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Kurzfassung  

Sensorgestützte Sortierung und abfallwirtschaftliche Analyse und 
Behandlung von Kunststoffabfällen unter besonderer Berücksichtigung 
von Mehrschichtfolien  

Der Verbrauch von Kunststoffverpackungen steigt seit Jahren kontinuierlich an. Die Nachfrage 
nach Verpackungen, die Produkte schützen, ihre Haltbarkeit erhöhen und gleichzeitig den 
Konsumenten durch ansprechende Haptik und Optik zum Kauf eben jener Produkte anregen, 
steht dem Bedarf nach möglichst geringem Materialeinsatz und einem vorteilhaften 
Masseverhältnis von Verpackung zu Produkt gegensätzlich gegenüber. Kunststofffolien 
erbringen eben diesen Spagat. Ein jährlicher Verbrauch von etwa 69.000 Tonnen, was etwa 
23% des jährlichen Aufkommens an Kunststoffverpackungsabfall in Österreich darstellt, 
spiegelt wider, dass sowohl Konsumenten als auch Märkte die Vorteile dieser Materialien 
erkannt haben.  

Die Materialeigenschaften, die den Einsatz von Kunststofffolien als Verpackung attraktiv 
machen, erschweren jedoch eine Sortierung mittels Nahinfrarotspektroskopie, welche den 
Stand der Technik in der Abfallwirtschaft darstellt. Dies führt dazu, dass die stofflich 
verwertbare Monolayerfraktion gemeinsam mit der Mehrschichtfraktion bestenfalls dem 
Downcycling und schlechtesten Falls einer thermischen Verwertung zugeführt werden muss, 
was sich negativ auf die Recyclingquote auswirkt und gleichzeitig wertvolle Ressourcen 
verschwendet.  

Diese Doktorarbeit liefert einen Beitrag, um die Sortierung der Folienfraktion zu erleichtern. 
Hierzu wird in dieser Arbeit eine Bestandsaufnahme der derzeitigen Situation in Österreich 
anhand einer Handsortierung der Leichtverpackungsfraktion und eine Stand-der-Technik-
Analyse mit Fokus auf die Nahinfrarottechnologie in der Abfallwirtschaft durchgeführt. 
Anschließend wird in einer umfassenden Lebenszyklusanalyse der Effekt eines verstärkten 
mechanischen Recyclings der Folienfraktion der thermischen Verwertung gegenübergestellt 
und erhoben, dass durch forciertes Recycling bis zu 63% der Treibhausgasemissionen 
verhindert werden könnten. 

Aufbauend auf diesen Erkenntnissen werden Methoden zur Adaption von Nahinfrarotsortierern 
präsentiert, die durch Messung in Transflektion die für die Nahinfrarotsortierung hinderlichen 
Eigenschaften der Folienfraktion umschiffen. So erlauben sie eine materialbasierte Sortierung 
der Folienfraktion auf bestehenden Aggregaten. 

Weiters werden datenanalytische Methoden auf Grundlage der Spektralzerlegung präsentiert, 
die es erlauben, die durch die Hardwareadaption verbesserte Spektralgüte weiter zu 
optimieren. Anschließend werden Machine-Learning-Algorithmen auf ihre Anwendbarkeit zur 
Sortierung von Mono- und Multilayerfolien hin untersucht, wobei sich die Support Vector 
Machine und ein Shallow Neural Network als die geeignetsten Methoden für eine 
materialunabhängige Klassifikation von Folienabfall in Ein- und Mehrschichtfolien 
herausstellten.  

  



Abstract 

Sensor-Based Sorting and Waste Management Analysis and Treatment 
of Plastic Waste with Special Consideration of Multilayer Films 

The consumption of plastic packaging has been increasing continuously for years. The 
demand for packaging that protects products, increases their shelf life and at the same time 
encourages consumers to buy those products with an appealing feel and look conflicts with 
the need for the lowest possible use of materials and an advantageous mass ratio of packaging 
to product. Plastic foils precisely perform this balancing act.  

An annual consumption of around 69,000 t, representing around 23% of the annual volume of 
plastic packaging waste generated in Austria, reflects that both consumers and markets have 
recognised the benefits of these materials.  

However, the material properties that make the use of plastic films attractive as packaging 
make sorting using near-infrared spectroscopy, which represents the state of the art in waste 
management, more difficult. As a result, the materially recyclable monolayer fraction together 
with the multilayer fraction are sent for downcycling at best and energy recovery at worst, which 
negatively affects the recycling rate and at the same time wastes valuable resources.  

This doctoral thesis contributes to facilitating the sorting of the film fraction. For this purpose, 
an inventory of the current situation in Austria is carried out in this work using a manual sorting 
of the light packaging fraction and a state-of-the-art analysis with a focus on near-infrared 
technology in waste management.  

Subsequently, in a comprehensive life cycle analysis, the effect of increased mechanical 
recycling of the film fraction is compared with thermal recycling and it is ascertained that up to 
63% of greenhouse gas emissions could be prevented through improved recycling.  

Based on these findings, methods for the adaptation of near-infrared sorters are presented, 
which circumvent the properties of the film fraction that hinder near-infrared sorting by 
measuring in transflection.  

These methods allow material-based sorting of the film fraction on existing units. Furthermore, 
data analysis methods based on spectral decomposition are presented, which allow to further 
optimize the spectral quality, which has been improved by the hardware adaptation. 
Subsequently, machine learning algorithms are examined for their applicability for sorting 
mono- and multilayer films, whereby the support vector machine and a shallow neural network 
turned out to be the most suitable methods for a material-independent classification of film 
waste into single- and multilayer films.  
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1 Introduction 

The current recycling rates reveal that many countries in the EU struggle to reach the 
postulated recycling rate of 60% of all plastic packaging waste which has to be reached in 
2025 (EU, 2008). The statistical evaluation of the material flow and recovery of plastic 
packaging waste in Austria shows that a substantial percentage of the annually generated 
plastic packaging waste is small films under 1,5m². More precisely, small film packaging 
accounts for 69,000 t of the 300,000 t of the annually generated small film packaging waste in 
Austria. Of this 69,000 t, only 12,000 t are mechanically recycled and used as re-granulates 
and re-enter the circular economy in the form of r-resources. The remaining 56,000 t of film 
packaging is used in industrial incineration or waste-to-energy plants (Van Eygen et al., 2018). 
Calculating the resulting percentages reveals that only 17.4% of small film packaging is 
mechanically recycled. The remaining 82.6% are either lost after thermal recovery as off-gas 
or landfilled (Van Eygen et al., 2018).  

The use of small film packaging has steadily increased over the last decade, and this 
development is unlikely to recede (Briassoulis et al., 2017). The widespread application of film 
packaging lies in the unrivalled ability to provide a wide array of functions with minimal material 
use. Plastic film packaging gains this ability by combining multiple polymers, adhesive layers 
and even the incorporation of metallic layers (Niaounakis, 2019). This combination yields 
protective, decorative and functional packaging. The widespread application of these materials 
in the food packaging industry shows that consumers and producers have recognised such 
benefits.  

However, the same characteristics which make the application of film packaging viable, pose 
issues when their purpose has been served. There are currently three different routes plastic 
film packaging can take after entering the waste stream. A thorough analysis of the waste flow 
of film packaging in Austria has been conducted by van Eygen et al., and the resulting flows 
are represented in Figure 1. It can be seen that films exit the waste stream through the recovery 
of energy in waste-to-energy plants (Kaiser et al., 2018), are downcycled to low-quality 
products with inferior mechanical and optical properties (Plastic Europe, 2019), or are used as 
residue derived fuel in industrial applications (Kaiser et al., 2018). Further, valuable 
monomaterial fractions are “contaminated” by multilayered film packaging due to the 
inadequacy of the applied sorting mechanisms, which incorrectly classify multilayer films as 
monomaterial (Ragaert et al., 2017).  

Estimates show that approximately 17% to 20% of all plastic film packaging consists of 
multilayer packaging (Tartakowski, 2010; Dahlbo et al., 2018). Considering the initially stated 
percentages, this leaves up to 57.270 t of monolayer packaging. This monolayer packaging 
could be used in mechanical recycling and thus enhance the circular economy of plastic 
packaging.  

To improve the circular economy of polymers and to raise the recycling rate, it is necessary to 
improve the sortability of films, and this improvement is necessary to separate multilayer 
materials from monolayer plastics. The first study on near-infrared-based sorting of multilayer 
post-consumer packaging demonstrated the feasibility of using this technology with minor 
adaptations on a laboratory scale using transflection measurements (Chen et al. 2021). 
Implementing these findings on an industrial scale would create a feedstock for chemical 
recycling plants currently in development for multilayer films while simultaneously recovering 
valuable monomaterial films for mechanical recycling. 

https://www.sciencedirect.com/science/article/pii/S0956053X21000209#b0100
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While test plants for recycling post-industrial film packaging have been implemented and small-
scale plants are under construction, the recycling of post-consumer film packaging currently 
lacks such developments. Technologies like physical delamination, implemented by Saperatec 
GmbH in Germany (Niaounakis, 2019), separating adhesive layers from materials layers via a 
liquid solvent (Kaiser et al., 2018), the "CreaSolv" process capable of separating the different 
layers of film packaging (Fraunhofer IVV, 2020) or the "Newcycling" process by APK GmbH 
(APK AG, 2020) are being implemented for the recycling of post-industrial films. All these 
technologies need a well-defined input stream and knowledge of the composition of the film 
packaging in common. Post-consumer lightweight packaging lacks the rigorous separated 
collection of post-industrial packaging waste. The inhomogeneity of post-consumer plastic 
waste and the lack of rigorous separated collection necessitates extensive sorting into well-
defined material classes before further recycling.  

Near Infrared Spectroscopy (NIRS) is the state-of-the-art technology for sorting plastic 
packaging (Feil and Pretz, 2020). This predominance is due to the high throughput and sorting 
accuracy achievable with NIRS. NIRS offers the possibility of determining the material of a 
given polymer through the interaction of the radiation and the polymer's molecular structure. 
This interaction yields a characteristic spectrum, a fingerprint, by which the material can be 
identified. Though applicable to a wide array of materials, NIRS reaches its limit with materials 
that show inadequate interaction with the NIR radiation. Amongst these materials are polymers 
coloured with carbon black, metals, ceramics, and two-dimensional objects with a very thin 
material thickness (Masoumi et al., 2012; Beel, 2017). Low material thickness decreases the 
specificity of the characteristic peaks of a given NIR spectrum and subsequently lowers the 
information content of the given spectrum (Masoumi et al., 2012).  

In addition to the already low information content, films exhibit a disturbing signal component 
in the spectrum due to destructive interferences. This noise obscures useful information and 
hinders classification (Jeszenszky et al., 2004). However, Fast Fourier Transformation may 
remove these interferences with correctly set parameters. Nonetheless, determining these 
parameters proved time-consuming and laborious (Jeszenszky et al., 2004). 

The plethora of film compositions in circulation poses an additional problem to existing sorting 
models. A sorting model capable of confidently separating mono- from multilayer materials 
without being overwhelmed by the sheer overabundance of possible material compositions 
needs to be created. The fulfilment of this task asks for a method to teach sorting models 
capable of detecting multilayer materials without the need to explicitly teach each possible 
layer combination to the sorting model. This specific use case suggests the applicability of 
machine learning algorithms in sorting film packaging. A systematic literature review performed 
in 2022 showed that machine learning is currently used to evaluate NIR spectra (Kroell et al., 
2022). The use cases of machine learning in NIRS vary from the recognition of food quality 
such as beer or fruit (Viejo et al., 2017; Zhang et al., 2020), application in the medical sector 
(Shoushtarian et al., 2020), the analysis of environmental hazards such as water pollution 
(Chen et al., 2020) and the quality assessment of biofuels, such as pellets (Mancini et al., 
2020). So far, no classification of film packaging has been conducted via machine learning 
methods in NIRS, although the application seems an ideal fit. 

This work aims to aid in increasing the Austrian recycling rate by facilitating the mechanical 
recycling of film packaging and delivering additional data on the composition of Austrian 
lightweight packaging waste. This work addresses this issue by conducting sorting trials to 
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evaluate the mono- and multilayer film content in the Austrian lightweight packaging waste 
fraction. 

Based upon the existing data, supported by the results of the hand sorting trials, multiple life 
cycle analyses (LCA) are conducted to establish whether mechanical recycling of films is 
environmentally favourable to thermal recovery.  

After this preliminary work to establish a current state of affairs in the Austrian waste 
management of film packaging and to gauge the ecological viability of film recycling, a 
technological review is conducted. This technological review is performed to evaluate the 
available sensor-based sorting techniques and to assess their potential for film sorting. This 
review showed NIR spectroscopy to be the most promising technology which is consequently 
subjected to further analysis. This evaluation of the suitability of NIR technology for film sorting 
revealed both the issues NIR sorters may have because of the material properties of film 
packaging and possible remedies to mitigate these limitations. 

The initially stated material properties of film packaging like the thin material thickness that 
make them ideal for packaging purposes, cause a lack of interaction between the material and 
the NIR radiation. This lack of interaction leads to spectra that contain little to no information 
about the material in question and make classification difficult. 

The lack of spectral information is being addressed by modifying an industrial NIR sorter. 
These adaptations include optimising recording parameters like illumination, measuring 
geometry and the effects of changing the measuring method from reflectance to transflection. 
These adaptations increase the information content of the film spectra and reduce the 
occurrence of disturbing signal components from interferences. To further decrease these 
obscuring interferences, Fourier Transformation is used, and the laborious setting of 
parameters is facilitated by automating the search for the correct parameters, such as finding 
the Fourier components needed to be eliminated prior to the reconstruction of the spectra using 
inverse Fourier transformation.  

These adaptations result in NIR spectra with increased information content which is then used 
to train machine-learning models to classify multilayer- and monolayer film packaging. To this 
end, an array of machine learning models, including decision trees, support vector machines 
and neural networks, are compared to each other based on the prediction accuracy, calculation 
speed and computational requirements. This approach yields a sorting model that is not 
material based but instead utilises overlying differences in the spectral makeup resulting from 
inherent differences between mono- and multilayer materials to make a classification. 

These software enhancements are built upon each other to establish a technology readiness 
level (TRL) of 2 and raise this TRL to 4. The hardware improvements, enhancing the spectral 
quality of film packaging, are based upon existing findings and a resulting TRL of 3. This thesis 
aimed to raise the TRL of these hardware enhancements to TRL 6 through trials on the NIR 
sorter. 

This thesis delivers new findings regarding the composition and abundance of film packaging 
waste and shows the environmental benefits of mechanical recycling compared to energy 
recovery. The results on the composition of the film fraction itself, the lightweight packaging 
fraction overall and the results of the LCA, which show that considerable CO2 emission 
reduction can be achieved through the material recycling of film packaging, offer a good basis 
for decision-making and discussion.  
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Simultaneously personnel dealing with the technical minutiae of film sorting may use this thesis 
as a steppingstone for further development in film sorting. Additionally, this thesis delivers the 
basis and statistical evaluation of beneficial adaptations to existing NIR sorting aggregates and 
displays software-based enhancements which increase the sortability of film packaging further. 
Thus, it may also benefit researchers focussing on waste management who wish to enhance 
the capabilities of sensor-based sorting systems. 
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Figure 1: Mass flow of Small Film packaging in the Austrian Waste Management. Data taken from van Eygen et al. 2018, Depiction by the author, Flows consolidated.
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1.1 Problem Definition 

The rise in plastic packaging in recent years, and the fact that recycling rates for plastic 
packaging waste have stagnated during the last decade indicate the need for action and 
change (Eurostat, 2022). These trends are visualised in Figure 2, which shows Austria's plastic 
waste production and recycling rate from 2012 to 2019. 

Despite the postulated goal to reach a recycling rate of 55% for all lightweight packaging by 
2030, small plastic packaging films are hitherto almost ignored in recycling and waste 
processing (EU, 2018; Van Eygen et al., 2018). Small films, two-dimensional plastic packaging 
with an area smaller than 1.5 m², make up 69,000 t of Austria's annually produced 300,000 t 
waste packaging and are mainly thermally recovered (Van Eygen et al., 2016; Van Eygen et 
al., 2017). This valorisation method does not add to the recycling rate (EU, 2018) of lightweight 
packaging. Furthermore, it causes significant greenhouse gas emissions (Gradus et al., 2016; 
Mohn et al., 2008) and wastes valuable resources. 

Due to functional requirements, plastic packaging is often produced as multilayer composites 
of different materials. Depending on the requirements, films with up to 12 layers can be 
produced in the co-extrusion process. The composition of these materials fulfils various tasks 
such as stability, flexibility, UV protection or gas impermeability. 

In 2020, at the start of the work for this doctoral thesis, these multilayer composites pose a 
great challenge for material sorting. Although small-sized films are one of the most prevalent 
fractions of plastic packaging waste, only a few are intentionally recycled because common 
sorting systems have issues recognising multilayer films (Van Eygen et al., 2016; Van Eygen 
et al., 2017; Van Eygen et al., 2018). These multilayer composites pose a significant challenge 
for recycling, as the additional plastic layers can contaminate the main recyclates and reduce 
the material quality.  

In addition, no comprehensive comparison between the environmental impact of thermal 
recovery and increased film recycling had been conducted based on the occurrence of mono- 
and multilayer packaging in the separate collection of waste in Austria.  

These technological shortcomings necessitate answering the following research questions: (A) 
Can mechanical recycling reduce the environmental impact of film packaging? (B) How can 
film packaging be mechanically recycled using existing aggregates? 

Without answering these questions, thermal valorisation remains the only viable destination 
for film packaging waste, and with that, the opportunity to recover resources in over 20% of 
the annually produced plastic waste in Austria remains untapped.  
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Figure 2: Available data on Plastic Waste Production from 2012 to 2020 and Recycling Rate in Austria from 2012 
to 2019 Eurostat, Generation of waste by waste category, hazardousness and NACE Rev. 2 activity, Statistical 
office of the European Union. Eurostat, Recycling rates for packaging waste Statistical office of the European 
Union (2022), - Author's depiction 

 

1.2 Framework of This Doctoral Thesis 

This thesis comprises two phases to aid in finding a solution to the problems stated in Chapter 
1.1. These phases are the “Waste Management Analysis Phase” and the “Process 
Optimisation Phase”. The first phase´s goal is to prepare results on which to base phase two.  

The first phase, “Waste Management Analysis Phase”, aims to evaluate the current situation 
in the waste management of film packaging. Here, existing findings covering the occurrence 
of film packaging in separate collected waste will be assessed, and a hand-sorting trial will be 
performed to confirm the existing results. Further, the current technologies available in the 
waste management sector will be assessed and ranked for their applicability for sorting film 
packaging.  

The aim of this broad-scope investigation of all available technologies is to find the sorting 
method with the highest potential to improve the sorting of film packaging. Additionally, the 
hand-sorting trials will result in a better understanding of the composition of film packaging 
waste.  

Based on these results, the second phase, “Process Optimisation”, will deal with improving 
existing sensor-based technologies to enhance the sortability of film packaging. The second 
phase will include an extensive LCA detailing the environmental effects of various levels of 
improved film packaging recycling. This LCA will determine the environmental consequences 
of improved film recycling and the resulting decrease in thermally recovered film packaging.  

This assessment aims to evaluate the ecological feasibility of replacing thermal valorisation 
with mechanical recycling. Additionally, hard- and software improvements on a NIR sorting 
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aggregate will be presented, and these improvements will incorporate changed measurement 
geometries and machine learning-based sorting models. 

Figure 3 depicts the thesis structure and shows the corresponding research articles. In 
addition, concise research questions that need to be answered are displayed. A more 
comprehensive list of research questions is shown in Chapter 1.3, “Scope of Investigations”. 

This thesis and the detailed findings were completed as a result of a research project funded 
by the Zukunftsfonds Steiermark. The research project is called “Multilayer Detection” and was 
conducted in cooperation with the Polymer Competence Center Leoben (PCCL).  

• Multilayer Detection - Identification of multilayer films in plastic sorting to increase the 
recycling of packaging film waste (2020 – 2022; Project Number: 1314) 
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Figure 3: Structure and framework of the doctoral thesis
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1.3. Scope of Investigations 

This chapter describes the research publications included in this thesis and the research 

questions that were to be answered in the respective publications. 

1.3.1 Publication 1 

This publication introduces the groundwork for the following research. The current situation 
regarding film packaging is evaluated based on an extensive hand sorting trial of lightweight 
packaging waste. The current proportion of film packaging in the Austrian waste has been 
determined. Additionally, the composition of this film packaging waste was tested. This 
publication shows the relevant proportion of multilayer and monolayer packaging in the 
separate collection of waste and provides the foundation for calculating the latent recycling 
potential of film packaging. 

Research questions: 

(1a) How prevalent is film packaging in Austrian lightweight packaging at the start of 

the investigations?  

(1b) What percentage of film packaging are multilayer films? 

(1c) What were the most common applications of multilayer films found in the separate 

collection of lightweight packaging waste? 

(1d) How would an increased film recycling affect the overall recycling rate? 

1.3.2 Publication 2 

This publication introduces the existing sensor-based sorting technologies. Here, relevant 
technologies prevalent in waste management are reviewed, and their application possibilities 
are evaluated. This work serves as an overview of the current best practices and shows 
relevant technology available to achieve recycling goals. Additionally, conventional sensor-
based sorting processes are compared to emerging robot sorting processes regarding their 
suitability and potential for achieving these goals. This systematic overview aided in choosing 
the correct sorting method for film packaging. 

Research questions: 

(2a) What is the current state of the art and what is the best practice in sensor-based 

waste sorting? 

 

(2b) Which currently available technique shows the highest potential for improving the 

sortability of film packaging waste? 

1.3.3 Publication 3 

This publication introduces the selected methods and presents the near-infrared sorting 
aggregate used in all upcoming publications. It further elaborates on the application of this 
sorting aggregate and details all used sensors and their specifications.  
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Research question: 

(3a) What are the working principles behind the sorting techniques best applicable to 

film sorting? 

1.3.4 Publication 4 

This publication presents an extensive LCA of film packaging and its recycling processes. 
Here, the sensibility of replacing the currently employed method of thermal valorisation of film 
packaging waste is compared to a mechanical recycling process. The overarching question is 
whether thermal recovery and its subsequent provision of heat and electricity are superior 
regarding greenhouse gas emissions and the depletion of abiotic fossil fuels. This publication 
answers the question whether replacing thermal recovery of film packaging with mechanical 
recycling would reduce the ecological impact of film packaging or whether retaining thermal 
recovery is the more sensible approach at present. To this end, various scenarios, including 
improved collection, sorting, and a closed material cycle, have been compared and their 
respective ecological impact has been computed. In addition, the effect of reaching the 
postulated recycling goals and exhausting the current technological limits for recycling content 
in recycling film was calculated. 

Research questions: 

(4a) Can mechanical recycling of films reduce the environmental impact of film 

packaging? 

 

(4b) Is mechanical recycling of films ecologically viable despite the reduction in 

thermally recovered energy from film waste? 

 

(4c) How will reaching the postulated recycling goals in film recycling impact the global 

warming potential and depletion of abiotic fossil fuels? 

1.3.5 Publication 5 

The inhibiting factor when sorting thin plastic film packaging in near-infrared is the low material 
thickness which does not permit sufficient interaction of the near-infrared radiation with the 
material. This lack of interaction leads to spectra containing little to no useful information. This 
lack of information prevents classification based on the material´s spectra. This publication 
evaluates possibilities for adapting an existing near-infrared sorting aggregate to increase the 
spectral quality and thus enable the classification of film materials. All found possibilities to 
increase spectral quality were statistically evaluated and compared to each other, revealing 
the most effective adaption to enable thin film sorting on an existing machine.  

Research questions: 

(5a) What hardware adaptions mitigate the lack of spectral information when sorting 

with near-infrared technology? 

 

(5b) What changes provide the most significant improvement in spectral quality? 

 

(5c) How can existing near-infrared sorting aggregates be adapted to improve film 

sorting? 
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1.3.6 Publication 6 

After implementing extensive hardware modifications to improve the spectral quality of 
multilayer films, attention was shifted to software adaptations. This publication details data-
driven possibilities to facilitate the classification and sorting of film packaging through the use 
of Fast Fourier Transformation. Fast Fourier Transformation decreases spectral noise 
instigated by destructive interferences caused by the low material thickness of film packaging. 
In addition, a method to select the correct Fourier Components prior to the reconstruction of 
the spectrum via inverse Fast Fourier transformation without laborious manual selection of the 
most relevant Fourier components is presented. 

Additionally, machine learning methods classify multilayer and monolayer films irrespective of 
their material composition to alleviate the issue posed by the plethora of existing material 
compositions in the multilayer fraction. This plethora of possible material compositions with 
their corresponding individual spectra would make creating a sorting model to recognise all 
multilayer materials infeasible.  

This publication shows the classification of film packaging by using overlying characteristics 
differentiating monolayer from multilayer materials regardless of the specific material 
composition. This separation is conducted via support vector machines and shallow neural 
networks, which were shown to be the most suitable methods for this classification task 
regarding prediction accuracy, training time and susceptibility to overfitting.  

Research question: 

(6a) Can data-driven methods further facilitate the sorting of film packaging? 

 

(6b) Can Fast Fourier Transformation automatically improve spectral quality? 

 

(6c) Can machine learning techniques be used to separate monolayer from multilayer 

materials without explicitly teaching the sorting aggregate to recognise the spectra of 

all present multilayer compositions? 
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2 Waste Management Analysis Phase 

The first of two subject areas of this thesis “Waste Management Analysis Phase” consists of 
three peer reviewed publications. These publications are presented below. 

2.1 Publication 1 

Research Paper 1:  

“Latent Recycling Potential of Multilayer Films in Austrian Waste Management” 

Koinig, Gerald; Rutrecht, Bettina; Friedrich, Karl; Barretta, Chiara; Vollprecht, Daniel (2022): 
Latent Recycling Potential of Multilayer Films in Austrian Waste Management. In Polymers 14 
(8). DOI: 10.3390/polym14081553. 

Annotation on the doctoral candidate’s contribution to this publication: 
 

The general concept of the publication was designed by the doctoral candidate and discussed 
in contribution with the co-author Bettina Rutrecht. Afterwards, the relevant scientific literature 
on the subject was reviewed by the doctoral candidate and Bettina Rutrecht. The publication 
was then written independently by the author of the doctoral thesis based on a draft created 
by Bettina Rutrecht. The internal review process was done with the consultation of the co-
authors Karl Friedrich, Barretta Chiara and supervisor Daniel Vollprecht. 
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Latent Recycling Potential of Multilayer Films in Austrian 
Waste Management 
Gerald Koinig 1,*, Bettina Rutrecht 1, Karl Friedrich 1, Chiara Barretta 2 and Daniel Vollprecht 1 
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2  Polymer Competence Center Leoben GmbH, Roseggerstraße 12, 8700 Leoben, Austria;   
chiara.barretta@pccl.at 

*  Correspondence: gerald.koinig@unileoben.ac.at 

Abstract: This work presents a hand sorting trial of Austrian plastic packaging, which showed that 
according to an extrapolation of the 170,000 t separately collected waste collected in Austria, 30 wt% 
are flexible 2D plastic packaging. Further, the applications for these materials have been catalogued. 
The  composition  of  these  films was  evaluated  via  Fourier‐Transformed  Infrared  Spectroscopy, 
which  showed  that  31%  of  all  films were made  of  polyethene,  39%  of  polypropylene,  11%  of 
polyethene–polyethene terephthalate composite, and 8% of a polyethene–polypropylene composite, 
further resulting in the calculation that of all flexible packaging, 20 wt% are multilayer films. These 
findings were used to calculate the latent potential for raising the current recycling quota of 25.7% 
to the mandated rate of 55% in 2030. To this end, scenarios depicting different approaches to sorting 
and recycling small films were evaluated. It was calculated that through improving the sorting of 
films  the  recycling  rate  could  be  increased  to  35.5%. This  approach  allows  for  the  recycling  of 
monolayer films by avoiding contamination with foreign materials introduced by multilayer films 
that impede the recyclates’ mechanical properties. The evaluation showed that sorting multilayer 
films of this fraction could raise the recycling quota further to 38.9%. 

Keywords: multilayer; monolayer; recycling rate 
 

1. Introduction 
The consumption of plastic packaging has been  increasing continuously for years. 

According to Plastics Europe and Consultic Marketing and consulting carried out in 2016, 
49 million tons of oil and gas were used in 2015 to produce plastic, of which around 40% 
were used for the production of packaging [1–3]. The demand for packing that protects 
products, increases their shelf life, and at the same time stimulates the consumer to buy those 
products through appealing haptics and optics, contrasts with the need for minimal material 
use and advantageous product protection while maintaining an ideal proportion of packaging 
to product mass [4]. Plastic films accomplish this balancing act, reducing the necessary film 
thickness for achieving essential characteristics such as oxygen barrier function by a factor of 
one to two orders of magnitude [5]. The annual consumption in Austria of around 69,000 tons 
of small films, with a surface area of under 1.5 m2, per year shows that both consumers and 
markets have recognised the advantages of thin‐film plastic packaging [6]. 

The consumer usually is unaware that many of these inconspicuous plastic films are 
high‐tech products made up of a composition of different materials, so‐called multilayer 
films  [3]. This material  composition  and  the  low  layer  thickness make  the  foils more 
desirable than single‐layer foils or other packaging materials, and this composition poses 
a  challenge  in  recycling  this  fraction  [7]. Multilayer  films  and  single‐layer  films  are 
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currently not separated and are recycled together [3]. The problem here is that multilayer 
films with a composition that deviates from the target material can cause complications 
in film recycling since this requires single‐layer films. Introducing multilayer films to a 
monolayer  fraction diminishes  the mechanical  properties  of  the  recyclates  because  of 
impurities introduced by the multilayer material, increasing degradation of the recyclates 
[8]. This deterioration reduces the possibilities of recycling for these fractions and only 
leaves  two  primary  avenues  for  further  use.  One  is  downcycling  products  for 
mechanically untaxing applications, and the other is the use as refuse derived fuel for co‐
incineration. Either approach prohibits recycling into high‐value products [9]. Therefore, 
each  input  stream of polymers  for  recycling must be monitored  to  ensure  compatible 
quality marks, such as melt flow rate, degree of crystallinity, degree of degradation and 
level, and type of low molecular weight compounds. In particular, polymer mixes in the 
remelting process  lead  to problems and quality  losses  in  the  end products due  to  the 
different melting temperatures of the polymers. Additives used can noticeably change the 
separation properties of the plastics, e.g., the density, and thus impair the sorting process 
and  the  recycling  process  [10].  Understanding  the  waste  stream’s  composition  is  a 
prerequisite for creating monitoring systems for this purpose. 

The  current  approach  of  energy  recovery  from  plastic  films  wastes  valuable 
resources,  and  is  increasingly problematic  as EU guidelines dictate  an  increase  in  the 
recycling rate and demand that 50% of all  lightweight packaging be recycled  in a cost‐
efficient and sustainable manner  [11]. Achieving  the goals set by  these new guidelines 
demand  incorporating  new  technologies  to  separate monolayer  and multilayer  films, 
which could reduce CO2 output and increase the recycling rate. 

The basis  for  these  technologies  is  the knowledge  about  the  composition of  two‐
dimensional post‐consumer waste (PCW). Previous studies have decomposed the PCW 
according to material classes [6], evaluated the composition of waste plastics in the feed 
of Austrian waste‐to‐energy  facilities  [12], or provided  an  in‐depth  analysis of plastic 
flows and stocks in Austria [6]. 

These analyses of plastic flows and stock showed that the small film fraction sums up to 
69,000 tons, equivalent to a share of 40 wt% 2D material in separately collected waste (SCW) 
and  23 wt%  of  the  total waste  packaging  plastics  input  in Austria. Within  an  extended 
packaging market, considering the whole of Europe, flexible packaging accounts for 26.1% of 
all plastic packaging [9]. Given the structure of the plastic packaging films, around 17% of all 
produced packaging in 2010 films worldwide were multilayer material [7].   

Van Eygen et al. showed in 2018 that 24 wt% of this small film fraction, consisting of 
mono‐ and multilayer materials, are subject to a mechanical recycling process, while 76 
wt% of mono‐ and multilayer films are incinerated or co‐incinerated [6].   

This article aims to enhance the existing findings by evaluating the composition of 
two‐dimensional PCW regarding the amount of multilayer and monolayer materials in 
the current material stream by quantitatively and qualitatively analysing samples taken 
from Austrian waste streams. This evaluation will determine the occurrence of multilayer 
films  in  the  post‐consumer waste  stream,  its material  composition  and  its  utilisation 
options. Future applications for improved recycling technologies for 2D PCW are derived 
based on the performed hand sorting trials. This comparison of future scenarios for small 
films  recycling  is  achieved  by  comparing different  scenarios  concerning  technological 
developments in recycling small films and their implementations in the Austrian waste 
management sector regarding their potential to increase the current recycling efficiency. 

2. Materials and Methods 
2.1. Sample Description 

The samples were taken from the waste collection system “yellow bag”, the collection 
system for lightweight plastic packaging in rural areas of Austria, during the first quarter 
of 2021. The waste is collected in yellow bags with a volume of 110 litres. Collection of the 
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materials  is conducted  in Lower Austria. The yellow bag collection  system consists of 
plastic packaging and metal packaging  in  this area. The  samples were  taken  from  the 
input material of a sorting plant. The  samples consisted of unopened waste collection 
bags. The samples were taken directly after delivery to the waste sorting plant. Twelve 
yellow bags from separate plant deliverers were taken, and their content was the object of 
for the investigation in this study. All samples present a surface area of under 1.5 m² and 
therefore  fall under  the  category  “Films Small”  as  established by Van Eygen  in  2018. 
Figure 1 gives an impression of the flexible waste plastic packaging sample. The estimated 
sample volume amounted to 1300 litres while the mass amounted to 39.3 kg. 

 
Figure 1. Exemplary manually pre‐sorted bulky three‐dimensional plastic packaging waste. Left: 
Two‐dimensional flexible plastic waste. Right: Three‐dimensional solid plastic waste. 

2.2. Hand Sorting Analysis of a 2D Fraction from a Packaging Sorting Plant 
The  sample  was  examined  and  sorted  into  flexible  packaging,  flat  and  two‐

dimensional packaging, and bulky three‐dimensional rigid packaging. The flexible waste 
packing samples accounted for 10.4 kg of the overall sample mass of 39.3 kg. The three‐
dimensional  particles  were  discarded,  and  each  flexible  packaging  was  categorised 
further according to its usage. The investigated sample was manually sorted into these 
categories,  and  each  category  was  weighed  using  a  digital  scale  (KERN  440‐49‐N, 
precision  0.1  g).  Subsequently,  the  flexible waste  packaging was  hand  sorted  into  its 
respective material classes as determined by the recycling code and categorised according 
to  their use. Figure 1 shows an example of  the separated sample. On  the  left,  the  two‐
dimensional plastic films are depicted with the three‐dimensional portion of the sample 
depicted on the right. 

Table 1 shows part of the sample and the different categories into which the PCW 
has been categorised. These categories were chosen to accurately reproduce and depict 
the uses  in which  2D materials  are  currently  employed. Primary packaging describes 
material directly in contact with the product or food item respectively while secondary 
food packaging does not directly contact the product or food item. 

Table 1. Definition of sorting categories of application of two‐dimensional plastic waste. 

Category 1  Category 2  Example/Packaging of: 

Primary food packaging 

Bakery products 
Coffee 
Dairy 

Dry food 
Fresh produce 

Frozen food/convenience 
Household packaging 

Meat 
Snack metallised 
Snack uncoated 

Bread, rolls, pastry 
Coffee bags 

Sliced cheese, yoghurt lids 
Rice, noodles, cereal 
Fruit and vegetables 
Frozen vegetables,   
Zip‐bags, cling film 

Sausages, steak, cold cuts 
Chocolate Bars,   
Granola Bars 

Secondary food packaging  Beverage  Wrapping of six‐packs 
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Primary product packaging 

Construction/workshop 
Dry pet food 

Garden 
Household products 
Sanitary products 

Toys 
Wet pet food 

Cement, Tools, oil 
 

Soil, mulch, bark chips, 
Clothes, toner 

Toilet paper, kitchen roll 
interlocking (plastic) brick 

Secondary product 
packaging 

Gift wrapping  Wrapping paper, ribbons,   

Bags  Generic bags  Transparent single‐use bags 
Foils  Generic foils  Pieces of foil 

2.3. FTIR‐ATR Measurements of the Specimens 
In  order  to  classify  the  specimens  into  their  respective  material  classes  and  to 

evaluate the proportion of multilayer material, a subset (n = 143) out of the complete set 
of samples (N = 842) was chosen for Fourier‐Transform Infrared Spectroscopy (FTIR) in 
Attenuated Total Reflectance (ATR) mode. 

The necessary  sample  size has been determined  following Equation  (1) while  the 
tolerated  error  resulting  from  the  sample  size has been  calculated using Equation  (2). 
According  to  the  calculation  of  the minimum  sample  size  for  a  sample  from  a  finite 
population (N = 843) under the premise of normal distribution (D(z) = 0,95; z = 1,96; P = 
0.24) and a sample size of n = 143 randomly picked objects the tolerated error of the result 
equals ε = ± 6.4%, instead of ± 5% for the given confidence interval. 𝑛 𝑁1 𝑁 1 ∗ 𝜀𝑧 ∗ 𝑃 ∗ 𝑄   (1)

ε 𝑃 ∗ 𝑄 ∗ 𝑧 ∗ 𝑛 𝑁𝑛 𝑁 1 0.064  (2)

In addition, the range R of values is taken as a measure of dispersion to check for 
comparability  of  the  sample  subset with  the  finite  population.  It  is  noted  that  some 
material  happens  to  be  underrepresented  by  weight,  e.g.,  bags  of  construction  and 
workshop material (R = 10%), generic bags (R = 7%), and wet pet food (R = 5%), and some 
tend to be overrepresented, e.g., packaging of bakery products (R = 9%), fresh produce (R 
= 4%), and dry food (R = 4%), in the sample. 

The characterization was carried out using a Spectrum Two FTIR spectrometer (Perkin 
Elmer) equipped with a Zn/Se crystal with diamond tip in the range from 650 cm−1 to 4000 
cm−1, averaging four scans per measurement point and a spectral resolution of 4 cm−1. 

FTIR‐ATR is a non‐destructive method in quality assurance and inspection [13]. The 
subset of random objects of the total two‐dimensional yellow bag sample is subjected to 
this further examination to identify multilayered films. The specific type of polymer can 
be identified by comparing the obtained infrared spectrum to literature data. Before the 
measurement,  every  sample  is  cleaned  and  cropped,  and  then  three  test  points  are 
analysed for each side of the fragment. 

The materials were cleaned using a soft paper wipe and water, no solvents were used in 
order to not alter the samples (e.g., print removal, degradation at the surface). The samples 
were let dry from any water residue before performing the measurements. We ascertained 
that the samples were clean by visual inspection. Additionally, when performing FTIR ATR 
spectroscopy  measurements  it  was  possible  to  observe  whether  the  materials  showed 
additional peaks due  to  remaining  surface contaminations or not. Preliminary  trials were 
performed to verify that the cleaning process performed as described and to prohibit altering 
the samples in a way that would significantly influence the material identification. 
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The identified type of polymer of every specimen is noted. According to the results 
of  these  trials,  the  specimen with  differing  results  for  front  and  back  are  designated 
multilayer films. However, the FTIR‐ATR characterization method allows to identify the 
polymeric material that is on the surface of the sample, penetrating only a few microns of 
the specimen’s thickness. In case of uncertainty in the assignment of a sample to the mono‐
material or multi‐material category, additional FTIR measurements were carried out  in 
transmittance mode to investigate the material composition through the entire thickness 
of the specimen, so as to ensure reliable results. The measurements in transmittance mode 
performed removing the ATR unit and replacing it with the proper accessory. 

The spectra displayed in Figure 2 are an example of the measurements performed on 
the collected samples. The inner (IN) and outer (OUT) side show characteristic peaks of a 
polyethylene (PE) and a polyamide (PA) material, respectively. This sample was assigned 
to the multilayer category. The characteristic bands and their assignment can be seen in 
Tables 2 and 3 below. 

Table 2. FTIR ATR characteristic bands of PE and their assignment [13–15]. 

Wavenumber [cm−1]  Comment 
2914, 2850  Stretching vibrations of CH2 

1471  Bending vibrations of CH2 
717  Rocking vibrations of CH2 

Table 3. FTIR ATR characteristic bands of polyamide and their assignment [13–15]. 

Wavenumber [cm−1]  Comment 
3295, 3070  Stretching vibration of NH 
3000–2840  Stretching vibrations of CH2 

1633  Vibration of C=O 
1534  Bending vibration of NH, stretching vibration of CN 
1462  Bending vibration of CH2 
1368  Deformation vibration of CH2 
1260  Bending vibration of NH, stretching vibration of CN 
730  Rocking vibrations of CH2 

 
Figure 2. FTIR ATR spectra of a PE, PA multilayer specimen from the inner PE side (grey) and the 
outer PA side (red). 
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The following depiction in Figure 3 is an example of the measurements performed 
on a collected PP sample. The inner (IN) and outer (OUT) side show characteristic peaks 
of a PP. This sample was assigned  to the monolayer category. The characteristic bands 
and their assignment can be seen in Table 4 below: 

Table 4. FTIR ATR characteristic bands of polypropylene and their assignment [13–15]. 

Wavenumber [cm−1]  Comment 

2959, 2916, 2868, 2837 
Stretching vibrations (symmetrical and asymmetrical) of CH2 

and CH3 
1452, 1376  Bending vibrations of CH2 and CH3 

1167 
Rocking vibrations of CH3, bending vibrations of CH, 

stretching vibrations of C‐C 

998, 
Rocking vibrations of CH3, bending vibrations of CH3, 

bending vibrations of CH 
972  Stretching vibration of C‐C, rocking vibrations of CH3 

841, 732    Rocking vibration of CH2, stretching vibrations of C– CH3   

809 
Rocking vibration of CH2, stretching vibrations of C‐C, 

stretching vibrations of C‐CH 

 
Figure 3. FTIR ATR spectra of a PP sample from the inner side (grey curve) and from the outer side 
(red curve). 

2.4. Assessment of Recycling Potential of Mono‐ and Multilayer Packaging Films 
This section explains how the recycling potential of multilayer films and the recycling 

thereof impact on the Austrian plastic packaging recycling efficiency has been estimated. 
The  figures  for  the  estimation  are  based  on  the material  flow  analysis  (MFA)  of  the 
Austrian  waste  plastic  packaging management  published  by  Van  Eygen  (2018)  and 
complemented by the hand sorting analysis findings. By supplementing the results of the 
hand sorting analysis with existing findings and by utilising the comparability of the two‐
dimensional foil fraction hand sorting analysis and the analysis carried out by Van Eygen 
general statements can be made for Austria [3,6,7,9,12]. 

The latent recycling potential of two‐dimensional plastic packaging can be computed 
by combining the material flow of the flexible plastic packaging recycling routes with the 
findings of the multilayer film in the yellow bag fraction. As part of the small films, the 
fraction “multilayer films” takes the same recycling routes. 
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Three scenarios are evaluated to assess the latent recycling potential of mono‐ and 
multilayer packaging films. Each scenario assumes a different multilayer and monolayer 
recycling  level  and  assesses  its  influence  on  the Austrian  plastic  packaging  recycling 
efficiency. In Table 5, the three scenarios are explained in detail. 

Table 5. Different scenarios for the assessment of the contribution of multilayer films to the Austrian 
plastic packaging recycling‐quota. 

