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Abstract

Mechanical comminution of rocks is an energy intensive process with energy efficiency
around 1%. A possible way to enhance the efficiency is the prior application of high-power
microwaves. The aim of this thesis is to determine the microwave induced stresses and

damage in heterogeneous (e.g. granite) as well as homogeneous hard rocks (e.g. basalt).

In the heterogeneous case a novel 3D simulation procedure to assess microwave induced
stresses at a microstructure level is presented. For a realistic rock model two and three
component 3D microstructures are generated by a Voronoi tessellation algorithm. In order
to calculate the electromagnetic field inside the inhomogeneous rock, a 3D finite-difference
time-domain (FDTD) simulation is performed. A microwave source with a typical technical
frequency of 2.45 GHz is assumed. The absorbed heat is computed and applied as temperature
distribution in a subsequent thermo-mechanical finite element (FE) analysis in order to

calculate the thermally induced stresses and damage.

With a 3D two component model the influence of the microstructure on the microwave
induced stress formation during microwave irradiation with a 25 kW source for 15 s and 25 s
is assessed. In the 25 s case the effect of the « to 8 phase transformation of quartz at 573°C
is investigated. The influence of the anisotropic nature of the quartz grains is assessed by
comparing the stresses in the isotropic with the anisotropic case. High maximum principal
stresses on the boundaries of the strong microwave absorbing phase exceeding the tensile
strength are observed in the 15 s irradiation model. After 25 s of microwave irradiation even
higher stresses as a consequence of phase transformation of quartz are determined. In the
anisotropic case a significantly higher fraction exhibiting high maximum principal stresses
especially in the microwave transparent phase are observed. By considering a non-linear
damage material model, damage initiation around the main heated area and at the phase
boundaries of the strong absorbing phase are determined. These observations correlate
qualitatively with microwave irradiation experiments. It is concluded that the formation
of stress and damage is highly influenced by the microstructure and the micromechanical

behavior of the constituents (quartz phase transformation, anisotropic behavior).



In order to assess the industrial applicability, numerous 3D numerical analyses with
varying irradiation times as well as microwave powers are performed on granite three
component models. To this end measured dielectric and thermo-mechanical properties are
used. Both constant microwave power and varying irradiation times as well as constant
microwave energy and different irradiation time / power cases are investigated. Under
constant power the largest maximum principal stresses rise linearly with the irradiation time
whereas with constant energy an optimum irradiation time can be found giving maximum
stresses. The presented 3D inhomogeneous simulations methodology allows to determine

the optimum microwave irradiation parameters for the investigated granite.



Kurzfassung

Die mechanische Gesteinszerkleinerung ist ein energieintensiver Prozess und weist dariiber
hinaus lediglich einen Wirkungsgrad von ungefihr 1% auf. Ein vielversprechender Ansatz
zur Steigerung der Effizienz des Prozesses ist die vorgelagerte Behandlung des Gesteins
mit Mikrowellen. Das Ziel der vorliegenden Arbeit ist die Bestimmung der mikrowellen-
induzierten Spannungen und Schidigungen sowohl in einem heterogenen (z.B.: Granit) als
auch einem homogenen (z.B.: Basalt) Gestein.

Fiir den heterogenen Fall wurde eine neuartige 3D Simulationsmethodik entwickelt,
um die mikrowelleninduzierten Spannungen auf Ebene der Mikrostruktur quantifizieren
und analysieren zu konnen. Um ein realistisches Gesteinsmodell zu erhalten, wird mithilfe
eines Voronoi Tessellations Algorithmus 3D Mikrostrukturen mit zwei und drei Kompo-
nenten erzeugt. Mit Hilfe eines 3D Finite Differenzen Verfahrens (FDTD, finite-difference
time-domain) wird das elektromagnetische Feld in dem inhomogenen Gestein numerisch
berechnet. Hierfiir wird eine Mikrowellenquelle mit einer typischen technischen Frequenz
von 2.45 GHz verwendet. AnschlieBend wird die absorbierte Wirme mit einem thermischen
Finiten Elemente (FE) Modell analysiert. Das resultierende transiente Temperaturfeld wird
in einer darauffolgenden thermomechanischen FE Analyse verwendet, um Spannungen und
Schéddigungen ableiten zu konnen.

Der Einfluss der Mikrostruktur auf die mikrowelleninduzierten Spannungen wird in einem
3D Modell mit zwei Gesteinskomponenten und mit einer Mikrowellenleistung von 25 kW
sowie Bestrahlungszeiten von 15 s und 25 s bewertet. Die Quarzphasenumwandlung bei
einer Temperatur von 573°C wurde nach einer Mikrowellenbestrahlung von 25 s untersucht.
Der Einfluss des anisotropen Materialverhaltens von Quarz auf die Spannungsverteilung wird
durch den Vergleich mit einem isotropen Materialmodell bewertet. Nach einer Mikrowellen-
bestrahlungszeit von 15 s werden Hauptnormalspannungen, welche die Zugfestigkeit iiber-
steigen an den Phasengrenzen der stark absorbierenden Phase beobachtet. Aufgrund der
Quarzphasenumwandlung werden nach einer Bestrahlungszeit von 25 s noch héhere Span-

nungen festgestellt. Im anisotropen Modell kann eine gro3ere Volumenfraktion mit sehr
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hohen Hauptnormalspannungen, speziell in der mikrowellentransparenten Phase, quantifiziert
werden. Unter Verwendung eines nichtlinearen Schidigungsmodells konnen Schidigungs-
initiierungen in der Umgebung der heilesten Regionen sowie entlang der Phasengrenzen der
stark absorbierenden Phase festgestellt werden. Diese Ergebnisse korrelieren qualitativ sehr
gut mit den Experimenten. Zusammenfassend kann festgestellt werden, dass die Spannungs-
und Schadigungsverteilung stark von der Mikrostruktur und dem mikromechanischen Verhal-

ten der einzelnen Phasen (Quarzphasenumwandlung, anisotropes Materialverhalten) abhéngt.

Fiir die industrielle Anwendung wurden vielzdhlige numerische 3D Analysen mit vari-
ierenden Bestrahlungszeiten und Mikrowellenleistungen an einem Granit Modell mit drei
Gesteinskomponenten durchgefiihrt. Hierfiir wurden gemessene dielektrische und thermo-
mechanische Materialeigenschaften verwendet. Sowohl der Fall mit konstanter Mikrowellen-
leistung und unterschiedlichen Bestrahlungszeiten als auch konstanter Mikrowellenenergie
und verschiedenen Kombinationen von Bestrahlungszeit und Leistung wurden analysiert. Die
groBte Hauptnormalspannung steigt linear mit der Bestrahlungszeit unter der Annahme einer
konstanten Leistung an, wohingegen bei einer konstanten Energie ein lokales Extremum
in der Spannungs-Bestrahlungszeit Kurve identifiziert werden kann. Die prisentierte 3D
inhomogene Simulationskette erlaubt es, fiir den untersuchten Granit optimale Mikrowellen-

parameter zu identifizieren.
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Chapter 1

Introduction

1.1 Motivation

Classical mechanical comminution processes are highly energy intensive consuming up to
2% of the total energy in several mining countries such as USA, Australia and South Africa
(Tromans, 2008). The typical energy consumption in a mineral processing plant can run into
hundreds of megawatt hours per year (Jones et al., 2005). About 30 - 70% (for hard ores) of
the total plant power is attributable to comminution (Napier-Munn, 1996). Only less than 1%
of the applied energy is actually used to generate new surfaces (DOE, 2007; Fuerstenau and
Abouzeid, 2002). In other words, almost the complete energy provided for a comminution
process is dissipated in the form of heat and noise. Moreover, comminution equipment is
expensive which allocates typically 20 - 50% of the capital cost of a mineral processing plant
(Bradshaw et al., 2007). High energy and maintenance costs as well as strict sustainability
regulations call for more efficient mining processes.

Conventional research has concentrated on incrementally improving the size reduction
process (Jones et al., 2005). Recently, new ways to reduce the strength and subsequently
fracture the rock have been investigated (Prokopenko, 2011):

* electrical (sputter-ion, electrostrictive and piezoelectric)
* magnetic (magnetostrictive)
* electromagnetic (laser)

* sound (impact plastic, ultrasonic)
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* beam (electrons, protons and plasma)

e thermal methods (conventional heating, microwave heating)

All mentioned methods create mechanical stresses which eventually result in damage (cracks,
spallation) as soon as the strength limit is reached. Thermal methods are promising and can
potentially lead to step-changes in efficiency by lowering the mechanical properties (Jones
et al., 2005; Prokopenko, 2011). In order to reach high stresses, prompt heating at a great
depth is required. Since the thermal conductivity is low in hard rocks, conventional heating
is too slow to introduce high enough stresses. In contrast, microwave heating can reach high
heating rates combined with a significant irradiation depth (Prokopenko, 2011). Moreover,
microwave heating offers a number of advantages compared to conventional heating such as
(Haque, 1999; Jones et al., 2002; Kingman, 2006):

* non-contact heating

* rapid heating which can be faster than the heat conduction
* selective heating

* volumetric heating

* quick start-up and stopping

* heating starts from interior of the material body

* higher level of safety and automation

* energy savings

Microwave treatment of rocks has the potential to decrease the energy consumption of
mineral comminution processes (Vorster et al., 2001). For example, a significant decrease in
power consumption for grinding of iron ores after microwave treatment combined with an
increase of liberation of individual mineral phases was shown in Walkiewicz et al. (1991).
Kingman et al. (2004a) and Kingman (2006) deduced that microwave assisted comminution

can become economic.

Microwave induced heating of rocks is driven by the absorption of microwaves combined
with the conversion of the electromagnetic energy into heat. Unlike classical convective
heating the heat flux is directly created inside the material. Furthermore, different minerals

show varying microwave absorbing behaviors. Consequently, an inhomogeneous thermal
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field on the grain level is expected. This effect combined with the variation of thermal
expansion coefficients of the minerals results in the formation of significant stresses within
the rock which can exceed the strength limit leading to fracture. Recently, several numerical
studies of rocks with heterogeneous microstructures showed that the resulting stresses around
the phase boundaries of strong-absorbing particles are high enough to initiate cracks which
can propagate further into the material (Ali and Bradshaw, 2009, 2010, 2011; Jones et al.,
2005; Wang et al., 2008; Wang and Djordjevic, 2014). These thermally induced cracks
may lead to a significant reduction of grinding resistance during comminution processes
(Fitzgibbon and Veasey, 1990).

Not only rocks with strongly varying dielectric values of the different minerals (inho-
mogeneous rocks) show a potential to initiate severe damage but also rather homogeneous
ones. Experiments on approximately homogeneous rocks such as basalt reveal significant
microwave induced damage without any highly absorbing particles (Hartlieb et al., 2012;
Peinsitt et al., 2010; Satish et al., 2006). There the thermal gradients between the homoge-
neously heated area and the remaining material as well as the heat loss at the free surfaces
lead to high stresses. Another effect that induces stronger microwave heating of rocks is the
increase of the microwave absorption with elevated temperatures of various rocks and ores.
Higher temperatures enhance the absorption that can lead to extreme thermal runaway (Jerby
et al., 2013; Peinsitt et al., 2010). This can even cause melting of the irradiated samples
(Hartlieb et al., 2012; Hassani et al., 2016; Peinsitt et al., 2010).

1.2 State of the art

1.2.1 Experimental investigations

In the early 1960s the microwave rock breakage technique was introduced. However, due to
technical issues it was not deemed economically at this time (Maurer, 1968). The technical
interests in the microwave treatment of rocks was renewed by Chen et al. (1984) not earlier
than in 1984. They investigated the relative transparency of minerals to microwave energy.
Later, this work was extended by measuring the dielectric properties and resulting temperature
levels with low power microwave sources (1 — 2.6 kW) of many common ore-forming
minerals and rocks (Chunpeng et al., 1990; Church et al., 1988; McGill and Walkiewicz,
1987; Nelson et al., 1989; Santamarina, 1989; Walkiewicz et al., 1988; Webb and Church,

1986). These studies concluded that most aluminosilicates, micas, carbonates and sulphates
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(rock-forming minerals) showed little heating whereas most sulphides and metal oxides

heated significantly when irradiating with microwaves.

The early experimental test work concerning microwave treatment of minerals was carried
out using standard multi-mode cavities which are similar to the microwave ovens for domestic
use. The second design is the single mode cavity which has been investigated more recently.

The detailed design and the main differences are elucidated in section 2.3.2.

1.2.1.1 Multi-mode cavities

Microwave irradiation experiments on iron ores with a source of 3 kW and 2.45 GHz were
performed by Walkiewicz et al. (1991). In this work it was concluded that ores containing
absorbing minerals in a non-absorbing matrix were subjected to high thermal stresses. These
stresses caused cracks along the grain boundaries. In this study the microwave treatment
reduced the work index during standard Bond grindability tests by 10 to 24%. Experimental
test results of microwave heating and drilling in basalt and granodiorite were reported by
Lindroth et al. (1993). At the highest temperatures an increase of the drilling rate by a factor

of up to 6.5 due to microwave treatment was determined.

Kingman et al. (2000) studied the influence of the mineralogy on the microwave heating
behavior. This paper concluded that ores which have consistent mineralogy and contain a
good microwave absorber in a transparent matrix are most responsive to microwave treatment.
In contrast, ores containing small particles that are finely dispersed are shown to respond not

favorable to microwave treatment in terms of reduction of the required grinding energy.

Vorster et al. (2001) determined the effect of microwave treatment on Neves Corvo copper
ores. There a reduction in Bond work index of 70% after microwave irradiation with 2.6 kW

for 90 s was observed.

In Kingman et al. (2004a) the influence of microwave treatment on lead-zinc ores on
the change in strength was investigated. This study used both multi-mode and single mode
cavities. Samples treated with 10 kW and 5 s in the multi-mode cavity resulted in a reduction
in strength of about 50%. Moreover, the strength of the samples treated in the multi-mode

cavity were related to the applied microwave power level.

Amankwah et al. (2005) investigated the microwave irradiation behavior of gold ores.
An increasing temperature with higher sample mass, processing time and microwave power

was determined. A reduction in crushing strength of about 31% and a decrease in Bond
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work index of 18% was observed. Due to microwave treatment the gold recovery by gravity

separation was improved by up to 12%.

Satish et al. (2006) demonstrated that basalt specimens were responsive to low power
microwave irradiation and showed an almost linear temperature increase with time. The
point load strength tests gave an indication that the microwaved samples weakened caused

by the different thermal heating of various mineral phases in the rock.

Olubambi et al. (2007) assessed the microwave treatment of complex sulphide ores
(containing silicia, siderite, ferrous sphalerite, galena, pyrite, covelite) in a multi-mode cavity
with a maximum power of 1100 W and 250 GHz frequency. A maximum temperature of
270°C was obtained after 5 min irradiating with a microwave power of 1100 W. The study
showed that the application of microwave heating had a beneficial effect on the processing

behavior of the sulphide ore and its dissolution in sulphuric and hydrochloric acid.

Peinsitt et al. (2010) irradiated dried basalt samples and reached a maximum temperature
of 330°C after 60 s of microwave irradiation in a 3 kW multi-mode oven. Conversely, it took
dried granite 300 s to reach a temperature of 220°C. The heating rates in the water-saturated
samples compared to the dried ones were unchanged for basalt, doubled for granite and
increased fourfold for sandstone. A significant decrease in uniaxial compressive strength and
p-wave velocities reflecting a reduced rock strength was reported. In the sandstone samples

the water saturation led to very large cracks and even bursting of the samples was observed.

Samouhos et al. (2012) reported a maximum temperature of 900°C after 120 s microwave
irradiation of a laterite—lignite mixture with a power of 800 W. Moreover, significant miner-

alogical changes were determined which could be applied in mineral processing positively.

Hartlieb et al. (2012) heated cylindrical basalt samples with a microwave source of 3.2 kW
in a multimode cavity. After 60 s of microwave irradiation maximum temperatures of up to
250°C at the surface and 440°C in the middle of the sample were determined. Various cracks
aligned along the rotational axis as well as the radial direction of the cylindrical basalt were
observed. Besides, the sound velocities dropped significantly from 5500 m/s in the untreated

basalt to 3500 m/s after 120 s of microwave irradiation.

In Hassani et al. (2016) the temperature profiles, BTS and UCS were measured after
microwave treatment in a multimode cavity (2.45 GHz) for four different rock types: mafic
norite, granite from Vermont, basalt from California and basalt from China. The dry speci-
mens were treated with power levels between 1.2 kW and 5 kW combined with irradiation
times between 10 s and 120 s. No reduction in the BTS of norite was observed after 10 s of
microwave treatment regardless of the applied power. After 65 s and 5 kW a reduced BTS of
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50% was determined. In the granite samples the BTS decreased with 3 kW and 5 kW by 20%.
In the basalt samples the BTS was reduced by up to 30% after microwave treatment with
1.2 kW and 120 s. After a treatment duration of 120 s and 3 kW the basalt sample melted in
a disc-shaped area. Furthermore, microwave irradiation experiments with water saturated
samples were performed. The authors concluded that high power densities are required for
rock samples with very low water permeability in order to evaporate the thin water layer

quickly.

1.2.1.2 Single mode cavities

Besides the multi-mode cavity experiments also single mode tests were performed in King-
man et al. (2004a). In the multi-mode case a microwave irradiation with 10 kW for 5 s was
required to reach a strength reduction of about 50% whereas in the single mode cavity only
an irradiation time of 0.5 s was needed. The microwave energy required for the multi-mode
cavity application (10 kW for 5 s) was 13.88 kW h/i compared to 1.38 k¥Wh/; in the single mode
cavity (10 kW for 0.5 s).

Kingman et al. (2004b) elucidated the influence of high electric field strength microwave
energy, generated in a 15 kW single mode cavity, on copper carbonatite ores. It was shown
that significant reductions in strength can be achieved within very short microwave durations.
Moreover, a reduction of required breakage energy during drop weight test of up to 30% was
concluded for microwave energy inputs less than 1 kWh/,

The influence of microwave treatment with power levels between 5 - 12 kW (single mode
cavity) and 0.1 - 0.5 s on copper flotation was investigated in Sahyoun et al. (2005). It was
found that initial recovery was higher in the microwave treated samples for all power levels
and exposure times. At a power level of 12 kW both, grade and recovery, were significantly
improved for microwave irradiation times of 0.1 and 0.5 s. Finally, a simplified economic

analysis showed that the recoveries are economically attractive.

Scott et al. (2008) analyzed the effects of microwave treatment for 0.5 s at 10.5 kW in a
single mode cavity of rod-milled South African carbonatite ores on the liberation spectrum.
They observed intergranular fractures which were introduced between microwave absorbing
and non-absorbing minerals. The recovery of copper increased from 81% in the untreated

material up to 89.5% after microwave treatment.

Localized microwave irradiation of basalt samples resulted in rock melting in Jerby
et al. (2013). There the thermal runaway instability caused by the improved absorption
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behavior with increasing temperatures was responsible for the melting. Therefore, high

thermal stresses were introduced causing crack formation.

1.2.1.3 Comparison between single and multi-mode cavity

The multi-mode cavity design leads to low electric field strengths. Due to the low power den-
sities and the long treatment time used as a consequence, energetically inefficient treatment

of the mineral ores was concluded (Ali and Bradshaw, 2010).

Single mode cavities are capable of generating heating rates which are many orders of
magnitude higher than those produced by multi-mode cavities (Jones et al., 2007; Metaxas
and Meredith, 1993; Whittles et al., 2003). In general, for the same power applied a single
mode cavity will establish significantly higher electric field strengths compared to the multi-
mode design (Metaxas and Meredith, 1993). This cavity design results in very high heating
rates even exceeding 1000°C/s in strong absorbers, which offers the ability to heat materials
that would appear transparent to microwaves in ordinary multimode cavities (Jones et al.,
2007). Additionally, experimental studies by Kingman et al. (2004a,b) and Sahyoun et al.
(2005) revealed that high power density treatments (typically >3 kW in single mode cavities)
allowed for a similar degree of microwave-assisted breakage at significantly lower energy
inputs than treatments at low power density (typically <3 kW in multimode cavities) due to
significantly higher heating rates. However, the dimensions of the single mode cavity are
restricted to the magnitude of the wavelength whereas the multi-mode cavity can be larger

and thus contains more material.

1.2.2 Numerical investigations

Various numerical studies have been performed in order to understand microwave induced
stresses and the resulting damage formation. Mainly, two different cases have been investi-
gated: In the first case a rather homogeneous rock, such as basalt or sandstone, is treated as a
continuum and irradiated with microwaves. The second case describes the condition where
an inhomogeneous rock, such as granite, is treated with microwaves. There different phases

with varying absorption behavior are considered.
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1.2.2.1 Homogeneous models

In the numerical part of Hartlieb et al. (2012) the temperature and resulting stress field
in a cylindrical basalt sample were evaluated by means of a finite element model. There
the constant heat source was determined by a thermal FE-model and by comparing it to
experimental results of the temperature distribution inside the sample. The highest stresses

were determined at the free surfaces of the basalt cylinder.

Hassani et al. (2016) modeled the 3D electromagnetic distribution and the resulting tem-
perature field of a cuboid homogeneous basalt sample in a closed cavity by the multiphysics
program COMSOL. The thermo-mechanical as well as dielectric material properties were
assumed constantly (not a function of temperature) during the simulations. After a microwave
treatment for 120 s with a source of 3 kW and 2.45 GHz a maximum surface temperature
of about 280°C was reached. The results of the thermal simulations were compared with
experiments where the temperature was measured at different positions in the depth of the
material. This was achieved by cutting twelve slabs out of the material prior to the microwave
treatment. The electric field intensity diminished exponentially within the rock.

1.2.2.2 Inhomogeneous models

The thermo-mechanical response of a single spherical pyrite particle embedded in a calcite
rock during short-pulse microwave heating was assessed by Salsman et al. (1996). There
a 2D finite element analysis was performed by assuming a constant microwave absorption
only in the pyrite particle. They observed significant temperature differences between the
two phases and predicted tensile stresses along the pyrite-calcite interface which exceeded
the tensile strength of common rock materials (especially in the 10'* W/m? for 40 us and
10'2 W /m3 for 40 ms cases). However, for a given provided microwave energy the temperature
difference between the phases as well as the peak tensile stress in the host rock was reduced
for smaller mineral particle size. Finally, they suggested that the economy of microwave
assisted grinding can be improved significantly by using very high power for a short period

of time.

Later, Whittles et al. (2003) performed a more sophisticated 2D finite difference analysis
with multiple quadratic (1x1 mm?) pyrite grains distributed in a calcite host. Only the pyrite
phase was heated by a varying power density between 3 x 10° W/m? and 9 x 10° W/m’* as a
function of the temperature (conditions which correlate to 2.6 kW, 2.45 GHz multimode
cavity). Also, a case with 10'! W/m* was investigated which could be achieved by microwave

heating in a single mode cavity with 15 kW. A Mohr-Coulomb model was applied to model an
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uniaxial compression test in order to quantify the impact of the microwave irradiation. With
the multimode conditions (2.6 kW, 2.45 GHz) a reduction of the unconfined compressive
strength from 126 MPa to 79 MPa after 30 s of microwave treatment was observed. A higher
power density of 10" W/m* (15 kW single mode) led to a stronger reduction to 25 MPa after
1 s irradiation. Finally, they concluded that by increasing the power density, higher stresses

were introduced for much lower energy inputs.

A single pyrite spherical grain surrounded by a calcite matrix has been investigated in
Jones et al. (2005) by a 2D finite difference analysis. There the crack pattern caused by the
microwave heating was analyzed by a Mohr-Coulomb constitutive model. Once again, calcite
was deemed as non absorbing for microwaves and four different constant power densities
in the range between 10® W/m3 to 10! W/m* were applied. Due to high thermo-mechanical
stresses both radial tensile fracturing within the calcite matrix and shear failure concentrated
along the grain boundary of the pyrite particle were observed. By reducing the size of the
pyrite sphere more energy was required to sufficiently raise the temperature in order to
introduce stresses which are high enough to cause damage.

Later, Jones et al. (2007) expanded the study to a 2D model containing various quadratic
pyrite particles (1% pyrite) in a calcite matrix. Again, a finite difference analysis combined
with a Mohr-Coulomb model was used. The pyrite grains were heated with microwaves
and power densities ranging from 10° W/m? to 1010 W/m3 and for a pulsed simulation from
10"3 W/m3 to 2 x 1015 W/m3. Afterwards, an unconfined compressive strength test was simu-
lated. A reduction in the UCS of up to 50% after microwave treatment with 101> W/m® was
determined. In general, a greater reduction in strength was observed for a given total energy
input when the exposure time was reduced. Based on their models the authors suggested
that for future microwave comminution power densities between 101 W/m3 and 1012 W/

combined with irradiation times in the range of 0.2 s and 0.002 s would be favorable.

Wang et al. (2008) applied the thermal-based particle modeling (PM), which is a discrete
element method (DEM), on 2D models with spherical pyrite grains (between one and nine) in
a calcite matrix. This numerical method (PM) decomposed the total interaction force between
the discrete particles to a mechanical and a thermal part. In that paper it was assumed that
the introduced microwave energy input completely contributed to enhance the repulsive bond
strength between the particles. Moreover, a linear elastic-brittle type of interaction force
was considered. Micro-cracking along the phase boundaries was observed. Furthermore, the
fracture density defined as the ratio between broken bonds to original bonds increased as the
microwave irradiation time was extended.
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Ali and Bradshaw (2009) performed 2D finite difference simulations including a Mohr-
Coulomb model on randomly distributed rectangular microwave absorbing grains (10%) in
a transparent matrix. Two different binary systems were investigated: galena (absorbing) -
caclite (transparent) and magnetite (absorbing) - dolomite (transparent). However, in this
study only the thermo-mechanical material properties were effected by the different binary
system but not the microwave absorption behavior. A set of simulations was performed with
a power density of 10!9 W/’ corresponding to a pulsed microwave source and another with
10° W/m? for the case of a 30 kW source with a frequency of 2.45 GHz. Tensile failure was
determined around the strongly absorbing grains. After 0.75 ms of microwave treatment with
a power density of 10'0 W/n® 36.6% of the grain boundary zone exceeded the tensile strength.
For the same energy input but different power densities and irradiation times, different grain
boundary damage was determined (74.3% with 10'° W/n*, 0.001 s compared to less than
50% with 10° W/m?, 0.01 s). This paper concluded that the amount of damage was depended

on the ore mineralogy and its texture.

Ali and Bradshaw (2010) applied DEM to analyze the damage behavior of different
models containing 10% microwave absorbing galena grains with varying sizes and shapes
inside a transparent calcite matrix. In order to use this simulation method, a set of numerical
material tests had to be performed to obtain the micro properties of the discrete elements.
The thermal material in these models was represented as a network of heat reservoirs and
thermal pipes. A power density of 10° W/m? corresponding to a 30 kW source and 10'! W/m?
for short-duration pulsed type microwave equipment were investigated. It was concluded that
for the same energy input and mineralogy the amount of micro-cracks and the crack pattern
were depended on the applied power density and on the size of the absorbing grains. By
applying high power densities, it was possible to reduce the energy input and to localize the
damage near the grain boundaries independent from the shape of the microwave absorbing
grains. Finally, the work concluded that a higher power density was required in order to treat

fine-grained ores at economic energy inputs.

Confined particle bed crushing combined with microwave treatment was investigated by
Ali and Bradshaw (2011) using a DEM code. The microstructure of the single particles was
modeled with 10% randomly dispersed microwave absorbing galena particles in a calcite
matrix. In the 2D model, 25 particles were arranged between rigid walls and were first
microwave irradiated and then compressed. The research showed that microwave irradiation
at high power densities changed the progeny size distribution significantly and improved the
degree of liberation of an ore in the confined bed breakage test. However, a considerable
increase in liberation was also observed at the ore treated at low power density compared

with the untreated ore, although the resulting progeny size distributions were fairly similar.



1.3 Framework of the thesis 11

Moreover, they obtained higher liberations for both, the microwave treated but also the

untreated ores, when the crushing velocity decreased.

Wang and Djordjevic (2014) studied the microwave induced stresses and cracks in a 2D
circular plate containing a disc-shaped microwave absorbing pyrite particle in a transparent
calcite matrix. The simulations were performed with a finite element (FE) program assuming
axial symmetry. In order to simulate the rock breakage behavior they used a thermal fracture
model which had been developed by Wang (2013) based on a texture-based finite element
method (FEM) modeling technique (cf. Wang (2015)). The initial cracks were caused by
tensile thermo-mechanical stresses which gradually propagate in radial direction from the
calcite matrix. The cracks in the non-absorbing matrix (calcite) were initiated close to the
phase boundary. The main factor affecting the location of maximum stress was the thermal
expansion of the matrix. The longer the exposure time, the further away the peak stress is
from the pyrite-calcite interface. Finally, it is concluded that larger pyrite grains increased

the maximum stress whereas a larger matrix had the opposite effect.

1.3 Framework of the thesis

In this thesis a numerical framework which is capable of determining microwave induced
stresses and damage is presented. In order to define the properties and functionality which
should be considered for such an approach, the previous numerical studies are summarized
and simplifications used therein are outlined.

1.3.1 Summary of previous numerical works

Although various numerical studies have been conducted since the 1990s, important features
of hard rocks have been omitted and, furthermore, no comprehensive conclusions on the
microwave induced fragmentation behavior could be drawn (see section 1.2). The microwave
induced stresses and damage in inhomogeneous rocks have been investigated by some
studies in a two dimensional artificial model microstructure with one or more circular or
quadratic microwave absorbing particles inside a transparent matrix. However, only a
constant absorbed power density in each of the absorbing particles was assumed. In other
words, the distribution of the electromagnetic field inside the inhomogeneous rock has not
been considered. Moreover, the micromechanical behavior of the rock such as the anisotropic

grain behavior and the phase transformation of the quartz grains have not been investigated
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in those studies. Finally, the thermo-mechanical and dielectric material properties were taken

from literature and were not measured in most of the papers.

In one of the papers dealing with homogeneous rocks, the distribution of the electromag-
netic field was considered. However, no coupling between temperature and electromagnetic
field has been taken into account (Hassani et al., 2016). Moreover, only a temperature but no
stress field has been calculated.

Certainly, all studies have concluded that the numerical analysis allows valuable insight
in the formation of microwave induced stresses as well as on the identification of optimum
irradiation parameters. Based on the drawbacks of the previous work outlined in this section

the objective of the work has been defined as follows:

1.3.2 Aim of the work

The aim of this work is to derive a three dimensional numerical framework in order to
calculate the microwave induced stresses and damage in various inhomogeneous as well
as homogeneous hard rocks with different irradiation parameters. Taking into account the
resulting transient temperature and stress fields helps to better understand the complex nature

of the formation of microwave induced damage. Hence, the main aims of the work are to:

1. Determine temperature, stress and damage fields in realistic homogeneous as well as

inhomogeneous hard rock models.
2. Gain deeper understanding of the microwave induced damage behavior.
3. Suggest optimal microwave irradiation parameters to achieve maximum induced dam-

age.

In order to reach these objectives a sophisticated simulation chain is derived. Beside the
main aims described above the following properties should be considered in the numerical

work for an inhomogeneous hard rock:

* 3D microstructure with realistically resolved grains
* Randomly assigned phases to the grains with an arbitrary number of materials
* Electromagnetic field inside the microstructure

* Phase transformation of quartz from o to 8 at 573°C
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* Anisotropic behavior of quartz grains

* Non-linear constitutive law in order to determine the damage pattern

The simulation chain has to be flexible in order to include further properties easily or to
perform parameter studies automatically. The following properties for the models describing
the homogeneous hard rocks should be taken into account:

 Electromagnetic field inside the homogeneous model
* Coupling between temperature and electromagnetic field

* Phase transformation of quartz from « to 8 at 573°C



Chapter 2

Principles of microwave heating

2.1 History

During the Second World War intensive research on high-definition radar led to the develop-
ment of microwave frequencies. In particular, the magnetron valve as a microwave generator
of high power output with good efficiency was invented (Meredith, 1998). In 1945, Percy
Spencer filed a patent describing the principle of a microwave oven. In the early fifties a
commercial microwave oven was first developed by the Raytheon company, where Spencer
was employed. The devise was about two meters high and weighed hundreds of kilos. Ovens
for domestic purposes became available in the early 1960s (Osepchuk, 1984).

For more than 40 years microwave ovens have been important devices in most kitchens
exploiting the advantage of fast cooking times and energy savings compared to conventional
cooking (Meredith, 1998). More recently the microwave technology has also been applied in

industrial applications such as mineral processing and comminution.

2.2 Basic concept of microwave heating

Microwaves are electromagnetic waves within a specific range of frequency (cf. figure 2.2).
In order to understand the microwave induced heating the electromagnetic theory is shortly

summarized.
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2.2.1 Electromagnetic waves

In 1864, Maxwell expressed four existing equations in a set of expression with complete
generality and conciseness (FlieBbach, 2012). These vector equations describe the electric
and magnetic fields as well as their interactions with each other and with the material
(Schwab, 2013). Electromagnetic phenomena can be determined by these expressions and,
hence, also electromagnetic waves (Jackson, 2011). For heterogeneous, isotropic, linear and
stationary media Maxwell’s equations in the time domain, differential form and using the
MKS units are presented (equations 2.1 - 2.4, cf. Gupta and Wong (2007); Jackson (2011)):

Faraday’s law of induction

VXE = —%—If (2.1)
Maxwell’s modified Ampere’s circuital law
V=24, 22)
Gauss’s law for the electric field
V-D=p (2.3)
Gauss’s law for the magnetic field
V-B=0 (2.4)

In equations 2.1 - 2.4 E, H, B, D and J define the electric and magnetic field strength vector,
magnetic and electric flux density vector and current density vector, respectively. The electric
p are time-varying and each is a function of the space coordinates and time E = f(x,y,z,t)
(Balanis, 2012). The flux densities can be related to the field strengths and the current density
to the electric field strength by the constitutive relations (equations 2.5- 2.7, cf. Balanis
(2012); Jackson (2011)).

D=c¢E (2.5)
J=0'E (2.6)
B=uH (2.7)
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In the constitutive equations € is the permittivity, c* the conductivity and u the permeability
of the material. In general, these parameters are functions of the applied field strength, the
spatial location within the material, the direction of the applied field and the frequency of
operation (Balanis, 2012). The permittivity can be decomposed into the relative permittivity
€, which is a function of the material and the permittivity of free space €y (equation 2.8). The
same decomposition can be performed for the permeability of a material as it can be seen in
equation 2.9 (Cassidy, 2009).

€ = €,€0 (2.8)
W= HHo 2.9)

The Maxwell’s relations present a set of partial differential equations which can be solved
analytically only for very specific cases with simple geometry and boundary conditions. For
more sophisticated conditions numerical methods have to be used. These are summarized in
chapter 3.1.1. One of the simplest solutions of Maxwell’s equations is the propagation of
plane waves in unbounded loss-free space. Figure 2.1 shows a plane wave which consists of
an electric and a complementary magnetic field vector orthogonal to each other and to the

direction of propagation (Meredith, 1998).

E,

Hy

Fig. 2.1 Plane electromagnetic wave (Balanis, 2012).

The correlation between orientation of the electric and the magnetic field of the plane
electromagnetic wave is defined by Maxwell’s equations (Scheck, 2006). According to
equation 2.2, a time-varying electric field generates a magnetic field and vice versa, the
change of the magnetic field induces an electric field (equation 2.1). The plane waves travel
in vacuum with a velocity ¢ according to equation 2.10 (Jackson, 2011).

[ 1 I
- _ — 299792458 m/s 2.10
““\ 1o < \/47r107 x 8.8543 x 10~ 12 / (210)

As can be seen in equation 2.10, the velocity of the wave is independent of the frequency in

free space and is therefore the same for the whole electromagnetic spectrum including visible
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light (Meredith, 1998). According to their wavelengths, the electromagnetic waves can be
classified into radio waves, microwaves, infrared, light waves (which is the visible region
for humans), ultraviolet, X-rays and gamma rays. The whole electromagnetic spectrum is
visualized in figure 2.2.

Visible Light

700nm 600nm 500nm 400nm

Gamma

Microwaves Infrared Ultraviolet X-rays

Radio waves

<«——LONGER WAVELENGTH (meters) SHORTER——>

F 1 11 111 1T 1 T T T 1
100 1 1 107 102 10° 10* 10° 10° 107 10° 10° 10%° 10% 1002 10

Fig. 2.2 Electromagnetic spectrum (Lambert and Edwards, 2016).

Microwaves are defined as electromagnetic waves in a frequency range between 300 MHz
and 300 GHz (cf. figure 2.2). According to equation 2.11 this corresponds to a wavelength in
vacuum Ay of 1 m for a frequency f* of 300 MHz and 1 mm in the 300 GHz case.

c= 2o 2.11)

The microwaves can be further classified into ultra high frequency (UHF: 300 MHz - 3 GHz),
super high frequency (SHF: 3 GHZ - 30 GHz) and extremely high frequency (EHF: 30 GHz
- 300 GHz). In industrial and domestic applications a frequency of f* = 2.45 GHz (A4p =
12.24 cm) is most commonly used (Haque, 1999).

2.2.2 Physical mechansim of microwave heating

When microwaves are applied to a material, three different mechanisms can be observed.
These basic classes of microwave-material interaction are visualized in figure 2.3 (Church
et al., 1988).

Conductors do not allow microwaves to pass through and reflect the total amount of

energy at the surface. Transparent materials transmit the microwaves without causing heating.
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Conductor

W \/ Transparent

N\ / Absorber

Fig. 2.3 Interaction of microwaves with material (Church et al., 1988; Haque, 1999).

The absorbers convert the electromagnetic energy mainly into heat. These three basic classes
represent ideal fictitious cases which cannot be found in nature. Real materials are always a

combination of the three mentioned extreme cases (Church et al., 1988).

In general, metals have free electrons and high conductivity and are therefore categorized
as conductors (Gupta and Wong, 2007). Conductors are often used as waveguides for
microwaves (Haque, 1999). Glass, ceramic and air are treated as transparent materials and,
therefore, absorb microwaves to a negligible extent and allow the waves to pass through
easily (Gupta and Wong, 2007). Salt water and many food products are excellent absorbers
for microwave energy and are categorized as dielectrics (Gupta and Wong, 2007; Haque,
1999). However, also magnetic materials such as ferrites are heated by microwaves due to
the interaction with the magnetic component of the electromagnetic wave (Gupta and Wong,
2007).
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2.2.2.1 Dielectric heating on a microstructure scale

Microwave irradiation of a dielectric material leads to losses and heating. Ideal dielectrics
do not contain free charges (as would be the case in conductors) and, moreover, their
atoms and molecules are microscopically neutral as illustrated in figure 2.4. When external
electromagnetic fields are applied, the respective centroids of the positive and negative
charges can shift slightly in positions relative to each other, thus creating numerous electric
dipoles (cf. figure 2.5). This process is called electronic polarization (Balanis, 2012).

~ A S\ A

Fig. 2.4 Atom without applied field (Balanis, Fig. 2.5 Atom under applied field (Balanis,
2012). 2012).

Unlike the dielectric materials, the negative and positive charges would move to the
surface of the material in the case of conductors. There the charges are separated by
macroscopic distances. This does not occur in dielectric materials which represent the
fundamental difference between bound charges in dielectrics and true charges in conductors.
Besides the electronic polarization of dielectrics during microwave treatment there are two
additional mechanism causing polarization. All three types of polarization are summarized
in figure 2.1 (Balanis, 2012).

Dipole or Orientational Polarization is evident in materials that randomly contain
dipole moments in the absence of any applied field. When an electric field is applied the
dipole moments try to align along the field. An example of such a material is water or any
other polar material. Ionic or Molecular Polarization takes place in materials that possess
positive and negative ions and they tend to displace themselves when an electric field is
applied (for example NaCl). Electronic Polarization is evident in most of the dielectric
materials (Balanis, 2012).

The initial propagating electromagnetic wave inside a dielectric material supplies energy
in form of acceleration for the separation of the charges. This generates a small displacement
current that produces radiating electromagnetic energy. The localized energy is slightly out

of phase with the incident wave which results in a ’slow down’ of the main body of the
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Table 2.1 Different polarization mechanism (Balanis, 2012).

Mechanism | Without field |  With field

ipole or Orien- ¢ E T
e N, 1

tational Polariza-

.

Ionic or Molecu- El
lar Polarization

5 A A
Electronic Polar- El E
©

ization

propagating wave. Finally, the microwave heating of the material is caused by the energy
transfer from the vibrations of the charged particles to mechanical vibrations of atoms or
molecules in the lattice of the solid material (Cassidy, 2009).

The described polarization effects are typically frequency-dependent. At low frequencies
the particles are able to ‘react quickly’ to the applied field and stay in phase with its changes.
With very high frequencies the dipoles have no time to move and stay at their initial positions.
In the microwave frequency range (which is between these two extreme cases) the dipoles
have enough time to respond to the alternating wave but the frequency is high enough that the
movement does not precisely follow the field. When the dipoles reorientate to align with the
field, the field has already changed and a phase difference evolves between field and dipole
which causes heating (Cassidy, 2009).

2.2.2.2 Dielectric heating on a macroscopic scale

On a macroscopic scale the microwave heating of a material depends on the constitutive

parameters ¢, and u,. These material constants are complex numbers (cf. equations 2.12 and
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2.13) (Gupta and Wong, 2007).

6 =e. —ic! (2.12)
Wy = py — iy (2.13)

1
re

The imaginary part of the permittivity €., which is also called loss factor, governs the
absorption behavior of the material (Gupta and Wong, 2007). Another parameter often used
to quantify the efficiency of the material to convert microwave energy into heat is the loss

tangent tan 0* or loss angle 6* (cf. equation 2.14) (Meredith, 1998).

7
€

tand* = 6—: (2.14)
r

The loss angle 6* describes the phase difference between the oscillating electric field and the
polarization of the material (Gupta and Wong, 2007). Moreover, the electromagnetic wave
inside a dielectric material has the same frequency as in vacuum but a different wavelength
Amaterial- In equation 2.15, the reduction of the wavelength compared to vacuum (cf. equation
2.11) is represented by the relative permittivity (Meredith, 1998).

A‘material - ﬂ (215)

v Er
The microwave heating on a macroscopic scale is quantified by the absorbed power density

(P,ps). In general, this property is the sum of the electric and magnetic losses (cf. equation
2.16) (Lee and Kim, 2011).

Py = 0coe E? + opop” H? (2.16)

In equation 2.16, E? defines the time averaged squared electric field and H? that of the
magnetic field. Moreover, @ is the angular frequency (= 27 f*). The magnetic losses
contribute to the absorbed power density when magnetic materials are investigated (Cassidy,

2009). Since rocks are non-magnetic materials, equation 2.16 can be reduced to expression
2.17.

Pups = 27 f o€l E2 (2.17)

In practice the complex relative permittivity €, varies with frequency, temperature, moisture
content, physical state (solid or liquid) and composition (Meredith, 1998). For constant

conditions some literature values are summarized in table 2.2.



2.2 Basic concept of microwave heating 22

The amplitude of the microwaves propagating into a dielectric material diminishes
owing to absorption of power. The field intensity and the associated power flux density fall
exponentially with distance from the surface if no reflected waves occur in the material.
Furthermore, the power dissipation also falls exponentially from the surface. In order to
assess the rate of decay of the power dissipation a parameter D), is proposed (Meredith, 1998).
The penetration depth D), is defined as the depth into the material at which the power flux has
fallen to 1/e (=~ 0.368) of the surface value (equation 2.18) (Metaxas and Meredith, 1993).

1

I\ 2
1+(€—j) ~1
6}"

Since the imaginary part is usually smaller than the real part of the relative permittivity in

(2.18)

P
P 27+ /2€)

rock materials, equation 2.18 can be simplified (equation 2.19). The maximum error of this
simplification is 10% (Meredith, 1998).

D, ~ Ao/, (2.19)

P omel

Equation 2.19 shows that the penetration depth decreases with increasing imaginary part of
the relative permittivity (¢/') and increases with the real part (¢,.). Besides the description of
the decay behavior of the power dissipation, the penetration depth also allows estimations
about the thermal field inside the material. In a semi-infinite slab of ideal material (i.e.
constant permittivity regarding the temperature) and with a plane wave at normal incidence

the temperature rise 6, along the depth z is described in equation 2.20 (Meredith, 1998).
0, = 6y e (2.20)

By integration of equation 2.20 it can be derived that the heat dissipated between the surface
and the depth D), is 63.2% of the total dissipated heat (Meredith, 1998).
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Table 2.2 Permittivity parameters and corresponding penetration depths at room temperature.

Component \ f [GHZ]‘ en[1 \ el [] \ Dy [em] \ Source
Water 3 76.7 12.04 1.2 Santamarina (1989)
Granite 3 50-5.8 0.03-0.2 | 118.5-19.2 | Santamarina (1989)
Moyite- 9.37 5.27 0.20 5.8 Zheng et al. (2005)
granite
Basalt 3 54-94 0.08 -0.8 46.2 - 6.1 Santamarina (1989)
9.37 7.55 -10.56-0.44 25-32 Zheng et al. (2005)
7.86
Marble (dry) | 3 8.7 0.14 33.5 Santamarina (1989)
Gabbro 3 7 0.13 324 Santamarina (1989)
9.37 7.95 0.40 3.6 Zheng et al. (2005)
0.915 4.23 0.0008 1.3 x 10* Church et al. (1988)
1 4.46 0.0034 2963.7 Church et al. (1988)
Muscovite 2.45 8.69 0.091 63.1 Nelson et al. (1989)
2.5 1.62 0.005 485.8 Meredith (1998)
3 5.4 0.0016 2309.9 Santamarina (1989)
Plagioclase | 9.37 6.56 0.32 4.1 Zheng et al. (2005)
(in basalt)
Plagioclase | 9.9 7.2 0.004 323.3 KrZmanc et al. (2003)
(Any00)
Plagioclase 104 59 0.013 85.7 Krzmanc et al. (2003)
(Ab100)
Plagioclase 10.4 5.7 0.005 219.1 KrZzmanc et al. (2003)
(AngoAbeo)
1 3.89 0.0005 1.9 x 10* Church et al. (1988)
Quartz 9.37 4.3 0.0026 406.1 Zheng et al. (2005)
10 3.8 0.0004 2325.3 Ishii (1995)
Fused quartz | 9.37 3.71 0.0033 297.2 Zheng et al. (2005)
emnite 2.45 23.6 11.2 0.8 Nelson et al. (1989)
9.37 54.3 32.58 0.1 Zheng et al. (2005)
Pyroxene (in | 9.37 10.2 1.62 1 Zheng et al. (2005)
anorthosite)

In table 2.2 the penetration depth is calculated by using the simplified formula (equation
2.19). The literature data reveal a strong variation of the permittivity values not only between
the different rocks and minerals but also within the same material. Due to the strong
variations, a temperature-dependent measurement device for bulk rock blocks was devised
in Hartlieb et al. (2016) and the data are used for the three dimensional three component
simulations.
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2.3 Microwave equipment

In order to irradiate a sample with microwaves three major mechanical parts are necessary
(cf. figure 2.6). These parts are the microwave source, waveguide and applicator (Haque,
1999).

Waveguide .

Source Applicator

Fig. 2.6 Major components of the microwave heating system (Haque, 1999).

Microwaves are generated in the source by a provided direct current source. Most
commonly magnetrons are used in industrial applications as the microwave source (cf. section
2.3.1). Other possibilities to generate microwaves are klystrons, traveling wave thermionic
devices, gyrotrons, magnicons, ubitrons and peniotrons (Ishii, 1995). After the microwave is
generated, a waveguide transmits the energy from the source to the applicator. Typically, a
waveguide is a tube made of a conductive material. In the applicator the microwave interacts
with the dielectric material. Based on the design of the applicator / cavity two different
concepts are found (cf. chapter 2.3.2).

2.3.1 Magnetron

The generation of microwave power is highly efficient in magentrons with a typical efficiency
greater than 70% at 2.45 GHz. Figure 2.7 visualizes the principal components and the
function of a high power magnetron (Meredith, 1998).

Basically, a magnetron contains a cylindrical cathode, a circular anode with radial slots
forming resonators tuned to the desired microwave frequency, a magnet (permanent in small
magnetrons and electromagnet for high power) and a probe antenna or slot coupled to the
resonator. The whole devise is enclosed in a vacuum envelope. To start the microwave source,
a high value DC EHT voltage is applied between cathode and anode. The heated cathode
emits electrons by the resulting applied electric field. The magnetic field induced by the outer
magnet is perpendicular to the electric field. Since the electron moves perpendicular to the
magnetic field the Lorentz force acts on it. This causes that the electron travels along a spiral



2.3 Microwave equipment 25

Anode Cathode

Electron

) trajectory
Magnetic field

normal to plane
of diagram

DC EHT
power supply Interaction space

Magnetic

oo Water cooling jacket
polepieces

around anode with
passages into anode
vanes

Coupling straps
from anode to
antenna

Output
antenna

Fig. 2.7 Principle design and function of a magnetron (Meredith, 1998).

path in the space between anode and cathode (cf. figure 2.7). Since the anode has radial slots
(resonant cavities), the accelerated electrons oscillate. Finally, the energy is coupled from

one of the resonant cavities to the waveguide (Meredith, 1998).

For various applications the output power of the magnetron has to be adjusted. This can

be done by following strategies (Ishii, 1995):

* Pulse output power of the magnetron
* Adjust anode current

* Change magnetic field
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* Adjust microwave energy that enters the load

2.3.2 Cavity design

Two different types of applicators are available: multimode and single mode cavities. Fig-
ure 2.8 illustrates the principle structure of a rectangular multimode cavity which is quite

similar to those found in a conventional kitchen microwave oven.

Microwaves
\

Platform | Sample

Fig. 2.8 Principle structure of a rectangular multimode microwave cavity (Pickles, 2009).

From a mechanical point of view they are very simple, essentially comprising a closed
metal box with accessories. The multimode oven supports a large number of resonant high-
order waveguide-type modes simultaneously which give a resultant field pattern (Meredith,
1998). However, this construction leads to low electric field strengths. Due to the low
power densities and the long treatment time used as a consequence, energetically inefficient

treatment of the mineral ores is concluded (Ali and Bradshaw, 2010).

Single mode cavities are capable of generating heating rates which are many orders of
magnitude higher than those produced by multimode cavities (Jones et al., 2007; Metaxas
and Meredith, 1993; Whittles et al., 2003). With the single mode cavity (cf. figure 2.9) the

rock sample is directly irradiated by an open-end waveguide.
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Fig. 2.9 Principle structure of a single mode microwave cavity (Pickles, 2009).

Essentially, a single mode cavity consists of a metallic enclosure and a waveguide. The
dimension of the single mode cavity is of the order of the applied microwave wavelength. The
launched microwave signal of the correct polarization suffers multiple reflections between
preferred directions within the waveguide. Due to the superposition of incident and reflected
waves, a standing wave pattern is achieved (Metaxas and Meredith, 1993). In general, for
the same power applied a single mode cavity establishes significantly higher electric field
strength compared to the multimode design (Metaxas and Meredith, 1993). Experimental
studies by Kingman et al. (2004a,b) and Sahyoun et al. (2005) revealed that high power
density treatments (typically > 3 kW in single mode cavities) allowed for a similar degree
of microwave-assisted breakage at significantly lower energy inputs than treatments at low
power density (typically < 3 kW) in multimode cavities due to significantly higher heating
rates.



Chapter 3
Simulation strategy

In order to reach the aims outlined in section 1.3.2 various numerical calculations with

different solvers have to be performed. The general procedure of the simulations is displayed

in figure 3.1.
Model .
» == | FDTD |===P| FEM m==Pp | Evaluation
definition
2D inhomogeneous  “Electromagnetic FThermal simulation  [Statistical
3D inhomogeneous  field -Stress simulation evaluations
3D homogeneous ~-Damage simulation “Comparison with

experiments

Fig. 3.1 Overview of the simulation procedure.

First, a model of the hard rock including the properties which should be investigated
is built (figure 3.1). Mainly 3D models with either inhomogeneous microstructure or ho-
mogeneous material definition are used. In preliminary simulations also a 2D model with
disc shaped inclusion geometry has been analyzed. In the next step, the electromagnetic
field caused by the microwave irradiation of the rock sample is evaluated (figure 3.1). This
calculation is performed by a FDTD (Finite-Difference Time-Domain) algorithm which is
presented in section 3.1. Afterwards, the resulting transient thermal field is calculated in a FE
analysis (figure 3.1). The displacement field does not have any influence on the temperatures
so there is only a weak coupling between the thermal analysis and the displacement analysis.
Hence, the stress field can be computed in a subsequent analysis following the thermal
analysis. A concrete damaged plasticity material model is used in the FE calculation to assess
the microwave induced damage (cf. section 3.2.2). Finally, the resulting stress and damage

distribution are assessed and statistically evaluated.
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In this chapter the theoretical framework of the used numerical methods is summarized.
The technical implementation of the rock models in the numerical programs and the necessary

amendments to the codes are discussed in detail in chapter 4.

3.1 FDTD method

3.1.1 Numerical solution of Maxwell’s equations

In order to solve Maxwell’s equations (equations 2.1 - 2.4) within a sophisticated structure and
for three dimensions, numerical methods have to be used. There are many numerical methods
available to solve these partial differential equations: the Finite-Difference Time-Domain
(FDTD) method, the Finite Element Method (FEM), the Method of Moments (MoM), the
Transmission Line Matrix (TLM) method, the Finite Integral Method (FIM) and others (Zhao
et al., 2011). The FEM method uses the variational principle as well as shape functions to
solve Maxwell’s equations. This method leads to sparse matrices and complex structures
can be analyzed (Zhao et al., 2011). In the MoM a boundary-integral formulation is used
which requires the derivation of geometry-specific Green’s function. Moreover, a system of
linear equations having dense, complex valued and full coefficient matrices are generated by
the MoM method (Umashankar, 1988). TLM uses the analogy between wave propagation
in space and voltage and current propagation in a transmission line. The computational
domain is modeled by a transmission line network (Zhao et al., 2011). The FIM transforms
Maxwell’s equations in their integral form into a linear system of equations. The domain is
discretized by cuboids and integrated over their surfaces (Weiland, 1977). The details of the
FDTD algorithm are summarized in section 3.1.2. Compared to the other mentioned methods
the FDTD offers the following advantages (Taflove, 1988, 2005):

* Fully explicit algorithm: Since no linear algebra is used which would limit the size
of FE electromagnetic models to generally fewer than 10° field unknowns, no intrinsic
upper bound has to be considered in FDTD. Moreover, the FDTD code can easily be

parallelized to run on cluster-computers.

* Accurate and robust: FDTD uses a second order accurate central-difference approxi-
mation for space and time derivatives of the electric and magnetic field.

* Treats impulsive behavior naturally: Due to the used time-domain technique, FDTD
directly calculates the impulse response of an electromagnetic system.
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* Treats nonlinear behavior naturally

» Systematic approach: By calculating the electromagnetic field in a new model only
a new mesh has to be generated rather than the complex reformulation of an integral

equation. Unlike MoM, no structure-dependent Green’s functions are required.

3.1.2 FDTD analysis

In this section the FDTD algorithm is introduced. First, the general equations and solving
strategies are described and in section 3.1.3 the open source software Meep (Oskooi et al.,

2010) and its special features are introduced.

3.1.2.1 Maxwell’s equations in FDTD notation

In order to derive the full set of FDTD equations, Maxwell’s relations are used (equations
2.1 - 2.4) and combined with the constitutive equations 2.5 - 2.7. By assuming a source-free
domain with constitutive parameters that are independent of time and using a MKS (Meter,

Kilogram, Second) system, equations 3.1 and 3.2 can be written as (Taflove, 1988)

a_ﬂ:_lzxg_p_ﬂ (3.1)
ot u u

IE_ly. .y % (3.2)
Jdt € €

For the FDTD purpose Faraday’s law 2.1 is extended by an equivalent magnetic resistivity p*
(equation 3.1). This term is added in order to yield symmetric curl equations and to consider
magnetic loss mechanisms. Assuming that the constitutive parameters are isotropic and using
a rectangular coordinate system a set of six scalar equations can be worked out (equations
3.3 - 3.8) (Taflove, 1988).
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agx _ % (aa_iy B %_l;z _p*Hx) (3.3)
aaftzz ~ ﬁ (a()b;x - % _p*HZ) (3.5)
a;;x ~ % (a;ylz - 88_1? B GEX> (3.6)

This set of six coupled partial differential equations forms the basis for the FDTD algorithm.
These equations are discretized by central finite difference expressions (Taflove, 1988).

3.1.2.2 Yee algorithm

For the discretisation of the coupled differential expressions 3.3 - 3.8 the Yee algorithm (Yee,
1966) is used. According to Yee’s grid, a point in a rectangular lattice can be described by
the notation defined in equation 3.9 (Taflove, 1988; Yee, 1966).

(i.j.k) = (ix, jAy, kA?) (3.9)

In equation 3.9 Ax, Ay and Az are the lattice space increments in the respective coordinate
directions and i, j, k are integers. Any function of space and time can be described by using
the notation in equation 3.10 (Taflove, 1988; Yee, 1966).

