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Abstract

Prediction and analysis of complex industrial processes, for ex-
ample wet chemical wafer etching, depend on accurate modelling
of physical phenomena. This work presents a series of numeri-
cal studies of film flow with an impinging jet on rotating discs
which is the basis for a high performance simulation tool that
can be used in design and optimisation of such industrial pro-
cesses. Numerical studies based on the Volume-of-Fluid (VoF)
method were performed and evaluated against reported experi-
mental data. The conclusion drawn is that a transient two-phase
3D free-surface VoF-simulation with a dynamically moving jet is
impractical for an industrial use due to very long computational
times required. The thin film model based on an integral method,
which reduces the three-dimensional nature of the problem into
a two-dimensional one by integrating the Navier-Stokes equations
over the film thickness, is proposed as a possible remedy. An
application of Reynolds decomposition and profile modelling of
dependent variables allows capturing of the important inertial
and centrifugal forces that would otherwise be lost during the
equation transformation. An implementation of the derived thin
film model was carried out in the open-source software toolbox
OpenFOAM R⃝ using the Finite Area method, a specialisation of
the Finite Volume method for film flows on the arbitrary surfaces.
The resulting code fulfils the requirements of a high-performance
transient incompressible solver for the thin film and features a
dynamic inlet implementation. The approach is validated with
the ANSYS Fluent software and its VoF-implementation. An ex-
tension of the solver with a simple diffusion-controlled chemistry
model for a wet chemical etching of silicon wafers is presented.
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Zusammenfassung

Dünnfilmströmungen auf rotierenden Scheiben, erzeugt durch
einen auf die Scheibe auftreffenden Flüssigkeitsstrahl, sind in vie-
len industriellen Anwendungen, wie zum Beispiel dem nassche-
mische Ätzen von Wafern, ein wichtiger Prozessparameter. In
dieser Arbeit wird eine Serie von numerischen Fallstudien, ba-
sierend auf der Volumen-of-Fluid-Methode (VoF), durchgeführt
und mit publizierten, experimentellen Daten verglichen. Die Ver-
gleiche zeigen, dass eine vollständige transiente Zweiphasen 3D
VoF-Simulation mit einem frei beweglichen Einlass für den in-
dustriellen Einsatz aufgrund sehr langer Rechenzeiten nicht prak-
tikabel ist. Daher dient das Dünnfilm-Modell, basierend auf ei-
nem integralen Verfahren, welches die dreidimensionale Natur des
Problems durch Integration der Navier-Stokes-Gleichungen über
die Filmdicke auf zwei Dimensionen reduziert, als Grundlage.
Durch die Anwendung der Reynolds Zerlegung und Profilmodel-
lierung von abhängigen Variablen können Trägheits- und Zen-
trifugalkräfte, die sonst während der Gleichungstransformation
verloren gegangen wären, erhalten werden. Die Implementierung
des so entwickelten Dünnfilmmodells wurde in der Open-Source-
Software-Toolbox OpenFOAM R⃝ unter Verwendung der Finite-
Area-Methode, welche eine Spezialisierung der Finite-Volumen-
Verfahren für Dünnfilmströmungen auf beliebigen Oberflächen ist,
umgesetzt. Das resultierende Programm erfüllt die Anforderungen
eines transienten, inkompressiblen Hochleistungssolvers für Dünn-
filmströmungen, unter Berücksichtigung eines frei beweglichen
Einlasses. Die Validierung erfolgte mit der VoF-Implementierung
der ANSYS Fluent Software. Eine Erweiterung des Solvers stellt
das diffusionsbasierende Modell für nasschemisches Ätzen von
Silizium-Wafern dar.
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Chapter 1

Introduction

We meet a plethora of physics phenomena around us every day. One particu-
lar group of them is connected to free-surface liquid films. Natural films, be it
rivers, lava flows, avalanches, a rain film on a car windshield or a house window
or even the liquid film formed in a kitchen sink, are usually driven by gravity.
Observations of various wave patterns or a formation of a hydraulic jump may
please an observer’s eye but there is much more potential hidden in the liquid
films. The industry quickly recognised the liquid films’ high heat and mass trans-
fer. Especially under centrifugal forces liquid films tend to thin and to accelerate
what translates into even higher heat and mass transfer coefficients. Many indus-
trial applications for liquid film flows have been developed–heat pumps, coating
processes, desalinisation plants, chemical reactors etc.

The industrial devices usually contain a spinning disc and an inlet opening that
allows to control the liquid film formation, its thickness and velocity. The same
principle is used as well in the spin processing tool developed by Lam Research[58].
The spin processor is a widespread technology used in the semiconductor industry
for wet chemical processing of crystalline silicon substrates, also called wafers, as

Figure 1.1: Liquid film on a window
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CHAPTER 1 Introduction

(a) Chamber (b) Chuck

Figure 1.2: Spin processor Lam SEZ SP203

described by Junk[52]:

The wafer is placed on a chuck with the side to be processed facing up
inside of the spin processor chamber. A nitrogen cushion protects the
bottom side from any contamination. While the chuck and the wafer
rotate, chemical mixtures are applied on the wafer by means of a dis-
penser in order to form a liquid layer on the wafer surface. Dependent
on the process step, the dispenser is either in a fixed position (centre
or off-centre) or is moving across the wafer surface. The continuously
supplied chemicals are spun off the wafer and collected in drain levels
surrounding the chuck for recycling.

The spin processor has to clean the wafer as uniformly and with as little liquid as
possible while avoiding any damage to the nano-structures on its surface. There
are many sources of possible damages which have to be avoided. Let us mention
few of the major one such as dry spots on the wafer resulting from liquid film dis-
continuity, droplet formation in the processing chamber especially at the spinning
disc edge or an excessive shear stress at the bottom of the film directly acting on
the wafer surface structures that could lead, for example, to a photo resist lift-
off[34]. The semiconductor industry–striving to increase process efficiency, yield
and cost savings of expensive etching chemicals–is thus highly interested in the
understanding of the liquid film dynamics.

1.1 Previous Works

The understanding of the fluid film flow regimes was historically achieved through
experiments and analytical modelling. The first investigated thin films have been
driven mainly by gravity forces, either falling thin films or thin films on an inclined

2



1.1 Previous Works

surface. Later there has been a growing interest in film flows driven by centrifugal
forces.

All film flows share common features; however, they can be classified concerning
the effect of inertial forces which either are neglected or are seen to be significant.
There are numerous scientific works providing comprehensive reviews on the liquid
film dynamics, e.g. Chang and Demekhin[21], Craster and Matar[23].

The experimental works are focusing on the measurement of the film thickness
and classification of the wave formations. The rotating disc makes the film thick-
ness measurement challenging and various contact and contactless measurement
techniques have been introduced. The observation of the wave formations and
their classification are usually based on the photographic material. The hydraulic
jump, an abrupt increase of the film height as supercritical flow is slowed down and
converts its kinetic energy into potential one, has as well captured an attention of
researchers.

Figure 1.3: Hydraulic jump in a sink

One of the first contact measuring meth-
ods was a needle probe applied by Espig
and Hoyle[29] which allowed to find out
the peak values for the fluid film thick-
ness (that is the height of the film to the
crest of the film waves). Their measure-
ments have been correlated to the Nusselt
flat-film solution. The very same contact
technique was used as well by Leshev and
Peev[63]. They confirmed dominance of
inertial forces and continuously decreasing
film thickness with increasing disc radius.
Farther Leshev and Peev observed onset of
the hydraulic jump at low rotation veloci-
ties and correlated the influence of disk rev-
olutions, liquid properties and flow rate on
the jump position with Ekman, Reynolds
and Weber numbers. Bush and Arristof[17]
studied and measured the formation of a
circular hydraulic jump on a stationary plate as well with a needle method. Their
work linked the surface tension effects to the formation of the hydraulic jump.

The limitations of the contact measuring approaches led to development of the
contactless, electrical and optical, measuring methods.

Charwat et al.[22] used an optical method based on an absorption of the infrared
light in different solutions flowing on the rotating disc made out of an optical
glass. This technique allowed to measure time averaged film thickness and the

3



CHAPTER 1 Introduction

results showed significantly lower film thicknesses as expected from the analytical
asymptotic solution. This is not surprising as the influence of the inertial forces
was generally neglected in the asymptotic solutions. Woods[117] applied a similar
technique, measuring the intensity of the light passing through a dye coloured
water film and was able to accurately capture an instantaneous shape of the wavy
free-surface. Ozar et al.[76] used laser light interface reflection to get readings
of the instantaneous film thickness over a segment of the disc. Ozar reported
existence of the three main regions on the rotating disc–an inertia dominated
region with prevalence of inertial and frictional forces, a rotation dominated region
where centrifugal forces are dominant and a transition region with characteristics
of both inertia- and rotation-dominated regions. Additionally their method showed
the relative importance of radial and tangential forces and their influence on the
propagation of the formed surface waves.

Miyasaka[68] conducted measurements based on a liquid conductivity with a focus
on the radially inner flow region. This electrical method limited measurements to
only a few discrete points. The more efficient approach is for example based on a
capacitance sensor as used by Spiers[98] or Thomas et al.[101]. The capacitance
technique can measure the film thickness all along the radius of the disc and is
more suitable for heat transfer experiments as the disc can be made out of a
metal. Another electrical measuring method used by Burns et al.[16] exploited
an electrical resistance. Once again it was experimentally confirmed that Nusselt
flat-film model cannot cope with strong inertial effects and the use of the more
complex 2D Pigford model of Wood and Watts[116] was suggested.

The falling films provided the first insight into the problem. One of the well
known steady-state solutions of the Navier-Stokes equations for a thin film falling
in the gravity field presented Nusselt[73]. The film flow instabilities which lead
to interesting wave patterns have been studied both in experiments, e.g. Kapitza
and Kapitza[54], Binnie[9], and analytical methods, e.g. Yih[119], Benjamin[7] and
Benney[8].

Benney presented a single evolution equation for the film thickness. However,
it is relevant only for flows with low inertial forces. The more interesting flow
regimes with higher Reynolds numbers and thus stronger inertial effects have been
investigated by Shkadov[95]. He used a combination of the boundary layer theory
and Karmán-Pohlhausen integral method to analyse a film flow. The Shkadov
model, known as Integral Boundary Layer (IBL) model, forms a coupled system
of nonlinear hyperbolic partial differential equations which are solved for depth-
averaged flow variables assuming polynomial velocity profiles. The IBL model
was used to classify wave patterns by Bunov et al.[14], Sisoev and Shkadov[97].
Further improvements of the IBL model by Ruyer-Quil and Manneville[91] led
to the development of the Weighted Residual Integral Boundary Layer (WRIBL)
model. The qualities of the WRIBL model have been validated by Liu et al.[64],
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1.1 Previous Works

Park and Nosoko[78].

Film flows driven by centrifugal forces on the rotating disc, the main focus of
the thesis, are closely connected to falling film flows and most findings from the
research of falling films apply. The main difference is however, varying acceleration
in the radial direction. If a rotating reference frame is used, centrifugal forces and
Coriolis forces are occurring. These apparent forces are considered, for example,
by Momoniat and Mason[69], Myers and Lombe[71].

The low Reynolds number regimes with negligible inertial forces are directly com-
parable with falling films, as shown by Prieling[82]:

. . . the centrifugal force term is driving the radial motion equivalently
to gravitational force term in the Nusselt flat-film solution for falling
liquid films.

The typical flow regimes of interest are however of moderate and higher Reynolds
numbers implying strong inertial forces.

The analytical solutions and approximations for liquid films on the rotating discs
are derived from the falling films origins and directly connect to the Nusselt flat-
film solution replacing the gravity term with a centrifugal force term. Rauscher
et al.[87] used an asymptotic expansion of the Navier-Stokes equations with free-
surface boundary condition at the liquid-gas interface. The existence of the inner
and outer region observed by Ozar was identified in the steady-state solution by
Needham and Merkin[72] who used the method of matched asymptotic expansions.
The IBL model was as well directly applied to modelling of liquid films on a
rotating disc and the selection of the velocity profiles in the underlaying Karmán-
Pohlhausen method was found to be of great importance. Matar and Lawrence[66]
selected analytically calculated parabolic velocity profile, albeit with shortcomings
in the inner flow region. The quartic velocity profiles selected by Kim and Kim[56]
proved to be in better agreement with the results of the Navier-Stokes equations.
Their solution included surface tension effects. Bohr et al.[11] used the IBL model
to analyse the hydraulic jump formation and concluded that the IBL model is able
to capture the structure of the both, linear and circular, hydraulic jumps.

However experiments are limited by technical possibilities and analytical solutions
by assumptions placed on the model. Therefore it does not come as a surprise
that with the advent of Computational Fluid Dynamics (CFD) the interest shifted
toward numerical investigations of liquid films. Solutions with little or no assump-
tions are very intriguing and thus numerical simulations of the Navier-Stokes equa-
tions are considered by many.

Malamataris and Papanastasiou[65] used a Galerkin Finite Element (FE) meth-
od[4] to analyse three cases of unsteady free surface flows on a vertical plate. To
lower computational costs they truncated the domain and imposed a free bound-
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CHAPTER 1 Introduction

ary condition[77] at the outlet. A bit more demanding approach, steady-state
2D Volume-of-Fluid (VoF) method for tracking of the liquid-gas interface with
Continuum Surface Force (CSF) model[13] to include surface tension effects was
used by Gao et al.[38]. Very good agreement with experimental and analytical
works was reported including the existence of recirculation zones in large waves.
An increasing interest in the numerical simulation of the free-surface flows put
into focus the VoF method and its interface tracking models. Gopala and van
Wachem[39] investigated different interface tracking models and their influence on
VoF solutions. Tuković and Jasak[102] presented 2D simulations of a thin liquid
film on an arbitrary surface using the Finite Area (FA) method implemented in
OpenFOAM R⃝[74, 112, 51].

Special attention was payed to the simulation of the hydraulic jump. Zhou and
Stansby[123] investigated the hydraulic jump in a straight open channel with the
Shallow Water (SW) equations in their strong conservation form. The equations
were solved with a steady-state 2D Finite Volume (FV) method. The solution
showed good agreement with experimental data but it worked with semi-empirical
bed friction coefficients for modelling of the shear-stress at the film bottom. Yokoi
and Xiao[120, 121] used a 2D VoF method (CIP-CUP algorithm[118, 60]) with
CSF model for surface tension modelling. They classified the hydraulic jumps
into two categories and confirmed numerical difficulties in the modelling of the
reverse roller connected to the selection of the velocity profile function.

A notable numerical simulation of the liquid film on a rotating disc presented
Rahman and Faghri[85]. They used steady-state axisymmetric Finite Difference
(FD) method for modelling of a film flow where a free-surface is forming an upper
boundary of the computational domain, effectively closing the gas phase out. A
similar approach as Gao et al., a steady-state 2D axisymmetric VoF method, was
applied by Rice et al.[89] to liquid films on rotating discs. Their results showed
reasonable agreement with observations of experiments by Thomas et al.[101] and
Ozar et al[76]. Finally Kaneko et al.[53] performed 2D axisymmetric VoF simu-
lations to investigate the flow on a wafer. Their model additionally contained a
species transport equation for a simple diffusion controlled chemical etching model.
The computed etching rate was found to be in good agreement with experimental
results.

It has to be mentioned that current state of the art of numerical simulations of
liquid films is not satisfactory. Thin films tend to have excessively high require-
ments on the spatial resolution due to their large disparity between the governing
length scales. The computational complexity is increased even more should the
heat and mass transfer or supporting chemical models be included. As a result a
full scale 3D free-surface numerical simulation is not yet, at the time of writing,
economical and hence simplified solutions–2D domains or axisymmetric domain
cuts, symmetry exploiting central impingements, static inlets–are still state of the
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art.

1.2 Objectives

The current state of the art of a liquid film research has been described in the pre-
vious section. The limitations of free-surface numerical simulations are especially
unsatisfactory. There is a clear need for affordable simulation tools which would
support design and optimisation of the industrial devices.

The semiconductor industry, for example, is very interested in transient simula-
tions that would cover the whole etching process length, in simulations where the
impingement of the etching chemicals is a dynamic rather as a static process, in
simulations that can handle chemical models next to the heat and mass trans-
fer. In fact the industry is ready to sacrifice an exact solution and accept an
approximation with a reasonable agreement could above mentioned features, even
partially, be met.

The main goals of the thesis are therefore:

• Development of a thin film model for high inertial and centrifugal forces.

• Implementation of the thin film model into a fast transient numerical solver
with a dynamically moving inlet. The solver has to be robust enough to
accommodate an extension with a chemical etching model.

• Validation of the solver against experimental data and 3D VoF simulations
without additional assumptions.

1.3 Outline

The thesis is structured into the following chapters:

Chapter 1: Introduction provides a context and a motivation for the thesis.
An overview of a previous research is presented and the objectives are set.

Chapter 2: Governing Equations introduces governing equations of the fluid
mechanics which are forming the theoretical background of the work and
provide the starting point to the derivation of the thin film model.

Chapter 3: Volume-of-Fluid Simulations presents the VoF method and 2D
and 3D numerical simulations of the liquid films investigated in the selected
experiments.

7



CHAPTER 1 Introduction

Chapter 4: Thin Film Model shows a derivation of the thin film model based
on the shallow water equations and velocity profile functions by Karmán-
Pohlhausen method. An innovative approach of Reynolds decomposition
applied into modelling of the shallow water boundary layer in order to cap-
ture the inertia terms is presented.

Chapter 5: Thin Film Approximation presents an application of the thin
film model under locally invalid assumptions, so called Thin Film Approx-
imation (TFA), at the 2D numerical simulation based on the FA method.
A primer on FA method and details of the TFA solver implementation are
given. The results of 2D TFA simulations are compared with 3D VoF nu-
merical simulation.

Chapter 6: Chemistry Model provides details on a simple diffusion-controlled
chemistry model for the wet etching of the wafers based on the thin film
model.

Chapter 7: Summary and Conclusion discusses the achieved results, chal-
lenges and possible new directions for future work.

8



Chapter 2

Governing Equations

In what follows, the underlaying mathematical framework for liquid films is pre-
sented. This provides the necessary basis for the rest of the thesis and is a sum-
mary of textbooks, lecture notes, e.g. Versteeg and Malalasekera[107], Blazek[10],
Batchelor[6], Jasak[50], Cebeci and Bradshaw[20], Zienkiewicz and Taylor[124],
Abeyaratne[1], Wilcox[114], Sert[94], Gurtin[43], Petrila and Trif[81], Patankar[79]
and other resources[19, 2] on fluid mechanics.

2.1 Conservation Laws

The conservation laws give a relation between the quantity of the conserved prop-
erty and its transport. Generally they state that the amount of the conserved
property within a volume can only change by the amount of the property which
flows in or out of the volume. The following conservation laws–conservation of
mass, momentum and energy–are valid for any continuum.

2.1.1 Material Derivative

Let φ be a general material scalar property, such as pressure, density etc.

φ = φ(t, x) (2.1)

carried by the velocity field u
u = u(t, x) (2.2)

in time t and position x.

The time variation of the material property φ following the motion of its volume
is then known as a total derivative or a material derivative

dφ

dt
= ∂φ

∂t
+ u · ∇φ (2.3)

9



CHAPTER 2 Governing Equations

2.1.2 Reynolds Transport Theorem

Let VM be a material volume bound by its surface ∂VM with n being an outward-
pointing unit normal vector on the boundary ∂VM .

Figure 2.1: Material body

The Reynolds transport theorem states the rate of change of the scalar material
property φ in time

d

dt

∫
VM (t)

ρφ(t, x) dV = ∂

∂t

∫
VM (t)

ρφ dV +
∮

∂VM (t)
(ρuφ) · n dS (2.4)

Because the rate of change of the scalar material property φ in the material volume
VM is equal to its volume sources SV and surface sources SS

∂

∂t

∫
VM (t)

ρφ dV +
∮

∂VM (t)
(ρuφ) · n dS =∫

VM (t)
SV (φ) dV +

∮
∂VM (t)

SS(φ) · n dS
(2.5)

applying the Gauss’ divergence theorem, Appendix B.2.1, one can write in the
differential form

∂ρφ

∂t
+ ∇• (ρuφ) = SV (φ) + ∇• (SS(φ)) (2.6)

2.1.3 Conservation of Mass

The conservation of mass states that the rate of increase of mass in a volume is
equal to net rate of mass flux in and out of a volume. The differential form with
mass per unit volume, i.e. density ρ

∂ρ

∂t
+ ∇• (ρu) = 0 (2.7)

is known as a continuity equation.

10



2.1 Conservation Laws

2.1.4 Conservation of Momentum

2.1.4.1 Conservation of Linear Momentum

The Newton’s second law of motion states that a rate of change of the linear
momentum is equal to the net acting force.

The net acting force can be split into body forces, e.g. gravity, electromagnetic
forces, and surface forces, e.g. pressure force, viscous forces. The common practise
in continuum mechanics is to keep the body forces Fb as separate source terms
while the surface forces are being transformed into the Cauchy stress tensor T.

Based on the Reynolds transport theorem one can then express the Newton’s sec-
ond law of motion in the differential form known as a Cauchy momentum equation

∂ρu
∂t

+ ∇• (ρuu) = ∇• T + Fb (2.8)

where expression ρu is called a momentum density.

2.1.4.2 Conservation of Angular Momentum

Similarly a rotational analogy to the Newton’s second law of motion can be defined
stating that a rate of change of angular momentum is equal to the net acting torque
and occurs about the same axis as that torque.

