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Kurzfassung  
Wie wir es aus der Medizin kennen, ist Vorbeugen besser als Heilen. Um zukünftige Probleme 
zu vermeiden, müssen wir sie früher erkennen, daher brauchen wir vorhersagen. Da „machine 
learning Algorithmen“ das Potenzial haben, genauere Vorhersagen zu treffen, haben viele 
Wissenschaftler und Forscher usw. bereits damit begonnen, sie zu verwenden. Diese 
maschinellen Lernalgorithmen werden verwendet, um Vorhersagen zu erstellen, und suchen 
auch nach Mustern innerhalb der Wertelabels, die Datenpunkten zugeordnet sind.  

Es gibt zwei Hauptgruppen des maschinellen Lernens, „supervised learning“ und 
„unsupervised learning“. Zusätzlich gibt es auch die sogenannten „semi-supervised learning“ 
Methode, die eine Kombination der beiden Hauptlernmethoden darstellen. 

In dieser Masterarbeit wird das Hidden-Markov-Modell (HMM), eine unsupervised learning 
Methode, verwendet, um „time series data“ zu analysieren und die verborgene zustände 
(hidden states) zu finden, die für Vorhersageprobleme verwendet werden können, die in 
Ölfeldern, insbesondere in der Erdölförderung, auftreten können, z. B. Fehlerdiagnose von 
„Sucker Rod Pumpen (SRP)“. 

Diese Masterarbeit beginnt mit den Grundlagen und der Theorie des HMM. Dann werden die 
drei Hauptprobleme von HMM und die Lösungen der Probleme diskutiert. Darüber hinaus 
werden die verfügbaren Werkzeuge und Programmiersprachen zur Generierung eigener 
Algorithmen und Funktionen, die für das Modell erforderlich sind, diskutiert. Dann wird das 
Hidden-Markov-Modell verwendet, um den Beginn und das Ende von „Upstroke und 
Downstroke“ aus dem Datensatz zu finden. Schließlich, HMM wird eingesetzt, um den Betrieb 
der Sucker Rod Pumps im Laufe der Zeit zu beobachten (Auffinden verborgener Zustände), 
zuerst für den gesamten Datensatz und dann für einen ausgewählten Teil des Datensatzes. 
Die Ergebnisse des Hidden-Markov-Modells werden mit anderen Clustering-Methoden 
verglichen, nämlich der Gaussian-Mixture und K-Means. 
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Abstract  
As we know from medicine, prevention is better than cure. To avoid future problems, we have 
to recognize them earlier; therefore, we need prediction. Because machine learning algorithms 
have the potential to make more accurate predictions, many scientists and researchers, etc. 
have already started using them. Although these machine learning algorithms are used to 
create predictions, they also look for patterns within the value labels assigned to data points. 

There are two main types of machine learning, supervised learning and unsupervised learning. 
In addition, there are also the so-called semi-supervised learning methods, which are a 
combination of the two main learning methods. 

In this thesis, the hidden Markov model (HMM), an unsupervised learning method, is used to 
analyze time-series data and find the hidden states, which can be used for predicting problems 
that may arise in oil fields, especially in petroleum production, e.g., sucker rod pump failure 
diagnosis. 

This thesis starts with the basics and theory of HMM. Then the three main problems of HMM 
and the solution for the problems will be discussed. Moreover, the tools and programming 
languages available to generate our own algorithms and functions required for the model will 
be discussed. Then hidden Markov model will be used to find the start and the end of up-and 
downstrokes from the dataset. Finally, using HMM to observe the sucker rod pump operation 
over time (finding hidden states), first for the entire dataset and then for a selected part of the 
dataset. The results from the hidden Markov model will be compared with other clustering 
methods, namely the Gaussian Mixture and K-Means. 
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1 Introduction 
Before even starting with Hidden Markov Model (HMM), it is important to know where HMM 
can be used and which type or kind of problems can be solved by using such a model. 

Rapid advances in the development of computer technology led scientists and researchers to 
pursue more demanding goals. The development of computer technology helps to surpass 
human abilities in certain areas, which is also the case in petroleum engineering. Meanwhile, 
Ordinary human intelligence no longer appears on the symbolic level but in the ability to 
process various sensory input data. Strive to create artificial intelligence, and machine learning 
(the most famous method is the so-called artificial neuronal network) has increased. However, 
such powerful learning methods as an artificial neuronal network are too general and therefore 
not applicable for some purposes; hence, other statistical modeling such as Markov models 
are applied. Markov models are widely used for modeling chronologically organized data. The 
most task areas of the Markov model are speech recognition, handwritten recognition, and 
bioinformatics (human genome). The application of the Markov model in the areas mentioned 
has been so successful that this model is recently used for different analysis tasks.  

In addition to the advantage mentioned about the Markov model, there are other two strong 
reasons that this model, or Hidden Markov Model (HMM) became popular in the last year. 
First, the model is very rich in the mathematical structure and hence can form the theoretical 
basis for use in a wide range of applications. Second, the model, when applied properly, works 
very well in practice for several important applications (Rabiner 1989). 

Nowadays, time-series data are in all fields and areas widely available, which is also the case 
in petroleum engineering, especially in petroleum production and drilling. Therefore, the 
importance of time-series data has increased because of knowledge that can be obtained from 
time-series data, and the further development of classification methods is also another reason.  

Considering the advantages of the HMM, knowledge that can be obtained from time-series 
data, and the fact that this model is widely used in all fields but has not been used much in the 
oil field motivate me and encourage me to work on this topic. Therefore, this master thesis 
pursues to analyze production data using this model. 
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2 Literature review 
2.1 General information 
The basic theory of the Markov chain has been known to us for more than 100 years, but it 
has only been used explicitly in research institutions for about 50 years. The application of this 
model started with problems in speech recognition, but through constant refinements, both in 
theory and in the implementation of the Markov model, this technique has always been 
improved, and the scope of this method has become wider. 

2.2 Application areas 
 “The most common application area of this technology is the automatic recognition of speech. 
At the beginning of the respective research, for quite a long time, it competed with symbolic 
approaches. However, the availability of large sample sets of speech data heralded the triumph 
of statistical methods. Therefore, meanwhile hidden Markov models for describing acoustic 
events in combination with Markov chain models for the statistical modeling of word sequences 
on the symbolic level represent the standard technology for building successful automatic 
speech recognition systems” (Fink 2014). 

“Only in recent years have these methods entered a both thematically and sensorily related 
application area. The automatic recognition of handwritten texts — in the same way as 
automatic speech recognition — can be considered a segmentation problem of chronologically 
organized sensor data. There the time axis either runs along the text line to be processed or 
along the line of writing itself. By this "trick" statistical modeling techniques known from the 
field of automatic speech recognition usually with minor changes only can be transferred to the 
problem of processing handwritten documents” (Fink 2014). 

“A third important application area of Markov models takes us beyond the field of man-machine 
interaction. Bioinformatics research is primarily concerned with cell-biological processes and 
their simulation and analysis by means of computer science techniques. Special attention 
currently lies in the analysis of the human genome. From the view of statistical pattern 
recognition, this genetic information — and sell products like, e.g., RNA or proteins derived 
from it — essentially consists of linearly organized symbol sequences. Though for quite some 
years, statistical techniques are used for the analysis of such biological sequences, the 
attention of bioinformatics research was only recently drawn to Markov models. The success 
of the respective methods in this application area was so convincing, that meanwhile several 
software packages for the application of Markov models as well as libraries of ready-made 
models for different analysis tasks are available” (Fink 2014). 
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2.3 HMM in oil business 
As mentioned earlier, Hidden Markov Model (HMM) has not been widely used in the oil and 
gas industry. The most important application area of HMM in the oil business is for predicting 
future crude oil prices. 

A large proportion of the energy required for industry worldwide is obtained from oil; thus, the 
crude oil price plays a large and important role in the world economy. A lot of research has 
been done in this area, as predicting the oil price is not just a concern of the oil and gas 
industry. 

But since there are so many factors that influence the level of the oil price, predicting the oil 
price is really complicated. Different tools and methods are used, and HMM is also one of 
these methods. For this purpose, some have focused on factors that influence oil price, for 
example, OPEC's decision, wars, renewable energy, financial crises etc., and some others on 
different approaches like regression model, linear and non-linear time series model, and so 
on.  

Another important application area of HMM in the oil business is Lithology Identification. 
Lithology identification of subsurface reservoirs is a challenging task because different 
reservoirs show different subsurface petrophysical properties, which affects the identification 
of lithology. The idea was a combination of HMM and random forests, where the well (logging) 
data and seismic data were used. Results of predicted lithology and shale content match 
successfully with real logging data. 

