
Chair of Automation

Doctoral Thesis

Numerical Methods for Optimal Control of
Hydraulic Independent Metering Systems

Dipl.-Ing. Goran Stojanoski
October 2022





Acknowledgments

There are numerous people I would like to thank who made the writing of this the-
sis possible. First and foremost, I would like to thank my colleagues, especially
Dr. Gerhard Rath and Prof. Paul O’Leary for spending time discussing various
technical aspects of this work. Their unconditional support, knowledge sharing,
and personal discussions were precious experiences for me. I would also like
to thank the mentor of this thesis, Prof. Clemens Brand, for his selfless support
throughout my studies and thesis. At this point, I would also like to thank Prof.
Mathew Harker for giving me a broader insight into the world of mathematics,
especially the methods of the calculus of variations that can be used to control
mining machines.
Working in a significant personal environment such as the Institute of Automation
in Leoben has helped me a lot in working on my thesis. For this reason, I would
to express my gratitude for the physical and moral support during my studies and
work there. The diversity at the institute has given me a broader view on technical
personal views.
I would also like to take this opportunity to thank Sandvik Mining and Construc-
tion GmbH, Zeltweg, as our partner in the EIT Raw Materials Project Rock Vader
for their unconditional support and knowledge sharing. My special thanks go to
Dipl.-Ing. Uwe Restner, Dipl.-Ing. Martin Gimpel, Dipl.-Ing. Wolfgang Richter
and Dipl.-Ing. Hubert Kargl for their support and cooperation during experiments
and meetings.
Finally, I would like to thank my family most of all. Without my father Peco and
my mother Snezhana I would not have achieved half of what I have achieved to-
day. Finally, I would also like to thank my brother Goce for always being there
for me.

i



Abstract

This thesis encompasses various control methods for numerically stiff indepen-
dent metering systems used in road-header boring machines. These machines are
equipped with state-of-the-art independent metering valves with an already im-
plemented PID control structure. The main topics covered in this thesis are: the
bulk modulus as the main indicator of the mechanical stiffness of the system, the
development of a new mathematical model for an intelligent independent meter-
ing valve, methods of calculus of variations for optimal control with integrated
position control, a matrix-based approach for numerically stiff ODEs, and a novel
method for computing the optimal PID parameters for a given system.

The Wylie - Yu model for the effective bulk modulus has been improved for
the temperature change of the oil and implemented in a simulation environment
to observe how the fluctuations of the effective bulk modulus influence the system
dynamics. It is concluded that for high pressurized system the temperature of the
oil has the highest impact on the value of bulk modulus compared to the other pa-
rameters. Additionally, an adaptive controller is implemented to compensate for
the energy losses.

Both the optimal control and the path tracking problem have been applied and
tested in a simulation environment. For this purpose, a new linear model is derived
that includes the complex feedback control structure of the independent metering
valves. The linear system is then discretized and solved numerically using the
Euler-Lagrange equations. In addition, the mass matrix method and interstitial
derivatives are used to improve the numerical stability of the solution.

The optimal control method shows remarkable accuracy and improved energy
efficiency compared to conventional solvers. On the other hand, the path tracking
method precisely follows the given paths with a maximum deviation of 1%.
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Kurzfassung

Die vorliegende Arbeit behandelt Regelungsverfahren für hydraulische Antriebe
mit getrennten Steuerkanten, die mathematisch mit steifen Differentialgleichun-
gen zu beschreiben sind, am Beispiel einer Teilschnittmaschine für den Tunnel-
und Bergbau. Diese ist mit einem modernen intelligenten Ventil ausgerüstet, das
bereits Basisregelreise in Form von PID-Reglern zur Verfügung stellt. Die wis-
senschaftlichen Beiträge der Arbeit beziehen sich auf den Kompressionsmodul
des Fluids als wichtigsten Faktor für die Systemsteifigkeit, die Modellbildung
eines intelligenten Ventils mit getrennten Steuerkanten, sowie Methoden der Vari-
ationsrechung zur optimalen Regelung einer Reglerkaskade mit Lösungsansatz
für gewöhnliche Differentialgleichungen (ODEs) von steifen Systemen auf Basis
von Matrizen. Weiters wird eine neue Methode zur Optimierung der Parameter
eines PID-Reglers vorgeschlagen. Das Wylie-Yu-Modell für den effektiven Kom-
pressionsmodul wurde erweitert um die Temperaturänderung des Öls und in eine
Simulationsumgebung implementiert, um die Systemdynamik zu untersuchen. Es
konnte gezeigt werden, dass in Hochdrucksystemen die Temperatur den größten
Einfluss auf den Kompressionsmodul hat. Dann wurden die durch die Änderung
der Ölnachgiebigkeit verursachten Energieverluste untersucht und ein adaptiver
Regler vorgeschlagen, um diese zu reduzieren. Optimale Regelung wurde sowohl
auf die Positions- als auch die Pfadfolgeregelung angewendet und in der Simula-
tion verifiziert. Inkludiert wurde dabei auch ein neues Modell für die komplexe
Reglerstruktur, die in den Ventilen enthalten ist. Das linearisierte Gleichungssys-
tem wurde diskretisiert und mit Hilfe der Euler-Lagrange-Gleichungen gelöst.
Die numerische Stabilität der Lösung konnte verbessert werden durch die Meth-
ode der Massenmatrix und mit Hilfe von Interstitial Derivatives unter Verwen-
dung von zusätzlich interpolierten Punkten zur Annäherung der Differentiation.
Die Anwendung der optimalen Regelung erzielt eine Verbesserung sowohl der
Genauigkeit, als auch des Energiewirkungsgrads im Vergleich zu herkömmlichen
Lösungen. Außerdem wird damit die Pfadfolgeregelung verbessert und erreicht
Abweichungen, die kleiner als 1% sind.
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Chapter 1

Introduction

1.1 Motivation
The motivation for the work in this dissertation is to improve the performance and
efficiency of hydraulic systems used in mining machinery. When operating, both
the mechanical and the hydraulic parts of these machines are heavily affected by
tremendous external forces which produce vibrations. This means that having a
mechanically stiff system is an essential part of the working of these machines.
Because the mechanical and the hydraulic system are coupled together, the same
applies to the hydraulic system. For this reason, a detailed analysis on the effects
of the bulk modulus on the dynamics of such systems was done.
Mining machines used for drilling usually have predefined profiles that need to
be excavated. They are usually used for mining various types of minerals that
are difficult to extract in different ways. In addition, the state-of-the-art machine
that is part of this work should significantly increase the speed of mining and be a
substitution for explosives, which are now widely used in this industry. This has
motivated the author to apply variational calculus methods such as optimal con-
trol and trajectory tracking in such systems. For this reason, a new mathematical
model of the system is derived, which has already been implemented on the test-
bed. Although this model was simplified, it was strongly influenced by the very
high and very low values (very fast and very slow-moving parts) of the system pa-
rameters, making it numerically stiff. The physical stiffness in hydraulic systems
results with very high and very low values for the system parameters in the ODE
which produces numerically stiff system. Therefore the corresponding numerical
solution for the continuous problem is stiff. Solving such problems numerically
can be a very difficult task.
More precisely, the heart of this thesis lies in the solution of multiple problems
which appear at hydraulic machinery used for mining. Firstly, a complete func-
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CHAPTER 1. INTRODUCTION 2

tional model of an intelligent valve was developed and verified. Multiple models
for the bulk modulus were tested and compared. A new model was developed
and implemented in a simulation environment. The effects of the bulk modulus
(the combined effect of: pressure, temperature of the oil and the air content in
the oil) on the dynamics of the system was tested and analyzed. A new adaptive
controller was implemented which improved the energy efficiency of the system
significantly. Additionally, the Euler Lagrange equations for the optimal path and
the path tracking problem are solved using a novel method for the solution of stiff
numerical equations in hydraulic systems. This is first achieved by implementing
the mass matrix, which shifts the very high values from one side of the equations
to the other. In addition, interstitial derivatives are used to compute a stable nu-
merical solution for the system.
This work originated during the development of a state of the art mobile mining
machine by Sandvik Minning and Construction GmbH as part of the EIT Raw
Materials Project ’Rock Vader’.
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1.2 Outline
The remainder of the thesis is organized as follows:

Chapter 2 The second chapter of this thesis provides the mathematical back-
ground for the algorithms and the methods implemented there. The aim of this
chapter is to give a clear overview of the methods and the investigations carried
out in this thesis. The method of interpolation is used to derive the collocative
and interstitial numerical derivative approximation in matrix form. In addition,
a method of matrix discretization is introduced. Once the system of equations is
discretized, it can be processed using various numerical techniques of linear alge-
bra. The least squares method is one of the techniques for LTI systems presented
in this chapter. Singular value decomposition was then used to solve the least
squares problem.

Chapter 3 This chapter introduces the hydraulic and mechanical system used in
tunnel boring machines. The valve used to control the cutting motion of this sys-
tem includes embedded controllers for the flow and pressure. These controllers
were included in the linear and nonlinear models of the system derived in this
chapter. The bulk modulus is analyzed as one of the leading system parameters
for the hydraulic stiffness of the system. If the value of the bulk modulus lowers
the mechanical stiffness of the system will decrease which can be the cause of
instability and osculations. The Wylie - Yu model was modified for the tempera-
ture change and used in a simulation environment to investigate the effects of the
temperature and the air content in the oil on the dynamics of hydraulic systems.
An adaptive controller is implemented to improve the system’s energy efficiency.

Chapter 4 This chapter starts with the basic calculus concepts of variational meth-
ods for optimal control. The optimal control problem is derived and implemented
for numerically stiff independent metering systems. The method is then compared
to an LQR (linear quadratic regulator) and PID (proportional, integral, derivative)
controller to show its advantages. Additionally, the path tracking problem for the
same system is derived. The solution was then implemented in a simulation envi-
ronment to verify its results. Both methods show improved energy efficiency and
performance.

Chapter 5 The last chapter discusses future methods which can be implemented
using techniques already implemented in this thesis. These, nevertheless, should
not be overlooked due to their potential and chances of success.



Chapter 2

Matrix Based Approach for Solving
Stiff Differential Equations

This chapter introduces the fundamental mathematical background for solving
stiff differential equations numerically. These methods are essential for finding
stable numerical solutions to the complex system of equations used to describe
these systems. The objective is to investigate the methods for solving stiff dif-
ferential equations, set the basis for matrix formulations of ODEs, discretization,
and solving of the ODEs, least-squares approach for solving such systems using
the singular value decomposition (SVD). It is concluded that the implicit (back-
ward) Euler methods and the interstitial derivatives perform much better when
solving stiff differential equations. Additionally, a mass matrix in the state space
representation is introduced, which also improves the numerical stability of the
solution.

2.1 Introduction to Stiff Differential Equations
When modeling a dynamic system, one must obey the laws of physics, which
bring us to the use of ordinary or partial differential equations (ODEs or PDEs).
Although the system of differential equations is well defined and corresponds to
the dynamics of the real system, in most cases finding a numerical solution may
be impossible by using traditional methods (Runge - Kutta methods). The main
reasons for this are their complexity, non-linearity, and the stiffness of the ODEs.
The independent metering hydraulic systems presented in chapter 3 have many
non-linearities (like friction, bulk modulus) and are usually described with stiff
differential equations. The non-linearities are usually included so the system de-
scribed can represent as close as possible to the real one. The stiffness occurs
when two or more variables have a considerable difference in magnitude. From
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a mechanical point of view, a stiff system can be considered as such if there are
parts of the system which react (move) at a much higher frequency than other
parts. Throughout the years, it has been shown that there is no single defined
method for the solution of stiff differential equations. However, the Runge - Kutta
methods [1] are still an excellent foundation for the commonly used solvers.
The first detection of stiff differential equations was made by two chemists – Cur-
tis and Hirschfelder – [2] in early 1952. They discovered stiffness in their kinetics
studies and proposed a multi-step solution using the backward differentiation for-
mula [1], which produced acceptable results. This topic was ignored until 1963,
when Dahlquist [3] defined the problem and identified the solvers’ numerical in-
stability when solving stiff ODEs. Or, in his words,“Around 1960, things became
completely different and everyone became aware that the world was full of stiff
problems [4]”. Following his paper, the field became more active, and several
new approaches were proposed to integrate stiff ODEs. Gear in [5] [6] proposed
variable-order backward differentiation methods, which were later modified by
Hindmarsh [7] and Byrne [8]. Additionally, Linger and Willoughby [9] and En-
right [10] proposed methods based on the second derivative multi-step formu-
las, which deliver promising results. In the late 20th century, Lindberg studied
the trapezoidal rule proposed by Dahlquist [11]. Moreover, Butcher in [12] and
Ehle in [13] proposed improved Runge-Kutta methods for solving stiff differen-
tial equations. Additional articles on integrating stiff differential equations and
the topic of stiffness include [14], [15], [16],[17], [18].
Let us consider the example where the solution of a stiff differential equation has
a term e−ct where c is a large positive constant. As the time increases, the solution
decays to zero very rapidly compared to other solution terms. This term is called
the transient term of the solution. Furthermore, let us consider the case where
the component of the solution varies very rapidly on a much shorter time scale.
Now, the challenge for the numerical method will be to choose the right step size
because the step size is not only dictated by the solution as a whole but also by the
rapidly varying local behavior.
Another important numerical approach for solving PDEs is the method of lines
[19]. Other applicable techniques include finite difference formulas [20], [21] and
spectral methods [22],[19], [21]. The first one to use spectral methods for the nu-
merical solution of ODEs was Lanczos in early 1938 [23]. These methods often
include the fast Fourier transformation (FFT) algorithm invented by Cooley and
Tukey [24]. More articles on the FFT topic can be found in [25], [26].
Explicit schemes still have difficulty producing stable results when solving stiff
differential equations [17]. Using minimal time steps can cause instability in cer-
tain steps and excessive error accumulation. On the other hand, implicit methods
are advantageous when choosing the time step and offer much better stability
properties. However, when using implicit methods for solving non-linear systems
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of PDEs, they can be numerically very costly to implement. The reason for this
is the discretization of the non-linear PDE, which then leads to a large system of
non-linear equations that need to be solved at every time step. The solution of
such systems is usually done with the use of implicit - explicit (IMEX) schemes
which date back to 1970 [27], [28], [29]. Additional information on the derivation
of IMEX and Runge - Kutta IMEX schemes and their stability can be found in
[30], [31], [32], [33], [34]. Other applicable schemes include the exponential time
differencing (ETD) [35], [36], exponential propagation iterative (EPI) [37], [38],
[39],[40] and the IF schemes. More articles about these methods can be found in
[14], [20], [41], [42] [43], [44], [45].

2.1.1 Explicit and Implicit Euler Methods and Their Stability
Physical processes in engineering processes are usually described with differen-
tial equations (ODEs or PDEs). In many cases, such as the case presented in
this thesis, few assumptions are made to reduce the complexity of the system
and the solution. Usually, these systems have multiple dependent and indepen-
dent variables, which are coupled in a system of ordinary differential equations.
Hoffman in [46] defines ordinary differential equations as equations that state the
relationship between a function of a single independent variable and the total num-
ber of derivatives of this function concerning the independent variable. Ordinary
differential equations can be classified into a few main groups. The first main
group is according to the auxiliary conditions: Initial value differential equations
(IVE), where the conditions are specified at a single initial time; and boundary
value (BDE), differential equations where the conditions are specified at the ini-
tial and the end time. Additionally, the ODEs can be linear and non-linear, of first
or higher-order and homogeneous and non-homogeneous. Homogeneous differ-
ential equations include terms that involve only the dependent variable or their
derivatives. On the other hand, non-homogeneous differential equations involve
additional terms (functions, source terms) which do not include the dependent
variable [47].
The numerical methods for solving differential equations can be divided into two
main groups,

1. Numerical methods for stiff systems (implicit),

2. Numerical methods for non-stiff systems (explicit).

These methods can be additionally divided in single and multi-step methods.
Single-step methods use data at a single point n to move forward the solution at
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Figure 2.1: Numerical solution using the Euler method, with step size h. The exact
solution is approximated using a tangent line in a small neighborhood around
the point tn. This tangent is then used to calculate the value at the next point
tn+1 = tn +h

n+1. On the other hand, multi-step methods use grid points to advance the solu-
tion to the next grid points. They use data in multiple known points (n,n−1,n−2,
and so on) that help this method to have better accuracy when compared with the
single step method. The most popular finite difference methods for solving initial
value problems are the Euler explicit and implicit methods. Let’s first consider the
initial value problem for first order ODE

Y ′ = f (t,Y ), Y (t0) = Y0, (2.1)

where f is a given smooth function. To be able to approximate the solution using
the forward (explicit) difference method at point n one gets

Y ′|n ≈
Yn+1−Yn

h
. (2.2)

If one substitutes the forward differentiation method into the ordinary differential
equation for yn+1 one yields the explicit finite difference Euler equation

y′ ≈ yn+1− yn

h
= f (tn,yn) = fn,

yn+1 = yn +h fn. (2.3)

If we analyze Eq. 2.3 for a very simple example y′ =−y and for the initial condi-
tion of y(0) = 1 one gets

yn+1 = yn−hyn = yn(1−h). (2.4)
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From Eq. 2.4 it is obvious that if the value of the step h > 2 then the |yn+1| >
|1−h|yn. However, knowing that the exact solution of Eq. 2.4 is e−t the previous
statement should not be true. This means that the explicit Euler method shows un-
stable behavior for certain step sizes. The implicit Euler method can be achieved
in a similar manner as the explicit. The backward (implicit) Euler method for
Eq. 2.1 can be developed as

Y ′|n+1 ≈
Yn −Yn+1

h
. (2.5)

If one follows the same steps as for the explicit method one gets

yn+1 = yn −h fn+1. (2.6)

Following the same steps as for the explicit method for this particular example,
the implicit method can be derived as

yn+1 =
yn

1+h
. (2.7)

It is obvious from Eq. 2.7 that no matter how high the value of the step is, yn+1 is
always going to be smaller than yn. This solves the stability issue that the explicit
method has and offers unconditional stability. This is the main advantage of the
implicit method and the reason why it works so much better when solving stiff
differential equations. Let us consider the following example yn+1 = yn(1− h)
where y(0) = 1. It is clear from Fig. 2.2 that for a step size of h = 2 the explicit

Explicit method
Implicit method
Exact Solution

Figure 2.2: Solving Eq. 2.4 by implicit and explicit method with h = 2.
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implicit euler
explicit euler

(a) Step size of 0.1 s

implicit euler
explicit euler

(b) Step size of 0.001 ms

Figure 2.3: Simulation of implicit and explicit Euler methods for different step
sizes for the Newton’s second law mass spring equation. It is evident that for big-
ger step-sizes the explicit method shows instability when compared to the implicit
method. This damping effect on the implicit method is shown in Eq. 2.7.

method oscillates. The implicit method shows great stability and approximates
the exact solution with high accuracy. To illustrate the numerical difficulty solvers
face when solving stiff differential equations of real systems, let us consider the
second Newton’s Law equation which describes a mass spring system,

maÿ1 +bẏ1 + ky1 = 0. (2.8)

The value of the spring constant is k = 10 kN
n , the mass is m = 0.1 kg and the

damping coefficient b is zero. This system of second order ODE is derived in
a manner where two first order ODE’s needs to be solved. Two scenarios were
simulated, one with step size of 0.1 s and one with 1 ms. The system presented
in Eq. 2.8 was simulated for 1 second with different step size. Yet again, one sees
that the implicit method works much better at bigger step size. The reason for this
are the stability issues that the explicit method has when solving stiff differential
equations.
Both the explicit and implicit methods are first-order methods, and the results are
comparable. Additionally, we used these methods as a basis for the implementa-
tion of higher-order numerical methods. More information about these methods
and their implementation in a simulation environment can be found in [48].
Now, because only the non-linear system presented in section 3.5.1 is solved us-
ing these methods, we will not further detail how they work. The focus will be on
solving these types of systems using a novel matrix-based approach, the details of
which will be explained in the following sections.
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2.2 System of Differential Equations (State Space
Representation)

Most prototypes of machines and other devices are first tested in a simulation en-
vironment before the first prototype is built. For this reason, a very good system
representation or an excellent mathematical model of the system is vital. The
classical control theory started in the mid-1900s where the systems were mainly
developed and analyzed in the frequency domain using the transfer function [49].
One of the disadvantages of this representation was that the system was limited
to one input and one output. A few decades later, with the involvement of several
known mathematicians and engineers, a pragmatic shift was achieved from the
frequency to the time domain. This was possible with the state equation. Accord-
ing to [50] the state can be defined as a set of physical quantities, the specification
of which completely determines the evolution of the system. As the systems got
more complex, the mathematical representation of the systems included multiple
state equations, from which the state space representation was born. More articles
on the state space representation can be found in [51], [52], [53]. The state-space
for LTI (linear time invariant) system has the general form

ẋxx = Axxx+Buuu,
yyy = Cxxx+Duuu, (2.9)

where xxx(t) is the state vector, uuu(t) is the input vector and yyy(t) is the output vec-
tor [54]. These are all vectors, not necessarily of the same length, whose scalar
components are the state variables. To be able to work with these types of systems
outside simulation environments and implement some of the calculus of variations
methods, one needs to form the differentiation operators first. Additionally, if the
mass matrix is included in the system presented in Eq. 2.9 the system will have
the general form

Πẋxx = Axxx+Buuu. (2.10)

The mass matrix Π helps us move the very high or very low values from the right
side of the equation to the left side. This reduces the stiffness of the right side of
Eq. 2.10, making it easier for the numerical solver and numerical methods to solve
this system.