F" (i, j,k) = F (iAx, jAy, kAz, nAt) (3.10)

At in equation 3.10 is the time increment and n an integer number. The second order accurate
time space centered finite difference expression for a function F is denoted in equations 3.11
and 3.12 (Taflove, 1988; Yee, 19606).
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Moreover, Yee positioned £ and H in the finite difference grid with a shift of half a cell (cf.
figure 3.2). This pattern guarantees the accuracy of equation 3.11 as well as the definition of
the derivatives of the expressions 3.3 - 3.8. Moreover, the Yee grid algorithm evaluates £ and
H at alternate half time steps in order to achieve the accuracy of the leapfrog time-stepping
(equation 3.12, figure 3.2) (Taflove, 1988, 2005; Yee, 1966).

Fig. 3.2 Position of the electric and magnetic field components in a cubic unit cell of the Yee
FDTD grid (Yee, 1966).

With the Yee grid mentioned above and the central differences defined in equations 3.11
and 3.12, the explicit expressions of the magnetic and electric field components are derived
(cf. the two examples in equations 3.13 and 3.14) (Taflove, 1988).
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In the two presented examples (equations 3.13, 3.14) of the discretized six finite-difference
equations, it can be seen that the new value of the field component only depends on its
previous value and on the preceding values of the neighboring components. Since no
simultaneous equation solution is needed, the calculations of the field vectors can easily
be parallelized. Due to the interleaved electric and magnetic field components in space of
the used Yee grid, the continuity of tangential £ and H across an interface of dissimilar
material is naturally satisfied. Moreover, the Yee algorithm implicitly enforces the two
Gauss’s law relations (equations 2.3 and 2.4, for mathematical proof see chapter 3.6.9 in
Taflove (2005)). The presented time-stepping algorithm is non-dissipative which means
that the electromagnetic waves do not decay due to numerical artifacts of the time stepping
(Taflove, 1988, 2005; Yee, 1966).

When solving the finite-difference equations 3.13 and 3.14 some limitations in the choice
of the time and space increments have to be considered in order to obtain accurate results.

These numerical issues are summarized in the following (Taflove, 1988, 2005):
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3.1.2.3 Numerical FDTD issues
Numerical stability

In order to ensure a stable time-stepping algorithm, which is exemplified in equations 3.13
and 3.14, a numerical stability criterion has to be fulfilled. To this end, the Courant number S
is defined (equation 3.15) (Taflove, 2005).

B cAt

S
Ax

(3.15)

The Courant number S describes the relation between the time increment and the grid constant
which is exemplarily denoted as Ax in equation 3.15. Usually in finite difference algorithm
(and also in Meep) the spatial increments Ax = Ay = Az are forced to be equal. The Courant
number has to fulfill the inequality 3.16 in order to ensure numerical stability. This relation is
derived by considering a complex-frequency analysis and assuring that the numerical waves
have zero exponential attenuation per grid space. For details the reader is referred to chapter
4.7.1 in Taflove (2005).

S < L (3.16)

= /idimension

In equation 3.16 the variable f§dimension defines the number of the dimension. For example,
in the 3D case fidimension would be 3 (Taflove, 2005). In a FDTD program such as Meep,
S is defined by the user by considering the inequality 3.16. For standard 3D simulations a
Courant number S of 0.5 is recommended (Meep, 2016).

Numerical dispersion

Not only the Courant number S has to be within certain boundaries but also the grid constant
or lattice space increment Ax = Ay = Az is bounded in order to prevent numerical dispersion.
With this non-physical dispersion the phase velocity of numerical modes in the FDTD lattice
differs from ¢ at an amount varying with the wavelength, direction of propagation and spatial
discretization. If this phenomenon is not considered, pulse distortion, artificial anisotropy
and pseudorefraction will occur (Taflove, 1988, 2005).

In order to estimate the numerical dispersion caused by the Yee discretization, a monochro-
matic traveling plane wave trial solution is substituted into the set of finite difference equations
(cf. exemplary equations 3.13, 3.14). After various mathematical manipulations (for details
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the reader is referred to section 4.2 in Taflove (2005)) the numerical dispersion relation is
derived (equation 3.17) (Taflove, 2005).

~ ~ 2
Lsin wAr 2— isin KxAx 2+ isin Gy +
cAt 2 -\ Ax 2 Ay 2
! sin I%AZ 2
Az 2

Equation 3.17 relates the numerical wave vector k¥, k;‘, ké‘ to the angular frequency of the

(3.17)

wave @, the time increment Ar and space increments Ax, Ay, Az. The numerical dispersion is
compared to the analytical dispersion for a plane wave propagating in three dimensions in a
homogeneous lossless medium (equation 3.18) (Taflove, 2005).
w\ 2

() =@+ () + ()° a0
It can be shown that the numerical dispersion (equation 3.17) and the analytical dispersion
relation (equation 3.18) are equal in the limit case where Ax, Ay, Az and Ar approach zero.
This suggests that the numerical dispersion can be reduced to any desired value if sufficiently

small time and space increments are chosen. For a Courant number S of 0.5 at least 20 FDTD

grid points per wavelength A are recommended (Taflove, 2005).

3.1.3 Meep features

In the thesis at hand the open source FDTD program Meep (Meep, 2016; Oskooi et al., 2010)
is used to calculate the electromagnetic waves inside the 3D rock model. This chapter briefly
summarizes the features of Meep and presents the implementation of a complex permittivity

€ as well as the definition of sources.

3.1.3.1 Meep characteristics

Meep is an open source program for Unix-like systems which is written in C++. The major
features of the program are (Meep, 2016; Oskooi et al., 2010):

* Simulations in 1D, 2D, 3D and cylindrical coordinates
e Parallel simulations with MPI standard

* Arbitrary anisotropic electric permittivity e and mangnetic permeability u
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PML (perfectly matched layers) absorbing boundaries and / or perfect conductor
and / or Bloch-periodic boundary conditions

» Exploitation of symmetries to reduce the computational effort
* Completely scriptable (Scheme or C++)

* Field output in HDF5 format which can easily be used by other C++ programs to

perform further calculations

Moreover, Meep uses dimensionless units where the permittivity and permeability of
vacuum €, Uo as well as the speed of light ¢ is set to one. Therefore, the scale invariant
behavior of Maxwell’s equations is exploited (Meep, 2016).

3.1.3.2 Complex permittivity

The complex part of the relative permittivity (¢), which describes the absorption behavior
of the material, is implemented in Meep using the conductivity o). Based on this modeling
technique, complex electric £ and magnetic fields H (which would double the required
memory) and their concomitant numerical issues are avoided. The o7 is determined by using
equation 3.19 (Meep, 2016).

. 2xfe;

GD: 7
r

(3.19)
€

Note that the frequency f has to be inserted in Meep units (scaled by the speed of light ¢)
in equation 3.19. The conductivity required in Meep o7, differs from the conductivity used
in Maxwell’s equations (equations 2.1 - 2.4) by the permittivity (cf. equation 3.20) (Meep,
2016).

o =ope (3.20)

3.1.3.3 Source definition

Instead of hard sources where specific field values are assigned at the desired source position,
Meep uses soft sources. In the case of hard sources the source would cause non-physical
scatter waves (e.g. reflected waves) that impinge on the source. Conversely, soft sources or
transparent sources are transparent to other electromagnetic waves due to the linearity of

Maxwell’s equations. With this method equivalent electric J and magnetic currents K* are
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defined which produce the incident source wave. These equivalent currents are evaluated by
using the "total-field / scattered-field" approach which is a special case of the principle of
equivalence in electromagnetism (Oskooi and Johnson, 2013; Taflove, 2005).

In the "total-field / scattered-field" approach an infinite medium with the desired incident
fields H* and E* is considered first. Afterwards, an imaginary surface dQ is introduced
which divides the space into an inside region, where the desired fields are still present, and
an external region, where all fields are zero. In order to fulfill Maxwell’s equations electric J
and magnetic currents K* are constructed. In the last step perfectly matched layers (PML)
are added to truncate the computation domain and insert a scatterer or other object into the
internal region. In this region the electric J and magnetic currents K* produce the desired
incident field where the field in the external region is only the scattered field. With the
described approach equation 3.21 is derived (Oskooi and Johnson, 2013). The mathematical

details are formulated in Oskooi and Johnson (2013).

[If ] ~ 5,(09)

nx H*

—nx E*

(3.21)

In equation 3.21 n is the unit inward-normal vector of the surface dQ and J, the Dirac delta
function. In the section 4.1.3.4 formula 3.21 is used to define the sources of the investigated

models in Meep.

3.2 FE method

3.2.1 FEM introduction

The finite element method is chosen to calculate the transient temperature as well as the
stress / damage field. In the thesis at hand an implicit finite element analysis within the
commercial program Abaqus (Abaqus, 2014) is used. The finite element method applies the
principle of virtual displacements combined with shape functions to obtain a weak form of
the boundary value problem which is solved by the FE program. In the decoupled thermo-
mechanical analysis two numerical calculations have to be performed. For details on the FE
framework the reader is referred to the Abaqus manual (Abaqus, 2014) or to Bathe (2007).
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3.2.1.1 Thermal model

In the thermal FE model the heat conduction equation (equation 3.22) is solved (Abaqus,
2014).

pcp aTstm =V (kVT (r,t))+s(r,t) (3.22)

In this equation, 7" defines the temperature, p© the density, ¢, the specific heat, k the thermal
conductivity, r the position vector and s the body heat flux. The discretization of equation
3.22 is given by expression 3.23 (Abaqus, 2014).

{CIT+{K}T=Q (3.23)

In equation 3.23, {C} is the heat capacity matrix, {K} the conductivity matrix, T the tem-
perature vector and Q the heat flux vector. Since the {C} and {K} matrices are temperature-
dependent, a Newton-Raphson algorithm is used to solve the nonlinear set of equations. The
time-dependent problem is solved by means of a finite difference scheme (Abaqus, 2014).

3.2.1.2 Stress model

In order to derive the stress formation the equilibrium equation for the static case has to be
solved (equation 3.24) (Abaqus, 2014).

Vo+b=0 (3.24)

O in equation 3.24 defines the Cauchy stress tensor and b the body force vector. The Cauchy
stress tensor O is coupled with the strain tensor by the constitutive equation. In the thesis
at hand both a linear elastic material model to calculate the elastic stresses and a nonlinear
material model to identify damage is used. In the case of small strains the strain tensor € can

be derived from the displacement vector u by equation 3.25 (Abaqus, 2014).
e= 1 (Vutuv) (3.25)
Finally, the finite element equation for a static model is derived (equation 3.26).
{K}u=F (3.26)

In this equation {K} denotes the stiffness matrix and F the load vector.
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3.2.2 Concrete damaged plasticity model
3.2.2.1 Material model characteristics

The constitutive behavior of hard rocks is described in the thesis at hand by the Concrete
Damaged Plasticity (CDP) material model available in the commercial FE program Abaqus
(Abaqus, 2014). The model is based on the plastic-damage model for concrete presented by
Lubliner et al. (1989) with adaptions suggested by Lee and Fenves (1998). The applicability
of the model for modeling the constitutive behavior of hard rocks has been investigated in
various studies (Busetti et al., 2012a,b; Mikl-Resch et al., 2015). The main properties of the
CDP model are (Abaqus, 2014):

* Constitutive model for concrete and other quasi-brittle materials
* Different yield strengths in tension and compression can be used

* CDP uses isotropic damaged elasticity combined with isotropic tensile and compressive
plasticity to represent inelastic material behavior

* CDP can be used for monotonic, cyclic and dynamic loading

» Combination of nonassociated multi-hardening plasticity and scalar isotropic damaged

elasticity to describe the fracturing process

* CDP can be used in conjunction with viscoplastic regularization to enhance the conver-

gence

The CDP model is a continuum plastic-damage model which captures tensile cracking
and compressive crushing of quasi brittle materials. The uniaxial material behavior under
tension and compression is visualized in figures 3.3 and 3.4 (Abaqus, 2014; Lee and Fenves,
1998; Lubliner et al., 1989).

By loading the CDP model under uniaxial tension the stress-strain response first follows
the linear elastic line until the failure stress oy is reached (cf. figure 3.3). At this point
micro-cracks are initiated in the material. With increasing strains the material softens due to
the formation of micro-cracks inducing strain localization in the structure. Conversely, under
compression the plastic material behavior (beyond the uniaxial compressive strength () is
characterized by stress hardening (until 6,,) followed by strain softening due to crushing.
In both uniaxial loading conditions the elastic stiffness is degraded in the strain softening

regime. When the integration point is unloaded from a point on the softening curve the elastic
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Fig. 3.3 Uniaxial tension behavior of the CDP  Fig. 3.4 Uniaxial compression behavior of
model (Abaqus, 2014). the CDP model (Abaqus, 2014).

stiffness is reduced through damage (Abaqus, 2014; Lee and Fenves, 1998; Lubliner et al.,
1989).

The implementation of the material characteristic described above for a three dimensional
case into the FE framework follows the equations summarized in section 3.2.2.2. For details
the reader 1s referred to chapter 23.6.3 of the Abaqus Analysis User’s Guide (Abaqus, 2014)
or chapter 4.5.2 of the Abaqus Theory Guide (Abaqus, 2014).

3.2.2.2 Constitutive relations
Stress-strain relations

By considering the inelastic material behavior the total strain tensor (€) is decomposed in an
elastic (¢°)) and a plastic part L) (equation 3.27). For small strains the plastic stain e’ is
the remaining strain in the relaxed configuration (Abaqus, 2014; Lemaitre and Chaboche,
1990).

e=¢g ¢l (3.27)

Afterwards, the multiaxial stress-strain relation of the CDP model is derived by rearranging
equation 3.27 and considering a scalar damage variable d (equation 3.28). The variable d

takes values between zero, which corresponds to an undamaged material, and one, i.e. a fully
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damaged material. Therefore, damage in the CDP model (cracking and crushing) results in

an isotropic reduction of the stiffness (Abaqus, 2014).
=(1—d)Df : (e —€P') =D : (e — &) (3.28)

In equation 3.28, o describes the Cauchy stress tensor, Dgl the initial undamaged elasticity
matrix and D¢ the degraded elasticity matrix. Following the continuum damage mechanics
notation an effective stress tensor & is defined in the undamaged regime (equation 3.29)
(Abaqus, 2014).

6 =D¢:(e—¢g") (3.29)

Hardening variables and their evolution

In order to identify damage states two independent hardening variables in tension &’ "and
compression &7 " are introduced, which are referred to as equivalent plastic strains in tension
and compression (equation 3.30). Increasing values of the hardening variables correspond
to microcracking and crushing of the material. These two variables control the degradation
of the elastic stiffness as well as the yield surface (cf. equation 3.34). The evolution of
the hardening variables is described by the equivalent plastic strain rate tensor £”' given by
equation 3.31 (Abaqus, 2014).

g
g’ = <fp,> (3.30)
&

~pl
€

2 ~ ~pl ~
" =h-&" where & = | &V (3.31)
~pl
€3
The equivalent plastic strain rate tensor £”' is a function of the matrix A and the eigenvalues
. . AN L ~pl el ol ..
of the plastic strain rate tensor &7/ (ep ) defined as sf > 812) > s§ The matrix h is expressed
by using the stress weight factor r(G ) (equation 3.32) (Abaqus, 2014; Lee and Fenves, 1998).

h= (r(%) 0 0 ) (3.32)
0 0 —(1—r(3))
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Li=\% o< 13) <1 (3.33)
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%i in equation 3.33 defines the principal stresses of the effective stress tensor & and (-) is the
Macaulay brackets defined by (x) = %(|x| +x). If all three principal stresses are positive, the
stress weight factor r(6) is one and zero if all principal stresses are negative.

Yield function

The yield function F (equation 3.34) defines a surface in the effective stress space which
determines the onset of failure or plasticity. The function F' can only take values less or equal
to zero (Abaqus, 2014; Lee and Fenves, 1998; Lemaitre and Chaboche, 1990).

F(G.&") =1 (@3 P+B(E")(Omar) - a0
¥Y{—Gmax)) — O (8
— /=pl
By =) (| oo (3.35)

In equation 3.34, o* and Y are dimensionless material constants, %max is the maximum
principal stress, g is the Mises equivalent stress (defined in equation 3.37) and p is the
hydrostatic pressure stress (defined in equation 3.36). The function f3(£€” ! ) is expressed in
equation 3.35 where 6. and &; are the effective compression and tension cohesion stress
(Abaqus, 2014).

1
p= —§E | (3.36)
_ PBes

q= ES - S (3.37)
S=pl+0 (3.38)

Variable I in equation 3.36 and 3.38 is the identity tensor and S the deviatoric stress tensor.
A schematic visualization of the yield surface in plane stress is depicted in figure 3.5. Here

different loading scenarios and the difference between tension and compression can be seen.
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Fig. 3.5 Biaxial yield surface in plane stress (Abaqus, 2014).

Plastic flow occurs if the yield condition (equation 3.39) as well as the consistency
condition is satisfied (equation 3.40). If F is less than zero or F is zero but F is less than zero,
only elastic behavior of the material is observed (Abaqus, 2014; Lemaitre and Chaboche,
1990).

(3.39)
(3.40)

In addition to the two conditions mentioned above (equations 3.39 and 3.40), a flow rule has
to be defined in order to assess the amount and direction of inelastic strains. Plastic flow in
the CDP model is determined by a nonassociated flow rule (equation 3.41) (Abaqus, 2014;
Lemaitre and Chaboche, 1990).

9G(o)

pl
& =A—= (3.41)

In equation 3.41, A defines the plastic multiplier and dG/d'G the direction of the plastic strain
vector. The flow potential function G is defined according to a hyperbolic Drucker-Prager
function (equation 3.42) (Abaqus, 2014).

G= \/(e* ootany)? +g* — ptany (3.42)

Variable oy in equation 3.42 is the uniaxial tensile stress at failure and ¢* is a parameter
referred to as the eccentricity of the function. Moreover, ¥ defines the dilation angle which is
measured in the p-g plane and determines the volumetric change due to plastic deformation

(cf. figure 3.6). Unlike an associated flow rule the plastic strain increment is not normal to
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the yield function but to the plastic flow potential G (cf. figure 3.6) (Abaqus, 2014; Lemaitre

and Chaboche, 1990).
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Fig. 3.6 Family of Drucker-Prager hyperbolic flow potentials in the p-g plane (Abaqus,
2014).

3.2.2.3 Numerical issues

Since the CDP material model exhibits a softening behavior and stiffness degradation, severe
convergence issues during an implicit analysis can occur. The CDP model in Abaqus offers
the possibility to add viscoplastic regularization. This viscoplastic regularization causes the
consistent tangent stiffness of the constitutive model to become positive for sufficiently small
time increments. Therefore, a generalization of the Duvaut-Lions regularization is used. The

viscoplastic strain rate tensor &7 !is defined according to equation 3.43 (Abaqus, 2014).
apl 1 pl pl
eV:ZF<£<—g> (3.43)

In equation 3.43, u* represents the viscosity parameter which corresponds to the relaxation
time of the viscoplastic system and &”' is the plastic strain in the inviscid model. Moreover,
the scalar degradation variable d in equation 3.28 is substituted by the viscous stiffness
degradation d,. Its evolution is described in equation 3.44 (Abaqus, 2014).

, 1
d,=—(d—d, 3.44
L d—d) (3.44)

The solution of the viscoplastic system relaxes to the inviscid case when ?/u* — oo. Therefore,

small p* values usually improve the rate of convergence.



3.2 FE method 45

3.2.2.4 Dilation angle

The volumetric change during plastic deformation is characterized by the dilation angle
V. In the CDP model, implemented in the FE program Abaqus, a dilation angle y at high
confining pressure has to be defined (Abaqus, 2014). By default y is constant over the plastic
deformation and can therefore cause unrealistic swelling. Triaxial experimental strength
investigations show that the dilation angle drops rapidly with increasing plastic flow (cf. for
example Arzida and Alejano (2013)). In order to consider this behavior a user subroutine has
been written in FORTRAN 77 to extend the CDP model in Abaqus (Abaqus, 2014), see the

implementation according to Arzda and Alejano (2013), equation 3.45.

l Ymax if Y < '}’i’;l
ll/(»yp ) — e (efb*}’pl 7676*)/[”) (345)

s else

In equation 3.45 a*, b*, ¢* are material parameters which can be found in Arzda and Alejano
(2013) and y”! is the maximum plastic shear strain expressed in percent. The original
expression postulated by Arzda and Alejano (2013) (else branch in equation 3.45) considers
an initially steep increase in dilation followed by an exponential decrease if a certain threshold
}/;l;[ is reached. For numerical reasons this first sharp increase is substituted by a constant Wy,
followed by the proposed decrease (cf. equation 3.45). The details of the implementation in

Abaqus and the used material parameters can be found in chapter 4.



Chapter 4
Numerical models

Various numerical studies have been performed during this thesis in order to identify the mech-
anisms which governs the microwave induced stresses and damage. Moreover, numerous
parameter studies have been conducted to identify optimum irradiation conditions. Therefore,
2D and mainly 3D simulations are performed on an inhomogeneous rock model as well as
3D simulations on a homogeneous rock, the latter considering the strong electromagnetic-
thermal field coupling. In all presented simulations a microwave beam with a typical technical
frequency of 2.45 GHz as the microwave source is applied. The shape of the beam at the
source position is Gaussian (Kogelnik and Li, 1966) with a waist radius wq of 4.3 cm which
corresponds to an opening of a waveguide at 2.45 GHz. The function of the Gaussain beam
at the source plane is defined by equation 4.1 (Meschede, 2008).

2

—r

E(r)=Epe" (4.1)

In equation 4.1 E is any electric field component at the source plane, Ey the value at the
Gaussian axis and r is the radial coordinate. The source is positioned 1 cm in front of the
material. The specific characteristics of the investigated models are described in the following

sections.

4.1 Inhomogeneous models

By using models where the microstructure of the hard rock is resolved (inhomogeneous
model), the microwave induced stresses and damages in rather inhomogeneous rocks such

as granite can be investigated. Moreover, the influences of grain properties such as varying
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microwave absorption behavior, different thermal and mechanical properties, anisotropic
behavior as well as phase transformation are considered. Therefore, the stress field of the
inhomogeneous microstructure models is compared to a model with homogeneous material
definition. This allows to draw conclusions on the influence of the microstructural details.

4.1.1 Methodology

In order to perform the simulations on inhomogeneous hard rocks, a comprehensive simula-
tion methodology connecting different simulation modules is required. This thesis presents a
simulation chain for the inhomogeneous models without taking any feedback of temperature
changes on the electromagnetic properties into account. Furthermore, there is no influence of
the displacements on the thermal field (i.e. a weak coupling) (figure 4.1).

Input ' Mlcrostructure- ' Phase- ' FDTD electric
data

creation aSS|gnment f eld calculation

Absorbed power
density Pas

FE
temperature heat
calculation

!

Thermal
energy adapt C
calculation

. YES
‘_ FE stress % Cooling FE ¢

Fig. 4.1 Simulation chain, blue arrows indicate sequential working paths and red arrow file
transfer (Toifl et al., 2016a).

p Cp aaT =V. (kVT) + PapsC

The simulation process starts with the collection and preprocessing of input data such as
physical and thermo-mechanical material properties, numerical parameters, microstructure
parameters and model dimensions (cf. figure 4.1). In the first numerical working package
the microstructure is generated. The specific properties of the 2D and 3D microstructures
are described in the respective chapters. Afterwards, the various grains are assigned to
different phases according to a given random distribution function. The generated artificial

microstructure represents the basic input for all further simulation modules. Within the
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next step the electromagnetic field inside the model rock is calculated by solving Maxwell’s
equations numerically applying a FDTD analysis as presented in section 3.1. The time
averaged squared electric field E? (or Ey2 in the 2D case) is determined, which is used to
derive the absorbed power density P, distribution as the output of this module (cf. equation
2.17). In the subsequent thermal FE calculation performed with the program Abaqus (Abaqus,
2014), the absorbed power density P,;; multiplied by a constant factor C is directly treated
as heat source s entering the heat conduction equation (cf. equation 3.22) which is solved
numerically (figure 4.1). This body heat flux is applied in each increment of the thermal
analysis at the respective integration point by a DFLUX subroutine written in FORTRAN 77
(Abaqus, 2014). This way, various microwave power levels as well as microwave irradiation
times are considered. After the numerical evaluation of the transient temperature field during
heating, the thermal energy inside the model &;;, is calculated by equation 4.2 and compared
to the provided microwave energy minus 30% loss which is estimated with the currently used
lab-setup. These losses account for the reflections back to the magnetron and the imperfect
formation of the Gaussian beam. If the evaluated difference is greater than 5%, the constant

factor C is adapted and the thermal heat transfer calculation is repeated (figure 4.1).

iNCong W ) ) ) . iNCepg  k ) ) )
En= Y Y pP" S IVOL AT™ + Y Y HFL'C At AT¢ (4.2)
inc=0i=0 inc=0 j=0
In equation 4.2 variable inc is the current increment of the FE heat transfer calculation, i the
integration point, /VOL the integration point volume, AT the temperature difference to the
preceding increment, HF'L the heat flux component over the front surface (e.g. figure 4.5),
At the time increment and A the surface which corresponds to the respective integration point
on the front surface. The second double summation only affects all integration points on the

front surface k.

Afterwards, the natural cooling of the hard rock model is calculated for a duration of
3600 s by switching off the body heat flux. The transient inhomogeneous temperature field is
used as an input for the FE stress simulations. First, linear elastic calculations are performed
followed by damage calculations using the CDP material model (cf. section 3.2.2). Finally,

the stress and damage formation is analyzed in a statistical manner.
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4.1.2 2D model

First, simulations of the microwave induced stresses and damage are performed on a two
component artificial 2D microstructure. The aim of these 2D studies is to assess the influence
of the heterogeneity on the propagation of a microwave beam, i.e. the amount of diffuse
scattering as well as the heating and the formation of microwave induced stresses. The results
have been published in Meisels et al. (2015) and Toifl et al. (2014). The preliminary 2D
FDTD calculations are performed by Prof. Ronald Meisels from the Institute of Physics,
Montanuniversitaet Leoben.

4.1.2.1 Microstructure

For the 2D simulations a two component rock model with circular microwave absorbing discs
distributed randomly in a transparent matrix is built (figures 4.2 and 4.3). The geometrical
configuration is generated by means of a user code written in C following the procedure
described by Meisels and Kuchar (2007) where the random distribution is realized by the
positional disorder of the discs on a square grid.

z (cm)

Fig. 4.2 Two-dimensional model of a block of rock with statistical distribution of discs in a
matrix (details see figure 4.3) (Meisels et al., 2015).

The degree of the positional disorder is determined by the parameter &. The deviation of
the i-th element from the ideal position on a square lattice in the x- and z-direction, J,; and

0 i, is limited by Opax (Oxis Oz < Omax) and has a uniform distribution (figure 4.3).
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Fig. 4.3 Enlarged section of the two-dimensional model rock. The crosses represent the
lattice points, the dots the actual centers of the discs. d, and &, denote the deviation from the
ideal position on a lattice point (Meisels et al., 2015).

In the calculations & is chosen to be 25% of the lattice constant @ = 0.71 cm. The
diameter of the discs is 0.467 cm corresponding to a filling factor f of 0.34. The variable
f 1is the fraction of the area occupied by the discs relative to the total area. These values
(parameters summarized in table 4.1) indicate that the arrangement of the discs is far away
from percolation but that some of the discs can overlap by about 0.1 cm. This model
is simplified but shows a qualitatively good estimate of the effects of scattering due to

differences in the dielectric properties of inclusions and matrix in a rock.

Table 4.1 Parameters of the 2D model rock (Meisels et al., 2015).

Lattice constant a 0.71 cm

Disc diameter 0.467 cm

Filling factor f 0.34

Disorder, max &, 25% of lattice constant a

Size of 2D model rock 50 x 30 cm?
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4.1.2.2 Material data

In the 2D two component model it is assumed that the discs represent the microwave
absorbing phase and the matrix is transparent for the microwaves. Based on these assumptions
an averaged relative permittivity ¢, of a hard rock was taken from literature (cf. table 2.2). For
the 2D study a value for €, ¢ of 7.4 4-0.88i is chosen. The individual permittivities of the
two constituents are determined by the Bruggeman’s effective medium theory (Bruggeman,
1935). For the two component 2D model rock the individual permittivities as well as the
effective one €, have to fulfill equation 4.3 (Bruggeman, 1935).

€rd — Creff i (1 _ f) €rma — €reff _

0 4.3)
€rd T Ereff €r,ma + Ereff

In equation 4.3 the index d corresponds to the discs, ma to the matrix and f is the filling factor
defined in section 4.1.2. The imaginary part of the matrix permittivity is set to zero (e’rf ma =0)

corresponding to the assumption that this phase is transparent for microwaves. In order to

increase the reflections at the interfaces between matrix and discs, a large difference between

/ /

the real part of the matrix (¢;.,,,) and the discs (¢, ;) is chosen. Hence, €., is set to 7.1 and
the remaining complex part €, 4 is derived by equation 4.3. As aresult €,4 = 7.690 +2.787i

is obtained. The resulting permittivity of the discs represents an upper limit case.

The temperature-dependent thermo-mechanical material properties (density, heat capacity,
thermal conductivity, thermal expansion, Young’s modulus, Poisson’s ratio) of the two
components (disc and matrix) were taken from literature. Therefore, it is assumed that the
discs have the properties of plagioclase (AbsgAngq, where Ab is albite and An anorthite)
and the matrix those of quartz being constituents of hard rocks such as granite. These
assumptions correlate with the microwave absorption behavior since quartz is a very poor
absorbing mineral and plagioclase a rather good absorber (cf. table 2.2). The thermo-
mechanical material properties used for the 2D simulations are summarized in table 4.2
(Meisels et al., 2015).
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Table 4.2 Temperature-dependent thermo-mechanical properties of quartz and plagioclase
(Meisels et al., 2015).

Component | Property | T[°C] | Value | Source

0 698
200 970
cp ekl 400 1130 Goranson (1942)
800 1170
1200 1327
0 9.125
50 7.515
100 6.445
Quartz k [W/mx] ;?)8 gzgg Birch and Clark (1940)
250 4.710
300 4.335
350 4.020
25 [8.1x10°°
o [1/K] 573 8.1 x 107° | Ackermann and Sorrell (1974)
574 0
E* [GPa] - 86.9
v ] - 0.17 Atanasoff and Hart (1941)
p° [ke/m3] - 2648
20 750 Cermak and Rybach (1982)
50 800
¢p ['/kex] 388 190455 | Benisek et al. (2013)
Plagioclase >00 1090
k [W/mk] - 1.46 Horai and Baldridge (1972)
AbscAnyy —5
a [1k] 0 | 35107 " ginner (1966)
1000 | 3.5x 1076
E* [GPa] - 53.3
v ] - 0.29 Gebrande et al. (1982)
p° [ke/m3] - 2703

For the 2D CDP model averaged material properties of bulk hard rocks were retrieved
from literature. These values are summarized in table 4.3. The viscosity parameter (™ was
found in a parameter study by evaluating the convergence rate and the amount of energy used

for regularization (cf. section 3.2.2.3).
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Table 4.3 Concrete damaged plasticity material parameters for the 2D model (Toifl et al.,
2014).

Description Symbol Value Source

Fracture toughness Kjc [MPay/m] 1.48 Nasseri et al. (2005)
Tensile strength o;0 [MPa] 9 Hustrulid et al. (2001)
Compressive strength ¢, [MPa] 250 Hustrulid et al. (2001)
Dilation angle v [°] 15 Busetti et al. (2012b)
Eccentricity e (] 0.1 Busetti et al. (2012b)
0 /Gc0 %0 /cc0 [] 1.16 Busetti et al. (2012b)
K. K. ] 0.66 Busetti et al. (2012b)
Viscosity parameter ™ [] 1x1072

Since the fracture toughness Kjc is defined in the CDP model, a linear behavior between
the stress in tension (oy) and displacement (#;) during the degradation is assumed (cf.
figure 4.4). For the interpretation of the remaining CDP material parameters the reader
is referred to chapter 23.6.3 of the Abaqus Analysis User’s Guide (Abaqus, 2014).

OrA

010 ¢

Gic G
40 = O'tgc
> o

Fig. 4.4 Tension damage behavior in CDP model (Abaqus, 2014).

4.1.2.3 FDTD model

The FDTD simulations for the 2D case are performed with the commercial program RSoft
(RSoft, 2014) since no MPI functionality is required. The size of the rectangular model
rock is 50 cm in width and 30 cm in direction of microwave propagation, the size of the
computational domain is 50 x 32 cm? as shown by the black frame in figure 4.2. The
computational grid has a lattice constant of 0.05 cm. To find out whether this grid is
sufficiently fine, a calculation was performed with the half of the value (0.025 cm). The
results for Ey2 along x = 0 cm deviate by less than 0.1% between the 0.05 cm case and
0.025 cm. Therefore, a value of 0.05 cm is considered sufficiently small for obtaining reliable
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results. The microwave source is positioned 1 cm in front of the sample (figure 4.2, x =0,
z=-1 cm). It emits a beam in positive z-direction with the polarization in y-direction and the
value of the time averaged Ey2 being = 1 (at x = 0, in dimensionless units). Part of the beam
is reflected at the air / rock interface and at the discs / matrix interfaces in the interior which
interferes with the emitted beam. At the boundary of the computational domain the radiation
is entirely absorbed. This ensures that the wave pattern remains unaffected by reflections
from these boundaries and that the effect of the disorder can clearly be observed. The model
with absorbing boundary conditions is also relevant for a real environment, e.g. excavation of
a mine or tunneling operation, because there the thickness would be almost infinite compared

to the penetration depth.

4.1.24 FEM model

For the FE thermo-mechanical stress calculations a regular mesh containing four node bi-
linear elements is generated. To model the material inhomogeneities in the vicinity of the
microwave irradiation spot in an appropriate manner, a finer discretization (node distance =
0.1 mm instead of 0.5 mm) is used in this region (cf. figure 4.5). The two types of meshes
are joined together by means of tie constraints.

30 cm
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Fig. 4.5 2D finite element model including microstructure (Toifl et al., 2014).

On the front face (normal vector points in negative z-direction, see figure 4.5) in the
thermal FE model, a thermal conductance of 20 W/mk and an emissivity of 0.8 combined
with an ambient temperature of 25°C is assumed. At all other faces an emissivity of 0.8 is
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used. The initial temperature of all nodes is set to 25°C. The inhomogenous rock sample
is irradiated with a microwave source of P,,, = 25 kW. The total thermal energy within the
model &, is compared to the total provided energy €,,,, (cf. equation 4.4) minus 30%
accounting for losses.

Cprov =1 @ 2wo 1 4.4)
w57
In equation 4.4 the total energy €,,,, provided in the 2D model is calculated by dividing the
total microwave power Py, by the surface of the Gaussian beam at the source and scaling
it to the front surface of the 2D model (in Abaqgus an internal thickness of 1 is used for the
numerical integration of the 2D elements).

In a subsequent mechanical FE model the same mesh again using linear elements with
reduced integration as in the thermal analysis is employed. Furthermore, the same two steps
(heating and cooling) are analyzed. The time varying temperature field is applied as an
input to the stress model. Moreover, plane strain conditions are assumed. Finally, damage is

assessed by means of a concrete damaged plasticity material model.

4.1.3 3D model

In the 3D case a more realistic microstructure containing polyhedral grains is used. Moreover,
the anisotropic behavior of quartz grains as well as their phase transformation is considered.
In order to extend the 2D model and to assess the micromechanical behavior of microwave
induced stresses in greater detail, a two component 3D model is investigated. The results of
this model have been published in Toifl et al. (2015a,b, 2016b). Moreover, a three component
model is also used where a real granite rock is analyzed. To this end, measured material
parameters (cf. Hartlieb et al. (2016)) are used and a parameter study with various irradiation

times as well as microwave power levels is performed. These results are presented in Toifl
et al. (2016a).

4.1.3.1 Model definition
Microstructure cube

For all 3D inhomogeneous models the same cube containing an artificial microstructure is
used. This microstructure has been created by a Voronoi tessellation algorithm with randomly

positioned seed points. This produces statistically distributed grain sizes. The phases are
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assigned according to the two or three component model. This approach was chosen in order
to be able to capture the nature of the sharp grain boundaries. First, a cube is partitioned
into polyhedra representing the grains of the material by a Voronoi tessellation algorithm
provided by the open source software Neper (Quey et al., 2011). After that, the software
performs some optimization loops (3 in the current case) in order to remove short edges of
the polyhedra which would cause meshing problems. Subsequently, the grains are meshed
with linear tetrahedral finite elements. At this point it is crucial that the desired number
of elements per polyhedron is set to values above 100, otherwise the meshing algorithm
becomes highly constrained and would result in a low quality of the FE mesh. Unfortunately,
the meshing process of the polyhedra is very time consuming and the time effort strongly
increases with the number of polyhedra. A microstructure of 30000 grains is assumed which
leads to manageable tessellation / meshing times and number of finite elements (4060685),
see figure 4.6.

Fig. 4.6 Microstructure model including various grains and assigned phases in the two (phase
T is blue and phase A beige) and three component model (quartz is blue, plagioclase beige
and muscovite red). Upper left close-up shows the FE mesh (Toifl et al., 2016a,b).
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In the next step the material phases are assigned to the different grains of the microstruc-
ture by a C++ script (figure 4.6). This is done in the two as well as three component case by

considering the desired volume fractions.

Two component model

The 3D two component model is an extension of the 2D inhomogeneous model. Therefore,
the same constant filling factor f of 0.34 (volume of microwave absorbing phase A in
reference to total volume) is assumed. The two components are phase A (beige in figure 4.6)
for the microwave absorbing component and phase T (blue in figure 4.6) for the transparent
part. In order to assess different morphologies (different phase assignments) with the same
filling factor f, two additional models with f = 0.34 have been generated. The new models
(model B and C) are compared to the reference model (model A) in figure 4.7.

Phase T

Ll =
model A model B model C Phase A

Fig. 4.7 Different two component 3D models with same filling factor but varying morpholo-
gies (Toifl et al., 2016b).

Significant variations in the phase distribution are visualized in figure 4.7. In addition to
models A - C further models have been generated for three different filling factors (f = 0.2,
=034, f=04).

Three component model

The three component model is built to resemble granite which is analyzed by thermo-
mechanical as well as dielectric measurements (cf. section 4.1.3.2) and during microwave
irradiation experiments. The investigated granite mainly contains quartz, feldspar and micas.
For the three component model the respective measured volume fractions of the constituents
are used. The investigated granite samples contain 27 vol.% quartz (blue in figure 4.6),
53 vol.% feldspar (mainly plagioclase; beige in figure 4.6) and 20 vol.% micas (mainly

muscovite; red in figure 4.6). The resulting phase distribution is visualized in figure 4.6.
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Model rock

For obvious reasons it is impossible to finely mesh the entire rock so one standard technique
is to embed a finely mesh cube in a surrounding homogenized bulk material with averaged
material properties (e.g. the two component model in figure 4.8). The scaling of the cube
depends on the desired average grain diameter, which is set to 3.2 mm in this work. This
leads to a cube with an edge length of 8 cm containing the highly resolved microstructure.
Moreover, the cube’s edge length also results from the fact that at a distance of about 8 cm
the temperature field has sufficiently decayed that almost constant conditions can be assumed.

From there on it is admissible to set the boundaries of the microstructure domain.
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Fig. 4.8 Microstructure (left) and FDTD model (right, all dimensions in centimeters) of the
two component case including isometric view. PML stands for perfectly matched layer and is
used to be able to truncate the simulation model without causing reflections of the microwave
(Toifl et al., 2016b).

A quarter symmetry of the whole numerical model is assumed in order to reduce the
problem size and thus avoid excessive simulation times (figure 4.8). The two and three
component models differ only in the dimensions of the material due to the higher penetration
depth in the three component case (compare figure 4.8 and figure 4.24).
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4.1.3.2 Material data
Two component model

In the two component model the same dielectric properties of the two phases and the
same filling factor f = 0.34 as in the 2D case are chosen. The relative permittivity of the
microwave transparent phase (phase T) is €,7 = 7.1 + 0i and that of the absorbing phase
(phase A) €,4 = 7.690 +2.787i. Since Bruggeman’s effective medium theory (Bruggeman,
1935) in the 3D case (equation 4.5) differs slightly from the 2D case, a different effective
relative permittivity is obtained (¢, rr = 7.37 +0.90i).

EV,A_Er,eff +(1_ E}’,T_Er,eff .

0 (4.5)
€ra+2€reff S

As in the 2D case the resulting permittivity of phase A represents an upper limit case.
Therefore, the high imaginary part of €.4 is explained by a mixture of strong absorbing
minerals (pyroxene and ilmenite) with plagioclase representing the absorbing phase A.

Similar to the 2D simulation the thermo-mechanical properties of the minerals were taken
from literature. Therefore, the main constituent of phase A and of phase T, respectively, is
chosen for the FE simulations. In this thesis, quartz represents the microwave transparent
phase T and plagioclase, as the main component of phase A, the absorbing phase. These two

minerals are typical constituents of hard rocks.

At typical pressure levels quartz transforms from trigonal quartz (& quartz) to hexagonal
quartz (B quartz) at 573°C (Le Chatelier, 1889). The phase transition is accompanied by a
change in symmetry and volume, where the 3 quartz has higher symmetry and volume than
the o quartz (Moss, 1999). In order to consider the o to B phase transformation of quartz in
the numerical model, material data in a range from room temperature up to about 800°C is
required. Unlike in the 2D case, material data with more values near the phase transformation
temperature as well as anisotropic material parameters are required. Conversely, the material
response of plagioclase is assumed isotropic and the material data were taken from literature.
The plagioclase material data for the 3D models are summarized in figures 4.14 - 4.17.

The elastic data as well as heat capacity and thermal expansion of quartz are taken from
Carpenter et al. (1998). Their measurements of the lattice parameters form the basis for the
calculation of the transformation strains. Experimental data are compared in Carpenter et al.
(1998) with theoretical curves obtained from a Landau-type modeling of the temperature

dependence of strains and elastic moduli (Pitteri, 2015). The anisotropic thermal conductance
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is used from Gibert and Mainprice (2009) where the thermal diffusivity of single quartz

crystals is measured by a modified Angstrém method up to a temperature of 800°C.

Specific heat capacity and thermal conductance of quartz

The thermal material behavior of quartz is depicted in figures 4.9 and 4.10 in a range
from room temperature up to 800°C. The vertical line indicates the phase transformation

temperature from o quartz to 8 quartz.
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Fig. 4.9 Specific heat capacity ¢, ['/kgk] of Fig. 4.10 Thermal conductance k [W/mk] of
quartz as a function of temperature [°C]. Ver- quartz in the isotropic and anisotropic case
tical line indicates phase transformation (Car- (Gibert and Mainprice, 2009; Okrusch and
penter et al., 1998; Toifl et al., 2016b). Matthes, 2005; Toifl et al., 2016b).

The heat capacity ¢, is a scalar quantity and thus is represented by only one line in
figure 4.9. The hotter the quartz gets, the more thermal energy is needed to further enhance
the temperature. At the phase transformation significantly more energy (due to the latent
heat) is needed to change the crystallographic system (peak in figure 4.9). In figure 4.10 the
anisotropic behavior of the thermal conductance k as well as its isotropic equivalent mean are
visualized. Only a slight change at the phase transformation temperature is noted. However,
significant differences of the thermal conductance along the a- and c-axis, especially for the

Q quartz, are observed.
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Uniaxial thermal expansion of quartz

Based on the thermal strains reported in Carpenter et al. (1998) the thermal expansion
coefficient @ with respect to a room temperature of 25°C is derived (figure 4.11). Additionally,
the anisotropic thermal elongation of the quartz grains is considered.
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Fig. 4.11 Thermal expansion coefficient a [!/k] of quartz for the isotropic and anisotropic
case (Carpenter et al., 1998; Toifl et al., 2016b).

In figure 4.11 it is observed that the thermal expansion increases rapidly when the
temperature is close to the phase transformation temperature. This is due to the jump of
the density from the & to the B phase. In the B quartz the thermal expansion coefficient o
decreases since the thermal strains are almost constant in this phase. Furthermore, a strong
difference between the thermal expansion along the a-axis of the crystal and the c-axis is
observed. This gives rise to the conjecture that strong anisotropic effects should be seen
within the stress field of the anisotropic model.

Elastic constants of quartz

Based on symmetry considerations of the crystal structure in quartz seven elastic constants
have to be defined in order to fully describe the elastic behavior. Actually, in the 8 phase only
six constants are required since C14 1s zero in the hexagonal crystal configuration (figure 4.12),
see Carpenter et al. (1998).

Figure 4.12 shows the strong temperature dependence of the different elastic constants,
especially near the & - B phase transformation. Furthermore, the crystal orientation suddenly
changes at the phase transformation (e.g. C14 becomes zero in 8 quartz and C;; the dominant
coefficient). The isotropic material constants (Young’s modulus E* and Poisson number V)
are obtained analytically by means of a Voigt—Reuss—Hill averaging for the trigonal as well

as hexagonal symmetry (Peselnick and Meister, 1965).
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Fig. 4.12 Elastic constants C;; [GPa] of quartz as a function of temperature [°C] (Carpenter
et al., 1998). Isotropic elastic data is derived by a Voigt—Reuss—Hill averaging (Peselnick
and Meister, 1965; Toifl et al., 2016b)

Three component model

As part of the FWF project various thermo-mechanical as well as dielectric measurements on
granite samples (and other hard rocks) were conducted. These experiments were performed
by Dr. Kaschnitz of the Austrian Foundry Research Institute (OGI, thermal conductivity,
heat capacity and thermal expansion), Dipl.-Ing. Uberbacher of the Seibersdorf Laboratories,
Austria and Prof. Hutcheon of Microwave Properties North, Deep River, Ontario, Canada
(permittivity measurements). They are summarized in Hartlieb et al. (2016). Details about
the conducted measurements of the bulk materials can be found in Hartlieb et al. (2016).
The properties of the single minerals were taken from literature or adapted according to a
material averaging (Beardsmore and Cull, 2001; Bruggeman, 1935; Peselnick and Meister,
1965; Roy et al., 1981).

The investigated granite samples contain 27 vol.% quartz, 53 vol.% feldspar (mainly
plagioclase) and 20 vol.% micas (mainly muscovite). Moreover, a maximum grain size
between 2 and 3 mm is determined in the samples. For the conducted simulations plagioclase

represents the feldspar group and muscovite the mica group.
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Data of the complex dielectric constant of the bulk granite block were taken from
measurements at a microwave frequency of 2.45 GHz as a function of temperature in a range
between 20°C and 1000°C in steps of 100°C. Figure 4.13 visualizes the mean values of the
real (¢, ,) and imaginary (e),) parts.
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Fig. 4.13 Complex permittivity of granite (Hartlieb et al., 2016; Toifl et al., 2016a).

The real part of the permittivity of the bulk granite is almost independent of the tempera-
ture as observed in figure 4.13. In contrast the imaginary part increases significantly after
300°C. Since the presented inhomogeneous simulation strategy requires constant values
of the complex dielectric property a lower limit case of €, , = 5.45+0.03i (cf. figure 4.13)
has been chosen for the simulations. The dielectric constants of the three minerals (quartz,
plagioclase and muscovite) were taken from literature. Since these values vary in a wide
range, the Bruggeman’s effective medium theory (Bruggeman, 1935) is used to connect
the bulk material data with those from the minerals. These four dielectric material values
(dielectric constant of granite, quartz, plagioclase and muscovite) have to fulfill equation 4.6

(Bruggeman, 1935).

€rg— € €rp— € € —€
nq 8 np ng +fm nm ng =0 (46)

€rgt 26, P €rp T 2€rg €rm+ 26,

fq

The properties of quartz in equation 4.6 are represented by index g, those of plagioclase
by index p, muscovite by index m and granite by index g. Variable f describes the volume
fraction of the respective phase inside the granite (f, =0.27, f, =0.53, f,;, =0.2). Equation 4.6
combined with literature values summarized in table 2.2 results in €,, = 4.28 +0.0005i
for quartz, ¢, = 6.57 +0.0635i for plagioclase and ¢,,, = 4.43 + 0.0005; for muscovite.
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Considering these values only plagioclase absorbs microwaves whereas quartz and muscovite

are almost transparent for the microwaves.

Specific heat capacity of the three component model

The specific heat capacity of the granite samples was measured in a temperature range from
25°C to 1000°C (figure 4.14). The values for quartz and plagioclase were found in the
literature whereas the c;, of muscovite is calculated using a Voigt-Reuss-Hill mixture rule
(Peselnick and Meister, 1965).
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Fig. 4.14 Specific heat capacity c,, [!/kg K] of granite (Hartlieb et al., 2016), quartz (Carpenter
et al., 1998), plagioclase (Benisek et al., 2013) and muscovite as a function of temperature
[°C] (Toifl et al., 2016a).

As can be seen in figure 4.14 the specific heat capacity of the granite sample reveals a
significant peak at a temperature of 573°C (green vertical line in figure 4.14). This peak
results from the quartz phase transformation from trigonal quartz (¢ quartz) to hexagonal
quartz (B quartz). The plagioclase values found in literature only range from 20°C to 500°C
(Benisek et al., 2013). In order to countervail the differences in the specific heat values of
the minerals, muscovite varies in a range between 800 7 /kg k and 1000 J/kg k according to a

Voigt-Reuss-Hill averaging.
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Thermal conductance of the three component model

Data of the thermal conductance of granite were taken from measurements between 25°C and
1000°C whereas only constant values for plagioclase and values between 25°C and 800°C
for quartz were found in literature (cf. figure 4.15). The property of muscovite is unknown
and must be derived by a square-root mean averaging (Beardsmore and Cull, 2001; Roy et al.,
1981).
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Fig. 4.15 Thermal conductance k [W/m k] of granite (Hartlieb et al., 2016), quartz (Gibert and
Mainprice, 2009), plagioclase (Horai and Baldridge, 1972) and muscovite as a function of
temperature [°C] (Toifl et al., 2016a).

Only minor changes of the thermal conductance due to the o to 8 quartz phase transfor-
mation of the measured granite is depicted in figure 4.15. The three minerals show a strong
variation of the thermal conductance values. This fact can lead to strongly inhomogeneous
thermal fields.

Uniaxial thermal strains of the three component model

Uniaxial thermal strains of granite were measured using a NETZSCH 402E, S/N 214 1 555
push rod dilatometer. Five granite samples of 6 x 6 mm? cross section and 25 mm length
were heated from 20°C to 1000°C at 3 K/min and cooled down to room temperature again
(with 10 K/min). The expansion coefficients of the constituents were taken from literature. The
accuracy of the found literature values are verified by repeating the thermal strain experiments

numerically and considering the microstructure (cf. section 4.1.3.3).

The measured grain samples reveal a significant change of the uniaxial thermal strain at
the & to B quartz phase transformation temperature of 573°C (figure 4.16). Another rapid
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Fig. 4.16 Mean uniaxial thermal strain &y [%] of granite (Hartlieb et al., 2016), quartz
(Carpenter et al., 1998), plagioclase (Skinner, 1966) and muscovite (Saxena et al., 1993) as a
function of temperature [°C] (Toifl et al., 2016a).

change of the thermal strain is observed at a temperature of around 800°C. The reason for
this increase of expansion is still under investigation (for details see section 4.1.3.3). No

phase transformation is observed for plagioclase and muscovite (figure 4.16).

Elastic constants of the three component model

The elastic constants of the three minerals (quartz, plagioclase (Ab47Ans3) and muscovite)
were retrieved from literature (figure 4.17). Young’s modulus £* and Poisson ratio v of the
remaining bulk granite is derived by applying the Voigt averaging scheme (Peselnick and
Meister, 1965).
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Fig. 4.17 Elastic parameters E* and v of granite, quartz (Carpenter et al., 1998), plagioclase
(Ab47Ans3) (Hearmon, 1984) and muscovite (Vaughan and Guggenheim, 1986) as a function
of temperature [°C] (Toifl et al., 2016a).

4.1.3.3 CDP calibration

In the thermal expansion experiments of granite samples not only the first heating but also a
second heating was measured (cf. figure 4.18). These two thermal heating curves are used to

calibrate the CDP three component 3D material model.
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Fig. 4.18 Mean uniaxial thermal strain &, [%] of granite as a function of temperature [°C]
(Hartlieb et al., 2016).
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In figure 4.18 a significant variation between the first and second heating test of the same
samples are observed. Furthermore, relatively large deviations between single measurements
under the same conditions of the five granite samples are determined (cf. figure 3 in Hartlieb
et al. (2016)). These strong variations can be explained by the relatively large grain diameters
(2 - 3 mm) compared to the sample cross section (6 x 6 mm?). If multiple quartz grains
accumulate at a cross section, they dominate the thermal expansion behavior of the entire

sample.

Besides the jump of thermal expansion at the well known @ to B phase transformation at
573°C, another rapid change at temperatures around 800°C is observed. This second jump is
governed by the phase transition of quartz at 870°C with a change to hexagonal tridymite,
which is also accompanied by a significant reduction in density to 2.25 g/cm* (Okrusch
and Matthes, 2005). In Heaney (1994), the author emphasizes that the 3 quartz tridymite
transition only occurs if certain impurities are included in the quartz crystals. However, this
jump in the thermal strains at temperature greater than 800°C is not visible in the second
heating cycle. Unfortunately, the cooling curves are not available due to measurement issues,
which would allow conclusions if the tridymite phase transformed back to 8 quartz or not.
After the first thermal heating a permanent plastic strain of 2.33% is observed. Moreover,
it can be seen that not only the second jump in the thermal expansion during reheating is

missing but also the o to 8 phase transformation is reduced.

For the CDP material calibration the thermal expansion experiments are repeated numeri-
cally by considering the microstructure of the granite sample. To this end, the same sample
dimensions 6 x 6 x 25 mm? (cf. figure 4.19) and phase fractions (27 vol.% quartz, 53 vol.%
plagioclase and 20 vol.% muscovite) as in the experiments are used. The microstructure
is created by a Voronoi tessellation algorithm (Quey et al., 2011) and an averaged grain
diameter of 2 mm resulting in 215 grains is assumed (details on the microstructure creation
can be found in section 4.1.3.1). The nodes on the front surface (red points in figure 4.19)
are constrained to the xy plane and the displacements in x- and y-direction of the middle
points on the front and opposite plane (green stars in figure 4.19) are set to zero. Moreover,
the middle point of two edges at the front surface are constrained in the direction of the edge

(orange polygon in figure 4.19 constrained in y-direction and purple one in x-direction).
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Fig. 4.19 Model for CDP material calibration including microstructure (quartz is blue,
plagioclase beige and muscovite red).

The test consists of a heating step (19600 s = 3 K/min) where all nodes are heated linearly
from 20°C to 1000°C followed by a step where the temperature is held (600 s) and a cooling
step (5880 s) from 1000°C to 20°C (linear). Afterwards, the second heating is carried out.
Since the sample is small, all nodes are simultaneously set to the outer applied temperature.
For the comparison with the measured thermal strains the maximum displacement of the
free surface is measured and divided by the initial length. Moreover, it is assumed that
the jump in the thermal strains at temperatures above 800°C is caused by the 8 quartz to
tridymite phase transformation of quartz. Therefore, the thermal expansion of quartz is
adapted during the calibration analysis for temperatures higher than 800°C in order to reach
the final measured expansion of the granite sample. Since no rapid increase during the
second heating is observed in the granite samples, no phase transformation of 8 quartz to
tridymite is modeled. Most of the CDP parameters were taken from literature or set to the
recommended values from Abaqus (Abaqus, 2014). The parameters with the respective

source are summarized in table 4.4.

The fracture toughness Kjc is a bulk material parameter which is retrieved from Nasseri
et al. (2005) for an averaged granite with a similar plagioclase content. Based on the fracture
toughness and the elastic properties of granite for room temperature (E* = 89.6 GPa and
v = 0.23), the critical energy release rate Gy¢ is calculated. Plane strain conditions are

assumed (cf. equation 4.7).

Gic = -2 (1-v?) 4.7)
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Table 4.4 Concrete damaged plasticity material parameters for the 3D three component
model.

CDP parameter | Material | Value | Source

Kjc [MPay/m Granite 2.23 .
I%I[C 0 /n?2/]_] Granite 55 63 Nasseri et al. (2005)
Granite 9 Hustrulid et al. (2001)
uartz 25 Wang (2015)
6o [MPal Ple?gioclase 23 Wan§ (2015)
Muscovite 9.1 | Wang (2015)
o0 [MPa] Granite 85.45 | Arzda and Alejano (2013)
€[] Granite 0.15 | Abaqus (2014)
%0 /o0 [] Granite 2.34 | Arzia and Alejano (2013)
K. [] Granite 0.56 | Arzua and Alejano (2013)
w [l Granite | 107%

The compressive strength o, is retrieved from Arzia and Alejano (2013) who performed
triaxial strength tests on an Amarelo Pais granite, which shows comparable volume fractions
of the three minerals. The % /sc0 value is derived from dividing the biaxial compression
(opo =~ 200 MPa) by the uniaxial compression strength (o9 = 85.45 MPa) (Arzda and
Alejano, 2013). The parameter K, is determined by taking the friction angle ¢ from the
Mohr-Coulomb model determined in Arzda and Alejano (2013) (¢ = 57.59°) and using
equation 4.8 (Lopez-Almansa et al., 2014).