Apart from the two areas mentioned above, there are some individual cases, such as the 
prediction of stuck pipes during drilling, predicting risk severity of workers in the oil and gas 
sector (HSE), estimation of petroleum reservoir categorical variables, and so on, where HMM 
is used in the oil business. 
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3 Hidden Markov model (HMM) 
Hidden Markov Model is a doubly embedded stochastic process with an underlying stochastic 
process that is not observable (it is hidden) but can only be observed through another set of 
stochastic processes that produce the sequence of observations (Rabiner 1989). That means 
the first stage is a discrete stochastic process known as Markov Chain, and the second stage 
is a stochastic process, where for each time step (t), an observation (Vt) is generated. 

To understand HMM and get a better idea of what all these terms mean, we need to know 
some basic concepts such as random variables, random processes, stochastic and 
deterministic processes, discrete or continuous stochastic processes etc., and then Markov 
processes and Markov chain. 

3.1 Basics 
Hidden Markov Model (HMM) is a special form of the Markov process or Markov model. Thus, 
before even starting with HMM, we have to know, what are Markov models or Markov 
processes and Markov chains, because Hidden Markov Models are built on these basic 
concepts and their properties. But again, to understand Markov models and Markov chains, 
we need to be familiar with some basic terms from statistics. 

We'll start with an example, as is common in statistics. Imagine tossing a coin, and the 
outcomes can be head or tail, which is random. In mathematics and statistic, they use the 
concepts of a random variable to define and describe such experiments. A random variable is 
a variable that its potential value is one or more outcomes of a random phenomenon or 
experiment. The possible values in our example are head or tail; these possible values or 
states are known as the domain of the random variable, also known as sample space, given 
by Domain(Outcome) = (Head, Tail) with a probability distribution of P(Head) = 1/2 and P(Tail) 
= 1/2 (assuming fair coin). In this case, the domain of the states has discrete variables; 
therefore, such random variables are known as discrete random variables. A random variable 
is said to be discrete, if it has a finite or countably infinite number of values, which is the case 
in our example. Probability mass functions (PMS) are used to represent possible outcomes of 
discrete random variables. There are also continuous random variables, which can take any 
arbitrary values. An example of continuous random variables is the future oil price or stock 
price of APPLE the next day. In the case of continuous random variables, probability density 
functions (pdf) are used to represent possible outcomes. 

In our example, we talked about outcomes of a single random phenomenon, but what about 
random events over a certain period of time. In this case, we will have a set of random 
variables, where each random variable represents the outcome or outcomes at the given time. 
As an example, consider we want to represent the oil price for the whole of next week with a 
time step of 24 hours (one day). Now we have a set of random variables that represent random 
variables (oil price) over a period of time (each day); these sets are known as random 
processes. 

As mentioned earlier, HMM is a doubly embedded stochastic process. Now it is important to 
know what stochastic and deterministic random processes are?  
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We start again with an example. Just imagine a car standing and not moving. Now the car 
starts to move with a velocity/ speed that does not change over time. If we know the velocity 
at which the car is moving, we will be able to determine the distance that this car has traveled 
at any given time. Such random processes, where we are able deterministically to find the 
value/ state of the random variable by knowing the initial conditions (here, the car with constant 
velocity) and parameters of the system (acceleration yes or no, if yes, constant rate or not), 
are known as deterministic random processes or deterministic processes. The opposite of a 
deterministic process is a stochastic process, where we are not able deterministically to 
calculate the value/ state of a random variable for a given time, even if we know the probability 
distribution of the next state. Now think about the previous example, representing the future 
price of oil. Even if we know the probability distribution of the next state, initial conditions, and 
also parameters of the system, nevertheless it is not possible to calculate the exact price of oil 
for the next step of the time. Such cases are known as stochastic random processes or 
stochastic processes. Depending on the type of domain of the random variables, there are 
discrete and continuous stochastic processes (or deterministic processes). 

3.1.1 Markov models and Markov chains 

A stochastic process where the state of a random variables at time t depends only on the 
previous state at time t-1 is called Markov process or Markov model. This property, that the 
future state of the system depends only on the current state and not on any other previous 
states, is known as the Markov property.  

According to the discrete and continuous time and also discrete and continuous state space1, 
there are four types of Markov processes (Ankan and Panda 2018): 

 Discrete State Space Continuous State Space 

Discrete Time 
discrete time and discrete state 

space (Markov chain) 

 

discrete time and continuous 

state space (Markov chain) 

 
Continuous 

Time 

continuous time and discrete 

state space 

 

continuous time and continuous 

state space 

 
 

The simplest types of Markov processes are Markov chains. Markov chains are discrete-time 
Markov processes, but there is no decisive agreement under authors and researchers about 
the use of some terms that refer to specific cases of Markov processes. However, most authors 
and researchers use the Markov chain to refer to a process with discrete-time. That means, in 
a Markov chain the time is discrete, but there is no limitation for state-space (at least no 
definitive agreement). Ultimately we can say, a stochastic Markov process (with discrete-time) 
that satisfies the Markov property, namely that the probability of being in the current state 

                                                
1 State space is a set of all feasible/ possible states of our system (domain of the random variables). 
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3.1.2 Conditional probabilities 

Conditional probability is a measure of the probability of an event occurring, given that another 
event (by assumption, presumption, assertion, or evidence) has already occurred. If the event 
of interest is A and the event B is known or assumed to have occurred, "the conditional 
probability of A given B" or "the probability of A under the condition B", is usually written as 
P(A|B). It does not necessarily have to be a relationship between A and B, or necessarily be 
dependent on each other or occur simultaneously. This can also be expressed as the fraction 
of probability B that intersects with A (Wikipedia o. J.b): 

!(.	|	/) 	=
!(. ∩ /)

!(/)
 

For example, we know that the possible outcomes of tossing a (fair) die are {1, 2, 3, 4, 5, 6}. 
The probability that we roll the die and we get ‘2’ is 1/6: P (2) = 1/6. This is an unconditional 
probability, which is the opposite of conditional probability. Unconditional probability is the 
probability of an occurrence or event without any other occurrence or event being taken into 
account. We roll the die again, but this time the probability of getting '2', given that the number 
showing up is an even number, is 1/3 as there exist three even numbers: P (2|even) = 1/3. In 
this case, it is a conditional probability. 

It should be clear that P (A|B) typically differs from P (B|A), and falsely equating the two 
probabilities can lead to various errors of reasoning. For example, if a person has dengue 
fever, they might have a 90% chance of testing positive for the disease. In this case, what is 
being measured is that if event B (having dengue) has occurred, the probability of A (testing 
positive) given that B occurred is 90%: P (A|B) = 90%. Alternatively, if a person tests positive 
for dengue fever, they may have only a 15% chance of actually having this rare disease due 
to high false-positive rates. In this case, the probability of event B (having dengue) given that 
event A (testing positive) has occurred is 15%: P (B|A) = 15% (Wikipedia o. J.b). 

A conditional probability table (CPT) is a very useful option to show conditional probabilities, 
and it illustrates the relationship between events. A conditional probability table (CPT) is 
defined as a set of discrete and mutually dependent random variables to display conditional 
probabilities of a single variable with respect to the others. A conditional probability table can 
be put into matrix form. As an example, suppose that two binary variables, X and Y have the 
joint probability distribution given in Table 1, where each of the four central cells shows the 
probability of a particular combination of X and Y values (Wikipedia o. J.b): 

Table 1: Conditional probability table (CPT) 

 X = 0 X = 1 P (Y) 

Y = 0 4/9 1/9 5/9 
 Y = 1 2/9 2/9 4/9 

P (X) 6/9 
 

3/9 1 
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Joint probability is the probability that event A and event B occur simultaneously. It is the 
probability of the intersection of two or more events. The probability of the intersection of A 
and B may be written as P (A ∩ B) (Wikipedia o. J.b). 

The first column sum is the probability that X = 0 and Y equals any of the values it can have; 
that is, the column sum 6/9 is the marginal probability that X = 0. Marginal probability is the 
probability of event A occurring, expressed as P (A), which can be considered as unconditional 
probability, as its occurrence is not conditioned to any other event. If we want to find the 
probability that Y = 0 given that X = 0, we compute the fraction of the probabilities in the X = 0 
column that have the value Y = 0, which is 4/9 ÷ 6/9 = 4/6. Likewise, in the same column, we 
find that the probability that Y = 1 given that X = 0 is 2/9 ÷ 6/9 = 2/6. In the same way, we can 
also find the conditional probabilities for Y equalling 0 or 1, given that X = 1. Combining these 
pieces of information gives us this table of conditional probabilities for Y (Wikipedia o. J.b). 

3.1.2.1 Bayes’ theorem  

While conditional probabilities can provide extremely useful information, limited information is 
often supplied or at hand. Therefore, it can be useful to reverse or convert a condition 
probability using Bayes' theorem (Wikipedia o. J.a): 

Bayes' theorem (also known as Bayes' Law or Bayes' Rule) offers a way to modify the existing 
forecasts by using some new or additional information. It describes the probability of an event 
based on prior knowledge of conditions that might be (is or can be) related to the event. For 
example, if the risk of developing health problems is known to increase with age, Bayes' 
theorem allows the risk to an individual of a known age to be assessed more accurately (by 
conditioning it on their age) than simply assuming that the individual is typical of the population 
as a whole. Bayes' theorem is mathematically expressed as (Wikipedia o. J.a): 

!(.	|	/) 	=
!(/	|	.)	!(.)