2.3 Interpolation
To discretize a system of differential equations, one must first account for the lin-
ear operators. The numerical approximation for these operators can be made using



CHAPTER 2. MATRIX BASED APPROACH FOR SOLVING STIFF DIF-
FERENTIAL EQUATIONS

11

interpolation. Interpolation is a method (fundamentally considered as an inverse
problem) for creating new data points within the range of a discrete set of known
data points [55]. The most simple form of interpolation is linear interpolation.
To introduce linear interpolation, let us consider a straightforward example. The

f(a)

a b

f(b)

f

x

y

Figure 2.4: Linear interpolation of two points.

points (a, f (a)) and (b, f (b)) are two points from an unknown function f . The
goal is to find a function

z(x) = s0 + s1x, (2.11)

for which
z(a) = f (a), z(b) = f (b). (2.12)

This leads to a system of equations, which can be written as follows in matrix
form [

1 a
1 b

][
s0
s1

]
=

[
f (a)
f (b)

]
. (2.13)

If the coefficients were to be calculated, one would have to first compute the in-
verse [

s0
s1

]
=

[
1 a
1 b

]−1[ f (a)
f (b)

]
,

[
s0
s1

]
=

1
b−a

[
b −a
−1 1

][
f (a)
f (b)

]
(2.14)

from which one gets

s0 =
b

b−a
f (a)− a

b−a
f (b)

s1 =−
1

b−a
f (a)+

1
b−a

f (b) (2.15)
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which leads to
z(x) =

b− x
b−a

f (a)+
x−a
b−a

f (b) , (2.16)

or if a = x1 and b = x2, one gets the general form for the linear interpolation

z(x) =
x− x2

x1− x2
f (x1)+

x− x1

x2− x1
f (x2) . (2.17)

It can be seen from Eq. 2.16 that the functions evaluated at given points are mul-
tiplied by functions of x. These functions are known as the linear Lagrange inter-
polation polynomials,

l1 (x) =
x− x2

x1− x2
, l2 (x) =

x− x1

x2− x1
. (2.18)

which have the following properties

l1 (x1) = 1 l2 (x1) = 0
l1 (x2) = 0 l2 (x2) = 1. (2.19)

2.3.1 Quadratic Interpolation
If the idea presented in 2.3 is now extended to 3 points, we can use quadratic poly-
nomials to approximate the solution. Similar to before, the interpolation polyno-
mials will have the form

z(x) = l1(x) f (x1)+ l2(x) f (x2)+ l3(x) f (x3), (2.20)

where,

l1 (x1) = 1, l2 (x1) = 0, l3 (x1) = 0
l1 (x2) = 0, l2 (x2) = 1, l3 (x2) = 0
l1 (x3) = 0, l2 (x3) = 0, l3 (x3) = 1. (2.21)

Using the same analogy as before, the Lagrangian interpolation polynomials [56]
are

l1 (x) =
(x− x2)(x− x3)

(x1− x2)(x1− x3)
,

l2 (x) =
(x− x1)(x− x3)

(x2− x1)(x2− x3)
,

l3 (x) =
(x− x1)(x− x2)

(x3− x1)(x3− x2)
. (2.22)
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Using the structure as before, one can very easily generalize the interpolation
polynomials for the case of n points

lk (x) =
(x− x1)(x− x2) . . .(x− xk−1)(x− xk+1) . . .(x− xn)

(xk− x1)(xk− x2) . . .(xk− xk−1)(xk− xk+1) . . .(xk− xn)
(2.23)

The advantages of interpolating polynomials are their uniqueness and calculation
of the interpolating error that can be done without difficulty. Other techniques
for calculating the interpolation polynomials include the method of divided dif-
ferences or the linear combination of monomials to establish the Vandermonde
matrix [57].

2.4 Numerical Differentiation
Numerical differentiation is one of the most crucial tasks when it comes to nu-
merically solving differential equations. It is particularly useful because it can
be performed simply by matrix multiplication. This allows a system of ODE’s to
be discretized and then solved numerically by solving a system of ordinary linear
equations.

2.4.1 Collocation Derivatives
In Fig.,2.5 we have n points x1,x2, ...xn for which a function f is evaluated. The
points are such that x1 < x2 < ... < xn. The collocation derivatives are the ones
that are evaluated at the same points where the function is being evaluated. In

Figure 2.5: Collocation points for numerical differentiation.

the same analogy as before, a Lagrange interpolating function polynomial can be
constructed

z(x)≈ l1(x) f (x1)+ l2(x) f (x2)+ . . .+ ln(x) f (xn). (2.24)

This can be differentiated k times

z(k)(x)≈ l(k)1 (x) f (x1)+ l(k)2 (x) f (x2)+ . . .+ l(k)n (x) f (xn). (2.25)
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Evaluated at the interpolation points (the ’collocation part)

z(k)(xi)≈ l(k)1 (xi) f (x1)+ l(k)2 (xi) f (x2)+ . . .+ l(k)n (xi) f (xn), (2.26)

or written in matrix form,
z(k) (x1)

z(k) (x2)
...

z(k) (xn)

≈


l(k)1 (x1) l(k)2 (x1) . . . l(k)n (x1)

l(k)1 (x2) l(k)2 (x2) . . . l(k)n (x2)
...

... . . . ...
l(k)1 (xn) l(k)2 (xn) . . . l(k)n (xn)




f (x1)
f (x2)

...
f (xn)

 . (2.27)

To construct the matrix form, let us consider a simple example for n = 3 points.
To simplify, the points should be evenly spaced, x1 = a, x2 = a+h, x3 = a+2h.
The Lagrangian interpolation polynomials for these points can be written as

l1 (x) =
(x− x2)(x− x3)

(x1− x2)(x1− x3)
=

(x− (a+h))(x− (a+2h))
2h2 ,

l2 (x) =
(x− x1)(x− x3)

(x2− x1)(x2− x3)
=−(x−a)(x− (a+2h))

h2 ,

l3 (x) =
(x− x1)(x− x2)

(x3− x1)(x3− x2)
=

(x−a)(x− (a+h))
2h2 . (2.28)

The derivatives for the Lagrangian interpolating polynomials given in Eq. 2.28
evaluated at the given nodes are as follows

l′1 (a) =−
3

2h
, l′2 (a) =

2
h
, l′3 (a) =−

1
2h

,

l′1 (a+h) =− 1
2h

, l′2 (a+h) = 0, l′3 (a+h) =
1

2h
,

l′1 (a+2h) =
1

2h
, l′2 (a+2h) =−2

h
, l′3 (a+2h) =

3
2h

. (2.29)

After calculating the derivative, one can very easily construct the matrix form
equation  z′ (a)

z′ (a+h)
z′ (a+2h)

≈
− 3

2h
2
h −1

h
− 1

2h 0 1
2h

1
2h −2

h
3

2h

 f (a)
f (a+h)
f (a+2h)

 (2.30)

or simplified  z′ (a)
z′ (a+h)
z′ (a+2h)

≈ 1
2h

−3 4 −1
−1 0 1
1 −4 3


︸ ︷︷ ︸

D1

 f (a)
f (a+h)
f (a+2h)

 . (2.31)
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From Eq. 2.31, it can be seen that the numerical differentiation can be performed
by simple multiplication with a matrix that is already calculated [58]. If the idea
is for the matrix to be extended for a large set of data, interpolating with a polyno-
mial of the degree n−1 numerically it is not very accurate. What can be done is to
use polynomials of a small degree locally and perform interpolation at every step.
This means that one can use the two end formulas z′(a) and z′(a+2h) at each of
the endpoints and the central formula z(a+ h) at all internal points. Taking this
into account, the differentiation operator for n points can be

z′ (x1)
z′ (x2)
z′ (x3)

...
z′ (xn−1)
z′ (xn)


≈ 1

2h



−3 4 −1 0 . . . 0
−1 0 1 0 . . . 0
0 −1 0 1 . . . 0
...

...
...

... . . . ...
0 . . . 0 −1 0 1
0 . . . 0 1 −4 3





f (x1)
f (x2)
f (x3)

...
f (xn−1)
f (xn)


(2.32)

2.4.2 Interstitial Derivatives
The interstitial derivatives are the ones that are being evaluated at the points be-
tween each given node. In a similar manner, the interpolating function defined in
Eq. 2.48 can be used here. It is able to consequently differentiate this function and
then be evaluated at each interstitial N− 1 node shown in Fig. 2.6. This means

Figure 2.6: Interstitial points for numerical differentiation.

that the differentiation matrix is no longer square as the number of interstitial
points will always be smaller by one than the nodes used for interpolations. The
discretized differential operator (matrix) will have the dimension (N− 1)× (N).
Following the analogy presented in Eq. 2.28 the Lagrangian interpolating func-



CHAPTER 2. MATRIX BASED APPROACH FOR SOLVING STIFF DIF-
FERENTIAL EQUATIONS

16

tions for Fig. 2.6 using a 5th order polynomial can be written as

l1 (x) =
(x− x2)(x− x3)(x− x4)(x− x5)(x− x6)

(x1− x2)(x1− x3)(x1− x4)(x1− x5)(x1− x6)
,

l2 (x) =
(x− x1)(x− x3)(x− x4)(x− x5)(x− x6)

(x2− x1)(x2− x3)(x2− x4)(x2− x5)(x2− x6)
,

l3 (x) =
(x− x1)(x− x2)(x− x4)(x− x5)(x− x6)

(x3− x1)(x3− x2)(x3− x4)(x3− x5)(x3− x6)
,

l4 (x) =
(x− x1)(x− x2)(x− x3)(x− x5)(x− x6)

(x4− x1)(x4− x2)(x4− x3)(x4− x5)(x4− x6)
,

l5 (x) =
(x− x1)(x− x2)(x− x3)(x− x4)(x− x6)

(x5− x1)(x5− x2)(x5− x3)(x5− x4)(x5− x6)
,

l6 (x) =
(x− x1)(x− x2)(x− x3)(x− x4)(x− x5)

(x6− x1)(x6− x2)(x6− x3)(x6− x4)(x6− x5)
. (2.33)

It is obvious from Fig. 2.6 that the interpolating function has 5 interstitial points.
The distance between the interpolating points is the same as in section 2.4.1 h.
However, the distance between the interpolation and interstitial points is defined
as h

2 . Following this, the Lagrangian interpolating functions presented in Eq. 2.33
are firstly evaluated at x1 = a, x2 = a+ h, x3 = a+ 2h, x4 + a+ 3h, x5 = a+ 5h
and x6 = a+ 6h. Additionally, the Lagrangian functions are then evaluated at
each interstitial point defined as x = a+ h

2 , x = a+ 3h
2 , x = a+ 5h

2 , x = a+ 7h
2

and, x = a+ 9h
2 . Doing this, one can very easily compute the zero order derivative

or the identity operator (interpolation matrix) for the interstitial points. In matrix
form

D0 =
1

16


5 15 −5 1 0 0
−1 9 9 −1 0 0
0 −1 9 9 −1 0
0 0 −1 9 9 −1
0 0 1 −5 15 5

 (2.34)

If one is to calculate the first derivative matrix for the interstitial points, the func-
tions given in Eq. 2.33 must be first differentiated. Following the same steps as
for the identity operator, the derivative at each of the interval midpoints can be
written in matrix form as

D1 =
1

24h


−23 21 3 −1 0 0

1 −27 27 −1 0 0
0 1 −27 27 −1 0
0 0 1 −27 27 −1
0 0 1 −3 −21 −23

 (2.35)
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This can be then extended for n number of points by using local polynomial inter-
polation

D1 =
1

24h



−23 21 3 −1 0 0 . . . 0
1 −27 27 −1 0 0 . . . 0
0 1 −27 27 −1 0 . . . 0
... . . . . . . . . . . . . ...

...
...

0 . . . 0 0 1 −27 27 −1
0 . . . 0 0 1 −3 −21 −23


(2.36)

Interstitial derivatives are derived in this section because of their improved perfor-
mance when solving a system of stiff differential equations. Given the observation
in section 2.4.2, interstitial derivatives show superior performance when solving
stiff differential equations compared to collocation derivatives.

2.5 Discretization of Linear Operators
To be able to use techniques of numerical linear algebra on a system of differential
equations, it is crucial first to discretize that system. In the early 1960s, Ortega
[59] was one of the first people to discretize a system of differential equations to
apply the Newton method. With the introduction of interpolation in chapter 2.3
a general approach to the discretization of linear operators like differentiation or
integration can be obtained. Let us consider a linear ODE for a given interval

a1(x)y(α1)(x)+a2(x)y(α2)(x)+ ...+ap(x)y(αp)(x) = f (x), (2.37)

for the interval
a = x1 < x2 < ... < xn−1 < xn = b. (2.38)

If Eq. 2.37 is evaluated at every point, one gets

a1(x1)y(α1)(x1)+a2(x1)y(α2)(x1)+ ...+ap(x1)y(αp)(x1) = f (x1),

a1(x2)y(α1)(x2)+a2(x2)y(α2)(x2)+ ...+ap(x2)y(αp)(x2) = f (x2),

...

a1(xn)y(α1)(xn)+a2(xn)y(α2)(xn)+ ...+ap(xn)y(αp)(xn) = f (xn), (2.39)

or written in matrix form
a1(x1)y(α1)(x1)

a1(x2)y(α1)(x2)
...

a1(xn)y(α1)(xn)

+


a2(x1)y(α2)(x1)

a2(x2)y(α2)(x2)
...

a2(xn)y(α2)(xn)

+ . . .+


aP(x1)y(αp)(x1)

ap(x2)y(αp)(x2)
...

ap(xn)y(αp)(xn)

=


f (x1)
f (x2)

...
f (xn)

 ,
(2.40)
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or the discretization for one term
ak(x1)y(αk)(x1)

ak(x2)y(αk)(x2)
...

ak(xn)y(αk)(xn)

=


ak(x1) 0 . . . 0

0 ak(x2) . . . 0
...

... . . . ...
0 0 . . . ak(xn)




y(αk)(x1)

y(αk)(x2)
...

y(αk)(xn)

 , (2.41)

or each term discretized as,

ak(x)y(ak)(x)→ Akyyy(ak) (2.42)

With the introduction of a consistent approximation term for differentiation, one
can rearrange Eq. 2.41 in

A1D(α1)yyy+A2D(α2)yyy+ . . .+ApD(αp)yyy = fff , (2.43)

where D is an approximation to the derivative matrix. With this approach, the
system of ODE can be discretized in one step with a simple linear operator

Kyyy = fff , (2.44)

where,
K = A1D(α1)+A2D(α2)+ . . .+ApD(αp). (2.45)

In the case of differential equations, the matrix K is theoretically not invertible
since the matrices D(αp) are not invertible. This concurs with the fact that a linear
differential equation has an infinite number of solutions, based on the number of
independent homogeneous solutions which is the equal to the order of the differ-
ential equation. However, for a lower number of points, it can be numerically
invertible due to discretization error.