3—sin¢

" 3+sing (4.8)

C
The dilation angle v is defined as a function of the maximum plastic shear strain ¥ (cf.
equation 3.45). For the used granite Arzia and Alejano (2013) determined the three required
parameters: a* = 30.95, b* = 8.97, ¢* = 0.654. The function is shown in figure 4.20.
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Fig. 4.20 Dilation angle y [°] as a function Fig. 4.21 Relative volume (1 +4V/v) of the
of the maximum plastic shear strain y”' [%] unit cell under shear loading for various dila-
(Arzda and Alejano, 2013). tion angles v as a function of 7.

In figure 4.21 the relative volume of a unit cell (1 44V /v) with periodic boundary con-
ditions under shear loading is visualized. In the case of constant dilation angle the volume
increases linearly with increasing plastic strains. The slope of the line is determined by the
dilation angle. Assuming Y = 15° the slope of the curve is significantly smaller than in the
v = 50° case. By applying the y”' dependent dilation angle proposed by Arzia and Alejano
(2013), the increase of the volume for higher plastic flow values becomes significantly less
(cf. figure 4.21).
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Fig. 4.22 Stress-strain damage behavior under compression of investigated granite (Arzda
and Alejano, 2013).

The tension damage behavior is visualized in figure 4.4. The parameters are summarized
in table 4.5. For the compression damage behavior the material test data of Arzia and Alejano
(2013) are used (cf. figure 4.22). The resulting compression parameters are summarized in
table 4.5.
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Table 4.5 CDP parameters of bulk granite for 3D model (Arzia and Alejano, 2013; Nasseri
et al., 2005).

Load typ | Component | Damage variable d | cracking / crushing strain &

Quartz 0.0 0.0
0.57 4214%x107°
) 0.0 0.0
Tension Plagioclase 0.57 4581x10°°
Muscovite 0.0 0.0
0.57 1.1578x1073
Granite 0.0 0.0
0.57 1.1707x 1073
0.0 0.0
Compression Granite 0.7576 0.0033
0.7576 0.1

For all material parameters with unknown values for the minerals the global granite
values are used. The resulting CDP material model is further used to calculate the damage

behavior of the granite samples under microwave irradiation.

4.1.3.4 FDTD model

Since the 3D FDTD models contain a huge number of degrees of freedom, the open source
software Meep (Oskooi et al., 2010) has been used, which supports MPI and therefore parallel
computing. However, Meep only provides the basic FDTD solver. In order to optimize the
computation on a cluster, the numerical module "FDTD electric field calculation" in figure
4.1 has been adapted and refined (cf. figure 4.23).

Meep model - ] E? at integration

Fig. 4.23 3D Meep FDTD electromagnetic field calculation methodology.

In figure 4.23 the three main steps of the FDTD electric field calculation are visualized.
Each of these modules represents a single C++ program which can be found in appendix B.
First, the dielectric properties are defined in the Meep model and then the electromagnetic
field is calculated. In this module the electric field components at each time step of the

investigated period are saved in a HDFS file. In the next step these HDFS files are read in
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and the time averaged squared electric field E? is determined. The resulting E? is saved
once again in a HDFS file and serves as the basis for the absorbed power density P, at the

integration points of each finite element.

Meep model definition

First the model for the FDTD calculations has to be defined. In figure 4.24 the FDTD model
for the three component 3D case (60 x 110 x 60 cm?) is visualized.
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Fig. 4.24 FDTD three component 3D model; all dimensions in centimeters (Toifl et al.,
2016a).

The two component 3D case including the isometric view is summarized in figure 4.8.
In addition to the quarter rock model (microstructure cube plus homogeneous material),
both models (two and three component) also include air in front of the material as well
as perfectly matched layers (PML) at the domain limits. The PML acts as a perfectly
absorbing boundary which allows to truncate the simulation space without causing reflections
of the electromagnetic field (Oskooi and Johnson, 2011). The thickness of the layer is
chosen to be of the magnitude of the wavelength of the electromagnetic field. In the
air the wavelength of a beam with a frequency of 2.45 GHz is A,;, = 12 cm, in the two
component material (¢..rf = 7.37 4+ 0.90i) Aycomp = 4.5 cm and in the three component
model (€.0f = €. = 5.4540.03i) A3comp = 5.2 cm (cf. equation 2.15). Since most of the
PML is located around the material phase, a thickness of 10 cm is chosen and verified to
be sufficient by various numerical simulations. The difference in the y-dimension between
the two (Vareriat = 30 cm) and three component model (y,,4rericz = 80 cm) is caused by
the strongly varying dielectric properties. Since significantly bigger penetration depths are

expected due to the small permittivity in the three component model, the dimensions have
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to be extended in order to avoid reflection at the back surfaces. Both described models
represent the case where the material boundaries (except the front face) do not influence the
microwave distribution. This condition can frequently be found in comminution processes

(e.g. irradiation of a huge block of rock).

Similar to the 2D case a microwave beam with a typical technical frequency of 2.45 GHz
with Gaussian shape and a waist radius of 4.3 cm is applied. It can be assumed that the
Gaussian beam describes a planar wave (Jackson, 2011) at the source position which is
parallel to the xz plane. The source plane is positioned 1 cm in front of the rock model (cf.
figure 4.24) and emits a beam which propagates in positive y-direction, whereas it is polarized
in z-direction. Since soft sources are used in Meep, the equivalent electric (J) and magnetic
currents (K*) — representing the source — are derived based on the "total-field / scattered-field"
approach presented in section 3.1.3.3. Based on the assumption of a plane wave at the source
position the desired electric E* = 1 e and magnetic fields H* = 1 e, (in Meep dimensionless
units) are defined (Jackson, 2011; Oskooi and Johnson, 2013). By considering equation 3.21
the equivalent electric (/) and magnetic currents (K*) are derived (equation 4.9).

0 —E
J= 0 , K= 0 (4.9)
—H? 0

Since Meep provides only simple geometry (e.g. spheres, cuboids) for the definition of
the permittivity in the FDTD model, a self-written C++ script is used to define the spatial
permittivity distribution manually. The algorithm identifying the grain (polyhedron) to which
a certain FDTD point belongs to is visualized in figure 4.25. It can then be assigned its
individual dielectric properties.

Bounding sphere

Single face of polyhedron
Possible £ POy

olyhedra

Polyhedron

Fig. 4.25 Algorithm to identify the grain (polyhedron) a certain FDTD point belongs to (cf.
Cyrus and Beck (1978); Ericson (2005)).
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Before the Meep calculation starts, a bounding sphere (Ericson, 2005) for each polyhedron
is calculated. Since Neper already provides the middle point of the polyhedron, the radius
of a bounding sphere can be calculated by looping over all vertexes of the polyhedron to
determine the greatest distance from the middle point. This distance represents the radius
of the sphere. When the Meep calculation starts the solver loops over all polyhedra and
determines which bounding spheres the FDTD grid point under investigation is located in.
This is done by calculating the distance between the middle point and the grid point. If this
distance is smaller than the radius the point must be inside the sphere. In the next step the
possible polyhedra are analyzed more accurately by exploiting the convex behavior of the
grains. Therefore, a loop over all faces of a polyhedron is built where a vector r;, from any
point of the face to the investigated grid point P is constructed (cf. figure 4.25). If the scalar
product between this vector r,, and the normal vector n of the face pointing inward is positive
for all faces of the polyhedrgn, the point lies in the respective grain (figure 4.25, cf. Cyrus
and Beck (1978)). Finally, the permittivity of the phase of the respective polyhedron can be
set to the grid point.

In the 3D FDTD simulations a Courant number S of 0.5 is chosen. In a parametric analysis
the influence of the grid constant on the accuracy of the resulting thermal field combined
with the computation effort has been investigated and a grid constant Ax = Ay = Az of 1 mm
has been derived as the most appropriate value for the current models. The electric field
components are saved in a HDFS5 file when the electric field has stabilized after the 241

period. The 24" period has been determined iteratively.

Time averaged squared electric field

After the electric field at each time step of the 24" period has been saved the time averaged
squared electric field E2 is derived. This decoupling of the FDTD electric field calculation
and the time integration of the electric field are chosen in order to speed up the calculations.

E? in each FDTD grid point is calculated according to equation 4.10.

_ 24% 2 24% 2 24% 2
E? = (‘3—1 Ef dt) + (‘I—l Ey2 dt) + ("5—1 EZ2 dt> (4.10)
23% 23% 23%

In equation 4.10 ¥ is the period defined as !/r+. Since the electric field components (Ey, E,,

E.) are not available as a function of time the integration is performed numerically. To this

end, a trapezoidal integration rule (cf. Atkinson (1989)) is used. In equation 4.11 the time
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averaged E, value is calculated exemplarily.

1 24% 5 1
T EZ dt =
23T n—1

E)% 1 E)% n ]
: : EZ; 4.11
The variable n in equation 4.11 describes the number of time increments (and therefore

output points) within the 24™ period. The final equation 4.12 to determine the time averaged

squared electric field E?is depicted below.

I U E? o))
E? = — > + > ‘f’;(Ex,i) +
1 (Ey.,l)2 (Ey,n>2 = 2 ’ (4.12)
sty LB .

n—1

( 1 ((Ez,1)2+(Ez,n>2+’f(E .)z>>2
n—1\ 2 2 5

In order to scale the electric field output to the source value at the Gaussian axis the same

FDTD model without any dielectric material is calculated. Equation 4.12 is also applied to
this model to calculate the time averaged squared electric field at the source position %.
Based on a parameter study it is concluded that a numerical integration of only half a period
as well as considering only every second time step is sufficient. With this reduced integration

scheme the calculations can be accelerated without causing significant inaccuracies.

Electric field at integration points

E? has to be determined at the integration point positions of the finite element mesh in order
to link the electromagnetic with the thermal field (by the absorbed power density). First, the
positions of the integration points are read out during a dummy heat transfer analysis. The
DFLUX subroutine is used to read the integration points out in a text file (Abaqus, 2014).
In the next step E? of each integration point is derived by searching finite difference grid
points close to the respective point. Afterwards, the corresponding phase of the point has
to be determined by the same algorithm as described in "Meep model definition". Finally,
the absorbed power density P, at the integration point is derived by equation 2.17 and the

resulting value is written to a text file.
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4.1.3.5 FEM model

The dimensions of the 3D FE model equal the quarter model rock and are visualized in
figures 4.26 and 4.27 (e.g. figures 4.24 and 4.8 homogeneous material plus microstructure).
The cube containing the microstructure has already been meshed by the open-source program
Neper (Quey et al., 2011). In the homogeneous part a global element size ranging from
0.25 cm up to 1 cm is assumed which leads to 281988 linear hexahedral elements in the
two component case and 871640 in the three component model. The entire model contains
4342673 elements, 1000173 nodes (two component model) and 4932325 elements, 1604713

nodes (three component model).

—-— front face
..... yz symmetric plane

: —-— front face
Xy symmetric plane

Fig. 4.26 FE mesh of the two component Fig. 4.27 FE mesh of the three component
model with linear tetrahedral and hexahedral model with linear tetrahedral and hexahedral
elements (Toifl et al., 2016b). elements (Toifl et al., 2016a).

The two domains (microstructure cube and homogeneous part) are joined together by
means of tie constraints of the respective surfaces. In the anisotropic model (anisotropic
thermal conductance, thermal expansion and elastic constants), the local Cartesian coordinate
system of each quartz grain (phase T) is randomly defined. Since no feedback of the
displacement field on the heat flux is assumed, the thermomechanical simulation is divided

in an uncoupled manner into a heat transfer and a subsequent stress analysis (Abaqus, 2014).

In the heat transfer model the absorbed power density (P,) is read in at each integration
point (4 integration points in each tetrahedral finite element and 8 in each hexahedral
element). The source term of the heat conduction equation (body heat flux s) is calculated by
multiplying the absorbed power density with the iteratively determined constant C. Therefore,
the thermal energy inside the model &, (cf. equation 4.2) is compared to the total provided
energy &, (equation 4.13) minus 30% losses.

P mw

eprov =1 T (4.13)
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The factor 4 in equation 4.13 accounts for the quarter symmetry of the FE model. In the two
component case a microwave source of P, =25 kW is used whereas in the three component

case varying power levels are investigated (cf. tables 4.6 and 4.7).

Table 4.6 Four different irradiation times at two microwave power levels used for the three
component model (Toifl et al., 2016a).

Irradiation time [s] | Microwave power P,,,, [KW]

15 25
30 30
60
72

On the front face of the material model (blue dash-dotted line in figures 4.26 and 4.27)
a thermal conductance of 20 W/m?k and an emissivity of 0.8 combined with an ambient
temperature of 25°C in the two component and 20°C in the three component case (according
to the thermal expansion experiments) are assumed. At all other faces, i.e. the cutting planes
where the model is truncated, an emissivity of 0.8 is used. The two component model is
heated for 15 s or 25 s, respectively, followed by a natural cool down (i.e. the body heat
flux is switched off) for 3600 s. In the three component case varying irradiation times under
constant microwave power (table 4.6) as well as under constant energy are investigated (table
4.7).

Table 4.7 Irradiation times and microwave power levels used for equal microwave energy
Enw = 1.8 MJ analysis.

Irradiation time Microwave power P,,,

0.1s 18 MW
Is 1.8 MW
I5s 120 kW
30s 60 kW
72's 25 kW
100 s 18 kW

In the mechanical model the same FE mesh as in the thermal analysis but elements
with reduced integration are used. Furthermore, the same two steps (heating and cooling)
are analyzed. As an input the time varying temperature field calculated in the previous
analysis is applied. On the xy cutting plane (figures 4.26 and 4.27) of the quarter model the
displacements in z-direction, and on the yz plane (red dashed line in figures 4.26 and 4.27)

the displacements in x-directions are set to zero as the symmetric boundary conditions for
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the stress calculation. Moreover, the node located at the Gaussian axis on the front face of
the model is fixed in y-direction. First linear elastic calculations are performed followed by
simulations including the CDP model that allow to assess the induced damage.

4.2 Homogeneous models

4.2.1 Methodology

The 3D homogeneous model considers strong coupling between the thermal and electromag-
netic fields. This is achieved by a staggered algorithm. However, there is still only a weak
coupling between the displacements and the thermal field (figure 4.28).

inc + 1

Input inc = 1» FDTD electric
data field calculation

FE
temperature heat
calculation

|

Thermal
energy
calculation

YES
— FE stress _ Coollng EE
‘ calculatlon calculation ‘ < ‘

Fig. 4.28 Homogeneous model with strongly coupled (SCM) FDTD - FEM simulations.

adapt C
inc=1

The simulation methodology of the strongly coupled homogeneous case (SCM) starts
with the FDTD electromagnetic field calculation (figure 4.28). In the first step the permittivity
values at room temperature are used and the absorbed power density P, is calculated as an
output of the model (cf. section 4.1.3.4). In the subsequent thermal FE simulation only one
increment of the FE thermal analysis is calculated with a predefined maximum temperature
change per increment (in this study AT = 50°C). Interruption of the heat transfer calculation
after one increment is achieved by an URDFIL subroutine (Abaqus, 2014). After each
increment the thermal field is used as an input for the subsequent electromagnetic field
calculation in order to obtain the spatial distribution of the complex permittivity. Therefore,

the regular hexahedron mesh is exploited and the FE shape functions are used to interpolate
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the nodal temperatures. This procedure is repeated until the final irradiation time is reached.
In the next step the thermal energy of the heat transfer model is evaluated and compared to the
provided microwave energy minus 30% losses (cf. section 4.1.3.5). If the difference is greater
than 5% (of the microwave energy) the constant factor C is adapted and the electromagnetic as
well as the thermal calculations are repeated. Afterwards, the cooling of the hard rock model
is calculated for a duration of 3600 s. Finally, the transient inhomogeneous temperature field

is used as an input for the FE stress simulation.

The strong coupling between FDTD and FEM (SCM) is implemented by a global Python
script which calls other programs (Python, C++ and Abaqus) and provides the input data
needed by the subsequent calculations. This global script also creates new input files based
on the calculation history. The whole procedure is very flexible so that automatically new

dimensions or materials can be accounted for (cf. appendix D).

4.2.2 Material data basalt

For the strongly coupled homogeneous simulations (SCM) basalt, as a representative of
a rather homogeneous hard rock, is used. The temperature-dependent permittivity was
measured and has been published in Hartlieb et al. (2016).
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Fig. 4.29 Complex permittivity of basalt as a function of temperature [°C] (Hartlieb et al.,
2016).

Figure 4.29 reveals that the real part of the permittivity of basalt is almost constant
between 20°C and 500°C whereas the imaginary part slightly increases at first followed by a
rapid decrease between 100°C and 400°C. The e’rf p value at 100°C is a factor of 1.6 higher
than the one at 400°C. The thermo-mechanical parameters have been published in Hartlieb

et al. (2016) and summarized in appendix E.



Chapter 5

Results

In this chapter the electromagnetic, thermal and mechanical results of the numerical models

described in chapter 4 are presented.

5.1 Inhomogeneous models

5.1.1 2D model

The 2D results have been published in Meisels et al. (2015) and Toifl et al. (2014).

5.1.1.1 Electromagnetic results

In the paper Meisels et al. (2015) various combinations of permittivity values have been
investigated. However, in this thesis only the case described in section 4.1.2.2 is presented.
Figure 5.1 visualizes the time averaged squared electric field Ey2 after the 24™ period when
the electromagnetic field has stabilized. The electric field values are normalized to the field

value at the source position EJ ;..
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Fig. 5.1 Time averaged squared electric field Ey2 scaled by the reference value at the center of

2
the source Ey ;.

of the 2D inhomogeneous model (Meisels et al., 2015).

A certain qualitative deviation of the Ey2 field from an ideal Gaussian beam is observed in
figure 5.1. In order to assess this phenomenon in detail, figure 5.2 visualizes the difference

between the homogeneous and inhomogeneous model.
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Fig. 5.2 Difference in the electric field value between the inhomogeneous and homogeneous
2D model (Meisels et al., 2015).

In figure 5.2 the strongest positive deviations from the homogeneous case are observed
near the air / rock interface (at z = O cm). Further inside the material the deviations are
negative. The reflections of the microwaves on the disc / matrix boundary are governed
by the dissimilar real parts of the permittivity. The absorption of microwaves in the discs
(e’rf 4 7 0) leads to higher Ey2 in the first part of the beam within the rock. Moreover, sideward

scattering of the electric field within the first centimeters of the rock is observed.
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Fig. 5.3 Comparison of disc arrangement (circles) and AEy2 distribution (color pattern).
Enlarged section of figure 5.2 near the microwave source (Meisels et al., 2015).

In order to identify the origin of the stripe-like pattern in the electric field, this pattern is
compared with the arrangement of the discs (figure 5.3) and with variations of the density
of the discs (figure 5.4). For calculating the variation of the density the disc distribution
is smoothed over about 1.5 cm and contours of equal density are drawn. Neither the disc
arrangement nor the density variation shows a correlation with the details of the AEy2 pattern,
with the exception of few coincidences in the very first part (up to 10 cm) of the model rock
as visible in figure 5.4. In these areas the strong absorption causes negative AEy2 values
(blue / green) at higher density (> 0.34 contours) and positive AEy2 values (yellow / red) at

lower density values (< 0.34 contours).
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Fig. 5.4 Comparison of density variations of the disc distribution (contour lines) and the AEy2
distribution as in figure 5.2. Near the boundary of the model rock (x = 0) the values of the
density approach zero. Contours with values smaller than 0.3 are not shown in this figure
(Meisels et al., 2015).

The stripe-like structure is not exactly regular. Nevertheless, an average period of the
pattern can be determined which is about half of the wavelength in the rock (A2comp = 4.5 cm).
It increases with longer wavelength. This leads to the conclusion that the stripe-like structure
is an interference effect dominated by the effective permittivity with the deviations from
regularity, and the finer structure depending on details of the interference of partial waves
between the discs. Finally, an absorbed power density P, is derived (figure 5.5).
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0.0015

20
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10

Fig. 5.5 Absorbed power density P, inside the 2D rock sample (Meisels et al., 2015).
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According to the assumption that the matrix is transparent for microwaves (e’rf ma = 0),

absorption only occurs in the discs. The discs with the highest values of the normalized

absorbed power density are located near the front surface of the 2D model.

5.1.1.2 Thermal results

Based on the absorbed power density (cf. figure 5.5) a heat transfer analysis is performed.

Figure 5.6 visualizes the temperature field after a microwave irradiation with 25 kW for 15 s.

Temperature [°C]
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Fig. 5.6 Temperature distribution in °C after 15 s of microwave irradiation (25 kW) in the 2D
model rock (Meisels et al., 2015).

The maximum temperature (464°C) in the rock sample is obtained inside an inclusion
(two overlapping discs) in a distance of 1 cm from the front surface (figure 5.6). Furthermore,
selective heating of the discs due to the selective absorption and variation of the thermal
properties can be observed, which leads to significant thermal gradients between the two
constituents. 30 s after switching off the microwave source the temperature differences
between the discs have equalized and a surface temperature of 310°C is observed agreeing

with experimental results.

5.1.1.3 Linear elastic stress results

With the time varying temperature field as input, a subsequent stress analysis is conducted
assuming plane strain conditions and a heterogeneous material as in the microwave analysis.
No effect due to a sudden change in volume is expected since the temperature does not

exceed 573°C - the temperature of the transformation from « quartz to 8 quartz. As the
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material can be considered as brittle, the maximum principal stress is an appropriate measure

for assessing damage initiation.
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Fig. 5.7 Maximum principal stresses in Pa in the model rock after 15 s of microwave
irradiation calculated from the temperature distribution of figure 5.6. Dark red indicates
values larger than tensile strength. (Meisels et al., 2015).

High values of maximum principal stresses are observed in areas on the front face as well
as right and left of the microwave heated region exceeding the tensile strength of a typical
hard rock of about 9 MPa (Hustrulid et al., 2001) (figure 5.7). These stresses are caused by
the high thermal gradients combined with the strong mismatch in the thermal expansion of
the two phases. Furthermore, critical tensile stresses are obtained in large areas inside the
discs particularly along their circumference. Most of the matrix visualized in detail of figure
5.7 is under compression due to strong selective heating and significantly higher thermal
expansion of the matrix compared to the discs (cf. table 4.2). The matrix acts as a crack

arrest caused by the high compressive stresses.



5.1 Inhomogeneous models 87

Max. principal
stress [Pa]
+9.47e+07
+8.76e+07
+8.04e+07
+7.33e+07
+6.61e+07
+5.90e+07
+5.19e+07
+4.47e+07
+3.76e+07
+3.04e+07
+2.33e+07
+1.61e+07
+9.00e+06

§ oy

Fig. 5.8 Vector plot of the maximum principal stress (greater than tensile strength of 9 MPa)
after 15 s of microwave irradiation in the magnified area shown in figure 5.7; the arrows
indicate the direction of the normal to a potential crack plane (Meisels et al., 2015).

Driven by the high maximum principal stresses near the irradiation spot, cracks may
initiate at the circumference of the discs as well as in the matrix. Most of the cracks will
form in radial direction of the discs (figure 5.8). Based on the highly loaded matrix in this
area, damage propagation will take place there as well. The stresses will redistribute once

crack propagation has started.
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Fig. 5.9 Maximum principal stresses in Pa in a comparative model rock with permuted
material definition (discs are composed of quartz and matrix of plagioclase) after 15 s of
microwave irradiation.

A comparative analysis in which a permuted material definition is assumed (discs are
composed of quartz and matrix of plagioclase) yields a different behavior (figure 5.9). Now
high values of maximum principal stresses are observed in large areas inside the matrix.

Interface cracks in the matrix may initiate between the various discs as well as between the
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inclusions and the boundary surface. Initial cracks can potentially grow within the highly

loaded matrix entailing severe rock fragmentation.

5.1.1.4 Damage results

By applying a concrete damaged plasticity model the microwave induced damage can be
quantified. Figure 5.10 shows the scalar stiffness degradation variable d (cf. equation 3.28)
at the end of the heating step (in the 2D CDP material only tension damage is considered).
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Fig. 5.10 Scalar degradation d of material stiffness after 15 s of microwave irradiation; left
picture corresponds to the refined area in figure 4.5 (Toifl et al., 2014).

After 15 s of microwave irradiation damage initiation and subcritical cracks (blue ar-
eas) are observed in the discs around the irradiation spot (approximately in an area of
16 cm x 15 cm). Near the front surface the discs (circles in magnified area of figure 5.10)
contain critical cracks which are able to propagate in an instable way (dark red lines in detail
of figure 5.10). Indeed, most of these critical cracks are arranged around the circumference of

the discs in agreement with the vector plot of the maximum principal stresses (cf. figure 5.8).

Strong crack propagation in the cooling step is observed in figure 5.11. The simulation
aborted after 15.15 s of cooling (maximum temperature 343°C) due to strong local disconti-
nuities caused by the crack propagation. Critical cracks propagate far outside the microwave

irradiated area mainly following the disc / matrix boundaries. Only few discs (circles in
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Fig. 5.11 Scalar degradation d of material stiffness after 15.15 s of cooling. Cracks mainly
following the disc / matrix boundaries (Toifl et al., 2014).

detail of figure 5.11) are cracked in radial direction as well. Further crack propagation is

expected until the ambient temperature is reached.

5.1.2 3D model of the two component system

The major results of the 3D two component models have been published in Toifl et al.
(2015a,b, 2016b). Toifl et al. (2016b) presents a detailed analysis of the stress formation on
a microstructure level including anisotropic quartz grain behavior and « to 8 quartz phase

transformation.

5.1.2.1 Electromagnetic results

The electromagnetic field inside the microstructure of the reference model (model A in
figure 4.7) is calculated. To this end, the time averaged squared electric field (E?) is evaluated

after the 24" period, when the electric field has stabilized. This period has been found
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iteratively. In figure 5.12 the E? field scaled by the reference value at the center point of the

source (Egair) in air is illustrated.
E/E()zair [ ]
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Fig. 5.12 Time averaged squared electric field (E?) after the 24t period scaled by the

reference value at the center of the source position (Egm.r) in air (Toifl et al., 2016b).

By analyzing figure 5.12 a significant deviation from an ideal Gaussian beam, as it would
appear in a homogeneous material, is observed. Furthermore, a stripe-like pattern occurs
which would not be visible in the homogeneous case. Since the imaginary part of the effective
permittivity is considerable, the microwave beam does not penetrate deeply into the material.
Figure 5.13 shows the difference between the inhomogeneous and homogeneous electric
field at each point of the FDTD grid inside the material.

& L]

inhom

0.04-

30 T
29
28
27
26
25
24
23
22
21

O 047 20 I 1 1 L 1 L 1 L 1 L 1 L 1 L 1 L
£ -8% -6% -4% 2% 0% 2% 4% 6% 8% 10% 12%
R N (EZinhom'E2hom)/E2hom

Fig. 5.13 Difference between the electric Fig. 5.14 Cut along the Gaussian axis
field of the inhomogeneous and homogeneous (x = 25 cm, z = 25 cm) showing the relative
model. Red shaded areas indicate higher elec- difference in the electric field of the inhomo-
tric field values in the inhomogeneous model geneous to the homogeneous model in percent
and blue lower values (Toifl et al., 2016b). (Toifl et al., 2016b).

‘S’D
o
N
!

)
y [em]

o
o
N

m]mmmhumrl vm

In figure 5.13 it can be seen that the electric field in the inhomogeneous model deviates

quite significantly from the main beam in the homogeneous case. However, on average the
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values of E2 in the microstructure are slightly higher along the center of the Gaussian beam
than in the homogeneous case as indicated by a cut along the middle axis of the Gaussian
beam, "Gaussian axis" (in y-direction at x = z = 25 cm), see figure 5.14. A relative difference
of up to 12% is observed. These deviations are caused by the differences of the real parts of
the permittivity at the phase interfaces and by the non-zero imaginary part of phase A. From
the results of the FDTD analysis, the absorbed power density P, distribution can be worked
out (figure 5.15), which serves as input for the subsequent FE simulations.
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Fig. 5.15 Absorbed power density (Ps) in W/m? (Toifl et al., 2016b).

According to the assumption that phase T is transparent for microwaves, absorption only
occurs in phase A. As illustrated in figure 5.15, most of the energy is absorbed by few grains
of phase A near the axis of the Gaussian beam.

5.1.2.2 Thermal results
Temperature field in the reference model

As described in section 4.1.3.5, the body heat flux, which is derived from the absorbed power
density, is applied at the integration points of each finite element through the subroutine
DFLUX (Abaqus, 2014). Heating the reference model with a microwave source of 25 kW

and assumed losses of 30% for 15 s results in a considerably inhomogeneous temperature
field (figure 5.16).

In figure 5.16 a maximum temperature of 547°C is observed in a depth of 1 cm along
the axis of the Gaussian beam inside a phase A grain. Moreover, strong selective heating
due to the selective absorption (cf. figure 5.15) combined with the variation of the thermal
properties of the two constituents is obtained. The strong localization of areas with high
temperatures leads to significant thermal gradients between the two material phases and,

therefore, high thermal stresses are expected. However, the maximum temperature in phase T
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Fig. 5.16 Temperature field in °C after 15 s of microwave irradiation (25 kW minus 30%
losses) of the reference morphology (Toifl et al., 2016b).

(quartz) is 482°C, which is significantly below the & to B phase transformation temperature
of 573°C.

Temperature field in the case of a phase transformation

Since no « to B phase transformation in quartz has been observed in the reference model
so far, a new model with the same morphology but 25 s irradiation time is considered. In
figure 5.17 the temperature distribution of the 25 s model is compared to the one after 15 s of

microwave irradiation.
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Fig. 5.17 Comparison of the temperature distribution in °C between 15 s and 25 s (incl. phase
transformation) irradiation time (Toifl et al., 2016b).

By comparing the same microstructure model with 15 s and 25 s of irradiation time,
respectively, significantly higher temperatures in the 25 s model (maximum of 759°C instead
of 547°C) are observed (figure 5.17). Furthermore, the depth and the radius of the area
above 70°C are larger due to the longer irradiation time. After 25 s of microwave heating



5.1 Inhomogeneous models 93

a maximum temperature of 693°C is observed inside phase T (quartz, figure 5.18). As a
consequence the o quartz transforms to  quartz in areas near the hottest phase A grains
around the Gaussian beam axis. For better visibility the phase A elements have been switched
off in figure 5.18.
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Fig. 5.18 Comparison of the phase T (quartz) temperatures in °C between the model of 15 s
and 25 s microwave irradiation. The phase A elements are not displayed (Toifl et al., 2016b).

Temperature field for different morphologies

The dependence of the resulting microwave induced temperature field on the morphology

is assessed in figure 5.19. Model A corresponds to the reference model investigated in
figure 5.16.

Temperature [°C] Temperature [°C] Temperature [°C]

va x B Model A

Fig. 5.19 Comparison of the temperature fields in °C between different morphologies.

Model B Model C

Although all of the three models contain the same filling factor f = 0.34, significant
variations in the thermal fields are obtained (figure 5.19). The highest temperature of 695°C
is observed in model B in a huge phase A grain which is directly located at the Gaussian axis
at the front surface. The peak temperatures differ by as much as 150°C between the three

investigated morphologies.
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5.1.2.3 Linear elastic stress results

Using the transient temperature field (obtained in section 5.1.2.2) as an input as well as the
boundary conditions described in section 4.1.3.5, a stress analysis is conducted assuming
an elastic material behavior of the two constituents. Since hard rocks can be considered as
quasi-brittle, the maximum principal stress is an appropriate measure for assessing damage
initiation. However, crushing due to compressive stresses as well as ductile failure is also

assessed in the reference model.

Stress field of the reference model

High maximum principal stresses are observed in the reference model in phase A grains near
the front face of the rock model inside the main Gaussian beam (figure 5.20). In this model
the stresses are significantly higher than the tensile strength of 9 MPa and, therefore, damage
initiation is expected. The tensile strength of 9 MPa is exceeded down to a depth of 10 cm
(in direction of the microwave propagation, light blue areas in figure 5.20) indicating that
initial surface cracks are likely to propagate in depth direction. After 4.2 s of microwave
irradiation the maximum principal stresses at the phase boundaries and in small areas around

the main irradiated spot already reach the material strength.

Max. principal

stress [MPa] Max. principal

stress [MPa]
100

Fig. 5.20 Maximum principal stresses in MPa Fig. 5.21 Maximum principal stresses in MPa
after 15 s of microwave heating of the inhomo- after 15 s of microwave heating of the homo-
geneous reference model (Toifl et al., 2016b). geneous rock model (Toifl et al., 2016b).

In order to investigate the influence of the microstructure on the formation of the stress
distribution, a comparative analysis including a homogeneous material definition is performed.
By comparing figure 5.21 with the reference microstructure model (figure 5.20) a significant
difference in the distribution of the stresses is found. In the homogeneous case the highest

principal stresses are observed around the main Gaussian beam (figure 5.21), whereas
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substantially higher stresses are found inside the main beam in phase A grains of the
inhomogeneous model (figure 5.20). For the inhomogeneous case a submodel with only a
few grains around the Gaussian axis at the front face (radius ~ 3 cm) including elements
with quadratic shape functions is built in order to assess the stress localization in more detail
(figure 5.22). The submodel is stressed by the global displacements (at the interfaces between

submodel and global model) and heated according to the transient temperature field.

Max. principal Max. principal
stress [MPa] submodel global model stress [MPa]
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Fig. 5.22 Maximum principal stresses in MPa after 15 s of microwave heating of the inhomo-
geneous reference model near the Gaussian axis.

As can be seen in figure 5.22, the highest maximum principal stresses are strongly
localized at the phase boundaries. Moreover, very high stresses occur if strongly absorbing
phases (phase A) are close to each other. Then the transparent phase is under strong tension as
well. Additionally, higher maximum principal stresses than in the global model are observed
in the submodel.

In addition to brittle failure under tension crushing due to compressive stresses has to be
investigated. By comparing the minimum principal stresses (figure 5.23) with the uniaxial
compressive strength of hard rocks, which is about 250 MPa (Hustrulid et al., 2001), the
areas of damage due to compression can be identified.
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Min. principal
stress [MPa]

Fig. 5.23 Minimum principal stresses in MPa after 15 s of microwave heating of the reference
morphology (Toifl et al., 2016b).

Figure 5.23 shows that the minimum principal stresses exceed the material limit in the
vicinity of the Gaussian axis in phase T grains near their phase boundaries. In this area

crushing is expected.

The maximum principal stress is an appropriate measure as long as brittle behavior of
the constituents is assumed. However, it has to be pointed out that in realistic rock materials
different damage mechanisms might occur especially at elevated temperatures where non-
negligible amounts of plasticity are expected. In that case an alternative failure criterion would
allow more accurate predictions of the failure behavior of the rock. This is demonstrated on
the example of the Tresca stress distribution function displayed in figure 5.24.
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Fig. 5.24 Tresca stresses in MPa after 15 s of microwave heating of the reference morphology
(Toifl et al., 2016Db).

The Tresca stresses exceed the yield strength in a wide area around the main irradiation
spot as shown in figure 5.24. The highest values are located near the phase boundaries in
both constituents close to the Gaussian axis. After 15 s of microwave irradiation plastic

deformation is expected if ductile material behavior is assumed.
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Stress results for different morphologies

The maximum principal stresses of two different morphologies are compared with the
reference model (figure 5.27 first line). Since higher maximum temperatures are observed in
model B and C (figure 5.19), higher maximum principal stresses can be expected. Comparing
the maximum principal stresses along the Gaussian axis of the three different morphologies
with the homogenous model allows to estimate the effects of the different phase assignments
(figure 5.25). Moreover, the temperature distribution (figure 5.26) can be correlated to the
stress formation (figure 5.25).
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Fig. 5.25 Maximum principal stress profile Fig. 5.26 Temperature profile along the y-
along the y-direction of the Gaussian beam direction of the Gaussian beam (Toifl et al.,
(Toifl et al., 2016b). 2016b).

Considerable variations in the maximum principal stresses between the three models
are observed (figure 5.25). Especially within the first centimeters of the material a strong
deviation from the homogeneous model is determined. In model B and C significantly higher
stresses than in the reference model (model A) are obtained (cf. figure 5.27 first line). The
influence of the microstructure on the selective heating of a rock and the resulting formation
of stresses due to microwave absorption is analyzed by illustrating the temperature profile
along the Gaussian axis (figure 5.26).

As can be seen in figure 5.26 the temperatures of the inhomogeneous material models
strongly deviates from the homogeneous one. Furthermore, strong thermal gradients appear,
thus causing high thermal stresses. The largest deviation from the reference model A is
observed in model B where the temperature near the surface is very high. Moreover, model C
yields higher temperatures than model A.
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Stress results for different phase distributions

In addition to the variation in the morphologies different filling factors f (volume fraction
of absorbing phase) are investigated. In figure 5.27 three different filling factors (f = 0.34,
f =04, f=0.2) and varying morphologies are visualized.
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Fig. 5.27 Comparison of the maximum principal stresses in Pa between different phase
distributions and morphologies.

The maximum principal stress field varies strongly between the different filling factors.
In the f = 0.4 case larger maximum principal stresses and also a broader region of high
stresses are observed compared to the f = 0.34 models. If fewer absorbing particles are
available (f = 0.2), significantly lower stresses are found. They are concentrated at the grain

boundaries of some phase A grains. In order to investigate the differences in the maximum
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principal stress fields in more detail, the volume fraction of elements in the microstructure
containing stresses higher than the tensile strength (9 MPa) is plotted for all nine models
(figure 5.28).
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Fig. 5.28 Volume fraction of elements in the microstructure which contains maximum
principal stresses higher than the tensile strength (9 MPa).

In figure 5.28 the nine models are grouped according to their filling factor (first triple
belongs to f = 0.2, the second to f = 0.34 and the third to f = 0.4). The fraction containing
stresses higher than the tensile strength in the microstructure cube increases with higher
values of the filling factor. Additionally, the deviation between the different morphologies
with the same filling factor is larger for f = 0.2 than for f = 0.4.

Stress field after phase transformation

The influence of longer microwave irradiation times followed by o to 3 phase transformation
of quartz is assessed by comparing the reference model with 15 s microwave treatment with a
model with 25 s of microwave exposure (figure 5.29). Significantly higher maximum principal
stresses are observed in phase A grains near the Gaussian axis after 25 s of irradiation (cf.
figure 5.29). Moreover, a larger area of high principal stress appears (t = 25 s). Also higher
compressive stresses are formed in phase T as a consequence of the higher tensile stresses in

phase A.

In order to investigate the influence of phase transformation and longer irradiation time
in detail, a statistical analysis of the stresses at the integration points of the finite elements

located in the microstructure cube is performed. For this purpose the total stress range is
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Fig. 5.29 Comparison of the maximum principal stresses in MPa between 15 s and 25 s (incl.
phase transformation) irradiation time (Toifl et al., 2016b).

divided into classes with a width of 1 MPa. A Python script loops over all integration points
and incrementally increases the frequency density, expressed by the integration volume
divided by the total volume of the corresponding phase, of the class which the respective
stress value belongs to. In figure 5.30 the frequency density distribution is plotted for the
cases of 15 s as well as 25 s irradiation time, separately evaluated for both phases. The
function values of the graph are found by dividing the accumulated volume fraction in each
class by the width of the class (Steland, 2013).
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Fig. 5.30 Frequency density of the maximum principal stresses of phase T and phase A
scaled to the respective volumes corresponding to the stress values. The legend includes the
arithmetic mean x as well as the standard deviation sd (Toifl et al., 2016b).

In figure 5.30 a strong difference in the distribution of the maximum principal stresses
between the model of 15 s and 25 s of microwave irradiation can be seen. In the 25 s case

a significant shift of the frequency distribution to higher stresses for phase T (arithmetic
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mean of 20.3 MPa) as well as phase A (x = 53.7 MPa) compared to the 15 s model (phase
T: X = 12.2 MPa, phase A: X = 31.2 MPa) are observed. Moreover, a larger deviation
occurs between the phase T and phase A stress distribution in the model including phase
transformation (25 s). However, the density distributions of the maximum principal stresses
after 25 s of microwave irradiation are significantly broader (phase T: sd = 47.3 MPa, phase
A: sd =40.1 MPa) than in the 15 s case (phase T: sd = 27.6 MPa, phase A: sd = 21.6 MPa).
Here sd denotes the standard deviation.
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Fig. 5.31 Frequency density of the minimum principal stresses of phase T and phase A scaled
to the respective volumes corresponding to the stress values (Toifl et al., 2016b).

By visualizing the frequency density distribution of the minimum principal stresses
(figure 5.31), a significant difference in the shape of the graphs compared to the maximum
principal stresses (figure 5.30) is observed. The larger part of phase A exhibits stresses close
to zero minimum principal stresses. Phase T contains significantly more volume under high
compressive stresses than phase A. Similar to the maximum principal stresses (figure 5.30)
the curves are shifted to higher stresses in the 25 s irradiation case.
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Fig. 5.32 Frequency density of the Tresca stresses of phase T and phase A scaled to the
respective volumes corresponding to the stress values (Toifl et al., 2016b).

At higher stress levels the Tresca stress distribution of both constituents is almost co-
incident (figure 5.32). This is due to the fact that very high Tresca stresses are observed
in phase T as well as in phase A near their boundary phases. A significant shift to higher

stresses is observed after 25 s of microwave irradiation.

Influence of anisotropic material behavior

The influence of the anisotropic behavior of the quartz grains (phase T) after 25 s of mi-
crowave heating of the reference model is investigated. To this end the stress distribution in
the microstructure cube is calculated for both the isotropic as well as the anisotropic case
(figure 5.33).

In figure 5.33 higher maximum principal stresses are observed in the anisotropic model
in phase A grains over a wider range than in the isotropic model. Furthermore, due to the
anisotropic behavior of the quartz grains tensile stresses occur in phase T (quartz) near the
Gaussian beam that do not appear in the isotropic case. Especially near the Gaussian axis
the quartz grains are instantly changing their elastic constants due to phase transformation.
In addition, higher temperatures are obtained in the anisotropic model which lead to higher
thermal stresses. To investigate these differences in more detail a statistical analysis, as
outlined in figures 5.30 - 5.32, is performed and the difference between the anisotropic and

isotropic model is displayed (figure 5.34).

Figure 5.34 reveals lower compressive stresses in phase T (quartz) and therefore higher

tensile stresses up to a level of 20 MPa compared to the isotropic case. Furthermore, according
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Fig. 5.33 Comparison of maximum principal stresses in MPa between the isotropic and
anisotropic model after 25 s of microwave heating. Only the cube containing the microstruc-
ture 1s visualized (Toifl et al., 2016b).
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Fig. 5.34 Difference of the frequency density of the maximum principal stresses between the
anisotropic and the isotropic model after 25 s of microwave irradiation (Toifl et al., 2016b).

to the anisotropic model in phase T significantly larger areas are subjected to stresses greater
than 80 MPa. Moreover, a slightly higher fraction of phase A containing tensile stresses
greater than 75 MPa is predicted by the model with anisotropic quartz behavior.

5.1.2.4 Damage results

In the 3D two component concrete damaged plasticity model the same CDP parameters as
in the 2D case are used (cf. table 4.3). In order to reduce the computational cost, the CDP
model is first only applied in the microstructure cube and the remaining bulk material is

modeled as linear elastic. In figure 5.35 the stiffness degradation variable d is displayed
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at different irradiation times of the reference inhomogeneous model during a microwave
irradiation of 15 s. In the 3D two component model the CDP material model only considers

damage under tension.
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Fig. 5.35 Scalar stiffness degradation variable d in the reference model at different times
during a microwave irradiation of 15 s.

During the first seconds of microwave irradiation damage and subcritical cracks (blue
areas in figure 5.35) are initiated around phase boundaries and in the vicinity of the main
heated area. Later, critical cracks (red in figure 5.35) propagate outside radially. After 15 s
of heating also fully damaged material points are observed at the phase boundaries near the
Gaussian axis. During cooling a strong damage formation is observed in these areas. The
damaged material points (d > 0.6) are plotted in figure 5.36 and are compared with those of
a homogeneous model.

Figure 5.36 shows a strong difference between the damage behavior of the inhomogeneous
versus the homogeneous case. In the homogeneous models damage is determined only around
the main heated area, whereas in the microstructure model damage can also be seen near the

Gaussian beam. However, the damage around the middle axis does not penetrate deep into
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Fig. 5.36 Finite elements with d > 0.6 after 15 s of microwave irradiation of the inhomoge-
neous model compared with the homogeneous one. Microwaves propagate along positive
y-axis.

the material (figure 5.36). By correlating the phase distribution of the inhomogeneous model

with the elements containing d > 0.6 (figure 5.37), further conclusions can be drawn.

. phase T
D phase A

Fig. 5.37 Finite elements with d > 0.6 after 15 s of microwave irradiation of the inhomoge-
neous model including the phase distribution.

Damage near the Gaussian axis in the inhomogeneous model occurs almost exclusively
in the strongly absorbing phase A. In the area around the main heated rock the damage
is determined in both constituents. The formation of damage on the microstructure scale
can be assessed in more detail by visualizing the volume fraction of elements (within the
microstructure) with scalar degradation values d > 0.75 as a function of time for both
constituents (figures 5.38 and 5.39).
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(within the microstructure) of damaged ma- (within the microstructure) of damaged ma-
terial points d > 0.75 over the total time terial points d > 0.75 over the heating time
(heating plus cooling) for both constituents.  for both constituents.

In figures 5.38 and 5.39 it is observed that the highly absorbing phase A is more severely
damaged over the whole irradiation and cooling time. Damage initiation starts after an
irradiation duration of about 7 s (where a maximum temperature of 340°C is observed).
During cooling a slight increase in damaged finite elements is observed in figure 5.38. The
CDP material model is also applied to the 25 s irradiation model which includes the o to 3
phase transformation (figure 5.40).
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Fig. 5.40 Scalar stiffness degradation variable d in the reference model after 15 s and 25 s (&
to B phase transformation) of microwave irradiation.

Due to the longer microwave irradiation time combined with the a to 8 phase transfor-
mation significantly more damage is observed after 25 s of microwave irradiation than in the

15 s case (figure 5.40). Moreover, the damage penetrates deeper into the depth of the material
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near the Gaussian axis. This tendency becomes especially apparent if only the elements with
d > 0.7 are plotted (figure 5.41).
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Fig. 5.41 Finite elements with d > 0.7 after 15 s and 25 s (& to B phase transformation) of
microwave irradiation of the inhomogeneous model.

In addition to the damaged elements after 15 s of irradiation two major disc shaped radial
damage patterns are observed in the 25 s case. Also more elements near the main Gaussian
axis are damaged. The global damage behavior of the two models (15 s and 25 s) is assessed
in a statistical analysis (figure 5.42).
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Fig. 5.42 Volume fraction of microstructure elements with scalar degradation valuesd > 0.75
over irradiation times for 15 s and 25 s (& to B phase transformation).

Overproportional more volume contains damage values d > 0.75 in the 25 s irradiation
case than in the 15 s model (figure 5.42). This is caused by the additional volumetric strain of

the o to B phase transformation in the 25 s case. In all of the investigated 3D two component
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CDP models the damage propagates in radial direction outward until the microstructure / bulk
material interface is reached where it is obviously deflected. In order to investigate the effect
of these boundaries, an extended model (25 x 30 x 25 cm? compared to 15 x 30 x 15 cm3)
is created and the CDP material definition is extended to the bulk (figure 5.43). In order to
preclude any artifacts originating from the tie constrains, that are necessary to connect two
differently meshed regions, a new meshing strategy has been pursued. The two regions are
now connected by a transition zone of gradually increasing tetrahedral elements without the
need of any tie constraint.
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Fig. 5.43 Scalar stiffness degradation variable d in an extended model including CDP in the
bulk material area compared to the reference model after 12 s of microwave irradiation.

In figure 5.43 damage clearly propagates outside the main irradiated area. By contrast,

the remaining damage pattern is slightly reduced compared to the reference model.
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5.1.3 3D model of the three component system

With the 3D three component model varying parameter analyses applied to a specific granite
block are conducted (cf. section 4.1.3). Preliminary results of the 3D three component model
have been published in Toifl et al. (2016a).

5.1.3.1 Electromagnetic results

The obtained electromagnetic field is the basic input for all following thermal field calcula-
tions. In figure 5.44 the time averaged squared electric field (ﬁ) scaled with the reference
value at the center of the source position in air (%) is illustrated after the 24 period, when
the electric field has stabilized.
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Fig. 5.44 Time averaged squared electric field (ﬁ) after the 24™ period scaled with the

reference value at the center of the source position in air (Egm.r) for the three component
granite model (Toifl et al., 2016a).

A significant deviation from an ideal Gaussian beam is observed in figure 5.44. Moreover,
a stripe-like pattern occurs which is not visible in a homogeneous case. Since the permittivity
of the granite is relatively small, the microwave beam penetrates significantly into the material.
In figure 5.45 the difference between the inhomogeneous and homogeneous electric field is
depicted at each point of the FDTD grid inside the microstructure cube.

Figure 5.45 reveals that the electric field in the inhomogeneous model deviates strongly
from the main beam in the homogeneous case. Especially some small areas with significantly
varying electric field values can be observed (dark red and dark blue in figure 5.45). A similar
behavior is obtained in figure 5.46 where the relative difference of the time averaged squared
electric field between the inhomogeneous and a homogeneous model is plotted. A maximum
difference of up to 40% is visible. These strong deviations are mainly caused by the large
differences in the real parts of the permittivity, especially between quartz (e’n g =4.28) and

plagioclase (e, = 6.57).
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Fig. 5.45 Difference between the electric field Fig. 5.46 Cut along the Gaussian axis
of the inhomogeneous and the homogeneous (x = 30 cm, z = 30 cm) showing the relative
model in the three component granite. Red difference of the inhomogeneous to the ho-
shaded areas indicate higher electric field val- mogeneous model in three component granite
ues in the inhomogeneous model and blue (Toifl et al., 2016a).

lower values (Toifl et al., 2016a).

From the resulting electric field inside the rock model, the absorbed power density
distribution can be worked out (figure 5.47), which serves as an input for the subsequent FE

simulations. Since the imaginary part of the dielectric constant of quartz and mica is nearly

"

Zero (e’rf q = €rm = 0.0005), most of the microwave power is absorbed in the plagioclase phase.

Very high values of the absorbed power density are obtained at the boundaries of plagioclase
grains near the axis of the Gaussian beam (figure 5.47).
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Fig. 5.47 Absorbed power density (P,ps) in W/m* of the microstructure cube of the three
component granite model (Toifl et al., 2016a).
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5.1.3.2 Thermal results

Based on the four different irradiation times combined with two power levels summarized in
table 4.6 the thermal fields are evaluated. The temperature fields at the end of the microwave
treatment with 25 kW (minus 30% of losses) are summarized in figure 5.48.

Temperature [°C] Temperature [°C]
200 200

max. temperature = 90°C| imax. temperature = 134°C|

max. temperature = 211°C| Imax. temperature = 239°C|

Fig. 5.48 Temperature field in °C after microwave irradiation with 25 kW (minus 30% losses)
of granite models for durations given in the figure (Toifl et al., 2016a).

Strong variations in the temperature fields between the different microwave irradiation
times are observed in figure 5.48. After 15 s of irradiation a maximum temperature of only
90°C is reached, whereas after 72 s a maximum temperature of 239°C is determined. The
maximum temperature of each model is observed in a depth of about 1 cm. Moreover, the
heated area also extends rapidly with increasing microwave treatment durations. The volume
fraction subjected to temperatures higher than 40°C (light blue area in figure 5.48) grows
from 0.40% in the 15 s case to 4.01% after 72 s of irradiation. Strong localized heating is
obtained due to the selective absorption (cf. figure 5.47) combined with the variation of the
thermal properties of the three constituents. However, with increasing irradiation times the
temperature field becomes homogenized due to the heat conduction, which smoothens the

thermal gradients with longer irradiation times.

By irradiating the granite models with a microwave source of 30 kW (minus 30% losses)
almost the same conclusion as in the 25 kW case can be drawn (figure 5.49). A maximum
temperature of 103°C is determined after 15 s of irradiation whereas after 72 s 279°C

is reached. The absolute values of the temperatures are higher than in the 25 kW case
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imax. temperature = 103°C] imax. temperature = 155°C|

imax. temperature = 246°C] Imax. temperature = 279°C|

Fig. 5.49 Temperature field in °C after microwave irradiation with 30 kW (minus 30% losses)
of granite models for durations given in the figure (Toifl et al., 2016a).

(figure 5.48). However, in none of the observed models the & to B phase transformation
temperature of 573°C is reached. A volume fraction exposed to temperatures above 40°C of
0.54% is determined after 15 s microwave treatment and 5.11% after 72 s. These values are
also higher than in the models with the 25 kW source (figure 5.48).

In order to investigate these variations in the temperature fields in greater detail, a
statistical analysis of the temperatures at the integration points of the finite elements located
in the microstructure cube is performed. For this purpose the total temperature range is
divided into classes with a width of 5°C (cf. statistical analysis in section 5.1.2.3). In
figure 5.50 the frequency density distribution is plotted for all investigated microwave
irradiation parameters. The function values of the graphs are derived by dividing the volume
fraction in each class by the width (5°C) of the class (Steland, 2013).

As expected, in figure 5.50 higher temperatures are observed with increasing microwave
irradiation times and powers. The arithmetic mean values of the frequency distribution are
shifted to higher temperatures due to a larger amount of provided microwave energy (15 s,
25 kW: x =33.21°C compared to 72 s, 25 kW: X = 59.41°C). Moreover, the distribution of
the temperature gets broader with increasing power levels and irradiation times (15 s, 25 kW:
sd = 9.66°C compared to 72 s, 25 kW: sd = 41.94°C). The shift between the frequency
densities of the 25 kW to the 30 kW case becomes more significant with increasing irradiation

durations (figure 5.50). This is due to the fact that the difference of the provided microwave
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Fig. 5.50 Frequency density of the temperature of the microstructure cube scaled to the re-
spective volumes corresponding to the temperature values. The legend includes the arithmetic
mean X as well as the standard deviation sd (Toifl et al., 2016a).

energy between 25 kW and 30 kW is only 100 kJ after 15 s of microwave treatment as
opposed to 360 kJ after 72 s. Furthermore, figure 5.50 reveals almost identical temperature
frequency densities for the 72 s, 25 kW simulation and the 60 s, 30 kW case. This coincidence
of the graphs is caused by equal amounts of the supplied microwave energy in both cases
(€ = 1.8 MJ). However, the maximum temperature is slightly different between the two
models (72 s, 25 kW: T4 = 239°C and 60 s, 30 kW: T, = 246°C, see figure 5.48 and figure
5.49). This variation is caused by the weaker thermal conductance in the 60 s irradiation case
(figure 5.51).

Temperatuzreg["C] 122,25 kW Temperatuzre6[°C] 60's, 30 kw

*8 1*8

Fig. 5.51 Temperature field in °C in the microstructure cube after microwave irradiation with
72 s, 25 kW and 60 s, 30 kW, respectively (Toifl et al., 2016a).
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Small variations are observed in the temperature field inside the microstructure of the
two models with a microwave energy of 1.8 MJ (figure 5.51). Not only the magnitude of the
maximum temperature is different but also the distribution varies. After 60 s of microwave
irradiation with a source of 30 kW stronger temperature localization is observed. In order to
investigate even more strongly varying combinations of microwave power and irradiation
time additional simulations are performed for &,,, = 1.8 MJ (cf. table 4.7). In figure 5.52 the
temperature fields at the end of irradiation are presented.

Temperature [°C] Temperature [°C] Temperature [°C]
315

496

Temperature [°C]
250
231

212
194 [
175
156
138
119
100
81

62

g 100 s / 18 k

Ly

Fig. 5.52 Temperature field in °C after microwave irradiation with the microwave power and
irradiation time given in the figure for the same energy &,,,, = 1.8 MJ.

The temperature fields show significantly larger differences for the simulations performed
in figure 5.52 compared to figure 5.51. A maximum temperature of 496°C is observed after
0.1 s of microwave irradiation and 18 MW compared to 227°C after 100 s with 18 kW.
Moreover, the 0.1 s, 18 MW case exhibits strong selective heating. The temperature fields of

the different models with the same energy is assessed by a statistical analysis (figure 5.53).
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Fig. 5.53 Frequency density of the temperature of the microstructure cube scaled to the
respective volumes corresponding to the temperature values for the models with constant
microwave energy. The legend includes the arithmetic mean X as well as the standard
deviation sd.

In figure 5.53 the influence of the irradiation time under constant microwave energy
on the thermal field is clearly visible. With longer duration the thermal conductance has
more time to smoothen the temperature field. Therefore, significantly more volume is never
exposed to exceeding 180°C if the time duration is increased. The mean values of the thermal
frequency density stay almost constant over all models but the standard deviation significantly
increases with decreasing irradiation times (sd = 53.9°C in the 0.1 s, 18 MW case compared
to sd = 40.8°C with 100 s, 18 kW).

