
Chair of Automation

Master's Thesis

Few-Shot Classification in Deep Learning
based Anomaly Detection of Noisy

Industrial Data

Patricia Andrea Freyler, BSc
January 2023



Master´s Thesis

Few-Shot Classification in Deep
Learning based Anomaly Detection

of Noisy Industrial Data

written by

Patricia Freyler

Montanuniversität Leoben

Chair of Automation

Professor:

O.Univ.-Prof. Dipl.-Ing. Dr.techn. Paul OŠLeary

Supervisor:

Mohamed Ali Tnani, MSc

Leoben, January 31, 2023





Acknowledgment

Acknowledgment

I would like to express my special thanks of gratitude to my professor O.Univ.-Prof.

Dipl.-Ing. Dr.techn. Paul OŠLeary, who agreed to support the thesis. He took his time

at every meeting and provided me with valuable ideas and suggestions for my thesis.

The meetings and conversations were vital in inspiring me to think outside the box, from

multiple perspectives to form a comprehensive and objective critique.

I would like to earnestly acknowledge the sincere efforts and time given by my supervisor

Mohamed Ali Tnani. The guidance and feedback has helped me in completing the thesis

and give me insights in producing scientiĄc research. Further he gives me the opportunity

to do my master thesis on this interesting topic. I am really thankful to him.

Many thanks also to the company Bosch Rexroth, which gave me the opportunity to work

and provided my thesis.

Besides, I am also thankful to my colleagues at Bosch Rexroth and my friends. In addition,

I would like to highlight the support and organization of the secretariat at the Mechanical

and Automation Institute of the Montanuniversity Leoben.

Last, I want to thank my parents, who have always been there in my life and supported

me through my study. Without them, I could never had completed my study.

Thank you.

II



Kurzfassung

Kurzfassung

Fertigungsprozesse können durch die frühzeitige Erkennung von Anomalien mithilfe von

Deep Learning Methoden verbessert werden. Diese Methoden erfordern große Datenmen-

gen, die in der Praxis oft nicht verfügbar sind. Die geringe Anzahl von Vorkommnissen und

die daraus resultierende geringe Datenmenge, sowie die große Vielfalt an Prozessanomalien

bei Fertigungsprozessen in modernen Produktionsanlagen, stellen eine Herausforderung

für herkömmliche Deep Learning Verfahren dar.

Die großen Datenmengen, die für die Konstruktion neuronaler Netze benötigt werden,

erfordern hohe Ansprüche an die Qualität und Quantität des Daten Labelings, was zu

hohen Kosten führt. Abhilfe verspricht der Bereich des Few-Shot Learnings, der sich mit

dem Entwurf leistungsfähiger neuronaler Netze mit begrenzten Datensätzen beschäftigt.

Ziel der Arbeit ist es, das Wissen aus Computer-Vision-Methoden auf die neue An-

wendungsdomäne der verrauschten Industriedaten zu übertragen und ein effizientes La-

bellingsystem mit fortschrittlichen Deep-Learning Few-Shot KlassiĄkationsmethoden für

Zeitreihendaten aus der Produktion zu untersuchen. Die wichtigsten Ergebnisse dieser

Arbeit sind die folgenden:

Das Prototypical Network(PN), das die euklidische Distanz verwendet, erreicht bei der

VeriĄzierungsaufgabe einen F1-Score von 93,92 %, wenn es auf der Grundlage von 70 guten

und 21 schlechten Proben (Datensatz 1) trainiert wurde, und einen F1-Score von 80,01

% mit 17 guten und 6 schlechten Proben (Datensatz 3). Das Matching Network(MN)

erreichte einen F1-Score von 87,34 % und 71,81 %. Durch die Implementierung der

Cosinus-Distanz erreicht PN einen F1-Score von 95,21 % und MN einen F1-Score von

91,46 % mit Datensatz 1 (Tabelle 4.2). Das Skalarprodukt erreicht eine F1-Leistung von

93,51 % für PN und 88,70 % für MN. Die Anzahl der Shots für das Support Set sollte

etwa 5 bis 7 Schüsse mit einem F1-Score von 93,92 % und 94,82 % betragen. Für die

Unterstützungsmenge (Support Set) und die Abfragemenge (Query Set) mit einem F1-

Score von 92,92 % sind 3 Shots nicht ausreichend. Few-Shot Learning kann den Bedarf

an Trainingsdaten erheblich reduzieren.

Die angewendeten Methoden liefern für die untersuchten Datensätze sehr gute Ergeb-

nisse.

III



Abstract

Abstract

Manufacturing processes can be improved by early detection of anomalies using Deep

Learning methods. These methods require large volumes of data, however in manufac-

turing processes, there is usually only a small amount of information about anomalies,

which leads to biased data.

These small number of occurrences and a resulting small amount of data together with

the variety of process anomalies in the manufacturing processes in modern production

plants pose challenges for traditional Deep Learning methods. This reduces the poten-

tial performance of neural networks in the production environment due to the lack of

transferability of the individual models among each other.

The large volume of data needed to build neural networks places high demands on the

quality and quantity of data labeling, which results in high costs. The Ąeld of Few-Shot

Learning, which focuses on the design of high-performance neural networks with limited

data sets, promises a potential remedy.

The purpose of the thesis is to transfer knowledge from state-of-the-art computer vision

methods to the new application domain of noisy industrial data and investigate an efficient

labeling system using advanced Deep Learning Few-Shot classiĄcation methods for data

streams collected during production. The main results of this work are the following:

The Prototypical Network (PN) using the Euclidean Distance reached an F1-score of 93.92

% on the veriĄcation task when trained based on 70 good and 21 bad samples (dataset 1)

and an F1-score of 80.01 % with 17 good and six bad samples (dataset 3). The Matching

Network (MN) reached an F1-score of 87.34 % and 71.81 %. By implementing Cosine

Distance as the Ąnal classiĄcation, PN achieves an F1-score of 95.21 % and MN an F1-score

of 91.46 % with dataset 1 (Table 4.2). The DOT-product achieves an F1-performance of

93.51 % for the PN and 88.70 % for the MN. The number of shots for the support set,

should be about 5 to 7 shots with an F1-score of 93.92 % and 94.82 %. Three shots are

not sufficient for the support and query set with an F1-score of 92.92 %.

Few-Shot Learning in quality control can signiĄcantly reduce the need for training data.

Different distance/similarity methods improve the performance of the networks. These

techniques provide good results for the data used in this work.

IV



Contents

Contents

Affidavit I

Acknowledgment II

Kurzfassung III

Abstract IV

1 Introduction 1

1.1 DeĄnition of the Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 DeĄnition of the Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.3 Structure of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Background 3

2.1 Deep Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Few-Shot Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.3 Statistical framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.3.1 Supervised learning . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3.2 Expected Risk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3.3 Empirical Risk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3.3.1 Empirical Risk Minimizer . . . . . . . . . . . . . . . . . . 5

2.3.3.2 Unreliable Empirical Risk Minimizer . . . . . . . . . . . . 6

2.3.4 Taxonomy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3.5 Embedding Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3.6 Meta-Learning for Few-Shot Learning . . . . . . . . . . . . . . . . . 9

2.3.6.1 Learning the embedding for Few-Shot Learning . . . . . . 10

2.3.7 Training and Testing in Few-Shot Learning . . . . . . . . . . . . . . 11

2.4 Few-Shot Deep Metric Learning Methods . . . . . . . . . . . . . . . . . . . 12

2.4.1 Metric Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4.2 Deep Metric Learning . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4.2.1 Learning feature embeddings . . . . . . . . . . . . . . . . 15

2.4.2.2 Learning class representations . . . . . . . . . . . . . . . . 15

2.4.2.3 Learning distance/similarity measures . . . . . . . . . . . 15

V



Contents

2.5 Hyperparameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.5.1 Convolution Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.5.2 Pooling Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.5.3 Fully Connected Layer . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.5.4 Activation Functions . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.5.4.1 Sigmoid Function . . . . . . . . . . . . . . . . . . . . . . . 19

2.5.4.2 ReLU Function . . . . . . . . . . . . . . . . . . . . . . . . 19

2.5.4.3 Softmax Function . . . . . . . . . . . . . . . . . . . . . . . 19

2.6 Distance/Similarity Measures . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.6.1 P-Norm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.6.2 1-norm (Manhattan Distance) . . . . . . . . . . . . . . . . . . . . . 21

2.6.3 2-norm (Euclidean Distance) . . . . . . . . . . . . . . . . . . . . . . 21

2.6.4 Cosine Similarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.6.5 DOT Product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.6.6 Dynamic Time Warping - DTW . . . . . . . . . . . . . . . . . . . . 22

2.7 Metrics for Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . 24

2.7.1 ClassiĄcation Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.7.2 ClassiĄcation Loss . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.7.3 Confusion Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.7.4 F1-Score, Recall and Precision . . . . . . . . . . . . . . . . . . . . . 25

2.8 Deep learning frameworks and libraries . . . . . . . . . . . . . . . . . . . . 26

3 State-Of-The-Art 27

3.1 Meta Metric-Based Few-Shot ClassiĄcation . . . . . . . . . . . . . . . . . . 27

3.1.1 Matching Network . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1.2 Prototypical Network . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.1.3 Relation Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4 Methodology 33

4.1 Pipeline of the Few-Shot ClassiĄcations . . . . . . . . . . . . . . . . . . . . 33

4.2 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2.1 Data Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2.2 Data Augmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.2.3 Dataset - Training Set & Test Set . . . . . . . . . . . . . . . . . . . 41

4.3 Few-Shot ClassiĄcation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.3.1 Training Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.4 Testing Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.4.1 Embedding Network Structure . . . . . . . . . . . . . . . . . . . . . 44

4.4.2 Models and Metrics of Few-Shot Learning . . . . . . . . . . . . . . 46

4.5 Overview of the Experiments . . . . . . . . . . . . . . . . . . . . . . . . . 46

VI



Contents

4.6 Library Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5 Results and Discussion 48

5.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.2.1 Dataset Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.2.2 Sufficient Shots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.2.3 Learning Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.2.4 Distance Ranking Approach . . . . . . . . . . . . . . . . . . . . . . 55

6 Retrospective 60

6.1 Achievements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6.2 Points to Improve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6.3 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

7 Conclusion 62

8 Appendix 63

Bibliography I

List of Figures XI

List of Tables XIV

VII



Chapter 1. Introduction

1 Introduction

The increasing quest for higher process efficiency and quality requires new and innovative

ways to optimize production. Automation plays a signiĄcant role in ensuring high quality

and high production throughput at the same time [1, 2].

Deep Learning has made it possible to detect faulty production with almost human ac-

curacy. However, these approaches require a large amount of data, doing training in

production costly, time-consuming, or even impossible, as the available data is simply not

annotated. Few-Shot Learning (FSL) is a Ąeld of machine learning that aims to learn new

concepts from a few labeled examples [2, 3, 4].

The purpose of the thesis is to present an application of FSL for anomaly detection in

noisy industrial data.

1.1 DeĄnition of the Problem

Before providing a literature review, the problem of anomaly detection is formalized here.

Similar standard classiĄcation tasks, a training and a test set, are required. These sets

consist of labeled examples (x, y), where x is the noisy industrial data and y is the asso-

ciated label distinguishing between a good sample and an anomaly. In the context of this

work, a few data sequences are used, and the aim is to classify each of these sequences

as either good or bad (representative of an anomaly). The complexity of the task can be

increased by reducing the number of training examples available but keeping the num-

ber of test examples at the same level. Another point is that different processes lead to

various anomaly patterns, making classiĄcation much more difficult. Besides the correct

pre-processing of the data, the challenge is to extract essential and relevant features from

noisy industrial data. Finally, it should also be noted that the data was collected over

a more extended period, so even anomalies in the same category do not always look the

same due to changes in the environment and material.

1.2 DeĄnition of the Objective

The purpose of the thesis is to deĄne a system that can classify noisy industrial data. To

achieve this, an iterative method is used to improve the performance at each iteration step.

1



Chapter 1. Introduction

For this approach, networks are applied that relate directly to the concepts described in

the state of the art Chapter. The main steps are:

1. Creation of the dataset through data augmentation and pre-processing and subse-

quent division into a training set and a test set.

2. Implementing a few-shot learning system that performs well in anomaly detection,

evaluating a dataset with only a few samples from each class. Therefore, the method,

metric, and dataset are varied to achieve the best output. For this reason, several

few shot-learning methods and distance metrics for noisy industrial data were in-

vestigated.

3. Evaluation of the results against the performance metrics.

1.3 Structure of the Thesis

The general structure considers the problem and provides the detailed solution process

in response to anomaly detection using Few-Shot Learning. Chapter 2 gives an overview

of Deep Learning and different few-shot methods, focusing on the techniques exploited

when designing an effective solution.

After this, the concepts, which are chosen for the work, are provided and explained in

detail in Chapter 3.

In Chapter 4, the framework is introduced, and the implementation decisions are justiĄed.

The data, as well as the data preprocessing task and data augmentation, are described.

Further training and testing with few-shot methods and distancing/similarity measures

are explained. Additionally, a pre-training phase is proposed by using a convolutional

neural network to get familiar with the noisy industrial data before tackling the few-shot

learning classiĄcation.

Several possible scenarios are explored in the experiments, as each is characterized by a

different combination of parameters, networks, and metrics.

In conclusion, the experiments get evaluated and discussed in Chapter 5. A review fol-

lows, highlighting both strengths and weaknesses of this work and some other interesting

avenues that could not be investigated but would be worth exploring.

2



Chapter 2. Background

2 Background

2.1 Deep Learning

Deep Learning (DL) is a subset of Machine Learning (ML) and has the advantage of

performing better when simple analytical models are not available. The success is based

on good generalization. Generalization refers to the ability of the model to properly adapt

to new, previously unseen data that comes from the same distribution as the one used to

build the model [5, 6]. While ML requires less computational power and less data, DL

typically requires less constant human intervention and tend to solve the problem from

scratch and not breaking the problem into different parts to solve it [6, 7]. Thereby it

discovers complex structures in large datasets by using the backpropagation to indicate

how an algorithm should change its internal parameters to compute the representation in

each layer from the one in the previous layer [8]. It extracts key internal features where

the goal is to achieve higher abstraction levels when transforming raw data into a new

representation [9, 8, 10].

The optimization of these deep models with dense architectures requires many iterative

updates across many labeled samples and the ability to learn new concepts quickly is

limited [11, 12, 13]. Such progress depends on capturing and labeling a huge amount of

data, which can be often difficult and costly in practical applications [14]. Current DL ap-

proaches struggle to achieve high classiĄcation accuracy for applications with few labeled

data. They tackle a single problem with a big amount of labeled data successfully but fail

to break down the complex architecture of raw data with insufficient labels that have only

a few labels [13]. Unlike human visual systems, which are readily able to learn new classes

with extremely few labeled examples [13, 15]. Techniques such as regularization reduce

overĄtting for a small dataset but do not solve the inherent problem associated with fewer

training samples. In addition, the large volume of datasets leads to slow learning that

requires many weight updates via stochastic gradient descent [13, 3]. Therefore, reducing

the required amount of data as well as generalizing to new classes with a limited amount

of labeled examples for each novel class has been a growing interest. [4, 15].

To address this problem, new learning methods have been developed in recent years that

use only a few labeled samples and are referred to as Few-Shot Learning [16].

3



Chapter 2. Background

2.2 Few-Shot Learning

Few-Shot Learning (FSL) is a Ąeld of machine learning that aims to enable learning with

only a very limited number of samples [3]. It can be very useful in the case where data

collection and annotation is costly challenging [17]. This classiĄcation predicts unlabeled

samples from unseen classes given only limited labeled samples [15, 18]. A small amount of

data and unseen classes make the classiĄcation of few shots very difficult and quickly lead

to model overĄtting to the few training samples from the novel classes [18, 14]. To tackle

this challenge there are various approaches, such as Meta-Learning methods, Transfer

Learning methods, and Metric Learning methods [14].

Meta-learning is a framework to leverage a large number of similar few-shot tasks to learn

how to adapt a base-learner to a new task with only a few supervised examples available

[4]. The classiĄcation task extracts generalizable knowledge, which enables rapid learning

on a new related task with few examples [19, 20]. Transfer Learning methods promote

knowledge sharing from the source domain to a target domain-containing a few labeled

data with the help of a model pre-trained on a large amount of source data [21, 4]. The

major difference from Meta-Learning to Transfer Learning is the existence of an outer

objective. Whereas in Transfer Learning the parameters are passed from one task to the

next task, in Meta-Learning the parameters, which are passed, are supposed to encode

how to learn, instead of how to solve the last task [22]. Transfer Learning uses the

knowledge learned in the source task into a target task and does not require a second

dataset to begin a new learning process as it is needed in Meta- and Metric Learning

[23, 24]. Metric Learning is about learning a representation function that maps objects in

an embedded space. The distance in the embedded space should obtain the similarity of

the objects, while similar objects move closer and dissimilar objects move farther apart.

