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ABSTRACT

The analysis of various processes in a continuous casting plant can aid in reducing
costs and defects in the production of steel slabs. As the quality of the slabs can only
be determined at the end of the solidification process, this thesis focuses on analyzing
the surface movements on the mold using a variety of methods.
The primary objective of this study is to develop a graphical user interface and

implement deep learning methods for automated inspection in a continuous casting
steel plant. The developed user interface is designed to visualize recorded image
data of the mold and perform statistical analysis using techniques such as histogram
and optical flow. The results of the analysis are displayed directly in the software,
and tests have demonstrated its e�ectiveness in identifying asynchronous movements
between the right and left sides of the mold.

Moreover, the study utilizes a deep neural network method on a publicly available
labeled steel dataset with defects. The applied model, Mask R-CNN, can analyze steel
defects and provide insight into the quality of the steel end-products. This research
demonstrates the potential for combining graphical user interface and deep learning
techniques to enhance the inspection process in continuous casting steel plants.

KURZFASSUNG

Die Analyse verschiedener Prozesse in einer Stranggussanlage kann dazu beitragen,
Kosten und Fehler bei der Produktion von Stahlbrammen zu reduzieren. Da die
Qualität der Brammen erst am Ende des Erstarrungsprozesses bestimmt werden kann,
konzentriert sich diese Arbeit auf die Analyse der Oberflächenbewegungen auf der
Kokille mit verschiedenen Methoden.
Das primäre Ziel dieser Studie ist die Entwicklung einer grafischen Benutzerober-

fläche und die Implementierung von Deep-Learning-Methoden für die automatisierte
Inspektion in einer Stahlstranggussanlage. Die entwickelte Benutzeroberfläche dient
der Visualisierung der aufgezeichneten Bilddaten der Kokille und der Durchführung
statistischer Analysen mit Techniken wie Histogramm und optischem Fluss. Die Ergeb-
nisse der Analyse werden direkt in der Software angezeigt, und Tests haben ihre
Wirksamkeit bei der Erkennung asynchroner Bewegungen zwischen der rechten und
der linken Seite der Kokille bewiesen.
Darüber hinaus wird in der Studie ein tiefes neuronales Netzwerk auf einen öf-

fentlich zugänglichen markierten Stahldatensatz mit Defekten angewendet. Das
angewandte Modell, Mask R-CNN, kann Stahldefekte analysieren und einen Einblick
in die Qualität der Stahlendprodukte geben. Diese Forschungsarbeit zeigt das Poten-
zial der Kombination von grafischer Benutzeroberfläche und Deep-Learning-Techniken
zur Verbesserung des Inspektionsprozesses in Stahlstranggussanlagen.
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1 Introduction

Contents
1.1 Continuous Casting Steel Plant . . . . . . . . . . . . . . . . . . . 8
1.2 Thesis Contribution . . . . . . . . . . . . . . . . . . . . . . . . . 8

In the field of continuous casting, the monitoring of the mold is a critical aspect in
ensuring the quality of the end-product. The evaluation of end-product quality acts
as a final step in the process to verify that no defective products are sent to clients.
The ability to predict defects early in the casting process can have a significant impact
by avoiding the production of subpar steel, thus reducing production costs. This is a
crucial area of investigation in the field and will be explored in detail in this thesis.

1.1 Continuous Casting Steel Plant

In a continuous casting plant, the mold plays a pivotal role in the production of steel
slabs. The process involves pouring liquid steel into the mold to cast an ’endless’
strand, which is solidified using cooling elements such as steam. The quality of the
slab and the e�ciency of the plant are significantly influenced by the mold. The
current method of evaluating slab quality requires cutting o� a piece of the slab and
analyzing it at the end of the cooling process. This can be both time-consuming
and wasteful. If the quality of the slab could be assessed through the structure and
movements on the top level of the mold, it would lead to significant advancements in
the industry. Temperature data can be used to understand the casting process and
optimize further steps.

Slabs can typically be used to create other products, like flat sheet steel. Any defects
of the initial steel bars can propagate defects on later products. It is crucial then
to e�ciently, yet accurately, detect any imperfections or anomalies in the end steel
product to ensure its strength, durability, and quality.

1.2 Thesis Contribution

In this thesis, we aim to address the challenge of detecting factors that will lead steel
defects early in the process of continuous casting, as well as detecting them on the end
steel products. Therefore, we developed a graphical user interface (GUI) to monitor
the thermal images of the liquid steel movements in the mold. This interface will
provide additional information, based on statistical analysis of the thermal images. In
addition, we trained a deep neural network to automatically detect flaws on the end
products of a steel factory, using a publicly available dataset.
This thesis aims to address the following research questions:

• Can processes in the mold be detected by inspecting the thermal imaging data
through the proposed GUI?

• Can existing asymmetries of disturbances be depicted on the statistical analysis
o�ered by the GUI?

• Are the publicly available dataset or methods su�cient for e�ciently and accu-
rately detect steel defects on end products?

We divided the work into two parts. The first one describes the GUI for visualization
of the thermal imaging data of the bath level of the mold and its analysis using
statistical methods. The second chapter deals with the detection of steel defects using
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a publicly available steel defect dataset with a deep neural network approach. In
the second part, we describe the deep neural network architecture we used and the
method we followed to train it to detect defects on images of flat steel sheets.
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2 Background

Contents
2.1 Continuous Casting . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Causes of Defects in Continuous Casting Products . . . . . . . . 12
2.3 Defect Avoidance . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

In this chapter we give an overview of the background of the thesis. First, we
describe the continuous casting method. Then, we present the factors that influence
the quality of the steel end-products of the continuous casting steel plants. Finally,
we provide ways to avoid defective products dispatching the steel plant.

2.1 Continuous Casting

The continuous casting process was developed, because steel mills produce very large
quantities of steel at short intervals, which have to be cast quickly. The liquid steel
coming from secondary metallurgy must be given specific shapes, dimensions and
weights by casting in the steel mill. In this field, large quantities of liquid steel can be
handled sooner than in ingot casting in conventional casting operations. (Degner and
VDEh, 2007, pp. 78–79)

Continuous casting is a process in which molten metal solidifies into an endless
strand, which is the most used method to process liquid steel. The entire continuous
casting system is shown in Figure 1.

