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Abstract 

The damage of core samples can occur during the cutting, tripping, and handling phases. The 

core damage must be prevented otherwise the properties would be adversely altered and thus 

the cores would not be representative. One of the most detrimental damages occurs during 

tripping when the core undergoes decompression and temperature drop from the bottomhole 

to the surface. This occurs when sufficient time is not allowed for the pore fluids in the center 

of the core to dissipate than in the annulus. As a result, excessive pore pressure differences 

and stresses are induced within the core body. This causes tensile failure manifesting as 

microfractures in its body. These adversely alter the core rock and mechanical properties. 

Therefore, the sample should be tripped slowly enough so that the induced pore pressure and 

stress difference do not become excessive and the core does not undergo tensile failure. On 

the other hand, this slow enough tripping rate should meet the operational rig costs so that it 

does not cause invisible lost time. Therefore, the optimal tripping speeds should be 

determined for each case. This should be used as the basis of selection for different methods. 

The industry has so far utilized only generic methods for selecting their core tripping speeds. 

Just recently, there has been some research which failed to consider the thermal effect, the 

mud cake effect, and mechanical properties, they did not either evaluate the induced stresses 

or the optimal rates. 

Therefore, in this work, a state-of-the-art thermoporoelastic model has been developed to find 

the optimal tripping rates, which also contributes to the candidate selection. This work 

includes 1) the modeling, derivation, and evaluation of the hydraulic and thermal effects 

including the neglected ones in the literature, i.e., the thermal, mechanical, and mud cake 

effects; 2) summing all the effects causing induced stresses; 3) checking the induced stresses 

with the failure criterion; 4) indicating if tensile failure occurs for a specified tripping rate. 

This process is repeated for different tripping rates until the optimal one is obtained. A 

standard procedure is proposed to determine the optimal tripping using a standard set of 

inputs and running the model. During the modeling process, the contributing parameters have 

been identified and their effects have been investigated. Among the parameters, the hydraulic 

diffusivity coefficient and the in-situ conditions have been detected and introduced as the 

main factors determining the optimal rates and the basis for coring candidate selection.  
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Kurzfassung 

Während des Schneidens von Bohrkernen, dem Ausbau des Bohrgestänges und während der 

Weiterverarbeitung können Schäden am Bohrkern auftreten. Diese Schäden gilt es zu 

vermeiden damit die mit dem Bohrkern verbundenen Eigenschaften auch als repräsentativ 

gelten. Einer der schwerwiegendsten Schäden tritt während dem Ausbau des Bohrgestänges 

auf, wenn der Kern einem Druck- und Temperaturabfall, welche zwischen Kernteufe und 

Oberfläche herrschen, ausgesetzt wird. Dieser Umstand tritt dann auf wenn Porenflüssigkeit 

aus der Mitte des Bohrkerns nicht genügend Zeit erhält nach außen zu dringen. Als Folge 

treten starke Druckdifferenzen im Porenraum sowie induzierte Spannung im Kerninneren auf. 

Dies führt zu Zugversagen welches Mikrofrakturierung und daher eine Veränderung der 

Gesteinseigenschaften zur Folge hat. 

Aus diesen Gründen sollte der Bohrkern mit einer Geschwindigkeit entnommen werden, die 

es zulässt dass Porendruck und induzierte Spannungen nicht zu Zugversagen führen. 

Gleichzeitig sollte eine derartige Reduzierung der Ausbaugeschwindigkeit nicht zu einer 

Erhöhung der bohrplattformspezifischen Kosten führen. Deshalb sollte die optimale 

Ausbaugeschwindigkeit für jeden Fall einzeln bestimmt werden. Dies sollte als Basis für die 

zukünftige Auswahl der optimalen Geschwindigkeit sowie der optimalen Methode dienen. 

Der bisherige Industriestandard sah vor, dass generische Methoden zur Bestimmung der 

Ausbaugeschwindigkeit führen. Erst kürzlich hat es ähnliche Untersuchungen gegeben, 

welche jedoch Themen wie thermische Einwirkung, Einwirkungen der Bohrschlamm-

Filterbarriere und mechanischen Eigenschaften nicht berücksichtigen und auch die induzierte 

Spannung und optimale Ausbaugeschwindigkeit nicht bewerten. 

Aus diesen Gründen wurde in dieser Arbeit ein modernstes thermo-poroelastisches Modell 

zur Bestimmung der optimalen Ausbaugeschwindigkeit entwickelt, das auch zur Auswahl der 

optimalen Methoden beiträgt. Diese Arbeit beinhaltet 1) die Modellierung, Ableitung und 

Evaluierung von hydraulischen und thermischen Effekten, welche auch jene Einflüsse 

berücksichtigt, die in der bisherigen Literatur vernachlässigt wurden, d.h. thermische-, 

mechanische- und Bohrschlamm-Filterbarriere betreffende Einflüsse; 2) eine Aufsummierung 

aller Einflüsse welche induzierte Spannungen bewirken; 3) eine Untersuchung von 

induzierten Spannungen in Bezug auf die jeweilige Versagensart; 4) die Feststellung ob 
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Zugversagen für bestimmte Ausbaugeschwindigkeiten auftritt. Dieser Prozess wird solange 

für unterschiedliche Ausbaugeschwindigkeiten wiederholt bis die optimale Geschwindigkeit 

gefunden wird. Des Weiteren wird eine Standardprozedur vorgestellt, die es ermöglicht die 

optimale Ausbaugeschwindigkeit anhand eines Modells, welches einen standardisierten Satz 

an Eingabevariablen benötigt, festzustellen. Während der Modellierung werden die 

einflussverantwortlichen Parameter identifiziert und ihr Effekt untersucht. Innerhalb dieser 

Parameter sind der Koeffizient der hydraulischen Leitfähigkeit sowie die In-situ Spannungen 

die Hauptfaktoren zur Bestimmung der optimalen Ausbaugeschwindigkeiten sowie die Basis 

für die Auswahl der optimalen Methode. 
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Chapter 1: Introduction and Objectives 

1.1 Introduction 

In the petroleum industry, it is widely understood that core damage is a major concern when 

measuring properties from cores (Worthington et al., 1987; Fjaer et al., 2008; Hettema et al., 

2002; Holt, 1994). Core damage can occur during the different phases of core cutting, 

tripping, handling, etc. During tripping, fast retrieval of the cores may not allow sufficient 

time for the dissipation of the pore fluids within the sample and pressure equalization. This is 

the most severe in ultra-low-permeability cores or cores with very low-permeability mud cake 

(McPhee et al., 2015). This induces pore pressure difference and tensile stresses within the 

sample. As this may cause tensile failure and thus the creation of microfractures within the 

sample, it causes the alteration of the core properties and thereby core damage. This 

phenomenon is attributed to the gas expansion and viscous forces applied during expansion 

(Rosen et al., 2007).  

The aforementioned core damage is serious. A very specific characteristic of these fractures is 

the fact that they initiate within the core instead of initiating on the core surface (Bouteca et 

al., 1994). Thus, cores may be damaged though there is no apparent damage (Bouteca et al., 

1994 & Mcphee et al., 2015). The core properties particularly the rock and mechanical ones, 

e.g., porosity, permeability, compressive and tensile strength, Young’s modulus, etc. would 

not be representative of the reservoir (inferred from Hettema et al., 2002; Zubizarreta et al., 

2013 & Byrne et al., 2015). In addition, the microfractures may propagate, connect, and 

convert into fractures leading to core jamming during tripping. An example of CT scans from 

a damaged tight core due to the tripping is shown in Figure ‎1-1. 



2 

 

In order to prevent the tensile failure and the creation of microfractures in the cores during 

tripping, adjusting the tripping speed may help. It should be adjusted not to exceed the critical 

value at each depth. The optimal rate is the tripping speed that is sufficiently slow to avoid 

core damage due to tripping and at the same time as quick as possible to minimize operational 

rig costs. 

The drilling industry has not been determined to overcome the lack of clarity regarding their 

core tripping schedules. This is due to the fact that their KPI (Key Performance Indicator) is 

based on the maximum footage drilled. However, their KPI for coring, as it should be, is 

gradually changing to the economic core quality recovered (Mcphee et al., 2015). Therefore, 

recently some attempts have been made in adjusting the tripping rate. To prevent exceeding 

the critical tripping velocities, several generic or rule of thumb methods are available in the 

industry or standard organizations. For example, in API RP 40, (1998), it is stated: ‘The core 

barrel should be brought to the surface smoothly. During the last 500 feet (≈ 150 𝑚) the core 

should be surfaced slowly to minimize gas expansion that can severely damage 

unconsolidated cores if the pressure is reduced too quickly’. Several companies have their 

own core tripping schedules which are based on rules of thumb or experience (McPhee et al., 

2015). These and similar other schedules for core tripping are too general and not appropriate 

enough. Therefore, these schedules cannot either guarantee to protect the mechanical integrity 

of the core during tripping (i.e., cause core damage), or cause excessive tripping times, i.e., 

invisible lost time. In addition, as the industry does not have an engineered approach for 

selecting their tripping schedules for specified core properties, they do not possess a basis for 

selecting their coring methods (or candidate selection). 

Therefore, a more engineered method is required to model the core tripping rate during 

retrieval. Recently, to fill the aforementioned gap, some works have been conducted using 

poroelastic modeling (Hettema et al., 2002), fluid flow by Computational Fluid Dynamics 

software (Zubizarreta et al., 2013; Byrne et al., 2015) and Finite Element modeling (Hoeink 

et al., 2015) which relate the failure to the pore pressure difference exceeding the tensile 

strength of the sample. There are some lacks in the literature: 1) In none of the previous 

works, the induced stresses due to tripping have been evaluated to compare with the rock 

strength, 2) the thermal effect has not been either modeled or just an approximation for the 

whole sample has been considered (Hettema et al., 2002), 3) the mud cake effect has been just 

assumed constant, this does not provide a valid estimation, 4) the effect of some mechanical 
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properties have not been considered, 5) the contributing parameters have not been clearly 

identified, 6) no determinative factors have been already introduced by which we can 

generally manage the core tripping schedule, and 7) no criterion exists for candidate selection 

of the core tripping or coring method. 

 

Figure ‎1-1: CT Scan Images Showing Microfractures Occurred in a Rock Section (Mcphee et al., 2015; 

Zubizarreta et al., 2013; Byrne et al., 2015) 

1.2 Objectives and Analytical Modeling 

Considering the aforementioned problem, another approach is required which considers all 

the effects and thus provides a more comprehensive solution to the problem. Therefore, in this 

work, a thermoporoelastic approach is selected. Following this approach, as an outline, the 

induced pore pressure and stresses within the core can be considered during its trip to the 

surface. Thanks to the comprehensiveness of this approach, in addition to the induced pore 

pressure and confining pressure drop, the mud cake and the thermal effects can also be taken 

into account. These effects have not been thoroughly considered in the literature. Then, a 

modeling procedure must be designed to create the thermoporoelastic model for the case of 

core tripping. This model would be able to evaluate the induced pore pressure and stresses for 

the time when the sample reaches the surface. Then, the induced effective stresses can be 
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checked with the failure criterion to indicate whether the sample can be retrieved in a 

preserved manner or not. This should be repeated in an iterative manner for various tripping 

speeds, while considering economic rig time limitations, until the optimal rate is reached (if it 

exists). This can practically provide a standard method to determine the optimal core tripping 

in real operations. 

During the modeling process, all the contributing parameters and their effects can be 

identified. Then, among these factors, the most significant ones are selected as the 

determinative factors. These factors are those by which it is expected to generally understand 

in advance if there are or are not any optimal tripping rates, which both prevent core damage 

and are economical. This helps us for candidate selection of different coring methods. 

In short, the objectives of the thesis are: 

 Preventing the core damage and core preservation during its retrieval to the surface; 

providing economic and cost-effective core retrieval while considering operational rig 

costs and reduction of invisible lost time during core tripping 

 Considering the effects that have not been thoroughly considered in the literature 

including the thermal effect, the mud cake effect, and the mechanical properties 

during the modeling in order to provide a better prediction of failure  

 Developing a thermoporoelastic modeling approach for the case of core tripping to 

optimize the tripping. The resultant model is expected to be able to evaluate the 

induced stresses and pore pressures within the core sample, consider the failure 

criterion, and determine the optimal tripping rate 

 Proposing a practical simple procedure for the optimal tripping rates determination 

using some given and also estimated input parameters 

 Identifying the contributing parameters in the modeling process and also their effects 

on the core tripping schedule 

 Detecting the determinative factors among the contributing parameters as the factors 

having the greatest effects on the induced stresses and failure during tripping. These 

factors are introduced as the main criteria which help proper candidate selection for 

the wireline continuous coring and pressure coring, i.e. the proper coring method(s) to 

be used for specified core samples/properties.  
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Chapter 2: Systems for Core Tripping 

2.1 Introduction 

It is one of the objectives of this research to investigate which of the coring or core tripping 

methods is/are appropriate for which core samples/properties. Therefore, it is crucial to know 

about these methods. 

In order to investigate various core tripping rates that are practically possible considering the 

research objectives, it is crucial to know about these methods. There are two basic systems of 

core tripping/coring available in the market. These two systems are 1) conventional coring 

which retrieves the core sample to the surface via the drill pipe, and 2) wireline continuous 

coring which retrieves the core via using wireline. In both of these systems, there are two 

criteria to be considered: 1) the protection and preservation of the sample during its trip and 2) 

economic retrieving the sample based on the operational rig costs. As the first criterion can be 

safely disregarded in case of using pressure coring, it is important to discuss pressure coring 

in this chapter.  

2.2 Conventional Coring 

Conventional coring is a method of rotary coring by which the inner tube containing the core 

is retrieved together with the outer tube assembly following a conventional trip. A general 

schematic of conventional coring assembly has been shown in Figure ‎2-1. The core bit is 

connected to the outer tube assembly. The outer tube assembly is playing the role of the 

Bottom-Hole-Assembly (BHA). The outer tube assembly is connected to the drill pipes via 

the cross-over sub and the top sub. Conventional core cutting is accomplished using a coring 

bit/head with essentially the same principle as a drilling bit; however, the core bit cuts a 

hollow cylindrical rock and thus possesses smaller bearings and cutters. Prior to coring start, 
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the mud is allowed to pass through the inner tube to ensure no debris can enter the inner tube 

and it is clean. After coring commences, the mud circulation path is diverted to the annulus 

between inner and outer tubes by virtue of a dropping ball. The ball is a spherical metal of 1 

¼-in diameter that is either dropped from the surface to be seated on its seat or is activated 

hydraulically. The mud circulation path is diverted in order to prevent interfering with the 

cutting action and not to flush and damage the cut sample. In order to make the inner tube be 

remained stationary while the outer tube assembly is rotating freely during cutting, 

bearing/swivels are used near the top and bottom of the inner tube. After enough core is 

already cut by the core bit (i.e. end of coring), the drill string is overpulled so that the core can 

be cut by virtue of core catchers or retainers at the bottom end of the inner tube. Then, the 

drill string together with the core barrel is tripped and pulled out of hole. While tripping, it is 

important to let the expanded gas be vented to the mud and thus to prevent over-pressurization 

in the inner tube. Therefore, the inner tube should be in hydraulic communication with the 

hydrostatic mud column via the inner tube check valves (Figure ‎2-1). 

It should be noted that the most prominent advantages of conventional coring, compared with 

the wireline continuous method, is the capability of recovering large core length and size. 

Sampling with the length of e.g. 120 ft is possible; and depending on the hole size diameter 

sizes of even greater than 5-in is possible.  

The most prominent disadvantage of conventional coring is that the core barrel is retrieved to 

the surface through a conventional drill string trip (Deliac et al., 1991; Baker Hughes, 2012; 

Farese et al., 2013; Harrigan & Cole, 2011). This makes conventional coring timely and thus 

costly. In order to preserve the sample during its retrieval to the surface, the industry uses 

generic tripping schedules such as using the maximum tripping speed equal to 1.524 m/s, or 

as in Table ‎2-1. Some research works have been recently conducted considering some generic 

tripping schedules (e.g., as in Table ‎2-2). It is also recommended by the industry that for the 

tripping of very tight e.g. shale cores, conventional tripping is the solution. As one of the 

objectives of this research, these will be investigated. 
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Table ‎2-1: A Generic Industry’s Trip Schedule- for Gas-Bearing Cores by a Company–Conventional 

Coring 

Depth (TVD1, m) Trip Rate  
Bottom – 400 0.45 m/s (1 min/stand) 
400. – 100  0.15 m/s (3 min/stand) 
100. – surface 0.0375 m/s (12 min/stand) 

Table ‎2-2: One Generic Core Trip Schedule for Gas-Bearing Cores – Conventional Coring  

(Zubizarreta, et al., 2013) 

Depth (TVD, m) Trip Rate  
Bottom – Top of BHA at surface 0.45 m/s (1 min/stand) 
Top of BHA at surface – 150  0.075 m/s (6 min/stand) 
150 – Surface 0.05 m/s (9 min/stand) 

2.3 Wireline Continuous Coring 

Wireline continuous coring (WCC) is a method of coring by which changing the inner tube 

assembly containing the core is accomplished via wireline. In this method, switching from the 

drilling mode to the coring mode and vice versa can be continuously conducted using wireline 

without any required conventional trips (Randolf and Jourdan, 1991; Warren et al., 1998; 

Gelfgat, 2003). On average, the wireline tripping rate (≈1.5 m/s) can be about three times the 

conventional tripping rate (≈0.45 m/s). This method was developed to reduce the excessive 

tripping times and its operational costs as is the case with the conventional coring method. 

This constitutes the main difference from the conventional method. In other aspects, the 

method is similar to the conventional method, e.g. the same outer assembly, the same core bit, 

etc.  

Schematics of the core barrel used in this method have been illustrated in Figure ‎2-2. In order 

to switch from the drilling to the coring mode, first the drill insert/plug (which was inserted 

inside the core bit) is extracted out from the BHA by wireline and overshot2. Second, the 

inner tube/barrel assembly is tripped into the outer tube assembly again by wireline. Next, the 

mud circulation is done; thus, the mud pressure which is applied at the squeeze nozzle. This 

keeps the pressure head to be seated in the locking seat in order to start cutting the sample 

(Figure ‎2-2). In order to switch from the coring to the drilling mode, first the inner tube 

assembly (including the inner tube and bearing assembly) is retrieved by wireline and 

                                                 
1 True Vertical Depth 

2
 Overshot assembly is a tool run at the bottom end of the wireline in order to unlatch/latch the drill rod 

assembly or the inner tube assembly. 
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overshot assembly. Next, the inner drilling assembly (including drill plug and drill rods) is run 

in hole by wireline. Mud circulation is applied. This makes the inner drilling rod to be latched 

to the outer assembly in the lobe sub and the locking grapple to be activated and to latch to 

the locking seat. With these two points of contact, drilling can be started/resumed. It is also 

possible to run in with an empty inner tube assembly to cut additional cores (further coring).  

The main advantage of wireline continuous coring is that it mitigates the tripping time as the 

invisible lost time during conventional coring (Walker et al., 1990; Deliac et al., 1991; Baker 

Hughes, 1999, 2012 and 2013; Bencic et al., 1998; Farese et al., 2013). This contribution is 

the most vivid for coring deep zones, coring alternative multiple and separate zones. 

Currently, the main disadvantage of wireline continuous method is the possible damage 

occurring to the samples due to their rapid tripping of tight cores (inferred from Zubizarreta et 

al., 2013). This has been normally ignored by the drilling personnel as it violates the 

philosophy of using wireline. However, the operators have recently started paying attention to 

this issue. Therefore, the industry as a generic method, uses slowing down considerably in the 

last 100 m interval near the surface (i.e., the low trip rate as in Table ‎2-3); as another generic 

method, it recommends the application of conventional coring for typical shale cores.  

As the aforementioned rule of thumb methods do not suffice the needs for optimal tripping, 

some research using engineering approaches has been recently started (Hettema et al., 2002; 

Zubizarreta et al., 2013; Byrne et al., 2015; Hoeink et al., 2015). The candidate selection of 

core samples for the wireline method is one of the main objectives of this research. Therefore, 

we will distinguish the core properties that can be safely tripped by the wireline method.  

Table ‎2-3: An Industry Generic Trip Schedule- for Gas-Bearing Cores–Wireline Coring 

Depth (TVD, m) High Trip Rate [m/s] Low Trip Rate [m/s] 
Bottom – 100 1.524  1.524  
100-surface 1.524 0.035 
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a) Coring Mode b) Drilling Mode 

Figure ‎2-2: The Schematic of Wireline Continuous Coring  
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2.4 Pressure Coring 

Pressure/in-situ coring is a feature of sampling from the rock by which the sample is retrieved 

to the surface in a sealed pressure-type container. Therefore, the sample can reach the surface 

with its in-situ pore pressure. This almost prevents any fluid diffusion out of the core and 

therefore the core be considered intact. Then, at the surface, such tight samples can be 

depressurized very slowly in desorption canisters so that their mechanical integrity is safely 

maintained. Therefore, the sample rock and mechanical properties such as Young’s modulus 

or strength would be representative of the reservoir. This method has other advantages in 

terms of the liberated fluids and their sealing during tripping, but their discussion is out of the 

scope of this research.  

There are some rocks with specified properties that cannot be tripped to the surface 

mechanically preserved. Such rocks and their properties must be known. In the literature, 

there are no clear candidate selection procedures for the pressure coring method. In this 

research, such rocks and their properties would be determined. These cores are sealed in the 

pressure coring method and pulled out of hole neglecting their tripping rates without any 

worries about their preservation (Hyland, 1983; Bjorum, 2013 and 2014; Davis et al., 2013; 

Shinmoto et al., 2011 and 2012). This means that the core can be retrieved as quickly as 

possible without causing damage to the sample via wireline continuous method. Then, the 

core pressure can be relieved very slowly at surface so that the sample is preserved 

mechanically. A schematic of a typical barrel for pressure coring method has been shown in 

Figure ‎2-3.  

In the pressure coring so far discussed, the whole in-situ pressure is maintained3. In order to 

maintain more safety of handling the core barrel and enlarge the core size, it is also possible 

to partially keep the in-situ pressure, e.g., 1000 psi4(Bjorum, 2013).  

                                                 
3 CoreVault system, by Halliburton 

4 QuickCapture system, by Corpro 
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Chapter 3: Theory of Thermoporoelasticity –Core 

Tripping 

3.1 Introduction 

In this chapter, the possibility of applying thermoporoelasticity to the case of core tripping is 

investigated. Therefore, first the thermoporoelasticity concept and method is generally 

defined. Then, the core tripping problem is described and the way to translate and match this 

method with the case of core tripping is investigated. Finally, the theory of 

thermoporoelasticity is further discussed by discussing the governing equations involved. 

Therefore, the conservative equations, constitutive equations, diffusivity equations, and the 

fluid modeling during tripping are explained. In Chapter 5, in an analytical approach using 

these equations, the induced stresses during tripping will be presented. 

3.2 Definition 

Thermoporoelasticity is the study of rock mechanical behavior and how the rocks undergo 

deformation and failure in response to the effects of imposing a change or difference to the 

confining stress, the pore pressure, and also the temperature (Wang, 2000; Zoback, 2010). In 

other words, it describes the interaction and coupling between the confining stress difference, 

the pore fluid pressure difference and the temperature difference. This coupling can be in two 

ways: 

 Solid to fluid coupling: 

Imposing a change in confining stress at the boundary induces a change in pore fluid 

pressure or/and temperature change. 

 Fluid to solid coupling: 



3.3 Problem Description 
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Gradually, the aforementioned differences at the boundary extend towards the inside. The rate 

that these drops are transferred from the boundary to the inside depends on the given 

properties and the time. If this transfer does not occur quickly enough, it leaves lower drops in 

the inside than the outside. This is identical to higher values in the inside than the outside. 

Therefore, a difference in pore pressure and temperature is created between the boundary and 

the inside. This difference causes induced stresses distributed within the core. This process 

continues until the sample reaches the surface where the confining stress and temperature 

become those of the surface conditions. All these changes of core conditions cause induced 

tensile stresses within the sample, which may finally cause the sample failure during the trip.  

To deal with the mentioned problem, we need to evaluate the induced stresses and predict the 

failure. As the core sample is porous and permeable, we cannot use the simple solid elastic 

models (Appendix-A). Therefore, in this research, a thermoporoelastic approach will be 

utilized to consider the effects of all aforementioned changes that induce stresses within the 

core. Translating the initial conditions to the language of thermoporoelasticity gives: ‘the core 

sample is initially at zero stress difference, zero pore pressure difference, and zero 

temperature difference’. Translating the boundary conditions to the language of 

thermoporoelasticity gives: ‘decompression of the core is done at once’. In Figure ‎3-2, the 

thermoporoelastic changes to the core sample during its trip to the surface, including the 

initial and boundary conditions, have been shown. 

Therefore, at the time 0+, the sample undergoes an immediate confining pressure difference, 

pore pressure difference, and temperature difference at its boundary. The initial and boundary 

conditions using the original thermoporoelasticity have been shown in Figure ‎3-3. Based on 

the application of the thermoporoelastic theory in its original form, all the induced differences 

to the core occur just immediately; then, these differences are maintained for a specified 

period. This represents the immediate retrieval of the core from bottomhole to the surface. 

Therefore, it cannot represent a real core tripping by which the core is being tripped gradually, 

not immediately. This is a problem regarding the representative application of 

thermoporoelasticity to the case of core tripping. In Chapter 5, the aforementioned problem 

will be dealt with and the analytical modeling of the induced stresses within the core will be 

comprehensively investigated. 
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3.4 Governing Equations 

It is important to consider the corresponding physical laws which govern the 

thermoporoelastic modeling. The corresponding equations describe the mathematical 

relationships between important parameters involved in the problem. These important 

parameters are a) confining stress drop, b) pore pressure drop, and c) temperature drop.  

Basically, the governing equations are divided into the conservative laws, constitutive laws 

and diffusivity laws. These equations are common for all thermoporoelastic problems, only 

their boundary conditions may differ which make the solutions different. 