5.1.3.3 Linear elastic stress results

First, the linear elastic stress results of the models summarized in table 4.6 are presented.
Figure 5.54 visualizes the maximum principal stresses at the end of the irradiation time in
the 25 kW case.
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Fig. 5.54 Maximum principal stress field in Pa after microwave irradiation with 25 kW
(minus 30% losses) of granite models for durations given in the figure (Toifl et al., 2016a).

The maximum principal stress varies strongly between the different irradiation times
(figure 5.54). After 15 s of irradiation only a small area with stresses higher than 9 MPa (light
blue area in figure 5.54) and a maximum stress of 50 MPa are observed. With increasing dura-
tions the volume exposed to high maximum principal stresses expands significantly and much
higher magnitudes are determined (largest maximum principal stress after 72 s = 256 MPa).
The largest stresses are observed at the boundaries of the plagioclase grains, which represent
the high absorbing phase in the models. In the 15 s case localized crack initiations near
the front surface are expected since the area of stresses higher than 9 MPa penetrates only
some centimeters into the depth of the material. After 72 s of irradiation the strength limit is

exceeded down to a depth of about 10 cm (in the direction of microwave propagation).
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Fig. 5.55 Maximum principal stress field in Pa after microwave irradiation with 30 kW
(minus 30% losses) of granite models for durations given in the figure (Toifl et al., 2016a).

By applying 30 kW instead of 25 kW higher maximum principal stresses are obtained
(figure 5.55). After 15 s of irradiation the highest stress reaches 62 MPa, whereas after 72 s
311 MPa are observed. In order to investigate the differences in the stress fields between the
various configurations in greater detail, a statistical analysis as described in section 5.1.2.3 is
performed (figure 5.56). Here a class width of 1 MPa has been chosen.
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Fig. 5.56 Frequency density of the maximum principal stress of the total granite model.
The legend includes the arithmetic mean X as well as the standard deviation sd (Toifl et al.,
2016a).

Figure 5.56 reveals that the maximum principal stress distribution is shifted to higher
values with increasing microwave irradiation times and provided powers (15 s, 25 kW:
x =0.56 MPa; 72 s, 25 kW: x = 2.58 MPa; 15 s, 30 kW: X = 0.65 MPa; 72 s, 30 kW:
X = 3.12 MPa). Besides the shift of the arithmetic mean values the frequency densities also
become broader (15 s, 25 kW: sd = 1.02 MPa; 72 s, 25 kW: sd = 5.37 MPa; 15 s, 30 kW:
sd =1.23 MPa; 72 s, 30 kW: sd = 6.02 MPa). The graphs for 72 s, 25 kW and 60 s, 30 kW
are almost coincident. However, the largest maximum principal stress values vary slightly
(256 MPa after 72 s, 25 kW, 259 MPa after 60 s, 30 kW). These differences are investigated
in detail by plotting the microstructure cube in both cases (figure 5.57).

Max. principal Max. principal

72s,25 kW 60 s, 30 kW

stress [Pa] stress [Pa]
+2.56e+08 +2.59e+08
+1.50e+08 +1.50e+08
+1.41e+08 +1.41e+08

+1.31e+08
+1.22e+08
+1.12e+08

+1.31e+08
+1.22e+08
+1.12¢+08
+1.03e+08
+9.38e+07
+8.44e+07
+7.50e+07
+6.56e+07
+5.62e+07
+4.69e+07
+3.75e+07
+2.81e+07
+1.88e+07
+9.38e+06
+0.00e+00
-2.02e+08

Fig. 5.57 Maximum principal stress field in Pa in the microstructure cube after microwave
irradiation with 72 s, 25 kW and 60 s, 30 kW (Toifl et al., 2016a).
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Although differences in the temperature fields between 72 s, 25 kW and 60 s, 30 kW are
observed (figure 5.51), no significant variations in the stress field are detectable (figure 5.57).
Only the largest maximum principal stress is slightly higher in the 60 s, 30 kW case. After
72 s microwave irradiation with 25 kW 4.60% of the total volume experience stresses higher
than the material’s strength (9 MPa), whereas after 60 s with 30 kW a slightly higher value
of 4.63% is determined. In figure 5.58 the maximum principal stresses of the models with

the same provided energy of &, = 1.8 MJ are visualized.
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Fig. 5.58 Maximum principal stress field in Pa after microwave irradiation with the microwave
power and irradiation time given in the figure for the same energy €, = 1.8 MJ.

Unlike the temperature field (figure 5.52), the largest maximum principal stresses are
observed in the 15 s, 120 kW model. However, the remaining investigated models also
reveal very high maximum principal stresses. A significant difference in the distribution
of the stresses is observed. In the 0.1 s, 18 MW case the highest stresses are located at the
phase boundaries of some plagioclase grains, whereas in the 100 s, 18 kW case significantly
more volume contains high principal stresses. This tendency becomes more evident when

visualizing the frequency density distribution of the six models (figure 5.59).

Figure 5.59 reveals that the mean of the maximum stress distribution rises with increasing
irradiation times until 15 s is reached and then it drops (0.1 s, 18 MW: X = 2.62 MPa; 15 s,
120 kW: X = 2.66 MPa; 100 s, 18 kW: x = 2.55 MPa). However, at 15 s, 120 kW the
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Fig. 5.59 Frequency density of the maximum principal stress of the total granite model
scaled to the respective volumes corresponding to the stress values for the same energy

& = 1.8 MJ. The legend includes the arithmetic mean X as well as the standard deviation
sd.

distribution is broader than in the 0.1 s or 100 s case (0.1 s, 18 MW: sd = 4.92 MPa; 15 s,
120 kW: sd = 5.07 MPa; 100 s, 18 kW: sd = 4.90 MPa). The graphs for 15 s, 120 kW and
30 s, 60 kW are very close to each other in the stress range depicted in figure 5.59. Moreover,
it is obvious that in the 0.1 s, 18 MW and 1 s, 1.8 MW case significantly fewer material
points are subjected to medium stress values, whereas especially the 0.1 s, 18 MW model

reveals a large amount of highly stressed volume.

5.1.3.4 CDP calibration results

A purely elastic simulation is insufficient predicting any damage pattern for obvious reasons.
Once the strength limit is reached or exceeded in an element this element will fail leading to
a redistribution of the stresses which cannot be accounted for in an elastic model. Thus, it
is inevitable to take damage mechanical aspects into account. A suitable damage model, in
our case concrete damaged plasticity, requires a number of material parameters that need
to be determined fairly accurately in order to be able to predict the damage behavior of the

material reasonably well.

Various simulations with different morphologies are performed in order to calibrate
the material parameters (mainly the thermal expansion coefficient & of the quartz phase)
according to the thermal expansion measurements on granite samples. Finally, the uniaxial

thermal expansion of the quartz phase above 800°C (blue vertical line in figure 5.60) is
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adapted in order to obtain the same thermo-mechanical response as the granite samples
during the experiments.

3.0

2.5

2.0

15 F

€ [7o]

1.0

0.5

L " 1 " " "
0 200 400 600 800 1000
Temperature [°C]

0.0

Fig. 5.60 Uniaxial thermal strains of quartz as a function of temperature °C (Carpenter et al.,
1998). Values above 800°C are adapted according to the investigated granite.

A rapid increase in the thermal strains for temperatures higher than 800°C is observed.
This sharp rise can be explained by the 8 quartz tridymite phase transition at 870°C which
can lead to a jump in strains of up to 3.70% in one direction (Okrusch and Matthes, 2005).
Moreover, it is assumed that the B quartz tridymite phase transformation only takes place
during the first heating and not during reheating. Consequently, the uniaxial thermal strain
in the second heating is constant for all temperature values higher than 600°C. In order
to model this behavior, a user defined field variable is used in Abaqus and its value is
adapted by a USDFLD subroutine (cf. appendix C) (Abaqus, 2014). This field variable is
basically an indicator for the current phase of the quartz. With these thermal expansion values
all presented results are obtained. Figure 5.61 shows the resulting strains of the various
investigated morphologies.
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Fig. 5.61 Uniaxial thermal strains of the measured granite samples compared with four
different numerical models, each one having its individual morphology.

The strain evolution calculated with the investigated CDP calibration models with differ-
ent morphologies and slightly varying grain diameters agree well with the measured thermal
strain values of the granite samples at least for the first heating and cooling. A maximum
relative error of 4.6% at the end of the first heating (minimum: 0.5%) and 5.8% at the end
of cooling (minimum: 0.9%) are observed. The relatively strong deviations between the
different morphologies can also be seen in the thermal expansion measurements where they
are even more pronounced (cf. figure 3 in Hartlieb et al. (2016)). However, the second heating
cannot be captured by the CDP model. Evidently for a good representation of the second
heating path a much more thorough analysis of the material model is required. However,
this would go far beyond the scope of this thesis. Furthermore, for the problem at hand a
second heating is not to be expected and thus will not have any influence on the granite CDP
results. The strain components during first heating and cooling are analyzed in figure 5.62
exemplarily for model A with @ grain = 2 mm.
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Fig. 5.62 Uniaxial thermal strain components of model A with © grain = 2 mm during first
heating and cooling.

A maximum thermal strain of 1.83% is obtained in figure 5.62. Based on the strain
definition the thermal strains are fully recoverable reaching zero strains at the end of the
cooling step. Plastic deformation starts at temperatures of about 200°C and reaches 1.30%
at the end of the heating step. Additionally, during cooling the plastic strains increase
significantly and further smoothen the phase transitions. The spatial distribution of the scalar
damage variable under tension d; at different time points is depicted in figure 5.63 exemplary
for model A with @ grain =2 mm.
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Fig. 5.63 Scalar stiffness degradation under tension d; at different time points of model A
with @ grain =2 mm.
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In figure 5.63 severe damage (dark red in figure 5.63) is observed located around the
phase boundaries. Moreover, a significant change is noted in the d; distribution between
the two phase transformations (cf. 560°C - 700°C and 700°C - 1000°C in figure 5.63). In
most of the material points near phase boundaries plastic flow occurs. In order to determine
the damage distribution on a microstructure level in more detail, a statistical analysis is
performed by calculating the accumulated volume fraction of severely damaged material

points under tension (d; > 0.57) within a certain time step (figure 5.64).
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Fig. 5.64 Formation of volume fraction of damaged material points under tension (d; > 0.57)
for each constituent as a function of the temperature.

After 150°C first plagioclase grains are damaged in tension due to the strong mismatch
of the thermal expansion coefficients (CTE) (cf. figure 4.16). Since plagioclase has the lower
CTE, the grains are under strong tension and are therefore damaged first. Contrary, muscovite
and quartz have almost equal CTEs up to a temperature of about 500°C and so hardly any
damage is initiated. Only a small jump at the o to B phase transformation temperature
is observed. However, at temperatures higher than 600°C quartz starts to damage rapidly.
Muscovite shows a significant increase in damaged volume fraction during the 8 quartz
tridymite phase transformation. At the end of the heating step 43% of the quartz, 71% of
the plagioclase and 11% of the muscovite volume are damaged. At the beginning of the
cooling step an increase in damaged quartz material points during the tridymite 8 quartz
phase transformation is observed. Additionally, the muscovite grains also exhibit an increase
in damage. Finally, at room temperature 71 vol.% of quartz, 71 vol.% of plagioclase and 29

vol.% of muscovite are damaged in tension.



5.1 Inhomogeneous models 125

5.1.3.5 Damage results

In the 3D three component simulations the calibrated concrete damaged plasticity material
model is used (cf. section 5.1.3.4) to identify damage. The CDP model is only applied in the
microstructure cube and not in the homogeneous part in order to reduce the computational
cost. The distribution of the scalar stiffness degradation d; within the microstructure at

various irradiation times under a constant power of 18 MW is visualized in figure 5.65.

di [] 0.032 s/ 32% of irradiation time di [] 0.065 s / 65% of irradiation time

0.57 0.57
0.52
0.48
0.43
0.38
0.33
0.29
0.24
0.19
0.15
0.10
o
0.00 2

2
a) Lx b) I_.x

Fig. 5.65 Scalar stiffness degradation variable d; in the three component model after a) 0.032 s
(32% of irradiation time) and b) 0.065 s (65% of irradiation time) microwave irradiation with
18 MW.
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Damage and subcritical cracks (blue areas figure 5.65) are initiated around quartz phase
boundaries near the absorbing plagioclase grains originating close to the Gaussian axis. In
contrast to the 3D two component model, where longer irradiation times are investigated,
the highest damage is observed in quartz and not in the strongly microwave absorbing phase.
These deviations between the two models arise due to the strong localized heating in the
0.1 s, 18 MW model which leads to differences between adjacent grains of about 450°C.
Conversely, in the 15 s, 25 kW case (3D two component model) the temperature field is more
homogeneous.

With longer irradiation times critical cracks (red in figure 5.65) propagate radially outside
the irradiated volume. Analyzing the damage after 0.065 s of microwave irradiation yields
radial patterns (figure 5.66).
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Fig. 5.66 Damaged elements (d; > 0.57) in the three component model at 0.065 s (65% of
irradiation time) of microwave irradiation with 18 MW. Microwaves propagate along positive
y-axis.

Figure 5.66 shows damage located up to a depth of 3.3 cm. The observed radial damage
pattern correlates to the 3D two component CDP results. Not only the material limit in

tension but also in compression is reached after 0.065 s of irradiation (figure 5.67).
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Fig. 5.67 Scalar stiffness degradation variable in compression d, in the three component
model after 0.065 s (65% of irradiation time) microwave irradiation with 18 MW.

Damage under compression is determined at the front face of the Gaussian axis. However,
in some muscovite grains damage is also initiated due to high compressive stresses. The full
3D three component model taking into account the highly non-linear CDP material model
is computationally extremely extensive leading to calculation times of around two months
on a state-of-the-art 12 CPU cluster node equipped with 256 GB RAM. In addition to the
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0.1s, 18 MW case also the 1 s, 1.8 MW (figure 5.68) and 72 s, 25 kW (figure 5.69) cases
have been investigated including the CDP material model.
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Fig. 5.68 Scalar stiffness degradation variable d; in the three component model after a) 0.39 s
(39% of irradiation time) and b) 0.50 s (50% of irradiation time) microwave irradiation with
1.8 MW.
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Figure 5.68 reveals damage initiation close the Gaussian axis and damage propagation in
radial direction. Damage can be located up to a depth of 2 cm. For the 72 s, 25 kW case only
the results after 27.53 s are available (figure 5.69).
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Fig. 5.69 Scalar stiffness degradation variable d; in the three component model after 27.53 s
(38% of irradiation time) of microwave irradiation with 25 kW.

After 27.53 s of microwave irradiation with 25 kW damage is initiated mainly in plagio-
clase grains which represent the microwave absorbing part (figure 5.69). The formation of
damage of the investigated 3D three component CDP models is summarized in figures 5.70
and 5.71.
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Fig. 5.70 Formation of volume fraction
(within the microstructure) of damaged mate-
rial points under tension d; > 0.57 over the
relative irradiation time [%].
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Fig. 5.71 Formation of volume fraction
(within the microstructure) of damaged mate-
rial points under tension d; > 0.57 between
35% and 50% of the irradiation time.

In the 0.1 s, 18 MW case figure 5.70 reveals higher damage under tension in the quartz

than in the plagioclase phase. After 46% of the irradiation time of the 1 s, 1.8 MW model
more volume is damaged in tension than in the 0.1 s, 18 MW case. Moreover, plagioclase is
the most damaged phase after 48% of the irradiation time. Conversely, in the 72 s, 25 kW
case only the plagioclase phase is damaged until an irradiation time of 38% (figure 5.71).
In all three models no tension damage can be observed in the muscovite grains. Since the
damage behavior in the subsequent time steps would follow the same tendency no additional
output is generated. Obviously, the location of the initiation of damage depends on the

microwave irradiation parameters (irradiation time and microwave power).
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5.2 Homogeneous models

By considering a rather homogeneous hard rock such as basalt the influence of the strong
coupling between the electromagnetic and thermal field is investigated. To this end, the
measured temperature-dependent permittivity of basalt is used (cf. figure 4.29).

5.2.1 Thermal results

Based on the simulation methodology outlined in section 4.2 the thermal field is recalculated
after a maximum temperature change of 50°C using an updated electromagnetic field. The
thermal fields at the end of the heating time of the strongly (SCM) and weakly coupled
models (WCM) are compared in figure 5.72.
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Fig. 5.72 Comparison between thermal fields of SCM and WCM for basalt after microwave
irradiation with 1.8 MW for 1 s.

After a microwave irradiation of 1 s with 1.8 MW significant differences can be seen
between the thermal fields of the SCM and WCM. The maximum temperature in the two
models differs by about 100°C (maximum temperature 408°C in SCM and 501°C in WCM).
Near the Gaussian axis a larger depth of microwave heated areas are observed in the SCM.
These differences are caused by the decrease in the complex permittivity between 100°C and
400°C (cf. figure 4.29). Since the imaginary part of the permittivity decreases, the penetration
depth increases (cf. equation 2.19). The influence of the strong FDTD-FEM coupling (SCM)
on the resulting thermal field becomes evident when plotting the temperature over the time
for varying depths along the Gaussian axis (figure 5.73).
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Fig. 5.73 Temperature as a function of time for points along the Gaussian axis with different
y-positions within the material (yYmaerial)-

In a depth of 0.2 cm (where the highest temperature is observed) the strongest difference
between the SCM and WCM is observed (figure 5.73). Until 0.5 s the SCM reveals higher
temperatures due to the initial increase in the imaginary part of the permittivity (cf. figure
4.29). With longer irradiation significantly higher temperatures in the WCM are observed
due to the rapid drop of the imaginary part of the permittivity in the SCM. In a depth of
15 cm a lower temperature in the WCM is found due to the reduced penetration depth. The
influence of the temperature-dependent permittivity is further investigated by analyzing a
constant microwave power of 25 kW and two different irradiation times (figure 5.74).
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Fig. 5.74 Comparison between thermal fields of SCM for basalt after microwave irradiation
with 25 kW for 30 s and 60 s.
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A maximum temperature of 242°C is observed after microwave irradiation with 25 kW
and 30 s whereas after 60 s a temperature of 352°C is reached. The 30 s, 25 kW case yields
an almost ideal Gaussian beam which becomes distorted after 60 s of microwave irradiation
with 25 kW. This effect is caused by the temperature-dependent complex permittivity of
basalt (cf. figure 4.29). Between 20°C and 200°C the imaginary part of the permittivity is
almost constant which results in an ideal Gaussian beam. Conversely, between 200°C and

400°C €/, drops rapidly resulting in a narrower distribution of the heated volume.

5.2.2 Linear elastic stress results

The thermal fields after each calculated increment are used as an input for the subsequent
stress analysis. Differences in the maximum principal stress fields between the SCM and
WCM are depicted in figure 5.75.
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Fig. 5.75 Comparison between maximum principal stress fields of SCM and WCM for basalt
after microwave irradiation with 1.8 MW for 1 s.

In the WCM higher maximum principal stresses are observed than in the SCM (figure
5.75). Also a larger volume fraction exposed to critical stress levels is found. The influence
of varying irradiation time at constant power on the maximum principal stress field of the
SCM is investigated in figure 5.76.
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Fig. 5.76 Comparison between maximum principal stress fields of SCM for basalt after
microwave irradiation with 25 kW for 30 s and 60 s.

The highest maximum principal stresses in figure 5.76 are observed around the main
Gaussian beam localized at the front surface. Hence, damage in a circular area close to
the surface is expected. In the 25 kW and 30 s microwave irradiation model the highest
stresses are slightly below the tensile strength of the basalt material (~ 9 MPa). After 60 s of

microwave irradiation with a microwave source of 25 kW the highest stress reaches 17 MPa.



Chapter 6
Discussion

In this chapter the results of the various numerical models are discussed. In order to compare
the numerical results with experiments, high power microwave irradiation experiments were
performed by Dr. Philipp Hartlieb from the Chair of Mining Engineering and Mineral
Economics, Montanuniversitaet Leoben. Since mainly granite but also basalt are investigated
in the numerical models, the experimental results of these hard rocks are presented in

section 6.1.

6.1 Experimental work

The results of the microwave irradiation experiments have been published in Meisels et al.
(2015) and Toifl et al. (2016b). These experiments on a hard rock blocks (50 x 50 x 30 cm?,
30 cm in direction of microwave irradiation) are performed using an open-ended rectangular
waveguide (4.3 x 8.6 cm?) as the applicator. Due to the few centimeters distance between
waveguide and rock the area of the irradiated spot on the rock is approximately circular (red
circle in figure 6.1a). The microwave source emits radiation with 25 kW at a frequency of
2.45 GHz. The power transmitted into the granite block is estimated to be 30% less. In
figure 6.1 a granite block after microwave irradiation for durations given in this figure is

visualized.
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Fig. 6.1 Microwave irradiation with 25 kW (power of the microwave source) of granite
for durations given in the figure. (a) Red circles indicate the area of highest intensity in
the microwave beam. (b) Microstructure underneath hotspot of (a) after 72 s microwave
irradiation (Toifl et al., 2016Db).

As illustrated in figure 6.1, intense cracking caused by the thermo-mechanical stresses is
observed in the granite block originating from a hot spot beneath the waveguide. Since the
different irradiation spots are far apart from each other, only minor influences of the existing
crack network on the crack initiation during the subsequent microwave irradiation experiment
are assumed. By analyzing the in-depth crack paths into the material (cf. figure 6.1b) it is
concluded that the microstructure has a major influence on the onset and subsequent accumu-
lation of damage since the cracks (blue in figure 6.1b) mainly follow the grain boundaries.
This implication agrees with the numerical results obtained in the inhomogeneous models
where the stress formation is driven by microstructural details. In a rather homogeneous hard
rock, such as basalt, a different damage behavior is observed (figure 6.2).
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Fig. 6.2 Spot on basalt irradiated with microwaves with 25 kW for 15 s. Spallation is clearly
visible. The irradiated area has approximately the size of the circle (Meisels et al., 2015).

The region of high intensity is marked in figure 6.2 by a circle with 5 cm diameter.
Microwave irradiation of a basalt sample reveals spallation. Both experiments (figures 6.1
and 6.2) show severe damage due to microwave irradiation. However, the type of damage
(cracking or spallation) depends on the type of rock, in particular on its dielectric, thermal
and mechanical properties.

6.2 Discussion of 2D models

In the 2D FDTD electromagnetic results deviations of the local Ey2 values between the
heterogeneous and the homogeneous model are up to 10% due to the scattering by the discs
(figure 5.2). Moreover, strong selective heating and therefore high thermal gradients between
the constituents are observed. This tendency is exaggerated by the relatively low thermal
conductivity of the plagioclase discs compared to the quartz-like matrix (cf. table 4.2).
The temperature gradients due to selective heating and the significant deviation of thermal
expansion coefficients between matrix and discs lead to high maximum principal stresses
(figures 5.7 and 5.8). These cause interface damage of the discs in a wide range around the
irradiation spot (figures 5.10 and 5.11). During the cool-down process cracks propagate far

outside the irradiated spot at the boundaries between discs and matrix.

The accuracy of the presented 2D simulations is validated by preliminary experiments. A
correlation between the intense cracking around the irradiation spot in the granite sample
(figure 6.1) and the cracked discs at maximum temperature in the thermomechanical FE
simulation (figure 5.10) can be found. The cracks at the granite experiments oriented in the
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depth of the sample mostly follow the grain boundaries, which concurs with the numerical

simulations (cf. figure 5.10).

In the 2D simulations it is concluded that crack initiation and propagation are driven
by the inhomogeneous microstructure of hard rocks. Moreover, the results show that the
heterogeneous nature of rocks has to be considered for understanding microwave induced

stresses and damage in inhomogeneous hard rocks.

6.3 Discussion of 3D two component models

A two component 3D hard rock model with resolved microstructure is used to determine the
influence of the microstrucuture on microwave induced damage. Regarding the electromag-
netic field of the microwave irradiated inhomogeneous rock model, E? stripe-like patterns
are determined (figure 5.12). Moreover, in the vicinity of the microstructure / bulk material
interface no artificial reflections are observed, which indicates that Bruggeman’s effective
medium theory works well in the current application. Along the axis of the Gaussian beam
(figure 5.14) a deviation of up to 12% between the homogeneous and inhomogeneous model
is visible. After 15 s of microwave irradiation with 25 kW the resulting maximum principal
stresses exceed the material strength in a wide range. The highest stresses are observed
at the boundaries of the absorbing phase near the Gaussian axis of the beam (figure 5.20).
Additionally, high compressive stresses exceeding the material limit are identified at the phase
boundaries in phase T (figure 5.23). When elevated temperatures or high confining pressures
are reached, a transition from brittle to ductile rock material behavior can occur. Under the
assumption of ductile material behavior, plastic deformations arise near the phase boundaries
of the inhomogeneous model due to high Tresca stresses (figure 5.24). Contrary, in the
homogeneous model the highest stresses occur around the main heated area (figure 5.21).

This varying stress formation implies a different damage mechanism for the two models.

By comparing the stress field of three different morphologies with the same filling
factor (f = 0.34) the high influence of the microstructural details on the microwave induced
stresses becomes evident. Although all three models feature equal averaged grain size
(© grain = 3.4 mm) and filling factor, significant differences in the stress formation occur
(figure 5.25). Even stronger differences are determined if these models are compared with
two different filling factors (f = 0.2 and f = 0.4). The volume fraction in the microstructure
that is exposed to maximum principal stresses higher than the tensile strength, increases with
higher values of the filling factor (cf. figure 5.28). Additionally, the deviation between the

different morphologies with the same filling factor is larger in the f = 0.2 case than in the
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other two cases. This effect can be explained by the higher possibility of accumulation of

high absorbing grains near the Gaussian axis with increasing filling factor.

After 25 s of microwave irradiation phase transformation in the phase T (quartz) takes
place which entails even higher stresses (figure 5.29). By performing a statistical analysis a
strong shift of the stresses in phase T and phase A to higher maximum principal stresses is
observed (figure 5.30). Furthermore, broader frequency density distributions of the maximum
principal stresses in phase T and phase A are observed. A significantly higher portion of
the irradiated volume experiences stress values exceeding 50 MPa after 25 s of microwave

heating.

The stresses increase if the anisotropic nature of the quartz crystals is taken into account.
By comparing the stress field after 25 s of irradiation in the isotropic with those of the
anisotropic case (figure 5.33), a significantly larger volume fraction exposed to high maximum
principal stresses is observed in the anisotropic model. Furthermore, a statistical analysis
of the stress formation in the isotropic as well as the anisotropic case (figure 5.34) shows
that the anisotropic model predicts fewer elements under compression and more elements
under tension in phase T. Hence it is concluded that in the anisotropic model higher crack
propagation dynamics is expected since the phase T grains do not have the potential to arrest
a crack due to the lack of compressive stresses in the grains. However, if the anisotropic
nature of the grains is considered in the models to predict microwave induced damage, several

morphologies have to be investigated in order to obtain statistically reliable results.

The CDP material results reveal large areas of damage initiation and propagation (fig-
ure 5.35). Damage is initiated at the phase boundaries of phase A grains mainly near the
Gaussian axis as well as around the main heated area. With increasing irradiation time the
damage propagates far outside primarily following the phase boundaries. In the cooling step
a higher degree of damage is determined near the Gaussian axis. In this region no damage can
be observed in the homogeneous model (figure 5.36). Considering the damage in both phases,
phase A contains significantly more damaged volume than phase T. With longer irradiation
time combined with & to 8 phase transformation significantly more material points are
damaged. A comparative analysis with extended model dimensions taking into account a
CDP material definition throughout the entire model reveals longer damage propagation but
similar damage initiation patterns. The damage pattern correlates qualitatively very well with
the experiments performed on granite blocks, where damage propagation along the phase

boundaries is observed as well.

The question of whether crack formation can be induced by microwave heating is essen-

tially dominated by the macroscopic thermal gradients. However, the position of damage
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initiation sites and the rates as well as propagation path is influenced by the microstructure.
The set of numerical results of the 3D two component models indicates that the consideration
of microstructural details is crucial to determine reliable microwave induced stresses and
damage in rocks with strongly absorbing phases. Moreover, different models with varying
phase distributions but constant filling factors should be performed in order to reveal statisti-
cally reproducible stress fields. Obviously, for an accurate prediction of the stress formation
the phase transformation of quartz as well as the anisotropic nature has to be taken into
account.

6.4 Discussion of 3D three component models

In the three component 3D models real granite samples are investigated where the dielectric
as well as the thermo-mechanical properties were taken from measurements. Additionally,
the same granite used for the simulations was investigated in the microwave irradiation exper-
iments (figure 6.1). In order to assess the influence of the microwave irradiation parameters
on the induced damage, various analyses with different combinations of microwave power
and irradiation time for varying energy (table 4.6, discussion of results in section 6.4.1) and
constant energy levels (table 4.7, discussion of results in section 6.4.2) are performed.

First, the electric field inside the inhomogeneous granite model is obtained (figure 5.44)
which serves as the major input for all following irradiation experiments (since the morphol-
ogy is the same in all models). Due to the strong differences in the permittivities of the
three minerals, strong variations in the electric field compared to a homogeneous case are ob-
served. These differences amount up to 40% between the homogeneous and inhomogeneous
model along the Gaussian beam axis (figure 5.46). The resulting absorbed power density
(figure 5.47) is used as an input for the thermal FE calculations.

6.4.1 Constant microwave power

Strong differences between the various microwave irradiation durations and the two power
levels are observed by considering models with varying microwave energy. With longer
irradiation time the maximum temperature rises and the heated area increases (figure 5.48 -
5.50). The resulting temperatures for different microwave parameters and energies are
summarized in figure 6.3.
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Fig. 6.3 Assessment of the influence of microwave irradiation parameters on the temperature
field in a three component 3D granite model for constant microwave power (Toifl et al.,
2016a).

In figure 6.3 an almost linear relation between the maximum temperature and the mi-
crowave irradiation time is observed. The slope of the straight line is steeper in the 30 kW
than in the 25 kW case. Although the same microwave energy (&,,, = 1.8 MJ) is provided
for the 72 s, 25 kW and the 60 s, 30 kW case, differences in the temperature fields are
observed (figure 5.51). The maximum temperature after 60 s microwave irradiation with
30 kW is higher than after 72 s with 25 kW (246°C compared to 239°C). Only a marginally
larger volume becomes exposed to temperature values higher than 40°C (4.01 vol.% com-
pared to 4.00 vol.%). These variations are caused by the shorter time available for the heat
conduction to compensate the thermal gradients in the 60 s case compared to 72 s. This
effect is investigated in more detail with different models with the same microwave energy in
section 6.4.2.

Strong variations in the maximum principal stress distribution are observed for the
investigated models (figure 5.54 - 5.56). Much higher stresses are obtained with increasing
irradiation times and power levels. The highest maximum principal stresses occur at the
boundaries of plagioclase grains near the Gaussian axis. The influence of the microwave

irradiation parameters on the formation of the stresses is summarized in figure 6.4.
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Fig. 6.4 Assessment of the influence of microwave irradiation parameters on the maximum
principal stress field in a three component 3D granite model for constant microwave power
(Toifl et al., 2016a).

A linear relation between the maximum principal stresses and the irradiation time is
observed in figure 6.4. The stresses increase more rapidly in the 30 kW than in the 25 kW
case. The curve representing the volume fraction being subjected to stresses greater than the
material strength (9 MPa) as a function of the irradiation time is almost cubic. Contrary to
the thermal field no significant differences in the stress fields are observed between the 60 s,
30 kW and the 72 s, 25 kW case. However, this circumstance is caused by the small variation

of irradiation time and power and cannot be seen in section 6.4.2.
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Fig. 6.5 Assessment of the influence of microwave energy &,,,, on the maximum principal
stress field in a three component 3D granite model (Toifl et al., 2016a).

The microwave induced stresses in the models investigated with different irradiation

parameters (cf. table 4.6) only depend on the supplied microwave energy, as demonstrated in
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figure 6.5 where the largest principal stress is plotted as a function of the energy. A linear
dependence can be derived for the largest maximum principal stress and a cubic dependence

for the critical volume fraction on the energy input.

6.4.2 Constant microwave energy

Since minor differences between 60 s, 30 kW and 72 s, 25 kW are observed (cf. section 6.4.1),
various simulations with stronger differences in the microwave irradiation time and power but
constant energy &,,,, are performed (cf. table 4.7). The models with microwave powers in the
megawatt (MW) range correspond to pulsed magnetron applications. Significant differences
in the temperature fields are observed. The maximum temperature in the 0.1 s, 18 MW model
reaches 496°C whereas in the 100 s, 18 kW case only 227°C is observed. Moreover, very
high selective heating for short durations can be seen where longer irradiation times lead to
quite homogeneous fields. In figure 6.6 the temperature field is analyzed as a function of the

microwave irradiation time for constant microwave energy.
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Fig. 6.6 Temperature field evaluation as a function of irradiation time with constant microwave
energy.

The maximum temperature is a strongly nonlinear function of the microwave irradiation
time. When the thermal conductance has enough time the maximum temperature rapidly
decreases due to homogenization of the temperature field. Conversely, the volume fraction ex-
posed to temperatures exceeding 100°C first rises and then drops with increasing microwave
irradiation time.

Strong differences in the maximum principal stress fields are revealed between the models
with constant microwave energy (figures 5.58 and 5.59). In the 0.1 s, 18 MW case the highest

stresses are strongly localized at the phase boundaries whereas in the 100 s, 18 kW case a
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higher volume fraction becomes exposed to high stresses. The largest maximum stress is
observed in the models for 15 s, 120 kW and 30 s, 60 kW (both 266.8 MPa, see figure 6.8).
Figures 6.7 and 6.8 allow to investigate the stress formation for cases with constant provided

energy as a function of irradiation time.
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Fig. 6.7 Volume fraction exposed to maxi- Fig. 6.8 Largest maximum principal stresses
mum principal stresses higher than tensile as a function of irradiation time for constant
strength (9 MPa) as a function of irradiation microwave energy in the 3D three component
time for constant microwave energy. granite model.

In figure 6.7 the volume fraction subjected to maximum principal stresses higher than
9 MPa (which is the tensile strength) reveals a local maximum for the 30 s, 60 kW case.
In lower irradiation cases the highest stresses become strongly localized and less volume
experiences stresses exceeding the tensile strength (9 MPa) than with longer irradiation time
(at least until 100 s). With irradiation lasting longer than 30 s the volume fraction of high
stresses drops due to the homogenization of the thermal field.

With the measured granite a three component CDP material model is calibrated (cf.
section 5.1.3.4). The thermo-mechanical behavior can be described well by the CDP model
for the first heating and cooling (figure 5.61). Then, the calibrated model is used to assess
the damage initiation and propagation in the 3D three component model under microwave
irradiation. Different damage behaviors depending on the used microwave power and
irradiation time are determined (cf. figures 5.70 and 5.71). Damage in tension is mainly
observed close to the Gaussian axis and in radial direction near the main heated area. With
short irradiation time and high power (0.1 s and 18 MW) the quartz phase is first damaged,
whereas with longer irradiation time (72 s and 25 kW) the microwave absorbing plagioclase
phase is mainly damaged in tension. Finally, it is concluded that not only the amount of
damage but also the location highly depends on the microwave irradiation parameters.
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6.5 Discussion of the 3D coupled homogeneous models

In the 3D homogeneous models strong coupling between FEM and FDTD is considered.
The influence of this coupling is assessed using basalt samples with a measured temperature-
dependent permittivity. After a microwave irradiation with 1.8 MW for 1 s the difference in
the maximum temperatures between the strongly (SCM) and weakly coupled (WCM) models
is around 100°C (figure 5.72). Moreover, varying penetration depths are revealed due to the
change of the permittivity. The influence of the strong coupling on the resulting thermal field
is most pronounced in a temperature range between 100°C and 400°C (cf. figure 5.74). In
this range the imaginary part of the permittivity changes by a factor of 2.6 (cf. figure 4.29).

The highest maximum principal stresses in the homogeneous basalt models are observed
near the main Gaussian beam (figure 5.76). Qualitatively, the location of the highest stresses
correlates with the evidence of the microwave irradiation experiments on basalt samples.
Longer irradiation time but constant power result in higher maximum principal stresses which

penetrate deeper into the material (figure 5.76).



Chapter 7
Conclusion and Outlook

In the thesis at hand various numerical simulations have been performed on inhomogeneous
as well as homogeneous hard rocks in order to quantify microwave induced stresses and

damage.

7.1 Conclusion

For the inhomogeneous hard rocks preliminary 2D simulations on an artificial disc shaped
microstructure have been carried out. As the main part of this work a novel comprehensive 3D
simulation chain for determining the microwave induced stresses in realistic microstructures
has been presented. The concept comprises the analysis of the electromagnetic, the thermal
and the stress / damage fields of a microstructure in a block of a model rock irradiated
with a microwave beam. The simulation methodology has been applied to an artificial two
component rock (which is comparable to the 2D case) as well as to a three phase granite
rock model. For the three phase granite model the phase distribution of the constituents have
experimentally been determined and used for the calculations. Moreover, the permittivity
and thermo-mechanical material parameters have been measured for a specific granite.

The conclusions of the assessment of the microwave irradiation behavior of inhomoge-

neous rocks are summarized below:

* Inhomogeneous microstructure has a strong influence: The numerical calculations
of inhomogenenous rocks reveal strong differences between the electromagnetic,
thermal, stress and damage fields between homogeneous (without microstructure)

and inhomogeneous models (resolved microstructure). For a detailed assessment of
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microwave induced stresses in rather heterogeneous hard rocks such as granite the

microstructure has to be resolved.

* Quartz phase transformation induces significantly higher stresses: When the o
to B quartz transformation temperature of 573°C is reached a significant increase in
stresses is determined. Therefore, microwave heating exceeding the o to  phase
transformation temperature is preferable for rocks with a significant amount of quartz

(i.e. granite, quartzolite, rhyolite, dacite).

* Anisotropic quartz behavior leads to a different stress state: The stress state
changes significantly when the anisotropic material behavior of quartz is taken into
account. Then the quartz grains near the Gaussian axis, which are subjected to strong
compression in the isotropic case, change to tension in the anisotropic model. There-
fore, a different crack pattern is expected in the anisotropic case. However, several

morphologies have to be investigated in order to produce statistically reliable results.

* CDP material model can capture microwave induced damage: In the three com-
ponent 3D calibration model it is proven that the CDP material model is capable of
describing the damage behavior of the granite sample at least during first heating and
cooling. The resulting damage patterns after microwave irradiation of the 2D as well

as 3D models correlate with the performed microwave irradiation experiments.

* Stress state varies with morphology: With varying morphology but constant volumet-
ric phase distribution differences in the maximum principal stress fields are observed.
This behavior shows the strong influence of the microstructure on the stress formation
but also the necessity to investigate various morphologies to obtain statistically reliable

results.

* Large differences between varying filling factors: In the two component 3D model
significant differences are observed in the maximum principal stresses between models
with different filling factors (f, volume fraction of absorbing phase). With a higher
amount of absorbing grains in the microstructure a higher volume fraction becomes
exposed to stresses larger than the tensile strength. Moreover, the deviation between

the different morphologies is smaller compared to models with fewer absorbing grains.

* Longer irradiation times under constant power lead to higher stresses: The pa-
rameter analysis of the 3D three component granite model reveals that with a constant
provided microwave power (25 kW or 30 kW) the maximum temperature as well as

the largest maximum stress increase linearly with the irradiation time. The volume
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fraction being subjected to stresses exceeding the tensile strength follows a cubic law

as a function of the irradiation time.

* With constant energy an optimum irradiation time can be found giving maxi-
mum stresses: In the case of a constant provided microwave energy the maximum
observed temperature in the 3D three component granite model first drops rapidly with
an increase in the irradiation time. When a certain time is reached (in the investigated
cases 30 s and 60 kW) the decrease in the maximum temperature over the time be-
comes significantly slower. Due to the very strong selective heating in the case of short
irradiation times a smaller volume fraction becomes exposed to temperatures above
100°C. However, the volume fraction >100°C first rises rapidly until the 30 s, 60 kW
case is reached and then decreases with increasing irradiation times due to the effect of
the thermal conductance. A quite similar trend is observed for the volume fraction of
material exposed to stresses exceeding the tensile strength (9 MPa). Here also the 30 s,
60 kW model reveals a local maximum. For a given phase distribution and provided
microwave energy the derived numerical methodology allows to determine an optimum

combination of irradiation time and power.

The presented 3D simulation chain for heterogeneous hard rocks allows assessing differ-
ent grain diameters, morphologies, constituents and filling factors. Moreover, the method-
ology can easily be extended to more than three constituents as well as to an actual mi-
crostructure as measured by appropriate characterization techniques. Finally, the presented
simulations as well as the experiments confirm that microwave treatment has the potential to

induce high stresses which can eventually lead to damage formation.
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7.2 Outlook

The presented simulation strategy serves as an excellent basis for detailed further investiga-
tions. In future research following issues should be considered to gain deeper insight into the

microwave induced fragmentation:

* Model validation: An important issue for future research is the development of a
comprehensive measurement setup in order to correlate the numerical models with
the microwave experiments quantitatively. To this end, the damage network inside the

rock should be visualized and correlated with the grain distribution of the rock.

* Material characterization of the minerals: In order to use realistic material parame-
ters of the different phases, permittivity as well as thermo-mechanical measurements
of the different minerals should be performed in future investigations. Especially, the
permittivity of the minerals but also the thermal conductance, specific heat, thermal
expansion, tension and compression (triaxial) behavior are needed to generate more

realistic material models.

* Real measured microstructure: Generating models with grain and phase distribu-
tions as measured by computer tomography (CT) investigations would be preferable
for validation purposes. Then the damage pattern obtained by such realistic models

can directly be compared to the experiments.

* CDP models in all thermo-mechanical simulations: In all thermo-mechanical sim-
ulations the CDP model should be used in order to identify damage initiation and
propagation. To this end, the computational power has to be increased significantly to

achieve reasonable calculation times.

* Coupled FDTD-FEM simulations also for the inhomogeneous case: So far, the
reported methodology in the inhomogeneous case is limited to temperature indepen-
dent permittivities since no strong coupling between FDTD and FE simulations has
been considered. Future work should also include this effect in a more sophisticated
simulation procedure. This requires an improvement of the numerical code on the one

hand, but also larger computational resources on the other hand.

* Energetic assessment of microwave irradiation: After the numerical models have
quantitatively been validated by microwave irradiation experiments the energetic bene-

fit of a foregoing microwave irradiation can be assessed. For this purpose a material
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characterization test (e.g. tension, compression, Brazilian test) should be performed

numerically as well as experimentally before and after microwave irradiation.

* Fracture mechanical model: After cracks have initiated their propagation should be
investigated by appropriate fracture mechanics models. Some potential techniques
which can be implemented in the framework of FE are XFEM, configurational force
concept or a phase-field model.

The microwave induced rock fragmentation has proven its potential to assist fragmentation
processes by introducing crack networks in hard rocks. In this vein, it may be possible in the
future to significantly reduce the excavation costs in the mining and tunneling industry.
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Appendix A

Scripts and input files for 2D
inhomogeneous models

Abaqus thermal model

Appendix1/2D_inhomogen/j154_01_16_25kW_refined22.inp

#Heading

Thermal model for 2D inhomogeneous material
Job name: j154_01_16_25kW_refined22
Generated by: Abaqus/CAE 6.12—1

Preprint , echo=NO, model=NO, history=NO, contact=NO
Create the refined part

Part, name=grid

+#Node

1, 0.17 , 0. , 0.

1601, 0.33 , 0. , 0.

2401501, 0.17 , 0.15 , 0.

2403101, 0.33 , 0.15 , 0.

#NGEN, NSET=BOT

1, 1601, 1

+#NGEN, NSET=TOP

2401501, 2403101, 1

+*NFILL

BOT, TOP, 1500, 1601

#Element , type=DC2D4

1, 1, 2, 1603, 1602

«ELGEN, ELSET=ALL

1, 1600, 1, 1, 1500, 1601, 1600

Include material distribution of the refined part created by inhom_ref22_01_04.py until inhom_ref22_04_04.py
CLUDE, Input=disk_subarea_ref22.inp

CLUDE, Input=matrix_subarea_ref22.inp
#Solid Section, elset=disk, material=disk

1

#Solid Section, elset=matrix, material=matrix

1.

nd Part

Create the coarse outer part
«Part , name=outer

+Node

1, 0., 0., 0.

341, 0.17, 0., 0.

661, 0.33, 0., 0.

1001, 0.5, 0., 0.
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299300, 0., 0.1495, 0.
300300, 0.5, 0.1495, 0.
299640, 0.17, 0.1495, 0.
299960, 0.33, 0.1495, 0.
300301, 0 0.15, 0.
301301, 0.5, 0.15, 0.
601602, 0., 0.3005, 0.
602602, 0.5, 0.3005, 0.
+#NGEN, NSET=left_bot
1, 341, 1
*NGEN, NSET=left_top
299300, 299640, 1
*NGEN, NSET=right_bot
661, 1001, 1
#NGEN, NSET=right_top
299960, 300300, 1
+#NGEN, NSET=middle
300301, 301301, 1
+#NGEN, NSET=top
601602, 602602, 1
#NFILL, NSET=nleft
left_bot, left_top, 299, 1001
#NFILL, NSET=nright
right_bot, right_top, 299, 1001
+#NFILL, NSET=ntop
middle , top, 301, 1001
#Element , type=DC2D4
1, 1, 2, 1003, 1002
#Element, type=DC2D4
300001, 300301, 300302, 301303, 301302
#Element , type=DC2D4
661, 661, 662, 1663, 1662
+ELGEN, ELSET=left
1, 340, 1, 1, 300, 1001, 1000
+ELGEN, ELSET=right
661, 340, 1, 1, 300, 1001, 1000
+ELGEN, ELSET=top
300001, 1000, 1, 1, 301, 1001, 1000
#% Include material distribution of the refined part created by inhom_mat_creation_outer.py
#INCLUDE, Input=disk_outerarea.inp
«INCLUDE, Input=matrix_outerarea.inp
#Solid Section, elset=disk, material=disk
1.,
#Solid Section, elset=matrix , material=matrix
1.,
#End Part
#Assembly , name=Assembly
#Instance , name=grid —1, part=grid
0., 0., 0.
#End Instance

#Instance , name=outer —1, part=outer
0., 0., 0.
#End Instance
«Nset, nset=FIX, instance=outer—1
1
+«ELSET, elset=grid_top , GENERATE, instance=grid—I
2398401, 2400000, 1
+ELSET, elset=grid_left , GENERATE, instance=grid —1
1, 2398401, 1600
«ELSET, elset=grid_right , GENERATE, instance=grid —1
1600, 2400000, 1600
#NSET, Nset=ALL_grid, GENERATE, instance=grid—1
1, 2403101, 1
+SURFACE, name=S_grid_top , Type=element
grid_top , S3
#SURFACE, name=S_grid_left , Type=element
grid_left , S4
#SURFACE, name=S_grid_right, Type=element
grid_right, S2
«ELSET, elset=outer_middle , GENERATE, instance=outer —1
300341, 300660, 1
<ELSET, elset=outer_left , GENERATE, instance=outer—1
340, 299340, 1000
+ELSET, elset=outer_right , GENERATE, instance=outer —1
661, 299661, 1000
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«ELSET, elset=outer_l_bot, GENERATE, instance=outer—I

1, 340, 1
+ELSET, elset=grid_m_bot, GENERATE, instance=grid—1
1, 1600, 1

+ELSET, elset=outer_r_bot, GENERATE, instance=outer —1
661, 1000, 1

+ELSET, elset=outer_l , GENERATE, instance=outer—1
1, 600001, 1000

«ELSET, elset=outer_r , GENERATE, instance=outer—1
1000, 601000, 1000

+ELSET, elset=outer_top , GENERATE, instance=outer—1
600001, 601000, 1

+*NSET, Nset=ALL_outer, instance=outer—1

nright

nleft

ntop

#SURFACE, name=S_outer_top , Type=element
outer_middle , S1

#SURFACE, name=S_outer_left , Type=element
outer_left , S2

#*SURFACE, name=S_outer_right , Type=element
outer_right, S4

#SURFACE, name=S_bound, Type=element

outer_l_bot, SI1

grid_m_bot, S1

outer_r_bot, SI

+SURFACE, name=TBC, Type=clement

outer_1, S4

outer_top , S3

outer_r , S2

+TIE, name=tie_top

S_grid_top , S_outer_top

+TIE, name=tie_left

S_grid_left, S_outer_left

+TIE, name=tie_right

S_grid_right, S_outer_right

#End Assembly

#% Include material files

#INCLUDE, input=quartz.inp

#INCLUDE, input=plagioclase.inp

#Physical Constants, absolute zero=-273.15, stefan boltzmann=1.38065e-23

+#Boundary
FIX, 1, 1
FIX, 2, 2
FIX, 6, 6

#Initial Conditions , type=TEMPERATURE
ALL_grid, 25.

ALL_outer, 25.

#Step , name=Heating

#+Heat Transfer , end=PERIOD, deltmx=50.
2., 15., 0.0006, 15.

#Dflux

#INCLUDE, Input=dflux_sub_ref22.inp
#INCLUDE, Input=dflux_outer_ref22.inp
#Sfilm

S_bound, F , 25., 20.

«Sradiate

TBC, R, 25., 0.8

S_bound, R, 25., 0.8

«Restart , write, frequency=0

#Qutput, field

#Element output

TEMP, IVOL, HFL

#Node output

NT

#QOutput , history , variable=PRESELECT
#End Step

#Step , name=Cooling

«Heat Transfer , end=PERIOD, deltmx=200.
10., 3600., 0.036, 3600.

#Dflux , op=NEW

#Sfilm

S_bound, F , 25., 20.