Feature embeddings and/or distance measures are learned to classify an unseen sample

based on its distance to the labeled example. [9, 14, 25]. Samples of the same class are

expected to be close together in the embedding space and samples of different classes

should be far apart [14, 26].

The above methods can be applied simultaneously for instance when learning feature

embeddings of Metric Learning methods by using a Meta-Learning strategy [19, 14].

2.3 Statistical framework

A Ąnite sequence S of pairs ¶zi = (xi, yi)♢
n

i=1 of size n is the input to the learning algo-

rithm. The set is identically distributed along an unknown distribution P over the space

of instances and labels Z = X × Y . y is the corresponding label for x.

A labeling function f : X −→ Y exists for which f(x) = y for all (x, y) is drawn from P .

4



Chapter 2. Background

Following the learning process, the output is a function h : X −→ Y ′ that aims to predict

y for each x. The function h comes from a hypothesis space H that best predicts the

behavior of f . It is a classiĄer in the classiĄcation and is used to predict the labels of new

arriving instances [27, 28].

2.3.1 Supervised learning

In supervised learning, the goal is to Ąnd a modeling function h : X −→ Y ′, from a

hypothesis class H, that predicts the value of y at x for any (x, y) from P . The objective

is to ensure that the predictions are consistent with the true labels of the data. In selecting

the best hypothesis to Ąt the data, its adequacy is determined using a loss function. Loss

functions are non-negative and tend to be zero or close to zero when the prediction is

correct and higher otherwise [27, 28].

2.3.2 Expected Risk

The expected risk is also known as generalization error or true risk, and intuitively mea-

sures the ability of h to predict correctly for all instances (x, y) ∈ P . The true risk E of

h with respect to a loss function ℓ is the expected loss of h on the distribution P by a

given hypothesis h ∈ H. The goal is to Ąnd the hypothesis h that yields the lowest true

risk. The risk is an expected true value that depends on the unknown distribution P and

therefore cannot be calculated directly (Equation 2.1).

Eℓ
P (h) =

∫

ℓ(h(x), y)dP (x, y) = E [ℓ(h(x), y)] (2.1)

Therefore, a surrogate value is minimized instead, namely the empirical value of the risk

for the available sample S, also known as the empirical risk [28, 27].

2.3.3 Empirical Risk

The empirical risk E with respect to a loss function ℓ is the average loss suffered by the

algorithm for the instances of S given a hypothesis h ∈ H and a sample S = ¶zn
i i=1♢ of

size n (Equation 2.2) [28].

Eℓ
S(h) =

1

n

n∑

i=1

ℓ(h(xi), yi) = En[ℓ(h(x), y)] (2.2)

2.3.3.1 Empirical Risk Minimizer

Considering a space of input-output pairs (x, y) ∈ X × Y associated with a probability

distribution P (x, y), the conditional distribution P (y♣x) is the unknown relationship be-

tween inputs and outputs. The loss function ℓ(ŷ, y) measures the discrepancy between

5



Chapter 2. Background

the predicted output ŷ and the real output y. The aim is to minimize the expected risk

Eℓ
P (h) (Equation 2.1) for a hypothesis h. h∗ is the function (Equation 2.3) that minimizes

the expected risk [29, 30, 31].

h∗(x) = arg min
ŷ

E [ℓ(ŷ, y)♣ x]] (2.3)

In the Ąrst learning process, a family H of predictive functions is selected and the function

hn = arg minh∈H En(h) that minimizes the empirical risk is found. Since h∗ is not known,

one has to approximate it by using h ∈ H. The best approach for h ∈ H is h∗
H, whereas

the best approximation in H is hn obtained by empirical risk minimization. It is supposed

that h∗, h∗
H and hn are well-deĄned and unique. The total error is computed out of the

approximate error Eapp(H) and the estimated error Eest(H) (Equation 2.4) [31, 32, 33, 16].

.

E [E(hn)− E(h∗)] = E [E(h∗
H)− E(h∗)]

︸ ︷︷ ︸

Eapp(H)

+E [E(hn)− E(h∗
H)]

︸ ︷︷ ︸

Eest(H,n)

(2.4)

h∗ = arg minh E(h) function that minimizes the expected risk

h∗
H = arg minh∈H E(h) function in H that minimizes the expected risk

hn = arg minh∈H En(h) function H that minimizes the empirical risk

The Eapp(H) measures how closely the functions in H can approximate the optimal hy-

pothesis h∗. The Eest(H, n) measures, instead of the expected risk Eℓ
P (h) inside H, the

effect of minimizing the empirical risk Eℓ
S(h). The total error is related to the number of

samples n in S and the hypothesis space H [31, 32, 16].

Learning to reduce the total error can be attempted with the following methods: data

providing, model determining H and algorithm searching for the optimal hn ∈ H [16].

2.3.3.2 Unreliable Empirical Risk Minimizer

In general, the estimate error Eest(H, n) can be reduced by a larger number of samples

[31, 33, 34]. The empirical risk minimizer hn will provide a good approximation E(hn) to

the most efficient E(h∗
H) for the h in the hypothesis space H (Figure 2.1.a). However, the

number of available examples in Few-Shot Learning is small, so the empirical risk Eℓ
S(h)

is far from a good approximation of the expected risk Eℓ
P (h), and thus the resulting

empirical risk minimizer hn overĄts (Figure 2.1.b) [16].

6



Chapter 2. Background

Figure 2.1: Difference between learning with enough and few training samples [16].

This is the core problem of FSL since the empirical risk minimizer hn is no longer reliable

[16].

2.3.4 Taxonomy

To reduce the risk of having an unreliable empirical risk minimizer hn in FSL, prior knowl-

edge must be used. Knowledge is the information that the learner possesses about the

topic in question prior to the collaborative learning phase. In machine learning, knowledge

is deĄned as prior knowledge, which refers to all the information about the problem that

is available in addition to the training data. The importance of this knowledge is evident

from its role in search and optimization. In order to reduce the amount of training data,

it is necessary to provide prior knowledge to the learner, since the learner does not have

to derive it from the data itself. The methods by which prior knowledge is used in this

category can be divided into three types [16, 35, 36, 37].

1. Data, which use prior knowledge to augment the supervised experience. The number

of examples is increased [16].

2. Model, which uses prior knowledge to reduce the complexity of the hypothesis space

H, which results in a much smaller hypothesis space Ĥ. As shown in Figure 2.2.b,

the optimization only takes place in the white space and does not consider the grey

area. The reason for this is according to prior knowledge that they are known to

be unlikely to contain the optimal h∗
H. For this smaller hypothesis space Ĥ, the

number of data is enough for an efficient hn [38, 39, 40].

3. Algorithm, which uses prior knowledge to search for the best hypothesis h∗
H in H

by providing a good initialization (grey triangle in Figure 2.2.c) [16].

7



Chapter 2. Background

Figure 2.2: Perspectives on how FSL methods solve the few-shot problem [16].

The focus of the work is to use prior knowledge to reduce the complexity of the hypothesis

space H to a smaller hypothesis space H̃. The minimization of the empirical risk is more

reliable and the risk of overĄtting is reduced [16].

2.3.5 Embedding Model

The purpose of this method is that samples of different classes can be well separated when

samples get mapped into a embedding space, so a smaller Ĥ is needed. It embeds each

sample xi ∈ X ⊆ R
d to a lower dimensional zi ∈ Z ⊆ R

m. Thus similar samples are

close together, while dissimilar samples are more easily differentiated. This embedding is

learned from prior knowledge. The main components are a function f that embeds a test

samples xt,q ∈ Dt,q to Z from the training set Dt to form the query set Dt,q, a function

g that embeds training samples xt,s ∈ Dt,s to Z from the training set Dt to form the

support set Dt,s, and a similarity function s that measures the similarity between the two

functions f(xt,q) and g(xt,s) in Z (Figure 2.3). xt,q is referred to the class of xt,s, which

embedding g(xt,s) is most similar to f(xt,q) in Z according to the similarity. The number

of samples in the support set and the query set can vary, so for example a support set

can consist of Ąve samples, while the query embedding can consists of only one sample.

8



Chapter 2. Background

Figure 2.3: Few-Shot Learning problem solved by an embedding model [16].

The Ąrst step for the Few-Shot Learning embedding model is to embed the samples using

a kernel [16, 41]. These embeddings vary in their complexity and can be learned by

different convolution neural networks [42, 19, 43]. Meta-Learning can be used to create

more complex embedding models such as Matching Network [19], Prototypical Network

[42], and Relation Network [43].

2.3.6 Meta-Learning for Few-Shot Learning

Meta-Learning algorithms make predictions by using the results of existing ML algorithms

as input and predicting a class label or a value [44]. Therefore, transferable knowledge

is extracted from a task collection and shared to prevent overĄtting and improve gener-

alization [15, 45, 46, 47]. This meta-knowledge is obtained from a set of training tasks

and is generalized to new test task [18] and can be an optimization strategy [12, 48], a

good initial condition [20, 49, 50] or a metric space [42, 19, 43]. The basic idea is to

train and adapt an algorithm on many different classiĄcation tasks to extract generaliz-

able knowledge, which enables rapid learning on new related tasks with sparse samples

[14, 4, 20]. A key feature of Meta-Learning techniques is the goal of optimizing perfor-

mance by distributing it across tasks to counteract expected loss. This optimization is

made by stochastic gradient descent, thereby the validation loss of the base learner is used

[11, 4]. The algorithm consists of a meta-training and a meta-testing stage. During the

training, the tasks usually mimic the settings in the test phase to improve the general-

ization ability of the model and to reduce the gap between the training and test settings

[18, 15]. Reduction is achieved through multiple episodes that form the framework of

episodic training in Meta-Learning [13, 4].

The algorithm in the meta-training selects at Ąrst n-ways k-shots sample from Dt within

these classes. n classes are selected from the labeled data and k samples are chosen

randomly in each of the n classes, which generates the base support set Dt,s [15, 51]. On

the basis of Dt,s an embedding g is created, which generates a classiĄer for the given n

9



Chapter 2. Background

classes. The Few-Shot Learning tasks from the meta-training set learns the embedding g.

Equation 2.5 shows the prediction ŷj of the label for a test instance xt,j [51].

ŷj = g(Dt)(xt,q,j) (2.5)

To measure the performance of the classiĄer that maps g to the n classes when confronted

with Dt,s, a test set Dt,q called query set, is selected with these n classes. The purpose

of a good g is to achieve a low loss value after predicting the labels of the instances from

the query set (Equation 2.6) [51].

min
g

∑

(Dt,s,Dt,q)∼Dt




∑

(xt,q,j ,yt,q,j)∈Dt,q

ℓ(f(Dt,s(xt,q,j), yt,q,j)



 (2.6)

In Equation 2.6 (Dt,s, Dt,q) ∼ Dt denote the enumeration of all sampled tasks from the

seen training class set. The dataset Dt,s and Dt,q shows all the sample tasks in the meta-

training. The loss function l calculates the difference between the prediction and the true

label for each instance in the Dt,q [51, 15].

2.3.6.1 Learning the embedding for Few-Shot Learning

The embedding function g, which is in the space of possible feature-vectors and classes,

extracts features of the input samples and transform them into a latent space with d

dimensions. This transformation can be done by ANN, RNN, CNN, etc. The Meta-

Learning in Few-Shot Learning is shown in Algorithm 1 [51, 52].

Algorithm 1 Meta-Learning for Few-Shot ClassiĄcation [51]

Input: Training class set Dt

Steps:

1: for all iteration=1,... do

2: Sample n-way k-shot (Dt,s, Dt,q) from Dt

3: for all (xt,q,j, yt,q,j) ∈ Dt,q do

4: Predict ŷt,j = f(Dt,s)(xt,q,j) based on Equation 2.5
5: Compute loss ℓ(ŷt,q,j, yt,q,j) as Equation 2.6
6: end for

7: Compute gradient ∇f

∑

(xt,q,j ,yt,q,j)∈Xt,q
ℓ(ŷt,q,j, yt,q,j)

8: Mapping g get updated with the selected optimizer.
9: end for

10: return Few-Shot classiĄer mapping g

Few-Shot Learning classiĄcation works well when the embedding function makes similar

objects appear close to each other and dissimilar ones appear far apart. The following

Equation 2.7 shows that for a test case xt,q,j the embedding function predicts based on

10



Chapter 2. Background

an soft nearest neighbor rule.

ŷj = g(Dt)(xt,q,j) =
∑

(xt,s,i,yt,q,j)∈Dt

sim(xt,q,j, xt,s,i)yt,s,i (2.7)

The segment sim(xt,q,j, xt,s,i) measures the similarity between each training instances xt,s,i

and each test instance xt,q,j [51, 15, 17].

This measurement of similarity can be done by different distancing methods, which will

be discussed in the following. The important features for the few-shot classiĄcation get

emphasized by learning a good embedding, which can be also used for few-shot tasks from

unseen class set [51].

2.3.7 Training and Testing in Few-Shot Learning

In FSL the training dataset Dt (Equation 2.8) is split into smaller embedded support sets

Dt,s and query sets Dt,q.

Dt = ¶(xi, yi); xi ∈ Xt; yi ∈ Yt♢
nt

i=1 (2.8)

The support set consists of labeled data. Even if there is only one example from each

class in the training process, it is possible to train a deep neural network. At the test

time, the support set can only provide additional information. The classiĄcation task is

performed on a new dataset, the test set Dt′ (Equation 2.9) [53].

Dt′ = ¶(xi, yi); xi ∈ Xt′ ; yi ∈ Yt′♢nt′

j=1 (2.9)

The classiĄer seeks to learn from h : X −→ Y ′ that can classify in Dt′,q instances correctly.

The task is called n-way k-shot classiĄcation if Dt,s contains n classes and k labeled

samples per class. If the size of each class in Dt,s is one, it is called one-shot classiĄcation,

otherwise, it is denominated few-shot. The evaluation process goes over many episodes.

In each episode n classes are Ąrst randomly selected from the new label set and then

randomly k samples from each of the n classes to form a support set and m samples from

the remaining examples of these n classes to form a query set.

Xt,q and Yt,q indicates the set of labels or instances in the query set. Based on the

learning algorithm a classiĄer g(·♣Dt, D
(e)
t,s ) is returned, given the base dataset and the eth

support set, which predicts the labels of the query instances as Ŷ
(e)
t,q = g(X

(e)
t,q ♣Dt, D

(e)
t,s ).

The classiĄcation accuracy in the eth episode is represented by ae and measures the

performance of the learning algorithm over all episodes [14].

The pseudocode of the classiĄcation using n-way k-shot is shown consequently [15, 17].

11



Chapter 2. Background

Algorithm 2 Evaluation procedure of n-way k-shot classiĄcation [14]

Input: Dt = ¶(xi, yi); xi ∈ Xt; yi ∈ Yt♢
nt

i=1

Dt′ = ¶(xi, yi); xi ∈ Xt′ ; yi ∈ Yt′♢nt′

j=1

E...Number of episodes
Steps:

1: e← 0
2: repeat

3: e← e + 1
4: Randomly select n classes from Yt′ .
5: Randomly select k samples from each class as the support set D

(e)
t,s .

6: Randomly select m samples from the remaining samples of n classes as the query
D(e)

s = ¶(Xt,q,Yt,q)♢.

7: Save predicted labels Ŷ
(e)
t,q = g(X

(e)
t,q ♣Dt, D

(e)
t,s ).

8: Compute accuracy a(e) = 1
M

∑M
j=1 1

[

Ŷ
(e)
t,q = Y

(e)
t,q

]1
.

9: until e = E

10: return mean accuracy 1
E

∑E
e=1 a(e)

2.4 Few-Shot Deep Metric Learning Methods

The intention of Metric Learning is to learn a distance measure among instance pairs that

assigns a small/large distance to semantically similar/dissimilar instances. The metric is

learned related to the base dataset Dt in few-shot classiĄcation. The distance between

the new query samples and the new support samples related to the learned measure is

calculated. This classiĄes the query samples of the new classes. In contrast to the Metric

Learning, which is similar to learning a linear transformation of the original features,

deep Metric Learning learns the feature embeddings and the distance measure mostly

separately. The result is that the non-linear data structure is captured and more discrim-

inatory feature representations are generated [9, 14, 54, 26].