  Scenario 1  Scenario 2  Scenario 3 
    Monolayer  Multilayer  Monolayer  Multilayer Monolayer Multilayer 

Recycling  24 wt%  100 wt%    100 wt%  100 wt% 
Incineration  76 wt%      100 wt%         

Scenario 1 reflects the current situation in Austria. Small films follow their respective 
recycling routes unchanged. Currently, 24 wt% (12,280 tons) of small films derived from 
SCW  are mechanically  recycled,  and  the  remaining  76 wt%  are  co‐incinerated.  This 
scenario is used as the benchmark. 

The current situation is a product of the presently available technology, its limitations 
and  further of existing political and socioeconomical  factors. Subsequently, substantial 
innovation  is needed  to  improve  the  current  recycling  rate of  two‐dimensional plastic 
packaging. Recent reviews discussing the current technological environment have been 
published by Schlögl and Friedrich et al. in 2021 and 2022, respectively [16,17]. 

Scenario 2 assumes this substantial innovation. In this scenario, recycling techniques 
to detect, eject and recycle multilayer films and monolayer films are available and used 
on an  industrial scale. This  improvement  facilitates  the ejection of multilayer materials 
and  leads  to  a  pure monolayer  film  fraction without  pollution  by  foreign materials 
introduced  by  missorted  multilayer  materials,  ready  for  mechanical  recycling  and 
subsequent  regranulation. This scenario assumes  further  that no material utilisation of 
multilayer materials is incorporated in the Austrian waste management on an industrial 
scale. In this scenario, multilayer materials continue to be used for energy recovery. 

Scenario 3 reflects that no flexible packaging derived from SCW is used  in energy 
recovery. New technologies to detect, eject, and recycle multilayer films are available and 
used on an industrial scale. Ideally, the co‐incineration of monolayer‐ and multilayer films 
is entirely replaced by mechanical or chemical recycling. This scenario represents an ideal 
way  to  maximise  the  usage  of  latent  potential  for  increasing  the  recycling  rate  by 
minimising the amount of thermal reuse of flexible plastic packaging. 

3. Results and Discussion 
3.1. Occurrence of Multilayer Material in the Waste Stream 

The hand‐sorting  resulted  in 30 wt% of  the  examined SCW as  flexible 2D plastic 
packaging. Of this fraction, two‐dimensional flexible packaging with two or more layers 
accounted for 20 wt%. This results in 6 wt% of the total sample being multilayer materials. 
Extrapolating  this result  leads  to expect  that  flexible 2D plastic packaging accounts  for 
approximately 52,000 t of the 171,000 t SCW per year. This outcome is congruent with the 
findings of van Eygen  in 2018. Supposed,  the amount of multilayer packaging  is  also 
representative of the waste composition in Austria, 10,260 t or about 6 wt% of the total 
SCW and approximately 20 wt% of all flexible 2D plastic packaging are multilayer films. 
This composition is represented in Figure 4, which shows the composition of all SCW split 
into the categories of flexible 2D plastic packaging and the number of multilayer films. 
The content of multilayer  films subtracted  from  the  total amount of  flexible 2D plastic 
packaging would yield 41,740 t of flexible monolayer packaging useable for mechanical 
recycling. Figure 4 is a graphical illustration of the ideal recycling potential of multilayer 
films compared to the Austrian SCW and flexible waste plastic packaging. 
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Figure 4. Graphical illustration of multilayer films compared to the Austrian separately collected 
waste (SCW) and flexible waste plastic packaging. 

3.2. Material Composition of Monolayer and Multilayer Materials 
Multilayer films tend to be numerous, lightweight, and typically accumulate in food 

packaging. Few but heavy specimens of multilayer films are found in product packaging. 
The  FTIR‐ATR  analysis  shows  that  multilayered  material  is  commonly  made  of  a 
combination of PE‐PET, PE‐PP, PE‐PA, or PP‐PET ranked by decreasing frequency. Other 
combinations,  including  PE‐PP,  PET‐PP,  and  PET‐PA,  tend  to  be  outliers.  The most 
prevalent  material  found  in  the  packaging  of  bakery  products  is  PP.  If  the  bakery 
packaging  is multilayered,  it  commonly  consists  of  PE‐PA,  PP‐PE,  or  PP‐PET. Meat 
packaging is either made of PE or a combination of PE and PET or PA. Figure 5 shows the 
percentage of distribution of materials  in  the  small  films  fraction. The most prevalent 
fraction under the evaluated materials was PP with a share of 39 wt%, followed by PE 
monolayers with 31 wt%. Amongst the multilayer fraction, PE‐PET is most abundant with 
11 wt% and followed by PE‐PP with 8 wt%. This composition of the small film fraction 
leads to the assumption that sorting processes which are able to separate monolayer from 
multilayer materials can both deliver a sufficient feedstock for chemical recycling to be 
used  to  recuperate  functional polyolefins and PET  from  the waste stream and create a 
valuable  feedstock  for  recycling  purposes  by  creating  clean  PE  and  PP  monolayer 
fractions. This approach can improve the circular economy of polymers by recuperating 
hitherto  ignored resources  for recycling by opening up a different recycling route than 
incineration. 

 
Figure 5. Composition of the small films according to the material class colour‐coded to represent 
the highest proportion (red) to the lowest proportion (green). 
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3.3. Contribution of Monolayer and Multilayer Films in Waste Generation 
The total share of multilayer films in the yellow bag is 6 wt%. Films account for about 

29 wt% of all packaging evaluated. Main contributors to this are the categories primary 
food packaging  (7.8 wt%), primary product packaging  (7.9 wt%), and plastic bags  (7.2 
wt%), with primary packaging describing packaging directly in contact with the product. 

The primary packaging groups  in which multilayer  films  tend  to  accumulate are 
primary food packaging, where 49 wt% were multilayer films, followed by generic plastic 
bags, of which 34 wt% were multilayer films, and primary product packaging of which 19 
wt%  were  multilayer  films.  Concerning  primary  food  packaging,  multilayer  films 
accumulate primarily in the packaging of bakery products (16 wt%), meat (13 wt%), and 
dairy products (9 wt%), followed by frozen food and convenience (9 wt%), of which 16 
wt%, 13 wt%, and 9 wt%, respectively, were multilayer films. These categories account for 
half the number of all multilayer films. Nevertheless, they only contribute about one third 
to the total weight of multilayer films. 

Figure  6  shows  the  composition  of  the most  common  applications  of  2D  foils.  It 
shows that the product groups where multilayer materials are most abundant are dairy, 
coffee  packaging,  snack  packaging,  and meat  and  frozen  food  packaging. Multilayer 
packaging accounts for more than 70 wt% of all packaging materials used in all of these 
categories.  Simultaneously,  no multilayer  packaging  is used  in mail‐order  packaging, 
household product packaging, and gift wrapping. 

Figure 7 shows the distribution of multilayer films as a Pareto diagram by weight. 
The most common classes in which multilayer films accumulate are plastic shopping bags 
which account  for 29 wt%. Dry pet  food Packaging accounts  for 19 wt%,  followed by 
sanitary related products with 9 wt% and then by packaging for meat and bakery products 
with 7 wt% and convenience food with 5 wt%. These categories account for over a fifth of 
all multilayer films used in packaging. 

 
Figure 6. Percentage of monolayer‐ and multilayer materials in typical applications for small films. 
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Figure 7. Pareto diagram depicting the share of each category to the total weight of the samples. 

3.4. Influence of Improved Multilayer Recycling on the Circular Economy 
Based on the hand sorting analysis, the examination of the specimens with FTIR‐ATR 

and the MFA by Van Eygen in 2018, the ideal recycling potential of films in the Austrian 
SCW amounts to 52,000 t [6]. Multilayer films account for 10,270 t per year in the Austrian 
separately waste collection. Currently, the Austrian plastic packaging recycling efficiency 
is 25.7 wt%. These figures show that 77,000 t of the produced 300,000 t of waste plastic 
packaging are recycled. The examination of  three different scenarios, current situation, 
new technologies, and zero incineration of flexible packaging derived from SCW, evaluate 
the  theoretical  contribution  of  recycling  of  multilayer  films  to  the  Austrian  plastic 
packaging recycling efficiency. For better understanding, each scenario  is depicted as a 
Sankey Diagram,  illustrating  the mass  flow of Small Films via Municipal Solid Waste 
(MSW), SCW, to the respective recycling technologies. 

Scenario 1: Current Situation 
In scenario 1 the recycling routes of small films, including multilayer‐ and monolayer 

films, remain unchanged. The results of scenario one are displayed in Figure 8. 
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Figure 8. Sankey diagram depicting the waste flow in Scenario 1. 

It can be seen that the bulk of the material continues to be industrially incinerated, 
and hardly any films are recycled. Until the development of new recycling techniques to 
an industrial scale, films remain subject to industrial incineration after being ejected from 
the mechanical  recycling  stream. Thus,  the  current  recycling  rate of  small  films  to  re‐
granulates  remains  at  12,280  t  per  year,  or  18  wt%,  with  the  overall  recycling  rate 
remaining at 25.7% [6]. 

Scenario 2: New Technologies 
In scenario  two,  the detection and ejection of multilayer  films are established and 

complemented  by  a  designated  recycling  process.  Therefore,  an  ideal  system with  a 
successful  detection  and  ejection  rate  of multilayer  films  of  100%  can  create  a  clean 
feedstock for recycling purposes. These monolayer materials have had foreign materials 
removed  and  can  be  incorporated  into  mechanical  recycling  processes  rather  than 
incineration. The results of scenario 2 are depicted in Figure 9. 

 
Figure  9.  Sankey  diagram  depicting  the  waste  flow  in  Scenario  2  with  increased mechanical 
recycling of monolayer films. 

It can be seen  that of  the 52,000  t of small  films per year  in  the SCW 41,740  t are 
monolayer and 10,260 t of multilayers. These fractions need to be separated and recycled. 
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By  cleaning  the  remaining  plastic  packaging  stream  from  the  multilayer  materials,  an 
additional  41,740  t  of monolayer materials, mainly LDPE,  can  be  added  to  the  recycling 
feedstock,  increasing  the recycled small  films  fraction  from 12,280  t by 29,460  t  to 41,740  t 
annually. 

This clean material stream  increases the amount of totally recycled materials from 
77,000 t to 106,460 t annually, increasing the Austrian recycling quota from 25.7% to 35.5%. 
This  approach  simultaneously  improves  the material properties  of  foil  recyclates  and 
enables a broader array of applications for these recyclates. Instead of manufacturing low‐
grade films and foils for waste bags and agriculture, they can be incorporated into higher 
quality products, eliminating the necessity for adding virgin material in the production. 
While this approach will enable the recycling of monolayer materials, multilayer films are 
still subjected to thermal recovery. 

Scenario 3: Zero Incineration of Flexible Packaging Derived from SCW 
Scenario  3  reflects  a  zero‐waste  approach. New  technologies  to detect,  eject,  and 

recycle multilayer  films  are  available  and  applicable  on  an  industrial  scale.  By  those 
innovations,  the previously  latent  recycling potential of  small  films can be  realised by 
enhancing the sorting facilities of sorting systems, e.g., NIR sorting. Chemical recycling 
processes  and  solvent‐based  recycling  processes,  currently  under  development,  have 
reached the market and are widely employed. This possible inclusion of mechanical and 
chemical recycling reduces co‐incineration of monolayer‐ and multilayer films. The results 
of scenario 3 are depicted in Figure 10. 

It can be seen that similar to “Scenario 2”, 41,740 t of monolayer materials can be added 
to  the  recycling  feedstock.  Further,  the  incineration  of  10,260  t  of  multilayer  films  is 
circumvented by intensifying the mechanical recycling of monolayer films, so these ejected 
multilayer films can be used as value‐adding feedstock for chemical recycling processes. 

This  inclusion  of multilayer  films  increases  the  amount  of  recycled  small  films 
fraction from 12,280 t to 52,000 t by 39,720 t annually. This change in recycling methods 
increases  the amount of  totally  recycled materials  from 77,000  t  to 116,720  t annually, 
increasing the Austrian recycling quota from 25.7% to 38.9%. The enhanced separation of 
the small  films  fraction creates a value‐adding pool of resources,  improves the circular 
economy of plastics and at the same time creates a feedstock for future chemical recycling 
by providing a multilayer fraction, which would otherwise have been incinerated. 

 
Figure 10. Sankey diagram depicting the waste flow in Scenario 3 with increased mechanical recycling 
of monolayer films and simultaneous increase in the chemical recycling of multilayer films. 
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4. Discussion 
With 69,000  t annually, small  films  represent a sizeable portion of  the  total waste 

generation in Austria each year. Despite extensive use in packaging, these materials are 
not commonly mechanically recycled but primarily used in thermal energy recovery or as 
residue derived  fuel  in  industrial  co‐incineration. This  current  state of affairs  leads  to 
diminished recycling rates and wasted potential for improving the circular economy of 
polymers and increases the number of virgin materials needed for production each year 
to satisfy the growing interest in packaging. As a packaging material, multilayer films are 
most abundant in the packaging of meat and dairy and the packaging of sanitary products 
and large carrier bags. Currently, the waste stream incorporates approximately 30 wt% 
flexible 2D plastic packaging of the 171,000 t separately collected waste (SCW) per year in 
Austria. The hand‐sorting showed that 6 wt% of the examined materials were multilayer 
films. Extrapolating these results leads to expect that about 10,260 t of the total SCW are 
multilayer  films,  of  which  the most  common  types  of  polymers  used  in multilayer 
materials  are PE  and PET, which  further  account  for  10% of  all  2D plastic packaging 
evaluated. 

Based upon these results, which were correlated with the findings in existing studies, 
three scenarios showing the latent potential in small film recycling were evaluated. These 
scenarios  show  the  potential  for  increasing  the  recycling  quota  in  Austria,  and 
subsequently, the reaching of the recycling goals set by the EU was evaluated. It has been 
shown  that  the  introduction  of  improved  methods  for  separating  multilayer‐  and 
monolayer  materials  leading  to  a  clean  material  stream  of  monolayer  materials 
uninhibited  by  foreign materials  introduced  by multilayer  packaging  can  be  used  in 
mechanical recycling. This approach relieves the thermal recovery plants by producing a 
feedstock  of  clean monolayer materials  of  41,740  t per  year  for mechanical  recycling, 
yielding an increase in recycling quota to 35.5% from the current rate of 25.7%, as shown 
in Table 6. With  the  introduction of chemical  recycling and  solvent‐based  recycling  to 
separate multilayer material compounds, polymers’ recovery is likely to increase further. 
This fraction encompasses a reliable feedstock with an annual consumption of multilayer 
materials  accounting  for  6 wt%  of  the  SCW  collected  each  year.  The  introduction  of 
chemical  recycling processes  in  the Austrian waste management system  to decompose 
multilayer materials can further increase the annual recycling quota to 38.9%, reducing 
the number of incinerated polymers. 

Table 6. Results of the critical factors of all evaluated scenarios in tabular form. 

Scenario 
Scenario 1: 
Current 
Situation 

Scenario 2: 
Mechanical Recycling of Monolayer 

Films Derived from SCW 

Scenario 3: 
Zero Incineration of Flexible 
Packaging Derived from SCW 

Total Amount of Waste  300,000 t  300,000 t  300,000 t 
Sum of Small Films  69,000 t  69,000 t  69,000 t 

Chemical/Solvent‐Based Recycling  0 t  0 t  10,260 t 
Energy Recovery  56,720 t  28,260 t  17,000 t 

Mechanical Recycling  12,280 t  41,740 t  41,740 t 
Sum of Recycled Small Films  12,280 t  41,740 t  52,000 t 

Total Recycling  77,000 t  106,460 t  116,720 t 
Recycling Quota  25.7%  35.5%  38.9% 

Figure 11 shows a radar diagram comparing the three evaluated scenarios based on the 
characteristic metrics. These metrics are  the  recycling quota,  the quota of  recycled small 
films and the percentages for each recycling method. It can be seen that the ratio of thermal 
recycled small films progressively decreases from Scenario 1 to Scenario 3. Scenario 3 shows 
the least incinerated small films, which yields the highest recycling quota. 
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While the depicted scenario is confined to information gathered from Austrian waste 
processing  plants,  similar  waste  composition  research  has  been  performed  in  other 
European  countries. An  especially  relevant  and  recent  survey  by  Schmidt  et  al. who 
surveyed  the  recycling  of  two‐dimensional waste  reported  similar  composition  of  2D 
waste  in Germany  [18]. This  implies  that  the  results may be applicable  to  the German 
waste  management  sector,  but  further  research  is  needed,  especially  to  predict  the 
implications on the waste management in countries who deviate substantially in respect 
to culture and industrialisation from the current situation in Austria as these differences 
makes it difficult to predict the effect these changes might have on other countries around 
the world. 

 
Figure 11. Radar diagram comparing the three evaluated scenarios based on the characteristic metrics: 
Energy recovery, Mechanical recycling, sum of recycled films, recycling quota and chemical recycling. 
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Abstract  A circular economy is the stated aim of current technological and political developments in the waste management sector. Achieving the goal of a circular economy requires significant improvements in waste treatment technologies. For this reason, this paper summarises the relevant technologies, detailing the developments in the significant sensor-based sorting technologies. This review analyses the key spectral analysis methods like Near-Infrared Spectroscopy, Visual Spectroscopy, X-ray transmission, X-ray fluorescence analysis and Laser-Induced Breakdown Spectroscopy. This study further contains a detailed analysis of the standard sensor-based sorting construction types chute sorter, belt sorter and robot-aided sorting. Further insights in the branch of sensor-based sorting are permitted by describing the key players and stakeholders in sensor-based sorting, detailing the area of expertise and current fields of study for primary sensor and sorting machine suppliers. A convenient lookup table detailing the capabilities of these significant suppliers is provided. The last chapter summarises relevant trends and developments in digitalisation and Industry 4.0 in the waste and recycling sector, elaborating on relevant technology like digital waste management, sorting robots in waste management, smart villages and recyclable materials scanners. The reviewed data portrays the waste management industry’s substantial developments. While new technologies, like machine learning, convolutional neural networks and robot sorting, are increasingly implemented, a substantial discrepancy exists between technological capabilities and the current State-of-the-Art.Keywords:   Sensor-based Sorting; Robot Sorting; Recycling Goals; Digitalisation; Circular Economy 
IntroductionThis study aims to research developments in sensor-based sorting and robotics and their effects on waste management. The implementation and further development of sensor-based sorting and robotics has great potential to change waste management over the long term. In addition, research is performed on the technologies currently available on the market to determine their future potential. Furthermore, possible solutions are derived from achieving the circular economy package’s new European resource efficiency targets. Developments in waste technology and management are based on solving technical problems within the given legal framework. In the following, the essential regulations guide the waste management sector, cause trends and significantly influence their developments by changing parameters.
Circular Economy Package The Circular Economy Action Plan of the European Union (EU) was introduced in December 2015 and it is intended to lead to a more resource-efficient future. In Europe, there has been a  

 continuous growth of recycled materials to total raw materials from 2008 to 2016. However, secondary raw materials only account for 12 % of the total demand for raw materials in the EU, which provides a broad basis for innovation in waste management. A new legal basis came into force in July 2018, requiring, among other things, recycling rates of 70 % for packaging waste by 2030 and 65 % for municipal waste by 2035. In addition, the landfilling of municipal waste hass to be reduced to 10 % [1]. Furthermore, the harmonisation of definitions and calculation methods for recycling rates and new requirements for the separate collection of the waste types defined in the Waste Framework Directive (WFD) are included. These new regulations strengthen the market for secondary raw materials and create a uniform system to ensure their quality and make them comparable. The basis for this is always the most efficient waste separation and sorting possible [1]. Central objective is increasing the recycling quota by overcoming the plethora of challenges opposing this development [2].
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Plastics strategyThe strategy for plastics, adopted in 2018, states that from 2020 onwards, all plastic packaging on the EU market must be recyclable and the consumption of single-use plastics should be reduced. The EU states that about 150,000 to 500,000 tonnes of plastic waste ends up in the sea every year. In order to prevent this, the plastics strategy aims at setting the path towards a circular economy of plastics. An important factor is the cost efficiency of recycling plastic waste, which can be achieved through changes in production and the design of packaging and products. Close cooperation between packaging manufacturers and the recycling industry as well as communication between the waste management and chemical industries is required to find a broader field of applications for recycled packaging waste. The EU expects a fourfold increase in demand for recycled plastics when the Plastics Strategy is fully implemented, which reduces the dependence on imported fossil raw materials. The resulting carbon dioxide (CO2) savings are expected to help meet the targets of the Paris Agreement [3]. For the waste management sector, this means opportunities for innovation, growth and new business models based on the circular economy. The expected increase in the market value of recycled plastics is based on evaluations of the automotive and construction industries, and economic incentives from the EU are also currently under discussion. Furthermore, increasing volume and better separate collection are expected to make recycling more lucrative. In order to achieve these goals, investments in infrastructure and innovation, which the EU estimates at 8,4 to 16,6 billion Euros, are needed. The strategy of plastics as an ambitious vision can become a job provider if the main actors take concrete actions towards a circular economy (“Towards a Circular Economy”) [3].
Single-Use Plastics Directive The directive on reducing the impact of certain plastic products on the environment was designated as part of the Plastics Strategy only eight months after it was presented and came into force on 2 July 2019. The directive is based on a census that traced the pollution of European beaches to 15 products. According to litter counts, the main component of marine litter is plastics, at around 80-85 %, and these consist of 50 % single-use plastic and 27 % fishing gear. The single-use plastic problem can also be illustrated very well by measured numerical data. Between 1950 and 2015, more than one tonne of plastic was produced per capita of the world’s population, of which not even ten per cent was recycled. Half of the plastic ever produced worldwide has been produced since 2000. The market restrictions imposed by this directive mainly affect single-use plastic items. Unlike bio-based and biodegradable plastics, this directive does not cover microplastics, glass and metal beverage containers. The aim is to reverse the trend, as consumption is expected to increase from single use items to more sustainable alternative items. The 

member states should set as ambitious measures as possible to comply with the waste hierarchy. It is also essential to consider the product life cycle and a harmonised standard in product design, which the waste management industry has demanded for a long time. In addition to increased producer responsibility, consumer decisions are also to be steered in a more sustainable direction to achieve a measurable quantitative reduction in the consumption of single-use plastics in the EU by 2026 compared to 2022. The directive focuses on marketing restrictions, product requirements, labelling requirements, extended producer responsibility, separate collection and consumer awareness measures. Further specifications concern the coordination of measures, guidelines on single-use plastic articles, information systems and reporting and finally, sanctions as well as evaluation and review. In principle, the directive’s contents must be complied with by 3 July 2021, although individual articles will not come into force until later. Market restrictions on products will come into force by the end of 2024 and the increased recycled content in beverage bottles by 2030 [4,5].
Sensor-based sorting as a key playerDeveloping a sustainable circular economy would be unthinkable without sensor-based sorting technology, especially if the ambitious EU targets shall be achieved. For example, solutions already exist for almost all industrial waste sorting tasks in polymer materials, which the actors in the recycling chain have also adopted [6].
Sensor-based sorting: Sensor technologiesSensor-based sorting technology can automatically sort materials according to various material properties to divide the material flow into different product groups [6]. The upswing in sensor-based sorting is due to the rapid development in non-contact sorting technology, which has opened up new areas of application in recent years. This development, which continues to be dynamic, leads more efficient devices and thus to new areas of application in waste management [7]. Due to the increasingly complex requirements for the quality of the end products, the more valuable fractions and higher recovery of these fractions’ materials, sensors with different measuring principles are being combined more frequently to meet the prevailing trends in this direction [8]. The complexity of the technical design and the number of sensors is decisive for the possible applications. Especially in dry sorting, this technology has led to redesigns of processing methods and new application possibilities. Comparisons with the still widespread manual sorting showed that human eyesight was often insufficient to identify the properties of waste components and that machine systems were more efficient in this respect [9].The learning ability of modern sensor-based systems, which is achieved through software-controlled data processing, is seen as an unique advantage, especially in changing the feed material’s composition or quality requirements. The decoupling of the sorting criterion from the actual separation process reduces the 
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risk of false outputs due to mutual interference and the carry-over of different components. The units are very compact and can also be used in mobile plants. In addition, materials can be separated, which would otherwise be impossible to separate, such as minerals of the same density and magnetic properties in the coarse range. In addition, multiple sorting criteria like e.g. wettability or conductivity can be used in one process stage to achieve better separation efficiency. Due to considerable savings in water, energy and reagents compared to other separation methods, non-contact sorting can make the recovery of previously uneconomic deposits economical. Possible pre-enrichment by sensor technology also helps, which saves resources and, since it can already be used on-site, also space and transport costs [9,10].However, good separation results can only be achieved by suitable preconditioning of the feed material. Pre-classification to the narrowest possible particle size range and separation of fine and coarse material that cannot be sorted is essential for achieving a certain separation accuracy, depending on the performance of the sorting system. The material mixture to be processed must be pre-treated so that the concentration of the material to be separated is as high as possible. At the same time, disturbing components such as easy dispersible particles with low densities are separated beforehand. Particularly important in preparing the feed material is separating the particles to create at least a monolayer. This means that the individual particles do neither touch nor overlap each other. Some sensor types require clean surfaces, which are generally produced by a washing process. This requirement leads to a certain amount of water consumption in the dry technique, which is less than wet separation methods. In addition to very light, flyable materials, composites and agglomerates also present particular challenges [9,10]. In principle, it is possible to use all non-contact physical measurement methods as separation methods. Factors such as resolution, measuring speed and environmental influences 

determine the possible applications, and so there is still potential for optimisation even with the sensor types already in use [10].Sensors are differentiated according to whether they can detect superficial properties or “look inside” the material. The essential types belong to the former group and include the optical (colour) line scan cameras, which measure colour, brightness, transparency, reflection and shape. Fluorescent materials can also be detected after UV excitation [10]. 3D sensors, which function via laser triangulation, can consider the shape and structure of the material [6]. The wavelengths of the sensors, which are installed for sensor-based sorting, explain different fields of application. The terahertz range in the electromagnetic spectrum, as shown in Figure 1, is a part that is not yet fully exploited [11]. The sensors’ non-contact detection of object properties and characteristics consists of an object feeder, a separation system, and intelligent sensor technology consisting of an emitter, a detector, an evaluation and a discharge unit [12]. Table 1 presents an overview of the typical sensor types installed in waste management [13]. Near-infrared spectroscopy (NIR) for detecting material properties works via a light source placed above the conveyor belt that irradiates the material with infrared light. The irradiated molecules are excited to vibrate by specific wavelengths corresponding to the resonance frequency and reflect the other wavelengths diffusely. The respective spectrum is compared with a database and each one is assigned a material class as shown in Figure 2; this is called classification. The absorption lines important for plastic recognition are between 1,200 and 2,000 nm [14]. Spectroscopy works analogously to NIR spectroscopy in the visual (VIS) frequency range for colour sorting. Digital images are assigned different numerical values per pixel, exactly one for grey-scale images and three numerical values per pixel (red, green, blue) for colour images. In contrast to these red-green-blue (RGB) cameras, several hundred numerical values are assigned to a pixel in hyperspectral imaging  (HSI) [15]. 

Figure 1: Embedding the terahertz range in the electromagnetic spectrum [11].
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Figure 2: Polypropylene (PP) (pink) and High-Density-Polyethylene (HDPE) (grey), Non-Classified (yellow) and Polyethylene-Terephthalate 
(PET) (green) - Particles coloured according to their material [14].

Table 1: Overview of sensor technologies [8,13].

Sensor technology Material property Measurement principle Waste stream

Electromagnetic Induction Electrical Conductivity
• Generation of an electromagnetic field
• If a metal passes through the elec-tromagnetic area, the field is chan-ged in a substance-specific manner
• Detection of this change and assig-nment to a type of metal

• Scrap processing
• Electronic waste
• Construction site mixed waste
• Commercial waste
• Waste glass

Laser-Induced-Breakdown-Spectroscopy (LIBS) ElementalComposition
• By heating a sample surface with a pulsed laser, sample portions are converted into a so-called plasma
• The plasma light spectrum assigns the material type

• Differentiation and sorting            according to metal alloys
• Sorting of aluminium scrap

Near-Infrared Spectroscopy(NIR) MolecularComposition
• Molecular excitation by near-infra-red radiation
• Absorption of specific wavelength ranges by the molecules, a reflec-tion of the remaining wavelength ranges
• A spectrum of reflected radiation can be assigned to a substance

• Packaging waste
• Household waste
• Waste paper
• Commercial waste
• Pre-sorting of recyclables
• End-of-life vehicle recycling
• Mixed construction waste

Visual Spectroscopy(VIS) Colour (reflectionand transmission);Shape
• Imaging sensor
• Separation of the sample accor-ding to colour, brightness, reflecti-on and transparency

• Waste paper
• Pre-sorted recyclables
• Chipboard
• Construction site mixed waste

X-ray Fluorescence Spectroscopy (XRF), Laser
ElementaryComposition;Colour;Fluorescence;Scattering;

• X-rays excite atoms in a sample, resulting in substance-specific flu-orescence.
• The spectrum of the emitted flu-orescence provides information about the material’s elemental composition.

• Copper from iron scrap
• Glass sorting
• Compost processing

X-ray Transmission (XRT) Atomic Density
• X-rays shine through the sample
• Absorption of part of the radiation, depending on sample density and thickness
• Comparison of the non-absorbed rays with a given initial value for the density

• Scrap processing
• End-of-life vehicle recycling
• Electronic waste
• Household waste
• Commercial waste
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The spectral decomposition of the signal happens before the detector and results in a complete spectrum for each pixel. However, the passband wavebands of an RGB colour camera are much wider for the three colours red, green and blue. Combining both principles, the entire wavelength range from 400 to 1,000 nm can be covered, in that the HSI camera can represent parts of the VIS and the NIR range, and the RGB camera can cover the VIS range from 400 nm to 700 nm, at least in three bands. Figure 3 shows the transmittance curves of an RGB colour camera  equipped with a filter for wavelengths above 650 nm and the HSI camera equipped with a passband of a bandpass from 600 to 1,000 nm to avoid ambiguous information [15]. Typical HSI cameras can operate between 250 to a maximum of 2500; an example for waste management imaging is shown in Figure 4 [15,16]. Hard 

plastics, paper, films, wood, biomass or fuels are separated with this method. In order to achieve the quality requirements for higher-quality recycling, multi-stage sorting is more frequently used than positive and negative sorting combinations. In positive sorting, the recyclable material is enriched in the discharged product, and in negative sorting, interfering components are separated. By switching between these two types of sorting, it is possible to react to the waste sector’s often highly fluctuating input compositions. NIR or VIS spectroscopy are increasingly used in commercial waste, electrical and electronic scrap, bulky waste, biowaste and mineral waste. The secondary raw materials industry is a significant development driver, demanding innovations with more complex sorting requirements and higher quality standards [8,9].

Figure 3: Transmittance curves of an RGB colour camera as well as a 9-band HSI camera for the range of 630 to 920nm [15].

Figure 4: HSI detection on a conveyor belt in waste management and recycling [16].
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The second large group is electromagnetic sensors. These sensors are located transversely to the belt’s direction under the conveyor belt. Each generates a high-frequency electromagnetic field through a coil, which is changed by introducing conductive materials. The coil induces eddy currents in the material, which extract energy from the emitting field. The energy is detected by the electromagnetic sensor and leads to metal detection. For this reason, electromagnetic sensors are often used in shredder plants and electronic scrap processing. After using classic metal separators such as magnetic separators and eddy current separators, up to 10% of metals can still be contained in the material stream. These can be recovered with additional sensors. It is also helpful for sorting construction waste or incineration ashes, especially with digital image processing. In addition to metal recovery, purification of metallic fractions is also possible, for example, in PET bottle sorting [8]. The third large group of sensor types is relevant for recycling work with X-ray radiation. Here, a distinction is made between X-ray transmission and X-ray fluorescence.X-ray transmission (XRT) divides the material according to density differences by measuring the degree of absorption of the X-ray radiation. The degree of absorption depends on the thickness and density of the material. The influences of the material size and thickness are compensated to determine the material-specific absorption of the individual parts with the help of software. For this purpose, the X-ray source is placed below the material flow and the scanner area for determining the residual radiation is placed above. Based on the information from the scanner and the sorting specifications, two products result [6].X-ray fluorescence analysis (XRF) divides the material stream based on its atomic composition. The scanner unit and the X-ray source sit above the material stream, passing through a low-energy X-ray field. The chemical elements are excited to emit element-specific energy by shell jumps of the electrons. The evaluation software outputs energy spectra that can be used to separate different product groups [6]. The use of laser technology is suitable for cleaning compost/structural material by removing glass and plastics. Due to the ‘scattering’ effect, which occurs depending on the degree of hardness and water content, laser technology is particularly applicable in this area. Depending on the wavelength range of the laser, different properties such as colour, structure or, for example, fluorescence can be detected together or separately [8]. LIBS is shorthand for Laser-Induced Breakdown Spectroscopy, and this technology is used to determine the elemental composition of the specimen. LIBS uses high-focused light amplification by stimulated emission of radiation (laser) to remove the surface of the specimen [12]. It causes the electronic excitation of atoms, which form a plasma. As these fall decay back into their original state, they emit light of specific wavelengths. These wavelengths are characteristic of the 

element composition in question, forming a “fingerprint” used for qualitative and quantitative evaluation. The detection technology in collecting waste is less widespread and less researched than sorting waste. Reasons for this are the high decentralisation of waste accumulation and the influences of weather, vibrations, and dirt. An example of a waste stream that requires high purity for recycling is biowaste for composting plants. The German company Maier & Fabris has developed a metallic value or contaminant detection system based on eddy current induction directly on the collection vehicle. Further development is an automatic feedback system for citizens to inform them directly about the analysis result and, in the worst case, to block emptying at the collection vehicle. In addition to imaging techniques, research is currently being done on a detection method for odour, using ‘electronic noses’. Although significant progress can be seen, this technology is not yet employed commercially. However, data generation has new possibilities, such as weighing waste bins [12].
Sensor-based sorting: Construction typeGenerally, a distinction can be made between the two systems of material feeding, namely feeding by chute and by belt. Both types are used in recycling and they differ according to their material feed. As shown in Figure 5, the chute machines are used mainly in the fine-grain range and with bulk materials that flow well. An oscillating conveyor trough (A) ensures uniform distribution over the entire width of the conveying chute and sufficient separation. The feed is then transferred to an inclined chute for further separation and acceleration. A detection device (B) inspects the feed material below the chute by a detection device (B) in free fall. With the help of a computer, a real-time image of the material flow is classified according to various properties such as colour information, position and size. This image activates compressed air valves of a nozzle bar (C), which discharge the detected components (D). This type of construction is often combined with a colour line scan camera with an associated illumination unit and can distinguish colours in a vast spectrum [9]. With two or three sorting paths, the chute system is designed for the raw materials industry and the recycling industry to sort used glass, plastics, used electrical appliances, incineration ash, and construction and demolition waste [9].As exemplified in Figure 6, belt sorters were developed for coarse and irregular feed material and can be used in combination with a NIR wavelength range detector. The feed material is again fed via an oscillating conveyor trough (A) and is pre-collected by continuously increasing conveyor speeds. Above the belt conveyor is an NIR sensor (B) which monitors the entire belt width and compares the characteristic spectrum of the objects with those in a computer database. Classification is also done according to size and position. The actual sorting is done using an air nozzle bar (C), which targets and separates the object (D) under investigation with one or more nozzles [9]. The belt sorting systems are used in the recycling industry to sort paper, plastics, RDF, and household 
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and commercial waste with two sorting paths [17]. Various companies,  also offer multiway sorting systems, which provide up to six sorting paths. Areas of application are packaging waste from household and commercial waste [17].

Figure 5: Principle sketch of chute sorters (authors’ depiction).

Figure 6: Principle sketch of belt sorters (authors’ depiction).

RoboticsThe Robotic Industries Association (RIA) defines robots as follows (Inc 2020): “A robot is a reprogrammable, multifunctional manipulator designed to move material, parts, tools or specialised devices through variable programmed motions for the performance of a variety of tasks. Recently, however, the 

industry’s current working definition of a robot has come to be understood as any piece of equipment that has three or more degrees of movement or freedom.” [18]. Many industries have been using robotics and automated work processes for many years to take over physically demanding tasks from humans and make processes more efficient and more manageable. Especially in the industrial sector, collaborative robots, i.e. robots built to 
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work with and alongside humans, are becoming increasingly important [19]. Human-robot collaborations refer to humans and machines working simultaneously on the same object, and cooperation refers to working reciprocally. Without the protective concepts such as nets or grids, it requires a unique design of the robot arms, which do not have sharp edges and rigid material. 
This concept combines the hand-eye coordination, force dosage and independent problem-solving ability of humans with the advantages of robotics such as freedom from fatigue, path fidelity and precision [20].  Table 2 shows a classification of common robot types including their functions [21].

Table 2: Classification of robot types [21].

Robot type Characteristics and field of applicationIndustrial robots Industrial robots have a wide range of applications in manufacturing and carry out various processes. They are used as welding robots, painting robots, palletising robots, assembly robots, etc.
Service robots Service robots provide services to humans in various forms, which is the reason why they must be able to move autonomously in a wide variety of environments. Another feature of these robots is the easy-to-use user interface. Since the robots move close to people, human safety must be guaranteed at all times. Examples are as hoover robots, lawnmower robots, pool cleaning robots, assistance robots for persons with walking disabilities, etc.
Mobile robots Mobile robots can move independently in their environment without human assistance and have many similarities with service robots. See service robots or driverless transport robots for application areas for logistics systems, toy robots, exploration robots, etc.Micro- and Nan-orobots Microrobots are only a few millimetres in size and can move autonomously in small structures and carry out actions there, e.g. inside the body. Another development direction aims to let many microrobots acts as swarms, e.g. for exploration. Nanorobots are autonomous machines and structures down to the size of molecules.Humanoid robots Humanoid robots have a human-like appearance and are programmed or equipped with actuators that enable them to commu-nicate or act directly with humans. They are used as a multifunctional working machine, assistant for humans etc.Roughly categorised, industrial robots can take on tasks in the areas of production (robot carries tool), assembly and handling (robot carries gripping system), as well as checking and measuring (robot carries measuring device). They consist of arm parts connected by joints and can vary in size and number depending on the type of application. The entire robot arm is referred to as the manipulator, the foremost part as the effector, to which a wide variety of tools and grippers can be attached. Most systems for waste management fall under mechanical separators using grippers (pneumatically, electrically or hydraulically controlled), use suction pads or vacuum cups. The former robotic systems sort, for example, construction waste and the latter are used for sorting packaging.  An important part is the control system, through which connected sensors can also be used in some circumstances. The robotic system also includes safety devices if needed, for example, to protect labourers. The kinematics (spatial relationship between the workpiece or tool and the manufacturing device) determines the design of the robot, which influences the working area, the load-bearing capacity, speed and repeatability [22].Industrial robots usually have six degrees of freedom, which allow them to grasp objects independently of their positioning. The term kinematics describes the movement axes resulting from the degrees of freedom. Two types of kinematics are distinguished: serial kinematics, where the robot arm gets its mobility from joints but is connected to the base at one point (drives in the joints are also moved), and parallel kinematics, where several arms are connected to a fixed drive and can be moved simultaneously. Depending on the task, fewer degrees of freedom can be achieved using rotational, linear and translational joints, leading to the goal. The joints determine the operating range, shown in Figure 

7 [22,23]. According to the kinematics, the following classification of industrial robots in Figure 8 is suggested.According to the IFR - International Federation of Robotics statistics, an average of 106 new robots were installed per 10,000 employees in Europe in 2017. The record year 2017 saw a 30 % increase worldwide compared to the previous year  [25]. One reason for the increased use of robotics is undoubtedly the rapid development in artificial intelligence, i.e. the ability of robots to perform so-called ‘deep learning’. Deep learning uses a particular type of information processing that functions via artificial neural networks. Using artificial neural networks and large amounts of data, machines can imitate the human brain in its decision-making processes and thus independently improve their abilities without human assistance. The more data is available and combined with the progress already made, the more complex the problems and the machine’s approaches to solving them. The use of robotics has limitations in that material can be heterogeneous, dirty and have different properties such as structure, size and shape. Limitations of the technique include non-optimised material flow, position changes between detection and gripping of the robot, poor pre-sorting, sensor failures, and limitations of the robotic arm such as size, reaction speed and the number of parts selected per hour [19].Challenges for the use of robotic systems are also currently still unclear legal obligations in the event of damage. In some cases, existing laws, such as waste management laws, further hinder the progress of digitalisation. Lack of acceptance, for example, due to quality problems, is not to be expected because of the rapidly developing technology [26]. The fear of job losses can be calmed 
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by the fact that robotics is accompanied by a reduction of stresses and dangers in manufacturing and that new professions are constantly being created in automation and data processing. At present, it is mainly menial labour, or tasks that are monotonous, heavy or hazardous to health that have been lost [22].

Figure 7: Positioning axes of robot systems in the industry including working range [23].

Figure 8: Classification of robots according to kinematics (authors depiction according to Induux 2021 [24]).

Materials and MethodsIn order to achieve the objectives of this study, several methods described below were used to provide the most 
comprehensive possible picture of waste management and its future developments. The scope of this study ranges from the description of the legal and technological framework conditions 
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to a comprehensive analysis of future technologies and trend developments.
Evaluation of the stakeholders and current development 
projects in waste managementAfter extensive research on the most crucial technology, sensor-based and robot sorting suppliers are found and divided into the categories sensor suppliers, sorting machine manufacturers, and sorting robot manufacturers. In addition to the descriptions of the interest groups, some current projects in the field of sensor-based sorting and robotics are presented.
Deriving the effects of trend developmentsLiterature research on future developments in waste management serves as the basis for deriving the trends. After the subsequent evaluation, trend developments are deduced.
Results and DiscussionAt first, the technology supplier’s market study results are reflected, and it is described which technology suppliers make a significant contribution to today’s developments in sensor-based sorting and robotics and the essential products in their portfolio.
Sensor suppliersIn the following, two companies are presented that have contributed to the numerous advances in sorting technology in the field of waste management and recycling (list in alphabetical order):
EVK DI Kerschhaggl GmbHIn addition to applications in the pharmaceutical industry, food processing and mining, this company based in Raaba near Graz also offers sensors for the recycling industry. Sensors are offered for polyethene terephthalate (PET) separation, RDF sorting, bulk material separation in heterogeneous waste and material flows, plastic flake sorting with hyperspectral imaging systems and conductivity imaging technologies. The EVK product 

portfolio includes colour, hyperspectral and inductive sensor systems. Hyperspectral imaging systems are intelligent camera systems of the ‘Helios’ product range that use spectral ranges adapted to the application (VIS, VIS/NIR, NIR and short-wave infrared “Short Wavelength Infrared” (SWIR)). These systems classify objects according to their chemical composition. EVK offers the possibility of combining this technology with inductive sensors or colour camera systems for sorting, inspection or monitoring purposes [27].
SLOC GmbHThe company has gained a foothold in waste management through cooperation with Saubermacher Dienstleistungs AG in level sensors. In addition to the initial level sensors, information on the location, movement patterns, lid positions, container/bin openings and fire warnings are also possible in the context of a smart waste bin and rubble bin. The sensors are equipped with computer, power and storage systems independent of the manufacturer. The product portfolio also offers solutions for intralogistics in which forklifts are digitised and smart load carriers are made possible. Lifting height, usage profile, amount counts and load status are information that can be called up [28].
Sorting machine manufacturersIn the following chapter, companies acting worldwide in the manufacture of sensor-based sorting machines are presented and their sensor technologies for waste management sorting tasks are described. Meanwhile, it is reserved for a few established companies to dominate the world market for sensor technologies in the circular economy. Some offer ‘complete packages’ as system planners, whereas the individual components do not necessarily come from the same company. The list below does not claim to be exhaustive as there are other manufacturers on the market. The excluded manufacturers were not mentioned since they only offer a few units (e.g. LIBS) for waste management. Table 3 shows the sensor technologies of the various companies in 2018  [13].