Figure 1: Structure of the Continous Casting Plant (Degner and VDEh, 2007, p. 79)

In Figure 2, a closer look at the detailed structure can be taken. During continuous
casting, the molten steel passes from the ladle through the so-called shadow tube
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into the tundish under exclusion of air. This is an intermediate tank which serves to
distribute the liquid steel. From the tundish, the liquid steel flows into the water-cooled
copper molds. (Degner and VDEh, 2007, p. 80)

The mold is the most important part of the continuous caster, for shaping and
forming the strand surface. There are di�erent types of molds, the tubular, and the
slab molds. This paper focuses on the slab molds, which are used to produce slabs.
These are assembled from individual cooling plates. To ensure continuous casting,
the size of the mold can be changed during continuous casting. The width of the mold
can be adjusted by moving the side parts.(Schwerdtfeger, 1992, pp. 12–17)

Figure 2: Structure of the Continuous-Casting-Mold (Degner and VDEh, 2007, p. 80)

When casting the steel, the mold is set into vertical vibration to prevent the strand
from sticking to the mold wall. The strand solidified in the edge zone is then pulled
out of the mold. Since this strand still has a liquid core at this point, it must be cooled
with water or air. It is supported by rollers to prevent breakage in the thin edge zones.
This type of cooling produces the desired uniform solidification structure. After the
complete cooling process, the slab is solidified and can be cut at the desired point on
the outfeed roller table with a flame cutting system that moves with it. (Degner and
VDEh, 2007, p. 80)

Casting powder plays a crucial role in this process as it prevents oxidation, regulates
heat dissipation between the steel strand and mold, and provides lubrication for both
the strand and mold, ensuring optimal protection and control (Schwerdtfeger, 1992).
The measured temperature distributions are primarily used to control the addition
of casting powder. Looking at the time sequence of the recorded individual images,
atypical movement patterns can be seen when playing back these image sequences,
which indicate a strong underlying interfacial interaction between casting powder
slag and liquid steel. Slag droplets can be drawn in by the liquid steel, which are
carried by the liquid steel flow to the solidification front of the strand shell in the
mold and can settle there. During hot rolling of the slabs, these slag defects become
visible as line-shaped strip surface defects, so-called slivers.
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2.2 Causes of Defects in Continuous Casting Products

Inserting casting powder to the liquid steel in the mold can cause di�erent fluctuations
on the movement of the top level of the mold. Another factor that contributes to the
change of the mold’s movement is the insertion of a mix of gasses that control quality
of the produced steel. This movement of the liquid steel, however, can potentially
lead to the production of defective steel. (Rui Liu et al., 2014)

2.3 Defect Avoidance

One way to avoid defective products leaving the plant is to monitor the movement
dynamics of the liquid steel and predict whether it will lead to defects in the slabs at
the end of the continuous casting procedure. Nevertheless, monitoring the movements
in the mold is an extremely di�cult task. This di�culty arises from the fact that is
hard to put sensor in this part of the continuous casting process. In addition, the
temperature fluctuations that lead to these movements usually take place in parallel
with the presence of external devices, which intervene between the sensors and the
mold.
Another solution to avoid defective products, is to automate end-product defect

detection. This can be done by using machine vision systems. These systems use
cameras to capture images of the end steel products and algorithms to analyze the
images to detect any defects. This method is e�cient and cost-e�ective because it
does not require any modifications to the casting process, and the detection can be
done in real-time, allowing for immediate corrective actions to be taken. Additionally,
machine vision systems can detect a wider range of defects than manual inspection,
and they are also less prone to human error.
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3 Method

Contents
3.1 Graphical User Interface . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Steel Product Defect Detection with a Deep Neural Network . . 28

In this Chapter we provide methods to monitor di�erent processes throughout
the production line of a steel plant. First, we present a Graphical User Interface for
visually inspecting the mold of a continuous caster. Then, train a deep neural network
to detect defects on end-products.

3.1 Graphical User Interface

In this chapter we describe the functionality of developed Graphical User Interface
(GUI). We provide a step-by-step guide for using the GUI, including how to navigate
the interface, how to insert data, and how to access the results. Finally, we discuss
the benefits of using the GUI to analyze the movements on the surface of the mold.
The development of the GUI was done using the Tkinter python interface 1.

3.1.1 Dataset

In order to gather information from the mold, we utilized thermal imaging cameras
to monitor the temperature of the top level of the mold. This was achieved using
the KMON measuring system. These thermal imaging cameras allow to record the
movements in the mold.

The image data was recorded with the help of two such thermal imaging cameras,
which are positioned on the right and left side of the mold respectively. Every camera
records one image per second. These two separately taken images are then merged
and saved. Figure 3 serves as an example of how the input data is transferred.

Figure 3: Process Visualizer - Example Data

The file name is used to transfer the required data, such as the time of recording or
the width of the mold at the time of recording. To visualize the images correctly, they
were first divided in the middle. The left part was then rotated by 180 degrees. Both
parts were cropped to remove as much of the mold’s surroundings as possible. Finally,
the two halves were rejoined to form a whole image.

1https://python.readthedocs.io/en/stable/library/tkinter.html
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Figure 4: Process Visualizer - Edited Data

The resulting images have a size of 500x190 pixels with an intensity that varies
between 0 and 255. The intensity measures the temperature in the mold, with 0 being
the smallest temperature and 255 the highest. During data recording, all events in
the mold are captured, including irrelevant information such as images taken while
mold powder is being added. These images provide no insight into the movements on
the surface of the mold as the temperature is much lower, resulting in dark images
captured by thermal imaging cameras. This information is present but not considered
in the subsequent calculations and visualizations.

3.1.2 Structure of the Process Visualizer

The structure of the GUI is designed to ensure ease of use when analysing the move-
ments on the surface of the mold. The GUI aims to simplify mold analysis for users by
clearly displaying surface movements through techniques like histograms and optical
flow. It visually presents the data for easy viewing and makes it possible to point out
anomalies in the data. Asynchronous movements on the bath surface of the mold
can be indicative of the quality of the steel. By observing the surface movements,
conclusions can be drawn about the quality. Figure 5 shows the main window of the
Process Visualizer.

Figure 5: Example Layout of the Process Visualizer
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Buttons for the Functionality
There are four tabs that o�er a di�erent functionality on the top of the main window

of the Process Visualizer. The Process Visualizer is divided into two parts. At the top
there are the buttons for the functionality and below them, there are the tabs that
take up the main part of the window. The Table 1 briefly describes the functionality
buttons.

Table 1: Description of the Functionality Buttons

Buttons Description

Import Images
The ’Import Images’-button is used to import the images from the
needed folders, or to choose a specific time range for importing
the images.

Save Video

It generates a video and saves it with the actual date and time in
the folder ’Data/Videos’. The first frame of the Video is the current
frame which is displayed on the image viewer. The selected fps
which are used to display the sequence of images is used to gen-
erate the video.

Screenshot
The ’Screenshot’-button makes a screenshot of the whole screen
and saves it in the folder ’Data/Screenshot’ with the actual date-
time as name.

Clear
The ’Clear’-button closes the actual window and opens a new win-
dow to make new calculations.

Import Images
Upon launch, the main window of the GUI is shown to be empty as depicted in

Figure 6.

Figure 6: Process Visualizer - Start Window

To import the visual data, the Import Images button needs to be clicked, which
opens the import dialog. Figure 7 shows the import dialog with its two tabs.
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As shown in Figure 7, the import dialog o�ers the possibility to import the images
in two di�erent ways depending on the selected tab. Either to import a folder of
images of a whole hour or to import only images of a certain time window. These
settings can be selected individually. However, it should be noted that when selecting
the images of a certain time, they must also exist.