2.5.1 Discretization of Initial and Boundary Values
The solution of ODE is not unique if one has not defined its initial or boundary
conditions. Following the analogy from the previous section 2.5, the boundary
conditions need to be discretized in a similar manner. Differential constraints such
as initial or boundary conditions at a given point σ can be written in a general form
as

ψ1y(σ)+ψ2y′(σ)+ ...+ψky(k)(σ) = d, (2.46)

The application of the constraints for a given point σ is done in such a manner that
the nearest solution nodes N need not be unique, but, if possible, should be the
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exact nodes used for the derivative or integral approximation. The nearest nodes
interval can be defined as

xi1 < xi2 < ... < xiN−1 < xiN . (2.47)

The interpolating function for y(x) for the points defined in Eq 2.47 is defined as
z(x) which gives

z(x)≈ γi1(x)y(xi1)+ γi2(x)y(xi2)+ ...+ γiN (x)y(xiN ). (2.48)

where γi1 are the basis functions for the interpolation (for example the Lagrange
interpolation polynomials). So one can approximate equation Eq. 2.46 as

ψ1z(σ)+ψ2z′(σ)+ ...+ψkz(k)(σ) = d, (2.49)

Substituting Eq. 2.48 in Eq. 2.49 one gets

ψ1(γi1(σ)y(xi1)+ γi2(σ)y(xi2)+ ...+ γiN (σ)y(xiN ))+

ψ2(γ
′
i1(σ)y(xi1)+ γ

′
i2(σ)y(xi2)+ ...+ γ

′
iN (σ)y(xiN ))+

. . .+ψk(γ
(k)
i1 (σ)y(xi1)+ γ

(k)
i2 (σ)y(xi2)+ ...+ γ

(k)
iN (σ)y(xiN )) = d, (2.50)

which can also be written as

(ψ1γi1(σ)+ψ2γ
′
i1(σ)+ ...+ψkγ

(k)
i1 (σ))y(xi1)+

(ψ1γi2(σ)+ψ2γ
′
i2(σ)+ ...+ψKγ

(k)
i2 (σ))y(xi2)+

. . .+(ψ1γin(σ)+ψ2γ
′
in(σ)+ ...+ψkγ

(k)
iN (σ))y(xiN ) = d, (2.51)

or written in a matrix form

W1y(xi1)+W2y(xi2)+ . . .+Wny(xiN ) = d, (2.52)

or simplified

[
0 . . . 0 W1 . . . WN 0 . . . 0

]


y(x1)
y(x2)

...
y(xn)

= d. (2.53)

Given multiple constrains of the form like in Eq. 2.53 one could combine them in
a single matrix equations

GTyyy = ddd, (2.54)

where each row in GT corresponds to one constraint.
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2.6 Least Squares Estimation
The least-squares technique in regression analysis is used to approximate the so-
lution of a system where the number of equations and unknowns is not the same
(over-determined system). Harker defined it in [57] as a method for estimating
the model parameters from a discretized system given a set of measured data. The
first use of such methods was in the fields of astronomy and geodesy, which helped
the exploration missions in the early 18th century with the navigation through the
seas. Lagrange published the least-squares method for the first time in [60]. He
used this method to determine the orbit of the comets, the ellipticity of the Earth,
and the meter’s length. Although Gauss used the method first he published it later
to compute the orbits of the celestial bodies [61]. Additionally, he improved the
methods by connecting the least squares to the probability and the normal distri-
bution [62], [63]. The most common distribution which prompts the least-squares
method is the normal distribution (Gaussian distribution). If x is the parameter
that is being measured, the Gaussian distribution can be defined as

P(x) =
1√

2πσ
exp
(
−(x−µ)2

2σ2

)
, (2.55)

where σ is the standard deviation, σ2 is the variance, and µ is the mean value
[64], [65], [66]. The variance determines the width (spread) of the bell curve. The

Figure 2.7: Gaussian distribution for a given set of data. For normal distribution
68.27 % of the values fall within one standard deviation (95.45 % within two and
99.73 % within three standard deviations).
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larger the variance is, the larger the spread of the data points will be. When the
mean value µ is zero, the graph shown in Fig. 2.7 is centered around the 0 point.
The Gaussian distribution given in Eq. 2.55 has the property that 68.27% of the
measured data lie within µ ±σ . The Maximum Likelihood principle can lead to
the method of least squares only if the measured data behaves according to the
Gaussian distribution. The least-square method can be substituted in two main
groups: linear and non-linear least squares [67], [68]. The solution of the linear
least squares is shown in section 2.6.2. On the other hand, the non-linear least
squares are usually solved with iterative algorithms where, at each iteration, the
system is approximated by a linear one which brings us back to solving a linear
least square system.

2.6.1 Maximum Likelihood Principle of Least Squares
The maximum likelihood method (estimation) MLE is one of the most widely
used methods for obtaining the values for the parameters that define a model [69].
This is done, so that the values maximize the likelihood that the method portrayed
by the model delivered the observed data. Fisher [70] was one of the first authors
in the early 20th century who widely popularized the use of this method.
Let us consider a random sample of n measurements of a sample x. The first step
will be finding the model which best describes the given data. In our case, let us
consider the residuals in the measurements behaving according to the Gaussian
distribution. To be able to find the true value of x for a given measurement xk one
has to substitute the measured values into the probability distribution 2.55 which
results in the likelihood function

Lk(µ,σ) =
1√

2πσ
exp
(
−(xk−µ)2

2σ2

)
, (2.56)

It can be seen from Eq. 2.56 that the likelihood function is dependent on two
parameters: µ the mean and σ the standard deviation. Different values of these
parameters yield different Gaussian curves. This method (MLE) idea is to find
the optimal values for these two parameters that result in a curve that best fits the
measurements. If Eq. 2.56 is extended for all the measurements (estimators) for
the same true value x, the collective likelihood can be written as a product of the
likelihood functions

L(µ,σ) =
n

∏
k=1

Lk. (2.57)

If Eq. 2.56 for the Gaussian distribution is now substituted in Eq. 2.57 one gets

L(µ,σ) =
1√

(2π)nσn
exp

(
− 1

2σ2

n

∑
k=1

(xk−µ)2

)
, (2.58)
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Since the exponential function is an increasing function, the location of the maxi-
mum of the likelihood function corresponds to the minimum of the exponent (we
are looking for exponent that is small in magnitude). Hence, the maximum can be
found by minimizing the term

ε(µ) =
n

∑
k=1

(xk−µ)2. (2.59)

Differentiating Eq. 2.59 with respect to µ and equating to zero, one gets

µ =
1
n

n

∑
k=1

xk. (2.60)

which is the well known formula for the mean value. In a comparable way,
Eq. 2.59 is differentiated w.r.t. σ , which yields the expression for the variance

σ
2 =

1
n

n

∑
k=1

(xk−µ)2. (2.61)

Equation 2.60 and Eq. 2.61 express the maximum likelihood estimators for the
mean and the variance.

2.6.2 Linear Least Squares
Linear least squares (also known as ’linear regression’) is the most widely used
method for fitting a model through data [71]. The simplest model is fitting a
straight line through data,

ym = ax+b. (2.62)

Assuming that all errors are in ym and the values in x are known exactly, the
residuals in the vertical distance can be calculated as

d = ym− (ax+b). (2.63)

Taking into account that the error follows a Gaussian distribution with zero mean,
the likelihood function for all point estimates can be calculated as a product of all
likelihood functions

L(a,b) =
1√

(2π)nσn
exp

(
− 1

2σ2

n

∑
k=1

(ymk− (axk +b))2

)
. (2.64)

Similar as in section 2.6.1 the likelihood function has an extrema

ε(µ) =
n

∑
k=1

(ymk− (axk +b))2. (2.65)
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when the sum of the squared residuals has a minimum. This can be done by
differentiating the likelihood function w.r.t. both parameters a and b.
Now, to generalize this, one must first find an efficient way to approximate a set of
data. Principally, a set of data can be approximated in a linear manner using linear
basis functions. The basis of this functions bk(x) must be linear in the parameters

ym(x) =
d

∑
k=1

αkbk(x). (2.66)

This can then be rewritten in a matrix form for n points xk for k = 1, ...,n and n
equations and d +1 unknowns

ym (x1)
ym (x2)

...
ym (xn)

≈


b0(x1) b1(x1) . . . bd(x1)
b0(x2) b1(x2) . . . bd(x2)

...
...

...
...

b0(xn) b1(xn) . . . bd(xn)




α0
α1
...

αd

 (2.67)

or in matrix - vector notation,
ymymym ≈ Bααα. (2.68)

This is a similar problem to the one defined in equation Eq. 2.45. This is basically
a linear system of equations that can be written in general form

Hγγγ = bbb. (2.69)

The difference between the model parameters (linear model) ak and the vector bbb
is corrupted by Gaussian noise and assumed to have the true values can be defined
with a residual vector

rrr = Hγγγ−bbb. (2.70)

The goal is to find the vector of γγγ , which minimizes the norm of the residual.
Taking this into account, the cost function for the linear least squares is

ε(γγγ) = ||Hγγγ−bbb||22. (2.71)

Equation 2.71 is minimized w.r.t. γγγ by taking the first derivative and setting the
equation to 0

∂ε(γ)γ)γ)

∂γγγ
= 000. (2.72)

Before taking the cost function derivative, one must first expand Eq. 2.71. The
cost function can be expressed as

ε(γγγ) = (bbbT −γγγ
T HT )(bbb−Hγγγ), (2.73)
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which when expanded yields

ε(γγγ) = bbbTbbb−bbbTHγγγ−γγγ
T HTbbb+γγγ

T HT Hγγγ. (2.74)

Because the product bbbTHγγγ is a scalar it can be transposed without changing any-
thing. Thus, rearranging Eq. 2.74, one gets

ε(γγγ) = bbbTbbb−2γγγ
T HTbbb+γγγ

T HT Hγγγ. (2.75)

The derivative with regards to γγγ is expressed as

∂ε(γγγ)

∂ (γγγ)
= (HT H+(HT H)T )γγγ−2HTbbb = 000, (2.76)

which yields
γγγ = (HT H)−1HTbbb. (2.77)

The matrix HT H is invertable if H has linearly independent columns. In that case
the matrix (HT H)−1HT is called the Moore - Penrose pseudo inverse [72]. The
case when the matrix HT H will be dealt with in the next section.

2.7 Singular Value Decomposition and the Least
Squares
If H is a symmetric n×n real matrix, there are orthogonal matrices U and V and a
diagonal matrix S such that [73]

H = USVT . (2.78)

This means that the product of UUT or VVT will be equal to the identity matrix.
On the other side, the matrix S is a diagonal matrix

S = diag(σ1,σ2, . . .σn), (2.79)

where the diagonal elements are the singular values ordered such that

σ1 ≥ σ2 ≥ . . .≥ σn ≥ 0. (2.80)

If the least squares solution given in Eq. 2.71 is to be extended with the SVD, one
gets

ε(γγγ) = ||USVT
γγγ−bbb||22. (2.81)

Equation 2.81 can be extended to

ε(γγγ) = ||UT (USVT
γγγ−bbb||22 = ||SVT

γγγ−UTbbb||22, (2.82)
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because multiplying a vector with the unitary matrix from the left does not change
its norm. Using the orthogonal substitution γγγ = Vzzz one gets

ε(zzz) = ||SVT Vzzz−UTbbb||22 = ||Szzz−UTbbb||22, (2.83)

The vector zzz can be partitioned such that

γγγ = Vzzz =
[
Vr Ṽ

][ααα
βββ

]
= Vrααα + Ṽβββ , (2.84)

where Ur and Vr are the matrices which are contained in the first r column (where
r is the rank of the matrix) of U and V. The matrices Ũ and Ṽ are respectively
the remaining columns, and the matrix Sr is a diagonal matrix with the singular
values at the diagonal. Following this, the cost function can be written as

ε(ααα,βββ ) =

∥∥∥∥[Sr 0
0 ∆

][
ααα

βββ

]
−
[

Ur
T

Ũ

]
bbb
∥∥∥∥2

2

(2.85)

where ∆ is a diagonal matrix. More information about this matrix and its proper-
ties can be found in [57]. If Eq. 2.85 is multiplied, it can be rewritten as a sum of
two norms

ε(ααα,βββ ) = ||Srααα−Ur
Tbbb||22 + ||∆βββ − ŨT

r bbb||22. (2.86)

The matrix ∆ is a diagonal matrix containing the singular values which are zero
or very small when calculated numerically. This give us the partitioning of the
U = [UrŨ], V = [VrṼ]. The subscript r is the rank of the matrix. The rank of the
matirx H can be defined as the number of non zero singular values of the matrix.
Consequently the cost function is no longer dependent on the vector coefficient βββ .
This leaves us with

ε(α) = ||Srααα−Ur
Tbbb||22 + ||Ũr

T
bbb||22. (2.87)

The second term of Eq. 2.87 is a norm of Ur
Tbbb, which is basically a scalar product

of the columns of the matrix of U with the vector bbb. To get a normal solution,
for which one needs to minimize the cost function, Eq. 2.87 must be differentiated
w.r.t. the coefficient vector ααα . This yields the equation

Sr
T Srααα = Sr

T Ur
Tbbb, (2.88)

which leads to the minimizing solution for ααα

ααα = Sr
−1Ur

Tbbb. (2.89)

Substituting Eq. 2.97 into the Eq. 2.84 one gets the general solution for the least
squares problem

γγγ = VrSr
−1Ur

Tbbb+ Ṽβββ , (2.90)
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where the first part of the equation is the one that influences the cost function and
the second part doesn’t influence the cost function because it doesn’t contain bbb.
Furthermore, one can define the Moore-Penrose pseudo inverse matrix as

H+ = VrSr
−1Ur

T . (2.91)

This is a unique matrix Y, which must satisfy four conditions

HYH = H,

YLY = Y,

(HY)T = HY,

(YH)T = YH. (2.92)

The solution of Eq. 2.92 is dependent on the properties of the matrix L. If the
matrix HT H is invertible, the solution will be expressed through the formula H+ =
(HT H)−1HT . In the case of L not being full rank, the solution will entirely depend
on the null space and the vector βββ (there is infinite family of solutions, with βββ

arbitrary parameters). To be able to determine a unique solution, one must then
define supplementary conditions such as boundary conditions.

2.8 Least Squares for Solving ODE with Equality
Constraints (LSE) via SVD

In the previous sections, a few steps for solving differential equations were in-
troduced. These steps included: introducing numerical differentiation matrices
(collocative and interstitial), discretization of linear operators and boundary con-
ditions and introduction to the least square problem. Following this, one can very
easily formulate the least square problem with equality constraints (LSE)

min ||Hγγγ−bbb||22 subject to GT
γγγ = ddd. (2.93)

where G ∈ IRn×p and ddd ∈ IRp, where p is the number of constraints. As mentioned
in section 2.7 the solution of Eq. 2.90 depends on the properties of the matrix H.
This leads to the generalized form of the solution given in Eq. 2.90 where the solu-
tion is written in terms of a particular solution and a set of homogeneous solutions
to the differential equations. This can be rewritten in terms of the differential
operators as

H =
[
Un−p Ũ

][Sn−p 0
0 ∆

][
VT

n−p

ṼT

]
(2.94)

Equation 2.94 shows that the matrices S and V are partitioned according to the
number of nodes and the number of constraints. This means that if the problem
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is well structured then the matrix Sn−p will be square, invertible and in the limit
n→∞ ∆ will be zero. Now, this will lead to the solution similar as in Eq. 2.84

γγγ = Vn−pααα + Ṽβββ , (2.95)

from which the cost function can be expressed as

ε(ααα,βββ ) = ||Sn−pααα−UT
n−pbbb||22 + ||∆βββ − ŨTbbb||22. (2.96)

If Eq. 2.96 is solved in a similar manner and minimized, the solution for cost
function for ααα can be expressed as

ααα = Sn−p
−1Un−p

Tbbb. (2.97)

Following this, the solution of Eq. 2.95 can be put down as

γγγ = Vn−pS−1
n−pUT

n−pbbb+ Ṽβββ , (2.98)

which leads to
γγγ = L−bbb+ Ṽβββ , (2.99)

where the matrix L− is expressed as

L− = Vn−pS−1
n−pUT

n−p. (2.100)

which is the generalized inverse of the matrix L. The generalized inverse in this
case approximates the linear differential operator by truncating the SVD. This ma-
trix is different from the Moore-Pseudo inverse Eq. 2.91 in that it does not satisfy
all four conditions given in Eq. 2.92 [57]. Moreover, it is obvious that the solution
of the first term of Eq. 2.99 is dependent on the vector of function values bbb. For
this reason, the first term is usually illustrated as the particular solution to the sys-
tem of differential equations, and the second term as the homogeneous solution
of the equation. If the solution Eq. 2.99 is substituted in the general constraints
equations, one gets

GT
γγγ = GT L−bbb+GT Ṽβββ = ddd. (2.101)

This leads to
GTṼβββ = ddd−GT L−bbb. (2.102)

Now, since the number of p constraints corresponds to the number of p parame-
ters (ODE specific method), the coefficient matrix GT Ṽ is square and invertible.
Following this, the solution for the parameters of the homogeneous solution can
be expressed as

βββ = (GT Ṽ)−1(ddd−GT L−bbb). (2.103)
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Substituting the solution for the homogeneous parameters back into the general
solution Eq. 2.99 one gets

γγγ = L−bbb+ Ṽ(GT Ṽ)−1(ddd−GT L−bbb). (2.104)

By rearranging Eq. 2.104

γγγ = L−bbb+ Ṽ(GT Ṽ)−1ddd− Ṽ(GT Ṽ)−1GT L−bbb

= (I− Ṽ(GT Ṽ)−1GT )L−bbb+ Ṽ(GT Ṽ)−1ddd, (2.105)

where I is the identity matrix. Equation 2.105 shows that the solution may be ex-
plicitly determined in terms of the forcing function and the values of the specified
constraints after the linear differential operator and differential constraints have
been established. The first term in this entire solution is, once again, a particular
solution of the ODE. However, this time, a particular solution fulfills homoge-
neous constraints provided by the matrix G. The second term denotes the solution
that satisfies each of the differential constraints separately.



Chapter 3

Fluid Power Systems for Mobile
Machinery

The main research done in this chapter is the development of a new control system
for high inertia loads. Additionally, different models (linear and non-linear) have
been developed and studied. These models have been used to study the concepts
of energy efficiency, damping, adaptive, flow, and pressure control.

3.1 Introduction to Fluid Power Systems for Mobile
Machinery

A fluid power system is an apparatus that is used to convert and transfer energy.
One of its main advantages is the high weight-to-power ratio, enabling these types
of systems to handle large amounts of power. Hydraulic oil is the main medium
used in these systems. The characteristics of the oil allow it to transfer and absorb
huge amounts of energy. When absorbing energy, the oil gets hot, which leads
to a lower bulk modulus value and decreases the energy efficiency of the whole
system. This is the main reason for using of remote coolers in mobile machinery.
Traditionally, fluid power systems were designed to focus mainly on performance
and functionality and less on efficiency. A fluid power system consists of mul-
tiple parts: hydraulic pump, actuator, valves, etc. All these parts are combined
to form a system design that will give us the desired performance. Pumps are
usually hydrostatic or displacement types that convert mechanical energy into a
fluid one. In mobile machinery, usually, one pump is used to supply multiple load
actuators. The most common configuration used today is the load sensing system
(LS) [74]. The LS is a system configured from one variable displacement pump
for every actuator. This type of system improves the overall system’s efficiency
and performance [74]. Lately, in the mining industry, there has been a trend of us-

29
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ing valveless systems because this improves the energy efficiency of the systems
significantly [75], [76], [77]. However, because of the high inertia loads, using a
valveless system configuration for the type of machine described in section 3.1.2,
would not be desirable. To be able to achieve the fast changes in directions and
handle the active and passive inertia loads, state-of-the-art valves were used [78].
These independent metering valves are equipped with different operating modes
that can handle different kinds of load very accurately. The valve-operated sys-
tems are separated into two main groups: constant pressure systems and constant
flow systems.