3.4.1 Conservative Equations 

In the development of thermoporoelasticity constitutive equations, the conservative laws for 

the continuity, momentum, and energy are considered as follows: 

Continuity: 
𝜕𝑚

𝜕𝑡
+ 𝑞𝑖,𝑖 = 0 Eq. ‎3-1 

Momentum: 𝜎𝑖𝑗,𝑗 = 0 Eq. ‎3-2 

Energy: 
𝜕∆𝑇

𝜕𝑡
= −

1

𝜌𝑏𝑐𝑏
ℎ𝑖,𝑖 −

1

𝜌𝑓∅
(𝑇𝑞𝑖)𝑖 Eq. ‎3-3 

In which 𝜌𝑏 is the density of the bulk material, 𝑐𝑏 is the specific heat capacity of the bulk 

material, ℎ𝑖,𝑖 is the heat flux, 𝑞𝑖,𝑖 is the fluid mass flux, m is the fluid mass, t is the time, 𝜎 

denotes the stresses, ∆T is the temperature difference, 𝜌𝑓 is the fluid density, ∅ is the rock 

porosity.  

3.4.2 Constitutive Equations 

In thermoporoelasticity, the following constitutive equations hold between the stress 

difference and strain, pore pressure difference, and temperature difference (Wang, 2000; 

Detournay & Cheng, 1993; Zoback, 2010; Chen & Ewy, 2005): 

∆𝜎 + 𝛼∆𝑃𝑝 = 𝐾𝜖 Eq. ‎3-4 

𝜁 =
1

𝐻
𝜎 +

1

𝑅
𝑃 Eq. ‎3-5 

∆𝜎 = 𝐾𝑇(𝜖𝑇 −
𝛼𝑚
3
∆𝑇) Eq. ‎3-6 
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Where ∆𝜎 is the stress difference which is the same as the confining mud pressure difference 

(for the core tripping case); ∆𝑃𝑝 is the pore pressure difference; K is the bulk modulus of 

elasticity; 𝜖 is the poroelastic strain; 𝑎 is the Biot’s coefficient; ζ is the increment of water 

content; 1
𝐻

 is the poroelastic expansion coefficient (Wang, 2000); 1
𝑅
 is the specific storage 

coefficient; ∆𝑇 is the temperature difference; 𝐾𝑇 is the isothermal bulk modulus; 𝜖𝑇 is the 

thermal strain; 𝛼𝑚 is the bulk thermal expansion coefficient. 

Having applied the constitutive equations to the case of core tripping in polar coordinates, we 

have the following relationships in radial and hoop or tangential directions (Boley & Weiner, 

1985; Jaeger & Cook, 1976; Wang, 2000): 

∆𝜎𝑟𝑟 = 2𝐺𝜖𝑟𝑟 + 2𝐺
𝜐

1 − 2𝜐
(𝜖𝑟𝑟 + 𝜖𝜃𝜃) − 𝑎∆𝑃𝑝 Eq. ‎3-7 

∆𝜎𝜃𝜃 = 2𝐺𝜖𝜃𝜃 + 2𝐺
𝜐

1−2𝜐
(𝜖𝑟𝑟 + 𝜖𝜃𝜃) − 𝑎∆𝑃𝑝  Eq. ‎3-8 

Where ∆𝜎𝑟𝑟 and 𝜖𝑟𝑟 are respectively the induced radial stress and strain; ∆𝜎𝜃𝜃 and 𝜖𝜃𝜃 are 

respectively the induced hoop or tangential stress and strain; 𝐺 is the shear modulus; 𝜐 is the 

Poisson’s ratio; 𝑎 is the Biot’s coefficient.  

3.4.3 Diffusivity Equations 

As the core sample is being raised from bottom, its outside hydraulic head and temperature 

drops. This induces a pressure and temperature difference from inside to the outside. These 

differences cause pore fluid flow and heat transfer from inside to the outside (Figure ‎3-4). 

These in turn, cause transient pressure and temperature change within the core body.  

The thermoporoelastic diffusivity equations describe the transient pore pressure change, i.e. 

pressure diffusivity equation, and transient temperature change from inside of the sample to 

its outside. Pressure diffusivity equation is found by combining the continuity law and the 

Darcy’s law. Thermal diffusivity equation is analogically found by combining the thermal 

continuity equation and the Fourier’s law. The pressure diffusivity equation is as follows 

(Wang, 2000; Detournay & Cheng, 1993; Carslaw & Jaeger, 1959): 

𝜕∆𝑃𝑝

𝜕𝑡
= 𝜂(

𝜕2∆𝑃𝑝

𝜕𝑟2
+
1

𝑟

𝜕∆𝑃𝑝

𝜕𝑟
) 

Eq. ‎3-9 

Considering the coupling effect of temperature change on the pore pressure change, the 

coupled-hydraulic diffusivity equation is (Chen & Ewy, 2005; Li, 1998): 



3.4.4 Fluid-Modeling Equations 
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Where 𝜂 shows the hydraulic diffusivity coefficient [𝑚2/𝑠], 𝐾 is permeability [mD], , 𝜑 is 

porosity,  𝜇 is viscosity [cp]; and  𝐶𝑡 is the total compressibility [1/Pa]. 

During the core trip to the surface, the pressure and temperature conditions change. Therefore, 

the viscosity and compressibility of the fluid (gas) change during the trip. During the trip from 

the bottomhole, this causes the hydraulic diffusivity coefficient 𝜂 to change. These changes 

are modeled as follows: The porosity and permeability change during the trip are considered 

negligible in this work. 

Viscosity 

The fluid viscosity is defined as the fluid resistance against flow or shear. If water is the fluid 

contained in the sample, its viscosity remains rather unchanged during its trip to the surface. 

However, if it is gas, it varies, i.e., drops, with pressure and temperature. Therefore, the gas 

viscosity is evaluated in terms of pressure and temperature by (Dempsey’s equation, 1965): 

𝑙𝑛 (𝑇𝑝𝑟
𝜇𝑔

𝜇1
) = 𝑎0 + 𝑎1𝑃𝑝𝑟 + 𝑎2𝑃𝑝𝑟

2 + 𝑎3𝑃𝑝𝑟
3 + 𝑇𝑝𝑟(𝑎4 + 𝑎5𝑃𝑝𝑟 + 𝑎6𝑃𝑝𝑟

2 + 𝑎7𝑃𝑝𝑟
3)

+ 𝑇𝑝𝑟
2(𝑎8 + 𝑎9𝑃𝑝𝑟 + 𝑎10𝑃𝑝𝑟

2 + 𝑎11𝑃𝑝𝑟
3) + 𝑇𝑝𝑟

3(𝑎12 + 𝑎13𝑃𝑝𝑟 + 𝑎14𝑃𝑝𝑟
2

+ 𝑎15𝑃𝑝𝑟
3) 

Eq. ‎3-14 

Where 𝜇1 is found by (Standing, 1977): 

𝜇1 = 8.118 × 10
−3 − 6.15 × 10−3 log(𝛾𝑔) + [1.709 × 10

−5 − 2.062 × 10−6𝛾𝑔](𝑇 − 460) Eq. ‎3-15 

The constants in the Eq. ‎3-14 are given in Table ‎3-1. 

Table ‎3-1: Constants Required for Dempsey’s Gas Viscosity Calculation 

𝑎0 = −2.46211820 𝑎4 = +2.80860949 𝑎8 = −0.0793385648 𝑎12 = +0.0839387178 

𝑎1 = +2.970547414 𝑎5 = −3.49803305 𝑎9 = +1.39643306 𝑎13 = −0.186408848 

𝑎2 = −0.286264054 𝑎6 = +0.360373020 𝑎10 = −0.149144925 𝑎14 = +0.0203367881 

𝑎3 = +0.00805420522 𝑎7 = −0.01044324 𝑎11 = +0.00441015512 𝑎15 = −0.000609579263 

Isothermal and Total Compressibility 

The hydraulic diffusivity coefficient 𝜂 is conversely proportional to the total compressibility 

of the core. Total compressibility 𝐶𝑡 is in turn a function of the compressibility of the rock 

matrix (𝐶𝑟) and the isothermal compressibilities of the fluids contained (Dake, 1998): 
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𝐶𝑡 = 𝐶𝑟 + 𝐶𝑤𝑆𝑤 + 𝐶𝑔𝑆𝑔 Eq. ‎3-16 

Where 𝐶𝑤 and 𝐶𝑔 are respectively the water and gas isothermal compressibilities in 1/Pa; 𝑆𝑤 

and 𝑆𝑔 are respectively the water and gas saturations.  

If the fluid that is contained in the sample is water, its isothermal compressibility is practically 

fixed during its trip to the surface. However, if it is gas, it varies with pressure and 

temperature. Thus, the isothermal compressibility for a real gas is considered in terms of the 

pressure and temperature as (McCain, 1990): 

𝐶𝑔 =
1

𝑃
−
1

𝑍
(
𝜕𝑍

𝜕𝑃
) =

1

𝑃
−

1

𝑃𝑝𝑐𝑍
(

3.53

100.9813𝑇𝑝𝑟
+
0.548𝑃𝑝𝑟

100.8157𝑇𝑝𝑟
) Eq. ‎3-17 

For a gas-bearing core, the gas isothermal compressibility 𝐶𝑔 is considerably greater than the 

rock and water isothermal compressibility values. Therefore, during the sample trip, in our 

modeling, the rate of increase of the total compressibility is assumed equal to the rate of 

increase of the gas compressibility.  
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Chapter 4: Failure Criteria during Core Tripping 

4.1 Introduction 

As the core sample is being tripped, the boundary of the sample experiences a sudden drop in 

the confining mud pressure, a pore pressure drop, and a temperature drop. This occurs with a 

rate that only depends on the tripping rate. However, the rate that these drops extend from the 

boundary to the inside depends on the tripping rate and the sample properties. Therefore, this 

rate difference causes the pore pressure and temperature difference between the boundary and 

the inside of the core. These differences are responsible for inducing tensile stresses 

distributed within the core which can possibly cause tensile failure.  

Therefore, in the direction of the objectives of this research to predict the core mechanical 

failure during tripping, we need to 1) determine the appropriate failure criterion and its 

framework, and 2) evaluate the normal stresses that are induced within the core sample. 

Therefore, in this chapter, first the appropriate failure criterion is determined. Then, in 

Chapter 5, we develop the equations for the principal induced stresses within the sample. 

These equations can fit into the tensile failure framework. 

4.2 Principal Stresses during Core Tripping 

In two-dimensional cylindrical coordinates, there are two particular orientations where the 

shear stresses are absent. The two corresponding orientations are called principal planes. 

These planes are perpendicular to each other. The corresponding stresses normal to these 

planes are called the principal stresses. For the case of tripping of the cylindrical core, the two 

principal planes are in the radial and hoop directions. Therefore, the principal stresses are the 

radial stress 𝜎𝑟𝑟 and the hoop or tangential stress 𝜎𝜃𝜃 (as shown in the two dimensional view 



4.3 Tensile Failure 



4.4 Failure Criteria 
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- Gurson: 

This criterion is used for plastic metals and has been even modified for porous ones 

(Chien et al., 2000). But, its appropriate usage is more for metals. 

- Haigh6: 

Haigh or strain energy theory is based on the assumption that strains are recoverable 

up to the elastic limit, and the energy absorbed by the material at failure is a single 

valued function independent of the stress system causing it. 

- Rankine7: 

Based on this criterion, the material yields when the maximum principal stress in a 

system reaches the value of the maximum strength at elastic limit in simple tension. 

This criterion is approximately correct for cast iron and brittle materials. This criterion 

is also called maximum principal stress theory. 

- Griffith:  

This failure criterion has been developed for brittle rocks (Fjaer et al., 2008 & 

Griffith, 1921) and is considered as the selected criterion in this thesis model. 

Therefore, among the aforementioned criteria, the Griffith’ criterion is selected for our 

application for the case of brittle cores. 

Griffith Criterion 

Using the Griffith’ tensile criterion (Griffith, 1921), there are two-segment equations in terms 

of 𝜎1′ and 𝜎3′  , for isotropic rocks as follows (Figure ‎4-4 a): 

∆𝜎3
′ − 𝑇𝑠 = 0 if (∆𝜎1

′ + 3∆𝜎3
′) > 0 Eq.  4-2 

(∆𝜎1
′ − ∆𝜎3

′)2 = 8𝑇𝑠(∆𝜎1
′ + ∆𝜎3

′) if ∆𝜎1
′ + 3∆𝜎3

′ < 0 Eq.  4-3 

Where the condition 𝜎1′ + 3𝜎3′ > 0 or (∆𝜎1′ + 3∆𝜎3′) > 0 means that the overall value of ∆𝜎1′ + 3∆𝜎3′ 

is tensile (using positive sign convention for tension).  

In 𝜏 − ∆𝜎′ coordinates, the Griffith critrion has the following form (Figure ‎4-4 b): 

𝜏2 = 4𝑇𝑠(∆𝜎
′ + 𝑇𝑠) Eq.  4-4 

                                                 
6 http://www.roymech.co.uk/Useful_Tables/Mechanics/stress.html (Last Accessed on Oct. 22, 2016) 

7 http://www.roymech.co.uk/Useful_Tables/Mechanics/stress.html (Last Accessed on Oct. 22, 2016) 

http://www.roymech.co.uk/Useful_Tables/Mechanics/stress.html
http://www.roymech.co.uk/Useful_Tables/Mechanics/stress.html
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Chapter 5: Analytical Approach and Model 

Development 

5.1 Introduction 

In Chapter 3, the core tripping problem was described with its initial and boundary 

conditions; the diffusivity equations that can potentially equate the distribution of the pore 

pressure and temperature difference within the core sample; the thermoporoelastic 

constitutive equations were presented which relate the induced stresses to the pore pressure 

difference and temperature difference distribution; it was also mentioned as one problem that 

the application of the original thermoporoelasticity to the core tripping case cannot represent 

the real conditions. Afterwards, in Chapter 4, the Griffith’ criterion was determined as the 

core failure criterion of the problem; and the induced radial and hoop stresses were clarified 

as the effective minimum principal stress (∆𝜎3′) responsible for causing the sample failure 

during its tripping. However, these stresses have not yet been equated and also their 

evaluation procedure must be still presented. 

Therefore, in this chapter, first we will adjust the original thermoporoelasticity so that it can 

represent the real conditions for core tripping. Next, in an analytical approach, the solutions to 

the thermoporoelastic equations will be found considering the initial and boundary conditions. 

This will finally provide us with the equations for the induced stresses. Therefore, using the 

developed equations within the adjusted thermoporoelasticity, the evaluation of the induced 

stresses is possible at any time. Finally, by fitting the evaluated stresses into the failure 

criterion for different tripping velocities, the thermoporoelastic model development for 

optimizing core tripping is completed.  
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5.2 Representative Thermoporoelasticity  

It was discussed in Chapter 3 that as the original thermoporoelasticity can just consider the 

immediate tripping of the sample to the surface, it is not representative of the real conditions. 

To overcome this issue, we need to modify the original thermoporoelasticity to match with 

our application. Therefore, it is assumed that the core is being raised from the bottomhole in a 

number of discrete steps n and after implementation of each single step, the conditions of 

the sample are maintained for a specified duration until the next step is taken. This 

continues until the core reaches the surface. The number of n should be chosen arbitrarily 

large enough. Depending on the chosen value of N, each step causes three effects of drops of 

the confining mud pressure, the pore pressure and the temperature at the boundary of the core 

(as shown in Figure ‎5-1). The duration that the mentioned effects due to each step will last is 

from the implementation time until the sample reaches the surface or at any other specified 

time. This duration will be considered in the thermoporoelastic modeling. In addition, 

depending on the selected tripping velocities, bottomhole depth and n, the time interval 

between taking two successive steps is determined.  

Therefore, when the core starts to be raised from bottomhole (during the first raising step 

from the bottomhole, n=1), the confining pressure, pore pressure, and temperature at the core 

boundary experience a specified difference or drop (this step is shown in Figure ‎5-1). The 

sample will continue experiencing these drops at its boundary until the time when it reaches 

the surface, or at any other time we are interested to investigate. Therefore, the duration that 

the effects of the first step will last (that must be considered in thermoporoelastic modeling) is 

equal to the whole tripping time. As the core is being raised for the second step (n=2), the 

same changes are induced to the sample and it will continue experiencing them until it reaches 

the surface. Obviously, the duration that the effects of the second step will last (that should be 

considered in the thermoporoelastic modeling) is less than that of the first step. This process, 

shown in Figure ‎5-2, continues so forth until the core reaches the surface.  

 



∆
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5.3 Developing the Thermoporoelastic Modeling 

Following the modification to the original thermoporoelasticity to match our core tripping 

application, it is necessary to develop a thermoporoelastic model to predict the induced pore 

pressures and stresses. Before illustrating the modeling process, several assumptions are made 

as follows: 

In this approach, the following assumptions are made. 

1) The derivation is made within the linear poroelastic framework. 

2) The rock is assumed to be isotropic and homogeneous. 

3) Pore fluid diffusion out of the core occurs only along the core radius. Therefore, axial 

flow with respect to the radial flow is considered negligible.  

4) Single-phase fluids (dry gas or water) are considered. 

5) Core pulling occurs with a constant rate or speed.  

6) The stress state is the hydrostatic mud pressure. Therefore, the confining pressure 

applied on the sample is the mud pressure. 

7) The initial pore pressure of the core sample at the bottomhole is assumed equal to the 

hydrostatic mud pressure. 

8) Locked-in stresses remained in the sample are ignored, i.e., the core stress memory 

after cutting the sample is ignored. Therefore, the induced stresses can be safely 

considered zero. 

Therefore, for the modeling process, the necessary flowchart has been developed, as shown in 

Figure ‎5-3. The required input data are inserted into the flowchart. These include the input 

bottomhole TVD, the tripping speed, the hydrostatic pressure drop between the 

implementation of two steps ∆𝑃𝑐,0, mud weight, some core properties including the sample 

porosity, viscosity, compressibility, and thus the hydraulic diffusivity coefficient8 𝜂 (at 

surface conditions). Next, using the arbitrary ∆𝑃𝑐,0 (taken here as 50 KPa), the number of 

steps is calculated as N for the bottomhole depth. The initial values for the induced pore 

pressure ∆𝑃𝑝(𝑟, 𝑡), the induced radial stress ∆𝜎𝑟𝑟(𝑟, 𝑡), and the induced hoop stress ∆𝜎𝜃𝜃(𝑟, 𝑡) 

are assumed and considered zero; these represent those of the bottomhole conditions.  

                                                 
8 The value of hydraulic diffusivity coefficient is given to the thermoporoelastic model at surface conditions.  
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Using the initial assumptions or calculations, moving from the bottomhole, the induced pore 

pressures and stresses corresponding to each step can be evaluated and summed-up to find the 

total values. For the evaluation corresponding to each step, we need to find the equations for 

the induced pore pressures and stresses (to be developed in the next section), the duration of 

the effect of each step ∆𝑡(𝑛), and the corresponding modified value of the hydraulic 

diffusivity coefficient9 (which depends on the average pressure 𝑃(𝑛)). For this purpose, a for-

loop has been used in the algorithm of Figure ‎5-3. Therefore, the summation gives the total 

induced pore pressures and stresses at the surface. Next, the effective stresses ∆𝜎′ can be 

found by adding the induced stresses ∆𝜎 to the induced pore pressure ∆𝑃𝑝. Finally, by 

entering the evaluated stresses into the Griffith’ failure criterion, we can determine if safe 

tripping of core (i.e. without failure) or unsafe tripping (i.e. with failure) can be accomplished. 

For the purpose of enhanced simulation, coding and conversion of the flowchart algorithm to 

a software program has been accomplished in MATLAB-2015 environment. 

                                                 
9 For each step 𝑛, the value of the hydraulic diffusivity 𝜂 depends on the modified values of the fluid viscosity 
and compressibility for the pressure 𝑃(𝑛). This has been discussed in Chapter 3 (Fluid-Modeling Equations). 
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5.4 Equating Induced Pore Pressures and Stresses 

To fill the gap in the model development process, it is required to find and develop the 

equations for the induced pore pressures and stresses during the sample tripping. This is done 

in this section. To accomplish this, an algorithm has been devised to show the required eight 

stages (as shown in Figure ‎5-4).  

Initially, we consider the diffusivity equations, initial and boundary conditions, and the 

constitutive equations. After that, the problem’s boundary conditions are decomposed into 

three classes called unloading modes. These modes consist of: 1) hydraulic, confining 

pressure drop, 2) hydraulic, pore pressure drop, and 3) thermal, temperature drop. Each of the 

three unloading modes is individually considered for a specified diffusivity equation (which is 

a Partial Differential Equation PDE). Using the unloading modes in section ‎5.4.1, the 

hydraulic diffusivity equation is combined with the unloading modes I and II to create two 

Boundary Value Problems (BVPs). Similarly, the thermal diffusivity equation is combined 

with unloading mode III to generate the third BVP. Therefore, three individual problems 

represented in BVPs, are created. 

Next, in order to facilitate solving the BVPs, we take Laplace transformations from the 

diffusivity equations. Then, the solutions of the BVPs are analytically found. These solutions 

provide us with Laplace of the distribution of the pore pressure and temperature differences 

within the sample. Next, we apply these solutions to the constitutive equations to develop and 

equate the Laplace of induced radial stress, hoop stress, and pore pressure. Next, using the 

superposition principle, the total Laplace of the induced stresses is found as the summation of 

the individual ones. Finally, we apply the Stehfest’ algorithm (Appendix-B, Jacquot et al., 

1983) to numerically take the Laplace inverse transformation and give out the induced pore 

pressures and stresses. 

 



5.4.1 Unloading Modes 
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are decomposed into three parts, called the unloading modes. For each unloading mode, it is 

assumed that only one variable is changed at the core boundary. The unloading modes are: 

Unloading Mode I (Confining Pressure Drop):  

Unloading mode I considers the drop of the confining mud pressure at the core boundary. In 

this mode, it is assumed that the pore pressure and the temperature are maintained constant 

and thus their differences are zero at the boundary. The conditions for this mode are: 

 The confining pressure difference at the boundary (for t>0): 

∆𝑃𝑐(𝑅, 𝑡) = ∆𝑃𝑐,0 Eq. ‎5-1 

 The pore pressure difference at the boundary (for t>0): 

∆𝑃𝑝(𝑅, 𝑡) = 0 Eq. ‎5-2 

 The temperature difference at the outer boundary (for t>0): 

∆𝑇(𝑅, 𝑡) = 0 Eq. ‎5-3 

Unloading Mode II (Pore Pressure Drop):  

Unloading mode II considers the drop of the pore pressure at the core boundary. In this mode, 

it is assumed that the confining mud pressure and the temperature are maintained constant and 

thus their differences are zero at the boundary. The conditions for this mode are: 

 The confining pressure difference at the boundary (for t>0): 

∆𝑃𝑐(𝑅, 𝑡) = 0 Eq. ‎5-4 

 The pore pressure difference at the boundary (for t>0): 

∆𝑃𝑝(𝑅, 𝑡) = −∆𝑃0 Eq. ‎5-5 

 The temperature difference at the outer boundary (for t>0): 

∆𝑇(𝑅, 𝑡) = 0 Eq. ‎5-6 

Unloading Mode III (Temperature Drop): 

As the core sample is being tripped, due to the contact of the cooler drilling mud with the core 

sample, its boundary undergoes cooling, i.e., its temperature drops. To assume that the sample 
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boundary temperature is equal to the drilling mud temperature, the thermal convection 

coefficient of the drilling mud h is considered infinity. 

Unloading mode III considers the drop of the temperature at the core boundary. In this mode, 

it is assumed that the confining mud pressure and the pore pressure are maintained constant 

and thus their differences are zero at the boundary. The conditions for this mode are: 

 Applied tensile stress (change) at the outer boundary (for t>0): 

∆𝑃𝑐(𝑅, 𝑡) = 0 Eq. ‎5-7 

 Pore pressure (change or drop) at the outer boundary (for t>0): 

∆𝑃𝑝(𝑅, 𝑡) = 0 Eq. ‎5-8 

 Temperature (change or drop) at the outer boundary (for t>0): 

∆𝑇(𝑅, 𝑡) = −∆𝑇0 Eq. ‎5-9 

5.4.2 Boundary Value Problems and Solutions 

The three boundary value problems and the solutions for the induced pore pressure and 

stresses are presented as follows: 

BVP I: Hydraulic, Confining Pressure Drop  

Having combined (the Laplace transform of) the hydraulic diffusivity equation (Eq. ‎3-9) with 

the unloading mode I, the first BVP is created. Solving this BVP gives the Laplace of the pore 

pressure difference distribution ∆𝑃𝑝̃(𝑟,𝑠)
(ℎ𝑦𝑑.1) due to this effect as (Wang, 2000; Detournay & 

Cheng, 1993): 

∆𝑃𝑝̃(𝑟,𝑠)
(ℎ𝑦𝑑.1)

= −
2∆𝑃𝑐
3𝑠𝐴

(1 − 𝜐)𝜐𝑢𝐵(1 − 𝑓𝑚𝑐) [𝐼0 (√
𝑠

𝜂
𝑅) − 𝐼0 (√

𝑠

𝜂
𝑟)] Eq.  5-10 

Where  

𝐴 = (1 − 𝜐)𝐼0 (√
𝑠

𝜂
𝑅) − 2(𝜐𝑢 − 𝜐)

𝐼1 (√
𝑠
𝜂
𝑅)

√
𝑠
𝜂
𝑅
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The equation for the induced displacement within the sample due to unloading mode II has 

been given by Wang (2000) and Detournay & Cheng (1993) as: 

∆𝑈𝑟𝑟̃(𝑟,𝑠)
(ℎ𝑦𝑑.1)

=
1

𝑠

∆𝑃𝑐  𝑟

2𝐺𝐴

[
 
 
 

(1 − 2𝜐𝑢)(1 − 𝜐)𝐼0 (√
𝑠

𝜂
𝑅) + 2(𝜐𝑢 − 𝜐)

𝐼1 (√
𝑠
𝜂
𝑟)

√
𝑠
𝜂
𝑟

]
 
 
 

 Eq.  5-11 

Using Eq. ‎5-10, Eq. ‎5-11, and the constitutive equations (section ‎3.4.2), the induced stresses 

(radial and tangential) can be developed. The corresponding derivations have been given in 

Appendix-D. For this mode, the final equations for the induced pore pressures are given in 

Table ‎5-1. The final equations for the induced radial stresses, denoted as 𝜎𝑟𝑟̃(𝑟,𝑠)
(ℎ𝑦𝑑.1.1) 

excluding mud cake effect, and 𝜎𝑟𝑟̃(𝑟,𝑠)
(ℎ𝑦𝑑.1.2) for only the mud cake effect, are presented in 

Table ‎5-2. The final equations for the induced hoop stresses, denoted as 𝜎𝜃𝜃̃(𝑟,𝑠)
(ℎ𝑦𝑑.1.1) 

excluding mud cake effect and 𝜎𝜃𝜃̃(𝑟,𝑠)
(ℎ𝑦𝑑.1.2) for only the mud cake effect, are presented in 

Table ‎5-3. Therefore, in the unloading mode I, collectively there are two effects on the 

induced stresses. Using the superposition principle, the total Laplace of the induced radial and 

hoop stresses are found as ∑ ∆𝜎𝑟𝑟̃(𝑟,𝑠)
(ℎ𝑦𝑑.2.𝑙)2

𝑙=1  and ∑ ∆𝜎𝜃𝜃̃(𝑟,𝑠)
(ℎ𝑦𝑑.2.𝑙)2

𝑙=1 .  