Before going into detail about the different categories of Deep Metric Learning and its

methods, the difference between Metric Learning and Deep Metric Learning is described

separately in the next sections.

2.4.1 Metric Learning

Metric Learning is based on a distance metric that looks after similarity/dissimilarity

among samples uses an optimal distance metric for learning tasks. The term distance

metric comes from mathematics and refers to a function d: X × X −→ R ∪ ¶∞♢. The

function d is a metric on a random set X satisfying positiveness, symmetry, and triangle

inequality for all x, y, z ∈ X .

1. Positiveness: d(x, y) > 0 if x ̸= y, and d(x, x) = 0.

12



Chapter 2. Background

2. Symmetry: d(x, y) = d(y, x).

3. Triangle inequality: d(x, z) ≤ d(x, y) + d(y, z).

A metric space is a set that has a metric applied to it. It is a pair (X , d), where d is a

metric on X . d(x, y) is denominated as the distance between points x and y [55, 56].

In machine learning the metric does not retain its original deĄnition from mathematics,

but usually refers to a general measure of similarity or dissimilarity. The general concept

is to learn a parametric similarity function using a set of queries where the groundtruth is

available. For each query there is a set of similar and a set of dissimilar data to the query.

The goal is to Ąnd the optimal parameters of the similarity function in the learning task

so that the obtained similarity is as close as possible to the ground truth. A common

parametric similarity function is Equation 2.10:

dW(xi, xj) = x⊤
i Wxj (2.10)

xi, xj are two vectors in R
D and W∈ R

D×D. It is based on a projection matrix W of

size q × r. This represents the projection of the original data into a q-dimensional space

speciĄed by the r rows of W [57, 58, 59].

A new data representation in a transformed space is provided by the distance metric. The

algorithm performance get improved by learning data for speciĄc tasks and has a good

ability to distinguish the items of different classes. As seen in Figure 2.4.c the purpose is

to reduce the distance between samples of the same class (similar objects) and increase

the distance among samples of the different class (dissimilar objects) [9, 60].

In general, the Metric Learning method uses a linear Metric Learning with a linear pro-

jection. This allows more Ćexible constraints in the transformed data space and improves

learning performance. Furthermore, they are robust to overĄtting, because pair or triplet-

based constraints become much harder to satisfy in a nonlinear, high-dimensional kernel

space [9, 54]. Nevertheless, this is not the best way to interpret and classify data. The

performance of linear metric transformation over the new representation of data is not

optimal, because they achieved unsatisĄed results on non-linear feature structure. This

limits the method in solving many real-world problems, which have mostly non-linear

characteristics. A higher success can be achieved by carrying the issue to a non-linear

space by using kernel approaches, which perform well on solving non-linear problems,

but have a negative result against overĄtting. To counteract this problem, a much more

compact and complex solution was developed, the Deep Metric Learning [9, 61].

13



Chapter 2. Background

2.4.2 Deep Metric Learning

Deep Metric Learning is an interaction of Metric Learning and deep learning uses neural

networks to automatically learn discriminative features. The limit of the performance

in Metric Learning is the classiĄcation and clustering on raw data. Feature engineering

for example preprocessing or feature extraction are useful methods to tackle this prob-

lem, but they are not directly within the classiĄcation structure. With the use of deep

learning, on the other hand, the high dimensional data can be represented directly as

a classiĄcation problem. Therefore the data is converted into a new feature space with

higher discrimination power [9, 14].

Deep Metric Learning provides a better solution for nonlinear data by solving this prob-

lem using activation functions that add non-linearity within the architecture. Deep Metric

Learning develops problem-oriented solutions by learning from raw data, using deep archi-

tectures by obtaining similarities between embedded features through non-linear learning

(Figure 2.4.d) [9, 14].

Figure 2.4: Deep Metric Learning [9]

The success of these new methods relies on the ability to effectively recognize the similarity

between samples accurately. Besides this an appropriate structure of the network, a good

sampling strategy and an efficient distance metric related to the task are the challenging

factors to improve the performance of the network model. These are crucial factors for

the success of the network in deep Metric Learning [9, 62].

14



Chapter 2. Background

Many Few-Shot Metric Learning methods calculate the distance not only between each

query sample and support sample, moreover, they compare class representations like sub-

spaces or prototypes with the query samples. In general, this methods are categorized into

three main groups according to the component they are improving on: learning feature

embeddings, learning class representations and learning distance/similarity measures [14].

2.4.2.1 Learning feature embeddings

Deep learning embedding methods target to learn a feature embedding (Section 2.3.6.1)

from data using for example, CNN, RNN, LSTM, etc. The metric distance between two

feature vectors preserves their pairwise encoded semantic relationship, e.g., in the case of

contrastive loss [62, 63]. This feature embedding method (Section 2.3.5) assumes that the

network extract discriminative features and generalizes to novel classes well. To resolve

the issue of overĄtting and data scarcity, data augmentation techniques and multi-task

learning is used [14, 62].

2.4.2.2 Learning class representations

In the classical feature learning embeddings method such as in the Matching Network

[19] and the Siamese Network [64] the classiĄcation is deĄned over the measuring and

comparing the distance between each support sample and query sample. The Matching

Network compares the query feature and each support feature with the cosine distance

and computes an average distance for each class. It encodes the support and the query

samples in the context of the entire support set and uses episodic training for few-shot

classiĄcation [42, 14, 15].

Prototypical Network [42] is a method, which compares the query features and the class

mean of support features with the euclidean distance in the learned embedding space. The

mean of the feature embeddings of the support samples in the class creates the centroid of

each class, called prototypes. The classes learn prototypes to reduce the loss while training

the episodes and serve as reference vectors for each class. For the further improvement

of the representation potential, prototypes take a single sample, weighted an average,

feature embeddings or learning in an end-to-end manner. The idea is that each class

can be represented by a single prototype in an existing embedding space. Around this

prototype of the corresponding classes all instances get clustered [42, 14]. The learning

class representations have the ability to generalize on a new class even with less samples

[42, 14, 15].

2.4.2.3 Learning distance/similarity measures

The methods described above learn feature embeddings or make a class representation.

They have mostly a Ąxed distance or similarity measure for example an Euclidean distance

15



Chapter 2. Background

[42] or a Cosine similarity [19] for the few-shot classiĄcation. Another approach to improve

the classiĄcation accuracy is to learn parameters in these Ąxed measures or make a novel

measure. By using neural networks similarity scores can be learned [14, 43].

Relation Networks [43] compute the Few-Shot Learning classiĄcation with a neural net-

work to model the similarity of feature embeddings. This network is composed of an

embedding module, which acts like a feature extractor and a relation module. The em-

bedding module consists on convolution blocks with convolution layers to map the original

samples into a feature embedding space. The relation module builds on two convolutional

blocks and two fully-connected layers. This module calculates the similarity between the

support and query samples [14]. The Relation Network also learns a metric for comparison

of the embedding. The idea is quite similar to Prototypical Network, because it averages

the embeddings for each class together to a single prototype, but it replaces distance with

a learnable relation module [43, 15, 17]. The Ćexibility of the model results from the

learnable similarity measure [14].

2.5 Hyperparameters

Deep Learning converts the linear input data and models into non-linear output to support

the learning of higher order polynomials beyond one degree for deeper networks. A typical

diagram of deep learning is shown in Figure 2.5.

Input Layer Hidden Layers Output Layer

Figure 2.5: Deep learning architecture [65]

At Ąrst, the raw data gets fed into the input layer of the deep neural network. The hidden

layers are created of several blocks and variations that make up the depth of the neural

network. The output layer presents the network result and can be further used for special

classiĄcations or predictions with associated probabilities [66]. This convolutional neural

network consists of four components, the convolution layer, the fully connected layer,

the pooling layer and an activation function. In general, several convolution layers are

followed by a pooling layer. At the end there is often a fully connected layer [67, 65].

2.5.1 Convolution Layer

Convolution is a mathematical operation in which two functions are combined to produce

another function. It is an integral that represents the degree of overlap of a function g

16



Chapter 2. Background

with another function f, thus "merging" one function with another. The convolution of

two functions f and g over a inĄnite range [−∞,∞] is shown in Equation 2.11 [68, 69]:

(f ∗ g)(t) = f(t) ∗ g(t) =
∫ ∞

−∞
f(τ)g(t− τ)dτ (2.11)

The ∗ does not represent multiplication, while (f ∗ g)(t) denotes convolution of the func-

tions f and g. τ is the formal variable for integration process and t is the physical time.

This mathematical operation forms the basis for the convolution layer. Convolution of

a two-dimensional data set, can be viewed as a series of convolutions in which one func-

tion, which is referred to as the kernel, is pushed (folded) over another two-dimensional

function, multiplied, and added. The Figure 2.6 shows the convolution of a function with

a kernel function that results in multiple data points. The kernel slides to each position

of the image and calculates a new pixel as the weighted sum of the pixels over which it

slides [68, 69, 70].

Figure 2.6: Convolution of kernel and a function [70].

The convolutional layers detects the local patterns and features in data from the previous

layers. The output of a convolution layer k is fk(x) ∈ R
nk (Equation 2.12) for every

x ∈ R
d [66].

fk(x)h = σk(⟨wt
k, f

p
k−1(x)⟩+ (bk)h) (2.12)

This output is valid for every p ∈ [Pk−1], t ∈ [Tk], h := (p− 1)Tk + t. The inner product

between a Ąlter of layer k and a patch at layer k-1 calculates the value of each neuron.

Afterward the bias is added and the activation functions are applied. Thus the number

of neurons at layer k is nk = TkPk−1, the width of layer k. It covers most of the used

variants, because every patch can be an arbitrary subset of neurons of the identical layer

[71]. These layers are composable, which means they feed the output of one convolutional

layer into another. The network can detect higher-level and more abstract features with

17



Chapter 2. Background

each layer [72].

2.5.2 Pooling Layer

The pooling layers semantically combine similar features into one. To perform the pooling

process as it is shown in the Figure 2.7, a window is chosen and the input elements lying

in that window are passed through a pooling function. The advantage of using pooling

layers is to decrease the number of trainable parameters and to introduce translation

invariance [66, 73, 65, 74].

Figure 2.7: Pooling process by a 2x2 window [65]

This pooling function creates another output vector. There are several pooling tech-

niques, for example average pooling and max-pooling. The max-pooling function has a

good performance and reduces the input dimensions signiĄcantly [75]. It computes the

maximum of the element over every patch from the previous layer. The number of neu-

rons outputs at layer k is nk = Pk−1, because there are Pk−1 patches at layer k − 1. The

output fk(x) ∈ R
nk (Equation 2.13) for every x ∈ R

d and p ∈ [Pk−1]] [66, 71].

fk(x)p = max
(

(fp
k−1(x)1, ..., (fp

k−1(x))lk−1



(2.13)

The max-pooling layer allows the next convolutional layer to operate on the most promi-

nent feature map as it takes only the maximum values from the previous feature map.

Furthermore they make the network more invariant to small transformations of the data

[72, 65].

2.5.3 Fully Connected Layer

This layer is similar to the fully connected network. After the output is passed into the

fully connected layer the dot product of weight vector and input vector is calculated to

get the Ąnal output [74, 65, 71].

2.5.4 Activation Functions

The primary function of the activation function is to introduce non-linearity among the

hidden layers or the output by computing the weighted sum of input and biases. This

18



Chapter 2. Background

weight makes the decision to determine if a neuron gets pushed or not. In general,

it changes the given data through some gradient processing, which is mostly gradient

descent. In the following it creates the output for the neural network containing the

parameters in the data. A linear output has no activation function [66, 71].

2.5.4.1 Sigmoid Function

The sigmoid function (Equation 2.14) is a non-linear and bounded differentiable real

function. It is used for real input data, with positive derivatives everywhere and some

degree of smoothness [66, 71, 76].

f(x) =
1

1 + exp(−t)
(2.14)

2.5.4.2 ReLU Function

The rectiĄed linear unit (ReLU) function is one of the widely used activation function. It

is a approximately linear function (Equation 2.15), which allows the function the abilities

of linear models, which make them easy to optimize with gradient-descent methods. The

ReLU apples a threshold operation to each input sample, where values less than zero are

set to zero [66, 71].

σ(t) = max(0, x) (2.15)

2.5.4.3 Softmax Function

The softmax function is mostly used in the last output layer to make a decision and

calculates the probability distribution from a vector of real numbers. It computes the

value to the input variable related to their weight. The output is in a range between 0

and 1 and the sum of the probabilities is equal to 1. The softmax function (Equation

2.16) returns the probabilities of each class. The target class has the highest probability

[77, 78, 66].

f(xi) =
exp(xi)

∑

j exp(xj)
(2.16)

19



Chapter 2. Background

2.6 Distance/Similarity Measures

The type of distance or similarity measures is the decisive factor in clustering and classiĄ-

cation of data points. One of the biggest challenge is to choose the right distance measure

for a given dataset [79, 80, 81, 82]. From a mathematical perspective the distance de-

scribes a quantitative degree of how far apart two objects are. This is often called metric,

while non-metric distance measures are sometimes named divergence. The power of the

relationship or the matching among two classes or features is shown by the similarity

[82, 80].

Some of the popular distance and similarity methods used in few-shot classiĄcation are

described in more detail below.

2.6.1 P-Norm

In mathematics, the p-norms are a class of vector norms deĄned for real numbers p ≥ 1.

This norm induces the Minkowski distance (Equation 2.17), which is a family of distances

deĄned for x, x′ ∈ R
d and p ≥ 1 [28].

dp(x, x′) =∥ x− x′ ∥p= (
d∑

i=1

♣xi − x′
i♣

p)
1

p (2.17)

The Figure 2.8 shows that if p < 1 is not a proper distance, because it violates triangle

inequality.

Figure 2.8: Unit circles for p-values in Minkowski distances [28]

The most widely used are the 1-norm, 2-norm, and∞-norm. By changing the variable p,

the computational distance between the data points leads to new distance metrics [81, 28].

1. p = 1 −→ 1-norm (Manhattan Distance)

2. p = 2 −→ 2-norm (Euclidean Distance)

3. p =∞ −→ 3-norm (Chebychev Distance)

20



Chapter 2. Background

2.6.2 1-norm (Manhattan Distance)

The Manhattan distance (Equation 2.18), which is also called city block distance, mea-

sures the distance between two points along axis at right angles [81, 79, 82].

d1(x, x′) =∥ x− x′ ∥1=
d∑

i=1

♣xi − x′
i♣ (2.18)

2.6.3 2-norm (Euclidean Distance)

The Euclidean distance describes the distance between two data points with a straight line

and is widely used in classiĄcation and clustering settings. The L2 distance determines

the root of square differences among the coordinates of a pair of objects (Equation 2.19).

2-norm has the additional property of being rotation and translation invariant, whereas

1-norm is only translation invariant [81, 79, 82, 28].

d2(x, x′) =∥ x− x′ ∥2= (
d∑

i=1

♣xi − x′
i♣

2)
1

2 =
√

(x− x′)⊤(x− x′) (2.19)

2.6.4 Cosine Similarity

The cosine similarity measures the cosine of the angle between two vectors of n dimensions

as it is shown in Equation 2.20. This similarity compares the two vectors of attributes x

and y by using a dot product and magnitude. [81, 79, 82].

cos(x, x′) =
x⊤x′

∥ x ∥2∥ x′ ∥2

(2.20)

The generalization of the cosine similarity is parameterized by a matrix M (Equation

2.21):

KM(x, x′) = x⊤Mx′ (2.21)

2.6.5 DOT Product

The dot product is also called as the inner product of two vectors as it is shown in Equation

2.22. It yields a scalar for binary vectors, the dot product is called the number of matches

or the overlap. It is the simplest linear kernel between instances in the original space X

[82, 28].

Klin(x, x′) = x⊤ · x′ (2.22)

21



Chapter 2. Background

The kernel corresponds to cosine similarity without normalization or bilinear similarity

when M=I

2.6.6 Dynamic Time Warping - DTW

Dynamic Time Warping computes discrepancy measurement between two sequences and

returns their optimal temporal alignment, because of their invariance to warping in the

time axis (Figure 2.9). A main advantage is its ability to work with series of different

lengths and phases. It Ąnds the minimum distance between two time series, where the

sequences are distorted by shrinking or stretching the time dimension. [83, 84, 28].