3.1.1 Hydraulic Independent Metering Systems
Hydraulic load systems often consist of two parts, i.e., motors and cylinders. Tra-
ditionally, these types of systems have been controlled with one valve with a me-
ter in (inlet) and a meter out (outlet) orifice that are mechanically connected. This
makes the system much more robust and easy to control, but, on the other hand,
it lacks flexibility. Its lack of flexibility can cause numerous types of losses. For
example, losses due to the synchronous work of the orifice with different pres-
sure demand, unnecessary losses on the meter outside with dimensions adjusted
for overrunning loads, and so on. This is not desirable when handling restrictive
(positive) loads. In order to overcome these shortcomings, a second valve can be
implemented [79] [80] [81] [82] [75]. The system, which consists of at least two
valves (meter in - meter out) that are independently controlled, goes under the um-
brella name ”Independent metering valves” (see Fig. 3.1). In the literature, numer-
ous terms are used for independent metering valves: programmable valves [83],
multi-functional valve [84], separate meter in – meter out [85], [86]. Dynamic per-
formance improvement and energy-saving aspects are the main research objective,
as well as the use of this type of valve configuration. Additionally, by separating
the meter in and meter out orifice, features like regeneration and recuperation can
be utilized to further improve the efficiency of these systems [81]. Independent
metering systems usually come with a load sensing (LS) feature. This means that
the system uses a variable displacement pump. The control of the LS margin can
be done on the pump or electronically. The main advantage of the LS system is
the improved energy efficiency and the improved performance. The downsides
are: increased oscillation and excessive pressure margin. The properties of the LS
system have been the subject of research in [74].
Electronic devices have improved the accuracy of hydraulic control systems using
closed-loop techniques in many applications. With the introduction of a second
valve, the possibility to control an additional variable has been introduced; for
example, it can be pressure. This way, pressure on the meter out side can be con-
trolled independently of the flow requirements on the meter in. This means that



CHAPTER 3. FLUID POWER SYSTEMS FOR MOBILE MACHINERY 31

Figure 3.1: Conventional system with one independent metering vale on the left
which allows the control system to control only one system variable (example:
flow or pressure). Independent metering system on the right with two metering
valves with which we can control two system variables (example: flow and pres-
sure).

the resistance on the meter out side will be adjusted to meet the requirements for
the set value. This can improve the system’s stability and improve its ability to
handle cavitation.
The downside of the independent metering systems is their complexity and the
strong dependence on knowledge of the systems.

3.1.2 Introduction to Rapid Mine Development System
This section discusses the issues arising during the control of hydraulic systems.
The first problem arising is the active and passive loads which cause vibration
and pressure fluctuations. Additionally, the active loads (puling forces) can lead
to cavitation and disruption or collapse of the pipelines if they are not adequately
managed. There are multiple ways of how one can damp the oscillations that ap-
pear as a result of external forces during the working process. Passive damping is
usually done with hydro-pneumatic accumulators [87]. Another way of damping
is to use active vibration damping [88], [89], [90], [91]. In mining machinery,
some kind of oscillation source feedback is very often needed to find out more
about the source. Such feedback can be acceleration, pressure, or force feedback.
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Figure 3.2: Rapid mining development system Sandvik MX650 ((C) 2020 By
courtesy of Sandvik Mining and Construction.)

Optimal control theory is a research area that shows very promising results in ac-
tive vibration damping [92], [93], [94]. This is one of the reasons why optimal
control theory will be considered in this thesis.
The Sandvik MX650 (Fig.3.2) has two cutting arms which rotate and carry out
the cutting process. Sometimes, if the pulling forces are in the same direction as
the movement of the arm, the machine needs to be stopped and reset. The Eaton
CMA valve offers multiple control methods that handle these types of loads very
efficiently. In [95], all of these methods are simulated and tested. The pressure and
flow control methods described in section 3.5 show improved performance com-
pared to some of the methods described in [48]. The second problem investigated
was the issue of the bulk modulus. At high temperatures and high air content,
the value of the bulk modulus tends to get very low. This lowers the hydraulic
system’s stiffness, which will lower the mechanical system’s natural frequency
accordingly. As a result, the system exhibits oscillatory behavior, which lowers
its performance. For this reason, multiple models for estimation of the effective
bulk modulus were tested and compared. This model was then implemented in a
simulation environment where multiple aspects were considered. It is concluded
that the pressure and the flow controller do not have equal contribution to the me-
chanical stiffness of the system. Additionally, an adaptive back pressure controller
was implemented to improve the energy efficiency of the whole system [96], [97].
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3.2 Modelling and Simulation of Hydraulic Indepen-
dent Metering Systems

Simulations are one of the most powerful tools, especially when developing new
products. They offer the possibility to test the system and its performance before
it is developed. Furthermore, they are very affordable and can prevent damage to
the equipment or personnel. When designing a tunnel boring machine like the one
described in chapter 3.1.2, it is very important to test the controllers for real-time
capabilities and performance. This is especially important because of the high
inertia loads that the hydraulic systems need to handle. Testing mining machines
in the harsh conditions in which they work can cost a lot of money and time. Tak-
ing all this into account, simulation of these systems is essential. Additionally,
a test rig was constructed for this system at Sandvik Mining and Construction in
Zeltweg. The rig was used to test some of the capabilities of these systems.
The hydraulic system implemented in the mining machines is very complex and
operates at very high pressures. Furthermore, these machines use state-of-the-art
valves with an embedded controller, making this system highly nonlinear [78].
The independent metering valves in these systems react much faster than the nat-
ural frequency of the load system. This creates a very stiff problem, numerically.
This section will define the nonlinear and linear mathematical models for the sys-
tem. Furthermore, the developed models with the implemented controllers will be
tested in a simulation environment.

3.2.1 Non-Linear Model of the Independent Metering System
The rapid mine development system has multiple cylinders driven by hydraulic
servo valves. These valves are equipped with embedded controllers, which in-
clude different control strategies. The goal is to test the system’s controllers and
compare them with the actual model. In this section, the cylinder and the servo
valves are presented with nonlinear state-space differential equations derived from
the fundamental laws of physics.
When modeling these systems, one needs to be mindful to include all the effects
that affect the system’s dynamics. A complex nonlinear model should give a sig-
nificant insight into the simulation model’s behavior that can then be related to
the real machine or test rig. In the present section 3.2, these systems are described
as numerically stiff. The difference in reaction time results in a big magnitude
difference in values between the servo valve and the load system. Additionally,
this system has multiple feedback loops for the PID controllers implemented in
the valves and the controllers for the load systems, making the system highly
nonlinear. This is a nightmare for numerical solvers used for solving systems of
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Figure 3.3: Simplified hydraulic and mechanical model of the system imple-
mented in the machine. The mass makes rotation movements while cutting the
profile. When the mass moves in positive direction the system flow is controlled
on the active side of the cylinder and the pressure on the passive side of the cylin-
der.

differential equations. The model was developed in Matlab/Simulink. Multiple
published works in this area have been used for creating the model. In [98] and
[99], it is shown that the mathematical models for these systems can be a good
basis for modeling independent metering systems.
As shown in Fig. 3.2, the rapid mine development system has multiple actuators,
which are controlled with multiple independent metering valves. The main force
responsible for motion is a product of the pressure difference between the piston
(A) and rod (B) sides in the cylinder. When the system moves in positive direc-
tion the piston side is flow controlled and the rod side is pressure controlled. This
force is resisted by the friction (nonlinear) and the load forces. The fiction force
in the hydraulic cylinder is nonlinear and difficult to model. A complete mathe-
matical model of the friction includes the Stribeck and stiction effect and viscous
and Coulomb friction [100]. The LuGre friction model was used in the simula-
tion. Additionally, the oil’s elasticity (bulk modulus) can be affected by multiple
parameters, such as air content, temperature, piston position. Low bulk modu-
lus values can cause oscillations and decrease the system’s stability. Different
models of the bulk modulus are investigated and implemented in the simulation
environment. Additionally, the influence on the flow and pressure controllers is
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illustrated.

3.2.2 Mathematical Modeling of the Non Linear System
The system shown in Fig. 3.3 consists of a hydraulic pump, two independent me-
tering valves, and a hydraulic cylinder that actuates the mechanical load. Newton’s
Second Law equations of motion are:

dy1

dt
= va. (3.1)

maÿ1 = pAAA− pBAB−Ff −Fext . (3.2)

where AA is the area on the piston side and AB is the area on the rod side. The
restrictive forces coming from the load are designated as Ff for the friction force
and Fext for the external (load) force. The friction force is directly related to
the velocity. When the machine is carrying out its cutting process, it is assumed
that the friction force is mostly viscous, and it is described as Ff = bva, where b
represents the coefficient of viscous friction. The additional friction forces will be
explained in a designated subsection 3.3.
The flow through the valve orifice is nonlinear and introduced as QA and QB [98]
[99]:

QA =Cdwxv(t)

√
2(ps− pa)

ρ
=Cvxv(t)

√
ps− pA, (3.3)

QB =Cdwxv(t)

√
2(pB− pT )

ρ
=Cvxv(t)

√
pB− pT . (3.4)

Cv =Cdw

√
2
ρ

(3.5)

In [98], the value of the discharge coefficient Cd = 0.61 and w is the area gradi-
ent whose value can be found in the valve catalog. The value of Cv Eq. 3.5 can
also be calculated using the valve’s catalog values for nominal flow QN , the max-
imum orifice opening xvmax , and the nominal pressure differential ∆PN . The supply
pressure is denoted as ps and the tank pressure as pT .

Cv =
QN√
∆PN

2

1
xvmax

. (3.6)

The compressibility of the fluid plays an integral part in these systems. Its value
is expressed through the bulk modulus β , which varies with pressure (p) and
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strongly depends on the fluid’s temperature (T ) and air content (xair). The amount
of volume change that occurs while the fluid is being pressurized is defined as
bulk modulus. Additionally, very low bulk modulus values can cause system in-
stability. Consequently, the modeling of this parameter needs to be considered
carefully.

β (p, t,xair,T ) =−
∆p

∆v
V, (3.7)

If Eq. 3.7 is to be used in a simulation environment, it needs to be rearranged in
the following form:

d p
dt

=
β

V
∆V

dt
. (3.8)

According to [48], the compression rate of the fluid in volume V is given as fol-
lows:

dV
dt

=

(
i=m

∑
i=1

Qin−
i=m

∑
i=1

Qout

)
, (3.9)

where Qin is the flow that goes into and Qout the flow that goes out of the system.
Using the equations above, the volume change can now be expressed as a rate of
change in pressure:

d p
dt

=
β (t)
V (t)

(
i=m

∑
i=1

Qin−
i=m

∑
i=1

Qout

)
, (3.10)

d pA

dt
=

(
β (t)

VA +AAy1

)
(QA−AAva), (3.11)

d pB

dt
=

(
β (t)

VB +AB(la− y1)

)
(ABva−QB). (3.12)

Four differential equations now describe the system: Eq. 3.1, Eq. 3.2, Eq. 3.11, and
Eq. 3.12. This means that the system has four state variables. According to [101],
a state variable is a first-order differential equation that describes the system’s
motion. In our case, the state variables are y1, va(y2), pA and pB. Moreover,
when simplifying the model, one can additionally replace the terms β

V+Ay1
with

the hydraulic capacitance C = V
β

.

3.2.3 Mathematical Modeling of the Linear System
For the purpose of analysis and further usage in the numerical methods, a linear
model of the system was developed. This model was used in real-time Simulink
and Matlab environments. To develop the linear model, we must start with the
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Figure 3.4: Nonlinear model of the hydraulic and mechanical system.

equations for the nonlinear model described in section 3.2.2. Flow through the
valve can be expressed as

Q =Cvxv(t)
√

∆P. (3.13)

To develop the linear equations for flow through both orifices, it is necessary to
apply the method of small perturbations [102]. The flow on each side depends on
the pressure change and the orifice position Eq. 3.3, Eq. 3.4. By linearizing both
equations, one gets

∆QA =
∂QA

∂xv
xvs +

∂QA

∂ pA
pAs ,

∂QA

∂xv
=Cv
√

ps− p1 =Cq1 ,

∂QA

∂ pA
=−1

2
Cvxv√
ps− p1

=Cp,

qA =Cq1xv−Cp p1, (3.14)
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∆QB =
∂QB

∂xv
xvs +

∂QB

∂ pB
pBs ,

∂QB

∂xv
=Cv
√

p2 =Cq2 ,

∂QB

∂ pB
=

Cvxv

2
√

p2
=Cp,

qB =Cq2xv +Cp p2. (3.15)

Because of the symmetry of the valve characteristics arising from the use of the
same actuators area one gets

∂QA

∂xv
=

∂QB

∂xv
=Cq1 =Cq2 ,

∂QA

∂ p1
=−∂QB

∂ p2
=−Cp. (3.16)

Now, if one combines Eq. 3.14, Eq. 3.15, and Eq. 3.11, Eq. 3.12, pressures for both
sides can be easily calculated.

pA =
Cq1xv−AAv

VA
β

s+Cp
,

pB =
ABv−Cq2xv

VB
β

s+Cp
. (3.17)

The system shown in Fig. 3.5 shows and incorporates the pressure equations into
the equation of motion. In this system, no feedback loops or controllers are imple-
mented. It shows that, as input on both sides, one gets the position of the orifice,
better known as the spool opening.

3.3 Friction in Hydraulic Systems
Friction in hydraulic systems is nonlinear. A poorly modeled friction curve can
deteriorate the performance hydraulic machines and cause a steady-state error for
high precision motion machines. In [95], it is shown that when using a simplified
friction model, the simulation results do not fully match the behavior of the real
system. Multiple parts in a hydraulic system can be a source of friction: the oil
flow through the valve orifice, the steel construction, and the load’s movement.
Additionally, the hydraulic cylinder has a highly nonlinear friction behavior.
Friction models are, by nature, divided into two main groups: static and dynamic.
Static friction models are solely dependent on the direction of the velocity. The
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Figure 3.5: A linear model of the hydraulic linear and mechanical system obtained
by combining Eq. 3.17 and Eq. 3.2.

static models are not accurate enough for applications that operate at velocities
around zero. Because of this, dynamic models which introduce additional state
are used to tackle this problem.

3.3.1 Steady State Friction Models
Steady state friction models are used for application depending of the direction of
the velocity. The most basic models contain the Columb and the linear viscous
friction [103]. The Columb friction force shown in Fig. 3.6 a is given by

Fc = µFnsign(v). (3.18)

where Fn is the normal force, µ is the friction coefficient and v is the relative
velocity of the object in motion. The viscous friction force is linear with the
velocity and can be expressed as

Fv(v) = bv. (3.19)

where b is the viscous friction coefficient. Viscous friction is often added to the
Columb friction (see Fig. 3.6 b). However, the friction force at rest is higher than
the Columb friction level. At the beginning of the 20th century, Richard Stribeck
shows that the friction force does not decrease discontinuously (see Fig. 3.6 c).
Moreover, he showed that the dependence on velocity is continuous (see Fig. 3.6
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Figure 3.6: Steady state friction models: a) Columb Friction (no static friction). b)
Columb and viscous friction (no static friction). c) Stiction, Columb, and viscous
friction. d) Columb and viscous friction with the Stribeck effect

d) [104] [105] [106]. The Stribeck friction model, which incorporates all three
effects can be expressed as

Ff (v) = FC +(Fs−Fc)e
(−| v

vs |)
δs
+Fv, (3.20)

where Fc is the Columb friction force, Fs is the stiction force and vs is the char-
acteristic velocity of the Stribeck friction. In Fig.3.7, the Stribeck friction force
is simulated for a positive movement. As input, we take a ramp function with a
maximum velocity of v = 0.5 ms−1. Additionally, for the simulation, Fs = 1000 N,
Fc = 800 N, vs = 0.1 ms−1 and b = 100 Nsm−1. All above mentioned basic (steady
state) friction models describe the friction forces very well at steady-state veloc-
ities. These models are not accurate enough for velocities around v = 0 and give
numerical difficulties. Karnopp addresses this problem in [107] by setting the
friction force equal to the force acting on the object for velocities around zero.
However, this model showed numerical difficulties. Leine develops a switch fric-
tion model in [108], which consists of three differential equations for stick, slip,
and the transition phase. Although this model improves the numerical solution, it
still lacks the ability to describe friction completely, especially for the elastic part.

3.3.2 Dynamic Friction Models
The seven parameter models were developed to incorporate the presliding dis-
placement, the Columb and the viscous friction, and the Stribeck effect with the
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Figure 3.7: Stribeck friction force simulated according to Eq. 3.20.

frictional lag in one model [109] [110]. These models usually consist of two sep-
arate parts, one for the stiction phase and the other for the sliding phase. The
stiction phase can be simply expressed as a spring

Ff (y1) = σ0 y1, (3.21)

where σ0 is the micro stiffness and y1 is the displacement of the object subjected
to the force. The sliding phase of the friction can be expressed as

Ff (v, t) =


Fc +Fv|v|+Fs(γ, t1)

1

1+ v(t−τl)
vs

2


 , (3.22)

where γ is the temporal parameter of the rising static friction,τl is the time con-
stant of frictional memory and t2 is the dwell time. In Eq. 3.22, an attempt was
made to describe the presliding and sliding regime with the introduction of time
delay. However, as there is no apparent transition between the two equations, this
model fails to describe the two regimes successfully.
Dahl observed in [111] that when an object is under small displacement, it re-
turns to its primary position. However, if the displacement is larger, the bonding
interface will undergo permanent displacement. Additionally, he states in [112]
that the friction force is not only a function of the Coulomb friction force but also
of the displacement. This model managed to describe the predisplacement much
better than previous models but failed to capture many other phenomena like the
Stribeck effect and the stick-slip motion. Although this model gives only an ap-
proximation of the presliding phenomenon, it was later used as a basis for more
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Figure 3.8: LuGre friction force simulated according to Eq. 3.24 and Eq. 3.25.

advanced models.
A significant breakthrough in friction modeling was made with the introduction
of the LuGre model [113]. Using the Dahl model as a basis, the LuGre model
introduced a new state variable z = Ff

σ0
. According to this, the Dahl model [112]

can be modified as

dz
dt

=
1

σ0

dFf

dy1

dy1

dt
=

1
σ0

dFf

dy1
v = v−σ0

|v|
Fc

z. (3.23)

This model replaces the constant term for the Columb friction force Fc with a
velocity-dependent function g(v). Additionally, it adds damping σ0 associated
with the micro displacement and a memory-less term dependent on the velocity
f (v). If Eq. 3.23 is modified accordingly, the LuGre friction model can be ex-
pressed as

ż = v−σ0
|v|

g(v)
z = v−h(v)z, (3.24)

Ff = σ0z+σ1ż+ f (v), (3.25)

where z is the internal friction state. In Fig.3.8, the LuGre friction model is
simulated for Fs = 1.5 N, Fc = 1 N, vs = 0.001 ms−1, σ0 = 105 Nmrad−1, σ1 =
316 Nmsrad−1. Additionally, the velocity is varying from v = -0.005 ms−1 to v =
-0.005 ms−1.
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3.4 Effective Bulk Modulus
The compressibility of the hydraulic oil can be expressed through the value of
the bulk modulus 3.2.2. It reflects both the stiffness of the oil and the speed of
transmission of pressure waves [114]. Its value can be affected by the oil pressure
and temperature, air content in oil, pipe rigidity, and molecular structure of the oil.
The equivalent of the bulk modulus, which includes all of these parameters, can
be expressed through the value of the effective bulk modulus [98]. Furthermore,
it is shown in [115] that the compressibility of the oil has the highest effect on the
mechanical stiffness of the hydraulic actuator.
If the process is adiabatic or isothermal and if tangent or secant definition of the
bulk modulus is used, four types of bulk modulus can be defined. The secant bulk
modulus can be expressed as

βs =−V0

(
∆P

∆V

)
(S,T )

, (3.26)

where V0 is the initial volume of the fluid, ∆P is the change in pressure, ∆V is
the change in volume and S and T represent the adiabatic and isothermal process
respectively. The tangent bulk modulus can be defined as

βt =−V
(

∂P
∂V

)
(S,T )

. (3.27)

The secant bulk modulus Eq. 3.26 is more suitable for big pressure changes in
comparison with the tangent bulk modulus Eq. 3.27, which is more adequate for
smaller pressure changes. In this thesis, the tangent bulk modulus Eq. 3.27 will be
mostly used and referred to as β .
Several theoretical models for the effective bulk modulus have been introduced to
incorporate all of these effects. In the mid-1960s, Merrit introduced a theoretical
model for calculating the effective bulk modulus but did not include the effects of
the air content [98]. In [116], Nykanen added air content into the equation. Cho
improved the Nykanen model by using the correct definition for the tangent bulk
modulus [117]. Additionally, Gholizadeh [114] also modified the Nykanen model
for the true value of the tangent bulk modulus. However, in [118], Yu developed
a model which gives the pressure a dependent variation of free and dissolved air.
Wylie used the Yu model as a basis for his model [119]. Kajaste [120] modified the
Wylie model for the non-isothermal process and labeled it the ”Wylie-Yu model”.
He further modified the model for pressure increase according to [121], [122],
where it is shown that the relationship between the pressure and bulk modulus
is often referred to as linear. Shunghun introduced a theoretical model where
he incorporated the temperature influence of the oil [123]. In his dissertation,
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Gholizadeh introduces a new model which consists of two equations [114], one
for the value of the pressure below the critical value (air is not dissolved) and one
for pressure above the critical value (air is dissolved).