!(/)
 

Where A and B are the events, and have to be different events, and P(B) ≠ 0.  

o P(A|B) is a conditional probability, the probability of event A occurring given that B is 
true. It is also called the posterior probability of A given B. 

o P(B|A) is also a conditional probability, the probability of event B occurring given that A 
is true. It can also be interpreted as the likelihood of A given a fixed B. 

o P(A) and P(B) are the probabilities of observing A and B without any given conditions 
(unconditional probabilities). They are known as the marginal or prior probability. 

In order to derive posterior probabilities, Bayes' theorem relies on adding prior probability 
distributions. In Bayesian statistical inference, prior probability is the likelihood of an event 
occurring before additional data is gathered. The updated probability of an event occurring 
after additional information is taken into account is known as posterior probability. Using Bayes' 
theorem, the posterior probability is derived by updating the prior probability. The posterior 
probability, in statistical terminology, is the likelihood of event A happening after event B has 
already occurred (Wikipedia o. J.a). 
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The main application of Bayes' theorem is Bayesian inference, a special approach to statistical 
inference. Bayes' theorem is very popular in finance to rate the risk and medicine to determine 
the accuracy of test results. 

The following example helps us to understand Bayes’ theorem. “Suppose a particular test for 
whether someone has been using cannabis is 90% sensitive, meaning the true positive rate 
(TPR)=0.90. Therefore, it leads to 90% true positive results for cannabis users. The test is also 
80% specific, meaning true negative rate (TNR)=0.80. Therefore, the test correctly identifies 
80% of non-use for non-users but also generates 20% false positives, or false-positive rate 
(FPR)=0.20, for non-users. 

Assuming 0.05 prevalence, meaning 5% of people use cannabis, what is the probability that a 
random person who tests positive is really a cannabis user? 

The Positive predictive value (PPV) of a test is the proportion of persons who are actually 
positive out of all those testing positive and can be calculated from a sample as:  

PPV = True positive / Tested positive 

If sensitivity, specificity, and prevalence are known, PPV can be calculated using the Bayes 
theorem. Let P(User|Positive) mean "the probability that someone is a cannabis user given 
that they test positive," which is what is meant by PPV. We can write: 

!(23$(|!435&56$) = 	
!(!435&56$|23$()	!(23$()

!(!435&56$)
 

The application of the Law of Total Probability leads to the fact that: 

!(!435&56$) = !(!435&56$|23$()	!(23$() + !(!435&56$|748 − :3$()	!(748 − :3$() 

Therefore, we can rewrite the above equation as:  

!(23$(|!435&56$) = 	
!(!435&56$|23$()	!(23$()

!(!435&56$|23$()	!(23$() + !(!435&56$|748 − :3$()	!(748 − :3$()
 

And after inserting associated values into the equation, we obtain the following probability: 

!(23$(|!435&56$) = 	
0.90 ∗ 0.05

0.90 ∗ 0.05 + 0.20 ∗ 0.95
=

0.045

0.045 + 0.19
≈ 19% 

Even if someone tests positive, the probability they are a cannabis user is only 19% because 
in this group, only 5% of people are users, and most positives are false positives coming from 
the remaining 95%” (Wikipedia o. J.a). 

3.1.3 Expectation - Maximization (EM) algorithm 

The target of the Expectation-Maximization (EM) algorithm is to estimate (local) maximum 
likelihood parameters of a statistical model if there is no possibility of solving the equations 
directly. It could either be because there are missing values under the data, or the model could 
be formulated more simply, assuming that additional not-visible (unobserved) data points are 
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The scope of applications of the EM algorithm is wide; some of the most important fields where 
EM can be used are, fill in the missing data during a sample, calculating the Gaussian density 
of a function, application in several areas of NLP (Natural Language Processing), 
reconstruction of images, especially in medicine etc. But the most important application of EM 
in our case is the estimation of parameters of a Hidden Markov Model (using the Baum-Welch 
algorithm) and also finding values of hidden (latent) variables.  

Of course, like all other methods, EM also has some advantages and disadvantages. The 
maybe biggest advantage is that the implementation of the E-Step and M-Step is pretty easy, 
and usually an increase in likelihood can be expected after each step of the iteration. The 
disadvantages of the EM algorithm are that it converges slowly and it converges to the local 
optimum only. Another disadvantage is that it considers both forward and backward probability, 
which is in contrast to that of numerical optimization, which takes only forward probabilities into 
account.  

To estimate the parameters of Hidden Markov Models, the Baum-Welch algorithm is used, 
which is a special form of EM algorithm. The Baum-Welch algorithm and how it works will be 
later explained in the section evaluation of HMM in detail. 

3.2 Theory of HMM 
Now, where we are familiar with the necessary basics of statistics, and also know, what Markov 
processes and Markov chains are, we can start with Hidden Markov Model itself.  

As mentioned, Hidden Markov Model is a doubly embedded stochastic process with an 
underlying stochastic process that is not observable (it is hidden) but can only be observed 
through another set of stochastic processes that produce the sequence of observations 
(Rabiner 1989). In other words, in HMM as the name suggests, the states are hidden, but at 
any time step, they emit a visible symbol to us.  

Let's start again with an example. Imagine the following scenario, and there is a man who talks 
on the phone every day with his daughter, that lives in another city far away from him. His 
daughter has a mood that changes with the weather. He knows that if it's sunny, she is 80% 
happy and 20% sad, and if it's cloudy, she is 50% happy and 50% sad, and finally when it's 
rainy, she is 25% happy and 75% sad, as illustrated in figure 3. Now let's say, last week that 
they talked, he observed the following observation sequence: Mood = [Happy, Happy, Sad, 
Happy, Sad, Sad, Happy]. Now the question is, how was the weather last week in the city 
where she lives?  

In this example the states (weather) are not visible to him but her moods in the last week are 
the visible symbols that she emitted to him. Therefore, the sequence of Mood is the 
observation, and the weather that we want to find out (based on observation sequence), is the 
hidden state sequence.  
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%DE = !(FGHI = JE	|	FG = JD) (Eq. 1) 
  

with 1 ≤ i, j ≤ N, and the transition probability distribution A = {aij}. As mentioned earlier, when 
the system enters a state and cannot leave this state again is known as the final or absorbing 
state, in such cases, the aij = 0 and aii = 1. Let's go back to the example that we mentioned 
earlier in part Markov chain to get a better idea about transition probability. Consider there are 
three weather options, sunny, cloudy and rainy. The states and the associated transition 
probabilities will be shown in figure 4. 

 

Figure 4: States and the transition probabilities (A Developer Diary o. J.) 

In this case, in which we have three states, we will have nine transition probabilities, where 
staying in the same state is also possible. The transition probability matrix A looks as follows: 

A = L

%II %IM %IN
%MI %MM %MN
%NI %NM %NN

L 

Table 2 shows the transition probability matrix for the Markov chain illustrated in figure 1 (part 
Markov chain). This table shows the probability values for the weather, moving from the states 
in the rows to the states in the column. As an example, the transition probability of having a 
rainy day after a cloudy day is defined as a23, which has a probability of 35%. 

Table 2: Transition Probability Matrix 

 Sunny Cloudy Rainy 

Sunny 0,8 0,15 0,05 

 Cloudy 0,25 0,4 0,35 

Rainy 0,2 

 

0,3 0,5 

  

It is self-evident that the sum of all transition probabilities of each row should be equal to 1. 
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Up to here we have always considered the next states, or considered a state where another 
state happened before. But what about the first step or state of the system at time step t = 1. 
This initial states of HMM, which is donated as p is called initial probability or initial probability 
distribution. In our example, with three possible weather states, the probability to be at time t 
= 1 in one of these three states is 1/3, therefore the initial probability distribution is defined as 
p = [1/3, 1/3, 1/3]. Here also the sum of all probabilities should be equal 1. General equation 
of initial probability can be expressed as follow (Rabiner 1989):  

O = !(FI = JD) (Eq. 2) 
 

with 1 ≤ i ≤ N, and the initial probability distribution p = {pi}. 

Now let's go back to the previous example with the man and his daughter. As you can 
remember, the man knew if the weather is sunny, she is to 80% happy and 20% sad, and if it 
is cloudy, she is to 50% happy and 50% sad, and finally when it is rainy, she is to 25% happy 
and 75% sad. In this case, the weather is the hidden state and the moods, which are visible to 
us, are observations. The emission probability bij indicates the probability of making 
observation Vj at state Si, as illustrated in figure 4. The general equation of emission probability 
can be expressed as follow (Rabiner 1989):   

PE(Q) = !(RS	%&	&	|	FG = JD) (Eq. 3) 
 

with 1 ≤ j ≤ N and 1 ≤ k ≤ M, and the emission probability distribution B = {bij}. In figure 5, V1 
stands for Happy and V2 for Sad, therefore, one of these observations (V1 = Happy or V2 = 
Sad) have to be emitted from each state.  

