. �

Lemma 4.1.4. [Weitzer, 2015a] Let r ∈ int (Dd). Then PR (Πr) is the intersection of a
nondegenerate, open polyhedron and an affine subspace of Rd.

Proof. Lemma 4.1.3 (iii) implies that PR (Πr) is the intersection of finitely many hyper-
planes and finitely many open strips and thus is the intersection of an open polyhedron and
an affine subspace of Rd. Furthermore it is non-empty as r ∈ PR (Πr) and it is bounded as
{(±1, 0, . . . , 0), . . . , (0, . . . , 0,±1)} ⊆ Vr and therefore PR (Πr) ⊆ �r�+ [0, 1]d. �

Lemma 4.1.5. [Weitzer, 2015a] Let d ∈ N and r ∈ Rd. Then

(i) r ∈ PR (Πr), and r ∈ D(0)
d ⇔ PR (Πr) ⊆ D(0)

d

(ii) D(0)
d =

⋃{
PR (Πr) | r ∈ D(0)

d

}
and this union is disjoint.

Proof. Follows directly from the definition of PR (Πr). �

4.2. A “real” algorithm

The following algorithm is a straightforward application of Lemma 4.1.5.

Algorithm 1 [Weitzer, 2015a] Determination of conv ({r1, . . . , rk}) ∩ D(0)
d

Input: (r1, . . . , rk) ∈ int (Dd)
k
such that conv ({r1, . . . , rk}) ⊂ int (Dd).

Output: P ⊆ P(R)
d with conv ({r1, . . . , rk}) ∩ D(0)

d =
⋃P disjoint.

1: H← conv ({r1, . . . , rk})
2: P←∅
3: while H \⋃P �= ∅ do
4: select r ∈ H \⋃P
5: P←P ∪ {H ∩ PR (Πr)}
6: if r ∈ D(0)

d then {use Brunotte’s algorithm}
7: finH∩PR(Πr)←true
8: else
9: finH∩PR(Πr)←false

10: end if
11: end while

12: return {P ∈ P | finP = true}



4.2. A “REAL” ALGORITHM 50

Of course the question arises whether the while loop actually terminates, which is equivalent
to the possibility of exhausting H by finitely many PR (Πr).

Theorem 4.2.1. [Weitzer, 2015a] Algorithm 1 terminates for all inputs.

Proof. By Theorem 3.6.9 the set
⋃

r∈H Vr is finite and since only finitely many graphs can
be defined on a finite number of vertices the set {PR (Πr) | r ∈ H} is also finite. �

How does Algorithm 1 compare to Brunotte’s algorithm for regions introduced in Section 3.6?
The first difference is that Algorithm 1 is a “real” algorithm in the sense that it is guaranteed to
hold for all inputs by Theorem 4.2.1 whereas with Brunotte’s algorithm for regions this is not the
case. But as discussed at the end of Section 3.6 this is only of theoretic relevance. Practically
both algorithms are perfectly applicable. The second difference lies in the running times of the
algorithms. It might not be obvious but in many situations Algorithm 1 is much faster than
Brunotte’s algorithm for regions. To get an idea why this is the case let us recapitulate what
the two algorithms do and what the different approaches are. In both cases we start with a
suitable (which has a different meaning for each of the two algorithms) convex hull H and the

goal is to characterize H ∩D(0)
d . The output of Algorithm 1 is a list of pairwise disjoint polyhedra

the union of which is just H ∩ D(0)
d , while the output of Brunotte’s algorithm for regions is a

list of cutout polyhedra which, if subtracted from H, again give H ∩ D(0)
d . Both algorithms use

sets of witnesses but while Algorithm 1 uses all sets of witnesses occurring for parameters in H
one by one and computes the largest possible subset of H which can be settled by a given set of
witnesses, Brunotte’s algorithm computes a set of witnesses for the whole setH, which contains as a
subset (in relevant cases even as a proper subset) an overlapping of all sets of witnesses considered
in Algorithm 1. After computing the set of witnesses for H, Brunotte’s algorithm for regions
considers the overlapping of all graphs that can be defined on the set of witnesses by parameters
from H simultaneously to search for cycles the corresponding cutout polyhedra of which are then
subtracted from H. But since an overlapping of many graphs is considered, many cycles will be
found which lead to empty cutout polyhedra. In Algorithm 1 the different layers of the overlapped
graph are treated separately and all cycles found in a layer are guaranteed to be relevant.

So what are the time-consuming steps in both algorithms? For Brunotte’s algorithm for regions
it is the computation of all cycles in the overlapped graph and, even more so, the computation of
the corresponding cutout polyhedra. The latter is done by solving a system of linear inequalities
which come in pairs for every step in the respective cycle according to Lemma 3.5.4. But this
system of linear inequalities needs to be solved even if the solution is the empty set which might
not be obvious right from the beginning.

For Algorithm 1 the time-consuming step is the computation of the polyhedra which correspond
to the sets of witnesses that are found. At first sight it might seem that this will be much slower
than computing cutout polyhedra for cycles even if many of them are empty hence useless. After
all, the systems of linear inequalities coming from sets of witnesses are much bigger as there are
four inequalities for every element in the set of witnesses by Lemma 4.1.3. But there is one decisive
advantage one has when solving these systems, which is not available when solving the systems
coming from cycles in Brunotte’s algorithm for regions: One solution of the system is already
known. It is the parameter r which has been used to find the set of witnesses in the first place
and which is trivially contained in the corresponding polyhedron. Using this known solution the
solution set of the whole system can be found very efficiently. We shall give a short summary of
the approach for d = 2 which can be adapted to higher dimensions as well. Figure 2 below shows
a possible situation and will be referred to in the following description.

The first step is to compute the normal distances of the parameter r (black point) and any of
the lines bounding the half-planes defined by the linear inequalities. Those that are closest to r are
certainly non-redundant (thick black line). Starting from such a line one can intersect it with all
the other lines and select among those the one the intersection point of which is closest to the foot
of the perpendicular from r to the first line in a given direction (clockwise or counter-clockwise). If
several lines have the same minimal distance then one of those has to be selected which encloses the
smallest angle with the first line with respect to the chosen direction. This line is again guaranteed



4.3. FINER CLASSES 51

to be non-redundant (one of the two thick orange lines adjacent to the thick black line). One then
continues in the same fashion to go around r and find all non-redundant lines till the first line is
reached again (the other thick orange lines). If n is the number of linear inequalities and m is
the number of edges of the resulting polygon then nm intersections have to be computed. Among
several millions of polygons found that way there was not a single one where m was larger than
5 (and this was the case in only a single situation, in all others m was less than 5) which makes
the seemingly costly task of solving the systems of linear inequalities coming from sets of witnesses
not so time-consuming after all. Note that some details (which cause no additional time exposure)
of the whole procedure have been skipped. These are mostly related to the fact that there are
actually two types (strict and non-strict) of linear inequalities that have to be considered.

Figure 2. Going around the known solution r to find the whole solution set PR (Πr).

4.3. Finer classes

In all our applications Algorithm 1 presented in the previous section performed faster than
Brunotte’s algorithm for regions and can therefore be used to practically settle larger regions of

D(0)
d . In the next section an algorithm will be introduced which again performed much faster than

Algorithm 1 and the present section will serve to discuss necessary preliminaries.

From now on let d ∈ N and (r1, . . . , rk) ∈ int (Dd)
k
such that H = conv ({r1, . . . , rk}) ⊂

int (Dd). Algorithm 1 computes a decomposition of H into finitely many disjoint polyhedra (from

which it selects those which are contained in D(0)
d in the final step). Algorithm 2 from the next

section uses any finite superset V (which has to be fixed initially) of ṼH :=
⋃

r∈H Vr to compute

a refinement of this decomposition (cf. Figure 3). ṼH itself is a finite set according to Theo-

rem 3.6.9 and can be computed by Algorithm 1. Though ṼH would be the optimal choice for V ,
its determination by Algorithm 1 would of course be pointless. But at least for some choices of H
another finite superset of ṼH can be calculated efficiently using Brunotte’s algorithm for regions.
It calculates a common set of witnesses for all r ∈ H. Unfortunately the set VH found in this way
need not always be finite even if H is contained in the interior of Dd. However in practice this
causes no troubles as discussed at the end of Section 3.6.

From now on let V ⊆ Zd fix any finite superset of ṼH and consider the equivalence relation

Definition 4.3.1. [Weitzer, 2015a]

∼ :=
{
(r1, r2) ∈ (Rd)2 | ∀ a ∈ V : τr1(a) = τr2(a) ∧ τ�r1(a) = τ�r2(a)

}
.

Then the set H/∼ =
{
[r]∼ ∩H | r ∈ Rd

}
is a refinement of the decomposition of H calculated

by Algorithm 1. If R ⊆ H is any system of representatives of H/∼ then the intersection of D(0)
d

and H is given by the finite disjoint union
⋃{

[r]∼ ∩H | r ∈ R ∩ D(0)
d

}
. In order to determine the

complete list of equivalence classes (Theorem 4.3.3 below) the notion of face lattices of (convex)
polyhedra proves useful again. To proceed we need the following technical definition.
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Definition 4.3.2. [Weitzer, 2015a] For (a, b) ∈ Rd×R let P (a, b) :=
{
r ∈ Rd | ar+ b = 0

}
.

A hyperplane P ⊆ Rd is called integer if there is a tuple (a, b) ∈ Zd × Z such that P = P (a, b).
Any such tuple shall then be denoted as generator of P . The unique generator which satisfies that
the first nonzero entry of a is positive and that the greatest common divisor of the entries of a and
b is 1 is the canonical generator of P and shall be denoted by CG(P ) = (CG1 (P ) ,CG2 (P )). The
first entry CG1 (P ) of the canonical generator is the canonical normal vector of P .

Theorem 4.3.3. [Weitzer, 2015a] For all a ∈ V let Ba := {−ari | i ∈ �1, k�} and

G := {CG(P (a, b)) | a ∈ V \ {0} ∧ b ∈ {�min (Ba)� , . . . , �max (Ba)�}} .
Furthermore let φ : Rd → {−1, 0, 1}|G| where φ(r) = (sgn (ar+ b))(a,b)∈G and let P denote the
set of all minimal nondegenerate polyhedra having non-empty intersection with H which are the
intersection of some selection of half-spaces from the set

{{
r ∈ Rd | ar+ b ≥ 0

} | (a, b) ∈ G} ∪{{
r ∈ Rd | −ar− b ≥ 0

} | (a, b) ∈ G} . Then
H/∼ =

{
φ−1(S) ∩H | S ∈ {−1, 0, 1}|G|

}
\ {∅} =

{
F ∩H | F ∈

⋃
P∈P

F◦(P )

}
\ {∅} .

Proof. Lemma 4.1.3 implies that Φ1 : H/∼ → {−1, 0, 1}|G|, where Φ1([r]∼) = φ(r) is well-
defined and injective. On the other hand it follows from the definitions of open faces and P that

Φ2 :
{
F ∩H | F ∈ ⋃P∈P F◦(P )

}\{∅} → {−1, 0, 1}|G| given by Φ2(F ) = (sgn (av + b))(a,b)∈G with

v ∈ F is also well-defined and injective and Φ−1
1 (S) = Φ−1

2 (S) for all S ∈ {−1, 0, 1}|G| which proves
the statement. �

Theorem 4.3.3 gives a geometric interpretation of the equivalence classes of ∼. The hyperplanes
which are generated by the elements of G cut Rd into pieces of polyhedral shape and the set of all
(nonempty) open faces of these polyhedra is exactly the set of equivalence classes of ∼. The use of
canonical generators eliminates redundant hyperplanes, which is not needed in the proof but will
speed up the process of actually finding the set of all open faces. If d = 2 this is not too difficult
but one would probably approach the problem in reverse order than what Theorem 4.3.3 suggests.
Instead of calculating the set P of polygons directly and the set of open faces (singletons (vertices),
open line segments (edges), and nondegenerate open polygons (interiors)) afterwards, one can first
find all vertices by pairwise intersection of the given lines, then the edges (pair of distinct vertices
that lie on a common line with no other vertex lying in between), and at last the interiors (use any
algorithm to find the graph theoretic faces of a planar embedding of a graph).

In higher dimensions one could use the cylindrical algebraic decomposition algorithm which,
for a given set of polynomials in R[x1, . . . , xd], finds a decomposition of Rd into regions on which
each polynomial has constant sign [Collins, 1975].

Remark 4.3.4. [Weitzer, 2015a] The set H/∼ of equivalence classes is also useful when
calculating τH(V ) for some finite V ⊆ Zd. It follows from the definition of τH that τH(V ) =⋃

a∈V τH({a}) and for any a ∈ Zd one gets that

τH({a}) = {τr(a) | [r]∼ ∈ H/∼} ,
where ∼ :=

{
(r1, r2) ∈ R2 | τr1(a) = τr2(a) ∧ τ�r1(a) = τ�r2(a)

}
.

If the set H/∼ of equivalence classes is known one could use Brunotte’s algorithm to decide

whether or not a given class belongs to D(0)
d . The definition of ∼ guarantees that the result will

be the same for all parameters in the class. But instead of treating all classes independently two
decisive optimizations can be made to speed up the process considerably.

If [r]∼ ∈ H/∼ is any class then Vr ⊆ V and in all situations of practical relevance (where V
has been found with Brunotte’s algorithm for regions) V probably will not be much larger than
Vr. So instead of calculating Vr and checking it for nontrivial cycles one can just check the similar
superset V .

The second optimization relies on the fact that the graph defined by τr on V can only change
at specific vertices if the parameter is changed to s where [s]∼ ∈ H/∼ is any class that is adjacent
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to [r]∼ and two classes are considered adjacent if they are distinct and their topological boundaries
intersect. The following theorem describes on which nodes the graph on V needs to be updated
(at most) in this situation. If both classes have a positive distance from the boundary of H, the
set M of these nodes consists of those elements of V which are integer multiples of the canonical
normal vectors of any hyperplane containing the intersection of the boundaries of [r]∼ and [s]∼
and any (d-1)-dimensional class in the intersection of the “closed neighborhoods” of [r]∼ and [s]∼.

Theorem 4.3.5. [Weitzer, 2015a] Let [r]∼ ∈ H/∼ and [s]∼ ∈ H/∼ be adjacent and for any

class C ∈ H/∼ let N(C) := {D ∈ H/∼ | D adjacent to C} ∪ {C} (closed neighborhood of C).
Furthermore let M := {a ∈ V | ∃ b ∈ Z : ∂[r]∼ ∩ ∂[s]∼ ⊆ P (a, b)}. Then

(i) {a ∈ V | τr(a) �= τs(a)} ⊆M

(ii) ∂[r]∼ ∩ ∂H = ∅ ∧ ∂[s]∼ ∩ ∂H = ∅ ⇒
M = V ∩ {λCG1 (spanR([t]∼ − t) + t) | λ ∈ Z ∧ [t]∼ ∈ N([r]∼) ∩N([s]∼) ∧

dimR(spanR([t]∼ − t)) = d− 1 ∧
∂[r]∼ ∩ ∂[s]∼ ⊆ spanR([t]∼ − t) + t}

Proof. We say that a hyperplane separates two classes from H/∼ iff either one class is
contained in the hyperplane while the other has empty intersection with it or each class has empty
intersection with exactly one of the two open half-spaces Rd is divided into by the hyperplane. For
every a ∈ V with τr(a) �= τs(a) there is a b ∈ Z such that P (a, b) separates [r]∼ and [s]∼ according
to Theorem 4.3.3. And every hyperplane separating the two distinct but “touching” classes [r]∼
and [s]∼ has to contain the intersection of their topological boundaries which shows (i).

For the proof of (ii) assume that [r]∼ and [s]∼ both have a positive distance from the boundary
of H and let N be the set on the right-hand side of the claimed equation. It is easy to see that N ⊆
M . For the other inclusion let a ∈M and b ∈ Z such that ∂[r]∼ ∩ ∂[s]∼ ⊆ P (a, b). Then it follows

from Theorem 4.3.3 that there is a class [t]∼ ∈ N([r]∼)∩N([s]∼) with P (a, b) = spanR([t]∼−t)+t
and thus dimR(spanR([t]∼ − t)) = dimR(P (a, b) − t) = d − 1. Furthermore it follows from the
definition of CG1 that a = λCG1 (P (a, b)) for some λ ∈ Z which proves M ⊆ N . �

Figure 3. Comparison of the decompositions obtained by Algorithm 1 (bold) and
Algorithm 2 of H = conv

({
( 4150 ,

37
100 ), (

93
100 ,

37
100 ), (

93
100 ,

11
25 ), (

41
50 ,

11
25 )
})

. Dark regions
are contained in cutout polygons.
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4.4. A fast algorithm

Algorithm 2 [Weitzer, 2015a] Determination of conv ({r1, . . . , rk}) ∩ D(0)
d

Input: (r1, . . . , rk) ∈ int (Dd)
k
such that conv ({r1, . . . , rk}) ⊂ int (Dd),

Ṽconv({r1,...,rk}) ⊆ V ⊆ Zd finite.

Output: C ⊆ C(Z)d with conv ({r1, . . . , rk}) ∩ D(0)
d = conv ({r1, . . . , rk}) \

⋃
π∈C P (π).

1: H← conv ({r1, . . . , rk})
2: C←∅
3: G = (V (G), E(G))←(V, ∅) {edgeless digraph with vertex set V }
4: calculate H/∼ according to Theorem 4.3.3
5: for all C ∈ H/∼ do
6: NC←{D ∈ H/∼ | D adjacent to C}
7: BC←false
8: end for

9: for all [r]∼ ∈ H/∼ with B[r]∼ = false and ∂[r]∼ ∩ ∂H �= ∅ do

10: if r ∈ D(0)
d then {search for cycles of r on V }

11: B[r]∼←true
12: else
13: select π nontrivial cycle of r on V
14: C←C ∪ {π}
15: for all [s]∼ ∈ H/∼ with B[s]∼ = false and s ∈ P (π) do
16: B[s]∼←true
17: end for
18: end if
19: end for

20: while ∃ C ∈ H/∼ : BC = false do
21: select [r]∼ ∈ H/∼ with B[r]∼ = false
22: E(G)←{(a, τr(a)) | a ∈ V }
23: W←V
24: loop

25: if r ∈ D(0)
d then {search for cycles of G starting at the vertices in W}

26: B[r]∼←true
27: if ∃ C ∈ N[r]∼ : BC = false then
28: select C ∈ N[r]∼ with BC = false
29: update E(G) according to Theorem 4.3.5
30: save the tails of the changed edges in W
31: [r]∼←C
32: else
33: break
34: end if
35: else
36: select π nontrivial cycle of G
37: C←C ∪ {π}
38: for all [s]∼ ∈ H/∼ with B[s]∼ = false and s ∈ P (π) do
39: B[s]∼←true
40: end for
41: break
42: end if
43: end loop
44: end while

45: return C

Algorithm 2 computes a minimal set (with respect to set inclusion but not necessarily cardinality)
of cutout polyhedra which characterizes D(0)

d inside of H. After initialization of required variables
(steps 1-8) the classes “touching” the boundary ofH are treated directly (steps 9-19). If a nontrivial
cycle is found all classes contained in the corresponding cutout polyhedron are considered “done”
(the associated B-flag is set to true) and the cycle is added to the output set C.
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After that the main part of the algorithm follows (steps 20-44). The classes are treated along
walks in the graph defined on H/∼ by the adjacency relation. When a nontrivial cycle is found it
is handled as before and a new walk begins, as it does when the walk reaches a dead end (i.e. if
there are no neighbors yet to be treated). Any time a new walk starts all edges of G have to be
updated and checked for cycles, which consumes much more time than updating and checking only
those edges which are changed when going from one class to an adjacent one. In order to minimize
the number of restarts it is crucial to make a good choice when selecting the next node (step 28).
A Hamiltonian path would of course be an optimal but also costly choice. Instead the following
heuristic turns out to be adequate: Of all possible neighbors of least dimension take the one (or
one of those) which has the highest number of neighbors that are already treated. This way the
walks tend to stay “compact” and will not cut the graph into too many pieces of pending vertices.

Figure 3 illustrates the relation between the resulting decompositions of Algorithm 1 and
Algorithm 2 and cutout polygons. Even though Algorithm 2 considers more equivalence classes
than Algorithm 1 it is still much faster as only those orbits are considered which change when
going from one class to an adjacent one. Another advantage of Algorithm 2 over both Algorithm 1
and Brunotte’s algorithm for regions is that it has a very compact output. None of the cutout
polyhedra in C are redundant.

4.5. Topological results on Shift Radix Systems

The following theorem characterizes large parts of D(0)
2 and the subsequent corollary summa-

rizes topological features of the characterized region.

Theorem 4.5.1. [Weitzer, 2015a] Let K = 1
20 , L = 1

512 , and C := C1 \ C2 where

C1 :=
{
(x, y) ∈ R2 | x ≤ 1− L

}
C2 := int

((
conv

({(
1−K, 2−K

)
,
(
1−K +

√
2L, 2−K

)
,
(
1−

√
2L, 2− 2

√
2L
)
,
(
1, 2
)}))

.

Furthermore let every 5-tuple (n, x, y, a, b) in the list of Table 1 represent a cutout polygon P in the
following way: r := ( xn ,

y
n ), a := (a, b), m := min

{
k ∈ N | τkr (a) = a

}
, π := (τr(a), . . . , τ

m
r (a)),

and P := P (π). If {P1, . . . , P598} is the set of the 598 cutout polygons then

D(0)
2 ∩ C =

{
(x, y) ∈ R2 | x ≤ 1 ∧ |y| ≤ x+ 1

} ∩ C \⋃598
k=1 Pk

and none of the 598 cutout polygons are redundant.

Proof. The list of Table 1 has been found by Algorithm 2 of the previous section. An
annotated version of the C++ program which computed these results can be found on the CD
coming with this thesis or at:

http://institute.unileoben.ac.at/mathstat/personal/weitzer.htm

The convex sets used as inputs for the algorithm were the closed squares
[
x
n ,

x+1
n

]×[ yn , y+1
n

]
, where

n = 8192, (x, y) ∈ Z2 with
⌊
2n
3

⌋ ≤ x ≤ L− 1
n and −n

2 ≤ y ≤ 3n
2 − 1. The remaining regions have

already been characterized in [Akiyama et al., 2005] (especially by Theorem 4.8 there, which
covers the region {(x, y) ∈ R2 | 0 < x < 1 ∧ 0 < y < x+ 1 ∧ 4x < y2 ∧ y > x

γ6
+ γ6} where γq is the

positive root of qt3 + qt2 − qt − q + 1, q ∈ N, and therefore reaches the boundary of D2) or were
also treated by Algorithm 2. Any of the given parameters is contained solely in the corresponding
cutout polygon which shows that none of the cutout polygons are redundant. �

Note that the region characterized by Theorem 4.5.1 is considerably larger than what has been
achieved with Brunotte’s algorithm for regions so far (L = 1

100 , [Surer, 2007]). Also note that
{(x, y) ∈ R2 | x ≤ 1 ∧ |y| ≤ x+ 1} is the topological closure of D2 (Theorem 3.4.2) and that C2 is
a small open quadrangle of width L touching the boundary of D2 left of (1, 2).

The analysis of the list of cutout polygons leads to the following corollary.