3.4.1 Merrit model
In [98], Merrit defined the effective bulk modulus as an air-oil mixture in a flex-
ible container. In addition, multiple assumptions were made: air bubbles were
uniformly distributed, secant bulk modulus was used, the air was treated as a per-
fect gas, the oil and air had the same temperature. Following these assumptions,
the Merrit model can be expressed as

βMerrit =
β0

1+ xair

(
β0
nP −1

) , (3.28)

where β0 is the start value for the bulk modulus, xair is the air content in oil and n
is the polytropic constant. The value for the effective bulk modulus using Eq. 3.28
will always be lower when compared with the other models, because Merrit did
not consider the effect of rising pressure on the air content in the oil.

3.4.2 Nykanen model
The model Nykanen introduces in [116] is a two-phase model for the oil-air mix-
ture. Here, he used the secant bulk modulus from Eq. 3.26 to find the values for
β0. Furthermore, as in the previous section, 3.4.1, the assumption made for the
temperature is that it is constant.

βNykanen =
xair

(
P0
P

)( 1
n)
+(1− xair)e

−
(

P
β0

)

xair
nP

(
P0
P

)( 1
n)
+ (1−xair)e

−
(

P
β0

)
β0

. (3.29)

The Merrit model 3.4.1 incorporates the standard definition of the secant bulk
modulus, but Nykanen used the unconventional definition of the tangent bulk
modulus. Due to this, the Nykanen model will not converge to the specified oil
bulk modulus value.

3.4.3 Nykanen modified and Cho model
Cho [117] develops a novel model under the same assumptions as the Merrit
model described in 3.4.1. As opposed to the Nykanen model, his definition of
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the tangent of the bulk modulus corresponds well with the standard definition of
the tangent bulk modulus. He defines the total instantaneous volume as the sum
of the air and oil volumes.

V =Vg +Vl, (3.30)

where Vl is the volume of the liquid and Vg is the volume of the air when com-
pressed in accordance with the ideal gas law. The ideal gas law states that

Vg =

(
P0

P

) 1
n

Vg0 , (3.31)

where Vg0 is an initial value for the gas volume. Additionally, Cho assumes a
constant bulk modulus for the oil, which can be defined as

Vl =Vl0e
(

P0
P

) 1
n

, (3.32)

where Vl0 is the initial volume of the liquid. If Eq. 3.30, Eq. 3.31 and Eq. 3.32 are
combined, one gets

V =

(
P0

P

) 1
n

Vg0 +Vl0e
(

P0
P

) 1
n

, (3.33)

If Eq. 3.33 is differentiated and inserted into the tangent bulk modulus formula,
one gets

βCho = βl

 xCho +
(

P
P0

)( 1
n)

e
(

P−P0
βl

)
xCho

n
βl
P +

(
P
P0

)( 1
n)

e
−
(

P−P0
βl

)
 . (3.34)

If it is assumed that the oil bulk modulus is much larger than the pressure differ-

ence P−P0, the term e
−
(

P−P0
βl

)
can be replaced by unity. Accordingly, Eq. 3.34

can be approximated as,

βCho =
xCho +

(
P
P0

)( 1
n)

xCho
n

βl
P +

(
P
P0

)( 1
n)
. (3.35)

Cho defined the air volumetric fraction xCho as

xCho =
Vg0

Vl0
, (3.36)

which can also be expressed as

xCho =
xair

1− xair
. (3.37)
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If Eq. 3.37 is replaced in Eq. 3.35, the Cho model can be expressed as

βCho =
1− xair +

(
P0
P

)( 1
n)

xair

xair
nP

(
P
P0

)( 1
n)
+ 1−xair

βl

. (3.38)

In his dissertation [114], Gholizadeh modifies the Nykanen model (Eq. 3.29) for
the correct definition of the tangent bulk modulus of the volumetric fraction Eq. 3.36
and receives Eq. 3.38 as for the model given by Cho.

3.4.4 Yu Model
The previous models describe the compression of the air in the oil very precisely.
However, they fail to describe both compression and dissolving of the volumet-
ric fraction when subject to different pressures and temperatures. In [118], Yu
introduces a new theoretical model based on the Merrit model 3.4.1. In order to
include the dissolving effect of air, Yu defines a new variable named c1, which
was defined as the air bubble volume variation. This variable describes the ratio
variation of the entrained and dissolved air content in oil. According to this, Yu
introduced the following polytropic equation:

(Vg0− c1Vg0(P−P0))
nP0 = PV ′gcd, (3.39)

where Vgcd is the instantaneous volume of entrained air which is a result of the
compression and loss of mass of entrained air due to dissolving. Using the tangent
bulk modulus, the Yu model can be expressed as

βYu =
βl

1+ xYu

(
P0
P

)( 1
n)
+(1− c1(P−P0))

(
βl
nP −1

) , (3.40)

where xYu is the air volumetric fraction by Yu which can be expressed as

xYu =
Vg0

Vgcd +Vl
=

xair

Vg0

(
P0
P

)( 1
n)
+(1− xair)

. (3.41)

Moreover, Yu provided a simplified model (c1 = 0) by neglecting the dissolving
effect.

βYusimpli f ied =
βl

1+ xYu

(
P0
P

)( 1
n)
(

βl
nP −1

) . (3.42)
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If we implement the second part of Eq. 3.41 in the simplified model Eq.3.42, we
get

βYusimpli f ied =
1− xair +

(
P0
P

)( 1
n)

xair

xair
nP

(
P
P0

)( 1
n)
+ 1−xair

βl

. (3.43)

If we compare the Cho, the modified Nykanen, and the Yu simplified models, we
can conclude that when the effect of air dissolving is neglected, they are all the
same.

3.4.5 Wylie - Yu Model modified by Kajeste
Wylie [119] describes the effective bulk modulus as the ratio between the pressure
difference and the volume change of the fluid. Additionally, the air content of the
fluid has also a big effect on its value. The Wylie model for isothermal conditions
can be expressed as

βW =
βl

1+
(
mg

RT
P

)( 1
n)
(

βl
nP −1

) , (3.44)

where R is the gas constant and mg is the mass of free gas. Kajeste further modified
Eq. 3.44 for non-isothermal conditions and labeled it the ”Wylie-Yu” model.

βWk =
βl

1+ xair

(
P0
P

)n(
βl
nP −1

) , (3.45)

To be able to express the pressure change on the effective bulk modulus, Kajeste
modifies the value βl as presented in [122]. Additionally, the value of βl is being
modified for the temperature change as given in [124] [123].

Kl = K0 +mpP+nT T. (3.46)

In Eq. 3.46, mp represents the pressure-related term and nT the temperature-related
term, which describe the pressure and temperature change in a linear manner. Ad-
ditionally, Kl stands for the liquid bulk modulus and K0 for the starting value of
the bulk modulus.

3.4.6 IFAS model
In [123], Kim introduces a new model for the effective bulk modulus labeled as the
”IFAS” model. He addresses the tangent bulk modulus of oil with the pressure-
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related term already implemented in the theoretical equation.

βIFAS =
(1− xair)

(
1+ mp(P−P0)

β0

)− 1
mp

+ xair

(
P0
P

) 1
n

1
β0
(1− xair)

(
P0
P

) 1
n
(

1+ mp(P−P0)
β0

)−mp+1
mp

+
(

xair
nP0

)
)(

P0
P )
) n+1

n

. (3.47)

3.4.7 Gholizadeh Model
In his dissertation [114], Gholizadeh separates the models into two main groups.
In the first one, the models include the volumetric compression of air (’compres-
sion only’), and in the second, the models include the compression and dissolving
of air (’compression and dissolve’). In order to improve the application of the
compression-only models for higher air content and to solve the discontinuity at
critical pressures for the compression dissolve models, Gholizaden introduces a
new model [125]. In his model, when the critical pressure is reached, all the air
in the oil is dissolved, and the remaining air will tend to follow a ’compression
only’ bulk modulus curve. Additionally, he defines two polytropic indices: n1 be-
fore and n2 after reaching the saturation point. The volume of the air for pressure
values which are less than the critical one is given by

Vgcd(P,T ) =
(

P0

P

) 1
n1 T

T0
xairθ , (3.48)

where the volumetric fraction of air θ at P < PC is found by

θ =

(
Pc−P
Pc−P0

)(
1− (xair)c

xair

)
+

(xair)c

xair
, (3.49)

and for P > Pc, the remaining air will not be dissolved and will follow the com-
pression rule

Vgcd(P,T ) =
(

P0

P

) 1
n2 T

T0
(xair)c. (3.50)

According to this, two equations are introduced, one for when P < Pc,

βGholizadeh =
Vl +Vgcd

Vl
βl
+ 1

Kg1
Vgcd

. (3.51)

and one for when P > Pc

βGholizadeh =
Vl +

(
P0
P

) 1
n2 T

T0
(xair)c

Vl
βl
+ 1

Kg2

(
P0
P

) 1
n2 T

T0
(xair)c

. (3.52)
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where
Kg1 = n1P, Kg2 = n2P,

βl =Vl0 +m(P−P0),

Vl =Vl0(1+
m
βl0

(P−P0))
− 1

m .

(3.53)

where m is the pressure related term.

3.5 Control of Hydraulic Independent Metering Sys-
tem for Tunnel Boring Machines

The hydraulic independent metering system for tunnel boring machines is a very
complex nonlinear system that presents many challenges when it needs to be con-
trolled. For the first time in this type of machine, a novel independent metering
valve was implemented and used. The Eaton CMA valve is an advanced CAN-
enabled electro-hydraulic section mobile valve, which consists of two separate
valves: the CV (conditioning valve) and the PV (pivot valve) [78], [126]. The CV
has two main margins: the CV margin added on top of the highest load sensing
margin for each PV, and the other is the LS margin for each PV. The LS margin
is usually set to 20 bar and the CV margin to 5 bar. The valve shown in Fig. 3.9

Figure 3.9: Electro - hydraulic section mobile valve Eaton CMA90 equipped with
embedded controllers and sensors. These allows to control the valve pressure,
flow and the spool position very accurately.

has a pressure and position sensor on every spool. It is also equipped with flow
sensors for the piston and rod sides. The main problem during the cutting process
are the high inertia loads which lead to active and passive loads. Passive loads act
in the opposite direction of the movement of the working cylinder. On the other
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Figure 3.10: UFC - Universal flow control logic.

hand, active loads act in the direction of the movement of the working cylinder. In
[127], Will illustrates that active loads act independently of the motion direction
and by standstill, always in one direction. That being, there is no change in the
force direction on the piston side. When this scenario occurs, the valve needs to
break on the rod side in order to maintain constant flow and pressure.
The Eaton CMA90 valve has an incorporated control logic that efficiently handles
this type of load. It consists of pressure and flow controllers whose inner-work
depends on the load type. The UFC (universal flow control) implements flow con-
trollers on both sides of the cylinder. This opens the possibility to limit the speed
of the valve opening, which directly increases or decreases the system’s speed of
motion. It can be seen from Fig. 3.10 that, depending whether the load is active
or passive, the system implements flow controllers on both sides, but with a small
difference on the active side. For the active side, the area difference AR and the
flow limiting factor UFC1 or UFC2 are considered. On the other side, the IFC
incorporates flow and pressure controllers for both sides. What makes the IFC
more efficient is the PI pressure controller, which controls the pressure to the set
value on the active side. This allows the system to maintain constant velocity and
avoid oscillations. This is possible because the valve has a very flexible control
system that allows the control of multiple variables simultaneously.
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Figure 3.11: IFC - Intelligent flow control logic.

3.5.1 Control of Nonlinear Hydraulic Independent Metering
System

The equations for the nonlinear system are already shown in the last section 3.2.2.
Figure 3.4 shows that the inputs on both sides are the flows for this type of system.
As explained in section 3.5, the system has flow and pressure controllers imple-
mented on both sides. In addition, there is an external position controller that
regulates the actuator’s position. The position controller also determines the flow
demand that the system requires to achieve a specific position. The controllers
implemented in the system are PI controllers. In Fig. 3.12, QAvalve is the flow that
leaves the independent metering valve. The control illustrated in Fig. 3.12 is only
for the passive loads and when the system moves in a positive direction. When
the machine moves in a negative direction or the loads are active, the system fol-
lows the control logic illustrated in Fig. 3.11. This system was used and tested for
multiple load and position scenarios. Furthermore, this model was used to test the
influence of the bulk modulus on this type of system.
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Figure 3.12: A hydraulic nonlinear system with control. The non linear model of
the valve is not included in this figure but in the working model. Implemented
pressure controller on the rod side and flow controller on the piston side. Addi-
tionally, an external flow controller is implemented.

3.5.2 Control of Linear Hydraulic Independent Metering Sys-
tem

The linear system equations were illustrated and derived in section 3.2.3. In
equation 3.17, the pressures for the linear system are shown. Additionally, from
Fig. 3.5 it can be seen that inputs in the system for both sides are the orifice open-
ings xv1 and xv2 . If the same control is to be implemented for the linear as for
the nonlinear system, some modifications need to be made. Since the servo valve
reacts much faster than the natural frequency of the mechanical system [128], the
flow controller on the piston side was not implemented. The rod side is always
pressure-controlled for passive loads and actuation in the positive direction. The
state-space representation of the system shown in Fig. 3.13 which includes the
feedback loops for the pressure, the flow and the position of the system can be
written as

ẋ̇ẋx = Axxx+Buuu (3.54)
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Figure 3.13: Hydraulic linear system with control. Implemented P position con-
troller on the piston side and P pressure controller on the rod side.

where
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−Cp1

β
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Chapter 4

The Effect of the Bulk Modulus on
the Dynamics of Controlled
Independent Metering System

In this chapter the models for effective bulk modulus presented in the previous
chapter were firstly compared for isotermal conditions. The IFAS and the Wiley-
Yu (Kajeste) models were further compared for non constant temperature. This
was done firstly to investigate and improve the already existing models for mod-
eling the effective bulk modulus and then test the influence of low bulk modulus
values on the system performance and dynamics. This lead to the development of
a new energy-efficient adaptive controller for this type of system. Multiple con-
clusions arise from these investigations. Firstly, for lower bulk modulus values,
the pressure controller has an advantage over the flow controller. Secondly, for
highly pressurized systems, the temperature has a more considerable influence on
the bulk modulus value than the air content or the pressure.

4.1 Comparison of the Compression and Dissolve
Models

In the previous chapter, multiple models for modeling the bulk modulus of oil
were presented. In these models, multiple definitions for the tangent bulk mod-
ulus were observed. It is shown that the use of the secant bulk modulus leads
to lower values for the effective bulk modulus. Because of this, the tangent bulk
modulus definition was preferred. Additionally, the influence of the pressure and
the temperature increase on the bulk modulus was discussed. To be able to com-
pare the models, they were simulated under the same conditions xair = 1 %, n = 1
(isothermal conditions), P0 = 1 bar, mp = 11.4, β0 = 15 000 bar and P = [0 - 50]
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Figure 4.1: Comparison of the different models under the same conditions, xair =
1 %, n = 1 (isothermal conditions), P0 = 1 bar, mp = 11.4, β0 = 15 000 bar and P
= [0 - 50] bar.

bar. The models were principally investigated and compared. Fig. 4.1 illustrates
the results for the different bulk modulus values. Compared to the results pre-
sented in [123], the Wylie-Yu (Kajeste) 3.4.5 and the IFAS model 3.4.6 show the
most consistent results. For this reason, these two models were further compared
for non-isothermal conditions and non-constant temperature.