 

Figure 5: States and the associated transition and emission probabilities (A Developer Diary o. J.) 
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Forward, Backward, Viterbi and Baum-Welch algorithms and also Gaussian Mixture will be 
discussed in detail in the next sections. 

3.2.2 Evaluation of HMM 

In previous sections, we discussed the Markov chain, the basics and theory of HMM, and the 
most important parameters of HMM and how they can be defined. In this section, we come to 
the most important and challenging part of HMM, the evaluation of HMM. In order to be able 
to use HMM for real cases, we need to know how to solve the three most important problems 
that arise when using HMM, namely the evaluation problem, optimization problem, and 
predicting the best sequence. Fortunately, there are one or more solutions to each problem.  

Evaluation problem: Given a set of observation V = {V1, V2, ..., VT}, and the parameters of 
model l = [A, B, p], how to estimate the probability of observation sequence P(V|l)? 

The efficient solution to this problem is the first step toward optimization problems and 
predicting the best sequence problem. The solution to this problem can be obtained in two 
steps; first, we have to find all possible state sequences that can produce this observation 
sequence, and the second step is, from all possible state sequences, to find that state 
sequence that most likely generates this observation sequence.  

In the section Forward-Backward algorithm, we will discuss in detail which problems will arise 
by performing these two steps and how we can escape them. 

Predicting best sequence: Given a set of observations V = {V1, V2, ..., VT}, and the 
parameters of model l = [A, B, p], how to find the most probable (hidden) state sequence, that 
is supposed to produce this observation set. 

To find the best or most likely state sequence (also known as decoding problem) Viterbi 
algorithm or Viterbi decoder can be used. The Viterbi algorithm that is based on dynamic 
programming is used to get MAP (maximum a posteriori estimation) of the most likely state 
sequence or path. 

Optimization problem: Given a set of observations V = {V1, V2, ..., VT}, how can we optimize 
or learn model parameters l = [A, B, p] to maximize P(V|l)? 

The optimization problem (also known as the learning problem) is the most difficult problem of 
the Hidden Markov Model. A forward-Backward algorithm can be used to solve the optimization 
problem, but the most widely used and much more efficient algorithm is the Baum-Welch 
algorithm, which is a special case of the Expectation-Maximization algorithm. Based on 
observation V, the Baum-Welch algorithm optimizes a given model l in such a manner that 
the optimized model generates the training set with equal or higher probability (Fink 2014). 

Later we will see that the three problems are closely related in our probabilistic framework. 
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3.2.3 Evaluation problem (Forward - Backward algorithm) 

As mentioned earlier, the easiest way to solve evaluation problem (the first step) is to 
enumerate every possible sequence of states of length T, where T is the number or length of 
observations. Consider such a fixed sequence of states (Rabiner 1989): 

U = FI, 	FM, … , FX 

as we already know, q1 is the initial state. Then the probability of observation sequence V for 
this state sequence Q is (Rabiner 1989): 

!(R	|	U, l) = 	Y!(RG	|

X

GZI

FG, l) (Eq. 4a) 

 

among assumption that observations are statistical independence, we will get (Rabiner 1989):  

!(R	|	U, l) = 	P[I(RI)	. P[M(RM)	. …		 . P[X(RX) (Eq. 4b) 
 

and the probability of state sequence Q can be written as (Rabiner 1989): 

!(U	|	l) = 	p[I	%[I[M		%[M[N … 	%[X\I[X  (Eq. 5) 
 

and the probability that observation sequence V and state sequence Q follow at the same time, 
or in other words, the joint probability of V and Q is the product of (4b) and (5) (Rabiner 1989): 

!(R, U	|	l) = 	!(R	|	U, l)	!(U, l) (Eq. 6) 
 

and finally, the probability of observation sequence V can be received by summing the joint 
probability over all possible state sequence q (Rabiner 1989): 

!(R	|	l) = ] !(R	|	U, l)	!(U	|	l)
^__	`

 (Eq. 7a) 

 

!(R	|	l) = 	 ] p[I	P[I(RI)	%[I[M	P[M(RM)… 	%[X\I[X	P[X(RX)
[I,[M,…,[X

 (Eq. 7b) 

 

The equation (Eq. 7b) means that at time t = 1 the system is in the initial state q1 with the 
probability πq1 which emits the observation V1 with the probability bq1 (V1), and in the next time 
step t+1 system moves to the state q2 with the transition probability aq1q2 which emits the 
observation V2 with the probability bq2 (V2). The system continues moving in the same way until 
it reaches the transition from qT-1 to qT with the transition probability aqT-1qT, which emits the 
observation VT with the probability bqT (VT). 

A brief but close look at the equations makes us clear if N possible states (at every t = 1, 2, …, 
T) can be reached, then NT state sequences are possible. And for each term in the sum of 
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equation (EQ. 7b), 2T calculations are needed to solve each state sequence, which means 
2T*NT calculations are required. It makes this method computationally impracticable, for 
example, if we consider a small system with only five states (N = 5) and 100 observations (T 
= 100), then we will have 2 * 100 * 5100 = 1072 calculations, which will be even higher for real 
cases. Therefore, even if we have this calculation method, another method with higher 
efficiency is needed to overcome the evaluation problem. As mentioned, fortunately, there are 
solutions namely forward and backward algorithms. We will see later how the forward algorithm 
can be used for solving of (Eq. 7b) or rather evaluation problem to overcome this large 
computation problem. 

Forward and backward algorithms are perfect examples of dynamic programming1. These two 
recursive2 dynamic programming approaches help us by solving evaluation problem and 
optimization problem. The dynamic programming was used for type of optimization of 
problems, or more generally, it can be used for making inferences. 

3.2.3.1 Forward algorithm  

In order to be able to solve the first problem, namely the evaluation problem, or in other words, 
to estimate the probability of observation sequence P(V|l) given model parameters, we can 
use the forward algorithm. In the forward algorithm, the already calculated probability of the 
current state at time step t will be used to calculate the probability of the next state at time step 
t+1, mathematically defined as (Rabiner 1989): 

aG(5) = !(RI:G	, FG = JD|	l) (Eq. 8) 
 

the a is the forward variable. The initialization for the first step at time t = 1 is as follows (Rabiner 
1989): 

aI(5) = pDPD(RI)	 (Eq. 9) 
 

with 1 ≤ i ≤ N. It is the joint probability of state Si and the first observation V1. But the 
generalized equation is the main part (induction) of forward algorithm which is for all other 
steps (Rabiner 1989): 

aGHI(b) = PE(RGHI)	]aG(5)	%DE

c

DZI

 (Eq. 10) 

 

with 1 ≤ j ≤ N and with 1 ≤ t ≤ T-1.  

                                                
1 Dynamic programming is a programming model, where complex problems are divided into smaller 
sub-problems with systematically storing intermediate results. 

2 Recursive means that we can reuse prior values as input to obtain next values. 
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If we take a closer look at the probabilities at each step and take the state with the higher 
probability for each time step, we get the state sequence that this observation sequence may 
have emitted, States = [Sun, Sun, Sun, Sun, Rain, Rain, Sun] (figure 18 & 25), but that is a 
task of Viterbi's algorithm that will be discussed in more detail later. 

Just to get an overview, let's calculate two examples of the outputs of Alpha. The first line of 
Alpha is the first-time step, means the initial probability aI(5) = pDPD(RI). For example, from 
observation sequence, we know that V1 is Happy, if we consider the first (hidden) state as 
sunny, the forward variable a will be (with the probability P (q1 = S1 | V1 = O1)): 

aI(3:8) = phijPhij(k%llm) 

aI(3:8) = 0.33 ∗ 	0.80 = p. qrs 

Now let’s go to the second time step if the (hidden) state will be cloudy, where the observation 
is again Happy (that means P(q2=S2 | V2=O1)). From there on we have to consider transition 
probability as well, therefore: 

aGHI(b) = PE(RGHI)	]aG(5)	%DE

c

DZI

 

aM(tu4:v) = Pw_xiy(k%llm) ∗ [	zaI(J:8) ∗ 	%{ij,w_xiy| +	zaI(tu4:v) ∗ 	%w_xiy,w_xiy|

+ zaI(}%58) ∗ 	%~^Dj,w_xiy|] 

aM(tu4:v) = 0.50 ∗ [	(0.264 ∗ 0.15) + (0.165 ∗ 0.4) + (0.0825 ∗ 0.3)	] = p. prÄÅÇÄ 

3.2.3.2 Backward algorithm  

It's important to know that the backward algorithm will actually be used as part of the solution 
for the optimization problem and not the evaluation problem, but since the concept of the 
forward algorithm has already been explained here, it’s easier to understand the backward 
algorithm. 