Table 3: Selected manufacturers of sensor-based sorting machines [13].

Manufacturer Binder+Co Pellenc REDWAVE Sesotec Steinert TOMRAElectromagnetic Induction x x x x x xLaser-Induced-Breakdown-Spectroscopy (LIBS)     x  Near-Infrared Spectroscopy (NIR) x x x x x xVisual Spectroscopy (VIS)   x  x  X-ray Fluorescence Spectroscopy (XRF)  x   x xX-ray Transmission x x x x x x
Binder+CoThe machine manufacturer located in Gleisdorf, Austria, offers various processing units and sensor-based sorting machines. 

These include the CLARITY product line, which sorts  recyclable from non-recyclable waste, and the MINEXX line, which is primarily used to process raw materials  [29]. Sensor fusion allows sorting by material type and colour simultaneously through a link with 
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specially developed software. In this way, more individual tasks can be solved than simply by combining different sensors [17].
PellencPellenc Selective Technologies (ST) is part of the Pellenc group. The optical sorters for household and commercial waste are manufactured at the company’s headquarters in Pertuis, France, and sold under the product name MISTRAL+. These systems use NIR, VIS and induction sensors [30].
REDWAVEAnother company that offers sensor-based sorting machines is REDWAVE, a division of BT Wolfgang Binder, located in Gleisdorf, Austria. In addition to sorting plastics, glass and paper, the sorting of minerals is also offered. As a company, REDWAVE is active as a machine supplier and provides system planning [31].
SesotecThe development and production of the sorting systems of the company founded in 1976 still takes place in Schönberg, Germany, although it now operates globally with seven subsidiaries. Modular sorting systems for plastics, electronic waste, glass, household waste and metal are offered, which combine different sensors, detectors and separators in one device depending on the application. Up to three combined sensors can be used in the recycling systems: a high-resolution line scan camera, near-infrared sensors and inductive metal detectors. The units are offered with a conveyor belt or a chute [32].
SteinertThe subsidiary Steinert Unisort bundles the resources for the sorting technologies for the waste management of the Steinert Group. The Steinert Group has been based in Köln, Germany, since it was founded in 1889, although there are subsidiaries in the USA, Australia and Latin America [33]. The product range for recycling with NIR is called ‘Unisort’. There is the option of a combination system of up to four sensors in one unit, called the Steinert KSS. The Steinert KSS contains 3D, colour and induction recognition. The fourth installed sensor is either a near-infrared, an X-ray transmission or an X-ray fluorescence sensor.  Typical application areas would be separating heavy metal concentrates into copper, brass and grey metals [34].
TOMRA SystemsThe company, based in Mülheim-Kärlich, Germany, offers sensor-based sorting solutions for various industries. Formerly TOMRA Sorting was called TiTech, till it was integrated in the Norwegian company TOMRA Systems in 2004. The AUTOSORT product range, which covers almost all waste streams, uses NIR, VIS or induction sensors or a combination of these. Furthermore, besides waste sorting machines and waste collection automats, TOMRA Sorting offers sorting systems for different applications in food or mining [35].”

Sorting robot manufacturersThe future of robotics in waste management has not yet been defined and offers room for innovative ideas. The following is a brief overview of the leading robotics manufacturers in the waste management sector and their current products.
Apple Inc.Apple revealed their first dismantling robot in 2016. Apple claimed that this robot, called ‘Liam’, could dismantle 1.2 million iPhones 6 per year in eleven seconds each. The further development of ‘Daisy’, which replaced ‘Liam’ in 2018, can dismantle 200 iPhones per hour and differentiate between nine models [36,37]. Although there was a lot of media attention, it must be mentioned that Apple knows the location of recyclables in their devices and how they can be dismantled. This knowledge is usually absent in the everyday waste management business, which struggles with heterogeneity and variable degrees of pollution. The first waste sorting robot entered the market in 2011 from ZenRobotics and uses optical systems [37]. Since then, there have been attempts to use haptic because the sense of touch gives the operator much additional information. Therefore, a robot called ‘RoCycle’ was equipped with capacitive sensors by the Artificial Intelligence (AI) Lab at the Massachusetts Institute of Technology (MIT). It measures size and stiffness by touch. It is not yet a real competition to optical systems because of its low throughput, but combining the sensor systems would be conceivable [38].
OP TeknikThe waste sorting system from OP Teknik specialises in the fully automatic separation of construction and industrial waste into metals, plastic, wood, construction waste, stones and paper. With six robots used, as recommended by the manufacturer, up to 14,400 picks per hour are possible, selected by sensors and cameras in real-time according to material type, colour, size and shape. A single-arm can handle 2,400 picks per hour. For comparison, various manufacturers stated that a person could manage 20 to 40 picks per minute, correspondingly 1,200 to 2,400 picks per hour [39,19].
ZenRoboticsFounded in 2007 and based in Helsinki, Finland, the company was the first to focus on robotics sorting by launching its Heavy Picker in 2009. The robot system with up to three arms contains various detection units such as NIR, VIS and 3D sensors, metal detectors and an RGB camera. The Heavy Picker is designed for heavy and unwieldy objects weighing up to 30 kg. Therefore, it can simultaneously separate up to four different fractions with one arm without extensive pre-sorting or shredding. The various material flows for which it can be used are: commercial and industrial waste, construction and demolition waste, wood, inert materials, plastics, metals (scrap) and different coloured “plastic bags” collected from household waste. The Heavy Picker manages up to 2,000 picks per hour on a conveyor belt controlled by the 
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robot. The AI software that ZenRobotics combines with their products is called Zenbrain [19,40]. The ZenRobotics Fast Picker has a maximum speed of 4,000 picks per hour and consists of an arm with a gripper that works via suction and a sensor unit for the software. This robot is designed for light materials such as packaging waste, dry mixed recyclable materials and household waste with a maximum weight of 1 kg  [19,40].

AMP RoboticsThe AMP Robotics company from Colorado achieves up to 3,600 picks per hour with its sorting system Cortex. The Cortex system introduced in 2017 uses VIS sensors and machine learning to sort mainly packaging waste. Sorting plants that use this system are mainly found in the USA. Figure 9 shows the basic functional principle: The vision system records data processed using AI-based learning and then sorted by the robot arm [19,41].

Figure 9: AMP Cortex [41].

Sadako in cooperation with BHSSince it was founded in 2012, the Spanish company Sadako has focused on artificial intelligence and robotics. Together with BHS - Bulk Handling Systems, their waste sorting system, Max-AI, was used for the first time in California in 2017. Max-AI uses deep learning and an optical system to act as quality control. Using suction mechanisms, up to six different fractions can be recognised simultaneously and sorted with the gripper arm. According to the manufacturer, the system can reach up to 3,900 picks per hour [19,42].
Bollegraaf Recycling SolutionsThe company from the Netherlands has been providing waste sorting systems for 55 years and has installed over 3,500 recycling systems in Europe, North America, Mexico and Canada. In 2013, the artificial intelligence-provided waste sorting robot RoBB-AQC was presented, separating recyclable materials in the final sorting step. The system is equipped with NIR sensors, an RGB camera and laser units for height detection and separates the detected materials automatically with a suction head. Up to four 

materials can be sorted out simultaneously per unit at a very high rate of 12,000 picks per hour if an installation with four vacuum grippers is available. However, the materials are mainly paper/cardboard and various plastics made from mixed waste [19,43]. The Bollegraaf Cogni was presented in 2018 which uses the same technologies as RoBB-AQC and is also mounted on a portable overbelt construction. The suction head is on a delta robotic arm [19,43].
MachinexThe sorting robot from the Canadian company Machinex called SamurAI has been available since 2018 and operates with artificial intelligence from AMP. With one of its four suction heads on four robot arms, it can lift up to 6 kg and manage up to 4,000 picks per hour. SamurAI sorts plastics positively and negatively for quality control or separates from mixed waste. The system is used in nine plants in the USA and Canada and is mainly used to sort plastics. The manufacturer offers software called ‘MACH Vision’. It can create databases for material identification in advance, receive software updates and also use the ‘MACH Cloud’, which can obtain optimisations from other systems [19,44].
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Relevant Trends and DevelopmentsThis chapter describes the influence of digitalisation and Industry 4.0 on the waste and recycling industry and elaborates on robotics and the sensors used in this industry.
Digital Waste ManagementThere are various definitions of the term digital transformation. In sum, it can be said that the networking of individual stakeholders (companies, customers, products, etc.) succeeds through using the latest technologies (computers, internet, etc.) and the processing, collection and analysis of information. The so-called 4th Industrial Revolution - better known as Industry 4.0 - thus involves using IT and automation to pass on real-time information to all actors in the value chain and network them  [45].These developments do not stop at the waste management industry. They offer great opportunities, as 63 % of the companies surveyed in a study by the Montanuniversitaet Leoben in cooperation with HTL Leoben confirm. Of the 400 companies surveyed in the green tech sector in German-speaking countries, 75 % said they were involved in digital transformation and 84 % of the companies that were not yet involved said they planned to do so in the future. Moreover, the global circular economy and waste management market volume is expected to rise from around 100 billion euros in 2013 to 170 billion euros by 2025, further encouraging becoming involved in the digital transformation [26,46]. This conclusion is supported by another recently published survey in which 83 % of all surveyed companies announce that they have implemented a company strategy for managing data and 75 % make efforts to ensure high qualities in their transaction data [47].At the same time, companies in the green tech sector must face new challenges summarised by Roland Berger in 2016 for the German market in five areas. One challenge is securing customer access, as traditional trade is losing importance and sales platforms are becoming increasingly important for customer contact. In order not to lose touch, it is recommended for companies to initiate their platforms and to integrate value-added partners for system solutions [48].An example is the ‘Daheim’ app of Saubermacher Dienstleistungs AG, which is available individually designed for 230 municipalities. It implements information and reminder functions for collection calender, which is a Austrian calender that states on which days specific waste streams like light-weight packaging, paper or biological waste are collected by the waste collection system. Furthermore, it is a free communication platform for associations, schools and it offers e-car rental or swap [49].In order to keep up, the need to increase flexibility and agility to follow the fast innovation cycles is mentioned. One characteristic of agility is to involve customers in the early phases of new developments and to obtain feedback. A further challenge 

is the development of digital competence. Digital transformation is a cross-sectional undertaking in many areas and does not stop at established processes and structures. In order to exploit the full potential of existing skills, interdisciplinary teams and cloud solutions for rapid information exchange are advantageous. Another recommendation is to adapt financing along the entire value chain. The digital economy relies on intangible assets such as employee know-how, digital strategies and data, whose monetary value is hard to estimate. It is essential to design individual solutions and evaluate the feasibility of renting, leasing, and pay-per-use options. The final challenge of digital transformation is developing the digital mission statement. That means not looking at the challenges individually but developing a comprehensive digitalisation strategy. The digitalisation strategy should be constant evaluation and adaptation to remain proactive [48]. Disruptive innovations in the waste and circular economy are currently taking place and will take place in the future in four identified areas. Collection and logistics face a revolution through ‘smart waste bins’ and intelligent route optimisation. Generally speaking, the customer is coming into focus, with more and more personalisation in terms of collection cycles, for example, which should increase recycling rates  [50].
Sensor technology in waste managementWith the increased demand for recycled material and increased demands on the quality and purity of this, the pressure on waste management to innovate towards real-time quality control is growing. The goal in the future will undoubtedly be digitised waste treatment, with individual treatment plants communicating with each other and various sensors providing real-time data. For example, to run conveyor belts at the right speed and in turn, adjust pre-treatment equipment such as shredders. Robotics will play a significant role in sorting in combination with real-time statistical modelling, improved object recognition and perpetual optimisation for tasks too dangerous or strenuous for human workers [26].Quality plays a significant role in recycling plastics for energy use as RDF. Up to now, controls have mainly been carried out manually or by automated sampling. This approach became increasingly impractical due to the delay in the results, as the product had already been manufactured. Various sensors (e.g. NIR sensors) can remedy this situation and determine parameters in the waste stream such as degree of contamination, moisture content, etc. If these parameters are compared with the material group-specific properties in a database or additional parameters such as calorific value, chlorine or ash content are collected, the production line can be adapted in real-time. This fast influence offers the possibility of intervening in the process and optimising the plant to market-specific requirements [19]. In addition to ensure the quality of the  RDF, increasing focus is being placed on the recovery of metals to identify and quantify valuable alloying elements [13].
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Sorting robots in waste managementIn Germany, only 30 % of waste management companies state that they are ready for digital transformation, following the global trend towards green technologies and digitisation [48]. Digitisation and automated processes should help make processes run faster and more precisely by exchanging human work for machine work. In addition, robotics is widely used to reduce human effort. For waste management, only robots for industrial use are considered. Robots differ significantly in their properties, such as speed, gripping system, and the size of their working area or range of the gripper [19]. In the field of waste sorting, collaborative robots (so-called “cobots”) would be conceivable. However, compared to other branches of industry, such as the automotive industry, their use has not yet arrived in waste management. Mechanically separating structures such as fences, light barriers, or laser networks can separate work areas. The latest concepts are based on cooperation and collaboration between man and machine without such restrictions, so robots can directly support employees [20].With the introduction of Industry 4.0 and the rapidly developing digitisation, more and more applications of robotics technology are emerging. The learning ability of robotic systems means that sorting can be carried out more efficiently. One application of this learning ability is the use of the case-dependent speed of the conveyor belt. Regulating the speed of conveyor belts is a big issue in waste management as the heterogeneity 

of waste in type, size, and shape has presented a challenge for automated systems. In addition, waste streams have the problem of surface pollution, which impedes detection by sensors. The task for sorting robots includes the need to grasp objects of various shapes and sizes that occur in randomly distributed locations and quantities in the waste stream. Error-free work is also made more difficult by the change in position of objects due to vibrations of the conveyor belt, centrifugal forces or drafts. The computed inverse kinematic of the robotic arm has become wrong since the presumed position of the object has been altered. The failure to grab the object results in misthrows or loss of valuables, which poses the need for continuous monitoring and tracking of objects to be ejected [19]. If the software is connected to the appropriate hardware and artificial intelligence is stored, a robotic system can perform several operations simultaneously and thus perform different sorting tasks. Of course, new waste streams to be sorted out can also be teached in, which makes this technology fundamentally promising, because of the possibility of separating a wide variety of fractions. Figure 10 shows the detection of different materials by the AMP sorting robot Cortex. Robots are used to replace manual sorting or to sort for areas that were previously not sortable [19]. Furthermore, these technologies allow an automatic quality recording and increase sorting efficiencies (e.g. plastics), if necessary. Manual sorting is limited by weight, size and the extension of work environment that robotics is not [19].

Figure 10: Classification of the material flow of a sorting robot [41,51].

The developers do not see robotics as the only future solution for waste treatment and sorting, but especially in packaging and residual waste combined with other technologies such as optical sensors with pneumatic separation. Automated systems are often seen as a quality guarantee at the discharge of a plant. Another topic of utmost importance during the discourse about 
digitalisation is the protection against cybercrime. The stored software for detecting objects and the associated algorithms are essential and must be adequately protected against manipulation and exploitation. Adequately protecting intellectual property and shielding networks against attacks demands financial resources and know-how [19]. 
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Smart WasteThe circular economy targets stated by the EU and 90 % of the German population agree that waste separation significantly impacts environmental protection. From the consumer’s point of view, the producers or manufacturers of goods substantially influence establishing a well-functioning recycling system. Assuming that these findings can be transferred to Austria, this could explain why the proportions of recyclable materials in the residual waste bin in Styria have hardly changed in the last 20 years. In order to meet the recycling quotas of the EU, citizens must be involved additionally to the expansion of the sorting technology in plants  [52,53]. The smart garbage bin, for example, with level measuring sensors from SLOC leads to less traffic, traffic jams, noise and CO2 emissions through dynamic route planning. Austria Glas Recycling expects a potential saving of up to 30 % of the costs and the effort of the collection through the high-tech sensors in public glass containers after the pilot project with Saubermacher in December 2018 in the municipality of Horn in Lower Austria  [54]. This example is intended to show that the detection options using sensors, in addition to level measurement, can determine location, movement pattern, several lid openings and a temperature increase of a barrel and thus enable a need-based collection tour planning in addition to increasing comfort for the citizens [12,53].

Recyclable materials scannerIn 2018, the Saubermacher Dienstleistungs AG presented the ‘recyclable material scanner’, a multisensor, multi-spectral image recording system that detects the empty contents of a residual waste bin on the collection vehicle. The generated visual output is displayed in Figure 11. The system evaluates the collected waste in real colours, 3D, and various spectral channels to classify the material.  A waste bag opener is used to further increase the visibility of the waste for the convolutional neural network.  Test runs have shown that the announcement of the use of this procedure led to a significant reduction in missed throws. Before this announcement, incorrect throws were detected in 65 % of the garbage cans; after the project was publicised, the rate immediately fell to 38 % and could be further reduced through direct feedback. The supplementary resource scanner portal can display and evaluate the detection results and can thus be used as a feedback portal for citizens. The citizens communicate with the disposal company and vice versa via SMS or Saubermacher’s app ‘Daheim’. The proportion of incorrect throws in the municipalities’ residual waste could be reduced by up to 80 %; on average, incorrect throws were halved. The technologies developed in Austria are to be used in another larger region in 2020 [55,56,57].

Figure 11: Classification of waste using the recyclable material scanner [58].

Smart VillagesThe recyclable material scanner and the intelligent waste bin are part of the “Smart Village” project. Energie Steiermark and Saubermacher Dienstleistungs AG included around 150 households in the communities of Riegersburg and Feldkirchen. In addition to the measurements necessary for generating key figures to quantify correct waste separation, street lights were equipped with sensors and vehicles of the road service in winter with GPS route recording and ice sensors. The project was presented in mid-2018, and the first positive results were presented in July 2019, which suggest an expansion of smart technologies in the municipal waste sector [56,57].

ConclusionThe presented data depicts the waste management industry’s rapid developments. While new technologies, like machine learning and convolutional neural networks and robot sorting, are increasingly implemented, a substantial discrepancy exists between technological capabilities and the current State-of-the-Art. Stakeholders in the industry expressed their willingness to adapt their current approaches and implement emerging technologies into their current approaches; these developments take time. Further investments must be made to acquire the knowledge, technology, and human resources needed for such a transmission. These investments need a dependable political and 
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economic foundation to be made, and further political guidelines will be needed to ensure the sustainability of these investments. The increasing attention lawmakers and political institutes currently give to the waste management industry are a welcome enticement to facilitate the implementation of improved sorting technologies in the sector. When combined with these new emerging technologies, the existing technologies mentioned in this study applied to sensor-based sorting can substantially impact the feasibility of reaching the goal of a circular economy. The active participation in the studies mentioned in this survey reflects the consumers’ and manufacturers’ interest in enhancing current waste management techniques and implementing and adapting to technologies like robotic sorting and applying neural networks for the classification in waste collection. These changes were shown to increase the efficiency of the collection of post-consumer waste by announcement alone. However, while these results motivate further research and these technologies see widespread employment in the automotive and pharmaceutical industry, the operating conditions in this field differ significantly from those in waste management. More comprehensive employment of technologies like robot sorting, live in-line sensor-based measurements of manufacturing and machine learning approaches need to be evaluated in their adaptability to the inherent problems their application in waste management entails. The employment of these new technologies will need coherent legal and political guidelines. This lack of coherent legal guidelines extends not only to the sector of waste management but to the industrial application of robotics, data science and machine learning in general. Without legal guidelines regulating the liability issues arising from human labourers sharing working space with machines and defining safety regulations adapted to this new development, further growth of this technology will be stunted. It is further to be expected that the emergence of these new technologies will significantly impact the existing labour market, as the need for menial labour is decreasing, and arduous and dangerous jobs may soon be undertaken by machinery. The labour market’s needs will increasingly shift to skilled technicians, able to maintain, program and control the machines substituting the human workforce. Since digitisation and digitalisation are comparable new topics in the waste industry, there is great potential for improvements. The rising interest in this topic is also reflected by the increased market volume of products affiliated with green production and the circular economy, prompting all significant stakeholders in the manufacturing of sorting systems to become involved in applying these emerging technologies in their product portfolio to be on the leading edge of these developments.
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a b s t r a c t 

Sensor-based sorting in waste management is a method to separate valuable material or contaminants from a 
waste stream. Depending on the separation property different types of sensors are used. Separation properties 
and their corresponding sensors are e.g. molecular composition with near-infrared sensors, colour with visual 
spectroscopy or colour line scan cameras, or electric conductivity with electromagnetic sensors. 

The methods described in this paper deal with the development of sorting models for a specific near- 
infrared, a visual spectroscopy and an induction sensor . For near-infrared and visual spectroscopy software is 
required to create sorting models, while for induction only machine settings have to be adjusted and optimized 
for a specific sorting task. These sensors are installed in the experimental sensor-based sorting setup at the 
Chair of Waste Processing Technology and Waste Management located at the Montanuniversitaet Leoben. This 
sorting stand is a special designed machine for the university to make experiments on sensor-based sorting in 
lab scale. It can be used for a variety of waste streams depending on the grain size and the pre-conditioning 
for the sensor-based sorting machine. In detail the methods to create these sorting models are described and 
validated with plastic, glass and metal waste. 

• Near-infrared spectroscopy measures the molecular composition of near-infrared-active particles. 
• Visual spectroscopy measures the absorption of visible light by chemical compounds. 
• Induction sensors use induced currents to detect nearby metal objects. 
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MONTANUNI-01, custom-made product constructed by 

Binder + Co AG 
• Software, Control Cabinet: M a n-Machine-Interface (MMI) 

by Binder + Co AG 
• Hardware, Near-Infrared Technology: EVK HELIOS NIR 

G2-320 by EVK DI Kerschhaggl GmbH 
• Software, Near-Infrared Technology: EVK Helios Optimizer; 

Version 3.4.2017.1 by EVK DI Kerschhaggl GmbH , 08-2017 
- Hardware, Induction Sensor: MESEP FS3 by Pulsotronic 

Anlagentechnik GmbH 
• Hardware, Visual Spectroscopy: AViiVA® SC2 CL Camera 

Link® Color Linescan Camera by e2v 
• Software, Visual Spectroscopy: FraunhoferICC by Fraunhofer 

IOSB, Version 2.5.0.0 by Fraunhofer IOSB, 2012 

Method details 

Sensor-based sorting is used in waste management for sorting and analysing waste streams and 
bulk materials. It is a non-contact, non-destructive process that offers a great deal of flexibility to 
cope with a wide variety of tasks. The Chair for Waste Processing Technology and Waste Management 
(AVAW) has an experimental sensor-based sorting setup for university and industrial research projects 
designed as a two-way machine. A grain size range from 5 to 300 mm can be processed. The feed 
takes place via a vibrating conveyor (1) followed by a glass chute (2) (see Fig. 1 ). The experimental 
sensor-based sorting (SBS) setup contains three sensors (referred to Fig. 1 ) that can be used for 
different waste streams: 

- Near-infrared sensor (NIR) (5): waste glass, paper and cardboard, plastics, electronic scrap as well 
as construction and demolition waste. 

- High-resolution colour line scan camera with the measurement principle of visual spectroscopy 
(VIS) (5): plastics, wood, paper and cardboard, waste glass as well as construction and demolition 
waste. 

- Electromagnetic induction sensor (3): electric conductors, e.g. metallic waste. 
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Fig. 1. Functional schematic of the experimental sensor-based sorting setup at AVAW [3] . 
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Table 1 

Technical Parameters of the EVK Helios NIR G2-320 
Near Infrared Sensor. 

Technical Data Value 

Spectral Range 930 – 1700 nm 

Scan Rate 500 Hz full frame 
Spectra Resolution 9 nm 

Spectral Sampling 3.1 nm 

Spatial Resolution 312 Pixels 
Pixel Size 30 × 30 μm 

Optical Coupling C-mount lens 
Slit 100 μm (80 μm optionally) 
Interfaces GigE Vision, CamLink 2 
Trigger Input RS-485 

Table 2 

Key Technical Properties of the AViiVA® SC2 CL Camera Link® Color Linescan Camera VIS Sensor. 

Technical Data Value 

Sensor Characteristics at Maximum Pixel Rate 

Resolution 1365 
Red-Green-Blue 
(RGB) patterns or 
4096 pixels 

Pixel pitch 10 µm 

Maximum line rate 14 kHz 
Anti-blooming X 100 
Radiometric Performances (Maximum Pixel Rate, T amb = 25 °C) 

Output Format 12 bits (also 
configurable in 8 
bit or 10 bit) 

Linearity (G = 0) < 2 % 
Gain range (steps 
of 0.035 dB) 

G min 
-2 dB 

G nom 
0 dB 

G max 
22 dB 

Peak response 
(1)(2) 
Blue 
Green 
Red 

16.6 LSB/(nJ/cm ²) 
24.4 LSB/(nJ/cm ²) 
31.3 LSB/(nJ/cm ²) 

21.5 LSB/(nJ/cm ²) 
31.5 LSB/(nJ/cm ²) 
41 LSB/(nJ/cm ²) 

263 LSB/(nJ/cm ²) 
383 LSB/(nJ/cm ²) 
496 LSB/(nJ/cm ²) 

Dynamic Range 66 dB 64 dB 42 dB 
Photo Response 
Non-Uniformity 

± 4 % ( ± 15 % max) 

It is also possible to combine several sensors to solve complex tasks with so-called sensor fusion. 
Currently, norms are existing how to interpret NIR spectra with standard test methods like ASTM 

D 1925 Determination Yellowness Index or ASTM D 1003 Haze and Luminous Transmittance of 
Transparent Plastics, but none how to record all the data (VIS, NIR, induction, senor fusion) for such 
a setup, which is the focused method in this research paper [ 1 , 2 ]. 

In order to reproduce all applicable methods with the experimental SBS setup, the specifications 
of the sensors are listed. The first of the sensors used for classification via NIR Spectroscopy is the 
EVK Helios NIR G2-320, a high-speed hyperspectral imaging system. The main specifications of the 
EVK Helios NIR G2-320 are listed in Table 1 . 

The second sensor in application for the separation and classification trials conducted with the SBS 
setup explained above is the sensor for visual spectroscopy, the AViiVA® SC2 CL Camera Link® Color 
Linescan Camera. In the following, the essential key specifics of the sensor are depicted. The main 
specifications of the EVK Helios NIR G2-320 are listed in Table 2 . 

The third sensor used during trials at the sensor-based sorting stand is an induction-based sensor 
to detect metallic objects. It delivers a sensitive and accurate detection of small metal fragments. It 
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Table 3 

Technical Properties of the Induction Sensor MESEP FS3. 

Technical Data Value 

Interface Ethernet RJ45; 10/100Mbit, RS485; 57.600 - 6.000.000 Baud; CAN; EtherCAT ∗∗

Sample rate 1 kHz 
Resolution 12 - 100 mm 

Protocol UDP; HTTP(Ethernet); ASCII(RS485) 
Number of Channels 4 - 124 

delivers the detection results in real-time via Ethernet to a PC or a programmable logic controller 
(PLC), where the data can be evaluated. This way, the sensor’s data can be coupled with the data 
delivered by other sensors like the NIR or VIS sensor to achieve complex sorting tasks. The main 
specifications of the Induction Sensor MESEP FS3 are listed in Table 3 . 

Since correct illumination is vital for the detection with NIR, a halogen lamp is employed since 
halogen lamps deliver a flat spectrum in the NIR range. This specific illumination device, the Helen 
Dr. Fischer 15026Z with reflector, delivers a maximum illumination output in the detection area of 6.5 
mW/mm ² and is adjustable. It means the illumination setting allows dimming the lamp. 

The complete data sheets of all employed sensors are found in the chapter “Additional Information”
for further reference. 

Tasks and applications that have been worked on in research projects on the experimental SBS 
setup are: 

• Sample characterisation and determination of the composition, 
• Creation of a digital grain size distribution, 
• Discharge of contaminants, 
• Enrichment of valuable substances, 
• Sorting of bulk goods according to substance groups and 
• Validation of sorting/separation results. 

All of these tasks require the same method of qualitative analysis for sensor-based sorting, but the 
objective of the task is different. 

Requirements to get respectively good sorting results 

Sorting results are influenced by internal and external factors, which have an impact on the 
process control. The internal factors are based on the construction of the sensor-based sorting setup, 
adjustments and settings on the machine: 

• Belt velocity: throughput rate, relative velocity 
• Air pressure: to blow out objects according to the sensor signal with the compressed air nozzle bar 
• Valve diameter: influences the compressed air flow rate through one valve 
• Valve distance: defines possible grain ranges to be sorted 
• Splitter position: influences the sorting because of object weight and flight characteristics 
• Position of the compressed air nozzle bar: influences the sorting because of object weight and 

ejection trajectories 

The external factors which influence the sorting result are based on the properties of the material 
stream to be sorted: 

• Grain size distribution: should be between 3 to 4 referred to the smallest and the biggest object in 
the fraction. 

• Content of valuable material: the more valuable material in the input, the lower the influence of 
object overlapping. 

• Grain form: agglomerates or objects, which are deformed, influence the sorting result either 
positively or negatively. 
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• Area density: too low can lead to incorrect sorting because of bad flight characteristics and too high 
can lead to incorrect sorting because the air pressure is not able to push the object over the splitter 
and into the reject fraction. 

• Dust or steam between sensors and emitters can influence the identification of objects negatively; 
either objects are not identified, not recognised or the dust/steam cloud is identified as an object, 
which leads to an incorrect sorting result. 

• Surface contamination: contaminations on the objects can cause that objects are incorrectly 
identified and wrongly sorted. 

• Reflective surfaces: influence the transfer of the sensors light beam, it can cause positive or negative 
effects in the sorting result depending on the application. Positive: Reflective bands behind the 
specimen can enable measurement in transflection. Negative: Reflective materials can cause direct 
reflection into the sensor ́s lense, causing misclassification or since direct reflection cannot be used 
by the NIR detector. 

Further parameters, which influence the sorting result, can be set up on the man-machine- 
interface (MMI). For the correct identification of various materials, the correct calibration of the 
illumination is necessary. This is achieved by three illumination parameters in the MMI, namely the 
background light, in incident light and the intensity of the NIR emitters. These parameters can be set 
in a range of 0 - 100, corresponding with the percentage of the maximum intensity. 

The background light is used for detecting the particles for ejection. Decreasing the background 
illumination can allow for the ejection of transmissive materials such as glass or clear PET bottles. 
This is necessary since excessive intensity may cause these materials to be ignored since the high 
intensity does not cause sufficient shadows for them to be identified. The background illumination 
should not be set higher than 20 %, because this leads to an overexposure of light which results in 
incorrect material identification. 

Similarly, the identification for the VIS sensor can benefit from manipulation the incident 
illumination intensity in correlation to the surface properties of the material. Materials which absorb 
light very well may need a higher intensity than reflective materials whose glare can become an issue 
with excessive illumination. 

The third illumination source to be calibrated is the NIR emitters intensity. Here a similar problem 

arises. Distinct materials can cause glare when illuminated with sufficient intensity, e.g. smooth 
PS containers. Here a reduction in NIR intensity can improve classification. Other materials with 
worse reflective properties, e.g. thin foils and multi-layered plastic packaging materials, benefit from 

increased NIR intensity. The reason for this is their thin material thickness, which limits the amount of 
radiation that can be reflected. With thin materials like plastic packaging foils most of the radiation 
emitted by the NIR illumination is lost to transmission because of the low material thickness. An 
increase in emission intensity can increase the overall radiation arriving at the specimen and therefore 
increase the amount of radiation reflected by the material, overall improving the detectability of these 
materials. 

Some sorting tasks require the prioritisation of distinct materials over others present in the waste 
stream. In these applications, purity takes priority over yield. Here, the ejection of a particle that 
might be contaminated of wrongly classified is treated as more severe than the loss of a valuable 
particle. To achieve this prioritisation the sorting software allows for a weighing of material class 
pixels. This allows the user to multiply material pixels in the detection. Through this, the number of 
pixels of a contaminant might be counted tenfold, therefore ensuring the ejection of a contaminated 
or misclassified particle or an agglomerate containing a valuable particle, that might otherwise be 
ejected, reducing the purity of the valuable fraction. 

Further parameters which have to be optimized for maximized sorting efficiency are: 

• Delay time [ms]: Defines the time from the sensors object detection to the activation of the valve 
and needs to be set up so that the sorted objects can be blown out efficiently. It is mainly depended 
on the sorted objects weight. 

• Minimum blow-out time [ms]: Defines how long the valve are minimum opened 
• Minimum object width [mm]: Defines the minimum width of an objects, it can be set from 1 to 

100 mm 



K. Friedrich, G. Koinig and R. Pomberger et al. / MethodsX 9 (2022) 101686 7 

• Valve activity [%]: Defines how far an object has to reach in a path so that the associated valve is 
activated, it can be set from 10 to 100 %. 

In order to understand the principle for the explained methods in sensor-based sorting there are 
some definitions and statistics, that are mandatory to be understood: 

• Pixel: A pixel is the smallest unit of recognition by the detector, determined by the detector ́s 
resolution. These pixels make up the spectral image and are the basis for spectral evaluation. 
Each pixel contains information about its location and the intensities inherent at its location in 
all evaluated wavelengths. With this information each pixel is assigned a material class, which is 
then used to create objects for separation. 

• Object: An object is a cluster of pixels. Whether an object is assigned to material class A or material 
class B is determined by the abundance of pixels making up the object. E.g. if an object consists of 
49 % pixels classified as A and 51 % pixels classified as B, then the object is assigned to material class 
B. For separation purposes only, the objects classification is considered, therefore correct weighing 
of material classes is important in order to achieve a given sorting task at hand. 

• Pixel statistics: Pixel statistics are the distribution of pixels between material classes, i.e. if an object 
consists of 50 pixels of material class A and 8 pixels of material class B, these proportions are 
assigned to the relevant classes separately. 

• Material statistics: Material statistics are the classification of objects according to the dominant 
material class, e.g. if an object consists of 50 pixels of material class A and 8 pixels of material 
class B, the object is evaluated as material class A and all pixels (here 58 pixels) are assigned to 
material class A. 

• Object statistics: The object statistics are the distribution of objects between material classes. If 
58 pixels of class A are assigned to the object in the material statistics, this object is counted in 
material A ́s object statistic, raising the object count by one. 

The most crucial parameter in terms of plant settings from an operator’s point of view is the 
throughput-rate ˙ m . This parameter influences the economic performance of the sorting plant. The 
throughput rate determines the amount of material passing the experimental SBS setup during a 
specific time. The chute has a width of 0.5 m. The following formula is used to calculate the 
throughput-rate ˙ m [4] : 

˙ m 

[

kg 

h ∗ m 

]

= 
m input [ kg ] 

t [ s ] / 3600 
[

s 
h 

]

∗ 0 . 5 [ m ] 

where m input is the mass of the input material, and t the time of the sorting experiment. Additionally, 
four quality parameters should be determined to evaluate the performance of the sorting trial [4] : 

• The purity is the quality of the product fraction (ejected fraction) and is calculated according to the 
following formula: 

P urity [ % ] = 
m target f raction, e ject [ kg ] 

m e ject [ kg ] 
∗ 100% 

• The yield determines the efficiency of the ejection process and is calculated according to the 
following formula: 

Y ield [ % ] = 
m e ject [ kg ] ∗ c target f raction, e ject [ % ] 

m input [ kg ] ∗ c target f raction, input [ % ] 
∗ 100% 

• Recovery is the mass of ejected material relative to the mass of input material and calculated 
according to the following formula: 

Recov ery [ % ] = 
m e ject [ kg ] 

m input [ kg ] 
∗ 100% 

• Incorrect discharges are material pieces, which are wrongfully ejected and their share is calculated 
according to the following formula: 

Incorrect [ % ] = 
m e ject [ kg ] ∗ c non −target f raction, e ject [ % ] 

m input [ kg ] ∗ c non −target f raction, input [ % ] 
∗ 100% 
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where m input is the input mass, t is the time of the experiment, m target fraction,eject is the mass of the 
target material in the ejected material, m eject is the mass of ejected material, c target fraction,eject is the 
percentage of the target material in the ejected material, c target fraction,input is the percentage of the 
target material in the input material, c non-target fraction,eject is the percentage of the non-target material 
in the ejected material and c non-target fraction, input is the percentage of the non-target material in the 
input. 

Sorting with VIS technology 

Method principle 

With the assistance of VIS-based sorting, materials can be sorted according to their colour. VIS- 
based sorting is the oldest sensor-based sorting technique, which was previously used mainly for 
waste glass. In polymer recycling, this sensor technology is often used for polyethylene terephthalate 
(PET). Its primary operating principles are well understood and thoroughly explained [5] . Nowadays, 
it is mainly used in combination with other sorting techniques. 

The method is based on the interaction of electromagnetic radiation from the visible range 
(380 nm - 750 nm) with the sample. The colour of an object is determined by the absorption or 
reflectance of light in the visible range. The absorption of a specific wavelength is based on the 
excitation of valence electrons. The excitation of the valence electrons causes electron transitions 
between the energy orbitals of different energy. The resulting energy difference leads to the 
absorption of specific wavelengths according to the following equation: 

λ = 
h · c 

�E 

where λ is the wavelength, E is the energy, h is the Planck constant (6,626 ∗10 −34 J ∗s) and c is the 
speed of light [6] . The smaller the energy difference, i.e. the easier it is to excite the electrons, the 
longer the wavelengths of light absorbed. 

In the sorting process, the sample is exposed to electromagnetic radiation from a light source. 
Part of the light is absorbed and other parts are diffusely reflected on the surface of the object. 
These reflected parts are directed onto a detector. In this detector, the incident light is split into its 
components. The result is a spectrum of wavelengths as a function of intensity. With this sorting 
technique, only the range of visible light is analysed [7] . The colours can be defined either according 
to the red-green-blue (RGB) method or the hue-saturation-brightness (HSB) method. The RGB method 
defines the colour by parts of the primary colours red, green, and blue. 

In comparison, the HSB method defines colour by hue saturation and brightness. The hue is 
displayed in a 360 ° circle representing a colour wheel, with each degree representing a specific colour. 
A saturation of 100% is the most intense version of the colour, regardless of the hue selected. In 
comparison, a saturation of 0 % represents the grey version of that colour. Brightness is also expressed 
as a percentage. A brightness of 0 % is black, no matter the hue or saturation. A brightness of 100 % 
means the light is at full strength [8] . 

With the VIS-based sorting technique, manual sorting by colour can be replaced. Compared to 
manual sorting, smaller grain sizes can be sorted with a higher throughput rate. The technique also 
enables the sorting of materials that are only slightly different in colour and would no longer be 
distinguishable by the eye (e.g. different shades of blue). However, successful sorting requires much 
preparatory work in defining the various colour classes and configuring the system correctly (lightning 
settings) [9] . The lighting settings must be adapted correctly, as they react very sensitively to external 
influences. When creating the colour classes, it must be ensured that no reflections occur in the 
picture of the reference material or that these are not considered when defining the colour class. The 
method works very well with materials that differ significantly in colour. When the colour differences 
are minor, the effort required to create the colour classes is very high [ 10 , 11 ]. 

Since materials vary in their ability to transmit visible light, the setup consists of two individual 
illumination arrangements. They are split up into two separate lighting modes, incident light and 
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Fig. 2. Colour cylinder for creating the VIS sorting model according to the colour sector (Hue, H), the brightness level (Value, 
V) and the saturation circle (Saturation, S) (authors depiction). 

background light. Incident light is used with materials whose density does not permit light to be 
transmitted. The illumination source, therefore, needs to be on the same side as the detector. These 
materials include building materials like bricks which need to separate from the mortar according 
to their colour. The other category includes materials like glass, which are highly reflective and 
translucent. Their high reflectivity can inhibit the incident illumination by reflecting light directly 
into the detector lenses, causing glare. This glare can prohibit the detector from gathering sufficient 
information about the colour of the particle. Illuminating the particles from behind using background 
illumination can circumvent and alleviate these problems. Through background illumination, the 
particles tendency to cause glare is reduced and finer differentiation in the material’s colour can be 
made. This allows good separation between different shades of the same colour, e.g. separating light 
blue glass from blue glass. 

Method description 

The first two steps of a VIS sorting trial are typically adjusting the lighting settings and 
determining the white calibration and the black calibration to ensure optimal light that allows an 
equally good identification of the different colours and does not lead to overexposure. 

White and black calibration aims to adjust and determine the spectroscope’s colour response to 
a known colour composition under experimental circumstances like artificial light in the laboratory. 
It is done by taking an image of a standard colour before the experiments and calibrating the 
sensor’s response. The object used for this is a white ceramic plate provided by the manufacturer 
specifically for this purpose. An image of this ceramic plate is taken which serves as a benchmark 
for what the sensor and the post-processing software regard as pure white or all detectable colours’ 
similar composition in the visible wavelength range. Similarly, the black calibration is performed by 
shielding the detectors lense with a non-permissive plate, prohibiting stray light from entering the 
lens. This state sets the lower boundaries of brightness. These calibrations need to be performed 
before every measurement since changes in the ambient light due to changes in the daytime, weather 
and similar conditions can alter the colour of the specimen and render the prepared sorting model 
worse. 

In order to separate and differentiate plastic parts by colour, the VIS sensor needs to be trained in 

a third step through creating a basic classification program. This program is developed by registering 
different colour types according to the Hue-saturation-value (HSV) system. Therefore, the HSV system 

settings need to be configured: The hue component, which represents the colour variations on a pie 
chart of 360 °C, is divided into 48 units to differentiate between colours. The saturation parameter 
depicts the richness of the colour, and the brightness component defines how bright the colour is [8] , 
as seen in Fig. 2 . Both parameters are measured on a scale from 0 % to 100 % and divided into 200 
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saturation units and 250 brightness units, respectively. The more subdivisions into units of the HSV, 
the better is the resolution of the sorting trial, but the more complex and time-consuming the sorting 
system is capturing the different colours and training. 

Fourth , some pieces of each chosen material – in the current example, a red low density 
polyethylene (LDPE), a white LDPE and a grey high density polyethylene (HDPE) – are inserted 
separately into the experimental SBS setup to picture the material. The picture allows the classification 
of the colour and consequently the detection and sorting using the VIS sensor for the sorting trial. The 
material stream, which goes through the chute, is classified by the colour of the targeted fraction in 
the HSV system in step five . 

The software depicted and used to create the colour separation model is Teachin ICC. A teachin 
file defines the mapping of colours to specific classes. The file is read in by the sorting system so that 
during sorting it can be decided which colour classes are present for the pixels of an object detected 
in the camera image, in order to determine which material is to be assigned to the object based on 
the majority of colour classes present. 

Fig. 3 shows exemplarily this procedure for the white LDPE fraction. After loading the picture 
(or a part of it) into the software Teachin ICC, a range of pixels is selected (A), which fits the 
material’s colour. It shows little reflections and it is not situated at the edge of the material to avoid 
transparency. The hue pie then locates the colour in the respective segments (B). It also indicates other 
segments where previous materials have been localised. For example, the orange section in the pie 
represents the segments and saturation where the grey HDPE material is situated. By clicking on the 
different segments, the saturation (x-axis) and brightness (y-axis) diagram for the respective segment 
opens (C), showing where the corresponding area of the target material is located for the different 
selected pixels. In order to classify this range, the area is selected and saved for the respective colour. 
This procedure has to be repeated for all relevant hue segments (in the picture according to the 
segments, where the "x" is located). 

In order to have an effective classification, in a sixth step, it needs to be verified to what extent the 
selected HSV parameters can serve to detect and ultimately eject the targeted material by determining 
the coverage rate of the registered classification with the original picture of the material. These 
coverage ratios for three materials are visible in the following Fig. 4 . 