The conservation of the angular momentum is then expressed in the differential
form in an analogy to the equation 2.8

∂ρ(x × u)
∂t

+ ∇•
[
ρu(x × u)

]
= (x × ∇• T) + (x × Fb) (2.9)

2.1.4.3 Stress Tensor Symmetry

The conservation of the angular momentum for a continuum requires that the
Cauchy stress tensor T has to be symmetric[3] in order to satisfy the conservation
of the linear momentum

Tij = Tij : T = TT (2.10)

2.1.5 Conservation of Energy

The first law of thermodynamics formulates conservation law of energy as a rate
of change of the energy being equal to the net rate of energy added to the volume
and the net rate of work done on it.

The net rate of energy added to the volume is based on the volumetric energy
sources Q and the heat flux q through the surface. The rate of work done on the
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CHAPTER 2 Governing Equations

volume is a product of the force F and the velocity u.

Using the Reynolds transport theorem, the energy equation for the total energy
E is written in the differential form as

∂ρE

∂t
+ ∇• (ρuE) = ∇• (T · u) + ∇• q + Fb · u + ρQ (2.11)

where the expression ρE is called an energy density.

2.1.6 Entropy Inequality

The second law of thermodynamics postulates the thermodynamic process irrevesi-
bility by stating that the specific entropy s of the system always increases. The
idealised case of reversible processes allows the entropy to remain the same.

The differential form of the second law of thermodynamics for both reversible and
irreversible processes is known as the entropy inequality

∂ρs

∂t
+ ∇• (ρus) ≥ ∇•

(q
T

)
+ ρQ

T
(2.12)

where T is the temperature of the system.

2.2 Constitutive Relations

Unfortunately, the conservation laws of continuum mechanics presented in the
section 2.1 are indeterminate. There are more unknown quantities as number
of equations itself. Therefore so called constitutive relations which contribute to
the mathematical closure of the equations system have to be introduced. These
constitutive equations depend on the material properties of the matter.

2.2.1 Newtonian Fluids

One of the fundamental characteristics of the fluid is its inability to sustain shear
stresses when at rest. In such a situation only hydrostatic pressure is possible.
Therefore the shear stresses are directly connected to the fluid motion.

The primary cause of the stresses T are strain rates ϵ defined in an analogy to
infinitesimal strain as

ϵ = 1
2
[
∇u + (∇u)T

]
(2.13)

Fluids are called Newtonian or viscous if the shear stress is proportional to the
velocity gradient. That is the relationship between the deviatoric stress tensor
τ and the rate-of-strain tensor ϵ is linear. The proportionality coefficient is the
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2.2 Constitutive Relations

dynamic viscosity µ.

The Newton’s law of viscosity for isotropic1 fluids, using the Stokes’ hypothe-
sis2[100], written in the differential form

T = τ − pI = 2µϵ − 2
3µ(∇• u)I − pI

= −
(

p + 2
3µ∇• u

)
I + µ

[
∇u + (∇u)T

] (2.14)

2.2.2 Internal Energy

The energy conservation equation 2.1.5 introduced the total energy E. The total
energy E is understood as a sum of the internal energy e and all other energies

E = e + ek + other forms of energy (2.15)

where the internal energy e is a function of the pressure p and the temperature T

e = e(p, T ) (2.16)

and the kinetic energy ek is defined as

ek = 1
2u · u (2.17)

Using the definition of the internal energy e, an enthalpy h is defined as

h = e + p

ρ
= e + pv (2.18)

where v is a specific volume.

There exists a useful relation which links the enthalpy h to the temperature T at
constant pressure, i.e. dp = 0(

∂h

∂T

)
p

=
(

∂e

∂T

)
p

+ p

(
∂v

∂T

)
p

= cp (2.19)

where cp is the specific heat capacity at constant pressure.

1There is no directional preference in the isotropic material.
2Stokes’ hypothesis neglects a bulk viscosity that is the effect of a volumetric viscosity. This

simplification proved itself practical, however recent research[36, 15] shows that it is not always
a valid assumption.
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CHAPTER 2 Governing Equations

2.2.3 Equation of State

The equation of state links together properties of the system which depends on
its current thermodynamic state.

The general form of the equation of state for the fluids binds together pressure p,
temperature T and density ρ

ρ = ρ(p, T ) (2.20)

and specialisations exists based on the fluid material.

The most simple model is an incompressible isothermal fluid where density is
constant

ρ = const. (2.21)

2.2.4 Law of Heat Conduction

The law of heat conduction also known as Fourier’s law states that the rate of
the heat transfer through the matter is proportional to the negative temperature
gradient.

Fourier’s law written in the differential form

q = −λ∇T (2.22)

where λ is a heat conductivity coefficient.

2.3 Navier-Stokes Equations

The conservation laws together with constitutive relations form a closed system of
non-linear partial differential equations called conservative3 Navier-Stokes equa-
tions that govern the time dependent three-dimensional fluid flow and energy
transfer of a compressible isotropic Newtonian fluid

• Continuity equation
∂ρ

∂t
+ ∇• (ρu) = 0 (2.23a)

• Momentum equation

∂ρu
∂t

+∇• (ρuu) = −∇
(

p + 2
3µ∇• u

)
+∇•

(
µ
[
∇u + (∇u)T

])
+Fb (2.23b)

3An equation system derived from conservation laws is called conservative.
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2.3 Navier-Stokes Equations

• Energy equation

∂ρ (u + ek)
∂t

+ ∇•
[
ρu (u + ek)

]
= −∇• (pu) − ∇•

(
2
3µ (∇• u) u

)

+ ∇•

(
µ
[
∇u + (∇u)T

]
· u
)

+ ∇• (λ∇T ) + Fb · u + ρQ

(2.23c)

• Equation of State
ρ = ρ(p, T ) (2.23d)

• Transport coefficients

λ = λ(p, T ) (2.23e)
µ = µ(p, T ) (2.23f)

2.3.1 Internal Energy Equation

Taking a total energy equation and subtracting a dot product of the momentum
equation with the velocity u provides an internal energy equation

∂ρe

∂t
+ ∇• (ρue) = ∇u :

⎡⎣µ
[
∇u + (∇u)T

]
−
(

2
3µ∇• u

)
I

⎤⎦
  

viscous dissipation

− p∇• u + ∇• (λ∇T ) + ρQ

(2.24)

2.3.2 Incompressible Isothermal Fluids

The compressible formulation of the Navier-Stokes equations can be further sim-
plified for a category of incompressible isothermal fluids where the density ρ is
constant

• Continuity equation
∇• u = 0 (2.25a)

• Momentum equation

ρ

[
∂u
∂t

+ ∇• (uu)
]

= −∇p + ∇• (µ∇u) + Fb (2.25b)

• Energy equation

ρcp

[
∂T

∂t
+ ∇• (uT )

]
= ∇• (λ∇T ) + ρQ (2.25c)
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CHAPTER 2 Governing Equations

is based on the internal energy equation 2.24, the enthalpy-temperature re-
lationship 2.19 and neglecting of the viscous dissipation.

while the rest of equations closure remains the same.

The constant density assumption decouples the continuity and the momentum
equation from the energy equation. As a result only a solution of the continuity
and the momentum equation is necessary, the energy equation can be solved a
posteriori using the velocity field solution to find the energy distribution.

The numerical solution of the incompressible flow is considered more difficult com-
pared to the compressible flows. The main difficulty is hidden in the pressure as it
cannot be related to density or temperature through the equation of state. In fact
the pressure establishes itself instantaneously in a flow field so that the velocity
field always remains divergence free. There is no pressure term in the continu-
ity equation and there are only pressure derivatives in the momentum equation.
Thus value of pressure itself in the incompressible flow solution is secondary to
the changes of pressure in the space.

2.4 General Transport Equation

The previous equations have similar structure that can be captured into a general
transport equation[50] for a tensorial flow property χ

∂ρχ

∂t  
temporal term

+ ∇• (ρuχ)  
convective term

= ∇•

(
ρΓχ∇χ

)
  

diffusive term

+ Sχ(χ)  
source term

(2.26)

where Γχ is a tensorial property coefficient and Sχ is a tensorial property source.

Applying the Gauss’ divergence theorem, Appendix B.2.1, on the general transport
equation and integrating over a small time interval ∆t with respect to time t the
most general integral form[107] can be written

∫ t+∆t

t

(
∂

∂t

∫
VM (t)

ρχ dV

)
dt  

temporal term

+
∫ t+∆t

t

[∮
∂VM (t)

(ρuχ) · n dS

]
dt  

convective term

=
∫ t+∆t

t

[∮
∂VM (t)

(
ρΓχ∇χ

)
· n dS

]
dt  

diffusive term

+
∫ t+∆t

t

[∫
VM (t)

Sχ(χ) dV

]
dt  

source term

(2.27)

The general transport equation is a usual starting point for a discretisation of
equations for a numerical simulation.
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2.5 Statistical Modelling

2.4.1 Species Concentration Equation

A continuum can be a mixture of various species which are mixed together at the
molecular level. Such a mixture share the same velocity, pressure and temperature
and there can exist a mass transfer between phases by convection and diffusion.

A species concentration ci of the ith species of the mixture, also called a mass
fraction, is defined as

ci = mi

m
(2.28)

where mi is a mass of the ith species and m is the mass of the mixture.

The species transport equation of the ith species of the mixture, utilising the
general transport equation 2.26, has the differential form

∂ρci

∂t
+ ∇• (ρuci) = ∇•

(
ρDci

∇ci

)
+ Sci

(2.29)

where Dci
represents the ith species concentration diffusion coefficient and Sci

is
the ith species concentration source.

It follows out of the species concentration definition 2.28 that

N∑
i=0

ci = 1 (2.30)

and it is necessary to solve the species transport equation only for N − 1 species
as the species with index 0 is called a background or a carrier fluid.

2.5 Statistical Modelling

Most fluid flows are in a state of continuous instability called turbulence and can
be considered steady only on an average basis as small fluctuations of all flow
quantities are always present. If a flow exhibits these instabilities and fluctua-
tions in the macroscopic scale it is called a turbulent flow. A flow free of these
fluctuations in the macroscopic scale, a well ordered flow, is called laminar flow.

As this thesis is focused on the laminar flows, only the relevant idea of Reynolds
averaging used in the turbulence modelling, namely Reynolds Averaged Navier-
Stokes (RANS) equations, will be presented.

2.5.1 Reynolds Averaging

The RANS equations are obtained through a statistical description of the turbulent
flow based on the averaging of the flow quantities.
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CHAPTER 2 Governing Equations

The idea behind Reynolds averaging is to express every dependent variable as the
sum of its mean, or time averaged, value φ and its fluctuating component, also
called perturbation, φ′

φ(x, t) = φ(x) + φ′(x, t) (2.31)

where
φ(x) = lim

N →∞

1
N

N∑
i=1

φi(x, t) (2.32)

and N is a number of repeated experiments.

The time averaged quantities are then substituted into Navier-Stokes equations
2.23. The transformation yields RANS equations which are nearly identical with
the original equations but they introduce a new term in the general form of a
mean value of a product of perturbations

ρφ′u′

As the fluctuations themselves are unknown, a supporting model has to be supplied
that expresses these terms as a correlation of the fluctuations in terms of the mean
quantities.

In the case of the RANS the supporting model is the turbulence model and one
of the most popular are, for example, eddy-viscosity models that relate an analogy
between the turbulent and viscous diffusion.
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Chapter 3

Volume-of-Fluid Simulations

Numerical investigations of thin films are usually based on techniques for simu-
lation of free-surface flows. The most frequently used one is the Volume-of-Fluid
(VoF) method. The VoF approach is very straightforward; however, in 3D cases
it may become computationally intensive. This chapter starts with the series of
numerical investigations based on 2D axisymmetric VoF method implemented in
the open-source software toolbox OpenFOAM R⃝. The investigated test cases are
selected from the experiments of Ozar et al.[76], Thomas et al.[101] and Charwat
et al.[22]. 3D VoF simulations for specific cases are also presented in order to get
an idea on computational expenses of a full 3D simulation. The chapter shows
limitations of the VoF method and provides a motivation for a new approach.

3.1 Free-Surface Flows

Before the choice of simulation method is made, it is important to think about the
free-surface behaviour of two immiscible fluids. Based on the interfacial behaviour
of involved phases three general cases exist–segregated, transitional and dispersed
flows.

In order to better describe the three groups an example from the Comet manual[19]
is taken. One can consider a closed volume partially filled with a liquid where a
gas is filling up the rest. The segregated flow class is present when the closed
volume will oscillate with a low frequency and amplitude, so that both phases will
stay separated with a single well defined interface. The mixed or transitional flow
occurs when the oscillation frequency and amplitude increases enough so that the
surface waves of the liquid become unstable and break. That leads to situation
where the interface breaks into small bubbles of liquid trapped in the gas and
vice versa. The dispersed flow, the last class, happens when the closed volume is
shaken aggressively and both phases mix together forming a suspension1.

1A suspension is a heterogeneous mixture containing particles that are sufficiently large for
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CHAPTER 3 Volume-of-Fluid Simulations

(a) Transitional flow (b) Dispersed flow

Figure 3.1: Flow classes

Two main methods for treatment of free-surface problems–front-tracking and front-
capturing–exist.

3.1.1 Front-Tracking Method

The continuum concept is not holding across the free surface as the physical prop-
erties of fluid phases do not change continuously across it. However, the governing
equations can be applied to each phase separately as phases are immiscible. The
front-tracking, also called surface-tracking, method does this by dividing the solu-
tion domain into separated sub-domains where every sub-domain contains only a
single phase. The interface between the phase sub-domains forms the free-surface.

The free-surface is thus known whole time and changes its shape based on the
phase interactions. That inherently enforces computational domains with moving
boundaries and respective boundary conditions–kinematic and dynamic–at the
phase interface.

The kinematic boundary condition forbids the convective mass transfer through
the phase interface

(u · n)fs = 0 (3.1)

where n is the normal of the free-surface that is denoted by fs.

The dynamic condition describes the force balance acting on the phase interface.
In other words the forces–surface tension, viscous effects and pressure–acting on
both fluids at the free-surface are in equilibrium.

The major advantage of the method is knowledge about the interface shape and
position whole time what simplifies an inclusion of surface tension forces. The dis-
advantage of the method is connected to a complexity of the free-surface tracking
should the phase interface become too complex or more domains exist.

a sedimentation. Thus suspension will eventually settle separating its phases.
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3.1 Free-Surface Flows

3.1.2 Front-Capturing Method

The front-capturing method requires a two-phase model. Instead of keeping a
separate homogeneous continuum model for each phase, an effective continuum
fluid model of the mixture in a single computational domain is constructed. The
properties of the effective fluid are based on the properties of its constituent phases
and a newly introduced scalar volume fraction α

φ = αφ0 + (1 − α)φ1 (3.2)

where subscripts 0 and 1 denotes phases. The volume fraction value 0 and 1 tracks
the phases respectively and values in between mark the presence of the interface.

The volume fraction α allows to properly resolve transport of the phase masses in
the domain. This is achieved by linking of the volume fraction α with the mass
fraction c of the fluid 1

c = α
ρ1

ρ
(3.3)

under assumption that both phases have the same velocity, pressure and tem-
perature at the interface. This transforms the front-capturing method on the
multi-species flow modelling, see Subsection 2.4.1, where fluid 1 can be treated as
species and fluid 0 become the carrier fluid.

The major advantage is no computational overhead with increasing amount of
phase domains. The major disadvantage is certain level of a numerical diffusion
in regard to the shape and position of the interface. That spells problems with
modelling of the surface tension effects.

3.1.3 Surface Tension

An important force, especially in the case of liquid and gas, acting on the interface
of two fluids is the surface tension. The surface tension is a force normal to the
curved interface

Fσ = σκn (3.4)

where σ is the surface tension coefficient, κ is the surface curvature and n is the
free-surface unit normal vector pointing outward into the gas.

The tangential surface tension effects

Fσ,x = ∂σ

∂x
x

Fσ,y = ∂σ

∂y
y

(3.5)

where x and y are together with n orthogonal unit vectors at the free-surface,
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Figure 3.2: Interface between two immiscible fluids

diminish assuming the surface tension coefficient is constant.

The surface curvature κ is then defined as

κ = 1
rx

+ 1
ry

(3.6)

with rx and ry denoting the radii of curvature of the free-surface.

In the case of the front-tracking method, the surface tension force is applied as a
part of boundary conditions at the boundaries of sub-domains. Considering that
the interface of the front-tracking method is well defined, the surface curvature κ

can be evaluated based on the boundary geometry.

The challenging problem emerges in the case of the front-capturing method. Be-
cause both fluids are modelled as an effective continuum in a single domain, the
surface tension effects have to be realised by a body force that is modelled as a
continuous function of the volume fraction α, so called Continuum Surface Force
(CSF) model.

The free-surface normal vector n is then evaluated using the smooth volume frac-
tion α

n = ∇α (3.7)

The gradient of the volume fraction α has a zero value everywhere but the interface.

The surface curvature κ can than be expressed as a divergence of the unit normal
vector

κ = −∇•

(
n

∥n∥

)
(3.8)

Substituting the free-surface normal vector n and the surface curvature κ into the
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3.2 VoF-Method

Figure 3.3: Front-capturing interface and curvature κ

surface tension definition 3.4 yields the CSF model of surface tension

Fσ = −σ

⎡⎣∇•

(
∇α

∥∇α∥

)⎤⎦∇α (3.9)

where the surface tension coefficient σ is assumed constant.

3.2 VoF-Method

Due to complex wave patterns that can easily develop in the case of the thin films
the front-tracking method are generally less appealing as the tracking of the sharp
phase interface becomes very expensive. A droplet formation at the disc edge can
be closed out of the simulation in order to keep the amount of phase domains
under control. However it is unsure if the droplets are being formed in the inlet
area especially in the case of an impinging jet. Therefore it seems natural to use
some of the front capturing techniques with an effective continuum model, for
example VoF method.

The VoF-method for two-phase flows uses the volume fraction α as a phase marker

α(t, x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0 < α < 1 two-phase flow
0 first phase
1 second phase

(3.10)

The volume fraction α is being transported along the flow by an advection equation

∂α

∂t
+ ∇• (αu) = 0 (3.11)

To avoid the smearing of the free-surface interface, the transport equation has to
be solved with as little diffusion as possible. Thus the key part of the VoF method
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CHAPTER 3 Volume-of-Fluid Simulations

is the discretisation scheme used for the advective term.

Generally speaking, there are three categories of treatment of the advection discre-
tisation–donor-acceptor formulations, higher order differencing schemes and line
techniques.

The donor-acceptor scheme was introduced by Hirt and Nichols[46] and is based
on two main characteristics of the volume fraction marker–its boundedness and
availability criterion. The boundedness keeps the value of the volume fraction α

in the interval ⟨0, 1⟩. The availability criterion controls the amount of the fluid
convected across the control volume surface into acceptor cell is less or equal to
amount that is available in the neighbouring donor cells.

The higher order differencing schemes are usually either pure higher order or
blended differencing schemes and their design is usually based on the Normalised
Variable Diagram (NVD) diagram by Leonard[62]. Notable schemes are Com-
pressive Interface Capturing Scheme for Arbitrary Meshes (CISCAM) by Ub-
bink and Issa[103], High Resolution Interface Capturing (HRIC) by Muzaferija et
al.[70] and Quadratic Upwind Interpolation for Convective Kinematics (QUICK)
by Leonard[61], all implemented in ANSYS Fluent software, and especially Inter-
Gamma differencing scheme by Jasak and Weller[49] that is implemented in Open-
FOAM R⃝ and is used in all following VoF-simulations of the thesis2.

The VoF discretisation schemes behaviour can be described with a help of NVD,
see the figure 3.4. The normalised variables of NVD diagram are defined as

φ̃f = φf − φU

φA − φU

φ̃D = φD − φU

φA − φU

(3.12)

where φU , φD and φA are property values in upwind, donor and acceptor cells
respectively and φf is the property face value between donor and acceptor cell.
The boundedness criterion is represented by the shaded area in the diagram.

The downwind differencing used in the blended differencing schemes ensures a
compressive behaviour. In other words it makes the phase interface sharper. The
upwind differencing scheme is diffusive and smears the interface but ensures the
boundedness.

The line techniques determine the fluid distribution in a cell by using the volume
fraction distribution of neighbouring cells thus avoiding the tracking of the inter-
face in the single cell explicitly. Usually relatively simple geometric methods are
used in the interface reconstruction. One of the most used is Piecewise Linear

2Comparisons of ANSYS Fluent and OpenFOAM R⃝ blended differencing schemes conducted
by Prieling et al.[83] shows nearly identical behaviour for the investigated thin films. The
differences stand out first in specific situations like dispersed flows as reported, for example, by
Waclawczyk and Koronowicz[111].
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3.3 Disc with Collar

Figure 3.4: NVD diagram of the selected VoF-schemes: HRIC, QUICK, Inter-
Gamma, Upwind Differencing Scheme (UDS) and Downwind Differencing Scheme
(DDS)

Interface Calculation (PLIC) by Youngs[28].

The surface tension effects are usually implemented using the CSF model.

3.3 Disc with Collar

The first series of numerical investigations was based on the experimental works by
Thomas et al.[101] and Ozar et al.[76]. Both conducted thin film measurement on
a stationary and rotating disc with a radially injected liquid through a co-rotating
collar. The collar was used to regulate the film height at the inlet. While different
measurement methods were used, a capacitance sensor and a laser light reflection,
the experiments used very similar same setup, see figure 3.5.

Both experiments had the same disc radius r = 203mm and the collar, or the
inlet, radius of rinlet = 50.8mm.

Differences were hidden in the collar height and the fluid used. The collar height
of hinlet = 0.267mm and water with the viscosity ν = 1 × 10−6m2 s−1 was used in
the case of Thomas et al. The collar height was set to one inch, that is hinlet =
0.254mm, and deionised water with the viscosity ν = 0.66 × 10−6m2 s−1 was used
by Ozar et al.