The backward algorithm is very similar to the forward algorithm, but in contrast to the forward 
algorithm, the backward algorithm is time-reversed, which means we have to find the 
probability that the system will be in the state Si at a given time step and will create the 
remaining part of the set of visible observations VT. In other words, the probability of that part 
of the observation sequence from time step t+1 up to the end of observations, where state Si 
at time step t and the model parameter l are known. In a similar way to the forward variable 
a, the backward variable bt (i) can be defined as (Rabiner 1989):  

bG(5) = !(RGHI	, RGHM	, … , RX	|	FG = JD, l) (Eq. 12) 
 

The initialization is as follows, where bT (i) will be voluntary 1 for all i (Rabiner 1989): 

bX(5) = 1	 (Eq. 13) 
 



!C<KO@M���e�&D??@I�+<MFJQ�HJ?@G��&++�� ���
��

�

RDOC���b�D�b�,�2C@�B@I@M<GDU@?�@LP<ODJI�JM�DI?P>ODJI�K<MO�JA�=<>FR<M?�<GBJMDOCH�DN�<N�AJGGJRN�
�0<=DI@M��������

�m�9� � �� �1ef
[

fWR
2f�0mUR���mUR�:�� �#L�����

RDOC���b�E�b�,�<I?�RDOC�O���2����2����d����2C@�OM@GGDN�?D<BM<H�DGGPNOM<O@?�DI�ADBPM@����NCJRN�OC@�
N@MD@N�JA�JK@M<ODJIN�I@@?@?�AJM�><G>PG<ODJI�JA�=<>FR<M?�Q<MD<=G@��O��D���

�

$DBPM@�����2M@GGDN�?D<BM<H�AJM�=<>FR<M?�<GBJMDOCH�

 <>FR<M?�<GBJMDOCH�><I�=@�H<OC@H<OD><GGT�@SKM@NN@?�<N�AJGGJR��

�m�9� � �
����������������������������������������������������6?B�D � .�

� 1ef
[

fWR
2f�0mUR� �mUR�:� 6?B D � . �

'I� JM?@M� OJ� ><G>PG<O@��O� �D��� <N�R<N� OC@� ><N@� DI� OC@� AJMR<M?� <GBJMDOCH��,�2� ><G>PG<ODJIN� <M@�
I@@?@?�

&@M@�R@�><I�<GNJ�BJ�OCMJPBC�<�KM<>OD><G�@S<HKG@�OJ�H<F@�DO�>G@<M@M��CJR�><I�R@�J=O<DI���=T�
PNDIB� OC@�=<>FR<M?�<GBJMDOCHN�RDOC� OC@�KMJBM<HHDIB� G<IBP<B@�.TOCJI�5@�PN@�<B<DI� OC@�
KM@QDJPN�@S<HKG@�H@IODJI@?�DI�OC@�N@>ODJI�AJMR<M?�<GBJMDOCH�RDOC�OC@�H<I�<I?�CDN�?<PBCO@M�
2C@�HJ?@G�K<M<H@O@M����<��=�<I?����<I?�OC@�KJNND=G@�NO<O@N��KJNND=G@�J=N@MQ<ODJIN�<I?�OC@�
J=N@MQ<ODJI� N@LP@I>@� 4� �J=N@MQ@?� HJJ?N�� <M@� NCJRI� DI� ADBPM@� �� �� =MD@A� ?@N>MDKODJI� JA�
<NNPHKODJIN��DIKPON��JPOKPON�<I?�<GNJ�OC@�KPMKJN@�JA�OC@�=<>FR<M?�<GBJMDOCH�DN�NCJRI�DI�ADBPM@�
��� �N� <� M@HDI?@M�� OC@� ADMNO� M@LPDM@H@IO� AJM� <GG� <GBJMDOCHN� DN� OC<O� OC@� IPH=@M� JA� KJNND=G@�
J=N@MQ<ODJI�+�<I?�J=N@MQ<ODJI�N@LP@I>@�4�<M@�FIJRI�OJ�PN�2C@�N@>JI?�M@LPDM@H@IO�DN�OC<O�
OC@�IPH=@M�JA�KJNND=G@�NO<O@N�,�DN�FIJRI��JOC@MRDN@��ADMNO�R@�C<Q@�OJ�ADI?�JPO�,�PNDIB�JOC@M�
<GBJMDOCHN�JM�H@OCJ?N��NP>C�<N�%<PNND<I�+DSOPM@�



!C<KO@M���e�&D??@I�+<MFJQ�HJ?@G��&++�� ���
��

�

�

$DBPM@������NNPHKODJIN��DIKPON�<I?�JPOKPON�JA� <>FR<M?�<GBJMDOCH�

3NDIB�OC@�AJGGJRDIB�.TOCJI�>J?@�AJM�=<>FR<M?�<GBJMDOCHN��ADBPM@������

�

$DBPM@�����.TOCJI�>J?@�AJM� <>FR<M?�<GBJMDOCH����"@Q@GJK@M�"D<MT�J�(��

2C@�JPOKPON�<M@�<N�AJGGJRN��ADBPM@������

�

$DBPM@����� @O<�AJM�@<>C�NO<O@�<I?�@<>C�ODH@�NO@K�O����?<TN��

-I>@�<B<DI�OJ�M@H@H=@M��OC@���N�<M@�OC@�KMJ=<=DGDOT�JA�=@DIB�DI�<�K<MOD>PG<M�NO<O@�<O�<�K<MOD>PG<M�
ODH@�'I�JOC@M�RJM?N��OC@T�<M@�DIO@MH@?D<O@�M@NPGON�'O�DN�DA�R@�NPKKJN@�OC<O�R@�<M@�<O�<�>@MO<DI�
ODH@�NO@K� DI�<�>@MO<DI�NO<O@�<I?�R<IO� OJ� ADI?�JPO� OC@�KMJ=<=DGDOT�JA�J=N@MQDIB�<GG�NP=N@LP@IO�
@Q@ION�AMJH�OCDN�NO<O@���

�N� TJP� ><I� N@@� DI� ADBPM@����� OC@� MJRN� NO<I?� AJM� OC@� ODH@� NO@KN�<I?� OC@� >JGPHIN� AJM� OCM@@�
KJNND=G@�NO<O@N�1PI��!GJP?�<I?�0<DI�

�B<DI��EPNO�OJ�B@O�<I�JQ@MQD@R��G@O�N�><G>PG<O@�<I�@S<HKG@�JA�OC@�JPOKPON�JA�=@O<�'I�OC@�><N@�JA�
=<>FR<M?�<GBJMDOCH�<I?�><G>PG<ODJI�JA�=@O<��>JIND?@M� OC@� G<NO� GDI@�JA�=@O<� �2DH@NO@K�2���N�



Chapter 3 – Hidden Markov model (HMM) 33 
   

 

mentioned earlier, the initialization of bT (i) will be voluntary 1 for all i’s at time step T. Now let’s 
calculate as an example the time step T-1, if the state will be sunny. 

bG(5) = 	] 	%DE

c

EZI

PE(RGHI)	bGHI(b) 

bX\I(J:8) = Ö%{ij,{ij ∗ P{ij(k%llm) ∗ bX(J:8)Ü +	Ö%w_xiy,{ij ∗ Pw_xiy(k%llm) ∗ bX(tu4:v)Ü

+ Ö%{ij,~^Dj ∗ P~^Dj(k%llm) ∗ bX(}%58)Ü 

bM(J:8) = (0.8 ∗ 0.8 ∗ 1) + (0.5 ∗ 0.15 ∗ 1) + (0.25 ∗ 0.05 ∗ 1) = p. ÇqÇÄ 

Forward and backward algorithms can be briefly summarized as follows: first of all, it assumes 
that transition and emission probabilities and initial distribution are all known. Forward and 
backward algorithms are recursive functions, which means we can reuse prior values or 
outcomes as input to obtain the next values or outcomes, in this way, we save time. The aim 
of the Forward-Backward algorithm is computing the marginal probability of one of the (hidden) 
states given the observation sequence, which means P (qt | V1:T), where V1:T is the entire 
observation sequence. Forward-Backward-Algorithm can be subdivided into Forward-
Algorithm and Backward-Algorithm. The aim of the Forward-Algorithm is to compute the joint 
distribution of a given (hidden) state qt and V1 through Vt, which means P (qt, V1:t), and as you 
can see, there is no conditioning here. Backward-Algorithm is used to compute the joint 
distribution of Vt +1 to VT given (hidden) state qt, which means P (Vt +1:T | qt).  