BVP II: Hydraulic, Pore Pressure Drop 

Having combined (the Laplace transform of) the hydraulic diffusivity equation with the 

unloading mode II, the BVP corresponding to the pore pressure drop is made. Solving this 

BVP gives the corresponding Laplace of the pore pressure difference distribution ∆𝑃𝑝̃(𝑟,𝑠)
(ℎ𝑦𝑑.1) due 

to this effect as (Wang, 2000; Detournay & Cheng, 1993): 

∆𝑃𝑝̃(𝑟,𝑠)
(ℎ𝑦𝑑.2)

= −
∆𝑃𝑐
𝑠𝐴

(1 − 𝑓𝑚𝑐)

[
 
 
 

(1 − 𝜐)𝐼0 (√
𝑠

𝜂
𝑟) − 2(𝜐𝑢 − 𝜐)

𝐼1 (√
𝑠
𝜂
𝑅)

√
𝑠
𝜂
𝑅

]
 
 
 

 Eq.  5-12 

Where  

𝐴 = (1 − 𝜐)𝐼0 (√
𝑠

𝜂
𝑅) − 2(𝜐𝑢 − 𝜐)

𝐼1 (√
𝑠
𝜂
𝑅)

√
𝑠
𝜂
𝑅
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The equation for the induced displacement within the sample due to unloading mode II has 

been given by Wang (2000) and Detournay & Cheng (1993) as: 

∆𝑈𝑟𝑟̃(𝑟,𝑠)
(ℎ𝑦𝑑.2.1)

= −
1

𝑠
𝑎(1 − 2𝜐)(

∆𝑃𝑐𝑟

2𝐺𝐴
)

[
 
 
 𝐼1 (√

𝑠
𝜂
𝑟)

√
𝑠
𝜂
𝑟

+ (1 − 2𝜐𝑢)

𝐼1 (√
𝑠
𝜂
𝑅)

√
𝑠
𝜂
𝑅

]
 
 
 

 Eq.  5-13 

Using Eq. ‎5-12, Eq. ‎5-13, and the constitutive equations (section ‎3.4.2), the induced stresses 

(radial and tangential) can be developed. The corresponding derivations have been given in 

Appendix-E. The final equations for the induced radial stresses, denoted as 𝜎𝑟𝑟̃(𝑟,𝑠)
(ℎ𝑦𝑑.2.1) 

excluding mud cake effect, and 𝜎𝑟𝑟̃(𝑟,𝑠)
(ℎ𝑦𝑑.2.2) for only the mud cake effect in unloading mode II, 

are presented in Table ‎5-2. The final equations for the induced hoop stresses, denoted as 

𝜎𝜃𝜃̃(𝑟,𝑠)
(ℎ𝑦𝑑.2.1) excluding the mud cake effect and 𝜎𝜃𝜃̃(𝑟,𝑠)

(ℎ𝑦𝑑.2.2) for only the mud cake effect, are 

presented in Table ‎5-3. Therefore, in the unloading mode II, collectively there are two effects 

on the induced stresses. Using the superposition principle, the total Laplace of the induced 

radial and hoop stresses are found as ∑ ∆𝜎𝑟𝑟̃(𝑟,𝑠)
(ℎ𝑦𝑑.2.𝑚)2

𝑚=1  and ∑ ∆𝜎𝜃𝜃̃(𝑟,𝑠)
(ℎ𝑦𝑑.2.𝑚)2

𝑙=1 .  

BVP III: Thermal, Temperature Drop 

The thermal effect on the induced stresses is mainly due to the conduction heat transfer 

causing the expansion-contraction effect and thus induced stresses (denoted as thermal-1). 

The thermal effect indirectly causes also coupling effects on the pore pressure difference and 

stresses.  

Having combined (the Laplace transform of) the thermal diffusivity equation (Eq. ‎3-11) with 

the unloading mode III, the BVP corresponding to the temperature drop is created. Solving 

this BVP gives the Laplace of the temperature difference distribution ∆𝑇̃ due to this effect as 

(Carslaw & Jaeger, 1959, p.327-329): 

∆𝑇̃ =
∆𝑇0
𝑠

𝐼0(√
𝑠
𝜂𝑇
𝑟)

𝐼0(√
𝑠
𝜂𝑇
𝑅)

 Eq.  5-14 

Taking inverse Laplace transformation from Eq. ‎5-14 gives the temperature distribution 

within the core as shown in Figure ‎5-5. 





41 

 

In this work, these thermally-coupled effects on the induced pore pressure and stresses are 

found using analogy with the equations developed by Chen & Ewy (2005), as in Appendix-F 

(Table ‎5-1 to Table ‎5-3). These effects on the induced radial stress, denoted as 𝜎𝑟𝑟̃(𝑟,𝑠)
(𝑡ℎ𝑒𝑟𝑚𝑎𝑙.2) 

and 𝜎𝑟𝑟̃(𝑟,𝑠)
(𝑡ℎ𝑒𝑟𝑚𝑎𝑙.3), are presented in Table ‎5-2. Similarly, these effects on the induced hoop 

stress, denoted as 𝜎𝜃𝜃̃(𝑟,𝑠)
(𝑡ℎ𝑒𝑟𝑚𝑎𝑙.2) and 𝜎𝜃𝜃̃(𝑟,𝑠)

(𝑡ℎ𝑒𝑟𝑚𝑎𝑙.3), are given in Table ‎5-3.  
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5.4.3 Summary of Equations 

Having developed the equations for induced pore pressures and stresses in sections ‎5.4.1 

and ‎5.4.2 (Appendix-D, E, and F), the lists of these equations have been summarized in 

Table ‎5-1 to Table ‎5-3. 

Table ‎5-1: Induced Pore Pressure (Difference) within the Core due to Tripping [coefficient A as in ***]  

In this Research Convention, Tensile Stresses are Considered Positive.  

a) Calculation of Pore Pressure Difference Induced due to: 

a-1) Hydraulic, Confining Pressure Drop 

∆𝑃𝑝̃(𝑟,𝑠)
(ℎ𝑦𝑑.1)

= −
2∆𝑃𝑐
3𝑠𝐴

(1 − 𝜐)𝜐𝑢𝐵(1 − 𝑓𝑚𝑐) [𝐼0 (√
𝑠

𝜂
𝑅) − 𝐼0 (√

𝑠

𝜂
𝑟)] 

a-2) Hydraulic, Pore-Pressure-Drop  

∆𝑃𝑝̃(𝑟,𝑠)
(ℎ𝑦𝑑.2)

= −
∆𝑃𝑐
𝑠𝐴

(1 − 𝑓𝑚𝑐)

[
 
 
 

(1 − 𝜐)𝐼0 (√
𝑠

𝜂
𝑟) − 2(𝜐𝑢 − 𝜐)

𝐼1 (√
𝑠
𝜂
𝑅)

√
𝑠
𝜂
𝑅

]
 
 
 

 

a-3) Thermal: Temperature Drop  

∆𝑃𝑝̃(𝑟,𝑠)
(𝑡ℎ𝑒𝑟𝑚𝑎𝑙)

= −
∆𝑇0
𝑠

𝜂𝑇

1 −
𝜂
𝜂𝑇 [
 
 
 𝐼0 (√

𝑠
𝜂𝑇
𝑟)

𝐼0 (√
𝑠
𝜂𝑇
𝑅)

−

𝐼0 (√
𝑠
𝜂
𝑟)

𝐼0 (√
𝑠
𝜂
𝑅)
]
 
 
 

 

b) Total Laplace of Pore Pressure Drop (by Applying Superposition): 

∑∆𝑃𝑝̃(𝑟, 𝑠) = ∆𝑃𝑝̃(𝑟,𝑠)
(ℎ𝑦𝑑.1)

+ ∆𝑃𝑝̃(𝑟,𝑠)
(ℎ𝑦𝑑.2)

+ ∆𝑃𝑝̃(𝑟,𝑠)
(𝑡ℎ𝑒𝑟𝑚𝑎𝑙) 

c) Total Pore Pressure Drop (by Taking Laplace Inverse): 

∆𝑃𝑝(𝑟, 𝑡) = 𝐿−1 (∑∆𝑃𝑝̃(𝑟, 𝑠)) 

*** A = (1 − υ)I0 (√
s

η
𝑅) − 2(υu − υ)

I1(√
s

η
𝑅)

√
s

η
𝑅
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Table ‎5-2: Induced Radial Stresses within the Core due to Tripping [coefficient A as in ***]  

a) Calculation of Radial Stress Difference Induced due to: 

a-1) Hydraulic, Confining Pressure Drop 

∆𝜎𝑟𝑟̃(𝑟,𝑠)
(ℎ𝑦𝑑.1.1)

=
∆𝑃𝑐
𝑠𝐴

{
 

 
(1 − 𝜐)𝐼0(√

𝑠

𝜂
𝑅) − 2 (𝜐𝑢 − 𝜐)

[
 
 
 𝐼1 (√

𝑠
𝜂
𝑟)

√
𝑠
𝜂
𝑟

]
 
 
 

}
 

 

 

∆𝜎𝑟𝑟̃(𝑟,𝑠)
(ℎ𝑦𝑑.1.2)

= 2
∆𝑃𝑐
𝑠𝐴

(𝜐𝑢 − 𝜐)

(1 − 2𝜐)
(1 − 𝜐)𝑓𝑚𝑐 [𝐼0(√

𝑠

𝜂
𝑅)− 𝐼0 (√

𝑠

𝜂
𝑟)] (due to mud cake effect) 

a-2) Hydraulic, Pore-Pressure-Drop 

∆𝜎𝑟𝑟̃(𝑟,𝑠)
(ℎ𝑦𝑑.2.1)

= −
∆𝑃𝑐
𝑠𝐴

𝑎(1 − 2𝜐)

[
 
 
 𝐼1 (√

𝑠
𝜂
𝑅)

√
𝑠
𝜂
𝑅

−

𝐼1 (√
𝑠
𝜂
𝑟)

√
𝑠
𝜂
𝑟

]
 
 
 

 

∆𝜎𝑟𝑟̃(𝑟,𝑠)
(ℎ𝑦𝑑.2.2)

=
∆𝑃𝑐
𝑠𝐴

𝑎(1 − 2𝜐)𝑓𝑚𝑐

[
 
 
 𝐼1 (√

𝑠
𝜂
𝑅)

√
𝑠
𝜂
𝑅

−

𝐼1 (√
𝑠
𝜂
𝑟)

√
𝑠
𝜂
𝑟

]
 
 
 

(due to mud cake effect) 

a-3) Thermal: Temperature Drop 

∆𝜎𝑟𝑟̃(𝑟,𝑠)
(𝑡ℎ𝑒𝑟𝑚𝑎𝑙.1)

= −
∆𝑇0
𝑠

𝐸

(1 − 𝜐)

𝛼𝑚
3
×

1

𝐼0 (√
𝑠
𝜂𝑇
𝑅) (√

𝑠
𝜂𝑇
𝑅)

[𝐼1(√
𝑠

𝜂𝑇
𝑅) −

𝑅

𝑟
𝐼1(√

𝑠

𝜂𝑇
𝑟)] 

∆𝜎𝑟𝑟̃(𝑟,𝑠)
(𝑡ℎ𝑒𝑟𝑚𝑎𝑙.2)

=
∆𝑇0
𝑠
(

𝜂′

1 −
𝜂
𝜂𝑇

)
𝛼𝑚
3

(1 − 2𝜐)

(1 − 𝜐)𝐼0 (√
𝑠
𝜂
𝑅) (√

𝑠
𝜂
𝑅)
[𝐼1 (√

𝑠

𝜂
𝑅) −

𝑅

𝑟
𝐼1 (√

𝑠

𝜂
𝑟)] 

∆𝜎𝑟𝑟̃(𝑟,𝑠)
(𝑡ℎ𝑒𝑟𝑚𝑎𝑙.3)

= −
∆𝑇0
𝑠
(

𝜂′

1 −
𝜂
𝜂𝑇

)
𝛼𝑚
3

𝑎(1 − 2𝜐)

(1 − 𝜐)𝐼0 (√
𝑠
𝜂𝑇
𝑅) (√

𝑠
𝜂𝑇
𝑅)

[𝐼1 (√
𝑠

𝜂𝑇
𝑅)−

𝑅

𝑟
𝐼1 (√

𝑠

𝜂𝑇
𝑟)] 

b) Total Laplace of Induced Radial Stress (by Applying Superposition): 

∑∆𝜎𝑟𝑟̃(𝑟, 𝑠) =∑∆𝜎𝑟𝑟̃(𝑟,𝑠)
(ℎ𝑦𝑑.1.𝑙)

2

𝑙=1

+ ∑ ∆𝜎𝑟𝑟̃(𝑟,𝑠)
(ℎ𝑦𝑑.2.𝑚)

2

𝑚=1

+∑∆𝜎𝑟𝑟̃(𝑟,𝑠)
(𝑡ℎ𝑒𝑟𝑚𝑎𝑙.𝑛)

3

𝑛=1

 

c) Total Induced Radial Stress (by Taking Laplace Inverse): 

∆𝜎𝑟𝑟(𝑟, 𝑡) = 𝐿
−1 (∑∆𝜎𝑟𝑟̃(𝑟, 𝑠)) 

d) Effective Radial Stress:: 

∆𝜎′𝑟𝑟(𝑟, 𝑡) = ∆𝜎𝑟𝑟(𝑟, 𝑡) + ∆𝑃𝑝 

*** A = (1 − υ)I0 (√
s

η
𝑅) − 2(υu − υ)

I1(√
s

η
𝑅)

√
s

η
𝑅
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Table ‎5-3: Induced Hoop Stresses within the Core due to Tripping [coefficient A as in ***].  

a) Calculation of Hoop Stress Difference Induced due to: 

a-1) Hydraulic, Confining Pressure Drop 

∆𝜎𝜃𝜃̃(𝑟,𝑠)
(ℎ𝑦𝑑.1.1)

=
∆𝑃𝑐
𝑠𝐴

{
 

 
(1 − 𝜐)𝐼0 (√

𝑠

𝜂
𝑅) − 2(𝜐𝑢 − 𝜐)

[
 
 
 

𝐼0 (√
𝑠

𝜂
𝑟) −

𝐼1 (√
𝑠
𝜂
𝑟)

√
𝑠
𝜂
𝑟

]
 
 
 

}
 

 

 

∆𝜎𝜃𝜃̃
(ℎ𝑦𝑑.1.2)

= 2
∆𝑃𝑐
𝑠𝐴

(𝜐𝑢 − 𝜐)

(1 − 2𝜐)
(1 − 𝜐)𝑓𝑚𝑐 [𝐼0(√

𝑠

𝜂
𝑅) − 𝐼0 (√

𝑠

𝜂
𝑟)] (𝑑𝑢𝑒 𝑡𝑜 𝑚𝑢𝑑 𝑐𝑎𝑘𝑒 𝑒𝑓𝑓𝑒𝑐𝑡) 

a-2) Hydraulic, Pore-Pressure-Drop 

∆𝜎𝜃𝜃̃(𝑟,𝑠)
(ℎ𝑦𝑑.2.1)

= −
∆𝑃𝑐
𝑠𝐴

𝛼(1 − 2𝜐)

[
 
 
 𝐼1 (√

𝑠
𝜂
𝑟)

√
𝑠
𝜂
𝑟

+

𝐼1 (√
𝑠
𝜂
𝑅)

√
𝑠
𝜂
𝑅

− 𝐼0 (√
𝑠

𝜂
𝑟)

]
 
 
 

 

∆𝜎𝜃𝜃̃(𝑟,𝑠)
(ℎ𝑦𝑑.2.2)

=
∆𝑃𝑐
𝑠𝐴

𝛼(1 − 2𝜐)𝑓𝑚𝑐

[
 
 
 𝐼1 (√

𝑠
𝜂
𝑟)

√
𝑠
𝜂
𝑟

+

𝐼1 (√
𝑠
𝜂
𝑅)

√
𝑠
𝜂
𝑅

− 𝐼0 (√
𝑠

𝜂
𝑟)

]
 
 
 

(due to mud cake effect) 

a-3) Thermal: Temperature Drop 

∆𝜎𝜃𝜃̃(𝑟,𝑠)
(𝑡ℎ𝑒𝑟𝑚𝑎𝑙.1)

= −
∆𝑇0
𝑠

𝐸

(1 − 𝜐)

𝛼𝑚
3
×

1

𝐼0(√
𝑠
𝜂𝑇
𝑅)√

𝑠
𝜂𝑇
𝑅)
[𝐼1(√

𝑠

𝜂𝑇
𝑅) +

𝑅

𝑟
𝐼1(√

𝑠

𝜂𝑇
𝑟) − (√

𝑠

𝜂
𝑅)𝐼0(√

𝑠

𝜂𝑇
𝑟)] 

∆𝜎𝜃𝜃̃(𝑟,𝑠)
(𝑡ℎ𝑒𝑟𝑚𝑎𝑙.2)

= −
∆𝑇0
𝑠
(

𝜂′

1 −
𝜂
𝜂𝑇

)
𝛼𝑚
3

(1 − 2𝜐)

(1 − 𝜐)𝐼0 (√
𝑠
𝜂𝑇
𝑅) (√

𝑠
𝜂𝑇
𝑅)

[𝐼1(√
𝑠

𝜂𝑇
𝑅) +

𝑅

𝑟
𝐼1(√

𝑠

𝜂𝑇
𝑟) − (√

𝑠

𝜂
𝑅)𝐼0(√

𝑠

𝜂𝑇
𝑟)] 

∆𝜎𝜃𝜃̃(𝑟,𝑠)
(𝑡ℎ𝑒𝑟𝑚𝑎𝑙.3)

=
∆𝑇0
𝑠
(

𝜂′

1 −
𝜂
𝜂𝑇

)
𝛼𝑚
3

(1 − 2𝜐)

(1 − 𝜐)𝐼0 (√
𝑠
𝜂
𝑅) (√

𝑠
𝜂
𝑅)

[𝐼1(√
𝑠

𝜂𝑇
𝑅) +

𝑅
𝑟
𝐼1(√

𝑠

𝜂𝑇
𝑟) − (√

𝑠

𝜂
𝑅)𝐼0(√

𝑠

𝜂𝑇
𝑟)] 

b) Total Laplace of Induced Radial Stress (by Applying Superposition): 

∑∆𝜎𝜃𝜃̃(𝑟, 𝑠) =∑∆𝜎𝜃𝜃̃(𝑟,𝑠)
(ℎ𝑦𝑑.1.𝑙)

2

𝑙=1

+ ∑ ∆𝜎𝜃𝜃̃(𝑟,𝑠)
(ℎ𝑦𝑑.2.𝑚)

2

𝑚=1

+∑∆𝜎𝜃𝜃̃(𝑟,𝑠)
(𝑡ℎ𝑒𝑟𝑚𝑎𝑙.𝑛)

3

𝑛=1

 

c) Total Induced Radial Stress (by Taking Laplace Inverse): 

∆𝜎𝜃𝜃(𝑟, 𝑡) = 𝐿
−1 (∑∆𝜎𝜃𝜃̃(𝑟, 𝑠)) 

d) Effective Radial Stress:: 

∆𝜎′𝜃𝜃(𝑟, 𝑡) = ∆𝜎𝜃𝜃(𝑟, 𝑡) + ∆𝑃𝑝 

*** A = (1 − υ)I0 (√
s

η
𝑅) − 2(υu − υ)

I1(√
s

η
𝑅)

√
s

η
𝑅
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5.5 Identifying Contributing Parameters  

So far, the equations for the induced stresses during core tripping have been developed in 

section ‎5.4. Having searched in these equations, the affecting coefficients or parameters can 

be identified. These constitute the input data required for thermoporoelastic modeling. 

Searching in these equations shows that: a) some of these parameters are general and appear 

in the equations for all the stresses and have effect in them (for all the unloading modes I to 

III), b) some appear and have effect only in equations for the hydraulically induced stresses 

(for unloading modes I and II), c) the rest appear only in equations for the induced thermal 

stresses (for unloading mode III). Therefore, these parameters can be classified into three 

classes based on their area of effect, as: 

a) Hydraulically and thermally affecting (general parameters): 

1) Bottomhole depth: 

2) Tripping speed  

3) Core diameter, 𝑅 

4) Poisson’s ratio 𝜐 

b) Hydraulic parameters: 

1) Hydraulic diffusivity coefficient, 𝜂:  

It, in turn, depends on porosity, permeability, viscosity, and total compressibility. 

2) Mud Properties: 

a. weight, 𝜌𝑚 

b. Mud cake pressure drop, Δ𝑃% 

3) Biot’s coefficient a 

c) Thermal parameters: 

1)  Thermal expansion coefficient 𝑎𝑚 

2) Thermal diffusivity, 𝜂𝑇 

3) Geothermal gradient 

4) Young’s modulus of elasticity, E 

It is noted that core sample tensile strength depends on the Young’s modulus (which is one of 

the parameters affecting the thermal induced stresses). It should also be noted that the 

lithology of the core sample has influence on the aforementioned listed parameters. Therefore, 

knowing the lithology can provide a general idea about the above parameters. 
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In Chapter 6, the effects of the above contributing parameters on the induced stresses within 

the sample and its failure will be investigated for a typical example. 

5.6 Optimal Tripping Model 

As the determination of the optimal tripping speed is one of the objectives of this research 

work, a proper procedure is required. This is because the tripping speed is the only 

contributing parameter that is selectable. Based on the developed procedure, given in 

Figure ‎5-6, the required input data is obtained including the selected highest possible tripping 

speed, i.e., wireline speed of 1.524 m/s. Next, the thermoporoelastic model is run using the 

input data and the possibility of failure is investigated. If failure does not occur with the given 

speed, tripping is possible with the wireline coring and the wireline speed is the optimum. If 

failure occurs with the given speed, a lower economical speed must be selected, and the 

model is rerun using the new speed. This speed should be in the economic limits of the 

operations. This process continues in an iterative manner until no failure occurs during 

tripping. The tripping speed by which no failure occurs is considered as the optimal one. 





48 

 

Chapter 6: Results and Discussion 

6.1 Introduction 

Based on Chapter 4 and 5, the thermoporoelastic model has been developed and coded in 

Matlab-2015. In this chapter, first this work’s developed model is compared and checked with 

a literature’s work, developed in Ansys-Fluent environment. The objective of this comparison 

is whether the thermoporoelastic model can give meaningful results. The parameters affecting 

the thermoporoelastic behavior were identified in the developed model in section ‎5.5. As the 

investigation of the effects of these parameters is one of the objectives of this work, this is 

followed in this chapter using a typical investigation. To do this, a typical core sample with 

specified properties and conditions is considered. Following this investigation, the 

contributing parameters with the greatest or dominant effects are recognized and considered 

as the determinative factors. The determinative factors are important as they contribute to 

proper candidate selection for different core tripping and coring methods.  

6.2 Matching 

In this section, the results of the developed thermoporoelastic model are compared with 

Zubizarreta et al. (2013) in Ansys-Fluent. They assumed a 4-inch (10.16 cm) core sample 

with 2% porosity, and permeability of 2 × 10−4𝑚𝐷, 0.02 cp gas viscosity, is retrieved from 

the depth of 1502.46 m to the surface. The drilling mud weight in the wellbore is 12.5 ppg 

(1259 Kg/m3) which gives 18.65 Mpa as the initial bottomhole pressure. The initial sample 

pore pressure is assumed to be equal to the initial mud hydrostatic pressure. The surface and 

bottomhole temperatures are respectively 10 and 34 ˚C. Based on the tripping schedule 

mentioned in their paper, the core is raised from 1502.46 to 914.5 m with 0.31 m/s tripping 

speed; then from 914.5 to 198 m with the speed of 0.065 m/s; and finally from 198 m to the 
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surface with 0.05 m/s. Using this data, the hydraulic diffusivity coefficient 𝜂 of 4 × 106 𝑚
2

𝑠
 

was obtained. This value will be used in the thermoporoelastic model. 

In their work like the other works in the literature, as the role of the mechanical and thermal 

properties were neglected in the induced pore pressured and stresses. Just, the tensile strength 

is used for verifying possible failure. However, in the thermoporoelastic model of this work, 

the contribution of the mechanical properties has been considered and this requires the 

corresponding data as well. Therefore, we inserted the model some adjusted mechanical and 

thermal properties including the Poisson’s ratio (𝜐 = 0.18), Undrained Poisson’s ratio 

(𝜐𝑢 = 0.28), Biot’s coefficient (𝑎 = 0.7), Young’s modulus (10 GPa), thermal expansion 

coefficient (10−5  1
°𝐶

), and thermal diffusivity coefficient of 8 × 10−7 𝑚
2

𝑠
. 

 
 

a) Result of the thermoporoelastic model of this work b) Results of Ansys-Fluent Model by 
Zubizarreta et al. (2013), Case6, p.10 

Figure ‎6-1: Comparison of the Results of the Thermoporoelastic Model with a Literature Work  

As shown in Figure ‎6-1 a and b, the results of the two models look comparable, just the 

thermoporoelastic model has modeled greater pore pressure values than the Fluent model. 

This can be attributed to the different nature of the two models and the fact that the Fluent 

model had not considered the mechanical and thermal properties. The black color in 

Figure ‎6-1-a represents the induced radial stress in the center of the core. This induced stress 

in the center of the core is found as the difference between the inside pore pressure (blue) and 

the outside mud pressure (red). The critical core internal pressure (shown by the green color) 

is equal to the summation of the outside mud pressure with the equivalent tensile strength. As 

the purpose of this section is the comparison of results, we used the same terminology and 
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] 
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also color convention of Zubizarreta et al (2013). However, in the next section, for the 

investigation of the contributing parameters, this will be a little different. 