Figure 7: Process Visualizer - Import Dialog

After submitting the loading request, the process is displayed in a command window,
which opens automatically (Figure 8). It should be noted that, the needed loading time
depends on the amount of imported images and the performance of the computer.

Figure 8: Process Visualizer - Loading Procedure

After the import of the image paths, the software calculates the statistical analyses
in the background. Once this is completed, the first frame is created and displayed
for visualization. Afterwards the „Play“-Button is activated and can be pressed. The
detailed descriptions of the individual diagrams are explained in Chapter 3.1.3.
To save memory space the program generates paths and saves these in a list with

strings. Every string is a merge of a certain number of paths which are split by a
comma.
This results in a list as follows:

[„path1,path2,path3“, „path4,path5,path6“, „path7,path8“]

At last, every single string in this list is compressed to reduce the memory. With this
approach, more than 10 times less storage capacity is required when importing the
paths than for non-compressed paths.

Save Video
The GUI also o�ers a function to create a video of consecutive images from the

dataset. By pressing the Save Video button, the dialog shown in Figure 9 opens. In
this dialog the length of the video must be selected. It should be noted that the size
of the time window of the imported data is selected and not the length of the actual
video. The final length of the video depends on the actual selected number of frames
per second. For instance, if the current number of frames per seconds is two, the
video will be half as long as the time selected in the Save Video dialog window.
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Figure 9: Process Visualizer - Save Video Dialog

When submitting the dialog, the program generates a video and saves it with the
actual time and the actual date in the folder „Data/Videos“. The currently displayed
frame in the video player is also the start frame to be seen in the video.

Main Tabs
The GUI o�ers two di�erent tabs, one for the main window and one for the imported

data. Both tabs are highlighted in Figure 10.

Figure 10: Process Visualizer - Main Tabs

Most of the time only the first tab is used. This tab contains all the necessary views
of the calculations in various sub-tabs and the image viewer. Additionally, the GUI
o�ers settings in this tab regarding the video display. The second tab is only used to
view the imported original data. In Figure 11 it can be seen the structure of the tab
for the original data. On the left half of the window an image can be selected, which
then is displayed on the right side.

Figure 11: Process Visualizer - Main Tab Original Data

Frame
The term frame defines a revised input image. One frame is an image split into

a left and a right picture of the mold. Each frame has a total size of 500x190 pixels.
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These pixel columns and rows are used in Chapter 3.1.3 to perform various statistical
calculations. Figure 12 shows the division and size of a frame.

Figure 12: Process Visualizer - Example Frame

Image Viewer
The main part of the program is the image viewer with the control over the display

of the image sequence. The following buttons control the functions for visualizing the
images.

Figure 13: Process Visualizer - Videoplayer

The buttons described in Table 2 can be seen in Figure 13.

Table 2: Description of the Videoplayer

Buttons Description

a) Play/Pause To launch or pause the image viewer.

b) <<fps To reduce the frames per second.

c) fps >> To increase the frames per second.

d) Scale
To search for a certain frame or time and to skip a sequence of
frames in the image viewer.

The image viewer is used to visualize the imported images in the form of a video.
Since the creation and storage of videos would require a large amount of memory,
the image viewer displays one image after the other based on the stored paths. The
display speed can be changed by increasing or decreasing the amount of frames per
second. The higher the number of frames per second is selected, the more images
per second are displayed consecutively. Some of the analyses of Chapter 3.1.3 are
performed directly while playing the images. Others are already calculated when
importing the images.
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3.1.3 Statistical Analysis of Visual Data

The following chapter describes the statistical analysis we perform and visualize
within the GUI. This helps in visualizing the movements on the cover powder at the
bath level of the mold of the continuous caster. We have applied two di�erent types of
chart update models in the following analysis metrics. Some metrics are created either
when the frames are imported or they are continuously updated frame by frame. The
diagrams that have already been calculated when importing the images, contain a
vertical red line. This line indicates which of the values in the diagram belong to the
current frame.

Histogram
We decided to use a histogram, because it e�ciently and clearly shows the asymme-

try of the two frames. The histogram is a representation of the frequency distribution
of the pixel intensity of one single image. A histogram with 20 bins is calculated for
each frame based on the pixel values. As shown in the histogram legend (Figure 14),
the histogram is split into a left (blue) and right (orange). These two colors represent
the left and right halves of the mold, respectively.

Figure 14: Process Visualizer - Example Histogram

Sum of the Pixel-Intensity of each Column
In this tab we display the sum of the pixel-intensity for each column of one frame.

Each frame has 2x250 pixel columns (for the left and the right part of the mold) and
190 rows of pixels (see Page 18 in Figure 12). This diagram shows how equal the
intensities of the left and the right part of the mold are per column. This diagram is
also being constantly recalculated while the image viewer is playing.

Figure 15: Process Visualizer - Example Sum Columns
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Pixel-Intensity-Calculations retrieved from the Histogram
We decided to perform further analysis of the movements using the already cal-

culated histograms (Chapter 3.1.3). Since the histograms were only visualized per
frame, we used all histograms to perform the following two calculations. This has
the advantage of providing an overview of asynchronous movements over the entire
runtime.

↵Frame =
NX

i=1

⇣
(ai � bi)

2
⌘

(1)

In Equation (1), ↵Frame represents the calculated sum of the pixel-intensity di�er-
ence per frame. N is the number of bars calculated in the histogram. The designations
ai and bi represent two related bars (left and right side of the mold).

↵Frame = MAX
⇣
(ai � bi)

2
⌘

(2)

In Equation (2) we calculate the maximum square di�erence and not the sum of
the histogram bars. The variable ↵Frame represents the calculated maximum of the
pixel-intensity di�erence per frame.

Figure 16: Process Visualizer - Example Values from the Histogram

Figure 16 shows a section of a histogram to give an idea of which values were used
to calculate the graph shown in Figure 17 and Figure 18. The resulting diagram is
already created when importing the images.

Figure 17: Process Visualizer - Example Sum Di�erence
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Figure 18: Process Visualizer - Example Max Di�erence

Optical Flow
The optical flow is displayed with the help of a two-frame motion estimation

algorithm based on polynomial expansion. This algorithm was published by Farnebäck
in 2003. It compares the previous frame with the next one. They approximate the
neighborhoods of the two frames with quadratic polynomials and they apply a method
for estimating displacement fields. The algorithm is given the two images as input.
The result is a matrix that contains an x and a y-value for each pixel of the previous
image. This x and y-value represents the point to which the pixel in the new image
has moved from the previous x and y-value of the pixel. (Farnebäck, 2003)

Figure 19: Process Visualizer - Example Optical Flow

Movements of the pixels along the X and Y axis
These diagrams describe the intensity of the movements in the x and the y-direction.