Figure 2.9: Dynamic Time Warping of two sequences [28]

Two temporal signals X and X ′ are given with a length of ♣X♣ and ♣X ′♣:

X = x1, x2, ..., xi, ..., x♣X♣ (2.23)

X ′ = x′
1, x′

2, ..., x′
i, ..., x′

♣X′♣ (2.24)

These sequences composed a warping path W (Equation 2.25) to deĄne the correspon-

dence of xi ∈ X to x′
i ∈ X ′ keeping the boundary condition, which allocates the Ąrst and

last elements of X and X ′ to each other. k is set as the length of the alignment path

[85, 86].

W = w1, w2, ..., wk max(♣X♣, ♣X ′♣) ≤ k < ♣X♣+ ♣X ′♣ (2.25)

The element kth is shown in Equation 2.26, i is the index for X and j from X ′ [86].

wk = (i, j) (2.26)

22



Chapter 2. Background

The path begins at each time series w1 = (1, 1) and ends at wK = (♣X♣, ♣X ′♣) to ensure

the use of all indexes from the two sequences in the warping path. The optimal path

is the minimum distance shown in the Equation 2.27, which is mostly calculated by the

Euclidean distance [86, 87].

Dist(W ) =
∑

k=1

Dist(wki, wkj) (2.27)

This optimal alignment path of ♣X♣ and ♣X ′♣ is shown in the cost matrix D. In Figure

2.10 the second path ♣X ′♣ is replaced by the variable name ♣Y ♣ . The axes of D represents

the time, where X is applied on the x-axis and Y on the y-axis [86].

Figure 2.10: Cost matrix with the optimal warp path [86].

Each cell of ♣X♣ and ♣Y ♣ is evaluated once in a constant time and results in an optimal

time of O(N2) for the algorithm yields an improvement [85]. The space complexity and

quadratic time is the limiting factor of the DTW algorithm and makes it costly in large

datasets. Fast Dynamic Time Warping is a possible solution, which limits the cells that

are calculated in the cost matrix and improves the optimal time to O(N) in both time

and space (Figure 2.11) [88, 86].

23



Chapter 2. Background

Figure 2.11: Cost Matrix in Fast Dynamic Time Warping [86]

2.7 Metrics for Performance Evaluation

In supervised learning the methods for evaluation include ClassiĄcation Accuracy, Clas-

siĄcation Loss, Confusion Matrix, F1-Score, Recall, and Precision. The metrics compare

the true values with the predicted values, which evaluates the performance of the model.

The expressions positive and negative relate to the prediction of the classiĄer, while the

expressions true and false relate to whether that prediction matches the instance label.

2.7.1 ClassiĄcation Accuracy

Accuracy (Equation 2.28) indicates the proportion of true results, both positives and

negatives, among the total number of cases examined. It is a statistical measure of how

well a classiĄcation correctly identiĄes or except a condition. [89, 90, 28].

acc =
tp + tn

tp + tn + fp + fn
(2.28)

1. True Positive (tp): indicates how many positive class elements predicted correctly.

2. True Negative (tn): indicates how many negative class elements predicted correctly.

3. False Positive (fp): indicates how many negative class elements are predicted as

positive class elements.

4. False Negative (fn): indicates how many positive class elements are falsely predicted

as negative class elements.

2.7.2 ClassiĄcation Loss

The loss function is a metric, which evaluates the difference between the actual labels and

the predicted labels. The basic loss function is the zero-one loss that counts how many

24



Chapter 2. Background

errors a hypothesis function induces in the set. The L1 loss (absolute error loss) is the

absolute difference between the actual value calculated and a prediction for each sample

in the data set. The total of all these loss values is called the cost function [91, 92, 28].

2.7.3 Confusion Matrix

The Confusion Matrix (Figure 2.12) is a matrix that shows the performance of the model

by visualizing the ground-truth labels versus model predictions. It demonstrates the

number of correct positive (true positives), correct negative (true negatives), false positive

(false positives) and false negative (false negatives) predictions [89, 90, 93].

Figure 2.12: Confusion Matrix [93]

2.7.4 F1-Score, Recall and Precision

The Precision (Equation 2.29) measures the reliability of the model in classifying positive

samples and is the ratio of true positives and total positive elements predicted. It focuses

on the error, which occurs by rejecting a true null hypothesis H° [89, 90, 93].

precision =
TP

TP + FP
(2.29)

The Recall (Equation 2.30) measures how many positive samples were correctly classiĄed

by the model. It only takes account the correct classiĄcation of all positive samples, but

not whether a negative sample is classiĄed as positive. It focuses on the error, which

occurs by accepting a false null hypothesis H° [89, 90, 93].

recall =
TP

TP + FN
(2.30)

Recall detects all positive samples without paying attention to whether negative samples

are incorrectly classiĄed as positive. Precision is sensitive to classifying a sample as

25



Chapter 2. Background

positive, including negative examples that have been incorrectly classiĄed as positive

[89, 90, 93].

The F1-Score (Equation 2.31) is a summary metric due to the harmonic mean of precision

and recall and tells you how accurate the classiĄer is. A high score shows a good balance

between recall and precision and performs well on imbalanced classiĄcation tasks. The

harmonic mean (Equation 2.32) describes the reciprocal of the arithmetic mean of the re-

ciprocals of the data and tends to emphasize the impact of small outliers while minimizing

the impact of large outliers [89, 90, 93].

f1 =
2TP

2TP + FP + FN
(2.31)

H =
n

1
x1

+ 1
x2

+ 1
x3

... + 1
xn

(2.32)

n ... the number of data points in the set

2.8 Deep learning frameworks and libraries

Deep learning frameworks provide building blocks for designing, training, and validating

models. Popular frameworks include PyTorch, TensorFlow, or Keras, which in particular

is actually a library that can be built on top of TensorFlow. A summary of each framework

is listed in the following [94, 95, 96].

1. Keras is a high-level neural network library, which runs mainly on TensorFlow back-

end. CNTK or Theano is a respective possibility too. This library allows rapid and

easy experimentation with the ability to detect an available GPU automatically and

take advantage of it [94, 95].

2. The PyTorch machine learning framework is based on Torch. The advantage is

its higher Ćexibility and the ability to make coding more manageable and increase

processing speed [95].

3. TensorFlow is a deep learning software library to deĄne, train and deploy machine

learning networks. It offers distributed training support and scalable production

deployment options [96].

26



Chapter 3. State-Of-The-Art

3 State-Of-The-Art

In recent years, classiĄcation using Few-Shot Learning has attracted considerable atten-

tion in Vinyals et al. (2016); Snell et al. (2017); Finn et al. (2017); Ravi Larochelle

(2017); Sung et al. (2018); Garcia Bruna (2018); Qi et al. (2018). A well-performing

approach for few-shot classiĄcation is Meta-Learning, where transferable knowledge is

extracted from a set of tasks and shared to prevent overĄtting and improve the gen-

eralization. In this context there are approaches based on model initialization, such as

methods Ravi & Larochelle (2017); Finn et al. (2017) or Metric Learning methods Vinyals

et al. (2016); Snell et al. (2017); Sung et al. (2018) [15].

The above methods are used in computer vision, but not for time series data. Within

the scope of this work, the Metric Learning methods are modiĄed to be used to clas-

sify anomalies in time series data. The theory on which the implementation is based is

presented below.

3.1 Meta Metric-Based Few-Shot ClassiĄcation

3.1.1 Matching Network

One method to perform Meta Metric Learning in FSL is the matching network. The need

for Ąne-tuning to adapt to new class types is not necessary any more, because the model

learns a network that maps few labelled support sets and an unlabelled sample to its label

(Figure 3.1) [19, 14].

Figure 3.1: Matching network in the few-shot scenario [19]

27



Chapter 3. State-Of-The-Art

The model deĄnes a classiĄer function cS for each support set S. More speciĄcally, the

small support set S of k examples of the labeled input S = ¶(xi, yi)♢
k

i=1 is shown to the

function xs(x̂). The given test sample x̂ is the distribution of the probability over the

outputs ŷ. The method uses the parametric neural network, which is deĄned by P (ŷ♣x̂, S ′).

This network predicts the appropriate label distribution ŷ for each test sample x̂, when

given a novel support set of samples S ′. The probability, the linear combination of the

labels in the support set over ŷ is shown in Equation 3.1 [19].

P (ŷ♣x̂, S) =
k∑

i

= a(x̂, xi)yi (3.1)

The related label distribution from the support set S = ¶(xi, yi)♢
k

i=1 and the inputs for

this probability are xi, yi. The variable a is deĄned as the attention mechanism as it can

be seen in Equation 3.2. It is a kernel on X × X . [19].

a(x̂, xi) =
ec(f(x̂),g(xi)

∑k
j=1 ec(f(x̂),g(xj)

(3.2)

The classiĄcation a takes the softmax over the cosine distance c between the embeddings of

x̂ and xi. The class with the highest probability is selected as the predicted class [42, 14].

The matching network can be called as a weighted nearest-neighbor classiĄer applied

within an embedding space [42]. To achieve the best accuracy through the classiĄcation,

the embeddings f and g (Figure 3.1) act as a feature space X .

The training process takes place in episodes, with each episode using mini-batches of

support and query examples. Frequent updates of the stochastic gradient descent (SGD)

are quite costly and can lead to worse results, since an approximation rather than the

actual gradient is calculated at each step, leading to cost variations. Therefore, it is helpful

to combine several, but not all examples into one update, which is called mini-batching.

This means that n examples are taken as a subset of all data during one iteration and run

updated. The batch size n can be set as a hyperparameter. This still results in multiple

updates within an epoch, but not necessarily as many as SGD [97]. The idea is that

each episode is designed to imitate the few-shot task by subsampling classes as well as

data points. Further gradient updates are performed on episodes with c classes randomly

sampled from the base label set and k samples for each class. The use of Meta-Learning

with episodic training, makes the training issue more faithful to the test framework and

thus improves generalization. Additionally it brings the training and test distributions

together and alleviates the problem of overĄtting. The testing is carried out through the

presentation with a few samples of a new unlabeled task [19, 42, 14].

28



Chapter 3. State-Of-The-Art

3.1.2 Prototypical Network

Another network that has performed efficiently in few-shot classiĄcation is the prototyp-

ical network, which conducts classiĄcation by learning the distance distribution among

relations. Because of their simpler inductive bias, it addresses overĄtting as key issue of

Few-Shot Learning [42, 98, 99].

In the prototypical network exists an embedding, where the points cluster around one

centroid embedding for each class. It learns a non-linear mapping of the input into an

embedding space with the use of a neural network [42]. The prototypical network aver-

ages the vector of a few support instances as the class prototype. This vector is the mean

vector of the embedded support instances belonging to its class [98]. It compares the

distance between all prototype vectors and a target query vector by performing nearest

neighbor classiĄcation with learned class features. These prototypes ck are the mean of

the embedded support samples for each class k in few-shot as Figure 3.2 shows [18, 98, 42].

Figure 3.2: Prototypical networks in the few-shot scenario [42].

Due to the few-shot setting, only a support set of N labeled samples S = ¶(x1, y1), ..., (xN , yN))♢

is given. Each xi ∈ R
D is the D-dimensional feature vector of a sample. The related label

of this sample is yi ∈ ¶1, ..., K♢. The set of labeled samples with class k is called Sk [42].

There is a support and a query set for each possible class. A prototypical network com-

putes a prototypical representation of each class k with a M-dimensional representation

ck ∈ R
M by an embedding function fϕ : R

D ←− RM with learnable parameters ϕ. ck

estimates the prototypes for each possible class k.

c1, c2, c3 −→ ck are the class prototypes

This estimation works with a forward pass in our network fϕ(xi). If it is a 5-Shot Learning,

it has given 5 xi and the division by 5 (NC). The prototype, which is the mean vectors

29



Chapter 3. State-Of-The-Art

of the embedded support points belonging to its class, is created (Equation 3.3) [42].

ck =
1

♣Sk♣

∑

(xi,yi)∈Sk

fϕ(xi) (3.3)

The distribution over classes for a given query input x is a softmax over the inverse of

distances between the query data embedding and prototype vectors. The Equation 3.4

represents the probability [42, 100].

pϕ(y = k♣z) =
exp(−d(fϕ(x), ck))

∑

k′ exp(−d(fϕ(x), ck′))
(3.4)

y is the output of the network, k is the true label and x is the input. The classiĄer is the

probability of the output belonging to a speciĄc true class given the input. The distance

gives more weight to a point further apart. By taking the negative of the distance, the

distance is converted into a similarity. The higher the value is, the more close the point

is to the speciĄed centroid. By applying a standard softmax, these distances are turned

inside probability distributions. The sum of the values is 1. The higher the value of a

speciĄc class is, the higher the probability is that the input xQ belongs to that class [42].

The learning is done by minimizing the negative log-probability with the loss function

shown in Equation 3.5. The loss is initialized to zero and then it is updated with a

certain number of iterations(NC) [42].

J ←− J +
1

NCNQ



d(fϕ(x), ck) + log
∑

k′

exp(−d(fϕ(x), ck)

]

(3.5)

Instead of comparing the query samples with all the support samples, Prototypical Net-

work only compares the query sample with the class prototype (or mean class embedding).

The key assumption is that there exists an embedding for each class where samples cluster

around a single prototypical representation. The advantage of the prototypical network

is that the network has fewer or equal class prototypes than the number of samples in the

support set and therefore the amount of required pairwise comparison decreases. This

saves computational costs [101, 42]. The following pseudocode 3 shows the training pro-

cedure of a prototypical network to produce the loss J(ϕ) [42].

30



Chapter 3. State-Of-The-Art

Algorithm 3 Algorithm of the Prototypical Network [42]

Input: Training class set Dtrain

Steps:

1: for k in (1, ..., NC) do

2: Sk ←− random Sample (DVk
, Ns)

3: Qk ←− random Sample (DVk
§k, Ns)

4: ck ←−
1

♣NC ♣

∑

(xi,yi)∈Sk
fϕ(xi)

5: end for

6: J ←− 0
7: for k in (1, ..., NC) do

8: for (x,y) in Qk do

9:

10: J ←− J + 1
NCNQ

[d(fϕ(x), ck) + log
∑

k′ exp(−d(fϕ(x), ck)]

11: end for

12: end for

The training set Dtrain = ¶(x1, y1), ..., (xN , yN)♢, where each yi ∈ ¶1, ..., K♢ is the input

of the algorithm. Dk is the subset of D containing all elements (xi, yi) so that yi = k.

The output of the code is the loss J for a randomly generated training episode.

The Prototypical Network and the Matching Network in the few-shot classiĄcation is equal

in the one-shot scenario. The Matching Network merges the embedding and classiĄcation

to form an end-to-end differentiable weighted nearest neighbors classiĄer with the cosine

distance. The weights are the pairwise similarity between each query sample and each

support sample [19]. The Prototypical Network Ąrst computes a prototype for each class

and then combines these centroids with the query samples using the metric distance of

Euclidean distance [101, 42].

3.1.3 Relation Network

Another method for few-shot classiĄcation is the end-to-end trained relation network

(Figure 3.3). The network performs the classiĄcation in two stages by learning to compare

query samples against few labeled samples.

31



Chapter 3. State-Of-The-Art

Figure 3.3: Relation network in the few-shot scenario [43].

The Ąrst stage is an embedding module fϕ, which compresses and creates a sort of con-

centration of different layers and generates representations of the query and training

samples. Since the aim is to compare the query data with all the classes, they concate-

nate the query feature with all the other encoded classes. The meta-training proceeds to

learn a deep distance metric to differentiate few amount of samples in the episodes. Each

episode reproduces the few-shot setting. Once this feature maps concatenation is created

by training, they are passed through another neural network, which is the second stage.

This second branch is the classiĄer, represented by the relation network gϕ. It analyzes

the given layers and N generates relation scores ri,j for the relation between one query

input xj and training sample set tasks xi. The relation score for each query xj is shown

in Equation 3.6.

ri,j = gΦ(N(fϕ1
(vc), fϕ2

(xj))) i = 1, 2, ..., N (3.6)

In general, the output is a score between [0, 1], which represents the similarity between xi

and xj. In the following equation the relation score is compared to the labelled one-hot

vector. This training is done with the mean square error loss, regressing the relation score

ri,j to the ground truth (Equation 3.7).

ϕ, Φ←− arg min
ϕΦ

m∑

i=1

n∑

j=1

(ri,j − 1(y1 == yj))
2 (3.7)

The indicator function is equal to 1 if the yi == yj is satisĄed, otherwise it would be

equal to zero. The loss function minimizes a speciĄc loss such that these parameters of

the neural network are moved towards to a minimum [43].