Rotation speeds in both experiments varied from ω = 0rpm to ω = 300rpm and
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Figure 3.5: Disc with collar: rinlet = 50.8mm, r = 203mm; ω, Q and hinlet vary
between experiments

Case hinlet ν Q Re ω
[mm] [m2 s−1] [lpm] [-] [rpm]

1a 0.267 1 × 10−6 7 366 0
1b 0.254 0.66 × 10−6 3 238 2001c 7 555
1d 0.254 0.66 × 10−6 3 238 01e 7 555

Table 3.1: Case definitions for the disc with collar

flow rates from Q = 3lpm to Q = 15lpm.

The Reynolds number for the given setup is defined based on the flow rate and
the inlet radius of the collar as

Re = Q

2πνrinlet
(3.13)

and the maximum achieved value was Re = 1187 indicating laminar flow regime.

There were selected three basic simulation cases, see the table 3.1, for numerical
investigations. The case 1a is a stationary case with a pronounced hydraulic jump.
The case 1b is a rotating disc case that develops distinct spiral waves. The case
1c has the same rotational speed as the case 1b and an increased flow rate.

Additional two stationary cases in the given disc-collar setup, the cases 1d and 1e,
were added for demonstrations of the hydraulic jump.

3.3.1 2D Axisymmetric VoF-Simulations

Two-dimensional simulations conducted in OpenFOAM R⃝ are always using a three-
dimensional mesh that is just one row thick in the reduced dimension. As the mesh
for the axisymmetric simulations has a very simple topology, an OpenFOAM R⃝

blockMesh utility was used for its creation. The resulting intermediate mesh was
transformed into a 5◦ wedge using a makeAxialMesh utility. The mesh contains
only 8550 cells and features simple cell grading toward the patch representing the
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3.3 Disc with Collar

Figure 3.6: 2D axisymmetric mesh for the disc with collar: y-axis scaled 5×,
internal mesh cells hidden

disc, see figure 3.6.

The OpenFOAM R⃝ solver selected for the 2D axisymmetric VoF-simulations was a
stock solver interFoam from the OpenFOAM R⃝ distribution foam-1.6-extend[75].
The solver interFoam is a multi-phase solver for two incompressible isothermal
immiscible fluids using the VoF-method with the higher order differencing Inter-
Gamma scheme. The interFoam supports generic turbulence modelling that uni-
fies solver code for both laminar and turbulent flows.

The first case, the case 1a, is a stationary case with a significantly developed
hydraulic jump. The 2D axisymmetric VoF-simulation, see figure 3.7, predicts
the hydraulic jump fairly well. The mean film height measurement conducted by
Thomas et al. compared with the instantaneous film height from the simulation
shows a very good prediction of the hydraulic jump onset around radius of 100mm.
The height of the hydraulic jump is underpredicted by approximately 1mm.

The second simulation, the case 1b, has a rotating disc with velocity 200rpm and
the volumetric flow rate of 3lpm. The simulated flow on the disc does not form a
visible hydraulic jump due to the stronger centrifugal forces. Instead the thin film
tearing is observed in the 2D axisymmetric simulation, see figure 3.8. Torn off film
elements are then transported away toward the disc outer edge. Comparisons of
the instantaneous from the VoF-simulation and the measurements by Ozar et al.
shows that film height is overpredicted especially in the collar vicinity.

The last simulation is essentially the same setup as the previous case showing

27



CHAPTER 3 Volume-of-Fluid Simulations

(a) 2D axisymmetric VoF-simulation
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(b) Instantaneous film height

(c) Mean film height by Thomas et al.[101]

Figure 3.7: Case 1a (2D VoF): Q = 7lpm (Re = 366), ω = 0rpm
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(a) 2D axisymmetric VoF-simulation
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Figure 3.8: Case 1b (2D VoF): Q = 3lpm (Re = 238), ω = 200rpm
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(a) 2D axisymmetric VoF-simulation
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Figure 3.9: Case 1c (2D VoF): Q = 7lpm (Re = 555), ω = 200rpm
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the film discontinuity. However, in the case 1c the inlet flow rate is increased to
7lpm what leads to continuous wetting of the disc, see figure 3.9. Surface waves
become more pronounced with increased Reynolds number and are demonstrated
in not so smooth instantaneous film height curve especially in the zone close to
the disc outside edge. The comparison with the experiment conducted by Ozar et
al. shows a slight overprediction. The general trend of the film height is very well
predicted and matches measurement from the experiment.

First interesting phenomena presented in the previous simulations was the hy-
draulic jump. The hydraulic jump is especially visible at the stationary cases
where the film inertial forces are dominant. Generally the centrifugal forces thin
the film out and push the hydraulic jump toward the outer edges. The hydraulic
jump can be observed at very low rotational speeds as well; however, it is not as
pronounced as in the stationary cases and with higher Reynolds numbers turns
into increased surface waviness.

In order to demonstrate the onset of the hydraulic jump, two additional simu-
lation cases–the case 1d and 1e–have been defined. The cases have lower and
higher Reynolds number as the case 1a. The lower Reynolds number of 238 is
then connected to the very early onset of the hydraulic jump, while the higher
Reynolds number of 555 delays the hydraulic jump appearance. The high-velocity
photographs taken by Ozar et al. correspond nicely with the results of the 2D
axisymmetric simulation, see fig 3.11.

The second finding, the film tearing, is very interesting and led to further inves-
tigations concerning an influence of a surface tension σ and a contact angle θ on
the disc wetting. It shows up that both, the surface tension and the contact angle,
have an influence on the disc coverage with the fluid film and on the shape of
the frontal wave especially during the disc flooding at the start. Once the disc is
covered with the film the influence is usually merely visible at the disc outer areas.
An open question exists regarding the transport of the teared off film elements.

It turns out that the behaviour of the film discontinuity in the case 1b is actually
a projection of a spiral wave pattern, see figure 3.10, into the 2D axisymmetric
simulation. The torn off film elements, the parts of spiral waves, are influenced
by the contact angel and surface tension. The conservative contact angle3 of 90◦

that was used in the simulation due to the lack of data4 leads to the discontinuity
of the fluid film at the spiral wave front.

The demonstration of the spiral wave pattern can be considered a weak spot of
the 2D simulation as it is next to impossible to recognise wave patterns based

3Strong hydrophilic surfaces have the contact angle from 0◦ to 30◦. Hydrophobic, fluid re-
pelling, surfaces have the contact angle higher as 90◦. The contact angles from 30◦ to 90◦ are
associated with lesser hydrophobic surfaces.

4An approximate contact angle for aluminium surfaces reported by Gajewski[37] is 80◦. How-
ever the given value was not measured exactly.
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purely on the simulation results itself. Furthermore, a limitation of the central
impingement, be it by means of the co-rotating collar or an impinging jet, due to
symmetry has to be mentioned.

3.3.2 3D VoF-Simulations

The deficiency of 2D simulations to properly describe wave patterns and being
bound to the central impingement naturally leads to 3D investigations. The case
1b was chosen for the 3D VoF-simulations because of its pronounced spiral waves.

The original 2D mesh, see figure 3.6, has been protruded into 3D mesh and reduced
by cutting of the area behind the disc edge in the original 2D mesh. The first
experiments imposed a new limitation on the mesh, a maximal cell aspect ratio.
It was found that 3D simulation is very sensitive on the mesh resolution and the
cell height-to-length ratio has to be 1-to-4 at the most. Higher cell aspect ratios
introduce simulation artifacts which lead to crashes.

In order to improve the grid resolution while saving on the amount of the cells,
a different solver was used. 3D VoF-simulations were conducted with a stock
solver interDyMFoam from the OpenFOAM R⃝ distribution foam-1.6-extend[75].
The interDyMFoam solver, as its name suggests, is a special variation of the origi-
nally used interFoam solver with an added feature of an adaptive dynamic mesh
refinement.

(a) Case 1b (2D VoF): Q = 3lpm (Re = 238), ω = 200rpm; photograph courtesy of
Ozar et al.[76]

Figure 3.10: Spiral waves in the 2D axisymmetric VoF-simulation
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3.3 Disc with Collar

(a) Case 1d (2D VoF): Q = 3lpm (Re = 238), ω = 0rpm; photograph courtesy of Ozar
et al.[76]

(b) Case 1e (2D VoF): Q = 7lpm (Re = 555), ω = 0rpm; photograph courtesy of Ozar
et al.[76]

Figure 3.11: Hydraulic jump in the 2D axisymmetric VoF-simulation
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Figure 3.12: Dynamic mesh refinement: Wave front passing the mesh on a pro-
cessor domain border

The adaptive mesh refinement adds an on-fly refinement of the mesh by recursive
splitting of the cells in the area of the captured phase interface. The solver as well
coarsens previously refined cells in the single phase areas up to the original mesh
resolution. The illustration of the refinement technique can be seen on the figure
3.12 that presents the fluid frontal wave passing through the mesh.

The advantage of the technique is having a relatively coarse computational mesh
at the start with an automatic increase of the amount of cells only where it is
needed. The disadvantage is an additional computational overhead of the mesh
manipulation. However, as long as the mesh manipulation takes less resources
as the solution on the static mesh with a higher resolution, the adaptive mesh
refinement is the technique of choice.

The original coarse 3D mesh had approximately 320 000 cells at start. The mesh
refinement has to be strictly controlled as the splitting of the cell in half along all
axes leads to 8 new cells. The amount of cells is heavily dependent on the flow
behaviour during the simulation and varied, depending on the contact angle θ,
from approximately 710 000 to 968 000 cells at 0.6s during the disc flooding in the
case 1b.

The 3D simulation of the case 1b confirmed the observations from the 2D ax-
isymmetric simulation. The spiral wave pattern develops and even the lesser
hydrophobic contact angle 75◦ still causes the tearing of the film, see figure 3.13a.
Changing the contact angle to the hydrophilic value of 10◦ shows that the tearing
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3.3 Disc with Collar

(a) Contours of fluid velocity (θ = 75◦): Single processor domain

(b) Contours of fluid velocity (θ = 10◦): Single processor domain

Figure 3.13: Case 1b (3D VoF): Q = 3lpm (Re = 238), ω = 200rpm
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Figure 3.14: Droplets forming: Excentric impinging jet and the disc edge area;
photographs courtesy of TU Graz

is indeed caused by the interaction of the fluid with the disc surface and the whole
disc is coated without discontinuities, see figure 3.13b.

Both simulations were stopped at the time 0.9s as it was not economical, from
the computational point of view, to continue as the observations from the 2D
axisymmetric simulations were confirmed. It is important to point out that the
simulation time needed for a single 3D VoF simulation with the adaptive mesh
refinement of 0.9s long process that was performed in parallel on 4 CPU cores of
Intel Core i7 Bloomfield-family was 30 days.

3.4 Disc with Impinging Jet

The discussed simulation cases have used central impingement through the co-
rotating collar. The collar is used to control the in-flow conditions and effectively
prevents formation of the droplets. Industrial applications do not usually use a
collar but an impinging jet. The impinging jet is a possible source of droplets in
the inlet area. The outside disc edge is the second place where droplets are formed,
see figure 3.14. Generally droplets are not welcome in the industrial applications as
they are connected with disturbances in the film flow and a possible contamination
of the disc surrounding area.

In order to examine the central impingement with the impinging jet a configuration
close to ones used in semiconductor industry was thought out. The setup has a
rotating disc of the size of 300mm wafer, see figure 3.15. The inlet nozzle of
2.15mm radius is placed 35mm above the disc centre.

A single simulation case, the case 2, was defined. The flow rate Q = 0.3lpm
at the inlet represents a laminar flow with relatively high Re = 1156 compared
to previous cases. The disc rotational speed is relatively low ω = 60rpm. The
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3.4 Disc with Impinging Jet

Figure 3.15: Disc with impinging jet: rinlet = 2.15mm, r = 150mm, hinlet = 35mm

simulated fluid is a water with the kinematic viscosity ν = 1 × 10−6m2 s−1. The
contact angle was 30◦ at the disc and 90◦ at the inlet nozzle.

The L-shaped computational mesh, see figure 3.16, has been modelled with the
Gambit pre-processor and contains approximately 71 000 cells. The mesh is graded
toward the impingement area in order to increase the mesh resolution there.

The simulation had a prescribed fluid phase values in the nozzle area to maintain
the numerical stability. For the given parameters 2D VoF-simulation shows no
droplet formation in the inlet area, see figure 3.17. This is a positive finding as
the further work does not need to consider the droplets formation in the inlet
area with a reasoning that proper process parameters can avoid the problem all

Figure 3.16: 2D axisymmetric mesh for the disc with impinging jet: y- and z-axis
scaled 1.5×, internal mesh cells hidden
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(a) Contours of fluid velocity showing the disc flooding

(b) Impingement in the inlet area

Figure 3.17: Case 2 (2D VoF): Q = 0.3lpm (Re = 1156), ω = 60rpm
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together. The fluid manages to wet barely one third of the disc in the first second
of the process. The static hydraulic jump forms very close to the inlet.

3.5 Summary and Discussion

VoF-method is a popular numerical approach for solution of free-surface prob-
lems. The main appeal of the method is hidden in the lack of assumptions placed
on fluid phases. Both 2D and 3D VoF-simulations are the usual first choice for
investigations of fluid films on a rotating disc.

2D VoF axisymmetric simulations are especially appealing due to their relatively
low computational costs. However 2D axisymmetric approach has its limitations.
First of all it is suitable only for cases with the central impingement. Moreover
it cannot describe complex wave patters which simply cannot be resolved in two
dimensions only.

On the other side, 3D VoF simulations have no limitations placed on the problem
definition. One can simulate both central or excentric impingement with easy
and even complex wave patters are well captured and reproduced. However the
computational costs are exponentially higher and where 2D VoF simulation needs
few hours, 3D VoF simulation needs are easily in order of weeks. This renders the
3D VoF approach impractical for numerical studies of the thin films that need a
very high spatial or temporal resolution.

Unfortunately as no other effective solution exists, 3D VoF method stays to be the
method of choice for industrial applications simply out of necessity. This highlights
a clear need for an alternative numerical approach to the simulation of the fluid
films where both, the solution accuracy and the simulation computational costs,
are in the focus.

39



CHAPTER 3 Volume-of-Fluid Simulations

40



Chapter 4

Thin Film Model

The previous chapter presented the 2D and 3D VoF numerical investigations of
the film flow on the rotating disc. The VoF simulations showed the computa-
tional complexity of the free-surface simulation and highlighted the need for a
different approach. There are generally two ways. Either more computational
power, a brute force approach, or an alternative technique, a clever solution, has
to be sought. Characteristics of the thin film allow a reduction of the problem
dimensionality and the derivation of the resulting thin film model is given in this
chapter.

4.1 Modelling Assumptions

The fluid film on the rotating disc has some characteristics that can be exploited:

• The fluid film is primarily driven by centrifugal and shear forces that define
a dominant velocity component in the tangential direction while the velocity
component in the normal direction, a cross flow, can be neglected

u = (u, v, w), w → 0 (4.1)

• The film thickness is very small, in the order of tenth of millimetres with ex-
tremes only in the order of millimetres. Therefore pressure like in a boundary
layer can be assumed constant across the film.

These two main characteristics, the non-existent cross flow and the constant pres-
sure across the film thickness, open a way for a transformation of the three-
dimensional problem into a two-dimensional one by averaging over the film height,
that is by integrating the Navier-Stokes equations across the film height.

The thin film height tends to be similar to a boundary layer thickness especially in
areas with strong centrifugal forces. The same idea of reducing of the dimension
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Figure 4.1: Thin film characteristics

is hidden behind many other techniques connected to modelling of boundary layer
and thin films, for example Integral Boundary Layer (IBL) model[95]. Even the
shallow water (SW) equations[110] are exploiting the disproportion in the vertical
scaling and use the integration across the water depth.

Additional assumptions and demands are defined specifically for the thin film cases
under consideration:

• The flow is assumed to be laminar1.

• Velocity profiles across the film height in the vertical direction can be ap-
proximated by polynomial expressions.

• Inertial forces cannot be neglected.

• The interface friction between air and liquid at the film free-surface fs can
be neglected

τfs → 0 (4.2)

• Surface tension σ is an important factor for the formation of the hydraulic
jump and has to be accounted for.

• The variation in the temperature across the film thickness is small but the
temperature is not constant.

• The fluid is assumed to be Newtonian.

• The liquid forming the thin film is incompressible and due to small variations
in the temperature across the film thickness the density across the film height
is assumed constant

ρ = const. (4.3)
1Turbulent regimes are not welcome in the wafer etching process.
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Figure 4.2: Thin film definitions

• Droplets formation is not considered. Both liquid and air are segregated
with a single well defined interface.

As the main driving factor for development of the thin film model is the reduc-
tion of the computational costs, additional assumptions on the positioning of the
rotating disc that simplify algebraic calculations are imposed:

• The disc itself is placed in the origin and aligned with xy-plane so that the
disc normal direction is aligned with z-axis

xdisc = (x, y, 0) (4.4)
ndisc = (0, 0, 1) (4.5)

• Gravity g acts against the disk normal direction

g = (0, 0, −g) (4.6)

4.2 Definitions

4.2.1 Film Height

The thin film is enclosed at the bottom by the disc and by the free-surface between
liquid and the ambient gas. There exists no flow across these two boundaries. Thus
the formation of the droplets at the free-surface is not possible.

The disc placement assumptions simplify the definition of the lower boundary.
Typically the bottom of the film is treated as a function that describes the bottom
topology. As the disc is flat2, placed at the origin and aligned with z-axis, the

2The nano-structure scales of the wafer surface are insignificant compared to the thin film
height.
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bottom b is described by a constant zero function

b = b(t, x, y) = 0 (4.7)

The top boundary that is the free-surface fs is generally unknown and is described
by a function

fs = fs(t, x, y) (4.8)

The film height h that represents a new dependent variable in the thin film model
is then defined as

h = h(t, x, y) = fs − b = fs (4.9)

and is identical with the free-surface fs.

4.2.2 Film Velocity

The very important characteristic of the thin film is the distribution of the velocity
across the film thickness. The momentum transfer across the film thickness is
non-uniform and more momentum is being transported in film layers with higher
velocities usually closer to the rotating disc. These differences in the momentum
transport have to be carefully evaluated in order to properly capture the inertial
forces in the film.

The film mean velocity u, the second dependent variable in the thin film model,
is defined as

u = 1
h

∫
h

u dz (4.10)

The averaging of the velocity across the film thickness has, however, a negative
side-effect that is the loss of information in the averaged dimension. The thin
film model resolves the dependent variable u but it cannot resolve spatial velocity
distribution. In order to overcome the problem a supporting model, a polynomial
velocity profile function û, that mimics the velocity distribution as close as possible
is introduced

u(t, x, y, z) = û(t, x, y, ξ) + εû

û(ξ) = a0 + a1ξ + a2ξ
2 + a3ξ

3

ξ ∈ ⟨0, 1⟩, z = hξ

(4.11)

where ξ is the normalised vertical coordinate and εû denotes the velocity profile
modelling error.

The polynomial velocity coefficients ai are determined by a set of the boundary
conditions:
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• Relation to the mean velocity
∫ 1

0
û(ξ) dξ = u (4.12)

• No slip boundary condition at the disc that drives the film acceleration

û(ξ)|ξ=0 = udisc (4.13)

• Von Neumann boundary condition at the film free-surface

∂û(ξ)
∂ξ

⏐⏐⏐⏐⏐
ξ=1

= 0 (4.14)

• Influence of the pressure gradient at the film bottom

∂2û(ξ)
∂ξ2

⏐⏐⏐⏐⏐
ξ=0

= 0 (4.15)

that lead to the following solution of the velocity profile function, Appendix A.1

û(ξ) = udisc + (u − udisc)
(

12
5 ξ − 4

5ξ3
)

(4.16)

The relationship between the mean film velocity u and the velocity distribution
across the film thickness is depicted in the figure 4.4.

In order to describe the non-uniformity in the momentum transfer in the vertical
direction, the spatial velocity fluctuations ũ have to be introduced

u = u + ũ (4.17)

The technique above, the Reynolds decomposition, is well known from the sta-
tistical turbulence modelling, see Section 2.5; however, here it is applied to the
spatial quantity fluctuations rather as the temporal one.

The closer look on the definition of the mean film velocity

u = 1
h

∫
h

(u + ũ) dz

= 1
h

∫
h

u dz + 1
h

∫
h

ũ dz
(4.18)

together with a realisation that the mean value is invariant to the averaging

1
h

∫
h

u dz = u (4.19)
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Figure 4.3: Examples of velocity profiles

Figure 4.4: Velocity decomposition
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reveals an important identity of the vertical velocity fluctuation ũ

1
h

∫
h

ũ dz = 0 (4.20)

Finally, the generally unknown vertical velocity fluctuation ũ can be expressed by
the help of the velocity profile function û

ũ = u − u = lim
εû→0

{
û(ξ) − u

}
(4.21)

provided that the modelling error εû is small.

4.2.3 Film Temperature

The mean temperature T is defined as

T = 1
h

∫
h

T dz (4.22)

The temperature distribution across the film thickness, the temperature profile, is
non-uniform and can be an important factor in the etching process. The temper-
ature distribution across the film height can be reconstructed with the help of a
polynomial temperature profile function analog to the velocity profiles.