6.3 Effects of Contributing Parameters 

In section ‎5.5, the affecting parameters were identified by searching the affecting coefficients 

through the developed equations for induced pore pressure and stresses. These are called the 

contributing parameters. Then, they were split into three classes: general (affecting both the 

hydraulically and thermally induced stresses within the sample), hydraulic (affecting only the 

hydraulically induced stresses) and thermal (affecting only the thermally induced stresses) 

classes. It was also noted that the tensile strength of the sample is affected by the Young’s 

modulus (as one parameter which also affects the induced thermal stresses).  

The investigation of the effects of the contributing parameters in the developed model is one 

of the objectives of this work. Therefore, this is accomplished in the following of this chapter, 

using the flowchart algorithm presented in section ‎5.3 and the equations presented in 

Table ‎5-1 to Table ‎5-3. To do this, first, a typical set of input data representing the properties 

of a typical gas-bearing1 tight core sample is required (as given in Table ‎6-1). This data is 

given in accordance to Chen & Ewy (2005), Hettema et al. (2002), and also the typical 

industry’s core analysis results. The input data is inserted into the model, the model is run, 

and the effective induced stresses are evaluated. Using the Griffith’ criterion, the results of the 

induced stresses are compared with the tensile strength of the sample to investigate possible 

failure.  

It is noted that as the effect of the first contributing parameter will be investigated, the 

corresponding graphs and the way of interpreting will be described in detail. The patterns of 

graphs for other parameters are similar. Using this, the results of the rest of the parameters can 

be similarly interpreted. 

  

                                                 
1 For single phase fluids containing the sample, gas is the worst case as of being compressible. 
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Table ‎6-1: Initial Inputs (Except for the Tripping Speed) belonging to a Typical Tight Gas-Bearing Core 

Sample for Use in the Thermoporoelastic Model  

Parameter Value Evaluation Method 

Depth at bottomhole [m] Mostly 500  

Diameter of core [in] 2 (≈5 cm)  

Porosity,  𝜙 [%] 40 Estimated/Measurable 

Permeability of core, K [mD] 10−3  Estimated/Measurable 

Viscosity of gas,  𝜇𝑔 [cp] 
0.02-0.04 

(surface) 
Measured 

Viscosity of water,  𝜇𝑔 [cp] 1  

Molecular Weight of gas, Mg 16 (Methane) Depending on the gas 

Specific Gravity of gas (Surface) 0.65 Depending on the gas 

Compressibility of rock, 𝐶𝑟 [1/pa] 5 × 10−10 Estimated/Measurable 

Compressibility of gas (surface), 𝐶𝑔 [1/Pa] 9.869 × 10−6 Estimated/Measurable 

Compressibility of water, 𝐶𝑤  [1/pa] 5 × 10−10 Estimated/Measurable 

Interstitial Water Saturation, 𝑆𝑤,𝑖  20% Estimated/Measurable 

Total Compressibility, 𝐶𝑡,𝑔 [1/Pa] 

(gas-bearing core) 
7.89 × 10−6 

𝐶𝑡 = 𝐶𝑟 + 𝑆𝑤𝐶𝑤 + 𝑆𝑔𝐶𝑔 

[Ahmed & McKinney, 2005] 

Hydraulic-Diffusivity, 𝜂 [𝑚2/s] 

(Gas-bearing at surface) 
10−8 

𝜂 = 9.869 × 10−13
𝐾

𝜑𝜇𝑔𝐶𝑡,𝑔
 

[Ahmed & McKinney, 2005] 

Thermal Expansion Coefficient, 𝛼𝑚 [1/˚C] 10−5 
Estimated/Measurable 

[Timoshenko, 1934)] 

Thermal Diffusivity, 𝜂𝑇 [𝑚2/s] 8 × 10−7 Estimated 

Geothermal Gradient [˚C/m] 0.025 Estimated/Measurable 

Uniaxial Compressive Strength, UCS [Mpa] 20 Measurable/Estimated 

Young’s Modulus [GPa] 4.2 Calculated/Estimated 

Tensile-Strength, T.S. [Mpa] 1.7–2 
𝑇. 𝑆. = 𝑈𝐶𝑆/𝑚, m=7–15 

[Jaeger et al., 2007] 

Biot’s coefficient, 𝑎 0.7 0.6-0.7 (for shales) 

Poisson’s Ratio, 𝜈 0.3 Estimated/Measurable 

Undrained Poisson’s Ratio, 𝜈 0.4 Estimated/Measurable 

Mud Weight, 𝜌𝑚 [kg/m3] 1078 𝑀𝑊[𝑝𝑝𝑔] × 119.826 = 𝑀𝑊 [
𝑘𝑔

𝑚3
] 

Coupling Coefficient, 𝜂′ and 𝜂′
𝑇

 0.17–0.3 Estimated 

Initial Bottomhole Pressure [Mpa] 5.4  

Initial Pore Pressure  Equal to initial hydrostatic pressure 
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6.4 General Parameters 

General parameters affect both the hydraulically and thermally induced pore pressure and 

stresses. They consist of the initial bottomhole depth, tripping speed, core diameter, and the 

Poisson’s ratio. 

6.4.1 Bottomhole Depth 

The initial bottomhole depth of the core sample is one of the parameters affecting the 

sample’s thermoporoelastic behavior during its tripping. To simulate this effect using the 

thermoporoelastic model, first the input data corresponding to a typical very tight core sample 

with 𝜂 = 10−8𝑚2/𝑠 (as given in Table ‎6-1) is considered. As the industry suggests using 

conventional coring for very tight samples, we first select this method and its tripping speed 

(0.45 m/s) to notice how it works. Inserting the input data into the flowchart algorithm, as in 

section ‎5.3, and using the equations presented in section ‎5.4.3, the induced stresses are 

evaluated for different initial bottomhole depths. Next, to investigate the possible failure 

within the sample when it reaches the surface, the Griffith’ failure criterion is applied for a) 

the induced radial stress, b) the induced hoop stress, and c) the induced radial stress in the 

center of the sample, evaluated by subtracting the mud pressure from the pore pressure in the 

center of the sample.  

Therefore, in order to investigate the effect of different depths, first Figure ‎6-2a and b show 

the evaluated induced radial and hoop stresses along with the tensile strength, ranging from 

the core center to its boundary. Then, Figure ‎6-2c displays the central induced radial stresses 

along with the tensile strength, versus time (red flat line). Comparing the induced effective 

stresses with the strength determines whether the failure can occur or not. As can be seen in 

this figure, failure occurs for all the initial bottomhole depths, except for the initial 

bottomhole depth of 500 m. This proves that the industry suggestion regarding the 

conventional tripping speeds for very tight cores does not mostly help. To justify the results, 

the greater this depth is, the greater is the initial bottomhole confining pressure of the mud and 

the initial pore pressure of the sample. Therefore, the total confining and pore pressure 

differences that the sample has to experience during tripping, would be greater. As a result, 

with greater bottomhole depth, greater induced stresses are induced within the sample while 

the tensile strength remains constant. This means that the possibility of the failure becomes 

greater with greater bottomhole depth.  
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As the considered core sample with the initial bottomhole depth of 500 m can be retrieved 

safely to the surface, from now on the effects of the rest of the contributing parameters will be 

mainly concentrated on this sample.  

 
Figure ‎6-2: The Effect of the Bottomhole Depth (where the Sample is Initially Located) on the Induced 

Thermoporoelastic Stresses and Failure 

6.4.2 Tripping Speed 

The tripping speed of the core is considered as the only parameter that is controllable and we 

can select to modify the induced thermoporoelastic stresses. The other parameters are bound 

to the core and hole properties. In section ‎5.6, a procedure was introduced for finding the 

optimal tripping speed. Following this procedure, the data given in Table ‎6-1 is considered 

with the initial bottomhole depth of 500 m. Next, the wireline tripping speed (1.524 m/s) is 

considered and the modeling is performed. The simulation results in Figure ‎6-3 (solid lines) 

indicate that the sample can be tripped almost safely. However, as there is an uncertainty for 

the tensile strength ranging from 1.7 to 2 Mpa, the induced stresses within the core almost 

reach its tensile strength (as seen in Figure ‎6-3-b). This makes wireline tripping probably a 

little risky for preserving the core.  

Legend: 

Variable: Bottomhole Depth (500 to 4000 m) 

- Gas 

- High Conventional tripping speed (0.45 m/s) 

- 𝜂 = 10−8[𝑚2/𝑠] 

- Tensile Strength: 

4000 m 

1000 m 

500 m 

1000 m 500 m 

4000 m 
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Therefore, for comparison purposes, a lower tripping speed is selected, the high conventional 

tripping speed (0.45 m/s) is selected and the modeling is again performed (the same figure, 

dashed lines). Using the conventional tripping speed compared with the wireline one, the 

induced stresses show a little decrease than with the wireline speed, except for a very slight 

increase in the inner part, and the core sample can be retrieved without any failure (as shown 

in the same figure). The result is attributed to the fact that using a lower tripping speed, there 

is greater time for the pore pressure difference in the sample to dissipate. In the considered 

case, the sample has very low hydraulic diffusivity coefficient and permeability. This is the 

reason that using lower conventional tripping speed than the wireline one, does not have 

considerable contribution to lowering the induced stresses and the induced stresses of about 

1.5 Mpa are still induced in the core (the same figure). Similarly, using lower tripping speeds, 

there is more time for the temperatures between the inside and outside of the sample to 

equalize. The temperature difference generally causes expansive thermal stress in the outer 

part and compressive stress in the inner part. Therefore, using conventional coring, less 

thermal stress is induced in the center and the outer part compared with the wireline method.  

As another investigation of the effect of the tripping speed, the same core sample, but at the 

depth of 1000 m, is considered. Using the same thermoporoelastic approach, the modeling of 

the induced stresses and failure is performed using three tripping speeds (Figure ‎6-4). These 

are the speeds of high wireline (≈1.524 m/s), high conventional (≈0.45 m/s), and an 

imaginary 0.015 m/s. The results corresponding to the excessive low speed of 0.015 m/s 

show that the sample can be safely retrieved without any failure. However, the time required 

is 18.5 hours which is far from economical. Therefore, there are no optimal tripping speeds 

for this core located at 1000 m. 
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Figure ‎6-3: The Effect of Core Tripping Speed on the Induced Thermoporoelastic Stresses and Failure 

 
Figure ‎6-4: The Effect of Tripping Speed on the Induced Thermoporoelastic Stresses and Failure–Initial 

Bottomhole Depth of 1000 m 

Legend: 
Variable: Core Tripping Velocity:  
- Conventional (solid lines): 0.45 m/s 
- Wireline (dashed lines): 1.524 m/s  
- Initial Bottomhole Depth=500 m 
- Gas 
- 𝜂 = 10−8[𝑚2/𝑠] 
- Tensile strength: 

V=1.524 m/s 

V=0.45 m/s 

V=0.45 m/s V=1.524 m/s 

Legend: 
Variable: Core Tripping Velocity:  
- Wireline (Solid lines): 1.524 m/s 
- Conventional (Dashed lines): 0.45 m/s 
- Imaginary 30 min/stand (Dotted lines): 0.015 m/s) 
- Initial Bottomhole Depth=1000 m 
- Gas 
- 𝜂 = 10−8[𝑚2/𝑠] 
- Tensile Strength: 

0.015 m/s 
0.45 & 1.524 m/s 

V=1.524 m/s 

V=0.45 m/s 

V=0.015 m/s 
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6.4.3 Core Diameter 

The diameter of the sample is one of the parameters that generally affect the 

thermoporoelastic pore pressure and stresses. Two diameter values of 5 and 10 cm are 

considered for the assumed core sample located at 500 m. As shown in Figure ‎6-5, the 10 cm 

sample shows to undergo greater induced stresses rather than the 5 cm one when it reaches 

the surface. However, this sample has not yet shown any failure. As another example of the 

investigation of the effect of core diameter, the same sample, but at the depth of 1000 m, has 

been considered with the two diameters of 1 cm and 5 cm (Figure ‎6-6). As the results show, 

the induced stresses significantly reduce and fall below the tensile strength. This means that 

for very small core diameter, e.g., 1-cm, which is not realistic, the sample can be safely 

tripped to the surface without any failure.  

To justify the results, the greater the core diameter becomes, the pore fluid diffusion and 

thermal diffusion out of the core slows down. This causes the core to have greater pore 

pressures and induced thermoporoelastic stresses when it reaches the surface.  

 
Figure ‎6-5: The Effect of Core Diameter on Induced Thermoporoelastic Stresses and Failure– Initial 

Bottomhole Depth of 500 m 

Legend: 
Variable: Core Diameter (D): 
 - Solid lines: D=5 cm 
 - Dashed lines: D=10 cm 
- Initial bottomhole depth=500 m 
- Conventional tripping speed 
- Gas 
- 𝜂 = 10−8[𝑚2/𝑠] 
- Tensile strength: 
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Figure ‎6-6: The Effect of Core Diameter on the Induced Stresses and Failure–Initial Bottomhole Depth of 

1000 m. It is Noted that a 1-cm Core Diameter is Unrealistic in Bottom-Coring Operations 

6.4.4 Poisson’s Ratio 

Poisson’s ratio (𝜈) is one of the parameters that generally affect the hydraulically and 

thermally induced pore pressure and stresses. Two values of 0.2 and 0.3 are considered for the 

Poisson’s ratio 𝜈 of the considered core sample, located at 500 m. As shown in Figure ‎6-7, 

the sample with 𝜈 = 0.2 shows to experience significantly greater induced stresses rather than 

the sample with 𝜈 = 0.3 (≈1.8 times) such that it undergoes failure and microfractures.  

To interpret the results, it must be known that the lower the Poisson’s ratio becomes, the less 

is the ratio of the axial strain compared with the lateral strain. This means that the core 

becomes less flexible and thus greater induced stresses would be induced in the core (inferred 

from Fjaer et al., 2008; Zoback, 2010; Kovacik, 2005). In low-permeability or tight rocks, the 

reduction of Poisson’s ratio causes a considerable increase in the induced stresses. In high-

permeability rocks, the Poisson’s ratio has negligible effect on the induced stresses. Because 

of the significant effect of 𝜈 on the induced stresses and possible failure, it is one significant 

Legend: 
Variable: Core Diameter (D): 
 - Solid lines: D=1 cm 
 - Dashed lines: D=5 cm 
- Initial bottomhole depth=1000 m 
- Conventional tripping speed 
- Gas 
- 𝜂 = 10−8[𝑚2/𝑠] 
- Tensile strength: 

D=1 cm 

D=5 cm 

D=1 cm 

D=5 cm 
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parameter factor for tight cores. Therefore, instead of using rules of thumb1 (Zoback, 2010; 

Kovacik, 2005), it seems necessary either to measure or estimate it using dipole sonic well 

logs.  

 
Figure ‎6-7: The Effect of Poisson’s Ratio (𝝂) on the Induced Thermoporoelastic Stresses and Failure 

                                                 
1 Rules of thumb consider that the Poisson’s ratio ranges from 0.15-0.4, and that it  increases with porosity.  

Legend: 
Variable: Poisson’s Ratio (𝜈): 
 - Solid lines: 𝜈 = 0.2, 𝜈𝑢 = 0.3 
 - Dashed lines: 𝜈 = 0.3, 𝜈𝑢 = 0.4 
- Initial bottomhole depth=500 m 
- Conventional tripping velocity 
- Gas 
- 𝜂 = 10−8[𝑚2/𝑠] 
- Tensile strength: 

𝜈 = 0.2 

𝜈 = 0.3 

𝜈 = 0.2 

𝜈 = 0.3 
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6.5 Hydraulic Parameters 

Hydraulic parameters affect only the hydraulically induced pore pressure and stresses. The 

hydraulically induced pore pressure and stresses were discussed in section ‎5.4.2-BVP I&II. 

The corresponding equations were given in Table ‎5-1 to Table ‎5-3. Searching in these 

equations for hydraulic parameters gives: the hydraulic diffusivity coefficient, mud properties 

(mud weight and mud cake fraction of pressure drop), and the Biot’s coefficient.  

6.5.1 Hydraulic Diffusivity Coefficient 

The hydraulic diffusivity coefficient (𝜂) is one of the hydraulic parameters. After considering 

the considered core sample properties as in Table ‎6-1, several values of the diffusivity 

coefficient ranging from 10−8 to 5 × 10−6 𝑚2/𝑠, are considered with the initial bottomhole 

depth of 4000 m; the tripping speed is considered that of the wireline.  

As shown in Figure ‎6-8, the induced stresses within the sample increase with decreasing 𝜂. 

For all the 𝜂 values, except for 5 × 10−6 𝑚2/𝑠, the induced stresses exceed the tensile 

strength and failure occurs. To account for this result, first it must be noted that the diffusivity 

coefficient is in turn, a function of permeability K, porosity ∅, viscosity 𝜇, and total 

compressibility 𝐶𝑡 (Eq. ‎3-16). As in this investigation the fluid properties of the core sample 

are unchanged (gas), larger values of 𝜂 correspond to larger values of K. As a result, core 

samples with larger values of 𝜂 provide higher rates of fluid diffusion out of the core. This 

contributes to the release of the induced pore pressure and lower induced stresses within the 

sample. This is the reason that in the sample with 𝜂 = 5 × 10−6 𝑚2/𝑠, the smallest induced 

stress of maximum 0.12 Mpa has been induced. Therefore, samples with this value of 𝜂 and 

higher can be safely tripped with maximum speed, even with low tensile strength as low as 

0.15 Mpa.  

As another investigation of the diffusivity coefficient, three samples are considered: 1) one 

sample contains gas and 2) the second one contains water (the rest of properties as in 

Table ‎6-1), 3) the third sample contains gas, but with 𝜂 = 10−6 𝑚2/𝑠 (at surface conditions). 

Their induced stresses and failure during tripping is investigated using the thermoporoelastic 

model as shown in Figure ‎6-9. The results show that the induced-stresses in the gas-bearing 

sample with 𝜂 = 10−8 𝑚2/𝑠, are (at minimum) 2.25 times those of the water-bearing one. In 
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addition, even in the gas-bearing sample with 𝜂 = 10−6 𝑚2/𝑠, the induced-stresses show to 

be greater than those of the water-bearing one. 

To account for the above results, first the fluid changes from bottomhole to the surface should 

be investigated. For gas as a compressible fluid, during tripping from the bottomhole to the 

surface, the value of 𝜂 is not constant. Rather, during tripping to the surface, 𝐶𝑔 increases due 

to the pressure and temperature drop. This in turn, makes 𝐶𝑡 increase which causes 𝜂 to 

decrease during tripping. This signifies that the value of 𝜂 of the gas-bearing sample reaches 

its minimum at the surface. Therefore, the fluid diffusion out of a gas-bearing sample is 

greater in its bottomhole than the surface. However, when the sample contains water as a 

rather incompressible fluid, 𝜂 is constant from the bottomhole to the surface.  

Second, to compare the first two samples, using the values given in Table ‎6-1 for isothermal 

compressibility and viscosity shows that 𝜇𝑔𝐶𝑡,𝑔 ≈ 100𝜇𝑤𝐶𝑡,𝑤 at surface conditions. 

Therefore, the value 𝜂 for the gas-bearing core is at least 100 times that of the gas-bearing one 

at the surface (i.e., the value 𝜂 of water-bearing core is 10−6 𝑚2/𝑠). Therefore, the diffusion 

out of the gas-bearing sample-1 is slower than the water-bearing sample-2, particularly near 

the surface. This is the reason why greater stresses are induced within gas-bearing cores. To 

compare the second and the third sample, the value of 𝜂 for the water bearing sample is equal 

to 10−6 𝑚2/𝑠 during all its tripping time. Whereas, for the gas bearing sample it is greater 

than 10−6 𝑚2/𝑠, except at the surface where it reaches this value. That is the reason that the 

induced stresses in the water bearing sample-3 is lower than those of the gas-bearing sample-

2. 
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Figure ‎6-8: The Effect of the Hydraulic Diffusivity Coefficient (𝜼) on the Induced Thermoporoelastic 

Stresses and Failure 

 
Figure ‎6-9: The Effect of the Fluid Type/Hydraulic Diffusivity Coefficient (𝜼) on the Induced 

Thermoporoelastic Stresses and Failure 

𝜂 = 10−8𝑚2/𝑠 

𝜂 = 5 × 10−6𝑚2/𝑠 

𝜂 = 10−6𝑚2/𝑠 

𝜂 = 10−7𝑚2/𝑠 

10−8& 10−7 

10−6 

5 × 10−6 

Legend: 

Variable: Hydraulic Diffusivity Coefficient 
(𝜂) [m2/s] 

- Initial bottomhole depth=4000 m 

- Wireline tripping speed 

- Gas 

- Tensile Strength: 

Legend: 
Variable: Fluid type/diffusivity coefficient 
- 1) Solid line: Gas (𝜂 = 10−8 𝑚2/𝑠) 
- 2) Dotted line: Water (𝜂 = 𝑐𝑡𝑒 = 10−6 𝑚2/𝑠) 
- 3) Dashed line: Gas (𝜂 = 10−6 𝑚2/𝑠) 
- Initial bottomhole depth=500 m 
- Conventional tripping speed 
- Tensile Strength: 

𝑔𝑎𝑠,𝜂 = 10−8 𝑚2/𝑠 

𝑔𝑎𝑠, 𝜂 = 10−6 𝑚2/𝑠 
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6.5.2 Mud Properties 

The two mud properties affecting the hydraulically induced pore pressure and stresses are the 

mud weight and the mud cake pressure drop fraction. 

Mud Weight 

To investigate the effect of mud weight, two weight values of 9 ppg (1078 𝑘𝑔/𝑚3) and 12.5 

ppg (1498 𝑘𝑔/𝑚3) are considered with the assumed core sample, located at 500 m. As 

shown in Figure ‎6-10, the sample experiences greater induced stresses with the heavier mud, 

around 1.3 times those of the lighter one. This causes the sample failure and the creation of 

microfracture within it. This is because the bottomhole hydrostatic mud pressure is directly 

proportional to the mud weight. Therefore, the higher the mud weight is, the greater is the 

initial confining pressure and the pore pressure that must be depleted during the core trip. This 

causes greater induced stresses for the case with the heavier mud weight.  

 
Figure ‎6-10: The Effect of Mud Weight (𝝆𝒎) on the Induced Thermoporoelastic Stresses and Failure 

  

Legend: 

Variable: Mud Weight (𝜌𝑚) 

- Solid lines: 𝜌𝑚 = 1078 𝑘𝑔/𝑚3 (9 ppg) 

- Dashed lines: 𝜌𝑚 = 1498 𝑘𝑔/𝑚3 (12.5 ppg) 

- Gas 

- Initial bottomhole Depth=500 m 

- Wireline tripping speed 

- Tensile Strength: 

𝜌𝑚 =9 ppg 

𝜌𝑚 = 12.5  ppg 

𝜌𝑚 = 12.5  ppg 

𝜌𝑚 =9 ppg 
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Mud Cake Pressure Drop  

Using water-based muds, the mud cake forms around the core sample and causes a pressure 

drop around the sample. In this work, its corresponding pressure drop ratio (𝑓𝑚𝑐) is considered 

as a fraction of the total pressure drop. This parameter is also one parameter affecting the 

hydraulically induced stresses during tripping.  

To investigate the parameter effect, two different mud cake pressure drop values of 𝑓𝑚𝑐 = 0 

(i.e. no mud cake) and 𝑓𝑚𝑐 = 8% are considered for the assumed core sample, located at 500 

m. As shown in Figure ‎6-11, with 𝑓𝑚𝑐 = 8%, the sample experiences severe induced stresses 

(≈37% increase) such that they exceed the strength. This means that the sample would 

undergo failure. This result is reasonable as the mud cake basically prevents dissipation of the 

fluid out of the sample. Therefore, it prevents the pore pressure release and thus causes 

increase in induced stresses within the sample (refer to Table ‎5-2 and Table ‎5-3). 

 
Figure ‎6-11: The Effect of Mud Cake 𝚫𝑷% (𝒇𝒎𝒄) on the Induced Stresses and Failure 

Legend: 
Variable: Mud Cake ∆𝑃 fraction (𝑓𝑚𝑐) 

- Solid lines: 𝑓𝑚𝑐 = 0  
- Dashed lines: 𝑓𝑚𝑐 = 0.08 (8%) 

- Gas 

- Initial bottomhole Depth=500 m 
- Wireline tripping velocity 
- Tensile Strength: 

𝑓𝑚𝑐 = 8% 

𝑓𝑚𝑐 = 0 

𝑓𝑚𝑐 = 0 

𝑓𝑚𝑐 = 8% 
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6.5.3 Biot’s Coefficient 

The Biot’s coefficient (𝑎) is also one of the parameters affecting the induced pore pressures 

and hydraulic stresses. Two values of 0.7 and 0.8 are considered for the Biot’s coefficient 𝑎 

of the considered core sample (Table ‎6-1), located at 500 m. As shown in Figure ‎6-12, 

significantly greater stresses are induced with the larger 𝑎, i.e., around 1.4 times those with 

the smaller one. This causes the sample to undergo failure with 𝑎 = 0.8. To account for this 

result, first it must be noted that the value of 𝑎 depends on porosity and the difference 

between the bulk modulus (𝐾𝑏) and the rock matrix modulus (𝐾𝑟), as given by (Geertsma, 

1973): 

𝑎 = 1 − (1 − 𝜑)
𝐾𝑏
𝐾𝑟

 Eq.  6-1 

A higher value of 𝑎 means either greater difference between the moduli or a greater porosity. 

If the porosity is assumed fixed, the greater the difference between the bulk and the rock 

matrix means more interconnected pores (Zobach, 20101; Fjaer, 2008). This means higher 

permeability. However, if we assume both porosity and permeability are fixed, a greater value 

of 𝑎 indicates more captured pores within the sample. This causes greater captured pore 

pressure and induced stresses within the sample.  

 

Figure ‎6-12: The Effect of Biot’s Coefficient (𝒂) on the Induced Thermoporoelastic Stresses and Failure 

                                                 
1 As a rule of thumb, the Biot’s coefficient for shales, carbonates, and sandstones can be 0.7, 0.7, and 0.9. 

Legend: 
Variable: Biot’s Coefficient (𝛼) 

- Solid lines:  𝑎 = 0.7  
- Dashed lines 𝑎 = 0.8 

- Initial bottomhole depth=500 m 
- Gas 

- Conventional tripping speed 
- Tensile Strength: 

𝑎 = 0.7 

𝑎 = 0.8 

𝑎 = 0.7 

𝑎 = 0.8 
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6.6 Thermal Parameters 

The thermal effect was discussed in section ‎5.4.2-BVP III. It was mentioned that the thermal 

stresses manifest itself as compressive stresses in the inner part and expansive stresses in the 

outer part of the sample. The corresponding equations for this effect have been given in 

Table ‎5-1 to Table ‎5-3. Searching in these equations for thermal parameters gives: thermal 

expansion coefficient, thermal diffusivity, geothermal gradient, and Young’s modulus.  