As mentioned, Forward-Backward-Algorithm assumes that model parameter l is known and 
tries to compute the conditional distribution of the hidden state, where observations are given. 
Therefore P (qt | V1:T) is proportional to joint distribution by qt and V1:T, which means:  

!(FG|	RI:X)		@		!(FG, 	RI:X) 

We can also say that the V = (V1:t, Vt +1:T) and rewrite the above equation as follow (Ankan and 
Panda 2018): 

!(FG|	RI:X)		@		!(FG, 	RI:G, 	RGHI:X) 

and after applying chain rule and independence property,  we get the following equation (Ankan 
and Panda 2018): 

!(FG|	RI:X) = !(RGHI:X	|	FG)	!(FG, 	RI:G) (Eq. 15) 
 

Now, look at the (Eq. 15), the part P(Vt+1:T|qt) is backward algorithm, and P (qt, V1:t) is the 
forward algorithm. That means Forward-Backward-Algorithm can be simply computed by 
multiplying the backward algorithm with the forward algorithm. This is very helpful in solving 
optimization (or learning) problems. 

Later we will see how the use of these two algorithms helps us to solve the other two problems. 
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3.2.4 Predicting best state sequence (Viterbi algorithm) 

Actually, to solve the second problem (predicting the best state sequence), we could first find 
all the different hidden state scenarios for the given observation sequence and then try to 
identify the most likely one. But as the Viterbi algorithm is very similar to the forward algorithm, 
we get the same problem again, which means there is a large number of computations 
required. How to overcome this problem will be discussed in this section. 

But before diving into the problem solving, let's mention an interesting difference between the 
Viterbi and Forward algorithms. The most important difference between these two algorithms 
is discussed below, but there is another and also an important difference between these two 
algorithms. Since the Forward algorithm tries to calculate P(V|l), it does not consider which 
state is at each step most probable, but Viterbi finds the most likely state in every iteration and 
then returns this state sequence through backtracking, and also returns the probability of 
produced state sequence based on the observation sequence, as illustrated in figure 18. 

3.2.4.1 Viterbi algorithm  

First, let's go through the mathematical understanding, and then again use this algorithm for 
the example with the weather for better understanding.  

In contrast to the evaluation problem, where there was only one specific solution to the 
problem, fortunately, there are several solutions for the second problem, depending on the 
optimality criteria. But since there are several optimality criteria, the question is, which criteria 
lead best to the optimal state sequence. If we for example, take the optimality criterion that 
selects the states qt, where they are individually most likely, the solutions for the second 
problem will be as follows (Rabiner 1989): 

gG(5) 	= 	!(FG = 	JD	|	R, l) 

This is the probability of being in state Si at time t, where observation sequence and model 
parameters are known. By using forward variable a backward variable b, and the normalization 
factor P(V|l) to make gt (i) a probability measure, the following equation can be obtained 
(Rabiner 1989): 

gG(5) = 	
aG(5)	bG(5)
!(R|l)

= 	
aG(5)	bG(5)

∑ aG(5)	bG(5)
c
DZI

 

where at (i) stands for observation sequence V1:t, and bt (i) for Vt+1:T. Now the individually most 
likely state qt at time t can be obtained as (Rabiner 1989): 

FG = argmax
IåDåc

	[gG(5)] 

with 1 ≤ t ≤ T. But since it maximizes the expected number of correct states and also computes 
the most likely state at each time step t, can some problems with the resulting state sequence 
occur if there are transition states that are equal to zero (aij = 0). In other words, since this 
optimality criterion does not consider the entire state sequence but only each individual state, 
it could actually be impossible a transition from one of these selected states to the next one if 
aij = 0. To overcome this problem, a method is needed that considers more than one-time step 
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and state (for example, pairs of states or triples of states, etc.). The Viterbi algorithm can be 
used to get the best state sequence without having the problem already mentioned. Viterbi 
algorithm is based on dynamic programming and is very similar to the forward algorithm. It 
tries to find the best path or find the single best state sequence, which maximizes P (Q | V, l) 
or rather P (Q, V | l). 

The first step of the Viterbi algorithm is the initialization (Rabiner 1989): 

cI(5) = pDPD(RI) 
 

yI(5) = 0	 
 

(Eq. 16) 

with 1 ≤ i ≤ N and yt (j) as array for backtracking. The second step is the recursive part, with  
1 ≤ j ≤ N and 2 ≤ t ≤ T (Rabiner 1989): 

cG(b) = max
IåDåc

	ècG\I(5)	%DEêPD(RG) 

 
yG(b) = argmax

IåDåc
	[cG\I(5)	%DE]	 

 

(Eq. 17) 

The third step is the termination (Rabiner 1989): 

!∗ = max
IåDåc

	ècX(5)ê 

 
FX
∗ = argmax

IåDåc
	[cX(5)]	 

 

(Eq. 18) 

And finally, the last part is the path or state sequence backtracking (Rabiner 1989): 

FG
∗ = yGHI(FGHI

∗ ) 

with t = T-1, T-2, …, 1. 

If we go back to the previous example with the weather and moods, based on observation 
sequence (see figure 9) and apply the Viterbi Algorithm, best state sequence is predicted and 
its probability is calculated as shown in figure 18. A brief description of assumptions, inputs, 
outputs and also the purpose of the Viterbi algorithm is shown in figure 17. As a reminder, the 
first requirement for all algorithms is that the number of possible observation M and observation 
sequence V are known to us. The second requirement is that the number of possible states N 
is known, otherwise, first we have to find out N using other algorithms or methods (will be 
explained later). 
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xG(5, b) = 	
aG(5)	%DE	PE(RGHI)		bGHI(b)

∑ ∑ aG(5)	%DE	PE(RGHI)		bGHI(b)
c
EZI

c
DZI

 

 
We already know (from section Viterbi algorithm) that gt (i) is the probability being in state Si at 
time t, where observation sequence and model parameters are known. If we relate gt (i) to xt (i, 
j) by summing over j, following equation can be obtained (Rabiner 1989): 

gG(5) = 	] xG(5, b)
c

EZI

 

Now if we sum gt (i) over time t, we obtain a quantity that can be explained as the expected 
number of times that a certain state Si occurs. Likewise, if we sum x t (i, j) over time t (t1: T-1), it 
can be explained as the expected number of times that transition from Si to Sj occurs. That can 
be written as (Rabiner 1989): 

] gG(5)
X\I

GZI

= $íl$ì&$v	8:îP$(	4f	&(%835&548	f(4î	JD 

] xG(5, b)
X\I

GZI

= 	$íl$ì&$v	8:îP$(	4f	&(%835&548	f(4î	JD	&4	JE 

Considering these equations and also the concept of counting event occurrences, the following 
set of re-estimation equations for model parameters a, b and p can be defined (Rabiner 1989): 

pï = $íl$ì&$v	f($F:$8ìm	(8:îP$(	4f	&5î$3)	58	3&%&$	JD	%&	&5î$	(& = 1) 

%ñóïïïï =
$íl$ì&$v	8:îP$(	4f	&(%835&5483	f(4î	3&%&$	JD	&4	3&%&$	JE

$íl$ì&$v	8:îP$(	4f	&(%835&5483	f(4î	3&%&$	JD
 

Póò(Q) =
$íl$ì&$v	8:îP$(	4f	&5î$3	58	3&%&$	b	%8v	4P3$(658ô	3mîP4u	RS

$íl$ì&$v	8:îP$(	4f	&5î$3	58	3&%&$	b
 

with 1 ≤ k ≤ M. Mathematically expressed as (Rabiner 1989): 

pï = gI(5) 

%ñóïïïï =
∑ xG(5, b)
X\I
GZI

∑ gG(5)
X\I
GZI

 

Póò(Q) =

∑ gG(b)
X

GZI
h.G.	öõZúù		

∑ gG(b)
X
GZI

 

Earlier mentioned that based on observation V, the Baum-Welch algorithm optimizes a given 
model l in such a manner that the optimized model generates the training set with equal or 
higher probability. That means if l (a, b and p) is an initial model parameter, which calculates 
the right-hand sides of the above equations, and λï	(aï, bï	and	πò) is a re-estimated model 
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parameter that is calculated by the initial model parameter l, then these two scenarios are 
possible, either in worst case λï = l, or the probability of newfound model is higher than initial 
model parameters, P (V | λï) > P(V | l), where the observation sequence is more likely to have 
been produced.  