It is visible that the coverage ratio for red is optimal as it covers almost the whole surface of 
the three different material pieces. In contrast, the white and grey materials have a lower coverage 
ratio due to reflections and different exposure to the lighting system. The VIS sensor’s inability to 
identify the material needs to be remedied. For this reason, the coverage ratio is optimised by adding 
more pixel and HSV ranges to the material classification in iterative procedure by repeating step five. 
Additionally, the parts that were successfully identified can be weighted with a higher factor. In this 
trial, grey and white are both being weighed twice as much as the other colours. 

Step seven: After finishing the setup and configuration of the classification program, the program 

is transferred to the man-machine interface (MMI) of the experimental SBS setup and the target 
material for sorting is selected. The MMI is connected to the VIS sensor and ultimately controls the 
air nozzles that mechanically eject the selected material pieces through an air blast. The pressure 
applied as air blast from the valves in the air nozzle bar is defined, reflecting sufficient pressure to 
move the target material pieces over the splitter. The time delay between detection and ejection, �t, 
is defined to consider the distance between the classification area on the chute and the air nozzle bar 
and reflect on the density and falling behaviour of the material. For the trials the white LDPE material 
is the target material for ejection. 

In step eight , the actual sorting trial is conducted by inserting the test fraction into the 
experimental SBS setup, thus, putting it on the vibration conveyor and running the system. The pieces 
fall down the chute where the VIS sensor detects the targeted fraction, which activates a specific valve 
in the air nozzle bar according to the position of the targeted material piece. This airflow ultimately 
sorts the material detected as white over the splitter into the target box, whereas the non-target 
fraction falls into the reject box. 

As the final and ninth step , the two sorted fractions are manually sorted and weighed per target 
and non-target material content to determine the performance parameters of the sorting trial. 
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Fig. 3. Creating the classification program in Teachin ICC by configuring the colour parameters according to the HSV system, here exemplary for the white LDPE material (authors 
depiction). 



12 K. Friedrich, G. Koinig and R. Pomberger et al. / MethodsX 9 (2022) 101686 

Fig. 4. Verification of the coverage ratio for three different materials in Teachin ICC (left picture colour "grey" marked in orange, 
centred picture colour "red" marked in red, right picture colour "white" marked in turquoise) (authors depiction). 

Table 4 

Material and corresponding colour of the 
feed material components. 

Material Colour 

LDPE red 
LDPE white 
LLDPE green 
HDPE grey 
PP purple 
TPU yellow 

PET clear 

Method application 

The feed material is a mixed fraction of different plastic components with a corresponding colour, 
see Table 4 . A high-resolution line scan camera (VIS technology) is used as the sensor. The aim is 
the purest possible extraction of white material from the feed material. Following Fig. 1 , the material 
is separated using a vibration conveyor (1) and moved into the sensor’s exposure area via a slide or 
chute (2). 

This sensor assembly (4 - 5) consists of an emitter (4) and a detector (5). In this case, halogen 
lamps, fluorescent tubes, or LED strips are usually chosen as emitters. The emitter’s radiation is 
partially reflected by the individual pieces of plastic and measured by the detector. The detector is 
connected to a computer that records the detected colour in the “colour cylinder”. In terms of the 
colour sector (Hue, H), the brightness level (Value, V) and the saturation circle (Saturation, S) in a 
previously created colour cylinder model (see Fig. 2 ) are compared and thereby assigned to a defined 
group. 

According to the task, if a piece of plastic belonging to the “white” group is recognised, it must 
be separated from the remaining fragments. That is done using a compressed air blast. A valve strip 
(6) downstream of the sensor opens one or more valves when the white piece is in front of the 
valve strip. The piece is "shot out" over the separating edge (7). All different coloured plastics are 
deliberately not ejected. 
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Fig. 5. Feed material (left), separated white LDPE – Eject (centre) and coloured plastic – Reject (right) (Trial 2 in Table 5 ) 
(authors depiction). 

Table 5 

Data of the VIS experiments. 

Unit Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8 Trial 9 Trial 10 

Time of experiment s 34 38 42 42 42 40 42 41 40 38 
Input mass kg 1.09 1.09 1.09 1.09 1.09 1.09 1.09 1.09 1.09 1.09 
Mass of eject kg 0.16 0.16 0.18 0.17 0.17 0.16 0.15 0.17 0.15 0.17 
Mass of reject kg 0.93 0.93 0.91 0.92 0.92 0.93 0.93 0.92 0.93 0.92 
Target material in eject kg 0.15 0.15 0.16 0.16 0.17 0.16 0.14 0.16 0.14 0.16 
Target material in reject kg 0.02 0.02 0.01 0.01 0.00 0.01 0.02 0.01 0.03 0.01 
Non-target material in eject kg 0.01 0.01 0.02 0.01 0.00 0.01 0.01 0.01 0.02 0.01 
Non-target material in reject kg 0.91 0.92 0.90 0.91 0.92 0.91 0.92 0.91 0.91 0.91 

Table 6 

Results of the VIS experiments. 

Unit Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8 Trial 9 Trial 10 

Throughput-rate kg/(h ∗m) 230,6 206,3 186,7 186,7 186,7 196,0 186,7 191,2 196,0 206,3 
Purity % 93.8 96.8 86.6 93.9 97.7 94.5 94.1 93.6 90.3 92.0 
Yield % 90.5 89.2 92.3 93.9 100.0 92.3 88.9 95.2 83.7 95.2 
Recovery % 14.9 14.1 16.4 15.2 15.8 15.1 14.0 15.7 14.1 16.0 
Incorrect discharges % 1.1 0.5 2.6 1.1 0.4 1.0 1.0 1.2 1.6 1.5 

Method validation 

The validation use-case is to separate “white” as target fraction from the feed material described 
in Table 4 and the left picture of Fig. 5 . 

Table 5 sums up the data from the trials in the VIS experiment. The white LDPE material was 
targeted for ejection in all sorting trials. Table 6 provides the consequent sorting trial results in terms 
of plant and quality performance parameters. The resulted fractions from the trial are shown in the 
centred and right picture of Fig. 5 . 

Sorting with NIR technology 

Method principle 

Nowadays, near-infrared (NIR) sorting systems are state-of-the-art in plastic waste sorting plants 
[4] . The basic working principles of NIR spectroscopy were the subject of a plethora of scientific 
studies, so they are well understood and can be used and modified to achieve a variety of tasks 
[12] . The NIR spectroscopy is based on the partial absorption of light in the NIR region (750 – 2500 
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nm) by the molecules in a material. Other than photons of UV and visible light, IR photons lead to 
vibrational and rotational movements of molecules or molecule parts. Suppose the frequency of the 
incident IR light correlates with the resonance frequency of molecular vibration. In that case, the IR 
light is absorbed, resulting in the molecule’s or functional groups’ vibrations. However, IR light can 
only be absorbed if the vibration changes the dipole moment in the molecule or functional group. 
By detecting the reflected or transmitted light of the irradiated material, absorption bands in specific 
spectral regions can be located. Based on these bands’ position and intensity, the functional groups 
within the material and, therefore, the material itself can be identified [13] . 

Methods based on NIR spectroscopy are characterised by the fast, non-destructive and non-invasive 
principle. Additionally, they are more suitable for in-line use than the mid-range infrared systems 
because of their lower price and higher robustness [ 14 , 15 ]. 

The basic principle behind NIR systems in sorting plants is irradiating the objects with NIR light 
and detecting the reflected light by a sensor. For successful sorting, the system has to be trained 
beforehand with the spectra of different materials. The detected spectrum is then pre-processed, 
which entails normalisation and derivation to emphasize their specific characteristics. These processed 
spectra are then compared with the spectrum of the previously defined material to be ejected. If the 
similarity is high enough, the respective object is identified as the defined material and ejected. The 
similarity necessary for assigning the material to an existing class can be defined by the user via 
the threshold parameter in EVK SQALAR. In most cases, specific wavelength regions in the spectra 
are defined for comparison rather than the entire spectrum. In this way, the computing time can be 
reduced. 

This sorting method also has its disadvantages as it is a binary sorting system that can only target 
one fraction to be sorted out. Thus, several NIR systems have to be connected in series or cascades 
to sort out multiple fractions. Another point that should be kept in mind is that moisture, dirt, or 
other residues can influence the NIR-spectra, leading to mis-sorting [4] . Furthermore, it is impossible 
to sort black or very dark plastics as they show high absorbance and, therefore, low reflectance [16] . 
An alternative to NIR sorting systems are tracer-based or water-mark sorting systems, which can sort 
a waste stream into several fractions in one step. Nevertheless, these two technologies also have their 
challenges, e.g. in technical feasibility and economic performance. 

Method description 

Similar to the proceeding in the VIS experiment, the NIR sorting trial starts with classifying the 
different tar get materials for the program’s configuration. As for the VIS experiment, the light settings 
and the white calibration and black calibration for the NIR experiment are set up for the sorting task. 

Before a measurement can take place, the sensor’s white and black calibration needs to be 
performed. The reasoning behind this calibration is that the software needs to know the maximum 

and minimum radiation intensity to expect, setting the upper and lower boundaries for spectral 
evaluation. The white calibration is performed as follows. Firstly, a reflective material is placed on the 
chute, a white ceramic plate provided by the manufacturer for this purpose. Then the user sets the 
white calibration target in the EVK SQALAR software, in this case, 20 0 0 Arbitrary Light Units (ALU), 
which is the unit for radiation intensity used by EVK in all their software and detection applications. 
This target correlates to the reflected intensity by the ceramic plate. The software will use this 
calibration target as a reference to order the detected radiation according to its intensity. If any pixels’ 
reflected radiation exceeds this threshold, its intensity will be capped to the white calibration setting. 

After the white calibration has been performed, the black calibration follows. All incoming light 
into the detector must be blocked with a non-NIR permissive shielding, usually made from black 
polymers, coloured with carbon. Then the user starts the black calibration process in EVK SQALAR, 
defining the bottom threshold, 0 ALU, of incoming light. After both processes, black and white 
calibration, have been completed, the intensity range under the given experimental circumstances 
has been defined. This intensity range is used to plot and evaluate the spectral information of the 
evaluated materials. 

In addition, the background ́s reflection intensity needs to be defined in SQALAR. The glass chute (2 
in Fig. 1 ) is transmissive, leading to low reflected intensity if no object is present to reflect the incident 
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NIR radiation. This lack of reflection is exploited by defining a lower boundary of intensity under 
which all pixels are classified as background. All background pixels are omitted from classification. 

The next step is the setup of the system. In this case, three materials for creating the classification 
program are chosen: Polypropylene (PP), PET and thermoplastic polyurethane (TPU). Several pieces 
are taken and inserted into the experimental SBS setup to acquire an image and the corresponding 
NIR-spectra for each material. From the images of the pieces, several pixels are selected over which 
the respective NIR-spectrum is averaged. Fig. 6 shows the spectra of five selected pixels of a PP 
specimen. It can be seen that the spectra vary amongst those pixels although it is the same material. 
When selecting the areas of the particles, areas with reflections and edges should be avoided. The 
received spectrum is then assigned to the respective material. For the following comparison between 
the materials, the first derivative of the spectrum is used. The scattering of the spectra of the three 
materials is shown in Fig. 7 and Fig. 8 . As visible in the Fig.s, PET exhibits a relatively high scattering 
compared to the other two plastics. However, due to its characteristic peak in the area of 1650 nm, 
PET is usually easy to detect, especially in this case compared to PP and TPU. 

The spectra can be evaluated using their depiction in a cartesian coordinate plane. The x-axis 
of this plane depicts the relevant wavelength in nanometres. This relevant wavelength represents 
the wavelengths the detector acquires, in this case, 930 nm - 1700 nm. This label does not change, 
regardless of the post-processing, the spectra undergo. The y-axis depicts the intensity of the reflected 
radiation acquired by the sensor. The y-axis’ unit is the arbitrary light unit (ALU). As mentioned, 
this unit is used by all operating systems created by EVK and represents the detected intensity in 
relation to the white and black calibration. The range of this is set by the user or the manufacturer 
when setting the target for white calibration. In the case of this study, the white calibration target 
is set to 20 0 0 ALU, representing the maximum intensity of the radiation reflected by the specimen 
used for white calibration. In this case, the background used for the calibration was a white ceramic 
plate supplied explicitly by the manufacturer for white calibration. As mentioned, the label of 
the x-axis does not change with progressing processing of the spectral data, e.g. derivation. It is 
not applicable for the y-axis, as its label changes with processing the spectral data, depicting the 
relevant information for the current processing application, e.g. the gradient of the raw spectra 
when displaying the first derivative. In this example, the unit of the y-axis changes to depict the 
change in intensity over the given wavelength, represented as arbitrary light units per nanometre 
(ALU/nm). However, this is not represented in the current version of the used classification software. 
The representation of the y-axis increases the range to permit the representation of the derivatives 
of the raw spectra. This part of the software can confuse when interpreting the spectra and needs 
to consider when preparing spectra for publication and use compared to other spectra, taken under 
different circumstances and with different levels of processing applied to them. With knowledge of 
this peculiarity in the analysis software, caused complications can be successfully circumnavigated. 
E.g., by using external software to analyse and compare spectra, a MATLAB script translates the raw 

spectral hyperspectral imaging (HSI) cube into a spectral image. Out of this cube, suitable spectra can 
be selected, processed, evaluated and plotted. 

The code used in the comparison of spectra takes the HSI Cube, exported as a .mat file. This 
HSI cube’s dimensions represent the size of the spectral image taken and the number of spectral 
evaluation points linearly spaced over the relevant wavebands. In this case, the detector can assess 
220 spectral points in the detectable range from 930 nm - 1700 nm. Therefore, the dimensions of this 
HSI cube are [Width of the spectral image in pixels x Height of the spectral image in pixels x 220]. 
The code converts this HSI Cube into a black and white image, representing the average reflected NIR 
intensity at every recorded pixel. This average produces an interpretable representation of the spectral 
information contained in the HSI Cube from which pixels for spectral evaluation can be selected. This 
selection process is depicted in Fig. 9 , which shows the representation of a spectral recording taken 
of seven PP specimens. 

After selection, the user can process the spectral information as needed. For example, apply 
smoothing, normalisation and derivation, enabling the user to exert more control over the data 
processing. An example of three evaluated pixels from the spectral image mentioned above is depicted 
in Fig. 10 . This Fig. depicts three PP spectra of the specimen after applying the first derivative, 
gaussian smoothing with a smoothing interval of 10 and normalisation using the z-score method, 
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Fig. 6. Scattering of the first derivative of the NIR-spectrum of PP amongst different Pixels (evaluation performed in MATLAB, authors depiction). 
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Fig. 7. Scattering of the first derivative of the NIR-spectrum of PET (blue) (evaluation performed in MATLAB, authors depiction). 
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Fig. 8. Scattering of the first derivative of the NIR-spectrum of yellow TPU (evaluation performed in MATLAB, authors depiction). 
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Fig. 9. Selection of pixels for evaluation from the visualised HSI Cube in SQALAR (authors depiction). 

which normalises the data to have a mean of 0 and a standard deviation of 1. A smoothing 
interval of 10 means the smoothing was applied taking the median over a ten-element sliding 
window. 

These spectra are used as labelled input for the machine learning algorithm underlying the spectral 
classification. These spectra serve as the training data for the supervised machine learning approaches 
used to label new spectra or in other words, to classify materials into pre-defined groups. In order to 
achieve this, partial least square regression is used. This approach allows the classification of material 
without the need to explicitly program every spectrum which could likely be encountered when 
sorting materials. The rigor, with which spectra which deviate from the training set are discarded, 
or counted as “not classified”, can be determined by the user via the previously mentioned threshold 
parameter. 

Once the spectra have been successfully assigned to the materials, the wavelength range is selected 
in SQALAR for usage in the following sorting process to select specific ranges in which the spectra 
differ significantly. Fig. 11 shows the chosen wavelength ranges in the left side of the Figure (1 ). The 
images on the right side of the Figure (2 ) show the pieces and the classified material type, visualised 
by the respective colour. It is shown that PP is covered best. PET is also well covered, except for some 
small areas at the edges assigned to unclassified material (yellow). The yellow lines in the frames can 
be attributed to dirt on the chute. The third image shows TPU, which has larger misclassified edge 
areas identified either unclassified or PP. Since the coverage ratio is greatly exceeding 50%, sorting 
should be feasible. The higher weighting of the successfully identified parts can further improve the 
sorting. 

After finishing the classification program and transferring it to the MMI, the settings of the air 
nozzles are adjusted as described previously for VIS technology. For the sorting experiment, PP is the 
target material for ejection. 

The sorting trial is started by putting the test fraction on the conveyor and running the system. 
The principle of the sorting process is the same as for the VIS sorting. After the sorting is finished, 
the two separated fractions are manually sorted by target and non-target material and then weighed 
to evaluate the sorting process’s quality. 

Method application 

The feed material is a mixed fraction of different plastic components with a corresponding colour, 
see Table 4 . NIR spectroscopy is used as sorting technology. The aim is to achieve the purest possible 
output of PP (following Fig. 1 ). 

The material is separated using a vibration conveyor (1) and moved into the sensor’s exposure area 
via a slide or chute (2). 
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Fig. 10. Spectral evaluation of PP pixels after processing (evaluation performed in MATLAB, authors depiction). 
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Fig. 11. Creating the classification program in SQALAR for the NIR experiment: 1) selecting three wavelength sections visualised by the red areas, 2) coverage ratios of the used pieces (PP 
purple, PET white, TPU orange) (authors depiction). 
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Table 7 

Data of the NIR experiment. 

Unit Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8 Trial 9 Trial 10 

Time of experiment s 41 41 36 38 38 40 38 40 37 38 
Input mass kg 1.09 1.09 1.09 1.09 1.09 1.09 1.09 1.09 1.09 1.09 
Mass of eject kg 0.11 0.02 0.11 0.13 0.10 0.11 0.12 0.10 0.14 0.14 
Mass of reject kg 0.98 0.98 0.98 0.96 1.00 0.98 0.97 0.99 0.95 0.95 
Target material in eject kg 0.10 0.01 0.10 0.10 0.09 0.10 0.10 0.09 0.10 0.10 
Target material in reject kg 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.00 
Non-target material in eject kg 0.01 0.01 0.01 0.03 0.01 0.01 0.02 0.01 0.04 0.04 
Non-target material in reject kg 0.98 0.98 0.98 0.96 0.99 0.98 0.97 0.98 0.95 0.95 

Table 8 

Results of the NIR experiment. 

Unit Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8 Trial 9 Trial 10 

Throughput-rate kg/(h ∗m) 191.2 191.2 217.8 206.3 206.3 196.0 206.3 196.0 211.9 206.3 
Purity % 91.7 66.7 90.8 76.3 93.9 89.4 84.9 92.2 69.9 74.1 
Yield % 100.0 100.0 100.0 100.0 92.1 100.0 100.0 93.1 100.0 100.0 
Recovery % 10.0 1.4 10.0 12.0 9.1 10.4 10.9 9.4 13.1 12.4 
Incorrect discharges % 0.9 0.5 1.0 3.1 0.6 1.2 1.8 0.8 4.4 3.5 

Modern NIR sensors (5) cover a wavelength range from around 10 0 0 to 2500 nm. Halogen lamps, 
for example, can be used as emitters (4). This spectrum contains information that allows conclusions 
about the chemical composition of the investigated objects. 

NIR technology makes it possible to recognise different types of plastic based on specific molecule 
groups - in the application example PP. Fig. 12 shows the spectra of PET (blue) and PP (red) and 
the differences between the two materials which are used to separate them from each other. These 
waves are excited to vibrate by the incident radiation. The wave oscillation energy is split in the 
reflected and transmitted radiation so that a corresponding absorption band results in the resulting 
spectrum. The detected spectrum is converted into an electrical signal and processed in an associated 
evaluation unit. The measured spectrum is compared with several reference spectra from a database. 
If the spectrum matches one of these spectra, the particle is recognised as the related material and 
can be sorted. The detection of dark (soot-blackened) materials is a limiting factor that plays a role in 
plastic processing in particular. These particles usually do not reflect a spectrum detected by the NIR 
sensor of a sensor-based sorting machine [17] . 

According to the task, if packaging from the "PP" group is recognised, it must be separated from 

the rest of the fraction. That is done using a compressed air blast. A valve bar (6) downstream of the 
sensor opens one or more valves when the PP is in front of the valve bar. The PP is ejected over the 
separating edge (7). All other types of plastic are deliberately not ejected. 

Method validation 

The validation use-case is to separate PP as target fraction from the feed material described in 
Table 4 and Fig. 13 . 

The throughput rate and the quality parameters are evaluated according to the equations shown for 
VIS technology. In Table 7 , the data from the NIR sorting trial are summarised, where the PP material 
fraction was targeted for ejection. Table 8 provides the consequent results of the sorting trial in terms 
of plant and quality performance parameters. Both trials were performed with a different amount of 
input stream out of the same input fraction. The resulted fractions from the trial are shown in the 
centred and right picture of Fig. 13 . 
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Fig. 12. Recorded spectra using NIR technology on the experimental sensor-based sorting setup and further evaluated in MATLAB: The blue line represents the characteristic PET spectrum 

while red represents the characteristic PP spectrum (authors depiction). 



2
4
 

K
. Fried

rich
, G

. K
o
in
ig
 a
n
d
 R
. P

o
m
b
erg

er et a
l. / M

eth
o
d
sX
 9
 (2

0
2
2
) 10

16
8
6
 

Fig. 13. Feed material (left), separated PP – Eject (centre) and coloured plastic – Reject (right) (Trial 10 of Table 7 ) (authors depiction). 
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Fig. 14. Typical working schemata of induction sorting with compressed air bar and sorting screen (authors depiction). 

Induction Sorting 

Method principle 

The principal workings of induction sorting are well explained and understood. Therefore, the 
following will be a summary of the methods working principles [18] . Valuable metal content can 
be separated from the non-metallic waste stream by deploying three different methods. One of those, 
apart from eddy current sorting and magnetic sorting, are induction sorting systems. These sensors 
identify metallic objects in the waste stream via magnetic induction. Coils in the sensor generate 
a magnetic field, which, once a metallic object, or, in broader terms, a conductive object, moves 
past, it induces an electric current. According to the programming, this electronic signal is sent to 
a computing unit that activates an ejector mechanism, usually in the form of a compressed air nozzle 
array. This compressed air pushes the detected metal objects over a diverting screen, separating them 

from the material flow and generating a metallic fraction. 
The size of the coils depends on the grain size of the material to be sorted and has to be chosen 

accordingly. Fig. 14 shows the working principle of an induction separating unit. 

Method description 

In contrast to develop sorting models for the VIS and NIR sensor, the sorting model for induction 
consists only on the setup of parameters for the induction sensor. These parameters can be set on the 
man-machine-interface (MMI) of the experimental sorting setups control cabinet. These parameters 
are the follows: 

• Delay time [ms]: Defines the time from the sensors object detection to the activation of the valve. 
• Minimum blow-out time [ms]: Defines how long the valve are minimum opened. 
• Minimum object size [mm]: Minimum size of an object that the valves from the air nozzle bar 

opens. 
• Scaling [%]: Object scaling can either stretch or compress the object, it can be set from 50 to 100 %. 
• Edge valve: A button to be activated, when the edge valves of the compressed air nozzle bar should 

be activated. 
• Sensitivity: Defines the threshold value when the metal sensor should detect metal objects as metal 

objects, this threshold can be set from 5 to 750. 
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Table 9 

Data of the induction experiment. 

Unit Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8 Trial 9 Trial 10 

Time of experiment s 52 53 52 55 47 53 53 49 57 55 
Input mass kg 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
Mass of eject kg 0.27 0.27 0.26 0.26 0.25 0.24 0.24 0.26 0.24 0.24 
Mass of reject kg 0.73 0.73 0.74 0.74 0.75 0.76 0.76 0.74 0.76 0.76 
Target material in eject kg 0.19 0.2 0.19 0.2 0.2 0.19 0.18 0.19 0.18 0.19 
Target material in reject kg 0.06 0.05 0.06 0.05 0.05 0.06 0.07 0.06 0.07 0.06 
Non-target material in eject kg 0.08 0.07 0.07 0.06 0.05 0.05 0.06 0.07 0.06 0.05 
Non-target material in reject kg 0.67 0.68 0.68 0.69 0.70 0.70 0.69 0.68 0.69 0.70 

Table 10 

Results of the induction experiment. 

Unit Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8 Trial 9 Trial 10 

Throughput-rate kg/(h ∗m) 138.5 135.8 138.5 130.9 153.2 135.8 135.8 146.9 126.3 130.9 
Purity % 70.4 74.1 73.1 76.9 80.0 79.2 75.0 73.1 75.0 79.2 
Yield % 76.0 80.0 76.0 80.0 80.0 76.0 72.0 76.0 72.0 76.0 
Recovery % 27.0 27.0 26.0 26.0 25.0 24.0 24.0 26.0 24.0 24.0 
Incorrect discharges % 10.7 9.3 9.3 8.0 6.7 6.7 8.0 9.3 8.0 6.7 

Method application 

The induction sorting system complements magnetic sorting and eddy current separation for 
recovering residual metals from a mix of materials. It is particularly suitable for stainless steel and 
composite materials such as cables or circuit boards. It can be used to focus on the production of 
recoverable metal concentrates, such as a stainless-steel fraction. However, the goal of processing can 
also be to produce a metal-free residual fraction with less than 1% metal to meet acceptable qualities 
and purities, e.g. in the production of residue derived fuels. Both tasks are the core applications of 
induction sorting systems. 

Metallised foils can be separated from their unmetalled counterparts because the detection 
sensitivity of the induction sensor can be increased until the minute amount of metallisation can 
be detected. This approach allows the detection of metallised 2D materials and permits their ejection. 
Metallised foils are inherently difficult to be detected with a NIR sensor. There is a high probability 
that the metallised layer will be the side facing the NIR detector, prohibiting any form of NIR detection 
since the NIR inactive metal layer reflects most radiation. It is, therefore, useful to detect those 
metallised particles by induction sorting. Further, the reaction time between detection and ejection 
can be modified to account for the aerodynamics of the material. Metallised foils drop comparatively 
slowly, so the reaction time could be increased while sensitivity and reaction time had to be decreased 
when separating refuse derived fuel (RDF) from metallic contaminants. 

Method validation 

The induction sensor settings for the following trial are a delay time of 65 ms, a minimum blow- 
out time of 15 ms, a minimum object size of 3 mm, a scaling of 100 %, activated edge valves 
and a sensitivity of 35. The throughput rate and the quality parameters are evaluated according to 
the equations shown for VIS technology. In Table 9 , the data from the induction sorting trial are 
summarised, where the metals in a refuse-derived fuel stream were targeted for ejection. Table 10 
provides the consequent results of the sorting trial in terms of plant and quality performance 
parameters. The resulted fractions from the trial are shown in the centred and right picture of Fig. 15 . 
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Fig. 15. Feed material (left), separated metal – Eject (centre) and refuse-derived fuel – Reject (right) (Trial 4 of Table 9 ) (authors depiction). 
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Fig. 16. Input composition of sensor fusion trial (authors depiction). 
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Fig. 17. Feed material (left), separated white glass – Eject (centre) and residuals – Reject (right) (Trial 5 of Table 12 ) (authors depiction). 
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Table 11 

Input composition of sensor fusion trial. 

Input Material Unit Mass 

PP kg 0.01 
HDPE kg 0.01 
TPU kg 0.02 
LLDPE kg 0.01 
LDPE - Red kg 0.03 
LDPE - White kg 0.04 
PMMA kg 0.04 
White Glass kg 0.63 
Wire Glass kg 0.31 
Coloured Glass kg 0.46 
Ceramics kg 0.02 
Metals kg 0.03 

Table 12 

Data of the sensor fusion experiment. 

Unit Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8 Trial 9 Trial 10 

Time of experiment s 57 47 54 50 52 56 50 53 48 50 
Input mass kg 1.66 1.66 1.66 1.65 1.65 1.65 1.65 1.65 1.65 1.65 
Mass of eject kg 0.63 0.62 0.61 0.63 0.63 0.63 0.60 0.61 0.61 0.60 
Mass of reject kg 1.02 1.04 1.09 1.02 1.02 1.02 1.05 1.04 1.04 1.05 
Target material in eject kg 0.63 0.62 0.61 0.62 0.63 0.63 0.60 0.61 0.61 0.60 
Target material in reject kg 0.02 0.04 0.04 0.02 0.02 0.01 0.05 0.03 0.03 0.04 
Non-target material in eject kg 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 
Non-target material in reject kg 1.00 1.00 1.05 1.00 1.00 1.00 1.01 1.00 1.01 1.01 

Table 13 

Results of the sensor fusion experiment. 

Unit Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8 Trial 9 Trial 10 

Throughput-rate kg/(h ∗m) 209.1 253.5 220.7 237.9 228.7 212.1 237.9 224.0 247.1 237.5 
Purity % 100.0 100.0 100.0 98.9 100.0 100.0 100.0 100.0 100.0 100.0 
Yield % 97.4 93.9 93.8 96.9 97.4 97.8 92.7 94.7 95.9 93.8 
Recovery % 38.3 37.3 36.7 38.2 38.1 38.2 36.0 36.9 37.1 36.6 
Incorrect discharges % 0.0 0.0 0.0 0.7 0.0 0.0 0.0 0.0 0.0 0.0 

Sensor fusion 

Method principle and method description 

In principle, all separation characteristics that can be measured without contact using sensors, 
such as shape, color, gloss, molecular composition, density or electrical conductivity are used. 
Today, various detection methods are mostly used combined to ensure simultaneous detection of 
multiple material properties, this is called multi-sensor technology or sensor fusion [ 17 , 19 ]. This 
approach is useful for sorting material compositions. An example is the fusion of previously described 
technologies NIR, VIS and induction, to eject white glass from a mixed waste fraction composed of 
plastics, mixed coloured glas, wire glass and metals). 

Further sensor fusion techniques currently employed and under development, like X-Ray or 
marker-based sorting can further increase the efficiency of sensor fusion by increasing the number 
of physical and chemical properties and manmade markers by which sorting of refuse can be 
undertaken. 
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Method application 

The method described here utilises the aforementioned technologies, NIR, VIS and induction 
combined to generate a valuable product of pure white glass from an input consisting of LDPE, HDPE, 
PP, TPU, linear low density polyethylene (LLDPE), polymethylmethacrylate (PMMA), mixed coloured 
glass, wire glass and metals ( Table 11 and Fig. 16 ). In one trial, NIR combined with VIS spectroscopy 
is used to eject only the valuable white glass by combining detection of the characteristic plastic 
NIR fingerprints to sort out plastics with the inclusion of the respective VIS model for white glass. 
Further, induction classification of the particle is set up negative, assuring the white glass fraction is 
not polluted by wire glass particles which would be ejected alongside the white glass. This sensor 
fusion ensures, that only white glass is ejected. 

Method validation 

The validation use-case is to sort white glass as target fraction from the feed material described in 
Table 11 and Fig. 17 . 

The throughput rate and the quality parameters are evaluated according to the equations shown for 
VIS technology. In Table 12 , the data from the sensor fusion trials are summarised, where the white 
glass was targeted for ejection. Table 13 provides the consequent results of the sorting trial in terms 
of plant and quality performance parameters. Both trials were performed with a different amount of 
input stream out of the same input fraction. The resulted fractions from the trial are shown in the 
centred and right picture of Fig. 17 . 
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3 Process Optimisation Phase 
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Comparison” 

Koinig, Gerald; Grath, Elias; Barretta, Chiara; Friedrich, Karl; Vollprecht, Daniel; Oreski, 
Gernot (2022): Lifecycle Assessment for Recycling Processes of Monolayer and Multilayer 
Films: A Comparison. In Polymers 14 (17), p. 3620. DOI: 10.3390/polym14173620. 

Annotation on the doctoral candidate’s contribution to this publication: 
 

The general concept of the publication was designed by the doctoral candidate and discussed 
in contribution with the co-authors Elias Grath and Karl Friedrich. Afterwards, the relevant 
scientific literature on the subject was reviewed by the doctoral candidate and Elias Grath. The 
computations were done by co-author Elias Grath. The publication was then written 
independently by the author of the doctoral thesis based on a draft created by Elias Grath. The 
internal review process was done with the consultation of the co-authors Karl Friedrich, Elias 
Grath, Barretta Chiara and supervisors Gernot Oreski and Daniel Vollprecht. 
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Abstract: This work covers a lifecycle assessment of monolayer and multilayer films to quantify the

environmental impacts of changing the management of plastic film waste. This lifecycle assessment

offers the possibility of quantifying the environmental impacts of processes along the lifecycle of

monolayer and multilayer films and mapping deviating impacts due to changed process parameters.

Based on the status quo, the changes in global warming potential and abiotic fossil resource depletion

were calculated in different scenarios. The changes included collecting, sorting, and recycling mono-

and multilayer films. The “Functional Unit” under consideration comprised 1000 kg of plastic film

waste, generated as post-consumer waste in Austria and captured in the lightweight packaging

collection system. The results showed the reduction of environmental impacts over product lifecycles

by improving waste management and creating a circular economy. Recycling all plastic film reduced

global warming potential by 90% and abiotic fossil resource consumption by 93%. The necessary

optimisation steps to meet the politically required recycling rates by 2025 and 2030 could be estimated,

and the caused environmental impacts are presented. This work shows the need for increased

collection, recycling, and significant improvement in the sorting of films to minimise global warming

potential and resource consumption.

Keywords: 2D plastic packaging; near-infrared spectroscopy; sensor-based sorting; life cycle assess-

ment; small film packaging

1. Introduction

Plastics are omnipresent in everyday life, and their primary areas of application can
be found in the packaging industry, the construction industry and the automotive indus-
try [1]. Plastics as packaging material reduces packaging mass, energy consumption and
greenhouse gas emissions [2]. In the packaging industry, in particular, plastic products are
required, which, in addition to the requirements for the protection of the packaged products
and industrial processability, must also meet the optics, haptics and consumer information.

The legal framework in the European Union and Austria creates the basis for an
increased focus on the recycling of plastic packaging. The legal framework for plastics and
packaging in the European Union and Austria, defined by laws, regulations, directives,
strategies and action plans, sees regulations such as the EU circular economy package,
the EU plastics strategy, the EU single-use plastics directive, the EU packaging directive
94/62/E.G. and the Austrian Waste Management Act 2002 propose increases concerning
plastics recycling.

Along with the increasing annual volume of plastic waste of around 19% in the
period from 2006 to 2018 [1] and the policy instrument to realise the potential of waste
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for the provision of secondary raw materials through mandatory recycling quotas [3],
optimisations in sorting and recycling processes are necessary.

Increasing these recycling quotas is an ecologically viable way to fulfil ecological
requirements by increasing the recycling of currently ignored materials streams such as
multilayer films, which make up a substantial portion of lightweight packaging in Austria
and are currently being incinerated, which adds to the carbon footprint and squanders
valuable resources. Considering that of 300,000 t of plastic packaging waste generated per
year in Austria small films account for 69,000 t, the potential for improvement in this area is
substantial [4,5]. These films are commonly made from polyolefins, like polyethylene (PE),
polypropylene (PP), or other polymers such as polyethylene terephthalate (PET). Further
in the multilayer materials, various combinations of polymers, such as polyamide and PE
or PE and PP are common.

Despite the current difficulty in recycling mono- and multilayer packaging, techno-
economic analysis of processes to separate multilayer materials and use the separated
polymers for recycling show promise. Considering that recycled polymers must be pro-
duced at a price similar or lower than virgin materials to be economically viable and
simultaneously have to require less resources such as energy in their production to be
considered ecologically sensible, the creation of processes that satisfy all these requirements
is currently undergoing. Amongst these are APK’s Newcycling [6], Unilever’s CreaSolv [7]
and the STRAP [8] process. The STRAP process showed a 37% reduction in energy re-
quirement for separating the layers of a multilayer, recovering the PET contained therein,
compared to the energy required in the production of virgin PET [8].

Recycling monolayer films is equally difficult because foreign materials may be intro-
duced to an otherwise-clean mono-material waste stream. This contamination can occur
by introducing multilayer films into the feedstock, which contain foreign materials and
thus can have a detrimental effect on recyclability [9]. To remove these contaminants or
subsequently receive them as a separate recyclable fraction, optimisations in the waste
management processes of plastic films are necessary.

Instruments for quantifying the changes in environmental impact are required to
justify necessary optimisations and gauge their possible impact. In particular, the lifecycle
assessment (LCA) is applicable. An LCA quantifies and represents the lifecycle or changes
in processes throughout the product’s lifecycle [10].

Existing LCAs include a study conducted by Choi et al. from 2018, who investigated
the carbon footprint of packaging films made from low-density polyethylene (LDPE),
polylactic acid (PLA), and PLA/polybutylene adipate terephthalate blends (PLA/PBAT)
in South Korea. The results of this LCA show that incineration, as the waste treatment
measure with the highest global warming potential (GWP), has the worst balance sheet for
each plastic fraction considered [11].

Volk et al. carried out an additional LCA in 2021, representing a techno-economic
assessment and comparison of different plastic recycling pathways. The study done by
Volk et al. (2021) evaluates the effects of different recycling routes of separately collected
lightweight packaging in Germany. The GWP, the cumulative energy requirement (CED),
the carbon efficiency and the product costs were considered by Volk et al. The recycling
routes included mechanical recycling, chemical recycling, and a combination of both
methods. The study shows that incineration accounts for 95% of the GWP impact of the
recovery route. By combining mechanical and chemical recycling, around 0.48 kg CO2-eq
per kg input of waste can be saved concerning the current situation of the recycling route
in Germany [12].

It remains to determine whether replacing the incineration and thus the generation of
energy by recycling processes and subsequent reduction of virgin materials benefits the
environment. An increase in transportation and collection efforts to manage the increase in
separately collected lightweight film packaging and the increased effort to recycle these
materials may offset the potential benefits of reduced thermal recovery.
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Further, technological limitations may hinder the implementation of a circular econ-
omy of films packaging, as the amount of recyclate which can be introduced to new
products is limited.

The LCA conducted in the here-presented work considers the effect improved collec-
tion, sorting and recycling of lightweight two-dimensional packaging can have on the GWP
and abiotic resource depletion fossil (ADPF) in the Austrian waste management sector. To
this end, scenarios reflecting different collection and recycling models of monolayer and
multilayer materials are depicted and compared to the status quo. These scenarios entail
separating monolayer materials and using them as a value-adding feedstock for mechanical
recycling, thus reducing the need for thermal recovery and virgin material.

These scenarios show latent potential for saving resources and greenhouse gas emis-
sions through improved sorting and increased recycling of mono- and multilayer films.
The ADPF has been calculated for each scenario. The ADPF mirrors the consumption of
fossil fuels such as oil or gas and subsequent depletion of non-renewable abiotic resources.
The consumption of these resources represents the environmental impact of the production
of virgin packaging materials.

To conclude, it may be stated that the sensibility of replacing thermal recovery with
other means of use depends on the comparison of the environmental impact of each
after-use recovery method. This article aims at aiding in the building of a fundamental
basis for discussion for the implementation of future policies and the prioritisation in the
development of recovery techniques by showing whether a reduction of GWP and ADPF is
indeed feasible with the recycling of packaging film and by providing an estimate as to the
possible reduction in these metrics with different measures taken.

2. Materials and Methods

In the following, the used materials for conducting the LCA and the used software
are explained.

2.1. Current Status Survey of the Situation Regarding the Occurrence and Treatment of Plastic
Waste in Austria

Prior to the LCA, comprehensive research of the current situation regarding the
generation and treatment of plastic waste in Austria was conducted. The collected data
form the basis for the LCA. Further, the collected data enable a comparison between the
current status with the alternative scenarios, namely the GWP and the depletion and use of
non-renewable and renewable abiotic resources or fossil abiotic resource depletion, in short
ADPF. Both gauges were calculated in the course of the LCA. Data from Statistics Austria,
Eurostat and existing literature representing the current status were collected during this
preliminary work.

2.2. Software Used

2.2.1. subSTance flow Analysis

The freeware subSTance flow Analysis (STAN), Version 2.6.801 by the Research Unit
of Waste and Resource Management at TU Wien (Vienna, Austria) was used for the compu-
tation of the LCA. STAN offers the user a platform for presenting material flow analyses
according to ÖNORM S2096. STAN allows the user, after complete modelling of the
material flows, to automatically calculate unknown variables.

2.2.2. GaBi (Holistic Accounting) (Education Licence)–Version 9.2.1.68

The LCA software GaBi was used for the LCA presented in this manuscript. The
software enables the modelling of complex processes with automatic tracking of material
and energy and emission flows, and its implemented databases allow access to data for
modelling. The used databases are mentioned throughout the manuscript. GaBi allows for
assessment methods for quantifying environmental impacts. The software also supports
the user in displaying results. It has been used to create flow diagrams for each scenario.
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2.3. Conduction of the Lifecycle Assessment

The presented LCA examines the environmental impact caused by plastic films
throughout their lifecycle. The focus of this study was the analysis of the environmental
impact the improved separation and subsequent recycling of mono- and multilayer films
has. This improved separation is enabled by adapting current sorting methods to enable
classification of polymer films and allows for a material utilisation of foil materials which
are currently primarily recovered thermally.

2.3.1. Functional Unit

The considered “functional unit” comprised 1000 kg of plastic film waste generated
as post-consumer waste in Austria, recorded in the collection and recycling system of the
light packaging collection.

2.3.2. Calculations and Definitions

The LCA in this work will look at the performance of sorting plants and recycling
plants and their impact on the overall metrics gauging the depletion of fossil fuels and
emission of greenhouse gases. The output of these plants will be depicted by the relative
mass yield of the sorting and recycling plants.

The mass yield of the sorting plant is depicted as the sorting depth, and it is calculated
using the input mass and the mass of the valuable output. The respective mass yield of the
beneficiation plant is calculated as the mass yield of the beneficiation plant, in short, the
recycling yield.

The process of recycling the functional unit is represented using the collection rate,
the sorting depth, the recycling yield and the overall recycling rate. The collection rate
represents the proportion of packaging put into circulation and collected after use. This
collected fraction is then transported to the sorting plant.

The success of this sorting plant is depicted in the mass yield of the sorting plant, or
sorting depth in short. After sorting, the waste fractions are processed in a recycling plant.
The amount of waste successfully recycled in this step is depicted as the mass yield of the
beneficiation or recycling plant, in short, the recycling yield. The overall success of the
packaging recycling is calculated and depicted in the recycling rate.

The following paragraphs explain these gauges and their calculation in greater detail.
Definition of Collection Rate:
The collection rate has been calculated using the quotient of thin-layered plastic

packaging produced and collected as shown in Formula (1). The collection rate represents
the effectiveness of the waste collection scheme and its effectiveness in collecting thin-
layered plastic film packaging. Improving the sorting discipline of the consumer and
reducing sinks such as littering raises the collection rate and facilitates subsequent processes
such as sorting and recycling.

In accordance with the Austrian packaging ordinance 2014, packaging put into circu-
lation refers to the amount of packaging handed over to the end consumer (Packaging sold
by the final distributor).

Collection Rate [%] =
Collected Post Consumer Packaging

[

t
a

]

Packaging put into circulation
[

t
a

] × 100 (1)

Definition of Sorting Depth:
The mass yield of the sorting plant, henceforth referred to as sorting depth in this

work, represents the success rate when sorting the functional unit of thin-layered plastic
films into the categories monolayer (S-MO) and multilayer (S-MU). This mass yield of the
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sorting plant is calculated for each of the two fractions generated at the sorting plant [13].
The sorting depth has been calculated as shown in Formula (2).