Corollary 4.5.2. [Weitzer, 2015a]

(i) D(0)
2 has at least 22 connected components

(ii) The largest connected component of D(0)
2 has at least 3 holes.
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Proof. The parameters

( 12 ,
1
2 ), (

152
157 ,

193
157 ), (

313
315 ,

239
210 ), (

167
168 ,

255
224 ), (

314
317 ,

359
317 ), (

453
455 ,

496
455 ), (

305
306 ,

37
34 ), (

362
363 ,

259
242 ), (

356
357 ,

382
357 ),

( 358359 ,
384
359 ), (

1121
1124 ,

601
562 ), (

1375
1378 ,

640
689 ), (

2061
2066 ,

959
1033 ), (

309
310 ,

141
155 ), (

1533
1538 ,

699
769 ), (

989
992 ,

901
992 ), (

1127
1133 ,

1009
1133 ),

( 16071612 ,
691
806 ), (

694
697 ,

521
697 ), (

92
93 ,

16
31 ), (

537
539 ,

67
539 ), (

304
305 ,

38
305 )

are contained in 22 distinct connected components of D(0)
2 .

The parameters

( 911914 ,
391
457 ), (

2455
2463 ,

2108
2463 ), (

265
266 ,

1
4 )

are contained in 3 distinct holes of the largest connected component of D(0)
2 . �

The figures below show the calculated cutout polygons and the resulting shape of D(0)
2 in the

corresponding region. Figure 4 gives an overview of D(0)
2 and shows the regions which lie above

and below the point (1, 1), Figure 5 shows several connected components, and Figure 6 gives an
example of holes.

The cutout polygons are represented in the following way: If an edge belongs to the polygon
it is plotted solid, and dotted otherwise. Belonging of a vertex is indicated by a prominent dot

at the respective position. In the images which show the resulting shape of D(0)
2 black regions do

belong to D(0)
2 , white regions do not and gray regions are not settled by now.

Figure 4. Overview of D(0)
2 and the regions above and below (1, 1).
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Figure 5. Four connected components of D(0)
2 .

Figure 6. Two holes of D(0)
2 .
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(1, 0, -1, 1, 1) (1, 0, 1, -1, 1) (3, -1, 1, 0, 1) (3, 3, -2, 2, 1) (3, 3, -1, 5, 1) (3, 3, 2, 5, 1) (4, 4, 1, 6, 1) (4, 4, 7, 1, 1)
(5, 5, 1, 11, 4) (5, 5, 8, 1, 1) (6, 6, -1, 9, 1) (6,6,1,10,1) (6, 6, 5, 7, 1) (7, 7, -3, 3, 1) (7,7,-1,16,4) (7, 7, 4, 5, 1)
(7, 7, 9, 3, 1) (8,8,-1,21,4) (8, 8, 3, 3, 1) (8, 8, 5, 4, 1) (8, 8, 7, 9, 1) (8,8,9,25,2) (8,8,11,2,1) (9, 9, -2, 5, 1)
(9,9,-1,13,1) (9,9,1,14,1) (9, 9, 7, 6, 1) (9,9,8,11,1) (9,9,10,39,4) (9,9,11,4,1) (10,9,13,2,1) (10,10,-1,29,4)
(10, 10, 11, 15, 2) (11, 11, 10, 13, 1) (11, 11, 12, 27, 2) (11, 11, 13, 5, 1) (12, 11, 5, 3, 3) (12, 11, 16, 2, 1)
(12, 12, -1, 17, 1) (12, 12, 1, 18, 1) (13, 13, -1, 35, 4) (13, 13, 3, 5, 1) (13, 13, 11, 8, 1) (13, 13, 15, 6, 1)
(14, 13, -4, 4, 1) (14, 14, -1, 54, 2) (14, 14, 15, 30, 2) (15, 15, -2, 8, 1) (15, 15, -1, 21, 1) (15, 15, 1, 22, 1)
(15, 15, 2, 8, 1) (15, 15, 14, 17, 1) (15, 15, 16, 35, 2) (15, 15, 17, 7, 1) (16, 16, 17, 25, 2) (17, 17, 1, 26, 1)
(17, 17, 16, 19, 1) (17, 17, 19, 8, 1) (18, 18, -1, 25, 1) (19, 18, 5, 4, 1) (19, 19, 18, 21, 1) (19, 19, 21, 9, 1)
(21, 21, 19, 12, 1) (21, 21, 23, 10, 1) (22, 21, 28, 2, 4) (23, 23, 25, 11, 1) (25, 24, 17, 6, 1) (25, 25, 27, 12, 1)
(26, 25, 31, 4, 1) (27, 26, 9, 9, 1) (27, 26, 35, 8, 2) (27, 27, -2, 14, 1) (27, 27, 25, 15, 1) (27, 27, 29, 13, 1)
(28, 27, 34, 7, 2) (29, 29, 27, 16, 1) (29, 29, 31, 14, 1) (30, 29, 36, 4, 1) (30, 29, 37, 7, 1) (31, 29, 43, 4, 1)
(31, 31, 33, 15, 1) (32, 30, 19, 3, 2) (32, 31, -6, 6, 1) (32, 32, -3, 11, 1) (33, 33, -2, 17, 1) (33, 33, 2, 17, 1)
(33, 33, 31, 35, 2) (33, 33, 35, 16, 1) (34, 33, 6, 6, 1) (34, 33, 42, 7, 2) (35, 34, 43, 7, 2) (35, 35, 37, 17, 1)
(37, 35, 22, 4, 2) (37, 37, 35, 20, 1) (37, 37, 39, 18, 1) (38, 37, 56, 15, 3) (39, 39, -2, 20, 1) (39, 39, 2, 20, 1)
(39, 39, 41, 19, 1) (40, 39, 29, 8, 1) (40, 39, 30, 10, 2) (41, 38, 56, 4, 2) (41, 41, -2, 21, 1) (41, 41, 2, 21, 1)
(41, 41, 43, 20, 1) (43, 43, -2, 22, 1) (43, 43, 2, 22, 1) (43, 43, 45, 21, 1) (44, 43, -7, 7, 1) (45, 45, -2, 23, 1)
(45, 45, 2, 23, 1) (46, 44, 27, 4, 2) (46, 45, 7, 7, 1) (49, 47, 60, 5, 2) (50, 49, 57, 6, 1) (50, 49, 58, 15, 2)
(52, 51, 27, 15, 1) (54, 53, 41, 9, 2) (55, 54, 11, 11, 1) (55, 54, 42, 10, 4) (55, 54, 64, 15, 2) (56, 55, 64, 6, 1)
(56, 55, 65, 15, 2) (61, 60, -15, 16, 2) (61, 60, 71, 15, 3) (61, 60, 72, 7, 4) (63, 62, 75, 9, 6) (67, 66, 55, 18, 3)
(68, 67, 45, 21, 2) (68, 67, 54, 13, 2) (68, 67, 56, 20, 4) (68, 67, 79, 14, 3) (68, 68, 5, 14, 1) (71, 69, -17, 9, 2)
(71, 70, 59, 11, 1) (72, 71, 83, 9, 3) (74, 72, 57, 5, 2) (74, 73, -9, 9, 1) (74, 73, 18, 17, 1) (74, 73, 59, 14, 2)
(74, 73, 86, 14, 2) (76, 74, 57, 9, 3) (76, 75, 9, 9, 1) (79, 76, 97, 6, 1) (79, 77, 59, 10, 3) (80, 78, 59, 8, 3)
(81, 80, 92, 10, 2) (82, 81, 66, 11, 3) (82, 81, 91, 8, 1) (83, 81, 64, 6, 2) (86, 85, 69, 13, 4) (89, 87, 48, 9, 2)
(90, 89, 100, 8, 1) (92, 91, -10, 10, 1) (94, 93, 10, 10, 1) (98, 97, 14, 14, 1) (98,97,111,24,2) (99, 97, 75, 8, 3)
(100, 99, 85, 13, 1) (114, 113, 11, 11, 1) (116, 115, 102, 10, 1) (120, 119, 136, 22, 3) (121, 120, 96, 21, 3)
(122, 121, 133, 10, 1) (122, 121, 137, 14, 1) (124, 123, 141, 16, 2) (127, 123, 183, 7, 1) (127, 126, 109, 14, 2)
(128, 127, 16, 15, 3) (129, 127, 106, 17, 4) (132, 130, 111, 7, 2) (132, 131, 144, 10, 1) (134, 133, -12, 12, 1)
(134, 133, 152, 26, 4) (136, 135, 12, 12, 1) (136, 135, 152, 13, 3) (137, 134, 74, 9, 2) (137, 136, 154, 14, 2)
(139, 138, 121, 16, 2) (140, 139, 155, 38, 3) (141, 139, 34, 19, 2) (141, 140, 20, 21, 2) (141, 140, 160, 26, 4)
(142, 141, 157, 14, 3) (144, 142, 115, 14, 2) (145, 143, 122, 8, 2) (147, 146, 163, 14, 3) (148, 146, -29, 15, 2)
(148, 147, 172, 22, 4) (151, 150, 134, 16, 1) (153, 151, -30, 15, 4) (154, 152, 37, 18, 2) (155, 153, 127, 19, 5)
(156, 155, 22, 28, 2) (158, 155, 183, 13, 3) (158, 157, -13, 13, 1) (159, 157, 127, 14, 2) (160, 159, 13, 13, 1)
(168, 167, 183, 28, 2) (170, 169, 183, 12, 1) (172, 170, 195, 11, 2) (173, 169, 129, 10, 3) (177, 176, 194, 16, 2)
(179, 177, 147, 19, 4) (179, 178, 195, 28, 2) (180, 178, 93, 22, 1) (180, 179, 196, 27, 2) (182, 181, 136, 44, 3)
(182, 181, 196, 12, 1) (183, 182, 201, 16, 3) (185, 183, 152, 19, 4) (185, 183, 211, 10, 4) (189, 187, 214, 23, 2)
(191, 189, 157, 19, 3) (191, 190, 208, 27, 2) (191, 190, 212, 19, 1) (192, 191, 209, 29, 3) (193, 192, 173, 18, 1)
(195, 192, 160, 18, 4) (200, 199, 222, 19, 1) (201, 200, 219, 27, 3) (202, 199, 106, 15, 1) (202, 201, 179, 21, 3)
(203, 202, 25, 24, 4) (203, 202, 178, 36, 4) (206, 204, 181, 9, 2) (212, 211, -15, 15, 1) (214, 213, 15, 15, 1)
(218, 215, 114, 16, 4) (220, 216, 255, 14, 2) (220, 217, 115, 16, 4) (220, 219, 202, 14, 1) (221, 218, 181, 18, 4)
(222, 221, 242, 54, 4) (223, 221, 196, 10, 2) (226, 225, 241, 14, 1) (230, 229, 207, 19, 2) (231, 230, 259, 23, 7)
(232, 231, 210, 62, 6) (233, 232, 174, 53, 3) (238, 237, 267, 35, 7) (240, 239, 256, 14, 1) (241, 240, 262, 18, 3)
(242, 239, 275, 11, 1) (242, 241, -16, 16, 1) (242, 241, 263, 20, 2) (244, 243, 16, 16, 1) (244, 243, 146, 48, 2)
(244, 243, 268, 24, 5) (245, 244, 222, 20, 2) (249, 248, 269, 19, 3) (250, 249, 25, 25, 1) (254, 251, 288, 12, 1)
(255, 254, 191, 63, 3) (255, 254, 231, 60, 7) (256, 255, 23, 22, 3) (258, 257, 32, 68, 3) (258, 257, 283, 24, 1)
(260, 259, 238, 21, 1) (265, 264, 33, 67, 3) (265, 264, 66, 66, 1) (265, 264, 238, 26, 2) (265, 264, 285, 25, 2)
(268, 267, 294, 24, 1) (270, 268, 235, 15, 3) (272, 270, 301, 38, 4) (273, 271, 302, 39, 4) (273, 272, 34, 68, 3)
(275, 273, 239, 15, 2) (276, 275, 248, 27, 2) (277, 275, 241, 16, 3) (277, 276, 298, 25, 2) (278, 276, 243, 15, 3)
(278, 277, 250, 27, 2) (278, 277, 299, 25, 2) (278, 277, 301, 20, 3) (279, 277, 242, 29, 6) (280, 279, 301, 20, 2)
(281, 280, -28, 29, 2) (286, 285, -57, 56, 4) (290, 288, 321, 39, 3) (290, 289, 307, 16, 1) (293, 289, 240, 18, 4)
(295, 294, 321, 30, 2) (296, 294, 267, 11, 2) (299, 298, 262, 27, 3) (301, 300, 322, 95, 7) (304, 303, 260, 79, 5)
(306, 305, 324, 16, 1) (308, 306, 341, 39, 5) (308, 307, -18, 18, 1) (309, 308, 278, 26, 4) (310, 309, 18, 18, 1)
(317, 315, 286, 12, 2) (318, 317, 293, 28, 2) (327, 325, 284, 16, 3) (327, 326, 297, 31, 4) (328, 327, 302, 23, 1)
(329, 328, 299, 33, 3) (331, 330, 354, 96, 6) (335, 333, 291, 17, 3) (335, 334, 287, 45, 1) (337, 336, 303, 31, 5)
(338, 337, 386, 46, 1) (341, 336, 281, 20, 4) (343, 341, 298, 17, 2) (344, 343, -19, 19, 1) (346, 345, 19, 19, 1)
(351, 349, 389, 19, 1) (352, 351, 32, 64, 2) (352, 351, 402, 47, 1) (353, 352, 321, 33, 2) (353, 352, 411, 54, 4)
(354, 353, 379, 24, 1) (356, 355, 378, 41, 2) (356, 355, 381, 95, 4) (360, 359, 329, 48, 2) (361, 360, 386, 23, 3)
(362, 361, 381, 18, 1) (363, 361, 403, 35, 3) (363, 362, 335, 24, 2) (363, 362, 388, 49, 3) (365, 362, 317, 15, 2)
(365, 364, 331, 61, 6) (367, 365, 411, 21, 1) (368, 367, 394, 24, 2) (369, 368, 395, 30, 2) (370, 369, 396, 30, 2)
(372, 370, 413, 34, 5) (372, 371, 398, 95, 6) (373, 372, 396, 40, 2) (374, 372, 333, 44, 7) (374, 373, 347, 102, 9)
(377, 376, 403, 49, 3) (380, 379, 400, 18, 1) (381, 380, 406, 24, 3) (381, 380, 435, 53, 1) (385, 384, 410, 24, 3)
(386, 384, 55, 27, 5) (389, 387, 353, 32, 3) (389, 388, 413, 40, 2) (390, 388, 353, 62, 7) (390, 389, 414, 42, 3)
(391, 390, 423, 69, 4) (393, 392, 49, 67, 4) (395, 393, 350, 20, 4) (400, 399, 373, 26, 1) (401, 400, 50, 67, 4)
(402, 400, 369, 13, 2) (403, 401, 357, 21, 4) (403, 402, 31, 30, 4) (403, 402, 439, 34, 5) (404, 403, 429, 40, 3)
(404, 403, 437, 69, 3) (405, 404, 376, 104, 8) (406, 405, 431, 39, 3) (407, 404, 353, 29, 5) (408, 407, 378, 26, 2)
(409, 408, 29, 29, 1) (409, 408, 436, 25, 3) (411, 410, 381, 33, 2) (416, 415, 445, 95, 6) (416, 415, 450, 69, 3)
(417, 409, 483, 14, 2) (423, 422, 387, 33, 1) (423, 422, 461, 38, 1) (427, 425, 392, 14, 2) (428, 425, 380, 43, 6)
(431, 430, 369, 60, 3) (433, 432, 379, 43, 5) (434, 433, 473, 38, 1) (435, 434, 466, 45, 3) (437, 436, 400, 34, 5)
(442, 441, 463, 20, 1) (442, 441, 469, 26, 2) (450, 447, 394, 16, 2) (450, 449, 487, 37, 2) (454, 453, 425, 28, 1)
(462, 459, 236, 34, 3) (462, 461, 484, 20, 1) (462, 461, 500, 37, 2) (463, 462, 496, 90, 4) (464, 463, 431, 105, 9)
(465, 463, 507, 55, 3) (471, 468, 536, 22, 2) (473, 471, 354, 57, 6) (479, 476, 426, 44, 6) (479, 478, 445, 56, 3)
(481, 476, 545, 24, 2) (482, 480, 437, 31, 3) (485, 482, 552, 22, 2) (487, 484, 423, 16, 3) (487, 486, 519, 35, 2)
(489, 487, 529, 19, 3) (492, 489, 560, 23, 1) (493, 491, 541, 24, 1) (494, 493, 522, 72, 4) (495,494,249,115,17)
(496, 493, 544, 16, 1) (497, 496, 465, 131, 9) (499, 497, 452, 60, 8) (500, 499, 533, 35, 2) (503, 501, 551, 20, 1)
(503, 501, 552, 25, 1) (509, 508, 477, 29, 2) (510, 507, 559, 17, 1) (511, 510, 540, 72, 5) (512, 511, 32, 32, 1)
(513, 511, 465, 59, 8) (513, 512, 545, 26, 3) (514, 511, 560, 28, 3) (516, 513, 572, 36, 3) (519, 518, 37, 46, 2)
(521, 518, 462, 42, 6) (521, 519, 474, 22, 2) (523, 522, 553, 28, 3) (524, 522, 487, 15, 2) (528, 525, 575, 27, 2)
(530, 529, 553, 22, 1) (532, 530, 133, 66, 1) (536, 532, 461, 30, 5) (536, 532, 593, 39, 4) (538, 536, 67, 67, 3)
(553, 551, 514, 16, 2) (555, 553, 499, 27, 2) (563, 560, 613, 26, 3) (565, 563, 516, 23, 2) (576, 574, 619, 21, 2)
(577, 575, 525, 33, 4) (581, 579, 535, 27, 3) (586, 583, 520, 45, 6) (586, 584, 73, 65, 3) (594, 592, 547, 28, 3)
(599, 597, 652, 30, 2) (608, 606, 521, 39, 3) (610, 607, 153, 48, 6) (627, 625, 573, 23, 3) (637, 635, 546, 40, 3)
(641, 639, 690, 21, 3) (654, 652, 595, 23, 4) (662, 660, 621, 17, 2) (668, 663, 739, 39, 4) (670, 667, 607, 20, 2)
(677, 674, 738, 55, 3) (681, 677, 742, 28, 2) (681, 678, 509, 53, 8) (687, 685, 735, 95, 5) (692, 690, -53, 27, 2)
(694, 692, 63, 63, 2) (695, 693, 652, 18, 2) (697, 686, 572, 18, 4) (697, 695, 746, 95, 5) (706, 704, 755, 48, 2)
(707, 705, 756, 47, 3) (719, 717, 652, 60, 7) (729, 726, 545, 56, 10) (730, 728, 781, 95, 5) (737, 734, 668, 62, 8)
(737, 735, 683, 25, 2) (740,738,687,103,10) (741, 738, 808, 54, 4) (742, 740, 695, 45, 3) (750, 747, 823, 24, 2)
(752, 749, 820, 54, 4) (752, 749, 844, 31, 2) (756, 754, 809, 95, 4) (758, 755, 851, 31, 1) (764,762,709,101,10)
(768, 765, 698, 21, 2) (777, 773, 703, 61, 7) (794, 789, 904, 22, 1) (795, 793, 737, 32, 3) (801, 796, 912, 22, 1)
(804, 802, 747, 27, 2) (808, 806, 749, 33, 3) (811, 808, 203, 66, 1) (816, 814, 771, 19, 2) (822, 817, 936, 23, 1)
(833, 830, 899, 73, 4) (839, 836, 902, 21, 1) (847, 845, 725, 81, 5) (850, 846, 773, 33, 3) (852, 849, 920, 71, 4)
(853, 851, 806, 20, 2) (855, 853, 794, 103, 9) (857, 854, 921, 22, 1) (884, 882, 821, 103, 9) (913, 911, 978, 90, 4)
(914, 911, 782, 45, 1) (921, 919, 858, 29, 2) (923, 920, 839, 32, 3) (931, 927, 696, 55, 3) (933, 930, 856, 39, 4)
(933,931,866,105,10) (943,939,1057,58,12) (943,941,876,104,10) (944, 942, 877, 56, 4) (978, 976, 911, 29, 2)
(986, 981, 875, 20, 4) (986, 984, 937, 21, 2) (993, 989, 900, 62, 8) (995, 991, 1085, 54, 4) (996, 992, 1093, 24, 1)
(1005, 1003, 1062, 72, 4) (1005, 1003, 1171, 81, 1) (1006, 1002, 1097, 54, 5) (1008, 1006, 943, 129, 11)
(1009, 1006, 918, 24, 4) (1009, 1007, 944, 131, 10) (1014, 1012, 1073, 29, 1) (1017, 1015, 948, 37, 3)
(1022, 1020, 957, 44, 3) (1027, 1025, 976, 22, 2) (1031, 1029, 1091, 29, 2) (1039, 1036, 1112, 47, 2)
(1039, 1037, 972, 127, 11) (1046, 1044, 975, 38, 3) (1064, 1061, 986, 25, 2) (1069, 1066, 1135, 41, 3)
(1072, 1069, 1146, 50, 2) (1076, 1073, 1164, 29, 2) (1088, 1085, 1164, 94, 6) (1089, 1086, 1166, 25, 1)
(1094, 1091, 1015, 102, 10) (1095, 1092, 1171, 48, 2) (1102, 1099, 1170, 40, 2) (1104, 1101, 1181, 97, 6)
(1109, 1105, 278, 67, 1) (1110, 1107, 1187, 48, 3) (1113, 1109, 279, 67, 1) (1136, 1133, 1054, 102, 10)
(1151, 1147, 1035, 27, 2) (1155, 1152, 1072, 26, 2) (1170, 1167, 1087, 52, 5) (1260, 1255, 1374, 55, 4)
(1273, 1270, 1351, 26, 1) (1282, 1279, 1373, 93, 4) (1293, 1290, 1372, 27, 1) (1319, 1316, 1225, 51, 5)
(1349, 1345, 1470, 30, 1) (1353, 1349, 1448, 46, 3) (1370, 1366, 1465, 97, 5) (1377, 1372, 1486, 36, 3)
(1382, 1378, 1479, 95, 5) (1389, 1384, 1499, 72, 5) (1389, 1386, 1289, 108, 9) (1393, 1389, 1489, 49, 4)
(1428, 1425, 1336, 130, 10) (1460, 1457, 1360, 29, 2) (1471, 1468, 1376, 128, 11) (1472, 1469, 1594, 37, 2)
(1506, 1502, 1599, 41, 2) (1514, 1508, 1651, 55, 4) (1514, 1511, 1764, 81, 1) (1613, 1609, 1512, 46, 3)
(1645, 1640, 1494, 59, 7) (1647, 1643, 1529, 103, 10) (1654, 1648, 1785, 72, 4) (1667, 1661, 1799, 72, 5)
(1683, 1679, 1821, 69, 2) (1690, 1685, 421, 83, 5) (1694, 1689, 422, 84, 5) (1695, 1691, 1834, 70, 2)
(1741, 1736, 1861, 49, 3) (1760, 1755, 1882, 47, 2) (1773, 1768, 1897, 96, 5) (1812, 1808, 1941, 90, 4)
(1817, 1813, 1688, 104, 10) (1865, 1861, 1633, 44, 5) (1885, 1878, 235, 67, 3) (1921, 1914, 2073, 72, 4)
(1932, 1921, 2142, 37, 2) (1945, 1938, 2099, 72, 5) (1975, 1971, 2087, 72, 4) (1982, 1977, 1840, 103, 10)
(2173, 2166, 2346, 75, 5) (2199, 2191, 2373, 72, 4) (2248, 2242, 2405, 94, 6) (2259, 2251, 2438, 72, 6)
(2290, 2281, 1715, 63, 3) (2456, 2445, 1837, 53, 8) (2457, 2451, 2281, 51, 5) (2463, 2455, 2108, 44, 1)
(2487, 2479, 2685, 75, 5) (2519, 2514, 2935, 81, 1) (2560, 2555, 2709, 30, 1) (2894, 2884, 3125, 71, 4)
(2911, 2903, 2701, 101, 10) (2952, 2945, 3194, 70, 3) (3067, 3059, 3318, 69, 3) (3514, 3505, 3760, 96, 6)
(3602, 3593, 3344, 104, 9) (3616, 3607, 3357, 104, 9) (4148, 4139, 3107, 114, 5) (4457, 4441, 4810, 73, 4)
(4644, 4631, 4966, 48, 2) (10499,10471,11235,94,5) (12774,12742,11859,104,9)

Table 1. List of cutout polygons.