We used the Farnebäck’s Optical Flow Algorithm (Farnebäck, 2003) to calculate the
movements on the x and the y-axis of the mold. When calculating the optical flow
according to Farnebäck, we obtained two lists with the same number of values, one
for the x and one for the y-values. These values represent direction vectors in which
the pixels move when comparing two images. We create a separate diagram for each
list to show the pixel movements summed up in x and in y-direction. The value 0
describes that either no movement has been detected on the y-axis, or the left and
right images of the mold balance each other out and on average both movements
are synchronous. The calculation of this diagram is performed, when importing the
images. A more detailed description of Farnebäck’s Optical Flow Algorithm can be
found in Chapter 3.1.3.
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Figure 20: Process Visualizer - Example Movement Y

Figure 21: Process Visualizer - Example Movement X

3.1.4 Evaluation of the GUI

We evaluated the proposed GUI on inspecting visual data to detect anomalies. The
following chapter shows which phases occur in a mold. The anomalies that lead to
temperature fluctuations are also discussed. These anomalies can be easily detected
by the users with the help of the GUI.

Visual Inspection of the ”Normal” Phase
As can be shown in Figure 22, 23, 24 and 25, interrelationships are visible in the

di�erent line graphs. All plots are computed on the same data set. It is obvious, that
all metrics show similar fluctuations at the same timesteps. These diagrams give a
good overview of the movements on the surface of the mold during the entire time
that images were imported.

Figure 22: Process Visualizer - Analysis Y-Movement
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Figure 23: Process Visualizer - Analysis X-Movement

Figure 24: Process Visualizer - Analysis Sum Di�erence

Figure 25: Process Visualizer - Analysis Max Di�erence

An example of an image of the mold without anomalies can be seen in Figure 26,
where there are no asynchronous movements on the surface of the mold.

Figure 26: Process Visualizer - Analysis Normal Phase

The upper part of Figure 27 shows a diagram of almost no deviations in the two
sides of the mold. In contrast, a strong deviation can be seen in the lower part of this
figure. Since this line diagram is in constant motion, the current movements of the
surface can be easily recognized.
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Figure 27: Process Visualizer - Analysis Tab Sum Columns

The visualization of the optical flow is done by displaying di�erent colors depending
on the direction in which the pixels are moving. The pixels that were classified as ’Not
moving’ in the calculations are displayed as black. This tool enables the observation
of the liquid steel movements in the mold in real time.

Figure 28: Process Visualizer - Analysis Optical Flow

Visual Inspection of Casting Powder
An event that can cause big outliers in the diagrams is the process of adding the

casting powder in the mold. This causes an uneven change in temperature on the
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surface of the mold. Figure 29 shows the e�ect of adding the casting powder can be
viewed in all graphs. The frame also clearly shows that the right side of the mold has
a much lower temperature than the left side. Only the tube can be easily recognized
in the picture.

Figure 29: Process Visualizer - Analysis adding Cover Powder

Visual Inspection of Deer Horns
The deer horns are used to pump gas into the molten iron. The manual addition

and removal of these leads to large temperature di�erences in the mold, which are
clearly visible in the following figure. The red vertical line marks the point in time
when the Deer Horns were inserted into the mold. These temperature di�erences
lead to anomalies in the calculation of surface motions since the movements of the
deer horns cannot be distinguished from the movements of the surface.

Figure 30: Process Visualizer - Analysis adding Deer Horns
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Visual Inspection through Optical Flow
We additionally used Recurrent All-Pairs Field Transforms (RAFT) (see Appendix A.5)

to the given image data. In contrast to the previously described statistical methods,
RAFT is a deep network architecture for optical flow. RAFT has been trained to predict
the optical flow directly on the data. Optical flow estimates the pixel movement of
successive images in, for example, videos. (Teed and Deng, 2020)

Figure 31: Structure from RAFT (Teed and Deng, 2020)

Figure 31 shows the structure of the RAFT model. The three main components of
the model are described below.

• Feature encoder that extracts a feature vector for each pixel
• Correlation layer that generates a 4D correlation volume for all pixel pairs, with

subsequent pooling to generate lower resolution volumes
• Recurrent GRU-based update operator that retrieves values from the correlation

volumes and iteratively updates a flow field initialized at zero (Teed and Deng,
2020)

In this work, we deploy the RAFT model trained on Sintel dataset (Gupta, 2023).
Unfortunately, the model struggles to detect any di�erences on the surface of the
mold, as shown in Figure 32. Small movements could hardly be identified or not at
all. Even the surroundings of the mold, which can be seen at the edges of the images,
are displayed in color.

Figure 32: Results from RAFT
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Conclusion
With the above evaluation, we showed that the proposed GUI facilitates the detection

of various phenomena occurring in the mold, that can potentially lead to end-product
defects. We showed that it facilitates the e�ortless inspection and analysis of anomalies
in the mold through the inspection of metrics provided by the GUI (Figure 33). Such
anomalies can be, for example, the addition of casting powder, or the addition of the
Deer Horns. These anomalies cause asynchronous movements on the bath level of
the mold which are easily detected via the GUI and clearly displayed in the form of
diagrams such as a histogram or by mapping the optical flow. Users can benefit of
these analyses to make decisions to avoid defects in the end-product.

Figure 33: Anomalies in the Mold

Page 27 of 45



Development of a Graphical User Interface and Deep Learning Methods for Automated
Inspection in a Continuous Casting Steel Plant

3.2 Steel Product Defect Detection with a Deep Neural Network

This chapter focuses on Steel Product Defect Detection with a Mask R-CNN. This
chapter describes how the Mask R-CNN model is used to detect defects in steel
products. The chapter explains the architecture of the Mask R-CNN and how it works
to identify and segment defects in images of steel products. The results can be viewed
in Chapter 3.2.4.

3.2.1 Deep Neural Networks

A standard neural network consists of interconnected neurons, which generate
activations based on inputs and weights. The learning process involves finding the
best weights to produce the desired behavior. Deep learning is a type of neural
network that focuses on accurate credit assignment over many computational steps
in complex problems. (Schmidhuber, 2015)

We utilize Deep Learning as it surpasses human capabilities and achieves superhu-
man performance (Janiesch, Zschech, and Heinrich, 2021). Deep learning is used for
steel defect detection because it o�ers several advantages over traditional analysis.
First, Deep Learning algorithms can automatically learn complex and abstract features
from large amounts of data, making them ideal for detecting subtle and varied defects
in steel. Second, deep-learning models are capable of processing highly variable and
noisy data, making them robust to variations in lighting conditions, image quality, and
other factors that can a�ect steel defect detection. Third, deep learning models can be
fine-tuned for a specific task, enabling accurate and e�cient detection of specific steel
defects. Overall, the high accuracy, robustness, and flexibility of Deep Learning make
it a powerful tool for detecting steel defects and improving the quality and safety of
steel products. (O’Mahony et al., 2020)
In Figure 34 shows a basic deep neural network.