#Sradiate

TBC, R, 25., 0.8
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S_bound, R, 25., 0.8

«Restart , write, frequency=0
#Output , field

#Element output

TEMP, IVOL, HFL

#Node output

NT

#QOutput, history , variable=PRESELECT
«End Step

Python script to create material distribution in the refined part (1 of 4)

Appendix1/2D_inhomogen/inhom_ref22_01_04.py

#
# Script to generate the material distribution in the refined part
# Script 1 from 4 to perform parallel computations

HHHHHH S S S S HHHHH H#
#import

import math

#

#t ##t#HH #it#HH ##t#HH ##t#HH ##t#HH #H#t#HHH

#initialization

a=[] #field where the lines of the file containing geometric information are saved
b=[] #field with geometric information of discs

d=[] #distance of centre of FE to the origin of the coordinate system

y=0

Il
-0 O o O O

z
c
e
g
j=
1=
22=0

cb=0

output=[] #Temp file for output

quadin=[] #Elements which are within discs
inlist=False #Check if element is already saved
floats =[] #Temp file to split field a

R EEd EEid EEid EEE EEid 4
#input
inp=raw_input(’Insert name of file that contains the geometric information: )
# In this thesi *gen8’
matrix=raw_input(’Insert name for the matrix element set: )
# In this thesis: “matrix’
disk=raw_input(’Insert name for the discs element set: )
# In this thesis: *disk’
I HHH## HHH## HHHH## HHH## HHH## 4
#main
dat=open (inp+ . txt’ ,’r") #open file containing geometric information
for line in dat: #loop over all entries
a.append(line.rstrip ()) #save each line in field a
dat.close () #close file
del a[len(a)—1] #delete empty line
while y<len(a): #loop over all entries in field a
if a[y][0]==" ": #if a double space entry exists replace it by only one
alyl=aly].replace(’” *, "7 ,1)
#Split line
floats=[float(x) for x in ((aly].replace(" "," ")).replace(":","")).split(" ")]
b.append(floats) #save splinted line in b field

#first entry of b is the x coordinate of centre of disc in cm
#second entry of b is the y coordinate of centre of disc in cm
#third entry of b is the radius of the disc in cm

y=y+1
f=open(’disk_01_04.inp’,’w’) #open output file for discs elements
f.write ("«ELSET, Elset="+disk+", instance=grid —1\n")
k=open(’matrix_01_04.inp ,’w’) #open output file for matrix elements

k.write ("+ELSET, Elset="+matrix+", instance=grid —I\n")
#Check which finite elements are inside disc and which outside
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while z<len(b): #loop over all discs
Mx=24.975+b[z][0] #middle point of current disc in cm, attention: change in coordinate system
# check if disc is in the refined part
if (16.75<Mx<33.25) and (b[z][1]>0 and b[z][1]<4.0):
#Calculate finite element in which middle point lies
nx=int ((Mx—16.975)/0.01)+1
ny=int(b[z][1]/0.01)
#Calculate amount of elements within radius of disc
cv=int(b[z][2]/0.01)+2
#Check if boundaries of the refined part are reached or exceeded
if (nx—cv)>1:

cX=nx—cv #element at the left quadrant of the disc
else:

cx=1 #element at the left quadrant of the disc
cb=cx

#Change this block for script 02 until 04
if (ny—cv)>1:

cy=ny—cv #element at the bottom quadrant of the disc
else:
cy=1 #element at the bottom quadrant of the disc

#
if (nx+cv)<1600:

borderx=nx+cv #element at the right quadrant of the disc
else:

borderx=1600 #element at the right quadrant of the disc
#Change this block for script 02 until 04
if (ny+cv)<375:

bordery=ny+cv #element at the top quadrant of the disc

else:
bordery=375 #element at the top quadrant of the disc
#
while cy<=bordery: #loop over all elements between left and right quadrant of the disc

while cx<=borderx: #loop over all elements between bottom and top quadrant of the disc
#calculate distance of the middle point of the current FE regarding the origin of the coordinate system
d=[[(ex=1)%0.01 ,(cy—1)%0.01],[cxx0.01,(cy—1)%0.01],[cx%0.01,(cy)=0.01]]
#Check if middle point of the current FE is within disc
if (math.pow ((((d[1][0]+d[0][0])/2)—Mx—16.975)) ,2)+math.pow ((((d[2][1]+d[1][1])/2)=b[z][1]) ,2))<=(math.pow ((b[z
1121 .2)):
quadin.append ([cx,cy]) #if yes add the amount of elements in y and x direction of the current FE
cx=cx+1
cx=cb
cy=cy+l
z=z+1
#all finite elements within discs are written to the output file
while e<len (quadin):
output.append(quadin[e][0]+(quadin[e][1]—1)*1600)
e=e+]
#write all finite elements within discs in outputfile
while j<len (output):
if (Coutput[j]/1600)>=0 and (output[j]/1600)<=374):
f.write(str(output[j])+"\n")
j=j+1
#All remaining elements which are in the outer part are written to the matrix outputfile
while 1<=600000:
if (1/1600>=0 and 1/1600<=374):
m=0
while m<len (output):
if l==output[m]:
inlist=True
m=len (output)+1
m=m+1
if inlist==False:
k.write(str(1))
k.write("\n")
I=1+1
inlist=False
.close ()
k.close ()

—-
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Python script to create material distribution in the coarse part

Appendix1/2D_inhomogen/inhom_mat_creation_outer.py

#

# Script to generate the material distribution in the outer part
# Node distance in outer part: 0.5 mm

#

#load packages
import math

#

#

#initialization

a=[] #field where the lines of the file containing geometric information are saved
b=[] #field with geometric information of discs

=[] #distance of centre of FE to the origin of the coordinate system

cb=0

output=[] #Temp file for output

quadin=[] #Elements which are within discs
inlist=False #Check if element is already saved
floats =[] #Temp file to split field a

#

#input

inp=raw_input(’Insert name of file that contains the geometric information: ')
# In this thesis: “gen8’

matrix=raw_input(’Insert name for the matrix element set: )

# In this thesis: ’matrix’

disk=raw_input(’Insert name for the discs element set: )

# In this thesis: *disk’

#main
dat=open(inp+’.txt ,’r’) #open file containing geometric information
for line in dat: #loop over all entries
a.append(line.rstrip ()) #save each line in field a
dat.close () #close file
del a[len(a)—1] #delete empty line
while y<len(a): #loop over all entries in field a
if a[y][0]==" ": #if a double space entry exists replace it by only one

aly]=al[y].replace(’” ", "7 ,1)
#Split line
floats=[float(x) for x in ((a[y].replace(" "," ")).replace(";","")).split(" ")]
b.append(floats) #save splinted line in b field
#first entry of b is the x coordinate of centre of disc in cm
#second entry of b is the y coordinate of centre of disc in cm
#third entry of b is the radius of the disc in cm
y=y+1
f=open(’disk_outerarea.inp’,’w’) #open output file for discs elements
f.write ("«ELSET, Elset="+disk+", instance=grid —1\n")
k=open( matrix_outerarea.inp’,’w’) #open output file for matrix elements
k.write ("+«ELSET, Elset="+4+matrix+", instance=grid —1\n")
#Check which finite elements are inside disc and which outside
while z<len(b): #loop over all discs
Mx=24.975+b[z][0] #middle point of current disc in cm, attention: change in coordinate system
# check if disc is in the outer part
if (b[z][1]1<6.77 and Mx<=21.205 or Mx>=28.745) or (b[z][1]>=6.77):
#Calculate finite element in which middle point lies
nx=int (Mx/0.05)+1
ny=int(b[z][1]/0.05)
#Calculate amount of elements within radius of disc
cv=int(b[z][2]/0.05)+2
#Check if boundaries of the outer part are reached or exceeded
if (nx—cv)>0:
cX=nx—cv #element at the left quadrant of the disc
else:
cx=1 #element at the left quadrant of the disc
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cb=cx
if (ny—cv)>0:

cy=ny—cv #element at the bottom quadrant of the disc
else:

cy=0 #element at the bottom quadrant of the disc

if (nx+cv)<1000:
borderx=nx+cv #element at the right quadrant of the disc
else:
borderx=1000 #element at the right quadrant of the disc
if (ny+cv)<600:
bordery=ny+cv #element at the top quadrant of the disc
else:
bordery=600 #element at the top quadrant of the disc
while cy<=bordery: #loop over all elements between left and right quadrant of the disc
while cx<=borderx: #loop over all elements between bottom and top quadrant of the disc
#calculate distance of the middle point of the current FE regarding the origin of the coordinate system
d=[[(cx—1)%0.05,(cy)*0.05],[cx%0.05,(cy)*0.05],[cx*0.05,(cy+1)%0.05]]
#Check if middle point of the current FE is within disc
if (math.pow ((((d[1][0]+d[0][0])/2)~Mx) ,2)+math.pow ((((d[2][1]+d[1][1])/2)=b[z][1]) ,2))<=(math.pow ((b[z][2]) ,2)):
quadin.append ([cx,cy]) #if yes add the amount of elements in y and x direction of the current FE
cx=cx+l
cx=cb
cy=cy+l
z=7+1
#all finite elements within discs are written to the output file
while e<len(quadin): #loop over all elements inside discs
output.append(quadin[e][0]+quadin[e][1]=1000)
e=e+1
#write all finite elements within discs in output file
while j<len(output):
if ((1/1000)<140 and (1%1000<=420 or 1%1000>=581)) or (1/1000>=140):
f.write(str(output[j])+"\n")
j=j+1
#All remaining elements which are in the outer part are written to the matrix output file
while 1<=601000:
if ((1/1000)<140 and (1%1000<=420 or 1%1000>=581)) or (1/1000>=140):
m=0
while m<len (output):
if l==output[m]:
inlist=True
m=len (output)+1
m=m+1
if inlist==False:
k.write(str(l))
k.write("\n")
I=1+1
inlist=False

-

.close ()
.close ()

~

Python script to create body heat flux in each FE in the refined part

Appendix1/2D_inhomogen/script_subarea_refined22.py

SR S S S S e s s s s i i

# Script to generate the body heat flux in each finite element of the refined part
#

#load packages
import ast
import json

#

#Variables that have to be defined

#

oline=4  #Amount of first lines that should be omitted
flux=2E8 #default value of the global heat flux

instance="grid —1" #Name of the instance
Nset="BF" #Element set on which DFLUX is applied
#

#
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#Initialising

a=[0] #save the absorbed power density file
b=[] #2D field of the absorbed power density of each FDTD grid point
i=0

n=0

y=0

floats =[0]

c=1

d=1

r=0

e=1

inp=""

z=1

zz=1

#

#ask for data

inp=raw_input(’Insert the lines which should be omitted: ")

oline=int (inp) #save the amount of lines which should be omitted on int variable

# In this thesis: 4

inp=raw_input(’Insert body flux: ")

# In this thesis: 847000000

flux=float (inp) #save the constant value C which scales all Pabs values on float variable

instance=raw_input(’Insert name of instance: )

# In this thesis: grid—l1

Nset=raw_input(’Insert name of element set for body flux: )
# In this thesis: BF

name=raw_input(’ Insert the name for the new input file: ”)

# In this thesis: dflux_sub_ref22.inp

#

dat=open(input.fld’,’r’) #open file where the absorbed power density of each FDTD point is saved

for line in dat: #loop over file
a.append(line.rstrip ()) #save each line in field a

dat.close () #close file

while n<=(oline): #loop over line which should be omitted
del a[0] #delete line
n=n+1

while y<len(a): #loop over all lines of field a

floats=[float(x) for x in a[y].split()] #split line in single entries
b.append(floats) #add each absorbed power density value in 2D field

y=y+l
f=open (name, 'w’) #open output file
f.write ("s="+str (flux)+"\n")#write the constant value C which scales the Pabs values
while c<=len(b[c]): #loop over all lines of absorbed power density values

if ¢<=300: #only considers FDTD grids inside refined area

while d<=len(b): #loop over all entries of each line
if 341<=d<=660: #only considers FDTD grids inside refined area
while z<=5: #consider a refinement of the FE mesh to the FDTD grid in the refined part by a factor 5
while zz<=5:
#write corresponding DFLUX value of each FE to the output file
f.write(instance)
f.owrite(".")
f.owrite(str (((c—1)#54z—1)x1600+(d—341)x5+z2z))
fowrite(", ")
f.write (Nset)
f.owrite(", ")
r=b[d—1][c—1]=flux
f.write(str(r))
f.write("\n")
zz=zz+1
zz=1
z=z+1
z=1
d=d+1
e=e+1
d=1
c=c+1
f.close
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Python script to create body heat flux in each FE in the coarse part

Appendix1/2D_inhomogen/script_outerarea_refined22.py

#

# Script to generate the body heat flux in each finite element of the coarse part
#

#load packages
import ast
import json

#

#Variables that have to be defined

#

oline=4 #Amount of first lines that should be omitted
flux=2E8 #default value of the global heat flux
instance="grid —1" #Name of the instance

Nset="BF" #Element set on which DFLUX is applied

#

#

#initialization

a=[0] #save the absorbed power density file

b=[] #2D field of the absorbed power density of each FDTD grid point
i=0

n=0

y=0

floats =[0]

#ask for data

inp=raw_input(’Insert the lines which should be omitted: ")

oline=int(inp) #save the amount of lines which should be omitted on int variable

# In this thesis: 4

inp=raw_input(’Insert body flux: )

# In this thesis: 847000000

flux=float (inp) #save the constant value C which scales all Pabs values on float variable
instance=raw_input(’Insert name of instance: )

# In this thesi
Nset=raw_input(’Insert name of element set for body flux: )
# In this thesis: BF

name=raw_input(’Insert the name for the new input file: ")
# In this thesis: dflux_outer_ref22.inp

outer —1

HHHH I HHHH# HHH H# EEai EEai HHHH# i #

dat=open(’input.fld’, r’) #open file where the absorbed power density of each FDTD point is saved

for line in dat: #loop over file
a.append(line.rstrip()) #save each line in field a
dat.close () #close file
while n<=(oline): #loop over line which should be omitted
del a[0] #delete line
n=n+1
while y<len(a): #loop over all lines of field a
floats=[float(x) for x in a[y].split()] #split line in single entries
b.append(floats) #add each absorbed power density value in 2D field
y=y+l1
f=open(name, 'w’) #open output file
f.write("sx"+str (flux)+"\n") #write the constant value C which scales the Pabs values
while c<=len(b[c]): #loop over all lines of absorbed power density values
if ¢<=300: #only considers FDTD grids inside coarse area
while d<=len(b): #loop over all lines of absorbed power density values

if d<=340 or d>660: #only considers FDTD grids inside coarse area
#write corresponding DFLUX value of each FE to the output file
f.write(instance)
f.owrite(".")
f.write(str ((c—1)%1000+d))
f.owrite(", ")
f.write (Nset)
fowrite(", ")
r=b[d—1][c—1]=flux
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f.write(str(r))
f.write("\n")
d=d+1
d=1
else:
while d<=len(b): #only considers FDTD grids inside coarse area
#write corresponding DFLUX value of each FE to the output file
f.write(instance)
f.owrite(".")
f.write(str ((c—1)=1000+d))
f.owrite("., ")
f.write (Nset)
f.write(", ")
r=b[d—1][c—1]=flux
f.write(str(r))
f.write("\n")
d=d+1
d=1
c=c+1
f.close

Python script to calculate the thermal energy of the entire model

Appendix1/2D_inhomogen/script_calc_heat_global_154_01_16.py

#

# Script to calculate the thermal energy in the entire model
#

#load packages

import numpy

#from abaqus import =
from odbAccess import =
#

#initialization
adg=[]

bdg=[]

cdg=[]

gdg=[]
hdg=[]
ddg=[]
i_dg=[]
kdg=[]
tolddg =[]

toldmg =[]
ado=[]
bdo=[]
cdo=[]
gdo=[]
hdo=[]
ddo=[]
i_do=[]
kdo=[]
tolddo =[]
amo=[]
bmo=[]
cmo=[]
gmo=[]
hmo=[]
dmo=[]
i_mo=[]
kmo=[]
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toldmo =[]

kk=0

11=[]

minus=0

tin=25. #initial temperature

time=15. #total time of heating

eges=0.

density_matrix=2703. #density of matrix material
density_disk=2649. #density of disc material
frame=1

timeold=0.

e35=0.

#

# e

#method to interpolate the cp value
def getcp (temp, cptable):
z=1
if temp<=cptable [0][1]:
cp=cptable [0][0]
else:
if temp>=cptable[len(cptable) —1][1]:
cp=cptable[len(cptable) —1][0]
else:
while z<len(cptable):
if cptable[z—1][l]<=temp<=cptable[z][1]:
cp=cptable[z—1][0]+(temp—cptable[z—1][1])*((cptable[z][0]—cptable[z—1][0])/(cptable[z][1]—cptable[z—1][1]))
z=len (cptable)
z=z+1
return cp
#calculate thermal energy of each increment
def calcE (x, cp, d, tin, den):
if len(tin)==0:
en=((d[1][x]—=25)«cp+d[2][x]=den)
else:
en=((d[1][x]—tin[x])=cp*d[2][x]=den)
return en
#Method to calculate the average HFL on the boundary elements
def avgHFL (t, time, index):
u=[[].[1]
22=0
while zz<len(t[0]):
if l<=index <=2:
if 1<=t[0][zz]<=800:
x=(—((t[1][zz][1 . ]+t [1][zz+1][1,])/2))
ul0].append (t[0][2z])
ul[l].append(x%0.0001«time)
else:
if t[0][zz]>800:
zz=len (t[0])
else:
if 2<index <=4:
if (1<=t[0][2zz]<=420) or (581<=t[0][zz]<=1000):
x=(—(Ct[1][zz][1. ]+ t[1][zz+1][1.])/2))
u[O0].append(t[0][zz])
u[l].append(x%0.0005«time)
else:
if t[0][zz]>1000:
zz=len(t[0])

zz=772+4
return u
#main
odb = openOdb(path="j154_01_16_25kW _refined22.0db") #open odb file
disk_grid=odb.rootAssembly.instances[ 'GRID—1"].elementSets[ DISK’] #load material sets

matrix_grid=odb.rootAssembly.instances [ GRID—1"].elementSets [ MATRIX ]
disk_outer=odb.rootAssembly.instances [ 'OUTER-1"].elementSets [ 'DISK’]
matrix_outer=odb.rootAssembly.instances [ 'OUTER-1"].elementSets [ "MATRIX" |
material_disk_cp=odb. materials [ 'DISK’"]. specificHeat #load specific heat data
material_matrix_cp=odb. materials [ 'MATRIX" ]. specificHeat
cptable_disk=material_disk_cp.table
cptable_matrix=material_matrix_cp . table
lastFrame=odb.steps [ Heating ’].frames[—1]
f=open("energy_j154_01_16_25kW_refined22_con_08_09_2014.txt",’w’)
f.write("Increment Heating [J] Flux over boundaries [J] Energy [J] \n")
#loop over all frames in the first step

while frame<=lastFrame . frameld:
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yzmg=0
yxmg=0
yhmg=0
yzdg=0
yxdg=0
yhdg=0
yzmo=0
yxmo=0
yhmo=0
yzdo=0
yxdo=0
yhdo=0
einc=0
minusinc=0
curFrame = odb.steps[ Heating ].frames|[frame]
temp=curFrame . fieldOutputs [ "TEMP’ ]
vol=curFrame . fieldOutputs [ 'IVOL"]
heat=curFrame . fieldOutputs [ "HFL" ]
timec=curFrame . frameValue
time=timec—timeold
field_matrix_grid=temp. getSubset (region=matrix_grid, position=INTEGRATION_POINT, elementType="DC2D4")
fieldvol_matrix_grid=vol.getSubset (region=matrix_grid, position=INTEGRATION_POINT, elementType="DC2D4")
field HFL _matrix_grid=heat. getSubset (region=matrix_grid, position=INTEGRATION_POINT, elementType="DC2D4")
fieldValues_matrix_grid=field_matrix_grid. values
fieldvolVal_matrix_grid=fieldvol_matrix_grid.values
fieldHFLVal_matrix_grid=fieldHFL_matrix_grid. values
field_disk_grid=temp.getSubset (region=disk_grid, position=INTEGRATION_POINT, elementType="DC2D4")
fieldvol_disk_grid=vol.getSubset (region=disk_grid, position=INTEGRATION_POINT, elementType="DC2D4")
field HFL _disk_grid=heat. getSubset (region=disk_grid, position=INTEGRATION_POINT, elementType='DC2D4")
fieldValues_disk_grid=field_disk_grid.values
fieldvolVal_disk_grid=fieldvol_disk_grid. values
fieldHFLVal_disk_grid=fieldHFL_disk_grid. values
field_matrix_outer=temp. getSubset (region=matrix_outer, position=INTEGRATION_POINT, elementType="DC2D4")
fieldvol_matrix_outer=vol.getSubset (region=matrix_outer, position=INTEGRATION_POINT, elementType="DC2D4")
field HFL_matrix_outer=heat. getSubset (region=matrix_outer, position=INTEGRATION_POINT, elementType="DC2D4")
fieldValues_matrix_outer=field_matrix_outer.values
fieldvolVal_matrix_outer=fieldvol_matrix_outer.values
fieldHFLVal_matrix_outer=fieldHFL_matrix_outer . values
field_disk_outer=temp. getSubset (region=disk_outer, position=INTEGRATION_POINT, elementType="DC2D4")
fieldvol_disk_outer=vol.getSubset (region=disk_outer, position=INTEGRATION_POINT, elementType="DC2D4")
fieldHFL_disk_outer=heat. getSubset (region=disk_outer, position=INTEGRATION_POINT, elementType="DC2D4")
fieldValues_disk_outer=field_disk_outer.values
fieldvolVal_disk_outer=fieldvol_disk_outer.values
fieldHFLVal_disk_outer=fieldHFL_disk_outer.values
#loops over disk grid elements
for vdg in fieldValues_disk_grid:
adg.append(vdg.elementLabel)
bdg.append(vdg.data)
for wdg in fieldvolVal_disk_grid:
cdg.append (wdg. data)
for ydg in fieldHFLVal_disk_grid:
gdg.append(ydg.elementLabel)
hdg.append (ydg.data)

ddg.append (adg) #element label
ddg.append (bdg) #temperature value
ddg.append(cdg) #IVOL values

i_dg.append(gdg) #element label

i_dg.append(hdg) #HFL value

i_dg.append(cdg) #IVOL value

#loops over matrix grid elements

for vmg in fieldValues_matrix_grid:
amg. append (vimg. elementLabel )
bmg.append(vmg. data)

for wmg in fieldvolVal_matrix_grid:
cmg. append (wmg. data)

for ymg in fieldHFLVal_matrix_grid:
gmg. append (ymg. elementLabel)
hmg. append (ymg. data)

dmg. append (amg)

dmg. append (bmg)

dmg. append (cmg)

i_mg.append (gmg)

i_mg.append (hmg)

i_mg.append(cmg)

#loops over disc outer elements
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for vdo in fieldValues_disk_outer:
ado.append(vdo.elementLabel)
bdo.append(vdo.data)

for wdo in fieldvolVal_disk_outer:
cdo.append (wdo. data)

for ydo in fieldHFLVal_disk_outer:
gdo.append(ydo.elementLabel)
hdo . append (ydo.data)

ddo . append (ado)

ddo . append (bdo)

ddo . append (cdo)

i_do.append(gdo)

i_do.append (hdo)

i_do.append(cdo)

#loops over matrix outer elements

for vmo in fieldValues_matrix_outer:
amo. append (vmo. elementLabel )
bmo. append(vmo. data)

for wmo in fieldvolVal_matrix_outer:
cmo. append (wmo. data)

for ymo in field HFLVal_matrix_outer:
gmo. append (ymo. elementLabel)
hmo. append (ymo. data)

dmo . append (amo)

dmo . append (bmo)

dmo . append (cmo)

i_mo.append (gmo)

i_mo.append (hmo)

i_mo.append (cmo)

#loop over all elements of matix grid

print "CP table quartz:"

countcp=0

while countcp<len(cptable_matrix):

print str(cptable_matrix [countcp J[0])+" "+str(cptable_matrix [countcp][1])

countcp=countcp+1

while yzmg<len (dmg[0]) :
if len(toldmg)==0:

cpmg=getcp ((dmg[1][yzmg]+tin)/2,cptable_matrix) #calculate current cp value
print "TEMP avg "+str ((dmg[1][yzmg]+tin)/2)
else:

cpmg=getcp ((dmg[1][yzmg]+toldmg[yzmg])/2,cptable_matrix) #calculate current cp value
print "TEMP avg "+str ((dmg[1][yzmg]+toldmg[yzmg])/2)
einc=einc+calcE (yzmg, cpmg, dmg, toldmg, density_matrix) #calculate energy value of the increment
yzmg=yzmg+1
#loop over all elements of disc grid
while yzdg<len(ddg[0]):
if len(tolddg)==0:
cpdg=getcp ((ddg[1][yzdg]+tin)/2,cptable_disk)
else:
cpdg=getcp ((ddg[1][yzdg]+tolddg[yzdg])/2,cptable_disk)
einc=einc+calcE (yzdg, cpdg, ddg, tolddg, density_disk)
yzdg=yzdg+1
#loop over all elements of matrix outer
while yzmo<len (dmo[0]):
if len(toldmo)==0:
cpmo=getcp ((dmo[1][yzmo]+tin)/2,cptable_matrix)
else:
cpmo=getcp ((dmo[1][yzmo]+toldmo[yzmo])/2,cptable_matrix)
einc=einc+calcE (yzmo, cpmo, dmo, toldmo, density_matrix)
yzmo=yzmo+1
#loop over all elements of disc outer
while yzdo<len(ddo[0]):
if len(tolddo)==0:
cpdo=getcp ((ddo[1][yzdo]+tin)/2,cptable_disk)
else:
cpdo=getcp ((ddo[1][yzdo]+tolddo[yzdo])/2,cptable_disk)
einc=einc+calcE (yzdo, cpdo, ddo, tolddo, density_disk)
yzdo=yzdo+1
print einc
eges=eges+einc
#delete of old temperature values
del toldmg[:]
del tolddg[:]
del toldmo [:]
del tolddo[:]
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#save last temperature values of the
#loop over elements of disc grid
while yhdg<len (ddg[0]):
tolddg .append(ddg[1][yhdg])
yhdg=yhdg+1
#loop over elements
while yhmg<len (dmg[0]):
toldmg . append (dmg[1][yhmg])
yhmg=yhmg+1
#loop over elements of disc outer
while yhdo<len (ddo[0]):
tolddo .append(ddo[1][yhdo])
yhdo=yhdo+1
#loop over elements
while yhmo<len (dmo[0]):
toldmo . append (dmo[1][yhmo])

yhmo=yhmo+1

of matrix grid

of matrix outer

current

averaged
averaged
averaged
averaged

kdg=avgHFL (i_dg, time, 1) #calculate
kmg=avgHFL (i_mg, time, 2) #calculate
kdo=avgHFL (i_do, time, 3) #calculate
kmo=avgHFL (i_mo, time, 4) #calculate
#loop over all elements of matrix grid

while yxmg<len (kmg[0]):
if kmg[O0][yxmg]==500:
print kmg[1][yxmg]
minusinc=minusinc+kmg[1][yxmg]
yxmg=yxmg+1
#loop over all elements of disc grid
while yxdg<len (kdg[0]):
if kdg[0][yxdg]==500:
print kdg[1][yxdg]
minusinc=minusinc+kdg[1][yxdg]
yxdg=yxdg+1
minus=minus+minusinc

del adg[:]
del bdg[:]
del cdgl[:]
del ddg[:]
del gdgl[:]
del hdg[:]
del i_dgl[:]
del amg[:]
del bmg[:]
del cmg(:]
del dmg[:]
del gmgl[:]
del hmg[:]
del i_mg[:]

all
while yxmo<len (kmo[O0]) :

#loop over elements
minusinc=minusinc+kmo [ 1][yxmo]
yXmo=yxmo+1

#loop over all elements of disc outer

while yxdo<len (kdo[0]):
minusinc=minusinc+kdo[1][yxdo]
yxdo=yxdo+1

minus=minus+minusinc

del ado[:]
del bdo[:]
del cdo[:]
del ddo[:]
del gdo[:]
del hdo[:]
del i_do[:]
del amo[:]
del bmo[:]
del cmo[:]
del dmo[:]
del gmo[:]
del hmo[:]
del i_mo/[:]

f.write(str(frame)+" "+str(einc)+"
frame=frame+1
timeold=timec

print eges

#sum up HFL

#sum up HFL

of matrix outer

"+str(

increment in told field

HFL of disc grid elements

matrix grid elements

»

HFL
HFL

disc outer elements

of matrix outer elements

to subtract from total energy

to subtract from total energy

minusinc)+" "+str(einc+minusinc)+"\n")
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print minus

print (eges—minus)

f.write("Heating: "+str(eges)+"\n")

.write ("Flux over boundaries: "+str(minus)+"\n")
.write ("Total energy input: "+str(eges—minus))

-

.close ()




Appendix B

Scripts and input files for 3D
inhomogeneous two component models

Calculations of electromagnetic, thermal and linear elastic

stress fields
Neper script which creates the microstructure cube

Appendix2/poly_28_08.sh

#Bash script to start Neper

# poly_74
neper —T —n 30000 —domain cube 0.08, 0.08, 0.08 —o poly_74.tess
#

neper —FM poly_74 .tess —gmsh /usr/bin/gmsh —maxff 20 —mloop 3 —rcl 0.9 —o poly_74_mesh.msh —format inp,tess —outdim 3 —
order 1 —mesh2dalgo fron ,mead,dela —mesh3dalgo netg,netg/netg,netg/gmsh, netg/gmne
#

Global Python script which starts all other programs

Appendix2/3D_poly_model_v2_2.py

#

# This Python script automatically calculates the temperature and stress fields
# 3D two component model

##

#

#load packages

import sys # better than: import 0s.sys
import os # os = operating system

import argparse # to parse arguments

from datetime import datetime

os.system( python —V")

start_time = datetime .now ()
print(’Starting time = '+str(start_time))
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# Class containing all Parameters which are parsed
class Parameters:

pass

parameter = Parameters () # instance of the class Parameters

# Parsing arguments

parser = argparse.ArgumentParser(description="Automatic temperaturefield calculation.’)

# Adding all necessary and possible arguments to the parser.

parser.add_argument( '—model ", type=str, required=True, help="Name of the model.")

parser.add_argument('—initialBF ", type=float, required=True, help="1Initial constant body heat multiplier.")

parser.add_argument(’——abaquspath’, type=str, required=True, help="Name of the abaqus executable.’)

parser.add_argument( ' ——cpus’, type=int, required=True, help="Number of cpus which shall be used for the Abaqus
calculation.’)

parser.add_argument(’——provenergy ', type=float, required=True, help="Provided microwave energy.’)

parser.add_argument( ' —tess ", type=str , required=True, help="Name of the tess file containing the grains.’)

parser.add_argument( '—phfraction’, type=float , required=True, help="Phase fraction of the plagioclase phase.’)

parser.add_argument( '—amountpoly’, type=int, required=True, help="Amount of polyhedra in the model.")

parser.add_argument(’—inpintegrationpoints’, type=str, required=True, help="Name of the file containing the coordinates
of the intergrationpoints.’)

parser.add_argument(’——inpelementset’, type=str, required=True, help="Name of the file containing the elementsets.’)

args = parser.parse_args(namespace=parameter)

#

#initialization
fine=0

count=0

#

#main

#

print(’Start of automatic 3D polyhedron calculation\n’)

path_working_dir = os.path.dirname (os.path.abspath(__file__)) # The directory of the current __file__ is cut down
to the directory without the filename.

print(’The current working direcotry is: ’+4str(path_working_dir))

#create poly distribution

if 0 != os.system("g++ create_poly_distribution_aut.cpp —o create_poly_distribution_aut.exe"):
sys.exit( Error during create_poly_distribution_aut.cpp compilation’)
fine=1
if fine==0:
if 0 != os.system("./create_poly_distribution_aut.exe "+str(parameter.phfraction)+" "+str(parameter.model)+" "+str(

parameter.amountpoly)):
sys.exit( Error during create_poly_distribution_aut.exe calculation’)
fine=1
else:
print ("Phase distribution finished")
#start Meep FDTD calculation
if fine==0:
if 0 != os.system("source /export/opt/gcc—4.6.4/bin/setvars.sh; source /export/opt/2014—05—12_openmpi —1.8.1—gcc —4.6.4/
bin/setvars.sh:; mpirun ./polyhedron_aut.exe "+str(parameter.tess)+" "+str(parameter.model)+" | tee meep_"+str (
parameter.model)+".log"):
sys.exit( Error during meep electric field calculation’)
fine=1
else:
print('Meep electric field calculated’)
#start hdf5 E2 calculation

if fine==0:
if 0 != os.system("source /export/opt/gcc—4.6.4/bin/setvars.sh: "+str(path_working_dir)+"/hdf5_aut.exe "+str(parameter.
model)+" | tee hdf5calc_"+str(parameter.model)+".log"):
sys.exit( Error during hdf5_aut.exe calculation!’)
fine=1
else:

print (’Hdf5 files successfully calculated!’)
os.system("rm ex—s; rm ey—s; rm ez—'")
#calculate absorbed power density

if fine==0:
if 0 != os.system("source /export/opt/gcc—4.6.4/bin/setvars.sh; "+str(path_working_dir)+"/hdf5_int_v4_aut.exe "+str(
parameter .model)+" | tee hdf5_int_v4_aut_"+str(parameter.model)+".log"):
sys.exit( Error during hdf5_int_v4_aut.exe calculation!’)
fine=1
else:

print ("Hdf5_int_v4_aut files successfully calculated!’)
#assign phases
if fine==0:
if 0 != os.system(str(parameter.abaquspath)+’ python —u phase_assignment_aut.py —model ’+str(parameter.model)+’ | tee
phase_assignment_"+str (parameter.model)+".log’):
sys.exit(’Error during phase_assignment_aut.py calculation!”)
fine=1
else:
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print (’Phase_assignment_aut.py successfully done!’)
#create Abaqus input file
if fine==0:
if 0 != os.system(str(parameter.abaquspath)+’ python —u create_heat_input.py —model “+str(parameter.model)+" | tee
create_heat_input_’+str(parameter.model )+ .log ):
sys.exit( Error during create_heat_input.py.’)
fine=1
else:
print (’Heat abaqus input file written!”)
#create DFLUX subroutine

if fine==0:
print(’Start the creation of the DFLUX usersubroutine with a BF of “+str(parameter.initialBF)+’\n")
if 0 != os.system(str(parameter.abaquspath)+’ python —u create_BF_subroutine.py ——model “+str(parameter.model)+’ —
initial BF “+str(parameter.initialBF)+’ —nameBF BF_intpoint_server_’'+str(parameter.model)+ _"+str(count)+’.f —work

‘+path_working_dir):
sys.exit( Error during create_BF_subroutine.py.")
fine=1
else:
print(’Heat input file generated’)
#start first Abaqus heating job

if fine==0:
print(’Start first NTIl heat calculation \n’)
if 0 != os.system(str(parameter.abaquspath)+" job=j101_01_"+str(parameter.model)+"_03_02_1000_poly_intpoint_heat inp=

j101_01_"+str (parameter.model)+" _03_02_1000_poly_intpoint_heat.inp"+" user=BF_intpoint_server_"+str (parameter.model
)+’ _'+str(count)+".f cpus=Il interactive | tee jI01_Ol_"+4str(parameter.model)+"03_02_1000_poly_intpoint_1.log"):
sys.exit("Error during first NTIl calculation")
fine=1
print ("NT11 Abaqus job finished and start of heat calculation. \n")
if fine==0:
if 0 != os.system(str(parameter.abaquspath)+’ python —u script_calc_heat_aut.py —model ’+str(parameter.model)+’ —
heatout energy_jl01_01_’"+str(parameter.model)+’_03_02_1000_poly_intpoint_heat_’+str(count)):
sys.exit( Error during heat calculation.’)
fine=1

#read in total energy after first loop
if fine==0:
print ("Compare energies’)
f=open(’energy_ jl01_0l_ +str(parameter.model)+’_03_02_1000_poly_intpoint_heat_ +str (count)+’ . txt’ r’)
for line in f:
linel=line.rstrip ()
if *Total’ in linel:
temp=linel .split(’: 7)
curenergy=float (temp[1])
f.close ()
#check if error in energy is less than 3 percent
while abs((curenergy —parameter.provenergy)/parameter.provenergy)>0.03 and fine==0:
print (" Energydifference= "+str (((curenergy —parameter.provenergy)/parameter.provenergy)*100.)+"% after “+str(count+1)+’.
thermal calculation is bigger than 3% —> recalculation’)
#calculate new BF
newBF=parameter.initial BF=(parameter.provenergy/curenergy)
print('New BF= "+str (newBF))
count=count+1
#rewrite DFLUX

if 0 != os.system(parameter.abaquspath+’ python —u create_BF_subroutine.py —model “+str(parameter.model)+’ —initialBF
"+str (newBF)+’ —nameBF BF _intpoint_server_’+str(parameter.model)+’_"+str(count)+’ .f —work ’+path_working_dir):
sys.exit(’Error during create_BF_subroutine.py.’)
fine=1

if 0 != os.system(parameter.abaquspath+" job=j101_01_"+str(parameter.model)+"_03_02_1000_poly_intpoint inp=j101_01_"+
str(parameter.model)+"_03_02_1000_poly_intpoint.inp"+" user=BF_intpoint_server_"+str (parameter.model)+’_"+str(count
)+".f cpus=1 interactive | tee jIOI_Ol_"+str(parameter.model)+"_03_02_1000_poly_intpoint_"+str (count)+".log"):
sys.exit("Error during NTIl calculation")
fine=1
if 0 != os.system(parameter.abaquspath+’ python —u script_calc_heat_aut.py —model "+str(parameter.model)+’ —heatout
energy _jl01_01_"+str(parameter.model)+’ _03_02_1000_poly_intpoint_heat_’+str (count)):
sys.exit( Error during heat calculation.’)
fine=1
f=open( energy_jl01_01_"+str(parameter.model)+’_03_02_1000_poly_intpoint_heat_’+str(count)+’.txt’
for line in f:

. )

linel=line.rstrip ()
if *Total’ in linel:

temp=linel .split(’: ")
curenergy=float (temp[1])
f.close ()

print(’Temperaturefield calculation of heating step finished with an error of ’+str((curenergy—parameter.provenergy)/
parameter.provenergy))
#start Abaqus cooling job
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if fine==0:
s.system(’cp jl101_01_cooling.inp jlO01_01_’"+str(parameter.model)+’_03_02_1000_poly_intpoint_cooling.inp’)
if 0 != os.system(str(parameter.abaquspath)+’ job=j101_01_"+str(parameter.model)+’_03_02_1000_poly_intpoint_cooling inp

=j101_01_"+str (parameter.model)+’_03_02_1000_poly_intpoint_cooling.inp user=BF_cooling.f cpus="+str(parameter.cpus)
+’ interactive | tee jl01_01_ +4str(parameter.model)+’_03_02_1000_poly_intpoint_cooling_"+str(parameter.inpNTI1Icool)
+’.log’):
sys.exit("Error during cooling NTIl calculation")
fine=1

else:

print("Temperaturefield calculation of cooling step finished. \n")
#create stress Abaqus input file

if fine==0:
if 0 != os.system(parameter.abaquspath+’ python —u create_stress_input.py —model ’+str(parameter.model)):
sys.exit( Error during create_stress_input.py.’)
fine=1
else:

print("Stress input file successfully created.")
#start stress calculation
if fine==0:
print(’Start of stress calculation’)
if 0 != os.system(str(parameter.abaquspath)+’ job=j101_03_"+str(parameter.model)+’_03_02_1000_poly_intpoint inp=
j101_03_"+str(parameter.model)+’_03_02_1000_poly_intpoint.inp cpus=’+str(parameter.cpus)+’ interactive | tee
j101_03_"+str(parameter.model)+’_03_02_1000_poly_intpoint.log’):
sys.exit("Error during stress calculation")
fine=1
else:
print("Stress calculation finished.")
exit ()

C++ script which performs phase assignment according to the filling factor

Appendix2/create_poly_distribution_aut.cpp

/1l

// Script to create random phase distribution
// automatic version
// Version 1
#include <fstream>
#include <vector>
#include <iostream>
#include <string >
#include <stdio.h>
#include <sstream>
#include <algorithm >
#include <iterator >

#include <stdio.h> /# printf , scanf, puts, NULL =/
#include <stdlib .h> /% srand , rand =/
#include <time.h> /% time s/

#define _USE_MATH_DEFINES
#include <math.h>
using namespace std;
using std::ofstream;
/1l
// variable definition
/1
string phasefilename ; //name of the phase file
/1l
// method which creates a vector containing the polyhedra and the corresponding phase
void getphases (int amountofpoly, double phfraction){
std :: vector<int>phases;
ofstream myfile;
myfile.open(phasefilename.c_str());
myfile <<"polyhedra: phase:\n";
int rannumber;
int intran;
cout<<"philfactor= "<<phfraction <<endl;
srand (time (NULL) ) ;
for (int i=0; i<amountofpoly; i++){
rannumber = int(rand() % 100 + 1); //create a random number between 1 and 100
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if (rannumber<=(phfraction*100.)) //fill factor

phases.push_back(1); /11 corresponds to plagioclase
else

phases.push_back (0); //0 corresponds to quartz
myfile <<i ;
myfile<<" ";

myfile <<phases[i];
myfile<<"\n";

}

/1

// main

int main(int argc, char s=sargv) {
double phfraction; //phase fraction of plagioclase
int amountpoly; //amount of polyhedra in the model
std ::stringstream str_phfraction; // string of phase fraction of plagioclase
std :: ostringstream str_model; // string of model name
std ::stringstream str_amountpoly; //string of amount of polyhedra in the model
str_phfraction <<argv[1];
str_model <<argv[2];
str_amountpoly <<argv [3];
str_phfraction >>phfraction;
str_amountpoly >>amountpoly ;
phasefilename="phases_"+str_model.str ()+".txt
getphases (amountpoly, phfraction);
return 0;

C++ script for the Meep FDTD calculation

Appendix2/polyhedron_aut.cpp

/1

//MEEP FILE

// Version 1.0
//inhomogeneous material
/1

#include <meep.hpp>
#include <fstream>
#include <vector>
#include <iostream >
#include <string.h>
#include <stdio.h>
#include <sstream>
#include <algorithm>
#include <iterator >

#include <stdio.h> /# printf , scanf, puts, NULL =/
#include <stdlib.h> /% srand, rand =/
#include <time.h> /% time */

#define _USE_MATH_DEFINES
#include <math.h>
#include <mpi.h>

using namespace meep;

/1

// variable definition

/1

double frequencyHz=2.45e¢9; // frequency of microwaves
double ¢_m=299792458; //speed of light

double sfactor=0.4; // factor which the neper mesh is scaled
// plagioclase

double pepsreal =7.690; //real part of eps

double pepsima=2.787; //imaginary part of eps

/1 quartz

double qepsreal=7.1; //real part of eps

/1

// averaged material

double avgepsreal=7.4; //real part of eps

double avgepsima=0.88; //imaginary part of eps

11
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std :: vector<int> phases; // variable to save the phases to the corresponding polyhedra

std :: vector<std :: vector<std :: vector <double> > >dat; //variable to save the geometric data of the microstructure
std::vector<std :: vector <double> >boundCon; // variable to save the bounding container of the different polyhedron
int lastpoly=—1; // variable to save the polyhedron of the last point

double timestepair=0.0;

double w0=0.043; // waist radius of Gaussian beam

double e0=1; // standard value of E

int mynode, totalnodes;
MPI_Status status;

string tessfile; //name of the tess file
string phasefile; //name of the phase file
/1

// definition of the different methods

1/

/! Method which read data from the Neper file
std :: vector<std :: vector<std :: vector <double> > >getpolyhedron () {
int omittedlines=6; // insert the line which should be omitted
string s;
std::vector<std ::string> v;
ifstream t;

int amountvertex ; // amount of vertex
int amountedge; //amount of edges
int amountface; //amount of faces
int amountpolyhedron; //amount of polyhedron

std :: vector<std :: vector <double> > vertex; // index of vertex is the column; row is in the form: Amount of edges, edge
number 1, edge number 2, ..., x— , y—, z— value of vertex

std :: vector<std :: vector <double> > edges; // index of edge is the column; row is in the form: vertex 1, vertex 2, number
of faces, face 1, face 2,

std :: vector<std :: vector<double> > faces; // index of face is the column; row is in the form: polyhedron 1, polyhedron
2, number of vertices, ver_l, ver_2,..., edge_l, edge_2,

std :: vector<std :: vector <double> > polyhedron; // poly_centre_x , poly_centre_y , poly_centre_z, number of faces, face I,
face 2,

std :: vector<std :: vector<std :: vector<double> > >ret; //vector which returns all the results

t.open(tessfile.c_str(), ios::in);

if (t.good()==false){ //check if tess file exist
t.close () //if not close file
cout<<"tess file is missing!!!"<<endl; //write error message
exit(l); //end program

}

while (!'t.eof())
{ getline (t,s):
v.push_back(s):
)
t.close();
for (int j=1; j<=omittedlines; j++){
v.erase(v.begin()):
}
// save vertex
int hv=0;
amountvertex=atoi(v[hv].c_str());
v.erase(v.begin());
for (int j=0; j<3+amountvertex; j=j+3){
std :: vector<std :: string > templ ; // amount of edges, edge number 1, edge number 2,
std :: vector<std :: string > temp2;
istringstream issl(v[j+1]);
copy(istream_iterator <string >(issl), // split of the single lines
istream_iterator <string >(),
back_inserter <vector<string > >(templ));
std :: vector <double> row:
istringstream iss2(v[j+2]);
copy (istream_iterator <string >(iss2),
istream_iterator <string >(),
back_inserter <vector<string > >(temp2));
for (int n=0; n<=2; n++){ // insert coordinates of vertex
row.push_back(sfactor+atof (temp2[n].c_str())); //save component and scale it with factor
}
vertex .push_back(row); //insert row in 2 dimensional vector
}
cout<<"z koordinate von vertex I:"<<vertex[0][2]<<endl;
ret.push_back(vertex);
int he=hv+amountvertex=3+1;
amountedge=atoi(v[he].c_str());
for (int j=he+1; j<he+l+4zamountedge; j=j+4){
std ::vector<std ::string > temp3;
std :: vector<std :: string > temp4;
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istringstream iss3(v[j+1]);
copy (istream_iterator <string >(iss3), //split of the single lines
istream_iterator <string >(),
back_inserter <vector<string > >(temp3));
std :: vector <double> row2;
for (int n=0; n<2;n++){ //insert vertex 1, vertex 2
row2.push_back(atof (temp3[n].c_str()));
}
istringstream iss4 (v[j+2]);
copy(istream_iterator <string >(iss4),
istream_iterator <string >(),
back_inserter <vector<string > >(temp4));
row2.push_back (atof (temp4 [0].c_str())); // insert amount of faces
for (int n=1; n<=atoi(temp4[0].c_str()); n++){
row2.push_back(atof (temp4[n].c_str()));
}
edges.push_back(row2); //insert row2 in 2 dimensional vector
}
ret.push_back(edges);
// save faces
int hf=he+amountedge=4+2;
amountface=atoi(v[hf].c_str());
for (int j=hf+1; j<hf+l+7+amountface; j=j+7){
std :: vector<std :: string > temp5;
std :: vector<std :: string > temp6;
std::vector<std ::string > temp7;
istringstream issS(v[j+2]);
copy(istream_iterator <string >(iss5), //split of the single lines
istream_iterator <string >(),
back_inserter <vector<string > >(temp5));
std :: vector <double> row3:
for (int n=0; n<4;n++){ //insert face eq_a, face eq_b, face eq_c, face eq_d
row3 . push_back (atof (temp5[n].c_str()));
}
istringstream iss6(v[j+3]);
copy(istream_iterator <string >(iss6),
istream_iterator <string >(),
back_inserter <vector<string > >(temp6));
row3.push_back(atof (temp6[0].c_str())): // insert amount of vertex
for (int n=1; n<=atoi(temp6[0].c_str()); n++){ //insert ver_1, ver_2,
row3 . push_back (atof (temp6[n].c_str()));
}
faces.push_back(row3); //insert row3 in 2 dimensional vector
}
ret.push_back(faces);
/1 save polyhedron
int hp=hf+amountface=7+2;
amountpolyhedron=atoi (v[hp].c_str());
for (int j=hp+1; j<hp+Il+3«xamountpolyhedron; j=j+3){
std :: vector<std ::string > temp8;
std ::vector<std ::string > temp9;
istringstream iss8(v[j]);
copy(istream_iterator <string >(iss8), //split of the single lines
istream_iterator <string >(),
back_inserter <vector<string > >(temp8));
std :: vector <double> row4;
for (int n=1; n<4;n++){ //insert coordinates of the middle point of the polyhedron
row4 . push_back (sfactor=atof (temp8[n].c_str())); //save component and scale it
}
istringstream iss9(v[j+2]);
copy (istream_iterator <string >(iss9),
istream_iterator <string >(),
back_inserter <vector<string > >(temp9));
row4 . push_back (atof (temp9[0].c_str())); // insert amount of faces
for (int n=1; n<=atoi(temp9[0].c_str()); n++){ //insert face_1, face_2,
row4 . push_back (atof (temp9[n].c_str()));
}
polyhedron.push_back(row4); //insert row 4 in 2 dimensional vector
}
ret.push_back (polyhedron);
return ret;
)
//Method to get a point on the face
std :: vector<double>getver (int face){
std :: vector <double> coordinates ;

factor
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}

if (face<0)
face=faces(—1);

int curvertex=dat[2][face —1][5]; //a vertex which lies on the face

for (int 1=0; i<3; i++){ //loop over x, y, z
coordinates.push_back(dat[0O][curvertex —1][i]); //coordinate of the vertex

}

return coordinates ;

//Method to calculated the inproduct
double inproduct (std::vector<double> normal, double point[3], std::vector<double> ver){

}

double inproduct;

double vecverpoint[3]; //vector from vertex to point

for (int i=0; i<3; i++){
vecverpoint[i]=point[i]—-ver[i];

}

inproduct=normal [0]#vecverpoint[0]+normal[l]«vecverpoint[l]+normal[2]«vecverpoint[2]; //inproduct of vecverpoint and
normal

return inproduct;

//Method to calculate the Bounding Sphere of the polyhedra
std :: vector<std :: vector <double> > getBS () {

}

std :: vector<std :: vector <double> >BS;
int face:
double radius
double radiusold;
for (unsigned int i=0; i<dat[3].size(); i++){
radiusold =0.;
std :: vector <double> row
std :: vector<int >ver
for (int j=0; j<3; j++)
row.push_back(dat[3][i][j]);

for (int z=0; z<dat[3][i][3]; z++){ //'loop over faces
face=dat[3][i][z+4]; // face 1D
if (face<0) //if face ID is negative make it positive
face=face=(—1);
for (int v=0; v<dat[2][face —1][4]; v++){ //1loop over vertexes of the face
ver.push_back(dat[2][ face —1][v+5]); //save ID of vertex
}
}
for (unsigned int vv=0; vv<ver.size (); vv++){ //loop over vertexes

radius=sqrt(pow((dat[0][ver[vv]—1][0]—row[0]) ,2)+pow ((dat[O][ver[vv]—1][1]—row[1]) ,2)+pow ((dat[O][ver[vv]—1][2]—row
[2]),2)); [//calculate radius
if (radiusold<radius) //if new radius is bigger than update radius
radiusold=radius ;

}

row.push_back (radiusold);

BS. push_back (row);

}

return BS;

//Method which assign the intersecting faces to the polyhedron

void assignface (){

int face: /] facelD
int count; // count amount of boundary faces
bool alreadyin; // variable which is true if the current faces is allready saved
std :: vector<int> assignedfaces; // variable where all allready assigned faces are saved
for (unsigned int i=0; i<dat[3].size(); i++){ //1oop over all polyhedron

count=0;

dat[3][i].push_back(count);

for (int j=0; j<dat[3][1][3]:j++){ //loop over all faces

alreadyin=false
face=dat [3][i][j+4];

if (face<0) // ensure that facelD is positive
face=face=(—1);
for (unsigned int z=0; z<assignedfaces.size(); z++){ //Toop over all already saved faces
if (face==assignedfaces[z]){ //check if face is already saved by an other polyhedra
alreadyin=true; /1if yes set alreadyin on true
z=assignedfaces.size ()+1; //and end loop
}
}
if (alreadyin==false){ //check if the face is already saved
dat[3][i].push_back(face); // if not save face ID
assignedfaces.push_back(face); //saved the faceID in assignedfaces
count++; //increase count
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}

dat[3][i][dat[3][i][3]+4]=count; //save amount of boundary faces

}
//Method which return a polyhedron in which the specific point lies
double dielectric (double point[3]){

bool inside=false;

int isinpoly;

int facelDsearch:

int amountface;

double veMP; //length of vector from the middle point to the sought point
std ::vector<int>pospoly; // vector of possible polyhedra
double D; //inproduct

if (lastpoly >=0){
veMP=sqrt (pow(point[0] —boundCon|[lastpoly ][0].,2)+pow(point[l]—boundCon[lastpoly J[1].2)+pow(point[2]—boundCon[lastpoly

1121.2));
if (veMP<=boundCon[lastpoly J[3]){ //check if point is inside the bounding box
amountface=dat [3][ lastpoly ][3]; //amount of faces of the polyhedron

for (int face=0; face<amountface; face++){ //loop over faces of the polyhedra
std :: vector<double> normal;
if (dat[3][lastpoly |[face+4]>0){
for (int i=1; i<=3; i++){
normal . push_back ((dat[2][dat[3][lastpoly ][ face+4]—1][i])=(—1));

}
else{
for (int i=1; i<=3; i++){
normal . push_back (dat [2][(dat[3][ lastpoly ][ face+4]=(—1)) —1][i]);

}
}
std :: vector <double> ver=getver(dat[3][lastpoly ][ face+4]): /l get coordinates of a vertex on the phase
D=inproduct(normal, point, ver); // project vector (point—vert) on the normal vector
if (D<0){
inside=false;
face=amountface+1;
}
else{
if (D==0){
if (dat[3][lastpoly ][ face+4]<0) //check if faceID is positiv
facelDsearch=dat[3][ lastpoly ][ face+4]«(—1); //if not make it positiv
else
faceIDsearch=dat [3][lastpoly ][ face +4];
for (int j=0; j<dat[3][lastpoly J[[amountface+4]; j++){ //1oop over all boundary faces
if (facelDsearch==dat[3][lastpoly ][ amountface+4+j]){ //search for facelD
inside=true /1if yes set inside true and end loop over boundary faces
j=dat[3][lastpoly ][ amountface+4]+1;
}
else{
inside=false; //if not set inside false
}
}
face=amountface+1; //end loop over faces of polyhedron
}
else
inside=true ;
}
}
}
}
if (inside==true){
isinpoly=lastpoly +1; //if yes save polylD
}
else{

for (unsigned int i=0; i<boundCon.size(); i++){
veMP=sqrt (pow(point[0] —boundCon[i][0],2)+pow(point[1]—boundCon[i][1],2)+pow(point[2]—boundCon[i][2],2));
if (veMP<=boundCon[i][3]) //check if point is inside the bounding box
pospoly . push_back(i); //'if yes save the possible polyhedron
}
for (unsigned int poly=0; poly<pospoly.size(); poly++){ //loop over the possible polyhedra
amountface=dat [3][ pospoly[poly ]1[3]; //amount of faces of the polyhedron
for (int face=0; face<amountface; face++){ //1oop over faces of the polyhedron
std :: vector <double> normal;
if (dat[3][pospoly[poly]][face+4]>0){
for (int i=1; i<=3; i++){
normal . push_back ((dat[2][dat[3][ pospoly[poly ][ face+4]—1][i])=(—1));
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}
else{
for (int i=1; i<=3; i++){
normal . push_back (dat [2][(dat[3][ pospoly[poly ][ face+4]«(—1))—1][i]);

}
}
std :: vector <double> ver=getver(dat[3][pospoly[poly]][face+4]); //get coordinates of a vertex on the phase
D=inproduct(normal, point, ver); // project vector (point—vert) on the normal vector
if (D<0){

inside=false;
face=amountface+1;

}
else{
if (D==0){
if (dat[3][pospoly[poly]][face+4]<0) //check if facelD is positive
facelDsearch=dat[3][ pospoly[poly]][face+4]=(—1); //if not make
positive
else
facelDsearch=dat[3][ pospoly[poly ]][ face+4];
for (int j=0; j<dat[3][pospoly[poly ][ amountface+4]; j++){ //1oop over all boundary faces
if (facelDsearch==dat[3][pospoly[poly]][amountface+4+j]){ //search for facelD
inside=true /1if yes set inside true and end loop over boundary faces
j=dat[3][pospoly[poly ]][ amountface+4]+1;
}
else {
inside=false ; //if not set inside false
}
}
face=amountface+1; //end loop over faces of polyhedron
}
else
inside=true ;
}
}
if (inside==true){ //check if point is in current polyhedron
isinpoly=pospoly[poly]+1; /1if yes save polylD
lastpoly=pospoly[poly]: //save the last poly
poly=pospoly.size ()+1; //and end loop over possible polyhedra
}

)

return isinpoly;
}
//Method which creates a vector containing the polyhedra and the corresponding phase
std :: vector<int> getphases (){

std :: vector<int>phases;

ifstream p;

string s;

std ::vector<std ::string >v;

p.open(phasefile.c_str(), ios::in);

if (p.good()==false){ //check if phase file exist
p.close (): //'if not close file
cout<<"phase file is missing!!!"<<endl; // print error message
exit(l); // exit program
}

while (!p.eof()){
getline (p,s);
v.push_back(s);
}
p.close ()
v.erase (v.begin());
for (unsigned int i=0; i<dat[3].size ();i++){
std ::vector<std ::string > templ;
istringstream issl(v[i]);
copy(istream_iterator <string >(issl), // split of the single lines
istream_iterator <string >(),
back_inserter <vector<string > >(templ));
for (int n=0; n<2; n++){
if (n==1){
phases.push_back (atoi(templ[n].c_str()));

it
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return phases;
}
//Method to create real part of eps
double eps (const vec &p) {
int polyhedra;
double realeps; //real part of eps
vec r= p—vec(0.17,0.2,0.17);
if ((p.x()<0.D)II(p.x()>0.4)11(p.y()<0.2)II(p.y()>0.5)11(p.2z()<0.1)II(p.z()>0.4)){
realeps=1.;
}
else {
if ((p.x()<0.17)1(p.x()>0.33)11(p.y() <0.2) I (p.y() >0.28) I1(p.z() <0.17) 1 (p.z()>0.33)){
realeps=avgepsreal ;
}
else{
double point[3];
if ((r.x()<=0.08)&&(r.z()<=0.08)){
point[0]=r.x();
point[1]=r.y();
point[2]=r.z();
}
else {
if (r.x()<=0.08){
point[0]=r.x();
point[l]=r.y();
point[2]=r.z()—2=(r.z() —0.08);
}
else{
if (r.z()<=0.08){
point[0]=r.x()—2%(r.x() —0.08);
point[1]=r.y();
point[2]=r.z();
}
else{
point[0]=r.x()—2%(r.x() —0.08);
point[1]=r.y();
point[2]=r.z()—2%(r.z() —0.08);

}

polyhedra=dielectric (point);

if (phases[polyhedra —1]==0) // quartz
realeps=qepsreal ;

if (phases[polyhedra —1]==1)
realeps=pepsreal ; // plagioclase

}
r.~vec();
return realeps;
)
//Method to define real part of eps for air
double epsair (const vec &p) {
double epsair=1.;
return epsair;
}
// Class and method to define imaginary part of eps
class my_material:public material_function {
bool has_conducitivity (component ¢) {
if (¢ == Dz)
return true;
else
return false;
}
double conductivity (component ¢, const vec &l){
int polyhedrac;
double con;
vec rc= l—vec(0.17, 0.2, 0.17);
if ((1.x(O)<0.D)I1(1.x()>0.4)11(1.y()<0.2) I1(1.y()>0.5)11(1.2()<0.1)1I1(1.z()>0.4)){

con=0;
}
else {
if ((1.x()<0.17)11(1.x()>0.33)11(1.y()<0.2) 1 (1.y()>0.28)11(1.2()<0.17)11(1.z()>0.33)){
con=((2+M_PIx(frequencyHz/c_m)=avgepsima)/avgepsreal); //averaged material
}

else{
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double pointc[3];
if ((rc.x()<=0.08)&&(rc.z () <=0.08)){
pointc[0]=rc.x();
pointc[l]=rc.y();
pointc[2]=rc.z();
}
else{
if (re.x()<=0.08){
pointc [0]=rc.x();
pointc[1]=rc.y():
pointc[2]=rc.z()—2#(rc.z() —0.08);

}
else{
if (re.z()<=0.08){
pointc [0]=rc.x()—2#(rc.x() —0.08);
pointc[1]=rc.y();
pointc[2]=rc.z();
}
else{
pointc[0]=rc.x()—2x(rc.x() —0.08);
pointc[l]=rc.y();
pointc [2]=rc.z()—2#(rc.z() —0.08);;
}
}
}
polyhedrac=dielectric (pointc);
if (phases[polyhedrac —1]==0) // quartz
con=0;

if (phases[polyhedrac —1]==1)
con=((2+M_PIx(frequencyHz/c_m)=pepsima)/pepsreal); // plagioclase

}
rc.~vec();
return con;
)
)
//Method to define the gauss profile
complex<double> gauss(const vec &p){
complex<double> amplitude ;
double radius=sqrt(pow(p.x() ,2)+pow(p.z().,2));
amplitude=(e0xexp(—pow ((radius/w0) ,2)));
p.~vec();
return amplitude;
}
//Method which define the polycrystal structure of the model
void polycrystal (double a, component c) {
double pml_thickness=0.1;
double start, end, totalstart , totalend; // variable to calculate time
totalstart=MPI_Wtime () ;
my_material ui;
int timestep=0;
grid_volume v = vol3d(0.5,0.6,0.5,a);
start=MPI_Wtime () ;
symmetry S=mirror(X,v)—mirror(Z,v);
structure sl(v, eps, pml(pml_thickness), S, 0, 0.5, false, DEFAULT_SUBPIXEL TOL, DEFAULT_SUBPIXEL MAXEVAL) ;
end=MPI_Wtime () ;
cout<<"Eps defined by processor "<<mynode<<" of "<<totalnodes<<"nodes, after "<<end—start<<"s"<<endl;
start=MPI_Wtime () ;
sl.set_conductivity (Dz,ui);
end=MPI_Wtime () ;
cout<<"Con defined by processor "<<mynode<<" of "<<totalnodes <<"nodes, after "<<end—start<<"s"<<endl;
fields fl(&sl);
fl.use_real_fields ();
fl.output_hdf5(Dielectric , v.surroundings());
double freq = frequencyHz/c_m;
double amplitude=—1.0;
cout<<"variables defined by processor "<<mynode<<" of "<<totalnodes <<endl;
start=MPI_Wtime () ;
continuous_src_time src(freq);
volume src_plane(vec(0.0,0.19,0.0).,vec(0.5,0.19,0.5));
fl.add_volume_source (Hx, src,src_plane , gauss ,amplitude);
fl.add_volume_source (Ez,src,src_plane , gauss ,amplitude);
end=MPI_Wtime () ;
cout<<"source fl defined by processor "<<mynode<<" of "<<totalnodes<<"nodes after "<<end—start<<"s"<<endl;
master_printf ("volume sources added...\n");
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start=MPI_Wtime () ;

// Version where the whole period with all time points is calculated

while (fl.time () <=(25./freq))
fl.step();
if (fl.time () >=(24./freq)){
timestep ++;

{

// calculate time average E field for every node of ever element

cout<<"total timestep "<<timestep<<endl;
f1.output_hdf5(Ex,v.surroundings()):
f1.output_hdf5(Ey,v.surroundings());:
fl.output_hdf5(Ez,v.surroundings());