However, due to a diffusion-controlled etching model introduced later in the the-
sis being independent of the fluid temperature and due to the momentum and
continuity equations being decoupled from the energy equation because of the
constant density, only few examples of temperature boundary conditions that can
be considered in a derivation of the polynomial temperature profile function are
suggested:

• Prescribed disc temperature

T |z=0 = Tdisc (4.23a)

or the heat flux at the disc

−λ
∂T

∂z

⏐⏐⏐⏐⏐
z=0

= qdisc (4.23b)

• Evaluation of the energy equation in the limit of the steady-state condition
yields at the film bottom

∂2T

∂z2

⏐⏐⏐⏐⏐
z=0

= 0 (4.24)
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• Thermal boundary δT contained inside the film thickness

∂T

∂z

⏐⏐⏐⏐⏐
z=δT

= 0 (4.25)

• No heat transfer
∂T

∂z

⏐⏐⏐⏐⏐
z=h

= 0 (4.26a)

or prescribed heat transfer at the free-surface

−λ
∂T

∂z

⏐⏐⏐⏐⏐
z=h

= α(T |z=h − Tgas) (4.26b)

where α is the heat transfer coefficient between the liquid and the ambient
gas.

4.3 Thin Film Transformation

The starting point of the thin film transformation are the incompressible isother-
mal Navier-Stokes equations 2.25.

4.3.1 Transformation of Continuity Equation

In order to transform the continuity equation the behaviour of the film elevation
at the free-surface has to be described

∂h

∂t
+ u|z=h

∂h

∂x
+ v|z=h

∂h

∂y
− w|z=h = 0 (4.27)

The no slip boundary condition at the disc

u|z=0 = udisc (4.28)

surprisingly does not have a direct influence in the transformation of the continu-
ity equation as the constancy of the bottom b radically simplifies the kinematic
boundary condition at the disc

u|z=0
∂b

∂x
+ v|z=0

∂b

∂y
+ w|z=0 =

w|z=0 = 0
(4.29)

The transformation of the continuity equation is done through the integration of
the equation across the film height using the Leibniz integral rule, Appendix B.2.2
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∫ h

0
∇• u dz

=
∫ h

0

(
∂u

∂x
+ ∂v

∂y
+ ∂w

∂z

)
dz

= ∂

∂x

∫ h

0
u dz + ∂

∂y

∫ h

0
v dz

− u|z=h
∂h

∂x
− v|z=h

∂h

∂y
+ w|z=h − w|z=0

= 0

(4.30)

Using the elevation of the film at the free-surface 4.27, the bottom boundary
condition 4.29 and applying the definition of the mean velocity 4.10 then yields
the thin film continuity equation

∂h

∂t
+ ∇• (hu) = 0 (4.31)

4.3.2 Pressure Solution

The important aspect of the thin film transformation is the pressure solution.
In order to solve the pressure, the z-momentum equation of the Navier-Stokes
equations under the consideration of the Newton’s law of viscosity 2.14 has to be
investigated

ρ

[
∂w

∂t
+ ∂uw

∂x
+ ∂vw

∂y
+ ∂w2

∂z

]

= ∂τzx

∂x
+ ∂τzy

∂y
+ ∂(τzz − p)

∂z
+ Fbz

(4.32)

where Fbz represents the body force contribution in the z-direction.

Using the assumption of non-existent cross flow 4.1 and a scaling argument that
the shear stress terms are small compared to the pressure derivative and gravity,
the whole equation collapses into

∂p

∂z
= −ρg (4.33)

Considering the pressure boundary condition at the free-surface

p|z=h = pgas + σκ (4.34)
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the pressure solution for the thin film can be obtained

p = pgas + ρg(h − z) − σκ (4.35)

where the surface curvature κ is approximated by

κ ≈ ∇• ∇h (4.36)

The solution represents a hydrostatic pressure distribution and the effect of the
surface tension.

Considering the fluid incompressibility, the ambient gas pressure is irrelevant as
only the change of pressure exists in the equations and can be neglected.

The pressure solution can than be used to derive the pressure gradient under
assumption of the constant pressure across the film

∇p = ∇
(
ρ ∥g∥ h − σκ

)
(4.37)

4.3.3 Transformation of Momentum Equation

First the left hand side (LHS) of the momentum equation is investigated where a
special care is taken of the convective term. The convective term is expanded using
the velocity decomposition 4.17 in order to disclose the non-uniform momentum
transport across the film thickness

∫ h

0
ρ

[
∂u
∂t

+ ∇• (uu)
]

dz

=
∫ h

0
ρ

∂u
∂t

dz +
∫ h

0
ρ∇•

[
(u + ũ)(u + ũ)

]
dz

= ρ
∂

∂t

∫ h

0
u dz + ρ∇•

[∫ h

0
(uu + uũ + ũu + ũũ) dz

]

= ρ
∂

∂t
(hu) + ρ∇• (huu) + ρ∇•

(∫ h

0
ũũ dz

)
(4.38)

The boundary terms after application of the Leibniz integral rule diminish due the
film elevation boundary condition 4.27 and the bottom boundary condition 4.29.

The expanded convective term contains four correlations. The correlations of the
mean velocity and its spatial fluctuating component in the product forms uũ and
ũu reduce to zero with the help of identities 4.19 and 4.20. The convective term
is as the result formed by the product of the mean velocities uu and a new term,
the product of the spatial velocity perturbations ũũ. This illustrates the fact that
an average of the product of two functions is not the product of the their averages
only.
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4.4 Summary and Discussion

Applying the velocity profile û and its solution 4.16 into the modelling of the
spatial velocity fluctuation ũ than yields

ρ∇•

(∫ h

0
ũũ dz

)

= lim
εû→0

⎧⎨⎩ρ∇•

[∫ 1

0

(
û(ξ) − u

) (
û(ξ) − u

)
h dξ

]⎫⎬⎭
= ρ∇•

[
213
875h(u − udisc)(u − udisc)

]
(4.39)

The right hand side (RHS) of the momentum equation integrated across the film
thickness under the assumptions of the constant pressure through the film height
and no interface friction and using the pressure solution 4.37 yields

∫ h

0
[−∇• p + ∇• τ ] dz + Fb

= −h∇• p + ∇• (hµ∇u) − τz|z=0 + Fb

= −h∇
(
ρ ∥g∥ h − σκ

)
+ ∇• (hµ∇u) − τz|z=0 + Fb

(4.40)

In order to express the shear stress at the film bottom the polynomial velocity
profile function û and its solution 4.16 are used

τz|z=0

= µ
∂u
∂z

⏐⏐⏐⏐⏐
z=0

= lim
εû→0

⎧⎨⎩µ
∂û(ξ)
∂hξ

⏐⏐⏐⏐⏐
ξ=0

⎫⎬⎭
= 12

5
µ

h
(u − udisc)

(4.41)

provided the modelling error εû is small.

4.4 Summary and Discussion

The final form of the conservative incompressible Thin Film Model (TFM) is
summarised as

• Continuity equation
∂h

∂t
+ ∇• (hu) = 0 (4.42a)
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• Momentum equation

ρ

[
∂

∂t
(hu) + ∇• (huu + K)

]
= −h∇

(
ρ ∥g∥ h − σ∇• ∇h

)
+ ∇• (hµ∇u) − τz|z=0 + Fb

(4.42b)

where the convective term K and the shear-stress at the film bottom are
expressed with the help of the polynomial velocity profile function û as

K = 213
875h(u − udisc)(u − udisc)

τz|z=0 = 12
5

µ

h
(u − udisc)

and body force Fb has to be determined on the case-to-case basis.

• Equation of State
ρ = const. (4.42c)

• Transport coefficient
µ = µ(p) (4.42d)

The important factor in the precision of the thin film model is the modelling
error of its velocity profiles εû. The resulting solution of the presented thin film
model will be close to the real thin film, if the velocity profile function û is closely
resembling the real velocity distribution u. And vice versa, the solution of the thin
film model will show a discrepancy from the real thin film should the modelling
error of the velocity profiles εû be significant. However the modelling error has in
the given formulation only a local influence. The mass and the momentum within
the system will always be properly conserved.
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Chapter 5

Thin Film Approximation

The Thin Film Model (TFM) derived in the previous chapter is used to solve
efficiently fluid flow problems on rotating discs with an impinging jet being either
static or dynamically moving over the disc surface. As some of the assumptions
placed on TFM in such configurations are invalidated, the resulting approach is
called Thin Film Approximation (TFA). The implementation is carried out in the
open-source software toolbox OpenFOAM R⃝ using the Finite Area (FA) method.
The validation is done by comparison of the TFA results with VoF simulations
performed with the ANSYS Fluent software. The chapter presents the TFA, its
implementation details and the validation.

5.1 Model and Reality

The TFM model assumptions can be applied on the majority of the film flow on the
rotating disc. There however exists few typical areas where the TFM assumptions,
especially the main assumption of negligible flow in the disc normal direction, are
not valid.

The first problem zone is the hydraulic jump. The phenomenon was presented
already during the VoF investigations. Its true nature is an abrupt increase of the
film height as a supercritical flow1 is slowed down. This is directly connected to the
transformation of the kinetic energy into static one and the flow separation as there
exists a region in which the flow is reversed with respect to the mean flow direction
in the hydraulic jump. The reversed flow forms an eddy, also called a separation
bubble, at the hydraulic jump bottom as reported by Yokoi and Xiao[121]. The
presence of the separation bubble clearly disregards the assumption of non-existent
cross flow as there happens a momentum transport in the normal direction.

The polynomial velocity profile function û is not properly describing the real

1A supercritical flow has a higher velocity than the propagation speed of the wave.
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Figure 5.1: Hydraulic jump in TFA

velocity distribution in the hydraulic jump and introduces a huge velocity profile
modelling error εû, see figure 5.1, as the separation boundary δ is not accounted for.
As a result, the shear stress contribution to the momentum equation is wrongly
evaluated what has a direct influence on the film height in the given location.

The impinging jet forms the second problem zone. The free-falling jet has a domi-
nant z-momentum component that is being transformed into x- and y-momentum
component in the impingement area. The flow in the impingement area thus
hides complex flow structures that are further enhanced by an influence of the
surrounding film flow.

The TFM model cannot deal with such a situation and the solution directly under
the jet is invalid and has to be prescribed by other means, for example based on
a 3D VoF solution. The solution in the jet vicinity, that is in the impingement
area, can be understood only as a coarse approximation. Farther away from the
jet the more precise the film solution gets.

The application of the TFM model on real problems that include above mentioned
problem zones has to be carefully evaluated. The resulting approach is being called
Thin Film Approximation (TFA) due to accepted errors in the film solution.

5.2 Finite Area Method

The classical numerical method used for the solution of the partial differential
equations of the fluid dynamics is the FV method. The method, as described
by Eymard et al.[30] or Versteeg and Malalasekera[107], is particularly suited for
the solution of various conservation laws as it can be used on arbitrary geome-
tries, structured and unstructured meshes and it possess a local conservativity of
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numerical fluxes.

The local conservativity means, that using the divergence theorem, Appendix
B.2.1, volume integrals of the partial differential equations are converted into sur-
face integrals, that is the integral formulation of the fluxes over the discretisation
cells boundary. The numerical flux is then conserved from one discretisation cell
to its neighbour. The fluxes on the boundary are discretized with respect to the
discrete unknowns.

The FV method could be used for the simulation of the film flow on a surface,
namely the rotating disc. However, the three-dimensional nature of the FV method
applied on two-dimensional thin film problem would pose some technical prob-
lems. Thus more suitable is an application of two-dimensional specialisation of
the FV method for surface flows called Finite Area (FA) method developed by
Tuković[102].

The FA method can be seen as a dimensional reduction of the FV method where
control volumes are reduced to control areas. The balance equations are written
as usual around the discretisation cells utilising the divergence theorem, however
this time surface integrals of the partial differential equations are transformed into
line integrals over the control area boundary edges.

The FA method is implemented in the foam-1.6-extend[75] distribution of the
OpenFOAM R⃝ the implementation environment of the TFA solver itself. There-
fore a brief primer on the FA discretisation in OpenFOAM R⃝ is given. Considering
the link between FA and FV method, the fundamental description of the FV dis-
cretisation in the OpenFOAM R⃝ by Jasak[50] is not just a valuable complement
but the source of majority skipped details such as an implementation of differenc-
ing schemes, a flux calculation, a discussion of non-orthogonality decompositions,
an implementation of boundary conditions etc.

5.2.1 Discretisation of the Solution Domain

The FA space discretisation in the OpenFOAM R⃝ divides the solution domain into
control areas A, see figure 5.2. Control areas do not overlap and completely fill
the solution domain.

The computational point P is located at the centroid of the control area A so that
following equation holds ∫

AP

(x − xP ) dA = 0 (5.1)

where AP denotes the control area around the point P and xP denotes the centroid
position.

The control area boundary is defined by the set of edges e. For simplicity, the
edge symbol e represents as well the edge centre point.
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Figure 5.2: Finite Area: Control area

Two control areas–the owner cell with centre P and the neighbour cell with centre
N–share a single edge e. The edge length vector l is pointing outward from the
owner cell, is normal to the edge e and has the magnitude of the edge length.

Specific to the FA is the surface curvature due to an angle α between neighbour-
ing control areas. Thus FA spatial domain forms an arbitrary three-dimensional
surface.

The time discretisation is identical with FV discretisation. It is sufficient to de-
fine a time step ∆t as the solution evolves in discrete time increments from the
prescribed initial condition.

5.2.2 Discretisation of Transport Equation

The general transport equation 2.26 is a second-order equation due to the second
derivative of the transported property in space inside of the diffusive term. Thus
the discretisation has to be of an equal or a higher order as the order of the
equation itself to maintain a good accuracy.

The order of discretisation is directly connected to the assumed variation of the
solution φ around the point P . The resulting discretisation will have the second-
order accuracy if we assume the linear solution variation

φ(x) = φP + (x − xP ) · (∇φ)P

φ(t + ∆t) = φt + ∆t

(
∂φ

∂t

)t (5.2)

where φP and φt denote the scalar property at the point P and time t respectively.

The proof is done by a comparison of the linear solution variation with a general
form of Taylor series expansion of the solution function φ around position x fol-
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lowed by an evaluation of the truncation error scaling. The similar analysis can
be done for the temporal accuracy. The proof details and discussion can be found
in the works of Damián[24] or Jasak[50].

The FA method requires that the general transport equation 2.26 is satisfied over
the control area A around the point P in the integral scalar form

∫ t+∆t

t

(
∂

∂t

∫
AP

ρφ dA

)
dt +

∫ t+∆t

t

[∫
AP

∇• (ρuφ) dA

]
dt

=
∫ t+∆t

t

[∫
AP

∇•

(
ρΓφ∇φ

)
dA

]
dt +

∫ t+∆t

t

(∫
AP

Sφ(φ) dA

)
dt

(5.3)

5.2.3 Temporal Term

The assumed linear variation of φ along the time step described by equation 5.2
can be used to directly express the time derivative

∂

∂t

∫
AP

ρφ dA

= ∂

∂t
(ρP φP AP )

= (ρn
P φn

P An
P ) − (ρo

P φo
P Ao

P )
∆t

(5.4)

where superscripts n and o denote the new and old time time level respectively.
The expression can be further simplified if the computational mesh and/or density
are assumed constant.

From the same linear solution variation follows the calculation of time integrals
utilising the Generalised Trapezoidal Method described by Hirsch[45] as

∫ t+∆t

t
φ(t) dt =

[
γφn + (1 − γ)φo]∆t (5.5)

where γ decides about time discretisation method. The value of γ = 0 represents
the Forward Euler explicit scheme. The value of 0 < γ ≤ 1 selects an implicit
scheme. The Backward Euler temporal scheme is connected to the value γ = 1
and the Crank-Nicholson scheme to the value γ = 1/2.

5.2.4 Spatial Terms

The selection of the computational point P in the centroid of the discretisation
cell is not random. Using the assumption of the solution linear variation 5.2 and
definition of the centroid 5.1, following applies for the control area A around the
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point P ∫
AP

φ(x) dA

=
∫

AP

[
φP + (x − xP ) · (∇φ)P

]
dA

= φP

∫
AP

dA +
[∫

AP

(x − xP ) dA

]
  

area centroid

·(∇φ)P

= φP AP

(5.6)

The discretized divergence operator is a powerful tool necessary for the discreti-
sation of convective and diffusive terms. The transformation is based on the
Gauss divergence theorem, Appendix B.2.1. Considering that the control area A

is bounded by the set of edges e and using the linear variation assumption 5.2, the
discretisation of the divergence operator follows∫

AP

∇• (a) dA

=
∮

∂AP

a · l ds

=
∑

e

(∫
e
a · l ds

)

=
∑

e

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
[∫

e
l ds

]
· ae +

[∫
e
(x − xe)l ds

]
  

line centroid

: (∇a)e

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
=
∑

e

l · ae

(5.7)

where a is a general vector value and the subscript e denotes the value in the
middle of the edge.

The discretisation of the gradient operator, needed for example by the pressure
gradient, follows the same method as the discretisation of the divergence operator
and yields ∫

AP

∇(a) dA

=
∮

∂AP

a l ds

=
∑

e

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
[∫

e
l ds

]
ae +

[∫
e
(x − xe)l ds

]
  

line centroid

·(∇a)e

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
=
∑

e

l ae

(5.8)
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Figure 5.3: Edge flux

5.2.4.1 Convective Term

The convective term is discretized with the help of the discretized divergence
operator 5.7 ∫

AP

∇• (ρuφ) dA

=
∑

e

l · (ρuφ)e

=
∑

e

l · (ρu)eφe

=
∑

e

Eφe

(5.9)

where E denotes the mass flux through the edge e.

The edge flux E defined as
E = l · (ρu)e (5.10)

can be geometrically interpreted as a projection of (ρu)e on the length edge vector
l, see figure 5.3. Thus the edge flux describes a net flow through the edge and its
sign decides between an inflow and an outflow.

The flux calculation is using the Flux Corrected Transport (FCT) technique by
Boris and Book[12] with improvements by Zalesak[122].

The calculation of the edge value φe depends on convective differencing schemes.
The FA differencing schemes have to pay a special attention to the surface curva-
ture between neighbouring control areas, see figure 5.4.

Assuming the linear variation of φ between owner cell centre P and neighbour cell
centre N , the edge value φe can be calculated using the mid-point rule as

φe = exφP + (1 − ex)φN (5.11)

where the edge interpolation factor ex is defined as the ratio of distances eN and
PeN

ex = eN

PeN
(5.12)
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Figure 5.4: Finite Area: Edge interpolation

Note that denominator distance is accounting for the curvature opposite to the
denominator distance PN , depicted in the green colour, used in the FV discreti-
sation. However, it should be mentioned that the curvature treatment has no
influence in the case of the rotating disc that is placed in a single plane.

The differencing scheme using the equation 5.11 for the edge values is called Cen-
tral Differencing.

On other side not every differencing scheme is influenced by the surface curvature.
As an example can be mentioned the Upwind Differencing where the edge value
depends on the flow direction described by the edge flux E

φe =

⎧⎪⎨⎪⎩φP for E ≥ 0
φN for E < 0

(5.13)

5.2.4.2 Diffusive Term

The transformation of the diffusive term follows the convective one. Applying the
discretized Gauss divergence theorem 5.7, the diffusive term is discretized as∫

AP

∇•

(
ρΓφ∇φ

)
dA

=
∑

e

l · (ρΓφ∇φ)e

=
∑

e

(ρΓφ)el · (∇φ)e

(5.14)

The challenging part of the discretized diffusive term is the evaluation of the term
l · (∇φ)e. The calculation is straightforward for the orthogonal meshes

l · (∇φ)e = ∥l∥ φN − φP

PeN
(5.15)
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where PeN describes the distance along the curved surface between owner and
neighbour control areas. The curvature as such is not present in the FV method
where the distance would be just PN along the straight line.

Unfortunately the orthogonality is not guaranteed in the most cases and specific
treatment is necessary. The main idea in dealing with non-orthogonal meshes
is splitting the orthogonal and non-orthogonal contributions into separate terms.
Many possibilities exists for the contribution decomposition.

5.2.4.3 Source Term

The source contains all other terms which could not be expressed as temporal,
convective or diffusive. The discretisation of the source terms have to be done on
the case-to-case basis. In every case, the source term has to be linearised∫

AP

Sφ(φ) dA =
∫

AP

[
Sa(φ) + Sb(φ)φ

]
dA

= Sa(φ)AP + Sb(φ)φP AP

(5.16)

5.2.5 Solving of Discretized Equations

The presented discretisation applied on partial differential equations of a real prob-
lem leads to complex algebraic expressions based on present terms and selected
differencing schemes. However, the main purpose of the numerical solution is the
calculation of a new value of the scalar property at the centroid of the discretisa-
tion cell, that is φn

P . The terms connected to edges between control areas, the edge
values φe and the edge gradients (∇φ)e, are all dependent on the value of the edge
owner cell φP and its neighbour φN . Therefore the discretisation of the general
transport equation has for every single discretisation cell AP a general form

aP φn
P +

∑
N

aNφn
N = RP (5.17)

where aP and aN are the cell and its neighbours coefficients and RP is the cell
source term.

As the value of discretisation cell φP itself is dependent on the values of its sur-
rounding φN , a linear system of equations

Aφ = R (5.18)

where A is a sparse matrix with the diagonal coefficients aP and the off-diagonal
coefficients aN , φ is the vector of unknowns and R is the source term vector, can
be formed.

The linear equation system is usually asymmetric in the presence of the non-linear
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convective term, but can as well be symmetric if the non-linear convective term is
missing or it is using centred differencing scheme.

The solution of the linear equation system in OpenFOAM R⃝ is found by iterative
linear equation solvers. The solvers provided in the OpenFOAM R⃝ for symmetric
systems are, for example, the Preconditioned Conjugate Gradient (PCG) and the
Diagonal Incomplete-Cholesky (DIC) solvers. The Preconditioned Bi-Conjugate
Gradient (PBiCG) solver or the Gauss-Seidel smoother can be applied on the
asymmetric systems. Lately, the Geometric-Algebraic Multi-Grid (GAMG) solver
is catching a lot of attention especially in the solution of problems in the order of
hundred thousands unknowns2.