CHAPTER 5

Gaussian Shift Radix Systems and Pethő’s Loudspeaker

5.1. Introduction and definitions

Gaussian Shift Radix Systems (or GSRS for short) define Shift Radix Systems in the sense
of Chapter 3 on Gaussian integers and were first introduced in [Brunotte et al., 2011]. Many
definitions and properties carry over from Shift Radix Systems with no or only slight modifications
and, as a start, we shall give a list of them. The very similar proofs will not be given and can easily
be derived from the corresponding ones in Chapter 3. In the upcoming sections we will formulate

a conjecture (Conjecture 5.2.2) on the full characterization of G(0)
1 (the analogue to D(0)

1 ) known as
Pethő’s Loudspeaker and prove it in parts (Theorem 5.3.1)). Furthermore we will present an even
stronger conjecture which might provide a way to prove the original conjecture in the future. We
will also derive some consequences under the assumption that the Loudspeaker has the conjectured
shape like its perimeter and area. The proven parts of the conjecture are sufficient to identify all

weakly critical and critical points of G(0)
1 , which will be the subject of another section. Finally

we will explain a kind of “self-similarity” in a hidden pattern of the Loudspeaker revealed by the
GSRS analogue of Algorithm 1 presented in Section 4.2. Parts of the material presented in this
chapter have been published in [Weitzer, 2015b].

Throughout the chapter we will identify Cd ! R2d and Z [i]
d ! Z2d for d ∈ N if convenient.

Definition 5.1.1. [Brunotte et al., 2011] For d ∈ N and r = (r1, . . . , rd) ∈ Cd the mapping

γr : Z [i]
d → Z [i]

d

a = (a1, . . . , ad) 
→ (a2, . . . , ad,−�ra�)
where ra =

∑d
i=1 riai (note that this definition slightly differs from the scalar product of complex

vectors which is given by
∑d

i=1 riai), is called the d-dimensional Gaussian Shift Radix System
(GSRS for short) associated with r and r is called the parameter of γr. Furthermore we define

Gd :=
{
r ∈ Cd | ∀ a ∈ Z [i]

d
: ∃ i, j ∈ N : γi

r(a) = γi+j
r (a)

}
G(0)
d :=

{
r ∈ Cd | ∀ a ∈ Z [i]

d
: ∃ i ∈ N : γi

r(a) = 0
}

where γi
r(a) means i-fold application of γr to a. Elements of G(0)

d are said to have the finiteness
property.

As with real Shift Radix Systems we can characterize Gd almost everywhere by the Schur-Cohn
region:

Definition 5.1.2. For d ∈ N and r = (r1, . . . , rd) ∈ Cd let

R(r) :=

⎛⎜⎜⎜⎜⎜⎜⎝

0 1 0 · · · 0
...

. . .
. . .

. . .
...

...
. . .

. . . 0
0 · · · · · · 0 1
−r1 · · · · · · · · · −rd

⎞⎟⎟⎟⎟⎟⎟⎠ ∈ Cd×d

Theorem 5.1.3. [Brunotte et al., 2011] Let d ∈ N. Then

E(C)d ⊆ Gd ⊆ E(C)d .

59
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Corollary 5.1.4. [Brunotte et al., 2011] Let d ∈ N. Then

(i) Gd ⊆
{
r ∈ Cd | ρ(R(r)) ≤ 1

}
(ii) Gd ⊇

{
r ∈ Cd | ρ(R(r)) < 1

}
(iii) ∂Gd =

{
r ∈ Cd | ρ(R(r)) = 1

}
.

All notions and theorems for cycles translate to the complex case as expected:

Definition 5.1.5. [Brunotte et al., 2011] For d ∈ N let C(Z[i])d :=
⋃

n∈N0
(Z [i]

d
)n denote

the set of (d-dimensional, complex) cycles.

For a cycle π = (a1, . . . ,ak) ∈ C(Z[i])d let PC (π) :=
{
r ∈ Cd | ∀ i ∈ �1, k� : γr(ai) = ai%k+1

}
,

i.e. the set of those parameters r for which π is a cycle of the associated Gaussian Shift Radix
System. PC (π) shall be referred to as the cutout polyhedron of π.

Lemma 5.1.6. [Brunotte et al., 2011] Let d ∈ N. Then

G(0)
d = Gd \

⋃
π∈C(Z[i])

d \{(0)}
PC (π)

Definition 5.1.7. A set P ⊆ Cd (d ∈ N) is called (complex, convex, d-dimensional) polyhedron
iff it is the intersection of finitely many half-spaces of R2d or R2d itself. A polyhedron is considered
nondegenerate iff it has positive and finite Lebesgue measure and degenerate otherwise. The set of

all complex d-dimensional polyhedra shall be denoted by P(C)
d .

Lemma 5.1.8. [Brunotte et al., 2011] Let d ∈ N and a = (a1 + ib1, . . . , ad + ibd),b =

(c1 + id1, . . . , cd + idd) ∈ Z [i]
d
. Then{

r ∈ Cd | γr(a) = b
}
= {r = (x1 + iy1, . . . , xd + iyd) ∈ Cd | ∀ i ∈ �1, d− 1� : bi = ai+1

0 ≤ x1a1 − y1b1 + . . .+ xdad − ydbd + cd < 1

0 ≤ x1b1 + y1a1 + . . .+ xdbd + ydad + dd < 1}.
In particular: If π ∈ C(Z[i])d then PC (π) is a (possibly degenerate) convex polyhedron.

Lemma 5.1.9. [Brunotte et al., 2011] Let d ∈ N, r ∈ int (Gd), ρ ∈ (ρ(R(r)), 1), ‖·‖ρ norm

on Cd with ‖R(r)a‖ρ ≤ ρ ‖a‖ρ for all a ∈ Cd (cf. proof of Theorem 3.4.2), and a ∈ Z [i]
d
such that

γk
r (a) = a for some k ∈ N. Then

‖a‖ρ ≤
√
2 ‖(0, . . . , 0, 1)‖ρ

1− ρ
.

In particular:
{
π ∈ C(Z[i])d | r ∈ PC (π)

}
is a finite set.

Theorem 5.1.10. (Weitzer) Let d ∈ N and r ∈ int (Gd) Then there is an open neighborhood
B of r for which {

π ∈ C(Z[i])d | B ∩ PC (π) �= ∅
}

is a finite set.

In particular: If M ⊆ int (Gd) with dist (M,∂Gd) > 0 then
{
π ∈ C(Z[i])d |M ∩ PC (π) �= ∅

}
is a finite

set.

Proof. Cf. proof of Theorem 3.5.6. �
Sets of witnesses can also be defined after slight adaptation:

Definition 5.1.11. [Brunotte et al., 2011] A set V ⊆ Z [i]
d
is called a set of witnesses for

r ∈ Cd (d ∈ N) iff it is stable under γ
(1)
r := γr, γ

(2)
r := −γr ◦ (− idZid), γ

(3)
r := conjd ◦γr ◦ conjd,

and γ
(4)
r := − conjd ◦γr ◦ (− conjd) (where conjd is the function on Cd which replaces every entry

of the input vector by its complex conjugate) and contains a generating set of the group (Z [i]
d
,+)

which is closed under taking inverses.
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Lemma 5.1.12. [Brunotte et al., 2011] Let d ∈ N, r ∈ Cd, and V ⊆ Z [i]
d
a set of witnesses

for r. Then

r ∈ G(0)
d ⇔ ∀ a ∈ V : ∃ n ∈ N : γn

r (a) = 0.

Definition 5.1.13. [Brunotte et al., 2011] For d ∈ N and r ∈ Cd let

Vr,0 := {(±1, 0, . . . , 0), . . . , (0, . . . , 0,±1), (±i, 0, . . . , 0), . . . , (0, . . . , 0,±i)}
∀ n ∈ N : Vr,n := Vr,n−1 ∪ γ(1)

r (Vr,n−1) ∪ . . . ∪ γ(4)
r (Vr,n−1)

Vr :=
⋃

n∈N0

Vr,n

Vr shall be referred to as the set of witnesses associated with r.

Theorem 5.1.14. [Brunotte et al., 2011] Let d ∈ N and r ∈ int (Gd). Then Vr is a finite
set of witnesses for r.

Definition 5.1.15. For d ∈ N and M ⊆ Cd let

γM : P(Z [i]
d
)→ P(Z [i]

d
).

V 
→ {γr(a) | r ∈M ∧ a ∈ V }
Definition 5.1.16. [Brunotte et al., 2011] A set V ⊆ Z [i]

d
is called a set of witnesses for

M ⊆ Cd (d ∈ N) iff it is stable under γ
(1)
M := γM , γ

(2)
M := −γM◦(− idZid), γ

(3)
M := conjd ◦γM◦conjd,

and γ
(4)
M := − conjd ◦γM ◦ (− conjd) and contains a generating set of the group (Z [i]

d
,+) which

is closed under taking inverses.

Lemma 5.1.17. [Brunotte et al., 2011] Let d ∈ N, M ⊆ Cd, and V ⊆ Z [i]
d
a set of witnesses

for M . Then

M ∩ G(0)
d = M \

⋃
π = (a1, . . . , ak) ∈ C(Z[i])

d{a1, . . . , ak} ⊆ V

PC (π)

Definition 5.1.18. [Brunotte et al., 2011] For d ∈ N and M ⊆ Cd let

VM,0 := {(±1, 0, . . . , 0), . . . , (0, . . . , 0,±1), (±i, 0, . . . , 0), . . . , (0, . . . , 0,±i)}
∀ n ∈ N : VM,n := VM,n−1 ∪ γ

(1)
M (VM,n−1) ∪ . . . ∪ γ

(4)
M (VM,n−1)

VM :=
⋃

n∈N0

VM,n

VM shall be referred to as the set of witnesses associated with M .

Theorem 5.1.19. (Weitzer) Let d ∈ N and M ⊆ int (Gd) with dist (M,∂Gd) > 0. Then there

is a k ∈ N and there are B1, . . . , Bk ⊆ Cd such that M =
⋃k

i=1 Bi and VBi is a finite set of
witnesses for Bi for all i ∈ �1, k�.

Proof. Cf. proof of Theorem 3.6.9. �
The definition of critical points is completely analogous to the real case. Note that, again,

only the first three types of points are defined in the cited source.

Definition 5.1.20. Cf. [Brunotte et al., 2011] Let d ∈ N and r ∈ Cd.

• r is called a regular point (for G(0)
d ) iff there exists an open neighborhood of r which

intersects with only finitely many cutout polyhedra.

• r is called a weakly critical point (for G(0)
d ) iff any open neighborhood of r intersects with

infinitely many cutout polyhedra.

• r is called a critical point (for G(0)
d ) iff for every open neighborhood B of r the set B \G(0)

d

cannot be covered by finitely many cutout polyhedra.

• r is called a strongly critical point (for G(0)
d ) iff for every open neighborhood B of r the

set B \ G(0)
d cannot be covered by finitely many polyhedra.
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Using the following results (cf. proofs of Lemma 4.1.3, Lemma 4.1.4, and Lemma 4.1.5)
Algorithm 1 and Algorithm 2 from Chapter 4 can easily be adapted for Gaussian Shift Radix
Systems. The analogue of Algorithm 1 will still terminate for all inputs and the analogue of
Algorithm 2 is based on the slightly modified equivalence relation given in Definition 5.1.25.

Definition 5.1.21. [Weitzer, 2015b] For d ∈ N and r ∈ Cd, Πr - the graph of witnesses
associated with r - denotes the edge-colored multidigraph with vertex set Vr and an edge of color i

from a vertex a to a vertex b iff γ
(i)
r (a) = b for i ∈ �1, 4�.

If Ei is the set of all edges (ordered pairs) of color i for i ∈ �1, 4� then the graph Πr is completely

characterized by the 4-tuple (E1, E2, E3, E4) ∈ P((Z [i]
d
)2)4 (as there are no isolated vertices)

and thus the graph and the pair can be identified. For any such graph Π = (E1, E2, E3, E4) ∈
P((Z [i]

d
)2)4 let PC (Π) :=

{
r ∈ Cd | ∀ i ∈ �1, 4� : ∀ (a,b) ∈ Ei : γ

(i)
r (a) = b

}
.

Lemma 5.1.22. [Weitzer, 2015b] Let d ∈ N, a = (a1, . . . , ad),b = (b1, . . . , bd) ∈ Z [i]
d
, and

r ∈ Cd. Also let zx := ((z1), . . . ,(zd)) and zy := ("(z1), . . . ,"(zd)) for all z ∈ Cd. Then

(i)
{
r ∈ Cd | γ(1)

r (a) = b
}
= {r ∈ Cd | ∀ i ∈ �1, d− 1� : bi = ai+1

0 ≤ rxax − ryay + (bd) < 1
0 ≤ rxay + ryax + "(bd) < 1

(ii)
{
r ∈ Cd | γ(2)

r (a) = b
}
= {r ∈ Cd | ∀ i ∈ �1, d− 1� : bi = ai+1

0 ≤ −rxax + ryay −(bd) < 1
0 ≤ −rxay − ryax −"(bd) < 1

(iii)
{
r ∈ Cd | γ(3)

r (a) = b
}
= {r ∈ Cd | ∀ i ∈ �1, d− 1� : bi = ai+1

0 ≤ rxax + ryay + (bd) < 1
0 ≤ −rxay + ryax −"(bd) < 1

(iv)
{
r ∈ Cd | γ(4)

r (a) = b
}
= {r ∈ Cd | ∀ i ∈ �1, d− 1� : bi = ai+1

0 ≤ −rxax − ryay −(bd) < 1
0 ≤ rxay − ryax + "(bd) < 1

(v)
{
s ∈ Cd | ∀ i ∈ �1, 4�γ(i)

s (a) = γ(i)
r (a)

}
= {s ∈ Cd |

sxax + syay − � rxax + ryay� ≥ 0 ∧ sxax + syay + �−rxax − ryay�+ 1 > 0
sxax − syay − � rxax − ryay� ≥ 0 ∧ sxax − syay + �−rxax + ryay�+ 1 > 0

− sxax + syay − �−rxax + ryay� ≥ 0 ∧ −sxax + syay + � rxax − ryay�+ 1 > 0
− sxax − syay − �−rxax − ryay� ≥ 0 ∧ −sxax − syay + � rxax + ryay�+ 1 > 0

sxay + syax − � rxay + ryax� ≥ 0 ∧ sxay + syax + �−rxay − ryax�+ 1 > 0
sxay − syax − � rxay − ryax� ≥ 0 ∧ sxay − syax + �−rxay + ryax�+ 1 > 0

− sxay + syax − �−rxay + ryax� ≥ 0 ∧ −sxay + syax + � rxay − ryax�+ 1 > 0
− sxay − syax − �−rxay − ryax� ≥ 0 ∧ −sxay − syax + � rxay + ryax�+ 1 > 0}.

Lemma 5.1.23. [Weitzer, 2015b] Let r ∈ int (Gd). Then PC (Πr) is the intersection of a
nondegenerate, open polyhedron and an affine subspace of R2d.

Lemma 5.1.24. [Weitzer, 2015b] Let d ∈ N and r ∈ Cd. Then

(i) r ∈ PC (Πr), and r ∈ G(0)
d ⇔ PC (Πr) ⊆ G(0)

d

(ii) G(0)
d =

⋃{
PC (Πr) | r ∈ G(0)

d

}
and this union is disjoint.

Definition 5.1.25. [Weitzer, 2015b]

∼ :=
{
(r1, r2) ∈ (Cd)2 | ∀ i ∈ �1, 4� : ∀ a ∈ V : γ(i)

r1 (a) = γ(i)
r2 (a)

}
.

5.2. Pethő’s Loudspeaker

In this section we will formulate a conjecture on the characterization of G(0)
1 . In honor of Attila

Pethő and because of its shape, G(0)
1 is known as Pethő’s Loudspeaker (cf. Figure 1). Throughout

the section we will identify C1 ! R2 and Z [i]
1 ! Z2.
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Definition 5.2.1. [Weitzer, 2015b]

Let P0(1) := (1, 0), P0(2) :=
(

22
23 ,

4
23

)
, P0(3) :=

(
26
27 ,

4
27

)
P1(n) :=

(
1− 2

n2−2 ,
n

n2−2

)
, n ∈ Z

P2(n) :=
(
1− 1

n2−n−1 ,
n−1

n2−n−1

)
, n ∈ Z

P3(n) :=
(
1− 1

n2−n ,
n−1
n2−n

)
, n ∈ Z \ {0, 1}

P4(n) :=
(
1− 1

n2 ,
n
n2

)
, n ∈ Z \ {0}

P5(n) :=
(
1− 1

n2+1 ,
n

n2+1

)
, n ∈ Z

P6(n) :=
(
1− 1

n2+n+1 ,
n+1

n2+n+1

)
, n ∈ Z

P7(n) :=
(
1− 1

n2+n+2 ,
n+1

n2+n+2

)
, n ∈ Z

P8(n) :=
(
1− 1

n2+2 ,
n

n2+2

)
, n ∈ Z

P9(n) :=
(
1− 1

n2+3 ,
n

n2+3

)
, n ∈ Z

P10(n) :=
(
1− 2

n2+n+6 ,
n+1

n2+n+6

)
, n ∈ Z

and let GC denote the union of the region bounded by the following infinite polygonal chain and
the same region reflected at the real axis. The boundary of GC shall also be as given below where a
solid line between two points indicates belonging of the corresponding line segment and an overline
over a point indicates belonging of the corresponding vertex to GC .

P0(1) — P5(0) — P6(0) · · ·
P5(1) — P6(1) — P7(0) · · · P7(1) · · ·
P5(2) — P6(2) · · · P7(2) · · · P8(2) · · ·

P4(3) · · · P5(3) — P6(3) · · · P7(3) · · · P8(3) —

P3(4) · · · P4(4) · · · P5(4) — P6(4) · · · P7(4) · · · P8(4) —

P3(5) · · · P4(5) · · · P5(5) — P6(5) · · · P7(5) · · · P8(5) — P9(5) —

P0(2) — P2(6) — P3(6) · · · P4(6) · · · P5(6) — P6(6) · · · P7(6) · · · P8(6) — P9(6) —

P0(3) — P2(7) — P3(7) · · · P4(7) · · · P5(7) — P6(7) · · · P7(7) · · · P8(7) — P9(7) —

P1(8) — P2(8) — P3(8) · · · P4(8) · · · P5(8) — P6(8) · · · P7(8) · · · P8(8) — P9(8) — P10(8) · · ·
...

P1(n) — P2(n) — P3(n) · · · P4(n) · · · P5(n) — P6(n) · · · P7(n) · · · P8(n) — P9(n) — P10(n) · · ·
...

Conjecture 5.2.2. [Weitzer, 2015b] If GC is as defined above then G(0)
1 = GC .

Note that for all i ∈ �1, 10� : limn→∞Pi(n) = P0(1). Figure 1 shows the part of GC which lies
in the first quadrant of the unit disk and a magnification of the part where it gets “regular”. It can
be seen that ultimately the boundary of GC consists of a sequence of pikes which have ten vertices
each. For n ∈ N pike n shall refer to the pike which contains the vertex P5(n). The four infinite
families of cutout polygons (yellow, orange, red, and blue) and the six additional cutout polygons
(purple) form a chain from I to 1 in the complex plane and provide another way to define GC .
Indeed, GC is exactly that part of the first quadrant of the unit disk which lies left of the chain.
Furthermore none of the elements of the chain are redundant. The corresponding cycles are given
in the following definition and, by Lemma 3.5.8, have shapes as given in the subsequent theorem.

Definition 5.2.3. [Weitzer, 2015b] Let
C0(1) := ((−2, 0), (2, 2), (0,−2), (−1, 2), (2, 0), (−1,−1), (0, 2), (2,−1))
C0(2) := ((−1,−1), (1, 2), (1,−2), (−1, 1), (2, 0))
C0(3) := ((−3, 0), (3, 2), (−1,−2), (1, 3), (1,−3), (−2, 3), (3,−1))
C0(4) := ((−4,−1), (4, 3), (−2,−4), (1, 5), (1,−4), (−2, 4), (4,−3), (−4, 2), (5, 0))
C0(5) := ((−4,−1), (4, 3), (−2,−3), (1, 4), (1,−4), (−2, 4), (4,−3), (−4, 2), (5, 0))
C0(6) := ((−4, 0), (4, 2), (−3,−3), (2, 4), (0,−4), (−1, 4), (3,−3), (−3, 2), (4,−1))
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C1(n) := ( (−n+ k,−k), (n− k, k + 1) 1 ≤ k ≤ n− 1
(k,−n+ k), (−k, n− k) 1 ≤ k ≤ n− 1
(n, 0)

), n ≥ 1

C2(n) := ( (−n, 1), (n, 1)
(−n+ k,−k − 1), (n− k, k + 2) 1 ≤ k ≤ n− 2
(0,−n), (−1, n)
(k + 2,−n+ k), (−k − 2, n− k) 1 ≤ k ≤ n− 3
(n,−2)

), n ≥ 6

C3(n) := ( (−n+ k − 1,−k + 1), (n− k + 1, k) 1 ≤ k ≤ n
(k,−n+ k − 1), (−k, n− k + 1) 1 ≤ k ≤ n− 1
(n,−1)

), n ≥ 1

C4(n) := ( (−n, 0), (n, 2)
(−n+ k,−k − 2), (n− k, k + 3) 1 ≤ k ≤ n− 4
(−2,−n+ 1), (1, n), (1,−n), (−2, n)
(k + 3,−n+ k), (−k − 3, n− k) 1 ≤ k ≤ n− 5
(n− 1,−4), (−n+ 1, 3), (n,−1)

), n ≥ 5

Theorem 5.2.4. The cutout polygons corresponding to the cycles of the previous definition
have the following vertices and boundaries (cf. Theorem 3.5.10 for notation):

C0(n) : n = 1 : ( 23 ,
2
3 )

n = 2 : ( 45 ,
3
5 ) ( 23 ,

2
3 ) ( 34 ,

1
2 )

n = 3 : ( 1213 ,
5
13 ) ( 67 ,

3
7 ) ( 78 ,

3
8 ) ( 1011 ,

4
11 )n = 4 : ( 1617 ,

5
17 ) ( 1314 ,

5
14 ) ( 1011 ,

7
22 )

n = 5 : ( 1617 ,
5
17 ) ( 1213 ,

4
13 ) ( 1314 ,

2
7 )

n = 6 : (1, 1
3 ) ( 1314 ,

2
7 ) ( 1718 ,

5
18 )

C1(n) : n = 1 : (0, 0) (0, 1) (−1, 1) (−1, 0)
n = 2 : ( 34 ,

1
2 ) ( 23 ,

2
3 ) ( 12 ,

1
2 )

n = 3 : ( 89 ,
1
3 ) ( 78 ,

3
8 ) ( 56 ,

1
3 )

n ≥ 4 : (1− 1
n2 ,

n
n2 ) (1− 1

n2−n+2 ,
n

n2−n+2 ) (1− 1
n2−2n+3 ,

n−1
n2−2n+3 )

(1− 1
n2−n ,

n−1
n2−n )

C2(n) : n = 6 : ( 3435 ,
6
35 ) ( 3233 ,

2
11 ) ( 2223 ,

4
23 )

n = 7 : ( 4748 ,
7
48 ) ( 4445 ,

7
45 ) ( 2627 ,

4
27 )

n = 8 : ( 6263 ,
8
63 ) ( 5859 ,

8
59 ) ( 3031 ,

4
31 )

n ≥ 9 : (1− 1
n2−1 ,

n
n2−1 ) (1− 1

n2−n+3 ,
n

n2−n+3 ) (1− 2
n2−n+6 ,

n
n2−n+6 )

(1− 2
n2−2 ,

n
n2−2 )

C3(n) : n = 1 : (1, 1
n ) (1− 1

n2 ,
n
n2 ) (1− 1

n2+1 ,
n

n2+1 )

n = 2 : (1, 1
n ) (1− 1

n2 ,
n
n2 ) (1− 1

n2+1 ,
n

n2+1 )

n ≥ 3 : (1, 1
n ) (1− 1

n2 ,
n
n2 ) (1− 1

n2+1 ,
n

n2+1 )

C4(n) : n = 5 : (1, 1
4 ) ( 2425 ,

7
25 ) ( 1819 ,

5
19 ) ( 2122 ,

5
22 )

n = 6 : (1, 1
5 ) ( 3637 ,

8
37 ) ( 2829 ,

6
29 ) ( 3132 ,

3
16 )

n = 7 : (1, 1
6 ) ( 4445 ,

8
45 ) ( 3940 ,

7
40 ) ( 4344 ,

7
44 )

n = 8 : (1, 1
n−1 ) (1− 1

n2−n−3 ,
n

n2−n−3 ) (1− 1
n2−n+2 ,

n
n2−n+2 )

n ≥ 9 : (1, 1
n−1 ) (1− 1

n2−n−3 ,
n

n2−n−3 ) (1− 1
n2−n+2 ,

n
n2−n+2 )
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Figure 1. GC in the first quadrant of the unit disk.
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One might ask why we are only interested in the first quadrant of the unit disk. It follows from

Theorem 5.1.3 that G(0)
1 is contained in the closed unit disk and from the cutout polygon of the

cycle C1(1) it follows that it has empty intersection with the second quadrant. Furthermore it is
symmetric with respect to the real axis according to the following lemma. Altogether it obviously
suffices to consider only the first quadrant of the unit disk.