4.1.1 Comparison of the Wylie-Yu (Kajeste) and IFAS Models
for non-constant temperature

In this section, the two models were compared for non-isothermal conditions.
Pressure ranges between p = [0 - 80] bar and temperature between T = [0 - 60]◦C.
The additional values were as follows: the air content xair = 0.0013 %, the bulk
modulus β0 = 18670 bar (ISO VG 46 oil), the temperature-related term nT = -
80 bar

◦C , the pressure-related term mp = 11.4 and the polytropic constant n = 1.4.
Additionally, Figure 4.2 shows that both models correspond well with the mea-

surements done in [123]. In order to illustrate the difference between the two
models, an error plot is needed. Fig. 4.3 shows that the difference between the
two models is very small. Due to this and the results stated in [129], the Wylie-Yu
model was incorporated in the simulation model.
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Figure 4.2: Comparison of the different models under the same conditions, xair =
0.0013 %, n = 1.4 (isothermal conditions), P0 = 1 bar, mp = 11.4, β0 = 18 670 bar,
nT = -80 bar

◦C , T = [0 - 60]◦C and P = [0 - 80] bar.
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Figure 4.3: Error plot for the Wylie - Yu and IFAS model for non isothermal
conditions.
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4.2 Case Study
The hydraulic system consists of a pump, two servo valves, a hydraulic actuator,
and a mass that needs to be moved. The servo valves offer the possibility to control
the back pressure. When the bulk modulus values decrease due to increased oil
temperature or increased air content, the system’s natural frequency goes down.
To compensate for that, one can increase the backpressure, which will increase the
pressure on the active side of the cylinder. This will increase the natural frequency
of the system. Although this option is not energy-efficient, it is very often used in
hydraulics to avoid any oscillations.
In [130], Cetin introduces a combined PID - Fuzzy logic controller, which re-
sults better than a regular PID controller at lower bulk modulus values. However,
the question of energy efficiency was not considered. In [131], Wang presents
a method where he successfully lowers the air content in the system by 0.01 %.
In [132], Anwer shows that more power is needed when the oil temperature in-
creases. Additionally, Anwer and Hassan both verify in their experiments [133]
that the increasing temperature decreases the supply pressure on the system. How-
ever, none of the previous works show how the bulk modulus values affect the
pressure or flow controllers of the system and, further to this, what is the energy
loss due to increased oil temperature or increased air content into the oil.
To investigate the effects of the bulk modulus on the system controllers first,
and then on the energy consumption, the nonlinear system 3.5.1 presented in
Fig. 3.3 was tested and simulated in Matlab Simulink ®. The system’s mass is
M = 400,000 kg, the viscous friction parameter b = 107 Ns

m , identified from mea-
surements during cutting operations. The hydraulic cylinder areas are given as AA
= 0.0616 m2, AB = 0.0302 m2 and the length of the cylinder h = 0.65 m. The system
input is a position controller with a set value of 0.01 m. The back pressure varies
from 30 to 80 bars. As shown in Fig. 3.12, the flow controller directly depends on
the flow demand of the system and the flow that goes through the valve. Depend-
ing on the load conditions, the system modifies its control to achieve its position
and maintain a constant velocity [95]. The system’s performance was analyzed
for different temperature values and air content. From Fig. 4.4 it can be seen
that as the bulk modulus value decreases due to the increased temperature and air
content into the oil, the system position delays, and the system peak velocity de-
creases. Additionally, the peak pressure on the active side is significantly higher
when compared with the pressure on the rod side, which is pressure-controlled.
On the other side, in Fig. 4.5 the system’s controllers and power consumption are
analyzed. When the bulk modulus value decreases, the system flow demand in-
creases, which leads to increased power consumption. This actuates the flow con-
troller accordingly. The pressure controller only delays its signal to the valve. This
leads to the delayed performance and lower pressure values shown in Fig. 4.4. It is
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(c) Pressure piston side PA
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x [1%], T [100°C]

(d) Pressure rod side PB

Figure 4.4: The system dynamics are tested at different air content xair and tem-
perature T . With the increased air content and temperature, the system delays,
and the pressure decreases.
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(d) System power output

Figure 4.5: System performance at different air content xair and temperature T .
With the increased air content and temperature, the system controllers delay, and
the system needs more flow to achieve the same position.

essential to mention that when the value of the bulk modulus is lower, the system
power peak value decreases. One of the reasons for this is the decreased pressure
values on the piston side. This prompts us to believe that the independent meter-
ing system does not consider the change in the bulk modulus value. The reason
for this lies at the assumption the valves embedded controllers always make for
the value for the bulk modulus. Because the value is almost always assumed to be
constant the system cannot recognize its effects on the dynamics. For this reason
an adaptive controller was proposed to try to improve the system performance and
efficiency. Also, Fig. 4.5 shows that the pressure and the flow-controlled sides do
not have an equal contribution to the stiffness of the system.
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(d) Pressure Controller

Figure 4.6: Outputs of the position and the controllers. The piston side bulk
modulus value is affected by: air content (xair), temperature (T) and pressure (P);
rod side bulk modulus value is affected by: pressure (P).

4.2.1 Comparison of the Pressure and Flow Controlled Sides
In the previous section, the effects of the bulk modulus on the system dynamics
were illustrated. Moreover, it was stated that the flow and the pressure controller
have no equal contribution to the mechanical stiffness of the system. In order to
test this, two simulations were carried out. In the first simulation, the bulk modu-
lus value on the flow-controlled side was only affected by the oil’s temperature, air
content, and pressure. The bulk modulus value on the rod side was only affected
by the pressure increase. It is evident from Fig. 4.6 that the bulk modulus value
significantly affects the system’s performance and position. All of the controllers
are delaying, and the system needs more power to compensate for the position
delay. This shows that the flow controller is severely affected by the value of the
bulk modulus. On the other hand, the system shows much better performance
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Figure 4.7: Outputs of the position and the controllers. The rod side bulk modulus
value is affected by: air content (xair), temperature (T) and pressure (P); piston
side bulk modulus value is affected by: pressure (P).
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when the pressure-controlled side is affected by the bulk modulus value (Fig. 4.7).
The position is almost unaffected, which goes for the system controllers. This
leads us to conclude that the pressure controller has a significant advantage in this
type of system under the given conditions [124]. It also opens the possibility to
regulate the pressure on the rod side according to the value of the bulk modulus.

4.3 Adaptive Control
An adaptive control system is a system that can cope with the changes and the
uncertainty of the plant [134]. The first time adaptive control was mentioned was
in the early 1950s [135]. The motivation behind this research was the design of
an autopilot for a high-performance aircraft. Aircraft dynamics are highly non-
linear and conceptually time-varying. At a given operating point, the system was
approximated for a linear state-space model 2.2. When the aircraft goes through
different conditions, the system’s operating point will change. This will lead to
changes in the A, B, C, D matrices values accordingly. The output of the system
y(t)y(t)y(t) carries information about the states Eq. 2.9. If the values of the state matrices
change, one can argue that the controller should be able to learn and adjust its per-
formance [136]. This led to the control structure known as adaptive control [137],
[138]. This control structure is very commonly used for nonlinear systems and in
plants where the model is not well known. Through the years, there have been var-
ious methods of how this control scheme has been used [139]. Model Predictive
Control (MPC) is used when the system model is known, but the system param-
eters are unknown. In [140] this control has shown impressive results. Machine
learning techniques such as Neural Networks [141], reinforcement learning [142],
and even fuzzy logic [143] have shown promising results in an approximation of
nonlinear plants.

4.3.1 Adaptive Back Pressure Control
When the bulk modulus value decreases significantly, the value of the pressure
on the pressure-controlled side is usually increased to compensate for the loss of
pressure. This loss of pressure leads to lower mechanical stiffness of the whole
machine, which can cause vibrations, lower accuracy, and efficiency. To avoid
this, in praxis, the pressure is usually set to a higher value. However, this leads
to a much higher energy consumption of the machine. To alleviate this, a novel
adaptive back pressure controller was developed. Because nonlinear equations for
the calculation of effective bulk modulus are already implemented in the simula-
tion model, one can easily see how much the value of the bulk modulus is affected
by the temperature, the air content, and the pressure of the oil. According to this,
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Figure 4.8: Outputs of the position, the pressures, and the power consumption
with implemented adaptive controller. The back pressure is set experimentally at
three different values.

an adaptive controller was developed that regulates the back pressure according
to the bulk modulus value. Additionally, because the pressure controller reacts
much better at lower bulk modulus values than the flow controller 4.2.1, only the
bulk modulus value on the flow controlled side was monitored. In agreement with
this, the preset values for the back pressure were set experimentally. In Fig.4.9 it
can be seen that the information about the bulk modulus change is acquired from
the actuator. The information is then sent to the adaptive controller which regu-
lates the back pressure value. It can be seen from Fig. 4.8 that, as a result of the
adaptive controller, the pressure curves for PA are more balanced, and the peak
pressure curves are very near. As a result, when we compare the power curves
from Fig.4.5 and Fig. 4.8 the difference in used power is obvious. The adaptive
controller uses much less energy when the value of the bulk modulus is higher.
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Figure 4.9: Block diagram of the overall system with adaptive back pressure con-
troller. This controller manipulates the back pressure of the system depending on
the value of the temperature, pressure and air content in oil.

Fixed back pressure
Adaptive back pressure

Figure 4.10: Average power consumption for the system with and without adap-
tive controller.

This improvement is more obvious in Fig. 4.10, where the average consumption
for the two scenarios under the given conditions is visible.



Chapter 5

Calculus of Variations Methods for
Optimal Control

This chapter derives the fundamentals and solution of two calculus of variation
methods for numerically stiff hydraulic systems. The goal was to find the optimal
path and implement a path tracking algorithm for the same system that already
has embedded controllers in the servo valve. The system is first discretized using
the methods described in Chapter 2 and then solved accordingly. Then, the Euler-
Lagrange equations are used to minimize the functional. The optimal control
method shows better performance compared to LQR and PID controllers. More-
over, both methods show improved energy-efficient performance.

5.1 Introduction
The birth of optimal control is closely connected to the beginnings of the calculus
of variations, which stretches back a few centuries. It became very popular in the
1960s with the spectacular success of optimal control trajectory prediction in the
aerospace industry [144]. The invitation letter from Bernoulli in year 1969 for the
solution of the brachystochrone problem marks the start of the calculus of varia-
tion. In his letter, Bernoulli challenged all of the scientists to solve the problem of
finding the fastest path between two points in a vertical plane [145]. Multiple au-
thors submitted their results, including Leibnitz, l’Hopital, Newton etc., and they
were collected and published by Euler in 1744 in [146]. Before Lagrange, most
solution techniques were geometric and not analytical. In 1755, Lagrange offered
an analytical approach based on perturbations of the optimal curve using his mul-
tipliers which led to the Euler - Lagrange equation [144]. More about early and
today’s history of the calculus of variations can be found in [147], [148], [149].
Today, the calculus of variation is used in many optimization problems, which dif-
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fer from the ordinary calculus of variations problems. Lev Pontryagin and Francis
Clarke are some of the most popular authors known for developing new methods
using calculus of variation for optimal control theory that are used even nowa-
days [150], [151]. The most important quantity used in calculus of variations is a
functional. A functional can be defined as a correspondence that assigns a definite
(real) number to each function (curve) belonging to some class [152]. Calculus of
variations is often used to find the extrema of given functions and find curves or
surfaces that optimize some process defined by a given cost function. This covers
very well the problems that arise very often in mining machinery, for instance:
path planning and bringing one hydraulic system from one point to another in the
shortest amount of time. These two problems are explained in more detail and
solved for the system given in chapter 3.1.1 in section 5.5 and 5.6. Basically, in
the calculus of variation, a function is needed, which minimizes a certain integral,
facilitating the Euler - Lagrange equations. Or, in Harker’s words: ’by introduc-
ing variations in functions, it can be shown that a function that minimizes a given
functional must satisfy a differential equation’ [57].
In this chapter, the calculus of variation will be used to solve several optimal con-
trol problems. The numerical stiffness of the system shown in chapter 3 is an
enormous challenge when using such methods. Additionally, the system’s com-
plexity (non-linearity) and the additional controllers already implemented in the
valve make the task even more demanding. However, with the improvements
made to the system in Chapter 3 and the numerical methods presented in Chapter
2, an accurate solution can be obtained.

5.2 Partial Differential Equations (PDE)
The research containing first-order PDE dates back to the 18th century. Alex-
Claude Clairaut was the first one to encounter PDE’s in his work on the shape of
the earth [153]. Partial differential equations (PDEs) are equations that contain
multiple independent variables (x,y,...), a dependent variable (u(x,y,...)), and one
or more partial derivatives of the dependent variable. The variable u which we
differentiate is called the dependent variable, whereas the variables one differen-
tiates with respect to are called the independent variables [154]. A PDE is an
identity that relates the independent variables, the dependent variable u and the
partial derivatives of u [155]. This can be written as

F(x,y,u(x,y),ux(x,y),uy(x,y)) = F(x,y,u,ux,uy) = 0. (5.1)

where ux =
∂u
∂x , uy =

∂u
∂y . If this is extended for a second order, one gets

F(x,y,u(x,y),ux(x,y),uy(x,y),uxx,uxy,uyy) = 0, (5.2)



CHAPTER 5. CALCULUS OF VARIATIONS METHODS FOR OPTI-
MAL CONTROL

67

where uxx =
∂u
∂x2 , uxy =

∂u
∂x∂y and uyy =

∂u
∂y2 . The simplest first order PDE, also

known as the transport equation, can be expressed as

∂

∂ t
u(x, t)+ k

∂

∂x
u(x, t) = 0

u(x, t0) = f (x). (5.3)

PDEs are very often used to describe physical processes that happen in nature,
such as heat flow, fluid dynamics, electricity, and so on. One of the most com-
monly used equations in engineering is the heat (diffusion) equation

uxx(x, t)+ux(t) = l(x, t). (5.4)

Since it defines how a particular distribution changes (evolves) over time, it is also
known as an evolution equation. For the solution of this equation, one can use the
Robin boundary conditions as described in [57]. Solving PDEs with matrices
numerically is not an easy task. To do so, one must first discretize the dependent
variable u(x, t) for both independent variables and their partial derivatives. The
dependent variable can be discretized in matrix form as,

U =


u(x1, t0) u(x1, t1) . . . u(x1, t f )
u(x2, t0) u(x2, t1) . . . u(x2, t f )

...
... . . . ...

u(xn, t0) u(xn, t1) . . . u(xn, t f )

 (5.5)

If this is extended for the two derivative matrices of x and the time dimension t,
the partial derivatives can be discretized as

Ux = DxU,

Ut = UDT
t . (5.6)

In this manner, the discretized solution of the PDE can be expressed in matrix
form. The numerical solution of this PDE is the constrained solution of the linear
matrix equation given the boundary conditions.

5.3 The Method of Lagrangian Multipliers
The area of Lagrangian multiplier methods for constrained optimization starts
with introducing augmented Lagrangian function and methods of multipliers in
1968 by Hestens and Powell [156]. To grasp the idea of constrained optimiza-
tion via Lagrangian multipliers, let us consider a straightforward example. Let us



CHAPTER 5. CALCULUS OF VARIATIONS METHODS FOR OPTI-
MAL CONTROL

68

suppose we have two distinct points: A and B and the task is to find the shortest
distance between these points. The answer is obviously a straight line connecting
the two points. What will happen to the solution if one adds some constraint to
the problem? For example, let us find the shortest distance between A and B, but
touching some line g. This now becomes a constrained optimization problem that
can be easily solved using the Lagrangian multipliers. Since we choose that the
minimal path line and the constrained line g are to be tangent, they both have the
same slope at that point. Following this, one gets

∂ f
∂x
||∂g

∂x
so

∂ f
∂x

= λ
∂g
∂x

, (5.7)

which leads to the method of Lagrangian multipliers for constrained optimization.
If we consider the example for g(x) = 0 one can minimize the function f (x) in a
few steps. First, one must define the Lagrangian function,

L (x,λ ) = f (x)−λg(x). (5.8)

Secondly, one must differentiate with regards to x and λ

∂L

∂x
=

∂ f
∂x
−λ

∂g
∂x

,

∂L

∂λ
=−g(x). (5.9)

The Lagrange multipliers turns a constrained problem in one variable x into and
unconstrained problem into two variables x and λ Eq. 5.9. More details on how
Lagrangian multipliers are used in calculus of variation problems can be found in
[157].

5.3.1 Least Squares with Equality Constrains via Lagrangian
Multipliers

The least-square problem was already discussed in section 2.6, where the problem
for constrained optimization was solved via the SVD. To solve the linear square
problem subject to a set of linear constraints via the Lagrangian multipliers, one
must first define the linear function, and the constraints in the following manner

min ||Hγγγ−bbb||22 subject to GT
γγγ = ddd. (5.10)

Following this, the Lagrangian functional can be written as

L (γγγ,λλλ ) =
1
2
||Hγγγ−bbb||22−λλλ

T (GT
γγγ−ddd). (5.11)
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If one follows the same steps as in section 5.3, differentiating w.r.t. both γγγ and λλλ

one can find the stationary points by solving the following set of equations

HT Hγγγ−HTbbb−Gλλλ = 000

−GT
γγγ +ddd = 000, (5.12)

or in matrix form [
HT H −G
−GT 0

][
γγγ

λλλ

]
=

[
HTbbb
−ddd

]
. (5.13)

This becomes an unconstrained problem, which can be solved by any means of
matrix inversion (singular value decomposition (SVD), QR decomposition [57]).
From Eq. 5.13 it can be seen that the LSE problem under the right circumstances
can have a unique solution even if the matrix H is not invertible. This is true if the
coefficient matrix of this equation is invertible.

5.4 Euler Lagrange Equations
Variational calculus addresses a wide array of minimization problems. In this sec-
tion, we will focus on the path minimization problems that focus on our research.
To explain this minimization problem, one must start with what might be called

Figure 5.1: Shortest path between two points

the ’simplest’ variational problem [152]. What we want is to find the function y(x)
such that the following functional is stationary.

J =
∫ b

a
F(x,y,y′)dx, (5.14)
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where u(x) + εη(x) is the first variation of the minimizing solution u(x). The
functional subject to boundary conditions should be minimized. The boundary
conditions can be defined as

a11y(a)+a12y′(a) = c1,

a21y(b)+a22y′(b) = c2. (5.15)

respectively at x = a and x = b. Equation 5.14 can also be rewritten as

J(ε) =
∫ b

a
F(x,y,D1y)dx. (5.16)

where D1 is a linear differential operator which was already mentioned in section
2.4. The differential operator can be of nth degree and also fractional order deriva-
tive. In our case D1 is the first derivative as given in Eq. 5.14. Now, let’s introduce
a function (variation) η(x) such that η(a) = η(b) = 0. Additionally, let’s define a
function ȳ such that

ȳ = u(x)+ εη(x). (5.17)

In Eq. 5.17 ȳ represents a family of curves which satisfies the same boundary con-
ditions as y. The idea now is to find ȳ which makes J stationary. If we substitute
Eq. 5.17 into Eq. 5.14 we get

J =
∫ b

a
F(x,u(x)+ εη(x),u′(x)+ εη

′(x))dx. (5.18)

Since the functional given in Eq. 5.14 depends on ε one can very easily make J
stationary by differentiation with respect to ε and equating this equation to zero.
This gives ∫ b

a

∂

∂ε
F(x,u(x)+ εη(x),u′(x)+ εη

′(x))dx = 0. (5.19)

By differentiating one gets∫ b

a
(η(x)Fy +η

′(x)Fy′)dx =
∫ b

a
(η(x)Fy)dx+

∫ b

a
(η ′(x)Fy′)dx = 0. (5.20)

By integrating by parts only one term of the equation, one gets∫ b

a
(η ′(x)Fy′)dx = (Fy′η(x))|ba−

∫ b

a
(

∂

∂x
Fy′η(x))dx. (5.21)

Knowing that the η at the extremes is zero one gets∫ b

a
(η ′(x)Fy′)dx =−

∫ b

a
(

∂

∂x
Fy′η(x))dx. (5.22)
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Following the same step for the first integral in Eq. 5.20 and combining both of
them one gets

J′(0) =
∫ b

a
(Fy−

∂

∂x
Fy′)η(x)dx = 0. (5.23)

From Eq. 5.17 it is obvious that the functional is stationary when ε = 0. Because
η is an arbitrary function, the only way this integral is guaranteed to be zero is if

Fy−
∂

∂x
Fy′ = 0, (5.24)

which represents the Euler Lagrange Equation. For the functional defined with
Eq. 5.16 the Euler Lagrange equation can be derived in a similar manner [57].