Figure 34: Basic Deep Neural Network (Krishna et al., 2018)

Such networks are trained by receiving an image as input and then the network is
informed about the output of the image. Neural networks are basically expressed by
the number of layers and the depth of the neural network. The generation of inputs
and outputs is done by the layers. The most popular algorithm for implementing the
Deep Learning technique is the Convolutional Neural Network (CNN). It consists of
feature detection and classification layers. (Krishna et al., 2018)
This type of network is biologically inspired and is used in computer vision in the

field of image classification and object detection. Each layer of the network in the
CNN architecture is three-dimensional and has a spatial extent and a depth equal to
the number of features. (Aggarwal, 2019, p. 40)

Page 28 of 45



Development of a Graphical User Interface and Deep Learning Methods for Automated
Inspection in a Continuous Casting Steel Plant

This chapter serves as an introduction to the field of machine learning. The network
described in this thesis in Chapter 3.2.2, the Mask R-CNN, is also a Convolutional
Neural Network. This special type of neural network is used for processing data with
grid-like topology. This includes image data, for example, these have a 2D grid of
pixels. The so-called convolution is a special type of linear operation. Instead of a
general matrix multiplication, Convolutional Neural Networks exhibit this convolution
in at least one of their layers. (Goodfellow, Bengio, and Courville, 2016, p. 326)

Figure 35: Structure of the LeNet-5 (Aggarwal, 2019, p. 41)

In the first layer of the CNN, the input layer, the number of features depends on the
color channels, for example RGB. In the hidden channels, hidden feature maps are
represented that encode di�erent types of shapes in the image. Figure 35 shows one
of the first Convolutional Neural Networks, the LeNet-5. This network has only an
input image in greyscale, therefore the input layer has only a depth of 1. In contrast,
a three-dimensional image (RGB) has an input layer depth of three. (Aggarwal, 2019,
p. 41)

Image Classification
The division into groups and categories based on characteristics is called classifica-

tion. Image Classification divides images into groups or categories based on features.
By training the program with labeled data, features are first filtered out by mean of
feature extraction (where features such as corners and edges are extracted) and then
a classification module performs the classification based on the previously extracted
features. The goal for this task is to assign a class/label to an image. The possible
classes/labels are previously defined. (Krishna et al., 2018)

Object Detection
We assume to have a fixed set of objects which are represented in an image. Now

we want to identify a rectangular region in this image in which the object is located.
Then this problem would be solved with object localization. This rectangular region
can be identified with four numbers uniquely and is called bounding box. By default,
these four numbers consist of the coordinates of the upper left corner of the box and
the two dimensions. If there is a variable number of objects of di�erent classes in the
image, object detection is used to solve this problem. This is very similar to object

Page 29 of 45



Development of a Graphical User Interface and Deep Learning Methods for Automated
Inspection in a Continuous Casting Steel Plant

localization. The goal here is to identify all objects of an image and assign them to
the di�erent classes. (Aggarwal, 2019, pp. 364–365)

Instance Segmentation
When using image segmentation, the entire image is divided into several segments.

This approach makes it possible to locate objects and boundaries in images. (Tan,
2016, p. 167) Image segmentation is an important phase in the analysis of images. It
can be applied to a set of images as well as to videos. Generally, the basic goal is to
reduce the data of an image in order to simplify the subsequent analysis process.
The image should be simplified so that only those objects are analyzed in the object
analysis phase that are of importance. Region-based segmentation is one of the most
well-known techniques in image segmentation. This technique is applied in Mask
R-CNN, which was used in this thesis to analyze the data of the steel defects dataset.
(Abdulateef and Salman, 2021)

In Chapter 3.2.2 information about Mask R-CNN can be found. Semantic segmenta-
tion and instance segmentation are two di�erent techniques of image segmentation.
The distinctions between Classification, Object Detection, Instance and Semantic
Segmentation are illustrated in Figure 36.
Instance segmentation is a technique of image segmentation in which individual
instances of objects that belong to the same class are labeled di�erently. The problem
of object detection as well as that of semantic segmentation is solved by instance
segmentation. (Hafiz and Bhat, 2020)

Figure 36: Di�erences between Classification, Object Detection, Semantic and Instance Segmen-
tation (Rieder and Verbeet, 2019)

3.2.2 Mask R-CNN

Mask R-CNN (Mask Region-based Convolutional Neural Network) is based on the
Faster R-CNN (Faster Region-based Convolutional Neural Network).

It is a framework for object instance segmentation. The existing branch for bounding
box recognition from the Faster R-CNN is extended in the Mask R-CNN by adding
a branch for predicting an object mask. The Mask R-CNN is easy to generalize and
includes instance segmentation, bounding-box object detection and person keypoint
detection. The correct detection of all objects in an image is required for instance
segmentation. The goal is to classify each pixel into a fixed set of categories without
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Figure 37: Structure of the Mask R-CNN (He et al., 2017)

di�erentiating object instances. To understand the Mask R-CNN approach, the two
stages of Faster R-CNN are described first. (He et al., 2017)

Stage 1 of the Faster R-CNN
The Region Proposal Network (RPN) is the
first stage of the Faster R-CNN which pro-
poses candidate object bounding boxes. A
Region Proposal Network requires an arbi-
trary sized image as input and outputs a
series of rectangular object proposals, each
with an object value. (Ren et al., 2015) The
structure of the RPN is shown in Figure 38.
Stage 2 of the Faster R-CNN
In the second stage features are extracted
from each candidate box by using RoIPool
and classification and bounding box regres-
sion is performed. (He et al., 2017)
The Region of Interest (RoI) is a rectangu-
lar window defined by four numbers, like
the bounding box. RoIPool is used to con-
vert this region of interest of an image into
a smaller feature map. (Girshick, 2015)

Figure 38: Structure of the Region
Proposal Network (Ren et
al., 2015)

Extension from Faster R-CNN to Mask R-CNN
These two stages are taken over by the Mask RCNN, with the di�erence that in the

second stage a third output is added in parallel. In addition to predicting the class
and bounding box, the Mask R-CNN outputs a binary mask for each region of interest.
In comparison to most recent systems, the classification does not depend on the mask
prediction in this case.
Faster R-CNN extends Mask R-CNN intuitively, good results are achieved by the

correct construction of the mask branch. Faster R-CNN cannot be used to design
pixel-to-pixel matching between the inputs and outputs of the network.

RoIPool is the most important operation in Faster R-CNN for processing instances,
which performs coarse spatial quantization for feature extraction. To address the
misalignment, the Mask R-CNN uses RoIAlign instead. RoIAlign is a quantization-free
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layer that maintains accurate spatial positions. (He et al., 2017) In Figure 37 shows
the structure of the Mask R-CNN.

Loss-Function
The total loss Ltotal for each sampled RoI is calculated from three losses (He et al.,

2017):

Ltotal = Lcls + Lbox + Lmask (3)

• Lcls - Classification Loss - cross entropy loss
• Lbox - Bounding-Box Loss - smooth L1 loss
• Lmask - Mask Loss - average binary cross entropy loss

The classification loss and the bounding box loss are calculated as follows, these
are calculated the same as for the Faster R-CNN. (Ren et al., 2015)

Lcls =
1

Ncls

X

i

Lcls(pi, p
⇤
i ) (4)

Where Lcls(pi, p⇤i ) is calculated as follows in Equation (5).

Lcls(pi, p
⇤
i ) = �p⇤i log pi � (1� p⇤i ) log (1� pi) (5)

The loss for the bounding boxes is a smooth L1 loss, for which Equation (6) is used
for the calculation.