5.3 Solver Implementation

The TFA solver was implemented in the foam-1.6-extend OpenFOAM R⃝ distri-
bution using the FA code base. The base stock solvers used as implementation
starting points were surfactantFoam, that demonstrates the FA technique, and
shallowWaterFoam, that has a roughly similar underlaying albeit FV model.

The TFA solver code ultimately grown up into full-fledged object-oriented tran-
sient incompressible solver for the thin film simulations on the rotating disc. For
an illustration, the resulting TFA solver contains 2298 lines of C/C++ code while
shallowWaterFoam has 221 and surfactantFoam encompasses only 131 lines of
the C/C++ code.

The discretisation of the TFM equations in the OpenFOAM R⃝ will be presented
at first. The discussion of the important topics that are either specific to the
FA method or to the TFA solver, namely the non-linearity of the momentum
equation, the calculation of edge flux, the pressure-velocity coupling and the inlet
implementation and treatment, follows.

5.3.1 Discretisation of the Thin Film Model

The discussed FA discretisation technique has to be applied on the TFM equations
in order to transform them into linear equation systems suitable for the numerical
solution.

Recalling the TFM equations

∂h

∂t
+ ∇• (hu) = 0 (5.19a)

2Solution unknowns are connected to the centroids of the discretisation cells thus one can
link their amount to the number of the mesh cells.
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∂

∂t
(hu) + ∇• (huu + K) = −h

ρ
∇p + ∇• (hν∇u) − τz|z=0 (5.19b)

where K is the advective term dependent on the velocity profile and p being the
pressure solution, the discretisation is effectively performed by the OpenFOAM R⃝

as presented in the following code fragments:

TFA solver: continuityEqn.H; some variable names changed

1 // continuity equation
2 faScalarMatrix hEqn
3 (
4 fam :: ddt(h)
5 + fam :: div(E, h)
6 );
7

...
8 solve(hEqn);

TFA solver: momentumEqn.H; some variable and function names changed

1 // momentum equation
2 faVectorMatrix UEqn
3 (
4 fam :: ddt(h, U)
5 + fam :: div(fac :: interpolate (h) * E, U)
6 + velocityProfile -> convectionK ()
7 ==
8 fam :: laplacian (nu * h, U)
9 - (nu / (h + SMALL_LENGTH )) *

10 velocityProfile -> zDerivative (0)
11 );
12

...
13 solve(UEqn == -(h / rho) * fac :: grad(p));

The OpenFOAM R⃝ code surprises by its elegance and a powerful connection to the
original partial differential equation.

Note the temporal derivative of the film height h in the continuity equation stem-
ming from the TFM transformation. The film height h naturally links the pressure
solution into the continuity equation.

5.3.2 Non-Linearity of the Convective Term

The non-linearity of the convective term in the momentum equation 5.19b poses a
problem. The discretisation of the term using equation 5.9 would yield squares of
mean velocities3 and therefore would be non-linear. The non-linear terms cannot

3The term velocity and mean velocity might be interchanged freely in the context of the TFA
solver.
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be solved by linear equation solvers. Two options suggest themselves–a computa-
tionally expensive non-linear equation solver or a linearisation of the term prior
to numerical solution.

The linearisation treatment is focused on the dealing with the edge flux E so that
the squares of unknown mean velocities are avoided. This can be achieved by use
of the already known edge flux from the previous time step under assumption that
mean velocity solution does not change much

u u uo (5.20)

so that the convective term discretisation follows∫
AP

∇• (huu) dA

u
∑

e

l · (huou)e

=
∑

e

l · (huo)eue

=
∑

e

Eoue

(5.21)

It is obvious that using edge flux delayed in time by the time step ∆t has no effect
on steady-state solutions. The situation is a bit different for transient solutions
though. If the size of the time step induces changes in the mean velocity solution,
either an increased number of iterations over the linearised non-linear terms or
the smaller time step will improve the solution accuracy.

5.3.3 Calculation of the Edge Flux

The calculation of the edge fluxes of TFA solver is slightly different due to the
TFM momentum equation form containing the film height h.

The derivation of the flux expression starts with a semi-discretized form of the
momentum equation as suggested by Rhie and Chow[88]

aP uP = H(u) − h

ρ
∇p (5.22)

where the pressure gradient is not discretized yet. The equation is achieved by
discretisation of the integral form of the momentum equation and dividing by the
discretisation cell areas so the cell coefficients can be interpolated to the cell edges.

The operator H accounts for the convective term, the diffusive term and all source
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terms including the source part of the transient term

H(u) = −
∑
N

aNuN + uo

∆t
(5.23)

The mean velocities at the discretisation cell edges can be expressed as the edge
interpolates of the manipulated equation 5.22

ue =
(

H(u)
aP

)
e

−
(

h

ρaP

)
e

(∇p)e (5.24)

The edge flux E defined by 5.10 is then be evaluated as

E = l · ue = l ·

⎡⎣(H(u)
aP

)
e

−
(

h

ρaP

)
e

(∇p)e

⎤⎦ (5.25)

and can be seen in the following code fragment in-between the momentum equation
solution and the continuity equation solution:

TFA solver: continuityEqn.H; some variable names changed
1 const areaScalarField ap = UEqn.A();
2 const areaVectorField HU = UEqn.H();
3

4 U = UH / ap; // momentum approximation
5

6 E = (fac :: interpolate (U) & aMesh.Le())
7 - fac :: interpolate (h / (rho * ap)) * fac :: lnGrad (p)
8 * aMesh.magLe ();

5.3.4 Pressure-Velocity Coupling

The TFM equations show a dependency of the film height h on the mean velocity u
and vice versa. Considering that the pressure solution 4.37 is a function of the film
height, the classic naming pressure-velocity coupling will be used. The coupling
between continuity and momentum equations requires a special treatment.

The first option is a simultaneous solution of coupled equations as presented in
the works of Caretto et al.[18] or Vanka[106]. The second option, called a segre-
gated approach, solves the coupled equations sequentially one after another and
gained huge popularity as it needs much less computational resources. The typ-
ical segregated algorithm for steady-state problems is the Semi-Implicit Method
for Pressure Linked Equations (SIMPLE) by Patankar[79] and its derivations.
Transient problems are better served with the segregated Pressure Implicit Split
of Operator (PISO) algorithm introduced by Issa[47, 48]. Further details on the
PISO algorithm can be found in the work of Oliveira and Issa[80].

65



CHAPTER 5 Thin Film Approximation

The TFA solver structure is a projection of the pressure-velocity coupling. Because
TFA solver is oriented on transient problems, the PISO algorithm modified for the
TFM equations was selected for its implementation:

Algorithm: PISO algorithm in TFA solver

begin Momentum predictor
Solve the momentum equation using the previous time step pressure solution
po and the previous time step edge flux Eo. The result is an approximation
of the mean velocity u.

for number of corrections do
begin Pressure solution

Calculate edge fluxes E using the mean velocity u to assemble the H(u)
term.

Solve continuity equation. The result is the film height estimate h.
Calculate the pressure solution p based on the film height estimate h.

begin Explicit velocity corrector
Correct the mean velocity u using the pressure solution.

The velocity correction consists of two parts–the explicit correction based on the
pressure gradient ∇(p) and the implicitly transported influence of corrections of
neighbouring mean velocities, the H(u) term.

The later, H(u) term, contains coefficients dependent on the velocity fluxes due
to the linearisation of the convection term. It would be possible to additionally
recalculate these coefficients as the new set of conservative fluxes is obtained during
the pressure solution. But this is not done in OpenFOAM R⃝ and coefficients are
recalculated first in the next momentum predictor step. The reasoning behind
is the higher emphases on the pressure-velocity coupling as on the non-linear
coupling.

The algorithm is not under-relaxing solution of the solved equations and is bound
to small Courant number, Appendix B.1.3, (C < 1). The number of correction
loops suggested by Issa is 2.

The algorithm has an additional feature in avoiding the pressure checker-board
patterns present in the collocated meshes, reported by Versteeg and Malalase-
kera[107] or Ferziger and Perić[31], due to the film height h being solved at the
centroid of the control area while the velocity fluxes E are solved at control area
interfaces, the edges.
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5.3.5 Outlet

The physical domain boundary coincides with the edges of the computational
domain. These edges form a computational domain boundary. It is here, at
the computational boundary edges, where the boundary conditions have to be
prescribed.

The physical boundary condition at the outside edge of the disc is an outlet. The
associated numerical boundary condition for both continuity and momentum equa-
tions at the outlet is a Neumann, or fixed gradient, boundary condition prescribing
a zero gradient value.

The fixed gradient boundary condition is implemented as an inner product of the
gradient and the outward pointing unit normal at the boundary edge b(

l
∥l∥

· ∇φ

)
b

= gb (5.26)

where gb represents the gradient value at the boundary edge b.

5.3.6 Inlet

So far the other physical boundary condition, an inlet, was not mentioned. The
inlet brings the fluid flow on the disc. Two options for the inlet implementation
were considered in the case of the TFA solver due to the requirement of the
dynamic inlet.

The first possibility is a classic approach of the inlet implementation in the form
of the computational domain border, typically associated with a Dirichlet, or fixed
value, numerical boundary condition prescribing the velocity. That would require
an introduction of the computational domain border in the inlet shape of the
inlet, basically a cut-out, into the computational mesh. The advantage would be
an alignment of border edges with the inlet shape. However, the disadvantage
would be a huge computational overhead of the mesh manipulation imposed on
the solver as the inlet will change its position.

The second option is a direct manipulation of the solution in the selected discreti-
sation cells of the inlet area prescribing the solution achieved by other means. The
disadvantages are an non-sharp inlet resolution and reliance on others means for
the inlet solution, for example 3D VoF simulation. The advantage is a dynamic
inlet implementation without mesh manipulation.

Considering that the TFA solver is focusing on the high-performance, the sec-
ond option was selected for the implementation. Therefore there is no numerical
boundary condition at the inlet in the classical sense.

An important detail has to be pointed out yet, the influence of the surrounding
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Figure 5.5: Inlet: Real inlet geometry

fluid film on the inlet flow. In reality there is a feedback from the film flow into
the inlet as both flows interact in the impingement area. However, that is not
the case in the current implementation. It is assumed that the inlet influence is
dominant and the film flow influence on the inlet can be neglected.

5.3.6.1 Inlet Discretisation

The inlet is thought to have a circular shape, an approximation of the impinging
jet contact area or a disc collar, defined by its centre point I and radius r, see
figure 5.5.

The inlet area is a set of inlet control areas AP whose centre points P lay within
the inlet circle

∥P − I∥ < r (5.27)

The inlet control areas are a subset of the existing FA solution domain discretisa-
tion and can be easily selected or deselected during the runtime.

The edge that is connected to only one inlet control area is called a border edge
eb. The inlet border is a set of all border edges. The control area that contains at
least one border edge is called a border control area Ab.
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5.3.6.2 Prescribed Inlet Solution

The solution in the inlet area has to be prescribed by other means, for example
by the 3D VoF simulation of the impingement or by measurements, as it cannot
be resolved by the TFM model.

In order to prescribe the solution φ at the inlet control area AP to the inlet value
φI , the discretized general transport equation 5.17 of every discretisation cell AP

in the inlet area is manipulated into the form

aP φn
P = RP

RP = aP φI

(5.28)

where aP is the diagonal coefficient of the A matrix in the linear system of equa-
tions 5.18 and RP is the cell source term.

Because the value of the discretisation cell φP itself depends on the values of
its surrounding φN , the discretisation cells AP at the inlet cells surrounding are
corrected by removal of the inlet cells’ influence

aP φn
P +

∑
N

aNφn
N = RP −

∑
I

aIφI (5.29)

where I denotes the neighbouring cells belonging to the inlet and aI is the inlet
cell coefficient.

The procedure effectively sets the value of the solution in the control area centroid
and removes the control area corresponding equations out of the linear equation
system. As a result, only the inlet border control areas Ab have an influence on
the solution. The inner inlet cells are for the film solution irrelevant.

5.3.6.3 Mass Flow Rate Correction

One of the disadvantages of the selected inlet implementation is the non-sharp
inlet border. The circumference of the circular inlet differs from the inlet border
length along the border edges eb what leads to the discrepancy between expected
and effective mass flow.

The mass flow rate through the inlet border QI is given by a sum of mass flow
rates through the inlet border edges

QI =
∑
eb

E(h)eb
(5.30)

where film height h is interpolated on the border edge.

The mass flow rate correction factor corrQ in the inlet area is then a ratio of the
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Figure 5.6: “Crown cap”

expected mass flow rate Q and the effective inlet flow rate QI

corrQ = Q

QI

(5.31)

The correction factor is 1, if the expected and effective flow rates are equal. If
the effective flow rate is higher as the expected one, the correction factor is < 1,
otherwise it is > 1.

The flow rate correction factor corrQ is applied to the mean velocity u in all control
areas AP in the inlet area

ucorr
P = corrQ uP (5.32)

where the superscript corr denotes the corrected value in the same time level.

5.3.6.4 “Crown Cap”

Another negative effect stemming from the non-sharp inlet border is a misalign-
ment of the inlet border edges eb against the circular inlet. The inlet border
misalignment contributes to a higher non-orthogonality in the numerically sensi-
tive area and introduces an additional radial displacement error, see figure 5.6.
The non-sharp inlet border resemblance to a crown cap named the problem.

The edge correction factor corrr of the radial displacement error is defined by a
ratio of the circular inlet radius r and the distance, also called edge-to-inlet radius,
between the edge centre and the inlet centre I as

corrr = r

∥re∥
= r

∥e − I∥
(5.33)
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If the edge centre is placed on the inlet circle, the correction factor is 1. The edge
centre outside of the circular inlet has the correction factor < 1 and inside > 1.

The edge correction factor corrθ of the edge non-orthogonality evaluates the angle
θ between the edge length vector l and the edge-to-inlet vector re

corrθ =
⏐⏐⏐⏐⏐ re

∥re∥
· l

∥l∥

⏐⏐⏐⏐⏐ (5.34)

The correction factor is 1, if the edge is orthogonal toward the inlet outflow,
otherwise it is < 1.

The edge correction factors evaluated at the border edges eb have to be applied to
the mean velocities u stored at the centroids P of the inlet border control areas
Ab. Further it has to be remembered that every border control area Ab has at
least one border edge eb.

Therefore, the edge correction factors are applied proportionally to the number of
the border edges eb to the every border control area Ab in the inlet

ucorr
P =

[
1 +

∑
eb

(corrr corrθ bvf − 1)
Neb

]
uP (5.35)

where the superscript corr denotes the corrected value in the same time level, Neb

is the border edge count of the corrected border area Ab and the correction is
scaled by an empirical boundary velocity factor bvf.

An uncorrected flow around the inlet is full of inhomogeneities in the flow field, see
figure 5.7. The higher velocities at the inlet boundary areas are directly connected
to the increased downwind film heights. The inhomogeneity in the inlet border
velocities along the inlet edge can be clearly observed. These numerical artifacts
strongly distort the solution and lead to an unrealistic form of the hydraulic jump.

The application of the border edge misalignment correction improves the situation
a little bit, see figure 5.8. In this case the empirical velocity boundary factor bvf
was set to neutral value of 1, what leaves the correction only on the correctors
corrr and corrθ. The velocities around the inlet border are more homogeneous
as before and some of the flow artifacts, especially on the inlet right side, are
nearly gone. The hydraulic jump still shows strong distortion but its peak value
is already lower opposite to the uncorrected flow.

The “crown cap” correction is going the right direction; however, its magnitude is
not fitting the problem. The two presented cases illustrate the motivation for the
introduction of the empirical factor bvf that represents an unknown dependency
in the correction scaling.

Increasing the boundary velocity factor bvf to value 2.5 removes the majority of the
artifacts, see figure 5.9. The hydraulic jump has no unrealistic peaks anymore and
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Figure 5.7: “Crown cap” (uncorrected): Strong flow artifacts and inhomogeneities
induced by the misalignment of the inlet border edges against the circular inlet in
its uncorrected form

Figure 5.8: “Crown cap” (undercorrection): Neutral value of bvf = 1 leaves the
correction only on the non-orthogonal and radial correction factors; artifacts and
flow inhomogeneities are still present albeit weaker
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Figure 5.9: “Crown cap” (correction): Balanced correction factor bvf = 2.5 prop-
erly corrects the flow rate of misaligned border edges and removes the majority of
flow artifacts

Figure 5.10: “Crown cap” (overcorrection): High correction factor bvf = 5 in-
troduces new extremes into the inlet border area and induces new artifacts and
inhomogeneities back into the flow
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forms a rather uniform wave in the flow. The inlet surrounding has uniform film
height without induced flow arms. Very noticeable is the change of the inlet border
velocities which are very even. Note the sudden increase in the velocities of the
second inlet cell row just behind the inlet border cells. It should be remembered
that only the cells in the inlet border area influence the outside solution as the
inner cells are removed from the linear equation system.

A further increase of the empirical factor bvf to value of 5 does not bring an
improvement but new artifacts. The inlet border area suddenly contains new
velocity extremes and the second row of the cells just behind the inlet border cells
shows an amplification of the previous extreme velocity values. The hydraulic
jump develops a new peak in the location of the hydraulic jump low point in the
uncorrected case. The inlet surrounding shows new clearly visible flow arms.

The observations suggest that the boundary velocity factor bvf might be connected
to the mesh cell size or there is a missing scaling factor in the radial error correc-
tor corrr that manifests itself through the pulling of extremes towards the inlet
centre. The bvf factor could be, for example, linked to the ratio of inlet radius
and diameter of a circular approximation of the mean cell size. However, for the
time being the boundary velocity factor bvf is realised as a case parameter only.

5.3.6.5 Inlet Profiles

In reality, the inlet solution varies dependent on the real inlet flow. The inlet
flow is never regular. It is influenced by interactions with the film flow and its
irregularities are further enhanced by the inlet’s physical imperfections. Thus
the real distribution of the inlet solution values φI would have to be generally
prescribed in every inlet control area individually.

However due to the implementation of the fixed solution values in the inlet area,
the inner inlet control cells have no influence on the film solution. The film flow
is effectively controlled only by the prescribed solution values in the inlet border
control areas Ab. The distribution of the inlet values φI along the inlet border is
then called an inlet profile. The numerical studies can often use a simplification
of the real velocity distribution, an inlet profile model.

The inlet profile models always calculate the expected inlet values φ on the circular
inlet and map them on the the inlet values φI through the inlet area, both in the
border and the inner cells. Due to the displacement of the centroids P of the
inlet control areas AP against the circular inlet, the calculated values φ are simply
scaled by their control area centroid relative radial position to the inlet centre I

φI =
(

∥P − I∥
r

)
φ (5.36)
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The scaling is applied, out of simplicity, to all inlet control areas. As a result of
the scaling, the centroid coincident with the inlet centre point will have prescribed
the value 0 and values linearly increase towards the circular inlet, where they have
the calculated value φ.

In fact, the handling of the inlet values φI in the inlet area could already caught
an attention in the figures illustrating the “crown cap” problem, where the most
simple inlet profile model with the constant inlet value along the inlet border, so
called constant inlet profile, is used.

The constant inlet profile model is defined by the expected flow rate Q and the
film height h, the velocity at the circular inlet is given by

u = Q

2πrh
(5.37)

The model is suitable especially for central impingement cases where a solution
can be prescribed based upon a 2D axisymmetric VoF simulation. Surprisingly
enough, such a simplification is often sufficient even for general cases with an
excentric impingement.

The inlet profiles can have more complicated forms and even mimic an influence
of the film flow on the inlet border area by varying the inlet solution values along
the inlet border.

A linear inlet profile family varies either the expected inlet film height h or the
expected inlet mean velocity u values while keeping the other expected inlet value
constant. The implementation of the linear inlet profile takes the constant inlet
profile as a starting point. A tilting axis t passing through the inlet centre I with
a defined offset angle against the x-axis is placed in the constant inlet value plane.
The plane of the constant inlet values is then tilt around the tilting axis t by
predefined slope from the interval ⟨−1, 1⟩.

An example of the linear height inlet profile is given in the figure 5.11. The
expected mean velocity inlet value u is kept constant and calculated via equation
5.37. The tilting axis t is passing through the inlet centre point and is parallel to
the x-axis having offset angle of 0◦. The expected inlet film height values laying
on the intersection of the tilting axis and the circular inlet have the prescribed
value of the film height h and are linearly rising along the plane toward the inlet
south to the inlet value of (1+slope)h and falling along the plane toward the inlet
north to the inlet value (1 − slope)h. The inlet values plotted along the circular
inlet circumference illustrate the linearity of the inlet value scaling.

The linear velocity inlet profile is presented in the figure 5.12. It is the expected
film height h that is kept constant along the circular inlet in the case of the
linear velocity profile. The tilting axis t is placed as in the example before passing
through the circular inlet centre while being parallel to the x-axis, that is the offset
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(a) Linear inlet height profile: Q = 1.5lpm, h = 0.5mm, offset = 0◦, slope = 0.5
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Figure 5.11: Linear inlet height profile
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(a) Linear inlet velocity profile: Q = 1.5lpm, h = 0.5mm, offset = 0◦, slope = 0.5
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Figure 5.12: Linear inlet velocity profile
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(a) Radial inlet height profile: Q = 1.5lpm, h = 0.5mm
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Figure 5.13: Radial inlet height profile
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(a) Radial inlet velocity profile: Q = 1.5lpm, h = 0.5mm
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Figure 5.14: Radial inlet velocity profile
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angle is 0◦. The expected mean velocity u varies along the circular inlet with its
maximum at the inlet south and the minimum in the north. The expected mean
velocity u values at the intersection of the tilting axis t with the circular inlet are
calculated using the equation 5.37.