Lemma 5.2.5. [Brunotte et al., 2011] Let d ∈ N, r ∈ Cd, a,b ∈ Z [i]
d
, and (a1, . . . ,ak) ∈

C(Z[i])d . Then

γr(a) = b⇔ γr(ia) = ib.

In particular: (a1, . . . ,ak) is a cycle of γr iff (ia1, . . . , iak) is a cycle of γr.

5.3. Main result on Gaussian Shift Radix Systems: One inclusion

We shall now proof the following theorem which settles one inclusion of Conjecture 5.2.2.

Theorem 5.3.1. [Weitzer, 2015b] G(0)
1 ⊆ GC .

The proof (see p. 74) will be done by identification of 20 infinite families of cutout polygons
which cover everything outside GC and inside the first quadrant of the unit disk.

Definition 5.3.2. [Weitzer, 2015b] Let
D0(1) := ((−3, 0), (3, 3), (0,−4), (−2, 3), (4, 0), (−2,−2), (0, 3), (3,−2))
D0(2) := ((−3, 0), (3, 3), (0,−4), (−2, 3), (4, 0), (−2,−2), (1, 3), (2,−2), (−2, 1), (3, 1), (−1,−2), (0, 3),

(3,−2))
D0(3) := ((−3,−1), (3, 3), (−1,−3), (0, 4), (2,−3), (−3, 2), (4, 0))
D0(4) := ((−4,−2), (3, 4), (0,−4), (−1, 4), (3,−3), (−4, 2), (5, 0))
D0(5) := ((−5,−1), (5, 3), (−3,−4), (2, 5), (0,−5), (−1, 5), (3,−4), (−4, 3), (5,−1), (−5, 0), (5, 2),

(−4,−3), (3, 5), (−1,−5), (0, 6), (2,−5), (−3, 5), (5,−3), (−5, 2), (6, 0))
D0(6) := ((−5, 0), (5, 2), (−4,−3), (3, 5), (−1,−5), (0, 5), (2,−4), (−3, 4), (5,−2), (−5, 1), (5, 1), (−4,−2),

(4, 4), (−2,−4), (1, 5), (1,−5), (−2, 5), (4,−4), (−4, 3), (5,−1))
D0(7) := ((−15,−5), (13, 10), (−9,−13), (5, 15), (0,−15), (−4, 15), (9,−12), (−12, 9), (15,−4), (−15, 0),

(15, 5), (−12,−9), (9, 13), (−4,−15), (0, 16), (5,−15), (−9, 13), (13,−9), (−15, 5), (16, 0))
D0(8) := ((−4, 0), (4, 2), (−3,−2), (3, 3), (−2,−3), (2, 4), (0,−4), (−1, 4), (3,−3), (−3, 2), (4,−1))
D0(9) := ((−7, 0), (7, 2), (−6,−3), (6, 5), (−4,−5), (3, 6), (−1,−6), (0, 7), (2,−6), (−3, 6), (5,−5), (−5, 4),

(6,−2), (−6, 1), (7, 1), (−6,−2), (6, 4), (−5,−5), (4, 6), (−2,−6), (1, 7), (1,−7), (−2, 7), (4,−6),
(−5, 6), (6,−4), (−6, 3), (7,−1))

D0(10) := ((−7,−1), (7, 3), (−6,−4), (6, 6), (−4,−6), (3, 7), (−1,−7), (0, 8), (2,−7), (−3, 7), (5,−6),
(−6, 5), (7,−3), (−7, 2), (8, 0))

D0(11) := ((−10, 0), (10, 2), (−9,−3), (9, 5), (−7,−6), (6, 8), (−4,−8), (3, 9), (−1,−9), (0, 10), (2,−9),
(−3, 9), (5,−8), (−6, 7), (8,−5), (−8, 4), (9,−2), (−9, 1), (10, 1), (−9,−2), (9, 4), (−8,−5),
(7, 7), (−5,−8), (4, 9), (−2,−9), (1, 10), (1,−10), (−2, 10), (4,−9), (−5, 9), (7,−7), (−8, 6),
(9,−4), (−9, 3), (10,−1))

D1(n,m) := ( (−n−m, 0)
(n+m− k + 1, 3k − 1), (−n−m+ k,−3k) 1 ≤ k ≤ m+ 1
(n− k, 3m+ k + 3), (−n+ k + 1,−3m− k − 3) 1 ≤ k ≤ n− 3m− 5
(3m− 3k + 7, n+ k − 2), (−3m+ 3k − 5,−n− k + 2) 1 ≤ k ≤ m+ 2
(−3k + 1, n+m− k + 1), (3k + 1,−n−m+ k) 1 ≤ k ≤ m+ 1
(−3m− k − 3, n− k), (3m+ k + 4,−n+ k + 1) 1 ≤ k ≤ n− 3m− 5
(−n− k + 2, 3m− 3k + 6), (n+ k − 1,−3m+ 3k − 4) 1 ≤ k ≤ m+ 1

), n ≥ 2 ∧ −1 ≤ m ≤ (n− 5)/3

D2(n,m) := ( (−n−m+ k − 1,−3k + 1), (n+m− k + 1, 3k + 1) 1 ≤ k ≤ m+ 1
(−n+ k,−3m− k − 4), (n− k, 3m+ k + 5) 1 ≤ k ≤ n− 3m− 6
(−3m+ 3k − 7,−n− k + 2), (3m− 3k + 6, n+ k − 1) 1 ≤ k ≤ m+ 2
(3k − 1,−n−m+ k − 1), (−3k, n+m− k + 1) 1 ≤ k ≤ m+ 1
(3m+ k + 4,−n+ k), (−3m− k − 4, n− k) 1 ≤ k ≤ n− 3m− 6
(n+ k − 2,−3m+ 3k − 8), (−n− k + 2, 3m− 3k + 7) 1 ≤ k ≤ m+ 2
(n+m+ 1, 1)

), n ≥ 3 ∧ −1 ≤ m ≤ (n− 6)/3

D3(n,m) := ( (−n−m+ k − 1,−3k + 3), (n+m− k + 1, 3k − 1) 1 ≤ k ≤ m+ 1
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(−n+ k,−3m− k − 2), (n− k, 3m+ k + 3) 1 ≤ k ≤ n− 3m− 4
(−3m− 2,−n+ 1), (3m+ 2, n) if m = 0
(−3m− 2,−n+ 1), (3m+ 2, n), (−3m,−n), (3m− 1, n+ 1) if m �= 0
(−3m+ 3k,−n− k), (3m− 3k − 1, n+ k + 1) 1 ≤ k ≤ m− 1
(3k − 3,−n−m+ k − 1), (−3k + 2, n+m− k + 1) 1 ≤ k ≤ m+ 1
(3m+ k + 2,−n+ k), (−3m− k − 2, n− k) 1 ≤ k ≤ n− 3m− 4
(n− 1,−3m− 3), (−n+ 1, 3m+ 2) if m = 0
(n− 1,−3m− 3), (−n+ 1, 3m+ 2), (n,−3m− 1), (−n, 3m) if m �= 0
(n+ k,−3m+ 3k − 1), (−n− k, 3m− 3k) 1 ≤ k ≤ m− 1
(n+m,−1)

), n ≥ 5 ∧ 0 ≤ m ≤ (n− 5)/3

D4(n,m) := ( (−n−m+ k − 1,−3k + 2), (n+m− k + 1, 3k) 1 ≤ k ≤ m+ 1
(−n+ k,−3m− k − 3), (n− k, 3m+ k + 4) 1 ≤ k ≤ n− 3m− 5
(−3m− 3,−n+ 1), (3m+ 3, n)
(−3m+ 3k − 4,−n− k + 1), (3m− 3k + 3, n+ k) 1 ≤ k ≤ m+ 1
(3k − 1,−n−m+ k − 1), (−3k, n+m− k + 1) 1 ≤ k ≤ m+ 1
(3m+ k + 4,−n+ k), (−3m− k − 4, n− k) 1 ≤ k ≤ n− 3m− 6
(n− 1,−3m− 5), (−n+ 1, 3m+ 4)
(n+ k − 1,−3m+ 3k − 6), (−n− k + 1, 3m− 3k + 5) 1 ≤ k ≤ m+ 1
(n+m+ 1, 0)

), n ≥ 6 ∧ 0 ≤ m ≤ (n− 6)/3

D5(n,m) := ( (−n−m+ k − 1,−3k + 3), (n+m− k + 1, 3k − 1) 1 ≤ k ≤ m+ 1
(−n+ k,−3m− k − 1), (n− k, 3m+ k + 2) 1 ≤ k ≤ n− 3m− 2
(−3m+ 3k − 3,−n− k + 1), (3m− 3k + 2, n+ k) 1 ≤ k ≤ m
(3k − 3,−n−m+ k − 1), (−3k + 2, n+m− k + 1) 1 ≤ k ≤ m+ 1
(3m+ k + 1,−n+ k), (−3m− k − 1, n− k) 1 ≤ k ≤ n− 3m− 2
(n+ k − 1,−3m+ 3k − 4), (−n− k + 1, 3m− 3k + 3) 1 ≤ k ≤ m
(n+m,−1)

), n ≥ 2 ∧ 0 ≤ m ≤ (n− 2)/3

D6(n,m) := ( (−n−m+ k − 1,−3k + 2), (n+m− k + 1, 3k) 1 ≤ k ≤ m+ 1
(−n+ k,−3m− k − 2), (n− k, 3m+ k + 3) 1 ≤ k ≤ n− 3m− 3
(−3m+ 3k − 4,−n− k + 1), (3m− 3k + 3, n+ k) 1 ≤ k ≤ m+ 1
(3k − 1,−n−m+ k − 1), (−3k, n+m− k + 1) 1 ≤ k ≤ m+ 1
(3m+ k + 3,−n+ k), (−3m− k − 3, n− k) 1 ≤ k ≤ n− 3m− 4
(n+ k − 1,−3m+ 3k − 6), (−n− k + 1, 3m− 3k + 5) 1 ≤ k ≤ m+ 1
(n+m+ 1, 0)

), n ≥ 4 ∧ 0 ≤ m ≤ (n− 4)/3

D7(n,m) := ( (−n−m, 1)
(n+m− k + 1, 3k − 2), (−n−m+ k,−3k + 1) 1 ≤ k ≤ m+ 1
(n− k, 3m+ k + 2), (−n+ k + 1,−3m− k − 2) 1 ≤ k ≤ n− 3m− 3
(3m− 3k + 5, n+ k − 1), (−3m+ 3k − 3,−n− k + 1) 1 ≤ k ≤ m+ 1
(−3k + 2, n+m− k + 1), (3k,−n−m+ k) 1 ≤ k ≤ m+ 1
(−3m− k − 2, n− k), (3m+ k + 3,−n+ k + 1) 1 ≤ k ≤ n− 3m− 3
(−n− k + 1, 3m− 3k + 4), (n+ k,−3m+ 3k − 2) 1 ≤ k ≤ m

), n ≥ 5 ∧ 0 ≤ m ≤ (n− 5)/5

D8(n,m) := ( (−n−m+ k − 1,−3k + 2), (n+m− k + 1, 3k) 1 ≤ k ≤ m+ 1
(−n+ k,−3m− k − 3), (n− k, 3m+ k + 4) 1 ≤ k ≤ n− 3m− 4
(−3m+ 3k − 5,−n− k + 1), (3m− 3k + 4, n+ k) 1 ≤ k ≤ m+ 1
(3k − 2,−n−m+ k − 1), (−3k + 1, n+m− k + 1) 1 ≤ k ≤ m+ 1
(3m+ k + 3,−n+ k), (−3m− k − 3, n− k) 1 ≤ k ≤ n− 3m− 4
(n+ k − 1,−3m+ 3k − 6), (−n− k + 1, 3m− 3k + 5) 1 ≤ k ≤ m+ 1
(n+m+ 1, 0)

), n ≥ 1 ∧ (m = −1 ∨ 0 ≤ m ≤ (n− 8)/5 ∨ m = (n− 4)/3)

D9(n,m) := ( (−n−m, 0)
(n+m− k + 1, 3k − 1), (−n−m+ k,−3k) 1 ≤ k ≤ m
(n− k + 1, 3m+ k + 1), (−n+ k,−3m− k − 1) 1 ≤ k ≤ n− 3m− 3
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(3m+ 3, n− 1), (−3m− 1,−n+ 1)
(3m− 3k + 4, n+ k − 1), (−3m+ 3k − 2,−n− k + 1) 1 ≤ k ≤ m+ 1
(−3k + 1, n+m− k + 1), (3k + 1,−n−m+ k) 1 ≤ k ≤ m
(−3m− k − 1, n− k + 1), (3m+ k + 2,−n+ k) 1 ≤ k ≤ n− 3m− 3
(−n+ 1, 3m+ 2), (n,−3m− 1)
(−n− k + 1, 3m− 3k + 3), (n+ k,−3m+ 3k − 1) 1 ≤ k ≤ m

), n ≥ 4 ∧ (n− 4)/5 ≤ m ≤ (n− 4)/3

D10(n,m) := ( (−n−m+ k − 1,−3k + 1), (n+m− k + 1, 3k + 1) 1 ≤ k ≤ m+ 1
(−n+ k,−3m− k − 3), (n− k, 3m+ k + 4) 1 ≤ k ≤ n− 3m− 5
(−3m− 3,−n+ 1), (3m+ 3, n)
(−3m+ 3k − 4,−n− k + 1), (3m− 3k + 3, n+ k) 1 ≤ k ≤ m+ 1
(3k − 1,−n−m+ k − 1), (−3k, n+m− k + 1) 1 ≤ k ≤ m+ 1
(3m+ k + 3,−n+ k), (−3m− k − 3, n− k) 1 ≤ k ≤ n− 3m− 5
(n− 1,−3m− 4), (−n+ 1, 3m+ 3)
(n+ k − 1,−3m+ 3k − 5), (−n− k + 1, 3m− 3k + 4) 1 ≤ k ≤ m+ 1
(n+m+ 1, 1)

), n ≥ 5 ∧ (n− 6)/5 ≤ m ≤ (n− 5)/3

D11(n,m) := ( (−n−m,−2)
(n+m− k + 1, 3k + 1), (−n−m+ k,−3k − 2) 1 ≤ k ≤ m
(n− k + 1, 3m+ k + 2), (−n+ k,−3m− k − 2) 1 ≤ k ≤ n− 3m− 4
(3m+ 4, n− 1), (−3m− 2,−n+ 1)
(3m− 3k + 5, n+ k − 1), (−3m+ 3k − 3,−n− k + 1) 1 ≤ k ≤ m+ 1
(−3k + 2, n+m− k + 1), (3k,−n−m+ k) 1 ≤ k ≤ m+ 1
(−3m− k − 2, n− k), (3m+ k + 3,−n+ k + 1) 1 ≤ k ≤ n− 3m− 3
(−n− k + 1, 3m− 3k + 4), (n+ k,−3m+ 3k − 2) 1 ≤ k ≤ m+ 1

), n ≥ 4 ∧ (n− 5)/5 ≤ m ≤ (n− 4)/3

D12(n,m) := ( (−n−m+ k − 1,−3k + 1), (n+m− k + 1, 3k + 1) 1 ≤ k ≤ m+ 1
(−n+ k,−3m− k − 3), (n− k, 3m+ k + 4) 1 ≤ k ≤ n− 3m− 5
(−3m− 3,−n+ 1), (3m+ 3, n)
(−3m+ 3k − 4,−n− k + 1), (3m− 3k + 3, n+ k) 1 ≤ k ≤ m+ 1
(3k − 1,−n−m+ k − 1), (−3k, n+m− k + 1) 1 ≤ k ≤ m+ 1
(3m+ k + 4,−n+ k), (−3m− k − 4, n− k) 1 ≤ k ≤ n− 3m− 6
(n+ k − 2,−3m+ 3k − 8), (−n− k + 2, 3m− 3k + 7) 1 ≤ k ≤ m+ 2
(n+m+ 1, 1)

), n ≥ 6 ∧ (n− 7)/5 ≤ m ≤ (n− 6)/3

D13(n,m) := ( (−n−m+ k − 1,−3k + 3), (n+m− k + 1, 3k − 1) 1 ≤ k ≤ m+ 1
(−n+ k,−3m− k − 1), (n− k, 3m+ k + 2) 1 ≤ k ≤ n− 3m− 3
(−3m− 1,−n+ 1), (3m+ 1, n)
(−3m+ 3k − 2,−n− k + 1), (3m− 3k + 1, n+ k) 1 ≤ k ≤ m
(3k − 2,−n−m+ k − 1), (−3k + 1, n+m− k + 1) 1 ≤ k ≤ m
(3m+ k,−n+ k − 1), (−3m− k, n− k + 1) 1 ≤ k ≤ n− 3m− 1
(n+ k − 1,−3m+ 3k − 4), (−n− k + 1, 3m− 3k + 3) 1 ≤ k ≤ m
(n+m,−1)

), n ≥ 3 ∧ (n− 3)/5 ≤ m ≤ (n− 3)/3

D14(n,m) := ( (−n−m+ k − 1,−3k + 2), (n+m− k + 1, 3k) 1 ≤ k ≤ m+ 1
(−n+ k,−3m− k − 3), (n− k, 3m+ k + 4) 1 ≤ k ≤ n− 3m− 4
(−3m+ 3k − 5,−n− k + 1), (3m− 3k + 4, n+ k) 1 ≤ k ≤ m+ 1
(3k − 2,−n−m+ k − 2), (−3k + 1, n+m− k + 2) 1 ≤ k ≤ m+ 1
(3m+ k + 3,−n+ k − 1), (−3m− k − 3, n− k + 1) 1 ≤ k ≤ n− 3m− 5
(n− 1,−3m− 5), (−n+ 1, 3m+ 4)
(n+ k − 1,−3m+ 3k − 6), (−n− k + 1, 3m− 3k + 5) 1 ≤ k ≤ m+ 1
(n+m+ 1, 0)

), n ≥ 2 ∧ (n− 7)/5 ≤ m ≤ (n− 5)/3

D15(n,m) := ( (−n−m+ k − 1,−3k + 2), (n+m− k + 1, 3k) 1 ≤ k ≤ m+ 1
(−n+ k,−3m− k − 3), (n− k, 3m+ k + 4) 1 ≤ k ≤ n− 3m− 5
(−3m− 3,−n+ 1), (3m+ 3, n)
(−3m+ 3k − 4,−n− k + 1), (3m− 3k + 3, n+ k) 1 ≤ k ≤ m+ 1
(3k − 1,−n−m+ k − 1), (−3k, n+m− k + 1) 1 ≤ k ≤ m+ 1



5.3. MAIN RESULT ON GAUSSIAN SHIFT RADIX SYSTEMS: ONE INCLUSION 69

(3m+ k + 3,−n+ k), (−3m− k − 3, n− k) 1 ≤ k ≤ n− 3m− 4
(n+ k − 1,−3m+ 3k − 6), (−n− k + 1, 3m− 3k + 5) 1 ≤ k ≤ m+ 1
(n+m+ 1, 0)

), n ≥ 4 ∧ ((n− 7)/5 ≤ m ≤ (n− 6)/3 ∨ m = (n− 4)/3)

D16(n,m) := ( (−n−m+ k − 1,−3k + 3), (n+m− k + 1, 3k − 1) 1 ≤ k ≤ m+ 1
(−n+ k,−3m− k − 1), (n− k, 3m+ k + 2) 1 ≤ k ≤ n− 3m− 2
(−3m+ 3k − 3,−n− k + 1), (3m− 3k + 2, n+ k) 1 ≤ k ≤ m
(3k − 3,−n−m+ k − 1), (−3k + 2, n+m− k + 1) 1 ≤ k ≤ m+ 1
(3m+ k + 2,−n+ k), (−3m− k − 2, n− k) 1 ≤ k ≤ n− 3m− 4
(n− 1,−3m− 3), (−n+ 1, 3m+ 2), (n,−3m− 1), (−n, 3m)
(n+ k,−3m+ 3k − 1), (−n− k, 3m− 3k) 1 ≤ k ≤ m− 1
(n+m,−1)

), n ≥ 7 ∧ (n− 4)/5 ≤ m ≤ (n− 4)/3

D17(n,m) := ( (−n−m+ k − 1,−3k + 1), (n+m− k + 1, 3k + 1) 1 ≤ k ≤ m
(−n+ k − 1,−3m− k − 1), (n− k + 1, 3m+ k + 2) 1 ≤ k ≤ n− 3m− 2
(−3m+ 3k − 4,−n− k + 1), (3m− 3k + 3, n+ k) 1 ≤ k ≤ m+ 1
(3k − 1,−n−m+ k − 1), (−3k, n+m− k + 1) 1 ≤ k ≤ m+ 1
(3m+ k + 3,−n+ k), (−3m− k − 3, n− k) 1 ≤ k ≤ n− 3m− 5
(n− 1,−3m− 4), (−n+ 1, 3m+ 3)
(n+ k − 1,−3m+ 3k − 5), (−n− k + 1, 3m− 3k + 4) 1 ≤ k ≤ m+ 1
(n+m+ 1, 1)