Lbox =
�

Nbox

X

i

p⇤i ⇤ Lsmooth
1 (ti � t⇤i ) (6)

• Ncls - normalization term
• Nbox - normalization term
• i - the index of an anchor in a mini-batch
• pi - the predicted probability of anchor i being an object
• p⇤i - the ground-truth label
• � - a balancing parameter
• Lsmooth

1 - the smoothed L1 loss
• ti - a vector representing the 4 parameterized coordinates of the predicted bound-

ing box
• t⇤i - a vector representing the 4 parameterized coordinates of the ground-truth

box associated with a positive anchor
(Ren et al., 2015)

The equation of the loss for the mask is an addition to the Mask R-CNN and is
calculated as in Equation (7). (Tao Wang et al., 2021)

Lmask = �1

x

X

i

x⇤i log p(xi)� (1� x⇤i ) log (1� p(xi)) (7)

• x - the number of pixels
• x⇤i - the category label where the pixel is located
• p(xi) - the probability of the xi predicted category

(Tao Wang et al., 2021)
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3.2.3 Training Dataset

The data set we used to train the model contains four types of images with information
about di�erent steel defects. The complete data set contains a total of 12568 images.
We used only the 6666 labeled images from the dataset to train the network. We
split the 6666 images into a training and a test dataset. We used 80% of the data for
training and the remaining ones for testing the model. Each of the images has a size
of 256x1600 pixels. (Grishin et al., 2019)
The dataset consists of images along with their associated classification labels,

bounding boxes, and masks. A smallest possible rectangle was placed around the
color-coded pixels to represent the bounding box. We calculated the bounding boxes
as described in Appendix B.1. The following are the examples on which the included
pixels are highlighted. More than classes of defects may appear on the sample images.

Figure 39: Data Example - Steel Defection

Backbone Architecture
The backbone architecture we used for the Mask R-CNN model is the ResNet50

Feature Pyramid Network (FPN) version 2 from (Li et al., 2021). The original backbone
Girshick, 2015 model required more GPUmemory which limited the batch size allowed
by the used system 3.2.3.

Training Set Up
We performed the training of the network on an NVIDIA GeForce RTX 3090ti GPU.

The following hyperparameters specify the configuration of a machine learning model.
We set the batch size to 16, which means that 16 images are processed simultaneously
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during training. The learning rate was set to 0.001, which determines the step size at
which the optimizer updates the model parameters. Finally, we set the image size to
[1600, 256].
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3.2.4 Results

We tested the model to a wide variety of images from the test steel dataset. The
results were visualized and compared to the original image in the following figures.
The score-output determines how likely this mask should be applied to the image.
This score can reach from 0 (not needed) to 1 (needed). For the tests in this thesis,
the score was expressed using the brightness of the mask. The brighter the red of the
predicted mask, the higher the score.

(a) Example Result 1 (b) Example Result 2

(c) Example Result 3 (d) Example Result 4

(e) Example Result 5 (f) Example Result 6

(g) Example Result 7 (h) Example Result 8

Figure 40: Mask R-CNN Results Part 1
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As shown in Figure 40 and Figure 41, Mask R-CNN correctly predicts the defects
on the test images. The green segmentation shows the original defects on the image
and the red shows the predicted defects. The comparison shows that the two overlap.
The greater the agreement between the original defects marked in green and the
predicted defects marked in red, the better the prediction of our model. In our case,
as seen in the images, the agreement is very high.

(a) Example Result 9 (b) Example Result 10

(c) Example Result 11 (d) Example Result 12

(e) Example Result 13 (f) Example Result 14

(g) Example Result 15 (h) Example Result 16

Figure 41: Mask R-CNN Results Part 2

The diagram in Figure 42 is a line plot, showing the performance of a machine
learning model during training (red line) and testing (green line). The x-axis repre-
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sents the number of epochs, while the y-axis shows the total Loss Ltotal. The red line
shows how the model’s performance changes during the training phase, as it updates
its parameters based on the input data. As seen in the figure, the diagram overfits
after about 25 epochs. It is obvious that the model greatly overfits. This is attributed
to the small size of the dataset and the memory limitations of the available hardware.

Figure 42: Total Loss Ltotal

3.2.5 Conclusion

In this section, we have shown that it is possible to apply Mask R-CNN with ResNet50-
FPN architecture in detecting defects in steel. We found that the performance of the
model depends on several factors. Since we had only a limited amount of training
data available, this negatively a�ected the performance of the network. The limita-
tions of the dataset and the hardware refrained is from acquiring a stronger model.
Nevertheless, Mask R-CNN is a powerful model for example segmentation and object
detection, and is thus a viable solution for steel defect detection.
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4 Discussion

This thesis demonstrates the potential of a proposed GUI in facilitating the analysis
of bath level in a mold. By using the software’s calculations, anomalies in the mold
can be easily detected and analyzed, leading to conclusions about the quality of the
steel. We also found that Mask R-CNN with ResNet50 architecture can be e�ectively
used to detect defects in steel, but the model’s performance is impacted by the limited
availability of training data. In conclusion, Mask R-CNN is a strong model for object
detection and segmentation, particularly in steel defect detection.

4.1 Future work & Limitations

The GUI developed in this thesis can be extended with several machine leaning tools.
Follow-up work can investigate whether and how Mask-RCNN can be applied to the
continuous caster image data. If this is successful, the next goal could be to connect
the application for visualizing the images from the mold with Mask R-CNN.
This study highlights some limitations in the use of Mask R-CNN for steel defect

detection. One of the biggest limitations is the limited availability of labeled datasets,
which a�ects the training and performance of the model. Another factor is the limited
GPU resources, which can limit the processing power and overall e�ciency of the
network. These limitations suggest that further research is needed to improve the
availability and quality of training data and to enhance the processing capabilities of
the model.

Page 38 of 45



Development of a Graphical User Interface and Deep Learning Methods for Automated
Inspection in a Continuous Casting Steel Plant

Bibliography

Abdulateef, Salwa and Mohanad Salman (2021). “A Comprehensive Review of Image
Segmentation Techniques”. In: Iraqi Journal for Electrical and Electronic Engineering
17.2, pp. 166–175. ����: 1814-5892. ���: 10.37917/ijeee.17.2.18.

Aggarwal, Charu C. (2019). Neural networks and deep learning: A textbook. New York:
Springer. ����: 978-3-319-94462-3.

Degner, M. and Stahl-Institut VDEh (2007). Stahlfibel. Verlag Stahleisen. ����:
9783514007413. ���: https://books.google.at/books?id=LgX3GAAACAAJ.

Farnebäck, Gunnar (June 2003). “Two-Frame Motion Estimation Based on Polynomial
Expansion”. In: vol. 2749, pp. 363–370. ����: 978-3-540-40601-3. ���: 10.1007/3-
540-45103-X_50.

Girshick, Ross (Apr. 2015). “Fast r-cnn”. In: ���: 10.1109/ICCV.2015.169.
Goodfellow, Ian, Yoshua Bengio, and Aaron Courville (2016). Deep Learning. http:
//www.deeplearningbook.org. MIT Press.