6.6.1 Thermal Expansion Coefficient 

The thermal expansion coefficient (𝛼𝑚) is a parameter contributing to the thermally induced 

stresses. Two values of 10−5 and 5 × 10−5 1

°𝐶
 are considered for this coefficient of the 

considered core sample (Table ‎6-1), located at 500 m. As shown in Figure ‎6-13, with the 

larger 𝛼𝑚, the sample experiences lower induced stresses in the inner part (≈12% decrease) 

and higher ones in the outer part (≈18% reduction). To account for this result, first it must be 

noted that the greater the value of 𝛼𝑚 is, the greater expansion and contraction occurs in the 

sample. Therefore, the thermally induced stresses increase with increasing 𝛼𝑚 (refer to 

Eq. ‎3-6). The thermal stresses act contractive in the inner part and expansive in the outer part 

(due to heat transfer from the center to the boundary). Therefore, the overall induced stress 

would decrease in the center and increase near the boundary. 

 
Figure ‎6-13: The Effect of Thermal Expansion Coefficient (𝒂𝒎) on the Induced Stresses and Failure 

Legend: 
Variable: Thermal Expansion Coefficient (𝛼𝑚) 

- Solid lines: 𝛼𝑚 = 10−51/°𝐶 
- Dashed lines 𝛼𝑚 = 5 × 10−51/°𝐶 

- Initial bottomhole depth=500 m 
- Gas 

- Conventional tripping speed 
- Tensile Strength: 

𝛼𝑚 = 10−51/°𝐶 

𝛼𝑚 = 5 × 10−51/°𝐶 
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6.6.2 Thermal Diffusivity Coefficient 

Thermal diffusivity coefficient (𝜂𝑇) is also one of the thermal parameters. Two values of 

8 × 10−8 and 8 × 10−7 1

°𝐶
 are considered for this coefficient of the considered core sample 

(Table ‎6-1), located at 500 m. As shown in Figure ‎6-14, with the lower 𝜂𝑇, the sample 

experiences a little greater thermally induced stresses. To account for this result, it must be 

mentioned that following relation for this coefficient: 

𝜂𝑇 =
𝜆𝑇
𝜌𝐶𝑝

 Eq. ‎6-2 

Where 𝜂𝑇 is the thermal diffusivity coefficient [𝑚2/𝑠], 𝝀𝑻 is the thermal conductivity [W/m/ 

˚C], 𝜌 is the density [Kg/m3]; and 𝐶𝑝 is the heat specific capacity [J/Kg/˚C]. 

Therefore, with constant 𝜌 and 𝐶𝑝, an decrease in 𝜂𝑇 indicates smaller 𝐾𝑇. Therefore, the heat 

conduction from inside the sample to its outside would occur more slowly. Thus, the 

temperature difference would stay longer and would evade more slowly. This increases the 

thermal stresses. As the effect of thermal stresses are less significant than hydraulic, the effect 

of a decrease in 𝜼𝑻 on the induced stresses is greatly smaller than that of 𝜼. 

 

Figure ‎6-14: The Effect of Thermal Diffusivity Coefficient (𝜼𝑻) on the Induced Thermoporoelastic 

Stresses and Failure 

Legend: 
Variable: Thermal Diffusivity Coefficient 
(𝜂𝑇) 
- Solid lines: 𝜂𝑇 = 8 × 10−7𝑚2/𝑠 
- Dashed lines 𝜂𝑇 = 8 × 10−8𝑚2/𝑠 

- Initial bottomhole depth=500 m 
- Gas 

- Conventional tripping speed 
- Tensile Strength: 
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6.6.3 Geothermal Gradient 

Geothermal gradient [˚C/km] is also one of the thermal parameters. Two values of 25 ˚𝐶/𝑘𝑚 

and 50 ˚𝐶/𝑘𝑚 are considered with the considered core sample (Table ‎6-1), located at 500 m. 

As shown in Figure ‎6-15, with the higher gradient, the sample experiences a little greater 

thermal stresses (for ≈5.5%). To account for this result, higher geothermal gradients 

contribute to higher temperature differences from the bottom to the surface. This causes thus 

higher thermal stresses to be induced within the sample.  

 
Figure ‎6-15: The Effect of Geothermal Gradient on the Induced Thermoporoelastic Stresses and Failure 

6.6.4 Young’s Modulus 

Young’s modulus (E) is also one of the contributing parameters that affect the thermal 

stresses. It also affects the tensile strength of the core. Two values of 4.2 𝐺𝑝𝑎 and 11 𝐺𝑝𝑎 are 

considered for the Young’s modulus of the considered core sample (Table ‎6-1), located at 

500 m. As shown in Figure ‎6-16, with the greater E, the sample experiences greater thermal 

stresses (for ≈13%). The tensile strength has shown increase from 2 to 4 Mpa. To account for 

this result, it should be noted that the thermal stresses are directly proportional to the 

Legend: 
Variable: Geothermal Gradient  
- Solid lines:  𝜂𝑇 = 25 °𝐶/𝐾𝑚 
- Dashed lines 𝜂𝑇 = 50 °𝐶/𝐾𝑚 

- Initial bottomhole depth=500 m 
- Gas 

- Conventional tripping speed 
- Tensile Strength: 
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isothermal bulk modulus 𝐾𝑇 (Eq. ‎3-6). This modulus is, in turn, directly proportional to the 

Young’s modulus. Therefore, the thermal stresses are directly proportional to the E (as seen in 

Table ‎5-2 and Table ‎5-3). Therefore, the increase in E from 4.2 to 11 Gpa makes the thermal 

stresses 2.6 times.  

In addition, depending on the lithology, E, UCS are related (i.e., when E increases, UCS 

shows increase). UCS is, in turn, related to the tensile strength (i.e., when UCS increases, the 

tensile strength is increases). These relations have been shown in Appendix-G. Therefore, 

when the value of E is greater, the tensile strength becomes greater. 

 
Figure ‎6-16: The Effect of Young’s Modulus on the Induced Thermoporoelastic Stresses and Failure 

  

Legend: 
Variable: Young’s Modulus (E):  

- Solid lines: 𝐸 = 4.2 𝐺𝑃𝑎 
- Dashed lines 𝐸 = 11 𝐺𝑃𝑎 

- Initial bottomhole depth=500 m 
- Gas 

- Conventional tripping speed 
- Tensile Strength: 
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6.7 Summary of Effects of Contributing Parameters 

The summary of the effects of the contributing parameters on the induced hydraulic and 

thermal stresses (from sections ‎6.3 to ‎6.6) have been listed in Table ‎6-2. 

Table ‎6-2: Brief Summary of the Effects of the Contributing Parameters on the Induced Stresses  

Parameter Effect on Induced Stresses Effect on Tensile Strength 

General 

Initial Bottomhole 

Depth: 
Significant Increase in hydraulic stresses1 – 

Tripping speed: Increase in hydraulic stresses – 

Core Diameter: Increase in hydraulic stresses – 

Poisson’s Ratio: Significant Decrease in hydraulic stresses – 

Hydraulic 

Hydraulic 

Diffusivity 

Coefficient: 

Significant Decrease in hydraulic stresses – 

Mud 

Weight: 

Significant Increase in hydraulic stresses – Mud 

cake: 

Biot’s Coefficient: Significant Increase in hydraulic stresses – 

Thermal 

Thermal Expansion 

Coefficient: 
Increase in thermal stresses2 – 

Thermal Diffusivity 

Coefficient: 
Decrease in thermal stresses – 

Geothermal 

Gradient: 
Increase in thermal stresses – 

Young’s Modulus: Significant Increase in thermal stresses Significant Increase 

 

                                                 
1 Hydraulic stresses cause induced stresses throughout the sample. 

2 Thermal stresses show as decrease in the central part and increase in the outer part. 
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6.8 Lithology 

Lithology is not considered a contributing parameter. Instead, it is a qualitative factor that has 

influence on a number of quantitative contributing parameters already discussed. The 

lithology affects the hydraulic diffusivity coefficient 𝜂 as it controls the rock properties, i.e., 

porosity and permeability. In addition, the lithology has influence on the mechanical 

properties including Poisson’s ratio, Biot’s coefficient, and Young’s modulus. Some rough 

estimations of these parameters can be given using the lithology (Appendix-G). 

Therefore, first, the typical properties of the tight gas-bearing core sample are considered as in 

Table ‎6-1, this sample can fall into tight shaly sandstone or shale. Next, a permeable 

sandstone sample is considered with typical properties as: ∅ = 30%, 𝐾 = 100 𝑚𝐷, 𝐸 =

12.5 𝑀𝑝𝑎, Tensile Strength=3.6 Mpa, 𝜈 = 0.26 , and 𝛼 = 0.9. The thermoporoelastic model 

is run using the data for the sandstone and shale samples using the conventional and wireline 

speeds, for two initial bottomhole depths of 500 and 4000 m.  

As shown in Figure ‎6-17, the sandstone sample shows to experience negligible induced 

stresses during its tipping, even using wireline speed and for the 4000 m initial depth. This 

means that sandstone samples can be generally tripped quickly while being preserved, without 

any failure. However, the shaly-sand sample undergoes significantly high induced stresses. 

For the initial depth of 500 m, the maximum induced stress is about 1.5 Mpa, and for the 

initial depth of 4000 m, the maximum induced stress is about 11.8 Mpa causing failure.  

To account for the above results, the shaly-sand sample has the diffusivity of 𝜂 = 10−8m2/s 

whereas the sandstone sample has 𝜂 = 10−3m2/s. Based on the discussion in section ‎6.5.1, 

this signifies that the negligible induced stresses will occur to the sample due to its 

tripping to the surface. It should be noted that the considered sandstone sample has 

been generally selected very permeable with high diffusivity. Therefore, depending on 

the rock and fluid properties, not all sandstones will behave this way. 
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Figure ‎6-17: The Effect of Lithology on the Induced Thermoporoelastic Stresses and Failure 

Legend: 
Variable: Lithology:  
- Solid lines: Sandstone (500 and 4000 m) 
- Dotted lines: shaly sandstone (500 m) 
- Dashed lines: shaly sandstone (4000 m) 

- Initial bottomhole depth=4000 m 
- Gas 

- Conventional tripping speed 
- Tensile Strength: 

Shaly Sandstone-500 m 

Shaly Sandstone-4000 m 

Shaly Sandstone-500 m 
Sandstone 
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6.9 Thermal versus Hydraulic 

In this section, the extent of thermal contribution to the whole induced stresses is evaluated as 

it is one of the objectives of this research. To do this, the data in Table ‎6-1 is used. The results 

of this case, given in Figure ‎6-18, show that the thermal effect is only ≈6% of the total. 

However, as shown in section ‎6.6, when both Young’s modulus 𝐸 and the thermal expansion 

coefficient 𝛽 are large enough, i.e., 𝐸 > 4𝐺𝑃𝑎 and 𝛽 > 10−5 1

°𝐶
., the thermal effect is 

considered non-negligible. 

 

Figure ‎6-18: Thermal Effect Excluded and Included during Tripping 

6.10 Determinative Factors 

Based on sections ‎6.4 to ‎6.6 and investigating into the effects of different contributing 

parameters, it is discovered that the hydraulic diffusivity coefficient 𝜂 and the initial 

bottomhole depth have the greatest impact on the thermoporoelastic behavior during tripping. 

For very tight cores (𝜂 < 10−8
𝑚2

𝑠
), also the mechanical properties including Poisson’s ratio 𝜈, 

Biot’s coefficient a, and Young’s modulus E, have significant effects. Therefore, considering 

Legend: 
Variable: Biot’s Coefficient (𝛼) 

- Solid lines: Thermal Excluded  
- Dashed line: Thermal Included 

- Initial bottomhole depth=500 m 
- Gas 

- Conventional tripping speed 
- Tensile Strength: 
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these parameters, we can explain the sample’s overall thermoporoelastic behavior during its 

tripping.  

Based on the significance of the aforementioned mechanical parameters, their exact 

measurement is favorable and recommended particularly for tight cores. However, to make 

the model more practical, their rough estimated values can be used, as was the case with this 

work. This estimation is made using the correlations and estimations for each lithology using 

Appendix–G (as was done in Table ‎6-1). Using this methodology, the hydraulic diffusivity 

coefficient and the initial bottomhole depth can be used to: 1) determine whether the sample 

can be safely retrieved, 2) find the optimal tripping rates. For this reason, in this work, they 

are named the determinative factors. Using the results in section ‎6.5.1 signify that the core 

samples with η >5 × 10−6 m
2

s
 can be retrieved with maximum possible tripping rate. 

However, samples with very low η values (<10−8 m
2

s
) cannot be retrieved in a preserved 

manner. 

Using the determinative factors for running the model, the only required input data would be 

those for the calculation of the determinative parameters (as seen in Table ‎6-3). Using 

average specific gravity of gas, its viscosity and the total compressibility can be found. Then, 

taking the estimated fluid properties, the porosity, and permeability, the hydraulic diffusivity 

coefficient can be found. Therefore using this coefficient and depth, it can be said if the 

sample can be safely retrieved. Next, the rest of the contributing parameters are estimated 

using Appendix-G. Then, the thermoporoelastic model can be run. This continues based on 

section ‎5.6 until the optimal speed is obtained. 

Table ‎6-3: Practical Input Worksheet of the Core-Trip Schedule for the Developed Model 

 

Well:

Field:

Location:

Date:

A. Core Rock and Fluid: B. Bottomhole Depth and Temperature:
1. Core Diameter [in] 1. Depth [m]:

2. Lithology: 2. Temperature (Average ) [˚C]:

3. ф (average) [%]: C. Drilling Mud
4. K (average) [mD]: 1. MW (ppg):

5. Gas Specific Gravity: 2. Mud Cake thickness:

Trip Schedule Input Worksheet
(Gas Reservoirs)
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Chapter 7: Summary and Conclusions 

Optimized core tripping is essential to retrieve the samples in a preserved and economic 

manner. Although the drilling KPI for coring shows gradual changing towards measures of 

the core quality recovered rather than footage drilled, the industry has just sufficed to using 

only generic methods for core tripping. Recently, some research works in the literature have 

dealt with this problem. However, there are still some technical gaps including the 

inappropriate modeling of the thermal effect, mud cake effect, and considering mechanical 

properties. To fill these gaps, this research presents a state-of-the-art thermoporoelastic 

modeling approach to optimize the core tripping. This work consists of 1) providing the 

thermoporoelastic procedure for core tripping, 2) the derivation of the equations for the 

induced effective-stresses within the core sample due to the confining pressure drop, pore 

pressure drop, and temperature drop, 3) evaluation of induced effective stresses and 

comparing them with the failure criterion, 4) repeating this for different economic tripping 

rates, and 5) selecting the optimal rate. Using this approach, the following conclusions have 

been drawn: 

 The development and application of the thermoporoelastic approach and model for core 

tripping optimization has been a state-of-the-art concept. Nevertheless, it has shown to be 

capable of evaluating the induced pore pressure and stresses within the core during its 

tripping, identifying whether failure occurs, and finding the optimal core tripping rates. 

The modeling procedure has considered almost all the effects involved including the 

thermal, mechanical and mud cake effects, which were neglected in the literature. 

Therefore, the resultant thermoporoelastic model is comprehensive enough. In addition, 

this model is also practical enough as it requires the minimum input data, then the rest of 

the required inputs can be estimated (in case not measured). This model has also shown 
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rather comparable results with a recent model in the literature, developed using Fluent 

software (Zubizarreta et al., 2013).  

 The results signify, particularly for tight cores, that the Poisson’s ratio 𝜈, Biot’s 

coefficient 𝛼, and Young’s modulus E significantly affect the sample’s thermoporoelastic 

behavior. Therefore, it is recommended to have them measured or at least carefully 

estimate them. This contributes to more accurate evaluation of the induced stresses and 

optimized tripping.  

 The thermal effect has been evaluated about 6% of the overall induced stress. This effect 

cannot be ignored when both Young’s modulus 𝐸 and the thermal expansion coefficient 

𝛼𝑚 are large enough, i.e., 𝐸 > 4𝐺𝑃𝑎 and 𝛼𝑚 > 10−5
1

°𝐶
. 

 The mud cake pressure drop was considered proportional to the mud hydrostatic pressure 

drop (as it should be, but was considered a constant value in the literature). Its effect in the 

induced stresses and failure has been detected significant. Therefore, reducing this effect 

is recommended e.g. by using polymer muds instead of Bentonite-containing muds. 

 Having considered the effects of the contributing parameters, hydraulic diffusivity 

coefficient 𝜂 and the in-situ pressure state have been detected and introduced as the main 

determinative factors. Using these two factors, an engineered guideline has been presented 

for proper candidate selection for coring methods, as has been one main objective of this 

research.  

 Therefore, the results show that the core samples with 𝜂 >5 × 10−6 𝑚
2

𝑠
 , which typically 

fall into sandstones, can be retrieved with maximum possible tripping rate. This 

determines a proper core candidate selection for the application of wireline continuous 

coring. However, very tight samples with very low 𝜂 values (<10−8 𝑚
2

𝑠
) cannot be 

retrieved in a preserved manner unless 1) their initial bottomhole depth is lower than 500 

m and 2) the sample has rather considerable strength (Tensile strength>2Mpa). This 

constitutes a proper criterion for selecting pressure coring for such tight samples which 

fall into shaly sandstones or shales. This, in turn, shows that this notion of the industry, 

‘using the conventional tripping speed enables very tight cores to be retrieved preserved’, 

does not apply, except for shallow depths. 
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Chapter 8: Future Work 

The development of the state-of-the-art concept of thermoporoelastic approach for core 

tripping has presented a model that comprehensively considered almost all the involved 

effects. However, to complete the thermoporoelastic model and enhance the results, continued 

research is still required to consider the swabbing effect. In addition, because of the nature of 

thermoporoelasticity, the current model is not capable of dynamically modeling the induced 

stresses; instead, it can just predict the initiation of the microfractures. Therefore, further 

investigation work shall address methods using a mechanism to predict the microfractures. 

Such methods can be typically based on Discrete Element Modeling (DEM) in micro-scale.  

Further investigation work and laboratory test designs are still required to prove the model. 

The test set-up should be able to detect the initiation of microfractures and failure within the 

sample. Finally, field tests would also be required to prove the model.  

The procedure used in this current research work to find the optimal tripping speed is 

iterative. It is based on the calculation of the induced stresses within the sample, comparison 

with the failure criterion, identifying if the failure occurs with the current speed, repeating the 

process in an iterative manner until the optimal speed is found. Therefore, the process does 

not provide us with the ultimate critical tripping speed; therefore, further continued research is 

required to find a method to evaluate this speed.  
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Nomenclature 

𝑎: Biot’s coefficient 

𝐵: Skempton’s coefficient 

𝐶𝑟: Rock/matrix compressibility [1/Pa] 

𝐶𝑔: Gas compressibility [1/Pa] 

𝐶𝑤: Water compressibility [1/Pa] 

𝐶𝑡: Total compressibility [1/Pa] 

𝐶𝑝: Heat specific capacity [J/Kg/˚C] 

𝑐𝑏: Specific heat capacity of the bulk material 

Cp: Centipoise (the viscosity unit) 

𝑐′: Coupling coefficient between hydraulic and thermal effects 

𝐸: Young’s modulus of elasticity [GPa] 

𝑓𝑚𝑐: Mud cake fraction (of outside pressure) 

𝐺: Shear modulus [GPa] 

ℎ𝑖,𝑖 Heat flux 

1

𝐻
: Poroelastic expansion coefficient 

𝐼0: Hyperbolic Bessel functions of zero order of the first kind 

K: 1) Permeability[mD], 2) Bulk modulus [𝑀𝑃𝑎] 

1

𝐾
: Drained bulk compressibility [1/𝑃𝑎] 

𝐾𝑢: Undrained bulk modulus [𝑀𝑃𝑎] 
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𝐾𝑓𝑟: Bulk modulus at constant pore pressure [1/pa] 

𝐾𝑏: Bulk modulus at constant confining pressure [1/pa] 

𝐾𝑟: Rock matrix modulus 

𝐾𝑇: Isothermal bulk modulus [W/m/˚C] 

1

Kt
: Thermal Isothermal Compressibility 

𝐿−1: The Laplace inverse operator 

𝑚: 

1) Mass 

2) Coefficient of internal friction related to the Mohr-Coulomb part of the 

criterion 
1

𝑀
 𝑜𝑟 𝑆𝜖:  Constrained storage coefficient 

N: Total number of thermoporelastic steps from the bottomhole to the surface 

𝑃𝑐: The confining pressure around the core [Pa] 

∆𝑃𝑐: The confining pressure drop at the boundary (tensile: +) [Pa] 

∆𝑃𝑐,0: The confining pressure drop around the core, for each step [Pa] 

∆𝑃𝑐,0,𝑡𝑜𝑡𝑎𝑙: The total confining pressure drop at the boundary, for each step [𝑃𝑎] 

𝑃𝑝: Pore pressure [𝑃𝑎] 

𝑃0: Initial pore pressure [𝑃𝑎] 

∆𝑃𝑝: Pore pressure drop [𝑃𝑎] 

∆𝑃0: The pore pressure drop at the boundary, for each step [𝑃𝑎] 

∆𝑃0,𝑡𝑜𝑡𝑎𝑙: The total pore pressure drop at the boundary, for each step [𝑃𝑎] 

pa: Pascal  

𝑃𝑝𝑐: Pseudo-critical pressure [psi] 

𝑃𝑝𝑟: Pseudo-reduced pressure [psi] 

qi: Fluid mass flux [kg/s] 
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𝑟: Radius [m] 

𝑅 Core radius at the boundary [m] 

𝑟

𝑅
: Ratio of radius to the core radius 

1

𝑅
 (𝑆𝜎): Unconstrained/Specific storage coefficient 

𝑠: The transformed dummy variable in Laplace form instead of t, for time 

𝑆𝑔: Gas saturation 

𝑆𝑜: Oil saturation 

𝑆𝑤: Water saturation 

t=0+ All times after t=0 (t>0) 

𝑇𝑠: Tensile strength of the rock [˚C] 

𝑇: Temperature [˚C]  

𝑇0: The initial temperature [˚C]  

𝑇∞: 
The final temperature or medium mud temperature after each depth step [˚C] 

(lower than core temperature) 

∆𝑇0: The temperature difference at the boundary, for each step [˚C]  

∆𝑇0,𝑡𝑜𝑡𝑎𝑙: The total temperature difference at the boundary, for each step [˚C]  

𝑇𝑝𝑐: Pseudo-critical temperature [˚C] 

𝑇𝑝𝑟: Pseudo-reduced temperature 

𝑈𝑟𝑟: Radial displacement [mm] 

∆𝑈𝑟𝑟: Radial displacement [mm] 

UCS: Uniaxial compressive strength [Mpa] 

WCC Wireline Continuous Coring 

Z: Gas compressibility or Z factor 
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Greek Letters: 

𝜎: Stress [Pa] 

𝜎𝑟𝑟: Radial stress [Pa] 

𝜎𝜃𝜃: Hoop stress (absolute) [Pa] 

𝜎𝑘𝑘: Total stress [𝑃𝑎] 

∆𝜎𝑟𝑟: Induced radial Stress (difference) [𝑃𝑎] 

∆𝜎𝜃𝜃: Induced hoop Stress (difference) [𝑃𝑎] 

𝜎′: Effective stress [Pa] 

𝜎1
′: Effective maximum principal stress [pa] 

𝜎3
′: Effective minimum principal stress [pa] 

𝜎′𝑟𝑟: Effective radial stress [𝑃𝑎] 

𝜎′𝜃𝜃: Effective hoop stress [𝑃𝑎] 

∆𝜎̃(𝑟,𝑠)
(ℎ𝑦𝑑.1): 

Laplace of (radial or hoop) total induced hydraulic stress due to confining 

pressure drop (for unloading mode II) 

Subscript 1 indicates the confining pressure drop. 

∆𝜎̃(𝑟,𝑠)
(ℎ𝑦𝑑.1.1): 

Laplace of (radial or hoop) induced hydraulic stress due to confining pressure 

drop (for unloading mode I) 

Subscript 1.1: 2 indicates due to confining  pressure drop, 1: without mud cake 

∆𝜎̃(𝑟,𝑠)
(ℎ𝑦𝑑.1.2): 

Laplace of (radial or hoop) induced hydraulic stress due to mud cake effect (for 

unloading mode I: confining pressure drop) 

[Subscript 1.2]: 2 indicates due to confining pressure drop, 1: only for mud cake 

∆𝜎̃(𝑟,𝑠)
(ℎ𝑦𝑑.2): 

Laplace of (radial or hoop) total induced hydraulic stress due to pore pressure 

drop (for unloading mode II) 

Subscript 2 indicates the pore pressure drop. 