)
end=MPI_Wtime () ;

cout<<"total amount of timesteps

totalend=MPI_Wtime () ;
cout<<"the total calculation

}

//Main program

int main(int argc, char sxargv)
initialize mpi(argc, argv);
std :: ostringstream str_model;
std :: ostringstream str_tess;
str_tess <<argv[1];
str_model <<argv[2];
phasefile="phases_"+str_model
tessfile=str_tess.str();
MPI_Comm_size (MPL.COMM_WORLD,

dat=getpolyhedron () ;

phases=getphases () ;
assignface () ; /1l get
boundCon=getBS () ;
double resolution=1000;
polycrystal(resolution , Ez);
master_printf ("finished .\n");
return 0;

finished

{

"<<timestep <<"after "<<end—start<<"s"<<endl;

after "<<totalend—totalstart <<"s "<<endl;

//string of model name

//string of tessfile

ostr(O)+" . txt

&totalnodes);
MPI_Comm_rank (MPL.COMM_WORLD, &mynode) ;

/1 get

the phase to the corresponding polyhedra; O=quartz ,

// vector which returns all the results

I=plagioclase

the polyhedron which correspond to the bounding faces

/71000

// calculate boundary spheres

pixels per distance

C++ script to calculate £2/£2

Appendix2/hdfS_aut.cpp

/1l

//C++ script to calculate the time averaged squared electric field

// Automatic version
// Version 1.0

/1

#include <fstream>
#include <stdio.h>

/% printf

#include <stdlib.h> /% srand, rand

#include <iostream>
#include <string >
#include <sstream>
#include <algorithm>
#include <iterator >
#define _USE_MATH_DEFINES
#include <math.h>
#include <cmath>
#include <vector>
#include "HS5Cpp.h"
#ifndef H5_NO_NAMESPACE
#ifndef H5_NO_STD

using std::cout;

using std::endl;

using std::string;

using std::ifstream;
using std::ofstream;
using std::istringstream;
using std::ios;

scanf, puts, NULL =/
w/
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using std::istream_iterator;
using std::vector;

using std::back_inserter;
#endif // H5_NO_STD

#endif

#ifndef H5_NO_NAMESPACE
using namespace HS;

#endif

/1

// variable definition

/1

const double 1x=0.5; //dimension in x—direction of full calculation space

const double 1y=0.6; //dimension in y—direction of full calculation space

const double 1z=0.5; //dimension in z—direction of full calculation space

const double starttime=5874.; // starttime of E field calculation (start of one period)
const double endtime=6119.; //endtime of E—field calculation (End of one period)

const double e0=59650.8; //E2 at the source position with just air

const double e0x=8.8151e—25; //E2x at the source position with just air

const double e0y=2.98858¢—24; //E2y at the source position with just air

const double ¢0z=59650.8; //E2z at the source position with just air

const int pixel=1000; // Pixel/meter

const int amountnodes=703553; //amount of nodes

const int amountelements=4060685; //amount of elements

const int amountpoly=30000; //amount of polyhedra

const double x=0.1; //x position of coordinate system of bulk material

const double y=0.2; /1y position of coordinate system of bulk material

const double z=0.1; /lz position of coordinate system of bulk material

const double frequency=2.45¢9; // frequency of electromagnetic waves

1l

//GLOBAL VARIABLES

std :: vector<std :: vector<std :: vector<double> > > e // field in which the E2 data is saved
std ::vector<std :: vector<std :: vector <double> > > ex; // field in which the E2x data is saved
std ::vector<std ::vector<std :: vector <double> > > ey; // field in which the E2y data is saved
std ::vector<std :: vector<std :: vector <double> > > ez; // field in which the E2z data is saved
std :: vector<std ::vector<std :: vector <double> > >datoutput; //variable to save the node data of the
std ::vector<std :: vector<double> > integrationpointsglobal; //variable to save coordinates of the
std :: vector<int> phases; // variable to save the phases to the corresponding polyhedra
int nx: //amount of points in x—direction; NOTE: nx=ny=nz!!!!

int ny; //amount of points in y—direction

int nz; //amount of points in z—direction

double h; // grid constant 1x/nx

double ttimestep; // total amount of time steps within one period

/1l

//MAIN PROGRAMM

/1l

int main (int argc, char #xargv){
//VARIABLE DEFINITION
std :: ostringstream argvstring;
argvstring <<argv[1];

H5std_string out_e ("output3D_"+argvstring.str ()+"_E2.h5"); //output file for E2 hdf5 output
H5std_string out_ex ("output3D_"+argvstring.str ()+"_Ex.h5"); //output file for E2x hdf5 output
H5std_string out_ey ("output3D_"+argvstring.str ()+"_Ey.h5"); //output file for E2y hdf5 output
HS5std_string out_ez ("output3D_"+argvstring.str ()+"_Ez.h5"); //output file for E2z hdf5 output

ttimestep =(endtime—starttime )+1;
string component;
string filename;
nx=Ix=double (pixel);
ny=ly=double (pixel);

//amount of grid points in

//amount of grid points in
nz=lz=double (pixel);
h=1./double (pixel);
int rank:

hsize_t dims[3];
std :: ostringstream
//BODY

//open first

//amount of grid
/1 grid

points in
constant

strs ;

ez file in order to define global array
component="ez";
strs <<starttime ;
if (starttime <10000){
filename=component+" —00000"+strs . str ()+".h5";
}
else{
filename=component+"—0000"+strs . str ()+".h5";
)

cout<<"filename: "<<filename<<endl;
H5std_string FILE_ NAME( filename) ;

x direction
y direction
z direction

output elements

integration

points
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strs.str("");
strs.clear ();

H5std_string DATASET_NAME(component
HS5File file ( FILE_ZNAME, HSF_ACC_RDONLY );
DataSet file .
DataSpace filespace =
filespace . getSimpleExtentNdims () ;

dataset =
dataset . getSpace () ;
rank =
rank =

DataSpace mspacel (rank,
DSetCreatPropList cparms =

dims) ;

H5File filewrite_e2 (out_e, HS5F_ACC_TRUNC );
H5F_ACC_TRUNC ) ;

H5File filewrite_ex2 (out_ex ,

HS5File filewrite_ey2 (out_ey, HSF_ACC_TRUNC );
HS5File filewrite_ez2 (out_ez, H5F_ACC_TRUNC );

DataSpace filespacewrite=filespace;

H5std_string DATASET_NAME_WRITE( "E2") ;
H5std_string DATASET_NAME_Ex2( "Ex2");
H5std_string DATASET_NAME _Ey2("Ey2");
H5std_string DATASET_NAME_Ez2("Ez2");

openDataSet ( DATASET NAME ) ;

filespace . getSimpleExtentDims ( dims ):

)3
//open file
//open dataset
rank and dimension
// get number of dimensions in the file dataspace
the file dataspace

// filespace for

//number of dimensions in

dataset.getCreatePlist();// get properties list
//create file
//create file in which the e2 data is stored
// create file in which the e2 data is stored
// create file in which the e2 data is stored
//space to write data

// define dataset name
//define dataset name for E2x output
// define dataset name for E2y output

// define dataset name for E2z output

DataSet datasetwrite_e2=filewrite_e2.createDataSet(DATASET NAME WRITE, PredType ::NATIVE_DOUBLE,

create dataset

DataSet datasetwrite_ex2=filewrite_ex2.createDataSet (DATASET_NAME_Ex2, PredType ::NATIVE DOUBLE,
create dataset for E2x output

DataSet datasetwrite_ey2=filewrite_ey2.createDataSet (DATASET_NAME_Ey2, PredType ::NATIVE_DOUBLE,
create dataset for E2y output

DataSet datasetwrite_ez2=filewrite_ez2.createDataSet (DATASET_NAME_Ez2, PredType ::NATIVE_DOUBLE,

create dataset for E2z output
filespace.close ()
dataset.close ();

file .close ()

cout <<

"dataset rank = << rank <<

// allocate e 3D array

e.resize (nx);

ex.resize (nx);

ey.resize (nx);

ez.resize (nx);

(int

e[i].resize(ny);
x[i].resize(ny);

ey[i].resize(ny);

ez[i].resize(ny);

for (int j=0; j<ny; j++){
e[i][j].resize(nz);
ex[i10j1.
ey[i][j].resize(nz);
ez[i][j].resize(nz);

for i=0;i<nx; i++){

resize (nz);

}

// create coldata vector in which E field

dimensions

"<< dims[0] << " x "<< dims[1] <<" x

data is saved

std :: vector<std :: vector<std :: vector<std :: vector <double> > > >coldata; //field in which all
coldata[0]=Ex, coldata[l]=Ey, coldata[2]=Ez
coldata.resize (6);
for (int k=0; k<6; k++){
coldata[k]. resize (nx);
for (int i=0ji<nx; i++){
coldata[k][i].resize(ny);
for (int j=0; j<ny; j++){
coldata[k][i][]j].resize(nz);
for (int h=0; h<nz; h++){
coldata[k][i][j][h]=0.;
}
}
}
}
// sum up E2 data
for (int 1=0; i<3; i++){ //1oop over all E field components
if (i==0)
component="ex";
if (i==1)
component="ey";
if (i==2)
component="ez";
for (double time=starttime; time<=endtime; time++){ //loop over all times

strs <<time ;
if (time <10000) {

Efield data is

mspacel ,cparms) ;

mspacel , cparms) ;

mspacel ,cparms) ;

mspacel ,cparms) ;

"<<dims[2]<<endl;

saved:

/1

/1

11

/1
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filename=component+" —00000"+strs . str ()+".h5";
}
else{
filename=component+" —0000"+strs .str ()+".h5";
}
strs.str("");
strs.clear ()
cout<<"filename "<<filename <<endl:;
HS5std_string FILE_ NAME(filename) ;
HS5std_string DATASET NAME(component) ;

HS5File file ( FILE_NAME, HSF_ACC_RDONLY ); //open file
DataSet dataset = file.openDataSet( DATASET_ NAME ) ; //open dataset
DataSpace filespace = dataset.getSpace(); // filespace for rank and dimension
double xdata_out=new double[nx#ny#nz]; //one dim field in which the outputdata is buffered

dataset.read( data_out, PredType::NATIVE_DOUBLE, mspacel, filespace ): //read data from hdf5 file
//loop over all points
for (int x=0; x<nx; x++){
for (int y=0; y<ny; y++){
for (int z=0; z<nz; z++){
if (time==starttime){

coldata[i][x][yl[z]l=pow (((data_out[z+ysnz+nzsny+x]/2)*376.73) ,2); // half of boundary point, 376.73 is
sqrt (mu_0/eps_0) which accounts for the Meep units
}
else {

if (time==endtime)
coldata[i][x][yllz]l=coldata[i][x][y]l[z]+pow(((data_out[z+y=nz+nz=ny=*x]/2)%376.73),2); //half of boundary
point, 376.73 is sqrt(mu_0/eps_0)
else
coldata[i][x][yllz]=coldata[i][x][y][z]+pow((data_out[z+y#nz+nz=ny=*x]+376.73).,2); //sum up of E2 values (
components), 376.73 is sqrt(mu_0/eps_0)
}

}

filespace.close ()
dataset.close ()
file .close ()

delete [] data_out;

}
//loop over all points
for (int x=0; x<nx; x++){
for (int y=0; y<ny; y++){
for (int z=0; z<nz; z++){
e[x][yllzl=sqrt(pow((coldata[O][x][y][z]/(ttimestep —1)) .2)+pow ((coldata[l][x][y][z]/(ttimestep
—1)) .2)+pow ((coldata [2][x][y][z]/(ttimestep —1)) ,2))/e0; //calculate E2 values and scale to the source value

ex[x][yllz]=(coldata[O][x][y][z]/(ttimestep —1))/e0x; // calculate Ex2
ey[x][yllz]=(coldata[1][x][y][z]/(ttimestep —1))/e0y; I/l calculate Ey2
ez[x][yllz]=(coldata[2][x][y]l[z]/(ttimestep —1))/e0z; // calculate Ez2
}
}
}

double #data_write_e2=new double[nx#ny#nz];
double #data_write_ex2=new double[nx#ny#nz];
double #data_write_ey2=new double[nx#ny#nz];
double xdata_write_ez2=new double[nx#ny#nz];
for (int x=0; x<nx; x++){
for (int y=0; y<ny; y++){
for (int z=0; z<nz; z++){

data_write_e2 [z+ysnz+nzsny=x|=e[x]|[y][z];

data_write_ex2 [z+y#nz+nzsny*x|=e 1yllz];
1lyllz]:
1lyllz];

x[x
data_write_ey2[z+y+nz+nzsny=x]=ey[x
data_write_ez2[z+y#nz+nzsnysX]=ez[X

)

datasetwrite_e2 . write(data_write_e2 , PredType::NATIVE_DOUBLE, mspacel, filespacewrite);
datasetwrite_ex2 . write (data_write_ex2, PredType::NATIVE DOUBLE, mspacel, filespacewrite);
datasetwrite_ey2 . write (data_write_ey2 , PredType::NATIVE DOUBLE, mspacel, filespacewrite);
datasetwrite_ez2 . write (data_write_ez2 , PredType::NATIVE_ DOUBLE, mspacel, filespacewrite);
delete[]data_write_e2;

delete []data_write_ex2;

delete []data_write_ey2;

delete []data_write_ez2;

filespacewrite .close () ;
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mspacel.close () ;
datasetwrite_e2.close();
datasetwrite_ex2.close();
datasetwrite_ey2.close ()
datasetwrite_ez2 .close ()
filewrite_e2.close();
filewrite_ex2 .close ()
filewrite_ey2.close ()
filewrite_ez2 .close ()
return 0;

C++ script to calculate P, at the integration points

Appendix2/hdf5_int_v4_aut.cpp

11

//C++ script to calculate absorbed power density at the integration points

// automatic version

// Version 1.0

/1l

#include <fstream>

#include <stdio.h> /# printf , scanf, puts, NULL =/
#include <stdlib.h>
#include <iostream >

/% srand , rand =/

#include <string >
#include <sstream>
#include <algorithm >
#include <iterator >
#define _USE_MATH_DEFINES
#include <math.h>
#include <cmath>
#include <vector>
#include "H5Cpp.h"
#ifndef H5_NO_NAMESPACE
#ifndef HS_NO_STD

using std::cout;

using std ::endl;

using std::string;

using std::ifstream:;
using std::ofstream;
using std::istringstream;
using std::ios;

using std::istream_iterator;
using std::vector;

using std::back_inserter;
#endif // H5_NO_STD
#endif

#ifndef H5_NO_NAMESPACE
using namespace HS5;
#endif

//VARIABLES which have to be defined by the user
const double 1x=0.5;
const double ly=0.6;
const double 1z=0.5;
const double pepsima=2.787;

//dimension in x—direction of
//dimension in y—direction of
//dimension in z—direction of
//imaginary part of eps
const double avg_granite_epsima=0.88;
const int pixel=1000; // Pixel/meter
const double x=0.1;

full calculation space
full calculation space
full calculation space

//imaginary part of eps of avg_granite

//x position of coordinate system of bulk material

const double y=0.2; /1y position of coordinate system of bulk material
const double z=0.1; /lz position of coordinate system of bulk material
const double xp=0.07; //x difference between coordinate system of bulk material and poly part

const double yp=0.0;
const double zp=0.07;
const double frequency=2.45e9;
const int polyelements=281988;

11

/1y difference between coordinate

//z difference between coordinate
// frequency of electromagnet
// Amount of outer elements

//GLOBAL VARIABLES

std ::vector<std ::

system of bulk material and poly part
system of bulk material and poly part
ic waves

vector<std :: vector<double> > > e // field in which the E2 data is saved
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std :: vector<std :: vector <double> > integrationpoints; //2dim field in which the coordinates of the integration points are
saved

std ::vector<int> phases; // variable to save the phases to the corresponding polyhedra

int nx; //amount of points in x—direction

int ny; //amount of points in y—direction

int nz; //amount of points in z—direction

double h; // grid constant 1x/nx

std :: vector<std :: vector<double> >elementsets ; // variable to save the element sets

std :: ostringstream model; //name of the model

std :: ostringstream inpintegrationpoints; //name of the input file containing the coordinates of the integration points

std::ostringstream inpelementset; //name of the file containing the phase information

string outputfile; //'string to the outputfile

string phasefile; //'string of the phasefile

1/

//INIT MEHTHODS

/1

std :: vector<std :: vector <double> > getintpoint ()
std :: vector<std :: vector <double> > getelementsets ();
double interpolation (std::vector<double> P);
std ::vector<int> getphases (int amountpoly);
11/
//MAIN PROGRAMM
/1l
int main (int argc, char =xargv){
//VARIABLE DEFINITION
model<<argv|[1];
inpintegrationpoints <<argv[2];
inpelementset <<argv[3];
outputfile="absorption_101_"+model. str ()+"_03_02_1000_intpoints.txt";
phasefile="phases_"+model.str ()+".txt";

nx=Ix#double (pixel); //amount of grid points in x direction
ny=lys+double (pixel); //amount of grid points in y direction
nz=lz=double (pixel); //amount of grid points in z direction
h=1./double (pixel); // grid constant

int rank;

hsize_t dims[3];

std :: ostringstream strs;

double absorption;

ofstream abs;

int curphase;

double con=0;

//BODY

/lopen first ez file in order to define global array
H5std_string DATASET NAME("E2");

HS5File e2_data("output3D_"+model.str ()+"_E2.h5", H5F_ACC_RDONLY ) ; //open file

DataSet dataset = e2_data.openDataSet( DATASET NAME ) //open dataset

DataSpace filespace = dataset.getSpace(): // filespace for rank and dimension

rank = filespace.getSimpleExtentNdims () ; // get number of dimensions in the file dataspace

rank = filespace.getSimpleExtentDims( dims ); //number of dimensions in the file dataspace
DataSpace mspacel (rank, dims);

DSetCreatPropList cparms = dataset.getCreatePlist(); //get properties list

cout << "dataset rank = << rank << ", dimensions "<< dims[0] << x "<< dims[1] <<" x "<<dims[2]<<endl;
// allocate e 3D array
e.resize(nx);
for (int i=0j;i<nx; i++){
e[i].resize(ny);
for (int j=0; j<ny; j++){
e[i][j].resize(nz);

}
}
/! save E2 homogeneous material data
double #data_out=new double[nx#ny#nz]; //one dim field in which the E2 data is buffered
dataset.read (data_out, PredType::NATIVE_LDOUBLE, mspacel, filespace); //read data from E2 hdf5 file

//loop over all points
for (int x=0; x<nx; x++){
for (int y=0; y<ny; y++){
for (int z=0; z<nz; z++){
e[x][yllz]=data_out[z+y#*nz+nzsny=x]; //save e2 value

}
filespace.close();
dataset.close ();
e2_data.close ();
delete [] data_out;
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cout<<"dimensions e: "<<e.size()<<" x "<<e[0].size()<<" x "<<e[0][0].size ()<<endl;

cout<<"End h5 saving'"<<endl;

integrationpoints=getintpoint(); //read in integration point coordinates: [x][y]: y=0:element ID, y=1: x—coord, y
=2: z—coord., y=3: z— coordinate

celementsets=getelementsets () ; //read in element set data

cout<<"amount of polysets= "<<elementsets.size ()<<endl;

abs.open(outputfile.c_str());
phases=getphases (elementsets.size ()); // get the phase to the corresponding polyhedra; O=quartz, l=plagioclase
int oldelement=0;
int oldpoly=0;
int curelement=0;
cout<<"begin absorption calculation"<<endl;
for (unsigned int iintp=0; iintp<integrationpoints.size(); iintp++){ //1loop over all integration points
bool endloop=false;
if (integrationpoints[iintp][0]<=polyelements){ //check if element is in output element set
absorption=interpolation (integrationpoints[iintp])=«2«M_PIxfrequency=avg_granite_epsima=8.85418781762e—12;
abs<<absorption <<endl;

}
else{
curelement=integrationpoints [iintp J][0] —polyelements; // calculate current poly element ID
if (oldelement==curelement) { //check if Element ID equals Element ID of former integration point
if (curphase==0){
absorption=0;
}
if (curphase==1){
con=pepsima=8.85418781762e—12;
absorption=interpolation(integrationpoints[iintp])*2+M_PIxfrequency=con;
}
abs<<absorption <<endl;
}
else{ // search for element set
for (unsigned int ipoly=oldpoly; ipoly<elementsets.size (); ipoly++){ //loop over all elementsets
for (unsigned int element=0; element<elementsets[ipoly].size(); element++){ //loop over all elements
if (elementsets[ipoly ][element]==curelement) {
curphase=phases[ipoly ];
element=elementsets [ipoly ].size () +1;
endloop=true ;
if (curphase==0){ /1 quartz
con=0;
absorption=con;
)
if (curphase==1){
con=pepsima=8.85418781762e —12; // plagioclase
absorption=interpolation (integrationpoints[iintp ])*2+M_PIxfrequency=con;
}
abs<<absorption <<endl;
oldelement=integrationpoints [iintp ][0] —polyelements;
oldpoly=ipoly;
}
}
if (endloop)
ipoly=elementsets.size () +1;
}
if (endloop==false){
cout<<"ERROR: element "<<curelement<<" not found in element sets"<<endl;
}
}
}
}
abs.close ()
return 0;

}
//Method to read in and save the element ID as well as the coordinates of the integration points
std :: vector<std :: vector<double> > getintpoint (){
int deletbegin=28; //lines which should be omitted at the begin of the file
int deletend=10; //lines which should be omitted at the end of the file
ifstream f;
string s;
std :: vector<std :: string > v;
std :: vector<std :: vector <double> > coordinates; //vector in which the coordinates of the integration points are saved0
f.open(inpintegrationpoints.str().c_str(), ios::in);

if (f.good()==false){ //check if input file exist
f.close(); //if not close file
cout<<"inp file is missing!!!"<<endl; //print error message and

exit(l); // exit program
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}
while (!f.eof())
{ getline (f,s);
v.push_back(s):
}
f.close ()
for (int j=I1; j<=deletbegin; j++){
v.erase(v.begin()):
}
for (int k=1; k<=deletend; k++){
v.erase(v.end());
)
cout<<"groesse v="<<v.size ()<<endl;
cout<<"letzte zeile"<<v[v.size()—1l]<<endl;
for (unsigned int i=0; i<v.size(); i++){ //save all integration points
std :: vector<std :: string > templ ;
istringstream issl(v[i]);
copy (istream_iterator <string >(issl),
istream_iterator <string >(),
back_inserter <vector<string > >(templ));
std :: vector <double> row:
for (int j=0; j<4:; j++){ //save the element ID as well as the integration point node coordinates
row . push_back (atof (templ[j].c_str())):
}
coordinates . push_back (row);
)
cout.precision(8);
return coordinates ;
}
//Method to find FDTD grid point
double interpolation (std::vector<double> P){
//VARIABLE declaration
double valueP;
double deltax ;
double deltay;
double deltaz;
int nx; // position of the FDTD grid point in x direction
int ny;:
int nz;
/1
//MAIN Body
nx=((P[1]+x+xp)/h); // calculate position in grid, (p[x]+x0-h/2) since different coordinate system is used
ny=((P[2]+y+yp) /h);
nz=((P[3]+z+zp)/h);
return e[nx][ny][nz];
}
//Method which creates a vector containing the polyhedra and the corresponding phase
std ::vector<int> getphases (int amountpoly){
std :: vector<int >phases;
ifstream f;
string s;
std ::vector<std :: string >v;
f.open(phasefile.c_str(),ios::in);

if (f.good()==false){ //check if phase file exist
f.close(); //if not close file
cout<<"phase file is missing!!!"<<endl; // print error message
exit(l): //exit program
}

while (!f.eof ()){
getline (f,s);
v.push_back(s);

}

f.close();

v.erase(v.begin());

for (int i=0; i<amountpoly;i++){

std :: vector<std ::string > templ;
istringstream issl(v[i]);
copy (istream_iterator <string >(issl), // split of the single lines
istream_iterator <string >(),
back_inserter <vector<string > >(templ));
for (int n=0; n<2; n++){
if (n==1){
phases.push_back (atoi (templ[n].c_str()));
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}

return phases;
)
//Method to read in and save the elements and the corresponding nodes
std :: vector<std :: vector <double> > getelementsets () {

std :: vector<std :: vector<double> > elementdata :

ifstream f;

string s;

std ::vector<std ::string> v;

f.open(inpelementset.str().c_str(), ios::in);

if (f.good()==false){ //check if input file exist
f.close(); //if not close file
cout<<"inp file is missing!!!"<<endl; //print error message and
exit(l): // exit program
}

while (!f.eof())
{ getline (f,s);
v.push_back(s);
)
f.close();
bool newpoly=true;
unsigned int loc=6;
bool em;
bool firstem=false;
int skip=0;
std :: vector <double> row3;
// save the polyhedra and the corresponding element number
for (unsigned int k=0; k<v.size (); k++){ //loop over whole file
std :: vector<std :: string > temp3;
istringstream iss3(v[k]):
copy (istream_iterator <string >(iss3),
istream_iterator <string >(),
back_inserter <vector<string > >(temp3));
if (firstem==true){

skip++;
em=temp3.empty () ; //em=true if the line is empty
if ((em==false)&&(mewpoly==true)){ //check if line is not empty and a new poly is
loc=temp3 [1]. find ("poly");
}
if (newpoly==true) { //check if a new poly is requiered
if (loc != 6) //if "poly" is not on the 7th digit end loop
k=v.size ()+2;
else
newpoly=false
}
else{
if (em==true){ //if the line is empty erase the certain line
elementdata . push_back (row3);
row3.erase (row3.begin (), row3.end());
newpoly=true ;
}
else{
for (unsigned int j=0; j<temp3.size (): j++){
string str3=temp3[j]; /1 save each element
if ((str3.length()—1)==".") // if element contain, delete ,
str3 .erase(str3.length()—1);
if (str3.empty()==false)
row3 . push_back (atof (str3.c_str()));
}
}
}

}
it (skip==0){
firstem=temp3.empty () ;

}

return elementdata;

detetected
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Python script to assign material properties to the finite elements

Appendix2/phase_assignment_aut.py

#

# Script to assign finite elements to the corresponding materials
#

#load packages

import math

import argparse # to parse arguments
#

#

#initialization
a=[]

b=[]

y=0

z2=0

floats =[]

#

# Class containing all Parameters which are parsed

class Parameters:

pass
parameter = Parameters () # instance of the class Parameters

# Parsing arguments

parser = argparse.ArgumentParser(description="Automatic phase assignment.’)

# Adding all necessary and possible arguments to the parser.
parser.add_argument(’——model ", type=str, required=True, help="Name of the model.")
args = parser.parse_args(namespace=parameter)

## # # # # # HHt#

#main

dat=open( phases_’+str(parameter.model)+’.txt’,’r")
for line in dat:

a.append(line.rstrip())
dat.close ()
del al[0]
while y<len(a):

if aly][0]==" ":

alyl=aly].replace(’ *, "7 .,1)

floats=[int(x) for x in al[y].split(" ")]

b.append(floats)

y=y+1
f=open(’quartz_elements_’"+str(parameter.model)+".inp’°, 'w")
f.write ("=ELSET, Elset=quartz\n")
k=open(’plagioclase_elements_+str(parameter.model)+ .inp ', 'w")
k. write ("«ELSET, Elset=plagioclase\n")
#check which phase belongs to each polyhedron
while z<len(b):

if (b[z][1]==0): #check if phase==f
f.write ("poly"+str(b[z][0]+1)+"\n") #write element set in quartz_elements.inp
if (b[z][l]==1): #check if phase==
k.write ("poly"+str(b[z][0]+1)+"\n") #write element set in plagioclase_elements.inp
z=z+1
f.close ()
k.close ()
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Python script to create the FORTRAN subroutine

Appendix2/create_BF_subroutine.py

#

# Script which automatically creates the DFLUX and UEXTERNALDB subroutine

#

#load packages

import sys # better than: import 0s.sys
import os # os = operating system
import argparse # to parse arguments

# Class containing all Parameters which are parsed
class Parameters:

pass

parameter = Parameters () # instance of the class Parameters

# Parsing arguments

parser = argparse.ArgumentParser(description="Automatic created Dflux file.")

# Adding all necessary and possible arguments to the parser.

parser.add_argument(’——model ", type=str, required=True, help="Name of the model.")
parser.add_argument(’——initialBF ", type=float, required=True, help="1Initial constant body heat multiplier.’
parser.add_argument ( '—nameBF ", type=str , required=True, help="Name of the DFLUX subroutine.’)
parser.add_argument( '—work ", type=str, required=True, help="Path of the working directory.”)
args = parser.parse_args(namespace=parameter)

#

#main

#open and write in subroutine file

df=open(str(parameter.nameBF), "w’)

df . write ("CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCn ™)

df . write ('CCCCC\n ")

df . write ("CCCCC Modul to use data in various subroutines\n’)

df . write ("CCCCC\n ")

df . write (*CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCeecccCCinin’)
df . write (’ MODULE Information\n\n’)

df . write (’ DOUBLE PRECISION, DIMENSION(:), allocatable ::\n’)

df . write (’ % absorption\n\n’)

df . write (°C information :\n’)

df . write (°C ipoint Position in absorbed power denisty file (starts with 0)\n")
df. write ('C absorption Absorbed power density at integration point\n\n’)

df . write (’ save\n’)

df . write (’ END MODULE Information\n’)

df. write('C\n")

df . write('C\n")

df . write (CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCn ™)
df . write ('C\n")

df . write ('C Subroutine UEXTERNALDB to read in external files\n’)

df . write (’C\n")

df . write ("CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCeCecceCCn)
df . write (’'C\n")

df . write (° SUBROUTINE UEXTERNALDB (LOP,LRESTART, TIME , DTIME, KSTEP,KINC) \n ")
df . write('C\n")

df . write (’ USE Information\n’)

df . write ('C\n")

df . write (’ INCLUDE \’ABA_PARAM.INC\ '\n’)

df . write (’C\n")

df . write (7 DIMENSION TIME(2)\n’)

df . write ('C\n")

df . write (’ integer :: inpoint, stat\n’)

df. write('C\n")

df . write (° inpoint=18498644\n")

df . write (’ stat=1\n")

df . write ('C\n")

df . write (’ IF (LOP==0) THEN\n’)

df . write (’ ALLOCATE( absorption (inpoint))\n’)

df . write (° ==== EINLESEN =========\"\n")

path=str (parameter.work)+’/absorption_101_"+str (parameter.model)+"_03_02_1000_intpoints’
firstline=path[:42]
secondline=path [42:]+ . txt\’, iostat=stat, status=\"old\")"’
df . write (° OPEN (unit=140, file=\""+firstline+’'\n")
if len(secondline) >66:
secondlinenew=secondline [:66]
thirdline=secondline [66:]
df . write (’ # +secondlinenew+"\n")
df . write (’ s« +thirdline+ \n")
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else:
df . write (’ «’+secondline+’\n")
df . write (’ if (stat==0) then\n’)
df . write (’ write (#,%) \’Das Oeffnen der Datei hat geklappt\’\n’)
df . write (’ END IF\n’)
df . write (’ READ(140,:*) (absorption(I), I=1,inpoint)\n’)
df . write (° CLOSE(unit=140)\n")
df . write (’ END IF\n’)
df . write (’ RETURN\n ")
df . write (’ END\n )

df . write (*CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCeceeeceececctn )
df . write('C\n")

df. write (’C Subroutine DFLUX to calculate body heat flux\n’)

df . write ("CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCn ™)
df . write ('C\n")

df . write (° SUBROUTINE DFLUX(FLUX, SOL,KSTEP, KINC, TIME ,NOEL, NPT ,COORDS ,\n ")
df . write (7 1 JLTYP,TEMP, PRESS ,SNAME) \n ")

df . write ('C\n’)

df . write (° USE Information\n’)

df . write('C\n")

df . write (° INCLUDE \*ABA_PARAM.INC\ "\n")

df. write ("C\n")

df. write (° DIMENSION FLUX(2), TIME(2), COORDS(3)\n")
df . write (° CHARACTER%80 SNAME\n ")

df . write (’ integer :: I\n’)

df . write (’ double precision BF\n’)

df . write (*CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCeCCeeeeceeceeceececctn )
df . write ('C Definition of variable BF (body flux scale factor)\n’)

df . write (’ BF="+str (parameter.initialBF)+ \n")

df . write ("CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCn ™)
df . write (’C\n")

df . write (’C SOL estimated results variable\n’)

df . write (’C FLUX body heat flux which has to be defined\n’)

df . write (°C TIME step \n’)

df . write (’C COORDS Coordinate of integration point\n’)

df . write ('C\n")

df . write (° IF (NOEL. 1t.281989) THEN\n')

df . write (’ FLUX(1)=BF*absorption ((NOEL—1)*8+NPT)\n")

df . write (7 ELSE\n")

df . write (’ FLUX(1)=BFxabsorption (281988 8+(NOEL—281988—1)#4+NPT)\n ")
df . write (’ END IF\n’)

df . write (’ RETURN\n ")

df . write (° END\n ")

df . write ("CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCn ™)
df . write ("C\n")

df . write (°C Subroutine UVARM to set user defined variables\n’)

df . write ("CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCeCCn’)
df . write ('C\n")

df . write (’ SUBROUTINE UVARM(UVAR, DIRECT, T, TIME , DTIME ,CMNAME, ORNAME, \ n ")
df . write (° 1 NUVARM, NOEL, NPT ,LAYER, KSPT, KSTEP, KINC, NDI,NSHR,COORD, \n ")
df . write (° 2 JMAC,JMATYP,MATLAYO,LACCFLA) \n ")

df . write ('C\n")

df . write (’ USE Information\n’)

df . write (’C\n")

df . write (7 INCLUDE \’ABA_PARAM.INC\ ’'\n’)

df . write ('C\n’)

df . write (’ CHARACTER:80 CMNAME,ORNAME\n " )

df . write (’ CHARACTER=*3 FLGRAY(15)\n")

df . write (° DIMENSION UVAR(NUVARM) ,DIRECT (3 ,3) ,T(3,3) ,TIME(2)\n")

df . write (7 DIMENSION ARRAY (15) ,JARRAY (15) ,JMAC( ) ,JMATYP () ,COORD(#)\n")
df . write (’ double precision BF\n")

df . write (°C The dimensions of the variables FLGRAY, ARRAY and JARRAY\n’)
df . write (°C must be set equal to or greater than 15.\n’")

df . write (’ BF="+str (parameter.initialBF)+ \n")

df . write (° IF (TIME(1).gt.1.e—2) THEN\n")

df . write (° IF (NOEL. 1t.281989) THEN\n")

df . write (’ UVAR(1)=absorption ((NOEL—1)#8+NPT)\n")

df . write (° ELSE\n")

df . write (’ UVAR(1)=absorption (281988 8+(NOEL—281988—1)#4+NPT)\n")
df . write (’ END IF\n’)

df . write (’ END IF\n’)

df . write (’ RETURN\n ")

df . write (° END\n ")

df.close ()




197

Python script to create the Abaqus heat input file

Appendix2/create_heat_input.py

#

# Script to automatically create the Abaqus heat input file
#

#load packages

import sys # better than: import 0s.sys
import os # os = operating system
import argparse # to parse arguments

# Class containing all Parameters which are parsed
class Parameters:

pass

parameter = Parameters () # instance of the class Parameters

# Parsing arguments

parser = argparse.ArgumentParser(description="Automatic created heat file.")

# Adding all necessary and possible arguments to the parser.
parser.add_argument(’——model ", type=str, required=True, help="Name of the model.")
args = parser.parse_args (namespace=parameter )

#

#main

#open and write in Abaqus input file

inp=open(’j101_01_"+str(parameter.model)+’_03_02_1000_poly_intpoint_heat.inp’, 'w’)

inp.write (’#*Automatic generated heat input file for jl10I_OI_"+str(parameter.model)+ _03_02_1000_poly_intpoint_heat.inp\n
M)

inp.write(’#Part, name=poly\n”)

inp.write ("+*INCLUDE, Input=poly_74_mesh.inp\n’)

inp.write ("#INCLUDE, Input=quartz_elements_’+str(parameter.model)+’.inp\n’")

inp.write ("*INCLUDE, Input=plagioclase_elements_’+str(parameter.model)+’.inp\n’")

inp.write (’*Solid Section, elset=quartz, material=quartz\n’)

inp.write(’#Solid Section, elset=plagioclase, material=plagioclase\n’)

inp.write( #End Part\n’)

inp.write (’«Part, name=outer\n’)

inp.write ("+*INCLUDE, Input=outer_74_mesh_linear.inp\n’)

inp.write(’«Elset, elset=outer_element, generate\n’)

inp.write(’ 1, 281988, I\n")

inp.write (’*Solid Section, elset=outer_element, material=avg_granite\n’)

inp.write( #End Part\n’)

inp.write (’sAssembly, name=Assembly\n’)

inp.write(’#Instance , name=poly —1, part=poly\n’)

inp.write(’ 0.0, 0., 0.0\n")

inp.write( +End Instance\n’)

inp.write(’sInstance , name=outer —1, part=outer\n’)

inp.write(’ 0., 0.3, —0.07\n")
inp.write (’ 0., 0.3, —0.07, 0.577350269189626, —0.277350269189626, 0.507350269189626,
120.\n")

inp.write(’+End Instance\n’)

inp.write (’«Nset, nset=FIX, instance=poly —1\n")

inp.write(’ 1\n")

inp.write(’=Nset, nset=ALL_poly, generate, instance=poly —1\n")
inp.write(’ 1, 703553, I\n")

inp.write ("«Elset, elset=elementALL_poly, generate, instance=poly —1\n’)
inp.write(’ 1, 4060685, 1\n")

inp.write (’«Nset, nset=ALL_outer, generate, instance=outer —I\n’)
inp.write(’ 1, 296620, 1\n")

inp.write(’«Elset, elset=elementALL_outer, generate, instance=outer —I\n")
inp.write(’ 1, 281988, 1\n")

inp . write (*+*INCLUDE, Input=j101_01_69_poly_surfaces.inp\n’)

inp . write (**INCLUDE, Input=j101_01_74_outer_surfaces.inp\n’)

inp.write ("*TIE, name=tie_pos_y , TIED NSET=POLY-1.Yl, ADJUST=NO\n’)
inp.write ('posy. negy_inner\n’)

inp.write ("+TIE, name=tie_neg_x , TIED NSET=POLY-1.X0, ADJUST=NO\n’)
inp.write( negx, posx_inner\n’)

inp.write ("+TIE, name=tie_neg_z , TIED NSET=POLY-1.Z0, ADJUST=NO\n’)
inp.write(’'negz, posz_inner\n’)

inp.write(’#% Section: plane_strain_basalt\n’)

inp.write ('«End Assembly\n’)

inp . write ("*INCLUDE, input=quartz_03.inp\n’)

inp . write ("+«INCLUDE, input=plagioclase_03.inp\n’)

inp . write ("+«INCLUDE, input=avg_granite_03.inp\n’)

inp.write (’#Physical Constants, absolute zero=-273.15, stefan boltzmann=1.38065¢—23\n")
inp.write(’«Initial Conditions, type=TEMPERATURE\n")
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inp.write ('ALL_outer, 25.\n")

inp.write ("ALL_poly., 25.\n")

inp.write (s )
inp.write( #%\n")

inp.write ( s+ STEP: Heating\n’)

inp.write( #%\n")

inp.write ("#Step ., name=Heating\n’)

inp.write ("«Heat Transfer, end=PERIOD, deltmx=50.\n")
inp.write(’0.5, 15., 0.002, 15.\n")

inp.write (’#Dflux, OP=MOD\n’)
inp.write ( elementALL_poly, BENU\n")

inp.write( elementALL_outer, BFNU\n")
inp.write ( #Sfilm\n")

inp.write(’'negy, F , 25., 20.\n")

inp.write ('negy_outer, F , 25., 20.\n")
inp.write ('« Sradiate\n")

inp.write ('negy. R, 25., 0.8\n")

inp.write( negy_outer, R, 25., 0.8\n")

inp.write( posy_outer, R, 25., 0.8\n")

inp.write( negx_outer, R, 25., 0.8\n")

inp.write( negz_outer, R, 25., 0.8\n")
inp.write(’«Restart, write, frequency=1, overlay\n’)
inp.write ('«Output., field\n")

inp.write ('«Element output\n’)

inp.write ('"TEMP, IVOL, UVARMI\n’)

inp.write (’«Element Output, POSITION=NODES, directions=YES\n’)
inp.write ("HFL\n")

inp.write (’«Node output\n’)

inp.write ('NT\n")

inp.write (*«Output, history , variable=PRESELECT\n")
inp.write ('«End Step\n’)

inp.close ()

Python script to calculate the thermal energy

Appendix2/script_calc_heat_aut.py

Script to calculate thermal energy in model

S 3

#load packages
import math
import numpy
import argparse

from odbAccess import =
# Class containing all Parameters which are parsed
class Parameters:
pass
parameter = Parameters () # instance of the class Parameters

# Parsing arguments

parser = argparse.ArgumentParser(description="Script to

# Adding all necessary and possible arguments to the parser.

parser.add_argument('—model’, type=str, required=True, help="Name of the model.")

parser.add_argument('—heatout’, type=str, required=True, help="Name of the output
written.’)

calculate the thermal energy.’)

file

args =
#

parser.parse_args (namespace=parameter)

#initialization

aq=[]
bg=[]
cq=[]
gb=[]
hb=[]
gbo=[]
hbo=[]
dq=[]
kb=[]

in which the thermal energy

»
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ap=[]

bp=[]

cp=[]

dp=[]

i_b=[]

i_bo=[]

toldp =[]

aa=[]

ba=[]

ca=[]

da=[]

i_a=[]

tolda =[]

kk=0

=[]

minus=0

tin=25. # initial temperature in Celsius
eges=0.

frame=1

timeold =0.

e35=0.

Atriangle=5.32E-7 # Area of triangle of one side of tetrahedral element
Aquad=5.2E—6 # Area of rectangle of outer elements

#

#variables which have to be defined
denquartz=2649. #density of quartz
denplagioclase=2703. #density of plagioclase
denavg_granite=2667.36 #density of avg_granite
#

#

#input
inodb="j101_01_"+parameter.model+" _03_02_1000_poly_intpoint_heat"

inout=parameter. heatout
#

#Method to interpolate the cp value
def getcp (temp, cptable):
z=1
if temp<=cptable [0][1]:
cp=cptable [0][0]
else:
if temp>=cptable[len(cptable) —1][1]:
cp=cptable[len(cptable) —1][0]
else:
while z<len(cptable):
if cptable[z—1][1]<=temp<=cptable[z][1]:
cp=cptable[z—1][0]+(temp—cptable[z—1][1])*((cptable[z][0] —cptable[z—1][0])/(cptable[z][1]—cptable[z—1][1]))
z=len (cptable)

z=7+1
return cp
#calculate thermal energy
def calcE (x, cp, d, tin, den): #Q=rohscp=*VsdeltaT
if len(tin)==0:
en=((d[1][x]—25)#cp=d[2][x]*den) #d[l]=end Temperature of increment, d[2]=IVOL
else:
en=((d[1][x]—tin[x])=cpxd[2][x]=*den)
return en

#Method for calculating the average HFL on the boundary elements
def avgHFL (t, time):

u=[[],[]]

x=[[1.[1.[1]

22=0

zx=0

elementz=0

#loop over all nodes which are on the front surface

while zz<len(t[0]):

elementz=t[0][zz] #current element node ID
z2z2=0
inx=0
while zzz<len(x[0]): #loop over already saved nodes
if (x[0][zzz]==elementz): #check if element ID is equal to saved element ID
x[11[zzz]=x[1][zzz]+t[1][zz][1] #if yes add flux in y—direction
x[2][zzz]=x[2][zzz]+1 #and update counter
zzz=len (x[0]) #and end while
inx=1

z22=222+1
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if inx==0: #check if element ID is already saved
x[0].append (t[0][zz]) #if not save the element ID
x[1].append(t[1][zz][1]) #and the HFL in y—direction
x[2].append (1)

zz=7z+1

while zx<len(x[0]):

if (x[1][zx]<0):
u[0].append (x[0][zx])
u[l].append(x[1][zx]*(Atriangle/3)=time) #and calculate Q=HFL2xdeltatime %A

zx=zX+1
return u
#main
odb = openOdb(path=inodb+".odb") #open odb file
quartz=odb.rootAssembly.instances [ 'POLY—1"].elementSets [ 'QUARTZ’ ] #open element set quartz

plagioclase=odb.rootAssembly.instances [ 'POLY—1"].elementSets [ PLAGIOCLASE" ] #open element set plagioclase
outer=odb.rootAssembly.instances [ 'OUTER—1"].elementSets [ 'OUTER_ELEMENT" ] #open element set plagioclase

boundsurface=odb.rootAssembly.instances [ 'POLY—1"].nodeSets[ Y0’ ] #set containing front surface nodes

boundsurface_outer=odb.rootAssembly.instances [ OUTER-1"].nodeSets[ Y0’ ] #set containing front surface nodes of outer
part

material_quartz=odb. materials [ 'QUARTZ" ]. specificHeat #read in Cp values of quartz

material_plagioclase=odb. materials [ "PLAGIOCLASE’ |. specificHeat #read in Cp values of plagioclase

material_avg_granite=odb. materials [ "AVG_GRANITE’ ]. specificHeat #read in Cp values of plagioclase

cptable_quartz=material_quartz . table
cptable_plagioclase=material_plagioclase.table
cptable_avg_granite=material_avg_granite. table
lastFrame=odb.steps [ Heating ' ].frames[—1] #save last frame of the step
print "first frame ID: "+str(frame)
print "last frame ID: "+str(lastFrame.frameld)
f=open(inout+".txt",'w’") #open output file
f.write("Increment Heating [J] Flux over boundaries [J] Energy [J] \n" )
while frame<=lastFrame .frameld: #loop over all increments
#variable declaration

yzp=0

yxp=0

yxb=0

yxbo=0

yhp=0

yzq=0

yxq=0

yhq=0

yza=0

yxa=0

yha=0

einc=0

minusinc=0

#main
curFrame = odb.steps[ Heating ].frames|[frame] #just load results from step "Heating"
temp=curFrame . fieldOutputs [ "TEMP" ] #get temperature values of all elements
vol=curFrame . fieldOutputs [ 'IVOL"] #get IVOL values of all elements
heat=curFrame. fieldOutputs [ "HFL" ] #get HFL values of all elements
timec=curFrame . frameValue #end time of current instance
time=timec—timeold #increment of current instance

field_plagioclase=temp. getSubset (region=plagioclase ., position=INTEGRATION_POINT, elementType="DC3D4") #TEMP values
of elements in set plagioclase

fieldvol_plagioclase=vol.getSubset (region=plagioclase, position=INTEGRATION_POINT, elementType="DC3D4") #IVOL values
of elements in set plagioclase

fieldHFL_boundsurf=heat. getSubset (region=boundsurface, position=ELEMENT_NODAL, elementType="DC3D4") #HFL values
of nodes in set boundsurface

fieldHFL_boundsurf_outer=heat. getSubset (region=boundsurface_outer, position=ELEMENT NODAL, elementType="DC3D8") #HFL
values of nodes in set boundsurface_outer

fieldValues_plagioclase=field_plagioclase.values #load field values

fieldvolVal_plagioclase=fieldvol_plagioclase.values

fieldHFLVal_boundsurf=fieldHFL_boundsurf. values

fieldHFLVal_boundsurf_outer=field HFL_boundsurf_outer.values

field_quartz=temp.getSubset (region=quartz , position=INTEGRATION_POINT, elementType="DC3D4") #TEMP values of
elements in set quartz

fieldvol_quartz=vol.getSubset (region=quartz, position=INTEGRATION_POINT, elementType="DC3D4") #IVOL values of
elements in set quartz

fieldValues_quartz=field_quartz.values #load field values

fieldvolVal_quartz=fieldvol_quartz.values

field_avg_granite=temp. getSubset (region=outer, position=INTEGRATION_POINT, elementType="DC3D8") #TEMP values of
elements in set avg_granite

fieldvol_avg_granite=vol.getSubset (region=outer, position=INTEGRATION_POINT, elementType="DC3D8") #IVOL values of
elements in set avg_granite

fieldValues_avg_granite=field_avg_granite.values #load field values
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fieldvolVal_avg_granite=fieldvol_avg_granite.values
#loop over all output lines

for vq in fieldValues_quartz: #index q stands for quartz
aq.append(vq.elementLabel) #save ID of the elements
bq.append(vq.data) #save TEMP value of the element

for wq in fieldvolVal_quartz:
cq.append(wq. data)
#loop over all boundary nodes on poly surface
for yb in fieldHFLVal_boundsurf:
gb.append(yb.nodeLabel) #index b stands for boundary
hb.append(yb.data)
#loop over all boundary nodes on outer surface
for ybo in fieldHFLVal_boundsurf_outer:
gbo.append (ybo.nodeLabel) #index b stands for boundary
hbo.append (ybo.data) #index o stands for outer part
dq.append (aq)
dq.append (bq)
dq.append (cq)
i_b.append(gb)
i_b.append(hb)
i_bo.append(gbo)
i_bo.append (hbo)
for vp in fieldValues_plagioclase: #index p stands for plagioclase
ap.append(vp.elementLabel)
bp.append(vp.data)
for wp in fieldvolVal_plagioclase:
cp.append (wp. data)
dp.append (ap)
dp.append (bp)
dp.append (cp)
#loop over avg_granite
for va in fieldValues_avg_granite: #index a stands for avg_granite
aa.append(va.elementLabel)
ba.append(va.data)
for wa in fieldvolVal_avg_granite:
ca.append(wa.data)
da.append (aa)
da.append (ba)
da.append(ca)
print "CP table plagioclase:"
countcp=0
while countcp<len(cptable_plagioclase):
print str(cptable_plagioclase[countcp J[0])+" "+str(cptable_plagioclase[countcp][1])
countcp=countcp+1
#calculate energy in plagioclase per increment
while yzp<len(dp[0]): #loop over all elements in set plagioclase
if (len(toldp)==0):
cpp=getcp ((dp[1][yzpl+tin)/2,cptable_plagioclase)
else:
cpp=getcp ((dp[1][yzpl+toldp[yzp])/2,cptable_plagioclase) #interpolate Cp values for certain
einc=einc+calcE(yzp, cpp, dp, toldp, denplagioclase) #sum energy over all elements
yzp=yzp+1
#calculate energy in quartz per increment
first=1
while yzq<len(dq[O0]):
if (len(toldq)==0):
cpq=getcp ((dq[11[yzql+tin)/2,cptable_quartz)
else:
cpq=getep ((dq[1]1[yzql+toldq[yzq])/2,cptable_quartz)
einc=einc+calcE (yzq, cpq, dq, toldq, denquartz)
yzq=yzq+l
#calculate energy in avg_granite per element
while yza<len(da[0]):
if (len(tolda)==0):
cpa=getcp ((da[l][yza]+tin)/2,cptable_avg_granite)
else:
cpa=getcp ((da[l][yzal+tolda[yza])/2,cptable_avg_granite)
einc=einc+calcE (yza, cpa, da, tolda, denavg_granite)
yza=yza+l
eges=eges+einc #cumulate energy over all increments
#delete old temperature field
del toldp[:]
del toldq[:]
del toldal[:]
#save current temperature field on variable old temperature field

temperatures
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while yhq<len(dq[O0]): #loop over quartz
toldq.append(dq[1][yhq])
yhg=yhq+1
while yhp<len(dp[0]):
toldp.append(dp[1]1[yhp])
yhp=yhp+1
while yha<len(da[0]): #loop over plagioclase
tolda.append(da[l][yha])
yha=yha+1
#calculate HFL out of the grid
kb=avgHFL (i_b, time)
while yxb<len(kb[O0]):
minusinc=minusinc+kb [1][yxb]
yxb=yxb+1
#calculate HFL out of the outer part
kbo=avgHFL (i_bo ., time)
while yxbo<len (kbo[0]):
minusinc=minusinc+kbo [1][yxbo]
yxbo=yxbo+1

#loop over plagioclase

minus=minus+minusinc
del aq/[:]
del bq[:]
del cq[:]
del dq[:]
del gb[:]
del hb[:]
del i_b[:]
del i_bo[:]
del ap[:]
del bp[:]
del cp[:]
del dp[:]
del aal:]
del bal[:]
del cal:]
del daf[:]
#write results to output file
f.write(str (frame)+" "+str(einc)+" "+str (minusinc)+"
frame=frame+1
timeold=timec
print "eges "+str(eges)
print "minus "+str (minus)

print "(eges—minus) "+ str(eges—minus)

f.write("Heating: "+str(eges)+"\n")
f.write("Flux over boundaries: "+str(minus)+"\n")
f.write("Total energy input: "+str(eges—minus))
f.close ()

"+str(einc+minusinc)+"\n")

Abaqus cooling input file

Appendix2/j101_01_cooling.inp

##Thermal 3D two component cooling model
+RESTART, READ, END STEP

STEP: Heating

#Step , name=cooling

#+Heat Transfer , end=PERIOD, deltmx=50.
2.e—2, 3600., 0.0000001, 3600.

#% LOADS

#Sfilm

negy, F , 25., 20.
negy_outer, F , 25., 20.
#Sradiate

negy., R, 25., 0.8
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negy_outer , R, 25., 0.8
posy_outer, R, 25., 0.8
negx_outer , R, 25., 0.8
negz_outer, R, 25., 0.8
#Restart , write, frequency=0
utput, field

#Element output

TEMP, IVOL

#Element Output, POSITION=NODES, directions=YES
HFL

#Node output

NT

#Output , history , variable=PRESELECT

«End Step

FORTRAN cooling subroutine

Appendix2/BF_cooling.f

C

SUBROUTINE DFLUX(FLUX, SOL,KSTEP, KINC, TIME, NOEL, NPT, COORDS,

1 JLTYP,TEMP, PRESS ,SNAME)
C
C

INCLUDE ’*ABA_PARAM.INC’
C

DIMENSION FLUX(2), TIME(2), COORDS(3)

CHARACTER:80 SNAME

integer :: I
C

FLUX(1)=0

RETURN

END
C
C

SUBROUTINE UVARM(UVAR, DIRECT, T, TIME , DTIME , CMNAME, ORNAME,

1 NUVARM, NOEL, NPT, LAYER, KSPT, KSTEP, KINC, NDI, NSHR, COORD,

2 JMAC,JMATYP,MATLAYO, LACCFLA)
C
C

INCLUDE *ABA_PARAM.INC”’
C

CHARACTER:80 CMNAME, ORNAME

CHARACTER#3 FLGRAY(15)

DIMENSION UVAR(NUVARM) ,DIRECT (3 ,3) ,T(3,3) ,TIME(2)

DIMENSION ARRAY (15) ,JARRAY (15) ,JMAC( ) ,JMATYP( ) ,COORD( )
C The dimensions of the variables FLGRAY, ARRAY and JARRAY
C must be set equal to or greater than 15.