), n ≥ 5 ∧ (n− 5)/5 ≤ m ≤ (n− 5)/3

D18(n,m) := ( (−n−m+ k − 1,−3k + 3), (n+m− k + 1, 3k − 1) 1 ≤ k ≤ m+ 1
(−n+ k,−3m− k − 2), (n− k, 3m+ k + 3) 1 ≤ k ≤ n− 3m− 4
(−3m+ 3k − 5,−n− k + 2), (3m− 3k + 4, n+ k − 1) 1 ≤ k ≤ m+ 1
(3k − 2,−n−m+ k − 1), (−3k + 1, n+m− k + 1) 1 ≤ k ≤ m+ 1
(3m+ k + 2,−n+ k), (−3m− k − 2, n− k) 1 ≤ k ≤ n− 3m− 4
(n− 1,−3m− 3), (−n+ 1, 3m+ 2)
(n+ k − 1,−3m+ 3k − 4), (−n− k + 1, 3m− 3k + 3) 1 ≤ k ≤ m
(n+m,−1)

), n ≥ 8 ∧ (n− 4)/5 ≤ m ≤ (n− 5)/3

D19(n,m) := ( (−4n/3− 3m+ k,−3k + 1), (4n/3 + 3m− k, 3k + 1) 1 ≤ k ≤ n/3− 1
(−n− 3m+ 3k − 3,−n− 3k + 4), (n+ 3m− 3k + 2, n+ 3k − 2) 1 ≤ k ≤ m
(−n+ 3k − 3,−n− 3m− k + 2), (n− 3k + 2, n+ 3m+ k − 1) 1 ≤ k ≤ n/3
(3k − 3,−4n/3− 3m+ k), (−3k + 2, 4n/3 + 3m− k) 1 ≤ k ≤ n/3
(n+ 3k − 3,−n− 3m+ 3k − 2), (−n− 3k + 2, n+ 3m− 3k + 1) 1 ≤ k ≤ m
(n+ 3m+ k − 1,−n+ 3k − 2), (−n− 3m− k + 1, n− 3k + 1) 1 ≤ k ≤ n/3
(4n/3 + 3m, 1)
), n ≥ 3 ∧ n ≡ 0 (mod 3) ∧ (m = 0 ∨ 1 ≤ m ≤ (n− 3/2) · 2/9)

( (−n− 3m+ k,−3k + 1), (4n/3 + 3m− k + 2/3, 3k + 1) 1 ≤ k ≤ (n− 1)/3
(−n− 3m+ 3k − 2,−n− 3k + 2), (n+ 3m− 3k + 1, n+ 3k) 1 ≤ k ≤ m
(−n+ 3k − 2,−n− 3m− k), (n− 3k + 1, n+ 3m+ k + 1) 1 ≤ k ≤ (n− 1)/3
(3k − 3,−4n/3− 3m+ k − 5/3), (−3k + 2, 4n/3 + 3m− k + 5/3) 1 ≤ k ≤ (n− 1)/3
(n+ 3k − 4,−n− 3m+ 3k − 4), (−n− 3k + 3, n+ 3m− 3k + 3) 1 ≤ k ≤ m+ 1
(n+ 3m+ k,−n+ 3k − 1), (−n− 3m− k, n− 3k) 1 ≤ k ≤ (n− 1)/3
(4n/3 + 3m+ 2/3, 1)

), n ≥ 1 ∧ n ≡ 1 (mod 3) ∧ (m = 0 ∨ 1 ≤ m ≤ (n− 5/2) · 2/9)
( (−4n/3− 3m+ k − 7/3,−3k + 3), (4n/3 + 3m− k + 7/3, 3k − 1) 1 ≤ k ≤ (n+ 1)/3
(−n− 3m+ 3k − 3,−n− 3k + 2), (n+ 3m− 3k + 2, n+ 3k) 1 ≤ k ≤ m
(−n+ 3k − 3,−n− 3m− k), (n− 3k + 2, n+ 3m+ k + 1) 1 ≤ k ≤ (n+ 1)/3
(3k − 2,−4n/3− 3m+ k − 7/3), (−3k + 1, 4n/3 + 3m− k + 7/3) 1 ≤ k ≤ (n− 2)/3
(n+ 3k − 4,−n− 3m+ 3k − 5), (−n− 3k + 3, n+ 3m− 3k + 4) 1 ≤ k ≤ m+ 1
(n+ 3m+ k + 1,−n+ 3k − 2), (−n− 3m− k − 1, n− 3k + 1) 1 ≤ k ≤ (n− 2)/3
(4n/3 + 3m+ 4/3,−1)

), n ≥ 5 ∧ n ≡ 2 (mod 3) ∧ (m = 0 ∨ 1 ≤ m ≤ (n− 7/2) · 2/9)

D20(n,m) := ( (−4n/3− 3m+ k + 2,−3k + 2), (4n/3 + 3m− k − 2, 3k) 1 ≤ k ≤ n/3
(−n− 3m+ 3k + 1,−n− 3k + 2), (n+ 3m− 3k − 2, n+ 3k) 1 ≤ k ≤ m− 1
(−n+ 3k − 2,−n− 3m− k + 3), (n− 3k + 1, n+ 3m+ k − 2) 1 ≤ k ≤ n/3
(3k − 2,−4n/3− 3m+ k + 1), (−3k + 1, 4n/3 + 3m− k − 1) 1 ≤ k ≤ n/3
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(n+ 3k − 2,−n− 3m+ 3k), (−n− 3k + 1, n+ 3m− 3k − 1) 1 ≤ k ≤ m− 1
(n+ 3m+ k − 3,−n+ 3k − 3), (−n− 3m− k + 3, n− 3k + 2) 1 ≤ k ≤ n/3
(4n/3 + 3m− 2, 0)

), n ≥ 3 ∧ n ≡ 0 (mod 3) ∧ (0 ≤ m ≤ n · 2/9 ∨ m = (n+ 3/2) · 2/9)
( (−4n/3− 3m+ k + 1/3,−3k + 2), (4n/3 + 3m− k − 1/3, 3k) 1 ≤ k ≤ (n− 1)/3
(−n− 3m+ 3k − 1,−n− 3k + 3), (n+ 3m− 3k, n+ 3k − 1) 1 ≤ k ≤ m
(−n+ 3k − 1,−n− 3m− k + 2), (n− 3k, n+ 3m+ k − 1) 1 ≤ k ≤ (n− 1)/3
(3k − 2,−4n/3− 3m+ k + 1/3), (−3k + 1, 4n/3 + 3m− k − 1/3) 1 ≤ k ≤ (n− 1)/3
(n+ 3k − 3,−n− 3m+ 3k − 2), (−n− 3k + 2, n+ 3m− 3k + 1) 1 ≤ k ≤ m
(n+ 3m+ k − 1,−n+ 3k − 2), (−n− 3m− k + 1, n− 3k + 1) 1 ≤ k ≤ (n− 1)/3
(4n/3 + 3m− 1/3, 0)

), n ≥ 4 ∧ n ≡ 1 (mod 3) ∧ (0 ≤ m ≤ (n− 1) · 2/9 ∨ m = (n+ 3/2) · 2/9)
( (−4n/3− 3m+ k − 1/3,−3k + 1), (4n/3 + 3m− k + 1/3, 3k + 1) 1 ≤ k ≤ (n− 2)/3
(−n− 3m+ 3k − 2,−n− 3k + 3), (n+ 3m− 3k + 1, n+ 3k − 1) 1 ≤ k ≤ m
(−n+ 3k − 2,−n− 3m− k + 1), (n− 3k + 1, n+ 3m+ k) 1 ≤ k ≤ (n+ 1)/3
(3k − 1,−4n/3− 3m+ k − 1/3), (−3k, 4n/3 + 3m− k + 1/3) 1 ≤ k ≤ (n+ 1)/3
(n+ 3k − 3,−n− 3m+ 3k − 3), (−n− 3k + 2, n+ 3m− 3k + 2) 1 ≤ k ≤ m
(n+ 3m+ k − 1,−n+ 3k − 3), (−n− 3m− k + 1, n− 3k + 2) 1 ≤ k ≤ (n+ 1)/3
(4n/3 + 3m+ 1/3, 1)

), n ≥ 2 ∧ n ≡ 2 (mod 3) ∧ (1 ≤ m ≤ (n− 2) · 2/9 ∨ m = (n+ 3/2) · 2/9)

The following theorem then follows from Lemma 3.5.8.

Theorem 5.3.3. [Weitzer, 2015b] The cutout polygons corresponding to the cycles defined
above have the following vertices and boundaries (cf. Theorem 3.5.10 for notation):

D0(n) :

n = 1 : ( 34 ,
3
4 ) ( 23 ,

2
3 )

n = 2 : ( 34 ,
2
3 ) ( 34 ,

3
4 ) ( 23 ,

2
3 )

n = 3 : ( 1415 ,
2
5 ) ( 56 ,

1
2 ) ( 67 ,

3
7 ) ( 1213 ,

5
13 )

n = 4 : ( 2325 ,
11
25 ) ( 1011 ,

5
11 ) ( 89 ,

4
9 ) ( 1921 ,

3
7 )

n = 5 : (1, 1
3 ) ( 1415 ,

1
3 ) ( 1617 ,

5
17 ) ( 2425 ,

7
25 )

n = 6 : ( 1617 ,
5
17 ) ( 1516 ,

5
16 )

n = 7 : ( 1516 ,
5
16 )

n = 8 : ( 1718 ,
5
18 ) ( 1415 ,

4
15 )

n = 9 : ( 4849 ,
9
49 ) ( 3637 ,

7
37 ) ( 3738 ,

7
38 ) ( 4344 ,

2
11 )

n = 10 : ( 6566 ,
2
11 ) ( 3536 ,

7
36 ) ( 3637 ,

7
37 ) ( 6061 ,

11
61 )

n = 11 : ( 8788 ,
2
11 ) ( 5152 ,

5
26 ) ( 5758 ,

5
29 )

D1(n,m) :

n = 2 ∧m = −1 : (1, 1) (0, 1) ( 12 ,
1
2 )

n = 3 ∧m = −1 : (1, 1
2 ) ( 34 ,

1
2 ) ( 45 ,

2
5 )

n ≥ 4 ∧m = −1 : (1, 1
n−1 ) (1− 1

n2−2n+1 ,
n−1

n2−2n+1 ) (1− 1
n2−2n+2 ,

n−1
n2−2n+2 )

n = 5 ∧m = 0 : (1, 1
4 ) ( 2425 ,

7
25 ) ( 1819 ,

5
19 ) ( 2122 ,

5
22 )

n ≥ 9 ∧ 0 ≤ m ≤ n−9
5 : (1, 1

n−1 ) (1− 1
n2−n+nm−4m−3 ,

n+m
n2−n+nm−4m−3 )

(1− 1
n2−n+nm+2m+2 ,

n+m
n2−n+nm+2m+2 )

n ≥ 6 ∧ n−8
5 ≤ m ≤ n−5

5 : (1, 1
n−1 ) (1− 1

8n+6nm−9m−11 ,
6m+8

8n+6nm−9m−11 )

(1− 1
n2−2n+nm+m+5 ,

n+m
n2−2n+nm+m+5 ) (1− 1

n2−n+nm+2m+2 ,
n+m

n2−n+nm+2m+2 )

n ≥ 9 ∧ n−4
5 ≤ m ≤ n−6

3 : (1, 1
n−1 ) (1− 1

8n+6nm−9m−11 ,
6m+8

8n+6nm−9m−11 )

(1− 1
n2−2n+nm+m+5 ,

n+m
n2−2n+nm+m+5 ) (1− 1

n2+nm−3m−2 ,
n+m

n2+nm−3m−2 )

(1− 1
4n+6nm−3m−2 ,

6m+4
4n+6nm−3m−2 )

n ≥ 8 ∧m = n−5
3 : (1, 1

n−1 ) (1− 1
2n2−6n+5 ,

2n−3
2n2−6n+5 ) (1− 3

4n2−10n+7 ,
4n−5

4n2−10n+7 )

(1− 3
4n2−8n+9 ,

4n−5
4n2−8n+9 ) (1− 1

2n2−7n+3 ,
2n−6

2n2−7n+3 )
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D2(n,m) :

n = 3 ∧m = −1 : ( 78 ,
5
8 ) ( 56 ,

2
3 ) ( 23 ,

2
3 ) ( 45 ,

2
5 )

n = 4 ∧m = −1 : (1, 1
3 ) ( 1213 ,

5
13 ) ( 89 ,

1
3 ) ( 9

10 ,
3
10 )

n ≥ 7 ∧ −1 ≤ m ≤ n−12
5 : (1, 1

n−1 ) (1− 1
n2−n+nm−4m−5 ,

n+m
n2−n+nm−4m−5 )

(1− 1
n2−n+nm+2m+4 ,

n+m
n2−n+nm+2m+4 )

n ≥ 5 ∧ n−11
5 ≤ m ≤ n−8

5 : (1, 1
n−1 ) (1− 1

12n+6nm−9m−17 ,
6m+12

12n+6nm−9m−17 )

(1− 1
n2−2n+nm+m+7 ,

n+m
n2−2n+nm+m+7 ) (1− 1

n2−n+nm+2m+4 ,
n+m

n2−n+nm+2m+4 )

n ≥ 11 ∧ n−7
5 ≤ m ≤ n−8

3 : (1, 1
n−1 ) (1− 1

12n+6nm−9m−17 ,
6m+12

12n+6nm−9m−17 )

(1− 1
n2−2n+nm+m+7 ,

n+m
n2−2n+nm+m+7 ) (1− 1

n2+nm−3m−4 ,
n+m

n2+nm−3m−4 )

(1− 1
8n+6nm−3m−4 ,

6m+8
8n+6nm−3m−4 )

n ≥ 7 ∧m = n−7
3 : (1, 1

n−1 ) (1− 1
2n2−6n+5 ,

2n−3
2n2−6n+5 ) (1− 3

4n2−12n+11 ,
4n−7

4n2−12n+11 )

(1− 3
4n2−10n+9 ,

4n−7
4n2−10n+9 ) (1− 1

2n2−7n+3 ,
2n−6

2n2−7n+3 )

n ≥ 6 ∧m = n−6
3 : (1− 1

2n2−4n+2 ,
2n−1

2n2−4n+2 ) (1− 3
4n2−13n+9 ,

4n−6
4n2−13n+9 )

(1− 3
4n2−11n+12 ,

4n−6
4n2−11n+12 )

D3(n,m) :

n ≥ 5 ∧ 0 ≤ m ≤ n−5
5 : (1, 1

n−1 ) (1− 1
n2−n+nm+2m+2 ,

n+m
n2−n+nm+2m+2 )

(1− 1
n2−n+nm+2m+3 ,

n+m
n2−n+nm+2m+3 )

n ≥ 8 ∧ n−4
5 ≤ m ≤ n−5

3 : (1, 1
n−1 ) (1− 1

4n+6nm−3m−2 ,
6m+4

4n+6nm−3m−2 )

(1− 1
5n+6nm−3m−2 ,

6m+5
5n+6nm−3m−2 )

D4(n,m) :

n ≥ 8 ∧ 0 ≤ m ≤ n−8
5 : (1, 1

n−1 ) (1− 1
n2−n+nm+2m+4 ,

n+m
n2−n+nm+2m+4 )

(1− 1
n2−n+nm+2m+5 ,

n+m
n2−n+nm+2m+5 )

n ≥ 6 ∧ n−7
5 ≤ m ≤ n−6

3 : (1, 1
n−1 ) (1− 1

7n+6nm−3m−3 ,
6m+7

7n+6nm−3m−3 )

(1− 1
8n+6nm−3m−3 ,

6m+8
8n+6nm−3m−3 )

D5(n,m) :

2 ≤ n ≤ 3 ∧m = 0 : (1, 1
n ) (1− 1

n2+n−1 ,
n+1

n2+n−1 ) (1− 1
n2 ,

n
n2 )

n ≥ 4 ∧m = 0 : (1, 1
n ) (1− 1

n2−1 ,
n

n2−1 ) (1− 1
n2 ,

n
n2 )

n ≥ 9 ∧ 1 ≤ m ≤ n−4
5 : (1, 1

n ) (1− 1
n2+nm−3m−1 ,

n+m
n2+nm−3m−1 )

(1− 1
n2+nm−3m , n+m

n2+nm−3m )

n ≥ 6 ∧ n−3
5 ≤ m ≤ n−3

3 : (1, 1
n ) (1− 1

4n+6nm−3m−1 ,
6m+4

4n+6nm−3m−1 )

(1− 1
3n+6nm−3m , 6m+3

3n+6nm−3m )

n ≥ 5 ∧m = n−2
3 : (1, 1

n ) (1− 1
2n2−2n+1 ,

2n−1
2n2−2n+1 ) (1− 1

2n2−3n+2 ,
2n−2

2n2−3n+2 )

D6(n,m) :

n ≥ 7 ∧ 0 ≤ m ≤ n−7
5 : (1, 1

n ) (1− 1
n2+nm−3m−3 ,

n+m
n2+nm−3m−3 )

(1− 1
n2+nm−3m−2 ,

n+m
n2+nm−3m−2 )

n ≥ 5 ∧ n−6
5 ≤ m ≤ n−5

3 : (1, 1
n ) (1− 1

7n+6nm−3m−3 ,
6m+7

7n+6nm−3m−3 )

(1− 1
6n+6nm−3m−2 ,

6m+6
6n+6nm−3m−2 )

n ≥ 4 ∧m = n−4
3 : (1, 1

n ) (1− 1
2n2−2n+1 ,

2n−1
2n2−2n+1 ) (1− 1

2n2−3n+2 ,
2n−2

2n2−3n+2 )

D7(n,m) :

n ≥ 9 ∧ 0 ≤ m ≤ n−9
11 : (1− 1

n2+nm−3m−1 ,
n+m

n2+nm−3m−1 )
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(1− 1
n2−n+nm+2m+3 ,

n+m
n2−n+nm+2m+3 ) (1− 2

n2−n+nm+5m+6 ,
n+m

n2−n+nm+5m+6 )

(1− 2
n2+nm−6m−2 ,

n+m
n2+nm−6m−2 )

n ≥ 5 ∧ n−8
11 ≤ m ≤ n−5

5 : (1− 1
n2+nm−3m−1 ,

n+m
n2+nm−3m−1 )

(1− 1
n2−n+nm+2m+3 ,

n+m
n2−n+nm+2m+3 ) (1− 1

4n+6nm−3m−1 ,
6m+4

4n+6nm−3m−1 )

D8(n,m) :

n = 1 ∧m = −1 : (0, 0) (0, 1) (−1, 1) (−1, 0)
n = 2 ∧m = −1 : ( 34 ,

1
2 ) ( 23 ,

2
3 ) ( 12 ,

1
2 )

n = 3 ∧m = −1 : ( 89 ,
1
3 ) ( 78 ,

3
8 ) ( 56 ,

1
3 )

n ≥ 4 ∧m = −1 : (1− 1
n2 ,

1
n ) (1− 1

n2−n+2 ,
n

n2−n+2 ) (1− 1
n2−2n+3 ,

n−1
n2−2n+3 )

(1− 1
n2−n ,

n−1
n2−n )

n ≥ 16 ∧ 0 ≤ m ≤ n−16
11 : (1− 1

n2+n+nm−3m−3 ,
n+m+1

n2+n+nm−3m−3 )

(1− 1
n2+nm+2m+4 ,

n+m+1
n2+nm+2m+4 ) (1− 2

n2−n+nm+5m+10 ,
n+m

n2−n+nm+5m+10 )

(1− 2
n2+nm−6m−6 ,

n+m
n2+nm−6m−6 )

n ≥ 8 ∧ n−15
11 ≤ m ≤ n−8

5 : (1− 1
n2+n+nm−3m−3 ,

n+m+1
n2+n+nm−3m−3 )

(1− 1
n2+nm+2m+4 ,

n+m+1
n2+nm+2m+4 ) (1− 1

8n+6nm−3m−3 ,
6m+8

8n+6nm−3m−3 )

n ≥ 4 ∧m = n−4
3 : (1− 3

4n2−4n+3 ,
4n−1

4n2−4n+3 ) (1− 3
4n2−6n+2 ,

4n−1
4n2−6n+2 )

(1− 2
2n2−3n+2 ,

2n−1
2n2−3n+2 )

D9(n,m) :

n ≥ 4 ∧m = n−4
5 : (1− 5

6n2−7n+7 ,
6n−4

6n2−7n+7 ) (1− 5
6n2−2n+2 ,

6n+1
6n2−2n+2 )

(1− 5
6n2−7n+2 ,

6n−4
6n2−7n+2 )

n ≥ 7 ∧ n−3
5 ≤ m ≤ n−4

3 : (1− 1
4n+6nm−3m−1 ,

6m+4
4n+6nm−3m−1 )

(1− 1
5n+6nm−3m−2 ,

6m+5
5n+6nm−3m−2 ) (1− 1

4n+6nm−3m−2 ,
6m+4

4n+6nm−3m−2 )

(1− 1
3n+6nm−3m−1 ,

6m+3
3n+6nm−3m−1 )

D10(n,m) :

n ≥ 6 ∧m = n−6
5 : (1− 5

6n2−9n+8 ,
6n−6

6n2−9n+8 ) (1− 5
6n2−4n+3 ,

6n−1
6n2−4n+3 )

(1− 5
6n2−9n+3 ,

6n−6
6n2−9n+3 )

n ≥ 5 ∧ n−5
5 ≤ m ≤ n−5

3 : (1− 1
6n+6nm−3m−2 ,

6m+6
6n+6nm−3m−2 )

(1− 1
7n+6nm−3m−3 ,

6m+7
7n+6nm−3m−3 ) (1− 1

6n+6nm−3m−3 ,
6m+6

6n+6nm−3m−3 )

(1− 1
5n+6nm−3m−2 ,

6m+5
5n+6nm−3m−2 )

D11(n,m) :

n ≥ 5 ∧m = n−5
5 : (1− 5

6n2−8n+10 ,
6n−5

6n2−8n+10 ) (1− 5
6n2−3n+5 ,

6n
6n2−3n+5 )

(1− 5
6n2−8n+5 ,

6n−5
6n2−8n+5 )

n ≥ 4 ∧ n−4
5 ≤ m ≤ n−4

3 : (1− 1
5n+6nm−3m−1 ,

6m+5
5n+6nm−3m−1 )

(1− 1
6n+6nm−3m−2 ,

6m+6
6n+6nm−3m−2 ) (1− 1

5n+6nm−3m−2 ,
6m+5

5n+6nm−3m−2 )

(1− 1
4n+6nm−3m−1 ,

6m+4
4n+6nm−3m−1 )

D12(n,m) :

n ≥ 7 ∧m = n−7
5 : (1− 5

6n2−10n+6 ,
6n−7

6n2−10n+6 ) (1− 5
6n2−5n+1 ,

6n−2
6n2−5n+1 )

(1− 5
6n2−10n+1 ,

6n−7
6n2−10n+1 )

n ≥ 6 ∧ n−6
5 ≤ m ≤ n−6

3 : (1− 1
7n+6nm−3m−3 ,

6m+7
7n+6nm−3m−3 )