Mass yield o f sorting plant [%] =
Sorted f raction [t]− Output o f sorting plant [t]

Input o f sorting plant [t]
× 100

(2)
Definition of Recycling Yield:
The recycling yield is the quantitative proportion of a target product obtained con-

cerning the total input flow of a recycling plant. This yield is the mass yield of valuables
from the recycling plant. Improving the recycling process increases the number of valuable
resources recovered from the input stream and facilitates the substitution of virgin materials
with recycled polymers. The calculation is shown in Formula (3).

Recycling Yield [%] =
Recycled Fraction [t]− Output o f recycling plant [t]

Input o f recycling plant [t]
× 100 (3)

Definition of Recycling Rate:
According to Article 11a of directive (EU) 2018/851 of the European Parliament, which

defines the new calculation method for the recycling rate, the recycling rate is calculated
from the quotient of generated and recycled packaging waste weights, as shown in Formula
(4). The amount of packaging waste produced is equated with the amount of packaging
placed on the market in the same year. Packaging waste that underwent the necessary
screening, sorting and conditioning processes to remove non-recyclable waste materials
and was then sent to a recycling plant to be processed is represented in the formula as
recycled post-consumer packaging.

Recycling Rate [%] =
Recycelt Post Consumer Packaging

[

t
a

]

Packaging put into circulation
[

t
a

] × 100 (4)

Figure 1 lays out the inputs and outputs of the different stages evaluated. Here, the
flow of packaging waste is depicted to enhance the formulae stated above.

𝑀𝑎𝑠𝑠 𝑦𝑖𝑒𝑙𝑑 𝑜𝑓 𝑠𝑜𝑟𝑡𝑖𝑛𝑔 𝑝𝑙𝑎𝑛𝑡 [%] =  𝑆𝑜𝑟𝑡𝑒𝑑 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 [𝑡]   𝑂𝑢𝑡𝑝𝑢𝑡 𝑜𝑓 𝑠𝑜𝑟𝑡𝑖𝑛𝑔 𝑝𝑙𝑎𝑛𝑡 [𝑡]𝐼𝑛𝑝𝑢𝑡 𝑜𝑓 𝑠𝑜𝑟𝑡𝑖𝑛𝑔 𝑝𝑙𝑎𝑛𝑡 [𝑡] × 100 

𝑅𝑒𝑐𝑦𝑐𝑙𝑖𝑛𝑔 𝑌𝑖𝑒𝑙𝑑 [%] =  𝑅𝑒𝑐𝑦𝑐𝑙𝑒𝑑 𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛 [𝑡]  𝑂𝑢𝑡𝑝𝑢𝑡 𝑜𝑓 𝑟𝑒𝑐𝑦𝑐𝑙𝑖𝑛𝑔 𝑝𝑙𝑎𝑛𝑡 [𝑡]𝐼𝑛𝑝𝑢𝑡 𝑜𝑓 𝑟𝑒𝑐𝑦𝑐𝑙𝑖𝑛𝑔 𝑝𝑙𝑎𝑛𝑡 [𝑡] × 100 

𝑅𝑒𝑐𝑦𝑐𝑙𝑖𝑛𝑔 𝑅𝑎𝑡𝑒 [%] = 𝑅𝑒𝑐𝑦𝑐𝑒𝑙𝑡 𝑃𝑜𝑠𝑡 𝐶𝑜𝑛𝑠𝑢𝑚𝑒𝑟 𝑃𝑎𝑐𝑘𝑎𝑔𝑖𝑛𝑔 [𝑡𝑎]𝑃𝑎𝑐𝑘𝑎𝑔𝑖𝑛𝑔 𝑝𝑢𝑡 𝑖𝑛𝑡𝑜 𝑐𝑖𝑟𝑐𝑢𝑙𝑎𝑡𝑖𝑜𝑛 [𝑡𝑎] × 100 

Figure 1. Sankey diagram laying out the different inputs and outputs of the recycling system.

2.3.3. The Geographical Scope of the Investigation

The geographical scope of the investigation included the cycle of plastic products
in Austria, which were manufactured, processed, disposed of and returned to the cycle
in Austria.
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Figure 2 shows the balance area of the product lifecycle of plastic films and delimited by
the system boundary. The energy supply, supply of operating resources and the transport
processes involved, which were included in the balance, were omitted for clarity. The
technical standard of the processes is assumed to be an average technology mix. The
product lifecycle balanced using GaBi is shown in Appendix A.

 

Figure 2. Product lifecycle of plastic films.

2.3.4. Scenarios

The evaluated scenarios include the status quo, improved collection, improved sepa-
ration and improved recycling. In addition, scenarios depicting the stipulated recycling
quotas were calculated. Further, one scenario shows the reduction in GWP and ADPF if the
currently possible maximum amount of recycled granulates were used in the production
of new films, reducing the need for virgin granulates as far as possible with the current
state of the art. The respective representations show the changes in the material flows
due to the adjustment of the collection rate, sorting depth and recycling yield. For better
illustration, only the changed material flows and waste management processes are shown.
The complete material flows of the scenarios can be seen in Appendix B.

Scenario 1: Status Quo (SQ)

In Scenario 1, the current status of the recycling of plastic films was considered. In
this scenario, the goal was to separate monolayer films from multilayer films. Therefore,
the monolayer fraction was considered the target fraction for the calculation while the
multilayer materials were considered contaminants. Figure 3 shows the mass flow of
these plastic films concerning the respective recycling processes. The composition of the
functional unit and its utilisation follow the findings from van Eygen et al. in 2018 [5].

Scenario 2: Improved Collection (IC)

This scenario considered the complete collection of plastic film waste. Scenario 2 was
compared to the status quo. As shown in Figure 4, all plastic film waste was brought
into the sorting process. The sorting depth and the recycling yield were taken from the
status quo (SQ) scenario. As a result, the amounts of waste from the output flows of the
sorting and recycling processes to waste incineration were increased. The increase in the
amount of waste collected also increased the amount of polyethene regranulate from the
recycling process, which could be brought back into production, reducing the need for
virgin granulates.
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Figure 3. Representation of material flows—Status Quo Scenario. Composition of the functional unit
and the utilisation from van Eygen et al., 2018 [5].

 
Figure 4. Representation of the changed material flows—Scenario 2.

Scenario 3: Improved Sorting (IS)

This scenario presents the changed environmental impact caused by the collection of
all plastic films and a maximally optimised sorting of the monolayer films. In this scenario,
multilayer films were separated from the film stream and subjected to thermal recovery
while the monolayer films were sorted, recycled and subsequently used as substitute for
virgin material in the production of new foils. Figure 5 shows the mass flows of Scenario 3.
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Figure 5. Representation of the changed material flows—Scenario 3.

Scenario 4: Closed Material Cycle (CMC)

This scenario expanded Scenario 3 by including the multilayer film fraction as a
targeted recyclable material in the sorting and recycling processes. This scenario presumes
leaps in the available technology in all areas of the recycling chain. Here, the optimum of
collection, separation, recycling and substitution of virgin material has been implemented.
Thus, the thermal recovery has be replaced by recycling, as shown in Figure 6. The
collection rate, sorting depth, and recycling yield selected in Scenario 4 represent the
optimum theoretical improvement possibilities of the waste recycling processes.

 
Figure 6. Representation of the optimised material flows—Scenario 4.

Scenario 5: Recycling Goals 2025—Optimisation of Collection, Sorting and Mechanical
Recycling (2025)

In the 2025 scenario, the necessary optimisation steps to meet the recycling rate of 50%
stipulated by the EU packaging directive through the recycling of films were examined,
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and the resulting environmental impact was considered [3]. To reach these recycling goals,
an improvement in collection, sorting and recycling was deemed necessary. These improve-
ments formed the basis for the calculation of this scenario. The respective percentages of
the recycling chain have been improved to reach the recycling goal. Furthermore, the mul-
tilayer film fraction was considered a targeted recyclable material fraction in the recycling
processes. The output flow of the recycling process thus corresponded to a total quantity of
regranulate of 500 kg. Figure 7 shows the changed mass flows of the 2025 scenario.

 
Figure 7. Representation of the material flows—2025 scenario.

Scenario 6: Recycling Goals 2030—Optimisation of Collection, Sorting and Mechanical
Recycling (2030)

The 2030 scenario included determining the changing environmental impact based on
the necessary optimisation steps to meet the recycling rate of 55% set by the EU packaging
directive. The optimisation steps included increases in the collection rate, sorting depth
and recycling yield. As a result, the amount of regranulate, consisting of polyethylene (PE)
and polypropylene (PP), from the recycling process could be increased to 550 kg. This
result is shown in Figure 8.

Scenario 7: Currently Possible Maximum Recycling Quantities with the Current State of
the Art—State of the Art (SOA)

Jönkkäri et al. have shown in laboratory studies conducted in 2019 that the recyclates
created from an input of 100% used films can exhibit mechanical properties congruent
with the requirements for production [14]. These trials were conducted in a controlled
environment and faced significant challenges during pretreatment and compounding [14].
Current recycling processes on an industrial scale require virgin material input alongside
recycled polymers. This virgin input is used to ensure the mechanical properties of the
final product and processability. These required mechanical properties vary depending on
the production method and the desired use of the manufactured polymer.
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Figure 8. Representation of the material flows—2030 scenario.

To examine a scenario that represents the maximum amount of recycled material
currently used in production without jeopardising the mechanical properties of the manu-
factured product, existing polymer films using recycled raw materials have been evaluated.
This evaluation showed recycling contents ranging from 30% to 50% in recycled products.
LDPE foils used in mechanically demanding applications, such as packaging film or stretch
films, commonly comprise 30% recycled material. As stretch film made from LDPE repre-
sents the most common type of polymer packaging, this percentage has been chosen for
this scenario [15]. Figure 9 shows the material flows between the collection, sorting and
recycling stages.

 
Figure 9. Representation of the material flows in Scenario 7.

2.3.5. Comparative Overview of All Scenarios

In Table 1, an overview of the calculated scenarios is given. The collection rate, sorting
depth and recycling yield of the respective scenario served as the basis for the changing
process flows, shown in Figures 2–9.
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Table 1. Overview of the collection rates, sorting depths and recycling yield in the evaluated Scenarios.

Scenario Collection Rate
Sorting Depth Recycling Yield

Monolayer Films Multilayer Films Monolayer Films Multilayer Films

1 SQ 75% 34% 34% 73% 0%
2 IC 100% 34% 34% 73% 0%
3 IS 100% 100% 0% 100% 0%

4 CMC 100% 100% 100% 100% 100%
5 2025 90% 63% 63% 88% 88%
6 2030 90% 68% 68% 90% 90%
7 SOA 80% 50% 50% 75% 0%

2.4. Lifecycle Inventory

In the following section, concrete data and assumptions for the LCA selected, based on
the target and investigation framework conditions, are shown. Furthermore, the processes
presented in the balance area are explained, and the lifecycle data assigned. Existing data
concerning the lifecycle of the lightweight packaging fraction was used for the calculations
and assumptions [5]. For non-existent data regarding the material linear low-density
polyethene (LLDPE), data for the material LDPE were used.

2.4.1. Raw Material Production

The processes of the primary material production of fossil PE and PP granules
were modelled from the datasets “EU-28: Polyethylene Linear Low-Density Granulate
(LLDPE/PE-LLD)” and “DE: Polypropylene granulate (PP) mix” of the balancing software
GaBi. The transfer of the output flows of the processes to packaging production were
modelled via a transport step. It was assumed that the entire amount of recyclate is used in
the production in each scenario, and any gap between the provided amount of recyclate
and the demand for input material in the production of new polymer films is filled with
virgin material.

Scenario 4 considers a closed material loop. It has to be mentioned that this approach
is currently unfeasible. As stated, current recycling processes need the implementation of
virgin material to ensure the product’s mechanical properties. The assumption of a closed
material loop was taken to show the latent potential in the recycling of films regarding the
reduction of GWP and ADPF and to emphasise the need for technological innovation.

In scenario 7, the current limits in producing polymer films from a feedstock partly
consisting of recyclates are addressed. In this scenario, the current limitations of state-of-
the-art production of polymer films govern the proportion of recyclates in the input and
thus the percentage of waste which can enter the recycling process chain.

2.4.2. Packaging Producer

The packaging production was created as a unit process, including the data related
to a specific process and lifecycle inventory (LCI) data. The fossil granulate flows from
the production of raw materials, and the regranulate flows from the recycling process
were recorded as input flows. The output flow included the produced plastic film fraction.
Austrian waste flow consists of monolayer films mainly made of low-density PE or PP
and multilayer films mainly made of combinations of PE/PP, PA/PP, PET/PA and poly-
dimethylsiloxane (PDMS) [4]. The assumption of the material composition of mono- and
multilayer films followed these findings, supported by the current materials used in the
packaging sector. The composition of the material flow is shown in Table 2.
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Table 2. Material composition of the plastic films under consideration and their share in the material
flow [4].

Material Composition Share in the Material Flow

Monolayer Film LDPE 100% by weight / 76% by weight
Multilayer Film LDPE 50% by weight PP 50% by weight 24% by weight

The calculations determined the energy requirement for producing plastic films from
granules. For this purpose, the data of the plant Walter Kunststoffe GmbH–Gunskirchen
were used. The input consumption was calculated concerning the output as shown in
Appendix C. The plant produces plastic films on large rolls from PE granules (regranulates),
and 353 kWh/t OUTPUT electricity consumption was determined.

The 353 kWh were determined from the output masses and the resource consumption
of a comparable, state-of-the-art plant.

The substitution of primary raw materials with recyclates can only be realised to a
limited extent due to the material requirements for the manufactured products and the
quality of the recyclates [13]. In the LCA, the possibility of a complete substitution of the
fossil granules with sufficient regranulate input was assumed to represent the optimum,
and any production waste was not considered. Additionally, the currently possible highest
recycling quota has been researched and implemented in an additional scenario to assess
the possible savings in GWP and ADPF attainable with current technology.

2.4.3. Trade and Consumer

The “Trade and consumer” process was added to complete the product life cycle of
plastic films. It caused no substantial environmental impact or energy consumption.

2.4.4. Usage Phase

The use phase’s modelling marked the product’s transition to the packaging waste
and caused no substantial environmental impact and energy consumption. The collection
rate described the proportion of separately collected waste concerning the total waste
collected. Around 69,000 t of plastic film waste with a surface area of under 1.5 m2 (i.e.,
“small films”) are collected in Austria per year [5]. Of this 69,000 t, around 52,000 t were
collected separately. The ratio of these waste quantities was assumed as the collection rate
in the SQ scenario. The coverage rates of scenarios 2, 3 and 4 were chosen to consider
maximum coverage optimisation. In the 2025 or 2030 scenario, the necessary increase in
the collection rate to achieve the recycling rates required by the EU packaging directive of
50% and 55%, respectively, was calculated and set accordingly. In Table 3, the modelled
collection rates of the respective scenarios are listed.

Table 3. Collection rates of the LVP collection.

Collection Rate [twaste collected separately/twaste disposed of]

Scenario 1 SQ Scenario 2 IC Scenario 3 IS Scenario 4 CMC Scenario 5 2025 Scenario 6 2030 Scenario 7 SOA

Plastic Films 75% 100% 100% 100% 90% 90% 80%

2.4.5. Collection/Shipment–Lightweight Packaging and Municipal Waste

The collection processes were modelled as unit processes to link the use phase, sorting,
and incineration. The processes did not cause a difference in environmental pollution or
energy consumption between the different scenarios evaluated.

2.4.6. Sorting

The sorting process separated the incoming waste stream into the desired target
fractions, namely mono- and multilayer films. The sorting depth of scenario SQ was
determined using system data from sorting systems from the report by Neubauer et al.
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(2020). The residual fraction output masses were divided by the input masses of the sorting
plants and converted into the sorting depth of the target fraction, see Appendix D. This
calculation has been performed for both target fractions, namely the monolayer films and
the multilayer films.

From data collected by van Eygen in 2018, as shown in Appendix E. This parameter
could be included in the calculation by dividing the sorting output (17,391 t) and the sorting
input (51,964 t) [5]. Data for the energy consumption of the film sorting have been taken
from existing plants using standard technology such as NIR sorting to attain the target
fraction. These plants can be adapted to sort films by implementing measurements in
transflection to improve the spectral quality of films [4]. The sorting depth of scenario
SQ was adopted unchanged in Scenario 1. In Scenario 2, the effects of a supposed 100%
successful sorting of the monolayer films and simultaneous rejection of the multilayer films
as a sorting residue for energy recovery were considered. An ideal sorting process was
assumed for Scenario 4 to ensure the maximum impact of this ideal scenario to show the
latent potential in the recycling of plastic films. The 2025 and 2030 scenarios included the
necessary optimisation of the sorting depth, considering improvements in the collection
rate and recycling yield. The modelled sorting depths of the target fractions are listed in
Table 4.

Table 4. Modelled sorting depths of the target fractions for every scenario.

[toutput target fraction/tinput]

Scenario 1 SQ Scenario 2 IC Scenario 3 IS Scenario 4 CMC Scenario 5 2025 Scenario 6 2030 Scenario 7 SOA

Monolayer Films 34% 34% 100% 100% 63.4% 67.9% 50%
Multilayer Films 34% 34% 0% 100% 63.4% 67.9% 50%

Annotation. The SQ’s sorting depth calculation can be seen in Appendix D.

The increased mass of 2D waste processed is associated with additional emissions.
These figures were determined by examining existing plants to determine their emission of
CO2 and their electricity consumption when processing a functional unit of lightweight
packaging. These numbers were then included in the LCA and shown in Appendix D.

The necessary equipment for sorting the 2D fraction in the relevant plants would be
similar to the existing aggregates. The necessary implementation of additional reflectors to
enable measurement in transflection to improve the spectral quality of thin polymer films
to a point where sorting with existing NIR sensors is possible, as stated by Koinig et al.
in 2022, was not included in the calculation because they were deemed negligible to the
overall consumption [4].

The necessary sorting resources can be determined based on the report from Neubauer
et al. (2020), which mentions the operational data concerning consumption and input
masses of sorting plants [16]. In addition, data from the literature were considered in
calculating electricity and gas consumption. The results of the calculation from Appendix D
are listed in Table 5.

Table 5. Resource consumption of the sorting.

Operating Resources Consumption Unit

Electricity 63.97 kWh/tINPUT
Gas 1.49 kWh/tINPUT

Annotation. The calculation of the resource consumption for the sorting can be seen in Appendix D. Note on the
resource calculation of the “Saubermacher Dienstleistungs AG” sorting system in Appendix D.

The resource consumption of the “Saubermacher Dienstleistungs AG” sorting system
showed a value of around 46,981 kWh/tINPUT after calculating the input-related electricity
consumption. This power consumption represented a 697-fold increase in consumption
compared to the resource consumption of the other sorting systems. A comparison of the
literature values of the report from Neubauer et al. (2020) revealed a dot-comma error
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as the source of the error. After considering this source of error, the power consumption
could be determined with a value of 46.98 kWh/tINPUT. This value was integrated into
calculating the average power consumption.

2.4.7. Recycling

The recycling process uses the pre-sorted film fractions of the desired PE and PP
regranulates. Scenarios SQ and Scenario 1 viewed the pre-sorted waste flow as a monolayer
film fraction contaminated by multilayer films, and subsequently the multilayer films were
separated in the separation process to create a clean monolayer fraction for the recycling
process. The recycling yield of the total fraction (monolayer films including multilayer
films) in scenario SQ was calculated from the data in the report from Neubauer et al. (2020)
calculated in Appendix F and adopted for Scenario 1 [16]. In total a recycling yield of
73% was achieved for the complete film fraction with a recycling yield of 96% for the
monolayer fraction.

For Scenario 2, a recycling yield of 100% for monolayer films in the recycling plants
following the ejection of the multilayer fraction in the sorting process was presumed. No
material utilisation of the multilayer fraction has been implemented in this scenario. A
recycling yield of 100% for mono- and multilayer films was selected for Scenario 3 to depict
the closed cycle of plastic films.

In the 2025 scenario, the recycling yield was raised by 20% from SQ. This raise is
necessary to achieve the recycling rate of 50% stipulated by the EU packaging directive.
The 2030 scenario expanded the recycling yield by 3% relative to 2025 to meet the 55%
recycling rate target. The recycling yields, which were the basis for the scenarios, are shown
in Table 6.

Table 6. Recycling yield of the target fraction depending on the scenarios.

Recycling Yield [tREGRANULATE/tINPUT]

Scenario 1 SQ Scenario 2 IC Scenario 3 IS Scenario 4 CMC Scenario 5 2025 Scenario 6 2030 Scenario 7 SOA

Monolayer Films 73%
(96%)

73%
(96%) 100% 100% 87.6% 90% 75%

Multilayer Films 0% 0% 0% 100% 87.6% 90% 0%

Annotation. The SQ’s recycling yield calculation can be found in Appendix F.

Based on findings by Neubauer et al. (2020), the necessary resources for the recycling
processes regarding consumption and input masses of recycling plants were calculated [16].
In addition, data from the literature were considered in the calculation (see Appendix F)
regarding electricity, diesel and water consumption. The necessary resources for recycling
multilayer films were assumed to be equal to those of existing recycling plants for film. This
was done because reliable data for specialised recycling operations for multilayer polymer
packaging films have been unobtainable because no method to fully deconstruct multilayer
film into pure recyclable polymers is currently employed in recycling schemes [8,17,18].
Based on the input mass, the determined consumption of resources is listed in Table 7.

Table 7. Resource consumption of the recycling process.

Operating Resources Consumption Unit

Electricity 629.83 kWh/tINPUT
Diesel 12.41 kWh/tINPUT
Water 2.25 m3/tINPUT

Annotation. The calculation of the resource consumption for recycling can be seen in Appendix F.

2.4.8. Energy Recovery: Waste Incineration Plant

Any leftovers from sorting and recycling were used for energy recovery via transport
processes. The “EU-28: Plastic packaging in municipal waste incineration plant” (GaBi)
dataset was used to model the energy recovery process. The energy recovered from the
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incineration process was used to substitute the necessary primary energy supply, and the
resulting steam was not used (steam sink).

The dataset used represents treatment in a waste-to-energy plant with dry flue gas
scrubbing and Selective Catalytic Reduction as NOx removal techniques. The energy
balance of the combustion model reflects the average situation in the European Union and
takes the heat input of the specific waste into account. Emissions are calculated based on
transmission coefficients and initial waste compositions are representative of European
plant data. The dataset includes all relevant process steps for thermal treatment and
corresponding processes, such as the disposal of waste air treatment residues or metal
recycling. The inventory is essentially based on industrial data and is supplemented by
secondary data where necessary. The system is partially closed (open outlets of electricity
and steam). The electricity and steam flows need to be connected and adjusted to local
conditions in order for these credits to be considered. Credits for recovered metals are
already included.

2.4.9. Energy Supply

Electrical Power: The power required in the individual process steps was mainly
provided by primary energy sources (renewable/non-renewable). The composition of
the energy sources in Austria and the environmental impact of electricity production was
quantified by the “AT: Electricity grid mix” dataset and modelled as a process.

Natural Gas: The provision of the required amount of natural gas in the sorting process
was represented by Thinkstep’s “Austria (AT): Natural gas mix” dataset and modelled as a
process.

Diesel: The amount of fuel for transport and recycling processes was mapped by
Thinkstep’s dataset “EU-28: Diesel mix at refinery” and modelled as a process.

2.4.10. Transport

Transport processes were integrated into the accounting information to show the
flow of goods in the processes. A transport model was created to map the recycling of a
product in Austria and determine the average transport distances (cf. Appendix G). For
this purpose, the shortest distances between selected locations of the individual processes
were determined and averaged using Google Maps, considering the motorway connection
for trucks. The utilisation rates of the transport vehicles were taken from the data from
Öko-Institut e.V. et al. (2016), adopted for known transport routes. Unknown degrees of
utilisation were estimated by assuming an optimised transport of products, considering
the given literature values for similar transport processes [19]. The assignment of the
transport vehicles or the data records to the transport routes was made at our discretion.
The determined transport data are listed in Table 8.

Table 8. Specific transport distances, utilisation rates and vehicles.

Fraction Route Vehicle
Workload Distance

[%] [km]

PE-GR/PP-GR Basic material manufacturer → packaging producer X a 90 293
W-C Use phase → packaging waste collection 0 b 50 10
PW Packaging waste collection → sorting X 75 100

S-MO/S-ML Sorting → recycling X 83 156
W-S Sorting → municipal waste incineration plant X 90 87
W-R Recycling → municipal waste incineration plant X 75 95

W-NC Use phase → municipal waste collection 0 50 10

MW
Municipal waste collection → municipal waste incineration

plant
X 75 100

PE-RE/PP-RE Recycling → packaging producer X 90 104

a GLO: Truck trailer, Euro 0–6 mix, 34–40 t gross weight/27 t payload capacity (GaBi). b GLO: Truck, Euro 5, 14–20
t gross weight/11.4 t payload capacity (GaBi). Annotation. The determination of the transport model data can be
seen in Appendix G.
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2.5. Impact Assessment

The impact assessment was carried out using GaBi software, version 9.2.1.68 by
Sphera Solutions GmbH (Leinfelden-Echerdingen, Germany). To calculate the selected
environmental impacts in the target and scope of the investigation, the following assessment
method and the following impact categories selected are detailed in the following.

2.6. Evaluation Method

Developed by the Centrum voor Mileukunde (CML), the CML 2001 method is an eco-
logically oriented information and decision-making tool for creating a life cycle assessment
in accordance with DIN EN ISO 14040. CML 2001 quantifies the environmental impacts of
the processes from the inventory analysis, links them to the selected impact categories and
assigns them to the impact indicators, GWP and ADPF. The impact-oriented assessment
method links the environmental impacts, considering the respective impact category over
100 years and includes the impact categories of climate change and resource consumption,
which were chosen to compare the different scenarios.

2.6.1. Impact Category and Impact Indicators

The impact categories considered included climate change, with the impact indicator
GWP, and resource consumption, with the impact indicator fossil abiotic resource depletion.

2.6.2. Impact Categories

In the following the impact categories considered in the course of the LCA are explained:
Global Warming Potential
The GWP effect parameter expresses the assessment of the intensification of the

greenhouse effect. According to Frischknecht (2020), the GWP parameter considers the
absorption coefficients for infrared thermal radiation, the residence time of the gases in
the atmosphere and the expected emission development. The potential effects of 1 kg of
greenhouse gas over 20 or 100 years compared to 1 kg of CO2 are determined and converted
into equivalent CO2 emissions (kg CO2-eq) and shown in Table 9 [10].

Table 9. GWP and temperature change potential (GTP) emission parameters [20] result from 1 kg CO2.

GWP GTP

Lifetime
Cumulative Forcing

over 20 Years
Cumulative Forcing

over 100 Years
Temperature Change

after 20 Years
Temperature Change

after 100 Years

CO2 1 1 1 1
CH4 12.4 84 28 67 4
N2O 121 264 265 277 234
CF4 50,000 4880 6630 5270 8040

HFC-152a 1.5 506 138 174 19

Abiotic Resource Depletion (ADP)
The ADP for fossil resources is expressed in MJ as the quantity of resources consumed

relative to the resources depleted [21].

3. Results
3.1. Occurrence and Treatment of Plastic Waste in Austria

The amount of plastics produced in Europe in 2018 was around 62 million tons (t),
around 17% of global plastics production [1]. The packaging industry played the leading
role in the demand for plastics with 39.9%. The PP, PET and polyethene (PE), in particular,
were leaders in this segment [1].

In 2018, around 29.1 million t of post-consumer plastic waste was collected in Europe,
resulting in an increase in waste by 19% compared to 2006 with 24.5 million tons. In
Figure 10, it can be seen that the post-consumer plastic waste generated in Europe in 2018
was 32.5% recycled, 42.6% energetically recovered and 24.9% landfilled [1].
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Figure 10. Treatment rates of post-consumer plastic waste and plastic packaging waste in the
European Union 2018 [22].

In the EU in 2018, 41.4% of the collected plastic packaging waste was recycled, 21.5%
landfilled, and 37.0% energetically recovered, as shown in Figure 8. Only 0.1% was used for
other purposes. The recovery processes were depicted according to the Waste Framework
Directive [22].

In 2019, 1.5 million tonnes of plastic waste were exported from the EU, and most of
this plastic waste was shipped to Asia. The export volume to China was around 1.4 million
tonnes of plastic waste in 2016, which fell to 14,000 tonnes in 2019 due to an import ban on
certain types of waste [23].

The volume of plastic packaging waste in the European Union (EU27) grew to around
14.8 million t per year between 2009 and 2018, corresponding to a per capita volume of 33.2
kg/PE, as shown in Figure 11.

Figure 11. Plastic packaging—average waste generated in the EU from 2009 to 2018 [22].

In 2018, around 5 million tons of plastic recyclates (regenerates) were produced in
Europe, and 80% of this flowed into European plastics production to create new products.
With a share of 24% in recyclates, the packaging industry followed the construction industry
with a share of 46% [24].

In 2018, Austria’s primary plastic waste weighed around 0.95 million tonnes. Plastic
waste is subdivided into sorted plastics, solid waste-containing plastic and a remainder.
This remainder, which accounts for around 2% of the total waste, consists of plastics in
paints and varnishes, plasticisers, and plastic sludge. About 18% was single-variety plastics,
such as plastic foils, polyolefin waste and plastic containers, and around 80% was solid
waste-containing plastic, such as bulky waste, old tyres, municipal waste and similar
commercial waste. As can be seen in Figure 12, 26% of primary plastic waste was recycled
in 2018, 72% was used to generate energy, and 2% was landfilled as part of other types of
waste [25].
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Figure 12. Treatment rates of primary plastic waste and plastic packaging waste in Austria in 2018,
own illustration [22,25].

In 2018, Austria’s volume of plastic packaging waste was approximately 34.2 kg per
capita, totalling around 302,000 t. In 2018, 68% of the packaging waste was energetically
recovered and 32% recycled, as apparent in Figure 12 [22].

According to van Eygen (2018), approximately 69,000 t of plastic foils were generated
as waste in 2013. Around 52,000 t of plastic film waste were collected separately and sent to
a sorting and processing process [5]. This result corresponds to a collection rate of around
75%. Roughly 17,000 t of pre-sorted plastic film waste were then sent to a recycling process,
out of which roughly 12,000 t of regranulate were produced. Around 18% of all plastic film
waste was mechanically recycled in 2013, and 82% was used in energy recovery [5].

3.2. Life Cycle Assessment

In Table 10, the impact assessment results using the CML 2001 assessment method are
listed. The GWP and the ADPF of all evaluated scenarios are presented in Table 10. The
deviations were given in the respective unit and the percentage deviation.

Table 10. Results and deviations of the impact assessment compared to the SQ.

Scenario
GWP ADPF

Result Deviation to SQ Result Deviation to SQ

[kg CO2-eq] [kg CO2-eq] [%] [MJ] [MJ] [%]

Scenario 1 SQ 3237 54,769
Scenario 2 IC 3027 −210 −6 50,978 −3790 −7
Scenario 3 IS 1191 −2046 −63 18,515 −36,253 −66

Scenario 4 CMC 335 −2902 −90 3703 −51,066 −93
Scenario 5 2025 2124 −1113 −34 35,185 −19,584 −36
Scenario 6 2030 1944 −1293 −40 32,028 −22,741 −42
Scenario 7 SOA 2840 −397 −34 35,185 −19

As shown in Table 10, Scenario 1 causes a GWP of 3027 kg CO2-eq and an ADPF of
50,978 MJ.

The change in collection results in a reduction of 210 kg CO2-eq from SQ, which equals
roughly 6%. Simultaneously the ADPF was reduced by 3790 MJ, or 7%.

The graphical representations of the results, including the individual process effects,
are shown in Figure 13. In addition to the overall impact, six individual process impacts
were plotted. The individual process effects were chosen following their most considerable
contribution to the overall effect of the SQ scenario. The group “rest” of the GWP, in
Figure 13, includes the total effects of the individual processes, such as transport processes
and primary energy sources, which are not shown due to their low GWP. The group “rest” of
the ADPF, in Figure 14, includes the total effects of the individual processes not shown due
to their low ADPF, such as transport processes and individual waste incineration processes.
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Note the reduction in GWP in the SQ scenario and Scenario 2 due to the “rest” group
processes. This reduction mainly includes the effects of the substitute energy supply
through the combustion processes concerning the primary energy supply.

The production of PE and the incineration of mixed solid waste (MSWI) and packaging
films are the most significant contributors to the GWP. These are substantially reduced by
implementing a recycling scheme for polymer films, as shown in Figure 13. The production
of virgin PE and PP in Scenario 3 yields no emission because recycled polymers substitute
virgin materials in this ideal scenario. The increased demands for fuels by sorting and
transportation of the increased recycling materials yields a minuscule amount of GWP and
is not shown as a unique bar in the Figure 13.

3.2.1. Global Warming Potential

Figure 15 shows the results of the GWP and the deviations from the SQ scenario
and the 2025 scenario. For Scenario 2, with a GWP of 3027 kg CO2-eq, a reduction of 6%
compared to the SQ can be seen.
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Figure 15. Global warming potential (GWP)–scenario overview.

Comparing the GWP of the scenarios shows that the SQ of plastics recycling causes
the most significant environmental impact. The product lifecycle of 1000 kg of plastic films,
consisting of mono- and multilayer films, causes a GWP of 3237 kg CO2-eq in scenario SQ.
The driving processes are the PE production and the waste incineration of the monolayer
films, followed by the incineration of the municipal waste.

The GWP in Scenario 2 was decreased by 6% relative to the SQ. This reduction in GWP
is due to an improved collection rate and amounted to an absolute reduction of 3027 kg
CO2-eq when compared to the GWP of the SQ.
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The increased mass accumulation of waste to be sorted and recycled is reflected in a
reduction in the impact of PE production and the increase in the contribution of monolayer
film waste incineration to the GWP. The incineration of municipal waste is removed from
the balance due to the separate collection of the plastic foils.

Scenario 3 shows that recycling the monolayer films reduces the GWP by 63%, from
the GWP of the SQ to 1191 kg CO2-eq This reduction is due to the exclusion of waste
incineration of monolayer films and the reduced production volume of PE due to the
increased amount of regranulate. The waste incineration process of the multilayer films is
the primary source of emissions of greenhouse gases.

Scenario 4 has the lowest GWP and is the ecologically best scenario variant. Due to the
simulated recycling of all plastic films, the GWP is 90% lower than the SQ, at 335 kg CO2-eq
per 1000 kg produced plastic foils. This reduction is achieved by substituting regranulates
for all primary virgin materials used in packaging production, generating a closed material
cycle. This substitution eliminates the need to produce virgin materials and, thus, reduces
the production-related effects to zero. The optimisation of the collection rate, sorting depth
and recycling yield eliminates the need for incineration. In Scenario 4, primary energy
becomes the predominant emission source for the GWP.

The optimisations considered in Scenario 2025, the collection rate, sorting depth and
recycling yield, lead to a reduction of the greenhouse potential by 34%, to the SQ, to 2124
kg CO2-eq, as can be seen in Figure 15.

The 2030 scenario is an extension of the 2025 scenario. As a result, a prescribed
recycling rate of 55% by 2030 reduces the GWP by 40% to 1944 kg CO2-eq compared to the
SQ. The prescribed increase in the recycling rate to 55% leads to a reduction of the GWP by
8%. This reduction is caused by the further reduction of process emissions by 2030.

3.2.2. Abiotic Resource Depletion Fossil

The SQ scenario maps the maximum ADPF with a value of 54,769 MJ. This value is
taken as the benchmark all other scenarios will be compared against. The predominant
consumption of fossil resources in the SQ occurs through the production process of PE.
Compared to the SQ, Scenario 2 shows an ADPF of 50,978 MJ, which results in a 7% re-
duction relative to the SQ. This reduction of ADPF in Scenario 2 is due to the increased
collection rate. This increased collection rate allows for increased substitution of virgin pri-
mary plastic granules with regranulates, reducing resource consumption for the production
of virgin polymers.

The improved recycling of the monolayer foils considered in Scenario 3 reduces the
ADPF by 66%, to the SQ, to 18,515 MJ. This recycling and the resulting increase in PE
regranulate leads to a noteworthy reduction in the consumption of resources in virgin
PE production. Consequently, the resource consumption of Scenario 3 is dominated by
the necessary consumption for the manufacture of multilayer films. The production of
multilayer films replaces the production of monolayer films as the predominant source of
resource consumption because the produced regranulates reduce the necessary production
volume for monolayer films.

Scenario 3 shows that the ADPF can be reduced by 93% to 3703 MJ by recycling the
mono- and multilayer films. As a result of substituting virgin plastic granules from PE and
PP production with regranulates from the recycling process, this consumption of resources
is reduced to zero. The consumption of 3703 MJ of resources is based almost entirely on the
provision of energy.

Scenario 2025 shows that optimising the waste processing procedures and the collec-
tion operation to a point where the mandated recycling quota is met leads to a reduction of
the ADPF of 36% to the SQ.

Meeting the required 50% recycling rate for plastic packaging waste by 2025 in the
recycling of films results in the consumption of fossil resources of 35,185 MJ. In the 2025
scenario, the PE production process causes substantial resource consumption, followed by
the PP production process.



Polymers 2022, 14, 3620 22 of 35

As a result of adhering to the stipulated recycling rate of 55% by 2030, the 2030 scenario
shows reduced ADPF to SQ by 42%, resulting in a consumption of 32,028 MJ. Increasing
the recycling rate to 55% leads to a reduction of the ADPF by around 9% from 2025 to
2030. This reduction is caused by the further reduction in the process consumption of fossil
granulate production by 2030 compared to the 2025 scenario.

Figure 16 shows the abiotic resource depletion of the individual scenarios and the
deviations from the SQ scenario.
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Figure 16. Abiotic Resource Depletion ADPF—Scenarios Overview.

4. Conclusions

An LCA allows for the investigation and quantification of environmental changes
under changed process parameters. The LCA presented in this work determined the re-
sulting environmental impacts of monolayer and multilayer films during their lifecycle on
GWP and ADPF. For this purpose, based on the SQ, scenarios with changed parameters
regarding the collection rate, sorting depth and recycling yield were created and evaluated.
Finally, scenarios for evaluating the necessary improvements in the waste recycling pro-
cesses to achieve the statutory recycling rate targets were examined, and the environmental
impacts were considered. A “functional unit” of 1000 kg of plastic film waste, generated as
post-consumer waste in Austria and recorded in the light packaging collection’s collection
and recycling system, was selected.

The results of the LCA showed the general trend toward reducing environmental
impacts by optimising collection, sorting and recycling. The GWP of the SQ was 3237 kg
CO2-eq. This SQ was used as the basis for comparing the other scenarios. Furthermore,
the ADPF in the SQ was determined to be 54,769 MJ. Increasing the collection rate for
the separate collection of plastic foils in Scenario 2 reduced the GWP by 6% to 3027 kg
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CO2-eq and the ADPF by 7% to 50,978 MJ. Substantial improvements were achieved by
recycling monolayer films made possible by the ejection of multilayer films from the
material recycling process. Considering this, recycling in Scenario 3 led to a reduction of
the GWP by 63% or 2,046 kg CO2-eq to 1191 kg CO2-eq and the ADPF by 66% or 36,253 MJ
to 18,515 MJ. The ecologically best result was achieved by the closed cycle management
of monolayer and multilayer films. Based on the SQ, the GWP could be reduced by 90%
or 2902 kg CO2-eq to 335 kg CO2-eq. The ADPF fell by 93% or 51,066 MJ to 3703 MJ. The
transition from the SQ to the circular economy caused a shift in the emission-relevant
processes of the greenhouse potential from production or combustion to energy supply.
Given the politically stipulated recycling rate for packaging plastics of 50% by 2025 and
55% by 2030, optimisations should be sought in all areas of waste management. The
sorting depth was identified as the most influential parameter. Increasing collection rate
and recycling yield by 20% demands a surge in sorting depth from 34% to 63.4%. These
optimisations in the 2025 scenario reduced the GWP by 1113 kg CO2-eq or 34% to 2124 kg
CO2-eq and the ADPF by 19,584 MJ or 36% to 35,185 MJ.

A recycling rate of 55% by 2030 requires improving the collection rate by 20% and the
recycling yield by around 23% based on the SQ. This increase means doubling the sorting
depth from 34% to around 68%.

Comparing the 2030 scenario to the SQ scenario showed that these improvements
reduced the GWP or ADP by around 40% to 1944 kg of CO2-eq or 42% to 32,028 MJ. The
reductions in environmental impact caused by increasing the recycling rate to 55% from
2025 to 2030 could be achieved with 180 kg of CO2-eq or 3157 MJ can be determined.

The LCA showed that improvements in improved sorting and increased recycling of
mono- and multilayer films are desirable and necessary. In addition to the political and
social efforts to transform waste management into a circular economy, the strive to provide
renewable energy sources should be intensified. This approach would conserve primary
resources and facilitate the transition to a circular economy.
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Appendix A

Appendix A shows the product life cycle as balanced in GaBi. Production, transporta-
tion, packaging, usage and incineration are depicted.
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Figure A1. Balanced Life Cycle using GaBi.
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Appendix B Complete Substance Flows of the Scenarios

Appendix B shows all material flows for all scnearios. In the manuscript a zoomed in
version of the figures shown was depicted for a better view of the changed parts. In this
appendix the complete pictures are shown.

 

Figure A2. Material flows—Scenario 1—Status Quo.

 

Figure A3. Material flows—Scenario 2—Improved Collection.

 

Figure A4. Material flows—Scenario 3—Improved Sorting.



Polymers 2022, 14, 3620 26 of 35

 

Figure A5. Material flows—Scenario 4—Closed Material Cycle.

 

Figure A6. Material flows—Scenario 5—Recycling Goals 2025.

 

Figure A7. Material flows—Scenario 6—Recycling Goals 2030.
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Figure A8. Material flows—Scenario 7—State Of the Art.

Appendix C

In Appendix C the input consumption concerning the output for the calculations
is depicted.

Table A1. Production data of the film manufacturing process as a data basis for packaging production [16].

Walter Kunststoffe GmbH—Gunskirchen

Mass [t/a]

Input Granulate
Input

Regranulate
Input—Other Raw Materials,

Operating Supplies
Input—in Total Output

2016 2500 5000 8600 16,100 16,085
2017 3000 6500 10,125 19,625 17,910
2018 3000 6500 10,125 19,625 20,110

Operating Resources (OR)
Electricity [kWh]

2016 6,000,000
2017 6,500,000
2018 6,500,000

OR/t-output 2016 373
OR/t-output 2017 363
OR/t-output 2018 323

OR/t-output average 353 [kWh/t]
1.27 [MJ/kg]

Appendix D

Appendix D shows the input, output fractions and output residual fractions of the
plants which were the basis for the calculations.
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Table A2. Data collection and calculation of the relevant sorting process parameters [5,16,19,26].

Saubermacher Dienstleistungs—AG

Mass [t/a]

Input
Output Target

Fraction—LDPE
Output Target Fraction Output Residual Fraction

2016 27,660 3250 8309 19,321
2017 30,360 3260 10,576 19,797
2018 28,820 3720 11,017 17,908

Operating Resources (OR)
Electricity [kWh] Electricity [kWh] Gas [kWh] Water [m3]

2018 1,354,000,000 1,354,000 7459
OR/t-input 46,981 46.98 0.26

Brantner Sort4you GmbH

Mass [t/a]

Input
Output Target

Fraction—Plastic Films
Output Target Fraction Output Residual Fraction

2016 16,683 972 6788 10,579
2017 18,388 1044 7380 10,626
2018 18,734 1179 6795 12,390

Operating Resources (OR)
Electricity [kWh] Gas [kWh] Water [m3]

2018 2,004,000

OR/t-input 106.97

Tiroler Recycling GmbH & Co KG

Mass [t/a]

Input
Output Target

Fraction—Plastic Films
Output Target Fraction Output Residual Fraction

2016 19,800 1827 7260 12,989
2017 21,420 1841 6937 14,460
2018 23,404 1805 6991 15,415

Operating Resources (OR)
Electricity [kWh] Gas [kWh] Water [m3]

2018 1,180,000 63,830

OR/t-input 50.42 2.73

Energie AG Oberösterreich Umwelt Service GmbH

Mass [t/a]

Input
Output Target

Fraction—Plastic Films
Output Target Fraction Output Residual Fraction

2016 20,529 1774 7105 13,424
2017 18,829 1535 7118 11,711
2018 24,088 1607 7968 16,120

Operating Resources (OR)
Electricity [kWh] Gas [kWh] Water [m3]

2018 1,560,000

OR/t-input 64.76

Öko-Institut e.V.
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Table A2. Cont.