∆𝜎̃(𝑟,𝑠)
(ℎ𝑦𝑑.2.1): 

Laplace of (radial or hoop) induced hydraulic stress due to pore pressure drop 

(for unloading mode II) 
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Subscript 2.1: 2 indicates due to pore pressure drop, 1: without mud cake 

∆𝜎̃(𝑟,𝑠)
(ℎ𝑦𝑑.2.2): 

Laplace of (radial or hoop) induced hydraulic stress due to mud cake effect (for 

unloading mode II: pore pressure drop) 

Subscript 2.2: first 2 indicates due to pore pressure drop, second 2: only for mud 

cake 

∆𝜎̃(𝑟,𝑠)
(𝑡ℎ𝑒𝑟𝑚𝑎𝑙.1): Laplace of (radial or hoop) induced thermal stress (difference) 

∆𝜎̃(𝑟,𝑠)
(𝑡ℎ𝑒𝑟𝑚𝑎𝑙.2)&∆𝜎̃(𝑟,𝑠)

(𝑡ℎ𝑒𝑟𝑚𝑎𝑙.3): 
Laplace of (radial or hoop) induced thermal stresses due to the coupling effect of 

temperature drop  

𝜖: Strain 

𝜖𝑟𝑟: Radial strain 

𝜖𝜃𝜃: Hoop strain 

𝜖𝑧𝑧: Strain in vertical direction of the core 

𝜖𝑘𝑘: Total strain 

𝜖𝑇: Thermal strain 

𝜁: The increment of water content 

𝜁: Laplace form of the increment of water content 

𝑆𝜎  or 1
𝑅
 Unconstrained/Specific storage coefficient 

𝑆𝜖or 
1

𝑀
  Constrained storage coefficient 

𝜑: Porosity 

𝜌: Density[Kg/m3] 

𝜌𝑓: Fluid density [Kg/m3] 

𝜌𝑚: Mud Weight [Kg/m3] 

𝜇: Fluid viscosity [𝑐𝑝] 

𝜇𝑔: Gas viscosity [cp] 

𝜇1: Liquid viscosity obtained by Standing [cp] 
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𝛾𝑔: Gas specific gravity 

𝜐: Poison’s ratio 

𝜐𝑢: Undrained Poison’s ratio 

𝜂: Hydraulic diffusivity coefficient [𝑚2] 

𝜂𝑇: Thermal diffusivity coefficient [𝑚2] 

𝜂′ & 𝜂′
𝑇
: Coupling coefficients for the hydraulic and thermal diffusivities  

𝛼𝑇: (Linear) thermal expansion coefficient [1/℃] 

𝛼𝑚: (Volumetric) thermal expansion coefficient [1/℃] 

𝜆𝑇: Thermal conductivity [W/m/˚C] 
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Appendix 

Appendix A: 

Relationships between Poroelastic Coefficients (Wang, 2000) 

𝜂 =
𝑎(1 − 2𝜐)

2(1 − 𝜐)
 Eq. A-1 

𝛾 =
𝐵(1 + 𝜈𝑢)

3(1 − 𝜈𝑢)
=
𝜂

𝐺𝑆
 Eq. A-2 

𝐵 =
3(𝜈𝑢 − 𝜈)

𝑎(1 − 2𝜈)(1 + 𝜈𝑢)
=

3(𝜈𝑢 − 𝜈)

2𝜂(1 − 𝜐)(1 + 𝜈𝑢)
 Eq. A-3 

𝑀 =
𝐵𝐾𝑢
𝑎

=
2𝐺(𝜈𝑢 − 𝜈)

𝑎2(1 − 2𝜈𝑢)(1 − 2𝜈)
 Eq. A-4 

𝑆 =
(1 − 𝜈𝑢)(1 − 2𝜈)

𝑀(1 − 𝜈)(1 − 2𝜈𝑢)
 Eq. A-5 

𝑆𝜎 =
1

𝑅
=

𝑎

𝐾𝐵
 

Eq. A-6 

𝑆𝜖 =
1

𝑀
=

𝑎

𝐾𝑢𝐵
 Eq. A-7 
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Appendix B: 

Gaver-Stehfest Algorithm for Inversion of Laplace Transforms 

Stehfest provided an algorithm to numerically invert Laplace transforms F from P as follows (Jacquot et al., 

1983): 

𝐹 =
𝑙𝑛 (2)

𝑡
∑𝑉𝑖𝑃(

𝑙𝑛(2)

𝑡
𝑖)

𝑁

𝑖=1

 

Where 𝑉𝑖 is found as: 

𝑉𝑖 = (−1)(
𝑁
2
+𝑖) ∑

𝐾
𝑁
2 (2𝑘)!

(
𝑁
2
− 𝑘!) 𝑘! (𝑘 − 1)! (𝑖 − 𝑘)! (2𝑘 − 𝑖)!

𝑚𝑖𝑛 (𝑖,
𝑁
2
)

𝑘=[
𝑖+1
2
]

 

Where N is an even integer, e.g., 8, 10, 12, so on.  
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Appendix D:  

Deriving and Developing Induced Stresses (Unloading Mode–I) 

D.1: Deriving the Equation for ∆𝝈𝒓𝒓̃(𝒓,𝒔)
(𝒉𝒚𝒅.𝟏) 

In order to find the induced radial stress (or radial stress difference) ∆𝜎𝑟𝑟, first the following constitutive relation 

is considered (Wang, 2000 & Detournay & Cheng, 1993): 

∆𝜎𝑟𝑟 = 2𝐺𝜖𝑟𝑟 + 2𝐺
𝜐

1 − 2𝜐
𝜖𝑘𝑘 − 𝑎∆𝑃𝑝 (Eq. D.1–1) 

Where 𝐺 is the shear modulus; 𝜖𝑟𝑟 is the radial strain; 𝜐 is the Poisson’s ratio; 𝜖𝑘𝑘 is the bulk strain (𝜖𝑟𝑟 + 𝜖𝜃𝜃); 

and ∆𝑃𝑝 is the pore pressure drop. 

The following relation exists between the radial strain 𝜖𝑟𝑟 and the radial displacement ∆𝑈𝑟𝑟 (Wang, 2000 & 

Detournay & Cheng, 1993): 

𝜖𝑟𝑟 =
𝜕∆𝑈𝑟𝑟
𝜕𝑟

 (Eq. D.1–2) 

The following relation exists between the total strain 𝜖𝑘𝑘 and the radial displacement ∆𝑈𝑟𝑟 (Wang, 2000 & 

Detournay & Cheng, 1993): 

𝜖𝑘𝑘 =
1

𝑟

𝜕(𝑟∆𝑈𝑟𝑟)

𝜕𝑟
 (Eq. D.1–3) 

Taking Laplace transforms from both sides of Eq. D.1–1, we have: 

∆𝜎𝑟𝑟̃ = 2𝐺𝜖𝑟𝑟̃ + 2𝐺
𝜐

1 − 2𝜐
𝜖𝑘𝑘̃ − 𝑎∆𝑃𝑝̃ (Eq. D.1–4) 

Taking Laplace transforms of Eq. D.1–2 and Eq. D.1–3 and replacing into Eq. D.1–4, we have: 

∆𝜎𝑟𝑟̃(𝑟,𝑠)
(ℎ𝑦𝑑.1)

= 2𝐺 (
𝜕∆𝑈̃𝑟𝑟

(ℎ𝑦𝑑.1)

𝜕𝑟
) + 2𝐺

𝜐

1 − 2𝜐
(
1

𝑟

𝜕 (𝑟∆𝑈̃𝑟𝑟
(ℎ𝑦𝑑.1)

)

𝜕𝑟
) − 𝑎∆𝑃𝑝̃

(ℎ𝑦𝑑.1)
 (Eq. D.1–5) 

To find the equation for ∆𝜎𝑟𝑟̃(𝑟,𝑠)
(ℎ𝑦𝑑.1), we need to have 𝜕∆𝑈̃𝑟𝑟

(ℎ𝑦𝑑.1)

𝜕𝑟
, 1
𝑟

𝜕(𝑟∆𝑈̃𝑟𝑟
(ℎ𝑦𝑑.1)

)

𝜕𝑟
 and ∆𝑃𝑝̃(𝑟,𝑠)

(ℎ𝑦𝑑.1). The induced pore 

pressure difference for unloading mode-I (∆𝑃𝑝̃
(ℎ𝑦𝑑.1)) has been already equated in the literature (Wang, 2000; 

Detournay & Cheng, 1993): 
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∆𝑃𝑝̃(𝑟,𝑠)
(ℎ𝑦𝑑.1)

= −
2

3𝑠
(1 + 𝜐𝑢)∆𝑃𝑐𝐵(1 − 𝑓𝑚𝑐)

[
 
 
 
 
 
 
 
 

𝐼0 (√
𝑠
𝜂
𝑅) − 𝐼0 (√

𝑠
𝜂
𝑟)

𝐼0 (√
𝑠
𝜂
𝑅) − 2

(𝜐𝑢 − 𝜐)
(1 − 𝜐)

𝐼1 (√
𝑠
𝜂
𝑅)

√
𝑠
𝜂
𝑅

]
 
 
 
 
 
 
 
 

 (Eq. D.1–6) 

Where 𝑓𝑚𝑐 is the mud cake fraction of total pressure drop across the core sample; 𝜐𝑢 is the undrained Poisson’s 

ratio, 𝐵 is the Skempton’s coefficient; 𝑅 is the core radius; 𝜂 is the hydraulic diffusivity coefficient; 𝐼0 and 𝐼1 are 

respectively the hyperbolic Bessel functions of zero and first order of the first kind. 

For simplicity, we take a coefficient 𝐴 for the following expression: 

𝐴 = (1 − 𝜐)𝐼0 (√
𝑠

𝜂
𝑅) − 2(𝜐𝑢 − 𝜐)

𝐼1 (√
𝑠
𝜂
𝑅)

√
𝑠
𝜂
𝑅

 (Eq. D.1–7) 

Therefore, Eq. D.1–6 becomes: 

∆𝑃𝑝̃(𝑟,𝑠)
(ℎ𝑦𝑑.1)

= −
2∆𝑃𝑐
3𝑠

(1 + 𝜐𝑢)(1 − 𝜐)𝐵

𝐴
(1 − 𝑓𝑚𝑐) [𝐼0 (√

𝑠

𝜂
𝑅) − 𝐼0 (√

𝑠

𝜂
𝑟)] (Eq. D.1–8) 

We have the following relation between poroelastic coefficients (using Appendix A.1): 

𝑎 × 𝐵 =
3(𝜐𝑢 − 𝜐)

(1 − 2𝜐)(1 + 𝜐𝑢)
 (Eq. D.1–9) 

Where 𝑎 and 𝐵 are respectively the Biot’s and Skempton’s coefficients. 

Assuming zero mud cake effect (𝑓𝑚𝑐 = 0) and using Eq. D.1–9, converts Eq. D.1–8 to: 

∆𝑃𝑝̃(𝑟,𝑠)
(ℎ𝑦𝑑.1.1)

=
2∆𝑃𝑐
𝑠

(𝜐𝑢 − 𝜐)

(1 − 2𝜐)𝐴
(1 − 𝜐) [𝐼0 (√

𝑠

𝜂
𝑅) − 𝐼0 (√

𝑠

𝜂
𝑟)] (Eq. D.1–10) 
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We still need to find the equations for 𝜕∆𝑈̃𝑟𝑟
(ℎ𝑦𝑑.1)

𝜕𝑟
 and 1

𝑟

𝜕(𝑟∆𝑈̃𝑟𝑟
(ℎ𝑦𝑑.1)

)

𝜕𝑟
 [15] in order to find ∆𝜎𝑟𝑟̃(𝑟,𝑠)

(ℎ𝑦𝑑.1.1). Wang (2000) 

has presented the following relation for the Laplace transform of the radial displacement ∆𝑈̃𝑟𝑟
(ℎ𝑦𝑑.1): 

∆𝑈𝑟𝑟̃(𝑟,𝑠)
(ℎ𝑦𝑑.1)

=
1

𝑠

∆𝑃𝑐  𝑟

2𝐺𝐴

[
 
 
 

(1 − 2𝜐𝑢)(1 − 𝜐)𝐼0 (√
𝑠

𝜂
𝑅) + 2(𝜐𝑢 − 𝜐)

𝐼1 (√
𝑠
𝜂
𝑟)

√
𝑠
𝜂
𝑟

]
 
 
 

 (Eq. D.1–11) 

At this step, we first need to know how to take derivatives from hyperbolic Bessel functions. Thus, the following 

derivation rules for the hyperbolic Bessel functions will be used (Kreyszig, 2006): 

𝑑(𝑧𝐼1(𝑧))

𝑑𝑧
= 𝑧𝐼0(𝑧) 

(Eq. D.1–12) 

𝑑𝐼1(𝑧)

𝑑𝑧
= 𝐼0(𝑧) −

1

𝑧
𝐼1(𝑧) 

(Eq. D.1–13) 

Thus, using Eq. D.1–12 and Eq. D.1–13 to take derivatives from Eq. D.1–11, we have: 

𝜕∆𝑈̃𝑟𝑟
(ℎ𝑦𝑑.1)

𝜕𝑟
=
1

𝑠

∆𝑃𝑐
2𝐺𝐴

{
 

 

(1 − 2𝜐𝑢)(1 − 𝜐)𝐼0 (√
𝑠

𝜂
𝑅) + 2(𝜐𝑢 − 𝜐)

[
 
 
 

𝐼0 (√
𝑠

𝜂
𝑟) −

𝐼1 (√
𝑠
𝜂
𝑟)

√
𝑠
𝜂
𝑟

]
 
 
 

}
 

 

 (Eq. D.1–14) 

Similarly, using derivation rules of Eq. D.1–12 and Eq. D.1–13, we can equate 1
𝑟

𝜕(𝑟∆𝑈̃𝑟
(ℎ𝑦𝑑.1)

)

𝜕𝑟
 as: 

1

𝑟

𝜕(𝑟∆𝑈̃𝑟𝑟
(ℎ𝑦𝑑.1)

)

𝜕𝑟
=
1

𝑠

∆𝑃𝑐
2𝐺𝐴

[2(1 − 2𝜐𝑢)(1 − 𝜐)𝐼0 (√
𝑠

𝜂
𝑅) + 2(𝜐𝑢 − 𝜐)𝐼0 (√

𝑠

𝜂
𝑟)] (Eq. D.1–15) 

Now, we have all the terms required to evaluate ∆𝜎𝑟𝑟̃(𝑟,𝑠)
(ℎ𝑦𝑑.1). Therefore, using Eq. D.1–10, Eq. D.1–14, and Eq. 

D.1–15 and replacing them into Eq. D.1–5, we have: 

                                                 
15In the unloading mode I (i.e. confining pressure drop), only the pore pressure term ∆𝑃𝑝 depends on the mud 

cake effect, the displacement ∆𝑈𝑟𝑟 is independent of the mud cake effect.  
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∆𝜎𝑟𝑟̃(𝑟,𝑠)
(ℎ𝑦𝑑.1.1)

=
1

𝑠

∆𝑃𝑐
𝐴

{
 

 

(1 − 2𝜐𝑢)(1 − 𝜐)𝐼0 (√
𝑠

𝜂
𝑅) + 2(𝜐𝑢 − 𝜐)

[
 
 
 

𝐼0 (√
𝑠

𝜂
𝑟) −

𝐼1 (√
𝑠
𝜂
𝑟)

√
𝑠
𝜂
𝑟

]
 
 
 

+
𝜐

1 − 2𝜐
[2(1 − 2𝜐𝑢)(1 − 𝜐)𝐼0 (√

𝑠

𝜂
𝑅) + 2(𝜐𝑢 − 𝜐)𝐼0 (√

𝑠

𝜂
𝑟)]

+
2(𝜐𝑢 − 𝜐)

1 − 2𝜐
(1 − 𝜐) [𝐼0 (√

𝑠

𝜂
𝑅) − 𝐼0 (√

𝑠

𝜂
𝑟)]

}
 

 

 

(Eq. D.1–16) 

In order to rearrange Eq. D.1–16, we classify the coefficients as follows: 

Coefficient of 𝐼0 (√
𝑠

𝜂
𝑅): 1

𝑠

∆𝑃𝑐

𝐴
{(1 − 2𝜐𝑢)(1 − 𝜐) +

𝜐

1−2𝜐
× 2(1 − 2𝜐𝑢)(1 − 𝜐) +

2(𝜐𝑢−𝜐)

1−2𝜐
(1 − 𝜐)} 

=
1

𝑠

∆𝑃𝑐
𝐴
 
(1 − 𝜐)

1 − 2𝜐
{(1 − 2𝜐𝑢) + 2(𝜐𝑢 − 𝜐)} =

1

𝑠

∆𝑃𝑐
𝐴
 (1 − 𝜐) 

Coefficient of 𝐼0 (√
𝑠

𝜂
𝑟) :

1

𝑠

∆𝑃𝑐

𝐴
{2(𝜐𝑢 − 𝜐) +

𝜐

1−2𝜐
× 2(𝜐𝑢 − 𝜐) −

2(𝜐𝑢−𝜐)

1−2𝜐
(1 − 𝜐)} = 0 

Coefficient of 
𝐼1(√

𝑠

𝜂
𝑟)

√
𝑠

𝜂
𝑟
: −

1

𝑠

∆𝑃𝑐

𝐴
2(𝜐𝑢 − 𝜐) 

Using the above rearrangement method, we have: 

∆𝜎𝑟𝑟̃ (ℎ𝑦𝑑.1.1)
=
∆𝑃𝑐
𝑠𝐴

{
 

 

(1 − 𝜐)𝐼0 (√
𝑠

𝜂
𝑅) − 2 (𝜐𝑢 − 𝜐)

[
 
 
 𝐼1 (√

𝑠

𝜂
𝑟)

√
𝑠

𝜂
𝑟
]
 
 
 

}
 

 

 (Eq. D.1–17) 

If the mud cake pressure drop fraction is assumed non-zero (𝑓𝑚𝑐 ≠ 0) in Eq. D.1–8 and using the same 

procedure, we have ∆𝜎𝑟𝑟̃ (ℎ𝑦𝑑.1)
as follows: 

∆𝜎𝑟𝑟̃
(ℎ𝑦𝑑.1)

=
∆𝑃𝑐
𝑠𝐴

{
 

 

(1 − 𝜐)𝐼0 (√
𝑠

𝜂
𝑅) − 2 (𝜐𝑢 − 𝜐)

[
 
 
 

−

𝐼1 (√
𝑠
𝜂
𝑟)

√
𝑠
𝜂
𝑟

]
 
 
 

+ 2𝑓𝑚𝑐
(𝜐𝑢 − 𝜐)

(1 − 2𝜐)
(1 − 𝜐) [𝐼0 (√

𝑠

𝜂
𝑅) − 𝐼0 (√

𝑠

𝜂
𝑟)]

}
 

 

 

(Eq. D.1–18) 

Comparing Eq. D.1–17 and Eq. D.1–18, the mud cake effect ∆𝜎𝑟𝑟̃
(ℎ𝑦𝑑.1.2) can be found as follows: 
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∆𝜎𝑟𝑟̃
(ℎ𝑦𝑑.1.2)

= 2
∆𝑃𝑐
𝑠𝐴

(𝜐𝑢 − 𝜐)

(1 − 2𝜐)
(1 − 𝜐)𝑓𝑚𝑐 [𝐼0 (√

𝑠

𝜂
𝑅) − 𝐼0 (√

𝑠

𝜂
𝑟)] (Eq. D.1–19) 

Finally, the total induced radial stress for the unloading mode-I, ∆𝜎𝑟𝑟̃
(ℎ𝑦𝑑.1)is found by: 

∆𝜎𝑟𝑟̃
(ℎ𝑦𝑑.1)

=∑∆𝜎𝑟𝑟̃(𝑟,𝑠)
(ℎ𝑦𝑑.2.𝒍)

2

𝒍=1

 (Eq. D.1–20) 
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D.2: Deriving ∆𝝈𝜽𝜽̃(𝒓,𝒔)
(𝒉𝒚𝒅.𝟏)  

In order to find the induced radial stress (or radial stress difference) ∆𝜎𝜃𝜃, first the following constitutive relation 

is considered (Wang, 2000 & Detournay & Cheng, 1993): 

∆𝜎𝜃𝜃 = 2𝐺𝜖𝜃𝜃 + 2𝐺
𝜐

1 − 2𝜐
𝜖𝑘𝑘 − 𝑎∆𝑃𝑝 (Eq. D.2–1) 

Where 𝐺 is the shear modulus; 𝜖𝜃𝜃 is the hoop strain; 𝜐 is the Poisson’s ratio; 𝜖𝑘𝑘 is the bulk strain (𝜖𝑟𝑟 + 𝜖𝜃𝜃); 

and ∆𝑃𝑝 is the pore pressure drop. 

The following relation exists between the hoop strain 𝜖𝜃𝜃 and the radial displacement ∆𝑈𝑟𝑟 (Wang, 2000 & 

Detournay & Cheng, 1993): 

𝜖𝜃𝜃 =
∆𝑈𝑟𝑟
𝑟

 (Eq. D.2–2) 

The following relation exists between the total strain 𝜖𝑘𝑘 and the radial displacement ∆𝑈𝑟𝑟 (Wang, 2000 & 

Detournay & Cheng, 1993): 

𝜖𝑘𝑘 =
1

𝑟

𝜕(𝑟∆𝑈𝑟𝑟)

𝜕𝑟
 (Eq. D.2–3) 

Taking Laplace transforms from both sides of Eq. D.2–1, we have: 

∆𝜎𝜃𝜃̃ = 2𝐺𝜖𝜃𝜃̃ + 2𝐺
𝜐

1 − 2𝜐
𝜖𝑘𝑘̃ − 𝑎∆𝑃𝑝̃ (Eq. D.2–4) 

Taking Laplace transforms from both sides of Eq. D.2–2 and Eq. D.2–3 and replacing into Eq. D.2–4, we have: 

∆𝜎𝜃𝜃̃(𝑟,𝑠)
(ℎ𝑦𝑑.1)

= 2𝐺 (
∆𝑈̃𝑟𝑟

(ℎ𝑦𝑑.1)

𝑟
) + 2𝐺

𝜐

1 − 2𝜐
(
1

𝑟

𝜕 (𝑟∆𝑈̃𝑟𝑟
(ℎ𝑦𝑑.1)

)

𝜕𝑟
) − 𝑎∆𝑃𝑝̃

(ℎ𝑦𝑑.1)
 (Eq. D.2–5) 

To find the equation for ∆𝜎𝜃𝜃̃(𝑟,𝑠)
(ℎ𝑦𝑑.1), we need to have ∆𝑈̃𝑟𝑟

(ℎ𝑦𝑑.1)

𝑟
, 1
𝑟

𝜕(𝑟∆𝑈̃𝑟𝑟
(ℎ𝑦𝑑.1)

)

𝜕𝑟
 and ∆𝑃𝑝̃(𝑟,𝑠)

(ℎ𝑦𝑑.1). The induced pore 

pressure difference for unloading mode-I (∆𝑃𝑝̃
(ℎ𝑦𝑑.1)) has been already equated in the literature (Wang, 2000; 

Detournay & Cheng, 1993): 

∆𝑃𝑝̃(𝑟,𝑠)
(ℎ𝑦𝑑.1)

= −
2

3𝑠
(1 + 𝜐𝑢)∆𝑃𝑐𝐵(1 − 𝑓𝑚𝑐)

[
 
 
 
 
 
 
 
 

𝐼0 (√
𝑠
𝜂
𝑅) − 𝐼0 (√

𝑠
𝜂
𝑟)

𝐼0 (√
𝑠
𝜂
𝑅) − 2

(𝜐𝑢 − 𝜐)
(1 − 𝜐)

𝐼1 (√
𝑠
𝜂
𝑅)

√
𝑠
𝜂
𝑅

]
 
 
 
 
 
 
 
 

 (Eq. D.2–6) 
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Where 𝑓𝑚𝑐 is the mud cake fraction of total pressure drop across the core sample; 𝜐𝑢 is the undrained Poisson’s 

ratio, 𝐵 is the Skempton’s coefficient; 𝑅 is the core radius; 𝜂 is the hydraulic diffusivity coefficient; 𝐼0 and 𝐼1 are 

respectively the hyperbolic Bessel functions of zero and first order of the first kind. 

For simplicity, we take a coefficient 𝐴 for the following expression: 

𝐴 = (1 − 𝜐)𝐼0 (√
𝑠

𝜂
𝑅) − 2(𝜐𝑢 − 𝜐)

𝐼1 (√
𝑠
𝜂
𝑅)

√
𝑠
𝜂
𝑅

 (Eq. D.2–7) 

Therefore, Eq. D.2–6 becomes: 

∆𝑃𝑝̃(𝑟,𝑠)
(ℎ𝑦𝑑.1)

= −
2∆𝑃𝑐
3𝑠

(1 + 𝜐𝑢)(1 − 𝜐)𝐵

𝐴
(1 − 𝑓𝑚𝑐) [𝐼0 (√

𝑠

𝜂
𝑅) − 𝐼0 (√

𝑠

𝜂
𝑟)] (Eq. D.2–8) 

We have the following relation between poroelastic coefficients (using Appendix A.1): 

𝑎 × 𝐵 =
3(𝜐𝑢 − 𝜐)

(1 − 2𝜐)(1 + 𝜐𝑢)
 (Eq. D.2–9) 

Where 𝑎 and 𝐵 are respectively the Biot’s and Skempton’s coefficients. 

Assuming zero mud cake effect (𝑓𝑚𝑐 = 0) and using Eq. D.2–9 converts Eq. D.2–8 to: 

∆𝑃𝑝̃(𝑟,𝑠)
(ℎ𝑦𝑑.1.1)

= −
2∆𝑃𝑐
𝑠

(𝜐𝑢 − 𝜐)

(1 − 2𝜐)𝐴
(1 − 𝜐) [𝐼0 (√

𝑠

𝜂
𝑅) − 𝐼0 (√

𝑠

𝜂
𝑟)] (Eq. D.2–10) 

We still need to find the equations for ∆𝑈̃𝑟𝑟
(ℎ𝑦𝑑.1)

𝑟
 and 1

𝑟

𝜕(𝑟∆𝑈̃𝑟𝑟
(ℎ𝑦𝑑.1)

)

𝜕𝑟
 in order to find ∆𝜎𝜃𝜃̃(𝑟,𝑠)

(ℎ𝑦𝑑.1). Wang (2000) has 

presented the following relation for the Laplace transform of the radial displacement ∆𝑈̃𝑟𝑟
(ℎ𝑦𝑑.1): 

∆𝑈𝑟𝑟̃(𝑟,𝑠)
(ℎ𝑦𝑑.1)

=
1

𝑠

∆𝑃𝑐  𝑟

2𝐺𝐴

[
 
 
 

(1 − 2𝜐𝑢)(1 − 𝜐)𝐼0 (√
𝑠

𝜂
𝑅) + 2(𝜐𝑢 − 𝜐)

𝐼1 (√
𝑠
𝜂
𝑟)

√
𝑠
𝜂
𝑟

]
 
 
 

 (Eq. D.2–11) 

Therefore, using Eq. D.2–2, 𝜖𝜃𝜃 is found as: 

𝜖𝜃𝜃 =
∆𝑈𝑟𝑟
𝑟

=
1

𝑠

∆𝑃𝑐
2𝐺𝐴

[
 
 
 

(1 − 2𝜐𝑢)(1 − 𝜐)𝐼0 (√
𝑠

𝜂
𝑅) + 2(𝜐𝑢 − 𝜐)

𝐼1 (√
𝑠
𝜂
𝑟)

√
𝑠
𝜂
𝑟

]
 
 
 

 (Eq. D.2–12) 
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We have already found the equation for 1
𝑟

𝜕(𝑟∆𝑈̃𝑟
(ℎ𝑦𝑑.1)

)

𝜕𝑟
 in Eq. D.1–15. 