UVAR(1)=0

RETURN

END

Python script to create the Abaqus linear elastic model

Appendix2/create_stress_input.py

#

# Script to automatically create the Abaqus stress input file
#

import sys # better than: import 0s.sys
import os # os = operating system
import argparse # to parse arguments

# Class containing all Parameters which are parsed
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class Parameters:

pass
parameter = Parameters () # instance of the class Parameters

# Parsing arguments

parser = argparse.ArgumentParser(description="Automatic created stress input file.”)
# Adding all necessary and possible arguments to the parser.

parser.add_argument( '—model ", type=str, required=True, help="Name of the model.")
args = parser.parse_args(namespace=parameter)

#

# Open and write in Abaqus input file
inp=open(’j101_03_"+str(parameter.model)+’ _03_02_1000_poly_intpoint.inp’, "w’)
inp.write( #*Automatic generated heat input file for jl101_03_"+str(parameter.model)+’ _03_02_1000_poly_intpoint.inp\n’)
inp.write ( «Part, name=poly\n’)

inp . write ("+*INCLUDE, Input=poly_74_mesh_static.inp\n’)

inp.write ("*INCLUDE, Input=quartz_elements_’'+str (parameter.model)+  .inp\n’)
inp.write ("#INCLUDE, Input=plagioclase_elements_’+str(parameter.model)+’.inp\n’")
inp.write(’#Solid Section, elset=quartz, material=quartz\n’)
inp.write(’#Solid Section, elset=plagioclase, material=plagioclase\n”)
inp.write( #End Part\n’)

inp.write (’#Part, name=outer\n’)

inp . write (*+*INCLUDE, Input=outer_74_mesh_C3D8R.inp\n’)

inp.write(’«Elset, elset=outer_element, generate\n’)

inp.write(’1, 281988, I\n")

inp.write (’*Solid Section, elset=outer_element, material=avg_granite\n’)
inp.write( #End Part\n’)

inp.write (’+Assembly, name=Assembly\n’)

inp.write(’«Instance , name=poly —1, part=poly\n’)

inp.write(’ 0.0, 0., 0.0\n")

inp.write ( #End Instance\n’)

inp.write ("s«Instance , name=outer —1, part=outer\n’)

inp.write(’ 0., 0.3, —0.07\n")
inp.write (’ 0., 0.3, —0.07, 0.577350269189626, —0.277350269189626, 0.507350269189626, 120.\n”’
)

inp.write(’+End Instance\n’)

inp.write (’#Nset, nset=FIX, instance=poly —1\n")

inp.write(’ 1\n")

inp.write(’«Nset, nset=ALL_poly, generate, instance=poly —1\n")
inp.write(’ 1, 703553, I\n")

inp.write ("*Elset, elset=elementALL_poly, generate, instance=poly —1\n’)
inp.write(’ 1, 4060685, 1\n")

inp.write (’#Nset, nset=ALL_outer, generate, instance=outer —I\n’)
inp.write(’ 1, 296620, 1\n")

inp.write(’«Elset, elset=elementALL_outer, generate, instance=outer —I\n")
inp.write(’ 1, 281988, I\n")

inp . write (*+*INCLUDE, Input=j101_01_69_poly_surfaces.inp\n’)

inp. write (*INCLUDE, Input=j101_01_74_outer_surfaces.inp\n’)

inp.write ("*TIE, name=tie_pos_y , TIED NSET=POLY—-1.Yl, ADJUST=NO\n’)
inp.write( posy. negy_inner\n’)

inp.write ("+TIE, name=tie_neg_x , TIED NSET=POLY-1.X0, ADJUST=NO\n’)
inp.write( negx, posx_inner\n’)

inp.write (’+TIE, name=tie_neg_z , TIED NSET=POLY-1.Z0, ADJUST=NO\n’)
inp.write(’'negz, posz_inner\n’)

inp.write (#* Section: plane_strain_basalt\n’)

inp.write ('#End Assembly\n’)

inp.write ("«INCLUDE, input=quartz_03_elastic.inp\n’)

inp.write ("«INCLUDE, input=plagioclase_03_elastic.inp\n’)

inp.write ("+*INCLUDE, input=avg_granite_03_elastic.inp\n’)

inp.write (’#Physical Constants, absolute zero=-273.15, stefan boltzmann=1.38065e¢—23\n")
inp.write (#Boundary\n")

inp.write (' z0_outer , ZSYMM\n")

inp.write (’x0_outer ., XSYMM\n ")

inp.write ( 'poly —1.z1, ZSYMM\n ")

inp.write( poly —1.x1, XSYMM\n")

inp.write(’#Initial Conditions , type=TEMPERATURE\n’)

inp.write ("ALL_outer, 25.\n’")

inp.write ("ALL_poly, 25.\n")

inp.write (#x \n")
inp.write (#x\n’)

inp.write ( '#% STEP: Heating\n’)

inp.write (#x\n’)

inp.write(’«Step, name=Heating\n’)

inp.write( =Static\n’)

inp.write(’0.3, 15., 0.000001, 15\n")

inp . write (*+TEMPERATURE, FILE=j101_01_"+str (parameter.model)+’_03_02_1000_poly_intpoint_heat.odb, BSTEP=1\n")
inp.write (" ALL_poly\n")
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inp.write ("ALL_outer\n’)
inp.write (’
inp.write ( #Output, field\n’)

«Restart , write, frequency=0\n")

inp.write( #Element output\n’)

inp.write ('S, SP, IVOL, E\n")

inp.write ("#Node output\n’)

inp.write ('NT, U, CF, RF\n")

inp.write («Output, history , variable=PRESELECT\n")
inp.write( +End Step\n’)

inp.write (s
inp.write(’

inp.write(’ Cooling\n’)

inp.write(’

inp.write (’#Step, name=Cooling\n")
inp.write (=« Static\n’)

inp.write(’2.e—2, 3600., 0.0000001, 3600.\n")

inp . write (*+*TEMPERATURE, FILE=j101_01_’+str(parameter.model)+’_03_02_1000_poly_intpoint_cooling.odb, BSTEP=1\n")
inp.write (" ALL_poly\n’)

inp.write ("ALL_outer\n’)

inp.write ("#Restart , write, frequency=0\n")
inp.write ("#Output, frequency=5, field\n")
inp.write ('«Element output\n’)

inp.write(’S, SP, IVOL, E\n")

inp.write ('«Node output\n’)

inp.write ('NT, U, CF, RF\n")

inp.write (’#Output, history , variable=PRESELECT\n")
inp.write(’+End Step\n’)

inp.close ()

Calculation of the submodel

Abagqus inputfile for the linear elastic submodel

Appendix2/j101_04_74_03_02_1000_poly_intpoint.inp

«Heading

#% Submodel

% Generated by: Abaqus/CAE 6.12—1

#Part , name=poly

Include only elements within a certain radius, created by write_poly_input_radius.cpp

*INCLUDE, Input=submodel_grains_input_1.inp
#INCLUDE, Input=quartz_elements_04_74 .inp
#INCLUDE, Input=plagioclase_elements_04_74 .inp
#Solid Section, elset=quartz, material=quartz

1.,

#Solid Section, elset=plagioclase , material=plagioclase
1.,

#End Part

#Assembly , name=Assembly
#Instance , name=poly —1, part=poly

0.0, 0., 0.0
+End Instance
#Nset, nset=FIX, instance=poly—1
1
*INCLUDE, Input=j101_04_surfaces.inp
#Submodel , TYPE=NODE
BC_submodel_node_list
+End Assembly
#INCLUDE, input=quartz_03_elastic.inp
#INCLUDE, input=plagioclase_03_elastic.inp
#Physical Constants, absolute zero=-273.15, stefan boltzmann=1.38065e-23

+#Boundary

z1, ZSYMM

x1, XSYMM

#Initial Conditions , type=TEMPERATURE
ALL_poly, 25.
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«Step , name=Heating

#STATIC

0.3, 15., 0.0000000001, 15.

*BOUNDARY, STEP=1, SUBMODEL

BC_submodel_node_list, 1, 3

+TEMPERATURE, FILE=j101_01_74_03_02_1000_poly_intpoint.odb, BSTEP=1, MIDSIDE
ALL_poly
«Restart , write ,
#QOutput , frequency=1,
«Element output

S, SP, IVOL, E
#Node output

NT, U, CF, RF
#Qutput ,
«End Step
#Step, name=Cooling

#STATIC

2.e—2, 3600., 0.0000001, 3600.

*BOUNDARY, STEP=2, SUBMODEL

BC_submodel_node_list, 1, 3

+TEMPERATURE, FILE=j101_01_74_03_02_1000_poly_intpoint.odb, BSTEP=2, MIDSIDE

frequency=0
field

history , variable=PRESELECT

ALL_poly

#Restart , write, frequency=0
#QOutput , frequency=5, field
«Element output

S, SP, IVOL, E

#Node output
NT, U, CF, RF
«Qutput ,
«End Step

history , variable=PRESELECT

C++ script to calculate the elements which are within a certain radius

Appendix2/write_poly_input_radius.cpp

11
!/ create
/1l

input file of grains within a certain radius

#include
#include
#include
#include
#include
#include
#include
#include
#define _]
#include
#include
#include
std
std

using
using
using
using
using
using
using
using
using
using

using

int
int amou
int maxel

const

const chars quartz_elementset="quartz_elements_69 .inp";

const

element

std 1
std 1
std ::
std :
std ::
std 1
std ::
std @
std :
//VARIABLES which have

chars

chars

<fstream >
<stdio .h>
<stdlib .h>
<iostream >

/x
/%

<string >
<sstream >
<algorithm >
<iterator >
USE_MATH_DEFINES
<math . h>
<cmath>
<vector>

crcout;

crendl;

string ;
ifstream;
ofstream ;
ristringstream;
ostringstream ;
ios;
istream_iterator ;
vector;
:back_inserter

amountnodes=703553;

ntelements =4060685;
ement=1400000000;

sets

printf ,
srand ,

inputfile_elementset="poly_74_mesh.inp";

plagioclase_elementset="plagioclase_elements_69 .inp";

scanf , NULL =/

%/

puts ,
rand

to be defined

//amount of nodes

//amount of elements

//maximum elements
//nmame of the input file containing the element sets
input file

//name of the

containing
file

//name of the the quartz element sets

input containing the plagioclase
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const chars new_quartz_elementset="quartz_elements_04_74 .inp"; //name of the new input file containing the quartz

element sets

const chars new_plagioclase_elementset="plagioclase_elements_04_74 .inp"; //name of the new input file containing the

plagioclase element sets

std :: vector<std :: vector<std :: vector<double> > >dat; //variable to save the geometric data of the microstructure

//std ::vector<std :: vector <double> >boundCon; // variable to save the bounding container of the different polyhedron
double radius=0.03; // radius for searched elements in meter

double sfactor=0.4; // factor which the Neper mesh is scaled

//INIT MEHTHODS

/1

std ::vector<std ::vector<std :: vector<int> > > getelemnode ();
std ::vector<std ::string > nodes;
//std ::vector<std :: vector <double> > getBS ()
std :: vector<std :: vector<std :: vector <double> > >getpolyhedron ()
std :: vector<int> readin(const chars input);
/I MAIN
int main (void){
// variable declaration
std :: vector<std :: vector<std :: vector<int> > > element;
ofstream o;
ofstream p;
ofstream q;
int poly:
int curelement;
bool old;

double curvector; //length of the vector which point from origin to the middle point of the polyhedra

string filename;
std :: vector<int> selement; //list of elements which are within the radius
std :: vector<int> quartzelement; //element sets of quartz elements
std :: vector<int> plagioelement; //element sets of plagioclase elements
//body
element=getelemnode () ;
cout<<"Last element set= "<<element[1].size ()<<endl;
cout<<"Amount of elements in last element set= "<<element[1][29999].size ()<<endl;

cout<<"Last element in last element set= "<<element[1][29999][element[1][29999].size ()—1]<<endl;

// read in data of grains
dat=getpolyhedron () //vector which returns all the results
quartzelement=readin (quartz_elementset); //read in quartz elements
plagioelement=readin(plagioclase_elementset); //read in plagioclase elements
//Loop over all polysets
for (int i=0; i<dat[3].size(); i++){
// search current element set
curvector=sqrt (pow((0.08 —dat [3][i][0]) ,2)+pow ((dat[3][i][1]),2)+pow((0.08 —dat[3][i][2]).2));
if (curvector<=radius){
selement.push_back(i+1);
cout<<"Poly "<<i+l<<" is inside the radius"<<endl;

}
filename="submodel_grains_radius_0030.inp";
o.open(filename.c_str());
for (int k=0; k<nodes.size(); k++){ //write node data to new input file
o<<nodes[k]<<endl;
}
// write element data in input file
o<<"xElement, type=DC3D4"<<endl;
for (int y=0; y<selement.size (); y++){
poly=selement[y];
for (int z=0; z<element[1][poly —1].size (); z++){
curelement=element [1 ][ poly —1][z];
o<<curelement<<", "<<element[O][curelement —1][0]<<
—1][2]<<". "<<element[0][curelement —1][3]<<endl;

"<<element [0][ curelement —1][1]<<",

}

for (int y=0; y<selement.size (): y++){
poly=selement[y];
o<<"xElset , elset=poly

<<selement[y]<<endl;
for (int z=1; z<=element[1][poly —1].size (): z++){
if (z==(element[1][poly —1].size ())){
o<<element[1][poly —1][z—1]<<endl;
}
else{
if (z%10==0){
o<<element [1][poly —1][z—1]<<","<<endl;
}

else{

"<<element [0][ curelement
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o<<element[1][poly —1][z—1]<<", "

}
o.close();
int lastID=0;
p.open(new_quartz_elementset) ;
p<<"+ELSET, Elset=quartz"<<endl;
cout<<"quartzelement.size ()="<<quartzelement.size ()<<endl;
for (int w=0; w<quartzelement.size (); w++){
for (int z=lastID; z<selement.size (); z++){
if (quartzelement[w]==selement[z]) {
p<<"poly'"<<selement[z]<<endl;
lastID=z;
z=selement.size ();

}
else{
if (quartzelement[w]<selement[z]) {
z=selement.size ();
}
}
}
}
p.close ()
lastID =0;

q.open(new_plagioclase_elementset);
q<<"+ELSET, Elset=plagioclase"<<endl;
cout<<"plagioelement.size ()="<<plagioelement.size ()<<endl;
for (int w=0; w<plagioelement.size (); w++){
for (int z=lastID; z<selement.size(); z++){
if (plagioelement[w]==selement[z]) {
q<<"poly"<<selement[z]<<endl;
lastID=z;
z=selement.size ();
}
else{
if (plagioelement[w]<selement[z]) {
z=selement.size ();

)
q.close();
return 0;
}
/1 Method to read in and save the elements and the corresponding nodes
std ::vector<std :: vector<std :: vector<int> > > getelemnode () {
std :: vector<std :: vector<std :: vector<int> > > elementdata ;
int deletlines=1; //lines which should be omitted
ifstream f;
string s;
std ::vector<std :: string > v;
std :: vector<std :: vector<int> > elements;
std ::vector<std :: vector<int> > polydata;
std :: vector<std :: vector<std :: vector<int> > > retout;
f.open(inputfile_elementset, ios::in);

if (f.good()==false){ //check if input file exist
f.close(); //if not close file
cout<<"inp file is missing!!!"<<endl; //print error message and
exit(l): // exit program
}

while (!f.eof())

{ getline (f,s):
v.push_back(s):

)

f.close();

nodes . push_back(v[0]):

v.erase(v.begin());

for (int i=0; i<amountnodes; i++){ //save all nodes including the coordinates
nodes. push_back(v[i]);

)

for (int h=amountnodes+1;h<(amountnodes+amountelements+1);h++){ //save the elements and the corresponding nodes numbers
std :: vector<std ::string > temp2;
istringstream iss2(v[h]);




209

copy (istream_iterator <string >(iss2),
istream_iterator <string >(),
back_inserter <vector<string > >(temp2));
std :: vector<int> row2;
(int j=1; j<5; j++){
string str2=temp2[j];
if ((str2.length()—D==".")
str2 .erase(str2.length () —1);
row2.push_back (atof (str2.c_str()));

for

}
elements . push_back (row2);
}
bool newpoly=true;
unsigned int loc=6;
bool em:
bool
int skip=0;
std :: vector<int> row3;
// save the polyhedra and the corresponding element
for (unsigned k<v
std ::
istringstream

firstem=false

number
int k=amountnodes+amountelements ;
vector<std ::string > temp3;
iss3(v[k]):
copy (istream_iterator <string >(iss3),
istream_iterator <string >(),
back_inserter <vector<string > >(temp3));
if (firstem==true){
skip++;
if the line
//check if

em=temp3.empty () ; //em=true is
if ((em==false)&&(mewpoly==true)){
loc=temp3 [1]. find ("poly");
}

if

empty

line is

// check is

/1if “poly"

(newpoly==true ) { if a new poly
if (loc != 6)

k=v.size ()+2;

requ

else
newpoly=false ;
}
else{
if (em==true){ 11if
polydata.push_back (row3);
row3.erase (row3.begin (), row3.end());

the line is empty erase

newpoly=true;
}
else{
int j=0; j<temp3.size (); j++){ /1
// save each element
/1

for (unsigned
string str3=temp3[j]:
if ((str3.length()—1==".")
str3 .erase(str3.length()—1);
if (str3.empty()==false)
row3 . push_back (atof (str3.c_str()));

if element conta

}
if (skip==0){
firstem=temp3.empty () ;

)

retout.push_back(elements);

retout.push_back(polydata);

return retout;

}

/! Method which read data from the Neper file

std ::vector<std ::vector<std :: vector<double> > >getpolyhedron ()
int omittedlines=6; // insert the line which should be omitte

ifstream f;

string

std ::

int

S
vector<std ::string> v;
//amount of vertex
//amount of edges

//amount of faces

amountvertex ;
amountedge ;
amountface ;
amountpolyhedron ;

int
int
//amount of polyhedron
/1

z— value

int

std : index of vertex

vector <double> > vertex;
s Y

rvector<std ::

number 1, edge number 2, . X— of vertex

.size () k++){

the certain

//1loop over whole file

not empty and a new poly is

ired

is not on the 7th digit end loop

line

in, delete

{
d

is the column; row is in the form:

detected

Amount of edges, edge
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std :: vector<std :: vector <double> > edges; // index of edge is the column:; row is in the form: vertex 1, vertex 2, number
of faces, face 1, face 2,

std ::vector<std :: vector<double> > faces; // index of face is the column; row is in the form: polyhedron 1, polyhedron
2, number of vertices, ver_1, ver_2,..., edge_1, edge_2,

std :: vector<std :: vector <double> > polyhedron; // poly_centre_x , poly_centre_y ., poly_centre_z , number of faces, face 1,
face 2,

std :: vector<std :: vector<std :: vector<double> > >ret; //vector which returns all the results

f.open("poly_69_mesh.tess", ios::in);

if (f.good()==false){ //check if tess file exist
f.close(); //if not close file
cout<<"tess file is missing!!!"<<endl; //write error message
exit(l); //end program

}

while (!f.eof())
{ getline (f.,s);
v.push_back(s);
}
f.close();
for (int j=1; j<=omittedlines; j++){
v.erase(v.begin());
}
/] save vertex
int hv=0;
amountvertex=atoi(v[hv].c_str());
v.erase (v.begin());
for (int j=0; j<3+amountvertex; j=j+3){
std :: vector<std ::string> templ; // amount of edges, edge number 1, edge number 2,
std :: vector<std ::string > temp2;
istringstream issl(v[j+1]);
copy(istream_iterator <string >(issl), // split of the single lines
istream_iterator <string >(),
back_inserter <vector<string > >(templ));
std :: vector <double> row;
istringstream iss2(v[j+2]):
copy(istream_iterator <string >(iss2),
istream_iterator <string >(),
back_inserter <vector<string > >(temp2));
for (int n=0; n<=2; n++){ // insert coordinates of vertex
row . push_back (sfactor=atof (temp2[n].c_str())): //save component and scale it with factor
}
vertex . push_back(row); //insert row in 2dimensional vector
)
cout<<"z koordinate von vertex I:"<<vertex[0][2]<<endl;
ret.push_back(vertex);
int he=hv+amountvertex=3+1;
amountedge=atoi(v[he].c_str());
for (int j=he+1; j<he+l+4xamountedge; j=j+4){
std :: vector<std :: string > temp3;
std ::vector<std ::string > temp4;
istringstream iss3(v[j+1]);
copy(istream_iterator <string >(iss3), //split of the single lines
istream_iterator <string >(),
back_inserter <vector<string > >(temp3));
std :: vector <double> row2:
for (int n=0; n<2;n++){ //insert vertex 1, vertex 2
row2.push_back (atof (temp3[n].c_str()));
}
istringstream iss4 (v[j+2]);
copy(istream_iterator <string >(iss4),
istream_iterator <string >(),
back_inserter <vector<string > >(temp4));
row2.push_back(atof (temp4 [0].c_str())): // insert amount of faces
for (int n=1; n<=atoi(temp4[0].c_str()); n++){
row2.push_back (atof (temp4[n].c_str()));
}
edges.push_back(row2); //insert row2 in 2dimemsional vector
}
ret.push_back (edges);
// save faces
int hf=he+amountedge=4+2;
amountface=atoi (v[hf].c_str());
for (int j=hf+1; j<hf+l+7:amountface; j=j+7){
std :: vector<std ::string > temp5;
std ::vector<std ::string > temp6;
std :: vector<std :: string > temp7;
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/1

istringstream issS(v[j+2]);
copy (istream_iterator <string >(iss5), //split of the single lines
istream_iterator <string >(),
back_inserter <vector<string > >(temp5));
std :: vector <double> row3;
for (int n=0; n<4;n++){ //insert face eq_a, face eq_b, face eq_c, face eq_d
row3 . push_back (atof (temp5[n].c_str()));
}
istringstream iss6(v[j+3]);
copy(istream_iterator <string >(iss6),
istream_iterator <string >(),
back_inserter <vector<string > >(temp6));
row3 . push_back (atof (temp6[0].c_str())); // insert amount of vertex
for (int n=1; n<=atoi(temp6[0].c_str()); n++){ //insert ver_1, ver_2,
row3.push_back(atof (temp6[n].c_str()));
}
faces.push_back(row3); //insert row3 in 2dimemsional vector
}
ret.push_back (faces);
save polyhedron
int hp=hf+amountface=7+2;
amountpolyhedron=atoi(v[hp].c_str());
for (int j=hp+1; j<hp+l+3xamountpolyhedron; j=j+3){
std :: vector<std :: string > temp8;
std :: vector<std :: string > temp9;
istringstream iss8(v[j]);
copy (istream_iterator <string >(iss8), //split of the single lines
istream_iterator <string >(),
back_inserter <vector<string > >(temp8));
std :: vector <double> row4:
for (int n=1; n<4:n++){ //insert coordinates of the middle point of the polyhedron
row4 . push_back(sfactor=atof (temp8[n].c_str())); //save component and scale it with
}
istringstream iss9 (v[j+2]);
copy(istream_iterator <string >(iss9),
istream_iterator <string >(),
back_inserter <vector<string > >(temp9));
row4.push_back(atof (temp9[0].c_str())): // insert amount of faces
for (int n=1; n<=atoi(temp9[0].c_str()); n++){ //insert face_l, face_ 2,
row4 . push_back (atof (temp9[n].c_str()));
cout<<"fist face" << row4[0]<<endl;
}
polyhedron.push_back(row4); //insert row 4 in 2dimensionl vector
}
ret.push_back(polyhedron);

return ret;

}
11

Method to read in the element sets

std :: vector<int> readin(const chars input){

std :: vector<int> elsets;

ifstream f;

std ::vector<std :: string > v;

string s;

f.open(input, ios::in);

if (f.good()==false){ //check if tess file exist

f.close(); //if not close file
cout<<"Element set file is missing!!!"<<endl; //write error message
exit(1); //end program

}

while (!f.eof())

{ getline (f,s):
v.push_back(s);

}

f.close();

v.erase (v.begin());

for (int j=0; j<v.size(); j++){
v[j].erase(0.4);
elsets.push_back(atoi(v[j].c_str())):

}

return elsets ;

factor
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Anisotropic model
Abagqus input file for the heat transfer model with anisotropic quartz material behavior

Appendix2/j101_01_76_06_02_2000_poly_intpoint.inp

#Heading

Thermal model for anisotropic material
#% Generated by: Abaqus/CAE 6.12—1

#Part, name=poly

#INCLUDE, Input=poly_74_mesh.inp

«INCLUDE, Input=quartz_elements_69.inp
«INCLUDE, Input=plagioclase_elements_69.inp

include orientation created by create_orientation.cpp
#INCLUDE, Input=orientation_1_76.inp

#End Part

«Part , name=outer

#INCLUDE, Input=outer_74_mesh_linear.inp

«Elset, elset=outer_element, generate

1, 281988, 1

#Solid Section, elset=outer_element, material=avg_granite
1.,

#End Part
#Assembly , name=Assembly
#Instance , name=poly —1, part=poly
0.0, 0., 0.0
#End Instance
#Instance , name=outer —1, part=outer
0., 0.3, -0.07
0., 0.3, —0.07, 0.577350269189626, —0.277350269189626, 0.507350269189626, 120.

#End Instance

#Nset, nset=FIX, instance=poly—I

1

#Nset, nset=ALL_poly, generate, instance=poly—1

1, 703553, 1

«Elset , elset=elementALL_poly, generate, instance=poly—1
1, 4060685, 1

#Nset, nset=ALL_outer, generate, instance=outer—I

1, 296620, 1

#Elset, elset=elementALL_outer, generate, instance=outer—1
1, 281988, 1

#INCLUDE, Input=j101_01_69_poly_surfaces.inp
«INCLUDE, Input=j101_01_74_outer_surfaces.inp

+«TIE, name=tie_pos_y , TIED NSET=POLY-1.Y1l, ADJUST=NO
posy, negy_inner

+«TIE, name=tie_neg_x , TIED NSET=POLY-1.X0, ADJUST=NO
negx ., posx_inner

+TIE, name=tie_neg_z , TIED NSET=POLY—-1.Z0, ADJUST=NO
negz, posz_inner

#End Assembly

Include materials

INCLUDE, input=quartz_06.inp

+*INCLUDE, input=plagioclase_03.inp

#INCLUDE, input=avg_granite_03.inp

#Physical Constants , absolute zero=-—273.15, stefan boltzmann=1.38065e—23
#Initial Conditions , type=TEMPERATURE

ALL_outer, 25.

ALL_poly, 25.

#Step , name=Heating

#+Heat Transfer , end=PERIOD, deltmx=50.

0.5, 15., 0.002, 15.

«Dflux , OP=MOD

elementALL_poly , BENU

elementALL_outer , BFNU

#Sfilm

negy, F , 25., 20.

negy_outer, F , 25., 20.

#Sradiate

negy, R, 25., 0.8
negy_outer, R, 25., 0.8
posy_outer, R, 25., 0.8
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negx_outer , R, 25., 0.8

negz_outer , R, 25., 0.8

#Output , field

#Element output

TEMP, IVOL, UVARMI

#Element Output, POSITION=NODES, directions=YES
HFL

#Node output

NT

#Output, history , variable=PRESELECT
«End Step

#Step , name=Cooling

+Heat Transfer , end=PERIOD, deltmx=200.
10., 3600., 0.036, 3600.

#Dflux , op=NEW

#Sfilm

negy, F , 25., 20.

negy_outer, F , 25., 20.

«Sradiate

negy., R, 25., 0.8

negy_outer, R, 25., 0.8

posy_outer, R, 25., 0.8

negx_outer, R, 25., 0.8

negz_outer , R, 25., 0.8

«Restart , write, frequency=0
#Output , frequency=5, field

#Element output

TEMP, IVOL, HFL

#Node output

NT

#Qutput, history , variable=PRESELECT
«End Step

C++ script to create a random orientation of quartz grains

Appendix2/create_orientation.cpp

/1l

// Script which creates random orientations for the Abaqus model
/1

#include <fstream>

#include <vector>

#include <iostream >

#include <string.h>

#include <stdio.h>

#include <sstream>

#include <algorithm>

#include <iterator >

#include <stdio.h> /% printf, scanf, puts, NULL =/
#include <stdlib.h> /s
#include <time.h> /s
#define _USE_MATH_DEFINES
#include <math.h>

rand , rand =/

time x/

using namespace std;
/1
// global variable
/1l
ofstream myfile;
11
//Method which creates a vector containing the polyhedra and the corresponding phase
void getori (int amountofori){
int alpha, beta, gamma;
time_t t;
double M[3][3]:
double a[3];
double b[3];
double x[3]={1,0.,0};
double y[3]={0,1,0};
time(&t);
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srand ((unsigned int)t);
for (int i=0; i<amountofori; i++){

alpha= int(rand() % 360 + 1); // create alpha angle between 1 and 360
beta= int(rand() % 180 + 1); // create beta angle between 1 and 180
gamma= int(rand () % 360 + 1); // create gamma angle between 1 and 360

myfile<<"#xalpha= "<<alpha<<" beta= "<<beta<<" gamma= "<<gamma<<endl;
M[O][0]=cos(alpha)=cos(gamma)—sin (alpha)=cos(beta)=sin(gamma) ;
M[O][1]=sin(alpha)#cos(gamma)+cos(alpha)=«cos(beta)=sin(gamma) ;
M[O][2]=sin(beta)=*sin (gamma) ;
M[1][0]=—cos (alpha)=sin(gamma)—sin (alpha)=cos(beta)=cos(gamma);
M[1][1]=—sin(alpha)=sin(gamma)+cos(alpha)s=cos(beta)=cos(gamma);
M[1][2]=sin(beta)=cos(gamma) ;
M[2][0]=sin(alpha)=sin(beta);
M[2][1]=—cos(alpha)=sin(beta);
M[2][2]=cos(beta);
for (int k=0; k<3; k++){
alk]=0;
b[k]=0;
}
for (int k=0; k<3; k++){
for (int j=0; j<3; j++){
alk]+=M[k]I[j1=x[j1):
bIk]+=MIKI[j1+y[jD):

}
}
myfile <<"*ORIENTATION, name=ori"<<i+l<<", DEFINITION=COORDINATES"<<endl;
myfile<<a[0]<<", "<<a[l]<<", "<<a[2]<<", "<<b[0]<<", "<<b[l]<<", "<<b[2]<<endl;

}

void assignpoly (int amountpoly, int amountori){
ifstream f;
time_t t;
string s;
std ::vector<std ::string> v;
std :: vector<int> phases;
f.open("phases_69.txt", ios::in);

if (f.good()==false){ //check if tess file exist
f.close(); //if not close file
cout<<"tess file is missing!!!"<<endl; //write error message
exit(1l); //end program

}

while (!f.eof())
{ getline (f,s);
v.push_back(s);
}
f.close ()
v.erase(v.begin());
for (int 1=0; l<amountpoly; l++){
std ::vector<std ::string > templ;
istringstream issl (v[1]);
copy(istream_iterator <string >(issl), // split of the single lines
istream_iterator <string >(),
back_inserter <vector<string > >(templ));
phases.push_back(atof (templ[1].c_str()));:

}
cout<<"phase of polyl: "<<phases[O]<<endl;
time(&t);
srand ((unsigned int)t);
int ori;
for (int i=0; i<amountpoly; i++){
ori= int(rand() % amountori + 1); // create number between 1 and amount of orientations

if (phases[i]==0){
myfile <<"+*SOLID SECTION, elset=poly"<<i+l<<", material=quartz, orientation=ori"<<ori<<endl;
}
else{
if (phases[i]==1){
myfile <<"+SOLID SECTION, elset=poly"<<i+l<<", material=plagioclase "<<endl;
}
else{
cout<<"ERROR!!! "<<endl ;
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// main

int main() {
int amountofori;
int amountofpoly;
myfile.open("orientation_1_76.inp");
cout<<"Insert amount of orientations: ";
cin>>amountofori ;
getori (amountofori);
cout<<"Insert amount of polyhedra: ";
cin>>amountofpoly ;
assignpoly (amountofpoly, amountofori);
myfile.close ();
return 0;

Quartz anisotropic input file

Appendix2/quartz_06_elastic.inp

«Material , name=quartz
#CONDUCTIVITY, TYPE=ORTHO

6.44, 6.44, 12.31, 25.
6.00, 6.00, 10.84, 50.
5.30, 5.30, 8.80, 100.
4.78, 4.78, 7.53, 150.
4.40, 4.40, 6.62, 200.
4.05, 4.05, 5.94, 250.
3.76, 3.76, 5.42, 300.
3.53, 3.53, 4.98, 350.
3.34, 3.34, 4.67, 400.
3.15, 3.15, 4.37, 450.
3.02, 3.02, 4.13, 500.
2.95, 2.95, 4.04, 520.
2.89, 2.89, 3.94, 540.
2.82, 2.82, 3.86, 560.
2.93, 2.93, 3.88, 572.
3.00, 3.00, 3.90, 573.
3.06, 3.06, 3.92, 574.
3.21, 3.21, 3.94, 580.
3.24, 3.24, 3.96, 600.
3.30, 3.30, 4.01, 650.
3.37, 3.37, 4.07, 700.
3.45, 3.45, 4.13, 750.
3.51, 3.51, 4.17, 800.
#Density

2649.,

+ELASTIC, TYPE=ANISOTROPIC

87.66E+9, 6.84E+9, 87.66E+9, 13.72E+9, 13.72E+9, 106.33E+9, 0.00, 0.00
0.00, 40.91E+9, 0.00, 0.00, 0.00, 18.18E+9, 56.69E+9, 18.18E+9
—18.18E+9, 0.00, 0.00, 0.00, 56.69E+9, 25.

87.13E+9, 5.27E+9, 87.13E+9, 12.75E+9, 12.75E+9, 103.92E+9, 0.00, 0.00
0.00, 41.48E+9, 0.00, 0.00, 0.00, 18.24E+9, 55.62E+9, 18.24E+9
—18.24E+9, 0.00, 0.00, 0.00, 55.62E+9, 100.

86.98E+9, 3.19E+9, 86.98E+9, 11.25E+9, 11.25E+9, 101.00E+9, 0.00, 0.00
0.00, 42.36E+9, 0.00, 0.00, 0.00, 17.99E+9, 53.55E+9, 17.99E+9
—17.99E+9, 0.00, 0.00, 0.00, 53.55E+9, 200.

86.89E+9, 0.57E+9, 86.89E+9, 9.54E+9, 9.54E+9, 98.02E+9, 0.00, 0.00
0.00, 43.66E+9, 0.00, 0.00, 0.00, 17.90E+9, 51.78E+9, 17.90E+9
—17.90E+9, 0.00, 0.00, 0.00, 51.78E+9, 300.

85.02E+9, —4.90E+9, 85.02E+9, 7.11E+9, 7.11E+9, 93.83E+9, 0.00, 0.00
0.00, 44.99E+9, 0.00, 0.00, 0.00, 18.17E+9, 49.09E+9, 18.17E+9
—18.17E+9, 0.00, 0.00, 0.00, 49.09E+9, 400.

83.69E+9, —8.35E+9, 83.69E+9, 4.98E+9, 4.98E+9, 91.13E+9, 0.00, 0.00
0.00, 45.73E+9, 0.00, 0.00, 0.00, 17.37E+9, 47.74E+9, 17.37E+9
—17.37E+9, 0.00, 0.00, 0.00, 47.74E+9, 450.

81.16E+9, —12.72E+9, 81.16E+9, 1.74E+9, 1.74E+9, 87.97E+9, 0.00, 0.00
0.00, 46.96E+9, 0.00, 0.00, 0.00, 16.58E+9, 45.97E+9, 16.58E+9
—16.58E+9, 0.00, 0.00, 0.00, 45.97E+9, 500.

78.98E+9, —15.40E+9, 78.98E+9, 0.46E+9, 0.46E+9, 86.43E+9, 0.00, 0.00
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0.00, 47.52E+9, 0.00, 0.00, 0.00,

15.88E+9, 45.17E+9, 15.88E+9

—15.88E+9, 0.00, 0.00, 0.00, 45.17E+9, 520.
76.67E+9, —18.43E+9, 76.67E+9, —1.86E+9, —1.86E+9, 83.70E+9, 0.00

0.00, 48.11E+9, 0.00, 0.00, 0.00,

15.18E+9, 44.47E+9, 15.18E+9

—15.18E+9, 0.00, 0.00, 0.00, 44.47E+9, 540.
72.77E+9, —23.86E+9, 72.77E+9, —5.64E+9, —5.64E+9, 79.13E+9, 0.00

0.00, 48.85E+9, 0.00, 0.00, 0.00,

12.78E+9, 42.22E+9, 12.78E+9

—12.78E+9, 0.00, 0.00, 0.00, 42.22E+9, 560.
66.18E+9, —32.32E+9, 66.18E+9, —5.65E+9, —5.65E+9, 75.16E+9, 0.00

0.00, 49.87E+9, 0.00, 0.00, 0.00,

9.77E+9, 38.68E+9, 9.77E+9

—9.77E+9, 0.00, 0.00, 0.00, 38.68E+9, 572.
65.39E+9, —29.73E+9, 65.39E+9, —2.45E+9, —2.45E+9, 74.80E+9, 0.00

0.00, 50.05E+9, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 38.09E+9,

0.00, 38.09E+9, 0.00
573.

64.60E+9, —24.61E+9, 64.60E+9, 0.74E+9, 0.74E+9, 76.80E+9, 0.00

0.00, 50.30E+9, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 37.66E+9,

0.00, 37.66E+9, 0.00
574.

96.41E+9, —1.04E+9, 96.41E+9, 18.52E+9, 18.52E+9, 91.30E+9, 0.00,

0.00, 50.67E+9, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 36.44E+9,
118.96E+9, 16.99E+9, 118.96E+9,
0.00, 50.65E+9, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 36.17E+9,
128.14E+9, 26.04E+9, 128.14E+9,
0.00, 51.12E+9, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 36.45E+9,
131.52E+9, 29.03E+9, 131.52E+9,
0.00, 51.58E+9, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 36.72E+9,
136.41E+9, 32.11E+9, 136.41E+9,
0.00, 52.16E+9., 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 38.21E+9,
#Specific Heat

786.1, 48.8
836.5, 85.1
918.8, 150.6
982.5, 210.6
1030.2, 267.7
1093.8, 345.7
1136.3, 405.6
1189.3, 469.7
1226.4, 507.3
1263.6, 531.
1324.7, 550.7
1468.2, 567.7
1138.6, 573.8
1141.2, 623.9
1149.0, 671.2
1162.1, 776.9
1180.5, 928.5

1182.9, 1027.2
#*EXPANSION, TYPE=ORTHO, ZERO=25

1.267E-05, 1.267E-05, 9.557E-06,
1.267E-05, 1.267E-05, 9.557E-06,
1.412E-05, 1.412E-05, 8.522E-06,
1.521E-05, 1.521E-05, 9.143E-06,
1.536E-05, 1.536E—-05, 9.604E—06,
1.618E—-05, 1.618E—-05, 1.029E-05,
1.677E-05, 1.677E-05, 1.069E-05,
1.711E-05, 1.711E-05, 1.106E-05,
1.837E-05, 1.837E-05, 1.180E-05,
1.941E-05, 1.941E-05, 1.264E-05,
2.146E-05, 2.146E-05, 1.339E-05,
2.293E-05, 2.293E-05, 1.458E-05,
2.353E-05, 2.353E-05, 1.500E-05,
2.451E-05, 2.451E-05, 1.556E-05,
2.607E-05, 2.607E-05, 1.640E-05,
2.933E-05, 2.933E-05, 1.796E-05,
2.980E-05, 2.980E-05, 1.839E-05,
2.993E-05, 2.993E-05, 1.864E-05,
2.912E-05, 2.912E-05, 1.803E-05,
2.670E-05, 2.670E—-05, 1.654E-05,

0.00, 36.44E+9, 0.00

580.

33.87E+9, 33.87E+9, 110.78E+9,
0.00, 36.17E+9, 0.00

600.

42.78E+9, 42.78E+9, 120.43E+9,
0.00, 36.45E+9, 0.00

650.

45.82E+9, 45.82E+9, 122.89E+9,
0.00, 36.72E+9, 0.00

700.

48.78E+9, 48.78E+9, 125.88E+9,
0.00, 38.21E+9, 0.00

800.

25.

35.

100.
150.
200.
250.
300.
350.
400.
450.
500.
543.
550.
558.
567.
574.
576.
579.
600.
650.

0.

0.00

0.00

0.00

0.00

0.00

00

.00,

.00,

.00,

.00,

0.00

0.00

0.00

0.00




Appendix C

Scripts and input files for 3D
inhomogeneous three component models

Global Python script for a parameter study

Appendix3/3D_poly_model_v3_2_3comp.py

This Python script automatically calculate temperature and stress fields for the
3D three component parameter study

#
#
# requires: electromagnetic field , absorbed power density at integration points, phase elements
#
#

#load packages

#

import sys # better than: import 0s.sys
import os # os = operating system

import argparse # to parse arguments

from datetime import datetime
os.system( python —V7")

start_time = datetime .now ()
print(’Starting time = '+str(start_time))

# Class containing all Parameters which are parsed
class Parameters:

pass

parameter = Parameters () # instance of the class Parameters

# Parsing arguments

parser = argparse.ArgumentParser(description="Automatic temperaturefield calculation.”)

# Adding all necessary and possible arguments to the parser.

parser.add_argument( '—model ", type=str, required=True, help="Name of the model.")

parser.add_argument('—initialBF ", type=float, required=True, help="1Initial constant body heat multiplier.")

parser.add_argument('—totaltime ', type=float, required=True, help="Time of microwave heating.’)

parser.add_argument(’——abaquspath’, type=str, required=True, help="Name of the abaqus executable.”)

parser.add_argument(’——cpus’, type=int, required=True, help="Number of cpus which shall be used for the Abaqus
calculation.’)

parser.add_argument(’—provpower , type=float, required=True, help="Provided microwave power.")

parser.add_argument('—xd’, type=float, required=True, help="Dimension in x direction of numerical domain

M)

parser.add_argument('—yd’, type=float, required=True, help='Dimension in y direction of numerical domain’)
M)

s

parser.add_argument('—zd’, type=float, required=True, help="Dimension in z direction of numerical domain

parser.add_argument('—tess ", type=str , required=True, help='Name of the tess file containing the grains.’)

parser.add_argument(’—phfraction_quartz ’, type=float , required=True, help="Phase fraction of the quartz phase.’)

parser.add_argument(’——phfraction_plagioclase’, type=float , required=True, help="Phase fraction of the plagioclase
phase.’)

parser.add_argument(’—amountpoly ", type=int, required=True, help="Amount of polyhedra in the model.")
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parser.add_argument(’'—inpintegrationpoints’, type=str, required=True, help="Name of the file containing the coordinates
of the intergrationpoints.’)

parser.add_argument(’——inpelementset’, type=str, required=True, help="Name of the file containing the elementsets.’)

parser.add_argument(’——resolution’, type=int, required=True, help="Spatial resolution of the FDTD grid’)

args = parser.parse_args(namespace=parameter)

#Variable initialization

fine=0

count=0

finished=0

currentBF =0.

#

#main

#

print(’Start of automatic 3D polyhedron calculation\n’)

path_working_dir = os.path.dirname(os.path.abspath(__file__)) # The directory of the current __file__ is cut down

to the directory without the filename.
print(’The current working direcotry is: ’+str(path_working_dir))
currentBF=parameter.initial BF #initialize current body flux
provenergy =0.7+parameter.provpower:parameter.totaltime /4. #calculate provided energy (with 30 percent of loss)
print(’Provided Enerergy= “+str(provenergy))
while (finished!=1):
#copy files
os.system("cp output3D_granite_hartlieb_inhom_v1_2_E2.h5 output3D_"+str (parameter.model)+"_E2.h5")
os.system("cp absorption_101_granite_hartlieb_inhom_v1_2_03_02_1000_intpoints.txt absorption_101_"+str(parameter.model)
+" . txt")
os.system("cp quartz_elements_granite_hartlieb_inhom_vI1_2.inp quartz_elements_"+str(parameter.model)+".inp")
os.system("cp plagioclase_elements_granite_hartlieb_inhom_v1_2.inp plagioclase_elements_"+str(parameter.model)+".inp")
os.system("cp mica_elements_granite_hartlieb_inhom_v1_2.inp mica_elements_"+str (parameter.model)+".inp")
#Create Abaqus input file

if fine==0:
if 0 !'= os.system(str(parameter.abaquspath)+’ python —u create_heat_input_3comp_v2.py —model ’+str(parameter.model)+
’ —totaltime “+str(parameter.totaltime)+’ | tee create_heat_input_3_comp_v2 +str(parameter.model)+’_"+str(count)+’
.log’):
sys.exit( Error during create_heat_input_v2.py.")
fine=1
else:

print (’Heat abaqus input file written!”)
#Create DFLUX subroutine

if fine==0:
print(’Start the creation of the DFLUX usersubroutine with a BF of ’+str(parameter.initialBF)+’\n’")
if 0 != os.system(str(parameter.abaquspath)+’ python —u create_BF_subroutine.py —model ’+str(parameter.model)+’ —
initialBF “+str(currentBF )+’ —nameBF BF_intpoint_server_ +str(parameter.model)+’_"+str(count)+ . f —work "+

path_working_dir):
sys.exit(’Error during create_BF_subroutine.py.’)
fine=1
else:
print (’Heat input file generated’)
# Start first Abaqus heating job

if fine :
print(’Start first NTI11 heat calculation \n’)
if 0 != os.system(str(parameter.abaquspath)+" job=j101_01_"+str(parameter.model)+"_03_02_1000_poly_intpoint_heat inp=

JI01_01_"+str (parameter.model)+"_03_02_1000_poly_intpoint_heat.inp"+" user=BF_intpoint_server_"+str (parameter.model
)+ _'+str(count)+".f cpus=1 interactive | tee jI01_Ol_"+4str(parameter.model)+"03_02_1000_poly_intpoint_1.log"):
sys.exit("Error during first NTIl calculation")

fine=1
print ("NTIl Abaqus job finished and start of heat calculation. \n")
if fine==0:
if 0 != os.system(str(parameter.abaquspath)+’ python —u script_calc_heat_aut_3comp.py —model '+str(parameter.model)+
’ ——heatout energy_jl01_01_"+str(parameter.model)+’_03_02_1000_poly_intpoint_heat_’+str(count)):
sys.exit( Error during heat calculation.’)
fine=1

#read in total energy after first loop
if fine==0:
print (*Compare energies’)
f=open( energy_jl01_01_"+str(parameter.model)+’_03_02_1000_poly_intpoint_heat_’+str(count)+’.txt’, 'r’)
for line in f:
linel=line.rstrip ()
if *Total’ in linel:

temp=linel .split(’: ")
curenergy=float(temp[1])
f.close ()

#check if error in energy is less than 3 percent
if abs((curenergy—provenergy)/provenergy)>0.03 and fine==0:
print(’Energydifference= "+str (((curenergy—provenergy)/provenergy)#100.)+'% after “+str(count+1)+°. thermal
calculation is bigger than 3% —> recalculation’)
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#calculate new BF
currentBF=currentBF«(provenergy/curenergy )
print('New BF= "+str(currentBF))
count=count+l

else:
print(’Temperaturefield calculation of heating step finished with an error of ’'+str((curenergy—provenergy)/provenergy
))
finished=1
#Start Abaqus cooling job
if fine==0:
s.system(’cp jl101_01_cooling.inp jIOI_O1_"+str(parameter.model)+’_03_02_1000_poly_intpoint_cooling.inp’)
if 0 != os.system(str(parameter.abaquspath)+’ job=j101_01_"+str(parameter.model)+’_03_02_1000_poly_intpoint_cooling inp
=j101_01_"+str(parameter.model)+’_03_02_1000_poly_intpoint_cooling.inp oldjob=j101_01_"+str (parameter.model)+’
_03_02_1000_poly_intpoint_heat user=subroutine_cooling.f cpus="+str(parameter.cpus)+’ interactive | tee jl101_O01_"+

str(parameter.model)+’_03_02_1000_poly_intpoint_cooling.log’):
sys.exit("Error during cooling NTIl calculation")
fine=1
else:
print("Temperaturefield calculation of cooling step finished. \n")
#Create stress Abaqus input file
if fine==0:
if 0 != os.system(parameter.abaquspath+’ python —u create_stress_input.py —model ’+str(parameter.model)+’ —totaltime
‘+str(parameter.totaltime)):
sys.exit(’Error during create_stress_input.py.’)
fine=1
else:
print("Stress input file successfully created.")
#Start stress calculation
if fine==0:
print(’Start of stress calculation’)
if 0 != os.system(str(parameter.abaquspath)+’ job=j101_03_"+str(parameter.model)+’_03_02_1000_poly_intpoint inp=
j101_03_"+str(parameter.model)+’ _03_02_1000_poly_intpoint.inp cpus=’+str(parameter.cpus)+’ interactive | tee
j101_03_"+str(parameter.model)+’ _03_02_1000_poly_intpoint.log’):
sys.exit("Error during stress calculation")
fine=1
else:
print (" Stress calculation finished.")
exit()

Abaqus CDP model

FORTRAN subroutine to adapt dilation angle

Appendix3/Granite_arzua2013_v2.f

CCCCCCCCccccccccccccccccccccccccccccccccccccccccccccceccccccccccccccce
C
C Subroutine USDFLD to update field variables
C
CCCCCCCCCCCccccccccccccccccccccccecccccccccccccccccccccccccccccccccce
SUBROUTINE USDFLD(FIELD ,STATEV ,PNEWDT, DIRECT, T,CELENT,
1 TIME,DTIME,CMNAME, ORNAME, NFIELD ,NSTATV ,NOEL, NPT ,LAYER,
2 KSPT,KSTEP,KINC,NDI,NSHR, COORD, JMAC, IMATYP ,MATLAYO, LACCFLA )

INCLUDE ’ABA_PARAM.INC’

CHARACTER+ 80 CMNAME, ORNAME
CHARACTER*3  FLGRAY(15)
DIMENSION FIELD (NFIELD) .STATEV (NSTATV) ,DIRECT(3.3) .
1 T(3.3).TIME(2)
DIMENSION ARRAY(15) ,JARRAY (15) ,JMAC( ) ,JMATYP( ) ,COORD( * )
DOUBLE PRECISION EP1, EP3, GP
DOUBLE PRECISION a, b, ¢
C EP1 maximum principal plastic strain
C EP2 minimum principal plastic strain
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C GP plastic shear strain in percent
C a,b,c coefficients of the dilation angle function
CCCCCCCCCCCCCCCCCCCeCeeaceccccccceccccccccccceccccccccccccccccccccce
C
C Initialize variables
C

EP1=0.0

EP3=0.0

GP=0.0
CCCCCCCCCCCCCCCCCCCCCCCCceccecccceccecccccccccccccccccccccccccccccece
C
C Define coefficients of dilation function
C

a=30.95

b=8.97

c=0.654
C
CCCCCCCCCCCCCCCCCCCeCeeCceccccccceccccccccccceccccccccccccccccccccce
C
C get principal plastic strain vector
C

CALL GETVRM(’PEP’ ,ARRAY,JARRAY ,FLGRAY, JRCD,JMAC, IMATYP,
| MATLAYO,LACCFLA)

EPl = ARRAY(1)

EP3 = ARRAY(3)

C
C calculate plastic shear strain
C
GP = ABS((EP1-EP3)%100.)
C
C calculate the dilation angle and use it as a field variable
C
IF (GP.GT.0.314878981)THEN
FIELD (1) = ((a#b#(EXP(=b+GP)—EXP(—c=GP)))/(c—b))
ELSE
FIELD (1) = 25.189875
END IF
IF (NOEL.EQ.1000)THEN
WRITE(6,%) 'DILATION ANGLE at INC *,KINC,  is ’,FIELD(1),
1 > and GP of *,GP, ' EPl: ’,EPl,’ EP3:’ ,EP3
END IF
C
C update the expansion behaviour according to the current step
C
IF (KSTEP.EQ.4)THEN
FIELD (2)=3
ELSE
FIELD (2)=1
END IF
C
C If error, write comment to .log file:
C
IF (JRCD.NE.0)THEN
WRITE(6,+) 'REQUEST ERROR IN USDFLD FOR ELEMENT NUMBER
1 NOEL, *INTEGRATION POINT NUMBER ° ,NPT
END IF
C
RETURN

END
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Quartz CDP model

Appendix3/quartz_246_conc.inp

#Material , name=quartz
#Conductivity

8.399, 25.

7.613. 50.

6.467, 100.

5.698, 150.

5.139, 200.

4.679, 250.

4.314. 300.

4.015. 350.

3.783. 400.

3.557. 450.

3.387, 500.

3.316, 520.

3.237, 540.

3.167, 560.

3.250, 572.

3.296. 573.

3.343, 574.

3.453, 580.

3.483, 600.

3.537, 650.

3.602, 700.

3.676, 750.

3.731. 800.

#Density

2649.,

«Elastic

9.59E+10, 0.09, 25.
9.48E+10, 0.08, 100.
9.32E+10, 0.07, 200.
9.18E+10, 0.06, 300.
8.80E+10, 0.03., 400.
8.58E+10, 0.01, 450.
8.22E+10, —0.04, 500.
7.99E+10, —0.06, 520.
7.65E+10, —0.10, 540.
6.92E+10, —0.18, 560.
5.89E+10, —-0.27, 572.
6.28E+10, —0.23, 573.
6.75E+10, —0.16, 574.
9.13E+10, 0.11, 580.
1.01E+11, 0.21, 600.
1.04E+11, 0.24, 650.
1.05E+11, 0.25, 700.
1.08E+11, 0.25, 800.
#Specific Heat

786.1, 48.8

836.5, 85.1

918.8. 150.6

982.5, 210.6

1030.2, 267.7

1093.8, 345.7

1136.3, 405.6

1189.3, 469.7

1226.4, 507.3

1263.6, 531.

1324.7, 550.7

1468.2, 567.7

1138.6, 573.8

1141.2, 623.9

1149.0, 671.2

1162.1, 776.9

1180.5, 928.5

1182.9, 1027.2

+*EXPANSION, TYPE=ISO, ZERO=20., DEPENDENCIES=2
1.0134E-05, 20.00, ,1

1.0134E-05, 36.95, .1

1.2531E-05, 105.40, ,1




222

.2951E—-05, 182.40, .1
3782E-05, 250.86, ,1
.4667E—-05, 304.37, ,1
.5260E-05, 372.85, ,1
.6324E-05, 443.51, .1
.7813E-05, 486.39, .1
9599E—-05, 535.74, .1
0050E—05, 543.00, .1
0585E—-05, 550.00, .1
1421E-05, 558.00, ,1
2734E-05, 567.00, ,1
5400E—-05, 574.00, ,1
5856E-05, 576.00, .1
6021E—-05, 579.00, .1
5924E-05. 581.08. .1
5726E—-05, 585.41, .1
4088E—-05, 623.85, .1
1352E-05, 700., ,1
8614E-05, 800., ,I
adapted

0489E-05, 830.. .1
7065E-05, 875.. .1
8840E—-05, 900.00, .1
0000E—-05, 1000., .1
1699E—-04, 20.00, ,
8807E—-04, 36.95, ,
8678E—~04, 105.40,
0458E—04, 182.40,
8241E-05, 250.86,
6997E—-05, 304.37.
7434E—-05, 372.85.
1461E—05, 443.51,
9720E—-05, 486.39,
8453E-05, 535.74,
8503E-05, 543.00,
8663E—-05, 550.00,
9081E-05, 558.00,
9939E—-05. 567.00.
2261E-05, 574.00,
2621E-05, 576.00,
2642E-05, 579.00,
2446E-05, 581.08,
2045E-05, 585.41,
8732E-05, 623.85,
3236E-05, 700.00,
7692E—-05, 800.00.
6296E—-05, 830.00,
4386E—-05, 875.00,
3409E-05, 900.00,
0000E—-05, 1000.00,
0134E-05, 20.00,
.0134E-05, 36.95, .
.2531E—-05, 105.40,
.2951E—-05, 182.40,
3782E—-05, 250.86,
.4667E—05, 304.37,
.5260E—-05, 372.85,
.6324E-05, 443.51,
.7813E-05, 486.39,
9599E-05, 535.74,
0050E—05, 543.00.
0585E—05, 550.00,
1421E-05, 558.00,
2734E-05, 567.00,
5400E—-05, 574.00,
5856E—-05, 576.00,
6021E-05, 579.00,
5924E—-05, 581.08.
5725E—-05, 585.41.
4088E—05, 623.85,
1390E-05, 700.00,
8648E—-05, 800.00,
.7957E-05, 830.00,
.7012E-05, 875.00,
.6529E-05, 900.00,

L T T S R R R R N R N R
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1
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.4842E—-05, 1000.00, .3
.0134E-05, 20.00, ,
.0134E-05, 36.95,
.2531E-05, 105.40,
.2951E-05, 182.40,
.3782E-05, 250.86,
4667E-05, 304.37,
.5260E—-05, 372.85,
.6324E—-05, 443.51,
7813E—-05, 486.39,
9599E-05, 535.74,
0050E—-05, 543.00,
0585E-05, 550.00,
1421E-05, 558.00,
2734E-05, 567.00,
5400E—-05, 574.00,
5856E—-05, 576.00,
6021E-05, 579.00,
5924E-05, 581.08,
5726E-05, 585.41,
4088E—-05, 623.85,
.1352E-05, 700.00, .4

#Concrete damaged plasticity , DEPENDENCIES=2

0.01, 0.15, 2.34, 0.56, 0.0001, , 0.01,

50., 0.15, 2.34, 0.56, 0.0001, , 50.0,

#Concrete tension stiffening , TYPE=GFI

25.e6, 52.68

#Concrete compression hardening

85.45¢6, 0.