(1− 1
8n+6nm−3m−4 ,

6m+8
8n+6nm−3m−4 ) (1− 1

7n+6nm−3m−4 ,
6m+7

7n+6nm−3m−4 )

(1− 1
6n+6nm−3m−3 ,

6m+6
6n+6nm−3m−3 )
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D13(n,m) :

n ≥ 3 ∧m = n−3
5 : (1− 5

6n2−6n+9 ,
6n−3

6n2−6n+9 ) (1− 5
6n2−n+4 ,

6n+2
6n2−n+4 )

(1− 5
6n2−6n+4 ,

6n−3
6n2−6n+4 )

n ≥ 6 ∧ n−2
5 ≤ m ≤ n−3

3 : (1− 1
3n+6nm−3m , 6m+3

3n+6nm−3m )

(1− 1
4n+6nm−3m−1 ,

6m+4
4n+6nm−3m−1 ) (1− 1

3n+6nm−3m−1 ,
6m+3

3n+6nm−3m−1 )

(1− 1
2n+6nm−3m , 6m+2

2n+6nm−3m )

D14(n,m) :

n = 2 ∧m = −1 : ( 34 ,
1
2 ) ( 45 ,

3
5 ) ( 23 ,

2
3 )

n ≥ 6 ∧ n−7
5 ≤ m ≤ n−6

3 : (1− 1
8n+6nm−3m−3 ,

6m+8
8n+6nm−3m−3 )

(1− 1
9n+6nm−3m−4 ,

6m+9
9n+6nm−3m−4 )

n ≥ 5 ∧m = n−5
3 : (1− 1

2n2−3n+2 ,
2n−2

2n2−3n+2 ) ( 2n2−2n
2n2−2n+1 ,

2n−1
2n2−2n+1 )

(1− 1
2n2−3n+1 ,

2n−2
2n2−3n+1 ) (1− 1

2n2−4n+2 ,
2n−3

2n2−4n+2 )

D15(n,m) :

n ≥ 6 ∧ n−7
5 ≤ m ≤ n−6

3 : (1− 1
8n+6nm−3m−3 ,

6m+8
8n+6nm−3m−3 )

(1− 1
7n+6nm−3m−3 ,

6m+7
7n+6nm−3m−3 )

n ≥ 4 ∧m = n−4
3 : (1, 1

n ) (1− 1
2n2−2n+1 ,

2n−1
2n2−2n+1 ) (1− 1

2n2−3n+2 ,
2n−2

2n2−3n+2 )

D16(n,m) :

n ≥ 7 ∧ n−4
5 ≤ m ≤ n−4

3 : (1− 1
5n+6nm−3m−2 ,

6m+5
5n+6nm−3m−2 )

(1− 1
4n+6nm−3m−1 ,

6m+4
4n+6nm−3m−1 )

D17(n,m) :

n ≥ 5 ∧ n−5
5 ≤ m ≤ n−5

3 : (1− 1
6n+6nm−3m−2 ,

6m+6
6n+6nm−3m−2 )

D18(n,m) :

n ≥ 8 ∧ n−4
5 ≤ m ≤ n−5

3 : (1− 1
4n+6nm−3m−2 ,

6m+4
4n+6nm−3m−2 )

D19(n,m) :

n = 1 ∧m = 0 : ( 12 ,
3
4 ) ( 12 , 1) ( 25 ,

4
5 )

n ≥ 3 ∧ n ≡ 0 mod 3 ∧m = 0 : (1− 1
2n2−3n+2 ,

2n−2
2n2−3n+2 ) (1− 1

2n2−2n+1 ,
2n−1

2n2−2n+1 )

(1− 3
4n2−6n+3 ,

4n−3
4n2−6n+3 ) (1− 3

4n2−6n+6 ,
4n−3

4n2−6n+6 )

n ≥ 9 ∧ n ≡ 0 mod 3 ∧ 1 ≤ m ≤ 2n−6
9 : (1− 3

4n2−4n+9nm+3 ,
4n+9m−3

4n2−4n+9nm+3 )

(1− 1
2n2−2n+6nm−3m+1 ,

2n+6m−1
2n2−2n+6nm−3m+1 )

(1− 3
4n2−6n+9nm−9m+3 ,

4n+9m−3
4n2−6n+9nm−9m+3 )

n ≥ 4 ∧ n ≡ 1 mod 3 ∧ 0 ≤ m ≤ 2n−8
9 : (1− 3

4n2−2n+9nm+4 ,
4n+9m−1

4n2−2n+9nm+4 )

(1− 1
2n2+6nm−3m , 2n+6m+1

2n2+6nm−3m ) (1− 3
4n2−4n+9nm−9m , 4n+9m−1

4n2−4n+9nm−9m )

n ≥ 5 ∧ n ≡ 2 mod 3 ∧ 0 ≤ m ≤ 2n−10
9 : (1− 3

4n2+3n+9nm+2 ,
4n+9m+4

4n2+3n+9nm+2 )

(1− 1
2n2+2n+6nm−3m−1 ,

2n+6m+3
2n2+2n+6nm−3m−1 )

(1− 3
4n2+n+9nm−9m−3 ,

4n+9m+4
4n2+n+9nm−9m−3 )

n ≥ 6 ∧m = 2n−3
9 : (1− 3

6n2−7n+3 ,
6n−6

6n2−7n+3 ) (1− 3
10n2−14n+6 ,

10n−9
10n2−14n+6 )

(1− 3
10n2−20n+6 ,

10n−15
10n2−20n+6 ) (1− 2

4n2−6n+1 ,
4n−4

4n2−6n+1 )

n ≥ 7 ∧m = 2n−5
9 : (1− 3

6n2−7n+4 ,
6n−6

6n2−7n+4 ) (1− 3
10n2−15n+8 ,

10n−10
10n2−15n+8 )

(1− 1
2n2−3n+2 ,

2n−2
2n2−3n+2 )

n ≥ 8 ∧m = 2n−7
9 : (1− 3

6n2−4n+2 ,
6n−3

6n2−4n+2 ) (1− 3
10n2−10n+4 ,

10n−5
10n2−10n+4 )
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(1− 1
2n2−2n+1 ,

2n−1
2n2−2n+1 )

D20(n,m) :

n ≥ 4 ∧ n ≡ 1 mod 3 ∧m = 0 : (1− 1
2n2−5n+2 ,

2n−4
2n2−5n+2 ) (1− 1

2n2−4n+1 ,
2n−3

2n2−4n+1 )

(1− 3
4n2−7n+3 ,

4n−4
4n2−7n+3 ) (1− 3

4n2−7n+6 ,
4n−4

4n2−7n+6 )

n ≥ 6 ∧ n ≡ 0 mod 3 ∧ 1 ≤ m ≤ 2n
9 : (1− 3

4n2−7n+9nm+3 ,
4n+9m−6

4n2−7n+9nm+3 )

(1− 1
2n2−4n+6nm−3m+2 ,

2n+6m−3
2n2−4n+6nm−3m+2 )

(1− 3
4n2−9n+9nm−9m+6 ,

4n+9m−6
4n2−9n+9nm−9m+6 )

n ≥ 7 ∧ n ≡ 1 mod 3 ∧ 1 ≤ m ≤ 2n−5
9 : (1− 3

4n2−5n+9nm+4 ,
4n+9m−4

4n2−5n+9nm+4 )

(1− 1
2n2−2n+6nm−3m+1 ,

2n+6m−1
2n2−2n+6nm−3m+1 )

(1− 3
4n2−7n+9nm−9m+3 ,

4n+9m−4
4n2−7n+9nm−9m+3 )

n ≥ 5 ∧ n ≡ 2 mod 3 ∧ 0 ≤ m ≤ 2n−7
9 : (1− 3

4n2−3n+9nm+5 ,
4n+9m−2

4n2−3n+9nm+5 )

(1− 1
2n2+6nm−3m , 2n+6m+1

2n2+6nm−3m ) (1− 3
4n2−5n+9nm−9m , 4n+9m−2

4n2−5n+9nm−9m )

n ≥ 3 ∧m = 2n+3
9 : (1− 3

6n2−4n+3 ,
6n−3

6n2−4n+3 ) (1− 3
10n2−8n+3 ,

10n−3
10n2−8n+3 )

(1− 1
2n2−2n+1 ,

2n−1
2n2−2n+1 )

n ≥ 10 ∧m = 2n−2
9 : (1− 3

6n2−7n+4 ,
6n−6

6n2−7n+4 ) (1− 3
10n2−12n+5 ,

10n−7
10n2−12n+5 )

(1− 3
10n2−15n+5 ,

10n−10
10n2−15n+5 ) (1− 1

2n2−3n+1 ,
2n−2

2n2−3n+1 )

n ≥ 2 ∧m = 2n−4
9 : (1− 3

6n2−7n+5 ,
6n−6

6n2−7n+5 ) (1− 3
10n2−10n+4 ,

10n−5
10n2−10n+4 )

(1− 3
10n2−13n+4 ,

10n−8
10n2−13n+4 ) (1− 1

2n2−3n+1 ,
2n−2

2n2−3n+1 )

Note that in the following cases the given points coincide:

D1(n,m), n ≥ 8 ∧m = n−8
5 : Points 2 and 3.

D1(n,m), n ≥ 9 ∧m = n−4
5 : Points 4 and 5.

D8(n,m), n ≥ 16 ∧m = n−16
11 : Points 3 and 4.

D20(n,m), n = 4 ∧m = 0: Points 1 and 4.

Also note that:

C0(2) = D14(2,−1)
C0(4) = D8(4, 0)
C0(5) = D20(4, 0)
C1(n) = D8(n,−1) (n ≥ 1)
C2(n) = D7(n, 0) (n ≥ 6)
C3(n) = D1(n+ 1,−1) (n ≥ 1)
C4(n) = D1(n, 0) (n ≥ 5)

Proof of Theorem 5.3.1. The following selection of cycles cuts out the whole region right
of the chain, which proves that the Loudspeaker is actually contained in GC :

C0(1), C0(3), C0(6), D0(1), . . . , D0(11), D8(2,−1), D2(3,−1), D19(3, 0), D4(6, 0)
D1(n,m) : n ≥ 2 ∧ −1 ≤ m ≤ n−5

3 D11(n,m) : n ≥ 4 ∧ n−5
5 ≤ m ≤ n−4

3
D2(n,m) : n ≥ 4 ∧ −1 ≤ m ≤ n−7

3 D12(n,m) : n ≥ 6 ∧ n−7
5 ≤ m ≤ n−6

3
D3(n,m) : n ≥ 5 ∧ 0 ≤ m ≤ n−5

3 D13(n,m) : n ≥ 3 ∧ n−3
5 ≤ m ≤ n−3

3
D4(n,m) : n ≥ 7 ∧ 0 ≤ m ≤ n−7

3 D14(n,m) : n ≥ 6 ∧ n−7
5 ≤ m ≤ n−6

3
D5(n,m) : n ≥ 2 ∧ 0 ≤ m ≤ n−2

3 D15(n,m) : n ≥ 6 ∧ n−7
5 ≤ m ≤ n−6

3
D6(n,m) : n ≥ 4 ∧ 0 ≤ m ≤ n−4

3 D16(n,m) : n ≥ 7 ∧ n−4
5 ≤ m ≤ n−4

3
D7(n,m) : n ≥ 5 ∧ 0 ≤ m ≤ n−5

5 D17(n,m) : n ≥ 5 ∧ n−5
5 ≤ m ≤ n−5

3
D8(n,m) : n ≥ 3 ∧ −1 ≤ m ≤ n−8

5 D18(n,m) : n ≥ 8 ∧ n−4
5 ≤ m ≤ n−5

3

D9(n,m) : n ≥ 4 ∧ n−4
5 ≤ m ≤ n−4

3 D19(n,m) : n ≥ 4 ∧ 1−n mod 3
2 ≤ m ≤ 2n−2(n mod 3)−5

9

D10(n,m) : n ≥ 5 ∧ n−6
5 ≤ m ≤ n−5

3 D20(n,m) : n ≥ 5 ∧ 2−n mod 3
2 ≤ m ≤ 2n−4(n mod 3)+1

9

�
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The figures below show a regular sector (where the polygons of the infinite families are sufficient
to cut out the respective part). In the first figure it can be seen for n = 19 that the whole region
outside GC in the sector 1

n+1 < arctanφ ≤ 1
n of the unit disk is being cut out. It can be shown

by comparing the coordinates of the vertices of the polygons that this is the case for every n ≥ 6.
The subsequent figures show the polygons moved apart in groups to illustrate how the polygons
fit together. It can be seen that the dotted lines of one group hit soild ones of the other group and
vice versa, and that single missing points are also complemented. Note that the polygons from the
families 19 and 20 are needed to cut out a small region remaining in the respective sector if only
the families one to 18 are considered. In fact a single (but not arbitrary) polygon of these two
families would be sufficient.
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Figure 2. 20 families of cutout polygons.

5.4. Critical points

One consequence of Theorem 5.3.1 is the following corollary.

Corollary 5.4.1. [Weitzer, 2015b] r = 1 is the only critical and r = 1, r = i, and r = −i
are the only weakly critical points of G(0)

1 satisfying r ∈ G(0)
1 .

Proof. For n ∈ N the line through P5(n) and P6(n) hits the origin and has a gradient of
1
n . Let r = (x, y) ∈ C such that |r| = 1 and 0 < y(n − 1) ≤ x, and z = (a, b) ∈ Z [i] such that
|a| + |b| ≤ n and max{|a| , |b|} < n. Then r lies on the unit circle in the sector between the real
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axis and the line through P5(n− 1) and P6(n− 1) and one can deduce the following cases for the
product rz = (xa− yb, xb+ ya):

a > 0 ∧ b ≥ 0 ⇒ a− 1 ≤ xa− yb < a ∧ b < xb+ ya < b+ 1

a ≤ 0 ∧ b > 0 ⇒ a− 1 < xa− yb < a ∧ b− 1 ≤ xb+ ya < b

a < 0 ∧ b ≤ 0 ⇒ a < xa− yb ≤ a+ 1 ∧ b− 1 < xb+ ya < b

a ≥ 0 ∧ b < 0 ⇒ a < xa− yb < a+ 1 ∧ b < xb+ ya ≤ b+ 1

So the product, which is just z rotated by the argument of r, is contained in the unit square
lying next to z in rotational direction. This implies a specific behavior of γ2

r (z) = �r �rz�� if
(a < 0 ∨ b < 0)⇒ |a|+ |b| < n:

a > 1 ∧ b ≥ 0 ⇒ γ2
r (z) = z + (−1, 1) a = 1 ∧ b ≥ 0 ⇒ γ2

r (z) = z + (−1, 0)
a ≤ 0 ∧ b > 1 ⇒ γ2

r (z) = z + (−1,−1) a ≤ 0 ∧ b = 1 ⇒ γ2
r (z) = z + (0,−1)

a < 0 ∧ b ≤ 0 ⇒ γ2
r (z) = z + (1,−1)

a ≥ 0 ∧ b < 0 ⇒ γ2
r (z) = z + (1, 1)

Therefore the orbits of (n− 1, 1) and (−n+ 1, 0) both end up in (0, 0) and cover the set

Mn := {(a, b) ∈ Z [i] | |a|+ |b| ≤ n ∧ ((a ≤ 0 ∨ b ≤ 0)⇒ |a|+ |b| < n)}.
The figure below shows the orbits in black for n = 10.

Figure 3. Orbits of (9, 1) and (−9, 0).

A case analysis shows that
∥∥γ2

λr(z)
∥∥
1
≤ ∥∥γ2

r (z)
∥∥
1
for any z ∈Mn and λ ∈ [0, 1] which implies

that the orbit of any element of Mn ends up in (0, 0) even if |r| ≤ 1. In conclusion:

∀ n ∈ N : ∃m ∈ N : ∀ r = (x, y) ∈ C : (0 < y(n− 1) ≤ x ∧ |r| ≤ 1⇒ γm
r (Mn) = {(0, 0)})

(m = 2n2 − n− 1 possible).

Mn is even maximal with respect to this property in the sense that there is no proper superset
of Mn that is connected where two Gaussian integers are considered neighbors if their distance
is 1. This can also be seen in the figure above which shows the cycles C1(n), . . . C4(n) (almost)
encasing Mn. The missing point (0, n) can be proven to be mapped to (−1, n − 1) under γ2

r for
r = 1

2 (P3(n) + P4(n)) which belongs to the polygon corresponding to C1(n). Since (−1, n − 1) is
contained in C1(n), the orbit of (0, n) does not end up in (0, 0), which closes the gap.

Though noteworthy, the maximality of Mn is not needed to deduce that all cycles of any r
having the properties above have empty intersection with Mn. They are forced to grow beyond
all bounds as n increases and thus infinitely many cycles are needed to cut out, say, the set
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{P4(n) | n ≥ 3} from the Loudspeaker which is actually being cut out entirely. It follows that

1 ∈ G(0)
1 is a critical point.

Since for all (a, b) ∈ Z [i]

((a, b), (b,−a), (−a,−b), (−b, a))
is a cycle of (0, 1) and

((a, b), (−b, a), (−a,−b), (b,−a))

is a cycle of (0,−1), it follows that i ∈ G(0)
1 and −i ∈ G(0)

1 are weakly critical points. It follows from

Theorem 5.3.1 that the intersection of the topological closure of G(0)
1 and the boundary of G1 (unit

circle) consists of these three points which implies that there are no other critical or weakly critical

points in G(0)
1 as all weakly critical points in G(0)

1 lie on the boundary of G1 (Theorem 5.1.10). �

5.5. The other inclusion and a more general conjecture

After proving one inclusion of Conjecture 5.2.2 in Section 5.3 we shall now try to get a grip
on the other one.

Theorem 5.5.1. [Weitzer, 2015b] Let D :=
{
z ∈ C | |z| ≤ 2047

2048

}
. Then

G(0)
1 ∩D = GC ∩D.

Proof. The result could be achieved by application of the GSRS analogues (cf. end of Sec-
tion 5.1) of Algorithm 1 and Algorithm 2 of Chapter 4 (cf. proof of Theorem 4.5.1). �

Corollary 5.5.2. (Weitzer) Let D :=
{
z ∈ C | 2047

2048 < |z| ≤ 1
}∩{(x, y) ∈ C | |y| ≤ x

31

}∩GC .
Then

G(0)
1 ∩ (C \D) = GC ∩ (C \D).

Proof. Follows mostly from Theorem 5.3.1 and from Theorem 5.5.1. Missing parts in the
neighborhood of (0, 1) and (0,−1) could again be settled by application of the GSRS analogues of
Algorithm 1 and Algorithm 2 of Chapter 4. �

The disk D contains all pikes up to and including the 30th. Since the 8th pike is already
regular and the general regular structure of the Loudspeaker is therefore verified for quite many
pikes, it appears reasonable to assume that Conjecture 5.2.2 is in fact true. Despite best efforts a
general proof could not be given by now. Yet in addition to the computational evidence there are
other observations supporting the believe in the truth of Conjecture 5.2.2. To understand them we

recapitulate what it would mean if the conjecture were true. Since G(0)
d = Gd\

⋃
π∈C(Z[i])

d \{(0)} PC (π)

by Lemma 5.1.6 it means that the cutout polygon of every cycle has empty intersection with GC .
Cutout polygons can be computed by Lemma 5.1.8. For d = 1 it states the following for all
(a, b), (A,B) ∈ Z [i]:{
(x, y) ∈ C | γ(x,y)((a, b)) = (A,B)

}
= {(x, y) ∈ C | 0 ≤ xa− yb+A < 1 ∧ 0 ≤ xb+ ya+B < 1} .

and thus we define

Definition 5.5.3. For z = (a, b), Z = (A,B) ∈ Z [i] let

S(z, Z) := {(x, y) ∈ C | 0 ≤ xa− yb+A < 1 ∧ 0 ≤ xb+ ya+B < 1} .
So S(z, Z) consists of exactly those parameters the corresponding Gaussian Shift Radix Sys-

tems of which map z to Z. The reason why we use the letter S to denote this set is because it is
in fact a half-open square in arbitrary position with side length 1

|z| (if z �= 0, otherwise it is equal

to C or ∅ if Z = 0 or Z �= 0 respectively). If GC ⊆ G(0)
1 holds then for every cycle the intersection

of all those squares (one for each step in the cycle) has to have empty intersection with GC . But
observation supports that an even stronger property seems to hold at least for a certain subset of
GC .
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Definition 5.5.4. For n ∈ N0 let

Sn := {(x, y) ∈ C | x− ny ≥ 0 ∧ −x+ (n+ 1)y > 0 ∧ (−n− 1)x− 2y + n+ 1 ≥ 0} .
Sn shall be referred to as the nth sector or sector n. Furthermore let

GC ′ :=
⋃

n∈N0

Sn.

Figure 4. GC ′ (dark gray) inside GC (light gray) and the sectors Sn.

Note that sector n lies between pike n and pike n+ 1. GC ′ is almost identical to GC (at least
in the regular sectors but the initial irregular ones are already settled anyway) but all the pikes
are being cut off along the edge between P10(n) and P1(n+1). 5898030 randomly chosen, distinct
cycles satisfied the following conjecture.

Conjecture 5.5.5. (Weitzer) Let π = (a1, . . . , ak) ∈ C(Z[i])1 non-trivial such that PC (π) �= ∅.
Then there exists an i ∈ �1, k� such that

S(ai, ai%k+1) ∩ GC ′ = ∅.
So among all the squares which contribute to the cutout polygon of a cycle there seems to

be always at least one which does not intersect with GC ′. If the conjecture from above holds this

would of course imply that GC ′ ⊆ G(0)
1 . But analysis of the same 5898030 cycles suggests an even

stronger conjecture which does explicitly state where in the cycle such a decisive step leading to
an empty intersection with GC ′ is to be found.
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Conjecture 5.5.6. (Weitzer) Let π = (a1, . . . , ak) ∈ C(Z[i])1 non-trivial and n ∈ N≥4 such
that

PC (π) ∩ {(x, y) ∈ C | x− ny ≥ 0 ∧ −x+ (n+ 1)y > 0 ∧ |(x, y)| ≤ 1} �= ∅.
Then there exists an i ∈ �1, k� such that for ai = (a, b) and ai%k+1 = (A,B) one of the following
statements holds:

(i) a > 0 ∧ b ≥ 0 ∧ (n+ 1) |a| ≤ 2 |b| ∧ |b| ≤ |B|
(ii) a ≤ 0 ∧ b > 0 ∧ (n+ 1) |b| ≤ 2 |a| ∧ |a| < |A|
(iii) a < 0 ∧ b ≤ 0 ∧ (n+ 1) |a| ≤ 2 |b| ∧ |b| < |B|
(iv) a ≥ 0 ∧ b < 0 ∧ (n+ 1) |b| ≤ 2 |a| ∧ |a| ≤ |A| .

In all four cases we get S(ai, ai%k+1) ∩ GC ′ = ∅ and thus Conjecture 5.5.6 implies Conjec-
ture 5.5.5. For n ≤ 3 counterexamples can be found (which still respect Conjecture 5.5.5) but this
region is already settled anyway. Also, for all 4 ≤ n ≤ 64 there have been found cycles which
contain only a single element for which the condition of Conjecture 5.5.5 is met and this single
element also always met the condition of Conjecture 5.5.6. We close the section with the following
theorem which provides first results on Conjecture 5.5.6.