RelationNet also learns a metric for comparison of the embedding. The idea is quite similar

to Prototypical Network, because it averages the embeddings for each class together to a

single prototype, but it replaces distance with a learnable relation module [43, 15, 17].

32



Chapter 4. Methodology

4 Methodology

This chapter addresses the various steps involved in creating an efficient labeling system

for noisy industrial data using a few labeled samples with DL Few-Shot classiĄcation

methods.

In addition to a training set and a test set, a support set and a query set are required for

each new episodic training in the learning phase (Section 2.3.7). In the deĄnition phase of

the embedding, a discriminative feature space is created for each set. Therefore, the input

of the support set or the query set is fed into a deep neural network that generates the

embedding. Further the network can be pre-trained and improved by a feature extractor,

which is not evaluated in this work. The metric is learned on the embeddings between

the support and the query set. The goal of the learning process is to show the similarity

and separate the differences. If a sample is similar to another sample of the same class,

a feature representation is derived from the sample. Conversely, if a sample is similar to

another class, it should be as dissimilar as possible. The network can be trained with the

use of a loss function based on the distance between the representation of pairs, which is

assimilated into the classiĄcation phase [9, 14, 54, 26, 94].

4.1 Pipeline of the Few-Shot ClassiĄcations

The Ćow chart Diagram 4.1 represents the pipeline of the experiments chronologically.

Subsequently, the critical factors for the Ćow are pointed out and discussed further.

33



Chapter 4. Methodology

Data Acquisition

Data Preprocessing
• Windowing

• Downsampling

• Scaling

Data Augmentation

• Shifting

• Balancing

Dataset CreationTraining Set Test Set

Few-Shot Methods

• Matching
Network

• Prototypical
Network

• Relation
Network

Deep Neural
Network

• CNN

Metric

• Euclidean
Distance

• Cosine Distance

• ...

Training Process

Training Parameters

• Learning Rate

• LR Scheduler

• Optimizer

• Number of
Epochs

• Epoch Size

Testing Process

Compare models with
performance metrics

Figure 4.1: The pipeline of the Few-Shot ClassiĄcation

34



Chapter 4. Methodology

4.2 Data

The data used for this work have been collected within two different time periods, each

over 5 months. During these periods, data were taken from different milling machines of

the same type. While there were many good examples in the collection, few anomalies

were noted. As a result, the data set is imbalanced, having many examples for one class

but few for the other. The collection of the data, as well as the subsequent base code for

preprocessing, has already been described in earlier work [102], and will not be further

explained here. The respective parameters for the correct preprocessing are evaluated by

myself and further research [103].

4.2.1 Data Preprocessing

Data preprocessing techniques have been used to reduce the complexity of the data and

to detect or remove irrelevant and noisy parts from the data to improve the overall quality

of the data. For the collected data three different preprocessing methods are used in this

work: Downsampling, Scaling and Windowing [104, 105].

It is important to note that these described techniques are mainly used for image process-

ing and not for time series data. In the context of this work, these techniques produce

good results for the used data. However, it should be noted that this cannot necessarily

be generalized and still needs to be investigated further.

Downsampling is an efficient method for speeding up classiĄcation time. It reduces the

amount of data in a speciĄc sequence according to a speciĄed downsample factor, which is

selected by the user in the preprocessing task [106, 107]. The downsampling factor is set

to 2 for all experiments after applying an anti-aliasing Ąlter. The factor 2 means that 2

points describe each upward and downward movement of the curve. Although the factor

is low, the curve can be represented sufficiently [108].

The scaling is done in a function [102] designed speciĄcally for the data in this project.

In the data there is a difference between the maximum and the minimum. Therefore,

normalization of the value magnitudes is carried out and scaled to appreciably low values.

Standardization assumes that the observations correspond to a Gaussian distribution with

a well-formed mean and standard deviation. The most common approaches are min-max

normalization and z-score normalization. In the scope of the thesis, the z-score (Equation

4.1) is used because it offers a better normalization for industrial data containing outliers

[105, 109, 102]. v is the old feature value, v′ is the new one, and σ is the standard deviation

of v.

v′ =
v −mean(v)

σ
(4.1)

35



Chapter 4. Methodology

Windowing is a common preprocessing technique in computer vision that was also used

here. It is important to note that while this technique gives good results in this context,

it should not be generalized to time series data. In this work the data is split into smaller

patches by dividing the time series into smaller numerous windows, which is exemplary

shown in Figure 4.2. The algorithm picks a random sample of a user-selected size from

the full set of the whole sample. The window size should be neither too small, thus

containing less information, nor too large, which can lead to overloading in the neural

network [110, 111]. The window size for all experiments is set to 4096, has already been

established in research [103] and was not part of this work.

Figure 4.2: Shows the technique of windowing a data sample. Windows are extracted
from the data sample to create multiple samples from a single sample [103].
In general this method is used for computer vision models and not for time
series data. Nevertheless this technique generates valuable results and can be
used for the data set

4.2.2 Data Augmentation

Data augmentation is a technique to increase the diversity of the training set by applying

random, but realistic transformations. This is a way to proceed generating new data from

the current ones, where those new ones are variants of the data included in the initial

databases. One approach is explained in the following.

Shifting is a sliding window technique that divides the time series data (Figure 4.3). The

36



Chapter 4. Methodology

time series is not only divided into individual segments, but the number of samples can

be increased by adjusting the overlap rate, which in this work is called the shift distance

[112]. The parameter for the shifting distance is set to 2096 [103] for all experiments.

Figure 4.3: Shows the technique of the sliding window mechanism. Windows are created
at a distance of a certain overlap factor [103]. The window size must be
selected beforehand to create segments with the same size. The higher the
overlap factor, the more window segments can be created from the existing
time series data.

In the shift technique, the balancing factor can reduce the proportion of imbalanced

data. This makes it possible to generate x more data for one class than others and thus

counteract the imbalance [113]. In this thesis, a factor of 2 was assumed so that the

balance goes in the direction of bad examples. A factor of 2 means that the overlap rate

for defect data is 2 times higher than for good data, so more defect samples are generated

to achieve a more balanced data set.

In the following Table 4.1, the selected parameters are given.

Window Size Downsampling Scaling Shifting Distance Balancing Factor

4096 2 True 2096 2

Table 4.1: The chosen preprocessing and augmentation parameters to generate the Ąnal
data set for the experiments

37



Chapter 4. Methodology

Finally, it should be noted that although I did the preprocessing, both the functions and

the parameters were not researched and evaluated as part of this thesis; I refer only to

the results of the masterŠs theses [102, 103]. Figures 4.4 and 4.5 illustrate the difference

between the raw data and the preprocessed data. The characteristics machine, process and

period time of the recorded data are identical. After preprocessing, the data is visualized,

where a time window was taken out due to the used technique windowing.

38



Chapter 4. Methodology

Figure 4.4: The raw time series data of 3 different orientation X-Y-Z axis.

39



Chapter 4. Methodology

Figure 4.5: The preprocessed time series data of 3 different orientation X-Y-Z axis.

40



Chapter 4. Methodology

4.2.3 Dataset - Training Set & Test Set

The data is divided into a training and a test set for the ML classiĄcation task. To

ensure uniform evaluation and comparison, the data sets for each experiment are the

same. Regarding the Few-Shot Learning technique, the aim is to train on as few samples

as possible. Therefore, in contrast to most classiĄcation tasks, the training set is small,

whereas the test set is large. The purpose is that the network achieves a good performance

even with fewer samples.

The dataset is collected from three different milling machines (M1, M2, M3). Each ma-

chine can operate 15 different operation processes, which are referred to as OP00-OP14

in the following work. In the context of the work, the data is divided process by process,

whereas it contains examples from all three machines. The data is split process-wise but

not machine-wise to make the training more challenging. Additionally, there is variability

in the set due to the time period of the data collection, around 2.5 years. The number

of samples for each process and machine highly varies, making the data imbalanced. The

models for the training set are user-selected to achieve an overview of the process and

machines, although there are just a few samples. In the case of few samples, e.g. 6, it is

impossible to consider examples from each process from every machine. A more detailed

list of the datasets can be found in the appendix.

The number of examples chosen for each data set was determined, with a gradation

towards a few examples. It should be considered that each training is performed with

data samples from the operation process OP00-OP04. However, there are two scenarios

when testing: In the Ąrst scenario all operation processes from OP00-OP14 are evaluated.

In the second one only the data from OP05-OP14, which the training set has never seen,

are used. This makes the network evaluation more challenging if the testing is done on

unseen samples.

In this work, the classiĄcation is based on two classes, good and bad samples. The labeling

of good and bad samples is predeĄned in another work and will not be further discussed

in the context of this thesis. Before the Ąnal data sets were selected and the evaluation

for the thesis was performed, good and bad examples were also divided by procedure,

resulting in similarly good results. However, only good and bad examples are classiĄed

independently of the processes to ensure good comparability and discussion of the results

and not to address an additional issue.

In the following Table 4.2, the splitting of the created dataset is shown.

41



Chapter 4. Methodology

Data Classes Train Test Train good Train bad Test good Test bad

Set Process Process Samples Samples Samples Samples

DS1

good/bad OP 00-04

OP 00-14

70 pc. 21 pc. 1632 pc. 70 pc.

DS2 35 pc. 11 pc. 1632 pc. 70 pc.

DS3 17 pc. 6 pc. 1632 pc. 70 pc.

DS4

OP 05-14

70 pc. 21 pc. 1902 pc. 49 pc.

DS5 35 pc. 11 pc. 1902 pc. 49 pc.

DS6 17 pc. 6 pc. 1902 pc. 49 pc.

Table 4.2: The table shows the created datasets for the evaluation of the FSL-Methods
with two classes (good and bad). The training set consist of data from operation
00 to 04 (5 different process). The test set consist of data from operation
processes 00-14 or 05-14. The number of the training data decreases in the
dataset.

4.3 Few-Shot ClassiĄcation

The Few-Shot learning and the subsequent classiĄcation occur in two stages: Training

and Testing.

4.3.1 Training Stage

In this section, the setting of the optimizer, the learning rate, the number of epochs, epoch

size, and the number of samples for each support and query set are described. To Ąnd

the optimal setting of the combination of all the hyperparameters (Section 2.5), several

experiments are required. In this evaluation, the values vary within a speciĄc range, with

the Ąnal parameters as follows.

The model is trained with an initial learning rate of 1× 10−3, applied with an additional

scheduler to adjust the learning rate as the training progress to a pre-deĄned schedule.

This can be performed by learning rate schedules, including time-based decay, exponential

decay, or step decay. In this approach, the STEPLR is applied, which decays the learning

rate of each parameter by every step size epoch. The step size is set to 5× 10−1 [114].

The Adaptive Moment Estimation (Adam) is used for optimization, a general DL training

application. It improves the training by adapting the learning rate to different parameters

automatically, based on the statistics of the gradient. The aim is to handle sparse gradients

on noisy problems [115, 116].

The optimal number of epochs depends on the size of the training and the support/query

set.

42



Chapter 4. Methodology

To avoid overĄtting, the number of epochs has to be reduced according to the decreasing

number of samples in the training set. With a small number of samples in the training

set, as in this case, an epoch number of 6 is a good parameter for this use case. The goal

was to select an epoch number that remains the same for each experiment and does not

require as much computation time, but still allows an efficient training.

Each epoch is composed of several batches, which represents the epoch size. The epoch

size is set for all experiments to 1000.

In each training epoch, a subset is randomly selected.

Depending on the application, these subsets are called support sets or query sets. The

size of the subsets can be varied, which will be discussed later.

All parameters described were used consistently for each experiment to allow better com-

parison of results. Table 4.3 gives an overview.

Learning Rate 1× 10−3

LR Step Size 5× 10−1

Optimizer ADAM

Number of Epochs 6

Epoch Size 1000

Table 4.3: The table shows the chosen training parameters.

In the context of the work, the classiĄcation is done on 2 classes (good and bad), which

is known in the few-shot term as 2-way.

In addition to the Ąxed parameters, the number of shots is varied in the support and

query set. A 2-way k-shot classiĄcation is proposed, which represents 2 number of classes

and k number of shots in the support set, and the query set in each epoch. In addition,

experiments were conducted with a different number of examples in the support and query

set. Table 4.4 shows the different sizes of the support and query set.

43



Chapter 4. Methodology

n-way k-shot

Classes Support Set Query Set

2 3 3

2 3 5

2 5 3

2 5 5

2 5 7

2 7 5

2 7 7

Table 4.4: The table shows the selected values for the n-way k-shot classiĄcation. Each
data set contains 2 classes (good and bad). The shots for the support and
query set vary between 3 and 7.

Due to the episodic sampling approach, the class imbalance in the data samples is reduced

by randomly selected class pairings with an equal number of class samples.

4.4 Testing Stage

The training set consists of several epochs with a number of mini-batches. In contrast,

the testing set is evaluated episodically on the mini-batches in the test episodes.

The testing parameters and the size of the support and query set are equal; only the

number of the test episodes is set to 1000.

4.4.1 Embedding Network Structure

The deep neural network architecture to form the embedding for the Few-Shot classi-

Ącation is a Convolutional Neural Network (CNN). A simple CNN was chosen as the

embedding function to evaluate the best performing Few-Shot Learning method and met-

ric.

The model consists of one convolutional block, consisting of a convolutional layer with

ReLU activation as well as a max-pooling layer. The architecture of the CNN model is

shown in table 4.5 and is generated by several trial-and-error experiments.

44



Chapter 4. Methodology

Layer Feature Map Size Kernel Size Stride Activation

Input Data 3 20 ×3× 4096 / / /

Convolutional 32 20 ×32× 4096 3 2 ReLU

Maxpool 32 20 ×32× 2047 3 2 /

Convolutional 64 20 ×64× 2047 3 2 ReLU

Maxpool 64 20 ×64× 1023 3 2 /

Convolutional 64 20 ×128× 1023 3 2 ReLU

Maxpool 3 20 ×128× 511 3 2 /

Convolutional 32 20 ×32× 511 3 2 ReLU

Maxpool 3 20 ×32× 255 3 2 /

Flattening 32 20 ×8160 / / /

Table 4.5: The table shows the architecture of the Convolutional Neural Network(CNN).
The properties of the different layers are described in more detail in section
2.5.

The same CNN is used for both support and query sets in the training and test process.

45



Chapter 4. Methodology

4.4.2 Models and Metrics of Few-Shot Learning

The performance of the classiĄcations depends mainly on the chosen Few-Shot Learning

method and the distance/similarity measure. Three different learning methods are chosen

for the experiments, described in Section 3.2 in more detail.

In addition, different distance/similarity measures explained in Section 3.1 are used for

the classiĄcation task.

The challenge was to make the chosen networks and metrics applicable to the noisy

industrial data, due to different dimensions.

During the experiments, some metrics and the relation network were found to be inap-

propriate for the process data because they either had poor evaluation performances, or

did not train at all. Therefore, the training was not Ąnalized on these metrics.

4.5 Overview of the Experiments

The Ąnal performed experiments are listed in Table 4.6.

Experiment Dataset Model Metric Shots (Support & Query ) Epoch

Exp1 DS1 PN L2 5 & 5 6

Exp2 DS2 PN L2 5 & 5 6

Exp3 DS3 PN L2 5 & 5 6

Exp4 DS4 PN L2 5 & 5 6

Exp5 DS5 PN L2 5 & 5 6

Exp6 DS6 PN L2 5 & 5 6

Exp7 DS1 MN L2 5 & 5 6

Exp8 DS2 MN L2 5 & 5 6

Exp9 DS3 MN L2 5 & 5 6

Exp10 DS4 MN L2 5 & 5 6

Exp11 DS5 MN L2 5 & 5 6

Exp12 DS6 MN L2 5 & 5 6

Exp13 DS1 PN L2 3 & 5 6

Exp14 DS1 PN L2 7 & 5 6

Exp15 DS1 PN L2 3 & 3 6

Exp16 DS1 PN L2 7 & 7 6

Exp17 DS1 PN L2 5 & 3 6

Exp18 DS1 PN L2 5 & 7 6

Exp19 DS1 PN Cosine 5 & 5 6

46



Chapter 4. Methodology

Experiment Dataset Model Metric Shots (Support & Query ) Epoch

Exp20 DS1 PN DOT 5 & 5 6

Exp21 DS1 PN DTW 5 & 5 6

Exp22 DS1 MN Cosine 5 & 5 6

Exp23 DS1 MN DOT 5 & 5 6

Exp24 DS1 MN DTW 5 & 5 6

Exp25 DS1 MN L2 3 & 3 6

Exp26 DS1 MN L2 7 & 7 6

Exp27 DS6 PN L2 5 & 5 6

Table 4.6: The table listed the different experiments on which the FSL method is evaluated
in scope of this work.