Now, we have all the terms required to evaluate ∆𝜎𝜃𝜃̃(𝑟,𝑠)
(ℎ𝑦𝑑.1.1). Therefore, using Eq. D.2–10, Eq. D.2–12, and Eq. 

D.1–15 and replacing them into Eq. D.2–5, we have: 

∆𝜎𝜃𝜃̃
(ℎ𝑦𝑑.1.1)

=
1

𝑠

∆𝑃𝑐
𝐴

{
 

 

(1 − 2𝜐𝑢)(1 − 𝜐)𝐼0 (√
𝑠

𝜂
𝑅) + 2(𝜐𝑢 − 𝜐)

𝐼1 (√
𝑠
𝜂
𝑟)

√
𝑠
𝜂
𝑟

+
𝜐

1 − 2𝜐
[2(1 − 2𝜐𝑢)(1 − 𝜐)𝐼0 (√

𝑠

𝜂
𝑅) + 2(𝜐𝑢 − 𝜐)𝐼0 (√

𝑠

𝜂
𝑟)]

+
2(𝜐𝑢 − 𝜐)

1 − 2𝜐
(1 − 𝜐) [𝐼0 (√

𝑠

𝜂
𝑅) − 𝐼0 (√

𝑠

𝜂
𝑟)]

}
 

 

 

(Eq. D.2–13) 

In order to rearrange Eq. D.2–13, we classify the coefficients as follows: 

Coefficient of 𝐼0 (√
𝑠

𝜂
𝑅) = (1 − 2𝜐𝑢)(1 − 𝜐) +

𝜐

1−2𝜐
× 2(1 − 2𝜐𝑢)(1 − 𝜐) +

2(𝜐𝑢−𝜐)

1−2𝜐
(1 − 𝜐) 

=
(1 − 𝜐)

1 − 2𝜐
{(1 − 2𝜐𝑢)(1 − 2𝜐) + 2[𝜐(1 − 2𝜐𝑢) + (𝜐𝑢 − 𝜐)]} = (1 − 𝜐) 

Coefficient of 𝐼0 (√
𝑠

𝜂
𝑟) = 𝜐 (

2(𝜐𝑢−𝜐)

1−2𝜐
) −

(1−𝜐)×2(𝜐𝑢−𝜐)

1−2𝜐
=−2(𝜐𝑢 − 𝜐) 

Coefficient of 
𝐼1(√

𝑠

𝜂
𝑟)

√
𝑠

𝜂
𝑟
= 2(𝜐𝑢 − 𝜐) 

Using the above rearrangement method, we have: 

∆𝜎𝜃𝜃̃(𝑟,𝑠)
(ℎ𝑦𝑑.1.1)

=
∆𝑃𝑐
𝑠𝐴

{
 

 

(1 − 𝜐)𝐼0 (√
𝑠

𝜂
𝑅) − 2(𝜐𝑢 − 𝜐)

[
 
 
 

𝐼0 (√
𝑠

𝜂
𝑟) −

𝐼1 (√
𝑠
𝜂
𝑟)

√
𝑠
𝜂
𝑟

]
 
 
 

}
 

 

 (Eq. D.2–14) 

If the mud cake pressure drop fraction is assumed non-zero (𝑓𝑚𝑐 ≠ 0) in Eq. D.2–8 and using the same 

procedure from Eq. D.2–8 to Eq. D.2–12, we have ∆𝜎𝜃𝜃̃(𝑟,𝑠)
(ℎ𝑦𝑑.1)as follows: 
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𝜎𝜃𝜃̃(𝑟,𝑠)
(ℎ𝑦𝑑.1) =

∆𝑃𝑐
𝑠𝐴

{
 

 

[
 
 
 

(1 − 𝜐)𝐼0 (√
𝑠

𝜂
𝑅) − 2(𝜐𝑢 − 𝜐)

(

 𝐼0 (√
𝑠

𝜂
𝑟) −

𝐼1 (√
𝑠
𝜂
𝑟)

√
𝑠
𝜂
𝑟

)

 

]
 
 
 

+ 2𝑓𝑚𝑐
(𝜐𝑢 − 𝜐)

(1 − 2𝜐)
(1 − 𝜐) [𝐼0 (√

𝑠

𝜂
𝑅) − 𝐼0 (√

𝑠

𝜂
𝑟)]

}
 

 

 

(Eq. D.2–15) 

Comparing Eq. D.2–14 and Eq. D.2–15, the mud cake effect ∆𝜎𝜃𝜃̃
(ℎ𝑦𝑑.1.2) can be found as follows: 

∆𝜎𝜃𝜃̃
(ℎ𝑦𝑑.1.2)

= 2
∆𝑃𝑐
𝑠𝐴

(𝜐𝑢 − 𝜐)

(1 − 2𝜐)
(1 − 𝜐)𝑓𝑚𝑐 [𝐼0 (√

𝑠

𝜂
𝑅) − 𝐼0 (√

𝑠

𝜂
𝑟)] (Eq. D.2–16) 

Finally, the total induced radial stress for the unloading mode-I, ∆𝜎𝜃𝜃̃
(ℎ𝑦𝑑.1) is found by: 

∆𝜎𝜃𝜃̃
(ℎ𝑦𝑑.1)

=∑∆𝜎𝜃𝜃̃(𝑟,𝑠)
(ℎ𝑦𝑑.2.𝒍)

2

𝒍=1

 (Eq. D.2–17) 
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Appendix E:  

Deriving and Developing Induced Stresses (Unloading Mode–II) 

E.1: Deriving the Equation for ∆𝝈𝒓𝒓̃(𝒓,𝒔)
(𝒉𝒚𝒅.𝟐) 

In order to find the induced radial stress (or radial stress difference) ∆𝜎𝑟𝑟, first the following constitutive relation 

is considered (Wang, 2000 & Detournay & Cheng, 1993): 

∆𝜎𝑟𝑟 = 2𝐺𝜖𝑟𝑟 + 2𝐺
𝜐

1 − 2𝜐
𝜖𝑘𝑘 − 𝑎∆𝑃𝑝 (Eq. E.1–1) 

Where 𝐺 is the shear modulus; 𝜖𝑟𝑟 is the radial strain; 𝜐 is the Poisson’s ratio; 𝜖𝑘𝑘 is the bulk strain (𝜖𝑟𝑟 + 𝜖𝜃𝜃); 

and ∆𝑃𝑝 is the pore pressure drop. 

The following relation exists between the radial strain 𝜖𝑟𝑟 and the radial displacement ∆𝑈𝑟𝑟 (Wang, 2000 & 

Detournay & Cheng, 1993): 

𝜖𝑟𝑟 =
𝜕∆𝑈𝑟𝑟
𝜕𝑟

 (Eq. E.1–2) 

The following relation exists between the total strain 𝜖𝑘𝑘 and the radial displacement ∆𝑈𝑟𝑟 (Wang, 2000 & 

Detournay & Cheng, 1993): 

𝜖𝑘𝑘 =
1

𝑟

𝜕(𝑟∆𝑈𝑟𝑟)

𝜕𝑟
 (Eq. E.1–3) 

Taking Laplace transforms from both sides of Eq. D.1–1, we have: 

∆𝜎𝑟𝑟̃ = 2𝐺𝜖𝑟𝑟̃ + 2𝐺
𝜐

1 − 2𝜐
𝜖𝑘𝑘̃ − 𝑎∆𝑃𝑝̃ (Eq. E.1–4) 

Taking Laplace transforms of Eq. E.1–2 and Eq. E.1–3 and replacing into Eq. E.1–4, we have: 

∆𝜎𝑟𝑟̃(𝑟,𝑠)
(ℎ𝑦𝑑.2)

= 2𝐺 (
𝜕∆𝑈̃𝑟𝑟

(ℎ𝑦𝑑.2)

𝜕𝑟
) + 2𝐺

𝜐

1 − 2𝜐
(
1

𝑟

𝜕 (𝑟∆𝑈̃𝑟𝑟
(ℎ𝑦𝑑.2)

)

𝜕𝑟
) − 𝑎∆𝑃𝑝̃

(ℎ𝑦𝑑.2)
 (Eq. E.1–5) 

To find the equation for ∆𝜎𝑟𝑟̃(𝑟,𝑠)
(ℎ𝑦𝑑.2), we need to have 𝜕∆𝑈̃𝑟𝑟

(ℎ𝑦𝑑.2)

𝜕𝑟
, 1
𝑟

𝜕(𝑟∆𝑈̃𝑟𝑟
(ℎ𝑦𝑑.2)

)

𝜕𝑟
 and ∆𝑃𝑝̃(𝑟,𝑠)

(ℎ𝑦𝑑.2). The induced pore 

pressure difference for unloading mode-II (∆𝑃𝑝̃
(ℎ𝑦𝑑.2)) has been already equated in the literature (Wang, 2000; 

Detournay & Cheng, 1993): 
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∆𝑃𝑝̃(𝑟,𝑠)
(ℎ𝑦𝑑.2)

= −
∆𝑃𝑐
𝑠
(1 − 𝑓𝑚𝑐)

[
 
 
 
 
 
 
 
 
(1 − 𝜐)𝐼0 (√

𝑠
𝜂
𝑟) − 2(𝜐𝑢 − 𝜐)

𝐼1 (√
𝑠
𝜂
𝑅)

√
𝑠
𝜂
𝑅𝑐

(1 − 𝜐)𝐼0 (√
𝑠
𝜂
𝑅𝑐) − 2(𝜐𝑢 − 𝜐)

𝐼1 (√
𝑠
𝜂
𝑅)

√
𝑠
𝜂
𝑅

]
 
 
 
 
 
 
 
 

 (Eq. E.1–6) 

Where 𝑓𝑚𝑐 is the mud cake fraction of total pressure drop across the core sample; 𝜐𝑢 is the undrained Poisson’s 

ratio, 𝐵 is the Skempton’s coefficient; 𝑅 is the core radius; 𝜂 is the hydraulic diffusivity coefficient; 𝐼0 and 𝐼1 are 

respectively the hyperbolic Bessel functions of zero and first order of the first kind. 

For simplicity, we take a coefficient 𝐴 for the following expression: 

𝐴 = (1 − 𝜐)𝐼0 (√
𝑠

𝜂
𝑅) − 2(𝜐𝑢 − 𝜐)

𝐼1 (√
𝑠
𝜂
𝑅)

√
𝑠
𝜂
𝑅

 (Eq. E.1–7) 

Therefore, Eq. E.1–6 becomes: 

∆𝑃𝑝̃(𝑟,𝑠)
(ℎ𝑦𝑑.2)

= −
1

𝑠

∆𝑃𝑐
𝐴
(1 − 𝑓𝑚𝑐)

[
 
 
 

(1 − 𝜐)𝐼0 (√
𝑠

𝜂
𝑟) − 2(𝜐𝑢 − 𝜐)

𝐼1 (√
𝑠
𝜂
𝑅)

√
𝑠
𝜂
𝑅

]
 
 
 

 (Eq. E.1–8) 

Assuming zero mud cake effect (𝑓𝑚𝑐 = 0), Eq. E.1–8 becomes: 

∆𝑃𝑝̃(𝑟,𝑠)
(ℎ𝑦𝑑.2.1)

= −
1

𝑠

∆𝑃𝑐
𝐴

[
 
 
 

(1 − 𝜐)𝐼0 (√
𝑠

𝜂
𝑟) − 2(𝜐𝑢 − 𝜐)

𝐼1 (√
𝑠
𝜂
𝑅)

√
𝑠
𝜂
𝑅

]
 
 
 

 (Eq. E.1–9) 

We still need to find the equations for 𝜕∆𝑈̃𝑟𝑟
(ℎ𝑦𝑑.2.1)

𝜕𝑟
 and 1

𝑟

𝜕(𝑟∆𝑈̃𝑟𝑟
(ℎ𝑦𝑑.2.1)

)

𝜕𝑟
 [16] in order to find ∆𝜎𝑟𝑟̃(𝑟,𝑠)

(ℎ𝑦𝑑.2.1).  

Wang (2000) has presented the following relation for the Laplace transform of the radial displacement, 

∆𝑈̃𝑟𝑟
(ℎ𝑦𝑑.2.1) (excluding the mud cake effect): 

                                                 
16The notation 2.1 indicates excluding the mud cake effect. In the unloading mode II (i.e. pore pressure drop), 

both the displacement ∆𝑈𝑟𝑟 and the pore pressure ∆𝑃𝑝 depends on the mud cake effect. However, in the 

unloading mode I (i.e. confining pressure drop), only the pore pressure depends on the mud cake effect. 
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∆𝑈𝑟𝑟̃(𝑟,𝑠)
(ℎ𝑦𝑑.2.1)

= −
1

𝑠
𝑎(1 − 2𝜐)(

∆𝑃𝑐𝑟

2𝐺𝐴
)

[
 
 
 𝐼1 (√

𝑠
𝜂
𝑟)

√
𝑠
𝜂
𝑟

+ (1 − 2𝜐𝑢)

𝐼1 (√
𝑠
𝜂
𝑅)

√
𝑠
𝜂
𝑅

]
 
 
 

  (Eq. E.1–10) 

At this step, we first need to know how to take derivatives from hyperbolic Bessel functions. Thus, the following 

derivation rules for the hyperbolic Bessel functions will be used (Kreyszig, 2006): 

𝑑(𝑧𝐼1(𝑧))

𝑑𝑧
= 𝑧𝐼0(𝑧) 

(Eq. E.1–11) 

𝑑𝐼1(𝑧)

𝑑𝑧
= 𝐼0(𝑧) −

1

𝑧
𝐼1(𝑧) 

(Eq. E.1–12) 

Thus, using Eq. E.1–11 and Eq. E.1–12 to take derivatives from Eq. E.1–10, we have: 

𝜕∆𝑈̃𝑟𝑟
(ℎ𝑦𝑑.2.1)

𝜕𝑟
= −

1

𝑠

∆𝑃𝑐
2𝐺𝐴

𝑎(1 − 2𝜐)

{
 

 

𝐼0 (√
𝑠

𝜂
𝑟) −

𝐼1 (√
𝑠
𝜂
𝑟)

√
𝑠
𝜂
𝑟

+ (1 − 2𝜐𝑢)

𝐼1 (√
𝑠
𝜂
𝑅)

√
𝑠
𝜂
𝑅

}
 

 

 (Eq. E.1–13) 

Similarly, using the derivation rules of Eq. E.1–11 and Eq. E.1–12, we can equate 1
𝑟

𝜕(𝑟∆𝑈̃𝑟
(ℎ𝑦𝑑.2.1)

)

𝜕𝑟
 as: 

1

𝑟

𝜕(𝑟∆𝑈̃𝑟𝑟
(ℎ𝑦𝑑.2.1)

)

𝜕𝑟
= −

1

𝑠

∆𝑃𝑐
2𝐺𝐴

𝑎(1 − 2𝜐)

{
 

 

𝐼0 (√
𝑠

𝜂
𝑟) + 2(1 − 2𝜐𝑢)

𝐼1 (√
𝑠
𝜂
𝑅)

√
𝑠
𝜂
𝑅

}
 

 

 (Eq. E.1–14) 

Now, we have all the terms required to evaluate ∆𝜎𝑟𝑟̃(𝑟,𝑠)
(ℎ𝑦𝑑.2.1). Therefore, using Eq. E.1–9, Eq. E.1–13, and Eq. 

E.1–14 and replacing them into Eq. E.1–5, we have: 

∆𝜎𝑟𝑟̃(𝑟,𝑠)
(ℎ𝑦𝑑.2.1)

= −
1

𝑠

∆𝑃𝑐
𝐴
𝑎(1 − 2𝜐)

{
 

 

𝐼0 (√
𝑠

𝜂
𝑟) −

𝐼1 (√
𝑠
𝜂
𝑟)

√
𝑠
𝜂
𝑟

+ (1 − 2𝜐𝑢)

𝐼1 (√
𝑠
𝜂
𝑅)

√
𝑠
𝜂
𝑅

}
 

 

)

−
1

𝑠

∆𝑃𝑐
𝐴
𝑎(1 − 2𝜐)

𝜐

1 − 2𝜐

{
 

 

𝐼0 (√
𝑠

𝜂
𝑟) + 2(1 − 2𝜐𝑢)

𝐼1 (√
𝑠
𝜂
𝑅)

√
𝑠
𝜂
𝑅

}
 

 

+
𝑎

𝑠

∆𝑃𝑐
𝐴

[
 
 
 

(1 − 𝜐)𝐼0 (√
𝑠

𝜂
𝑟) − 2(𝜐𝑢 − 𝜐)

𝐼1 (√
𝑠
𝜂
𝑅)

√
𝑠
𝜂
𝑅

]
 
 
 

 

 

(Eq. E.1–15) 

In order to rearrange Eq. E.1–15, we classify the coefficients as follows: 
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Coefficient
𝐼1(√

𝑠

𝜂
𝑅)

√
𝑠

𝜂
𝑅

:1
𝑠

𝑃𝑅

𝐴
𝑎[−(1 − 2𝜐)(1 − 2𝜐𝑢) − 2𝜐(1 − 2𝜐𝑢) − 2(𝜐𝑢 − 𝜐)] = −

1

𝑠

𝑃𝑅

𝐴
𝑎(1 − 2𝜐) 

Coefficient of 𝐼0 (√
𝑠

𝜂
𝑟): 1

𝑠

𝑃𝑅

𝐴
𝑎[−(1 − 2𝜐) − 𝜐 + (1 − 𝜐)] =

1

𝑠

𝑃𝑅

𝐴
𝑎(1 − 2𝜐)2𝜐 = 0 

Coefficient of 
𝐼1(√

𝑠

𝜂
𝑟)

√
𝑠

𝜂
𝑟

: 1
𝑠

𝑃𝑅

𝐴
𝑎(1 − 2𝜐) 

Using the above rearrangement method, we have: 

∆𝜎𝑟𝑟̃(𝑟,𝑠)
(ℎ𝑦𝑑.2.1)

= −
∆𝑃𝑐
𝑠𝐴

𝑎(1 − 2𝜐)

[
 
 
 𝐼1 (√

𝑠
𝜂
𝑅)

√
𝑠
𝜂
𝑅

−

𝐼1 (√
𝑠
𝜂
𝑟)

√
𝑠
𝜂
𝑟

]
 
 
 

 (Eq. E.1–16) 

If the mud cake pressure drop fraction is assumed non-zero (𝑓𝑚𝑐 ≠ 0), it affects Eq. D.1–8. For the unloading 

mode II (i.e. the pore pressure drop) unlike the first unloading mode (i.e. the confining pressure drop), the mud 

cake effect also affects the core displacement (∆𝑈𝑟𝑟̃(𝑟,𝑠)
(ℎ𝑦𝑑.2)) as follows: 

∆𝑈𝑟𝑟̃(𝑟,𝑠)
(ℎ𝑦𝑑.2)

= −
1

𝑠
𝑎(1 − 2𝜐)(

∆𝑃𝑐𝑟

2𝐺𝐴
)(1 − 𝑓𝑚𝑐)

[
 
 
 𝐼1 (√

𝑠
𝜂
𝑟)

√
𝑠
𝜂
𝑟

+ (1 − 2𝜐𝑢)

𝐼1 (√
𝑠
𝜂
𝑅)

√
𝑠
𝜂
𝑅

]
 
 
 

  (Eq. E.1–17) 

Therefore, a coefficient of (1 − 𝑓𝑚𝑐) will be created on the right hand side of Eq. E.1–5. This means that 

following the same procedure, we find ∆𝜎𝑟𝑟̃ (ℎ𝑦𝑑.2)
as follows: 

∆𝜎𝑟𝑟̃(𝑟,𝑠)
(ℎ𝑦𝑑.2)

= −
∆𝑃𝑐
𝑠𝐴

𝑎(1 − 2𝜐)(1 − 𝑓𝑚𝑐)

[
 
 
 𝐼1 (√

𝑠
𝜂
𝑅)

√
𝑠
𝜂
𝑅

−

𝐼1 (√
𝑠
𝜂
𝑟)

√
𝑠
𝜂
𝑟

]
 
 
 

 (Eq. E.1–18) 

Comparing Eq.E.1–16 and Eq. E.1–18, the mud cake effect ∆𝜎𝑟𝑟̃(𝑟,𝑠)
(ℎ𝑦𝑑.2.2) can be found as follows: 

∆𝜎𝑟𝑟̃(𝑟,𝑠)
(ℎ𝑦𝑑.2.2)

=
∆𝑃𝑐
𝑠𝐴

𝑎(1 − 2𝜐)𝑓𝑚𝑐

[
 
 
 𝐼1 (√

𝑠
𝜂
𝑅)

√
𝑠
𝜂
𝑅

−

𝐼1 (√
𝑠
𝜂
𝑟)

√
𝑠
𝜂
𝑟

]
 
 
 

 (Eq. E.1–19) 

Finally, the total 𝜎𝑟𝑟̃(𝑟,𝑠)
(ℎ𝑦𝑑.2) is found as the summation of: 
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∆𝜎𝑟𝑟̃(𝑟,𝑠)
(ℎ𝑦𝑑.2)

= ∑ ∆𝜎𝑟𝑟̃(𝑟,𝑠)
(ℎ𝑦𝑑.2.𝑚)

2

𝑚=1

 (Eq. E.1–20) 

 

  



A18 

 

E.2: Deriving ∆𝝈𝜽𝜽̃(𝒓,𝒔)
(𝒉𝒚𝒅.𝟐)  

In order to find the induced radial stress (or radial stress difference) ∆𝜎𝜃𝜃, first the following constitutive 

equation is considered (Wang, 2000 & Detournay & Cheng, 1993): 

∆𝜎𝜃𝜃 = 2𝐺𝜖𝜃𝜃 + 2𝐺
𝜐

1 − 2𝜐
𝜖𝑘𝑘 − 𝑎∆𝑃𝑝 (Eq. E.2–1) 

Where 𝐺 is the shear modulus; 𝜖𝜃𝜃 is the hoop strain; 𝜐 is the Poisson’s ratio; 𝜖𝑘𝑘 is the bulk strain (𝜖𝑟𝑟 + 𝜖𝜃𝜃); 

and ∆𝑃𝑝 is the pore pressure drop. 

The following relation exists between the hoop strain 𝜖𝜃𝜃 and the radial displacement ∆𝑈𝑟𝑟 (Wang, 2000; 

Detournay & Cheng, 1993): 

𝜖𝜃𝜃 =
∆𝑈𝑟𝑟
𝑟

 (Eq. E.2–2) 

The following relation exists between the total strain 𝜖𝑘𝑘 and the radial displacement ∆𝑈𝑟𝑟 (Wang, 2000 & 

Detournay & Cheng, 1993): 

𝜖𝑘𝑘 =
1

𝑟

𝜕(𝑟∆𝑈𝑟𝑟)

𝜕𝑟
 (Eq. E.2–3) 

Taking Laplace transforms from both sides of Eq. E.2–1, we have: 

∆𝜎𝜃𝜃̃ = 2𝐺𝜖𝜃𝜃̃ + 2𝐺
𝜐

1 − 2𝜐
𝜖𝑘𝑘̃ − 𝑎∆𝑃𝑝̃ (Eq. E.2–4) 

Taking Laplace transforms from both sides of Eq. E.2–2 and Eq. E.2–3 and replacing into Eq. E.2–4, we have: 

∆𝜎𝜃𝜃̃(𝑟,𝑠)
(ℎ𝑦𝑑.1)

= 2𝐺 (
∆𝑈̃𝑟𝑟

(ℎ𝑦𝑑.2)

𝑟
) + 2𝐺

𝜐

1 − 2𝜐
(
1

𝑟

𝜕 (𝑟∆𝑈̃𝑟𝑟
(ℎ𝑦𝑑.2)

)

𝜕𝑟
) − 𝑎∆𝑃𝑝̃

(ℎ𝑦𝑑.2)
 (Eq. E.2–5) 

To find the equation for ∆𝜎𝜃𝜃̃(𝑟,𝑠)
(ℎ𝑦𝑑.2), we need to have ∆𝑈̃𝑟𝑟

(ℎ𝑦𝑑.2)

𝑟
, 1
𝑟

𝜕(𝑟∆𝑈̃𝑟𝑟
(ℎ𝑦𝑑.2)

)

𝜕𝑟
 and ∆𝑃𝑝̃(𝑟,𝑠)

(ℎ𝑦𝑑.2). The induced pore 

pressure difference for the unloading mode-II (∆𝑃𝑝̃
(ℎ𝑦𝑑.2)) has been already equated in the literature (Wang, 

2000; Detournay & Cheng, 1993): 

∆𝑃𝑝̃(𝑟,𝑠)
(ℎ𝑦𝑑.2)

= −
∆𝑃𝑐
𝑠𝐴

(1 − 𝑓𝑚𝑐)

[
 
 
 
 
 
 
 
 
(1 − 𝜐)𝐼0 (√

𝑠
𝜂
𝑟) − 2(𝜐𝑢 − 𝜐)

𝐼1 (√
𝑠
𝜂
𝑅)

√
𝑠
𝜂
𝑅

(1 − 𝜐)𝐼0 (√
𝑠
𝜂
𝑅) − 2(𝜐𝑢 − 𝜐)

𝐼1 (√
𝑠
𝜂
𝑅)

√
𝑠
𝜂
𝑅

]
 
 
 
 
 
 
 
 

 (Eq. E.2–6) 
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Where 𝑓𝑚𝑐 is the mud cake fraction of total pressure drop across the core sample; 𝜐𝑢 is the undrained Poisson’s 

ratio, 𝐵 is the Skempton’s coefficient; 𝑅 is the core radius; 𝜂 is the hydraulic diffusivity coefficient; 𝐼0 and 𝐼1 are 

respectively the hyperbolic Bessel functions of zero and first order of the first kind. 