Saubermacher Dienstleistungs—AG

Mass [t/a]

Input
Output Target

Fraction—LDPE
Output Target Fraction Output Residual Fraction

Operating Resources (OR)
Electricity [kWh] Gas [kWh] Water [m3]

OR/t-input 50

Emile Van Eygen

Operating Resources (OR)
Electricity [kWh] Gas [kWh] Water [m3]

OR/t-input 64.7

Resource averages—input related

Electricity 63.97 [kWh/t] 0.23 [MJ/kg]
Gas 1.49 [kWh/t] 0.11 [g/kg]

Table A3. Data collection and calculation of the sorting depth [5,16,19,26].

Sorting Depth—Residual Fraction (Output Residual Fraction/Input) Average

2016 2017 2018
Saubermacher Dienstleistungs—AG 70% 65% 62% 66%
Brantner Sort4you Gmbh 63% 58% 66% 62%
Tiroler Recycling GmbH & Co KG 66% 68% 66% 66%
Energie AG Oberösterreich Umwelt Service GmbH 65% 62% 67% 65%

Sorting Depth—Residual Fraction 65%

Sorting Depth—Target fraction 35%
Van Eygen, 2018 33%

Average—Target fraction 34%

Appendix E

Appendix E shows the mass flow analysis conducted by Van Eygen in 2018 in detail.
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Table A4. Excerpt of the mass flow analysis results [5].

PET Bottles Hollow Bodies Small Hollow Bodies Large Films Small

Total PET Total HDPE PP PS PVC Total HDPE PP Total LDPE LLDPE PVC
Mass (t) Mass (t) Mass (t) Mass (t) Mass (t) Mass (t) Mass (t) Mass (t) Mass (t) Mass (t) Mass (t) Mass (t) Mass (t) Mass (t)

F1.01 PET Bottles 45,487 45,487 0 0 0 0 0 0 0 0 0 0 0 0
F1.02 Hollow Bodies Small 0 0 49,176 14,064 26,948 8094 70 0 0 0 0 0 0 0
F1.03 Hollow Bodies Large 0 0 0 0 0 0 0 18,308 8262 10,046 0 0 0 0
F1.04 Films Small 0 0 0 0 0 0 0 0 0 0 69,428 65,001 4384 43
F1.05 Films Large 0 0 0 0 0 0 0 0 0 0 0 0 0 0
F1.06 EPS Large 0 0 0 0 0 0 0 0 0 0 0 0 0 0
F1.07 Others 0 0 0 0 0 0 0 0 0 0 0 0 0 0

F2.01 Separately Collected Waste 29,557 29,557 22,239 6414 12,280 3513 32 7853 3544 4309 51,964 49,495 2437 32
F2.02 Municipal Solid Waste 14,884 14,884 24,390 6938 13,302 4116 34 6505 2935 3569 16,413 14,573 1830 10
F2.03 Bulky/Commercial Waste 1046 1046 2546 711 1366 466 3 3950 1782 2167 1051 934 117 1

F3.01 Sorted Plastics (Food-Grade) 20,151 20,151 0 0 0 0 0 0 0 0 0 0 0 0
F3.02 Sorted Plastics 4291 4291 10,356 4317 4740 1299 0 5738 3235 2504 17,391 16,877 514 0
F3.03 Mixed Plastics 52 52 121 21 77 23 0 22 3 18 353 333 20 0
F3.04 Mixed Plastics 0 0 0 0 0 0 0 0 0 0 0 0 0 0
F3.05 Medium Calorific 445 445 1033 182 655 192 3 184 27 157 3005 2835 167 3
F3.06 Sorting Residues 0 0 0 0 0 0 0 0 0 0 0 0 0 0
F3.07 High Calorific 4619 4619 10,729 1893 6808 1999 29 1909 279 1630 31,214 29,449 1736 29
F3.08 WtE MSW 12,503 12,503 20,487 5828 11,173 3457 29 5464 2466 2998 13,787 12,241 1537 9
F3.09 WtE B/C 537 537 1308 365 702 239 2 2028 915 1113 540 479 60 0
F3.10 MP MSW 2381 2381 3902 1110 2128 659 6 1041 470 571 2626 2332 293 2
F3.11 WtE MSW 509 509 1239 346 665 226 2 1922 867 1055 512 454 57 0
F3.12 Sorted Plastics 0 0 0 0 0 0 0 0 0 0 0 0 0 0
F3.13 Mixed Plastics 0 0 0 0 0 0 0 0 0 0 0 0 0 0
F3.14 Mixed Plastics 0 0 0 0 0 0 0 0 0 0 0 0 0 0
F3.15 Medium Calorific 1949 1949 3468 982 1884 597 5 1998 902 1096 2116 1879 236 1
F3.16 High Calorific 796 796 1416 401 769 244 2 816 368 448 864 767 96 1
F3.17 Residues 145 145 257 73 140 44 0 148 67 81 157 139 17 0

F4.01 Food-Grade Re-Granulate 9351 9351 0 0 0 0 0 0 0 0 0 0 0 0
F4.02 Re-Granulate 11,002 11,002 8892 4001 3839 1052 0 5026 2998 2028 12,422 12,055 367 0
F4.03 Mixed Re-Granulate 42 42 97 17 62 18 0 17 3 15 283 267 16 0
F4.04 Residues 4096 4096 1488 320 916 251 0 717 237 479 5040 4889 151 0
F4.05 Off Gas 0 0 0 0 0 0 0 0 0 0 0 0 0 0
F4.06 Slag 0 0 0 0 0 0 0 0 0 0 0 0 0 0
F4.07 Off Gas 15,049 15,049 25,944 7266 14,230 4412 36 9552 4256 5296 19,204 17,216 1975 12
F4.08 Residues 384 384 351 92 184 73 2 123 54 69 244 218 25 1
F4.09 Off Gas 9274 9274 13,449 2582 8385 2453 29 3399 874 2525 36,652 34,666 1958 28
F4.10 In Product 237 237 184 33 109 41 2 44 11 33 466 440 25 1
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Table A4. Cont.

PET Bottles Hollow Bodies Small Hollow Bodies Large Films Small

PET Bottles Hollow Bodies Small Hollow Bodies Large Films Small

Total PET Total HDPE PP PS PVC Total HDPE PP Total LDPE LLDPE PVC
Mass (t) Mass (t) Mass (t) Mass (t) Mass (t) Mass (t) Mass (t) Mass (t) Mass (t) Mass (t) Mass (t) Mass (t) Mass (t) Mass (t)

F1.01 PET Bottles 45,487 45,487 0 0 0 0 0 0 0 0 0 0 0 0
F1.02 Hollow Bodies Small 0 0 49,176 14,064 26,948 8094 70 0 0 0 0 0 0 0
F1.03 Hollow Bodies Large 0 0 0 0 0 0 0 18,308 8262 10,046 0 0 0 0
F1.04 Films Small 0 0 0 0 0 0 0 0 0 0 69,428 65,001 4384 43
F1.05 Films Large 0 0 0 0 0 0 0 0 0 0 0 0 0 0
F1.06 EPS Large 0 0 0 0 0 0 0 0 0 0 0 0 0 0
F1.07 Others 0 0 0 0 0 0 0 0 0 0 0 0 0 0
F2.01 Separately Collected Waste 29,557 29,557 22,239 6414 12,280 3513 32 7853 3544 4309 51,964 49,495 2437 32
F2.02 Municipal Solid Waste 14,884 14,884 24,390 6938 13,302 4116 34 6505 2935 3569 16,413 14,573 1830 10
F2.03 Bulky/Commercial Waste 1046 1046 2546 711 1366 466 3 3950 1782 2167 1051 934 117 1
F3.01 Sorted Plastics (Food-Grade) 20,151 20,151 0 0 0 0 0 0 0 0 0 0 0 0
F3.02 Sorted Plastics 4291 4291 10,356 4317 4740 1299 0 5738 3235 2504 17,391 16,877 514 0
F3.03 Mixed Plastics 52 52 121 21 77 23 0 22 3 18 353 333 20 0
F3.04 Mixed Plastics 0 0 0 0 0 0 0 0 0 0 0 0 0 0
F3.05 Medium Calorific 445 445 1033 182 655 192 3 184 27 157 3005 2835 167 3
F3.06 Sorting Residues 0 0 0 0 0 0 0 0 0 0 0 0 0 0
F3.07 High Calorific 4619 4619 10,729 1893 6808 1999 29 1909 279 1630 31,214 29,449 1736 29
F3.08 WtE MSW 12,503 12,503 20,487 5828 11,173 3457 29 5464 2466 2998 13,787 12,241 1537 9
F3.09 WtE B/C 537 537 1308 365 702 239 2 2028 915 1113 540 479 60 0
F3.10 MP MSW 2381 2381 3902 1110 2128 659 6 1041 470 571 2626 2332 293 2
F3.11 WtE MSW 509 509 1239 346 665 226 2 1922 867 1055 512 454 57 0
F3.12 Sorted Plastics 0 0 0 0 0 0 0 0 0 0 0 0 0 0
F3.13 Mixed Plastics 0 0 0 0 0 0 0 0 0 0 0 0 0 0
F3.14 Mixed Plastics 0 0 0 0 0 0 0 0 0 0 0 0 0 0
F3.15 Medium Calorific 1949 1949 3468 982 1884 597 5 1998 902 1096 2116 1879 236 1
F3.16 High Calorific 796 796 1416 401 769 244 2 816 368 448 864 767 96 1
F3.17 Residues 145 145 257 73 140 44 0 148 67 81 157 139 17 0
F4.01 Food-Grade Re-Granulate 9351 9351 0 0 0 0 0 0 0 0 0 0 0 0
F4.02 Re-Granulate 11,002 11,002 8892 4001 3839 1052 0 5026 2998 2028 12,422 12,055 367 0
F4.03 Mixed Re-Granulate 42 42 97 17 62 18 0 17 3 15 283 267 16 0
F4.04 Residues 4096 4096 1488 320 916 251 0 717 237 479 5040 4889 151 0
F4.05 Off Gas 0 0 0 0 0 0 0 0 0 0 0 0 0 0
F4.06 Slag 0 0 0 0 0 0 0 0 0 0 0 0 0 0
F4.07 Off Gas 15,049 15,049 25,944 7266 14,230 4412 36 9552 4256 5296 19,204 17,216 1975 12
F4.08 Residues 384 384 351 92 184 73 2 123 54 69 244 218 25 1
F4.09 Off Gas 9274 9274 13,449 2582 8385 2453 29 3399 874 2525 36,652 34,666 1958 28
F4.10 In Product 237 237 184 33 109 41 2 44 11 33 466 440 25 1
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Appendix F

Appendix F shows the Input and Output values researched in the report from Neubauer
et al. from 2020. Here the input and output values from the evaluated plants are shown in
the respective tables.

Table A5. Data collection and calculation of the relevant recycling process parameters [5,16,19].

Walter Kunststoffe GmbH—Wels

Mass [t/a]
Input Input Plastic Films Output Granulate Output

2016 22,400 20,500 15,000 22,000
2017 23,600 22,000 16,000 23,000
2018 25,200 23,500 18,000 24,500

Operating Resources (OR)
Electricity [kWh] Diesel [kWh] Water [m3]

2016 14,611,000 414,000 40,416
2017 18,270,000 426,000 40,669

OR/t-input 2016 652.28 18.48 1.80
OR/t-input 2017 774.15 18.05 1.72

OR/t-input plastic films 2016 596.95 16.91 1.65
OR/t-input plastic films 2017 721.67 16.83 1.61

Steinbeis PolyVert GmbH—Mitte (Kruschitz GmbH—Kühnsdorf)

Massen [t]
Input Input Plastic Films Output Granulate Output

2018 20,233 3343 12,973 16,813

Operating Resources (OR)
Electricity [kWh] Diesel [kWh] Water [m3]

2018 9,863,000 429,000
OR/t-input 2018 487.47 21.20

OR/t-input plastic films 2018 80.54 3.50

Öko-Institut e.V.

Operating Resources (OR)
Electricity [kWh] Diesel [kWh] Water [m3]

OR/t-input 1100 0.50

Emile Van Eygen

Operating Resources (OR)
Electricity [kWh] Diesel [kWh] Water [m3]

OR/t-input 650 5.25

Resource Averages—Input Related

Electricity 629.83 [kWh/t] 2.27 [MJ/kg]
Diesel 12.41 [kWh/t] 1.27 [g/kg]
Water 2.25 [m3/t] 2.25 [dm3/kg]

Table A6. Data collection and calculation of the recycling yield [5,16,19].

Recycling Yield (Output Granulate/Output) Average

2016 2017 2018
Walter Kunststoffe
GmbH—Wels

68% 70% 73% 70%

Steinbeis PolyVert
GmbH—Mitte

77% 77%

Öko-Institut e.V. 72% 72%
Emile Van Eygen 71% 71%

Average—target fraction 73%
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Appendix G

Appendix G shows the vehicle usage, their respective workload and the distance
covered by the respective vehicle as used in the calculation.

Table A7. Data basis and evaluation of the transport model. 0 GLO: Truck, Euro 5, 14–20 t gross
weight/11.4 t payload capacity (GaBi); X GLO: Truck-trailer, Euro 0–6 mix, 34–40 t gross weight/27t
payload capacity (GaBi) [16,27,28].

Transport Data according to Öko-Institut e.V. et al., 2016

Fraction Route Vehicle Workload Distance
(Own As-
sumption)

[%] [km]

W-C Use phase → Packaging waste collection 0 50 10
PW packaging waste collection → Sorting plant X 75 100

S-MO/ML Sorting plant → Recycling plant X 83 255
W-S Sorting plant → Municipal waste incineration plant X 90 50
W-R Recycling plant → Municipal waste incineration plant X 75 200

W-NC Use phase → Municipal waste collection 0 50 10
MW Municipal waste collection → Municipal waste incineration plant X 75 100

Transport Model Austria—Selected Locations

Basic material manufacturer [Intern number]
Borealis Polyolefine GmbH 1

Packaging producer
Composite films for plastic packaging Lenzing Platsics GmbH & Co KG 21

LPS GMBH LUPOTHERM 22
packaging films of plastic LPS GMBH LUPOTHERM

Coveris Kufstein 23
Mondi Styria 24

TECHNOFLEX PACKAGING 25
Sorting plant

TRG GmbH 31
Saubermacher Dienstleistungs AG 32

ZENTRALE Energie AG
Oberösterreich Umwelt Service

GmbH
33

Brantner Österreich GmbH
Wölblin

34

Recycling plant
Walter Kunststoffe GmbH—Wels 41

Steinbeis PolyVert GmbH
(Kruschitz)—Mitte

42

Ecoplast Kunststoffrecycling
GmbH

43

Municipal waste incineration plant
Müllverbrennungsanlage

Spittelau—Hundertwasser
51

FCC Zistersdorf Abfall Service
GmbH

52

Abfallverwertung
Niederösterreich GmbH & Co

53

Energie- u Abfallverwertungs
GesmbH

54

Kärntner Restmüllverwertung 55
Energie AG Oberösterreich

Umwelt Service GmbH Lenzing
56

Fernheizkraftwerk Linz-Mitte 57
Energie AG Oberösterreich

Umwelt Service GmbH Wels
58
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Table A7. Cont.

Transport Data according to Öko-Institut e.V. et al., 2016

Fraction Route Vehicle Workload Distance
(Own As-
sumption)

[%] [km]

Optimized Transport Distances Distance [km]
from to Google Maps Average Workload

Basic material
manufacturer to

Packaging producer

1 21 260
(Own assumption and literature)1 22 314

1 23 428
1 24 200
1 25 262 293 90%

Sorting plant to
Recycling plant

31 41 316

32 43 29
33 41 160
34 41 17

Literature 255 156 83%

Recycling plant to
Packaging producer

41 21 53

41 22 103
41 23 220
42 24 89
41 25 54 104 90%

Sorting plant to
Municipal waste

incineration plant
31 56 271

32 54 71
33 57 14
34 53 27

Literature 50 87 90%

Recycling plant to
Municipal waste

incineration plant
41 58 3

42 55 89
43 54 89

Literature 200 95 75%
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A B S T R A C T   

Most two-dimensional plastic packaging materials are thermally recovered, which does not add to the recycling 
quota of 50 % required by EU legislation for all lightweight packaging until 2025. Furthermore, the separation 
processes for 2D materials cannot reach the same level of accuracy, which is possible in the sorting of rigid plastic 
packaging. 

This study proposes new adaptations to existing sorting aggregates to increase the near-infrared spectral 
quality of two-dimensional materials. It aims to improve the spectral quality, which was defined by the deviation 
of the spectra from a reference spectrum and the variability of the recorded spectra, which can be achieved by 
installing reflectors behind the material made up of copper or aluminium. This setup enables detection in 
transflection rather than reflection mode. 

The variability could be reduced by a factor of 6 through the use of a reflective background. Meanwhile, the 
spectral fidelity to the reference spectrum could be enhanced, in some cases decreasing the deviation from the 
reference spectrum by 30 %, which means enhancing a spectrum from unrecognisable to useable. Apart from 
using reflective materials, the effects of emitter intensity, material and thickness were evaluated.   

1. Introduction 

The material recycling of plastics requires substantial innovation in 
the next five years to achieve the environmental policy goals set by the 
EU. Including a recycling quota of 50 % for all lightweight packaging 
and an obligation for all lightweight plastic packaging material to be 
recyclable in a cost-efficient manner as stated in the Waste Framework 
Directive (2008/98/EC). For this reason, projects aim at identifying two- 
dimensional (2D) films in plastic sorting to increase the material recy-
cling of packaging film waste. However, multilayer films are challenging 
to be mechanically recycled according to the current state of the art and 
negatively affect the quality of the other recycled plastics by polluting 
the recyclates if they enter the material stream. 

Currently, mono- and multilayer packaging is recycled into low- 
value products as part of the downcycling process or are used as 
refuse-derived fuel (RDF) (Kaiser et al., 2018). This kind of treatment of 
flexible packaging is especially problematic since (co–)incineration does 
not reduce the CO2 footprint to a degree like recycling would do. 

Mono- and Multilayer sorting techniques are necessary to prepare 
collected lightweight plastic packaging material for further processing 

in recycling plants. According to Niaounakis (2020), the different 
technologies to recycle flexible packaging can be subdivided: Films can 
be collected in groups of identical materials or geometry either by 
manual or automated sorting systems. Workers and robots can pick and 
differentiate many polymers and geometries given a sufficiently low 
throughput rate of the material stream. Vacuum suction systems, air 
sifters and different screens, such as the vibrating screen or the ballistic 
separator, sort particles according to their respective geometries and 
free the material from contaminants. 

Marking systems, like identification codes or fluorescent additives, 
enable material identification but are currently not adequate or 
economically feasible for widespread industrial application. These sys-
tems may change once further research increases their deployability 
soon (Woidasky et al., 2018). 

Several chemical and physical experimental methods have been 
developed to separate multilayer films. Among these is the CreaSolve 
process developed by Fraunhofer IVV and the Creacycle GmbH. The 
CreaSolve process is a solvent-based operation that is theoretically 
capable of sorting post-industrial and post-consumer multilayer plastic 
packaging (MPP) (Frauenhofer IVV, 2021). So far, it has been implanted 
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in one plant, separating only post-industrial waste to recover PE (Uni-
lever, 2020). The common denominator amongst all industrial processes 
currently employed to recycle MPP is the need for a feedstock with 
specific and known material combinations (Chen et al., 2021). 
Currently, there is no solution to generate this kind of feedstock from 
post-consumer MPP to improve these MPP recycling processes. This lack 
is the difficulty of recognising post-consumer MPP in the sorting process 
because of the vast array of materials used in MPP (Chen et al., 2020; 
Niaounakis, 2020). 

This paper aims to improve optical separation systems’ capabilities 
to deliver this feedstock by improving MPP detectability in optical 
systems. 

Optical systems stand out due to their ability to detect and eject 
various polymers at high throughput rates compared to other sorting 
methods, for example, manual sorting. Optical sorters use either visible 
(VIS) or near-infrared (NIR) spectroscopy or a combination thereof. 
However, they are sensitive to interfering influences and need specific 
material properties and controlled operating conditions to maximise 
efficiency (Burns and Ciurczak, 1992). 

As there is no stand-alone solution to separate plastic into different 
polymer fractions, plant engineering uses established sorting technolo-
gies combined with optical or electrical systems to achieve the necessary 
output quality. The application of sorting cascades is standard in current 
lightweight packaging plants (Kaiser et al., 2018). 

Though widely applicable, the sensor-based sorting technology is 
limited by various inherent problems in its operation principle. One is 
the need for sufficiently reflective material to gain necessary informa-
tion for separation, which is often problematic with thin 2D materials. 

Studies have shown the penetration depth of NIR radiation to be 
highly dependent on sample material and wavelength. Evaluations on 
NIR analysis of fruits have shown the penetration depth to vary from 2 −
3 mm in the spectral range of 900–1900 nm to 4 mm in the range of 
700–900 nm (Lammertyn et al., 2000). Other studies examining the 
penetration depth of NIR in bone structures and cartilage have shown 
the penetration depth to vary between 6.3 and 8.5 mm and 0.5–5 mm, 
respectively depending on wavelength and material (Faris et al., 1991; 
Padalkar and Pleshko, 2015). This discrepancy between penetration 
depth and sample thickness can lead to problems when examining 
samples of 30 µm thickness or less in reflectance mode due to a loss of 
radiation to transmission and with that a loss of spectral information. 

Preliminary analysis by Masoumi et al. (2012) has shown an increase 
in spectral information with growing material thickness. This effect is 
based on a rise in reflectivity. It leads to more pronounced spectra since 
differences in the spectral curve can be more easily identified with high 
reflectivity (Masoumi et al., 2012). This effect of reflectivity depending 
on material thickness can have detrimental impacts when measuring the 

spectra of very thin 2D materials. This paper explores methods to gather 
valuable spectra even from very thin materials. 

Though the recognition of thin plastic packaging is possible on a 
laboratory scale, very thin materials, especially PP with a thickness of 
15–50 µm and PET with a thickness of 12–50 µm, were troublesome to 
identify because the materials were prone to the exhibition of sine wave 
spectra. These wave-like spectra complicated the identification of those 
materials (Chen et al., 2020). 

This phenomenon of wave-like spectra in thin materials was studied 
by Jeszenszky et al. in 2004. It has been postulated that the wave-like 
spectra are caused by destructive interference due to the thin mate-
rials. This effect can lead to sine wave spectra, which are unusable for 
classification without further processing like fast Fourier transformation 
(Jeszenszky et al., 2004). 

NIR sorting requires diffuse reflection for classification. If a material 
tends to direct reflection, the sorting becomes difficult or impossible. 
Rougher surfaces that tend to diffuse reflection are more accessible to 
separate than glossy and smooth surfaces prone to direct reflection 
(Küppers et al., 2019). 

This paper explores possibilities to enhance the spectral information 
gathered from materials that tend to direct reflection, like PP foils. 

Special attention in this paper is paid to the chute material and the 
illumination intensity. The thesis by Yu Xing Cui (2011), postulated that 
certain materials have particularly good NIR reflective properties. 
Likewise, preliminary experiments have shown the illumination in-
tensity to have a positive influence on the sensor system. In this study, 
the hypothesis is tested whether and how both parameters influence the 
sorting result and whether one or both parameters are suitable for 
improving the spectra used to identify and separate packaging films. 

The hypothesis tested in this study is which effect material thickness 
has on material identification via NIR spectroscopy. Further, this study 
aims to evaluate if there can be an optimum illumination setting for the 
identification of plastic packaging films and evaluate the influence of 
different reflective materials on the films’ NIR spectra. 

2. Materials and methods 

A sensor-based sorting system serves as an experimental site to 
examine which adaptations can be made to the sorting set-up to facili-
tate the detection and separation of 2D materials. Therefore, in this 
paper, the technical limits of near-infrared sorting are investigated and 
explored. A novel measuring geometry is presented to shift these limits. 

The sensor-based sorting aggregate used is an experimental NIR/VIS 
sorting setup provided by Binder + Co AG, representing the industrial 
standard. The material is manually applied over a vibrating chute with a 
width of 0.5 m, transporting it to the downstream sensors. The setup 
includes a NIR line scan sensor (EVK Helios – G2 – NIR 1), which was 
applied to record spectral images. NIR Sorting requires an infrared 
emitter. 

For this purpose, an infrared lamp is utilised, which can supply 6.5 
mW/mm2 of light output in the detection area at 170 VDC, as measured 
with a Thorlabs S470C sensor. This sensor is sensitive to a wide range of 
wavelengths, making it suitable for measuring the intensity of NIR 
radiation. 

The emitted radiation interacts with the particles and is reflected, 
transmitted, or absorbed depending on the material’s molecular 
composition (Pasquini, 2003). If the measurements are taken in reflec-
tance mode, only the dispersed reflected radiation can be detected by 
the NIR sensor and used for classification. The radiation is converted 
into a digital signal and stored in a hyperspectral imaging (HSI) cube 
with two spatial coordinates displaying the analysed area and a third 
coordinate representing the reflected intensity at each pixel (Manley, 
2014; Reich, 2005). 

In the utilisation of near-infrared technologies the measurement 
principles of transflection, reflection and transmission are distinguished. 
Fig. 1 shows the principle of transflection measurement schematically. 

Fig. 1. Scheme of the transflection measurement principle.  
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First, an incident NIR beam is emitted to the sample, then the 
entrance angle changes and gets more acute for the transmission pass 
one. At the point of transflection on the reflector surface, the weakened 
NIR beam is reflected and passes through the sample at the transmission 
pass two with an acute reflection angle. Next, the reflection angle gets 
more obtuse at the sample surface, and this signal is sent to a computer, 
where the data is processed and analysed. Finally, the reflected signal 
and the transmitted signal at the sample surface before the transmission 
pass one are combined to a transflection signal. The transflection signal 
is analysed at the end of the experiment. The application of transflection 
increases the amount of information gained by the sensor since little to 
no radiation is lost to transmission. That is critical when applying near- 
infrared spectroscopy to thin materials. Measurements in transflection 
circumvent this problem. 

The material consisted of two groups. Group A, the reference mate-
rial, was specifically crafted to be used as a reference. This group con-
sists of white LDPE and purple PP tiles, with a length of 5 cm, a width of 
3 cm and a thickness of 3 mm. These materials were used to create a 
reference spectrum for later comparison to the 2D materials. 

Group B consisted of the 2D foil materials to be evaluated. Eight 
samples of two different materials were selected. These samples were 
transparent to the human eye and showed varying thickness, as shown in 
Table 1. 

Initial trials have shown that the spectra of group A and B are similar, 
barring minor differences attributable to the difference in thickness. 
Fig. 2 shows the comparison between the spectra of a PE reference 
material (orange) and the recorded spectra of a PE specimen (blue). 
Though the spectra show similarities in the minima and maxima at 1200 
nm, 1230 nm and 1380 nm, a significant loss of information can be 
observed. This discrepancy between the reference spectrum is expected 
considering the difference in thickness. 

Samples with varying thickness were chosen to evaluate the effect 
increasing material thickness has on the spectral images. Further, 
transparent samples were selected to eliminate the effect colourants 
have on the samples ́ spectra and the image quality. 

Fig. 3 shows all specimens selected for the evaluation. In (A), all PE 
samples can be seen, while in (B) all PP samples are shown. It can be seen 
that some areas of the samples were printed in order to advertise the 
products they contained. These areas were omitted during the analysis 
of the spectra. 

Transparent sample objects were chosen to enable the comparison of 
the specimen’s spectra, which enabled the comparison of thinner sam-
ples to thicker samples of the same material without the spectral changes 
different colourants would introduce. This way, the effect increasing 
thickness has on the spectra could be analysed. Since the material con-
sists of authentic household waste, coloured sections occur in the 
specimen. However, these were excluded in the pixel selection for 
analysis to prevent colourants from interfering with the spectral 
analysis. 

2.1. FTIR spectra of materials 

In addition to the recycling marks present on most post-consumer 
packaging waste, FTIR spectra analysis of the foils was conducted in 
transmittance mode to create a reliable classification of the 2D mate-
rials. Thus, a material database was created, which served as the foun-
dation for the following analysis on the experimental sensor-based 
sorting setup since knowledge of the materials composition was needed 
to choose the correct reference spectrum for comparison with the 
recorded NIR spectra. 

2.2. Material preparation 

Preliminary tests have shown that the effect of different reflective 
materials is more pronounced the closer the contact of material and 
reflector is. Therefore, to achieve maximum contact with the 

Table 1 
Testing Material and the corresponding thickness.  

Material Thickness 
Reference LDPE White 3 mm 
Reference PP Purple 3 mm 
PCW 55 – PE 20 µm 
PCW 33 – PE 25 µm 
PCW 56 – PE 50 µm 
PCW 90 – PE 75 µm 
PCW 45 – PP 30 µm 
PCW 38 – PP 35 µm 
PCW 41 – PP 45 µm 
PCW 153 – PP 60 µm  

Fig. 2. Comparison between the PE reference spectrum (orange) and a PE foil 
spectrum (blue). 

Fig. 3. Depiction of all Samples, A) PE B) PP.  
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background and eliminate trajectory effects, each specimen was encased 
between two glass plates, one of which was covered with the respective 
background materials. This method ensured the same circumstances for 
every recording of spectral data. In addition, the known NIR inactivity of 
glass due to its high transmittance was tested during preliminary studies, 
which showed no substantial impact of the glass plates on the speci-
men’s spectra. 

2.3. Changes of emitter intensity 

Preceding experiments have shown that increasing the emitter in-
tensity has positive effects on spectral quality. Preliminary spectral ex-
aminations show the correlation of mean spectral quality with 
increasing emitter intensity. The spectral range from 1200 − 1400 nm, 
which contains one of the typical PP spikes explained by Küppers et al. in 
2019, becomes more pronounced with increasing intensity. The spectra 
at low-intensity lack discernible patterns useable for classification. 
Taking spectral images without sufficient illumination leads to random 
spectral intensity values. These random spectra lack any regularity and 
are therefore not suitable for classification. Preliminary evaluations to 
find the correct intensity range have shown that decreasing the emitter 
intensity increases spectral variability. Therefore, low emitter intensities 
are included in the trials, reducing the emitter intensity to further 
evaluate the effect of low NIR intensity on spectral quality. 

However, it is not necessarily the case that maximum emitter in-
tensity is always beneficial since a change in background material causes 
a change in reflectivity. Furthermore, because only dispersed reflections 
can be used for classification, increasing the emitter intensity exces-
sively can lead to direct reflections and overexposure, which render the 
affected pixels and their spectra unusable. Therefore, every reflector 
material was evaluated using the emitter intensities 70 %, 80 %, 90 % 
and 100 % of the maximum intensity, or 4.55 mW/mm2, 5.20 mW/mm2, 
5.85 mW/mm2, 6.50 mW/mm2 of light output in the detection area 
respectively, to analyse the effect changing intensity has on the spectral 
quality. 

Background Material 
Gold, copper, silver, glass, aluminium and a black polymer, coloured 

with carbon, were considered as background materials due to their op-
tical properties in the relevant wavelengths. All materials, except black 
polymer, chosen as the negative benchmark, are promising to be usable 
as a reflector because of their high reflectivity in the near-infrared 
wavebands. The black polymer was chosen as a background to present 
a negative benchmark to which the metal backgrounds could be 
compared. Coincidentally, the black polymer reflector represents the 
common conveyor belts used in most sorting aggregates whose top 
covers are usually made of black polymers. The respective reflectance of 

the materials is shown in Fig. 7. These reflectance values were taken via 
FTIR spectroscopy. 

The materials used as background were a copper plate with 99.9 % 
copper content, black PP polymer and rolled 100 % aluminium. The 
reflector materials were applied to the sample holder behind the 
respective sample. 

2.4. Data evaluation 

A Matlab R2021a script was used to extract the spectra from the 
Hyper Spectral Imaging Cube to gauge the quality of the spectral images 
taken of the materials. 

This Matlab script enables the user to choose viable pixels for eval-
uation. It then computes the normalised first derivative of the spectra 
and presents a smoothed graph of the data points, using a Gaussian 
smoothing algorithm with a 10-datapoint interval. The image quality is 
defined as the variability of the spectra in its spectral range for a specific 
material. For this reason, the variability was computed by calculating 
the difference between the area integral using trapezoidal numerical 
integration of the spectra with the maximum intensity and the spectrum 
with minimum intensity. 

The sensor measures the spectral intensity in Arbitrary Light Units 
(ALU), which is a unit used by the sensor provider EVK, and the spectral 
wavelength is measured in nanometres; the integration of the first de-
rivative also yields the area in ALU. The y-axis is denominated as ALU/ 
nm since it is the gradient of the raw spectrum. 

This calculated area between the spectrum with the lowest intensity 
and the spectrum with the highest intensity indicates the variability, 
suggesting the spectral image’s viability. Since the image’s quality de-
pends on the parameters under which the image was recorded, a small 
area between the two spectra indicates a recording of high fidelity with 
beneficial parameters. 

Because not all wavebands are equally crucial for the classification, 
this computation was limited to those, which hold relevant spectral data 
for classification. Those wavebands were selected by evaluating the first 
derivative of the raw spectral intensity data. Wavelengths, in which the 
first derivative deviates substantially from zero, indicate the interaction 
of the material’s molecules with the NIR radiation. This interaction re-
sults in a unique spectrum that can be used to classify the given material. 
This classification is the basis for separation using pressurised air. 

Since a spectrum can exhibit low variability but still deviate from the 
benchmark spectra, rendering it unfit for classification, a second spectra 
quality criterion was needed. For this purpose, the deviation of the mean 
spectra from the benchmark was used. Initial trials showed that recorded 
spectra increasingly approached the reference spectrum with increasing 
background reflectivity. This effect is depicted in Fig. 4, which shows the 

Fig. 4. Increasing fidelity to the PE reference spectrum of two spectral images taken without reflective background[A] and with a reflective copper background [B]  
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increasing fidelity of the recorded PE spectrum to the PE reference 
spectrum. It can be seen that the spectra recorded without a reflective 
background (A) do not follow the reference spectrum as well as the 
spectra recorded with a reflective copper background (B) do. The 
amount of deviation shown in the figure is the sum of the differences 
between the recorded spectrum and the reference spectrum. 

This difference, or deviation, is calculated with the Euclidian (2- 
norm) by subtracting the mean spectra of the selected pixels from the 
benchmark spectra. This calculation yields a numeric value that in-
dicates the deviation of the HSI spectra from the benchmark spectrum, 
with low values indicating high fidelity to the benchmark spectrum. 
With that, an estimation of the usability for the classification of the 
material can be made. 

Normalisation was applied to every spectrum using the ‘z-score’ 

method to enable the comparison. The ‘z-score’ method centres and 
scales the data to have a mean zero and standard deviation one. 

Zscore(ei) = ei −
E

std(E)

std(E) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1

n − 1
*
∑n

i=1
(ei − E)22

√

E =
1

n
*
∑

n

i=1

ei 

Equation 1: Calculation of Z-Score Normalization 
To create spectra for evaluation each recording was repeated five 

times. For each of those recording, nine pixels for spectral evaluation 
were selected. Here, care was taken to avoid overexposed pixels and 
pixels on the edge of the material and coloured portions of the material. 
This approach yields 45 suitable pixels per setting for evaluation. 

In order to evaluate whether a relevant correlation between the 
examined experimental variables and the spectral quality exists, 
regression curves were fitted to the experimental data. The goodness of 
fit of those regression curves was evaluated by calculating the coefficient 
of determination (R2) for each fit. 

3. Results and discussion 

The first results are the decrease of variability and deviation with the 
increase in material thickness, which was further examined based on the 
assumption that the increase in spectral quality is different for the 
chosen materials. Subsequently, the effect the reflecting backgrounds 
and increased illumination intensity had on the variability was 

Fig. 5. Influence of spectral variability depending on thickness and material.  

Fig. 6. Difference in average variability depending on specimen material.  

Fig. 7. Reflectance of chosen reflector materials.  
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quantified. 

3.1. Influence of thickness 

With 2D materials, a rise in material thickness decreased spectral 
variability. The intensity of this effect is correlated to the material used. 
While PE spectra exhibited comparatively low variability even in spec-
imens with low thickness and had limited room for improvement, PP 
spectra reacted strongly to the increased material thickness with 
improved spectral quality. 

Fig. 5 shows a box and whisker chart displaying the comparatively 
high variability of PP spectra compared to PE spectra. While increasing 
the thickness of PE specimens lead to a small decrease in variability, 
increasing the thickness of PP specimens lead to a more pronounced 
decrease in variability. 

Examination of PP materials with a thickness of under 35 µm yielded 
spectra in sine waveform. So far, these cannot be used for classification 

since the occurrence of sine wave spectra is currently not precisely 
attributed to a specific chemical or physical property of a specific resin. 
It is related to the thickness of a foil and occurs below a certain threshold 
thickness. This thickness is material-specific. However, it has been 
postulated that the sine wave effect occurs because of destructive in-
terferences if a given correlation of the material thickness and wave-
length is present. These interferences can be removed by applying fast 
Fourier transformation (Jeszenszky et al., 2004). It can further be 
confirmed that this phenomenon occurs below a certain thickness and 
the novel information that the threshold thickness is between 30 and 60 
µm for PP can be added. 

3.2. Influence of material 

The PE specimen showed on average spectra with less variability, 
even in specimen with low thickness, while PP materials produced 
spectra with high variability. With PP expressing on average 28 % more 

Fig. 8. Reduction in spectral variability due to increased reflectivity of background material and subsequent measurement in transflection. A) No reflector B) 
Copper reflector. 
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variability from the mean spectrum. It can be seen in Fig. 6 that the PP 
specimens exhibit overall higher variability than the PE specimens. 

PE yielded more useable recordings due to the higher reflectivity of 
the PP materials, which leads to more direct reflection instead of the 
useable diffuse reflection. This direct reflection yields overexposed 
pixels, which cannot be used for spectral analysis. Overexposed pixels 
cannot be used for classification due to the detectorś inherent limitation 
to processing very bright pixels. This limitation is handled by capping 
the maximum intensity value. If the intensity of a pixel exceeds this 
limit, it is simply reduced to this pre-set value. If all spectral values of 
this pixel are set to this value, the spectrum contains neither maxima nor 
minima and is a straight line instead. So, no further evaluation by 
derivation or other forms of processing can yield any valuable infor-
mation for classification other than classifying this pixel as overexposed. 

Since NIR detection uses the interaction of radiation and the material 
for classification, the molecular composition and material thickness 
heavily influence the detection outcome. This effect is especially pro-
nounced when analysing thin materials like monolayer packaging, 
which routinely exhibit material thickness under 100 µm. While they 
yield similar spectra, due to resemblances in their chemical makeup, PE 
and PP, two common materials for monolayer packaging, exhibit dif-
ferences in spectral quality when used for spectral analysis. These dif-
ferences become increasingly pronounced with decreasing material 
thickness. 

3.3. Influence of reflector and reflectance 

Spectral images were recorded with different reflector materials 
behind the 2D specimen to facilitate the interaction of the 2D foils with 
the NIR radiation. This approach yielded improved spectral with 
decreased variability. This effect depended on the reflectivity of the 
given background material in the relevant wavebands from 900 nm to 
2000 nm. Fig. 7 shows the reflectivity values of the various backgrounds 
as taken in FTIR spectroscopy. 

Backgrounds with little to no reflectivity, e.g., black polymers or 
glass, had no improving effect on the recorded spectra. Increasing the 
reflectivity of the background material decreased their variability and 
enhanced the spectra’s fidelity to the reference spectrum, as shown in 
Figs. 4 and 5, respectively. While aluminium showed promising results 
in preliminary examinations when virgin aluminium foils were used, the 
increasing formation of an aluminium oxide layer on the reflector’s 
surface impaired its reflectivity, reducing the possible improvement of 
spectra recorded with this particular reflector. This reduction in reflec-
tivity compared to virgin aluminium is shown in Fig. 7. Copper reaches 
approximately 10–20 % higher reflectivity than aluminium. Copper 
lends itself to the application as a reflector since it reaches the highest 
reflectivity of any material evaluated. Although not encountered during 
this study, the formation of copper verdigris on the reflector may 
become an issue. 

The data analysis shows that spectral variability could be reduced by 
the use of copper and aluminium reflectors. This reduction renders a 
spectral image useable for classification since the pixel of the image 
deliver similar spectra. However, spectral analysis relies on creating a 
reference spectrum from the average of multiple pixels’ spectra to 
determine to which material class a specific specimen belongs. There-
fore, high variability of spectral information due to optical effects and 
imperfect reflection of near-infrared radiation in the images renders 
them unfit for classification. 

It was shown that spectral images of 2D materials taken without a 
reflector exhibit a wide variation in the spectra extracted from viable 
pixels. Meanwhile, spectral images recorded using a reflector minimise 
the variability in the respective image. This reduction in variability 
around the mean, especially in the spectral ranges relevant for classifi-
cation, is depicted in Fig. 8, showing the same material recorded under 
identical NIR intensity. In addition, the variability is reduced by a factor 
of 6 by using a reflective background. 

Further, the spectral fidelity to the reference spectrum could be 
enhanced, in some cases decreasing the deviation from the reference 
spectrum from 13 to 8.5. This decrease in deviation from the reference 
spectrum entails that the spectrum of the specimen matches the refer-
ence spectrum more closely with increasing background reflectivity. 

This increased fidelity to the reference spectrum combined with 
decreased variability means enhancing a spectrum from unrecognisable 
to useable. This reduction in deviation heeds from eliminating unwanted 
optical interferences and increased near-infrared intensity through 
transflection. 

This elimination of optical interferences facilitates detecting the 
materials’ inherent spectra, which lends itself to usage in separation 
processes. The comparison between the two spectra is depicted in Fig. 9, 
which shows the mean spectra of evaluated pixels in an image taken 
without a reflector compared to an image taken with an aluminium 
reflector of a PE film material. 

3.4. Influence of emitter intensity 

While increasing the emitter intensity did not change the deviation, 
increasing the intensity decreased spectral variability from 16.78 at 70 
% emitter intensity to 13.68 at 100 % intensity. Although interesting, 
the effect increased intensity has is minuscule compared to the 
improvement obtained by increasing the reflectivity of the background. 
It has to be noted that an increase in intensity is comparable easy to 

Fig. 9. Reduction in spectral deviation from the reference spectrum due to the 
effect of reflector material, A) No reflector B) Aluminium reflector. 
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achieve, needing no further adaptions to the sorting setup other than to 
increase the emitter intensity in the given control software. The increase 
in spectral quality heeds from the simple effect increasing the intensity 
has on the sensor-based sorting setup. With increasing intensity of the 
incident NIR radiation, more useful disperse reflection can occur, which 
is then detected by the near-infrared sensor for evaluation. This simple 
principle can improve the sorting result in recycling plants with relative 
ease if the hardware permits changing emitter intensity. 

3.5. Discussion of statistical relevance of correlations 

Fig. 10 shows the summary of the spectral evaluations and the effects 
the parameters had on the variability of spectral recordings. It shows the 
effects of different changes in the experimental setup on the spectral 
variability. Further, the regression curves for the evaluated data with 
their goodness of fit values R2 and the root mean squared error (RMSE) 
are displayed. 