4.6 Library Details

The whole pipeline was written in Python and supported by the machine learning frame-

work PyTorch and the library Keras (Section 2.8). For the main part, the training and

testing, PyTorch was chosen because of its Ćexibility and low abstraction, which allows

better adaptation of parameters during the learning process. The preprocessing part is

done with Keras, because some used functions, which were not programmed within the

scope of this work, are based on Keras [94, 95, 96].

47



Chapter 5. Results and Discussion

5 Results and Discussion

In this chapter, FSL method and Metric Learning method are evaluated for the given time

series data. In the Ąrst section (5.2.1) we evaluate the impact of the number of samples

per class. In section 5.2.2 the number of shots per support set is changed. In addition,

the network method is changed in section 5.2.3. Finally, in section 5.2.4, the classiĄcation

is done on different distance/similarity measures.

5.1 Results

To determine the performance of the models, several evaluation metrics (Test Accuracy,

Test Loss, F1-Score, Precision, Recall, Confusion Matrix), which are described in chap-

ter 2.6, are used. The recall and precision metrics can be interesting to highlight and

understand the modelŠs behaviour better. Depending on the Ąnal use case, the focus is

on a high recall or precision. While precision refers to the percentage of relevant results,

recall refers to the percentage of all relevant results that were correctly classiĄed by an

algorithm. A high recall is usually preferred to detect and Ąlter any anomaly, focusing on

anomaly detection.

Considering two metrics and given the unbalanced dataset in terms of good and bad

examples, the F1 measure is used throughout the evaluation of the different models. In

conjunction with accuracy, the methods can be evaluated efficiently. The parameters for

the composition of the experiments would go beyond the scope of the table. They are

described in the methodology chapter Table 4.5. In subsequent, I will mention only the

experiment numbers. Finally, the following results in Table 5.1 are the average of all the

performance metrics over each epoch.

48



Chapter 5. Results and Discussion

Experiment Train Train Test Test F1 Precision Recall

Loss Accuracy Loss Accuracy Score

Exp1 0.0004 1.0000 0.5989 0.9412 0.9392 0.9548 0.9376

Exp2 0.0003 0.9998 0.8149 0.8870 0.8817 0.9120 0.8808

Exp3 0.0000 1.0000 1.2798 0.8061 0.8009 0.8358 0.8150

Exp4 0.0004 1.0000 0.5825 0.9422 0.9413 0.9524 0.9428

Exp5 0.0003 0.9998 0.7439 0.8928 0.8893 0.9119 0.8926

Exp6 0.0000 1.0000 1.2922 0.7758 0.7640 0.8059 0.7794

Exp7 0.0076 0.9970 0.7395 0.8879 0.8735 0.8937 0.8778

Exp8 0.0002 1.0000 1.5152 0.8121 0.7957 0.8355 0.8026

Exp9 0.0001 1.0000 2.4469 0.7399 0.7181 0.7755 0.7454

Exp10 0.0076 0.9970 0.7570 0.8920 0.8865 0.9028 0.8938

Exp11 0.0002 1.0000 1.5813 0.7994 0.7840 0.8221 0.7968

Exp12 0.0001 1.0000 2.6403 0.6882 0.6600 0.7131 0.7036

Exp13 0.0017 0.9994 0.7725 0.9303 0.9293 0.9413 0.9340

Exp14 0.0003 1.0000 0.6176 0.9490 0.9482 0.9558 0.9530

Exp15 0.0020 0.9993 0.5503 0.9402 0.9375 0.9555 0.9413

Exp16 0.0001 1.0000 0.8983 0.9376 0.9370 0.9456 0.9409

Exp17 0.0018 0.9995 0.6066 0.9388 0.9368 0.9549 0.9387

Exp18 0.0007 0.9997 0.7045 0.9437 0.9432 0.9490 0.9474

Exp19 0.3407 1.0000 0.4173 0.9531 0.9521 0.9619 0.9530

Exp20 0.0026 0.9992 0.7776 0.9351 0.9334 0.9482 0.9362

Exp21 2.5340 0.8548 2.8910 0.8303 0.8345 0.8268 0.8914

Exp22 0.3627 0.9975 0.4603 0.9176 0.9147 0.9274 0.9186

Exp23 0.0047 0.9988 0.7948 0.8870 0.8850 0.8979 0.8930

Exp24 8.3297 0.7235 8.6038 0.6908 0.6460 0.6647 0.7292

Exp25 0.0314 0.9898 0.5305 0.8812 0.8707 0.8892 0.8843

Exp26 0.0048 0.9984 1.0743 0.8642 0.8556 0.8789 0.8610

Exp27 0.0004 1.0000 0.7834 0.9218 0.9190 0.9270 0.9216

Table 5.1: The table shows the results of the perfomance metric for the experiments listed
in Table 4.6.

5.2 Discussion

This section provides a detailed comparison and evaluation of the results. There are

four types of approaches in which different parameters have been varied, which will be

explained in more detail in the following sections. However, the changes must not be

considered individually, as it is always an interaction of several variants. The same training

49



Chapter 5. Results and Discussion

and testing sets are used in the following experiments (Table 4.2).

5.2.1 Dataset Discussion

The two networks are evaluated on datasets where the number of examples in the set

was reduced. Dataset 1 is the largest one with 91 pieces (pc.), followed by DS2 with 46

pc. and DS3 with 23 pc. for training samples. As shown in Diagrams 5.1 and 5.2, the

model trains faster with few examples (Exp. 3) than many (Exp. 1). This applies to both

the PN and the MN, whereby the PN reaches 100 % after fewer epochs. The training is

completed in about 6 epochs after the testing takes place. For the evaluation in Figures

5.1 and 5.2, experiments 1, 2, 3, 7, 8 and 9 are used (Table 5.1).

Figure 5.1: Train loss and accuracy of the Prototypical Network trained on datasets 1, 2
and 3. The parameters for the experiments are listed in detail in Table 4.6.

The training loss for exp 3 in PN is 1.3e−5, while it is for exp 9 in MN 5e−5.

Figure 5.2: Train loss and accuracy of the Matching Network trained on datasets 1, 2 and
3. The parameters for the experiments are listed in detail in Table 4.6.

50



Chapter 5. Results and Discussion

The performance decreases with fewer examples, as shown in Diagram 5.3. However,

good results with a F1-score of 80.09 % can be achieved with 17 good and 6 bad examples

(dataset 3). The prototypical network performs better than the matching network on all

performance metrics (Test Accuracy, F1-Score, Precision, Recall), as Figure 5.3 shows.

Figure 5.3: Metrics for the performance evaluation of the Prototypical and Matching Net-
work. The parameters for the experiments are listed in detail in Table 4.6.

In datasets 4,5 and 6, the training set and the test set consist of completely different

samples. The performance of experiment 4, 5, 6 approximately has the same performance

as experiments 1, 2, 3. The exact composition of the data sets can be found in Table 4.2.

For evaluation 5.4, experiments 1, 2, 3, 4, 5, 6 for PN and 6, 7, 8, 9, 10, 11 for MN are

used (Table 5.1).

Figure 5.4: Metrics for the performance evaluation of the Prototypical and Matching Net-
work for all datasets. The parameters for the experiments are listed in detail
in Table 4.6.

The error rate in the confusion matrix (Figure 5.5) increases proportionally to a lower

number of samples. Even in dataset 1, with the initial situation of 70 good and 21 bad

examples, the F1-score is 80.09%. It should be noted that the number of samples is

increased by data augmentation and preprocessing, which leads to better performance.

51



Chapter 5. Results and Discussion

Figure 5.5: Confusion Matrix of different datasets. The parameters for the experiments
are listed in detail in Table 4.6.

In summary, both the prototypical and matching networks are excellent methods for

Few-Shot ClassiĄcation.

5.2.2 Sufficient Shots

Another proven method is considered, where the shots for support and query set are

varied. The number of examples for creating the prototypes concerning the prototypical

network and the shots of each epoch size is changed.

The correlation between training loss/accuracy and the performance metrics varies for the

number of support and query examples. While the highest number of support and query

examples (Exp. 16 - 7 Support/7 Query) is the most efficient for training, which can be

seen in Figure 5.6, experiment 16 has not the highest performance (Figure 5.7). Better

performance can be achieved by a higher number of support examples, which is necessary

for a good F1-score around 95 % (Exp. 1, 14, 18). The larger the support sets are, the

more samples can be trained. A query set with 7 samples will decrease the performance.

Testing performance is better on fewer query sets because the probability of classifying

correctly with fewer examples is higher.

52



Chapter 5. Results and Discussion

Figure 5.6: Training loss and accuracy on different shots for the support and query set.
The parameters for the experiments are listed in detail in Table 4.6.

The training takes longer with few shots per set as in experiments 15 and 17, and the

performance is signiĄcantly worse. The best results with a F1-score of 94.82 % are achieved

with 7 shots for the support set and 5 for the query set in both the training and testing

phase (Exp.14). In addition, the recall of 95.30 % is high, which can be seen in Ągure 5.7.

Figure 5.7: Metrics for the performance evaluation on different shots for the support and
query set. The parameters for the experiments are listed in detail in Table
4.6.

The precision of 95.48 % with 5/5 shots (Figure 5.7) is also high. However, experiment

1 has a lower recall of 93.76 %. In the case of anomaly detection, it is essential to have

a high recall to detect and Ąlter anomalies out. It is more acceptable to deal with good

samples considered as bad. In contrast, anomalies should not be classiĄed as good.

The Confusion Matrix (Figure 5.8) shows that experiment 14 classiĄes most efficient with

4725 as True Negative and 1765 as True Positive.

53



Chapter 5. Results and Discussion

Figure 5.8: Confusion Matrix on different shots for the support and query set. The pa-
rameters for the experiments are listed in detail in Table 4.6.

5.2.3 Learning Methods

Three Few-Shot Learning methods were presented within this work: Matching Network,

Prototypical Network, and Relation Network. While the Ąrst two showed good results,

the Relation Network proved unsuitable for process data, so an evaluation was neglected.

In the following Figure 5.9, the training of the PN is more efficient with a loss of 1.3e−5

than the MN with 5e−5. The formation of a prototype leads to better results than the

matching network, as Figure 5.10 shows with 234 more True Negative and 299 True

Positive samples. In addition, the formation of this centroid signiĄcantly increases the

runtime, which was not part of the task and, therefore, will not be discussed further.

Figure 5.9: Train loss and accuracy trained on different learning methods. The parameters
for the experiments are listed in detail in Table 4.6.

54



Chapter 5. Results and Discussion

Figure 5.10: Confusion Matrix of different learning methods. The parameters for the
experiments are listed in detail in Table 4.6.

5.2.4 Distance Ranking Approach

When the classiĄcation task is based on a model whose training has been driven by a

distance-based loss, both the distance-ranking and the voting approaches can calculate

the embeddings of the two classes and derive the distance between them. The difference

is that this distance itself determines the Ąnal ranking in the distance ranking approach.

In contrast, in the voting system, the elements of the distance vector are averaged and the

result is compared to the threshold t calculated at the end of the training phase to output

a boolean response. It is reasonable to assume that there is no advantage to using the

voting system. The threshold does not help identify anomalies since it only leads to a loss

of information by turning a distance into a boolean value resulting from a comparison.

So the direct use of the distance is better [94].

Figures 5.11 and 5.12 show that the training performs better using Euclidean distance

over Cosine distance. This effect is even more pronounced for prototypical networks, in

which computing the class prototype as the mean of embedded support points is more

naturally suited to Euclidean distances since cosine distance is not a Bregman divergence

[117], which measures the difference between two points deĄned in terms of a strictly

convex function.

55



Chapter 5. Results and Discussion

Figure 5.11: Train loss and accuracy were evaluated on 4 different distance/similarity
metrics on the Prototypical Network. The parameters for the experiments
are listed in detail in Table 4.6.

Figure 5.12 gives a deeper insight into the performance of the metrics, where the DTW

is not considered, thus not performing well with a F1-score of 64.60 % (Table 5.1). One

assumption why DTW does not work is that the data used is cyclic, leading to worse

performance in classiĄcation.

Figure 5.12: Train loss and accuracy were evaluated on 3 different distance/ similarity
metrics on the Prototypical Network. The parameters for the experiments
are listed in detail in Table 4.6.

Using Euclidean distance improves the training performance substantially with a training

loss of 4e−4 over cosine distance with a loss of 3.407e−1. However, the F1-score and recall

of L2 are 93.92 % and 93.76 %, for the cosine distance, 95.21 % and 95.30 %.

Diagrams 5.13, 5.14, and 5.15 representative describe the Matching Network and its met-

rics.

56



Chapter 5. Results and Discussion

Figure 5.13: Train loss and accuracy were evaluated on 4 different distance/ similarity
metrics on the Matching Network. The parameters for the experiments are
listed in detail in Table 4.6.

Figure 5.14: Train loss and accuracy were evaluated on 3 different distance/ similarity
metrics on the Matching Network. The parameters for the experiments are
listed in detail in Table 4.6.

57



Chapter 5. Results and Discussion

Figure 5.15: Comparison between the train loss and accuracy with different metrics used
in Prototypical Network and Matching Network. The parameters for the
experiments are listed in detail in Table 4.6.

In summary, while L2 trains with at least epochs, it classiĄes with a F1-score of

93.92 %. At the same time, Cosine Distance needs more epochs to train but classiĄes

with a F1-score of 95.21 %. For the Prototypical Network, the metrics L2 and Cosine

perform well for the Matching Network, Cosine and the DOT product are preferred.

Figure 5.16: Metrics for the performance evaluation on different distance/similarity mea-
sures. The parameters for the experiments are listed in detail in Table 4.6.

58



Chapter 5. Results and Discussion

Figure 5.17: Confusion Matrix of different distance/similarity measures. The parameters
for the experiments are listed in detail in Table 4.6.

59



Chapter 6. Retrospective

6 Retrospective

Before summarizing, some words are dedicated to highlighting all the positive aspects

and difficulties that have been encountered. Through the literature review in the Ąeld

of Meta-Learning and Few-Shot Learning, FSL methods were selected that can meet

the requirements for the classiĄcation of noisy industrial data. There has always been

much freedom regarding how and with what techniques to explore. This led to a broader

exploration of different methods and approaches, which were not discussed or mentioned

in the course of this work, as this would go beyond the scope. Only the approaches

used and Ąnal procedures were formulated and explained in more detail in the chapter

background and state-of-the-art. Thereby, a certain diversity arose in the implementation

of the solution. Many different modules had to be designed to tackle particular subtasks.

These include the data processing, data augmentation, the optimization of the network

architecture, the classiĄcation part, and the experimentation phase based on the deĄnition

of scenarios.

6.1 Achievements

A Ąnal well-performing solution framework has been designed.

6.2 Points to Improve

In addition to the positive points, some difficulties and points, which could be improved,

are mentioned:

1. A large number of parameters and implementation options leads to many possible

scenarios. Therefore, a good organization was necessary to overview all parameter

settings and the corresponding scenarios to cope with this.

2. Due to the long experimentation phase, the number of Ąnal trials was limited in

time. In this context, further investigations would be a good option.

3. Related to the freedom already mentioned, the reverse side is that clarifying the

objectives was not straightforward. However, this phase was very progressive, and

the goals were slightly adjusted in terms of performance expectations to see how

60



Chapter 6. Retrospective

the effective work went. My supervisor was very supportive in asking the right

questions, but at the same time, he gave me enough freedom to Ągure out which

direction I wanted to go.

6.3 Outlook

Finally, this work is only a subtask of a more considerable scientiĄc investigation and can

be integrated.

Some other points that could be relevant to inspect are listed here:

1. In the evaluation phase, the experiments could run more often with the same settings

and data sets and then average the results to get an average and thus a better

generalization. However, due to lack of time, this could not be done.

2. When creating the support and query sets, it would be possible to specify the

same samples for each experiment so that there is no random selection in the sup-

port/query set. The training and test set, on the other hand, is always the same

and does not arise by chance.

3. A more complex performing feature extractor can replace the CNN architecture.

4. Additionally, a hyperspherical coordinate system can be considered.

61



Chapter 7. Conclusion

7 Conclusion

This work proposed a strategy for anomaly detection in a speciĄc usecase using Few-

Shot Learning techniques achieving a good Ąnal performance with a limited amount of

data. The preprocessed and augmented data provided good input parameters for learning

Meta-Metric-based neural networks, which were evaluated against the veriĄcation task.