For simplicity, we take a coefficient 𝐴 for the following expression: 

𝐴 = (1 − 𝜐)𝐼0 (√
𝑠

𝜂
𝑅) − 2(𝜐𝑢 − 𝜐)

𝐼1 (√
𝑠
𝜂
𝑅)

√
𝑠
𝜂
𝑅

 (Eq. E.2–7) 

Therefore, Eq. E.2–6 becomes: 

∆𝑃𝑝̃(𝑟,𝑠)
(ℎ𝑦𝑑.2)

= −
1

𝑠

∆𝑃𝑐
𝐴
(1 − 𝑓𝑚𝑐)

[
 
 
 

(1 − 𝜐)𝐼0 (√
𝑠

𝜂
𝑟) − 2(𝜐𝑢 − 𝜐)

𝐼1 (√
𝑠
𝜂
𝑅)

√
𝑠
𝜂
𝑅

]
 
 
 

 (Eq. E.2–8) 

Assuming zero mud cake effect (𝑓𝑚𝑐 = 0), Eq. E.2–8 becomes: 

∆𝑃𝑝̃(𝑟,𝑠)
(ℎ𝑦𝑑.2.1)

= −
1

𝑠

∆𝑃𝑐
𝐴

[
 
 
 

(1 − 𝜐)𝐼0 (√
𝑠

𝜂
𝑟) − 2(𝜐𝑢 − 𝜐)

𝐼1 (√
𝑠
𝜂
𝑅)

√
𝑠
𝜂
𝑅

]
 
 
 

 (Eq. E.2–9) 

We still need to find the equations for ∆𝑈̃𝑟𝑟
(ℎ𝑦𝑑.2.1)

𝑟
 and 1

𝑟

𝜕(𝑟∆𝑈̃𝑟𝑟
(ℎ𝑦𝑑.2.1)

)

𝜕𝑟
 in order to find ∆𝜎𝜃𝜃̃(𝑟,𝑠)

(ℎ𝑦𝑑.2). Wang (2000) has 

presented the following relation for the Laplace transform of the radial displacement ∆𝑈̃𝑟𝑟
(ℎ𝑦𝑑.2.1): 

∆𝑈𝑟𝑟̃(𝑟,𝑠)
(ℎ𝑦𝑑.2.1)

= −
1

𝑠
𝑎(1 − 2𝜐)(

∆𝑃𝑐𝑟

2𝐺𝐴
)

[
 
 
 𝐼1 (√

𝑠
𝜂
𝑟)

√
𝑠
𝜂
𝑟

+ (1 − 2𝜐𝑢)

𝐼1 (√
𝑠
𝜂
𝑅)

√
𝑠
𝜂
𝑅

]
 
 
 

  (Eq. E.2–10) 

Therefore, using Eq. E.2–2, 𝜖𝜃𝜃 is found as: 

𝜖𝜃𝜃 =
∆𝑈𝑟𝑟
𝑟

= −
1

𝑠
𝑎(1 − 2𝜐)(

∆𝑃𝑐
2𝐺𝐴

)

[
 
 
 𝐼1 (√

𝑠
𝜂
𝑟)

√
𝑠
𝜂
𝑟

+ (1 − 2𝜐𝑢)

𝐼1 (√
𝑠
𝜂
𝑅)

√
𝑠
𝜂
𝑅

]
 
 
 

 (Eq. E.2–11) 

We have already found the equation for 1
𝑟

𝜕(𝑟∆𝑈̃𝑟
(ℎ𝑦𝑑.2.1)

)

𝜕𝑟
 in Eq. E.1–14. 

Now, we have all the terms required to evaluate ∆𝜎𝜃𝜃̃(𝑟,𝑠)
(ℎ𝑦𝑑.2.1). Therefore, using Eq. E.2–9, Eq. E.2–11, and Eq. 

E.1–14 and replacing them into Eq. E.2–5, we have: 
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∆𝜎𝜃𝜃̃
(ℎ𝑦𝑑.1)

=
1

𝑠

∆𝑃𝑐
𝐴
𝑎

{
 

 

−(1 − 2𝜐)

[
 
 
 𝐼1 (√

𝑠
𝜂
𝑟)

√
𝑠
𝜂
𝑟

+ (1 − 2𝜐𝑢)

𝐼1 (√
𝑠
𝜂
𝑅)

√
𝑠
𝜂
𝑅

]
 
 
 

− 𝜐

[
 
 
 

𝐼0 (√
𝑠

𝜂
𝑟) + 2(1 − 2𝜐𝑢)

𝐼1 (√
𝑠
𝜂
𝑅)

√
𝑠
𝜂
𝑅

]
 
 
 

+

[
 
 
 

(1 − 𝜐)𝐼0 (√
𝑠

𝜂
𝑟) − 2(𝜐𝑢 − 𝜐)

𝐼1 (√
𝑠
𝜂
𝑅)

√
𝑠
𝜂
𝑅

]
 
 
 

}
 

 

 

(Eq. E.2–12) 

In order to rearrange Eq. E.2–12, we classify the coefficients as follows: 

Coefficient of 
𝐼1(√

𝑠

𝜂
𝑅)

√
𝑠

𝜂
𝑅

=
1

𝑠

∆𝑃𝑐

𝐴
𝑎(1 + 𝑓𝑚𝑐)[−(1 − 2𝜐)(1 − 2𝜐𝑢) − 2𝜐(1 − 2𝜐𝑢) − 2(𝜐𝑢 − 𝜐)] = −(1 − 2𝜐) 

Coefficient of 𝐼0 (√
𝑠

𝜂
𝑟) = −𝜐 + (1 − 𝜐) = (1 − 2𝜐) 

Coefficient of 
𝐼1(√

𝑠

𝜂
𝑟)

√
𝑠

𝜂
𝑟
= −(1 − 2𝜐) 

Using the above rearrangement method, we have: 

∆𝜎𝜃𝜃̃(𝑟,𝑠)
(ℎ𝑦𝑑.2.1)

= −
1

𝑠𝐴
∆𝑃𝑐𝛼(1 − 2𝜐)

[
 
 
 𝐼1 (√

𝑠
𝜂
𝑟)

√
𝑠
𝜂
𝑟

+

𝐼1 (√
𝑠
𝜂
𝑅)

√
𝑠
𝜂
𝑅

− 𝐼0 (√
𝑠

𝜂
𝑟)

]
 
 
 

 (Eq. E.2–13) 

If the mud cake pressure drop fraction is assumed non-zero (𝑓𝑚𝑐 ≠ 0), it affects Eq. E.2–8. For the unloading 

mode II (i.e. the pore pressure drop) unlike the first unloading mode (i.e. the confining pressure drop), the mud 

cake effect also affects the core displacement (∆𝑈𝑟𝑟̃(𝑟,𝑠)
(ℎ𝑦𝑑.2)) as follows: 

∆𝑈𝑟𝑟̃(𝑟,𝑠)
(ℎ𝑦𝑑.2)

= −
1

𝑠
𝑎(1 − 2𝜐)(

∆𝑃𝑐𝑟

2𝐺𝐴
)(1 − 𝑓𝑚𝑐)

[
 
 
 𝐼1 (√

𝑠
𝜂
𝑟)

√
𝑠
𝜂
𝑟

+ (1 − 2𝜐𝑢)

𝐼1 (√
𝑠
𝜂
𝑅)

√
𝑠
𝜂
𝑅

]
 
 
 

  (Eq. E.2–14) 

Therefore, a coefficient of (1 − 𝑓𝑚𝑐) will be created on the right hand side of Eq. E.2–5. Therefore, we have 

∆𝜎𝜃𝜃̃(𝑟,𝑠)
(ℎ𝑦𝑑.2)as follows: 
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∆𝜎𝜃𝜃̃(𝑟,𝑠)
(ℎ𝑦𝑑.2)

= −
∆𝑃𝑐
𝑠𝐴

𝛼(1 − 2𝜐)(1 − 𝑓𝑚𝑐)

[
 
 
 𝐼1 (√

𝑠
𝜂
𝑟)

√
𝑠
𝜂
𝑟

+

𝐼1 (√
𝑠
𝜂
𝑅)

√
𝑠
𝜂
𝑅

− 𝐼0 (√
𝑠

𝜂
𝑟)

]
 
 
 

 (Eq. E.2–15) 

Comparing Eq. E.2–13 and Eq. E.2–15, the mud cake effect ∆𝜎𝜃𝜃̃
(ℎ𝑦𝑑.2.2) can be found as follows: 

∆𝜎𝜃𝜃̃
(ℎ𝑦𝑑.2.2)

=
∆𝑃𝑐
𝑠𝐴

𝛼(1 − 2𝜐)𝑓𝑚𝑐

[
 
 
 𝐼1 (√

𝑠
𝜂
𝑟)

√
𝑠
𝜂
𝑟

+

𝐼1 (√
𝑠
𝜂
𝑅)

√
𝑠
𝜂
𝑅

− 𝐼0 (√
𝑠

𝜂
𝑟)

]
 
 
 

 (Eq. E.2–16) 

Finally, the total 𝜎𝜃𝜃̃(𝑟,𝑠)
(ℎ𝑦𝑑.2) is found as the summation of: 

∆𝜎𝜃𝜃̃(𝑟,𝑠)
(ℎ𝑦𝑑.2)

= ∑ ∆𝜎θθ̃(𝑟,𝑠)
(ℎ𝑦𝑑.2.𝑚)

2

𝑚=1

 (Eq. E.2–17) 
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Appendix F:  

Deriving and Developing Induced Stresses (Unloading Mode–III) 

The main thermal effect on the induced stresses is due to conduction heat transfer which causes the expansion-

contraction effect. We denote it as thermal-1. The relation between the induced thermal radial and hoop stresses 

and the thermal displacement is given as (Timoshenko, 1934, p. 407–412): 

∆𝜎𝑟𝑟
(𝑡ℎ𝑒𝑟𝑚𝑎𝑙.1) =

𝐸

1 − 𝜈2
[𝜖𝑟𝑟

(𝑡ℎ𝑒𝑟𝑚𝑎𝑙) + 𝜈𝜖𝜃𝜃
(𝑡ℎ𝑒𝑟𝑚𝑎𝑙) − (1 + 𝜈)

𝛼𝑚
3
∆𝑇] (Eq. F–1) 

∆𝜎𝜃𝜃
(𝑡ℎ𝑒𝑟𝑚𝑎𝑙.1) =

𝐸

1 − 𝜈2
[𝜖𝜃𝜃

(𝑡ℎ𝑒𝑟𝑚𝑎𝑙) + 𝜈𝜖𝑟𝑟
(𝑡ℎ𝑒𝑟𝑚𝑎𝑙) − (1 + 𝜈)

𝛼𝑚
3
∆𝑇] (Eq. F–2) 

Where E is the Young’s modulus; 𝜈 is the Poisson’s ratio; 
𝛼𝑚

3
 is the one-dimensional bulk thermal expansion 

coefficient. 

The following relation exists between the thermally-induced radial strain 𝜖𝑟𝑟(𝑡ℎ𝑒𝑟𝑚𝑎𝑙) and the radial 

displacement ∆𝑈𝑟𝑟(𝑡ℎ𝑒𝑟𝑚𝑎𝑙) (Wang, 2000; Detournay & Cheng, 1993): 

𝜖𝑟𝑟
(𝑡ℎ𝑒𝑟𝑚𝑎𝑙) =

𝜕(∆𝑈𝑟𝑟
(𝑡ℎ𝑒𝑟𝑚𝑎𝑙))

𝜕𝑟
 

(Eq. F–3) 

The following relation exists between the thermally-induced hoop strain 𝜖𝜃𝜃 and the radial displacement ∆𝑈𝑟𝑟 

(Wang, 2000 & Detournay & Cheng, 1993): 

𝜖𝜃𝜃
(𝑡ℎ𝑒𝑟𝑚𝑎𝑙) =

∆𝑈𝑟𝑟
(𝑡ℎ𝑒𝑟𝑚𝑎𝑙)

𝑟
 

(Eq. F–4) 

The equation for ∆𝑈𝑟𝑟(𝑡ℎ𝑒𝑟𝑚𝑎𝑙) is needed to find the strains. The thermally-induced radial displacement is given 

by (Timoshenko, 1934): 

∆𝑈𝑟𝑟
(𝑡ℎ𝑒𝑟𝑚𝑎𝑙) =

(1 + 𝜐)

(1 − 𝜐)

𝛼𝑚
3
[
1

𝑅2
∫ ∆𝑇
𝑅

0

𝑟𝜕𝑟 +
1

𝑟2
∫ ∆𝑇
𝑟

0

𝑟𝜕𝑟 − ∆𝑇] (Eq. F–5) 

Therefore, using Eq. F–1, to F–5, we can find the thermally induced stresses as:  

∆𝜎𝑟𝑟
(𝑡ℎ𝑒𝑟𝑚𝑎𝑙.1) =

𝐸

(1 − 𝜐)

𝛼𝑚

3
[
1

𝑅2
∫ ∆𝑇
𝑅

0

𝑟𝜕𝑟 −
1

𝑟2
∫ ∆𝑇
𝑟

0

𝑟𝜕𝑟] (Eq. F–6) 

∆𝜎𝜃𝜃
(𝑡ℎ𝑒𝑟𝑚𝑎𝑙.1) =

𝐸

(1 − 𝜐)

𝛼𝑚

3
[
1

𝑅𝑐
2∫ ∆𝑇

𝑅

0

𝑟𝜕𝑟 +
1

𝑟2
∫ ∆𝑇
𝑟

0

𝑟𝜕𝑟 − ∆𝑇] (Eq. F–7) 
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In order to facilitate making the integrations, we turn the equations to Laplace transforms. Taking Laplace 

transforms from both sides of Eq. F–6 and Eq. F–7, gives: 

∆𝜎𝑟𝑟̃
(𝑡ℎ𝑒𝑟𝑚𝑎𝑙.1)

=
𝐸

(1 − 𝜐)

𝛼𝑚

3
[
1

𝑅2
∫ ∆𝑇̃
𝑅

0

𝑟𝜕𝑟 −
1

𝑟2
∫ ∆𝑇̃
𝑟

0

𝑟𝜕𝑟] (Eq. F–8) 

∆𝜎𝜃𝜃̃
(𝑡ℎ𝑒𝑟𝑚𝑎𝑙.1)

=
𝐸

(1 − 𝜐)

𝛼𝑚

3
[
1

𝑅2
∫ ∆𝑇̃
𝑅

0

𝑟𝜕𝑟 +
1

𝑟2
∫ ∆𝑇̃
𝑟

0

𝑟𝜕𝑟 − ∆𝑇̃] (Eq. F–9) 

To find the integrations, first we need the Laplace transform of the temperature difference across the sample 

(∆𝑇̃). This is found as (Carslaw and Jaeger, 1959, p. 327 and 328): 

∆𝑇̃ =
∆𝑇0
𝑠

𝐼0(√
𝑠
𝜂𝑇
𝑟)

𝐼0(√
𝑠
𝜂𝑇
𝑅)

 (Eq. F–10) 

Where ∆𝑇0 is the initial temperature difference around the sample boundary during tripping. 

The following integration rule holds for the hyperbolic Bessel function 𝐼0 (Kreyszig, 2006): 

𝑑(𝑧𝜈𝐼𝜈(𝑧))

𝑑𝑧
= 𝑟𝜈𝐼𝜈−1(𝑧) 

Thus: 

∫𝑧𝐼0(𝑧)𝑑𝑧 = 𝑧𝐼1(𝑧) 
(Eq. F–11) 

Using the above rule and Eq. F–10, ∫ ∆T̃
𝑅

0
r ∂r is found by: 

∫ ∆𝑇̃
𝑅

0

𝑟𝜕𝑟 = −∫
∆𝑇0
𝑠

𝐼0 (√
𝑠
𝜂𝑇
𝑟)

𝐼0 (√
𝑠
𝜂𝑇
𝑅)

𝑅

0

𝑟𝜕𝑟 =
𝑇0
𝑠

1

𝐼0 (√
𝑠
𝜂𝑇
𝑅)

∫ 𝐼0 (√
𝑠

𝜂𝑇
𝑟)

𝑅

0

𝑟𝜕𝑟

= −
∆𝑇0
𝑠

(𝑅)𝐼1(√
𝑠
𝜂𝑇
𝑅)

(√
𝑠
𝜂𝑇
)𝐼0(√

𝑠
𝜂𝑇
𝑅)

 

(Eq. F–12) 

Thus, using Eq. F–8 and Eq. F–12, the final equation for the Laplace of the thermally-induced radial stress is: 

∆𝜎𝑟𝑟̃ (𝑡ℎ𝑒𝑟𝑚𝑎𝑙.1)
= −

∆𝑇0
𝑠

𝐸

(1 − 𝜐)

𝛼𝑚

3
×

1

𝐼0(√
𝑠
𝜂𝑇
𝑅)(√

𝑠
𝜂𝑇
𝑅)

[𝐼1(√
𝑠

𝜂𝑇
𝑅) −

𝑅

𝑟
𝐼1(√

𝑠

𝜂𝑇
𝑟)] (Eq. F–13) 
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Thus, using Eq. F–9, Eq. F–10, and Eq. F–12, the final equation for the Laplace of the thermally-induced hoop 

stress is: 

∆𝜎𝜃𝜃̃
(𝑡ℎ𝑒𝑟𝑚𝑎𝑙.1)

= −
∆𝑇0
𝑠

𝐸

(1 − 𝜐)

𝛼𝑚

3

×
1

𝐼0(√
𝑠
𝜂𝑇
𝑅)√

𝑠
𝜂𝑇
𝑅)

[𝐼1(√
𝑠

𝜂𝑇
𝑅) +

𝑅

𝑟
𝐼1(√

𝑠

𝜂𝑇
𝑟) − (√

𝑠

𝜂𝑇
𝑅)𝐼0(√

𝑠

𝜂𝑇
𝑟)] 

(Eq. F–14) 

Next, as we have considered the coupling the thermal effect on the pore pressure effect and the induced stresses, 

we need to find the induced coupling effect of the temperature drop. This is also called thermally-induced 

coupling stress. These effects on the induced radial stress, denoted as 𝜎𝑟𝑟̃(𝑟,𝑠)
(𝑡ℎ𝑒𝑟𝑚𝑎𝑙.2) and 𝜎𝑟𝑟̃(𝑟,𝑠)

(𝑡ℎ𝑒𝑟𝑚𝑎𝑙.3), are found 

using the analogy with the equations developed by Chen & Ewy (2005): 

𝜎𝑟𝑟̃(𝑟,𝑠)
(𝑡ℎ𝑒𝑟𝑚𝑎𝑙.2) =

𝛥𝑇0
𝑠
(

𝜂′

1 −
𝜂
𝜂′
)
𝛼𝑚

3

(1 − 2𝜐)

(1 − 𝜐)𝐼0(√
𝑠
𝜂
𝑅)(√

𝑠
𝜂
𝑅)

× [𝐼1 (√
𝑠

𝜂
𝑅) −

𝑅

𝑟
𝐼1(√

𝑠

𝜂
𝑟)] (Eq. F–15) 

𝜎𝑟𝑟̃(𝑟,𝑠)
(𝑡ℎ𝑒𝑟𝑚𝑎𝑙.3) = −

𝛥𝑇0
𝑠
(

𝜂′

1 −
𝜂
𝜂′
)
𝛼𝑚
3

(1 − 2𝜐)

(1 − 𝜐)𝐼0(√
𝑠
𝜂𝑇
𝑅)(√

𝑠
𝜂𝑇
𝑅)

× [𝐼1 (√
𝑠

𝜂𝑇
𝑅) −

𝑅

𝑟
𝐼1(√

𝑠

𝜂𝑇
𝑟)] 

(Eq. F–16) 

These effects on the induced hoop stress, denoted as 𝜎𝜃𝜃̃(𝑟,𝑠)
(𝑡ℎ𝑒𝑟𝑚𝑎𝑙.2) and 𝜎𝜃𝜃̃(𝑟,𝑠)

(𝑡ℎ𝑒𝑟𝑚𝑎𝑙.3), are found using the 

analogy with the equations developed by Chen & Ewy (2005): 

𝜎𝜃𝜃̃(𝑟,𝑠)
(𝑡ℎ𝑒𝑟𝑚𝑎𝑙.2) = −

𝛥𝑇0
𝑠
(

𝜂′

1 −
𝜂
𝜂′
)
𝛼𝑚

3

(1 − 2𝜐)

(1 − 𝜐)𝐼0(√
𝑠
𝜂
𝑅)(√

𝑠
𝜂
𝑅)

× [𝐼1(√
𝑠

𝜂
𝑅) +

𝑅

𝑟
𝐼1(√

𝑠

𝜂
𝑟) − 𝑅𝐼0(√

𝑠

𝜂
𝑟)] 

(Eq. F–17) 

𝜎𝜃𝜃̃(𝑟,𝑠)
(𝑡ℎ𝑒𝑟𝑚𝑎𝑙.3) =

𝛥𝑇0
𝑠
(

𝜂′

1 −
𝜂
𝜂′
)
𝛼𝑚
3

(1 − 2𝜐)

(1 − 𝜐)𝐼0(√
𝑠
𝜂𝑇
𝑅)(√

𝑠
𝜂𝑇
𝑅)

× [𝐼1(√
𝑠

𝜂𝑇
𝑅) +

𝑅

𝑟
𝐼1(√

𝑠

𝜂𝑇
𝑟) − (√

𝑠

𝜂𝑇
𝑅)𝐼0(√

𝑠

𝜂𝑇
𝑟)] 

(Eq. F–18) 

Finally, the total 𝜎𝑟𝑟̃(𝑟,𝑠)
(𝑡ℎ𝑒𝑟𝑚𝑎𝑙) is found as the summation of: 
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∆𝜎𝑟𝑟̃(𝑟,𝑠)
(𝑡ℎ𝑒𝑟𝑚𝑎𝑙)

=∑∆𝜎𝑟𝑟̃(𝑟,𝑠)
(𝑡ℎ𝑒𝑟𝑚𝑎𝑙.𝑛)

3

𝑛=1

 (Eq. F–19) 

Finally, the total 𝜎𝜃𝜃̃(𝑟,𝑠)
(ℎ𝑦𝑑.2) is found as the summation of: 

∆𝜎𝜃𝜃̃(𝑟,𝑠)
(𝑡ℎ𝑒𝑟𝑚𝑎𝑙)

=∑∆𝜎𝜃𝜃̃(𝑟,𝑠)
(𝑡ℎ𝑒𝑟𝑚𝑎𝑙.𝑛)

3

𝑛=1

 (Eq. F–20) 

  



A26 

 

Appendix G:  

Correlations for Rock Mechanical and Thermal Properties-Based on 

Lithology: 

Poisson’s Ratio 𝝂: 

Table G-1: Typical Values of the Poisson’s Ratio for Different Types of Rocks  

(Zoback, 2010; Lama and Vutukuri, 1978) 

Type of Rock 𝝂 

Shales e.g. 0.3 

Sandstones  0.125 (𝝋 = 𝟓%) – 0.35 (𝝋 = 𝟑𝟓%) 

Carbonates e.g. 0.25 

Biot’s Coefficient a: 

Table G-2: Typical Values of the Biot’s Coefficient for Different Types of Rocks (Zoback, 2010) 

Type of Rock a 

Shales 0.7 

Sandstones  0.9 

Carbonates 0.7 

Tensile Strength and UCS Correlations: 

Table G-3: Typical Correlations between the Tensile Strength and UCS (Jaeger et al.,2007) 

Type of Rock Tesnile Strengtgh Tensile Strength (Mpa) 

Shales, Siltstones, & Mudstones  𝑇𝑠 ≈
𝑼𝑪𝑺

𝟏𝟎
                       [Eq.G-1] 0.2–2 

Sandstones 𝑇𝑠 ≈
𝑼𝑪𝑺

𝟏𝟓
                      [Eq.G-2] 5 

Carbonates  𝑇𝑠 ≈
𝑼𝑪𝑺

𝐦
, m=7-15       [Eq.G-3] 10 
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Young’s Modulus E and UCS Correlations: 

Table G-4: Typical Correlations for Young’s Modulus E as a Function of UCS (Chang et al., 2006) 

Lithology Correlations 

Shales 𝐸 = exp (
1

0.712
ln (

𝑈𝐶𝑆

7.22
))  [Eq. G–4] 

Sandstones 𝐸 =  
𝑈𝐶𝑆−2.28

4.1089
  [Eq. G–5] 

Carbonates 𝐸 = exp (
1

0.51
ln (

𝑈𝐶𝑆

13.8
))  [Eq. G–6] 

UCS and 𝛟 Correlations: 

 Shales/Siltstones: 

- Vernik et al. (1998) 

𝑈𝐶𝑆 = 254(1 − 2.7𝜑)2 Eq. G–7 

- Lashkaripour and Dusseault, (1993); Chang, (2006) {𝑢𝑠𝑒𝑑 𝑖𝑛 𝑡ℎ𝑒 𝑚𝑜𝑑𝑒𝑙}: 

𝑈𝐶𝑆 = 1.001 × 108𝜑−1.143, low porosity high strength (𝜑 < 0.1) Eq. G–8 

- Horsrud (2001): 

𝑈𝐶𝑆 = 0.28𝜑−1.762, high porosity low strength (𝜑 > 0.27) Eq. G–9 

 Sandstones: 

-  Clean sandstone (Plumb, 1994)  

𝑈𝐶𝑆 = 357(1 − 2.8𝜑)2, 𝜑 < 0.357 (upper boundary for UCS) Eq. G–10 

- Zoback, (2010) {𝑢𝑠𝑒𝑑 𝑖𝑛 𝑡ℎ𝑒 𝑚𝑜𝑑𝑒𝑙}: 

𝑈𝐶𝑆 = 277exp (−10𝜑), 𝜑 < 0.33  Eq. G–11 

 Carbonates: 

-  Rzhevsky and Novick, (1971); Zoback et al. (2006) {𝑢𝑠𝑒𝑑 𝑖𝑛 𝑡ℎ𝑒 𝑚𝑜𝑑𝑒𝑙}: 

𝑈𝐶𝑆 = 135.9𝑒−4.8𝜑, 0 < 𝜑 < 0.2 (upper boundary for UCS) Eq. G–12 
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Thermal Expansion Coefficient 𝜶𝒎 

Table G-5: Typical Thermal Expansion Coefficients  

Lithology 
Thermal Expansion Coefficient[1/˚C], 

(Gillian & Morgan, 1987) 

Shale 2 × 10−4 − 10−5 

Sandstone 1.1 × 10−5 − 3.3 × 10−5 

Carbonates 1 × 10−5 − 2 × 10−5 

Thermal Diffusivity Coefficient 𝛈𝐓: 

Table G-6: Typical Thermal Diffusivity Coefficients-Based on Lithology 

Lithology 
Thermal Diffusivity [m2/s]  

(Eppelbaum et al., 2014; Huotori et al., 2004)  

Shale 7.3e-7 

Sandstone 9.57e-7 

Carbonates 10.92e-7 

 