Grishin, Alexey et al. (2019). Severstal: Steel Defect Detection. ���: https://kaggle.
com/competitions/severstal-steel-defect-detection.

Gupta, Vikas (2023). Visited on 6th Feb. 2023. ���: https : / / github . com /

spmallick/learnopencv/tree/master/Optical- Flow- Estimation- using-

Deep-Learning-RAFT.
Hafiz, Abdul Mueed and Ghulam Mohiuddin Bhat (2020). “A survey on instance

segmentation: state of the art”. In: International Journal of Multimedia Information
Retrieval 9.3, pp. 171–189. ����: 2192-662X. ���: 10.1007/s13735-020-00195-x.

He, Kaiming et al. (2017). “Mask R-CNN”. In: CoRR abs/1703.06870. arXiv: 1703.
06870. ���: http://arxiv.org/abs/1703.06870.

Janiesch, Christian, Patrick Zschech, and Kai Heinrich (2021). “Machine learning and
deep learning”. In: Electronic Markets 31.3, pp. 685–695. ����: 1422-8890. ���:
10.1007/s12525-021-00475-2.

Krishna, M et al. (Mar. 2018). “Image classification using Deep learning”. In: Interna-
tional Journal of Engineering & Technology 7, p. 614. ���: 10.14419/ijet.v7i2.7.
10892.

Li, Yanghao et al. (2021). “Benchmarking Detection Transfer Learning with Vision
Transformers”. In: CoRR abs/2111.11429. arXiv: 2111.11429. ���: https://
arxiv.org/abs/2111.11429.

O’Mahony, Niall et al. (2020). “Deep Learning vs. Traditional Computer Vision”. In:
Advances in Computer Vision. Ed. by Kohei Arai and Supriya Kapoor. Cham: Springer
International Publishing, pp. 128–144. ����: 978-3-030-17795-9.

Ren, Shaoqing et al. (2015). “Faster R-CNN: Towards Real-Time Object Detection with
Region Proposal Networks”. In: CoRR abs/1506.01497. arXiv: 1506.01497. ���:
http://arxiv.org/abs/1506.01497.

Rieder, Mathias and Richard Verbeet (Sept. 2019). “Robot-Human-Learning for
Robotic Picking Processes”. In: ���: 10.15480/882.2466.

Rui Liu et al. (2014). “Measurements of Molten Steel Surface Velocity and E�ect of
Stopper-rod Movement on Transient Multiphase Fluid Flow in Continuous Casting”.
In: ISIJ International 54.10, pp. 2314–2323. ���: 10.2355/isijinternational.
54.2314.

Schmidhuber, Jürgen (2015). “Deep learning in neural networks: An overview”. In:
Neural Networks 61, pp. 85–117. ���: 10.1016/j.neunet.2014.09.003. ���:
https://arxiv.org/pdf/1404.7828.pdf.

Page 39 of 45



Development of a Graphical User Interface and Deep Learning Methods for Automated
Inspection in a Continuous Casting Steel Plant

Schwerdtfeger, Klaus, ed. (1992).Metallurgie des Stranggiessens: Giessen und Erstarren
von Stahl. Düsseldorf: Stahleisen. ����: 3514003505. ���: Klaus.

Tan, Ying (2016). “Chapter 11 - Applications”. In: Gpu-Based Parallel Implementation
of Swarm Intelligence Algorithms. Ed. by Ying Tan. Morgan Kaufmann, pp. 167–177.
����: 978-0-12-809362-7. ���: https://doi.org/10.1016/B978-0-12-809362-
7.50011-X. ���: https://www.sciencedirect.com/science/article/pii/
B978012809362750011X.

Tao Wang et al. (2021). “Tea picking point detection and location based on Mask-
RCNN”. In: Information Processing in Agriculture. ����: 2214-3173. ���: 10.1016/j.
inpa.2021.12.004. ���: https://www.sciencedirect.com/science/article/
pii/S2214317321000962.

Teed, Zachary and Jia Deng (2020). “RAFT: Recurrent All-Pairs Field Transforms
for Optical Flow”. In: CoRR abs/2003.12039. arXiv: 2003.12039. ���: https:
//arxiv.org/abs/2003.12039.

Page 40 of 45



Development of a Graphical User Interface and Deep Learning Methods for Automated
Inspection in a Continuous Casting Steel Plant

A APPENDIX ONE - Software

The code listed in the following chapter and the following image serves as an extension
to the referenced chapters.

A.1 Method for Calculating the Histogram for the Intensity of the Pix-
els

This chapter is an extension to Chapter 3.1.3.

Listing 1: Create the Histogram for the Intensity of the Pixels in the Application

1 def r e f r e sh_ f i gu r e2 ( s e l f , l e f t _ p i c , r i g h t _ p i c ) :
2 " " " Refresh of the histogram fo r the i n t e n s i t y of the

p i x e l s a f t e r every image " " "
3 # l e f t _ p i c , r i g h t _ p i c �> ndarray :(190 ,250 ,3)
4 # l a s t dimension = 3x the same number
5 l e f t _ p i c _ f 2 = l e f t _ p i c [ : , : , 0 ] . r a ve l ()
6 r i g h t _p i c _ f 2 = r i g h t _ p i c [ : , : , 0 ] . r a ve l ()
7

8 s e l f . ax2 . remove ()
9 s e l f . ax2 = s e l f . f i gu re2 . add_subplot ()

10 s e l f . ax2 . h i s t ([ l e f t _ p i c _ f 2 , r i g h t _p i c _ f 2 ] , b ins=20,
range=[30, 255])

11 s e l f . ax2 . se t_y l im ([0 , 10000])
12 s e l f . ax2 . legend ([ ’ L e f t ’ , ’ R ight ’ ] )
13 s e l f . ca_ f igure2 . draw_idle ()

A.2 Method for Calculating the Sum of the Pixel-Intensity for each
Column

This chapter is an extension to Chapter 3.1.3.

Listing 2: Create the Line Chart for the Sum of the Pixel-Intensity for each Column

1 def r e f r e sh_ f i gu r e3 ( s e l f , l e f t _ p i c , r i g h t _ p i c ) :
2 " " " Refresh of the l ine�char t f o r the i n t e n s i t y of the

columns of p i x e l s " " "
3 # l e f t _ p i c , r i g h t _ p i c �> ndarray :(190 ,250 ,3)
4 # l a s t dimension = 3x the same number
5 l e f t _ p i c = np . sum( l e f t _ p i c [ : , : , 0] , 0)
6 r i g h t _ p i c = np . sum( r i g h t _ p i c [ : , : , 0] , 0)
7

8 s e l f . ax3 . remove ()
9 s e l f . ax3 = s e l f . f i gu re3 . add_subplot ()

10 s e l f . ax3 . p l o t (np . arange ( len ( l e f t _ p i c ) ) , l e f t _ p i c , co lo r=
’ b ’ )

11 s e l f . ax3 . p l o t (np . arange ( len ( r i g h t _ p i c ) ) , r i gh t _p i c ,
co lo r= ’ r ’ )

12 s e l f . ax3 . se t_y l im ([0 , 40000])
13 s e l f . ax3 . legend ([ ’ L e f t ’ , ’ R ight ’ ] )
14 s e l f . ca_ f igure3 . draw_idle ()
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A.3 Method for Calculating Alpha

This chapter is an extension to Chapter 3.1.3.