The evaluation of the best performing model was based on the correct classiĄcation of a

sample based on a labeled instance. For this purpose, this sample is compared to each

time series instance by calculating the distance between their embeddings. The selected

distance and shots were varied for the representative embeddings.

Regarding the performance that was obtained, the Prototypical Network using the Eu-

clidean Distance reached a F1-score of 93.92 % on the veriĄcation task when trained

based on 70 good and 21 bad samples (data set 1) and a F1-score of 80.01 % with 17

good and six bad samples (data set 3). The Matching Network reached a F1-score of

87.34 % and 71.81 %. By implementing Cosine Distance as the Ąnal classiĄcation, PN

achieves an F1-score of 95.21 % and MN a F1-score of 91.46 % with dataset 1 (Table 4.2).

The DOT-product achieves a F1-performance of 93.51 % for the PN and 88.70 % for the

MN. When selecting the number of samples for the support and query set, the number of

shots, especially for the support set, should be about 5 to 7, with a F1-score of 93.92 %

and 94.82 %. Three shots are insufficient for each support and query set with a F1-score

of 92.92 %.

With 17 good examples and six bad examples, a network trains successfully and performs

well in the explored datasets. It should be noted that the number of samples is increased

by data augmentation and preprocessing, which leads to better performance. The Proto-

typical Network and Matching Network are excellent methods to train a neural network

with few data.

Finally, many ways can still be explored, especially regarding the retraining always on

speciĄc and not random chosen support and query sets and the evaluation phase, which

could lead to a more average result. Additionally it should be noted that the described

techniques are mainly used for computer vision and not for time series data. In the

context of this work, they produced good results for the used data. However, it should be

considered that this cannot necessarily be generalized and still needs to be investigated

further.

62



Chapter 8. Appendix

8 Appendix

Figure 8.1: Shows the sample split for data set 1, which is split into a training set(left)
and a test set(right). The training set includes samples from process 0 to 4,
the test set from process 0 to 14. It can be seen that the dataset is unbalanced
even though data augmentation was applied, which is a challenge for training.
For some processes there were only good examples but no bad ones.

63



Chapter 8. Appendix

Figure 8.2: Shows the sample split for data set 2, which is split into a training set(left)
and a test set(right). The training set contains fewer samples from processes
0 to 4 than data set 1, and the test set contains fewer samples from processes
0 to 14 than data set 1.

Figure 8.3: Shows the sample split for data set 3, which is split into a training set(left)
and a test set(right). The training set contains fewer samples from processes
0 to 4 than data set 2, and the test set contains fewer samples from processes
0 to 14 than data set 2.

64



Chapter 8. Appendix

Figure 8.4: Shows the sample split for data set 4, which is split into a training set(left)
and a test set(right). The training set includes samples from process 0 to 4,
the test set from process 5 to 14.

Figure 8.5: Shows the sample split for data set 5, which is split into a training set(left)
and a test set(right). The training set contains fewer samples from processes
0 to 4 than data set 4, and the test set contains fewer samples from processes
5 to 14 than data set 4.

65



Chapter 8. Appendix

Figure 8.6: Shows the sample split for data set 6, which is split into a training set(left)
and a test set(right). The training set contains fewer samples from processes
0 to 4 than data set 5, and the test set contains fewer samples from processes
5 to 14 than data set 5.

66



Bibliography

Bibliography

[1] Thorsten Wuest, Christopher Irgens, and Klaus-Dieter Thoben. An approach to

monitoring quality in manufacturing using supervised machine learning on product

state data. Journal of Intelligent Manufacturing, 25(5):1167Ű1180, 2014.

[2] Aditya M Deshpande, Ali A Minai, and Manish Kumar. One-shot recognition

of manufacturing defects in steel surfaces. Procedia Manufacturing, 48:1064Ű1071,

2020.

[3] Shruti Jadon. An overview of deep learning architectures in few-shot learning do-

main. arXiv preprint arXiv:2008.06365, 2020.

[4] Qianru Sun, Yaoyao Liu, Tat-Seng Chua, and Bernt Schiele. Meta-transfer learning

for few-shot learning. In Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition, pages 403Ű412, 2019.

[5] Machine Learning. Generalization. https://developers.google.com/machine-

learning/crash-course/generalization/video-lecture, august 2022.

[6] S Mahapatra. Why deep learning over traditional machine learning?

https://towardsdatascience.com/why-deep-learning-is-needed-over-

traditional-machine-learning-1b6a99177063, august 2022.

[7] Jürgen Schmidhuber. Deep learning in neural networks: An overview. Neural

networks, 61:85Ű117, 2015.

[8] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature,

521(7553):436Ű444, 2015.

[9] Mahmut Kaya and Hasan Şakir Bilge. Deep metric learning: A survey. Symmetry,

11(9):1066, 2019.

[10] Thien Khai Tran and Tuoi Thi Phan. Deep learning application to ensemble learn-

ingŮthe simple, but effective, approach to sentiment classifying. Applied Sciences,

9(13):2760, 2019.

[11] Mike Huisman, Jan N van Rijn, and Aske Plaat. A survey of deep meta-learning.

Artificial Intelligence Review, pages 1Ű59, 2021.

I



Bibliography

[12] Sachin Ravi and Hugo Larochelle. Optimization as a model for few-shot learning.

2016.

[13] Mengye Ren, Eleni TriantaĄllou, Sachin Ravi, Jake Snell, Kevin Swersky, Joshua B

Tenenbaum, Hugo Larochelle, and Richard S Zemel. Meta-learning for semi-

supervised few-shot classiĄcation. arXiv preprint arXiv:1803.00676, 2018.

[14] Xiaoxu Li, Xiaochen Yang, Zhanyu Ma, and Jing-Hao Xue. Deep metric learning for

few-shot image classiĄcation: A selective review. arXiv preprint arXiv:2105.08149,

2021.

[15] Wei-Yu Chen, Yen-Cheng Liu, Zsolt Kira, Yu-Chiang Frank Wang, and Jia-Bin

Huang. A closer look at few-shot classiĄcation. arXiv preprint arXiv:1904.04232,

2019.

[16] Yaqing Wang, Quanming Yao, James T Kwok, and Lionel M Ni. Generalizing from

a few examples: A survey on few-shot learning. ACM Computing Surveys (CSUR),

53(3):1Ű34, 2020.

[17] W. Zi. Tutorial 2: few-shot learning and meta-learning i. https:

//www.borealisai.com/en/blog/tutorial-2-few-shot-learning-and-meta-

learning-i/, september 2019.

[18] Ruibing Hou, Hong Chang, Bingpeng Ma, Shiguang Shan, and Xilin Chen. Cross

attention network for few-shot classiĄcation. arXiv preprint arXiv:1910.07677, 2019.

[19] Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Daan Wierstra, et al. Matching

networks for one shot learning. Advances in neural information processing systems,

29:3630Ű3638, 2016.

[20] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for

fast adaptation of deep networks. In International Conference on Machine Learning,

pages 1126Ű1135. PMLR, 2017.

[21] Marcus Rohrbach, Sandra Ebert, and Bernt Schiele. Transfer learning in a trans-

ductive setting. Advances in neural information processing systems, 26:46Ű54, 2013.

[22] Eunjung Lee and Wonjong Rhee. Individualized short-term electric load forecasting

with deep neural network based transfer learning and meta learning. IEEE Access,

9:15413Ű15425, 2021.

[23] Jiajun Pan. Review of metric learning with transfer learning. In AIP Conference

Proceedings, volume 1864, page 020040. AIP Publishing LLC, 2017.

II



Bibliography

[24] Yong Luo, Yonggang Wen, Ling-Yu Duan, and Dacheng Tao. Transfer metric learn-

ing: Algorithms, applications and outlooks. arXiv preprint arXiv:1810.03944, 2018.

[25] Yiwen Sun, Kun Fu, Zheng Wang, Changshui Zhang, and Jieping Ye. Road network

metric learning for estimated time of arrival. In 2020 25th International Conference

On Pattern Recognition (ICPR), pages 1820Ű1827. IEEE, 2021.

[26] Eric Xing, Michael Jordan, Stuart J Russell, and Andrew Ng. Distance metric

learning with application to clustering with side-information. Advances in neural

information processing systems, 15:521Ű528, 2002.

[27] Michael M Wolf. Mathematical foundations of supervised learning, 2018.

[28] Maria-Irina Nicolae. Learning similarities for linear classification: theoretical foun-

dations and algorithms. PhD thesis, Lyon, 2016.

[29] Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of ma-

chine learning. MIT press, 2018.

[30] Vladimir Vapnik. Principles of risk minimization for learning theory. In Advances

in neural information processing systems, pages 831Ű838, 1992.

[31] Léon Bottou and Olivier Bousquet. The tradeoffs of large scale learning. Advances

in neural information processing systems, 20, 2007.

[32] L Bottou and O Bousquet. The tradeoffs of large scale learning advances in neural

information processing systems 20, 2008.

[33] Léon Bottou, Frank E Curtis, and Jorge Nocedal. Optimization methods for large-

scale machine learning. Siam Review, 60(2):223Ű311, 2018.

[34] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The elements of statistical

learning. springer series in statistics. In :. Springer, 2001.

[35] Yunxiao Qin, Weiguo Zhang, Chenxu Zhao, Zezheng Wang, Xiangyu Zhu, Jingping

Shi, Guojun Qi, and Zhen Lei. Prior-knowledge and attention based meta-learning

for few-shot learning. Knowledge-Based Systems, 213:106609, 2021.

[36] Bernhard Scholkopf and Alexander J Smola. Learning with kernels: support vector

machines, regularization, optimization, and beyond. MIT press, 2018.

[37] Michelangelo Diligenti, Soumali Roychowdhury, and Marco Gori. Integrating prior

knowledge into deep learning. In 2017 16th IEEE international conference on ma-

chine learning and applications (ICMLA), pages 920Ű923. IEEE, 2017.

III



Bibliography

[38] Huy L Nguyen and Lydia Zakynthinou. Improved algorithms for collaborative pac

learning. arXiv preprint arXiv:1805.08356, 2018.

[39] Pascal Germain, Francis Bach, Alexandre Lacoste, and Simon Lacoste-Julien. Pac-

bayesian theory meets bayesian inference. arXiv preprint arXiv:1605.08636, 2016.

[40] Sridhar Mahadevan and Prasad Tadepalli. Quantifying prior determination knowl-

edge using the pac learning model. Machine Learning, 17(1):69Ű105, 1994.

[41] Michael Fink. Object classiĄcation from a single example utilizing class relevance

metrics. Advances in neural information processing systems, 17:449Ű456, 2005.

[42] Jake Snell, Kevin Swersky, and Richard S Zemel. Prototypical networks for few-shot

learning. arXiv preprint arXiv:1703.05175, 2017.

[43] Flood Sung, Yongxin Yang, Li Zhang, Tao Xiang, Philip HS Torr, and Timothy M

Hospedales. Learning to compare: Relation network for few-shot learning. In Pro-

ceedings of the IEEE conference on computer vision and pattern recognition, pages

1199Ű1208, 2018.

[44] J. Brownlee. What is meta-learning in machine learning? WhatIsMeta-

LearninginMachineLearning?, december 2018.

[45] Sebastian Thrun. Lifelong learning algorithms. In Learning to learn, pages 181Ű209.

Springer, 1998.

[46] Sebastian Thrun and Lorien Pratt. Learning to learn: Introduction and overview.

In Learning to learn, pages 3Ű17. Springer, 1998.

[47] Devang K Naik and Richard J Mammone. Meta-neural networks that learn by

learning. In [Proceedings 1992] IJCNN International Joint Conference on Neural

Networks, volume 1, pages 437Ű442. IEEE, 1992.

[48] Marcin Andrychowicz, Misha Denil, Sergio Gomez, Matthew W Hoffman, David

Pfau, Tom Schaul, Brendan Shillingford, and Nando De Freitas. Learning to learn by

gradient descent by gradient descent. In Advances in neural information processing

systems, pages 3981Ű3989, 2016.

[49] Zhenguo Li, Fengwei Zhou, Fei Chen, and Hang Li. Meta-sgd: Learning to learn

quickly for few-shot learning. arXiv preprint arXiv:1707.09835, 2017.

[50] Alex Nichol, Joshua Achiam, and John Schulman. On Ąrst-order meta-learning

algorithms. arXiv preprint arXiv:1803.02999, 2018.

IV



Bibliography

[51] Han-Jia Ye, Xiang-Rong Sheng, and De-Chuan Zhan. Few-shot learning with

adaptively initialized task optimizer: a practical meta-learning approach. Machine

Learning, 109(3):643Ű664, 2020.

[52] Ricardo Vilalta and Youssef Drissi. A perspective view and survey of meta-learning.

Artificial intelligence review, 18(2):77Ű95, 2002.

[53] D. Thailappan. An introduction to few-shot learning. https:https:

//www.analyticsvidhya.com/blog/2021/05/an-introduction-to-few-shot-

learning/, july 2021.

[54] Aurélien Bellet, Amaury Habrard, and Marc Sebban. A survey on metric learning

for feature vectors and structured data. arXiv preprint arXiv:1306.6709, 2013.

[55] Peipei Yang, Kaizhu Huang, and Amir Hussain. A review on multi-task metric

learning. Big Data Analytics, 3(1):1Ű23, 2018.

[56] Dmitri Burago, Yuri Burago, and Sergei Ivanov. A course in metric geometry,

volume 33. American Mathematical Society, 2022.

[57] Liu Yang and Rong Jin. Distance metric learning: A comprehensive survey. Michi-

gan State Universiy, 2(2):4, 2006.

[58] Romain Negrel, David Picard, and Philippe-Henri Gosselin. Efficient metric learn-

ing based dimension reduction using sparse projectors for image near duplicate

retrieval. In 2014 22nd International Conference on Pattern Recognition, pages

738Ű743. IEEE, 2014.

[59] Amir Globerson and Sam Roweis. Metric learning by collapsing classes. Advances

in neural information processing systems, 18, 2005.

[60] Yueqi Duan, Jiwen Lu, Jianjiang Feng, and Jie Zhou. Deep localized metric learning.

IEEE Transactions on Circuits and Systems for Video Technology, 28(10):2644Ű

2656, 2017.

[61] Kilian Q Weinberger and Lawrence K Saul. Distance metric learning for large

margin nearest neighbor classiĄcation. Journal of machine learning research, 10(2),

2009.

[62] Chen Huang, Chen Change Loy, and Xiaoou Tang. Local similarity-aware deep

feature embedding. Advances in neural information processing systems, 29:1262Ű

1270, 2016.

V



Bibliography

[63] Sean Bell and Kavita Bala. Learning visual similarity for product design with

convolutional neural networks. ACM transactions on graphics (TOG), 34(4):1Ű10,

2015.

[64] Gregory Koch, Richard Zemel, Ruslan Salakhutdinov, et al. Siamese neural networks

for one-shot image recognition. In ICML deep learning workshop, volume 2. Lille,

2015.

[65] Sakshi Indolia, Anil Kumar Goswami, Surya Prakesh Mishra, and Pooja Asopa.

Conceptual understanding of convolutional neural network-a deep learning ap-

proach. Procedia computer science, 132:679Ű688, 2018.

[66] Chigozie Nwankpa, Winifred Ijomah, Anthony Gachagan, and Stephen Marshall.

Activation functions: Comparison of trends in practice and research for deep learn-

ing. arXiv preprint arXiv:1811.03378, 2018.

[67] G. Di. Pooling layers. https://guandi1995.github.io/Pooling-Layers/, july

2020.

[68] A Kumar. Convolutional neural network (cnn) Ű simply explained.

https://vitalflux.com/convolutional-neural-network-cnn-simply-

explained/#Whats_Convolution_Whats_intuition_behind_Convolution,

november 2020.

[69] Mathworld Wolfram. Convolution. https://mathworld.wolfram.com/

Convolution.html, july 2022.

[70] G Kashyap. How to use conv2d layers as fully connected layers.

https://medium.com/@knighthawkk/how-to-use-conv2d-layers-as-fully-

connected-layers-b0a82eb8a408, sept. 2021.

[71] Quynh Nguyen and Matthias Hein. Optimization landscape and expressivity of deep

cnns. In International conference on machine learning, pages 3730Ű3739. PMLR,

2018.

[72] C. Olah. Conv nets: A modular perspective. https://colah.github.io/posts/

2014-07-Conv-Nets-Modular/, july 2014.