The last implemented inlet profile is a radial inlet profile. The radial inlet profile
model allows to prescribe arbitrary expected values φ along the inlet border in
the form of a table of tuples (<angle>, <value>). The table inlet values are then
interpolated by a piecewise linear interpolation. It is important to note that both
expected inlet values, the mean velocity u and the film height h, are prescribed
simultaneously, thus the expected inlet flow rate Q has to be calculated.

There is an example of the radial height inlet profile at the figure 5.13. The
expected mean velocity u is constant with the value of 1.5m s−1. The table values
for the expected inlet film height h are marked in the picture along the inlet border.
The north and south film height h share the value of 0.5mm. The maximal film
height h of 0.75mm is in the west of the inlet and the minimum is on the opposite
side at the east with the value of 0.25mm. There is a noticeable deformation of the
film flow height connected to the inlet height variation, especially in the western
half of the inlet area.

The last example, see the figure 5.14, presents a radial velocity inlet profile that
is mimicking the interaction of the fluid flow with the inlet. The expected film
height h is kept constant, the expected mean velocity u is being varied along the
circular inlet with the table values marked in the picture. Note the lower mean
velocity u in the south-east inlet area as the inlet outflow gets slowed down in
the hydraulic jump while in the north-west of the inlet the outflow is having its
maximum. The shape and the position of the hydraulic jump is clearly influenced
by the inlet outflow, confirming that the inlet profiles can be used to model the
film flow influence in the inlet area.

5.4 Computational Mesh

An influence of a computational mesh selection cannot not be underestimated.
Unfortunately, it is not easy nor straightforward task. It is much more simple to
recognise a bad mesh as to judge a good one. The bad mesh is usually a black-
white decision. The judgement of a good mesh is connected to all shades of grey.
There exist good meshes and better meshes.

Four different Cartesian computational meshes have been tested during the TFA
solver development. The meshes have been created on the basis of a volumetric
geometry model. This is a necessary evil as the FA code base uses a surface patch
of a volumetric mesh in order to construct its native FA computational mesh. The
mesh construction itself is therefore dictated by the need of a single high-quality
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Figure 5.15: Mesh metrics

Mesh Cell count
4 Non-Orthogonality Skewness

Average Maximal Maximal
Circle 7168 7.6 36.02 0.565
Pave 15 423 2.952 19.25 0.554

Delaunay 14 471 23.374 61.05 1.521
Polyhedral 7605 9.668 27.077 0.276

Table 5.1: Mesh topologies and their quality criteria

surface patch and only the selection of the surface mesh topology is of importance.

A restricting side-effect of the FA workflow in the OpenFOAM R⃝ are limited tools
for the evaluation of a priori geometric mesh quality of the FA meshes. The
only real option is a utility checkMesh that works with the volumetric meshes
and reported criteria have to be filtered out to those one relevant to the surface
meshes. The selected criteria to describe the geometric mesh quality are the mesh
non-orthogonality and skewness, see figure 5.15.

The mesh non-orthogonality measures the angle between the line connecting two
cell centres and the normal of their common interface. The mesh non-orthogonality
introduces an error into the evaluation of the cell interface gradients. Two non-
orthogonality measures were taken, the average and the maximal mesh non-
orthogonality.

The skewness criterion measures the distance between the intersection of the line
connecting two cell centres with common interface and the common interface cen-
tre point. Large skewness negatively influences the accuracy of the interpolation.

The used surface meshing topologies–a structured circle topology, a non-structured
pave topology and a Delaunay triangulation–gave the name to the resulting mesh-
es. The fourth mesh, a polyhedral mesh, was created from the hexahedral mesh by
forming polygons around its nodes using the polyDualMesh utility. The resulting
polyhedral mesh has a honeycomb like structure. The computational meshes and
their selected geometric properties are summarised in the table 5.1. The meshes
characteristic features are illustrated in the figure 5.16.

4The cell count differences between meshes are caused by equalising of an edge size used by
meshing algorithm.
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(a) Circle topology (b) Pave topology

(c) Delaunay triangulation (d) Polyhedral mesh

(e) Polyhedral mesh in detail

Figure 5.16: Meshes

82



5.4 Computational Mesh

(a) Circle mesh solution (b) Pave mesh solution

(c) Delaunay mesh solution (d) Polyhedral mesh solution

Figure 5.17: Mesh artifacts: Same excentric case using different meshes

It is very important to point out that the mesh quality cannot be judged based
on its geometric quality only. While the geometric quality provides a general
guidance on the mesh, it might say a little about the mesh connection to the
solution accuracy. Thus mesh has to be evaluated to make sure it leads to realistic
solutions.

A single excentric simulation case was used in order to compare solutions in the
numerically sensitive inlet area on all four meshes, see figure 5.17. The velocity flow
field shows strong numerical artifacts at the interface of two fluid flows, the film
flow interacting with the inlet outflow, in the case of three meshes. The circle and
pave topology both lead to highly distorted solutions at the inlet south area as the
flow is highly non-orthogonal against the cell edges. The Delaunay triangulation
due to a marginally better alignment of the inlet cells towards the circular inlet
is able to produce differently shape solution in the inlet south area that is more
realistically resolving the flow fronts. That might be surprising considering its
much worse geometric properties. Only the polyhedral mesh is able to capture
uniformly distributed velocities at the flow fronts. The cells of the polyhedral mesh
have a favourable shape approximating a circle that keeps them aligned against
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Case ∆r ν Q ω
[mm] [m2 s−1] [lpm] [rpm]

3a 0 2.87 × 10−6 1.5 500
3b 30 2.87 × 10−6

1.5 5003c 1 × 10−6

3d 50 2.87 × 10−6
1.5 5003e 1 × 10−6

Table 5.2: Case definitions for TFA

any flow direction. This makes the polyhedral mesh superior for a dynamically
moving inlet and the mesh of choice.

5.5 Simulations

The validation of the TFA solver is done by a comparison of the TFA solution
against 3D VoF solution. The comparison is realised on five simulation cases that
cover three different impingement regimes, see the table 5.2.

The first case, case 3a, represents a central impingement example. The cases 3b
and 3c are excentric cases with a radial excentricity ∆r = 30mm that still allows
a full disc coverage with the fluid film. That last two cases 3d and 3e are having
a strong excentricity ∆r = 50mm that causes a dry spot formation at the middle
of the disc.

All cases use the same volumetric flow rate Q and rotational speed ω with both
parameters mimicking a configuration used in a semiconductor industry. The
fluid viscosity is being varied in the excentric cases. The kinematic viscosity
ν = 1 × 10−6m2 s−1 corresponds to water while the value ν = 2.87 × 10−6m2 s−1

refers to an etching solution Spinetch D reported by Staudegger[99].

The 3D VoF simulations, courtesy of TU Graz, were conducted using the ANSYS
Fluent 12.1.2 software. The volumetric computational mesh had approximately 5
million cells in order to resolve the thin film features. The inlet in the 3D VoF
simulation is static. The simulation was parallelised on the 4 CPU cores of the
Intel Core i7 Bloomfield-family and simulation time for 1s of the process took
about 30 days.

The 2D TFA simulations were performed with the described TFA solver imple-
mented in the OpenFOAM R⃝ distribution foam-1.6-extend. The FA polyhedral
surface mesh had in total of 36 886 cells. The inlet was static, a limitation imposed
by 3D VoF simulation. The inlet used a constant inlet profile with a prescribed
solution of the film height h = 0.5mm based on the 3D VoF simulation itself
and the defined volumetric flow rate Q. The simulation was running on a single
CPU core of the Intel Core i7 Bloomfield-family. The simulation time for 1s of
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the process was about 2 hours; a speed-up of 1440 is achieved with the 2D TFA
solver.

The key characteristics for comparison purposes are the film height h and the shear
stress τ at the disc bottom. 3D VoF and 2D TFA solutions of both characteristics
are presented in instantaneous contour plots at time t = 1s. The impinging jet
has xz- and yz-planes placed through after ward and time averaged values of both
characteristics are plotted on the planes.

5.5.1 Central Impingement

The first case 3a represents a central impingement. The 2D TFA solution, see the
figure 5.18, shows a hydraulic jump formation in the close vicinity of the imping-
ing jet. Both solutions–3D VoF and 2D TFA–develop artifacts in the hydraulic
jump formation in a form of “rose petals”. These artifacts are connected to the
misalignment of the inlet cells. An another typical artifact, a very fine form of
flow arms, can be noticed in the film height relief.

Comparing the film height and shear stress contour plots of the 3D VoF and 2D
TFA, both solutions are very similar. The striking difference is only the surface
waviness of the 3D VoF solution that cannot be resolved by the 2D TFA method
due to the suppressed cross flow in the normal direction.

The observed surface waviness projects as well into the evaluation of the xz- and
yz-plane cuts through the impinging jet. The 2D TFA solution is surprisingly well
capturing the thin film thickness h even in the impingement area where the solution
is expected to be invalid. A similar observation can be done in the prediction of
the shear stress τ . Note the shaded zone of the plots depicting the area with a
prescribed solution.

5.5.2 Excentric Impingement

5.5.2.1 Full Disc Coverage

The cases 3b and 3c represent an excentric impingement with a moderate ex-
centricity. The radial excentricity ∆r = 30mm still allows a full coverage of the
rotating disc with both fluids, the etchant Spinetch D and the water.

The higher viscosity of the Spinetch D solution, the case 3b, leads to a higher
height of the hydraulic jump in the 2D TFA approach, see the figure 5.21. The
hydraulic jump forms its peak on the right side of the inlet outflow against the
disc rotation.

Comparisons of the 3D VoF and the 2D TFA solutions show a good agreement of
the film features. The height extremes in the hydraulic jump predicted by the 3D
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(a) Film relief (2D TFA): z-axis scaled 30×

(b) Film height (3D VoF) (c) Film height (2D TFA)

(d) Shear stress (3D VoF) (e) Shear stress (2D TFA)

Figure 5.18: Case 3a: ∆r = 0mm, ν = 2.87 × 10−6m2 s−1, Q = 1.5lpm, ω =
500rpm; 3D VoF solution courtesy of TU Graz
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Figure 5.19: Case 3a: xz-plane through the impinging jet; 3D VoF solution cour-
tesy of TU Graz
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Figure 5.20: Case 3a: yz-plane through the impinging jet; 3D VoF solution cour-
tesy of TU Graz
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VoF method have the same location as in the 2D TFA solution, but scale. The
same applies for the shear stress that is connected to the film thickness through
the film velocity profile.

The xz- and yz-plane cuts present as well a good agreement between both, 3D VoF
and 2D TFA, approaches. Very noticeable are errors in the hydraulic jump and the
inlet vicinity which are not a surprise. Both zones generally represent phenomena
that render some of the TFM assumptions invalid as discussed previously. Still
it has to be pointed out that the mass is correctly conserved in both problematic
areas and both solutions show a very good agreement, just a bit farther from the
inlet influence.

The case variation with the lower fluid viscosity, the case 3c, can be seen in the
figure 5.24. The lower viscosity is directly connected to the lower and a bit wider
hydraulic jump solution in the 2D TFA approach. With an exception of the
hydraulic jump height extremes, both methods–the 3D VoF and the 2D TFA–
demonstrate the same flow features when comparing the film height and shear
stress contour plots.

The comparisons by the help of cutting planes confirm the observation of the very
good solution agreement seen in the contour plots. There exist only two notable
differences. The first difference is the film height prediction in the xz-plane cut
on the right side of the film height plot, see the figure 5.25. The area with the
error is influenced by the inlet outflow and is marked by the missing feedback to
the inlet itself. The second solution discrepancy is the hydraulic jump visible in
the film height plot in the yz-plane cut on picture left side, see the figure 5.26.

It is assumed that errors are on the side of the 2D TFA predictions. However,
the 3D VoF prediction is rising a question if the predicted abrupt, nearly vertical,
increase of the film height and its scale is not influenced by some numerical error
as well.

5.5.2.2 Dry Spot Formation

The last two simulation cases, the case 3d and 3e, are both having an increased
radial excentricity ∆r = 50mm that leads to the film discontinuity and creates a
dry spot in the disc centre, see the figures 5.27 and 5.30. The size of the dry spot
is directly influenced by the fluid viscosity. The higher viscosity of the etchant
Spinetch D causes a bigger dry spot as the lower viscosity of the water.

There are noticeable differences between both methods–3D VoF and 2D TFA–in
the dry spot prediction. The 3D VoF predicts bigger and much more pronounced
dry spots opposite to the 2D TFA method. This should not be surprising though as
the lack of one phase is naturally filled by the other phase in the 3D VoF method.
The 2D TFA method has only one single phase and the dry spot as such would
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(a) Film relief (2D TFA): z-axis scaled 30×

(b) Film height (3D VoF) (c) Film height (2D TFA)

(d) Shear stress (3D VoF) (e) Shear stress (2D TFA)

Figure 5.21: Case 3b: ∆r = 30mm, ν = 2.87 × 10−6m2 s−1, Q = 1.5lpm, ω =
500rpm; 3D VoF solution courtesy of TU Graz
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Figure 5.22: Case 3b: xz-plane through the impinging jet; 3D VoF solution cour-
tesy of TU Graz
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Figure 5.23: Case 3b: yz-plane through the impinging jet; 3D VoF solution cour-
tesy of TU Graz
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(a) Film relief (2D TFA): z-axis scaled 30×

(b) Film height (3D VoF) (c) Film height (2D TFA)

(d) Shear stress (3D VoF) (e) Shear stress (2D TFA)

Figure 5.24: Case 3c: ∆r = 30mm, ν = 1 × 10−6m2 s−1, Q = 1.5lpm, ω = 500rpm;
3D VoF solution courtesy of TU Graz
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Figure 5.25: Case 3c: xz-plane through the impinging jet; 3D VoF solution cour-
tesy of TU Graz
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Figure 5.26: Case 3c: yz-plane through the impinging jet; 3D VoF solution cour-
tesy of TU Graz
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represent a jump discontinuity in the underlaying equations. Therefore a dry spot
in the 2D TFA simulation is never really “dry” but it contains an extremely thin
fluid film that has to be interpreted as a dry spot. The 3D VoF method develops
a sharper phase interface compared to the 2D TFA method.

The film flow solutions of the case 3d, see the figure 5.27, show notable differences
in the hydraulic jump front formation. The 3D VoF film height contour plot
suggests a very thin hydraulic jump wave, in contrary to the 2D TFA solution that
predicts considerably thicker wave. The comparison of the shear stress contour
plots shows some differences especially along the the wave borders. In general, a
relatively good agreement is achieved.

The observations are confirmed by the xz- and yz-plane cuts through the im-
pinging jet. The very thin and high hydraulic jump prediction of the 3D VoF
simulation is in the strong contrast to the 2D TFA method as seen on the yz-
plane cut, see the figure 5.29. The different film height in the hydraulic jump
projects as well into the different shear stress at the same location. The areas
outside of the hydraulic jump are showing a good agreement.

The lower fluid viscosity of the case 3e, see the figure 5.30, leads similarly to
the previous cases to the wider and not so high hydraulic jump solution. The
hydraulic jump is not only considerably thicker in the 2D TFA solution opposite
to the 3D VoF method, but it is as well wider. Farther, a wavelet pattern, visible
in the film height relief, develops near to the disc edge. The wavelet pattern shines
in the shear-stress 2D TFA contour plot as the very thin film of high velocity is
connected to a very high shear stress. The size of the dry spot is due to the lower
viscosity smaller and clearly less pronounced in the case of 2D TFA simulation.

The xz- and yz-plane cuts through the impinging jet confirm the observations.
The thicker hydraulic jump of lower height predicted by the 2D TFA simulation
is in the contrast to the thin and high prediction of hydraulic jump in the 3D
VoF method, well visible on the left side of the plot in the figure 5.32. The wider
hydraulic jump prediction than introduces a bigger discrepancy into the yz-plane
cut visible from the radius of 90mm.

5.5.3 Dynamic Inlet

A specifically requested feature of the TFA solver is a dynamic inlet that can move
freely over the rotating disc surface. The inlet implementation is optimised for the
dynamically moving jet. As a result it is very simple to change the position of the
inlet within every time step. In fact, it is just a question of selecting new control
areas and fixing the solution values in them. Considering the high-performance
of the TFA solver, the dynamic inlet implementation opens a new possibilities in
the thin film simulation on the rotating disc.
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(a) Film relief (2D TFA): z-axis scaled 30×

(b) Film height (3D VoF) (c) Film height (2D TFA)

(d) Shear stress (3D VoF) (e) Shear stress (2D TFA)

Figure 5.27: Case 3d: ∆r = 50mm, ν = 2.87 × 10−6m2 s−1, Q = 1.5lpm, ω =
500rpm; 3D VoF solution courtesy of TU Graz
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Figure 5.28: Case 3d: xz-plane through the impinging jet; 3D VoF solution cour-
tesy of TU Graz
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Figure 5.29: Case 3d: yz-plane through the impinging jet; 3D VoF solution cour-
tesy of TU Graz
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(a) Film relief (2D TFA): z-axis scaled 30×

(b) Film height (3D VoF) (c) Film height (2D TFA)

(d) Shear stress (3D VoF) (e) Shear stress (2D TFA)

Figure 5.30: Case 3e: ∆r = 50mm, Q = 1.5lpm, ν = 1 × 10−6m2 s−1, ω = 500rpm;
3D VoF solution courtesy of TU Graz
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Figure 5.31: Case 3e: xz-plane through the impinging jet; 3D VoF solution cour-
tesy of TU Graz
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Figure 5.32: Case 3e: yz-plane through the impinging jet; 3D VoF solution cour-
tesy of TU Graz
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(a) Dynamic inlet at t = 1s

(b) Dynamic inlet at t = 1.2s

(c) Dynamic inlet at t = 1.4s

Figure 5.33: Dynamic inlet (1s–1.4s): ν = 1 × 10−6m2 s−1, Q = 1.5lpm, ω =
400rpm; dynamic inlet trajectory is marked with the white dashed line
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(a) Dynamic inlet at t = 1.6s

(b) Dynamic inlet at t = 1.8s

(c) Dynamic inlet at t = 2s

Figure 5.34: Dynamic inlet (1.6s–2s): ν = 1 × 10−6m2 s−1, Q = 1.5lpm, ω =
400rpm; dynamic inlet trajectory is marked with the white dashed line
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The validation of the dynamically moving inlet is not possible at the moment due
to the lack of the data to compare with. However it can be assumed that the
accuracy of the dynamic inlet solution should not deviate much from the accuracy
of the static inlet solution.

A single case with an excentric impingement is presented for an illustration of the
dynamic inlet in the figure 5.33. The picture shows series of instantaneous film
height contour plots enhanced with the fluid velocity glyphs from the start time
tstart = 1s to the end time tend = 2s. The trajectory of the dynamically moving
inlet is marked with a dashed line. The changing shape of the hydraulic jump and
the development of the dry spot in the disc centre need no additional comments.

The dynamic inlet can have defined any trajectory imposed by an industrial pro-
cess. There exist no limitations or additional assumptions regarding the inlet
trajectory. The trajectory itself is decided on the case-by-case basis. The complex
trajectories can be analysed in order to detect, for example, dry spot formations.

5.6 Summary and Discussion

An application of the TFM model on real problems, so called TFA approximation,
has been discussed. The limitations of the TFM model–the hydraulic jump and
the impingement area–were pointed out. The resulting approximation, the TFA
solution, can be still used for a study of the thin film on the rotation disc, provided
the method weaknesses are kept in mind.

The numerical FA method, a specialisation of the FV method for the film flows
on three-dimensional surfaces, used for the implementation of the TFA solver was
introduced. A short primer on specifics of the FA method, FA discretisation and
solving of the resulting linear equations was given.

The following discussion of the TFA solver implementation pointed out specific
implementation details as the handling on the non-linear convective term, the
calculation of the edge flux, the PISO-based pressure-velocity coupling and the
outlet and the inlet. Especially the inlet implementation that enables the dynamic
inlet was worked out in details.

An overview of used meshes and their selection was given. The picked computa-
tional mesh, the polyhedral mesh, showed generally least solution artifacts as its
honeycomb cells are neutral toward the flow direction.

The TFA solver was validated in comparisons of 2D TFA and 3D VoF solutions at
the end of the chapter. The 2D TFA solutions are showing a good agreement with
the 3D VoF results. The only problematic areas are the hydraulic jump and the
impingement zone, both connected to invalidated assumptions of the TFM model.

One of the 2D TFA characteristics is a very smooth solution with the lack of the
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3D VoF 2D TFA
ANSYS Fluent 12.1.2 foam-1.6-extend

mesh 5 × 106 cells 36886 cells
Intel Core i7 CPU 4 cores 1 coreBloomfield-family

1s of simulated process 30days 2h

Table 5.3: 2D TFA and 3D VoF performance

surface waviness. This is the price payed for the neglected flow in the vertical
dimension.

On the second side the 2D TFA simulation convinces with its extremely short
simulation times, see the table 5.3.

While relatively little can be done with the solution of the impingement area, the
hydraulic jump modelling can be improved with better velocity profiles of higher
polynomial order. An introduction of the following additional boundary condition

u|z=δ = 0 (5.38)

where δ is the the flow separation line, would than account for the separation
region and increase the velocity profile accuracy.

The approximation accuracy, the dynamic inlet and the little computational re-
sources needed suggest, that the 2D TFA method is a feasible alternative approach
to the investigation of the thin film on a rotating disc.
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Chapter 6

Chemistry Model

An important step in the semiconductor production process is the thinning of the
silicon wafers. The main part of the thinning is usually done by mechanical grind-
ing that leaves a rough surface. In order to achieve a higher surface quality and
removal of mechanically damaged surface layer an additional step, so called wet
chemical etching, follows. An important requirement on the wet chemical etching
step is a uniformity of the etching process which is strongly influenced by hydro-
dynamics. The numerical and experimental investigations by Kaneko et al.[53]
suggested that the wet etching process can be modelled with a great accuracy by
a diffusion-controlled chemical model. In this chapter, a simple chemistry model
for the TFM based on the work of Kaneko et al. together with results of TFA
simulations is presented.