The data points shown in the figure correlate to the average vari-
ability of the spectra and the given experimental settings. 

It can be seen that no correlation between increasing thickness of the 
PE specimen and the spectral variability could be established. The PE 
specimen started with relatively low variability, even with a thickness of 
20 µm and the variability did not decrease with increasing thickness. 
This lack of correlation is further supported by the R2 value of 0.08 of the 
fit, which indicates that over 90 % of the variation is unexplained by the 
model. 

Increasing thickness of the PP specimen showed a decrease in spec-
tral variability during the study. It can further be seen in the regression 
curve for the PP specimen, which shows an R2 value of 0.79. The PP 
specimen had an inherently higher variability and improved noticeably 

when material thickness increased. This effect is also caused by the 
decrease of sine wave spectra encountered with thicker specimens. 

A rise in emitter intensity showed a slight decrease in spectral vari-
ability, improving the spectral recordings, which is supported by the 
regression curve. Though not as noticeable an effect as the increase in 
thickness, raising the emitter intensity improved all spectral recordings. 
The regression shows an R2 value of 0.91, which indicates a good fit for 
the given data. 

During the trials, increasing the background material’s reflectance 
showed the most significant influence on spectral quality, with 
aluminium showing promising results and the more reflective copper 
reflector improving the spectral recordings further. This effect showed 
to improve the spectral quality of all specimens, regardless of thickness 
or material type. Further, this effect is supported by the regression curve 
for the spectral variability and the reflectivity of the respective back-
ground yielding an R2 value of 0.99. 

Increasing the reflectivity of the background material to enable 
measurement in transflection yielded the best results for improving 
spectral quality. 

4. Conclusions 

The key findings of these trials were the effects reflective back-
grounds have on the spectral quality of plastic films with a thickness of 
under 100 µm, which are mainly used in the packaging of goods. The 
spectral variability decreased substantially when using a reflector made 
of copper or aluminium as background. Implementing a reflective 
background enables the measurement to be taken in transflection rather 
than sole reflection, which circumvents the problematic low reflectivity 
of thin-film materials. While introducing a reflector decreased 

Fig. 10. Statistical evaluation of the effect changing various parameters has on the spectral variability.  
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variability and deviation from the reference spectra in PE and PP ma-
terials, spectra of the latter showed more significant improvements as PP 
spectra displayed lower spectral quality without changes in the 
measuring geometry. 

Apart from reflectors, increasing the emitter intensity in a sensor- 
based sorting rig increased spectral quality and fidelity to a reference 
spectrum. This method seems to be a convenient way of improving the 
sorting success of a lightweight packaging sorting operation by simply 
adapting the existing hardware to 2D materials by increasing the in-
tensity setting for the near infra-red emitters. Presupposed the specific 
machinery design permits this technical modification and all safety 
concerns are addressed. 

Coherent with existing findings, an increase in thickness improves 
the spectral quality of both PE and PP specimens, with PP showing more 
considerable improvements with increasing thickness, partly due to the 
sine wave phenomenon occurring less frequently with increasing ma-
terial thickness. However, increasing the thickness of packaging is not 
the solution to the increasing demand for recyclable 2D packaging since 
the comparative lightness of these packaging materials renders them 
competitive. 

A way to increase the recycling quota of 2D materials is to adapt 
existing sorting setups to use measurements in transflection, whose 
viability was shown in this examination, to improve the mechanical 
recycling of 2D materials. 

Further studies are needed to examine the effect reflective back-
grounds have on the sorting success of 2D materials on an existing 
sorting rig with the adaption of reflective backgrounds made of copper 
or aluminium, which have shown the most significant potential for use 
as reflective backgrounds. 
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Abstract: Small plastic packaging films make up a quarter of all packaging waste generated annually

in Austria. As many plastic packaging films are multilayered to give barrier properties and strength,

this fraction is considered hardly recyclable and recovered thermally. Besides, they can not be

separated from recyclable monolayer films using near-infrared spectroscopy in material recovery

facilities. In this paper, an experimental sensor-based sorting setup is used to demonstrate the effect

of adapting a near-infrared sorting rig to enable measurement in transflection. This adaptation

effectively circumvents problems caused by low material thickness and improves the sorting success

when separating monolayer and multilayer film materials. Additionally, machine learning approaches

are discussed to separate monolayer and multilayer materials without requiring the near-infrared

sorter to explicitly learn the material fingerprint of each possible combination of layered materials.

Last, a fast Fourier transform is shown to reduce destructive interference overlaying the spectral

information. Through this, it is possible to automatically find the Fourier component at which to

place the filter to regain the most spectral information possible.

Keywords: 2D plastic packaging; near-infrared spectroscopy; sensor-based sorting; transflection;

monolayer; multilayer films; machine learning; small film recycling

1. Introduction

Currently, around 300,000 t of plastic waste are annually produced in Austria, of which
32% are recycled mechanically [1]. Small films with an area below 1.5 m2 account for
69,000 t, of which 10,260 t, or 14%, are multilayer films with at least two polymers [2].
These films are separated during the beneficiation of the waste and are almost exclusively
used as alternative fuel sources, incinerated or downcycled into low-value products [3].
The substantial potential is latent in the recycling of packaging films since neither co-
incineration nor other thermal recovery adds to the recycling quota [2]. According to the
amended EU Waste Framework Directive, municipal solid waste recycling must reach 60%
by 2030 [4]. Additionally, the new EU guidelines require a recycling rate of packaging
waste of 50% in 2025, with a further increase to 55% in 2030 [4]. This quota can only be
reached through a mix of measures such as higher collection rates, design for recycling,
and improving existing and new sorting techniques. Besides, a recycling system capable
of economically handling a feedstock which accounts for 17 wt.% of all plastic packaging
materials produced, requires additional research. [3].

The reason for the widespread use of multilayer packaging lies in its convenience
for producers, retailers and consumers: The plethora of functions such as UV protection,
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handleability, printability, limited gas permeability, and attractive haptics require only a
minimum of packaging material.

In turn, these inherent properties, the thin layer thickness and the combination of
different polymers impede the separation process. In most sorting plants, near-infrared
(NIR) sorters are used for plastics separation. This technology is based on the interaction
of NIR radiation with the molecular structure of solid materials resulting in distinctive
spectral fingerprints for each polymer type [5]. Thin-film packaging inhibits the separation
by NIR sorting because only a limited amount of radiation is reflected [6]. This lack of
spectral information limits the sorter’s ability to generate a useable spectrum because
the low thickness of the material allows a large amount of radiation to be transmitted [7].
Additionally, the thin layered construction of these packaging films introduces disturbances
in the spectral fingerprint. Due to destructive interferences, sine wave pattern noise may
overlay the spectra, masking its information and thus disfiguring an otherwise applicable
spectrum [8]. Fast Fourier transformation (FFT), which is also used in laboratory-based
infrared spectroscopy, can reduce these overlaying interferences. Though finding the correct
cut-off point has proven to be both time-consuming and tedious if carried out manually [8].

The resulting lack of spectral information can lead to misclassified particles, which
in turn could contaminate an otherwise clean feedstock. This contamination impedes the
recyclability of the recyclate by altering its mechanical properties. This alteration may result
in the need for additional compatibilisers and other additives for the intended recycling
process. [9].

As NIR-based sorters are most widely used in sorting plants, but their potential has
not yet been fully exploited, the aim of this research was to improve their material detection.
Additionally, the decoupling of the material properties from the mechanical separation
enables not only a change of the hardware configuration, in this case the measurement in
reflectance mode, but also the software of the evaluation unit.

Given that a simple adaptation of existing sorter may improve their capability to
separate thin, flexible packaging material, substantial increases in recycling quota with
a limited investment are feasible. Preliminary studies have shown the possibility of sep-
arating monolayer from multilayer materials on a laboratory scale using a NIR-active
background in an experimental setup [7]. Further examinations of these findings on an
industrial scale NIR Sorter have proven to increase the spectral quality of flexible packaging
films by implementing a metal reflector to the sorting geometry [2]. Implementing a NIR
inactive metal sheet as a reflector enabled the sorter to measure in transflectance rather
than the usual reflectance mode [2].

Apart from the low material thickness, another prevalent advantage of multilayer
films has proven problematic during separation and recycling: the continuously changing
types of polymer types, thickness and sequence to ensure the best product protection.
Hence, the resulting combination possibilities further complicate the creation of separation
models.

Whenever completing a complex task without explicitly programming every conceiv-
able variation of this task, machine learning becomes the tool of choice. The application
of machine learning methods in NIR spectroscopy has been successfully implemented
in various fields. It has been used to assess the quality of beer from given features [10],
the rapid assessment of water pollution [7] or the prediction of soil total nitrogen, organic
carbon and moisture [11].

This paper investigates the effects of adding a reflective chute material to a state-of-
the-art near-infrared sorting unit. This modification allows 2D plastic packaging material
consisting of single and multi-layer films to be more effectively detected via transflection
and subsequently separated. In addition, an automatic method for applying the FFT to
spectra obtained in this transflection configuration and affected by interference is examined.
This method is an alternative to manually determining the correct cut-off point in the
Fourier deconstruction of the spectra. Based on these improved spectra, a principal compo-
nent analysis is performed to evaluate whether there are predominant spectral differences
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between spectra of mono- and multilayer materials. This characteristic difference can be
used to train machine learning algorithms to separate the two fractions.

Machine learning algorithms are then evaluated based on their prediction performance
and calculation speed. These metrics result in a hierarchy gauging their capability to
produce correct predictions in a reasonable time. This examination is necessary to gauge
whether this approach is feasible for inline applications, categorising spectra generated
in an industrial environment. Finally, an integrated method is discussed, using improved
spectral recognition with mechanically adapted NIR sorter, improved spectra rid of sine
wave interferences and separated into mono- and multilayer materials via supervised
machine learning classification algorithms.

The presented information creates a stepping stone for integrating recyclable resources
to increase the effectiveness of mechanical recycling. This increase in effectiveness further
creates a value-adding raw material source for multilayer recycling processes currently in
development, thus improving the circular economy of polymers [12,13].

2. Materials

All experiments were executed with material obtained directly from the input of an
Austrian material recovery facility. This waste was collected under the Austrian lightweight
packaging collection scheme. Under this scheme, lightweight packaging made of polymers,
aluminium or beverage carton is collected. For plastic packaging, the collection includes
both 3D and 2D material. From this material, the film specimen for this research paper
were sampled.

2.1. Film Specimens

A total of 103 specimens of post-consumer waste were taken directly from a sorting
plant’s input fraction in Austria. The input fraction is delivered in yellow bags, and these
bags were collected and the lightweight packaging therein was used for further evalua-
tions. The samples were neither cleaned, smoothed or otherwise exposed to preparatory
conditioning before the sorting trials were conducted. The samples’ dimensions ranged
from 10 mm × 10 mm to 210 mm × 297 mm and included printed and transparent samples.
Figure 1 shows the small film fraction for reference.

 

Figure 1. Fraction of small films waste.
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An examination with Fourier transform infrared (FTIR) spectroscopy yielded the
material composition of the experimental samples. The spectrometer used was a Spectrum
Two FTIR spectrometer (Perkin Elmer, Waltham, MA, USA) equipped with a Zn/Se crystal
with a diamond tip. The spectrometer measures in the range of 650 cm−1 to 4000 cm−1 and
has a spectral resolution of 4 cm−1.

2.1.1. Classification with FTIR Spectroscopy

The exact measurement method is explained in greater detail in a paper published
by Koinig et al. in 2022, which examined the composition of Austrian lightweight pack-
aging waste using FTIR measurements. The method is therefore described in short in the
following.

Fourier-transform infrared spectroscopy (FTIR) in attenuated reflectance (ATR) mode
was used to classify the film specimen into their respective material classes.

Samples on which the results differ for the front and back are defined as multilayer
films, while samples with identical results for the front and the back are defined as mono-
layer films. However, the FTIR-ATR characterisation method is limited to identifying the
polymeric material on the sample’s surface and penetrates only a few micrometres of the
sample thickness. In case of uncertainties in assigning a sample to the mono- or multilayer
category, additional FTIR measurements were performed in transmission mode to investi-
gate the material composition over the entire sample thickness to ensure reliable results.

According to the FTIR spectral analysis, the specimens were categorised into different
groups of mono- and multilayer materials. The materials represented by the selection of
samples are represented in Table 1.

Table 1. List of mono- and multilayer materials used in the sorting trials.

Materials Recycling Label Share

Polyethene PE 9 wt.%

Polypropylene PP 31 wt.%

Polyethene + polyethylene terephthalate PE/PET 28 wt.%

Polyethylene + polyamide PE/PA 6 wt.%

Polyethylene + polypropylene PE/PP 16 wt.%

Polypropylene + polyethylene terephthalate PP/PET 9 wt.%

Polypropylene + polyamide PP/PA 1 wt.%

2.1.2. Experimental Sensor-Based Sorting Setup

The trials were conducted with an experimental sensor-based sorting (SBS) setup.
The NIR sensor, an EVK-Helios-G2-NIR1, was used for the trials. This sensor detects the
reflected NIR radiation emitted by a halogen lamp on a sample. The emitted radiation is
reflected, absorbed, or transmitted depending on the specimen and interacts with near-
surface molecules [14]. The spectral resolution of the sensor is 3.18 nm with a frame rate
of 476 Hz and an exposure time of 1800 µs. Each spatial pixel is 1.60 mm wide, owing to
the geometrical setup of the testing rig. The waveband evaluated during the trials was
991 nm to 1677 nm, split into 220 discrete measuring points. After detection, the radiation
is analysed with EVK SQALAR to classify the respective spectra.

The function principle of the sorting rig is depicted in Figure 2.
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Figure 2. Experimental sensor-based sorting setup with the use of near-infrared spectroscopy.

2.1.3. Reflectors

The sorting experiments, which were the basis for the data evaluated in this paper,
were conducted with two reflective chutes made of aluminium and copper. These adapta-
tions had to be made to the existing sorting setup to allow for measurement in transflection.
Two variants of the reflective chute were manufactured by laser cutting the metal plates.
The specific shape of the reflector was chosen so as not to cover the illumination of the
sorter, which is necessary to detect objects for ejection. Copper and aluminium were used
as reflective materials because they are highly promising due to their high reflectivity of
NIR radiation [15].

3. Methods

The described experimental sensor-based sorting setup was used to classify the 2D
materials during the trials. This chapter explains the preparations to complete the sorting
model generation and separation of materials. Further, the measurements in transflection
mode are explained. Finally, the methods used in creating the machine learning approaches
and the spectra improvement methods are explained.

3.1. Measurements in Transflection Mode

One of the defining characteristics of NIR sorting is the interaction of material and
NIR radiation. During this interaction, the incident radiation energy is partially converted
into kinetic energy of molecular vibrations, while other parts of the radiation’s intensity
are transmitted and reflected [16]. Only sufficient interaction between the molecules of
the specimen and the incident NIR radiation creates useable NIR spectra for classification.
Material with insufficient thickness causes most of the incident radiation to be lost to
transmission. Additionally, the minuscule amount of reflected radiation has not interacted
sufficiently with the material to cause alterations in the spectra. Preliminary studies
have shown that the minor signal alterations caused by the low material thickness in
reflectance mode can be alleviated by adapting the experimental sensor-based sorting setup
for measurements in transflectance mode [7,17].

Placing a reflective background plate onto the chute allows measurements to be taken
in transflection mode. This way of measuring thin films alleviates the problem caused by
the low thickness of the material. The radiation is reflected after its first pass through the
specimen. This approach enhances the interaction of radiation and material because of
the lengthened path the radiation takes through the material: First, the incident NIR beam
enters the sample and a small proportion of its intensity is immediately reflected. However,
a significant proportion is transmitted through the specimen and consequently reflected
by the reflective material placed behind the sample. Hence, it passes again through the
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material and can be detected through the NIR sensor. This additional pass through the
material increases the spectral quality and enables the creation of a sorting model to classify
film materials.

Through this process, the variability of the spectra is decreased. This variability is
defined as the absolute difference between pixels of the same specimen [2].

Only if the pixels of a given specimen exhibit similar spectra, a specimen be classified
correctly. Figure 3 compares the spectra of a PE film measured in transflectance mode (left)
and the standard reflectance mode (right). The depiction shows the mean spectra of ten
pixels, normalised via the “zScore” method and smoothed by Gaussian smoothing with
a 10-point floating smoothing window. It can be seen that the characteristic PE peak at
1150 nm becomes more pronounced when measured in transflection.

 

Figure 3. Comparison of spectral variability and characteristic peaks of a PE film when measured in
transflection (left) and measured in reflectance (right).

3.2. Preparations for Sorting Trials

The trials were conducted with teaching and testing fractions. The specimens were
separated into a teaching set to create the model containing 80% of the materials and a
separate testing set to check the model prior to the sorting trials containing 20% of the
specimen. A train test split of 80:20 is one of the most effective ways to train models [18].
The train set consisting of known composition mono- and multilayer materials was used
to create a sorting model. The second class was the test set consisting of monolayer and
multilayer materials not used for teaching the sorting model. With the teaching and test sets
created, the reflective background was installed, and the sorting model, which is necessary
to classify and eject the multilayer materials, was created.

Model Creation Using EVK SQALAR

The sorting model for separating the individual materials was created using EVK
SQALAR.

A sorting model for NIR sorting defines the criteria for which the experimental sensor-
based sorting setup sorts fractions based on reference spectra. These spectra are taken from
known composition materials, and these benchmark spectra are compared to the unknown
materials’ spectral information during the sorting trials. If an unknown pixel’s spectrum
shows sufficient similarities to a reference, it is classified as this material class.

Apart from the reference spectra, the sorting model defines the pre-processing and
spectral processing methods applied to the spectral information. Here, the upper and
lower limits of spectral intensity in which viable pixels for evaluation lie, are considered.
Concessions were made to create a sorting model that can use reflective backgrounds.
Firstly, the white calibration with the reflective background was completed, allowing the
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existing white calibration algorithm to adapt to the increased intensity of reflected radiation
due to the adapted chute material. Secondly, the illumination intensity had to be lowered
to prevent overexposed pixels. This was performed despite the results of previous research
stating that increased illumination intensity improves the spectral quality [17].

Table 2 shows the pre-processing and spectral processing methods used in preparing
the spectral information for classification. These methods were described in the literature
as ideal for separating post-consumer waste as they enhance the subtle differences in each
spectrum, facilitating the differentiation between similar spectra, for example, between PE
or PP monolayer and PE–PP multilayer [19,20].

Table 2. List of pre-processing and spatial-processing.

Pre-Processing Spectral-Processing

Bad pixel replacement Calculation of the first derivative
Intensity calibration Smoothing
Noise suppression Normalisation
Spatial correction

This procedure for creating a sorting model was undertaken with the standard con-
figuration for measurements in reflectance while the aluminium and the copper reflectors
were used for measurements in transflectance. This approach yielded an individual sorting
model for reflective surfaces and the non-reflective original chute.

3.3. Sorting Trials

The sorting trials were performed with every specimen in the test set. Each attempt
was repeated five times to eliminate random factors, such as the trajectory of the film
specimen. The sorter was set to eject multilayer materials.

A particle was considered to be classified correctly when the high-pressure nozzles
were activated and the particle was ejected. Through this approach the number of correctly
separated specimens for the respective configuration.

3.4. Principal Component Analysis to Determine the Possibility of the Application of Machine
Learning Approaches

Even with increased fidelity to the material’s spectral fingerprint in the available
spectra, the overabundance of available multilayer material combinations poses a problem
in creating a sorting model. It is infeasible to implement a sorting routine with spectral
information to correctly recognise all available multilayer material to differentiate it from
monolayer material, and neither is it feasible to include all existing monolayer materials in
the sorting model. Therefore, it is necessary to adopt a sorting mechanism that achieves the
task of detecting multilayer materials without explicitly implementing a vast number of
multilayer spectra. For this, a supervised learning approach was chosen. In order to achieve
this, common identifying characteristics of multilayer materials must be present. If they
influence the spectra enough to enable classification, the existence of these characteristics
would enable the separation of multilayer materials without the need to gather the spectra
of each material. A principal component analysis (PCA) was applied to the 17,569 spectra
recorded from the multilayer and monolayer specimens. The PCA was used to reduce the
220-dimensional spectral information into principal components to analyse if sufficient
differences are present in the data to explain the variance of the data set with principal
components.

Since the PCA indicated differences between multilayer and monolayer spectra, a com-
parison of the average of the multilayer material and monolayer material spectra was
conducted. This comparison was used to evaluate the spectral range in which the two
classes differ most. This comparison was made by taking the mean of all multilayer and
monolayer spectra used in this trial. The two resulting spectra were compared by taking
the two-norm of the distance of each spectral point of the monolayer spectra from its
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corresponding spectral point of the multilayer spectra. This yielded in the wavelengths at
which monolayer spectra and multilayer spectra differ substantially from each other.

3.5. Evaluation of Machine Learning Approaches to Classify Spectral Data

With the information gathered via the PCA, an array of machine learning approaches
was applied to the spectral information gathered from the thin film specimen. First, the
17,569 spectra gathered from the specimen were randomly separated into a training and
a test set. This is required to enable holdout validation to train the machine learning
approaches. The test set contained 20% (3513) of the spectra, while the training set consisted
of the remaining 80% (14,056) of spectra, again utilising the recommended 80/20 split.

Cross-validation allows training and testing on a given number of data splits and thus
permits an estimate of how well a given model will perform on unseen data. Holdout
validation depends on splitting the data set according to the given ratio between the
training and test set. Even with cross-fold validation potentially increasing the prediction
success by 0.1–3%, the time trade-off on large data sets is substantial [21]. The machine
learning approach was repeated using cross-fold validation with five cross-validation folds.
One of the selected groups is used as a test set, while the other is used as a training set.
After grouping, the model is trained on the training set and tested and scored using the
test set. This process is repeated until all sets have been used as the test set. The holdout
validation was chosen after preliminary tests resulted in a high prediction success when
using holdout validation while requiring less training time.

Each NIR spectrum consists of 220 spectral data points. Every spectral point contains
the radiation intensity detected by the NIR sensor and is a feature used for predicting
the material class in this context. The first derivative of every spectrum was taken to
enhance differences inherent in the spectral data, and no further feature engineering, e.g.,
feature selection, was performed. Thus, the machine learning approach initially used all
220 spectral points equally spaced over the NIR spectral region of 930–1700 nm. After
these preliminary trials, a PCA was conducted, reducing the number of features from 220
to 3. These three features explained ~80% of the variance in the model. This approach
tripled the number of observations per second the models were capable of and increased
the prediction accuracy in one case.

All necessary computations were conducted running MATLAB by The MathWorks
(Natick, MA, USA) Version 9.10.0.1710957 (R2021a) Update 4 on a Windows 10 computer
equipped with an Intel® UHD Graphics 630 and an Intel ® Core ™ i5-9400H CPU clocked
at 2.50 GHz.

3.5.1. Used Machine Learning Algorithms

Supervised learning approaches were used to differentiate between mono- and multi-
layer materials. The selection process for the correct algorithm yielded several different
machine learning approaches to be tested. Since the problem at hand is a clustering problem
with three possible clusters, the following algorithms were chosen and evaluated for their
performance.

Decision Tree

Decision Trees are known as Classification and Regression Algorithms since they can
perform classification and regression. Decision trees follow along their edges or branches
and decide at the nodes which branch to follow to label a new input. A condition is queried
at every node to decide which branch to follow [22]. When categorising whether a given
material is a multilayer film or not, the prime features to be evaluated are the intensity of the
given pixel at a specific wavelength. Figure 4 shows an example of a simple decision tree.
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Figure 4. Example of a decision tree.

k-Nearest Neighbour

The k-nearest neighbour (kNN) algorithm works by analysing the distance between a
new data point and its k-nearest neighbours. The user determines the number of neighbours
evaluated, k, influencing the algorithm’s outcome. The new data point is then assigned the
label of the majority of its neighbours. The Euclidian distance between neighbouring data
points is used as a decision criterion. [23].

Figure 5 shows an example; if k = 5 and 3 neighboring points are classified as multilayer
while two are classified as a monolayer, the new data point will be labeled multilayer. In this
example, the dimensionality has been reduced from 220 to 2 by a prior PCA. This reduction
in dimensions is usually made in preparation of a kNN approach to avoid the effects of the
curse of dimensionality, which plagues many machine learning algorithms [24]. In kNN,
the Euclidian distance becomes useless as a metric in higher dimensions since all vectors
are equidistant to the search query vector.

 

Figure 5. Example for k-nearest neighbour classification using k = 5 neighbours.
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k-Means

The k-means algorithm is well suited to classification problems. It works by defining a
number, k, of clusters. Then a set of centres for those clusters is randomly selected. All data
points are then labeled according to their distance to these clusters. After this clustering,
the new centres of those clusters are calculated, and the algorithm begins anew, again
clustering the data around the new cluster centres. With every iteration of the algorithm,
the change of the centres becomes smaller. The procedure is repeated until a threshold
number of iterations is reached. The classification is then complete, and the model can
be used to classify new data according to the k-clusters. The success of this approach
dramatically depends on the selection of the initial centres. It is therefore advisable to create
various k-means models with different starting parameters. Apart from relying on the
starting conditions, the k-means approach’s low computational and memory requirements
are its advantages. Figure 6 shows a completed clustering using the k-clusters approach.

 

Figure 6. Example of a k-clusters clustering problem.

Support Vector Machine

Support vector machines (SVM) separate the given data set by a hyperplane that
maximises the empty area between different data sets. This area is called the margin.
The solution offering the maximum margin separating the given data sets is considered
the optimum and chosen to classify new data. These separating lines, or hyperplanes, are
generated by support vectors, thus the name. A sample showing the classification process
of an SVM is shown in Figure 7. These hyperplanes can be linear and not linear, rendering
the SVM able to classify most data sets of natural features where a linear separation is
impossible [25].
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Figure 7. SVM classification using a nonlinear hyperplane and the classification result an
Figure 7. SVM classification using a nonlinear hyperplane and the classification result and the used
support vectors to create the hyperplane.

Neural Net

The application of neural networks for classification differs from traditional machine
learning algorithms. A classification task requires the input of labeled data, and this
supervised learning approach can be used to classify all data that humans can label. Neural
networks are commonly applied to text classification, fraud detection, voice identification,
or video analysis. A shallow neural network (SNN) with one connected layer has been
applied to the input. The input consisted of the first derivative of the spectra contained
in the spectral image. The classification yielded three classes for the evaluated pixels:
multilayer, monolayer and background.

3.5.2. Feature Engineering

Before classification, the raw spectral data was normalised using the “zScore” method,
which ensures a mean value of zero and a standard deviation of one. The spectra were
smoothed using a Gaussian smoothing algorithm with a ten-element sliding mean window.
Additionally, the first derivative of the spectral data has been taken to make the differences
inherent in the spectral data more prominent.

3.6. Use of Fast Fourier Transformation to Improve Spectra

Fast Fourier transformation (FFT) was applied to improve spectral quality. This ap-
proach enabled overlying sine wave-like spectral abnormalities to be reduced. This reduc-
tion in overlying sine wave-like spectral abnormalities made the analysis of previously
obscured spectral information possible.

The fast Fourier transformation algorithm of MATLAB is used to achieve the original
spectrum’s discrete Fourier transformation (DFT). The DFT of a signal decomposes the
original spectrum into a series of harmonic sinewave parts and represents a frequency
spectrum. Figure 8 shows a representation of a generic noisy signal. Here it can be seen
that any signal composes itself of a series of overlying frequencies. The underlying signal
is overlaid with noise, making it difficult to determine the original signal. The noise could
be eliminated by manipulating the signal in this representation, making the signal clearer.
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Figure 8. Spectral and Fourier depiction of a noisy signal.

By manipulating the representation of the original spectrum, unwanted noise, for ex-
ample, the aforementioned sine wave abnormalities, can be omitted in the inverse Discrete
Fourier transformation (iDFT). The iDFT is used to recreate the signal. To generate a usable
spectrum, the placement of this filter has to be evaluated, and the resulting spectrum has
to be compared to a suitable reference spectrum. This computation takes the two-norm
of the difference between the new spectrum and the reference spectrum. An algorithm
evaluates the resulting spectrum concerning the reference spectrum and places the filter
in the position that yields the optimum spectrum, which facilitates this evaluation. This
way, manual experimentation of filter placement, which previously took considerable
time, can be automated [8]. The deviation from the reference spectrum is plotted over
the corresponding filter position for visual inspection to evaluate the correct positioning.
The result of this process is shown in Figure 9, which depicts the evaluated placement point
for the low pass filter and the resulting deviation. The point in the search with the lowest
deviation is marked. This placement point was then used for further processing.

 

Figure 9. Progress of the optimisation over the deviation of the resulting spectrum from the reference
spectrum.
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The original spectrum is represented in 220 Fourier coefficients. These coefficients
correspond with the camera’s spectral resolution with which the spectrum was recorded.
Figure 10 shows the representation of the spectrum after the FFT was applied. Further,
the location of the deep pass filter is visualised.

 

Figure 10. Fourier representation of the original spectrum.

Summary of Applied Methods

In summary, three methods were used to solve problems in sorting films. Firstly, the
spectra quality was insufficient for separating the material. This issue was remedied by
applying measurement in transflection. The second problem was that after the inclusion of
reflective backgrounds for measurement in transflection, sine wave-like disturbances were
still occurring in the spectra. These in turn were reduced with FFT. Because finding the
correct cut-off point for the low pass filter by hand is time-consuming, an algorithm is used
which finds the cut-off point that results in the best spectra after reconstruction.

The third problem was the abundance of material compositions in multilayer films,
which impeded the creation of a sorting model that recognises multilayer materials. PCA
and the comparison of multilayer film and monolayer film spectra evaluated the viability
of applying machine learning methods to solving this problem. With these methods,
characteristic differences in the spectra were found, which promised a successful application
of machine learning methods. These methods were used to classify film spectra into two
groups and were compared to each other’s prediction accuracy and computation speed to
find the best machine learning method suited for the task. Figure 11 shwos a summary of
encountered problems when sorting films and the applied solutions.
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Figure 11. Summary of encountered problems when sorting films and the applied solutions.

4. Results

All results are assessed based on the number of correct ejections. The first sorting trials
were conducted without adaptations to the sorting rig. These results are used as reference
values to compare the effect of introducing a reflective background on sorting multilayer
and monolayer films.

4.1. Detection Rate without Reflector (Glass Chute)

In summary, 46% of all materials were correctly sorted using no reflective surface as a
background for classification. The lack of useable spectral information explains this low
sorting success. Given the lack of spectral information to base the classification, creating
the sorting model proved difficult.

Figure 12 depicts the detection rate for all materials using no reflective background.

 

Figure 12. Detection rate with different reflectors concerning different materials.

4.2. Detection Success with Aluminium Reflector

The second trial was conducted with the use of an aluminium reflector.
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Due to the optical properties of aluminium, it reflects near-infrared radiation and per-
mits measurements in transflection mode. Since less radiation is lost to transmission, more
pixels contain useable spectral information for classification. This effect permits the detec-
tion of the 2D materials, independent of their thickness and coloring. Optically transparent
materials are detectable and, therefore, sortable with a reflective surface. This improved
sortability is shown in Figure 12, which depicts the detection rate for all materials using an
aluminium reflector and compares it to the initial results without a reflector. After the trial,
74% of all multilayer materials were ejected correctly, which is 61% more compared to the
measurement in reflection.

The aluminium reflector showed great promise as a reflective surface, although its
tendency to accrue an oxide layer that diminishes its reflective capabilities needs to be
considered.

4.3. Detection Success with Copper Reflector

The third trial was conducted using a copper plate as a reflective surface. The high
reflectivity of copper facilitated the model creation. Due to the high reflectivity, the number
of useable spectra for model creation was increased. The copper’s reflectivity enabled a
sorting model that successfully distinguished the majority of mono and multilayer materials
used in the trials. Figure 12 shows a comparison between all three setups.

4.4. Comparison of the Detection Experiments

In addition to its inherent higher reflectivity in the NIR spectrum compared to alu-
minium, copper does not tend to create an oxide layer, and this property may make it
more viable as a reflector despite its higher cost relative to aluminium. Figure 12 shows
the overall detection rate for all materials on all reflectors as a comparison and the total
percentage of detected objects. The formation of verdigris was not encountered during the
trials but will most likely pose an issue when using the reflective surface in an industrial
setting and must be included in planning.

4.5. Evaluation of Differences in Ejection Rate between Polymer Types

This chapter explains the differences in detection and subsequent ejection between
the polymer types. The spectral differences causing this lack of uniformity in ejection
are explored. For this purpose, spectra were taken in each measurement mode (RAW),
standard measurement without reflector, transflectance with aluminium reflector (AL-TR),
and transflectance with copper reflector (CU-TR), are shown and compared with each other.
In addition to the mean spectrum of the specimen, the variability of the spectrum is shown.
The lower this spectra variability is, the easier the specimen can be assigned to one material
group. In Table 3, the results of the trials are presented in tabular form for ease of reference
in the comparison.

Table 3. Ejection rates with different reflectors.

Film Material
Ejection Rate
Copper Reflector [%]

Ejection Rate
Aluminium [%]

Ejection Rate
No Reflector [%]

Average Ejection Rate
[%]

PE 93 93 60 82
PP 77 90 83 83
PET/PE 76 71 24 57
PE/PA 100 100 40 80
PP/PET 53 20 27 33
PE/PP 76 72 40 63
PP/PA 100 80 60 80
Total 78 74 46 66
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4.5.1. PE

It can be seen that 40% of PE films were falsely classified as multilayer materials and
ejected when using no reflector. Figure 13 shows the spectra of a PE specimen used in the
trials and shows that the variability of the spectrum taken without a reflector is comparably
high. Especially in the area of 1200 nm, the second characteristic PE section is absent and
diffuse. The spectra recorded using the copper reflector show very sharp characteristic
sections at 1200 nm and 1400 nm with little variability. The spectra are shown in Figure 13.

 

Figure 13. Comparison PE spectra, left: no reflector, middle: aluminium reflector, right: copper
reflector.

4.5.2. PP

PP was recognised much better than other plastics in the trials. Without a reflector,
83% of the specimen were correctly sorted. Implementing an aluminium reflector raised
this to 90% while implementing a copper reflector reduced the result to 77%. The answer to
this abnormal behavior can be found in the spectral analysis. Examining the spectra taken
in AL-TR, it can be seen that three characteristic peaks are present, namely at 1300 nm,
1400 nm and 1550 nm. In RAW, only one of those characteristics is present. In CU-TR, two
of these three sections are present and can be used for classification, with the dip at 1550 nm
absent. Irrespective of the used reflector, the quality of the PP spectra is more susceptible to
the thickness of the specimen. PP specimens exhibit sine wave-like noise disturbances of
the spectra at a higher thickness than other polyolefins such as PE [8,17]. The spectra are
shown in Figure 14.

 

Figure 14. Comparison of PP spectra, left: no reflector, middle: aluminium reflector, right: copper
reflector.

4.5.3. PE/PA

PE/PA showed a slight improvement in spectral quality. The characteristic regions at
1200 nm and 1400 nm are present without or with the reflector. The dismal ejection rate
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without the reflector was due to misclassification as a monolayer since the PE is dominant
in the PE/PA spectrum. It can be seen that an aluminium reflector alters the spectrum in
the region of 1200 nm by extending the peak in comparison to measurements without a
reflector or with a copper reflector. The spectra are shown in Figure 15.

 

Figure 15. Comparison of PE/PA spectra, left: no reflector, middle: aluminium reflector, right:
copper reflector.

4.5.4. PE/PET

PE/PET had the worst detection rate, with an average of 33% of all specimens correctly
ejected in all trials. The cause is that PE makes up the central part of PE/PET composites.
Since the intensity of any spectral component is proportional to the material’s thickness,
what little spectral information is detected resembles PE [26]. This dominance of the PE
spectrum leads to the misclassification of the multilayer material as PE monolayer and,
subsequently, the low sorting accuracy. These spectra can be seen in Figure 16. In the spectra
recorded in RAW, the characteristic PET dip at 1500 nm is blurred by the variance. Measured
with AL-TR, the characteristic PE peak is blurred, and the PET dip is diminished while the
dip at 1400 is present. In CU-TR, all characteristic features of the PE PET multilayer are
sharp and easily distinguishable, leading to the correct results.

 

Figure 16. Comparison PE/PET spectra, left: no reflector, middle: aluminium reflector, right: copper
reflector.

4.5.5. PP/PET

PP/PET was one of the films with the lowest ejection rate. It can be seen in Figure 17
that the characteristic PET peak at 1650 nm only starts to appear when a copper reflector
is used. The spectra recorded without a reflector exhibit no spectral information and are
unsuitable for classification. The inclusion of an aluminium reflector improves the spectra
to a limited extent. More pronounced improvements are reached after a copper reflector was
installed. After this installation, the characteristic peaks of PP and PET become apparent,
reducing the risk of misclassifying the films as PP. The spectra are shown in Figure 17.
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Figure 17. Comparison PP/PET spectra, left: no reflector, middle: aluminium reflector, right: copper
reflector.

4.5.6. PE/PP

PE/PP multilayer specimens were sorted out without a reflector 40% for the time, and
the introduction of AL-TR raised this to 72%, and CU-TR further increased this result to
76%. PE PP multilayer is especially susceptible to high variability in the spectrum since it
is a composition of two materials exhibiting similar NIR spectra. All peaks overlap the PE
and PP spectra and are present in CU-TR; thus, the material can correctly be classified as a
multilayer film. The spectra are shown in Figure 18.

 

Figure 18. Comparison PE/PP spectra, left: no reflector, middle: aluminium reflector, right: copper
Reflector.

4.5.7. PP/PA

PP/PA was comparatively well separable without a reflector. The spectra taken in
RAW exhibit the material’s characteristic peaks and minimal variability. The sharpness
of the characteristic peaks and the variability of the spectra were further improved when
measuring in AL-TR or CU-TR, mirrored by the improved results in the sorting trials.
The spectra are shown in Figure 19.
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Figure 19. Comparison PP/PA spectra, left: no reflector, middle: aluminium reflector, right: copper
reflector.

4.6. Application of Machine Learning Algorithms to Classify Film Spectra into Multilayer and
Monolayer Categories Results

As a precursor to the classification via machine learning algorithms, a PCA and
a comparison between the mean spectra of monolayer and multilayer materials were
conducted to determine whether discernible differences between the two material groups
exist, which can be exploited for their differentiation into the classes monolayer and
multilayer material.

The application of PCA onto the spectral information yielded three clear clusters.
The evaluation of the PCA showed that the first principal components could explain
approximately 80% of the variance. This result successfully classified multilayer, monolayer,
and the sorter’s background into the three categories by machine learning algorithms.
Figure 20 shows the result of this PCA. Here the three clusters can be seen. Green represents
monolayer spectra, red represents multilayer spectra, and black represents the background
material used in the trials. The monolayer and multilayer materials variance is described in
dominant parts by the first principal component, further shown in the Pareto distribution
diagram in the lower right corner. The first three principal components correspond with
the spectral wavelengths of the separately examined spectra of 1038 nm, 1187 nm and 1309
nm that correspond to the second overtone of CH vibrations typical of CH2, CH3 and C=C
chemical structures [27].

The evaluation of the spectral differences in the mean spectra taken from the mono-
layer and multilayer fraction yielded three spectral regions in which the mean spectra of
monolayer and multilayer materials differ significantly. The comparison is visualised in
Figure 21, which shows the mean multilayer spectrum in yellow, the mean monolayer spec-
trum in red and the three most pronounced differences. The first region where significant
spectral differences can be seen is 1230 nm, corresponding to the second overtone of the CH
bond [27]. Here the multilayer spectrum exhibits a more prominent peak than the mono-
layer fraction, possibly because of a different CH content within the two fractions. A similar
difference can be observed at 1380–1410 nm, where the monolayer spectrum experiences
a more pronounced dip than the multilayer fraction. This spectral region corresponds to
the stretching and deformation vibrations of the CH bond of CH2 structures [27]. While
these two differences expressed a similar characteristic, namely a dip or a peak, the third
difference sees the two spectra deviating strongly from each other [27]. Between 1410 nm
and 1440 nm, the multilayer spectrum exhibits a wave-like pattern while the monolayer
spectrum rises until a peak is reached. This spectral region can be associated with vibrations
of several chemical bonds as the first overtone of OH stretching vibrations, stretching and
deformation vibrations of CH in CH2 and aromatic structures and the first overtone of NH
vibrations. In particular, the shape of the spectra for the multilayer material would suggest
that multiple peaks are present, and they might correspond to vibrations of aromatic or NH
bonds typical of PET and PA, respectively. The spectra of the monolayer material would
suggest possible vibration of one chemical bond type.
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Figure 20. Result of the principal component analysis of approximately 17,000 spectra of monolayer,
multilayer and background material to discern their sortability.

 

Figure 21. Differences in the mean spectra of multilayer and monolayer materials.

While the comparison of mean spectra of different materials cannot determine whether
the differentiation of individual materials into the categories monolayer and multilayer is
possible, it shows that differences between the two materials exist, which may be used to
classify them accordingly.

After these preliminary examinations, the respective machine learning algorithms
were used to classify the spectral data. Table 3 shows the success rate of each respective
algorithm in correctly classifying the material into the classes multilayer, monolayer and
background. All used algorithms show promising results apart from the k-means algorithm.
This algorithm could not correctly identify the material, reaching an accuracy of only 60%.
Amongst the others, the SVM and the SNN reached the highest accuracy.
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Prediction Speed

The NIR sorter can achieve a refresh rate of approximately 500 Hz, which can effec-
tively be halved without substantial loss of information while recording 320 spatial pixels
with a spectral resolution of 220 points. This recording speed means that approximately
80,000 spectra must be evaluated every second. A machine learning algorithm’s prediction
speed is given as the number of observations processed per second, and its inverse would
be the time taken for one prediction in seconds. The fastest examined machine learning
algorithms were capable of prediction speeds of 83,000 observations per second, which
would be fast enough to classify every pixel the spectral imaging camera recorded. It has
to be noted that no pre-processing steps and additional computing time were considered
for this calculation, reducing the number of spectra processable per second.

After evaluating the prediction speed and accuracy, a hierarchy of machine learning
algorithms was established. Table 4 shows the percentage of correctly identified pixels and
respective machine learning algorithm. With a PCA leaving three principal components
for classification, the SVM outperformed the other algorithms regarding prediction speed
and accuracy. This comparison is shown in Figure 22, which compares the examined
algorithms and their success in classifying the test set. On the left, the prediction accuracy
is presented. Here it can be seen that while all algorithms were able to label the spectra
correctly in at least 80% of cases, the SVM, after PCA using the one versus one approach,
could predict the material in 93% of cases correctly. Because these examinations aim to
evaluate the algorithms for their applicability in a sorting operation, accuracy without
prediction speed is irrelevant. Figure 22 shows on its right the comparison of the machine
learning approaches concerning their time requirements per correct prediction. It can be
seen that the introduction of a PCA prior to model generation decreased the time necessary
to predict the label of a spectrum. Further, the PCA did not decrease accuracy. Therefore,
the fastest algorithm was the SVM and the SNN with prior PCA using three principal
components for prediction.

Table 4. Correctly identified pixels and respective machine learning algorithm.