Listing 3: Create the Charts for Tab Sum Di�erence and Tab Max Di�erence

1 def c r ea te_ f i gu re4_5 ( s e l f ) :
2 " " " Method fo r c a l c u l a t i n g the d i f f e r en c e alpha : SUMi( ai�

b i ) 2̂ and MAXi( ai�b i ) 2̂" " "
3 l i s t _max = []
4 l i s t _ sum = []
5 f o r pa th s _ s t r in s e l f . paths :
6 pa th s _ s t r = z l i b . decompress ( pa th s _ s t r ) . decode ( " ut f�8

" ) . s p l i t ( ’ , ’ )
7 f o r path in pa th s _ s t r :
8 i f path == ’ ’ :
9 cont inue

10 t r y :
11 path = s e l f . pa th_ f i x _pa r t + path
12

13 img = cv2 . imread ( path )
14 # o r i g i n a l shape = 640x240)
15 # image = image [0:320 , 0:120]
16

17 ’ ’ ’ s p l i t i n to l e f t and r i g h t and turn l e f t
s ide 180 degree ’ ’ ’

18 l e f t _ p i c = img [50: , 50:300]
19 r i g h t _ p i c = img [:190 , 390:640]
20 l e f t _ p i c = l e f t _ p i c [ : , : , 0 ] . r a ve l ()
21 r i g h t _ p i c = r i g h t _ p i c [ : , : , 0 ] . r a ve l ()
22

23 y _ l e f t , x _ l e f t = np . histogram ( l e f t _ p i c , 50)
24 y_r ight , x _ r i gh t = np . histogram ( r i gh t _p i c ,

50)
25

26 d i f f = y _ l e f t � y_ r i gh t
27 d i f f = d i f f � d i f f
28 maximum_hist = d i f f .max()
29 sum_hist = d i f f . sum()
30

31 l i s t _max . append(maximum_hist )
32 l i s t _ sum . append( sum_hist )
33

34 except TypeError :
35 cont inue

A.4 Method for Calculating the Optical Flow

This chapter is an extension to Chapter 3.1.3.

Listing 4: Create the Optical Flow in the Application

1 def r e f r e sh_ f i gu r e7 ( s e l f , image ) :
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2 " " " Generate a new image with the op t i c a l f low from
Farneback " " "

3

4 # S p l i t and ro t a t e the l e f t par t to have the same co lo r
map

5 l e f t _ p i c = image [ : , :480]
6 r i g h t _ p i c = image [ : , 480:]
7

8 l e f t _ p i c = cv2 . r o t a t e ( l e f t _ p i c , cv2 . ROTATE_180)
9 image = cv2 . hconcat ([ l e f t _ p i c , r i g h t _ p i c ])

10

11 # Create the op t i c a l f low from Farneback fo r the whole
image

12 new_image = cv2 . cv tCo lor ( image , cv2 .COLOR_BGR2GRAY)
13 f low = cv2 . ca lcOpt ica lF lowFarneback ( s e l f . f igure7_prev ,

new_image , None , 0 .5 , 3 , 15 , 3 , 5 , 1 .2 , 0)
14

15 # Computes the magnitude and angle of the 2D vec to r s
16 magnitude , angle = cv2 . car tToPo la r ( f low [ . . . , 0] , f low

[ . . . , 1])
17

18 # Set s image hue according to the op t i c a l f low d i r e c t i o n
19 s e l f . mask_figure7 [ . . . , 0] = angle � 180 / np . p i / 2
20

21 # Set s image value according to the op t i c a l f low
22 # magnitude ( normalized )
23 s e l f . mask_figure7 [ . . . , 2] = cv2 . normalize (magnitude ,

None , 0 , 255 , cv2 .NORM_MINMAX)
24

25 # Converts HSV to RGB (BGR) co lo r r ep re sen ta t i on
26 rgb = cv2 . cv tCo lor ( s e l f . mask_figure7 , cv2 .COLOR_HSV2BGR)
27

28 # S p l i t i n to l e f t and r i g h t
29 l e f t _ p i c = rgb [ : , :480]
30 r i g h t _ p i c = rgb [ : , 480:]
31

32 # turn l e f t p i c around , and put i t toge ther
33 l e f t _ p i c = cv2 . r o t a t e ( l e f t _ p i c , cv2 . ROTATE_180)
34 rgb = cv2 . hconcat ([ l e f t _ p i c , r i g h t _ p i c ])
35

36 rgb = ImageTk . PhotoImage ( image=Image . fromarray ( rgb ) )
37

38 # Changes the image in f i gu r e 7
39 s e l f . f i gu re7 . con f igure ( image=rgb )
40 s e l f . f i gu re7 . image = rgb

A.5 Method for using RAFT

This chapter is an extension to Chapter 3.1.4. The original code (Gupta, 2023) was
changed and used in this thesis to apply RAFT to the mold image data.
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A.6 Structure of the Software-Code

Figure 43: Process Visualizer - Class Diagram of the Code
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B APPENDIX TWO - Mask R-CNN

The code listed in the following chapter serves as an extension to the referenced
chapters.

B.1 Method for Creating the Bounding Boxes

This chapter is an extension to Chapter 3.2.3.

Listing 5: Creating the Bounding Boxes

1 # use the masks to generate a bounding box fo r each
ob j e c t

2 # num_objs = the number of de f e c t s (number of masks
f o r one image )

3 boxes = torch . zeros ([ num_objs , 4] , dtype=torch .
f l oa t32 )

4 f o r i in range ( num_objs ) :
5 x , y , w, h = cv2 . boundingRect (masks [ i ])
6 boxes [ i ] = torch . tensor ([ x , y , x + w, y + h])
7 # x , y : l e f t top coord inate ; w, h : width and

height of bb

B.2 Description of the Steel Defection Dataset

The information for the test image is given as follows:

Table 3: Description of the Dataset Steel Defection (Grishin et al., 2019)

ImageId ClassId EncodedPixels

0 0002cc93b.jpg 1 29102 12 29346 24 29602 24 29858 24 301...

1 0007a71bf.jpg 3 18661 28 18863 82 19091 110 19347 110. . .

. . . . . . . . . . . .

In order to save memory, the a�ected pixels of the respective image containing a
defect were coded. The column ‘EncodedPixels’ consists of start positions and run
length. Every second number (starting with the 1st) is a start position that belongs
together with the number (run length) immediately following it. Example for using
the EncodedPixels row: For example, ‘1 4 9 3’ implies the pixels ‘1, 2, 3, 4, 9, 10, 11’
which are included in the mask. (Grishin et al., 2019)
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