6.1 Simple Chemistry Model

The wet etching is based on the application of an etching solution consisting
essentially of nitric acid HNO3 and a high concentration of hydrofluoric acid HF.
The two main reaction steps in the etching reaction are given by the following

Figure 6.1: Wet chemical single side etching
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reaction equations

Si + 4HNO3 → SiO2 + 4NO2 + 2H2O
SiO2 + 6HF → H2SiF6 + 2H2O

(6.1)

with the first reaction being an oxidation followed by the second reaction, a dis-
solution, as described by Schwartz and Robbins[93].

The etching rate of the presented reaction scheme is limited by the concentration
of HNO3 as the etching solution has a high concentration of HF and only a low
concentration of HNO3.

The work of Kaneko et al. suggested a simplification to the reaction model. The
reaction rate is proportional to the diffusion of HNO3 toward the surface of the
silicon wafer. Further was assumed an infinitely fast reaction as the time scale of
the reaction is small compared to the time scale of the HNO3 diffusion.

The connection of the etching rate to the mass fraction of the nitric acid HNO3

only allows to model the etching solution as a binary mixture of a solvent, the
carrier fluid, and an etching agent, the nitric acid itself. As the thin film model
imposes incompressibility and constant density ρ on the carrier fluid, the transport
of the nitric acid HNO3 can be described with a single species transport equation

∂c

∂t
+ ∇• (uc) = ∇• (D∇c) + Sc (6.2)

where D is a diffusion coefficient of the species.

The etching rate can be determined from the mass flux of nitric acid into the wafer
surface described by

jHNO3 = −ρD
∂c

∂z

⏐⏐⏐⏐⏐
z=0

(6.3)

It can be assumed that the mass flux of nitric acid HNO3 to the wafer surface
reacts in a stoichiometric proportion with the silicon Si according to the first, the
oxidation reaction 6.1. The etching rate R is than given by

R = β

(
MSi

4MHNO3

)
jHNO3

ρSi
(6.4)

where β is an empiric correction factor, MSi and MHNO3 are molar masses of silicon
and nitric acid.

6.2 Thin Film Transformation

The transformation of the species transport equation uses the same methodology
as introduced in Chapter 4.
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Figure 6.2: Concentration

6.2.1 Concentration

Before the transformation of the species transport equation, a concentration C

based on the mass fraction of nitric acid HNO3 against the inlet mass fraction has
to be introduced

C = c

cinlet
(6.5)

The concentration helps to avoid possible numerical problems in the solution of
the transport equation and simplifies the definition of the boundary conditions.

The mean concentration C, a new dependent variable in the thin film model, is
then defined as

C = 1
h

∫
h

C dz (6.6)

The mean concentration loses the concentration distribution across the film height.
Therefore a concentration profile function Ĉ has to be defined in order to determine
the concentration gradient at the wafer surface

C(t, x, y, z) = Ĉ(t, x, y, ξ) + εĈ

Ĉ(ξ) = b0 + b1ξ + b2ξ
2

ξ ∈ ⟨0, 1⟩, z = hξ

(6.7)

where εĈ denotes the concentration profile modelling error and ξ is the normalised
vertical coordinate.

The polynomial coefficients bi are determined by the set of the boundary conditions

• All the reactant is consumed in the etching reaction at the disc

Ĉ(ξ)|ξ=0 = 0 (6.8)
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• Von Neumann boundary condition at the free-surface

∂Ĉ(ξ)
∂ξ

⏐⏐⏐⏐⏐
ξ=1

= 0 (6.9)

• Relation to the mean reactant concentration∫ 1

0
Ĉ(ξ) dξ = C (6.10)

which provide the following solution of the concentration profile function, Ap-
pendix A.2

Ĉ(ξ) = 3C

(
ξ − 1

2ξ2
)

(6.11)

The boundary conditions above assume a parabolic concentration profile across the
full film height. That means that the concentration boundary layer δC is expected
to be identical with the film free-surface. Should the concentration boundary δC

be considered, a corresponding boundary condition has to be introduced

∂C

∂z

⏐⏐⏐⏐⏐
z=δC

= 0 (6.12)

As the concentration distribution across the film height is not uniform the spa-
tial concentration fluctuations have to be used to accurately determine species
transport in the nonlinear advection term

C = C + C̃ (6.13)

Provided that the concentration profile function Ĉ accurately models the concen-
tration distribution across the film height, the concentration fluctuation C̃ can be
approximated by

C̃ = C − C = lim
εĈ→0

{
Ĉ(ξ) − C

}
(6.14)

6.2.2 Transformation of Species Transport Equation

The species transport equation starts with reformulation of the equation 6.2 for
the concentration C

∂C

∂t
+ ∇• (uC) = ∇• (D∇C) + SC (6.15)

First of all the LHS of the equation is being integrated across the film height in
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the analogy to the momentum equation transformation 4.3.3

∫ h

0

[
∂C

∂t
+ ∇• (uC)

]
dz

=
∫ h

0

∂C

∂t
dz +

∫ h

0
∇•

[
(u + ũ)(C + C̃)

]
dz

= ∂

∂t

∫ h

0
C dz + ∇•

[∫ h

0
(uC + uC̃ + ũC + ũC̃) dz

]

= ∂

∂t
(hC) + ∇• (huC) + ∇•

(∫ h

0
ũC̃ dz

)
(6.16)

The boundary terms after application of the Leibniz integral rule, Appendix B.2.2,
diminish in the same way as already presented in the Chapter 4. The product
terms of the spatial fluctuations with the mean quantities as well reduce to zero.

The newly introduced term, the product of the concentration spatial fluctuation
and momentum spatial fluctuation, is then expressed by the help of the equations
6.14 and 4.21 and approximated by the solutions of the profile functions 6.11 and
4.16 as

ρ∇•

(∫ h

0
ũC̃ dz

)

= lim
εĈ→0
εû→0

⎧⎨⎩∇•

[∫ 1

0

(
û(ξ) − u

) (
Ĉ(ξ) − C

)
h dξ

]⎫⎬⎭
= ∇•

[
11
50hC(u − udisc)

]
(6.17)

The RHS of the species transport equation is transformed into
∫ h

0
∇• (D∇C) dz + SC

= ∇•

(
hD∇C

)
+
∫ h

0

∂

∂z

(
D

∂C

∂z

)
dz + SC

= ∇•

(
hD∇C

)
− D

∂C

∂z

⏐⏐⏐⏐⏐
z=0

+ SC

(6.18)

where the boundary terms emerging during the transformation either diminish
due to boundary conditions or are assumed to be negligible.

The concentration gradient at the disc surface is resolved by the help of the con-
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centration profile function Ĉ as

D
∂C

∂z

⏐⏐⏐⏐⏐
z=0

= lim
εĈ→0

⎧⎨⎩D
∂Ĉ(ξ)
∂hξ

⏐⏐⏐⏐⏐
ξ=0

⎫⎬⎭
= 3D

h
C

(6.19)

The resulting species transport equation for the thin film has the form

∂

∂t
(hC) + ∇•

(
huC + K

)
= ∇•

(
hD∇C

)
− D

∂C

∂z

⏐⏐⏐⏐⏐
z=0

+ SC (6.20)

where the advective term K and the concentration gradient at the disc bottom
are expressed with the help of solutions of the profile models Ĉ and û as

K = 11
50hC(u − udisc)

∂C

∂z

⏐⏐⏐⏐⏐
z=0

= 31
h

C

and concentration source SC has to be determined on the case-to-case basis.

6.2.3 Transformation of the Simple Chemistry Model

The simple diffusion-controlled chemistry model, the equations 6.3 and 6.4, uses
the concentration profile Ĉ and its solution 6.11 to express the etching rate R as

R = β

(
MSi

4MHNO3

)
jHNO3

ρSi

= β

(
MSi

4MHNO3

)
ρ

ρSi
D

∂c

∂z

⏐⏐⏐⏐⏐
z=0

= lim
εĈ→0

⎧⎨⎩β

(
MSi

4MHNO3

)
ρ

ρSi
D

⎛⎝cinlet
∂Ĉ(ξ)
∂(hξ)

⏐⏐⏐⏐⏐
ξ=0

⎞⎠⎫⎬⎭
= β

(
MSi

4MHNO3

)
ρ

ρSi
D
(

3cinlet

h
C
)

(6.21)

where β is the empiric reaction rate correction factor that has to be fitted to
experimental reaction rates.
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Case ∆r ν Q ω
[mm] [m2 s−1] [lpm] [rpm]

4a 55 1 × 10−6 2.8 4004b 95
4c 30 2.87 × 10−6 1.5 500

Table 6.1: Case definitions for chemistry model

6.3 Simulations

The presented simple chemistry model was implemented as an extension to the
TFA solver code discussed in the Chapter 5. The species transport equation is
being solved every time iteration after the solution of momentum and continuity
equation. The reconstruction of concentration profiles follows after reconstruction
of the velocity profiles. The resulting mass flux of transported species to the wafer
surface is evaluated in the chemistry module and processed data fields–both area
and their volumetric counterparts–are written out.

Three simulation cases, see table 6.1, based on the studies of silicon etching with an
excentric medium application conducted by TU Graz are defined for the chemistry
model. The cases 4a and 4b originate from the work of Burns et al.[16]. The case
4c has its process parameters closer to the ones used in the semiconductor industry.
All three cases have a static inlet and very quickly develop a stationary solution.
The cases are used to demonstrate capabilities of the presented chemistry model
and for comparisons of etching profiles with varying etching times.

The case 4a, see figure 6.3, is an excentric impingement case with the radial excen-
tricity ∆r = 55mm. The disc is fully coated with the thin film and a distinctive
wave, a hydraulic jump, across the disc radius forms. A high-velocity camera
photo, courtesy of TU Graz, visually confirms the wave shape. The flow is con-
sidered laminar with Re lower as 1300. The wave front holds due to its height
profile a higher concentration of nitric acid. Areas outside of the wave formation
are considerably thinner what has a huge influence on the reaction rate R in the
current model. Especially the wave upstream zone has up to twice higher reaction
rate as the downstream area.

The second case, the case 4b, see figure 6.4, is having an increased excentricity to
∆r = 95mm opposite to the case 4a. The induced flow forms a large dry spot of
approximately 30mm radius at the centre of the wafer clearly visibly on the high-
velocity camera still, courtesy of TU Graz. It should be noted that TFA-model is
expressing the dry spot with an extremely thin film only. The film height of zero
would lead to the jump discontinuity in the underlaying model equations. The flow
is again laminar with Re not exceeding 1300. The concentration of the nitric acid
outside of the hydraulic jump is much more even resulting in a more homogeneous
reaction rates upstream and downstream of the hydraulic jump. Unfortunately the
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(a) Film relief (2D TFA): z-axis scaled 30×; photograph courtesy of TU Graz

(b) Film height (2D TFA) (c) Reynolds number (2D TFA)

(d) Mean concentration (2D TFA) (e) Reaction rate (2D TFA)

Figure 6.3: Case 4a: ∆r = 55mm, ν = 1 × 10−6m2 s−1, Q = 2.8lpm, ω = 400rpm
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(a) Film relief (2D TFA): z-axis scaled 30×; photograph courtesy of TU Graz

(b) Film height (2D TFA) (c) Reynolds number (2D TFA)

(d) Mean concentration (2D TFA) (e) Reaction rate (2D TFA)

Figure 6.4: Case 4b: ∆r = 95mm, ν = 1 × 10−6m2 s−1, Q = 2.8lpm, ω = 400rpm
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(a) Film relief (2D TFA): z-axis scaled 30×; 3D VoF solution courtesy of TU Graz

(b) Film height (2D TFA) (c) Reynolds number (2D TFA)

(d) Mean concentration (2D TFA) (e) Reaction rate (2D TFA)

Figure 6.5: Case 4c: ∆r = 30mm, ν = 2.87 × 10−6m2 s−1, Q = 1.5lpm, ω =
500rpm
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dry spot wrecks the uniformity of the etching process and thus the given process
configuration has no use for semiconductor industry.

The last simulation, the case 4c, develops a hydraulic jump of roughly a half radius
size, see figure 6.5. The thin film approximation can be validated on hand of 3D
VoF simulation, courtesy of TU Graz, that has however the peak values of the
hydraulic jump cut off. The flow regime is laminar with Re nearly three times
lower as in the cases 4a and 4b. The higher rotational speed, compared to the
previous cases, of 500rpm causes a very thin film at the zone around the disc edge.
As a result the case shows etching rates up to twice higher at the outside disc zone
as in the centre.

There are some issues hidden in parameters of the chemistry model, namely an
exact composition and properties of the etching solution and the reaction rate
correction factor β.

Reported experiments usually provide reaction rates however are sparse on the
etching data. The enchant composition is often not publicly accessible. That
represents a serious problem in the definition of proper values of the diffusion
coefficient D and the inlet mass fraction of nitric acid. Therefore the literature
value of D = 2.4 × 10−9m2 s−1 for the diffusion of nitric acid HNO3 in a dilute
aqueous solution by D’Ans[25] was used for the first. The inlet mass fraction cinlet

that directly scales the etching rate is unknown and was set, for simplicity, to 1.

The second problem is the reaction rate correction coefficient β that has to be fitted
to experimental data. If the comparison against other experiments or models has
to be done, the result has to be fitted to the target data.

Reported experiments are often in central impingement configurations only in
order to be validated against 2D axisymmetric simulations or analytical models, for
example Staudegger et al.[99]. That is basically a workaround to avoid expensive
3D calculations. Public data for an excentric impingement or even a dynamically
moving inlet are very rare if not non-existent.

Furthermore the experimental data are often burdened by a hard-to-estimate error,
as discussed by Kaneko et al.[53], as it is simply not possible to maintain a perfect
axisymmetric flow configuration in experiments due to shape of ducts and nozzles,
alignment of the centre axes of various components and at last due to the jet
velocity distribution itself.

The uncertainty in the model parameters and the lack of data on the excentric
impingement makes comparison of the simulation results with literature or exper-
iments impossible, only the trends could be compared at the best.
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Figure 6.6: Case 4a: Etched silicon mass; green circumference passes through the
impinging jet, red circumference marks the maximal mean circumferential etched
mass

6.3.1 Disc Etching Profile

One of the important aspects of the wet etching process is the need for as uniform
etching of the surface as possible. The usual approach to evaluate the uniformity
of the etching process is plotting of the etching rates of the fully developed fluid
flow against the disc radius. This approach has its limitations and is usually found
in the 2D axisymmetric simulations with the central impingement.

However, plotting of the etching rates against disc radius is not suitable for the
transient simulations with the dynamic inlet moving freely over the disc where the
etching rates are changing all the time. As the disc under the fluid film is rotating,
the etched surface is periodically changing as well. Therefore a different way for
evaluation of etching uniformity has to be used.

The silicon mass mSi etched out during the chemical reaction, see figure 6.6, can
be determined by solving an equation

∂mSi

∂t
= RρSi (6.22)

The etched mass allows to define a mean circumferential etched mass of silicon
mSi r as an average of the etched silicon mass along a disc circumference of the
given radius r

mSi r = 1
Nr

∑
Nr

mSi ∀cell : x2 + y2 = r2 (6.23)
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where Nr is the number of cells along the circumference of the radius r and every
cell contributes to only one circumferential etched mass average in order to satisfy
the global mass balance ∑

mSi r =
∑

mSi (6.24)

A corrected standard deviation of the etched silicon mass sSi r along the circum-
ference of the radius r is than defined as

sSi r =
√ 1

(Nr − 1)
∑
Nr

(mSi − mSi r)2 (6.25)

and describes the non-uniformity of the etching process along the circumference.

The evaluation of the mean circumferential etched mass of silicon along the con-
centric rings of the given radii is depicted on the figure 6.7. The plot depicts the
evaluation of the mean circumferential silicon etched mass mSi r and its corrected
standard deviation sSi r. The corrected standard deviation expresses how much the
values along the circumference vary. The higher the corrected standard deviation
the less uniform the etching along the circumference of the given radius is.

Finally, the mean circumferential etched mass mSi r normalised against the process
time t

ṁSi r = mSi r

t
(6.26)

can be used to evaluate the uniformity of the etching process for any process
configuration including a dynamic inlet. The plot of the normalised mean circum-
ferential etched mass of silicon ṁSi r against the wafer radius r is than called an
etching profile.

Examples of the etching profiles for the simulation cases 4a, 4b and 4c are given
in the figure 6.8. The two etching profiles for the case 4a capture the etching
difference between the disc flooding phase and the fully developed stationary flow.
The etching profile of the case 4b clearly shows the dry spot at the centre area of
the disc. The varying simulation times are demonstrating the time independence
of the etching profiles.

6.4 Summary and Discussion

The simple chemistry model for the thin film was presented. The model allows to
evaluate etching rates of the diffusion driven chemical reactions. The extension
step from the etching rate to the etching profile helps to quickly compare the
various process parameters.

The etching solution is generally invalid due to the broken assumptions placed on
the TFM in the impingement area and in the vicinity of the hydraulic jump.
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Figure 6.7: Case 4a: Mean circumferential silicon etched mass
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ṁ
Si

r
[k

gs
−

1
m

−
2 ]

Etching profiles

Case 4a (t = 0.5s)
Case 4a (t = 5s)
Case 4b (t = 3s)
Case 4c (t = 2s)

Figure 6.8: Etching profiles: Cases 4a, 4b and 4c with varying process lengths

The etching rates are definitely invalid in the impingement area. While the mo-
mentum and the film height are prescribed in the inlet, based on the 3D VoF-
simulation, the etching rate is being derived from the given film height in the
case of the chemistry model. The film height is usually much higher as the rest
of the thin film in the impingement area what leads to very low etching rates in
the current model contrary to the experimental measurements. The impingement
area, in reality, has always the highest etching rate as the z-momentum of the jet
transports the etching solution directly into the disc surface.

The dependency of the reaction rate on the thin film height is the weak spot of
the chemistry model current formulation and is connected to the assumption of
the concentration boundary layer δC being identical with the thin film free-surface
and the current selection concentration profiles.

The disc areas with a very thin film are providing a good approximation which
can be well compared and fitted to the experimental data with help of reaction
rate correction factor β. The centrifugal forces that thin the film out are a huge
factor and the higher rotational speeds thus generally improve the approximation.
On the contrary, an increase in the film height is connected to the larger error
in the parabolic concentration profile model. It is worthy to investigate as well
different options, for example, a logarithmic concentration profile function

Ĉ(ξ) = β ln(ξ) (6.27)
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which would certainly improve the profile modelling.

Surprisingly, the profile modelling error mentioned above is masked in the hy-
draulic jump where the boundary layer separation significantly limits the trans-
port of the etching solution into the disc and etching rates locally drops. This
is indeed validated in experiments and mimicked by the erroneous concentration
profile model as the hydraulic jump increases the film height.

The presented chemistry model can be used as a simple tool for the evaluation of
the uniformity of the etching process and can provide a good approximation of
the etching if its limitations are kept in mind.
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Summary and Conclusion

The main focus of the work was an investigation of the thin film flow on a ro-
tating disc which has numerous industrial applications. It was demonstrated that
standard 3D VoF simulations are impractical for real life applications. The spatial
and temporal resolutions needed in the simulation of industrial processes lead to
excessively long simulation times that severely limit the application of the classic
numerical approaches. Industrial processes featuring a dynamic fluid impinge-
ment, multiple inlets with complex trajectories, involving chemical reactions and
long process times are still beyond the economical feasibility of the classic methods.

The thesis suggests an alternative approach to the thin film simulation based
on the well established integral method that reduces the problem complexity by
reduction of its dimensionality. The derivation of the Thin Film Model recognises
an importance of inertial and centrifugal forces in the presence of the spinning
disc. An innovative application of Reynolds decomposition coupled with profile
function modelling that allows to capture a crucial contribution of the inertial and
centrifugal forces in the advective term is presented.

The derived TFM model is implemented using Finite Area method, a two-dimen-
sional specialisation of the Finite Volume method for film flows on curved three-
dimensional surfaces. The solver was conceived as a transient incompressible code
with a dynamic inlet implementation that can be easily extended by additional
models. A primer on the FA method and details on the solver implementation are
given.

The developed solver is applied on realistic problems, both central and excentric
impingement configurations, that locally invalidate some of TFM model assump-
tions. The result of the such application, called a Thin Film Approximation, is
carefully evaluated in a comparison with the classic 3D VoF simulation performed
in a commercial CFD code.

Results of the comparisons are very informative. Generally a very good agreement
of the 2D TFA results with the 3D VoF simulation is achieved in a fraction of
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computational resources. Where 3D VoF method needs months, 2D TFA approach
needs merely few hours.

There exists only few problematic zones–the hydraulic jump, the impingement
area–that show discrepancy in the solution at the moment.

The hydraulic jump is connected to the reversed flow and poses a challenge in
the current model. The solution of the hydraulic jump is burdened by an error
due to the vertical momentum transport. However, it has to be noted that the
error is localised to only a small area containing the separation bubble where the
velocity profile models fail to capture the proper shear stress contribution. The
mass conservation together with the separation bubble locality keep the solution
outside of the hydraulic jump untouched.

A similar problem is occurring in the impingement area. Unfortunately the domi-
nance of the vertical momentum in the impinging jet cannot be resolved by TFM
model and the solution in the impingement area has to be prescribed by other
means. The surrounding of the impingement area is influenced by the lack of the
film flow feedback in the current model. However the comparisons show that an
assumption of the inlet influence being dominant hold well and the error in the
impingement area is generally acceptable.