Theorem 5.5.7. (Weitzer) Let π = (a1, . . . , ak) ∈ C(Z[i])1 non-trivial and n ∈ N≥6 such that

PC (π) ∩ {(x, y) ∈ C | x− ny ≥ 0 ∧ y > 0} �= ∅.
Then there exists an i ∈ �1, k� such that for ai = (a, b) one of the following statements holds:

(i) a > 0 ∧ b ≥ 0 ∧ (n+ 1) |a| ≤ 2 |b|
(iii) a < 0 ∧ b ≤ 0 ∧ (n+ 1) |a| ≤ 2 |b|
and there exists an i ∈ �1, k� such that for ai = (a, b) one of the following statements holds:

(ii) a ≤ 0 ∧ b > 0 ∧ (n+ 1) |b| ≤ 2 |a|
(iv) a ≥ 0 ∧ b < 0 ∧ (n+ 1) |b| ≤ 2 |a| .

Proof. We prove only the first part of the statement as the second one follows completely
analogously. Assume that there is no i ∈ �1, k� such that (i) holds and let (x, y) ∈ PC (π) with

0 < y ≤ x

n
.

At first we observe that for geometric reasons k ≥ 3 (γ2
(x,y) turns its input roughly by 2 tan(1/n))

and we can assume w.l.o.g. that a1 is contained in the first and a3 in the second quadrant. If
a1 = (a, b) we get by our assumption that

b <
n+ 1

2
a.

Next we use Lemma 5.1.22 to compute that

PC

(
Π( 1

2 ,
1
4 )

)
∪ PC

(
Π( 1

4 ,
1
2 )

)
∪ PC

(
Π( 1

4 ,
1
4 )

)
= {(x, y) ∈ C | x > 0 ∧ y > 0 ∧ y < −x+ 1}

and since
{(

1
2 ,

1
4

)
,
(
1
4 ,

1
2

)
,
(
1
4 ,

1
4

)} ⊆ G(0)
1 we get

y ≥ −x+ 1.

Together with y ≤ x
n this gives

x ≥ n

n+ 1
.

Assume that a2 lies in the fourth quadrant. Then

(a2) = 
(
γ(x,y)(a, b)

)
=  (−�xa− yb� ,−�xb+ ya�) = −�xa− yb� ≥ 0
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and thus

xa− yb < 1⇒ xa− y
n+ 1

2
a < 1⇒ xa− x

n

n+ 1

2
a < 1⇒ ax

(
1− n+ 1

2n

)
< 1

⇒ a
n

n+ 1

(
1− n+ 1

2n

)
< 1⇒ a < 2

n+ 1

n− 1
⇒ a ≤ 2 ∧ b ≤ n.

If a < 2 or b < n we get by the proof of Corollary 5.4.1 that the orbit of (a, b) under γ(x,y) ends
up in 0 which is a contradiction. Therefore a = 2 and b = n. But then we get

2x− ny < 1⇒ y >
2x− 1

n

which implies together with y ≤ x
n that

x < 1 ∧ y <
1

n
<

1

2
⇒ x <

−2y + n+ 1

n
⇒ nx+ 2y < n+ 1

⇒ "(a2) = "
(
γ(x,y)(2, n)

)
= −�nx+ 2y� ≥ −n.

Furthermore

y ≤ x

n
<

2x

n
⇒ 0 < 2x− ny < 1⇒ (a2) = 0.

Thus the proof of Corollary 5.4.1 implies that the orbit of a2 under γ(x,y) ends up in 0 which is
also a contradiction. So a2 does not lie in the fourth but in the third quadrant. Assume that i = 2
does not satisfy (iii). Then by the same argument as before we get that a3 lies in the first quadrant
which is a contradiction. Thus i = 2 satisfies (iii) which completes the proof. �

5.6. Properties of GC
The perimeter of GC is two times the sum of all distances of successive vertices of the boundary

of the intersection of GC and the first quadrant.

Theorem 5.6.1. [Weitzer, 2015b] The perimeter of GC is given by

2

∞∑
n=8

(
(n− 2)

√
n2 + 1

(n2 − n− 1) (n2 − 2)
+

√
n2 + 1

(n2 + 1) (n2 + n+ 1)
+

√
n2 + 4

(n2 + 2) (n2 + n+ 2)
+

√
n2 − 2n+ 2

n4 − 2n3 + n
+

√
n2 + 1

n4 + 5n2 + 6
+

√
n6 + n4

n6 + n4
+

(n− 1)
√
n2 + 9

(n2 + 3) (n2 + n+ 6)
+

√
n2 + 2n+ 2

(n2 + n+ 1) (n2 + n+ 2)
+

(n− 7)
√
n2 + 2n+ 5

(n2 + n+ 6) (n2 + 2n− 1)

)
− π2

3
+ 6 +

3845467959583
√
2

2154669737220
+

48281
√
5

270270
+

28279
√
10

311220
+

√
13

77
+

2789
√
17

79560
+

18018457
√
26

1214863650
+

√
29

432
+

√
34

322
+

3453570319189
√
37

335814194609712
+

√
53

1479
+

3
√
58

806
+

√
65

1653

which is approximately 7.03170158145510089909924300354696922102694215887253(7).

The area can easily be calculated using the fact that GC is star-shaped with respect to the
origin which can be seen in Figure 5. The total area is just two times the sum of the areas of all
triangles where two vertices are successive vertices of the boundary of the intersection of GC and
the first quadrant and the third one is (0, 0).
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Theorem 5.6.2. [Weitzer, 2015b] If ψ denotes the digamma function then the area of GC is
given by

1

2

(
ψ(9− i) + ψ(9 + i)− 1

3

(
3− i

√
3
)
ψ

(
1

2

(
17− i

√
3
))

− 1

3

(
3 + i

√
3
)
ψ

(
1

2

(
17 + i

√
3
))
−

ψ
(
9−

√
2
)
− ψ

(
9 +

√
2
)
− 1

2
ψ
(
8− i

√
2
)
− 1

2
ψ
(
8 + i

√
2
)
+

1

3
ψ
(
8− i

√
3
)
+

1

3
ψ
(
8 + i

√
3
)
+

1

5

(
5−

√
5
)
ψ

(
1

2

(
17−

√
5
))

+
1

5

(
5 +

√
5
)
ψ

(
1

2

(
17 +

√
5
))

+

1

14

(
7− i

√
7
)
ψ

(
1

2

(
17− i

√
7
))

+
1

14

(
7 + i

√
7
)
ψ

(
1

2

(
17 + i

√
7
))
−

1

69

(
23− i

√
23
)
ψ

(
1

2

(
17− i

√
23
))

− 1

69

(
23 + i

√
23
)
ψ

(
1

2

(
17 + i

√
23
))
−

2ψ′(1) + ψ′′(1) +
6459645509579599739

831140131659037200

)
which is approximately 1.16162449638415389252015605647076743460822751979981(8).

The following figure shows that the boundary of GC can be completely described using segments
of lines from six families.

Definition 5.6.3.

F∞(n) := {(0, 1/n) + t(1, 0) | t ∈ R} = {(x, y) ∈ C | ny = 1}, n ∈ Z \ {0}
F0(n) := {(0, 0) + t(n, 1) | t ∈ R} = {(x, y) ∈ C | ny = x}, n ∈ Z

F 1
2
(n) := {1/2, 0) + t(n, 2) | t ∈ R} = {(x, y) ∈ C | ny = 2x− 1}, n ∈ Z

F 2
3
(n) := {2/3, 0) + t(n, 3) | t ∈ R} = {(x, y) ∈ C | ny = 3x− 2}, n ∈ Z

F1(n) := {(1, 0) + t(−2, n) | t ∈ R} = {(x, y) ∈ C | 2y = −nx+ n}, n ∈ Z

F2(n) := {(2, 0) + t(n,−1) | t ∈ R} = {(x, y) ∈ C | ny = −x+ 2}, n ∈ Z.

Figure 5. Six families of lines.

5.7. Hidden patterns - A kind of “self-similarity”

In the last section of this chapter we will explain a kind of “self-similarity” in patterns revealed
by the GSRS analogue of Algorithm 1. By Lemma 5.1.24, which is what the algorithm essentially

bases on, G(0)
1 is given by the disjoint union

⋃{
PC (Πr) | r ∈ G(0)

1

}
. By Lemma 5.1.23 the sets
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computed by Algorithm 2’ won’t be much different from the one computed by Algorithm 1’. In
the case of the Loudspeaker the equivalence relation Algorithm 2’ bases on (Definiton 5.1.25) is
given by

∼ :=
{
(r, s) ∈ C2 | ∀ i ∈ �1, 4� : ∀ a ∈ V : γ(i)

r (a) = γ(i)
s (a)

}
.

The equivalence classes are again either singletons, open line segments or nondegenerate and open
polygons. In the following we will give another interpretation of these classes but before we can
do so we need a few auxiliary definitions.

Definition 5.7.1. VV denotes the set of all singletons, EV the set of all open line segments
and FV the set of all nondegenerate and open polygons in C/∼.

Definition 5.7.2. For an embedding E ⊆ C of some planar graph V(E), E(E), F(E) denote the
sets of those subsets of C, which correspond to the vertices (singletons), edges (simple arcs excluding
end points) and faces (connected components of the complement of the union of all vertices and
edges).

Definition 5.7.3. For (a, b) ∈ Z [i] let

E(a,b) := {(x, y) ∈ C | ∃ c ∈ Z : (a, b, c) �= 0 ∧ ax+ by = c}
EV :=

⋃
(a,b)∈V

E(a,b) ∪ E(−b,a) ∪ E(b,a) ∪ E(−a,b).

With the definitions above we get by Lemma 5.1.22 (v) (also cf. Theorem 4.3.3)

Lemma 5.7.4. (Weitzer) VV = V(EV ), EV = E(EV ), and FV = F(EV ).
So the classes of ∼ are the vertices, edges, and faces of a planar embedding of a graph given by

(at most) 4 |V | infinite families of parallel and equidistant lines. This embedding is invariant under
certain operations on V and also possesses several axes of symmetries. These and other properties
are summarized in the next lemma.

Definition 5.7.5. Let

R(V ) :=
{
ẑ | z ∈ V ∧ �Z ∈ V : ∃ n ∈ N≥2 : nẑ = Ẑ

}
where ẑ := (max {|a| , |b|} ,min {|a| , |b|}) for all z = (a, b) ∈ Z [i].

Lemma 5.7.6. (Weitzer)

(i) Z [i] ⊆ V(EV )
(ii) V ⊆W ⇒ EV ⊆ EW

In particular: VV ⊆ VW

∀ e ∈ EV : ∃ n ∈ N : ∃ e1, . . . , en ∈ EW : e =
⋃n

i=1 ei

∀ f ∈ FV : ∃ n ∈ N : ∃ f1, . . . , fn ∈ FW : f =
⋃n

i=1 fi

(iii) EV ∩ ([0, 1]2 + z) = EV ∩ ([0, 1]2) + z for all z ∈ Z [i]

EV = {(x,−y) | (x, y) ∈ EV } = {(y, x) | (x, y) ∈ EV }
In particular: EV = {(−x, y) | (x, y) ∈ EV }

EV possesses the following axes of symmetries for all c ∈ Z:

x = c/2, y = c/2, x+ y = c, x− y = c

(iv) EV = E{(a,−b)|(a,b)∈V } = E{(b,a)|(a,b)∈V } = E{z∈V |�Z∈V :∃ n∈N≥2:nz=Z}
In particular: EV = E{(−a,b)|(a,b)∈V }

EV = EV \{(0)}
EV = ER(V ).

Proof. Follows directly from Lemma 5.1.22 (v). �
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Figure 10 shows several examples of sets of witnesses and the corresponding partition of the
unit square. The axes of symmetries given in (iii) are clearly visible. Also note that by (iv) it is
sufficient to give only those elements of V which lie in the first quadrant and below or on the first
median and do not “divide” any other element of V .

Figure 10. Several examples of sets of witnesses and the corresponding decom-
position of the unit square computed by Algorithm 2’.

To see the reason behind the similarities of the patterns we require the following definitions.

Definition 5.7.7.

h1 : R2 × (R \ {0})→ C h2 : R3 → C

(x, y, z) 
→ (x, y)
1

z
(x, y, z) 
→ (x, y)

1

gcd ({x, y, z})
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Definition 5.7.8. For R = conv
({

(r
(1)
x , r

(1)
y ), . . . , (r

(4)
x , r

(4)
y )
})

, S ⊆ C convex quadrilaterals

where (r
(1)
x , r

(1)
y ), . . . , (r

(4)
x , r

(4)
y ) are in either clockwise or counter-clockwise order let

AR :=

⎛⎜⎝r
(1)
x r

(2)
x r

(3)
x

r
(1)
y r

(2)
y r

(3)
y

1 1 1

⎞⎟⎠ ·DiagM

⎛⎜⎝adj

⎛⎜⎝
⎛⎜⎝r

(1)
x r

(2)
x r

(3)
x

r
(1)
y r

(2)
y r

(3)
y

1 1 1

⎞⎟⎠
⎞⎟⎠ ·

⎛⎜⎝r
(4)
x

r
(4)
y

1

⎞⎟⎠
⎞⎟⎠

where DiagM (v) is the diagonal matrix with main diagonal v for any complex vector v, and

AR,S := AS · adj (AR) .

Furthermore let for all r = (x, y) ∈ C

tR,S(r) := h1(AR,S · (x, y, 1)T )
and for all z ∈ Z [i]

TR,S(z) := {h2((a, b,−c) ·AS,R) | c ∈ Z ∧ {(x, y) ∈ C | ax+ by = c} ∩ conv (R) �= ∅}
TR,S(V ) :=

⋃
(a,b)∈V

TR,S((a, b)) ∪ TR,S((−b, a)) ∪ TR,S((b, a)) ∪ TR,S((−a, b)).

Note that tR,S is the unique affine transformation which maps the quadrilateral R to the
quadrilateral S. With the above definitions we are able to formulate the following theorem which
will finally explain the “self-similarities”.

Theorem 5.7.9. (Weitzer) Let R,S ⊆ C convex quadrilaterals. Then

(i) tR,S(EV ∩ conv (R)) ⊆ ETR,S(V ) ∩ conv (S)

(ii) �W ⊆ Z [i] : tR,S(EV ∩ conv (R)) � EW ∩ conv (S) � ETR,S(V ) ∩ conv (S) .

Proof. Since V is finite the set

N := {(a, b), (−b, a), (b, a), (−a, b) | (a, b) ∈ V }
contains a normal vector of any line {(x, y) ∈ C | ax+ by = c} ⊆ EV (a, b, c ∈ R). If

L = {(x, y) ∈ C | ax+ by = c}
is such a line with (a, b) ∈ N and c ∈ Z, the transformed line

Lt := tR,S(L) =
{
(x, y) ∈ C | ((a, b,−c) ·AS,R) · (x, y, 1)T = 0

}
)

is contained in Eh2((a,b,−c)·AS,R). It follows that

tR,S(EV ∩ conv (R)) ⊆ ETR,S(V ) ∩ conv (S) .

Among all representations of Lt = {(x, y) ∈ C | Ax+By = C} (A,B,C ∈ Z), h2 selects the
one where gcd ({A,B,C}) = 1 which implies the minimality of ETR,S(V ) under all refinements
EW ∩ conv (S) (W ⊆ Z [i]) of tR,S(EV ∩ conv (R)). �

The previous theorem explains how the given set V ⊆ Z [i] can be transformed to another
set TR,S(V ) ⊆ Z [i] which is minimal under all subsets of Z [i] which induce a refinement of the
partition of the region R ∈ C inside the region S ∈ C.

As an example consider R to be the tip of pike seven, so R = conv ({P8(7), P7(7), P6(7), P5(7)}).
The set of witnesses VR for R is approximately disk-shaped and satisfies {z ∈ Z [i] | |z| ≤ 82} ⊆
VR ⊆ {z ∈ Z [i] | |z| < 85}. With S = ((0, 0), (1, 0), (1, 1), (0, 1)) the transformed set R(TR,S(VR))
is given by

{(5, 4), (5, 5), (6, 0), (6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6), (7, 0), (7, 1), (7, 2), (7, 3), (7, 4), (7, 5),
(7, 6), (7, 7), (8, 0), (8, 1), (8, 2), (8, 3), (8, 4), (8, 5), (8, 6), (8, 7), (8, 8), (9, 0), (9, 1), (9, 2), (9, 3),
(9, 4), (9, 5), (9, 6), (9, 7), (9, 8), (10, 0), (10, 1), (10, 2), (10, 3), (10, 4), (10, 5), (10, 6), (10, 7),
(11, 0), (11, 1), (11, 2), (11, 3), (11, 4), (11, 5), (11, 6)}.
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By Theorem 5.7.9 the partition of S corresponding to R(TR,S(VR)) is a refinement of the trans-
formed (under tR,S) partition of R corresponding to R(VR). But what is really surprising is that
R(TR,S(VR)) seems to contain much less elements than the original R(VR) and the resulting par-
tition is therefore - though slightly finer - almost identical to the original one. This is the very
reason behind the “self-similar” patterns. Of course our choice for R was crucial. We took the tip
of pike seven which we saw on the images to contain exactly the repeating pattern. But there are
other good choices for R which all have in common that the corresponding transformation TR,S

reduces the size (number of elements, but also maximum absolute value) of the corresponding set
of witnesses drastically, as it did in the example above. It turns out that the quadrilaterals

conv

({(
pm+ n

pm+ n+ 1
,

m

pm+ n+ 1

)
,

(
p(m+ 1) + n

p(m+ 1) + n+ 1
,

m+ 1

p(m+ 1) + n+ 1

)
,(

p(m+ 1) + n− 1

p(m+ 1) + n
,

m+ 1

p(m+ 1) + n

)
,

(
pm+ n− 1

pm+ n
,

m

pm+ n

)})
where p,m, n ∈ N work very well due to the following reason: The matrix

A =

⎛⎝ p −1 pm+ n
1 0 m
p −1 pm+ n+ 1

⎞⎠
is a scalar multiple of AS,R where R is as above and S = ((0, 0), (1, 0), (1, 1), (0, 1)). Therefore it
can also be used to transform any given (a, b) ∈ Z [i]. Let c ∈ Z be such that

{(x, y) ∈ C | ax+ by = c} ∩ conv (R) �= ∅
and assume w.l.o.g that gcd (a, b, c) = 1. Then one gets for the transformed element

h2((a, b,−c) ·A) = (ap+ b− cp,−a+ c).

Now consider the following lemma:

Lemma 5.7.10. (Weitzer) Let P ⊆ C finite,

m := �min {ap+ bq | (p, q) ∈ P}�
M := �max {ap+ bq | (p, q) ∈ P}� ,

and z ∈ Z [i]. Then

(i) Ez ∩ conv (P ) =
⋃

c∈�m,M� {(x, y) ∈ C | ax+ by = c} ∩ conv (P )

(ii) ∀ c ∈ �m,M� : {(x, y) ∈ C | ax+ by = c} ∩ conv (P ) �= ∅.
In particular: P = {(0, 0), (1, 0), (1, 1), (0, 1)} ⇒ {ap+ bq | (p, q) ∈ P} = {0, a, b, a+ b}

P =
{
(0, 0), ( 12 , 0), (

1
2 ,

1
2 )
}⇒ {ap+ bq | (p, q) ∈ P} = 1

2 {0, a, a+ b}.
Proof. Follows from simple geometric considerations. �

(The purpose of the second “In particular” statement gets clear when considering the axes of
symmetries given in Lemma 5.7.6. To compute a partition of the unit square, it suffices to consider
only the partition of the triangle

{
(x, y) ∈ C | 0 ≤ x ≤ 1

2 ∧ 0 ≤ y ≤ x
}
.)

It follows now from the lemma that

max {|ap+ b− cp|+ |−a+ c| − |a| − |b| | c ∈ Z ∧ {(x, y) ∈ C | ax+ by = c} ∩ conv (R) �= ∅} ≤

max

{
|ap+ b− cp|+ |−a+ c| − |a| − |b| |

c ∈
{
a

pm+ n

pm+ n+ 1
+ b

m

pm+ n+ 1
, a

p(m+ 1) + n

p(m+ 1) + n+ 1
+ b

m+ 1

p(m+ 1) + n+ 1
,

a
p(m+ 1) + n− 1

p(m+ 1) + n
+ b

m+ 1

p(m+ 1) + n
, a

pm+ n− 1

pm+ n
+ b

m

pm+ n

}}
≤ 0
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which means that the 1-norm of the transformed element is always less than or equal to the 1-norm
of the original element. Thus the transformed set R(TR,S(VR)) is likely to be smaller than the
original, more or less disk-shaped, R(VR) (based on experimental evidence it is even much smaller).
So if R is a quadrilateral of the above form, the decomposition of R given by Algorithm 1’ is very
similar to the one given by Algorithm 2’ for V := VR (or even better V :=

⋃
r∈R Vr) which is

again very similar to the decomposition of the unit square given by Algorithm 2’ for TR,S(VR).
Altogether we get that the decompositions of two quadrilaterals R and S of the above form will be
similar (i.e. one is - more or less - a refinement of the other) which explains the “self-similarities”
in the pattern given by Algorithm 1’.



CHAPTER 6

Shift Radix Systems over imaginary quadratic Euclidean
domains

6.1. Introduction and definitions

In the present chapter we will repeat basic definitions first introduced by Attila Pethő and
Peter Varga which allow to define Shift Radix Systems in the sense of Chapter 3 and Chapter 5
on imaginary quadratic Euclidean domains. Subsequently we will prove first results. Most of
the material presented in this chapter will be part of [Pethő et al., IP] which is currently in
preparation. Since this is a joint work, contributions of Weitzer will be marked by (Weitzer)
while original material of Pethő and Varga will be cited as [Pethő et al., IP] only.

It is well known that there are exactly five imaginary quadratic fields the ring of integers of
which is Euclidean [Motzkin, 1949], that is Q(

√
D) where D ∈ {−1,−2,−3,−7,−11}.

Definition 6.1.1. For D ∈ {−1,−2,−3,−7,−11} let

ED := OQ(
√
D)

ωD :=

{√
D if D ∈ {−1,−2}

1+
√
D

2 if D ∈ {−3,−7,−11}
and for all r = x+ ωDy ∈ C with x, y ∈ R let

(x, y)D := r

D(r) := x

"D(r) := y

the D-real and D-imaginary parts of r.

Note that we consider both Q(
√
D) and ED to be embedded in C. ED is a free Z-module with

integral basis (1, ωD), i.e.

ED = {(a, b)D | a, b ∈ Z} .
Furthermore (1, ωD) is a basis of C as a R-vector space and thus D(r) and "D(r) are well-defined.
Indeed

D(r) = (r)−(ωD)
"(r)
"(ωD)

"D(r) =
"(r)
"(ωD)

.

For the remaining part of the chapter D shall be a fixed element of {−1,−2,−3,−7,−11} if
not stated otherwise.