If we utilize this method, and we iteratively use λï instead of l and repeat the re-estimating 
computation until it converges, thus we obtain an improvement of the probability of observation 
sequence V. As already noticed, this re-estimating method can be interpreted as an 
implementation of EM algorithm, where the EM iteration changes between an Expectation step 
(E) that calculates the auxiliary function Q	zl	, λï| = ∑ P(Q• |	V, λ) 	log[P(V, Që	λï|], and a 
maximization step (M) that is a maximization over λï. The procedure is as follows: 

EM algorithm: 

• Initialize a and b 
• Iteration (until convergence) 

o E-Step 

§ xG(5, b) = 	
aõ(D)	^©™	´™(öõ¨≠)		bõ¨≠(E)

∑ ∑ aõ(D)	^©™	´™(öõ¨≠)		bõ¨≠(E)
Æ
™Ø≠

Æ
©Ø≠

 

§ gG(5) = 	∑ xG(5, b)
c
EZI  

o M-Step 

§ %ñóïïïï =
∑ xõ(D,E)
∞±≠
õØ≠

∑ gõ(D)
∞±≠
õØ≠

 

§ Póò(Q) =

∑ gõ(E)
∞

õØ≠
≤.õ.	≥õØ¥ù		

∑ gõ(E)
∞
õØ≠

 

• Return a, b 

Again, to get a better insight into Baum-Welch algorithm and also the Viterbi algorithm, let's go 
back to the example with the weather and mood. As already mentioned at the beginning of this 
section, if the model parameters l (A, B and p), and the number of possible states are known 
to us, we can use the forward algorithm and Viterbi algorithm to obtain the P(V|l) and the most 
probable state sequence. If it is not the case, that means model parameters l and/ or possible 
states are unknown, and we have to find these parameters and values from the data. We can 
use Gaussian Mixture, Bayesian Information Criterion (BIC)1 or Akaike Information Criterion 
(AIC)2 (will be discussed in detail in chapter 6) etc. to get an assessment of the possible states. 
But if only the model parameters are missing, we can use the Baum-Welch algorithm to 
estimate these parameters. 

Since we have not still talked about Gaussian Mixture etc., in this example, we assume that 
the possible states are known (Sun, Cloud and Rain). Now the first step is initializing the model 
parameters. As illustrated in figure 20, we set equal transition probabilities (33%) and also 
equal emission probabilities (50%) for all states, but we use different values for initial probability 
                                                
1 https://en.wikipedia.org/wiki/Bayesian_information_criterion 

2 https://en.wikipedia.org/wiki/Akaike_information_criterion 
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In MATLAB1, all essential function and algorithms (Like Forward, Backward, Viterbi and Baum-
Welch etc.) are available to implement HMM. The main functions related to HMM are available, 
without installing of tools or packages were needed. But as mentioned, depending on the given 
problem, other functions probably were needed, therefore some additional packages and tools 
have been provided and added to MATLAB. For example, Hidden Markov Model Toolbox 
(HMM)2 is one of them, which contains functions that model time series data with HMM.  

In R, HMM package, which contains the four essential algorithms (Forward, Backward, Viterbi 
and Baum-Welch), is available to implement HMM. Another important and useful package in 
R is depmixS4-package. The depmixS4 is a framework for specifying and fitting dependent 
mixture models, otherwise known as hidden or latent Markov models. Optimization is done 
with the EM algorithm or optionally with Rdonlp2 when (general linear (in-)equality) constraints 
on the parameters need to be incorporated. Models can be fitted on (multiple) sets of 
observations. The response densities for each state may be chosen from the GLM family or a 
multinomial. User-defined response densities are easy to add; for the latter, an example is 
given for the ex-gauss distribution as well as the multivariate normal distribution. Mixture or 
latent class (regression) models can also be fitted; these are the limit case in which the length 
of observed time series is 1 for all cases (Visser and Speekenbrink o. J.). 

In Python, the hmmlearn package is available to implement HMM. From now on, we will 
discuss this package from Python and how it can be used to implement HMM.  

There are three models available, using hmmlearn3: 

• Gaussian Model (hmm.GaussianHMM): HMM with Gaussian emissions. 
• Gaussian Mixture Model (hmm.GMMHMM): HMM with Gaussian mixture emissions. 
• Multinomial Model (hmm.MultinomialHMM): HMM with Multinomial (discrete) 

emissions. 

Gaussian- and Gaussian Mixture Models are used for continuous data, for example, time-
series data. A multinomial model is used for fixed or finite number of variables. For instance, 
the example with the weather can be solved using the Multinomial model. Since in this master 
thesis HMM is used to analyze time-series data (continuous data), we will only deal with 
(normal) Gaussian and Gaussian Mixture from now on. 

By applying one of these models, we can solve the three main problems of the hidden Markov 
model. We can call the fit () method to train and estimate model parameters (optimization 
problem) and after that, inferring the hidden states by calling the decode () or predict () method. 

                                                
1 https://de.mathworks.com/help/stats/hidden-markov-models-hmm.html 

2 Mo Chen (2021). Hidden Markov Model Toolbox (HMM) MATLAB Central File Exchange. Retrieved 
October 9, 2021 (https://www.mathworks.com/matlabcentral/fileexchange/55866-hidden-markov-
model-toolbox-hmm) 
3 There is also hmmlearn.base model available, if you want to implement a custom emission 
probability (e.g. Poisson), you have to subclass _BaseHMM and override some methods. 
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The decode method can be specified with a decoder algorithm, Viterbi or MAP, to solve the 
second problem (predicting the best state sequence). Or calling score () method to estimate 
the probability of observation sequence P(V|l), which means the evaluation problem 
(hmmlearn 2010). These are just some examples to get an insight into these three models. In 
the next section, we will discuss how Gaussian mixture (and/or normal Gaussian) can be used 
to predict hidden states in time series data of sucker rod pumps.  

In this work, the results from HMM will be compared with other clustering methods, namely the 
Gaussian Mixture and K-Means. Therefore, in addition to the package hmmlearn the scikitlearn 
package is required, which is also a machine learning library for Python programming 
language, to implement Gaussian Mixture and K-Means. Notice that in this work, Gaussian 
Mixture HMM (GMMHMM) is used, which is based on Gaussian Mixture. The difference 
between Gaussian Mixture and Gaussian Mixture HMM is that Gaussian Mixture HMM uses 
the four main algorithms (Forward, Backward, Viterbi and Baum-Welch) to solve the problems. 
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a system speed in the range between 3 and 15 rpm is reached. The cranks carry the 
counterweight, which balances the rod string's weight and is connected with the pitman. The 
pitman is connected to one end of the walking beam. On the other end of the walking beam, 
the horsehead is positioned. The horsehead’s wireline hangers carry the polished rod, which 
passes through the wellhead’s stuffing box. The polished rod is connected to the sucker rod 
string, which transmits the pump jack’s motion to the downhole pump plunger. 

During the upstroke of the downhole pump’s plunger, the traveling valve as part of the plunger 
is closed, the fluid load is carried by the rod string and lifted. Simultaneously, the standing 
valve is opened to allow inflow into the pump’s intake chamber as part of the fixed barrel. 
During the plunger’s downstroke, the standing valve, which carries the fluid load now, is closed, 
and the plunger moves through the fluid column back to its bottom dead center. The cyclic load 
changes cause dynamics in the pumping system, which need to be handled by the pump jack. 
Continuous research on the optimization and improvement of surface and downhole 
components of the pumping system is performed in the laboratory and the field. 

The electric motor can be driven directly from the electric grid or by a frequency converter. The 
electric grid's direct connection is a cheap solution but requires additional hardware, a so-
called soft start, and a change in the belt pulley sizes to adjust the pump’s strokes per minute. 
Using frequency converters (FC) for industrial pump applications is state-of-the-art and 
provides many advantages, like controlling the speed of rotation and torque of the equipment 
and reducing the grid load at start-ups through limiting the inrush current. Many publications 
deal with FC and electric motor combinations for specific applications, increasing efficiency or 
power density, enhancing control strategies, or extending the power capacity. A sucker rod 
pumping system driven by a frequency converter is known as a variable speed drive system 
(VSD). Conventional VSD applications change the motor speed independent of the supply grid 
frequency. A high degree of flexibility is achieved to adjust the pump speed to the reservoir’s 
performance.  

Pumping unit variable-speed drive technology is seen as one of the most advanced energy-
saving technologies applied in oilfields. FCs overcome the pump jack’s limitation of the four-
bar mechanism to achieve a full-cycle variable speed-controlled operation (Langbauer et al. o. 
J.). 

4.2 Machine learning 
Fundamentally, machine learning involves building mathematical models to help understand 
data. “Learning” enters the fray when we give these models tunable parameters that can be 
adapted to observed data, in this way the program can be considered to be “learning” from the 
data. Once these models have been fit to the data, they can be used to predict and understand 
aspects of newly observed data. 

Now let's see what types of machine learning exist. At the most fundamental level, machine 
learning can be categorized into two main types: supervised learning and unsupervised 
learning.  
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Supervised learning involves somehow modeling the relationship between measured features 
of data and some label associated with the data; once this model is determined, it can be used 
to apply labels to new, unknown data. This is further subdivided into classification tasks and 
regression tasks: in classification, the labels are discrete categories, while in regression, the 
labels are continuous quantities.  

Unsupervised learning involves modeling the features of a dataset without reference to any 
label, and is often described as “letting the dataset speak for itself.” These models include 
tasks such as clustering and dimensionality reduction. Clustering algorithms identify distinct 
groups of data, while dimensionality reduction algorithms search for more succinct 
representations of the data. 