The lack of the surface waviness that is connected to the neglected cross flow in
the vertical direction is specific for the integral methods and has to be mentioned
in comparison to the 3D VoF results.

The TFA validation struggles with a dynamic inlet implementation due to lack of
data to compare with. The dynamic inlet feature opens new, till now unseen, pos-
sibilities for the numerical simulation of the thin films. Considering the solver high
performance and the fact that most industrial applications are tightly connected
to the dynamic impingement, the TFA solver can be used as a rapid simulation
tool for an optimisation of industrial process.

The thesis closes with an extension of the TFA solver with a simple chemistry
model for a wet diffusion-controlled etching. The chemistry model is derived,
implemented and shortly discussed. An evaluation method for the etching of the
rotating disc is suggested. The presented chemistry model can be used, based
on the experimental calibration, for the evaluation of the uniformity of the disc
etching processes.

Concluding the goals of the thesis, it can be stated that the main goal, the de-
velopment and validation of a high-performance tool for the transient numerical
simulation involving the dynamic inlet implementation was met. The TFA solver
performance suggests the solver usability in the design and optimisation of the
industrial devices involving the thin films on the spinning disc.
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7.1 Future Work

There are two important aspects that have to be considered in further improve-
ments–the solution accuracy and the solver performance. Both aspects have to be
kept in balance.

Some of interesting ideas for future improvements and implementations follows:

• One of the main problems is the hydraulic jump. The solution of the hy-
draulic jump can be fixed by an improved velocity profile model that would
account for the flow separation boundary. The hydraulic jump modelling in
the integral methods have been extensively studied and interesting works,
for example Bohr et al.[11] and Putkaradze[84], exist.

• The impingement area solution is at the current state prescribed based on
the external solution what precludes an interaction of the thin film with the
inlet outflow. The possible solution to the whole impingement area as such
would be a segregated hybrid solver with a coupled 3D VoF impingement
and 2D TFA solution.

The coupling code would be responsible for the mapping of 3D VoF solution
to the 2D TFA inlet and backward feedback in the mapping of the 2D TFA
solution on the 3D VoF boundary conditions.

The performance balance has to be considered. The inclusion of the 3D VoF
solver would mean nothing more than a light-weight coarse impingement
mesh in order of few thousand cells only. The goal is to get the best out of
the both worlds for the smallest price.

• The transient nature of the TFA solver called for the selection of the PISO
algorithm. The PISO algorithm is not using any under-relaxation of the so-
lution and thus is generally bound to small Courant number (C < 1). There
exist an hybrid algorithm between PISO and SIMPLE, called a PIMPLE.
The idea behind the PIMPLE algorithm is a bigger time advancement, that
is a higher Courant number, with the use of an under-relaxation to reach a
stable solution in the new time step. An implementation of the PIMPLE
algorithm could certainly be considered.

• Thin film model can be extended by an implementation of the energy equa-
tion that could enhance transport coefficients, modelling of surface tension
force and/or chemistry modelling.

• The simple chemistry model could have implemented a different concentra-
tion profile model based on the logarithmic profile function that would better
model the concentration boundary layer δC .
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Finally, the necessity of a thorough validation of all code changes against more
comprehensive data, be it experiments or numerical simulations, does not need to
be pointed out.
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Solution of Polynomial Profiles

A.1 Polynomial Velocity Profiles

The solution of the polynomial velocity profile function û

û(ξ) = a0 + a1ξ + a2ξ
2 + a3ξ

3

ξ ∈ ⟨0, 1⟩, z = hξ
(A.1)

where ξ is the normalised vertical coordinate is determined by the the set of four
boundary conditions:

• No slip boundary condition at the disc

û(ξ)|ξ=0 = udisc :
(a0 + a1ξ + a2ξ

2 + a3ξ
3)|ξ=0 = udisc

a0 = udisc

(A.2)

• Influence of the pressure gradient at the film bottom

∂2û(ξ)
∂ξ2

⏐⏐⏐⏐⏐
ξ=0

= 0 :

∂2

∂ξ2 (a0 + a1ξ + a2ξ
2 + a3ξ

3)
⏐⏐⏐⏐⏐
ξ=0

= 0

∂

∂ξ
(a1 + 2a2ξ + 3a3ξ

2)
⏐⏐⏐⏐⏐
ξ=0

= 0

(2a2 + 6a3ξ)|ξ=0 = 0
2a2 = 0
a2 = 0

(A.3)
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• Von Neumann boundary condition at the free-surface

∂û(ξ)
∂ξ

⏐⏐⏐⏐⏐
ξ=1

= 0

∂

∂ξ
(a0 + a1ξ + a2ξ

2 + a3ξ
3)
⏐⏐⏐⏐⏐
ξ=1

= 0

(a1 + 2a2ξ + 3a3ξ
2)|ξ=1 = 0

a1 + 2a2 + 3a3 = 0

(A.4)

• Relation to the mean velocity
∫ 1

0
û(ξ) dξ = u :∫ 1

0
(a0 + a1ξ + a2ξ

2 + a3ξ
3) dξ = u[

a0ξ + a1

2 ξ2 + a2

3 ξ3 + a3

4 ξ4
]1

0
= u

a0 + a1

2 + a2

3 + a3

4 = u

(A.5)

Applying the solution A.3 into A.4 one can express the coefficient a1 as

a1 = −3a3 (A.6)

Using the solutions A.2, A.3 and the substitution A.6 in A.5 yields

−3
2a3 + 1

4a3 = u − udisc

a3 = −4
5 (u − udisc)

(A.7)

Substituting the solution A.7 back into A.6 gives

a1 = 12
5 (u − udisc) (A.8)

The polynomial coefficients than provide the solution of the polynomial velocity
profile function û

û(ξ) = udisc + (u − udisc)
(

12
5 ξ − 4

5ξ3
)

(A.9)
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A.2 Polynomial Concentration Profiles

The solution of the polynomial profile function Ĉ for the reactant concentration

Ĉ(ξ) = b0 + b1ξ + b2ξ
2

ξ ∈ ⟨0, 1⟩, z = hξ
(A.10)

with ξ being the normalised vertical coordinate as in the case of the polynomial
velocity profile function is given by the set of three boundary conditions:

• All the reactant is consumed in the etching reaction at the bottom

Ĉ(ξ)|ξ=0 = 0 :
(b0 + b1ξ + b2ξ

2)|ξ=0 = 0
b0 = 0

(A.11)

• Von Neumann boundary condition at the free-surface

∂Ĉ(ξ)
∂ξ

⏐⏐⏐⏐⏐
ξ=1

= 0

∂

∂ξ
(b0 + b1ξ + b2ξ

2)
⏐⏐⏐⏐⏐
ξ=1

= 0

(b1 + 2b2ξ)|ξ=1 = 0
b1 + 2b2 = 0

(A.12)

• Relation to the mean reactant concentration∫ 1

0
Ĉ(ξ) dξ = C :∫ 1

0
(b0 + b1ξ + b2ξ

2) dξ = C[
b0ξ + b1

2 ξ2 + b2

3 ξ3
]1

0
= C

b0 + b1

2 + b2

3 = C

(A.13)

The boundary condition A.12 with help of the solution A.11 can be used to express
the coefficient b1

b1 = −2b2 (A.14)

Inserting A.11 together with A.14 into the last boundary condition A.13 provides
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the solution

−b2 + b2

3 = C

b2 = −3
2C

(A.15)

Substituting the solution A.15 back into A.14 yields

b1 = 3C (A.16)

The solution of the polynomial concentration profile function Ĉ is then

Ĉ(ξ) = 3C

(
ξ − 1

2ξ2
)

(A.17)
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Important Formulas

B.1 Dimensionless Numbers

B.1.1 Reynolds Number

The Reynolds number (Re) quantifies the relative importance of inertial and vis-
cous forces

Re = inertial forces
viscous forces = uL

ν
(B.1)

where L denotes a characteristic length and ν is the kinematic viscosity.

The definition of the Reynolds number for the TFA solver follows

Re = ∥u∥ h

ν
(B.2)

where h represents the characteristic length of the thin film.

B.1.2 Froude Number

The Froude number (Fr) is defined as the ratio of inertial forces to external field

Fr = inertial forces
external field = u√

gL
(B.3)

where g is the gravity and the external field characteristic in one.

The Froude number definition for the TFA solver

Fr = ∥u∥√
∥g∥ h

(B.4)

can be used to judge a subcritical, Fr < 1, and supercritical, Fr < 1, flow of the
thin film. Note that the hydraulic jump is possible only in supercritical flows.
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B.1.3 Courant Number

The Courant number (C), connected to Courant-Friedrichs-Lewy (CFL) condition,
describes how information spread in the discretized problem domain

C = u∆t

∆x
(B.5)

where u describes information velocity, ∆x is the length interval and ∆t represents
the time step.

The Courant number derivate for the TFA solver is defined as

C = (u)e∆t

∥l∥
(B.6)

where (u)e denotes the interpolation of the mean velocity at the edge and l is the
edge length vector.

B.2 Math Formulas

B.2.1 Gauss’ Divergence Theorem

Let V be a subset of Rn which is compact and has a piecewise smooth boundary
S, also indicated with ∂V , that is oriented by an outward pointing unit normal
field n. If F is a continuously differentiable vector field defined on an open set U ,
such that V ⊆ U , then ∫

V
∇• F d(n)V =

∮
∂V

F · n d(n−1)S (B.7)

see Forster[33] for details.

B.2.2 Leibniz Integral Rule

Let f(t, x) be a function such that both f(t, x) and its partial derivative ∂
∂x

f(t, x)
are continuous in t and x in some region of the (t, x)-plane, including

a(x) ≤t ≤ b(x)
x0 ≤x ≤ x1.

Further suppose that the functions a(x) and b(x) are both continuous and both
have continuous derivatives a′(x) and b′(x) for x0 ≤ x ≤ x1.
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Then for x0 ≤ x ≤ x1

d

dx

(∫ b(x)

a(x)
f(t, x) dt

)
=
∫ b(x)

a(x)

∂

∂x
f(t, x) dt

+
{
f
(
b(x), x

)
b′(x) − f

(
a(x), x

)
a′(x)

}
,

(B.8)

see Flanders[32] for details.
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CFD Computational Fluid Dynamics

CFL Courant-Friedrichs-Lewy

CISCAM Compressive Interface Capturing Scheme for Arbitrary Meshes

CSF Continuum Surface Force
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FA Finite Area

FCT Flux Corrected Transport
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FE Finite Element

FV Finite Volume

GAMG Geometric-Algebraic Multi-Grid

HRIC High Resolution Interface Capturing

IBL Integral Boundary Layer

LHS left hand side

NVD Normalised Variable Diagram

PBiCG Preconditioned Bi-Conjugate Gradient

PCG Preconditioned Conjugate Gradient

PISO Pressure Implicit Split of Operator
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QUICK Quadratic Upwind Interpolation for Convective Kinematics

RANS Reynolds Averaged Navier-Stokes

RHS right hand side

SIMPLE Semi-Implicit Method for Pressure Linked Equations
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TFA Thin Film Approximation

TFM Thin Film Model

VoF Volume-of-Fluid
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Latin Symbols

A control area

a general vector value

Ab border control area

aI general coefficient of the inlet cell

ai polynomial velocity profile coefficient

aN general coefficient of the neighbour cell

AP control area around point

aP general coefficient of the cell

b boundary edge, boundary edge centre

b film bottom

bi polynomial normalised concentration profile coefficient

bvf boundary velocity factor

C normalised species concentration

C Courant number

c species concentration, mass fraction

C̃ normalised species concentration fluctuation

Ĉ polynomial normalised concentration profile

C mean normalised species concentration

cp specific heat capacity at constant pressure

D diffusion coefficient
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Latin Symbols

E edge flux

E total energy

e edge, edge centre

e internal energy

eb border edge, border edge centre

ek kinetic energy

F force

Fb body force

Fr Froude number

fs film free-surface

g gravity

h enthalpy

h film height

I inlet centre

l outward-pointing edge length vector

M molar mass

m mass

N neighbour cell centre

n outward-pointing surface unit normal vector

P owner cell centre

P point

p pressure

Q volumetric energy source

Q volumetric flow rate

q heat flux
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Latin Symbols

R reaction rate

r radius

Re Reynolds number

s specific entropy

Sχ tensorial property source

SS surface source

SV volume source

T Cauchy stress tensor

T temperature

t time

∆t time step

T mean temperature

u velocity

ũ velocity fluctuation

û polynomial velocity profile

u mean velocity

v specific volume

VM material volume

x position

∆x length interval
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Greek Symbols

α heat transfer coefficient

α volume fraction

β reaction rate correction factor

χ tensorial property

∆r radial excentricity

δ boundary, separation line

δC concentration boundary

δT thermal boundary

ϵ rate-of-strain tensor

Γχ tensorial property coefficient

κ surface curvature

λ heat conductivity

µ dynamic viscosity

ν kinematic viscosity

ω rotational speed, speed of revolution

φ scalar property

φA acceptor property value

φD donor property value

φe edge property value
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φf face property value

φ′ scalar property time fluctuation

φI inlet property value

φ scalar property mean value

φN the neighbour cell scalar property

φP the cell scalar property

φt scalar property at the time

φU upwind property value

ρ density

σ surface tension

τ deviatoric stress tensor

θ contact angle

εĈ normalised concentration profile error

εû velocity profile error

ξ normalised z-coordinate

152



List of Figures

1.1 Liquid film on a window . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Spin processor Lam SEZ SP203 . . . . . . . . . . . . . . . . . . . . 2

1.3 Hydraulic jump in a sink . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 Material body . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.1 Flow classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2 Interface between two immiscible fluids . . . . . . . . . . . . . . . . 22

3.3 Front-capturing interface and curvature κ . . . . . . . . . . . . . . . 23

3.4 NVD diagram of the selected VoF-schemes . . . . . . . . . . . . . . 25

3.5 Disc with collar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.6 2D axisymmetric mesh for the disc with collar . . . . . . . . . . . . 27

3.7 Case 1a (2D VoF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.8 Case 1b (2D VoF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.9 Case 1c (2D VoF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.10 Spiral waves in the 2D axisymmetric VoF-simulation . . . . . . . . 32

3.11 Hydraulic jump in the 2D axisymmetric VoF-simulation . . . . . . . 33

3.12 Dynamic mesh refinement . . . . . . . . . . . . . . . . . . . . . . . 34

3.13 Case 1b (3D VoF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.14 Droplets forming . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.15 Disc with impinging jet . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.16 2D axisymmetric mesh for the disc with impinging jet . . . . . . . . 37

3.17 Case 2 (2D VoF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.1 Thin film characteristics . . . . . . . . . . . . . . . . . . . . . . . . 42

4.2 Thin film definitions . . . . . . . . . . . . . . . . . . . . . . . . . . 43

153



LIST OF FIGURES

4.3 Examples of velocity profiles . . . . . . . . . . . . . . . . . . . . . . 46

4.4 Velocity decomposition . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.1 Hydraulic jump in TFA . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.2 Finite Area: Control area . . . . . . . . . . . . . . . . . . . . . . . 56

5.3 Edge flux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.4 Finite Area: Edge interpolation . . . . . . . . . . . . . . . . . . . . 60

5.5 Inlet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.6 “Crown cap” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.7 “Crown cap” (uncorrected) . . . . . . . . . . . . . . . . . . . . . . . 72

5.8 “Crown cap” (undercorrection) . . . . . . . . . . . . . . . . . . . . 72

5.9 “Crown cap” (correction) . . . . . . . . . . . . . . . . . . . . . . . . 73

5.10 “Crown cap” (overcorrection) . . . . . . . . . . . . . . . . . . . . . 73

5.11 Linear inlet height profile . . . . . . . . . . . . . . . . . . . . . . . . 76

5.12 Linear inlet velocity profile . . . . . . . . . . . . . . . . . . . . . . . 77

5.13 Radial inlet height profile . . . . . . . . . . . . . . . . . . . . . . . 78

5.14 Radial inlet velocity profile . . . . . . . . . . . . . . . . . . . . . . . 79

5.15 Mesh metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.16 Meshes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.17 Mesh artifacts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.18 Case 3a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.19 Case 3a: xz-plane cut . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.20 Case 3a: yz-plane cut . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.21 Case 3b . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.22 Case 3b: xz-plane cut . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.23 Case 3b: yz-plane cut . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.24 Case 3c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.25 Case 3c: xz-plane cut . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.26 Case 3c: yz-plane cut . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.27 Case 3d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.28 Case 3d: xz-plane cut . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.29 Case 3d: yz-plane cut . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.30 Case 3e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

154



LIST OF FIGURES

5.31 Case 3e: xz-plane cut . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.32 Case 3e: yz-plane cut . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.33 Dynamic inlet (1s–1.4s) . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.34 Dynamic inlet (1.6s–2s) . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.1 Wet chemical single side etching . . . . . . . . . . . . . . . . . . . . 107

6.2 Concentration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.3 Case 4a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.4 Case 4b . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.5 Case 4c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.6 Case 4a: Etched silicon mass . . . . . . . . . . . . . . . . . . . . . . 118

6.7 Case 4a: Mean circumferential silicon etched mass . . . . . . . . . . 120

6.8 Etching profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

155



LIST OF FIGURES

156



List of Tables

3.1 Case definitions for the disc with collar . . . . . . . . . . . . . . . . 26

5.1 Mesh topologies and their quality criteria . . . . . . . . . . . . . . . 81

5.2 Case definitions for TFA . . . . . . . . . . . . . . . . . . . . . . . . 84

5.3 2D TFA and 3D VoF performance . . . . . . . . . . . . . . . . . . . 106

6.1 Case definitions for chemistry model . . . . . . . . . . . . . . . . . 113

157


	Title Page
	Dedication
	Affidavit
	Abstract
	Zusamenfasung
	Acknowledgements
	Contents
	1 Introduction
	1.1 Previous Works
	1.2 Objectives
	1.3 Outline

	2 Governing Equations
	2.1 Conservation Laws
	2.1.1 Material Derivative
	2.1.2 Reynolds Transport Theorem
	2.1.3 Conservation of Mass
	2.1.4 Conservation of Momentum
	2.1.4.1 Conservation of Linear Momentum
	2.1.4.2 Conservation of Angular Momentum
	2.1.4.3 Stress Tensor Symmetry

	2.1.5 Conservation of Energy
	2.1.6 Entropy Inequality

	2.2 Constitutive Relations
	2.2.1 Newtonian Fluids
	2.2.2 Internal Energy
	2.2.3 Equation of State
	2.2.4 Law of Heat Conduction

	2.3 Navier-Stokes Equations
	2.3.1 Internal Energy Equation
	2.3.2 Incompressible Isothermal Fluids

	2.4 General Transport Equation
	2.4.1 Species Concentration Equation

	2.5 Statistical Modelling
	2.5.1 Reynolds Averaging


	3 Volume-of-Fluid Simulations
	3.1 Free-Surface Flows
	3.1.1 Front-Tracking Method
	3.1.2 Front-Capturing Method
	3.1.3 Surface Tension

	3.2 VoF-Method
	3.3 Disc with Collar
	3.3.1 2D Axisymmetric VoF-Simulations
	3.3.2 3D VoF-Simulations

	3.4 Disc with Impinging Jet
	3.5 Summary and Discussion

	4 Thin Film Model
	4.1 Modelling Assumptions
	4.2 Definitions
	4.2.1 Film Height
	4.2.2 Film Velocity
	4.2.3 Film Temperature

	4.3 Thin Film Transformation
	4.3.1 Transformation of Continuity Equation
	4.3.2 Pressure Solution
	4.3.3 Transformation of Momentum Equation

	4.4 Summary and Discussion

	5 Thin Film Approximation
	5.1 Model and Reality
	5.2 Finite Area Method
	5.2.1 Discretisation of the Solution Domain
	5.2.2 Discretisation of Transport Equation
	5.2.3 Temporal Term
	5.2.4 Spatial Terms
	5.2.4.1 Convective Term
	5.2.4.2 Diffusive Term
	5.2.4.3 Source Term

	5.2.5 Solving of Discretized Equations

	5.3 Solver Implementation
	5.3.1 Discretisation of the Thin Film Model
	5.3.2 Non-Linearity of the Convective Term
	5.3.3 Calculation of the Edge Flux
	5.3.4 Pressure-Velocity Coupling
	5.3.5 Outlet
	5.3.6 Inlet
	5.3.6.1 Inlet Discretisation
	5.3.6.2 Prescribed Inlet Solution
	5.3.6.3 Mass Flow Rate Correction
	5.3.6.4 ``Crown Cap''
	5.3.6.5 Inlet Profiles


	5.4 Computational Mesh
	5.5 Simulations
	5.5.1 Central Impingement
	5.5.2 Excentric Impingement
	5.5.2.1 Full Disc Coverage
	5.5.2.2 Dry Spot Formation

	5.5.3 Dynamic Inlet

	5.6 Summary and Discussion

	6 Chemistry Model
	6.1 Simple Chemistry Model
	6.2 Thin Film Transformation
	6.2.1 Concentration
	6.2.2 Transformation of Species Transport Equation
	6.2.3 Transformation of the Simple Chemistry Model

	6.3 Simulations
	6.3.1 Disc Etching Profile

	6.4 Summary and Discussion

	7 Summary and Conclusion
	7.1 Future Work

	A Solution of Polynomial Profiles
	A.1 Polynomial Velocity Profiles
	A.2 Polynomial Concentration Profiles

	B Important Formulas
	B.1 Dimensionless Numbers
	B.1.1 Reynolds Number
	B.1.2 Froude Number
	B.1.3 Courant Number

	B.2 Math Formulas
	B.2.1 Gauss' Divergence Theorem
	B.2.2 Leibniz Integral Rule


	Bibliography