6.2. A floor function is needed

To be able to define Shift Radix Systems on ED we need two ingredients. We recall the
definition of Shift Radix Systems (or Gaussian Shift Radix System for that matter):

τr(a) = (a2, . . . , ad,−�ra�)

91
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for any r = (r1, . . . , rd) ∈ Rd and a = (a1, . . . , ad) ∈ Zd. What we need first is a generalization of

the scalar product. This is the easy part - since we consider Q(
√
D) and ED to be embedded in

C we simply use the same definition of ra that we used for Gaussian Shift Radix Systems. But
what about the floor function? The purpose of the floor function is to map the outcome of the
scalar product to a lattice point again while keeping the error small. There are of course many
ways to achieve this, but we would also like our floor function to be more or less uniform for all
possible values of D. A very general way to define a floor function is the following: Consider a
subset T of C which induces a tiling on C (i.e. C is the disjoint union of translated copies of T )
such that every copy of T contains exactly one lattice point. Then one can define the floor of any
complex number to be the unique lattice point which is in the same translated copy of T . From this
perspective, having more or less uniform floor functions for all possible values of D would mean
that the different shapes TD that are used to define the respective floor functions are very similar.
A possible choice for the shape and the one that Pethő and Varga use is that of a rectangular “sail
bent in the wind” which is why they refer to it as the sail set.

Definition 6.2.1. [Pethő et al., IP] Let

TD :=

{
r ∈ C | |r + 1| ≥ 1 > |r| ∧ −1

2
≤ "D(r) <

1

2

}
∼D :=

{
(r, s) ∈ C2 | ∃ t ∈ ED : {r, s} ⊆ TD + t

}
Furthermore let

�·�D : C→ ED

r 
→ �r�D
where �r�D ∈ ED such that [r]∼D

∩ ED = {�r�D}.

Figure 1. Tilings of C given by the sets TD, D ∈ {−1,−2,−3,−7,−11}.

Lemma 6.2.2. [Pethő et al., IP](Weitzer) Let (x, y) ∈ C. Then

�x+ iy�D =
⌊
x−

⌊
y

�(ωD) +
1
2

⌋
(ωD)

⌋
+ ωD

⌊
y

�(ωD) +
1
2

⌋
if
(
x−

⌊
x−

⌊
y

�(ωD) +
1
2

⌋
(ωD)

⌋
−
⌊

y
�(ωD) +

1
2

⌋
(ωD)

)2
+
(
y −

⌊
y

�(ωD) +
1
2

⌋
"(ωD)

)2
< 1,

�x+ iy�D =
⌊
x−

⌊
y

�(ωD) +
1
2

⌋
(ωD)

⌋
+ 1 + ωD

⌊
y

�(ωD) +
1
2

⌋
otherwise.
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In particular:
If D ∈ {−1,−2}:
�x+ iy�D = �x�+ ωD

⌊
y√
D

+ 1
2

⌋
if (x− �x�)2 +

(
y −

⌊
y√
D

+ 1
2

⌋√
D
)2

< 1,

�x+ iy�D = �x�+ 1 + ωD

⌊
y√
D

+ 1
2

⌋
otherwise.

If D ∈ {−3,−7,−11}:
�x+ iy�D =

⌊
x−

⌊
2y√
D

+ 1
2

⌋
1
2

⌋
+ ωD

⌊
2y√
D

+ 1
2

⌋
if
(
x−

⌊
x−

⌊
2y√
D

+ 1
2

⌋
1
2

⌋
−
⌊

2y√
D

+ 1
2

⌋
1
2

)2
+
(
y −

⌊
2y√
D

+ 1
2

⌋ √
D
2

)2
< 1,

�x+ iy�D =
⌊
x−

⌊
2y√
D

+ 1
2

⌋
1
2

⌋
+ 1 + ωD

⌊
2y√
D

+ 1
2

⌋
otherwise.

Proof. Follows from simple geometric considerations. If the sail set (for a given D) was
replaced by a rectangle (straight lines instead of arcs) the floor function would be given by the
respective (depending on D) first case. The case differentiation takes care of the arcs. �

Definition 6.2.3. [Pethő et al., IP] For d ∈ N and r = (r1, . . . , rd) ∈ Cd the mapping

εD,r : ED
d → ED

d

a = (a1, . . . , ad) 
→ (a2, . . . , ad,−�ra�D)

where ra =
∑d

i=1 riai, is called the d-dimensional Shift Radix System on ED associated with r,
and r is called the parameter of εD,r. Furthermore we define

FD,d :=
{
r ∈ Cd | ∀ a ∈ ED

d : ∃ i, j ∈ N : εiD,r(a) = εi+j
D,r(a)

}
F (0)

D,d :=
{
r ∈ Cd | ∀ a ∈ ED

d : ∃ i ∈ N : εiD,r(a) = 0
}

where εiD,r(a) means i-fold application of εD,r to a. Elements of F (0)
D,d are said to have the finiteness

property.

Lemma 6.2.4. [Pethő et al., IP](Weitzer) Let (x, y) ∈ C and (a, b)D ∈ ED. Then

εD,x+iy(a+ ωDb) = −�x(a+ (ωD)b)− y"(ωD)b) + i(x"(ωD)b+ y(a+ (ωD)b))�D
In particular:

If D ∈ {−1,−2}:
εD,x+iy(a+ ωDb) = −

⌊
ax− by

√
D
⌋
− ωD

⌊
ay

√
D
D + bx+ 1

2

⌋
if
(
ax− by

√
D −

⌊
ax− by

√
D
⌋)2

+
(
ay + bx

√
D −

⌊
ay

√
D
D + bx+ 1

2

⌋√
D
)2

< 1,

εD,x+iy(a+ ωDb) = −
⌊
ax− by

√
D
⌋
− 1− ωD

⌊
ay

√
D
D + bx+ 1

2

⌋
otherwise.

If D ∈ {−3,−7,−11}:
εD,x+iy(a+ ωDb) = −

⌊(
a+ b

2

)
x− by

√
D
2 −

⌊(
a+ b

2

)
y 2

√
D

D + bx+ 1
2

⌋
1
2

⌋
−ωD

⌊(
a+ b

2

)
y 2

√
D

D + bx+ 1
2

⌋
if
((

a+ b
2

)
x− by

√
D
2 −

⌊(
a+ b

2

)
y 2

√
D

D + bx+ 1
2

⌋
1
2−⌊(

a+ b
2

)
x− by

√
D
2 −

⌊(
a+ b

2

)
y 2

√
D

D + bx+ 1
2

⌋
1
2

⌋)2
+((

a+ b
2

)
y + bx

√
D
2 −

⌊(
a+ b

2

)
y 2

√
D

D + bx+ 1
2

⌋ √
D
2

)2
< 1,

εD,x+iy(a+ ωDb) = −
⌊(
a+ b

2

)
x− by

√
D
2 −

⌊(
a+ b

2

)
y 2

√
D

D + bx+ 1
2

⌋
1
2

⌋
− 1

−ωD

⌊(
a+ b

2

)
y 2

√
D

D + bx+ 1
2

⌋
otherwise.

Proof. Follows directly from Lemma 6.2.2. �
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In analogy to similar concepts for Shift Radix Systems in Chapter 3 and Gaussian Shift Radix
Systems in Chapter 5 one gets the following definitions and results.

Theorem 6.2.5. [Pethő et al., IP] Let d ∈ N. Then

E(C)d ⊆ FD,d ⊆ E(C)d .

Corollary 6.2.6. [Pethő et al., IP] Let d ∈ N. Then

(i) FD,d ⊆
{
r ∈ Cd | ρ(R(r)) ≤ 1

}
(ii) FD,d ⊇

{
r ∈ Cd | ρ(R(r)) < 1

}
(iii) ∂FD,d =

{
r ∈ Cd | ρ(R(r)) = 1

}
.

Definition 6.2.7. For d ∈ N let C(ED)
d :=

⋃
n∈N0

ED
n denote the set of (d-dimensional,

imaginary quadratic) cycles.

For a cycle π = (a1, . . . ,ak) ∈ C(ED)
d let PC,D (π) :=

{
r ∈ Cd | ∀ i ∈ �1, k� : εD,r(ai) = ai%k+1

}
,

i.e. the set of those parameters r for which π is a cycle of the associated Shift Radix System on
ED. PC,D (π) shall be referred to as the cutout set of π.

Lemma 6.2.8. [Pethő et al., IP] Let d ∈ N. Then

F (0)
D,d = FD,d \

⋃
π∈C(ED)

d \{(0)}
PC,D (π)

Lemma 6.2.9. [Pethő et al., IP](Weitzer) Let z = (a, b)D, Z = (A,B)D ∈ ED, u := (ωD),
and v := "(ωD). Then

{r ∈ C | εD,r(z) = Z} =
{
(x, y) ∈ C |

(
x((a+ bu)2 + (bv)2) + (a+ bu)(A+Bu+ 1) + bBv2

)2

+(
y((a+ bu)2 + (bv)2) + (a+ bu)Bv − (A+Bu+ 1)bv

)2

≥ (a+ bu)2 + (bv)2 >(
x((a+ bu)2 + (bv)2) + (a+ bu)(A+Bu) + bBv2

)2

+(
y((a+ bu)2 + (bv)2) + (a+ bu)Bv − (A+Bu)bv

)2

∧

− v

2
≤ bvx+ (a+ bu)y +Bv <

v

2

}
.

Proof. Follows from simple geometric considerations. �
Lemma 6.2.10. [Pethő et al., IP] Let d ∈ N, r ∈ int (FD,d), ρ ∈ (ρ(R(r)), 1), ‖·‖ρ norm on

Cd with ‖R(r)a‖ρ ≤ ρ ‖a‖ρ for all a ∈ Cd (cf. proof of Theorem 3.4.2), and a ∈ ED
d such that

εkD,r(a) = a for some k ∈ N. Then

‖a‖ρ ≤
‖(0, . . . , 0, 1)‖ρ

1− ρ
.

In particular:
{
π ∈ C(ED)

d | r ∈ PC,D (π)
}

is a finite set.

Lemma 6.2.11. [Pethő et al., IP](Weitzer) Let d ∈ N, r ∈ Cd, and a,b ∈ ED
d. Then

2"D(ra) /∈ Zo ⇔ (εD,r(a) = b⇔ εD,r(a) = b)

2"D(ra) ∈ Zo ⇒ (εD,r(a) = b⇒ εD,r(a)− b ∈ {(0,−1)D, (1,−1)D}).
In particular: If π = (a1, . . . ,ak) ∈ C(ED)

d and r ∈ int (PC,D (π)) then

(a1, . . . ,ak) cycle of εD,r ⇔ (a1, . . . ,ak) cycle of εD,r.

Proof. Follows directly from the definitions. �
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The previous lemma and the “In particular” part of Lemma 6.2.10 imply that F (0)
D,1 and F (0)

D,1

reflected at the real axis coincide almost everywhere. Parts where the two sets might not coincide
are contained in the union of their respective boundaries.

Definition 6.2.12. [Pethő et al., IP] Let d ∈ N and r ∈ Cd.

• r is called a regular point (for F (0)
D,d) iff there exists an open neighborhood of r which

intersects with only finitely many cutout sets.

• r is called a weakly critical point (for F (0)
D,d) iff any open neighborhood of r intersects with

infinitely many cutout sets.

• r is called a critical point (for F (0)
D,d) iff for every open neighborhood B of r the set B\F (0)

D,d

cannot be covered by finitely many cutout sets.

6.3. Main result: Critical points

Using the fact that all cycles for a given parameter r ∈ C are contained in a disk as stated

in Lemma 6.2.10 the following approximative images of F (0)
D,1 have been computed. The orignal

images have a resolution of 4096 times 4096 pixels each and every pixel has been colored white,

gray or black depending on containment in FD,1 and F (0)
D,1. So despite the fact that these images

show only approximations of the sets F (0)
D,1, every pixel - as a representation of a single point in a

mathematical sense - does have the correct color. The very surprising observation one makes when

looking on those images is that in the cases D = −1 or D = −3 the set F (0)
D,d does seem to have

critical points while in the case D = −7 it seems to have only weakly critical points and in the
cases D = −2 and D = −11 even no critical or weakly critical points at all. In the present section
we will prove the last observation for both cases by giving a list of cutout sets which separates

F (0)
D,1 from the boundary of FD,1. The list has been found by manual search.

Figure 2. Approximations of F (0)
D,1 for D ∈ {−1,−2,−3,−7,−11}.
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Definition 6.3.1. [Pethő et al., IP](Weitzer) Let(
((x2,1, y2,1), (a2,1, b2,1)), . . . , ((x2,45, y2,45), (a2,45, b2,45)

)
:=

(
((
1, 0
)
,
(− 2, 0

))
,
((− 529

4023 ,
22378908
45415717

)
,
(
0, 1
))
,
((− 8413

3862276 ,
6385
8993

)
,
(
0, 1
))
,
((− 560

3763 ,
166
229

)
,(

0, 1
))
,
((

11051
36427 ,

12022
16987

)
,
(
0, 1
))
,
((− 39833

139318 ,
634841
887952

)
,
(
0, 1
))
,
((− 587

32542 ,
1260970
1501501

)
,
(
0, 1
))
,((

20911
27059 ,

183
517

)
,
(
0, 1
))
,
((− 3533

7022 ,
1411
1988

)
,
(
0, 1
))
,
((

645
3757 ,

1432877
1660169

)
,
(
0, 1
))
,
((

844688
1266909 ,

2031
3445

)
,(

0, 4
))
,
((

44399
51256 ,

4447
14348

)
,
(
0, 2
))
,
((

781981
1137704 ,

159
260

)
,
(
0, 4
))
,
((

3741
6160 ,

2237
3237

)
,
(
0, 2
))
,
((

18563
132052 ,

677269
744909

)
,(

0, 1
))
,

((− 273
461 ,

256
357

)
,
(
0, 1
))
,

((− 23531
44649 ,

2367
3041

)
,
(
0, 1
))
,

((− 2504
4903 ,

53361
66614

)
,
(
0, 1
))
,((

2295978
14352937 ,

128937
134770

)
,
(
0, 1
))
,

((− 22537
155137 ,

19631
20469

)
,
(
0, 1
))
,

((− 1324
2503 ,

85287
104894

)
,
(
0, 1
))
,((

186647
247677 ,

278
433

)
,
(
0, 2
))
,
((

81473
111068 ,

86419
129984

)
,
(
0, 2
))
,
((− 1087

2004 ,
670
809

)
,
(
0, 1
))
,
((

19
25 ,

16
25

)
,
(
0, 2
))
,((

27
37 ,

25
37

)
,
(
0, 2
))
,
((

13
17 ,

54
85

)
,
(
0, 2
))
,
((

7647
10000 ,

16
25

)
,
(
0, 2
))
,
((

7339
10000 ,

1347
2000

)
,
(
0, 2
))
,
((

1979
20000 ,

4961
5000

)
,(

0, 1
))
,

((− 1979
20000 ,

397
400

)
,
(
0, 1
))
,

((− 2701
5000 ,

8399
10000

)
,
(
0, 1
))
,

((− 1097
2000 ,

4169
5000

)
,
(
0, 1
))
,((

1527
2000 ,

6429
10000

)
,
(
0, 2
))
,
((

3831
5000 ,

6413
10000

)
,
(
0, 2
))
,
((

3699
5000 ,

6711
10000

)
,
(
0, 2
))
,
((

7321
10000 ,

6767
10000

)
,
(
0, 2
))
,((

7419
10000 ,

1339
2000

)
,
(
0, 2
))
,
((

3683
5000 ,

3377
5000

)
,
(
0, 2
))
,
((− 1087

2000 ,
4183
5000

)
,
(
0, 1
))
,
((− 1089

2000 ,
8387
10000

)
,
(
0, 1
))
,((− 1089

2000 ,
1677
2000

)
,
(
0, 1
))
,

((
1
10 ,

7
5
√
2

)
,
(
0, 1
))
,
((

1
100

(
50 +

√
1534

)
,−−100+

√
1534

100
√
2

)
,
(
0, 1
))
,((

9
10 ,

3
5
√
2

)
,
(
0, 1
)))

,(
((x11,1, y11,1), (a11,1, b11,1)), . . . , ((x11,47, y11,47), (a11,47, b11,47)

)
:=

(
((1, 0), (−2, 0)) ((− 529

4023 ,
22378908
45415717

)
,
(
0, 1
))
,
((

25699
75158 ,

11951
22586

)
,
(
2, 0
))
,
((

122233
192089 ,

5593
12399

)
,
(
0, 1
))
,((

6229
23994 ,

22353
28738

)
,
(
0, 9
))
,
((

2039
57213 ,

17365
20941

)
,
(
0, 1
))
,
((

3099
4183 ,

442047
1060847

)
,
(
0, 1
))
,
((− 39923

156499 ,
22371
26896

)
,(

0, 1
))
,
((

4038
5203 ,

4722
11383

)
,
(
0, 1
))
,
((

285
406 ,

752
1417

)
,
(
0, 1
))
,
((

15765
22453 ,

431
725

)
,
(
0, 1
))
,
((

2023
7895 ,

2634
2981

)
,(

0, 1
))
,
((− 810241

3496246 ,
662044
743591

)
,
(
0, 1
))
,
((

127129
185005 ,

42539
67882

)
,
(
0, 4
))
,
((− 109151

435226 ,
1106
1235

)
,
(
0, 1
))
,((

1499
5037 ,

10953
12284

)
,
(
0, 1
))
,
((− 8495

29356 ,
259913
290617

)
,
(
0, 1
))
,
((

755
851 ,

3083
7406

)
,
(
0, 1
))
,
((− 15483

32584 ,
4513239
5265740

)
,(

0, 1
))
,
((− 39752315

80135632 ,
1130
1337

)
,
(
0, 1
))
,
((− 45318560

90412991 ,
235960
280199

)
,
(
0, 1
))
,
((− 422566

838723 ,
6443
7665

)
,
(
0, 1
))
,((− 7361

14390 ,
105082
125711

)
,
(
0, 1
))
,

((− 724614
1438463 ,

2019
2369

)
,
(
0, 1
))
,

((− 4861
9600 ,

1020
1199

)
,
(
0, 1
))
,((− 1064

2059 ,
166081
196678

)
,
(
0, 1
))
,
((− 545

1034 ,
168253
200773

)
,
(
0, 1
))
,
((

13
50 ,

24
25

)
,
(
0, 1
))
,
((

13
51 ,

49
51

)
,
(
0, 1
))
,((− 45

82 ,
34
41

)
,
(
0, 1
))
,
((− 1135

2048 ,
1699
2048

)
,
(
0, 1
))
,
((− 1125

2048 ,
851
1024

)
,
(
0, 1
))
,
((− 1123

2048 ,
1701
2048

)
,
(
0, 1
))
,((− 1083

2048 ,
869
1024

)
,
(
0, 1
))
,
((− 1075

2048 ,
433
512

)
,
(
0, 1
))
,
((− 1069

2048 ,
873
1024

)
,
(
0, 1
))
,
((− 531

1024 ,
1745
2048

)
,(

0, 1
))
,
((− 529

1024 ,
875
1024

)
,
(
0, 1
))
,
((

505
2048 ,

991
1024

)
,
(
0, 1
))
,
((

511
2048 ,

1983
2048

)
,
(
0, 1
))
,
((

513
2048 ,

991
1024

)
,(

0, 1
))
,
((

135
512 ,

987
1024

)
,
(
0, 1
))
,
((

129106
516339 ,

2147435
2219844

)
,
(
0, 1
))
,
((

1
212

(− 140 +
√
573
)
,
√
11
4

)
,
(
0, 3
))
,((−550−√

42130
1500 ,

√
11
(
−25+2

√
42130

)
1500

)
,
(
0, 1
))
,

((
1
48

(− 33 +
√
93
)
, 1
48

√
11
(
3 +

√
93
))
,
(
0, 1
))
,((

1639+
√
10021

6600 , 539+
√
10021

200
√
11

)
,
(
0, 1
)))

,

and let C
(2)
0 (n) denote the ultimate period of the orbit of (a2,n, b2,n)−2 under ε−2,(x2,n,y2,n) for all

n ∈ �1, 45� and C
(11)
0 (n) the ultimate period of the orbit of (a11,n, b11,n)−11 under ε−11,(x11,n,y11,n)

for all n ∈ �1, 47�. Furthermore let for all n ∈ Z:

C
(−D)
1 (n) := ((−n, 1)D, (n,−1)D)

C
(−D)
2 (n) := ((−n, 1)D, (n+ 1,−1)D).

Theorem 6.3.2. [Pethő et al., IP](Weitzer)

(i) F (0)
−2,1 has no weakly critical points (and thus no critical points) r satisfying r ∈ F (0)

−2,1

(ii) F (0)
−11,1 has no weakly critical points (and thus no critical points) r satisfying r ∈ F (0)

−11,1.

Proof. For any cycle π ∈ C(ED)
1 let π denote the cycle one gets if all elements of π are replaced

by their complex conjugates. The cutout sets of the cycles C1(n)
(2) (n ∈ Z), C(2)

0 (1), . . . , C
(2)
0 (45),
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C
(2)
0 (1), . . . , C

(2)
0 (45), and C1(n)

(11) (n ∈ Z), C
(11)
0 (1), . . . , C

(11)
0 (47), C

(11)
0 (1), . . . , C

(11)
0 (47) re-

spectively, completely cover the ring centered at the origin in the complex plane with inner radius
99
100 and outer radius 1. �

Figure 3. Cutout sets separating F (0)
−2,1 and F (0)

−11,1 from the unit circle (green:

first singular cycle, red: remaining singular cycles, blue: cycles of infinite family).
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6.4. Getting rid of Euclid

After successful definition of Shift Radix Systems on imaginary quadratic Euclidean domains
we proved a first surprising result. In terms of weakly critical and critical points the five different
Euclidean domains seem to admit three different types of behaviors. While two of them most
probably have critical points and one has only weakly critical points, the other two have neither
which we proved in the previous section. Looking at the definition of Shift Radix Systems one
makes the following observation: Though our initial intention was to define Shift Radix Systems
only for the Euclidean cases of imaginary quadratic extensions, in regard of the definition that
we found the five specific values for D that we allowed are in no way special whatsoever. The
definition of the floor function (in a certain sense there are actually two different definitions, cf.
the “In particular” part of Lemma 6.2.2) works perfectly well for a continuum of values for D. The
first definition of the floor function that is in use when D is ether −1 or −2 works if D ∈ (−4, 0) as
in this case the two lines that bound TD still intersect with the two circles. For the same reason the
other definition of the floor function, in use when D is −3, −7 or −11, works if D ∈ (−16, 0). The
figures below show approximations of the corresponding sets F (0)

D,1 in both cases and for several
values of D. One can see that weakly critical and critical points seem to get into existence and
disappear again when D changes continuously in the respective intervals.

Figure 4. Approximation of F (0)
D,1 using the first version of the floor function (cf.

Lemma 6.2.2, “In particular”), D = −1/4,−2/4, . . . ,−15/4,−399/100.
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Figure 5. Approximation of F (0)
D,1 using the second version of the floor function

(cf. Lemma 6.2.2, “In particular”), D = −4/10,−11/10, . . . ,−158/10,−1599/100.
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6.5. On the boundary

In this last section of the chapter we will disprove the common believe that mathematics,
though full of beauty, lacks romance. While computations fail when D = 0, for D = −4 respec-

tively D = −16 the corresponding sets F (0)
D,1 can be computed. Whatever their mathematical

interpretation may be, the human one is obvious and probably as universal as mathematics itself.
The author would like to dedicate this last “result” to the mother of their wonderful children and
the love of his life - Elisabeth.

Figure 6. Approximation of F (0)
D,1 inside of FD,1 for both versions of the floor

function, D = −4 and D = −16 respectively. The image is rotated by π/2.
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22(1):19–25 (electronic).

[Akiyama et al., 2008a] Akiyama, S., Brunotte, H., Pethő, A., and Steiner, W. (2008a). Peri-
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Generalized radix representations and dynamical systems. IV. Indag. Math. (N.S.), 19(3):333–348.
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