In addition, there are so-called semi-supervised learning methods, which fall somewhere 
between supervised learning and unsupervised learning. Semi-supervised learning methods 
are often useful when only incomplete labels are available (VanderPlas 2017). 

4.3 Motivation 
We know from medicine, prevention is better than cure. To avoid future problems, we have to 
recognize them earlier, therefore we need prediction. Hidden Markov Model (HMM) can be 
used to predict problems that may arise in oil fields by analyzing time series data or images, 
especially in petroleum production (e.g. sucker rod pump). 

As our world gets increasingly instrumented, sensors and systems are constantly emitting a 
relentless stream of time series data. Such data has numerous applications across various 
industries. Time series data is gathered, stored, visualized and analyzed for various purposes 
across various domains: 

• In data mining, pattern recognition and machine learning, time series analysis is used 
for clustering, classification, query by content, anomaly detection and forecasting. 

• In signal processing, control engineering and communication engineering, time-series 
data is used for signal detection and estimation. 

• In statistics, econometrics, quantitative finance, seismology, meteorology, and 
geophysics the time series analysis is used for forecasting. 

Time series analysis helps identify trends, cycles, and seasonal variances to aid in the 
forecasting of a future event. Time series analysis can be useful to see how a given variable 
changes over time (while time itself, in time series data, is often the independent variable). 
Time series analysis can also be used to examine how the changes associated with the chosen 
data point compare to shifts in other variables over the same time period (Influxdata Inc. o. J.). 

4.4 Objective 
The aim of this master thesis is to use hidden Markov model to analyze time series data 
gathered from the sucker rod pump and find the hidden states, which can be used for prediction 
of a future event, e.g. sucker rod pump failure diagnosis. 
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5 Procedure and implementation of the procedure 
The results from HMM will be compared with other clustering methods, namely the Gaussian 
Mixture and K-Means. Therefore, it is better, before diving into the implementation of HMM on 
our data, to get an intuition about the difference between K-Means and Gaussian Mixture 
Model (GMM) or rather Gaussian Mixture HMM (GMMHMM). 

Since a detailed discussion of the differences between K-Means and GMM is outside the scope 
of this thesis, only some very important differences will be discussed here. 

The K-Means clustering model is simple and relatively easy to understand, but its simplicity 
leads to practical challenges in its application. In particular, the non-probabilistic nature of K-
Means and its use of simple distance-from-cluster-center to assign cluster membership leads 
to poor performance in many real-world situations. The K-Means (an unsupervised learning 
algorithm) searches for a predetermined number of clusters within an unlabeled 
multidimensional dataset. It accomplishes this using a simple conception of what the optimal 
clustering looks like (VanderPlas 2017):  

• The “cluster center” is the arithmetic mean of all the points belonging to the cluster.  
• Each point is closer to its own cluster center than to other cluster centers.  

Those two assumptions are the basis of the K-Means model. Gaussian mixture models (or 
rather Gaussian Mixture Hidden Markov Model, GMMHMM), also an unsupervised learning 
algorithm, can be viewed as an extension of the ideas behind K-Means, but can also be a 
powerful tool for estimation beyond simple clustering. Here are some differences between 
these two models (VanderPlas 2017): 

• Lack of flexibility in cluster shape by K-Means: In K-Means, cluster models must be 
circular, K-Means has no built-in way of accounting for oblong or elliptical clusters. In 
contrast, in GMM each cluster is associated not with a hard-edged sphere but with a 
smooth Gaussian model (covariance type can be selected).  

• How many components: The number of clusters must be selected beforehand if using 
K-Means (it cannot learn the number of clusters from the data). But the fact that GMM 
is a generative model gives us a natural means of determining the optimal number of 
components for a given dataset (BIC & AIC).  

• Lack of probabilistic cluster assignment by K-Means: GMMs are probabilistic models, 
K-Means non-probabilistic. This leads to so-called soft and hard clustering. K-Means 
model has no true measure of probability or uncertainty of cluster assignment, where 
the probabilistic nature of GMM makes it possible to find probabilistic cluster 
assignments. That means GMM provides a probability for each cluster (state), which 
can help to make more precise decisions and predictions. For example, if there are two 
hidden states that a certain sample can belong to, in K-Means, this sample can take 
the values of 0 or 1, which shows that this sample belongs to one of them (or not). This 
is known as hard clustering. But GMM (or rather GMMHMM) returns the exact 
probability of a sample that belongs to a given state. For instance, see the following 
figures 27, 28 & 29. In figures 28 and 29, we can clearly see the exact probability of 
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For that purpose, programming processes are required. In this work, the programming 
language Python 3 is used. And once again, the two main libraries (or packages) used for the 
construction and implementation of the models are hmmlearn and scikitlearn. 
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6 Results 
We know that the amount of fluid lifted by the sucker rod pump depends on pump size, tubing 
size, stroke length and strokes per minute. We also know that surface pumping speed can 
cause some problems, for example, an excessive surface pumping speed leads to a 
shortening of stroke. Therefore, we can try to use HMM to find stroke duration, the number of 
strokes per minute and change in surface pumping speed. Then we can try to use HMM to find 
the start and end of upstroke and downstroke as it can maybe help us in failure diagnosis. 
Finally, using HMM to observe the sucker rod pump operation over time (finding hidden states). 
Of course, in order to be able to complete each task in the best possible way, we first have to 
think about which features can help us with the respective task. 

There are many models to solve typical unsupervised learning problems, and the Gaussian 
Mixture Model or rather the Gaussian Mixture Hidden Markov Model (GMMHMM), is one of 
them. 

6.1 Stroke duration and strokes per minute 
“The polished rod is the top and strongest part of the sucker rod string, and it connects the 
rods to the pumping unit. Its main functions are: 

• To transfer the pumping loads to the surface pumping unit 
• To provide a seal in the installation's stuffing box to prevent well fluids from entering 

the atmosphere 

In order to fulfill its functions, the polished rod must be strong enough to carry the full load 
during the pumping cycle. Polished rods are standardized in API Spec 11B and come in 
different sizes with outside diameters of 1 1/8 in, 1 1/4 in, and 1 1/2 in. Available standard 
lengths are between 8 ft and 36 ft, and their proper length is calculated so as to equal the sum 
of the following measurements (ScienceDirect o. J.; Takacs 2015): 

• The maximum anticipated stroke length of the pumping unit 
• The distance above the stuffing box to the lowest position of the carrier bar 
• Some extra lengths (safety distances) for accommodating (a) the polished 

rod clamp and (b) extra length below the stuffing box” 

Therefore, since the stroke length is proportional to the polished rod displacement, the polished 
rod position can be considered as a good choice to obtain the length and strokes per minute.  

If a sucker rod pump works properly and without any significant problem, the polished rod will 
move up and down (Up- and Downstroke), which means two possible states were expected. 
If we look at the polished rod position in figure 34, we can see that it is true, there might be two 
hidden states. As previously mentioned, if we know the number of hidden states and also the 
model parameters, the Forward and Viterbi algorithms can be used to find P(O|l) and the best 
hidden states sequence. Since we are dealing with continuous data and know only the number 
of possible hidden states but not the model parameters, we have to use Gaussian HMM or 
Gaussian Mixture HMM. We know that there is more than one normal distribution (possible 
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These small but very precise differences will be very helpful to us in making predictions. The 
more details we know about our data, the more accurate the predictions are. That is why HMM 
can be of great and reliable help to us. 
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7 Conclusion 
To avoid future problems, we have to recognize them earlier, therefore, we need to predict. To 
be able to predict, we need to know the states hiding in our data. If we are trying to find a 
method for relating an observation sequence to a sequence of hidden states, which explains 
the observations, HMM is a very good and reliable tool for this purpose. 

Due to the efficient learning algorithms and the strong statistical foundation, HMM is able to 
learn directly from raw sequence data. This property and all other properties and advantages 
of HMM, which we discussed earlier, makes it possible to apply HMM in many fields, like data 
mining and classification, pattern recognition and so on. 

HMMs are easy to implement but are a powerful model at extracting important information from 
the dataset. It is also easy to combine HMMs into libraries. 

Furthermore, it is the case with almost all models that each iteration must access every point 
in the dataset, so the algorithm can be relatively slow as the number of samples increases. 
This is not the case with the HMMs, they can be performed for large number of samples. 

All in all, the results presented in this thesis show clearly, that although HMM and Gaussian 
Mixture can be seen as an extension of the ideas behind K-Means, and although GMMHMM 
and Gaussian Mixture are the same in many respects, they nevertheless provide different 
results, where HMM supplies the best and accurate results. 

In addition, as mentioned earlier in chapter 5, GMMs and HMMs are probabilistic models, K-
Means non-probabilistic. GMM and HMM are both probabilistic models, nevertheless, it seems 
that HMM was the only one of the two models that not only considered the distances of 
samples to the neighbor but also the behavior of samples. The algorithms of the HMM make 
this decisive difference. 
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