5.5 Optimal Control for Numerically Stiff Indepen-
dent Metering System

The hydraulic system presented in section 3.2.3 consists of independent meter-
ing valves, which are controlled independently. These valves offer very flexible
control strategies for handling inertia loads [126], [79]. However, the systems’
servo valves react significantly quicker than the load’s inherent frequency, which
creates a numerically stiff system [158], [159], [2]. This, and the system’s com-
plexity, poses a challenging task to solve it numerically. Additionally, in [160],
Rath shows that the exponential matrix method yields an unstable solution to such
systems.
Before we start with the optimal control problem, we need to modify the system
to improve its numerical stiffness. This is done using the mass matrix presented
in Eq. 2.10. Following this, the system presented in Eq. 3.55 can be modified in
this manner,

Π =


1
β

0 0 0
0 1

β
0 0

0 0 1 0
0 0 0 m

 , A =


−Cp1

β

VA
0 −kACq1

β

VA
−AA

β

VA

0 −
(
kBCq2 +Cp2

)
β

VB
0 −AB

β

VB
0 0 0 1
AA
m −AB

m 0 − b
m

 ,

xxx =


PA
PB
y1
v

 , B =


kACq1

β

VA
0

0 −kBCq2
β

VB
0 0
0 0

 , uuu =

[
yset

PBset

]
. (5.25)

It is important to note here that a portion of the numerical values for the bulk
modulus β and the mass m appears in the mass matrix Π. This step decreases
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the numerical stiffness of Eq. 2.10 on the right-hand side of the equation. Histor-
ically, numerous attempts have been made to solve the optimal control problem
for numerically stiff hydraulic systems. Rath uses the Hamiltonian in [94] to find
the optimal hydraulic systems flow. Even with a friction parameter of zero, the
system shows stable performance without oscillations. In [161], Dupree solves
the Hamiltonian Jakobi Bellman equation using the implicit learning capabilities
of the robust integral of the sign of the error (RISE) control. Additional methods
like the Lagrangian force method [162] linear quadratic regulator (LQR) [163],
[164] have also been used to solve the optimal control problem for hydraulic sys-
tems. However, most of these systems lack the complex control algorithm of
the system presented in chapter 3.In this section, the mass matrix and interstitial
derivatives are used to construct a new strategy for solving the optimal control
problem (Euler-Lagrange equations) for numerically stiff systems.

5.5.1 Numerical Solution of the Optimal Control Problem
The idea of optimal control is to move the system from one state to a new one
in an optimal manner. In our case, the system’s mass shown in Fig. 3.3 must be
moved in an optimal way from its initial state x(t0) to the new state x(t f ). This
may be accomplished by minimizing the control variable’s norm∫ t f

t0
uuuT (t)uuu(t)dt, (5.26)

where t0 and t f represent the start and final value of the time vector. Before mini-
mizing the control variable norm, one must consider that the system must satisfy a
set of differential equations subject to boundary values. This creates a constrained
optimization problem that can be addressed using methods from the Calculus of
Variations, namely the Lagrange multiplier approach already derived in section
5.3. The functional that has to be minimized will therefore have the following
form:

J (xxx(t) , ẋ̇ẋx(t) ,uuu(t) ,λλλ (t)) =
1
2

∫ t f

t0
uuuT (t)uuu(t)dt

−
∫ t f

t0
λλλ

T (t)(Πẋ̇ẋx(t)−Axxx(t)−Buuu(t))dt
(5.27)

Equation 5.27 can now be solved using the variational approach (Euler Lagrange
equations) given in Eq. 5.24. This yields the following solution

AT
λλλ (t)+Π

T
λ̇̇λ̇λ (t) = 000.

BT
λλλ (t)+uuu(t) = 000

Πẋ̇ẋx(t)−Axxx(t)+Buuu(t) = 000

(5.28)
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By substituting the second equation for the control into the third equation, one
gets a system of two differential equations which can be expressed as

Πẋ̇ẋx(t) = Axxx(t)−BBT
λλλ (t)

Π
T
λ̇̇λ̇λ (t) =−AT

λλλ (t) .
(5.29)

These equations can then be written in matrix form as

Π1γ̇̇γ̇γ (t)−A1γγγ (t) = 000 (5.30)

where

Π1 =

[
Π 0
0 Π

T

]
,γγγ (t) =

[
xxx(t)
λλλ (t)

]
(5.31)

and

A1 =

[
A −BBT

0 −AT

]
. (5.32)

This system can now be discretized following the methods shown in section 2.5.
The same goes for the initial and boundary values which can be defined as

ICICIC =
[
PA(t0) PB(t0) y1(t0) y2(t0)

]T
BCBCBC =

[
PA(t f ) PB(t f ) y1(t f ) y2(t f )

]T (5.33)

where ICICIC and BCBCBC represent real physical values of the system. To be able to dis-
cretize Eq. 5.34 must be first transposed in the following form

γ̇̇γ̇γ
T (t)Π1

T−γγγ
T (t)A1

T = 000 (5.34)

Now, following the method presented in section 2.5 and 2.5.1 one can discretize
this system at the interstitial points i.e. between the samples tk <sk< tk+1 for
k = 1, . . . ,n− 1. Following this, the state of the system over time, discretized at
time instances can be written in discretized matrix form as

γ1γ1γ1
T

γ2γ2γ2
T

...
γnγnγn

T

=


γ1 (t0) γ1 (t1) . . . γ1

(
t f
)

γ2 (t0) γ2 (t1) . . . γ2
(
t f
)

...
... . . . ...

γn (t0) γn (t1) . . . γn
(
t f
)
D0

T = Γ
TD0

T, (5.35)

where D0 is an interstitial linear operator already derived in section 2.4.2. The
rule applies to the derivatives of the state vector

γ̇1̇γ1̇γ1
T

γ̇2̇γ2̇γ2
T

...
γ̇ṅγṅγn

T

=


γ1 (t0) γ1 (t1) . . . γ1

(
t f
)

γ2 (t0) γ2 (t1) . . . γ2
(
t f
)

...
... . . . ...

γn (t0) γn (t1) . . . γn
(
t f
)
D1

T = Γ
TD1

T, (5.36)
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where D1 is the interstitial derivative linear operator already derived in section
2.4.2. Combining the last three equations, one gets the system in discretized form,

D1ΓΠ1
T−D0ΓA1

T = 0 (5.37)

where Γ is a matrix derived from the discretization of γγγ . Vectorizing Eq 5.37 one
gets a system of linear equations which can be expressed as

(Π1⊗D1−A1⊗D0)vec(Γ) = 0. (5.38)

This system can now be solved for the constraints given in Eq. 5.33. The final
form of the system is very similar to the one described in section 2.7.

Lyyy = 0

CTyyy = ddd
(5.39)

where
L = (Π1⊗D1−A1⊗D0) , yyy = vec(Γ) (5.40)

C =


E 0 0 0 0 . . . 0
0 E 0 0 0 . . . 0
0 0 E 0 0 . . . 0
0 0 0 E 0 . . . 0


T

, (5.41)

ddd =
[
ICICICT,BCBCBC

T]T . (5.42)

In addition to that, the matrix E is 2× n matrix where n is the number of steps
used for discretiztation. The matrix E has the form

E =

[
1 0 . . . 0
0 0 . . . 1

]
. (5.43)

The solution of the system presented in Eq. 5.39 can be found using the singular
value decomposition as described in section 2.7.

L = USVT =
[
Ur Ũ

][Sr 0
0 ∆

][
Vr

T

ṼT

]
, (5.44)

where ∆ is a block matrix with zero or very small singular values and r is the
rank of the matrix L, imposed by the order of the set of ODE and the number of
boundary conditions. It is worth noting that the columns of Ṽ serve as a basis for
L’s nullspace (which are the homogeneous solutions), hence the solution to the
equation Lyyy = 000 will be in the form of

yyy = Ṽααα, (5.45)
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where ααα is the vector of parameters. To solve for the parameter values ααα one must
use the constraints given in Eq. 5.39. Following this, one gets

CTyyy = CT Ṽααα = ddd, and thus

ααα =
(

CṼ
)−1

ddd,
(5.46)

which leads to the solution of the equations in the form

yyy = Ṽ
(

CṼ
)−1

ddd. (5.47)

5.5.2 Experimental Results
In the previous section, the derivation of the optimal control equations for the
system shown in Fig. 3.3 was made. To test the system performance, one needs
first to define the system parameters. Because the experiment is done for the same
system (just linearized), one can use the same parameters as given in section 4.2
with some minor modifications. The value of the back pressure PB is going to be
adjusted accordingly. In addition, the linearized terms Cq1 ,Cq2 ,Cp1 and Cp2 values
were computed for a supply pressure of 300 ·105 Pa with the assumption that the
initial values for the pressures on both sides will be 10 · 105 Pa. The values for
the proportional controllers kA and kB were set experimentally. The same applies
for the LQR controller where the weighting matrices Q and R have the following
values

Q =


0 0 0 0
0 0 0 0
0 0 0.001 0
0 0 0 0.001

 ,R =

0.1 0 0
0 0.1 0
0 0 0.1

 . (5.48)

After that, the optimal control solution was compared to PID and LQR controllers.
The major goal was to compare these two controllers’ outcomes to the optimal
control solution. In this experiment, performance and energy efficiency were de-
fined as key considerations.
For the same system, two different experiments were carried out. For both sce-
narios the initial values vector is defined as ICICIC =

[
0 0 0 0

]T. For the first
scenario, the system was simulated for a time of t ∈ [0,0.3]s. The boundary val-
ues vector for this scenario is defined as BCBCBC =

[
0 0 0.01 0

]T. The input for
the position of the PID and LQR controllers is a predefined step function with
an amplitude of y1 = 0.01m. The back pressure PB final value is equal to zero.
It is evident from Fig. 5.2 that the optimal control method satisfies the defined
constraints at the predefined points. On the other hand, the LQR and the PID con-
trollers overshoot and do not meet the final values at the exact points. Moreover,
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LQR PID EulerLagr

Figure 5.2: The first simulation results (t ∈ [0,0.3]s), with all initial conditions
and final values are set to zero, except for the end position, which is set to y1 =
0.01m. It can be observed that the LQR and PID controllers overshoot and do not
terminate at the required values for position and pressure PB. On the other hand,
the optimal control method satisfies the defined constraints at precise points. It
also outperforms PID and LQR in terms of energy efficiency, as evidenced by the
velocity and the pressure PA curves [128].
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LQR PID EulerLagr

Figure 5.3: The second simulation results (t ∈ [0,0.6]s), with all initial conditions
are set to zero, except for the end position, which is set to y1 = 0.01m and back
pressure PB = 10 ·105. It can be observed that the LQR and PID controllers have
a steady-state error and do not terminate at the required values for the position
and the pressure PB. On the other hand, the optimal control method satisfies the
defined constraints at precise points. It also outperforms PID and LQR in terms of
energy efficiency, as evidenced by the velocity and the pressure PA curves [128].

the optimal control method has much better energy efficiency when compared
with these two methods. For the second scenario, the simulation time was ex-
tended to t ∈ [0,0.6]s. The boundary values vector for this scenario is defined as
BCBCBC =

[
0 10 ·105 0.01 0

]T. It is obvious that the position value is unchanged
and the back pressure value is PB = 10 · 105. The back pressure PB final value is
equal to zero. Figure 5.3 shows that in this case, as in the previous one, the optimal
control method achieves the desired values for the position and the pressure at the
exact values. On the other hand, the PID and the LQR control, once again, show
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performance which overshoots. In this case, as in the previous one, the optimal
control method significantly improves the energy efficiency of the system.

5.6 Multidimensional Trajectory Tracking for Nu-
merically Stiff Independent Metering System

Tunnel boring machines usually have a predefined profile that needs to be cut. In
most circumstances, the system must follow a predetermined course [165][166].
This is the main reason why path tracking algorithms are appropriate for these
systems. Additionally, in mining equipment navigation, optimal path tracking is
commonly employed instead of other traditional approaches. It improves effi-
ciency and cuts down working time, which improves safety [167],[168]. Model
predictive control (MPC) [169], [170] is one of the most often utilized approaches
because it can account for the system’s constraints [171]. Path tracking is very
often used for controlling hydraulic manipulators [172]. To correct and detect the
non-linearity of static dead zone input signals, Rudolfsen uses the inverse [173].
The optimal control input for multi-dimensional path tracking of a hydraulic crane
controlled by electric motors is determined using a global least-squares technique
in [174]. The sliding perturbation observer (SPO) is used to build a new control
rule in [175]. The SPO is employed here to minimize all environmental distur-
bances, dynamic uncertainties, and modeling mistakes. Additional methods like
the contour tracking methods [176], D-H (Denavit - Hartenberg) parameters [177],
and a PD controller [178] are also very often used to solve the path tracking prob-
lem.
All of the approaches described above, however, are focused on tracking one or
more parameters with the same unit and magnitude, and in most situations, the
position of the provided system is tracked. The hydraulic circuits used in tun-
nel boring equipment are very complex. In our case, the system presented in
Fig. 3.3 has already implemented control inside the valve embedded controllers.
The pressure settings on the pressure controllers are very high to compensate for
the significant external forces produced by the cutting process. This increases the
mechanical stiffness of the hydraulic system, which increases the system’s overall
mechanical stiffness. Consequently, the high values for the external forces and
pressure on one side and the very low values for the valve parameters on the other
side make this system numerically stiff. For this reason, as mentioned in the previ-
ous section, the mass matrix method and interstitial derivatives are used to obtain
a stable solution. The approach suggested in this section, which is based on opti-
mal control theory, uses variational calculus to solve the path tracking issue as a
boundary value problem. To demonstrate the method’s potential, it is next applied
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to a simulated model of the actual system. The results show that the variables
tracked can be tracked accurately, although they do not have the same units.

5.6.1 Numerical Solution of the Multidimensional Path Track-
ing Problem

The path tracking method may be stated as identifying the input vector uuu in order
to obtain the system’s intended output. In terms of variational calculus, this issue
may be phrased as finding the ideal input vector uuu for which the cost function is
minimized Eq. 5.25

µ2
1

2

∫ t f

t0
(x2 (t)−ξ2 (t))

2 dt+
µ2

2
2

∫ t f

t0
(x3 (t)−ξ1 (t))

2 dt (5.49)

Taking into account how the vector uuu is defined Eq. 5.25, x2 tracks ξ2 and x3
tracks ξ1. Because the states x2(t) and x3(t) are of different units and order of
magnitude, the least square difference must be normalized. The parameters µ1
and µ2 in Eq. 5.49 are used to do this. Additionally, the integrals quantify the
least-squares differences between the states x2(t), x3(t), and the respective desired
outputs ξ2(t), ξ1(t)[179]. Following this, the equation 5.49 can now be rewritten
as

µ2
1

2

∫ t f

t0

(
eeeT

2xxx(t)−ξ2 (t)
)2

dt+
µ2

2
2

∫ t f

t0

(
eeeT

3xxx(t)−ξ1 (t)
)2

dt, (5.50)

where eee2 =
[
0 1 0 0

]T and eee3 =
[
0 0 1 0

]T are coordinate unit vectors. To
obtain a unique solution, regularization parameters are implemented [180], which
can be expressed as

µ2
3

2

∫ t f

t0
u̇̇u̇uT (t) u̇̇u̇u(t)dt+

µ2
4

2

∫ t f

t0
ü̈üuT (t) ü̈üu(t)dt, (5.51)

where µ3 and µ4 are the regularization parameters. The regularization parameters
are used to physically limit in such manner that the results obtained can be phys-
ically achieved by the real system. Combining all these equations, the functional
which needs to be minimized can be written as

J (xxx(t) ,uuu(t) ,λλλ (t)) =

µ2
1

2

∫ t f

t0

(
eeeT

2xxx(t)−ξ2 (t)
)2

dt+
µ2

2
2

∫ t f

t0

(
eeeT

3xxx(t)−ξ1 (t)
)2

dt

+
µ2

3
2

∫ t f

t0
u̇̇u̇uT (t) u̇̇u̇u(t)dt+

µ2
4

2

∫ t f

t0
ü̈üuT (t) ü̈üu(t)dt

−
∫ t f

t0
λλλ

T (t)(Πẋ̇ẋx(t)−Axxx(t)−Buuu(t))dt

(5.52)



CHAPTER 5. CALCULUS OF VARIATIONS METHODS FOR OPTI-
MAL CONTROL

80

Because only the ratio between µ1 : µ2 : µ3 : µ4 is relevant, one of the parame-
ters can be set to 1 (µ1 =1). To minimize this functional, one can use the Euler
Lagrange Equations, which are [152]

∂F
∂xxx
− d

dt
∂F
∂ ẋ̇ẋx

= 000

∂F
∂uuu
− d

dt
∂F
∂ u̇̇u̇u

+
d2

dt2
∂F
∂ ü̈üu

= 000

∂F
∂λλλ
− d

dt
∂F

∂λ̇̇λ̇λ
= 000.

(5.53)

Solving equation 5.53 for the given functional one gets

eee2eeeT
2xxx−eee2ξ2 +µ

2
2eee3eeeT

3xxx−µ
2
2eee3ξ1 +AT

λλλ +Π
T
λ̇̇λ̇λ = 000.

BT
λλλ −µ

2
3 ü̈üu+µ

2
4uuu(4) = 000

Πẋ̇ẋx(t)+Axxx(t)+Buuu(t) = 000.

(5.54)

From these equations a system of differential equations can be derived:

Π
T
λ̇̇λ̇λ =−E23xxx+eee2ξ2 +µ

2
2eee3ξ1−AT

λλλ

uuu(4) =− 1
µ2

4
BT

λλλ +
µ2

3

µ2
4

ü̈üu

Πẋ̇ẋx(t) = Axxx(t)+Buuu(t)

(5.55)

where
E23 = eee2eeeT

2 +µ
2
2eee3eeeT

3 . (5.56)

Combining these equations in a similar manner as in section 5.5.1, the matrix form
for Eq. 5.55 is

Π1γ̇̇γ̇γ(t)−Vγγγ(t)−Wξξξ (t) = 000 (5.57)

where

Π1 =


Π 0 0 0 0 0
0 Π

T 0 0 0 0
0 0 I 0 0 0
0 0 0 I 0 0
0 0 0 0 I 0
0 0 0 0 0 I

 ,γ (t)γ (t)γ (t) =



xxx(t)
λλλ (t)
uuu(t)
u̇̇u̇u(t)
ü̈üu(t)

u(3)u(3)u(3) (t)

 ,ξξξ =

[
ξ1
ξ2

]
,

V =



A 0 B 0 0 0
−E23 −AT 0 0 0 0

0 0 0 I 0 0
0 0 0 0 I 0
0 0 0 0 0 I

0 − 1
µ2

4
BT 0 0

µ2
3

µ2
4

I 0


,W =


000 000
eee2 µ2

2eee3
000 000
000 000
000 000
000 000

 .
(5.58)
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This system can be solved numerically by discretizing using the methods shown
in [58]. Any state of this system can be discretized in vector form as

γγγk =
[
γk (t0) γk (t1) . . . γk

(
t f
)]T

. (5.59)

Because the discretization is done in the interstitial points (the point ti between
the samples si) this can be written as

γk (t1)
γk (t2)

...
γk
(
t f
)
=


γk (s0)
γk (s1)

...
γk
(
s f
)
J0 (5.60)

J0 =
1

16



5 15 −5 1 0 . . . 0 0 0 0
−1 9 9 −1 0 . . . 0 0 0 0
0 −1 9 9 −1 . . . 0 0 0 0
...

...
...