Algorithm Correctly Identified Pixels

Decision tree 98.15%
k-nearest neighbour 98.17%
Neural net 99.47%
Support vector machine 99.63%
Shallow neural network 99.90%
k-means ~60%

 

Figure 22. Comparison of the different machine learning algorithms used for classifying monolayer
and multilayer materials in the test set.
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4.7. Visualisation of the Classification Results of the Shallow Neural Network

The comparison of the applied machine learning tools yielded two methods especially
well suited to the classification of films. The SVM and the SNN were almost identical
in prediction accuracy and speed when presented with unknown data. Though both
methods are on equal footing on these metrics, the SNN is superior in terms of training
time. The SVM took 260 s to train, while the SNN only took 16 s. While these specific times
are highly dependent on the hardware used for training, the ratio between the training
times is independent of the hardware used for training. It took almost 18 times longer to
train the SVM. Due to this advantage of the SNN, it was used to classify film specimens.
In the following, the classification results of the SNN are shown.

The following figures show the classification results of the films. Each pixel identified
in the evaluated rectangle as monolayer is displayed in green, multilayer pixels are shown
in red and pixels identified as background are black.

Figure 23 shows the classification of a PE monolayer film. The SNN correctly identified
most of the material. Areas with low spectral intensity were classified as background and
are shown in black. A small number of pixels was wrongly classified as multilayer material.
This issue is caused by the close resemblance of PE monolayer material´s spectra with
PE/PP multilayer films, which can lead to misclassification.

 

Figure 23. Classification of a PE monolayer film with the SNN.

Figure 24 illustrates the classification result of a PE/PET multilayer film. The specimen
in question had an elongated form and some overexposure occurred, as shown by the
bright sections in the image. The model had issues classifying the overexposed pixels,
which can be seen by the red and green pixels, misclassified as mono- and multilayer
film. Concerning classifying the specimen itself, the model was successful, shown by the
resulting classification in red and the small number of misclassified pixels in green.

 

Figure 24. Classification of PE/PET multilayer film with the SNN.

Figure 25 shows the classification result of a PE/PP multilayer packaging film. PE/PP
multilayer materials challenge the classification model due to the close resemblance of
the PE/PP multilayer spectrum and the corresponding monolayer spectra of PE and PP
monolayer materials. The result is a rather large proportion of misclassified pixels, as shown



Polymers 2022, 14, 3926 23 of 28

in the figure. Despite these unfavourable circumstances, the model managed to classify
most of the specimens correctly as multilayer material.

 

Figure 25. Classification of PE/PP multilayer film with the SNN.

Figure 26 shows the unclassified specimen and the classification result of the multilayer
cheese packaging. The neural network had issues with the low intensity of the recording
in some areas, shown by the large proportion of pixels classified as background in black.
The neural network correctly classified most of the specimen´s pixels where the intensity
was sufficient for classification. Only a minuscule number of pixels were wrongly classified
as monolayer pixels, shown by the green pixels in the classified image.

 

Figure 26. Classification of a cheese packaging film not used in training and testing with the SNN.

4.8. Application of FFT and Elimination of Frequencies

The application of FFT and subsequent elimination of interfering spectral abnormali-
ties yielded improved spectra. These spectra regained their specific form used to categorise
the respective materials. Figure 27 visualises the original spectrum before applying FFT
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and the following elimination of overlaying wave patterns. It can be seen that the spectrum
exhibits almost no discernible patterns which could be used for classification. The character-
istic peak at 1350 nm is insinuated but not pronounced. Contrarily, the characteristic peaks
at 1150 nm and 1410 nm, expressed by the reference spectrum, are absent. After eliminating
the overlying sine wave-like patterns, the fidelity of the spectrum to the reference spectrum
improves. Although the peak expressed by the reference spectrum at 1150 nm could not be
reproduced, the peak at 1350 nm becomes more pronounced and a second peak at 1410 nm
becomes apparent. Further, the sine wave begins to form in the original spectrum at around
1390 nm and becomes less pronounced.

 

Figure 27. Difference between the raw spectrum (blue) and an improved spectrum (red) and their
comparison to a reference spectrum (yellow).

The deviation from the reference spectrum could be reduced by up to 30%. This way,
the information contained in PP spectra which were unuseable for the classification and
generation of a separation model, could be extracted.

Finding the correct place for the filter has been automated, significantly reducing the
workload for finding the correct filter placement.

4.9. Spectral Library of Film Materials

During the creation of the machine learning tests and the sorting trials, an abundance
of spectral information of film materials has been recorded. This spectral information
has been stored in MAT-files. MAT-files are binary files that store workspace variables.
This spectral library contains the spectral data of over 130 film specimens. These spectra
and the necessary MATLAB code library to visualise the spectral images and to extract
spectra from these files have been organised into a repository. This repository and the data
therein may be used to create proprietary film sorting models for further trials. This spectral
library expands the existing TrashNet-NIR library by adding film spectra. For access to the
repository, the corresponding author may be contacted.

5. Discussion

The sorting trials, the application of FFT and the machine learning approaches are
discussed in the following. Further, the limitations of using a chute sorter to separate film
specimens are evaluated and the possibility of incorporating the shown procedure in an
integrated film separation process is elaborated upon.
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5.1. Discussion of Sorting Trials

The sorting results indicate that the success rate of film sorting increases when reflect-
ing backgrounds are used. The detection rate with a traditional non-reflecting glass chute
did not reach 50%. With the introduction of a reflective chute, the detection rate reached
over 70%, with better sorting results in every material category. This result supports the
findings of previous experiments, which showed the improvement of film spectra using
measurements in transflectance [2].

The increase in the detection rate is due to better useable spectra when the measure-
ments are taken in transflectance mode. Furthermore, adding a reflective surface decreases
the amount of radiation lost to transmission and enhances the spectral data quality available
for classification and model creation.

The transflection mode was only evaluated with a chute sorter. However, in material
recovery facilities, belt sorters are usually used for their higher throughput and the contin-
uous speed of the particles. The specimen´s speed depends on its density and shape on
a chute sorter. While in this case the input material is film, it is not so much the particle
density as the particle shape that is a problem. Films, in particular, are difficult to sort, as
their low weight and large surface area make them prone to gliding, making their ballistics
hard to predict and their ejection difficult. Though the improvement in spectral quality
and sorting of films using the transflection mode could be shown, further evaluation of
transflectance measurements with a belt sorter would be advisable.

In addition, some material classes have been underrepresented due to a lack of avail-
able specimens owing to low occurrence in the waste stream.

Finally, the created monolayer fraction could be further sorted into the respective
monolayer materials, PE and PP. Out of this monomaterial feedstock, recyclate and subse-
quently test pieces for mechanical examinations could be produced. These tests, for exam-
ple, tensile tests or Charpy tests, could then be used to assess the mechanical properties of
the recyclate.

5.2. Discussion of the Application of Machine Learning Approaches

Implementing machine learning algorithms such as an SVM or a deep neural network
showed great promise in classifying monolayer and multilayer materials. The prediction
speed without a preliminary dimension reduction was insufficient to even theorise about
their feasibility in an industrial setting. After implementing a dimension reduction using
principal component analysis, the prediction speed increased substantially. In addition to
an increase in prediction speed, prediction accuracy also saw an incremental increase.

The correct classification of multilayer material without creating a specific model for
each material class can be achieved by using common patterns among multilayer material.
This is because machine learning methods can use these shared properties to detect multi-
layered particles which can subsequently be ejected. Hence, machine learning is suited to
be used for this purpose.

5.3. Discussion of the Application of FFT to Improve Spectra Overlain by Sine Wave Abnormalities

Because the implementation of reflective background materials only reduced the
occurrence of sine wave noise, this issue still needed attention. The tedious search for the
ideal cut-off point was replaced by a simple algorithm that finds the optimal position where
the reconstructed spectrum comes closest to a reference spectrum.

The main problem with this approach is that it depends on knowledge of the polymer
type of the material. Its purpose was to elaborate on the possibilities of using FFT to
improve film spectra. Further research is needed to ensure that the system can improve a
spectrum without prior knowledge of its polymer type by having generic reference spectra
of polymers to compare the improved spectra against. It is not necessarily the case that
the recreated spectrum needs to adhere to a spectrum of the same material class. Instead,
the goal of the FFT process is to reduce or eliminate overlaying sine wave spectral noise.
So, comparing the spectra with an adroitly chosen generic reference spectrum exhibiting
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no sine wave disturbances could be sufficient. The improved spectrum could then be used
for the actual classifying process. Further, only the application of a low pass filter has been
described in this article as it extraordinarily improved the spectral quality. Additional trials
may show that a supplementary implementation of a high pass filter may improve the
spectral quality further though this has not been evaluated.

5.4. Discussion of an Integrated Process

Combining all processes shown in this work may be used to classify film spectra. First,
the spectral image is taken in transflection and evaluated. The spectra used for classification
are then classified either as suitable or unsuitable. If a spectrum is unsuitable for further
classification due to sine wave noise caused by destructive interferences, the spectrum
is improved via the shown FFT. Based on the spectra, the material is then classified by
an SVM or neural net. Depending on the classification result, monolayer or multilayer
film, the material is subsequently handled accordingly. In the case of monolayer material,
further classification into the respective material groups via NIR is undertaken to create
a monomaterial input stream for supplementary recycling processes. Two options are
available for discussion if the material is classified as a multilayer. The material can either
be thermally utilised or used as a feedstock for chemical recycling. Figure 28 shows a
flowchart for this method.

Figure 28. Integrated film recycling process.

6. Conclusions

NIR sorting success depends on the availability of high-quality spectral information.
Traditional approaches struggle to provide spectra with high fidelity, as shown in the
sorting trials lacking reflective backgrounds. Introducing reflecting backgrounds enables
measurements in transflection, permitting the separation of monolayer and multilayer
materials. This approach yielded an increase in detection rate from 46% to 74% with an
aluminium reflector. Implementation of a copper reflector improved the detection rate
further to 78%. Apart from an increase in the average detection rate, the recognition
of every individual material increased with the introduction of reflective backgrounds.
These findings support existing results that by increasing the reflectivity of the background
material and the coinciding measurements in transflection, the sorting success of 2D
materials can be increased.

Existing findings regarding the application of FFT to improve the spectral quality
further were deepened. We proposed a method to apply FFT to spectra in order to eliminate
destructive interference which in turn reduces the (manual) time demand. The improved
spectra can then be used in machine learning methods to separate monolayer from mul-
tilayer materials. This adoption of machine learning methods was performed after the
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applied PCA showed characteristic differences between the spectra of mono- and multilayer
films, regardless of their material composition. These overarching differences were used
to train machine learning models. The trained machine learning models could correctly
categorise mono and multilayer materials without the need to include every combination
of multilayer materials in the training set. The computation times were low enough to con-
sider the applicability of these methods for inline classification. Here, additional research is
needed with more potent hardware.
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4 Summary of Results 

This doctoral thesis entails six publications covering the two phases of this research, "Waste 
Management Analysis" and "Process Optimisation", with each publication building upon the 
findings of its predecessors. The research questions defined in chapter 1.3, "Scope of 
Investigations", are answered below as a summary. 

4.1 Waste Management Analysis Phase 

Research Paper 1:  

"Latent Recycling Potential of Multilayer Films in Austrian Waste Management" 

This publication concerns itself with the current prevalence of film packaging in the separate 
collection of lightweight packaging. It portrays a hand-sorting trial to determine the percentage 
of plastic waste that is film packaging. Further, the packaging is catalogued according to their 
usage. In addition, the film packaging undergoes classification with Fourier transform infrared 
spectroscopy (FTIR) to determine the percentage of multilayer packaging within the film 
fraction. Based on these results, this publication shows the latent recycling potential in film 
packaging that can be used to reach the mandatory recycling rates. 

Research questions: 

(1a) How prevalent is film packaging in Austrian lightweight packaging at the start of 

the investigations? 

Film packaging represents 69,000 t of Austria's annually produced 300,000 t lightweight 
packaging, i.e. 23 %. In this publication, hand sorting trials have been conducted to deepen 
the understanding of how prevalent film packaging is in the input fraction of a sorting facility in 
Austria. The results of the hand sorting trial of plastic packaging could support the results of 
existing studies, which suggested that of the 170,000 t of separate collected waste in Austria, 
30% by weight is flexible 2D plastic packaging.  

(1b) What percentage of film packaging are multilayer films? 

FTIR analysis of these films further revealed that 31% of all films are made of polyethene (PE), 
39% polypropene (PP), 11% polyethene–polyethene terephthalate, and 8% polyethene–
polypropene. Based on the FTIR analysis, the percentage of multilayer films in the evaluated 
fraction was 20 %. 

(1c) What are the most common applications for multilayer films disposed of via the 

separate collection of lightweight packaging?  

Cataloguing the film material showed that the most prevalent use of multilayer film packaging 
is carrier bags, pet food packaging and sanitary products. 30%, 18% and 8% of all multilayer 
packaging were used for these applications, respectively. In addition, the types of packaging 
most likely to be made up of two or more layers of film were evaluated. This evaluation showed 
that 100% of evaluated cases of dairy products and coffee packaging was made of multilayer 
films. Following these applications is meat packaging, where over 80% of all packaging were 
made of multilayer films. 

(1d) How would increased film recycling affect the overall recycling rate? 

It was calculated that improved sorting of films could increase the Austrian recycling rate from 
25.7% to 35.5%. This approach enables the recycling of single-layer films by avoiding 
contamination with foreign substances introduced by multilayer films, which affect the 
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mechanical properties of the recyclates. In addition, the potential increase in the recycling rate 
was calculated if multilayer films were recycled. Including mechanical or chemical recycling 
schemes to recycle multilayer films would raise the recycling rate to 38.9%. 

Research Paper 2:  

"Sensor-based and Robot Sorting Processes and their Role in Achieving European 

Recycling Goals - A Review" 

This publication serves as a review of the relevant technologies in the field of sensor-based 
sorting. This review analyses the most important technologies, such as near-infrared, visual, 
x-ray fluorescence, and laser-induced breakdown spectroscopy. In addition, the most common 
sorter configurations, such as a chute sorter, belt sorter and robot-aided sorting, are depicted 
in detail in this publication. All evaluated sensor systems are comprised in a lookup table, 
depicting the capabilities of the sensor technologies. This review was used to determine the 
sensor technology with the highest potential for film sorting and subsequent industrial 
applications. 

Research questions: 

(2a) What is the current state of the art, and what is the best practice in sensor-based 

waste sorting? 

Currently, an array of sorting technologies is used in waste management to sort incoming 
material. These sorting methods depend on the specific differences in material properties to 
enable a separation into the desired fraction. This publication has undertaken a comprehensive 
overview of the available sorting techniques to gain an overview of the most common sensor-
based sorting techniques. Among these is sorting via electromagnetic induction, using the 
electrical conductivity for separating materials. Sensor-based waste sorting is commonly 
applied in the sorting and processing of scrap, electronic waste, construction residue, 
commercial waste and glass. 

Laser-Induced-Breakdown-Spectroscopy (LIBS) is based on the material's elemental 
composition. Heating the sample's surface induces conversion into plasma. The plasma emits 
a light spectrum that can then be used to differentiate metal alloys and sort scrap metal. 

Near Infrared Spectroscopy (NIRS) is based on the interaction between the near-infrared 
radiation and the material's molecular structure. The excitation of the molecules by the near-
infrared radiation leads to absorption in specific bands that produce characteristic spectra, 
which are, among others, commonly applied to separate packaging waste, household waste, 
commercial waste, sorting of recyclables and the end-of-life recycling of vehicles. 

Visual Spectroscopy (VIS) works by detecting visible light colour, and samples are then 
characterised based on colour, brightness, reflectivity, and transparency. This technology is 
commonly used to separate waste paper, recyclables, glass, and construction site residue. 

X-ray Fluorescence Spectroscopy (XRF) depends on the specimen's elemental composition. 
When the specimen is exposed to the radiation, a fluorescence characteristic of the substance 
is produced, which can be used to identify different alloys or to sort glass. 
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(2b) Which currently available technique shows the highest potential for improving the 

sortability of film packaging waste? 

The most common technologies were compared for their cost, effectiveness, and ease of 
application. This comparison led to eliminating all X-Ray-based sorting mechanisms due to the 
need for extensive radiation protection and the procuring of expensive equipment. LIBS was 
excluded for similar reasons and, in addition, the application of LIBS to polymer sorting is 
inhibited by the similarity of the elemental composition of polymers. The remaining sorting 
methods, VIS, induction sorting, and NIRS, underwent further evaluation of their potential to 
improve the sortability of film packaging waste. Induction sorting can be used to separate films 
with a metallic layer as these metallic layers pose a problem in the recycling process and need 
to be removed. VIS sorting can aid in producing a single colour film fraction to improve the 
marketability of recyclates. NIRS is a staple in the waste processing sector, is widely applied, 
does not need special safety equipment, and is able to handle high throughput rates.  

Improving the sorting of films with these types of sensor-based sorting technology shows great 
promise for improving the waste management of lightweight film packaging. 

Research Paper 3:  

"Qualitative analysis of post-consumer and post-industrial waste via near-infrared, 

visual and induction identification with experimental sensor-based sorting setup" 

This publication details the selected methods and the underlying working principles used in 
this doctoral thesis. The methods described in this paper address the development of sorting 
models for a specific near-infrared, visual spectroscopy, and induction sensor. Specifically, the 
methods used to create sorting models are described and validated with plastic and metal 
wastes.  

Research question: 

(3a) What are the working principles behind the sorting techniques best applicable to 

film sorting? 
The concluded process when sorting in VIS had nine steps. The first two steps entail adjusting 
lighting settings, white calibration, and black calibration. The third step consists of creating a 
basic classification program. In the fourth step, specimens are recorded, and the respective 
colour of the pixels are assigned to the classification classes. In step five, the material to be 
classified is applied to the sorting aggregate and sorted into the created colour classes. Here, 
the classification success of the particles is measured, and the sorting model is adjusted as 
needed. The previous steps were all completed on a PC. Step seven involves transferring the 
created model to the sorting aggregate for usage during a sorting trial. This sorting trial 
represents step eight. After the sorting trial is completed, the ejected and rejected fractions are 
evaluated, and the sorting success is measured by manually sorting and weighing the 
fractions. 

Applying NIRS is similar to conducting sorting trials with VIS. The first step consisted of 
correcting the white and black calibration. After completing this step, the NIR spectral images 
of representative specimens are taken. From these images, spectra are chosen, and material 
classes are created. These materials classes are combined into a sorting model, with which 
the input fraction is sorted. This sorting is conducted via compressed air. After the sorting trial 
is concluded, the created fractions are again sorted by hand, and the sorting success is 
evaluated by weighing or counting the fractions as applicable. 
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When sorting with induction, no sorting model is created. Instead, the parameters for the 
induction sensor are calibrated to enable classification and ejection. These parameters include 
the detector's sensitivity, the delay time (defined by the delay between detection and activation 
of the high-pressure nozzles), the minimum blowout time, and the minimum size of an object 
to trigger ejection. Further, scaling of the detected object and activating proximity nozzles can 
be toggled.  
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4.2 Process Optimisation Phase 

Research Paper 4:  

"Lifecycle Assessment for Recycling Processes of Monolayer and Multilayer Films: A 

Comparison" 

This publication evaluates the environmental impact of film recycling. In detail, the resulting 
Global Warming Potential and the Depletion of Abiotic Fossil Fuels (ADPF) are quantified. 
Different scenarios depicting improved collection, sorting, and recycling of film packaging are 
compared with the current situation. Further, the resulting environmental impact of reaching 
the postulated recycling goals in film recycling is quantified. The overarching goal of this 
publication is to compare the thermal valorisation of film packaging waste to the recycling of 
this fraction regarding the resulting environmental impact. This comparison is used to aid in 
deciding whether the mechanical recycling of films is a goal worth achieving from an 
environmental perspective. 

Research questions: 

(4a) Can mechanical recycling of films reduce the environmental impact of film 

packaging? 

The results in this publication showed that the general trend towards mechanical recycling of 
films reduces the environmental footprint of film packaging. In this publication seven scenarios 
have been compared. Each scenario depicts improvements in one area of film packaging 
recycling and is compared against the status quo.  

With each scenario, the environmental impact of film packaging has decreased over its 
lifecycle. Increased collection of film packaging decreased the load of the municipal waste 
incineration plant only in a limited way. This limited decrease in incinerated film packaging is 
due to a lack of suitable sorting facilities to separate mono- from multilayer films. This lack of 
a recycling route for film packaging necessitates thermal recovery of the film fraction that is 
separated during the separation process. At this point, the improved sorting of film packaging 
that was looked at in this publication decreased the environmental impact of film packaging by 
enabling the separation of mono- and multilayer films.  

By separating the multilayer fraction from the monolayer materials, this fraction can be used 
as feedstock, eliminating the current need for thermal recovery of these monolayer films. This 
reduction in thermally recovered lightweight packaging reduced the environmental impact of 
film packaging substantially. 

(4b) Is mechanical recycling of films ecologically viable despite the reduction in 

thermally recovered energy from film waste? 

One concern in reducing the amount of thermally recovered film packaging was the resulting 
decrease in produced power and heat. This decrease would entail the need for other forms of 
electricity and heat production, which would offset the reduction in CO2 emissions. The results 
showed that the driving forces for the environmental impact are the production and waste 
incineration of film packaging, which are the most significant contributors to the Global 
Warming Potential (GWP).  

Reducing the incineration resulted in reducing the necessity for virgin film production and 
reducing the environmental impact of film packaging. The results for energy recovery were 
similar: After calculating the environmental impact of the otherwise recovered energy from 
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thermal recovery with the energy mix used in Austria, the results showed that a reduction in 
thermal recovery and subsequent increase in other energy production would lead to an overall 
decrease in the environmental impact of film packaging. Regarding quantifying reduced 
incineration's impact, the GWP has been calculated for the functional unit of 1,000 kg of 
packaging film. 

The calculated GWP of the Status Quo was 3,237 kg CO2-eq. and an ADPF of 54,759 MJ for 
the functional unit of 1,000 kg of film packaging. Improvements in the film packaging waste 
collection reduced the GWP by 6%. Improving the separation of monolayer films from the film 
fraction and subsequently introducing them into the recycling scheme reduced the GWP by 
63%. Simulated recycling of all film packaging would reduce the GWP by 90%, leaving 335 kg 
CO2-eq for the examined functional unit of 1,000 kg film packaging.  

The usage of regranulates from film recycling in film packaging production enables this 
reduction by reducing the amount of virgin materials that need to be manufactured and the 
environmental impact that accompanies this production. This theoretical substitution eliminates 
the need to produce virgin materials and, thus, reduces the production-related effects to zero. 
Optimising all steps in the recycling process eliminates the need for incineration and leaves 
primary energy production as the predominant emission source of the residual GWP. 

 

(4c) How will reaching the postulated recycling goals in film recycling impact the global 

warming potential and depletion of abiotic fossil fuels? 

The impact of reaching the postulated recycling goals for 2025 and 2030, respectively, has 
been calculated. The optimisations necessary to reach the 2025 recycling goal in collection 
rate, sorting and recycling would yield in a reduction of the GWP of 34%. This reduction entails 
an absolute reduction to 2,124 kg CO2-eq for the functional unit. In terms of the ADPF, reaching 
the 2025 recycling goals would yield a reduction of 36% in ADPF compared to the status quo. 

The postulated recycling rate of 55% by 2030 surpasses the goals set for 2025. As such, the 
resulting reduction in GWP would also increase. The GWP could be reduced by 40% if the 
recycling goals are met by further optimisation of the collection, sorting and recycling 
processes. This reduction results in 1,944 kg CO2-eq for the functional unit. In terms of the 
ADPF, reaching the goals postulated for 2030 would reduce the ADPF by 42% compared to 
the status quo, resulting in an absolute ADPF for each functional unit of 32,028 MJ. 
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Research Paper 5:  

"Influence of Reflective Materials, Emitter Intensity and Foil Thickness on the Variability 

of Near-Infrared Spectra of 2D Plastic Packaging Materials" 

This publication concerns the limitation of near-infrared spectroscopy when handling thin 
materials such as film packaging. Since this technology relies on near infrared radiation 
interacting with the material, thin thicknesses pose a problem because little to no interaction 
can occur. The lack of interaction leads to spectra that contain no characteristics of the material 
and are thus of no value to the classification process. This publication showcases new 
adaptations to existing sorting aggregates and the increased spectral quality that can be 
achieved.  

 
Research questions: 

(5a) What hardware adaptions mitigate the lack of spectral information when sorting 

films with near-infrared technology? 

The lack of spectral information is mainly caused by two mechanisms. One is the effect of low 
material thickness, which inhibits the interaction of the material and the near-infrared radiation. 
The second is caused by the material properties itself. The often glossy and crinkled surface 
leads to overexposed pixels while destructive interferences produce overlying noise and thus 
further blur the spectral information content. 

The resulting improvement in spectra quality was defined by the deviation of the spectra from 
a reference spectrum and the spectra's variability. Various experiments have been conducted 
to find the most relevant factors that define spectral quality. A relevant factor was the material 
thickness, further confirming the notion that low spectral quality is a result of low material 
thickness.  

Another relevant factor was the illumination intensity. Raising the intensity of the infrared 
emitter increased the spectral quality. Another effective way to increase spectral information 
content was raising the reflectivity of the background on which the materials were recorded, 
enabling measurement in transflection. 

(5b) What changes provide the most significant improvement in spectral quality? 

A statistical evaluation of all sorting process parameters revealed the most important changes. 
The greatest improvement in spectral quality could be seen when a reflective background was 
introduced. This reflective background replaces the standard transparent background and 
enables measurement in transflection. This method of measuring the films' spectra increases 
the interaction between film and radiation and produces spectra with little to no variability. 
Measurement in transflection further reduces spectral noise and yields spectra with the typical 
characteristics of the evaluated material. 

(5c) How can existing Near-infrared Sorting aggregates be adapted to improve film 

sorting? 

The adaption of existing near-infrared sorting aggregates must be completed with minimal 
investment concerning time and labour and minimal disturbance of the daily processes. This 
publication showcases the adaptation of an existing chute sorter to incorporate measurements 
in transflection. This adaption has been designed to be reversible, not to hinder aggregate 
usage in conventional transmission measurements.  



Chapter 4 Summary of Results 163 

 

 

A reflective background has to be installed to implement transflection measurement, and this 
reflective background needs to be highly reflective of near-infrared radiation. The experiments 
conducted in this publication and the reviewed literature point to metallic backgrounds. 
Theoretically viable materials include gold, copper, and aluminium. Out of these materials only 
copper and aluminium are applicable in a waste sorting plant due to the high cost and 
unsuitable mechanical properties of gold. These materials are resilient and relatively 
inexpensive and deliver the best cost-to-performance ratio. These metallic backgrounds are 
highly reflective in the relevant wavelengths and increase the spectral information content. 

Implementing these reflective backgrounds in a chute sorter is comparatively easy to achieve. 
Given the measurements of the sorter, a reflective plate has been laser-cut to fit the existing 
aggregate. As a final step, the sorter's illumination settings and white calibration were modified 
to accommodate the background's increased reflectivity. 

Research Paper 6:  

"Evaluation of Improvements in the Separation of Monolayer and Multilayer Films via 

Measurements in Transflection and Application of Machine Learning Approaches" 

This publication concerns the residual issues when sorting film packaging in near-infrared. One 
issue is the plethora of existing film combinations in multilayer packaging. The high number of 
possible combinations of materials makes creating a sorting model challenging because every 
material combination exhibits a characteristic spectrum that has to be accounted for in the 
sorting model. In this publication, machine learning sorting models are evaluated based on 
their capability to sort multilayer- and monolayer materials based on overlying differences in 
the spectra. The results show that it is possible to apply machine learning techniques to the 
data and to sort film packaging without explicitly teaching the sorting model every material 
combination present in the input fraction. In addition, frequency analysis methods are 
evaluated to present a method to further increase the information in the spectra of films by 
eliminating overlying noise. 

Research question: 

(6a) Can data-driven methods further facilitate the sorting of film packaging? 

Data-driven methods were evaluated for their feasibility in classifying multilayer and monolayer 
films. These classifications should be produced independently from the material composition 
of the film. Classifying films this way would enable the separation of film materials without 
creating sorting models for every layer combination. Preliminary trials have shown that 
characteristic differences between the spectra of mono- and multilayer films exist, and these 
differences are independent of the actual material composition. The applied principal 
component analysis of the film spectra revealed three principal spectral areas as components, 
which explained over 80% of the variance present in the data. These components were in the 
ranges of 1,230 nm, 1,380 nm – 1,410 nm and 1,410 nm – 1,440 nm. These specific 
wavelengths are regions of interest for the classification and show that sufficient material 
independent information is present in the spectral data to enable separation. 

 

(6b) Can Fast Fourier Transformation automatically improve spectral quality? 

Fast Fourier Transformation has been applied to spectra exhibiting sinus wave noise. This 
noise results from destructive interferences due to the low material thickness. Fast Fourier 
Transformation can represent the spectra in the form of Fourier components. Prior to the 
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reconstruction of the spectra via inverse Fourier Transformation, the Fourier components are 
evaluated for their information content. Only Fourier components containing relevant 
information should be used for the reconstruction. Finding these relevant Fourier components 
by hand is time-consuming and laborious. Thus, this process has been automated. 
Reconstruction is performed after automatically checking the contribution of all Fourier 
components to a valuable spectrum and implementing a filter. This filter removes all Fourier 
components that do not improve the reconstructed spectrum. With this automatic selection of 
Fourier components for reconstruction, improving spectra via Fast Fourier Transformation to 
eliminate sine wave noise in line is feasible. 

 

(6c) Can machine learning techniques separate monolayer- from multilayer materials 

without explicitly teaching the sorting aggregate to recognise the spectra of all present 

multilayer compositions? 
The results of this publication have shown that sufficient material independent information is 
present in the spectra data to make separation via machine learning approaches feasible. 
Further investigation has shown that only a small number of machine learning techniques are 
suitable for this task. After evaluating the available possibilities, k-Nearest Neighbour, Support 
Vector Machines and Neural Networks were chosen for further trials. Before teaching the 
sorting model, extensive tests were conducted to determine the correct feature engineering. 
Additionally, all spectra were smoothened via a gaussian smoothing algorithm, normalised and 
the first derivative taken. With this data, the training of the models was started, and the trained 
models were tested on an independent set of spectra. Here, the neural network needed the 
shortest training time, delivered the most accurate prediction, and performed extraordinarily 
well even on completely new spectral material. Complemented with the fast prediction speed, 
these results lead to the preliminary conclusion that a shallow neural network is most capable 
to perform in-line classification of film material on an existing near-infrared sorter. 

 

  



Chapter 5 Summary and Discussion of Results 165 

 

 

5 Summary and Discussion of Results 

This chapter critically analyses the results and findings obtained in this dissertation. Further, 
the results are put into context and compared with existing findings. 

It was shown in publication 1 that there is substantial potential for improvement in the recycling 
of films. For the first time, the proportion of multilayer material in the separate collection of 
packaging waste in Austria was quantified. The resulting 20% are similar to the findings in of 
Jannick et al., 2022 in Germany. At the same time, the findings prove that the problem of 
insufficient sorting and sortability of film packaging still exists. However, the root cause of these 
issues cannot only be found in the waste management sector and political decisions but lies 
also in limitations in the sorting technologies currently available to film sorting. The decision to 
increase film sorting relies on the existence of reliable, efficient, and cost-effective sorting 
methods to separate film packaging. Presently, film sorting via NIRS is hindered by the material 
properties of film packaging, such as low material thickness and an overabundance of film 
compositions. The resulting issues in creating a clean monomaterial film fraction need to be 
overcome before a substantial increase in the recycling rate of films is feasible. In this thesis, 
the previously described technological limitations were solved by increasing the spectral 
quality and deriving new sorting methods for film recycling. These solutions were based on a 
thorough analysis of existing sorting methods and the existing composition of film packaging 
in the Austrian waste stream.  

Publications 2 and 3 reviewed the available technologies and their application. The scope of 
the reviews lies primarily in the hardware of sensor-based sorting techniques. At the time, the 
inherent limitations of film packaging meant that existing sensor-based sorting techniques were 
unable to detect film packaging (Bauer et al., 2021). Existing recycling systems are geared 
towards the recycling of mono materials, and thus, thermal recovery is the main route currently 
available for film packaging (Ragaert et al., 2017; Kaiser et al., 2018; Riedl, 2018). The 
comparison of existing technology showed that NIRS had the most potential for film packaging. 
At the time, first solutions were being formulated to overcome the restrictions in film sorting 
with NIR. During the course of this thesis, these solutions were implemented to increase the 
capabilities of NIR film sorting. 

Publication 5 showcased improvements to an existing near-infrared sorting aggregate. These 
improvements are shown to enhance the classification of film packaging. Despite being in 
industrial use since 1990, NIRS is still undergoing continuous and substantial improvements 
(Gupta, 2018). These improvements in the hardware and software alike are making NIR 
devices smaller, more intelligent, more accurate and more useable (Rani et al., 2019; Hu et 
al., 2022; Chunting et al., 2022). Improvements like these facilitate the adoption of NIRS for 
tasks hitherto erroneously deemed unsuitable. Publication 5 focuses on the effects adaptations 
to the measuring geometry have on spectral quality. The spectral quality was assessed offline. 
Previous findings showed that thin polymer films exhibit interferences, and publication 5 added 
a thickness range for the occurrence of these interferences in PP (Jeszenszky et al., 2004). 
The publication did not offer a way to decrease these interferences apart from increasing the 
material's thickness or the reflectance of the sorting chute. These issues were taken up in 
publication 6, which expands on the findings of publication 5. 

Publication 6 conducted an inline sorting trial separating mono- from multilayer films. This 
sorting trial compared the standard sorting method with an adapted sorting aggregate. The 
sorting aggregate was improved via the enhancements proffered in publication 5. Publication 
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6 further proposes using machine learning techniques to facilitate the separation of mono- and 
multilayer films. In addition, publication 6 demonstrates a particular usage of the Fast Fourier 
Transformation to increase spectral quality through an automated removal of unnecessary 
spectral components and subsequent reconstruction of the spectrum. All proposed methods 
were conducted offline. While the computing time of the shown methods was evaluated, no 
inline experiments applying the methods to live recorded spectra were performed.    

During the course of this work, uncertainty persisted whether an increase in the mechanical 
recycling of films would benefit the environmental goals. These concerns were driven by the 
fact that an increase in the share of recycled film would reduce the feedstock available for 
thermal recovery. This could therefore increase the use of fossil fuels for the generation of heat 
and electricity (Fellner & Brunner., 2022). Therefore, publication 4 used a comprehensive LCA 
to show the potential reduction in GWP and ADPF through the adoption of increased film 
recycling. This publication aimed to gauge the environmental practicality of increased 
mechanical recycling of film packaging concerning greenhouse gas emissions. The change in 
the recovery path from thermal recovery to mechanical recycling entails a change in emissions 
and resource depletion that were compared in this article. This publication adds to the existing 
array of LCA for plastic packaging that have ranked the influence of methodological choices, 
assessed the environmental impact of multilayer film from biopolymers and evaluated 
modifications in the packaging for their environmental impact (Toniolo et al., 2013; Garrain et 
al., 2011; Siracusa et al., 2011). The findings in publication 4 concentrate on Austrian waste 
and are based on data available for processes and facilities within the Austrian waste 
management, polymer production and energy (supply) system. As such, they are limited to the 
Austrian situation. A comparison of the Austrian situation to its neighbour states or an 
evaluation of Austria's role in the European context of international waste management and 
the resulting transport was outside the scope of this publication. 

As the Austrian energy mix is mainly based on renewables, such as hydropower, an increase 
in energy consumption for production does not add substantial greenhouse gas emissions. At 
the time of writing, the reactivation of coal power plants is being discussed. Consequently, this 
situation may change in the future. Changes in the Austrian energy provision system may 
necessitate a revaluation of the environmental reasonableness of increased recycling.  
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6 Outlook and Further Research 

 urther improvements to film packaging will be part of the ongoing project “ le   oop”.  esults 
from this project may show that the existing packaging solutions are exaggerated in terms of 
thickness and the application of metallic layers for the expected protection capabilities. No 
research has been conducted on how much packaging is minimally necessary to guarantee 
product protection and shelf life of foodstuff. Furthermore, it has to be seen whether the 
enhanced sorting capabilities of NIRS can offset the deprecation of spectral information 
caused by the trend to thinner packaging material and if the recyclability of these packaging 
materials can thus be maintained. 

In addition to finding the ideal way of packaging while still retaining recyclability, the findings in 
this thesis are the basis for further research in “ le   oop”. The increased understanding of 
film spectra in NIR and the enhanced spectral information due to the improved measuring 
methods are used to gauge whether film packaging that is currently deemed “ ot  ecyclable”, 
can be detected, and ejected from the waste stream via NIRS. New packaging is being 
developed under the principles of minimal material use. Shelf-life trials with newly developed 
packaging are conducted to show how prevalent overpackaging is, and how packaging can be 
changed to achieve a better ratio between packaging and product. Further, these studies may 
reveal that many packaging types, like metallised films, which are difficult to recycle, may not 
be necessary to achieve the required shelf life. These new minimalistic packaging are then 
evaluated for their sortability and recyclability with the sorting techniques developed in 
Multilayer Detection. 
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Figure 4:Concise description of the research projects flex4loop and Multilayer Detection showing their different 
goals, synergies, and common aims. 

LCA is increasingly recognised as a critical concept and method to support sustainable 
transformation. LCA plays a relevant role in decision support, striving for a holistic assessment 
of environmental impacts. The performed LCA delivered a holistic view of the effects of 
increased film recycling on Austria. A more in-depth analysis must be performed to gauge the 
impact of possible strategic decisions and provide a stable basis of argument in the political 
arena.  
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Further applications of the proposed improvements in detection geometry need to be evaluated 
in a broader array of NIR sorting aggregates. These trials may include the implementation of 
sorting models tailored to separating films by layer composition to consider the ideal 
combination of prediction accuracy and computational requirements. Bearing in mind the 
continuous improvements in AI-aided waste management, the sorting software enhancing the 
capabilities of NIRS may emerge even further. The waste management sector needs to stay 
well informed about these developments.  

To assess the technological readiness level (TRL) of the new developments shown in this 
doctoral thesis, the TRL proposed by the European Commission in 2014 were used. These 
levels categorise the readiness of the technology in question into nine levels. For these levels, 
the following definitions apply. TRL 1 – basic principles observed, TRL 2 – technology concept 
formulated, TRL 3 – experimental proof of concept, TRL 4 – technology validated in lab, TRL 
5 – technology validated in relevant environment (industrially relevant environment in the case 
of key enabling technologies), TRL 6 – technology demonstrated in relevant environment 
(industrially relevant environment in the case of key enabling technologies), TRL 7 – system 
prototype demonstration in operational environment, TRL 8 – system complete and qualified, 
TRL 9 – actual system proven in operational environment (competitive manufacturing in the 
case of key enabling technologies; or in space) (European Commission, 2015). 

The relevant developments in this thesis, namely the software-based enhancement of film 
classification and the hardware-based enhancements via film measurement in transflection, 
were ranked as TRL 4 and TRL 6, respectively. The software developments, entailing the Fast 
Fourier Transformation improvement of spectral data and the application of machine learning 
methods to classify film packaging, were shown to work offline in a laboratory setting. At the 
time of writing, applying these techniques to spectral images recorded on the NIR sorter inline 
is impossible due to computational limitations and the difficulties inherent in implementing a 
program that utilises the GigeCam / GenICam Interface to gain direct access to useable data 
directly from the near-infrared detector. Once these limitations are overcome, trials validating 
and demonstrating the usage of FFT to enhance the spectral quality of thin film packaging and 
the subsequent application of a custom classifier to separate film packaging inline will be 
implemented, potentially raising the TRL from 4 to 6.  

The hardware-based improvements in the classification of film spectra were validated in small 
trials on the sensor-based sorter used in this thesis and with statistical comparison as 
portrayed in publication 4. Further, larger scale trials were conducted to compare the 
separation success when applying transflection to the sorting success when classifying in 
reflectance. This comparison showed the merits of transflection classification of film packaging 
in general and the superiority of the copper reflector when compared to a reflector made from 
aluminium. The TRL of the hardware-based improvements was thus estimated to be 6, 
because the technology was validated and demonstrated on a near infrared sorter, commonly 
used in industrial waste management.  

Before TRL 7 can be reached, however, the hardware-based improvements need to be tested 
further on NIR sorting aggregates employing conveyor belts. Complications arising in the 
implementation of transflection measurement on belt-based sorters will need to be evaluated 
and overcome, prior to the incorporation of transflection measuring in the operational 
environment of NIR sorters and finally reaching TRL 7. 
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Figure 5 gives a short summary of the relevant TRL points for the software- and hardware-
based improvements to NIR based film sorting. The steps deemed necessary to further the 
TRL for the respective developments are depicted in the figure. 

Monitoring the origin of packaging waste and the impacts of political and economic changes 
needs to continue, and this continuation of monitoring can deliver vital data for policymaking. 
In addition to the origin of plastic waste, monitoring social and economic factors may prove 
crucial for strategic decisions and investment in emerging technologies on the Austrian as well 
as European level. Ongoing evaluation of the development of film recycling needs to be 
conducted to ensure that the latent potential to increase the recycling rate through increased 
film recycling sees realisation.  

In conclusion, should film packaging recycling continue to be sufficiently researched, the 
emerging use of these resources may prove vital in decreasing the environmental impact and 
improving the circular economy of plastic packaging. 
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Figure 5: Estimation of the Technological Readiness Level of the applied developments for the enhancement of 
film spectra 
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8 List of Abbreviations 

ADPF Depletion of Abiotic Fossil Fuels 

AI Artificial Intelligence 

ALU Arbitrary Light Units 

ATR Attenuated Total Reflectance 

AVAW The Chair for Waste Processing Technology 

and Waste Management 

CED Cumulative Energy Requirement 

CO2 Carbon Dioxide 

DFT Discrete Fourier Transformation 

FFG Österreichische 

Forschungsförderungsgesellschaft 

(Austrian Research Promotion Agency) 

FFT Fast Fourier Transformation 

FTIR Fourier-transform infrared spectroscopy 

GWP Global Warming Potential 

HDPE High Density Polyethylene 

HSB Hue Saturation Brightness 

HSI Hyperspectral Imaging 

iDFT Inverse Discrete Fourier Transformation 

iFFT Inverse Fast Fourier Transformation 

kNN K Nearest Neighbour Algorithm 

LCA Life Cycle Analysis 

LCI Life Cycle Inventory 

LDPE Low Density Polyethylene 

LIBS Laser Induced Breakdown Spectroscopy 

LLDPE Linear Low Density Polyethylene 

MFA Material Flow Analysis 

MIT Massachusetts Institute of Technology 

MMI Man Machine Interface 

MPP Multilayer Plastic Packaging 

MSW Municipal Solid Waste 

NIRS Near Infrared Spectroscopy 

PA Polyamide 

PBAT Polybutylene Adipate Terephthalate 

PCCL Polymer Competence Center Leoben 
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PCW Post Consumer Waste 

PDMS Polydimethylsiloxane 

PE Polyethene 

PET Polyethene Terephthalate 

PLA Polylactic Acid 

PLC Programmable Logic Controller 

PMMA Polymethylmethacrylate 

PP Polypropylene 

RDF Residue Derived Fuel 

RGB Red Green Blue 

RIA Robotics Industries Association 

RMSE Root Mean Squared Error 

SBS Sensor Based Sorting 

SCW Separately Collected Waste 

SNN Shallow Neural Network 

ST Pellenc Selective Technologies 

STAN Substance Flow Analysis 

SVM Support Vector Machine 

SWIR Short Wavelength Infrared 

TPU Thermoplastic Polyurethane 

TRL Technology Readiness Level 

VIS Visual Spectroscopy 

WFD Waste Framework Directive 

Wt Weight-related percentage 

wt% Weight-Related Percentage 

XRF X-Ray Fluorescence Spectroscopy 

XRF X-Ray Fluorescence Spectroscopy 

XRT X-Ray Transmission 

XRT X-Ray Transmittance 

 