[73] Yoshua Bengio, Yann LeCun, et al. Scaling learning algorithms towards ai. Large-

scale kernel machines, 34(5):1Ű41, 2007.

[74] Yu Zhou, Haipeng Wang, Feng Xu, and Ya-Qiu Jin. Polarimetric sar image clas-

siĄcation using deep convolutional neural networks. IEEE Geoscience and Remote

Sensing Letters, 13(12):1935Ű1939, 2016.

VI



Bibliography

[75] Ki Bum Lee, Sejune Cheon, and Chang Ouk Kim. A convolutional neural net-

work for fault classiĄcation and diagnosis in semiconductor manufacturing processes.

IEEE Transactions on Semiconductor Manufacturing, 30(2):135Ű142, 2017.

[76] Jun Han and Claudio Moraga. The inĆuence of the sigmoid function parameters

on the speed of backpropagation learning. In International workshop on artificial

neural networks, pages 195Ű201. Springer, 1995.

[77] C. Versloot. Relu, sigmoid and tanh: todayŠs most used activation func-

tions. https://www.machinecurve.com/index.php/2019/09/04/relu-sigmoid-

and-tanh-todays-most-used-activation-functions/, july 2019.

[78] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir

Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going

deeper with convolutions. In Proceedings of the IEEE conference on computer vision

and pattern recognition, pages 1Ű9, 2015.

[79] Shraddha Pandit, Suchita Gupta, et al. A comparative study on distance measuring

approaches for clustering. International Journal of Research in Computer Science,

2(1):29Ű31, 2011.

[80] Marina Adriana Mercioni and Stefan Holban. A survey of distance metrics in cluster-

ing data mining techniques. In Proceedings of the 2019 3rd International Conference

on Graphics and Signal Processing, pages 44Ű47, 2019.

[81] Jasmine Irani, Nitin Pise, and Madhura Phatak. Clustering techniques and the

similarity measures used in clustering: A survey. International journal of computer

applications, 134(7):9Ű14, 2016.

[82] Sung-Hyuk Cha. Comprehensive survey on distance/similarity measures between

probability density functions. City, 1(2):1, 2007.

[83] Xiaobin Chang, Frederick Tung, and Greg Mori. Learning discriminative proto-

types with dynamic time warping. In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, pages 8395Ű8404, 2021.

[84] Xingyu Cai, Tingyang Xu, Jinfeng Yi, Junzhou Huang, and Sanguthevar Ra-

jasekaran. Dtwnet: a dynamic time warping network. Advances in neural informa-

tion processing systems, 32, 2019.

[85] Pavel Senin. Dynamic time warping algorithm review. Information and Computer

Science Department University of Hawaii at Manoa Honolulu, USA, 855(1-23):40,

2008.

VII



Bibliography

[86] Stan Salvador and Philip Chan. Toward accurate dynamic time warping in linear

time and space. Intelligent Data Analysis, 11(5):561Ű580, 2007.

[87] Rohit J Kate. Using dynamic time warping distances as features for improved time

series classiĄcation. Data Mining and Knowledge Discovery, 30(2):283Ű312, 2016.

[88] Zhengzheng Xing, Jian Pei, and Eamonn Keogh. A brief survey on sequence clas-

siĄcation. ACM Sigkdd Explorations Newsletter, 12(1):40Ű48, 2010.

[89] Aditya Mishra. Metrics to evaluate your machine learning algorithm. Towards Data

Science, January 2022.

[90] Aayush Baja. Performance metrics in machine learning. Neptune Blog, January

2022.

[91] J. Durán. Everything you need to know about gradient descent applied to neural

networks. https://medium.com/yottabytes/everything-you-need-to-know-

about-gradient-descent-applied-to-neural-networks-d70f85e0cc14, july

2019.

[92] A. Sharma. Understanding activation functions in deep learning. https://

learnopencv.com/understanding-activation-functions-in-deep-learning/,

july 2017.

[93] Aatish Kayyath. Confusion matrix : LetŠs clear this confusion. Medium, January

2022.

[94] Géraldine Brieven et al. Master thesis: One-shot learning for face recognition. 2019.

[95] Ivan Vasilev, Daniel Slater, Gianmario Spacagna, Peter Roelants, and Valentino

Zocca. Python Deep Learning: Exploring deep learning techniques and neural net-

work architectures with Pytorch, Keras, and TensorFlow. Packt Publishing Ltd,

2019.

[96] Peter Goldsborough. A tour of tensorĆow. arXiv preprint arXiv:1610.01178, 2016.

[97] Machine Learning Deep Learning. Stochastic gradient descent versus mini batch gra-

dient descent versus batch gradient descent. https://programmathically.com/

stochastic-gradient-descent-versus-mini-batch-gradient-descent-

versus-batch-gradient-descent/#:~:text=Mini%20batch%20gradient%

20descent%20is,to%20a%20smoother%20learning%20curve., september 2021.

[98] Shengli Sun, Qingfeng Sun, Kevin Zhou, and Tengchao Lv. Hierarchical attention

prototypical networks for few-shot text classiĄcation. In Proceedings of the 2019

VIII



Bibliography

Conference on Empirical Methods in Natural Language Processing and the 9th In-

ternational Joint Conference on Natural Language Processing (EMNLP-IJCNLP),

pages 476Ű485, 2019.

[99] Haopeng Ren, Yi Cai, Xiaofeng Chen, Guohua Wang, and Qing Li. A two-phase

prototypical network model for incremental few-shot relation classiĄcation. In Pro-

ceedings of the 28th International Conference on Computational Linguistics, pages

1618Ű1629, 2020.

[100] Alice Baird, Silvan Mertes, Manuel Milling, Lukas Stappen, Thomas Wiest, Elisa-

beth André, and Björn W Schuller. A prototypical network approach for evaluating

generated emotional speech. Proc. Interspeech 2021, pages 3161Ű3165, 2021.

[101] G. Polat. Deep learning architectures that you can use with a few

data. https://medium.com/swlh/deep-learning-architectures-that-you-

can-use-with-a-very-few-data-8e5b4fa1d5da, july 2020.

[102] Mohamed Ali Tnani. Design and validation of iot architectures for deep learning

application in fault diagnosis of rotating machinery. Master´s thesis, 2019.

[103] Subarnaduti Paul. An autoencoder based efficient feature extractor for noisy indus-

trial data. Master´s thesis, 2021.

[104] A Famili, Wei-Min Shen, Richard Weber, and Evangelos Simoudis. Data prepro-

cessing and intelligent data analysis. Intelligent data analysis, 1(1):3Ű23, 1997.

[105] Sotiris B Kotsiantis, Dimitris Kanellopoulos, and Panagiotis E Pintelas. Data

preprocessing for supervised leaning. International journal of computer science,

1(2):111Ű117, 2006.

[106] Edwin Onuonga. Downsampling. sequentia, January 2022.

[107] Machine Learning. Imbalanced data. https://developers.google.com/machine-

learning/data-prep/construct/sampling-splitting/imbalanced-data,

august 2022.

[108] SciPy documentation. scipy.signal.decimate. https://docs.scipy.org/doc/scipy/

reference/generated/scipy.signal.decimate.html, august 2022.

[109] S Patro and Kishore Kumar Sahu. Normalization: A preprocessing stage. arXiv

preprint arXiv:1503.06462, 2015.

[110] S Benchaou, M Nasri, O El Melhaoui, and B Bouali. New approach of preprocessing

for numeral recognition. Int. Journal of Engineering Research and Applications,

4(7):26Ű30, 2014.

IX



Bibliography

[111] Johannes Fürnkranz. More efficient windowing. In AAAI/IAAI, pages 509Ű514.

Citeseer, 1997.

[112] Xin Zhang, Liangxiu Han, Lianghao Han, and Liang Zhu. How well do deep learning-

based methods for land cover classiĄcation and object detection perform on high

resolution remote sensing imagery? Remote Sensing, 12(3):417, 2020.

[113] Xiangtao Chen, Zhouzhou Liu, and SH Zhu. Finding contrast patterns in im-

balanced classiĄcation based on sliding window. In Proceedings of the 4th In-

ternational Conference on Mechanical Materials and Manufacturing Engineering

(MMME 2016), Advances in Engineering Research, volume 10, pages 161Ű166, 2016.

[114] Pytorch: Steplr. PyTorch Documentary, January 2022.

[115] Sebastian Bock and Martin Weiß. A proof of local convergence for the adam opti-

mizer. In 2019 International Joint Conference on Neural Networks (IJCNN), pages

1Ű8. IEEE, 2019.

[116] Zijun Zhang. Improved adam optimizer for deep neural networks. In 2018

IEEE/ACM 26th International Symposium on Quality of Service (IWQoS), pages

1Ű2. IEEE, 2018.

[117] Michael Gutmann and Jun-ichiro Hirayama. Bregman divergence as general frame-

work to estimate unnormalized statistical models. arXiv preprint arXiv:1202.3727,

2012.

X



List of Figures

List of Figures

2.1 Difference between learning with enough and few training samples [16]. . . 7

2.2 Perspectives on how FSL methods solve the few-shot problem [16]. . . . . 8

2.3 Few-Shot Learning problem solved by an embedding model [16]. . . . . . . 9

2.4 Deep Metric Learning [9] . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.5 Deep learning architecture [65] . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.6 Convolution of kernel and a function [70]. . . . . . . . . . . . . . . . . . . . 17

2.7 Pooling process by a 2x2 window [65] . . . . . . . . . . . . . . . . . . . . . 18

2.8 Unit circles for p-values in Minkowski distances [28] . . . . . . . . . . . . . 20

2.9 Dynamic Time Warping of two sequences [28] . . . . . . . . . . . . . . . . 22

2.10 Cost matrix with the optimal warp path [86]. . . . . . . . . . . . . . . . . 23

2.11 Cost Matrix in Fast Dynamic Time Warping [86] . . . . . . . . . . . . . . 24

2.12 Confusion Matrix [93] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1 Matching network in the few-shot scenario [19] . . . . . . . . . . . . . . . . 27

3.2 Prototypical networks in the few-shot scenario [42]. . . . . . . . . . . . . . 29

3.3 Relation network in the few-shot scenario [43]. . . . . . . . . . . . . . . . . 32

4.1 The pipeline of the Few-Shot ClassiĄcation . . . . . . . . . . . . . . . . . . 34

4.2 Shows the technique of windowing a data sample. Windows are extracted

from the data sample to create multiple samples from a single sample [103].

In general this method is used for computer vision models and not for time

series data. Nevertheless this technique generates valuable results and can

be used for the data set . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.3 Shows the technique of the sliding window mechanism. Windows are cre-

ated at a distance of a certain overlap factor [103]. The window size must

be selected beforehand to create segments with the same size. The higher

the overlap factor, the more window segments can be created from the

existing time series data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.4 The raw time series data of 3 different orientation X-Y-Z axis. . . . . . . . 39

4.5 The preprocessed time series data of 3 different orientation X-Y-Z axis. . . 40

XI



List of Figures

5.1 Train loss and accuracy of the Prototypical Network trained on datasets 1,

2 and 3. The parameters for the experiments are listed in detail in Table

4.6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.2 Train loss and accuracy of the Matching Network trained on datasets 1, 2

and 3. The parameters for the experiments are listed in detail in Table 4.6. 50

5.3 Metrics for the performance evaluation of the Prototypical and Matching

Network. The parameters for the experiments are listed in detail in Table

4.6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.4 Metrics for the performance evaluation of the Prototypical and Matching

Network for all datasets. The parameters for the experiments are listed in

detail in Table 4.6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.5 Confusion Matrix of different datasets. The parameters for the experiments

are listed in detail in Table 4.6. . . . . . . . . . . . . . . . . . . . . . . . . 52

5.6 Training loss and accuracy on different shots for the support and query set.

The parameters for the experiments are listed in detail in Table 4.6. . . . . 53

5.7 Metrics for the performance evaluation on different shots for the support

and query set. The parameters for the experiments are listed in detail in

Table 4.6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.8 Confusion Matrix on different shots for the support and query set. The

parameters for the experiments are listed in detail in Table 4.6. . . . . . . 54

5.9 Train loss and accuracy trained on different learning methods. The param-

eters for the experiments are listed in detail in Table 4.6. . . . . . . . . . . 54

5.10 Confusion Matrix of different learning methods. The parameters for the

experiments are listed in detail in Table 4.6. . . . . . . . . . . . . . . . . . 55

5.11 Train loss and accuracy were evaluated on 4 different distance/similarity

metrics on the Prototypical Network. The parameters for the experiments

are listed in detail in Table 4.6. . . . . . . . . . . . . . . . . . . . . . . . . 56

5.12 Train loss and accuracy were evaluated on 3 different distance/ similarity

metrics on the Prototypical Network. The parameters for the experiments

are listed in detail in Table 4.6. . . . . . . . . . . . . . . . . . . . . . . . . 56

5.13 Train loss and accuracy were evaluated on 4 different distance/ similarity

metrics on the Matching Network. The parameters for the experiments are

listed in detail in Table 4.6. . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.14 Train loss and accuracy were evaluated on 3 different distance/ similarity

metrics on the Matching Network. The parameters for the experiments are

listed in detail in Table 4.6. . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.15 Comparison between the train loss and accuracy with different metrics used

in Prototypical Network and Matching Network. The parameters for the

experiments are listed in detail in Table 4.6. . . . . . . . . . . . . . . . . . 58

XII



List of Figures

5.16 Metrics for the performance evaluation on different distance/similarity mea-

sures. The parameters for the experiments are listed in detail in Table 4.6. 58

5.17 Confusion Matrix of different distance/similarity measures. The parame-

ters for the experiments are listed in detail in Table 4.6. . . . . . . . . . . . 59

8.1 Shows the sample split for data set 1, which is split into a training set(left)

and a test set(right). The training set includes samples from process 0 to

4, the test set from process 0 to 14. It can be seen that the dataset is un-

balanced even though data augmentation was applied, which is a challenge

for training. For some processes there were only good examples but no bad

ones. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

8.2 Shows the sample split for data set 2, which is split into a training set(left)

and a test set(right). The training set contains fewer samples from pro-

cesses 0 to 4 than data set 1, and the test set contains fewer samples from

processes 0 to 14 than data set 1. . . . . . . . . . . . . . . . . . . . . . . . 64

8.3 Shows the sample split for data set 3, which is split into a training set(left)

and a test set(right). The training set contains fewer samples from pro-

cesses 0 to 4 than data set 2, and the test set contains fewer samples from

processes 0 to 14 than data set 2. . . . . . . . . . . . . . . . . . . . . . . . 64

8.4 Shows the sample split for data set 4, which is split into a training set(left)

and a test set(right). The training set includes samples from process 0 to

4, the test set from process 5 to 14. . . . . . . . . . . . . . . . . . . . . . . 65

8.5 Shows the sample split for data set 5, which is split into a training set(left)

and a test set(right). The training set contains fewer samples from pro-

cesses 0 to 4 than data set 4, and the test set contains fewer samples from

processes 5 to 14 than data set 4. . . . . . . . . . . . . . . . . . . . . . . . 65

8.6 Shows the sample split for data set 6, which is split into a training set(left)

and a test set(right). The training set contains fewer samples from pro-

cesses 0 to 4 than data set 5, and the test set contains fewer samples from

processes 5 to 14 than data set 5. . . . . . . . . . . . . . . . . . . . . . . . 66

XIII



List of Tables

List of Tables

4.1 The chosen preprocessing and augmentation parameters to generate the

Ąnal data set for the experiments . . . . . . . . . . . . . . . . . . . . . . . 37

4.2 The table shows the created datasets for the evaluation of the FSL-Methods

with two classes (good and bad). The training set consist of data from op-

eration 00 to 04 (5 different process). The test set consist of data from

operation processes 00-14 or 05-14. The number of the training data de-

creases in the dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.3 The table shows the chosen training parameters. . . . . . . . . . . . . . . . 43

4.4 The table shows the selected values for the n-way k-shot classiĄcation.

Each data set contains 2 classes (good and bad). The shots for the support

and query set vary between 3 and 7. . . . . . . . . . . . . . . . . . . . . . 44

4.5 The table shows the architecture of the Convolutional Neural Network(CNN).

The properties of the different layers are described in more detail in section

2.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.6 The table listed the different experiments on which the FSL method is

evaluated in scope of this work. . . . . . . . . . . . . . . . . . . . . . . . . 47

5.1 The table shows the results of the perfomance metric for the experiments

listed in Table 4.6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

XIV