...
... . . . ...

...
...

...
0 0 0 0 0 . . . −1 9 9 −1
0 0 0 0 0 . . . 1 −5 15 5


. (5.61)

Expanding the idea for any vector of states γ can be discretized in a matrix form
as

Γ
T

Γ
T

Γ
T =


γγγT

1
γγγT

2
...

γγγT
n

=


γ1 (t0) γ1 (t1) . . . γ1

(
t f
)

γ2 (t0) γ2 (t1) . . . γ2
(
t f
)

...
... . . . ...

γn (t0) γn (t1) . . . γn
(
t f
)
J0

T (5.62)

The derivative of a state can be discretized as

γ̇̇γ̇γk ≈ D1γγγk. (5.63)

Following the same analogy as for the discretized states the first derivative

ΓT =


γ̇̇γ̇γT

1
γ̇̇γ̇γT

2
...

γ̇̇γ̇γT
n

=


γ1 (t0) γ1 (t1) . . . γ1

(
t f
)

γ2 (t0) γ2 (t1) . . . γ2
(
t f
)

...
... . . . ...

γn (t0) γn (t1) . . . γn
(
t f
)
D1

T (5.64)

Transposing and discretizing Eq. 5.57 one gets

D1ΓΠ1
T− J0ΓV T−D1ΞW T = 0. (5.65)
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where Γ and Ξ are the matrices resulting from the discretization of γγγ and ξξξ respec-
tively. By vectorizing Eq. 5.65, one gets

(Π1⊗D1−V⊗ J0)vec(Γ) = (W⊗ J0)vec(Ξ) (5.66)

which is a linear system of equations. This system is solved using singular value
decomposition (SVD). The appropriate number of boundary conditions must be
defined to obtain a unique solution. For the system given in Eq. 5.57 one has 16
differential equations for which the boundary conditions are defined as

γ1(t0) = 0
γ1(t f ) = 0
γ2(t0) = ξ2(t0)
γ2(t f ) = ξ2(t f )

γ3(t0) = ξ1(t0)
γ3(t f ) = ξ1(t f )

γ4−8(t0) = 0
γ4−8(t f ) = 0
γ9(t0) = ξ2(t0)
γ9(t f ) = ξ2(t f )

γ10(t0) = ξ1(t0)
γ10(t f ) = ξ1(t f )

γ11−16(t0) = 0
γ11−16(t f ) = 0

(5.67)

In Eq. 5.67 γ2, γ3, γ9 and γ10 represent the real physical values for the boundary
conditions of the physical system.

5.6.2 Experimental Results
The input parameters for the system given in Fig. 3.3 are the same as for the opti-
mal control problem. The only difference will be the values for the normalization
and regularization parameters. In this case, the values for the normalization pa-
rameter µ2 were assumed to be µ2 = 104 because of the varied dimensions and
magnitudes of the two tracked states. Additionally, the values for the µ3 and µ4
were established experimentally to be 5 ·10−5. For a reference route for the pres-
sure, an oblique rectangular form was chosen. This enhanced the system’s total
mechanical stiffness during motion. The algorithm was implemented in MAT-
LAB, where the control variables u1 and u2 were determined. These variables
were then implemented to the real model of the system into MATLAB Simulink
as a feed-forward to the system inputs (see Fig. 5.4). This system was then tested
for two distinct time intervals: t ∈ [0,4]s and for t ∈ [0,8]s. The pressure on the
rod side was controlled to a maximum value of 20 bar. This improves the hydraulic
stiffness of the system, which improves the whole system’s mechanical stiffness.
Despite the fact that the pressure changes rapidly, there are no fluctuations in the
pressure. This is not the case when utilizing traditional control methods. For the
first experiment Fig. 5.5 it can be seen that the system follows its desired paths
without any issues. Additionally, the system reaches its maximum speed towards
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Figure 5.4: As a feed-forward, the estimated control variables u1 and u2 are im-
plemented into the simulation model of the system.

the midpoint, which shows the energy efficiency of this method. Since the dif-
ference between the desired, followed, and simulated paths and pressures is very
small, an error plot was produced. The second experiment was conducted with
the same path and values but on a longer time scale. In this case, the time interval
is t ∈ [0,8]s. Similar to the first experiment, the path tracking algorithm produces
excellent results. The accuracy, in this case is, much higher than in the first ex-
periment. This is shown in the error curves Fig. 5.8 where the maximum offset is
0.005%. Based on the findings, it can be stated that the path tracking approach
may be successfully utilized to track states in various units and magnitudes. The
estimated control variables, which were then employed as feed-forward inputs for
the simulated system, resulted in extremely close pathways to the desired and fol-
lowed trajectories. In addition, the behavior of the other two states demonstrates
that the approach is energy efficient in both cases studied.



CHAPTER 5. CALCULUS OF VARIATIONS METHODS FOR OPTI-
MAL CONTROL

84

Desired path
Followed Path
Simulated Path

Desired PB
Followed PB
Simulated PB

PA
v

Figure 5.5: (Top and middle graph) - Path tracking results for time t ∈ [0,4]s. The
states x3 and x2 (position and pressure respectively) are being tracked. There is
only a small offset between the followed, simulated, and desired values. (Bottom
graphs) - The behavior of the remaining two states of the system [179].

Error in Followed Path
Error in Simulated Path

(a) Error curves for the followed and simu-
lated positions in Fig. 5.5

Error in Followed PB
Error in Simulated PB

(b) Error curves for the followed and simu-
lated pressures in Fig. 5.5

Figure 5.6: Error curves for the followed and simulated positions and pressures in
Fig. 5.5 accordingly. The maximum offset of this method here is 1 % [179].
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Figure 5.7: (Top and middle graph) - Path tracking results for time t ∈ [0,8]s. The
states x3 and x2 (position and pressure respectively) are being tracked. There is
only a small offset between the followed, simulated, and desired values. (Bottom
graphs) - The behavior of the remaining two states of the system [179].

Error in Followed Path
Error in Simulated Path

(a) Error curves for the followed and simu-
lated positions in Fig. 5.7

Error in Followed PB
Error in Simulated PB

(b) Error curves for the followed and simu-
lated pressures in Fig. 5.7

Figure 5.8: Error curves for the followed and simulated positions and pressures in
Fig. 5.7 accordingly. The maximum offset of this method here is 0.005 % [179].



Chapter 6

Potential Future Works

Some elements of this work are still in progress yet or have not been thoroughly
studied, thus they will be provided here. The following approaches are provided
individually due to their respective incompleteness and largely superficial descrip-
tions. However, they are all a part of the study.

6.1 Optimal Control Parameters
The controller is the heart of the control system [181]. The controller delivers
the actuating signal to the actuator to reduce error based on the error between
the plant output and the reference value [29]. The PID controller is one of the
most used controllers in the industry. It improves the steady-state response of
the system and can dampen oscillations [182]. Depending on the parameters, the
system performance can be tuned or modified. There are already multiple tuning
algorithms that can be modified to tune the performance according to its demands.
More information about different tuning algorithms can be found in [183], [184],
[185], [186]. Some of these methods are based on calculus of variation techniques
[187], [188], [189], [190]. Although most of the tuning methods work on the
trial and error principle, the optimal control methods estimate the optimal control
parameters for the desired input. In this chapter, a novel method for finding the
optimal control parameters for a PID controller for a given system is derived.

6.2 Potential Numerical Solution of the Problem
Before solving for the optimal parameters for a PID controller, we first need to
define the system we want to optimize and the desired input. In order to do that, we
can use the state-space representation already implemented in Eq. 3.54. Following
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this, the state-space representation of the system is defined as

ẋ̇ẋx(t) = Axxx(t)+Bxxxset (t) (6.1)

where xxxset is the desired input for the system. The initial values for the system can
be expressed as

xxx(0) = 000. (6.2)

Discretizing this system in a similar manner as in section 5.5.1 and 5.6.1 one gets

(I⊗D−A⊗ In)xxx = (B⊗ In)xxxset (6.3)

Following the same methodology as in 5.5.1 and 5.6.1 the constraints of the sys-
tem can be written in the following manner1 0 . . . 0 0 0 . . . 0 0 0

0 0 . . . 0 1 0 . . . 0 0 0
0 0 . . . 0 0 0 . . . 0 0 1


︸ ︷︷ ︸

C

xxx = 000. (6.4)

The general numerical solution for Eq. 6.3 using the singular value decomposition
(SVD) can be written as

xxx = L− (B⊗ In)xxxset + Ṽβββ . (6.5)

The vector βββ can be calculated using the constraints given in 6.4 in the following
way

Cxxx = 000 → C
(

L− (B⊗ In)xxxset + Ṽβββ

)
= 000 (6.6)

so one gets

βββ =−
(

CṼ
)+

CL− (B⊗ In)xxxset . (6.7)

Finally, the solution can be written as

xxx =
[

I− Ṽ
(

CṼ
)+

C

]
L− (B⊗ In)xxxset . (6.8)

6.3 Potential Numerical Solution of PI Controlled
System

For example, let us consider a mass-spring system already defined by Newton’s
second law equation in Eq. 3.2. This system is position-controlled where the input
or the position is defined as xxxset . Taking into account that the external forces for
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Figure 6.1: PI controlled mass spring system.

the system given in Fig. 6.1 are equal to zero, the control variable u using the
Laplace transformation can be expressed as

u̇ = ( ˙xset− ẋ1)(kp + kI) (6.9)

where the vector x1 is actual position of the system, xset is the desired position and
kp and kI are the proportional and integral part of the PID controller. Taking the
system presented in Fig. 6.1 the system differential equations can be expressed as

mẍ+bẋ+ kx = ˙(xset− ẋ)(kp + kI) (6.10)

Following this, the system state space matrices can be expressed as

A =

 0 1 0
0 0 1
− kI

m − (k+kP)
m − b

m

B =

 0
kP
m
kI
m

 (6.11)

Now, the cost function Θ we want to minimize can be written as

Θ(ψ) = ‖xxxset−E1xxx‖ (6.12)

where
E1 =

[
I 0 0

]
. (6.13)

In Eq. 6.12 ψ is the vector containing the control parameters. In other words, we
want to minimize the difference between the first state (which is the position in
our case) and the set value. If we substitute 6.8 in 6.12 we get

Θ(ψ) =

∥∥∥∥[I−E1

(
I− Ṽ

(
CṼ
)+

C

)
L− (B⊗ In)

]
xsetxsetxset

∥∥∥∥ . (6.14)

This cost function reaches a minimum when kP,kI → ∞. In the real system we
know that if the values of the kP and kI are very big the system will be unstable. In
order to implement this method to a real system, some kind of limit to the system
performance variables is needed (velocity, acceleration). This can be achieved by
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the implementation of regularization parameters to the control input, which will
prevent its value to become unrealistically large. Now, to be able to see which reg-
ularization norm will give us the most suitable solution, three different alterations
of regularization parameters were derived, and three different cost functions were
defined accordingly

Θ1 (ψ) = ‖xsetxsetxset −E1xxx‖2
2 +µ1 ‖kPẋsetẋsetẋset − kPE2xxx‖2

2 +µ2 ‖kIxsetxsetxset − kIE1xxx‖2
2

Θ2 (ψ) = ‖xsetxsetxset −E1xxx‖2
2 +µ1 ‖kPẋsetẋsetẋset − kPE2xxx‖2

2 +µ2 ‖kIẋsetẋsetẋset − kIE1ẋ̇ẋx‖2
2

Θ3 (ψ) = ‖xsetxsetxset −E1xxx‖2
2 +µ1 ‖kPẋsetẋsetẋset − kPE2xxx‖2

2 +µ1 ‖kIxsetxsetxset − kIE1xxx‖2
2

+µ2 ‖kPẍsetẍsetẍset − kPE2ẋ̇ẋx‖2
2 +µ2 ‖kIẋsetẋsetẋset − kIE1ẋ̇ẋx‖2

2 , (6.15)

where
E2 =

[
0 I 0

]
. (6.16)

6.3.1 Results
The three cost functions given in Eq. 6.15 were run in a simulation environment
and plotted. For the three simulations, the values for the regularization param-
eters µ1 and µ2 were chosen experimentally. According to these values, the
control parameters kP and kI values were calculated and plotted accordingly.

Figure 6.2: Results from the cost
function Θ1. The value of kP in-
creases with the increase of µ2 but
decreases with the increase of µ1.

Figure 6.3: Results from the cost
function Θ1. The value of kI in-
creases with the increase of µ1 but
decreases with the increase of µ2.

These computed values for kp and kI were then tested in a simulation environment
(Simulink). It was concluded that the optimal values for kp = 10.5 and kI = 0.54. It
is essential to mention that all three cost functions include the solution for different
values of µ1 and µ2. This should mean that when one plots the control parameters
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Figure 6.4: Results from the cost
function Θ2. It is obvious that the
behavior is very similar to the one
in Fig. 6.2. The values for the pa-
rameters are slightly different.

Figure 6.5: Results from the cost
function Θ2. We have the similar
behavior in this figure as in the one
shown in Fig.6.3.

Figure 6.6: Results from the cost
function Θ3. Here the behavior is
similar to the ones shown in Fig.6.2
and Fig.6.4 but the values for the
regularization parameters are differ-
ent. This is expected as the regular-
ization parameters in the cost func-
tion for this case are very different
from the ones before.

Figure 6.7: Results from the cost
function Θ3. The value of µ2
does not affect the value of kI sig-
nificantly. When compared with
Fig.6.3 and Fig.6.5 it is obvious that
µ1 has a bigger effect on the value
of kI .

kp and kI with the cost function, one should have a certain minimum at this point
(see Fig. 6.8). The optimal parameters were then tested for the system given in
Eq. 6.11 for mass m = 10 kg, spring constant k = 1 N

m , and friction parameter b=
20 Ns

m . It can be seen from Fig. 6.9 that the system achieves the desired position



CHAPTER 6. POTENTIAL FUTURE WORKS 91

Figure 6.8: Cost function evaluated for the certain range of the control parameters
kp and kI , which includes the optimal parameters also. It is obvious that the cost
function has a minimum at the optimal parameter values previously calculated (kp
= 10.5 and kI = 0.54).

with no steady-state error and no overshoot. This idea can be then extended to
any system and to a PID-controlled system in a similar manner. It is important
to note that in this case three regularization parameters will be necessary to get
satisfactory results when the system has three control parameters.

6.4 Conclusion and Future Works
The method shown in this chapter calculates the optimal parameters for a PI-
controlled system given in a state-space form. Multiple cost functions were de-
rived according to the different definition of the regularization parameters. The
results were plotted accordingly, and the optimal parameters for the system were
computed. For these optimal parameters, the cost function was plotted where it
was illustrated that the function has a minimum at this point. Additionally, the
system was tested in Matlab Simulink, where it was concluded that the values
calculated are the ones that yield stable solution with no overshoot or steady-state
error.
However, this solution can be improved concerning the regularization parameters.
In the example given previously, certain values for the regularization parameters
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Ist value
Desired value

Figure 6.9: Simulation for the system for the calculated optimal parameters kp =
10.5 and kI = 0.54. The mass of the system m = 10 kg, the spring constant k = 1 N

m
and friction parameters b= 20 Ns

m . The system achieves the desired position with
no overshoot and no steady state error.

were assumed experimentally, and the optimal control parameters were calculated
according to them. To estimate the regularization parameters more structurally,
one can use regularization techniques such as L-curve, Tikhonov regularization,
etc. More information on these techniques can be found in [191], [192], [193],
[194], [195], [196]. This will then allow the algorithm to fully compute the opti-
mal parameters without any need for estimation for the regularization parameters.



Chapter 7

Discussion and Conclusion

The Wylie - Yu model for calculating the bulk modulus was improved to incorpo-
rate influence of the temperature, air content, and pressure of the hydraulic oil and
successfully incorporated into an independent metering system for tunnel boring
machines. The influence that each of these parameters has on the dynamics of such
systems was analyzed. In addition, a new adaptive controller was implemented to
mitigate some of these effects and improve the system’s overall efficiency. In
systems under high pressure, such as those used in tunnel boring machines, the
temperature has a much higher influence on the bulk modulus value than the air
content and pressure.

Given the increasing demand for tunnel boring machines, developing new state-
of-the-art control algorithms for these machines is essential. The control of such
systems must, on the one hand, increase productivity, but on the other hand, also
increase energy efficiency. Despite the numerical difficulties inherent in such sys-
tems, two different control algorithms have been developed based on variational
calculus methods and implemented in a simulation environment.

Both methods, optimal control and path tracking implemented for an independent
metering system in tunnel boring machines, provide numerically stable solutions.
Moreover, the system shows improved performance and higher energy efficiency
compared to conventional solvers. The computation was based on a matrix-based
approach for solving ODE’s, using the mass matrix method and interstitial deriva-
tives.
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tial integrators via Carathéodory–Fejér approximation and contour inte-
grals,” ETNA. Electronic Transactions on Numerical Analysis [electronic
only], vol. 29, 2007.

[78] Eaton Hydraulics Group, “Advanced Independent Metering Mobile Valve,”
tech. rep., Eaton, 2015.

[79] B. Eriksson, “Control Strategy for Energy Efficient Fluid Power Actuators
- Utilizing Individual Metering,” Science And Technology, no. 1341, p. 70,
2007.

[80] B. Yao and S. Liu, “Energy-saving control of hydraulic systems with novel
programmable valves,” Proceedings of the World Congress on Intelligent
Control and Automation (WCICA), vol. 4, no. June, pp. 3219–3223, 2002.

[81] B. Eriksson and J. O. Palmberg, “Individual metering fluid power sys-
tems: Challenges and opportunities,” Proceedings of the Institution of Me-
chanical Engineers. Part I: Journal of Systems and Control Engineering,
vol. 225, no. 3, pp. 196–211, 2011.

[82] M. Linjama and M. Vilenius, “Energy-Efficient Motion Control of a Digital
Hydraulic Joint Actuator,” Proceedings of the JFPS International Sympo-
sium on Fluid Power, vol. 2005, no. 6, pp. 640–645, 2005.

[83] Bin Yao and Song Liu, “Energy-saving control of hydraulic systems with
novel programmable valves,” in Proceedings of the 4th World Congress on
Intelligent Control and Automation (Cat. No.02EX527), vol. 4, pp. 3219–
3223, IEEE.

[84] Xiangdong Kong, Dongsheng Shan, Jing Yao, and Yingjie Gao, “Study on
experiment and modeling for the multifunctional integrated valve control
system,” in 2004 International Conference on Intelligent Mechatronics and
Automation, 2004. Proceedings., pp. 455–459, IEEE.

[85] T. O. Andersen, M. E. Münzer, and M. R. Hansen, “Evaluations of Con-
trol Strategies for Separate Meter-In Separate Meter-Out Hydraulic Boom
Actuation in Mobile Applications,” in 17th International Conference of Hy-
draulics and Pneumatics, Ostrava, Czech Republic, June, 2001.

[86] G. Rath and E. Zaev, “Cylinder Pressures in a Position Controlled Sys-
tem With Separate Meter-in and Meter-out,” Proceedings from the 13th
Scandinavian International Conference on Fluid Power, June 3-5, 2013,
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