20.71e6, 0.003281298

20.71e6, 0.1

«Concrete compression damage

0.0, 0.0

0.757636, 0.003281298

0.757636, 0.1

#CONCRETE TENSION DAMAGE, TYPE=DISPLACEMENT, COMPRESSION RECOVERY=0.
0.0, 0.0

0.57, 4.214e—6

+#USER DEFINED FIELD

#*DEPVAR
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Appendix D

Scripts and input files for 3D
homogeneous SCM

Global Python script

Appendix4/3D_hom_model_coupled_v2_1.py

*

# This Python script calculates the SCM for homogeneous rocks
#

#

#load packages

import sys # better than: import 0s.sys
import os # os = operating system

import argparse # to parse arguments

from datetime import datetime

s.system (' python —V")

start_time = datetime.now()

print(’Starting time = '+str(start_time))

# Class containing all Parameters which are parsed
class Parameters:

pass
parameter = Parameters () # instance of the class Parameters
# Parsing arguments
parser = argparse.ArgumentParser(description="Automatic temperaturefield calculation.”)
# Adding all necessary and possible arguments to the parser.
parser.add_argument(’——model ", type=str , required=True, help="Name of the model.")
parser.add_argument(’—initialBF*, type=float, required=True, help="1Initial constant body heat multiplier.”)
parser.add_argument(’—abaquspath’, type=str, required=True, help="Name of the abaqus executable.’)
parser.add_argument( ' —cpus’, type=int, required=True, help="Number of cpus which shall be used for the Abaqus
calculation.’)
parser.add_argument('—provpower ', type=float, required=True, help="Provided microwave power.")
parser.add_argument(’——xd’, type=float, required=True, help="Dimension in x direction of numerical domain’)
parser.add_argument(’—yd’, type=float, required=True, help="Dimension in y direction of numerical domain”)
parser.add_argument(’—yf’, type=float, required=True, help="Dimension in y direction of refined mesh”)
parser.add_argument(’—zd’, type=float, required=True, help="Dimension in z direction of numerical domain’)
parser.add_argument(’—avgeps’ ', type=str, required=True, help="Name of the file containing the averaged relative

dielectric constant’)
parser.add_argument('—resolution’, type=float, required=True, help="Spatial resolution of the FDID grid’)
parser.add_argument(’——meshconstref’, type=float, required=True, help="Edge length of the refined mesh”)

parser.add_argument(’——meshconstcoz

, type=float, required=True, help="Edge length of the coarse mesh’)
parser.add_argument(’——maxdeltatemp *, type=float , required=True, help="Maximum amount of temperature change during one
increment.’)

parser.add_argument(’—timeheating *, type=float , required=True, help="Time to heat sample.’)
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parser.add_argument(’—material *, type=str, required=True, help="Name of the material.")
parser.add_argument(’—materialfile’, type=str, required=True, help="Name of the material file.")
args = parser.parse_args(namespace=parameter)

#

#Variable initialization
fine=0

count=0

finished=0

currentBF=0.

epsreal =0.

epsim=0.
initialtemp =25.
currentBF=0.
currentmaxE=0.

a=[]

b=[]

y=0

z2=0

floatq =[]

floatp =[]

eps =[]

oldtime =0. #old time

#main

print(’Start of coupled 3D homogeneous model calculation\n’)

path_working_dir = os.path.dirname (os.path.abspath(__file__)) # The directory of the current __file__ is cut down
to the directory without the filename.

print(’The current working direcotry is: “+str(path_working_dir))

#Start global loop

currentBF=parameter.initialBF #initialize current body flux

provenergy=0.7+parameter.provpowersparameter.timeheating /4. #calculate provided energy (with 30 percent of loss)

print(’Provided Energy= '+str(provenergy))

#Create abaqus input file

if 0 != os.system(str(parameter.abaquspath)+’ python —u create_mesh_hom_v7.py —model "+str(parameter.model)+’ —horc 0
xd “+str(parameter.xd)+’ yd “+str(parameter.yd)+’ zd “+str(parameter.zd)+’ yf “+str(parameter.yf)+’
meshconstref “+str(parameter. meshconstref)+’ —meshconstcoarse '+str(parameter. meshconstcoarse)+’ | tee

create_mesh_hom_v7_’"+str (parameter.model)+’.log ):

sys.exit( Error during create_mesh_hom_v7.py!")

fine=1
else:

print (’Heat abaqus input file written!’)
#read in eps values
epsread=open(parameter.avgeps, 1) #open eps data of homogeneous material
for lineq in epsread:

a.append(lineq.rstrip ())
epsread.close ()

while y<len(a): #split
temp=[float(x) for x in a[y].split(":; ")] #0...temp, 1...real, 2... imaginary part
eps.append(temp)
y=y+1

print(’second line of eps avg vector is’ +str(eps[1][0])+" “+str(eps[1][1])+" “+str(eps[1][2]))
while (finished!=1):
inc=1
curtime=0. #current time
totalenergy=0
while curtime <parameter.timeheating:
#start Meep FDTD calculation
if fine==0:
if 0 != os.system("source /export/opt/gcc —4.6.4/bin/setvars.sh; source /export/opt/2014—05—12_openmpi—1.8.1—gcc
—4.6.4/bin/setvars .sh; mpirun ./hom_model_coupled_v7.exe "+str(parameter.xd)+" "+str(parameter.yd)+" "+str(
parameter.yf)+" "+str(parameter.zd)+" "+str(parameter.avgeps)+" "+str(parameter.resolution)+" "+str(inc)+" "+str(
parameter . meshconstref)+" "+str(parameter. meshconstcoarse)+" "+str(parameter.model)+"| tee hom_model_coupled_v7"+
str(parameter.model)+"_"+str (inc)+".log"):
sys.exit( Error during meep electric field calculation’)
fine=1
else:
print("Meep electric field calculated’)
#start hdf5 E2 calculation

if fine==0:

if 0 !'= os.system("source /export/opt/gcc—4.6.4/bin/setvars.sh; "+str(path_working_dir)+"/
hdf5_aut_hom_model_coupled_v7.exe "+str(parameter.model)+" "+str(parameter.xd)+" "+str(parameter.yd)+" "+str(
parameter.zd)+" "+str(parameter.resolution)+" "+str(inc)+" | tee hdf5_aut_hom_model_coupled_v7"+str (parameter.model

)+"_"+str(inc)+".log"):
sys.exit(’Error during hdf5_aut_v7.exe calculation!’)
fine=1
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else:

print ("Hdf5 files successfully calculated!”)

os.system ("mv eps —000000000.h5 eps_"+str (parameter.timeheating)+"s_"+str (parameter.provpower)+"W_inc"+str (inc)+".
h5")

os.system ("rm ex—s; rm ey—#; rm ez—x")
#calculate absorbed power density
if fine==0:
if 0 != os.system("source /export/opt/gcc—4.6.4/bin/setvars.sh; "+str(path_working_dir)+"/
hdf5_int_v7_coupled_hom_model.exe "+str(parameter.model)+" "+str(parameter.xd)+" "+str(parameter.yd)+" "+str(
parameter.yf)+" "+str(parameter.zd)+" "+str(parameter.avgeps)+"' "+str(parameter.resolution)+" "+str(parameter.
meshconstref)+" "+str(parameter. meshconstcoarse)+" "+str(inc)+" tee hdf5_int_v7_coupled_hom_model"+str (parameter.
model)+"_"+str(inc)+".log"):
sys.exit(’Error during hdf5_int_v7_coupled_hom_model.exe calculation!’)

fine=1
else:

print ("Hdf5_int_v7_coupled_hom_model files successfully calculated!’)
#Create DFLUX subroutine

if fine==0:
print(’Start the creation of the DFLUX usersubroutine with a BF of “+str(currentBF)+’\n")
if 0 != os.system(str(parameter.abaquspath)+’ python —u create_BF_subroutine_hom_model_coupled_v7.py —model “+str(
parameter . model)+’ ——initialBF “+str(currentBF)+’ —nameBF BF_intpoint_server_’'+str(parameter.model)+ _"+str(inc)+’
_#str(count)+’ . f —work ‘+path_working_dir+’ —xd “+str(parameter.xd)+’ —yd ‘+str(parameter.yd)+’ —yf “+str(

parameter.yf)+’ —zd ’+str(parameter.zd)+’ —meshconstref '+str(parameter.meshconstref)+’ —meshconstcoarse “+str(

parameter.meshconstcoarse )+’ —inc “+str(inc)):
sys.exit( Error during create_BF_subroutine_hom_model_coupled_v7.py.")
fine=1
clse:
print ("Heat input file generated’)
#Create Abaqus input file

if fine==0:

if 0 != os.system(str(parameter.abaquspath)+’ python —u create_abaqus_input_file_coupled_v2.py —model "+str(
parameter.model)+’ —horc 0 —inc “+str(inc)+’ —maxdeltatemp ’+str(parameter.maxdeltatemp)+’ —material “+str(
parameter. material )+’ —materialfile “+str(parameter. materialfile)+’ —timeheating “+str(parameter.timeheating)+" |

tee create_heat_input_coupled_v2_1 +str(parameter.model)+ _"+str(inc)+ .log’):
sys.exit(’Error during create_abaqus_input_file_coupled_v2.py.")

fine=1

else:
print (’Heat abaqus input file for inc’+str(inc)+’ written!’)

# Start first Abaqus heating job
if (fine==0 and inc==1):
print(’Start NTIl heat calculation \n’)

if 0 != os.system(str(parameter.abaquspath)+" job=j101_01_"+str (parameter.model)+"_hom_model_heating_inc"+str (inc)+
" inp=j101_01_"+str (parameter.model)+"_hom_model_heating_inc"+str (inc)+".inp"+" user=BF_intpoint_server_"+str (
parameter .model)+ _"+str(inc)+ _"+str(count)+".f cpus=1l interactive | tee jlO1_Ol_"+str(parameter.model)+"

_hom_model_heating_"+str (inc)+"_"+str (count)+".log"):
sys.exit("Error during "+str(inc)+" NTIl calculation")
fine=1
else:
print ("NTI1 Abaqus job inc"+str(inc)+" finished and start of heat calculation. \n")
if (fine==0 and inc!=1):
print(’Start “+str(inc)+° NTIl heat calculation \n’)
if 0 != os.system(str(parameter.abaquspath)+" job=jl101_01_"+str(parameter.model)+"_hom_model_heating_inc"+str (inc)+
" inp=j101_01_"+str (parameter.model)+" _hom_model_heating_inc"+str (inc)+".inp"+" user=BF_intpoint_server_"+str (
parameter.model )+’ _"+str(inc)+’_"+str(count)+".f oldjob=jl01_01_"+str(parameter.model)+"_hom_model_heating_inc"+str
tee jl01_01_"+str(parameter.model)+"_hom_model_heating_"+str (inc)+"_"+str (count)+".

(inc —1)+" cpus=1 interactive

log"):
sys.exit("Error during "+str(inc)+" NTIIl calculation")
fine=1

else:

print ("NTIl Abaqus job inc"+str(inc)+" finished and start of heat calculation. \n")

#
#read odb data and save to external file
if fine==0:
if 0 != os.system(str(parameter.abaquspath)+’ python —u read_out_odb_hom_model_coupled_v1.py —model “+str(
parameter .model )+’ —inc “+str(inc)+’ | tee read_out_odb_hom_model_coupled_’+str (inc)+ _vl.log’):
sys.exit(’Error during read out of odb thermal data’)
fine=1
else:

print(’Read out of thermal odb data of inc’+str(inc)+’ finished’)
#read in current time
if fine==0:
t=open(’currenttime_’ +str(parameter.model)+ _"+str(inc)+ .txt , r’)
oldtime=curtime
curtime=float(t.readline ())
deltatime=curtime —oldtime
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if deltatime==0:
print (’ERROR delta
fine=1

t.close ()

time equals zero!!!")

print(’Current time= '+str(curtime)+’ and delta time= '+str(deltatime))
#adapt energy

currentmaxE=(provenergy=deltatime )/parameter. timeheating
#calculate heat

if fine==0:
if 0 != os.system(str(parameter.abaquspath)+’ python —u script_calc_heat_coupled_hom_model_v2.py —model "+str(
parameter . model )+’ ——heatout energy_jl01_01_"+str(parameter.model)+’_hom_model_heating_inc +str(inc)+’_ "+str(count)
+’ ——inc “+str(inc)+’ ——timeold ‘+str(oldtime)+’ ——aquad '+str(parameter.meshconstrefs=2)+’ —material “+str(
parameter . material )+’ | tee script_calc_heat_coupled_hom_model_v2_’+str(inc)+ _"+str(count)+ .log’):
sys.exit(’Error during heat calculation.’)
fine=1

else:

print ("Energy of inc"+str(inc)+" and loop "+str(count)+" calculated!")
#read in total energy after first loop
if fine==0:

print ("Compare energies’)

f=open( energy_jl01_01_"+str(parameter.model)+’ _hom_model_heating_inc’+str (inc)+ _"+str(count)+’ .txt , 'r’)
for line in f:
linel=line . rstrip ()
if "Total’ in linel:
temp=linel .split(’: 7)

curenergy=float (temp[1])
f.close ()

if abs((curenergy—currentmaxE)/currentmaxE) >0.10:
print ("WARNING after

"+str(curtime)+"s of coupled heat
inc=inc+l1

calculation achieved energy balance is unlikely")
totalenergy=totalenergy+curenergy
#check if totalenergy is in the range of provided energy
if abs((totalenergy —provenergy)/provenergy)>0.05 and fine==0:

print( Totalenergy= "+str(totalenergy )+’ which results in a energydifference= "+str (((totalenergy —provenergy)/
provenergy)#100.)+°% in j101_01_"+str(parameter.model)+’ _hom_model_heating_inc +str (inc)+ .odb after ’+str(count)+’
. loop is bigger than 5% —> recalculation’)
#calculate new BF
currentBF=currentBF = (provenergy/totalenergy)
print ('New BF= "+str (currentBF))
count=count+1

else:
print(’Temperaturefield calculation of heating step finished with an error of ’+str((totalenergy —provenergy)/
provenergy))
finished=1
#Create Abaqus cooling job
if fine==0:
if 0 !'= os.system(str(parameter.abaquspath)+’ python —u create_abaqus_input_file_coupled_v2.py —model ’+str(parameter.
model )+’ —horc | —inc | —maxdeltatemp ’'+str(parameter.maxdeltatemp)+’ —material “+str(parameter.material )+’ ——
materialfile “+str(parameter. materialfile)+’ ——timeheating ’+str(parameter.timeheating)+" |

tee
create_heat_input_coupled_v2_1 +str(parameter.model)+’_"+str(inc)+ .log ):

sys.exit( Error during create_abaqus_input_file_coupled_v2.py.")

fine=1
else:
print (’Cooling abaqus input file written!”)
#Start Abaqus cooling job
if fine==0:

os.system( cp jl10I_01_cooling_hom_model.inp j101_01_"+str(parameter.model)+’_hom_model_cooling.inp’)

if 0 != os.system(str(parameter.abaquspath)+’ job=j101_01_"+str(parameter.model)+ _hom_model_cooling
parameter . model )+’ _hom_model_cooling.inp

cpus="+str(parameter.cpus)+’
_hom_model_cooling.log’):

inp=j101_01_"+str(
oldjob=j101_01_"+str (parameter.model)+’ _hom_model_heating_inc +str (inc —1)+
interactive user=BF_cooling.f | tee jl101_0l_"+str(parameter.model)+’
sys.exit("Error during cooling NTIl calculation")
fine=1
else:

print("Temperaturefield calculation of cooling
#Create stress Abaqus input file
if fine==0:

step finished. \n")

if 0 != os.system(str(parameter.abaquspath)+’

python —u create_mesh_hom_v1.py —model ’+str(parameter.model)+’ —horc 1
—xd “+str(parameter.xd)+’ —yd “+4str(parameter.yd)+’ —zd '+str(parameter.zd)+’ —yf “+str(parameter.yf)+’ —
meshconstref “+str(parameter.meshconstref)+’ —meshconstcoarse ’+str(parameter.meshconstcoarse)+’ | tee
create_mesh_hom_v1 +str (parameter.model)+".log’):

sys.exit( Error during create_mesh_hom_vI.py!”)

fine=1

else:

print (’Heat abaqus input file written!”)
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#Create Abaqus cooling job
if fine==0:

if 0 != os.system(str(parameter.abaquspath)+’ python —u create_stress_file_coupled_v5

py —model “+str(parameter.

model )+’ inc “+str(inc)+’ material “+str(parameter. material )+’ materialfile “+str(parameter. materialfile)+" |

tee create_stress_file_coupled_v5_1.log"):
sys.exit( Error during create_stress_file_coupled_v5_1")
fine=1
else:
print (’Cooling abaqus input file written!”)

fine=1
#Start stress calculation
if fine==0:
print(’Start of stress calculation’)
if 0 != os.system(str(parameter.abaquspath)+’ job=j101_03_"+str(parameter.model)+’_hom_model inp=j101_03_"+str(
parameter.model )+’ _hom_model.inp cpus="+str(parameter.cpus)+ interactive | tee jl101_03_’+str(parameter.model)+’

_hom_model.log’):
sys.exit("Error during stress calculation")
fine=1
else:
print("Stress calculation finished.")
exit ()

Python script to generate geometry

Appendix4/create_mesh_hom_v7.py

#
# Python script which automatically creates the mesh for the Abaqus homogeneous model
# St

#

import sys # better than: import 0s.sys

import os # os = operating system

import argparse # to parse arguments

# Class containing all Parameters which are parsed
class Parameters:

pass
parameter = Parameters () # instance of the class Parameters

# Parsing arguments

parser = argparse.ArgumentParser(description="Automatic created Dflux file.")

# Adding all necessary and possible arguments to the parser.

parser.add_argument(’——model ", type=str, required=True, help="Name of the model.")
parser.add_argument(’—horc’, type=int, required=True, help="0...create heat model, 1...create stress model.")
parser.add_argument(’—xd’, type=float, required=True, help="Dimension in x direction of numerical domain’)

parser.add_argument(’—yd’, type=float, required=True, help="Dimension in y direction of numerical domain’)
parser.add_argument('—zd’, type=float, required=True, help='Dimension in z direction of numerical domain’)

parser.add_argument('—yf’, type=float, required=True, help="Dimension in y direction of refined mesh’)
parser.add_argument('—meshconstref’, type=float, required=True, help="Edge length of the refined mesh’)
parser.add_argument(’——meshconstcoarse’, type=float, required=True, help="Edge length of the coarse mesh’)
args = parser.parse_args(namespace=parameter)

# Variables to be defined

pmlt=0.1 #thickness of the pml layer

airt=0.1 #thickness of the air layer

numlim=1.E-8 #numerical limit

#

# Open and write in DFLUX file
if (parameter.horc==0):
df=open(’model_information_"+str (parameter.model)+’ _heating.inp’, "w’)
df. write( #* Automatic created abaqus model for heat transfer calculation\n’)
else:
if (parameter.horc==1):
df=open(’model_information_ +str (parameter.nameBF)+’ _static.inp’, 'w’)
df. write (’#% Automatic created abaqus model for stress calculation\n’)
else:
print ("ERROR wrong horc integer value!!!")
elementx=int (( parameter.xd—2.xpmlt)/(2=parameter. meshconstref)+numlim)
elementz=int ((parameter.zd —2.#pmlt)/(2+parameter. meshconstref)+numlim)
elementy=int (parameter.yf/parameter. meshconstref+numlim)
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elementycoarse=int (( parameter.yd—parameter.yf —2.xpmlt—airt)/parameter. meshconstcoarse+numlim)

print(’elementx= "+str(elementx )+’ elementy= "+str(elementy)+’ elementz= '+str(elementz)+’ elementycoarse= "+str(
elementycoarse))

df . write ("=Node\n")

df . write(’1, 0., 0., 0.\n")

df . write(str(elementx+1)+"., “+str ((parameter.xd—2.xpmlt)/2.)+", 0., 0.\n")

df . write(str (((elementx+1)xelementz)+1)+", 0.. 0.. “+str((parameter.zd—2.xpmlt)/2.)+ \n")

df . write(str ((elementx+1)=(elementz+1))+", ’+str ((parameter.xd—2.xpmlt)/2.)+", 0., ’+str ((parameter.zd—2.xpmlt)/2.)+ \n")

df . write(str (((elementx+1)=(elementz+1)=(elementy))+1)+’. 0., ’+str(parameter.yf)+’, 0.\n")

df . write (str (((elementx+1)=(elementz+1)=(elementy))+elementx+1)+", “+str ((parameter.xd—2.xpmlt)/2.)+", "+str(parameter.yf
)+, 0.\n")

df . write (str (((elementx+1)=(elementz+1)=(elementy))+((elementx+1)+elementz+1))+", 0., “+str(parameter.yf)+", “+str ((
parameter.zd —2.sxpmlt)/2.)+ \n")

df . write(str ((elementx+1)=(elementz+1)=(elementy+1))+" . “+str ((parameter.xd—2.xpmlt)/2.)+ ", ’+str(parameter.yf)+’. '+str
((parameter.zd—2.#pmlt)/2.)+ \n")

df . write(str (((elementx+1)=(elementz+1)+(elementy+elementycoarse))+1)+’, 0., '+str(parameter.yd—2.«pmlt—airt)+’, 0.\n")

df . write(str (((elementx+1)*(elementz+1)+(elementy+elementycoarse))+elementx+1)+", "+str ((parameter.xd—2.xpmlt)/2.)+", "+
str(parameter.yd—2.«pmlt—airt)+’, 0.\n")

df . write (str (((elementx+1)=(elementz+1)=(elementy+elementycoarse))+(elementx+1)=(elementz)+1)+", 0., "+str(parameter.yd
—2.=pmlt—airt)+’, " +str((parameter.zd—2.=pmlt)/2.)+ \n")

df . write (str (((elementx+1)*(elementz+1)=(elementy+elementycoarse+1)))+’ . “+str((parameter.xd—2.=pmlt)/2.)+ ", “+str(
parameter.yd —2.#pmlt—airt )+’ ., “+str ((parameter.zd—2.xpmlt)/2.)+ \n")

df. write (’«Ngen, Nset=yObot\n’)

df . write(’1, "+str(elementx+1)+’, 1\n")

df . write ("«Ngen, Nset=yOtop\n’)

df . write (str ((elementx+1)=elementz+1)+", “+str ((elementx+1)=(elementz+1))+", I\n")

df . write ("#Ngen, Nset=yrefbot\n’)

df . write (str (((elementx+1)*(elementz+1)=(elementy))+1)+" ., “+str (((elementx+1)=(elementz+1)=(elementy))+elementx+1)+", 1\n
1)

df. write (’«Ngen, Nset=yreftop\n’)

df . write (str (((elementx+1)*(elementz+1)=(elementy))+((elementx+1)+elementz+1))+", "+str ((elementx+1)*(elementz+1):(

elementy+1))+’ . 1\n")
df . write ("« Nfill , Nset=y0\n’)

df . write ("yObot, yOtop, “+str(elementx)+’, ’+str(elementx+1)+"\n")

df . write ("« Nfill , Nset=yref\n’)

df . write (" yrefbot, yreftop. '+str(elementx)+’, “+str(elementx+1)+’\n")

df. write ("« Nfill , Nset=nodes_ref\n’)

df . write ("y0, yref ., '+str(elementy)+ ., "+str((elementx+1)=(elementz+1))+ \n")

df. write (’«Ngen, Nset=ylbot\n’)

df . write(str (((elementx+1)*(elementz+1)+(elementy+elementycoarse))+1)+", "+str (((elementx+1)=(elementz+1)*(elementy+

elementycoarse))+elementx+1)+", 1\n")
df . write ("«Ngen, Nset=yltop\n’)

df . write (str (((elementx+1)=(elementz+1)=(elementy+elementycoarse))+(elementx+1)=(elementz)+1)+", “+str (((elementx+1):(
elementz+1)=(elementy+elementycoarse+1)))+", 1\n")

df. write ("« Nfill , Nset=yl\n’)

df . write( ylbot, yltop., ’'+str(elementx)+’, ’+str(elementx+1)+"\n")

df . write ("« Nfill , Nset=nodes_coarse\n’)

df . write ("yref, yl, "+str(elementycoarse)+’, “+str((elementx+1)=(elementz+1))+’\n")

if (parameter.horc==0):
df . write ("«Element, Type=DC3D8\n’)

else:
df . write (" «Element, Type=C3D8R\n’)
df . write("1., 1. 2, "+str((elementx+1)=(elementz+1)+2)+" . "+str ((elementx+1)=(elementz+1)+1)+", "+str(elementx+2)+’. '+str
(elementx+3)+°, "+str ((elementx+1)=(elementz+1)+elementx+3)+’, "+str((elementx+1)x(elementz+1)+elementx+2)+"\n")
df . write (’«Elgen, Elset=refined_elements\n’)
df . write ("1, “+str(elementx)+’, 1, 1, “+str(elementz)+ , "+str(elementx+1)+", “+str(elementx)+’, ’“+str(elementy)+’, “+str
((elementx+1)=(elementz+1))+’, "+str(elementx=elementz)+ \n’")

if (parameter.horc==0):
df . write (" «Element, Type=DC3D8\n’)
else:
df. write (’«Element, Type=C3D8R\n")
df . write(str(elementx=elementzselementy+1)+’, "+str (((elementx+1)*(elementz+1)*(elementy))+1)+" ., "+str (((elementx+1):(
elementz+1)=(elementy))+2)+", "+str ((elementx+1)*(elementz+1)=(elementy+1)+2)+", "+str ((elementx+1)=(elementz+1):(
elementy+1)+1)+", “+str (((elementx+1)=(elementz+1)=(elementy))+2+elementx )+’ , “+str (((elementx+1)+(elementz+1):(
elementy))+3+elementx )+’ ., “+str((elementx+1)=(elementz+1)=(elementy+1)+elementx+3)+" ., “+str((elementx+1)=(elementz
+1)=(elementy+1)+elementx+2)+"\n")
df. write (’«Elgen, Elset=coarse_elements\n’)

df . write(str(elementx=elementz=elementy+1)+" ., “+str(elementx)+’. 1. I. “+str(elementz)+’, “+str(elementx+1)+"., "+str(
elementx )+’ . “+str(elementycoarse)+’, “+str((elementx+1)=(elementz+1))+’ ., '+str(elementxselementz)+ \n")

df . write (’«Elset, Elset=negy_el, generate\n’)

df . write(’1, "+str(elementx=elementz)+ , I\n’)

df . write ("«Elset , Elset=posy_el, generate\n’)

df . write (str(elementx=elementz:(elementy+elementycoarse —1)+1)+’, “+str(elementx=elementz=(elementy+elementycoarse))+", I\
n’)

df. write (’«Elset, Elset=posx_el, generate\n’)
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for z in range(l,elementz+1):

df . write (str(elementx=z)+’, “+str((elementx*elementz=(elementy —1)+(elementx=z)))+’, ’+str(elementx=elementz)+ \n")
df . write (str(elementx=elementz:elementy+(elementx)=#z)+", '+str((elementx=elementz:(elementy+elementycoarse —1)+(elementx
%z)))+ ., “+str(elementx=elementz)+ \n")
df. write (’«Elset, Elset=negx_el, generate\n’)

for z in range(0,elementz):
df . write(str(l+elementx=z)+ ., “+str((elementx+elementz=(elementy+elementycoarse —1)+I+elementx=z))+’ . “+str(elementx:
elementz )+’ \n")
df . write (’«Elset, Elset=negz_el, generate\n’)
for x in range(0,elementx):
df . write (str(l+x)+", '+str((elementx=elementz=(elementy+elementycoarse —1)+1+x))+’, “+str(elementx=elementz)+ \n")
df . write ("«Elset, Elset=posz_el, generate\n’)
for x in range(0,elementx):
df . write(str(elementx=(elementz —1)+1+x)+", “+str ((elementx=elementz:*(elementy+elementycoarse —1)+elementx:(elementz —1)
+1+x))+ . "+str(elementx=elementz )+ \n")
df . write ("+Nset, Nset=fix\n")
df . write (str(elementx+1)+"\n")
df . write ("«Nset, Nset=xl, generate\n’)
for z in range(l,elementz+2):
df . write (str((elementx+1)#z)+", “+str (((elementx+1)=(elementz+1)=(elementy+elementycoarse))+(elementx+1)=xz)+", “+str ((
elementx+1)=(elementz+1))+ \n")
df. write(’«Nset, Nset=zl, generate\n’)
for x in range(0,elementx+1):
df . write(str (((elementx+1)*xelementz)+I+x)+", "+str (((elementx+1)*(elementz+1)*(elementy+elementycoarse))+(elementx+1):(
elementz )+1+x)+’, “+str ((elementx+1)=(elementz+1))+ \n’")
df . write ("«Surface , name=posx, type=element\n’)
df . write ("posx_el, S4\n")
df . write ("+Surface , name=posy, type=element\n’)
df . write ("posy_el, S5\n")
df . write (*+Surface , name=posz, type=element\n’)
df. write(’posz_el, S2\n")
df . write (’«Surface , name=negx, type=element\n’)
df . write ("negx_el, S6\n’")
df . write ("«Surface , name=negy, type=element\n’)
df . write ('negy_el, S3\n’")
df . write ("+Surface , name=negz, type=element\n’)
df. write(’negz_el, Sl\n")
df.close ()
exit ()

C++ script for the Meep FDTD calculation

Appendix4/hom_model_coupled_v7.cpp

/1

//Meep file for SCM
/1

#include <meep.hpp>
#include <fstream>
#include <vector>
#include <iostream>
#include <string.h>
#include <stdio.h>
#include <sstream>
#include <algorithm>
#include <iterator >

#include <stdio.h> /+ printf , scanf, puts, NULL =/
#include <stdlib.h> /% srand, rand =/
#include <time.h> /% time s/

#define _USE_MATH_DEFINES

#include <math.h>

#include <mpi.h>

using namespace meep;

// variable definition

11

// variables which have to be defined by the USER
/1
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double
double
double
double
double
double
double
double
double
/1

pmlt=0.1;
airt=0.1;

frequencyHz=2.45¢9;
¢c_m=299792458;

period=24.;

ysource=0.19;

w0=0.043;
e0=1;

numlim=1.E-8§;

// global variables

/1

int mynode,

MPI_Status status;

for

//PML thickness

//air thickness

// frequency of microwaves
//speed of light

// evaluation period

/1y position of source

// waist radius of Gaussian beam

// standard value of E

// numerical accuracy

totalnodes ;

calculation

double xd; //x calculation domain dimension

double yd; /1y calculation domain dimension

double yf; /1y value of the mesh refined area

double zd; //z calculation domain dimension

double resolution ; //amount of pixels per unit distance

double meshconstref; //edge length of element in refined mesh

double meshconstcoarse; //edge length of element in coarse mesh

int inc: // current odb increment

std :: vector<std :: vector <double> > NT; //saved node temperature of all nodes

string NTfile; //name of the file containing the NT data in outer part

string epsfile; //name of the eps quartz file

std :: vector<std :: vector<double> > epsdata; // temperature dependent eps values, first column temperature, second
real part, third column imaginary part

string avgeps; //'string of the file name containing the eps data

int elementx, elementy, elementz; //amount of elements in the specific direction

/1l

//INITALIZE METHODS

/1

double eps (const vec &p); // method to create spatial distribution of the real part of epsilon

complex<double> gauss(const vec &p); //Method to define the gauss profile
void polycrystal (double a, component c¢); //Method which define the polycrystal structure of the model
void readinNT () ;

double

temperatures

//Method to read in the temperature data
double getTemp(double point[3]); //Method to calculate the temperature of the sought point based on the node

interpolate (double temp, int epsrealim); //Method to linearly interpolate the eps value
//Method to read in eps data

void readineps ();

11

//Main program#

/1

int main(int argc,
initialize mpi(arge, argv);
MPI_Comm_size (MPLCOMM_WORLD, &totalnodes): //get the amount of MPI nodes
MPI_Comm_rank (MPLCOMM_WORLD, &mynode) ; /1 get the single MPI nodes

std ::
std ::
std ::
std ::
std :
std ::
std ::
std ::
std ::
std ::
std ::

stringstream
stringstream
stringstream
stringstream

sstringstream

stringstream
stringstream
stringstream
stringstream
stringstream
stringstream

str_xd <<argv[1];
str_yd<<argv|[2];
str_yf<<argv[3];
str_zd <<argv [4];
str_avgeps <<argv[5]; 11
str_resolution <<argv[6];

str_inc <<argv|[7];

char ssxargv) {

//initialize the MPI variables

str_xd ; //string of xd

str_yd; //'string of yd

str_yf; //'string of yf

str_zd ; //string of zd

str_resolution ; // string of spatial resolution
str_meshconstref // string of mesh constant in refined part
str_meshconstcoarse ; // string of mesh constant in coarse part
str_inc; //string of current inc of coupling

str_avgeps; //string of the file name containing the eps data
temp_inc; //stringstream temp

str_model ;

//'string of model name

// get xd from python script
// get yd from python script
// get yf from python script
I/l get zd from python script

get avgeps from python script
// get spatial resolution from python script

// get current inc from python script

str_meshconstref <<argv [8];

// get meshconstref from python script

str_meshconstcoarse <<argv[9]; //get meshconstcoarse from python script

str_model <<argv [10]; 1/
str_inc >>inc;

temp_inc <<inc —1;
avgeps=str_avgeps.str();

str_xd>>xd;

str_yd>>yd;
str_yf>>yf;
str_zd>>zd;

//save

get modelname from python script
inc on double variable

//increment minus 1

/lsave
/lsave
/lsave
/lsave

//save avgeps on double variable
xd on double variable
yd on double variable
yf on double variable
zd on double variable

column
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str_resolution >>resolution ; //save spatial resolution on double variable
str_meshconstref >>meshconstref; //save meshconstref on double variable
str_meshconstcoarse >>meshconstcoarse ; //save meshconstcoarse on double variable

mlt) /(2.+meshconstref)+numlim); //calculate total amount of elements
mlt) /(2.+meshconstref)+numlim); //calculate total amount of elements

elementx=(int) ((xd—2
elementz=(int) ((zd -2
elementy=(int)(yf/meshconstref+numlim)+((int) ((yd—yf—2.#pmlt—airt)/meshconstcoarse+numlim));

of element in y direction
cout<<"elementx="<<elementx <<"elementy= "<<elementy<<" elementz="<<elementz<<endl;
NTfile="NT_"+str_model.str ()+"_"+temp_inc.str ()+".txt"; //name of the file containing all of
//START TO READ IN NTI1 data
if (inc!=1){
readinNT () ;
cout<<"NT of node "<<NT[6][0]<<" in Part microstructure is "<<NT[6][1]<<" degree"<<endl;
}
//SAVE EPS DATA
readineps () ; //save eps data
/1
master_printf ("begin MEEP calculation ... \n");
polycrystal (resolution , Ez); //start MEEP calculation
master_printf ("finished .\n");
return 0;
}
/1l
// definition of the different methods
/1
//Method to read in NT values
void readinNT () {
//read in NT of microstructure nodes
string sm;
std :: vector<std :: string > vm;
ifstream tm;
tm.open(NTfile.c_str (), ios::in); //open file

if (tm.good()==false){ //check if tess file exist
tm.close (); //if not close file
cout<<"NT file is missing!!!"<<endl; //write error message
exit(1); //end program

}

while (!tm.eof ()){ //loop over all lines of the file
getline (tm,sm); //read out line

vm. push_back(sm); //save line
}
tm.close ();
for (unsigned int j=0; j<vm.size()—1; j++){ //loop over all lines
std :: vector<std ::string > temp;
istringstream iss(vm[j]);
copy (istream_iterator <string >(iss), //split of the single lines
istream_iterator <string >(),
back_inserter <vector<string > >(temp));
std :: vector <double> row;
for (int n=0; n<2; n++){ // save node ID and temperature
row . push_back (atof (temp[n].c_str())); //save the components of a line
}

NT. push_back (row): //insert row in NT_micro

}
//Method to read in the eps data
void readineps (){
string s;
std ::vector<std ::string> v;
ifstream t;
t.open(avgeps.c_str (), ios::in);
if (t.good()==false){ //check if tess file exist

t.close(); //if not close file
cout<<"epsfile is missing!!!"<<endl; //write error message
exit(1); //end program

)
while (!t.eof ()){
getline (t,s);
v.push_back(s);
}
t.close ()
for (unsigned int j=0; j<v.size()—1: j++){
std ::vector<std ::string > temp;
istringstream iss(v[j]);
copy(istream_iterator <string >(iss), //split of the single lines

in x direction

in z direction

// calculate total amount

the node

temperatures
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istream_iterator <string >(),
back_inserter <vector<string > >(temp));

std :: vector <double> row;

for (int n=0; n<3; n++){ // save temperature, eps real and eps imaginary part
row. push_back (atof (temp[n].c_str())); //save the components of a line

}

epsdata.push_back(row):; //insert row in epsdata

}

//method to create spatial distribution of the real part of epsilon
double eps (const vec &p) {
double realeps; // real part of eps
double temp; // current temperature
double point[3];
if ((p.xO<pmlt) [1(p.x()>(xd=—pmlt)) I (p.y()<(pmlt+airt)) I (p.y()>(yd—pmlt)) II(p.z()<pmlt) II(p.z()>(zd—pmlt))){ //check
if material point is in pml area
realeps=1.;

}
else {
if (inc!=1){ //if the current increment is bigger than 1 calculate the current temperature
//check in which quarter the point lies
if (p.x()<=xd/2.&&p.z()<=zd/2.){
point [0]=(p.x()—pmlt);
point[I]=(p.y()—pmlt—airt);
point[2]=(p.z()—pmlt);
}
else{
if (p.x()<=xd/2.){
point[0]1=(p.x()—pmlt):
point[l]=(p.y()—pmlt—airt);
point[2]=(zd—2.#pmlt)—(p.z()—pmlt)
}
else{
if (p.z()<=zd/2.){
point[0]=(xd—2.xpmlt)—(p.x()—pmlt);
point[1]=(p.y()—pmlt—airt);
point[2]=(p.z()—pmlt);
}
else{
point[0]=(xd—-2.#pmlt)—(p.x()—pmlt);
point[1]=(p.y()—pmlt—airt);
point[2]=(zd—2.xpmlt)—(p.z()—pmlt);
}
}
}
temp=getTemp (point); //get current temperature of the point
}
else{
temp=25.; // set current temperature to room temperature
}
realeps=interpolate (temp, 0); // get real part of epsilon through interpolation
}
return realeps;

}

//class and methods to define spatial distribution of the imaginary part of epsilon
class my_material:public material_function {
bool has_conducitivity (component ¢) {
if(c == Dz)
return true;
else
return false;
}
double conductivity (component ¢, const vec &l){
double con; // conductivity
double point[3]; //sought point
double temp; // current temperature
if ((1.xO<pmlt) I1(1.x()>(xd=pmlt)) 1 (1.y()<(pmlt+airt))II(1.y()>(yd—pmlt)) II(1l.z()<pmlt) [I(1.z()>(zd—pmlt))){ //
check if material point is in pml area
con=0;
}
else {
if (inc!=1){ //if the current increment is bigger than 1 calculate the current temperature
//check in which quarter the point lies
if (1.x()<=xd/2.&&1.z()<=zd/2.){
point [0]=(l.x()—pmlt);
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point[1]=(l.y()—pmlt—airt);
point[2]=(1.z()—pmlt);

}
else{
if (1.x(O)<=xd/2.){
point [0]=(l.x()—pmlt);
point[1]=(l.y()—pmlt—airt);
point[2]=(zd —=2.xpmlt)—(1.z()—pmlt);
}
else {
if (1.z()<=zd/2.){
point[0]=(xd—2.xpmlt)—(l.x()—pmlt);
point[1]=(1.y()—pmlt—airt);
point [2]=(1.z()—pmlt);
}
else {
point[0]=(xd—2.#pmlt)—(l.x()—pmlt);
point[1]=(1.y()—pmlt—airt);
point[2]=(zd—2.xpmlt)—(l.z()—pmlt);
}
}
}
temp=getTemp (point); //get current temperature of the point
}
else{
temp=25.; //set current temperature to room temperature
}
con=((2+M_PI+(frequencyHz/c_m)=interpolate (temp, 1))/interpolate (temp, 0)); // calculate
}
return con;

}
b
//Method to define the gauss profile
complex<double> gauss(const vec &p){
complex<double> amplitude ;
double radius=sqrt(pow(p.x() ,2)+pow(p.z(),2));
amplitude=(e0=exp(—pow ((radius/w0) ,2)));
p.~vec():
return amplitude;
}
// method to read out temperature value of odb
double getTemp(double point[3]) {

double curtemp; // current temperature

int nx; //number of elements in x direction
int ny; //number of elements in y direction
int nz: //number of elements in z direction
int nyfine; //number of elements in y refined
int foundinelement; //element in which point lie
double hl, h2, h3, h4, h5, h6, h7, h8; //shape functions
int nl, n2, n3, n4, n5, n6, n7, n8; //node 1D
double r; //x — coordinate in image space
double s; /ly — coordinate in image space
double t; /lz — coordinate in image space

// calculate FE in which point lies
nx=((int)(point[0]/ meshconstref+numlim)) ;
nyfine=(int)(yf/ meshconstref);
if (point[l]<=yf){

ny=((int)(point[1]/ meshconstref+numlim));
}
else{

ny=nyfine+((int) ((point[l]—yf)/meshconstcoarse+numlim)):
}
nz=((int)(point[2]/ meshconstref+numlim));
// Check rounding errors
if (nx>elementx —1){

nx=elementx —1;
}
if (ny>elementy —1){

ny=elementy —1;
}
if (nz>elementz —1){

nz=elementz —1;
)
r=(point[0] —(double)nx+meshconstref)=(2./ meshconstref) —1.; //calculate r coordinate
if (point[l]>=yf){

conductivity
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}

s=(point[1]—((double)nyfinesmeshconstref+(double)(ny—nyfine)s+meshconstcoarse) )= (2./ meshconstcoarse) —1.; //calculate

coordinate
)
else{
s=(point[l1]—(double)ny+meshconstref)=(2./ meshconstref) —1.; //calculate s coordinate
}
t=(point[2] —(double)nz+meshconstref)=(2./ meshconstref) —1.; //calculate t coordinate

foundinelement=(nx+1)+(elementx)+nz+(elementx )= (elementz)+ny; //element ID
// define shape functions

hl=(1./8.)#(I—r)s(1—s)*(1—1t);
h2=(1./8.)#(1+r)«(1—s)=(1—1t);
h3=(1./8.)=(1+r)=(1+s)=(1—1t);
hd4=(1./8.)«(l—r)=(l+s)=(1—t);
h5=(1./8.)s(l—r)=(1—s)=(1+t);
h6=(1./8.)«(1+r)=(1—s)=(1+1t);
h7=(1./8.)s(1+r)=(14+s)=(1+t);
h8=(1./8.)s(I—r)s(l+s)*(1+t);
nl=(nx+1)+(elementx+1)=nz+(elementx+1)=(elementz+1):*ny;

n2=(nx+2)+(elementx+1)+nz+(elementx+1)=(elementz+1)=ny;

n3=(nx+2)+(elementx+1):
n4=(nx+1)+(elementx+1)=xnz+(elementx +1
nS=(nx+1)+(elementx+1)=(nz+1)+(elementx+1)=*(elementz+1)=ny:
n6=(nx+2)+(elementx+1)=(nz+1)+(elementx+1)=*(elementz+1)=ny;
n7=(nx+2)+(elementx+1)=(nz+1)+(elementx+1)*(elementz+1)=(ny+1);
n8=(nx+1)+(elementx+1)=(nz+1)+(elementx+1)=*(elementz+1)=(ny+1);
// Check of local coordinates

z+(elementx +1 elementz+1)*(ny+1);

elementz+1)+(ny+1);

if (r<(—l.—numlim) Il r>(l.+numlim) |l s<(—1.—numlim) Il s >(1.4+numlim) |l t<(—=1.—numlim) || t >(1.+numlim)) {
cout<<"ERROR point "<<point[0]<<"x"<<point[l]<<"x"<<point[2]<<" is in element: "<<foundinelement<<" ("<<nx<<", "<<ny

<<" "<<nz<<") with local coordinates out of limits:"<<r<<", "<<s<<", "<<t<<endl;

}

S

curtemp=h1+NT[nl —1][1]+h2+NT[n2 —1][1]+h3+NT[n3 —1][1]+h4+NT[n4 — 1][1]+h5+NT[n5 — 1][1]+h6+NT[n6 — 1][1]+h7+NT[n7 — 1][1]+h8+NT[

n8 —1][1];
//check if node temperatures are found in file
if (NT[(nx+1)+(elementx+1)«nz+(elementx+1)=(elementz+1)=ny —1][0]!=((nx+1)+(elementx+1)=nz+(elementx+1)=(elementz+1)=ny
M
cout<<"ERROR node ID "<<((nx+1)+(elementx+1)=#nz+(elementx+1)=+(elementz+1)*ny)<<"not found!!!"<<endl;
}
if (NT[(nx+2)+(elementx+1)+nz+(elementx+1)+(elementz+1)sny —1][0]!=((nx+2)+(elementx+1)+nz+(elementx+1)=(elementz+1)xny

)

cout<<"ERROR node ID "<<((nx+2)+(elementx+1)+nz+(elementx+1)=(elementz+1)*ny)<<"not found!!!"<<endl;
}
if (NT[(nx+2)+(elementx+1)«nz+(elementx+1)=(elementz+1)=(ny+1) —1][0]!=((nx+2)+(elementx+1)=nz+(elementx+1)=(elementz+1
#(ny+1))){
cout<<"ERROR node ID "<<((nx+2)+(elementx+1)*nz+(elementx+1)=(elementz+1)=(ny+1))<<"not found!!!"<<endl;
}

if (NT[(nx+1)+(elementx+1)snz+(elementx+1)=(elementz+1)=(ny+1) —1][0]!=((nx+1)+(elementx+1)#nz+(elementx+1)+(elementz+1
#(ny+1))){
cout<<"ERROR node ID "<<((nx+1)+(elementx+1)snz+(elementx+1)=(elementz+1)+(ny+1))<<"not found!!!"<<endl;
)
if (NT[(nx+1)+(elementx+1)=(nz+1)+(elementx+1)=(elementz+1)=(ny) —1][0]!=((nx+1)+(elementx+1)=(nz+1)+(elementx+1):(
elementz+1)=(ny))){
cout<<"ERROR node ID "<<((nx+1)+(elementx+1)*(nz+1)+(elementx+1)=+(elementz+1)=(ny))<<"not found!!!"<<endl;
}
if (NT[(nx+2)+(elementx+1)«(nz+1)+(elementx+1)=+(elementz+1)«(ny) —1][0]!=((nx+2)+(elementx+1)=(nz+1)+(elementx+1):(
elementz+1)*(ny))){
cout<<"ERROR node ID "<<((nx+2)+(elementx+1)=(nz+1)+(elementx+1)=(elementz+1)=(ny))<<"not found!!!"<<endl;
)
if (NT[(nx+2)+(elementx+1)=(nz+1)+(elementx+1)=(elementz+1)+(ny+1) —1][0]!=((nx+2)+(elementx+1)=(nz+1)+(elementx +1):(
elementz+1)=(ny+1))) {
cout<<"ERROR node ID "<<((nx+2)+(elementx+1)*(nz+1)+(elementx+1)=(elementz+1)*(ny+1))<<"not found!!!"<<endl;
}
if (NT[(nx+1)+(elementx+1)#=(nz+1)+(elementx+1)=(elementz+1)+(ny+1) —1][0]!=((nx+1)+(elementx+1)*(nz+1)+(elementx+1):(
elementz+1)*(ny+1))){
cout<<"ERROR node ID "<<((nx+1)+(elementx+1)=(nz+1)+(elementx+1)=(elementz+1)=(ny+1))<<"not found!!!"<<endl;
)

return curtemp;

//Method to linearly interpolate the eps value
double interpolate (double temp, int epsrealim){

//search between which boundaries the temp lies

double inteps; //interpolated eps value
if (temp>=epsdata[epsdata.size () —1][0]){
if (epsrealim==0){ //save real part

inteps=epsdata[epsdata.size () —2][1]+((epsdata[epsdata.size () —1][I]—-epsdata[epsdata.size() —2][1])/(epsdata[epsdata.

)

)

)

)

size () —1][0] —epsdata[epsdata.size () —2][0]))=(temp—epsdata[epsdata.size () —2][0]); //linearly interpolated eps value
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}
if (epsrealim==1){ //save imaginary part
inteps=epsdata[epsdata.size () —2][2]+((epsdata[epsdata.size () —1][2]—epsdata[epsdata.size () —2][2])/(epsdata[epsdata.
size () —1][0] —epsdata[epsdata.size () —2][0]))=(temp—epsdata[epsdata.size () —2][0]); //linearly interpolated eps value
}

}
else{
if (temp<epsdata[0][0]){
if (epsrealim==0){ /l/save real part
inteps=epsdata [0][1]+((epsdata[1][1]—epsdata[O][1])/(epsdata[1][0] —epsdata[O0][0]))=(temp—epsdata[0][0]);: //
linearly interpolated eps value
}
if (epsrealim==1){ //save imaginary part
inteps=epsdata [0][2]+((epsdata[l][2] —epsdata[0][2])/(epsdata[l][0] —epsdata[0][0]))=(temp—epsdata[O][0]); //
linearly interpolated eps value
}
}
else{
for (unsigned int i=1; i<epsdata.size(); i++){
if (temp>=epsdatali—1][0]&&temp<epsdata[i][0]){ // if temperature is between the two adjacent values
if (epsrealim==0){ //save real part
inteps=epsdata[i —1][1]+((epsdata[i][l]—epsdata[i—1][1])/(epsdata[i][0]—epsdata[i—1][0]))=*(temp—epsdatali
—1][0]); //linearly interpolated eps value
}
if (epsrealim==1){ //save imaginary part
inteps=epsdata[i —1][2]+((epsdata[i][2]—epsdata[i—1][2])/(epsdata[i][0]—epsdata[i—1][0]))=*(temp—epsdatal[i
—11[01); //linearly interpolated eps value
}
}
}
}
}
return inteps; //return interpolated epsilon

}
//Method which define the polycrystal structure of the model
void polycrystal (double a, component ¢) {
double start, end, totalstart , totalend: // variable to calculate time

totalstart=MPI_Wtime () ; //save start time of calculation

my_material ui; // create new material ui

int timestep=0;

grid_volume v = vol3d(xd,yd,zd,a); // define calculation space

start=MPI_Wtime () ;

symmetry S=mirror (X,v)—mirror(Z,v); // define symmetry planes

structure sl(v, eps, pml(pmlt), S, 0, 0.5, false, DEFAULT_SUBPIXEL_TOL, DEFAULT SUBPIXEL MAXEVAL); //define the
structure inside the calculation spase (epsilon real distribution, ...)

end=MPI_Wtime () ;
start=MPI_Wtime () ;

sl.set_conductivity (Dz,ui); // define spatial conductivity (imaginary part of epsilon) distribution
end=MPI_Wtime () ;

fields fl(&sl); //initialize field

fl.use_real_fields () //indicate that real field should be used
fl.output_hdf5(Dielectric, v.surroundings()); // create output of the spatial epsilon distribution
double freq = frequencyHz/c_m; // frequency in Meep units

double amplitude=—1.0; // amplitude of the source

start=MPI_Wtime () ;

continuous_src_time src(freq); // define a continuous (in time) source

volume src_plane (vec(0.0,ysource ,0.0) ,vec(xd,ysource,zd)); //define the source plane
fl.add_volume_source (Hx, src ,src_plane , gauss ,amplitude); //add a Hx source

fl.add_volume_source (Ez,src,src_plane , gauss ,amplitude); //add a Ez source

end=MPI_Wtime () ;
master_printf ("volume sources added...\n"):
start=MPI_Wtime () ;
// calculate electro—magnetic fields until the end of the selected period is reached
while (fl.time () <=((period+0.5)/freq)){
fl.step();
if (fl.time ()>=(period/freq)){ // calculate time average E field for every node of ever element
timestep ++;
cout<<"total timesteps "<<timestep<<endl;
if (timestep %2==0){
fl.output_hdf5(Ex,v.surroundings()); //write the Ex field on a H5 output
f1.output_hdf5(Ey,v.surroundings()); //write the Ey field on a H5 output
f1.output_hdf5(Ez,v.surroundings()); //write the Ez field on a H5 output




237

end=MPI_Wtime () ;

cout<<"total amount of timesteps "<<timestep<<"after "<<end—start<<"s"<<endl;
totalend=MPI_Wtime () ; //Save time when calculation has finished
cout<<"the total caluclation took "<<totalend—totalstart<<"s "<<endl;

C++ script to calculate £2/£2

Appendix4/hdf5_aut_hom_model_coupled_v7.cpp

//C++ script to calculate the time averaged squared electric field
// Automatic version to be started by python script
// Version 1.0

/1l

#include <fstream>

#include <stdio.h> /# printf , scanf, puts, NULL =/
#include <stdlib .h> /% srand , rand =/

#include <iostream >
#include <string >
#include <sstream>
#include <algorithm >
#include <iterator >
#define _USE_MATH_DEFINES
#include <math.h>
#include <cmath>
#include <vector>
#include "H5Cpp.h"
#ifndef H5_NO_NAMESPACE
#ifndef H5_NO_STD

using std ::cout;

using std::endl;

using std::string;

using std::ifstream;
using std::ofstream;
using std::istringstream;
using std::ios;

using std::istream_iterator;
using std::vector;

using std::back_inserter;
#endif // H5_NO_STD
#endif

#ifndef H5_NO_NAMESPACE
using namespace HS5;

#endif

//VARIABLES which have to be user defined

const double starttime=5875.; // starttime of E field calculation (start of one period)
const double endtime=5995.; //endtime of E—field calculation (End of one period)
const double e0=59650.8; //E2 at the source position with just air

const double eOx=8.8151e—25; //E2x at the source position with just air

const double e0y=2.98858e—24; //E2y at the source position with just air

const double e0z=59650.8; //E2z at the source position with just air

const double x=0.1; //x position of coordinate system of bulk material

const double y=0.2; /1y position of coordinate system of bulk material

const double z=0.1; /lz position of coordinate system of bulk material

/1

//GLOBAL VARIABLES

std ::vector<std ::vector<std :: vector <double> > > e // field in which the E2 data is saved

std :: vector<std :: vector<std :: vector <double> > > ex; // field in which the E2x data is saved
std :: vector<std :: vector<std :: vector <double> > > ey; // field in which the E2y data is saved
std :: vector<std :: vector<std :: vector<double> > > ez // field in which the E2z data is saved

std :: vector<std :: vector<std :: vector <double> > >datoutput: //variable to save the node data of the output elements
std :: vector<std :: vector<double> > integrationpointsglobal: //variable to save coordinates of the integration points

std :: vector<int> phases; // variable to save the phases to the corresponding polyhedra
int nx; //amount of points in x—direction; NOTE: nx=ny=nz!!!!

int ny; //amount of points in y—direction

int nz; //amount of points in z—direction

double h; // grid constant xd/nx

double ttimestep; // total amount of time steps within one period

double xd; //dimension in x—direction of full calculation space
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double yd; //dimension in y—direction of full calculation space
double zd; //dimension in z—direction of full calculation space
int resolution; //'spatial resolution in Pixel/meter
/1
//MAIN PROGRAMM
/1l
int main (int argc, char ssargv){
//VARIABLE DEFINITION
std :: ostringstream model; //string of model name
std ::stringstream str_xd; // string of xd
std ::stringstream str_yd; //string of yd
std::stringstream str_zd; //string of zd
std ::stringstream str_resolution; //string of spatial resolution
std ::stringstream str_inc; // string of current increment
model<<argv[1]; // get model name from python script
str_xd <<argv[2]; // get xd from python script
str_yd<<argv([3]; // get yd from python script
str_zd <<argv [4]; // get zd from python script
str_resolution <<argv[5]; // get spatial resolution from python script
str_inc <<argv [6]; // get inc from python script
str_xd>>xd; //save xd on double variable
str_yd>>yd; //save yd on double variable
str_zd>>zd; //save zd on double variable
str_resolution >>resolution ; //save resolution on double variable
H5std_string out_e("output3D_"+model.str ()+"_E2_"+str_inc.str ()+".h5"); //output

ttimestep=(endtime—starttime )/2.+1;
cout<<"Amount of timesteps= "<<ttimestep <<endl
string component;

string filename;
nx=xdxdouble(resolution);
ny=yd#double(resolution):
nz=zdxdouble(resolution);
h=1./double(resolution);
int rank;

//amount of grid
//amount of grid
//amount of grid
// grid constant

hsize_t dims[3];

std :: ostringstream strs;

//BODY

/lopen first ez file in order to define global

component="ez";
strs <<starttime ;
if (starttime <10000){

filename=component+"—00000"+strs . str ()+".h5";

)

else {
filename=component+" —0000"+strs . str ()+".h5";

}

cout<<"filename: "<<filename <<endl;

H5std_string FILE_NAME( filename) ;

strs.str("");

strs.clear();

H5std_string DATASET_NAME(component) ;
HS5File file ( FILE.NAME, H5F_ACC_RDONLY )
DataSet
DataSpace filespace = dataset.getSpace():
filespace .getSimpleExtentNdims () ;
filespace.getSimpleExtentDims ( dims );
DataSpace mspacel (rank ,

dataset =

rank =
rank =
dims) ;
DSetCreatPropList cparms =
HS5File filewrite_e2 (out_e, H5F_ ACC_TRUNC );
DataSpace filespacewrite=filespace; 11/
H5std_string DATASET_NAME_WRITE( "E2") ;
DataSet
create
filespace.close();
dataset.close ();
file .close ();
cout <<
// allocate e 3D array

dataset

"dataset rank = << rank << ",
e.resize(nx);

ex.resize(nx);

ey.resize (nx);

ez.resize (nx);

for (int i=0;i<nx; i++){
eli].resize(ny);

ex[i].resize(ny);

file .openDataSet( DATASET NAME )

dataset.getCreatePlist ();

dimensions

points in x direction

points in y direction
points in z direction

array

//open file
//open dataset

// filespace for rank and dimension

// get number of dimensions in

//number of dimensions

/] get
!/ create

properties
file
space to write data

// define dataset name

"<< dims [0] << X

file for E2 hdfSs

output

the file dataspace

in the file dataspace

list

"<< dims[1] <<"

X

datasetwrite_e2=filewrite_e2.createDataSet (DATASET NAME WRITE, PredType ::NATIVE DOUBLE, mspacel ,cparms);:

"<<dims[2]<<endl;

11
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eyl[i].resize(ny);

ez[i].resize(ny):

for (int j=0; j<ny: j++){
e[illj].resize(nz);
ex[i][j].resize(nz);
ey[i][j].resize(nz);
ez[i][j].resize(nz);

}
// create coldata vector in which E 